pax_global_header00006660000000000000000000000064136406323510014515gustar00rootroot0000000000000052 comment=36eadf1f84daa965041cce410b4ff32cbda4ef08 openssl-1.1.1f/000077500000000000000000000000001364063235100133465ustar00rootroot00000000000000openssl-1.1.1f/ACKNOWLEDGEMENTS000066400000000000000000000001271364063235100156230ustar00rootroot00000000000000Please https://www.openssl.org/community/thanks.html for the current acknowledgements. openssl-1.1.1f/AUTHORS000066400000000000000000000013151364063235100144160ustar00rootroot00000000000000# This is the list of OpenSSL authors for copyright purposes. # # This does not necessarily list everyone who has contributed code, since in # some cases, their employer may be the copyright holder. To see the full list # of contributors, see the revision history in source control. OpenSSL Software Services, Inc. OpenSSL Software Foundation, Inc. # Individuals Andy Polyakov Ben Laurie Ben Kaduk Bernd Edlinger Bodo Möller David Benjamin Emilia Käsper Eric Young Geoff Thorpe Holger Reif Kurt Roeckx Lutz Jänicke Mark J. Cox Matt Caswell Matthias St. Pierre Nils Larsch Paul Dale Paul C. Sutton Ralf S. Engelschall Rich Salz Richard Levitte Stephen Henson Steve Marquess Tim Hudson Ulf Möller Viktor Dukhovni openssl-1.1.1f/CHANGES000066400000000000000000021727521364063235100143610ustar00rootroot00000000000000 OpenSSL CHANGES _______________ This is a high-level summary of the most important changes. For a full list of changes, see the git commit log; for example, https://github.com/openssl/openssl/commits/ and pick the appropriate release branch. Changes between 1.1.1e and 1.1.1f [31 Mar 2020] *) Revert the change of EOF detection while reading in libssl to avoid regressions in applications depending on the current way of reporting the EOF. As the existing method is not fully accurate the change to reporting the EOF via SSL_ERROR_SSL is kept on the current development branch and will be present in the 3.0 release. [Tomas Mraz] *) Revised BN_generate_prime_ex to not avoid factors 3..17863 in p-1 when primes for RSA keys are computed. Since we previously always generated primes == 2 (mod 3) for RSA keys, the 2-prime and 3-prime RSA modules were easy to distinguish, since N = p*q = 1 (mod 3), but N = p*q*r = 2 (mod 3). Therefore fingerprinting 2-prime vs. 3-prime RSA keys was possible by computing N mod 3. This avoids possible fingerprinting of newly generated RSA modules. [Bernd Edlinger] Changes between 1.1.1d and 1.1.1e [17 Mar 2020] *) Properly detect EOF while reading in libssl. Previously if we hit an EOF while reading in libssl then we would report an error back to the application (SSL_ERROR_SYSCALL) but errno would be 0. We now add an error to the stack (which means we instead return SSL_ERROR_SSL) and therefore give a hint as to what went wrong. [Matt Caswell] *) Check that ed25519 and ed448 are allowed by the security level. Previously signature algorithms not using an MD were not being checked that they were allowed by the security level. [Kurt Roeckx] *) Fixed SSL_get_servername() behaviour. The behaviour of SSL_get_servername() was not quite right. The behaviour was not consistent between resumption and normal handshakes, and also not quite consistent with historical behaviour. The behaviour in various scenarios has been clarified and it has been updated to make it match historical behaviour as closely as possible. [Matt Caswell] *) [VMS only] The header files that the VMS compilers include automatically, __DECC_INCLUDE_PROLOGUE.H and __DECC_INCLUDE_EPILOGUE.H, use pragmas that the C++ compiler doesn't understand. This is a shortcoming in the compiler, but can be worked around with __cplusplus guards. C++ applications that use OpenSSL libraries must be compiled using the qualifier '/NAMES=(AS_IS,SHORTENED)' to be able to use all the OpenSSL functions. Otherwise, only functions with symbols of less than 31 characters can be used, as the linker will not be able to successfully resolve symbols with longer names. [Richard Levitte] *) Corrected the documentation of the return values from the EVP_DigestSign* set of functions. The documentation mentioned negative values for some errors, but this was never the case, so the mention of negative values was removed. Code that followed the documentation and thereby check with something like 'EVP_DigestSignInit(...) <= 0' will continue to work undisturbed. [Richard Levitte] *) Fixed an an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against 2-prime RSA1024, 3-prime RSA1536, and DSA1024 as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH512 are considered just feasible. However, for an attack the target would have to re-use the DH512 private key, which is not recommended anyway. Also applications directly using the low level API BN_mod_exp may be affected if they use BN_FLG_CONSTTIME. (CVE-2019-1551) [Andy Polyakov] *) Added a new method to gather entropy on VMS, based on SYS$GET_ENTROPY. The presence of this system service is determined at run-time. [Richard Levitte] *) Added newline escaping functionality to a filename when using openssl dgst. This output format is to replicate the output format found in the '*sum' checksum programs. This aims to preserve backward compatibility. [Matt Eaton, Richard Levitte, and Paul Dale] *) Print all values for a PKCS#12 attribute with 'openssl pkcs12', not just the first value. [Jon Spillett] Changes between 1.1.1c and 1.1.1d [10 Sep 2019] *) Fixed a fork protection issue. OpenSSL 1.1.1 introduced a rewritten random number generator (RNG). This was intended to include protection in the event of a fork() system call in order to ensure that the parent and child processes did not share the same RNG state. However this protection was not being used in the default case. A partial mitigation for this issue is that the output from a high precision timer is mixed into the RNG state so the likelihood of a parent and child process sharing state is significantly reduced. If an application already calls OPENSSL_init_crypto() explicitly using OPENSSL_INIT_ATFORK then this problem does not occur at all. (CVE-2019-1549) [Matthias St. Pierre] *) For built-in EC curves, ensure an EC_GROUP built from the curve name is used even when parsing explicit parameters, when loading a serialized key or calling `EC_GROUP_new_from_ecpkparameters()`/ `EC_GROUP_new_from_ecparameters()`. This prevents bypass of security hardening and performance gains, especially for curves with specialized EC_METHODs. By default, if a key encoded with explicit parameters is loaded and later serialized, the output is still encoded with explicit parameters, even if internally a "named" EC_GROUP is used for computation. [Nicola Tuveri] *) Compute ECC cofactors if not provided during EC_GROUP construction. Before this change, EC_GROUP_set_generator would accept order and/or cofactor as NULL. After this change, only the cofactor parameter can be NULL. It also does some minimal sanity checks on the passed order. (CVE-2019-1547) [Billy Bob Brumley] *) Fixed a padding oracle in PKCS7_dataDecode and CMS_decrypt_set1_pkey. An attack is simple, if the first CMS_recipientInfo is valid but the second CMS_recipientInfo is chosen ciphertext. If the second recipientInfo decodes to PKCS #1 v1.5 form plaintext, the correct encryption key will be replaced by garbage, and the message cannot be decoded, but if the RSA decryption fails, the correct encryption key is used and the recipient will not notice the attack. As a work around for this potential attack the length of the decrypted key must be equal to the cipher default key length, in case the certifiate is not given and all recipientInfo are tried out. The old behaviour can be re-enabled in the CMS code by setting the CMS_DEBUG_DECRYPT flag. (CVE-2019-1563) [Bernd Edlinger] *) Early start up entropy quality from the DEVRANDOM seed source has been improved for older Linux systems. The RAND subsystem will wait for /dev/random to be producing output before seeding from /dev/urandom. The seeded state is stored for future library initialisations using a system global shared memory segment. The shared memory identifier can be configured by defining OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID to the desired value. The default identifier is 114. [Paul Dale] *) Correct the extended master secret constant on EBCDIC systems. Without this fix TLS connections between an EBCDIC system and a non-EBCDIC system that negotiate EMS will fail. Unfortunately this also means that TLS connections between EBCDIC systems with this fix, and EBCDIC systems without this fix will fail if they negotiate EMS. [Matt Caswell] *) Use Windows installation paths in the mingw builds Mingw isn't a POSIX environment per se, which means that Windows paths should be used for installation. (CVE-2019-1552) [Richard Levitte] *) Changed DH_check to accept parameters with order q and 2q subgroups. With order 2q subgroups the bit 0 of the private key is not secret but DH_generate_key works around that by clearing bit 0 of the private key for those. This avoids leaking bit 0 of the private key. [Bernd Edlinger] *) Significantly reduce secure memory usage by the randomness pools. [Paul Dale] *) Revert the DEVRANDOM_WAIT feature for Linux systems The DEVRANDOM_WAIT feature added a select() call to wait for the /dev/random device to become readable before reading from the /dev/urandom device. It turned out that this change had negative side effects on performance which were not acceptable. After some discussion it was decided to revert this feature and leave it up to the OS resp. the platform maintainer to ensure a proper initialization during early boot time. [Matthias St. Pierre] Changes between 1.1.1b and 1.1.1c [28 May 2019] *) Add build tests for C++. These are generated files that only do one thing, to include one public OpenSSL head file each. This tests that the public header files can be usefully included in a C++ application. This test isn't enabled by default. It can be enabled with the option 'enable-buildtest-c++'. [Richard Levitte] *) Enable SHA3 pre-hashing for ECDSA and DSA. [Patrick Steuer] *) Change the default RSA, DSA and DH size to 2048 bit instead of 1024. This changes the size when using the genpkey app when no size is given. It fixes an omission in earlier changes that changed all RSA, DSA and DH generation apps to use 2048 bits by default. [Kurt Roeckx] *) Reorganize the manual pages to consistently have RETURN VALUES, EXAMPLES, SEE ALSO and HISTORY come in that order, and adjust util/fix-doc-nits accordingly. [Paul Yang, Joshua Lock] *) Add the missing accessor EVP_PKEY_get0_engine() [Matt Caswell] *) Have apps like 's_client' and 's_server' output the signature scheme along with other cipher suite parameters when debugging. [Lorinczy Zsigmond] *) Make OPENSSL_config() error agnostic again. [Richard Levitte] *) Do the error handling in RSA decryption constant time. [Bernd Edlinger] *) Prevent over long nonces in ChaCha20-Poly1305. ChaCha20-Poly1305 is an AEAD cipher, and requires a unique nonce input for every encryption operation. RFC 7539 specifies that the nonce value (IV) should be 96 bits (12 bytes). OpenSSL allows a variable nonce length and front pads the nonce with 0 bytes if it is less than 12 bytes. However it also incorrectly allows a nonce to be set of up to 16 bytes. In this case only the last 12 bytes are significant and any additional leading bytes are ignored. It is a requirement of using this cipher that nonce values are unique. Messages encrypted using a reused nonce value are susceptible to serious confidentiality and integrity attacks. If an application changes the default nonce length to be longer than 12 bytes and then makes a change to the leading bytes of the nonce expecting the new value to be a new unique nonce then such an application could inadvertently encrypt messages with a reused nonce. Additionally the ignored bytes in a long nonce are not covered by the integrity guarantee of this cipher. Any application that relies on the integrity of these ignored leading bytes of a long nonce may be further affected. Any OpenSSL internal use of this cipher, including in SSL/TLS, is safe because no such use sets such a long nonce value. However user applications that use this cipher directly and set a non-default nonce length to be longer than 12 bytes may be vulnerable. This issue was reported to OpenSSL on 16th of March 2019 by Joran Dirk Greef of Ronomon. (CVE-2019-1543) [Matt Caswell] *) Add DEVRANDOM_WAIT feature for Linux systems On older Linux systems where the getrandom() system call is not available, OpenSSL normally uses the /dev/urandom device for seeding its CSPRNG. Contrary to getrandom(), the /dev/urandom device will not block during early boot when the kernel CSPRNG has not been seeded yet. To mitigate this known weakness, use select() to wait for /dev/random to become readable before reading from /dev/urandom. *) Ensure that SM2 only uses SM3 as digest algorithm [Paul Yang] Changes between 1.1.1a and 1.1.1b [26 Feb 2019] *) Added SCA hardening for modular field inversion in EC_GROUP through a new dedicated field_inv() pointer in EC_METHOD. This also addresses a leakage affecting conversions from projective to affine coordinates. [Billy Bob Brumley, Nicola Tuveri] *) Change the info callback signals for the start and end of a post-handshake message exchange in TLSv1.3. In 1.1.1/1.1.1a we used SSL_CB_HANDSHAKE_START and SSL_CB_HANDSHAKE_DONE. Experience has shown that many applications get confused by this and assume that a TLSv1.2 renegotiation has started. This can break KeyUpdate handling. Instead we no longer signal the start and end of a post handshake message exchange (although the messages themselves are still signalled). This could break some applications that were expecting the old signals. However without this KeyUpdate is not usable for many applications. [Matt Caswell] *) Fix a bug in the computation of the endpoint-pair shared secret used by DTLS over SCTP. This breaks interoperability with older versions of OpenSSL like OpenSSL 1.1.0 and OpenSSL 1.0.2. There is a runtime switch SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG (off by default) enabling interoperability with such broken implementations. However, enabling this switch breaks interoperability with correct implementations. *) Fix a use after free bug in d2i_X509_PUBKEY when overwriting a re-used X509_PUBKEY object if the second PUBKEY is malformed. [Bernd Edlinger] *) Move strictness check from EVP_PKEY_asn1_new() to EVP_PKEY_asn1_add0(). [Richard Levitte] *) Remove the 'dist' target and add a tarball building script. The 'dist' target has fallen out of use, and it shouldn't be necessary to configure just to create a source distribution. [Richard Levitte] Changes between 1.1.1 and 1.1.1a [20 Nov 2018] *) Timing vulnerability in DSA signature generation The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. This issue was reported to OpenSSL on 16th October 2018 by Samuel Weiser. (CVE-2018-0734) [Paul Dale] *) Timing vulnerability in ECDSA signature generation The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. This issue was reported to OpenSSL on 25th October 2018 by Samuel Weiser. (CVE-2018-0735) [Paul Dale] *) Added EVP_PKEY_ECDH_KDF_X9_63 and ecdh_KDF_X9_63() as replacements for the EVP_PKEY_ECDH_KDF_X9_62 KDF type and ECDH_KDF_X9_62(). The old names are retained for backwards compatibility. [Antoine Salon] *) Fixed the issue that RAND_add()/RAND_seed() silently discards random input if its length exceeds 4096 bytes. The limit has been raised to a buffer size of two gigabytes and the error handling improved. This issue was reported to OpenSSL by Dr. Falko Strenzke. It has been categorized as a normal bug, not a security issue, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Changes between 1.1.0i and 1.1.1 [11 Sep 2018] *) Add a new ClientHello callback. Provides a callback interface that gives the application the ability to adjust the nascent SSL object at the earliest stage of ClientHello processing, immediately after extensions have been collected but before they have been processed. In particular, this callback can adjust the supported TLS versions in response to the contents of the ClientHello [Benjamin Kaduk] *) Add SM2 base algorithm support. [Jack Lloyd] *) s390x assembly pack: add (improved) hardware-support for the following cryptographic primitives: sha3, shake, aes-gcm, aes-ccm, aes-ctr, aes-ofb, aes-cfb/cfb8, aes-ecb. [Patrick Steuer] *) Make EVP_PKEY_asn1_new() a bit stricter about its input. A NULL pem_str parameter is no longer accepted, as it leads to a corrupt table. NULL pem_str is reserved for alias entries only. [Richard Levitte] *) Use the new ec_scalar_mul_ladder scaffold to implement a specialized ladder step for prime curves. The new implementation is based on formulae from differential addition-and-doubling in homogeneous projective coordinates from Izu-Takagi "A fast parallel elliptic curve multiplication resistant against side channel attacks" and Brier-Joye "Weierstrass Elliptic Curves and Side-Channel Attacks" Eq. (8) for y-coordinate recovery, modified to work in projective coordinates. [Billy Bob Brumley, Nicola Tuveri] *) Change generating and checking of primes so that the error rate of not being prime depends on the intended use based on the size of the input. For larger primes this will result in more rounds of Miller-Rabin. The maximal error rate for primes with more than 1080 bits is lowered to 2^-128. [Kurt Roeckx, Annie Yousar] *) Increase the number of Miller-Rabin rounds for DSA key generating to 64. [Kurt Roeckx] *) The 'tsget' script is renamed to 'tsget.pl', to avoid confusion when moving between systems, and to avoid confusion when a Windows build is done with mingw vs with MSVC. For POSIX installs, there's still a symlink or copy named 'tsget' to avoid that confusion as well. [Richard Levitte] *) Revert blinding in ECDSA sign and instead make problematic addition length-invariant. Switch even to fixed-length Montgomery multiplication. [Andy Polyakov] *) Use the new ec_scalar_mul_ladder scaffold to implement a specialized ladder step for binary curves. The new implementation is based on formulae from differential addition-and-doubling in mixed Lopez-Dahab projective coordinates, modified to independently blind the operands. [Billy Bob Brumley, Sohaib ul Hassan, Nicola Tuveri] *) Add a scaffold to optionally enhance the Montgomery ladder implementation for `ec_scalar_mul_ladder` (formerly `ec_mul_consttime`) allowing EC_METHODs to implement their own specialized "ladder step", to take advantage of more favorable coordinate systems or more efficient differential addition-and-doubling algorithms. [Billy Bob Brumley, Sohaib ul Hassan, Nicola Tuveri] *) Modified the random device based seed sources to keep the relevant file descriptors open rather than reopening them on each access. This allows such sources to operate in a chroot() jail without the associated device nodes being available. This behaviour can be controlled using RAND_keep_random_devices_open(). [Paul Dale] *) Numerous side-channel attack mitigations have been applied. This may have performance impacts for some algorithms for the benefit of improved security. Specific changes are noted in this change log by their respective authors. [Matt Caswell] *) AIX shared library support overhaul. Switch to AIX "natural" way of handling shared libraries, which means collecting shared objects of different versions and bitnesses in one common archive. This allows to mitigate conflict between 1.0 and 1.1 side-by-side installations. It doesn't affect the way 3rd party applications are linked, only how multi-version installation is managed. [Andy Polyakov] *) Make ec_group_do_inverse_ord() more robust and available to other EC cryptosystems, so that irrespective of BN_FLG_CONSTTIME, SCA mitigations are applied to the fallback BN_mod_inverse(). When using this function rather than BN_mod_inverse() directly, new EC cryptosystem implementations are then safer-by-default. [Billy Bob Brumley] *) Add coordinate blinding for EC_POINT and implement projective coordinate blinding for generic prime curves as a countermeasure to chosen point SCA attacks. [Sohaib ul Hassan, Nicola Tuveri, Billy Bob Brumley] *) Add blinding to ECDSA and DSA signatures to protect against side channel attacks discovered by Keegan Ryan (NCC Group). [Matt Caswell] *) Enforce checking in the pkeyutl command line app to ensure that the input length does not exceed the maximum supported digest length when performing a sign, verify or verifyrecover operation. [Matt Caswell] *) SSL_MODE_AUTO_RETRY is enabled by default. Applications that use blocking I/O in combination with something like select() or poll() will hang. This can be turned off again using SSL_CTX_clear_mode(). Many applications do not properly handle non-application data records, and TLS 1.3 sends more of such records. Setting SSL_MODE_AUTO_RETRY works around the problems in those applications, but can also break some. It's recommended to read the manpages about SSL_read(), SSL_write(), SSL_get_error(), SSL_shutdown(), SSL_CTX_set_mode() and SSL_CTX_set_read_ahead() again. [Kurt Roeckx] *) When unlocking a pass phrase protected PEM file or PKCS#8 container, we now allow empty (zero character) pass phrases. [Richard Levitte] *) Apply blinding to binary field modular inversion and remove patent pending (OPENSSL_SUN_GF2M_DIV) BN_GF2m_mod_div implementation. [Billy Bob Brumley] *) Deprecate ec2_mult.c and unify scalar multiplication code paths for binary and prime elliptic curves. [Billy Bob Brumley] *) Remove ECDSA nonce padding: EC_POINT_mul is now responsible for constant time fixed point multiplication. [Billy Bob Brumley] *) Revise elliptic curve scalar multiplication with timing attack defenses: ec_wNAF_mul redirects to a constant time implementation when computing fixed point and variable point multiplication (which in OpenSSL are mostly used with secret scalars in keygen, sign, ECDH derive operations). [Billy Bob Brumley, Nicola Tuveri, Cesar Pereida García, Sohaib ul Hassan] *) Updated CONTRIBUTING [Rich Salz] *) Updated DRBG / RAND to request nonce and additional low entropy randomness from the system. [Matthias St. Pierre] *) Updated 'openssl rehash' to use OpenSSL consistent default. [Richard Levitte] *) Moved the load of the ssl_conf module to libcrypto, which helps loading engines that libssl uses before libssl is initialised. [Matt Caswell] *) Added EVP_PKEY_sign() and EVP_PKEY_verify() for EdDSA [Matt Caswell] *) Fixed X509_NAME_ENTRY_set to get multi-valued RDNs right in all cases. [Ingo Schwarze, Rich Salz] *) Added output of accepting IP address and port for 'openssl s_server' [Richard Levitte] *) Added a new API for TLSv1.3 ciphersuites: SSL_CTX_set_ciphersuites() SSL_set_ciphersuites() [Matt Caswell] *) Memory allocation failures consistently add an error to the error stack. [Rich Salz] *) Don't use OPENSSL_ENGINES and OPENSSL_CONF environment values in libcrypto when run as setuid/setgid. [Bernd Edlinger] *) Load any config file by default when libssl is used. [Matt Caswell] *) Added new public header file and documentation for the RAND_DRBG API. See manual page RAND_DRBG(7) for an overview. [Matthias St. Pierre] *) QNX support removed (cannot find contributors to get their approval for the license change). [Rich Salz] *) TLSv1.3 replay protection for early data has been implemented. See the SSL_read_early_data() man page for further details. [Matt Caswell] *) Separated TLSv1.3 ciphersuite configuration out from TLSv1.2 ciphersuite configuration. TLSv1.3 ciphersuites are not compatible with TLSv1.2 and below. Similarly TLSv1.2 ciphersuites are not compatible with TLSv1.3. In order to avoid issues where legacy TLSv1.2 ciphersuite configuration would otherwise inadvertently disable all TLSv1.3 ciphersuites the configuration has been separated out. See the ciphers man page or the SSL_CTX_set_ciphersuites() man page for more information. [Matt Caswell] *) On POSIX (BSD, Linux, ...) systems the ocsp(1) command running in responder mode now supports the new "-multi" option, which spawns the specified number of child processes to handle OCSP requests. The "-timeout" option now also limits the OCSP responder's patience to wait to receive the full client request on a newly accepted connection. Child processes are respawned as needed, and the CA index file is automatically reloaded when changed. This makes it possible to run the "ocsp" responder as a long-running service, making the OpenSSL CA somewhat more feature-complete. In this mode, most diagnostic messages logged after entering the event loop are logged via syslog(3) rather than written to stderr. [Viktor Dukhovni] *) Added support for X448 and Ed448. Heavily based on original work by Mike Hamburg. [Matt Caswell] *) Extend OSSL_STORE with capabilities to search and to narrow the set of objects loaded. This adds the functions OSSL_STORE_expect() and OSSL_STORE_find() as well as needed tools to construct searches and get the search data out of them. [Richard Levitte] *) Support for TLSv1.3 added. Note that users upgrading from an earlier version of OpenSSL should review their configuration settings to ensure that they are still appropriate for TLSv1.3. For further information see: https://wiki.openssl.org/index.php/TLS1.3 [Matt Caswell] *) Grand redesign of the OpenSSL random generator The default RAND method now utilizes an AES-CTR DRBG according to NIST standard SP 800-90Ar1. The new random generator is essentially a port of the default random generator from the OpenSSL FIPS 2.0 object module. It is a hybrid deterministic random bit generator using an AES-CTR bit stream and which seeds and reseeds itself automatically using trusted system entropy sources. Some of its new features are: o Support for multiple DRBG instances with seed chaining. o The default RAND method makes use of a DRBG. o There is a public and private DRBG instance. o The DRBG instances are fork-safe. o Keep all global DRBG instances on the secure heap if it is enabled. o The public and private DRBG instance are per thread for lock free operation [Paul Dale, Benjamin Kaduk, Kurt Roeckx, Rich Salz, Matthias St. Pierre] *) Changed Configure so it only says what it does and doesn't dump so much data. Instead, ./configdata.pm should be used as a script to display all sorts of configuration data. [Richard Levitte] *) Added processing of "make variables" to Configure. [Richard Levitte] *) Added SHA512/224 and SHA512/256 algorithm support. [Paul Dale] *) The last traces of Netware support, first removed in 1.1.0, have now been removed. [Rich Salz] *) Get rid of Makefile.shared, and in the process, make the processing of certain files (rc.obj, or the .def/.map/.opt files produced from the ordinal files) more visible and hopefully easier to trace and debug (or make silent). [Richard Levitte] *) Make it possible to have environment variable assignments as arguments to config / Configure. [Richard Levitte] *) Add multi-prime RSA (RFC 8017) support. [Paul Yang] *) Add SM3 implemented according to GB/T 32905-2016 [ Jack Lloyd , Ronald Tse , Erick Borsboom ] *) Add 'Maximum Fragment Length' TLS extension negotiation and support as documented in RFC6066. Based on a patch from Tomasz Moń [Filipe Raimundo da Silva] *) Add SM4 implemented according to GB/T 32907-2016. [ Jack Lloyd , Ronald Tse , Erick Borsboom ] *) Reimplement -newreq-nodes and ERR_error_string_n; the original author does not agree with the license change. [Rich Salz] *) Add ARIA AEAD TLS support. [Jon Spillett] *) Some macro definitions to support VS6 have been removed. Visual Studio 6 has not worked since 1.1.0 [Rich Salz] *) Add ERR_clear_last_mark(), to allow callers to clear the last mark without clearing the errors. [Richard Levitte] *) Add "atfork" functions. If building on a system that without pthreads, see doc/man3/OPENSSL_fork_prepare.pod for application requirements. The RAND facility now uses/requires this. [Rich Salz] *) Add SHA3. [Andy Polyakov] *) The UI API becomes a permanent and integral part of libcrypto, i.e. not possible to disable entirely. However, it's still possible to disable the console reading UI method, UI_OpenSSL() (use UI_null() as a fallback). To disable, configure with 'no-ui-console'. 'no-ui' is still possible to use as an alias. Check at compile time with the macro OPENSSL_NO_UI_CONSOLE. The macro OPENSSL_NO_UI is still possible to check and is an alias for OPENSSL_NO_UI_CONSOLE. [Richard Levitte] *) Add a STORE module, which implements a uniform and URI based reader of stores that can contain keys, certificates, CRLs and numerous other objects. The main API is loosely based on a few stdio functions, and includes OSSL_STORE_open, OSSL_STORE_load, OSSL_STORE_eof, OSSL_STORE_error and OSSL_STORE_close. The implementation uses backends called "loaders" to implement arbitrary URI schemes. There is one built in "loader" for the 'file' scheme. [Richard Levitte] *) Add devcrypto engine. This has been implemented against cryptodev-linux, then adjusted to work on FreeBSD 8.4 as well. Enable by configuring with 'enable-devcryptoeng'. This is done by default on BSD implementations, as cryptodev.h is assumed to exist on all of them. [Richard Levitte] *) Module names can prefixed with OSSL_ or OPENSSL_. This affects util/mkerr.pl, which is adapted to allow those prefixes, leading to error code calls like this: OSSL_FOOerr(OSSL_FOO_F_SOMETHING, OSSL_FOO_R_WHATEVER); With this change, we claim the namespaces OSSL and OPENSSL in a manner that can be encoded in C. For the foreseeable future, this will only affect new modules. [Richard Levitte and Tim Hudson] *) Removed BSD cryptodev engine. [Rich Salz] *) Add a build target 'build_all_generated', to build all generated files and only that. This can be used to prepare everything that requires things like perl for a system that lacks perl and then move everything to that system and do the rest of the build there. [Richard Levitte] *) In the UI interface, make it possible to duplicate the user data. This can be used by engines that need to retain the data for a longer time than just the call where this user data is passed. [Richard Levitte] *) Ignore the '-named_curve auto' value for compatibility of applications with OpenSSL 1.0.2. [Tomas Mraz ] *) Fragmented SSL/TLS alerts are no longer accepted. An alert message is 2 bytes long. In theory it is permissible in SSLv3 - TLSv1.2 to fragment such alerts across multiple records (some of which could be empty). In practice it make no sense to send an empty alert record, or to fragment one. TLSv1.3 prohibits this altogether and other libraries (BoringSSL, NSS) do not support this at all. Supporting it adds significant complexity to the record layer, and its removal is unlikely to cause interoperability issues. [Matt Caswell] *) Add the ASN.1 types INT32, UINT32, INT64, UINT64 and variants prefixed with Z. These are meant to replace LONG and ZLONG and to be size safe. The use of LONG and ZLONG is discouraged and scheduled for deprecation in OpenSSL 1.2.0. [Richard Levitte] *) Add the 'z' and 'j' modifiers to BIO_printf() et al formatting string, 'z' is to be used for [s]size_t, and 'j' - with [u]int64_t. [Richard Levitte, Andy Polyakov] *) Add EC_KEY_get0_engine(), which does for EC_KEY what RSA_get0_engine() does for RSA, etc. [Richard Levitte] *) Have 'config' recognise 64-bit mingw and choose 'mingw64' as the target platform rather than 'mingw'. [Richard Levitte] *) The functions X509_STORE_add_cert and X509_STORE_add_crl return success if they are asked to add an object which already exists in the store. This change cascades to other functions which load certificates and CRLs. [Paul Dale] *) x86_64 assembly pack: annotate code with DWARF CFI directives to facilitate stack unwinding even from assembly subroutines. [Andy Polyakov] *) Remove VAX C specific definitions of OPENSSL_EXPORT, OPENSSL_EXTERN. Also remove OPENSSL_GLOBAL entirely, as it became a no-op. [Richard Levitte] *) Remove the VMS-specific reimplementation of gmtime from crypto/o_times.c. VMS C's RTL has a fully up to date gmtime() and gmtime_r() since V7.1, which is the minimum version we support. [Richard Levitte] *) Certificate time validation (X509_cmp_time) enforces stricter compliance with RFC 5280. Fractional seconds and timezone offsets are no longer allowed. [Emilia Käsper] *) Add support for ARIA [Paul Dale] *) s_client will now send the Server Name Indication (SNI) extension by default unless the new "-noservername" option is used. The server name is based on the host provided to the "-connect" option unless overridden by using "-servername". [Matt Caswell] *) Add support for SipHash [Todd Short] *) OpenSSL now fails if it receives an unrecognised record type in TLS1.0 or TLS1.1. Previously this only happened in SSLv3 and TLS1.2. This is to prevent issues where no progress is being made and the peer continually sends unrecognised record types, using up resources processing them. [Matt Caswell] *) 'openssl passwd' can now produce SHA256 and SHA512 based output, using the algorithm defined in https://www.akkadia.org/drepper/SHA-crypt.txt [Richard Levitte] *) Heartbeat support has been removed; the ABI is changed for now. [Richard Levitte, Rich Salz] *) Support for SSL_OP_NO_ENCRYPT_THEN_MAC in SSL_CONF_cmd. [Emilia Käsper] *) The RSA "null" method, which was partially supported to avoid patent issues, has been replaced to always returns NULL. [Rich Salz] Changes between 1.1.0h and 1.1.0i [xx XXX xxxx] *) Client DoS due to large DH parameter During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client. This will cause the client to spend an unreasonably long period of time generating a key for this prime resulting in a hang until the client has finished. This could be exploited in a Denial Of Service attack. This issue was reported to OpenSSL on 5th June 2018 by Guido Vranken (CVE-2018-0732) [Guido Vranken] *) Cache timing vulnerability in RSA Key Generation The OpenSSL RSA Key generation algorithm has been shown to be vulnerable to a cache timing side channel attack. An attacker with sufficient access to mount cache timing attacks during the RSA key generation process could recover the private key. This issue was reported to OpenSSL on 4th April 2018 by Alejandro Cabrera Aldaya, Billy Brumley, Cesar Pereida Garcia and Luis Manuel Alvarez Tapia. (CVE-2018-0737) [Billy Brumley] *) Make EVP_PKEY_asn1_new() a bit stricter about its input. A NULL pem_str parameter is no longer accepted, as it leads to a corrupt table. NULL pem_str is reserved for alias entries only. [Richard Levitte] *) Revert blinding in ECDSA sign and instead make problematic addition length-invariant. Switch even to fixed-length Montgomery multiplication. [Andy Polyakov] *) Change generating and checking of primes so that the error rate of not being prime depends on the intended use based on the size of the input. For larger primes this will result in more rounds of Miller-Rabin. The maximal error rate for primes with more than 1080 bits is lowered to 2^-128. [Kurt Roeckx, Annie Yousar] *) Increase the number of Miller-Rabin rounds for DSA key generating to 64. [Kurt Roeckx] *) Add blinding to ECDSA and DSA signatures to protect against side channel attacks discovered by Keegan Ryan (NCC Group). [Matt Caswell] *) When unlocking a pass phrase protected PEM file or PKCS#8 container, we now allow empty (zero character) pass phrases. [Richard Levitte] *) Certificate time validation (X509_cmp_time) enforces stricter compliance with RFC 5280. Fractional seconds and timezone offsets are no longer allowed. [Emilia Käsper] *) Fixed a text canonicalisation bug in CMS Where a CMS detached signature is used with text content the text goes through a canonicalisation process first prior to signing or verifying a signature. This process strips trailing space at the end of lines, converts line terminators to CRLF and removes additional trailing line terminators at the end of a file. A bug in the canonicalisation process meant that some characters, such as form-feed, were incorrectly treated as whitespace and removed. This is contrary to the specification (RFC5485). This fix could mean that detached text data signed with an earlier version of OpenSSL 1.1.0 may fail to verify using the fixed version, or text data signed with a fixed OpenSSL may fail to verify with an earlier version of OpenSSL 1.1.0. A workaround is to only verify the canonicalised text data and use the "-binary" flag (for the "cms" command line application) or set the SMIME_BINARY/PKCS7_BINARY/CMS_BINARY flags (if using CMS_verify()). [Matt Caswell] Changes between 1.1.0g and 1.1.0h [27 Mar 2018] *) Constructed ASN.1 types with a recursive definition could exceed the stack Constructed ASN.1 types with a recursive definition (such as can be found in PKCS7) could eventually exceed the stack given malicious input with excessive recursion. This could result in a Denial Of Service attack. There are no such structures used within SSL/TLS that come from untrusted sources so this is considered safe. This issue was reported to OpenSSL on 4th January 2018 by the OSS-fuzz project. (CVE-2018-0739) [Matt Caswell] *) Incorrect CRYPTO_memcmp on HP-UX PA-RISC Because of an implementation bug the PA-RISC CRYPTO_memcmp function is effectively reduced to only comparing the least significant bit of each byte. This allows an attacker to forge messages that would be considered as authenticated in an amount of tries lower than that guaranteed by the security claims of the scheme. The module can only be compiled by the HP-UX assembler, so that only HP-UX PA-RISC targets are affected. This issue was reported to OpenSSL on 2nd March 2018 by Peter Waltenberg (IBM). (CVE-2018-0733) [Andy Polyakov] *) Add a build target 'build_all_generated', to build all generated files and only that. This can be used to prepare everything that requires things like perl for a system that lacks perl and then move everything to that system and do the rest of the build there. [Richard Levitte] *) Backport SSL_OP_NO_RENGOTIATION OpenSSL 1.0.2 and below had the ability to disable renegotiation using the (undocumented) SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS flag. Due to the opacity changes this is no longer possible in 1.1.0. Therefore the new SSL_OP_NO_RENEGOTIATION option from 1.1.1-dev has been backported to 1.1.0 to provide equivalent functionality. Note that if an application built against 1.1.0h headers (or above) is run using an older version of 1.1.0 (prior to 1.1.0h) then the option will be accepted but nothing will happen, i.e. renegotiation will not be prevented. [Matt Caswell] *) Removed the OS390-Unix config target. It relied on a script that doesn't exist. [Rich Salz] *) rsaz_1024_mul_avx2 overflow bug on x86_64 There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). This issue was reported to OpenSSL by David Benjamin (Google). The issue was originally found via the OSS-Fuzz project. (CVE-2017-3738) [Andy Polyakov] Changes between 1.1.0f and 1.1.0g [2 Nov 2017] *) bn_sqrx8x_internal carry bug on x86_64 There is a carry propagating bug in the x86_64 Montgomery squaring procedure. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. This only affects processors that support the BMI1, BMI2 and ADX extensions like Intel Broadwell (5th generation) and later or AMD Ryzen. This issue was reported to OpenSSL by the OSS-Fuzz project. (CVE-2017-3736) [Andy Polyakov] *) Malformed X.509 IPAddressFamily could cause OOB read If an X.509 certificate has a malformed IPAddressFamily extension, OpenSSL could do a one-byte buffer overread. The most likely result would be an erroneous display of the certificate in text format. This issue was reported to OpenSSL by the OSS-Fuzz project. (CVE-2017-3735) [Rich Salz] Changes between 1.1.0e and 1.1.0f [25 May 2017] *) Have 'config' recognise 64-bit mingw and choose 'mingw64' as the target platform rather than 'mingw'. [Richard Levitte] *) Remove the VMS-specific reimplementation of gmtime from crypto/o_times.c. VMS C's RTL has a fully up to date gmtime() and gmtime_r() since V7.1, which is the minimum version we support. [Richard Levitte] Changes between 1.1.0d and 1.1.0e [16 Feb 2017] *) Encrypt-Then-Mac renegotiation crash During a renegotiation handshake if the Encrypt-Then-Mac extension is negotiated where it was not in the original handshake (or vice-versa) then this can cause OpenSSL to crash (dependant on ciphersuite). Both clients and servers are affected. This issue was reported to OpenSSL by Joe Orton (Red Hat). (CVE-2017-3733) [Matt Caswell] Changes between 1.1.0c and 1.1.0d [26 Jan 2017] *) Truncated packet could crash via OOB read If one side of an SSL/TLS path is running on a 32-bit host and a specific cipher is being used, then a truncated packet can cause that host to perform an out-of-bounds read, usually resulting in a crash. This issue was reported to OpenSSL by Robert Święcki of Google. (CVE-2017-3731) [Andy Polyakov] *) Bad (EC)DHE parameters cause a client crash If a malicious server supplies bad parameters for a DHE or ECDHE key exchange then this can result in the client attempting to dereference a NULL pointer leading to a client crash. This could be exploited in a Denial of Service attack. This issue was reported to OpenSSL by Guido Vranken. (CVE-2017-3730) [Matt Caswell] *) BN_mod_exp may produce incorrect results on x86_64 There is a carry propagating bug in the x86_64 Montgomery squaring procedure. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem. This issue was reported to OpenSSL by the OSS-Fuzz project. (CVE-2017-3732) [Andy Polyakov] Changes between 1.1.0b and 1.1.0c [10 Nov 2016] *) ChaCha20/Poly1305 heap-buffer-overflow TLS connections using *-CHACHA20-POLY1305 ciphersuites are susceptible to a DoS attack by corrupting larger payloads. This can result in an OpenSSL crash. This issue is not considered to be exploitable beyond a DoS. This issue was reported to OpenSSL by Robert Święcki (Google Security Team) (CVE-2016-7054) [Richard Levitte] *) CMS Null dereference Applications parsing invalid CMS structures can crash with a NULL pointer dereference. This is caused by a bug in the handling of the ASN.1 CHOICE type in OpenSSL 1.1.0 which can result in a NULL value being passed to the structure callback if an attempt is made to free certain invalid encodings. Only CHOICE structures using a callback which do not handle NULL value are affected. This issue was reported to OpenSSL by Tyler Nighswander of ForAllSecure. (CVE-2016-7053) [Stephen Henson] *) Montgomery multiplication may produce incorrect results There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected. This issue was publicly reported as transient failures and was not initially recognized as a security issue. Thanks to Richard Morgan for providing reproducible case. (CVE-2016-7055) [Andy Polyakov] *) Removed automatic addition of RPATH in shared libraries and executables, as this was a remainder from OpenSSL 1.0.x and isn't needed any more. [Richard Levitte] Changes between 1.1.0a and 1.1.0b [26 Sep 2016] *) Fix Use After Free for large message sizes The patch applied to address CVE-2016-6307 resulted in an issue where if a message larger than approx 16k is received then the underlying buffer to store the incoming message is reallocated and moved. Unfortunately a dangling pointer to the old location is left which results in an attempt to write to the previously freed location. This is likely to result in a crash, however it could potentially lead to execution of arbitrary code. This issue only affects OpenSSL 1.1.0a. This issue was reported to OpenSSL by Robert Święcki. (CVE-2016-6309) [Matt Caswell] Changes between 1.1.0 and 1.1.0a [22 Sep 2016] *) OCSP Status Request extension unbounded memory growth A malicious client can send an excessively large OCSP Status Request extension. If that client continually requests renegotiation, sending a large OCSP Status Request extension each time, then there will be unbounded memory growth on the server. This will eventually lead to a Denial Of Service attack through memory exhaustion. Servers with a default configuration are vulnerable even if they do not support OCSP. Builds using the "no-ocsp" build time option are not affected. This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.) (CVE-2016-6304) [Matt Caswell] *) SSL_peek() hang on empty record OpenSSL 1.1.0 SSL/TLS will hang during a call to SSL_peek() if the peer sends an empty record. This could be exploited by a malicious peer in a Denial Of Service attack. This issue was reported to OpenSSL by Alex Gaynor. (CVE-2016-6305) [Matt Caswell] *) Excessive allocation of memory in tls_get_message_header() and dtls1_preprocess_fragment() A (D)TLS message includes 3 bytes for its length in the header for the message. This would allow for messages up to 16Mb in length. Messages of this length are excessive and OpenSSL includes a check to ensure that a peer is sending reasonably sized messages in order to avoid too much memory being consumed to service a connection. A flaw in the logic of version 1.1.0 means that memory for the message is allocated too early, prior to the excessive message length check. Due to way memory is allocated in OpenSSL this could mean an attacker could force up to 21Mb to be allocated to service a connection. This could lead to a Denial of Service through memory exhaustion. However, the excessive message length check still takes place, and this would cause the connection to immediately fail. Assuming that the application calls SSL_free() on the failed connection in a timely manner then the 21Mb of allocated memory will then be immediately freed again. Therefore the excessive memory allocation will be transitory in nature. This then means that there is only a security impact if: 1) The application does not call SSL_free() in a timely manner in the event that the connection fails or 2) The application is working in a constrained environment where there is very little free memory or 3) The attacker initiates multiple connection attempts such that there are multiple connections in a state where memory has been allocated for the connection; SSL_free() has not yet been called; and there is insufficient memory to service the multiple requests. Except in the instance of (1) above any Denial Of Service is likely to be transitory because as soon as the connection fails the memory is subsequently freed again in the SSL_free() call. However there is an increased risk during this period of application crashes due to the lack of memory - which would then mean a more serious Denial of Service. This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.) (CVE-2016-6307 and CVE-2016-6308) [Matt Caswell] *) solaris-x86-cc, i.e. 32-bit configuration with vendor compiler, had to be removed. Primary reason is that vendor assembler can't assemble our modules with -KPIC flag. As result it, assembly support, was not even available as option. But its lack means lack of side-channel resistant code, which is incompatible with security by todays standards. Fortunately gcc is readily available prepackaged option, which we firmly point at... [Andy Polyakov] Changes between 1.0.2h and 1.1.0 [25 Aug 2016] *) Windows command-line tool supports UTF-8 opt-in option for arguments and console input. Setting OPENSSL_WIN32_UTF8 environment variable (to any value) allows Windows user to access PKCS#12 file generated with Windows CryptoAPI and protected with non-ASCII password, as well as files generated under UTF-8 locale on Linux also protected with non-ASCII password. [Andy Polyakov] *) To mitigate the SWEET32 attack (CVE-2016-2183), 3DES cipher suites have been disabled by default and removed from DEFAULT, just like RC4. See the RC4 item below to re-enable both. [Rich Salz] *) The method for finding the storage location for the Windows RAND seed file has changed. First we check %RANDFILE%. If that is not set then we check the directories %HOME%, %USERPROFILE% and %SYSTEMROOT% in that order. If all else fails we fall back to C:\. [Matt Caswell] *) The EVP_EncryptUpdate() function has had its return type changed from void to int. A return of 0 indicates and error while a return of 1 indicates success. [Matt Caswell] *) The flags RSA_FLAG_NO_CONSTTIME, DSA_FLAG_NO_EXP_CONSTTIME and DH_FLAG_NO_EXP_CONSTTIME which previously provided the ability to switch off the constant time implementation for RSA, DSA and DH have been made no-ops and deprecated. [Matt Caswell] *) Windows RAND implementation was simplified to only get entropy by calling CryptGenRandom(). Various other RAND-related tickets were also closed. [Joseph Wylie Yandle, Rich Salz] *) The stack and lhash API's were renamed to start with OPENSSL_SK_ and OPENSSL_LH_, respectively. The old names are available with API compatibility. They new names are now completely documented. [Rich Salz] *) Unify TYPE_up_ref(obj) methods signature. SSL_CTX_up_ref(), SSL_up_ref(), X509_up_ref(), EVP_PKEY_up_ref(), X509_CRL_up_ref(), X509_OBJECT_up_ref_count() methods are now returning an int (instead of void) like all others TYPE_up_ref() methods. So now these methods also check the return value of CRYPTO_atomic_add(), and the validity of object reference counter. [fdasilvayy@gmail.com] *) With Windows Visual Studio builds, the .pdb files are installed alongside the installed libraries and executables. For a static library installation, ossl_static.pdb is the associate compiler generated .pdb file to be used when linking programs. [Richard Levitte] *) Remove openssl.spec. Packaging files belong with the packagers. [Richard Levitte] *) Automatic Darwin/OSX configuration has had a refresh, it will now recognise x86_64 architectures automatically. You can still decide to build for a different bitness with the environment variable KERNEL_BITS (can be 32 or 64), for example: KERNEL_BITS=32 ./config [Richard Levitte] *) Change default algorithms in pkcs8 utility to use PKCS#5 v2.0, 256 bit AES and HMAC with SHA256. [Steve Henson] *) Remove support for MIPS o32 ABI on IRIX (and IRIX only). [Andy Polyakov] *) Triple-DES ciphers have been moved from HIGH to MEDIUM. [Rich Salz] *) To enable users to have their own config files and build file templates, Configure looks in the directory indicated by the environment variable OPENSSL_LOCAL_CONFIG_DIR as well as the in-source Configurations/ directory. On VMS, OPENSSL_LOCAL_CONFIG_DIR is expected to be a logical name and is used as is. [Richard Levitte] *) The following datatypes were made opaque: X509_OBJECT, X509_STORE_CTX, X509_STORE, X509_LOOKUP, and X509_LOOKUP_METHOD. The unused type X509_CERT_FILE_CTX was removed. [Rich Salz] *) "shared" builds are now the default. To create only static libraries use the "no-shared" Configure option. [Matt Caswell] *) Remove the no-aes, no-hmac, no-rsa, no-sha and no-md5 Configure options. All of these option have not worked for some while and are fundamental algorithms. [Matt Caswell] *) Make various cleanup routines no-ops and mark them as deprecated. Most global cleanup functions are no longer required because they are handled via auto-deinit (see OPENSSL_init_crypto and OPENSSL_init_ssl man pages). Explicitly de-initing can cause problems (e.g. where a library that uses OpenSSL de-inits, but an application is still using it). The affected functions are CONF_modules_free(), ENGINE_cleanup(), OBJ_cleanup(), EVP_cleanup(), BIO_sock_cleanup(), CRYPTO_cleanup_all_ex_data(), RAND_cleanup(), SSL_COMP_free_compression_methods(), ERR_free_strings() and COMP_zlib_cleanup(). [Matt Caswell] *) --strict-warnings no longer enables runtime debugging options such as REF_DEBUG. Instead, debug options are automatically enabled with '--debug' builds. [Andy Polyakov, Emilia Käsper] *) Made DH and DH_METHOD opaque. The structures for managing DH objects have been moved out of the public header files. New functions for managing these have been added. [Matt Caswell] *) Made RSA and RSA_METHOD opaque. The structures for managing RSA objects have been moved out of the public header files. New functions for managing these have been added. [Richard Levitte] *) Made DSA and DSA_METHOD opaque. The structures for managing DSA objects have been moved out of the public header files. New functions for managing these have been added. [Matt Caswell] *) Made BIO and BIO_METHOD opaque. The structures for managing BIOs have been moved out of the public header files. New functions for managing these have been added. [Matt Caswell] *) Removed no-rijndael as a config option. Rijndael is an old name for AES. [Matt Caswell] *) Removed the mk1mf build scripts. [Richard Levitte] *) Headers are now wrapped, if necessary, with OPENSSL_NO_xxx, so it is always safe to #include a header now. [Rich Salz] *) Removed the aged BC-32 config and all its supporting scripts [Richard Levitte] *) Removed support for Ultrix, Netware, and OS/2. [Rich Salz] *) Add support for HKDF. [Alessandro Ghedini] *) Add support for blake2b and blake2s [Bill Cox] *) Added support for "pipelining". Ciphers that have the EVP_CIPH_FLAG_PIPELINE flag set have a capability to process multiple encryptions/decryptions simultaneously. There are currently no built-in ciphers with this property but the expectation is that engines will be able to offer it to significantly improve throughput. Support has been extended into libssl so that multiple records for a single connection can be processed in one go (for >=TLS 1.1). [Matt Caswell] *) Added the AFALG engine. This is an async capable engine which is able to offload work to the Linux kernel. In this initial version it only supports AES128-CBC. The kernel must be version 4.1.0 or greater. [Catriona Lucey] *) OpenSSL now uses a new threading API. It is no longer necessary to set locking callbacks to use OpenSSL in a multi-threaded environment. There are two supported threading models: pthreads and windows threads. It is also possible to configure OpenSSL at compile time for "no-threads". The old threading API should no longer be used. The functions have been replaced with "no-op" compatibility macros. [Alessandro Ghedini, Matt Caswell] *) Modify behavior of ALPN to invoke callback after SNI/servername callback, such that updates to the SSL_CTX affect ALPN. [Todd Short] *) Add SSL_CIPHER queries for authentication and key-exchange. [Todd Short] *) Changes to the DEFAULT cipherlist: - Prefer (EC)DHE handshakes over plain RSA. - Prefer AEAD ciphers over legacy ciphers. - Prefer ECDSA over RSA when both certificates are available. - Prefer TLSv1.2 ciphers/PRF. - Remove DSS, SEED, IDEA, CAMELLIA, and AES-CCM from the default cipherlist. [Emilia Käsper] *) Change the ECC default curve list to be this, in order: x25519, secp256r1, secp521r1, secp384r1. [Rich Salz] *) RC4 based libssl ciphersuites are now classed as "weak" ciphers and are disabled by default. They can be re-enabled using the enable-weak-ssl-ciphers option to Configure. [Matt Caswell] *) If the server has ALPN configured, but supports no protocols that the client advertises, send a fatal "no_application_protocol" alert. This behaviour is SHALL in RFC 7301, though it isn't universally implemented by other servers. [Emilia Käsper] *) Add X25519 support. Add ASN.1 and EVP_PKEY methods for X25519. This includes support for public and private key encoding using the format documented in draft-ietf-curdle-pkix-02. The corresponding EVP_PKEY method supports key generation and key derivation. TLS support complies with draft-ietf-tls-rfc4492bis-08 and uses X25519(29). [Steve Henson] *) Deprecate SRP_VBASE_get_by_user. SRP_VBASE_get_by_user had inconsistent memory management behaviour. In order to fix an unavoidable memory leak (CVE-2016-0798), SRP_VBASE_get_by_user was changed to ignore the "fake user" SRP seed, even if the seed is configured. Users should use SRP_VBASE_get1_by_user instead. Note that in SRP_VBASE_get1_by_user, caller must free the returned value. Note also that even though configuring the SRP seed attempts to hide invalid usernames by continuing the handshake with fake credentials, this behaviour is not constant time and no strong guarantees are made that the handshake is indistinguishable from that of a valid user. [Emilia Käsper] *) Configuration change; it's now possible to build dynamic engines without having to build shared libraries and vice versa. This only applies to the engines in engines/, those in crypto/engine/ will always be built into libcrypto (i.e. "static"). Building dynamic engines is enabled by default; to disable, use the configuration option "disable-dynamic-engine". The only requirements for building dynamic engines are the presence of the DSO module and building with position independent code, so they will also automatically be disabled if configuring with "disable-dso" or "disable-pic". The macros OPENSSL_NO_STATIC_ENGINE and OPENSSL_NO_DYNAMIC_ENGINE are also taken away from openssl/opensslconf.h, as they are irrelevant. [Richard Levitte] *) Configuration change; if there is a known flag to compile position independent code, it will always be applied on the libcrypto and libssl object files, and never on the application object files. This means other libraries that use routines from libcrypto / libssl can be made into shared libraries regardless of how OpenSSL was configured. If this isn't desirable, the configuration options "disable-pic" or "no-pic" can be used to disable the use of PIC. This will also disable building shared libraries and dynamic engines. [Richard Levitte] *) Removed JPAKE code. It was experimental and has no wide use. [Rich Salz] *) The INSTALL_PREFIX Makefile variable has been renamed to DESTDIR. That makes for less confusion on what this variable is for. Also, the configuration option --install_prefix is removed. [Richard Levitte] *) Heartbeat for TLS has been removed and is disabled by default for DTLS; configure with enable-heartbeats. Code that uses the old #define's might need to be updated. [Emilia Käsper, Rich Salz] *) Rename REF_CHECK to REF_DEBUG. [Rich Salz] *) New "unified" build system The "unified" build system is aimed to be a common system for all platforms we support. With it comes new support for VMS. This system builds supports building in a different directory tree than the source tree. It produces one Makefile (for unix family or lookalikes), or one descrip.mms (for VMS). The source of information to make the Makefile / descrip.mms is small files called 'build.info', holding the necessary information for each directory with source to compile, and a template in Configurations, like unix-Makefile.tmpl or descrip.mms.tmpl. With this change, the library names were also renamed on Windows and on VMS. They now have names that are closer to the standard on Unix, and include the major version number, and in certain cases, the architecture they are built for. See "Notes on shared libraries" in INSTALL. We rely heavily on the perl module Text::Template. [Richard Levitte] *) Added support for auto-initialisation and de-initialisation of the library. OpenSSL no longer requires explicit init or deinit routines to be called, except in certain circumstances. See the OPENSSL_init_crypto() and OPENSSL_init_ssl() man pages for further information. [Matt Caswell] *) The arguments to the DTLSv1_listen function have changed. Specifically the "peer" argument is now expected to be a BIO_ADDR object. *) Rewrite of BIO networking library. The BIO library lacked consistent support of IPv6, and adding it required some more extensive modifications. This introduces the BIO_ADDR and BIO_ADDRINFO types, which hold all types of addresses and chains of address information. It also introduces a new API, with functions like BIO_socket, BIO_connect, BIO_listen, BIO_lookup and a rewrite of BIO_accept. The source/sink BIOs BIO_s_connect, BIO_s_accept and BIO_s_datagram have been adapted accordingly. [Richard Levitte] *) RSA_padding_check_PKCS1_type_1 now accepts inputs with and without the leading 0-byte. [Emilia Käsper] *) CRIME protection: disable compression by default, even if OpenSSL is compiled with zlib enabled. Applications can still enable compression by calling SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION), or by using the SSL_CONF library to configure compression. [Emilia Käsper] *) The signature of the session callback configured with SSL_CTX_sess_set_get_cb was changed. The read-only input buffer was explicitly marked as 'const unsigned char*' instead of 'unsigned char*'. [Emilia Käsper] *) Always DPURIFY. Remove the use of uninitialized memory in the RNG, and other conditional uses of DPURIFY. This makes -DPURIFY a no-op. [Emilia Käsper] *) Removed many obsolete configuration items, including DES_PTR, DES_RISC1, DES_RISC2, DES_INT MD2_CHAR, MD2_INT, MD2_LONG BF_PTR, BF_PTR2 IDEA_SHORT, IDEA_LONG RC2_SHORT, RC2_LONG, RC4_LONG, RC4_CHUNK, RC4_INDEX [Rich Salz, with advice from Andy Polyakov] *) Many BN internals have been moved to an internal header file. [Rich Salz with help from Andy Polyakov] *) Configuration and writing out the results from it has changed. Files such as Makefile include/openssl/opensslconf.h and are now produced through general templates, such as Makefile.in and crypto/opensslconf.h.in and some help from the perl module Text::Template. Also, the center of configuration information is no longer Makefile. Instead, Configure produces a perl module in configdata.pm which holds most of the config data (in the hash table %config), the target data that comes from the target configuration in one of the Configurations/*.conf files (in %target). [Richard Levitte] *) To clarify their intended purposes, the Configure options --prefix and --openssldir change their semantics, and become more straightforward and less interdependent. --prefix shall be used exclusively to give the location INSTALLTOP where programs, scripts, libraries, include files and manuals are going to be installed. The default is now /usr/local. --openssldir shall be used exclusively to give the default location OPENSSLDIR where certificates, private keys, CRLs are managed. This is also where the default openssl.cnf gets installed. If the directory given with this option is a relative path, the values of both the --prefix value and the --openssldir value will be combined to become OPENSSLDIR. The default for --openssldir is INSTALLTOP/ssl. Anyone who uses --openssldir to specify where OpenSSL is to be installed MUST change to use --prefix instead. [Richard Levitte] *) The GOST engine was out of date and therefore it has been removed. An up to date GOST engine is now being maintained in an external repository. See: https://wiki.openssl.org/index.php/Binaries. Libssl still retains support for GOST ciphersuites (these are only activated if a GOST engine is present). [Matt Caswell] *) EGD is no longer supported by default; use enable-egd when configuring. [Ben Kaduk and Rich Salz] *) The distribution now has Makefile.in files, which are used to create Makefile's when Configure is run. *Configure must be run before trying to build now.* [Rich Salz] *) The return value for SSL_CIPHER_description() for error conditions has changed. [Rich Salz] *) Support for RFC6698/RFC7671 DANE TLSA peer authentication. Obtaining and performing DNSSEC validation of TLSA records is the application's responsibility. The application provides the TLSA records of its choice to OpenSSL, and these are then used to authenticate the peer. The TLSA records need not even come from DNS. They can, for example, be used to implement local end-entity certificate or trust-anchor "pinning", where the "pin" data takes the form of TLSA records, which can augment or replace verification based on the usual WebPKI public certification authorities. [Viktor Dukhovni] *) Revert default OPENSSL_NO_DEPRECATED setting. Instead OpenSSL continues to support deprecated interfaces in default builds. However, applications are strongly advised to compile their source files with -DOPENSSL_API_COMPAT=0x10100000L, which hides the declarations of all interfaces deprecated in 0.9.8, 1.0.0 or the 1.1.0 releases. In environments in which all applications have been ported to not use any deprecated interfaces OpenSSL's Configure script should be used with the --api=1.1.0 option to entirely remove support for the deprecated features from the library and unconditionally disable them in the installed headers. Essentially the same effect can be achieved with the "no-deprecated" argument to Configure, except that this will always restrict the build to just the latest API, rather than a fixed API version. As applications are ported to future revisions of the API, they should update their compile-time OPENSSL_API_COMPAT define accordingly, but in most cases should be able to continue to compile with later releases. The OPENSSL_API_COMPAT versions for 1.0.0, and 0.9.8 are 0x10000000L and 0x00908000L, respectively. However those versions did not support the OPENSSL_API_COMPAT feature, and so applications are not typically tested for explicit support of just the undeprecated features of either release. [Viktor Dukhovni] *) Add support for setting the minimum and maximum supported protocol. It can bet set via the SSL_set_min_proto_version() and SSL_set_max_proto_version(), or via the SSL_CONF's MinProtocol and MaxProtocol. It's recommended to use the new APIs to disable protocols instead of disabling individual protocols using SSL_set_options() or SSL_CONF's Protocol. This change also removes support for disabling TLS 1.2 in the OpenSSL TLS client at compile time by defining OPENSSL_NO_TLS1_2_CLIENT. [Kurt Roeckx] *) Support for ChaCha20 and Poly1305 added to libcrypto and libssl. [Andy Polyakov] *) New EC_KEY_METHOD, this replaces the older ECDSA_METHOD and ECDH_METHOD and integrates ECDSA and ECDH functionality into EC. Implementations can now redirect key generation and no longer need to convert to or from ECDSA_SIG format. Note: the ecdsa.h and ecdh.h headers are now no longer needed and just include the ec.h header file instead. [Steve Henson] *) Remove support for all 40 and 56 bit ciphers. This includes all the export ciphers who are no longer supported and drops support the ephemeral RSA key exchange. The LOW ciphers currently doesn't have any ciphers in it. [Kurt Roeckx] *) Made EVP_MD_CTX, EVP_MD, EVP_CIPHER_CTX, EVP_CIPHER and HMAC_CTX opaque. For HMAC_CTX, the following constructors and destructors were added: HMAC_CTX *HMAC_CTX_new(void); void HMAC_CTX_free(HMAC_CTX *ctx); For EVP_MD and EVP_CIPHER, complete APIs to create, fill and destroy such methods has been added. See EVP_MD_meth_new(3) and EVP_CIPHER_meth_new(3) for documentation. Additional changes: 1) EVP_MD_CTX_cleanup(), EVP_CIPHER_CTX_cleanup() and HMAC_CTX_cleanup() were removed. HMAC_CTX_reset() and EVP_MD_CTX_reset() should be called instead to reinitialise an already created structure. 2) For consistency with the majority of our object creators and destructors, EVP_MD_CTX_(create|destroy) were renamed to EVP_MD_CTX_(new|free). The old names are retained as macros for deprecated builds. [Richard Levitte] *) Added ASYNC support. Libcrypto now includes the async sub-library to enable cryptographic operations to be performed asynchronously as long as an asynchronous capable engine is used. See the ASYNC_start_job() man page for further details. Libssl has also had this capability integrated with the introduction of the new mode SSL_MODE_ASYNC and associated error SSL_ERROR_WANT_ASYNC. See the SSL_CTX_set_mode() and SSL_get_error() man pages. This work was developed in partnership with Intel Corp. [Matt Caswell] *) SSL_{CTX_}set_ecdh_auto() has been removed and ECDH is support is always enabled now. If you want to disable the support you should exclude it using the list of supported ciphers. This also means that the "-no_ecdhe" option has been removed from s_server. [Kurt Roeckx] *) SSL_{CTX}_set_tmp_ecdh() which can set 1 EC curve now internally calls SSL_{CTX_}set1_curves() which can set a list. [Kurt Roeckx] *) Remove support for SSL_{CTX_}set_tmp_ecdh_callback(). You should set the curve you want to support using SSL_{CTX_}set1_curves(). [Kurt Roeckx] *) State machine rewrite. The state machine code has been significantly refactored in order to remove much duplication of code and solve issues with the old code (see ssl/statem/README for further details). This change does have some associated API changes. Notably the SSL_state() function has been removed and replaced by SSL_get_state which now returns an "OSSL_HANDSHAKE_STATE" instead of an int. SSL_set_state() has been removed altogether. The previous handshake states defined in ssl.h and ssl3.h have also been removed. [Matt Caswell] *) All instances of the string "ssleay" in the public API were replaced with OpenSSL (case-matching; e.g., OPENSSL_VERSION for #define's) Some error codes related to internal RSA_eay API's were renamed. [Rich Salz] *) The demo files in crypto/threads were moved to demo/threads. [Rich Salz] *) Removed obsolete engines: 4758cca, aep, atalla, cswift, nuron, gmp, sureware and ubsec. [Matt Caswell, Rich Salz] *) New ASN.1 embed macro. New ASN.1 macro ASN1_EMBED. This is the same as ASN1_SIMPLE except the structure is not allocated: it is part of the parent. That is instead of FOO *x; it must be: FOO x; This reduces memory fragmentation and make it impossible to accidentally set a mandatory field to NULL. This currently only works for some fields specifically a SEQUENCE, CHOICE, or ASN1_STRING type which is part of a parent SEQUENCE. Since it is equivalent to ASN1_SIMPLE it cannot be tagged, OPTIONAL, SET OF or SEQUENCE OF. [Steve Henson] *) Remove EVP_CHECK_DES_KEY, a compile-time option that never compiled. [Emilia Käsper] *) Removed DES and RC4 ciphersuites from DEFAULT. Also removed RC2 although in 1.0.2 EXPORT was already removed and the only RC2 ciphersuite is also an EXPORT one. COMPLEMENTOFDEFAULT has been updated accordingly to add DES and RC4 ciphersuites. [Matt Caswell] *) Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs. This changes the decoding behaviour for some invalid messages, though the change is mostly in the more lenient direction, and legacy behaviour is preserved as much as possible. [Emilia Käsper] *) Fix no-stdio build. [ David Woodhouse and also Ivan Nestlerode ] *) New testing framework The testing framework has been largely rewritten and is now using perl and the perl modules Test::Harness and an extended variant of Test::More called OpenSSL::Test to do its work. All test scripts in test/ have been rewritten into test recipes, and all direct calls to executables in test/Makefile have become individual recipes using the simplified testing OpenSSL::Test::Simple. For documentation on our testing modules, do: perldoc test/testlib/OpenSSL/Test/Simple.pm perldoc test/testlib/OpenSSL/Test.pm [Richard Levitte] *) Revamped memory debug; only -DCRYPTO_MDEBUG and -DCRYPTO_MDEBUG_ABORT are used; the latter aborts on memory leaks (usually checked on exit). Some undocumented "set malloc, etc., hooks" functions were removed and others were changed. All are now documented. [Rich Salz] *) In DSA_generate_parameters_ex, if the provided seed is too short, return an error [Rich Salz and Ismo Puustinen ] *) Rewrite PSK to support ECDHE_PSK, DHE_PSK and RSA_PSK. Add ciphersuites from RFC4279, RFC4785, RFC5487, RFC5489. Thanks to Christian J. Dietrich and Giuseppe D'Angelo for the original RSA_PSK patch. [Steve Henson] *) Dropped support for the SSL3_FLAGS_DELAY_CLIENT_FINISHED flag. This SSLeay era flag was never set throughout the codebase (only read). Also removed SSL3_FLAGS_POP_BUFFER which was only used if SSL3_FLAGS_DELAY_CLIENT_FINISHED was also set. [Matt Caswell] *) Changed the default name options in the "ca", "crl", "req" and "x509" to be "oneline" instead of "compat". [Richard Levitte] *) Remove SSL_OP_TLS_BLOCK_PADDING_BUG. This is SSLeay legacy, we're not aware of clients that still exhibit this bug, and the workaround hasn't been working properly for a while. [Emilia Käsper] *) The return type of BIO_number_read() and BIO_number_written() as well as the corresponding num_read and num_write members in the BIO structure has changed from unsigned long to uint64_t. On platforms where an unsigned long is 32 bits (e.g. Windows) these counters could overflow if >4Gb is transferred. [Matt Caswell] *) Given the pervasive nature of TLS extensions it is inadvisable to run OpenSSL without support for them. It also means that maintaining the OPENSSL_NO_TLSEXT option within the code is very invasive (and probably not well tested). Therefore the OPENSSL_NO_TLSEXT option has been removed. [Matt Caswell] *) Removed support for the two export grade static DH ciphersuites EXP-DH-RSA-DES-CBC-SHA and EXP-DH-DSS-DES-CBC-SHA. These two ciphersuites were newly added (along with a number of other static DH ciphersuites) to 1.0.2. However the two export ones have *never* worked since they were introduced. It seems strange in any case to be adding new export ciphersuites, and given "logjam" it also does not seem correct to fix them. [Matt Caswell] *) Version negotiation has been rewritten. In particular SSLv23_method(), SSLv23_client_method() and SSLv23_server_method() have been deprecated, and turned into macros which simply call the new preferred function names TLS_method(), TLS_client_method() and TLS_server_method(). All new code should use the new names instead. Also as part of this change the ssl23.h header file has been removed. [Matt Caswell] *) Support for Kerberos ciphersuites in TLS (RFC2712) has been removed. This code and the associated standard is no longer considered fit-for-purpose. [Matt Caswell] *) RT2547 was closed. When generating a private key, try to make the output file readable only by the owner. This behavior change might be noticeable when interacting with other software. *) Documented all exdata functions. Added CRYPTO_free_ex_index. Added a test. [Rich Salz] *) Added HTTP GET support to the ocsp command. [Rich Salz] *) Changed default digest for the dgst and enc commands from MD5 to sha256 [Rich Salz] *) RAND_pseudo_bytes has been deprecated. Users should use RAND_bytes instead. [Matt Caswell] *) Added support for TLS extended master secret from draft-ietf-tls-session-hash-03.txt. Thanks for Alfredo Pironti for an initial patch which was a great help during development. [Steve Henson] *) All libssl internal structures have been removed from the public header files, and the OPENSSL_NO_SSL_INTERN option has been removed (since it is now redundant). Users should not attempt to access internal structures directly. Instead they should use the provided API functions. [Matt Caswell] *) config has been changed so that by default OPENSSL_NO_DEPRECATED is used. Access to deprecated functions can be re-enabled by running config with "enable-deprecated". In addition applications wishing to use deprecated functions must define OPENSSL_USE_DEPRECATED. Note that this new behaviour will, by default, disable some transitive includes that previously existed in the header files (e.g. ec.h will no longer, by default, include bn.h) [Matt Caswell] *) Added support for OCB mode. OpenSSL has been granted a patent license compatible with the OpenSSL license for use of OCB. Details are available at https://www.openssl.org/source/OCB-patent-grant-OpenSSL.pdf. Support for OCB can be removed by calling config with no-ocb. [Matt Caswell] *) SSLv2 support has been removed. It still supports receiving a SSLv2 compatible client hello. [Kurt Roeckx] *) Increased the minimal RSA keysize from 256 to 512 bits [Rich Salz], done while fixing the error code for the key-too-small case. [Annie Yousar ] *) CA.sh has been removed; use CA.pl instead. [Rich Salz] *) Removed old DES API. [Rich Salz] *) Remove various unsupported platforms: Sony NEWS4 BEOS and BEOS_R5 NeXT SUNOS MPE/iX Sinix/ReliantUNIX RM400 DGUX NCR Tandem Cray 16-bit platforms such as WIN16 [Rich Salz] *) Clean up OPENSSL_NO_xxx #define's Use setbuf() and remove OPENSSL_NO_SETVBUF_IONBF Rename OPENSSL_SYSNAME_xxx to OPENSSL_SYS_xxx OPENSSL_NO_EC{DH,DSA} merged into OPENSSL_NO_EC OPENSSL_NO_RIPEMD160, OPENSSL_NO_RIPEMD merged into OPENSSL_NO_RMD160 OPENSSL_NO_FP_API merged into OPENSSL_NO_STDIO Remove OPENSSL_NO_BIO OPENSSL_NO_BUFFER OPENSSL_NO_CHAIN_VERIFY OPENSSL_NO_EVP OPENSSL_NO_FIPS_ERR OPENSSL_NO_HASH_COMP OPENSSL_NO_LHASH OPENSSL_NO_OBJECT OPENSSL_NO_SPEED OPENSSL_NO_STACK OPENSSL_NO_X509 OPENSSL_NO_X509_VERIFY Remove MS_STATIC; it's a relic from platforms <32 bits. [Rich Salz] *) Cleaned up dead code Remove all but one '#ifdef undef' which is to be looked at. [Rich Salz] *) Clean up calling of xxx_free routines. Just like free(), fix most of the xxx_free routines to accept NULL. Remove the non-null checks from callers. Save much code. [Rich Salz] *) Add secure heap for storage of private keys (when possible). Add BIO_s_secmem(), CBIGNUM, etc. Contributed by Akamai Technologies under our Corporate CLA. [Rich Salz] *) Experimental support for a new, fast, unbiased prime candidate generator, bn_probable_prime_dh_coprime(). Not currently used by any prime generator. [Felix Laurie von Massenbach ] *) New output format NSS in the sess_id command line tool. This allows exporting the session id and the master key in NSS keylog format. [Martin Kaiser ] *) Harmonize version and its documentation. -f flag is used to display compilation flags. [mancha ] *) Fix eckey_priv_encode so it immediately returns an error upon a failure in i2d_ECPrivateKey. Thanks to Ted Unangst for feedback on this issue. [mancha ] *) Fix some double frees. These are not thought to be exploitable. [mancha ] *) A missing bounds check in the handling of the TLS heartbeat extension can be used to reveal up to 64k of memory to a connected client or server. Thanks for Neel Mehta of Google Security for discovering this bug and to Adam Langley and Bodo Moeller for preparing the fix (CVE-2014-0160) [Adam Langley, Bodo Moeller] *) Fix for the attack described in the paper "Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD Cache Side-channel Attack" by Yuval Yarom and Naomi Benger. Details can be obtained from: http://eprint.iacr.org/2014/140 Thanks to Yuval Yarom and Naomi Benger for discovering this flaw and to Yuval Yarom for supplying a fix (CVE-2014-0076) [Yuval Yarom and Naomi Benger] *) Use algorithm specific chains in SSL_CTX_use_certificate_chain_file(): this fixes a limitation in previous versions of OpenSSL. [Steve Henson] *) Experimental encrypt-then-mac support. Experimental support for encrypt then mac from draft-gutmann-tls-encrypt-then-mac-02.txt To enable it set the appropriate extension number (0x42 for the test server) using e.g. -DTLSEXT_TYPE_encrypt_then_mac=0x42 For non-compliant peers (i.e. just about everything) this should have no effect. WARNING: EXPERIMENTAL, SUBJECT TO CHANGE. [Steve Henson] *) Add EVP support for key wrapping algorithms, to avoid problems with existing code the flag EVP_CIPHER_CTX_WRAP_ALLOW has to be set in the EVP_CIPHER_CTX or an error is returned. Add AES and DES3 wrap algorithms and include tests cases. [Steve Henson] *) Extend CMS code to support RSA-PSS signatures and RSA-OAEP for enveloped data. [Steve Henson] *) Extended RSA OAEP support via EVP_PKEY API. Options to specify digest, MGF1 digest and OAEP label. [Steve Henson] *) Make openssl verify return errors. [Chris Palmer and Ben Laurie] *) New function ASN1_TIME_diff to calculate the difference between two ASN1_TIME structures or one structure and the current time. [Steve Henson] *) Update fips_test_suite to support multiple command line options. New test to induce all self test errors in sequence and check expected failures. [Steve Henson] *) Add FIPS_{rsa,dsa,ecdsa}_{sign,verify} functions which digest and sign or verify all in one operation. [Steve Henson] *) Add fips_algvs: a multicall fips utility incorporating all the algorithm test programs and fips_test_suite. Includes functionality to parse the minimal script output of fipsalgest.pl directly. [Steve Henson] *) Add authorisation parameter to FIPS_module_mode_set(). [Steve Henson] *) Add FIPS selftest for ECDH algorithm using P-224 and B-233 curves. [Steve Henson] *) Use separate DRBG fields for internal and external flags. New function FIPS_drbg_health_check() to perform on demand health checking. Add generation tests to fips_test_suite with reduced health check interval to demonstrate periodic health checking. Add "nodh" option to fips_test_suite to skip very slow DH test. [Steve Henson] *) New function FIPS_get_cipherbynid() to lookup FIPS supported ciphers based on NID. [Steve Henson] *) More extensive health check for DRBG checking many more failure modes. New function FIPS_selftest_drbg_all() to handle every possible DRBG combination: call this in fips_test_suite. [Steve Henson] *) Add support for canonical generation of DSA parameter 'g'. See FIPS 186-3 A.2.3. *) Add support for HMAC DRBG from SP800-90. Update DRBG algorithm test and POST to handle HMAC cases. [Steve Henson] *) Add functions FIPS_module_version() and FIPS_module_version_text() to return numerical and string versions of the FIPS module number. [Steve Henson] *) Rename FIPS_mode_set and FIPS_mode to FIPS_module_mode_set and FIPS_module_mode. FIPS_mode and FIPS_mode_set will be implemented outside the validated module in the FIPS capable OpenSSL. [Steve Henson] *) Minor change to DRBG entropy callback semantics. In some cases there is no multiple of the block length between min_len and max_len. Allow the callback to return more than max_len bytes of entropy but discard any extra: it is the callback's responsibility to ensure that the extra data discarded does not impact the requested amount of entropy. [Steve Henson] *) Add PRNG security strength checks to RSA, DSA and ECDSA using information in FIPS186-3, SP800-57 and SP800-131A. [Steve Henson] *) CCM support via EVP. Interface is very similar to GCM case except we must supply all data in one chunk (i.e. no update, final) and the message length must be supplied if AAD is used. Add algorithm test support. [Steve Henson] *) Initial version of POST overhaul. Add POST callback to allow the status of POST to be monitored and/or failures induced. Modify fips_test_suite to use callback. Always run all selftests even if one fails. [Steve Henson] *) XTS support including algorithm test driver in the fips_gcmtest program. Note: this does increase the maximum key length from 32 to 64 bytes but there should be no binary compatibility issues as existing applications will never use XTS mode. [Steve Henson] *) Extensive reorganisation of FIPS PRNG behaviour. Remove all dependencies to OpenSSL RAND code and replace with a tiny FIPS RAND API which also performs algorithm blocking for unapproved PRNG types. Also do not set PRNG type in FIPS_mode_set(): leave this to the application. Add default OpenSSL DRBG handling: sets up FIPS PRNG and seeds with the standard OpenSSL PRNG: set additional data to a date time vector. [Steve Henson] *) Rename old X9.31 PRNG functions of the form FIPS_rand* to FIPS_x931*. This shouldn't present any incompatibility problems because applications shouldn't be using these directly and any that are will need to rethink anyway as the X9.31 PRNG is now deprecated by FIPS 140-2 [Steve Henson] *) Extensive self tests and health checking required by SP800-90 DRBG. Remove strength parameter from FIPS_drbg_instantiate and always instantiate at maximum supported strength. [Steve Henson] *) Add ECDH code to fips module and fips_ecdhvs for primitives only testing. [Steve Henson] *) New algorithm test program fips_dhvs to handle DH primitives only testing. [Steve Henson] *) New function DH_compute_key_padded() to compute a DH key and pad with leading zeroes if needed: this complies with SP800-56A et al. [Steve Henson] *) Initial implementation of SP800-90 DRBGs for Hash and CTR. Not used by anything, incomplete, subject to change and largely untested at present. [Steve Henson] *) Modify fipscanisteronly build option to only build the necessary object files by filtering FIPS_EX_OBJ through a perl script in crypto/Makefile. [Steve Henson] *) Add experimental option FIPSSYMS to give all symbols in fipscanister.o and FIPS or fips prefix. This will avoid conflicts with future versions of OpenSSL. Add perl script util/fipsas.pl to preprocess assembly language source files and rename any affected symbols. [Steve Henson] *) Add selftest checks and algorithm block of non-fips algorithms in FIPS mode. Remove DES2 from selftests. [Steve Henson] *) Add ECDSA code to fips module. Add tiny fips_ecdsa_check to just return internal method without any ENGINE dependencies. Add new tiny fips sign and verify functions. [Steve Henson] *) New build option no-ec2m to disable characteristic 2 code. [Steve Henson] *) New build option "fipscanisteronly". This only builds fipscanister.o and (currently) associated fips utilities. Uses the file Makefile.fips instead of Makefile.org as the prototype. [Steve Henson] *) Add some FIPS mode restrictions to GCM. Add internal IV generator. Update fips_gcmtest to use IV generator. [Steve Henson] *) Initial, experimental EVP support for AES-GCM. AAD can be input by setting output buffer to NULL. The *Final function must be called although it will not retrieve any additional data. The tag can be set or retrieved with a ctrl. The IV length is by default 12 bytes (96 bits) but can be set to an alternative value. If the IV length exceeds the maximum IV length (currently 16 bytes) it cannot be set before the key. [Steve Henson] *) New flag in ciphers: EVP_CIPH_FLAG_CUSTOM_CIPHER. This means the underlying do_cipher function handles all cipher semantics itself including padding and finalisation. This is useful if (for example) an ENGINE cipher handles block padding itself. The behaviour of do_cipher is subtly changed if this flag is set: the return value is the number of characters written to the output buffer (zero is no longer an error code) or a negative error code. Also if the input buffer is NULL and length 0 finalisation should be performed. [Steve Henson] *) If a candidate issuer certificate is already part of the constructed path ignore it: new debug notification X509_V_ERR_PATH_LOOP for this case. [Steve Henson] *) Improve forward-security support: add functions void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, int (*cb)(SSL *ssl, int is_forward_secure)) void SSL_set_not_resumable_session_callback(SSL *ssl, int (*cb)(SSL *ssl, int is_forward_secure)) for use by SSL/TLS servers; the callback function will be called whenever a new session is created, and gets to decide whether the session may be cached to make it resumable (return 0) or not (return 1). (As by the SSL/TLS protocol specifications, the session_id sent by the server will be empty to indicate that the session is not resumable; also, the server will not generate RFC 4507 (RFC 5077) session tickets.) A simple reasonable callback implementation is to return is_forward_secure. This parameter will be set to 1 or 0 depending on the ciphersuite selected by the SSL/TLS server library, indicating whether it can provide forward security. [Emilia Käsper (Google)] *) New -verify_name option in command line utilities to set verification parameters by name. [Steve Henson] *) Initial CMAC implementation. WARNING: EXPERIMENTAL, API MAY CHANGE. Add CMAC pkey methods. [Steve Henson] *) Experimental renegotiation in s_server -www mode. If the client browses /reneg connection is renegotiated. If /renegcert it is renegotiated requesting a certificate. [Steve Henson] *) Add an "external" session cache for debugging purposes to s_server. This should help trace issues which normally are only apparent in deployed multi-process servers. [Steve Henson] *) Extensive audit of libcrypto with DEBUG_UNUSED. Fix many cases where return value is ignored. NB. The functions RAND_add(), RAND_seed(), BIO_set_cipher() and some obscure PEM functions were changed so they can now return an error. The RAND changes required a change to the RAND_METHOD structure. [Steve Henson] *) New macro __owur for "OpenSSL Warn Unused Result". This makes use of a gcc attribute to warn if the result of a function is ignored. This is enable if DEBUG_UNUSED is set. Add to several functions in evp.h whose return value is often ignored. [Steve Henson] *) New -noct, -requestct, -requirect and -ctlogfile options for s_client. These allow SCTs (signed certificate timestamps) to be requested and validated when establishing a connection. [Rob Percival ] Changes between 1.0.2g and 1.0.2h [3 May 2016] *) Prevent padding oracle in AES-NI CBC MAC check A MITM attacker can use a padding oracle attack to decrypt traffic when the connection uses an AES CBC cipher and the server support AES-NI. This issue was introduced as part of the fix for Lucky 13 padding attack (CVE-2013-0169). The padding check was rewritten to be in constant time by making sure that always the same bytes are read and compared against either the MAC or padding bytes. But it no longer checked that there was enough data to have both the MAC and padding bytes. This issue was reported by Juraj Somorovsky using TLS-Attacker. (CVE-2016-2107) [Kurt Roeckx] *) Fix EVP_EncodeUpdate overflow An overflow can occur in the EVP_EncodeUpdate() function which is used for Base64 encoding of binary data. If an attacker is able to supply very large amounts of input data then a length check can overflow resulting in a heap corruption. Internally to OpenSSL the EVP_EncodeUpdate() function is primarily used by the PEM_write_bio* family of functions. These are mainly used within the OpenSSL command line applications, so any application which processes data from an untrusted source and outputs it as a PEM file should be considered vulnerable to this issue. User applications that call these APIs directly with large amounts of untrusted data may also be vulnerable. This issue was reported by Guido Vranken. (CVE-2016-2105) [Matt Caswell] *) Fix EVP_EncryptUpdate overflow An overflow can occur in the EVP_EncryptUpdate() function. If an attacker is able to supply very large amounts of input data after a previous call to EVP_EncryptUpdate() with a partial block then a length check can overflow resulting in a heap corruption. Following an analysis of all OpenSSL internal usage of the EVP_EncryptUpdate() function all usage is one of two forms. The first form is where the EVP_EncryptUpdate() call is known to be the first called function after an EVP_EncryptInit(), and therefore that specific call must be safe. The second form is where the length passed to EVP_EncryptUpdate() can be seen from the code to be some small value and therefore there is no possibility of an overflow. Since all instances are one of these two forms, it is believed that there can be no overflows in internal code due to this problem. It should be noted that EVP_DecryptUpdate() can call EVP_EncryptUpdate() in certain code paths. Also EVP_CipherUpdate() is a synonym for EVP_EncryptUpdate(). All instances of these calls have also been analysed too and it is believed there are no instances in internal usage where an overflow could occur. This issue was reported by Guido Vranken. (CVE-2016-2106) [Matt Caswell] *) Prevent ASN.1 BIO excessive memory allocation When ASN.1 data is read from a BIO using functions such as d2i_CMS_bio() a short invalid encoding can cause allocation of large amounts of memory potentially consuming excessive resources or exhausting memory. Any application parsing untrusted data through d2i BIO functions is affected. The memory based functions such as d2i_X509() are *not* affected. Since the memory based functions are used by the TLS library, TLS applications are not affected. This issue was reported by Brian Carpenter. (CVE-2016-2109) [Stephen Henson] *) EBCDIC overread ASN1 Strings that are over 1024 bytes can cause an overread in applications using the X509_NAME_oneline() function on EBCDIC systems. This could result in arbitrary stack data being returned in the buffer. This issue was reported by Guido Vranken. (CVE-2016-2176) [Matt Caswell] *) Modify behavior of ALPN to invoke callback after SNI/servername callback, such that updates to the SSL_CTX affect ALPN. [Todd Short] *) Remove LOW from the DEFAULT cipher list. This removes singles DES from the default. [Kurt Roeckx] *) Only remove the SSLv2 methods with the no-ssl2-method option. When the methods are enabled and ssl2 is disabled the methods return NULL. [Kurt Roeckx] Changes between 1.0.2f and 1.0.2g [1 Mar 2016] * Disable weak ciphers in SSLv3 and up in default builds of OpenSSL. Builds that are not configured with "enable-weak-ssl-ciphers" will not provide any "EXPORT" or "LOW" strength ciphers. [Viktor Dukhovni] * Disable SSLv2 default build, default negotiation and weak ciphers. SSLv2 is by default disabled at build-time. Builds that are not configured with "enable-ssl2" will not support SSLv2. Even if "enable-ssl2" is used, users who want to negotiate SSLv2 via the version-flexible SSLv23_method() will need to explicitly call either of: SSL_CTX_clear_options(ctx, SSL_OP_NO_SSLv2); or SSL_clear_options(ssl, SSL_OP_NO_SSLv2); as appropriate. Even if either of those is used, or the application explicitly uses the version-specific SSLv2_method() or its client and server variants, SSLv2 ciphers vulnerable to exhaustive search key recovery have been removed. Specifically, the SSLv2 40-bit EXPORT ciphers, and SSLv2 56-bit DES are no longer available. (CVE-2016-0800) [Viktor Dukhovni] *) Fix a double-free in DSA code A double free bug was discovered when OpenSSL parses malformed DSA private keys and could lead to a DoS attack or memory corruption for applications that receive DSA private keys from untrusted sources. This scenario is considered rare. This issue was reported to OpenSSL by Adam Langley(Google/BoringSSL) using libFuzzer. (CVE-2016-0705) [Stephen Henson] *) Disable SRP fake user seed to address a server memory leak. Add a new method SRP_VBASE_get1_by_user that handles the seed properly. SRP_VBASE_get_by_user had inconsistent memory management behaviour. In order to fix an unavoidable memory leak, SRP_VBASE_get_by_user was changed to ignore the "fake user" SRP seed, even if the seed is configured. Users should use SRP_VBASE_get1_by_user instead. Note that in SRP_VBASE_get1_by_user, caller must free the returned value. Note also that even though configuring the SRP seed attempts to hide invalid usernames by continuing the handshake with fake credentials, this behaviour is not constant time and no strong guarantees are made that the handshake is indistinguishable from that of a valid user. (CVE-2016-0798) [Emilia Käsper] *) Fix BN_hex2bn/BN_dec2bn NULL pointer deref/heap corruption In the BN_hex2bn function the number of hex digits is calculated using an int value |i|. Later |bn_expand| is called with a value of |i * 4|. For large values of |i| this can result in |bn_expand| not allocating any memory because |i * 4| is negative. This can leave the internal BIGNUM data field as NULL leading to a subsequent NULL ptr deref. For very large values of |i|, the calculation |i * 4| could be a positive value smaller than |i|. In this case memory is allocated to the internal BIGNUM data field, but it is insufficiently sized leading to heap corruption. A similar issue exists in BN_dec2bn. This could have security consequences if BN_hex2bn/BN_dec2bn is ever called by user applications with very large untrusted hex/dec data. This is anticipated to be a rare occurrence. All OpenSSL internal usage of these functions use data that is not expected to be untrusted, e.g. config file data or application command line arguments. If user developed applications generate config file data based on untrusted data then it is possible that this could also lead to security consequences. This is also anticipated to be rare. This issue was reported to OpenSSL by Guido Vranken. (CVE-2016-0797) [Matt Caswell] *) Fix memory issues in BIO_*printf functions The internal |fmtstr| function used in processing a "%s" format string in the BIO_*printf functions could overflow while calculating the length of a string and cause an OOB read when printing very long strings. Additionally the internal |doapr_outch| function can attempt to write to an OOB memory location (at an offset from the NULL pointer) in the event of a memory allocation failure. In 1.0.2 and below this could be caused where the size of a buffer to be allocated is greater than INT_MAX. E.g. this could be in processing a very long "%s" format string. Memory leaks can also occur. The first issue may mask the second issue dependent on compiler behaviour. These problems could enable attacks where large amounts of untrusted data is passed to the BIO_*printf functions. If applications use these functions in this way then they could be vulnerable. OpenSSL itself uses these functions when printing out human-readable dumps of ASN.1 data. Therefore applications that print this data could be vulnerable if the data is from untrusted sources. OpenSSL command line applications could also be vulnerable where they print out ASN.1 data, or if untrusted data is passed as command line arguments. Libssl is not considered directly vulnerable. Additionally certificates etc received via remote connections via libssl are also unlikely to be able to trigger these issues because of message size limits enforced within libssl. This issue was reported to OpenSSL Guido Vranken. (CVE-2016-0799) [Matt Caswell] *) Side channel attack on modular exponentiation A side-channel attack was found which makes use of cache-bank conflicts on the Intel Sandy-Bridge microarchitecture which could lead to the recovery of RSA keys. The ability to exploit this issue is limited as it relies on an attacker who has control of code in a thread running on the same hyper-threaded core as the victim thread which is performing decryptions. This issue was reported to OpenSSL by Yuval Yarom, The University of Adelaide and NICTA, Daniel Genkin, Technion and Tel Aviv University, and Nadia Heninger, University of Pennsylvania with more information at http://cachebleed.info. (CVE-2016-0702) [Andy Polyakov] *) Change the req app to generate a 2048-bit RSA/DSA key by default, if no keysize is specified with default_bits. This fixes an omission in an earlier change that changed all RSA/DSA key generation apps to use 2048 bits by default. [Emilia Käsper] Changes between 1.0.2e and 1.0.2f [28 Jan 2016] *) DH small subgroups Historically OpenSSL only ever generated DH parameters based on "safe" primes. More recently (in version 1.0.2) support was provided for generating X9.42 style parameter files such as those required for RFC 5114 support. The primes used in such files may not be "safe". Where an application is using DH configured with parameters based on primes that are not "safe" then an attacker could use this fact to find a peer's private DH exponent. This attack requires that the attacker complete multiple handshakes in which the peer uses the same private DH exponent. For example this could be used to discover a TLS server's private DH exponent if it's reusing the private DH exponent or it's using a static DH ciphersuite. OpenSSL provides the option SSL_OP_SINGLE_DH_USE for ephemeral DH (DHE) in TLS. It is not on by default. If the option is not set then the server reuses the same private DH exponent for the life of the server process and would be vulnerable to this attack. It is believed that many popular applications do set this option and would therefore not be at risk. The fix for this issue adds an additional check where a "q" parameter is available (as is the case in X9.42 based parameters). This detects the only known attack, and is the only possible defense for static DH ciphersuites. This could have some performance impact. Additionally the SSL_OP_SINGLE_DH_USE option has been switched on by default and cannot be disabled. This could have some performance impact. This issue was reported to OpenSSL by Antonio Sanso (Adobe). (CVE-2016-0701) [Matt Caswell] *) SSLv2 doesn't block disabled ciphers A malicious client can negotiate SSLv2 ciphers that have been disabled on the server and complete SSLv2 handshakes even if all SSLv2 ciphers have been disabled, provided that the SSLv2 protocol was not also disabled via SSL_OP_NO_SSLv2. This issue was reported to OpenSSL on 26th December 2015 by Nimrod Aviram and Sebastian Schinzel. (CVE-2015-3197) [Viktor Dukhovni] Changes between 1.0.2d and 1.0.2e [3 Dec 2015] *) BN_mod_exp may produce incorrect results on x86_64 There is a carry propagating bug in the x86_64 Montgomery squaring procedure. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. This issue was reported to OpenSSL by Hanno Böck. (CVE-2015-3193) [Andy Polyakov] *) Certificate verify crash with missing PSS parameter The signature verification routines will crash with a NULL pointer dereference if presented with an ASN.1 signature using the RSA PSS algorithm and absent mask generation function parameter. Since these routines are used to verify certificate signature algorithms this can be used to crash any certificate verification operation and exploited in a DoS attack. Any application which performs certificate verification is vulnerable including OpenSSL clients and servers which enable client authentication. This issue was reported to OpenSSL by Loïc Jonas Etienne (Qnective AG). (CVE-2015-3194) [Stephen Henson] *) X509_ATTRIBUTE memory leak When presented with a malformed X509_ATTRIBUTE structure OpenSSL will leak memory. This structure is used by the PKCS#7 and CMS routines so any application which reads PKCS#7 or CMS data from untrusted sources is affected. SSL/TLS is not affected. This issue was reported to OpenSSL by Adam Langley (Google/BoringSSL) using libFuzzer. (CVE-2015-3195) [Stephen Henson] *) Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs. This changes the decoding behaviour for some invalid messages, though the change is mostly in the more lenient direction, and legacy behaviour is preserved as much as possible. [Emilia Käsper] *) In DSA_generate_parameters_ex, if the provided seed is too short, return an error [Rich Salz and Ismo Puustinen ] Changes between 1.0.2c and 1.0.2d [9 Jul 2015] *) Alternate chains certificate forgery During certificate verification, OpenSSL will attempt to find an alternative certificate chain if the first attempt to build such a chain fails. An error in the implementation of this logic can mean that an attacker could cause certain checks on untrusted certificates to be bypassed, such as the CA flag, enabling them to use a valid leaf certificate to act as a CA and "issue" an invalid certificate. This issue was reported to OpenSSL by Adam Langley/David Benjamin (Google/BoringSSL). [Matt Caswell] Changes between 1.0.2b and 1.0.2c [12 Jun 2015] *) Fix HMAC ABI incompatibility. The previous version introduced an ABI incompatibility in the handling of HMAC. The previous ABI has now been restored. [Matt Caswell] Changes between 1.0.2a and 1.0.2b [11 Jun 2015] *) Malformed ECParameters causes infinite loop When processing an ECParameters structure OpenSSL enters an infinite loop if the curve specified is over a specially malformed binary polynomial field. This can be used to perform denial of service against any system which processes public keys, certificate requests or certificates. This includes TLS clients and TLS servers with client authentication enabled. This issue was reported to OpenSSL by Joseph Barr-Pixton. (CVE-2015-1788) [Andy Polyakov] *) Exploitable out-of-bounds read in X509_cmp_time X509_cmp_time does not properly check the length of the ASN1_TIME string and can read a few bytes out of bounds. In addition, X509_cmp_time accepts an arbitrary number of fractional seconds in the time string. An attacker can use this to craft malformed certificates and CRLs of various sizes and potentially cause a segmentation fault, resulting in a DoS on applications that verify certificates or CRLs. TLS clients that verify CRLs are affected. TLS clients and servers with client authentication enabled may be affected if they use custom verification callbacks. This issue was reported to OpenSSL by Robert Swiecki (Google), and independently by Hanno Böck. (CVE-2015-1789) [Emilia Käsper] *) PKCS7 crash with missing EnvelopedContent The PKCS#7 parsing code does not handle missing inner EncryptedContent correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs with missing content and trigger a NULL pointer dereference on parsing. Applications that decrypt PKCS#7 data or otherwise parse PKCS#7 structures from untrusted sources are affected. OpenSSL clients and servers are not affected. This issue was reported to OpenSSL by Michal Zalewski (Google). (CVE-2015-1790) [Emilia Käsper] *) CMS verify infinite loop with unknown hash function When verifying a signedData message the CMS code can enter an infinite loop if presented with an unknown hash function OID. This can be used to perform denial of service against any system which verifies signedData messages using the CMS code. This issue was reported to OpenSSL by Johannes Bauer. (CVE-2015-1792) [Stephen Henson] *) Race condition handling NewSessionTicket If a NewSessionTicket is received by a multi-threaded client when attempting to reuse a previous ticket then a race condition can occur potentially leading to a double free of the ticket data. (CVE-2015-1791) [Matt Caswell] *) Only support 256-bit or stronger elliptic curves with the 'ecdh_auto' setting (server) or by default (client). Of supported curves, prefer P-256 (both). [Emilia Kasper] Changes between 1.0.2 and 1.0.2a [19 Mar 2015] *) ClientHello sigalgs DoS fix If a client connects to an OpenSSL 1.0.2 server and renegotiates with an invalid signature algorithms extension a NULL pointer dereference will occur. This can be exploited in a DoS attack against the server. This issue was was reported to OpenSSL by David Ramos of Stanford University. (CVE-2015-0291) [Stephen Henson and Matt Caswell] *) Multiblock corrupted pointer fix OpenSSL 1.0.2 introduced the "multiblock" performance improvement. This feature only applies on 64 bit x86 architecture platforms that support AES NI instructions. A defect in the implementation of "multiblock" can cause OpenSSL's internal write buffer to become incorrectly set to NULL when using non-blocking IO. Typically, when the user application is using a socket BIO for writing, this will only result in a failed connection. However if some other BIO is used then it is likely that a segmentation fault will be triggered, thus enabling a potential DoS attack. This issue was reported to OpenSSL by Daniel Danner and Rainer Mueller. (CVE-2015-0290) [Matt Caswell] *) Segmentation fault in DTLSv1_listen fix The DTLSv1_listen function is intended to be stateless and processes the initial ClientHello from many peers. It is common for user code to loop over the call to DTLSv1_listen until a valid ClientHello is received with an associated cookie. A defect in the implementation of DTLSv1_listen means that state is preserved in the SSL object from one invocation to the next that can lead to a segmentation fault. Errors processing the initial ClientHello can trigger this scenario. An example of such an error could be that a DTLS1.0 only client is attempting to connect to a DTLS1.2 only server. This issue was reported to OpenSSL by Per Allansson. (CVE-2015-0207) [Matt Caswell] *) Segmentation fault in ASN1_TYPE_cmp fix The function ASN1_TYPE_cmp will crash with an invalid read if an attempt is made to compare ASN.1 boolean types. Since ASN1_TYPE_cmp is used to check certificate signature algorithm consistency this can be used to crash any certificate verification operation and exploited in a DoS attack. Any application which performs certificate verification is vulnerable including OpenSSL clients and servers which enable client authentication. (CVE-2015-0286) [Stephen Henson] *) Segmentation fault for invalid PSS parameters fix The signature verification routines will crash with a NULL pointer dereference if presented with an ASN.1 signature using the RSA PSS algorithm and invalid parameters. Since these routines are used to verify certificate signature algorithms this can be used to crash any certificate verification operation and exploited in a DoS attack. Any application which performs certificate verification is vulnerable including OpenSSL clients and servers which enable client authentication. This issue was was reported to OpenSSL by Brian Carpenter. (CVE-2015-0208) [Stephen Henson] *) ASN.1 structure reuse memory corruption fix Reusing a structure in ASN.1 parsing may allow an attacker to cause memory corruption via an invalid write. Such reuse is and has been strongly discouraged and is believed to be rare. Applications that parse structures containing CHOICE or ANY DEFINED BY components may be affected. Certificate parsing (d2i_X509 and related functions) are however not affected. OpenSSL clients and servers are not affected. (CVE-2015-0287) [Stephen Henson] *) PKCS7 NULL pointer dereferences fix The PKCS#7 parsing code does not handle missing outer ContentInfo correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs with missing content and trigger a NULL pointer dereference on parsing. Applications that verify PKCS#7 signatures, decrypt PKCS#7 data or otherwise parse PKCS#7 structures from untrusted sources are affected. OpenSSL clients and servers are not affected. This issue was reported to OpenSSL by Michal Zalewski (Google). (CVE-2015-0289) [Emilia Käsper] *) DoS via reachable assert in SSLv2 servers fix A malicious client can trigger an OPENSSL_assert (i.e., an abort) in servers that both support SSLv2 and enable export cipher suites by sending a specially crafted SSLv2 CLIENT-MASTER-KEY message. This issue was discovered by Sean Burford (Google) and Emilia Käsper (OpenSSL development team). (CVE-2015-0293) [Emilia Käsper] *) Empty CKE with client auth and DHE fix If client auth is used then a server can seg fault in the event of a DHE ciphersuite being selected and a zero length ClientKeyExchange message being sent by the client. This could be exploited in a DoS attack. (CVE-2015-1787) [Matt Caswell] *) Handshake with unseeded PRNG fix Under certain conditions an OpenSSL 1.0.2 client can complete a handshake with an unseeded PRNG. The conditions are: - The client is on a platform where the PRNG has not been seeded automatically, and the user has not seeded manually - A protocol specific client method version has been used (i.e. not SSL_client_methodv23) - A ciphersuite is used that does not require additional random data from the PRNG beyond the initial ClientHello client random (e.g. PSK-RC4-SHA). If the handshake succeeds then the client random that has been used will have been generated from a PRNG with insufficient entropy and therefore the output may be predictable. For example using the following command with an unseeded openssl will succeed on an unpatched platform: openssl s_client -psk 1a2b3c4d -tls1_2 -cipher PSK-RC4-SHA (CVE-2015-0285) [Matt Caswell] *) Use After Free following d2i_ECPrivatekey error fix A malformed EC private key file consumed via the d2i_ECPrivateKey function could cause a use after free condition. This, in turn, could cause a double free in several private key parsing functions (such as d2i_PrivateKey or EVP_PKCS82PKEY) and could lead to a DoS attack or memory corruption for applications that receive EC private keys from untrusted sources. This scenario is considered rare. This issue was discovered by the BoringSSL project and fixed in their commit 517073cd4b. (CVE-2015-0209) [Matt Caswell] *) X509_to_X509_REQ NULL pointer deref fix The function X509_to_X509_REQ will crash with a NULL pointer dereference if the certificate key is invalid. This function is rarely used in practice. This issue was discovered by Brian Carpenter. (CVE-2015-0288) [Stephen Henson] *) Removed the export ciphers from the DEFAULT ciphers [Kurt Roeckx] Changes between 1.0.1l and 1.0.2 [22 Jan 2015] *) Facilitate "universal" ARM builds targeting range of ARM ISAs, e.g. ARMv5 through ARMv8, as opposite to "locking" it to single one. So far those who have to target multiple platforms would compromise and argue that binary targeting say ARMv5 would still execute on ARMv8. "Universal" build resolves this compromise by providing near-optimal performance even on newer platforms. [Andy Polyakov] *) Accelerated NIST P-256 elliptic curve implementation for x86_64 (other platforms pending). [Shay Gueron & Vlad Krasnov (Intel Corp), Andy Polyakov] *) Add support for the SignedCertificateTimestampList certificate and OCSP response extensions from RFC6962. [Rob Stradling] *) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.) for corner cases. (Certain input points at infinity could lead to bogus results, with non-infinity inputs mapped to infinity too.) [Bodo Moeller] *) Initial support for PowerISA 2.0.7, first implemented in POWER8. This covers AES, SHA256/512 and GHASH. "Initial" means that most common cases are optimized and there still is room for further improvements. Vector Permutation AES for Altivec is also added. [Andy Polyakov] *) Add support for little-endian ppc64 Linux target. [Marcelo Cerri (IBM)] *) Initial support for AMRv8 ISA crypto extensions. This covers AES, SHA1, SHA256 and GHASH. "Initial" means that most common cases are optimized and there still is room for further improvements. Both 32- and 64-bit modes are supported. [Andy Polyakov, Ard Biesheuvel (Linaro)] *) Improved ARMv7 NEON support. [Andy Polyakov] *) Support for SPARC Architecture 2011 crypto extensions, first implemented in SPARC T4. This covers AES, DES, Camellia, SHA1, SHA256/512, MD5, GHASH and modular exponentiation. [Andy Polyakov, David Miller] *) Accelerated modular exponentiation for Intel processors, a.k.a. RSAZ. [Shay Gueron & Vlad Krasnov (Intel Corp)] *) Support for new and upcoming Intel processors, including AVX2, BMI and SHA ISA extensions. This includes additional "stitched" implementations, AESNI-SHA256 and GCM, and multi-buffer support for TLS encrypt. This work was sponsored by Intel Corp. [Andy Polyakov] *) Support for DTLS 1.2. This adds two sets of DTLS methods: DTLS_*_method() supports both DTLS 1.2 and 1.0 and should use whatever version the peer supports and DTLSv1_2_*_method() which supports DTLS 1.2 only. [Steve Henson] *) Use algorithm specific chains in SSL_CTX_use_certificate_chain_file(): this fixes a limitation in previous versions of OpenSSL. [Steve Henson] *) Extended RSA OAEP support via EVP_PKEY API. Options to specify digest, MGF1 digest and OAEP label. [Steve Henson] *) Add EVP support for key wrapping algorithms, to avoid problems with existing code the flag EVP_CIPHER_CTX_WRAP_ALLOW has to be set in the EVP_CIPHER_CTX or an error is returned. Add AES and DES3 wrap algorithms and include tests cases. [Steve Henson] *) Add functions to allocate and set the fields of an ECDSA_METHOD structure. [Douglas E. Engert, Steve Henson] *) New functions OPENSSL_gmtime_diff and ASN1_TIME_diff to find the difference in days and seconds between two tm or ASN1_TIME structures. [Steve Henson] *) Add -rev test option to s_server to just reverse order of characters received by client and send back to server. Also prints an abbreviated summary of the connection parameters. [Steve Henson] *) New option -brief for s_client and s_server to print out a brief summary of connection parameters. [Steve Henson] *) Add callbacks for arbitrary TLS extensions. [Trevor Perrin and Ben Laurie] *) New option -crl_download in several openssl utilities to download CRLs from CRLDP extension in certificates. [Steve Henson] *) New options -CRL and -CRLform for s_client and s_server for CRLs. [Steve Henson] *) New function X509_CRL_diff to generate a delta CRL from the difference of two full CRLs. Add support to "crl" utility. [Steve Henson] *) New functions to set lookup_crls function and to retrieve X509_STORE from X509_STORE_CTX. [Steve Henson] *) Print out deprecated issuer and subject unique ID fields in certificates. [Steve Henson] *) Extend OCSP I/O functions so they can be used for simple general purpose HTTP as well as OCSP. New wrapper function which can be used to download CRLs using the OCSP API. [Steve Henson] *) Delegate command line handling in s_client/s_server to SSL_CONF APIs. [Steve Henson] *) SSL_CONF* functions. These provide a common framework for application configuration using configuration files or command lines. [Steve Henson] *) SSL/TLS tracing code. This parses out SSL/TLS records using the message callback and prints the results. Needs compile time option "enable-ssl-trace". New options to s_client and s_server to enable tracing. [Steve Henson] *) New ctrl and macro to retrieve supported points extensions. Print out extension in s_server and s_client. [Steve Henson] *) New functions to retrieve certificate signature and signature OID NID. [Steve Henson] *) Add functions to retrieve and manipulate the raw cipherlist sent by a client to OpenSSL. [Steve Henson] *) New Suite B modes for TLS code. These use and enforce the requirements of RFC6460: restrict ciphersuites, only permit Suite B algorithms and only use Suite B curves. The Suite B modes can be set by using the strings "SUITEB128", "SUITEB192" or "SUITEB128ONLY" for the cipherstring. [Steve Henson] *) New chain verification flags for Suite B levels of security. Check algorithms are acceptable when flags are set in X509_verify_cert. [Steve Henson] *) Make tls1_check_chain return a set of flags indicating checks passed by a certificate chain. Add additional tests to handle client certificates: checks for matching certificate type and issuer name comparison. [Steve Henson] *) If an attempt is made to use a signature algorithm not in the peer preference list abort the handshake. If client has no suitable signature algorithms in response to a certificate request do not use the certificate. [Steve Henson] *) If server EC tmp key is not in client preference list abort handshake. [Steve Henson] *) Add support for certificate stores in CERT structure. This makes it possible to have different stores per SSL structure or one store in the parent SSL_CTX. Include distinct stores for certificate chain verification and chain building. New ctrl SSL_CTRL_BUILD_CERT_CHAIN to build and store a certificate chain in CERT structure: returning an error if the chain cannot be built: this will allow applications to test if a chain is correctly configured. Note: if the CERT based stores are not set then the parent SSL_CTX store is used to retain compatibility with existing behaviour. [Steve Henson] *) New function ssl_set_client_disabled to set a ciphersuite disabled mask based on the current session, check mask when sending client hello and checking the requested ciphersuite. [Steve Henson] *) New ctrls to retrieve and set certificate types in a certificate request message. Print out received values in s_client. If certificate types is not set with custom values set sensible values based on supported signature algorithms. [Steve Henson] *) Support for distinct client and server supported signature algorithms. [Steve Henson] *) Add certificate callback. If set this is called whenever a certificate is required by client or server. An application can decide which certificate chain to present based on arbitrary criteria: for example supported signature algorithms. Add very simple example to s_server. This fixes many of the problems and restrictions of the existing client certificate callback: for example you can now clear an existing certificate and specify the whole chain. [Steve Henson] *) Add new "valid_flags" field to CERT_PKEY structure which determines what the certificate can be used for (if anything). Set valid_flags field in new tls1_check_chain function. Simplify ssl_set_cert_masks which used to have similar checks in it. Add new "cert_flags" field to CERT structure and include a "strict mode". This enforces some TLS certificate requirements (such as only permitting certificate signature algorithms contained in the supported algorithms extension) which some implementations ignore: this option should be used with caution as it could cause interoperability issues. [Steve Henson] *) Update and tidy signature algorithm extension processing. Work out shared signature algorithms based on preferences and peer algorithms and print them out in s_client and s_server. Abort handshake if no shared signature algorithms. [Steve Henson] *) Add new functions to allow customised supported signature algorithms for SSL and SSL_CTX structures. Add options to s_client and s_server to support them. [Steve Henson] *) New function SSL_certs_clear() to delete all references to certificates from an SSL structure. Before this once a certificate had been added it couldn't be removed. [Steve Henson] *) Integrate hostname, email address and IP address checking with certificate verification. New verify options supporting checking in openssl utility. [Steve Henson] *) Fixes and wildcard matching support to hostname and email checking functions. Add manual page. [Florian Weimer (Red Hat Product Security Team)] *) New functions to check a hostname email or IP address against a certificate. Add options x509 utility to print results of checks against a certificate. [Steve Henson] *) Fix OCSP checking. [Rob Stradling and Ben Laurie] *) Initial experimental support for explicitly trusted non-root CAs. OpenSSL still tries to build a complete chain to a root but if an intermediate CA has a trust setting included that is used. The first setting is used: whether to trust (e.g., -addtrust option to the x509 utility) or reject. [Steve Henson] *) Add -trusted_first option which attempts to find certificates in the trusted store even if an untrusted chain is also supplied. [Steve Henson] *) MIPS assembly pack updates: support for MIPS32r2 and SmartMIPS ASE, platform support for Linux and Android. [Andy Polyakov] *) Support for linux-x32, ILP32 environment in x86_64 framework. [Andy Polyakov] *) Experimental multi-implementation support for FIPS capable OpenSSL. When in FIPS mode the approved implementations are used as normal, when not in FIPS mode the internal unapproved versions are used instead. This means that the FIPS capable OpenSSL isn't forced to use the (often lower performance) FIPS implementations outside FIPS mode. [Steve Henson] *) Transparently support X9.42 DH parameters when calling PEM_read_bio_DHparameters. This means existing applications can handle the new parameter format automatically. [Steve Henson] *) Initial experimental support for X9.42 DH parameter format: mainly to support use of 'q' parameter for RFC5114 parameters. [Steve Henson] *) Add DH parameters from RFC5114 including test data to dhtest. [Steve Henson] *) Support for automatic EC temporary key parameter selection. If enabled the most preferred EC parameters are automatically used instead of hardcoded fixed parameters. Now a server just has to call: SSL_CTX_set_ecdh_auto(ctx, 1) and the server will automatically support ECDH and use the most appropriate parameters. [Steve Henson] *) Enhance and tidy EC curve and point format TLS extension code. Use static structures instead of allocation if default values are used. New ctrls to set curves we wish to support and to retrieve shared curves. Print out shared curves in s_server. New options to s_server and s_client to set list of supported curves. [Steve Henson] *) New ctrls to retrieve supported signature algorithms and supported curve values as an array of NIDs. Extend openssl utility to print out received values. [Steve Henson] *) Add new APIs EC_curve_nist2nid and EC_curve_nid2nist which convert between NIDs and the more common NIST names such as "P-256". Enhance ecparam utility and ECC method to recognise the NIST names for curves. [Steve Henson] *) Enhance SSL/TLS certificate chain handling to support different chains for each certificate instead of one chain in the parent SSL_CTX. [Steve Henson] *) Support for fixed DH ciphersuite client authentication: where both server and client use DH certificates with common parameters. [Steve Henson] *) Support for fixed DH ciphersuites: those requiring DH server certificates. [Steve Henson] *) New function i2d_re_X509_tbs for re-encoding the TBS portion of the certificate. Note: Related 1.0.2-beta specific macros X509_get_cert_info, X509_CINF_set_modified, X509_CINF_get_issuer, X509_CINF_get_extensions and X509_CINF_get_signature were reverted post internal team review. Changes between 1.0.1k and 1.0.1l [15 Jan 2015] *) Build fixes for the Windows and OpenVMS platforms [Matt Caswell and Richard Levitte] Changes between 1.0.1j and 1.0.1k [8 Jan 2015] *) Fix DTLS segmentation fault in dtls1_get_record. A carefully crafted DTLS message can cause a segmentation fault in OpenSSL due to a NULL pointer dereference. This could lead to a Denial Of Service attack. Thanks to Markus Stenberg of Cisco Systems, Inc. for reporting this issue. (CVE-2014-3571) [Steve Henson] *) Fix DTLS memory leak in dtls1_buffer_record. A memory leak can occur in the dtls1_buffer_record function under certain conditions. In particular this could occur if an attacker sent repeated DTLS records with the same sequence number but for the next epoch. The memory leak could be exploited by an attacker in a Denial of Service attack through memory exhaustion. Thanks to Chris Mueller for reporting this issue. (CVE-2015-0206) [Matt Caswell] *) Fix issue where no-ssl3 configuration sets method to NULL. When openssl is built with the no-ssl3 option and a SSL v3 ClientHello is received the ssl method would be set to NULL which could later result in a NULL pointer dereference. Thanks to Frank Schmirler for reporting this issue. (CVE-2014-3569) [Kurt Roeckx] *) Abort handshake if server key exchange message is omitted for ephemeral ECDH ciphersuites. Thanks to Karthikeyan Bhargavan of the PROSECCO team at INRIA for reporting this issue. (CVE-2014-3572) [Steve Henson] *) Remove non-export ephemeral RSA code on client and server. This code violated the TLS standard by allowing the use of temporary RSA keys in non-export ciphersuites and could be used by a server to effectively downgrade the RSA key length used to a value smaller than the server certificate. Thanks for Karthikeyan Bhargavan of the PROSECCO team at INRIA or reporting this issue. (CVE-2015-0204) [Steve Henson] *) Fixed issue where DH client certificates are accepted without verification. An OpenSSL server will accept a DH certificate for client authentication without the certificate verify message. This effectively allows a client to authenticate without the use of a private key. This only affects servers which trust a client certificate authority which issues certificates containing DH keys: these are extremely rare and hardly ever encountered. Thanks for Karthikeyan Bhargavan of the PROSECCO team at INRIA or reporting this issue. (CVE-2015-0205) [Steve Henson] *) Ensure that the session ID context of an SSL is updated when its SSL_CTX is updated via SSL_set_SSL_CTX. The session ID context is typically set from the parent SSL_CTX, and can vary with the CTX. [Adam Langley] *) Fix various certificate fingerprint issues. By using non-DER or invalid encodings outside the signed portion of a certificate the fingerprint can be changed without breaking the signature. Although no details of the signed portion of the certificate can be changed this can cause problems with some applications: e.g. those using the certificate fingerprint for blacklists. 1. Reject signatures with non zero unused bits. If the BIT STRING containing the signature has non zero unused bits reject the signature. All current signature algorithms require zero unused bits. 2. Check certificate algorithm consistency. Check the AlgorithmIdentifier inside TBS matches the one in the certificate signature. NB: this will result in signature failure errors for some broken certificates. Thanks to Konrad Kraszewski from Google for reporting this issue. 3. Check DSA/ECDSA signatures use DER. Re-encode DSA/ECDSA signatures and compare with the original received signature. Return an error if there is a mismatch. This will reject various cases including garbage after signature (thanks to Antti Karjalainen and Tuomo Untinen from the Codenomicon CROSS program for discovering this case) and use of BER or invalid ASN.1 INTEGERs (negative or with leading zeroes). Further analysis was conducted and fixes were developed by Stephen Henson of the OpenSSL core team. (CVE-2014-8275) [Steve Henson] *) Correct Bignum squaring. Bignum squaring (BN_sqr) may produce incorrect results on some platforms, including x86_64. This bug occurs at random with a very low probability, and is not known to be exploitable in any way, though its exact impact is difficult to determine. Thanks to Pieter Wuille (Blockstream) who reported this issue and also suggested an initial fix. Further analysis was conducted by the OpenSSL development team and Adam Langley of Google. The final fix was developed by Andy Polyakov of the OpenSSL core team. (CVE-2014-3570) [Andy Polyakov] *) Do not resume sessions on the server if the negotiated protocol version does not match the session's version. Resuming with a different version, while not strictly forbidden by the RFC, is of questionable sanity and breaks all known clients. [David Benjamin, Emilia Käsper] *) Tighten handling of the ChangeCipherSpec (CCS) message: reject early CCS messages during renegotiation. (Note that because renegotiation is encrypted, this early CCS was not exploitable.) [Emilia Käsper] *) Tighten client-side session ticket handling during renegotiation: ensure that the client only accepts a session ticket if the server sends the extension anew in the ServerHello. Previously, a TLS client would reuse the old extension state and thus accept a session ticket if one was announced in the initial ServerHello. Similarly, ensure that the client requires a session ticket if one was advertised in the ServerHello. Previously, a TLS client would ignore a missing NewSessionTicket message. [Emilia Käsper] Changes between 1.0.1i and 1.0.1j [15 Oct 2014] *) SRTP Memory Leak. A flaw in the DTLS SRTP extension parsing code allows an attacker, who sends a carefully crafted handshake message, to cause OpenSSL to fail to free up to 64k of memory causing a memory leak. This could be exploited in a Denial Of Service attack. This issue affects OpenSSL 1.0.1 server implementations for both SSL/TLS and DTLS regardless of whether SRTP is used or configured. Implementations of OpenSSL that have been compiled with OPENSSL_NO_SRTP defined are not affected. The fix was developed by the OpenSSL team. (CVE-2014-3513) [OpenSSL team] *) Session Ticket Memory Leak. When an OpenSSL SSL/TLS/DTLS server receives a session ticket the integrity of that ticket is first verified. In the event of a session ticket integrity check failing, OpenSSL will fail to free memory causing a memory leak. By sending a large number of invalid session tickets an attacker could exploit this issue in a Denial Of Service attack. (CVE-2014-3567) [Steve Henson] *) Build option no-ssl3 is incomplete. When OpenSSL is configured with "no-ssl3" as a build option, servers could accept and complete a SSL 3.0 handshake, and clients could be configured to send them. (CVE-2014-3568) [Akamai and the OpenSSL team] *) Add support for TLS_FALLBACK_SCSV. Client applications doing fallback retries should call SSL_set_mode(s, SSL_MODE_SEND_FALLBACK_SCSV). (CVE-2014-3566) [Adam Langley, Bodo Moeller] *) Add additional DigestInfo checks. Re-encode DigestInto in DER and check against the original when verifying RSA signature: this will reject any improperly encoded DigestInfo structures. Note: this is a precautionary measure and no attacks are currently known. [Steve Henson] Changes between 1.0.1h and 1.0.1i [6 Aug 2014] *) Fix SRP buffer overrun vulnerability. Invalid parameters passed to the SRP code can be overrun an internal buffer. Add sanity check that g, A, B < N to SRP code. Thanks to Sean Devlin and Watson Ladd of Cryptography Services, NCC Group for discovering this issue. (CVE-2014-3512) [Steve Henson] *) A flaw in the OpenSSL SSL/TLS server code causes the server to negotiate TLS 1.0 instead of higher protocol versions when the ClientHello message is badly fragmented. This allows a man-in-the-middle attacker to force a downgrade to TLS 1.0 even if both the server and the client support a higher protocol version, by modifying the client's TLS records. Thanks to David Benjamin and Adam Langley (Google) for discovering and researching this issue. (CVE-2014-3511) [David Benjamin] *) OpenSSL DTLS clients enabling anonymous (EC)DH ciphersuites are subject to a denial of service attack. A malicious server can crash the client with a null pointer dereference (read) by specifying an anonymous (EC)DH ciphersuite and sending carefully crafted handshake messages. Thanks to Felix Gröbert (Google) for discovering and researching this issue. (CVE-2014-3510) [Emilia Käsper] *) By sending carefully crafted DTLS packets an attacker could cause openssl to leak memory. This can be exploited through a Denial of Service attack. Thanks to Adam Langley for discovering and researching this issue. (CVE-2014-3507) [Adam Langley] *) An attacker can force openssl to consume large amounts of memory whilst processing DTLS handshake messages. This can be exploited through a Denial of Service attack. Thanks to Adam Langley for discovering and researching this issue. (CVE-2014-3506) [Adam Langley] *) An attacker can force an error condition which causes openssl to crash whilst processing DTLS packets due to memory being freed twice. This can be exploited through a Denial of Service attack. Thanks to Adam Langley and Wan-Teh Chang for discovering and researching this issue. (CVE-2014-3505) [Adam Langley] *) If a multithreaded client connects to a malicious server using a resumed session and the server sends an ec point format extension it could write up to 255 bytes to freed memory. Thanks to Gabor Tyukasz (LogMeIn Inc) for discovering and researching this issue. (CVE-2014-3509) [Gabor Tyukasz] *) A malicious server can crash an OpenSSL client with a null pointer dereference (read) by specifying an SRP ciphersuite even though it was not properly negotiated with the client. This can be exploited through a Denial of Service attack. Thanks to Joonas Kuorilehto and Riku Hietamäki (Codenomicon) for discovering and researching this issue. (CVE-2014-5139) [Steve Henson] *) A flaw in OBJ_obj2txt may cause pretty printing functions such as X509_name_oneline, X509_name_print_ex et al. to leak some information from the stack. Applications may be affected if they echo pretty printing output to the attacker. Thanks to Ivan Fratric (Google) for discovering this issue. (CVE-2014-3508) [Emilia Käsper, and Steve Henson] *) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.) for corner cases. (Certain input points at infinity could lead to bogus results, with non-infinity inputs mapped to infinity too.) [Bodo Moeller] Changes between 1.0.1g and 1.0.1h [5 Jun 2014] *) Fix for SSL/TLS MITM flaw. An attacker using a carefully crafted handshake can force the use of weak keying material in OpenSSL SSL/TLS clients and servers. Thanks to KIKUCHI Masashi (Lepidum Co. Ltd.) for discovering and researching this issue. (CVE-2014-0224) [KIKUCHI Masashi, Steve Henson] *) Fix DTLS recursion flaw. By sending an invalid DTLS handshake to an OpenSSL DTLS client the code can be made to recurse eventually crashing in a DoS attack. Thanks to Imre Rad (Search-Lab Ltd.) for discovering this issue. (CVE-2014-0221) [Imre Rad, Steve Henson] *) Fix DTLS invalid fragment vulnerability. A buffer overrun attack can be triggered by sending invalid DTLS fragments to an OpenSSL DTLS client or server. This is potentially exploitable to run arbitrary code on a vulnerable client or server. Thanks to Jüri Aedla for reporting this issue. (CVE-2014-0195) [Jüri Aedla, Steve Henson] *) Fix bug in TLS code where clients enable anonymous ECDH ciphersuites are subject to a denial of service attack. Thanks to Felix Gröbert and Ivan Fratric at Google for discovering this issue. (CVE-2014-3470) [Felix Gröbert, Ivan Fratric, Steve Henson] *) Harmonize version and its documentation. -f flag is used to display compilation flags. [mancha ] *) Fix eckey_priv_encode so it immediately returns an error upon a failure in i2d_ECPrivateKey. [mancha ] *) Fix some double frees. These are not thought to be exploitable. [mancha ] Changes between 1.0.1f and 1.0.1g [7 Apr 2014] *) A missing bounds check in the handling of the TLS heartbeat extension can be used to reveal up to 64k of memory to a connected client or server. Thanks for Neel Mehta of Google Security for discovering this bug and to Adam Langley and Bodo Moeller for preparing the fix (CVE-2014-0160) [Adam Langley, Bodo Moeller] *) Fix for the attack described in the paper "Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD Cache Side-channel Attack" by Yuval Yarom and Naomi Benger. Details can be obtained from: http://eprint.iacr.org/2014/140 Thanks to Yuval Yarom and Naomi Benger for discovering this flaw and to Yuval Yarom for supplying a fix (CVE-2014-0076) [Yuval Yarom and Naomi Benger] *) TLS pad extension: draft-agl-tls-padding-03 Workaround for the "TLS hang bug" (see FAQ and PR#2771): if the TLS client Hello record length value would otherwise be > 255 and less that 512 pad with a dummy extension containing zeroes so it is at least 512 bytes long. [Adam Langley, Steve Henson] Changes between 1.0.1e and 1.0.1f [6 Jan 2014] *) Fix for TLS record tampering bug. A carefully crafted invalid handshake could crash OpenSSL with a NULL pointer exception. Thanks to Anton Johansson for reporting this issues. (CVE-2013-4353) *) Keep original DTLS digest and encryption contexts in retransmission structures so we can use the previous session parameters if they need to be resent. (CVE-2013-6450) [Steve Henson] *) Add option SSL_OP_SAFARI_ECDHE_ECDSA_BUG (part of SSL_OP_ALL) which avoids preferring ECDHE-ECDSA ciphers when the client appears to be Safari on OS X. Safari on OS X 10.8..10.8.3 advertises support for several ECDHE-ECDSA ciphers, but fails to negotiate them. The bug is fixed in OS X 10.8.4, but Apple have ruled out both hot fixing 10.8..10.8.3 and forcing users to upgrade to 10.8.4 or newer. [Rob Stradling, Adam Langley] Changes between 1.0.1d and 1.0.1e [11 Feb 2013] *) Correct fix for CVE-2013-0169. The original didn't work on AES-NI supporting platforms or when small records were transferred. [Andy Polyakov, Steve Henson] Changes between 1.0.1c and 1.0.1d [5 Feb 2013] *) Make the decoding of SSLv3, TLS and DTLS CBC records constant time. This addresses the flaw in CBC record processing discovered by Nadhem Alfardan and Kenny Paterson. Details of this attack can be found at: http://www.isg.rhul.ac.uk/tls/ Thanks go to Nadhem Alfardan and Kenny Paterson of the Information Security Group at Royal Holloway, University of London (www.isg.rhul.ac.uk) for discovering this flaw and Adam Langley and Emilia Käsper for the initial patch. (CVE-2013-0169) [Emilia Käsper, Adam Langley, Ben Laurie, Andy Polyakov, Steve Henson] *) Fix flaw in AESNI handling of TLS 1.2 and 1.1 records for CBC mode ciphersuites which can be exploited in a denial of service attack. Thanks go to and to Adam Langley for discovering and detecting this bug and to Wolfgang Ettlinger for independently discovering this issue. (CVE-2012-2686) [Adam Langley] *) Return an error when checking OCSP signatures when key is NULL. This fixes a DoS attack. (CVE-2013-0166) [Steve Henson] *) Make openssl verify return errors. [Chris Palmer and Ben Laurie] *) Call OCSP Stapling callback after ciphersuite has been chosen, so the right response is stapled. Also change SSL_get_certificate() so it returns the certificate actually sent. See http://rt.openssl.org/Ticket/Display.html?id=2836. [Rob Stradling ] *) Fix possible deadlock when decoding public keys. [Steve Henson] *) Don't use TLS 1.0 record version number in initial client hello if renegotiating. [Steve Henson] Changes between 1.0.1b and 1.0.1c [10 May 2012] *) Sanity check record length before skipping explicit IV in TLS 1.2, 1.1 and DTLS to fix DoS attack. Thanks to Codenomicon for discovering this issue using Fuzz-o-Matic fuzzing as a service testing platform. (CVE-2012-2333) [Steve Henson] *) Initialise tkeylen properly when encrypting CMS messages. Thanks to Solar Designer of Openwall for reporting this issue. [Steve Henson] *) In FIPS mode don't try to use composite ciphers as they are not approved. [Steve Henson] Changes between 1.0.1a and 1.0.1b [26 Apr 2012] *) OpenSSL 1.0.0 sets SSL_OP_ALL to 0x80000FFFL and OpenSSL 1.0.1 and 1.0.1a set SSL_OP_NO_TLSv1_1 to 0x00000400L which would unfortunately mean any application compiled against OpenSSL 1.0.0 headers setting SSL_OP_ALL would also set SSL_OP_NO_TLSv1_1, unintentionally disabling TLS 1.1 also. Fix this by changing the value of SSL_OP_NO_TLSv1_1 to 0x10000000L Any application which was previously compiled against OpenSSL 1.0.1 or 1.0.1a headers and which cares about SSL_OP_NO_TLSv1_1 will need to be recompiled as a result. Letting be results in inability to disable specifically TLS 1.1 and in client context, in unlike event, limit maximum offered version to TLS 1.0 [see below]. [Steve Henson] *) In order to ensure interoperability SSL_OP_NO_protocolX does not disable just protocol X, but all protocols above X *if* there are protocols *below* X still enabled. In more practical terms it means that if application wants to disable TLS1.0 in favor of TLS1.1 and above, it's not sufficient to pass SSL_OP_NO_TLSv1, one has to pass SSL_OP_NO_TLSv1|SSL_OP_NO_SSLv3|SSL_OP_NO_SSLv2. This applies to client side. [Andy Polyakov] Changes between 1.0.1 and 1.0.1a [19 Apr 2012] *) Check for potentially exploitable overflows in asn1_d2i_read_bio BUF_mem_grow and BUF_mem_grow_clean. Refuse attempts to shrink buffer in CRYPTO_realloc_clean. Thanks to Tavis Ormandy, Google Security Team, for discovering this issue and to Adam Langley for fixing it. (CVE-2012-2110) [Adam Langley (Google), Tavis Ormandy, Google Security Team] *) Don't allow TLS 1.2 SHA-256 ciphersuites in TLS 1.0, 1.1 connections. [Adam Langley] *) Workarounds for some broken servers that "hang" if a client hello record length exceeds 255 bytes. 1. Do not use record version number > TLS 1.0 in initial client hello: some (but not all) hanging servers will now work. 2. If we set OPENSSL_MAX_TLS1_2_CIPHER_LENGTH this will truncate the number of ciphers sent in the client hello. This should be set to an even number, such as 50, for example by passing: -DOPENSSL_MAX_TLS1_2_CIPHER_LENGTH=50 to config or Configure. Most broken servers should now work. 3. If all else fails setting OPENSSL_NO_TLS1_2_CLIENT will disable TLS 1.2 client support entirely. [Steve Henson] *) Fix SEGV in Vector Permutation AES module observed in OpenSSH. [Andy Polyakov] Changes between 1.0.0h and 1.0.1 [14 Mar 2012] *) Add compatibility with old MDC2 signatures which use an ASN1 OCTET STRING form instead of a DigestInfo. [Steve Henson] *) The format used for MDC2 RSA signatures is inconsistent between EVP and the RSA_sign/RSA_verify functions. This was made more apparent when OpenSSL used RSA_sign/RSA_verify for some RSA signatures in particular those which went through EVP_PKEY_METHOD in 1.0.0 and later. Detect the correct format in RSA_verify so both forms transparently work. [Steve Henson] *) Some servers which support TLS 1.0 can choke if we initially indicate support for TLS 1.2 and later renegotiate using TLS 1.0 in the RSA encrypted premaster secret. As a workaround use the maximum permitted client version in client hello, this should keep such servers happy and still work with previous versions of OpenSSL. [Steve Henson] *) Add support for TLS/DTLS heartbeats. [Robin Seggelmann ] *) Add support for SCTP. [Robin Seggelmann ] *) Improved PRNG seeding for VOS. [Paul Green ] *) Extensive assembler packs updates, most notably: - x86[_64]: AES-NI, PCLMULQDQ, RDRAND support; - x86[_64]: SSSE3 support (SHA1, vector-permutation AES); - x86_64: bit-sliced AES implementation; - ARM: NEON support, contemporary platforms optimizations; - s390x: z196 support; - *: GHASH and GF(2^m) multiplication implementations; [Andy Polyakov] *) Make TLS-SRP code conformant with RFC 5054 API cleanup (removal of unnecessary code) [Peter Sylvester ] *) Add TLS key material exporter from RFC 5705. [Eric Rescorla] *) Add DTLS-SRTP negotiation from RFC 5764. [Eric Rescorla] *) Add Next Protocol Negotiation, http://tools.ietf.org/html/draft-agl-tls-nextprotoneg-00. Can be disabled with a no-npn flag to config or Configure. Code donated by Google. [Adam Langley and Ben Laurie] *) Add optional 64-bit optimized implementations of elliptic curves NIST-P224, NIST-P256, NIST-P521, with constant-time single point multiplication on typical inputs. Compiler support for the nonstandard type __uint128_t is required to use this (present in gcc 4.4 and later, for 64-bit builds). Code made available under Apache License version 2.0. Specify "enable-ec_nistp_64_gcc_128" on the Configure (or config) command line to include this in your build of OpenSSL, and run "make depend" (or "make update"). This enables the following EC_METHODs: EC_GFp_nistp224_method() EC_GFp_nistp256_method() EC_GFp_nistp521_method() EC_GROUP_new_by_curve_name() will automatically use these (while EC_GROUP_new_curve_GFp() currently prefers the more flexible implementations). [Emilia Käsper, Adam Langley, Bodo Moeller (Google)] *) Use type ossl_ssize_t instead of ssize_t which isn't available on all platforms. Move ssize_t definition from e_os.h to the public header file e_os2.h as it now appears in public header file cms.h [Steve Henson] *) New -sigopt option to the ca, req and x509 utilities. Additional signature parameters can be passed using this option and in particular PSS. [Steve Henson] *) Add RSA PSS signing function. This will generate and set the appropriate AlgorithmIdentifiers for PSS based on those in the corresponding EVP_MD_CTX structure. No application support yet. [Steve Henson] *) Support for companion algorithm specific ASN1 signing routines. New function ASN1_item_sign_ctx() signs a pre-initialised EVP_MD_CTX structure and sets AlgorithmIdentifiers based on the appropriate parameters. [Steve Henson] *) Add new algorithm specific ASN1 verification initialisation function to EVP_PKEY_ASN1_METHOD: this is not in EVP_PKEY_METHOD since the ASN1 handling will be the same no matter what EVP_PKEY_METHOD is used. Add a PSS handler to support verification of PSS signatures: checked against a number of sample certificates. [Steve Henson] *) Add signature printing for PSS. Add PSS OIDs. [Steve Henson, Martin Kaiser ] *) Add algorithm specific signature printing. An individual ASN1 method can now print out signatures instead of the standard hex dump. More complex signatures (e.g. PSS) can print out more meaningful information. Include DSA version that prints out the signature parameters r, s. [Steve Henson] *) Password based recipient info support for CMS library: implementing RFC3211. [Steve Henson] *) Split password based encryption into PBES2 and PBKDF2 functions. This neatly separates the code into cipher and PBE sections and is required for some algorithms that split PBES2 into separate pieces (such as password based CMS). [Steve Henson] *) Session-handling fixes: - Fix handling of connections that are resuming with a session ID, but also support Session Tickets. - Fix a bug that suppressed issuing of a new ticket if the client presented a ticket with an expired session. - Try to set the ticket lifetime hint to something reasonable. - Make tickets shorter by excluding irrelevant information. - On the client side, don't ignore renewed tickets. [Adam Langley, Bodo Moeller (Google)] *) Fix PSK session representation. [Bodo Moeller] *) Add RC4-MD5 and AESNI-SHA1 "stitched" implementations. This work was sponsored by Intel. [Andy Polyakov] *) Add GCM support to TLS library. Some custom code is needed to split the IV between the fixed (from PRF) and explicit (from TLS record) portions. This adds all GCM ciphersuites supported by RFC5288 and RFC5289. Generalise some AES* cipherstrings to include GCM and add a special AESGCM string for GCM only. [Steve Henson] *) Expand range of ctrls for AES GCM. Permit setting invocation field on decrypt and retrieval of invocation field only on encrypt. [Steve Henson] *) Add HMAC ECC ciphersuites from RFC5289. Include SHA384 PRF support. As required by RFC5289 these ciphersuites cannot be used if for versions of TLS earlier than 1.2. [Steve Henson] *) For FIPS capable OpenSSL interpret a NULL default public key method as unset and return the appropriate default but do *not* set the default. This means we can return the appropriate method in applications that switch between FIPS and non-FIPS modes. [Steve Henson] *) Redirect HMAC and CMAC operations to FIPS module in FIPS mode. If an ENGINE is used then we cannot handle that in the FIPS module so we keep original code iff non-FIPS operations are allowed. [Steve Henson] *) Add -attime option to openssl utilities. [Peter Eckersley , Ben Laurie and Steve Henson] *) Redirect DSA and DH operations to FIPS module in FIPS mode. [Steve Henson] *) Redirect ECDSA and ECDH operations to FIPS module in FIPS mode. Also use FIPS EC methods unconditionally for now. [Steve Henson] *) New build option no-ec2m to disable characteristic 2 code. [Steve Henson] *) Backport libcrypto audit of return value checking from 1.1.0-dev; not all cases can be covered as some introduce binary incompatibilities. [Steve Henson] *) Redirect RSA operations to FIPS module including keygen, encrypt, decrypt, sign and verify. Block use of non FIPS RSA methods. [Steve Henson] *) Add similar low level API blocking to ciphers. [Steve Henson] *) Low level digest APIs are not approved in FIPS mode: any attempt to use these will cause a fatal error. Applications that *really* want to use them can use the private_* version instead. [Steve Henson] *) Redirect cipher operations to FIPS module for FIPS builds. [Steve Henson] *) Redirect digest operations to FIPS module for FIPS builds. [Steve Henson] *) Update build system to add "fips" flag which will link in fipscanister.o for static and shared library builds embedding a signature if needed. [Steve Henson] *) Output TLS supported curves in preference order instead of numerical order. This is currently hardcoded for the highest order curves first. This should be configurable so applications can judge speed vs strength. [Steve Henson] *) Add TLS v1.2 server support for client authentication. [Steve Henson] *) Add support for FIPS mode in ssl library: disable SSLv3, non-FIPS ciphers and enable MD5. [Steve Henson] *) Functions FIPS_mode_set() and FIPS_mode() which call the underlying FIPS modules versions. [Steve Henson] *) Add TLS v1.2 client side support for client authentication. Keep cache of handshake records longer as we don't know the hash algorithm to use until after the certificate request message is received. [Steve Henson] *) Initial TLS v1.2 client support. Add a default signature algorithms extension including all the algorithms we support. Parse new signature format in client key exchange. Relax some ECC signing restrictions for TLS v1.2 as indicated in RFC5246. [Steve Henson] *) Add server support for TLS v1.2 signature algorithms extension. Switch to new signature format when needed using client digest preference. All server ciphersuites should now work correctly in TLS v1.2. No client support yet and no support for client certificates. [Steve Henson] *) Initial TLS v1.2 support. Add new SHA256 digest to ssl code, switch to SHA256 for PRF when using TLS v1.2 and later. Add new SHA256 based ciphersuites. At present only RSA key exchange ciphersuites work with TLS v1.2. Add new option for TLS v1.2 replacing the old and obsolete SSL_OP_PKCS1_CHECK flags with SSL_OP_NO_TLSv1_2. New TLSv1.2 methods and version checking. [Steve Henson] *) New option OPENSSL_NO_SSL_INTERN. If an application can be compiled with this defined it will not be affected by any changes to ssl internal structures. Add several utility functions to allow openssl application to work with OPENSSL_NO_SSL_INTERN defined. [Steve Henson] *) A long standing patch to add support for SRP from EdelWeb (Peter Sylvester and Christophe Renou) was integrated. [Christophe Renou , Peter Sylvester , Tom Wu , and Ben Laurie] *) Add functions to copy EVP_PKEY_METHOD and retrieve flags and id. [Steve Henson] *) Permit abbreviated handshakes when renegotiating using the function SSL_renegotiate_abbreviated(). [Robin Seggelmann ] *) Add call to ENGINE_register_all_complete() to ENGINE_load_builtin_engines(), so some implementations get used automatically instead of needing explicit application support. [Steve Henson] *) Add support for TLS key exporter as described in RFC5705. [Robin Seggelmann , Steve Henson] *) Initial TLSv1.1 support. Since TLSv1.1 is very similar to TLS v1.0 only a few changes are required: Add SSL_OP_NO_TLSv1_1 flag. Add TLSv1_1 methods. Update version checking logic to handle version 1.1. Add explicit IV handling (ported from DTLS code). Add command line options to s_client/s_server. [Steve Henson] Changes between 1.0.0g and 1.0.0h [12 Mar 2012] *) Fix MMA (Bleichenbacher's attack on PKCS #1 v1.5 RSA padding) weakness in CMS and PKCS7 code. When RSA decryption fails use a random key for content decryption and always return the same error. Note: this attack needs on average 2^20 messages so it only affects automated senders. The old behaviour can be re-enabled in the CMS code by setting the CMS_DEBUG_DECRYPT flag: this is useful for debugging and testing where an MMA defence is not necessary. Thanks to Ivan Nestlerode for discovering this issue. (CVE-2012-0884) [Steve Henson] *) Fix CVE-2011-4619: make sure we really are receiving a client hello before rejecting multiple SGC restarts. Thanks to Ivan Nestlerode for discovering this bug. [Steve Henson] Changes between 1.0.0f and 1.0.0g [18 Jan 2012] *) Fix for DTLS DoS issue introduced by fix for CVE-2011-4109. Thanks to Antonio Martin, Enterprise Secure Access Research and Development, Cisco Systems, Inc. for discovering this bug and preparing a fix. (CVE-2012-0050) [Antonio Martin] Changes between 1.0.0e and 1.0.0f [4 Jan 2012] *) Nadhem Alfardan and Kenny Paterson have discovered an extension of the Vaudenay padding oracle attack on CBC mode encryption which enables an efficient plaintext recovery attack against the OpenSSL implementation of DTLS. Their attack exploits timing differences arising during decryption processing. A research paper describing this attack can be found at: http://www.isg.rhul.ac.uk/~kp/dtls.pdf Thanks go to Nadhem Alfardan and Kenny Paterson of the Information Security Group at Royal Holloway, University of London (www.isg.rhul.ac.uk) for discovering this flaw and to Robin Seggelmann and Michael Tuexen for preparing the fix. (CVE-2011-4108) [Robin Seggelmann, Michael Tuexen] *) Clear bytes used for block padding of SSL 3.0 records. (CVE-2011-4576) [Adam Langley (Google)] *) Only allow one SGC handshake restart for SSL/TLS. Thanks to George Kadianakis for discovering this issue and Adam Langley for preparing the fix. (CVE-2011-4619) [Adam Langley (Google)] *) Check parameters are not NULL in GOST ENGINE. (CVE-2012-0027) [Andrey Kulikov ] *) Prevent malformed RFC3779 data triggering an assertion failure. Thanks to Andrew Chi, BBN Technologies, for discovering the flaw and Rob Austein for fixing it. (CVE-2011-4577) [Rob Austein ] *) Improved PRNG seeding for VOS. [Paul Green ] *) Fix ssl_ciph.c set-up race. [Adam Langley (Google)] *) Fix spurious failures in ecdsatest.c. [Emilia Käsper (Google)] *) Fix the BIO_f_buffer() implementation (which was mixing different interpretations of the '..._len' fields). [Adam Langley (Google)] *) Fix handling of BN_BLINDING: now BN_BLINDING_invert_ex (rather than BN_BLINDING_invert_ex) calls BN_BLINDING_update, ensuring that concurrent threads won't reuse the same blinding coefficients. This also avoids the need to obtain the CRYPTO_LOCK_RSA_BLINDING lock to call BN_BLINDING_invert_ex, and avoids one use of BN_BLINDING_update for each BN_BLINDING structure (previously, the last update always remained unused). [Emilia Käsper (Google)] *) In ssl3_clear, preserve s3->init_extra along with s3->rbuf. [Bob Buckholz (Google)] Changes between 1.0.0d and 1.0.0e [6 Sep 2011] *) Fix bug where CRLs with nextUpdate in the past are sometimes accepted by initialising X509_STORE_CTX properly. (CVE-2011-3207) [Kaspar Brand ] *) Fix SSL memory handling for (EC)DH ciphersuites, in particular for multi-threaded use of ECDH. (CVE-2011-3210) [Adam Langley (Google)] *) Fix x509_name_ex_d2i memory leak on bad inputs. [Bodo Moeller] *) Remove hard coded ecdsaWithSHA1 signature tests in ssl code and check signature public key algorithm by using OID xref utilities instead. Before this you could only use some ECC ciphersuites with SHA1 only. [Steve Henson] *) Add protection against ECDSA timing attacks as mentioned in the paper by Billy Bob Brumley and Nicola Tuveri, see: http://eprint.iacr.org/2011/232.pdf [Billy Bob Brumley and Nicola Tuveri] Changes between 1.0.0c and 1.0.0d [8 Feb 2011] *) Fix parsing of OCSP stapling ClientHello extension. CVE-2011-0014 [Neel Mehta, Adam Langley, Bodo Moeller (Google)] *) Fix bug in string printing code: if *any* escaping is enabled we must escape the escape character (backslash) or the resulting string is ambiguous. [Steve Henson] Changes between 1.0.0b and 1.0.0c [2 Dec 2010] *) Disable code workaround for ancient and obsolete Netscape browsers and servers: an attacker can use it in a ciphersuite downgrade attack. Thanks to Martin Rex for discovering this bug. CVE-2010-4180 [Steve Henson] *) Fixed J-PAKE implementation error, originally discovered by Sebastien Martini, further info and confirmation from Stefan Arentz and Feng Hao. Note that this fix is a security fix. CVE-2010-4252 [Ben Laurie] Changes between 1.0.0a and 1.0.0b [16 Nov 2010] *) Fix extension code to avoid race conditions which can result in a buffer overrun vulnerability: resumed sessions must not be modified as they can be shared by multiple threads. CVE-2010-3864 [Steve Henson] *) Fix WIN32 build system to correctly link an ENGINE directory into a DLL. [Steve Henson] Changes between 1.0.0 and 1.0.0a [01 Jun 2010] *) Check return value of int_rsa_verify in pkey_rsa_verifyrecover (CVE-2010-1633) [Steve Henson, Peter-Michael Hager ] Changes between 0.9.8n and 1.0.0 [29 Mar 2010] *) Add "missing" function EVP_CIPHER_CTX_copy(). This copies a cipher context. The operation can be customised via the ctrl mechanism in case ENGINEs want to include additional functionality. [Steve Henson] *) Tolerate yet another broken PKCS#8 key format: private key value negative. [Steve Henson] *) Add new -subject_hash_old and -issuer_hash_old options to x509 utility to output hashes compatible with older versions of OpenSSL. [Willy Weisz ] *) Fix compression algorithm handling: if resuming a session use the compression algorithm of the resumed session instead of determining it from client hello again. Don't allow server to change algorithm. [Steve Henson] *) Add load_crls() function to apps tidying load_certs() too. Add option to verify utility to allow additional CRLs to be included. [Steve Henson] *) Update OCSP request code to permit adding custom headers to the request: some responders need this. [Steve Henson] *) The function EVP_PKEY_sign() returns <=0 on error: check return code correctly. [Julia Lawall ] *) Update verify callback code in apps/s_cb.c and apps/verify.c, it needlessly dereferenced structures, used obsolete functions and didn't handle all updated verify codes correctly. [Steve Henson] *) Disable MD2 in the default configuration. [Steve Henson] *) In BIO_pop() and BIO_push() use the ctrl argument (which was NULL) to indicate the initial BIO being pushed or popped. This makes it possible to determine whether the BIO is the one explicitly called or as a result of the ctrl being passed down the chain. Fix BIO_pop() and SSL BIOs so it handles reference counts correctly and doesn't zero out the I/O bio when it is not being explicitly popped. WARNING: applications which included workarounds for the old buggy behaviour will need to be modified or they could free up already freed BIOs. [Steve Henson] *) Extend the uni2asc/asc2uni => OPENSSL_uni2asc/OPENSSL_asc2uni renaming to all platforms (within the 0.9.8 branch, this was done conditionally on Netware platforms to avoid a name clash). [Guenter ] *) Add ECDHE and PSK support to DTLS. [Michael Tuexen ] *) Add CHECKED_STACK_OF macro to safestack.h, otherwise safestack can't be used on C++. [Steve Henson] *) Add "missing" function EVP_MD_flags() (without this the only way to retrieve a digest flags is by accessing the structure directly. Update EVP_MD_do_all*() and EVP_CIPHER_do_all*() to include the name a digest or cipher is registered as in the "from" argument. Print out all registered digests in the dgst usage message instead of manually attempting to work them out. [Steve Henson] *) If no SSLv2 ciphers are used don't use an SSLv2 compatible client hello: this allows the use of compression and extensions. Change default cipher string to remove SSLv2 ciphersuites. This effectively avoids ancient SSLv2 by default unless an application cipher string requests it. [Steve Henson] *) Alter match criteria in PKCS12_parse(). It used to try to use local key ids to find matching certificates and keys but some PKCS#12 files don't follow the (somewhat unwritten) rules and this strategy fails. Now just gather all certificates together and the first private key then look for the first certificate that matches the key. [Steve Henson] *) Support use of registered digest and cipher names for dgst and cipher commands instead of having to add each one as a special case. So now you can do: openssl sha256 foo as well as: openssl dgst -sha256 foo and this works for ENGINE based algorithms too. [Steve Henson] *) Update Gost ENGINE to support parameter files. [Victor B. Wagner ] *) Support GeneralizedTime in ca utility. [Oliver Martin , Steve Henson] *) Enhance the hash format used for certificate directory links. The new form uses the canonical encoding (meaning equivalent names will work even if they aren't identical) and uses SHA1 instead of MD5. This form is incompatible with the older format and as a result c_rehash should be used to rebuild symbolic links. [Steve Henson] *) Make PKCS#8 the default write format for private keys, replacing the traditional format. This form is standardised, more secure and doesn't include an implicit MD5 dependency. [Steve Henson] *) Add a $gcc_devteam_warn option to Configure. The idea is that any code committed to OpenSSL should pass this lot as a minimum. [Steve Henson] *) Add session ticket override functionality for use by EAP-FAST. [Jouni Malinen ] *) Modify HMAC functions to return a value. Since these can be implemented in an ENGINE errors can occur. [Steve Henson] *) Type-checked OBJ_bsearch_ex. [Ben Laurie] *) Type-checked OBJ_bsearch. Also some constification necessitated by type-checking. Still to come: TXT_DB, bsearch(?), OBJ_bsearch_ex, qsort, CRYPTO_EX_DATA, ASN1_VALUE, ASN1_STRING, CONF_VALUE. [Ben Laurie] *) New function OPENSSL_gmtime_adj() to add a specific number of days and seconds to a tm structure directly, instead of going through OS specific date routines. This avoids any issues with OS routines such as the year 2038 bug. New *_adj() functions for ASN1 time structures and X509_time_adj_ex() to cover the extended range. The existing X509_time_adj() is still usable and will no longer have any date issues. [Steve Henson] *) Delta CRL support. New use deltas option which will attempt to locate and search any appropriate delta CRLs available. This work was sponsored by Google. [Steve Henson] *) Support for CRLs partitioned by reason code. Reorganise CRL processing code and add additional score elements. Validate alternate CRL paths as part of the CRL checking and indicate a new error "CRL path validation error" in this case. Applications wanting additional details can use the verify callback and check the new "parent" field. If this is not NULL CRL path validation is taking place. Existing applications won't see this because it requires extended CRL support which is off by default. This work was sponsored by Google. [Steve Henson] *) Support for freshest CRL extension. This work was sponsored by Google. [Steve Henson] *) Initial indirect CRL support. Currently only supported in the CRLs passed directly and not via lookup. Process certificate issuer CRL entry extension and lookup CRL entries by bother issuer name and serial number. Check and process CRL issuer entry in IDP extension. This work was sponsored by Google. [Steve Henson] *) Add support for distinct certificate and CRL paths. The CRL issuer certificate is validated separately in this case. Only enabled if an extended CRL support flag is set: this flag will enable additional CRL functionality in future. This work was sponsored by Google. [Steve Henson] *) Add support for policy mappings extension. This work was sponsored by Google. [Steve Henson] *) Fixes to pathlength constraint, self issued certificate handling, policy processing to align with RFC3280 and PKITS tests. This work was sponsored by Google. [Steve Henson] *) Support for name constraints certificate extension. DN, email, DNS and URI types are currently supported. This work was sponsored by Google. [Steve Henson] *) To cater for systems that provide a pointer-based thread ID rather than numeric, deprecate the current numeric thread ID mechanism and replace it with a structure and associated callback type. This mechanism allows a numeric "hash" to be extracted from a thread ID in either case, and on platforms where pointers are larger than 'long', mixing is done to help ensure the numeric 'hash' is usable even if it can't be guaranteed unique. The default mechanism is to use "&errno" as a pointer-based thread ID to distinguish between threads. Applications that want to provide their own thread IDs should now use CRYPTO_THREADID_set_callback() to register a callback that will call either CRYPTO_THREADID_set_numeric() or CRYPTO_THREADID_set_pointer(). Note that ERR_remove_state() is now deprecated, because it is tied to the assumption that thread IDs are numeric. ERR_remove_state(0) to free the current thread's error state should be replaced by ERR_remove_thread_state(NULL). (This new approach replaces the functions CRYPTO_set_idptr_callback(), CRYPTO_get_idptr_callback(), and CRYPTO_thread_idptr() that existed in OpenSSL 0.9.9-dev between June 2006 and August 2008. Also, if an application was previously providing a numeric thread callback that was inappropriate for distinguishing threads, then uniqueness might have been obtained with &errno that happened immediately in the intermediate development versions of OpenSSL; this is no longer the case, the numeric thread callback will now override the automatic use of &errno.) [Geoff Thorpe, with help from Bodo Moeller] *) Initial support for different CRL issuing certificates. This covers a simple case where the self issued certificates in the chain exist and the real CRL issuer is higher in the existing chain. This work was sponsored by Google. [Steve Henson] *) Removed effectively defunct crypto/store from the build. [Ben Laurie] *) Revamp of STACK to provide stronger type-checking. Still to come: TXT_DB, bsearch(?), OBJ_bsearch, qsort, CRYPTO_EX_DATA, ASN1_VALUE, ASN1_STRING, CONF_VALUE. [Ben Laurie] *) Add a new SSL_MODE_RELEASE_BUFFERS mode flag to release unused buffer RAM on SSL connections. This option can save about 34k per idle SSL. [Nick Mathewson] *) Revamp of LHASH to provide stronger type-checking. Still to come: STACK, TXT_DB, bsearch, qsort. [Ben Laurie] *) Initial support for Cryptographic Message Syntax (aka CMS) based on RFC3850, RFC3851 and RFC3852. New cms directory and cms utility, support for data, signedData, compressedData, digestedData and encryptedData, envelopedData types included. Scripts to check against RFC4134 examples draft and interop and consistency checks of many content types and variants. [Steve Henson] *) Add options to enc utility to support use of zlib compression BIO. [Steve Henson] *) Extend mk1mf to support importing of options and assembly language files from Configure script, currently only included in VC-WIN32. The assembly language rules can now optionally generate the source files from the associated perl scripts. [Steve Henson] *) Implement remaining functionality needed to support GOST ciphersuites. Interop testing has been performed using CryptoPro implementations. [Victor B. Wagner ] *) s390x assembler pack. [Andy Polyakov] *) ARMv4 assembler pack. ARMv4 refers to v4 and later ISA, not CPU "family." [Andy Polyakov] *) Implement Opaque PRF Input TLS extension as specified in draft-rescorla-tls-opaque-prf-input-00.txt. Since this is not an official specification yet and no extension type assignment by IANA exists, this extension (for now) will have to be explicitly enabled when building OpenSSL by providing the extension number to use. For example, specify an option -DTLSEXT_TYPE_opaque_prf_input=0x9527 to the "config" or "Configure" script to enable the extension, assuming extension number 0x9527 (which is a completely arbitrary and unofficial assignment based on the MD5 hash of the Internet Draft). Note that by doing so, you potentially lose interoperability with other TLS implementations since these might be using the same extension number for other purposes. SSL_set_tlsext_opaque_prf_input(ssl, src, len) is used to set the opaque PRF input value to use in the handshake. This will create an internal copy of the length-'len' string at 'src', and will return non-zero for success. To get more control and flexibility, provide a callback function by using SSL_CTX_set_tlsext_opaque_prf_input_callback(ctx, cb) SSL_CTX_set_tlsext_opaque_prf_input_callback_arg(ctx, arg) where int (*cb)(SSL *, void *peerinput, size_t len, void *arg); void *arg; Callback function 'cb' will be called in handshakes, and is expected to use SSL_set_tlsext_opaque_prf_input() as appropriate. Argument 'arg' is for application purposes (the value as given to SSL_CTX_set_tlsext_opaque_prf_input_callback_arg() will directly be provided to the callback function). The callback function has to return non-zero to report success: usually 1 to use opaque PRF input just if possible, or 2 to enforce use of the opaque PRF input. In the latter case, the library will abort the handshake if opaque PRF input is not successfully negotiated. Arguments 'peerinput' and 'len' given to the callback function will always be NULL and 0 in the case of a client. A server will see the client's opaque PRF input through these variables if available (NULL and 0 otherwise). Note that if the server provides an opaque PRF input, the length must be the same as the length of the client's opaque PRF input. Note that the callback function will only be called when creating a new session (session resumption can resume whatever was previously negotiated), and will not be called in SSL 2.0 handshakes; thus, SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2) or SSL_set_options(ssl, SSL_OP_NO_SSLv2) is especially recommended for applications that need to enforce opaque PRF input. [Bodo Moeller] *) Update ssl code to support digests other than SHA1+MD5 for handshake MAC. [Victor B. Wagner ] *) Add RFC4507 support to OpenSSL. This includes the corrections in RFC4507bis. The encrypted ticket format is an encrypted encoded SSL_SESSION structure, that way new session features are automatically supported. If a client application caches session in an SSL_SESSION structure support is transparent because tickets are now stored in the encoded SSL_SESSION. The SSL_CTX structure automatically generates keys for ticket protection in servers so again support should be possible with no application modification. If a client or server wishes to disable RFC4507 support then the option SSL_OP_NO_TICKET can be set. Add a TLS extension debugging callback to allow the contents of any client or server extensions to be examined. This work was sponsored by Google. [Steve Henson] *) Final changes to avoid use of pointer pointer casts in OpenSSL. OpenSSL should now compile cleanly on gcc 4.2 [Peter Hartley , Steve Henson] *) Update SSL library to use new EVP_PKEY MAC API. Include generic MAC support including streaming MAC support: this is required for GOST ciphersuite support. [Victor B. Wagner , Steve Henson] *) Add option -stream to use PKCS#7 streaming in smime utility. New function i2d_PKCS7_bio_stream() and PEM_write_PKCS7_bio_stream() to output in BER and PEM format. [Steve Henson] *) Experimental support for use of HMAC via EVP_PKEY interface. This allows HMAC to be handled via the EVP_DigestSign*() interface. The EVP_PKEY "key" in this case is the HMAC key, potentially allowing ENGINE support for HMAC keys which are unextractable. New -mac and -macopt options to dgst utility. [Steve Henson] *) New option -sigopt to dgst utility. Update dgst to use EVP_Digest{Sign,Verify}*. These two changes make it possible to use alternative signing parameters such as X9.31 or PSS in the dgst utility. [Steve Henson] *) Change ssl_cipher_apply_rule(), the internal function that does the work each time a ciphersuite string requests enabling ("foo+bar"), moving ("+foo+bar"), disabling ("-foo+bar", or removing ("!foo+bar") a class of ciphersuites: Now it maintains the order of disabled ciphersuites such that those ciphersuites that most recently went from enabled to disabled not only stay in order with respect to each other, but also have higher priority than other disabled ciphersuites the next time ciphersuites are enabled again. This means that you can now say, e.g., "PSK:-PSK:HIGH" to enable the same ciphersuites as with "HIGH" alone, but in a specific order where the PSK ciphersuites come first (since they are the most recently disabled ciphersuites when "HIGH" is parsed). Also, change ssl_create_cipher_list() (using this new functionality) such that between otherwise identical ciphersuites, ephemeral ECDH is preferred over ephemeral DH in the default order. [Bodo Moeller] *) Change ssl_create_cipher_list() so that it automatically arranges the ciphersuites in reasonable order before starting to process the rule string. Thus, the definition for "DEFAULT" (SSL_DEFAULT_CIPHER_LIST) now is just "ALL:!aNULL:!eNULL", but remains equivalent to "AES:ALL:!aNULL:!eNULL:+aECDH:+kRSA:+RC4:@STRENGTH". This makes it much easier to arrive at a reasonable default order in applications for which anonymous ciphers are OK (meaning that you can't actually use DEFAULT). [Bodo Moeller; suggested by Victor Duchovni] *) Split the SSL/TLS algorithm mask (as used for ciphersuite string processing) into multiple integers instead of setting "SSL_MKEY_MASK" bits, "SSL_AUTH_MASK" bits, "SSL_ENC_MASK", "SSL_MAC_MASK", and "SSL_SSL_MASK" bits all in a single integer. (These masks as well as the individual bit definitions are hidden away into the non-exported interface ssl/ssl_locl.h, so this change to the definition of the SSL_CIPHER structure shouldn't affect applications.) This give us more bits for each of these categories, so there is no longer a need to coagulate AES128 and AES256 into a single algorithm bit, and to coagulate Camellia128 and Camellia256 into a single algorithm bit, which has led to all kinds of kludges. Thus, among other things, the kludge introduced in 0.9.7m and 0.9.8e for masking out AES256 independently of AES128 or masking out Camellia256 independently of AES256 is not needed here in 0.9.9. With the change, we also introduce new ciphersuite aliases that so far were missing: "AES128", "AES256", "CAMELLIA128", and "CAMELLIA256". [Bodo Moeller] *) Add support for dsa-with-SHA224 and dsa-with-SHA256. Use the leftmost N bytes of the signature input if the input is larger than the prime q (with N being the size in bytes of q). [Nils Larsch] *) Very *very* experimental PKCS#7 streaming encoder support. Nothing uses it yet and it is largely untested. [Steve Henson] *) Add support for the ecdsa-with-SHA224/256/384/512 signature types. [Nils Larsch] *) Initial incomplete changes to avoid need for function casts in OpenSSL some compilers (gcc 4.2 and later) reject their use. Safestack is reimplemented. Update ASN1 to avoid use of legacy functions. [Steve Henson] *) Win32/64 targets are linked with Winsock2. [Andy Polyakov] *) Add an X509_CRL_METHOD structure to allow CRL processing to be redirected to external functions. This can be used to increase CRL handling efficiency especially when CRLs are very large by (for example) storing the CRL revoked certificates in a database. [Steve Henson] *) Overhaul of by_dir code. Add support for dynamic loading of CRLs so new CRLs added to a directory can be used. New command line option -verify_return_error to s_client and s_server. This causes real errors to be returned by the verify callback instead of carrying on no matter what. This reflects the way a "real world" verify callback would behave. [Steve Henson] *) GOST engine, supporting several GOST algorithms and public key formats. Kindly donated by Cryptocom. [Cryptocom] *) Partial support for Issuing Distribution Point CRL extension. CRLs partitioned by DP are handled but no indirect CRL or reason partitioning (yet). Complete overhaul of CRL handling: now the most suitable CRL is selected via a scoring technique which handles IDP and AKID in CRLs. [Steve Henson] *) New X509_STORE_CTX callbacks lookup_crls() and lookup_certs() which will ultimately be used for all verify operations: this will remove the X509_STORE dependency on certificate verification and allow alternative lookup methods. X509_STORE based implementations of these two callbacks. [Steve Henson] *) Allow multiple CRLs to exist in an X509_STORE with matching issuer names. Modify get_crl() to find a valid (unexpired) CRL if possible. [Steve Henson] *) New function X509_CRL_match() to check if two CRLs are identical. Normally this would be called X509_CRL_cmp() but that name is already used by a function that just compares CRL issuer names. Cache several CRL extensions in X509_CRL structure and cache CRLDP in X509. [Steve Henson] *) Store a "canonical" representation of X509_NAME structure (ASN1 Name) this maps equivalent X509_NAME structures into a consistent structure. Name comparison can then be performed rapidly using memcmp(). [Steve Henson] *) Non-blocking OCSP request processing. Add -timeout option to ocsp utility. [Steve Henson] *) Allow digests to supply their own micalg string for S/MIME type using the ctrl EVP_MD_CTRL_MICALG. [Steve Henson] *) During PKCS7 signing pass the PKCS7 SignerInfo structure to the EVP_PKEY_METHOD before and after signing via the EVP_PKEY_CTRL_PKCS7_SIGN ctrl. It can then customise the structure before and/or after signing if necessary. [Steve Henson] *) New function OBJ_add_sigid() to allow application defined signature OIDs to be added to OpenSSLs internal tables. New function OBJ_sigid_free() to free up any added signature OIDs. [Steve Henson] *) New functions EVP_CIPHER_do_all(), EVP_CIPHER_do_all_sorted(), EVP_MD_do_all() and EVP_MD_do_all_sorted() to enumerate internal digest and cipher tables. New options added to openssl utility: list-message-digest-algorithms and list-cipher-algorithms. [Steve Henson] *) Change the array representation of binary polynomials: the list of degrees of non-zero coefficients is now terminated with -1. Previously it was terminated with 0, which was also part of the value; thus, the array representation was not applicable to polynomials where t^0 has coefficient zero. This change makes the array representation useful in a more general context. [Douglas Stebila] *) Various modifications and fixes to SSL/TLS cipher string handling. For ECC, the code now distinguishes between fixed ECDH with RSA certificates on the one hand and with ECDSA certificates on the other hand, since these are separate ciphersuites. The unused code for Fortezza ciphersuites has been removed. For consistency with EDH, ephemeral ECDH is now called "EECDH" (not "ECDHE"). For consistency with the code for DH certificates, use of ECDH certificates is now considered ECDH authentication, not RSA or ECDSA authentication (the latter is merely the CA's signing algorithm and not actively used in the protocol). The temporary ciphersuite alias "ECCdraft" is no longer available, and ECC ciphersuites are no longer excluded from "ALL" and "DEFAULT". The following aliases now exist for RFC 4492 ciphersuites, most of these by analogy with the DH case: kECDHr - ECDH cert, signed with RSA kECDHe - ECDH cert, signed with ECDSA kECDH - ECDH cert (signed with either RSA or ECDSA) kEECDH - ephemeral ECDH ECDH - ECDH cert or ephemeral ECDH aECDH - ECDH cert aECDSA - ECDSA cert ECDSA - ECDSA cert AECDH - anonymous ECDH EECDH - non-anonymous ephemeral ECDH (equivalent to "kEECDH:-AECDH") [Bodo Moeller] *) Add additional S/MIME capabilities for AES and GOST ciphers if supported. Use correct micalg parameters depending on digest(s) in signed message. [Steve Henson] *) Add engine support for EVP_PKEY_ASN1_METHOD. Add functions to process an ENGINE asn1 method. Support ENGINE lookups in the ASN1 code. [Steve Henson] *) Initial engine support for EVP_PKEY_METHOD. New functions to permit an engine to register a method. Add ENGINE lookups for methods and functional reference processing. [Steve Henson] *) New functions EVP_Digest{Sign,Verify)*. These are enhanced versions of EVP_{Sign,Verify}* which allow an application to customise the signature process. [Steve Henson] *) New -resign option to smime utility. This adds one or more signers to an existing PKCS#7 signedData structure. Also -md option to use an alternative message digest algorithm for signing. [Steve Henson] *) Tidy up PKCS#7 routines and add new functions to make it easier to create PKCS7 structures containing multiple signers. Update smime application to support multiple signers. [Steve Henson] *) New -macalg option to pkcs12 utility to allow setting of an alternative digest MAC. [Steve Henson] *) Initial support for PKCS#5 v2.0 PRFs other than default SHA1 HMAC. Reorganize PBE internals to lookup from a static table using NIDs, add support for HMAC PBE OID translation. Add a EVP_CIPHER ctrl: EVP_CTRL_PBE_PRF_NID this allows a cipher to specify an alternative PRF which will be automatically used with PBES2. [Steve Henson] *) Replace the algorithm specific calls to generate keys in "req" with the new API. [Steve Henson] *) Update PKCS#7 enveloped data routines to use new API. This is now supported by any public key method supporting the encrypt operation. A ctrl is added to allow the public key algorithm to examine or modify the PKCS#7 RecipientInfo structure if it needs to: for RSA this is a no op. [Steve Henson] *) Add a ctrl to asn1 method to allow a public key algorithm to express a default digest type to use. In most cases this will be SHA1 but some algorithms (such as GOST) need to specify an alternative digest. The return value indicates how strong the preference is 1 means optional and 2 is mandatory (that is it is the only supported type). Modify ASN1_item_sign() to accept a NULL digest argument to indicate it should use the default md. Update openssl utilities to use the default digest type for signing if it is not explicitly indicated. [Steve Henson] *) Use OID cross reference table in ASN1_sign() and ASN1_verify(). New EVP_MD flag EVP_MD_FLAG_PKEY_METHOD_SIGNATURE. This uses the relevant signing method from the key type. This effectively removes the link between digests and public key types. [Steve Henson] *) Add an OID cross reference table and utility functions. Its purpose is to translate between signature OIDs such as SHA1WithrsaEncryption and SHA1, rsaEncryption. This will allow some of the algorithm specific hackery needed to use the correct OID to be removed. [Steve Henson] *) Remove algorithm specific dependencies when setting PKCS7_SIGNER_INFO structures for PKCS7_sign(). They are now set up by the relevant public key ASN1 method. [Steve Henson] *) Add provisional EC pkey method with support for ECDSA and ECDH. [Steve Henson] *) Add support for key derivation (agreement) in the API, DH method and pkeyutl. [Steve Henson] *) Add DSA pkey method and DH pkey methods, extend DH ASN1 method to support public and private key formats. As a side effect these add additional command line functionality not previously available: DSA signatures can be generated and verified using pkeyutl and DH key support and generation in pkey, genpkey. [Steve Henson] *) BeOS support. [Oliver Tappe ] *) New make target "install_html_docs" installs HTML renditions of the manual pages. [Oliver Tappe ] *) New utility "genpkey" this is analogous to "genrsa" etc except it can generate keys for any algorithm. Extend and update EVP_PKEY_METHOD to support key and parameter generation and add initial key generation functionality for RSA. [Steve Henson] *) Add functions for main EVP_PKEY_method operations. The undocumented functions EVP_PKEY_{encrypt,decrypt} have been renamed to EVP_PKEY_{encrypt,decrypt}_old. [Steve Henson] *) Initial definitions for EVP_PKEY_METHOD. This will be a high level public key API, doesn't do much yet. [Steve Henson] *) New function EVP_PKEY_asn1_get0_info() to retrieve information about public key algorithms. New option to openssl utility: "list-public-key-algorithms" to print out info. [Steve Henson] *) Implement the Supported Elliptic Curves Extension for ECC ciphersuites from draft-ietf-tls-ecc-12.txt. [Douglas Stebila] *) Don't free up OIDs in OBJ_cleanup() if they are in use by EVP_MD or EVP_CIPHER structures to avoid later problems in EVP_cleanup(). [Steve Henson] *) New utilities pkey and pkeyparam. These are similar to algorithm specific utilities such as rsa, dsa, dsaparam etc except they process any key type. [Steve Henson] *) Transfer public key printing routines to EVP_PKEY_ASN1_METHOD. New functions EVP_PKEY_print_public(), EVP_PKEY_print_private(), EVP_PKEY_print_param() to print public key data from an EVP_PKEY structure. [Steve Henson] *) Initial support for pluggable public key ASN1. De-spaghettify the public key ASN1 handling. Move public and private key ASN1 handling to a new EVP_PKEY_ASN1_METHOD structure. Relocate algorithm specific handling to a single module within the relevant algorithm directory. Add functions to allow (near) opaque processing of public and private key structures. [Steve Henson] *) Implement the Supported Point Formats Extension for ECC ciphersuites from draft-ietf-tls-ecc-12.txt. [Douglas Stebila] *) Add initial support for RFC 4279 PSK TLS ciphersuites. Add members for the psk identity [hint] and the psk callback functions to the SSL_SESSION, SSL and SSL_CTX structure. New ciphersuites: PSK-RC4-SHA, PSK-3DES-EDE-CBC-SHA, PSK-AES128-CBC-SHA, PSK-AES256-CBC-SHA New functions: SSL_CTX_use_psk_identity_hint SSL_get_psk_identity_hint SSL_get_psk_identity SSL_use_psk_identity_hint [Mika Kousa and Pasi Eronen of Nokia Corporation] *) Add RFC 3161 compliant time stamp request creation, response generation and response verification functionality. [Zoltán Glózik , The OpenTSA Project] *) Add initial support for TLS extensions, specifically for the server_name extension so far. The SSL_SESSION, SSL_CTX, and SSL data structures now have new members for a host name. The SSL data structure has an additional member SSL_CTX *initial_ctx so that new sessions can be stored in that context to allow for session resumption, even after the SSL has been switched to a new SSL_CTX in reaction to a client's server_name extension. New functions (subject to change): SSL_get_servername() SSL_get_servername_type() SSL_set_SSL_CTX() New CTRL codes and macros (subject to change): SSL_CTRL_SET_TLSEXT_SERVERNAME_CB - SSL_CTX_set_tlsext_servername_callback() SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG - SSL_CTX_set_tlsext_servername_arg() SSL_CTRL_SET_TLSEXT_HOSTNAME - SSL_set_tlsext_host_name() openssl s_client has a new '-servername ...' option. openssl s_server has new options '-servername_host ...', '-cert2 ...', '-key2 ...', '-servername_fatal' (subject to change). This allows testing the HostName extension for a specific single host name ('-cert' and '-key' remain fallbacks for handshakes without HostName negotiation). If the unrecognized_name alert has to be sent, this by default is a warning; it becomes fatal with the '-servername_fatal' option. [Peter Sylvester, Remy Allais, Christophe Renou] *) Whirlpool hash implementation is added. [Andy Polyakov] *) BIGNUM code on 64-bit SPARCv9 targets is switched from bn(64,64) to bn(64,32). Because of instruction set limitations it doesn't have any negative impact on performance. This was done mostly in order to make it possible to share assembler modules, such as bn_mul_mont implementations, between 32- and 64-bit builds without hassle. [Andy Polyakov] *) Move code previously exiled into file crypto/ec/ec2_smpt.c to ec2_smpl.c, and no longer require the OPENSSL_EC_BIN_PT_COMP macro. [Bodo Moeller] *) New candidate for BIGNUM assembler implementation, bn_mul_mont, dedicated Montgomery multiplication procedure, is introduced. BN_MONT_CTX is modified to allow bn_mul_mont to reach for higher "64-bit" performance on certain 32-bit targets. [Andy Polyakov] *) New option SSL_OP_NO_COMP to disable use of compression selectively in SSL structures. New SSL ctrl to set maximum send fragment size. Save memory by setting the I/O buffer sizes dynamically instead of using the maximum available value. [Steve Henson] *) New option -V for 'openssl ciphers'. This prints the ciphersuite code in addition to the text details. [Bodo Moeller] *) Very, very preliminary EXPERIMENTAL support for printing of general ASN1 structures. This currently produces rather ugly output and doesn't handle several customised structures at all. [Steve Henson] *) Integrated support for PVK file format and some related formats such as MS PUBLICKEYBLOB and PRIVATEKEYBLOB. Command line switches to support these in the 'rsa' and 'dsa' utilities. [Steve Henson] *) Support for PKCS#1 RSAPublicKey format on rsa utility command line. [Steve Henson] *) Remove the ancient ASN1_METHOD code. This was only ever used in one place for the (very old) "NETSCAPE" format certificates which are now handled using new ASN1 code equivalents. [Steve Henson] *) Let the TLSv1_method() etc. functions return a 'const' SSL_METHOD pointer and make the SSL_METHOD parameter in SSL_CTX_new, SSL_CTX_set_ssl_version and SSL_set_ssl_method 'const'. [Nils Larsch] *) Modify CRL distribution points extension code to print out previously unsupported fields. Enhance extension setting code to allow setting of all fields. [Steve Henson] *) Add print and set support for Issuing Distribution Point CRL extension. [Steve Henson] *) Change 'Configure' script to enable Camellia by default. [NTT] Changes between 0.9.8m and 0.9.8n [24 Mar 2010] *) When rejecting SSL/TLS records due to an incorrect version number, never update s->server with a new major version number. As of - OpenSSL 0.9.8m if 'short' is a 16-bit type, - OpenSSL 0.9.8f if 'short' is longer than 16 bits, the previous behavior could result in a read attempt at NULL when receiving specific incorrect SSL/TLS records once record payload protection is active. (CVE-2010-0740) [Bodo Moeller, Adam Langley ] *) Fix for CVE-2010-0433 where some kerberos enabled versions of OpenSSL could be crashed if the relevant tables were not present (e.g. chrooted). [Tomas Hoger ] Changes between 0.9.8l and 0.9.8m [25 Feb 2010] *) Always check bn_wexpand() return values for failure. (CVE-2009-3245) [Martin Olsson, Neel Mehta] *) Fix X509_STORE locking: Every 'objs' access requires a lock (to accommodate for stack sorting, always a write lock!). [Bodo Moeller] *) On some versions of WIN32 Heap32Next is very slow. This can cause excessive delays in the RAND_poll(): over a minute. As a workaround include a time check in the inner Heap32Next loop too. [Steve Henson] *) The code that handled flushing of data in SSL/TLS originally used the BIO_CTRL_INFO ctrl to see if any data was pending first. This caused the problem outlined in PR#1949. The fix suggested there however can trigger problems with buggy BIO_CTRL_WPENDING (e.g. some versions of Apache). So instead simplify the code to flush unconditionally. This should be fine since flushing with no data to flush is a no op. [Steve Henson] *) Handle TLS versions 2.0 and later properly and correctly use the highest version of TLS/SSL supported. Although TLS >= 2.0 is some way off ancient servers have a habit of sticking around for a while... [Steve Henson] *) Modify compression code so it frees up structures without using the ex_data callbacks. This works around a problem where some applications call CRYPTO_cleanup_all_ex_data() before application exit (e.g. when restarting) then use compression (e.g. SSL with compression) later. This results in significant per-connection memory leaks and has caused some security issues including CVE-2008-1678 and CVE-2009-4355. [Steve Henson] *) Constify crypto/cast (i.e., ): a CAST_KEY doesn't change when encrypting or decrypting. [Bodo Moeller] *) Add option SSL_OP_LEGACY_SERVER_CONNECT which will allow clients to connect and renegotiate with servers which do not support RI. Until RI is more widely deployed this option is enabled by default. [Steve Henson] *) Add "missing" ssl ctrls to clear options and mode. [Steve Henson] *) If client attempts to renegotiate and doesn't support RI respond with a no_renegotiation alert as required by RFC5746. Some renegotiating TLS clients will continue a connection gracefully when they receive the alert. Unfortunately OpenSSL mishandled this alert and would hang waiting for a server hello which it will never receive. Now we treat a received no_renegotiation alert as a fatal error. This is because applications requesting a renegotiation might well expect it to succeed and would have no code in place to handle the server denying it so the only safe thing to do is to terminate the connection. [Steve Henson] *) Add ctrl macro SSL_get_secure_renegotiation_support() which returns 1 if peer supports secure renegotiation and 0 otherwise. Print out peer renegotiation support in s_client/s_server. [Steve Henson] *) Replace the highly broken and deprecated SPKAC certification method with the updated NID creation version. This should correctly handle UTF8. [Steve Henson] *) Implement RFC5746. Re-enable renegotiation but require the extension as needed. Unfortunately, SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION turns out to be a bad idea. It has been replaced by SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION which can be set with SSL_CTX_set_options(). This is really not recommended unless you know what you are doing. [Eric Rescorla , Ben Laurie, Steve Henson] *) Fixes to stateless session resumption handling. Use initial_ctx when issuing and attempting to decrypt tickets in case it has changed during servername handling. Use a non-zero length session ID when attempting stateless session resumption: this makes it possible to determine if a resumption has occurred immediately after receiving server hello (several places in OpenSSL subtly assume this) instead of later in the handshake. [Steve Henson] *) The functions ENGINE_ctrl(), OPENSSL_isservice(), CMS_get1_RecipientRequest() and RAND_bytes() can return <=0 on error fixes for a few places where the return code is not checked correctly. [Julia Lawall ] *) Add --strict-warnings option to Configure script to include devteam warnings in other configurations. [Steve Henson] *) Add support for --libdir option and LIBDIR variable in makefiles. This makes it possible to install openssl libraries in locations which have names other than "lib", for example "/usr/lib64" which some systems need. [Steve Henson, based on patch from Jeremy Utley] *) Don't allow the use of leading 0x80 in OIDs. This is a violation of X690 8.9.12 and can produce some misleading textual output of OIDs. [Steve Henson, reported by Dan Kaminsky] *) Delete MD2 from algorithm tables. This follows the recommendation in several standards that it is not used in new applications due to several cryptographic weaknesses. For binary compatibility reasons the MD2 API is still compiled in by default. [Steve Henson] *) Add compression id to {d2i,i2d}_SSL_SESSION so it is correctly saved and restored. [Steve Henson] *) Rename uni2asc and asc2uni functions to OPENSSL_uni2asc and OPENSSL_asc2uni conditionally on Netware platforms to avoid a name clash. [Guenter ] *) Fix the server certificate chain building code to use X509_verify_cert(), it used to have an ad-hoc builder which was unable to cope with anything other than a simple chain. [David Woodhouse , Steve Henson] *) Don't check self signed certificate signatures in X509_verify_cert() by default (a flag can override this): it just wastes time without adding any security. As a useful side effect self signed root CAs with non-FIPS digests are now usable in FIPS mode. [Steve Henson] *) In dtls1_process_out_of_seq_message() the check if the current message is already buffered was missing. For every new message was memory allocated, allowing an attacker to perform an denial of service attack with sending out of seq handshake messages until there is no memory left. Additionally every future message was buffered, even if the sequence number made no sense and would be part of another handshake. So only messages with sequence numbers less than 10 in advance will be buffered. (CVE-2009-1378) [Robin Seggelmann, discovered by Daniel Mentz] *) Records are buffered if they arrive with a future epoch to be processed after finishing the corresponding handshake. There is currently no limitation to this buffer allowing an attacker to perform a DOS attack with sending records with future epochs until there is no memory left. This patch adds the pqueue_size() function to determine the size of a buffer and limits the record buffer to 100 entries. (CVE-2009-1377) [Robin Seggelmann, discovered by Daniel Mentz] *) Keep a copy of frag->msg_header.frag_len so it can be used after the parent structure is freed. (CVE-2009-1379) [Daniel Mentz] *) Handle non-blocking I/O properly in SSL_shutdown() call. [Darryl Miles ] *) Add 2.5.4.* OIDs [Ilya O. ] Changes between 0.9.8k and 0.9.8l [5 Nov 2009] *) Disable renegotiation completely - this fixes a severe security problem (CVE-2009-3555) at the cost of breaking all renegotiation. Renegotiation can be re-enabled by setting SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION in s3->flags at run-time. This is really not recommended unless you know what you're doing. [Ben Laurie] Changes between 0.9.8j and 0.9.8k [25 Mar 2009] *) Don't set val to NULL when freeing up structures, it is freed up by underlying code. If sizeof(void *) > sizeof(long) this can result in zeroing past the valid field. (CVE-2009-0789) [Paolo Ganci ] *) Fix bug where return value of CMS_SignerInfo_verify_content() was not checked correctly. This would allow some invalid signed attributes to appear to verify correctly. (CVE-2009-0591) [Ivan Nestlerode ] *) Reject UniversalString and BMPString types with invalid lengths. This prevents a crash in ASN1_STRING_print_ex() which assumes the strings have a legal length. (CVE-2009-0590) [Steve Henson] *) Set S/MIME signing as the default purpose rather than setting it unconditionally. This allows applications to override it at the store level. [Steve Henson] *) Permit restricted recursion of ASN1 strings. This is needed in practice to handle some structures. [Steve Henson] *) Improve efficiency of mem_gets: don't search whole buffer each time for a '\n' [Jeremy Shapiro ] *) New -hex option for openssl rand. [Matthieu Herrb] *) Print out UTF8String and NumericString when parsing ASN1. [Steve Henson] *) Support NumericString type for name components. [Steve Henson] *) Allow CC in the environment to override the automatically chosen compiler. Note that nothing is done to ensure flags work with the chosen compiler. [Ben Laurie] Changes between 0.9.8i and 0.9.8j [07 Jan 2009] *) Properly check EVP_VerifyFinal() and similar return values (CVE-2008-5077). [Ben Laurie, Bodo Moeller, Google Security Team] *) Enable TLS extensions by default. [Ben Laurie] *) Allow the CHIL engine to be loaded, whether the application is multithreaded or not. (This does not release the developer from the obligation to set up the dynamic locking callbacks.) [Sander Temme ] *) Use correct exit code if there is an error in dgst command. [Steve Henson; problem pointed out by Roland Dirlewanger] *) Tweak Configure so that you need to say "experimental-jpake" to enable JPAKE, and need to use -DOPENSSL_EXPERIMENTAL_JPAKE in applications. [Bodo Moeller] *) Add experimental JPAKE support, including demo authentication in s_client and s_server. [Ben Laurie] *) Set the comparison function in v3_addr_canonize(). [Rob Austein ] *) Add support for XMPP STARTTLS in s_client. [Philip Paeps ] *) Change the server-side SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG behavior to ensure that even with this option, only ciphersuites in the server's preference list will be accepted. (Note that the option applies only when resuming a session, so the earlier behavior was just about the algorithm choice for symmetric cryptography.) [Bodo Moeller] Changes between 0.9.8h and 0.9.8i [15 Sep 2008] *) Fix NULL pointer dereference if a DTLS server received ChangeCipherSpec as first record (CVE-2009-1386). [PR #1679] *) Fix a state transition in s3_srvr.c and d1_srvr.c (was using SSL3_ST_CW_CLNT_HELLO_B, should be ..._ST_SW_SRVR_...). [Nagendra Modadugu] *) The fix in 0.9.8c that supposedly got rid of unsafe double-checked locking was incomplete for RSA blinding, addressing just one layer of what turns out to have been doubly unsafe triple-checked locking. So now fix this for real by retiring the MONT_HELPER macro in crypto/rsa/rsa_eay.c. [Bodo Moeller; problem pointed out by Marius Schilder] *) Various precautionary measures: - Avoid size_t integer overflow in HASH_UPDATE (md32_common.h). - Avoid a buffer overflow in d2i_SSL_SESSION() (ssl_asn1.c). (NB: This would require knowledge of the secret session ticket key to exploit, in which case you'd be SOL either way.) - Change bn_nist.c so that it will properly handle input BIGNUMs outside the expected range. - Enforce the 'num' check in BN_div() (bn_div.c) for non-BN_DEBUG builds. [Neel Mehta, Bodo Moeller] *) Allow engines to be "soft loaded" - i.e. optionally don't die if the load fails. Useful for distros. [Ben Laurie and the FreeBSD team] *) Add support for Local Machine Keyset attribute in PKCS#12 files. [Steve Henson] *) Fix BN_GF2m_mod_arr() top-bit cleanup code. [Huang Ying] *) Expand ENGINE to support engine supplied SSL client certificate functions. This work was sponsored by Logica. [Steve Henson] *) Add CryptoAPI ENGINE to support use of RSA and DSA keys held in Windows keystores. Support for SSL/TLS client authentication too. Not compiled unless enable-capieng specified to Configure. This work was sponsored by Logica. [Steve Henson] *) Fix bug in X509_ATTRIBUTE creation: don't set attribute using ASN1_TYPE_set1 if MBSTRING flag set. This bug would crash certain attribute creation routines such as certificate requests and PKCS#12 files. [Steve Henson] Changes between 0.9.8g and 0.9.8h [28 May 2008] *) Fix flaw if 'Server Key exchange message' is omitted from a TLS handshake which could lead to a client crash as found using the Codenomicon TLS test suite (CVE-2008-1672) [Steve Henson, Mark Cox] *) Fix double free in TLS server name extensions which could lead to a remote crash found by Codenomicon TLS test suite (CVE-2008-0891) [Joe Orton] *) Clear error queue in SSL_CTX_use_certificate_chain_file() Clear the error queue to ensure that error entries left from older function calls do not interfere with the correct operation. [Lutz Jaenicke, Erik de Castro Lopo] *) Remove root CA certificates of commercial CAs: The OpenSSL project does not recommend any specific CA and does not have any policy with respect to including or excluding any CA. Therefore it does not make any sense to ship an arbitrary selection of root CA certificates with the OpenSSL software. [Lutz Jaenicke] *) RSA OAEP patches to fix two separate invalid memory reads. The first one involves inputs when 'lzero' is greater than 'SHA_DIGEST_LENGTH' (it would read about SHA_DIGEST_LENGTH bytes before the beginning of from). The second one involves inputs where the 'db' section contains nothing but zeroes (there is a one-byte invalid read after the end of 'db'). [Ivan Nestlerode ] *) Partial backport from 0.9.9-dev: Introduce bn_mul_mont (dedicated Montgomery multiplication procedure) as a candidate for BIGNUM assembler implementation. While 0.9.9-dev uses assembler for various architectures, only x86_64 is available by default here in the 0.9.8 branch, and 32-bit x86 is available through a compile-time setting. To try the 32-bit x86 assembler implementation, use Configure option "enable-montasm" (which exists only for this backport). As "enable-montasm" for 32-bit x86 disclaims code stability anyway, in this constellation we activate additional code backported from 0.9.9-dev for further performance improvements, namely BN_from_montgomery_word. (To enable this otherwise, e.g. x86_64, try "-DMONT_FROM_WORD___NON_DEFAULT_0_9_8_BUILD".) [Andy Polyakov (backport partially by Bodo Moeller)] *) Add TLS session ticket callback. This allows an application to set TLS ticket cipher and HMAC keys rather than relying on hardcoded fixed values. This is useful for key rollover for example where several key sets may exist with different names. [Steve Henson] *) Reverse ENGINE-internal logic for caching default ENGINE handles. This was broken until now in 0.9.8 releases, such that the only way a registered ENGINE could be used (assuming it initialises successfully on the host) was to explicitly set it as the default for the relevant algorithms. This is in contradiction with 0.9.7 behaviour and the documentation. With this fix, when an ENGINE is registered into a given algorithm's table of implementations, the 'uptodate' flag is reset so that auto-discovery will be used next time a new context for that algorithm attempts to select an implementation. [Ian Lister (tweaked by Geoff Thorpe)] *) Backport of CMS code to OpenSSL 0.9.8. This differs from the 0.9.9 implementation in the following ways: Lack of EVP_PKEY_ASN1_METHOD means algorithm parameters have to be hard coded. Lack of BER streaming support means one pass streaming processing is only supported if data is detached: setting the streaming flag is ignored for embedded content. CMS support is disabled by default and must be explicitly enabled with the enable-cms configuration option. [Steve Henson] *) Update the GMP engine glue to do direct copies between BIGNUM and mpz_t when openssl and GMP use the same limb size. Otherwise the existing "conversion via a text string export" trick is still used. [Paul Sheer ] *) Zlib compression BIO. This is a filter BIO which compressed and uncompresses any data passed through it. [Steve Henson] *) Add AES_wrap_key() and AES_unwrap_key() functions to implement RFC3394 compatible AES key wrapping. [Steve Henson] *) Add utility functions to handle ASN1 structures. ASN1_STRING_set0(): sets string data without copying. X509_ALGOR_set0() and X509_ALGOR_get0(): set and retrieve X509_ALGOR (AlgorithmIdentifier) data. Attribute function X509at_get0_data_by_OBJ(): retrieves data from an X509_ATTRIBUTE structure optionally checking it occurs only once. ASN1_TYPE_set1(): set and ASN1_TYPE structure copying supplied data. [Steve Henson] *) Fix BN flag handling in RSA_eay_mod_exp() and BN_MONT_CTX_set() to get the expected BN_FLG_CONSTTIME behavior. [Bodo Moeller (Google)] *) Netware support: - fixed wrong usage of ioctlsocket() when build for LIBC BSD sockets - fixed do_tests.pl to run the test suite with CLIB builds too (CLIB_OPT) - added some more tests to do_tests.pl - fixed RunningProcess usage so that it works with newer LIBC NDKs too - removed usage of BN_LLONG for CLIB builds to avoid runtime dependency - added new Configure targets netware-clib-bsdsock, netware-clib-gcc, netware-clib-bsdsock-gcc, netware-libc-bsdsock-gcc - various changes to netware.pl to enable gcc-cross builds on Win32 platform - changed crypto/bio/b_sock.c to work with macro functions (CLIB BSD) - various changes to fix missing prototype warnings - fixed x86nasm.pl to create correct asm files for NASM COFF output - added AES, WHIRLPOOL and CPUID assembler code to build files - added missing AES assembler make rules to mk1mf.pl - fixed order of includes in apps/ocsp.c so that e_os.h settings apply [Guenter Knauf ] *) Implement certificate status request TLS extension defined in RFC3546. A client can set the appropriate parameters and receive the encoded OCSP response via a callback. A server can query the supplied parameters and set the encoded OCSP response in the callback. Add simplified examples to s_client and s_server. [Steve Henson] Changes between 0.9.8f and 0.9.8g [19 Oct 2007] *) Fix various bugs: + Binary incompatibility of ssl_ctx_st structure + DTLS interoperation with non-compliant servers + Don't call get_session_cb() without proposed session + Fix ia64 assembler code [Andy Polyakov, Steve Henson] Changes between 0.9.8e and 0.9.8f [11 Oct 2007] *) DTLS Handshake overhaul. There were longstanding issues with OpenSSL DTLS implementation, which were making it impossible for RFC 4347 compliant client to communicate with OpenSSL server. Unfortunately just fixing these incompatibilities would "cut off" pre-0.9.8f clients. To allow for hassle free upgrade post-0.9.8e server keeps tolerating non RFC compliant syntax. The opposite is not true, 0.9.8f client can not communicate with earlier server. This update even addresses CVE-2007-4995. [Andy Polyakov] *) Changes to avoid need for function casts in OpenSSL: some compilers (gcc 4.2 and later) reject their use. [Kurt Roeckx , Peter Hartley , Steve Henson] *) Add RFC4507 support to OpenSSL. This includes the corrections in RFC4507bis. The encrypted ticket format is an encrypted encoded SSL_SESSION structure, that way new session features are automatically supported. If a client application caches session in an SSL_SESSION structure support is transparent because tickets are now stored in the encoded SSL_SESSION. The SSL_CTX structure automatically generates keys for ticket protection in servers so again support should be possible with no application modification. If a client or server wishes to disable RFC4507 support then the option SSL_OP_NO_TICKET can be set. Add a TLS extension debugging callback to allow the contents of any client or server extensions to be examined. This work was sponsored by Google. [Steve Henson] *) Add initial support for TLS extensions, specifically for the server_name extension so far. The SSL_SESSION, SSL_CTX, and SSL data structures now have new members for a host name. The SSL data structure has an additional member SSL_CTX *initial_ctx so that new sessions can be stored in that context to allow for session resumption, even after the SSL has been switched to a new SSL_CTX in reaction to a client's server_name extension. New functions (subject to change): SSL_get_servername() SSL_get_servername_type() SSL_set_SSL_CTX() New CTRL codes and macros (subject to change): SSL_CTRL_SET_TLSEXT_SERVERNAME_CB - SSL_CTX_set_tlsext_servername_callback() SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG - SSL_CTX_set_tlsext_servername_arg() SSL_CTRL_SET_TLSEXT_HOSTNAME - SSL_set_tlsext_host_name() openssl s_client has a new '-servername ...' option. openssl s_server has new options '-servername_host ...', '-cert2 ...', '-key2 ...', '-servername_fatal' (subject to change). This allows testing the HostName extension for a specific single host name ('-cert' and '-key' remain fallbacks for handshakes without HostName negotiation). If the unrecognized_name alert has to be sent, this by default is a warning; it becomes fatal with the '-servername_fatal' option. [Peter Sylvester, Remy Allais, Christophe Renou, Steve Henson] *) Add AES and SSE2 assembly language support to VC++ build. [Steve Henson] *) Mitigate attack on final subtraction in Montgomery reduction. [Andy Polyakov] *) Fix crypto/ec/ec_mult.c to work properly with scalars of value 0 (which previously caused an internal error). [Bodo Moeller] *) Squeeze another 10% out of IGE mode when in != out. [Ben Laurie] *) AES IGE mode speedup. [Dean Gaudet (Google)] *) Add the Korean symmetric 128-bit cipher SEED (see http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp) and add SEED ciphersuites from RFC 4162: TLS_RSA_WITH_SEED_CBC_SHA = "SEED-SHA" TLS_DHE_DSS_WITH_SEED_CBC_SHA = "DHE-DSS-SEED-SHA" TLS_DHE_RSA_WITH_SEED_CBC_SHA = "DHE-RSA-SEED-SHA" TLS_DH_anon_WITH_SEED_CBC_SHA = "ADH-SEED-SHA" To minimize changes between patchlevels in the OpenSSL 0.9.8 series, SEED remains excluded from compilation unless OpenSSL is configured with 'enable-seed'. [KISA, Bodo Moeller] *) Mitigate branch prediction attacks, which can be practical if a single processor is shared, allowing a spy process to extract information. For detailed background information, see http://eprint.iacr.org/2007/039 (O. Aciicmez, S. Gueron, J.-P. Seifert, "New Branch Prediction Vulnerabilities in OpenSSL and Necessary Software Countermeasures"). The core of the change are new versions BN_div_no_branch() and BN_mod_inverse_no_branch() of BN_div() and BN_mod_inverse(), respectively, which are slower, but avoid the security-relevant conditional branches. These are automatically called by BN_div() and BN_mod_inverse() if the flag BN_FLG_CONSTTIME is set for one of the input BIGNUMs. Also, BN_is_bit_set() has been changed to remove a conditional branch. BN_FLG_CONSTTIME is the new name for the previous BN_FLG_EXP_CONSTTIME flag, since it now affects more than just modular exponentiation. (Since OpenSSL 0.9.7h, setting this flag in the exponent causes BN_mod_exp_mont() to use the alternative implementation in BN_mod_exp_mont_consttime().) The old name remains as a deprecated alias. Similarly, RSA_FLAG_NO_EXP_CONSTTIME is replaced by a more general RSA_FLAG_NO_CONSTTIME flag since the RSA implementation now uses constant-time implementations for more than just exponentiation. Here too the old name is kept as a deprecated alias. BN_BLINDING_new() will now use BN_dup() for the modulus so that the BN_BLINDING structure gets an independent copy of the modulus. This means that the previous "BIGNUM *m" argument to BN_BLINDING_new() and to BN_BLINDING_create_param() now essentially becomes "const BIGNUM *m", although we can't actually change this in the header file before 0.9.9. It allows RSA_setup_blinding() to use BN_with_flags() on the modulus to enable BN_FLG_CONSTTIME. [Matthew D Wood (Intel Corp)] *) In the SSL/TLS server implementation, be strict about session ID context matching (which matters if an application uses a single external cache for different purposes). Previously, out-of-context reuse was forbidden only if SSL_VERIFY_PEER was set. This did ensure strict client verification, but meant that, with applications using a single external cache for quite different requirements, clients could circumvent ciphersuite restrictions for a given session ID context by starting a session in a different context. [Bodo Moeller] *) Include "!eNULL" in SSL_DEFAULT_CIPHER_LIST to make sure that a ciphersuite string such as "DEFAULT:RSA" cannot enable authentication-only ciphersuites. [Bodo Moeller] *) Update the SSL_get_shared_ciphers() fix CVE-2006-3738 which was not complete and could lead to a possible single byte overflow (CVE-2007-5135) [Ben Laurie] Changes between 0.9.8d and 0.9.8e [23 Feb 2007] *) Since AES128 and AES256 (and similarly Camellia128 and Camellia256) share a single mask bit in the logic of ssl/ssl_ciph.c, the code for masking out disabled ciphers needs a kludge to work properly if AES128 is available and AES256 isn't (or if Camellia128 is available and Camellia256 isn't). [Victor Duchovni] *) Fix the BIT STRING encoding generated by crypto/ec/ec_asn1.c (within i2d_ECPrivateKey, i2d_ECPKParameters, i2d_ECParameters): When a point or a seed is encoded in a BIT STRING, we need to prevent the removal of trailing zero bits to get the proper DER encoding. (By default, crypto/asn1/a_bitstr.c assumes the case of a NamedBitList, for which trailing 0 bits need to be removed.) [Bodo Moeller] *) Have SSL/TLS server implementation tolerate "mismatched" record protocol version while receiving ClientHello even if the ClientHello is fragmented. (The server can't insist on the particular protocol version it has chosen before the ServerHello message has informed the client about his choice.) [Bodo Moeller] *) Add RFC 3779 support. [Rob Austein for ARIN, Ben Laurie] *) Load error codes if they are not already present instead of using a static variable. This allows them to be cleanly unloaded and reloaded. Improve header file function name parsing. [Steve Henson] *) extend SMTP and IMAP protocol emulation in s_client to use EHLO or CAPABILITY handshake as required by RFCs. [Goetz Babin-Ebell] Changes between 0.9.8c and 0.9.8d [28 Sep 2006] *) Introduce limits to prevent malicious keys being able to cause a denial of service. (CVE-2006-2940) [Steve Henson, Bodo Moeller] *) Fix ASN.1 parsing of certain invalid structures that can result in a denial of service. (CVE-2006-2937) [Steve Henson] *) Fix buffer overflow in SSL_get_shared_ciphers() function. (CVE-2006-3738) [Tavis Ormandy and Will Drewry, Google Security Team] *) Fix SSL client code which could crash if connecting to a malicious SSLv2 server. (CVE-2006-4343) [Tavis Ormandy and Will Drewry, Google Security Team] *) Since 0.9.8b, ciphersuite strings naming explicit ciphersuites match only those. Before that, "AES256-SHA" would be interpreted as a pattern and match "AES128-SHA" too (since AES128-SHA got the same strength classification in 0.9.7h) as we currently only have a single AES bit in the ciphersuite description bitmap. That change, however, also applied to ciphersuite strings such as "RC4-MD5" that intentionally matched multiple ciphersuites -- namely, SSL 2.0 ciphersuites in addition to the more common ones from SSL 3.0/TLS 1.0. So we change the selection algorithm again: Naming an explicit ciphersuite selects this one ciphersuite, and any other similar ciphersuite (same bitmap) from *other* protocol versions. Thus, "RC4-MD5" again will properly select both the SSL 2.0 ciphersuite and the SSL 3.0/TLS 1.0 ciphersuite. Since SSL 2.0 does not have any ciphersuites for which the 128/256 bit distinction would be relevant, this works for now. The proper fix will be to use different bits for AES128 and AES256, which would have avoided the problems from the beginning; however, bits are scarce, so we can only do this in a new release (not just a patchlevel) when we can change the SSL_CIPHER definition to split the single 'unsigned long mask' bitmap into multiple values to extend the available space. [Bodo Moeller] Changes between 0.9.8b and 0.9.8c [05 Sep 2006] *) Avoid PKCS #1 v1.5 signature attack discovered by Daniel Bleichenbacher (CVE-2006-4339) [Ben Laurie and Google Security Team] *) Add AES IGE and biIGE modes. [Ben Laurie] *) Change the Unix randomness entropy gathering to use poll() when possible instead of select(), since the latter has some undesirable limitations. [Darryl Miles via Richard Levitte and Bodo Moeller] *) Disable "ECCdraft" ciphersuites more thoroughly. Now special treatment in ssl/ssl_ciph.s makes sure that these ciphersuites cannot be implicitly activated as part of, e.g., the "AES" alias. However, please upgrade to OpenSSL 0.9.9[-dev] for non-experimental use of the ECC ciphersuites to get TLS extension support, which is required for curve and point format negotiation to avoid potential handshake problems. [Bodo Moeller] *) Disable rogue ciphersuites: - SSLv2 0x08 0x00 0x80 ("RC4-64-MD5") - SSLv3/TLSv1 0x00 0x61 ("EXP1024-RC2-CBC-MD5") - SSLv3/TLSv1 0x00 0x60 ("EXP1024-RC4-MD5") The latter two were purportedly from draft-ietf-tls-56-bit-ciphersuites-0[01].txt, but do not really appear there. Also deactivate the remaining ciphersuites from draft-ietf-tls-56-bit-ciphersuites-01.txt. These are just as unofficial, and the ID has long expired. [Bodo Moeller] *) Fix RSA blinding Heisenbug (problems sometimes occurred on dual-core machines) and other potential thread-safety issues. [Bodo Moeller] *) Add the symmetric cipher Camellia (128-bit, 192-bit, 256-bit key versions), which is now available for royalty-free use (see http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html). Also, add Camellia TLS ciphersuites from RFC 4132. To minimize changes between patchlevels in the OpenSSL 0.9.8 series, Camellia remains excluded from compilation unless OpenSSL is configured with 'enable-camellia'. [NTT] *) Disable the padding bug check when compression is in use. The padding bug check assumes the first packet is of even length, this is not necessarily true if compression is enabled and can result in false positives causing handshake failure. The actual bug test is ancient code so it is hoped that implementations will either have fixed it by now or any which still have the bug do not support compression. [Steve Henson] Changes between 0.9.8a and 0.9.8b [04 May 2006] *) When applying a cipher rule check to see if string match is an explicit cipher suite and only match that one cipher suite if it is. [Steve Henson] *) Link in manifests for VC++ if needed. [Austin Ziegler ] *) Update support for ECC-based TLS ciphersuites according to draft-ietf-tls-ecc-12.txt with proposed changes (but without TLS extensions, which are supported starting with the 0.9.9 branch, not in the OpenSSL 0.9.8 branch). [Douglas Stebila] *) New functions EVP_CIPHER_CTX_new() and EVP_CIPHER_CTX_free() to support opaque EVP_CIPHER_CTX handling. [Steve Henson] *) Fixes and enhancements to zlib compression code. We now only use "zlib1.dll" and use the default __cdecl calling convention on Win32 to conform with the standards mentioned here: http://www.zlib.net/DLL_FAQ.txt Static zlib linking now works on Windows and the new --with-zlib-include --with-zlib-lib options to Configure can be used to supply the location of the headers and library. Gracefully handle case where zlib library can't be loaded. [Steve Henson] *) Several fixes and enhancements to the OID generation code. The old code sometimes allowed invalid OIDs (1.X for X >= 40 for example), couldn't handle numbers larger than ULONG_MAX, truncated printing and had a non standard OBJ_obj2txt() behaviour. [Steve Henson] *) Add support for building of engines under engine/ as shared libraries under VC++ build system. [Steve Henson] *) Corrected the numerous bugs in the Win32 path splitter in DSO. Hopefully, we will not see any false combination of paths any more. [Richard Levitte] Changes between 0.9.8 and 0.9.8a [11 Oct 2005] *) Remove the functionality of SSL_OP_MSIE_SSLV2_RSA_PADDING (part of SSL_OP_ALL). This option used to disable the countermeasure against man-in-the-middle protocol-version rollback in the SSL 2.0 server implementation, which is a bad idea. (CVE-2005-2969) [Bodo Moeller; problem pointed out by Yutaka Oiwa (Research Center for Information Security, National Institute of Advanced Industrial Science and Technology [AIST], Japan)] *) Add two function to clear and return the verify parameter flags. [Steve Henson] *) Keep cipherlists sorted in the source instead of sorting them at runtime, thus removing the need for a lock. [Nils Larsch] *) Avoid some small subgroup attacks in Diffie-Hellman. [Nick Mathewson and Ben Laurie] *) Add functions for well-known primes. [Nick Mathewson] *) Extended Windows CE support. [Satoshi Nakamura and Andy Polyakov] *) Initialize SSL_METHOD structures at compile time instead of during runtime, thus removing the need for a lock. [Steve Henson] *) Make PKCS7_decrypt() work even if no certificate is supplied by attempting to decrypt each encrypted key in turn. Add support to smime utility. [Steve Henson] Changes between 0.9.7h and 0.9.8 [05 Jul 2005] [NB: OpenSSL 0.9.7i and later 0.9.7 patch levels were released after OpenSSL 0.9.8.] *) Add libcrypto.pc and libssl.pc for those who feel they need them. [Richard Levitte] *) Change CA.sh and CA.pl so they don't bundle the CSR and the private key into the same file any more. [Richard Levitte] *) Add initial support for Win64, both IA64 and AMD64/x64 flavors. [Andy Polyakov] *) Add -utf8 command line and config file option to 'ca'. [Stefan and Geoff Thorpe] *) Add attribute functions to EVP_PKEY structure. Modify PKCS12_create() to recognize a CSP name attribute and use it. Make -CSP option work again in pkcs12 utility. [Steve Henson] *) Add new functionality to the bn blinding code: - automatic re-creation of the BN_BLINDING parameters after a fixed number of uses (currently 32) - add new function for parameter creation - introduce flags to control the update behaviour of the BN_BLINDING parameters - hide BN_BLINDING structure Add a second BN_BLINDING slot to the RSA structure to improve performance when a single RSA object is shared among several threads. [Nils Larsch] *) Add support for DTLS. [Nagendra Modadugu and Ben Laurie] *) Add support for DER encoded private keys (SSL_FILETYPE_ASN1) to SSL_CTX_use_PrivateKey_file() and SSL_use_PrivateKey_file() [Walter Goulet] *) Remove buggy and incomplete DH cert support from ssl/ssl_rsa.c and ssl/s3_both.c [Nils Larsch] *) Use SHA-1 instead of MD5 as the default digest algorithm for the apps/openssl applications. [Nils Larsch] *) Compile clean with "-Wall -Wmissing-prototypes -Wstrict-prototypes -Wmissing-declarations -Werror". Currently DEBUG_SAFESTACK must also be set. [Ben Laurie] *) Change ./Configure so that certain algorithms can be disabled by default. The new counterpiece to "no-xxx" is "enable-xxx". The patented RC5 and MDC2 algorithms will now be disabled unless "enable-rc5" and "enable-mdc2", respectively, are specified. (IDEA remains enabled despite being patented. This is because IDEA is frequently required for interoperability, and there is no license fee for non-commercial use. As before, "no-idea" can be used to avoid this algorithm.) [Bodo Moeller] *) Add processing of proxy certificates (see RFC 3820). This work was sponsored by KTH (The Royal Institute of Technology in Stockholm) and EGEE (Enabling Grids for E-science in Europe). [Richard Levitte] *) RC4 performance overhaul on modern architectures/implementations, such as Intel P4, IA-64 and AMD64. [Andy Polyakov] *) New utility extract-section.pl. This can be used specify an alternative section number in a pod file instead of having to treat each file as a separate case in Makefile. This can be done by adding two lines to the pod file: =for comment openssl_section:XXX The blank line is mandatory. [Steve Henson] *) New arguments -certform, -keyform and -pass for s_client and s_server to allow alternative format key and certificate files and passphrase sources. [Steve Henson] *) New structure X509_VERIFY_PARAM which combines current verify parameters, update associated structures and add various utility functions. Add new policy related verify parameters, include policy checking in standard verify code. Enhance 'smime' application with extra parameters to support policy checking and print out. [Steve Henson] *) Add a new engine to support VIA PadLock ACE extensions in the VIA C3 Nehemiah processors. These extensions support AES encryption in hardware as well as RNG (though RNG support is currently disabled). [Michal Ludvig , with help from Andy Polyakov] *) Deprecate BN_[get|set]_params() functions (they were ignored internally). [Geoff Thorpe] *) New FIPS 180-2 algorithms, SHA-224/-256/-384/-512 are implemented. [Andy Polyakov and a number of other people] *) Improved PowerPC platform support. Most notably BIGNUM assembler implementation contributed by IBM. [Suresh Chari, Peter Waltenberg, Andy Polyakov] *) The new 'RSA_generate_key_ex' function now takes a BIGNUM for the public exponent rather than 'unsigned long'. There is a corresponding change to the new 'rsa_keygen' element of the RSA_METHOD structure. [Jelte Jansen, Geoff Thorpe] *) Functionality for creating the initial serial number file is now moved from CA.pl to the 'ca' utility with a new option -create_serial. (Before OpenSSL 0.9.7e, CA.pl used to initialize the serial number file to 1, which is bound to cause problems. To avoid the problems while respecting compatibility between different 0.9.7 patchlevels, 0.9.7e employed 'openssl x509 -next_serial' in CA.pl for serial number initialization. With the new release 0.9.8, we can fix the problem directly in the 'ca' utility.) [Steve Henson] *) Reduced header interdependencies by declaring more opaque objects in ossl_typ.h. As a consequence, including some headers (eg. engine.h) will give fewer recursive includes, which could break lazy source code - so this change is covered by the OPENSSL_NO_DEPRECATED symbol. As always, developers should define this symbol when building and using openssl to ensure they track the recommended behaviour, interfaces, [etc], but backwards-compatible behaviour prevails when this isn't defined. [Geoff Thorpe] *) New function X509_POLICY_NODE_print() which prints out policy nodes. [Steve Henson] *) Add new EVP function EVP_CIPHER_CTX_rand_key and associated functionality. This will generate a random key of the appropriate length based on the cipher context. The EVP_CIPHER can provide its own random key generation routine to support keys of a specific form. This is used in the des and 3des routines to generate a key of the correct parity. Update S/MIME code to use new functions and hence generate correct parity DES keys. Add EVP_CHECK_DES_KEY #define to return an error if the key is not valid (weak or incorrect parity). [Steve Henson] *) Add a local set of CRLs that can be used by X509_verify_cert() as well as looking them up. This is useful when the verified structure may contain CRLs, for example PKCS#7 signedData. Modify PKCS7_verify() to use any CRLs present unless the new PKCS7_NO_CRL flag is asserted. [Steve Henson] *) Extend ASN1 oid configuration module. It now additionally accepts the syntax: shortName = some long name, 1.2.3.4 [Steve Henson] *) Reimplemented the BN_CTX implementation. There is now no more static limitation on the number of variables it can handle nor the depth of the "stack" handling for BN_CTX_start()/BN_CTX_end() pairs. The stack information can now expand as required, and rather than having a single static array of bignums, BN_CTX now uses a linked-list of such arrays allowing it to expand on demand whilst maintaining the usefulness of BN_CTX's "bundling". [Geoff Thorpe] *) Add a missing BN_CTX parameter to the 'rsa_mod_exp' callback in RSA_METHOD to allow all RSA operations to function using a single BN_CTX. [Geoff Thorpe] *) Preliminary support for certificate policy evaluation and checking. This is initially intended to pass the tests outlined in "Conformance Testing of Relying Party Client Certificate Path Processing Logic" v1.07. [Steve Henson] *) bn_dup_expand() has been deprecated, it was introduced in 0.9.7 and remained unused and not that useful. A variety of other little bignum tweaks and fixes have also been made continuing on from the audit (see below). [Geoff Thorpe] *) Constify all or almost all d2i, c2i, s2i and r2i functions, along with associated ASN1, EVP and SSL functions and old ASN1 macros. [Richard Levitte] *) BN_zero() only needs to set 'top' and 'neg' to zero for correct results, and this should never fail. So the return value from the use of BN_set_word() (which can fail due to needless expansion) is now deprecated; if OPENSSL_NO_DEPRECATED is defined, BN_zero() is a void macro. [Geoff Thorpe] *) BN_CTX_get() should return zero-valued bignums, providing the same initialised value as BN_new(). [Geoff Thorpe, suggested by Ulf Möller] *) Support for inhibitAnyPolicy certificate extension. [Steve Henson] *) An audit of the BIGNUM code is underway, for which debugging code is enabled when BN_DEBUG is defined. This makes stricter enforcements on what is considered valid when processing BIGNUMs, and causes execution to assert() when a problem is discovered. If BN_DEBUG_RAND is defined, further steps are taken to deliberately pollute unused data in BIGNUM structures to try and expose faulty code further on. For now, openssl will (in its default mode of operation) continue to tolerate the inconsistent forms that it has tolerated in the past, but authors and packagers should consider trying openssl and their own applications when compiled with these debugging symbols defined. It will help highlight potential bugs in their own code, and will improve the test coverage for OpenSSL itself. At some point, these tighter rules will become openssl's default to improve maintainability, though the assert()s and other overheads will remain only in debugging configurations. See bn.h for more details. [Geoff Thorpe, Nils Larsch, Ulf Möller] *) BN_CTX_init() has been deprecated, as BN_CTX is an opaque structure that can only be obtained through BN_CTX_new() (which implicitly initialises it). The presence of this function only made it possible to overwrite an existing structure (and cause memory leaks). [Geoff Thorpe] *) Because of the callback-based approach for implementing LHASH as a template type, lh_insert() adds opaque objects to hash-tables and lh_doall() or lh_doall_arg() are typically used with a destructor callback to clean up those corresponding objects before destroying the hash table (and losing the object pointers). So some over-zealous constifications in LHASH have been relaxed so that lh_insert() does not take (nor store) the objects as "const" and the lh_doall[_arg] callback wrappers are not prototyped to have "const" restrictions on the object pointers they are given (and so aren't required to cast them away any more). [Geoff Thorpe] *) The tmdiff.h API was so ugly and minimal that our own timing utility (speed) prefers to use its own implementation. The two implementations haven't been consolidated as yet (volunteers?) but the tmdiff API has had its object type properly exposed (MS_TM) instead of casting to/from "char *". This may still change yet if someone realises MS_TM and "ms_time_***" aren't necessarily the greatest nomenclatures - but this is what was used internally to the implementation so I've used that for now. [Geoff Thorpe] *) Ensure that deprecated functions do not get compiled when OPENSSL_NO_DEPRECATED is defined. Some "openssl" subcommands and a few of the self-tests were still using deprecated key-generation functions so these have been updated also. [Geoff Thorpe] *) Reorganise PKCS#7 code to separate the digest location functionality into PKCS7_find_digest(), digest addition into PKCS7_bio_add_digest(). New function PKCS7_set_digest() to set the digest type for PKCS#7 digestedData type. Add additional code to correctly generate the digestedData type and add support for this type in PKCS7 initialization functions. [Steve Henson] *) New function PKCS7_set0_type_other() this initializes a PKCS7 structure of type "other". [Steve Henson] *) Fix prime generation loop in crypto/bn/bn_prime.pl by making sure the loop does correctly stop and breaking ("division by zero") modulus operations are not performed. The (pre-generated) prime table crypto/bn/bn_prime.h was already correct, but it could not be re-generated on some platforms because of the "division by zero" situation in the script. [Ralf S. Engelschall] *) Update support for ECC-based TLS ciphersuites according to draft-ietf-tls-ecc-03.txt: the KDF1 key derivation function with SHA-1 now is only used for "small" curves (where the representation of a field element takes up to 24 bytes); for larger curves, the field element resulting from ECDH is directly used as premaster secret. [Douglas Stebila (Sun Microsystems Laboratories)] *) Add code for kP+lQ timings to crypto/ec/ectest.c, and add SEC2 curve secp160r1 to the tests. [Douglas Stebila (Sun Microsystems Laboratories)] *) Add the possibility to load symbols globally with DSO. [Götz Babin-Ebell via Richard Levitte] *) Add the functions ERR_set_mark() and ERR_pop_to_mark() for better control of the error stack. [Richard Levitte] *) Add support for STORE in ENGINE. [Richard Levitte] *) Add the STORE type. The intention is to provide a common interface to certificate and key stores, be they simple file-based stores, or HSM-type store, or LDAP stores, or... NOTE: The code is currently UNTESTED and isn't really used anywhere. [Richard Levitte] *) Add a generic structure called OPENSSL_ITEM. This can be used to pass a list of arguments to any function as well as provide a way for a function to pass data back to the caller. [Richard Levitte] *) Add the functions BUF_strndup() and BUF_memdup(). BUF_strndup() works like BUF_strdup() but can be used to duplicate a portion of a string. The copy gets NUL-terminated. BUF_memdup() duplicates a memory area. [Richard Levitte] *) Add the function sk_find_ex() which works like sk_find(), but will return an index to an element even if an exact match couldn't be found. The index is guaranteed to point at the element where the searched-for key would be inserted to preserve sorting order. [Richard Levitte] *) Add the function OBJ_bsearch_ex() which works like OBJ_bsearch() but takes an extra flags argument for optional functionality. Currently, the following flags are defined: OBJ_BSEARCH_VALUE_ON_NOMATCH This one gets OBJ_bsearch_ex() to return a pointer to the first element where the comparing function returns a negative or zero number. OBJ_BSEARCH_FIRST_VALUE_ON_MATCH This one gets OBJ_bsearch_ex() to return a pointer to the first element where the comparing function returns zero. This is useful if there are more than one element where the comparing function returns zero. [Richard Levitte] *) Make it possible to create self-signed certificates with 'openssl ca' in such a way that the self-signed certificate becomes part of the CA database and uses the same mechanisms for serial number generation as all other certificate signing. The new flag '-selfsign' enables this functionality. Adapt CA.sh and CA.pl.in. [Richard Levitte] *) Add functionality to check the public key of a certificate request against a given private. This is useful to check that a certificate request can be signed by that key (self-signing). [Richard Levitte] *) Make it possible to have multiple active certificates with the same subject in the CA index file. This is done only if the keyword 'unique_subject' is set to 'no' in the main CA section (default if 'CA_default') of the configuration file. The value is saved with the database itself in a separate index attribute file, named like the index file with '.attr' appended to the name. [Richard Levitte] *) Generate multi-valued AVAs using '+' notation in config files for req and dirName. [Steve Henson] *) Support for nameConstraints certificate extension. [Steve Henson] *) Support for policyConstraints certificate extension. [Steve Henson] *) Support for policyMappings certificate extension. [Steve Henson] *) Make sure the default DSA_METHOD implementation only uses its dsa_mod_exp() and/or bn_mod_exp() handlers if they are non-NULL, and change its own handlers to be NULL so as to remove unnecessary indirection. This lets alternative implementations fallback to the default implementation more easily. [Geoff Thorpe] *) Support for directoryName in GeneralName related extensions in config files. [Steve Henson] *) Make it possible to link applications using Makefile.shared. Make that possible even when linking against static libraries! [Richard Levitte] *) Support for single pass processing for S/MIME signing. This now means that S/MIME signing can be done from a pipe, in addition cleartext signing (multipart/signed type) is effectively streaming and the signed data does not need to be all held in memory. This is done with a new flag PKCS7_STREAM. When this flag is set PKCS7_sign() only initializes the PKCS7 structure and the actual signing is done after the data is output (and digests calculated) in SMIME_write_PKCS7(). [Steve Henson] *) Add full support for -rpath/-R, both in shared libraries and applications, at least on the platforms where it's known how to do it. [Richard Levitte] *) In crypto/ec/ec_mult.c, implement fast point multiplication with precomputation, based on wNAF splitting: EC_GROUP_precompute_mult() will now compute a table of multiples of the generator that makes subsequent invocations of EC_POINTs_mul() or EC_POINT_mul() faster (notably in the case of a single point multiplication, scalar * generator). [Nils Larsch, Bodo Moeller] *) IPv6 support for certificate extensions. The various extensions which use the IP:a.b.c.d can now take IPv6 addresses using the formats of RFC1884 2.2 . IPv6 addresses are now also displayed correctly. [Steve Henson] *) Added an ENGINE that implements RSA by performing private key exponentiations with the GMP library. The conversions to and from GMP's mpz_t format aren't optimised nor are any montgomery forms cached, and on x86 it appears OpenSSL's own performance has caught up. However there are likely to be other architectures where GMP could provide a boost. This ENGINE is not built in by default, but it can be specified at Configure time and should be accompanied by the necessary linker additions, eg; ./config -DOPENSSL_USE_GMP -lgmp [Geoff Thorpe] *) "openssl engine" will not display ENGINE/DSO load failure errors when testing availability of engines with "-t" - the old behaviour is produced by increasing the feature's verbosity with "-tt". [Geoff Thorpe] *) ECDSA routines: under certain error conditions uninitialized BN objects could be freed. Solution: make sure initialization is performed early enough. (Reported and fix supplied by Nils Larsch via PR#459) [Lutz Jaenicke] *) Key-generation can now be implemented in RSA_METHOD, DSA_METHOD and DH_METHOD (eg. by ENGINE implementations) to override the normal software implementations. For DSA and DH, parameter generation can also be overridden by providing the appropriate method callbacks. [Geoff Thorpe] *) Change the "progress" mechanism used in key-generation and primality testing to functions that take a new BN_GENCB pointer in place of callback/argument pairs. The new API functions have "_ex" postfixes and the older functions are reimplemented as wrappers for the new ones. The OPENSSL_NO_DEPRECATED symbol can be used to hide declarations of the old functions to help (graceful) attempts to migrate to the new functions. Also, the new key-generation API functions operate on a caller-supplied key-structure and return success/failure rather than returning a key or NULL - this is to help make "keygen" another member function of RSA_METHOD etc. Example for using the new callback interface: int (*my_callback)(int a, int b, BN_GENCB *cb) = ...; void *my_arg = ...; BN_GENCB my_cb; BN_GENCB_set(&my_cb, my_callback, my_arg); return BN_is_prime_ex(some_bignum, BN_prime_checks, NULL, &cb); /* For the meaning of a, b in calls to my_callback(), see the * documentation of the function that calls the callback. * cb will point to my_cb; my_arg can be retrieved as cb->arg. * my_callback should return 1 if it wants BN_is_prime_ex() * to continue, or 0 to stop. */ [Geoff Thorpe] *) Change the ZLIB compression method to be stateful, and make it available to TLS with the number defined in draft-ietf-tls-compression-04.txt. [Richard Levitte] *) Add the ASN.1 structures and functions for CertificatePair, which is defined as follows (according to X.509_4thEditionDraftV6.pdf): CertificatePair ::= SEQUENCE { forward [0] Certificate OPTIONAL, reverse [1] Certificate OPTIONAL, -- at least one of the pair shall be present -- } Also implement the PEM functions to read and write certificate pairs, and defined the PEM tag as "CERTIFICATE PAIR". This needed to be defined, mostly for the sake of the LDAP attribute crossCertificatePair, but may prove useful elsewhere as well. [Richard Levitte] *) Make it possible to inhibit symlinking of shared libraries in Makefile.shared, for Cygwin's sake. [Richard Levitte] *) Extend the BIGNUM API by creating a function void BN_set_negative(BIGNUM *a, int neg); and a macro that behave like int BN_is_negative(const BIGNUM *a); to avoid the need to access 'a->neg' directly in applications. [Nils Larsch] *) Implement fast modular reduction for pseudo-Mersenne primes used in NIST curves (crypto/bn/bn_nist.c, crypto/ec/ecp_nist.c). EC_GROUP_new_curve_GFp() will now automatically use this if applicable. [Nils Larsch ] *) Add new lock type (CRYPTO_LOCK_BN). [Bodo Moeller] *) Change the ENGINE framework to automatically load engines dynamically from specific directories unless they could be found to already be built in or loaded. Move all the current engines except for the cryptodev one to a new directory engines/. The engines in engines/ are built as shared libraries if the "shared" options was given to ./Configure or ./config. Otherwise, they are inserted in libcrypto.a. /usr/local/ssl/engines is the default directory for dynamic engines, but that can be overridden at configure time through the usual use of --prefix and/or --openssldir, and at run time with the environment variable OPENSSL_ENGINES. [Geoff Thorpe and Richard Levitte] *) Add Makefile.shared, a helper makefile to build shared libraries. Adapt Makefile.org. [Richard Levitte] *) Add version info to Win32 DLLs. [Peter 'Luna' Runestig" ] *) Add new 'medium level' PKCS#12 API. Certificates and keys can be added using this API to created arbitrary PKCS#12 files while avoiding the low level API. New options to PKCS12_create(), key or cert can be NULL and will then be omitted from the output file. The encryption algorithm NIDs can be set to -1 for no encryption, the mac iteration count can be set to 0 to omit the mac. Enhance pkcs12 utility by making the -nokeys and -nocerts options work when creating a PKCS#12 file. New option -nomac to omit the mac, NONE can be set for an encryption algorithm. New code is modified to use the enhanced PKCS12_create() instead of the low level API. [Steve Henson] *) Extend ASN1 encoder to support indefinite length constructed encoding. This can output sequences tags and octet strings in this form. Modify pk7_asn1.c to support indefinite length encoding. This is experimental and needs additional code to be useful, such as an ASN1 bio and some enhanced streaming PKCS#7 code. Extend template encode functionality so that tagging is passed down to the template encoder. [Steve Henson] *) Let 'openssl req' fail if an argument to '-newkey' is not recognized instead of using RSA as a default. [Bodo Moeller] *) Add support for ECC-based ciphersuites from draft-ietf-tls-ecc-01.txt. As these are not official, they are not included in "ALL"; the "ECCdraft" ciphersuite group alias can be used to select them. [Vipul Gupta and Sumit Gupta (Sun Microsystems Laboratories)] *) Add ECDH engine support. [Nils Gura and Douglas Stebila (Sun Microsystems Laboratories)] *) Add ECDH in new directory crypto/ecdh/. [Douglas Stebila (Sun Microsystems Laboratories)] *) Let BN_rand_range() abort with an error after 100 iterations without success (which indicates a broken PRNG). [Bodo Moeller] *) Change BN_mod_sqrt() so that it verifies that the input value is really the square of the return value. (Previously, BN_mod_sqrt would show GIGO behaviour.) [Bodo Moeller] *) Add named elliptic curves over binary fields from X9.62, SECG, and WAP/WTLS; add OIDs that were still missing. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Extend the EC library for elliptic curves over binary fields (new files ec2_smpl.c, ec2_smpt.c, ec2_mult.c in crypto/ec/). New EC_METHOD: EC_GF2m_simple_method New API functions: EC_GROUP_new_curve_GF2m EC_GROUP_set_curve_GF2m EC_GROUP_get_curve_GF2m EC_POINT_set_affine_coordinates_GF2m EC_POINT_get_affine_coordinates_GF2m EC_POINT_set_compressed_coordinates_GF2m Point compression for binary fields is disabled by default for patent reasons (compile with OPENSSL_EC_BIN_PT_COMP defined to enable it). As binary polynomials are represented as BIGNUMs, various members of the EC_GROUP and EC_POINT data structures can be shared between the implementations for prime fields and binary fields; the above ..._GF2m functions (except for EX_GROUP_new_curve_GF2m) are essentially identical to their ..._GFp counterparts. (For simplicity, the '..._GFp' prefix has been dropped from various internal method names.) An internal 'field_div' method (similar to 'field_mul' and 'field_sqr') has been added; this is used only for binary fields. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Optionally dispatch EC_POINT_mul(), EC_POINT_precompute_mult() through methods ('mul', 'precompute_mult'). The generic implementations (now internally called 'ec_wNAF_mul' and 'ec_wNAF_precomputed_mult') remain the default if these methods are undefined. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) New function EC_GROUP_get_degree, which is defined through EC_METHOD. For curves over prime fields, this returns the bit length of the modulus. [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) New functions EC_GROUP_dup, EC_POINT_dup. (These simply call ..._new and ..._copy). [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Add binary polynomial arithmetic software in crypto/bn/bn_gf2m.c. Polynomials are represented as BIGNUMs (where the sign bit is not used) in the following functions [macros]: BN_GF2m_add BN_GF2m_sub [= BN_GF2m_add] BN_GF2m_mod [wrapper for BN_GF2m_mod_arr] BN_GF2m_mod_mul [wrapper for BN_GF2m_mod_mul_arr] BN_GF2m_mod_sqr [wrapper for BN_GF2m_mod_sqr_arr] BN_GF2m_mod_inv BN_GF2m_mod_exp [wrapper for BN_GF2m_mod_exp_arr] BN_GF2m_mod_sqrt [wrapper for BN_GF2m_mod_sqrt_arr] BN_GF2m_mod_solve_quad [wrapper for BN_GF2m_mod_solve_quad_arr] BN_GF2m_cmp [= BN_ucmp] (Note that only the 'mod' functions are actually for fields GF(2^m). BN_GF2m_add() is misnomer, but this is for the sake of consistency.) For some functions, an the irreducible polynomial defining a field can be given as an 'unsigned int[]' with strictly decreasing elements giving the indices of those bits that are set; i.e., p[] represents the polynomial f(t) = t^p[0] + t^p[1] + ... + t^p[k] where p[0] > p[1] > ... > p[k] = 0. This applies to the following functions: BN_GF2m_mod_arr BN_GF2m_mod_mul_arr BN_GF2m_mod_sqr_arr BN_GF2m_mod_inv_arr [wrapper for BN_GF2m_mod_inv] BN_GF2m_mod_div_arr [wrapper for BN_GF2m_mod_div] BN_GF2m_mod_exp_arr BN_GF2m_mod_sqrt_arr BN_GF2m_mod_solve_quad_arr BN_GF2m_poly2arr BN_GF2m_arr2poly Conversion can be performed by the following functions: BN_GF2m_poly2arr BN_GF2m_arr2poly bntest.c has additional tests for binary polynomial arithmetic. Two implementations for BN_GF2m_mod_div() are available. The default algorithm simply uses BN_GF2m_mod_inv() and BN_GF2m_mod_mul(). The alternative algorithm is compiled in only if OPENSSL_SUN_GF2M_DIV is defined (patent pending; read the copyright notice in crypto/bn/bn_gf2m.c before enabling it). [Sheueling Chang Shantz and Douglas Stebila (Sun Microsystems Laboratories)] *) Add new error code 'ERR_R_DISABLED' that can be used when some functionality is disabled at compile-time. [Douglas Stebila ] *) Change default behaviour of 'openssl asn1parse' so that more information is visible when viewing, e.g., a certificate: Modify asn1_parse2 (crypto/asn1/asn1_par.c) so that in non-'dump' mode the content of non-printable OCTET STRINGs is output in a style similar to INTEGERs, but with '[HEX DUMP]' prepended to avoid the appearance of a printable string. [Nils Larsch ] *) Add 'asn1_flag' and 'asn1_form' member to EC_GROUP with access functions EC_GROUP_set_asn1_flag() EC_GROUP_get_asn1_flag() EC_GROUP_set_point_conversion_form() EC_GROUP_get_point_conversion_form() These control ASN1 encoding details: - Curves (i.e., groups) are encoded explicitly unless asn1_flag has been set to OPENSSL_EC_NAMED_CURVE. - Points are encoded in uncompressed form by default; options for asn1_for are as for point2oct, namely POINT_CONVERSION_COMPRESSED POINT_CONVERSION_UNCOMPRESSED POINT_CONVERSION_HYBRID Also add 'seed' and 'seed_len' members to EC_GROUP with access functions EC_GROUP_set_seed() EC_GROUP_get0_seed() EC_GROUP_get_seed_len() This is used only for ASN1 purposes (so far). [Nils Larsch ] *) Add 'field_type' member to EC_METHOD, which holds the NID of the appropriate field type OID. The new function EC_METHOD_get_field_type() returns this value. [Nils Larsch ] *) Add functions EC_POINT_point2bn() EC_POINT_bn2point() EC_POINT_point2hex() EC_POINT_hex2point() providing useful interfaces to EC_POINT_point2oct() and EC_POINT_oct2point(). [Nils Larsch ] *) Change internals of the EC library so that the functions EC_GROUP_set_generator() EC_GROUP_get_generator() EC_GROUP_get_order() EC_GROUP_get_cofactor() are implemented directly in crypto/ec/ec_lib.c and not dispatched to methods, which would lead to unnecessary code duplication when adding different types of curves. [Nils Larsch with input by Bodo Moeller] *) Implement compute_wNAF (crypto/ec/ec_mult.c) without BIGNUM arithmetic, and such that modified wNAFs are generated (which avoid length expansion in many cases). [Bodo Moeller] *) Add a function EC_GROUP_check_discriminant() (defined via EC_METHOD) that verifies that the curve discriminant is non-zero. Add a function EC_GROUP_check() that makes some sanity tests on a EC_GROUP, its generator and order. This includes EC_GROUP_check_discriminant(). [Nils Larsch ] *) Add ECDSA in new directory crypto/ecdsa/. Add applications 'openssl ecparam' and 'openssl ecdsa' (these are based on 'openssl dsaparam' and 'openssl dsa'). ECDSA support is also included in various other files across the library. Most notably, - 'openssl req' now has a '-newkey ecdsa:file' option; - EVP_PKCS82PKEY (crypto/evp/evp_pkey.c) now can handle ECDSA; - X509_PUBKEY_get (crypto/asn1/x_pubkey.c) and d2i_PublicKey (crypto/asn1/d2i_pu.c) have been modified to make them suitable for ECDSA where domain parameters must be extracted before the specific public key; - ECDSA engine support has been added. [Nils Larsch ] *) Include some named elliptic curves, and add OIDs from X9.62, SECG, and WAP/WTLS. Each curve can be obtained from the new function EC_GROUP_new_by_curve_name(), and the list of available named curves can be obtained with EC_get_builtin_curves(). Also add a 'curve_name' member to EC_GROUP objects, which can be accessed via EC_GROUP_set_curve_name() EC_GROUP_get_curve_name() [Nils Larsch ] *) Include "!eNULL" in SSL_DEFAULT_CIPHER_LIST to make sure that a ciphersuite string such as "DEFAULT:RSA" cannot enable authentication-only ciphersuites. [Bodo Moeller] *) Since AES128 and AES256 share a single mask bit in the logic of ssl/ssl_ciph.c, the code for masking out disabled ciphers needs a kludge to work properly if AES128 is available and AES256 isn't. [Victor Duchovni] *) Expand security boundary to match 1.1.1 module. [Steve Henson] *) Remove redundant features: hash file source, editing of test vectors modify fipsld to use external fips_premain.c signature. [Steve Henson] *) New perl script mkfipsscr.pl to create shell scripts or batch files to run algorithm test programs. [Steve Henson] *) Make algorithm test programs more tolerant of whitespace. [Steve Henson] *) Have SSL/TLS server implementation tolerate "mismatched" record protocol version while receiving ClientHello even if the ClientHello is fragmented. (The server can't insist on the particular protocol version it has chosen before the ServerHello message has informed the client about his choice.) [Bodo Moeller] *) Load error codes if they are not already present instead of using a static variable. This allows them to be cleanly unloaded and reloaded. [Steve Henson] Changes between 0.9.7k and 0.9.7l [28 Sep 2006] *) Introduce limits to prevent malicious keys being able to cause a denial of service. (CVE-2006-2940) [Steve Henson, Bodo Moeller] *) Fix ASN.1 parsing of certain invalid structures that can result in a denial of service. (CVE-2006-2937) [Steve Henson] *) Fix buffer overflow in SSL_get_shared_ciphers() function. (CVE-2006-3738) [Tavis Ormandy and Will Drewry, Google Security Team] *) Fix SSL client code which could crash if connecting to a malicious SSLv2 server. (CVE-2006-4343) [Tavis Ormandy and Will Drewry, Google Security Team] *) Change ciphersuite string processing so that an explicit ciphersuite selects this one ciphersuite (so that "AES256-SHA" will no longer include "AES128-SHA"), and any other similar ciphersuite (same bitmap) from *other* protocol versions (so that "RC4-MD5" will still include both the SSL 2.0 ciphersuite and the SSL 3.0/TLS 1.0 ciphersuite). This is a backport combining changes from 0.9.8b and 0.9.8d. [Bodo Moeller] Changes between 0.9.7j and 0.9.7k [05 Sep 2006] *) Avoid PKCS #1 v1.5 signature attack discovered by Daniel Bleichenbacher (CVE-2006-4339) [Ben Laurie and Google Security Team] *) Change the Unix randomness entropy gathering to use poll() when possible instead of select(), since the latter has some undesirable limitations. [Darryl Miles via Richard Levitte and Bodo Moeller] *) Disable rogue ciphersuites: - SSLv2 0x08 0x00 0x80 ("RC4-64-MD5") - SSLv3/TLSv1 0x00 0x61 ("EXP1024-RC2-CBC-MD5") - SSLv3/TLSv1 0x00 0x60 ("EXP1024-RC4-MD5") The latter two were purportedly from draft-ietf-tls-56-bit-ciphersuites-0[01].txt, but do not really appear there. Also deactivate the remaining ciphersuites from draft-ietf-tls-56-bit-ciphersuites-01.txt. These are just as unofficial, and the ID has long expired. [Bodo Moeller] *) Fix RSA blinding Heisenbug (problems sometimes occurred on dual-core machines) and other potential thread-safety issues. [Bodo Moeller] Changes between 0.9.7i and 0.9.7j [04 May 2006] *) Adapt fipsld and the build system to link against the validated FIPS module in FIPS mode. [Steve Henson] *) Fixes for VC++ 2005 build under Windows. [Steve Henson] *) Add new Windows build target VC-32-GMAKE for VC++. This uses GNU make from a Windows bash shell such as MSYS. It is autodetected from the "config" script when run from a VC++ environment. Modify standard VC++ build to use fipscanister.o from the GNU make build. [Steve Henson] Changes between 0.9.7h and 0.9.7i [14 Oct 2005] *) Wrapped the definition of EVP_MAX_MD_SIZE in a #ifdef OPENSSL_FIPS. The value now differs depending on if you build for FIPS or not. BEWARE! A program linked with a shared FIPSed libcrypto can't be safely run with a non-FIPSed libcrypto, as it may crash because of the difference induced by this change. [Andy Polyakov] Changes between 0.9.7g and 0.9.7h [11 Oct 2005] *) Remove the functionality of SSL_OP_MSIE_SSLV2_RSA_PADDING (part of SSL_OP_ALL). This option used to disable the countermeasure against man-in-the-middle protocol-version rollback in the SSL 2.0 server implementation, which is a bad idea. (CVE-2005-2969) [Bodo Moeller; problem pointed out by Yutaka Oiwa (Research Center for Information Security, National Institute of Advanced Industrial Science and Technology [AIST], Japan)] *) Minimal support for X9.31 signatures and PSS padding modes. This is mainly for FIPS compliance and not fully integrated at this stage. [Steve Henson] *) For DSA signing, unless DSA_FLAG_NO_EXP_CONSTTIME is set, perform the exponentiation using a fixed-length exponent. (Otherwise, the information leaked through timing could expose the secret key after many signatures; cf. Bleichenbacher's attack on DSA with biased k.) [Bodo Moeller] *) Make a new fixed-window mod_exp implementation the default for RSA, DSA, and DH private-key operations so that the sequence of squares and multiplies and the memory access pattern are independent of the particular secret key. This will mitigate cache-timing and potential related attacks. BN_mod_exp_mont_consttime() is the new exponentiation implementation, and this is automatically used by BN_mod_exp_mont() if the new flag BN_FLG_EXP_CONSTTIME is set for the exponent. RSA, DSA, and DH will use this BN flag for private exponents unless the flag RSA_FLAG_NO_EXP_CONSTTIME, DSA_FLAG_NO_EXP_CONSTTIME, or DH_FLAG_NO_EXP_CONSTTIME, respectively, is set. [Matthew D Wood (Intel Corp), with some changes by Bodo Moeller] *) Change the client implementation for SSLv23_method() and SSLv23_client_method() so that is uses the SSL 3.0/TLS 1.0 Client Hello message format if the SSL_OP_NO_SSLv2 option is set. (Previously, the SSL 2.0 backwards compatible Client Hello message format would be used even with SSL_OP_NO_SSLv2.) [Bodo Moeller] *) Add support for smime-type MIME parameter in S/MIME messages which some clients need. [Steve Henson] *) New function BN_MONT_CTX_set_locked() to set montgomery parameters in a threadsafe manner. Modify rsa code to use new function and add calls to dsa and dh code (which had race conditions before). [Steve Henson] *) Include the fixed error library code in the C error file definitions instead of fixing them up at runtime. This keeps the error code structures constant. [Steve Henson] Changes between 0.9.7f and 0.9.7g [11 Apr 2005] [NB: OpenSSL 0.9.7h and later 0.9.7 patch levels were released after OpenSSL 0.9.8.] *) Fixes for newer kerberos headers. NB: the casts are needed because the 'length' field is signed on one version and unsigned on another with no (?) obvious way to tell the difference, without these VC++ complains. Also the "definition" of FAR (blank) is no longer included nor is the error ENOMEM. KRB5_PRIVATE has to be set to 1 to pick up some needed definitions. [Steve Henson] *) Undo Cygwin change. [Ulf Möller] *) Added support for proxy certificates according to RFC 3820. Because they may be a security thread to unaware applications, they must be explicitly allowed in run-time. See docs/HOWTO/proxy_certificates.txt for further information. [Richard Levitte] Changes between 0.9.7e and 0.9.7f [22 Mar 2005] *) Use (SSL_RANDOM_VALUE - 4) bytes of pseudo random data when generating server and client random values. Previously (SSL_RANDOM_VALUE - sizeof(time_t)) would be used which would result in less random data when sizeof(time_t) > 4 (some 64 bit platforms). This change has negligible security impact because: 1. Server and client random values still have 24 bytes of pseudo random data. 2. Server and client random values are sent in the clear in the initial handshake. 3. The master secret is derived using the premaster secret (48 bytes in size for static RSA ciphersuites) as well as client server and random values. The OpenSSL team would like to thank the UK NISCC for bringing this issue to our attention. [Stephen Henson, reported by UK NISCC] *) Use Windows randomness collection on Cygwin. [Ulf Möller] *) Fix hang in EGD/PRNGD query when communication socket is closed prematurely by EGD/PRNGD. [Darren Tucker via Lutz Jänicke, resolves #1014] *) Prompt for pass phrases when appropriate for PKCS12 input format. [Steve Henson] *) Back-port of selected performance improvements from development branch, as well as improved support for PowerPC platforms. [Andy Polyakov] *) Add lots of checks for memory allocation failure, error codes to indicate failure and freeing up memory if a failure occurs. [Nauticus Networks SSL Team , Steve Henson] *) Add new -passin argument to dgst. [Steve Henson] *) Perform some character comparisons of different types in X509_NAME_cmp: this is needed for some certificates that re-encode DNs into UTF8Strings (in violation of RFC3280) and can't or won't issue name rollover certificates. [Steve Henson] *) Make an explicit check during certificate validation to see that the CA setting in each certificate on the chain is correct. As a side effect always do the following basic checks on extensions, not just when there's an associated purpose to the check: - if there is an unhandled critical extension (unless the user has chosen to ignore this fault) - if the path length has been exceeded (if one is set at all) - that certain extensions fit the associated purpose (if one has been given) [Richard Levitte] Changes between 0.9.7d and 0.9.7e [25 Oct 2004] *) Avoid a race condition when CRLs are checked in a multi threaded environment. This would happen due to the reordering of the revoked entries during signature checking and serial number lookup. Now the encoding is cached and the serial number sort performed under a lock. Add new STACK function sk_is_sorted(). [Steve Henson] *) Add Delta CRL to the extension code. [Steve Henson] *) Various fixes to s3_pkt.c so alerts are sent properly. [David Holmes ] *) Reduce the chances of duplicate issuer name and serial numbers (in violation of RFC3280) using the OpenSSL certificate creation utilities. This is done by creating a random 64 bit value for the initial serial number when a serial number file is created or when a self signed certificate is created using 'openssl req -x509'. The initial serial number file is created using 'openssl x509 -next_serial' in CA.pl rather than being initialized to 1. [Steve Henson] Changes between 0.9.7c and 0.9.7d [17 Mar 2004] *) Fix null-pointer assignment in do_change_cipher_spec() revealed by using the Codenomicon TLS Test Tool (CVE-2004-0079) [Joe Orton, Steve Henson] *) Fix flaw in SSL/TLS handshaking when using Kerberos ciphersuites (CVE-2004-0112) [Joe Orton, Steve Henson] *) Make it possible to have multiple active certificates with the same subject in the CA index file. This is done only if the keyword 'unique_subject' is set to 'no' in the main CA section (default if 'CA_default') of the configuration file. The value is saved with the database itself in a separate index attribute file, named like the index file with '.attr' appended to the name. [Richard Levitte] *) X509 verify fixes. Disable broken certificate workarounds when X509_V_FLAGS_X509_STRICT is set. Check CRL issuer has cRLSign set if keyUsage extension present. Don't accept CRLs with unhandled critical extensions: since verify currently doesn't process CRL extensions this rejects a CRL with *any* critical extensions. Add new verify error codes for these cases. [Steve Henson] *) When creating an OCSP nonce use an OCTET STRING inside the extnValue. A clarification of RFC2560 will require the use of OCTET STRINGs and some implementations cannot handle the current raw format. Since OpenSSL copies and compares OCSP nonces as opaque blobs without any attempt at parsing them this should not create any compatibility issues. [Steve Henson] *) New md flag EVP_MD_CTX_FLAG_REUSE this allows md_data to be reused when calling EVP_MD_CTX_copy_ex() to avoid calling OPENSSL_malloc(). Without this HMAC (and other) operations are several times slower than OpenSSL < 0.9.7. [Steve Henson] *) Print out GeneralizedTime and UTCTime in ASN1_STRING_print_ex(). [Peter Sylvester ] *) Use the correct content when signing type "other". [Steve Henson] Changes between 0.9.7b and 0.9.7c [30 Sep 2003] *) Fix various bugs revealed by running the NISCC test suite: Stop out of bounds reads in the ASN1 code when presented with invalid tags (CVE-2003-0543 and CVE-2003-0544). Free up ASN1_TYPE correctly if ANY type is invalid (CVE-2003-0545). If verify callback ignores invalid public key errors don't try to check certificate signature with the NULL public key. [Steve Henson] *) New -ignore_err option in ocsp application to stop the server exiting on the first error in a request. [Steve Henson] *) In ssl3_accept() (ssl/s3_srvr.c) only accept a client certificate if the server requested one: as stated in TLS 1.0 and SSL 3.0 specifications. [Steve Henson] *) In ssl3_get_client_hello() (ssl/s3_srvr.c), tolerate additional extra data after the compression methods not only for TLS 1.0 but also for SSL 3.0 (as required by the specification). [Bodo Moeller; problem pointed out by Matthias Loepfe] *) Change X509_certificate_type() to mark the key as exported/exportable when it's 512 *bits* long, not 512 bytes. [Richard Levitte] *) Change AES_cbc_encrypt() so it outputs exact multiple of blocks during encryption. [Richard Levitte] *) Various fixes to base64 BIO and non blocking I/O. On write flushes were not handled properly if the BIO retried. On read data was not being buffered properly and had various logic bugs. This also affects blocking I/O when the data being decoded is a certain size. [Steve Henson] *) Various S/MIME bugfixes and compatibility changes: output correct application/pkcs7 MIME type if PKCS7_NOOLDMIMETYPE is set. Tolerate some broken signatures. Output CR+LF for EOL if PKCS7_CRLFEOL is set (this makes opening of files as .eml work). Correctly handle very long lines in MIME parser. [Steve Henson] Changes between 0.9.7a and 0.9.7b [10 Apr 2003] *) Countermeasure against the Klima-Pokorny-Rosa extension of Bleichbacher's attack on PKCS #1 v1.5 padding: treat a protocol version number mismatch like a decryption error in ssl3_get_client_key_exchange (ssl/s3_srvr.c). [Bodo Moeller] *) Turn on RSA blinding by default in the default implementation to avoid a timing attack. Applications that don't want it can call RSA_blinding_off() or use the new flag RSA_FLAG_NO_BLINDING. They would be ill-advised to do so in most cases. [Ben Laurie, Steve Henson, Geoff Thorpe, Bodo Moeller] *) Change RSA blinding code so that it works when the PRNG is not seeded (in this case, the secret RSA exponent is abused as an unpredictable seed -- if it is not unpredictable, there is no point in blinding anyway). Make RSA blinding thread-safe by remembering the creator's thread ID in rsa->blinding and having all other threads use local one-time blinding factors (this requires more computation than sharing rsa->blinding, but avoids excessive locking; and if an RSA object is not shared between threads, blinding will still be very fast). [Bodo Moeller] *) Fixed a typo bug that would cause ENGINE_set_default() to set an ENGINE as defaults for all supported algorithms irrespective of the 'flags' parameter. 'flags' is now honoured, so applications should make sure they are passing it correctly. [Geoff Thorpe] *) Target "mingw" now allows native Windows code to be generated in the Cygwin environment as well as with the MinGW compiler. [Ulf Moeller] Changes between 0.9.7 and 0.9.7a [19 Feb 2003] *) In ssl3_get_record (ssl/s3_pkt.c), minimize information leaked via timing by performing a MAC computation even if incorrect block cipher padding has been found. This is a countermeasure against active attacks where the attacker has to distinguish between bad padding and a MAC verification error. (CVE-2003-0078) [Bodo Moeller; problem pointed out by Brice Canvel (EPFL), Alain Hiltgen (UBS), Serge Vaudenay (EPFL), and Martin Vuagnoux (EPFL, Ilion)] *) Make the no-err option work as intended. The intention with no-err is not to have the whole error stack handling routines removed from libcrypto, it's only intended to remove all the function name and reason texts, thereby removing some of the footprint that may not be interesting if those errors aren't displayed anyway. NOTE: it's still possible for any application or module to have its own set of error texts inserted. The routines are there, just not used by default when no-err is given. [Richard Levitte] *) Add support for FreeBSD on IA64. [dirk.meyer@dinoex.sub.org via Richard Levitte, resolves #454] *) Adjust DES_cbc_cksum() so it returns the same value as the MIT Kerberos function mit_des_cbc_cksum(). Before this change, the value returned by DES_cbc_cksum() was like the one from mit_des_cbc_cksum(), except the bytes were swapped. [Kevin Greaney and Richard Levitte] *) Allow an application to disable the automatic SSL chain building. Before this a rather primitive chain build was always performed in ssl3_output_cert_chain(): an application had no way to send the correct chain if the automatic operation produced an incorrect result. Now the chain builder is disabled if either: 1. Extra certificates are added via SSL_CTX_add_extra_chain_cert(). 2. The mode flag SSL_MODE_NO_AUTO_CHAIN is set. The reasoning behind this is that an application would not want the auto chain building to take place if extra chain certificates are present and it might also want a means of sending no additional certificates (for example the chain has two certificates and the root is omitted). [Steve Henson] *) Add the possibility to build without the ENGINE framework. [Steven Reddie via Richard Levitte] *) Under Win32 gmtime() can return NULL: check return value in OPENSSL_gmtime(). Add error code for case where gmtime() fails. [Steve Henson] *) DSA routines: under certain error conditions uninitialized BN objects could be freed. Solution: make sure initialization is performed early enough. (Reported and fix supplied by Ivan D Nestlerode , Nils Larsch via PR#459) [Lutz Jaenicke] *) Another fix for SSLv2 session ID handling: the session ID was incorrectly checked on reconnect on the client side, therefore session resumption could still fail with a "ssl session id is different" error. This behaviour is masked when SSL_OP_ALL is used due to SSL_OP_MICROSOFT_SESS_ID_BUG being set. Behaviour observed by Crispin Flowerday as followup to PR #377. [Lutz Jaenicke] *) IA-32 assembler support enhancements: unified ELF targets, support for SCO/Caldera platforms, fix for Cygwin shared build. [Andy Polyakov] *) Add support for FreeBSD on sparc64. As a consequence, support for FreeBSD on non-x86 processors is separate from x86 processors on the config script, much like the NetBSD support. [Richard Levitte & Kris Kennaway ] Changes between 0.9.6h and 0.9.7 [31 Dec 2002] [NB: OpenSSL 0.9.6i and later 0.9.6 patch levels were released after OpenSSL 0.9.7.] *) Fix session ID handling in SSLv2 client code: the SERVER FINISHED code (06) was taken as the first octet of the session ID and the last octet was ignored consequently. As a result SSLv2 client side session caching could not have worked due to the session ID mismatch between client and server. Behaviour observed by Crispin Flowerday as PR #377. [Lutz Jaenicke] *) Change the declaration of needed Kerberos libraries to use EX_LIBS instead of the special (and badly supported) LIBKRB5. LIBKRB5 is removed entirely. [Richard Levitte] *) The hw_ncipher.c engine requires dynamic locks. Unfortunately, it seems that in spite of existing for more than a year, many application author have done nothing to provide the necessary callbacks, which means that this particular engine will not work properly anywhere. This is a very unfortunate situation which forces us, in the name of usability, to give the hw_ncipher.c a static lock, which is part of libcrypto. NOTE: This is for the 0.9.7 series ONLY. This hack will never appear in 0.9.8 or later. We EXPECT application authors to have dealt properly with this when 0.9.8 is released (unless we actually make such changes in the libcrypto locking code that changes will have to be made anyway). [Richard Levitte] *) In asn1_d2i_read_bio() repeatedly call BIO_read() until all content octets have been read, EOF or an error occurs. Without this change some truncated ASN1 structures will not produce an error. [Steve Henson] *) Disable Heimdal support, since it hasn't been fully implemented. Still give the possibility to force the use of Heimdal, but with warnings and a request that patches get sent to openssl-dev. [Richard Levitte] *) Add the VC-CE target, introduce the WINCE sysname, and add INSTALL.WCE and appropriate conditionals to make it build. [Steven Reddie via Richard Levitte] *) Change the DLL names for Cygwin to cygcrypto-x.y.z.dll and cygssl-x.y.z.dll, where x, y and z are the major, minor and edit numbers of the version. [Corinna Vinschen and Richard Levitte] *) Introduce safe string copy and catenation functions (BUF_strlcpy() and BUF_strlcat()). [Ben Laurie (CHATS) and Richard Levitte] *) Avoid using fixed-size buffers for one-line DNs. [Ben Laurie (CHATS)] *) Add BUF_MEM_grow_clean() to avoid information leakage when resizing buffers containing secrets, and use where appropriate. [Ben Laurie (CHATS)] *) Avoid using fixed size buffers for configuration file location. [Ben Laurie (CHATS)] *) Avoid filename truncation for various CA files. [Ben Laurie (CHATS)] *) Use sizeof in preference to magic numbers. [Ben Laurie (CHATS)] *) Avoid filename truncation in cert requests. [Ben Laurie (CHATS)] *) Add assertions to check for (supposedly impossible) buffer overflows. [Ben Laurie (CHATS)] *) Don't cache truncated DNS entries in the local cache (this could potentially lead to a spoofing attack). [Ben Laurie (CHATS)] *) Fix various buffers to be large enough for hex/decimal representations in a platform independent manner. [Ben Laurie (CHATS)] *) Add CRYPTO_realloc_clean() to avoid information leakage when resizing buffers containing secrets, and use where appropriate. [Ben Laurie (CHATS)] *) Add BIO_indent() to avoid much slightly worrying code to do indents. [Ben Laurie (CHATS)] *) Convert sprintf()/BIO_puts() to BIO_printf(). [Ben Laurie (CHATS)] *) buffer_gets() could terminate with the buffer only half full. Fixed. [Ben Laurie (CHATS)] *) Add assertions to prevent user-supplied crypto functions from overflowing internal buffers by having large block sizes, etc. [Ben Laurie (CHATS)] *) New OPENSSL_assert() macro (similar to assert(), but enabled unconditionally). [Ben Laurie (CHATS)] *) Eliminate unused copy of key in RC4. [Ben Laurie (CHATS)] *) Eliminate unused and incorrectly sized buffers for IV in pem.h. [Ben Laurie (CHATS)] *) Fix off-by-one error in EGD path. [Ben Laurie (CHATS)] *) If RANDFILE path is too long, ignore instead of truncating. [Ben Laurie (CHATS)] *) Eliminate unused and incorrectly sized X.509 structure CBCParameter. [Ben Laurie (CHATS)] *) Eliminate unused and dangerous function knumber(). [Ben Laurie (CHATS)] *) Eliminate unused and dangerous structure, KSSL_ERR. [Ben Laurie (CHATS)] *) Protect against overlong session ID context length in an encoded session object. Since these are local, this does not appear to be exploitable. [Ben Laurie (CHATS)] *) Change from security patch (see 0.9.6e below) that did not affect the 0.9.6 release series: Remote buffer overflow in SSL3 protocol - an attacker could supply an oversized master key in Kerberos-enabled versions. (CVE-2002-0657) [Ben Laurie (CHATS)] *) Change the SSL kerb5 codes to match RFC 2712. [Richard Levitte] *) Make -nameopt work fully for req and add -reqopt switch. [Michael Bell , Steve Henson] *) The "block size" for block ciphers in CFB and OFB mode should be 1. [Steve Henson, reported by Yngve Nysaeter Pettersen ] *) Make sure tests can be performed even if the corresponding algorithms have been removed entirely. This was also the last step to make OpenSSL compilable with DJGPP under all reasonable conditions. [Richard Levitte, Doug Kaufman ] *) Add cipher selection rules COMPLEMENTOFALL and COMPLEMENTOFDEFAULT to allow version independent disabling of normally unselected ciphers, which may be activated as a side-effect of selecting a single cipher. (E.g., cipher list string "RSA" enables ciphersuites that are left out of "ALL" because they do not provide symmetric encryption. "RSA:!COMPLEMEMENTOFALL" avoids these unsafe ciphersuites.) [Lutz Jaenicke, Bodo Moeller] *) Add appropriate support for separate platform-dependent build directories. The recommended way to make a platform-dependent build directory is the following (tested on Linux), maybe with some local tweaks: # Place yourself outside of the OpenSSL source tree. In # this example, the environment variable OPENSSL_SOURCE # is assumed to contain the absolute OpenSSL source directory. mkdir -p objtree/"`uname -s`-`uname -r`-`uname -m`" cd objtree/"`uname -s`-`uname -r`-`uname -m`" (cd $OPENSSL_SOURCE; find . -type f) | while read F; do mkdir -p `dirname $F` ln -s $OPENSSL_SOURCE/$F $F done To be absolutely sure not to disturb the source tree, a "make clean" is a good thing. If it isn't successful, don't worry about it, it probably means the source directory is very clean. [Richard Levitte] *) Make sure any ENGINE control commands make local copies of string pointers passed to them whenever necessary. Otherwise it is possible the caller may have overwritten (or deallocated) the original string data when a later ENGINE operation tries to use the stored values. [Götz Babin-Ebell ] *) Improve diagnostics in file reading and command-line digests. [Ben Laurie aided and abetted by Solar Designer ] *) Add AES modes CFB and OFB to the object database. Correct an error in AES-CFB decryption. [Richard Levitte] *) Remove most calls to EVP_CIPHER_CTX_cleanup() in evp_enc.c, this allows existing EVP_CIPHER_CTX structures to be reused after calling EVP_*Final(). This behaviour is used by encryption BIOs and some applications. This has the side effect that applications must explicitly clean up cipher contexts with EVP_CIPHER_CTX_cleanup() or they will leak memory. [Steve Henson] *) Check the values of dna and dnb in bn_mul_recursive before calling bn_mul_comba (a non zero value means the a or b arrays do not contain n2 elements) and fallback to bn_mul_normal if either is not zero. [Steve Henson] *) Fix escaping of non-ASCII characters when using the -subj option of the "openssl req" command line tool. (Robert Joop ) [Lutz Jaenicke] *) Make object definitions compliant to LDAP (RFC2256): SN is the short form for "surname", serialNumber has no short form. Use "mail" as the short name for "rfc822Mailbox" according to RFC2798; therefore remove "mail" short name for "internet 7". The OID for unique identifiers in X509 certificates is x500UniqueIdentifier, not uniqueIdentifier. Some more OID additions. (Michael Bell ) [Lutz Jaenicke] *) Add an "init" command to the ENGINE config module and auto initialize ENGINEs. Without any "init" command the ENGINE will be initialized after all ctrl commands have been executed on it. If init=1 the ENGINE is initialized at that point (ctrls before that point are run on the uninitialized ENGINE and after on the initialized one). If init=0 then the ENGINE will not be initialized at all. [Steve Henson] *) Fix the 'app_verify_callback' interface so that the user-defined argument is actually passed to the callback: In the SSL_CTX_set_cert_verify_callback() prototype, the callback declaration has been changed from int (*cb)() into int (*cb)(X509_STORE_CTX *,void *); in ssl_verify_cert_chain (ssl/ssl_cert.c), the call i=s->ctx->app_verify_callback(&ctx) has been changed into i=s->ctx->app_verify_callback(&ctx, s->ctx->app_verify_arg). To update applications using SSL_CTX_set_cert_verify_callback(), a dummy argument can be added to their callback functions. [D. K. Smetters ] *) Added the '4758cca' ENGINE to support IBM 4758 cards. [Maurice Gittens , touchups by Geoff Thorpe] *) Add and OPENSSL_LOAD_CONF define which will cause OpenSSL_add_all_algorithms() to load the openssl.cnf config file. This allows older applications to transparently support certain OpenSSL features: such as crypto acceleration and dynamic ENGINE loading. Two new functions OPENSSL_add_all_algorithms_noconf() which will never load the config file and OPENSSL_add_all_algorithms_conf() which will always load it have also been added. [Steve Henson] *) Add the OFB, CFB and CTR (all with 128 bit feedback) to AES. Adjust NIDs and EVP layer. [Stephen Sprunk and Richard Levitte] *) Config modules support in openssl utility. Most commands now load modules from the config file, though in a few (such as version) this isn't done because it couldn't be used for anything. In the case of ca and req the config file used is the same as the utility itself: that is the -config command line option can be used to specify an alternative file. [Steve Henson] *) Move default behaviour from OPENSSL_config(). If appname is NULL use "openssl_conf" if filename is NULL use default openssl config file. [Steve Henson] *) Add an argument to OPENSSL_config() to allow the use of an alternative config section name. Add a new flag to tolerate a missing config file and move code to CONF_modules_load_file(). [Steve Henson] *) Support for crypto accelerator cards from Accelerated Encryption Processing, www.aep.ie. (Use engine 'aep') The support was copied from 0.9.6c [engine] and adapted/corrected to work with the new engine framework. [AEP Inc. and Richard Levitte] *) Support for SureWare crypto accelerator cards from Baltimore Technologies. (Use engine 'sureware') The support was copied from 0.9.6c [engine] and adapted to work with the new engine framework. [Richard Levitte] *) Have the CHIL engine fork-safe (as defined by nCipher) and actually make the newer ENGINE framework commands for the CHIL engine work. [Toomas Kiisk and Richard Levitte] *) Make it possible to produce shared libraries on ReliantUNIX. [Robert Dahlem via Richard Levitte] *) Add the configuration target debug-linux-ppro. Make 'openssl rsa' use the general key loading routines implemented in apps.c, and make those routines able to handle the key format FORMAT_NETSCAPE and the variant FORMAT_IISSGC. [Toomas Kiisk via Richard Levitte] *) Fix a crashbug and a logic bug in hwcrhk_load_pubkey(). [Toomas Kiisk via Richard Levitte] *) Add -keyform to rsautl, and document -engine. [Richard Levitte, inspired by Toomas Kiisk ] *) Change BIO_new_file (crypto/bio/bss_file.c) to use new BIO_R_NO_SUCH_FILE error code rather than the generic ERR_R_SYS_LIB error code if fopen() fails with ENOENT. [Ben Laurie] *) Add new functions ERR_peek_last_error ERR_peek_last_error_line ERR_peek_last_error_line_data. These are similar to ERR_peek_error ERR_peek_error_line ERR_peek_error_line_data, but report on the latest error recorded rather than the first one still in the error queue. [Ben Laurie, Bodo Moeller] *) default_algorithms option in ENGINE config module. This allows things like: default_algorithms = ALL default_algorithms = RSA, DSA, RAND, CIPHERS, DIGESTS [Steve Henson] *) Preliminary ENGINE config module. [Steve Henson] *) New experimental application configuration code. [Steve Henson] *) Change the AES code to follow the same name structure as all other symmetric ciphers, and behave the same way. Move everything to the directory crypto/aes, thereby obsoleting crypto/rijndael. [Stephen Sprunk and Richard Levitte] *) SECURITY: remove unsafe setjmp/signal interaction from ui_openssl.c. [Ben Laurie and Theo de Raadt] *) Add option to output public keys in req command. [Massimiliano Pala madwolf@openca.org] *) Use wNAFs in EC_POINTs_mul() for improved efficiency (up to about 10% better than before for P-192 and P-224). [Bodo Moeller] *) New functions/macros SSL_CTX_set_msg_callback(ctx, cb) SSL_CTX_set_msg_callback_arg(ctx, arg) SSL_set_msg_callback(ssl, cb) SSL_set_msg_callback_arg(ssl, arg) to request calling a callback function void cb(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) whenever a protocol message has been completely received (write_p == 0) or sent (write_p == 1). Here 'version' is the protocol version according to which the SSL library interprets the current protocol message (SSL2_VERSION, SSL3_VERSION, or TLS1_VERSION). 'content_type' is 0 in the case of SSL 2.0, or the content type as defined in the SSL 3.0/TLS 1.0 protocol specification (change_cipher_spec(20), alert(21), handshake(22)). 'buf' and 'len' point to the actual message, 'ssl' to the SSL object, and 'arg' is the application-defined value set by SSL[_CTX]_set_msg_callback_arg(). 'openssl s_client' and 'openssl s_server' have new '-msg' options to enable a callback that displays all protocol messages. [Bodo Moeller] *) Change the shared library support so shared libraries are built as soon as the corresponding static library is finished, and thereby get openssl and the test programs linked against the shared library. This still only happens when the keyword "shard" has been given to the configuration scripts. NOTE: shared library support is still an experimental thing, and backward binary compatibility is still not guaranteed. ["Maciej W. Rozycki" and Richard Levitte] *) Add support for Subject Information Access extension. [Peter Sylvester ] *) Make BUF_MEM_grow() behaviour more consistent: Initialise to zero additional bytes when new memory had to be allocated, not just when reusing an existing buffer. [Bodo Moeller] *) New command line and configuration option 'utf8' for the req command. This allows field values to be specified as UTF8 strings. [Steve Henson] *) Add -multi and -mr options to "openssl speed" - giving multiple parallel runs for the former and machine-readable output for the latter. [Ben Laurie] *) Add '-noemailDN' option to 'openssl ca'. This prevents inclusion of the e-mail address in the DN (i.e., it will go into a certificate extension only). The new configuration file option 'email_in_dn = no' has the same effect. [Massimiliano Pala madwolf@openca.org] *) Change all functions with names starting with des_ to be starting with DES_ instead. Add wrappers that are compatible with libdes, but are named _ossl_old_des_*. Finally, add macros that map the des_* symbols to the corresponding _ossl_old_des_* if libdes compatibility is desired. If OpenSSL 0.9.6c compatibility is desired, the des_* symbols will be mapped to DES_*, with one exception. Since we provide two compatibility mappings, the user needs to define the macro OPENSSL_DES_LIBDES_COMPATIBILITY if libdes compatibility is desired. The default (i.e., when that macro isn't defined) is OpenSSL 0.9.6c compatibility. There are also macros that enable and disable the support of old des functions altogether. Those are OPENSSL_ENABLE_OLD_DES_SUPPORT and OPENSSL_DISABLE_OLD_DES_SUPPORT. If none or both of those are defined, the default will apply: to support the old des routines. In either case, one must include openssl/des.h to get the correct definitions. Do not try to just include openssl/des_old.h, that won't work. NOTE: This is a major break of an old API into a new one. Software authors are encouraged to switch to the DES_ style functions. Some time in the future, des_old.h and the libdes compatibility functions will be disable (i.e. OPENSSL_DISABLE_OLD_DES_SUPPORT will be the default), and then completely removed. [Richard Levitte] *) Test for certificates which contain unsupported critical extensions. If such a certificate is found during a verify operation it is rejected by default: this behaviour can be overridden by either handling the new error X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION or by setting the verify flag X509_V_FLAG_IGNORE_CRITICAL. A new function X509_supported_extension() has also been added which returns 1 if a particular extension is supported. [Steve Henson] *) Modify the behaviour of EVP cipher functions in similar way to digests to retain compatibility with existing code. [Steve Henson] *) Modify the behaviour of EVP_DigestInit() and EVP_DigestFinal() to retain compatibility with existing code. In particular the 'ctx' parameter does not have to be to be initialized before the call to EVP_DigestInit() and it is tidied up after a call to EVP_DigestFinal(). New function EVP_DigestFinal_ex() which does not tidy up the ctx. Similarly function EVP_MD_CTX_copy() changed to not require the destination to be initialized valid and new function EVP_MD_CTX_copy_ex() added which requires the destination to be valid. Modify all the OpenSSL digest calls to use EVP_DigestInit_ex(), EVP_DigestFinal_ex() and EVP_MD_CTX_copy_ex(). [Steve Henson] *) Change ssl3_get_message (ssl/s3_both.c) and the functions using it so that complete 'Handshake' protocol structures are kept in memory instead of overwriting 'msg_type' and 'length' with 'body' data. [Bodo Moeller] *) Add an implementation of SSL_add_dir_cert_subjects_to_stack for Win32. [Massimo Santin via Richard Levitte] *) Major restructuring to the underlying ENGINE code. This includes reduction of linker bloat, separation of pure "ENGINE" manipulation (initialisation, etc) from functionality dealing with implementations of specific crypto interfaces. This change also introduces integrated support for symmetric ciphers and digest implementations - so ENGINEs can now accelerate these by providing EVP_CIPHER and EVP_MD implementations of their own. This is detailed in crypto/engine/README as it couldn't be adequately described here. However, there are a few API changes worth noting - some RSA, DSA, DH, and RAND functions that were changed in the original introduction of ENGINE code have now reverted back - the hooking from this code to ENGINE is now a good deal more passive and at run-time, operations deal directly with RSA_METHODs, DSA_METHODs (etc) as they did before, rather than dereferencing through an ENGINE pointer any more. Also, the ENGINE functions dealing with BN_MOD_EXP[_CRT] handlers have been removed - they were not being used by the framework as there is no concept of a BIGNUM_METHOD and they could not be generalised to the new 'ENGINE_TABLE' mechanism that underlies the new code. Similarly, ENGINE_cpy() has been removed as it cannot be consistently defined in the new code. [Geoff Thorpe] *) Change ASN1_GENERALIZEDTIME_check() to allow fractional seconds. [Steve Henson] *) Change mkdef.pl to sort symbols that get the same entry number, and make sure the automatically generated functions ERR_load_* become part of libeay.num as well. [Richard Levitte] *) New function SSL_renegotiate_pending(). This returns true once renegotiation has been requested (either SSL_renegotiate() call or HelloRequest/ClientHello received from the peer) and becomes false once a handshake has been completed. (For servers, SSL_renegotiate() followed by SSL_do_handshake() sends a HelloRequest, but does not ensure that a handshake takes place. SSL_renegotiate_pending() is useful for checking if the client has followed the request.) [Bodo Moeller] *) New SSL option SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION. By default, clients may request session resumption even during renegotiation (if session ID contexts permit); with this option, session resumption is possible only in the first handshake. SSL_OP_ALL is now 0x00000FFFL instead of 0x000FFFFFL. This makes more bits available for options that should not be part of SSL_OP_ALL (such as SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION). [Bodo Moeller] *) Add some demos for certificate and certificate request creation. [Steve Henson] *) Make maximum certificate chain size accepted from the peer application settable (SSL*_get/set_max_cert_list()), as proposed by "Douglas E. Engert" . [Lutz Jaenicke] *) Add support for shared libraries for Unixware-7 (Boyd Lynn Gerber ). [Lutz Jaenicke] *) Add a "destroy" handler to ENGINEs that allows structural cleanup to be done prior to destruction. Use this to unload error strings from ENGINEs that load their own error strings. NB: This adds two new API functions to "get" and "set" this destroy handler in an ENGINE. [Geoff Thorpe] *) Alter all existing ENGINE implementations (except "openssl" and "openbsd") to dynamically instantiate their own error strings. This makes them more flexible to be built both as statically-linked ENGINEs and self-contained shared-libraries loadable via the "dynamic" ENGINE. Also, add stub code to each that makes building them as self-contained shared-libraries easier (see README.ENGINE). [Geoff Thorpe] *) Add a "dynamic" ENGINE that provides a mechanism for binding ENGINE implementations into applications that are completely implemented in self-contained shared-libraries. The "dynamic" ENGINE exposes control commands that can be used to configure what shared-library to load and to control aspects of the way it is handled. Also, made an update to the README.ENGINE file that brings its information up-to-date and provides some information and instructions on the "dynamic" ENGINE (ie. how to use it, how to build "dynamic"-loadable ENGINEs, etc). [Geoff Thorpe] *) Make it possible to unload ranges of ERR strings with a new "ERR_unload_strings" function. [Geoff Thorpe] *) Add a copy() function to EVP_MD. [Ben Laurie] *) Make EVP_MD routines take a context pointer instead of just the md_data void pointer. [Ben Laurie] *) Add flags to EVP_MD and EVP_MD_CTX. EVP_MD_FLAG_ONESHOT indicates that the digest can only process a single chunk of data (typically because it is provided by a piece of hardware). EVP_MD_CTX_FLAG_ONESHOT indicates that the application is only going to provide a single chunk of data, and hence the framework needn't accumulate the data for oneshot drivers. [Ben Laurie] *) As with "ERR", make it possible to replace the underlying "ex_data" functions. This change also alters the storage and management of global ex_data state - it's now all inside ex_data.c and all "class" code (eg. RSA, BIO, SSL_CTX, etc) no longer stores its own STACKS and per-class index counters. The API functions that use this state have been changed to take a "class_index" rather than pointers to the class's local STACK and counter, and there is now an API function to dynamically create new classes. This centralisation allows us to (a) plug a lot of the thread-safety problems that existed, and (b) makes it possible to clean up all allocated state using "CRYPTO_cleanup_all_ex_data()". W.r.t. (b) such data would previously have always leaked in application code and workarounds were in place to make the memory debugging turn a blind eye to it. Application code that doesn't use this new function will still leak as before, but their memory debugging output will announce it now rather than letting it slide. Besides the addition of CRYPTO_cleanup_all_ex_data(), another API change induced by the "ex_data" overhaul is that X509_STORE_CTX_init() now has a return value to indicate success or failure. [Geoff Thorpe] *) Make it possible to replace the underlying "ERR" functions such that the global state (2 LHASH tables and 2 locks) is only used by the "default" implementation. This change also adds two functions to "get" and "set" the implementation prior to it being automatically set the first time any other ERR function takes place. Ie. an application can call "get", pass the return value to a module it has just loaded, and that module can call its own "set" function using that value. This means the module's "ERR" operations will use (and modify) the error state in the application and not in its own statically linked copy of OpenSSL code. [Geoff Thorpe] *) Give DH, DSA, and RSA types their own "**_up_ref()" function to increment reference counts. This performs normal REF_PRINT/REF_CHECK macros on the operation, and provides a more encapsulated way for external code (crypto/evp/ and ssl/) to do this. Also changed the evp and ssl code to use these functions rather than manually incrementing the counts. Also rename "DSO_up()" function to more descriptive "DSO_up_ref()". [Geoff Thorpe] *) Add EVP test program. [Ben Laurie] *) Add symmetric cipher support to ENGINE. Expect the API to change! [Ben Laurie] *) New CRL functions: X509_CRL_set_version(), X509_CRL_set_issuer_name() X509_CRL_set_lastUpdate(), X509_CRL_set_nextUpdate(), X509_CRL_sort(), X509_REVOKED_set_serialNumber(), and X509_REVOKED_set_revocationDate(). These allow a CRL to be built without having to access X509_CRL fields directly. Modify 'ca' application to use new functions. [Steve Henson] *) Move SSL_OP_TLS_ROLLBACK_BUG out of the SSL_OP_ALL list of recommended bug workarounds. Rollback attack detection is a security feature. The problem will only arise on OpenSSL servers when TLSv1 is not available (sslv3_server_method() or SSL_OP_NO_TLSv1). Software authors not wanting to support TLSv1 will have special reasons for their choice and can explicitly enable this option. [Bodo Moeller, Lutz Jaenicke] *) Rationalise EVP so it can be extended: don't include a union of cipher/digest structures, add init/cleanup functions for EVP_MD_CTX (similar to those existing for EVP_CIPHER_CTX). Usage example: EVP_MD_CTX md; EVP_MD_CTX_init(&md); /* new function call */ EVP_DigestInit(&md, EVP_sha1()); EVP_DigestUpdate(&md, in, len); EVP_DigestFinal(&md, out, NULL); EVP_MD_CTX_cleanup(&md); /* new function call */ [Ben Laurie] *) Make DES key schedule conform to the usual scheme, as well as correcting its structure. This means that calls to DES functions now have to pass a pointer to a des_key_schedule instead of a plain des_key_schedule (which was actually always a pointer anyway): E.g., des_key_schedule ks; des_set_key_checked(..., &ks); des_ncbc_encrypt(..., &ks, ...); (Note that a later change renames 'des_...' into 'DES_...'.) [Ben Laurie] *) Initial reduction of linker bloat: the use of some functions, such as PEM causes large amounts of unused functions to be linked in due to poor organisation. For example pem_all.c contains every PEM function which has a knock on effect of linking in large amounts of (unused) ASN1 code. Grouping together similar functions and splitting unrelated functions prevents this. [Steve Henson] *) Cleanup of EVP macros. [Ben Laurie] *) Change historical references to {NID,SN,LN}_des_ede and ede3 to add the correct _ecb suffix. [Ben Laurie] *) Add initial OCSP responder support to ocsp application. The revocation information is handled using the text based index use by the ca application. The responder can either handle requests generated internally, supplied in files (for example via a CGI script) or using an internal minimal server. [Steve Henson] *) Add configuration choices to get zlib compression for TLS. [Richard Levitte] *) Changes to Kerberos SSL for RFC 2712 compliance: 1. Implemented real KerberosWrapper, instead of just using KRB5 AP_REQ message. [Thanks to Simon Wilkinson ] 2. Implemented optional authenticator field of KerberosWrapper. Added openssl-style ASN.1 macros for Kerberos ticket, ap_req, and authenticator structs; see crypto/krb5/. Generalized Kerberos calls to support multiple Kerberos libraries. [Vern Staats , Jeffrey Altman via Richard Levitte] *) Cause 'openssl speed' to use fully hard-coded DSA keys as it already does with RSA. testdsa.h now has 'priv_key/pub_key' values for each of the key sizes rather than having just parameters (and 'speed' generating keys each time). [Geoff Thorpe] *) Speed up EVP routines. Before: encrypt type 8 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes des-cbc 4408.85k 5560.51k 5778.46k 5862.20k 5825.16k des-cbc 4389.55k 5571.17k 5792.23k 5846.91k 5832.11k des-cbc 4394.32k 5575.92k 5807.44k 5848.37k 5841.30k decrypt des-cbc 3482.66k 5069.49k 5496.39k 5614.16k 5639.28k des-cbc 3480.74k 5068.76k 5510.34k 5609.87k 5635.52k des-cbc 3483.72k 5067.62k 5504.60k 5708.01k 5724.80k After: encrypt des-cbc 4660.16k 5650.19k 5807.19k 5827.13k 5783.32k decrypt des-cbc 3624.96k 5258.21k 5530.91k 5624.30k 5628.26k [Ben Laurie] *) Added the OS2-EMX target. ["Brian Havard" and Richard Levitte] *) Rewrite apps to use NCONF routines instead of the old CONF. New functions to support NCONF routines in extension code. New function CONF_set_nconf() to allow functions which take an NCONF to also handle the old LHASH structure: this means that the old CONF compatible routines can be retained (in particular wrt extensions) without having to duplicate the code. New function X509V3_add_ext_nconf_sk to add extensions to a stack. [Steve Henson] *) Enhance the general user interface with mechanisms for inner control and with possibilities to have yes/no kind of prompts. [Richard Levitte] *) Change all calls to low level digest routines in the library and applications to use EVP. Add missing calls to HMAC_cleanup() and don't assume HMAC_CTX can be copied using memcpy(). [Verdon Walker , Steve Henson] *) Add the possibility to control engines through control names but with arbitrary arguments instead of just a string. Change the key loaders to take a UI_METHOD instead of a callback function pointer. NOTE: this breaks binary compatibility with earlier versions of OpenSSL [engine]. Adapt the nCipher code for these new conditions and add a card insertion callback. [Richard Levitte] *) Enhance the general user interface with mechanisms to better support dialog box interfaces, application-defined prompts, the possibility to use defaults (for example default passwords from somewhere else) and interrupts/cancellations. [Richard Levitte] *) Tidy up PKCS#12 attribute handling. Add support for the CSP name attribute in PKCS#12 files, add new -CSP option to pkcs12 utility. [Steve Henson] *) Fix a memory leak in 'sk_dup()' in the case reallocation fails. (Also tidy up some unnecessarily weird code in 'sk_new()'). [Geoff, reported by Diego Tartara ] *) Change the key loading routines for ENGINEs to use the same kind callback (pem_password_cb) as all other routines that need this kind of callback. [Richard Levitte] *) Increase ENTROPY_NEEDED to 32 bytes, as Rijndael can operate with 256 bit (=32 byte) keys. Of course seeding with more entropy bytes than this minimum value is recommended. [Lutz Jaenicke] *) New random seeder for OpenVMS, using the system process statistics that are easily reachable. [Richard Levitte] *) Windows apparently can't transparently handle global variables defined in DLLs. Initialisations such as: const ASN1_ITEM *it = &ASN1_INTEGER_it; won't compile. This is used by the any applications that need to declare their own ASN1 modules. This was fixed by adding the option EXPORT_VAR_AS_FN to all Win32 platforms, although this isn't strictly needed for static libraries under Win32. [Steve Henson] *) New functions X509_PURPOSE_set() and X509_TRUST_set() to handle setting of purpose and trust fields. New X509_STORE trust and purpose functions and tidy up setting in other SSL functions. [Steve Henson] *) Add copies of X509_STORE_CTX fields and callbacks to X509_STORE structure. These are inherited by X509_STORE_CTX when it is initialised. This allows various defaults to be set in the X509_STORE structure (such as flags for CRL checking and custom purpose or trust settings) for functions which only use X509_STORE_CTX internally such as S/MIME. Modify X509_STORE_CTX_purpose_inherit() so it only sets purposes and trust settings if they are not set in X509_STORE. This allows X509_STORE purposes and trust (in S/MIME for example) to override any set by default. Add command line options for CRL checking to smime, s_client and s_server applications. [Steve Henson] *) Initial CRL based revocation checking. If the CRL checking flag(s) are set then the CRL is looked up in the X509_STORE structure and its validity and signature checked, then if the certificate is found in the CRL the verify fails with a revoked error. Various new CRL related callbacks added to X509_STORE_CTX structure. Command line options added to 'verify' application to support this. This needs some additional work, such as being able to handle multiple CRLs with different times, extension based lookup (rather than just by subject name) and ultimately more complete V2 CRL extension handling. [Steve Henson] *) Add a general user interface API (crypto/ui/). This is designed to replace things like des_read_password and friends (backward compatibility functions using this new API are provided). The purpose is to remove prompting functions from the DES code section as well as provide for prompting through dialog boxes in a window system and the like. [Richard Levitte] *) Add "ex_data" support to ENGINE so implementations can add state at a per-structure level rather than having to store it globally. [Geoff] *) Make it possible for ENGINE structures to be copied when retrieved by ENGINE_by_id() if the ENGINE specifies a new flag: ENGINE_FLAGS_BY_ID_COPY. This causes the "original" ENGINE structure to act like a template, analogous to the RSA vs. RSA_METHOD type of separation. Because of this operational state can be localised to each ENGINE structure, despite the fact they all share the same "methods". New ENGINE structures returned in this case have no functional references and the return value is the single structural reference. This matches the single structural reference returned by ENGINE_by_id() normally, when it is incremented on the pre-existing ENGINE structure. [Geoff] *) Fix ASN1 decoder when decoding type ANY and V_ASN1_OTHER: since this needs to match any other type at all we need to manually clear the tag cache. [Steve Henson] *) Changes to the "openssl engine" utility to include; - verbosity levels ('-v', '-vv', and '-vvv') that provide information about an ENGINE's available control commands. - executing control commands from command line arguments using the '-pre' and '-post' switches. '-post' is only used if '-t' is specified and the ENGINE is successfully initialised. The syntax for the individual commands are colon-separated, for example; openssl engine chil -pre FORK_CHECK:0 -pre SO_PATH:/lib/test.so [Geoff] *) New dynamic control command support for ENGINEs. ENGINEs can now declare their own commands (numbers), names (strings), descriptions, and input types for run-time discovery by calling applications. A subset of these commands are implicitly classed as "executable" depending on their input type, and only these can be invoked through the new string-based API function ENGINE_ctrl_cmd_string(). (Eg. this can be based on user input, config files, etc). The distinction is that "executable" commands cannot return anything other than a boolean result and can only support numeric or string input, whereas some discoverable commands may only be for direct use through ENGINE_ctrl(), eg. supporting the exchange of binary data, function pointers, or other custom uses. The "executable" commands are to support parameterisations of ENGINE behaviour that can be unambiguously defined by ENGINEs and used consistently across any OpenSSL-based application. Commands have been added to all the existing hardware-supporting ENGINEs, noticeably "SO_PATH" to allow control over shared-library paths without source code alterations. [Geoff] *) Changed all ENGINE implementations to dynamically allocate their ENGINEs rather than declaring them statically. Apart from this being necessary with the removal of the ENGINE_FLAGS_MALLOCED distinction, this also allows the implementations to compile without using the internal engine_int.h header. [Geoff] *) Minor adjustment to "rand" code. RAND_get_rand_method() now returns a 'const' value. Any code that should be able to modify a RAND_METHOD should already have non-const pointers to it (ie. they should only modify their own ones). [Geoff] *) Made a variety of little tweaks to the ENGINE code. - "atalla" and "ubsec" string definitions were moved from header files to C code. "nuron" string definitions were placed in variables rather than hard-coded - allowing parameterisation of these values later on via ctrl() commands. - Removed unused "#if 0"'d code. - Fixed engine list iteration code so it uses ENGINE_free() to release structural references. - Constified the RAND_METHOD element of ENGINE structures. - Constified various get/set functions as appropriate and added missing functions (including a catch-all ENGINE_cpy that duplicates all ENGINE values onto a new ENGINE except reference counts/state). - Removed NULL parameter checks in get/set functions. Setting a method or function to NULL is a way of cancelling out a previously set value. Passing a NULL ENGINE parameter is just plain stupid anyway and doesn't justify the extra error symbols and code. - Deprecate the ENGINE_FLAGS_MALLOCED define and move the area for flags from engine_int.h to engine.h. - Changed prototypes for ENGINE handler functions (init(), finish(), ctrl(), key-load functions, etc) to take an (ENGINE*) parameter. [Geoff] *) Implement binary inversion algorithm for BN_mod_inverse in addition to the algorithm using long division. The binary algorithm can be used only if the modulus is odd. On 32-bit systems, it is faster only for relatively small moduli (roughly 20-30% for 128-bit moduli, roughly 5-15% for 256-bit moduli), so we use it only for moduli up to 450 bits. In 64-bit environments, the binary algorithm appears to be advantageous for much longer moduli; here we use it for moduli up to 2048 bits. [Bodo Moeller] *) Rewrite CHOICE field setting in ASN1_item_ex_d2i(). The old code could not support the combine flag in choice fields. [Steve Henson] *) Add a 'copy_extensions' option to the 'ca' utility. This copies extensions from a certificate request to the certificate. [Steve Henson] *) Allow multiple 'certopt' and 'nameopt' options to be separated by commas. Add 'namopt' and 'certopt' options to the 'ca' config file: this allows the display of the certificate about to be signed to be customised, to allow certain fields to be included or excluded and extension details. The old system didn't display multicharacter strings properly, omitted fields not in the policy and couldn't display additional details such as extensions. [Steve Henson] *) Function EC_POINTs_mul for multiple scalar multiplication of an arbitrary number of elliptic curve points \sum scalars[i]*points[i], optionally including the generator defined for the EC_GROUP: scalar*generator + \sum scalars[i]*points[i]. EC_POINT_mul is a simple wrapper function for the typical case that the point list has just one item (besides the optional generator). [Bodo Moeller] *) First EC_METHODs for curves over GF(p): EC_GFp_simple_method() uses the basic BN_mod_mul and BN_mod_sqr operations and provides various method functions that can also operate with faster implementations of modular arithmetic. EC_GFp_mont_method() reuses most functions that are part of EC_GFp_simple_method, but uses Montgomery arithmetic. [Bodo Moeller; point addition and point doubling implementation directly derived from source code provided by Lenka Fibikova ] *) Framework for elliptic curves (crypto/ec/ec.h, crypto/ec/ec_lcl.h, crypto/ec/ec_lib.c): Curves are EC_GROUP objects (with an optional group generator) based on EC_METHODs that are built into the library. Points are EC_POINT objects based on EC_GROUP objects. Most of the framework would be able to handle curves over arbitrary finite fields, but as there are no obvious types for fields other than GF(p), some functions are limited to that for now. [Bodo Moeller] *) Add the -HTTP option to s_server. It is similar to -WWW, but requires that the file contains a complete HTTP response. [Richard Levitte] *) Add the ec directory to mkdef.pl and mkfiles.pl. In mkdef.pl change the def and num file printf format specifier from "%-40sXXX" to "%-39s XXX". The latter will always guarantee a space after the field while the former will cause them to run together if the field is 40 of more characters long. [Steve Henson] *) Constify the cipher and digest 'method' functions and structures and modify related functions to take constant EVP_MD and EVP_CIPHER pointers. [Steve Henson] *) Hide BN_CTX structure details in bn_lcl.h instead of publishing them in . Also further increase BN_CTX_NUM to 32. [Bodo Moeller] *) Modify EVP_Digest*() routines so they now return values. Although the internal software routines can never fail additional hardware versions might. [Steve Henson] *) Clean up crypto/err/err.h and change some error codes to avoid conflicts: Previously ERR_R_FATAL was too small and coincided with ERR_LIB_PKCS7 (= ERR_R_PKCS7_LIB); it is now 64 instead of 32. ASN1 error codes ERR_R_NESTED_ASN1_ERROR ... ERR_R_MISSING_ASN1_EOS were 4 .. 9, conflicting with ERR_LIB_RSA (= ERR_R_RSA_LIB) ... ERR_LIB_PEM (= ERR_R_PEM_LIB). They are now 58 .. 63 (i.e., just below ERR_R_FATAL). Add new error code 'ERR_R_INTERNAL_ERROR'. [Bodo Moeller] *) Don't overuse locks in crypto/err/err.c: For data retrieval, CRYPTO_r_lock suffices. [Bodo Moeller] *) New option '-subj arg' for 'openssl req' and 'openssl ca'. This sets the subject name for a new request or supersedes the subject name in a given request. Formats that can be parsed are 'CN=Some Name, OU=myOU, C=IT' and 'CN=Some Name/OU=myOU/C=IT'. Add options '-batch' and '-verbose' to 'openssl req'. [Massimiliano Pala ] *) Introduce the possibility to access global variables through functions on platform were that's the best way to handle exporting global variables in shared libraries. To enable this functionality, one must configure with "EXPORT_VAR_AS_FN" or defined the C macro "OPENSSL_EXPORT_VAR_AS_FUNCTION" in crypto/opensslconf.h (the latter is normally done by Configure or something similar). To implement a global variable, use the macro OPENSSL_IMPLEMENT_GLOBAL in the source file (foo.c) like this: OPENSSL_IMPLEMENT_GLOBAL(int,foo)=1; OPENSSL_IMPLEMENT_GLOBAL(double,bar); To declare a global variable, use the macros OPENSSL_DECLARE_GLOBAL and OPENSSL_GLOBAL_REF in the header file (foo.h) like this: OPENSSL_DECLARE_GLOBAL(int,foo); #define foo OPENSSL_GLOBAL_REF(foo) OPENSSL_DECLARE_GLOBAL(double,bar); #define bar OPENSSL_GLOBAL_REF(bar) The #defines are very important, and therefore so is including the header file everywhere where the defined globals are used. The macro OPENSSL_EXPORT_VAR_AS_FUNCTION also affects the definition of ASN.1 items, but that structure is a bit different. The largest change is in util/mkdef.pl which has been enhanced with better and easier to understand logic to choose which symbols should go into the Windows .def files as well as a number of fixes and code cleanup (among others, algorithm keywords are now sorted lexicographically to avoid constant rewrites). [Richard Levitte] *) In BN_div() keep a copy of the sign of 'num' before writing the result to 'rm' because if rm==num the value will be overwritten and produce the wrong result if 'num' is negative: this caused problems with BN_mod() and BN_nnmod(). [Steve Henson] *) Function OCSP_request_verify(). This checks the signature on an OCSP request and verifies the signer certificate. The signer certificate is just checked for a generic purpose and OCSP request trust settings. [Steve Henson] *) Add OCSP_check_validity() function to check the validity of OCSP responses. OCSP responses are prepared in real time and may only be a few seconds old. Simply checking that the current time lies between thisUpdate and nextUpdate max reject otherwise valid responses caused by either OCSP responder or client clock inaccuracy. Instead we allow thisUpdate and nextUpdate to fall within a certain period of the current time. The age of the response can also optionally be checked. Two new options -validity_period and -status_age added to ocsp utility. [Steve Henson] *) If signature or public key algorithm is unrecognized print out its OID rather that just UNKNOWN. [Steve Henson] *) Change OCSP_cert_to_id() to tolerate a NULL subject certificate and OCSP_cert_id_new() a NULL serialNumber. This allows a partial certificate ID to be generated from the issuer certificate alone which can then be passed to OCSP_id_issuer_cmp(). [Steve Henson] *) New compilation option ASN1_ITEM_FUNCTIONS. This causes the new ASN1 modules to export functions returning ASN1_ITEM pointers instead of the ASN1_ITEM structures themselves. This adds several new macros which allow the underlying ASN1 function/structure to be accessed transparently. As a result code should not use ASN1_ITEM references directly (such as &X509_it) but instead use the relevant macros (such as ASN1_ITEM_rptr(X509)). This option is to allow use of the new ASN1 code on platforms where exporting structures is problematical (for example in shared libraries) but exporting functions returning pointers to structures is not. [Steve Henson] *) Add support for overriding the generation of SSL/TLS session IDs. These callbacks can be registered either in an SSL_CTX or per SSL. The purpose of this is to allow applications to control, if they wish, the arbitrary values chosen for use as session IDs, particularly as it can be useful for session caching in multiple-server environments. A command-line switch for testing this (and any client code that wishes to use such a feature) has been added to "s_server". [Geoff Thorpe, Lutz Jaenicke] *) Modify mkdef.pl to recognise and parse preprocessor conditionals of the form '#if defined(...) || defined(...) || ...' and '#if !defined(...) && !defined(...) && ...'. This also avoids the growing number of special cases it was previously handling. [Richard Levitte] *) Make all configuration macros available for application by making sure they are available in opensslconf.h, by giving them names starting with "OPENSSL_" to avoid conflicts with other packages and by making sure e_os2.h will cover all platform-specific cases together with opensslconf.h. Additionally, it is now possible to define configuration/platform- specific names (called "system identities"). In the C code, these are prefixed with "OPENSSL_SYSNAME_". e_os2.h will create another macro with the name beginning with "OPENSSL_SYS_", which is determined from "OPENSSL_SYSNAME_*" or compiler-specific macros depending on what is available. [Richard Levitte] *) New option -set_serial to 'req' and 'x509' this allows the serial number to use to be specified on the command line. Previously self signed certificates were hard coded with serial number 0 and the CA options of 'x509' had to use a serial number in a file which was auto incremented. [Steve Henson] *) New options to 'ca' utility to support V2 CRL entry extensions. Currently CRL reason, invalidity date and hold instruction are supported. Add new CRL extensions to V3 code and some new objects. [Steve Henson] *) New function EVP_CIPHER_CTX_set_padding() this is used to disable standard block padding (aka PKCS#5 padding) in the EVP API, which was previously mandatory. This means that the data is not padded in any way and so the total length much be a multiple of the block size, otherwise an error occurs. [Steve Henson] *) Initial (incomplete) OCSP SSL support. [Steve Henson] *) New function OCSP_parse_url(). This splits up a URL into its host, port and path components: primarily to parse OCSP URLs. New -url option to ocsp utility. [Steve Henson] *) New nonce behavior. The return value of OCSP_check_nonce() now reflects the various checks performed. Applications can decide whether to tolerate certain situations such as an absent nonce in a response when one was present in a request: the ocsp application just prints out a warning. New function OCSP_add1_basic_nonce() this is to allow responders to include a nonce in a response even if the request is nonce-less. [Steve Henson] *) Disable stdin buffering in load_cert (apps/apps.c) so that no certs are skipped when using openssl x509 multiple times on a single input file, e.g. "(openssl x509 -out cert1; openssl x509 -out cert2) ] *) New OCSP verify flag OCSP_TRUSTOTHER. When set the "other" certificates passed by the function are trusted implicitly. If any of them signed the response then it is assumed to be valid and is not verified. [Steve Henson] *) In PKCS7_set_type() initialise content_type in PKCS7_ENC_CONTENT to data. This was previously part of the PKCS7 ASN1 code. This was causing problems with OpenSSL created PKCS#12 and PKCS#7 structures. [Steve Henson, reported by Kenneth R. Robinette ] *) Add CRYPTO_push_info() and CRYPTO_pop_info() calls to new ASN1 routines: without these tracing memory leaks is very painful. Fix leaks in PKCS12 and PKCS7 routines. [Steve Henson] *) Make X509_time_adj() cope with the new behaviour of ASN1_TIME_new(). Previously it initialised the 'type' argument to V_ASN1_UTCTIME which effectively meant GeneralizedTime would never be used. Now it is initialised to -1 but X509_time_adj() now has to check the value and use ASN1_TIME_set() if the value is not V_ASN1_UTCTIME or V_ASN1_GENERALIZEDTIME, without this it always uses GeneralizedTime. [Steve Henson, reported by Kenneth R. Robinette ] *) Fixes to BN_to_ASN1_INTEGER when bn is zero. This would previously result in a zero length in the ASN1_INTEGER structure which was not consistent with the structure when d2i_ASN1_INTEGER() was used and would cause ASN1_INTEGER_cmp() to fail. Enhance s2i_ASN1_INTEGER() to cope with hex and negative integers. Fix bug in i2a_ASN1_INTEGER() where it did not print out a minus for negative ASN1_INTEGER. [Steve Henson] *) Add summary printout to ocsp utility. The various functions which convert status values to strings have been renamed to: OCSP_response_status_str(), OCSP_cert_status_str() and OCSP_crl_reason_str() and are no longer static. New options to verify nonce values and to disable verification. OCSP response printout format cleaned up. [Steve Henson] *) Add additional OCSP certificate checks. These are those specified in RFC2560. This consists of two separate checks: the CA of the certificate being checked must either be the OCSP signer certificate or the issuer of the OCSP signer certificate. In the latter case the OCSP signer certificate must contain the OCSP signing extended key usage. This check is performed by attempting to match the OCSP signer or the OCSP signer CA to the issuerNameHash and issuerKeyHash in the OCSP_CERTID structures of the response. [Steve Henson] *) Initial OCSP certificate verification added to OCSP_basic_verify() and related routines. This uses the standard OpenSSL certificate verify routines to perform initial checks (just CA validity) and to obtain the certificate chain. Then additional checks will be performed on the chain. Currently the root CA is checked to see if it is explicitly trusted for OCSP signing. This is used to set a root CA as a global signing root: that is any certificate that chains to that CA is an acceptable OCSP signing certificate. [Steve Henson] *) New '-extfile ...' option to 'openssl ca' for reading X.509v3 extensions from a separate configuration file. As when reading extensions from the main configuration file, the '-extensions ...' option may be used for specifying the section to use. [Massimiliano Pala ] *) New OCSP utility. Allows OCSP requests to be generated or read. The request can be sent to a responder and the output parsed, outputted or printed in text form. Not complete yet: still needs to check the OCSP response validity. [Steve Henson] *) New subcommands for 'openssl ca': 'openssl ca -status ' prints the status of the cert with the given serial number (according to the index file). 'openssl ca -updatedb' updates the expiry status of certificates in the index file. [Massimiliano Pala ] *) New '-newreq-nodes' command option to CA.pl. This is like '-newreq', but calls 'openssl req' with the '-nodes' option so that the resulting key is not encrypted. [Damien Miller ] *) New configuration for the GNU Hurd. [Jonathan Bartlett via Richard Levitte] *) Initial code to implement OCSP basic response verify. This is currently incomplete. Currently just finds the signer's certificate and verifies the signature on the response. [Steve Henson] *) New SSLeay_version code SSLEAY_DIR to determine the compiled-in value of OPENSSLDIR. This is available via the new '-d' option to 'openssl version', and is also included in 'openssl version -a'. [Bodo Moeller] *) Allowing defining memory allocation callbacks that will be given file name and line number information in additional arguments (a const char* and an int). The basic functionality remains, as well as the original possibility to just replace malloc(), realloc() and free() by functions that do not know about these additional arguments. To register and find out the current settings for extended allocation functions, the following functions are provided: CRYPTO_set_mem_ex_functions CRYPTO_set_locked_mem_ex_functions CRYPTO_get_mem_ex_functions CRYPTO_get_locked_mem_ex_functions These work the same way as CRYPTO_set_mem_functions and friends. CRYPTO_get_[locked_]mem_functions now writes 0 where such an extended allocation function is enabled. Similarly, CRYPTO_get_[locked_]mem_ex_functions writes 0 where a conventional allocation function is enabled. [Richard Levitte, Bodo Moeller] *) Finish off removing the remaining LHASH function pointer casts. There should no longer be any prototype-casting required when using the LHASH abstraction, and any casts that remain are "bugs". See the callback types and macros at the head of lhash.h for details (and "OBJ_cleanup" in crypto/objects/obj_dat.c as an example). [Geoff Thorpe] *) Add automatic query of EGD sockets in RAND_poll() for the unix variant. If /dev/[u]random devices are not available or do not return enough entropy, EGD style sockets (served by EGD or PRNGD) will automatically be queried. The locations /var/run/egd-pool, /dev/egd-pool, /etc/egd-pool, and /etc/entropy will be queried once each in this sequence, querying stops when enough entropy was collected without querying more sockets. [Lutz Jaenicke] *) Change the Unix RAND_poll() variant to be able to poll several random devices, as specified by DEVRANDOM, until a sufficient amount of data has been collected. We spend at most 10 ms on each file (select timeout) and read in non-blocking mode. DEVRANDOM now defaults to the list "/dev/urandom", "/dev/random", "/dev/srandom" (previously it was just the string "/dev/urandom"), so on typical platforms the 10 ms delay will never occur. Also separate out the Unix variant to its own file, rand_unix.c. For VMS, there's a currently-empty rand_vms.c. [Richard Levitte] *) Move OCSP client related routines to ocsp_cl.c. These provide utility functions which an application needing to issue a request to an OCSP responder and analyse the response will typically need: as opposed to those which an OCSP responder itself would need which will be added later. OCSP_request_sign() signs an OCSP request with an API similar to PKCS7_sign(). OCSP_response_status() returns status of OCSP response. OCSP_response_get1_basic() extracts basic response from response. OCSP_resp_find_status(): finds and extracts status information from an OCSP_CERTID structure (which will be created when the request structure is built). These are built from lower level functions which work on OCSP_SINGLERESP structures but won't normally be used unless the application wishes to examine extensions in the OCSP response for example. Replace nonce routines with a pair of functions. OCSP_request_add1_nonce() adds a nonce value and optionally generates a random value. OCSP_check_nonce() checks the validity of the nonce in an OCSP response. [Steve Henson] *) Change function OCSP_request_add() to OCSP_request_add0_id(). This doesn't copy the supplied OCSP_CERTID and avoids the need to free up the newly created id. Change return type to OCSP_ONEREQ to return the internal OCSP_ONEREQ structure. This can then be used to add extensions to the request. Deleted OCSP_request_new(), since most of its functionality is now in OCSP_REQUEST_new() (and the case insensitive name clash) apart from the ability to set the request name which will be added elsewhere. [Steve Henson] *) Update OCSP API. Remove obsolete extensions argument from various functions. Extensions are now handled using the new OCSP extension code. New simple OCSP HTTP function which can be used to send requests and parse the response. [Steve Henson] *) Fix the PKCS#7 (S/MIME) code to work with new ASN1. Two new ASN1_ITEM structures help with sign and verify. PKCS7_ATTR_SIGN uses the special reorder version of SET OF to sort the attributes and reorder them to match the encoded order. This resolves a long standing problem: a verify on a PKCS7 structure just after signing it used to fail because the attribute order did not match the encoded order. PKCS7_ATTR_VERIFY does not reorder the attributes: it uses the received order. This is necessary to tolerate some broken software that does not order SET OF. This is handled by encoding as a SEQUENCE OF but using implicit tagging (with UNIVERSAL class) to produce the required SET OF. [Steve Henson] *) Have mk1mf.pl generate the macros OPENSSL_BUILD_SHLIBCRYPTO and OPENSSL_BUILD_SHLIBSSL and use them appropriately in the header files to get correct declarations of the ASN.1 item variables. [Richard Levitte] *) Rewrite of PKCS#12 code to use new ASN1 functionality. Replace many PKCS#12 macros with real functions. Fix two unrelated ASN1 bugs: asn1_check_tlen() would sometimes attempt to use 'ctx' when it was NULL and ASN1_TYPE was not dereferenced properly in asn1_ex_c2i(). New ASN1 macro: DECLARE_ASN1_ITEM() which just declares the relevant ASN1_ITEM and no wrapper functions. [Steve Henson] *) New functions or ASN1_item_d2i_fp() and ASN1_item_d2i_bio(). These replace the old function pointer based I/O routines. Change most of the *_d2i_bio() and *_d2i_fp() functions to use these. [Steve Henson] *) Enhance mkdef.pl to be more accepting about spacing in C preprocessor lines, recognize more "algorithms" that can be deselected, and make it complain about algorithm deselection that isn't recognised. [Richard Levitte] *) New ASN1 functions to handle dup, sign, verify, digest, pack and unpack operations in terms of ASN1_ITEM. Modify existing wrappers to use new functions. Add NO_ASN1_OLD which can be set to remove some old style ASN1 functions: this can be used to determine if old code will still work when these eventually go away. [Steve Henson] *) New extension functions for OCSP structures, these follow the same conventions as certificates and CRLs. [Steve Henson] *) New function X509V3_add1_i2d(). This automatically encodes and adds an extension. Its behaviour can be customised with various flags to append, replace or delete. Various wrappers added for certificates and CRLs. [Steve Henson] *) Fix to avoid calling the underlying ASN1 print routine when an extension cannot be parsed. Correct a typo in the OCSP_SERVICELOC extension. Tidy up print OCSP format. [Steve Henson] *) Make mkdef.pl parse some of the ASN1 macros and add appropriate entries for variables. [Steve Henson] *) Add functionality to apps/openssl.c for detecting locking problems: As the program is single-threaded, all we have to do is register a locking callback using an array for storing which locks are currently held by the program. [Bodo Moeller] *) Use a lock around the call to CRYPTO_get_ex_new_index() in SSL_get_ex_data_X509_STORE_idx(), which is used in ssl_verify_cert_chain() and thus can be called at any time during TLS/SSL handshakes so that thread-safety is essential. Unfortunately, the ex_data design is not at all suited for multi-threaded use, so it probably should be abolished. [Bodo Moeller] *) Added Broadcom "ubsec" ENGINE to OpenSSL. [Broadcom, tweaked and integrated by Geoff Thorpe] *) Move common extension printing code to new function X509V3_print_extensions(). Reorganise OCSP print routines and implement some needed OCSP ASN1 functions. Add OCSP extensions. [Steve Henson] *) New function X509_signature_print() to remove duplication in some print routines. [Steve Henson] *) Add a special meaning when SET OF and SEQUENCE OF flags are both set (this was treated exactly the same as SET OF previously). This is used to reorder the STACK representing the structure to match the encoding. This will be used to get round a problem where a PKCS7 structure which was signed could not be verified because the STACK order did not reflect the encoded order. [Steve Henson] *) Reimplement the OCSP ASN1 module using the new code. [Steve Henson] *) Update the X509V3 code to permit the use of an ASN1_ITEM structure for its ASN1 operations. The old style function pointers still exist for now but they will eventually go away. [Steve Henson] *) Merge in replacement ASN1 code from the ASN1 branch. This almost completely replaces the old ASN1 functionality with a table driven encoder and decoder which interprets an ASN1_ITEM structure describing the ASN1 module. Compatibility with the existing ASN1 API (i2d,d2i) is largely maintained. Almost all of the old asn1_mac.h macro based ASN1 has also been converted to the new form. [Steve Henson] *) Change BN_mod_exp_recp so that negative moduli are tolerated (the sign is ignored). Similarly, ignore the sign in BN_MONT_CTX_set so that BN_mod_exp_mont and BN_mod_exp_mont_word work for negative moduli. [Bodo Moeller] *) Fix BN_uadd and BN_usub: Always return non-negative results instead of not touching the result's sign bit. [Bodo Moeller] *) BN_div bugfix: If the result is 0, the sign (res->neg) must not be set. [Bodo Moeller] *) Changed the LHASH code to use prototypes for callbacks, and created macros to declare and implement thin (optionally static) functions that provide type-safety and avoid function pointer casting for the type-specific callbacks. [Geoff Thorpe] *) Added Kerberos Cipher Suites to be used with TLS, as written in RFC 2712. [Veers Staats , Jeffrey Altman , via Richard Levitte] *) Reformat the FAQ so the different questions and answers can be divided in sections depending on the subject. [Richard Levitte] *) Have the zlib compression code load ZLIB.DLL dynamically under Windows. [Richard Levitte] *) New function BN_mod_sqrt for computing square roots modulo a prime (using the probabilistic Tonelli-Shanks algorithm unless p == 3 (mod 4) or p == 5 (mod 8), which are cases that can be handled deterministically). [Lenka Fibikova , Bodo Moeller] *) Make BN_mod_inverse faster by explicitly handling small quotients in the Euclid loop. (Speed gain about 20% for small moduli [256 or 512 bits], about 30% for larger ones [1024 or 2048 bits].) [Bodo Moeller] *) New function BN_kronecker. [Bodo Moeller] *) Fix BN_gcd so that it works on negative inputs; the result is positive unless both parameters are zero. Previously something reasonably close to an infinite loop was possible because numbers could be growing instead of shrinking in the implementation of Euclid's algorithm. [Bodo Moeller] *) Fix BN_is_word() and BN_is_one() macros to take into account the sign of the number in question. Fix BN_is_word(a,w) to work correctly for w == 0. The old BN_is_word(a,w) macro is now called BN_abs_is_word(a,w) because its test if the absolute value of 'a' equals 'w'. Note that BN_abs_is_word does *not* handle w == 0 reliably; it exists mostly for use in the implementations of BN_is_zero(), BN_is_one(), and BN_is_word(). [Bodo Moeller] *) New function BN_swap. [Bodo Moeller] *) Use BN_nnmod instead of BN_mod in crypto/bn/bn_exp.c so that the exponentiation functions are more likely to produce reasonable results on negative inputs. [Bodo Moeller] *) Change BN_mod_mul so that the result is always non-negative. Previously, it could be negative if one of the factors was negative; I don't think anyone really wanted that behaviour. [Bodo Moeller] *) Move BN_mod_... functions into new file crypto/bn/bn_mod.c (except for exponentiation, which stays in crypto/bn/bn_exp.c, and BN_mod_mul_reciprocal, which stays in crypto/bn/bn_recp.c) and add new functions: BN_nnmod BN_mod_sqr BN_mod_add BN_mod_add_quick BN_mod_sub BN_mod_sub_quick BN_mod_lshift1 BN_mod_lshift1_quick BN_mod_lshift BN_mod_lshift_quick These functions always generate non-negative results. BN_nnmod otherwise is like BN_mod (if BN_mod computes a remainder r such that |m| < r < 0, BN_nnmod will output rem + |m| instead). BN_mod_XXX_quick(r, a, [b,] m) generates the same result as BN_mod_XXX(r, a, [b,] m, ctx), but requires that a [and b] be reduced modulo m. [Lenka Fibikova , Bodo Moeller] #if 0 The following entry accidentally appeared in the CHANGES file distributed with OpenSSL 0.9.7. The modifications described in it do *not* apply to OpenSSL 0.9.7. *) Remove a few calls to bn_wexpand() in BN_sqr() (the one in there was actually never needed) and in BN_mul(). The removal in BN_mul() required a small change in bn_mul_part_recursive() and the addition of the functions bn_cmp_part_words(), bn_sub_part_words() and bn_add_part_words(), which do the same thing as bn_cmp_words(), bn_sub_words() and bn_add_words() except they take arrays with differing sizes. [Richard Levitte] #endif *) In 'openssl passwd', verify passwords read from the terminal unless the '-salt' option is used (which usually means that verification would just waste user's time since the resulting hash is going to be compared with some given password hash) or the new '-noverify' option is used. This is an incompatible change, but it does not affect non-interactive use of 'openssl passwd' (passwords on the command line, '-stdin' option, '-in ...' option) and thus should not cause any problems. [Bodo Moeller] *) Remove all references to RSAref, since there's no more need for it. [Richard Levitte] *) Make DSO load along a path given through an environment variable (SHLIB_PATH) with shl_load(). [Richard Levitte] *) Constify the ENGINE code as a result of BIGNUM constification. Also constify the RSA code and most things related to it. In a few places, most notable in the depth of the ASN.1 code, ugly casts back to non-const were required (to be solved at a later time) [Richard Levitte] *) Make it so the openssl application has all engines loaded by default. [Richard Levitte] *) Constify the BIGNUM routines a little more. [Richard Levitte] *) Add the following functions: ENGINE_load_cswift() ENGINE_load_chil() ENGINE_load_atalla() ENGINE_load_nuron() ENGINE_load_builtin_engines() That way, an application can itself choose if external engines that are built-in in OpenSSL shall ever be used or not. The benefit is that applications won't have to be linked with libdl or other dso libraries unless it's really needed. Changed 'openssl engine' to load all engines on demand. Changed the engine header files to avoid the duplication of some declarations (they differed!). [Richard Levitte] *) 'openssl engine' can now list capabilities. [Richard Levitte] *) Better error reporting in 'openssl engine'. [Richard Levitte] *) Never call load_dh_param(NULL) in s_server. [Bodo Moeller] *) Add engine application. It can currently list engines by name and identity, and test if they are actually available. [Richard Levitte] *) Improve RPM specification file by forcing symbolic linking and making sure the installed documentation is also owned by root.root. [Damien Miller ] *) Give the OpenSSL applications more possibilities to make use of keys (public as well as private) handled by engines. [Richard Levitte] *) Add OCSP code that comes from CertCo. [Richard Levitte] *) Add VMS support for the Rijndael code. [Richard Levitte] *) Added untested support for Nuron crypto accelerator. [Ben Laurie] *) Add support for external cryptographic devices. This code was previously distributed separately as the "engine" branch. [Geoff Thorpe, Richard Levitte] *) Rework the filename-translation in the DSO code. It is now possible to have far greater control over how a "name" is turned into a filename depending on the operating environment and any oddities about the different shared library filenames on each system. [Geoff Thorpe] *) Support threads on FreeBSD-elf in Configure. [Richard Levitte] *) Fix for SHA1 assembly problem with MASM: it produces warnings about corrupt line number information when assembling with debugging information. This is caused by the overlapping of two sections. [Bernd Matthes , Steve Henson] *) NCONF changes. NCONF_get_number() has no error checking at all. As a replacement, NCONF_get_number_e() is defined (_e for "error checking") and is promoted strongly. The old NCONF_get_number is kept around for binary backward compatibility. Make it possible for methods to load from something other than a BIO, by providing a function pointer that is given a name instead of a BIO. For example, this could be used to load configuration data from an LDAP server. [Richard Levitte] *) Fix for non blocking accept BIOs. Added new I/O special reason BIO_RR_ACCEPT to cover this case. Previously use of accept BIOs with non blocking I/O was not possible because no retry code was implemented. Also added new SSL code SSL_WANT_ACCEPT to cover this case. [Steve Henson] *) Added the beginnings of Rijndael support. [Ben Laurie] *) Fix for bug in DirectoryString mask setting. Add support for X509_NAME_print_ex() in 'req' and X509_print_ex() function to allow certificate printing to more controllable, additional 'certopt' option to 'x509' to allow new printing options to be set. [Steve Henson] *) Clean old EAY MD5 hack from e_os.h. [Richard Levitte] Changes between 0.9.6l and 0.9.6m [17 Mar 2004] *) Fix null-pointer assignment in do_change_cipher_spec() revealed by using the Codenomicon TLS Test Tool (CVE-2004-0079) [Joe Orton, Steve Henson] Changes between 0.9.6k and 0.9.6l [04 Nov 2003] *) Fix additional bug revealed by the NISCC test suite: Stop bug triggering large recursion when presented with certain ASN.1 tags (CVE-2003-0851) [Steve Henson] Changes between 0.9.6j and 0.9.6k [30 Sep 2003] *) Fix various bugs revealed by running the NISCC test suite: Stop out of bounds reads in the ASN1 code when presented with invalid tags (CVE-2003-0543 and CVE-2003-0544). If verify callback ignores invalid public key errors don't try to check certificate signature with the NULL public key. [Steve Henson] *) In ssl3_accept() (ssl/s3_srvr.c) only accept a client certificate if the server requested one: as stated in TLS 1.0 and SSL 3.0 specifications. [Steve Henson] *) In ssl3_get_client_hello() (ssl/s3_srvr.c), tolerate additional extra data after the compression methods not only for TLS 1.0 but also for SSL 3.0 (as required by the specification). [Bodo Moeller; problem pointed out by Matthias Loepfe] *) Change X509_certificate_type() to mark the key as exported/exportable when it's 512 *bits* long, not 512 bytes. [Richard Levitte] Changes between 0.9.6i and 0.9.6j [10 Apr 2003] *) Countermeasure against the Klima-Pokorny-Rosa extension of Bleichbacher's attack on PKCS #1 v1.5 padding: treat a protocol version number mismatch like a decryption error in ssl3_get_client_key_exchange (ssl/s3_srvr.c). [Bodo Moeller] *) Turn on RSA blinding by default in the default implementation to avoid a timing attack. Applications that don't want it can call RSA_blinding_off() or use the new flag RSA_FLAG_NO_BLINDING. They would be ill-advised to do so in most cases. [Ben Laurie, Steve Henson, Geoff Thorpe, Bodo Moeller] *) Change RSA blinding code so that it works when the PRNG is not seeded (in this case, the secret RSA exponent is abused as an unpredictable seed -- if it is not unpredictable, there is no point in blinding anyway). Make RSA blinding thread-safe by remembering the creator's thread ID in rsa->blinding and having all other threads use local one-time blinding factors (this requires more computation than sharing rsa->blinding, but avoids excessive locking; and if an RSA object is not shared between threads, blinding will still be very fast). [Bodo Moeller] Changes between 0.9.6h and 0.9.6i [19 Feb 2003] *) In ssl3_get_record (ssl/s3_pkt.c), minimize information leaked via timing by performing a MAC computation even if incorrect block cipher padding has been found. This is a countermeasure against active attacks where the attacker has to distinguish between bad padding and a MAC verification error. (CVE-2003-0078) [Bodo Moeller; problem pointed out by Brice Canvel (EPFL), Alain Hiltgen (UBS), Serge Vaudenay (EPFL), and Martin Vuagnoux (EPFL, Ilion)] Changes between 0.9.6g and 0.9.6h [5 Dec 2002] *) New function OPENSSL_cleanse(), which is used to cleanse a section of memory from its contents. This is done with a counter that will place alternating values in each byte. This can be used to solve two issues: 1) the removal of calls to memset() by highly optimizing compilers, and 2) cleansing with other values than 0, since those can be read through on certain media, for example a swap space on disk. [Geoff Thorpe] *) Bugfix: client side session caching did not work with external caching, because the session->cipher setting was not restored when reloading from the external cache. This problem was masked, when SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG (part of SSL_OP_ALL) was set. (Found by Steve Haslam .) [Lutz Jaenicke] *) Fix client_certificate (ssl/s2_clnt.c): The permissible total length of the REQUEST-CERTIFICATE message is 18 .. 34, not 17 .. 33. [Zeev Lieber ] *) Undo an undocumented change introduced in 0.9.6e which caused repeated calls to OpenSSL_add_all_ciphers() and OpenSSL_add_all_digests() to be ignored, even after calling EVP_cleanup(). [Richard Levitte] *) Change the default configuration reader to deal with last line not being properly terminated. [Richard Levitte] *) Change X509_NAME_cmp() so it applies the special rules on handling DN values that are of type PrintableString, as well as RDNs of type emailAddress where the value has the type ia5String. [stefank@valicert.com via Richard Levitte] *) Add a SSL_SESS_CACHE_NO_INTERNAL_STORE flag to take over half the job SSL_SESS_CACHE_NO_INTERNAL_LOOKUP was inconsistently doing, define a new flag (SSL_SESS_CACHE_NO_INTERNAL) to be the bitwise-OR of the two for use by the majority of applications wanting this behaviour, and update the docs. The documented behaviour and actual behaviour were inconsistent and had been changing anyway, so this is more a bug-fix than a behavioural change. [Geoff Thorpe, diagnosed by Nadav Har'El] *) Don't impose a 16-byte length minimum on session IDs in ssl/s3_clnt.c (the SSL 3.0 and TLS 1.0 specifications allow any length up to 32 bytes). [Bodo Moeller] *) Fix initialization code race conditions in SSLv23_method(), SSLv23_client_method(), SSLv23_server_method(), SSLv2_method(), SSLv2_client_method(), SSLv2_server_method(), SSLv3_method(), SSLv3_client_method(), SSLv3_server_method(), TLSv1_method(), TLSv1_client_method(), TLSv1_server_method(), ssl2_get_cipher_by_char(), ssl3_get_cipher_by_char(). [Patrick McCormick , Bodo Moeller] *) Reorder cleanup sequence in SSL_CTX_free(): only remove the ex_data after the cached sessions are flushed, as the remove_cb() might use ex_data contents. Bug found by Sam Varshavchik (see [openssl.org #212]). [Geoff Thorpe, Lutz Jaenicke] *) Fix typo in OBJ_txt2obj which incorrectly passed the content length, instead of the encoding length to d2i_ASN1_OBJECT. [Steve Henson] Changes between 0.9.6f and 0.9.6g [9 Aug 2002] *) [In 0.9.6g-engine release:] Fix crypto/engine/vendor_defns/cswift.h for WIN32 (use '_stdcall'). [Lynn Gazis ] Changes between 0.9.6e and 0.9.6f [8 Aug 2002] *) Fix ASN1 checks. Check for overflow by comparing with LONG_MAX and get fix the header length calculation. [Florian Weimer , Alon Kantor (and others), Steve Henson] *) Use proper error handling instead of 'assertions' in buffer overflow checks added in 0.9.6e. This prevents DoS (the assertions could call abort()). [Arne Ansper , Bodo Moeller] Changes between 0.9.6d and 0.9.6e [30 Jul 2002] *) Add various sanity checks to asn1_get_length() to reject the ASN1 length bytes if they exceed sizeof(long), will appear negative or the content length exceeds the length of the supplied buffer. [Steve Henson, Adi Stav , James Yonan ] *) Fix cipher selection routines: ciphers without encryption had no flags for the cipher strength set and where therefore not handled correctly by the selection routines (PR #130). [Lutz Jaenicke] *) Fix EVP_dsa_sha macro. [Nils Larsch] *) New option SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS for disabling the SSL 3.0/TLS 1.0 CBC vulnerability countermeasure that was added in OpenSSL 0.9.6d. As the countermeasure turned out to be incompatible with some broken SSL implementations, the new option is part of SSL_OP_ALL. SSL_OP_ALL is usually employed when compatibility with weird SSL implementations is desired (e.g. '-bugs' option to 's_client' and 's_server'), so the new option is automatically set in many applications. [Bodo Moeller] *) Changes in security patch: Changes marked "(CHATS)" were sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-01-2-0537. *) Add various sanity checks to asn1_get_length() to reject the ASN1 length bytes if they exceed sizeof(long), will appear negative or the content length exceeds the length of the supplied buffer. (CVE-2002-0659) [Steve Henson, Adi Stav , James Yonan ] *) Assertions for various potential buffer overflows, not known to happen in practice. [Ben Laurie (CHATS)] *) Various temporary buffers to hold ASCII versions of integers were too small for 64 bit platforms. (CVE-2002-0655) [Matthew Byng-Maddick and Ben Laurie (CHATS)> *) Remote buffer overflow in SSL3 protocol - an attacker could supply an oversized session ID to a client. (CVE-2002-0656) [Ben Laurie (CHATS)] *) Remote buffer overflow in SSL2 protocol - an attacker could supply an oversized client master key. (CVE-2002-0656) [Ben Laurie (CHATS)] Changes between 0.9.6c and 0.9.6d [9 May 2002] *) Fix crypto/asn1/a_sign.c so that 'parameters' is omitted (not encoded as NULL) with id-dsa-with-sha1. [Nils Larsch ; problem pointed out by Bodo Moeller] *) Check various X509_...() return values in apps/req.c. [Nils Larsch ] *) Fix BASE64 decode (EVP_DecodeUpdate) for data with CR/LF ended lines: an end-of-file condition would erroneously be flagged, when the CRLF was just at the end of a processed block. The bug was discovered when processing data through a buffering memory BIO handing the data to a BASE64-decoding BIO. Bug fund and patch submitted by Pavel Tsekov and Nedelcho Stanev. [Lutz Jaenicke] *) Implement a countermeasure against a vulnerability recently found in CBC ciphersuites in SSL 3.0/TLS 1.0: Send an empty fragment before application data chunks to avoid the use of known IVs with data potentially chosen by the attacker. [Bodo Moeller] *) Fix length checks in ssl3_get_client_hello(). [Bodo Moeller] *) TLS/SSL library bugfix: use s->s3->in_read_app_data differently to prevent ssl3_read_internal() from incorrectly assuming that ssl3_read_bytes() found application data while handshake processing was enabled when in fact s->s3->in_read_app_data was merely automatically cleared during the initial handshake. [Bodo Moeller; problem pointed out by Arne Ansper ] *) Fix object definitions for Private and Enterprise: they were not recognized in their shortname (=lowercase) representation. Extend obj_dat.pl to issue an error when using undefined keywords instead of silently ignoring the problem (Svenning Sorensen ). [Lutz Jaenicke] *) Fix DH_generate_parameters() so that it works for 'non-standard' generators, i.e. generators other than 2 and 5. (Previously, the code did not properly initialise the 'add' and 'rem' values to BN_generate_prime().) In the new general case, we do not insist that 'generator' is actually a primitive root: This requirement is rather pointless; a generator of the order-q subgroup is just as good, if not better. [Bodo Moeller] *) Map new X509 verification errors to alerts. Discovered and submitted by Tom Wu . [Lutz Jaenicke] *) Fix ssl3_pending() (ssl/s3_lib.c) to prevent SSL_pending() from returning non-zero before the data has been completely received when using non-blocking I/O. [Bodo Moeller; problem pointed out by John Hughes] *) Some of the ciphers missed the strength entry (SSL_LOW etc). [Ben Laurie, Lutz Jaenicke] *) Fix bug in SSL_clear(): bad sessions were not removed (found by Yoram Zahavi ). [Lutz Jaenicke] *) Add information about CygWin 1.3 and on, and preserve proper configuration for the versions before that. [Corinna Vinschen and Richard Levitte] *) Make removal from session cache (SSL_CTX_remove_session()) more robust: check whether we deal with a copy of a session and do not delete from the cache in this case. Problem reported by "Izhar Shoshani Levi" . [Lutz Jaenicke] *) Do not store session data into the internal session cache, if it is never intended to be looked up (SSL_SESS_CACHE_NO_INTERNAL_LOOKUP flag is set). Proposed by Aslam . [Lutz Jaenicke] *) Have ASN1_BIT_STRING_set_bit() really clear a bit when the requested value is 0. [Richard Levitte] *) [In 0.9.6d-engine release:] Fix a crashbug and a logic bug in hwcrhk_load_pubkey(). [Toomas Kiisk via Richard Levitte] *) Add the configuration target linux-s390x. [Neale Ferguson via Richard Levitte] *) The earlier bugfix for the SSL3_ST_SW_HELLO_REQ_C case of ssl3_accept (ssl/s3_srvr.c) incorrectly used a local flag variable as an indication that a ClientHello message has been received. As the flag value will be lost between multiple invocations of ssl3_accept when using non-blocking I/O, the function may not be aware that a handshake has actually taken place, thus preventing a new session from being added to the session cache. To avoid this problem, we now set s->new_session to 2 instead of using a local variable. [Lutz Jaenicke, Bodo Moeller] *) Bugfix: Return -1 from ssl3_get_server_done (ssl3/s3_clnt.c) if the SSL_R_LENGTH_MISMATCH error is detected. [Geoff Thorpe, Bodo Moeller] *) New 'shared_ldflag' column in Configure platform table. [Richard Levitte] *) Fix EVP_CIPHER_mode macro. ["Dan S. Camper" ] *) Fix ssl3_read_bytes (ssl/s3_pkt.c): To ignore messages of unknown type, we must throw them away by setting rr->length to 0. [D P Chang ] Changes between 0.9.6b and 0.9.6c [21 dec 2001] *) Fix BN_rand_range bug pointed out by Dominikus Scherkl . (The previous implementation worked incorrectly for those cases where range = 10..._2 and 3*range is two bits longer than range.) [Bodo Moeller] *) Only add signing time to PKCS7 structures if it is not already present. [Steve Henson] *) Fix crypto/objects/objects.h: "ld-ce" should be "id-ce", OBJ_ld_ce should be OBJ_id_ce. Also some ip-pda OIDs in crypto/objects/objects.txt were incorrect (cf. RFC 3039). [Matt Cooper, Frederic Giudicelli, Bodo Moeller] *) Release CRYPTO_LOCK_DYNLOCK when CRYPTO_destroy_dynlockid() returns early because it has nothing to do. [Andy Schneider ] *) [In 0.9.6c-engine release:] Fix mutex callback return values in crypto/engine/hw_ncipher.c. [Andy Schneider ] *) [In 0.9.6c-engine release:] Add support for Cryptographic Appliance's keyserver technology. (Use engine 'keyclient') [Cryptographic Appliances and Geoff Thorpe] *) Add a configuration entry for OS/390 Unix. The C compiler 'c89' is called via tools/c89.sh because arguments have to be rearranged (all '-L' options must appear before the first object modules). [Richard Shapiro ] *) [In 0.9.6c-engine release:] Add support for Broadcom crypto accelerator cards, backported from 0.9.7. [Broadcom, Nalin Dahyabhai , Mark Cox] *) [In 0.9.6c-engine release:] Add support for SureWare crypto accelerator cards from Baltimore Technologies. (Use engine 'sureware') [Baltimore Technologies and Mark Cox] *) [In 0.9.6c-engine release:] Add support for crypto accelerator cards from Accelerated Encryption Processing, www.aep.ie. (Use engine 'aep') [AEP Inc. and Mark Cox] *) Add a configuration entry for gcc on UnixWare. [Gary Benson ] *) Change ssl/s2_clnt.c and ssl/s2_srvr.c so that received handshake messages are stored in a single piece (fixed-length part and variable-length part combined) and fix various bugs found on the way. [Bodo Moeller] *) Disable caching in BIO_gethostbyname(), directly use gethostbyname() instead. BIO_gethostbyname() does not know what timeouts are appropriate, so entries would stay in cache even when they have become invalid. [Bodo Moeller; problem pointed out by Rich Salz *) Change ssl23_get_client_hello (ssl/s23_srvr.c) behaviour when faced with a pathologically small ClientHello fragment that does not contain client_version: Instead of aborting with an error, simply choose the highest available protocol version (i.e., TLS 1.0 unless it is disabled). In practice, ClientHello messages are never sent like this, but this change gives us strictly correct behaviour at least for TLS. [Bodo Moeller] *) Fix SSL handshake functions and SSL_clear() such that SSL_clear() never resets s->method to s->ctx->method when called from within one of the SSL handshake functions. [Bodo Moeller; problem pointed out by Niko Baric] *) In ssl3_get_client_hello (ssl/s3_srvr.c), generate a fatal alert (sent using the client's version number) if client_version is smaller than the protocol version in use. Also change ssl23_get_client_hello (ssl/s23_srvr.c) to select TLS 1.0 if the client demanded SSL 3.0 but only TLS 1.0 is enabled; then the client will at least see that alert. [Bodo Moeller] *) Fix ssl3_get_message (ssl/s3_both.c) to handle message fragmentation correctly. [Bodo Moeller] *) Avoid infinite loop in ssl3_get_message (ssl/s3_both.c) if a client receives HelloRequest while in a handshake. [Bodo Moeller; bug noticed by Andy Schneider ] *) Bugfix in ssl3_accept (ssl/s3_srvr.c): Case SSL3_ST_SW_HELLO_REQ_C should end in 'break', not 'goto end' which circumvents various cleanups done in state SSL_ST_OK. But session related stuff must be disabled for SSL_ST_OK in the case that we just sent a HelloRequest. Also avoid some overhead by not calling ssl_init_wbio_buffer() before just sending a HelloRequest. [Bodo Moeller, Eric Rescorla ] *) Fix ssl/s3_enc.c, ssl/t1_enc.c and ssl/s3_pkt.c so that we don't reveal whether illegal block cipher padding was found or a MAC verification error occurred. (Neither SSLerr() codes nor alerts are directly visible to potential attackers, but the information may leak via logfiles.) Similar changes are not required for the SSL 2.0 implementation because the number of padding bytes is sent in clear for SSL 2.0, and the extra bytes are just ignored. However ssl/s2_pkt.c failed to verify that the purported number of padding bytes is in the legal range. [Bodo Moeller] *) Add OpenUNIX-8 support including shared libraries (Boyd Lynn Gerber ). [Lutz Jaenicke] *) Improve RSA_padding_check_PKCS1_OAEP() check again to avoid 'wristwatch attack' using huge encoding parameters (cf. James H. Manger's CRYPTO 2001 paper). Note that the RSA_PKCS1_OAEP_PADDING case of RSA_private_decrypt() does not use encoding parameters and hence was not vulnerable. [Bodo Moeller] *) BN_sqr() bug fix. [Ulf Möller, reported by Jim Ellis ] *) Rabin-Miller test analyses assume uniformly distributed witnesses, so use BN_pseudo_rand_range() instead of using BN_pseudo_rand() followed by modular reduction. [Bodo Moeller; pointed out by Adam Young ] *) Add BN_pseudo_rand_range() with obvious functionality: BN_rand_range() equivalent based on BN_pseudo_rand() instead of BN_rand(). [Bodo Moeller] *) s3_srvr.c: allow sending of large client certificate lists (> 16 kB). This function was broken, as the check for a new client hello message to handle SGC did not allow these large messages. (Tracked down by "Douglas E. Engert" .) [Lutz Jaenicke] *) Add alert descriptions for TLSv1 to SSL_alert_desc_string[_long](). [Lutz Jaenicke] *) Fix buggy behaviour of BIO_get_num_renegotiates() and BIO_ctrl() for BIO_C_GET_WRITE_BUF_SIZE ("Stephen Hinton" ). [Lutz Jaenicke] *) Rework the configuration and shared library support for Tru64 Unix. The configuration part makes use of modern compiler features and still retains old compiler behavior for those that run older versions of the OS. The shared library support part includes a variant that uses the RPATH feature, and is available through the special configuration target "alpha-cc-rpath", which will never be selected automatically. [Tim Mooney via Richard Levitte] *) In ssl3_get_key_exchange (ssl/s3_clnt.c), call ssl3_get_message() with the same message size as in ssl3_get_certificate_request(). Otherwise, if no ServerKeyExchange message occurs, CertificateRequest messages might inadvertently be reject as too long. [Petr Lampa ] *) Enhanced support for IA-64 Unix platforms (well, Linux and HP-UX). [Andy Polyakov] *) Modified SSL library such that the verify_callback that has been set specifically for an SSL object with SSL_set_verify() is actually being used. Before the change, a verify_callback set with this function was ignored and the verify_callback() set in the SSL_CTX at the time of the call was used. New function X509_STORE_CTX_set_verify_cb() introduced to allow the necessary settings. [Lutz Jaenicke] *) Initialize static variable in crypto/dsa/dsa_lib.c and crypto/dh/dh_lib.c explicitly to NULL, as at least on Solaris 8 this seems not always to be done automatically (in contradiction to the requirements of the C standard). This made problems when used from OpenSSH. [Lutz Jaenicke] *) In OpenSSL 0.9.6a and 0.9.6b, crypto/dh/dh_key.c ignored dh->length and always used BN_rand_range(priv_key, dh->p). BN_rand_range() is not necessary for Diffie-Hellman, and this specific range makes Diffie-Hellman unnecessarily inefficient if dh->length (recommended exponent length) is much smaller than the length of dh->p. We could use BN_rand_range() if the order of the subgroup was stored in the DH structure, but we only have dh->length. So switch back to BN_rand(priv_key, l, ...) where 'l' is dh->length if this is defined, or BN_num_bits(dh->p)-1 otherwise. [Bodo Moeller] *) In RSA_eay_public_encrypt RSA_eay_private_decrypt RSA_eay_private_encrypt (signing) RSA_eay_public_decrypt (signature verification) (default implementations for RSA_public_encrypt, RSA_private_decrypt, RSA_private_encrypt, RSA_public_decrypt), always reject numbers >= n. [Bodo Moeller] *) In crypto/rand/md_rand.c, use a new short-time lock CRYPTO_LOCK_RAND2 to synchronize access to 'locking_thread'. This is necessary on systems where access to 'locking_thread' (an 'unsigned long' variable) is not atomic. [Bodo Moeller] *) In crypto/rand/md_rand.c, set 'locking_thread' to current thread's ID *before* setting the 'crypto_lock_rand' flag. The previous code had a race condition if 0 is a valid thread ID. [Travis Vitek ] *) Add support for shared libraries under Irix. [Albert Chin-A-Young ] *) Add configuration option to build on Linux on both big-endian and little-endian MIPS. [Ralf Baechle ] *) Add the possibility to create shared libraries on HP-UX. [Richard Levitte] Changes between 0.9.6a and 0.9.6b [9 Jul 2001] *) Change ssleay_rand_bytes (crypto/rand/md_rand.c) to avoid a SSLeay/OpenSSL PRNG weakness pointed out by Markku-Juhani O. Saarinen : PRNG state recovery was possible based on the output of one PRNG request appropriately sized to gain knowledge on 'md' followed by enough consecutive 1-byte PRNG requests to traverse all of 'state'. 1. When updating 'md_local' (the current thread's copy of 'md') during PRNG output generation, hash all of the previous 'md_local' value, not just the half used for PRNG output. 2. Make the number of bytes from 'state' included into the hash independent from the number of PRNG bytes requested. The first measure alone would be sufficient to avoid Markku-Juhani's attack. (Actually it had never occurred to me that the half of 'md_local' used for chaining was the half from which PRNG output bytes were taken -- I had always assumed that the secret half would be used.) The second measure makes sure that additional data from 'state' is never mixed into 'md_local' in small portions; this heuristically further strengthens the PRNG. [Bodo Moeller] *) Fix crypto/bn/asm/mips3.s. [Andy Polyakov] *) When only the key is given to "enc", the IV is undefined. Print out an error message in this case. [Lutz Jaenicke] *) Handle special case when X509_NAME is empty in X509 printing routines. [Steve Henson] *) In dsa_do_verify (crypto/dsa/dsa_ossl.c), verify that r and s are positive and less than q. [Bodo Moeller] *) Don't change *pointer in CRYPTO_add_lock() is add_lock_callback is used: it isn't thread safe and the add_lock_callback should handle that itself. [Paul Rose ] *) Verify that incoming data obeys the block size in ssl3_enc (ssl/s3_enc.c) and tls1_enc (ssl/t1_enc.c). [Bodo Moeller] *) Fix OAEP check. [Ulf Möller, Bodo Möller] *) The countermeasure against Bleichbacher's attack on PKCS #1 v1.5 RSA encryption was accidentally removed in s3_srvr.c in OpenSSL 0.9.5 when fixing the server behaviour for backwards-compatible 'client hello' messages. (Note that the attack is impractical against SSL 3.0 and TLS 1.0 anyway because length and version checking means that the probability of guessing a valid ciphertext is around 2^-40; see section 5 in Bleichenbacher's CRYPTO '98 paper.) Before 0.9.5, the countermeasure (hide the error by generating a random 'decryption result') did not work properly because ERR_clear_error() was missing, meaning that SSL_get_error() would detect the supposedly ignored error. Both problems are now fixed. [Bodo Moeller] *) In crypto/bio/bf_buff.c, increase DEFAULT_BUFFER_SIZE to 4096 (previously it was 1024). [Bodo Moeller] *) Fix for compatibility mode trust settings: ignore trust settings unless some valid trust or reject settings are present. [Steve Henson] *) Fix for blowfish EVP: its a variable length cipher. [Steve Henson] *) Fix various bugs related to DSA S/MIME verification. Handle missing parameters in DSA public key structures and return an error in the DSA routines if parameters are absent. [Steve Henson] *) In versions up to 0.9.6, RAND_file_name() resorted to file ".rnd" in the current directory if neither $RANDFILE nor $HOME was set. RAND_file_name() in 0.9.6a returned NULL in this case. This has caused some confusion to Windows users who haven't defined $HOME. Thus RAND_file_name() is changed again: e_os.h can define a DEFAULT_HOME, which will be used if $HOME is not set. For Windows, we use "C:"; on other platforms, we still require environment variables. *) Move 'if (!initialized) RAND_poll()' into regions protected by CRYPTO_LOCK_RAND. This is not strictly necessary, but avoids having multiple threads call RAND_poll() concurrently. [Bodo Moeller] *) In crypto/rand/md_rand.c, replace 'add_do_not_lock' flag by a combination of a flag and a thread ID variable. Otherwise while one thread is in ssleay_rand_bytes (which sets the flag), *other* threads can enter ssleay_add_bytes without obeying the CRYPTO_LOCK_RAND lock (and may even illegally release the lock that they do not hold after the first thread unsets add_do_not_lock). [Bodo Moeller] *) Change bctest again: '-x' expressions are not available in all versions of 'test'. [Bodo Moeller] Changes between 0.9.6 and 0.9.6a [5 Apr 2001] *) Fix a couple of memory leaks in PKCS7_dataDecode() [Steve Henson, reported by Heyun Zheng ] *) Change Configure and Makefiles to provide EXE_EXT, which will contain the default extension for executables, if any. Also, make the perl scripts that use symlink() to test if it really exists and use "cp" if it doesn't. All this made OpenSSL compilable and installable in CygWin. [Richard Levitte] *) Fix for asn1_GetSequence() for indefinite length constructed data. If SEQUENCE is length is indefinite just set c->slen to the total amount of data available. [Steve Henson, reported by shige@FreeBSD.org] [This change does not apply to 0.9.7.] *) Change bctest to avoid here-documents inside command substitution (workaround for FreeBSD /bin/sh bug). For compatibility with Ultrix, avoid shell functions (introduced in the bctest version that searches along $PATH). [Bodo Moeller] *) Rename 'des_encrypt' to 'des_encrypt1'. This avoids the clashes with des_encrypt() defined on some operating systems, like Solaris and UnixWare. [Richard Levitte] *) Check the result of RSA-CRT (see D. Boneh, R. DeMillo, R. Lipton: On the Importance of Eliminating Errors in Cryptographic Computations, J. Cryptology 14 (2001) 2, 101-119, http://theory.stanford.edu/~dabo/papers/faults.ps.gz). [Ulf Moeller] *) MIPS assembler BIGNUM division bug fix. [Andy Polyakov] *) Disabled incorrect Alpha assembler code. [Richard Levitte] *) Fix PKCS#7 decode routines so they correctly update the length after reading an EOC for the EXPLICIT tag. [Steve Henson] [This change does not apply to 0.9.7.] *) Fix bug in PKCS#12 key generation routines. This was triggered if a 3DES key was generated with a 0 initial byte. Include PKCS12_BROKEN_KEYGEN compilation option to retain the old (but broken) behaviour. [Steve Henson] *) Enhance bctest to search for a working bc along $PATH and print it when found. [Tim Rice via Richard Levitte] *) Fix memory leaks in err.c: free err_data string if necessary; don't write to the wrong index in ERR_set_error_data. [Bodo Moeller] *) Implement ssl23_peek (analogous to ssl23_read), which previously did not exist. [Bodo Moeller] *) Replace rdtsc with _emit statements for VC++ version 5. [Jeremy Cooper ] *) Make it possible to reuse SSLv2 sessions. [Richard Levitte] *) In copy_email() check for >= 0 as a return value for X509_NAME_get_index_by_NID() since 0 is a valid index. [Steve Henson reported by Massimiliano Pala ] *) Avoid coredump with unsupported or invalid public keys by checking if X509_get_pubkey() fails in PKCS7_verify(). Fix memory leak when PKCS7_verify() fails with non detached data. [Steve Henson] *) Don't use getenv in library functions when run as setuid/setgid. New function OPENSSL_issetugid(). [Ulf Moeller] *) Avoid false positives in memory leak detection code (crypto/mem_dbg.c) due to incorrect handling of multi-threading: 1. Fix timing glitch in the MemCheck_off() portion of CRYPTO_mem_ctrl(). 2. Fix logical glitch in is_MemCheck_on() aka CRYPTO_is_mem_check_on(). 3. Count how many times MemCheck_off() has been called so that nested use can be treated correctly. This also avoids inband-signalling in the previous code (which relied on the assumption that thread ID 0 is impossible). [Bodo Moeller] *) Add "-rand" option also to s_client and s_server. [Lutz Jaenicke] *) Fix CPU detection on Irix 6.x. [Kurt Hockenbury and "Bruce W. Forsberg" ] *) Fix X509_NAME bug which produced incorrect encoding if X509_NAME was empty. [Steve Henson] [This change does not apply to 0.9.7.] *) Use the cached encoding of an X509_NAME structure rather than copying it. This is apparently the reason for the libsafe "errors" but the code is actually correct. [Steve Henson] *) Add new function BN_rand_range(), and fix DSA_sign_setup() to prevent Bleichenbacher's DSA attack. Extend BN_[pseudo_]rand: As before, top=1 forces the highest two bits to be set and top=0 forces the highest bit to be set; top=-1 is new and leaves the highest bit random. [Ulf Moeller, Bodo Moeller] *) In the NCONF_...-based implementations for CONF_... queries (crypto/conf/conf_lib.c), if the input LHASH is NULL, avoid using a temporary CONF structure with the data component set to NULL (which gives segmentation faults in lh_retrieve). Instead, use NULL for the CONF pointer in CONF_get_string and CONF_get_number (which may use environment variables) and directly return NULL from CONF_get_section. [Bodo Moeller] *) Fix potential buffer overrun for EBCDIC. [Ulf Moeller] *) Tolerate nonRepudiation as being valid for S/MIME signing and certSign keyUsage if basicConstraints absent for a CA. [Steve Henson] *) Make SMIME_write_PKCS7() write mail header values with a format that is more generally accepted (no spaces before the semicolon), since some programs can't parse those values properly otherwise. Also make sure BIO's that break lines after each write do not create invalid headers. [Richard Levitte] *) Make the CRL encoding routines work with empty SEQUENCE OF. The macros previously used would not encode an empty SEQUENCE OF and break the signature. [Steve Henson] [This change does not apply to 0.9.7.] *) Zero the premaster secret after deriving the master secret in DH ciphersuites. [Steve Henson] *) Add some EVP_add_digest_alias registrations (as found in OpenSSL_add_all_digests()) to SSL_library_init() aka OpenSSL_add_ssl_algorithms(). This provides improved compatibility with peers using X.509 certificates with unconventional AlgorithmIdentifier OIDs. [Bodo Moeller] *) Fix for Irix with NO_ASM. ["Bruce W. Forsberg" ] *) ./config script fixes. [Ulf Moeller, Richard Levitte] *) Fix 'openssl passwd -1'. [Bodo Moeller] *) Change PKCS12_key_gen_asc() so it can cope with non null terminated strings whose length is passed in the passlen parameter, for example from PEM callbacks. This was done by adding an extra length parameter to asc2uni(). [Steve Henson, reported by ] *) Fix C code generated by 'openssl dsaparam -C': If a BN_bin2bn call failed, free the DSA structure. [Bodo Moeller] *) Fix to uni2asc() to cope with zero length Unicode strings. These are present in some PKCS#12 files. [Steve Henson] *) Increase s2->wbuf allocation by one byte in ssl2_new (ssl/s2_lib.c). Otherwise do_ssl_write (ssl/s2_pkt.c) will write beyond buffer limits when writing a 32767 byte record. [Bodo Moeller; problem reported by Eric Day ] *) In RSA_eay_public_{en,ed}crypt and RSA_eay_mod_exp (rsa_eay.c), obtain lock CRYPTO_LOCK_RSA before setting rsa->_method_mod_{n,p,q}. (RSA objects have a reference count access to which is protected by CRYPTO_LOCK_RSA [see rsa_lib.c, s3_srvr.c, ssl_cert.c, ssl_rsa.c], so they are meant to be shared between threads.) [Bodo Moeller, Geoff Thorpe; original patch submitted by "Reddie, Steven" ] *) Fix a deadlock in CRYPTO_mem_leaks(). [Bodo Moeller] *) Use better test patterns in bntest. [Ulf Möller] *) rand_win.c fix for Borland C. [Ulf Möller] *) BN_rshift bugfix for n == 0. [Bodo Moeller] *) Add a 'bctest' script that checks for some known 'bc' bugs so that 'make test' does not abort just because 'bc' is broken. [Bodo Moeller] *) Store verify_result within SSL_SESSION also for client side to avoid potential security hole. (Re-used sessions on the client side always resulted in verify_result==X509_V_OK, not using the original result of the server certificate verification.) [Lutz Jaenicke] *) Fix ssl3_pending: If the record in s->s3->rrec is not of type SSL3_RT_APPLICATION_DATA, return 0. Similarly, change ssl2_pending to return 0 if SSL_in_init(s) is true. [Bodo Moeller] *) Fix SSL_peek: Both ssl2_peek and ssl3_peek, which were totally broken in earlier releases, have been re-implemented by renaming the previous implementations of ssl2_read and ssl3_read to ssl2_read_internal and ssl3_read_internal, respectively, and adding 'peek' parameters to them. The new ssl[23]_{read,peek} functions are calls to ssl[23]_read_internal with the 'peek' flag set appropriately. A 'peek' parameter has also been added to ssl3_read_bytes, which does the actual work for ssl3_read_internal. [Bodo Moeller] *) Initialise "ex_data" member of RSA/DSA/DH structures prior to calling the method-specific "init()" handler. Also clean up ex_data after calling the method-specific "finish()" handler. Previously, this was happening the other way round. [Geoff Thorpe] *) Increase BN_CTX_NUM (the number of BIGNUMs in a BN_CTX) to 16. The previous value, 12, was not always sufficient for BN_mod_exp(). [Bodo Moeller] *) Make sure that shared libraries get the internal name engine with the full version number and not just 0. This should mark the shared libraries as not backward compatible. Of course, this should be changed again when we can guarantee backward binary compatibility. [Richard Levitte] *) Fix typo in get_cert_by_subject() in by_dir.c [Jean-Marc Desperrier ] *) Rework the system to generate shared libraries: - Make note of the expected extension for the shared libraries and if there is a need for symbolic links from for example libcrypto.so.0 to libcrypto.so.0.9.7. There is extended info in Configure for that. - Make as few rebuilds of the shared libraries as possible. - Still avoid linking the OpenSSL programs with the shared libraries. - When installing, install the shared libraries separately from the static ones. [Richard Levitte] *) Fix SSL_CTX_set_read_ahead macro to actually use its argument. Copy SSL_CTX's read_ahead flag to SSL object directly in SSL_new and not in SSL_clear because the latter is also used by the accept/connect functions; previously, the settings made by SSL_set_read_ahead would be lost during the handshake. [Bodo Moeller; problems reported by Anders Gertz ] *) Correct util/mkdef.pl to be selective about disabled algorithms. Previously, it would create entries for disabled algorithms no matter what. [Richard Levitte] *) Added several new manual pages for SSL_* function. [Lutz Jaenicke] Changes between 0.9.5a and 0.9.6 [24 Sep 2000] *) In ssl23_get_client_hello, generate an error message when faced with an initial SSL 3.0/TLS record that is too small to contain the first two bytes of the ClientHello message, i.e. client_version. (Note that this is a pathologic case that probably has never happened in real life.) The previous approach was to use the version number from the record header as a substitute; but our protocol choice should not depend on that one because it is not authenticated by the Finished messages. [Bodo Moeller] *) More robust randomness gathering functions for Windows. [Jeffrey Altman ] *) For compatibility reasons if the flag X509_V_FLAG_ISSUER_CHECK is not set then we don't setup the error code for issuer check errors to avoid possibly overwriting other errors which the callback does handle. If an application does set the flag then we assume it knows what it is doing and can handle the new informational codes appropriately. [Steve Henson] *) Fix for a nasty bug in ASN1_TYPE handling. ASN1_TYPE is used for a general "ANY" type, as such it should be able to decode anything including tagged types. However it didn't check the class so it would wrongly interpret tagged types in the same way as their universal counterpart and unknown types were just rejected. Changed so that the tagged and unknown types are handled in the same way as a SEQUENCE: that is the encoding is stored intact. There is also a new type "V_ASN1_OTHER" which is used when the class is not universal, in this case we have no idea what the actual type is so we just lump them all together. [Steve Henson] *) On VMS, stdout may very well lead to a file that is written to in a record-oriented fashion. That means that every write() will write a separate record, which will be read separately by the programs trying to read from it. This can be very confusing. The solution is to put a BIO filter in the way that will buffer text until a linefeed is reached, and then write everything a line at a time, so every record written will be an actual line, not chunks of lines and not (usually doesn't happen, but I've seen it once) several lines in one record. BIO_f_linebuffer() is the answer. Currently, it's a VMS-only method, because that's where it has been tested well enough. [Richard Levitte] *) Remove 'optimized' squaring variant in BN_mod_mul_montgomery, it can return incorrect results. (Note: The buggy variant was not enabled in OpenSSL 0.9.5a, but it was in 0.9.6-beta[12].) [Bodo Moeller] *) Disable the check for content being present when verifying detached signatures in pk7_smime.c. Some versions of Netscape (wrongly) include zero length content when signing messages. [Steve Henson] *) New BIO_shutdown_wr macro, which invokes the BIO_C_SHUTDOWN_WR BIO_ctrl (for BIO pairs). [Bodo Möller] *) Add DSO method for VMS. [Richard Levitte] *) Bug fix: Montgomery multiplication could produce results with the wrong sign. [Ulf Möller] *) Add RPM specification openssl.spec and modify it to build three packages. The default package contains applications, application documentation and run-time libraries. The devel package contains include files, static libraries and function documentation. The doc package contains the contents of the doc directory. The original openssl.spec was provided by Damien Miller . [Richard Levitte] *) Add a large number of documentation files for many SSL routines. [Lutz Jaenicke ] *) Add a configuration entry for Sony News 4. [NAKAJI Hiroyuki ] *) Don't set the two most significant bits to one when generating a random number < q in the DSA library. [Ulf Möller] *) New SSL API mode 'SSL_MODE_AUTO_RETRY'. This disables the default behaviour that SSL_read may result in SSL_ERROR_WANT_READ (even if the underlying transport is blocking) if a handshake took place. (The default behaviour is needed by applications such as s_client and s_server that use select() to determine when to use SSL_read; but for applications that know in advance when to expect data, it just makes things more complicated.) [Bodo Moeller] *) Add RAND_egd_bytes(), which gives control over the number of bytes read from EGD. [Ben Laurie] *) Add a few more EBCDIC conditionals that make `req' and `x509' work better on such systems. [Martin Kraemer ] *) Add two demo programs for PKCS12_parse() and PKCS12_create(). Update PKCS12_parse() so it copies the friendlyName and the keyid to the certificates aux info. [Steve Henson] *) Fix bug in PKCS7_verify() which caused an infinite loop if there was more than one signature. [Sven Uszpelkat ] *) Major change in util/mkdef.pl to include extra information about each symbol, as well as presenting variables as well as functions. This change means that there's n more need to rebuild the .num files when some algorithms are excluded. [Richard Levitte] *) Allow the verify time to be set by an application, rather than always using the current time. [Steve Henson] *) Phase 2 verify code reorganisation. The certificate verify code now looks up an issuer certificate by a number of criteria: subject name, authority key id and key usage. It also verifies self signed certificates by the same criteria. The main comparison function is X509_check_issued() which performs these checks. Lot of changes were necessary in order to support this without completely rewriting the lookup code. Authority and subject key identifier are now cached. The LHASH 'certs' is X509_STORE has now been replaced by a STACK_OF(X509_OBJECT). This is mainly because an LHASH can't store or retrieve multiple objects with the same hash value. As a result various functions (which were all internal use only) have changed to handle the new X509_STORE structure. This will break anything that messed round with X509_STORE internally. The functions X509_STORE_add_cert() now checks for an exact match, rather than just subject name. The X509_STORE API doesn't directly support the retrieval of multiple certificates matching a given criteria, however this can be worked round by performing a lookup first (which will fill the cache with candidate certificates) and then examining the cache for matches. This is probably the best we can do without throwing out X509_LOOKUP entirely (maybe later...). The X509_VERIFY_CTX structure has been enhanced considerably. All certificate lookup operations now go via a get_issuer() callback. Although this currently uses an X509_STORE it can be replaced by custom lookups. This is a simple way to bypass the X509_STORE hackery necessary to make this work and makes it possible to use more efficient techniques in future. A very simple version which uses a simple STACK for its trusted certificate store is also provided using X509_STORE_CTX_trusted_stack(). The verify_cb() and verify() callbacks now have equivalents in the X509_STORE_CTX structure. X509_STORE_CTX also has a 'flags' field which can be used to customise the verify behaviour. [Steve Henson] *) Add new PKCS#7 signing option PKCS7_NOSMIMECAP which excludes S/MIME capabilities. [Steve Henson] *) When a certificate request is read in keep a copy of the original encoding of the signed data and use it when outputting again. Signatures then use the original encoding rather than a decoded, encoded version which may cause problems if the request is improperly encoded. [Steve Henson] *) For consistency with other BIO_puts implementations, call buffer_write(b, ...) directly in buffer_puts instead of calling BIO_write(b, ...). In BIO_puts, increment b->num_write as in BIO_write. [Peter.Sylvester@EdelWeb.fr] *) Fix BN_mul_word for the case where the word is 0. (We have to use BN_zero, we may not return a BIGNUM with an array consisting of words set to zero.) [Bodo Moeller] *) Avoid calling abort() from within the library when problems are detected, except if preprocessor symbols have been defined (such as REF_CHECK, BN_DEBUG etc.). [Bodo Moeller] *) New openssl application 'rsautl'. This utility can be used for low level RSA operations. DER public key BIO/fp routines also added. [Steve Henson] *) New Configure entry and patches for compiling on QNX 4. [Andreas Schneider ] *) A demo state-machine implementation was sponsored by Nuron (http://www.nuron.com/) and is now available in demos/state_machine. [Ben Laurie] *) New options added to the 'dgst' utility for signature generation and verification. [Steve Henson] *) Unrecognized PKCS#7 content types are now handled via a catch all ASN1_TYPE structure. This allows unsupported types to be stored as a "blob" and an application can encode and decode it manually. [Steve Henson] *) Fix various signed/unsigned issues to make a_strex.c compile under VC++. [Oscar Jacobsson ] *) ASN1 fixes. i2d_ASN1_OBJECT was not returning the correct length if passed a buffer. ASN1_INTEGER_to_BN failed if passed a NULL BN and its argument was negative. [Steve Henson, pointed out by Sven Heiberg ] *) Modification to PKCS#7 encoding routines to output definite length encoding. Since currently the whole structures are in memory there's not real point in using indefinite length constructed encoding. However if OpenSSL is compiled with the flag PKCS7_INDEFINITE_ENCODING the old form is used. [Steve Henson] *) Added BIO_vprintf() and BIO_vsnprintf(). [Richard Levitte] *) Added more prefixes to parse for in the strings written through a logging bio, to cover all the levels that are available through syslog. The prefixes are now: PANIC, EMERG, EMR => LOG_EMERG ALERT, ALR => LOG_ALERT CRIT, CRI => LOG_CRIT ERROR, ERR => LOG_ERR WARNING, WARN, WAR => LOG_WARNING NOTICE, NOTE, NOT => LOG_NOTICE INFO, INF => LOG_INFO DEBUG, DBG => LOG_DEBUG and as before, if none of those prefixes are present at the beginning of the string, LOG_ERR is chosen. On Win32, the LOG_* levels are mapped according to this: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR => EVENTLOG_ERROR_TYPE LOG_WARNING => EVENTLOG_WARNING_TYPE LOG_NOTICE, LOG_INFO, LOG_DEBUG => EVENTLOG_INFORMATION_TYPE [Richard Levitte] *) Made it possible to reconfigure with just the configuration argument "reconf" or "reconfigure". The command line arguments are stored in Makefile.ssl in the variable CONFIGURE_ARGS, and are retrieved from there when reconfiguring. [Richard Levitte] *) MD4 implemented. [Assar Westerlund , Richard Levitte] *) Add the arguments -CAfile and -CApath to the pkcs12 utility. [Richard Levitte] *) The obj_dat.pl script was messing up the sorting of object names. The reason was that it compared the quoted version of strings as a result "OCSP" > "OCSP Signing" because " > SPACE. Changed script to store unquoted versions of names and add quotes on output. It was also omitting some names from the lookup table if they were given a default value (that is if SN is missing it is given the same value as LN and vice versa), these are now added on the grounds that if an object has a name we should be able to look it up. Finally added warning output when duplicate short or long names are found. [Steve Henson] *) Changes needed for Tandem NSK. [Scott Uroff ] *) Fix SSL 2.0 rollback checking: Due to an off-by-one error in RSA_padding_check_SSLv23(), special padding was never detected and thus the SSL 3.0/TLS 1.0 countermeasure against protocol version rollback attacks was not effective. In s23_clnt.c, don't use special rollback-attack detection padding (RSA_SSLV23_PADDING) if SSL 2.0 is the only protocol enabled in the client; similarly, in s23_srvr.c, don't do the rollback check if SSL 2.0 is the only protocol enabled in the server. [Bodo Moeller] *) Make it possible to get hexdumps of unprintable data with 'openssl asn1parse'. By implication, the functions ASN1_parse_dump() and BIO_dump_indent() are added. [Richard Levitte] *) New functions ASN1_STRING_print_ex() and X509_NAME_print_ex() these print out strings and name structures based on various flags including RFC2253 support and proper handling of multibyte characters. Added options to the 'x509' utility to allow the various flags to be set. [Steve Henson] *) Various fixes to use ASN1_TIME instead of ASN1_UTCTIME. Also change the functions X509_cmp_current_time() and X509_gmtime_adj() work with an ASN1_TIME structure, this will enable certificates using GeneralizedTime in validity dates to be checked. [Steve Henson] *) Make the NEG_PUBKEY_BUG code (which tolerates invalid negative public key encodings) on by default, NO_NEG_PUBKEY_BUG can be set to disable it. [Steve Henson] *) New function c2i_ASN1_OBJECT() which acts on ASN1_OBJECT content octets. An i2c_ASN1_OBJECT is unnecessary because the encoding can be trivially obtained from the structure. [Steve Henson] *) crypto/err.c locking bugfix: Use write locks (CRYPTO_w_[un]lock), not read locks (CRYPTO_r_[un]lock). [Bodo Moeller] *) A first attempt at creating official support for shared libraries through configuration. I've kept it so the default is static libraries only, and the OpenSSL programs are always statically linked for now, but there are preparations for dynamic linking in place. This has been tested on Linux and Tru64. [Richard Levitte] *) Randomness polling function for Win9x, as described in: Peter Gutmann, Software Generation of Practically Strong Random Numbers. [Ulf Möller] *) Fix so PRNG is seeded in req if using an already existing DSA key. [Steve Henson] *) New options to smime application. -inform and -outform allow alternative formats for the S/MIME message including PEM and DER. The -content option allows the content to be specified separately. This should allow things like Netscape form signing output easier to verify. [Steve Henson] *) Fix the ASN1 encoding of tags using the 'long form'. [Steve Henson] *) New ASN1 functions, i2c_* and c2i_* for INTEGER and BIT STRING types. These convert content octets to and from the underlying type. The actual tag and length octets are already assumed to have been read in and checked. These are needed because all other string types have virtually identical handling apart from the tag. By having versions of the ASN1 functions that just operate on content octets IMPLICIT tagging can be handled properly. It also allows the ASN1_ENUMERATED code to be cut down because ASN1_ENUMERATED and ASN1_INTEGER are identical apart from the tag. [Steve Henson] *) Change the handling of OID objects as follows: - New object identifiers are inserted in objects.txt, following the syntax given in objects.README. - objects.pl is used to process obj_mac.num and create a new obj_mac.h. - obj_dat.pl is used to create a new obj_dat.h, using the data in obj_mac.h. This is currently kind of a hack, and the perl code in objects.pl isn't very elegant, but it works as I intended. The simplest way to check that it worked correctly is to look in obj_dat.h and check the array nid_objs and make sure the objects haven't moved around (this is important!). Additions are OK, as well as consistent name changes. [Richard Levitte] *) Add BSD-style MD5-based passwords to 'openssl passwd' (option '-1'). [Bodo Moeller] *) Addition of the command line parameter '-rand file' to 'openssl req'. The given file adds to whatever has already been seeded into the random pool through the RANDFILE configuration file option or environment variable, or the default random state file. [Richard Levitte] *) mkstack.pl now sorts each macro group into lexical order. Previously the output order depended on the order the files appeared in the directory, resulting in needless rewriting of safestack.h . [Steve Henson] *) Patches to make OpenSSL compile under Win32 again. Mostly work arounds for the VC++ problem that it treats func() as func(void). Also stripped out the parts of mkdef.pl that added extra typesafe functions: these no longer exist. [Steve Henson] *) Reorganisation of the stack code. The macros are now all collected in safestack.h . Each macro is defined in terms of a "stack macro" of the form SKM_(type, a, b). The DEBUG_SAFESTACK is now handled in terms of function casts, this has the advantage of retaining type safety without the use of additional functions. If DEBUG_SAFESTACK is not defined then the non typesafe macros are used instead. Also modified the mkstack.pl script to handle the new form. Needs testing to see if which (if any) compilers it chokes and maybe make DEBUG_SAFESTACK the default if no major problems. Similar behaviour for ASN1_SET_OF and PKCS12_STACK_OF. [Steve Henson] *) When some versions of IIS use the 'NET' form of private key the key derivation algorithm is different. Normally MD5(password) is used as a 128 bit RC4 key. In the modified case MD5(MD5(password) + "SGCKEYSALT") is used instead. Added some new functions i2d_RSA_NET(), d2i_RSA_NET() etc which are the same as the old Netscape_RSA functions except they have an additional 'sgckey' parameter which uses the modified algorithm. Also added an -sgckey command line option to the rsa utility. Thanks to Adrian Peck for posting details of the modified algorithm to openssl-dev. [Steve Henson] *) The evp_local.h macros were using 'c.##kname' which resulted in invalid expansion on some systems (SCO 5.0.5 for example). Corrected to 'c.kname'. [Phillip Porch ] *) New X509_get1_email() and X509_REQ_get1_email() functions that return a STACK of email addresses from a certificate or request, these look in the subject name and the subject alternative name extensions and omit any duplicate addresses. [Steve Henson] *) Re-implement BN_mod_exp2_mont using independent (and larger) windows. This makes DSA verification about 2 % faster. [Bodo Moeller] *) Increase maximum window size in BN_mod_exp_... to 6 bits instead of 5 (meaning that now 2^5 values will be precomputed, which is only 4 KB plus overhead for 1024 bit moduli). This makes exponentiations about 0.5 % faster for 1024 bit exponents (as measured by "openssl speed rsa2048"). [Bodo Moeller] *) Rename memory handling macros to avoid conflicts with other software: Malloc => OPENSSL_malloc Malloc_locked => OPENSSL_malloc_locked Realloc => OPENSSL_realloc Free => OPENSSL_free [Richard Levitte] *) New function BN_mod_exp_mont_word for small bases (roughly 15% faster than BN_mod_exp_mont, i.e. 7% for a full DH exchange). [Bodo Moeller] *) CygWin32 support. [John Jarvie ] *) The type-safe stack code has been rejigged. It is now only compiled in when OpenSSL is configured with the DEBUG_SAFESTACK option and by default all type-specific stack functions are "#define"d back to standard stack functions. This results in more streamlined output but retains the type-safety checking possibilities of the original approach. [Geoff Thorpe] *) The STACK code has been cleaned up, and certain type declarations that didn't make a lot of sense have been brought in line. This has also involved a cleanup of sorts in safestack.h to more correctly map type-safe stack functions onto their plain stack counterparts. This work has also resulted in a variety of "const"ifications of lots of the code, especially "_cmp" operations which should normally be prototyped with "const" parameters anyway. [Geoff Thorpe] *) When generating bytes for the first time in md_rand.c, 'stir the pool' by seeding with STATE_SIZE dummy bytes (with zero entropy count). (The PRNG state consists of two parts, the large pool 'state' and 'md', where all of 'md' is used each time the PRNG is used, but 'state' is used only indexed by a cyclic counter. As entropy may not be well distributed from the beginning, 'md' is important as a chaining variable. However, the output function chains only half of 'md', i.e. 80 bits. ssleay_rand_add, on the other hand, chains all of 'md', and seeding with STATE_SIZE dummy bytes will result in all of 'state' being rewritten, with the new values depending on virtually all of 'md'. This overcomes the 80 bit limitation.) [Bodo Moeller] *) In ssl/s2_clnt.c and ssl/s3_clnt.c, call ERR_clear_error() when the handshake is continued after ssl_verify_cert_chain(); otherwise, if SSL_VERIFY_NONE is set, remaining error codes can lead to 'unexplainable' connection aborts later. [Bodo Moeller; problem tracked down by Lutz Jaenicke] *) Major EVP API cipher revision. Add hooks for extra EVP features. This allows various cipher parameters to be set in the EVP interface. Support added for variable key length ciphers via the EVP_CIPHER_CTX_set_key_length() function and setting of RC2 and RC5 parameters. Modify EVP_OpenInit() and EVP_SealInit() to cope with variable key length ciphers. Remove lots of duplicated code from the EVP library. For example *every* cipher init() function handles the 'iv' in the same way according to the cipher mode. They also all do nothing if the 'key' parameter is NULL and for CFB and OFB modes they zero ctx->num. New functionality allows removal of S/MIME code RC2 hack. Most of the routines have the same form and so can be declared in terms of macros. By shifting this to the top level EVP_CipherInit() it can be removed from all individual ciphers. If the cipher wants to handle IVs or keys differently it can set the EVP_CIPH_CUSTOM_IV or EVP_CIPH_ALWAYS_CALL_INIT flags. Change lots of functions like EVP_EncryptUpdate() to now return a value: although software versions of the algorithms cannot fail any installed hardware versions can. [Steve Henson] *) Implement SSL_OP_TLS_ROLLBACK_BUG: In ssl3_get_client_key_exchange, if this option is set, tolerate broken clients that send the negotiated protocol version number instead of the requested protocol version number. [Bodo Moeller] *) Call dh_tmp_cb (set by ..._TMP_DH_CB) with correct 'is_export' flag; i.e. non-zero for export ciphersuites, zero otherwise. Previous versions had this flag inverted, inconsistent with rsa_tmp_cb (..._TMP_RSA_CB). [Bodo Moeller; problem reported by Amit Chopra] *) Add missing DSA library text string. Work around for some IIS key files with invalid SEQUENCE encoding. [Steve Henson] *) Add a document (doc/standards.txt) that list all kinds of standards and so on that are implemented in OpenSSL. [Richard Levitte] *) Enhance c_rehash script. Old version would mishandle certificates with the same subject name hash and wouldn't handle CRLs at all. Added -fingerprint option to crl utility, to support new c_rehash features. [Steve Henson] *) Eliminate non-ANSI declarations in crypto.h and stack.h. [Ulf Möller] *) Fix for SSL server purpose checking. Server checking was rejecting certificates which had extended key usage present but no ssl client purpose. [Steve Henson, reported by Rene Grosser ] *) Make PKCS#12 code work with no password. The PKCS#12 spec is a little unclear about how a blank password is handled. Since the password in encoded as a BMPString with terminating double NULL a zero length password would end up as just the double NULL. However no password at all is different and is handled differently in the PKCS#12 key generation code. NS treats a blank password as zero length. MSIE treats it as no password on export: but it will try both on import. We now do the same: PKCS12_parse() tries zero length and no password if the password is set to "" or NULL (NULL is now a valid password: it wasn't before) as does the pkcs12 application. [Steve Henson] *) Bugfixes in apps/x509.c: Avoid a memory leak; and don't use perror when PEM_read_bio_X509_REQ fails, the error message must be obtained from the error queue. [Bodo Moeller] *) Avoid 'thread_hash' memory leak in crypto/err/err.c by freeing it in ERR_remove_state if appropriate, and change ERR_get_state accordingly to avoid race conditions (this is necessary because thread_hash is no longer constant once set). [Bodo Moeller] *) Bugfix for linux-elf makefile.one. [Ulf Möller] *) RSA_get_default_method() will now cause a default RSA_METHOD to be chosen if one doesn't exist already. Previously this was only set during a call to RSA_new() or RSA_new_method(NULL) meaning it was possible for RSA_get_default_method() to return NULL. [Geoff Thorpe] *) Added native name translation to the existing DSO code that will convert (if the flag to do so is set) filenames that are sufficiently small and have no path information into a canonical native form. Eg. "blah" converted to "libblah.so" or "blah.dll" etc. [Geoff Thorpe] *) New function ERR_error_string_n(e, buf, len) which is like ERR_error_string(e, buf), but writes at most 'len' bytes including the 0 terminator. For ERR_error_string_n, 'buf' may not be NULL. [Damien Miller , Bodo Moeller] *) CONF library reworked to become more general. A new CONF configuration file reader "class" is implemented as well as a new functions (NCONF_*, for "New CONF") to handle it. The now old CONF_* functions are still there, but are reimplemented to work in terms of the new functions. Also, a set of functions to handle the internal storage of the configuration data is provided to make it easier to write new configuration file reader "classes" (I can definitely see something reading a configuration file in XML format, for example), called _CONF_*, or "the configuration storage API"... The new configuration file reading functions are: NCONF_new, NCONF_free, NCONF_load, NCONF_load_fp, NCONF_load_bio, NCONF_get_section, NCONF_get_string, NCONF_get_numbre NCONF_default, NCONF_WIN32 NCONF_dump_fp, NCONF_dump_bio NCONF_default and NCONF_WIN32 are method (or "class") choosers, NCONF_new creates a new CONF object. This works in the same way as other interfaces in OpenSSL, like the BIO interface. NCONF_dump_* dump the internal storage of the configuration file, which is useful for debugging. All other functions take the same arguments as the old CONF_* functions with the exception of the first that must be a `CONF *' instead of a `LHASH *'. To make it easier to use the new classes with the old CONF_* functions, the function CONF_set_default_method is provided. [Richard Levitte] *) Add '-tls1' option to 'openssl ciphers', which was already mentioned in the documentation but had not been implemented. (This option is not yet really useful because even the additional experimental TLS 1.0 ciphers are currently treated as SSL 3.0 ciphers.) [Bodo Moeller] *) Initial DSO code added into libcrypto for letting OpenSSL (and OpenSSL-based applications) load shared libraries and bind to them in a portable way. [Geoff Thorpe, with contributions from Richard Levitte] Changes between 0.9.5 and 0.9.5a [1 Apr 2000] *) Make sure _lrotl and _lrotr are only used with MSVC. *) Use lock CRYPTO_LOCK_RAND correctly in ssleay_rand_status (the default implementation of RAND_status). *) Rename openssl x509 option '-crlext', which was added in 0.9.5, to '-clrext' (= clear extensions), as intended and documented. [Bodo Moeller; inconsistency pointed out by Michael Attili ] *) Fix for HMAC. It wasn't zeroing the rest of the block if the key length was larger than the MD block size. [Steve Henson, pointed out by Yost William ] *) Modernise PKCS12_parse() so it uses STACK_OF(X509) for its ca argument fix a leak when the ca argument was passed as NULL. Stop X509_PUBKEY_set() using the passed key: if the passed key was a private key the result of X509_print(), for example, would be to print out all the private key components. [Steve Henson] *) des_quad_cksum() byte order bug fix. [Ulf Möller, using the problem description in krb4-0.9.7, where the solution is attributed to Derrick J Brashear ] *) Fix so V_ASN1_APP_CHOOSE works again: however its use is strongly discouraged. [Steve Henson, pointed out by Brian Korver ] *) For easily testing in shell scripts whether some command 'openssl XXX' exists, the new pseudo-command 'openssl no-XXX' returns with exit code 0 iff no command of the given name is available. 'no-XXX' is printed in this case, 'XXX' otherwise. In both cases, the output goes to stdout and nothing is printed to stderr. Additional arguments are always ignored. Since for each cipher there is a command of the same name, the 'no-cipher' compilation switches can be tested this way. ('openssl no-XXX' is not able to detect pseudo-commands such as 'quit', 'list-XXX-commands', or 'no-XXX' itself.) [Bodo Moeller] *) Update test suite so that 'make test' succeeds in 'no-rsa' configuration. [Bodo Moeller] *) For SSL_[CTX_]set_tmp_dh, don't create a DH key if SSL_OP_SINGLE_DH_USE is set; it will be thrown away anyway because each handshake creates its own key. ssl_cert_dup, which is used by SSL_new, now copies DH keys in addition to parameters -- in previous versions (since OpenSSL 0.9.3) the 'default key' from SSL_CTX_set_tmp_dh would always be lost, meaning you effectively got SSL_OP_SINGLE_DH_USE when using this macro. [Bodo Moeller] *) New s_client option -ign_eof: EOF at stdin is ignored, and 'Q' and 'R' lose their special meanings (quit/renegotiate). This is part of what -quiet does; unlike -quiet, -ign_eof does not suppress any output. [Richard Levitte] *) Add compatibility options to the purpose and trust code. The purpose X509_PURPOSE_ANY is "any purpose" which automatically accepts a certificate or CA, this was the previous behaviour, with all the associated security issues. X509_TRUST_COMPAT is the old trust behaviour: only and automatically trust self signed roots in certificate store. A new trust setting X509_TRUST_DEFAULT is used to specify that a purpose has no associated trust setting and it should instead use the value in the default purpose. [Steve Henson] *) Fix the PKCS#8 DSA private key code so it decodes keys again and fix a memory leak. [Steve Henson] *) In util/mkerr.pl (which implements 'make errors'), preserve reason strings from the previous version of the .c file, as the default to have only downcase letters (and digits) in automatically generated reasons codes is not always appropriate. [Bodo Moeller] *) In ERR_load_ERR_strings(), build an ERR_LIB_SYS error reason table using strerror. Previously, ERR_reason_error_string() returned library names as reason strings for SYSerr; but SYSerr is a special case where small numbers are errno values, not library numbers. [Bodo Moeller] *) Add '-dsaparam' option to 'openssl dhparam' application. This converts DSA parameters into DH parameters. (When creating parameters, DSA_generate_parameters is used.) [Bodo Moeller] *) Include 'length' (recommended exponent length) in C code generated by 'openssl dhparam -C'. [Bodo Moeller] *) The second argument to set_label in perlasm was already being used so couldn't be used as a "file scope" flag. Moved to third argument which was free. [Steve Henson] *) In PEM_ASN1_write_bio and some other functions, use RAND_pseudo_bytes instead of RAND_bytes for encryption IVs and salts. [Bodo Moeller] *) Include RAND_status() into RAND_METHOD instead of implementing it only for md_rand.c Otherwise replacing the PRNG by calling RAND_set_rand_method would be impossible. [Bodo Moeller] *) Don't let DSA_generate_key() enter an infinite loop if the random number generation fails. [Bodo Moeller] *) New 'rand' application for creating pseudo-random output. [Bodo Moeller] *) Added configuration support for Linux/IA64 [Rolf Haberrecker ] *) Assembler module support for Mingw32. [Ulf Möller] *) Shared library support for HPUX (in shlib/). [Lutz Jaenicke and Anonymous] *) Shared library support for Solaris gcc. [Lutz Behnke ] Changes between 0.9.4 and 0.9.5 [28 Feb 2000] *) PKCS7_encrypt() was adding text MIME headers twice because they were added manually and by SMIME_crlf_copy(). [Steve Henson] *) In bntest.c don't call BN_rand with zero bits argument. [Steve Henson, pointed out by Andrew W. Gray ] *) BN_mul bugfix: In bn_mul_part_recursion() only the a>a[n] && b>b[n] case was implemented. This caused BN_div_recp() to fail occasionally. [Ulf Möller] *) Add an optional second argument to the set_label() in the perl assembly language builder. If this argument exists and is set to 1 it signals that the assembler should use a symbol whose scope is the entire file, not just the current function. This is needed with MASM which uses the format label:: for this scope. [Steve Henson, pointed out by Peter Runestig ] *) Change the ASN1 types so they are typedefs by default. Before almost all types were #define'd to ASN1_STRING which was causing STACK_OF() problems: you couldn't declare STACK_OF(ASN1_UTF8STRING) for example. [Steve Henson] *) Change names of new functions to the new get1/get0 naming convention: After 'get1', the caller owns a reference count and has to call ..._free; 'get0' returns a pointer to some data structure without incrementing reference counters. (Some of the existing 'get' functions increment a reference counter, some don't.) Similarly, 'set1' and 'add1' functions increase reference counters or duplicate objects. [Steve Henson] *) Allow for the possibility of temp RSA key generation failure: the code used to assume it always worked and crashed on failure. [Steve Henson] *) Fix potential buffer overrun problem in BIO_printf(). [Ulf Möller, using public domain code by Patrick Powell; problem pointed out by David Sacerdote ] *) Support EGD . New functions RAND_egd() and RAND_status(). In the command line application, the EGD socket can be specified like a seed file using RANDFILE or -rand. [Ulf Möller] *) Allow the string CERTIFICATE to be tolerated in PKCS#7 structures. Some CAs (e.g. Verisign) distribute certificates in this form. [Steve Henson] *) Remove the SSL_ALLOW_ADH compile option and set the default cipher list to exclude them. This means that no special compilation option is needed to use anonymous DH: it just needs to be included in the cipher list. [Steve Henson] *) Change the EVP_MD_CTX_type macro so its meaning consistent with EVP_MD_type. The old functionality is available in a new macro called EVP_MD_md(). Change code that uses it and update docs. [Steve Henson] *) ..._ctrl functions now have corresponding ..._callback_ctrl functions where the 'void *' argument is replaced by a function pointer argument. Previously 'void *' was abused to point to functions, which works on many platforms, but is not correct. As these functions are usually called by macros defined in OpenSSL header files, most source code should work without changes. [Richard Levitte] *) (which is created by Configure) now contains sections with information on -D... compiler switches used for compiling the library so that applications can see them. To enable one of these sections, a pre-processor symbol OPENSSL_..._DEFINES must be defined. E.g., #define OPENSSL_ALGORITHM_DEFINES #include defines all pertinent NO_ symbols, such as NO_IDEA, NO_RSA, etc. [Richard Levitte, Ulf and Bodo Möller] *) Bugfix: Tolerate fragmentation and interleaving in the SSL 3/TLS record layer. [Bodo Moeller] *) Change the 'other' type in certificate aux info to a STACK_OF X509_ALGOR. Although not an AlgorithmIdentifier as such it has the required ASN1 format: arbitrary types determined by an OID. [Steve Henson] *) Add some PEM_write_X509_REQ_NEW() functions and a command line argument to 'req'. This is not because the function is newer or better than others it just uses the work 'NEW' in the certificate request header lines. Some software needs this. [Steve Henson] *) Reorganise password command line arguments: now passwords can be obtained from various sources. Delete the PEM_cb function and make it the default behaviour: i.e. if the callback is NULL and the usrdata argument is not NULL interpret it as a null terminated pass phrase. If usrdata and the callback are NULL then the pass phrase is prompted for as usual. [Steve Henson] *) Add support for the Compaq Atalla crypto accelerator. If it is installed, the support is automatically enabled. The resulting binaries will autodetect the card and use it if present. [Ben Laurie and Compaq Inc.] *) Work around for Netscape hang bug. This sends certificate request and server done in one record. Since this is perfectly legal in the SSL/TLS protocol it isn't a "bug" option and is on by default. See the bugs/SSLv3 entry for more info. [Steve Henson] *) HP-UX tune-up: new unified configs, HP C compiler bug workaround. [Andy Polyakov] *) Add -rand argument to smime and pkcs12 applications and read/write of seed file. [Steve Henson] *) New 'passwd' tool for crypt(3) and apr1 password hashes. [Bodo Moeller] *) Add command line password options to the remaining applications. [Steve Henson] *) Bug fix for BN_div_recp() for numerators with an even number of bits. [Ulf Möller] *) More tests in bntest.c, and changed test_bn output. [Ulf Möller] *) ./config recognizes MacOS X now. [Andy Polyakov] *) Bug fix for BN_div() when the first words of num and divisor are equal (it gave wrong results if (rem=(n1-q*d0)&BN_MASK2) < d0). [Ulf Möller] *) Add support for various broken PKCS#8 formats, and command line options to produce them. [Steve Henson] *) New functions BN_CTX_start(), BN_CTX_get() and BT_CTX_end() to get temporary BIGNUMs from a BN_CTX. [Ulf Möller] *) Correct return values in BN_mod_exp_mont() and BN_mod_exp2_mont() for p == 0. [Ulf Möller] *) Change the SSLeay_add_all_*() functions to OpenSSL_add_all_*() and include a #define from the old name to the new. The original intent was that statically linked binaries could for example just call SSLeay_add_all_ciphers() to just add ciphers to the table and not link with digests. This never worked because SSLeay_add_all_digests() and SSLeay_add_all_ciphers() were in the same source file so calling one would link with the other. They are now in separate source files. [Steve Henson] *) Add a new -notext option to 'ca' and a -pubkey option to 'spkac'. [Steve Henson] *) Use a less unusual form of the Miller-Rabin primality test (it used a binary algorithm for exponentiation integrated into the Miller-Rabin loop, our standard modexp algorithms are faster). [Bodo Moeller] *) Support for the EBCDIC character set completed. [Martin Kraemer ] *) Source code cleanups: use const where appropriate, eliminate casts, use void * instead of char * in lhash. [Ulf Möller] *) Bugfix: ssl3_send_server_key_exchange was not restartable (the state was not changed to SSL3_ST_SW_KEY_EXCH_B, and because of this the server could overwrite ephemeral keys that the client has already seen). [Bodo Moeller] *) Turn DSA_is_prime into a macro that calls BN_is_prime, using 50 iterations of the Rabin-Miller test. DSA_generate_parameters now uses BN_is_prime_fasttest (with 50 iterations of the Rabin-Miller test as required by the appendix to FIPS PUB 186[-1]) instead of DSA_is_prime. As BN_is_prime_fasttest includes trial division, DSA parameter generation becomes much faster. This implies a change for the callback functions in DSA_is_prime and DSA_generate_parameters: The callback function is called once for each positive witness in the Rabin-Miller test, not just occasionally in the inner loop; and the parameters to the callback function now provide an iteration count for the outer loop rather than for the current invocation of the inner loop. DSA_generate_parameters additionally can call the callback function with an 'iteration count' of -1, meaning that a candidate has passed the trial division test (when q is generated from an application-provided seed, trial division is skipped). [Bodo Moeller] *) New function BN_is_prime_fasttest that optionally does trial division before starting the Rabin-Miller test and has an additional BN_CTX * argument (whereas BN_is_prime always has to allocate at least one BN_CTX). 'callback(1, -1, cb_arg)' is called when a number has passed the trial division stage. [Bodo Moeller] *) Fix for bug in CRL encoding. The validity dates weren't being handled as ASN1_TIME. [Steve Henson] *) New -pkcs12 option to CA.pl script to write out a PKCS#12 file. [Steve Henson] *) New function BN_pseudo_rand(). [Ulf Möller] *) Clean up BN_mod_mul_montgomery(): replace the broken (and unreadable) bignum version of BN_from_montgomery() with the working code from SSLeay 0.9.0 (the word based version is faster anyway), and clean up the comments. [Ulf Möller] *) Avoid a race condition in s2_clnt.c (function get_server_hello) that made it impossible to use the same SSL_SESSION data structure in SSL2 clients in multiple threads. [Bodo Moeller] *) The return value of RAND_load_file() no longer counts bytes obtained by stat(). RAND_load_file(..., -1) is new and uses the complete file to seed the PRNG (previously an explicit byte count was required). [Ulf Möller, Bodo Möller] *) Clean up CRYPTO_EX_DATA functions, some of these didn't have prototypes used (char *) instead of (void *) and had casts all over the place. [Steve Henson] *) Make BN_generate_prime() return NULL on error if ret!=NULL. [Ulf Möller] *) Retain source code compatibility for BN_prime_checks macro: BN_is_prime(..., BN_prime_checks, ...) now uses BN_prime_checks_for_size to determine the appropriate number of Rabin-Miller iterations. [Ulf Möller] *) Diffie-Hellman uses "safe" primes: DH_check() return code renamed to DH_CHECK_P_NOT_SAFE_PRIME. (Check if this is true? OpenPGP calls them "strong".) [Ulf Möller] *) Merge the functionality of "dh" and "gendh" programs into a new program "dhparam". The old programs are retained for now but will handle DH keys (instead of parameters) in future. [Steve Henson] *) Make the ciphers, s_server and s_client programs check the return values when a new cipher list is set. [Steve Henson] *) Enhance the SSL/TLS cipher mechanism to correctly handle the TLS 56bit ciphers. Before when the 56bit ciphers were enabled the sorting was wrong. The syntax for the cipher sorting has been extended to support sorting by cipher-strength (using the strength_bits hard coded in the tables). The new command is "@STRENGTH" (see also doc/apps/ciphers.pod). Fix a bug in the cipher-command parser: when supplying a cipher command string with an "undefined" symbol (neither command nor alphanumeric [A-Za-z0-9], ssl_set_cipher_list used to hang in an endless loop. Now an error is flagged. Due to the strength-sorting extension, the code of the ssl_create_cipher_list() function was completely rearranged. I hope that the readability was also increased :-) [Lutz Jaenicke ] *) Minor change to 'x509' utility. The -CAcreateserial option now uses 1 for the first serial number and places 2 in the serial number file. This avoids problems when the root CA is created with serial number zero and the first user certificate has the same issuer name and serial number as the root CA. [Steve Henson] *) Fixes to X509_ATTRIBUTE utilities, change the 'req' program so it uses the new code. Add documentation for this stuff. [Steve Henson] *) Changes to X509_ATTRIBUTE utilities. These have been renamed from X509_*() to X509at_*() on the grounds that they don't handle X509 structures and behave in an analogous way to the X509v3 functions: they shouldn't be called directly but wrapper functions should be used instead. So we also now have some wrapper functions that call the X509at functions when passed certificate requests. (TO DO: similar things can be done with PKCS#7 signed and unsigned attributes, PKCS#12 attributes and a few other things. Some of these need some d2i or i2d and print functionality because they handle more complex structures.) [Steve Henson] *) Add missing #ifndefs that caused missing symbols when building libssl as a shared library without RSA. Use #ifndef NO_SSL2 instead of NO_RSA in ssl/s2*.c. [Kris Kennaway , modified by Ulf Möller] *) Precautions against using the PRNG uninitialized: RAND_bytes() now has a return value which indicates the quality of the random data (1 = ok, 0 = not seeded). Also an error is recorded on the thread's error queue. New function RAND_pseudo_bytes() generates output that is guaranteed to be unique but not unpredictable. RAND_add is like RAND_seed, but takes an extra argument for an entropy estimate (RAND_seed always assumes full entropy). [Ulf Möller] *) Do more iterations of Rabin-Miller probable prime test (specifically, 3 for 1024-bit primes, 6 for 512-bit primes, 12 for 256-bit primes instead of only 2 for all lengths; see BN_prime_checks_for_size definition in crypto/bn/bn_prime.c for the complete table). This guarantees a false-positive rate of at most 2^-80 for random input. [Bodo Moeller] *) Rewrite ssl3_read_n (ssl/s3_pkt.c) avoiding a couple of bugs. [Bodo Moeller] *) New function X509_CTX_rget_chain() (renamed to X509_CTX_get1_chain in the 0.9.5 release), this returns the chain from an X509_CTX structure with a dup of the stack and all the X509 reference counts upped: so the stack will exist after X509_CTX_cleanup() has been called. Modify pkcs12.c to use this. Also make SSL_SESSION_print() print out the verify return code. [Steve Henson] *) Add manpage for the pkcs12 command. Also change the default behaviour so MAC iteration counts are used unless the new -nomaciter option is used. This improves file security and only older versions of MSIE (4.0 for example) need it. [Steve Henson] *) Honor the no-xxx Configure options when creating .DEF files. [Ulf Möller] *) Add PKCS#10 attributes to field table: challengePassword, unstructuredName and unstructuredAddress. These are taken from draft PKCS#9 v2.0 but are compatible with v1.2 provided no international characters are used. More changes to X509_ATTRIBUTE code: allow the setting of types based on strings. Remove the 'loc' parameter when adding attributes because these will be a SET OF encoding which is sorted in ASN1 order. [Steve Henson] *) Initial changes to the 'req' utility to allow request generation automation. This will allow an application to just generate a template file containing all the field values and have req construct the request. Initial support for X509_ATTRIBUTE handling. Stacks of these are used all over the place including certificate requests and PKCS#7 structures. They are currently handled manually where necessary with some primitive wrappers for PKCS#7. The new functions behave in a manner analogous to the X509 extension functions: they allow attributes to be looked up by NID and added. Later something similar to the X509V3 code would be desirable to automatically handle the encoding, decoding and printing of the more complex types. The string types like challengePassword can be handled by the string table functions. Also modified the multi byte string table handling. Now there is a 'global mask' which masks out certain types. The table itself can use the flag STABLE_NO_MASK to ignore the mask setting: this is useful when for example there is only one permissible type (as in countryName) and using the mask might result in no valid types at all. [Steve Henson] *) Clean up 'Finished' handling, and add functions SSL_get_finished and SSL_get_peer_finished to allow applications to obtain the latest Finished messages sent to the peer or expected from the peer, respectively. (SSL_get_peer_finished is usually the Finished message actually received from the peer, otherwise the protocol will be aborted.) As the Finished message are message digests of the complete handshake (with a total of 192 bits for TLS 1.0 and more for SSL 3.0), they can be used for external authentication procedures when the authentication provided by SSL/TLS is not desired or is not enough. [Bodo Moeller] *) Enhanced support for Alpha Linux is added. Now ./config checks if the host supports BWX extension and if Compaq C is present on the $PATH. Just exploiting of the BWX extension results in 20-30% performance kick for some algorithms, e.g. DES and RC4 to mention a couple. Compaq C in turn generates ~20% faster code for MD5 and SHA1. [Andy Polyakov] *) Add support for MS "fast SGC". This is arguably a violation of the SSL3/TLS protocol. Netscape SGC does two handshakes: the first with weak crypto and after checking the certificate is SGC a second one with strong crypto. MS SGC stops the first handshake after receiving the server certificate message and sends a second client hello. Since a server will typically do all the time consuming operations before expecting any further messages from the client (server key exchange is the most expensive) there is little difference between the two. To get OpenSSL to support MS SGC we have to permit a second client hello message after we have sent server done. In addition we have to reset the MAC if we do get this second client hello. [Steve Henson] *) Add a function 'd2i_AutoPrivateKey()' this will automatically decide if a DER encoded private key is RSA or DSA traditional format. Changed d2i_PrivateKey_bio() to use it. This is only needed for the "traditional" format DER encoded private key. Newer code should use PKCS#8 format which has the key type encoded in the ASN1 structure. Added DER private key support to pkcs8 application. [Steve Henson] *) SSL 3/TLS 1 servers now don't request certificates when an anonymous ciphersuites has been selected (as required by the SSL 3/TLS 1 specifications). Exception: When SSL_VERIFY_FAIL_IF_NO_PEER_CERT is set, we interpret this as a request to violate the specification (the worst that can happen is a handshake failure, and 'correct' behaviour would result in a handshake failure anyway). [Bodo Moeller] *) In SSL_CTX_add_session, take into account that there might be multiple SSL_SESSION structures with the same session ID (e.g. when two threads concurrently obtain them from an external cache). The internal cache can handle only one SSL_SESSION with a given ID, so if there's a conflict, we now throw out the old one to achieve consistency. [Bodo Moeller] *) Add OIDs for idea and blowfish in CBC mode. This will allow both to be used in PKCS#5 v2.0 and S/MIME. Also add checking to some routines that use cipher OIDs: some ciphers do not have OIDs defined and so they cannot be used for S/MIME and PKCS#5 v2.0 for example. [Steve Henson] *) Simplify the trust setting structure and code. Now we just have two sequences of OIDs for trusted and rejected settings. These will typically have values the same as the extended key usage extension and any application specific purposes. The trust checking code now has a default behaviour: it will just check for an object with the same NID as the passed id. Functions can be provided to override either the default behaviour or the behaviour for a given id. SSL client, server and email already have functions in place for compatibility: they check the NID and also return "trusted" if the certificate is self signed. [Steve Henson] *) Add d2i,i2d bio/fp functions for PrivateKey: these convert the traditional format into an EVP_PKEY structure. [Steve Henson] *) Add a password callback function PEM_cb() which either prompts for a password if usr_data is NULL or otherwise assumes it is a null terminated password. Allow passwords to be passed on command line environment or config files in a few more utilities. [Steve Henson] *) Add a bunch of DER and PEM functions to handle PKCS#8 format private keys. Add some short names for PKCS#8 PBE algorithms and allow them to be specified on the command line for the pkcs8 and pkcs12 utilities. Update documentation. [Steve Henson] *) Support for ASN1 "NULL" type. This could be handled before by using ASN1_TYPE but there wasn't any function that would try to read a NULL and produce an error if it couldn't. For compatibility we also have ASN1_NULL_new() and ASN1_NULL_free() functions but these are faked and don't allocate anything because they don't need to. [Steve Henson] *) Initial support for MacOS is now provided. Examine INSTALL.MacOS for details. [Andy Polyakov, Roy Woods ] *) Rebuild of the memory allocation routines used by OpenSSL code and possibly others as well. The purpose is to make an interface that provide hooks so anyone can build a separate set of allocation and deallocation routines to be used by OpenSSL, for example memory pool implementations, or something else, which was previously hard since Malloc(), Realloc() and Free() were defined as macros having the values malloc, realloc and free, respectively (except for Win32 compilations). The same is provided for memory debugging code. OpenSSL already comes with functionality to find memory leaks, but this gives people a chance to debug other memory problems. With these changes, a new set of functions and macros have appeared: CRYPTO_set_mem_debug_functions() [F] CRYPTO_get_mem_debug_functions() [F] CRYPTO_dbg_set_options() [F] CRYPTO_dbg_get_options() [F] CRYPTO_malloc_debug_init() [M] The memory debug functions are NULL by default, unless the library is compiled with CRYPTO_MDEBUG or friends is defined. If someone wants to debug memory anyway, CRYPTO_malloc_debug_init() (which gives the standard debugging functions that come with OpenSSL) or CRYPTO_set_mem_debug_functions() (tells OpenSSL to use functions provided by the library user) must be used. When the standard debugging functions are used, CRYPTO_dbg_set_options can be used to request additional information: CRYPTO_dbg_set_options(V_CYRPTO_MDEBUG_xxx) corresponds to setting the CRYPTO_MDEBUG_xxx macro when compiling the library. Also, things like CRYPTO_set_mem_functions will always give the expected result (the new set of functions is used for allocation and deallocation) at all times, regardless of platform and compiler options. To finish it up, some functions that were never use in any other way than through macros have a new API and new semantic: CRYPTO_dbg_malloc() CRYPTO_dbg_realloc() CRYPTO_dbg_free() All macros of value have retained their old syntax. [Richard Levitte and Bodo Moeller] *) Some S/MIME fixes. The OID for SMIMECapabilities was wrong, the ordering of SMIMECapabilities wasn't in "strength order" and there was a missing NULL in the AlgorithmIdentifier for the SHA1 signature algorithm. [Steve Henson] *) Some ASN1 types with illegal zero length encoding (INTEGER, ENUMERATED and OBJECT IDENTIFIER) choked the ASN1 routines. [Frans Heymans , modified by Steve Henson] *) Merge in my S/MIME library for OpenSSL. This provides a simple S/MIME API on top of the PKCS#7 code, a MIME parser (with enough functionality to handle multipart/signed properly) and a utility called 'smime' to call all this stuff. This is based on code I originally wrote for Celo who have kindly allowed it to be included in OpenSSL. [Steve Henson] *) Add variants des_set_key_checked and des_set_key_unchecked of des_set_key (aka des_key_sched). Global variable des_check_key decides which of these is called by des_set_key; this way des_check_key behaves as it always did, but applications and the library itself, which was buggy for des_check_key == 1, have a cleaner way to pick the version they need. [Bodo Moeller] *) New function PKCS12_newpass() which changes the password of a PKCS12 structure. [Steve Henson] *) Modify X509_TRUST and X509_PURPOSE so it also uses a static and dynamic mix. In both cases the ids can be used as an index into the table. Also modified the X509_TRUST_add() and X509_PURPOSE_add() functions so they accept a list of the field values and the application doesn't need to directly manipulate the X509_TRUST structure. [Steve Henson] *) Modify the ASN1_STRING_TABLE stuff so it also uses bsearch and doesn't need initialising. [Steve Henson] *) Modify the way the V3 extension code looks up extensions. This now works in a similar way to the object code: we have some "standard" extensions in a static table which is searched with OBJ_bsearch() and the application can add dynamic ones if needed. The file crypto/x509v3/ext_dat.h now has the info: this file needs to be updated whenever a new extension is added to the core code and kept in ext_nid order. There is a simple program 'tabtest.c' which checks this. New extensions are not added too often so this file can readily be maintained manually. There are two big advantages in doing things this way. The extensions can be looked up immediately and no longer need to be "added" using X509V3_add_standard_extensions(): this function now does nothing. [Side note: I get *lots* of email saying the extension code doesn't work because people forget to call this function] Also no dynamic allocation is done unless new extensions are added: so if we don't add custom extensions there is no need to call X509V3_EXT_cleanup(). [Steve Henson] *) Modify enc utility's salting as follows: make salting the default. Add a magic header, so unsalted files fail gracefully instead of just decrypting to garbage. This is because not salting is a big security hole, so people should be discouraged from doing it. [Ben Laurie] *) Fixes and enhancements to the 'x509' utility. It allowed a message digest to be passed on the command line but it only used this parameter when signing a certificate. Modified so all relevant operations are affected by the digest parameter including the -fingerprint and -x509toreq options. Also -x509toreq choked if a DSA key was used because it didn't fix the digest. [Steve Henson] *) Initial certificate chain verify code. Currently tests the untrusted certificates for consistency with the verify purpose (which is set when the X509_STORE_CTX structure is set up) and checks the pathlength. There is a NO_CHAIN_VERIFY compilation option to keep the old behaviour: this is because it will reject chains with invalid extensions whereas every previous version of OpenSSL and SSLeay made no checks at all. Trust code: checks the root CA for the relevant trust settings. Trust settings have an initial value consistent with the verify purpose: e.g. if the verify purpose is for SSL client use it expects the CA to be trusted for SSL client use. However the default value can be changed to permit custom trust settings: one example of this would be to only trust certificates from a specific "secure" set of CAs. Also added X509_STORE_CTX_new() and X509_STORE_CTX_free() functions which should be used for version portability: especially since the verify structure is likely to change more often now. SSL integration. Add purpose and trust to SSL_CTX and SSL and functions to set them. If not set then assume SSL clients will verify SSL servers and vice versa. Two new options to the verify program: -untrusted allows a set of untrusted certificates to be passed in and -purpose which sets the intended purpose of the certificate. If a purpose is set then the new chain verify code is used to check extension consistency. [Steve Henson] *) Support for the authority information access extension. [Steve Henson] *) Modify RSA and DSA PEM read routines to transparently handle PKCS#8 format private keys. New *_PUBKEY_* functions that handle public keys in a format compatible with certificate SubjectPublicKeyInfo structures. Unfortunately there were already functions called *_PublicKey_* which used various odd formats so these are retained for compatibility: however the DSA variants were never in a public release so they have been deleted. Changed dsa/rsa utilities to handle the new format: note no releases ever handled public keys so we should be OK. The primary motivation for this change is to avoid the same fiasco that dogs private keys: there are several incompatible private key formats some of which are standard and some OpenSSL specific and require various evil hacks to allow partial transparent handling and even then it doesn't work with DER formats. Given the option anything other than PKCS#8 should be dumped: but the other formats have to stay in the name of compatibility. With public keys and the benefit of hindsight one standard format is used which works with EVP_PKEY, RSA or DSA structures: though it clearly returns an error if you try to read the wrong kind of key. Added a -pubkey option to the 'x509' utility to output the public key. Also rename the EVP_PKEY_get_*() to EVP_PKEY_rget_*() (renamed to EVP_PKEY_get1_*() in the OpenSSL 0.9.5 release) and add EVP_PKEY_rset_*() functions (renamed to EVP_PKEY_set1_*()) that do the same as the EVP_PKEY_assign_*() except they up the reference count of the added key (they don't "swallow" the supplied key). [Steve Henson] *) Fixes to crypto/x509/by_file.c the code to read in certificates and CRLs would fail if the file contained no certificates or no CRLs: added a new function to read in both types and return the number read: this means that if none are read it will be an error. The DER versions of the certificate and CRL reader would always fail because it isn't possible to mix certificates and CRLs in DER format without choking one or the other routine. Changed this to just read a certificate: this is the best we can do. Also modified the code in apps/verify.c to take notice of return codes: it was previously attempting to read in certificates from NULL pointers and ignoring any errors: this is one reason why the cert and CRL reader seemed to work. It doesn't check return codes from the default certificate routines: these may well fail if the certificates aren't installed. [Steve Henson] *) Code to support otherName option in GeneralName. [Steve Henson] *) First update to verify code. Change the verify utility so it warns if it is passed a self signed certificate: for consistency with the normal behaviour. X509_verify has been modified to it will now verify a self signed certificate if *exactly* the same certificate appears in the store: it was previously impossible to trust a single self signed certificate. This means that: openssl verify ss.pem now gives a warning about a self signed certificate but openssl verify -CAfile ss.pem ss.pem is OK. [Steve Henson] *) For servers, store verify_result in SSL_SESSION data structure (and add it to external session representation). This is needed when client certificate verifications fails, but an application-provided verification callback (set by SSL_CTX_set_cert_verify_callback) allows accepting the session anyway (i.e. leaves x509_store_ctx->error != X509_V_OK but returns 1): When the session is reused, we have to set ssl->verify_result to the appropriate error code to avoid security holes. [Bodo Moeller, problem pointed out by Lutz Jaenicke] *) Fix a bug in the new PKCS#7 code: it didn't consider the case in PKCS7_dataInit() where the signed PKCS7 structure didn't contain any existing data because it was being created. [Po-Cheng Chen , slightly modified by Steve Henson] *) Add a salt to the key derivation routines in enc.c. This forms the first 8 bytes of the encrypted file. Also add a -S option to allow a salt to be input on the command line. [Steve Henson] *) New function X509_cmp(). Oddly enough there wasn't a function to compare two certificates. We do this by working out the SHA1 hash and comparing that. X509_cmp() will be needed by the trust code. [Steve Henson] *) SSL_get1_session() is like SSL_get_session(), but increments the reference count in the SSL_SESSION returned. [Geoff Thorpe ] *) Fix for 'req': it was adding a null to request attributes. Also change the X509_LOOKUP and X509_INFO code to handle certificate auxiliary information. [Steve Henson] *) Add support for 40 and 64 bit RC2 and RC4 algorithms: document the 'enc' command. [Steve Henson] *) Add the possibility to add extra information to the memory leak detecting output, to form tracebacks, showing from where each allocation was originated: CRYPTO_push_info("constant string") adds the string plus current file name and line number to a per-thread stack, CRYPTO_pop_info() does the obvious, CRYPTO_remove_all_info() is like calling CYRPTO_pop_info() until the stack is empty. Also updated memory leak detection code to be multi-thread-safe. [Richard Levitte] *) Add options -text and -noout to pkcs7 utility and delete the encryption options which never did anything. Update docs. [Steve Henson] *) Add options to some of the utilities to allow the pass phrase to be included on either the command line (not recommended on OSes like Unix) or read from the environment. Update the manpages and fix a few bugs. [Steve Henson] *) Add a few manpages for some of the openssl commands. [Steve Henson] *) Fix the -revoke option in ca. It was freeing up memory twice, leaking and not finding already revoked certificates. [Steve Henson] *) Extensive changes to support certificate auxiliary information. This involves the use of X509_CERT_AUX structure and X509_AUX functions. An X509_AUX function such as PEM_read_X509_AUX() can still read in a certificate file in the usual way but it will also read in any additional "auxiliary information". By doing things this way a fair degree of compatibility can be retained: existing certificates can have this information added using the new 'x509' options. Current auxiliary information includes an "alias" and some trust settings. The trust settings will ultimately be used in enhanced certificate chain verification routines: currently a certificate can only be trusted if it is self signed and then it is trusted for all purposes. [Steve Henson] *) Fix assembler for Alpha (tested only on DEC OSF not Linux or *BSD). The problem was that one of the replacement routines had not been working since SSLeay releases. For now the offending routine has been replaced with non-optimised assembler. Even so, this now gives around 95% performance improvement for 1024 bit RSA signs. [Mark Cox] *) Hack to fix PKCS#7 decryption when used with some unorthodox RC2 handling. Most clients have the effective key size in bits equal to the key length in bits: so a 40 bit RC2 key uses a 40 bit (5 byte) key. A few however don't do this and instead use the size of the decrypted key to determine the RC2 key length and the AlgorithmIdentifier to determine the effective key length. In this case the effective key length can still be 40 bits but the key length can be 168 bits for example. This is fixed by manually forcing an RC2 key into the EVP_PKEY structure because the EVP code can't currently handle unusual RC2 key sizes: it always assumes the key length and effective key length are equal. [Steve Henson] *) Add a bunch of functions that should simplify the creation of X509_NAME structures. Now you should be able to do: X509_NAME_add_entry_by_txt(nm, "CN", MBSTRING_ASC, "Steve", -1, -1, 0); and have it automatically work out the correct field type and fill in the structures. The more adventurous can try: X509_NAME_add_entry_by_txt(nm, field, MBSTRING_UTF8, str, -1, -1, 0); and it will (hopefully) work out the correct multibyte encoding. [Steve Henson] *) Change the 'req' utility to use the new field handling and multibyte copy routines. Before the DN field creation was handled in an ad hoc way in req, ca, and x509 which was rather broken and didn't support BMPStrings or UTF8Strings. Since some software doesn't implement BMPStrings or UTF8Strings yet, they can be enabled using the config file using the dirstring_type option. See the new comment in the default openssl.cnf for more info. [Steve Henson] *) Make crypto/rand/md_rand.c more robust: - Assure unique random numbers after fork(). - Make sure that concurrent threads access the global counter and md serializably so that we never lose entropy in them or use exactly the same state in multiple threads. Access to the large state is not always serializable because the additional locking could be a performance killer, and md should be large enough anyway. [Bodo Moeller] *) New file apps/app_rand.c with commonly needed functionality for handling the random seed file. Use the random seed file in some applications that previously did not: ca, dsaparam -genkey (which also ignored its '-rand' option), s_client, s_server, x509 (when signing). Except on systems with /dev/urandom, it is crucial to have a random seed file at least for key creation, DSA signing, and for DH exchanges; for RSA signatures we could do without one. gendh and gendsa (unlike genrsa) used to read only the first byte of each file listed in the '-rand' option. The function as previously found in genrsa is now in app_rand.c and is used by all programs that support '-rand'. [Bodo Moeller] *) In RAND_write_file, use mode 0600 for creating files; don't just chmod when it may be too late. [Bodo Moeller] *) Report an error from X509_STORE_load_locations when X509_LOOKUP_load_file or X509_LOOKUP_add_dir failed. [Bill Perry] *) New function ASN1_mbstring_copy() this copies a string in either ASCII, Unicode, Universal (4 bytes per character) or UTF8 format into an ASN1_STRING type. A mask of permissible types is passed and it chooses the "minimal" type to use or an error if not type is suitable. [Steve Henson] *) Add function equivalents to the various macros in asn1.h. The old macros are retained with an M_ prefix. Code inside the library can use the M_ macros. External code (including the openssl utility) should *NOT* in order to be "shared library friendly". [Steve Henson] *) Add various functions that can check a certificate's extensions to see if it usable for various purposes such as SSL client, server or S/MIME and CAs of these types. This is currently VERY EXPERIMENTAL but will ultimately be used for certificate chain verification. Also added a -purpose flag to x509 utility to print out all the purposes. [Steve Henson] *) Add a CRYPTO_EX_DATA to X509 certificate structure and associated functions. [Steve Henson] *) New X509V3_{X509,CRL,REVOKED}_get_d2i() functions. These will search for, obtain and decode and extension and obtain its critical flag. This allows all the necessary extension code to be handled in a single function call. [Steve Henson] *) RC4 tune-up featuring 30-40% performance improvement on most RISC platforms. See crypto/rc4/rc4_enc.c for further details. [Andy Polyakov] *) New -noout option to asn1parse. This causes no output to be produced its main use is when combined with -strparse and -out to extract data from a file (which may not be in ASN.1 format). [Steve Henson] *) Fix for pkcs12 program. It was hashing an invalid certificate pointer when producing the local key id. [Richard Levitte ] *) New option -dhparam in s_server. This allows a DH parameter file to be stated explicitly. If it is not stated then it tries the first server certificate file. The previous behaviour hard coded the filename "server.pem". [Steve Henson] *) Add -pubin and -pubout options to the rsa and dsa commands. These allow a public key to be input or output. For example: openssl rsa -in key.pem -pubout -out pubkey.pem Also added necessary DSA public key functions to handle this. [Steve Henson] *) Fix so PKCS7_dataVerify() doesn't crash if no certificates are contained in the message. This was handled by allowing X509_find_by_issuer_and_serial() to tolerate a NULL passed to it. [Steve Henson, reported by Sampo Kellomaki ] *) Fix for bug in d2i_ASN1_bytes(): other ASN1 functions add an extra null to the end of the strings whereas this didn't. This would cause problems if strings read with d2i_ASN1_bytes() were later modified. [Steve Henson, reported by Arne Ansper ] *) Fix for base64 decode bug. When a base64 bio reads only one line of data and it contains EOF it will end up returning an error. This is caused by input 46 bytes long. The cause is due to the way base64 BIOs find the start of base64 encoded data. They do this by trying a trial decode on each line until they find one that works. When they do a flag is set and it starts again knowing it can pass all the data directly through the decoder. Unfortunately it doesn't reset the context it uses. This means that if EOF is reached an attempt is made to pass two EOFs through the context and this causes the resulting error. This can also cause other problems as well. As is usual with these problems it takes *ages* to find and the fix is trivial: move one line. [Steve Henson, reported by ian@uns.ns.ac.yu (Ivan Nejgebauer) ] *) Ugly workaround to get s_client and s_server working under Windows. The old code wouldn't work because it needed to select() on sockets and the tty (for keypresses and to see if data could be written). Win32 only supports select() on sockets so we select() with a 1s timeout on the sockets and then see if any characters are waiting to be read, if none are present then we retry, we also assume we can always write data to the tty. This isn't nice because the code then blocks until we've received a complete line of data and it is effectively polling the keyboard at 1s intervals: however it's quite a bit better than not working at all :-) A dedicated Windows application might handle this with an event loop for example. [Steve Henson] *) Enhance RSA_METHOD structure. Now there are two extra methods, rsa_sign and rsa_verify. When the RSA_FLAGS_SIGN_VER option is set these functions will be called when RSA_sign() and RSA_verify() are used. This is useful if rsa_pub_dec() and rsa_priv_enc() equivalents are not available. For this to work properly RSA_public_decrypt() and RSA_private_encrypt() should *not* be used: RSA_sign() and RSA_verify() must be used instead. This necessitated the support of an extra signature type NID_md5_sha1 for SSL signatures and modifications to the SSL library to use it instead of calling RSA_public_decrypt() and RSA_private_encrypt(). [Steve Henson] *) Add new -verify -CAfile and -CApath options to the crl program, these will lookup a CRL issuers certificate and verify the signature in a similar way to the verify program. Tidy up the crl program so it no longer accesses structures directly. Make the ASN1 CRL parsing a bit less strict. It will now permit CRL extensions even if it is not a V2 CRL: this will allow it to tolerate some broken CRLs. [Steve Henson] *) Initialize all non-automatic variables each time one of the openssl sub-programs is started (this is necessary as they may be started multiple times from the "OpenSSL>" prompt). [Lennart Bang, Bodo Moeller] *) Preliminary compilation option RSA_NULL which disables RSA crypto without removing all other RSA functionality (this is what NO_RSA does). This is so (for example) those in the US can disable those operations covered by the RSA patent while allowing storage and parsing of RSA keys and RSA key generation. [Steve Henson] *) Non-copying interface to BIO pairs. (still largely untested) [Bodo Moeller] *) New function ANS1_tag2str() to convert an ASN1 tag to a descriptive ASCII string. This was handled independently in various places before. [Steve Henson] *) New functions UTF8_getc() and UTF8_putc() that parse and generate UTF8 strings a character at a time. [Steve Henson] *) Use client_version from client hello to select the protocol (s23_srvr.c) and for RSA client key exchange verification (s3_srvr.c), as required by the SSL 3.0/TLS 1.0 specifications. [Bodo Moeller] *) Add various utility functions to handle SPKACs, these were previously handled by poking round in the structure internals. Added new function NETSCAPE_SPKI_print() to print out SPKAC and a new utility 'spkac' to print, verify and generate SPKACs. Based on an original idea from Massimiliano Pala but extensively modified. [Steve Henson] *) RIPEMD160 is operational on all platforms and is back in 'make test'. [Andy Polyakov] *) Allow the config file extension section to be overwritten on the command line. Based on an original idea from Massimiliano Pala . The new option is called -extensions and can be applied to ca, req and x509. Also -reqexts to override the request extensions in req and -crlexts to override the crl extensions in ca. [Steve Henson] *) Add new feature to the SPKAC handling in ca. Now you can include the same field multiple times by preceding it by "XXXX." for example: 1.OU="Unit name 1" 2.OU="Unit name 2" this is the same syntax as used in the req config file. [Steve Henson] *) Allow certificate extensions to be added to certificate requests. These are specified in a 'req_extensions' option of the req section of the config file. They can be printed out with the -text option to req but are otherwise ignored at present. [Steve Henson] *) Fix a horrible bug in enc_read() in crypto/evp/bio_enc.c: if the first data read consists of only the final block it would not decrypted because EVP_CipherUpdate() would correctly report zero bytes had been decrypted. A misplaced 'break' also meant the decrypted final block might not be copied until the next read. [Steve Henson] *) Initial support for DH_METHOD. Again based on RSA_METHOD. Also added a few extra parameters to the DH structure: these will be useful if for example we want the value of 'q' or implement X9.42 DH. [Steve Henson] *) Initial support for DSA_METHOD. This is based on the RSA_METHOD and provides hooks that allow the default DSA functions or functions on a "per key" basis to be replaced. This allows hardware acceleration and hardware key storage to be handled without major modification to the library. Also added low level modexp hooks and CRYPTO_EX structure and associated functions. [Steve Henson] *) Add a new flag to memory BIOs, BIO_FLAG_MEM_RDONLY. This marks the BIO as "read only": it can't be written to and the buffer it points to will not be freed. Reading from a read only BIO is much more efficient than a normal memory BIO. This was added because there are several times when an area of memory needs to be read from a BIO. The previous method was to create a memory BIO and write the data to it, this results in two copies of the data and an O(n^2) reading algorithm. There is a new function BIO_new_mem_buf() which creates a read only memory BIO from an area of memory. Also modified the PKCS#7 routines to use read only memory BIOs. [Steve Henson] *) Bugfix: ssl23_get_client_hello did not work properly when called in state SSL23_ST_SR_CLNT_HELLO_B, i.e. when the first 7 bytes of a SSLv2-compatible client hello for SSLv3 or TLSv1 could be read, but a retry condition occurred while trying to read the rest. [Bodo Moeller] *) The PKCS7_ENC_CONTENT_new() function was setting the content type as NID_pkcs7_encrypted by default: this was wrong since this should almost always be NID_pkcs7_data. Also modified the PKCS7_set_type() to handle the encrypted data type: this is a more sensible place to put it and it allows the PKCS#12 code to be tidied up that duplicated this functionality. [Steve Henson] *) Changed obj_dat.pl script so it takes its input and output files on the command line. This should avoid shell escape redirection problems under Win32. [Steve Henson] *) Initial support for certificate extension requests, these are included in things like Xenroll certificate requests. Included functions to allow extensions to be obtained and added. [Steve Henson] *) -crlf option to s_client and s_server for sending newlines as CRLF (as required by many protocols). [Bodo Moeller] Changes between 0.9.3a and 0.9.4 [09 Aug 1999] *) Install libRSAglue.a when OpenSSL is built with RSAref. [Ralf S. Engelschall] *) A few more ``#ifndef NO_FP_API / #endif'' pairs for consistency. [Andrija Antonijevic ] *) Fix -startdate and -enddate (which was missing) arguments to 'ca' program. [Steve Henson] *) New function DSA_dup_DH, which duplicates DSA parameters/keys as DH parameters/keys (q is lost during that conversion, but the resulting DH parameters contain its length). For 1024-bit p, DSA_generate_parameters followed by DSA_dup_DH is much faster than DH_generate_parameters (which creates parameters where p = 2*q + 1), and also the smaller q makes DH computations much more efficient (160-bit exponentiation instead of 1024-bit exponentiation); so this provides a convenient way to support DHE ciphersuites in SSL/TLS servers (see ssl/ssltest.c). It is of utter importance to use SSL_CTX_set_options(s_ctx, SSL_OP_SINGLE_DH_USE); or SSL_set_options(s_ctx, SSL_OP_SINGLE_DH_USE); when such DH parameters are used, because otherwise small subgroup attacks may become possible! [Bodo Moeller] *) Avoid memory leak in i2d_DHparams. [Bodo Moeller] *) Allow the -k option to be used more than once in the enc program: this allows the same encrypted message to be read by multiple recipients. [Steve Henson] *) New function OBJ_obj2txt(buf, buf_len, a, no_name), this converts an ASN1_OBJECT to a text string. If the "no_name" parameter is set then it will always use the numerical form of the OID, even if it has a short or long name. [Steve Henson] *) Added an extra RSA flag: RSA_FLAG_EXT_PKEY. Previously the rsa_mod_exp method only got called if p,q,dmp1,dmq1,iqmp components were present, otherwise bn_mod_exp was called. In the case of hardware keys for example no private key components need be present and it might store extra data in the RSA structure, which cannot be accessed from bn_mod_exp. By setting RSA_FLAG_EXT_PKEY rsa_mod_exp will always be called for private key operations. [Steve Henson] *) Added support for SPARC Linux. [Andy Polyakov] *) pem_password_cb function type incompatibly changed from typedef int pem_password_cb(char *buf, int size, int rwflag); to ....(char *buf, int size, int rwflag, void *userdata); so that applications can pass data to their callbacks: The PEM[_ASN1]_{read,write}... functions and macros now take an additional void * argument, which is just handed through whenever the password callback is called. [Damien Miller ; tiny changes by Bodo Moeller] New function SSL_CTX_set_default_passwd_cb_userdata. Compatibility note: As many C implementations push function arguments onto the stack in reverse order, the new library version is likely to interoperate with programs that have been compiled with the old pem_password_cb definition (PEM_whatever takes some data that happens to be on the stack as its last argument, and the callback just ignores this garbage); but there is no guarantee whatsoever that this will work. *) The -DPLATFORM="\"$(PLATFORM)\"" definition and the similar -DCFLAGS=... (both in crypto/Makefile.ssl for use by crypto/cversion.c) caused problems not only on Windows, but also on some Unix platforms. To avoid problematic command lines, these definitions are now in an auto-generated file crypto/buildinf.h (created by crypto/Makefile.ssl for standard "make" builds, by util/mk1mf.pl for "mk1mf" builds). [Bodo Moeller] *) MIPS III/IV assembler module is reimplemented. [Andy Polyakov] *) More DES library cleanups: remove references to srand/rand and delete an unused file. [Ulf Möller] *) Add support for the free Netwide assembler (NASM) under Win32, since not many people have MASM (ml) and it can be hard to obtain. This is currently experimental but it seems to work OK and pass all the tests. Check out INSTALL.W32 for info. [Steve Henson] *) Fix memory leaks in s3_clnt.c: All non-anonymous SSL3/TLS1 connections without temporary keys kept an extra copy of the server key, and connections with temporary keys did not free everything in case of an error. [Bodo Moeller] *) New function RSA_check_key and new openssl rsa option -check for verifying the consistency of RSA keys. [Ulf Moeller, Bodo Moeller] *) Various changes to make Win32 compile work: 1. Casts to avoid "loss of data" warnings in p5_crpt2.c 2. Change unsigned int to int in b_dump.c to avoid "signed/unsigned comparison" warnings. 3. Add sk__sort to DEF file generator and do make update. [Steve Henson] *) Add a debugging option to PKCS#5 v2 key generation function: when you #define DEBUG_PKCS5V2 passwords, salts, iteration counts and derived keys are printed to stderr. [Steve Henson] *) Copy the flags in ASN1_STRING_dup(). [Roman E. Pavlov ] *) The x509 application mishandled signing requests containing DSA keys when the signing key was also DSA and the parameters didn't match. It was supposed to omit the parameters when they matched the signing key: the verifying software was then supposed to automatically use the CA's parameters if they were absent from the end user certificate. Omitting parameters is no longer recommended. The test was also the wrong way round! This was probably due to unusual behaviour in EVP_cmp_parameters() which returns 1 if the parameters match. This meant that parameters were omitted when they *didn't* match and the certificate was useless. Certificates signed with 'ca' didn't have this bug. [Steve Henson, reported by Doug Erickson ] *) Memory leak checking (-DCRYPTO_MDEBUG) had some problems. The interface is as follows: Applications can use CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON) aka MemCheck_start(), CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_OFF) aka MemCheck_stop(); "off" is now the default. The library internally uses CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE) aka MemCheck_off(), CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE) aka MemCheck_on() to disable memory-checking temporarily. Some inconsistent states that previously were possible (and were even the default) are now avoided. -DCRYPTO_MDEBUG_TIME is new and additionally stores the current time with each memory chunk allocated; this is occasionally more helpful than just having a counter. -DCRYPTO_MDEBUG_THREAD is also new and adds the thread ID. -DCRYPTO_MDEBUG_ALL enables all of the above, plus any future extensions. [Bodo Moeller] *) Introduce "mode" for SSL structures (with defaults in SSL_CTX), which largely parallels "options", but is for changing API behaviour, whereas "options" are about protocol behaviour. Initial "mode" flags are: SSL_MODE_ENABLE_PARTIAL_WRITE Allow SSL_write to report success when a single record has been written. SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER Don't insist that SSL_write retries use the same buffer location. (But all of the contents must be copied!) [Bodo Moeller] *) Bugfix: SSL_set_options ignored its parameter, only SSL_CTX_set_options worked. *) Fix problems with no-hmac etc. [Ulf Möller, pointed out by Brian Wellington ] *) New functions RSA_get_default_method(), RSA_set_method() and RSA_get_method(). These allows replacement of RSA_METHODs without having to mess around with the internals of an RSA structure. [Steve Henson] *) Fix memory leaks in DSA_do_sign and DSA_is_prime. Also really enable memory leak checks in openssl.c and in some test programs. [Chad C. Mulligan, Bodo Moeller] *) Fix a bug in d2i_ASN1_INTEGER() and i2d_ASN1_INTEGER() which can mess up the length of negative integers. This has now been simplified to just store the length when it is first determined and use it later, rather than trying to keep track of where data is copied and updating it to point to the end. [Steve Henson, reported by Brien Wheeler ] *) Add a new function PKCS7_signatureVerify. This allows the verification of a PKCS#7 signature but with the signing certificate passed to the function itself. This contrasts with PKCS7_dataVerify which assumes the certificate is present in the PKCS#7 structure. This isn't always the case: certificates can be omitted from a PKCS#7 structure and be distributed by "out of band" means (such as a certificate database). [Steve Henson] *) Complete the PEM_* macros with DECLARE_PEM versions to replace the function prototypes in pem.h, also change util/mkdef.pl to add the necessary function names. [Steve Henson] *) mk1mf.pl (used by Windows builds) did not properly read the options set by Configure in the top level Makefile, and Configure was not even able to write more than one option correctly. Fixed, now "no-idea no-rc5 -DCRYPTO_MDEBUG" etc. works as intended. [Bodo Moeller] *) New functions CONF_load_bio() and CONF_load_fp() to allow a config file to be loaded from a BIO or FILE pointer. The BIO version will for example allow memory BIOs to contain config info. [Steve Henson] *) New function "CRYPTO_num_locks" that returns CRYPTO_NUM_LOCKS. Whoever hopes to achieve shared-library compatibility across versions must use this, not the compile-time macro. (Exercise 0.9.4: Which is the minimum library version required by such programs?) Note: All this applies only to multi-threaded programs, others don't need locks. [Bodo Moeller] *) Add missing case to s3_clnt.c state machine -- one of the new SSL tests through a BIO pair triggered the default case, i.e. SSLerr(...,SSL_R_UNKNOWN_STATE). [Bodo Moeller] *) New "BIO pair" concept (crypto/bio/bss_bio.c) so that applications can use the SSL library even if none of the specific BIOs is appropriate. [Bodo Moeller] *) Fix a bug in i2d_DSAPublicKey() which meant it returned the wrong value for the encoded length. [Jeon KyoungHo ] *) Add initial documentation of the X509V3 functions. [Steve Henson] *) Add a new pair of functions PEM_write_PKCS8PrivateKey() and PEM_write_bio_PKCS8PrivateKey() that are equivalent to PEM_write_PrivateKey() and PEM_write_bio_PrivateKey() but use the more secure PKCS#8 private key format with a high iteration count. [Steve Henson] *) Fix determination of Perl interpreter: A perl or perl5 _directory_ in $PATH was also accepted as the interpreter. [Ralf S. Engelschall] *) Fix demos/sign/sign.c: well there wasn't anything strictly speaking wrong with it but it was very old and did things like calling PEM_ASN1_read() directly and used MD5 for the hash not to mention some unusual formatting. [Steve Henson] *) Fix demos/selfsign.c: it used obsolete and deleted functions, changed to use the new extension code. [Steve Henson] *) Implement the PEM_read/PEM_write functions in crypto/pem/pem_all.c with macros. This should make it easier to change their form, add extra arguments etc. Fix a few PEM prototypes which didn't have cipher as a constant. [Steve Henson] *) Add to configuration table a new entry that can specify an alternative name for unistd.h (for pre-POSIX systems); we need this for NeXTstep, according to Mark Crispin . [Bodo Moeller] #if 0 *) DES CBC did not update the IV. Weird. [Ben Laurie] #else des_cbc_encrypt does not update the IV, but des_ncbc_encrypt does. Changing the behaviour of the former might break existing programs -- where IV updating is needed, des_ncbc_encrypt can be used. #endif *) When bntest is run from "make test" it drives bc to check its calculations, as well as internally checking them. If an internal check fails, it needs to cause bc to give a non-zero result or make test carries on without noticing the failure. Fixed. [Ben Laurie] *) DES library cleanups. [Ulf Möller] *) Add support for PKCS#5 v2.0 PBE algorithms. This will permit PKCS#8 to be used with any cipher unlike PKCS#5 v1.5 which can at most handle 64 bit ciphers. NOTE: although the key derivation function has been verified against some published test vectors it has not been extensively tested yet. Added a -v2 "cipher" option to pkcs8 application to allow the use of v2.0. [Steve Henson] *) Instead of "mkdir -p", which is not fully portable, use new Perl script "util/mkdir-p.pl". [Bodo Moeller] *) Rewrite the way password based encryption (PBE) is handled. It used to assume that the ASN1 AlgorithmIdentifier parameter was a PBEParameter structure. This was true for the PKCS#5 v1.5 and PKCS#12 PBE algorithms but doesn't apply to PKCS#5 v2.0 where it can be something else. Now the 'parameter' field of the AlgorithmIdentifier is passed to the underlying key generation function so it must do its own ASN1 parsing. This has also changed the EVP_PBE_CipherInit() function which now has a 'parameter' argument instead of literal salt and iteration count values and the function EVP_PBE_ALGOR_CipherInit() has been deleted. [Steve Henson] *) Support for PKCS#5 v1.5 compatible password based encryption algorithms and PKCS#8 functionality. New 'pkcs8' application linked to openssl. Needed to change the PEM_STRING_EVP_PKEY value which was just "PRIVATE KEY" because this clashed with PKCS#8 unencrypted string. Since this value was just used as a "magic string" and not used directly its value doesn't matter. [Steve Henson] *) Introduce some semblance of const correctness to BN. Shame C doesn't support mutable. [Ben Laurie] *) "linux-sparc64" configuration (ultrapenguin). [Ray Miller ] "linux-sparc" configuration. [Christian Forster ] *) config now generates no-xxx options for missing ciphers. [Ulf Möller] *) Support the EBCDIC character set (work in progress). File ebcdic.c not yet included because it has a different license. [Martin Kraemer ] *) Support BS2000/OSD-POSIX. [Martin Kraemer ] *) Make callbacks for key generation use void * instead of char *. [Ben Laurie] *) Make S/MIME samples compile (not yet tested). [Ben Laurie] *) Additional typesafe stacks. [Ben Laurie] *) New configuration variants "bsdi-elf-gcc" (BSD/OS 4.x). [Bodo Moeller] Changes between 0.9.3 and 0.9.3a [29 May 1999] *) New configuration variant "sco5-gcc". *) Updated some demos. [Sean O Riordain, Wade Scholine] *) Add missing BIO_free at exit of pkcs12 application. [Wu Zhigang] *) Fix memory leak in conf.c. [Steve Henson] *) Updates for Win32 to assembler version of MD5. [Steve Henson] *) Set #! path to perl in apps/der_chop to where we found it instead of using a fixed path. [Bodo Moeller] *) SHA library changes for irix64-mips4-cc. [Andy Polyakov] *) Improvements for VMS support. [Richard Levitte] Changes between 0.9.2b and 0.9.3 [24 May 1999] *) Bignum library bug fix. IRIX 6 passes "make test" now! This also avoids the problems with SC4.2 and unpatched SC5. [Andy Polyakov ] *) New functions sk_num, sk_value and sk_set to replace the previous macros. These are required because of the typesafe stack would otherwise break existing code. If old code used a structure member which used to be STACK and is now STACK_OF (for example cert in a PKCS7_SIGNED structure) with sk_num or sk_value it would produce an error because the num, data members are not present in STACK_OF. Now it just produces a warning. sk_set replaces the old method of assigning a value to sk_value (e.g. sk_value(x, i) = y) which the library used in a few cases. Any code that does this will no longer work (and should use sk_set instead) but this could be regarded as a "questionable" behaviour anyway. [Steve Henson] *) Fix most of the other PKCS#7 bugs. The "experimental" code can now correctly handle encrypted S/MIME data. [Steve Henson] *) Change type of various DES function arguments from des_cblock (which means, in function argument declarations, pointer to char) to des_cblock * (meaning pointer to array with 8 char elements), which allows the compiler to do more typechecking; it was like that back in SSLeay, but with lots of ugly casts. Introduce new type const_des_cblock. [Bodo Moeller] *) Reorganise the PKCS#7 library and get rid of some of the more obvious problems: find RecipientInfo structure that matches recipient certificate and initialise the ASN1 structures properly based on passed cipher. [Steve Henson] *) Belatedly make the BN tests actually check the results. [Ben Laurie] *) Fix the encoding and decoding of negative ASN1 INTEGERS and conversion to and from BNs: it was completely broken. New compilation option NEG_PUBKEY_BUG to allow for some broken certificates that encode public key elements as negative integers. [Steve Henson] *) Reorganize and speed up MD5. [Andy Polyakov ] *) VMS support. [Richard Levitte ] *) New option -out to asn1parse to allow the parsed structure to be output to a file. This is most useful when combined with the -strparse option to examine the output of things like OCTET STRINGS. [Steve Henson] *) Make SSL library a little more fool-proof by not requiring any longer that SSL_set_{accept,connect}_state be called before SSL_{accept,connect} may be used (SSL_set_..._state is omitted in many applications because usually everything *appeared* to work as intended anyway -- now it really works as intended). [Bodo Moeller] *) Move openssl.cnf out of lib/. [Ulf Möller] *) Fix various things to let OpenSSL even pass ``egcc -pipe -O2 -Wall -Wshadow -Wpointer-arith -Wcast-align -Wmissing-prototypes -Wmissing-declarations -Wnested-externs -Winline'' with EGCS 1.1.2+ [Ralf S. Engelschall] *) Various fixes to the EVP and PKCS#7 code. It may now be able to handle PKCS#7 enveloped data properly. [Sebastian Akerman , modified by Steve] *) Create a duplicate of the SSL_CTX's CERT in SSL_new instead of copying pointers. The cert_st handling is changed by this in various ways (and thus what used to be known as ctx->default_cert is now called ctx->cert, since we don't resort to s->ctx->[default_]cert any longer when s->cert does not give us what we need). ssl_cert_instantiate becomes obsolete by this change. As soon as we've got the new code right (possibly it already is?), we have solved a couple of bugs of the earlier code where s->cert was used as if it could not have been shared with other SSL structures. Note that using the SSL API in certain dirty ways now will result in different behaviour than observed with earlier library versions: Changing settings for an SSL_CTX *ctx after having done s = SSL_new(ctx) does not influence s as it used to. In order to clean up things more thoroughly, inside SSL_SESSION we don't use CERT any longer, but a new structure SESS_CERT that holds per-session data (if available); currently, this is the peer's certificate chain and, for clients, the server's certificate and temporary key. CERT holds only those values that can have meaningful defaults in an SSL_CTX. [Bodo Moeller] *) New function X509V3_EXT_i2d() to create an X509_EXTENSION structure from the internal representation. Various PKCS#7 fixes: remove some evil casts and set the enc_dig_alg field properly based on the signing key type. [Steve Henson] *) Allow PKCS#12 password to be set from the command line or the environment. Let 'ca' get its config file name from the environment variables "OPENSSL_CONF" or "SSLEAY_CONF" (for consistency with 'req' and 'x509'). [Steve Henson] *) Allow certificate policies extension to use an IA5STRING for the organization field. This is contrary to the PKIX definition but VeriSign uses it and IE5 only recognises this form. Document 'x509' extension option. [Steve Henson] *) Add PEDANTIC compiler flag to allow compilation with gcc -pedantic, without disallowing inline assembler and the like for non-pedantic builds. [Ben Laurie] *) Support Borland C++ builder. [Janez Jere , modified by Ulf Möller] *) Support Mingw32. [Ulf Möller] *) SHA-1 cleanups and performance enhancements. [Andy Polyakov ] *) Sparc v8plus assembler for the bignum library. [Andy Polyakov ] *) Accept any -xxx and +xxx compiler options in Configure. [Ulf Möller] *) Update HPUX configuration. [Anonymous] *) Add missing sk__unshift() function to safestack.h [Ralf S. Engelschall] *) New function SSL_CTX_use_certificate_chain_file that sets the "extra_cert"s in addition to the certificate. (This makes sense only for "PEM" format files, as chains as a whole are not DER-encoded.) [Bodo Moeller] *) Support verify_depth from the SSL API. x509_vfy.c had what can be considered an off-by-one-error: Its depth (which was not part of the external interface) was actually counting the number of certificates in a chain; now it really counts the depth. [Bodo Moeller] *) Bugfix in crypto/x509/x509_cmp.c: The SSLerr macro was used instead of X509err, which often resulted in confusing error messages since the error codes are not globally unique (e.g. an alleged error in ssl3_accept when a certificate didn't match the private key). *) New function SSL_CTX_set_session_id_context that allows to set a default value (so that you don't need SSL_set_session_id_context for each connection using the SSL_CTX). [Bodo Moeller] *) OAEP decoding bug fix. [Ulf Möller] *) Support INSTALL_PREFIX for package builders, as proposed by David Harris. [Bodo Moeller] *) New Configure options "threads" and "no-threads". For systems where the proper compiler options are known (currently Solaris and Linux), "threads" is the default. [Bodo Moeller] *) New script util/mklink.pl as a faster substitute for util/mklink.sh. [Bodo Moeller] *) Install various scripts to $(OPENSSLDIR)/misc, not to $(INSTALLTOP)/bin -- they shouldn't clutter directories such as /usr/local/bin. [Bodo Moeller] *) "make linux-shared" to build shared libraries. [Niels Poppe ] *) New Configure option no- (rsa, idea, rc5, ...). [Ulf Möller] *) Add the PKCS#12 API documentation to openssl.txt. Preliminary support for extension adding in x509 utility. [Steve Henson] *) Remove NOPROTO sections and error code comments. [Ulf Möller] *) Partial rewrite of the DEF file generator to now parse the ANSI prototypes. [Steve Henson] *) New Configure options --prefix=DIR and --openssldir=DIR. [Ulf Möller] *) Complete rewrite of the error code script(s). It is all now handled by one script at the top level which handles error code gathering, header rewriting and C source file generation. It should be much better than the old method: it now uses a modified version of Ulf's parser to read the ANSI prototypes in all header files (thus the old K&R definitions aren't needed for error creation any more) and do a better job of translating function codes into names. The old 'ASN1 error code embedded in a comment' is no longer necessary and it doesn't use .err files which have now been deleted. Also the error code call doesn't have to appear all on one line (which resulted in some large lines...). [Steve Henson] *) Change #include filenames from to . [Bodo Moeller] *) Change behaviour of ssl2_read when facing length-0 packets: Don't return 0 (which usually indicates a closed connection), but continue reading. [Bodo Moeller] *) Fix some race conditions. [Bodo Moeller] *) Add support for CRL distribution points extension. Add Certificate Policies and CRL distribution points documentation. [Steve Henson] *) Move the autogenerated header file parts to crypto/opensslconf.h. [Ulf Möller] *) Fix new 56-bit DES export ciphersuites: they were using 7 bytes instead of 8 of keying material. Merlin has also confirmed interop with this fix between OpenSSL and Baltimore C/SSL 2.0 and J/SSL 2.0. [Merlin Hughes ] *) Fix lots of warnings. [Richard Levitte ] *) In add_cert_dir() in crypto/x509/by_dir.c, break out of the loop if the directory spec didn't end with a LIST_SEPARATOR_CHAR. [Richard Levitte ] *) Fix problems with sizeof(long) == 8. [Andy Polyakov ] *) Change functions to ANSI C. [Ulf Möller] *) Fix typos in error codes. [Martin Kraemer , Ulf Möller] *) Remove defunct assembler files from Configure. [Ulf Möller] *) SPARC v8 assembler BIGNUM implementation. [Andy Polyakov ] *) Support for Certificate Policies extension: both print and set. Various additions to support the r2i method this uses. [Steve Henson] *) A lot of constification, and fix a bug in X509_NAME_oneline() that could return a const string when you are expecting an allocated buffer. [Ben Laurie] *) Add support for ASN1 types UTF8String and VISIBLESTRING, also the CHOICE types DirectoryString and DisplayText. [Steve Henson] *) Add code to allow r2i extensions to access the configuration database, add an LHASH database driver and add several ctx helper functions. [Steve Henson] *) Fix an evil bug in bn_expand2() which caused various BN functions to fail when they extended the size of a BIGNUM. [Steve Henson] *) Various utility functions to handle SXNet extension. Modify mkdef.pl to support typesafe stack. [Steve Henson] *) Fix typo in SSL_[gs]et_options(). [Nils Frostberg ] *) Delete various functions and files that belonged to the (now obsolete) old X509V3 handling code. [Steve Henson] *) New Configure option "rsaref". [Ulf Möller] *) Don't auto-generate pem.h. [Bodo Moeller] *) Introduce type-safe ASN.1 SETs. [Ben Laurie] *) Convert various additional casted stacks to type-safe STACK_OF() variants. [Ben Laurie, Ralf S. Engelschall, Steve Henson] *) Introduce type-safe STACKs. This will almost certainly break lots of code that links with OpenSSL (well at least cause lots of warnings), but fear not: the conversion is trivial, and it eliminates loads of evil casts. A few STACKed things have been converted already. Feel free to convert more. In the fullness of time, I'll do away with the STACK type altogether. [Ben Laurie] *) Add `openssl ca -revoke ' facility which revokes a certificate specified in by updating the entry in the index.txt file. This way one no longer has to edit the index.txt file manually for revoking a certificate. The -revoke option does the gory details now. [Massimiliano Pala , Ralf S. Engelschall] *) Fix `openssl crl -noout -text' combination where `-noout' killed the `-text' option at all and this way the `-noout -text' combination was inconsistent in `openssl crl' with the friends in `openssl x509|rsa|dsa'. [Ralf S. Engelschall] *) Make sure a corresponding plain text error message exists for the X509_V_ERR_CERT_REVOKED/23 error number which can occur when a verify callback function determined that a certificate was revoked. [Ralf S. Engelschall] *) Bugfix: In test/testenc, don't test "openssl " for ciphers that were excluded, e.g. by -DNO_IDEA. Also, test all available ciphers including rc5, which was forgotten until now. In order to let the testing shell script know which algorithms are available, a new (up to now undocumented) command "openssl list-cipher-commands" is used. [Bodo Moeller] *) Bugfix: s_client occasionally would sleep in select() when it should have checked SSL_pending() first. [Bodo Moeller] *) New functions DSA_do_sign and DSA_do_verify to provide access to the raw DSA values prior to ASN.1 encoding. [Ulf Möller] *) Tweaks to Configure [Niels Poppe ] *) Add support for PKCS#5 v2.0 ASN1 PBES2 structures. No other support, yet... [Steve Henson] *) New variables $(RANLIB) and $(PERL) in the Makefiles. [Ulf Möller] *) New config option to avoid instructions that are illegal on the 80386. The default code is faster, but requires at least a 486. [Ulf Möller] *) Got rid of old SSL2_CLIENT_VERSION (inconsistently used) and SSL2_SERVER_VERSION (not used at all) macros, which are now the same as SSL2_VERSION anyway. [Bodo Moeller] *) New "-showcerts" option for s_client. [Bodo Moeller] *) Still more PKCS#12 integration. Add pkcs12 application to openssl application. Various cleanups and fixes. [Steve Henson] *) More PKCS#12 integration. Add new pkcs12 directory with Makefile.ssl and modify error routines to work internally. Add error codes and PBE init to library startup routines. [Steve Henson] *) Further PKCS#12 integration. Added password based encryption, PKCS#8 and packing functions to asn1 and evp. Changed function names and error codes along the way. [Steve Henson] *) PKCS12 integration: and so it begins... First of several patches to slowly integrate PKCS#12 functionality into OpenSSL. Add PKCS#12 objects to objects.h [Steve Henson] *) Add a new 'indent' option to some X509V3 extension code. Initial ASN1 and display support for Thawte strong extranet extension. [Steve Henson] *) Add LinuxPPC support. [Jeff Dubrule ] *) Get rid of redundant BN file bn_mulw.c, and rename bn_div64 to bn_div_words in alpha.s. [Hannes Reinecke and Ben Laurie] *) Make sure the RSA OAEP test is skipped under -DRSAref because OAEP isn't supported when OpenSSL is built with RSAref. [Ulf Moeller ] *) Move definitions of IS_SET/IS_SEQUENCE inside crypto/asn1/asn1.h so they no longer are missing under -DNOPROTO. [Soren S. Jorvang ] Changes between 0.9.1c and 0.9.2b [22 Mar 1999] *) Make SSL_get_peer_cert_chain() work in servers. Unfortunately, it still doesn't work when the session is reused. Coming soon! [Ben Laurie] *) Fix a security hole, that allows sessions to be reused in the wrong context thus bypassing client cert protection! All software that uses client certs and session caches in multiple contexts NEEDS PATCHING to allow session reuse! A fuller solution is in the works. [Ben Laurie, problem pointed out by Holger Reif, Bodo Moeller (and ???)] *) Some more source tree cleanups (removed obsolete files crypto/bf/asm/bf586.pl, test/test.txt and crypto/sha/asm/f.s; changed permission on "config" script to be executable) and a fix for the INSTALL document. [Ulf Moeller ] *) Remove some legacy and erroneous uses of malloc, free instead of Malloc, Free. [Lennart Bang , with minor changes by Steve] *) Make rsa_oaep_test return non-zero on error. [Ulf Moeller ] *) Add support for native Solaris shared libraries. Configure solaris-sparc-sc4-pic, make, then run shlib/solaris-sc4.sh. It'd be nice if someone would make that last step automatic. [Matthias Loepfe ] *) ctx_size was not built with the right compiler during "make links". Fixed. [Ben Laurie] *) Change the meaning of 'ALL' in the cipher list. It now means "everything except NULL ciphers". This means the default cipher list will no longer enable NULL ciphers. They need to be specifically enabled e.g. with the string "DEFAULT:eNULL". [Steve Henson] *) Fix to RSA private encryption routines: if p < q then it would occasionally produce an invalid result. This will only happen with externally generated keys because OpenSSL (and SSLeay) ensure p > q. [Steve Henson] *) Be less restrictive and allow also `perl util/perlpath.pl /path/to/bin/perl' in addition to `perl util/perlpath.pl /path/to/bin', because this way one can also use an interpreter named `perl5' (which is usually the name of Perl 5.xxx on platforms where an Perl 4.x is still installed as `perl'). [Matthias Loepfe ] *) Let util/clean-depend.pl work also with older Perl 5.00x versions. [Matthias Loepfe ] *) Fix Makefile.org so CC,CFLAG etc are passed to 'make links' add advapi32.lib to Win32 build and change the pem test comparison to fc.exe (thanks to Ulrich Kroener for the suggestion). Fix misplaced ASNI prototypes and declarations in evp.h and crypto/des/ede_cbcm_enc.c. [Steve Henson] *) DES quad checksum was broken on big-endian architectures. Fixed. [Ben Laurie] *) Comment out two functions in bio.h that aren't implemented. Fix up the Win32 test batch file so it (might) work again. The Win32 test batch file is horrible: I feel ill.... [Steve Henson] *) Move various #ifdefs around so NO_SYSLOG, NO_DIRENT etc are now selected in e_os.h. Audit of header files to check ANSI and non ANSI sections: 10 functions were absent from non ANSI section and not exported from Windows DLLs. Fixed up libeay.num for new functions. [Steve Henson] *) Make `openssl version' output lines consistent. [Ralf S. Engelschall] *) Fix Win32 symbol export lists for BIO functions: Added BIO_get_ex_new_index, BIO_get_ex_num, BIO_get_ex_data and BIO_set_ex_data to ms/libeay{16,32}.def. [Ralf S. Engelschall] *) Second round of fixing the OpenSSL perl/ stuff. It now at least compiled fine under Unix and passes some trivial tests I've now added. But the whole stuff is horribly incomplete, so a README.1ST with a disclaimer was added to make sure no one expects that this stuff really works in the OpenSSL 0.9.2 release. Additionally I've started to clean the XS sources up and fixed a few little bugs and inconsistencies in OpenSSL.{pm,xs} and openssl_bio.xs. [Ralf S. Engelschall] *) Fix the generation of two part addresses in perl. [Kenji Miyake , integrated by Ben Laurie] *) Add config entry for Linux on MIPS. [John Tobey ] *) Make links whenever Configure is run, unless we are on Windoze. [Ben Laurie] *) Permit extensions to be added to CRLs using crl_section in openssl.cnf. Currently only issuerAltName and AuthorityKeyIdentifier make any sense in CRLs. [Steve Henson] *) Add a useful kludge to allow package maintainers to specify compiler and other platforms details on the command line without having to patch the Configure script every time: One now can use ``perl Configure :
'', i.e. platform ids are allowed to have details appended to them (separated by colons). This is treated as there would be a static pre-configured entry in Configure's %table under key with value
and ``perl Configure '' is called. So, when you want to perform a quick test-compile under FreeBSD 3.1 with pgcc and without assembler stuff you can use ``perl Configure "FreeBSD-elf:pgcc:-O6:::"'' now, which overrides the FreeBSD-elf entry on-the-fly. [Ralf S. Engelschall] *) Disable new TLS1 ciphersuites by default: they aren't official yet. [Ben Laurie] *) Allow DSO flags like -fpic, -fPIC, -KPIC etc. to be specified on the `perl Configure ...' command line. This way one can compile OpenSSL libraries with Position Independent Code (PIC) which is needed for linking it into DSOs. [Ralf S. Engelschall] *) Remarkably, export ciphers were totally broken and no-one had noticed! Fixed. [Ben Laurie] *) Cleaned up the LICENSE document: The official contact for any license questions now is the OpenSSL core team under openssl-core@openssl.org. And add a paragraph about the dual-license situation to make sure people recognize that _BOTH_ the OpenSSL license _AND_ the SSLeay license apply to the OpenSSL toolkit. [Ralf S. Engelschall] *) General source tree makefile cleanups: Made `making xxx in yyy...' display consistent in the source tree and replaced `/bin/rm' by `rm'. Additionally cleaned up the `make links' target: Remove unnecessary semicolons, subsequent redundant removes, inline point.sh into mklink.sh to speed processing and no longer clutter the display with confusing stuff. Instead only the actually done links are displayed. [Ralf S. Engelschall] *) Permit null encryption ciphersuites, used for authentication only. It used to be necessary to set the preprocessor define SSL_ALLOW_ENULL to do this. It is now necessary to set SSL_FORBID_ENULL to prevent the use of null encryption. [Ben Laurie] *) Add a bunch of fixes to the PKCS#7 stuff. It used to sometimes reorder signed attributes when verifying signatures (this would break them), the detached data encoding was wrong and public keys obtained using X509_get_pubkey() weren't freed. [Steve Henson] *) Add text documentation for the BUFFER functions. Also added a work around to a Win95 console bug. This was triggered by the password read stuff: the last character typed gets carried over to the next fread(). If you were generating a new cert request using 'req' for example then the last character of the passphrase would be CR which would then enter the first field as blank. [Steve Henson] *) Added the new `Includes OpenSSL Cryptography Software' button as doc/openssl_button.{gif,html} which is similar in style to the old SSLeay button and can be used by applications based on OpenSSL to show the relationship to the OpenSSL project. [Ralf S. Engelschall] *) Remove confusing variables in function signatures in files ssl/ssl_lib.c and ssl/ssl.h. [Lennart Bong ] *) Don't install bss_file.c under PREFIX/include/ [Lennart Bong ] *) Get the Win32 compile working again. Modify mkdef.pl so it can handle functions that return function pointers and has support for NT specific stuff. Fix mk1mf.pl and VC-32.pl to support NT differences also. Various #ifdef WIN32 and WINNTs sprinkled about the place and some changes from unsigned to signed types: this was killing the Win32 compile. [Steve Henson] *) Add new certificate file to stack functions, SSL_add_dir_cert_subjects_to_stack() and SSL_add_file_cert_subjects_to_stack(). These largely supplant SSL_load_client_CA_file(), and can be used to add multiple certs easily to a stack (usually this is then handed to SSL_CTX_set_client_CA_list()). This means that Apache-SSL and similar packages don't have to mess around to add as many CAs as they want to the preferred list. [Ben Laurie] *) Experiment with doxygen documentation. Currently only partially applied to ssl/ssl_lib.c. See http://www.stack.nl/~dimitri/doxygen/index.html, and run doxygen with openssl.doxy as the configuration file. [Ben Laurie] *) Get rid of remaining C++-style comments which strict C compilers hate. [Ralf S. Engelschall, pointed out by Carlos Amengual] *) Changed BN_RECURSION in bn_mont.c to BN_RECURSION_MONT so it is not compiled in by default: it has problems with large keys. [Steve Henson] *) Add a bunch of SSL_xxx() functions for configuring the temporary RSA and DH private keys and/or callback functions which directly correspond to their SSL_CTX_xxx() counterparts but work on a per-connection basis. This is needed for applications which have to configure certificates on a per-connection basis (e.g. Apache+mod_ssl) instead of a per-context basis (e.g. s_server). For the RSA certificate situation is makes no difference, but for the DSA certificate situation this fixes the "no shared cipher" problem where the OpenSSL cipher selection procedure failed because the temporary keys were not overtaken from the context and the API provided no way to reconfigure them. The new functions now let applications reconfigure the stuff and they are in detail: SSL_need_tmp_RSA, SSL_set_tmp_rsa, SSL_set_tmp_dh, SSL_set_tmp_rsa_callback and SSL_set_tmp_dh_callback. Additionally a new non-public-API function ssl_cert_instantiate() is used as a helper function and also to reduce code redundancy inside ssl_rsa.c. [Ralf S. Engelschall] *) Move s_server -dcert and -dkey options out of the undocumented feature area because they are useful for the DSA situation and should be recognized by the users. [Ralf S. Engelschall] *) Fix the cipher decision scheme for export ciphers: the export bits are *not* within SSL_MKEY_MASK or SSL_AUTH_MASK, they are within SSL_EXP_MASK. So, the original variable has to be used instead of the already masked variable. [Richard Levitte ] *) Fix 'port' variable from `int' to `unsigned int' in crypto/bio/b_sock.c [Richard Levitte ] *) Change type of another md_len variable in pk7_doit.c:PKCS7_dataFinal() from `int' to `unsigned int' because it's a length and initialized by EVP_DigestFinal() which expects an `unsigned int *'. [Richard Levitte ] *) Don't hard-code path to Perl interpreter on shebang line of Configure script. Instead use the usual Shell->Perl transition trick. [Ralf S. Engelschall] *) Make `openssl x509 -noout -modulus' functional also for DSA certificates (in addition to RSA certificates) to match the behaviour of `openssl dsa -noout -modulus' as it's already the case for `openssl rsa -noout -modulus'. For RSA the -modulus is the real "modulus" while for DSA currently the public key is printed (a decision which was already done by `openssl dsa -modulus' in the past) which serves a similar purpose. Additionally the NO_RSA no longer completely removes the whole -modulus option; it now only avoids using the RSA stuff. Same applies to NO_DSA now, too. [Ralf S. Engelschall] *) Add Arne Ansper's reliable BIO - this is an encrypted, block-digested BIO. See the source (crypto/evp/bio_ok.c) for more info. [Arne Ansper ] *) Dump the old yucky req code that tried (and failed) to allow raw OIDs to be added. Now both 'req' and 'ca' can use new objects defined in the config file. [Steve Henson] *) Add cool BIO that does syslog (or event log on NT). [Arne Ansper , integrated by Ben Laurie] *) Add support for new TLS ciphersuites, TLS_RSA_EXPORT56_WITH_RC4_56_MD5, TLS_RSA_EXPORT56_WITH_RC2_CBC_56_MD5 and TLS_RSA_EXPORT56_WITH_DES_CBC_SHA, as specified in "56-bit Export Cipher Suites For TLS", draft-ietf-tls-56-bit-ciphersuites-00.txt. [Ben Laurie] *) Add preliminary config info for new extension code. [Steve Henson] *) Make RSA_NO_PADDING really use no padding. [Ulf Moeller ] *) Generate errors when private/public key check is done. [Ben Laurie] *) Overhaul for 'crl' utility. New function X509_CRL_print. Partial support for some CRL extensions and new objects added. [Steve Henson] *) Really fix the ASN1 IMPLICIT bug this time... Partial support for private key usage extension and fuller support for authority key id. [Steve Henson] *) Add OAEP encryption for the OpenSSL crypto library. OAEP is the improved padding method for RSA, which is recommended for new applications in PKCS #1 v2.0 (RFC 2437, October 1998). OAEP (Optimal Asymmetric Encryption Padding) has better theoretical foundations than the ad-hoc padding used in PKCS #1 v1.5. It is secure against Bleichbacher's attack on RSA. [Ulf Moeller , reformatted, corrected and integrated by Ben Laurie] *) Updates to the new SSL compression code [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Fix so that the version number in the master secret, when passed via RSA, checks that if TLS was proposed, but we roll back to SSLv3 (because the server will not accept higher), that the version number is 0x03,0x01, not 0x03,0x00 [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Run extensive memory leak checks on SSL apps. Fixed *lots* of memory leaks in ssl/ relating to new X509_get_pubkey() behaviour. Also fixes in apps/ and an unrelated leak in crypto/dsa/dsa_vrf.c [Steve Henson] *) Support for RAW extensions where an arbitrary extension can be created by including its DER encoding. See apps/openssl.cnf for an example. [Steve Henson] *) Make sure latest Perl versions don't interpret some generated C array code as Perl array code in the crypto/err/err_genc.pl script. [Lars Weber <3weber@informatik.uni-hamburg.de>] *) Modify ms/do_ms.bat to not generate assembly language makefiles since not many people have the assembler. Various Win32 compilation fixes and update to the INSTALL.W32 file with (hopefully) more accurate Win32 build instructions. [Steve Henson] *) Modify configure script 'Configure' to automatically create crypto/date.h file under Win32 and also build pem.h from pem.org. New script util/mkfiles.pl to create the MINFO file on environments that can't do a 'make files': perl util/mkfiles.pl >MINFO should work. [Steve Henson] *) Major rework of DES function declarations, in the pursuit of correctness and purity. As a result, many evil casts evaporated, and some weirdness, too. You may find this causes warnings in your code. Zapping your evil casts will probably fix them. Mostly. [Ben Laurie] *) Fix for a typo in asn1.h. Bug fix to object creation script obj_dat.pl. It considered a zero in an object definition to mean "end of object": none of the objects in objects.h have any zeros so it wasn't spotted. [Steve Henson, reported by Erwann ABALEA ] *) Add support for Triple DES Cipher Block Chaining with Output Feedback Masking (CBCM). In the absence of test vectors, the best I have been able to do is check that the decrypt undoes the encrypt, so far. Send me test vectors if you have them. [Ben Laurie] *) Correct calculation of key length for export ciphers (too much space was allocated for null ciphers). This has not been tested! [Ben Laurie] *) Modifications to the mkdef.pl for Win32 DEF file creation. The usage message is now correct (it understands "crypto" and "ssl" on its command line). There is also now an "update" option. This will update the util/ssleay.num and util/libeay.num files with any new functions. If you do a: perl util/mkdef.pl crypto ssl update it will update them. [Steve Henson] *) Overhauled the Perl interface (perl/*): - ported BN stuff to OpenSSL's different BN library - made the perl/ source tree CVS-aware - renamed the package from SSLeay to OpenSSL (the files still contain their history because I've copied them in the repository) - removed obsolete files (the test scripts will be replaced by better Test::Harness variants in the future) [Ralf S. Engelschall] *) First cut for a very conservative source tree cleanup: 1. merge various obsolete readme texts into doc/ssleay.txt where we collect the old documents and readme texts. 2. remove the first part of files where I'm already sure that we no longer need them because of three reasons: either they are just temporary files which were left by Eric or they are preserved original files where I've verified that the diff is also available in the CVS via "cvs diff -rSSLeay_0_8_1b" or they were renamed (as it was definitely the case for the crypto/md/ stuff). [Ralf S. Engelschall] *) More extension code. Incomplete support for subject and issuer alt name, issuer and authority key id. Change the i2v function parameters and add an extra 'crl' parameter in the X509V3_CTX structure: guess what that's for :-) Fix to ASN1 macro which messed up IMPLICIT tag and add f_enum.c which adds a2i, i2a for ENUMERATED. [Steve Henson] *) Preliminary support for ENUMERATED type. This is largely copied from the INTEGER code. [Steve Henson] *) Add new function, EVP_MD_CTX_copy() to replace frequent use of memcpy. [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Make sure `make rehash' target really finds the `openssl' program. [Ralf S. Engelschall, Matthias Loepfe ] *) Squeeze another 7% of speed out of MD5 assembler, at least on a P2. I'd like to hear about it if this slows down other processors. [Ben Laurie] *) Add CygWin32 platform information to Configure script. [Alan Batie ] *) Fixed ms/32all.bat script: `no_asm' -> `no-asm' [Rainer W. Gerling ] *) New program nseq to manipulate netscape certificate sequences [Steve Henson] *) Modify crl2pkcs7 so it supports multiple -certfile arguments. Fix a few typos. [Steve Henson] *) Fixes to BN code. Previously the default was to define BN_RECURSION but the BN code had some problems that would cause failures when doing certificate verification and some other functions. [Eric A. Young, (from changes to C2Net SSLeay, integrated by Mark Cox)] *) Add ASN1 and PEM code to support netscape certificate sequences. [Steve Henson] *) Add ASN1 and PEM code to support netscape certificate sequences. [Steve Henson] *) Add several PKIX and private extended key usage OIDs. [Steve Henson] *) Modify the 'ca' program to handle the new extension code. Modify openssl.cnf for new extension format, add comments. [Steve Henson] *) More X509 V3 changes. Fix typo in v3_bitstr.c. Add support to 'req' and add a sample to openssl.cnf so req -x509 now adds appropriate CA extensions. [Steve Henson] *) Continued X509 V3 changes. Add to other makefiles, integrate with the error code, add initial support to X509_print() and x509 application. [Steve Henson] *) Takes a deep breath and start adding X509 V3 extension support code. Add files in crypto/x509v3. Move original stuff to crypto/x509v3/old. All this stuff is currently isolated and isn't even compiled yet. [Steve Henson] *) Continuing patches for GeneralizedTime. Fix up certificate and CRL ASN1 to use ASN1_TIME and modify print routines to use ASN1_TIME_print. Removed the versions check from X509 routines when loading extensions: this allows certain broken certificates that don't set the version properly to be processed. [Steve Henson] *) Deal with irritating shit to do with dependencies, in YAAHW (Yet Another Ad Hoc Way) - Makefile.ssls now all contain local dependencies, which can still be regenerated with "make depend". [Ben Laurie] *) Spelling mistake in C version of CAST-128. [Ben Laurie, reported by Jeremy Hylton ] *) Changes to the error generation code. The perl script err-code.pl now reads in the old error codes and retains the old numbers, only adding new ones if necessary. It also only changes the .err files if new codes are added. The makefiles have been modified to only insert errors when needed (to avoid needlessly modifying header files). This is done by only inserting errors if the .err file is newer than the auto generated C file. To rebuild all the error codes from scratch (the old behaviour) either modify crypto/Makefile.ssl to pass the -regen flag to err_code.pl or delete all the .err files. [Steve Henson] *) CAST-128 was incorrectly implemented for short keys. The C version has been fixed, but is untested. The assembler versions are also fixed, but new assembler HAS NOT BEEN GENERATED FOR WIN32 - the Makefile needs fixing to regenerate it if needed. [Ben Laurie, reported (with fix for C version) by Jun-ichiro itojun Hagino ] *) File was opened incorrectly in randfile.c. [Ulf Möller ] *) Beginning of support for GeneralizedTime. d2i, i2d, check and print functions. Also ASN1_TIME suite which is a CHOICE of UTCTime or GeneralizedTime. ASN1_TIME is the proper type used in certificates et al: it's just almost always a UTCTime. Note this patch adds new error codes so do a "make errors" if there are problems. [Steve Henson] *) Correct Linux 1 recognition in config. [Ulf Möller ] *) Remove pointless MD5 hash when using DSA keys in ca. [Anonymous ] *) Generate an error if given an empty string as a cert directory. Also generate an error if handed NULL (previously returned 0 to indicate an error, but didn't set one). [Ben Laurie, reported by Anonymous ] *) Add prototypes to SSL methods. Make SSL_write's buffer const, at last. [Ben Laurie] *) Fix the dummy function BN_ref_mod_exp() in rsaref.c to have the correct parameters. This was causing a warning which killed off the Win32 compile. [Steve Henson] *) Remove C++ style comments from crypto/bn/bn_local.h. [Neil Costigan ] *) The function OBJ_txt2nid was broken. It was supposed to return a nid based on a text string, looking up short and long names and finally "dot" format. The "dot" format stuff didn't work. Added new function OBJ_txt2obj to do the same but return an ASN1_OBJECT and rewrote OBJ_txt2nid to use it. OBJ_txt2obj can also return objects even if the OID is not part of the table. [Steve Henson] *) Add prototypes to X509 lookup/verify methods, fixing a bug in X509_LOOKUP_by_alias(). [Ben Laurie] *) Sort openssl functions by name. [Ben Laurie] *) Get the gendsa program working (hopefully) and add it to app list. Remove encryption from sample DSA keys (in case anyone is interested the password was "1234"). [Steve Henson] *) Make _all_ *_free functions accept a NULL pointer. [Frans Heymans ] *) If a DH key is generated in s3_srvr.c, don't blow it by trying to use NULL pointers. [Anonymous ] *) s_server should send the CAfile as acceptable CAs, not its own cert. [Bodo Moeller <3moeller@informatik.uni-hamburg.de>] *) Don't blow it for numeric -newkey arguments to apps/req. [Bodo Moeller <3moeller@informatik.uni-hamburg.de>] *) Temp key "for export" tests were wrong in s3_srvr.c. [Anonymous ] *) Add prototype for temp key callback functions SSL_CTX_set_tmp_{rsa,dh}_callback(). [Ben Laurie] *) Make DH_free() tolerate being passed a NULL pointer (like RSA_free() and DSA_free()). Make X509_PUBKEY_set() check for errors in d2i_PublicKey(). [Steve Henson] *) X509_name_add_entry() freed the wrong thing after an error. [Arne Ansper ] *) rsa_eay.c would attempt to free a NULL context. [Arne Ansper ] *) BIO_s_socket() had a broken should_retry() on Windoze. [Arne Ansper ] *) BIO_f_buffer() didn't pass on BIO_CTRL_FLUSH. [Arne Ansper ] *) Make sure the already existing X509_STORE->depth variable is initialized in X509_STORE_new(), but document the fact that this variable is still unused in the certificate verification process. [Ralf S. Engelschall] *) Fix the various library and apps files to free up pkeys obtained from X509_PUBKEY_get() et al. Also allow x509.c to handle netscape extensions. [Steve Henson] *) Fix reference counting in X509_PUBKEY_get(). This makes demos/maurice/example2.c work, amongst others, probably. [Steve Henson and Ben Laurie] *) First cut of a cleanup for apps/. First the `ssleay' program is now named `openssl' and second, the shortcut symlinks for the `openssl ' are no longer created. This way we have a single and consistent command line interface `openssl ', similar to `cvs '. [Ralf S. Engelschall, Paul Sutton and Ben Laurie] *) ca.c: move test for DSA keys inside #ifndef NO_DSA. Make pubkey BIT STRING wrapper always have zero unused bits. [Steve Henson] *) Add CA.pl, perl version of CA.sh, add extended key usage OID. [Steve Henson] *) Make the top-level INSTALL documentation easier to understand. [Paul Sutton] *) Makefiles updated to exit if an error occurs in a sub-directory make (including if user presses ^C) [Paul Sutton] *) Make Montgomery context stuff explicit in RSA data structure. [Ben Laurie] *) Fix build order of pem and err to allow for generated pem.h. [Ben Laurie] *) Fix renumbering bug in X509_NAME_delete_entry(). [Ben Laurie] *) Enhanced the err-ins.pl script so it makes the error library number global and can add a library name. This is needed for external ASN1 and other error libraries. [Steve Henson] *) Fixed sk_insert which never worked properly. [Steve Henson] *) Fix ASN1 macros so they can handle indefinite length constructed EXPLICIT tags. Some non standard certificates use these: they can now be read in. [Steve Henson] *) Merged the various old/obsolete SSLeay documentation files (doc/xxx.doc) into a single doc/ssleay.txt bundle. This way the information is still preserved but no longer messes up this directory. Now it's new room for the new set of documentation files. [Ralf S. Engelschall] *) SETs were incorrectly DER encoded. This was a major pain, because they shared code with SEQUENCEs, which aren't coded the same. This means that almost everything to do with SETs or SEQUENCEs has either changed name or number of arguments. [Ben Laurie, based on a partial fix by GP Jayan ] *) Fix test data to work with the above. [Ben Laurie] *) Fix the RSA header declarations that hid a bug I fixed in 0.9.0b but was already fixed by Eric for 0.9.1 it seems. [Ben Laurie - pointed out by Ulf Möller ] *) Autodetect FreeBSD3. [Ben Laurie] *) Fix various bugs in Configure. This affects the following platforms: nextstep ncr-scde unixware-2.0 unixware-2.0-pentium sco5-cc. [Ben Laurie] *) Eliminate generated files from CVS. Reorder tests to regenerate files before they are needed. [Ben Laurie] *) Generate Makefile.ssl from Makefile.org (to keep CVS happy). [Ben Laurie] Changes between 0.9.1b and 0.9.1c [23-Dec-1998] *) Added OPENSSL_VERSION_NUMBER to crypto/crypto.h and changed SSLeay to OpenSSL in version strings. [Ralf S. Engelschall] *) Some fixups to the top-level documents. [Paul Sutton] *) Fixed the nasty bug where rsaref.h was not found under compile-time because the symlink to include/ was missing. [Ralf S. Engelschall] *) Incorporated the popular no-RSA/DSA-only patches which allow to compile a RSA-free SSLeay. [Andrew Cooke / Interrader Ldt., Ralf S. Engelschall] *) Fixed nasty rehash problem under `make -f Makefile.ssl links' when "ssleay" is still not found. [Ralf S. Engelschall] *) Added more platforms to Configure: Cray T3E, HPUX 11, [Ralf S. Engelschall, Beckmann ] *) Updated the README file. [Ralf S. Engelschall] *) Added various .cvsignore files in the CVS repository subdirs to make a "cvs update" really silent. [Ralf S. Engelschall] *) Recompiled the error-definition header files and added missing symbols to the Win32 linker tables. [Ralf S. Engelschall] *) Cleaned up the top-level documents; o new files: CHANGES and LICENSE o merged VERSION, HISTORY* and README* files a CHANGES.SSLeay o merged COPYRIGHT into LICENSE o removed obsolete TODO file o renamed MICROSOFT to INSTALL.W32 [Ralf S. Engelschall] *) Removed dummy files from the 0.9.1b source tree: crypto/asn1/x crypto/bio/cd crypto/bio/fg crypto/bio/grep crypto/bio/vi crypto/bn/asm/......add.c crypto/bn/asm/a.out crypto/dsa/f crypto/md5/f crypto/pem/gmon.out crypto/perlasm/f crypto/pkcs7/build crypto/rsa/f crypto/sha/asm/f crypto/threads/f ms/zzz ssl/f ssl/f.mak test/f util/f.mak util/pl/f util/pl/f.mak crypto/bf/bf_locl.old apps/f [Ralf S. Engelschall] *) Added various platform portability fixes. [Mark J. Cox] *) The Genesis of the OpenSSL rpject: We start with the latest (unreleased) SSLeay version 0.9.1b which Eric A. Young and Tim J. Hudson created while they were working for C2Net until summer 1998. [The OpenSSL Project] Changes between 0.9.0b and 0.9.1b [not released] *) Updated a few CA certificates under certs/ [Eric A. Young] *) Changed some BIGNUM api stuff. [Eric A. Young] *) Various platform ports: OpenBSD, Ultrix, IRIX 64bit, NetBSD, DGUX x86, Linux Alpha, etc. [Eric A. Young] *) New COMP library [crypto/comp/] for SSL Record Layer Compression: RLE (dummy implemented) and ZLIB (really implemented when ZLIB is available). [Eric A. Young] *) Add -strparse option to asn1pars program which parses nested binary structures [Dr Stephen Henson ] *) Added "oid_file" to ssleay.cnf for "ca" and "req" programs. [Eric A. Young] *) DSA fix for "ca" program. [Eric A. Young] *) Added "-genkey" option to "dsaparam" program. [Eric A. Young] *) Added RIPE MD160 (rmd160) message digest. [Eric A. Young] *) Added -a (all) option to "ssleay version" command. [Eric A. Young] *) Added PLATFORM define which is the id given to Configure. [Eric A. Young] *) Added MemCheck_XXXX functions to crypto/mem.c for memory checking. [Eric A. Young] *) Extended the ASN.1 parser routines. [Eric A. Young] *) Extended BIO routines to support REUSEADDR, seek, tell, etc. [Eric A. Young] *) Added a BN_CTX to the BN library. [Eric A. Young] *) Fixed the weak key values in DES library [Eric A. Young] *) Changed API in EVP library for cipher aliases. [Eric A. Young] *) Added support for RC2/64bit cipher. [Eric A. Young] *) Converted the lhash library to the crypto/mem.c functions. [Eric A. Young] *) Added more recognized ASN.1 object ids. [Eric A. Young] *) Added more RSA padding checks for SSL/TLS. [Eric A. Young] *) Added BIO proxy/filter functionality. [Eric A. Young] *) Added extra_certs to SSL_CTX which can be used send extra CA certificates to the client in the CA cert chain sending process. It can be configured with SSL_CTX_add_extra_chain_cert(). [Eric A. Young] *) Now Fortezza is denied in the authentication phase because this is key exchange mechanism is not supported by SSLeay at all. [Eric A. Young] *) Additional PKCS1 checks. [Eric A. Young] *) Support the string "TLSv1" for all TLS v1 ciphers. [Eric A. Young] *) Added function SSL_get_ex_data_X509_STORE_CTX_idx() which gives the ex_data index of the SSL context in the X509_STORE_CTX ex_data. [Eric A. Young] *) Fixed a few memory leaks. [Eric A. Young] *) Fixed various code and comment typos. [Eric A. Young] *) A minor bug in ssl/s3_clnt.c where there would always be 4 0 bytes sent in the client random. [Edward Bishop ] openssl-1.1.1f/CONTRIBUTING000066400000000000000000000070431364063235100152040ustar00rootroot00000000000000HOW TO CONTRIBUTE TO OpenSSL ---------------------------- (Please visit https://www.openssl.org/community/getting-started.html for other ideas about how to contribute.) Development is done on GitHub, https://github.com/openssl/openssl. To request new features or report bugs, please open an issue on GitHub To submit a patch, please open a pull request on GitHub. If you are thinking of making a large contribution, open an issue for it before starting work, to get comments from the community. Someone may be already working on the same thing or there may be reasons why that feature isn't implemented. To make it easier to review and accept your pull request, please follow these guidelines: 1. Anything other than a trivial contribution requires a Contributor License Agreement (CLA), giving us permission to use your code. See https://www.openssl.org/policies/cla.html for details. If your contribution is too small to require a CLA, put "CLA: trivial" on a line by itself in your commit message body. 2. All source files should start with the following text (with appropriate comment characters at the start of each line and the year(s) updated): Copyright 20xx-20yy The OpenSSL Project Authors. All Rights Reserved. Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at https://www.openssl.org/source/license.html 3. Patches should be as current as possible; expect to have to rebase often. We do not accept merge commits, you will have to remove them (usually by rebasing) before it will be acceptable. 4. Patches should follow our coding style (see https://www.openssl.org/policies/codingstyle.html) and compile without warnings. Where gcc or clang is available you should use the --strict-warnings Configure option. OpenSSL compiles on many varied platforms: try to ensure you only use portable features. Clean builds via Travis and AppVeyor are required, and they are started automatically whenever a PR is created or updated. 5. When at all possible, patches should include tests. These can either be added to an existing test, or completely new. Please see test/README for information on the test framework. 6. New features or changed functionality must include documentation. Please look at the "pod" files in doc/man[1357] for examples of our style. Run "make doc-nits" to make sure that your documentation changes are clean. 7. For user visible changes (API changes, behaviour changes, ...), consider adding a note in CHANGES. This could be a summarising description of the change, and could explain the grander details. Have a look through existing entries for inspiration. Please note that this is NOT simply a copy of git-log one-liners. Also note that security fixes get an entry in CHANGES. This file helps users get more in depth information of what comes with a specific release without having to sift through the higher noise ratio in git-log. 8. For larger or more important user visible changes, as well as security fixes, please add a line in NEWS. On exception, it might be worth adding a multi-line entry (such as the entry that announces all the types that became opaque with OpenSSL 1.1.0). This file helps users get a very quick summary of what comes with a specific release, to see if an upgrade is worth the effort. openssl-1.1.1f/Configurations/000077500000000000000000000000001364063235100163405ustar00rootroot00000000000000openssl-1.1.1f/Configurations/00-base-templates.conf000066400000000000000000000264761364063235100223510ustar00rootroot00000000000000# -*- Mode: perl -*- my %targets=( DEFAULTS => { template => 1, cflags => "", cppflags => "", lflags => "", defines => [], includes => [], lib_cflags => "", lib_cppflags => "", lib_defines => [], thread_scheme => "(unknown)", # Assume we don't know thread_defines => [], apps_aux_src => "", apps_init_src => "", cpuid_asm_src => "mem_clr.c", uplink_aux_src => "", bn_asm_src => "bn_asm.c", ec_asm_src => "", des_asm_src => "des_enc.c fcrypt_b.c", aes_asm_src => "aes_core.c aes_cbc.c", bf_asm_src => "bf_enc.c", md5_asm_src => "", cast_asm_src => "c_enc.c", rc4_asm_src => "rc4_enc.c rc4_skey.c", rmd160_asm_src => "", rc5_asm_src => "rc5_enc.c", wp_asm_src => "wp_block.c", cmll_asm_src => "camellia.c cmll_misc.c cmll_cbc.c", modes_asm_src => "", padlock_asm_src => "", chacha_asm_src => "chacha_enc.c", poly1305_asm_src => "", keccak1600_asm_src => "keccak1600.c", unistd => "", shared_target => "", shared_cflag => "", shared_defines => [], shared_ldflag => "", shared_rcflag => "", shared_extension => "", #### Defaults for the benefit of the config targets who don't inherit #### a BASE and assume Unix defaults #### THESE WILL DISAPPEAR IN OpenSSL 1.2 build_scheme => [ "unified", "unix" ], build_file => "Makefile", AR => "ar", ARFLAGS => "r", CC => "cc", HASHBANGPERL => "/usr/bin/env perl", RANLIB => sub { which("$config{cross_compile_prefix}ranlib") ? "ranlib" : "" }, RC => "windres", #### THESE WILL BE ENABLED IN OpenSSL 1.2 #HASHBANGPERL => "PERL", # Only Unix actually cares }, BASE_common => { template => 1, enable => [], disable => [], defines => sub { my @defs = (); push @defs, "ZLIB" unless $disabled{zlib}; push @defs, "ZLIB_SHARED" unless $disabled{"zlib-dynamic"}; return [ @defs ]; }, includes => sub { my @incs = (); push @incs, $withargs{zlib_include} if !$disabled{zlib} && $withargs{zlib_include}; return [ @incs ]; }, }, BASE_unix => { inherit_from => [ "BASE_common" ], template => 1, AR => "ar", ARFLAGS => "r", CC => "cc", lflags => sub { $withargs{zlib_lib} ? "-L".$withargs{zlib_lib} : () }, ex_libs => sub { !defined($disabled{zlib}) && defined($disabled{"zlib-dynamic"}) ? "-lz" : () }, HASHBANGPERL => "/usr/bin/env perl", # Only Unix actually cares RANLIB => sub { which("$config{cross_compile_prefix}ranlib") ? "ranlib" : "" }, RC => "windres", shared_extension => ".so", build_scheme => [ "unified", "unix" ], build_file => "Makefile", }, BASE_Windows => { inherit_from => [ "BASE_common" ], template => 1, lib_defines => sub { my @defs = (); unless ($disabled{"zlib-dynamic"}) { my $zlib = $withargs{zlib_lib} // "ZLIB1"; push @defs, 'LIBZ=' . (quotify("perl", $zlib))[0]; } return [ @defs ]; }, ex_libs => sub { unless ($disabled{zlib}) { if (defined($disabled{"zlib-dynamic"})) { return $withargs{zlib_lib} // "ZLIB1"; } } return (); }, LD => "link", LDFLAGS => "/nologo", ldoutflag => "/out:", AR => "lib", ARFLAGS => "/nologo", aroutflag => "/out:", RC => "rc", rcoutflag => "/fo", MT => "mt", MTFLAGS => "-nologo", mtinflag => "-manifest ", mtoutflag => "-outputresource:", shared_extension => ".dll", build_file => "makefile", build_scheme => [ "unified", "windows" ], }, BASE_VMS => { inherit_from => [ "BASE_common" ], template => 1, includes => add(sub { my @incs = (); # GNV$ZLIB_INCLUDE is the standard logical name for later # zlib incarnations. push @incs, 'GNV$ZLIB_INCLUDE:' if !$disabled{zlib} && !$withargs{zlib_include}; return [ @incs ]; }), shared_extension => ".exe", build_file => "descrip.mms", build_scheme => [ "unified", "VMS" ], }, uplink_common => { template => 1, apps_init_src => add("../ms/applink.c"), uplink_aux_src => add("../ms/uplink.c"), defines => add("OPENSSL_USE_APPLINK"), }, x86_uplink => { inherit_from => [ "uplink_common" ], template => 1, uplink_aux_src => add("uplink-x86.s"), }, x86_64_uplink => { inherit_from => [ "uplink_common" ], template => 1, uplink_aux_src => add("uplink-x86_64.s"), }, ia64_uplink => { inherit_from => [ "uplink_common" ], template => 1, uplink_aux_src => add("uplink-ia64.s"), }, x86_asm => { template => 1, cpuid_asm_src => "x86cpuid.s", bn_asm_src => "bn-586.s co-586.s x86-mont.s x86-gf2m.s", ec_asm_src => "ecp_nistz256.c ecp_nistz256-x86.s", des_asm_src => "des-586.s crypt586.s", aes_asm_src => "aes_core.c aes_cbc.c vpaes-x86.s aesni-x86.s", bf_asm_src => "bf-586.s", md5_asm_src => "md5-586.s", cast_asm_src => "cast-586.s", sha1_asm_src => "sha1-586.s sha256-586.s sha512-586.s", rc4_asm_src => "rc4-586.s", rmd160_asm_src => "rmd-586.s", rc5_asm_src => "rc5-586.s", wp_asm_src => "wp_block.c wp-mmx.s", cmll_asm_src => "cmll-x86.s", modes_asm_src => "ghash-x86.s", padlock_asm_src => "e_padlock-x86.s", chacha_asm_src => "chacha-x86.s", poly1305_asm_src=> "poly1305-x86.s", }, x86_elf_asm => { template => 1, inherit_from => [ "x86_asm" ], perlasm_scheme => "elf" }, x86_64_asm => { template => 1, cpuid_asm_src => "x86_64cpuid.s", bn_asm_src => "asm/x86_64-gcc.c x86_64-mont.s x86_64-mont5.s x86_64-gf2m.s rsaz_exp.c rsaz-x86_64.s rsaz-avx2.s", ec_asm_src => "ecp_nistz256.c ecp_nistz256-x86_64.s x25519-x86_64.s", aes_asm_src => "aes_core.c aes_cbc.c vpaes-x86_64.s aesni-x86_64.s aesni-sha1-x86_64.s aesni-sha256-x86_64.s aesni-mb-x86_64.s", md5_asm_src => "md5-x86_64.s", sha1_asm_src => "sha1-x86_64.s sha256-x86_64.s sha512-x86_64.s sha1-mb-x86_64.s sha256-mb-x86_64.s", rc4_asm_src => "rc4-x86_64.s rc4-md5-x86_64.s", wp_asm_src => "wp-x86_64.s", cmll_asm_src => "cmll-x86_64.s cmll_misc.c", modes_asm_src => "ghash-x86_64.s aesni-gcm-x86_64.s", padlock_asm_src => "e_padlock-x86_64.s", chacha_asm_src => "chacha-x86_64.s", poly1305_asm_src=> "poly1305-x86_64.s", keccak1600_asm_src => "keccak1600-x86_64.s", }, ia64_asm => { template => 1, cpuid_asm_src => "ia64cpuid.s", bn_asm_src => "bn-ia64.s ia64-mont.s", aes_asm_src => "aes_core.c aes_cbc.c aes-ia64.s", sha1_asm_src => "sha1-ia64.s sha256-ia64.s sha512-ia64.s", modes_asm_src => "ghash-ia64.s", perlasm_scheme => "void" }, sparcv9_asm => { template => 1, cpuid_asm_src => "sparcv9cap.c sparccpuid.S", bn_asm_src => "asm/sparcv8plus.S sparcv9-mont.S sparcv9a-mont.S vis3-mont.S sparct4-mont.S sparcv9-gf2m.S", ec_asm_src => "ecp_nistz256.c ecp_nistz256-sparcv9.S", des_asm_src => "des_enc-sparc.S fcrypt_b.c dest4-sparcv9.S", aes_asm_src => "aes_core.c aes_cbc.c aes-sparcv9.S aest4-sparcv9.S aesfx-sparcv9.S", md5_asm_src => "md5-sparcv9.S", sha1_asm_src => "sha1-sparcv9.S sha256-sparcv9.S sha512-sparcv9.S", cmll_asm_src => "camellia.c cmll_misc.c cmll_cbc.c cmllt4-sparcv9.S", modes_asm_src => "ghash-sparcv9.S", poly1305_asm_src=> "poly1305-sparcv9.S", perlasm_scheme => "void" }, sparcv8_asm => { template => 1, cpuid_asm_src => "", bn_asm_src => "asm/sparcv8.S", des_asm_src => "des_enc-sparc.S fcrypt_b.c", perlasm_scheme => "void" }, alpha_asm => { template => 1, cpuid_asm_src => "alphacpuid.s", bn_asm_src => "bn_asm.c alpha-mont.S", sha1_asm_src => "sha1-alpha.S", modes_asm_src => "ghash-alpha.S", perlasm_scheme => "void" }, mips32_asm => { template => 1, bn_asm_src => "bn-mips.S mips-mont.S", aes_asm_src => "aes_cbc.c aes-mips.S", sha1_asm_src => "sha1-mips.S sha256-mips.S", }, mips64_asm => { inherit_from => [ "mips32_asm" ], template => 1, sha1_asm_src => add("sha512-mips.S"), poly1305_asm_src=> "poly1305-mips.S", }, s390x_asm => { template => 1, cpuid_asm_src => "s390xcap.c s390xcpuid.S", bn_asm_src => "asm/s390x.S s390x-mont.S s390x-gf2m.s", aes_asm_src => "aes-s390x.S aes-ctr.fake aes-xts.fake", sha1_asm_src => "sha1-s390x.S sha256-s390x.S sha512-s390x.S", rc4_asm_src => "rc4-s390x.s", modes_asm_src => "ghash-s390x.S", chacha_asm_src => "chacha-s390x.S", poly1305_asm_src=> "poly1305-s390x.S", keccak1600_asm_src => "keccak1600-s390x.S", }, armv4_asm => { template => 1, cpuid_asm_src => "armcap.c armv4cpuid.S", bn_asm_src => "bn_asm.c armv4-mont.S armv4-gf2m.S", ec_asm_src => "ecp_nistz256.c ecp_nistz256-armv4.S", aes_asm_src => "aes_cbc.c aes-armv4.S bsaes-armv7.S aesv8-armx.S", sha1_asm_src => "sha1-armv4-large.S sha256-armv4.S sha512-armv4.S", modes_asm_src => "ghash-armv4.S ghashv8-armx.S", chacha_asm_src => "chacha-armv4.S", poly1305_asm_src=> "poly1305-armv4.S", keccak1600_asm_src => "keccak1600-armv4.S", perlasm_scheme => "void" }, aarch64_asm => { template => 1, cpuid_asm_src => "armcap.c arm64cpuid.S", ec_asm_src => "ecp_nistz256.c ecp_nistz256-armv8.S", bn_asm_src => "bn_asm.c armv8-mont.S", aes_asm_src => "aes_core.c aes_cbc.c aesv8-armx.S vpaes-armv8.S", sha1_asm_src => "sha1-armv8.S sha256-armv8.S sha512-armv8.S", modes_asm_src => "ghashv8-armx.S", chacha_asm_src => "chacha-armv8.S", poly1305_asm_src=> "poly1305-armv8.S", keccak1600_asm_src => "keccak1600-armv8.S", }, parisc11_asm => { template => 1, cpuid_asm_src => "pariscid.s", bn_asm_src => "bn_asm.c parisc-mont.s", aes_asm_src => "aes_core.c aes_cbc.c aes-parisc.s", sha1_asm_src => "sha1-parisc.s sha256-parisc.s sha512-parisc.s", rc4_asm_src => "rc4-parisc.s", modes_asm_src => "ghash-parisc.s", perlasm_scheme => "32" }, parisc20_64_asm => { template => 1, inherit_from => [ "parisc11_asm" ], perlasm_scheme => "64", }, ppc32_asm => { template => 1, cpuid_asm_src => "ppccpuid.s ppccap.c", bn_asm_src => "bn-ppc.s ppc-mont.s", aes_asm_src => "aes_core.c aes_cbc.c aes-ppc.s vpaes-ppc.s aesp8-ppc.s", sha1_asm_src => "sha1-ppc.s sha256-ppc.s sha512-ppc.s sha256p8-ppc.s sha512p8-ppc.s", modes_asm_src => "ghashp8-ppc.s", chacha_asm_src => "chacha-ppc.s", poly1305_asm_src=> "poly1305-ppc.s poly1305-ppcfp.s", }, ppc64_asm => { inherit_from => [ "ppc32_asm" ], template => 1, ec_asm_src => "ecp_nistz256.c ecp_nistz256-ppc64.s x25519-ppc64.s", keccak1600_asm_src => "keccak1600-ppc64.s", }, ); openssl-1.1.1f/Configurations/10-main.conf000066400000000000000000002340361364063235100203610ustar00rootroot00000000000000## -*- mode: perl; -*- ## Standard openssl configuration targets. # Helper functions for the Windows configs my $vc_win64a_info = {}; sub vc_win64a_info { unless (%$vc_win64a_info) { if (`nasm -v 2>NUL` =~ /NASM version ([0-9]+\.[0-9]+)/ && $1 >= 2.0) { $vc_win64a_info = { AS => "nasm", ASFLAGS => "-g", asflags => "-Ox -f win64 -DNEAR", asoutflag => "-o " }; } elsif ($disabled{asm}) { # assembler is still used to compile uplink shim $vc_win64a_info = { AS => "ml64", ASFLAGS => "/nologo /Zi", asflags => "/c /Cp /Cx", asoutflag => "/Fo" }; } else { $die->("NASM not found - make sure it's installed and available on %PATH%\n"); $vc_win64a_info = { AS => "{unknown}", ASFLAGS => "", asflags => "", asoutflag => "" }; } } return $vc_win64a_info; } my $vc_win32_info = {}; sub vc_win32_info { unless (%$vc_win32_info) { my $ver=`nasm -v 2>NUL`; my $vew=`nasmw -v 2>NUL`; if ($ver ne "" || $vew ne "") { $vc_win32_info = { AS => $ver ge $vew ? "nasm" : "nasmw", ASFLAGS => "", asflags => "-f win32", asoutflag => "-o ", perlasm_scheme => "win32n" }; } elsif ($disabled{asm}) { # not actually used, uplink shim is inlined into C code $vc_win32_info = { AS => "ml", ASFLAGS => "/nologo /Zi", asflags => "/Cp /coff /c /Cx", asoutflag => "/Fo", perlasm_scheme => "win32" }; } else { $die->("NASM not found - make sure it's installed and available on %PATH%\n"); $vc_win32_info = { AS => "{unknown}", ASFLAGS => "", asflags => "", asoutflag => "", perlasm_scheme => "win32" }; } } return $vc_win32_info; } my $vc_wince_info = {}; sub vc_wince_info { unless (%$vc_wince_info) { # sanity check $die->('%OSVERSION% is not defined') if (!defined(env('OSVERSION'))); $die->('%PLATFORM% is not defined') if (!defined(env('PLATFORM'))); $die->('%TARGETCPU% is not defined') if (!defined(env('TARGETCPU'))); # # Idea behind this is to mimic flags set by eVC++ IDE... # my $wcevers = env('OSVERSION'); # WCENNN my $wcevernum; my $wceverdotnum; if ($wcevers =~ /^WCE([1-9])([0-9]{2})$/) { $wcevernum = "$1$2"; $wceverdotnum = "$1.$2"; } else { $die->('%OSVERSION% value is insane'); $wcevernum = "{unknown}"; $wceverdotnum = "{unknown}"; } my $wcecdefs = "-D_WIN32_WCE=$wcevernum -DUNDER_CE=$wcevernum"; # -D_WIN32_WCE=NNN my $wcelflag = "/subsystem:windowsce,$wceverdotnum"; # ...,N.NN my $wceplatf = env('PLATFORM'); $wceplatf =~ tr/a-z0-9 /A-Z0-9_/; $wcecdefs .= " -DWCE_PLATFORM_$wceplatf"; my $wcetgt = env('TARGETCPU'); # just shorter name... SWITCH: for($wcetgt) { /^X86/ && do { $wcecdefs.=" -Dx86 -D_X86_ -D_i386_ -Di_386_"; $wcelflag.=" /machine:X86"; last; }; /^ARMV4[IT]/ && do { $wcecdefs.=" -DARM -D_ARM_ -D$wcetgt"; $wcecdefs.=" -DTHUMB -D_THUMB_" if($wcetgt=~/T$/); $wcecdefs.=" -QRarch4T -QRinterwork-return"; $wcelflag.=" /machine:THUMB"; last; }; /^ARM/ && do { $wcecdefs.=" -DARM -D_ARM_ -D$wcetgt"; $wcelflag.=" /machine:ARM"; last; }; /^MIPSIV/ && do { $wcecdefs.=" -DMIPS -D_MIPS_ -DR4000 -D$wcetgt"; $wcecdefs.=" -D_MIPS64 -QMmips4 -QMn32"; $wcelflag.=" /machine:MIPSFPU"; last; }; /^MIPS16/ && do { $wcecdefs.=" -DMIPS -D_MIPS_ -DR4000 -D$wcetgt"; $wcecdefs.=" -DMIPSII -QMmips16"; $wcelflag.=" /machine:MIPS16"; last; }; /^MIPSII/ && do { $wcecdefs.=" -DMIPS -D_MIPS_ -DR4000 -D$wcetgt"; $wcecdefs.=" -QMmips2"; $wcelflag.=" /machine:MIPS"; last; }; /^R4[0-9]{3}/ && do { $wcecdefs.=" -DMIPS -D_MIPS_ -DR4000"; $wcelflag.=" /machine:MIPS"; last; }; /^SH[0-9]/ && do { $wcecdefs.=" -D$wcetgt -D_${wcetgt}_ -DSHx"; $wcecdefs.=" -Qsh4" if ($wcetgt =~ /^SH4/); $wcelflag.=" /machine:$wcetgt"; last; }; { $wcecdefs.=" -D$wcetgt -D_${wcetgt}_"; $wcelflag.=" /machine:$wcetgt"; last; }; } $vc_wince_info = { cppflags => $wcecdefs, lflags => $wcelflag }; } return $vc_wince_info; } # Helper functions for the VMS configs my $vms_info = {}; sub vms_info { my $pointer_size_str = $config{target} =~ m|-p(\d+)$| ? $1 : ""; # For the case where Configure iterate through all config targets, such # as when listing them and their details, we reset info if the pointer # size changes. if (%$vms_info && $vms_info->{pointer_size} ne $pointer_size_str) { $vms_info = {}; } unless (%$vms_info) { $vms_info->{disable_warns} = [ ]; $vms_info->{pointer_size} = $pointer_size_str; if ($pointer_size_str eq "64") { `PIPE CC /NOCROSS_REFERENCE /NOLIST /NOOBJECT /WARNINGS = DISABLE = ( MAYLOSEDATA3, EMPTYFILE ) NL: 2> NL:`; if ($? == 0) { push @{$vms_info->{disable_warns}}, "MAYLOSEDATA3"; } } unless ($disabled{zlib}) { my $default_zlib = 'GNV$LIBZSHR' . $pointer_size_str; if (defined($disabled{"zlib-dynamic"})) { $vms_info->{zlib} = $withargs{zlib_lib} || "$default_zlib/SHARE"; } else { $vms_info->{def_zlib} = $withargs{zlib_lib} || $default_zlib; # In case the --with-zlib-lib value contains something like # /SHARE or /LIB or so at the end, remove it. $vms_info->{def_zlib} =~ s|/.*$||g; } } if ($config{target} =~ /-ia64/) { `PIPE ias -H 2> NL:`; if ($? == 0) { $vms_info->{AS} = "ias"; $vms_info->{ASFLAGS} = '-d debug'; $vms_info->{asflags} = '"-N" vms_upcase'; $vms_info->{asoutflag} = "-o "; $vms_info->{perlasm_scheme} = "ias"; } } } return $vms_info; } my %targets = ( #### Basic configs that should work on any 32-bit box "gcc" => { inherit_from => [ "BASE_unix" ], CC => "gcc", CFLAGS => picker(debug => "-O0 -g", release => "-O3"), thread_scheme => "(unknown)", bn_ops => "BN_LLONG", }, "cc" => { inherit_from => [ "BASE_unix" ], CC => "cc", CFLAGS => "-O", thread_scheme => "(unknown)", }, #### VOS Configurations "vos-gcc" => { inherit_from => [ "BASE_unix" ], CC => "gcc", CFLAGS => picker(default => "-Wall", debug => "-O0 -g", release => "-O3"), cppflags => "-D_POSIX_C_SOURCE=200112L -D_BSD -D_VOS_EXTENDED_NAMES", lib_cppflags => "-DB_ENDIAN", thread_scheme => "(unknown)", sys_id => "VOS", lflags => add("-Wl,-map"), bn_ops => "BN_LLONG", shared_extension => ".so", }, #### Solaris configurations "solaris-common" => { inherit_from => [ "BASE_unix" ], template => 1, lib_cppflags => "-DFILIO_H", ex_libs => add("-lsocket -lnsl -ldl"), dso_scheme => "dlfcn", thread_scheme => "pthreads", shared_target => "self", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", shared_ldflag => "-Wl,-Bsymbolic", shared_defflag => "-Wl,-M,", shared_sonameflag=> "-Wl,-h,", }, #### Solaris x86 with GNU C setups "solaris-x86-gcc" => { # NB. GNU C has to be configured to use GNU assembler, and not # /usr/ccs/bin/as. Failure to comply will result in compile # failures [at least] in 32-bit build. inherit_from => [ "solaris-common", asm("x86_elf_asm") ], CC => "gcc", CFLAGS => add_before(picker(default => "-Wall", debug => "-O0 -g", release => "-O3 -fomit-frame-pointer")), cflags => add(threads("-pthread")), lib_cppflags => add("-DL_ENDIAN"), ex_libs => add(threads("-pthread")), bn_ops => "BN_LLONG", shared_cflag => "-fPIC", shared_ldflag => add_before("-shared -static-libgcc"), }, "solaris64-x86_64-gcc" => { # -shared -static-libgcc might appear controversial, but modules # taken from static libgcc do not have relocations and linking # them into our shared objects doesn't have any negative side # effects. On the contrary, doing so makes it possible to use # gcc shared build with Sun C. Given that gcc generates faster # code [thanks to inline assembler], I would actually recommend # to consider using gcc shared build even with vendor compiler:-) # -- inherit_from => [ "solaris-common", asm("x86_64_asm") ], CC => "gcc", CFLAGS => add_before(picker(default => "-Wall", debug => "-O0 -g", release => "-O3")), cflags => add_before("-m64", threads("-pthread")), lib_cppflags => add("-DL_ENDIAN"), ex_libs => add(threads("-pthread")), bn_ops => "SIXTY_FOUR_BIT_LONG", perlasm_scheme => "elf", shared_cflag => "-fPIC", shared_ldflag => add_before("-shared -static-libgcc"), multilib => "/64", }, #### Solaris x86 with Sun C setups # There used to be solaris-x86-cc target, but it was removed, # primarily because vendor assembler can't assemble our modules # with -KPIC flag. As result it, assembly support, was not even # available as option. But its lack means lack of side-channel # resistant code, which is incompatible with security by today's # standards. Fortunately gcc is readily available prepackaged # option, which we can firmly point at... # # On related note, solaris64-x86_64-cc target won't compile code # paths utilizing AVX and post-Haswell instruction extensions. # Consider switching to solaris64-x86_64-gcc even here... # "solaris64-x86_64-cc" => { inherit_from => [ "solaris-common", asm("x86_64_asm") ], CC => "cc", CFLAGS => add_before(picker(debug => "-g", release => "-xO5 -xdepend -xbuiltin")), cflags => add_before("-xarch=generic64 -xstrconst -Xa"), cppflags => add(threads("-D_REENTRANT")), lib_cppflags => add("-DL_ENDIAN"), thread_scheme => "pthreads", lflags => add(threads("-mt")), ex_libs => add(threads("-lpthread")), bn_ops => "SIXTY_FOUR_BIT_LONG", perlasm_scheme => "elf", shared_cflag => "-KPIC", shared_ldflag => add_before("-G -dy -z text"), multilib => "/64", }, #### SPARC Solaris with GNU C setups "solaris-sparcv7-gcc" => { inherit_from => [ "solaris-common" ], CC => "gcc", CFLAGS => add_before(picker(default => "-Wall", debug => "-O0 -g", release => "-O3")), cflags => add(threads("-pthread")), lib_cppflags => add("-DB_ENDIAN -DBN_DIV2W"), ex_libs => add(threads("-pthread")), bn_ops => "BN_LLONG RC4_CHAR", shared_cflag => "-fPIC", shared_ldflag => add_before("-shared"), }, "solaris-sparcv8-gcc" => { inherit_from => [ "solaris-sparcv7-gcc", asm("sparcv8_asm") ], cflags => add_before("-mcpu=v8"), }, "solaris-sparcv9-gcc" => { # -m32 should be safe to add as long as driver recognizes # -mcpu=ultrasparc inherit_from => [ "solaris-sparcv7-gcc", asm("sparcv9_asm") ], cflags => add_before("-m32 -mcpu=ultrasparc"), }, "solaris64-sparcv9-gcc" => { inherit_from => [ "solaris-sparcv9-gcc" ], cflags => sub { my $f=join(" ",@_); $f =~ s/\-m32/-m64/; $f; }, bn_ops => "BN_LLONG RC4_CHAR", multilib => "/64", }, #### SPARC Solaris with Sun C setups # SC4.0 doesn't pass 'make test', upgrade to SC5.0 or SC4.2. # SC4.2 is ok, better than gcc even on bn as long as you tell it -xarch=v8 # SC5.0 note: Compiler common patch 107357-01 or later is required! "solaris-sparcv7-cc" => { inherit_from => [ "solaris-common" ], CC => "cc", CFLAGS => add_before(picker(debug => "-g", release => "-xO5 -xdepend")), cflags => add_before("-xstrconst -Xa"), cppflags => add(threads("-D_REENTRANT")), lib_cppflags => add("-DB_ENDIAN -DBN_DIV2W"), lflags => add(threads("-mt")), ex_libs => add(threads("-lpthread")), bn_ops => "BN_LLONG RC4_CHAR", shared_cflag => "-KPIC", shared_ldflag => add_before("-G -dy -z text"), }, #### "solaris-sparcv8-cc" => { inherit_from => [ "solaris-sparcv7-cc", asm("sparcv8_asm") ], cflags => add_before("-xarch=v8"), }, "solaris-sparcv9-cc" => { inherit_from => [ "solaris-sparcv7-cc", asm("sparcv9_asm") ], cflags => add_before("-xarch=v8plus"), }, "solaris64-sparcv9-cc" => { inherit_from => [ "solaris-sparcv7-cc", asm("sparcv9_asm") ], cflags => add_before("-xarch=v9"), bn_ops => "BN_LLONG RC4_CHAR", multilib => "/64", }, #### IRIX 6.x configs # Only N32 and N64 ABIs are supported. "irix-common" => { inherit_from => [ "BASE_unix" ], template => 1, cppflags => threads("-D_SGI_MP_SOURCE"), lib_cppflags => "-DB_ENDIAN", ex_libs => add(threads("-lpthread")), thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "self", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", shared_ldflag => "-shared -Wl,-Bsymbolic", shared_sonameflag=> "-Wl,-soname,", }, "irix-mips3-gcc" => { inherit_from => [ "irix-common", asm("mips64_asm") ], CC => "gcc", CFLAGS => picker(debug => "-g -O0", release => "-O3"), LDFLAGS => "-static-libgcc", cflags => "-mabi=n32", bn_ops => "RC4_CHAR SIXTY_FOUR_BIT", perlasm_scheme => "n32", multilib => "32", }, "irix-mips3-cc" => { inherit_from => [ "irix-common", asm("mips64_asm") ], CC => "cc", CFLAGS => picker(debug => "-g -O0", release => "-O2"), cflags => "-n32 -mips3 -use_readonly_const -G0 -rdata_shared", bn_ops => "RC4_CHAR SIXTY_FOUR_BIT", perlasm_scheme => "n32", multilib => "32", }, # N64 ABI builds. "irix64-mips4-gcc" => { inherit_from => [ "irix-common", asm("mips64_asm") ], CC => "gcc", CFLAGS => picker(debug => "-g -O0", release => "-O3"), LDFLAGS => "-static-libgcc", cflags => "-mabi=64 -mips4", bn_ops => "RC4_CHAR SIXTY_FOUR_BIT_LONG", perlasm_scheme => "64", multilib => "64", }, "irix64-mips4-cc" => { inherit_from => [ "irix-common", asm("mips64_asm") ], CC => "cc", CFLAGS => picker(debug => "-g -O0", release => "-O2"), cflags => "-64 -mips4 -use_readonly_const -G0 -rdata_shared", bn_ops => "RC4_CHAR SIXTY_FOUR_BIT_LONG", perlasm_scheme => "64", multilib => "64", }, #### Unified HP-UX ANSI C configs. # Special notes: # - Originally we were optimizing at +O4 level. It should be noted # that the only difference between +O3 and +O4 is global inter- # procedural analysis. As it has to be performed during the link # stage the compiler leaves behind certain pseudo-code in lib*.a # which might be release or even patch level specific. Generating # the machine code for and analyzing the *whole* program appears # to be *extremely* memory demanding while the performance gain is # actually questionable. The situation is intensified by the default # HP-UX data set size limit (infamous 'maxdsiz' tunable) of 64MB # which is way too low for +O4. In other words, doesn't +O3 make # more sense? # - Keep in mind that the HP compiler by default generates code # suitable for execution on the host you're currently compiling at. # If the toolkit is meant to be used on various PA-RISC processors # consider './Configure hpux-parisc-[g]cc +DAportable'. # - -DMD32_XARRAY triggers workaround for compiler bug we ran into in # 32-bit message digests. (For the moment of this writing) HP C # doesn't seem to "digest" too many local variables (they make "him" # chew forever:-). For more details look-up MD32_XARRAY comment in # crypto/sha/sha_local.h. # - originally there were 32-bit hpux-parisc2-* targets. They were # scrapped, because a) they were not interchangeable with other 32-bit # targets; b) performance-critical 32-bit assembly modules implement # even PA-RISC 2.0-specific code paths, which are chosen at run-time, # thus adequate performance is provided even with PA-RISC 1.1 build. "hpux-common" => { inherit_from => [ "BASE_unix" ], template => 1, defines => add("_XOPEN_SOURCE", "_XOPEN_SOURCE_EXTENDED", "_HPUX_ALT_XOPEN_SOCKET_API"), lib_cppflags => "-DB_ENDIAN", thread_scheme => "pthreads", dso_scheme => "dlfcn", # overridden in 32-bit PA-RISC builds shared_target => "self", bin_lflags => "-Wl,+s,+cdp,../:,+cdp,./:", shared_ldflag => "-Wl,-B,symbolic,+vnocompatwarnings,-z,+s,+cdp,../:,+cdp,./:", shared_sonameflag=> "-Wl,+h,", }, "hpux-parisc-gcc" => { inherit_from => [ "hpux-common" ], CC => "gcc", CFLAGS => picker(debug => "-O0 -g", release => "-O3"), cflags => add(threads("-pthread")), lib_cppflags => add("-DBN_DIV2W"), ex_libs => add("-ldld", threads("-pthread")), bn_ops => "BN_LLONG RC4_CHAR", dso_scheme => "dl", shared_cflag => "-fPIC", shared_ldflag => add_before("-shared"), shared_extension => ".sl.\$(SHLIB_VERSION_NUMBER)", }, "hpux-parisc1_1-gcc" => { inherit_from => [ "hpux-parisc-gcc", asm("parisc11_asm") ], multilib => "/pa1.1", }, "hpux64-parisc2-gcc" => { inherit_from => [ "hpux-common", asm("parisc20_64_asm") ], CC => "gcc", CFLAGS => combine(picker(debug => "-O0 -g", release => "-O3")), cflags => add(threads("-pthread")), ex_libs => add("-ldl", threads("-pthread")), bn_ops => "SIXTY_FOUR_BIT_LONG RC4_CHAR", shared_cflag => "-fpic", shared_ldflag => add_before("-shared"), shared_extension => ".sl.\$(SHLIB_VERSION_NUMBER)", multilib => "/pa20_64", }, # More attempts at unified 10.X and 11.X targets for HP C compiler. "hpux-parisc-cc" => { inherit_from => [ "hpux-common" ], CC => "cc", CFLAGS => picker(debug => "+O0 +d -g", release => "+O3"), cflags => "+Optrs_strongly_typed -Ae +ESlit", cppflags => threads("-D_REENTRANT"), lib_cppflags => add("-DBN_DIV2W -DMD32_XARRAY"), ex_libs => add("-ldld", threads("-lpthread")), bn_ops => "RC4_CHAR", dso_scheme => "dl", shared_cflag => "+Z", shared_ldflag => add_before("-b"), shared_extension => ".sl.\$(SHLIB_VERSION_NUMBER)", }, "hpux-parisc1_1-cc" => { inherit_from => [ "hpux-parisc-cc", asm("parisc11_asm") ], cflags => add_before("+DA1.1"), multilib => "/pa1.1", }, "hpux64-parisc2-cc" => { inherit_from => [ "hpux-common", asm("parisc20_64_asm") ], CC => "cc", CFLAGS => picker(debug => "+O0 +d -g", release => "+O3") , cflags => "+DD64 +Optrs_strongly_typed -Ae +ESlit", cppflags => threads("-D_REENTRANT") , lib_cppflags => add("-DMD32_XARRAY"), ex_libs => add("-ldl", threads("-lpthread")), bn_ops => "SIXTY_FOUR_BIT_LONG RC4_CHAR", shared_cflag => "+Z", shared_ldflag => add_before("-b"), shared_extension => ".sl.\$(SHLIB_VERSION_NUMBER)", multilib => "/pa20_64", }, # HP/UX IA-64 targets "hpux-ia64-cc" => { inherit_from => [ "hpux-common", asm("ia64_asm") ], CC => "cc", CFLAGS => picker(debug => "+O0 +d -g", release => "+O2"), cflags => "-Ae +DD32 +Olit=all -z", cppflags => add(threads("-D_REENTRANT")), ex_libs => add("-ldl", threads("-lpthread")), bn_ops => "SIXTY_FOUR_BIT", shared_cflag => "+Z", shared_ldflag => add_before("-b"), shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", multilib => "/hpux32", }, "hpux64-ia64-cc" => { inherit_from => [ "hpux-common", asm("ia64_asm") ], CC => "cc", CFLAGS => picker(debug => "+O0 +d -g", release => "+O3"), cflags => "-Ae +DD64 +Olit=all -z", cppflags => threads("-D_REENTRANT"), ex_libs => add("-ldl", threads("-lpthread")), bn_ops => "SIXTY_FOUR_BIT_LONG", shared_cflag => "+Z", shared_ldflag => add_before("-b"), shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", multilib => "/hpux64", }, # GCC builds... "hpux-ia64-gcc" => { inherit_from => [ "hpux-common", asm("ia64_asm") ], CC => "gcc", CFLAGS => picker(debug => "-O0 -g", release => "-O3"), cflags => add(threads("-pthread")), ex_libs => add("-ldl", threads("-pthread")), bn_ops => "SIXTY_FOUR_BIT", shared_cflag => "-fpic", shared_ldflag => add_before("-shared"), shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", multilib => "/hpux32", }, "hpux64-ia64-gcc" => { inherit_from => [ "hpux-common", asm("ia64_asm") ], CC => "gcc", CFLAGS => picker(debug => "-O0 -g", release => "-O3"), cflags => combine("-mlp64", threads("-pthread")), ex_libs => add("-ldl", threads("-pthread")), bn_ops => "SIXTY_FOUR_BIT_LONG", shared_cflag => "-fpic", shared_ldflag => add_before("-shared"), shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", multilib => "/hpux64", }, #### HP MPE/iX http://jazz.external.hp.com/src/openssl/ "MPE/iX-gcc" => { inherit_from => [ "BASE_unix" ], CC => "gcc", CFLAGS => "-O3", cppflags => "-D_POSIX_SOURCE -D_SOCKET_SOURCE", includes => [ "/SYSLOG/PUB" ], lib_cppflags => "-DBN_DIV2W", sys_id => "MPE", lflags => add("-L/SYSLOG/PUB"), ex_libs => add("-lsyslog -lsocket -lcurses"), thread_scheme => "(unknown)", bn_ops => "BN_LLONG", }, #### DEC Alpha Tru64 targets. Tru64 is marketing name for OSF/1 version 4 #### and forward. In reality 'uname -s' still returns "OSF1". Originally #### there were even osf1-* configs targeting prior versions provided, #### but not anymore... "tru64-alpha-gcc" => { inherit_from => [ "BASE_unix", asm("alpha_asm") ], CC => "gcc", CFLAGS => "-O3", cflags => add("-std=c9x", threads("-pthread")), cppflags => "-D_XOPEN_SOURCE=500 -D_OSF_SOURCE", ex_libs => add("-lrt", threads("-pthread")), # for mlock(2) bn_ops => "SIXTY_FOUR_BIT_LONG", thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "alpha-osf1-shared", shared_extension => ".so", }, "tru64-alpha-cc" => { inherit_from => [ "BASE_unix", asm("alpha_asm") ], CC => "cc", CFLAGS => "-tune host -fast", cflags => add("-std1 -readonly_strings", threads("-pthread")), cppflags => "-D_XOPEN_SOURCE=500 -D_OSF_SOURCE", ex_libs => add("-lrt", threads("-pthread")), # for mlock(2) bn_ops => "SIXTY_FOUR_BIT_LONG", thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "alpha-osf1-shared", shared_ldflag => "-msym", shared_extension => ".so", }, #### #### Variety of LINUX:-) #### # *-generic* is endian-neutral target, but ./config is free to # throw in -D[BL]_ENDIAN, whichever appropriate... "linux-generic32" => { inherit_from => [ "BASE_unix" ], CC => "gcc", CXX => "g++", CFLAGS => picker(default => "-Wall", debug => "-O0 -g", release => "-O3"), CXXFLAGS => picker(default => "-Wall", debug => "-O0 -g", release => "-O3"), cflags => threads("-pthread"), cxxflags => combine("-std=c++11", threads("-pthread")), lib_cppflags => "-DOPENSSL_USE_NODELETE", ex_libs => add("-ldl", threads("-pthread")), bn_ops => "BN_LLONG RC4_CHAR", thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "linux-shared", shared_cflag => "-fPIC", shared_ldflag => sub { $disabled{pinshared} ? () : "-Wl,-znodelete" }, shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", enable => [ "afalgeng" ], }, "linux-generic64" => { inherit_from => [ "linux-generic32" ], bn_ops => "SIXTY_FOUR_BIT_LONG RC4_CHAR", }, "linux-ppc" => { inherit_from => [ "linux-generic32", asm("ppc32_asm") ], perlasm_scheme => "linux32", }, "linux-ppc64" => { inherit_from => [ "linux-generic64", asm("ppc64_asm") ], cflags => add("-m64"), cxxflags => add("-m64"), lib_cppflags => add("-DB_ENDIAN"), perlasm_scheme => "linux64", multilib => "64", }, "linux-ppc64le" => { inherit_from => [ "linux-generic64", asm("ppc64_asm") ], cflags => add("-m64"), cxxflags => add("-m64"), lib_cppflags => add("-DL_ENDIAN"), perlasm_scheme => "linux64le", }, "linux-armv4" => { ################################################################ # Note that -march is not among compiler options in linux-armv4 # target description. Not specifying one is intentional to give # you choice to: # # a) rely on your compiler default by not specifying one; # b) specify your target platform explicitly for optimal # performance, e.g. -march=armv6 or -march=armv7-a; # c) build "universal" binary that targets *range* of platforms # by specifying minimum and maximum supported architecture; # # As for c) option. It actually makes no sense to specify # maximum to be less than ARMv7, because it's the least # requirement for run-time switch between platform-specific # code paths. And without run-time switch performance would be # equivalent to one for minimum. Secondly, there are some # natural limitations that you'd have to accept and respect. # Most notably you can *not* build "universal" binary for # big-endian platform. This is because ARMv7 processor always # picks instructions in little-endian order. Another similar # limitation is that -mthumb can't "cross" -march=armv6t2 # boundary, because that's where it became Thumb-2. Well, this # limitation is a bit artificial, because it's not really # impossible, but it's deemed too tricky to support. And of # course you have to be sure that your binutils are actually # up to the task of handling maximum target platform. With all # this in mind here is an example of how to configure # "universal" build: # # ./Configure linux-armv4 -march=armv6 -D__ARM_MAX_ARCH__=8 # inherit_from => [ "linux-generic32", asm("armv4_asm") ], perlasm_scheme => "linux32", }, "linux-aarch64" => { inherit_from => [ "linux-generic64", asm("aarch64_asm") ], perlasm_scheme => "linux64", }, "linux-arm64ilp32" => { # https://wiki.linaro.org/Platform/arm64-ilp32 inherit_from => [ "linux-generic32", asm("aarch64_asm") ], cflags => add("-mabi=ilp32"), cxxflags => add("-mabi=ilp32"), bn_ops => "SIXTY_FOUR_BIT RC4_CHAR", perlasm_scheme => "linux64", }, "linux-mips32" => { # Configure script adds minimally required -march for assembly # support, if no -march was specified at command line. inherit_from => [ "linux-generic32", asm("mips32_asm") ], cflags => add("-mabi=32"), cxxflags => add("-mabi=32"), perlasm_scheme => "o32", }, # mips32 and mips64 below refer to contemporary MIPS Architecture # specifications, MIPS32 and MIPS64, rather than to kernel bitness. "linux-mips64" => { inherit_from => [ "linux-generic32", asm("mips64_asm") ], cflags => add("-mabi=n32"), cxxflags => add("-mabi=n32"), bn_ops => "SIXTY_FOUR_BIT RC4_CHAR", perlasm_scheme => "n32", multilib => "32", }, "linux64-mips64" => { inherit_from => [ "linux-generic64", asm("mips64_asm") ], cflags => add("-mabi=64"), cxxflags => add("-mabi=64"), perlasm_scheme => "64", multilib => "64", }, #### IA-32 targets... #### These two targets are a bit aged and are to be used on older Linux #### machines where gcc doesn't understand -m32 and -m64 "linux-elf" => { inherit_from => [ "linux-generic32", asm("x86_elf_asm") ], CFLAGS => add(picker(release => "-fomit-frame-pointer")), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "BN_LLONG", }, "linux-aout" => { inherit_from => [ "BASE_unix", asm("x86_asm") ], CC => "gcc", CFLAGS => add(picker(default => "-Wall", debug => "-O0 -g", release => "-O3 -fomit-frame-pointer")), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "BN_LLONG", thread_scheme => "(unknown)", perlasm_scheme => "a.out", }, #### X86 / X86_64 targets "linux-x86" => { inherit_from => [ "linux-generic32", asm("x86_asm") ], CFLAGS => add(picker(release => "-fomit-frame-pointer")), cflags => add("-m32"), cxxflags => add("-m32"), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "BN_LLONG", perlasm_scheme => "elf", }, "linux-x86-clang" => { inherit_from => [ "linux-x86" ], CC => "clang", CXX => "clang++", }, "linux-x86_64" => { inherit_from => [ "linux-generic64", asm("x86_64_asm") ], cflags => add("-m64"), cxxflags => add("-m64"), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "SIXTY_FOUR_BIT_LONG", perlasm_scheme => "elf", multilib => "64", }, "linux-x86_64-clang" => { inherit_from => [ "linux-x86_64" ], CC => "clang", CXX => "clang++", }, "linux-x32" => { inherit_from => [ "linux-generic32", asm("x86_64_asm") ], cflags => add("-mx32"), cxxflags => add("-mx32"), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "SIXTY_FOUR_BIT", perlasm_scheme => "elf32", multilib => "x32", }, "linux-ia64" => { inherit_from => [ "linux-generic64", asm("ia64_asm") ], bn_ops => "SIXTY_FOUR_BIT_LONG", }, "linux64-s390x" => { inherit_from => [ "linux-generic64", asm("s390x_asm") ], cflags => add("-m64"), cxxflags => add("-m64"), lib_cppflags => add("-DB_ENDIAN"), perlasm_scheme => "64", multilib => "64", }, "linux32-s390x" => { #### So called "highgprs" target for z/Architecture CPUs # "Highgprs" is kernel feature first implemented in Linux # 2.6.32, see /proc/cpuinfo. The idea is to preserve most # significant bits of general purpose registers not only # upon 32-bit process context switch, but even on # asynchronous signal delivery to such process. This makes # it possible to deploy 64-bit instructions even in legacy # application context and achieve better [or should we say # adequate] performance. The build is binary compatible with # linux-generic32, and the idea is to be able to install the # resulting libcrypto.so alongside generic one, e.g. as # /lib/highgprs/libcrypto.so.x.y, for ldconfig and run-time # linker to autodiscover. Unfortunately it doesn't work just # yet, because of couple of bugs in glibc # sysdeps/s390/dl-procinfo.c affecting ldconfig and ld.so.1... # inherit_from => [ "linux-generic32", asm("s390x_asm") ], cflags => add("-m31 -Wa,-mzarch"), cxxflags => add("-m31 -Wa,-mzarch"), lib_cppflags => add("-DB_ENDIAN"), bn_asm_src => sub { my $r=join(" ",@_); $r=~s|asm/s390x\.S|bn_asm.c|; $r; }, perlasm_scheme => "31", multilib => "/highgprs", }, #### SPARC Linux setups "linux-sparcv8" => { inherit_from => [ "linux-generic32", asm("sparcv8_asm") ], cflags => add("-mcpu=v8"), cxxflags => add("-mcpu=v8"), lib_cppflags => add("-DB_ENDIAN -DBN_DIV2W"), }, "linux-sparcv9" => { # it's a real mess with -mcpu=ultrasparc option under Linux, # but -Wa,-Av8plus should do the trick no matter what. inherit_from => [ "linux-generic32", asm("sparcv9_asm") ], cflags => add("-m32 -mcpu=ultrasparc -Wa,-Av8plus"), cxxflags => add("-m32 -mcpu=ultrasparc -Wa,-Av8plus"), lib_cppflags => add("-DB_ENDIAN -DBN_DIV2W"), }, "linux64-sparcv9" => { # GCC 3.1 is a requirement inherit_from => [ "linux-generic64", asm("sparcv9_asm") ], cflags => add("-m64 -mcpu=ultrasparc"), cxxflags => add("-m64 -mcpu=ultrasparc"), lib_cppflags => add("-DB_ENDIAN"), bn_ops => "BN_LLONG RC4_CHAR", multilib => "64", }, "linux-alpha-gcc" => { inherit_from => [ "linux-generic64", asm("alpha_asm") ], lib_cppflags => add("-DL_ENDIAN"), bn_ops => "SIXTY_FOUR_BIT_LONG", }, "linux-c64xplus" => { inherit_from => [ "BASE_unix" ], # TI_CGT_C6000_7.3.x is a requirement CC => "cl6x", CFLAGS => "-o2 -ox -ms", cflags => "--linux -ea=.s -eo=.o -mv6400+ -pden", cxxflags => "--linux -ea=.s -eo=.o -mv6400+ -pden", cppflags => combine("-DOPENSSL_SMALL_FOOTPRINT", threads("-D_REENTRANT")), bn_ops => "BN_LLONG", cpuid_asm_src => "c64xpluscpuid.s", bn_asm_src => "asm/bn-c64xplus.asm c64xplus-gf2m.s", aes_asm_src => "aes-c64xplus.s aes_cbc.c aes-ctr.fake", sha1_asm_src => "sha1-c64xplus.s sha256-c64xplus.s sha512-c64xplus.s", rc4_asm_src => "rc4-c64xplus.s", modes_asm_src => "ghash-c64xplus.s", chacha_asm_src => "chacha-c64xplus.s", poly1305_asm_src => "poly1305-c64xplus.s", thread_scheme => "pthreads", perlasm_scheme => "void", dso_scheme => "dlfcn", shared_target => "linux-shared", shared_cflag => "--pic", shared_ldflag => add("-z --sysv --shared"), shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", ranlib => "true", }, #### *BSD "BSD-generic32" => { # As for thread cflag. Idea is to maintain "collective" set of # flags, which would cover all BSD flavors. -pthread applies # to them all, but is treated differently. OpenBSD expands is # as -D_POSIX_THREAD -lc_r, which is sufficient. FreeBSD 4.x # expands it as -lc_r, which has to be accompanied by explicit # -D_THREAD_SAFE and sometimes -D_REENTRANT. FreeBSD 5.x # expands it as -lc_r, which seems to be sufficient? inherit_from => [ "BASE_unix" ], CC => "cc", CFLAGS => picker(default => "-Wall", debug => "-O0 -g", release => "-O3"), cflags => threads("-pthread"), cppflags => threads("-D_THREAD_SAFE -D_REENTRANT"), ex_libs => add(threads("-pthread")), enable => add("devcryptoeng"), bn_ops => "BN_LLONG", thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "bsd-gcc-shared", shared_cflag => "-fPIC", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, "BSD-generic64" => { inherit_from => [ "BSD-generic32" ], bn_ops => "SIXTY_FOUR_BIT_LONG", }, "BSD-x86" => { inherit_from => [ "BSD-generic32", asm("x86_asm") ], CFLAGS => add(picker(release => "-fomit-frame-pointer")), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "BN_LLONG", shared_target => "bsd-shared", perlasm_scheme => "a.out", }, "BSD-x86-elf" => { inherit_from => [ "BSD-x86" ], perlasm_scheme => "elf", }, "BSD-sparcv8" => { inherit_from => [ "BSD-generic32", asm("sparcv8_asm") ], cflags => add("-mcpu=v8"), lib_cppflags => add("-DB_ENDIAN"), }, "BSD-sparc64" => { # -DMD32_REG_T=int doesn't actually belong in sparc64 target, it # simply *happens* to work around a compiler bug in gcc 3.3.3, # triggered by RIPEMD160 code. inherit_from => [ "BSD-generic64", asm("sparcv9_asm") ], lib_cppflags => add("-DB_ENDIAN -DMD32_REG_T=int"), bn_ops => "BN_LLONG", }, "BSD-ia64" => { inherit_from => [ "BSD-generic64", asm("ia64_asm") ], lib_cppflags => add("-DL_ENDIAN"), bn_ops => "SIXTY_FOUR_BIT_LONG", }, "BSD-x86_64" => { inherit_from => [ "BSD-generic64", asm("x86_64_asm") ], lib_cppflags => add("-DL_ENDIAN"), bn_ops => "SIXTY_FOUR_BIT_LONG", perlasm_scheme => "elf", }, "bsdi-elf-gcc" => { inherit_from => [ "BASE_unix", asm("x86_elf_asm") ], CC => "gcc", CFLAGS => "-fomit-frame-pointer -O3 -Wall", lib_cppflags => "-DPERL5 -DL_ENDIAN", ex_libs => add("-ldl"), bn_ops => "BN_LLONG", thread_scheme => "(unknown)", dso_scheme => "dlfcn", shared_target => "bsd-gcc-shared", shared_cflag => "-fPIC", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, "nextstep" => { inherit_from => [ "BASE_unix" ], CC => "cc", CFLAGS => "-O -Wall", unistd => "", bn_ops => "BN_LLONG", thread_scheme => "(unknown)", }, "nextstep3.3" => { inherit_from => [ "BASE_unix" ], CC => "cc", CFLAGS => "-O3 -Wall", unistd => "", bn_ops => "BN_LLONG", thread_scheme => "(unknown)", }, #### SCO/Caldera targets. # # Originally we had like unixware-*, unixware-*-pentium, unixware-*-p6, etc. # Now we only have blended unixware-* as it's the only one used by ./config. # If you want to optimize for particular microarchitecture, bypass ./config # and './Configure unixware-7 -Kpentium_pro' or whatever appropriate. # Note that not all targets include assembler support. Mostly because of # lack of motivation to support out-of-date platforms with out-of-date # compiler drivers and assemblers. # # UnixWare 2.0x fails destest with -O. "unixware-2.0" => { inherit_from => [ "BASE_unix" ], CC => "cc", cflags => threads("-Kthread"), lib_cppflags => "-DFILIO_H -DNO_STRINGS_H", ex_libs => add("-lsocket -lnsl -lresolv -lx"), thread_scheme => "uithreads", }, "unixware-2.1" => { inherit_from => [ "BASE_unix" ], CC => "cc", CFLAGS => "-O", cflags => threads("-Kthread"), lib_cppflags => "-DFILIO_H", ex_libs => add("-lsocket -lnsl -lresolv -lx"), thread_scheme => "uithreads", }, "unixware-7" => { inherit_from => [ "BASE_unix", asm("x86_elf_asm") ], CC => "cc", CFLAGS => "-O", cflags => combine("-Kalloca", threads("-Kthread")), lib_cppflags => "-DFILIO_H", ex_libs => add("-lsocket -lnsl"), thread_scheme => "uithreads", bn_ops => "BN_LLONG", perlasm_scheme => "elf-1", dso_scheme => "dlfcn", shared_target => "svr5-shared", shared_cflag => "-Kpic", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, "unixware-7-gcc" => { inherit_from => [ "BASE_unix", asm("x86_elf_asm") ], CC => "gcc", CFLAGS => "-O3 -fomit-frame-pointer -Wall", cppflags => add(threads("-D_REENTRANT")), lib_cppflags => add("-DL_ENDIAN -DFILIO_H"), ex_libs => add("-lsocket -lnsl"), bn_ops => "BN_LLONG", thread_scheme => "pthreads", perlasm_scheme => "elf-1", dso_scheme => "dlfcn", shared_target => "gnu-shared", shared_cflag => "-fPIC", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, # SCO 5 - Ben Laurie says the -O breaks the SCO cc. "sco5-cc" => { inherit_from => [ "BASE_unix", asm("x86_elf_asm") ], cc => "cc", cflags => "-belf", ex_libs => add("-lsocket -lnsl"), thread_scheme => "(unknown)", perlasm_scheme => "elf-1", dso_scheme => "dlfcn", shared_target => "svr3-shared", shared_cflag => "-Kpic", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, "sco5-gcc" => { inherit_from => [ "BASE_unix", asm("x86_elf_asm") ], cc => "gcc", cflags => "-O3 -fomit-frame-pointer", ex_libs => add("-lsocket -lnsl"), bn_ops => "BN_LLONG", thread_scheme => "(unknown)", perlasm_scheme => "elf-1", dso_scheme => "dlfcn", shared_target => "svr3-shared", shared_cflag => "-fPIC", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, #### IBM's AIX. # Below targets assume AIX >=5. Caveat lector. If you are accustomed # to control compilation "bitness" by setting $OBJECT_MODE environment # variable, then you should know that in OpenSSL case it's considered # only in ./config. Once configured, build procedure remains "deaf" to # current value of $OBJECT_MODE. "aix-common" => { inherit_from => [ "BASE_unix" ], template => 1, sys_id => "AIX", lib_cppflags => "-DB_ENDIAN", lflags => "-Wl,-bsvr4", thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "self", module_ldflags => "-Wl,-G,-bsymbolic,-bnoentry", shared_ldflag => "-Wl,-G,-bsymbolic,-bnoentry", shared_defflag => "-Wl,-bE:", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", dso_extension => ".so", lib_extension => shared("_a.a"), shared_extension_simple => shared(".a"), }, "aix-gcc" => { inherit_from => [ "aix-common", asm("ppc32_asm") ], CC => "gcc", CFLAGS => picker(debug => "-O0 -g", release => "-O"), cflags => add(threads("-pthread")), ex_libs => threads("-pthread"), bn_ops => "BN_LLONG RC4_CHAR", perlasm_scheme => "aix32", shared_ldflag => add_before("-shared -static-libgcc"), AR => add("-X32"), RANLIB => add("-X32"), }, "aix64-gcc" => { inherit_from => [ "aix-common", asm("ppc64_asm") ], CC => "gcc", CFLAGS => picker(debug => "-O0 -g", release => "-O"), cflags => combine("-maix64", threads("-pthread")), ex_libs => threads("-pthread"), bn_ops => "SIXTY_FOUR_BIT_LONG RC4_CHAR", perlasm_scheme => "aix64", shared_ldflag => add_before("-shared -static-libgcc"), shared_extension => "64.so.\$(SHLIB_VERSION_NUMBER)", AR => add("-X64"), RANLIB => add("-X64"), }, "aix-cc" => { inherit_from => [ "aix-common", asm("ppc32_asm") ], CC => "cc", CFLAGS => picker(debug => "-O0 -g", release => "-O"), cflags => combine("-q32 -qmaxmem=16384 -qro -qroconst", threads("-qthreaded")), cppflags => threads("-D_THREAD_SAFE"), ex_libs => threads("-lpthreads"), bn_ops => "BN_LLONG RC4_CHAR", perlasm_scheme => "aix32", shared_cflag => "-qpic", AR => add("-X32"), RANLIB => add("-X32"), }, "aix64-cc" => { inherit_from => [ "aix-common", asm("ppc64_asm") ], CC => "cc", CFLAGS => picker(debug => "-O0 -g", release => "-O"), cflags => combine("-q64 -qmaxmem=16384 -qro -qroconst", threads("-qthreaded")), cppflags => threads("-D_THREAD_SAFE"), ex_libs => threads("-lpthreads"), bn_ops => "SIXTY_FOUR_BIT_LONG RC4_CHAR", perlasm_scheme => "aix64", dso_scheme => "dlfcn", shared_cflag => "-qpic", shared_extension => "64.so.\$(SHLIB_VERSION_NUMBER)", AR => add("-X64"), RANLIB => add("-X64"), }, # SIEMENS BS2000/OSD: an EBCDIC-based mainframe "BS2000-OSD" => { inherit_from => [ "BASE_unix" ], CC => "c89", CFLAGS => "-O", cflags => "-XLLML -XLLMK -XL", cppflags => "-DCHARSET_EBCDIC", lib_cppflags => "-DB_ENDIAN", ex_libs => add("-lsocket -lnsl"), bn_ops => "THIRTY_TWO_BIT RC4_CHAR", thread_scheme => "(unknown)", }, #### Visual C targets # # Win64 targets, WIN64I denotes IA-64/Itanium and WIN64A - AMD64 # # Note about /wd4090, disable warning C4090. This warning returns false # positives in some situations. Disabling it altogether masks both # legitimate and false cases, but as we compile on multiple platforms, # we rely on other compilers to catch legitimate cases. # # Also note that we force threads no matter what. Configuring "no-threads" # is ignored. # # UNICODE is defined in VC-common and applies to all targets. It used to # be an opt-in option for VC-WIN32, but not anymore. The original reason # was because ANSI API was *native* system interface for no longer # supported Windows 9x. Keep in mind that UNICODE only affects how # OpenSSL libraries interact with underlying OS, it doesn't affect API # that OpenSSL presents to application. "VC-common" => { inherit_from => [ "BASE_Windows" ], template => 1, CC => "cl", CPP => '$(CC) /EP /C', CFLAGS => "/W3 /wd4090 /nologo", LDFLAGS => add("/debug"), coutflag => "/Fo", defines => add("OPENSSL_SYS_WIN32", "WIN32_LEAN_AND_MEAN", "UNICODE", "_UNICODE", "_CRT_SECURE_NO_DEPRECATE", "_WINSOCK_DEPRECATED_NO_WARNINGS"), lib_cflags => add("/Zi /Fdossl_static.pdb"), lib_defines => add("L_ENDIAN"), dso_cflags => "/Zi /Fddso.pdb", bin_cflags => "/Zi /Fdapp.pdb", shared_ldflag => "/dll", shared_target => "win-shared", # meaningless except it gives Configure a hint thread_scheme => "winthreads", dso_scheme => "win32", apps_aux_src => add("win32_init.c"), bn_ops => "EXPORT_VAR_AS_FN", # additional parameter to build_scheme denotes install-path "flavour" build_scheme => add("VC-common", { separator => undef }), }, "VC-noCE-common" => { inherit_from => [ "VC-common" ], template => 1, CFLAGS => add(picker(debug => '/Od', release => '/O2')), cflags => add(picker(default => '/Gs0 /GF /Gy', debug => sub { ($disabled{shared} ? "" : "/MDd"); }, release => sub { ($disabled{shared} ? "" : "/MD"); })), defines => add(picker(default => [], # works as type cast debug => [ "DEBUG", "_DEBUG" ])), lib_cflags => add(sub { $disabled{shared} ? "/MT /Zl" : () }), # Following might/should appears controversial, i.e. defining # /MDd without evaluating $disabled{shared}. It works in # non-shared build because static library is compiled with /Zl # and bares no reference to specific RTL. And it works in # shared build because multiple /MDd options are not prohibited. # But why /MDd in static build? Well, basically this is just a # reference point, which allows to catch eventual errors that # would prevent those who want to wrap OpenSSL into own .DLL. # Why not /MD in release build then? Well, some are likely to # prefer [non-debug] openssl.exe to be free from Micorosoft RTL # redistributable. bin_cflags => add(picker(debug => "/MDd", release => sub { $disabled{shared} ? "/MT" : () }, )), bin_lflags => add("/subsystem:console /opt:ref"), ex_libs => add(sub { my @ex_libs = (); push @ex_libs, 'ws2_32.lib' unless $disabled{sock}; push @ex_libs, 'gdi32.lib advapi32.lib crypt32.lib user32.lib'; return join(" ", @ex_libs); }), }, "VC-WIN64-common" => { inherit_from => [ "VC-noCE-common" ], template => 1, ex_libs => add(sub { my @ex_libs = (); push @ex_libs, 'bufferoverflowu.lib' if (`cl 2>&1` =~ /14\.00\.4[0-9]{4}\./); return join(" ", @_, @ex_libs); }), bn_ops => add("SIXTY_FOUR_BIT"), }, "VC-WIN64I" => { inherit_from => [ "VC-WIN64-common", asm("ia64_asm"), sub { $disabled{shared} ? () : "ia64_uplink" } ], AS => "ias", ASFLAGS => "-d debug", asoutflag => "-o ", sys_id => "WIN64I", bn_asm_src => sub { return undef unless @_; my $r=join(" ",@_); $r=~s|bn-ia64.s|bn_asm.c|; $r; }, perlasm_scheme => "ias", multilib => "-ia64", }, "VC-WIN64A" => { inherit_from => [ "VC-WIN64-common", asm("x86_64_asm"), sub { $disabled{shared} ? () : "x86_64_uplink" } ], AS => sub { vc_win64a_info()->{AS} }, ASFLAGS => sub { vc_win64a_info()->{ASFLAGS} }, asoutflag => sub { vc_win64a_info()->{asoutflag} }, asflags => sub { vc_win64a_info()->{asflags} }, sys_id => "WIN64A", bn_asm_src => sub { return undef unless @_; my $r=join(" ",@_); $r=~s|asm/x86_64-gcc|bn_asm|; $r; }, perlasm_scheme => "auto", multilib => "-x64", }, "VC-WIN32" => { inherit_from => [ "VC-noCE-common", asm("x86_asm"), sub { $disabled{shared} ? () : "uplink_common" } ], AS => sub { vc_win32_info()->{AS} }, ASFLAGS => sub { vc_win32_info()->{ASFLAGS} }, asoutflag => sub { vc_win32_info()->{asoutflag} }, asflags => sub { vc_win32_info()->{asflags} }, sys_id => "WIN32", bn_ops => add("BN_LLONG"), perlasm_scheme => sub { vc_win32_info()->{perlasm_scheme} }, # "WOW" stands for "Windows on Windows", and "VC-WOW" engages # some installation path heuristics in windows-makefile.tmpl... build_scheme => add("VC-WOW", { separator => undef }), }, "VC-CE" => { inherit_from => [ "VC-common" ], CFLAGS => add(picker(debug => "/Od", release => "/O1i")), CPPDEFINES => picker(debug => [ "DEBUG", "_DEBUG" ]), LDFLAGS => add("/nologo /opt:ref"), cflags => combine('/GF /Gy', sub { vc_wince_info()->{cflags}; }, sub { `cl 2>&1` =~ /Version ([0-9]+)\./ && $1>=14 ? ($disabled{shared} ? " /MT" : " /MD") : " /MC"; }), cppflags => sub { vc_wince_info()->{cppflags}; }, lib_defines => add("NO_CHMOD", "OPENSSL_SMALL_FOOTPRINT"), lib_cppflags => sub { vc_wince_info()->{cppflags}; }, includes => add(combine(sub { defined(env('WCECOMPAT')) ? '$(WCECOMPAT)/include' : (); }, sub { defined(env('PORTSDK_LIBPATH')) ? '$(PORTSDK_LIBPATH)/../../include' : (); })), lflags => add(combine(sub { vc_wince_info()->{lflags}; }, sub { defined(env('PORTSDK_LIBPATH')) ? "/entry:mainCRTstartup" : (); })), sys_id => "WINCE", bn_ops => add("BN_LLONG"), ex_libs => add(sub { my @ex_libs = (); push @ex_libs, 'ws2.lib' unless $disabled{sock}; push @ex_libs, 'crypt32.lib'; if (defined(env('WCECOMPAT'))) { my $x = '$(WCECOMPAT)/lib'; if (-f "$x/env('TARGETCPU')/wcecompatex.lib") { $x .= '/$(TARGETCPU)/wcecompatex.lib'; } else { $x .= '/wcecompatex.lib'; } push @ex_libs, $x; } push @ex_libs, '$(PORTSDK_LIBPATH)/portlib.lib' if (defined(env('PORTSDK_LIBPATH'))); push @ex_libs, ' /nodefaultlib coredll.lib corelibc.lib' if (env('TARGETCPU') eq "X86"); return @ex_libs; }), }, #### MinGW "mingw" => { inherit_from => [ "BASE_unix", asm("x86_asm"), sub { $disabled{shared} ? () : "x86_uplink" } ], CC => "gcc", CFLAGS => picker(default => "-Wall", debug => "-g -O0", release => "-O3 -fomit-frame-pointer"), cflags => "-m32", cppflags => combine("-DUNICODE -D_UNICODE -DWIN32_LEAN_AND_MEAN", threads("-D_MT")), lib_cppflags => "-DL_ENDIAN", sys_id => "MINGW32", ex_libs => add("-lws2_32 -lgdi32 -lcrypt32"), bn_ops => "BN_LLONG EXPORT_VAR_AS_FN", thread_scheme => "winthreads", perlasm_scheme => "coff", dso_scheme => "win32", shared_target => "mingw-shared", shared_cppflags => add("_WINDLL"), shared_ldflag => "-static-libgcc", shared_rcflag => "--target=pe-i386", shared_extension => ".dll", multilib => "", apps_aux_src => add("win32_init.c"), # "WOW" stands for "Windows on Windows", and that word engages # some installation path heuristics in unix-Makefile.tmpl... build_scheme => add("WOW", { separator => undef }), }, "mingw64" => { # As for OPENSSL_USE_APPLINK. Applink makes it possible to use # .dll compiled with one compiler with application compiled with # another compiler. It's possible to engage Applink support in # mingw64 build, but it's not done, because till mingw64 # supports structured exception handling, one can't seriously # consider its binaries for using with non-mingw64 run-time # environment. And as mingw64 is always consistent with itself, # Applink is never engaged and can as well be omitted. inherit_from => [ "BASE_unix", asm("x86_64_asm") ], CC => "gcc", CFLAGS => picker(default => "-Wall", debug => "-g -O0", release => "-O3"), cflags => "-m64", cppflags => combine("-DUNICODE -D_UNICODE -DWIN32_LEAN_AND_MEAN", threads("-D_MT")), lib_cppflags => "-DL_ENDIAN", sys_id => "MINGW64", ex_libs => add("-lws2_32 -lgdi32 -lcrypt32"), bn_ops => "SIXTY_FOUR_BIT EXPORT_VAR_AS_FN", thread_scheme => "winthreads", perlasm_scheme => "mingw64", dso_scheme => "win32", shared_target => "mingw-shared", shared_cppflags => add("_WINDLL"), shared_ldflag => "-static-libgcc", shared_rcflag => "--target=pe-x86-64", shared_extension => ".dll", multilib => "64", apps_aux_src => add("win32_init.c"), }, #### UEFI "UEFI" => { inherit_from => [ "BASE_unix" ], CC => "cc", CFLAGS => "-O", lib_cppflags => "-DL_ENDIAN", sys_id => "UEFI", }, #### UWIN "UWIN" => { inherit_from => [ "BASE_unix" ], CC => "cc", CFLAGS => "-O -Wall", lib_cppflags => "-DTERMIOS -DL_ENDIAN", sys_id => "UWIN", bn_ops => "BN_LLONG", dso_scheme => "win32", }, #### Cygwin "Cygwin-x86" => { inherit_from => [ "BASE_unix", asm("x86_asm") ], CC => "gcc", CFLAGS => picker(default => "-Wall", debug => "-g -O0", release => "-O3 -fomit-frame-pointer"), lib_cppflags => "-DTERMIOS -DL_ENDIAN", sys_id => "CYGWIN", bn_ops => "BN_LLONG", thread_scheme => "pthread", perlasm_scheme => "coff", dso_scheme => "dlfcn", shared_target => "cygwin-shared", shared_cppflags => "-D_WINDLL", shared_extension => ".dll", }, "Cygwin-x86_64" => { inherit_from => [ "BASE_unix", asm("x86_64_asm") ], CC => "gcc", CFLAGS => picker(default => "-Wall", debug => "-g -O0", release => "-O3"), lib_cppflags => "-DTERMIOS -DL_ENDIAN", sys_id => "CYGWIN", bn_ops => "SIXTY_FOUR_BIT_LONG", thread_scheme => "pthread", perlasm_scheme => "mingw64", dso_scheme => "dlfcn", shared_target => "cygwin-shared", shared_cppflags => "-D_WINDLL", shared_extension => ".dll", }, # Backward compatibility for those using this target "Cygwin" => { inherit_from => [ "Cygwin-x86" ] }, # In case someone constructs the Cygwin target name themself "Cygwin-i386" => { inherit_from => [ "Cygwin-x86" ] }, "Cygwin-i486" => { inherit_from => [ "Cygwin-x86" ] }, "Cygwin-i586" => { inherit_from => [ "Cygwin-x86" ] }, "Cygwin-i686" => { inherit_from => [ "Cygwin-x86" ] }, ##### MacOS X (a.k.a. Darwin) setup "darwin-common" => { inherit_from => [ "BASE_unix" ], template => 1, CC => "cc", CFLAGS => picker(debug => "-g -O0", release => "-O3"), cppflags => threads("-D_REENTRANT"), lflags => "-Wl,-search_paths_first", sys_id => "MACOSX", bn_ops => "BN_LLONG RC4_CHAR", thread_scheme => "pthreads", perlasm_scheme => "osx32", dso_scheme => "dlfcn", ranlib => "ranlib -c", shared_target => "darwin-shared", shared_cflag => "-fPIC", shared_extension => ".\$(SHLIB_VERSION_NUMBER).dylib", }, # Option "freeze" such as -std=gnu9x can't negatively interfere # with future defaults for below two targets, because MacOS X # for PPC has no future, it was discontinued by vendor in 2009. "darwin-ppc-cc" => { inherit_from => [ "darwin-common", asm("ppc32_asm") ], cflags => add("-arch ppc -std=gnu9x -Wa,-force_cpusubtype_ALL"), lib_cppflags => add("-DB_ENDIAN"), shared_cflag => add("-fno-common"), perlasm_scheme => "osx32", }, "darwin64-ppc-cc" => { inherit_from => [ "darwin-common", asm("ppc64_asm") ], cflags => add("-arch ppc64 -std=gnu9x"), lib_cppflags => add("-DB_ENDIAN"), bn_ops => "SIXTY_FOUR_BIT_LONG RC4_CHAR", perlasm_scheme => "osx64", }, "darwin-i386-cc" => { inherit_from => [ "darwin-common", asm("x86_asm") ], CFLAGS => add(picker(release => "-fomit-frame-pointer")), cflags => add("-arch i386"), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "BN_LLONG RC4_INT", perlasm_scheme => "macosx", }, "darwin64-x86_64-cc" => { inherit_from => [ "darwin-common", asm("x86_64_asm") ], CFLAGS => add("-Wall"), cflags => add("-arch x86_64"), lib_cppflags => add("-DL_ENDIAN"), bn_ops => "SIXTY_FOUR_BIT_LONG", perlasm_scheme => "macosx", }, ##### GNU Hurd "hurd-x86" => { inherit_from => [ "BASE_unix" ], inherit_from => [ asm("x86_elf_asm") ], CC => "gcc", CFLAGS => "-O3 -fomit-frame-pointer -Wall", cflags => threads("-pthread"), lib_cppflags => "-DL_ENDIAN", ex_libs => add("-ldl", threads("-pthread")), bn_ops => "BN_LLONG", thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "linux-shared", shared_cflag => "-fPIC", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, ##### VxWorks for various targets "vxworks-ppc60x" => { inherit_from => [ "BASE_unix" ], CC => "ccppc", CFLAGS => "-O2 -Wall -fstrength-reduce", cflags => "-mrtp -mhard-float -mstrict-align -fno-implicit-fp -fno-builtin -fno-strict-aliasing", cppflags => combine("-D_REENTRANT -DPPC32_fp60x -DCPU=PPC32", "_DTOOL_FAMILY=gnu -DTOOL=gnu", "-I\$(WIND_BASE)/target/usr/h", "-I\$(WIND_BASE)/target/usr/h/wrn/coreip"), sys_id => "VXWORKS", lflags => add("-L \$(WIND_BASE)/target/usr/lib/ppc/PPC32/common"), ex_libs => add("-Wl,--defsym,__wrs_rtp_base=0xe0000000"), }, "vxworks-ppcgen" => { inherit_from => [ "BASE_unix" ], CC => "ccppc", CFLAGS => "-O1 -Wall", cflags => "-mrtp -msoft-float -mstrict-align -fno-builtin -fno-strict-aliasing", cppflags => combine("-D_REENTRANT -DPPC32 -DCPU=PPC32", "-DTOOL_FAMILY=gnu -DTOOL=gnu", "-I\$(WIND_BASE)/target/usr/h", "-I\$(WIND_BASE)/target/usr/h/wrn/coreip"), sys_id => "VXWORKS", lflags => add("-L \$(WIND_BASE)/target/usr/lib/ppc/PPC32/sfcommon"), ex_libs => add("-Wl,--defsym,__wrs_rtp_base=0xe0000000"), }, "vxworks-ppc405" => { inherit_from => [ "BASE_unix" ], CC => "ccppc", CFLAGS => "-g", cflags => "-msoft-float -mlongcall", cppflags => combine("-D_REENTRANT -DPPC32 -DCPU=PPC405", "-DTOOL_FAMILY=gnu -DTOOL=gnu", "-I\$(WIND_BASE)/target/h"), sys_id => "VXWORKS", lflags => add("-r"), }, "vxworks-ppc750" => { inherit_from => [ "BASE_unix" ], CC => "ccppc", CFLAGS => "-ansi -fvolatile -Wall \$(DEBUG_FLAG)", cflags => "-nostdinc -fno-builtin -fno-for-scope -fsigned-char -msoft-float -mlongcall", cppflags => combine("-DPPC750 -D_REENTRANT -DCPU=PPC604", "-I\$(WIND_BASE)/target/h"), sys_id => "VXWORKS", lflags => add("-r"), }, "vxworks-ppc750-debug" => { inherit_from => [ "BASE_unix" ], CC => "ccppc", CFLAGS => "-ansi -fvolatile -Wall -g", cflags => "-nostdinc -fno-builtin -fno-for-scope -fsigned-char -msoft-float -mlongcall", cppflags => combine("-DPPC750 -D_REENTRANT -DCPU=PPC604", "-DPEDANTIC -DDEBUG", "-I\$(WIND_BASE)/target/h"), sys_id => "VXWORKS", lflags => add("-r"), }, "vxworks-ppc860" => { inherit_from => [ "BASE_unix" ], CC => "ccppc", cflags => "-nostdinc -msoft-float", cppflags => combine("-DCPU=PPC860 -DNO_STRINGS_H", "-I\$(WIND_BASE)/target/h"), sys_id => "VXWORKS", lflags => add("-r"), }, "vxworks-simlinux" => { inherit_from => [ "BASE_unix" ], CC => "ccpentium", cflags => "-B\$(WIND_BASE)/host/\$(WIND_HOST_TYPE)/lib/gcc-lib/ -fno-builtin -fno-defer-pop", cppflags => combine("-D_VSB_CONFIG_FILE=\"\$(WIND_BASE)/target/lib/h/config/vsbConfig.h\"", "-DL_ENDIAN -DCPU=SIMLINUX -DNO_STRINGS_H", "-DTOOL_FAMILY=gnu -DTOOL=gnu", "-DOPENSSL_NO_HW_PADLOCK", "-I\$(WIND_BASE)/target/h", "-I\$(WIND_BASE)/target/h/wrn/coreip"), sys_id => "VXWORKS", lflags => add("-r"), ranlib => "ranlibpentium", }, "vxworks-mips" => { inherit_from => [ "BASE_unix", asm("mips32_asm") ], CC => "ccmips", CFLAGS => "-O -G 0", cflags => "-mrtp -mips2 -B\$(WIND_BASE)/host/\$(WIND_HOST_TYPE)/lib/gcc-lib/ -msoft-float -mno-branch-likely -fno-builtin -fno-defer-pop", cppflags => combine("-D_VSB_CONFIG_FILE=\"\$(WIND_BASE)/target/lib/h/config/vsbConfig.h\"", "-DCPU=MIPS32 -DNO_STRINGS_H", "-DTOOL_FAMILY=gnu -DTOOL=gnu", "-DOPENSSL_NO_HW_PADLOCK", threads("-D_REENTRANT"), "-I\$(WIND_BASE)/target/h", "-I\$(WIND_BASE)/target/h/wrn/coreip"), sys_id => "VXWORKS", lflags => add("-L \$(WIND_BASE)/target/usr/lib/mips/MIPSI32/sfcommon"), ex_libs => add("-Wl,--defsym,__wrs_rtp_base=0xe0000000"), thread_scheme => "pthreads", perlasm_scheme => "o32", ranlib => "ranlibmips", }, #### uClinux "uClinux-dist" => { inherit_from => [ "BASE_unix" ], CC => sub { env('CC') }, cppflags => threads("-D_REENTRANT"), ex_libs => add("\$(LDLIBS)"), bn_ops => "BN_LLONG", thread_scheme => "pthreads", dso_scheme => sub { env('LIBSSL_dlfcn') }, shared_target => "linux-shared", shared_cflag => "-fPIC", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", ranlib => sub { env('RANLIB') }, }, "uClinux-dist64" => { inherit_from => [ "BASE_unix" ], CC => sub { env('CC') }, cppflags => threads("-D_REENTRANT"), ex_libs => add("\$(LDLIBS)"), bn_ops => "SIXTY_FOUR_BIT_LONG", thread_scheme => "pthreads", dso_scheme => sub { env('LIBSSL_dlfcn') }, shared_target => "linux-shared", shared_cflag => "-fPIC", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", ranlib => sub { env('RANLIB') }, }, ##### VMS # Most things happen in vms-generic. # Note that vms_info extracts the pointer size from the end of # the target name, and will assume that anything matching /-p\d+$/ # indicates the pointer size setting for the desired target. "vms-generic" => { inherit_from => [ "BASE_VMS" ], template => 1, CC => "CC/DECC", CPP => '$(CC)/PREPROCESS_ONLY=SYS$OUTPUT:', CFLAGS => combine(picker(default => "/STANDARD=(ISOC94,RELAXED)/NOLIST/PREFIX=ALL", debug => "/NOOPTIMIZE/DEBUG", release => "/OPTIMIZE/NODEBUG"), sub { my @warnings = @{vms_info()->{disable_warns}}; @warnings ? "/WARNINGS=DISABLE=(".join(",",@warnings).")" : (); }), lib_defines => add("OPENSSL_USE_NODELETE", sub { return vms_info()->{def_zlib} ? "LIBZ=\"\"\"".vms_info()->{def_zlib}."\"\"\"" : (); }), lflags => picker(default => "/MAP='F\$PARSE(\".MAP\",\"\$\@\")'", debug => "/DEBUG/TRACEBACK", release => "/NODEBUG/NOTRACEBACK"), lib_cflags => add("/NAMES=(AS_IS,SHORTENED)/EXTERN_MODEL=STRICT_REFDEF"), # no_inst_lib_cflags is used instead of lib_cflags by descrip.mms.tmpl # for object files belonging to selected internal libraries no_inst_lib_cflags => "", ex_libs => add(sub { return vms_info()->{zlib} || (); }), shared_target => "vms-shared", dso_scheme => "vms", thread_scheme => "pthreads", AS => sub { vms_info()->{AS} }, ASFLAGS => sub { vms_info()->{ASFLAGS} }, asoutflag => sub { vms_info()->{asoutflag} }, asflags => sub { vms_info()->{asflags} }, perlasm_scheme => sub { vms_info()->{perlasm_scheme} }, disable => add('pinshared'), apps_aux_src => "vms_term_sock.c", apps_init_src => "vms_decc_init.c", }, # From HELP CC/POINTER_SIZE: # # ---------- # LONG[=ARGV] The compiler assumes 64-bit pointers. If the ARGV option to # LONG or 64 is present, the main argument argv will be an # array of long pointers instead of an array of short pointers. # # 64[=ARGV] Same as LONG. # ---------- # # We don't want the hassle of dealing with 32-bit pointers with argv, so # we force it to have 64-bit pointers, see the added cflags in the -p64 # config targets below. "vms-alpha" => { inherit_from => [ "vms-generic" ], bn_ops => "SIXTY_FOUR_BIT RC4_INT", pointer_size => "", }, "vms-alpha-p32" => { inherit_from => [ "vms-alpha" ], cflags => add("/POINTER_SIZE=32"), pointer_size => "32", }, "vms-alpha-p64" => { inherit_from => [ "vms-alpha" ], cflags => add("/POINTER_SIZE=64=ARGV"), pointer_size => "64", }, "vms-ia64" => { inherit_from => [ "vms-generic", sub { vms_info()->{AS} ? asm("ia64_asm")->() : () } ], bn_ops => "SIXTY_FOUR_BIT RC4_INT", pointer_size => "", modes_asm_src => "", # Because ghash-ia64.s doesn't work on VMS }, "vms-ia64-p32" => { inherit_from => [ "vms-ia64" ], cflags => add("/POINTER_SIZE=32"), pointer_size => "32", }, "vms-ia64-p64" => { inherit_from => [ "vms-ia64" ], cflags => add("/POINTER_SIZE=64=ARGV"), pointer_size => "64", }, ); openssl-1.1.1f/Configurations/15-android.conf000066400000000000000000000251331364063235100210560ustar00rootroot00000000000000#### Android... # # See NOTES.ANDROID for details, and don't miss platform-specific # comments below... { use File::Spec::Functions; my $android_ndk = {}; my %triplet = ( arm => "arm-linux-androideabi", arm64 => "aarch64-linux-android", mips => "mipsel-linux-android", mips64 => "mips64el-linux-android", x86 => "i686-linux-android", x86_64 => "x86_64-linux-android", ); sub android_ndk { unless (%$android_ndk) { if ($now_printing =~ m|^android|) { return $android_ndk = { bn_ops => "BN_AUTO" }; } my $ndk_var; my $ndk; foreach (qw(ANDROID_NDK_HOME ANDROID_NDK)) { $ndk_var = $_; $ndk = $ENV{$ndk_var}; last if defined $ndk; } die "\$ANDROID_NDK_HOME is not defined" if (!$ndk); if (!-d "$ndk/platforms" && !-f "$ndk/AndroidVersion.txt") { # $ndk/platforms is traditional "all-inclusive" NDK, while # $ndk/AndroidVersion.txt is so-called standalone toolchain # tailored for specific target down to API level. die "\$ANDROID_NDK_HOME=$ndk is invalid"; } $ndk = canonpath($ndk); my $ndkver = undef; if (open my $fh, "<$ndk/source.properties") { local $_; while(<$fh>) { if (m|Pkg\.Revision\s*=\s*([0-9]+)|) { $ndkver = $1; last; } } close $fh; } my ($sysroot, $api, $arch); $config{target} =~ m|[^-]+-([^-]+)$|; # split on dash $arch = $1; if ($sysroot = $ENV{CROSS_SYSROOT}) { $sysroot =~ m|/android-([0-9]+)/arch-(\w+)/?$|; ($api, $arch) = ($1, $2); } elsif (-f "$ndk/AndroidVersion.txt") { $sysroot = "$ndk/sysroot"; } else { $api = "*"; # see if user passed -D__ANDROID_API__=N foreach (@{$useradd{CPPDEFINES}}, @{$user{CPPFLAGS}}) { if (m|__ANDROID_API__=([0-9]+)|) { $api = $1; last; } } # list available platforms (numerically) my @platforms = sort { $a =~ m/-([0-9]+)$/; my $aa = $1; $b =~ m/-([0-9]+)$/; $aa <=> $1; } glob("$ndk/platforms/android-$api"); die "no $ndk/platforms/android-$api" if ($#platforms < 0); $sysroot = "@platforms[$#platforms]/arch-$arch"; $sysroot =~ m|/android-([0-9]+)/arch-$arch|; $api = $1; } die "no sysroot=$sysroot" if (!-d $sysroot); my $triarch = $triplet{$arch}; my $cflags; my $cppflags; # see if there is NDK clang on $PATH, "universal" or "standalone" if (which("clang") =~ m|^$ndk/.*/prebuilt/([^/]+)/|) { my $host=$1; # harmonize with gcc default my $arm = $ndkver > 16 ? "armv7a" : "armv5te"; (my $tridefault = $triarch) =~ s/^arm-/$arm-/; (my $tritools = $triarch) =~ s/(?:x|i6)86(_64)?-.*/x86$1/; $cflags .= " -target $tridefault " . "-gcc-toolchain \$($ndk_var)/toolchains" . "/$tritools-4.9/prebuilt/$host"; $user{CC} = "clang" if ($user{CC} !~ m|clang|); $user{CROSS_COMPILE} = undef; if (which("llvm-ar") =~ m|^$ndk/.*/prebuilt/([^/]+)/|) { $user{AR} = "llvm-ar"; $user{ARFLAGS} = [ "rs" ]; $user{RANLIB} = ":"; } } elsif (-f "$ndk/AndroidVersion.txt") { #"standalone toolchain" my $cc = $user{CC} // "clang"; # One can probably argue that both clang and gcc should be # probed, but support for "standalone toolchain" was added # *after* announcement that gcc is being phased out, so # favouring clang is considered adequate. Those who insist # have option to enforce test for gcc with CC=gcc. if (which("$triarch-$cc") !~ m|^$ndk|) { die "no NDK $triarch-$cc on \$PATH"; } $user{CC} = $cc; $user{CROSS_COMPILE} = "$triarch-"; } elsif ($user{CC} eq "clang") { die "no NDK clang on \$PATH"; } else { if (which("$triarch-gcc") !~ m|^$ndk/.*/prebuilt/([^/]+)/|) { die "no NDK $triarch-gcc on \$PATH"; } $cflags .= " -mandroid"; $user{CROSS_COMPILE} = "$triarch-"; } if (!-d "$sysroot/usr/include") { my $incroot = "$ndk/sysroot/usr/include"; die "no $incroot" if (!-d $incroot); die "no $incroot/$triarch" if (!-d "$incroot/$triarch"); $incroot =~ s|^$ndk/||; $cppflags = "-D__ANDROID_API__=$api"; $cppflags .= " -isystem \$($ndk_var)/$incroot/$triarch"; $cppflags .= " -isystem \$($ndk_var)/$incroot"; } $sysroot =~ s|^$ndk/||; $android_ndk = { cflags => "$cflags --sysroot=\$($ndk_var)/$sysroot", cppflags => $cppflags, bn_ops => $arch =~ m/64$/ ? "SIXTY_FOUR_BIT_LONG" : "BN_LLONG", }; } return $android_ndk; } } my %targets = ( "android" => { inherit_from => [ "linux-generic32" ], template => 1, ################################################################ # Special note about -pie. The underlying reason is that # Lollipop refuses to run non-PIE. But what about older systems # and NDKs? -fPIC was never problem, so the only concern is -pie. # Older toolchains, e.g. r4, appear to handle it and binaries # turn out mostly functional. "Mostly" means that oldest # Androids, such as Froyo, fail to handle executable, but newer # systems are perfectly capable of executing binaries targeting # Froyo. Keep in mind that in the nutshell Android builds are # about JNI, i.e. shared libraries, not applications. cflags => add(sub { android_ndk()->{cflags} }), cppflags => add(sub { android_ndk()->{cppflags} }), cxxflags => add(sub { android_ndk()->{cflags} }), bn_ops => sub { android_ndk()->{bn_ops} }, bin_cflags => "-pie", enable => [ ], }, "android-arm" => { ################################################################ # Contemporary Android applications can provide multiple JNI # providers in .apk, targeting multiple architectures. Among # them there is "place" for two ARM flavours: generic eabi and # armv7-a/hard-float. However, it should be noted that OpenSSL's # ability to engage NEON is not constrained by ABI choice, nor # is your ability to call OpenSSL from your application code # compiled with floating-point ABI other than default 'soft'. # (Latter thanks to __attribute__((pcs("aapcs"))) declaration.) # This means that choice of ARM libraries you provide in .apk # is driven by application needs. For example if application # itself benefits from NEON or is floating-point intensive, then # it might be appropriate to provide both libraries. Otherwise # just generic eabi would do. But in latter case it would be # appropriate to # # ./Configure android-arm -D__ARM_MAX_ARCH__=8 # # in order to build "universal" binary and allow OpenSSL take # advantage of NEON when it's available. # # Keep in mind that (just like with linux-armv4) we rely on # compiler defaults, which is not necessarily what you had # in mind, in which case you would have to pass additional # -march and/or -mfloat-abi flags. NDK defaults to armv5te. # Newer NDK versions reportedly require additional -latomic. # inherit_from => [ "android", asm("armv4_asm") ], bn_ops => add("RC4_CHAR"), }, "android-arm64" => { inherit_from => [ "android", asm("aarch64_asm") ], bn_ops => add("RC4_CHAR"), perlasm_scheme => "linux64", }, "android-mips" => { inherit_from => [ "android", asm("mips32_asm") ], bn_ops => add("RC4_CHAR"), perlasm_scheme => "o32", }, "android-mips64" => { ################################################################ # You are more than likely have to specify target processor # on ./Configure command line. Trouble is that toolchain's # default is MIPS64r6 (at least in r10d), but there are no # such processors around (or they are too rare to spot one). # Actual problem is that MIPS64r6 is binary incompatible # with previous MIPS ISA versions, in sense that unlike # prior versions original MIPS binary code will fail. # inherit_from => [ "android", asm("mips64_asm") ], bn_ops => add("RC4_CHAR"), perlasm_scheme => "64", }, "android-x86" => { inherit_from => [ "android", asm("x86_asm") ], CFLAGS => add(picker(release => "-fomit-frame-pointer")), bn_ops => add("RC4_INT"), perlasm_scheme => "android", }, "android-x86_64" => { inherit_from => [ "android", asm("x86_64_asm") ], bn_ops => add("RC4_INT"), perlasm_scheme => "elf", }, #################################################################### # Backward compatible targets, (might) require $CROSS_SYSROOT # "android-armeabi" => { inherit_from => [ "android-arm" ], }, "android64" => { inherit_from => [ "android" ], }, "android64-aarch64" => { inherit_from => [ "android-arm64" ], }, "android64-x86_64" => { inherit_from => [ "android-x86_64" ], }, "android64-mips64" => { inherit_from => [ "android-mips64" ], }, ); openssl-1.1.1f/Configurations/15-ios.conf000066400000000000000000000045531364063235100202330ustar00rootroot00000000000000#### iPhoneOS/iOS # # It takes recent enough Xcode to use following two targets. It shouldn't # be a problem by now, but if they don't work, original targets below # that depend on manual definition of environment variables should still # work... # my %targets = ( "ios-common" => { template => 1, inherit_from => [ "darwin-common" ], sys_id => "iOS", disable => [ "engine", "async" ], }, "ios-xcrun" => { inherit_from => [ "ios-common", asm("armv4_asm") ], # It should be possible to go below iOS 6 and even add -arch armv6, # thus targeting iPhone pre-3GS, but it's assumed to be irrelevant # at this point. CC => "xcrun -sdk iphoneos cc", cflags => add("-arch armv7 -mios-version-min=6.0.0 -fno-common"), perlasm_scheme => "ios32", }, "ios64-xcrun" => { inherit_from => [ "ios-common", asm("aarch64_asm") ], CC => "xcrun -sdk iphoneos cc", cflags => add("-arch arm64 -mios-version-min=7.0.0 -fno-common"), bn_ops => "SIXTY_FOUR_BIT_LONG RC4_CHAR", perlasm_scheme => "ios64", }, "iossimulator-xcrun" => { inherit_from => [ "ios-common" ], CC => "xcrun -sdk iphonesimulator cc", }, # It takes three prior-set environment variables to make it work: # # CROSS_COMPILE=/where/toolchain/is/usr/bin/ [note ending slash] # CROSS_TOP=/where/SDKs/are # CROSS_SDK=iPhoneOSx.y.sdk # # Exact paths vary with Xcode releases, but for couple of last ones # they would look like this: # # CROSS_COMPILE=`xcode-select --print-path`/Toolchains/XcodeDefault.xctoolchain/usr/bin/ # CROSS_TOP=`xcode-select --print-path`/Platforms/iPhoneOS.platform/Developer # CROSS_SDK=iPhoneOS.sdk # "iphoneos-cross" => { inherit_from => [ "ios-common" ], cflags => add("-isysroot \$(CROSS_TOP)/SDKs/\$(CROSS_SDK) -fno-common"), }, "ios-cross" => { inherit_from => [ "ios-xcrun" ], CC => "cc", cflags => add("-isysroot \$(CROSS_TOP)/SDKs/\$(CROSS_SDK)"), }, "ios64-cross" => { inherit_from => [ "ios64-xcrun" ], CC => "cc", cflags => add("-isysroot \$(CROSS_TOP)/SDKs/\$(CROSS_SDK)"), }, ); openssl-1.1.1f/Configurations/50-djgpp.conf000066400000000000000000000011601364063235100205330ustar00rootroot00000000000000# We can't make any commitment to support the DJGPP platform, # and rely entirely on the OpenSSL community to help is fine # tune and test. my %targets = ( "DJGPP" => { inherit_from => [ asm("x86_asm") ], CC => "gcc", CFLAGS => "-fomit-frame-pointer -O2 -Wall", cflags => "-I/dev/env/WATT_ROOT/inc -DTERMIOS -DL_ENDIAN", sys_id => "MSDOS", lflags => add("-L/dev/env/WATT_ROOT/lib"), ex_libs => add("-lwatt"), bn_ops => "BN_LLONG", perlasm_scheme => "a.out", }, ); openssl-1.1.1f/Configurations/50-haiku.conf000066400000000000000000000023021364063235100205270ustar00rootroot00000000000000my %targets = ( "haiku-common" => { template => 1, CC => "cc", CFLAGS => add_before(picker(default => "-Wall", debug => "-g -O0", release => "-O2")), cflags => add_before("-DL_ENDIAN -include \$(SRCDIR)/os-dep/haiku.h", threads("-D_REENTRANT")), sys_id => "HAIKU", ex_libs => "-lnetwork", perlasm_scheme => "elf", thread_scheme => "pthreads", dso_scheme => "dlfcn", shared_target => "gnu-shared", shared_cflag => "-fPIC", shared_ldflag => "-shared", shared_extension => ".so.\$(SHLIB_VERSION_NUMBER)", }, "haiku-x86" => { inherit_from => [ "haiku-common", asm("x86_elf_asm") ], CFLAGS => add(picker(release => "-fomit-frame-pointer")), bn_ops => "BN_LLONG", }, "haiku-x86_64" => { inherit_from => [ "haiku-common" ], cflags => add("-m64"), bn_ops => "SIXTY_FOUR_BIT_LONG", }, ); openssl-1.1.1f/Configurations/50-masm.conf000066400000000000000000000020641364063235100203700ustar00rootroot00000000000000# We can't make commitment to supporting Microsoft assembler, # because it would mean supporting all masm versions. This in # in turn is because masm is not really an interchangeable option, # while users tend to have reasons to stick with specific Visual # Studio versions. It's usually lesser hassle to make it work # with latest assembler, but tweaking for older versions had # proven to be daunting task. This is experimental target, for # production builds stick with [up-to-date version of] nasm. my %targets = ( "VC-WIN64A-masm" => { inherit_from => [ "VC-WIN64-common", asm("x86_64_asm"), sub { $disabled{shared} ? () : "x86_64_uplink" } ], AS => "ml64", ASFLAGS => "/nologo /Zi", asoutflag => "/Fo", asflags => "/c /Cp /Cx", sys_id => "WIN64A", bn_asm_src => sub { return undef unless @_; my $r=join(" ",@_); $r=~s|asm/x86_64-gcc|bn_asm|; $r; }, perlasm_scheme => "masm", }, ); openssl-1.1.1f/Configurations/50-win-onecore.conf000066400000000000000000000057271364063235100216710ustar00rootroot00000000000000# Windows OneCore targets. # # OneCore is new API stability "contract" that transcends Desktop, IoT and # Mobile[?] Windows editions. It's a set up "umbrella" libraries that # export subset of Win32 API that are common to all Windows 10 devices. # # OneCore Configuration temporarily dedicated for console applications # due to disabled event logging, which is incompatible with one core. # Error messages are provided via standard error only. # TODO: extend error handling to use ETW based eventing # (Or rework whole error messaging) my %targets = ( "VC-WIN32-ONECORE" => { inherit_from => [ "VC-WIN32" ], # /NODEFAULTLIB:kernel32.lib is needed, because MSVCRT.LIB has # hidden reference to kernel32.lib, but we don't actually want # it in "onecore" build. lflags => add("/NODEFAULTLIB:kernel32.lib"), defines => add("OPENSSL_SYS_WIN_CORE"), ex_libs => "onecore.lib", }, "VC-WIN64A-ONECORE" => { inherit_from => [ "VC-WIN64A" ], lflags => add("/NODEFAULTLIB:kernel32.lib"), defines => add("OPENSSL_SYS_WIN_CORE"), ex_libs => "onecore.lib", }, # Windows on ARM targets. ARM compilers are additional components in # VS2017, i.e. they are not installed by default. And when installed, # there are no "ARM Tool Command Prompt"s on Start menu, you have # to locate vcvarsall.bat and act accordingly. VC-WIN32-ARM has # received limited testing with evp_test.exe on Windows 10 IoT Core, # but not VC-WIN64-ARM, no hardware... In other words they are not # actually supported... # # Another thing to keep in mind [in cross-compilation scenario such # as this one] is that target's file system has nothing to do with # compilation system's one. This means that you're are likely to use # --prefix and --openssldir with target-specific values. 'nmake install' # step is effectively meaningless in cross-compilation case, though # it might be useful to 'nmake install DESTDIR=S:\ome\where' where you # can point Visual Studio to when compiling custom application code. "VC-WIN32-ARM" => { inherit_from => [ "VC-noCE-common" ], defines => add("_ARM_WINAPI_PARTITION_DESKTOP_SDK_AVAILABLE", "OPENSSL_SYS_WIN_CORE"), bn_ops => "BN_LLONG RC4_CHAR EXPORT_VAR_AS_FN", lflags => add("/NODEFAULTLIB:kernel32.lib"), ex_libs => "onecore.lib", multilib => "-arm", }, "VC-WIN64-ARM" => { inherit_from => [ "VC-noCE-common" ], defines => add("_ARM_WINAPI_PARTITION_DESKTOP_SDK_AVAILABLE", "OPENSSL_SYS_WIN_CORE"), bn_ops => "SIXTY_FOUR_BIT RC4_CHAR EXPORT_VAR_AS_FN", lflags => add("/NODEFAULTLIB:kernel32.lib"), ex_libs => "onecore.lib", multilib => "-arm64", }, ); openssl-1.1.1f/Configurations/INTERNALS.Configure000066400000000000000000000173131364063235100215470ustar00rootroot00000000000000Configure Internals =================== [ note: this file uses markdown for formatting ] Intro ----- This is a collection of notes that are hopefully of interest to those who decide to dive into Configure and what it does. This is a living document and anyone is encouraged to add to it and submit changes. There's no claim for this document to be complete at any time, but it will hopefully reach such a point in time. ---------------------------------------------------------------------- Parsing build.info files, processing conditions ----------------------------------------------- Processing conditions in build.info files is done with the help of a condition stack that tell if a build.info should be processed or if it should just be skipped over. The possible states of the stack top are expressed in the following comment from Configure: # The top item of this stack has the following values # -2 positive already run and we found ELSE (following ELSIF should fail) # -1 positive already run (skip until ENDIF) # 0 negatives so far (if we're at a condition, check it) # 1 last was positive (don't skip lines until next ELSE, ELSIF or ENDIF) # 2 positive ELSE (following ELSIF should fail) Ground rule is that non-condition lines are skipped over if the stack top is > 0. Condition lines (IF, ELSIF, ELSE and ENDIF statements) need to be processed either way to keep track of the skip stack states, so they are a little more intricate. Instead of trying to describe in words, here are some example of what the skip stack should look like after each line is processed: Example 1: | IF[1] | 1 | | | ... whatever ... | | this line is processed | | IF[1] | 1 1 | | | ... whatever ... | | this line is processed | | ELSIF[1] | 1 -1 | | | ... whatever ... | | this line is skipped over | | ELSE | 1 -2 | | | ... whatever ... | | this line is skipped over | | ENDIF | 1 | | | ... whatever ... | | this line is processed | | ELSIF[1] | -1 | | | ... whatever ... | | this line is skipped over | | IF[1] | -1 -1 | | | ... whatever ... | | this line is skipped over | | ELSIF[1] | -1 -1 | | | ... whatever ... | | this line is skipped over | | ELSE | -1 -2 | | | ... whatever ... | | this line is skipped over | | ENDIF | -1 | | | ... whatever ... | | this line is skipped over | | ENDIF | | | Example 2: | IF[0] | 0 | | | ... whatever ... | | this line is skipped over | | IF[1] | 0 -1 | | | ... whatever ... | | this line is skipped over | | ELSIF[1] | 0 -1 | | | ... whatever ... | | this line is skipped over | | ELSE | 0 -2 | | | ... whatever ... | | this line is skipped over | | ENDIF | 0 | | | ... whatever ... | | this line is skipped over | | ELSIF[1] | 1 | | | ... whatever ... | | this line is processed | | IF[1] | 1 1 | | | ... whatever ... | | this line is processed | | ELSIF[1] | 1 -1 | | | ... whatever ... | | this line is skipped over | | ELSE | 1 -2 | | | ... whatever ... | | this line is skipped over | | ENDIF | 1 | | | ... whatever ... | | this line is processed | | ENDIF | | | Example 3: | IF[0] | 0 | | | ... whatever ... | | this line is skipped over | | IF[0] | 0 -1 | | | ... whatever ... | | this line is skipped over | | ELSIF[1] | 0 -1 | | | ... whatever ... | | this line is skipped over | | ELSE | 0 -2 | | | ... whatever ... | | this line is skipped over | | ENDIF | 0 | | | ... whatever ... | | this line is skipped over | | ELSIF[1] | 1 | | | ... whatever ... | | this line is processed | | IF[0] | 1 0 | | | ... whatever ... | | this line is skipped over | | ELSIF[1] | 1 1 | | | ... whatever ... | | this line is processed | | ELSE | 1 -2 | | | ... whatever ... | | this line is skipped over | | ENDIF | 1 | | | ... whatever ... | | this line is processed | | ENDIF | | | Example 4: | IF[0] | 0 | | | ... whatever ... | | this line is skipped over | | IF[0] | 0 -1 | | | ... whatever ... | | this line is skipped over | | ELSIF[0] | 0 -1 | | | ... whatever ... | | this line is skipped over | | ELSE | 0 -2 | | | ... whatever ... | | this line is skipped over | | ENDIF | 0 | | | ... whatever ... | | this line is skipped over | | ELSIF[1] | 1 | | | ... whatever ... | | this line is processed | | IF[0] | 1 0 | | | ... whatever ... | | this line is skipped over | | ELSIF[0] | 1 0 | | | ... whatever ... | | this line is skipped over | | ELSE | 1 2 | | | ... whatever ... | | this line is processed | | ENDIF | 1 | | | ... whatever ... | | this line is processed | | ENDIF | | | openssl-1.1.1f/Configurations/README000066400000000000000000001052461364063235100172300ustar00rootroot00000000000000Intro ===== This directory contains a few sets of files that are used for configuration in diverse ways: *.conf Target platform configurations, please read 'Configurations of OpenSSL target platforms' for more information. *.tmpl Build file templates, please read 'Build-file programming with the "unified" build system' as well as 'Build info files' for more information. *.pm Helper scripts / modules for the main `Configure` script. See 'Configure helper scripts for more information. Configurations of OpenSSL target platforms ========================================== Configuration targets are a collection of facts that we know about different platforms and their capabilities. We organise them in a hash table, where each entry represent a specific target. Note that configuration target names must be unique across all config files. The Configure script does check that a config file doesn't have config targets that shadow config targets from other files. In each table entry, the following keys are significant: inherit_from => Other targets to inherit values from. Explained further below. [1] template => Set to 1 if this isn't really a platform target. Instead, this target is a template upon which other targets can be built. Explained further below. [1] sys_id => System identity for systems where that is difficult to determine automatically. enable => Enable specific configuration features. This MUST be an array of words. disable => Disable specific configuration features. This MUST be an array of words. Note: if the same feature is both enabled and disabled, disable wins. as => The assembler command. This is not always used (for example on Unix, where the C compiler is used instead). asflags => Default assembler command flags [4]. cpp => The C preprocessor command, normally not given, as the build file defaults are usually good enough. cppflags => Default C preprocessor flags [4]. defines => As an alternative, macro definitions may be given here instead of in `cppflags' [4]. If given here, they MUST be as an array of the string such as "MACRO=value", or just "MACRO" for definitions without value. includes => As an alternative, inclusion directories may be given here instead of in `cppflags' [4]. If given here, the MUST be an array of strings, one directory specification each. cc => The C compiler command, usually one of "cc", "gcc" or "clang". This command is normally also used to link object files and libraries into the final program. cxx => The C++ compiler command, usually one of "c++", "g++" or "clang++". This command is also used when linking a program where at least one of the object file is made from C++ source. cflags => Defaults C compiler flags [4]. cxxflags => Default C++ compiler flags [4]. If unset, it gets the same value as cflags. (linking is a complex thing, see [3] below) ld => Linker command, usually not defined (meaning the compiler command is used instead). (NOTE: this is here for future use, it's not implemented yet) lflags => Default flags used when linking apps, shared libraries or DSOs [4]. ex_libs => Extra libraries that are needed when linking shared libraries, DSOs or programs. The value is also assigned to Libs.private in $(libdir)/pkgconfig/libcrypto.pc. shared_cppflags => Extra C preprocessor flags used when processing C files for shared libraries. shared_cflag => Extra C compiler flags used when compiling for shared libraries, typically something like "-fPIC". shared_ldflag => Extra linking flags used when linking shared libraries. module_cppflags module_cflags module_ldflags => Has the same function as the corresponding `shared_' attributes, but for building DSOs. When unset, they get the same values as the corresponding `shared_' attributes. ar => The library archive command, the default is "ar". (NOTE: this is here for future use, it's not implemented yet) arflags => Flags to be used with the library archive command. On Unix, this includes the command letter, 'r' by default. ranlib => The library archive indexing command, the default is 'ranlib' it it exists. unistd => An alternative header to the typical ''. This is very rarely needed. shared_extension => File name extension used for shared libraries. obj_extension => File name extension used for object files. On unix, this defaults to ".o" (NOTE: this is here for future use, it's not implemented yet) exe_extension => File name extension used for executable files. On unix, this defaults to "" (NOTE: this is here for future use, it's not implemented yet) shlib_variant => A "variant" identifier inserted between the base shared library name and the extension. On "unixy" platforms (BSD, Linux, Solaris, MacOS/X, ...) this supports installation of custom OpenSSL libraries that don't conflict with other builds of OpenSSL installed on the system. The variant identifier becomes part of the SONAME of the library and also any symbol versions (symbol versions are not used or needed with MacOS/X). For example, on a system where a default build would normally create the SSL shared library as 'libssl.so -> libssl.so.1.1' with the value of the symlink as the SONAME, a target definition that sets 'shlib_variant => "-abc"' will create 'libssl.so -> libssl-abc.so.1.1', again with an SONAME equal to the value of the symlink. The symbol versions associated with the variant library would then be 'OPENSSL_ABC_' rather than the default 'OPENSSL_'. The string inserted into symbol versions is obtained by mapping all letters in the "variant" identifier to upper case and all non-alphanumeric characters to '_'. thread_scheme => The type of threads is used on the configured platform. Currently known values are "(unknown)", "pthreads", "uithreads" (a.k.a solaris threads) and "winthreads". Except for "(unknown)", the actual value is currently ignored but may be used in the future. See further notes below [2]. dso_scheme => The type of dynamic shared objects to build for. This mostly comes into play with engines, but can be used for other purposes as well. Valid values are "DLFCN" (dlopen() et al), "DLFCN_NO_H" (for systems that use dlopen() et al but do not have fcntl.h), "DL" (shl_load() et al), "WIN32" and "VMS". perlasm_scheme => The perlasm method used to create the assembler files used when compiling with assembler implementations. shared_target => The shared library building method used. This is a target found in Makefile.shared. build_scheme => The scheme used to build up a Makefile. In its simplest form, the value is a string with the name of the build scheme. The value may also take the form of a list of strings, if the build_scheme is to have some options. In this case, the first string in the list is the name of the build scheme. Currently recognised build scheme is "unified". For the "unified" build scheme, this item *must* be an array with the first being the word "unified" and the second being a word to identify the platform family. multilib => On systems that support having multiple implementations of a library (typically a 32-bit and a 64-bit variant), this is used to have the different variants in different directories. bn_ops => Building options (was just bignum options in the earlier history of this option, hence the name). This is a string of words that describe algorithms' implementation parameters that are optimal for the designated target platform, such as the type of integers used to build up the bignum, different ways to implement certain ciphers and so on. To fully comprehend the meaning, the best is to read the affected source. The valid words are: THIRTY_TWO_BIT bignum limbs are 32 bits, this is default if no option is specified, it works on any supported system [unless "wider" limb size is implied in assembly code]; BN_LLONG bignum limbs are 32 bits, but 64-bit 'unsigned long long' is used internally in calculations; SIXTY_FOUR_BIT_LONG bignum limbs are 64 bits and sizeof(long) is 8; SIXTY_FOUR_BIT bignums limbs are 64 bits, but execution environment is ILP32; RC4_CHAR RC4 key schedule is made up of 'unsigned char's; RC4_INT RC4 key schedule is made up of 'unsigned int's; EXPORT_VAR_AS_FN for shared libraries, export vars as accessor functions. apps_aux_src => Extra source to build apps/openssl and other apps, as needed by the target and that can be collected in a library. apps_init_src => Init source to build apps/openssl and other apps, as needed by the target. This code cannot be placed in a library, as the rest of the code isn't expected to link to it explicitly. cpuid_asm_src => assembler implementation of cpuid code as well as OPENSSL_cleanse(). Default to mem_clr.c bn_asm_src => Assembler implementation of core bignum functions. Defaults to bn_asm.c ec_asm_src => Assembler implementation of core EC functions. des_asm_src => Assembler implementation of core DES encryption functions. Defaults to 'des_enc.c fcrypt_b.c' aes_asm_src => Assembler implementation of core AES functions. Defaults to 'aes_core.c aes_cbc.c' bf_asm_src => Assembler implementation of core BlowFish functions. Defaults to 'bf_enc.c' md5_asm_src => Assembler implementation of core MD5 functions. sha1_asm_src => Assembler implementation of core SHA1, functions, and also possibly SHA256 and SHA512 ones. cast_asm_src => Assembler implementation of core CAST functions. Defaults to 'c_enc.c' rc4_asm_src => Assembler implementation of core RC4 functions. Defaults to 'rc4_enc.c rc4_skey.c' rmd160_asm_src => Assembler implementation of core RMD160 functions. rc5_asm_src => Assembler implementation of core RC5 functions. Defaults to 'rc5_enc.c' wp_asm_src => Assembler implementation of core WHIRLPOOL functions. cmll_asm_src => Assembler implementation of core CAMELLIA functions. Defaults to 'camellia.c cmll_misc.c cmll_cbc.c' modes_asm_src => Assembler implementation of cipher modes, currently the functions gcm_gmult_4bit and gcm_ghash_4bit. padlock_asm_src => Assembler implementation of core parts of the padlock engine. This is mandatory on any platform where the padlock engine might actually be built. [1] as part of the target configuration, one can have a key called 'inherit_from' that indicate what other configurations to inherit data from. These are resolved recursively. Inheritance works as a set of default values that can be overridden by corresponding key values in the inheriting configuration. Note 1: any configuration table can be used as a template. Note 2: pure templates have the attribute 'template => 1' and cannot be used as build targets. If several configurations are given in the 'inherit_from' array, the values of same attribute are concatenated with space separation. With this, it's possible to have several smaller templates for different configuration aspects that can be combined into a complete configuration. instead of a scalar value or an array, a value can be a code block of the form 'sub { /* your code here */ }'. This code block will be called with the list of inherited values for that key as arguments. In fact, the concatenation of strings is really done by using 'sub { join(" ",@_) }' on the list of inherited values. An example: "foo" => { template => 1, haha => "ha ha", hoho => "ho", ignored => "This should not appear in the end result", }, "bar" => { template => 1, haha => "ah", hoho => "haho", hehe => "hehe" }, "laughter" => { inherit_from => [ "foo", "bar" ], hehe => sub { join(" ",(@_,"!!!")) }, ignored => "", } The entry for "laughter" will become as follows after processing: "laughter" => { haha => "ha ha ah", hoho => "ho haho", hehe => "hehe !!!", ignored => "" } [2] OpenSSL is built with threading capabilities unless the user specifies 'no-threads'. The value of the key 'thread_scheme' may be "(unknown)", in which case the user MUST give some compilation flags to Configure. [3] OpenSSL has three types of things to link from object files or static libraries: - shared libraries; that would be libcrypto and libssl. - shared objects (sometimes called dynamic libraries); that would be the engines. - applications; those are apps/openssl and all the test apps. Very roughly speaking, linking is done like this (words in braces represent the configuration settings documented at the beginning of this file): shared libraries: {ld} $(CFLAGS) {lflags} {shared_ldflag} -o libfoo.so \ foo/something.o foo/somethingelse.o {ex_libs} shared objects: {ld} $(CFLAGS) {lflags} {module_ldflags} -o libeng.so \ blah1.o blah2.o -lcrypto {ex_libs} applications: {ld} $(CFLAGS) {lflags} -o app \ app1.o utils.o -lssl -lcrypto {ex_libs} [4] There are variants of these attribute, prefixed with `lib_', `dso_' or `bin_'. Those variants replace the unprefixed attribute when building library, DSO or program modules specifically. Historically, the target configurations came in form of a string with values separated by colons. This use is deprecated. The string form looked like this: "target" => "{cc}:{cflags}:{unistd}:{thread_cflag}:{sys_id}:{lflags}:{bn_ops}:{cpuid_obj}:{bn_obj}:{ec_obj}:{des_obj}:{aes_obj}:{bf_obj}:{md5_obj}:{sha1_obj}:{cast_obj}:{rc4_obj}:{rmd160_obj}:{rc5_obj}:{wp_obj}:{cmll_obj}:{modes_obj}:{padlock_obj}:{perlasm_scheme}:{dso_scheme}:{shared_target}:{shared_cflag}:{shared_ldflag}:{shared_extension}:{ranlib}:{arflags}:{multilib}" Build info files ================ The build.info files that are spread over the source tree contain the minimum information needed to build and distribute OpenSSL. It uses a simple and yet fairly powerful language to determine what needs to be built, from what sources, and other relationships between files. For every build.info file, all file references are relative to the directory of the build.info file for source files, and the corresponding build directory for built files if the build tree differs from the source tree. When processed, every line is processed with the perl module Text::Template, using the delimiters "{-" and "-}". The hashes %config and %target are passed to the perl fragments, along with $sourcedir and $builddir, which are the locations of the source directory for the current build.info file and the corresponding build directory, all relative to the top of the build tree. To begin with, things to be built are declared by setting specific variables: PROGRAMS=foo bar LIBS=libsomething ENGINES=libeng SCRIPTS=myhack EXTRA=file1 file2 Note that the files mentioned for PROGRAMS, LIBS and ENGINES *must* be without extensions. The build file templates will figure them out. For each thing to be built, it is then possible to say what sources they are built from: PROGRAMS=foo bar SOURCE[foo]=foo.c common.c SOURCE[bar]=bar.c extra.c common.c It's also possible to tell some other dependencies: DEPEND[foo]=libsomething DEPEND[libbar]=libsomethingelse (it could be argued that 'libsomething' and 'libsomethingelse' are source as well. However, the files given through SOURCE are expected to be located in the source tree while files given through DEPEND are expected to be located in the build tree) It's also possible to depend on static libraries explicitly: DEPEND[foo]=libsomething.a DEPEND[libbar]=libsomethingelse.a This should be rarely used, and care should be taken to make sure it's only used when supported. For example, native Windows build doesn't support building static libraries and DLLs at the same time, so using static libraries on Windows can only be done when configured 'no-shared'. One some platforms, shared libraries come with a name that's different from their static counterpart. That's declared as follows: SHARED_NAME[libfoo]=cygfoo-{- $config{shlibver} -} The example is from Cygwin, which has a required naming convention. Sometimes, it makes sense to rename an output file, for example a library: RENAME[libfoo]=libbar That line has "libfoo" renamed to "libbar". While it makes no sense at all to just have a rename like that (why not just use "libbar" everywhere?), it does make sense when it can be used conditionally. See a little further below for an example. In some cases, it's desirable to include some source files in the shared form of a library only: SHARED_SOURCE[libfoo]=dllmain.c For any file to be built, it's also possible to tell what extra include paths the build of their source files should use: INCLUDE[foo]=include In some cases, one might want to generate some source files from others, that's done as follows: GENERATE[foo.s]=asm/something.pl $(CFLAGS) GENERATE[bar.s]=asm/bar.S The value of each GENERATE line is a command line or part of it. Configure places no rules on the command line, except that the first item must be the generator file. It is, however, entirely up to the build file template to define exactly how those command lines should be handled, how the output is captured and so on. Sometimes, the generator file itself depends on other files, for example if it is a perl script that depends on other perl modules. This can be expressed using DEPEND like this: DEPEND[asm/something.pl]=../perlasm/Foo.pm There may also be cases where the exact file isn't easily specified, but an inclusion directory still needs to be specified. INCLUDE can be used in that case: INCLUDE[asm/something.pl]=../perlasm NOTE: GENERATE lines are limited to one command only per GENERATE. As a last resort, it's possible to have raw build file lines, between BEGINRAW and ENDRAW lines as follows: BEGINRAW[Makefile(unix)] haha.h: {- $builddir -}/Makefile echo "/* haha */" > haha.h ENDRAW[Makefile(unix)] The word within square brackets is the build_file configuration item or the build_file configuration item followed by the second word in the build_scheme configuration item for the configured target within parenthesis as shown above. For example, with the following relevant configuration items: build_file => "build.ninja" build_scheme => [ "unified", "unix" ] ... these lines will be considered: BEGINRAW[build.ninja] build haha.h: echo "/* haha */" > haha.h ENDRAW[build.ninja] BEGINRAW[build.ninja(unix)] build hoho.h: echo "/* hoho */" > hoho.h ENDRAW[build.ninja(unix)] Should it be needed because the recipes within a RAW section might clash with those generated by Configure, it's possible to tell it not to generate them with the use of OVERRIDES, for example: SOURCE[libfoo]=foo.c bar.c OVERRIDES=bar.o BEGINRAW[Makefile(unix)] bar.o: bar.c $(CC) $(CFLAGS) -DSPECIAL -c -o $@ $< ENDRAW[Makefile(unix)] See the documentation further up for more information on configuration items. Finally, you can have some simple conditional use of the build.info information, looking like this: IF[1] something ELSIF[2] something other ELSE something else ENDIF The expression in square brackets is interpreted as a string in perl, and will be seen as true if perl thinks it is, otherwise false. For example, the above would have "something" used, since 1 is true. Together with the use of Text::Template, this can be used as conditions based on something in the passed variables, for example: IF[{- $disabled{shared} -}] LIBS=libcrypto SOURCE[libcrypto]=... ELSE LIBS=libfoo SOURCE[libfoo]=... ENDIF or: # VMS has a cultural standard where all libraries are prefixed. # For OpenSSL, the choice is 'ossl_' IF[{- $config{target} =~ /^vms/ -}] RENAME[libcrypto]=ossl_libcrypto RENAME[libssl]=ossl_libssl ENDIF Build-file programming with the "unified" build system ====================================================== "Build files" are called "Makefile" on Unix-like operating systems, "descrip.mms" for MMS on VMS, "makefile" for nmake on Windows, etc. To use the "unified" build system, the target configuration needs to set the three items 'build_scheme', 'build_file' and 'build_command'. In the rest of this section, we will assume that 'build_scheme' is set to "unified" (see the configurations documentation above for the details). For any name given by 'build_file', the "unified" system expects a template file in Configurations/ named like the build file, with ".tmpl" appended, or in case of possible ambiguity, a combination of the second 'build_scheme' list item and the 'build_file' name. For example, if 'build_file' is set to "Makefile", the template could be Configurations/Makefile.tmpl or Configurations/unix-Makefile.tmpl. In case both Configurations/unix-Makefile.tmpl and Configurations/Makefile.tmpl are present, the former takes precedence. The build-file template is processed with the perl module Text::Template, using "{-" and "-}" as delimiters that enclose the perl code fragments that generate configuration-dependent content. Those perl fragments have access to all the hash variables from configdata.pem. The build-file template is expected to define at least the following perl functions in a perl code fragment enclosed with "{-" and "-}". They are all expected to return a string with the lines they produce. generatesrc - function that produces build file lines to generate a source file from some input. It's called like this: generatesrc(src => "PATH/TO/tobegenerated", generator => [ "generatingfile", ... ] generator_incs => [ "INCL/PATH", ... ] generator_deps => [ "dep1", ... ] generator => [ "generatingfile", ... ] incs => [ "INCL/PATH", ... ], deps => [ "dep1", ... ], intent => one of "libs", "dso", "bin" ); 'src' has the name of the file to be generated. 'generator' is the command or part of command to generate the file, of which the first item is expected to be the file to generate from. generatesrc() is expected to analyse and figure out exactly how to apply that file and how to capture the result. 'generator_incs' and 'generator_deps' are include directories and files that the generator file itself depends on. 'incs' and 'deps' are include directories and files that are used if $(CC) is used as an intermediary step when generating the end product (the file indicated by 'src'). 'intent' indicates what the generated file is going to be used for. src2obj - function that produces build file lines to build an object file from source files and associated data. It's called like this: src2obj(obj => "PATH/TO/objectfile", srcs => [ "PATH/TO/sourcefile", ... ], deps => [ "dep1", ... ], incs => [ "INCL/PATH", ... ] intent => one of "lib", "dso", "bin" ); 'obj' has the intended object file *without* extension, src2obj() is expected to add that. 'srcs' has the list of source files to build the object file, with the first item being the source file that directly corresponds to the object file. 'deps' is a list of explicit dependencies. 'incs' is a list of include file directories. Finally, 'intent' indicates what this object file is going to be used for. obj2lib - function that produces build file lines to build a static library file ("libfoo.a" in Unix terms) from object files. called like this: obj2lib(lib => "PATH/TO/libfile", objs => [ "PATH/TO/objectfile", ... ]); 'lib' has the intended library file name *without* extension, obj2lib is expected to add that. 'objs' has the list of object files (also *without* extension) to build this library. libobj2shlib - function that produces build file lines to build a shareable object library file ("libfoo.so" in Unix terms) from the corresponding static library file or object files. called like this: libobj2shlib(shlib => "PATH/TO/shlibfile", lib => "PATH/TO/libfile", objs => [ "PATH/TO/objectfile", ... ], deps => [ "PATH/TO/otherlibfile", ... ]); 'lib' has the intended library file name *without* extension, libobj2shlib is expected to add that. 'shlib' has the corresponding shared library name *without* extension. 'deps' has the list of other libraries (also *without* extension) this library needs to be linked with. 'objs' has the list of object files (also *without* extension) to build this library. This function has a choice; it can use the corresponding static library as input to make the shared library, or the list of object files. obj2dso - function that produces build file lines to build a dynamic shared object file from object files. called like this: obj2dso(lib => "PATH/TO/libfile", objs => [ "PATH/TO/objectfile", ... ], deps => [ "PATH/TO/otherlibfile", ... ]); This is almost the same as libobj2shlib, but the intent is to build a shareable library that can be loaded in runtime (a "plugin"...). The differences are subtle, one of the most visible ones is that the resulting shareable library is produced from object files only. obj2bin - function that produces build file lines to build an executable file from object files. called like this: obj2bin(bin => "PATH/TO/binfile", objs => [ "PATH/TO/objectfile", ... ], deps => [ "PATH/TO/libfile", ... ]); 'bin' has the intended executable file name *without* extension, obj2bin is expected to add that. 'objs' has the list of object files (also *without* extension) to build this library. 'deps' has the list of library files (also *without* extension) that the programs needs to be linked with. in2script - function that produces build file lines to build a script file from some input. called like this: in2script(script => "PATH/TO/scriptfile", sources => [ "PATH/TO/infile", ... ]); 'script' has the intended script file name. 'sources' has the list of source files to build the resulting script from. In all cases, file file paths are relative to the build tree top, and the build file actions run with the build tree top as current working directory. Make sure to end the section with these functions with a string that you thing is appropriate for the resulting build file. If nothing else, end it like this: ""; # Make sure no lingering values end up in the Makefile -} Configure helper scripts ======================== Configure uses helper scripts in this directory: Checker scripts --------------- These scripts are per platform family, to check the integrity of the tools used for configuration and building. The checker script used is either {build_platform}-{build_file}-checker.pm or {build_platform}-checker.pm, where {build_platform} is the second 'build_scheme' list element from the configuration target data, and {build_file} is 'build_file' from the same target data. If the check succeeds, the script is expected to end with a non-zero expression. If the check fails, the script can end with a zero, or with a `die`. openssl-1.1.1f/Configurations/README.design000066400000000000000000000604641364063235100205020ustar00rootroot00000000000000Design document for the unified scheme data =========================================== How are things connected? ------------------------- The unified scheme takes all its data from the build.info files seen throughout the source tree. These files hold the minimum information needed to build end product files from diverse sources. See the section on build.info files below. From the information in build.info files, Configure builds up an information database as a hash table called %unified_info, which is stored in configdata.pm, found at the top of the build tree (which may or may not be the same as the source tree). Configurations/common.tmpl uses the data from %unified_info to generate the rules for building end product files as well as intermediary files with the help of a few functions found in the build-file templates. See the section on build-file templates further down for more information. build.info files ---------------- As mentioned earlier, build.info files are meant to hold the minimum information needed to build output files, and therefore only (with a few possible exceptions [1]) have information about end products (such as scripts, library files and programs) and source files (such as C files, C header files, assembler files, etc). Intermediate files such as object files are rarely directly referred to in build.info files (and when they are, it's always with the file name extension .o), they are inferred by Configure. By the same rule of minimalism, end product file name extensions (such as .so, .a, .exe, etc) are never mentioned in build.info. Their file name extensions will be inferred by the build-file templates, adapted for the platform they are meant for (see sections on %unified_info and build-file templates further down). The variables PROGRAMS, LIBS, ENGINES and SCRIPTS are used to declare end products. There are variants for them with '_NO_INST' as suffix (PROGRAM_NO_INST etc) to specify end products that shouldn't get installed. The variables SOURCE, DEPEND and INCLUDE are indexed by a produced file, and their values are the source used to produce that particular produced file, extra dependencies, and include directories needed. All their values in all the build.info throughout the source tree are collected together and form a set of programs, libraries, engines and scripts to be produced, source files, dependencies, etc etc etc. Let's have a pretend example, a very limited contraption of OpenSSL, composed of the program 'apps/openssl', the libraries 'libssl' and 'libcrypto', an engine 'engines/ossltest' and their sources and dependencies. # build.info LIBS=libcrypto libssl INCLUDE[libcrypto]=include INCLUDE[libssl]=include DEPEND[libssl]=libcrypto This is the top directory build.info file, and it tells us that two libraries are to be built, the include directory 'include/' shall be used throughout when building anything that will end up in each library, and that the library 'libssl' depend on the library 'libcrypto' to function properly. # apps/build.info PROGRAMS=openssl SOURCE[openssl]=openssl.c INCLUDE[openssl]=.. ../include DEPEND[openssl]=../libssl This is the build.info file in 'apps/', one may notice that all file paths mentioned are relative to the directory the build.info file is located in. This one tells us that there's a program to be built called 'apps/openssl' (the file name extension will depend on the platform and is therefore not mentioned in the build.info file). It's built from one source file, 'apps/openssl.c', and building it requires the use of '.' and 'include' include directories (both are declared from the point of view of the 'apps/' directory), and that the program depends on the library 'libssl' to function properly. # crypto/build.info LIBS=../libcrypto SOURCE[../libcrypto]=aes.c evp.c cversion.c DEPEND[cversion.o]=buildinf.h GENERATE[buildinf.h]=../util/mkbuildinf.pl "$(CC) $(CFLAGS)" "$(PLATFORM)" DEPEND[buildinf.h]=../Makefile DEPEND[../util/mkbuildinf.pl]=../util/Foo.pm This is the build.info file in 'crypto', and it tells us a little more about what's needed to produce 'libcrypto'. LIBS is used again to declare that 'libcrypto' is to be produced. This declaration is really unnecessary as it's already mentioned in the top build.info file, but can make the info file easier to understand. This is to show that duplicate information isn't an issue. This build.info file informs us that 'libcrypto' is built from a few source files, 'crypto/aes.c', 'crypto/evp.c' and 'crypto/cversion.c'. It also shows us that building the object file inferred from 'crypto/cversion.c' depends on 'crypto/buildinf.h'. Finally, it also shows the possibility to declare how some files are generated using some script, in this case a perl script, and how such scripts can be declared to depend on other files, in this case a perl module. Two things are worth an extra note: 'DEPEND[cversion.o]' mentions an object file. DEPEND indexes is the only location where it's valid to mention them Lines in 'BEGINRAW'..'ENDRAW' sections must always mention files as seen from the top directory, no exception. # ssl/build.info LIBS=../libssl SOURCE[../libssl]=tls.c This is the build.info file in 'ssl/', and it tells us that the library 'libssl' is built from the source file 'ssl/tls.c'. # engines/build.info ENGINES=dasync SOURCE[dasync]=e_dasync.c DEPEND[dasync]=../libcrypto INCLUDE[dasync]=../include ENGINES_NO_INST=ossltest SOURCE[ossltest]=e_ossltest.c DEPEND[ossltest]=../libcrypto.a INCLUDE[ossltest]=../include This is the build.info file in 'engines/', telling us that two engines called 'engines/dasync' and 'engines/ossltest' shall be built, that dasync's source is 'engines/e_dasync.c' and ossltest's source is 'engines/e_ossltest.c' and that the include directory 'include/' may be used when building anything that will be part of these engines. Also, both engines depend on the library 'libcrypto' to function properly. ossltest is explicitly linked with the static variant of the library 'libcrypto'. Finally, only dasync is being installed, as ossltest is only for internal testing. When Configure digests these build.info files, the accumulated information comes down to this: LIBS=libcrypto libssl SOURCE[libcrypto]=crypto/aes.c crypto/evp.c crypto/cversion.c DEPEND[crypto/cversion.o]=crypto/buildinf.h INCLUDE[libcrypto]=include SOURCE[libssl]=ssl/tls.c INCLUDE[libssl]=include DEPEND[libssl]=libcrypto PROGRAMS=apps/openssl SOURCE[apps/openssl]=apps/openssl.c INCLUDE[apps/openssl]=. include DEPEND[apps/openssl]=libssl ENGINES=engines/dasync SOURCE[engines/dasync]=engines/e_dasync.c DEPEND[engines/dasync]=libcrypto INCLUDE[engines/dasync]=include ENGINES_NO_INST=engines/ossltest SOURCE[engines/ossltest]=engines/e_ossltest.c DEPEND[engines/ossltest]=libcrypto.a INCLUDE[engines/ossltest]=include GENERATE[crypto/buildinf.h]=util/mkbuildinf.pl "$(CC) $(CFLAGS)" "$(PLATFORM)" DEPEND[crypto/buildinf.h]=Makefile DEPEND[util/mkbuildinf.pl]=util/Foo.pm A few notes worth mentioning: LIBS may be used to declare routine libraries only. PROGRAMS may be used to declare programs only. ENGINES may be used to declare engines only. The indexes for SOURCE must only be end product files, such as libraries, programs or engines. The values of SOURCE variables must only be source files (possibly generated). INCLUDE and DEPEND shows a relationship between different files (usually produced files) or between files and directories, such as a program depending on a library, or between an object file and some extra source file. When Configure processes the build.info files, it will take it as truth without question, and will therefore perform very few checks. If the build tree is separate from the source tree, it will assume that all built files and up in the build directory and that all source files are to be found in the source tree, if they can be found there. Configure will assume that source files that can't be found in the source tree (such as 'crypto/bildinf.h' in the example above) are generated and will be found in the build tree. The %unified_info database -------------------------- The information in all the build.info get digested by Configure and collected into the %unified_info database, divided into the following indexes: depends => a hash table containing 'file' => [ 'dependency' ... ] pairs. These are directly inferred from the DEPEND variables in build.info files. engines => a list of engines. These are directly inferred from the ENGINES variable in build.info files. generate => a hash table containing 'file' => [ 'generator' ... ] pairs. These are directly inferred from the GENERATE variables in build.info files. includes => a hash table containing 'file' => [ 'include' ... ] pairs. These are directly inferred from the INCLUDE variables in build.info files. install => a hash table containing 'type' => [ 'file' ... ] pairs. The types are 'programs', 'libraries', 'engines' and 'scripts', and the array of files list the files of that type that should be installed. libraries => a list of libraries. These are directly inferred from the LIBS variable in build.info files. programs => a list of programs. These are directly inferred from the PROGRAMS variable in build.info files. rawlines => a list of build-file lines. These are a direct copy of the BEGINRAW..ENDRAW lines in build.info files. Note: only the BEGINRAW..ENDRAW section for the current platform are copied, the rest are ignored. scripts => a list of scripts. There are directly inferred from the SCRIPTS variable in build.info files. sources => a hash table containing 'file' => [ 'sourcefile' ... ] pairs. These are indirectly inferred from the SOURCE variables in build.info files. Object files are mentioned in this hash table, with source files from SOURCE variables, and AS source files for programs and libraries. shared_sources => a hash table just like 'sources', but only as source files (object files) for building shared libraries. As an example, here is how the build.info files example from the section above would be digested into a %unified_info table: our %unified_info = ( "depends" => { "apps/openssl" => [ "libssl", ], "crypto/buildinf.h" => [ "Makefile", ], "crypto/cversion.o" => [ "crypto/buildinf.h", ], "engines/dasync" => [ "libcrypto", ], "engines/ossltest" => [ "libcrypto.a", ], "libssl" => [ "libcrypto", ], "util/mkbuildinf.pl" => [ "util/Foo.pm", ], }, "engines" => [ "engines/dasync", "engines/ossltest", ], "generate" => { "crypto/buildinf.h" => [ "util/mkbuildinf.pl", "\"\$(CC)", "\$(CFLAGS)\"", "\"$(PLATFORM)\"", ], }, "includes" => { "apps/openssl" => [ ".", "include", ], "engines/ossltest" => [ "include" ], "libcrypto" => [ "include", ], "libssl" => [ "include", ], "util/mkbuildinf.pl" => [ "util", ], } "install" => { "engines" => [ "engines/dasync", ], "libraries" => [ "libcrypto", "libssl", ], "programs" => [ "apps/openssl", ], }, "libraries" => [ "libcrypto", "libssl", ], "programs" => [ "apps/openssl", ], "rawlines" => [ ], "sources" => { "apps/openssl" => [ "apps/openssl.o", ], "apps/openssl.o" => [ "apps/openssl.c", ], "crypto/aes.o" => [ "crypto/aes.c", ], "crypto/cversion.o" => [ "crypto/cversion.c", ], "crypto/evp.o" => [ "crypto/evp.c", ], "engines/e_dasync.o" => [ "engines/e_dasync.c", ], "engines/dasync" => [ "engines/e_dasync.o", ], "engines/e_ossltest.o" => [ "engines/e_ossltest.c", ], "engines/ossltest" => [ "engines/e_ossltest.o", ], "libcrypto" => [ "crypto/aes.c", "crypto/cversion.c", "crypto/evp.c", ], "libssl" => [ "ssl/tls.c", ], "ssl/tls.o" => [ "ssl/tls.c", ], }, ); As can be seen, everything in %unified_info is fairly simple suggest of information. Still, it tells us that to build all programs, we must build 'apps/openssl', and to build the latter, we will need to build all its sources ('apps/openssl.o' in this case) and all the other things it depends on (such as 'libssl'). All those dependencies need to be built as well, using the same logic, so to build 'libssl', we need to build 'ssl/tls.o' as well as 'libcrypto', and to build the latter... Build-file templates -------------------- Build-file templates are essentially build-files (such as Makefile on Unix) with perl code fragments mixed in. Those perl code fragment will generate all the configuration dependent data, including all the rules needed to build end product files and intermediary files alike. At a minimum, there must be a perl code fragment that defines a set of functions that are used to generates specific build-file rules, to build static libraries from object files, to build shared libraries from static libraries, to programs from object files and libraries, etc. generatesrc - function that produces build file lines to generate a source file from some input. It's called like this: generatesrc(src => "PATH/TO/tobegenerated", generator => [ "generatingfile", ... ] generator_incs => [ "INCL/PATH", ... ] generator_deps => [ "dep1", ... ] incs => [ "INCL/PATH", ... ], deps => [ "dep1", ... ], intent => one of "libs", "dso", "bin" ); 'src' has the name of the file to be generated. 'generator' is the command or part of command to generate the file, of which the first item is expected to be the file to generate from. generatesrc() is expected to analyse and figure out exactly how to apply that file and how to capture the result. 'generator_incs' and 'generator_deps' are include directories and files that the generator file itself depends on. 'incs' and 'deps' are include directories and files that are used if $(CC) is used as an intermediary step when generating the end product (the file indicated by 'src'). 'intent' indicates what the generated file is going to be used for. src2obj - function that produces build file lines to build an object file from source files and associated data. It's called like this: src2obj(obj => "PATH/TO/objectfile", srcs => [ "PATH/TO/sourcefile", ... ], deps => [ "dep1", ... ], incs => [ "INCL/PATH", ... ] intent => one of "lib", "dso", "bin" ); 'obj' has the intended object file *without* extension, src2obj() is expected to add that. 'srcs' has the list of source files to build the object file, with the first item being the source file that directly corresponds to the object file. 'deps' is a list of explicit dependencies. 'incs' is a list of include file directories. Finally, 'intent' indicates what this object file is going to be used for. obj2lib - function that produces build file lines to build a static library file ("libfoo.a" in Unix terms) from object files. called like this: obj2lib(lib => "PATH/TO/libfile", objs => [ "PATH/TO/objectfile", ... ]); 'lib' has the intended library file name *without* extension, obj2lib is expected to add that. 'objs' has the list of object files (also *without* extension) to build this library. libobj2shlib - function that produces build file lines to build a shareable object library file ("libfoo.so" in Unix terms) from the corresponding static library file or object files. called like this: libobj2shlib(shlib => "PATH/TO/shlibfile", lib => "PATH/TO/libfile", objs => [ "PATH/TO/objectfile", ... ], deps => [ "PATH/TO/otherlibfile", ... ]); 'lib' has the intended library file name *without* extension, libobj2shlib is expected to add that. 'shlib' has the corresponding shared library name *without* extension. 'deps' has the list of other libraries (also *without* extension) this library needs to be linked with. 'objs' has the list of object files (also *without* extension) to build this library. This function has a choice; it can use the corresponding static library as input to make the shared library, or the list of object files. obj2dynlib - function that produces build file lines to build a dynamically loadable library file ("libfoo.so" on Unix) from object files. called like this: obj2dynlib(lib => "PATH/TO/libfile", objs => [ "PATH/TO/objectfile", ... ], deps => [ "PATH/TO/otherlibfile", ... ]); This is almost the same as libobj2shlib, but the intent is to build a shareable library that can be loaded in runtime (a "plugin"...). The differences are subtle, one of the most visible ones is that the resulting shareable library is produced from object files only. obj2bin - function that produces build file lines to build an executable file from object files. called like this: obj2bin(bin => "PATH/TO/binfile", objs => [ "PATH/TO/objectfile", ... ], deps => [ "PATH/TO/libfile", ... ]); 'bin' has the intended executable file name *without* extension, obj2bin is expected to add that. 'objs' has the list of object files (also *without* extension) to build this library. 'deps' has the list of library files (also *without* extension) that the programs needs to be linked with. in2script - function that produces build file lines to build a script file from some input. called like this: in2script(script => "PATH/TO/scriptfile", sources => [ "PATH/TO/infile", ... ]); 'script' has the intended script file name. 'sources' has the list of source files to build the resulting script from. Along with the build-file templates is the driving engine Configurations/common.tmpl, which looks through all the information in %unified_info and generates all the rulesets to build libraries, programs and all intermediate files, using the rule generating functions defined in the build-file template. As an example with the smaller build.info set we've seen as an example, producing the rules to build 'libcrypto' would result in the following calls: # Note: libobj2shlib will only be called if shared libraries are # to be produced. # Note 2: libobj2shlib gets both the name of the static library # and the names of all the object files that go into it. It's up # to the implementation to decide which to use as input. # Note 3: common.tmpl peals off the ".o" extension from all object # files, as the platform at hand may have a different one. libobj2shlib(shlib => "libcrypto", lib => "libcrypto", objs => [ "crypto/aes", "crypto/evp", "crypto/cversion" ], deps => [ ]); obj2lib(lib => "libcrypto" objs => [ "crypto/aes", "crypto/evp", "crypto/cversion" ]); src2obj(obj => "crypto/aes" srcs => [ "crypto/aes.c" ], deps => [ ], incs => [ "include" ], intent => "lib"); src2obj(obj => "crypto/evp" srcs => [ "crypto/evp.c" ], deps => [ ], incs => [ "include" ], intent => "lib"); src2obj(obj => "crypto/cversion" srcs => [ "crypto/cversion.c" ], deps => [ "crypto/buildinf.h" ], incs => [ "include" ], intent => "lib"); generatesrc(src => "crypto/buildinf.h", generator => [ "util/mkbuildinf.pl", "\"$(CC)", "$(CFLAGS)\"", "\"$(PLATFORM)\"" ], generator_incs => [ "util" ], generator_deps => [ "util/Foo.pm" ], incs => [ ], deps => [ ], intent => "lib"); The returned strings from all those calls are then concatenated together and written to the resulting build-file. openssl-1.1.1f/Configurations/common.tmpl000066400000000000000000000204021364063235100205240ustar00rootroot00000000000000{- # -*- Mode: perl -*- use File::Basename; # A cache of objects for which a recipe has already been generated my %cache; # resolvedepends and reducedepends work in tandem to make sure # there are no duplicate dependencies and that they are in the # right order. This is especially used to sort the list of # libraries that a build depends on. sub extensionlesslib { my @result = map { $_ =~ /(\.a)?$/; $` } @_; return @result if wantarray; return $result[0]; } sub resolvedepends { my $thing = shift; my $extensionlessthing = extensionlesslib($thing); my @listsofar = @_; # to check if we're looping my @list = @{$unified_info{depends}->{$thing} // $unified_info{depends}->{$extensionlessthing}}; my @newlist = (); if (scalar @list) { foreach my $item (@list) { my $extensionlessitem = extensionlesslib($item); # It's time to break off when the dependency list starts looping next if grep { extensionlesslib($_) eq $extensionlessitem } @listsofar; push @newlist, $item, resolvedepends($item, @listsofar, $item); } } @newlist; } sub reducedepends { my @list = @_; my @newlist = (); my %replace = (); while (@list) { my $item = shift @list; my $extensionlessitem = extensionlesslib($item); if (grep { $extensionlessitem eq extensionlesslib($_) } @list) { if ($item ne $extensionlessitem) { # If this instance of the library is explicitly static, we # prefer that to any shared library name, since it must have # been done on purpose. $replace{$extensionlessitem} = $item; } } else { push @newlist, $item; } } map { $replace{$_} // $_; } @newlist; } # is_installed checks if a given file will be installed (i.e. they are # not defined _NO_INST in build.info) sub is_installed { my $product = shift; if (grep { $product eq $_ } map { (@{$unified_info{install}->{$_}}) } keys %{$unified_info{install}}) { return 1; } return 0; } # dogenerate is responsible for producing all the recipes that build # generated source files. It recurses in case a dependency is also a # generated source file. sub dogenerate { my $src = shift; return "" if $cache{$src}; my $obj = shift; my $bin = shift; my %opts = @_; if ($unified_info{generate}->{$src}) { die "$src is generated by Configure, should not appear in build file\n" if ref $unified_info{generate}->{$src} eq ""; my $script = $unified_info{generate}->{$src}->[0]; $OUT .= generatesrc(src => $src, generator => $unified_info{generate}->{$src}, generator_incs => $unified_info{includes}->{$script}, generator_deps => $unified_info{depends}->{$script}, deps => $unified_info{depends}->{$src}, incs => $unified_info{includes}->{$obj}, %opts); foreach (@{$unified_info{depends}->{$src}}) { dogenerate($_, $obj, $bin, %opts); } } $cache{$src} = 1; } # doobj is responsible for producing all the recipes that build # object files as well as dependency files. sub doobj { my $obj = shift; return "" if $cache{$obj}; my $bin = shift; my %opts = @_; if (@{$unified_info{sources}->{$obj}}) { $OUT .= src2obj(obj => $obj, product => $bin, srcs => $unified_info{sources}->{$obj}, deps => $unified_info{depends}->{$obj}, incs => $unified_info{includes}->{$obj}, %opts); foreach ((@{$unified_info{sources}->{$obj}}, @{$unified_info{depends}->{$obj}})) { dogenerate($_, $obj, $bin, %opts); } } $cache{$obj} = 1; } # dolib is responsible for building libraries. It will call # libobj2shlib is shared libraries are produced, and obj2lib in all # cases. It also makes sure all object files for the library are # built. sub dolib { my $lib = shift; return "" if $cache{$lib}; unless ($disabled{shared} || $lib =~ /\.a$/) { $OUT .= libobj2shlib(shlib => $unified_info{sharednames}->{$lib}, lib => $lib, objs => [ @{$unified_info{shared_sources}->{$lib}}, @{$unified_info{sources}->{$lib}} ], deps => [ reducedepends(resolvedepends($lib)) ], installed => is_installed($lib)); foreach ((@{$unified_info{shared_sources}->{$lib}}, @{$unified_info{sources}->{$lib}})) { # If this is somehow a compiled object, take care of it that way # Otherwise, it might simply be generated if (defined $unified_info{sources}->{$_}) { doobj($_, $lib, intent => "lib", installed => is_installed($lib)); } else { dogenerate($_, undef, undef, intent => "lib"); } } } $OUT .= obj2lib(lib => $lib, objs => [ @{$unified_info{sources}->{$lib}} ]); foreach (@{$unified_info{sources}->{$lib}}) { doobj($_, $lib, intent => "lib", installed => is_installed($lib)); } $cache{$lib} = 1; } # doengine is responsible for building engines. It will call # obj2dso, and also makes sure all object files for the library # are built. sub doengine { my $lib = shift; return "" if $cache{$lib}; $OUT .= obj2dso(lib => $lib, objs => [ @{$unified_info{sources}->{$lib}}, @{$unified_info{shared_sources}->{$lib}} ], deps => [ resolvedepends($lib) ], installed => is_installed($lib)); foreach ((@{$unified_info{sources}->{$lib}}, @{$unified_info{shared_sources}->{$lib}})) { doobj($_, $lib, intent => "dso", installed => is_installed($lib)); } $cache{$lib} = 1; } # dobin is responsible for building programs. It will call obj2bin, # and also makes sure all object files for the library are built. sub dobin { my $bin = shift; return "" if $cache{$bin}; my $deps = [ reducedepends(resolvedepends($bin)) ]; $OUT .= obj2bin(bin => $bin, objs => [ @{$unified_info{sources}->{$bin}} ], deps => $deps, installed => is_installed($bin)); foreach (@{$unified_info{sources}->{$bin}}) { doobj($_, $bin, intent => "bin", installed => is_installed($bin)); } $cache{$bin} = 1; } # dobin is responsible for building scripts from templates. It will # call in2script. sub doscript { my $script = shift; return "" if $cache{$script}; $OUT .= in2script(script => $script, sources => $unified_info{sources}->{$script}, installed => is_installed($script)); $cache{$script} = 1; } sub dodir { my $dir = shift; return "" if !exists(&generatedir) or $cache{$dir}; $OUT .= generatedir(dir => $dir, deps => $unified_info{dirinfo}->{$dir}->{deps}, %{$unified_info{dirinfo}->{$_}->{products}}); $cache{$dir} = 1; } # Start with populating the cache with all the overrides %cache = map { $_ => 1 } @{$unified_info{overrides}}; # Build mandatory generated headers foreach (@{$unified_info{depends}->{""}}) { dogenerate($_); } # Build all known libraries, engines, programs and scripts. # Everything else will be handled as a consequence. foreach (@{$unified_info{libraries}}) { dolib($_); } foreach (@{$unified_info{engines}}) { doengine($_); } foreach (@{$unified_info{programs}}) { dobin($_); } foreach (@{$unified_info{scripts}}) { doscript($_); } foreach (sort keys %{$unified_info{dirinfo}}) { dodir($_); } # Finally, should there be any applicable BEGINRAW/ENDRAW sections, # they are added here. $OUT .= $_."\n" foreach @{$unified_info{rawlines}}; -} openssl-1.1.1f/Configurations/common0.tmpl000066400000000000000000000024541364063235100206130ustar00rootroot00000000000000{- # -*- Mode: perl -*- # Commonly used list of generated files # The reason for the complexity is that the build.info files provide # GENERATE rules for *all* platforms without discrimination, while the # build files only want those for a particular build. Therefore, we # need to extrapolate exactly what we need to generate. The way to do # that is to extract all possible source files from diverse tables and # filter out all that are not generated my %generatables = map { $_ => 1 } ( # The sources of stuff may be generated ( map { @{$unified_info{sources}->{$_}} } keys %{$unified_info{sources}} ), $disabled{shared} ? () : ( map { @{$unified_info{shared_sources}->{$_}} } keys %{$unified_info{shared_sources}} ), # Things we explicitly depend on are usually generated ( map { $_ eq "" ? () : @{$unified_info{depends}->{$_}} } keys %{$unified_info{depends}} )); our @generated = sort ( ( grep { defined $unified_info{generate}->{$_} } sort keys %generatables ), # Scripts are assumed to be generated, so add them too ( grep { defined $unified_info{sources}->{$_} } @{$unified_info{scripts}} ) ); # Avoid strange output ""; -} openssl-1.1.1f/Configurations/descrip.mms.tmpl000066400000000000000000001435141364063235100214720ustar00rootroot00000000000000## descrip.mms to build OpenSSL on OpenVMS ## ## {- join("\n## ", @autowarntext) -} {- use File::Spec::Functions qw/:DEFAULT abs2rel rel2abs/; use File::Basename; # Our prefix, claimed when speaking with the VSI folks Tuesday # January 26th 2016 our $osslprefix = 'OSSL$'; (our $osslprefix_q = $osslprefix) =~ s/\$/\\\$/; our $sover_dirname = sprintf "%02d%02d", split(/\./, $config{shlib_version_number}); our $osslver = sprintf "%02d%02d", split(/\./, $config{version}); our $sourcedir = $config{sourcedir}; our $builddir = $config{builddir}; sub sourcefile { catfile($sourcedir, @_); } sub buildfile { catfile($builddir, @_); } sub sourcedir { catdir($sourcedir, @_); } sub builddir { catdir($builddir, @_); } sub tree { (my $x = shift) =~ s|\]$|...]|; $x } sub move { my $f = catdir(@_); my $b = abs2rel(rel2abs("."),rel2abs($f)); $sourcedir = catdir($b,$sourcedir) if !file_name_is_absolute($sourcedir); $builddir = catdir($b,$builddir) if !file_name_is_absolute($builddir); ""; } # Because we need to make two computations of these data, # we store them in arrays for reuse our @libs = map { (my $x = $_) =~ s/\.a$//; $x } @{$unified_info{libraries}}; our @shlibs = map { $unified_info{sharednames}->{$_} || () } grep(!/\.a$/, @{$unified_info{libraries}}); our @install_libs = map { (my $x = $_) =~ s/\.a$//; $x } @{$unified_info{install}->{libraries}}; our @install_shlibs = map { $unified_info{sharednames}->{$_} || () } grep(!/\.a$/, @{$unified_info{install}->{libraries}}); # This is a horrible hack, but is needed because recursive inclusion of files # in different directories does not work well with HP C. my $sd = sourcedir("crypto", "async", "arch"); foreach (grep /\[\.crypto\.async\.arch\].*\.o$/, keys %{$unified_info{sources}}) { (my $x = $_) =~ s|\.o$|.OBJ|; $unified_info{before}->{$x} = qq(arch_include = F\$PARSE("$sd","A.;",,,"SYNTAX_ONLY") - "A.;" define arch 'arch_include'); $unified_info{after}->{$x} = qq(deassign arch); } my $sd1 = sourcedir("ssl","record"); my $sd2 = sourcedir("ssl","statem"); my @ssl_locl_users = grep(/^\[\.(?:ssl\.(?:record|statem)|test)\].*\.o$/, keys %{$unified_info{sources}}); foreach (@ssl_locl_users) { (my $x = $_) =~ s|\.o$|.OBJ|; $unified_info{before}->{$x} = qq(record_include = F\$PARSE("$sd1","A.;",,,"SYNTAX_ONLY") - "A.;" define record 'record_include' statem_include = F\$PARSE("$sd2","A.;",,,"SYNTAX_ONLY") - "A.;" define statem 'statem_include'); $unified_info{after}->{$x} = qq(deassign statem deassign record); } # This makes sure things get built in the order they need # to. You're welcome. sub dependmagic { my $target = shift; return "$target : build_generated\n\t\pipe \$(MMS) \$(MMSQUALIFIERS) depend && \$(MMS) \$(MMSQUALIFIERS) _$target\n_$target"; } #use Data::Dumper; #print STDERR "DEBUG: before:\n", Dumper($unified_info{before}); #print STDERR "DEBUG: after:\n", Dumper($unified_info{after}); ""; -} PLATFORM={- $config{target} -} OPTIONS={- $config{options} -} CONFIGURE_ARGS=({- join(", ",quotify_l(@{$config{perlargv}})) -}) SRCDIR={- $config{sourcedir} -} BLDDIR={- $config{builddir} -} # Allow both V and VERBOSE to indicate verbosity. This only applies # to testing. VERBOSE=$(V) VERSION={- $config{version} -} MAJOR={- $config{major} -} MINOR={- $config{minor} -} SHLIB_VERSION_NUMBER={- $config{shlib_version_number} -} SHLIB_VERSION_HISTORY={- $config{shlib_version_history} -} SHLIB_MAJOR={- $config{shlib_major} -} SHLIB_MINOR={- $config{shlib_minor} -} SHLIB_TARGET={- $target{shared_target} -} EXE_EXT=.EXE LIB_EXT=.OLB SHLIB_EXT=.EXE OBJ_EXT=.OBJ DEP_EXT=.D LIBS={- join(", ", map { "-\n\t".$_.".OLB" } @libs) -} SHLIBS={- join(", ", map { "-\n\t".$_.".EXE" } @shlibs) -} ENGINES={- join(", ", map { "-\n\t".$_.".EXE" } @{$unified_info{engines}}) -} PROGRAMS={- join(", ", map { "-\n\t".$_.".EXE" } @{$unified_info{programs}}) -} SCRIPTS={- join(", ", map { "-\n\t".$_ } @{$unified_info{scripts}}) -} {- output_off() if $disabled{makedepend}; "" -} DEPS={- our @deps = map { (my $x = $_) =~ s|\.o$|\$(DEP_EXT)|; $x; } grep { $unified_info{sources}->{$_}->[0] =~ /\.c$/ } keys %{$unified_info{sources}}; join(", ", map { "-\n\t".$_ } @deps); -} {- output_on() if $disabled{makedepend}; "" -} GENERATED_MANDATORY={- join(", ", map { "-\n\t".$_ } @{$unified_info{depends}->{""}} ) -} GENERATED={- # common0.tmpl provides @generated join(", ", map { (my $x = $_) =~ s|\.[sS]$|.asm|; "-\n\t".$x } @generated) -} INSTALL_LIBS={- join(", ", map { "-\n\t".$_.".OLB" } @install_libs) -} INSTALL_SHLIBS={- join(", ", map { "-\n\t".$_.".EXE" } @install_shlibs) -} INSTALL_ENGINES={- join(", ", map { "-\n\t".$_.".EXE" } @{$unified_info{install}->{engines}}) -} INSTALL_PROGRAMS={- join(", ", map { "-\n\t".$_.".EXE" } @{$unified_info{install}->{programs}}) -} {- output_off() if $disabled{apps}; "" -} BIN_SCRIPTS=[.tools]c_rehash.pl MISC_SCRIPTS=[.apps]CA.pl, [.apps]tsget.pl {- output_on() if $disabled{apps}; "" -} APPS_OPENSSL={- use File::Spec::Functions; catfile("apps","openssl") -} # DESTDIR is for package builders so that they can configure for, say, # SYS$COMMON:[OPENSSL] and yet have everything installed in STAGING:[USER]. # In that case, configure with --prefix=SYS$COMMON:[OPENSSL] and then run # MMS with /MACROS=(DESTDIR=STAGING:[USER]). The result will end up in # STAGING:[USER.OPENSSL]. # Normally it is left empty. DESTDIR= # Do not edit this manually. Use Configure --prefix=DIR to change this! INSTALLTOP={- our $installtop = catdir($config{prefix}) || "SYS\$COMMON:[OPENSSL]"; $installtop -} SYSTARTUP={- catdir($installtop, '[.SYS$STARTUP]'); -} # This is the standard central area to store certificates, private keys... OPENSSLDIR={- catdir($config{openssldir}) or $config{prefix} ? catdir($config{prefix},"COMMON") : "SYS\$COMMON:[OPENSSL-COMMON]" -} # The same, but for C OPENSSLDIR_C={- $osslprefix -}DATAROOT:[000000] # Where installed engines reside, for C ENGINESDIR_C={- $osslprefix -}ENGINES{- $sover_dirname.$target{pointer_size} -}: ##### User defined commands and flags ################################ CC={- $config{CC} -} CPP={- $config{CPP} -} DEFINES={- our $defines1 = join('', map { ",$_" } @{$config{CPPDEFINES}}) -} INCLUDES={- our $includes1 = join(',', @{$config{CPPINCLUDES}}) -} CPPFLAGS={- our $cppflags1 = join('', @{$config{CPPFLAGS}}) -} CFLAGS={- join('', @{$config{CFLAGS}}) -} LDFLAGS={- join('', @{$config{LFLAGS}}) -} EX_LIBS={- join('', map { ",$_" } @{$config{LDLIBS}}) -} PERL={- $config{PERL} -} AS={- $config{AS} -} ASFLAGS={- join(' ', @{$config{ASFLAGS}}) -} ##### Special command flags ########################################## ASOUTFLAG={- $target{asoutflag} -}$(OSSL_EMPTY) ##### Project flags ################################################## # Variables starting with CNF_ are common variables for all product types CNF_ASFLAGS={- join('', $target{asflags} || (), @{$config{asflags}}) -} CNF_DEFINES={- our $defines2 = join('', map { ",$_" } @{$target{defines}}, @{$config{defines}}) -} CNF_INCLUDES={- our $includes2 = join(',', @{$target{includes}}, @{$config{includes}}) -} CNF_CPPFLAGS={- our $cppflags2 = join('', $target{cppflags} || (), @{$config{cppflags}}) -} CNF_CFLAGS={- join('', $target{cflags} || (), @{$config{cflags}}) -} CNF_CXXFLAGS={- join('', $target{cxxflags} || (), @{$config{cxxflags}}) -} CNF_LDFLAGS={- join('', $target{lflags} || (), @{$config{lflags}}) -} CNF_EX_LIBS={- join('', map{ ",$_" } @{$target{ex_libs}}, @{$config{ex_libs}}) -} # Variables starting with LIB_ are used to build library object files # and shared libraries. # Variables starting with DSO_ are used to build DSOs and their object files. # Variables starting with BIN_ are used to build programs and their object # files. LIB_ASFLAGS={- join(' ', $target{lib_asflags} || (), @{$config{lib_asflags}}, '$(CNF_ASFLAGS)', '$(ASFLAGS)') -} LIB_DEFINES={- our $lib_defines = join('', (map { ",$_" } @{$target{lib_defines}}, @{$target{shared_defines}}, @{$config{lib_defines}}, @{$config{shared_defines}})); join('', $lib_defines, (map { ",$_" } 'OPENSSLDIR="""$(OPENSSLDIR_C)"""', 'ENGINESDIR="""$(ENGINESDIR_C)"""'), '$(CNF_DEFINES)', '$(DEFINES)') -} LIB_INCLUDES={- our $lib_includes = join(',', @{$target{lib_includes}}, @{$target{shared_includes}}, @{$config{lib_includes}}, @{$config{shared_includes}}) -} LIB_CPPFLAGS={- our $lib_cppflags = join('', $target{lib_cppflags} || (), $target{shared_cppflags} || (), @{$config{lib_cppflags}}, @{$config{shared_cppflag}}); join('', "'qual_includes'", '/DEFINE=(__dummy$(LIB_DEFINES))', $lib_cppflags, '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} LIB_CFLAGS={- join('', $target{lib_cflags} || (), $target{shared_cflag} || (), @{$config{lib_cflags}}, @{$config{shared_cflag}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} LIB_LDFLAGS={- join('', $target{lib_lflags} || (), $target{shared_ldflag} || (), @{$config{lib_lflags}}, @{$config{shared_ldflag}}, '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} LIB_EX_LIBS=$(CNF_EX_LIBS)$(EX_LIBS) DSO_ASFLAGS={- join(' ', $target{dso_asflags} || (), $target{module_asflags} || (), @{$config{dso_asflags}}, @{$config{module_asflags}}, '$(CNF_ASFLAGS)', '$(ASFLAGS)') -} DSO_DEFINES={- join('', (map { ",$_" } @{$target{dso_defines}}, @{$target{module_defines}}, @{$config{dso_defines}}, @{$config{module_defines}}), '$(CNF_DEFINES)', '$(DEFINES)') -} DSO_INCLUDES={- join(',', @{$target{dso_includes}}, @{$target{module_includes}}, @{$config{dso_includes}}, @{$config{module_includes}}) -} DSO_CPPFLAGS={- join('', "'qual_includes'", '/DEFINE=(__dummy$(DSO_DEFINES))', $target{dso_cppflags} || (), $target{module_cppflags} || (), @{$config{dso_cppflags}}, @{$config{module_cppflags}}, '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} DSO_CFLAGS={- join('', $target{dso_cflags} || (), $target{module_cflags} || (), @{$config{dso_cflags}}, @{$config{module_cflags}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} DSO_LDFLAGS={- join('', $target{dso_lflags} || (), $target{module_ldflags} || (), @{$config{dso_lflags}}, @{$config{module_ldflags}}, '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} DSO_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) BIN_ASFLAGS={- join(' ', $target{bin_asflags} || (), @{$config{bin_asflags}}, '$(CNF_ASFLAGS)', '$(ASFLAGS)') -} BIN_DEFINES={- join('', (map { ",$_" } @{$target{bin_defines}}, @{$config{bin_defines}}), '$(CNF_DEFINES)', '$(DEFINES)') -} BIN_INCLUDES={- join(',', @{$target{bin_includes}}, @{$config{bin_includes}}) -} BIN_CPPFLAGS={- join('', "'qual_includes'", '/DEFINE=(__dummy$(DSO_DEFINES))', $target{bin_cppflags} || (), @{$config{bin_cppflag}}, '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} BIN_CFLAGS={- join('', $target{bin_cflag} || (), @{$config{bin_cflag}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} BIN_LDFLAGS={- join('', $target{bin_lflags} || (), @{$config{bin_lflags}} || (), '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} BIN_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) NO_INST_LIB_CFLAGS={- join('', $target{no_inst_lib_cflags} // $target{lib_cflags} // (), $target{shared_cflag} || (), @{$config{lib_cflags}}, @{$config{shared_cflag}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} NO_INST_DSO_CFLAGS={- join('', $target{no_inst_lib_cflags} // $target{lib_cflags} // (), $target{dso_cflags} || (), @{$config{lib_cflags}}, @{$config{dso_cflags}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} NO_INST_BIN_CFLAGS={- join('', $target{no_inst_bin_cflags} // $target{bin_cflags} // (), @{$config{bin_cflags}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} PERLASM_SCHEME={- $target{perlasm_scheme} -} # CPPFLAGS_Q is used for one thing only: to build up buildinf.h CPPFLAGS_Q={- (my $c = $lib_cppflags.$cppflags2.$cppflags1) =~ s|"|""|g; (my $d = $lib_defines.$defines2.$defines1) =~ s|"|""|g; my $i = join(',', $lib_includes || (), $includes2 || (), $includes1 || ()); my $x = $c; $x .= "/INCLUDE=($i)" if $i; $x .= "/DEFINE=($d)" if $d; $x; -} # .FIRST and .LAST are special targets with MMS and MMK. # The defines in there are for C. includes that look like # this: # # #include # #include "internal/bar.h" # #include "crypto/something.h" # # will use the logical names to find the files. Expecting # DECompHP C to find files in subdirectories of whatever was # given with /INCLUDE is a fantasy, unfortunately. NODEBUG=@ .FIRST : $(NODEBUG) openssl_inc1 = F$PARSE("[.include.openssl]","A.;",,,"syntax_only") - "A.;" $(NODEBUG) openssl_inc2 = F$PARSE("{- catdir($config{sourcedir},"[.include.openssl]") -}","A.;",,,"SYNTAX_ONLY") - "A.;" $(NODEBUG) internal_inc1 = F$PARSE("[.include.internal]","A.;",,,"SYNTAX_ONLY") - "A.;" $(NODEBUG) internal_inc2 = F$PARSE("{- catdir($config{sourcedir},"[.include.internal]") -}","A.;",,,"SYNTAX_ONLY") - "A.;" $(NODEBUG) crypto_inc1 = F$PARSE("[.include.crypto]","A.;",,,"SYNTAX_ONLY") - "A.;" $(NODEBUG) crypto_inc2 = F$PARSE("{- catdir($config{sourcedir},"[.include.crypto]") -}","A.;",,,"SYNTAX_ONLY") - "A.;" $(NODEBUG) DEFINE openssl 'openssl_inc1','openssl_inc2' $(NODEBUG) DEFINE internal 'internal_inc1','internal_inc2' $(NODEBUG) DEFINE crypto 'crypto_inc1','crypto_inc2' $(NODEBUG) staging_dir = "$(DESTDIR)" $(NODEBUG) staging_instdir = "" $(NODEBUG) staging_datadir = "" $(NODEBUG) IF staging_dir .NES. "" THEN - staging_instdir = F$PARSE("A.;",staging_dir,"[]",,"SYNTAX_ONLY") $(NODEBUG) IF staging_instdir - "]A.;" .NES. staging_instdir THEN - staging_instdir = staging_instdir - "]A.;" + ".OPENSSL-INSTALL]" $(NODEBUG) IF staging_instdir - "A.;" .NES. staging_instdir THEN - staging_instdir = staging_instdir - "A.;" + "[OPENSSL-INSTALL]" $(NODEBUG) IF staging_dir .NES. "" THEN - staging_datadir = F$PARSE("A.;",staging_dir,"[]",,"SYNTAX_ONLY") $(NODEBUG) IF staging_datadir - "]A.;" .NES. staging_datadir THEN - staging_datadir = staging_datadir - "]A.;" + ".OPENSSL-COMMON]" $(NODEBUG) IF staging_datadir - "A.;" .NES. staging_datadir THEN - staging_datadir = staging_datadir - "A.;" + "[OPENSSL-COMMON]" $(NODEBUG) ! $(NODEBUG) ! Installation logical names $(NODEBUG) ! $(NODEBUG) installtop = F$PARSE(staging_instdir,"$(INSTALLTOP)","[]A.;",,"SYNTAX_ONLY,NO_CONCEAL") - ".][000000" - "[000000." - "][" - "]A.;" + ".]" $(NODEBUG) datatop = F$PARSE(staging_datadir,"$(OPENSSLDIR)","[]A.;",,"SYNTAX_ONLY,NO_CONCEAL") - ".][000000" - "[000000." - "][" - "]A.;" + ".]" $(NODEBUG) DEFINE ossl_installroot 'installtop' $(NODEBUG) DEFINE ossl_dataroot 'datatop' $(NODEBUG) ! $(NODEBUG) ! Figure out the architecture $(NODEBUG) ! $(NODEBUG) arch = f$edit( f$getsyi( "arch_name"), "upcase") $(NODEBUG) ! $(NODEBUG) ! Set up logical names for the libraries, so LINK and $(NODEBUG) ! running programs can use them. $(NODEBUG) ! $(NODEBUG) {- join("\n\t\$(NODEBUG) ", map { "DEFINE ".uc($_)." 'F\$ENV(\"DEFAULT\")'".uc($_)."\$(SHLIB_EXT)" } @shlibs) || "!" -} .LAST : $(NODEBUG) {- join("\n\t\$(NODEBUG) ", map { "DEASSIGN ".uc($_) } @shlibs) || "!" -} $(NODEBUG) DEASSIGN ossl_dataroot $(NODEBUG) DEASSIGN ossl_installroot $(NODEBUG) DEASSIGN crypto $(NODEBUG) DEASSIGN internal $(NODEBUG) DEASSIGN openssl .DEFAULT : @ ! MMS cannot handle no actions... # The main targets ################################################### {- dependmagic('all'); -} : build_libs_nodep, build_engines_nodep, build_programs_nodep {- dependmagic('build_libs'); -} : build_libs_nodep {- dependmagic('build_engines'); -} : build_engines_nodep {- dependmagic('build_programs'); -} : build_programs_nodep build_generated : $(GENERATED_MANDATORY) build_libs_nodep : $(LIBS), $(SHLIBS) build_engines_nodep : $(ENGINES) build_programs_nodep : $(PROGRAMS), $(SCRIPTS) # Kept around for backward compatibility build_apps build_tests : build_programs # Convenience target to prebuild all generated files, not just the mandatory # ones build_all_generated : $(GENERATED_MANDATORY) $(GENERATED) @ ! {- output_off() if $disabled{makedepend}; "" -} @ WRITE SYS$OUTPUT "Warning: consider configuring with no-makedepend, because if" @ WRITE SYS$OUTPUT " target system doesn't have $(PERL)," @ WRITE SYS$OUTPUT " then make will fail..." @ ! {- output_on() if $disabled{makedepend}; "" -} test : tests {- dependmagic('tests'); -} : build_programs_nodep, build_engines_nodep @ ! {- output_off() if $disabled{tests}; "" -} SET DEFAULT [.test]{- move("test") -} CREATE/DIR [.test-runs] DEFINE SRCTOP {- sourcedir() -} DEFINE BLDTOP {- builddir() -} DEFINE RESULT_D {- builddir(qw(test test-runs)) -} DEFINE OPENSSL_ENGINES {- builddir("engines") -} DEFINE OPENSSL_DEBUG_MEMORY "on" IF "$(VERBOSE)" .NES. "" THEN DEFINE VERBOSE "$(VERBOSE)" $(PERL) {- sourcefile("test", "run_tests.pl") -} $(TESTS) DEASSIGN OPENSSL_DEBUG_MEMORY DEASSIGN OPENSSL_ENGINES DEASSIGN BLDTOP DEASSIGN SRCTOP SET DEFAULT [-]{- move("..") -} @ ! {- if ($disabled{tests}) { output_on(); } else { output_off(); } "" -} @ WRITE SYS$OUTPUT "Tests are not supported with your chosen Configure options" @ ! {- output_on() if !$disabled{tests}; "" -} list-tests : @ ! {- output_off() if $disabled{tests}; "" -} @ DEFINE SRCTOP {- sourcedir() -} @ $(PERL) {- sourcefile("test", "run_tests.pl") -} list @ DEASSIGN SRCTOP @ ! {- if ($disabled{tests}) { output_on(); } else { output_off(); } "" -} @ WRITE SYS$OUTPUT "Tests are not supported with your chosen Configure options" @ ! {- output_on() if !$disabled{tests}; "" -} install : install_sw install_ssldirs install_docs @ WRITE SYS$OUTPUT "" @ WRITE SYS$OUTPUT "######################################################################" @ WRITE SYS$OUTPUT "" @ IF "$(DESTDIR)" .EQS. "" THEN - PIPE ( WRITE SYS$OUTPUT "Installation complete" ; - WRITE SYS$OUTPUT "" ; - WRITE SYS$OUTPUT "Run @$(SYSTARTUP)openssl_startup{- $osslver -} to set up logical names" ; - WRITE SYS$OUTPUT "then run @$(SYSTARTUP)openssl_utils{- $osslver -} to define commands" ; - WRITE SYS$OUTPUT "" ) @ IF "$(DESTDIR)" .NES. "" THEN - PIPE ( WRITE SYS$OUTPUT "Staging installation complete" ; - WRITE SYS$OUTPUT "" ; - WRITE SYS$OUTPUT "Finish or package in such a way that the contents of the directory tree" ; - WRITE SYS$OUTPUT staging_instdir ; - WRITE SYS$OUTPUT "ends up in $(INSTALLTOP)," ; - WRITE SYS$OUTPUT "and that the contents of the contents of the directory tree" ; - WRITE SYS$OUTPUT staging_datadir ; - WRITE SYS$OUTPUT "ends up in $(OPENSSLDIR)" ; - WRITE SYS$OUTPUT "" ; - WRITE SYS$OUTPUT "When in its final destination," ; - WRITE SYS$OUTPUT "Run @$(SYSTARTUP)openssl_startup{- $osslver -} to set up logical names" ; - WRITE SYS$OUTPUT "then run @$(SYSTARTUP)openssl_utils{- $osslver -} to define commands" ; - WRITE SYS$OUTPUT "" ) check_install : spawn/nolog @ossl_installroot:[SYSTEST]openssl_ivp{- $osslver -}.com uninstall : uninstall_docs uninstall_sw # Because VMS wants the generation number (or *) to delete files, we can't # use $(LIBS), $(PROGRAMS), $(GENERATED) and $(ENGINES)directly. libclean : {- join("\n\t", map { "- DELETE $_.OLB;*" } @libs) || "@ !" -} {- join("\n\t", map { "- DELETE $_.EXE;*,$_.MAP;*" } @shlibs) || "@ !" -} clean : libclean {- join("\n\t", map { "- DELETE $_.EXE;*,$_.OPT;*" } @{$unified_info{programs}}) || "@ !" -} {- join("\n\t", map { "- DELETE $_.EXE;*,$_.OPT;*" } @{$unified_info{engines}}) || "@ !" -} {- join("\n\t", map { "- DELETE $_;*" } @{$unified_info{scripts}}) || "@ !" -} {- join("\n\t", map { "- DELETE $_;*" } @{$unified_info{depends}->{""}}) || "@ !" -} {- join("\n\t", map { "- DELETE $_;*" } @generated) || "@ !" -} - DELETE [...]*.MAP;* - DELETE [...]*.D;* - DELETE [...]*.OBJ;*,*.LIS;* - DELETE []CXX$DEMANGLER_DB.;* - DELETE [.VMS]openssl_startup.com;* - DELETE [.VMS]openssl_shutdown.com;* - DELETE []vmsconfig.pm;* distclean : clean - DELETE configdata.pm;* - DELETE descrip.mms;* depend : descrip.mms descrip.mms : FORCE @ ! {- output_off() if $disabled{makedepend}; "" -} @ $(PERL) {- sourcefile("util", "add-depends.pl") -} "VMS C" @ ! {- output_on() if $disabled{makedepend}; "" -} # Install helper targets ############################################# install_sw : install_dev install_engines install_runtime - install_startup install_ivp uninstall_sw : uninstall_dev uninstall_engines uninstall_runtime - uninstall_startup uninstall_ivp install_docs : install_html_docs uninstall_docs : uninstall_html_docs install_ssldirs : check_INSTALLTOP - CREATE/DIR/PROT=(S:RWED,O:RWE,G:RE,W:RE) OSSL_DATAROOT:[000000] IF F$SEARCH("OSSL_DATAROOT:[000000]CERTS.DIR;1") .EQS. "" THEN - CREATE/DIR/PROT=(S:RWED,O:RWE,G:RE,W:RE) OSSL_DATAROOT:[CERTS] IF F$SEARCH("OSSL_DATAROOT:[000000]PRIVATE.DIR;1") .EQS. "" THEN - CREATE/DIR/PROT=(S:RWED,O:RWE,G,W) OSSL_DATAROOT:[PRIVATE] IF F$SEARCH("OSSL_DATAROOT:[000000]MISC.DIR;1") .EQS. "" THEN - CREATE/DIR/PROT=(S:RWED,O:RWE,G,W) OSSL_DATAROOT:[MISC] COPY/PROT=W:RE $(MISC_SCRIPTS) OSSL_DATAROOT:[MISC] @ ! Install configuration file COPY/PROT=W:R {- sourcefile("apps", "openssl-vms.cnf") -} - ossl_dataroot:[000000]openssl.cnf-dist IF F$SEARCH("OSSL_DATAROOT:[000000]openssl.cnf") .EQS. "" THEN - COPY/PROT=W:R {- sourcefile("apps", "openssl-vms.cnf") -} - ossl_dataroot:[000000]openssl.cnf @ ! Install CTLOG configuration file COPY/PROT=W:R {- sourcefile("apps", "ct_log_list.cnf") -} - ossl_dataroot:[000000]ct_log_list.cnf-dist IF F$SEARCH("OSSL_DATAROOT:[000000]ct_log_list.cnf") .EQS. "" THEN - COPY/PROT=W:R {- sourcefile("apps", "ct_log_list.cnf") -} - ossl_dataroot:[000000]ct_log_list.cnf install_dev : check_INSTALLTOP install_runtime_libs @ WRITE SYS$OUTPUT "*** Installing development files" @ ! Install header files - CREATE/DIR ossl_installroot:[include.openssl] COPY/PROT=W:R openssl:*.h ossl_installroot:[include.openssl] @ ! Install static (development) libraries - CREATE/DIR ossl_installroot:[LIB.'arch'] {- join("\n ", map { "COPY/PROT=W:R $_.OLB ossl_installroot:[LIB.'arch']" } @install_libs) -} install_engines : check_INSTALLTOP install_runtime_libs build_engines @ {- output_off() unless scalar @{$unified_info{engines}}; "" -} ! @ WRITE SYS$OUTPUT "*** Installing engines" - CREATE/DIR ossl_installroot:[ENGINES{- $sover_dirname.$target{pointer_size} -}.'arch'] {- join("\n ", map { "COPY/PROT=W:RE $_.EXE ossl_installroot:[ENGINES$sover_dirname$target{pointer_size}.'arch']" } @{$unified_info{install}->{engines}}) -} @ {- output_on() unless scalar @{$unified_info{engines}}; "" -} ! install_runtime : install_programs install_runtime_libs : check_INSTALLTOP build_libs @ {- output_off() if $disabled{shared}; "" -} ! @ WRITE SYS$OUTPUT "*** Installing shareable images" @ ! Install shared (runtime) libraries - CREATE/DIR ossl_installroot:[LIB.'arch'] {- join("\n ", map { "COPY/PROT=W:R $_.EXE ossl_installroot:[LIB.'arch']" } @install_shlibs) -} @ {- output_on() if $disabled{shared}; "" -} ! install_programs : check_INSTALLTOP install_runtime_libs build_programs @ {- output_off() if $disabled{apps}; "" -} ! @ ! Install the main program - CREATE/DIR ossl_installroot:[EXE.'arch'] COPY/PROT=W:RE [.APPS]openssl.EXE - ossl_installroot:[EXE.'arch']openssl{- $osslver -}.EXE @ ! Install scripts COPY/PROT=W:RE $(BIN_SCRIPTS) ossl_installroot:[EXE] @ ! {- output_on() if $disabled{apps}; "" -} install_startup : [.VMS]openssl_startup.com [.VMS]openssl_shutdown.com - [.VMS]openssl_utils.com, check_INSTALLTOP - CREATE/DIR ossl_installroot:[SYS$STARTUP] COPY/PROT=W:RE [.VMS]openssl_startup.com - ossl_installroot:[SYS$STARTUP]openssl_startup{- $osslver -}.com COPY/PROT=W:RE [.VMS]openssl_shutdown.com - ossl_installroot:[SYS$STARTUP]openssl_shutdown{- $osslver -}.com COPY/PROT=W:RE [.VMS]openssl_utils.com - ossl_installroot:[SYS$STARTUP]openssl_utils{- $osslver -}.com install_ivp : [.VMS]openssl_ivp.com check_INSTALLTOP - CREATE/DIR ossl_installroot:[SYSTEST] COPY/PROT=W:RE [.VMS]openssl_ivp.com - ossl_installroot:[SYSTEST]openssl_ivp{- $osslver -}.com [.VMS]openssl_startup.com : vmsconfig.pm {- sourcefile("VMS", "openssl_startup.com.in") -} - CREATE/DIR [.VMS] $(PERL) "-I." "-Mvmsconfig" {- sourcefile("util", "dofile.pl") -} - {- sourcefile("VMS", "openssl_startup.com.in") -} - > [.VMS]openssl_startup.com [.VMS]openssl_utils.com : vmsconfig.pm {- sourcefile("VMS", "openssl_utils.com.in") -} - CREATE/DIR [.VMS] $(PERL) "-I." "-Mvmsconfig" {- sourcefile("util", "dofile.pl") -} - {- sourcefile("VMS", "openssl_utils.com.in") -} - > [.VMS]openssl_utils.com [.VMS]openssl_shutdown.com : vmsconfig.pm {- sourcefile("VMS", "openssl_shutdown.com.in") -} - CREATE/DIR [.VMS] $(PERL) "-I." "-Mvmsconfig" {- sourcefile("util", "dofile.pl") -} - {- sourcefile("VMS", "openssl_shutdown.com.in") -} - > [.VMS]openssl_shutdown.com [.VMS]openssl_ivp.com : vmsconfig.pm {- sourcefile("VMS", "openssl_ivp.com.in") -} - CREATE/DIR [.VMS] $(PERL) "-I." "-Mvmsconfig" {- sourcefile("util", "dofile.pl") -} - {- sourcefile("VMS", "openssl_ivp.com.in") -} - > [.VMS]openssl_ivp.com vmsconfig.pm : configdata.pm OPEN/WRITE/SHARE=READ CONFIG []vmsconfig.pm WRITE CONFIG "package vmsconfig;" WRITE CONFIG "use strict; use warnings;" WRITE CONFIG "use Exporter;" WRITE CONFIG "our @ISA = qw(Exporter);" WRITE CONFIG "our @EXPORT = qw(%config %target %withargs %unified_info %disabled);" WRITE CONFIG "our %config = (" WRITE CONFIG " target => '","{- $config{target} -}","'," WRITE CONFIG " version => '","{- $config{version} -}","'," WRITE CONFIG " shlib_version_number => '","{- $config{shlib_version_number} -}","'," WRITE CONFIG " shlib_major => '","{- $config{shlib_major} -}","'," WRITE CONFIG " shlib_minor => '","{- $config{shlib_minor} -}","'," WRITE CONFIG " no_shared => '","{- $disabled{shared} -}","'," WRITE CONFIG " INSTALLTOP => '$(INSTALLTOP)'," WRITE CONFIG " OPENSSLDIR => '$(OPENSSLDIR)'," WRITE CONFIG " pointer_size => '","{- $target{pointer_size} -}","'," WRITE CONFIG ");" WRITE CONFIG "our %target = ();" WRITE CONFIG "our %disabled = ();" WRITE CONFIG "our %withargs = ();" WRITE CONFIG "our %unified_info = ();" WRITE CONFIG "1;" CLOSE CONFIG install_html_docs : check_INSTALLTOP sourcedir = F$PARSE("{- $sourcedir -}A.;","[]") - "]A.;" + ".DOC]" $(PERL) {- sourcefile("util", "process_docs.pl") -} - --sourcedir='sourcedir' --destdir=ossl_installroot:[HTML] - --type=html check_INSTALLTOP : @ IF "$(INSTALLTOP)" .EQS. "" THEN - WRITE SYS$ERROR "INSTALLTOP should not be empty" @ IF "$(INSTALLTOP)" .EQS. "" THEN - EXIT %x10000002 # Helper targets ##################################################### # Developer targets ################################################## debug_logicals : SH LOGICAL/PROC openssl,internal,ossl_installroot,ossl_dataroot # Building targets ################################################### configdata.pm : $(SRCDIR)Configure $(SRCDIR)config.com {- join(" ", @{$config{build_file_templates}}, @{$config{build_infos}}, @{$config{conf_files}}) -} perl configdata.pm -r @ WRITE SYS$OUTPUT "*************************************************" @ WRITE SYS$OUTPUT "*** ***" @ WRITE SYS$OUTPUT "*** Please run the same mms command again ***" @ WRITE SYS$OUTPUT "*** ***" @ WRITE SYS$OUTPUT "*************************************************" @ PIPE ( EXIT %X10000000 ) reconfigure reconf : perl configdata.pm -r {- use File::Basename; use File::Spec::Functions qw/abs2rel rel2abs catfile catdir/; # Helper function to figure out dependencies on libraries # It takes a list of library names and outputs a list of dependencies sub compute_lib_depends { if ($disabled{shared}) { return map { $_ =~ /\.a$/ ? $`.".OLB" : $_.".OLB" } @_; } return map { $_ =~ /\.a$/ ? $`.".OLB" : $unified_info{sharednames}->{$_}.".EXE" } @_; } # Helper function to deal with inclusion directory specs. # We have to deal with two things: # 1. comma separation and no possibility of trailing comma # 2. no inclusion directories given at all # 3. long compiler command lines # To resolve 1, we need to iterate through the sources of inclusion # directories, and only add a comma when needed. # To resolve 2, we need to have a variable that will hold the whole # inclusion qualifier, or be the empty string if there are no inclusion # directories. That's the symbol 'qual_includes' that's used in CPPFLAGS # To resolve 3, we creata a logical name TMP_INCLUDES: to hold the list # of inclusion directories. # # This function returns a list of two lists, one being the collection of # commands to execute before the compiler is called, and the other being # the collection of commands to execute after. It takes as arguments the # collection of strings to include as directory specs. sub includes { my @stuff = ( @_ ); my @before = ( 'qual_includes :=', ); my @after = ( 'DELETE/SYMBOL/LOCAL qual_includes', ); if (scalar @stuff > 0) { push @before, 'tmp_includes := '.shift(@stuff); while (@stuff) { push @before, 'tmp_add := '.shift(@stuff); push @before, 'IF tmp_includes .NES. "" .AND. tmp_add .NES. "" THEN tmp_includes = tmp_includes + ","'; push @before, 'tmp_includes = tmp_includes + tmp_add'; } push @before, "IF tmp_includes .NES. \"\" THEN DEFINE tmp_includes 'tmp_includes'"; push @before, 'IF tmp_includes .NES. "" THEN qual_includes := /INCLUDE=(tmp_includes:)'; push @before, 'DELETE/SYMBOL/LOCAL tmp_includes'; push @before, 'DELETE/SYMBOL/LOCAL tmp_add'; push @after, 'DEASSIGN tmp_includes:' } return ([ @before ], [ @after ]); } sub generatesrc { my %args = @_; (my $target = $args{src}) =~ s/\.[sS]$/.asm/; my $generator = join(" ", @{$args{generator}}); my $generator_incs = join("", map { ' "-I'.$_.'"' } @{$args{generator_incs}}); my $deps = join(", -\n\t\t", @{$args{generator_deps}}, @{$args{deps}}); if ($target !~ /\.asm$/) { if ($args{generator}->[0] =~ m|^.*\.in$|) { my $dofile = abs2rel(rel2abs(catfile($config{sourcedir}, "util", "dofile.pl")), rel2abs($config{builddir})); return <<"EOF"; $target : $args{generator}->[0] $deps \$(PERL) "-I\$(BLDDIR)" "-Mconfigdata" $dofile \\ "-o$target{build_file}" $generator > \$\@ EOF } else { return <<"EOF"; $target : $args{generator}->[0] $deps \$(PERL)$generator_incs $generator > \$\@ EOF } } else { if ($args{generator}->[0] =~ /\.pl$/) { $generator = '$(PERL)'.$generator_incs.' '.$generator; } elsif ($args{generator}->[0] =~ /\.S$/) { $generator = undef; } else { die "Generator type for $src unknown: $generator\n"; } my $cppflags = { lib => '$(LIB_CFLAGS) $(LIB_CPPFLAGS)', dso => '$(DSO_CFLAGS) $(DSO_CPPFLAGS)', bin => '$(BIN_CFLAGS) $(BIN_CPPFLAGS)' } -> {$args{intent}}; my @incs_cmds = includes({ lib => '$(LIB_INCLUDES)', dso => '$(DSO_INCLUDES)', bin => '$(BIN_INCLUDES)' } -> {$args{intent}}, '$(CNF_INCLUDES)', '$(INCLUDES)', @{$args{incs}}); my $incs_on = join("\n\t\@ ", @{$incs_cmds[0]}) || '!'; my $incs_off = join("\n\t\@ ", @{$incs_cmds[1]}) || '!'; if (defined($generator)) { # If the target is named foo.S in build.info, we want to # end up generating foo.s in two steps. if ($args{src} =~ /\.S$/) { return <<"EOF"; $target : $args{generator}->[0] $deps $generator \$\@-S \@ $incs_on PIPE \$(CPP) $cppflags \$\@-S | - \$(PERL) -ne "/^#(\\s*line)?\\s*[0-9]+\\s+""/ or print" > \$\@-i \@ $incs_off RENAME \$\@-i \$\@ DELETE \$\@-S; EOF } # Otherwise.... return <<"EOF"; $target : $args{generator}->[0] $deps $generator \$\@ EOF } return <<"EOF"; $target : $args{generator}->[0] $deps \@ $incs_on SHOW SYMBOL qual_includes PIPE \$(CPP) $cppflags $args{generator}->[0] | - \$(PERL) "-ne" "/^#(\\s*line)?\\s*[0-9]+\\s+""/ or print" > \$\@ \@ $incs_off EOF } } sub src2obj { my %args = @_; my @srcs = map { (my $x = $_) =~ s/\.s$/.asm/; $x } ( @{$args{srcs}} ); (my $obj = $args{obj}) =~ s|\.o$||; my $deps = join(", -\n\t\t", @srcs, @{$args{deps}}); # Because VMS C isn't very good at combining a /INCLUDE path with # #includes having a relative directory (like '#include "../foo.h"), # the best choice is to move to the first source file's intended # directory before compiling, and make sure to write the object file # in the correct position (important when the object tree is other # than the source tree). my $forward = dirname($args{srcs}->[0]); my $backward = abs2rel(rel2abs("."), rel2abs($forward)); my $objd = abs2rel(rel2abs(dirname($obj)), rel2abs($forward)); my $objn = basename($obj); my $srcs = join(", ", map { abs2rel(rel2abs($_), rel2abs($forward)) } @srcs); my $before = $unified_info{before}->{$obj.".OBJ"} || "\@ !"; my $after = $unified_info{after}->{$obj.".OBJ"} || "\@ !"; my $cflags; if ($args{installed}) { $cflags = { lib => '$(LIB_CFLAGS)', dso => '$(DSO_CFLAGS)', bin => '$(BIN_CFLAGS)' } -> {$args{intent}}; } else { $cflags = { lib => '$(NO_INST_LIB_CFLAGS)', dso => '$(NO_INST_DSO_CFLAGS)', bin => '$(NO_INST_BIN_CFLAGS)' } -> {$args{intent}}; } $cflags .= { lib => '$(LIB_CPPFLAGS)', dso => '$(DSO_CPPFLAGS)', bin => '$(BIN_CPPFLAGS)' } -> {$args{intent}}; my $asflags = { lib => ' $(LIB_ASFLAGS)', dso => ' $(DSO_ASFLAGS)', bin => ' $(BIN_ASFLAGS)' } -> {$args{intent}}; my @incs_cmds = includes({ lib => '$(LIB_INCLUDES)', dso => '$(DSO_INCLUDES)', bin => '$(BIN_INCLUDES)' } -> {$args{intent}}, '$(INCLUDES)', map { file_name_is_absolute($_) ? $_ : catdir($backward,$_) } @{$args{incs}}); my $incs_on = join("\n\t\@ ", @{$incs_cmds[0]}) || '!'; my $incs_off = join("\n\t\@ ", @{$incs_cmds[1]}) || '!'; if ($srcs[0] =~ /\.asm$/) { return <<"EOF"; $obj.OBJ : $deps ${before} SET DEFAULT $forward \$(AS) $asflags \$(ASOUTFLAG)${objd}${objn}.OBJ $srcs SET DEFAULT $backward ${after} - PURGE $obj.OBJ EOF } elsif ($srcs[0] =~ /.S$/) { return <<"EOF"; $obj.OBJ : $deps ${before} SET DEFAULT $forward \@ $incs_on PIPE \$(CPP) ${cflags} $srcs | - \$(PERL) -ne "/^#(\\s*line)?\\s*[0-9]+\\s+""/ or print" - > ${objd}${objn}.asm \@ $incs_off SET DEFAULT $backward ${after} \$(AS) $asflags \$(ASOUTFLAG)$obj.OBJ $obj.asm - PURGE $obj.OBJ EOF } my $depbuild = $disabled{makedepend} ? "" : " /MMS=(FILE=${objd}${objn}.D,TARGET=$obj.OBJ)"; return <<"EOF"; $obj.OBJ : $deps ${before} SET DEFAULT $forward \@ $incs_on \$(CC) ${cflags}${depbuild} /OBJECT=${objd}${objn}.OBJ /REPOSITORY=$backward $srcs \@ $incs_off SET DEFAULT $backward ${after} - PURGE $obj.OBJ EOF } sub libobj2shlib { my %args = @_; my $lib = $args{lib}; my $shlib = $args{shlib}; my $libd = dirname($lib); my $libn = basename($lib); my @objs = map { (my $x = $_) =~ s|\.o$|.OBJ|; $x } grep { $_ =~ m|\.o$| } @{$args{objs}}; my @defs = grep { $_ =~ /\.opt$/ } @{$args{objs}}; my @deps = compute_lib_depends(@{$args{deps}}); die "More than one symbol vector" if scalar @defs > 1; my $deps = join(", -\n\t\t", @defs, @deps); my $shlib_target = $disabled{shared} ? "" : $target{shared_target}; my $translatesyms_pl = abs2rel(rel2abs(catfile($config{sourcedir}, "VMS", "translatesyms.pl")), rel2abs($config{builddir})); # The "[]" hack is because in .OPT files, each line inherits the # previous line's file spec as default, so if no directory spec # is present in the current line and the previous line has one that # doesn't apply, you're in for a surprise. my $write_opt1 = join(",-\"\n\t", map { my $x = $_ =~ /\[/ ? $_ : "[]".$_; "WRITE OPT_FILE \"$x" } @objs). "\""; my $write_opt2 = join("\n\t", map { my $x = $_ =~ /\[/ ? $_ : "[]".$_; $x =~ s|(\.EXE)|$1/SHARE|; $x =~ s|(\.OLB)|$1/LIB|; "WRITE OPT_FILE \"$x\"" } @deps) || "\@ !"; return <<"EOF" $shlib.EXE : $lib.OLB $deps \$(PERL) $translatesyms_pl \$(BLDDIR)CXX\$DEMANGLER_DB. < $defs[0] > $defs[0]-translated OPEN/WRITE/SHARE=READ OPT_FILE $lib-components.OPT $write_opt1 $write_opt2 CLOSE OPT_FILE LINK \$(LIB_LDFLAGS)/SHARE=\$\@ $defs[0]-translated/OPT,- $lib-components.OPT/OPT \$(LIB_EX_LIBS) DELETE $defs[0]-translated;*,$lib-components.OPT;* PURGE $shlib.EXE,$shlib.MAP EOF . ($config{target} =~ m|alpha| ? "" : <<"EOF" SET IMAGE/FLAGS=(NOCALL_DEBUG) \$\@ EOF ); } sub obj2dso { my %args = @_; my $lib = $args{lib}; my $libd = dirname($lib); my $libn = basename($lib); (my $libn_nolib = $libn) =~ s/^lib//; my @objs = map { (my $x = $_) =~ s|\.o$|.OBJ|; $x } @{$args{objs}}; my @deps = compute_lib_depends(@{$args{deps}}); my $deps = join(", -\n\t\t", @objs, @deps); my $shlib_target = $disabled{shared} ? "" : $target{shared_target}; my $engine_opt = abs2rel(rel2abs(catfile($config{sourcedir}, "VMS", "engine.opt")), rel2abs($config{builddir})); # The "[]" hack is because in .OPT files, each line inherits the # previous line's file spec as default, so if no directory spec # is present in the current line and the previous line has one that # doesn't apply, you're in for a surprise. my $write_opt1 = join(",-\"\n\t", map { my $x = $_ =~ /\[/ ? $_ : "[]".$_; "WRITE OPT_FILE \"$x" } @objs). "\""; my $write_opt2 = join("\n\t", map { my $x = $_ =~ /\[/ ? $_ : "[]".$_; $x =~ s|(\.EXE)|$1/SHARE|; $x =~ s|(\.OLB)|$1/LIB|; "WRITE OPT_FILE \"$x\"" } @deps) || "\@ !"; return <<"EOF" $lib.EXE : $deps OPEN/WRITE/SHARE=READ OPT_FILE $lib.OPT TYPE $engine_opt /OUTPUT=OPT_FILE: $write_opt1 $write_opt2 CLOSE OPT_FILE LINK \$(DSO_LDFLAGS)/SHARE=\$\@ $lib.OPT/OPT \$(DSO_EX_LIBS) - PURGE $lib.EXE,$lib.OPT,$lib.MAP EOF . ($config{target} =~ m|alpha| ? "" : <<"EOF" SET IMAGE/FLAGS=(NOCALL_DEBUG) \$\@ EOF ); } sub obj2lib { my %args = @_; (my $lib = $args{lib}) =~ s/\.a$//; my @objs = map { (my $x = $_) =~ s|\.o$|.OBJ|; $x } @{$args{objs}}; my $objs = join(", -\n\t\t", @objs); my $fill_lib = join("\n\t", (map { "LIBRARY/REPLACE $lib.OLB $_" } @objs)); return <<"EOF"; $lib.OLB : $objs LIBRARY/CREATE/OBJECT $lib.OLB $fill_lib - PURGE $lib.OLB EOF } sub obj2bin { my %args = @_; my $bin = $args{bin}; my $bind = dirname($bin); my $binn = basename($bin); my @objs = map { (my $x = $_) =~ s|\.o$|.OBJ|; $x } @{$args{objs}}; my $objs = join(",", @objs); my @deps = compute_lib_depends(@{$args{deps}}); my $deps = join(", -\n\t\t", @objs, @deps); my $olb_count = scalar grep(m|\.OLB$|, @deps); my $analyse_objs = "@ !"; if ($olb_count > 0) { my $analyse_quals = $config{target} =~ m|alpha| ? "/GSD" : "/SECTIONS=SYMTAB"; $analyse_objs = "- pipe ANALYSE/OBJECT$analyse_quals $objs | SEARCH SYS\$INPUT \"\"\"main\"\"\" ; nomain = \$severity .NE. 1" } # The "[]" hack is because in .OPT files, each line inherits the # previous line's file spec as default, so if no directory spec # is present in the current line and the previous line has one that # doesn't apply, you're in for a surprise. my $write_opt1 = join(",-\"\n\t", map { my $x = $_ =~ /\[/ ? $_ : "[]".$_; "\@ WRITE OPT_FILE \"$x" } @objs). "\""; my $write_opt2 = join("\n\t", map { my @lines = (); my $x = $_ =~ /\[/ ? $_ : "[]".$_; if ($x =~ m|\.EXE$|) { push @lines, "\@ WRITE OPT_FILE \"$x/SHARE\""; } elsif ($x =~ m|\.OLB$|) { (my $l = $x) =~ s/\W/_/g; push @lines, "\@ IF nomain THEN WRITE OPT_FILE \"$x/LIB\$(INCLUDE_MAIN_$l)\"", "\@ IF .NOT. nomain THEN WRITE OPT_FILE \"$x/LIB\"" } @lines } @deps) || "\@ !"; # The linking commands looks a bit complex, but it's for good reason. # When you link, say, foo.obj, bar.obj and libsomething.exe/share, and # bar.obj happens to have a symbol that also exists in libsomething.exe, # the linker will warn about it, loudly, and will then choose to pick # the first copy encountered (the one in bar.obj in this example). # On Unix and on Windows, the corresponding maneuvre goes through # silently with the same effect. # With some test programs, made for checking the internals of OpenSSL, # we do this kind of linking deliberately, picking a few specific object # files from within [.crypto] or [.ssl] so we can reach symbols that are # otherwise unreachable (since the shareable images only exports the # symbols listed in [.util]*.num), and then with the shared libraries # themselves. So we need to silence the warning about multiply defined # symbols, to mimic the way linking work on Unix and Windows, and so # the build isn't interrupted (MMS stops when warnings are signaled, # by default), and so someone building doesn't have to worry where it # isn't necessary. If there are other warnings, however, we show them # and let it break the build. return <<"EOF" $bin.EXE : $deps $analyse_objs @ OPEN/WRITE/SHARE=READ OPT_FILE $bin.OPT $write_opt1 $write_opt2 @ CLOSE OPT_FILE TYPE $bin.opt ! For debugging - pipe SPAWN/WAIT/NOLOG/OUT=$bin.LINKLOG - LINK \$(BIN_LDFLAGS)/EXEC=\$\@ $bin.OPT/OPT \$(BIN_EX_LIBS) ; - link_status = \$status ; link_severity = link_status .AND. 7 @ search_severity = 1 -@ IF link_severity .EQ. 0 THEN - pipe SEARCH $bin.LINKLOG "%","-"/MATCH=AND | - SPAWN/WAIT/NOLOG/OUT=NLA0: - SEARCH SYS\$INPUT: "-W-MULDEF,"/MATCH=NOR ; - search_severity = \$severity @ ! search_severity is 3 when the last search didn't find any matching @ ! string: %SEARCH-I-NOMATCHES, no strings matched @ ! If that was the result, we pretend linking got through without @ ! fault or warning. @ IF search_severity .EQ. 3 THEN link_severity = 1 @ ! At this point, if link_severity shows that there was a fault @ ! or warning, make sure to restore the linking status. -@ IF .NOT. link_severity THEN TYPE $bin.LINKLOG -@ DELETE $bin.LINKLOG;* @ IF .NOT. link_severity THEN SPAWN/WAIT/NOLOG EXIT 'link_status' - PURGE $bin.EXE,$bin.OPT EOF . ($config{target} =~ m|alpha| ? "" : <<"EOF" SET IMAGE/FLAGS=(NOCALL_DEBUG) \$\@ EOF ); } sub in2script { my %args = @_; my $script = $args{script}; return "" if grep { $_ eq $script } @{$args{sources}}; # No overwrite! my $sources = join(" ", @{$args{sources}}); my $dofile = abs2rel(rel2abs(catfile($config{sourcedir}, "util", "dofile.pl")), rel2abs($config{builddir})); return <<"EOF"; $script : $sources \$(PERL) "-I\$(BLDDIR)" "-Mconfigdata" $dofile - "-o$target{build_file}" $sources > $script SET FILE/PROT=(S:RWED,O:RWED,G:RE,W:RE) $script PURGE $script EOF } "" # Important! This becomes part of the template result. -} openssl-1.1.1f/Configurations/shared-info.pl000066400000000000000000000053471364063235100211050ustar00rootroot00000000000000#! /usr/bin/env perl # -*- mode: perl; -*- # Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # This is a collection of extra attributes to be used as input for creating # shared libraries, currently on any Unix variant, including Unix like # environments on Windows. sub detect_gnu_ld { my @lines = `$config{CROSS_COMPILE}$config{CC} -Wl,-V /dev/null 2>&1`; return grep /^GNU ld/, @lines; } sub detect_gnu_cc { my @lines = `$config{CROSS_COMPILE}$config{CC} -v 2>&1`; return grep /gcc/, @lines; } my %shared_info; %shared_info = ( 'gnu-shared' => { shared_ldflag => '-shared -Wl,-Bsymbolic', shared_sonameflag => '-Wl,-soname=', }, 'linux-shared' => sub { return { %{$shared_info{'gnu-shared'}}, shared_defflag => '-Wl,--version-script=', }; }, 'bsd-gcc-shared' => sub { return $shared_info{'linux-shared'}; }, 'bsd-shared' => sub { return $shared_info{'gnu-shared'} if detect_gnu_ld(); return { shared_ldflag => '-shared -nostdlib', }; }, 'darwin-shared' => { module_ldflags => '-bundle', shared_ldflag => '-dynamiclib -current_version $(SHLIB_VERSION_NUMBER) -compatibility_version $(SHLIB_VERSION_NUMBER)', shared_sonameflag => '-install_name $(INSTALLTOP)/$(LIBDIR)/', }, 'cygwin-shared' => { shared_ldflag => '-shared -Wl,--enable-auto-image-base', shared_impflag => '-Wl,--out-implib=', }, 'mingw-shared' => sub { return { %{$shared_info{'cygwin-shared'}}, # def_flag made to empty string so it still generates # something shared_defflag => '', }; }, 'alpha-osf1-shared' => sub { return $shared_info{'gnu-shared'} if detect_gnu_ld(); return { module_ldflags => '-shared -Wl,-Bsymbolic', shared_ldflag => '-shared -Wl,-Bsymbolic -set_version $(SHLIB_VERSION_NUMBER)', }; }, 'svr3-shared' => sub { return $shared_info{'gnu-shared'} if detect_gnu_ld(); return { shared_ldflag => '-G', shared_sonameflag => '-h ', }; }, 'svr5-shared' => sub { return $shared_info{'gnu-shared'} if detect_gnu_ld(); return { shared_ldflag => detect_gnu_cc() ? '-shared' : '-G', shared_sonameflag => '-h ', }; }, ); openssl-1.1.1f/Configurations/unix-Makefile.tmpl000066400000000000000000001527361364063235100217520ustar00rootroot00000000000000## ## Makefile for OpenSSL ## ## {- join("\n## ", @autowarntext) -} {- our $objext = $target{obj_extension} || ".o"; our $depext = $target{dep_extension} || ".d"; our $exeext = $target{exe_extension} || ""; our $libext = $target{lib_extension} || ".a"; our $shlibext = $target{shared_extension} || ".so"; our $shlibvariant = $target{shlib_variant} || ""; our $shlibextsimple = $target{shared_extension_simple} || ".so"; our $shlibextimport = $target{shared_import_extension} || ""; our $dsoext = $target{dso_extension} || ".so"; our $makedepprog = $disabled{makedepend} ? undef : $config{makedepprog}; # $mingw_installroot and $mingw_commonroot is relevant for mingw only. my $build_scheme = $target{build_scheme}; my $install_flavour = $build_scheme->[$#$build_scheme]; # last element my $mingw_installenv = $install_flavour eq "WOW" ? "ProgramFiles(x86)" : "ProgramW6432"; my $mingw_commonenv = $install_flavour eq "WOW" ? "CommonProgramFiles(x86)" : "CommonProgramW6432"; our $mingw_installroot = defined($ENV{$mingw_installenv}) ? $mingw_installenv : 'ProgramFiles'; our $mingw_commonroot = defined($ENV{$mingw_commonenv}) ? $mingw_commonenv : 'CommonProgramFiles'; my $mingw_installdflt = $install_flavour eq "WOW" ? "C:/Program Files (x86)" : "C:/Program Files"; my $mingw_commondflt = "$mingw_installdflt/Common Files"; # expand variables early $mingw_installroot = $ENV{$mingw_installroot} // $mingw_installdflt; $mingw_commonroot = $ENV{$mingw_commonroot} // $mingw_commondflt; sub windowsdll { $config{target} =~ /^(?:Cygwin|mingw)/ } # Shared AIX support is special. We put libcrypto[64].so.ver into # libcrypto.a and use libcrypto_a.a as static one. sub sharedaix { !$disabled{shared} && $config{target} =~ /^aix/ } our $sover_dirname = $config{shlib_version_number}; $sover_dirname =~ s|\.|_|g if $config{target} =~ /^mingw/; # shlib and shlib_simple both take a static library name and figure # out what the shlib name should be. # # When OpenSSL is configured "no-shared", these functions will just # return empty lists, making them suitable to join(). # # With Windows DLL producers, shlib($libname) will return the shared # library name (which usually is different from the static library # name) with the default shared extension appended to it, while # shlib_simple($libname) will return the static library name with # the shared extension followed by ".a" appended to it. The former # result is used as the runtime shared library while the latter is # used as the DLL import library. # # On all Unix systems, shlib($libname) will return the library name # with the default shared extension, while shlib_simple($libname) # will return the name from shlib($libname) with any SO version number # removed. On some systems, they may therefore return the exact same # string. sub shlib { my $lib = shift; return () if $disabled{shared} || $lib =~ /\.a$/; return $unified_info{sharednames}->{$lib}. $shlibvariant. '$(SHLIB_EXT)'; } sub shlib_simple { my $lib = shift; return () if $disabled{shared} || $lib =~ /\.a$/; if (windowsdll()) { return $lib . '$(SHLIB_EXT_IMPORT)'; } return $lib . '$(SHLIB_EXT_SIMPLE)'; } # Easy fixing of static library names sub lib { (my $lib = shift) =~ s/\.a$//; return $lib . $libext; } # dso is a complement to shlib / shlib_simple that returns the # given libname with the simple shared extension (possible SO version # removed). This differs from shlib_simple() by being unconditional. sub dso { my $engine = shift; return $engine . $dsoext; } # This makes sure things get built in the order they need # to. You're welcome. sub dependmagic { my $target = shift; return "$target: build_generated\n\t\$(MAKE) depend && \$(MAKE) _$target\n_$target"; } ''; -} PLATFORM={- $config{target} -} OPTIONS={- $config{options} -} CONFIGURE_ARGS=({- join(", ",quotify_l(@{$config{perlargv}})) -}) SRCDIR={- $config{sourcedir} -} BLDDIR={- $config{builddir} -} VERSION={- $config{version} -} MAJOR={- $config{major} -} MINOR={- $config{minor} -} SHLIB_VERSION_NUMBER={- $config{shlib_version_number} -} SHLIB_VERSION_HISTORY={- $config{shlib_version_history} -} SHLIB_MAJOR={- $config{shlib_major} -} SHLIB_MINOR={- $config{shlib_minor} -} SHLIB_TARGET={- $target{shared_target} -} SHLIB_EXT={- $shlibext -} SHLIB_EXT_SIMPLE={- $shlibextsimple -} SHLIB_EXT_IMPORT={- $shlibextimport -} LIBS={- join(" ", map { lib($_) } @{$unified_info{libraries}}) -} SHLIBS={- join(" ", map { shlib($_) } @{$unified_info{libraries}}) -} SHLIB_INFO={- join(" ", map { "\"".shlib($_).";".shlib_simple($_)."\"" } @{$unified_info{libraries}}) -} ENGINES={- join(" ", map { dso($_) } @{$unified_info{engines}}) -} PROGRAMS={- join(" ", map { $_.$exeext } @{$unified_info{programs}}) -} SCRIPTS={- join(" ", @{$unified_info{scripts}}) -} {- output_off() if $disabled{makedepend}; "" -} DEPS={- join(" ", map { (my $x = $_) =~ s|\.o$|$depext|; $x; } grep { $unified_info{sources}->{$_}->[0] =~ /\.c$/ } keys %{$unified_info{sources}}); -} {- output_on() if $disabled{makedepend}; "" -} GENERATED_MANDATORY={- join(" ", @{$unified_info{depends}->{""}}) -} GENERATED={- # common0.tmpl provides @generated join(" ", @generated ) -} INSTALL_LIBS={- join(" ", map { lib($_) } @{$unified_info{install}->{libraries}}) -} INSTALL_SHLIBS={- join(" ", map { shlib($_) } @{$unified_info{install}->{libraries}}) -} INSTALL_SHLIB_INFO={- join(" ", map { "\"".shlib($_).";".shlib_simple($_)."\"" } @{$unified_info{install}->{libraries}}) -} INSTALL_ENGINES={- join(" ", map { dso($_) } @{$unified_info{install}->{engines}}) -} INSTALL_PROGRAMS={- join(" ", map { $_.$exeext } @{$unified_info{install}->{programs}}) -} {- output_off() if $disabled{apps}; "" -} BIN_SCRIPTS=$(BLDDIR)/tools/c_rehash MISC_SCRIPTS=$(BLDDIR)/apps/CA.pl $(BLDDIR)/apps/tsget.pl:tsget {- output_on() if $disabled{apps}; "" -} APPS_OPENSSL={- use File::Spec::Functions; catfile("apps","openssl") -} # DESTDIR is for package builders so that they can configure for, say, # /usr/ and yet have everything installed to /tmp/somedir/usr/. # Normally it is left empty. DESTDIR= {- output_off() if $config{target} =~ /^mingw/; "" -} # Do not edit these manually. Use Configure with --prefix or --openssldir # to change this! Short explanation in the top comment in Configure INSTALLTOP={- # $prefix is used in the OPENSSLDIR perl snippet # our $prefix = $config{prefix} || "/usr/local"; $prefix -} OPENSSLDIR={- # # The logic here is that if no --openssldir was given, # OPENSSLDIR will get the value from $prefix plus "/ssl". # If --openssldir was given and the value is an absolute # path, OPENSSLDIR will get its value without change. # If the value from --openssldir is a relative path, # OPENSSLDIR will get $prefix with the --openssldir # value appended as a subdirectory. # use File::Spec::Functions; our $openssldir = $config{openssldir} ? (file_name_is_absolute($config{openssldir}) ? $config{openssldir} : catdir($prefix, $config{openssldir})) : catdir($prefix, "ssl"); $openssldir -} LIBDIR={- our $libdir = $config{libdir}; unless ($libdir) { # # if $prefix/lib$target{multilib} is not an existing # directory, then assume that it's not searched by linker # automatically, in which case adding $target{multilib} suffix # causes more grief than we're ready to tolerate, so don't... our $multilib = -d "$prefix/lib$target{multilib}" ? $target{multilib} : ""; $libdir = "lib$multilib"; } file_name_is_absolute($libdir) ? "" : $libdir -} # $(libdir) is chosen to be compatible with the GNU coding standards libdir={- file_name_is_absolute($libdir) ? $libdir : '$(INSTALLTOP)/$(LIBDIR)' -} ENGINESDIR=$(libdir)/engines-{- $sover_dirname -} # Convenience variable for those who want to set the rpath in shared # libraries and applications LIBRPATH=$(libdir) {- output_on() if $config{target} =~ /^mingw/; output_off() if $config{target} !~ /^mingw/; "" -} # Do not edit these manually. Use Configure with --prefix or --openssldir # to change this! Short explanation in the top comment in Configure INSTALLTOP_dev={- # $prefix is used in the OPENSSLDIR perl snippet # use File::Spec::Win32; my $prefix_default = "$mingw_installroot/OpenSSL"; our $prefix = File::Spec::Win32->canonpath($config{prefix} || $prefix_default); our ($prefix_dev, $prefix_dir, $prefix_file) = File::Spec::Win32->splitpath($prefix, 1); $prefix =~ s|\\|/|g; $prefix_dir =~ s|\\|/|g; $prefix_dev -} INSTALLTOP_dir={- my $x = File::Spec::Win32->canonpath($prefix_dir); $x =~ s|\\|/|g; $x -} OPENSSLDIR_dev={- # # The logic here is that if no --openssldir was given, # OPENSSLDIR will get the value "$mingw_commonroot/SSL". # If --openssldir was given and the value is an absolute # path, OPENSSLDIR will get its value without change. # If the value from --openssldir is a relative path, # OPENSSLDIR will get $prefix with the --openssldir # value appended as a subdirectory. # use File::Spec::Win32; our $openssldir = $config{openssldir} ? (File::Spec::Win32->file_name_is_absolute($config{openssldir}) ? File::Spec::Win32->canonpath($config{openssldir}) : File::Spec::Win32->catdir($prefix, $config{openssldir})) : File::Spec::Win32->canonpath("$mingw_commonroot/SSL"); our ($openssldir_dev, $openssldir_dir, $openssldir_file) = File::Spec::Win32->splitpath($openssldir, 1); $openssldir =~ s|\\|/|g; $openssldir_dir =~ s|\\|/|g; $openssldir_dev -} OPENSSLDIR_dir={- my $x = File::Spec::Win32->canonpath($openssldir_dir); $x =~ s|\\|/|g; $x -} LIBDIR={- our $libdir = $config{libdir} || "lib"; File::Spec::Win32->file_name_is_absolute($libdir) ? "" : $libdir -} ENGINESDIR_dev={- use File::Spec::Win32; our $enginesdir = File::Spec::Win32->catdir($prefix,$libdir, "engines-$sover_dirname"); our ($enginesdir_dev, $enginesdir_dir, $enginesdir_file) = File::Spec::Win32->splitpath($enginesdir, 1); $enginesdir =~ s|\\|/|g; $enginesdir_dir =~ s|\\|/|g; $enginesdir_dev -} ENGINESDIR_dir={- my $x = File::Spec::Win32->canonpath($enginesdir_dir); $x =~ s|\\|/|g; $x -} # In a Windows environment, $(DESTDIR) is harder to contatenate with other # directory variables, because both may contain devices. What we do here is # to adapt INSTALLTOP, OPENSSLDIR and ENGINESDIR depending on if $(DESTDIR) # has a value or not, to ensure that concatenation will always work further # down. ifneq "$(DESTDIR)" "" INSTALLTOP=$(INSTALLTOP_dir) OPENSSLDIR=$(OPENSSLDIR_dir) ENGINESDIR=$(ENGINESDIR_dir) else INSTALLTOP=$(INSTALLTOP_dev)$(INSTALLTOP_dir) OPENSSLDIR=$(OPENSSLDIR_dev)$(OPENSSLDIR_dir) ENGINESDIR=$(ENGINESDIR_dev)$(ENGINESDIR_dir) endif # $(libdir) is chosen to be compatible with the GNU coding standards libdir={- File::Spec::Win32->file_name_is_absolute($libdir) ? $libdir : '$(INSTALLTOP)/$(LIBDIR)' -} {- output_on() if $config{target} !~ /^mingw/; "" -} MANDIR=$(INSTALLTOP)/share/man DOCDIR=$(INSTALLTOP)/share/doc/$(BASENAME) HTMLDIR=$(DOCDIR)/html # MANSUFFIX is for the benefit of anyone who may want to have a suffix # appended after the manpage file section number. "ssl" is popular, # resulting in files such as config.5ssl rather than config.5. MANSUFFIX= HTMLSUFFIX=html # For "optional" echo messages, to get "real" silence ECHO = echo ##### User defined commands and flags ################################ # We let the C compiler driver to take care of .s files. This is done in # order to be excused from maintaining a separate set of architecture # dependent assembler flags. E.g. if you throw -mcpu=ultrasparc at SPARC # gcc, then the driver will automatically translate it to -xarch=v8plus # and pass it down to assembler. In any case, we do not define AS or # ASFLAGS for this reason. CROSS_COMPILE={- $config{CROSS_COMPILE} -} CC=$(CROSS_COMPILE){- $config{CC} -} CXX={- $config{CXX} ? "\$(CROSS_COMPILE)$config{CXX}" : '' -} CPPFLAGS={- our $cppflags1 = join(" ", (map { "-D".$_} @{$config{CPPDEFINES}}), (map { "-I".$_} @{$config{CPPINCLUDES}}), @{$config{CPPFLAGS}}) -} CFLAGS={- join(' ', @{$config{CFLAGS}}) -} CXXFLAGS={- join(' ', @{$config{CXXFLAGS}}) -} LDFLAGS= {- join(' ', @{$config{LDFLAGS}}) -} EX_LIBS= {- join(' ', @{$config{LDLIBS}}) -} MAKEDEPEND={- $config{makedepprog} -} PERL={- $config{PERL} -} AR=$(CROSS_COMPILE){- $config{AR} -} ARFLAGS= {- join(' ', @{$config{ARFLAGS}}) -} RANLIB={- $config{RANLIB} ? "\$(CROSS_COMPILE)$config{RANLIB}" : "true"; -} RC= $(CROSS_COMPILE){- $config{RC} -} RCFLAGS={- join(' ', @{$config{RCFLAGS}}) -} {- $target{shared_rcflag} -} RM= rm -f RMDIR= rmdir TAR= {- $target{TAR} || "tar" -} TARFLAGS= {- $target{TARFLAGS} -} BASENAME= openssl NAME= $(BASENAME)-$(VERSION) # Relative to $(SRCDIR) TARFILE= ../$(NAME).tar ##### Project flags ################################################## # Variables starting with CNF_ are common variables for all product types CNF_CPPFLAGS={- our $cppflags2 = join(' ', $target{cppflags} || (), (map { "-D".$_} @{$target{defines}}, @{$config{defines}}), (map { "-I".$_} @{$target{includes}}, @{$config{includes}}), @{$config{cppflags}}) -} CNF_CFLAGS={- join(' ', $target{cflags} || (), @{$config{cflags}}) -} CNF_CXXFLAGS={- join(' ', $target{cxxflags} || (), @{$config{cxxflags}}) -} CNF_LDFLAGS={- join(' ', $target{lflags} || (), @{$config{lflags}}) -} CNF_EX_LIBS={- join(' ', $target{ex_libs} || (), @{$config{ex_libs}}) -} # Variables starting with LIB_ are used to build library object files # and shared libraries. # Variables starting with DSO_ are used to build DSOs and their object files. # Variables starting with BIN_ are used to build programs and their object # files. LIB_CPPFLAGS={- our $lib_cppflags = join(' ', $target{lib_cppflags} || (), $target{shared_cppflag} || (), (map { '-D'.$_ } @{$config{lib_defines} || ()}, @{$config{shared_defines} || ()}), @{$config{lib_cppflags}}, @{$config{shared_cppflag}}); join(' ', $lib_cppflags, (map { '-D'.$_ } 'OPENSSLDIR="\"$(OPENSSLDIR)\""', 'ENGINESDIR="\"$(ENGINESDIR)\""'), '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} LIB_CFLAGS={- join(' ', $target{lib_cflags} || (), $target{shared_cflag} || (), @{$config{lib_cflags}}, @{$config{shared_cflag}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} LIB_CXXFLAGS={- join(' ', $target{lib_cxxflags} || (), $target{shared_cxxflag} || (), @{$config{lib_cxxflags}}, @{$config{shared_cxxflag}}, '$(CNF_CXXFLAGS)', '$(CXXFLAGS)') -} LIB_LDFLAGS={- join(' ', $target{shared_ldflag} || (), $config{shared_ldflag} || (), '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} LIB_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) DSO_CPPFLAGS={- join(' ', $target{dso_cppflags} || (), $target{module_cppflags} || (), (map { '-D'.$_ } @{$config{dso_defines} || ()}, @{$config{module_defines} || ()}), @{$config{dso_cppflags}}, @{$config{module_cppflags}}, '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} DSO_CFLAGS={- join(' ', $target{dso_cflags} || (), $target{module_cflags} || (), @{$config{dso_cflags}}, @{$config{module_cflags}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} DSO_CXXFLAGS={- join(' ', $target{dso_cxxflags} || (), $target{module_cxxflags} || (), @{$config{dso_cxxflags}}, @{$config{module_cxxflag}}, '$(CNF_CXXFLAGS)', '$(CXXFLAGS)') -} DSO_LDFLAGS={- join(' ', $target{dso_ldflags} || (), $target{module_ldflags} || (), @{$config{dso_ldflags}}, @{$config{module_ldflags}}, '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} DSO_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) BIN_CPPFLAGS={- join(' ', $target{bin_cppflags} || (), (map { '-D'.$_ } @{$config{bin_defines} || ()}), @{$config{bin_cppflags}}, '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} BIN_CFLAGS={- join(' ', $target{bin_cflags} || (), @{$config{bin_cflags}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} BIN_CXXFLAGS={- join(' ', $target{bin_cxxflags} || (), @{$config{bin_cxxflags}}, '$(CNF_CXXFLAGS)', '$(CXXFLAGS)') -} BIN_LDFLAGS={- join(' ', $target{bin_lflags} || (), @{$config{bin_lflags}}, '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} BIN_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) # CPPFLAGS_Q is used for one thing only: to build up buildinf.h CPPFLAGS_Q={- $cppflags1 =~ s|([\\"])|\\$1|g; $cppflags2 =~ s|([\\"])|\\$1|g; $lib_cppflags =~ s|([\\"])|\\$1|g; join(' ', $lib_cppflags || (), $cppflags2 || (), $cppflags1 || ()) -} PERLASM_SCHEME= {- $target{perlasm_scheme} -} # For x86 assembler: Set PROCESSOR to 386 if you want to support # the 80386. PROCESSOR= {- $config{processor} -} # We want error [and other] messages in English. Trouble is that make(1) # doesn't pass macros down as environment variables unless there already # was corresponding variable originally set. In other words we can only # reassign environment variables, but not set new ones, not in portable # manner that is. That's why we reassign several, just to be sure... LC_ALL=C LC_MESSAGES=C LANG=C # The main targets ################################################### {- dependmagic('all'); -}: build_libs_nodep build_engines_nodep build_programs_nodep link-utils {- dependmagic('build_libs'); -}: build_libs_nodep {- dependmagic('build_engines'); -}: build_engines_nodep {- dependmagic('build_programs'); -}: build_programs_nodep build_generated: $(GENERATED_MANDATORY) build_libs_nodep: libcrypto.pc libssl.pc openssl.pc build_engines_nodep: $(ENGINES) build_programs_nodep: $(PROGRAMS) $(SCRIPTS) # Kept around for backward compatibility build_apps build_tests: build_programs # Convenience target to prebuild all generated files, not just the mandatory # ones build_all_generated: $(GENERATED_MANDATORY) $(GENERATED) @ : {- output_off() if $disabled{makedepend}; "" -} @echo "Warning: consider configuring with no-makedepend, because if" @echo " target system doesn't have $(PERL)," @echo " then make will fail..." @ : {- output_on() if $disabled{makedepend}; "" -} test: tests {- dependmagic('tests'); -}: build_programs_nodep build_engines_nodep link-utils @ : {- output_off() if $disabled{tests}; "" -} ( cd test; \ mkdir -p test-runs; \ SRCTOP=../$(SRCDIR) \ BLDTOP=../$(BLDDIR) \ RESULT_D=test-runs \ PERL="$(PERL)" \ EXE_EXT={- $exeext -} \ OPENSSL_ENGINES=`cd ../$(BLDDIR)/engines 2>/dev/null && pwd` \ OPENSSL_DEBUG_MEMORY=on \ $(PERL) ../$(SRCDIR)/test/run_tests.pl $(TESTS) ) @ : {- if ($disabled{tests}) { output_on(); } else { output_off(); } "" -} @echo "Tests are not supported with your chosen Configure options" @ : {- output_on() if !$disabled{tests}; "" -} list-tests: @ : {- output_off() if $disabled{tests}; "" -} @SRCTOP="$(SRCDIR)" \ $(PERL) $(SRCDIR)/test/run_tests.pl list @ : {- if ($disabled{tests}) { output_on(); } else { output_off(); } "" -} @echo "Tests are not supported with your chosen Configure options" @ : {- output_on() if !$disabled{tests}; "" -} install: install_sw install_ssldirs install_docs uninstall: uninstall_docs uninstall_sw libclean: @set -e; for s in $(SHLIB_INFO); do \ if [ "$$s" = ";" ]; then continue; fi; \ s1=`echo "$$s" | cut -f1 -d";"`; \ s2=`echo "$$s" | cut -f2 -d";"`; \ $(ECHO) $(RM) $$s1; {- output_off() unless windowsdll(); "" -}\ $(RM) apps/$$s1; \ $(RM) test/$$s1; \ $(RM) fuzz/$$s1; {- output_on() unless windowsdll(); "" -}\ $(RM) $$s1; \ if [ "$$s1" != "$$s2" ]; then \ $(ECHO) $(RM) $$s2; \ $(RM) $$s2; \ fi; \ done $(RM) $(LIBS) $(RM) *.map clean: libclean $(RM) $(PROGRAMS) $(TESTPROGS) $(ENGINES) $(SCRIPTS) $(RM) $(GENERATED_MANDATORY) $(GENERATED) -$(RM) `find . -name '*{- $depext -}' \! -name '.*' \! -type d -print` -$(RM) `find . -name '*{- $objext -}' \! -name '.*' \! -type d -print` $(RM) core $(RM) tags TAGS doc-nits $(RM) -r test/test-runs $(RM) openssl.pc libcrypto.pc libssl.pc -$(RM) `find . -type l \! -name '.*' -print` $(RM) $(TARFILE) distclean: clean $(RM) configdata.pm $(RM) Makefile # We check if any depfile is newer than Makefile and decide to # concatenate only if that is true. depend: @: {- output_off() if $disabled{makedepend}; "" -} @$(PERL) $(SRCDIR)/util/add-depends.pl {- defined $makedepprog && $makedepprog =~ /\/makedepend/ ? 'makedepend' : 'gcc' -} @: {- output_on() if $disabled{makedepend}; "" -} # Install helper targets ############################################# install_sw: install_dev install_engines install_runtime uninstall_sw: uninstall_runtime uninstall_engines uninstall_dev install_docs: install_man_docs install_html_docs uninstall_docs: uninstall_man_docs uninstall_html_docs $(RM) -r "$(DESTDIR)$(DOCDIR)" install_ssldirs: @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(OPENSSLDIR)/certs" @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(OPENSSLDIR)/private" @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(OPENSSLDIR)/misc" @set -e; for x in dummy $(MISC_SCRIPTS); do \ if [ "$$x" = "dummy" ]; then continue; fi; \ x1=`echo "$$x" | cut -f1 -d:`; \ x2=`echo "$$x" | cut -f2 -d:`; \ fn=`basename $$x1`; \ $(ECHO) "install $$x1 -> $(DESTDIR)$(OPENSSLDIR)/misc/$$fn"; \ cp $$x1 "$(DESTDIR)$(OPENSSLDIR)/misc/$$fn.new"; \ chmod 755 "$(DESTDIR)$(OPENSSLDIR)/misc/$$fn.new"; \ mv -f "$(DESTDIR)$(OPENSSLDIR)/misc/$$fn.new" \ "$(DESTDIR)$(OPENSSLDIR)/misc/$$fn"; \ if [ "$$x1" != "$$x2" ]; then \ ln=`basename "$$x2"`; \ : {- output_off() unless windowsdll(); "" -}; \ $(ECHO) "copy $(DESTDIR)$(OPENSSLDIR)/misc/$$ln -> $(DESTDIR)$(OPENSSLDIR)/misc/$$fn"; \ cp "$(DESTDIR)$(OPENSSLDIR)/misc/$$fn" "$(DESTDIR)$(OPENSSLDIR)/misc/$$ln"; \ : {- output_on() unless windowsdll(); output_off() if windowsdll(); "" -}; \ $(ECHO) "link $(DESTDIR)$(OPENSSLDIR)/misc/$$ln -> $(DESTDIR)$(OPENSSLDIR)/misc/$$fn"; \ ln -sf $$fn "$(DESTDIR)$(OPENSSLDIR)/misc/$$ln"; \ : {- output_on() if windowsdll(); "" -}; \ fi; \ done @$(ECHO) "install $(SRCDIR)/apps/openssl.cnf -> $(DESTDIR)$(OPENSSLDIR)/openssl.cnf.dist" @cp $(SRCDIR)/apps/openssl.cnf "$(DESTDIR)$(OPENSSLDIR)/openssl.cnf.new" @chmod 644 "$(DESTDIR)$(OPENSSLDIR)/openssl.cnf.new" @mv -f "$(DESTDIR)$(OPENSSLDIR)/openssl.cnf.new" "$(DESTDIR)$(OPENSSLDIR)/openssl.cnf.dist" @if [ ! -f "$(DESTDIR)$(OPENSSLDIR)/openssl.cnf" ]; then \ $(ECHO) "install $(SRCDIR)/apps/openssl.cnf -> $(DESTDIR)$(OPENSSLDIR)/openssl.cnf"; \ cp $(SRCDIR)/apps/openssl.cnf "$(DESTDIR)$(OPENSSLDIR)/openssl.cnf"; \ chmod 644 "$(DESTDIR)$(OPENSSLDIR)/openssl.cnf"; \ fi @$(ECHO) "install $(SRCDIR)/apps/ct_log_list.cnf -> $(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf.dist" @cp $(SRCDIR)/apps/ct_log_list.cnf "$(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf.new" @chmod 644 "$(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf.new" @mv -f "$(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf.new" "$(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf.dist" @if [ ! -f "$(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf" ]; then \ $(ECHO) "install $(SRCDIR)/apps/ct_log_list.cnf -> $(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf"; \ cp $(SRCDIR)/apps/ct_log_list.cnf "$(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf"; \ chmod 644 "$(DESTDIR)$(OPENSSLDIR)/ct_log_list.cnf"; \ fi install_dev: install_runtime_libs @[ -n "$(INSTALLTOP)" ] || (echo INSTALLTOP should not be empty; exit 1) @$(ECHO) "*** Installing development files" @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(INSTALLTOP)/include/openssl" @ : {- output_off() unless grep { $_ eq "OPENSSL_USE_APPLINK" } (@{$target{defines}}, @{$config{defines}}); "" -} @$(ECHO) "install $(SRCDIR)/ms/applink.c -> $(DESTDIR)$(INSTALLTOP)/include/openssl/applink.c" @cp $(SRCDIR)/ms/applink.c "$(DESTDIR)$(INSTALLTOP)/include/openssl/applink.c" @chmod 644 "$(DESTDIR)$(INSTALLTOP)/include/openssl/applink.c" @ : {- output_on() unless grep { $_ eq "OPENSSL_USE_APPLINK" } (@{$target{defines}}, @{$config{defines}}); "" -} @set -e; for i in $(SRCDIR)/include/openssl/*.h \ $(BLDDIR)/include/openssl/*.h; do \ fn=`basename $$i`; \ $(ECHO) "install $$i -> $(DESTDIR)$(INSTALLTOP)/include/openssl/$$fn"; \ cp $$i "$(DESTDIR)$(INSTALLTOP)/include/openssl/$$fn"; \ chmod 644 "$(DESTDIR)$(INSTALLTOP)/include/openssl/$$fn"; \ done @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(libdir)" @set -e; for l in $(INSTALL_LIBS); do \ fn=`basename $$l`; \ $(ECHO) "install $$l -> $(DESTDIR)$(libdir)/$$fn"; \ cp $$l "$(DESTDIR)$(libdir)/$$fn.new"; \ $(RANLIB) "$(DESTDIR)$(libdir)/$$fn.new"; \ chmod 644 "$(DESTDIR)$(libdir)/$$fn.new"; \ mv -f "$(DESTDIR)$(libdir)/$$fn.new" \ "$(DESTDIR)$(libdir)/$$fn"; \ done @ : {- output_off() if $disabled{shared}; "" -} @set -e; for s in $(INSTALL_SHLIB_INFO); do \ s1=`echo "$$s" | cut -f1 -d";"`; \ s2=`echo "$$s" | cut -f2 -d";"`; \ fn1=`basename $$s1`; \ fn2=`basename $$s2`; \ : {- output_off(); output_on() unless windowsdll() or sharedaix(); "" -}; \ if [ "$$fn1" != "$$fn2" ]; then \ $(ECHO) "link $(DESTDIR)$(libdir)/$$fn2 -> $(DESTDIR)$(libdir)/$$fn1"; \ ln -sf $$fn1 "$(DESTDIR)$(libdir)/$$fn2"; \ fi; \ : {- output_off() unless windowsdll() or sharedaix(); output_on() if windowsdll(); "" -}; \ $(ECHO) "install $$s2 -> $(DESTDIR)$(libdir)/$$fn2"; \ cp $$s2 "$(DESTDIR)$(libdir)/$$fn2.new"; \ chmod 755 "$(DESTDIR)$(libdir)/$$fn2.new"; \ mv -f "$(DESTDIR)$(libdir)/$$fn2.new" \ "$(DESTDIR)$(libdir)/$$fn2"; \ : {- output_off() if windowsdll(); output_on() if sharedaix(); "" -}; \ a="$(DESTDIR)$(libdir)/$$fn2"; \ $(ECHO) "install $$s1 -> $$a"; \ if [ -f "$$a" ]; then ( trap "rm -rf /tmp/ar.$$$$" INT 0; \ mkdir /tmp/ar.$$$$; ( cd /tmp/ar.$$$$; \ cp -f "$$a" "$$a.new"; \ for so in `$(AR) t "$$a"`; do \ $(AR) x "$$a" "$$so"; \ chmod u+w "$$so"; \ strip -X32_64 -e "$$so"; \ $(AR) r "$$a.new" "$$so"; \ done; \ )); fi; \ $(AR) r "$$a.new" "$$s1"; \ mv -f "$$a.new" "$$a"; \ : {- output_off() if sharedaix(); output_on(); "" -}; \ done @ : {- output_on() if $disabled{shared}; "" -} @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(libdir)/pkgconfig" @$(ECHO) "install libcrypto.pc -> $(DESTDIR)$(libdir)/pkgconfig/libcrypto.pc" @cp libcrypto.pc "$(DESTDIR)$(libdir)/pkgconfig" @chmod 644 "$(DESTDIR)$(libdir)/pkgconfig/libcrypto.pc" @$(ECHO) "install libssl.pc -> $(DESTDIR)$(libdir)/pkgconfig/libssl.pc" @cp libssl.pc "$(DESTDIR)$(libdir)/pkgconfig" @chmod 644 "$(DESTDIR)$(libdir)/pkgconfig/libssl.pc" @$(ECHO) "install openssl.pc -> $(DESTDIR)$(libdir)/pkgconfig/openssl.pc" @cp openssl.pc "$(DESTDIR)$(libdir)/pkgconfig" @chmod 644 "$(DESTDIR)$(libdir)/pkgconfig/openssl.pc" uninstall_dev: uninstall_runtime_libs @$(ECHO) "*** Uninstalling development files" @ : {- output_off() unless grep { $_ eq "OPENSSL_USE_APPLINK" } (@{$target{defines}}, @{$config{defines}}); "" -} @$(ECHO) "$(RM) $(DESTDIR)$(INSTALLTOP)/include/openssl/applink.c" @$(RM) "$(DESTDIR)$(INSTALLTOP)/include/openssl/applink.c" @ : {- output_on() unless grep { $_ eq "OPENSSL_USE_APPLINK" } (@{$target{defines}}, @{$config{defines}}); "" -} @set -e; for i in $(SRCDIR)/include/openssl/*.h \ $(BLDDIR)/include/openssl/*.h; do \ fn=`basename $$i`; \ $(ECHO) "$(RM) $(DESTDIR)$(INSTALLTOP)/include/openssl/$$fn"; \ $(RM) "$(DESTDIR)$(INSTALLTOP)/include/openssl/$$fn"; \ done -$(RMDIR) "$(DESTDIR)$(INSTALLTOP)/include/openssl" -$(RMDIR) "$(DESTDIR)$(INSTALLTOP)/include" @set -e; for l in $(INSTALL_LIBS); do \ fn=`basename $$l`; \ $(ECHO) "$(RM) $(DESTDIR)$(libdir)/$$fn"; \ $(RM) "$(DESTDIR)$(libdir)/$$fn"; \ done @ : {- output_off() if $disabled{shared}; "" -} @set -e; for s in $(INSTALL_SHLIB_INFO); do \ s1=`echo "$$s" | cut -f1 -d";"`; \ s2=`echo "$$s" | cut -f2 -d";"`; \ fn1=`basename $$s1`; \ fn2=`basename $$s2`; \ : {- output_off() if windowsdll(); "" -}; \ $(ECHO) "$(RM) $(DESTDIR)$(libdir)/$$fn2"; \ $(RM) "$(DESTDIR)$(libdir)/$$fn2"; \ if [ "$$fn1" != "$$fn2" -a -f "$(DESTDIR)$(libdir)/$$fn1" ]; then \ $(ECHO) "$(RM) $(DESTDIR)$(libdir)/$$fn1"; \ $(RM) "$(DESTDIR)$(libdir)/$$fn1"; \ fi; \ : {- output_on() if windowsdll(); "" -}{- output_off() unless windowsdll(); "" -}; \ $(ECHO) "$(RM) $(DESTDIR)$(libdir)/$$fn2"; \ $(RM) "$(DESTDIR)$(libdir)/$$fn2"; \ : {- output_on() unless windowsdll(); "" -}; \ done @ : {- output_on() if $disabled{shared}; "" -} $(RM) "$(DESTDIR)$(libdir)/pkgconfig/libcrypto.pc" $(RM) "$(DESTDIR)$(libdir)/pkgconfig/libssl.pc" $(RM) "$(DESTDIR)$(libdir)/pkgconfig/openssl.pc" -$(RMDIR) "$(DESTDIR)$(libdir)/pkgconfig" -$(RMDIR) "$(DESTDIR)$(libdir)" install_engines: install_runtime_libs build_engines @[ -n "$(INSTALLTOP)" ] || (echo INSTALLTOP should not be empty; exit 1) @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(ENGINESDIR)/" @$(ECHO) "*** Installing engines" @set -e; for e in dummy $(INSTALL_ENGINES); do \ if [ "$$e" = "dummy" ]; then continue; fi; \ fn=`basename $$e`; \ $(ECHO) "install $$e -> $(DESTDIR)$(ENGINESDIR)/$$fn"; \ cp $$e "$(DESTDIR)$(ENGINESDIR)/$$fn.new"; \ chmod 755 "$(DESTDIR)$(ENGINESDIR)/$$fn.new"; \ mv -f "$(DESTDIR)$(ENGINESDIR)/$$fn.new" \ "$(DESTDIR)$(ENGINESDIR)/$$fn"; \ done uninstall_engines: @$(ECHO) "*** Uninstalling engines" @set -e; for e in dummy $(INSTALL_ENGINES); do \ if [ "$$e" = "dummy" ]; then continue; fi; \ fn=`basename $$e`; \ if [ "$$fn" = '{- dso("ossltest") -}' ]; then \ continue; \ fi; \ $(ECHO) "$(RM) $(DESTDIR)$(ENGINESDIR)/$$fn"; \ $(RM) "$(DESTDIR)$(ENGINESDIR)/$$fn"; \ done -$(RMDIR) "$(DESTDIR)$(ENGINESDIR)" install_runtime: install_programs install_runtime_libs: build_libs @[ -n "$(INSTALLTOP)" ] || (echo INSTALLTOP should not be empty; exit 1) @ : {- output_off() if windowsdll(); "" -} @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(libdir)" @ : {- output_on() if windowsdll(); output_off() unless windowsdll(); "" -} @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(INSTALLTOP)/bin" @ : {- output_on() unless windowsdll(); "" -} @$(ECHO) "*** Installing runtime libraries" @set -e; for s in dummy $(INSTALL_SHLIBS); do \ if [ "$$s" = "dummy" ]; then continue; fi; \ fn=`basename $$s`; \ : {- output_off() unless windowsdll(); "" -}; \ $(ECHO) "install $$s -> $(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ cp $$s "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new"; \ chmod 755 "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new"; \ mv -f "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new" \ "$(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ : {- output_on() unless windowsdll(); "" -}{- output_off() if windowsdll(); "" -}; \ $(ECHO) "install $$s -> $(DESTDIR)$(libdir)/$$fn"; \ cp $$s "$(DESTDIR)$(libdir)/$$fn.new"; \ chmod 755 "$(DESTDIR)$(libdir)/$$fn.new"; \ mv -f "$(DESTDIR)$(libdir)/$$fn.new" \ "$(DESTDIR)$(libdir)/$$fn"; \ : {- output_on() if windowsdll(); "" -}; \ done install_programs: install_runtime_libs build_programs @[ -n "$(INSTALLTOP)" ] || (echo INSTALLTOP should not be empty; exit 1) @$(PERL) $(SRCDIR)/util/mkdir-p.pl "$(DESTDIR)$(INSTALLTOP)/bin" @$(ECHO) "*** Installing runtime programs" @set -e; for x in dummy $(INSTALL_PROGRAMS); do \ if [ "$$x" = "dummy" ]; then continue; fi; \ fn=`basename $$x`; \ $(ECHO) "install $$x -> $(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ cp $$x "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new"; \ chmod 755 "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new"; \ mv -f "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new" \ "$(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ done @set -e; for x in dummy $(BIN_SCRIPTS); do \ if [ "$$x" = "dummy" ]; then continue; fi; \ fn=`basename $$x`; \ $(ECHO) "install $$x -> $(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ cp $$x "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new"; \ chmod 755 "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new"; \ mv -f "$(DESTDIR)$(INSTALLTOP)/bin/$$fn.new" \ "$(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ done uninstall_runtime: uninstall_programs uninstall_runtime_libs uninstall_programs: @$(ECHO) "*** Uninstalling runtime programs" @set -e; for x in dummy $(INSTALL_PROGRAMS); \ do \ if [ "$$x" = "dummy" ]; then continue; fi; \ fn=`basename $$x`; \ $(ECHO) "$(RM) $(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ $(RM) "$(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ done; @set -e; for x in dummy $(BIN_SCRIPTS); \ do \ if [ "$$x" = "dummy" ]; then continue; fi; \ fn=`basename $$x`; \ $(ECHO) "$(RM) $(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ $(RM) "$(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ done -$(RMDIR) "$(DESTDIR)$(INSTALLTOP)/bin" uninstall_runtime_libs: @$(ECHO) "*** Uninstalling runtime libraries" @ : {- output_off() unless windowsdll(); "" -} @set -e; for s in dummy $(INSTALL_SHLIBS); do \ if [ "$$s" = "dummy" ]; then continue; fi; \ fn=`basename $$s`; \ $(ECHO) "$(RM) $(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ $(RM) "$(DESTDIR)$(INSTALLTOP)/bin/$$fn"; \ done @ : {- output_on() unless windowsdll(); "" -} install_man_docs: @[ -n "$(INSTALLTOP)" ] || (echo INSTALLTOP should not be empty; exit 1) @$(ECHO) "*** Installing manpages" $(PERL) $(SRCDIR)/util/process_docs.pl \ "--destdir=$(DESTDIR)$(MANDIR)" --type=man --suffix=$(MANSUFFIX) uninstall_man_docs: @$(ECHO) "*** Uninstalling manpages" $(PERL) $(SRCDIR)/util/process_docs.pl \ "--destdir=$(DESTDIR)$(MANDIR)" --type=man --suffix=$(MANSUFFIX) \ --remove install_html_docs: @[ -n "$(INSTALLTOP)" ] || (echo INSTALLTOP should not be empty; exit 1) @$(ECHO) "*** Installing HTML manpages" $(PERL) $(SRCDIR)/util/process_docs.pl \ "--destdir=$(DESTDIR)$(HTMLDIR)" --type=html uninstall_html_docs: @$(ECHO) "*** Uninstalling manpages" $(PERL) $(SRCDIR)/util/process_docs.pl \ "--destdir=$(DESTDIR)$(HTMLDIR)" --type=html --remove # Developer targets (note: these are only available on Unix) ######### update: generate errors ordinals generate: generate_apps generate_crypto_bn generate_crypto_objects \ generate_crypto_conf generate_crypto_asn1 generate_fuzz_oids .PHONY: doc-nits doc-nits: (cd $(SRCDIR); $(PERL) util/find-doc-nits -n -p ) >doc-nits @if [ -s doc-nits ] ; then cat doc-nits ; exit 1; \ else echo 'doc-nits: no errors.'; rm doc-nits ; fi # Test coverage is a good idea for the future #coverage: $(PROGRAMS) $(TESTPROGRAMS) # ... lint: lint -DLINT $(INCLUDES) $(SRCS) generate_apps: ( cd $(SRCDIR); $(PERL) VMS/VMSify-conf.pl \ < apps/openssl.cnf > apps/openssl-vms.cnf ) generate_crypto_bn: ( cd $(SRCDIR); $(PERL) crypto/bn/bn_prime.pl > crypto/bn/bn_prime.h ) generate_crypto_objects: ( cd $(SRCDIR); $(PERL) crypto/objects/objects.pl -n \ crypto/objects/objects.txt \ crypto/objects/obj_mac.num \ > crypto/objects/obj_mac.new && \ mv crypto/objects/obj_mac.new crypto/objects/obj_mac.num ) ( cd $(SRCDIR); $(PERL) crypto/objects/objects.pl \ crypto/objects/objects.txt \ crypto/objects/obj_mac.num \ > include/openssl/obj_mac.h ) ( cd $(SRCDIR); $(PERL) crypto/objects/obj_dat.pl \ include/openssl/obj_mac.h \ > crypto/objects/obj_dat.h ) ( cd $(SRCDIR); $(PERL) crypto/objects/objxref.pl \ crypto/objects/obj_mac.num \ crypto/objects/obj_xref.txt \ > crypto/objects/obj_xref.h ) generate_crypto_conf: ( cd $(SRCDIR); $(PERL) crypto/conf/keysets.pl \ > crypto/conf/conf_def.h ) generate_crypto_asn1: ( cd $(SRCDIR); $(PERL) crypto/asn1/charmap.pl \ > crypto/asn1/charmap.h ) generate_fuzz_oids: ( cd $(SRCDIR); $(PERL) fuzz/mkfuzzoids.pl \ crypto/objects/obj_dat.h \ > fuzz/oids.txt ) # Set to -force to force a rebuild ERROR_REBUILD= errors: ( b=`pwd`; set -e; cd $(SRCDIR); \ $(PERL) util/ck_errf.pl -strict -internal; \ $(PERL) -I$$b util/mkerr.pl $(ERROR_REBUILD) -internal ) ( b=`pwd`; set -e; cd $(SRCDIR)/engines; \ for E in *.ec ; do \ $(PERL) ../util/ck_errf.pl -strict \ -conf $$E `basename $$E .ec`.c; \ $(PERL) -I$$b ../util/mkerr.pl $(ERROR_REBUILD) -static \ -conf $$E `basename $$E .ec`.c ; \ done ) ordinals: ( b=`pwd`; cd $(SRCDIR); $(PERL) -I$$b util/mkdef.pl crypto update ) ( b=`pwd`; cd $(SRCDIR); $(PERL) -I$$b util/mkdef.pl ssl update ) test_ordinals: ( cd test; \ SRCTOP=../$(SRCDIR) \ BLDTOP=../$(BLDDIR) \ $(PERL) ../$(SRCDIR)/test/run_tests.pl test_ordinals ) tags TAGS: FORCE rm -f TAGS tags -ctags -R . -etags `find . -name '*.[ch]' -o -name '*.pm'` # Release targets (note: only available on Unix) ##################### tar: (cd $(SRCDIR); ./util/mktar.sh --name='$(NAME)' --tarfile='$(TARFILE)') # Helper targets ##################################################### link-utils: $(BLDDIR)/util/opensslwrap.sh $(BLDDIR)/util/opensslwrap.sh: configdata.pm @if [ "$(SRCDIR)" != "$(BLDDIR)" ]; then \ mkdir -p "$(BLDDIR)/util"; \ ln -sf "../$(SRCDIR)/util/opensslwrap.sh" "$(BLDDIR)/util"; \ fi FORCE: # Building targets ################################################### libcrypto.pc libssl.pc openssl.pc: configdata.pm $(LIBS) {- join(" ",map { shlib_simple($_) } @{$unified_info{libraries}}) -} libcrypto.pc: @ ( echo 'prefix=$(INSTALLTOP)'; \ echo 'exec_prefix=$${prefix}'; \ if [ -n "$(LIBDIR)" ]; then \ echo 'libdir=$${exec_prefix}/$(LIBDIR)'; \ else \ echo 'libdir=$(libdir)'; \ fi; \ echo 'includedir=$${prefix}/include'; \ echo 'enginesdir=$${libdir}/engines-{- $sover_dirname -}'; \ echo ''; \ echo 'Name: OpenSSL-libcrypto'; \ echo 'Description: OpenSSL cryptography library'; \ echo 'Version: '$(VERSION); \ echo 'Libs: -L$${libdir} -lcrypto'; \ echo 'Libs.private: $(LIB_EX_LIBS)'; \ echo 'Cflags: -I$${includedir}' ) > libcrypto.pc libssl.pc: @ ( echo 'prefix=$(INSTALLTOP)'; \ echo 'exec_prefix=$${prefix}'; \ if [ -n "$(LIBDIR)" ]; then \ echo 'libdir=$${exec_prefix}/$(LIBDIR)'; \ else \ echo 'libdir=$(libdir)'; \ fi; \ echo 'includedir=$${prefix}/include'; \ echo ''; \ echo 'Name: OpenSSL-libssl'; \ echo 'Description: Secure Sockets Layer and cryptography libraries'; \ echo 'Version: '$(VERSION); \ echo 'Requires.private: libcrypto'; \ echo 'Libs: -L$${libdir} -lssl'; \ echo 'Cflags: -I$${includedir}' ) > libssl.pc openssl.pc: @ ( echo 'prefix=$(INSTALLTOP)'; \ echo 'exec_prefix=$${prefix}'; \ if [ -n "$(LIBDIR)" ]; then \ echo 'libdir=$${exec_prefix}/$(LIBDIR)'; \ else \ echo 'libdir=$(libdir)'; \ fi; \ echo 'includedir=$${prefix}/include'; \ echo ''; \ echo 'Name: OpenSSL'; \ echo 'Description: Secure Sockets Layer and cryptography libraries and tools'; \ echo 'Version: '$(VERSION); \ echo 'Requires: libssl libcrypto' ) > openssl.pc configdata.pm: $(SRCDIR)/Configure $(SRCDIR)/config {- join(" ", @{$config{build_file_templates}}, @{$config{build_infos}}, @{$config{conf_files}}) -} @echo "Detected changed: $?" $(PERL) configdata.pm -r @echo "**************************************************" @echo "*** ***" @echo "*** Please run the same make command again ***" @echo "*** ***" @echo "**************************************************" @false reconfigure reconf: $(PERL) configdata.pm -r {- use File::Basename; use File::Spec::Functions qw/:DEFAULT abs2rel rel2abs/; # Helper function to figure out dependencies on libraries # It takes a list of library names and outputs a list of dependencies sub compute_lib_depends { if ($disabled{shared}) { return map { lib($_) } @_; } # Depending on shared libraries: # On Windows POSIX layers, we depend on {libname}.dll.a # On Unix platforms, we depend on {shlibname}.so return map { $_ =~ /\.a$/ ? $`.$libext : shlib_simple($_) } @_; } sub generatesrc { my %args = @_; my $generator = join(" ", @{$args{generator}}); my $generator_incs = join("", map { " -I".$_ } @{$args{generator_incs}}); my $incs = join("", map { " -I".$_ } @{$args{incs}}); my $deps = join(" ", @{$args{generator_deps}}, @{$args{deps}}); if ($args{src} !~ /\.[sS]$/) { if ($args{generator}->[0] =~ m|^.*\.in$|) { my $dofile = abs2rel(rel2abs(catfile($config{sourcedir}, "util", "dofile.pl")), rel2abs($config{builddir})); return <<"EOF"; $args{src}: $args{generator}->[0] $deps \$(PERL) "-I\$(BLDDIR)" -Mconfigdata "$dofile" \\ "-o$target{build_file}" $generator > \$@ EOF } else { return <<"EOF"; $args{src}: $args{generator}->[0] $deps \$(PERL)$generator_incs $generator > \$@ EOF } } else { if ($args{generator}->[0] =~ /\.pl$/) { $generator = 'CC="$(CC)" $(PERL)'.$generator_incs.' '.$generator; } elsif ($args{generator}->[0] =~ /\.m4$/) { $generator = 'm4 -B 8192'.$generator_incs.' '.$generator.' >' } elsif ($args{generator}->[0] =~ /\.S$/) { $generator = undef; } else { die "Generator type for $args{src} unknown: $generator\n"; } my $cppflags = { lib => '$(LIB_CFLAGS) $(LIB_CPPFLAGS)', dso => '$(DSO_CFLAGS) $(DSO_CPPFLAGS)', bin => '$(BIN_CFLAGS) $(BIN_CPPFLAGS)' } -> {$args{intent}}; if (defined($generator)) { return <<"EOF"; $args{src}: $args{generator}->[0] $deps $generator \$@ EOF } return <<"EOF"; $args{src}: $args{generator}->[0] $deps \$(CC) $incs $cppflags -E $args{generator}->[0] | \\ \$(PERL) -ne '/^#(line)?\\s*[0-9]+/ or print' > \$@ EOF } } # Should one wonder about the end of the Perl snippet, it's because this # second regexp eats up line endings as well, if the removed path is the # last in the line. We may therefore need to put back a line ending. sub src2obj { my %args = @_; (my $obj = $args{obj}) =~ s|\.o$||; my @srcs = @{$args{srcs}}; my $srcs = join(" ", @srcs); my $deps = join(" ", @srcs, @{$args{deps}}); my $incs = join("", map { " -I".$_ } @{$args{incs}}); my $cmd; my $cmdflags; my $cmdcompile; if (grep /\.rc$/, @srcs) { $cmd = '$(RC)'; $cmdflags = '$(RCFLAGS)'; $cmdcompile = ''; } elsif (grep /\.(cc|cpp)$/, @srcs) { $cmd = '$(CXX)'; $cmdcompile = ' -c'; $cmdflags = { lib => '$(LIB_CXXFLAGS) $(LIB_CPPFLAGS)', dso => '$(DSO_CXXFLAGS) $(DSO_CPPFLAGS)', bin => '$(BIN_CXXFLAGS) $(BIN_CPPFLAGS)' } -> {$args{intent}}; } else { $cmd = '$(CC)'; $cmdcompile = ' -c'; $cmdflags = { lib => '$(LIB_CFLAGS) $(LIB_CPPFLAGS)', dso => '$(DSO_CFLAGS) $(DSO_CPPFLAGS)', bin => '$(BIN_CFLAGS) $(BIN_CPPFLAGS)' } -> {$args{intent}}; } my $recipe; # extension-specific rules if (grep /\.s$/, @srcs) { $recipe .= <<"EOF"; $obj$objext: $deps $cmd $cmdflags -c -o \$\@ $srcs EOF } elsif (grep /\.S$/, @srcs) { # Originally there was mutli-step rule with $(CC) -E file.S # followed by $(CC) -c file.s. It compensated for one of # legacy platform compiler's inability to handle .S files. # The platform is long discontinued by vendor so there is # hardly a point to drag it along... $recipe .= <<"EOF"; $obj$objext: $deps $cmd $incs $cmdflags -c -o \$\@ $srcs EOF } elsif (defined $makedepprog && $makedepprog !~ /\/makedepend/ && !grep /\.rc$/, @srcs) { $recipe .= <<"EOF"; $obj$objext: $deps $cmd $incs $cmdflags -MMD -MF $obj$depext.tmp -MT \$\@ -c -o \$\@ $srcs \@touch $obj$depext.tmp \@if cmp $obj$depext.tmp $obj$depext > /dev/null 2> /dev/null; then \\ rm -f $obj$depext.tmp; \\ else \\ mv $obj$depext.tmp $obj$depext; \\ fi EOF } else { $recipe .= <<"EOF"; $obj$objext: $deps $cmd $incs $cmdflags $cmdcompile -o \$\@ $srcs EOF if (defined $makedepprog && $makedepprog =~ /\/makedepend/) { $recipe .= <<"EOF"; \$(MAKEDEPEND) -f- -Y -- $incs $cmdflags -- $srcs 2>/dev/null \\ > $obj$depext EOF } } return $recipe; } # We *know* this routine is only called when we've configure 'shared'. sub libobj2shlib { my %args = @_; my $lib = $args{lib}; my $shlib = $args{shlib}; my $libd = dirname($lib); my $libn = basename($lib); (my $libname = $libn) =~ s/^lib//; my @linkdirs = (); foreach (@{args{deps}}) { my $d = dirname($_); push @linkdirs, $d unless grep { $d eq $_ } @linkdirs; } my $linkflags = join("", map { "-L$_ " } @linkdirs); my $linklibs = join("", map { my $f = basename($_); (my $l = $f) =~ s/^lib//; " -l$l" } @{$args{deps}}); my @objs = map { (my $x = $_) =~ s|\.o$||; "$x$objext" } grep { $_ !~ m/\.(?:def|map)$/ } @{$args{objs}}; my @defs = grep { $_ =~ /\.(?:def|map)$/ } @{$args{objs}}; my @deps = compute_lib_depends(@{$args{deps}}); die "More than one exported symbol map" if scalar @defs > 1; my $objs = join(" ", @objs); my $deps = join(" ", @objs, @defs, @deps); my $simple = shlib_simple($lib); my $full = shlib($lib); my $target = "$simple $full"; my $shared_soname = ""; $shared_soname .= ' '.$target{shared_sonameflag}.basename($full) if defined $target{shared_sonameflag}; my $shared_imp = ""; $shared_imp .= ' '.$target{shared_impflag}.basename($simple) if defined $target{shared_impflag}; my $shared_def = join("", map { ' '.$target{shared_defflag}.$_ } @defs); my $recipe = <<"EOF"; $target: $deps \$(CC) \$(LIB_CFLAGS) $linkflags\$(LIB_LDFLAGS)$shared_soname$shared_imp \\ -o $full$shared_def $objs \\ $linklibs \$(LIB_EX_LIBS) EOF if (windowsdll()) { $recipe .= <<"EOF"; rm -f apps/$shlib'\$(SHLIB_EXT)' rm -f test/$shlib'\$(SHLIB_EXT)' rm -f fuzz/$shlib'\$(SHLIB_EXT)' cp -p $shlib'\$(SHLIB_EXT)' apps/ cp -p $shlib'\$(SHLIB_EXT)' test/ cp -p $shlib'\$(SHLIB_EXT)' fuzz/ EOF } elsif (sharedaix()) { $recipe .= <<"EOF"; rm -f $simple && \\ \$(AR) r $simple $full EOF } else { $recipe .= <<"EOF"; if [ '$simple' != '$full' ]; then \\ rm -f $simple; \\ ln -s $full $simple; \\ fi EOF } } sub obj2dso { my %args = @_; my $dso = $args{lib}; my $dsod = dirname($dso); my $dson = basename($dso); my @linkdirs = (); foreach (@{args{deps}}) { my $d = dirname($_); push @linkdirs, $d unless grep { $d eq $_ } @linkdirs; } my $linkflags = join("", map { "-L$_ " } @linkdirs); my $linklibs = join("", map { my $f = basename($_); (my $l = $f) =~ s/^lib//; " -l$l" } @{$args{deps}}); my @objs = map { (my $x = $_) =~ s|\.o$||; "$x$objext" } grep { $_ !~ m/\.(?:def|map)$/ } @{$args{objs}}; my @deps = compute_lib_depends(@{$args{deps}}); my $objs = join(" ", @objs); my $deps = join(" ", @deps); my $target = dso($dso); return <<"EOF"; $target: $objs $deps \$(CC) \$(DSO_CFLAGS) $linkflags\$(DSO_LDFLAGS) \\ -o $target $objs \\ $linklibs \$(DSO_EX_LIBS) EOF } sub obj2lib { my %args = @_; (my $lib = $args{lib}) =~ s/\.a$//; my @objs = map { (my $x = $_) =~ s|\.o$|$objext|; $x } @{$args{objs}}; my $objs = join(" ", @objs); return <<"EOF"; $lib$libext: $objs \$(AR) \$(ARFLAGS) \$\@ \$\? \$(RANLIB) \$\@ || echo Never mind. EOF } sub obj2bin { my %args = @_; my $bin = $args{bin}; my $bind = dirname($bin); my $binn = basename($bin); my $objs = join(" ", map { (my $x = $_) =~ s|\.o$||; "$x$objext" } @{$args{objs}}); my $deps = join(" ",compute_lib_depends(@{$args{deps}})); my @linkdirs = (); foreach (@{args{deps}}) { next if $_ =~ /\.a$/; my $d = dirname($_); push @linkdirs, $d unless grep { $d eq $_ } @linkdirs; } my $linkflags = join("", map { "-L$_ " } @linkdirs); my $linklibs = join("", map { if ($_ =~ s/\.a$//) { " $_$libext"; } else { my $f = basename($_); (my $l = $f) =~ s/^lib//; " -l$l" } } @{$args{deps}}); my $cmd = '$(CC)'; my $cmdflags = '$(BIN_CFLAGS)'; if (grep /_cc\.o$/, @{$args{objs}}) { $cmd = '$(CXX)'; $cmdflags = '$(BIN_CXXFLAGS)'; } return <<"EOF"; $bin$exeext: $objs $deps rm -f $bin$exeext \$\${LDCMD:-$cmd} $cmdflags $linkflags\$(BIN_LDFLAGS) \\ -o $bin$exeext $objs \\ $linklibs \$(BIN_EX_LIBS) EOF } sub in2script { my %args = @_; my $script = $args{script}; my $sources = join(" ", @{$args{sources}}); my $dofile = abs2rel(rel2abs(catfile($config{sourcedir}, "util", "dofile.pl")), rel2abs($config{builddir})); return <<"EOF"; $script: $sources \$(PERL) "-I\$(BLDDIR)" -Mconfigdata "$dofile" \\ "-o$target{build_file}" $sources > "$script" chmod a+x $script EOF } sub generatedir { my %args = @_; my $dir = $args{dir}; my @deps = map { s|\.o$|$objext|; $_ } @{$args{deps}}; my @actions = (); my %extinfo = ( dso => $dsoext, lib => $libext, bin => $exeext ); # We already have a 'test' target, and the top directory is just plain # silly return if $dir eq "test" || $dir eq "."; foreach my $type (("dso", "lib", "bin", "script")) { next unless defined($unified_info{dirinfo}->{$dir}->{products}->{$type}); # For lib object files, we could update the library. However, it # was decided that it's enough to build the directory local object # files, so we don't need to add any actions, and the dependencies # are already taken care of. if ($type ne "lib") { foreach my $prod (@{$unified_info{dirinfo}->{$dir}->{products}->{$type}}) { if (dirname($prod) eq $dir) { push @deps, $prod.$extinfo{$type}; } else { push @actions, "\t@ : No support to produce $type ".join(", ", @{$unified_info{dirinfo}->{$dir}->{products}->{$type}}); } } } } my $deps = join(" ", @deps); my $actions = join("\n", "", @actions); return <<"EOF"; $dir $dir/: $deps$actions EOF } "" # Important! This becomes part of the template result. -} openssl-1.1.1f/Configurations/unix-checker.pm000066400000000000000000000011511364063235100212610ustar00rootroot00000000000000#! /usr/bin/perl use Config; # Check that the perl implementation file modules generate paths that # we expect for the platform use File::Spec::Functions qw(:DEFAULT rel2abs); if (rel2abs('.') !~ m|/|) { die <[$#$build_scheme]; # last element my $win_installenv = $install_flavour eq "VC-WOW" ? "ProgramFiles(x86)" : "ProgramW6432"; my $win_commonenv = $install_flavour eq "VC-WOW" ? "CommonProgramFiles(x86)" : "CommonProgramW6432"; our $win_installroot = defined($ENV{$win_installenv}) ? $win_installenv : 'ProgramFiles'; our $win_commonroot = defined($ENV{$win_commonenv}) ? $win_commonenv : 'CommonProgramFiles'; # expand variables early $win_installroot = $ENV{$win_installroot}; $win_commonroot = $ENV{$win_commonroot}; sub shlib { my $lib = shift; return () if $disabled{shared} || $lib =~ /\.a$/; return () unless defined $unified_info{sharednames}->{$lib}; return $unified_info{sharednames}->{$lib} . $shlibext; } sub lib { (my $lib = shift) =~ s/\.a$//; $lib .= '_static' if (defined $unified_info{sharednames}->{$lib}); return $lib . $libext; } sub shlib_import { my $lib = shift; return () if $disabled{shared} || $lib =~ /\.a$/; return $lib . $shlibextimport; } sub dso { my $dso = shift; return $dso . $dsoext; } # This makes sure things get built in the order they need # to. You're welcome. sub dependmagic { my $target = shift; return "$target: build_generated\n\t\$(MAKE) /\$(MAKEFLAGS) depend && \$(MAKE) /\$(MAKEFLAGS) _$target\n_$target"; } ''; -} PLATFORM={- $config{target} -} SRCDIR={- $config{sourcedir} -} BLDDIR={- $config{builddir} -} VERSION={- $config{version} -} MAJOR={- $config{major} -} MINOR={- $config{minor} -} SHLIB_VERSION_NUMBER={- $config{shlib_version_number} -} LIBS={- join(" ", map { ( shlib_import($_), lib($_) ) } @{$unified_info{libraries}}) -} SHLIBS={- join(" ", map { shlib($_) } @{$unified_info{libraries}}) -} SHLIBPDBS={- join(" ", map { local $shlibext = ".pdb"; shlib($_) } @{$unified_info{libraries}}) -} ENGINES={- join(" ", map { dso($_) } @{$unified_info{engines}}) -} ENGINEPDBS={- join(" ", map { local $dsoext = ".pdb"; dso($_) } @{$unified_info{engines}}) -} PROGRAMS={- our @PROGRAMS = map { $_.$exeext } @{$unified_info{programs}}; join(" ", @PROGRAMS) -} PROGRAMPDBS={- join(" ", map { $_.".pdb" } @{$unified_info{programs}}) -} SCRIPTS={- join(" ", @{$unified_info{scripts}}) -} {- output_off() if $disabled{makedepend}; "" -} DEPS={- join(" ", map { (my $x = $_) =~ s|\.o$|$depext|; $x; } grep { $unified_info{sources}->{$_}->[0] =~ /\.c$/ } keys %{$unified_info{sources}}); -} {- output_on() if $disabled{makedepend}; "" -} GENERATED_MANDATORY={- join(" ", @{$unified_info{depends}->{""}} ) -} GENERATED={- # common0.tmpl provides @generated join(" ", map { (my $x = $_) =~ s|\.[sS]$|.asm|; $x } @generated) -} INSTALL_LIBS={- join(" ", map { quotify1(shlib_import($_) or lib($_)) } @{$unified_info{install}->{libraries}}) -} INSTALL_SHLIBS={- join(" ", map { quotify_l(shlib($_)) } @{$unified_info{install}->{libraries}}) -} INSTALL_SHLIBPDBS={- join(" ", map { local $shlibext = ".pdb"; quotify_l(shlib($_)) } @{$unified_info{install}->{libraries}}) -} INSTALL_ENGINES={- join(" ", map { quotify1(dso($_)) } @{$unified_info{install}->{engines}}) -} INSTALL_ENGINEPDBS={- join(" ", map { local $dsoext = ".pdb"; quotify1(dso($_)) } @{$unified_info{install}->{engines}}) -} INSTALL_PROGRAMS={- join(" ", map { quotify1($_.$exeext) } grep { !m|^test\\| } @{$unified_info{install}->{programs}}) -} INSTALL_PROGRAMPDBS={- join(" ", map { quotify1($_.".pdb") } grep { !m|^test\\| } @{$unified_info{install}->{programs}}) -} {- output_off() if $disabled{apps}; "" -} BIN_SCRIPTS="$(BLDDIR)\tools\c_rehash.pl" MISC_SCRIPTS="$(BLDDIR)\apps\CA.pl" "$(BLDDIR)\apps\tsget.pl" {- output_on() if $disabled{apps}; "" -} APPS_OPENSSL={- use File::Spec::Functions; "\"".catfile("apps","openssl")."\"" -} # Do not edit these manually. Use Configure with --prefix or --openssldir # to change this! Short explanation in the top comment in Configure INSTALLTOP_dev={- # $prefix is used in the OPENSSLDIR perl snippet # use File::Spec::Functions qw(:DEFAULT splitpath); our $prefix = canonpath($config{prefix} || "$win_installroot\\OpenSSL"); our ($prefix_dev, $prefix_dir, $prefix_file) = splitpath($prefix, 1); $prefix_dev -} INSTALLTOP_dir={- canonpath($prefix_dir) -} OPENSSLDIR_dev={- # # The logic here is that if no --openssldir was given, # OPENSSLDIR will get the value "$win_commonroot\\SSL". # If --openssldir was given and the value is an absolute # path, OPENSSLDIR will get its value without change. # If the value from --openssldir is a relative path, # OPENSSLDIR will get $prefix with the --openssldir # value appended as a subdirectory. # use File::Spec::Functions qw(:DEFAULT splitpath); our $openssldir = $config{openssldir} ? (file_name_is_absolute($config{openssldir}) ? canonpath($config{openssldir}) : catdir($prefix, $config{openssldir})) : canonpath("$win_commonroot\\SSL"); our ($openssldir_dev, $openssldir_dir, $openssldir_file) = splitpath($openssldir, 1); $openssldir_dev -} OPENSSLDIR_dir={- canonpath($openssldir_dir) -} LIBDIR={- our $libdir = $config{libdir} || "lib"; file_name_is_absolute($libdir) ? "" : $libdir -} ENGINESDIR_dev={- use File::Spec::Functions qw(:DEFAULT splitpath); our $enginesdir = catdir($prefix,$libdir,"engines-$sover_dirname"); our ($enginesdir_dev, $enginesdir_dir, $enginesdir_file) = splitpath($enginesdir, 1); $enginesdir_dev -} ENGINESDIR_dir={- canonpath($enginesdir_dir) -} !IF "$(DESTDIR)" != "" INSTALLTOP=$(DESTDIR)$(INSTALLTOP_dir) OPENSSLDIR=$(DESTDIR)$(OPENSSLDIR_dir) ENGINESDIR=$(DESTDIR)$(ENGINESDIR_dir) !ELSE INSTALLTOP=$(INSTALLTOP_dev)$(INSTALLTOP_dir) OPENSSLDIR=$(OPENSSLDIR_dev)$(OPENSSLDIR_dir) ENGINESDIR=$(ENGINESDIR_dev)$(ENGINESDIR_dir) !ENDIF # $(libdir) is chosen to be compatible with the GNU coding standards libdir={- file_name_is_absolute($libdir) ? $libdir : '$(INSTALLTOP)\$(LIBDIR)' -} ##### User defined commands and flags ################################ CC={- $config{CC} -} CPP={- $config{CPP} -} CPPFLAGS={- our $cppflags1 = join(" ", (map { "-D".$_} @{$config{CPPDEFINES}}), (map { " /I ".$_} @{$config{CPPINCLUDES}}), @{$config{CPPFLAGS}}) -} CFLAGS={- join(' ', @{$config{CFLAGS}}) -} LD={- $config{LD} -} LDFLAGS={- join(' ', @{$config{LDFLAGS}}) -} EX_LIBS={- join(' ', @{$config{LDLIBS}}) -} PERL={- $config{PERL} -} AR={- $config{AR} -} ARFLAGS= {- join(' ', @{$config{ARFLAGS}}) -} MT={- $config{MT} -} MTFLAGS= {- join(' ', @{$config{MTFLAGS}}) -} AS={- $config{AS} -} ASFLAGS={- join(' ', @{$config{ASFLAGS}}) -} RC={- $config{RC} -} RCFLAGS={- join(' ', @{$config{RCFLAGS}}) -} ECHO="$(PERL)" "$(SRCDIR)\util\echo.pl" ##### Special command flags ########################################## COUTFLAG={- $target{coutflag} -}$(OSSL_EMPTY) LDOUTFLAG={- $target{ldoutflag} -}$(OSSL_EMPTY) AROUTFLAG={- $target{aroutflag} -}$(OSSL_EMPTY) MTINFLAG={- $target{mtinflag} -}$(OSSL_EMPTY) MTOUTFLAG={- $target{mtoutflag} -}$(OSSL_EMPTY) ASOUTFLAG={- $target{asoutflag} -}$(OSSL_EMPTY) RCOUTFLAG={- $target{rcoutflag} -}$(OSSL_EMPTY) ##### Project flags ################################################## # Variables starting with CNF_ are common variables for all product types CNF_ASFLAGS={- join(' ', $target{asflags} || (), @{$config{asflags}}) -} CNF_CPPFLAGS={- our $cppfags2 = join(' ', $target{cppflags} || (), (map { '-D'.quotify1($_) } @{$target{defines}}, @{$config{defines}}), (map { '-I'.quotify1($_) } @{$target{includes}}, @{$config{includes}}), @{$config{cppflags}}) -} CNF_CFLAGS={- join(' ', $target{cflags} || (), @{$config{cflags}}) -} CNF_CXXFLAGS={- join(' ', $target{cxxflags} || (), @{$config{cxxflags}}) -} CNF_LDFLAGS={- join(' ', $target{lflags} || (), @{$config{lflags}}) -} CNF_EX_LIBS={- join(' ', $target{ex_libs} || (), @{$config{ex_libs}}) -} # Variables starting with LIB_ are used to build library object files # and shared libraries. # Variables starting with DSO_ are used to build DSOs and their object files. # Variables starting with BIN_ are used to build programs and their object # files. LIB_ASFLAGS={- join(' ', $target{lib_asflags} || (), @{$config{lib_asflags}}, '$(CNF_ASFLAGS)', '$(ASFLAGS)') -} LIB_CPPFLAGS={- our $lib_cppflags = join(' ', $target{lib_cppflags} || (), $target{shared_cppflag} || (), (map { '-D'.quotify1($_) } @{$target{lib_defines}}, @{$target{shared_defines}}, @{$config{lib_defines}}, @{$config{shared_defines}}), (map { '-I'.quotify1($_) } @{$target{lib_includes}}, @{$target{shared_includes}}, @{$config{lib_includes}}, @{$config{shared_includes}}), @{$config{lib_cppflags}}, @{$config{shared_cppflag}}); join(' ', $lib_cppflags, (map { '-D'.quotify1($_) } "OPENSSLDIR=\"$openssldir\"", "ENGINESDIR=\"$enginesdir\""), '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} LIB_CFLAGS={- join(' ', $target{lib_cflags} || (), $target{shared_cflag} || (), @{$config{lib_cflags}}, @{$config{shared_cflag}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} LIB_LDFLAGS={- join(' ', $target{shared_ldflag} || (), $config{shared_ldflag} || (), '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} LIB_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) DSO_ASFLAGS={- join(' ', $target{dso_asflags} || (), $target{module_asflags} || (), @{$config{dso_asflags}}, @{$config{module_asflags}}, '$(CNF_ASFLAGS)', '$(ASFLAGS)') -} DSO_CPPFLAGS={- join(' ', $target{dso_cppflags} || (), $target{module_cppflags} || (), @{$config{dso_cppflags}}, @{$config{module_cppflags}}, '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} DSO_CFLAGS={- join(' ', $target{dso_cflags} || (), $target{module_cflags} || (), @{$config{dso_cflags}}, @{$config{module_cflags}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} DSO_LDFLAGS={- join(' ', $target{dso_lflags} || (), $target{module_ldflags} || (), @{$config{dso_lflags}}, @{$config{module_ldflags}}, '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} DSO_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) BIN_ASFLAGS={- join(' ', $target{bin_asflags} || (), @{$config{bin_asflags}}, '$(CNF_ASFLAGS)', '$(ASFLAGS)') -} BIN_CPPFLAGS={- join(' ', $target{bin_cppflags} || (), @{$config{bin_cppflags}}, '$(CNF_CPPFLAGS)', '$(CPPFLAGS)') -} BIN_CFLAGS={- join(' ', $target{bin_cflags} || (), @{$config{bin_cflags}}, '$(CNF_CFLAGS)', '$(CFLAGS)') -} BIN_LDFLAGS={- join(' ', $target{bin_lflags} || (), @{$config{bin_lflags}}, '$(CNF_LDFLAGS)', '$(LDFLAGS)') -} BIN_EX_LIBS=$(CNF_EX_LIBS) $(EX_LIBS) # CPPFLAGS_Q is used for one thing only: to build up buildinf.h CPPFLAGS_Q={- $cppflags1 =~ s|([\\"])|\\$1|g; $cppflags2 =~ s|([\\"])|\\$1|g; join(' ', $lib_cppflags || (), $cppflags2 || (), $cppflags1 || ()) -} PERLASM_SCHEME= {- $target{perlasm_scheme} -} PROCESSOR= {- $config{processor} -} # The main targets ################################################### {- dependmagic('all'); -}: build_libs_nodep build_engines_nodep build_programs_nodep {- dependmagic('build_libs'); -}: build_libs_nodep {- dependmagic('build_engines'); -}: build_engines_nodep {- dependmagic('build_programs'); -}: build_programs_nodep build_generated: $(GENERATED_MANDATORY) build_libs_nodep: $(LIBS) {- join(" ",map { shlib_import($_) } @{$unified_info{libraries}}) -} build_engines_nodep: $(ENGINES) build_programs_nodep: $(PROGRAMS) $(SCRIPTS) # Kept around for backward compatibility build_apps build_tests: build_programs # Convenience target to prebuild all generated files, not just the mandatory # ones build_all_generated: $(GENERATED_MANDATORY) $(GENERATED) @{- output_off() if $disabled{makedepend}; "" -} @$(ECHO) "Warning: consider configuring with no-makedepend, because if" @$(ECHO) " target system doesn't have $(PERL)," @$(ECHO) " then make will fail..." @{- output_on() if $disabled{makedepend}; "" -} test: tests {- dependmagic('tests'); -}: build_programs_nodep build_engines_nodep @{- output_off() if $disabled{tests}; "" -} -mkdir $(BLDDIR)\test\test-runs set SRCTOP=$(SRCDIR) set BLDTOP=$(BLDDIR) set RESULT_D=$(BLDDIR)\test\test-runs set PERL=$(PERL) set OPENSSL_ENGINES=$(MAKEDIR)\engines set OPENSSL_DEBUG_MEMORY=on "$(PERL)" "$(SRCDIR)\test\run_tests.pl" $(TESTS) @{- if ($disabled{tests}) { output_on(); } else { output_off(); } "" -} @$(ECHO) "Tests are not supported with your chosen Configure options" @{- output_on() if !$disabled{tests}; "" -} list-tests: @{- output_off() if $disabled{tests}; "" -} @set SRCTOP=$(SRCDIR) @"$(PERL)" "$(SRCDIR)\test\run_tests.pl" list @{- if ($disabled{tests}) { output_on(); } else { output_off(); } "" -} @$(ECHO) "Tests are not supported with your chosen Configure options" @{- output_on() if !$disabled{tests}; "" -} install: install_sw install_ssldirs install_docs uninstall: uninstall_docs uninstall_sw libclean: "$(PERL)" -e "map { m/(.*)\.dll$$/; unlink glob """{.,apps,test,fuzz}/$$1.*"""; } @ARGV" $(SHLIBS) -del /Q /F $(LIBS) libcrypto.* libssl.* ossl_static.pdb clean: libclean {- join("\n\t", map { "-del /Q /F $_" } @PROGRAMS) -} -del /Q /F $(ENGINES) -del /Q /F $(SCRIPTS) -del /Q /F $(GENERATED_MANDATORY) -del /Q /F $(GENERATED) -del /Q /S /F *.d *.obj *.pdb *.ilk *.manifest -del /Q /S /F engines\*.lib engines\*.exp -del /Q /S /F apps\*.lib apps\*.rc apps\*.res apps\*.exp -del /Q /S /F test\*.exp -rmdir /Q /S test\test-runs distclean: clean -del /Q /F configdata.pm -del /Q /F makefile depend: @ {- output_off() if $disabled{makedepend}; "" -} @ "$(PERL)" "$(SRCDIR)\util\add-depends.pl" "VC" @ {- output_on() if $disabled{makedepend}; "" -} # Install helper targets ############################################# install_sw: install_dev install_engines install_runtime uninstall_sw: uninstall_runtime uninstall_engines uninstall_dev install_docs: install_html_docs uninstall_docs: uninstall_html_docs install_ssldirs: @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(OPENSSLDIR)\certs" @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(OPENSSLDIR)\private" @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(OPENSSLDIR)\misc" @"$(PERL)" "$(SRCDIR)\util\copy.pl" "$(SRCDIR)\apps\openssl.cnf" \ "$(OPENSSLDIR)\openssl.cnf.dist" @IF NOT EXIST "$(OPENSSLDIR)\openssl.cnf" \ "$(PERL)" "$(SRCDIR)\util\copy.pl" "$(SRCDIR)\apps\openssl.cnf" \ "$(OPENSSLDIR)\openssl.cnf" @"$(PERL)" "$(SRCDIR)\util\copy.pl" $(MISC_SCRIPTS) \ "$(OPENSSLDIR)\misc" @"$(PERL)" "$(SRCDIR)\util\copy.pl" "$(SRCDIR)\apps\ct_log_list.cnf" \ "$(OPENSSLDIR)\ct_log_list.cnf.dist" @IF NOT EXIST "$(OPENSSLDIR)\ct_log_list.cnf" \ "$(PERL)" "$(SRCDIR)\util\copy.pl" "$(SRCDIR)\apps\ct_log_list.cnf" \ "$(OPENSSLDIR)\ct_log_list.cnf" install_dev: install_runtime_libs @if "$(INSTALLTOP)"=="" ( $(ECHO) "INSTALLTOP should not be empty" & exit 1 ) @$(ECHO) "*** Installing development files" @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(INSTALLTOP)\include\openssl" @{- output_off() unless grep { $_ eq "OPENSSL_USE_APPLINK" } (@{$target{defines}}, @{$config{defines}}); "" -} @"$(PERL)" "$(SRCDIR)\util\copy.pl" "$(SRCDIR)\ms\applink.c" \ "$(INSTALLTOP)\include\openssl" @{- output_on() unless grep { $_ eq "OPENSSL_USE_APPLINK" } (@{$target{defines}}, @{$config{defines}}); "" -} @"$(PERL)" "$(SRCDIR)\util\copy.pl" "-exclude_re=/__DECC_" \ "$(SRCDIR)\include\openssl\*.h" \ "$(INSTALLTOP)\include\openssl" @"$(PERL)" "$(SRCDIR)\util\copy.pl" "$(BLDDIR)\include\openssl\*.h" \ "$(INSTALLTOP)\include\openssl" @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(libdir)" @"$(PERL)" "$(SRCDIR)\util\copy.pl" $(INSTALL_LIBS) "$(libdir)" @if "$(SHLIBS)"=="" \ "$(PERL)" "$(SRCDIR)\util\copy.pl" ossl_static.pdb "$(libdir)" uninstall_dev: install_engines: install_runtime_libs build_engines @if "$(INSTALLTOP)"=="" ( $(ECHO) "INSTALLTOP should not be empty" & exit 1 ) @$(ECHO) "*** Installing engines" @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(ENGINESDIR)" @if not "$(ENGINES)"=="" \ "$(PERL)" "$(SRCDIR)\util\copy.pl" $(INSTALL_ENGINES) "$(ENGINESDIR)" @if not "$(ENGINES)"=="" \ "$(PERL)" "$(SRCDIR)\util\copy.pl" $(INSTALL_ENGINEPDBS) "$(ENGINESDIR)" uninstall_engines: install_runtime: install_programs install_runtime_libs: build_libs @if "$(INSTALLTOP)"=="" ( $(ECHO) "INSTALLTOP should not be empty" & exit 1 ) @$(ECHO) "*** Installing runtime libraries" @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(INSTALLTOP)\bin" @if not "$(SHLIBS)"=="" \ "$(PERL)" "$(SRCDIR)\util\copy.pl" $(INSTALL_SHLIBS) "$(INSTALLTOP)\bin" @if not "$(SHLIBS)"=="" \ "$(PERL)" "$(SRCDIR)\util\copy.pl" $(INSTALL_SHLIBPDBS) \ "$(INSTALLTOP)\bin" install_programs: install_runtime_libs build_programs @if "$(INSTALLTOP)"=="" ( $(ECHO) "INSTALLTOP should not be empty" & exit 1 ) @$(ECHO) "*** Installing runtime programs" @"$(PERL)" "$(SRCDIR)\util\mkdir-p.pl" "$(INSTALLTOP)\bin" @"$(PERL)" "$(SRCDIR)\util\copy.pl" $(INSTALL_PROGRAMS) \ "$(INSTALLTOP)\bin" @"$(PERL)" "$(SRCDIR)\util\copy.pl" $(INSTALL_PROGRAMPDBS) \ "$(INSTALLTOP)\bin" @"$(PERL)" "$(SRCDIR)\util\copy.pl" $(BIN_SCRIPTS) \ "$(INSTALLTOP)\bin" uninstall_runtime: install_html_docs: "$(PERL)" "$(SRCDIR)\util\process_docs.pl" \ "--destdir=$(INSTALLTOP)\html" --type=html uninstall_html_docs: # Building targets ################################################### configdata.pm: "$(SRCDIR)\Configure" {- join(" ", map { '"'.$_.'"' } @{$config{build_file_templates}}, @{$config{build_infos}}, @{$config{conf_files}}) -} @$(ECHO) "Detected changed: $?" "$(PERL)" configdata.pm -r @$(ECHO) "**************************************************" @$(ECHO) "*** ***" @$(ECHO) "*** Please run the same make command again ***" @$(ECHO) "*** ***" @$(ECHO) "**************************************************" @exit 1 reconfigure reconf: "$(PERL)" configdata.pm -r {- use File::Basename; use File::Spec::Functions qw/:DEFAULT abs2rel rel2abs/; # Helper function to figure out dependencies on libraries # It takes a list of library names and outputs a list of dependencies sub compute_lib_depends { if ($disabled{shared}) { return map { lib($_) } @_; } return map { shlib_import($_) or lib($_) } @_; } sub generatesrc { my %args = @_; (my $target = $args{src}) =~ s/\.[sS]$/.asm/; my ($gen0, @gens) = @{$args{generator}}; my $generator = '"'.$gen0.'"'.join('', map { " $_" } @gens); my $generator_incs = join("", map { " -I \"$_\"" } @{$args{generator_incs}}); my $incs = join("", map { " /I \"$_\"" } @{$args{incs}}); my $deps = @{$args{deps}} ? '"'.join('" "', @{$args{generator_deps}}, @{$args{deps}}).'"' : ''; if ($target !~ /\.asm$/) { if ($args{generator}->[0] =~ m|^.*\.in$|) { my $dofile = abs2rel(rel2abs(catfile($config{sourcedir}, "util", "dofile.pl")), rel2abs($config{builddir})); return <<"EOF"; $target: "$args{generator}->[0]" $deps "\$(PERL)" "-I\$(BLDDIR)" -Mconfigdata "$dofile" \\ "-o$target{build_file}" $generator > \$@ EOF } else { return <<"EOF"; $target: "$args{generator}->[0]" $deps "\$(PERL)"$generator_incs $generator > \$@ EOF } } else { if ($args{generator}->[0] =~ /\.pl$/) { $generator = '"$(PERL)"'.$generator_incs.' '.$generator; } elsif ($args{generator}->[0] =~ /\.S$/) { $generator = undef; } else { die "Generator type for $src unknown: $generator\n"; } my $cppflags = $incs; $cppflags .= { lib => ' $(LIB_CFLAGS) $(LIB_CPPFLAGS)', dso => ' $(DSO_CFLAGS) $(DSO_CPPFLAGS)', bin => ' $(BIN_CFLAGS) $(BIN_CPPFLAGS)' } -> {$args{intent}}; if (defined($generator)) { # If the target is named foo.S in build.info, we want to # end up generating foo.s in two steps. if ($args{src} =~ /\.S$/) { return <<"EOF"; $target: "$args{generator}->[0]" $deps set ASM=\$(AS) $generator \$@.S \$(CPP) $cppflags \$@.S > \$@.i && move /Y \$@.i \$@ del /Q \$@.S EOF } # Otherwise.... return <<"EOF"; $target: "$args{generator}->[0]" $deps set ASM=\$(AS) $generator \$@ EOF } return <<"EOF"; $target: "$args{generator}->[0]" $deps \$(CPP) $incs $cppflags "$args{generator}->[0]" > \$@.i && move /Y \$@.i \$@ EOF } } sub src2obj { my %args = @_; my @srcs = map { (my $x = $_) =~ s/\.s$/.asm/; $x } ( @{$args{srcs}} ); my $srcs = '"'.join('" "', @srcs).'"'; my $deps = '"'.join('" "', @srcs, @{$args{deps}}).'"'; my $incs = join("", map { ' /I "'.$_.'"' } @{$args{incs}}); my $cflags = { lib => ' $(LIB_CFLAGS)', dso => ' $(DSO_CFLAGS)', bin => ' $(BIN_CFLAGS)' } -> {$args{intent}}; $cflags .= $incs; $cflags .= { lib => ' $(LIB_CPPFLAGS)', dso => ' $(DSO_CPPFLAGS)', bin => ' $(BIN_CPPFLAGS)' } -> {$args{intent}}; my $asflags = { lib => ' $(LIB_ASFLAGS)', dso => ' $(DSO_ASFLAGS)', bin => ' $(BIN_ASFLAGS)' } -> {$args{intent}}; my $makedepprog = $config{makedepprog}; if ($srcs[0] =~ /\.rc$/) { return <<"EOF"; $args{obj}: $deps \$(RC) \$(RCFLAGS) \$(RCOUTFLAG)\$\@ $srcs EOF } (my $obj = $args{obj}) =~ s|\.o$||; if ($srcs[0] =~ /\.asm$/) { return <<"EOF"; $obj$objext: $deps \$(AS) $asflags \$(ASOUTFLAG)\$\@ $srcs EOF } elsif ($srcs[0] =~ /.S$/) { return <<"EOF"; $obj$objext: $deps \$(CC) /EP /D__ASSEMBLER__ $cflags $srcs > \$@.asm && \$(AS) $asflags \$(ASOUTFLAG)\$\@ \$@.asm EOF } my $recipe = <<"EOF"; $obj$objext: $deps \$(CC) $cflags -c \$(COUTFLAG)\$\@ $srcs EOF $recipe .= <<"EOF" unless $disabled{makedepend}; \$(CC) $cflags /Zs /showIncludes $srcs 2>&1 > $obj$depext EOF return $recipe; } # We *know* this routine is only called when we've configure 'shared'. # Also, note that even though the import library built here looks like # a static library, it really isn't. sub libobj2shlib { my %args = @_; my $lib = $args{lib}; my @objs = map { (my $x = $_) =~ s|\.o$|$objext|; $x } grep { $_ =~ m/\.(?:o|res)$/ } @{$args{objs}}; my @defs = grep { $_ =~ /\.def$/ } @{$args{objs}}; my @deps = compute_lib_depends(@{$args{deps}}); die "More than one exported symbols list" if scalar @defs > 1; my $linklibs = join("", map { "$_\n" } @deps); my $objs = join("\n", @objs); my $deps = join(" ", @objs, @defs, @deps); my $import = shlib_import($lib); my $dll = shlib($lib); my $shared_def = join("", map { " /def:$_" } @defs); return <<"EOF" # The import library may look like a static library, but it is not. # We MUST make the import library depend on the DLL, in case someone # mistakenly removes the latter. $import: $dll $dll: $deps IF EXIST $full.manifest DEL /F /Q $full.manifest IF EXIST \$@ DEL /F /Q \$@ \$(LD) \$(LDFLAGS) \$(LIB_LDFLAGS) \\ /implib:$import \$(LDOUTFLAG)$dll$shared_def @<< || (DEL /Q \$(\@B).* $import && EXIT 1) $objs $linklibs\$(LIB_EX_LIBS) << IF EXIST $dll.manifest \\ \$(MT) \$(MTFLAGS) \$(MTINFLAG)$dll.manifest \$(MTOUTFLAG)$dll IF EXIST apps\\$dll DEL /Q /F apps\\$dll IF EXIST test\\$dll DEL /Q /F test\\$dll IF EXIST fuzz\\$dll DEL /Q /F fuzz\\$dll COPY $dll apps COPY $dll test COPY $dll fuzz EOF } sub obj2dso { my %args = @_; my $dso = $args{lib}; my $dso_n = basename($dso); my @objs = map { (my $x = $_) =~ s|\.o$|$objext|; $x } @{$args{objs}}; my @deps = compute_lib_depends(@{$args{deps}}); my $objs = join("\n", @objs); my $linklibs = join("", map { "$_\n" } @deps); my $deps = join(" ", @objs, @deps); return <<"EOF"; $dso$dsoext: $deps IF EXIST $dso$dsoext.manifest DEL /F /Q $dso$dsoext.manifest \$(LD) \$(LDFLAGS) \$(DSO_LDFLAGS) \$(LDOUTFLAG)$dso$dsoext /def:<< @<< LIBRARY $dso_n EXPORTS bind_engine @1 v_check @2 << $objs $linklibs \$(DSO_EX_LIBS) << IF EXIST $dso$dsoext.manifest \\ \$(MT) \$(MTFLAGS) \$(MTINFLAG)$dso$dsoext.manifest \$(MTOUTFLAG)$dso$dsoext EOF } sub obj2lib { my %args = @_; my $lib = lib($args{lib}); my @objs = map { (my $x = $_) =~ s|\.o$|$objext|; $x } @{$args{objs}}; my $objs = join("\n", @objs); my $deps = join(" ", @objs); return <<"EOF"; $lib: $deps \$(AR) \$(ARFLAGS) \$(AROUTFLAG)$lib @<< $objs << EOF } sub obj2bin { my %args = @_; my $bin = $args{bin}; my @objs = map { (my $x = $_) =~ s|\.o$|$objext|; $x } @{$args{objs}}; my @deps = compute_lib_depends(@{$args{deps}}); my $objs = join("\n", @objs); my $linklibs = join("", map { "$_\n" } @deps); my $deps = join(" ", @objs, @deps); return <<"EOF"; $bin$exeext: $deps IF EXIST $bin$exeext.manifest DEL /F /Q $bin$exeext.manifest \$(LD) \$(LDFLAGS) \$(BIN_LDFLAGS) \$(LDOUTFLAG)$bin$exeext @<< $objs setargv.obj $linklibs\$(BIN_EX_LIBS) << IF EXIST $bin$exeext.manifest \\ \$(MT) \$(MTFLAGS) \$(MTINFLAG)$bin$exeext.manifest \$(MTOUTFLAG)$bin$exeext EOF } sub in2script { my %args = @_; my $script = $args{script}; my $sources = '"'.join('" "', @{$args{sources}}).'"'; my $dofile = abs2rel(rel2abs(catfile($config{sourcedir}, "util", "dofile.pl")), rel2abs($config{builddir})); return <<"EOF"; $script: $sources "\$(PERL)" "-I\$(BLDDIR)" -Mconfigdata "$dofile" \\ "-o$target{build_file}" $sources > "$script" EOF } sub generatedir { my %args = @_; my $dir = $args{dir}; my @deps = map { s|\.o$|$objext|; $_ } @{$args{deps}}; my @actions = (); my %extinfo = ( dso => $dsoext, lib => $libext, bin => $exeext ); # We already have a 'test' target, and the top directory is just plain # silly return if $dir eq "test" || $dir eq "."; foreach my $type (("dso", "lib", "bin", "script")) { next unless defined($unified_info{dirinfo}->{$dir}->{products}->{$type}); # For lib object files, we could update the library. However, # LIB on Windows doesn't work that way, so we won't create any # actions for it, and the dependencies are already taken care of. if ($type ne "lib") { foreach my $prod (@{$unified_info{dirinfo}->{$dir}->{products}->{$type}}) { if (dirname($prod) eq $dir) { push @deps, $prod.$extinfo{$type}; } } } } my $deps = join(" ", @deps); my $actions = join("\n", "", @actions); return <<"EOF"; $dir $dir\\ : $deps$actions EOF } "" # Important! This becomes part of the template result. -} openssl-1.1.1f/Configure000077500000000000000000003734721364063235100152350ustar00rootroot00000000000000#! /usr/bin/env perl # -*- mode: perl; -*- # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ## Configure -- OpenSSL source tree configuration script use 5.10.0; use strict; use Config; use FindBin; use lib "$FindBin::Bin/util/perl"; use File::Basename; use File::Spec::Functions qw/:DEFAULT abs2rel rel2abs/; use File::Path qw/mkpath/; use OpenSSL::Glob; # see INSTALL for instructions. my $orig_death_handler = $SIG{__DIE__}; $SIG{__DIE__} = \&death_handler; my $usage="Usage: Configure [no- ...] [enable- ...] [-Dxxx] [-lxxx] [-Lxxx] [-fxxx] [-Kxxx] [no-hw-xxx|no-hw] [[no-]threads] [[no-]shared] [[no-]zlib|zlib-dynamic] [no-asm] [no-egd] [sctp] [386] [--prefix=DIR] [--openssldir=OPENSSLDIR] [--with-xxx[=vvv]] [--config=FILE] os/compiler[:flags]\n"; # Options: # # --config add the given configuration file, which will be read after # any "Configurations*" files that are found in the same # directory as this script. # --prefix prefix for the OpenSSL installation, which includes the # directories bin, lib, include, share/man, share/doc/openssl # This becomes the value of INSTALLTOP in Makefile # (Default: /usr/local) # --openssldir OpenSSL data area, such as openssl.cnf, certificates and keys. # If it's a relative directory, it will be added on the directory # given with --prefix. # This becomes the value of OPENSSLDIR in Makefile and in C. # (Default: PREFIX/ssl) # # --cross-compile-prefix Add specified prefix to binutils components. # # --api One of 0.9.8, 1.0.0 or 1.1.0. Do not compile support for # interfaces deprecated as of the specified OpenSSL version. # # no-hw-xxx do not compile support for specific crypto hardware. # Generic OpenSSL-style methods relating to this support # are always compiled but return NULL if the hardware # support isn't compiled. # no-hw do not compile support for any crypto hardware. # [no-]threads [don't] try to create a library that is suitable for # multithreaded applications (default is "threads" if we # know how to do it) # [no-]shared [don't] try to create shared libraries when supported. # [no-]pic [don't] try to build position independent code when supported. # If disabled, it also disables shared and dynamic-engine. # no-asm do not use assembler # no-egd do not compile support for the entropy-gathering daemon APIs # [no-]zlib [don't] compile support for zlib compression. # zlib-dynamic Like "zlib", but the zlib library is expected to be a shared # library and will be loaded in run-time by the OpenSSL library. # sctp include SCTP support # enable-weak-ssl-ciphers # Enable weak ciphers that are disabled by default. # 386 generate 80386 code in assembly modules # no-sse2 disables IA-32 SSE2 code in assembly modules, the above # mentioned '386' option implies this one # no- build without specified algorithm (rsa, idea, rc5, ...) # - + All options which are unknown to the 'Configure' script are # / passed through to the compiler. Unix-style options beginning # with a '-' or '+' are recognized, as well as Windows-style # options beginning with a '/'. If the option contains arguments # separated by spaces, then the URL-style notation %20 can be # used for the space character in order to avoid having to quote # the option. For example, -opt%20arg gets expanded to -opt arg. # In fact, any ASCII character can be encoded as %xx using its # hexadecimal encoding. # -static while -static is also a pass-through compiler option (and # as such is limited to environments where it's actually # meaningful), it triggers a number configuration options, # namely no-pic, no-shared and no-threads. It is # argued that the only reason to produce statically linked # binaries (and in context it means executables linked with # -static flag, and not just executables linked with static # libcrypto.a) is to eliminate dependency on specific run-time, # a.k.a. libc version. The mentioned config options are meant # to achieve just that. Unfortunately on Linux it's impossible # to eliminate the dependency completely for openssl executable # because of getaddrinfo and gethostbyname calls, which can # invoke dynamically loadable library facility anyway to meet # the lookup requests. For this reason on Linux statically # linked openssl executable has rather debugging value than # production quality. # # BN_LLONG use the type 'long long' in crypto/bn/bn.h # RC4_CHAR use 'char' instead of 'int' for RC4_INT in crypto/rc4/rc4.h # Following are set automatically by this script # # MD5_ASM use some extra md5 assembler, # SHA1_ASM use some extra sha1 assembler, must define L_ENDIAN for x86 # RMD160_ASM use some extra ripemd160 assembler, # SHA256_ASM sha256_block is implemented in assembler # SHA512_ASM sha512_block is implemented in assembler # AES_ASM AES_[en|de]crypt is implemented in assembler # Minimum warning options... any contributions to OpenSSL should at least # get past these. Note that we only use these with C compilers, not with # C++ compilers. # DEBUG_UNUSED enables __owur (warn unused result) checks. # -DPEDANTIC complements -pedantic and is meant to mask code that # is not strictly standard-compliant and/or implementation-specific, # e.g. inline assembly, disregards to alignment requirements, such # that -pedantic would complain about. Incidentally -DPEDANTIC has # to be used even in sanitized builds, because sanitizer too is # supposed to and does take notice of non-standard behaviour. Then # -pedantic with pre-C9x compiler would also complain about 'long # long' not being supported. As 64-bit algorithms are common now, # it grew impossible to resolve this without sizeable additional # code, so we just tell compiler to be pedantic about everything # but 'long long' type. my @gcc_devteam_warn = qw( -DDEBUG_UNUSED -DPEDANTIC -pedantic -Wno-long-long -Wall -Wextra -Wno-unused-parameter -Wno-missing-field-initializers -Wswitch -Wsign-compare -Wshadow -Wformat -Wtype-limits -Wundef -Werror -Wmissing-prototypes -Wstrict-prototypes ); # These are used in addition to $gcc_devteam_warn when the compiler is clang. # TODO(openssl-team): fix problems and investigate if (at least) the # following warnings can also be enabled: # -Wcast-align # -Wunreachable-code -- no, too ugly/compiler-specific # -Wlanguage-extension-token -- no, we use asm() # -Wunused-macros -- no, too tricky for BN and _XOPEN_SOURCE etc # -Wextended-offsetof -- no, needed in CMS ASN1 code my @clang_devteam_warn = qw( -Wno-unknown-warning-option -Wswitch-default -Wno-parentheses-equality -Wno-language-extension-token -Wno-extended-offsetof -Wconditional-uninitialized -Wincompatible-pointer-types-discards-qualifiers -Wmissing-variable-declarations ); my @cl_devteam_warn = qw( /WX ); # This adds backtrace information to the memory leak info. Is only used # when crypto-mdebug-backtrace is enabled. my $memleak_devteam_backtrace = "-rdynamic"; my $strict_warnings = 0; # As for $BSDthreads. Idea is to maintain "collective" set of flags, # which would cover all BSD flavors. -pthread applies to them all, # but is treated differently. OpenBSD expands is as -D_POSIX_THREAD # -lc_r, which is sufficient. FreeBSD 4.x expands it as -lc_r, # which has to be accompanied by explicit -D_THREAD_SAFE and # sometimes -D_REENTRANT. FreeBSD 5.x expands it as -lc_r, which # seems to be sufficient? our $BSDthreads="-pthread -D_THREAD_SAFE -D_REENTRANT"; # # API compatibility name to version number mapping. # my $maxapi = "1.1.0"; # API for "no-deprecated" builds my $apitable = { "1.1.0" => "0x10100000L", "1.0.0" => "0x10000000L", "0.9.8" => "0x00908000L", }; our %table = (); our %config = (); our %withargs = (); our $now_printing; # set to current entry's name in print_table_entry # (todo: right thing would be to encapsulate name # into %target [class] and make print_table_entry # a method) # Forward declarations ############################################### # read_config(filename) # # Reads a configuration file and populates %table with the contents # (which the configuration file places in %targets). sub read_config; # resolve_config(target) # # Resolves all the late evaluations, inheritances and so on for the # chosen target and any target it inherits from. sub resolve_config; # Information collection ############################################# # Unified build supports separate build dir my $srcdir = catdir(absolutedir(dirname($0))); # catdir ensures local syntax my $blddir = catdir(absolutedir(".")); # catdir ensures local syntax my $dofile = abs2rel(catfile($srcdir, "util/dofile.pl")); my $local_config_envname = 'OPENSSL_LOCAL_CONFIG_DIR'; $config{sourcedir} = abs2rel($srcdir); $config{builddir} = abs2rel($blddir); # Collect reconfiguration information if needed my @argvcopy=@ARGV; if (grep /^reconf(igure)?$/, @argvcopy) { die "reconfiguring with other arguments present isn't supported" if scalar @argvcopy > 1; if (-f "./configdata.pm") { my $file = "./configdata.pm"; unless (my $return = do $file) { die "couldn't parse $file: $@" if $@; die "couldn't do $file: $!" unless defined $return; die "couldn't run $file" unless $return; } @argvcopy = defined($configdata::config{perlargv}) ? @{$configdata::config{perlargv}} : (); die "Incorrect data to reconfigure, please do a normal configuration\n" if (grep(/^reconf/,@argvcopy)); $config{perlenv} = $configdata::config{perlenv} // {}; } else { die "Insufficient data to reconfigure, please do a normal configuration\n"; } } $config{perlargv} = [ @argvcopy ]; # Collect version numbers $config{version} = "unknown"; $config{version_num} = "unknown"; $config{shlib_version_number} = "unknown"; $config{shlib_version_history} = "unknown"; collect_information( collect_from_file(catfile($srcdir,'include/openssl/opensslv.h')), qr/OPENSSL.VERSION.TEXT.*OpenSSL (\S+) / => sub { $config{version} = $1; }, qr/OPENSSL.VERSION.NUMBER.*(0x\S+)/ => sub { $config{version_num}=$1 }, qr/SHLIB_VERSION_NUMBER *"([^"]+)"/ => sub { $config{shlib_version_number}=$1 }, qr/SHLIB_VERSION_HISTORY *"([^"]*)"/ => sub { $config{shlib_version_history}=$1 } ); if ($config{shlib_version_history} ne "") { $config{shlib_version_history} .= ":"; } ($config{major}, $config{minor}) = ($config{version} =~ /^([0-9]+)\.([0-9\.]+)/); ($config{shlib_major}, $config{shlib_minor}) = ($config{shlib_version_number} =~ /^([0-9]+)\.([0-9\.]+)/); die "erroneous version information in opensslv.h: ", "$config{major}, $config{minor}, $config{shlib_major}, $config{shlib_minor}\n" if ($config{major} eq "" || $config{minor} eq "" || $config{shlib_major} eq "" || $config{shlib_minor} eq ""); # Collect target configurations my $pattern = catfile(dirname($0), "Configurations", "*.conf"); foreach (sort glob($pattern)) { &read_config($_); } if (defined env($local_config_envname)) { if ($^O eq 'VMS') { # VMS environment variables are logical names, # which can be used as is $pattern = $local_config_envname . ':' . '*.conf'; } else { $pattern = catfile(env($local_config_envname), '*.conf'); } foreach (sort glob($pattern)) { &read_config($_); } } # Save away perl command information $config{perl_cmd} = $^X; $config{perl_version} = $Config{version}; $config{perl_archname} = $Config{archname}; $config{prefix}=""; $config{openssldir}=""; $config{processor}=""; $config{libdir}=""; my $auto_threads=1; # enable threads automatically? true by default my $default_ranlib; # Top level directories to build $config{dirs} = [ "crypto", "ssl", "engines", "apps", "test", "util", "tools", "fuzz" ]; # crypto/ subdirectories to build $config{sdirs} = [ "objects", "md2", "md4", "md5", "sha", "mdc2", "hmac", "ripemd", "whrlpool", "poly1305", "blake2", "siphash", "sm3", "des", "aes", "rc2", "rc4", "rc5", "idea", "aria", "bf", "cast", "camellia", "seed", "sm4", "chacha", "modes", "bn", "ec", "rsa", "dsa", "dh", "sm2", "dso", "engine", "buffer", "bio", "stack", "lhash", "rand", "err", "evp", "asn1", "pem", "x509", "x509v3", "conf", "txt_db", "pkcs7", "pkcs12", "comp", "ocsp", "ui", "cms", "ts", "srp", "cmac", "ct", "async", "kdf", "store" ]; # test/ subdirectories to build $config{tdirs} = [ "ossl_shim" ]; # Known TLS and DTLS protocols my @tls = qw(ssl3 tls1 tls1_1 tls1_2 tls1_3); my @dtls = qw(dtls1 dtls1_2); # Explicitly known options that are possible to disable. They can # be regexps, and will be used like this: /^no-${option}$/ # For developers: keep it sorted alphabetically my @disablables = ( "afalgeng", "aria", "asan", "asm", "async", "autoalginit", "autoerrinit", "autoload-config", "bf", "blake2", "buildtest-c\\+\\+", "camellia", "capieng", "cast", "chacha", "cmac", "cms", "comp", "crypto-mdebug", "crypto-mdebug-backtrace", "ct", "deprecated", "des", "devcryptoeng", "dgram", "dh", "dsa", "dso", "dtls", "dynamic-engine", "ec", "ec2m", "ecdh", "ecdsa", "ec_nistp_64_gcc_128", "egd", "engine", "err", "external-tests", "filenames", "fuzz-libfuzzer", "fuzz-afl", "gost", "heartbeats", "hw(-.+)?", "idea", "makedepend", "md2", "md4", "mdc2", "msan", "multiblock", "nextprotoneg", "pinshared", "ocb", "ocsp", "pic", "poly1305", "posix-io", "psk", "rc2", "rc4", "rc5", "rdrand", "rfc3779", "rmd160", "scrypt", "sctp", "seed", "shared", "siphash", "sm2", "sm3", "sm4", "sock", "srp", "srtp", "sse2", "ssl", "ssl-trace", "static-engine", "stdio", "tests", "threads", "tls", "ts", "ubsan", "ui-console", "unit-test", "whirlpool", "weak-ssl-ciphers", "zlib", "zlib-dynamic", ); foreach my $proto ((@tls, @dtls)) { push(@disablables, $proto); push(@disablables, "$proto-method") unless $proto eq "tls1_3"; } my %deprecated_disablables = ( "ssl2" => undef, "buf-freelists" => undef, "ripemd" => "rmd160", "ui" => "ui-console", ); # All of the following are disabled by default: our %disabled = ( # "what" => "comment" "asan" => "default", "buildtest-c++" => "default", "crypto-mdebug" => "default", "crypto-mdebug-backtrace" => "default", "devcryptoeng" => "default", "ec_nistp_64_gcc_128" => "default", "egd" => "default", "external-tests" => "default", "fuzz-libfuzzer" => "default", "fuzz-afl" => "default", "heartbeats" => "default", "md2" => "default", "msan" => "default", "rc5" => "default", "sctp" => "default", "ssl-trace" => "default", "ssl3" => "default", "ssl3-method" => "default", "ubsan" => "default", "unit-test" => "default", "weak-ssl-ciphers" => "default", "zlib" => "default", "zlib-dynamic" => "default", ); # Note: => pair form used for aesthetics, not to truly make a hash table my @disable_cascades = ( # "what" => [ "cascade", ... ] sub { $config{processor} eq "386" } => [ "sse2" ], "ssl" => [ "ssl3" ], "ssl3-method" => [ "ssl3" ], "zlib" => [ "zlib-dynamic" ], "des" => [ "mdc2" ], "ec" => [ "ecdsa", "ecdh" ], "dgram" => [ "dtls", "sctp" ], "sock" => [ "dgram" ], "dtls" => [ @dtls ], sub { 0 == scalar grep { !$disabled{$_} } @dtls } => [ "dtls" ], "tls" => [ @tls ], sub { 0 == scalar grep { !$disabled{$_} } @tls } => [ "tls" ], "crypto-mdebug" => [ "crypto-mdebug-backtrace" ], # Without position independent code, there can be no shared libraries or DSOs "pic" => [ "shared" ], "shared" => [ "dynamic-engine" ], "dso" => [ "dynamic-engine" ], "engine" => [ "afalgeng", "devcryptoeng" ], # no-autoalginit is only useful when building non-shared "autoalginit" => [ "shared", "apps" ], "stdio" => [ "apps", "capieng", "egd" ], "apps" => [ "tests" ], "tests" => [ "external-tests" ], "comp" => [ "zlib" ], "ec" => [ "tls1_3", "sm2" ], "sm3" => [ "sm2" ], sub { !$disabled{"unit-test"} } => [ "heartbeats" ], sub { !$disabled{"msan"} } => [ "asm" ], ); # Avoid protocol support holes. Also disable all versions below N, if version # N is disabled while N+1 is enabled. # my @list = (reverse @tls); while ((my $first, my $second) = (shift @list, shift @list)) { last unless @list; push @disable_cascades, ( sub { !$disabled{$first} && $disabled{$second} } => [ @list ] ); unshift @list, $second; } my @list = (reverse @dtls); while ((my $first, my $second) = (shift @list, shift @list)) { last unless @list; push @disable_cascades, ( sub { !$disabled{$first} && $disabled{$second} } => [ @list ] ); unshift @list, $second; } # Explicit "no-..." options will be collected in %disabled along with the defaults. # To remove something from %disabled, use "enable-foo". # For symmetry, "disable-foo" is a synonym for "no-foo". &usage if ($#ARGV < 0); # For the "make variables" CPPINCLUDES and CPPDEFINES, we support lists with # platform specific list separators. Users from those platforms should # recognise those separators from how you set up the PATH to find executables. # The default is the Unix like separator, :, but as an exception, we also # support the space as separator. my $list_separator_re = { VMS => qr/(? qr/(? {$^O} // qr/(? env('AR'), ARFLAGS => [], AS => undef, ASFLAGS => [], CC => env('CC'), CFLAGS => [ env('CFLAGS') || () ], CXX => env('CXX'), CXXFLAGS => [ env('CXXFLAGS') || () ], CPP => undef, CPPFLAGS => [ env('CPPFLAGS') || () ], # -D, -I, -Wp, CPPDEFINES => [], # Alternative for -D CPPINCLUDES => [], # Alternative for -I CROSS_COMPILE => env('CROSS_COMPILE'), HASHBANGPERL=> env('HASHBANGPERL') || env('PERL'), LD => undef, LDFLAGS => [ env('LDFLAGS') || () ], # -L, -Wl, LDLIBS => [ env('LDLIBS') || () ], # -l MT => undef, MTFLAGS => [], PERL => env('PERL') || ($^O ne "VMS" ? $^X : "perl"), RANLIB => env('RANLIB'), RC => env('RC') || env('WINDRES'), RCFLAGS => [ env('RCFLAGS') || () ], RM => undef, ); # Info about what "make variables" may be prefixed with the cross compiler # prefix. This should NEVER mention any such variable with a list for value. my @user_crossable = qw ( AR AS CC CXX CPP LD MT RANLIB RC ); # The same but for flags given as Configure options. These are *additional* # input, as opposed to the VAR=string option that override the corresponding # config target attributes my %useradd = ( CPPDEFINES => [], CPPINCLUDES => [], CPPFLAGS => [], CFLAGS => [], CXXFLAGS => [], LDFLAGS => [], LDLIBS => [], RCFLAGS => [], ); my %user_synonyms = ( HASHBANGPERL=> 'PERL', RC => 'WINDRES', ); # Some target attributes have been renamed, this is the translation table my %target_attr_translate =( ar => 'AR', as => 'AS', cc => 'CC', cxx => 'CXX', cpp => 'CPP', hashbangperl => 'HASHBANGPERL', ld => 'LD', mt => 'MT', ranlib => 'RANLIB', rc => 'RC', rm => 'RM', ); # Initialisers coming from 'config' scripts $config{defines} = [ split(/$list_separator_re/, env('__CNF_CPPDEFINES')) ]; $config{includes} = [ split(/$list_separator_re/, env('__CNF_CPPINCLUDES')) ]; $config{cppflags} = [ env('__CNF_CPPFLAGS') || () ]; $config{cflags} = [ env('__CNF_CFLAGS') || () ]; $config{cxxflags} = [ env('__CNF_CXXFLAGS') || () ]; $config{lflags} = [ env('__CNF_LDFLAGS') || () ]; $config{ex_libs} = [ env('__CNF_LDLIBS') || () ]; $config{openssl_api_defines}=[]; $config{openssl_algorithm_defines}=[]; $config{openssl_thread_defines}=[]; $config{openssl_sys_defines}=[]; $config{openssl_other_defines}=[]; $config{options}=""; $config{build_type} = "release"; my $target=""; my %cmdvars = (); # Stores FOO='blah' type arguments my %unsupported_options = (); my %deprecated_options = (); # If you change this, update apps/version.c my @known_seed_sources = qw(getrandom devrandom os egd none rdcpu librandom); my @seed_sources = (); while (@argvcopy) { $_ = shift @argvcopy; # Support env variable assignments among the options if (m|^(\w+)=(.+)?$|) { $cmdvars{$1} = $2; # Every time a variable is given as a configuration argument, # it acts as a reset if the variable. if (exists $user{$1}) { $user{$1} = ref $user{$1} eq "ARRAY" ? [] : undef; } #if (exists $useradd{$1}) # { # $useradd{$1} = []; # } next; } # VMS is a case insensitive environment, and depending on settings # out of our control, we may receive options uppercased. Let's # downcase at least the part before any equal sign. if ($^O eq "VMS") { s/^([^=]*)/lc($1)/e; } # some people just can't read the instructions, clang people have to... s/^-no-(?!integrated-as)/no-/; # rewrite some options in "enable-..." form s /^-?-?shared$/enable-shared/; s /^sctp$/enable-sctp/; s /^threads$/enable-threads/; s /^zlib$/enable-zlib/; s /^zlib-dynamic$/enable-zlib-dynamic/; if (/^(no|disable|enable)-(.+)$/) { my $word = $2; if (!exists $deprecated_disablables{$word} && !grep { $word =~ /^${_}$/ } @disablables) { $unsupported_options{$_} = 1; next; } } if (/^no-(.+)$/ || /^disable-(.+)$/) { foreach my $proto ((@tls, @dtls)) { if ($1 eq "$proto-method") { $disabled{"$proto"} = "option($proto-method)"; last; } } if ($1 eq "dtls") { foreach my $proto (@dtls) { $disabled{$proto} = "option(dtls)"; } $disabled{"dtls"} = "option(dtls)"; } elsif ($1 eq "ssl") { # Last one of its kind $disabled{"ssl3"} = "option(ssl)"; } elsif ($1 eq "tls") { # XXX: Tests will fail if all SSL/TLS # protocols are disabled. foreach my $proto (@tls) { $disabled{$proto} = "option(tls)"; } } elsif ($1 eq "static-engine") { delete $disabled{"dynamic-engine"}; } elsif ($1 eq "dynamic-engine") { $disabled{"dynamic-engine"} = "option"; } elsif (exists $deprecated_disablables{$1}) { if ($deprecated_disablables{$1} ne "") { $deprecated_options{$_} = 1; if (defined $deprecated_disablables{$1}) { $disabled{$deprecated_disablables{$1}} = "option"; } } } else { $disabled{$1} = "option"; } # No longer an automatic choice $auto_threads = 0 if ($1 eq "threads"); } elsif (/^enable-(.+)$/) { if ($1 eq "static-engine") { $disabled{"dynamic-engine"} = "option"; } elsif ($1 eq "dynamic-engine") { delete $disabled{"dynamic-engine"}; } elsif ($1 eq "zlib-dynamic") { delete $disabled{"zlib"}; } my $algo = $1; delete $disabled{$algo}; # No longer an automatic choice $auto_threads = 0 if ($1 eq "threads"); } elsif (/^--strict-warnings$/) { # Pretend that our strict flags is a C flag, and replace it # with the proper flags later on push @{$useradd{CFLAGS}}, '--ossl-strict-warnings'; $strict_warnings=1; } elsif (/^--debug$/) { $config{build_type} = "debug"; } elsif (/^--release$/) { $config{build_type} = "release"; } elsif (/^386$/) { $config{processor}=386; } elsif (/^fips$/) { die "FIPS mode not supported\n"; } elsif (/^rsaref$/) { # No RSAref support any more since it's not needed. # The check for the option is there so scripts aren't # broken } elsif (/^nofipscanistercheck$/) { die "FIPS mode not supported\n"; } elsif (m|^[-+/]|) { if (/^--prefix=(.*)$/) { $config{prefix}=$1; die "Directory given with --prefix MUST be absolute\n" unless file_name_is_absolute($config{prefix}); } elsif (/^--api=(.*)$/) { $config{api}=$1; } elsif (/^--libdir=(.*)$/) { $config{libdir}=$1; } elsif (/^--openssldir=(.*)$/) { $config{openssldir}=$1; } elsif (/^--with-zlib-lib=(.*)$/) { $withargs{zlib_lib}=$1; } elsif (/^--with-zlib-include=(.*)$/) { $withargs{zlib_include}=$1; } elsif (/^--with-fuzzer-lib=(.*)$/) { $withargs{fuzzer_lib}=$1; } elsif (/^--with-fuzzer-include=(.*)$/) { $withargs{fuzzer_include}=$1; } elsif (/^--with-rand-seed=(.*)$/) { foreach my $x (split(m|,|, $1)) { die "Unknown --with-rand-seed choice $x\n" if ! grep { $x eq $_ } @known_seed_sources; push @seed_sources, $x; } } elsif (/^--cross-compile-prefix=(.*)$/) { $user{CROSS_COMPILE}=$1; } elsif (/^--config=(.*)$/) { read_config $1; } elsif (/^-l(.*)$/) { push @{$useradd{LDLIBS}}, $_; } elsif (/^-framework$/) { push @{$useradd{LDLIBS}}, $_, shift(@argvcopy); } elsif (/^-L(.*)$/ or /^-Wl,/) { push @{$useradd{LDFLAGS}}, $_; } elsif (/^-rpath$/ or /^-R$/) # -rpath is the OSF1 rpath flag # -R is the old Solaris rpath flag { my $rpath = shift(@argvcopy) || ""; $rpath .= " " if $rpath ne ""; push @{$useradd{LDFLAGS}}, $_, $rpath; } elsif (/^-static$/) { push @{$useradd{LDFLAGS}}, $_; } elsif (m|^[-/]D(.*)$|) { push @{$useradd{CPPDEFINES}}, $1; } elsif (m|^[-/]I(.*)$|) { push @{$useradd{CPPINCLUDES}}, $1; } elsif (/^-Wp,$/) { push @{$useradd{CPPFLAGS}}, $1; } else # common if (/^[-+]/), just pass down... { # Treat %xx as an ASCII code (e.g. replace %20 by a space character). # This provides a simple way to pass options with arguments separated # by spaces without quoting (e.g. -opt%20arg translates to -opt arg). $_ =~ s/%([0-9a-f]{1,2})/chr(hex($1))/gei; push @{$useradd{CFLAGS}}, $_; push @{$useradd{CXXFLAGS}}, $_; } } elsif (m|^/|) { # Treat %xx as an ASCII code (e.g. replace %20 by a space character). # This provides a simple way to pass options with arguments separated # by spaces without quoting (e.g. /opt%20arg translates to /opt arg). $_ =~ s/%([0-9a-f]{1,2})/chr(hex($1))/gei; push @{$useradd{CFLAGS}}, $_; push @{$useradd{CXXFLAGS}}, $_; } else { die "target already defined - $target (offending arg: $_)\n" if ($target ne ""); $target=$_; } unless ($_ eq $target || /^no-/ || /^disable-/) { # "no-..." follows later after implied deactivations # have been derived. (Don't take this too seriously, # we really only write OPTIONS to the Makefile out of # nostalgia.) if ($config{options} eq "") { $config{options} = $_; } else { $config{options} .= " ".$_; } } } if (defined($config{api}) && !exists $apitable->{$config{api}}) { die "***** Unsupported api compatibility level: $config{api}\n", } if (keys %deprecated_options) { warn "***** Deprecated options: ", join(", ", keys %deprecated_options), "\n"; } if (keys %unsupported_options) { die "***** Unsupported options: ", join(", ", keys %unsupported_options), "\n"; } # If any %useradd entry has been set, we must check that the "make # variables" haven't been set. We start by checking of any %useradd entry # is set. if (grep { scalar @$_ > 0 } values %useradd) { # Hash of env / make variables names. The possible values are: # 1 - "make vars" # 2 - %useradd entry set # 3 - both set my %detected_vars = map { my $v = 0; $v += 1 if $cmdvars{$_}; $v += 2 if @{$useradd{$_}}; $_ => $v } keys %useradd; # If any of the corresponding "make variables" is set, we error if (grep { $_ & 1 } values %detected_vars) { my $names = join(', ', grep { $detected_vars{$_} > 0 } sort keys %detected_vars); die <<"_____"; ***** Mixing make variables and additional compiler/linker flags as ***** configure command line option is not permitted. ***** Affected make variables: $names _____ } } # Check through all supported command line variables to see if any of them # were set, and canonicalise the values we got. If no compiler or linker # flag or anything else that affects %useradd was set, we also check the # environment for values. my $anyuseradd = grep { defined $_ && (ref $_ ne 'ARRAY' || @$_) } values %useradd; foreach (keys %user) { my $value = $cmdvars{$_}; $value //= env($_) unless $anyuseradd; $value //= defined $user_synonyms{$_} ? $cmdvars{$user_synonyms{$_}} : undef; $value //= defined $user_synonyms{$_} ? env($user_synonyms{$_}) : undef unless $anyuseradd; if (defined $value) { if (ref $user{$_} eq 'ARRAY') { if ($_ eq 'CPPDEFINES' || $_ eq 'CPPINCLUDES') { $user{$_} = [ split /$list_separator_re/, $value ]; } else { $user{$_} = [ $value ]; } } elsif (!defined $user{$_}) { $user{$_} = $value; } } } if (grep { /-rpath\b/ } ($user{LDFLAGS} ? @{$user{LDFLAGS}} : ()) && !$disabled{shared} && !($disabled{asan} && $disabled{msan} && $disabled{ubsan})) { die "***** Cannot simultaneously use -rpath, shared libraries, and\n", "***** any of asan, msan or ubsan\n"; } sub disable { my $disable_type = shift; for (@_) { $disabled{$_} = $disable_type; } my @tocheckfor = (@_ ? @_ : keys %disabled); while (@tocheckfor) { my %new_tocheckfor = (); my @cascade_copy = (@disable_cascades); while (@cascade_copy) { my ($test, $descendents) = (shift @cascade_copy, shift @cascade_copy); if (ref($test) eq "CODE" ? $test->() : defined($disabled{$test})) { foreach (grep { !defined($disabled{$_}) } @$descendents) { $new_tocheckfor{$_} = 1; $disabled{$_} = "cascade"; } } } @tocheckfor = (keys %new_tocheckfor); } } disable(); # First cascade run our $die = sub { die @_; }; if ($target eq "TABLE") { local $die = sub { warn @_; }; foreach (sort keys %table) { print_table_entry($_, "TABLE"); } exit 0; } if ($target eq "LIST") { foreach (sort keys %table) { print $_,"\n" unless $table{$_}->{template}; } exit 0; } if ($target eq "HASH") { local $die = sub { warn @_; }; print "%table = (\n"; foreach (sort keys %table) { print_table_entry($_, "HASH"); } exit 0; } print "Configuring OpenSSL version $config{version} ($config{version_num}) "; print "for $target\n"; if (scalar(@seed_sources) == 0) { print "Using os-specific seed configuration\n"; push @seed_sources, 'os'; } if (scalar(grep { $_ eq 'none' } @seed_sources) > 0) { die "Cannot seed with none and anything else" if scalar(@seed_sources) > 1; warn <<_____ if scalar(@seed_sources) == 1; ============================== WARNING =============================== You have selected the --with-rand-seed=none option, which effectively disables automatic reseeding of the OpenSSL random generator. All operations depending on the random generator such as creating keys will not work unless the random generator is seeded manually by the application. Please read the 'Note on random number generation' section in the INSTALL instructions and the RAND_DRBG(7) manual page for more details. ============================== WARNING =============================== _____ } push @{$config{openssl_other_defines}}, map { (my $x = $_) =~ tr|[\-a-z]|[_A-Z]|; "OPENSSL_RAND_SEED_$x" } @seed_sources; # Backward compatibility? if ($target =~ m/^CygWin32(-.*)$/) { $target = "Cygwin".$1; } # Support for legacy targets having a name starting with 'debug-' my ($d, $t) = $target =~ m/^(debug-)?(.*)$/; if ($d) { $config{build_type} = "debug"; # If we do not find debug-foo in the table, the target is set to foo. if (!$table{$target}) { $target = $t; } } &usage if !$table{$target} || $table{$target}->{template}; $config{target} = $target; my %target = resolve_config($target); foreach (keys %target_attr_translate) { $target{$target_attr_translate{$_}} = $target{$_} if $target{$_}; delete $target{$_}; } %target = ( %{$table{DEFAULTS}}, %target ); my %conf_files = map { $_ => 1 } (@{$target{_conf_fname_int}}); $config{conf_files} = [ sort keys %conf_files ]; # Using sub disable within these loops may prove fragile, so we run # a cascade afterwards foreach my $feature (@{$target{disable}}) { if (exists $deprecated_disablables{$feature}) { warn "***** config $target disables deprecated feature $feature\n"; } elsif (!grep { $feature eq $_ } @disablables) { die "***** config $target disables unknown feature $feature\n"; } $disabled{$feature} = 'config'; } foreach my $feature (@{$target{enable}}) { if ("default" eq ($disabled{$feature} // "")) { if (exists $deprecated_disablables{$feature}) { warn "***** config $target enables deprecated feature $feature\n"; } elsif (!grep { $feature eq $_ } @disablables) { die "***** config $target enables unknown feature $feature\n"; } delete $disabled{$feature}; } } disable(); # Run a cascade now $target{CXXFLAGS}//=$target{CFLAGS} if $target{CXX}; $target{cxxflags}//=$target{cflags} if $target{CXX}; $target{exe_extension}=""; $target{exe_extension}=".exe" if ($config{target} eq "DJGPP" || $config{target} =~ /^(?:Cygwin|mingw)/); $target{exe_extension}=".pm" if ($config{target} =~ /vos/); ($target{shared_extension_simple}=$target{shared_extension}) =~ s|\.\$\(SHLIB_VERSION_NUMBER\)|| unless defined($target{shared_extension_simple}); $target{dso_extension}//=$target{shared_extension_simple}; ($target{shared_import_extension}=$target{shared_extension_simple}.".a") if ($config{target} =~ /^(?:Cygwin|mingw)/); # Fill %config with values from %user, and in case those are undefined or # empty, use values from %target (acting as a default). foreach (keys %user) { my $ref_type = ref $user{$_}; # Temporary function. Takes an intended ref type (empty string or "ARRAY") # and a value that's to be coerced into that type. my $mkvalue = sub { my $type = shift; my $value = shift; my $undef_p = shift; die "Too many arguments for \$mkvalue" if @_; while (ref $value eq 'CODE') { $value = $value->(); } if ($type eq 'ARRAY') { return undef unless defined $value; return undef if ref $value ne 'ARRAY' && !$value; return undef if ref $value eq 'ARRAY' && !@$value; return [ $value ] unless ref $value eq 'ARRAY'; } return undef unless $value; return $value; }; $config{$_} = $mkvalue->($ref_type, $user{$_}) || $mkvalue->($ref_type, $target{$_}); delete $config{$_} unless defined $config{$_}; } # Finish up %config by appending things the user gave us on the command line # apart from "make variables" foreach (keys %useradd) { # The must all be lists, so we assert that here die "internal error: \$useradd{$_} isn't an ARRAY\n" unless ref $useradd{$_} eq 'ARRAY'; if (defined $config{$_}) { push @{$config{$_}}, @{$useradd{$_}}; } else { $config{$_} = [ @{$useradd{$_}} ]; } } # At this point, we can forget everything about %user and %useradd, # because it's now all been merged into the corresponding $config entry # Allow overriding the build file name $config{build_file} = env('BUILDFILE') || $target{build_file} || "Makefile"; # Make sure build_scheme is consistent. $target{build_scheme} = [ $target{build_scheme} ] if ref($target{build_scheme}) ne "ARRAY"; my ($builder, $builder_platform, @builder_opts) = @{$target{build_scheme}}; foreach my $checker (($builder_platform."-".$target{build_file}."-checker.pm", $builder_platform."-checker.pm")) { my $checker_path = catfile($srcdir, "Configurations", $checker); if (-f $checker_path) { my $fn = $ENV{CONFIGURE_CHECKER_WARN} ? sub { warn $@; } : sub { die $@; }; if (! do $checker_path) { if ($@) { $fn->($@); } elsif ($!) { $fn->($!); } else { $fn->("The detected tools didn't match the platform\n"); } } last; } } push @{$config{defines}}, "NDEBUG" if $config{build_type} eq "release"; if ($target =~ /^mingw/ && `$config{CC} --target-help 2>&1` =~ m/-mno-cygwin/m) { push @{$config{cflags}}, "-mno-cygwin"; push @{$config{cxxflags}}, "-mno-cygwin" if $config{CXX}; push @{$config{shared_ldflag}}, "-mno-cygwin"; } if ($target =~ /linux.*-mips/ && !$disabled{asm} && !grep { $_ !~ /-m(ips|arch=)/ } (@{$config{CFLAGS}})) { # minimally required architecture flags for assembly modules my $value; $value = '-mips2' if ($target =~ /mips32/); $value = '-mips3' if ($target =~ /mips64/); unshift @{$config{cflags}}, $value; unshift @{$config{cxxflags}}, $value if $config{CXX}; } # If threads aren't disabled, check how possible they are unless ($disabled{threads}) { if ($auto_threads) { # Enabled by default, disable it forcibly if unavailable if ($target{thread_scheme} eq "(unknown)") { disable("unavailable", 'threads'); } } else { # The user chose to enable threads explicitly, let's see # if there's a chance that's possible if ($target{thread_scheme} eq "(unknown)") { # If the user asked for "threads" and we don't have internal # knowledge how to do it, [s]he is expected to provide any # system-dependent compiler options that are necessary. We # can't truly check that the given options are correct, but # we expect the user to know what [s]He is doing. if (!@{$config{CFLAGS}} && !@{$config{CPPDEFINES}}) { die "You asked for multi-threading support, but didn't\n" ,"provide any system-specific compiler options\n"; } } } } # If threads still aren't disabled, add a C macro to ensure the source # code knows about it. Any other flag is taken care of by the configs. unless($disabled{threads}) { push @{$config{openssl_thread_defines}}, "OPENSSL_THREADS"; } # With "deprecated" disable all deprecated features. if (defined($disabled{"deprecated"})) { $config{api} = $maxapi; } my $no_shared_warn=0; if ($target{shared_target} eq "") { $no_shared_warn = 1 if (!$disabled{shared} || !$disabled{"dynamic-engine"}); disable('no-shared-target', 'pic'); } if ($disabled{"dynamic-engine"}) { $config{dynamic_engines} = 0; } else { $config{dynamic_engines} = 1; } unless ($disabled{asan}) { push @{$config{cflags}}, "-fsanitize=address"; } unless ($disabled{ubsan}) { # -DPEDANTIC or -fnosanitize=alignment may also be required on some # platforms. push @{$config{cflags}}, "-fsanitize=undefined", "-fno-sanitize-recover=all"; } unless ($disabled{msan}) { push @{$config{cflags}}, "-fsanitize=memory"; } unless ($disabled{"fuzz-libfuzzer"} && $disabled{"fuzz-afl"} && $disabled{asan} && $disabled{ubsan} && $disabled{msan}) { push @{$config{cflags}}, "-fno-omit-frame-pointer", "-g"; push @{$config{cxxflags}}, "-fno-omit-frame-pointer", "-g" if $config{CXX}; } # # Platform fix-ups # # This saves the build files from having to check if ($disabled{pic}) { foreach (qw(shared_cflag shared_cxxflag shared_cppflag shared_defines shared_includes shared_ldflag module_cflags module_cxxflags module_cppflags module_defines module_includes module_lflags)) { delete $config{$_}; $target{$_} = ""; } } else { push @{$config{lib_defines}}, "OPENSSL_PIC"; } if ($target{sys_id} ne "") { push @{$config{openssl_sys_defines}}, "OPENSSL_SYS_$target{sys_id}"; } unless ($disabled{asm}) { $target{cpuid_asm_src}=$table{DEFAULTS}->{cpuid_asm_src} if ($config{processor} eq "386"); push @{$config{lib_defines}}, "OPENSSL_CPUID_OBJ" if ($target{cpuid_asm_src} ne "mem_clr.c"); $target{bn_asm_src} =~ s/\w+-gf2m.c// if (defined($disabled{ec2m})); # bn-586 is the only one implementing bn_*_part_words push @{$config{lib_defines}}, "OPENSSL_BN_ASM_PART_WORDS" if ($target{bn_asm_src} =~ /bn-586/); push @{$config{lib_defines}}, "OPENSSL_IA32_SSE2" if (!$disabled{sse2} && $target{bn_asm_src} =~ /86/); push @{$config{lib_defines}}, "OPENSSL_BN_ASM_MONT" if ($target{bn_asm_src} =~ /-mont/); push @{$config{lib_defines}}, "OPENSSL_BN_ASM_MONT5" if ($target{bn_asm_src} =~ /-mont5/); push @{$config{lib_defines}}, "OPENSSL_BN_ASM_GF2m" if ($target{bn_asm_src} =~ /-gf2m/); push @{$config{lib_defines}}, "BN_DIV3W" if ($target{bn_asm_src} =~ /-div3w/); if ($target{sha1_asm_src}) { push @{$config{lib_defines}}, "SHA1_ASM" if ($target{sha1_asm_src} =~ /sx86/ || $target{sha1_asm_src} =~ /sha1/); push @{$config{lib_defines}}, "SHA256_ASM" if ($target{sha1_asm_src} =~ /sha256/); push @{$config{lib_defines}}, "SHA512_ASM" if ($target{sha1_asm_src} =~ /sha512/); } if ($target{keccak1600_asm_src} ne $table{DEFAULTS}->{keccak1600_asm_src}) { push @{$config{lib_defines}}, "KECCAK1600_ASM"; } if ($target{rc4_asm_src} ne $table{DEFAULTS}->{rc4_asm_src}) { push @{$config{lib_defines}}, "RC4_ASM"; } if ($target{md5_asm_src}) { push @{$config{lib_defines}}, "MD5_ASM"; } $target{cast_asm_src}=$table{DEFAULTS}->{cast_asm_src} unless $disabled{pic}; # CAST assembler is not PIC if ($target{rmd160_asm_src}) { push @{$config{lib_defines}}, "RMD160_ASM"; } if ($target{aes_asm_src}) { push @{$config{lib_defines}}, "AES_ASM" if ($target{aes_asm_src} =~ m/\baes-/);; push @{$config{lib_defines}}, "AESNI_ASM" if ($target{aes_asm_src} =~ m/\baesni-/);; # aes-ctr.fake is not a real file, only indication that assembler # module implements AES_ctr32_encrypt... push @{$config{lib_defines}}, "AES_CTR_ASM" if ($target{aes_asm_src} =~ s/\s*aes-ctr\.fake//); # aes-xts.fake indicates presence of AES_xts_[en|de]crypt... push @{$config{lib_defines}}, "AES_XTS_ASM" if ($target{aes_asm_src} =~ s/\s*aes-xts\.fake//); $target{aes_asm_src} =~ s/\s*(vpaes|aesni)-x86\.s//g if ($disabled{sse2}); push @{$config{lib_defines}}, "VPAES_ASM" if ($target{aes_asm_src} =~ m/vpaes/); push @{$config{lib_defines}}, "BSAES_ASM" if ($target{aes_asm_src} =~ m/bsaes/); } if ($target{wp_asm_src} =~ /mmx/) { if ($config{processor} eq "386") { $target{wp_asm_src}=$table{DEFAULTS}->{wp_asm_src}; } elsif (!$disabled{"whirlpool"}) { push @{$config{lib_defines}}, "WHIRLPOOL_ASM"; } } if ($target{modes_asm_src} =~ /ghash-/) { push @{$config{lib_defines}}, "GHASH_ASM"; } if ($target{ec_asm_src} =~ /ecp_nistz256/) { push @{$config{lib_defines}}, "ECP_NISTZ256_ASM"; } if ($target{ec_asm_src} =~ /x25519/) { push @{$config{lib_defines}}, "X25519_ASM"; } if ($target{padlock_asm_src} ne $table{DEFAULTS}->{padlock_asm_src}) { push @{$config{dso_defines}}, "PADLOCK_ASM"; } if ($target{poly1305_asm_src} ne "") { push @{$config{lib_defines}}, "POLY1305_ASM"; } } my %predefined_C = compiler_predefined($config{CROSS_COMPILE}.$config{CC}); my %predefined_CXX = $config{CXX} ? compiler_predefined($config{CROSS_COMPILE}.$config{CXX}) : (); # Check for makedepend capabilities. if (!$disabled{makedepend}) { if ($config{target} =~ /^(VC|vms)-/) { # For VC- and vms- targets, there's nothing more to do here. The # functionality is hard coded in the corresponding build files for # cl (Windows) and CC/DECC (VMS). } elsif (($predefined_C{__GNUC__} // -1) >= 3 && !($predefined_C{__APPLE_CC__} && !$predefined_C{__clang__})) { # We know that GNU C version 3 and up as well as all clang # versions support dependency generation, but Xcode did not # handle $cc -M before clang support (but claims __GNUC__ = 3) $config{makedepprog} = "\$(CROSS_COMPILE)$config{CC}"; } else { # In all other cases, we look for 'makedepend', and disable the # capability if not found. $config{makedepprog} = which('makedepend'); disable('unavailable', 'makedepend') unless $config{makedepprog}; } } if (!$disabled{asm} && !$predefined_C{__MACH__} && $^O ne 'VMS') { # probe for -Wa,--noexecstack option... if ($predefined_C{__clang__}) { # clang has builtin assembler, which doesn't recognize --help, # but it apparently recognizes the option in question on all # supported platforms even when it's meaningless. In other words # probe would fail, but probed option always accepted... push @{$config{cflags}}, "-Wa,--noexecstack", "-Qunused-arguments"; } else { my $cc = $config{CROSS_COMPILE}.$config{CC}; open(PIPE, "$cc -Wa,--help -c -o null.$$.o -x assembler /dev/null 2>&1 |"); while() { if (m/--noexecstack/) { push @{$config{cflags}}, "-Wa,--noexecstack"; last; } } close(PIPE); unlink("null.$$.o"); } } # Deal with bn_ops ################################################### $config{bn_ll} =0; $config{export_var_as_fn} =0; my $def_int="unsigned int"; $config{rc4_int} =$def_int; ($config{b64l},$config{b64},$config{b32})=(0,0,1); my $count = 0; foreach (sort split(/\s+/,$target{bn_ops})) { $count++ if /SIXTY_FOUR_BIT|SIXTY_FOUR_BIT_LONG|THIRTY_TWO_BIT/; $config{export_var_as_fn}=1 if $_ eq 'EXPORT_VAR_AS_FN'; $config{bn_ll}=1 if $_ eq 'BN_LLONG'; $config{rc4_int}="unsigned char" if $_ eq 'RC4_CHAR'; ($config{b64l},$config{b64},$config{b32}) =(0,1,0) if $_ eq 'SIXTY_FOUR_BIT'; ($config{b64l},$config{b64},$config{b32}) =(1,0,0) if $_ eq 'SIXTY_FOUR_BIT_LONG'; ($config{b64l},$config{b64},$config{b32}) =(0,0,1) if $_ eq 'THIRTY_TWO_BIT'; } die "Exactly one of SIXTY_FOUR_BIT|SIXTY_FOUR_BIT_LONG|THIRTY_TWO_BIT can be set in bn_ops\n" if $count > 1; # Hack cflags for better warnings (dev option) ####################### # "Stringify" the C and C++ flags string. This permits it to be made part of # a string and works as well on command lines. $config{cflags} = [ map { (my $x = $_) =~ s/([\\\"])/\\$1/g; $x } @{$config{cflags}} ]; $config{cxxflags} = [ map { (my $x = $_) =~ s/([\\\"])/\\$1/g; $x } @{$config{cxxflags}} ] if $config{CXX}; if (defined($config{api})) { $config{openssl_api_defines} = [ "OPENSSL_MIN_API=".$apitable->{$config{api}} ]; my $apiflag = sprintf("OPENSSL_API_COMPAT=%s", $apitable->{$config{api}}); push @{$config{defines}}, $apiflag; } my @strict_warnings_collection=(); if ($strict_warnings) { my $wopt; my $gccver = $predefined_C{__GNUC__} // -1; if ($gccver >= 4) { push @strict_warnings_collection, @gcc_devteam_warn; push @strict_warnings_collection, @clang_devteam_warn if (defined($predefined_C{__clang__})); } elsif ($config{target} =~ /^VC-/) { push @strict_warnings_collection, @cl_devteam_warn; } else { warn "WARNING --strict-warnings requires gcc[>=4] or gcc-alike, or MSVC" } } if (grep { $_ eq '-static' } @{$config{LDFLAGS}}) { disable('static', 'pic', 'threads'); } $config{CFLAGS} = [ map { $_ eq '--ossl-strict-warnings' ? @strict_warnings_collection : ( $_ ) } @{$config{CFLAGS}} ]; unless ($disabled{"crypto-mdebug-backtrace"}) { foreach my $wopt (split /\s+/, $memleak_devteam_backtrace) { push @{$config{cflags}}, $wopt unless grep { $_ eq $wopt } @{$config{cflags}}; } if ($target =~ /^BSD-/) { push @{$config{ex_libs}}, "-lexecinfo"; } } unless ($disabled{afalgeng}) { $config{afalgeng}=""; if (grep { $_ eq 'afalgeng' } @{$target{enable}}) { my $minver = 4*10000 + 1*100 + 0; if ($config{CROSS_COMPILE} eq "") { my $verstr = `uname -r`; my ($ma, $mi1, $mi2) = split("\\.", $verstr); ($mi2) = $mi2 =~ /(\d+)/; my $ver = $ma*10000 + $mi1*100 + $mi2; if ($ver < $minver) { disable('too-old-kernel', 'afalgeng'); } else { push @{$config{engdirs}}, "afalg"; } } else { disable('cross-compiling', 'afalgeng'); } } else { disable('not-linux', 'afalgeng'); } } unless ($disabled{devcryptoeng}) { if ($target =~ m/^BSD/) { my $maxver = 5*100 + 7; my $sysstr = `uname -s`; my $verstr = `uname -r`; $sysstr =~ s|\R$||; $verstr =~ s|\R$||; my ($ma, $mi, @rest) = split m|\.|, $verstr; my $ver = $ma*100 + $mi; if ($sysstr eq 'OpenBSD' && $ver >= $maxver) { disable('too-new-kernel', 'devcryptoeng'); } } } # Get the extra flags used when building shared libraries and modules. We # do this late because some of them depend on %disabled. # Make the flags to build DSOs the same as for shared libraries unless they # are already defined $target{module_cflags} = $target{shared_cflag} unless defined $target{module_cflags}; $target{module_cxxflags} = $target{shared_cxxflag} unless defined $target{module_cxxflags}; $target{module_ldflags} = $target{shared_ldflag} unless defined $target{module_ldflags}; { my $shared_info_pl = catfile(dirname($0), "Configurations", "shared-info.pl"); my %shared_info = read_eval_file($shared_info_pl); push @{$target{_conf_fname_int}}, $shared_info_pl; my $si = $target{shared_target}; while (ref $si ne "HASH") { last if ! defined $si; if (ref $si eq "CODE") { $si = $si->(); } else { $si = $shared_info{$si}; } } # Some of the 'shared_target' values don't have any entries in # %shared_info. That's perfectly fine, AS LONG AS the build file # template knows how to handle this. That is currently the case for # Windows and VMS. if (defined $si) { # Just as above, copy certain shared_* attributes to the corresponding # module_ attribute unless the latter is already defined $si->{module_cflags} = $si->{shared_cflag} unless defined $si->{module_cflags}; $si->{module_cxxflags} = $si->{shared_cxxflag} unless defined $si->{module_cxxflags}; $si->{module_ldflags} = $si->{shared_ldflag} unless defined $si->{module_ldflags}; foreach (sort keys %$si) { $target{$_} = defined $target{$_} ? add($si->{$_})->($target{$_}) : $si->{$_}; } } } # ALL MODIFICATIONS TO %disabled, %config and %target MUST BE DONE FROM HERE ON my %disabled_info = (); # For configdata.pm foreach my $what (sort keys %disabled) { $config{options} .= " no-$what"; if (!grep { $what eq $_ } ( 'buildtest-c++', 'threads', 'shared', 'pic', 'dynamic-engine', 'makedepend', 'zlib-dynamic', 'zlib', 'sse2' )) { (my $WHAT = uc $what) =~ s|-|_|g; # Fix up C macro end names $WHAT = "RMD160" if $what eq "ripemd"; # fix-up crypto/directory name(s) $what = "ripemd" if $what eq "rmd160"; $what = "whrlpool" if $what eq "whirlpool"; my $macro = $disabled_info{$what}->{macro} = "OPENSSL_NO_$WHAT"; if ((grep { $what eq $_ } @{$config{sdirs}}) && $what ne 'async' && $what ne 'err' && $what ne 'dso') { @{$config{sdirs}} = grep { $what ne $_} @{$config{sdirs}}; $disabled_info{$what}->{skipped} = [ catdir('crypto', $what) ]; if ($what ne 'engine') { push @{$config{openssl_algorithm_defines}}, $macro; } else { @{$config{dirs}} = grep !/^engines$/, @{$config{dirs}}; push @{$disabled_info{engine}->{skipped}}, catdir('engines'); push @{$config{openssl_other_defines}}, $macro; } } else { push @{$config{openssl_other_defines}}, $macro; } } } if ($disabled{"dynamic-engine"}) { push @{$config{openssl_other_defines}}, "OPENSSL_NO_DYNAMIC_ENGINE"; } else { push @{$config{openssl_other_defines}}, "OPENSSL_NO_STATIC_ENGINE"; } # If we use the unified build, collect information from build.info files my %unified_info = (); my $buildinfo_debug = defined($ENV{CONFIGURE_DEBUG_BUILDINFO}); if ($builder eq "unified") { use with_fallback qw(Text::Template); sub cleandir { my $base = shift; my $dir = shift; my $relativeto = shift || "."; $dir = catdir($base,$dir) unless isabsolute($dir); # Make sure the directories we're building in exists mkpath($dir); my $res = abs2rel(absolutedir($dir), rel2abs($relativeto)); #print STDERR "DEBUG[cleandir]: $dir , $base => $res\n"; return $res; } sub cleanfile { my $base = shift; my $file = shift; my $relativeto = shift || "."; $file = catfile($base,$file) unless isabsolute($file); my $d = dirname($file); my $f = basename($file); # Make sure the directories we're building in exists mkpath($d); my $res = abs2rel(catfile(absolutedir($d), $f), rel2abs($relativeto)); #print STDERR "DEBUG[cleanfile]: $d , $f => $res\n"; return $res; } # Store the name of the template file we will build the build file from # in %config. This may be useful for the build file itself. my @build_file_template_names = ( $builder_platform."-".$target{build_file}.".tmpl", $target{build_file}.".tmpl" ); my @build_file_templates = (); # First, look in the user provided directory, if given if (defined env($local_config_envname)) { @build_file_templates = map { if ($^O eq 'VMS') { # VMS environment variables are logical names, # which can be used as is $local_config_envname . ':' . $_; } else { catfile(env($local_config_envname), $_); } } @build_file_template_names; } # Then, look in our standard directory push @build_file_templates, ( map { cleanfile($srcdir, catfile("Configurations", $_), $blddir) } @build_file_template_names ); my $build_file_template; for $_ (@build_file_templates) { $build_file_template = $_; last if -f $build_file_template; $build_file_template = undef; } if (!defined $build_file_template) { die "*** Couldn't find any of:\n", join("\n", @build_file_templates), "\n"; } $config{build_file_templates} = [ cleanfile($srcdir, catfile("Configurations", "common0.tmpl"), $blddir), $build_file_template, cleanfile($srcdir, catfile("Configurations", "common.tmpl"), $blddir) ]; my @build_infos = ( [ ".", "build.info" ] ); foreach (@{$config{dirs}}) { push @build_infos, [ $_, "build.info" ] if (-f catfile($srcdir, $_, "build.info")); } foreach (@{$config{sdirs}}) { push @build_infos, [ catdir("crypto", $_), "build.info" ] if (-f catfile($srcdir, "crypto", $_, "build.info")); } foreach (@{$config{engdirs}}) { push @build_infos, [ catdir("engines", $_), "build.info" ] if (-f catfile($srcdir, "engines", $_, "build.info")); } foreach (@{$config{tdirs}}) { push @build_infos, [ catdir("test", $_), "build.info" ] if (-f catfile($srcdir, "test", $_, "build.info")); } $config{build_infos} = [ ]; my %ordinals = (); foreach (@build_infos) { my $sourced = catdir($srcdir, $_->[0]); my $buildd = catdir($blddir, $_->[0]); mkpath($buildd); my $f = $_->[1]; # The basic things we're trying to build my @programs = (); my @programs_install = (); my @libraries = (); my @libraries_install = (); my @engines = (); my @engines_install = (); my @scripts = (); my @scripts_install = (); my @extra = (); my @overrides = (); my @intermediates = (); my @rawlines = (); my %sources = (); my %shared_sources = (); my %includes = (); my %depends = (); my %renames = (); my %sharednames = (); my %generate = (); # We want to detect configdata.pm in the source tree, so we # don't use it if the build tree is different. my $src_configdata = cleanfile($srcdir, "configdata.pm", $blddir); push @{$config{build_infos}}, catfile(abs2rel($sourced, $blddir), $f); my $template = Text::Template->new(TYPE => 'FILE', SOURCE => catfile($sourced, $f), PREPEND => qq{use lib "$FindBin::Bin/util/perl";}); die "Something went wrong with $sourced/$f: $!\n" unless $template; my @text = split /^/m, $template->fill_in(HASH => { config => \%config, target => \%target, disabled => \%disabled, withargs => \%withargs, builddir => abs2rel($buildd, $blddir), sourcedir => abs2rel($sourced, $blddir), buildtop => abs2rel($blddir, $blddir), sourcetop => abs2rel($srcdir, $blddir) }, DELIMITERS => [ "{-", "-}" ]); # The top item of this stack has the following values # -2 positive already run and we found ELSE (following ELSIF should fail) # -1 positive already run (skip until ENDIF) # 0 negatives so far (if we're at a condition, check it) # 1 last was positive (don't skip lines until next ELSE, ELSIF or ENDIF) # 2 positive ELSE (following ELSIF should fail) my @skip = (); collect_information( collect_from_array([ @text ], qr/\\$/ => sub { my $l1 = shift; my $l2 = shift; $l1 =~ s/\\$//; $l1.$l2 }), # Info we're looking for qr/^\s*IF\[((?:\\.|[^\\\]])*)\]\s*$/ => sub { if (! @skip || $skip[$#skip] > 0) { push @skip, !! $1; } else { push @skip, -1; } }, qr/^\s*ELSIF\[((?:\\.|[^\\\]])*)\]\s*$/ => sub { die "ELSIF out of scope" if ! @skip; die "ELSIF following ELSE" if abs($skip[$#skip]) == 2; $skip[$#skip] = -1 if $skip[$#skip] != 0; $skip[$#skip] = !! $1 if $skip[$#skip] == 0; }, qr/^\s*ELSE\s*$/ => sub { die "ELSE out of scope" if ! @skip; $skip[$#skip] = -2 if $skip[$#skip] != 0; $skip[$#skip] = 2 if $skip[$#skip] == 0; }, qr/^\s*ENDIF\s*$/ => sub { die "ENDIF out of scope" if ! @skip; pop @skip; }, qr/^\s*PROGRAMS(_NO_INST)?\s*=\s*(.*)\s*$/ => sub { if (!@skip || $skip[$#skip] > 0) { my $install = $1; my @x = tokenize($2); push @programs, @x; push @programs_install, @x unless $install; } }, qr/^\s*LIBS(_NO_INST)?\s*=\s*(.*)\s*$/ => sub { if (!@skip || $skip[$#skip] > 0) { my $install = $1; my @x = tokenize($2); push @libraries, @x; push @libraries_install, @x unless $install; } }, qr/^\s*ENGINES(_NO_INST)?\s*=\s*(.*)\s*$/ => sub { if (!@skip || $skip[$#skip] > 0) { my $install = $1; my @x = tokenize($2); push @engines, @x; push @engines_install, @x unless $install; } }, qr/^\s*SCRIPTS(_NO_INST)?\s*=\s*(.*)\s*$/ => sub { if (!@skip || $skip[$#skip] > 0) { my $install = $1; my @x = tokenize($2); push @scripts, @x; push @scripts_install, @x unless $install; } }, qr/^\s*EXTRA\s*=\s*(.*)\s*$/ => sub { push @extra, tokenize($1) if !@skip || $skip[$#skip] > 0 }, qr/^\s*OVERRIDES\s*=\s*(.*)\s*$/ => sub { push @overrides, tokenize($1) if !@skip || $skip[$#skip] > 0 }, qr/^\s*ORDINALS\[((?:\\.|[^\\\]])+)\]\s*=\s*(.*)\s*$/, => sub { push @{$ordinals{$1}}, tokenize($2) if !@skip || $skip[$#skip] > 0 }, qr/^\s*SOURCE\[((?:\\.|[^\\\]])+)\]\s*=\s*(.*)\s*$/ => sub { push @{$sources{$1}}, tokenize($2) if !@skip || $skip[$#skip] > 0 }, qr/^\s*SHARED_SOURCE\[((?:\\.|[^\\\]])+)\]\s*=\s*(.*)\s*$/ => sub { push @{$shared_sources{$1}}, tokenize($2) if !@skip || $skip[$#skip] > 0 }, qr/^\s*INCLUDE\[((?:\\.|[^\\\]])+)\]\s*=\s*(.*)\s*$/ => sub { push @{$includes{$1}}, tokenize($2) if !@skip || $skip[$#skip] > 0 }, qr/^\s*DEPEND\[((?:\\.|[^\\\]])*)\]\s*=\s*(.*)\s*$/ => sub { push @{$depends{$1}}, tokenize($2) if !@skip || $skip[$#skip] > 0 }, qr/^\s*GENERATE\[((?:\\.|[^\\\]])+)\]\s*=\s*(.*)\s*$/ => sub { push @{$generate{$1}}, $2 if !@skip || $skip[$#skip] > 0 }, qr/^\s*RENAME\[((?:\\.|[^\\\]])+)\]\s*=\s*(.*)\s*$/ => sub { push @{$renames{$1}}, tokenize($2) if !@skip || $skip[$#skip] > 0 }, qr/^\s*SHARED_NAME\[((?:\\.|[^\\\]])+)\]\s*=\s*(.*)\s*$/ => sub { push @{$sharednames{$1}}, tokenize($2) if !@skip || $skip[$#skip] > 0 }, qr/^\s*BEGINRAW\[((?:\\.|[^\\\]])+)\]\s*$/ => sub { my $lineiterator = shift; my $target_kind = $1; while (defined $lineiterator->()) { s|\R$||; if (/^\s*ENDRAW\[((?:\\.|[^\\\]])+)\]\s*$/) { die "ENDRAW doesn't match BEGINRAW" if $1 ne $target_kind; last; } next if @skip && $skip[$#skip] <= 0; push @rawlines, $_ if ($target_kind eq $target{build_file} || $target_kind eq $target{build_file}."(".$builder_platform.")"); } }, qr/^\s*(?:#.*)?$/ => sub { }, "OTHERWISE" => sub { die "Something wrong with this line:\n$_\nat $sourced/$f" }, "BEFORE" => sub { if ($buildinfo_debug) { print STDERR "DEBUG: Parsing ",join(" ", @_),"\n"; print STDERR "DEBUG: ... before parsing, skip stack is ",join(" ", map { int($_) } @skip),"\n"; } }, "AFTER" => sub { if ($buildinfo_debug) { print STDERR "DEBUG: .... after parsing, skip stack is ",join(" ", map { int($_) } @skip),"\n"; } }, ); die "runaway IF?" if (@skip); foreach (keys %renames) { die "$_ renamed to more than one thing: " ,join(" ", @{$renames{$_}}),"\n" if scalar @{$renames{$_}} > 1; my $dest = cleanfile($buildd, $_, $blddir); my $to = cleanfile($buildd, $renames{$_}->[0], $blddir); die "$dest renamed to more than one thing: " ,$unified_info{rename}->{$dest}, $to unless !defined($unified_info{rename}->{$dest}) or $unified_info{rename}->{$dest} eq $to; $unified_info{rename}->{$dest} = $to; } foreach (@programs) { my $program = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$program}) { $program = $unified_info{rename}->{$program}; } $unified_info{programs}->{$program} = 1; } foreach (@programs_install) { my $program = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$program}) { $program = $unified_info{rename}->{$program}; } $unified_info{install}->{programs}->{$program} = 1; } foreach (@libraries) { my $library = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$library}) { $library = $unified_info{rename}->{$library}; } $unified_info{libraries}->{$library} = 1; } foreach (@libraries_install) { my $library = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$library}) { $library = $unified_info{rename}->{$library}; } $unified_info{install}->{libraries}->{$library} = 1; } die <<"EOF" if scalar @engines and !$config{dynamic_engines}; ENGINES can only be used if configured with 'dynamic-engine'. This is usually a fault in a build.info file. EOF foreach (@engines) { my $library = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$library}) { $library = $unified_info{rename}->{$library}; } $unified_info{engines}->{$library} = 1; } foreach (@engines_install) { my $library = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$library}) { $library = $unified_info{rename}->{$library}; } $unified_info{install}->{engines}->{$library} = 1; } foreach (@scripts) { my $script = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$script}) { $script = $unified_info{rename}->{$script}; } $unified_info{scripts}->{$script} = 1; } foreach (@scripts_install) { my $script = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$script}) { $script = $unified_info{rename}->{$script}; } $unified_info{install}->{scripts}->{$script} = 1; } foreach (@extra) { my $extra = cleanfile($buildd, $_, $blddir); $unified_info{extra}->{$extra} = 1; } foreach (@overrides) { my $override = cleanfile($buildd, $_, $blddir); $unified_info{overrides}->{$override} = 1; } push @{$unified_info{rawlines}}, @rawlines; unless ($disabled{shared}) { # Check sharednames. foreach (keys %sharednames) { my $dest = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$dest}) { $dest = $unified_info{rename}->{$dest}; } die "shared_name for $dest with multiple values: " ,join(" ", @{$sharednames{$_}}),"\n" if scalar @{$sharednames{$_}} > 1; my $to = cleanfile($buildd, $sharednames{$_}->[0], $blddir); die "shared_name found for a library $dest that isn't defined\n" unless $unified_info{libraries}->{$dest}; die "shared_name for $dest with multiple values: " ,$unified_info{sharednames}->{$dest}, ", ", $to unless !defined($unified_info{sharednames}->{$dest}) or $unified_info{sharednames}->{$dest} eq $to; $unified_info{sharednames}->{$dest} = $to; } # Additionally, we set up sharednames for libraries that don't # have any, as themselves. Only for libraries that aren't # explicitly static. foreach (grep !/\.a$/, keys %{$unified_info{libraries}}) { if (!defined $unified_info{sharednames}->{$_}) { $unified_info{sharednames}->{$_} = $_ } } # Check that we haven't defined any library as both shared and # explicitly static. That is forbidden. my @doubles = (); foreach (grep /\.a$/, keys %{$unified_info{libraries}}) { (my $l = $_) =~ s/\.a$//; push @doubles, $l if defined $unified_info{sharednames}->{$l}; } die "these libraries are both explicitly static and shared:\n ", join(" ", @doubles), "\n" if @doubles; } foreach (keys %sources) { my $dest = $_; my $ddest = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$ddest}) { $ddest = $unified_info{rename}->{$ddest}; } foreach (@{$sources{$dest}}) { my $s = cleanfile($sourced, $_, $blddir); # If it isn't in the source tree, we assume it's generated # in the build tree if ($s eq $src_configdata || ! -f $s || $generate{$_}) { $s = cleanfile($buildd, $_, $blddir); } # We recognise C++, C and asm files if ($s =~ /\.(cc|cpp|c|s|S)$/) { my $o = $_; $o =~ s/\.[csS]$/.o/; # C and assembler $o =~ s/\.(cc|cpp)$/_cc.o/; # C++ $o = cleanfile($buildd, $o, $blddir); $unified_info{sources}->{$ddest}->{$o} = 1; $unified_info{sources}->{$o}->{$s} = 1; } elsif ($s =~ /\.rc$/) { # We also recognise resource files my $o = $_; $o =~ s/\.rc$/.res/; # Resource configuration my $o = cleanfile($buildd, $o, $blddir); $unified_info{sources}->{$ddest}->{$o} = 1; $unified_info{sources}->{$o}->{$s} = 1; } else { $unified_info{sources}->{$ddest}->{$s} = 1; } } } foreach (keys %shared_sources) { my $dest = $_; my $ddest = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$ddest}) { $ddest = $unified_info{rename}->{$ddest}; } foreach (@{$shared_sources{$dest}}) { my $s = cleanfile($sourced, $_, $blddir); # If it isn't in the source tree, we assume it's generated # in the build tree if ($s eq $src_configdata || ! -f $s || $generate{$_}) { $s = cleanfile($buildd, $_, $blddir); } if ($s =~ /\.(cc|cpp|c|s|S)$/) { # We recognise C++, C and asm files my $o = $_; $o =~ s/\.[csS]$/.o/; # C and assembler $o =~ s/\.(cc|cpp)$/_cc.o/; # C++ $o = cleanfile($buildd, $o, $blddir); $unified_info{shared_sources}->{$ddest}->{$o} = 1; $unified_info{sources}->{$o}->{$s} = 1; } elsif ($s =~ /\.rc$/) { # We also recognise resource files my $o = $_; $o =~ s/\.rc$/.res/; # Resource configuration my $o = cleanfile($buildd, $o, $blddir); $unified_info{shared_sources}->{$ddest}->{$o} = 1; $unified_info{sources}->{$o}->{$s} = 1; } elsif ($s =~ /\.(def|map|opt)$/) { # We also recognise .def / .map / .opt files # We know they are generated files my $def = cleanfile($buildd, $s, $blddir); $unified_info{shared_sources}->{$ddest}->{$def} = 1; } else { die "unrecognised source file type for shared library: $s\n"; } } } foreach (keys %generate) { my $dest = $_; my $ddest = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$ddest}) { $ddest = $unified_info{rename}->{$ddest}; } die "more than one generator for $dest: " ,join(" ", @{$generate{$_}}),"\n" if scalar @{$generate{$_}} > 1; my @generator = split /\s+/, $generate{$dest}->[0]; $generator[0] = cleanfile($sourced, $generator[0], $blddir), $unified_info{generate}->{$ddest} = [ @generator ]; } foreach (keys %depends) { my $dest = $_; my $ddest = $dest eq "" ? "" : cleanfile($sourced, $_, $blddir); # If the destination doesn't exist in source, it can only be # a generated file in the build tree. if ($ddest ne "" && ($ddest eq $src_configdata || ! -f $ddest)) { $ddest = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$ddest}) { $ddest = $unified_info{rename}->{$ddest}; } } foreach (@{$depends{$dest}}) { my $d = cleanfile($sourced, $_, $blddir); # If we know it's generated, or assume it is because we can't # find it in the source tree, we set file we depend on to be # in the build tree rather than the source tree, and assume # and that there are lines to build it in a BEGINRAW..ENDRAW # section or in the Makefile template. if ($d eq $src_configdata || ! -f $d || (grep { $d eq $_ } map { cleanfile($srcdir, $_, $blddir) } grep { /\.h$/ } keys %{$unified_info{generate}})) { $d = cleanfile($buildd, $_, $blddir); } # Take note if the file to depend on is being renamed # Take extra care with files ending with .a, they should # be treated without that extension, and the extension # should be added back after treatment. $d =~ /(\.a)?$/; my $e = $1 // ""; $d = $`; if ($unified_info{rename}->{$d}) { $d = $unified_info{rename}->{$d}; } $d .= $e; $unified_info{depends}->{$ddest}->{$d} = 1; } } foreach (keys %includes) { my $dest = $_; my $ddest = cleanfile($sourced, $_, $blddir); # If the destination doesn't exist in source, it can only be # a generated file in the build tree. if ($ddest eq $src_configdata || ! -f $ddest) { $ddest = cleanfile($buildd, $_, $blddir); if ($unified_info{rename}->{$ddest}) { $ddest = $unified_info{rename}->{$ddest}; } } foreach (@{$includes{$dest}}) { my $is = cleandir($sourced, $_, $blddir); my $ib = cleandir($buildd, $_, $blddir); push @{$unified_info{includes}->{$ddest}->{source}}, $is unless grep { $_ eq $is } @{$unified_info{includes}->{$ddest}->{source}}; push @{$unified_info{includes}->{$ddest}->{build}}, $ib unless grep { $_ eq $ib } @{$unified_info{includes}->{$ddest}->{build}}; } } } my $ordinals_text = join(', ', sort keys %ordinals); warn <<"EOF" if $ordinals_text; WARNING: ORDINALS were specified for $ordinals_text They are ignored and should be replaced with a combination of GENERATE, DEPEND and SHARED_SOURCE. EOF # Massage the result # If the user configured no-shared, we allow no shared sources if ($disabled{shared}) { foreach (keys %{$unified_info{shared_sources}}) { foreach (keys %{$unified_info{shared_sources}->{$_}}) { delete $unified_info{sources}->{$_}; } } $unified_info{shared_sources} = {}; } # If we depend on a header file or a perl module, add an inclusion of # its directory to allow smoothe inclusion foreach my $dest (keys %{$unified_info{depends}}) { next if $dest eq ""; foreach my $d (keys %{$unified_info{depends}->{$dest}}) { next unless $d =~ /\.(h|pm)$/; my $i = dirname($d); my $spot = $d eq "configdata.pm" || defined($unified_info{generate}->{$d}) ? 'build' : 'source'; push @{$unified_info{includes}->{$dest}->{$spot}}, $i unless grep { $_ eq $i } @{$unified_info{includes}->{$dest}->{$spot}}; } } # Trickle down includes placed on libraries, engines and programs to # their sources (i.e. object files) foreach my $dest (keys %{$unified_info{engines}}, keys %{$unified_info{libraries}}, keys %{$unified_info{programs}}) { foreach my $k (("source", "build")) { next unless defined($unified_info{includes}->{$dest}->{$k}); my @incs = reverse @{$unified_info{includes}->{$dest}->{$k}}; foreach my $obj (grep /\.o$/, (keys %{$unified_info{sources}->{$dest} // {}}, keys %{$unified_info{shared_sources}->{$dest} // {}})) { foreach my $inc (@incs) { unshift @{$unified_info{includes}->{$obj}->{$k}}, $inc unless grep { $_ eq $inc } @{$unified_info{includes}->{$obj}->{$k}}; } } } delete $unified_info{includes}->{$dest}; } ### Make unified_info a bit more efficient # One level structures foreach (("programs", "libraries", "engines", "scripts", "extra", "overrides")) { $unified_info{$_} = [ sort keys %{$unified_info{$_}} ]; } # Two level structures foreach my $l1 (("install", "sources", "shared_sources", "ldadd", "depends")) { foreach my $l2 (sort keys %{$unified_info{$l1}}) { $unified_info{$l1}->{$l2} = [ sort keys %{$unified_info{$l1}->{$l2}} ]; } } # Includes foreach my $dest (sort keys %{$unified_info{includes}}) { if (defined($unified_info{includes}->{$dest}->{build})) { my @source_includes = (); @source_includes = ( @{$unified_info{includes}->{$dest}->{source}} ) if defined($unified_info{includes}->{$dest}->{source}); $unified_info{includes}->{$dest} = [ @{$unified_info{includes}->{$dest}->{build}} ]; foreach my $inc (@source_includes) { push @{$unified_info{includes}->{$dest}}, $inc unless grep { $_ eq $inc } @{$unified_info{includes}->{$dest}}; } } else { $unified_info{includes}->{$dest} = [ @{$unified_info{includes}->{$dest}->{source}} ]; } } # For convenience collect information regarding directories where # files are generated, those generated files and the end product # they end up in where applicable. Then, add build rules for those # directories my %loopinfo = ( "lib" => [ @{$unified_info{libraries}} ], "dso" => [ @{$unified_info{engines}} ], "bin" => [ @{$unified_info{programs}} ], "script" => [ @{$unified_info{scripts}} ] ); foreach my $type (keys %loopinfo) { foreach my $product (@{$loopinfo{$type}}) { my %dirs = (); my $pd = dirname($product); foreach (@{$unified_info{sources}->{$product} // []}, @{$unified_info{shared_sources}->{$product} // []}) { my $d = dirname($_); # We don't want to create targets for source directories # when building out of source next if ($config{sourcedir} ne $config{builddir} && $d =~ m|^\Q$config{sourcedir}\E|); # We already have a "test" target, and the current directory # is just silly to make a target for next if $d eq "test" || $d eq "."; $dirs{$d} = 1; push @{$unified_info{dirinfo}->{$d}->{deps}}, $_ if $d ne $pd; } foreach (keys %dirs) { push @{$unified_info{dirinfo}->{$_}->{products}->{$type}}, $product; } } } } # For the schemes that need it, we provide the old *_obj configs # from the *_asm_obj ones foreach (grep /_(asm|aux)_src$/, keys %target) { my $src = $_; (my $obj = $_) =~ s/_(asm|aux)_src$/_obj/; $target{$obj} = $target{$src}; $target{$obj} =~ s/\.[csS]\b/.o/g; # C and assembler $target{$obj} =~ s/\.(cc|cpp)\b/_cc.o/g; # C++ } # Write down our configuration where it fits ######################### print "Creating configdata.pm\n"; open(OUT,">configdata.pm") || die "unable to create configdata.pm: $!\n"; print OUT <<"EOF"; #! $config{HASHBANGPERL} package configdata; use strict; use warnings; use Exporter; #use vars qw(\@ISA \@EXPORT); our \@ISA = qw(Exporter); our \@EXPORT = qw(\%config \%target \%disabled \%withargs \%unified_info \@disablables); EOF print OUT "our %config = (\n"; foreach (sort keys %config) { if (ref($config{$_}) eq "ARRAY") { print OUT " ", $_, " => [ ", join(", ", map { quotify("perl", $_) } @{$config{$_}}), " ],\n"; } elsif (ref($config{$_}) eq "HASH") { print OUT " ", $_, " => {"; if (scalar keys %{$config{$_}} > 0) { print OUT "\n"; foreach my $key (sort keys %{$config{$_}}) { print OUT " ", join(" => ", quotify("perl", $key), defined $config{$_}->{$key} ? quotify("perl", $config{$_}->{$key}) : "undef"); print OUT ",\n"; } print OUT " "; } print OUT "},\n"; } else { print OUT " ", $_, " => ", quotify("perl", $config{$_}), ",\n" } } print OUT <<"EOF"; ); EOF print OUT "our %target = (\n"; foreach (sort keys %target) { if (ref($target{$_}) eq "ARRAY") { print OUT " ", $_, " => [ ", join(", ", map { quotify("perl", $_) } @{$target{$_}}), " ],\n"; } else { print OUT " ", $_, " => ", quotify("perl", $target{$_}), ",\n" } } print OUT <<"EOF"; ); EOF print OUT "our \%available_protocols = (\n"; print OUT " tls => [ ", join(", ", map { quotify("perl", $_) } @tls), " ],\n"; print OUT " dtls => [ ", join(", ", map { quotify("perl", $_) } @dtls), " ],\n"; print OUT <<"EOF"; ); EOF print OUT "our \@disablables = (\n"; foreach (@disablables) { print OUT " ", quotify("perl", $_), ",\n"; } print OUT <<"EOF"; ); EOF print OUT "our \%disabled = (\n"; foreach (sort keys %disabled) { print OUT " ", quotify("perl", $_), " => ", quotify("perl", $disabled{$_}), ",\n"; } print OUT <<"EOF"; ); EOF print OUT "our %withargs = (\n"; foreach (sort keys %withargs) { if (ref($withargs{$_}) eq "ARRAY") { print OUT " ", $_, " => [ ", join(", ", map { quotify("perl", $_) } @{$withargs{$_}}), " ],\n"; } else { print OUT " ", $_, " => ", quotify("perl", $withargs{$_}), ",\n" } } print OUT <<"EOF"; ); EOF if ($builder eq "unified") { my $recurse; $recurse = sub { my $indent = shift; foreach (@_) { if (ref $_ eq "ARRAY") { print OUT " "x$indent, "[\n"; foreach (@$_) { $recurse->($indent + 4, $_); } print OUT " "x$indent, "],\n"; } elsif (ref $_ eq "HASH") { my %h = %$_; print OUT " "x$indent, "{\n"; foreach (sort keys %h) { if (ref $h{$_} eq "") { print OUT " "x($indent + 4), quotify("perl", $_), " => ", quotify("perl", $h{$_}), ",\n"; } else { print OUT " "x($indent + 4), quotify("perl", $_), " =>\n"; $recurse->($indent + 8, $h{$_}); } } print OUT " "x$indent, "},\n"; } else { print OUT " "x$indent, quotify("perl", $_), ",\n"; } } }; print OUT "our %unified_info = (\n"; foreach (sort keys %unified_info) { if (ref $unified_info{$_} eq "") { print OUT " "x4, quotify("perl", $_), " => ", quotify("perl", $unified_info{$_}), ",\n"; } else { print OUT " "x4, quotify("perl", $_), " =>\n"; $recurse->(8, $unified_info{$_}); } } print OUT <<"EOF"; ); EOF } print OUT "# The following data is only used when this files is use as a script\n"; print OUT "my \@makevars = (\n"; foreach (sort keys %user) { print OUT " '",$_,"',\n"; } print OUT ");\n"; print OUT "my \%disabled_info = (\n"; foreach my $what (sort keys %disabled_info) { print OUT " '$what' => {\n"; foreach my $info (sort keys %{$disabled_info{$what}}) { if (ref $disabled_info{$what}->{$info} eq 'ARRAY') { print OUT " $info => [ ", join(', ', map { "'$_'" } @{$disabled_info{$what}->{$info}}), " ],\n"; } else { print OUT " $info => '", $disabled_info{$what}->{$info}, "',\n"; } } print OUT " },\n"; } print OUT ");\n"; print OUT 'my @user_crossable = qw( ', join (' ', @user_crossable), " );\n"; print OUT << 'EOF'; # If run directly, we can give some answers, and even reconfigure unless (caller) { use Getopt::Long; use File::Spec::Functions; use File::Basename; use Pod::Usage; my $here = dirname($0); my $dump = undef; my $cmdline = undef; my $options = undef; my $target = undef; my $envvars = undef; my $makevars = undef; my $buildparams = undef; my $reconf = undef; my $verbose = undef; my $help = undef; my $man = undef; GetOptions('dump|d' => \$dump, 'command-line|c' => \$cmdline, 'options|o' => \$options, 'target|t' => \$target, 'environment|e' => \$envvars, 'make-variables|m' => \$makevars, 'build-parameters|b' => \$buildparams, 'reconfigure|reconf|r' => \$reconf, 'verbose|v' => \$verbose, 'help' => \$help, 'man' => \$man) or die "Errors in command line arguments\n"; unless ($dump || $cmdline || $options || $target || $envvars || $makevars || $buildparams || $reconf || $verbose || $help || $man) { print STDERR <<"_____"; You must give at least one option. For more information, do '$0 --help' _____ exit(2); } if ($help) { pod2usage(-exitval => 0, -verbose => 1); } if ($man) { pod2usage(-exitval => 0, -verbose => 2); } if ($dump || $cmdline) { print "\nCommand line (with current working directory = $here):\n\n"; print ' ',join(' ', $config{PERL}, catfile($config{sourcedir}, 'Configure'), @{$config{perlargv}}), "\n"; print "\nPerl information:\n\n"; print ' ',$config{perl_cmd},"\n"; print ' ',$config{perl_version},' for ',$config{perl_archname},"\n"; } if ($dump || $options) { my $longest = 0; my $longest2 = 0; foreach my $what (@disablables) { $longest = length($what) if $longest < length($what); $longest2 = length($disabled{$what}) if $disabled{$what} && $longest2 < length($disabled{$what}); } print "\nEnabled features:\n\n"; foreach my $what (@disablables) { print " $what\n" unless $disabled{$what}; } print "\nDisabled features:\n\n"; foreach my $what (@disablables) { if ($disabled{$what}) { print " $what", ' ' x ($longest - length($what) + 1), "[$disabled{$what}]", ' ' x ($longest2 - length($disabled{$what}) + 1); print $disabled_info{$what}->{macro} if $disabled_info{$what}->{macro}; print ' (skip ', join(', ', @{$disabled_info{$what}->{skipped}}), ')' if $disabled_info{$what}->{skipped}; print "\n"; } } } if ($dump || $target) { print "\nConfig target attributes:\n\n"; foreach (sort keys %target) { next if $_ =~ m|^_| || $_ eq 'template'; my $quotify = sub { map { (my $x = $_) =~ s|([\\\$\@"])|\\$1|g; "\"$x\""} @_; }; print ' ', $_, ' => '; if (ref($target{$_}) eq "ARRAY") { print '[ ', join(', ', $quotify->(@{$target{$_}})), " ],\n"; } else { print $quotify->($target{$_}), ",\n" } } } if ($dump || $envvars) { print "\nRecorded environment:\n\n"; foreach (sort keys %{$config{perlenv}}) { print ' ',$_,' = ',($config{perlenv}->{$_} || ''),"\n"; } } if ($dump || $makevars) { print "\nMakevars:\n\n"; foreach my $var (@makevars) { my $prefix = ''; $prefix = $config{CROSS_COMPILE} if grep { $var eq $_ } @user_crossable; $prefix //= ''; print ' ',$var,' ' x (16 - length $var),'= ', (ref $config{$var} eq 'ARRAY' ? join(' ', @{$config{$var}}) : $prefix.$config{$var}), "\n" if defined $config{$var}; } my @buildfile = ($config{builddir}, $config{build_file}); unshift @buildfile, $here unless file_name_is_absolute($config{builddir}); my $buildfile = canonpath(catdir(@buildfile)); print <<"_____"; NOTE: These variables only represent the configuration view. The build file template may have processed these variables further, please have a look at the build file for more exact data: $buildfile _____ } if ($dump || $buildparams) { my @buildfile = ($config{builddir}, $config{build_file}); unshift @buildfile, $here unless file_name_is_absolute($config{builddir}); print "\nbuild file:\n\n"; print " ", canonpath(catfile(@buildfile)),"\n"; print "\nbuild file templates:\n\n"; foreach (@{$config{build_file_templates}}) { my @tmpl = ($_); unshift @tmpl, $here unless file_name_is_absolute($config{sourcedir}); print ' ',canonpath(catfile(@tmpl)),"\n"; } } if ($reconf) { if ($verbose) { print 'Reconfiguring with: ', join(' ',@{$config{perlargv}}), "\n"; foreach (sort keys %{$config{perlenv}}) { print ' ',$_,' = ',($config{perlenv}->{$_} || ""),"\n"; } } chdir $here; exec $^X,catfile($config{sourcedir}, 'Configure'),'reconf'; } } 1; __END__ =head1 NAME configdata.pm - configuration data for OpenSSL builds =head1 SYNOPSIS Interactive: perl configdata.pm [options] As data bank module: use configdata; =head1 DESCRIPTION This module can be used in two modes, interactively and as a module containing all the data recorded by OpenSSL's Configure script. When used interactively, simply run it as any perl script, with at least one option, and you will get the information you ask for. See L below. When loaded as a module, you get a few databanks with useful information to perform build related tasks. The databanks are: %config Configured things. %target The OpenSSL config target with all inheritances resolved. %disabled The features that are disabled. @disablables The list of features that can be disabled. %withargs All data given through --with-THING options. %unified_info All information that was computed from the build.info files. =head1 OPTIONS =over 4 =item B<--help> Print a brief help message and exit. =item B<--man> Print the manual page and exit. =item B<--dump> | B<-d> Print all relevant configuration data. This is equivalent to B<--command-line> B<--options> B<--target> B<--environment> B<--make-variables> B<--build-parameters>. =item B<--command-line> | B<-c> Print the current configuration command line. =item B<--options> | B<-o> Print the features, both enabled and disabled, and display defined macro and skipped directories where applicable. =item B<--target> | B<-t> Print the config attributes for this config target. =item B<--environment> | B<-e> Print the environment variables and their values at the time of configuration. =item B<--make-variables> | B<-m> Print the main make variables generated in the current configuration =item B<--build-parameters> | B<-b> Print the build parameters, i.e. build file and build file templates. =item B<--reconfigure> | B<--reconf> | B<-r> Redo the configuration. =item B<--verbose> | B<-v> Verbose output. =back =cut EOF close(OUT); if ($builder_platform eq 'unix') { my $mode = (0755 & ~umask); chmod $mode, 'configdata.pm' or warn sprintf("WARNING: Couldn't change mode for 'configdata.pm' to 0%03o: %s\n",$mode,$!); } my %builders = ( unified => sub { print 'Creating ',$target{build_file},"\n"; run_dofile(catfile($blddir, $target{build_file}), @{$config{build_file_templates}}); }, ); $builders{$builder}->($builder_platform, @builder_opts); $SIG{__DIE__} = $orig_death_handler; print <<"EOF" if ($disabled{threads} eq "unavailable"); The library could not be configured for supporting multi-threaded applications as the compiler options required on this system are not known. See file INSTALL for details if you need multi-threading. EOF print <<"EOF" if ($no_shared_warn); The options 'shared', 'pic' and 'dynamic-engine' aren't supported on this platform, so we will pretend you gave the option 'no-pic', which also disables 'shared' and 'dynamic-engine'. If you know how to implement shared libraries or position independent code, please let us know (but please first make sure you have tried with a current version of OpenSSL). EOF print <<"EOF"; ********************************************************************** *** *** *** OpenSSL has been successfully configured *** *** *** *** If you encounter a problem while building, please open an *** *** issue on GitHub *** *** and include the output from the following command: *** *** *** *** perl configdata.pm --dump *** *** *** *** (If you are new to OpenSSL, you might want to consult the *** *** 'Troubleshooting' section in the INSTALL file first) *** *** *** ********************************************************************** EOF exit(0); ###################################################################### # # Helpers and utility functions # # Death handler, to print a helpful message in case of failure ####### # sub death_handler { die @_ if $^S; # To prevent the added message in eval blocks my $build_file = $target{build_file} // "build file"; my @message = ( <<"_____", @_ ); Failure! $build_file wasn't produced. Please read INSTALL and associated NOTES files. You may also have to look over your available compiler tool chain or change your configuration. _____ # Dying is terminal, so it's ok to reset the signal handler here. $SIG{__DIE__} = $orig_death_handler; die @message; } # Configuration file reading ######################################### # Note: All of the helper functions are for lazy evaluation. They all # return a CODE ref, which will return the intended value when evaluated. # Thus, whenever there's mention of a returned value, it's about that # intended value. # Helper function to implement conditional inheritance depending on the # value of $disabled{asm}. Used in inherit_from values as follows: # # inherit_from => [ "template", asm("asm_tmpl") ] # sub asm { my @x = @_; sub { $disabled{asm} ? () : @x; } } # Helper function to implement conditional value variants, with a default # plus additional values based on the value of $config{build_type}. # Arguments are given in hash table form: # # picker(default => "Basic string: ", # debug => "debug", # release => "release") # # When configuring with --debug, the resulting string will be # "Basic string: debug", and when not, it will be "Basic string: release" # # This can be used to create variants of sets of flags according to the # build type: # # cflags => picker(default => "-Wall", # debug => "-g -O0", # release => "-O3") # sub picker { my %opts = @_; return sub { add($opts{default} || (), $opts{$config{build_type}} || ())->(); } } # Helper function to combine several values of different types into one. # This is useful if you want to combine a string with the result of a # lazy function, such as: # # cflags => combine("-Wall", sub { $disabled{zlib} ? () : "-DZLIB" }) # sub combine { my @stuff = @_; return sub { add(@stuff)->(); } } # Helper function to implement conditional values depending on the value # of $disabled{threads}. Can be used as follows: # # cflags => combine("-Wall", threads("-pthread")) # sub threads { my @flags = @_; return sub { add($disabled{threads} ? () : @flags)->(); } } sub shared { my @flags = @_; return sub { add($disabled{shared} ? () : @flags)->(); } } our $add_called = 0; # Helper function to implement adding values to already existing configuration # values. It handles elements that are ARRAYs, CODEs and scalars sub _add { my $separator = shift; # If there's any ARRAY in the collection of values OR the separator # is undef, we will return an ARRAY of combined values, otherwise a # string of joined values with $separator as the separator. my $found_array = !defined($separator); my @values = map { my $res = $_; while (ref($res) eq "CODE") { $res = $res->(); } if (defined($res)) { if (ref($res) eq "ARRAY") { $found_array = 1; @$res; } else { $res; } } else { (); } } (@_); $add_called = 1; if ($found_array) { [ @values ]; } else { join($separator, grep { defined($_) && $_ ne "" } @values); } } sub add_before { my $separator = " "; if (ref($_[$#_]) eq "HASH") { my $opts = pop; $separator = $opts->{separator}; } my @x = @_; sub { _add($separator, @x, @_) }; } sub add { my $separator = " "; if (ref($_[$#_]) eq "HASH") { my $opts = pop; $separator = $opts->{separator}; } my @x = @_; sub { _add($separator, @_, @x) }; } sub read_eval_file { my $fname = shift; my $content; my @result; open F, "< $fname" or die "Can't open '$fname': $!\n"; { undef local $/; $content = ; } close F; { local $@; @result = ( eval $content ); warn $@ if $@; } return wantarray ? @result : $result[0]; } # configuration reader, evaluates the input file as a perl script and expects # it to fill %targets with target configurations. Those are then added to # %table. sub read_config { my $fname = shift; my %targets; { # Protect certain tables from tampering local %table = (); %targets = read_eval_file($fname); } my %preexisting = (); foreach (sort keys %targets) { $preexisting{$_} = 1 if $table{$_}; } die <<"EOF", The following config targets from $fname shadow pre-existing config targets with the same name: EOF map { " $_\n" } sort keys %preexisting if %preexisting; # For each target, check that it's configured with a hash table. foreach (keys %targets) { if (ref($targets{$_}) ne "HASH") { if (ref($targets{$_}) eq "") { warn "Deprecated target configuration for $_, ignoring...\n"; } else { warn "Misconfigured target configuration for $_ (should be a hash table), ignoring...\n"; } delete $targets{$_}; } else { $targets{$_}->{_conf_fname_int} = add([ $fname ]); } } %table = (%table, %targets); } # configuration resolver. Will only resolve all the lazy evaluation # codeblocks for the chosen target and all those it inherits from, # recursively sub resolve_config { my $target = shift; my @breadcrumbs = @_; # my $extra_checks = defined($ENV{CONFIGURE_EXTRA_CHECKS}); if (grep { $_ eq $target } @breadcrumbs) { die "inherit_from loop! target backtrace:\n " ,$target,"\n ",join("\n ", @breadcrumbs),"\n"; } if (!defined($table{$target})) { warn "Warning! target $target doesn't exist!\n"; return (); } # Recurse through all inheritances. They will be resolved on the # fly, so when this operation is done, they will all just be a # bunch of attributes with string values. # What we get here, though, are keys with references to lists of # the combined values of them all. We will deal with lists after # this stage is done. my %combined_inheritance = (); if ($table{$target}->{inherit_from}) { my @inherit_from = map { ref($_) eq "CODE" ? $_->() : $_ } @{$table{$target}->{inherit_from}}; foreach (@inherit_from) { my %inherited_config = resolve_config($_, $target, @breadcrumbs); # 'template' is a marker that's considered private to # the config that had it. delete $inherited_config{template}; foreach (keys %inherited_config) { if (!$combined_inheritance{$_}) { $combined_inheritance{$_} = []; } push @{$combined_inheritance{$_}}, $inherited_config{$_}; } } } # We won't need inherit_from in this target any more, since we've # resolved all the inheritances that lead to this delete $table{$target}->{inherit_from}; # Now is the time to deal with those lists. Here's the place to # decide what shall be done with those lists, all based on the # values of the target we're currently dealing with. # - If a value is a coderef, it will be executed with the list of # inherited values as arguments. # - If the corresponding key doesn't have a value at all or is the # empty string, the inherited value list will be run through the # default combiner (below), and the result becomes this target's # value. # - Otherwise, this target's value is assumed to be a string that # will simply override the inherited list of values. my $default_combiner = add(); my %all_keys = map { $_ => 1 } (keys %combined_inheritance, keys %{$table{$target}}); sub process_values { my $object = shift; my $inherited = shift; # Always a [ list ] my $target = shift; my $entry = shift; $add_called = 0; while(ref($object) eq "CODE") { $object = $object->(@$inherited); } if (!defined($object)) { return (); } elsif (ref($object) eq "ARRAY") { local $add_called; # To make sure recursive calls don't affect it return [ map { process_values($_, $inherited, $target, $entry) } @$object ]; } elsif (ref($object) eq "") { return $object; } else { die "cannot handle reference type ",ref($object) ," found in target ",$target," -> ",$entry,"\n"; } } foreach (sort keys %all_keys) { my $previous = $combined_inheritance{$_}; # Current target doesn't have a value for the current key? # Assign it the default combiner, the rest of this loop body # will handle it just like any other coderef. if (!exists $table{$target}->{$_}) { $table{$target}->{$_} = $default_combiner; } $table{$target}->{$_} = process_values($table{$target}->{$_}, $combined_inheritance{$_}, $target, $_); unless(defined($table{$target}->{$_})) { delete $table{$target}->{$_}; } # if ($extra_checks && # $previous && !($add_called || $previous ~~ $table{$target}->{$_})) { # warn "$_ got replaced in $target\n"; # } } # Finally done, return the result. return %{$table{$target}}; } sub usage { print STDERR $usage; print STDERR "\npick os/compiler from:\n"; my $j=0; my $i; my $k=0; foreach $i (sort keys %table) { next if $table{$i}->{template}; next if $i =~ /^debug/; $k += length($i) + 1; if ($k > 78) { print STDERR "\n"; $k=length($i); } print STDERR $i . " "; } foreach $i (sort keys %table) { next if $table{$i}->{template}; next if $i !~ /^debug/; $k += length($i) + 1; if ($k > 78) { print STDERR "\n"; $k=length($i); } print STDERR $i . " "; } print STDERR "\n\nNOTE: If in doubt, on Unix-ish systems use './config'.\n"; exit(1); } sub run_dofile { my $out = shift; my @templates = @_; unlink $out || warn "Can't remove $out, $!" if -f $out; foreach (@templates) { die "Can't open $_, $!" unless -f $_; } my $perlcmd = (quotify("maybeshell", $config{PERL}))[0]; my $cmd = "$perlcmd \"-I.\" \"-Mconfigdata\" \"$dofile\" -o\"Configure\" \"".join("\" \"",@templates)."\" > \"$out.new\""; #print STDERR "DEBUG[run_dofile]: \$cmd = $cmd\n"; system($cmd); exit 1 if $? != 0; rename("$out.new", $out) || die "Can't rename $out.new, $!"; } sub compiler_predefined { state %predefined; my $cc = shift; return () if $^O eq 'VMS'; die 'compiler_predefined called without a compiler command' unless $cc; if (! $predefined{$cc}) { $predefined{$cc} = {}; # collect compiler pre-defines from gcc or gcc-alike... open(PIPE, "$cc -dM -E -x c /dev/null 2>&1 |"); while (my $l = ) { $l =~ m/^#define\s+(\w+(?:\(\w+\))?)(?:\s+(.+))?/ or last; $predefined{$cc}->{$1} = $2 // ''; } close(PIPE); } return %{$predefined{$cc}}; } sub which { my ($name)=@_; if (eval { require IPC::Cmd; 1; }) { IPC::Cmd->import(); return scalar IPC::Cmd::can_run($name); } else { # if there is $directories component in splitpath, # then it's not something to test with $PATH... return $name if (File::Spec->splitpath($name))[1]; foreach (File::Spec->path()) { my $fullpath = catfile($_, "$name$target{exe_extension}"); if (-f $fullpath and -x $fullpath) { return $fullpath; } } } } sub env { my $name = shift; my %opts = @_; unless ($opts{cacheonly}) { # Note that if $ENV{$name} doesn't exist or is undefined, # $config{perlenv}->{$name} will be created with the value # undef. This is intentional. $config{perlenv}->{$name} = $ENV{$name} if ! exists $config{perlenv}->{$name}; } return $config{perlenv}->{$name}; } # Configuration printer ############################################## sub print_table_entry { local $now_printing = shift; my %target = resolve_config($now_printing); my $type = shift; # Don't print the templates return if $target{template}; my @sequence = ( "sys_id", "cpp", "cppflags", "defines", "includes", "cc", "cflags", "unistd", "ld", "lflags", "loutflag", "ex_libs", "bn_ops", "apps_aux_src", "cpuid_asm_src", "uplink_aux_src", "bn_asm_src", "ec_asm_src", "des_asm_src", "aes_asm_src", "bf_asm_src", "md5_asm_src", "cast_asm_src", "sha1_asm_src", "rc4_asm_src", "rmd160_asm_src", "rc5_asm_src", "wp_asm_src", "cmll_asm_src", "modes_asm_src", "padlock_asm_src", "chacha_asm_src", "poly1035_asm_src", "thread_scheme", "perlasm_scheme", "dso_scheme", "shared_target", "shared_cflag", "shared_defines", "shared_ldflag", "shared_rcflag", "shared_extension", "dso_extension", "obj_extension", "exe_extension", "ranlib", "ar", "arflags", "aroutflag", "rc", "rcflags", "rcoutflag", "mt", "mtflags", "mtinflag", "mtoutflag", "multilib", "build_scheme", ); if ($type eq "TABLE") { print "\n"; print "*** $now_printing\n"; foreach (@sequence) { if (ref($target{$_}) eq "ARRAY") { printf "\$%-12s = %s\n", $_, join(" ", @{$target{$_}}); } else { printf "\$%-12s = %s\n", $_, $target{$_}; } } } elsif ($type eq "HASH") { my $largest = length((sort { length($a) <=> length($b) } @sequence)[-1]); print " '$now_printing' => {\n"; foreach (@sequence) { if ($target{$_}) { if (ref($target{$_}) eq "ARRAY") { print " '",$_,"'"," " x ($largest - length($_))," => [ ",join(", ", map { "'$_'" } @{$target{$_}})," ],\n"; } else { print " '",$_,"'"," " x ($largest - length($_))," => '",$target{$_},"',\n"; } } } print " },\n"; } } # Utility routines ################################################### # On VMS, if the given file is a logical name, File::Spec::Functions # will consider it an absolute path. There are cases when we want a # purely syntactic check without checking the environment. sub isabsolute { my $file = shift; # On non-platforms, we just use file_name_is_absolute(). return file_name_is_absolute($file) unless $^O eq "VMS"; # If the file spec includes a device or a directory spec, # file_name_is_absolute() is perfectly safe. return file_name_is_absolute($file) if $file =~ m|[:\[]|; # Here, we know the given file spec isn't absolute return 0; } # Makes a directory absolute and cleans out /../ in paths like foo/../bar # On some platforms, this uses rel2abs(), while on others, realpath() is used. # realpath() requires that at least all path components except the last is an # existing directory. On VMS, the last component of the directory spec must # exist. sub absolutedir { my $dir = shift; # realpath() is quite buggy on VMS. It uses LIB$FID_TO_NAME, which # will return the volume name for the device, no matter what. Also, # it will return an incorrect directory spec if the argument is a # directory that doesn't exist. if ($^O eq "VMS") { return rel2abs($dir); } # We use realpath() on Unix, since no other will properly clean out # a directory spec. use Cwd qw/realpath/; return realpath($dir); } sub quotify { my %processors = ( perl => sub { my $x = shift; $x =~ s/([\\\$\@"])/\\$1/g; return '"'.$x.'"'; }, maybeshell => sub { my $x = shift; (my $y = $x) =~ s/([\\\"])/\\$1/g; if ($x ne $y || $x =~ m|\s|) { return '"'.$y.'"'; } else { return $x; } }, ); my $for = shift; my $processor = defined($processors{$for}) ? $processors{$for} : sub { shift; }; return map { $processor->($_); } @_; } # collect_from_file($filename, $line_concat_cond_re, $line_concat) # $filename is a file name to read from # $line_concat_cond_re is a regexp detecting a line continuation ending # $line_concat is a CODEref that takes care of concatenating two lines sub collect_from_file { my $filename = shift; my $line_concat_cond_re = shift; my $line_concat = shift; open my $fh, $filename || die "unable to read $filename: $!\n"; return sub { my $saved_line = ""; $_ = ""; while (<$fh>) { s|\R$||; if (defined $line_concat) { $_ = $line_concat->($saved_line, $_); $saved_line = ""; } if (defined $line_concat_cond_re && /$line_concat_cond_re/) { $saved_line = $_; next; } return $_; } die "$filename ending with continuation line\n" if $_; close $fh; return undef; } } # collect_from_array($array, $line_concat_cond_re, $line_concat) # $array is an ARRAYref of lines # $line_concat_cond_re is a regexp detecting a line continuation ending # $line_concat is a CODEref that takes care of concatenating two lines sub collect_from_array { my $array = shift; my $line_concat_cond_re = shift; my $line_concat = shift; my @array = (@$array); return sub { my $saved_line = ""; $_ = ""; while (defined($_ = shift @array)) { s|\R$||; if (defined $line_concat) { $_ = $line_concat->($saved_line, $_); $saved_line = ""; } if (defined $line_concat_cond_re && /$line_concat_cond_re/) { $saved_line = $_; next; } return $_; } die "input text ending with continuation line\n" if $_; return undef; } } # collect_information($lineiterator, $line_continue, $regexp => $CODEref, ...) # $lineiterator is a CODEref that delivers one line at a time. # All following arguments are regex/CODEref pairs, where the regexp detects a # line and the CODEref does something with the result of the regexp. sub collect_information { my $lineiterator = shift; my %collectors = @_; while(defined($_ = $lineiterator->())) { s|\R$||; my $found = 0; if ($collectors{"BEFORE"}) { $collectors{"BEFORE"}->($_); } foreach my $re (keys %collectors) { if ($re !~ /^OTHERWISE|BEFORE|AFTER$/ && /$re/) { $collectors{$re}->($lineiterator); $found = 1; }; } if ($collectors{"OTHERWISE"}) { $collectors{"OTHERWISE"}->($lineiterator, $_) unless $found || !defined $collectors{"OTHERWISE"}; } if ($collectors{"AFTER"}) { $collectors{"AFTER"}->($_); } } } # tokenize($line) # $line is a line of text to split up into tokens # returns a list of tokens # # Tokens are divided by spaces. If the tokens include spaces, they # have to be quoted with single or double quotes. Double quotes # inside a double quoted token must be escaped. Escaping is done # with backslash. # Basically, the same quoting rules apply for " and ' as in any # Unix shell. sub tokenize { my $line = my $debug_line = shift; my @result = (); while ($line =~ s|^\s+||, $line ne "") { my $token = ""; while ($line ne "" && $line !~ m|^\s|) { if ($line =~ m/^"((?:[^"\\]+|\\.)*)"/) { $token .= $1; $line = $'; } elsif ($line =~ m/^'([^']*)'/) { $token .= $1; $line = $'; } elsif ($line =~ m/^(\S+)/) { $token .= $1; $line = $'; } } push @result, $token; } if ($ENV{CONFIGURE_DEBUG_TOKENIZE}) { print STDERR "DEBUG[tokenize]: Parsed '$debug_line' into:\n"; print STDERR "DEBUG[tokenize]: ('", join("', '", @result), "')\n"; } return @result; } openssl-1.1.1f/FAQ000066400000000000000000000001241364063235100136750ustar00rootroot00000000000000The FAQ is now maintained on the web: https://www.openssl.org/docs/faq.html openssl-1.1.1f/INSTALL000066400000000000000000001607161364063235100144120ustar00rootroot00000000000000 OPENSSL INSTALLATION -------------------- This document describes installation on all supported operating systems (the Unix/Linux family (which includes Mac OS/X), OpenVMS, and Windows). To install OpenSSL, you will need: * A make implementation * Perl 5 with core modules (please read NOTES.PERL) * The perl module Text::Template (please read NOTES.PERL) * an ANSI C compiler * a development environment in the form of development libraries and C header files * a supported operating system For additional platform specific requirements, solutions to specific issues and other details, please read one of these: * NOTES.UNIX (any supported Unix like system) * NOTES.VMS (OpenVMS) * NOTES.WIN (any supported Windows) * NOTES.DJGPP (DOS platform with DJGPP) * NOTES.ANDROID (obviously Android [NDK]) Notational conventions in this document --------------------------------------- Throughout this document, we use the following conventions in command examples: $ command Any line starting with a dollar sign ($) is a command line. { word1 | word2 | word3 } This denotes a mandatory choice, to be replaced with one of the given words. A simple example would be this: $ echo { FOO | BAR | COOKIE } which is to be understood as one of these: $ echo FOO - or - $ echo BAR - or - $ echo COOKIE [ word1 | word2 | word3 ] Similar to { word1 | word2 | word3 } except it's optional to give any of those. In addition to the examples above, this would also be valid: $ echo {{ target }} This denotes a mandatory word or sequence of words of some sort. A simple example would be this: $ type {{ filename }} which is to be understood to use the command 'type' on some file name determined by the user. [[ options ]] Similar to {{ target }}, but is optional. Note that the notation assumes spaces around {, }, [, ], {{, }} and [[, ]]. This is to differentiate from OpenVMS directory specifications, which also use [ and ], but without spaces. Quick Start ----------- If you want to just get on with it, do: on Unix (again, this includes Mac OS/X): $ ./config $ make $ make test $ make install on OpenVMS: $ @config $ mms $ mms test $ mms install on Windows (only pick one of the targets for configuration): $ perl Configure { VC-WIN32 | VC-WIN64A | VC-WIN64I | VC-CE } $ nmake $ nmake test $ nmake install Note that in order to perform the install step above you need to have appropriate permissions to write to the installation directory. If any of these steps fails, see section Installation in Detail below. This will build and install OpenSSL in the default location, which is: Unix: normal installation directories under /usr/local OpenVMS: SYS$COMMON:[OPENSSL-'version'...], where 'version' is the OpenSSL version number with underscores instead of periods. Windows: C:\Program Files\OpenSSL or C:\Program Files (x86)\OpenSSL The installation directory should be appropriately protected to ensure unprivileged users cannot make changes to OpenSSL binaries or files, or install engines. If you already have a pre-installed version of OpenSSL as part of your Operating System it is recommended that you do not overwrite the system version and instead install to somewhere else. If you want to install it anywhere else, run config like this: On Unix: $ ./config --prefix=/opt/openssl --openssldir=/usr/local/ssl On OpenVMS: $ @config --prefix=PROGRAM:[INSTALLS] --openssldir=SYS$MANAGER:[OPENSSL] (Note: if you do add options to the configuration command, please make sure you've read more than just this Quick Start, such as relevant NOTES.* files, the options outline below, as configuration options may change the outcome in otherwise unexpected ways) Configuration Options --------------------- There are several options to ./config (or ./Configure) to customize the build (note that for Windows, the defaults for --prefix and --openssldir depend in what configuration is used and what Windows implementation OpenSSL is built on. More notes on this in NOTES.WIN): --api=x.y.z Don't build with support for deprecated APIs below the specified version number. For example "--api=1.1.0" will remove support for all APIS that were deprecated in OpenSSL version 1.1.0 or below. This is a rather specialized option for developers. If you just intend to remove all deprecated APIs entirely (up to the current version), it is easier to add the 'no-deprecated' option instead (see below). --cross-compile-prefix=PREFIX The PREFIX to include in front of commands for your toolchain. It's likely to have to end with dash, e.g. a-b-c- would invoke GNU compiler as a-b-c-gcc, etc. Unfortunately cross-compiling is too case-specific to put together one-size-fits-all instructions. You might have to pass more flags or set up environment variables to actually make it work. Android and iOS cases are discussed in corresponding Configurations/15-*.conf files. But there are cases when this option alone is sufficient. For example to build the mingw64 target on Linux "--cross-compile-prefix=x86_64-w64-mingw32-" works. Naturally provided that mingw packages are installed. Today Debian and Ubuntu users have option to install a number of prepackaged cross-compilers along with corresponding run-time and development packages for "alien" hardware. To give another example "--cross-compile-prefix=mipsel-linux-gnu-" suffices in such case. Needless to mention that you have to invoke ./Configure, not ./config, and pass your target name explicitly. Also, note that --openssldir refers to target's file system, not one you are building on. --debug Build OpenSSL with debugging symbols and zero optimization level. --libdir=DIR The name of the directory under the top of the installation directory tree (see the --prefix option) where libraries will be installed. By default this is "lib". Note that on Windows only ".lib" files will be stored in this location. dll files will always be installed to the "bin" directory. --openssldir=DIR Directory for OpenSSL configuration files, and also the default certificate and key store. Defaults are: Unix: /usr/local/ssl Windows: C:\Program Files\Common Files\SSL or C:\Program Files (x86)\Common Files\SSL OpenVMS: SYS$COMMON:[OPENSSL-COMMON] --prefix=DIR The top of the installation directory tree. Defaults are: Unix: /usr/local Windows: C:\Program Files\OpenSSL or C:\Program Files (x86)\OpenSSL OpenVMS: SYS$COMMON:[OPENSSL-'version'] --release Build OpenSSL without debugging symbols. This is the default. --strict-warnings This is a developer flag that switches on various compiler options recommended for OpenSSL development. It only works when using gcc or clang as the compiler. If you are developing a patch for OpenSSL then it is recommended that you use this option where possible. --with-zlib-include=DIR The directory for the location of the zlib include file. This option is only necessary if enable-zlib (see below) is used and the include file is not already on the system include path. --with-zlib-lib=LIB On Unix: this is the directory containing the zlib library. If not provided the system library path will be used. On Windows: this is the filename of the zlib library (with or without a path). This flag must be provided if the zlib-dynamic option is not also used. If zlib-dynamic is used then this flag is optional and a default value ("ZLIB1") is used if not provided. On VMS: this is the filename of the zlib library (with or without a path). This flag is optional and if not provided then "GNV$LIBZSHR", "GNV$LIBZSHR32" or "GNV$LIBZSHR64" is used by default depending on the pointer size chosen. --with-rand-seed=seed1[,seed2,...] A comma separated list of seeding methods which will be tried by OpenSSL in order to obtain random input (a.k.a "entropy") for seeding its cryptographically secure random number generator (CSPRNG). The current seeding methods are: os: Use a trusted operating system entropy source. This is the default method if such an entropy source exists. getrandom: Use the L or equivalent system call. devrandom: Use the first device from the DEVRANDOM list which can be opened to read random bytes. The DEVRANDOM preprocessor constant expands to "/dev/urandom","/dev/random","/dev/srandom" on most unix-ish operating systems. egd: Check for an entropy generating daemon. rdcpu: Use the RDSEED or RDRAND command if provided by the CPU. librandom: Use librandom (not implemented yet). none: Disable automatic seeding. This is the default on some operating systems where no suitable entropy source exists, or no support for it is implemented yet. For more information, see the section 'Note on random number generation' at the end of this document. no-afalgeng Don't build the AFALG engine. This option will be forced if on a platform that does not support AFALG. enable-asan Build with the Address sanitiser. This is a developer option only. It may not work on all platforms and should never be used in production environments. It will only work when used with gcc or clang and should be used in conjunction with the no-shared option. no-asm Do not use assembler code. This should be viewed as debugging/trouble-shooting option rather than production. On some platforms a small amount of assembler code may still be used even with this option. no-async Do not build support for async operations. no-autoalginit Don't automatically load all supported ciphers and digests. Typically OpenSSL will make available all of its supported ciphers and digests. For a statically linked application this may be undesirable if small executable size is an objective. This only affects libcrypto. Ciphers and digests will have to be loaded manually using EVP_add_cipher() and EVP_add_digest() if this option is used. This option will force a non-shared build. no-autoerrinit Don't automatically load all libcrypto/libssl error strings. Typically OpenSSL will automatically load human readable error strings. For a statically linked application this may be undesirable if small executable size is an objective. no-autoload-config Don't automatically load the default openssl.cnf file. Typically OpenSSL will automatically load a system config file which configures default ssl options. enable-buildtest-c++ While testing, generate C++ buildtest files that simply check that the public OpenSSL header files are usable standalone with C++. Enabling this option demands extra care. For any compiler flag given directly as configuration option, you must ensure that it's valid for both the C and the C++ compiler. If not, the C++ build test will most likely break. As an alternative, you can use the language specific variables, CFLAGS and CXXFLAGS. no-capieng Don't build the CAPI engine. This option will be forced if on a platform that does not support CAPI. no-cms Don't build support for CMS features no-comp Don't build support for SSL/TLS compression. If this option is left enabled (the default), then compression will only work if the zlib or zlib-dynamic options are also chosen. enable-crypto-mdebug Build support for debugging memory allocated via OPENSSL_malloc() or OPENSSL_zalloc(). enable-crypto-mdebug-backtrace As for crypto-mdebug, but additionally provide backtrace information for allocated memory. TO BE USED WITH CARE: this uses GNU C functionality, and is therefore not usable for non-GNU config targets. If your build complains about the use of '-rdynamic' or the lack of header file execinfo.h, this option is not for you. ALSO NOTE that even though execinfo.h is available on your system (through Gnulib), the functions might just be stubs that do nothing. no-ct Don't build support for Certificate Transparency. no-deprecated Don't build with support for any deprecated APIs. This is the same as using "--api" and supplying the latest version number. no-dgram Don't build support for datagram based BIOs. Selecting this option will also force the disabling of DTLS. no-dso Don't build support for loading Dynamic Shared Objects. enable-devcryptoeng Build the /dev/crypto engine. It is automatically selected on BSD implementations, in which case it can be disabled with no-devcryptoeng. no-dynamic-engine Don't build the dynamically loaded engines. This only has an effect in a "shared" build no-ec Don't build support for Elliptic Curves. no-ec2m Don't build support for binary Elliptic Curves enable-ec_nistp_64_gcc_128 Enable support for optimised implementations of some commonly used NIST elliptic curves. This is only supported on platforms: - with little-endian storage of non-byte types - that tolerate misaligned memory references - where the compiler: - supports the non-standard type __uint128_t - defines the built-in macro __SIZEOF_INT128__ enable-egd Build support for gathering entropy from EGD (Entropy Gathering Daemon). no-engine Don't build support for loading engines. no-err Don't compile in any error strings. enable-external-tests Enable building of integration with external test suites. This is a developer option and may not work on all platforms. The only supported external test suite at the current time is the BoringSSL test suite. See the file test/README.external for further details. no-filenames Don't compile in filename and line number information (e.g. for errors and memory allocation). enable-fuzz-libfuzzer, enable-fuzz-afl Build with support for fuzzing using either libfuzzer or AFL. These are developer options only. They may not work on all platforms and should never be used in production environments. See the file fuzz/README.md for further details. no-gost Don't build support for GOST based ciphersuites. Note that if this feature is enabled then GOST ciphersuites are only available if the GOST algorithms are also available through loading an externally supplied engine. no-hw-padlock Don't build the padlock engine. no-makedepend Don't generate dependencies. no-multiblock Don't build support for writing multiple records in one go in libssl (Note: this is a different capability to the pipelining functionality). no-nextprotoneg Don't build support for the NPN TLS extension. no-ocsp Don't build support for OCSP. no-pic Don't build with support for Position Independent Code. no-pinshared By default OpenSSL will attempt to stay in memory until the process exits. This is so that libcrypto and libssl can be properly cleaned up automatically via an "atexit()" handler. The handler is registered by libcrypto and cleans up both libraries. On some platforms the atexit() handler will run on unload of libcrypto (if it has been dynamically loaded) rather than at process exit. This option can be used to stop OpenSSL from attempting to stay in memory until the process exits. This could lead to crashes if either libcrypto or libssl have already been unloaded at the point that the atexit handler is invoked, e.g. on a platform which calls atexit() on unload of the library, and libssl is unloaded before libcrypto then a crash is likely to happen. Applications can suppress running of the atexit() handler at run time by using the OPENSSL_INIT_NO_ATEXIT option to OPENSSL_init_crypto(). See the man page for it for further details. no-posix-io Don't use POSIX IO capabilities. no-psk Don't build support for Pre-Shared Key based ciphersuites. no-rdrand Don't use hardware RDRAND capabilities. no-rfc3779 Don't build support for RFC3779 ("X.509 Extensions for IP Addresses and AS Identifiers") sctp Build support for SCTP no-shared Do not create shared libraries, only static ones. See "Note on shared libraries" below. no-sock Don't build support for socket BIOs no-srp Don't build support for SRP or SRP based ciphersuites. no-srtp Don't build SRTP support no-sse2 Exclude SSE2 code paths from 32-bit x86 assembly modules. Normally SSE2 extension is detected at run-time, but the decision whether or not the machine code will be executed is taken solely on CPU capability vector. This means that if you happen to run OS kernel which does not support SSE2 extension on Intel P4 processor, then your application might be exposed to "illegal instruction" exception. There might be a way to enable support in kernel, e.g. FreeBSD kernel can be compiled with CPU_ENABLE_SSE, and there is a way to disengage SSE2 code paths upon application start-up, but if you aim for wider "audience" running such kernel, consider no-sse2. Both the 386 and no-asm options imply no-sse2. enable-ssl-trace Build with the SSL Trace capabilities (adds the "-trace" option to s_client and s_server). no-static-engine Don't build the statically linked engines. This only has an impact when not built "shared". no-stdio Don't use anything from the C header file "stdio.h" that makes use of the "FILE" type. Only libcrypto and libssl can be built in this way. Using this option will suppress building the command line applications. Additionally since the OpenSSL tests also use the command line applications the tests will also be skipped. no-tests Don't build test programs or run any test. no-threads Don't try to build with support for multi-threaded applications. threads Build with support for multi-threaded applications. Most platforms will enable this by default. However if on a platform where this is not the case then this will usually require additional system-dependent options! See "Note on multi-threading" below. no-ts Don't build Time Stamping Authority support. enable-ubsan Build with the Undefined Behaviour sanitiser. This is a developer option only. It may not work on all platforms and should never be used in production environments. It will only work when used with gcc or clang and should be used in conjunction with the "-DPEDANTIC" option (or the --strict-warnings option). no-ui Don't build with the "UI" capability (i.e. the set of features enabling text based prompts). enable-unit-test Enable additional unit test APIs. This should not typically be used in production deployments. enable-weak-ssl-ciphers Build support for SSL/TLS ciphers that are considered "weak" (e.g. RC4 based ciphersuites). zlib Build with support for zlib compression/decompression. zlib-dynamic Like "zlib", but has OpenSSL load the zlib library dynamically when needed. This is only supported on systems where loading of shared libraries is supported. 386 In 32-bit x86 builds, when generating assembly modules, use the 80386 instruction set only (the default x86 code is more efficient, but requires at least a 486). Note: This doesn't affect code generated by compiler, you're likely to complement configuration command line with suitable compiler-specific option. no- Don't build support for negotiating the specified SSL/TLS protocol (one of ssl, ssl3, tls, tls1, tls1_1, tls1_2, tls1_3, dtls, dtls1 or dtls1_2). If "no-tls" is selected then all of tls1, tls1_1, tls1_2 and tls1_3 are disabled. Similarly "no-dtls" will disable dtls1 and dtls1_2. The "no-ssl" option is synonymous with "no-ssl3". Note this only affects version negotiation. OpenSSL will still provide the methods for applications to explicitly select the individual protocol versions. no--method As for no- but in addition do not build the methods for applications to explicitly select individual protocol versions. Note that there is no "no-tls1_3-method" option because there is no application method for TLSv1.3. Using individual protocol methods directly is deprecated. Applications should use TLS_method() instead. enable- Build with support for the specified algorithm, where is one of: md2 or rc5. no- Build without support for the specified algorithm, where is one of: aria, bf, blake2, camellia, cast, chacha, cmac, des, dh, dsa, ecdh, ecdsa, idea, md4, mdc2, ocb, poly1305, rc2, rc4, rmd160, scrypt, seed, siphash, sm2, sm3, sm4 or whirlpool. The "ripemd" algorithm is deprecated and if used is synonymous with rmd160. -Dxxx, -Ixxx, -Wp, -lxxx, -Lxxx, -Wl, -rpath, -R, -framework, -static These system specific options will be recognised and passed through to the compiler to allow you to define preprocessor symbols, specify additional libraries, library directories or other compiler options. It might be worth noting that some compilers generate code specifically for processor the compiler currently executes on. This is not necessarily what you might have in mind, since it might be unsuitable for execution on other, typically older, processor. Consult your compiler documentation. Take note of the VAR=value documentation below and how these flags interact with those variables. -xxx, +xxx, /xxx Additional options that are not otherwise recognised are passed through as they are to the compiler as well. Unix-style options beginning with a '-' or '+' and Windows-style options beginning with a '/' are recognized. Again, consult your compiler documentation. If the option contains arguments separated by spaces, then the URL-style notation %20 can be used for the space character in order to avoid having to quote the option. For example, -opt%20arg gets expanded to -opt arg. In fact, any ASCII character can be encoded as %xx using its hexadecimal encoding. Take note of the VAR=value documentation below and how these flags interact with those variables. VAR=value Assignment of environment variable for Configure. These work just like normal environment variable assignments, but are supported on all platforms and are confined to the configuration scripts only. These assignments override the corresponding value in the inherited environment, if there is one. The following variables are used as "make variables" and can be used as an alternative to giving preprocessor, compiler and linker options directly as configuration. The following variables are supported: AR The static library archiver. ARFLAGS Flags for the static library archiver. AS The assembler compiler. ASFLAGS Flags for the assembler compiler. CC The C compiler. CFLAGS Flags for the C compiler. CXX The C++ compiler. CXXFLAGS Flags for the C++ compiler. CPP The C/C++ preprocessor. CPPFLAGS Flags for the C/C++ preprocessor. CPPDEFINES List of CPP macro definitions, separated by a platform specific character (':' or space for Unix, ';' for Windows, ',' for VMS). This can be used instead of using -D (or what corresponds to that on your compiler) in CPPFLAGS. CPPINCLUDES List of CPP inclusion directories, separated the same way as for CPPDEFINES. This can be used instead of -I (or what corresponds to that on your compiler) in CPPFLAGS. HASHBANGPERL Perl invocation to be inserted after '#!' in public perl scripts (only relevant on Unix). LD The program linker (not used on Unix, $(CC) is used there). LDFLAGS Flags for the shared library, DSO and program linker. LDLIBS Extra libraries to use when linking. Takes the form of a space separated list of library specifications on Unix and Windows, and as a comma separated list of libraries on VMS. RANLIB The library archive indexer. RC The Windows resource compiler. RCFLAGS Flags for the Windows resource compiler. RM The command to remove files and directories. These cannot be mixed with compiling / linking flags given on the command line. In other words, something like this isn't permitted. ./config -DFOO CPPFLAGS=-DBAR -DCOOKIE Backward compatibility note: To be compatible with older configuration scripts, the environment variables are ignored if compiling / linking flags are given on the command line, except for these: AR, CC, CXX, CROSS_COMPILE, HASHBANGPERL, PERL, RANLIB, RC and WINDRES For example, the following command will not see -DBAR: CPPFLAGS=-DBAR ./config -DCOOKIE However, the following will see both set variables: CC=gcc CROSS_COMPILE=x86_64-w64-mingw32- \ ./config -DCOOKIE If CC is set, it is advisable to also set CXX to ensure both C and C++ compilers are in the same "family". This becomes relevant with 'enable-external-tests' and 'enable-buildtest-c++'. reconf reconfigure Reconfigure from earlier data. This fetches the previous command line options and environment from data saved in "configdata.pm", and runs the configuration process again, using these options and environment. Note: NO other option is permitted together with "reconf". This means that you also MUST use "./Configure" (or what corresponds to that on non-Unix platforms) directly to invoke this option. Note: The original configuration saves away values for ALL environment variables that were used, and if they weren't defined, they are still saved away with information that they weren't originally defined. This information takes precedence over environment variables that are defined when reconfiguring. Displaying configuration data ----------------------------- The configuration script itself will say very little, and finishes by creating "configdata.pm". This perl module can be loaded by other scripts to find all the configuration data, and it can also be used as a script to display all sorts of configuration data in a human readable form. For more information, please do: $ ./configdata.pm --help # Unix or $ perl configdata.pm --help # Windows and VMS Installation in Detail ---------------------- 1a. Configure OpenSSL for your operation system automatically: NOTE: This is not available on Windows. $ ./config [[ options ]] # Unix or $ @config [[ options ]] ! OpenVMS For the remainder of this text, the Unix form will be used in all examples, please use the appropriate form for your platform. This guesses at your operating system (and compiler, if necessary) and configures OpenSSL based on this guess. Run ./config -t to see if it guessed correctly. If you want to use a different compiler, you are cross-compiling for another platform, or the ./config guess was wrong for other reasons, go to step 1b. Otherwise go to step 2. On some systems, you can include debugging information as follows: $ ./config -d [[ options ]] 1b. Configure OpenSSL for your operating system manually OpenSSL knows about a range of different operating system, hardware and compiler combinations. To see the ones it knows about, run $ ./Configure # Unix or $ perl Configure # All other platforms For the remainder of this text, the Unix form will be used in all examples, please use the appropriate form for your platform. Pick a suitable name from the list that matches your system. For most operating systems there is a choice between using "cc" or "gcc". When you have identified your system (and if necessary compiler) use this name as the argument to Configure. For example, a "linux-elf" user would run: $ ./Configure linux-elf [[ options ]] If your system isn't listed, you will have to create a configuration file named Configurations/{{ something }}.conf and add the correct configuration for your system. See the available configs as examples and read Configurations/README and Configurations/README.design for more information. The generic configurations "cc" or "gcc" should usually work on 32 bit Unix-like systems. Configure creates a build file ("Makefile" on Unix, "makefile" on Windows and "descrip.mms" on OpenVMS) from a suitable template in Configurations, and defines various macros in include/openssl/opensslconf.h (generated from include/openssl/opensslconf.h.in). 1c. Configure OpenSSL for building outside of the source tree. OpenSSL can be configured to build in a build directory separate from the directory with the source code. It's done by placing yourself in some other directory and invoking the configuration commands from there. Unix example: $ mkdir /var/tmp/openssl-build $ cd /var/tmp/openssl-build $ /PATH/TO/OPENSSL/SOURCE/config [[ options ]] or $ /PATH/TO/OPENSSL/SOURCE/Configure {{ target }} [[ options ]] OpenVMS example: $ set default sys$login: $ create/dir [.tmp.openssl-build] $ set default [.tmp.openssl-build] $ @[PATH.TO.OPENSSL.SOURCE]config [[ options ]] or $ @[PATH.TO.OPENSSL.SOURCE]Configure {{ target }} [[ options ]] Windows example: $ C: $ mkdir \temp-openssl $ cd \temp-openssl $ perl d:\PATH\TO\OPENSSL\SOURCE\Configure {{ target }} [[ options ]] Paths can be relative just as well as absolute. Configure will do its best to translate them to relative paths whenever possible. 2. Build OpenSSL by running: $ make # Unix $ mms ! (or mmk) OpenVMS $ nmake # Windows This will build the OpenSSL libraries (libcrypto.a and libssl.a on Unix, corresponding on other platforms) and the OpenSSL binary ("openssl"). The libraries will be built in the top-level directory, and the binary will be in the "apps" subdirectory. Troubleshooting: If the build fails, look at the output. There may be reasons for the failure that aren't problems in OpenSSL itself (like missing standard headers). If the build succeeded previously, but fails after a source or configuration change, it might be helpful to clean the build tree before attempting another build. Use this command: $ make clean # Unix $ mms clean ! (or mmk) OpenVMS $ nmake clean # Windows Assembler error messages can sometimes be sidestepped by using the "no-asm" configuration option. Compiling parts of OpenSSL with gcc and others with the system compiler will result in unresolved symbols on some systems. If you are still having problems you can get help by sending an email to the openssl-users email list (see https://www.openssl.org/community/mailinglists.html for details). If it is a bug with OpenSSL itself, please open an issue on GitHub, at https://github.com/openssl/openssl/issues. Please review the existing ones first; maybe the bug was already reported or has already been fixed. 3. After a successful build, the libraries should be tested. Run: $ make test # Unix $ mms test ! OpenVMS $ nmake test # Windows NOTE: you MUST run the tests from an unprivileged account (or disable your privileges temporarily if your platform allows it). If some tests fail, look at the output. There may be reasons for the failure that isn't a problem in OpenSSL itself (like a malfunction with Perl). You may want increased verbosity, that can be accomplished like this: $ make VERBOSE=1 test # Unix $ mms /macro=(VERBOSE=1) test ! OpenVMS $ nmake VERBOSE=1 test # Windows If you want to run just one or a few specific tests, you can use the make variable TESTS to specify them, like this: $ make TESTS='test_rsa test_dsa' test # Unix $ mms/macro="TESTS=test_rsa test_dsa" test ! OpenVMS $ nmake TESTS='test_rsa test_dsa' test # Windows And of course, you can combine (Unix example shown): $ make VERBOSE=1 TESTS='test_rsa test_dsa' test You can find the list of available tests like this: $ make list-tests # Unix $ mms list-tests ! OpenVMS $ nmake list-tests # Windows Have a look at the manual for the perl module Test::Harness to see what other HARNESS_* variables there are. If you find a problem with OpenSSL itself, try removing any compiler optimization flags from the CFLAGS line in Makefile and run "make clean; make" or corresponding. To report a bug please open an issue on GitHub, at https://github.com/openssl/openssl/issues. For more details on how the make variables TESTS can be used, see section TESTS in Detail below. 4. If everything tests ok, install OpenSSL with $ make install # Unix $ mms install ! OpenVMS $ nmake install # Windows Note that in order to perform the install step above you need to have appropriate permissions to write to the installation directory. The above commands will install all the software components in this directory tree under PREFIX (the directory given with --prefix or its default): Unix: bin/ Contains the openssl binary and a few other utility scripts. include/openssl Contains the header files needed if you want to build your own programs that use libcrypto or libssl. lib Contains the OpenSSL library files. lib/engines Contains the OpenSSL dynamically loadable engines. share/man/man1 Contains the OpenSSL command line man-pages. share/man/man3 Contains the OpenSSL library calls man-pages. share/man/man5 Contains the OpenSSL configuration format man-pages. share/man/man7 Contains the OpenSSL other misc man-pages. share/doc/openssl/html/man1 share/doc/openssl/html/man3 share/doc/openssl/html/man5 share/doc/openssl/html/man7 Contains the HTML rendition of the man-pages. OpenVMS ('arch' is replaced with the architecture name, "Alpha" or "ia64", 'sover' is replaced with the shared library version (0101 for 1.1), and 'pz' is replaced with the pointer size OpenSSL was built with): [.EXE.'arch'] Contains the openssl binary. [.EXE] Contains a few utility scripts. [.include.openssl] Contains the header files needed if you want to build your own programs that use libcrypto or libssl. [.LIB.'arch'] Contains the OpenSSL library files. [.ENGINES'sover''pz'.'arch'] Contains the OpenSSL dynamically loadable engines. [.SYS$STARTUP] Contains startup, login and shutdown scripts. These define appropriate logical names and command symbols. [.SYSTEST] Contains the installation verification procedure. [.HTML] Contains the HTML rendition of the manual pages. Additionally, install will add the following directories under OPENSSLDIR (the directory given with --openssldir or its default) for you convenience: certs Initially empty, this is the default location for certificate files. private Initially empty, this is the default location for private key files. misc Various scripts. The installation directory should be appropriately protected to ensure unprivileged users cannot make changes to OpenSSL binaries or files, or install engines. If you already have a pre-installed version of OpenSSL as part of your Operating System it is recommended that you do not overwrite the system version and instead install to somewhere else. Package builders who want to configure the library for standard locations, but have the package installed somewhere else so that it can easily be packaged, can use $ make DESTDIR=/tmp/package-root install # Unix $ mms/macro="DESTDIR=TMP:[PACKAGE-ROOT]" install ! OpenVMS The specified destination directory will be prepended to all installation target paths. Compatibility issues with previous OpenSSL versions: * COMPILING existing applications Starting with version 1.1.0, OpenSSL hides a number of structures that were previously open. This includes all internal libssl structures and a number of EVP types. Accessor functions have been added to allow controlled access to the structures' data. This means that some software needs to be rewritten to adapt to the new ways of doing things. This often amounts to allocating an instance of a structure explicitly where you could previously allocate them on the stack as automatic variables, and using the provided accessor functions where you would previously access a structure's field directly. Some APIs have changed as well. However, older APIs have been preserved when possible. Environment Variables --------------------- A number of environment variables can be used to provide additional control over the build process. Typically these should be defined prior to running config or Configure. Not all environment variables are relevant to all platforms. AR The name of the ar executable to use. BUILDFILE Use a different build file name than the platform default ("Makefile" on Unix-like platforms, "makefile" on native Windows, "descrip.mms" on OpenVMS). This requires that there is a corresponding build file template. See Configurations/README for further information. CC The compiler to use. Configure will attempt to pick a default compiler for your platform but this choice can be overridden using this variable. Set it to the compiler executable you wish to use, e.g. "gcc" or "clang". CROSS_COMPILE This environment variable has the same meaning as for the "--cross-compile-prefix" Configure flag described above. If both are set then the Configure flag takes precedence. NM The name of the nm executable to use. OPENSSL_LOCAL_CONFIG_DIR OpenSSL comes with a database of information about how it should be built on different platforms as well as build file templates for those platforms. The database is comprised of ".conf" files in the Configurations directory. The build file templates reside there as well as ".tmpl" files. See the file Configurations/README for further information about the format of ".conf" files as well as information on the ".tmpl" files. In addition to the standard ".conf" and ".tmpl" files, it is possible to create your own ".conf" and ".tmpl" files and store them locally, outside the OpenSSL source tree. This environment variable can be set to the directory where these files are held and will be considered by Configure before it looks in the standard directories. PERL The name of the Perl executable to use when building OpenSSL. This variable is used in config script only. Configure on the other hand imposes the interpreter by which it itself was executed on the whole build procedure. HASHBANGPERL The command string for the Perl executable to insert in the #! line of perl scripts that will be publicly installed. Default: /usr/bin/env perl Note: the value of this variable is added to the same scripts on all platforms, but it's only relevant on Unix-like platforms. RC The name of the rc executable to use. The default will be as defined for the target platform in the ".conf" file. If not defined then "windres" will be used. The WINDRES environment variable is synonymous to this. If both are defined then RC takes precedence. RANLIB The name of the ranlib executable to use. WINDRES See RC. Makefile targets ---------------- The Configure script generates a Makefile in a format relevant to the specific platform. The Makefiles provide a number of targets that can be used. Not all targets may be available on all platforms. Only the most common targets are described here. Examine the Makefiles themselves for the full list. all The default target to build all the software components. clean Remove all build artefacts and return the directory to a "clean" state. depend Rebuild the dependencies in the Makefiles. This is a legacy option that no longer needs to be used since OpenSSL 1.1.0. install Install all OpenSSL components. install_sw Only install the OpenSSL software components. install_docs Only install the OpenSSL documentation components. install_man_docs Only install the OpenSSL man pages (Unix only). install_html_docs Only install the OpenSSL html documentation. list-tests Prints a list of all the self test names. test Build and run the OpenSSL self tests. uninstall Uninstall all OpenSSL components. reconfigure reconf Re-run the configuration process, as exactly as the last time as possible. update This is a developer option. If you are developing a patch for OpenSSL you may need to use this if you want to update automatically generated files; add new error codes or add new (or change the visibility of) public API functions. (Unix only). TESTS in Detail --------------- The make variable TESTS supports a versatile set of space separated tokens with which you can specify a set of tests to be performed. With a "current set of tests" in mind, initially being empty, here are the possible tokens: alltests The current set of tests becomes the whole set of available tests (as listed when you do 'make list-tests' or similar). xxx Adds the test 'xxx' to the current set of tests. -xxx Removes 'xxx' from the current set of tests. If this is the first token in the list, the current set of tests is first assigned the whole set of available tests, effectively making this token equivalent to TESTS="alltests -xxx". nn Adds the test group 'nn' (which is a number) to the current set of tests. -nn Removes the test group 'nn' from the current set of tests. If this is the first token in the list, the current set of tests is first assigned the whole set of available tests, effectively making this token equivalent to TESTS="alltests -xxx". Also, all tokens except for "alltests" may have wildcards, such as *. (on Unix and Windows, BSD style wildcards are supported, while on VMS, it's VMS style wildcards) Example: All tests except for the fuzz tests: $ make TESTS=-test_fuzz test or (if you want to be explicit) $ make TESTS='alltests -test_fuzz' test Example: All tests that have a name starting with "test_ssl" but not those starting with "test_ssl_": $ make TESTS='test_ssl* -test_ssl_*' test Example: Only test group 10: $ make TESTS='10' Example: All tests except the slow group (group 99): $ make TESTS='-99' Example: All tests in test groups 80 to 99 except for tests in group 90: $ make TESTS='[89]? -90' Note on multi-threading ----------------------- For some systems, the OpenSSL Configure script knows what compiler options are needed to generate a library that is suitable for multi-threaded applications. On these systems, support for multi-threading is enabled by default; use the "no-threads" option to disable (this should never be necessary). On other systems, to enable support for multi-threading, you will have to specify at least two options: "threads", and a system-dependent option. (The latter is "-D_REENTRANT" on various systems.) The default in this case, obviously, is not to include support for multi-threading (but you can still use "no-threads" to suppress an annoying warning message from the Configure script.) OpenSSL provides built-in support for two threading models: pthreads (found on most UNIX/Linux systems), and Windows threads. No other threading models are supported. If your platform does not provide pthreads or Windows threads then you should Configure with the "no-threads" option. Notes on shared libraries ------------------------- For most systems the OpenSSL Configure script knows what is needed to build shared libraries for libcrypto and libssl. On these systems the shared libraries will be created by default. This can be suppressed and only static libraries created by using the "no-shared" option. On systems where OpenSSL does not know how to build shared libraries the "no-shared" option will be forced and only static libraries will be created. Shared libraries are named a little differently on different platforms. One way or another, they all have the major OpenSSL version number as part of the file name, i.e. for OpenSSL 1.1.x, 1.1 is somehow part of the name. On most POSIX platforms, shared libraries are named libcrypto.so.1.1 and libssl.so.1.1. on Cygwin, shared libraries are named cygcrypto-1.1.dll and cygssl-1.1.dll with import libraries libcrypto.dll.a and libssl.dll.a. On Windows build with MSVC or using MingW, shared libraries are named libcrypto-1_1.dll and libssl-1_1.dll for 32-bit Windows, libcrypto-1_1-x64.dll and libssl-1_1-x64.dll for 64-bit x86_64 Windows, and libcrypto-1_1-ia64.dll and libssl-1_1-ia64.dll for IA64 Windows. With MSVC, the import libraries are named libcrypto.lib and libssl.lib, while with MingW, they are named libcrypto.dll.a and libssl.dll.a. On VMS, shareable images (VMS speak for shared libraries) are named ossl$libcrypto0101_shr.exe and ossl$libssl0101_shr.exe. However, when OpenSSL is specifically built for 32-bit pointers, the shareable images are named ossl$libcrypto0101_shr32.exe and ossl$libssl0101_shr32.exe instead, and when built for 64-bit pointers, they are named ossl$libcrypto0101_shr64.exe and ossl$libssl0101_shr64.exe. Note on random number generation -------------------------------- Availability of cryptographically secure random numbers is required for secret key generation. OpenSSL provides several options to seed the internal CSPRNG. If not properly seeded, the internal CSPRNG will refuse to deliver random bytes and a "PRNG not seeded error" will occur. The seeding method can be configured using the --with-rand-seed option, which can be used to specify a comma separated list of seed methods. However in most cases OpenSSL will choose a suitable default method, so it is not necessary to explicitly provide this option. Note also that not all methods are available on all platforms. I) On operating systems which provide a suitable randomness source (in form of a system call or system device), OpenSSL will use the optimal available method to seed the CSPRNG from the operating system's randomness sources. This corresponds to the option --with-rand-seed=os. II) On systems without such a suitable randomness source, automatic seeding and reseeding is disabled (--with-rand-seed=none) and it may be necessary to install additional support software to obtain a random seed and reseed the CSPRNG manually. Please check out the manual pages for RAND_add(), RAND_bytes(), RAND_egd(), and the FAQ for more information. openssl-1.1.1f/LICENSE000066400000000000000000000137511364063235100143620ustar00rootroot00000000000000 LICENSE ISSUES ============== The OpenSSL toolkit stays under a double license, i.e. both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license texts. OpenSSL License --------------- /* ==================================================================== * Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ Original SSLeay License ----------------------- /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ openssl-1.1.1f/NEWS000066400000000000000000001232151364063235100140510ustar00rootroot00000000000000 NEWS ==== This file gives a brief overview of the major changes between each OpenSSL release. For more details please read the CHANGES file. Major changes between OpenSSL 1.1.1e and OpenSSL 1.1.1f [31 Mar 2020] o Revert the unexpected EOF reporting via SSL_ERROR_SSL Major changes between OpenSSL 1.1.1d and OpenSSL 1.1.1e [17 Mar 2020] o Fixed an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli (CVE-2019-1551) o Properly detect unexpected EOF while reading in libssl and report it via SSL_ERROR_SSL Major changes between OpenSSL 1.1.1c and OpenSSL 1.1.1d [10 Sep 2019] o Fixed a fork protection issue (CVE-2019-1549) o Fixed a padding oracle in PKCS7_dataDecode and CMS_decrypt_set1_pkey (CVE-2019-1563) o For built-in EC curves, ensure an EC_GROUP built from the curve name is used even when parsing explicit parameters o Compute ECC cofactors if not provided during EC_GROUP construction (CVE-2019-1547) o Early start up entropy quality from the DEVRANDOM seed source has been improved for older Linux systems o Correct the extended master secret constant on EBCDIC systems o Use Windows installation paths in the mingw builds (CVE-2019-1552) o Changed DH_check to accept parameters with order q and 2q subgroups o Significantly reduce secure memory usage by the randomness pools o Revert the DEVRANDOM_WAIT feature for Linux systems Major changes between OpenSSL 1.1.1b and OpenSSL 1.1.1c [28 May 2019] o Prevent over long nonces in ChaCha20-Poly1305 (CVE-2019-1543) Major changes between OpenSSL 1.1.1a and OpenSSL 1.1.1b [26 Feb 2019] o Change the info callback signals for the start and end of a post-handshake message exchange in TLSv1.3. o Fix a bug in DTLS over SCTP. This breaks interoperability with older versions of OpenSSL like OpenSSL 1.1.0 and OpenSSL 1.0.2. Major changes between OpenSSL 1.1.1 and OpenSSL 1.1.1a [20 Nov 2018] o Timing vulnerability in DSA signature generation (CVE-2018-0734) o Timing vulnerability in ECDSA signature generation (CVE-2018-0735) Major changes between OpenSSL 1.1.0i and OpenSSL 1.1.1 [11 Sep 2018] o Support for TLSv1.3 added (see https://wiki.openssl.org/index.php/TLS1.3 for further important information). The TLSv1.3 implementation includes: o Fully compliant implementation of RFC8446 (TLSv1.3) on by default o Early data (0-RTT) o Post-handshake authentication and key update o Middlebox Compatibility Mode o TLSv1.3 PSKs o Support for all five RFC8446 ciphersuites o RSA-PSS signature algorithms (backported to TLSv1.2) o Configurable session ticket support o Stateless server support o Rewrite of the packet construction code for "safer" packet handling o Rewrite of the extension handling code o Complete rewrite of the OpenSSL random number generator to introduce the following capabilities o The default RAND method now utilizes an AES-CTR DRBG according to NIST standard SP 800-90Ar1. o Support for multiple DRBG instances with seed chaining. o There is a public and private DRBG instance. o The DRBG instances are fork-safe. o Keep all global DRBG instances on the secure heap if it is enabled. o The public and private DRBG instance are per thread for lock free operation o Support for various new cryptographic algorithms including: o SHA3 o SHA512/224 and SHA512/256 o EdDSA (both Ed25519 and Ed448) including X509 and TLS support o X448 (adding to the existing X25519 support in 1.1.0) o Multi-prime RSA o SM2 o SM3 o SM4 o SipHash o ARIA (including TLS support) o Significant Side-Channel attack security improvements o Add a new ClientHello callback to provide the ability to adjust the SSL object at an early stage. o Add 'Maximum Fragment Length' TLS extension negotiation and support o A new STORE module, which implements a uniform and URI based reader of stores that can contain keys, certificates, CRLs and numerous other objects. o Move the display of configuration data to configdata.pm. o Allow GNU style "make variables" to be used with Configure. o Claim the namespaces OSSL and OPENSSL, represented as symbol prefixes o Rewrite of devcrypto engine Major changes between OpenSSL 1.1.0h and OpenSSL 1.1.0i [under development] o Client DoS due to large DH parameter (CVE-2018-0732) o Cache timing vulnerability in RSA Key Generation (CVE-2018-0737) Major changes between OpenSSL 1.1.0g and OpenSSL 1.1.0h [under development] o Constructed ASN.1 types with a recursive definition could exceed the stack (CVE-2018-0739) o Incorrect CRYPTO_memcmp on HP-UX PA-RISC (CVE-2018-0733) o rsaz_1024_mul_avx2 overflow bug on x86_64 (CVE-2017-3738) Major changes between OpenSSL 1.1.0f and OpenSSL 1.1.0g [2 Nov 2017] o bn_sqrx8x_internal carry bug on x86_64 (CVE-2017-3736) o Malformed X.509 IPAddressFamily could cause OOB read (CVE-2017-3735) Major changes between OpenSSL 1.1.0e and OpenSSL 1.1.0f [25 May 2017] o config now recognises 64-bit mingw and chooses mingw64 instead of mingw Major changes between OpenSSL 1.1.0d and OpenSSL 1.1.0e [16 Feb 2017] o Encrypt-Then-Mac renegotiation crash (CVE-2017-3733) Major changes between OpenSSL 1.1.0c and OpenSSL 1.1.0d [26 Jan 2017] o Truncated packet could crash via OOB read (CVE-2017-3731) o Bad (EC)DHE parameters cause a client crash (CVE-2017-3730) o BN_mod_exp may produce incorrect results on x86_64 (CVE-2017-3732) Major changes between OpenSSL 1.1.0b and OpenSSL 1.1.0c [10 Nov 2016] o ChaCha20/Poly1305 heap-buffer-overflow (CVE-2016-7054) o CMS Null dereference (CVE-2016-7053) o Montgomery multiplication may produce incorrect results (CVE-2016-7055) Major changes between OpenSSL 1.1.0a and OpenSSL 1.1.0b [26 Sep 2016] o Fix Use After Free for large message sizes (CVE-2016-6309) Major changes between OpenSSL 1.1.0 and OpenSSL 1.1.0a [22 Sep 2016] o OCSP Status Request extension unbounded memory growth (CVE-2016-6304) o SSL_peek() hang on empty record (CVE-2016-6305) o Excessive allocation of memory in tls_get_message_header() (CVE-2016-6307) o Excessive allocation of memory in dtls1_preprocess_fragment() (CVE-2016-6308) Major changes between OpenSSL 1.0.2h and OpenSSL 1.1.0 [25 Aug 2016] o Copyright text was shrunk to a boilerplate that points to the license o "shared" builds are now the default when possible o Added support for "pipelining" o Added the AFALG engine o New threading API implemented o Support for ChaCha20 and Poly1305 added to libcrypto and libssl o Support for extended master secret o CCM ciphersuites o Reworked test suite, now based on perl, Test::Harness and Test::More o *Most* libcrypto and libssl public structures were made opaque, including: BIGNUM and associated types, EC_KEY and EC_KEY_METHOD, DH and DH_METHOD, DSA and DSA_METHOD, RSA and RSA_METHOD, BIO and BIO_METHOD, EVP_MD_CTX, EVP_MD, EVP_CIPHER_CTX, EVP_CIPHER, EVP_PKEY and associated types, HMAC_CTX, X509, X509_CRL, X509_OBJECT, X509_STORE_CTX, X509_STORE, X509_LOOKUP, X509_LOOKUP_METHOD o libssl internal structures made opaque o SSLv2 support removed o Kerberos ciphersuite support removed o RC4 removed from DEFAULT ciphersuites in libssl o 40 and 56 bit cipher support removed from libssl o All public header files moved to include/openssl, no more symlinking o SSL/TLS state machine, version negotiation and record layer rewritten o EC revision: now operations use new EC_KEY_METHOD. o Support for OCB mode added to libcrypto o Support for asynchronous crypto operations added to libcrypto and libssl o Deprecated interfaces can now be disabled at build time either relative to the latest release via the "no-deprecated" Configure argument, or via the "--api=1.1.0|1.0.0|0.9.8" option. o Application software can be compiled with -DOPENSSL_API_COMPAT=version to ensure that features deprecated in that version are not exposed. o Support for RFC6698/RFC7671 DANE TLSA peer authentication o Change of Configure to use --prefix as the main installation directory location rather than --openssldir. The latter becomes the directory for certs, private key and openssl.cnf exclusively. o Reworked BIO networking library, with full support for IPv6. o New "unified" build system o New security levels o Support for scrypt algorithm o Support for X25519 o Extended SSL_CONF support using configuration files o KDF algorithm support. Implement TLS PRF as a KDF. o Support for Certificate Transparency o HKDF support. Major changes between OpenSSL 1.0.2g and OpenSSL 1.0.2h [3 May 2016] o Prevent padding oracle in AES-NI CBC MAC check (CVE-2016-2107) o Fix EVP_EncodeUpdate overflow (CVE-2016-2105) o Fix EVP_EncryptUpdate overflow (CVE-2016-2106) o Prevent ASN.1 BIO excessive memory allocation (CVE-2016-2109) o EBCDIC overread (CVE-2016-2176) o Modify behavior of ALPN to invoke callback after SNI/servername callback, such that updates to the SSL_CTX affect ALPN. o Remove LOW from the DEFAULT cipher list. This removes singles DES from the default. o Only remove the SSLv2 methods with the no-ssl2-method option. Major changes between OpenSSL 1.0.2f and OpenSSL 1.0.2g [1 Mar 2016] o Disable weak ciphers in SSLv3 and up in default builds of OpenSSL. o Disable SSLv2 default build, default negotiation and weak ciphers (CVE-2016-0800) o Fix a double-free in DSA code (CVE-2016-0705) o Disable SRP fake user seed to address a server memory leak (CVE-2016-0798) o Fix BN_hex2bn/BN_dec2bn NULL pointer deref/heap corruption (CVE-2016-0797) o Fix memory issues in BIO_*printf functions (CVE-2016-0799) o Fix side channel attack on modular exponentiation (CVE-2016-0702) Major changes between OpenSSL 1.0.2e and OpenSSL 1.0.2f [28 Jan 2016] o DH small subgroups (CVE-2016-0701) o SSLv2 doesn't block disabled ciphers (CVE-2015-3197) Major changes between OpenSSL 1.0.2d and OpenSSL 1.0.2e [3 Dec 2015] o BN_mod_exp may produce incorrect results on x86_64 (CVE-2015-3193) o Certificate verify crash with missing PSS parameter (CVE-2015-3194) o X509_ATTRIBUTE memory leak (CVE-2015-3195) o Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs o In DSA_generate_parameters_ex, if the provided seed is too short, return an error Major changes between OpenSSL 1.0.2c and OpenSSL 1.0.2d [9 Jul 2015] o Alternate chains certificate forgery (CVE-2015-1793) o Race condition handling PSK identify hint (CVE-2015-3196) Major changes between OpenSSL 1.0.2b and OpenSSL 1.0.2c [12 Jun 2015] o Fix HMAC ABI incompatibility Major changes between OpenSSL 1.0.2a and OpenSSL 1.0.2b [11 Jun 2015] o Malformed ECParameters causes infinite loop (CVE-2015-1788) o Exploitable out-of-bounds read in X509_cmp_time (CVE-2015-1789) o PKCS7 crash with missing EnvelopedContent (CVE-2015-1790) o CMS verify infinite loop with unknown hash function (CVE-2015-1792) o Race condition handling NewSessionTicket (CVE-2015-1791) Major changes between OpenSSL 1.0.2 and OpenSSL 1.0.2a [19 Mar 2015] o OpenSSL 1.0.2 ClientHello sigalgs DoS fix (CVE-2015-0291) o Multiblock corrupted pointer fix (CVE-2015-0290) o Segmentation fault in DTLSv1_listen fix (CVE-2015-0207) o Segmentation fault in ASN1_TYPE_cmp fix (CVE-2015-0286) o Segmentation fault for invalid PSS parameters fix (CVE-2015-0208) o ASN.1 structure reuse memory corruption fix (CVE-2015-0287) o PKCS7 NULL pointer dereferences fix (CVE-2015-0289) o DoS via reachable assert in SSLv2 servers fix (CVE-2015-0293) o Empty CKE with client auth and DHE fix (CVE-2015-1787) o Handshake with unseeded PRNG fix (CVE-2015-0285) o Use After Free following d2i_ECPrivatekey error fix (CVE-2015-0209) o X509_to_X509_REQ NULL pointer deref fix (CVE-2015-0288) o Removed the export ciphers from the DEFAULT ciphers Major changes between OpenSSL 1.0.1l and OpenSSL 1.0.2 [22 Jan 2015]: o Suite B support for TLS 1.2 and DTLS 1.2 o Support for DTLS 1.2 o TLS automatic EC curve selection. o API to set TLS supported signature algorithms and curves o SSL_CONF configuration API. o TLS Brainpool support. o ALPN support. o CMS support for RSA-PSS, RSA-OAEP, ECDH and X9.42 DH. Major changes between OpenSSL 1.0.1k and OpenSSL 1.0.1l [15 Jan 2015] o Build fixes for the Windows and OpenVMS platforms Major changes between OpenSSL 1.0.1j and OpenSSL 1.0.1k [8 Jan 2015] o Fix for CVE-2014-3571 o Fix for CVE-2015-0206 o Fix for CVE-2014-3569 o Fix for CVE-2014-3572 o Fix for CVE-2015-0204 o Fix for CVE-2015-0205 o Fix for CVE-2014-8275 o Fix for CVE-2014-3570 Major changes between OpenSSL 1.0.1i and OpenSSL 1.0.1j [15 Oct 2014] o Fix for CVE-2014-3513 o Fix for CVE-2014-3567 o Mitigation for CVE-2014-3566 (SSL protocol vulnerability) o Fix for CVE-2014-3568 Major changes between OpenSSL 1.0.1h and OpenSSL 1.0.1i [6 Aug 2014] o Fix for CVE-2014-3512 o Fix for CVE-2014-3511 o Fix for CVE-2014-3510 o Fix for CVE-2014-3507 o Fix for CVE-2014-3506 o Fix for CVE-2014-3505 o Fix for CVE-2014-3509 o Fix for CVE-2014-5139 o Fix for CVE-2014-3508 Major changes between OpenSSL 1.0.1g and OpenSSL 1.0.1h [5 Jun 2014] o Fix for CVE-2014-0224 o Fix for CVE-2014-0221 o Fix for CVE-2014-0198 o Fix for CVE-2014-0195 o Fix for CVE-2014-3470 o Fix for CVE-2010-5298 Major changes between OpenSSL 1.0.1f and OpenSSL 1.0.1g [7 Apr 2014] o Fix for CVE-2014-0160 o Add TLS padding extension workaround for broken servers. o Fix for CVE-2014-0076 Major changes between OpenSSL 1.0.1e and OpenSSL 1.0.1f [6 Jan 2014] o Don't include gmt_unix_time in TLS server and client random values o Fix for TLS record tampering bug CVE-2013-4353 o Fix for TLS version checking bug CVE-2013-6449 o Fix for DTLS retransmission bug CVE-2013-6450 Major changes between OpenSSL 1.0.1d and OpenSSL 1.0.1e [11 Feb 2013]: o Corrected fix for CVE-2013-0169 Major changes between OpenSSL 1.0.1c and OpenSSL 1.0.1d [4 Feb 2013]: o Fix renegotiation in TLS 1.1, 1.2 by using the correct TLS version. o Include the fips configuration module. o Fix OCSP bad key DoS attack CVE-2013-0166 o Fix for SSL/TLS/DTLS CBC plaintext recovery attack CVE-2013-0169 o Fix for TLS AESNI record handling flaw CVE-2012-2686 Major changes between OpenSSL 1.0.1b and OpenSSL 1.0.1c [10 May 2012]: o Fix TLS/DTLS record length checking bug CVE-2012-2333 o Don't attempt to use non-FIPS composite ciphers in FIPS mode. Major changes between OpenSSL 1.0.1a and OpenSSL 1.0.1b [26 Apr 2012]: o Fix compilation error on non-x86 platforms. o Make FIPS capable OpenSSL ciphers work in non-FIPS mode. o Fix SSL_OP_NO_TLSv1_1 clash with SSL_OP_ALL in OpenSSL 1.0.0 Major changes between OpenSSL 1.0.1 and OpenSSL 1.0.1a [19 Apr 2012]: o Fix for ASN1 overflow bug CVE-2012-2110 o Workarounds for some servers that hang on long client hellos. o Fix SEGV in AES code. Major changes between OpenSSL 1.0.0h and OpenSSL 1.0.1 [14 Mar 2012]: o TLS/DTLS heartbeat support. o SCTP support. o RFC 5705 TLS key material exporter. o RFC 5764 DTLS-SRTP negotiation. o Next Protocol Negotiation. o PSS signatures in certificates, requests and CRLs. o Support for password based recipient info for CMS. o Support TLS v1.2 and TLS v1.1. o Preliminary FIPS capability for unvalidated 2.0 FIPS module. o SRP support. Major changes between OpenSSL 1.0.0g and OpenSSL 1.0.0h [12 Mar 2012]: o Fix for CMS/PKCS#7 MMA CVE-2012-0884 o Corrected fix for CVE-2011-4619 o Various DTLS fixes. Major changes between OpenSSL 1.0.0f and OpenSSL 1.0.0g [18 Jan 2012]: o Fix for DTLS DoS issue CVE-2012-0050 Major changes between OpenSSL 1.0.0e and OpenSSL 1.0.0f [4 Jan 2012]: o Fix for DTLS plaintext recovery attack CVE-2011-4108 o Clear block padding bytes of SSL 3.0 records CVE-2011-4576 o Only allow one SGC handshake restart for SSL/TLS CVE-2011-4619 o Check parameters are not NULL in GOST ENGINE CVE-2012-0027 o Check for malformed RFC3779 data CVE-2011-4577 Major changes between OpenSSL 1.0.0d and OpenSSL 1.0.0e [6 Sep 2011]: o Fix for CRL vulnerability issue CVE-2011-3207 o Fix for ECDH crashes CVE-2011-3210 o Protection against EC timing attacks. o Support ECDH ciphersuites for certificates using SHA2 algorithms. o Various DTLS fixes. Major changes between OpenSSL 1.0.0c and OpenSSL 1.0.0d [8 Feb 2011]: o Fix for security issue CVE-2011-0014 Major changes between OpenSSL 1.0.0b and OpenSSL 1.0.0c [2 Dec 2010]: o Fix for security issue CVE-2010-4180 o Fix for CVE-2010-4252 o Fix mishandling of absent EC point format extension. o Fix various platform compilation issues. o Corrected fix for security issue CVE-2010-3864. Major changes between OpenSSL 1.0.0a and OpenSSL 1.0.0b [16 Nov 2010]: o Fix for security issue CVE-2010-3864. o Fix for CVE-2010-2939 o Fix WIN32 build system for GOST ENGINE. Major changes between OpenSSL 1.0.0 and OpenSSL 1.0.0a [1 Jun 2010]: o Fix for security issue CVE-2010-1633. o GOST MAC and CFB fixes. Major changes between OpenSSL 0.9.8n and OpenSSL 1.0.0 [29 Mar 2010]: o RFC3280 path validation: sufficient to process PKITS tests. o Integrated support for PVK files and keyblobs. o Change default private key format to PKCS#8. o CMS support: able to process all examples in RFC4134 o Streaming ASN1 encode support for PKCS#7 and CMS. o Multiple signer and signer add support for PKCS#7 and CMS. o ASN1 printing support. o Whirlpool hash algorithm added. o RFC3161 time stamp support. o New generalised public key API supporting ENGINE based algorithms. o New generalised public key API utilities. o New ENGINE supporting GOST algorithms. o SSL/TLS GOST ciphersuite support. o PKCS#7 and CMS GOST support. o RFC4279 PSK ciphersuite support. o Supported points format extension for ECC ciphersuites. o ecdsa-with-SHA224/256/384/512 signature types. o dsa-with-SHA224 and dsa-with-SHA256 signature types. o Opaque PRF Input TLS extension support. o Updated time routines to avoid OS limitations. Major changes between OpenSSL 0.9.8m and OpenSSL 0.9.8n [24 Mar 2010]: o CFB cipher definition fixes. o Fix security issues CVE-2010-0740 and CVE-2010-0433. Major changes between OpenSSL 0.9.8l and OpenSSL 0.9.8m [25 Feb 2010]: o Cipher definition fixes. o Workaround for slow RAND_poll() on some WIN32 versions. o Remove MD2 from algorithm tables. o SPKAC handling fixes. o Support for RFC5746 TLS renegotiation extension. o Compression memory leak fixed. o Compression session resumption fixed. o Ticket and SNI coexistence fixes. o Many fixes to DTLS handling. Major changes between OpenSSL 0.9.8k and OpenSSL 0.9.8l [5 Nov 2009]: o Temporary work around for CVE-2009-3555: disable renegotiation. Major changes between OpenSSL 0.9.8j and OpenSSL 0.9.8k [25 Mar 2009]: o Fix various build issues. o Fix security issues (CVE-2009-0590, CVE-2009-0591, CVE-2009-0789) Major changes between OpenSSL 0.9.8i and OpenSSL 0.9.8j [7 Jan 2009]: o Fix security issue (CVE-2008-5077) o Merge FIPS 140-2 branch code. Major changes between OpenSSL 0.9.8g and OpenSSL 0.9.8h [28 May 2008]: o CryptoAPI ENGINE support. o Various precautionary measures. o Fix for bugs affecting certificate request creation. o Support for local machine keyset attribute in PKCS#12 files. Major changes between OpenSSL 0.9.8f and OpenSSL 0.9.8g [19 Oct 2007]: o Backport of CMS functionality to 0.9.8. o Fixes for bugs introduced with 0.9.8f. Major changes between OpenSSL 0.9.8e and OpenSSL 0.9.8f [11 Oct 2007]: o Add gcc 4.2 support. o Add support for AES and SSE2 assembly language optimization for VC++ build. o Support for RFC4507bis and server name extensions if explicitly selected at compile time. o DTLS improvements. o RFC4507bis support. o TLS Extensions support. Major changes between OpenSSL 0.9.8d and OpenSSL 0.9.8e [23 Feb 2007]: o Various ciphersuite selection fixes. o RFC3779 support. Major changes between OpenSSL 0.9.8c and OpenSSL 0.9.8d [28 Sep 2006]: o Introduce limits to prevent malicious key DoS (CVE-2006-2940) o Fix security issues (CVE-2006-2937, CVE-2006-3737, CVE-2006-4343) o Changes to ciphersuite selection algorithm Major changes between OpenSSL 0.9.8b and OpenSSL 0.9.8c [5 Sep 2006]: o Fix Daniel Bleichenbacher forged signature attack, CVE-2006-4339 o New cipher Camellia Major changes between OpenSSL 0.9.8a and OpenSSL 0.9.8b [4 May 2006]: o Cipher string fixes. o Fixes for VC++ 2005. o Updated ECC cipher suite support. o New functions EVP_CIPHER_CTX_new() and EVP_CIPHER_CTX_free(). o Zlib compression usage fixes. o Built in dynamic engine compilation support on Win32. o Fixes auto dynamic engine loading in Win32. Major changes between OpenSSL 0.9.8 and OpenSSL 0.9.8a [11 Oct 2005]: o Fix potential SSL 2.0 rollback, CVE-2005-2969 o Extended Windows CE support Major changes between OpenSSL 0.9.7g and OpenSSL 0.9.8 [5 Jul 2005]: o Major work on the BIGNUM library for higher efficiency and to make operations more streamlined and less contradictory. This is the result of a major audit of the BIGNUM library. o Addition of BIGNUM functions for fields GF(2^m) and NIST curves, to support the Elliptic Crypto functions. o Major work on Elliptic Crypto; ECDH and ECDSA added, including the use through EVP, X509 and ENGINE. o New ASN.1 mini-compiler that's usable through the OpenSSL configuration file. o Added support for ASN.1 indefinite length constructed encoding. o New PKCS#12 'medium level' API to manipulate PKCS#12 files. o Complete rework of shared library construction and linking programs with shared or static libraries, through a separate Makefile.shared. o Rework of the passing of parameters from one Makefile to another. o Changed ENGINE framework to load dynamic engine modules automatically from specifically given directories. o New structure and ASN.1 functions for CertificatePair. o Changed the ZLIB compression method to be stateful. o Changed the key-generation and primality testing "progress" mechanism to take a structure that contains the ticker function and an argument. o New engine module: GMP (performs private key exponentiation). o New engine module: VIA PadLOck ACE extension in VIA C3 Nehemiah processors. o Added support for IPv6 addresses in certificate extensions. See RFC 1884, section 2.2. o Added support for certificate policy mappings, policy constraints and name constraints. o Added support for multi-valued AVAs in the OpenSSL configuration file. o Added support for multiple certificates with the same subject in the 'openssl ca' index file. o Make it possible to create self-signed certificates using 'openssl ca -selfsign'. o Make it possible to generate a serial number file with 'openssl ca -create_serial'. o New binary search functions with extended functionality. o New BUF functions. o New STORE structure and library to provide an interface to all sorts of data repositories. Supports storage of public and private keys, certificates, CRLs, numbers and arbitrary blobs. This library is unfortunately unfinished and unused within OpenSSL. o New control functions for the error stack. o Changed the PKCS#7 library to support one-pass S/MIME processing. o Added the possibility to compile without old deprecated functionality with the OPENSSL_NO_DEPRECATED macro or the 'no-deprecated' argument to the config and Configure scripts. o Constification of all ASN.1 conversion functions, and other affected functions. o Improved platform support for PowerPC. o New FIPS 180-2 algorithms (SHA-224, -256, -384 and -512). o New X509_VERIFY_PARAM structure to support parameterisation of X.509 path validation. o Major overhaul of RC4 performance on Intel P4, IA-64 and AMD64. o Changed the Configure script to have some algorithms disabled by default. Those can be explicitly enabled with the new argument form 'enable-xxx'. o Change the default digest in 'openssl' commands from MD5 to SHA-1. o Added support for DTLS. o New BIGNUM blinding. o Added support for the RSA-PSS encryption scheme o Added support for the RSA X.931 padding. o Added support for BSD sockets on NetWare. o Added support for files larger than 2GB. o Added initial support for Win64. o Added alternate pkg-config files. Major changes between OpenSSL 0.9.7l and OpenSSL 0.9.7m [23 Feb 2007]: o FIPS 1.1.1 module linking. o Various ciphersuite selection fixes. Major changes between OpenSSL 0.9.7k and OpenSSL 0.9.7l [28 Sep 2006]: o Introduce limits to prevent malicious key DoS (CVE-2006-2940) o Fix security issues (CVE-2006-2937, CVE-2006-3737, CVE-2006-4343) Major changes between OpenSSL 0.9.7j and OpenSSL 0.9.7k [5 Sep 2006]: o Fix Daniel Bleichenbacher forged signature attack, CVE-2006-4339 Major changes between OpenSSL 0.9.7i and OpenSSL 0.9.7j [4 May 2006]: o Visual C++ 2005 fixes. o Update Windows build system for FIPS. Major changes between OpenSSL 0.9.7h and OpenSSL 0.9.7i [14 Oct 2005]: o Give EVP_MAX_MD_SIZE its old value, except for a FIPS build. Major changes between OpenSSL 0.9.7g and OpenSSL 0.9.7h [11 Oct 2005]: o Fix SSL 2.0 Rollback, CVE-2005-2969 o Allow use of fixed-length exponent on DSA signing o Default fixed-window RSA, DSA, DH private-key operations Major changes between OpenSSL 0.9.7f and OpenSSL 0.9.7g [11 Apr 2005]: o More compilation issues fixed. o Adaptation to more modern Kerberos API. o Enhanced or corrected configuration for Solaris64, Mingw and Cygwin. o Enhanced x86_64 assembler BIGNUM module. o More constification. o Added processing of proxy certificates (RFC 3820). Major changes between OpenSSL 0.9.7e and OpenSSL 0.9.7f [22 Mar 2005]: o Several compilation issues fixed. o Many memory allocation failure checks added. o Improved comparison of X509 Name type. o Mandatory basic checks on certificates. o Performance improvements. Major changes between OpenSSL 0.9.7d and OpenSSL 0.9.7e [25 Oct 2004]: o Fix race condition in CRL checking code. o Fixes to PKCS#7 (S/MIME) code. Major changes between OpenSSL 0.9.7c and OpenSSL 0.9.7d [17 Mar 2004]: o Security: Fix Kerberos ciphersuite SSL/TLS handshaking bug o Security: Fix null-pointer assignment in do_change_cipher_spec() o Allow multiple active certificates with same subject in CA index o Multiple X509 verification fixes o Speed up HMAC and other operations Major changes between OpenSSL 0.9.7b and OpenSSL 0.9.7c [30 Sep 2003]: o Security: fix various ASN1 parsing bugs. o New -ignore_err option to OCSP utility. o Various interop and bug fixes in S/MIME code. o SSL/TLS protocol fix for unrequested client certificates. Major changes between OpenSSL 0.9.7a and OpenSSL 0.9.7b [10 Apr 2003]: o Security: counter the Klima-Pokorny-Rosa extension of Bleichbacher's attack o Security: make RSA blinding default. o Configuration: Irix fixes, AIX fixes, better mingw support. o Support for new platforms: linux-ia64-ecc. o Build: shared library support fixes. o ASN.1: treat domainComponent correctly. o Documentation: fixes and additions. Major changes between OpenSSL 0.9.7 and OpenSSL 0.9.7a [19 Feb 2003]: o Security: Important security related bugfixes. o Enhanced compatibility with MIT Kerberos. o Can be built without the ENGINE framework. o IA32 assembler enhancements. o Support for new platforms: FreeBSD/IA64 and FreeBSD/Sparc64. o Configuration: the no-err option now works properly. o SSL/TLS: now handles manual certificate chain building. o SSL/TLS: certain session ID malfunctions corrected. Major changes between OpenSSL 0.9.6 and OpenSSL 0.9.7 [30 Dec 2002]: o New library section OCSP. o Complete rewrite of ASN1 code. o CRL checking in verify code and openssl utility. o Extension copying in 'ca' utility. o Flexible display options in 'ca' utility. o Provisional support for international characters with UTF8. o Support for external crypto devices ('engine') is no longer a separate distribution. o New elliptic curve library section. o New AES (Rijndael) library section. o Support for new platforms: Windows CE, Tandem OSS, A/UX, AIX 64-bit, Linux x86_64, Linux 64-bit on Sparc v9 o Extended support for some platforms: VxWorks o Enhanced support for shared libraries. o Now only builds PIC code when shared library support is requested. o Support for pkg-config. o Lots of new manuals. o Makes symbolic links to or copies of manuals to cover all described functions. o Change DES API to clean up the namespace (some applications link also against libdes providing similar functions having the same name). Provide macros for backward compatibility (will be removed in the future). o Unify handling of cryptographic algorithms (software and engine) to be available via EVP routines for asymmetric and symmetric ciphers. o NCONF: new configuration handling routines. o Change API to use more 'const' modifiers to improve error checking and help optimizers. o Finally remove references to RSAref. o Reworked parts of the BIGNUM code. o Support for new engines: Broadcom ubsec, Accelerated Encryption Processing, IBM 4758. o A few new engines added in the demos area. o Extended and corrected OID (object identifier) table. o PRNG: query at more locations for a random device, automatic query for EGD style random sources at several locations. o SSL/TLS: allow optional cipher choice according to server's preference. o SSL/TLS: allow server to explicitly set new session ids. o SSL/TLS: support Kerberos cipher suites (RFC2712). Only supports MIT Kerberos for now. o SSL/TLS: allow more precise control of renegotiations and sessions. o SSL/TLS: add callback to retrieve SSL/TLS messages. o SSL/TLS: support AES cipher suites (RFC3268). Major changes between OpenSSL 0.9.6j and OpenSSL 0.9.6k [30 Sep 2003]: o Security: fix various ASN1 parsing bugs. o SSL/TLS protocol fix for unrequested client certificates. Major changes between OpenSSL 0.9.6i and OpenSSL 0.9.6j [10 Apr 2003]: o Security: counter the Klima-Pokorny-Rosa extension of Bleichbacher's attack o Security: make RSA blinding default. o Build: shared library support fixes. Major changes between OpenSSL 0.9.6h and OpenSSL 0.9.6i [19 Feb 2003]: o Important security related bugfixes. Major changes between OpenSSL 0.9.6g and OpenSSL 0.9.6h [5 Dec 2002]: o New configuration targets for Tandem OSS and A/UX. o New OIDs for Microsoft attributes. o Better handling of SSL session caching. o Better comparison of distinguished names. o Better handling of shared libraries in a mixed GNU/non-GNU environment. o Support assembler code with Borland C. o Fixes for length problems. o Fixes for uninitialised variables. o Fixes for memory leaks, some unusual crashes and some race conditions. o Fixes for smaller building problems. o Updates of manuals, FAQ and other instructive documents. Major changes between OpenSSL 0.9.6f and OpenSSL 0.9.6g [9 Aug 2002]: o Important building fixes on Unix. Major changes between OpenSSL 0.9.6e and OpenSSL 0.9.6f [8 Aug 2002]: o Various important bugfixes. Major changes between OpenSSL 0.9.6d and OpenSSL 0.9.6e [30 Jul 2002]: o Important security related bugfixes. o Various SSL/TLS library bugfixes. Major changes between OpenSSL 0.9.6c and OpenSSL 0.9.6d [9 May 2002]: o Various SSL/TLS library bugfixes. o Fix DH parameter generation for 'non-standard' generators. Major changes between OpenSSL 0.9.6b and OpenSSL 0.9.6c [21 Dec 2001]: o Various SSL/TLS library bugfixes. o BIGNUM library fixes. o RSA OAEP and random number generation fixes. o Object identifiers corrected and added. o Add assembler BN routines for IA64. o Add support for OS/390 Unix, UnixWare with gcc, OpenUNIX 8, MIPS Linux; shared library support for Irix, HP-UX. o Add crypto accelerator support for AEP, Baltimore SureWare, Broadcom and Cryptographic Appliance's keyserver [in 0.9.6c-engine release]. Major changes between OpenSSL 0.9.6a and OpenSSL 0.9.6b [9 Jul 2001]: o Security fix: PRNG improvements. o Security fix: RSA OAEP check. o Security fix: Reinsert and fix countermeasure to Bleichbacher's attack. o MIPS bug fix in BIGNUM. o Bug fix in "openssl enc". o Bug fix in X.509 printing routine. o Bug fix in DSA verification routine and DSA S/MIME verification. o Bug fix to make PRNG thread-safe. o Bug fix in RAND_file_name(). o Bug fix in compatibility mode trust settings. o Bug fix in blowfish EVP. o Increase default size for BIO buffering filter. o Compatibility fixes in some scripts. Major changes between OpenSSL 0.9.6 and OpenSSL 0.9.6a [5 Apr 2001]: o Security fix: change behavior of OpenSSL to avoid using environment variables when running as root. o Security fix: check the result of RSA-CRT to reduce the possibility of deducing the private key from an incorrectly calculated signature. o Security fix: prevent Bleichenbacher's DSA attack. o Security fix: Zero the premaster secret after deriving the master secret in DH ciphersuites. o Reimplement SSL_peek(), which had various problems. o Compatibility fix: the function des_encrypt() renamed to des_encrypt1() to avoid clashes with some Unixen libc. o Bug fixes for Win32, HP/UX and Irix. o Bug fixes in BIGNUM, SSL, PKCS#7, PKCS#12, X.509, CONF and memory checking routines. o Bug fixes for RSA operations in threaded environments. o Bug fixes in misc. openssl applications. o Remove a few potential memory leaks. o Add tighter checks of BIGNUM routines. o Shared library support has been reworked for generality. o More documentation. o New function BN_rand_range(). o Add "-rand" option to openssl s_client and s_server. Major changes between OpenSSL 0.9.5a and OpenSSL 0.9.6 [10 Oct 2000]: o Some documentation for BIO and SSL libraries. o Enhanced chain verification using key identifiers. o New sign and verify options to 'dgst' application. o Support for DER and PEM encoded messages in 'smime' application. o New 'rsautl' application, low level RSA utility. o MD4 now included. o Bugfix for SSL rollback padding check. o Support for external crypto devices [1]. o Enhanced EVP interface. [1] The support for external crypto devices is currently a separate distribution. See the file README.ENGINE. Major changes between OpenSSL 0.9.5 and OpenSSL 0.9.5a [1 Apr 2000]: o Bug fixes for Win32, SuSE Linux, NeXTSTEP and FreeBSD 2.2.8 o Shared library support for HPUX and Solaris-gcc o Support of Linux/IA64 o Assembler support for Mingw32 o New 'rand' application o New way to check for existence of algorithms from scripts Major changes between OpenSSL 0.9.4 and OpenSSL 0.9.5 [25 May 2000]: o S/MIME support in new 'smime' command o Documentation for the OpenSSL command line application o Automation of 'req' application o Fixes to make s_client, s_server work under Windows o Support for multiple fieldnames in SPKACs o New SPKAC command line utility and associated library functions o Options to allow passwords to be obtained from various sources o New public key PEM format and options to handle it o Many other fixes and enhancements to command line utilities o Usable certificate chain verification o Certificate purpose checking o Certificate trust settings o Support of authority information access extension o Extensions in certificate requests o Simplified X509 name and attribute routines o Initial (incomplete) support for international character sets o New DH_METHOD, DSA_METHOD and enhanced RSA_METHOD o Read only memory BIOs and simplified creation function o TLS/SSL protocol bugfixes: Accept TLS 'client hello' in SSL 3.0 record; allow fragmentation and interleaving of handshake and other data o TLS/SSL code now "tolerates" MS SGC o Work around for Netscape client certificate hang bug o RSA_NULL option that removes RSA patent code but keeps other RSA functionality o Memory leak detection now allows applications to add extra information via a per-thread stack o PRNG robustness improved o EGD support o BIGNUM library bug fixes o Faster DSA parameter generation o Enhanced support for Alpha Linux o Experimental MacOS support Major changes between OpenSSL 0.9.3 and OpenSSL 0.9.4 [9 Aug 1999]: o Transparent support for PKCS#8 format private keys: these are used by several software packages and are more secure than the standard form o PKCS#5 v2.0 implementation o Password callbacks have a new void * argument for application data o Avoid various memory leaks o New pipe-like BIO that allows using the SSL library when actual I/O must be handled by the application (BIO pair) Major changes between OpenSSL 0.9.2b and OpenSSL 0.9.3 [24 May 1999]: o Lots of enhancements and cleanups to the Configuration mechanism o RSA OEAP related fixes o Added `openssl ca -revoke' option for revoking a certificate o Source cleanups: const correctness, type-safe stacks and ASN.1 SETs o Source tree cleanups: removed lots of obsolete files o Thawte SXNet, certificate policies and CRL distribution points extension support o Preliminary (experimental) S/MIME support o Support for ASN.1 UTF8String and VisibleString o Full integration of PKCS#12 code o Sparc assembler bignum implementation, optimized hash functions o Option to disable selected ciphers Major changes between OpenSSL 0.9.1c and OpenSSL 0.9.2b [22 Mar 1999]: o Fixed a security hole related to session resumption o Fixed RSA encryption routines for the p < q case o "ALL" in cipher lists now means "everything except NULL ciphers" o Support for Triple-DES CBCM cipher o Support of Optimal Asymmetric Encryption Padding (OAEP) for RSA o First support for new TLSv1 ciphers o Added a few new BIOs (syslog BIO, reliable BIO) o Extended support for DSA certificate/keys. o Extended support for Certificate Signing Requests (CSR) o Initial support for X.509v3 extensions o Extended support for compression inside the SSL record layer o Overhauled Win32 builds o Cleanups and fixes to the Big Number (BN) library o Support for ASN.1 GeneralizedTime o Splitted ASN.1 SETs from SEQUENCEs o ASN1 and PEM support for Netscape Certificate Sequences o Overhauled Perl interface o Lots of source tree cleanups. o Lots of memory leak fixes. o Lots of bug fixes. Major changes between SSLeay 0.9.0b and OpenSSL 0.9.1c [23 Dec 1998]: o Integration of the popular NO_RSA/NO_DSA patches o Initial support for compression inside the SSL record layer o Added BIO proxy and filtering functionality o Extended Big Number (BN) library o Added RIPE MD160 message digest o Added support for RC2/64bit cipher o Extended ASN.1 parser routines o Adjustments of the source tree for CVS o Support for various new platforms openssl-1.1.1f/NOTES.ANDROID000066400000000000000000000106221364063235100152410ustar00rootroot00000000000000 NOTES FOR ANDROID PLATFORMS =========================== Requirement details ------------------- Beside basic tools like perl and make you'll need to download the Android NDK. It's available for Linux, Mac OS X and Windows, but only Linux version was actually tested. There is no reason to believe that Mac OS X wouldn't work. And as for Windows, it's unclear which "shell" would be suitable, MSYS2 might have best chances. NDK version should play lesser role, the goal is to support a range of most recent versions. Configuration ------------- Android is a naturally cross-compiled target and you can't use ./config. You have to use ./Configure and name your target explicitly; there are android-arm, android-arm64, android-mips, android-mip64, android-x86 and android-x86_64 (*MIPS targets are no longer supported with NDK R20+). Do not pass --cross-compile-prefix (as you might be tempted), as it will be "calculated" automatically based on chosen platform. Though you still need to know the prefix to extend your PATH, in order to invoke $(CROSS_COMPILE)clang [*gcc on NDK 19 and lower] and company. (Configure will fail and give you a hint if you get it wrong.) Apart from PATH adjustment you need to set ANDROID_NDK_HOME environment to point at the NDK directory. If you're using a side-by-side NDK the path will look something like /some/where/android-sdk/ndk/, and for a standalone NDK the path will be something like /some/where/android-ndk-. Both variables are significant at both configuration and compilation times. The NDK customarily supports multiple Android API levels, e.g. android-14, android-21, etc. By default latest API level is chosen. If you need to target an older platform pass the argument -D__ANDROID_API__=N to Configure, with N being the numerical value of the target platform version. For example, to compile for Android 10 arm64 with a side-by-side NDK r20.0.5594570 export ANDROID_NDK_HOME=/home/whoever/Android/android-sdk/ndk/20.0.5594570 PATH=$ANDROID_NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/bin:$ANDROID_NDK_HOME/toolchains/arm-linux-androideabi-4.9/prebuilt/linux-x86_64/bin:$PATH ./Configure android-arm64 -D__ANDROID_API__=29 make Older versions of the NDK have GCC under their common prebuilt tools directory, so the bin path will be slightly different. EG: to compile for ICS on ARM with NDK 10d: export ANDROID_NDK_HOME=/some/where/android-ndk-10d PATH=$ANDROID_NDK_HOME/toolchains/arm-linux-androideabi-4.8/prebuilt/linux-x86_64/bin:$PATH ./Configure android-arm -D__ANDROID_API__=14 make Caveat lector! Earlier OpenSSL versions relied on additional CROSS_SYSROOT variable set to $ANDROID_NDK_HOME/platforms/android-/arch- to appoint headers-n-libraries' location. It's still recognized in order to facilitate migration from older projects. However, since API level appears in CROSS_SYSROOT value, passing -D__ANDROID_API__=N can be in conflict, and mixing the two is therefore not supported. Migration to CROSS_SYSROOT-less setup is recommended. One can engage clang by adjusting PATH to cover same NDK's clang. Just keep in mind that if you miss it, Configure will try to use gcc... Also, PATH would need even further adjustment to cover unprefixed, yet target-specific, ar and ranlib. It's possible that you don't need to bother, if binutils-multiarch is installed on your Linux system. Another option is to create so called "standalone toolchain" tailored for single specific platform including Android API level, and assign its location to ANDROID_NDK_HOME. In such case you have to pass matching target name to Configure and shouldn't use -D__ANDROID_API__=N. PATH adjustment becomes simpler, $ANDROID_NDK_HOME/bin:$PATH suffices. Running tests (on Linux) ------------------------ This is not actually supported. Notes are meant rather as inspiration. Even though build output targets alien system, it's possible to execute test suite on Linux system by employing qemu-user. The trick is static linking. Pass -static to Configure, then edit generated Makefile and remove occurrences of -ldl and -pie flags. You would also need to pick API version that comes with usable static libraries, 42/2=21 used to work. Once built, you should be able to env EXE_SHELL=qemu- make test If you need to pass additional flag to qemu, quotes are your friend, e.g. env EXE_SHELL="qemu-mips64el -cpu MIPS64R6-generic" make test openssl-1.1.1f/NOTES.DJGPP000066400000000000000000000040551364063235100150300ustar00rootroot00000000000000 INSTALLATION ON THE DOS PLATFORM WITH DJGPP ------------------------------------------- OpenSSL has been ported to DJGPP, a Unix look-alike 32-bit run-time environment for 16-bit DOS, but only with long filename support. If you wish to compile on native DOS with 8+3 filenames, you will have to tweak the installation yourself, including renaming files with illegal or duplicate names. You should have a full DJGPP environment installed, including the latest versions of DJGPP, GCC, BINUTILS, BASH, etc. This package requires that PERL and the PERL module Text::Template also be installed (see NOTES.PERL). All of these can be obtained from the usual DJGPP mirror sites or directly at "http://www.delorie.com/pub/djgpp". For help on which files to download, see the DJGPP "ZIP PICKER" page at "http://www.delorie.com/djgpp/zip-picker.html". You also need to have the WATT-32 networking package installed before you try to compile OpenSSL. This can be obtained from "http://www.watt-32.net/". The Makefile assumes that the WATT-32 code is in the directory specified by the environment variable WATT_ROOT. If you have watt-32 in directory "watt32" under your main DJGPP directory, specify WATT_ROOT="/dev/env/DJDIR/watt32". To compile OpenSSL, start your BASH shell, then configure for DJGPP by running "./Configure" with appropriate arguments: ./Configure no-threads --prefix=/dev/env/DJDIR DJGPP And finally fire up "make". You may run out of DPMI selectors when running in a DOS box under Windows. If so, just close the BASH shell, go back to Windows, and restart BASH. Then run "make" again. RUN-TIME CAVEAT LECTOR -------------- Quoting FAQ: "Cryptographic software needs a source of unpredictable data to work correctly. Many open source operating systems provide a "randomness device" (/dev/urandom or /dev/random) that serves this purpose." As of version 0.9.7f DJGPP port checks upon /dev/urandom$ for a 3rd party "randomness" DOS driver. One such driver, NOISE.SYS, can be obtained from "http://www.rahul.net/dkaufman/index.html". openssl-1.1.1f/NOTES.PERL000066400000000000000000000107431364063235100147270ustar00rootroot00000000000000 TOC === - Notes on Perl - Notes on Perl on Windows - Notes on Perl modules we use - Notes on installing a perl module Notes on Perl ------------- For our scripts, we rely quite a bit on Perl, and increasingly on some core Perl modules. These Perl modules are part of the Perl source, so if you build Perl on your own, you should be set. However, if you install Perl as binary packages, the outcome might differ, and you may have to check that you do get the core modules installed properly. We do not claim to know them all, but experience has told us the following: - on Linux distributions based on Debian, the package 'perl' will install the core Perl modules as well, so you will be fine. - on Linux distributions based on RPMs, you will need to install 'perl-core' rather than just 'perl'. You MUST have at least Perl version 5.10.0 installed. This minimum requirement is due to our use of regexp backslash sequence \R among other features that didn't exist in core Perl before that version. Notes on Perl on Windows ------------------------ There are a number of build targets that can be viewed as "Windows". Indeed, there are VC-* configs targeting VisualStudio C, as well as MinGW and Cygwin. The key recommendation is to use "matching" Perl, one that matches build environment. For example, if you will build on Cygwin be sure to use the Cygwin package manager to install Perl. For MSYS builds use the MSYS provided Perl. For VC-* builds we recommend ActiveState Perl, available from http://www.activestate.com/ActivePerl. Notes on Perl on VMS -------------------- You will need to install Perl separately. One way to do so is to download the source from http://perl.org/, unpacking it, reading README.vms and follow the instructions. Another way is to download a .PCSI file from http://www.vmsperl.com/ and install it using the POLYCENTER install tool. Notes on Perl modules we use ---------------------------- We make increasing use of Perl modules, and do our best to limit ourselves to core Perl modules to keep the requirements down. There are just a few exceptions: Test::More We require the minimum version to be 0.96, which appeared in Perl 5.13.4, because that version was the first to have all the features we're using. This module is required for testing only! If you don't plan on running the tests, you don't need to bother with this one. Text::Template This module is not part of the core Perl modules. As a matter of fact, the core Perl modules do not include any templating module to date. This module is absolutely needed, configuration depends on it. To avoid unnecessary initial hurdles, we have bundled a copy of the following modules in our source. They will work as fallbacks if these modules aren't already installed on the system. Text::Template Notes on installing a perl module --------------------------------- There are a number of ways to install a perl module. In all descriptions below, Text::Template will serve as an example. 1. for Linux users, the easiest is to install with the use of your favorite package manager. Usually, all you need to do is search for the module name and to install the package that comes up. On Debian based Linux distributions, it would go like this: $ apt-cache search Text::Template ... libtext-template-perl - perl module to process text templates $ sudo apt-get install libtext-template-perl Perl modules in Debian based distributions use package names like the name of the module in question, with "lib" prepended and "-perl" appended. 2. Install using CPAN. This is very easy, but usually requires root access: $ cpan -i Text::Template Note that this runs all the tests that the module to be installed comes with. This is usually a smooth operation, but there are platforms where a failure is indicated even though the actual tests were successful. Should that happen, you can force an installation regardless (that should be safe since you've already seen the tests succeed!): $ cpan -f -i Text::Template Note: on VMS, you must quote any argument that contains upper case characters, so the lines above would be: $ cpan -i "Text::Template" and: $ cpan -f -i "Text::Template" openssl-1.1.1f/NOTES.UNIX000066400000000000000000000126341364063235100147510ustar00rootroot00000000000000 NOTES FOR UNIX LIKE PLATFORMS ============================= For Unix/POSIX runtime systems on Windows, please see NOTES.WIN. OpenSSL uses the compiler to link programs and shared libraries --------------------------------------------------------------- OpenSSL's generated Makefile uses the C compiler command line to link programs, shared libraries and dynamically loadable shared objects. Because of this, any linking option that's given to the configuration scripts MUST be in a form that the compiler can accept. This varies between systems, where some have compilers that accept linker flags directly, while others take them in '-Wl,' form. You need to read your compiler documentation to figure out what is acceptable, and ld(1) to figure out what linker options are available. Shared libraries and installation in non-default locations ---------------------------------------------------------- Every Unix system has its own set of default locations for shared libraries, such as /lib, /usr/lib or possibly /usr/local/lib. If libraries are installed in non-default locations, dynamically linked binaries will not find them and therefore fail to run, unless they get a bit of help from a defined runtime shared library search path. For OpenSSL's application (the 'openssl' command), our configuration scripts do NOT generally set the runtime shared library search path for you. It's therefore advisable to set it explicitly when configuring, unless the libraries are to be installed in directories that you know to be in the default list. Runtime shared library search paths are specified with different linking options depending on operating system and versions thereof, and are talked about differently in their respective documentation; variations of RPATH are the most usual (note: ELF systems have two such tags, more on that below). Possible options to set the runtime shared library search path include the following: -Wl,-rpath,/whatever/path # Linux, *BSD, etc. -R /whatever/path # Solaris -Wl,-R,/whatever/path # AIX (-bsvr4 is passed internally) -Wl,+b,/whatever/path # HP-UX -rpath /whatever/path # Tru64, IRIX OpenSSL's configuration scripts recognise all these options and pass them to the Makefile that they build. (In fact, all arguments starting with '-Wl,' are recognised as linker options.) Please do not use verbatim directories in your runtime shared library search path! Some OpenSSL config targets add an extra directory level for multilib installations. To help with that, the produced Makefile includes the variable LIBRPATH, which is a convenience variable to be used with the runtime shared library search path options, as shown in this example: $ ./config --prefix=/usr/local/ssl --openssldir=/usr/local/ssl \ '-Wl,-rpath,$(LIBRPATH)' On modern ELF based systems, there are two runtime search paths tags to consider, DT_RPATH and DT_RUNPATH. Shared objects are searched for in this order: 1. Using directories specified in DT_RPATH, unless DT_RUNPATH is also set. 2. Using the environment variable LD_LIBRARY_PATH 3. Using directories specified in DT_RUNPATH. 4. Using system shared object caches and default directories. This means that the values in the environment variable LD_LIBRARY_PATH won't matter if the library is found in the paths given by DT_RPATH (and DT_RUNPATH isn't set). Exactly which of DT_RPATH or DT_RUNPATH is set by default appears to depend on the system. For example, according to documentation, DT_RPATH appears to be deprecated on Solaris in favor of DT_RUNPATH, while on Debian GNU/Linux, either can be set, and DT_RPATH is the default at the time of writing. How to choose which runtime search path tag is to be set depends on your system, please refer to ld(1) for the exact information on your system. As an example, the way to ensure the DT_RUNPATH is set on Debian GNU/Linux systems rather than DT_RPATH is to tell the linker to set new dtags, like this: $ ./config --prefix=/usr/local/ssl --openssldir=/usr/local/ssl \ '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)' It might be worth noting that some/most ELF systems implement support for runtime search path relative to the directory containing current executable, by interpreting $ORIGIN along with some other internal variables. Consult your system documentation. Linking your application ------------------------ Third-party applications dynamically linked with OpenSSL (or any other) shared library face exactly the same problem with non-default locations. The OpenSSL config options mentioned above might or might not have bearing on linking of the target application. "Might" means that under some circumstances it would be sufficient to link with OpenSSL shared library "naturally", i.e. with -L/whatever/path -lssl -lcrypto. But there are also cases when you'd have to explicitly specify runtime search path when linking your application. Consult your system documentation and use above section as inspiration... Shared OpenSSL builds also install static libraries. Linking with the latter is likely to require special care, because linkers usually look for shared libraries first and tend to remain "blind" to static OpenSSL libraries. Referring to system documentation would suffice, if not for a corner case. On AIX static libraries (in shared build) are named differently, add _a suffix to link with them, e.g. -lcrypto_a. openssl-1.1.1f/NOTES.VMS000066400000000000000000000071121364063235100146260ustar00rootroot00000000000000 NOTES FOR THE OPENVMS PLATFORM ============================== Requirement details ------------------- In addition to the requirements and instructions listed in INSTALL, this are required as well: * At least ODS-5 disk organization for source and build. Installation can be done on any existing disk organization. About ANSI C compiler --------------------- An ANSI C compiled is needed among other things. This means that VAX C is not and will not be supported. We have only tested with DEC C (a.k.a HP VMS C / VSI C) and require version 7.1 or later. Compiling with a different ANSI C compiler may require some work. Please avoid using C RTL feature logical names DECC$* when building and testing OpenSSL. Most of all, they can be disruptive when running the tests, as they affect the Perl interpreter. About ODS-5 directory names and Perl ------------------------------------ It seems that the perl function canonpath() in the File::Spec module doesn't treat file specifications where the last directory name contains periods very well. Unfortunately, some versions of VMS tar will keep the periods in the OpenSSL source directory instead of converting them to underscore, thereby leaving your source in something like [.openssl-1^.1^.0]. This will lead to issues when configuring and building OpenSSL. We have no replacement for Perl's canonpath(), so the best workaround for now is to rename the OpenSSL source directory, as follows (please adjust for the actual source directory name you have): $ rename openssl-1^.1^.0.DIR openssl-1_1_0.DIR About MMS and DCL ----------------- MMS has certain limitations when it comes to line length, and DCL has certain limitations when it comes to total command length. We do what we can to mitigate, but there is the possibility that it's not enough. Should you run into issues, a very simple solution is to set yourself up a few logical names for the directory trees you're going to use. About debugging --------------- If you build for debugging, the default on VMS is that image activation starts the debugger automatically, giving you a debug prompt. Unfortunately, this disrupts all other uses, such as running test programs in the test framework. Generally speaking, if you build for debugging, only use the programs directly for debugging. Do not try to use them from a script, such as running the test suite. *The following is not available on Alpha* As a compromise, we're turning off the flag that makes the debugger start automatically. If there is a program that you need to debug, you need to turn that flag back on first, for example: $ set image /flag=call_debug [.test]evp_test.exe Then just run it and you will find yourself in a debugging session. When done, we recommend that you turn that flag back off: $ set image /flag=nocall_debug [.test]evp_test.exe Checking the distribution ------------------------- There have been reports of places where the distribution didn't quite get through, for example if you've copied the tree from a NFS-mounted Unix mount point. The easiest way to check if everything got through as it should is to check for one of the following files: [.crypto]opensslconf^.h.in The best way to get a correct distribution is to download the gzipped tar file from ftp://ftp.openssl.org/source/, use GZIP -d to uncompress it and VMSTAR to unpack the resulting tar file. Gzip and VMSTAR are available here: http://antinode.info/dec/index.html#Software Should you need it, you can find UnZip for VMS here: http://www.info-zip.org/UnZip.html openssl-1.1.1f/NOTES.WIN000066400000000000000000000165071364063235100146260ustar00rootroot00000000000000 NOTES FOR THE WINDOWS PLATFORMS =============================== Windows targets can be classified as "native", ones that use Windows API directly, and "hosted" which rely on POSIX-compatible layer. "Native" targets are VC-* (where "VC" stems from abbreviating Microsoft Visual C compiler) and mingw[64]. "Hosted" platforms are Cygwin and MSYS[2]. Even though the latter is not directly supported by OpenSSL Team, it's #1 popular choice for building MinGW targets. In the nutshell MinGW builds are always cross-compiled. On Linux and Cygwin they look exactly as such and require --cross-compile-prefix option. While on MSYS[2] it's solved rather by placing gcc that produces "MinGW binary" code 1st on $PATH. This is customarily source of confusion. "Hosted" applications "live" in emulated file system name space with POSIX-y root, mount points, /dev and even /proc. Confusion is intensified by the fact that MSYS2 shell (or rather emulated execve(2) call) examines the binary it's about to start, and if it's found *not* to be linked with MSYS2 POSIX-y thing, command line arguments that look like file names get translated from emulated name space to "native". For example '/c/some/where' becomes 'c:\some\where', '/dev/null' - 'nul'. This creates an illusion that there is no difference between MSYS2 shell and "MinGW binary", but there is. Just keep in mind that "MinGW binary" "experiences" Windows system in exactly same way as one produced by VC, and in its essence is indistinguishable from the latter. (Which by the way is why it's referred to in quotes here, as "MinGW binary", it's just as "native" as it can get.) Visual C++ builds, a.k.a. VC-* ============================== Requirement details ------------------- In addition to the requirements and instructions listed in INSTALL, these are required as well: - Perl. We recommend ActiveState Perl, available from https://www.activestate.com/ActivePerl. Another viable alternative appears to be Strawberry Perl, http://strawberryperl.com. You also need the perl module Text::Template, available on CPAN. Please read NOTES.PERL for more information. - Microsoft Visual C compiler. Since we can't test them all, there is unavoidable uncertainty about which versions are supported. Latest version along with couple of previous are certainly supported. On the other hand oldest one is known not to work. Everything between falls into best-effort category. - Netwide Assembler, a.k.a. NASM, available from https://www.nasm.us, is required. Note that NASM is the only supported assembler. Even though Microsoft provided assembler is NOT supported, contemporary 64-bit version is exercised through continuous integration of VC-WIN64A-masm target. Installation directories ------------------------ The default installation directories are derived from environment variables. For VC-WIN32, the following defaults are use: PREFIX: %ProgramFiles(86)%\OpenSSL OPENSSLDIR: %CommonProgramFiles(86)%\SSL For VC-WIN64, the following defaults are use: PREFIX: %ProgramW6432%\OpenSSL OPENSSLDIR: %CommonProgramW6432%\SSL Should those environment variables not exist (on a pure Win32 installation for examples), these fallbacks are used: PREFIX: %ProgramFiles%\OpenSSL OPENSSLDIR: %CommonProgramFiles%\SSL ALSO NOTE that those directories are usually write protected, even if your account is in the Administrators group. To work around that, start the command prompt by right-clicking on it and choosing "Run as Administrator" before running 'nmake install'. The other solution is, of course, to choose a different set of directories by using --prefix and --openssldir when configuring. mingw and mingw64 ================= * MSYS2 shell and development environment installation: Download MSYS2 from https://msys2.github.io/ and follow installation instructions. Once up and running install even make, perl, (git if needed,) mingw-w64-i686-gcc and/or mingw-w64-x86_64-gcc. You should have corresponding MinGW items on your start menu, use *them*, not generic MSYS2. As implied in opening note, difference between them is which compiler is found 1st on $PATH. At this point ./config should recognize correct target, roll as if it was Unix... * It is also possible to build mingw[64] on Linux or Cygwin by configuring with corresponding --cross-compile-prefix= option. For example ./Configure mingw --cross-compile-prefix=i686-w64-mingw32- ... or ./Configure mingw64 --cross-compile-prefix=x86_64-w64-mingw32- ... This naturally implies that you've installed corresponding add-on packages. Independently of the method chosen to build for mingw, the installation paths are similar to those used when building with VC-* targets, except that in case the fallbacks mentioned there aren't possible (typically when cross compiling on Linux), the paths will be the following: For mingw: PREFIX: C:/Program Files (x86)/OpenSSL OPENSSLDIR C:/Program Files (x86)/Common Files/SSL For mingw64: PREFIX: C:/Program Files/OpenSSL OPENSSLDIR C:/Program Files/Common Files/SSL Linking your application ======================== This section applies to all "native" builds. If you link with static OpenSSL libraries then you're expected to additionally link your application with WS2_32.LIB, GDI32.LIB, ADVAPI32.LIB, CRYPT32.LIB and USER32.LIB. Those developing non-interactive service applications might feel concerned about linking with GDI32.LIB and USER32.LIB, as they are justly associated with interactive desktop, which is not available to service processes. The toolkit is designed to detect in which context it's currently executed, GUI, console app or service, and act accordingly, namely whether or not to actually make GUI calls. Additionally those who wish to /DELAYLOAD:GDI32.DLL and /DELAYLOAD:USER32.DLL and actually keep them off service process should consider implementing and exporting from .exe image in question own _OPENSSL_isservice not relying on USER32.DLL. E.g., on Windows Vista and later you could: __declspec(dllexport) __cdecl BOOL _OPENSSL_isservice(void) { DWORD sess; if (ProcessIdToSessionId(GetCurrentProcessId(),&sess)) return sess==0; return FALSE; } If you link with OpenSSL .DLLs, then you're expected to include into your application code small "shim" snippet, which provides glue between OpenSSL BIO layer and your compiler run-time. See the OPENSSL_Applink manual page for further details. Cygwin, "hosted" environment ============================ Cygwin implements a Posix/Unix runtime system (cygwin1.dll) on top of the Windows subsystem and provides a bash shell and GNU tools environment. Consequently, a make of OpenSSL with Cygwin is virtually identical to the Unix procedure. To build OpenSSL using Cygwin, you need to: * Install Cygwin (see https://cygwin.com/) * Install Cygwin Perl and ensure it is in the path. Recall that as least 5.10.0 is required. * Run the Cygwin bash shell Apart from that, follow the Unix instructions in INSTALL. NOTE: "make test" and normal file operations may fail in directories mounted as text (i.e. mount -t c:\somewhere /home) due to Cygwin stripping of carriage returns. To avoid this ensure that a binary mount is used, e.g. mount -b c:\somewhere /home. openssl-1.1.1f/README000066400000000000000000000061261364063235100142330ustar00rootroot00000000000000 OpenSSL 1.1.1f 31 Mar 2020 Copyright (c) 1998-2020 The OpenSSL Project Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. DESCRIPTION ----------- The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, fully featured, and Open Source toolkit implementing the Transport Layer Security (TLS) protocols (including SSLv3) as well as a full-strength general purpose cryptographic library. OpenSSL is descended from the SSLeay library developed by Eric A. Young and Tim J. Hudson. The OpenSSL toolkit is licensed under a dual-license (the OpenSSL license plus the SSLeay license), which means that you are free to get and use it for commercial and non-commercial purposes as long as you fulfill the conditions of both licenses. OVERVIEW -------- The OpenSSL toolkit includes: libssl (with platform specific naming): Provides the client and server-side implementations for SSLv3 and TLS. libcrypto (with platform specific naming): Provides general cryptographic and X.509 support needed by SSL/TLS but not logically part of it. openssl: A command line tool that can be used for: Creation of key parameters Creation of X.509 certificates, CSRs and CRLs Calculation of message digests Encryption and decryption SSL/TLS client and server tests Handling of S/MIME signed or encrypted mail And more... INSTALLATION ------------ See the appropriate file: INSTALL Linux, Unix, Windows, OpenVMS, ... NOTES.* INSTALL addendums for different platforms SUPPORT ------- See the OpenSSL website www.openssl.org for details on how to obtain commercial technical support. Free community support is available through the openssl-users email list (see https://www.openssl.org/community/mailinglists.html for further details). If you have any problems with OpenSSL then please take the following steps first: - Download the latest version from the repository to see if the problem has already been addressed - Configure with no-asm - Remove compiler optimization flags If you wish to report a bug then please include the following information and create an issue on GitHub: - OpenSSL version: output of 'openssl version -a' - Configuration data: output of 'perl configdata.pm --dump' - OS Name, Version, Hardware platform - Compiler Details (name, version) - Application Details (name, version) - Problem Description (steps that will reproduce the problem, if known) - Stack Traceback (if the application dumps core) Just because something doesn't work the way you expect does not mean it is necessarily a bug in OpenSSL. Use the openssl-users email list for this type of query. HOW TO CONTRIBUTE TO OpenSSL ---------------------------- See CONTRIBUTING LEGALITIES ---------- A number of nations restrict the use or export of cryptography. If you are potentially subject to such restrictions you should seek competent professional legal advice before attempting to develop or distribute cryptographic code. openssl-1.1.1f/README.ENGINE000066400000000000000000000373051364063235100152020ustar00rootroot00000000000000 ENGINE ====== With OpenSSL 0.9.6, a new component was added to support alternative cryptography implementations, most commonly for interfacing with external crypto devices (eg. accelerator cards). This component is called ENGINE, and its presence in OpenSSL 0.9.6 (and subsequent bug-fix releases) caused a little confusion as 0.9.6** releases were rolled in two versions, a "standard" and an "engine" version. In development for 0.9.7, the ENGINE code has been merged into the main branch and will be present in the standard releases from 0.9.7 forwards. There are currently built-in ENGINE implementations for the following crypto devices: o Microsoft CryptoAPI o VIA Padlock o nCipher CHIL In addition, dynamic binding to external ENGINE implementations is now provided by a special ENGINE called "dynamic". See the "DYNAMIC ENGINE" section below for details. At this stage, a number of things are still needed and are being worked on: 1 Integration of EVP support. 2 Configuration support. 3 Documentation! 1 With respect to EVP, this relates to support for ciphers and digests in the ENGINE model so that alternative implementations of existing algorithms/modes (or previously unimplemented ones) can be provided by ENGINE implementations. 2 Configuration support currently exists in the ENGINE API itself, in the form of "control commands". These allow an application to expose to the user/admin the set of commands and parameter types a given ENGINE implementation supports, and for an application to directly feed string based input to those ENGINEs, in the form of name-value pairs. This is an extensible way for ENGINEs to define their own "configuration" mechanisms that are specific to a given ENGINE (eg. for a particular hardware device) but that should be consistent across *all* OpenSSL-based applications when they use that ENGINE. Work is in progress (or at least in planning) for supporting these control commands from the CONF (or NCONF) code so that applications using OpenSSL's existing configuration file format can have ENGINE settings specified in much the same way. Presently however, applications must use the ENGINE API itself to provide such functionality. To see first hand the types of commands available with the various compiled-in ENGINEs (see further down for dynamic ENGINEs), use the "engine" openssl utility with full verbosity, ie; openssl engine -vvvv 3 Documentation? Volunteers welcome! The source code is reasonably well self-documenting, but some summaries and usage instructions are needed - moreover, they are needed in the same POD format the existing OpenSSL documentation is provided in. Any complete or incomplete contributions would help make this happen. STABILITY & BUG-REPORTS ======================= What already exists is fairly stable as far as it has been tested, but the test base has been a bit small most of the time. For the most part, the vendors of the devices these ENGINEs support have contributed to the development and/or testing of the implementations, and *usually* (with no guarantees) have experience in using the ENGINE support to drive their devices from common OpenSSL-based applications. Bugs and/or inexplicable behaviour in using a specific ENGINE implementation should be sent to the author of that implementation (if it is mentioned in the corresponding C file), and in the case of implementations for commercial hardware devices, also through whatever vendor support channels are available. If none of this is possible, or the problem seems to be something about the ENGINE API itself (ie. not necessarily specific to a particular ENGINE implementation) then you should mail complete details to the relevant OpenSSL mailing list. For a definition of "complete details", refer to the OpenSSL "README" file. As for which list to send it to; openssl-users: if you are *using* the ENGINE abstraction, either in an pre-compiled application or in your own application code. openssl-dev: if you are discussing problems with OpenSSL source code. USAGE ===== The default "openssl" ENGINE is always chosen when performing crypto operations unless you specify otherwise. You must actively tell the openssl utility commands to use anything else through a new command line switch called "-engine". Also, if you want to use the ENGINE support in your own code to do something similar, you must likewise explicitly select the ENGINE implementation you want. Depending on the type of hardware, system, and configuration, "settings" may need to be applied to an ENGINE for it to function as expected/hoped. The recommended way of doing this is for the application to support ENGINE "control commands" so that each ENGINE implementation can provide whatever configuration primitives it might require and the application can allow the user/admin (and thus the hardware vendor's support desk also) to provide any such input directly to the ENGINE implementation. This way, applications do not need to know anything specific to any device, they only need to provide the means to carry such user/admin input through to the ENGINE in question. Ie. this connects *you* (and your helpdesk) to the specific ENGINE implementation (and device), and allows application authors to not get buried in hassle supporting arbitrary devices they know (and care) nothing about. A new "openssl" utility, "openssl engine", has been added in that allows for testing and examination of ENGINE implementations. Basic usage instructions are available by specifying the "-?" command line switch. DYNAMIC ENGINES =============== The new "dynamic" ENGINE provides a low-overhead way to support ENGINE implementations that aren't pre-compiled and linked into OpenSSL-based applications. This could be because existing compiled-in implementations have known problems and you wish to use a newer version with an existing application. It could equally be because the application (or OpenSSL library) you are using simply doesn't have support for the ENGINE you wish to use, and the ENGINE provider (eg. hardware vendor) is providing you with a self-contained implementation in the form of a shared-library. The other use-case for "dynamic" is with applications that wish to maintain the smallest foot-print possible and so do not link in various ENGINE implementations from OpenSSL, but instead leaves you to provide them, if you want them, in the form of "dynamic"-loadable shared-libraries. It should be possible for hardware vendors to provide their own shared-libraries to support arbitrary hardware to work with applications based on OpenSSL 0.9.7 or later. If you're using an application based on 0.9.7 (or later) and the support you desire is only announced for versions later than the one you need, ask the vendor to backport their ENGINE to the version you need. How does "dynamic" work? ------------------------ The dynamic ENGINE has a special flag in its implementation such that every time application code asks for the 'dynamic' ENGINE, it in fact gets its own copy of it. As such, multi-threaded code (or code that multiplexes multiple uses of 'dynamic' in a single application in any way at all) does not get confused by 'dynamic' being used to do many independent things. Other ENGINEs typically don't do this so there is only ever 1 ENGINE structure of its type (and reference counts are used to keep order). The dynamic ENGINE itself provides absolutely no cryptographic functionality, and any attempt to "initialise" the ENGINE automatically fails. All it does provide are a few "control commands" that can be used to control how it will load an external ENGINE implementation from a shared-library. To see these control commands, use the command-line; openssl engine -vvvv dynamic The "SO_PATH" control command should be used to identify the shared-library that contains the ENGINE implementation, and "NO_VCHECK" might possibly be useful if there is a minor version conflict and you (or a vendor helpdesk) is convinced you can safely ignore it. "ID" is probably only needed if a shared-library implements multiple ENGINEs, but if you know the engine id you expect to be using, it doesn't hurt to specify it (and this provides a sanity check if nothing else). "LIST_ADD" is only required if you actually wish the loaded ENGINE to be discoverable by application code later on using the ENGINE's "id". For most applications, this isn't necessary - but some application authors may have nifty reasons for using it. The "LOAD" command is the only one that takes no parameters and is the command that uses the settings from any previous commands to actually *load* the shared-library ENGINE implementation. If this command succeeds, the (copy of the) 'dynamic' ENGINE will magically morph into the ENGINE that has been loaded from the shared-library. As such, any control commands supported by the loaded ENGINE could then be executed as per normal. Eg. if ENGINE "foo" is implemented in the shared-library "libfoo.so" and it supports some special control command "CMD_FOO", the following code would load and use it (NB: obviously this code has no error checking); ENGINE *e = ENGINE_by_id("dynamic"); ENGINE_ctrl_cmd_string(e, "SO_PATH", "/lib/libfoo.so", 0); ENGINE_ctrl_cmd_string(e, "ID", "foo", 0); ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0); ENGINE_ctrl_cmd_string(e, "CMD_FOO", "some input data", 0); For testing, the "openssl engine" utility can be useful for this sort of thing. For example the above code excerpt would achieve much the same result as; openssl engine dynamic \ -pre SO_PATH:/lib/libfoo.so \ -pre ID:foo \ -pre LOAD \ -pre "CMD_FOO:some input data" Or to simply see the list of commands supported by the "foo" ENGINE; openssl engine -vvvv dynamic \ -pre SO_PATH:/lib/libfoo.so \ -pre ID:foo \ -pre LOAD Applications that support the ENGINE API and more specifically, the "control commands" mechanism, will provide some way for you to pass such commands through to ENGINEs. As such, you would select "dynamic" as the ENGINE to use, and the parameters/commands you pass would control the *actual* ENGINE used. Each command is actually a name-value pair and the value can sometimes be omitted (eg. the "LOAD" command). Whilst the syntax demonstrated in "openssl engine" uses a colon to separate the command name from the value, applications may provide their own syntax for making that separation (eg. a win32 registry key-value pair may be used by some applications). The reason for the "-pre" syntax in the "openssl engine" utility is that some commands might be issued to an ENGINE *after* it has been initialised for use. Eg. if an ENGINE implementation requires a smart-card to be inserted during initialisation (or a PIN to be typed, or whatever), there may be a control command you can issue afterwards to "forget" the smart-card so that additional initialisation is no longer possible. In applications such as web-servers, where potentially volatile code may run on the same host system, this may provide some arguable security value. In such a case, the command would be passed to the ENGINE after it has been initialised for use, and so the "-post" switch would be used instead. Applications may provide a different syntax for supporting this distinction, and some may simply not provide it at all ("-pre" is almost always what you're after, in reality). How do I build a "dynamic" ENGINE? ---------------------------------- This question is trickier - currently OpenSSL bundles various ENGINE implementations that are statically built in, and any application that calls the "ENGINE_load_builtin_engines()" function will automatically have all such ENGINEs available (and occupying memory). Applications that don't call that function have no ENGINEs available like that and would have to use "dynamic" to load any such ENGINE - but on the other hand such applications would only have the memory footprint of any ENGINEs explicitly loaded using user/admin provided control commands. The main advantage of not statically linking ENGINEs and only using "dynamic" for hardware support is that any installation using no "external" ENGINE suffers no unnecessary memory footprint from unused ENGINEs. Likewise, installations that do require an ENGINE incur the overheads from only *that* ENGINE once it has been loaded. Sounds good? Maybe, but currently building an ENGINE implementation as a shared-library that can be loaded by "dynamic" isn't automated in OpenSSL's build process. It can be done manually quite easily however. Such a shared-library can either be built with any OpenSSL code it needs statically linked in, or it can link dynamically against OpenSSL if OpenSSL itself is built as a shared library. The instructions are the same in each case, but in the former (statically linked any dependencies on OpenSSL) you must ensure OpenSSL is built with position-independent code ("PIC"). The default OpenSSL compilation may already specify the relevant flags to do this, but you should consult with your compiler documentation if you are in any doubt. This example will show building the "atalla" ENGINE in the crypto/engine/ directory as a shared-library for use via the "dynamic" ENGINE. 1) "cd" to the crypto/engine/ directory of a pre-compiled OpenSSL source tree. 2) Recompile at least one source file so you can see all the compiler flags (and syntax) being used to build normally. Eg; touch hw_atalla.c ; make will rebuild "hw_atalla.o" using all such flags. 3) Manually enter the same compilation line to compile the "hw_atalla.c" file but with the following two changes; (a) add "-DENGINE_DYNAMIC_SUPPORT" to the command line switches, (b) change the output file from "hw_atalla.o" to something new, eg. "tmp_atalla.o" 4) Link "tmp_atalla.o" into a shared-library using the top-level OpenSSL libraries to resolve any dependencies. The syntax for doing this depends heavily on your system/compiler and is a nightmare known well to anyone who has worked with shared-library portability before. 'gcc' on Linux, for example, would use the following syntax; gcc -shared -o dyn_atalla.so tmp_atalla.o -L../.. -lcrypto 5) Test your shared library using "openssl engine" as explained in the previous section. Eg. from the top-level directory, you might try; apps/openssl engine -vvvv dynamic \ -pre SO_PATH:./crypto/engine/dyn_atalla.so -pre LOAD If the shared-library loads successfully, you will see both "-pre" commands marked as "SUCCESS" and the list of control commands displayed (because of "-vvvv") will be the control commands for the *atalla* ENGINE (ie. *not* the 'dynamic' ENGINE). You can also add the "-t" switch to the utility if you want it to try and initialise the atalla ENGINE for use to test any possible hardware/driver issues. PROBLEMS ======== It seems like the ENGINE part doesn't work too well with CryptoSwift on Win32. A quick test done right before the release showed that trying "openssl speed -engine cswift" generated errors. If the DSO gets enabled, an attempt is made to write at memory address 0x00000002. openssl-1.1.1f/README.FIPS000066400000000000000000000000751364063235100147700ustar00rootroot00000000000000This release does not support a FIPS 140-2 validated module. openssl-1.1.1f/VMS/000077500000000000000000000000001364063235100140135ustar00rootroot00000000000000openssl-1.1.1f/VMS/VMSify-conf.pl000066400000000000000000000026441364063235100164560ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html use strict; use warnings; my @directory_vars = ( "dir", "certs", "crl_dir", "new_certs_dir" ); my @file_vars = ( "database", "certificate", "serial", "crlnumber", "crl", "private_key", "RANDFILE" ); while() { s|\R$||; foreach my $d (@directory_vars) { if (/^(\s*\#?\s*${d}\s*=\s*)\.\/([^\s\#]*)([\s\#].*)$/) { $_ = "$1sys\\\$disk:\[.$2$3"; } elsif (/^(\s*\#?\s*${d}\s*=\s*)(\w[^\s\#]*)([\s\#].*)$/) { $_ = "$1sys\\\$disk:\[.$2$3"; } s/^(\s*\#?\s*${d}\s*=\s*\$\w+)\/([^\s\#]*)([\s\#].*)$/$1.$2\]$3/; while(/^(\s*\#?\s*${d}\s*=\s*(\$\w+\.|sys\\\$disk:\[\.)[\w\.]+)\/([^\]]*)\](.*)$/) { $_ = "$1.$3]$4"; } } foreach my $f (@file_vars) { s/^(\s*\#?\s*${f}\s*=\s*)\.\/(.*)$/$1sys\\\$disk:\[\/$2/; while(/^(\s*\#?\s*${f}\s*=\s*(\$\w+|sys\\\$disk:\[)[^\/]*)\/(\w+\/[^\s\#]*)([\s\#].*)$/) { $_ = "$1.$3$4"; } if (/^(\s*\#?\s*${f}\s*=\s*(\$\w+|sys\\\$disk:\[)[^\/]*)\/(\w+)([\s\#].*)$/) { $_ = "$1]$3.$4"; } elsif (/^(\s*\#?\s*${f}\s*=\s*(\$\w+|sys\\\$disk:\[)[^\/]*)\/([^\s\#]*)([\s\#].*)$/) { $_ = "$1]$3$4"; } } print $_,"\n"; } openssl-1.1.1f/VMS/engine.opt000066400000000000000000000002301364063235100157770ustar00rootroot00000000000000CASE_SENSITIVE=YES SYMBOL_VECTOR=(BIND_ENGINE=PROCEDURE,V_CHECK=PROCEDURE,- bind_engine/BIND_ENGINE=PROCEDURE,v_check/V_CHECK=PROCEDURE) openssl-1.1.1f/VMS/openssl_ivp.com.in000066400000000000000000000035111364063235100174610ustar00rootroot00000000000000$ ! OpenSSL Internal Verification Procedure $ ! $ ! This script checks the consistency of a OpenSSL installation $ ! It had better be spawned, as it creates process logicals $ $ ! Generated information $ INSTALLTOP := {- $config{INSTALLTOP} -} $ OPENSSLDIR := {- $config{OPENSSLDIR} -} $ $ ! Make sure that INSTALLTOP and OPENSSLDIR become something one $ ! can use to call the startup procedure $ INSTALLTOP_ = F$PARSE("A.;",INSTALLTOP,,,"NO_CONCEAL") - - ".][000000" - "[000000." - "][" - "]A.;" + "." $ OPENSSLDIR_ = F$PARSE("A.;",OPENSSLDIR,,,"NO_CONCEAL") - - ".][000000" - "[000000." - "][" - "]A.;" + "." $ $ v := {- sprintf "%02d%02d", split(/\./, $config{version}) -} $ pz := {- $config{pointer_size} -} $ $ @'INSTALLTOP_'SYS$STARTUP]openssl_startup'v' $ @'INSTALLTOP_'SYS$STARTUP]openssl_utils'v' $ $ IF F$SEARCH("OSSL$LIBCRYPTO''pz'") .EQS. "" - .OR. F$SEARCH("OSSL$LIBSSL''pz'") .EQS. "" {- output_off() if $config{no_shared}; "" -}- .OR. F$SEARCH("OSSL$LIBCRYPTO_SHR''pz'") .EQS. "" - .OR. F$SEARCH("OSSL$LIBSSL_SHR''pz'") .EQS. "" {- output_on() if $config{no_shared}; "" -}- .OR. F$SEARCH("OSSL$INCLUDE:[OPENSSL]crypto.h") .EQS. "" - .OR. F$SEARCH("OPENSSL:crypto.h") .EQS. "" - .OR. F$SEARCH("OSSL$EXE:OPENSSL''v'.EXE") .EQS. "" $ THEN $ WRITE SYS$ERROR "Installation inconsistent" $ EXIT %x00018292 ! RMS$_FNF, file not found $ ENDIF $ $ ON ERROR THEN GOTO error $ $ ! If something else is wrong with the installation, we're likely $ ! to get an image activation error here $ openssl version -a $ $ ! FUTURE ENHANCEMENT: Verify that engines are where they should be. $ ! openssl engine -c -t checker $ $ WRITE SYS$ERROR "OpenSSL IVP passed" $ EXIT %x10000001 $ $ error: $ save_status = $STATUS $ WRITE SYS$ERROR "OpenSSL IVP failed" $ EXIT 'save_status' openssl-1.1.1f/VMS/openssl_shutdown.com.in000066400000000000000000000025651364063235100205460ustar00rootroot00000000000000$ ! OpenSSL shutdown script $ ! $ ! This script deassigns the logical names used by the installation $ ! of OpenSSL. It can do so at any level, defined by P1. $ ! $ ! P1 Qualifier(s) for DEASSIGN. $ ! Default: /PROCESS $ ! $ ! P2 If the value is "NOALIASES", no alias logical names are $ ! deassigned. $ $ status = %x10000001 ! Generic success $ $ ! In case there's a problem $ ON CONTROL_Y THEN GOTO bailout $ ON ERROR THEN GOTO bailout $ $ ! Find the architecture $ IF F$GETSYI("CPU") .LT. 128 $ THEN $ arch := VAX $ ELSE $ arch := F$EDIT(F$GETSYI("ARCH_NAME"),"UPCASE") $ IF arch .EQS. "" THEN GOTO unknown_arch $ ENDIF $ $ ! Abbrevs $ DEAS := DEASSIGN /NOLOG 'P1' $ sv := {- sprintf "%02d%02d", split m|\.|, $config{shlib_version_number} -} $ pz := {- $config{pointer_size} -} $ $ DEAS OSSL$DATAROOT $ DEAS OSSL$INSTROOT $ DEAS OSSL$INCLUDE $ DEAS OSSL$LIB $ DEAS OSSL$SHARE $ DEAS OSSL$ENGINES'sv' $ DEAS OSSL$EXE $ DEAS OSSL$LIBCRYPTO'pz' $ DEAS OSSL$LIBSSL'pz' ${- output_off() if $config{no_shared}; "" -} $ DEAS OSSL$LIBCRYPTO'sv'_SHR'pz' $ DEAS OSSL$LIBSSL'sv'_SHR'pz' ${- output_on() if $config{no_shared}; "" -} $ DEAS OPENSSL $ $ IF P2 .NES. "NOALIASES" $ THEN $ DEAS OSSL$ENGINES ${- output_off() if $config{no_shared}; "" -} $ DEAS OSSL$LIBCRYPTO_SHR'pz' $ DEAS OSSL$LIBSSL_SHR'pz' ${- output_on() if $config{no_shared}; "" -} $ ENDIF $ $ EXIT 'status' openssl-1.1.1f/VMS/openssl_startup.com.in000066400000000000000000000106631364063235100203730ustar00rootroot00000000000000$ ! OpenSSL startup script $ ! $ ! This script defines the logical names used by the installation $ ! of OpenSSL. It can provide those logical names at any level, $ ! defined by P1. $ ! $ ! The logical names created are: $ ! $ ! OSSL$INSTROOT Installation root $ ! OSSL$DATAROOT Data root (common directory $ ! for certs etc) $ ! OSSL$INCLUDE Include directory root $ ! OSSL$LIB Where the static library files $ ! are located $ ! OSSL$SHARE Where the shareable image files $ ! are located $ ! OSSL$EXE Where the executables are located $ ! OSSL$ENGINESnnn Where the shareable images are located $ ! OSSL$LIBCRYPTO The static crypto library $ ! OSSL$LIBSSL The static ssl library $ ! OSSL$LIBCRYPTOnnn_SHR The shareable crypto image $ ! OSSL$LIBSSLnnn_SHR The shareable ssl image $ ! OPENSSL is OSSL$INCLUDE:[OPENSSL] $ ! $ ! In all these, nnn is the OpenSSL version number. This allows $ ! several OpenSSL versions to be installed simultaneously, which $ ! matters for applications that are linked to the shareable images $ ! or that depend on engines. $ ! $ ! In addition, unless P2 is "NOALIASES", these logical names are $ ! created: $ ! $ ! OSSL$ENGINES Alias for OSSL$ENGINESnnn $ ! OSSL$LIBCRYPTO_SHR Alias for OSSL$LIBCRYPTOnnn_SHR $ ! OSSL$LIBSSL_SHR Alias for OSSL$LIBSSLnnn_SHR $ ! $ ! P1 Qualifier(s) for DEFINE. "/SYSTEM" would be typical when $ ! calling this script from SYS$STARTUP:SYSTARTUP_VMS.COM, $ ! while "/PROCESS" would be typical for a personal install. $ ! Default: /PROCESS $ ! $ ! P2 If the value is "NOALIASES", no alias logical names are $ ! created. $ $ status = %x10000001 ! Generic success $ $ ! In case there's a problem $ ON CONTROL_Y THEN GOTO bailout $ ON ERROR THEN GOTO bailout $ $ ! Find the architecture $ IF F$GETSYI("CPU") .LT. 128 $ THEN $ arch := VAX $ ELSE $ arch = F$EDIT(F$GETSYI("ARCH_NAME"),"UPCASE") $ IF arch .EQS. "" THEN GOTO unknown_arch $ ENDIF $ $ ! Generated information $ INSTALLTOP := {- $config{INSTALLTOP} -} $ OPENSSLDIR := {- $config{OPENSSLDIR} -} $ $ ! Make sure that INSTALLTOP and OPENSSLDIR become something one $ ! can build concealed logical names on $ INSTALLTOP_ = F$PARSE("A.;",INSTALLTOP,,,"NO_CONCEAL") - - ".][000000" - "[000000." - "][" - "]A.;" + "." $ OPENSSLDIR_ = F$PARSE("A.;",OPENSSLDIR,,,"NO_CONCEAL") - - ".][000000" - "[000000." - "][" - "]A.;" + "." $ $ DEFINE /TRANSLATION=CONCEALED /NOLOG WRK_INSTALLTOP 'INSTALLTOP_'] $ DEFINE /TRANSLATION=CONCEALED /NOLOG WRK_OPENSSLDIR 'OPENSSLDIR_'] $ $ ! Check that things are in place, and specifically, the stuff $ ! belonging to this architecture $ IF F$SEARCH("WRK_INSTALLTOP:[000000]INCLUDE.DIR;1") .EQS. "" - .OR. F$SEARCH("WRK_INSTALLTOP:[000000]LIB.DIR;1") .EQS. "" - .OR. F$SEARCH("WRK_INSTALLTOP:[000000]EXE.DIR;1") .EQS. "" - .OR. F$SEARCH("WRK_INSTALLTOP:[LIB]''arch'.DIR;1") .EQS. "" - .OR. F$SEARCH("WRK_INSTALLTOP:[EXE]''arch'.DIR;1") .EQS. "" - .OR. F$SEARCH("WRK_OPENSSLDIR:[000000]openssl.cnf") .EQS. "" $ THEN $ WRITE SYS$ERROR "''INSTALLTOP' doesn't look like an OpenSSL installation for ''arch'" $ status = %x00018292 ! RMS$_FNF, file not found $ GOTO bailout $ ENDIF $ $ ! Abbrevs $ DEFT := DEFINE /TRANSLATION=CONCEALED /NOLOG 'P1' $ DEF := DEFINE /NOLOG 'P1' $ sv := {- sprintf "%02d%02d", split m|\.|, $config{shlib_version_number} -} $ pz := {- $config{pointer_size} -} $ $ DEFT OSSL$DATAROOT 'OPENSSLDIR_'] $ DEFT OSSL$INSTROOT 'INSTALLTOP_'] $ DEFT OSSL$INCLUDE 'INSTALLTOP_'INCLUDE.] $ DEF OSSL$LIB OSSL$INSTROOT:[LIB.'arch'] $ DEF OSSL$SHARE OSSL$INSTROOT:[LIB.'arch'] $ DEF OSSL$ENGINES'sv''pz' OSSL$INSTROOT:[ENGINES'sv''pz'.'arch'] $ DEF OSSL$EXE OSSL$INSTROOT:[EXE.'arch'],- OSSL$INSTROOT:[EXE] $ DEF OSSL$LIBCRYPTO'pz' OSSL$LIB:OSSL$LIBCRYPTO'pz'.OLB $ DEF OSSL$LIBSSL'pz' OSSL$LIB:OSSL$LIBSSL'pz'.OLB ${- output_off() if $config{no_shared}; "" -} $ DEF OSSL$LIBCRYPTO'sv'_SHR'pz' OSSL$SHARE:OSSL$LIBCRYPTO'sv'_SHR'pz'.EXE $ DEF OSSL$LIBSSL'sv'_SHR'pz' OSSL$SHARE:OSSL$LIBSSL'sv'_SHR'pz'.EXE ${- output_on() if $config{no_shared}; "" -} $ DEF OPENSSL OSSL$INCLUDE:[OPENSSL] $ $ IF P2 .NES. "NOALIASES" $ THEN $ DEF OSSL$ENGINES'pz' OSSL$ENGINES'sv''pz' ${- output_off() if $config{no_shared}; "" -} $ DEF OSSL$LIBCRYPTO_SHR'pz' OSSL$LIBCRYPTO'sv'_SHR'pz' $ DEF OSSL$LIBSSL_SHR'pz' OSSL$LIBSSL'sv'_SHR'pz' ${- output_on() if $config{no_shared}; "" -} $ ENDIF $ $ bailout: $ DEASSIGN WRK_INSTALLTOP $ DEASSIGN WRK_OPENSSLDIR $ $ EXIT 'status' openssl-1.1.1f/VMS/openssl_utils.com.in000066400000000000000000000005071364063235100200250ustar00rootroot00000000000000$ ! OpenSSL utilities $ ! $ $ v := {- sprintf "%02d%02d", split(/\./, $config{version}) -} $ $ OPENSSL'v' :== $OSSL$EXE:OPENSSL'v' $ OPENSSL :== $OSSL$EXE:OPENSSL'v' $ $ IF F$TYPE(PERL) .EQS. "STRING" $ THEN $ C_REHASH :== 'PERL' OSSL$EXE:c_rehash.pl $ ELSE $ WRITE SYS$ERROR "NOTE: no perl => no C_REHASH" $ ENDIF openssl-1.1.1f/VMS/test-includes.com000066400000000000000000000013601364063235100172760ustar00rootroot00000000000000$! Quick script to check how well including individual header files works $! on VMS, even when the VMS macro isn't defined. $ $ sav_def = f$env("DEFAULT") $ here = f$parse("A.;0",f$ENV("PROCEDURE")) - "A.;0" $ set default 'here' $ set default [-.include.openssl] $ define openssl 'f$env("DEFAULT")' $ set default [--] $ $ loop: $ f = f$search("openssl:*.h") $ if f .eqs. "" then goto loop_end $ write sys$output "Checking ",f $ open/write foo foo.c $ write foo "#undef VMS" $ write foo "#include " $ write foo "#include " $ write foo "main()" $ write foo "{printf(""foo\n"");}" $ close foo $ cc/STANDARD=ANSI89/NOLIST/PREFIX=ALL foo.c $ delete foo.c; $ goto loop $ loop_end: $ set default 'save_def' $ exit openssl-1.1.1f/VMS/translatesyms.pl000066400000000000000000000036421364063235100172660ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # This script will translate any SYMBOL_VECTOR item that has a translation # in CXX$DEMANGLER_DB. The latter is generated by and CC/DECC command that # uses the qualifier /REPOSITORY with the build directory as value. When # /NAMES=SHORTENED has been used, this file will hold the translations from # the original symbols to the shortened variants. # # CXX$DEMAGLER_DB. is an ISAM file, but with the magic of RMS, it can be # read as a text file, with each record as one line. # # The lines will have the following syntax for any symbol found that's longer # than 31 characters: # # LONG_symbol_34567890123{cksum}$LONG_symbol_34567890123_more_than_31_chars # # $ is present at the end of the shortened symbol name, and is preceded by a # 7 character checksum. The $ makes it easy to separate the shortened name # from the original one. use strict; use warnings; usage() if scalar @ARGV < 1; my %translations = (); open DEMANGLER_DATA, $ARGV[0] or die "Couldn't open $ARGV[0]: $!\n"; while() { s|\R$||; (my $translated, my $original) = split /\$/; $translations{$original} = $translated.'$'; } close DEMANGLER_DATA; $| = 1; # Autoflush while() { s@ ((?:[A-Za-z0-9_]+)\/)?([A-Za-z0-9_]+)=(PROCEDURE|DATA) @ if (defined($translations{$2})) { my $trans = $translations{$2}; my $trans_uc = uc $trans; if (defined($1) && $trans ne $trans_uc) { "$trans_uc/$trans=$3" } else { "$trans=$3" } } else { $& } @gxe; print $_; } openssl-1.1.1f/apps/000077500000000000000000000000001364063235100143115ustar00rootroot00000000000000openssl-1.1.1f/apps/CA.pl.in000066400000000000000000000166311364063235100155450ustar00rootroot00000000000000#!{- $config{HASHBANGPERL} -} # Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # Wrapper around the ca to make it easier to use # # {- join("\n# ", @autowarntext) -} use strict; use warnings; my $openssl = "openssl"; if(defined $ENV{'OPENSSL'}) { $openssl = $ENV{'OPENSSL'}; } else { $ENV{'OPENSSL'} = $openssl; } my $verbose = 1; my $OPENSSL_CONFIG = $ENV{"OPENSSL_CONFIG"} || ""; my $DAYS = "-days 365"; my $CADAYS = "-days 1095"; # 3 years my $REQ = "$openssl req $OPENSSL_CONFIG"; my $CA = "$openssl ca $OPENSSL_CONFIG"; my $VERIFY = "$openssl verify"; my $X509 = "$openssl x509"; my $PKCS12 = "$openssl pkcs12"; # default openssl.cnf file has setup as per the following my $CATOP = "./demoCA"; my $CAKEY = "cakey.pem"; my $CAREQ = "careq.pem"; my $CACERT = "cacert.pem"; my $CACRL = "crl.pem"; my $DIRMODE = 0777; my $NEWKEY = "newkey.pem"; my $NEWREQ = "newreq.pem"; my $NEWCERT = "newcert.pem"; my $NEWP12 = "newcert.p12"; my $RET = 0; my $WHAT = shift @ARGV || ""; my @OPENSSL_CMDS = ("req", "ca", "pkcs12", "x509", "verify"); my %EXTRA = extra_args(\@ARGV, "-extra-"); my $FILE; sub extra_args { my ($args_ref, $arg_prefix) = @_; my %eargs = map { if ($_ < $#$args_ref) { my ($arg, $value) = splice(@$args_ref, $_, 2); $arg =~ s/$arg_prefix//; ($arg, $value); } else { (); } } reverse grep($$args_ref[$_] =~ /$arg_prefix/, 0..$#$args_ref); my %empty = map { ($_, "") } @OPENSSL_CMDS; return (%empty, %eargs); } # See if reason for a CRL entry is valid; exit if not. sub crl_reason_ok { my $r = shift; if ($r eq 'unspecified' || $r eq 'keyCompromise' || $r eq 'CACompromise' || $r eq 'affiliationChanged' || $r eq 'superseded' || $r eq 'cessationOfOperation' || $r eq 'certificateHold' || $r eq 'removeFromCRL') { return 1; } print STDERR "Invalid CRL reason; must be one of:\n"; print STDERR " unspecified, keyCompromise, CACompromise,\n"; print STDERR " affiliationChanged, superseded, cessationOfOperation\n"; print STDERR " certificateHold, removeFromCRL"; exit 1; } # Copy a PEM-format file; return like exit status (zero means ok) sub copy_pemfile { my ($infile, $outfile, $bound) = @_; my $found = 0; open IN, $infile || die "Cannot open $infile, $!"; open OUT, ">$outfile" || die "Cannot write to $outfile, $!"; while () { $found = 1 if /^-----BEGIN.*$bound/; print OUT $_ if $found; $found = 2, last if /^-----END.*$bound/; } close IN; close OUT; return $found == 2 ? 0 : 1; } # Wrapper around system; useful for debugging. Returns just the exit status sub run { my $cmd = shift; print "====\n$cmd\n" if $verbose; my $status = system($cmd); print "==> $status\n====\n" if $verbose; return $status >> 8; } if ( $WHAT =~ /^(-\?|-h|-help)$/ ) { print STDERR "usage: CA.pl -newcert | -newreq | -newreq-nodes | -xsign | -sign | -signCA | -signcert | -crl | -newca [-extra-cmd extra-params]\n"; print STDERR " CA.pl -pkcs12 [-extra-pkcs12 extra-params] [certname]\n"; print STDERR " CA.pl -verify [-extra-verify extra-params] certfile ...\n"; print STDERR " CA.pl -revoke [-extra-ca extra-params] certfile [reason]\n"; exit 0; } if ($WHAT eq '-newcert' ) { # create a certificate $RET = run("$REQ -new -x509 -keyout $NEWKEY -out $NEWCERT $DAYS $EXTRA{req}"); print "Cert is in $NEWCERT, private key is in $NEWKEY\n" if $RET == 0; } elsif ($WHAT eq '-precert' ) { # create a pre-certificate $RET = run("$REQ -x509 -precert -keyout $NEWKEY -out $NEWCERT $DAYS"); print "Pre-cert is in $NEWCERT, private key is in $NEWKEY\n" if $RET == 0; } elsif ($WHAT =~ /^\-newreq(\-nodes)?$/ ) { # create a certificate request $RET = run("$REQ -new $1 -keyout $NEWKEY -out $NEWREQ $DAYS $EXTRA{req}"); print "Request is in $NEWREQ, private key is in $NEWKEY\n" if $RET == 0; } elsif ($WHAT eq '-newca' ) { # create the directory hierarchy mkdir ${CATOP}, $DIRMODE; mkdir "${CATOP}/certs", $DIRMODE; mkdir "${CATOP}/crl", $DIRMODE ; mkdir "${CATOP}/newcerts", $DIRMODE; mkdir "${CATOP}/private", $DIRMODE; open OUT, ">${CATOP}/index.txt"; close OUT; open OUT, ">${CATOP}/crlnumber"; print OUT "01\n"; close OUT; # ask user for existing CA certificate print "CA certificate filename (or enter to create)\n"; $FILE = "" unless defined($FILE = ); $FILE =~ s{\R$}{}; if ($FILE ne "") { copy_pemfile($FILE,"${CATOP}/private/$CAKEY", "PRIVATE"); copy_pemfile($FILE,"${CATOP}/$CACERT", "CERTIFICATE"); } else { print "Making CA certificate ...\n"; $RET = run("$REQ -new -keyout" . " ${CATOP}/private/$CAKEY" . " -out ${CATOP}/$CAREQ $EXTRA{req}"); $RET = run("$CA -create_serial" . " -out ${CATOP}/$CACERT $CADAYS -batch" . " -keyfile ${CATOP}/private/$CAKEY -selfsign" . " -extensions v3_ca $EXTRA{ca}" . " -infiles ${CATOP}/$CAREQ") if $RET == 0; print "CA certificate is in ${CATOP}/$CACERT\n" if $RET == 0; } } elsif ($WHAT eq '-pkcs12' ) { my $cname = $ARGV[0]; $cname = "My Certificate" unless defined $cname; $RET = run("$PKCS12 -in $NEWCERT -inkey $NEWKEY" . " -certfile ${CATOP}/$CACERT" . " -out $NEWP12" . " -export -name \"$cname\" $EXTRA{pkcs12}"); print "PKCS #12 file is in $NEWP12\n" if $RET == 0; } elsif ($WHAT eq '-xsign' ) { $RET = run("$CA -policy policy_anything $EXTRA{ca} -infiles $NEWREQ"); } elsif ($WHAT eq '-sign' ) { $RET = run("$CA -policy policy_anything -out $NEWCERT $EXTRA{ca} -infiles $NEWREQ"); print "Signed certificate is in $NEWCERT\n" if $RET == 0; } elsif ($WHAT eq '-signCA' ) { $RET = run("$CA -policy policy_anything -out $NEWCERT" . " -extensions v3_ca $EXTRA{ca} -infiles $NEWREQ"); print "Signed CA certificate is in $NEWCERT\n" if $RET == 0; } elsif ($WHAT eq '-signcert' ) { $RET = run("$X509 -x509toreq -in $NEWREQ -signkey $NEWREQ" . " -out tmp.pem $EXTRA{x509}"); $RET = run("$CA -policy policy_anything -out $NEWCERT" . "$EXTRA{ca} -infiles tmp.pem") if $RET == 0; print "Signed certificate is in $NEWCERT\n" if $RET == 0; } elsif ($WHAT eq '-verify' ) { my @files = @ARGV ? @ARGV : ( $NEWCERT ); my $file; foreach $file (@files) { my $status = run("$VERIFY \"-CAfile\" ${CATOP}/$CACERT $file $EXTRA{verify}"); $RET = $status if $status != 0; } } elsif ($WHAT eq '-crl' ) { $RET = run("$CA -gencrl -out ${CATOP}/crl/$CACRL $EXTRA{ca}"); print "Generated CRL is in ${CATOP}/crl/$CACRL\n" if $RET == 0; } elsif ($WHAT eq '-revoke' ) { my $cname = $ARGV[0]; if (!defined $cname) { print "Certificate filename is required; reason optional.\n"; exit 1; } my $reason = $ARGV[1]; $reason = " -crl_reason $reason" if defined $reason && crl_reason_ok($reason); $RET = run("$CA -revoke \"$cname\"" . $reason . $EXTRA{ca}); } else { print STDERR "Unknown arg \"$WHAT\"\n"; print STDERR "Use -help for help.\n"; exit 1; } exit $RET; openssl-1.1.1f/apps/app_rand.c000066400000000000000000000042651364063235100162500ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "apps.h" #include #include #include #include static char *save_rand_file; void app_RAND_load_conf(CONF *c, const char *section) { const char *randfile = NCONF_get_string(c, section, "RANDFILE"); if (randfile == NULL) { ERR_clear_error(); return; } if (RAND_load_file(randfile, -1) < 0) { BIO_printf(bio_err, "Can't load %s into RNG\n", randfile); ERR_print_errors(bio_err); } if (save_rand_file == NULL) save_rand_file = OPENSSL_strdup(randfile); } static int loadfiles(char *name) { char *p; int last, ret = 1; for ( ; ; ) { last = 0; for (p = name; *p != '\0' && *p != LIST_SEPARATOR_CHAR; p++) continue; if (*p == '\0') last = 1; *p = '\0'; if (RAND_load_file(name, -1) < 0) { BIO_printf(bio_err, "Can't load %s into RNG\n", name); ERR_print_errors(bio_err); ret = 0; } if (last) break; name = p + 1; if (*name == '\0') break; } return ret; } void app_RAND_write(void) { if (save_rand_file == NULL) return; if (RAND_write_file(save_rand_file) == -1) { BIO_printf(bio_err, "Cannot write random bytes:\n"); ERR_print_errors(bio_err); } OPENSSL_free(save_rand_file); save_rand_file = NULL; } /* * See comments in opt_verify for explanation of this. */ enum r_range { OPT_R_ENUM }; int opt_rand(int opt) { switch ((enum r_range)opt) { case OPT_R__FIRST: case OPT_R__LAST: break; case OPT_R_RAND: return loadfiles(opt_arg()); break; case OPT_R_WRITERAND: OPENSSL_free(save_rand_file); save_rand_file = OPENSSL_strdup(opt_arg()); break; } return 1; } openssl-1.1.1f/apps/apps.c000066400000000000000000002215531364063235100154300ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #if !defined(_POSIX_C_SOURCE) && defined(OPENSSL_SYS_VMS) /* * On VMS, you need to define this to get the declaration of fileno(). The * value 2 is to make sure no function defined in POSIX-2 is left undefined. */ # define _POSIX_C_SOURCE 2 #endif #include #include #include #include #ifndef OPENSSL_NO_POSIX_IO # include # include #endif #include #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_ENGINE # include #endif #ifndef OPENSSL_NO_RSA # include #endif #include #include #include "apps.h" #ifdef _WIN32 static int WIN32_rename(const char *from, const char *to); # define rename(from,to) WIN32_rename((from),(to)) #endif #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS) # include #endif #if defined(OPENSSL_SYS_MSDOS) && !defined(_WIN32) # define _kbhit kbhit #endif typedef struct { const char *name; unsigned long flag; unsigned long mask; } NAME_EX_TBL; static UI_METHOD *ui_method = NULL; static const UI_METHOD *ui_fallback_method = NULL; static int set_table_opts(unsigned long *flags, const char *arg, const NAME_EX_TBL * in_tbl); static int set_multi_opts(unsigned long *flags, const char *arg, const NAME_EX_TBL * in_tbl); int app_init(long mesgwin); int chopup_args(ARGS *arg, char *buf) { int quoted; char c = '\0', *p = NULL; arg->argc = 0; if (arg->size == 0) { arg->size = 20; arg->argv = app_malloc(sizeof(*arg->argv) * arg->size, "argv space"); } for (p = buf;;) { /* Skip whitespace. */ while (*p && isspace(_UC(*p))) p++; if (!*p) break; /* The start of something good :-) */ if (arg->argc >= arg->size) { char **tmp; arg->size += 20; tmp = OPENSSL_realloc(arg->argv, sizeof(*arg->argv) * arg->size); if (tmp == NULL) return 0; arg->argv = tmp; } quoted = *p == '\'' || *p == '"'; if (quoted) c = *p++; arg->argv[arg->argc++] = p; /* now look for the end of this */ if (quoted) { while (*p && *p != c) p++; *p++ = '\0'; } else { while (*p && !isspace(_UC(*p))) p++; if (*p) *p++ = '\0'; } } arg->argv[arg->argc] = NULL; return 1; } #ifndef APP_INIT int app_init(long mesgwin) { return 1; } #endif int ctx_set_verify_locations(SSL_CTX *ctx, const char *CAfile, const char *CApath, int noCAfile, int noCApath) { if (CAfile == NULL && CApath == NULL) { if (!noCAfile && SSL_CTX_set_default_verify_file(ctx) <= 0) return 0; if (!noCApath && SSL_CTX_set_default_verify_dir(ctx) <= 0) return 0; return 1; } return SSL_CTX_load_verify_locations(ctx, CAfile, CApath); } #ifndef OPENSSL_NO_CT int ctx_set_ctlog_list_file(SSL_CTX *ctx, const char *path) { if (path == NULL) return SSL_CTX_set_default_ctlog_list_file(ctx); return SSL_CTX_set_ctlog_list_file(ctx, path); } #endif static unsigned long nmflag = 0; static char nmflag_set = 0; int set_nameopt(const char *arg) { int ret = set_name_ex(&nmflag, arg); if (ret) nmflag_set = 1; return ret; } unsigned long get_nameopt(void) { return (nmflag_set) ? nmflag : XN_FLAG_ONELINE; } int dump_cert_text(BIO *out, X509 *x) { print_name(out, "subject=", X509_get_subject_name(x), get_nameopt()); BIO_puts(out, "\n"); print_name(out, "issuer=", X509_get_issuer_name(x), get_nameopt()); BIO_puts(out, "\n"); return 0; } static int ui_open(UI *ui) { int (*opener)(UI *ui) = UI_method_get_opener(ui_fallback_method); if (opener) return opener(ui); return 1; } static int ui_read(UI *ui, UI_STRING *uis) { int (*reader)(UI *ui, UI_STRING *uis) = NULL; if (UI_get_input_flags(uis) & UI_INPUT_FLAG_DEFAULT_PWD && UI_get0_user_data(ui)) { switch (UI_get_string_type(uis)) { case UIT_PROMPT: case UIT_VERIFY: { const char *password = ((PW_CB_DATA *)UI_get0_user_data(ui))->password; if (password && password[0] != '\0') { UI_set_result(ui, uis, password); return 1; } } break; case UIT_NONE: case UIT_BOOLEAN: case UIT_INFO: case UIT_ERROR: break; } } reader = UI_method_get_reader(ui_fallback_method); if (reader) return reader(ui, uis); return 1; } static int ui_write(UI *ui, UI_STRING *uis) { int (*writer)(UI *ui, UI_STRING *uis) = NULL; if (UI_get_input_flags(uis) & UI_INPUT_FLAG_DEFAULT_PWD && UI_get0_user_data(ui)) { switch (UI_get_string_type(uis)) { case UIT_PROMPT: case UIT_VERIFY: { const char *password = ((PW_CB_DATA *)UI_get0_user_data(ui))->password; if (password && password[0] != '\0') return 1; } break; case UIT_NONE: case UIT_BOOLEAN: case UIT_INFO: case UIT_ERROR: break; } } writer = UI_method_get_writer(ui_fallback_method); if (writer) return writer(ui, uis); return 1; } static int ui_close(UI *ui) { int (*closer)(UI *ui) = UI_method_get_closer(ui_fallback_method); if (closer) return closer(ui); return 1; } int setup_ui_method(void) { ui_fallback_method = UI_null(); #ifndef OPENSSL_NO_UI_CONSOLE ui_fallback_method = UI_OpenSSL(); #endif ui_method = UI_create_method("OpenSSL application user interface"); UI_method_set_opener(ui_method, ui_open); UI_method_set_reader(ui_method, ui_read); UI_method_set_writer(ui_method, ui_write); UI_method_set_closer(ui_method, ui_close); return 0; } void destroy_ui_method(void) { if (ui_method) { UI_destroy_method(ui_method); ui_method = NULL; } } const UI_METHOD *get_ui_method(void) { return ui_method; } int password_callback(char *buf, int bufsiz, int verify, PW_CB_DATA *cb_tmp) { int res = 0; UI *ui = NULL; PW_CB_DATA *cb_data = (PW_CB_DATA *)cb_tmp; ui = UI_new_method(ui_method); if (ui) { int ok = 0; char *buff = NULL; int ui_flags = 0; const char *prompt_info = NULL; char *prompt; if (cb_data != NULL && cb_data->prompt_info != NULL) prompt_info = cb_data->prompt_info; prompt = UI_construct_prompt(ui, "pass phrase", prompt_info); if (!prompt) { BIO_printf(bio_err, "Out of memory\n"); UI_free(ui); return 0; } ui_flags |= UI_INPUT_FLAG_DEFAULT_PWD; UI_ctrl(ui, UI_CTRL_PRINT_ERRORS, 1, 0, 0); /* We know that there is no previous user data to return to us */ (void)UI_add_user_data(ui, cb_data); ok = UI_add_input_string(ui, prompt, ui_flags, buf, PW_MIN_LENGTH, bufsiz - 1); if (ok >= 0 && verify) { buff = app_malloc(bufsiz, "password buffer"); ok = UI_add_verify_string(ui, prompt, ui_flags, buff, PW_MIN_LENGTH, bufsiz - 1, buf); } if (ok >= 0) do { ok = UI_process(ui); } while (ok < 0 && UI_ctrl(ui, UI_CTRL_IS_REDOABLE, 0, 0, 0)); OPENSSL_clear_free(buff, (unsigned int)bufsiz); if (ok >= 0) res = strlen(buf); if (ok == -1) { BIO_printf(bio_err, "User interface error\n"); ERR_print_errors(bio_err); OPENSSL_cleanse(buf, (unsigned int)bufsiz); res = 0; } if (ok == -2) { BIO_printf(bio_err, "aborted!\n"); OPENSSL_cleanse(buf, (unsigned int)bufsiz); res = 0; } UI_free(ui); OPENSSL_free(prompt); } return res; } static char *app_get_pass(const char *arg, int keepbio); int app_passwd(const char *arg1, const char *arg2, char **pass1, char **pass2) { int same; if (arg2 == NULL || arg1 == NULL || strcmp(arg1, arg2)) same = 0; else same = 1; if (arg1 != NULL) { *pass1 = app_get_pass(arg1, same); if (*pass1 == NULL) return 0; } else if (pass1 != NULL) { *pass1 = NULL; } if (arg2 != NULL) { *pass2 = app_get_pass(arg2, same ? 2 : 0); if (*pass2 == NULL) return 0; } else if (pass2 != NULL) { *pass2 = NULL; } return 1; } static char *app_get_pass(const char *arg, int keepbio) { char *tmp, tpass[APP_PASS_LEN]; static BIO *pwdbio = NULL; int i; if (strncmp(arg, "pass:", 5) == 0) return OPENSSL_strdup(arg + 5); if (strncmp(arg, "env:", 4) == 0) { tmp = getenv(arg + 4); if (tmp == NULL) { BIO_printf(bio_err, "Can't read environment variable %s\n", arg + 4); return NULL; } return OPENSSL_strdup(tmp); } if (!keepbio || pwdbio == NULL) { if (strncmp(arg, "file:", 5) == 0) { pwdbio = BIO_new_file(arg + 5, "r"); if (pwdbio == NULL) { BIO_printf(bio_err, "Can't open file %s\n", arg + 5); return NULL; } #if !defined(_WIN32) /* * Under _WIN32, which covers even Win64 and CE, file * descriptors referenced by BIO_s_fd are not inherited * by child process and therefore below is not an option. * It could have been an option if bss_fd.c was operating * on real Windows descriptors, such as those obtained * with CreateFile. */ } else if (strncmp(arg, "fd:", 3) == 0) { BIO *btmp; i = atoi(arg + 3); if (i >= 0) pwdbio = BIO_new_fd(i, BIO_NOCLOSE); if ((i < 0) || !pwdbio) { BIO_printf(bio_err, "Can't access file descriptor %s\n", arg + 3); return NULL; } /* * Can't do BIO_gets on an fd BIO so add a buffering BIO */ btmp = BIO_new(BIO_f_buffer()); pwdbio = BIO_push(btmp, pwdbio); #endif } else if (strcmp(arg, "stdin") == 0) { pwdbio = dup_bio_in(FORMAT_TEXT); if (!pwdbio) { BIO_printf(bio_err, "Can't open BIO for stdin\n"); return NULL; } } else { BIO_printf(bio_err, "Invalid password argument \"%s\"\n", arg); return NULL; } } i = BIO_gets(pwdbio, tpass, APP_PASS_LEN); if (keepbio != 1) { BIO_free_all(pwdbio); pwdbio = NULL; } if (i <= 0) { BIO_printf(bio_err, "Error reading password from BIO\n"); return NULL; } tmp = strchr(tpass, '\n'); if (tmp != NULL) *tmp = 0; return OPENSSL_strdup(tpass); } CONF *app_load_config_bio(BIO *in, const char *filename) { long errorline = -1; CONF *conf; int i; conf = NCONF_new(NULL); i = NCONF_load_bio(conf, in, &errorline); if (i > 0) return conf; if (errorline <= 0) { BIO_printf(bio_err, "%s: Can't load ", opt_getprog()); } else { BIO_printf(bio_err, "%s: Error on line %ld of ", opt_getprog(), errorline); } if (filename != NULL) BIO_printf(bio_err, "config file \"%s\"\n", filename); else BIO_printf(bio_err, "config input"); NCONF_free(conf); return NULL; } CONF *app_load_config(const char *filename) { BIO *in; CONF *conf; in = bio_open_default(filename, 'r', FORMAT_TEXT); if (in == NULL) return NULL; conf = app_load_config_bio(in, filename); BIO_free(in); return conf; } CONF *app_load_config_quiet(const char *filename) { BIO *in; CONF *conf; in = bio_open_default_quiet(filename, 'r', FORMAT_TEXT); if (in == NULL) return NULL; conf = app_load_config_bio(in, filename); BIO_free(in); return conf; } int app_load_modules(const CONF *config) { CONF *to_free = NULL; if (config == NULL) config = to_free = app_load_config_quiet(default_config_file); if (config == NULL) return 1; if (CONF_modules_load(config, NULL, 0) <= 0) { BIO_printf(bio_err, "Error configuring OpenSSL modules\n"); ERR_print_errors(bio_err); NCONF_free(to_free); return 0; } NCONF_free(to_free); return 1; } int add_oid_section(CONF *conf) { char *p; STACK_OF(CONF_VALUE) *sktmp; CONF_VALUE *cnf; int i; if ((p = NCONF_get_string(conf, NULL, "oid_section")) == NULL) { ERR_clear_error(); return 1; } if ((sktmp = NCONF_get_section(conf, p)) == NULL) { BIO_printf(bio_err, "problem loading oid section %s\n", p); return 0; } for (i = 0; i < sk_CONF_VALUE_num(sktmp); i++) { cnf = sk_CONF_VALUE_value(sktmp, i); if (OBJ_create(cnf->value, cnf->name, cnf->name) == NID_undef) { BIO_printf(bio_err, "problem creating object %s=%s\n", cnf->name, cnf->value); return 0; } } return 1; } static int load_pkcs12(BIO *in, const char *desc, pem_password_cb *pem_cb, void *cb_data, EVP_PKEY **pkey, X509 **cert, STACK_OF(X509) **ca) { const char *pass; char tpass[PEM_BUFSIZE]; int len, ret = 0; PKCS12 *p12; p12 = d2i_PKCS12_bio(in, NULL); if (p12 == NULL) { BIO_printf(bio_err, "Error loading PKCS12 file for %s\n", desc); goto die; } /* See if an empty password will do */ if (PKCS12_verify_mac(p12, "", 0) || PKCS12_verify_mac(p12, NULL, 0)) { pass = ""; } else { if (!pem_cb) pem_cb = (pem_password_cb *)password_callback; len = pem_cb(tpass, PEM_BUFSIZE, 0, cb_data); if (len < 0) { BIO_printf(bio_err, "Passphrase callback error for %s\n", desc); goto die; } if (len < PEM_BUFSIZE) tpass[len] = 0; if (!PKCS12_verify_mac(p12, tpass, len)) { BIO_printf(bio_err, "Mac verify error (wrong password?) in PKCS12 file for %s\n", desc); goto die; } pass = tpass; } ret = PKCS12_parse(p12, pass, pkey, cert, ca); die: PKCS12_free(p12); return ret; } #if !defined(OPENSSL_NO_OCSP) && !defined(OPENSSL_NO_SOCK) static int load_cert_crl_http(const char *url, X509 **pcert, X509_CRL **pcrl) { char *host = NULL, *port = NULL, *path = NULL; BIO *bio = NULL; OCSP_REQ_CTX *rctx = NULL; int use_ssl, rv = 0; if (!OCSP_parse_url(url, &host, &port, &path, &use_ssl)) goto err; if (use_ssl) { BIO_puts(bio_err, "https not supported\n"); goto err; } bio = BIO_new_connect(host); if (!bio || !BIO_set_conn_port(bio, port)) goto err; rctx = OCSP_REQ_CTX_new(bio, 1024); if (rctx == NULL) goto err; if (!OCSP_REQ_CTX_http(rctx, "GET", path)) goto err; if (!OCSP_REQ_CTX_add1_header(rctx, "Host", host)) goto err; if (pcert) { do { rv = X509_http_nbio(rctx, pcert); } while (rv == -1); } else { do { rv = X509_CRL_http_nbio(rctx, pcrl); } while (rv == -1); } err: OPENSSL_free(host); OPENSSL_free(path); OPENSSL_free(port); BIO_free_all(bio); OCSP_REQ_CTX_free(rctx); if (rv != 1) { BIO_printf(bio_err, "Error loading %s from %s\n", pcert ? "certificate" : "CRL", url); ERR_print_errors(bio_err); } return rv; } #endif X509 *load_cert(const char *file, int format, const char *cert_descrip) { X509 *x = NULL; BIO *cert; if (format == FORMAT_HTTP) { #if !defined(OPENSSL_NO_OCSP) && !defined(OPENSSL_NO_SOCK) load_cert_crl_http(file, &x, NULL); #endif return x; } if (file == NULL) { unbuffer(stdin); cert = dup_bio_in(format); } else { cert = bio_open_default(file, 'r', format); } if (cert == NULL) goto end; if (format == FORMAT_ASN1) { x = d2i_X509_bio(cert, NULL); } else if (format == FORMAT_PEM) { x = PEM_read_bio_X509_AUX(cert, NULL, (pem_password_cb *)password_callback, NULL); } else if (format == FORMAT_PKCS12) { if (!load_pkcs12(cert, cert_descrip, NULL, NULL, NULL, &x, NULL)) goto end; } else { BIO_printf(bio_err, "bad input format specified for %s\n", cert_descrip); goto end; } end: if (x == NULL) { BIO_printf(bio_err, "unable to load certificate\n"); ERR_print_errors(bio_err); } BIO_free(cert); return x; } X509_CRL *load_crl(const char *infile, int format) { X509_CRL *x = NULL; BIO *in = NULL; if (format == FORMAT_HTTP) { #if !defined(OPENSSL_NO_OCSP) && !defined(OPENSSL_NO_SOCK) load_cert_crl_http(infile, NULL, &x); #endif return x; } in = bio_open_default(infile, 'r', format); if (in == NULL) goto end; if (format == FORMAT_ASN1) { x = d2i_X509_CRL_bio(in, NULL); } else if (format == FORMAT_PEM) { x = PEM_read_bio_X509_CRL(in, NULL, NULL, NULL); } else { BIO_printf(bio_err, "bad input format specified for input crl\n"); goto end; } if (x == NULL) { BIO_printf(bio_err, "unable to load CRL\n"); ERR_print_errors(bio_err); goto end; } end: BIO_free(in); return x; } EVP_PKEY *load_key(const char *file, int format, int maybe_stdin, const char *pass, ENGINE *e, const char *key_descrip) { BIO *key = NULL; EVP_PKEY *pkey = NULL; PW_CB_DATA cb_data; cb_data.password = pass; cb_data.prompt_info = file; if (file == NULL && (!maybe_stdin || format == FORMAT_ENGINE)) { BIO_printf(bio_err, "no keyfile specified\n"); goto end; } if (format == FORMAT_ENGINE) { if (e == NULL) { BIO_printf(bio_err, "no engine specified\n"); } else { #ifndef OPENSSL_NO_ENGINE if (ENGINE_init(e)) { pkey = ENGINE_load_private_key(e, file, ui_method, &cb_data); ENGINE_finish(e); } if (pkey == NULL) { BIO_printf(bio_err, "cannot load %s from engine\n", key_descrip); ERR_print_errors(bio_err); } #else BIO_printf(bio_err, "engines not supported\n"); #endif } goto end; } if (file == NULL && maybe_stdin) { unbuffer(stdin); key = dup_bio_in(format); } else { key = bio_open_default(file, 'r', format); } if (key == NULL) goto end; if (format == FORMAT_ASN1) { pkey = d2i_PrivateKey_bio(key, NULL); } else if (format == FORMAT_PEM) { pkey = PEM_read_bio_PrivateKey(key, NULL, (pem_password_cb *)password_callback, &cb_data); } else if (format == FORMAT_PKCS12) { if (!load_pkcs12(key, key_descrip, (pem_password_cb *)password_callback, &cb_data, &pkey, NULL, NULL)) goto end; #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) && !defined (OPENSSL_NO_RC4) } else if (format == FORMAT_MSBLOB) { pkey = b2i_PrivateKey_bio(key); } else if (format == FORMAT_PVK) { pkey = b2i_PVK_bio(key, (pem_password_cb *)password_callback, &cb_data); #endif } else { BIO_printf(bio_err, "bad input format specified for key file\n"); goto end; } end: BIO_free(key); if (pkey == NULL) { BIO_printf(bio_err, "unable to load %s\n", key_descrip); ERR_print_errors(bio_err); } return pkey; } EVP_PKEY *load_pubkey(const char *file, int format, int maybe_stdin, const char *pass, ENGINE *e, const char *key_descrip) { BIO *key = NULL; EVP_PKEY *pkey = NULL; PW_CB_DATA cb_data; cb_data.password = pass; cb_data.prompt_info = file; if (file == NULL && (!maybe_stdin || format == FORMAT_ENGINE)) { BIO_printf(bio_err, "no keyfile specified\n"); goto end; } if (format == FORMAT_ENGINE) { if (e == NULL) { BIO_printf(bio_err, "no engine specified\n"); } else { #ifndef OPENSSL_NO_ENGINE pkey = ENGINE_load_public_key(e, file, ui_method, &cb_data); if (pkey == NULL) { BIO_printf(bio_err, "cannot load %s from engine\n", key_descrip); ERR_print_errors(bio_err); } #else BIO_printf(bio_err, "engines not supported\n"); #endif } goto end; } if (file == NULL && maybe_stdin) { unbuffer(stdin); key = dup_bio_in(format); } else { key = bio_open_default(file, 'r', format); } if (key == NULL) goto end; if (format == FORMAT_ASN1) { pkey = d2i_PUBKEY_bio(key, NULL); } else if (format == FORMAT_ASN1RSA) { #ifndef OPENSSL_NO_RSA RSA *rsa; rsa = d2i_RSAPublicKey_bio(key, NULL); if (rsa) { pkey = EVP_PKEY_new(); if (pkey != NULL) EVP_PKEY_set1_RSA(pkey, rsa); RSA_free(rsa); } else #else BIO_printf(bio_err, "RSA keys not supported\n"); #endif pkey = NULL; } else if (format == FORMAT_PEMRSA) { #ifndef OPENSSL_NO_RSA RSA *rsa; rsa = PEM_read_bio_RSAPublicKey(key, NULL, (pem_password_cb *)password_callback, &cb_data); if (rsa != NULL) { pkey = EVP_PKEY_new(); if (pkey != NULL) EVP_PKEY_set1_RSA(pkey, rsa); RSA_free(rsa); } else #else BIO_printf(bio_err, "RSA keys not supported\n"); #endif pkey = NULL; } else if (format == FORMAT_PEM) { pkey = PEM_read_bio_PUBKEY(key, NULL, (pem_password_cb *)password_callback, &cb_data); #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) } else if (format == FORMAT_MSBLOB) { pkey = b2i_PublicKey_bio(key); #endif } end: BIO_free(key); if (pkey == NULL) BIO_printf(bio_err, "unable to load %s\n", key_descrip); return pkey; } static int load_certs_crls(const char *file, int format, const char *pass, const char *desc, STACK_OF(X509) **pcerts, STACK_OF(X509_CRL) **pcrls) { int i; BIO *bio; STACK_OF(X509_INFO) *xis = NULL; X509_INFO *xi; PW_CB_DATA cb_data; int rv = 0; cb_data.password = pass; cb_data.prompt_info = file; if (format != FORMAT_PEM) { BIO_printf(bio_err, "bad input format specified for %s\n", desc); return 0; } bio = bio_open_default(file, 'r', FORMAT_PEM); if (bio == NULL) return 0; xis = PEM_X509_INFO_read_bio(bio, NULL, (pem_password_cb *)password_callback, &cb_data); BIO_free(bio); if (pcerts != NULL && *pcerts == NULL) { *pcerts = sk_X509_new_null(); if (*pcerts == NULL) goto end; } if (pcrls != NULL && *pcrls == NULL) { *pcrls = sk_X509_CRL_new_null(); if (*pcrls == NULL) goto end; } for (i = 0; i < sk_X509_INFO_num(xis); i++) { xi = sk_X509_INFO_value(xis, i); if (xi->x509 != NULL && pcerts != NULL) { if (!sk_X509_push(*pcerts, xi->x509)) goto end; xi->x509 = NULL; } if (xi->crl != NULL && pcrls != NULL) { if (!sk_X509_CRL_push(*pcrls, xi->crl)) goto end; xi->crl = NULL; } } if (pcerts != NULL && sk_X509_num(*pcerts) > 0) rv = 1; if (pcrls != NULL && sk_X509_CRL_num(*pcrls) > 0) rv = 1; end: sk_X509_INFO_pop_free(xis, X509_INFO_free); if (rv == 0) { if (pcerts != NULL) { sk_X509_pop_free(*pcerts, X509_free); *pcerts = NULL; } if (pcrls != NULL) { sk_X509_CRL_pop_free(*pcrls, X509_CRL_free); *pcrls = NULL; } BIO_printf(bio_err, "unable to load %s\n", pcerts ? "certificates" : "CRLs"); ERR_print_errors(bio_err); } return rv; } void* app_malloc(int sz, const char *what) { void *vp = OPENSSL_malloc(sz); if (vp == NULL) { BIO_printf(bio_err, "%s: Could not allocate %d bytes for %s\n", opt_getprog(), sz, what); ERR_print_errors(bio_err); exit(1); } return vp; } /* * Initialize or extend, if *certs != NULL, a certificate stack. */ int load_certs(const char *file, STACK_OF(X509) **certs, int format, const char *pass, const char *desc) { return load_certs_crls(file, format, pass, desc, certs, NULL); } /* * Initialize or extend, if *crls != NULL, a certificate stack. */ int load_crls(const char *file, STACK_OF(X509_CRL) **crls, int format, const char *pass, const char *desc) { return load_certs_crls(file, format, pass, desc, NULL, crls); } #define X509V3_EXT_UNKNOWN_MASK (0xfL << 16) /* Return error for unknown extensions */ #define X509V3_EXT_DEFAULT 0 /* Print error for unknown extensions */ #define X509V3_EXT_ERROR_UNKNOWN (1L << 16) /* ASN1 parse unknown extensions */ #define X509V3_EXT_PARSE_UNKNOWN (2L << 16) /* BIO_dump unknown extensions */ #define X509V3_EXT_DUMP_UNKNOWN (3L << 16) #define X509_FLAG_CA (X509_FLAG_NO_ISSUER | X509_FLAG_NO_PUBKEY | \ X509_FLAG_NO_HEADER | X509_FLAG_NO_VERSION) int set_cert_ex(unsigned long *flags, const char *arg) { static const NAME_EX_TBL cert_tbl[] = { {"compatible", X509_FLAG_COMPAT, 0xffffffffl}, {"ca_default", X509_FLAG_CA, 0xffffffffl}, {"no_header", X509_FLAG_NO_HEADER, 0}, {"no_version", X509_FLAG_NO_VERSION, 0}, {"no_serial", X509_FLAG_NO_SERIAL, 0}, {"no_signame", X509_FLAG_NO_SIGNAME, 0}, {"no_validity", X509_FLAG_NO_VALIDITY, 0}, {"no_subject", X509_FLAG_NO_SUBJECT, 0}, {"no_issuer", X509_FLAG_NO_ISSUER, 0}, {"no_pubkey", X509_FLAG_NO_PUBKEY, 0}, {"no_extensions", X509_FLAG_NO_EXTENSIONS, 0}, {"no_sigdump", X509_FLAG_NO_SIGDUMP, 0}, {"no_aux", X509_FLAG_NO_AUX, 0}, {"no_attributes", X509_FLAG_NO_ATTRIBUTES, 0}, {"ext_default", X509V3_EXT_DEFAULT, X509V3_EXT_UNKNOWN_MASK}, {"ext_error", X509V3_EXT_ERROR_UNKNOWN, X509V3_EXT_UNKNOWN_MASK}, {"ext_parse", X509V3_EXT_PARSE_UNKNOWN, X509V3_EXT_UNKNOWN_MASK}, {"ext_dump", X509V3_EXT_DUMP_UNKNOWN, X509V3_EXT_UNKNOWN_MASK}, {NULL, 0, 0} }; return set_multi_opts(flags, arg, cert_tbl); } int set_name_ex(unsigned long *flags, const char *arg) { static const NAME_EX_TBL ex_tbl[] = { {"esc_2253", ASN1_STRFLGS_ESC_2253, 0}, {"esc_2254", ASN1_STRFLGS_ESC_2254, 0}, {"esc_ctrl", ASN1_STRFLGS_ESC_CTRL, 0}, {"esc_msb", ASN1_STRFLGS_ESC_MSB, 0}, {"use_quote", ASN1_STRFLGS_ESC_QUOTE, 0}, {"utf8", ASN1_STRFLGS_UTF8_CONVERT, 0}, {"ignore_type", ASN1_STRFLGS_IGNORE_TYPE, 0}, {"show_type", ASN1_STRFLGS_SHOW_TYPE, 0}, {"dump_all", ASN1_STRFLGS_DUMP_ALL, 0}, {"dump_nostr", ASN1_STRFLGS_DUMP_UNKNOWN, 0}, {"dump_der", ASN1_STRFLGS_DUMP_DER, 0}, {"compat", XN_FLAG_COMPAT, 0xffffffffL}, {"sep_comma_plus", XN_FLAG_SEP_COMMA_PLUS, XN_FLAG_SEP_MASK}, {"sep_comma_plus_space", XN_FLAG_SEP_CPLUS_SPC, XN_FLAG_SEP_MASK}, {"sep_semi_plus_space", XN_FLAG_SEP_SPLUS_SPC, XN_FLAG_SEP_MASK}, {"sep_multiline", XN_FLAG_SEP_MULTILINE, XN_FLAG_SEP_MASK}, {"dn_rev", XN_FLAG_DN_REV, 0}, {"nofname", XN_FLAG_FN_NONE, XN_FLAG_FN_MASK}, {"sname", XN_FLAG_FN_SN, XN_FLAG_FN_MASK}, {"lname", XN_FLAG_FN_LN, XN_FLAG_FN_MASK}, {"align", XN_FLAG_FN_ALIGN, 0}, {"oid", XN_FLAG_FN_OID, XN_FLAG_FN_MASK}, {"space_eq", XN_FLAG_SPC_EQ, 0}, {"dump_unknown", XN_FLAG_DUMP_UNKNOWN_FIELDS, 0}, {"RFC2253", XN_FLAG_RFC2253, 0xffffffffL}, {"oneline", XN_FLAG_ONELINE, 0xffffffffL}, {"multiline", XN_FLAG_MULTILINE, 0xffffffffL}, {"ca_default", XN_FLAG_MULTILINE, 0xffffffffL}, {NULL, 0, 0} }; if (set_multi_opts(flags, arg, ex_tbl) == 0) return 0; if (*flags != XN_FLAG_COMPAT && (*flags & XN_FLAG_SEP_MASK) == 0) *flags |= XN_FLAG_SEP_CPLUS_SPC; return 1; } int set_ext_copy(int *copy_type, const char *arg) { if (strcasecmp(arg, "none") == 0) *copy_type = EXT_COPY_NONE; else if (strcasecmp(arg, "copy") == 0) *copy_type = EXT_COPY_ADD; else if (strcasecmp(arg, "copyall") == 0) *copy_type = EXT_COPY_ALL; else return 0; return 1; } int copy_extensions(X509 *x, X509_REQ *req, int copy_type) { STACK_OF(X509_EXTENSION) *exts = NULL; X509_EXTENSION *ext, *tmpext; ASN1_OBJECT *obj; int i, idx, ret = 0; if (!x || !req || (copy_type == EXT_COPY_NONE)) return 1; exts = X509_REQ_get_extensions(req); for (i = 0; i < sk_X509_EXTENSION_num(exts); i++) { ext = sk_X509_EXTENSION_value(exts, i); obj = X509_EXTENSION_get_object(ext); idx = X509_get_ext_by_OBJ(x, obj, -1); /* Does extension exist? */ if (idx != -1) { /* If normal copy don't override existing extension */ if (copy_type == EXT_COPY_ADD) continue; /* Delete all extensions of same type */ do { tmpext = X509_get_ext(x, idx); X509_delete_ext(x, idx); X509_EXTENSION_free(tmpext); idx = X509_get_ext_by_OBJ(x, obj, -1); } while (idx != -1); } if (!X509_add_ext(x, ext, -1)) goto end; } ret = 1; end: sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free); return ret; } static int set_multi_opts(unsigned long *flags, const char *arg, const NAME_EX_TBL * in_tbl) { STACK_OF(CONF_VALUE) *vals; CONF_VALUE *val; int i, ret = 1; if (!arg) return 0; vals = X509V3_parse_list(arg); for (i = 0; i < sk_CONF_VALUE_num(vals); i++) { val = sk_CONF_VALUE_value(vals, i); if (!set_table_opts(flags, val->name, in_tbl)) ret = 0; } sk_CONF_VALUE_pop_free(vals, X509V3_conf_free); return ret; } static int set_table_opts(unsigned long *flags, const char *arg, const NAME_EX_TBL * in_tbl) { char c; const NAME_EX_TBL *ptbl; c = arg[0]; if (c == '-') { c = 0; arg++; } else if (c == '+') { c = 1; arg++; } else { c = 1; } for (ptbl = in_tbl; ptbl->name; ptbl++) { if (strcasecmp(arg, ptbl->name) == 0) { *flags &= ~ptbl->mask; if (c) *flags |= ptbl->flag; else *flags &= ~ptbl->flag; return 1; } } return 0; } void print_name(BIO *out, const char *title, X509_NAME *nm, unsigned long lflags) { char *buf; char mline = 0; int indent = 0; if (title) BIO_puts(out, title); if ((lflags & XN_FLAG_SEP_MASK) == XN_FLAG_SEP_MULTILINE) { mline = 1; indent = 4; } if (lflags == XN_FLAG_COMPAT) { buf = X509_NAME_oneline(nm, 0, 0); BIO_puts(out, buf); BIO_puts(out, "\n"); OPENSSL_free(buf); } else { if (mline) BIO_puts(out, "\n"); X509_NAME_print_ex(out, nm, indent, lflags); BIO_puts(out, "\n"); } } void print_bignum_var(BIO *out, const BIGNUM *in, const char *var, int len, unsigned char *buffer) { BIO_printf(out, " static unsigned char %s_%d[] = {", var, len); if (BN_is_zero(in)) { BIO_printf(out, "\n 0x00"); } else { int i, l; l = BN_bn2bin(in, buffer); for (i = 0; i < l; i++) { BIO_printf(out, (i % 10) == 0 ? "\n " : " "); if (i < l - 1) BIO_printf(out, "0x%02X,", buffer[i]); else BIO_printf(out, "0x%02X", buffer[i]); } } BIO_printf(out, "\n };\n"); } void print_array(BIO *out, const char* title, int len, const unsigned char* d) { int i; BIO_printf(out, "unsigned char %s[%d] = {", title, len); for (i = 0; i < len; i++) { if ((i % 10) == 0) BIO_printf(out, "\n "); if (i < len - 1) BIO_printf(out, "0x%02X, ", d[i]); else BIO_printf(out, "0x%02X", d[i]); } BIO_printf(out, "\n};\n"); } X509_STORE *setup_verify(const char *CAfile, const char *CApath, int noCAfile, int noCApath) { X509_STORE *store = X509_STORE_new(); X509_LOOKUP *lookup; if (store == NULL) goto end; if (CAfile != NULL || !noCAfile) { lookup = X509_STORE_add_lookup(store, X509_LOOKUP_file()); if (lookup == NULL) goto end; if (CAfile) { if (!X509_LOOKUP_load_file(lookup, CAfile, X509_FILETYPE_PEM)) { BIO_printf(bio_err, "Error loading file %s\n", CAfile); goto end; } } else { X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); } } if (CApath != NULL || !noCApath) { lookup = X509_STORE_add_lookup(store, X509_LOOKUP_hash_dir()); if (lookup == NULL) goto end; if (CApath) { if (!X509_LOOKUP_add_dir(lookup, CApath, X509_FILETYPE_PEM)) { BIO_printf(bio_err, "Error loading directory %s\n", CApath); goto end; } } else { X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); } } ERR_clear_error(); return store; end: X509_STORE_free(store); return NULL; } #ifndef OPENSSL_NO_ENGINE /* Try to load an engine in a shareable library */ static ENGINE *try_load_engine(const char *engine) { ENGINE *e = ENGINE_by_id("dynamic"); if (e) { if (!ENGINE_ctrl_cmd_string(e, "SO_PATH", engine, 0) || !ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) { ENGINE_free(e); e = NULL; } } return e; } #endif ENGINE *setup_engine(const char *engine, int debug) { ENGINE *e = NULL; #ifndef OPENSSL_NO_ENGINE if (engine != NULL) { if (strcmp(engine, "auto") == 0) { BIO_printf(bio_err, "enabling auto ENGINE support\n"); ENGINE_register_all_complete(); return NULL; } if ((e = ENGINE_by_id(engine)) == NULL && (e = try_load_engine(engine)) == NULL) { BIO_printf(bio_err, "invalid engine \"%s\"\n", engine); ERR_print_errors(bio_err); return NULL; } if (debug) { ENGINE_ctrl(e, ENGINE_CTRL_SET_LOGSTREAM, 0, bio_err, 0); } ENGINE_ctrl_cmd(e, "SET_USER_INTERFACE", 0, ui_method, 0, 1); if (!ENGINE_set_default(e, ENGINE_METHOD_ALL)) { BIO_printf(bio_err, "can't use that engine\n"); ERR_print_errors(bio_err); ENGINE_free(e); return NULL; } BIO_printf(bio_err, "engine \"%s\" set.\n", ENGINE_get_id(e)); } #endif return e; } void release_engine(ENGINE *e) { #ifndef OPENSSL_NO_ENGINE if (e != NULL) /* Free our "structural" reference. */ ENGINE_free(e); #endif } static unsigned long index_serial_hash(const OPENSSL_CSTRING *a) { const char *n; n = a[DB_serial]; while (*n == '0') n++; return OPENSSL_LH_strhash(n); } static int index_serial_cmp(const OPENSSL_CSTRING *a, const OPENSSL_CSTRING *b) { const char *aa, *bb; for (aa = a[DB_serial]; *aa == '0'; aa++) ; for (bb = b[DB_serial]; *bb == '0'; bb++) ; return strcmp(aa, bb); } static int index_name_qual(char **a) { return (a[0][0] == 'V'); } static unsigned long index_name_hash(const OPENSSL_CSTRING *a) { return OPENSSL_LH_strhash(a[DB_name]); } int index_name_cmp(const OPENSSL_CSTRING *a, const OPENSSL_CSTRING *b) { return strcmp(a[DB_name], b[DB_name]); } static IMPLEMENT_LHASH_HASH_FN(index_serial, OPENSSL_CSTRING) static IMPLEMENT_LHASH_COMP_FN(index_serial, OPENSSL_CSTRING) static IMPLEMENT_LHASH_HASH_FN(index_name, OPENSSL_CSTRING) static IMPLEMENT_LHASH_COMP_FN(index_name, OPENSSL_CSTRING) #undef BSIZE #define BSIZE 256 BIGNUM *load_serial(const char *serialfile, int create, ASN1_INTEGER **retai) { BIO *in = NULL; BIGNUM *ret = NULL; char buf[1024]; ASN1_INTEGER *ai = NULL; ai = ASN1_INTEGER_new(); if (ai == NULL) goto err; in = BIO_new_file(serialfile, "r"); if (in == NULL) { if (!create) { perror(serialfile); goto err; } ERR_clear_error(); ret = BN_new(); if (ret == NULL || !rand_serial(ret, ai)) BIO_printf(bio_err, "Out of memory\n"); } else { if (!a2i_ASN1_INTEGER(in, ai, buf, 1024)) { BIO_printf(bio_err, "unable to load number from %s\n", serialfile); goto err; } ret = ASN1_INTEGER_to_BN(ai, NULL); if (ret == NULL) { BIO_printf(bio_err, "error converting number from bin to BIGNUM\n"); goto err; } } if (ret && retai) { *retai = ai; ai = NULL; } err: BIO_free(in); ASN1_INTEGER_free(ai); return ret; } int save_serial(const char *serialfile, const char *suffix, const BIGNUM *serial, ASN1_INTEGER **retai) { char buf[1][BSIZE]; BIO *out = NULL; int ret = 0; ASN1_INTEGER *ai = NULL; int j; if (suffix == NULL) j = strlen(serialfile); else j = strlen(serialfile) + strlen(suffix) + 1; if (j >= BSIZE) { BIO_printf(bio_err, "file name too long\n"); goto err; } if (suffix == NULL) OPENSSL_strlcpy(buf[0], serialfile, BSIZE); else { #ifndef OPENSSL_SYS_VMS j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s.%s", serialfile, suffix); #else j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s-%s", serialfile, suffix); #endif } out = BIO_new_file(buf[0], "w"); if (out == NULL) { ERR_print_errors(bio_err); goto err; } if ((ai = BN_to_ASN1_INTEGER(serial, NULL)) == NULL) { BIO_printf(bio_err, "error converting serial to ASN.1 format\n"); goto err; } i2a_ASN1_INTEGER(out, ai); BIO_puts(out, "\n"); ret = 1; if (retai) { *retai = ai; ai = NULL; } err: BIO_free_all(out); ASN1_INTEGER_free(ai); return ret; } int rotate_serial(const char *serialfile, const char *new_suffix, const char *old_suffix) { char buf[2][BSIZE]; int i, j; i = strlen(serialfile) + strlen(old_suffix); j = strlen(serialfile) + strlen(new_suffix); if (i > j) j = i; if (j + 1 >= BSIZE) { BIO_printf(bio_err, "file name too long\n"); goto err; } #ifndef OPENSSL_SYS_VMS j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s.%s", serialfile, new_suffix); j = BIO_snprintf(buf[1], sizeof(buf[1]), "%s.%s", serialfile, old_suffix); #else j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s-%s", serialfile, new_suffix); j = BIO_snprintf(buf[1], sizeof(buf[1]), "%s-%s", serialfile, old_suffix); #endif if (rename(serialfile, buf[1]) < 0 && errno != ENOENT #ifdef ENOTDIR && errno != ENOTDIR #endif ) { BIO_printf(bio_err, "unable to rename %s to %s\n", serialfile, buf[1]); perror("reason"); goto err; } if (rename(buf[0], serialfile) < 0) { BIO_printf(bio_err, "unable to rename %s to %s\n", buf[0], serialfile); perror("reason"); rename(buf[1], serialfile); goto err; } return 1; err: return 0; } int rand_serial(BIGNUM *b, ASN1_INTEGER *ai) { BIGNUM *btmp; int ret = 0; btmp = b == NULL ? BN_new() : b; if (btmp == NULL) return 0; if (!BN_rand(btmp, SERIAL_RAND_BITS, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) goto error; if (ai && !BN_to_ASN1_INTEGER(btmp, ai)) goto error; ret = 1; error: if (btmp != b) BN_free(btmp); return ret; } CA_DB *load_index(const char *dbfile, DB_ATTR *db_attr) { CA_DB *retdb = NULL; TXT_DB *tmpdb = NULL; BIO *in; CONF *dbattr_conf = NULL; char buf[BSIZE]; #ifndef OPENSSL_NO_POSIX_IO FILE *dbfp; struct stat dbst; #endif in = BIO_new_file(dbfile, "r"); if (in == NULL) { ERR_print_errors(bio_err); goto err; } #ifndef OPENSSL_NO_POSIX_IO BIO_get_fp(in, &dbfp); if (fstat(fileno(dbfp), &dbst) == -1) { SYSerr(SYS_F_FSTAT, errno); ERR_add_error_data(3, "fstat('", dbfile, "')"); ERR_print_errors(bio_err); goto err; } #endif if ((tmpdb = TXT_DB_read(in, DB_NUMBER)) == NULL) goto err; #ifndef OPENSSL_SYS_VMS BIO_snprintf(buf, sizeof(buf), "%s.attr", dbfile); #else BIO_snprintf(buf, sizeof(buf), "%s-attr", dbfile); #endif dbattr_conf = app_load_config_quiet(buf); retdb = app_malloc(sizeof(*retdb), "new DB"); retdb->db = tmpdb; tmpdb = NULL; if (db_attr) retdb->attributes = *db_attr; else { retdb->attributes.unique_subject = 1; } if (dbattr_conf) { char *p = NCONF_get_string(dbattr_conf, NULL, "unique_subject"); if (p) { retdb->attributes.unique_subject = parse_yesno(p, 1); } } retdb->dbfname = OPENSSL_strdup(dbfile); #ifndef OPENSSL_NO_POSIX_IO retdb->dbst = dbst; #endif err: NCONF_free(dbattr_conf); TXT_DB_free(tmpdb); BIO_free_all(in); return retdb; } /* * Returns > 0 on success, <= 0 on error */ int index_index(CA_DB *db) { if (!TXT_DB_create_index(db->db, DB_serial, NULL, LHASH_HASH_FN(index_serial), LHASH_COMP_FN(index_serial))) { BIO_printf(bio_err, "error creating serial number index:(%ld,%ld,%ld)\n", db->db->error, db->db->arg1, db->db->arg2); return 0; } if (db->attributes.unique_subject && !TXT_DB_create_index(db->db, DB_name, index_name_qual, LHASH_HASH_FN(index_name), LHASH_COMP_FN(index_name))) { BIO_printf(bio_err, "error creating name index:(%ld,%ld,%ld)\n", db->db->error, db->db->arg1, db->db->arg2); return 0; } return 1; } int save_index(const char *dbfile, const char *suffix, CA_DB *db) { char buf[3][BSIZE]; BIO *out; int j; j = strlen(dbfile) + strlen(suffix); if (j + 6 >= BSIZE) { BIO_printf(bio_err, "file name too long\n"); goto err; } #ifndef OPENSSL_SYS_VMS j = BIO_snprintf(buf[2], sizeof(buf[2]), "%s.attr", dbfile); j = BIO_snprintf(buf[1], sizeof(buf[1]), "%s.attr.%s", dbfile, suffix); j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s.%s", dbfile, suffix); #else j = BIO_snprintf(buf[2], sizeof(buf[2]), "%s-attr", dbfile); j = BIO_snprintf(buf[1], sizeof(buf[1]), "%s-attr-%s", dbfile, suffix); j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s-%s", dbfile, suffix); #endif out = BIO_new_file(buf[0], "w"); if (out == NULL) { perror(dbfile); BIO_printf(bio_err, "unable to open '%s'\n", dbfile); goto err; } j = TXT_DB_write(out, db->db); BIO_free(out); if (j <= 0) goto err; out = BIO_new_file(buf[1], "w"); if (out == NULL) { perror(buf[2]); BIO_printf(bio_err, "unable to open '%s'\n", buf[2]); goto err; } BIO_printf(out, "unique_subject = %s\n", db->attributes.unique_subject ? "yes" : "no"); BIO_free(out); return 1; err: return 0; } int rotate_index(const char *dbfile, const char *new_suffix, const char *old_suffix) { char buf[5][BSIZE]; int i, j; i = strlen(dbfile) + strlen(old_suffix); j = strlen(dbfile) + strlen(new_suffix); if (i > j) j = i; if (j + 6 >= BSIZE) { BIO_printf(bio_err, "file name too long\n"); goto err; } #ifndef OPENSSL_SYS_VMS j = BIO_snprintf(buf[4], sizeof(buf[4]), "%s.attr", dbfile); j = BIO_snprintf(buf[3], sizeof(buf[3]), "%s.attr.%s", dbfile, old_suffix); j = BIO_snprintf(buf[2], sizeof(buf[2]), "%s.attr.%s", dbfile, new_suffix); j = BIO_snprintf(buf[1], sizeof(buf[1]), "%s.%s", dbfile, old_suffix); j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s.%s", dbfile, new_suffix); #else j = BIO_snprintf(buf[4], sizeof(buf[4]), "%s-attr", dbfile); j = BIO_snprintf(buf[3], sizeof(buf[3]), "%s-attr-%s", dbfile, old_suffix); j = BIO_snprintf(buf[2], sizeof(buf[2]), "%s-attr-%s", dbfile, new_suffix); j = BIO_snprintf(buf[1], sizeof(buf[1]), "%s-%s", dbfile, old_suffix); j = BIO_snprintf(buf[0], sizeof(buf[0]), "%s-%s", dbfile, new_suffix); #endif if (rename(dbfile, buf[1]) < 0 && errno != ENOENT #ifdef ENOTDIR && errno != ENOTDIR #endif ) { BIO_printf(bio_err, "unable to rename %s to %s\n", dbfile, buf[1]); perror("reason"); goto err; } if (rename(buf[0], dbfile) < 0) { BIO_printf(bio_err, "unable to rename %s to %s\n", buf[0], dbfile); perror("reason"); rename(buf[1], dbfile); goto err; } if (rename(buf[4], buf[3]) < 0 && errno != ENOENT #ifdef ENOTDIR && errno != ENOTDIR #endif ) { BIO_printf(bio_err, "unable to rename %s to %s\n", buf[4], buf[3]); perror("reason"); rename(dbfile, buf[0]); rename(buf[1], dbfile); goto err; } if (rename(buf[2], buf[4]) < 0) { BIO_printf(bio_err, "unable to rename %s to %s\n", buf[2], buf[4]); perror("reason"); rename(buf[3], buf[4]); rename(dbfile, buf[0]); rename(buf[1], dbfile); goto err; } return 1; err: return 0; } void free_index(CA_DB *db) { if (db) { TXT_DB_free(db->db); OPENSSL_free(db->dbfname); OPENSSL_free(db); } } int parse_yesno(const char *str, int def) { if (str) { switch (*str) { case 'f': /* false */ case 'F': /* FALSE */ case 'n': /* no */ case 'N': /* NO */ case '0': /* 0 */ return 0; case 't': /* true */ case 'T': /* TRUE */ case 'y': /* yes */ case 'Y': /* YES */ case '1': /* 1 */ return 1; } } return def; } /* * name is expected to be in the format /type0=value0/type1=value1/type2=... * where characters may be escaped by \ */ X509_NAME *parse_name(const char *cp, long chtype, int canmulti) { int nextismulti = 0; char *work; X509_NAME *n; if (*cp++ != '/') { BIO_printf(bio_err, "name is expected to be in the format " "/type0=value0/type1=value1/type2=... where characters may " "be escaped by \\. This name is not in that format: '%s'\n", --cp); return NULL; } n = X509_NAME_new(); if (n == NULL) return NULL; work = OPENSSL_strdup(cp); if (work == NULL) goto err; while (*cp) { char *bp = work; char *typestr = bp; unsigned char *valstr; int nid; int ismulti = nextismulti; nextismulti = 0; /* Collect the type */ while (*cp && *cp != '=') *bp++ = *cp++; if (*cp == '\0') { BIO_printf(bio_err, "%s: Hit end of string before finding the equals.\n", opt_getprog()); goto err; } *bp++ = '\0'; ++cp; /* Collect the value. */ valstr = (unsigned char *)bp; for (; *cp && *cp != '/'; *bp++ = *cp++) { if (canmulti && *cp == '+') { nextismulti = 1; break; } if (*cp == '\\' && *++cp == '\0') { BIO_printf(bio_err, "%s: escape character at end of string\n", opt_getprog()); goto err; } } *bp++ = '\0'; /* If not at EOS (must be + or /), move forward. */ if (*cp) ++cp; /* Parse */ nid = OBJ_txt2nid(typestr); if (nid == NID_undef) { BIO_printf(bio_err, "%s: Skipping unknown attribute \"%s\"\n", opt_getprog(), typestr); continue; } if (*valstr == '\0') { BIO_printf(bio_err, "%s: No value provided for Subject Attribute %s, skipped\n", opt_getprog(), typestr); continue; } if (!X509_NAME_add_entry_by_NID(n, nid, chtype, valstr, strlen((char *)valstr), -1, ismulti ? -1 : 0)) goto err; } OPENSSL_free(work); return n; err: X509_NAME_free(n); OPENSSL_free(work); return NULL; } /* * Read whole contents of a BIO into an allocated memory buffer and return * it. */ int bio_to_mem(unsigned char **out, int maxlen, BIO *in) { BIO *mem; int len, ret; unsigned char tbuf[1024]; mem = BIO_new(BIO_s_mem()); if (mem == NULL) return -1; for (;;) { if ((maxlen != -1) && maxlen < 1024) len = maxlen; else len = 1024; len = BIO_read(in, tbuf, len); if (len < 0) { BIO_free(mem); return -1; } if (len == 0) break; if (BIO_write(mem, tbuf, len) != len) { BIO_free(mem); return -1; } maxlen -= len; if (maxlen == 0) break; } ret = BIO_get_mem_data(mem, (char **)out); BIO_set_flags(mem, BIO_FLAGS_MEM_RDONLY); BIO_free(mem); return ret; } int pkey_ctrl_string(EVP_PKEY_CTX *ctx, const char *value) { int rv; char *stmp, *vtmp = NULL; stmp = OPENSSL_strdup(value); if (!stmp) return -1; vtmp = strchr(stmp, ':'); if (vtmp) { *vtmp = 0; vtmp++; } rv = EVP_PKEY_CTX_ctrl_str(ctx, stmp, vtmp); OPENSSL_free(stmp); return rv; } static void nodes_print(const char *name, STACK_OF(X509_POLICY_NODE) *nodes) { X509_POLICY_NODE *node; int i; BIO_printf(bio_err, "%s Policies:", name); if (nodes) { BIO_puts(bio_err, "\n"); for (i = 0; i < sk_X509_POLICY_NODE_num(nodes); i++) { node = sk_X509_POLICY_NODE_value(nodes, i); X509_POLICY_NODE_print(bio_err, node, 2); } } else { BIO_puts(bio_err, " \n"); } } void policies_print(X509_STORE_CTX *ctx) { X509_POLICY_TREE *tree; int explicit_policy; tree = X509_STORE_CTX_get0_policy_tree(ctx); explicit_policy = X509_STORE_CTX_get_explicit_policy(ctx); BIO_printf(bio_err, "Require explicit Policy: %s\n", explicit_policy ? "True" : "False"); nodes_print("Authority", X509_policy_tree_get0_policies(tree)); nodes_print("User", X509_policy_tree_get0_user_policies(tree)); } /*- * next_protos_parse parses a comma separated list of strings into a string * in a format suitable for passing to SSL_CTX_set_next_protos_advertised. * outlen: (output) set to the length of the resulting buffer on success. * err: (maybe NULL) on failure, an error message line is written to this BIO. * in: a NUL terminated string like "abc,def,ghi" * * returns: a malloc'd buffer or NULL on failure. */ unsigned char *next_protos_parse(size_t *outlen, const char *in) { size_t len; unsigned char *out; size_t i, start = 0; size_t skipped = 0; len = strlen(in); if (len == 0 || len >= 65535) return NULL; out = app_malloc(len + 1, "NPN buffer"); for (i = 0; i <= len; ++i) { if (i == len || in[i] == ',') { /* * Zero-length ALPN elements are invalid on the wire, we could be * strict and reject the entire string, but just ignoring extra * commas seems harmless and more friendly. * * Every comma we skip in this way puts the input buffer another * byte ahead of the output buffer, so all stores into the output * buffer need to be decremented by the number commas skipped. */ if (i == start) { ++start; ++skipped; continue; } if (i - start > 255) { OPENSSL_free(out); return NULL; } out[start-skipped] = (unsigned char)(i - start); start = i + 1; } else { out[i + 1 - skipped] = in[i]; } } if (len <= skipped) { OPENSSL_free(out); return NULL; } *outlen = len + 1 - skipped; return out; } void print_cert_checks(BIO *bio, X509 *x, const char *checkhost, const char *checkemail, const char *checkip) { if (x == NULL) return; if (checkhost) { BIO_printf(bio, "Hostname %s does%s match certificate\n", checkhost, X509_check_host(x, checkhost, 0, 0, NULL) == 1 ? "" : " NOT"); } if (checkemail) { BIO_printf(bio, "Email %s does%s match certificate\n", checkemail, X509_check_email(x, checkemail, 0, 0) ? "" : " NOT"); } if (checkip) { BIO_printf(bio, "IP %s does%s match certificate\n", checkip, X509_check_ip_asc(x, checkip, 0) ? "" : " NOT"); } } /* Get first http URL from a DIST_POINT structure */ static const char *get_dp_url(DIST_POINT *dp) { GENERAL_NAMES *gens; GENERAL_NAME *gen; int i, gtype; ASN1_STRING *uri; if (!dp->distpoint || dp->distpoint->type != 0) return NULL; gens = dp->distpoint->name.fullname; for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gen = sk_GENERAL_NAME_value(gens, i); uri = GENERAL_NAME_get0_value(gen, >ype); if (gtype == GEN_URI && ASN1_STRING_length(uri) > 6) { const char *uptr = (const char *)ASN1_STRING_get0_data(uri); if (strncmp(uptr, "http://", 7) == 0) return uptr; } } return NULL; } /* * Look through a CRLDP structure and attempt to find an http URL to * downloads a CRL from. */ static X509_CRL *load_crl_crldp(STACK_OF(DIST_POINT) *crldp) { int i; const char *urlptr = NULL; for (i = 0; i < sk_DIST_POINT_num(crldp); i++) { DIST_POINT *dp = sk_DIST_POINT_value(crldp, i); urlptr = get_dp_url(dp); if (urlptr) return load_crl(urlptr, FORMAT_HTTP); } return NULL; } /* * Example of downloading CRLs from CRLDP: not usable for real world as it * always downloads, doesn't support non-blocking I/O and doesn't cache * anything. */ static STACK_OF(X509_CRL) *crls_http_cb(X509_STORE_CTX *ctx, X509_NAME *nm) { X509 *x; STACK_OF(X509_CRL) *crls = NULL; X509_CRL *crl; STACK_OF(DIST_POINT) *crldp; crls = sk_X509_CRL_new_null(); if (!crls) return NULL; x = X509_STORE_CTX_get_current_cert(ctx); crldp = X509_get_ext_d2i(x, NID_crl_distribution_points, NULL, NULL); crl = load_crl_crldp(crldp); sk_DIST_POINT_pop_free(crldp, DIST_POINT_free); if (!crl) { sk_X509_CRL_free(crls); return NULL; } sk_X509_CRL_push(crls, crl); /* Try to download delta CRL */ crldp = X509_get_ext_d2i(x, NID_freshest_crl, NULL, NULL); crl = load_crl_crldp(crldp); sk_DIST_POINT_pop_free(crldp, DIST_POINT_free); if (crl) sk_X509_CRL_push(crls, crl); return crls; } void store_setup_crl_download(X509_STORE *st) { X509_STORE_set_lookup_crls_cb(st, crls_http_cb); } /* * Platform-specific sections */ #if defined(_WIN32) # ifdef fileno # undef fileno # define fileno(a) (int)_fileno(a) # endif # include # include static int WIN32_rename(const char *from, const char *to) { TCHAR *tfrom = NULL, *tto; DWORD err; int ret = 0; if (sizeof(TCHAR) == 1) { tfrom = (TCHAR *)from; tto = (TCHAR *)to; } else { /* UNICODE path */ size_t i, flen = strlen(from) + 1, tlen = strlen(to) + 1; tfrom = malloc(sizeof(*tfrom) * (flen + tlen)); if (tfrom == NULL) goto err; tto = tfrom + flen; # if !defined(_WIN32_WCE) || _WIN32_WCE>=101 if (!MultiByteToWideChar(CP_ACP, 0, from, flen, (WCHAR *)tfrom, flen)) # endif for (i = 0; i < flen; i++) tfrom[i] = (TCHAR)from[i]; # if !defined(_WIN32_WCE) || _WIN32_WCE>=101 if (!MultiByteToWideChar(CP_ACP, 0, to, tlen, (WCHAR *)tto, tlen)) # endif for (i = 0; i < tlen; i++) tto[i] = (TCHAR)to[i]; } if (MoveFile(tfrom, tto)) goto ok; err = GetLastError(); if (err == ERROR_ALREADY_EXISTS || err == ERROR_FILE_EXISTS) { if (DeleteFile(tto) && MoveFile(tfrom, tto)) goto ok; err = GetLastError(); } if (err == ERROR_FILE_NOT_FOUND || err == ERROR_PATH_NOT_FOUND) errno = ENOENT; else if (err == ERROR_ACCESS_DENIED) errno = EACCES; else errno = EINVAL; /* we could map more codes... */ err: ret = -1; ok: if (tfrom != NULL && tfrom != (TCHAR *)from) free(tfrom); return ret; } #endif /* app_tminterval section */ #if defined(_WIN32) double app_tminterval(int stop, int usertime) { FILETIME now; double ret = 0; static ULARGE_INTEGER tmstart; static int warning = 1; # ifdef _WIN32_WINNT static HANDLE proc = NULL; if (proc == NULL) { if (check_winnt()) proc = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, GetCurrentProcessId()); if (proc == NULL) proc = (HANDLE) - 1; } if (usertime && proc != (HANDLE) - 1) { FILETIME junk; GetProcessTimes(proc, &junk, &junk, &junk, &now); } else # endif { SYSTEMTIME systime; if (usertime && warning) { BIO_printf(bio_err, "To get meaningful results, run " "this program on idle system.\n"); warning = 0; } GetSystemTime(&systime); SystemTimeToFileTime(&systime, &now); } if (stop == TM_START) { tmstart.u.LowPart = now.dwLowDateTime; tmstart.u.HighPart = now.dwHighDateTime; } else { ULARGE_INTEGER tmstop; tmstop.u.LowPart = now.dwLowDateTime; tmstop.u.HighPart = now.dwHighDateTime; ret = (__int64)(tmstop.QuadPart - tmstart.QuadPart) * 1e-7; } return ret; } #elif defined(OPENSSL_SYS_VXWORKS) # include double app_tminterval(int stop, int usertime) { double ret = 0; # ifdef CLOCK_REALTIME static struct timespec tmstart; struct timespec now; # else static unsigned long tmstart; unsigned long now; # endif static int warning = 1; if (usertime && warning) { BIO_printf(bio_err, "To get meaningful results, run " "this program on idle system.\n"); warning = 0; } # ifdef CLOCK_REALTIME clock_gettime(CLOCK_REALTIME, &now); if (stop == TM_START) tmstart = now; else ret = ((now.tv_sec + now.tv_nsec * 1e-9) - (tmstart.tv_sec + tmstart.tv_nsec * 1e-9)); # else now = tickGet(); if (stop == TM_START) tmstart = now; else ret = (now - tmstart) / (double)sysClkRateGet(); # endif return ret; } #elif defined(OPENSSL_SYSTEM_VMS) # include # include double app_tminterval(int stop, int usertime) { static clock_t tmstart; double ret = 0; clock_t now; # ifdef __TMS struct tms rus; now = times(&rus); if (usertime) now = rus.tms_utime; # else if (usertime) now = clock(); /* sum of user and kernel times */ else { struct timeval tv; gettimeofday(&tv, NULL); now = (clock_t)((unsigned long long)tv.tv_sec * CLK_TCK + (unsigned long long)tv.tv_usec * (1000000 / CLK_TCK) ); } # endif if (stop == TM_START) tmstart = now; else ret = (now - tmstart) / (double)(CLK_TCK); return ret; } #elif defined(_SC_CLK_TCK) /* by means of unistd.h */ # include double app_tminterval(int stop, int usertime) { double ret = 0; struct tms rus; clock_t now = times(&rus); static clock_t tmstart; if (usertime) now = rus.tms_utime; if (stop == TM_START) { tmstart = now; } else { long int tck = sysconf(_SC_CLK_TCK); ret = (now - tmstart) / (double)tck; } return ret; } #else # include # include double app_tminterval(int stop, int usertime) { double ret = 0; struct rusage rus; struct timeval now; static struct timeval tmstart; if (usertime) getrusage(RUSAGE_SELF, &rus), now = rus.ru_utime; else gettimeofday(&now, NULL); if (stop == TM_START) tmstart = now; else ret = ((now.tv_sec + now.tv_usec * 1e-6) - (tmstart.tv_sec + tmstart.tv_usec * 1e-6)); return ret; } #endif int app_access(const char* name, int flag) { #ifdef _WIN32 return _access(name, flag); #else return access(name, flag); #endif } /* app_isdir section */ #ifdef _WIN32 int app_isdir(const char *name) { DWORD attr; # if defined(UNICODE) || defined(_UNICODE) size_t i, len_0 = strlen(name) + 1; WCHAR tempname[MAX_PATH]; if (len_0 > MAX_PATH) return -1; # if !defined(_WIN32_WCE) || _WIN32_WCE>=101 if (!MultiByteToWideChar(CP_ACP, 0, name, len_0, tempname, MAX_PATH)) # endif for (i = 0; i < len_0; i++) tempname[i] = (WCHAR)name[i]; attr = GetFileAttributes(tempname); # else attr = GetFileAttributes(name); # endif if (attr == INVALID_FILE_ATTRIBUTES) return -1; return ((attr & FILE_ATTRIBUTE_DIRECTORY) != 0); } #else # include # ifndef S_ISDIR # if defined(_S_IFMT) && defined(_S_IFDIR) # define S_ISDIR(a) (((a) & _S_IFMT) == _S_IFDIR) # else # define S_ISDIR(a) (((a) & S_IFMT) == S_IFDIR) # endif # endif int app_isdir(const char *name) { # if defined(S_ISDIR) struct stat st; if (stat(name, &st) == 0) return S_ISDIR(st.st_mode); else return -1; # else return -1; # endif } #endif /* raw_read|write section */ #if defined(__VMS) # include "vms_term_sock.h" static int stdin_sock = -1; static void close_stdin_sock(void) { TerminalSocket (TERM_SOCK_DELETE, &stdin_sock); } int fileno_stdin(void) { if (stdin_sock == -1) { TerminalSocket(TERM_SOCK_CREATE, &stdin_sock); atexit(close_stdin_sock); } return stdin_sock; } #else int fileno_stdin(void) { return fileno(stdin); } #endif int fileno_stdout(void) { return fileno(stdout); } #if defined(_WIN32) && defined(STD_INPUT_HANDLE) int raw_read_stdin(void *buf, int siz) { DWORD n; if (ReadFile(GetStdHandle(STD_INPUT_HANDLE), buf, siz, &n, NULL)) return n; else return -1; } #elif defined(__VMS) # include int raw_read_stdin(void *buf, int siz) { return recv(fileno_stdin(), buf, siz, 0); } #else int raw_read_stdin(void *buf, int siz) { return read(fileno_stdin(), buf, siz); } #endif #if defined(_WIN32) && defined(STD_OUTPUT_HANDLE) int raw_write_stdout(const void *buf, int siz) { DWORD n; if (WriteFile(GetStdHandle(STD_OUTPUT_HANDLE), buf, siz, &n, NULL)) return n; else return -1; } #else int raw_write_stdout(const void *buf, int siz) { return write(fileno_stdout(), buf, siz); } #endif /* * Centralized handling if input and output files with format specification * The format is meant to show what the input and output is supposed to be, * and is therefore a show of intent more than anything else. However, it * does impact behavior on some platform, such as differentiating between * text and binary input/output on non-Unix platforms */ static int istext(int format) { return (format & B_FORMAT_TEXT) == B_FORMAT_TEXT; } BIO *dup_bio_in(int format) { return BIO_new_fp(stdin, BIO_NOCLOSE | (istext(format) ? BIO_FP_TEXT : 0)); } static BIO_METHOD *prefix_method = NULL; BIO *dup_bio_out(int format) { BIO *b = BIO_new_fp(stdout, BIO_NOCLOSE | (istext(format) ? BIO_FP_TEXT : 0)); void *prefix = NULL; #ifdef OPENSSL_SYS_VMS if (istext(format)) b = BIO_push(BIO_new(BIO_f_linebuffer()), b); #endif if (istext(format) && (prefix = getenv("HARNESS_OSSL_PREFIX")) != NULL) { if (prefix_method == NULL) prefix_method = apps_bf_prefix(); b = BIO_push(BIO_new(prefix_method), b); BIO_ctrl(b, PREFIX_CTRL_SET_PREFIX, 0, prefix); } return b; } BIO *dup_bio_err(int format) { BIO *b = BIO_new_fp(stderr, BIO_NOCLOSE | (istext(format) ? BIO_FP_TEXT : 0)); #ifdef OPENSSL_SYS_VMS if (istext(format)) b = BIO_push(BIO_new(BIO_f_linebuffer()), b); #endif return b; } void destroy_prefix_method(void) { BIO_meth_free(prefix_method); prefix_method = NULL; } void unbuffer(FILE *fp) { /* * On VMS, setbuf() will only take 32-bit pointers, and a compilation * with /POINTER_SIZE=64 will give off a MAYLOSEDATA2 warning here. * However, we trust that the C RTL will never give us a FILE pointer * above the first 4 GB of memory, so we simply turn off the warning * temporarily. */ #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma environment save # pragma message disable maylosedata2 #endif setbuf(fp, NULL); #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma environment restore #endif } static const char *modestr(char mode, int format) { OPENSSL_assert(mode == 'a' || mode == 'r' || mode == 'w'); switch (mode) { case 'a': return istext(format) ? "a" : "ab"; case 'r': return istext(format) ? "r" : "rb"; case 'w': return istext(format) ? "w" : "wb"; } /* The assert above should make sure we never reach this point */ return NULL; } static const char *modeverb(char mode) { switch (mode) { case 'a': return "appending"; case 'r': return "reading"; case 'w': return "writing"; } return "(doing something)"; } /* * Open a file for writing, owner-read-only. */ BIO *bio_open_owner(const char *filename, int format, int private) { FILE *fp = NULL; BIO *b = NULL; int fd = -1, bflags, mode, textmode; if (!private || filename == NULL || strcmp(filename, "-") == 0) return bio_open_default(filename, 'w', format); mode = O_WRONLY; #ifdef O_CREAT mode |= O_CREAT; #endif #ifdef O_TRUNC mode |= O_TRUNC; #endif textmode = istext(format); if (!textmode) { #ifdef O_BINARY mode |= O_BINARY; #elif defined(_O_BINARY) mode |= _O_BINARY; #endif } #ifdef OPENSSL_SYS_VMS /* VMS doesn't have O_BINARY, it just doesn't make sense. But, * it still needs to know that we're going binary, or fdopen() * will fail with "invalid argument"... so we tell VMS what the * context is. */ if (!textmode) fd = open(filename, mode, 0600, "ctx=bin"); else #endif fd = open(filename, mode, 0600); if (fd < 0) goto err; fp = fdopen(fd, modestr('w', format)); if (fp == NULL) goto err; bflags = BIO_CLOSE; if (textmode) bflags |= BIO_FP_TEXT; b = BIO_new_fp(fp, bflags); if (b) return b; err: BIO_printf(bio_err, "%s: Can't open \"%s\" for writing, %s\n", opt_getprog(), filename, strerror(errno)); ERR_print_errors(bio_err); /* If we have fp, then fdopen took over fd, so don't close both. */ if (fp) fclose(fp); else if (fd >= 0) close(fd); return NULL; } static BIO *bio_open_default_(const char *filename, char mode, int format, int quiet) { BIO *ret; if (filename == NULL || strcmp(filename, "-") == 0) { ret = mode == 'r' ? dup_bio_in(format) : dup_bio_out(format); if (quiet) { ERR_clear_error(); return ret; } if (ret != NULL) return ret; BIO_printf(bio_err, "Can't open %s, %s\n", mode == 'r' ? "stdin" : "stdout", strerror(errno)); } else { ret = BIO_new_file(filename, modestr(mode, format)); if (quiet) { ERR_clear_error(); return ret; } if (ret != NULL) return ret; BIO_printf(bio_err, "Can't open %s for %s, %s\n", filename, modeverb(mode), strerror(errno)); } ERR_print_errors(bio_err); return NULL; } BIO *bio_open_default(const char *filename, char mode, int format) { return bio_open_default_(filename, mode, format, 0); } BIO *bio_open_default_quiet(const char *filename, char mode, int format) { return bio_open_default_(filename, mode, format, 1); } void wait_for_async(SSL *s) { /* On Windows select only works for sockets, so we simply don't wait */ #ifndef OPENSSL_SYS_WINDOWS int width = 0; fd_set asyncfds; OSSL_ASYNC_FD *fds; size_t numfds; size_t i; if (!SSL_get_all_async_fds(s, NULL, &numfds)) return; if (numfds == 0) return; fds = app_malloc(sizeof(OSSL_ASYNC_FD) * numfds, "allocate async fds"); if (!SSL_get_all_async_fds(s, fds, &numfds)) { OPENSSL_free(fds); return; } FD_ZERO(&asyncfds); for (i = 0; i < numfds; i++) { if (width <= (int)fds[i]) width = (int)fds[i] + 1; openssl_fdset((int)fds[i], &asyncfds); } select(width, (void *)&asyncfds, NULL, NULL, NULL); OPENSSL_free(fds); #endif } /* if OPENSSL_SYS_WINDOWS is defined then so is OPENSSL_SYS_MSDOS */ #if defined(OPENSSL_SYS_MSDOS) int has_stdin_waiting(void) { # if defined(OPENSSL_SYS_WINDOWS) HANDLE inhand = GetStdHandle(STD_INPUT_HANDLE); DWORD events = 0; INPUT_RECORD inputrec; DWORD insize = 1; BOOL peeked; if (inhand == INVALID_HANDLE_VALUE) { return 0; } peeked = PeekConsoleInput(inhand, &inputrec, insize, &events); if (!peeked) { /* Probably redirected input? _kbhit() does not work in this case */ if (!feof(stdin)) { return 1; } return 0; } # endif return _kbhit(); } #endif /* Corrupt a signature by modifying final byte */ void corrupt_signature(const ASN1_STRING *signature) { unsigned char *s = signature->data; s[signature->length - 1] ^= 0x1; } int set_cert_times(X509 *x, const char *startdate, const char *enddate, int days) { if (startdate == NULL || strcmp(startdate, "today") == 0) { if (X509_gmtime_adj(X509_getm_notBefore(x), 0) == NULL) return 0; } else { if (!ASN1_TIME_set_string_X509(X509_getm_notBefore(x), startdate)) return 0; } if (enddate == NULL) { if (X509_time_adj_ex(X509_getm_notAfter(x), days, 0, NULL) == NULL) return 0; } else if (!ASN1_TIME_set_string_X509(X509_getm_notAfter(x), enddate)) { return 0; } return 1; } void make_uppercase(char *string) { int i; for (i = 0; string[i] != '\0'; i++) string[i] = toupper((unsigned char)string[i]); } openssl-1.1.1f/apps/apps.h000066400000000000000000000612761364063235100154410ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_APPS_H # define OSSL_APPS_H # include "e_os.h" /* struct timeval for DTLS */ # include "internal/nelem.h" # include # include # ifndef OPENSSL_NO_POSIX_IO # include # include # endif # include # include # include # include # include # include # include # include # include # if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_WINCE) # define openssl_fdset(a,b) FD_SET((unsigned int)a, b) # else # define openssl_fdset(a,b) FD_SET(a, b) # endif /* * quick macro when you need to pass an unsigned char instead of a char. * this is true for some implementations of the is*() functions, for * example. */ #define _UC(c) ((unsigned char)(c)) void app_RAND_load_conf(CONF *c, const char *section); void app_RAND_write(void); extern char *default_config_file; extern BIO *bio_in; extern BIO *bio_out; extern BIO *bio_err; extern const unsigned char tls13_aes128gcmsha256_id[]; extern const unsigned char tls13_aes256gcmsha384_id[]; extern BIO_ADDR *ourpeer; BIO_METHOD *apps_bf_prefix(void); /* * The control used to set the prefix with BIO_ctrl() * We make it high enough so the chance of ever clashing with the BIO library * remains unlikely for the foreseeable future and beyond. */ #define PREFIX_CTRL_SET_PREFIX (1 << 15) /* * apps_bf_prefix() returns a dynamically created BIO_METHOD, which we * need to destroy at some point. When created internally, it's stored * in an internal pointer which can be freed with the following function */ void destroy_prefix_method(void); BIO *dup_bio_in(int format); BIO *dup_bio_out(int format); BIO *dup_bio_err(int format); BIO *bio_open_owner(const char *filename, int format, int private); BIO *bio_open_default(const char *filename, char mode, int format); BIO *bio_open_default_quiet(const char *filename, char mode, int format); CONF *app_load_config_bio(BIO *in, const char *filename); CONF *app_load_config(const char *filename); CONF *app_load_config_quiet(const char *filename); int app_load_modules(const CONF *config); void unbuffer(FILE *fp); void wait_for_async(SSL *s); # if defined(OPENSSL_SYS_MSDOS) int has_stdin_waiting(void); # endif void corrupt_signature(const ASN1_STRING *signature); int set_cert_times(X509 *x, const char *startdate, const char *enddate, int days); /* * Common verification options. */ # define OPT_V_ENUM \ OPT_V__FIRST=2000, \ OPT_V_POLICY, OPT_V_PURPOSE, OPT_V_VERIFY_NAME, OPT_V_VERIFY_DEPTH, \ OPT_V_ATTIME, OPT_V_VERIFY_HOSTNAME, OPT_V_VERIFY_EMAIL, \ OPT_V_VERIFY_IP, OPT_V_IGNORE_CRITICAL, OPT_V_ISSUER_CHECKS, \ OPT_V_CRL_CHECK, OPT_V_CRL_CHECK_ALL, OPT_V_POLICY_CHECK, \ OPT_V_EXPLICIT_POLICY, OPT_V_INHIBIT_ANY, OPT_V_INHIBIT_MAP, \ OPT_V_X509_STRICT, OPT_V_EXTENDED_CRL, OPT_V_USE_DELTAS, \ OPT_V_POLICY_PRINT, OPT_V_CHECK_SS_SIG, OPT_V_TRUSTED_FIRST, \ OPT_V_SUITEB_128_ONLY, OPT_V_SUITEB_128, OPT_V_SUITEB_192, \ OPT_V_PARTIAL_CHAIN, OPT_V_NO_ALT_CHAINS, OPT_V_NO_CHECK_TIME, \ OPT_V_VERIFY_AUTH_LEVEL, OPT_V_ALLOW_PROXY_CERTS, \ OPT_V__LAST # define OPT_V_OPTIONS \ { "policy", OPT_V_POLICY, 's', "adds policy to the acceptable policy set"}, \ { "purpose", OPT_V_PURPOSE, 's', \ "certificate chain purpose"}, \ { "verify_name", OPT_V_VERIFY_NAME, 's', "verification policy name"}, \ { "verify_depth", OPT_V_VERIFY_DEPTH, 'n', \ "chain depth limit" }, \ { "auth_level", OPT_V_VERIFY_AUTH_LEVEL, 'n', \ "chain authentication security level" }, \ { "attime", OPT_V_ATTIME, 'M', "verification epoch time" }, \ { "verify_hostname", OPT_V_VERIFY_HOSTNAME, 's', \ "expected peer hostname" }, \ { "verify_email", OPT_V_VERIFY_EMAIL, 's', \ "expected peer email" }, \ { "verify_ip", OPT_V_VERIFY_IP, 's', \ "expected peer IP address" }, \ { "ignore_critical", OPT_V_IGNORE_CRITICAL, '-', \ "permit unhandled critical extensions"}, \ { "issuer_checks", OPT_V_ISSUER_CHECKS, '-', "(deprecated)"}, \ { "crl_check", OPT_V_CRL_CHECK, '-', "check leaf certificate revocation" }, \ { "crl_check_all", OPT_V_CRL_CHECK_ALL, '-', "check full chain revocation" }, \ { "policy_check", OPT_V_POLICY_CHECK, '-', "perform rfc5280 policy checks"}, \ { "explicit_policy", OPT_V_EXPLICIT_POLICY, '-', \ "set policy variable require-explicit-policy"}, \ { "inhibit_any", OPT_V_INHIBIT_ANY, '-', \ "set policy variable inhibit-any-policy"}, \ { "inhibit_map", OPT_V_INHIBIT_MAP, '-', \ "set policy variable inhibit-policy-mapping"}, \ { "x509_strict", OPT_V_X509_STRICT, '-', \ "disable certificate compatibility work-arounds"}, \ { "extended_crl", OPT_V_EXTENDED_CRL, '-', \ "enable extended CRL features"}, \ { "use_deltas", OPT_V_USE_DELTAS, '-', \ "use delta CRLs"}, \ { "policy_print", OPT_V_POLICY_PRINT, '-', \ "print policy processing diagnostics"}, \ { "check_ss_sig", OPT_V_CHECK_SS_SIG, '-', \ "check root CA self-signatures"}, \ { "trusted_first", OPT_V_TRUSTED_FIRST, '-', \ "search trust store first (default)" }, \ { "suiteB_128_only", OPT_V_SUITEB_128_ONLY, '-', "Suite B 128-bit-only mode"}, \ { "suiteB_128", OPT_V_SUITEB_128, '-', \ "Suite B 128-bit mode allowing 192-bit algorithms"}, \ { "suiteB_192", OPT_V_SUITEB_192, '-', "Suite B 192-bit-only mode" }, \ { "partial_chain", OPT_V_PARTIAL_CHAIN, '-', \ "accept chains anchored by intermediate trust-store CAs"}, \ { "no_alt_chains", OPT_V_NO_ALT_CHAINS, '-', "(deprecated)" }, \ { "no_check_time", OPT_V_NO_CHECK_TIME, '-', "ignore certificate validity time" }, \ { "allow_proxy_certs", OPT_V_ALLOW_PROXY_CERTS, '-', "allow the use of proxy certificates" } # define OPT_V_CASES \ OPT_V__FIRST: case OPT_V__LAST: break; \ case OPT_V_POLICY: \ case OPT_V_PURPOSE: \ case OPT_V_VERIFY_NAME: \ case OPT_V_VERIFY_DEPTH: \ case OPT_V_VERIFY_AUTH_LEVEL: \ case OPT_V_ATTIME: \ case OPT_V_VERIFY_HOSTNAME: \ case OPT_V_VERIFY_EMAIL: \ case OPT_V_VERIFY_IP: \ case OPT_V_IGNORE_CRITICAL: \ case OPT_V_ISSUER_CHECKS: \ case OPT_V_CRL_CHECK: \ case OPT_V_CRL_CHECK_ALL: \ case OPT_V_POLICY_CHECK: \ case OPT_V_EXPLICIT_POLICY: \ case OPT_V_INHIBIT_ANY: \ case OPT_V_INHIBIT_MAP: \ case OPT_V_X509_STRICT: \ case OPT_V_EXTENDED_CRL: \ case OPT_V_USE_DELTAS: \ case OPT_V_POLICY_PRINT: \ case OPT_V_CHECK_SS_SIG: \ case OPT_V_TRUSTED_FIRST: \ case OPT_V_SUITEB_128_ONLY: \ case OPT_V_SUITEB_128: \ case OPT_V_SUITEB_192: \ case OPT_V_PARTIAL_CHAIN: \ case OPT_V_NO_ALT_CHAINS: \ case OPT_V_NO_CHECK_TIME: \ case OPT_V_ALLOW_PROXY_CERTS /* * Common "extended validation" options. */ # define OPT_X_ENUM \ OPT_X__FIRST=1000, \ OPT_X_KEY, OPT_X_CERT, OPT_X_CHAIN, OPT_X_CHAIN_BUILD, \ OPT_X_CERTFORM, OPT_X_KEYFORM, \ OPT_X__LAST # define OPT_X_OPTIONS \ { "xkey", OPT_X_KEY, '<', "key for Extended certificates"}, \ { "xcert", OPT_X_CERT, '<', "cert for Extended certificates"}, \ { "xchain", OPT_X_CHAIN, '<', "chain for Extended certificates"}, \ { "xchain_build", OPT_X_CHAIN_BUILD, '-', \ "build certificate chain for the extended certificates"}, \ { "xcertform", OPT_X_CERTFORM, 'F', \ "format of Extended certificate (PEM or DER) PEM default " }, \ { "xkeyform", OPT_X_KEYFORM, 'F', \ "format of Extended certificate's key (PEM or DER) PEM default"} # define OPT_X_CASES \ OPT_X__FIRST: case OPT_X__LAST: break; \ case OPT_X_KEY: \ case OPT_X_CERT: \ case OPT_X_CHAIN: \ case OPT_X_CHAIN_BUILD: \ case OPT_X_CERTFORM: \ case OPT_X_KEYFORM /* * Common SSL options. * Any changes here must be coordinated with ../ssl/ssl_conf.c */ # define OPT_S_ENUM \ OPT_S__FIRST=3000, \ OPT_S_NOSSL3, OPT_S_NOTLS1, OPT_S_NOTLS1_1, OPT_S_NOTLS1_2, \ OPT_S_NOTLS1_3, OPT_S_BUGS, OPT_S_NO_COMP, OPT_S_NOTICKET, \ OPT_S_SERVERPREF, OPT_S_LEGACYRENEG, OPT_S_LEGACYCONN, \ OPT_S_ONRESUMP, OPT_S_NOLEGACYCONN, OPT_S_ALLOW_NO_DHE_KEX, \ OPT_S_PRIORITIZE_CHACHA, \ OPT_S_STRICT, OPT_S_SIGALGS, OPT_S_CLIENTSIGALGS, OPT_S_GROUPS, \ OPT_S_CURVES, OPT_S_NAMEDCURVE, OPT_S_CIPHER, OPT_S_CIPHERSUITES, \ OPT_S_RECORD_PADDING, OPT_S_DEBUGBROKE, OPT_S_COMP, \ OPT_S_MINPROTO, OPT_S_MAXPROTO, \ OPT_S_NO_RENEGOTIATION, OPT_S_NO_MIDDLEBOX, OPT_S__LAST # define OPT_S_OPTIONS \ {"no_ssl3", OPT_S_NOSSL3, '-',"Just disable SSLv3" }, \ {"no_tls1", OPT_S_NOTLS1, '-', "Just disable TLSv1"}, \ {"no_tls1_1", OPT_S_NOTLS1_1, '-', "Just disable TLSv1.1" }, \ {"no_tls1_2", OPT_S_NOTLS1_2, '-', "Just disable TLSv1.2"}, \ {"no_tls1_3", OPT_S_NOTLS1_3, '-', "Just disable TLSv1.3"}, \ {"bugs", OPT_S_BUGS, '-', "Turn on SSL bug compatibility"}, \ {"no_comp", OPT_S_NO_COMP, '-', "Disable SSL/TLS compression (default)" }, \ {"comp", OPT_S_COMP, '-', "Use SSL/TLS-level compression" }, \ {"no_ticket", OPT_S_NOTICKET, '-', \ "Disable use of TLS session tickets"}, \ {"serverpref", OPT_S_SERVERPREF, '-', "Use server's cipher preferences"}, \ {"legacy_renegotiation", OPT_S_LEGACYRENEG, '-', \ "Enable use of legacy renegotiation (dangerous)"}, \ {"no_renegotiation", OPT_S_NO_RENEGOTIATION, '-', \ "Disable all renegotiation."}, \ {"legacy_server_connect", OPT_S_LEGACYCONN, '-', \ "Allow initial connection to servers that don't support RI"}, \ {"no_resumption_on_reneg", OPT_S_ONRESUMP, '-', \ "Disallow session resumption on renegotiation"}, \ {"no_legacy_server_connect", OPT_S_NOLEGACYCONN, '-', \ "Disallow initial connection to servers that don't support RI"}, \ {"allow_no_dhe_kex", OPT_S_ALLOW_NO_DHE_KEX, '-', \ "In TLSv1.3 allow non-(ec)dhe based key exchange on resumption"}, \ {"prioritize_chacha", OPT_S_PRIORITIZE_CHACHA, '-', \ "Prioritize ChaCha ciphers when preferred by clients"}, \ {"strict", OPT_S_STRICT, '-', \ "Enforce strict certificate checks as per TLS standard"}, \ {"sigalgs", OPT_S_SIGALGS, 's', \ "Signature algorithms to support (colon-separated list)" }, \ {"client_sigalgs", OPT_S_CLIENTSIGALGS, 's', \ "Signature algorithms to support for client certificate" \ " authentication (colon-separated list)" }, \ {"groups", OPT_S_GROUPS, 's', \ "Groups to advertise (colon-separated list)" }, \ {"curves", OPT_S_CURVES, 's', \ "Groups to advertise (colon-separated list)" }, \ {"named_curve", OPT_S_NAMEDCURVE, 's', \ "Elliptic curve used for ECDHE (server-side only)" }, \ {"cipher", OPT_S_CIPHER, 's', "Specify TLSv1.2 and below cipher list to be used"}, \ {"ciphersuites", OPT_S_CIPHERSUITES, 's', "Specify TLSv1.3 ciphersuites to be used"}, \ {"min_protocol", OPT_S_MINPROTO, 's', "Specify the minimum protocol version to be used"}, \ {"max_protocol", OPT_S_MAXPROTO, 's', "Specify the maximum protocol version to be used"}, \ {"record_padding", OPT_S_RECORD_PADDING, 's', \ "Block size to pad TLS 1.3 records to."}, \ {"debug_broken_protocol", OPT_S_DEBUGBROKE, '-', \ "Perform all sorts of protocol violations for testing purposes"}, \ {"no_middlebox", OPT_S_NO_MIDDLEBOX, '-', \ "Disable TLSv1.3 middlebox compat mode" } # define OPT_S_CASES \ OPT_S__FIRST: case OPT_S__LAST: break; \ case OPT_S_NOSSL3: \ case OPT_S_NOTLS1: \ case OPT_S_NOTLS1_1: \ case OPT_S_NOTLS1_2: \ case OPT_S_NOTLS1_3: \ case OPT_S_BUGS: \ case OPT_S_NO_COMP: \ case OPT_S_COMP: \ case OPT_S_NOTICKET: \ case OPT_S_SERVERPREF: \ case OPT_S_LEGACYRENEG: \ case OPT_S_LEGACYCONN: \ case OPT_S_ONRESUMP: \ case OPT_S_NOLEGACYCONN: \ case OPT_S_ALLOW_NO_DHE_KEX: \ case OPT_S_PRIORITIZE_CHACHA: \ case OPT_S_STRICT: \ case OPT_S_SIGALGS: \ case OPT_S_CLIENTSIGALGS: \ case OPT_S_GROUPS: \ case OPT_S_CURVES: \ case OPT_S_NAMEDCURVE: \ case OPT_S_CIPHER: \ case OPT_S_CIPHERSUITES: \ case OPT_S_RECORD_PADDING: \ case OPT_S_NO_RENEGOTIATION: \ case OPT_S_MINPROTO: \ case OPT_S_MAXPROTO: \ case OPT_S_DEBUGBROKE: \ case OPT_S_NO_MIDDLEBOX #define IS_NO_PROT_FLAG(o) \ (o == OPT_S_NOSSL3 || o == OPT_S_NOTLS1 || o == OPT_S_NOTLS1_1 \ || o == OPT_S_NOTLS1_2 || o == OPT_S_NOTLS1_3) /* * Random state options. */ # define OPT_R_ENUM \ OPT_R__FIRST=1500, OPT_R_RAND, OPT_R_WRITERAND, OPT_R__LAST # define OPT_R_OPTIONS \ {"rand", OPT_R_RAND, 's', "Load the file(s) into the random number generator"}, \ {"writerand", OPT_R_WRITERAND, '>', "Write random data to the specified file"} # define OPT_R_CASES \ OPT_R__FIRST: case OPT_R__LAST: break; \ case OPT_R_RAND: case OPT_R_WRITERAND /* * Option parsing. */ extern const char OPT_HELP_STR[]; extern const char OPT_MORE_STR[]; typedef struct options_st { const char *name; int retval; /* * value type: - no value (also the value zero), n number, p positive * number, u unsigned, l long, s string, < input file, > output file, * f any format, F der/pem format, E der/pem/engine format identifier. * l, n and u include zero; p does not. */ int valtype; const char *helpstr; } OPTIONS; /* * A string/int pairing; widely use for option value lookup, hence the * name OPT_PAIR. But that name is misleading in s_cb.c, so we also use * the "generic" name STRINT_PAIR. */ typedef struct string_int_pair_st { const char *name; int retval; } OPT_PAIR, STRINT_PAIR; /* Flags to pass into opt_format; see FORMAT_xxx, below. */ # define OPT_FMT_PEMDER (1L << 1) # define OPT_FMT_PKCS12 (1L << 2) # define OPT_FMT_SMIME (1L << 3) # define OPT_FMT_ENGINE (1L << 4) # define OPT_FMT_MSBLOB (1L << 5) /* (1L << 6) was OPT_FMT_NETSCAPE, but wasn't used */ # define OPT_FMT_NSS (1L << 7) # define OPT_FMT_TEXT (1L << 8) # define OPT_FMT_HTTP (1L << 9) # define OPT_FMT_PVK (1L << 10) # define OPT_FMT_PDE (OPT_FMT_PEMDER | OPT_FMT_ENGINE) # define OPT_FMT_PDS (OPT_FMT_PEMDER | OPT_FMT_SMIME) # define OPT_FMT_ANY ( \ OPT_FMT_PEMDER | OPT_FMT_PKCS12 | OPT_FMT_SMIME | \ OPT_FMT_ENGINE | OPT_FMT_MSBLOB | OPT_FMT_NSS | \ OPT_FMT_TEXT | OPT_FMT_HTTP | OPT_FMT_PVK) char *opt_progname(const char *argv0); char *opt_getprog(void); char *opt_init(int ac, char **av, const OPTIONS * o); int opt_next(void); int opt_format(const char *s, unsigned long flags, int *result); int opt_int(const char *arg, int *result); int opt_ulong(const char *arg, unsigned long *result); int opt_long(const char *arg, long *result); #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L && \ defined(INTMAX_MAX) && defined(UINTMAX_MAX) int opt_imax(const char *arg, intmax_t *result); int opt_umax(const char *arg, uintmax_t *result); #else # define opt_imax opt_long # define opt_umax opt_ulong # define intmax_t long # define uintmax_t unsigned long #endif int opt_pair(const char *arg, const OPT_PAIR * pairs, int *result); int opt_cipher(const char *name, const EVP_CIPHER **cipherp); int opt_md(const char *name, const EVP_MD **mdp); char *opt_arg(void); char *opt_flag(void); char *opt_unknown(void); char **opt_rest(void); int opt_num_rest(void); int opt_verify(int i, X509_VERIFY_PARAM *vpm); int opt_rand(int i); void opt_help(const OPTIONS * list); int opt_format_error(const char *s, unsigned long flags); typedef struct args_st { int size; int argc; char **argv; } ARGS; /* * VMS C only for now, implemented in vms_decc_init.c * If other C compilers forget to terminate argv with NULL, this function * can be re-used. */ char **copy_argv(int *argc, char *argv[]); /* * Win32-specific argv initialization that splits OS-supplied UNICODE * command line string to array of UTF8-encoded strings. */ void win32_utf8argv(int *argc, char **argv[]); # define PW_MIN_LENGTH 4 typedef struct pw_cb_data { const void *password; const char *prompt_info; } PW_CB_DATA; int password_callback(char *buf, int bufsiz, int verify, PW_CB_DATA *cb_data); int setup_ui_method(void); void destroy_ui_method(void); const UI_METHOD *get_ui_method(void); int chopup_args(ARGS *arg, char *buf); int dump_cert_text(BIO *out, X509 *x); void print_name(BIO *out, const char *title, X509_NAME *nm, unsigned long lflags); void print_bignum_var(BIO *, const BIGNUM *, const char*, int, unsigned char *); void print_array(BIO *, const char *, int, const unsigned char *); int set_nameopt(const char *arg); unsigned long get_nameopt(void); int set_cert_ex(unsigned long *flags, const char *arg); int set_name_ex(unsigned long *flags, const char *arg); int set_ext_copy(int *copy_type, const char *arg); int copy_extensions(X509 *x, X509_REQ *req, int copy_type); int app_passwd(const char *arg1, const char *arg2, char **pass1, char **pass2); int add_oid_section(CONF *conf); X509 *load_cert(const char *file, int format, const char *cert_descrip); X509_CRL *load_crl(const char *infile, int format); EVP_PKEY *load_key(const char *file, int format, int maybe_stdin, const char *pass, ENGINE *e, const char *key_descrip); EVP_PKEY *load_pubkey(const char *file, int format, int maybe_stdin, const char *pass, ENGINE *e, const char *key_descrip); int load_certs(const char *file, STACK_OF(X509) **certs, int format, const char *pass, const char *cert_descrip); int load_crls(const char *file, STACK_OF(X509_CRL) **crls, int format, const char *pass, const char *cert_descrip); X509_STORE *setup_verify(const char *CAfile, const char *CApath, int noCAfile, int noCApath); __owur int ctx_set_verify_locations(SSL_CTX *ctx, const char *CAfile, const char *CApath, int noCAfile, int noCApath); #ifndef OPENSSL_NO_CT /* * Sets the file to load the Certificate Transparency log list from. * If path is NULL, loads from the default file path. * Returns 1 on success, 0 otherwise. */ __owur int ctx_set_ctlog_list_file(SSL_CTX *ctx, const char *path); #endif ENGINE *setup_engine(const char *engine, int debug); void release_engine(ENGINE *e); # ifndef OPENSSL_NO_OCSP OCSP_RESPONSE *process_responder(OCSP_REQUEST *req, const char *host, const char *path, const char *port, int use_ssl, STACK_OF(CONF_VALUE) *headers, int req_timeout); # endif /* Functions defined in ca.c and also used in ocsp.c */ int unpack_revinfo(ASN1_TIME **prevtm, int *preason, ASN1_OBJECT **phold, ASN1_GENERALIZEDTIME **pinvtm, const char *str); # define DB_type 0 # define DB_exp_date 1 # define DB_rev_date 2 # define DB_serial 3 /* index - unique */ # define DB_file 4 # define DB_name 5 /* index - unique when active and not * disabled */ # define DB_NUMBER 6 # define DB_TYPE_REV 'R' /* Revoked */ # define DB_TYPE_EXP 'E' /* Expired */ # define DB_TYPE_VAL 'V' /* Valid ; inserted with: ca ... -valid */ # define DB_TYPE_SUSP 'S' /* Suspended */ typedef struct db_attr_st { int unique_subject; } DB_ATTR; typedef struct ca_db_st { DB_ATTR attributes; TXT_DB *db; char *dbfname; # ifndef OPENSSL_NO_POSIX_IO struct stat dbst; # endif } CA_DB; void* app_malloc(int sz, const char *what); BIGNUM *load_serial(const char *serialfile, int create, ASN1_INTEGER **retai); int save_serial(const char *serialfile, const char *suffix, const BIGNUM *serial, ASN1_INTEGER **retai); int rotate_serial(const char *serialfile, const char *new_suffix, const char *old_suffix); int rand_serial(BIGNUM *b, ASN1_INTEGER *ai); CA_DB *load_index(const char *dbfile, DB_ATTR *dbattr); int index_index(CA_DB *db); int save_index(const char *dbfile, const char *suffix, CA_DB *db); int rotate_index(const char *dbfile, const char *new_suffix, const char *old_suffix); void free_index(CA_DB *db); # define index_name_cmp_noconst(a, b) \ index_name_cmp((const OPENSSL_CSTRING *)CHECKED_PTR_OF(OPENSSL_STRING, a), \ (const OPENSSL_CSTRING *)CHECKED_PTR_OF(OPENSSL_STRING, b)) int index_name_cmp(const OPENSSL_CSTRING *a, const OPENSSL_CSTRING *b); int parse_yesno(const char *str, int def); X509_NAME *parse_name(const char *str, long chtype, int multirdn); void policies_print(X509_STORE_CTX *ctx); int bio_to_mem(unsigned char **out, int maxlen, BIO *in); int pkey_ctrl_string(EVP_PKEY_CTX *ctx, const char *value); int init_gen_str(EVP_PKEY_CTX **pctx, const char *algname, ENGINE *e, int do_param); int do_X509_sign(X509 *x, EVP_PKEY *pkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts); int do_X509_REQ_sign(X509_REQ *x, EVP_PKEY *pkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts); int do_X509_CRL_sign(X509_CRL *x, EVP_PKEY *pkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts); extern char *psk_key; unsigned char *next_protos_parse(size_t *outlen, const char *in); void print_cert_checks(BIO *bio, X509 *x, const char *checkhost, const char *checkemail, const char *checkip); void store_setup_crl_download(X509_STORE *st); /* See OPT_FMT_xxx, above. */ /* On some platforms, it's important to distinguish between text and binary * files. On some, there might even be specific file formats for different * contents. The FORMAT_xxx macros are meant to express an intent with the * file being read or created. */ # define B_FORMAT_TEXT 0x8000 # define FORMAT_UNDEF 0 # define FORMAT_TEXT (1 | B_FORMAT_TEXT) /* Generic text */ # define FORMAT_BINARY 2 /* Generic binary */ # define FORMAT_BASE64 (3 | B_FORMAT_TEXT) /* Base64 */ # define FORMAT_ASN1 4 /* ASN.1/DER */ # define FORMAT_PEM (5 | B_FORMAT_TEXT) # define FORMAT_PKCS12 6 # define FORMAT_SMIME (7 | B_FORMAT_TEXT) # define FORMAT_ENGINE 8 /* Not really a file format */ # define FORMAT_PEMRSA (9 | B_FORMAT_TEXT) /* PEM RSAPubicKey format */ # define FORMAT_ASN1RSA 10 /* DER RSAPubicKey format */ # define FORMAT_MSBLOB 11 /* MS Key blob format */ # define FORMAT_PVK 12 /* MS PVK file format */ # define FORMAT_HTTP 13 /* Download using HTTP */ # define FORMAT_NSS 14 /* NSS keylog format */ # define EXT_COPY_NONE 0 # define EXT_COPY_ADD 1 # define EXT_COPY_ALL 2 # define NETSCAPE_CERT_HDR "certificate" # define APP_PASS_LEN 1024 /* * IETF RFC 5280 says serial number must be <= 20 bytes. Use 159 bits * so that the first bit will never be one, so that the DER encoding * rules won't force a leading octet. */ # define SERIAL_RAND_BITS 159 int app_isdir(const char *); int app_access(const char *, int flag); int fileno_stdin(void); int fileno_stdout(void); int raw_read_stdin(void *, int); int raw_write_stdout(const void *, int); # define TM_START 0 # define TM_STOP 1 double app_tminterval(int stop, int usertime); void make_uppercase(char *string); typedef struct verify_options_st { int depth; int quiet; int error; int return_error; } VERIFY_CB_ARGS; extern VERIFY_CB_ARGS verify_args; #endif openssl-1.1.1f/apps/asn1pars.c000066400000000000000000000244721364063235100162160ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_IN, OPT_OUT, OPT_INDENT, OPT_NOOUT, OPT_OID, OPT_OFFSET, OPT_LENGTH, OPT_DUMP, OPT_DLIMIT, OPT_STRPARSE, OPT_GENSTR, OPT_GENCONF, OPT_STRICTPEM, OPT_ITEM } OPTION_CHOICE; const OPTIONS asn1parse_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "input format - one of DER PEM"}, {"in", OPT_IN, '<', "input file"}, {"out", OPT_OUT, '>', "output file (output format is always DER)"}, {"i", OPT_INDENT, 0, "indents the output"}, {"noout", OPT_NOOUT, 0, "do not produce any output"}, {"offset", OPT_OFFSET, 'p', "offset into file"}, {"length", OPT_LENGTH, 'p', "length of section in file"}, {"oid", OPT_OID, '<', "file of extra oid definitions"}, {"dump", OPT_DUMP, 0, "unknown data in hex form"}, {"dlimit", OPT_DLIMIT, 'p', "dump the first arg bytes of unknown data in hex form"}, {"strparse", OPT_STRPARSE, 'p', "offset; a series of these can be used to 'dig'"}, {OPT_MORE_STR, 0, 0, "into multiple ASN1 blob wrappings"}, {"genstr", OPT_GENSTR, 's', "string to generate ASN1 structure from"}, {"genconf", OPT_GENCONF, 's', "file to generate ASN1 structure from"}, {OPT_MORE_STR, 0, 0, "(-inform will be ignored)"}, {"strictpem", OPT_STRICTPEM, 0, "do not attempt base64 decode outside PEM markers"}, {"item", OPT_ITEM, 's', "item to parse and print"}, {NULL} }; static int do_generate(char *genstr, const char *genconf, BUF_MEM *buf); int asn1parse_main(int argc, char **argv) { ASN1_TYPE *at = NULL; BIO *in = NULL, *b64 = NULL, *derout = NULL; BUF_MEM *buf = NULL; STACK_OF(OPENSSL_STRING) *osk = NULL; char *genstr = NULL, *genconf = NULL; char *infile = NULL, *oidfile = NULL, *derfile = NULL; unsigned char *str = NULL; char *name = NULL, *header = NULL, *prog; const unsigned char *ctmpbuf; int indent = 0, noout = 0, dump = 0, strictpem = 0, informat = FORMAT_PEM; int offset = 0, ret = 1, i, j; long num, tmplen; unsigned char *tmpbuf; unsigned int length = 0; OPTION_CHOICE o; const ASN1_ITEM *it = NULL; prog = opt_init(argc, argv, asn1parse_options); if ((osk = sk_OPENSSL_STRING_new_null()) == NULL) { BIO_printf(bio_err, "%s: Memory allocation failure\n", prog); goto end; } while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(asn1parse_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: derfile = opt_arg(); break; case OPT_INDENT: indent = 1; break; case OPT_NOOUT: noout = 1; break; case OPT_OID: oidfile = opt_arg(); break; case OPT_OFFSET: offset = strtol(opt_arg(), NULL, 0); break; case OPT_LENGTH: length = strtol(opt_arg(), NULL, 0); break; case OPT_DUMP: dump = -1; break; case OPT_DLIMIT: dump = strtol(opt_arg(), NULL, 0); break; case OPT_STRPARSE: sk_OPENSSL_STRING_push(osk, opt_arg()); break; case OPT_GENSTR: genstr = opt_arg(); break; case OPT_GENCONF: genconf = opt_arg(); break; case OPT_STRICTPEM: strictpem = 1; informat = FORMAT_PEM; break; case OPT_ITEM: it = ASN1_ITEM_lookup(opt_arg()); if (it == NULL) { size_t tmp; BIO_printf(bio_err, "Unknown item name %s\n", opt_arg()); BIO_puts(bio_err, "Supported types:\n"); for (tmp = 0;; tmp++) { it = ASN1_ITEM_get(tmp); if (it == NULL) break; BIO_printf(bio_err, " %s\n", it->sname); } goto end; } break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; if (oidfile != NULL) { in = bio_open_default(oidfile, 'r', FORMAT_TEXT); if (in == NULL) goto end; OBJ_create_objects(in); BIO_free(in); } if ((in = bio_open_default(infile, 'r', informat)) == NULL) goto end; if (derfile && (derout = bio_open_default(derfile, 'w', FORMAT_ASN1)) == NULL) goto end; if ((buf = BUF_MEM_new()) == NULL) goto end; if (strictpem) { if (PEM_read_bio(in, &name, &header, &str, &num) != 1) { BIO_printf(bio_err, "Error reading PEM file\n"); ERR_print_errors(bio_err); goto end; } buf->data = (char *)str; buf->length = buf->max = num; } else { if (!BUF_MEM_grow(buf, BUFSIZ * 8)) goto end; /* Pre-allocate :-) */ if (genstr || genconf) { num = do_generate(genstr, genconf, buf); if (num < 0) { ERR_print_errors(bio_err); goto end; } } else { if (informat == FORMAT_PEM) { BIO *tmp; if ((b64 = BIO_new(BIO_f_base64())) == NULL) goto end; BIO_push(b64, in); tmp = in; in = b64; b64 = tmp; } num = 0; for (;;) { if (!BUF_MEM_grow(buf, num + BUFSIZ)) goto end; i = BIO_read(in, &(buf->data[num]), BUFSIZ); if (i <= 0) break; num += i; } } str = (unsigned char *)buf->data; } /* If any structs to parse go through in sequence */ if (sk_OPENSSL_STRING_num(osk)) { tmpbuf = str; tmplen = num; for (i = 0; i < sk_OPENSSL_STRING_num(osk); i++) { ASN1_TYPE *atmp; int typ; j = strtol(sk_OPENSSL_STRING_value(osk, i), NULL, 0); if (j <= 0 || j >= tmplen) { BIO_printf(bio_err, "'%s' is out of range\n", sk_OPENSSL_STRING_value(osk, i)); continue; } tmpbuf += j; tmplen -= j; atmp = at; ctmpbuf = tmpbuf; at = d2i_ASN1_TYPE(NULL, &ctmpbuf, tmplen); ASN1_TYPE_free(atmp); if (!at) { BIO_printf(bio_err, "Error parsing structure\n"); ERR_print_errors(bio_err); goto end; } typ = ASN1_TYPE_get(at); if ((typ == V_ASN1_OBJECT) || (typ == V_ASN1_BOOLEAN) || (typ == V_ASN1_NULL)) { BIO_printf(bio_err, "Can't parse %s type\n", ASN1_tag2str(typ)); ERR_print_errors(bio_err); goto end; } /* hmm... this is a little evil but it works */ tmpbuf = at->value.asn1_string->data; tmplen = at->value.asn1_string->length; } str = tmpbuf; num = tmplen; } if (offset < 0 || offset >= num) { BIO_printf(bio_err, "Error: offset out of range\n"); goto end; } num -= offset; if (length == 0 || length > (unsigned int)num) length = (unsigned int)num; if (derout != NULL) { if (BIO_write(derout, str + offset, length) != (int)length) { BIO_printf(bio_err, "Error writing output\n"); ERR_print_errors(bio_err); goto end; } } if (!noout) { const unsigned char *p = str + offset; if (it != NULL) { ASN1_VALUE *value = ASN1_item_d2i(NULL, &p, length, it); if (value == NULL) { BIO_printf(bio_err, "Error parsing item %s\n", it->sname); ERR_print_errors(bio_err); goto end; } ASN1_item_print(bio_out, value, 0, it, NULL); ASN1_item_free(value, it); } else { if (!ASN1_parse_dump(bio_out, p, length, indent, dump)) { ERR_print_errors(bio_err); goto end; } } } ret = 0; end: BIO_free(derout); BIO_free(in); BIO_free(b64); if (ret != 0) ERR_print_errors(bio_err); BUF_MEM_free(buf); OPENSSL_free(name); OPENSSL_free(header); ASN1_TYPE_free(at); sk_OPENSSL_STRING_free(osk); return ret; } static int do_generate(char *genstr, const char *genconf, BUF_MEM *buf) { CONF *cnf = NULL; int len; unsigned char *p; ASN1_TYPE *atyp = NULL; if (genconf != NULL) { if ((cnf = app_load_config(genconf)) == NULL) goto err; if (genstr == NULL) genstr = NCONF_get_string(cnf, "default", "asn1"); if (genstr == NULL) { BIO_printf(bio_err, "Can't find 'asn1' in '%s'\n", genconf); goto err; } } atyp = ASN1_generate_nconf(genstr, cnf); NCONF_free(cnf); cnf = NULL; if (atyp == NULL) return -1; len = i2d_ASN1_TYPE(atyp, NULL); if (len <= 0) goto err; if (!BUF_MEM_grow(buf, len)) goto err; p = (unsigned char *)buf->data; i2d_ASN1_TYPE(atyp, &p); ASN1_TYPE_free(atyp); return len; err: NCONF_free(cnf); ASN1_TYPE_free(atyp); return -1; } openssl-1.1.1f/apps/bf_prefix.c000066400000000000000000000114221364063235100164210ustar00rootroot00000000000000/* * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "apps.h" static int prefix_write(BIO *b, const char *out, size_t outl, size_t *numwritten); static int prefix_read(BIO *b, char *buf, size_t size, size_t *numread); static int prefix_puts(BIO *b, const char *str); static int prefix_gets(BIO *b, char *str, int size); static long prefix_ctrl(BIO *b, int cmd, long arg1, void *arg2); static int prefix_create(BIO *b); static int prefix_destroy(BIO *b); static long prefix_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp); static BIO_METHOD *prefix_meth = NULL; BIO_METHOD *apps_bf_prefix(void) { if (prefix_meth == NULL) { if ((prefix_meth = BIO_meth_new(BIO_TYPE_FILTER, "Prefix filter")) == NULL || !BIO_meth_set_create(prefix_meth, prefix_create) || !BIO_meth_set_destroy(prefix_meth, prefix_destroy) || !BIO_meth_set_write_ex(prefix_meth, prefix_write) || !BIO_meth_set_read_ex(prefix_meth, prefix_read) || !BIO_meth_set_puts(prefix_meth, prefix_puts) || !BIO_meth_set_gets(prefix_meth, prefix_gets) || !BIO_meth_set_ctrl(prefix_meth, prefix_ctrl) || !BIO_meth_set_callback_ctrl(prefix_meth, prefix_callback_ctrl)) { BIO_meth_free(prefix_meth); prefix_meth = NULL; } } return prefix_meth; } typedef struct prefix_ctx_st { char *prefix; int linestart; /* flag to indicate we're at the line start */ } PREFIX_CTX; static int prefix_create(BIO *b) { PREFIX_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) return 0; ctx->prefix = NULL; ctx->linestart = 1; BIO_set_data(b, ctx); BIO_set_init(b, 1); return 1; } static int prefix_destroy(BIO *b) { PREFIX_CTX *ctx = BIO_get_data(b); OPENSSL_free(ctx->prefix); OPENSSL_free(ctx); return 1; } static int prefix_read(BIO *b, char *in, size_t size, size_t *numread) { return BIO_read_ex(BIO_next(b), in, size, numread); } static int prefix_write(BIO *b, const char *out, size_t outl, size_t *numwritten) { PREFIX_CTX *ctx = BIO_get_data(b); if (ctx == NULL) return 0; /* If no prefix is set or if it's empty, we've got nothing to do here */ if (ctx->prefix == NULL || *ctx->prefix == '\0') { /* We do note if what comes next will be a new line, though */ if (outl > 0) ctx->linestart = (out[outl-1] == '\n'); return BIO_write_ex(BIO_next(b), out, outl, numwritten); } *numwritten = 0; while (outl > 0) { size_t i; char c; /* If we know that we're at the start of the line, output the prefix */ if (ctx->linestart) { size_t dontcare; if (!BIO_write_ex(BIO_next(b), ctx->prefix, strlen(ctx->prefix), &dontcare)) return 0; ctx->linestart = 0; } /* Now, go look for the next LF, or the end of the string */ for (i = 0, c = '\0'; i < outl && (c = out[i]) != '\n'; i++) continue; if (c == '\n') i++; /* Output what we found so far */ while (i > 0) { size_t num = 0; if (!BIO_write_ex(BIO_next(b), out, i, &num)) return 0; out += num; outl -= num; *numwritten += num; i -= num; } /* If we found a LF, what follows is a new line, so take note */ if (c == '\n') ctx->linestart = 1; } return 1; } static long prefix_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 0; switch (cmd) { case PREFIX_CTRL_SET_PREFIX: { PREFIX_CTX *ctx = BIO_get_data(b); if (ctx == NULL) break; OPENSSL_free(ctx->prefix); ctx->prefix = OPENSSL_strdup((const char *)ptr); ret = ctx->prefix != NULL; } break; default: if (BIO_next(b) != NULL) ret = BIO_ctrl(BIO_next(b), cmd, num, ptr); break; } return ret; } static long prefix_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { return BIO_callback_ctrl(BIO_next(b), cmd, fp); } static int prefix_gets(BIO *b, char *buf, int size) { return BIO_gets(BIO_next(b), buf, size); } static int prefix_puts(BIO *b, const char *str) { return BIO_write(b, str, strlen(str)); } openssl-1.1.1f/apps/build.info000066400000000000000000000026531364063235100162730ustar00rootroot00000000000000{- our @apps_openssl_src = qw(openssl.c asn1pars.c ca.c ciphers.c cms.c crl.c crl2p7.c dgst.c dhparam.c dsa.c dsaparam.c ec.c ecparam.c enc.c engine.c errstr.c gendsa.c genpkey.c genrsa.c nseq.c ocsp.c passwd.c pkcs12.c pkcs7.c pkcs8.c pkey.c pkeyparam.c pkeyutl.c prime.c rand.c req.c rsa.c rsautl.c s_client.c s_server.c s_time.c sess_id.c smime.c speed.c spkac.c srp.c ts.c verify.c version.c x509.c rehash.c storeutl.c); our @apps_lib_src = ( qw(apps.c opt.c s_cb.c s_socket.c app_rand.c bf_prefix.c), split(/\s+/, $target{apps_aux_src}) ); our @apps_init_src = split(/\s+/, $target{apps_init_src}); "" -} IF[{- !$disabled{apps} -}] LIBS_NO_INST=libapps.a SOURCE[libapps.a]={- join(" ", @apps_lib_src) -} INCLUDE[libapps.a]=.. ../include PROGRAMS=openssl SOURCE[openssl]={- join(" ", @apps_init_src) -} SOURCE[openssl]={- join(" ", @apps_openssl_src) -} INCLUDE[openssl]=.. ../include DEPEND[openssl]=libapps.a ../libssl IF[{- $config{target} =~ /^(?:Cygwin|mingw|VC-)/ -}] GENERATE[openssl.rc]=../util/mkrc.pl openssl SOURCE[openssl]=openssl.rc ENDIF {- join("\n ", map { (my $x = $_) =~ s|\.c$|.o|; "DEPEND[$x]=progs.h" } @apps_openssl_src) -} GENERATE[progs.h]=progs.pl $(APPS_OPENSSL) DEPEND[progs.h]=../configdata.pm SCRIPTS=CA.pl tsget.pl SOURCE[CA.pl]=CA.pl.in SOURCE[tsget.pl]=tsget.in ENDIF openssl-1.1.1f/apps/ca-cert.srl000066400000000000000000000000031364063235100163420ustar00rootroot0000000000000007 openssl-1.1.1f/apps/ca-key.pem000066400000000000000000000016241364063235100161700ustar00rootroot00000000000000-----BEGIN PRIVATE KEY----- MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBAL4tQNyKy4U2zX6l IZvORB1edmwMwIgSB4cgoFECrG5pixzYxKauZkAwKG9/+L4DB8qXRjfXWcvafcOU DlYpRROykJ7wGkiqmqbZyrxY8DWjk5ZZQXiSuhYOAJB+Fyfb11JZV6+CvBQX/1g+ vhJr39Gmp6oAesoYrj90ecozClmnAgMBAAECgYA3j6sSg+5f9hnldUMzbPjTh8Sb XsJlPrc6UFrmMBzGiUleXSpe9Dbla+x0XvQCN4pwMvAN4nnWp/f0Su5BV/9Y93nb im5ijGNrfN9i6QrnqGCr+MMute+4E8HR2pCScX0mBLDDf40SmDvMzCaxtd21keyr 9DqHgInQZNEi6NKlkQJBAPCbUTFg6iQ6VTCQ8CsEf5q2xHhuTK23fJ999lvWVxN7 QsvWb9RP9Ng34HVtvB7Pl6P7FyHLQYiDJhhvYR0L0+kCQQDKV/09Kt6Wjf5Omp1I wd3A+tFnipdqnPw+qNHGjevv0hYiEIWQOYbx00zXgaX+WN/pzV9eeNN2XAxlNJ++ dxcPAkBrzeuPKFFAcjKBVC+H1rgl5gYZv7Hzk+buv02G0H6rZ+sB0c7BXiHiTwbv Fn/XfkP/YR14Ms3mEH0dLaphjU8hAkEAh3Ar/rRiN04mCcEuRFQXtaNtZSv8PA2G Pf7MI2Y9pdHupLCAZlBLRjTUO2/5hu1AO4QPMPIZQSFN3rRBtMCL+wJAMp/m2hvI TmtbMp/IrKGfma09e3yFiCmoNn7cHLJ7jLvXcacV2XNzpr9YHfBxiZo0g9FqZKvv PZoQ5B2XJ7bhTQ== -----END PRIVATE KEY----- openssl-1.1.1f/apps/ca-req.pem000066400000000000000000000011731364063235100161660ustar00rootroot00000000000000-----BEGIN CERTIFICATE REQUEST----- MIIBmzCCAQQCAQAwWzELMAkGA1UEBhMCQVUxEzARBgNVBAgMClF1ZWVuc2xhbmQx GjAYBgNVBAoMEUNyeXB0U29mdCBQdHkgTHRkMRswGQYDVQQDDBJUZXN0IENBICgx MDI0IGJpdCkwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAL4tQNyKy4U2zX6l IZvORB1edmwMwIgSB4cgoFECrG5pixzYxKauZkAwKG9/+L4DB8qXRjfXWcvafcOU DlYpRROykJ7wGkiqmqbZyrxY8DWjk5ZZQXiSuhYOAJB+Fyfb11JZV6+CvBQX/1g+ vhJr39Gmp6oAesoYrj90ecozClmnAgMBAAGgADANBgkqhkiG9w0BAQsFAAOBgQCo 2jE7J1SNV7kyRm9m8CoPw8xYsuVcVFxPheBymYp8BlO0/rSdYygRjobpYnLVRUPZ pV792wzT1Rp4sXfZWO10lkFY4yi0pH2cdK2RX7qedibV1Xu9vt/yYANFBKVpA4dy PRyTQwi3In1N8hdfddpYR8f5MIUYRe5poFMIJcf8JA== -----END CERTIFICATE REQUEST----- openssl-1.1.1f/apps/ca.c000066400000000000000000002503121364063235100150430ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef W_OK # ifdef OPENSSL_SYS_VMS # include # elif !defined(OPENSSL_SYS_VXWORKS) && !defined(OPENSSL_SYS_WINDOWS) # include # endif #endif #include "apps.h" #include "progs.h" #ifndef W_OK # define F_OK 0 # define W_OK 2 # define R_OK 4 #endif #ifndef PATH_MAX # define PATH_MAX 4096 #endif #define BASE_SECTION "ca" #define ENV_DEFAULT_CA "default_ca" #define STRING_MASK "string_mask" #define UTF8_IN "utf8" #define ENV_NEW_CERTS_DIR "new_certs_dir" #define ENV_CERTIFICATE "certificate" #define ENV_SERIAL "serial" #define ENV_RAND_SERIAL "rand_serial" #define ENV_CRLNUMBER "crlnumber" #define ENV_PRIVATE_KEY "private_key" #define ENV_DEFAULT_DAYS "default_days" #define ENV_DEFAULT_STARTDATE "default_startdate" #define ENV_DEFAULT_ENDDATE "default_enddate" #define ENV_DEFAULT_CRL_DAYS "default_crl_days" #define ENV_DEFAULT_CRL_HOURS "default_crl_hours" #define ENV_DEFAULT_MD "default_md" #define ENV_DEFAULT_EMAIL_DN "email_in_dn" #define ENV_PRESERVE "preserve" #define ENV_POLICY "policy" #define ENV_EXTENSIONS "x509_extensions" #define ENV_CRLEXT "crl_extensions" #define ENV_MSIE_HACK "msie_hack" #define ENV_NAMEOPT "name_opt" #define ENV_CERTOPT "cert_opt" #define ENV_EXTCOPY "copy_extensions" #define ENV_UNIQUE_SUBJECT "unique_subject" #define ENV_DATABASE "database" /* Additional revocation information types */ typedef enum { REV_VALID = -1, /* Valid (not-revoked) status */ REV_NONE = 0, /* No additional information */ REV_CRL_REASON = 1, /* Value is CRL reason code */ REV_HOLD = 2, /* Value is hold instruction */ REV_KEY_COMPROMISE = 3, /* Value is cert key compromise time */ REV_CA_COMPROMISE = 4 /* Value is CA key compromise time */ } REVINFO_TYPE; static char *lookup_conf(const CONF *conf, const char *group, const char *tag); static int certify(X509 **xret, const char *infile, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, int batch, const char *ext_sect, CONF *conf, int verbose, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy, int selfsign); static int certify_cert(X509 **xret, const char *infile, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, int batch, const char *ext_sect, CONF *conf, int verbose, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy); static int certify_spkac(X509 **xret, const char *infile, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, const char *ext_sect, CONF *conf, int verbose, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy); static int do_body(X509 **xret, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, int batch, int verbose, X509_REQ *req, const char *ext_sect, CONF *conf, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy, int selfsign); static int get_certificate_status(const char *ser_status, CA_DB *db); static int do_updatedb(CA_DB *db); static int check_time_format(const char *str); static int do_revoke(X509 *x509, CA_DB *db, REVINFO_TYPE rev_type, const char *extval); static char *make_revocation_str(REVINFO_TYPE rev_type, const char *rev_arg); static int make_revoked(X509_REVOKED *rev, const char *str); static int old_entry_print(const ASN1_OBJECT *obj, const ASN1_STRING *str); static void write_new_certificate(BIO *bp, X509 *x, int output_der, int notext); static CONF *extconf = NULL; static int preserve = 0; static int msie_hack = 0; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_VERBOSE, OPT_CONFIG, OPT_NAME, OPT_SUBJ, OPT_UTF8, OPT_CREATE_SERIAL, OPT_MULTIVALUE_RDN, OPT_STARTDATE, OPT_ENDDATE, OPT_DAYS, OPT_MD, OPT_POLICY, OPT_KEYFILE, OPT_KEYFORM, OPT_PASSIN, OPT_KEY, OPT_CERT, OPT_SELFSIGN, OPT_IN, OPT_OUT, OPT_OUTDIR, OPT_SIGOPT, OPT_NOTEXT, OPT_BATCH, OPT_PRESERVEDN, OPT_NOEMAILDN, OPT_GENCRL, OPT_MSIE_HACK, OPT_CRLDAYS, OPT_CRLHOURS, OPT_CRLSEC, OPT_INFILES, OPT_SS_CERT, OPT_SPKAC, OPT_REVOKE, OPT_VALID, OPT_EXTENSIONS, OPT_EXTFILE, OPT_STATUS, OPT_UPDATEDB, OPT_CRLEXTS, OPT_RAND_SERIAL, OPT_R_ENUM, /* Do not change the order here; see related case statements below */ OPT_CRL_REASON, OPT_CRL_HOLD, OPT_CRL_COMPROMISE, OPT_CRL_CA_COMPROMISE } OPTION_CHOICE; const OPTIONS ca_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"verbose", OPT_VERBOSE, '-', "Verbose output during processing"}, {"config", OPT_CONFIG, 's', "A config file"}, {"name", OPT_NAME, 's', "The particular CA definition to use"}, {"subj", OPT_SUBJ, 's', "Use arg instead of request's subject"}, {"utf8", OPT_UTF8, '-', "Input characters are UTF8 (default ASCII)"}, {"create_serial", OPT_CREATE_SERIAL, '-', "If reading serial fails, create a new random serial"}, {"rand_serial", OPT_RAND_SERIAL, '-', "Always create a random serial; do not store it"}, {"multivalue-rdn", OPT_MULTIVALUE_RDN, '-', "Enable support for multivalued RDNs"}, {"startdate", OPT_STARTDATE, 's', "Cert notBefore, YYMMDDHHMMSSZ"}, {"enddate", OPT_ENDDATE, 's', "YYMMDDHHMMSSZ cert notAfter (overrides -days)"}, {"days", OPT_DAYS, 'p', "Number of days to certify the cert for"}, {"md", OPT_MD, 's', "md to use; one of md2, md5, sha or sha1"}, {"policy", OPT_POLICY, 's', "The CA 'policy' to support"}, {"keyfile", OPT_KEYFILE, 's', "Private key"}, {"keyform", OPT_KEYFORM, 'f', "Private key file format (PEM or ENGINE)"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"key", OPT_KEY, 's', "Key to decode the private key if it is encrypted"}, {"cert", OPT_CERT, '<', "The CA cert"}, {"selfsign", OPT_SELFSIGN, '-', "Sign a cert with the key associated with it"}, {"in", OPT_IN, '<', "The input PEM encoded cert request(s)"}, {"out", OPT_OUT, '>', "Where to put the output file(s)"}, {"outdir", OPT_OUTDIR, '/', "Where to put output cert"}, {"sigopt", OPT_SIGOPT, 's', "Signature parameter in n:v form"}, {"notext", OPT_NOTEXT, '-', "Do not print the generated certificate"}, {"batch", OPT_BATCH, '-', "Don't ask questions"}, {"preserveDN", OPT_PRESERVEDN, '-', "Don't re-order the DN"}, {"noemailDN", OPT_NOEMAILDN, '-', "Don't add the EMAIL field to the DN"}, {"gencrl", OPT_GENCRL, '-', "Generate a new CRL"}, {"msie_hack", OPT_MSIE_HACK, '-', "msie modifications to handle all those universal strings"}, {"crldays", OPT_CRLDAYS, 'p', "Days until the next CRL is due"}, {"crlhours", OPT_CRLHOURS, 'p', "Hours until the next CRL is due"}, {"crlsec", OPT_CRLSEC, 'p', "Seconds until the next CRL is due"}, {"infiles", OPT_INFILES, '-', "The last argument, requests to process"}, {"ss_cert", OPT_SS_CERT, '<', "File contains a self signed cert to sign"}, {"spkac", OPT_SPKAC, '<', "File contains DN and signed public key and challenge"}, {"revoke", OPT_REVOKE, '<', "Revoke a cert (given in file)"}, {"valid", OPT_VALID, 's', "Add a Valid(not-revoked) DB entry about a cert (given in file)"}, {"extensions", OPT_EXTENSIONS, 's', "Extension section (override value in config file)"}, {"extfile", OPT_EXTFILE, '<', "Configuration file with X509v3 extensions to add"}, {"status", OPT_STATUS, 's', "Shows cert status given the serial number"}, {"updatedb", OPT_UPDATEDB, '-', "Updates db for expired cert"}, {"crlexts", OPT_CRLEXTS, 's', "CRL extension section (override value in config file)"}, {"crl_reason", OPT_CRL_REASON, 's', "revocation reason"}, {"crl_hold", OPT_CRL_HOLD, 's', "the hold instruction, an OID. Sets revocation reason to certificateHold"}, {"crl_compromise", OPT_CRL_COMPROMISE, 's', "sets compromise time to val and the revocation reason to keyCompromise"}, {"crl_CA_compromise", OPT_CRL_CA_COMPROMISE, 's', "sets compromise time to val and the revocation reason to CACompromise"}, OPT_R_OPTIONS, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {NULL} }; int ca_main(int argc, char **argv) { CONF *conf = NULL; ENGINE *e = NULL; BIGNUM *crlnumber = NULL, *serial = NULL; EVP_PKEY *pkey = NULL; BIO *in = NULL, *out = NULL, *Sout = NULL; ASN1_INTEGER *tmpser; ASN1_TIME *tmptm; CA_DB *db = NULL; DB_ATTR db_attr; STACK_OF(CONF_VALUE) *attribs = NULL; STACK_OF(OPENSSL_STRING) *sigopts = NULL; STACK_OF(X509) *cert_sk = NULL; X509_CRL *crl = NULL; const EVP_MD *dgst = NULL; char *configfile = default_config_file, *section = NULL; char *md = NULL, *policy = NULL, *keyfile = NULL; char *certfile = NULL, *crl_ext = NULL, *crlnumberfile = NULL, *key = NULL; const char *infile = NULL, *spkac_file = NULL, *ss_cert_file = NULL; const char *extensions = NULL, *extfile = NULL, *passinarg = NULL; char *outdir = NULL, *outfile = NULL, *rev_arg = NULL, *ser_status = NULL; const char *serialfile = NULL, *subj = NULL; char *prog, *startdate = NULL, *enddate = NULL; char *dbfile = NULL, *f; char new_cert[PATH_MAX]; char tmp[10 + 1] = "\0"; char *const *pp; const char *p; size_t outdirlen = 0; int create_ser = 0, free_key = 0, total = 0, total_done = 0; int batch = 0, default_op = 1, doupdatedb = 0, ext_copy = EXT_COPY_NONE; int keyformat = FORMAT_PEM, multirdn = 0, notext = 0, output_der = 0; int ret = 1, email_dn = 1, req = 0, verbose = 0, gencrl = 0, dorevoke = 0; int rand_ser = 0, i, j, selfsign = 0, def_nid, def_ret; long crldays = 0, crlhours = 0, crlsec = 0, days = 0; unsigned long chtype = MBSTRING_ASC, certopt = 0; X509 *x509 = NULL, *x509p = NULL, *x = NULL; REVINFO_TYPE rev_type = REV_NONE; X509_REVOKED *r = NULL; OPTION_CHOICE o; prog = opt_init(argc, argv, ca_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(ca_options); ret = 0; goto end; case OPT_IN: req = 1; infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_VERBOSE: verbose = 1; break; case OPT_CONFIG: configfile = opt_arg(); break; case OPT_NAME: section = opt_arg(); break; case OPT_SUBJ: subj = opt_arg(); /* preserve=1; */ break; case OPT_UTF8: chtype = MBSTRING_UTF8; break; case OPT_RAND_SERIAL: rand_ser = 1; break; case OPT_CREATE_SERIAL: create_ser = 1; break; case OPT_MULTIVALUE_RDN: multirdn = 1; break; case OPT_STARTDATE: startdate = opt_arg(); break; case OPT_ENDDATE: enddate = opt_arg(); break; case OPT_DAYS: days = atoi(opt_arg()); break; case OPT_MD: md = opt_arg(); break; case OPT_POLICY: policy = opt_arg(); break; case OPT_KEYFILE: keyfile = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &keyformat)) goto opthelp; break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_KEY: key = opt_arg(); break; case OPT_CERT: certfile = opt_arg(); break; case OPT_SELFSIGN: selfsign = 1; break; case OPT_OUTDIR: outdir = opt_arg(); break; case OPT_SIGOPT: if (sigopts == NULL) sigopts = sk_OPENSSL_STRING_new_null(); if (sigopts == NULL || !sk_OPENSSL_STRING_push(sigopts, opt_arg())) goto end; break; case OPT_NOTEXT: notext = 1; break; case OPT_BATCH: batch = 1; break; case OPT_PRESERVEDN: preserve = 1; break; case OPT_NOEMAILDN: email_dn = 0; break; case OPT_GENCRL: gencrl = 1; break; case OPT_MSIE_HACK: msie_hack = 1; break; case OPT_CRLDAYS: crldays = atol(opt_arg()); break; case OPT_CRLHOURS: crlhours = atol(opt_arg()); break; case OPT_CRLSEC: crlsec = atol(opt_arg()); break; case OPT_INFILES: req = 1; goto end_of_options; case OPT_SS_CERT: ss_cert_file = opt_arg(); req = 1; break; case OPT_SPKAC: spkac_file = opt_arg(); req = 1; break; case OPT_REVOKE: infile = opt_arg(); dorevoke = 1; break; case OPT_VALID: infile = opt_arg(); dorevoke = 2; break; case OPT_EXTENSIONS: extensions = opt_arg(); break; case OPT_EXTFILE: extfile = opt_arg(); break; case OPT_STATUS: ser_status = opt_arg(); break; case OPT_UPDATEDB: doupdatedb = 1; break; case OPT_CRLEXTS: crl_ext = opt_arg(); break; case OPT_CRL_REASON: /* := REV_CRL_REASON */ case OPT_CRL_HOLD: case OPT_CRL_COMPROMISE: case OPT_CRL_CA_COMPROMISE: rev_arg = opt_arg(); rev_type = (o - OPT_CRL_REASON) + REV_CRL_REASON; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; } } end_of_options: argc = opt_num_rest(); argv = opt_rest(); BIO_printf(bio_err, "Using configuration from %s\n", configfile); if ((conf = app_load_config(configfile)) == NULL) goto end; if (configfile != default_config_file && !app_load_modules(conf)) goto end; /* Lets get the config section we are using */ if (section == NULL && (section = lookup_conf(conf, BASE_SECTION, ENV_DEFAULT_CA)) == NULL) goto end; p = NCONF_get_string(conf, NULL, "oid_file"); if (p == NULL) ERR_clear_error(); if (p != NULL) { BIO *oid_bio = BIO_new_file(p, "r"); if (oid_bio == NULL) { ERR_clear_error(); } else { OBJ_create_objects(oid_bio); BIO_free(oid_bio); } } if (!add_oid_section(conf)) { ERR_print_errors(bio_err); goto end; } app_RAND_load_conf(conf, BASE_SECTION); f = NCONF_get_string(conf, section, STRING_MASK); if (f == NULL) ERR_clear_error(); if (f != NULL && !ASN1_STRING_set_default_mask_asc(f)) { BIO_printf(bio_err, "Invalid global string mask setting %s\n", f); goto end; } if (chtype != MBSTRING_UTF8) { f = NCONF_get_string(conf, section, UTF8_IN); if (f == NULL) ERR_clear_error(); else if (strcmp(f, "yes") == 0) chtype = MBSTRING_UTF8; } db_attr.unique_subject = 1; p = NCONF_get_string(conf, section, ENV_UNIQUE_SUBJECT); if (p != NULL) db_attr.unique_subject = parse_yesno(p, 1); else ERR_clear_error(); /*****************************************************************/ /* report status of cert with serial number given on command line */ if (ser_status) { dbfile = lookup_conf(conf, section, ENV_DATABASE); if (dbfile == NULL) goto end; db = load_index(dbfile, &db_attr); if (db == NULL) goto end; if (index_index(db) <= 0) goto end; if (get_certificate_status(ser_status, db) != 1) BIO_printf(bio_err, "Error verifying serial %s!\n", ser_status); goto end; } /*****************************************************************/ /* we definitely need a private key, so let's get it */ if (keyfile == NULL && (keyfile = lookup_conf(conf, section, ENV_PRIVATE_KEY)) == NULL) goto end; if (key == NULL) { free_key = 1; if (!app_passwd(passinarg, NULL, &key, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } } pkey = load_key(keyfile, keyformat, 0, key, e, "CA private key"); if (key != NULL) OPENSSL_cleanse(key, strlen(key)); if (pkey == NULL) /* load_key() has already printed an appropriate message */ goto end; /*****************************************************************/ /* we need a certificate */ if (!selfsign || spkac_file || ss_cert_file || gencrl) { if (certfile == NULL && (certfile = lookup_conf(conf, section, ENV_CERTIFICATE)) == NULL) goto end; x509 = load_cert(certfile, FORMAT_PEM, "CA certificate"); if (x509 == NULL) goto end; if (!X509_check_private_key(x509, pkey)) { BIO_printf(bio_err, "CA certificate and CA private key do not match\n"); goto end; } } if (!selfsign) x509p = x509; f = NCONF_get_string(conf, BASE_SECTION, ENV_PRESERVE); if (f == NULL) ERR_clear_error(); if ((f != NULL) && ((*f == 'y') || (*f == 'Y'))) preserve = 1; f = NCONF_get_string(conf, BASE_SECTION, ENV_MSIE_HACK); if (f == NULL) ERR_clear_error(); if ((f != NULL) && ((*f == 'y') || (*f == 'Y'))) msie_hack = 1; f = NCONF_get_string(conf, section, ENV_NAMEOPT); if (f != NULL) { if (!set_nameopt(f)) { BIO_printf(bio_err, "Invalid name options: \"%s\"\n", f); goto end; } default_op = 0; } f = NCONF_get_string(conf, section, ENV_CERTOPT); if (f != NULL) { if (!set_cert_ex(&certopt, f)) { BIO_printf(bio_err, "Invalid certificate options: \"%s\"\n", f); goto end; } default_op = 0; } else { ERR_clear_error(); } f = NCONF_get_string(conf, section, ENV_EXTCOPY); if (f != NULL) { if (!set_ext_copy(&ext_copy, f)) { BIO_printf(bio_err, "Invalid extension copy option: \"%s\"\n", f); goto end; } } else { ERR_clear_error(); } /*****************************************************************/ /* lookup where to write new certificates */ if ((outdir == NULL) && (req)) { outdir = NCONF_get_string(conf, section, ENV_NEW_CERTS_DIR); if (outdir == NULL) { BIO_printf(bio_err, "there needs to be defined a directory for new certificate to be placed in\n"); goto end; } #ifndef OPENSSL_SYS_VMS /* * outdir is a directory spec, but access() for VMS demands a * filename. We could use the DEC C routine to convert the * directory syntax to Unix, and give that to app_isdir, * but for now the fopen will catch the error if it's not a * directory */ if (app_isdir(outdir) <= 0) { BIO_printf(bio_err, "%s: %s is not a directory\n", prog, outdir); perror(outdir); goto end; } #endif } /*****************************************************************/ /* we need to load the database file */ dbfile = lookup_conf(conf, section, ENV_DATABASE); if (dbfile == NULL) goto end; db = load_index(dbfile, &db_attr); if (db == NULL) goto end; /* Lets check some fields */ for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) { pp = sk_OPENSSL_PSTRING_value(db->db->data, i); if ((pp[DB_type][0] != DB_TYPE_REV) && (pp[DB_rev_date][0] != '\0')) { BIO_printf(bio_err, "entry %d: not revoked yet, but has a revocation date\n", i + 1); goto end; } if ((pp[DB_type][0] == DB_TYPE_REV) && !make_revoked(NULL, pp[DB_rev_date])) { BIO_printf(bio_err, " in entry %d\n", i + 1); goto end; } if (!check_time_format((char *)pp[DB_exp_date])) { BIO_printf(bio_err, "entry %d: invalid expiry date\n", i + 1); goto end; } p = pp[DB_serial]; j = strlen(p); if (*p == '-') { p++; j--; } if ((j & 1) || (j < 2)) { BIO_printf(bio_err, "entry %d: bad serial number length (%d)\n", i + 1, j); goto end; } for ( ; *p; p++) { if (!isxdigit(_UC(*p))) { BIO_printf(bio_err, "entry %d: bad char 0%o '%c' in serial number\n", i + 1, *p, *p); goto end; } } } if (verbose) { TXT_DB_write(bio_out, db->db); BIO_printf(bio_err, "%d entries loaded from the database\n", sk_OPENSSL_PSTRING_num(db->db->data)); BIO_printf(bio_err, "generating index\n"); } if (index_index(db) <= 0) goto end; /*****************************************************************/ /* Update the db file for expired certificates */ if (doupdatedb) { if (verbose) BIO_printf(bio_err, "Updating %s ...\n", dbfile); i = do_updatedb(db); if (i == -1) { BIO_printf(bio_err, "Malloc failure\n"); goto end; } else if (i == 0) { if (verbose) BIO_printf(bio_err, "No entries found to mark expired\n"); } else { if (!save_index(dbfile, "new", db)) goto end; if (!rotate_index(dbfile, "new", "old")) goto end; if (verbose) BIO_printf(bio_err, "Done. %d entries marked as expired\n", i); } } /*****************************************************************/ /* Read extensions config file */ if (extfile) { if ((extconf = app_load_config(extfile)) == NULL) { ret = 1; goto end; } if (verbose) BIO_printf(bio_err, "Successfully loaded extensions file %s\n", extfile); /* We can have sections in the ext file */ if (extensions == NULL) { extensions = NCONF_get_string(extconf, "default", "extensions"); if (extensions == NULL) extensions = "default"; } } /*****************************************************************/ if (req || gencrl) { if (spkac_file != NULL && outfile != NULL) { output_der = 1; batch = 1; } } def_ret = EVP_PKEY_get_default_digest_nid(pkey, &def_nid); /* * EVP_PKEY_get_default_digest_nid() returns 2 if the digest is * mandatory for this algorithm. */ if (def_ret == 2 && def_nid == NID_undef) { /* The signing algorithm requires there to be no digest */ dgst = EVP_md_null(); } else if (md == NULL && (md = lookup_conf(conf, section, ENV_DEFAULT_MD)) == NULL) { goto end; } else { if (strcmp(md, "default") == 0) { if (def_ret <= 0) { BIO_puts(bio_err, "no default digest\n"); goto end; } md = (char *)OBJ_nid2sn(def_nid); } if (!opt_md(md, &dgst)) goto end; } if (req) { if (email_dn == 1) { char *tmp_email_dn = NULL; tmp_email_dn = NCONF_get_string(conf, section, ENV_DEFAULT_EMAIL_DN); if (tmp_email_dn != NULL && strcmp(tmp_email_dn, "no") == 0) email_dn = 0; } if (verbose) BIO_printf(bio_err, "message digest is %s\n", OBJ_nid2ln(EVP_MD_type(dgst))); if (policy == NULL && (policy = lookup_conf(conf, section, ENV_POLICY)) == NULL) goto end; if (verbose) BIO_printf(bio_err, "policy is %s\n", policy); if (NCONF_get_string(conf, section, ENV_RAND_SERIAL) != NULL) { rand_ser = 1; } else { serialfile = lookup_conf(conf, section, ENV_SERIAL); if (serialfile == NULL) goto end; } if (extconf == NULL) { /* * no '-extfile' option, so we look for extensions in the main * configuration file */ if (extensions == NULL) { extensions = NCONF_get_string(conf, section, ENV_EXTENSIONS); if (extensions == NULL) ERR_clear_error(); } if (extensions != NULL) { /* Check syntax of file */ X509V3_CTX ctx; X509V3_set_ctx_test(&ctx); X509V3_set_nconf(&ctx, conf); if (!X509V3_EXT_add_nconf(conf, &ctx, extensions, NULL)) { BIO_printf(bio_err, "Error Loading extension section %s\n", extensions); ret = 1; goto end; } } } if (startdate == NULL) { startdate = NCONF_get_string(conf, section, ENV_DEFAULT_STARTDATE); if (startdate == NULL) ERR_clear_error(); } if (startdate != NULL && !ASN1_TIME_set_string_X509(NULL, startdate)) { BIO_printf(bio_err, "start date is invalid, it should be YYMMDDHHMMSSZ or YYYYMMDDHHMMSSZ\n"); goto end; } if (startdate == NULL) startdate = "today"; if (enddate == NULL) { enddate = NCONF_get_string(conf, section, ENV_DEFAULT_ENDDATE); if (enddate == NULL) ERR_clear_error(); } if (enddate != NULL && !ASN1_TIME_set_string_X509(NULL, enddate)) { BIO_printf(bio_err, "end date is invalid, it should be YYMMDDHHMMSSZ or YYYYMMDDHHMMSSZ\n"); goto end; } if (days == 0) { if (!NCONF_get_number(conf, section, ENV_DEFAULT_DAYS, &days)) days = 0; } if (enddate == NULL && days == 0) { BIO_printf(bio_err, "cannot lookup how many days to certify for\n"); goto end; } if (rand_ser) { if ((serial = BN_new()) == NULL || !rand_serial(serial, NULL)) { BIO_printf(bio_err, "error generating serial number\n"); goto end; } } else { if ((serial = load_serial(serialfile, create_ser, NULL)) == NULL) { BIO_printf(bio_err, "error while loading serial number\n"); goto end; } if (verbose) { if (BN_is_zero(serial)) { BIO_printf(bio_err, "next serial number is 00\n"); } else { if ((f = BN_bn2hex(serial)) == NULL) goto end; BIO_printf(bio_err, "next serial number is %s\n", f); OPENSSL_free(f); } } } if ((attribs = NCONF_get_section(conf, policy)) == NULL) { BIO_printf(bio_err, "unable to find 'section' for %s\n", policy); goto end; } if ((cert_sk = sk_X509_new_null()) == NULL) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } if (spkac_file != NULL) { total++; j = certify_spkac(&x, spkac_file, pkey, x509, dgst, sigopts, attribs, db, serial, subj, chtype, multirdn, email_dn, startdate, enddate, days, extensions, conf, verbose, certopt, get_nameopt(), default_op, ext_copy); if (j < 0) goto end; if (j > 0) { total_done++; BIO_printf(bio_err, "\n"); if (!BN_add_word(serial, 1)) goto end; if (!sk_X509_push(cert_sk, x)) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } } } if (ss_cert_file != NULL) { total++; j = certify_cert(&x, ss_cert_file, pkey, x509, dgst, sigopts, attribs, db, serial, subj, chtype, multirdn, email_dn, startdate, enddate, days, batch, extensions, conf, verbose, certopt, get_nameopt(), default_op, ext_copy); if (j < 0) goto end; if (j > 0) { total_done++; BIO_printf(bio_err, "\n"); if (!BN_add_word(serial, 1)) goto end; if (!sk_X509_push(cert_sk, x)) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } } } if (infile != NULL) { total++; j = certify(&x, infile, pkey, x509p, dgst, sigopts, attribs, db, serial, subj, chtype, multirdn, email_dn, startdate, enddate, days, batch, extensions, conf, verbose, certopt, get_nameopt(), default_op, ext_copy, selfsign); if (j < 0) goto end; if (j > 0) { total_done++; BIO_printf(bio_err, "\n"); if (!BN_add_word(serial, 1)) goto end; if (!sk_X509_push(cert_sk, x)) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } } } for (i = 0; i < argc; i++) { total++; j = certify(&x, argv[i], pkey, x509p, dgst, sigopts, attribs, db, serial, subj, chtype, multirdn, email_dn, startdate, enddate, days, batch, extensions, conf, verbose, certopt, get_nameopt(), default_op, ext_copy, selfsign); if (j < 0) goto end; if (j > 0) { total_done++; BIO_printf(bio_err, "\n"); if (!BN_add_word(serial, 1)) { X509_free(x); goto end; } if (!sk_X509_push(cert_sk, x)) { BIO_printf(bio_err, "Memory allocation failure\n"); X509_free(x); goto end; } } } /* * we have a stack of newly certified certificates and a data base * and serial number that need updating */ if (sk_X509_num(cert_sk) > 0) { if (!batch) { BIO_printf(bio_err, "\n%d out of %d certificate requests certified, commit? [y/n]", total_done, total); (void)BIO_flush(bio_err); tmp[0] = '\0'; if (fgets(tmp, sizeof(tmp), stdin) == NULL) { BIO_printf(bio_err, "CERTIFICATION CANCELED: I/O error\n"); ret = 0; goto end; } if (tmp[0] != 'y' && tmp[0] != 'Y') { BIO_printf(bio_err, "CERTIFICATION CANCELED\n"); ret = 0; goto end; } } BIO_printf(bio_err, "Write out database with %d new entries\n", sk_X509_num(cert_sk)); if (serialfile != NULL && !save_serial(serialfile, "new", serial, NULL)) goto end; if (!save_index(dbfile, "new", db)) goto end; } outdirlen = OPENSSL_strlcpy(new_cert, outdir, sizeof(new_cert)); #ifndef OPENSSL_SYS_VMS outdirlen = OPENSSL_strlcat(new_cert, "/", sizeof(new_cert)); #endif if (verbose) BIO_printf(bio_err, "writing new certificates\n"); for (i = 0; i < sk_X509_num(cert_sk); i++) { BIO *Cout = NULL; X509 *xi = sk_X509_value(cert_sk, i); ASN1_INTEGER *serialNumber = X509_get_serialNumber(xi); const unsigned char *psn = ASN1_STRING_get0_data(serialNumber); const int snl = ASN1_STRING_length(serialNumber); const int filen_len = 2 * (snl > 0 ? snl : 1) + sizeof(".pem"); char *n = new_cert + outdirlen; if (outdirlen + filen_len > PATH_MAX) { BIO_printf(bio_err, "certificate file name too long\n"); goto end; } if (snl > 0) { static const char HEX_DIGITS[] = "0123456789ABCDEF"; for (j = 0; j < snl; j++, psn++) { *n++ = HEX_DIGITS[*psn >> 4]; *n++ = HEX_DIGITS[*psn & 0x0F]; } } else { *(n++) = '0'; *(n++) = '0'; } *(n++) = '.'; *(n++) = 'p'; *(n++) = 'e'; *(n++) = 'm'; *n = '\0'; /* closing new_cert */ if (verbose) BIO_printf(bio_err, "writing %s\n", new_cert); Sout = bio_open_default(outfile, 'w', output_der ? FORMAT_ASN1 : FORMAT_TEXT); if (Sout == NULL) goto end; Cout = BIO_new_file(new_cert, "w"); if (Cout == NULL) { perror(new_cert); goto end; } write_new_certificate(Cout, xi, 0, notext); write_new_certificate(Sout, xi, output_der, notext); BIO_free_all(Cout); BIO_free_all(Sout); Sout = NULL; } if (sk_X509_num(cert_sk)) { /* Rename the database and the serial file */ if (serialfile != NULL && !rotate_serial(serialfile, "new", "old")) goto end; if (!rotate_index(dbfile, "new", "old")) goto end; BIO_printf(bio_err, "Data Base Updated\n"); } } /*****************************************************************/ if (gencrl) { int crl_v2 = 0; if (crl_ext == NULL) { crl_ext = NCONF_get_string(conf, section, ENV_CRLEXT); if (crl_ext == NULL) ERR_clear_error(); } if (crl_ext != NULL) { /* Check syntax of file */ X509V3_CTX ctx; X509V3_set_ctx_test(&ctx); X509V3_set_nconf(&ctx, conf); if (!X509V3_EXT_add_nconf(conf, &ctx, crl_ext, NULL)) { BIO_printf(bio_err, "Error Loading CRL extension section %s\n", crl_ext); ret = 1; goto end; } } if ((crlnumberfile = NCONF_get_string(conf, section, ENV_CRLNUMBER)) != NULL) if ((crlnumber = load_serial(crlnumberfile, 0, NULL)) == NULL) { BIO_printf(bio_err, "error while loading CRL number\n"); goto end; } if (!crldays && !crlhours && !crlsec) { if (!NCONF_get_number(conf, section, ENV_DEFAULT_CRL_DAYS, &crldays)) crldays = 0; if (!NCONF_get_number(conf, section, ENV_DEFAULT_CRL_HOURS, &crlhours)) crlhours = 0; ERR_clear_error(); } if ((crldays == 0) && (crlhours == 0) && (crlsec == 0)) { BIO_printf(bio_err, "cannot lookup how long until the next CRL is issued\n"); goto end; } if (verbose) BIO_printf(bio_err, "making CRL\n"); if ((crl = X509_CRL_new()) == NULL) goto end; if (!X509_CRL_set_issuer_name(crl, X509_get_subject_name(x509))) goto end; tmptm = ASN1_TIME_new(); if (tmptm == NULL || X509_gmtime_adj(tmptm, 0) == NULL || !X509_CRL_set1_lastUpdate(crl, tmptm) || X509_time_adj_ex(tmptm, crldays, crlhours * 60 * 60 + crlsec, NULL) == NULL) { BIO_puts(bio_err, "error setting CRL nextUpdate\n"); ASN1_TIME_free(tmptm); goto end; } X509_CRL_set1_nextUpdate(crl, tmptm); ASN1_TIME_free(tmptm); for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) { pp = sk_OPENSSL_PSTRING_value(db->db->data, i); if (pp[DB_type][0] == DB_TYPE_REV) { if ((r = X509_REVOKED_new()) == NULL) goto end; j = make_revoked(r, pp[DB_rev_date]); if (!j) goto end; if (j == 2) crl_v2 = 1; if (!BN_hex2bn(&serial, pp[DB_serial])) goto end; tmpser = BN_to_ASN1_INTEGER(serial, NULL); BN_free(serial); serial = NULL; if (!tmpser) goto end; X509_REVOKED_set_serialNumber(r, tmpser); ASN1_INTEGER_free(tmpser); X509_CRL_add0_revoked(crl, r); } } /* * sort the data so it will be written in serial number order */ X509_CRL_sort(crl); /* we now have a CRL */ if (verbose) BIO_printf(bio_err, "signing CRL\n"); /* Add any extensions asked for */ if (crl_ext != NULL || crlnumberfile != NULL) { X509V3_CTX crlctx; X509V3_set_ctx(&crlctx, x509, NULL, NULL, crl, 0); X509V3_set_nconf(&crlctx, conf); if (crl_ext != NULL) if (!X509V3_EXT_CRL_add_nconf(conf, &crlctx, crl_ext, crl)) goto end; if (crlnumberfile != NULL) { tmpser = BN_to_ASN1_INTEGER(crlnumber, NULL); if (!tmpser) goto end; X509_CRL_add1_ext_i2d(crl, NID_crl_number, tmpser, 0, 0); ASN1_INTEGER_free(tmpser); crl_v2 = 1; if (!BN_add_word(crlnumber, 1)) goto end; } } if (crl_ext != NULL || crl_v2) { if (!X509_CRL_set_version(crl, 1)) goto end; /* version 2 CRL */ } /* we have a CRL number that need updating */ if (crlnumberfile != NULL && !save_serial(crlnumberfile, "new", crlnumber, NULL)) goto end; BN_free(crlnumber); crlnumber = NULL; if (!do_X509_CRL_sign(crl, pkey, dgst, sigopts)) goto end; Sout = bio_open_default(outfile, 'w', output_der ? FORMAT_ASN1 : FORMAT_TEXT); if (Sout == NULL) goto end; PEM_write_bio_X509_CRL(Sout, crl); /* Rename the crlnumber file */ if (crlnumberfile != NULL && !rotate_serial(crlnumberfile, "new", "old")) goto end; } /*****************************************************************/ if (dorevoke) { if (infile == NULL) { BIO_printf(bio_err, "no input files\n"); goto end; } else { X509 *revcert; revcert = load_cert(infile, FORMAT_PEM, infile); if (revcert == NULL) goto end; if (dorevoke == 2) rev_type = REV_VALID; j = do_revoke(revcert, db, rev_type, rev_arg); if (j <= 0) goto end; X509_free(revcert); if (!save_index(dbfile, "new", db)) goto end; if (!rotate_index(dbfile, "new", "old")) goto end; BIO_printf(bio_err, "Data Base Updated\n"); } } ret = 0; end: if (ret) ERR_print_errors(bio_err); BIO_free_all(Sout); BIO_free_all(out); BIO_free_all(in); sk_X509_pop_free(cert_sk, X509_free); if (free_key) OPENSSL_free(key); BN_free(serial); BN_free(crlnumber); free_index(db); sk_OPENSSL_STRING_free(sigopts); EVP_PKEY_free(pkey); X509_free(x509); X509_CRL_free(crl); NCONF_free(conf); NCONF_free(extconf); release_engine(e); return ret; } static char *lookup_conf(const CONF *conf, const char *section, const char *tag) { char *entry = NCONF_get_string(conf, section, tag); if (entry == NULL) BIO_printf(bio_err, "variable lookup failed for %s::%s\n", section, tag); return entry; } static int certify(X509 **xret, const char *infile, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, int batch, const char *ext_sect, CONF *lconf, int verbose, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy, int selfsign) { X509_REQ *req = NULL; BIO *in = NULL; EVP_PKEY *pktmp = NULL; int ok = -1, i; in = BIO_new_file(infile, "r"); if (in == NULL) { ERR_print_errors(bio_err); goto end; } if ((req = PEM_read_bio_X509_REQ(in, NULL, NULL, NULL)) == NULL) { BIO_printf(bio_err, "Error reading certificate request in %s\n", infile); goto end; } if (verbose) X509_REQ_print_ex(bio_err, req, nameopt, X509_FLAG_COMPAT); BIO_printf(bio_err, "Check that the request matches the signature\n"); if (selfsign && !X509_REQ_check_private_key(req, pkey)) { BIO_printf(bio_err, "Certificate request and CA private key do not match\n"); ok = 0; goto end; } if ((pktmp = X509_REQ_get0_pubkey(req)) == NULL) { BIO_printf(bio_err, "error unpacking public key\n"); goto end; } i = X509_REQ_verify(req, pktmp); pktmp = NULL; if (i < 0) { ok = 0; BIO_printf(bio_err, "Signature verification problems....\n"); ERR_print_errors(bio_err); goto end; } if (i == 0) { ok = 0; BIO_printf(bio_err, "Signature did not match the certificate request\n"); ERR_print_errors(bio_err); goto end; } else { BIO_printf(bio_err, "Signature ok\n"); } ok = do_body(xret, pkey, x509, dgst, sigopts, policy, db, serial, subj, chtype, multirdn, email_dn, startdate, enddate, days, batch, verbose, req, ext_sect, lconf, certopt, nameopt, default_op, ext_copy, selfsign); end: X509_REQ_free(req); BIO_free(in); return ok; } static int certify_cert(X509 **xret, const char *infile, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, int batch, const char *ext_sect, CONF *lconf, int verbose, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy) { X509 *req = NULL; X509_REQ *rreq = NULL; EVP_PKEY *pktmp = NULL; int ok = -1, i; if ((req = load_cert(infile, FORMAT_PEM, infile)) == NULL) goto end; if (verbose) X509_print(bio_err, req); BIO_printf(bio_err, "Check that the request matches the signature\n"); if ((pktmp = X509_get0_pubkey(req)) == NULL) { BIO_printf(bio_err, "error unpacking public key\n"); goto end; } i = X509_verify(req, pktmp); if (i < 0) { ok = 0; BIO_printf(bio_err, "Signature verification problems....\n"); goto end; } if (i == 0) { ok = 0; BIO_printf(bio_err, "Signature did not match the certificate\n"); goto end; } else { BIO_printf(bio_err, "Signature ok\n"); } if ((rreq = X509_to_X509_REQ(req, NULL, NULL)) == NULL) goto end; ok = do_body(xret, pkey, x509, dgst, sigopts, policy, db, serial, subj, chtype, multirdn, email_dn, startdate, enddate, days, batch, verbose, rreq, ext_sect, lconf, certopt, nameopt, default_op, ext_copy, 0); end: X509_REQ_free(rreq); X509_free(req); return ok; } static int do_body(X509 **xret, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, int batch, int verbose, X509_REQ *req, const char *ext_sect, CONF *lconf, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy, int selfsign) { X509_NAME *name = NULL, *CAname = NULL, *subject = NULL; const ASN1_TIME *tm; ASN1_STRING *str, *str2; ASN1_OBJECT *obj; X509 *ret = NULL; X509_NAME_ENTRY *ne, *tne; EVP_PKEY *pktmp; int ok = -1, i, j, last, nid; const char *p; CONF_VALUE *cv; OPENSSL_STRING row[DB_NUMBER]; OPENSSL_STRING *irow = NULL; OPENSSL_STRING *rrow = NULL; char buf[25]; for (i = 0; i < DB_NUMBER; i++) row[i] = NULL; if (subj) { X509_NAME *n = parse_name(subj, chtype, multirdn); if (!n) { ERR_print_errors(bio_err); goto end; } X509_REQ_set_subject_name(req, n); X509_NAME_free(n); } if (default_op) BIO_printf(bio_err, "The Subject's Distinguished Name is as follows\n"); name = X509_REQ_get_subject_name(req); for (i = 0; i < X509_NAME_entry_count(name); i++) { ne = X509_NAME_get_entry(name, i); str = X509_NAME_ENTRY_get_data(ne); obj = X509_NAME_ENTRY_get_object(ne); nid = OBJ_obj2nid(obj); if (msie_hack) { /* assume all type should be strings */ if (str->type == V_ASN1_UNIVERSALSTRING) ASN1_UNIVERSALSTRING_to_string(str); if (str->type == V_ASN1_IA5STRING && nid != NID_pkcs9_emailAddress) str->type = V_ASN1_T61STRING; if (nid == NID_pkcs9_emailAddress && str->type == V_ASN1_PRINTABLESTRING) str->type = V_ASN1_IA5STRING; } /* If no EMAIL is wanted in the subject */ if (nid == NID_pkcs9_emailAddress && !email_dn) continue; /* check some things */ if (nid == NID_pkcs9_emailAddress && str->type != V_ASN1_IA5STRING) { BIO_printf(bio_err, "\nemailAddress type needs to be of type IA5STRING\n"); goto end; } if (str->type != V_ASN1_BMPSTRING && str->type != V_ASN1_UTF8STRING) { j = ASN1_PRINTABLE_type(str->data, str->length); if ((j == V_ASN1_T61STRING && str->type != V_ASN1_T61STRING) || (j == V_ASN1_IA5STRING && str->type == V_ASN1_PRINTABLESTRING)) { BIO_printf(bio_err, "\nThe string contains characters that are illegal for the ASN.1 type\n"); goto end; } } if (default_op) old_entry_print(obj, str); } /* Ok, now we check the 'policy' stuff. */ if ((subject = X509_NAME_new()) == NULL) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } /* take a copy of the issuer name before we mess with it. */ if (selfsign) CAname = X509_NAME_dup(name); else CAname = X509_NAME_dup(X509_get_subject_name(x509)); if (CAname == NULL) goto end; str = str2 = NULL; for (i = 0; i < sk_CONF_VALUE_num(policy); i++) { cv = sk_CONF_VALUE_value(policy, i); /* get the object id */ if ((j = OBJ_txt2nid(cv->name)) == NID_undef) { BIO_printf(bio_err, "%s:unknown object type in 'policy' configuration\n", cv->name); goto end; } obj = OBJ_nid2obj(j); last = -1; for (;;) { X509_NAME_ENTRY *push = NULL; /* lookup the object in the supplied name list */ j = X509_NAME_get_index_by_OBJ(name, obj, last); if (j < 0) { if (last != -1) break; tne = NULL; } else { tne = X509_NAME_get_entry(name, j); } last = j; /* depending on the 'policy', decide what to do. */ if (strcmp(cv->value, "optional") == 0) { if (tne != NULL) push = tne; } else if (strcmp(cv->value, "supplied") == 0) { if (tne == NULL) { BIO_printf(bio_err, "The %s field needed to be supplied and was missing\n", cv->name); goto end; } else { push = tne; } } else if (strcmp(cv->value, "match") == 0) { int last2; if (tne == NULL) { BIO_printf(bio_err, "The mandatory %s field was missing\n", cv->name); goto end; } last2 = -1; again2: j = X509_NAME_get_index_by_OBJ(CAname, obj, last2); if ((j < 0) && (last2 == -1)) { BIO_printf(bio_err, "The %s field does not exist in the CA certificate,\n" "the 'policy' is misconfigured\n", cv->name); goto end; } if (j >= 0) { push = X509_NAME_get_entry(CAname, j); str = X509_NAME_ENTRY_get_data(tne); str2 = X509_NAME_ENTRY_get_data(push); last2 = j; if (ASN1_STRING_cmp(str, str2) != 0) goto again2; } if (j < 0) { BIO_printf(bio_err, "The %s field is different between\n" "CA certificate (%s) and the request (%s)\n", cv->name, ((str2 == NULL) ? "NULL" : (char *)str2->data), ((str == NULL) ? "NULL" : (char *)str->data)); goto end; } } else { BIO_printf(bio_err, "%s:invalid type in 'policy' configuration\n", cv->value); goto end; } if (push != NULL) { if (!X509_NAME_add_entry(subject, push, -1, 0)) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } } if (j < 0) break; } } if (preserve) { X509_NAME_free(subject); /* subject=X509_NAME_dup(X509_REQ_get_subject_name(req)); */ subject = X509_NAME_dup(name); if (subject == NULL) goto end; } /* We are now totally happy, lets make and sign the certificate */ if (verbose) BIO_printf(bio_err, "Everything appears to be ok, creating and signing the certificate\n"); if ((ret = X509_new()) == NULL) goto end; #ifdef X509_V3 /* Make it an X509 v3 certificate. */ if (!X509_set_version(ret, 2)) goto end; #endif if (BN_to_ASN1_INTEGER(serial, X509_get_serialNumber(ret)) == NULL) goto end; if (selfsign) { if (!X509_set_issuer_name(ret, subject)) goto end; } else { if (!X509_set_issuer_name(ret, X509_get_subject_name(x509))) goto end; } if (!set_cert_times(ret, startdate, enddate, days)) goto end; if (enddate != NULL) { int tdays; if (!ASN1_TIME_diff(&tdays, NULL, NULL, X509_get0_notAfter(ret))) goto end; days = tdays; } if (!X509_set_subject_name(ret, subject)) goto end; pktmp = X509_REQ_get0_pubkey(req); i = X509_set_pubkey(ret, pktmp); if (!i) goto end; /* Lets add the extensions, if there are any */ if (ext_sect) { X509V3_CTX ctx; /* Initialize the context structure */ if (selfsign) X509V3_set_ctx(&ctx, ret, ret, req, NULL, 0); else X509V3_set_ctx(&ctx, x509, ret, req, NULL, 0); if (extconf != NULL) { if (verbose) BIO_printf(bio_err, "Extra configuration file found\n"); /* Use the extconf configuration db LHASH */ X509V3_set_nconf(&ctx, extconf); /* Test the structure (needed?) */ /* X509V3_set_ctx_test(&ctx); */ /* Adds exts contained in the configuration file */ if (!X509V3_EXT_add_nconf(extconf, &ctx, ext_sect, ret)) { BIO_printf(bio_err, "ERROR: adding extensions in section %s\n", ext_sect); ERR_print_errors(bio_err); goto end; } if (verbose) BIO_printf(bio_err, "Successfully added extensions from file.\n"); } else if (ext_sect) { /* We found extensions to be set from config file */ X509V3_set_nconf(&ctx, lconf); if (!X509V3_EXT_add_nconf(lconf, &ctx, ext_sect, ret)) { BIO_printf(bio_err, "ERROR: adding extensions in section %s\n", ext_sect); ERR_print_errors(bio_err); goto end; } if (verbose) BIO_printf(bio_err, "Successfully added extensions from config\n"); } } /* Copy extensions from request (if any) */ if (!copy_extensions(ret, req, ext_copy)) { BIO_printf(bio_err, "ERROR: adding extensions from request\n"); ERR_print_errors(bio_err); goto end; } { const STACK_OF(X509_EXTENSION) *exts = X509_get0_extensions(ret); if (exts != NULL && sk_X509_EXTENSION_num(exts) > 0) /* Make it an X509 v3 certificate. */ if (!X509_set_version(ret, 2)) goto end; } if (verbose) BIO_printf(bio_err, "The subject name appears to be ok, checking data base for clashes\n"); /* Build the correct Subject if no e-mail is wanted in the subject. */ if (!email_dn) { X509_NAME_ENTRY *tmpne; X509_NAME *dn_subject; /* * Its best to dup the subject DN and then delete any email addresses * because this retains its structure. */ if ((dn_subject = X509_NAME_dup(subject)) == NULL) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } i = -1; while ((i = X509_NAME_get_index_by_NID(dn_subject, NID_pkcs9_emailAddress, i)) >= 0) { tmpne = X509_NAME_delete_entry(dn_subject, i--); X509_NAME_ENTRY_free(tmpne); } if (!X509_set_subject_name(ret, dn_subject)) { X509_NAME_free(dn_subject); goto end; } X509_NAME_free(dn_subject); } row[DB_name] = X509_NAME_oneline(X509_get_subject_name(ret), NULL, 0); if (row[DB_name] == NULL) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } if (BN_is_zero(serial)) row[DB_serial] = OPENSSL_strdup("00"); else row[DB_serial] = BN_bn2hex(serial); if (row[DB_serial] == NULL) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } if (row[DB_name][0] == '\0') { /* * An empty subject! We'll use the serial number instead. If * unique_subject is in use then we don't want different entries with * empty subjects matching each other. */ OPENSSL_free(row[DB_name]); row[DB_name] = OPENSSL_strdup(row[DB_serial]); if (row[DB_name] == NULL) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } } if (db->attributes.unique_subject) { OPENSSL_STRING *crow = row; rrow = TXT_DB_get_by_index(db->db, DB_name, crow); if (rrow != NULL) { BIO_printf(bio_err, "ERROR:There is already a certificate for %s\n", row[DB_name]); } } if (rrow == NULL) { rrow = TXT_DB_get_by_index(db->db, DB_serial, row); if (rrow != NULL) { BIO_printf(bio_err, "ERROR:Serial number %s has already been issued,\n", row[DB_serial]); BIO_printf(bio_err, " check the database/serial_file for corruption\n"); } } if (rrow != NULL) { BIO_printf(bio_err, "The matching entry has the following details\n"); if (rrow[DB_type][0] == DB_TYPE_EXP) p = "Expired"; else if (rrow[DB_type][0] == DB_TYPE_REV) p = "Revoked"; else if (rrow[DB_type][0] == DB_TYPE_VAL) p = "Valid"; else p = "\ninvalid type, Data base error\n"; BIO_printf(bio_err, "Type :%s\n", p);; if (rrow[DB_type][0] == DB_TYPE_REV) { p = rrow[DB_exp_date]; if (p == NULL) p = "undef"; BIO_printf(bio_err, "Was revoked on:%s\n", p); } p = rrow[DB_exp_date]; if (p == NULL) p = "undef"; BIO_printf(bio_err, "Expires on :%s\n", p); p = rrow[DB_serial]; if (p == NULL) p = "undef"; BIO_printf(bio_err, "Serial Number :%s\n", p); p = rrow[DB_file]; if (p == NULL) p = "undef"; BIO_printf(bio_err, "File name :%s\n", p); p = rrow[DB_name]; if (p == NULL) p = "undef"; BIO_printf(bio_err, "Subject Name :%s\n", p); ok = -1; /* This is now a 'bad' error. */ goto end; } if (!default_op) { BIO_printf(bio_err, "Certificate Details:\n"); /* * Never print signature details because signature not present */ certopt |= X509_FLAG_NO_SIGDUMP | X509_FLAG_NO_SIGNAME; X509_print_ex(bio_err, ret, nameopt, certopt); } BIO_printf(bio_err, "Certificate is to be certified until "); ASN1_TIME_print(bio_err, X509_get0_notAfter(ret)); if (days) BIO_printf(bio_err, " (%ld days)", days); BIO_printf(bio_err, "\n"); if (!batch) { BIO_printf(bio_err, "Sign the certificate? [y/n]:"); (void)BIO_flush(bio_err); buf[0] = '\0'; if (fgets(buf, sizeof(buf), stdin) == NULL) { BIO_printf(bio_err, "CERTIFICATE WILL NOT BE CERTIFIED: I/O error\n"); ok = 0; goto end; } if (!(buf[0] == 'y' || buf[0] == 'Y')) { BIO_printf(bio_err, "CERTIFICATE WILL NOT BE CERTIFIED\n"); ok = 0; goto end; } } pktmp = X509_get0_pubkey(ret); if (EVP_PKEY_missing_parameters(pktmp) && !EVP_PKEY_missing_parameters(pkey)) EVP_PKEY_copy_parameters(pktmp, pkey); if (!do_X509_sign(ret, pkey, dgst, sigopts)) goto end; /* We now just add it to the database as DB_TYPE_VAL('V') */ row[DB_type] = OPENSSL_strdup("V"); tm = X509_get0_notAfter(ret); row[DB_exp_date] = app_malloc(tm->length + 1, "row expdate"); memcpy(row[DB_exp_date], tm->data, tm->length); row[DB_exp_date][tm->length] = '\0'; row[DB_rev_date] = NULL; row[DB_file] = OPENSSL_strdup("unknown"); if ((row[DB_type] == NULL) || (row[DB_exp_date] == NULL) || (row[DB_file] == NULL) || (row[DB_name] == NULL)) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } irow = app_malloc(sizeof(*irow) * (DB_NUMBER + 1), "row space"); for (i = 0; i < DB_NUMBER; i++) irow[i] = row[i]; irow[DB_NUMBER] = NULL; if (!TXT_DB_insert(db->db, irow)) { BIO_printf(bio_err, "failed to update database\n"); BIO_printf(bio_err, "TXT_DB error number %ld\n", db->db->error); goto end; } irow = NULL; ok = 1; end: if (ok != 1) { for (i = 0; i < DB_NUMBER; i++) OPENSSL_free(row[i]); } OPENSSL_free(irow); X509_NAME_free(CAname); X509_NAME_free(subject); if (ok <= 0) X509_free(ret); else *xret = ret; return ok; } static void write_new_certificate(BIO *bp, X509 *x, int output_der, int notext) { if (output_der) { (void)i2d_X509_bio(bp, x); return; } if (!notext) X509_print(bp, x); PEM_write_bio_X509(bp, x); } static int certify_spkac(X509 **xret, const char *infile, EVP_PKEY *pkey, X509 *x509, const EVP_MD *dgst, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(CONF_VALUE) *policy, CA_DB *db, BIGNUM *serial, const char *subj, unsigned long chtype, int multirdn, int email_dn, const char *startdate, const char *enddate, long days, const char *ext_sect, CONF *lconf, int verbose, unsigned long certopt, unsigned long nameopt, int default_op, int ext_copy) { STACK_OF(CONF_VALUE) *sk = NULL; LHASH_OF(CONF_VALUE) *parms = NULL; X509_REQ *req = NULL; CONF_VALUE *cv = NULL; NETSCAPE_SPKI *spki = NULL; char *type, *buf; EVP_PKEY *pktmp = NULL; X509_NAME *n = NULL; X509_NAME_ENTRY *ne = NULL; int ok = -1, i, j; long errline; int nid; /* * Load input file into a hash table. (This is just an easy * way to read and parse the file, then put it into a convenient * STACK format). */ parms = CONF_load(NULL, infile, &errline); if (parms == NULL) { BIO_printf(bio_err, "error on line %ld of %s\n", errline, infile); ERR_print_errors(bio_err); goto end; } sk = CONF_get_section(parms, "default"); if (sk_CONF_VALUE_num(sk) == 0) { BIO_printf(bio_err, "no name/value pairs found in %s\n", infile); goto end; } /* * Now create a dummy X509 request structure. We don't actually * have an X509 request, but we have many of the components * (a public key, various DN components). The idea is that we * put these components into the right X509 request structure * and we can use the same code as if you had a real X509 request. */ req = X509_REQ_new(); if (req == NULL) { ERR_print_errors(bio_err); goto end; } /* * Build up the subject name set. */ n = X509_REQ_get_subject_name(req); for (i = 0;; i++) { if (sk_CONF_VALUE_num(sk) <= i) break; cv = sk_CONF_VALUE_value(sk, i); type = cv->name; /* * Skip past any leading X. X: X, etc to allow for multiple instances */ for (buf = cv->name; *buf; buf++) if ((*buf == ':') || (*buf == ',') || (*buf == '.')) { buf++; if (*buf) type = buf; break; } buf = cv->value; if ((nid = OBJ_txt2nid(type)) == NID_undef) { if (strcmp(type, "SPKAC") == 0) { spki = NETSCAPE_SPKI_b64_decode(cv->value, -1); if (spki == NULL) { BIO_printf(bio_err, "unable to load Netscape SPKAC structure\n"); ERR_print_errors(bio_err); goto end; } } continue; } if (!X509_NAME_add_entry_by_NID(n, nid, chtype, (unsigned char *)buf, -1, -1, 0)) goto end; } if (spki == NULL) { BIO_printf(bio_err, "Netscape SPKAC structure not found in %s\n", infile); goto end; } /* * Now extract the key from the SPKI structure. */ BIO_printf(bio_err, "Check that the SPKAC request matches the signature\n"); if ((pktmp = NETSCAPE_SPKI_get_pubkey(spki)) == NULL) { BIO_printf(bio_err, "error unpacking SPKAC public key\n"); goto end; } j = NETSCAPE_SPKI_verify(spki, pktmp); if (j <= 0) { EVP_PKEY_free(pktmp); BIO_printf(bio_err, "signature verification failed on SPKAC public key\n"); goto end; } BIO_printf(bio_err, "Signature ok\n"); X509_REQ_set_pubkey(req, pktmp); EVP_PKEY_free(pktmp); ok = do_body(xret, pkey, x509, dgst, sigopts, policy, db, serial, subj, chtype, multirdn, email_dn, startdate, enddate, days, 1, verbose, req, ext_sect, lconf, certopt, nameopt, default_op, ext_copy, 0); end: X509_REQ_free(req); CONF_free(parms); NETSCAPE_SPKI_free(spki); X509_NAME_ENTRY_free(ne); return ok; } static int check_time_format(const char *str) { return ASN1_TIME_set_string(NULL, str); } static int do_revoke(X509 *x509, CA_DB *db, REVINFO_TYPE rev_type, const char *value) { const ASN1_TIME *tm = NULL; char *row[DB_NUMBER], **rrow, **irow; char *rev_str = NULL; BIGNUM *bn = NULL; int ok = -1, i; for (i = 0; i < DB_NUMBER; i++) row[i] = NULL; row[DB_name] = X509_NAME_oneline(X509_get_subject_name(x509), NULL, 0); bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(x509), NULL); if (!bn) goto end; if (BN_is_zero(bn)) row[DB_serial] = OPENSSL_strdup("00"); else row[DB_serial] = BN_bn2hex(bn); BN_free(bn); if (row[DB_name] != NULL && row[DB_name][0] == '\0') { /* Entries with empty Subjects actually use the serial number instead */ OPENSSL_free(row[DB_name]); row[DB_name] = OPENSSL_strdup(row[DB_serial]); } if ((row[DB_name] == NULL) || (row[DB_serial] == NULL)) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } /* * We have to lookup by serial number because name lookup skips revoked * certs */ rrow = TXT_DB_get_by_index(db->db, DB_serial, row); if (rrow == NULL) { BIO_printf(bio_err, "Adding Entry with serial number %s to DB for %s\n", row[DB_serial], row[DB_name]); /* We now just add it to the database as DB_TYPE_REV('V') */ row[DB_type] = OPENSSL_strdup("V"); tm = X509_get0_notAfter(x509); row[DB_exp_date] = app_malloc(tm->length + 1, "row exp_data"); memcpy(row[DB_exp_date], tm->data, tm->length); row[DB_exp_date][tm->length] = '\0'; row[DB_rev_date] = NULL; row[DB_file] = OPENSSL_strdup("unknown"); if (row[DB_type] == NULL || row[DB_file] == NULL) { BIO_printf(bio_err, "Memory allocation failure\n"); goto end; } irow = app_malloc(sizeof(*irow) * (DB_NUMBER + 1), "row ptr"); for (i = 0; i < DB_NUMBER; i++) irow[i] = row[i]; irow[DB_NUMBER] = NULL; if (!TXT_DB_insert(db->db, irow)) { BIO_printf(bio_err, "failed to update database\n"); BIO_printf(bio_err, "TXT_DB error number %ld\n", db->db->error); OPENSSL_free(irow); goto end; } for (i = 0; i < DB_NUMBER; i++) row[i] = NULL; /* Revoke Certificate */ if (rev_type == REV_VALID) ok = 1; else /* Retry revocation after DB insertion */ ok = do_revoke(x509, db, rev_type, value); goto end; } else if (index_name_cmp_noconst(row, rrow)) { BIO_printf(bio_err, "ERROR:name does not match %s\n", row[DB_name]); goto end; } else if (rev_type == REV_VALID) { BIO_printf(bio_err, "ERROR:Already present, serial number %s\n", row[DB_serial]); goto end; } else if (rrow[DB_type][0] == DB_TYPE_REV) { BIO_printf(bio_err, "ERROR:Already revoked, serial number %s\n", row[DB_serial]); goto end; } else { BIO_printf(bio_err, "Revoking Certificate %s.\n", rrow[DB_serial]); rev_str = make_revocation_str(rev_type, value); if (!rev_str) { BIO_printf(bio_err, "Error in revocation arguments\n"); goto end; } rrow[DB_type][0] = DB_TYPE_REV; rrow[DB_type][1] = '\0'; rrow[DB_rev_date] = rev_str; } ok = 1; end: for (i = 0; i < DB_NUMBER; i++) OPENSSL_free(row[i]); return ok; } static int get_certificate_status(const char *serial, CA_DB *db) { char *row[DB_NUMBER], **rrow; int ok = -1, i; size_t serial_len = strlen(serial); /* Free Resources */ for (i = 0; i < DB_NUMBER; i++) row[i] = NULL; /* Malloc needed char spaces */ row[DB_serial] = app_malloc(serial_len + 2, "row serial#"); if (serial_len % 2) { /* * Set the first char to 0 */ row[DB_serial][0] = '0'; /* Copy String from serial to row[DB_serial] */ memcpy(row[DB_serial] + 1, serial, serial_len); row[DB_serial][serial_len + 1] = '\0'; } else { /* Copy String from serial to row[DB_serial] */ memcpy(row[DB_serial], serial, serial_len); row[DB_serial][serial_len] = '\0'; } /* Make it Upper Case */ make_uppercase(row[DB_serial]); ok = 1; /* Search for the certificate */ rrow = TXT_DB_get_by_index(db->db, DB_serial, row); if (rrow == NULL) { BIO_printf(bio_err, "Serial %s not present in db.\n", row[DB_serial]); ok = -1; goto end; } else if (rrow[DB_type][0] == DB_TYPE_VAL) { BIO_printf(bio_err, "%s=Valid (%c)\n", row[DB_serial], rrow[DB_type][0]); goto end; } else if (rrow[DB_type][0] == DB_TYPE_REV) { BIO_printf(bio_err, "%s=Revoked (%c)\n", row[DB_serial], rrow[DB_type][0]); goto end; } else if (rrow[DB_type][0] == DB_TYPE_EXP) { BIO_printf(bio_err, "%s=Expired (%c)\n", row[DB_serial], rrow[DB_type][0]); goto end; } else if (rrow[DB_type][0] == DB_TYPE_SUSP) { BIO_printf(bio_err, "%s=Suspended (%c)\n", row[DB_serial], rrow[DB_type][0]); goto end; } else { BIO_printf(bio_err, "%s=Unknown (%c).\n", row[DB_serial], rrow[DB_type][0]); ok = -1; } end: for (i = 0; i < DB_NUMBER; i++) { OPENSSL_free(row[i]); } return ok; } static int do_updatedb(CA_DB *db) { ASN1_UTCTIME *a_tm = NULL; int i, cnt = 0; int db_y2k, a_y2k; /* flags = 1 if y >= 2000 */ char **rrow, *a_tm_s; a_tm = ASN1_UTCTIME_new(); if (a_tm == NULL) return -1; /* get actual time and make a string */ if (X509_gmtime_adj(a_tm, 0) == NULL) { ASN1_UTCTIME_free(a_tm); return -1; } a_tm_s = app_malloc(a_tm->length + 1, "time string"); memcpy(a_tm_s, a_tm->data, a_tm->length); a_tm_s[a_tm->length] = '\0'; if (strncmp(a_tm_s, "49", 2) <= 0) a_y2k = 1; else a_y2k = 0; for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) { rrow = sk_OPENSSL_PSTRING_value(db->db->data, i); if (rrow[DB_type][0] == DB_TYPE_VAL) { /* ignore entries that are not valid */ if (strncmp(rrow[DB_exp_date], "49", 2) <= 0) db_y2k = 1; else db_y2k = 0; if (db_y2k == a_y2k) { /* all on the same y2k side */ if (strcmp(rrow[DB_exp_date], a_tm_s) <= 0) { rrow[DB_type][0] = DB_TYPE_EXP; rrow[DB_type][1] = '\0'; cnt++; BIO_printf(bio_err, "%s=Expired\n", rrow[DB_serial]); } } else if (db_y2k < a_y2k) { rrow[DB_type][0] = DB_TYPE_EXP; rrow[DB_type][1] = '\0'; cnt++; BIO_printf(bio_err, "%s=Expired\n", rrow[DB_serial]); } } } ASN1_UTCTIME_free(a_tm); OPENSSL_free(a_tm_s); return cnt; } static const char *crl_reasons[] = { /* CRL reason strings */ "unspecified", "keyCompromise", "CACompromise", "affiliationChanged", "superseded", "cessationOfOperation", "certificateHold", "removeFromCRL", /* Additional pseudo reasons */ "holdInstruction", "keyTime", "CAkeyTime" }; #define NUM_REASONS OSSL_NELEM(crl_reasons) /* * Given revocation information convert to a DB string. The format of the * string is: revtime[,reason,extra]. Where 'revtime' is the revocation time * (the current time). 'reason' is the optional CRL reason and 'extra' is any * additional argument */ static char *make_revocation_str(REVINFO_TYPE rev_type, const char *rev_arg) { char *str; const char *reason = NULL, *other = NULL; ASN1_OBJECT *otmp; ASN1_UTCTIME *revtm = NULL; int i; switch (rev_type) { case REV_NONE: case REV_VALID: break; case REV_CRL_REASON: for (i = 0; i < 8; i++) { if (strcasecmp(rev_arg, crl_reasons[i]) == 0) { reason = crl_reasons[i]; break; } } if (reason == NULL) { BIO_printf(bio_err, "Unknown CRL reason %s\n", rev_arg); return NULL; } break; case REV_HOLD: /* Argument is an OID */ otmp = OBJ_txt2obj(rev_arg, 0); ASN1_OBJECT_free(otmp); if (otmp == NULL) { BIO_printf(bio_err, "Invalid object identifier %s\n", rev_arg); return NULL; } reason = "holdInstruction"; other = rev_arg; break; case REV_KEY_COMPROMISE: case REV_CA_COMPROMISE: /* Argument is the key compromise time */ if (!ASN1_GENERALIZEDTIME_set_string(NULL, rev_arg)) { BIO_printf(bio_err, "Invalid time format %s. Need YYYYMMDDHHMMSSZ\n", rev_arg); return NULL; } other = rev_arg; if (rev_type == REV_KEY_COMPROMISE) reason = "keyTime"; else reason = "CAkeyTime"; break; } revtm = X509_gmtime_adj(NULL, 0); if (!revtm) return NULL; i = revtm->length + 1; if (reason) i += strlen(reason) + 1; if (other) i += strlen(other) + 1; str = app_malloc(i, "revocation reason"); OPENSSL_strlcpy(str, (char *)revtm->data, i); if (reason) { OPENSSL_strlcat(str, ",", i); OPENSSL_strlcat(str, reason, i); } if (other) { OPENSSL_strlcat(str, ",", i); OPENSSL_strlcat(str, other, i); } ASN1_UTCTIME_free(revtm); return str; } /*- * Convert revocation field to X509_REVOKED entry * return code: * 0 error * 1 OK * 2 OK and some extensions added (i.e. V2 CRL) */ static int make_revoked(X509_REVOKED *rev, const char *str) { char *tmp = NULL; int reason_code = -1; int i, ret = 0; ASN1_OBJECT *hold = NULL; ASN1_GENERALIZEDTIME *comp_time = NULL; ASN1_ENUMERATED *rtmp = NULL; ASN1_TIME *revDate = NULL; i = unpack_revinfo(&revDate, &reason_code, &hold, &comp_time, str); if (i == 0) goto end; if (rev && !X509_REVOKED_set_revocationDate(rev, revDate)) goto end; if (rev && (reason_code != OCSP_REVOKED_STATUS_NOSTATUS)) { rtmp = ASN1_ENUMERATED_new(); if (rtmp == NULL || !ASN1_ENUMERATED_set(rtmp, reason_code)) goto end; if (!X509_REVOKED_add1_ext_i2d(rev, NID_crl_reason, rtmp, 0, 0)) goto end; } if (rev && comp_time) { if (!X509_REVOKED_add1_ext_i2d (rev, NID_invalidity_date, comp_time, 0, 0)) goto end; } if (rev && hold) { if (!X509_REVOKED_add1_ext_i2d (rev, NID_hold_instruction_code, hold, 0, 0)) goto end; } if (reason_code != OCSP_REVOKED_STATUS_NOSTATUS) ret = 2; else ret = 1; end: OPENSSL_free(tmp); ASN1_OBJECT_free(hold); ASN1_GENERALIZEDTIME_free(comp_time); ASN1_ENUMERATED_free(rtmp); ASN1_TIME_free(revDate); return ret; } static int old_entry_print(const ASN1_OBJECT *obj, const ASN1_STRING *str) { char buf[25], *pbuf; const char *p; int j; j = i2a_ASN1_OBJECT(bio_err, obj); pbuf = buf; for (j = 22 - j; j > 0; j--) *(pbuf++) = ' '; *(pbuf++) = ':'; *(pbuf++) = '\0'; BIO_puts(bio_err, buf); if (str->type == V_ASN1_PRINTABLESTRING) BIO_printf(bio_err, "PRINTABLE:'"); else if (str->type == V_ASN1_T61STRING) BIO_printf(bio_err, "T61STRING:'"); else if (str->type == V_ASN1_IA5STRING) BIO_printf(bio_err, "IA5STRING:'"); else if (str->type == V_ASN1_UNIVERSALSTRING) BIO_printf(bio_err, "UNIVERSALSTRING:'"); else BIO_printf(bio_err, "ASN.1 %2d:'", str->type); p = (const char *)str->data; for (j = str->length; j > 0; j--) { if ((*p >= ' ') && (*p <= '~')) BIO_printf(bio_err, "%c", *p); else if (*p & 0x80) BIO_printf(bio_err, "\\0x%02X", *p); else if ((unsigned char)*p == 0xf7) BIO_printf(bio_err, "^?"); else BIO_printf(bio_err, "^%c", *p + '@'); p++; } BIO_printf(bio_err, "'\n"); return 1; } int unpack_revinfo(ASN1_TIME **prevtm, int *preason, ASN1_OBJECT **phold, ASN1_GENERALIZEDTIME **pinvtm, const char *str) { char *tmp; char *rtime_str, *reason_str = NULL, *arg_str = NULL, *p; int reason_code = -1; int ret = 0; unsigned int i; ASN1_OBJECT *hold = NULL; ASN1_GENERALIZEDTIME *comp_time = NULL; tmp = OPENSSL_strdup(str); if (!tmp) { BIO_printf(bio_err, "memory allocation failure\n"); goto end; } p = strchr(tmp, ','); rtime_str = tmp; if (p) { *p = '\0'; p++; reason_str = p; p = strchr(p, ','); if (p) { *p = '\0'; arg_str = p + 1; } } if (prevtm) { *prevtm = ASN1_UTCTIME_new(); if (*prevtm == NULL) { BIO_printf(bio_err, "memory allocation failure\n"); goto end; } if (!ASN1_UTCTIME_set_string(*prevtm, rtime_str)) { BIO_printf(bio_err, "invalid revocation date %s\n", rtime_str); goto end; } } if (reason_str) { for (i = 0; i < NUM_REASONS; i++) { if (strcasecmp(reason_str, crl_reasons[i]) == 0) { reason_code = i; break; } } if (reason_code == OCSP_REVOKED_STATUS_NOSTATUS) { BIO_printf(bio_err, "invalid reason code %s\n", reason_str); goto end; } if (reason_code == 7) { reason_code = OCSP_REVOKED_STATUS_REMOVEFROMCRL; } else if (reason_code == 8) { /* Hold instruction */ if (!arg_str) { BIO_printf(bio_err, "missing hold instruction\n"); goto end; } reason_code = OCSP_REVOKED_STATUS_CERTIFICATEHOLD; hold = OBJ_txt2obj(arg_str, 0); if (!hold) { BIO_printf(bio_err, "invalid object identifier %s\n", arg_str); goto end; } if (phold) *phold = hold; else ASN1_OBJECT_free(hold); } else if ((reason_code == 9) || (reason_code == 10)) { if (!arg_str) { BIO_printf(bio_err, "missing compromised time\n"); goto end; } comp_time = ASN1_GENERALIZEDTIME_new(); if (comp_time == NULL) { BIO_printf(bio_err, "memory allocation failure\n"); goto end; } if (!ASN1_GENERALIZEDTIME_set_string(comp_time, arg_str)) { BIO_printf(bio_err, "invalid compromised time %s\n", arg_str); goto end; } if (reason_code == 9) reason_code = OCSP_REVOKED_STATUS_KEYCOMPROMISE; else reason_code = OCSP_REVOKED_STATUS_CACOMPROMISE; } } if (preason) *preason = reason_code; if (pinvtm) { *pinvtm = comp_time; comp_time = NULL; } ret = 1; end: OPENSSL_free(tmp); ASN1_GENERALIZEDTIME_free(comp_time); return ret; } openssl-1.1.1f/apps/cert.pem000066400000000000000000000011571364063235100157550ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIBoDCCAUoCAQAwDQYJKoZIhvcNAQEEBQAwYzELMAkGA1UEBhMCQVUxEzARBgNV BAgTClF1ZWVuc2xhbmQxGjAYBgNVBAoTEUNyeXB0U29mdCBQdHkgTHRkMSMwIQYD VQQDExpTZXJ2ZXIgdGVzdCBjZXJ0ICg1MTIgYml0KTAeFw05NzA5MDkwMzQxMjZa Fw05NzEwMDkwMzQxMjZaMF4xCzAJBgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0 YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQxFzAVBgNVBAMT DkVyaWMgdGhlIFlvdW5nMFEwCQYFKw4DAgwFAANEAAJBALVEqPODnpI4rShlY8S7 tB713JNvabvn6Gned7zylwLLiXQAo/PAT6mfdWPTyCX9RlId/Aroh1ou893BA32Q sggwDQYJKoZIhvcNAQEEBQADQQCU5SSgapJSdRXJoX+CpCvFy+JVh9HpSjCpSNKO 19raHv98hKAUJuP9HyM+SUsffO6mAIgitUaqW8/wDMePhEC3 -----END CERTIFICATE----- openssl-1.1.1f/apps/ciphers.c000066400000000000000000000162761364063235100161260ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_STDNAME, OPT_CONVERT, OPT_SSL3, OPT_TLS1, OPT_TLS1_1, OPT_TLS1_2, OPT_TLS1_3, OPT_PSK, OPT_SRP, OPT_CIPHERSUITES, OPT_V, OPT_UPPER_V, OPT_S } OPTION_CHOICE; const OPTIONS ciphers_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"v", OPT_V, '-', "Verbose listing of the SSL/TLS ciphers"}, {"V", OPT_UPPER_V, '-', "Even more verbose"}, {"s", OPT_S, '-', "Only supported ciphers"}, #ifndef OPENSSL_NO_SSL3 {"ssl3", OPT_SSL3, '-', "SSL3 mode"}, #endif #ifndef OPENSSL_NO_TLS1 {"tls1", OPT_TLS1, '-', "TLS1 mode"}, #endif #ifndef OPENSSL_NO_TLS1_1 {"tls1_1", OPT_TLS1_1, '-', "TLS1.1 mode"}, #endif #ifndef OPENSSL_NO_TLS1_2 {"tls1_2", OPT_TLS1_2, '-', "TLS1.2 mode"}, #endif #ifndef OPENSSL_NO_TLS1_3 {"tls1_3", OPT_TLS1_3, '-', "TLS1.3 mode"}, #endif {"stdname", OPT_STDNAME, '-', "Show standard cipher names"}, #ifndef OPENSSL_NO_PSK {"psk", OPT_PSK, '-', "include ciphersuites requiring PSK"}, #endif #ifndef OPENSSL_NO_SRP {"srp", OPT_SRP, '-', "include ciphersuites requiring SRP"}, #endif {"convert", OPT_CONVERT, 's', "Convert standard name into OpenSSL name"}, {"ciphersuites", OPT_CIPHERSUITES, 's', "Configure the TLSv1.3 ciphersuites to use"}, {NULL} }; #ifndef OPENSSL_NO_PSK static unsigned int dummy_psk(SSL *ssl, const char *hint, char *identity, unsigned int max_identity_len, unsigned char *psk, unsigned int max_psk_len) { return 0; } #endif #ifndef OPENSSL_NO_SRP static char *dummy_srp(SSL *ssl, void *arg) { return ""; } #endif int ciphers_main(int argc, char **argv) { SSL_CTX *ctx = NULL; SSL *ssl = NULL; STACK_OF(SSL_CIPHER) *sk = NULL; const SSL_METHOD *meth = TLS_server_method(); int ret = 1, i, verbose = 0, Verbose = 0, use_supported = 0; int stdname = 0; #ifndef OPENSSL_NO_PSK int psk = 0; #endif #ifndef OPENSSL_NO_SRP int srp = 0; #endif const char *p; char *ciphers = NULL, *prog, *convert = NULL, *ciphersuites = NULL; char buf[512]; OPTION_CHOICE o; int min_version = 0, max_version = 0; prog = opt_init(argc, argv, ciphers_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(ciphers_options); ret = 0; goto end; case OPT_V: verbose = 1; break; case OPT_UPPER_V: verbose = Verbose = 1; break; case OPT_S: use_supported = 1; break; case OPT_STDNAME: stdname = verbose = 1; break; case OPT_CONVERT: convert = opt_arg(); break; case OPT_SSL3: min_version = SSL3_VERSION; max_version = SSL3_VERSION; break; case OPT_TLS1: min_version = TLS1_VERSION; max_version = TLS1_VERSION; break; case OPT_TLS1_1: min_version = TLS1_1_VERSION; max_version = TLS1_1_VERSION; break; case OPT_TLS1_2: min_version = TLS1_2_VERSION; max_version = TLS1_2_VERSION; break; case OPT_TLS1_3: min_version = TLS1_3_VERSION; max_version = TLS1_3_VERSION; break; case OPT_PSK: #ifndef OPENSSL_NO_PSK psk = 1; #endif break; case OPT_SRP: #ifndef OPENSSL_NO_SRP srp = 1; #endif break; case OPT_CIPHERSUITES: ciphersuites = opt_arg(); break; } } argv = opt_rest(); argc = opt_num_rest(); if (argc == 1) ciphers = *argv; else if (argc != 0) goto opthelp; if (convert != NULL) { BIO_printf(bio_out, "OpenSSL cipher name: %s\n", OPENSSL_cipher_name(convert)); goto end; } ctx = SSL_CTX_new(meth); if (ctx == NULL) goto err; if (SSL_CTX_set_min_proto_version(ctx, min_version) == 0) goto err; if (SSL_CTX_set_max_proto_version(ctx, max_version) == 0) goto err; #ifndef OPENSSL_NO_PSK if (psk) SSL_CTX_set_psk_client_callback(ctx, dummy_psk); #endif #ifndef OPENSSL_NO_SRP if (srp) SSL_CTX_set_srp_client_pwd_callback(ctx, dummy_srp); #endif if (ciphersuites != NULL && !SSL_CTX_set_ciphersuites(ctx, ciphersuites)) { BIO_printf(bio_err, "Error setting TLSv1.3 ciphersuites\n"); goto err; } if (ciphers != NULL) { if (!SSL_CTX_set_cipher_list(ctx, ciphers)) { BIO_printf(bio_err, "Error in cipher list\n"); goto err; } } ssl = SSL_new(ctx); if (ssl == NULL) goto err; if (use_supported) sk = SSL_get1_supported_ciphers(ssl); else sk = SSL_get_ciphers(ssl); if (!verbose) { for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) { const SSL_CIPHER *c = sk_SSL_CIPHER_value(sk, i); p = SSL_CIPHER_get_name(c); if (p == NULL) break; if (i != 0) BIO_printf(bio_out, ":"); BIO_printf(bio_out, "%s", p); } BIO_printf(bio_out, "\n"); } else { for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) { const SSL_CIPHER *c; c = sk_SSL_CIPHER_value(sk, i); if (Verbose) { unsigned long id = SSL_CIPHER_get_id(c); int id0 = (int)(id >> 24); int id1 = (int)((id >> 16) & 0xffL); int id2 = (int)((id >> 8) & 0xffL); int id3 = (int)(id & 0xffL); if ((id & 0xff000000L) == 0x03000000L) BIO_printf(bio_out, " 0x%02X,0x%02X - ", id2, id3); /* SSL3 * cipher */ else BIO_printf(bio_out, "0x%02X,0x%02X,0x%02X,0x%02X - ", id0, id1, id2, id3); /* whatever */ } if (stdname) { const char *nm = SSL_CIPHER_standard_name(c); if (nm == NULL) nm = "UNKNOWN"; BIO_printf(bio_out, "%s - ", nm); } BIO_puts(bio_out, SSL_CIPHER_description(c, buf, sizeof(buf))); } } ret = 0; goto end; err: ERR_print_errors(bio_err); end: if (use_supported) sk_SSL_CIPHER_free(sk); SSL_CTX_free(ctx); SSL_free(ssl); return ret; } openssl-1.1.1f/apps/client.pem000066400000000000000000000063251364063235100163000ustar00rootroot00000000000000subject= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = Test Client Cert issuer= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = OpenSSL Test Intermediate CA -----BEGIN CERTIFICATE----- MIID5zCCAs+gAwIBAgIJALnu1NlVpZ6yMA0GCSqGSIb3DQEBBQUAMHAxCzAJBgNV BAYTAlVLMRYwFAYDVQQKDA1PcGVuU1NMIEdyb3VwMSIwIAYDVQQLDBlGT1IgVEVT VElORyBQVVJQT1NFUyBPTkxZMSUwIwYDVQQDDBxPcGVuU1NMIFRlc3QgSW50ZXJt ZWRpYXRlIENBMB4XDTExMTIwODE0MDE0OFoXDTIxMTAxNjE0MDE0OFowZDELMAkG A1UEBhMCVUsxFjAUBgNVBAoMDU9wZW5TU0wgR3JvdXAxIjAgBgNVBAsMGUZPUiBU RVNUSU5HIFBVUlBPU0VTIE9OTFkxGTAXBgNVBAMMEFRlc3QgQ2xpZW50IENlcnQw ggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC0ranbHRLcLVqN+0BzcZpY +yOLqxzDWT1LD9eW1stC4NzXX9/DCtSIVyN7YIHdGLrIPr64IDdXXaMRzgZ2rOKs lmHCAiFpO/ja99gGCJRxH0xwQatqAULfJVHeUhs7OEGOZc2nWifjqKvGfNTilP7D nwi69ipQFq9oS19FmhwVHk2wg7KZGHI1qDyG04UrfCZMRitvS9+UVhPpIPjuiBi2 x3/FZIpL5gXJvvFK6xHY63oq2asyzBATntBgnP4qJFWWcvRx24wF1PnZabxuVoL2 bPnQ/KvONDrw3IdqkKhYNTul7jEcu3OlcZIMw+7DiaKJLAzKb/bBF5gm/pwW6As9 AgMBAAGjgY8wgYwwDAYDVR0TAQH/BAIwADAOBgNVHQ8BAf8EBAMCBeAwLAYJYIZI AYb4QgENBB8WHU9wZW5TU0wgR2VuZXJhdGVkIENlcnRpZmljYXRlMB0GA1UdDgQW BBSZHKyLoTh7Mb409Zn/mK1ceSDAjDAfBgNVHSMEGDAWgBQ2w2yI55X+sL3szj49 hqshgYfa2jANBgkqhkiG9w0BAQUFAAOCAQEAD0mL7PtPYgCEuDyOQSbLpeND5hVS curxQdGnrJ6Acrhodb7E9ccATokeb0PLx6HBLQUicxhTZIQ9FbO43YkQcOU6C3BB IlwskqmtN6+VmrQzNolHCDzvxNZs9lYL2VbGPGqVRyjZeHpoAlf9cQr8PgDb4d4b vUx2KAhHQvV2nkmYvKyXcgnRuHggumF87mkxidriGAEFwH4qfOqetUg64WyxP7P2 QLipm04SyQa7ONtIApfVXgHcE42Py4/f4arzCzMjKe3VyhGkS7nsT55X/fWgTaRm CQPkO+H94P958WTvQDt77bQ+D3IvYaVvfil8n6HJMOJfFT0LJuSUbpSXJg== -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIIEpQIBAAKCAQEAtK2p2x0S3C1ajftAc3GaWPsji6scw1k9Sw/XltbLQuDc11/f wwrUiFcje2CB3Ri6yD6+uCA3V12jEc4GdqzirJZhwgIhaTv42vfYBgiUcR9McEGr agFC3yVR3lIbOzhBjmXNp1on46irxnzU4pT+w58IuvYqUBavaEtfRZocFR5NsIOy mRhyNag8htOFK3wmTEYrb0vflFYT6SD47ogYtsd/xWSKS+YFyb7xSusR2Ot6Ktmr MswQE57QYJz+KiRVlnL0cduMBdT52Wm8blaC9mz50PyrzjQ68NyHapCoWDU7pe4x HLtzpXGSDMPuw4miiSwMym/2wReYJv6cFugLPQIDAQABAoIBAAZOyc9MhIwLSU4L p4RgQvM4UVVe8/Id+3XTZ8NsXExJbWxXfIhiqGjaIfL8u4vsgRjcl+v1s/jo2/iT KMab4o4D8gXD7UavQVDjtjb/ta79WL3SjRl2Uc9YjjMkyq6WmDNQeo2NKDdafCTB 1uzSJtLNipB8Z53ELPuHJhxX9QMHrMnuha49riQgXZ7buP9iQrHJFhImBjSzbxJx L+TI6rkyLSf9Wi0Pd3L27Ob3QWNfNRYNSeTE+08eSRChkur5W0RuXAcuAICdQlCl LBvWO/LmmvbzCqiDcgy/TliSb6CGGwgiNG7LJZmlkYNj8laGwalNlYZs3UrVv6NO Br2loAECgYEA2kvCvPGj0Dg/6g7WhXDvAkEbcaL1tSeCxBbNH+6HS2UWMWvyTtCn /bbD519QIdkvayy1QjEf32GV/UjUVmlULMLBcDy0DGjtL3+XpIhLKWDNxN1v1/ai 1oz23ZJCOgnk6K4qtFtlRS1XtynjA+rBetvYvLP9SKeFrnpzCgaA2r0CgYEA0+KX 1ACXDTNH5ySX3kMjSS9xdINf+OOw4CvPHFwbtc9aqk2HePlEsBTz5I/W3rKwXva3 NqZ/bRqVVeZB/hHKFywgdUQk2Uc5z/S7Lw70/w1HubNTXGU06Ngb6zOFAo/o/TwZ zTP1BMIKSOB6PAZPS3l+aLO4FRIRotfFhgRHOoECgYEAmiZbqt8cJaJDB/5YYDzC mp3tSk6gIb936Q6M5VqkMYp9pIKsxhk0N8aDCnTU+kIK6SzWBpr3/d9Ecmqmfyq7 5SvWO3KyVf0WWK9KH0abhOm2BKm2HBQvI0DB5u8sUx2/hsvOnjPYDISbZ11t0MtK u35Zy89yMYcSsIYJjG/ROCUCgYEAgI2P9G5PNxEP5OtMwOsW84Y3Xat/hPAQFlI+ HES+AzbFGWJkeT8zL2nm95tVkFP1sggZ7Kxjz3w7cpx7GX0NkbWSE9O+T51pNASV tN1sQ3p5M+/a+cnlqgfEGJVvc7iAcXQPa3LEi5h2yPR49QYXAgG6cifn3dDSpmwn SUI7PQECgYEApGCIIpSRPLAEHTGmP87RBL1smurhwmy2s/pghkvUkWehtxg0sGHh kuaqDWcskogv+QC0sVdytiLSz8G0DwcEcsHK1Fkyb8A+ayiw6jWJDo2m9+IF4Fww 1Te6jFPYDESnbhq7+TLGgHGhtwcu5cnb4vSuYXGXKupZGzoLOBbv1Zw= -----END RSA PRIVATE KEY----- openssl-1.1.1f/apps/cms.c000066400000000000000000001277611364063235100152550ustar00rootroot00000000000000/* * Copyright 2008-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* CMS utility function */ #include #include #include "apps.h" #include "progs.h" #ifndef OPENSSL_NO_CMS # include # include # include # include # include # include static int save_certs(char *signerfile, STACK_OF(X509) *signers); static int cms_cb(int ok, X509_STORE_CTX *ctx); static void receipt_request_print(CMS_ContentInfo *cms); static CMS_ReceiptRequest *make_receipt_request(STACK_OF(OPENSSL_STRING) *rr_to, int rr_allorfirst, STACK_OF(OPENSSL_STRING) *rr_from); static int cms_set_pkey_param(EVP_PKEY_CTX *pctx, STACK_OF(OPENSSL_STRING) *param); # define SMIME_OP 0x10 # define SMIME_IP 0x20 # define SMIME_SIGNERS 0x40 # define SMIME_ENCRYPT (1 | SMIME_OP) # define SMIME_DECRYPT (2 | SMIME_IP) # define SMIME_SIGN (3 | SMIME_OP | SMIME_SIGNERS) # define SMIME_VERIFY (4 | SMIME_IP) # define SMIME_CMSOUT (5 | SMIME_IP | SMIME_OP) # define SMIME_RESIGN (6 | SMIME_IP | SMIME_OP | SMIME_SIGNERS) # define SMIME_DATAOUT (7 | SMIME_IP) # define SMIME_DATA_CREATE (8 | SMIME_OP) # define SMIME_DIGEST_VERIFY (9 | SMIME_IP) # define SMIME_DIGEST_CREATE (10 | SMIME_OP) # define SMIME_UNCOMPRESS (11 | SMIME_IP) # define SMIME_COMPRESS (12 | SMIME_OP) # define SMIME_ENCRYPTED_DECRYPT (13 | SMIME_IP) # define SMIME_ENCRYPTED_ENCRYPT (14 | SMIME_OP) # define SMIME_SIGN_RECEIPT (15 | SMIME_IP | SMIME_OP) # define SMIME_VERIFY_RECEIPT (16 | SMIME_IP) static int verify_err = 0; typedef struct cms_key_param_st cms_key_param; struct cms_key_param_st { int idx; STACK_OF(OPENSSL_STRING) *param; cms_key_param *next; }; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_ENCRYPT, OPT_DECRYPT, OPT_SIGN, OPT_SIGN_RECEIPT, OPT_RESIGN, OPT_VERIFY, OPT_VERIFY_RETCODE, OPT_VERIFY_RECEIPT, OPT_CMSOUT, OPT_DATA_OUT, OPT_DATA_CREATE, OPT_DIGEST_VERIFY, OPT_DIGEST_CREATE, OPT_COMPRESS, OPT_UNCOMPRESS, OPT_ED_DECRYPT, OPT_ED_ENCRYPT, OPT_DEBUG_DECRYPT, OPT_TEXT, OPT_ASCIICRLF, OPT_NOINTERN, OPT_NOVERIFY, OPT_NOCERTS, OPT_NOATTR, OPT_NODETACH, OPT_NOSMIMECAP, OPT_BINARY, OPT_KEYID, OPT_NOSIGS, OPT_NO_CONTENT_VERIFY, OPT_NO_ATTR_VERIFY, OPT_INDEF, OPT_NOINDEF, OPT_CRLFEOL, OPT_NOOUT, OPT_RR_PRINT, OPT_RR_ALL, OPT_RR_FIRST, OPT_RCTFORM, OPT_CERTFILE, OPT_CAFILE, OPT_CAPATH, OPT_NOCAPATH, OPT_NOCAFILE,OPT_CONTENT, OPT_PRINT, OPT_SECRETKEY, OPT_SECRETKEYID, OPT_PWRI_PASSWORD, OPT_ECONTENT_TYPE, OPT_PASSIN, OPT_TO, OPT_FROM, OPT_SUBJECT, OPT_SIGNER, OPT_RECIP, OPT_CERTSOUT, OPT_MD, OPT_INKEY, OPT_KEYFORM, OPT_KEYOPT, OPT_RR_FROM, OPT_RR_TO, OPT_AES128_WRAP, OPT_AES192_WRAP, OPT_AES256_WRAP, OPT_3DES_WRAP, OPT_ENGINE, OPT_R_ENUM, OPT_V_ENUM, OPT_CIPHER } OPTION_CHOICE; const OPTIONS cms_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] cert.pem...\n"}, {OPT_HELP_STR, 1, '-', " cert.pem... recipient certs for encryption\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'c', "Input format SMIME (default), PEM or DER"}, {"outform", OPT_OUTFORM, 'c', "Output format SMIME (default), PEM or DER"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"encrypt", OPT_ENCRYPT, '-', "Encrypt message"}, {"decrypt", OPT_DECRYPT, '-', "Decrypt encrypted message"}, {"sign", OPT_SIGN, '-', "Sign message"}, {"sign_receipt", OPT_SIGN_RECEIPT, '-', "Generate a signed receipt for the message"}, {"resign", OPT_RESIGN, '-', "Resign a signed message"}, {"verify", OPT_VERIFY, '-', "Verify signed message"}, {"verify_retcode", OPT_VERIFY_RETCODE, '-'}, {"verify_receipt", OPT_VERIFY_RECEIPT, '<'}, {"cmsout", OPT_CMSOUT, '-', "Output CMS structure"}, {"data_out", OPT_DATA_OUT, '-'}, {"data_create", OPT_DATA_CREATE, '-'}, {"digest_verify", OPT_DIGEST_VERIFY, '-'}, {"digest_create", OPT_DIGEST_CREATE, '-'}, {"compress", OPT_COMPRESS, '-'}, {"uncompress", OPT_UNCOMPRESS, '-'}, {"EncryptedData_decrypt", OPT_ED_DECRYPT, '-'}, {"EncryptedData_encrypt", OPT_ED_ENCRYPT, '-'}, {"debug_decrypt", OPT_DEBUG_DECRYPT, '-'}, {"text", OPT_TEXT, '-', "Include or delete text MIME headers"}, {"asciicrlf", OPT_ASCIICRLF, '-'}, {"nointern", OPT_NOINTERN, '-', "Don't search certificates in message for signer"}, {"noverify", OPT_NOVERIFY, '-', "Don't verify signers certificate"}, {"nocerts", OPT_NOCERTS, '-', "Don't include signers certificate when signing"}, {"noattr", OPT_NOATTR, '-', "Don't include any signed attributes"}, {"nodetach", OPT_NODETACH, '-', "Use opaque signing"}, {"nosmimecap", OPT_NOSMIMECAP, '-', "Omit the SMIMECapabilities attribute"}, {"binary", OPT_BINARY, '-', "Don't translate message to text"}, {"keyid", OPT_KEYID, '-', "Use subject key identifier"}, {"nosigs", OPT_NOSIGS, '-', "Don't verify message signature"}, {"no_content_verify", OPT_NO_CONTENT_VERIFY, '-'}, {"no_attr_verify", OPT_NO_ATTR_VERIFY, '-'}, {"stream", OPT_INDEF, '-', "Enable CMS streaming"}, {"indef", OPT_INDEF, '-', "Same as -stream"}, {"noindef", OPT_NOINDEF, '-', "Disable CMS streaming"}, {"crlfeol", OPT_CRLFEOL, '-', "Use CRLF as EOL termination instead of CR only" }, {"noout", OPT_NOOUT, '-', "For the -cmsout operation do not output the parsed CMS structure"}, {"receipt_request_print", OPT_RR_PRINT, '-', "Print CMS Receipt Request" }, {"receipt_request_all", OPT_RR_ALL, '-'}, {"receipt_request_first", OPT_RR_FIRST, '-'}, {"rctform", OPT_RCTFORM, 'F', "Receipt file format"}, {"certfile", OPT_CERTFILE, '<', "Other certificates file"}, {"CAfile", OPT_CAFILE, '<', "Trusted certificates file"}, {"CApath", OPT_CAPATH, '/', "trusted certificates directory"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"content", OPT_CONTENT, '<', "Supply or override content for detached signature"}, {"print", OPT_PRINT, '-', "For the -cmsout operation print out all fields of the CMS structure"}, {"secretkey", OPT_SECRETKEY, 's'}, {"secretkeyid", OPT_SECRETKEYID, 's'}, {"pwri_password", OPT_PWRI_PASSWORD, 's'}, {"econtent_type", OPT_ECONTENT_TYPE, 's'}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"to", OPT_TO, 's', "To address"}, {"from", OPT_FROM, 's', "From address"}, {"subject", OPT_SUBJECT, 's', "Subject"}, {"signer", OPT_SIGNER, 's', "Signer certificate file"}, {"recip", OPT_RECIP, '<', "Recipient cert file for decryption"}, {"certsout", OPT_CERTSOUT, '>', "Certificate output file"}, {"md", OPT_MD, 's', "Digest algorithm to use when signing or resigning"}, {"inkey", OPT_INKEY, 's', "Input private key (if not signer or recipient)"}, {"keyform", OPT_KEYFORM, 'f', "Input private key format (PEM or ENGINE)"}, {"keyopt", OPT_KEYOPT, 's', "Set public key parameters as n:v pairs"}, {"receipt_request_from", OPT_RR_FROM, 's'}, {"receipt_request_to", OPT_RR_TO, 's'}, {"", OPT_CIPHER, '-', "Any supported cipher"}, OPT_R_OPTIONS, OPT_V_OPTIONS, {"aes128-wrap", OPT_AES128_WRAP, '-', "Use AES128 to wrap key"}, {"aes192-wrap", OPT_AES192_WRAP, '-', "Use AES192 to wrap key"}, {"aes256-wrap", OPT_AES256_WRAP, '-', "Use AES256 to wrap key"}, # ifndef OPENSSL_NO_DES {"des3-wrap", OPT_3DES_WRAP, '-', "Use 3DES-EDE to wrap key"}, # endif # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine e, possibly a hardware device"}, # endif {NULL} }; int cms_main(int argc, char **argv) { ASN1_OBJECT *econtent_type = NULL; BIO *in = NULL, *out = NULL, *indata = NULL, *rctin = NULL; CMS_ContentInfo *cms = NULL, *rcms = NULL; CMS_ReceiptRequest *rr = NULL; ENGINE *e = NULL; EVP_PKEY *key = NULL; const EVP_CIPHER *cipher = NULL, *wrap_cipher = NULL; const EVP_MD *sign_md = NULL; STACK_OF(OPENSSL_STRING) *rr_to = NULL, *rr_from = NULL; STACK_OF(OPENSSL_STRING) *sksigners = NULL, *skkeys = NULL; STACK_OF(X509) *encerts = NULL, *other = NULL; X509 *cert = NULL, *recip = NULL, *signer = NULL; X509_STORE *store = NULL; X509_VERIFY_PARAM *vpm = NULL; char *certfile = NULL, *keyfile = NULL, *contfile = NULL; const char *CAfile = NULL, *CApath = NULL; char *certsoutfile = NULL; int noCAfile = 0, noCApath = 0; char *infile = NULL, *outfile = NULL, *rctfile = NULL; char *passinarg = NULL, *passin = NULL, *signerfile = NULL, *recipfile = NULL; char *to = NULL, *from = NULL, *subject = NULL, *prog; cms_key_param *key_first = NULL, *key_param = NULL; int flags = CMS_DETACHED, noout = 0, print = 0, keyidx = -1, vpmtouched = 0; int informat = FORMAT_SMIME, outformat = FORMAT_SMIME; int operation = 0, ret = 1, rr_print = 0, rr_allorfirst = -1; int verify_retcode = 0, rctformat = FORMAT_SMIME, keyform = FORMAT_PEM; size_t secret_keylen = 0, secret_keyidlen = 0; unsigned char *pwri_pass = NULL, *pwri_tmp = NULL; unsigned char *secret_key = NULL, *secret_keyid = NULL; long ltmp; const char *mime_eol = "\n"; OPTION_CHOICE o; if ((vpm = X509_VERIFY_PARAM_new()) == NULL) return 1; prog = opt_init(argc, argv, cms_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(cms_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PDS, &informat)) goto opthelp; break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PDS, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENCRYPT: operation = SMIME_ENCRYPT; break; case OPT_DECRYPT: operation = SMIME_DECRYPT; break; case OPT_SIGN: operation = SMIME_SIGN; break; case OPT_SIGN_RECEIPT: operation = SMIME_SIGN_RECEIPT; break; case OPT_RESIGN: operation = SMIME_RESIGN; break; case OPT_VERIFY: operation = SMIME_VERIFY; break; case OPT_VERIFY_RETCODE: verify_retcode = 1; break; case OPT_VERIFY_RECEIPT: operation = SMIME_VERIFY_RECEIPT; rctfile = opt_arg(); break; case OPT_CMSOUT: operation = SMIME_CMSOUT; break; case OPT_DATA_OUT: operation = SMIME_DATAOUT; break; case OPT_DATA_CREATE: operation = SMIME_DATA_CREATE; break; case OPT_DIGEST_VERIFY: operation = SMIME_DIGEST_VERIFY; break; case OPT_DIGEST_CREATE: operation = SMIME_DIGEST_CREATE; break; case OPT_COMPRESS: operation = SMIME_COMPRESS; break; case OPT_UNCOMPRESS: operation = SMIME_UNCOMPRESS; break; case OPT_ED_DECRYPT: operation = SMIME_ENCRYPTED_DECRYPT; break; case OPT_ED_ENCRYPT: operation = SMIME_ENCRYPTED_ENCRYPT; break; case OPT_DEBUG_DECRYPT: flags |= CMS_DEBUG_DECRYPT; break; case OPT_TEXT: flags |= CMS_TEXT; break; case OPT_ASCIICRLF: flags |= CMS_ASCIICRLF; break; case OPT_NOINTERN: flags |= CMS_NOINTERN; break; case OPT_NOVERIFY: flags |= CMS_NO_SIGNER_CERT_VERIFY; break; case OPT_NOCERTS: flags |= CMS_NOCERTS; break; case OPT_NOATTR: flags |= CMS_NOATTR; break; case OPT_NODETACH: flags &= ~CMS_DETACHED; break; case OPT_NOSMIMECAP: flags |= CMS_NOSMIMECAP; break; case OPT_BINARY: flags |= CMS_BINARY; break; case OPT_KEYID: flags |= CMS_USE_KEYID; break; case OPT_NOSIGS: flags |= CMS_NOSIGS; break; case OPT_NO_CONTENT_VERIFY: flags |= CMS_NO_CONTENT_VERIFY; break; case OPT_NO_ATTR_VERIFY: flags |= CMS_NO_ATTR_VERIFY; break; case OPT_INDEF: flags |= CMS_STREAM; break; case OPT_NOINDEF: flags &= ~CMS_STREAM; break; case OPT_CRLFEOL: mime_eol = "\r\n"; flags |= CMS_CRLFEOL; break; case OPT_NOOUT: noout = 1; break; case OPT_RR_PRINT: rr_print = 1; break; case OPT_RR_ALL: rr_allorfirst = 0; break; case OPT_RR_FIRST: rr_allorfirst = 1; break; case OPT_RCTFORM: if (rctformat == FORMAT_SMIME) rcms = SMIME_read_CMS(rctin, NULL); else if (rctformat == FORMAT_PEM) rcms = PEM_read_bio_CMS(rctin, NULL, NULL, NULL); else if (rctformat == FORMAT_ASN1) if (!opt_format(opt_arg(), OPT_FMT_PEMDER | OPT_FMT_SMIME, &rctformat)) goto opthelp; break; case OPT_CERTFILE: certfile = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_IN: infile = opt_arg(); break; case OPT_CONTENT: contfile = opt_arg(); break; case OPT_RR_FROM: if (rr_from == NULL && (rr_from = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(rr_from, opt_arg()); break; case OPT_RR_TO: if (rr_to == NULL && (rr_to = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(rr_to, opt_arg()); break; case OPT_PRINT: noout = print = 1; break; case OPT_SECRETKEY: if (secret_key != NULL) { BIO_printf(bio_err, "Invalid key (supplied twice) %s\n", opt_arg()); goto opthelp; } secret_key = OPENSSL_hexstr2buf(opt_arg(), <mp); if (secret_key == NULL) { BIO_printf(bio_err, "Invalid key %s\n", opt_arg()); goto end; } secret_keylen = (size_t)ltmp; break; case OPT_SECRETKEYID: if (secret_keyid != NULL) { BIO_printf(bio_err, "Invalid id (supplied twice) %s\n", opt_arg()); goto opthelp; } secret_keyid = OPENSSL_hexstr2buf(opt_arg(), <mp); if (secret_keyid == NULL) { BIO_printf(bio_err, "Invalid id %s\n", opt_arg()); goto opthelp; } secret_keyidlen = (size_t)ltmp; break; case OPT_PWRI_PASSWORD: pwri_pass = (unsigned char *)opt_arg(); break; case OPT_ECONTENT_TYPE: if (econtent_type != NULL) { BIO_printf(bio_err, "Invalid OID (supplied twice) %s\n", opt_arg()); goto opthelp; } econtent_type = OBJ_txt2obj(opt_arg(), 0); if (econtent_type == NULL) { BIO_printf(bio_err, "Invalid OID %s\n", opt_arg()); goto opthelp; } break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_TO: to = opt_arg(); break; case OPT_FROM: from = opt_arg(); break; case OPT_SUBJECT: subject = opt_arg(); break; case OPT_CERTSOUT: certsoutfile = opt_arg(); break; case OPT_MD: if (!opt_md(opt_arg(), &sign_md)) goto end; break; case OPT_SIGNER: /* If previous -signer argument add signer to list */ if (signerfile != NULL) { if (sksigners == NULL && (sksigners = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(sksigners, signerfile); if (keyfile == NULL) keyfile = signerfile; if (skkeys == NULL && (skkeys = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(skkeys, keyfile); keyfile = NULL; } signerfile = opt_arg(); break; case OPT_INKEY: /* If previous -inkey argument add signer to list */ if (keyfile != NULL) { if (signerfile == NULL) { BIO_puts(bio_err, "Illegal -inkey without -signer\n"); goto end; } if (sksigners == NULL && (sksigners = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(sksigners, signerfile); signerfile = NULL; if (skkeys == NULL && (skkeys = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(skkeys, keyfile); } keyfile = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &keyform)) goto opthelp; break; case OPT_RECIP: if (operation == SMIME_ENCRYPT) { if (encerts == NULL && (encerts = sk_X509_new_null()) == NULL) goto end; cert = load_cert(opt_arg(), FORMAT_PEM, "recipient certificate file"); if (cert == NULL) goto end; sk_X509_push(encerts, cert); cert = NULL; } else { recipfile = opt_arg(); } break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &cipher)) goto end; break; case OPT_KEYOPT: keyidx = -1; if (operation == SMIME_ENCRYPT) { if (encerts != NULL) keyidx += sk_X509_num(encerts); } else { if (keyfile != NULL || signerfile != NULL) keyidx++; if (skkeys != NULL) keyidx += sk_OPENSSL_STRING_num(skkeys); } if (keyidx < 0) { BIO_printf(bio_err, "No key specified\n"); goto opthelp; } if (key_param == NULL || key_param->idx != keyidx) { cms_key_param *nparam; nparam = app_malloc(sizeof(*nparam), "key param buffer"); nparam->idx = keyidx; if ((nparam->param = sk_OPENSSL_STRING_new_null()) == NULL) goto end; nparam->next = NULL; if (key_first == NULL) key_first = nparam; else key_param->next = nparam; key_param = nparam; } sk_OPENSSL_STRING_push(key_param->param, opt_arg()); break; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto end; vpmtouched++; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_3DES_WRAP: # ifndef OPENSSL_NO_DES wrap_cipher = EVP_des_ede3_wrap(); # endif break; case OPT_AES128_WRAP: wrap_cipher = EVP_aes_128_wrap(); break; case OPT_AES192_WRAP: wrap_cipher = EVP_aes_192_wrap(); break; case OPT_AES256_WRAP: wrap_cipher = EVP_aes_256_wrap(); break; } } argc = opt_num_rest(); argv = opt_rest(); if ((rr_allorfirst != -1 || rr_from != NULL) && rr_to == NULL) { BIO_puts(bio_err, "No Signed Receipts Recipients\n"); goto opthelp; } if (!(operation & SMIME_SIGNERS) && (rr_to != NULL || rr_from != NULL)) { BIO_puts(bio_err, "Signed receipts only allowed with -sign\n"); goto opthelp; } if (!(operation & SMIME_SIGNERS) && (skkeys != NULL || sksigners != NULL)) { BIO_puts(bio_err, "Multiple signers or keys not allowed\n"); goto opthelp; } if (operation & SMIME_SIGNERS) { if (keyfile != NULL && signerfile == NULL) { BIO_puts(bio_err, "Illegal -inkey without -signer\n"); goto opthelp; } /* Check to see if any final signer needs to be appended */ if (signerfile != NULL) { if (sksigners == NULL && (sksigners = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(sksigners, signerfile); if (skkeys == NULL && (skkeys = sk_OPENSSL_STRING_new_null()) == NULL) goto end; if (keyfile == NULL) keyfile = signerfile; sk_OPENSSL_STRING_push(skkeys, keyfile); } if (sksigners == NULL) { BIO_printf(bio_err, "No signer certificate specified\n"); goto opthelp; } signerfile = NULL; keyfile = NULL; } else if (operation == SMIME_DECRYPT) { if (recipfile == NULL && keyfile == NULL && secret_key == NULL && pwri_pass == NULL) { BIO_printf(bio_err, "No recipient certificate or key specified\n"); goto opthelp; } } else if (operation == SMIME_ENCRYPT) { if (*argv == NULL && secret_key == NULL && pwri_pass == NULL && encerts == NULL) { BIO_printf(bio_err, "No recipient(s) certificate(s) specified\n"); goto opthelp; } } else if (!operation) { BIO_printf(bio_err, "No operation option (-encrypt|-decrypt|-sign|-verify|...) specified.\n"); goto opthelp; } if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } ret = 2; if (!(operation & SMIME_SIGNERS)) flags &= ~CMS_DETACHED; if (!(operation & SMIME_OP)) if (flags & CMS_BINARY) outformat = FORMAT_BINARY; if (!(operation & SMIME_IP)) if (flags & CMS_BINARY) informat = FORMAT_BINARY; if (operation == SMIME_ENCRYPT) { if (!cipher) { # ifndef OPENSSL_NO_DES cipher = EVP_des_ede3_cbc(); # else BIO_printf(bio_err, "No cipher selected\n"); goto end; # endif } if (secret_key && !secret_keyid) { BIO_printf(bio_err, "No secret key id\n"); goto end; } if (*argv && encerts == NULL) if ((encerts = sk_X509_new_null()) == NULL) goto end; while (*argv) { if ((cert = load_cert(*argv, FORMAT_PEM, "recipient certificate file")) == NULL) goto end; sk_X509_push(encerts, cert); cert = NULL; argv++; } } if (certfile != NULL) { if (!load_certs(certfile, &other, FORMAT_PEM, NULL, "certificate file")) { ERR_print_errors(bio_err); goto end; } } if (recipfile != NULL && (operation == SMIME_DECRYPT)) { if ((recip = load_cert(recipfile, FORMAT_PEM, "recipient certificate file")) == NULL) { ERR_print_errors(bio_err); goto end; } } if (operation == SMIME_SIGN_RECEIPT) { if ((signer = load_cert(signerfile, FORMAT_PEM, "receipt signer certificate file")) == NULL) { ERR_print_errors(bio_err); goto end; } } if (operation == SMIME_DECRYPT) { if (keyfile == NULL) keyfile = recipfile; } else if ((operation == SMIME_SIGN) || (operation == SMIME_SIGN_RECEIPT)) { if (keyfile == NULL) keyfile = signerfile; } else { keyfile = NULL; } if (keyfile != NULL) { key = load_key(keyfile, keyform, 0, passin, e, "signing key file"); if (key == NULL) goto end; } in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; if (operation & SMIME_IP) { if (informat == FORMAT_SMIME) { cms = SMIME_read_CMS(in, &indata); } else if (informat == FORMAT_PEM) { cms = PEM_read_bio_CMS(in, NULL, NULL, NULL); } else if (informat == FORMAT_ASN1) { cms = d2i_CMS_bio(in, NULL); } else { BIO_printf(bio_err, "Bad input format for CMS file\n"); goto end; } if (cms == NULL) { BIO_printf(bio_err, "Error reading S/MIME message\n"); goto end; } if (contfile != NULL) { BIO_free(indata); if ((indata = BIO_new_file(contfile, "rb")) == NULL) { BIO_printf(bio_err, "Can't read content file %s\n", contfile); goto end; } } if (certsoutfile != NULL) { STACK_OF(X509) *allcerts; allcerts = CMS_get1_certs(cms); if (!save_certs(certsoutfile, allcerts)) { BIO_printf(bio_err, "Error writing certs to %s\n", certsoutfile); ret = 5; goto end; } sk_X509_pop_free(allcerts, X509_free); } } if (rctfile != NULL) { char *rctmode = (rctformat == FORMAT_ASN1) ? "rb" : "r"; if ((rctin = BIO_new_file(rctfile, rctmode)) == NULL) { BIO_printf(bio_err, "Can't open receipt file %s\n", rctfile); goto end; } if (rctformat == FORMAT_SMIME) { rcms = SMIME_read_CMS(rctin, NULL); } else if (rctformat == FORMAT_PEM) { rcms = PEM_read_bio_CMS(rctin, NULL, NULL, NULL); } else if (rctformat == FORMAT_ASN1) { rcms = d2i_CMS_bio(rctin, NULL); } else { BIO_printf(bio_err, "Bad input format for receipt\n"); goto end; } if (rcms == NULL) { BIO_printf(bio_err, "Error reading receipt\n"); goto end; } } out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; if ((operation == SMIME_VERIFY) || (operation == SMIME_VERIFY_RECEIPT)) { if ((store = setup_verify(CAfile, CApath, noCAfile, noCApath)) == NULL) goto end; X509_STORE_set_verify_cb(store, cms_cb); if (vpmtouched) X509_STORE_set1_param(store, vpm); } ret = 3; if (operation == SMIME_DATA_CREATE) { cms = CMS_data_create(in, flags); } else if (operation == SMIME_DIGEST_CREATE) { cms = CMS_digest_create(in, sign_md, flags); } else if (operation == SMIME_COMPRESS) { cms = CMS_compress(in, -1, flags); } else if (operation == SMIME_ENCRYPT) { int i; flags |= CMS_PARTIAL; cms = CMS_encrypt(NULL, in, cipher, flags); if (cms == NULL) goto end; for (i = 0; i < sk_X509_num(encerts); i++) { CMS_RecipientInfo *ri; cms_key_param *kparam; int tflags = flags; X509 *x = sk_X509_value(encerts, i); for (kparam = key_first; kparam; kparam = kparam->next) { if (kparam->idx == i) { tflags |= CMS_KEY_PARAM; break; } } ri = CMS_add1_recipient_cert(cms, x, tflags); if (ri == NULL) goto end; if (kparam != NULL) { EVP_PKEY_CTX *pctx; pctx = CMS_RecipientInfo_get0_pkey_ctx(ri); if (!cms_set_pkey_param(pctx, kparam->param)) goto end; } if (CMS_RecipientInfo_type(ri) == CMS_RECIPINFO_AGREE && wrap_cipher) { EVP_CIPHER_CTX *wctx; wctx = CMS_RecipientInfo_kari_get0_ctx(ri); EVP_EncryptInit_ex(wctx, wrap_cipher, NULL, NULL, NULL); } } if (secret_key != NULL) { if (!CMS_add0_recipient_key(cms, NID_undef, secret_key, secret_keylen, secret_keyid, secret_keyidlen, NULL, NULL, NULL)) goto end; /* NULL these because call absorbs them */ secret_key = NULL; secret_keyid = NULL; } if (pwri_pass != NULL) { pwri_tmp = (unsigned char *)OPENSSL_strdup((char *)pwri_pass); if (pwri_tmp == NULL) goto end; if (CMS_add0_recipient_password(cms, -1, NID_undef, NID_undef, pwri_tmp, -1, NULL) == NULL) goto end; pwri_tmp = NULL; } if (!(flags & CMS_STREAM)) { if (!CMS_final(cms, in, NULL, flags)) goto end; } } else if (operation == SMIME_ENCRYPTED_ENCRYPT) { cms = CMS_EncryptedData_encrypt(in, cipher, secret_key, secret_keylen, flags); } else if (operation == SMIME_SIGN_RECEIPT) { CMS_ContentInfo *srcms = NULL; STACK_OF(CMS_SignerInfo) *sis; CMS_SignerInfo *si; sis = CMS_get0_SignerInfos(cms); if (sis == NULL) goto end; si = sk_CMS_SignerInfo_value(sis, 0); srcms = CMS_sign_receipt(si, signer, key, other, flags); if (srcms == NULL) goto end; CMS_ContentInfo_free(cms); cms = srcms; } else if (operation & SMIME_SIGNERS) { int i; /* * If detached data content we enable streaming if S/MIME output * format. */ if (operation == SMIME_SIGN) { if (flags & CMS_DETACHED) { if (outformat == FORMAT_SMIME) flags |= CMS_STREAM; } flags |= CMS_PARTIAL; cms = CMS_sign(NULL, NULL, other, in, flags); if (cms == NULL) goto end; if (econtent_type != NULL) CMS_set1_eContentType(cms, econtent_type); if (rr_to != NULL) { rr = make_receipt_request(rr_to, rr_allorfirst, rr_from); if (rr == NULL) { BIO_puts(bio_err, "Signed Receipt Request Creation Error\n"); goto end; } } } else { flags |= CMS_REUSE_DIGEST; } for (i = 0; i < sk_OPENSSL_STRING_num(sksigners); i++) { CMS_SignerInfo *si; cms_key_param *kparam; int tflags = flags; signerfile = sk_OPENSSL_STRING_value(sksigners, i); keyfile = sk_OPENSSL_STRING_value(skkeys, i); signer = load_cert(signerfile, FORMAT_PEM, "signer certificate"); if (signer == NULL) { ret = 2; goto end; } key = load_key(keyfile, keyform, 0, passin, e, "signing key file"); if (key == NULL) { ret = 2; goto end; } for (kparam = key_first; kparam; kparam = kparam->next) { if (kparam->idx == i) { tflags |= CMS_KEY_PARAM; break; } } si = CMS_add1_signer(cms, signer, key, sign_md, tflags); if (si == NULL) goto end; if (kparam != NULL) { EVP_PKEY_CTX *pctx; pctx = CMS_SignerInfo_get0_pkey_ctx(si); if (!cms_set_pkey_param(pctx, kparam->param)) goto end; } if (rr != NULL && !CMS_add1_ReceiptRequest(si, rr)) goto end; X509_free(signer); signer = NULL; EVP_PKEY_free(key); key = NULL; } /* If not streaming or resigning finalize structure */ if ((operation == SMIME_SIGN) && !(flags & CMS_STREAM)) { if (!CMS_final(cms, in, NULL, flags)) goto end; } } if (cms == NULL) { BIO_printf(bio_err, "Error creating CMS structure\n"); goto end; } ret = 4; if (operation == SMIME_DECRYPT) { if (flags & CMS_DEBUG_DECRYPT) CMS_decrypt(cms, NULL, NULL, NULL, NULL, flags); if (secret_key != NULL) { if (!CMS_decrypt_set1_key(cms, secret_key, secret_keylen, secret_keyid, secret_keyidlen)) { BIO_puts(bio_err, "Error decrypting CMS using secret key\n"); goto end; } } if (key != NULL) { if (!CMS_decrypt_set1_pkey(cms, key, recip)) { BIO_puts(bio_err, "Error decrypting CMS using private key\n"); goto end; } } if (pwri_pass != NULL) { if (!CMS_decrypt_set1_password(cms, pwri_pass, -1)) { BIO_puts(bio_err, "Error decrypting CMS using password\n"); goto end; } } if (!CMS_decrypt(cms, NULL, NULL, indata, out, flags)) { BIO_printf(bio_err, "Error decrypting CMS structure\n"); goto end; } } else if (operation == SMIME_DATAOUT) { if (!CMS_data(cms, out, flags)) goto end; } else if (operation == SMIME_UNCOMPRESS) { if (!CMS_uncompress(cms, indata, out, flags)) goto end; } else if (operation == SMIME_DIGEST_VERIFY) { if (CMS_digest_verify(cms, indata, out, flags) > 0) { BIO_printf(bio_err, "Verification successful\n"); } else { BIO_printf(bio_err, "Verification failure\n"); goto end; } } else if (operation == SMIME_ENCRYPTED_DECRYPT) { if (!CMS_EncryptedData_decrypt(cms, secret_key, secret_keylen, indata, out, flags)) goto end; } else if (operation == SMIME_VERIFY) { if (CMS_verify(cms, other, store, indata, out, flags) > 0) { BIO_printf(bio_err, "Verification successful\n"); } else { BIO_printf(bio_err, "Verification failure\n"); if (verify_retcode) ret = verify_err + 32; goto end; } if (signerfile != NULL) { STACK_OF(X509) *signers; signers = CMS_get0_signers(cms); if (!save_certs(signerfile, signers)) { BIO_printf(bio_err, "Error writing signers to %s\n", signerfile); ret = 5; goto end; } sk_X509_free(signers); } if (rr_print) receipt_request_print(cms); } else if (operation == SMIME_VERIFY_RECEIPT) { if (CMS_verify_receipt(rcms, cms, other, store, flags) > 0) { BIO_printf(bio_err, "Verification successful\n"); } else { BIO_printf(bio_err, "Verification failure\n"); goto end; } } else { if (noout) { if (print) CMS_ContentInfo_print_ctx(out, cms, 0, NULL); } else if (outformat == FORMAT_SMIME) { if (to) BIO_printf(out, "To: %s%s", to, mime_eol); if (from) BIO_printf(out, "From: %s%s", from, mime_eol); if (subject) BIO_printf(out, "Subject: %s%s", subject, mime_eol); if (operation == SMIME_RESIGN) ret = SMIME_write_CMS(out, cms, indata, flags); else ret = SMIME_write_CMS(out, cms, in, flags); } else if (outformat == FORMAT_PEM) { ret = PEM_write_bio_CMS_stream(out, cms, in, flags); } else if (outformat == FORMAT_ASN1) { ret = i2d_CMS_bio_stream(out, cms, in, flags); } else { BIO_printf(bio_err, "Bad output format for CMS file\n"); goto end; } if (ret <= 0) { ret = 6; goto end; } } ret = 0; end: if (ret) ERR_print_errors(bio_err); sk_X509_pop_free(encerts, X509_free); sk_X509_pop_free(other, X509_free); X509_VERIFY_PARAM_free(vpm); sk_OPENSSL_STRING_free(sksigners); sk_OPENSSL_STRING_free(skkeys); OPENSSL_free(secret_key); OPENSSL_free(secret_keyid); OPENSSL_free(pwri_tmp); ASN1_OBJECT_free(econtent_type); CMS_ReceiptRequest_free(rr); sk_OPENSSL_STRING_free(rr_to); sk_OPENSSL_STRING_free(rr_from); for (key_param = key_first; key_param;) { cms_key_param *tparam; sk_OPENSSL_STRING_free(key_param->param); tparam = key_param->next; OPENSSL_free(key_param); key_param = tparam; } X509_STORE_free(store); X509_free(cert); X509_free(recip); X509_free(signer); EVP_PKEY_free(key); CMS_ContentInfo_free(cms); CMS_ContentInfo_free(rcms); release_engine(e); BIO_free(rctin); BIO_free(in); BIO_free(indata); BIO_free_all(out); OPENSSL_free(passin); return ret; } static int save_certs(char *signerfile, STACK_OF(X509) *signers) { int i; BIO *tmp; if (signerfile == NULL) return 1; tmp = BIO_new_file(signerfile, "w"); if (tmp == NULL) return 0; for (i = 0; i < sk_X509_num(signers); i++) PEM_write_bio_X509(tmp, sk_X509_value(signers, i)); BIO_free(tmp); return 1; } /* Minimal callback just to output policy info (if any) */ static int cms_cb(int ok, X509_STORE_CTX *ctx) { int error; error = X509_STORE_CTX_get_error(ctx); verify_err = error; if ((error != X509_V_ERR_NO_EXPLICIT_POLICY) && ((error != X509_V_OK) || (ok != 2))) return ok; policies_print(ctx); return ok; } static void gnames_stack_print(STACK_OF(GENERAL_NAMES) *gns) { STACK_OF(GENERAL_NAME) *gens; GENERAL_NAME *gen; int i, j; for (i = 0; i < sk_GENERAL_NAMES_num(gns); i++) { gens = sk_GENERAL_NAMES_value(gns, i); for (j = 0; j < sk_GENERAL_NAME_num(gens); j++) { gen = sk_GENERAL_NAME_value(gens, j); BIO_puts(bio_err, " "); GENERAL_NAME_print(bio_err, gen); BIO_puts(bio_err, "\n"); } } return; } static void receipt_request_print(CMS_ContentInfo *cms) { STACK_OF(CMS_SignerInfo) *sis; CMS_SignerInfo *si; CMS_ReceiptRequest *rr; int allorfirst; STACK_OF(GENERAL_NAMES) *rto, *rlist; ASN1_STRING *scid; int i, rv; sis = CMS_get0_SignerInfos(cms); for (i = 0; i < sk_CMS_SignerInfo_num(sis); i++) { si = sk_CMS_SignerInfo_value(sis, i); rv = CMS_get1_ReceiptRequest(si, &rr); BIO_printf(bio_err, "Signer %d:\n", i + 1); if (rv == 0) { BIO_puts(bio_err, " No Receipt Request\n"); } else if (rv < 0) { BIO_puts(bio_err, " Receipt Request Parse Error\n"); ERR_print_errors(bio_err); } else { const char *id; int idlen; CMS_ReceiptRequest_get0_values(rr, &scid, &allorfirst, &rlist, &rto); BIO_puts(bio_err, " Signed Content ID:\n"); idlen = ASN1_STRING_length(scid); id = (const char *)ASN1_STRING_get0_data(scid); BIO_dump_indent(bio_err, id, idlen, 4); BIO_puts(bio_err, " Receipts From"); if (rlist != NULL) { BIO_puts(bio_err, " List:\n"); gnames_stack_print(rlist); } else if (allorfirst == 1) { BIO_puts(bio_err, ": First Tier\n"); } else if (allorfirst == 0) { BIO_puts(bio_err, ": All\n"); } else { BIO_printf(bio_err, " Unknown (%d)\n", allorfirst); } BIO_puts(bio_err, " Receipts To:\n"); gnames_stack_print(rto); } CMS_ReceiptRequest_free(rr); } } static STACK_OF(GENERAL_NAMES) *make_names_stack(STACK_OF(OPENSSL_STRING) *ns) { int i; STACK_OF(GENERAL_NAMES) *ret; GENERAL_NAMES *gens = NULL; GENERAL_NAME *gen = NULL; ret = sk_GENERAL_NAMES_new_null(); if (ret == NULL) goto err; for (i = 0; i < sk_OPENSSL_STRING_num(ns); i++) { char *str = sk_OPENSSL_STRING_value(ns, i); gen = a2i_GENERAL_NAME(NULL, NULL, NULL, GEN_EMAIL, str, 0); if (gen == NULL) goto err; gens = GENERAL_NAMES_new(); if (gens == NULL) goto err; if (!sk_GENERAL_NAME_push(gens, gen)) goto err; gen = NULL; if (!sk_GENERAL_NAMES_push(ret, gens)) goto err; gens = NULL; } return ret; err: sk_GENERAL_NAMES_pop_free(ret, GENERAL_NAMES_free); GENERAL_NAMES_free(gens); GENERAL_NAME_free(gen); return NULL; } static CMS_ReceiptRequest *make_receipt_request(STACK_OF(OPENSSL_STRING) *rr_to, int rr_allorfirst, STACK_OF(OPENSSL_STRING) *rr_from) { STACK_OF(GENERAL_NAMES) *rct_to = NULL, *rct_from = NULL; CMS_ReceiptRequest *rr; rct_to = make_names_stack(rr_to); if (rct_to == NULL) goto err; if (rr_from != NULL) { rct_from = make_names_stack(rr_from); if (rct_from == NULL) goto err; } else { rct_from = NULL; } rr = CMS_ReceiptRequest_create0(NULL, -1, rr_allorfirst, rct_from, rct_to); return rr; err: sk_GENERAL_NAMES_pop_free(rct_to, GENERAL_NAMES_free); return NULL; } static int cms_set_pkey_param(EVP_PKEY_CTX *pctx, STACK_OF(OPENSSL_STRING) *param) { char *keyopt; int i; if (sk_OPENSSL_STRING_num(param) <= 0) return 1; for (i = 0; i < sk_OPENSSL_STRING_num(param); i++) { keyopt = sk_OPENSSL_STRING_value(param, i); if (pkey_ctrl_string(pctx, keyopt) <= 0) { BIO_printf(bio_err, "parameter error \"%s\"\n", keyopt); ERR_print_errors(bio_err); return 0; } } return 1; } #endif openssl-1.1.1f/apps/crl.c000066400000000000000000000254501364063235100152430ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_IN, OPT_OUTFORM, OPT_OUT, OPT_KEYFORM, OPT_KEY, OPT_ISSUER, OPT_LASTUPDATE, OPT_NEXTUPDATE, OPT_FINGERPRINT, OPT_CRLNUMBER, OPT_BADSIG, OPT_GENDELTA, OPT_CAPATH, OPT_CAFILE, OPT_NOCAPATH, OPT_NOCAFILE, OPT_VERIFY, OPT_TEXT, OPT_HASH, OPT_HASH_OLD, OPT_NOOUT, OPT_NAMEOPT, OPT_MD } OPTION_CHOICE; const OPTIONS crl_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format; default PEM"}, {"in", OPT_IN, '<', "Input file - default stdin"}, {"outform", OPT_OUTFORM, 'F', "Output format - default PEM"}, {"out", OPT_OUT, '>', "output file - default stdout"}, {"keyform", OPT_KEYFORM, 'F', "Private key file format (PEM or ENGINE)"}, {"key", OPT_KEY, '<', "CRL signing Private key to use"}, {"issuer", OPT_ISSUER, '-', "Print issuer DN"}, {"lastupdate", OPT_LASTUPDATE, '-', "Set lastUpdate field"}, {"nextupdate", OPT_NEXTUPDATE, '-', "Set nextUpdate field"}, {"noout", OPT_NOOUT, '-', "No CRL output"}, {"fingerprint", OPT_FINGERPRINT, '-', "Print the crl fingerprint"}, {"crlnumber", OPT_CRLNUMBER, '-', "Print CRL number"}, {"badsig", OPT_BADSIG, '-', "Corrupt last byte of loaded CRL signature (for test)" }, {"gendelta", OPT_GENDELTA, '<', "Other CRL to compare/diff to the Input one"}, {"CApath", OPT_CAPATH, '/', "Verify CRL using certificates in dir"}, {"CAfile", OPT_CAFILE, '<', "Verify CRL using certificates in file name"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"verify", OPT_VERIFY, '-', "Verify CRL signature"}, {"text", OPT_TEXT, '-', "Print out a text format version"}, {"hash", OPT_HASH, '-', "Print hash value"}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, {"", OPT_MD, '-', "Any supported digest"}, #ifndef OPENSSL_NO_MD5 {"hash_old", OPT_HASH_OLD, '-', "Print old-style (MD5) hash value"}, #endif {NULL} }; int crl_main(int argc, char **argv) { X509_CRL *x = NULL; BIO *out = NULL; X509_STORE *store = NULL; X509_STORE_CTX *ctx = NULL; X509_LOOKUP *lookup = NULL; X509_OBJECT *xobj = NULL; EVP_PKEY *pkey; const EVP_MD *digest = EVP_sha1(); char *infile = NULL, *outfile = NULL, *crldiff = NULL, *keyfile = NULL; const char *CAfile = NULL, *CApath = NULL, *prog; OPTION_CHOICE o; int hash = 0, issuer = 0, lastupdate = 0, nextupdate = 0, noout = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, keyformat = FORMAT_PEM; int ret = 1, num = 0, badsig = 0, fingerprint = 0, crlnumber = 0; int text = 0, do_ver = 0, noCAfile = 0, noCApath = 0; int i; #ifndef OPENSSL_NO_MD5 int hash_old = 0; #endif prog = opt_init(argc, argv, crl_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(crl_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &keyformat)) goto opthelp; break; case OPT_KEY: keyfile = opt_arg(); break; case OPT_GENDELTA: crldiff = opt_arg(); break; case OPT_CAPATH: CApath = opt_arg(); do_ver = 1; break; case OPT_CAFILE: CAfile = opt_arg(); do_ver = 1; break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_HASH_OLD: #ifndef OPENSSL_NO_MD5 hash_old = ++num; #endif break; case OPT_VERIFY: do_ver = 1; break; case OPT_TEXT: text = 1; break; case OPT_HASH: hash = ++num; break; case OPT_ISSUER: issuer = ++num; break; case OPT_LASTUPDATE: lastupdate = ++num; break; case OPT_NEXTUPDATE: nextupdate = ++num; break; case OPT_NOOUT: noout = ++num; break; case OPT_FINGERPRINT: fingerprint = ++num; break; case OPT_CRLNUMBER: crlnumber = ++num; break; case OPT_BADSIG: badsig = 1; break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto opthelp; break; case OPT_MD: if (!opt_md(opt_unknown(), &digest)) goto opthelp; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; x = load_crl(infile, informat); if (x == NULL) goto end; if (do_ver) { if ((store = setup_verify(CAfile, CApath, noCAfile, noCApath)) == NULL) goto end; lookup = X509_STORE_add_lookup(store, X509_LOOKUP_file()); if (lookup == NULL) goto end; ctx = X509_STORE_CTX_new(); if (ctx == NULL || !X509_STORE_CTX_init(ctx, store, NULL, NULL)) { BIO_printf(bio_err, "Error initialising X509 store\n"); goto end; } xobj = X509_STORE_CTX_get_obj_by_subject(ctx, X509_LU_X509, X509_CRL_get_issuer(x)); if (xobj == NULL) { BIO_printf(bio_err, "Error getting CRL issuer certificate\n"); goto end; } pkey = X509_get_pubkey(X509_OBJECT_get0_X509(xobj)); X509_OBJECT_free(xobj); if (!pkey) { BIO_printf(bio_err, "Error getting CRL issuer public key\n"); goto end; } i = X509_CRL_verify(x, pkey); EVP_PKEY_free(pkey); if (i < 0) goto end; if (i == 0) BIO_printf(bio_err, "verify failure\n"); else BIO_printf(bio_err, "verify OK\n"); } if (crldiff) { X509_CRL *newcrl, *delta; if (!keyfile) { BIO_puts(bio_err, "Missing CRL signing key\n"); goto end; } newcrl = load_crl(crldiff, informat); if (!newcrl) goto end; pkey = load_key(keyfile, keyformat, 0, NULL, NULL, "CRL signing key"); if (!pkey) { X509_CRL_free(newcrl); goto end; } delta = X509_CRL_diff(x, newcrl, pkey, digest, 0); X509_CRL_free(newcrl); EVP_PKEY_free(pkey); if (delta) { X509_CRL_free(x); x = delta; } else { BIO_puts(bio_err, "Error creating delta CRL\n"); goto end; } } if (badsig) { const ASN1_BIT_STRING *sig; X509_CRL_get0_signature(x, &sig, NULL); corrupt_signature(sig); } if (num) { for (i = 1; i <= num; i++) { if (issuer == i) { print_name(bio_out, "issuer=", X509_CRL_get_issuer(x), get_nameopt()); } if (crlnumber == i) { ASN1_INTEGER *crlnum; crlnum = X509_CRL_get_ext_d2i(x, NID_crl_number, NULL, NULL); BIO_printf(bio_out, "crlNumber="); if (crlnum) { i2a_ASN1_INTEGER(bio_out, crlnum); ASN1_INTEGER_free(crlnum); } else BIO_puts(bio_out, ""); BIO_printf(bio_out, "\n"); } if (hash == i) { BIO_printf(bio_out, "%08lx\n", X509_NAME_hash(X509_CRL_get_issuer(x))); } #ifndef OPENSSL_NO_MD5 if (hash_old == i) { BIO_printf(bio_out, "%08lx\n", X509_NAME_hash_old(X509_CRL_get_issuer(x))); } #endif if (lastupdate == i) { BIO_printf(bio_out, "lastUpdate="); ASN1_TIME_print(bio_out, X509_CRL_get0_lastUpdate(x)); BIO_printf(bio_out, "\n"); } if (nextupdate == i) { BIO_printf(bio_out, "nextUpdate="); if (X509_CRL_get0_nextUpdate(x)) ASN1_TIME_print(bio_out, X509_CRL_get0_nextUpdate(x)); else BIO_printf(bio_out, "NONE"); BIO_printf(bio_out, "\n"); } if (fingerprint == i) { int j; unsigned int n; unsigned char md[EVP_MAX_MD_SIZE]; if (!X509_CRL_digest(x, digest, md, &n)) { BIO_printf(bio_err, "out of memory\n"); goto end; } BIO_printf(bio_out, "%s Fingerprint=", OBJ_nid2sn(EVP_MD_type(digest))); for (j = 0; j < (int)n; j++) { BIO_printf(bio_out, "%02X%c", md[j], (j + 1 == (int)n) ? '\n' : ':'); } } } } out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; if (text) X509_CRL_print_ex(out, x, get_nameopt()); if (noout) { ret = 0; goto end; } if (outformat == FORMAT_ASN1) i = (int)i2d_X509_CRL_bio(out, x); else i = PEM_write_bio_X509_CRL(out, x); if (!i) { BIO_printf(bio_err, "unable to write CRL\n"); goto end; } ret = 0; end: if (ret != 0) ERR_print_errors(bio_err); BIO_free_all(out); X509_CRL_free(x); X509_STORE_CTX_free(ctx); X509_STORE_free(store); return ret; } openssl-1.1.1f/apps/crl2p7.c000066400000000000000000000142641364063235100155750ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include static int add_certs_from_file(STACK_OF(X509) *stack, char *certfile); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_NOCRL, OPT_CERTFILE } OPTION_CHOICE; const OPTIONS crl2pkcs7_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format - DER or PEM"}, {"outform", OPT_OUTFORM, 'F', "Output format - DER or PEM"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"nocrl", OPT_NOCRL, '-', "No crl to load, just certs from '-certfile'"}, {"certfile", OPT_CERTFILE, '<', "File of chain of certs to a trusted CA; can be repeated"}, {NULL} }; int crl2pkcs7_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; PKCS7 *p7 = NULL; PKCS7_SIGNED *p7s = NULL; STACK_OF(OPENSSL_STRING) *certflst = NULL; STACK_OF(X509) *cert_stack = NULL; STACK_OF(X509_CRL) *crl_stack = NULL; X509_CRL *crl = NULL; char *infile = NULL, *outfile = NULL, *prog, *certfile; int i = 0, informat = FORMAT_PEM, outformat = FORMAT_PEM, ret = 1, nocrl = 0; OPTION_CHOICE o; prog = opt_init(argc, argv, crl2pkcs7_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(crl2pkcs7_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_NOCRL: nocrl = 1; break; case OPT_CERTFILE: if ((certflst == NULL) && (certflst = sk_OPENSSL_STRING_new_null()) == NULL) goto end; if (!sk_OPENSSL_STRING_push(certflst, opt_arg())) goto end; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; if (!nocrl) { in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; if (informat == FORMAT_ASN1) crl = d2i_X509_CRL_bio(in, NULL); else if (informat == FORMAT_PEM) crl = PEM_read_bio_X509_CRL(in, NULL, NULL, NULL); if (crl == NULL) { BIO_printf(bio_err, "unable to load CRL\n"); ERR_print_errors(bio_err); goto end; } } if ((p7 = PKCS7_new()) == NULL) goto end; if ((p7s = PKCS7_SIGNED_new()) == NULL) goto end; p7->type = OBJ_nid2obj(NID_pkcs7_signed); p7->d.sign = p7s; p7s->contents->type = OBJ_nid2obj(NID_pkcs7_data); if (!ASN1_INTEGER_set(p7s->version, 1)) goto end; if ((crl_stack = sk_X509_CRL_new_null()) == NULL) goto end; p7s->crl = crl_stack; if (crl != NULL) { sk_X509_CRL_push(crl_stack, crl); crl = NULL; /* now part of p7 for OPENSSL_freeing */ } if ((cert_stack = sk_X509_new_null()) == NULL) goto end; p7s->cert = cert_stack; if (certflst != NULL) for (i = 0; i < sk_OPENSSL_STRING_num(certflst); i++) { certfile = sk_OPENSSL_STRING_value(certflst, i); if (add_certs_from_file(cert_stack, certfile) < 0) { BIO_printf(bio_err, "error loading certificates\n"); ERR_print_errors(bio_err); goto end; } } out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; if (outformat == FORMAT_ASN1) i = i2d_PKCS7_bio(out, p7); else if (outformat == FORMAT_PEM) i = PEM_write_bio_PKCS7(out, p7); if (!i) { BIO_printf(bio_err, "unable to write pkcs7 object\n"); ERR_print_errors(bio_err); goto end; } ret = 0; end: sk_OPENSSL_STRING_free(certflst); BIO_free(in); BIO_free_all(out); PKCS7_free(p7); X509_CRL_free(crl); return ret; } /*- *---------------------------------------------------------------------- * int add_certs_from_file * * Read a list of certificates to be checked from a file. * * Results: * number of certs added if successful, -1 if not. *---------------------------------------------------------------------- */ static int add_certs_from_file(STACK_OF(X509) *stack, char *certfile) { BIO *in = NULL; int count = 0; int ret = -1; STACK_OF(X509_INFO) *sk = NULL; X509_INFO *xi; in = BIO_new_file(certfile, "r"); if (in == NULL) { BIO_printf(bio_err, "error opening the file, %s\n", certfile); goto end; } /* This loads from a file, a stack of x509/crl/pkey sets */ sk = PEM_X509_INFO_read_bio(in, NULL, NULL, NULL); if (sk == NULL) { BIO_printf(bio_err, "error reading the file, %s\n", certfile); goto end; } /* scan over it and pull out the CRL's */ while (sk_X509_INFO_num(sk)) { xi = sk_X509_INFO_shift(sk); if (xi->x509 != NULL) { sk_X509_push(stack, xi->x509); xi->x509 = NULL; count++; } X509_INFO_free(xi); } ret = count; end: /* never need to OPENSSL_free x */ BIO_free(in); sk_X509_INFO_free(sk); return ret; } openssl-1.1.1f/apps/ct_log_list.cnf000066400000000000000000000006341364063235100173060ustar00rootroot00000000000000# This file specifies the Certificate Transparency logs # that are to be trusted. # Google's list of logs can be found here: # www.certificate-transparency.org/known-logs # A Python program to convert the log list to OpenSSL's format can be # found here: # https://github.com/google/certificate-transparency/blob/master/python/utilities/log_list/print_log_list.py # Use the "--openssl_output" flag. openssl-1.1.1f/apps/demoSRP/000077500000000000000000000000001364063235100156225ustar00rootroot00000000000000openssl-1.1.1f/apps/demoSRP/srp_verifier.txt000066400000000000000000000005451364063235100210660ustar00rootroot00000000000000# This is a file that will be filled by the openssl srp routine. # You can initialize the file with additional groups, these are # records starting with a I followed by the g and N values and the id. # The exact values ... you have to dig this out from the source of srp.c # or srp_vfy.c # The last value of an I is used as the default group for new users. openssl-1.1.1f/apps/demoSRP/srp_verifier.txt.attr000066400000000000000000000000251364063235100220300ustar00rootroot00000000000000unique_subject = yes openssl-1.1.1f/apps/dgst.c000066400000000000000000000442561364063235100154310ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #include #include #undef BUFSIZE #define BUFSIZE 1024*8 int do_fp(BIO *out, unsigned char *buf, BIO *bp, int sep, int binout, EVP_PKEY *key, unsigned char *sigin, int siglen, const char *sig_name, const char *md_name, const char *file); static void show_digests(const OBJ_NAME *name, void *bio_); struct doall_dgst_digests { BIO *bio; int n; }; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_LIST, OPT_C, OPT_R, OPT_OUT, OPT_SIGN, OPT_PASSIN, OPT_VERIFY, OPT_PRVERIFY, OPT_SIGNATURE, OPT_KEYFORM, OPT_ENGINE, OPT_ENGINE_IMPL, OPT_HEX, OPT_BINARY, OPT_DEBUG, OPT_FIPS_FINGERPRINT, OPT_HMAC, OPT_MAC, OPT_SIGOPT, OPT_MACOPT, OPT_DIGEST, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS dgst_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] [file...]\n"}, {OPT_HELP_STR, 1, '-', " file... files to digest (default is stdin)\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"list", OPT_LIST, '-', "List digests"}, {"c", OPT_C, '-', "Print the digest with separating colons"}, {"r", OPT_R, '-', "Print the digest in coreutils format"}, {"out", OPT_OUT, '>', "Output to filename rather than stdout"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"sign", OPT_SIGN, 's', "Sign digest using private key"}, {"verify", OPT_VERIFY, 's', "Verify a signature using public key"}, {"prverify", OPT_PRVERIFY, 's', "Verify a signature using private key"}, {"signature", OPT_SIGNATURE, '<', "File with signature to verify"}, {"keyform", OPT_KEYFORM, 'f', "Key file format (PEM or ENGINE)"}, {"hex", OPT_HEX, '-', "Print as hex dump"}, {"binary", OPT_BINARY, '-', "Print in binary form"}, {"d", OPT_DEBUG, '-', "Print debug info"}, {"debug", OPT_DEBUG, '-', "Print debug info"}, {"fips-fingerprint", OPT_FIPS_FINGERPRINT, '-', "Compute HMAC with the key used in OpenSSL-FIPS fingerprint"}, {"hmac", OPT_HMAC, 's', "Create hashed MAC with key"}, {"mac", OPT_MAC, 's', "Create MAC (not necessarily HMAC)"}, {"sigopt", OPT_SIGOPT, 's', "Signature parameter in n:v form"}, {"macopt", OPT_MACOPT, 's', "MAC algorithm parameters in n:v form or key"}, {"", OPT_DIGEST, '-', "Any supported digest"}, OPT_R_OPTIONS, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine e, possibly a hardware device"}, {"engine_impl", OPT_ENGINE_IMPL, '-', "Also use engine given by -engine for digest operations"}, #endif {NULL} }; int dgst_main(int argc, char **argv) { BIO *in = NULL, *inp, *bmd = NULL, *out = NULL; ENGINE *e = NULL, *impl = NULL; EVP_PKEY *sigkey = NULL; STACK_OF(OPENSSL_STRING) *sigopts = NULL, *macopts = NULL; char *hmac_key = NULL; char *mac_name = NULL; char *passinarg = NULL, *passin = NULL; const EVP_MD *md = NULL, *m; const char *outfile = NULL, *keyfile = NULL, *prog = NULL; const char *sigfile = NULL; OPTION_CHOICE o; int separator = 0, debug = 0, keyform = FORMAT_PEM, siglen = 0; int i, ret = 1, out_bin = -1, want_pub = 0, do_verify = 0; unsigned char *buf = NULL, *sigbuf = NULL; int engine_impl = 0; struct doall_dgst_digests dec; prog = opt_progname(argv[0]); buf = app_malloc(BUFSIZE, "I/O buffer"); md = EVP_get_digestbyname(prog); prog = opt_init(argc, argv, dgst_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(dgst_options); ret = 0; goto end; case OPT_LIST: BIO_printf(bio_out, "Supported digests:\n"); dec.bio = bio_out; dec.n = 0; OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_MD_METH, show_digests, &dec); BIO_printf(bio_out, "\n"); ret = 0; goto end; case OPT_C: separator = 1; break; case OPT_R: separator = 2; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_SIGN: keyfile = opt_arg(); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_VERIFY: keyfile = opt_arg(); want_pub = do_verify = 1; break; case OPT_PRVERIFY: keyfile = opt_arg(); do_verify = 1; break; case OPT_SIGNATURE: sigfile = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &keyform)) goto opthelp; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_ENGINE_IMPL: engine_impl = 1; break; case OPT_HEX: out_bin = 0; break; case OPT_BINARY: out_bin = 1; break; case OPT_DEBUG: debug = 1; break; case OPT_FIPS_FINGERPRINT: hmac_key = "etaonrishdlcupfm"; break; case OPT_HMAC: hmac_key = opt_arg(); break; case OPT_MAC: mac_name = opt_arg(); break; case OPT_SIGOPT: if (!sigopts) sigopts = sk_OPENSSL_STRING_new_null(); if (!sigopts || !sk_OPENSSL_STRING_push(sigopts, opt_arg())) goto opthelp; break; case OPT_MACOPT: if (!macopts) macopts = sk_OPENSSL_STRING_new_null(); if (!macopts || !sk_OPENSSL_STRING_push(macopts, opt_arg())) goto opthelp; break; case OPT_DIGEST: if (!opt_md(opt_unknown(), &m)) goto opthelp; md = m; break; } } argc = opt_num_rest(); argv = opt_rest(); if (keyfile != NULL && argc > 1) { BIO_printf(bio_err, "%s: Can only sign or verify one file.\n", prog); goto end; } if (do_verify && sigfile == NULL) { BIO_printf(bio_err, "No signature to verify: use the -signature option\n"); goto end; } if (engine_impl) impl = e; in = BIO_new(BIO_s_file()); bmd = BIO_new(BIO_f_md()); if ((in == NULL) || (bmd == NULL)) { ERR_print_errors(bio_err); goto end; } if (debug) { BIO_set_callback(in, BIO_debug_callback); /* needed for windows 3.1 */ BIO_set_callback_arg(in, (char *)bio_err); } if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } if (out_bin == -1) { if (keyfile != NULL) out_bin = 1; else out_bin = 0; } out = bio_open_default(outfile, 'w', out_bin ? FORMAT_BINARY : FORMAT_TEXT); if (out == NULL) goto end; if ((!(mac_name == NULL) + !(keyfile == NULL) + !(hmac_key == NULL)) > 1) { BIO_printf(bio_err, "MAC and Signing key cannot both be specified\n"); goto end; } if (keyfile != NULL) { int type; if (want_pub) sigkey = load_pubkey(keyfile, keyform, 0, NULL, e, "key file"); else sigkey = load_key(keyfile, keyform, 0, passin, e, "key file"); if (sigkey == NULL) { /* * load_[pub]key() has already printed an appropriate message */ goto end; } type = EVP_PKEY_id(sigkey); if (type == EVP_PKEY_ED25519 || type == EVP_PKEY_ED448) { /* * We implement PureEdDSA for these which doesn't have a separate * digest, and only supports one shot. */ BIO_printf(bio_err, "Key type not supported for this operation\n"); goto end; } } if (mac_name != NULL) { EVP_PKEY_CTX *mac_ctx = NULL; int r = 0; if (!init_gen_str(&mac_ctx, mac_name, impl, 0)) goto mac_end; if (macopts != NULL) { char *macopt; for (i = 0; i < sk_OPENSSL_STRING_num(macopts); i++) { macopt = sk_OPENSSL_STRING_value(macopts, i); if (pkey_ctrl_string(mac_ctx, macopt) <= 0) { BIO_printf(bio_err, "MAC parameter error \"%s\"\n", macopt); ERR_print_errors(bio_err); goto mac_end; } } } if (EVP_PKEY_keygen(mac_ctx, &sigkey) <= 0) { BIO_puts(bio_err, "Error generating key\n"); ERR_print_errors(bio_err); goto mac_end; } r = 1; mac_end: EVP_PKEY_CTX_free(mac_ctx); if (r == 0) goto end; } if (hmac_key != NULL) { sigkey = EVP_PKEY_new_raw_private_key(EVP_PKEY_HMAC, impl, (unsigned char *)hmac_key, -1); if (sigkey == NULL) goto end; } if (sigkey != NULL) { EVP_MD_CTX *mctx = NULL; EVP_PKEY_CTX *pctx = NULL; int r; if (!BIO_get_md_ctx(bmd, &mctx)) { BIO_printf(bio_err, "Error getting context\n"); ERR_print_errors(bio_err); goto end; } if (do_verify) r = EVP_DigestVerifyInit(mctx, &pctx, md, impl, sigkey); else r = EVP_DigestSignInit(mctx, &pctx, md, impl, sigkey); if (!r) { BIO_printf(bio_err, "Error setting context\n"); ERR_print_errors(bio_err); goto end; } if (sigopts != NULL) { char *sigopt; for (i = 0; i < sk_OPENSSL_STRING_num(sigopts); i++) { sigopt = sk_OPENSSL_STRING_value(sigopts, i); if (pkey_ctrl_string(pctx, sigopt) <= 0) { BIO_printf(bio_err, "parameter error \"%s\"\n", sigopt); ERR_print_errors(bio_err); goto end; } } } } /* we use md as a filter, reading from 'in' */ else { EVP_MD_CTX *mctx = NULL; if (!BIO_get_md_ctx(bmd, &mctx)) { BIO_printf(bio_err, "Error getting context\n"); ERR_print_errors(bio_err); goto end; } if (md == NULL) md = EVP_sha256(); if (!EVP_DigestInit_ex(mctx, md, impl)) { BIO_printf(bio_err, "Error setting digest\n"); ERR_print_errors(bio_err); goto end; } } if (sigfile != NULL && sigkey != NULL) { BIO *sigbio = BIO_new_file(sigfile, "rb"); if (sigbio == NULL) { BIO_printf(bio_err, "Error opening signature file %s\n", sigfile); ERR_print_errors(bio_err); goto end; } siglen = EVP_PKEY_size(sigkey); sigbuf = app_malloc(siglen, "signature buffer"); siglen = BIO_read(sigbio, sigbuf, siglen); BIO_free(sigbio); if (siglen <= 0) { BIO_printf(bio_err, "Error reading signature file %s\n", sigfile); ERR_print_errors(bio_err); goto end; } } inp = BIO_push(bmd, in); if (md == NULL) { EVP_MD_CTX *tctx; BIO_get_md_ctx(bmd, &tctx); md = EVP_MD_CTX_md(tctx); } if (argc == 0) { BIO_set_fp(in, stdin, BIO_NOCLOSE); ret = do_fp(out, buf, inp, separator, out_bin, sigkey, sigbuf, siglen, NULL, NULL, "stdin"); } else { const char *md_name = NULL, *sig_name = NULL; if (!out_bin) { if (sigkey != NULL) { const EVP_PKEY_ASN1_METHOD *ameth; ameth = EVP_PKEY_get0_asn1(sigkey); if (ameth) EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &sig_name, ameth); } if (md != NULL) md_name = EVP_MD_name(md); } ret = 0; for (i = 0; i < argc; i++) { int r; if (BIO_read_filename(in, argv[i]) <= 0) { perror(argv[i]); ret++; continue; } else { r = do_fp(out, buf, inp, separator, out_bin, sigkey, sigbuf, siglen, sig_name, md_name, argv[i]); } if (r) ret = r; (void)BIO_reset(bmd); } } end: OPENSSL_clear_free(buf, BUFSIZE); BIO_free(in); OPENSSL_free(passin); BIO_free_all(out); EVP_PKEY_free(sigkey); sk_OPENSSL_STRING_free(sigopts); sk_OPENSSL_STRING_free(macopts); OPENSSL_free(sigbuf); BIO_free(bmd); release_engine(e); return ret; } static void show_digests(const OBJ_NAME *name, void *arg) { struct doall_dgst_digests *dec = (struct doall_dgst_digests *)arg; const EVP_MD *md = NULL; /* Filter out signed digests (a.k.a signature algorithms) */ if (strstr(name->name, "rsa") != NULL || strstr(name->name, "RSA") != NULL) return; if (!islower((unsigned char)*name->name)) return; /* Filter out message digests that we cannot use */ md = EVP_get_digestbyname(name->name); if (md == NULL) return; BIO_printf(dec->bio, "-%-25s", name->name); if (++dec->n == 3) { BIO_printf(dec->bio, "\n"); dec->n = 0; } else { BIO_printf(dec->bio, " "); } } /* * The newline_escape_filename function performs newline escaping for any * filename that contains a newline. This function also takes a pointer * to backslash. The backslash pointer is a flag to indicating whether a newline * is present in the filename. If a newline is present, the backslash flag is * set and the output format will contain a backslash at the beginning of the * digest output. This output format is to replicate the output format found * in the '*sum' checksum programs. This aims to preserve backward * compatibility. */ static const char *newline_escape_filename(const char *file, int * backslash) { size_t i, e = 0, length = strlen(file), newline_count = 0, mem_len = 0; char *file_cpy = NULL; for (i = 0; i < length; i++) if (file[i] == '\n') newline_count++; mem_len = length + newline_count + 1; file_cpy = app_malloc(mem_len, file); i = 0; while(e < length) { const char c = file[e]; if (c == '\n') { file_cpy[i++] = '\\'; file_cpy[i++] = 'n'; *backslash = 1; } else { file_cpy[i++] = c; } e++; } file_cpy[i] = '\0'; return (const char*)file_cpy; } int do_fp(BIO *out, unsigned char *buf, BIO *bp, int sep, int binout, EVP_PKEY *key, unsigned char *sigin, int siglen, const char *sig_name, const char *md_name, const char *file) { size_t len = BUFSIZE; int i, backslash = 0, ret = 1; unsigned char *sigbuf = NULL; while (BIO_pending(bp) || !BIO_eof(bp)) { i = BIO_read(bp, (char *)buf, BUFSIZE); if (i < 0) { BIO_printf(bio_err, "Read Error in %s\n", file); ERR_print_errors(bio_err); goto end; } if (i == 0) break; } if (sigin != NULL) { EVP_MD_CTX *ctx; BIO_get_md_ctx(bp, &ctx); i = EVP_DigestVerifyFinal(ctx, sigin, (unsigned int)siglen); if (i > 0) { BIO_printf(out, "Verified OK\n"); } else if (i == 0) { BIO_printf(out, "Verification Failure\n"); goto end; } else { BIO_printf(bio_err, "Error Verifying Data\n"); ERR_print_errors(bio_err); goto end; } ret = 0; goto end; } if (key != NULL) { EVP_MD_CTX *ctx; int pkey_len; BIO_get_md_ctx(bp, &ctx); pkey_len = EVP_PKEY_size(key); if (pkey_len > BUFSIZE) { len = pkey_len; sigbuf = app_malloc(len, "Signature buffer"); buf = sigbuf; } if (!EVP_DigestSignFinal(ctx, buf, &len)) { BIO_printf(bio_err, "Error Signing Data\n"); ERR_print_errors(bio_err); goto end; } } else { len = BIO_gets(bp, (char *)buf, BUFSIZE); if ((int)len < 0) { ERR_print_errors(bio_err); goto end; } } if (binout) { BIO_write(out, buf, len); } else if (sep == 2) { file = newline_escape_filename(file, &backslash); if (backslash == 1) BIO_puts(out, "\\"); for (i = 0; i < (int)len; i++) BIO_printf(out, "%02x", buf[i]); BIO_printf(out, " *%s\n", file); OPENSSL_free((char *)file); } else { if (sig_name != NULL) { BIO_puts(out, sig_name); if (md_name != NULL) BIO_printf(out, "-%s", md_name); BIO_printf(out, "(%s)= ", file); } else if (md_name != NULL) { BIO_printf(out, "%s(%s)= ", md_name, file); } else { BIO_printf(out, "(%s)= ", file); } for (i = 0; i < (int)len; i++) { if (sep && (i != 0)) BIO_printf(out, ":"); BIO_printf(out, "%02x", buf[i]); } BIO_printf(out, "\n"); } ret = 0; end: if (sigbuf != NULL) OPENSSL_clear_free(sigbuf, len); return ret; } openssl-1.1.1f/apps/dh1024.pem000066400000000000000000000006761364063235100157270ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MIGHAoGBAP//////////yQ/aoiFowjTExmKLgNwc0SkCTgiKZ8x0Agu+pjsTmyJR Sgh5jjQE3e+VGbPNOkMbMCsKbfJfFDdP4TVtbVHCReSFtXZiXn7G9ExC6aY37WsL /1y29Aa37e44a/taiZ+lrp8kEXxLH+ZJKGZR7OZTgf//////////AgEC -----END DH PARAMETERS----- These are the 1024-bit DH parameters from "Internet Key Exchange Protocol Version 2 (IKEv2)": https://tools.ietf.org/html/rfc5996 See https://tools.ietf.org/html/rfc2412 for how they were generated. openssl-1.1.1f/apps/dh2048.pem000066400000000000000000000012261364063235100157260ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MIIBCAKCAQEA///////////JD9qiIWjCNMTGYouA3BzRKQJOCIpnzHQCC76mOxOb IlFKCHmONATd75UZs806QxswKwpt8l8UN0/hNW1tUcJF5IW1dmJefsb0TELppjft awv/XLb0Brft7jhr+1qJn6WunyQRfEsf5kkoZlHs5Fs9wgB8uKFjvwWY2kg2HFXT mmkWP6j9JM9fg2VdI9yjrZYcYvNWIIVSu57VKQdwlpZtZww1Tkq8mATxdGwIyhgh fDKQXkYuNs474553LBgOhgObJ4Oi7Aeij7XFXfBvTFLJ3ivL9pVYFxg5lUl86pVq 5RXSJhiY+gUQFXKOWoqsqmj//////////wIBAg== -----END DH PARAMETERS----- These are the 2048-bit DH parameters from "More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)": https://tools.ietf.org/html/rfc3526 See https://tools.ietf.org/html/rfc2412 for how they were generated. openssl-1.1.1f/apps/dh4096.pem000066400000000000000000000017571364063235100157440ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MIICCAKCAgEA///////////JD9qiIWjCNMTGYouA3BzRKQJOCIpnzHQCC76mOxOb IlFKCHmONATd75UZs806QxswKwpt8l8UN0/hNW1tUcJF5IW1dmJefsb0TELppjft awv/XLb0Brft7jhr+1qJn6WunyQRfEsf5kkoZlHs5Fs9wgB8uKFjvwWY2kg2HFXT mmkWP6j9JM9fg2VdI9yjrZYcYvNWIIVSu57VKQdwlpZtZww1Tkq8mATxdGwIyhgh fDKQXkYuNs474553LBgOhgObJ4Oi7Aeij7XFXfBvTFLJ3ivL9pVYFxg5lUl86pVq 5RXSJhiY+gUQFXKOWoqqxC2tMxcNBFB6M6hVIavfHLpk7PuFBFjb7wqK6nFXXQYM fbOXD4Wm4eTHq/WujNsJM9cejJTgSiVhnc7j0iYa0u5r8S/6BtmKCGTYdgJzPshq ZFIfKxgXeyAMu+EXV3phXWx3CYjAutlG4gjiT6B05asxQ9tb/OD9EI5LgtEgqSEI ARpyPBKnh+bXiHGaEL26WyaZwycYavTiPBqUaDS2FQvaJYPpyirUTOjbu8LbBN6O +S6O/BQfvsqmKHxZR05rwF2ZspZPoJDDoiM7oYZRW+ftH2EpcM7i16+4G912IXBI HNAGkSfVsFqpk7TqmI2P3cGG/7fckKbAj030Nck0BjGZ//////////8CAQI= -----END DH PARAMETERS----- These are the 4096-bit DH parameters from "More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)": https://tools.ietf.org/html/rfc3526 See https://tools.ietf.org/html/rfc2412 for how they were generated. openssl-1.1.1f/apps/dhparam.c000066400000000000000000000263601364063235100161000ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_DH NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include # ifndef OPENSSL_NO_DSA # include # endif # define DEFBITS 2048 static int dh_cb(int p, int n, BN_GENCB *cb); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_ENGINE, OPT_CHECK, OPT_TEXT, OPT_NOOUT, OPT_DSAPARAM, OPT_C, OPT_2, OPT_5, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS dhparam_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [flags] [numbits]\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"in", OPT_IN, '<', "Input file"}, {"inform", OPT_INFORM, 'F', "Input format, DER or PEM"}, {"outform", OPT_OUTFORM, 'F', "Output format, DER or PEM"}, {"out", OPT_OUT, '>', "Output file"}, {"check", OPT_CHECK, '-', "Check the DH parameters"}, {"text", OPT_TEXT, '-', "Print a text form of the DH parameters"}, {"noout", OPT_NOOUT, '-', "Don't output any DH parameters"}, OPT_R_OPTIONS, {"C", OPT_C, '-', "Print C code"}, {"2", OPT_2, '-', "Generate parameters using 2 as the generator value"}, {"5", OPT_5, '-', "Generate parameters using 5 as the generator value"}, # ifndef OPENSSL_NO_DSA {"dsaparam", OPT_DSAPARAM, '-', "Read or generate DSA parameters, convert to DH"}, # endif # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine e, possibly a hardware device"}, # endif {NULL} }; int dhparam_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; DH *dh = NULL; char *infile = NULL, *outfile = NULL, *prog; ENGINE *e = NULL; #ifndef OPENSSL_NO_DSA int dsaparam = 0; #endif int i, text = 0, C = 0, ret = 1, num = 0, g = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, check = 0, noout = 0; OPTION_CHOICE o; prog = opt_init(argc, argv, dhparam_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(dhparam_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_CHECK: check = 1; break; case OPT_TEXT: text = 1; break; case OPT_DSAPARAM: #ifndef OPENSSL_NO_DSA dsaparam = 1; #endif break; case OPT_C: C = 1; break; case OPT_2: g = 2; break; case OPT_5: g = 5; break; case OPT_NOOUT: noout = 1; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; } } argc = opt_num_rest(); argv = opt_rest(); if (argv[0] != NULL && (!opt_int(argv[0], &num) || num <= 0)) goto end; if (g && !num) num = DEFBITS; # ifndef OPENSSL_NO_DSA if (dsaparam && g) { BIO_printf(bio_err, "generator may not be chosen for DSA parameters\n"); goto end; } # endif out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; /* DH parameters */ if (num && !g) g = 2; if (num) { BN_GENCB *cb; cb = BN_GENCB_new(); if (cb == NULL) { ERR_print_errors(bio_err); goto end; } BN_GENCB_set(cb, dh_cb, bio_err); # ifndef OPENSSL_NO_DSA if (dsaparam) { DSA *dsa = DSA_new(); BIO_printf(bio_err, "Generating DSA parameters, %d bit long prime\n", num); if (dsa == NULL || !DSA_generate_parameters_ex(dsa, num, NULL, 0, NULL, NULL, cb)) { DSA_free(dsa); BN_GENCB_free(cb); ERR_print_errors(bio_err); goto end; } dh = DSA_dup_DH(dsa); DSA_free(dsa); if (dh == NULL) { BN_GENCB_free(cb); ERR_print_errors(bio_err); goto end; } } else # endif { dh = DH_new(); BIO_printf(bio_err, "Generating DH parameters, %d bit long safe prime, generator %d\n", num, g); BIO_printf(bio_err, "This is going to take a long time\n"); if (dh == NULL || !DH_generate_parameters_ex(dh, num, g, cb)) { BN_GENCB_free(cb); ERR_print_errors(bio_err); goto end; } } BN_GENCB_free(cb); } else { in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; # ifndef OPENSSL_NO_DSA if (dsaparam) { DSA *dsa; if (informat == FORMAT_ASN1) dsa = d2i_DSAparams_bio(in, NULL); else /* informat == FORMAT_PEM */ dsa = PEM_read_bio_DSAparams(in, NULL, NULL, NULL); if (dsa == NULL) { BIO_printf(bio_err, "unable to load DSA parameters\n"); ERR_print_errors(bio_err); goto end; } dh = DSA_dup_DH(dsa); DSA_free(dsa); if (dh == NULL) { ERR_print_errors(bio_err); goto end; } } else # endif { if (informat == FORMAT_ASN1) { /* * We have no PEM header to determine what type of DH params it * is. We'll just try both. */ dh = d2i_DHparams_bio(in, NULL); /* BIO_reset() returns 0 for success for file BIOs only!!! */ if (dh == NULL && BIO_reset(in) == 0) dh = d2i_DHxparams_bio(in, NULL); } else { /* informat == FORMAT_PEM */ dh = PEM_read_bio_DHparams(in, NULL, NULL, NULL); } if (dh == NULL) { BIO_printf(bio_err, "unable to load DH parameters\n"); ERR_print_errors(bio_err); goto end; } } /* dh != NULL */ } if (text) { DHparams_print(out, dh); } if (check) { if (!DH_check(dh, &i)) { ERR_print_errors(bio_err); goto end; } if (i & DH_CHECK_P_NOT_PRIME) BIO_printf(bio_err, "WARNING: p value is not prime\n"); if (i & DH_CHECK_P_NOT_SAFE_PRIME) BIO_printf(bio_err, "WARNING: p value is not a safe prime\n"); if (i & DH_CHECK_Q_NOT_PRIME) BIO_printf(bio_err, "WARNING: q value is not a prime\n"); if (i & DH_CHECK_INVALID_Q_VALUE) BIO_printf(bio_err, "WARNING: q value is invalid\n"); if (i & DH_CHECK_INVALID_J_VALUE) BIO_printf(bio_err, "WARNING: j value is invalid\n"); if (i & DH_UNABLE_TO_CHECK_GENERATOR) BIO_printf(bio_err, "WARNING: unable to check the generator value\n"); if (i & DH_NOT_SUITABLE_GENERATOR) BIO_printf(bio_err, "WARNING: the g value is not a generator\n"); if (i == 0) BIO_printf(bio_err, "DH parameters appear to be ok.\n"); if (num != 0 && i != 0) { /* * We have generated parameters but DH_check() indicates they are * invalid! This should never happen! */ BIO_printf(bio_err, "ERROR: Invalid parameters generated\n"); goto end; } } if (C) { unsigned char *data; int len, bits; const BIGNUM *pbn, *gbn; len = DH_size(dh); bits = DH_bits(dh); DH_get0_pqg(dh, &pbn, NULL, &gbn); data = app_malloc(len, "print a BN"); BIO_printf(out, "static DH *get_dh%d(void)\n{\n", bits); print_bignum_var(out, pbn, "dhp", bits, data); print_bignum_var(out, gbn, "dhg", bits, data); BIO_printf(out, " DH *dh = DH_new();\n" " BIGNUM *p, *g;\n" "\n" " if (dh == NULL)\n" " return NULL;\n"); BIO_printf(out, " p = BN_bin2bn(dhp_%d, sizeof(dhp_%d), NULL);\n", bits, bits); BIO_printf(out, " g = BN_bin2bn(dhg_%d, sizeof(dhg_%d), NULL);\n", bits, bits); BIO_printf(out, " if (p == NULL || g == NULL\n" " || !DH_set0_pqg(dh, p, NULL, g)) {\n" " DH_free(dh);\n" " BN_free(p);\n" " BN_free(g);\n" " return NULL;\n" " }\n"); if (DH_get_length(dh) > 0) BIO_printf(out, " if (!DH_set_length(dh, %ld)) {\n" " DH_free(dh);\n" " return NULL;\n" " }\n", DH_get_length(dh)); BIO_printf(out, " return dh;\n}\n"); OPENSSL_free(data); } if (!noout) { const BIGNUM *q; DH_get0_pqg(dh, NULL, &q, NULL); if (outformat == FORMAT_ASN1) { if (q != NULL) i = i2d_DHxparams_bio(out, dh); else i = i2d_DHparams_bio(out, dh); } else if (q != NULL) { i = PEM_write_bio_DHxparams(out, dh); } else { i = PEM_write_bio_DHparams(out, dh); } if (!i) { BIO_printf(bio_err, "unable to write DH parameters\n"); ERR_print_errors(bio_err); goto end; } } ret = 0; end: BIO_free(in); BIO_free_all(out); DH_free(dh); release_engine(e); return ret; } static int dh_cb(int p, int n, BN_GENCB *cb) { static const char symbols[] = ".+*\n"; char c = (p >= 0 && (size_t)p < sizeof(symbols) - 1) ? symbols[p] : '?'; BIO_write(BN_GENCB_get_arg(cb), &c, 1); (void)BIO_flush(BN_GENCB_get_arg(cb)); return 1; } #endif openssl-1.1.1f/apps/dsa-ca.pem000066400000000000000000000052431364063235100161500ustar00rootroot00000000000000-----BEGIN DSA PRIVATE KEY----- MIIBugIBAAKBgQCnP26Fv0FqKX3wn0cZMJCaCR3aajMexT2GlrMV4FMuj+BZgnOQ PnUxmUd6UvuF5NmmezibaIqEm4fGHrV+hktTW1nPcWUZiG7OZq5riDb77Cjcwtel u+UsOSZL2ppwGJU3lRBWI/YV7boEXt45T/23Qx+1pGVvzYAR5HCVW1DNSQIVAPcH Me36bAYD1YWKHKycZedQZmVvAoGATd9MA6aRivUZb1BGJZnlaG8w42nh5bNdmLso hkj83pkEP1+IDJxzJA0gXbkqmj8YlifkYofBe3RiU/xhJ6h6kQmdtvFNnFQPWAbu SXQHzlV+I84W9srcWmEBfslxtU323DQph2j2XiCTs9v15AlsQReVkusBtXOlan7Y Mu0OArgCgYAapll6iqz9XrZFlk2GCVcB+KihxWnH7IuHvSLw9YUrJahcBHmbpvt4 94lF4gC5w3WPM+vXJofbusk4GoQEEsQNMDaah4m49uUqAylOVFJJJXuirVJ+o+0T tOFDITEAl+YZZariXOD7tdOSOl9RLMPC6+daHKS9e68u3enxhqnDGQIUB78dhW77 J6zsFbSEHaQGUmfSeoM= -----END DSA PRIVATE KEY----- -----BEGIN CERTIFICATE REQUEST----- MIICVjCCAhMCAQAwUjELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUx ITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDELMAkGA1UEAwwCQ0Ew ggG2MIIBKwYHKoZIzjgEATCCAR4CgYEApz9uhb9Bail98J9HGTCQmgkd2mozHsU9 hpazFeBTLo/gWYJzkD51MZlHelL7heTZpns4m2iKhJuHxh61foZLU1tZz3FlGYhu zmaua4g2++wo3MLXpbvlLDkmS9qacBiVN5UQViP2Fe26BF7eOU/9t0MftaRlb82A EeRwlVtQzUkCFQD3BzHt+mwGA9WFihysnGXnUGZlbwKBgE3fTAOmkYr1GW9QRiWZ 5WhvMONp4eWzXZi7KIZI/N6ZBD9fiAyccyQNIF25Kpo/GJYn5GKHwXt0YlP8YSeo epEJnbbxTZxUD1gG7kl0B85VfiPOFvbK3FphAX7JcbVN9tw0KYdo9l4gk7Pb9eQJ bEEXlZLrAbVzpWp+2DLtDgK4A4GEAAKBgBqmWXqKrP1etkWWTYYJVwH4qKHFacfs i4e9IvD1hSslqFwEeZum+3j3iUXiALnDdY8z69cmh9u6yTgahAQSxA0wNpqHibj2 5SoDKU5UUkkle6KtUn6j7RO04UMhMQCX5hllquJc4Pu105I6X1Esw8Lr51ocpL17 ry7d6fGGqcMZoAAwCwYJYIZIAWUDBAMCAzAAMC0CFCp7rUwGJNtxK6Aqo6k6US+S KP8sAhUAyfSi8Zs3QAvkJoFG0IMRaq8M03I= -----END CERTIFICATE REQUEST----- -----BEGIN CERTIFICATE----- MIIDMDCCAuygAwIBAgIBAjALBglghkgBZQMEAwIwUzELMAkGA1UEBhMCQVUxEzAR BgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5 IEx0ZDEMMAoGA1UEAwwDUENBMCAXDTE2MDExMzIxNDE0OVoYDzMwMTUwNTE2MjE0 MTQ5WjBSMQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UE CgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMQswCQYDVQQDDAJDQTCCAbYwggEr BgcqhkjOOAQBMIIBHgKBgQCnP26Fv0FqKX3wn0cZMJCaCR3aajMexT2GlrMV4FMu j+BZgnOQPnUxmUd6UvuF5NmmezibaIqEm4fGHrV+hktTW1nPcWUZiG7OZq5riDb7 7Cjcwtelu+UsOSZL2ppwGJU3lRBWI/YV7boEXt45T/23Qx+1pGVvzYAR5HCVW1DN SQIVAPcHMe36bAYD1YWKHKycZedQZmVvAoGATd9MA6aRivUZb1BGJZnlaG8w42nh 5bNdmLsohkj83pkEP1+IDJxzJA0gXbkqmj8YlifkYofBe3RiU/xhJ6h6kQmdtvFN nFQPWAbuSXQHzlV+I84W9srcWmEBfslxtU323DQph2j2XiCTs9v15AlsQReVkusB tXOlan7YMu0OArgDgYQAAoGAGqZZeoqs/V62RZZNhglXAfioocVpx+yLh70i8PWF KyWoXAR5m6b7ePeJReIAucN1jzPr1yaH27rJOBqEBBLEDTA2moeJuPblKgMpTlRS SSV7oq1SfqPtE7ThQyExAJfmGWWq4lzg+7XTkjpfUSzDwuvnWhykvXuvLt3p8Yap wxmjUDBOMB0GA1UdDgQWBBTMZcORcBEVlqO/CD4pf4V6N1NM1zAfBgNVHSMEGDAW gBTGjwJ33uvjSa20RNrMKWoGptOLdDAMBgNVHRMEBTADAQH/MAsGCWCGSAFlAwQD AgMxADAuAhUA4V6MrHufG8R79E+AtVO02olPxK8CFQDkZyo/TWpavsUBRDJbCeD9 jgjIkA== -----END CERTIFICATE----- openssl-1.1.1f/apps/dsa-pca.pem000066400000000000000000000052531364063235100163310ustar00rootroot00000000000000-----BEGIN DSA PRIVATE KEY----- MIIBvAIBAAKBgQCnP26Fv0FqKX3wn0cZMJCaCR3aajMexT2GlrMV4FMuj+BZgnOQ PnUxmUd6UvuF5NmmezibaIqEm4fGHrV+hktTW1nPcWUZiG7OZq5riDb77Cjcwtel u+UsOSZL2ppwGJU3lRBWI/YV7boEXt45T/23Qx+1pGVvzYAR5HCVW1DNSQIVAPcH Me36bAYD1YWKHKycZedQZmVvAoGATd9MA6aRivUZb1BGJZnlaG8w42nh5bNdmLso hkj83pkEP1+IDJxzJA0gXbkqmj8YlifkYofBe3RiU/xhJ6h6kQmdtvFNnFQPWAbu SXQHzlV+I84W9srcWmEBfslxtU323DQph2j2XiCTs9v15AlsQReVkusBtXOlan7Y Mu0OArgCgYEApu25HkB1b4gKMIV7aLGNSIknMzYgrB7o1kQxeDf34dDVRM9OZ8tk umz6tl+iUcNe5EoxdsYV1IXSddjOi08LOLsZq7AQlNnKvbtlmMDULpqkZJD0bO7A 29nisJfKy1URqABLw5DgfcPh1ZLXtmDfUgJvmjgTmvTPT2j9TPjq7RUCFQDNvrBz 6TicfImU7UFRn9h00j0lJQ== -----END DSA PRIVATE KEY----- -----BEGIN CERTIFICATE REQUEST----- MIICWDCCAhUCAQAwUzELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUx ITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDEMMAoGA1UEAwwDUENB MIIBtzCCASsGByqGSM44BAEwggEeAoGBAKc/boW/QWopffCfRxkwkJoJHdpqMx7F PYaWsxXgUy6P4FmCc5A+dTGZR3pS+4Xk2aZ7OJtoioSbh8YetX6GS1NbWc9xZRmI bs5mrmuINvvsKNzC16W75Sw5JkvamnAYlTeVEFYj9hXtugRe3jlP/bdDH7WkZW/N gBHkcJVbUM1JAhUA9wcx7fpsBgPVhYocrJxl51BmZW8CgYBN30wDppGK9RlvUEYl meVobzDjaeHls12YuyiGSPzemQQ/X4gMnHMkDSBduSqaPxiWJ+Rih8F7dGJT/GEn qHqRCZ228U2cVA9YBu5JdAfOVX4jzhb2ytxaYQF+yXG1TfbcNCmHaPZeIJOz2/Xk CWxBF5WS6wG1c6Vqftgy7Q4CuAOBhQACgYEApu25HkB1b4gKMIV7aLGNSIknMzYg rB7o1kQxeDf34dDVRM9OZ8tkumz6tl+iUcNe5EoxdsYV1IXSddjOi08LOLsZq7AQ lNnKvbtlmMDULpqkZJD0bO7A29nisJfKy1URqABLw5DgfcPh1ZLXtmDfUgJvmjgT mvTPT2j9TPjq7RWgADALBglghkgBZQMEAwIDMAAwLQIVAPA6/jxCT1D2HgzE4iZR AEup/C7YAhRPLTQvQnAiS5FRrA+8SwBLvDAsaw== -----END CERTIFICATE REQUEST----- -----BEGIN CERTIFICATE----- MIIDMDCCAu6gAwIBAgIBATALBglghkgBZQMEAwIwUzELMAkGA1UEBhMCQVUxEzAR BgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5 IEx0ZDEMMAoGA1UEAwwDUENBMCAXDTE2MDExMzIxNDE0OVoYDzMwMTUwNTE2MjE0 MTQ5WjBTMQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UE CgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMQwwCgYDVQQDDANQQ0EwggG3MIIB KwYHKoZIzjgEATCCAR4CgYEApz9uhb9Bail98J9HGTCQmgkd2mozHsU9hpazFeBT Lo/gWYJzkD51MZlHelL7heTZpns4m2iKhJuHxh61foZLU1tZz3FlGYhuzmaua4g2 ++wo3MLXpbvlLDkmS9qacBiVN5UQViP2Fe26BF7eOU/9t0MftaRlb82AEeRwlVtQ zUkCFQD3BzHt+mwGA9WFihysnGXnUGZlbwKBgE3fTAOmkYr1GW9QRiWZ5WhvMONp 4eWzXZi7KIZI/N6ZBD9fiAyccyQNIF25Kpo/GJYn5GKHwXt0YlP8YSeoepEJnbbx TZxUD1gG7kl0B85VfiPOFvbK3FphAX7JcbVN9tw0KYdo9l4gk7Pb9eQJbEEXlZLr AbVzpWp+2DLtDgK4A4GFAAKBgQCm7bkeQHVviAowhXtosY1IiSczNiCsHujWRDF4 N/fh0NVEz05ny2S6bPq2X6JRw17kSjF2xhXUhdJ12M6LTws4uxmrsBCU2cq9u2WY wNQumqRkkPRs7sDb2eKwl8rLVRGoAEvDkOB9w+HVkte2YN9SAm+aOBOa9M9PaP1M +OrtFaNQME4wHQYDVR0OBBYEFMaPAnfe6+NJrbRE2swpagam04t0MB8GA1UdIwQY MBaAFMaPAnfe6+NJrbRE2swpagam04t0MAwGA1UdEwQFMAMBAf8wCwYJYIZIAWUD BAMCAy8AMCwCFFhdz4fzQo9BBF20U1CHldYTi/D7AhQydDnDMj21y+U1UhDZJrvh lnt88g== -----END CERTIFICATE----- openssl-1.1.1f/apps/dsa.c000066400000000000000000000171701364063235100152320ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_DSA NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include # include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_ENGINE, /* Do not change the order here; see case statements below */ OPT_PVK_NONE, OPT_PVK_WEAK, OPT_PVK_STRONG, OPT_NOOUT, OPT_TEXT, OPT_MODULUS, OPT_PUBIN, OPT_PUBOUT, OPT_CIPHER, OPT_PASSIN, OPT_PASSOUT } OPTION_CHOICE; const OPTIONS dsa_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'f', "Input format, DER PEM PVK"}, {"outform", OPT_OUTFORM, 'f', "Output format, DER PEM PVK"}, {"in", OPT_IN, 's', "Input key"}, {"out", OPT_OUT, '>', "Output file"}, {"noout", OPT_NOOUT, '-', "Don't print key out"}, {"text", OPT_TEXT, '-', "Print the key in text"}, {"modulus", OPT_MODULUS, '-', "Print the DSA public value"}, {"pubin", OPT_PUBIN, '-', "Expect a public key in input file"}, {"pubout", OPT_PUBOUT, '-', "Output public key, not private"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"", OPT_CIPHER, '-', "Any supported cipher"}, # ifndef OPENSSL_NO_RC4 {"pvk-strong", OPT_PVK_STRONG, '-', "Enable 'Strong' PVK encoding level (default)"}, {"pvk-weak", OPT_PVK_WEAK, '-', "Enable 'Weak' PVK encoding level"}, {"pvk-none", OPT_PVK_NONE, '-', "Don't enforce PVK encoding"}, # endif # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine e, possibly a hardware device"}, # endif {NULL} }; int dsa_main(int argc, char **argv) { BIO *out = NULL; DSA *dsa = NULL; ENGINE *e = NULL; const EVP_CIPHER *enc = NULL; char *infile = NULL, *outfile = NULL, *prog; char *passin = NULL, *passout = NULL, *passinarg = NULL, *passoutarg = NULL; OPTION_CHOICE o; int informat = FORMAT_PEM, outformat = FORMAT_PEM, text = 0, noout = 0; int i, modulus = 0, pubin = 0, pubout = 0, ret = 1; # ifndef OPENSSL_NO_RC4 int pvk_encr = 2; # endif int private = 0; prog = opt_init(argc, argv, dsa_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: ret = 0; BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(dsa_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_PVK_STRONG: /* pvk_encr:= 2 */ case OPT_PVK_WEAK: /* pvk_encr:= 1 */ case OPT_PVK_NONE: /* pvk_encr:= 0 */ #ifndef OPENSSL_NO_RC4 pvk_encr = (o - OPT_PVK_NONE); #endif break; case OPT_NOOUT: noout = 1; break; case OPT_TEXT: text = 1; break; case OPT_MODULUS: modulus = 1; break; case OPT_PUBIN: pubin = 1; break; case OPT_PUBOUT: pubout = 1; break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &enc)) goto end; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = pubin || pubout ? 0 : 1; if (text && !pubin) private = 1; if (!app_passwd(passinarg, passoutarg, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } BIO_printf(bio_err, "read DSA key\n"); { EVP_PKEY *pkey; if (pubin) pkey = load_pubkey(infile, informat, 1, passin, e, "Public Key"); else pkey = load_key(infile, informat, 1, passin, e, "Private Key"); if (pkey != NULL) { dsa = EVP_PKEY_get1_DSA(pkey); EVP_PKEY_free(pkey); } } if (dsa == NULL) { BIO_printf(bio_err, "unable to load Key\n"); ERR_print_errors(bio_err); goto end; } out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; if (text) { assert(pubin || private); if (!DSA_print(out, dsa, 0)) { perror(outfile); ERR_print_errors(bio_err); goto end; } } if (modulus) { const BIGNUM *pub_key = NULL; DSA_get0_key(dsa, &pub_key, NULL); BIO_printf(out, "Public Key="); BN_print(out, pub_key); BIO_printf(out, "\n"); } if (noout) { ret = 0; goto end; } BIO_printf(bio_err, "writing DSA key\n"); if (outformat == FORMAT_ASN1) { if (pubin || pubout) { i = i2d_DSA_PUBKEY_bio(out, dsa); } else { assert(private); i = i2d_DSAPrivateKey_bio(out, dsa); } } else if (outformat == FORMAT_PEM) { if (pubin || pubout) { i = PEM_write_bio_DSA_PUBKEY(out, dsa); } else { assert(private); i = PEM_write_bio_DSAPrivateKey(out, dsa, enc, NULL, 0, NULL, passout); } # ifndef OPENSSL_NO_RSA } else if (outformat == FORMAT_MSBLOB || outformat == FORMAT_PVK) { EVP_PKEY *pk; pk = EVP_PKEY_new(); if (pk == NULL) goto end; EVP_PKEY_set1_DSA(pk, dsa); if (outformat == FORMAT_PVK) { if (pubin) { BIO_printf(bio_err, "PVK form impossible with public key input\n"); EVP_PKEY_free(pk); goto end; } assert(private); # ifdef OPENSSL_NO_RC4 BIO_printf(bio_err, "PVK format not supported\n"); EVP_PKEY_free(pk); goto end; # else i = i2b_PVK_bio(out, pk, pvk_encr, 0, passout); # endif } else if (pubin || pubout) { i = i2b_PublicKey_bio(out, pk); } else { assert(private); i = i2b_PrivateKey_bio(out, pk); } EVP_PKEY_free(pk); # endif } else { BIO_printf(bio_err, "bad output format specified for outfile\n"); goto end; } if (i <= 0) { BIO_printf(bio_err, "unable to write private key\n"); ERR_print_errors(bio_err); goto end; } ret = 0; end: BIO_free_all(out); DSA_free(dsa); release_engine(e); OPENSSL_free(passin); OPENSSL_free(passout); return ret; } #endif openssl-1.1.1f/apps/dsa1024.pem000066400000000000000000000007071364063235100160760ustar00rootroot00000000000000-----BEGIN DSA PARAMETERS----- MIIBHgKBgQCnP26Fv0FqKX3wn0cZMJCaCR3aajMexT2GlrMV4FMuj+BZgnOQPnUx mUd6UvuF5NmmezibaIqEm4fGHrV+hktTW1nPcWUZiG7OZq5riDb77Cjcwtelu+Us OSZL2ppwGJU3lRBWI/YV7boEXt45T/23Qx+1pGVvzYAR5HCVW1DNSQIVAPcHMe36 bAYD1YWKHKycZedQZmVvAoGATd9MA6aRivUZb1BGJZnlaG8w42nh5bNdmLsohkj8 3pkEP1+IDJxzJA0gXbkqmj8YlifkYofBe3RiU/xhJ6h6kQmdtvFNnFQPWAbuSXQH zlV+I84W9srcWmEBfslxtU323DQph2j2XiCTs9v15AlsQReVkusBtXOlan7YMu0O Arg= -----END DSA PARAMETERS----- openssl-1.1.1f/apps/dsa512.pem000066400000000000000000000004301364063235100160100ustar00rootroot00000000000000-----BEGIN DSA PARAMETERS----- MIGdAkEAnRtpjibb8isRcBmG9hnI+BnyGFOURgbQYlAzSwI8UjADizv5X9EkBk97 TLqqQJv9luQ3M7stWtdaEUBmonZ9MQIVAPtT71C0QJIxVoZTeuiLIppJ+3GPAkEA gz6I5cWJc847bAFJv7PHnwrqRJHlMKrZvltftxDXibeOdPvPKR7rqCxUUbgQ3qDO L8wka5B33qJoplISogOdIA== -----END DSA PARAMETERS----- openssl-1.1.1f/apps/dsap.pem000066400000000000000000000004241364063235100157430ustar00rootroot00000000000000-----BEGIN DSA PARAMETERS----- MIGcAkEA+ZiKEvZmc9MtnaFZh4NiZ3oZS4J1PHvPrm9MXj5ntVheDPkdmBDTncya GAJcMjwsyB/GvLDGd6yGCw/8eF+09wIVAK3VagOxGd/Q4Af5NbxR5FB7CXEjAkA2 t/q7HgVLi0KeKvcDG8BRl3wuy7bCvpjgtWiJc/tpvcuzeuAayH89UofjAGueKjXD ADiRffvSdhrNw5dkqdql -----END DSA PARAMETERS----- openssl-1.1.1f/apps/dsaparam.c000066400000000000000000000175771364063235100162660ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_DSA NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include static int dsa_cb(int p, int n, BN_GENCB *cb); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_TEXT, OPT_C, OPT_NOOUT, OPT_GENKEY, OPT_ENGINE, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS dsaparam_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format - DER or PEM"}, {"in", OPT_IN, '<', "Input file"}, {"outform", OPT_OUTFORM, 'F', "Output format - DER or PEM"}, {"out", OPT_OUT, '>', "Output file"}, {"text", OPT_TEXT, '-', "Print as text"}, {"C", OPT_C, '-', "Output C code"}, {"noout", OPT_NOOUT, '-', "No output"}, {"genkey", OPT_GENKEY, '-', "Generate a DSA key"}, OPT_R_OPTIONS, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine e, possibly a hardware device"}, # endif {NULL} }; int dsaparam_main(int argc, char **argv) { ENGINE *e = NULL; DSA *dsa = NULL; BIO *in = NULL, *out = NULL; BN_GENCB *cb = NULL; int numbits = -1, num = 0, genkey = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, noout = 0, C = 0; int ret = 1, i, text = 0, private = 0; char *infile = NULL, *outfile = NULL, *prog; OPTION_CHOICE o; prog = opt_init(argc, argv, dsaparam_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(dsaparam_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_TEXT: text = 1; break; case OPT_C: C = 1; break; case OPT_GENKEY: genkey = 1; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_NOOUT: noout = 1; break; } } argc = opt_num_rest(); argv = opt_rest(); if (argc == 1) { if (!opt_int(argv[0], &num) || num < 0) goto end; /* generate a key */ numbits = num; } private = genkey ? 1 : 0; in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; if (numbits > 0) { if (numbits > OPENSSL_DSA_MAX_MODULUS_BITS) BIO_printf(bio_err, "Warning: It is not recommended to use more than %d bit for DSA keys.\n" " Your key size is %d! Larger key size may behave not as expected.\n", OPENSSL_DSA_MAX_MODULUS_BITS, numbits); cb = BN_GENCB_new(); if (cb == NULL) { BIO_printf(bio_err, "Error allocating BN_GENCB object\n"); goto end; } BN_GENCB_set(cb, dsa_cb, bio_err); dsa = DSA_new(); if (dsa == NULL) { BIO_printf(bio_err, "Error allocating DSA object\n"); goto end; } BIO_printf(bio_err, "Generating DSA parameters, %d bit long prime\n", num); BIO_printf(bio_err, "This could take some time\n"); if (!DSA_generate_parameters_ex(dsa, num, NULL, 0, NULL, NULL, cb)) { ERR_print_errors(bio_err); BIO_printf(bio_err, "Error, DSA key generation failed\n"); goto end; } } else if (informat == FORMAT_ASN1) { dsa = d2i_DSAparams_bio(in, NULL); } else { dsa = PEM_read_bio_DSAparams(in, NULL, NULL, NULL); } if (dsa == NULL) { BIO_printf(bio_err, "unable to load DSA parameters\n"); ERR_print_errors(bio_err); goto end; } if (text) { DSAparams_print(out, dsa); } if (C) { const BIGNUM *p = NULL, *q = NULL, *g = NULL; unsigned char *data; int len, bits_p; DSA_get0_pqg(dsa, &p, &q, &g); len = BN_num_bytes(p); bits_p = BN_num_bits(p); data = app_malloc(len + 20, "BN space"); BIO_printf(bio_out, "static DSA *get_dsa%d(void)\n{\n", bits_p); print_bignum_var(bio_out, p, "dsap", bits_p, data); print_bignum_var(bio_out, q, "dsaq", bits_p, data); print_bignum_var(bio_out, g, "dsag", bits_p, data); BIO_printf(bio_out, " DSA *dsa = DSA_new();\n" " BIGNUM *p, *q, *g;\n" "\n"); BIO_printf(bio_out, " if (dsa == NULL)\n" " return NULL;\n"); BIO_printf(bio_out, " if (!DSA_set0_pqg(dsa, p = BN_bin2bn(dsap_%d, sizeof(dsap_%d), NULL),\n", bits_p, bits_p); BIO_printf(bio_out, " q = BN_bin2bn(dsaq_%d, sizeof(dsaq_%d), NULL),\n", bits_p, bits_p); BIO_printf(bio_out, " g = BN_bin2bn(dsag_%d, sizeof(dsag_%d), NULL))) {\n", bits_p, bits_p); BIO_printf(bio_out, " DSA_free(dsa);\n" " BN_free(p);\n" " BN_free(q);\n" " BN_free(g);\n" " return NULL;\n" " }\n" " return dsa;\n}\n"); OPENSSL_free(data); } if (outformat == FORMAT_ASN1 && genkey) noout = 1; if (!noout) { if (outformat == FORMAT_ASN1) i = i2d_DSAparams_bio(out, dsa); else i = PEM_write_bio_DSAparams(out, dsa); if (!i) { BIO_printf(bio_err, "unable to write DSA parameters\n"); ERR_print_errors(bio_err); goto end; } } if (genkey) { DSA *dsakey; if ((dsakey = DSAparams_dup(dsa)) == NULL) goto end; if (!DSA_generate_key(dsakey)) { ERR_print_errors(bio_err); DSA_free(dsakey); goto end; } assert(private); if (outformat == FORMAT_ASN1) i = i2d_DSAPrivateKey_bio(out, dsakey); else i = PEM_write_bio_DSAPrivateKey(out, dsakey, NULL, NULL, 0, NULL, NULL); DSA_free(dsakey); } ret = 0; end: BN_GENCB_free(cb); BIO_free(in); BIO_free_all(out); DSA_free(dsa); release_engine(e); return ret; } static int dsa_cb(int p, int n, BN_GENCB *cb) { static const char symbols[] = ".+*\n"; char c = (p >= 0 && (size_t)p < sizeof(symbols) - 1) ? symbols[p] : '?'; BIO_write(BN_GENCB_get_arg(cb), &c, 1); (void)BIO_flush(BN_GENCB_get_arg(cb)); return 1; } #endif openssl-1.1.1f/apps/ec.c000066400000000000000000000203111364063235100150410ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_EC NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include static OPT_PAIR conv_forms[] = { {"compressed", POINT_CONVERSION_COMPRESSED}, {"uncompressed", POINT_CONVERSION_UNCOMPRESSED}, {"hybrid", POINT_CONVERSION_HYBRID}, {NULL} }; static OPT_PAIR param_enc[] = { {"named_curve", OPENSSL_EC_NAMED_CURVE}, {"explicit", 0}, {NULL} }; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_ENGINE, OPT_IN, OPT_OUT, OPT_NOOUT, OPT_TEXT, OPT_PARAM_OUT, OPT_PUBIN, OPT_PUBOUT, OPT_PASSIN, OPT_PASSOUT, OPT_PARAM_ENC, OPT_CONV_FORM, OPT_CIPHER, OPT_NO_PUBLIC, OPT_CHECK } OPTION_CHOICE; const OPTIONS ec_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"in", OPT_IN, 's', "Input file"}, {"inform", OPT_INFORM, 'f', "Input format - DER or PEM"}, {"out", OPT_OUT, '>', "Output file"}, {"outform", OPT_OUTFORM, 'F', "Output format - DER or PEM"}, {"noout", OPT_NOOUT, '-', "Don't print key out"}, {"text", OPT_TEXT, '-', "Print the key"}, {"param_out", OPT_PARAM_OUT, '-', "Print the elliptic curve parameters"}, {"pubin", OPT_PUBIN, '-', "Expect a public key in input file"}, {"pubout", OPT_PUBOUT, '-', "Output public key, not private"}, {"no_public", OPT_NO_PUBLIC, '-', "exclude public key from private key"}, {"check", OPT_CHECK, '-', "check key consistency"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"param_enc", OPT_PARAM_ENC, 's', "Specifies the way the ec parameters are encoded"}, {"conv_form", OPT_CONV_FORM, 's', "Specifies the point conversion form "}, {"", OPT_CIPHER, '-', "Any supported cipher"}, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {NULL} }; int ec_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; ENGINE *e = NULL; EC_KEY *eckey = NULL; const EC_GROUP *group; const EVP_CIPHER *enc = NULL; point_conversion_form_t form = POINT_CONVERSION_UNCOMPRESSED; char *infile = NULL, *outfile = NULL, *prog; char *passin = NULL, *passout = NULL, *passinarg = NULL, *passoutarg = NULL; OPTION_CHOICE o; int asn1_flag = OPENSSL_EC_NAMED_CURVE, new_form = 0, new_asn1_flag = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, text = 0, noout = 0; int pubin = 0, pubout = 0, param_out = 0, i, ret = 1, private = 0; int no_public = 0, check = 0; prog = opt_init(argc, argv, ec_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(ec_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_NOOUT: noout = 1; break; case OPT_TEXT: text = 1; break; case OPT_PARAM_OUT: param_out = 1; break; case OPT_PUBIN: pubin = 1; break; case OPT_PUBOUT: pubout = 1; break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &enc)) goto opthelp; break; case OPT_CONV_FORM: if (!opt_pair(opt_arg(), conv_forms, &i)) goto opthelp; new_form = 1; form = i; break; case OPT_PARAM_ENC: if (!opt_pair(opt_arg(), param_enc, &i)) goto opthelp; new_asn1_flag = 1; asn1_flag = i; break; case OPT_NO_PUBLIC: no_public = 1; break; case OPT_CHECK: check = 1; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = param_out || pubin || pubout ? 0 : 1; if (text && !pubin) private = 1; if (!app_passwd(passinarg, passoutarg, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } if (informat != FORMAT_ENGINE) { in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; } BIO_printf(bio_err, "read EC key\n"); if (informat == FORMAT_ASN1) { if (pubin) eckey = d2i_EC_PUBKEY_bio(in, NULL); else eckey = d2i_ECPrivateKey_bio(in, NULL); } else if (informat == FORMAT_ENGINE) { EVP_PKEY *pkey; if (pubin) pkey = load_pubkey(infile, informat, 1, passin, e, "Public Key"); else pkey = load_key(infile, informat, 1, passin, e, "Private Key"); if (pkey != NULL) { eckey = EVP_PKEY_get1_EC_KEY(pkey); EVP_PKEY_free(pkey); } } else { if (pubin) eckey = PEM_read_bio_EC_PUBKEY(in, NULL, NULL, NULL); else eckey = PEM_read_bio_ECPrivateKey(in, NULL, NULL, passin); } if (eckey == NULL) { BIO_printf(bio_err, "unable to load Key\n"); ERR_print_errors(bio_err); goto end; } out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; group = EC_KEY_get0_group(eckey); if (new_form) EC_KEY_set_conv_form(eckey, form); if (new_asn1_flag) EC_KEY_set_asn1_flag(eckey, asn1_flag); if (no_public) EC_KEY_set_enc_flags(eckey, EC_PKEY_NO_PUBKEY); if (text) { assert(pubin || private); if (!EC_KEY_print(out, eckey, 0)) { perror(outfile); ERR_print_errors(bio_err); goto end; } } if (check) { if (EC_KEY_check_key(eckey) == 1) { BIO_printf(bio_err, "EC Key valid.\n"); } else { BIO_printf(bio_err, "EC Key Invalid!\n"); ERR_print_errors(bio_err); } } if (noout) { ret = 0; goto end; } BIO_printf(bio_err, "writing EC key\n"); if (outformat == FORMAT_ASN1) { if (param_out) { i = i2d_ECPKParameters_bio(out, group); } else if (pubin || pubout) { i = i2d_EC_PUBKEY_bio(out, eckey); } else { assert(private); i = i2d_ECPrivateKey_bio(out, eckey); } } else { if (param_out) { i = PEM_write_bio_ECPKParameters(out, group); } else if (pubin || pubout) { i = PEM_write_bio_EC_PUBKEY(out, eckey); } else { assert(private); i = PEM_write_bio_ECPrivateKey(out, eckey, enc, NULL, 0, NULL, passout); } } if (!i) { BIO_printf(bio_err, "unable to write private key\n"); ERR_print_errors(bio_err); } else { ret = 0; } end: BIO_free(in); BIO_free_all(out); EC_KEY_free(eckey); release_engine(e); OPENSSL_free(passin); OPENSSL_free(passout); return ret; } #endif openssl-1.1.1f/apps/ecparam.c000066400000000000000000000353521364063235100160750ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_EC NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_TEXT, OPT_C, OPT_CHECK, OPT_LIST_CURVES, OPT_NO_SEED, OPT_NOOUT, OPT_NAME, OPT_CONV_FORM, OPT_PARAM_ENC, OPT_GENKEY, OPT_ENGINE, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS ecparam_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format - default PEM (DER or PEM)"}, {"outform", OPT_OUTFORM, 'F', "Output format - default PEM"}, {"in", OPT_IN, '<', "Input file - default stdin"}, {"out", OPT_OUT, '>', "Output file - default stdout"}, {"text", OPT_TEXT, '-', "Print the ec parameters in text form"}, {"C", OPT_C, '-', "Print a 'C' function creating the parameters"}, {"check", OPT_CHECK, '-', "Validate the ec parameters"}, {"list_curves", OPT_LIST_CURVES, '-', "Prints a list of all curve 'short names'"}, {"no_seed", OPT_NO_SEED, '-', "If 'explicit' parameters are chosen do not use the seed"}, {"noout", OPT_NOOUT, '-', "Do not print the ec parameter"}, {"name", OPT_NAME, 's', "Use the ec parameters with specified 'short name'"}, {"conv_form", OPT_CONV_FORM, 's', "Specifies the point conversion form "}, {"param_enc", OPT_PARAM_ENC, 's', "Specifies the way the ec parameters are encoded"}, {"genkey", OPT_GENKEY, '-', "Generate ec key"}, OPT_R_OPTIONS, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {NULL} }; static OPT_PAIR forms[] = { {"compressed", POINT_CONVERSION_COMPRESSED}, {"uncompressed", POINT_CONVERSION_UNCOMPRESSED}, {"hybrid", POINT_CONVERSION_HYBRID}, {NULL} }; static OPT_PAIR encodings[] = { {"named_curve", OPENSSL_EC_NAMED_CURVE}, {"explicit", 0}, {NULL} }; int ecparam_main(int argc, char **argv) { ENGINE *e = NULL; BIGNUM *ec_gen = NULL, *ec_order = NULL, *ec_cofactor = NULL; BIGNUM *ec_p = NULL, *ec_a = NULL, *ec_b = NULL; BIO *in = NULL, *out = NULL; EC_GROUP *group = NULL; point_conversion_form_t form = POINT_CONVERSION_UNCOMPRESSED; char *curve_name = NULL; char *infile = NULL, *outfile = NULL, *prog; unsigned char *buffer = NULL; OPTION_CHOICE o; int asn1_flag = OPENSSL_EC_NAMED_CURVE, new_asn1_flag = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, noout = 0, C = 0; int ret = 1, private = 0; int list_curves = 0, no_seed = 0, check = 0, new_form = 0; int text = 0, i, genkey = 0; prog = opt_init(argc, argv, ecparam_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(ecparam_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_TEXT: text = 1; break; case OPT_C: C = 1; break; case OPT_CHECK: check = 1; break; case OPT_LIST_CURVES: list_curves = 1; break; case OPT_NO_SEED: no_seed = 1; break; case OPT_NOOUT: noout = 1; break; case OPT_NAME: curve_name = opt_arg(); break; case OPT_CONV_FORM: if (!opt_pair(opt_arg(), forms, &new_form)) goto opthelp; form = new_form; new_form = 1; break; case OPT_PARAM_ENC: if (!opt_pair(opt_arg(), encodings, &asn1_flag)) goto opthelp; new_asn1_flag = 1; break; case OPT_GENKEY: genkey = 1; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = genkey ? 1 : 0; in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; if (list_curves) { EC_builtin_curve *curves = NULL; size_t crv_len = EC_get_builtin_curves(NULL, 0); size_t n; curves = app_malloc((int)sizeof(*curves) * crv_len, "list curves"); if (!EC_get_builtin_curves(curves, crv_len)) { OPENSSL_free(curves); goto end; } for (n = 0; n < crv_len; n++) { const char *comment; const char *sname; comment = curves[n].comment; sname = OBJ_nid2sn(curves[n].nid); if (comment == NULL) comment = "CURVE DESCRIPTION NOT AVAILABLE"; if (sname == NULL) sname = ""; BIO_printf(out, " %-10s: ", sname); BIO_printf(out, "%s\n", comment); } OPENSSL_free(curves); ret = 0; goto end; } if (curve_name != NULL) { int nid; /* * workaround for the SECG curve names secp192r1 and secp256r1 (which * are the same as the curves prime192v1 and prime256v1 defined in * X9.62) */ if (strcmp(curve_name, "secp192r1") == 0) { BIO_printf(bio_err, "using curve name prime192v1 " "instead of secp192r1\n"); nid = NID_X9_62_prime192v1; } else if (strcmp(curve_name, "secp256r1") == 0) { BIO_printf(bio_err, "using curve name prime256v1 " "instead of secp256r1\n"); nid = NID_X9_62_prime256v1; } else { nid = OBJ_sn2nid(curve_name); } if (nid == 0) nid = EC_curve_nist2nid(curve_name); if (nid == 0) { BIO_printf(bio_err, "unknown curve name (%s)\n", curve_name); goto end; } group = EC_GROUP_new_by_curve_name(nid); if (group == NULL) { BIO_printf(bio_err, "unable to create curve (%s)\n", curve_name); goto end; } EC_GROUP_set_asn1_flag(group, asn1_flag); EC_GROUP_set_point_conversion_form(group, form); } else if (informat == FORMAT_ASN1) { group = d2i_ECPKParameters_bio(in, NULL); } else { group = PEM_read_bio_ECPKParameters(in, NULL, NULL, NULL); } if (group == NULL) { BIO_printf(bio_err, "unable to load elliptic curve parameters\n"); ERR_print_errors(bio_err); goto end; } if (new_form) EC_GROUP_set_point_conversion_form(group, form); if (new_asn1_flag) EC_GROUP_set_asn1_flag(group, asn1_flag); if (no_seed) { EC_GROUP_set_seed(group, NULL, 0); } if (text) { if (!ECPKParameters_print(out, group, 0)) goto end; } if (check) { BIO_printf(bio_err, "checking elliptic curve parameters: "); if (!EC_GROUP_check(group, NULL)) { BIO_printf(bio_err, "failed\n"); ERR_print_errors(bio_err); goto end; } BIO_printf(bio_err, "ok\n"); } if (C) { size_t buf_len = 0, tmp_len = 0; const EC_POINT *point; int is_prime, len = 0; const EC_METHOD *meth = EC_GROUP_method_of(group); if ((ec_p = BN_new()) == NULL || (ec_a = BN_new()) == NULL || (ec_b = BN_new()) == NULL || (ec_gen = BN_new()) == NULL || (ec_order = BN_new()) == NULL || (ec_cofactor = BN_new()) == NULL) { perror("Can't allocate BN"); goto end; } is_prime = (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field); if (!is_prime) { BIO_printf(bio_err, "Can only handle X9.62 prime fields\n"); goto end; } if (!EC_GROUP_get_curve(group, ec_p, ec_a, ec_b, NULL)) goto end; if ((point = EC_GROUP_get0_generator(group)) == NULL) goto end; if (!EC_POINT_point2bn(group, point, EC_GROUP_get_point_conversion_form(group), ec_gen, NULL)) goto end; if (!EC_GROUP_get_order(group, ec_order, NULL)) goto end; if (!EC_GROUP_get_cofactor(group, ec_cofactor, NULL)) goto end; if (!ec_p || !ec_a || !ec_b || !ec_gen || !ec_order || !ec_cofactor) goto end; len = BN_num_bits(ec_order); if ((tmp_len = (size_t)BN_num_bytes(ec_p)) > buf_len) buf_len = tmp_len; if ((tmp_len = (size_t)BN_num_bytes(ec_a)) > buf_len) buf_len = tmp_len; if ((tmp_len = (size_t)BN_num_bytes(ec_b)) > buf_len) buf_len = tmp_len; if ((tmp_len = (size_t)BN_num_bytes(ec_gen)) > buf_len) buf_len = tmp_len; if ((tmp_len = (size_t)BN_num_bytes(ec_order)) > buf_len) buf_len = tmp_len; if ((tmp_len = (size_t)BN_num_bytes(ec_cofactor)) > buf_len) buf_len = tmp_len; buffer = app_malloc(buf_len, "BN buffer"); BIO_printf(out, "EC_GROUP *get_ec_group_%d(void)\n{\n", len); print_bignum_var(out, ec_p, "ec_p", len, buffer); print_bignum_var(out, ec_a, "ec_a", len, buffer); print_bignum_var(out, ec_b, "ec_b", len, buffer); print_bignum_var(out, ec_gen, "ec_gen", len, buffer); print_bignum_var(out, ec_order, "ec_order", len, buffer); print_bignum_var(out, ec_cofactor, "ec_cofactor", len, buffer); BIO_printf(out, " int ok = 0;\n" " EC_GROUP *group = NULL;\n" " EC_POINT *point = NULL;\n" " BIGNUM *tmp_1 = NULL;\n" " BIGNUM *tmp_2 = NULL;\n" " BIGNUM *tmp_3 = NULL;\n" "\n"); BIO_printf(out, " if ((tmp_1 = BN_bin2bn(ec_p_%d, sizeof(ec_p_%d), NULL)) == NULL)\n" " goto err;\n", len, len); BIO_printf(out, " if ((tmp_2 = BN_bin2bn(ec_a_%d, sizeof(ec_a_%d), NULL)) == NULL)\n" " goto err;\n", len, len); BIO_printf(out, " if ((tmp_3 = BN_bin2bn(ec_b_%d, sizeof(ec_b_%d), NULL)) == NULL)\n" " goto err;\n", len, len); BIO_printf(out, " if ((group = EC_GROUP_new_curve_GFp(tmp_1, tmp_2, tmp_3, NULL)) == NULL)\n" " goto err;\n" "\n"); BIO_printf(out, " /* build generator */\n"); BIO_printf(out, " if ((tmp_1 = BN_bin2bn(ec_gen_%d, sizeof(ec_gen_%d), tmp_1)) == NULL)\n" " goto err;\n", len, len); BIO_printf(out, " point = EC_POINT_bn2point(group, tmp_1, NULL, NULL);\n"); BIO_printf(out, " if (point == NULL)\n" " goto err;\n"); BIO_printf(out, " if ((tmp_2 = BN_bin2bn(ec_order_%d, sizeof(ec_order_%d), tmp_2)) == NULL)\n" " goto err;\n", len, len); BIO_printf(out, " if ((tmp_3 = BN_bin2bn(ec_cofactor_%d, sizeof(ec_cofactor_%d), tmp_3)) == NULL)\n" " goto err;\n", len, len); BIO_printf(out, " if (!EC_GROUP_set_generator(group, point, tmp_2, tmp_3))\n" " goto err;\n" "ok = 1;" "\n"); BIO_printf(out, "err:\n" " BN_free(tmp_1);\n" " BN_free(tmp_2);\n" " BN_free(tmp_3);\n" " EC_POINT_free(point);\n" " if (!ok) {\n" " EC_GROUP_free(group);\n" " return NULL;\n" " }\n" " return (group);\n" "}\n"); } if (outformat == FORMAT_ASN1 && genkey) noout = 1; if (!noout) { if (outformat == FORMAT_ASN1) i = i2d_ECPKParameters_bio(out, group); else i = PEM_write_bio_ECPKParameters(out, group); if (!i) { BIO_printf(bio_err, "unable to write elliptic " "curve parameters\n"); ERR_print_errors(bio_err); goto end; } } if (genkey) { EC_KEY *eckey = EC_KEY_new(); if (eckey == NULL) goto end; if (EC_KEY_set_group(eckey, group) == 0) { BIO_printf(bio_err, "unable to set group when generating key\n"); EC_KEY_free(eckey); ERR_print_errors(bio_err); goto end; } if (new_form) EC_KEY_set_conv_form(eckey, form); if (!EC_KEY_generate_key(eckey)) { BIO_printf(bio_err, "unable to generate key\n"); EC_KEY_free(eckey); ERR_print_errors(bio_err); goto end; } assert(private); if (outformat == FORMAT_ASN1) i = i2d_ECPrivateKey_bio(out, eckey); else i = PEM_write_bio_ECPrivateKey(out, eckey, NULL, NULL, 0, NULL, NULL); EC_KEY_free(eckey); } ret = 0; end: BN_free(ec_p); BN_free(ec_a); BN_free(ec_b); BN_free(ec_gen); BN_free(ec_order); BN_free(ec_cofactor); OPENSSL_free(buffer); EC_GROUP_free(group); release_engine(e); BIO_free(in); BIO_free_all(out); return ret; } #endif openssl-1.1.1f/apps/enc.c000066400000000000000000000513621364063235100152310ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #include #ifndef OPENSSL_NO_COMP # include #endif #include #undef SIZE #undef BSIZE #define SIZE (512) #define BSIZE (8*1024) static int set_hex(const char *in, unsigned char *out, int size); static void show_ciphers(const OBJ_NAME *name, void *bio_); struct doall_enc_ciphers { BIO *bio; int n; }; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_LIST, OPT_E, OPT_IN, OPT_OUT, OPT_PASS, OPT_ENGINE, OPT_D, OPT_P, OPT_V, OPT_NOPAD, OPT_SALT, OPT_NOSALT, OPT_DEBUG, OPT_UPPER_P, OPT_UPPER_A, OPT_A, OPT_Z, OPT_BUFSIZE, OPT_K, OPT_KFILE, OPT_UPPER_K, OPT_NONE, OPT_UPPER_S, OPT_IV, OPT_MD, OPT_ITER, OPT_PBKDF2, OPT_CIPHER, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS enc_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"list", OPT_LIST, '-', "List ciphers"}, {"ciphers", OPT_LIST, '-', "Alias for -list"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"pass", OPT_PASS, 's', "Passphrase source"}, {"e", OPT_E, '-', "Encrypt"}, {"d", OPT_D, '-', "Decrypt"}, {"p", OPT_P, '-', "Print the iv/key"}, {"P", OPT_UPPER_P, '-', "Print the iv/key and exit"}, {"v", OPT_V, '-', "Verbose output"}, {"nopad", OPT_NOPAD, '-', "Disable standard block padding"}, {"salt", OPT_SALT, '-', "Use salt in the KDF (default)"}, {"nosalt", OPT_NOSALT, '-', "Do not use salt in the KDF"}, {"debug", OPT_DEBUG, '-', "Print debug info"}, {"a", OPT_A, '-', "Base64 encode/decode, depending on encryption flag"}, {"base64", OPT_A, '-', "Same as option -a"}, {"A", OPT_UPPER_A, '-', "Used with -[base64|a] to specify base64 buffer as a single line"}, {"bufsize", OPT_BUFSIZE, 's', "Buffer size"}, {"k", OPT_K, 's', "Passphrase"}, {"kfile", OPT_KFILE, '<', "Read passphrase from file"}, {"K", OPT_UPPER_K, 's', "Raw key, in hex"}, {"S", OPT_UPPER_S, 's', "Salt, in hex"}, {"iv", OPT_IV, 's', "IV in hex"}, {"md", OPT_MD, 's', "Use specified digest to create a key from the passphrase"}, {"iter", OPT_ITER, 'p', "Specify the iteration count and force use of PBKDF2"}, {"pbkdf2", OPT_PBKDF2, '-', "Use password-based key derivation function 2"}, {"none", OPT_NONE, '-', "Don't encrypt"}, {"", OPT_CIPHER, '-', "Any supported cipher"}, OPT_R_OPTIONS, #ifdef ZLIB {"z", OPT_Z, '-', "Use zlib as the 'encryption'"}, #endif #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {NULL} }; int enc_main(int argc, char **argv) { static char buf[128]; static const char magic[] = "Salted__"; ENGINE *e = NULL; BIO *in = NULL, *out = NULL, *b64 = NULL, *benc = NULL, *rbio = NULL, *wbio = NULL; EVP_CIPHER_CTX *ctx = NULL; const EVP_CIPHER *cipher = NULL, *c; const EVP_MD *dgst = NULL; char *hkey = NULL, *hiv = NULL, *hsalt = NULL, *p; char *infile = NULL, *outfile = NULL, *prog; char *str = NULL, *passarg = NULL, *pass = NULL, *strbuf = NULL; char mbuf[sizeof(magic) - 1]; OPTION_CHOICE o; int bsize = BSIZE, verbose = 0, debug = 0, olb64 = 0, nosalt = 0; int enc = 1, printkey = 0, i, k; int base64 = 0, informat = FORMAT_BINARY, outformat = FORMAT_BINARY; int ret = 1, inl, nopad = 0; unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; unsigned char *buff = NULL, salt[PKCS5_SALT_LEN]; int pbkdf2 = 0; int iter = 0; long n; struct doall_enc_ciphers dec; #ifdef ZLIB int do_zlib = 0; BIO *bzl = NULL; #endif /* first check the program name */ prog = opt_progname(argv[0]); if (strcmp(prog, "base64") == 0) { base64 = 1; #ifdef ZLIB } else if (strcmp(prog, "zlib") == 0) { do_zlib = 1; #endif } else { cipher = EVP_get_cipherbyname(prog); if (cipher == NULL && strcmp(prog, "enc") != 0) { BIO_printf(bio_err, "%s is not a known cipher\n", prog); goto end; } } prog = opt_init(argc, argv, enc_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(enc_options); ret = 0; goto end; case OPT_LIST: BIO_printf(bio_out, "Supported ciphers:\n"); dec.bio = bio_out; dec.n = 0; OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_CIPHER_METH, show_ciphers, &dec); BIO_printf(bio_out, "\n"); ret = 0; goto end; case OPT_E: enc = 1; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_PASS: passarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_D: enc = 0; break; case OPT_P: printkey = 1; break; case OPT_V: verbose = 1; break; case OPT_NOPAD: nopad = 1; break; case OPT_SALT: nosalt = 0; break; case OPT_NOSALT: nosalt = 1; break; case OPT_DEBUG: debug = 1; break; case OPT_UPPER_P: printkey = 2; break; case OPT_UPPER_A: olb64 = 1; break; case OPT_A: base64 = 1; break; case OPT_Z: #ifdef ZLIB do_zlib = 1; #endif break; case OPT_BUFSIZE: p = opt_arg(); i = (int)strlen(p) - 1; k = i >= 1 && p[i] == 'k'; if (k) p[i] = '\0'; if (!opt_long(opt_arg(), &n) || n < 0 || (k && n >= LONG_MAX / 1024)) goto opthelp; if (k) n *= 1024; bsize = (int)n; break; case OPT_K: str = opt_arg(); break; case OPT_KFILE: in = bio_open_default(opt_arg(), 'r', FORMAT_TEXT); if (in == NULL) goto opthelp; i = BIO_gets(in, buf, sizeof(buf)); BIO_free(in); in = NULL; if (i <= 0) { BIO_printf(bio_err, "%s Can't read key from %s\n", prog, opt_arg()); goto opthelp; } while (--i > 0 && (buf[i] == '\r' || buf[i] == '\n')) buf[i] = '\0'; if (i <= 0) { BIO_printf(bio_err, "%s: zero length password\n", prog); goto opthelp; } str = buf; break; case OPT_UPPER_K: hkey = opt_arg(); break; case OPT_UPPER_S: hsalt = opt_arg(); break; case OPT_IV: hiv = opt_arg(); break; case OPT_MD: if (!opt_md(opt_arg(), &dgst)) goto opthelp; break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &c)) goto opthelp; cipher = c; break; case OPT_ITER: if (!opt_int(opt_arg(), &iter)) goto opthelp; pbkdf2 = 1; break; case OPT_PBKDF2: pbkdf2 = 1; if (iter == 0) /* do not overwrite a chosen value */ iter = 10000; break; case OPT_NONE: cipher = NULL; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; } } if (opt_num_rest() != 0) { BIO_printf(bio_err, "Extra arguments given.\n"); goto opthelp; } if (cipher && EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { BIO_printf(bio_err, "%s: AEAD ciphers not supported\n", prog); goto end; } if (cipher && (EVP_CIPHER_mode(cipher) == EVP_CIPH_XTS_MODE)) { BIO_printf(bio_err, "%s XTS ciphers not supported\n", prog); goto end; } if (dgst == NULL) dgst = EVP_sha256(); if (iter == 0) iter = 1; /* It must be large enough for a base64 encoded line */ if (base64 && bsize < 80) bsize = 80; if (verbose) BIO_printf(bio_err, "bufsize=%d\n", bsize); #ifdef ZLIB if (!do_zlib) #endif if (base64) { if (enc) outformat = FORMAT_BASE64; else informat = FORMAT_BASE64; } strbuf = app_malloc(SIZE, "strbuf"); buff = app_malloc(EVP_ENCODE_LENGTH(bsize), "evp buffer"); if (infile == NULL) { in = dup_bio_in(informat); } else { in = bio_open_default(infile, 'r', informat); } if (in == NULL) goto end; if (str == NULL && passarg != NULL) { if (!app_passwd(passarg, NULL, &pass, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } str = pass; } if ((str == NULL) && (cipher != NULL) && (hkey == NULL)) { if (1) { #ifndef OPENSSL_NO_UI_CONSOLE for (;;) { char prompt[200]; BIO_snprintf(prompt, sizeof(prompt), "enter %s %s password:", OBJ_nid2ln(EVP_CIPHER_nid(cipher)), (enc) ? "encryption" : "decryption"); strbuf[0] = '\0'; i = EVP_read_pw_string((char *)strbuf, SIZE, prompt, enc); if (i == 0) { if (strbuf[0] == '\0') { ret = 1; goto end; } str = strbuf; break; } if (i < 0) { BIO_printf(bio_err, "bad password read\n"); goto end; } } } else { #endif BIO_printf(bio_err, "password required\n"); goto end; } } out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; if (debug) { BIO_set_callback(in, BIO_debug_callback); BIO_set_callback(out, BIO_debug_callback); BIO_set_callback_arg(in, (char *)bio_err); BIO_set_callback_arg(out, (char *)bio_err); } rbio = in; wbio = out; #ifdef ZLIB if (do_zlib) { if ((bzl = BIO_new(BIO_f_zlib())) == NULL) goto end; if (debug) { BIO_set_callback(bzl, BIO_debug_callback); BIO_set_callback_arg(bzl, (char *)bio_err); } if (enc) wbio = BIO_push(bzl, wbio); else rbio = BIO_push(bzl, rbio); } #endif if (base64) { if ((b64 = BIO_new(BIO_f_base64())) == NULL) goto end; if (debug) { BIO_set_callback(b64, BIO_debug_callback); BIO_set_callback_arg(b64, (char *)bio_err); } if (olb64) BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL); if (enc) wbio = BIO_push(b64, wbio); else rbio = BIO_push(b64, rbio); } if (cipher != NULL) { /* * Note that str is NULL if a key was passed on the command line, so * we get no salt in that case. Is this a bug? */ if (str != NULL) { /* * Salt handling: if encrypting generate a salt and write to * output BIO. If decrypting read salt from input BIO. */ unsigned char *sptr; size_t str_len = strlen(str); if (nosalt) { sptr = NULL; } else { if (enc) { if (hsalt) { if (!set_hex(hsalt, salt, sizeof(salt))) { BIO_printf(bio_err, "invalid hex salt value\n"); goto end; } } else if (RAND_bytes(salt, sizeof(salt)) <= 0) { goto end; } /* * If -P option then don't bother writing */ if ((printkey != 2) && (BIO_write(wbio, magic, sizeof(magic) - 1) != sizeof(magic) - 1 || BIO_write(wbio, (char *)salt, sizeof(salt)) != sizeof(salt))) { BIO_printf(bio_err, "error writing output file\n"); goto end; } } else if (BIO_read(rbio, mbuf, sizeof(mbuf)) != sizeof(mbuf) || BIO_read(rbio, (unsigned char *)salt, sizeof(salt)) != sizeof(salt)) { BIO_printf(bio_err, "error reading input file\n"); goto end; } else if (memcmp(mbuf, magic, sizeof(magic) - 1)) { BIO_printf(bio_err, "bad magic number\n"); goto end; } sptr = salt; } if (pbkdf2 == 1) { /* * derive key and default iv * concatenated into a temporary buffer */ unsigned char tmpkeyiv[EVP_MAX_KEY_LENGTH + EVP_MAX_IV_LENGTH]; int iklen = EVP_CIPHER_key_length(cipher); int ivlen = EVP_CIPHER_iv_length(cipher); /* not needed if HASH_UPDATE() is fixed : */ int islen = (sptr != NULL ? sizeof(salt) : 0); if (!PKCS5_PBKDF2_HMAC(str, str_len, sptr, islen, iter, dgst, iklen+ivlen, tmpkeyiv)) { BIO_printf(bio_err, "PKCS5_PBKDF2_HMAC failed\n"); goto end; } /* split and move data back to global buffer */ memcpy(key, tmpkeyiv, iklen); memcpy(iv, tmpkeyiv+iklen, ivlen); } else { BIO_printf(bio_err, "*** WARNING : " "deprecated key derivation used.\n" "Using -iter or -pbkdf2 would be better.\n"); if (!EVP_BytesToKey(cipher, dgst, sptr, (unsigned char *)str, str_len, 1, key, iv)) { BIO_printf(bio_err, "EVP_BytesToKey failed\n"); goto end; } } /* * zero the complete buffer or the string passed from the command * line. */ if (str == strbuf) OPENSSL_cleanse(str, SIZE); else OPENSSL_cleanse(str, str_len); } if (hiv != NULL) { int siz = EVP_CIPHER_iv_length(cipher); if (siz == 0) { BIO_printf(bio_err, "warning: iv not used by this cipher\n"); } else if (!set_hex(hiv, iv, siz)) { BIO_printf(bio_err, "invalid hex iv value\n"); goto end; } } if ((hiv == NULL) && (str == NULL) && EVP_CIPHER_iv_length(cipher) != 0) { /* * No IV was explicitly set and no IV was generated. * Hence the IV is undefined, making correct decryption impossible. */ BIO_printf(bio_err, "iv undefined\n"); goto end; } if (hkey != NULL) { if (!set_hex(hkey, key, EVP_CIPHER_key_length(cipher))) { BIO_printf(bio_err, "invalid hex key value\n"); goto end; } /* wiping secret data as we no longer need it */ OPENSSL_cleanse(hkey, strlen(hkey)); } if ((benc = BIO_new(BIO_f_cipher())) == NULL) goto end; /* * Since we may be changing parameters work on the encryption context * rather than calling BIO_set_cipher(). */ BIO_get_cipher_ctx(benc, &ctx); if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, enc)) { BIO_printf(bio_err, "Error setting cipher %s\n", EVP_CIPHER_name(cipher)); ERR_print_errors(bio_err); goto end; } if (nopad) EVP_CIPHER_CTX_set_padding(ctx, 0); if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, enc)) { BIO_printf(bio_err, "Error setting cipher %s\n", EVP_CIPHER_name(cipher)); ERR_print_errors(bio_err); goto end; } if (debug) { BIO_set_callback(benc, BIO_debug_callback); BIO_set_callback_arg(benc, (char *)bio_err); } if (printkey) { if (!nosalt) { printf("salt="); for (i = 0; i < (int)sizeof(salt); i++) printf("%02X", salt[i]); printf("\n"); } if (EVP_CIPHER_key_length(cipher) > 0) { printf("key="); for (i = 0; i < EVP_CIPHER_key_length(cipher); i++) printf("%02X", key[i]); printf("\n"); } if (EVP_CIPHER_iv_length(cipher) > 0) { printf("iv ="); for (i = 0; i < EVP_CIPHER_iv_length(cipher); i++) printf("%02X", iv[i]); printf("\n"); } if (printkey == 2) { ret = 0; goto end; } } } /* Only encrypt/decrypt as we write the file */ if (benc != NULL) wbio = BIO_push(benc, wbio); while (BIO_pending(rbio) || !BIO_eof(rbio)) { inl = BIO_read(rbio, (char *)buff, bsize); if (inl <= 0) break; if (BIO_write(wbio, (char *)buff, inl) != inl) { BIO_printf(bio_err, "error writing output file\n"); goto end; } } if (!BIO_flush(wbio)) { BIO_printf(bio_err, "bad decrypt\n"); goto end; } ret = 0; if (verbose) { BIO_printf(bio_err, "bytes read : %8ju\n", BIO_number_read(in)); BIO_printf(bio_err, "bytes written: %8ju\n", BIO_number_written(out)); } end: ERR_print_errors(bio_err); OPENSSL_free(strbuf); OPENSSL_free(buff); BIO_free(in); BIO_free_all(out); BIO_free(benc); BIO_free(b64); #ifdef ZLIB BIO_free(bzl); #endif release_engine(e); OPENSSL_free(pass); return ret; } static void show_ciphers(const OBJ_NAME *name, void *arg) { struct doall_enc_ciphers *dec = (struct doall_enc_ciphers *)arg; const EVP_CIPHER *cipher; if (!islower((unsigned char)*name->name)) return; /* Filter out ciphers that we cannot use */ cipher = EVP_get_cipherbyname(name->name); if (cipher == NULL || (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) != 0 || EVP_CIPHER_mode(cipher) == EVP_CIPH_XTS_MODE) return; BIO_printf(dec->bio, "-%-25s", name->name); if (++dec->n == 3) { BIO_printf(dec->bio, "\n"); dec->n = 0; } else BIO_printf(dec->bio, " "); } static int set_hex(const char *in, unsigned char *out, int size) { int i, n; unsigned char j; i = size * 2; n = strlen(in); if (n > i) { BIO_printf(bio_err, "hex string is too long, ignoring excess\n"); n = i; /* ignore exceeding part */ } else if (n < i) { BIO_printf(bio_err, "hex string is too short, padding with zero bytes to length\n"); } memset(out, 0, size); for (i = 0; i < n; i++) { j = (unsigned char)*in++; if (!isxdigit(j)) { BIO_printf(bio_err, "non-hex digit\n"); return 0; } j = (unsigned char)OPENSSL_hexchar2int(j); if (i & 1) out[i / 2] |= j; else out[i / 2] = (j << 4); } return 1; } openssl-1.1.1f/apps/engine.c000066400000000000000000000372111364063235100157260ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_ENGINE NON_EMPTY_TRANSLATION_UNIT #else # include "apps.h" # include "progs.h" # include # include # include # include # include # include # include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_C, OPT_T, OPT_TT, OPT_PRE, OPT_POST, OPT_V = 100, OPT_VV, OPT_VVV, OPT_VVVV } OPTION_CHOICE; const OPTIONS engine_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] engine...\n"}, {OPT_HELP_STR, 1, '-', " engine... Engines to load\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"v", OPT_V, '-', "List 'control commands' For each specified engine"}, {"vv", OPT_VV, '-', "Also display each command's description"}, {"vvv", OPT_VVV, '-', "Also add the input flags for each command"}, {"vvvv", OPT_VVVV, '-', "Also show internal input flags"}, {"c", OPT_C, '-', "List the capabilities of specified engine"}, {"t", OPT_T, '-', "Check that specified engine is available"}, {"tt", OPT_TT, '-', "Display error trace for unavailable engines"}, {"pre", OPT_PRE, 's', "Run command against the ENGINE before loading it"}, {"post", OPT_POST, 's', "Run command against the ENGINE after loading it"}, {OPT_MORE_STR, OPT_EOF, 1, "Commands are like \"SO_PATH:/lib/libdriver.so\""}, {NULL} }; static int append_buf(char **buf, int *size, const char *s) { const int expand = 256; int len = strlen(s) + 1; char *p = *buf; if (p == NULL) { *size = ((len + expand - 1) / expand) * expand; p = *buf = app_malloc(*size, "engine buffer"); } else { const int blen = strlen(p); if (blen > 0) len += 2 + blen; if (len > *size) { *size = ((len + expand - 1) / expand) * expand; p = OPENSSL_realloc(p, *size); if (p == NULL) { OPENSSL_free(*buf); *buf = NULL; return 0; } *buf = p; } if (blen > 0) { p += blen; *p++ = ','; *p++ = ' '; } } strcpy(p, s); return 1; } static int util_flags(BIO *out, unsigned int flags, const char *indent) { int started = 0, err = 0; /* Indent before displaying input flags */ BIO_printf(out, "%s%s(input flags): ", indent, indent); if (flags == 0) { BIO_printf(out, "\n"); return 1; } /* * If the object is internal, mark it in a way that shows instead of * having it part of all the other flags, even if it really is. */ if (flags & ENGINE_CMD_FLAG_INTERNAL) { BIO_printf(out, "[Internal] "); } if (flags & ENGINE_CMD_FLAG_NUMERIC) { BIO_printf(out, "NUMERIC"); started = 1; } /* * Now we check that no combinations of the mutually exclusive NUMERIC, * STRING, and NO_INPUT flags have been used. Future flags that can be * OR'd together with these would need to added after these to preserve * the testing logic. */ if (flags & ENGINE_CMD_FLAG_STRING) { if (started) { BIO_printf(out, "|"); err = 1; } BIO_printf(out, "STRING"); started = 1; } if (flags & ENGINE_CMD_FLAG_NO_INPUT) { if (started) { BIO_printf(out, "|"); err = 1; } BIO_printf(out, "NO_INPUT"); started = 1; } /* Check for unknown flags */ flags = flags & ~ENGINE_CMD_FLAG_NUMERIC & ~ENGINE_CMD_FLAG_STRING & ~ENGINE_CMD_FLAG_NO_INPUT & ~ENGINE_CMD_FLAG_INTERNAL; if (flags) { if (started) BIO_printf(out, "|"); BIO_printf(out, "<0x%04X>", flags); } if (err) BIO_printf(out, " "); BIO_printf(out, "\n"); return 1; } static int util_verbose(ENGINE *e, int verbose, BIO *out, const char *indent) { static const int line_wrap = 78; int num; int ret = 0; char *name = NULL; char *desc = NULL; int flags; int xpos = 0; STACK_OF(OPENSSL_STRING) *cmds = NULL; if (!ENGINE_ctrl(e, ENGINE_CTRL_HAS_CTRL_FUNCTION, 0, NULL, NULL) || ((num = ENGINE_ctrl(e, ENGINE_CTRL_GET_FIRST_CMD_TYPE, 0, NULL, NULL)) <= 0)) { return 1; } cmds = sk_OPENSSL_STRING_new_null(); if (cmds == NULL) goto err; do { int len; /* Get the command input flags */ if ((flags = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FLAGS, num, NULL, NULL)) < 0) goto err; if (!(flags & ENGINE_CMD_FLAG_INTERNAL) || verbose >= 4) { /* Get the command name */ if ((len = ENGINE_ctrl(e, ENGINE_CTRL_GET_NAME_LEN_FROM_CMD, num, NULL, NULL)) <= 0) goto err; name = app_malloc(len + 1, "name buffer"); if (ENGINE_ctrl(e, ENGINE_CTRL_GET_NAME_FROM_CMD, num, name, NULL) <= 0) goto err; /* Get the command description */ if ((len = ENGINE_ctrl(e, ENGINE_CTRL_GET_DESC_LEN_FROM_CMD, num, NULL, NULL)) < 0) goto err; if (len > 0) { desc = app_malloc(len + 1, "description buffer"); if (ENGINE_ctrl(e, ENGINE_CTRL_GET_DESC_FROM_CMD, num, desc, NULL) <= 0) goto err; } /* Now decide on the output */ if (xpos == 0) /* Do an indent */ xpos = BIO_puts(out, indent); else /* Otherwise prepend a ", " */ xpos += BIO_printf(out, ", "); if (verbose == 1) { /* * We're just listing names, comma-delimited */ if ((xpos > (int)strlen(indent)) && (xpos + (int)strlen(name) > line_wrap)) { BIO_printf(out, "\n"); xpos = BIO_puts(out, indent); } xpos += BIO_printf(out, "%s", name); } else { /* We're listing names plus descriptions */ BIO_printf(out, "%s: %s\n", name, (desc == NULL) ? "" : desc); /* ... and sometimes input flags */ if ((verbose >= 3) && !util_flags(out, flags, indent)) goto err; xpos = 0; } } OPENSSL_free(name); name = NULL; OPENSSL_free(desc); desc = NULL; /* Move to the next command */ num = ENGINE_ctrl(e, ENGINE_CTRL_GET_NEXT_CMD_TYPE, num, NULL, NULL); } while (num > 0); if (xpos > 0) BIO_printf(out, "\n"); ret = 1; err: sk_OPENSSL_STRING_free(cmds); OPENSSL_free(name); OPENSSL_free(desc); return ret; } static void util_do_cmds(ENGINE *e, STACK_OF(OPENSSL_STRING) *cmds, BIO *out, const char *indent) { int loop, res, num = sk_OPENSSL_STRING_num(cmds); if (num < 0) { BIO_printf(out, "[Error]: internal stack error\n"); return; } for (loop = 0; loop < num; loop++) { char buf[256]; const char *cmd, *arg; cmd = sk_OPENSSL_STRING_value(cmds, loop); res = 1; /* assume success */ /* Check if this command has no ":arg" */ if ((arg = strstr(cmd, ":")) == NULL) { if (!ENGINE_ctrl_cmd_string(e, cmd, NULL, 0)) res = 0; } else { if ((int)(arg - cmd) > 254) { BIO_printf(out, "[Error]: command name too long\n"); return; } memcpy(buf, cmd, (int)(arg - cmd)); buf[arg - cmd] = '\0'; arg++; /* Move past the ":" */ /* Call the command with the argument */ if (!ENGINE_ctrl_cmd_string(e, buf, arg, 0)) res = 0; } if (res) { BIO_printf(out, "[Success]: %s\n", cmd); } else { BIO_printf(out, "[Failure]: %s\n", cmd); ERR_print_errors(out); } } } struct util_store_cap_data { ENGINE *engine; char **cap_buf; int *cap_size; int ok; }; static void util_store_cap(const OSSL_STORE_LOADER *loader, void *arg) { struct util_store_cap_data *ctx = arg; if (OSSL_STORE_LOADER_get0_engine(loader) == ctx->engine) { char buf[256]; BIO_snprintf(buf, sizeof(buf), "STORE(%s)", OSSL_STORE_LOADER_get0_scheme(loader)); if (!append_buf(ctx->cap_buf, ctx->cap_size, buf)) ctx->ok = 0; } } int engine_main(int argc, char **argv) { int ret = 1, i; int verbose = 0, list_cap = 0, test_avail = 0, test_avail_noise = 0; ENGINE *e; STACK_OF(OPENSSL_CSTRING) *engines = sk_OPENSSL_CSTRING_new_null(); STACK_OF(OPENSSL_STRING) *pre_cmds = sk_OPENSSL_STRING_new_null(); STACK_OF(OPENSSL_STRING) *post_cmds = sk_OPENSSL_STRING_new_null(); BIO *out; const char *indent = " "; OPTION_CHOICE o; char *prog; char *argv1; out = dup_bio_out(FORMAT_TEXT); if (engines == NULL || pre_cmds == NULL || post_cmds == NULL) goto end; /* Remember the original command name, parse/skip any leading engine * names, and then setup to parse the rest of the line as flags. */ prog = argv[0]; while ((argv1 = argv[1]) != NULL && *argv1 != '-') { sk_OPENSSL_CSTRING_push(engines, argv1); argc--; argv++; } argv[0] = prog; opt_init(argc, argv, engine_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(engine_options); ret = 0; goto end; case OPT_VVVV: case OPT_VVV: case OPT_VV: case OPT_V: /* Convert to an integer from one to four. */ i = (int)(o - OPT_V) + 1; if (verbose < i) verbose = i; break; case OPT_C: list_cap = 1; break; case OPT_TT: test_avail_noise++; /* fall thru */ case OPT_T: test_avail++; break; case OPT_PRE: sk_OPENSSL_STRING_push(pre_cmds, opt_arg()); break; case OPT_POST: sk_OPENSSL_STRING_push(post_cmds, opt_arg()); break; } } /* Allow any trailing parameters as engine names. */ argc = opt_num_rest(); argv = opt_rest(); for ( ; *argv; argv++) { if (**argv == '-') { BIO_printf(bio_err, "%s: Cannot mix flags and engine names.\n", prog); BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; } sk_OPENSSL_CSTRING_push(engines, *argv); } if (sk_OPENSSL_CSTRING_num(engines) == 0) { for (e = ENGINE_get_first(); e != NULL; e = ENGINE_get_next(e)) { sk_OPENSSL_CSTRING_push(engines, ENGINE_get_id(e)); } } ret = 0; for (i = 0; i < sk_OPENSSL_CSTRING_num(engines); i++) { const char *id = sk_OPENSSL_CSTRING_value(engines, i); if ((e = ENGINE_by_id(id)) != NULL) { const char *name = ENGINE_get_name(e); /* * Do "id" first, then "name". Easier to auto-parse. */ BIO_printf(out, "(%s) %s\n", id, name); util_do_cmds(e, pre_cmds, out, indent); if (strcmp(ENGINE_get_id(e), id) != 0) { BIO_printf(out, "Loaded: (%s) %s\n", ENGINE_get_id(e), ENGINE_get_name(e)); } if (list_cap) { int cap_size = 256; char *cap_buf = NULL; int k, n; const int *nids; ENGINE_CIPHERS_PTR fn_c; ENGINE_DIGESTS_PTR fn_d; ENGINE_PKEY_METHS_PTR fn_pk; if (ENGINE_get_RSA(e) != NULL && !append_buf(&cap_buf, &cap_size, "RSA")) goto end; if (ENGINE_get_DSA(e) != NULL && !append_buf(&cap_buf, &cap_size, "DSA")) goto end; if (ENGINE_get_DH(e) != NULL && !append_buf(&cap_buf, &cap_size, "DH")) goto end; if (ENGINE_get_RAND(e) != NULL && !append_buf(&cap_buf, &cap_size, "RAND")) goto end; fn_c = ENGINE_get_ciphers(e); if (fn_c == NULL) goto skip_ciphers; n = fn_c(e, NULL, &nids, 0); for (k = 0; k < n; ++k) if (!append_buf(&cap_buf, &cap_size, OBJ_nid2sn(nids[k]))) goto end; skip_ciphers: fn_d = ENGINE_get_digests(e); if (fn_d == NULL) goto skip_digests; n = fn_d(e, NULL, &nids, 0); for (k = 0; k < n; ++k) if (!append_buf(&cap_buf, &cap_size, OBJ_nid2sn(nids[k]))) goto end; skip_digests: fn_pk = ENGINE_get_pkey_meths(e); if (fn_pk == NULL) goto skip_pmeths; n = fn_pk(e, NULL, &nids, 0); for (k = 0; k < n; ++k) if (!append_buf(&cap_buf, &cap_size, OBJ_nid2sn(nids[k]))) goto end; skip_pmeths: { struct util_store_cap_data store_ctx; store_ctx.engine = e; store_ctx.cap_buf = &cap_buf; store_ctx.cap_size = &cap_size; store_ctx.ok = 1; OSSL_STORE_do_all_loaders(util_store_cap, &store_ctx); if (!store_ctx.ok) goto end; } if (cap_buf != NULL && (*cap_buf != '\0')) BIO_printf(out, " [%s]\n", cap_buf); OPENSSL_free(cap_buf); } if (test_avail) { BIO_printf(out, "%s", indent); if (ENGINE_init(e)) { BIO_printf(out, "[ available ]\n"); util_do_cmds(e, post_cmds, out, indent); ENGINE_finish(e); } else { BIO_printf(out, "[ unavailable ]\n"); if (test_avail_noise) ERR_print_errors_fp(stdout); ERR_clear_error(); } } if ((verbose > 0) && !util_verbose(e, verbose, out, indent)) goto end; ENGINE_free(e); } else { ERR_print_errors(bio_err); /* because exit codes above 127 have special meaning on Unix */ if (++ret > 127) ret = 127; } } end: ERR_print_errors(bio_err); sk_OPENSSL_CSTRING_free(engines); sk_OPENSSL_STRING_free(pre_cmds); sk_OPENSSL_STRING_free(post_cmds); BIO_free_all(out); return ret; } #endif openssl-1.1.1f/apps/errstr.c000066400000000000000000000035241364063235100160020ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP } OPTION_CHOICE; const OPTIONS errstr_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] errnum...\n"}, {OPT_HELP_STR, 1, '-', " errnum Error number\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {NULL} }; int errstr_main(int argc, char **argv) { OPTION_CHOICE o; char buf[256], *prog; int ret = 1; unsigned long l; prog = opt_init(argc, argv, errstr_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(errstr_options); ret = 0; goto end; } } ret = 0; for (argv = opt_rest(); *argv; argv++) { if (sscanf(*argv, "%lx", &l) == 0) { ret++; } else { /* We're not really an SSL application so this won't auto-init, but * we're still interested in SSL error strings */ OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS | OPENSSL_INIT_LOAD_CRYPTO_STRINGS, NULL); ERR_error_string_n(l, buf, sizeof(buf)); BIO_printf(bio_out, "%s\n", buf); } } end: return ret; } openssl-1.1.1f/apps/gendsa.c000066400000000000000000000077701364063235100157310ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_DSA NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_OUT, OPT_PASSOUT, OPT_ENGINE, OPT_CIPHER, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS gendsa_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [args] dsaparam-file\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"out", OPT_OUT, '>', "Output the key to the specified file"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, OPT_R_OPTIONS, {"", OPT_CIPHER, '-', "Encrypt the output with any supported cipher"}, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {NULL} }; int gendsa_main(int argc, char **argv) { ENGINE *e = NULL; BIO *out = NULL, *in = NULL; DSA *dsa = NULL; const EVP_CIPHER *enc = NULL; char *dsaparams = NULL; char *outfile = NULL, *passoutarg = NULL, *passout = NULL, *prog; OPTION_CHOICE o; int ret = 1, private = 0; const BIGNUM *p = NULL; prog = opt_init(argc, argv, gendsa_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: ret = 0; opt_help(gendsa_options); goto end; case OPT_OUT: outfile = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &enc)) goto end; break; } } argc = opt_num_rest(); argv = opt_rest(); private = 1; if (argc != 1) goto opthelp; dsaparams = *argv; if (!app_passwd(NULL, passoutarg, NULL, &passout)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } in = bio_open_default(dsaparams, 'r', FORMAT_PEM); if (in == NULL) goto end2; if ((dsa = PEM_read_bio_DSAparams(in, NULL, NULL, NULL)) == NULL) { BIO_printf(bio_err, "unable to load DSA parameter file\n"); goto end; } BIO_free(in); in = NULL; out = bio_open_owner(outfile, FORMAT_PEM, private); if (out == NULL) goto end2; DSA_get0_pqg(dsa, &p, NULL, NULL); if (BN_num_bits(p) > OPENSSL_DSA_MAX_MODULUS_BITS) BIO_printf(bio_err, "Warning: It is not recommended to use more than %d bit for DSA keys.\n" " Your key size is %d! Larger key size may behave not as expected.\n", OPENSSL_DSA_MAX_MODULUS_BITS, BN_num_bits(p)); BIO_printf(bio_err, "Generating DSA key, %d bits\n", BN_num_bits(p)); if (!DSA_generate_key(dsa)) goto end; assert(private); if (!PEM_write_bio_DSAPrivateKey(out, dsa, enc, NULL, 0, NULL, passout)) goto end; ret = 0; end: if (ret != 0) ERR_print_errors(bio_err); end2: BIO_free(in); BIO_free_all(out); DSA_free(dsa); release_engine(e); OPENSSL_free(passout); return ret; } #endif openssl-1.1.1f/apps/genpkey.c000066400000000000000000000211541364063235100161220ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "apps.h" #include "progs.h" #include #include #include #ifndef OPENSSL_NO_ENGINE # include #endif static int init_keygen_file(EVP_PKEY_CTX **pctx, const char *file, ENGINE *e); static int genpkey_cb(EVP_PKEY_CTX *ctx); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_OUTFORM, OPT_OUT, OPT_PASS, OPT_PARAMFILE, OPT_ALGORITHM, OPT_PKEYOPT, OPT_GENPARAM, OPT_TEXT, OPT_CIPHER } OPTION_CHOICE; const OPTIONS genpkey_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"out", OPT_OUT, '>', "Output file"}, {"outform", OPT_OUTFORM, 'F', "output format (DER or PEM)"}, {"pass", OPT_PASS, 's', "Output file pass phrase source"}, {"paramfile", OPT_PARAMFILE, '<', "Parameters file"}, {"algorithm", OPT_ALGORITHM, 's', "The public key algorithm"}, {"pkeyopt", OPT_PKEYOPT, 's', "Set the public key algorithm option as opt:value"}, {"genparam", OPT_GENPARAM, '-', "Generate parameters, not key"}, {"text", OPT_TEXT, '-', "Print the in text"}, {"", OPT_CIPHER, '-', "Cipher to use to encrypt the key"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif /* This is deliberately last. */ {OPT_HELP_STR, 1, 1, "Order of options may be important! See the documentation.\n"}, {NULL} }; int genpkey_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; ENGINE *e = NULL; EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *ctx = NULL; char *outfile = NULL, *passarg = NULL, *pass = NULL, *prog; const EVP_CIPHER *cipher = NULL; OPTION_CHOICE o; int outformat = FORMAT_PEM, text = 0, ret = 1, rv, do_param = 0; int private = 0; prog = opt_init(argc, argv, genpkey_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: ret = 0; opt_help(genpkey_options); goto end; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_PASS: passarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_PARAMFILE: if (do_param == 1) goto opthelp; if (!init_keygen_file(&ctx, opt_arg(), e)) goto end; break; case OPT_ALGORITHM: if (!init_gen_str(&ctx, opt_arg(), e, do_param)) goto end; break; case OPT_PKEYOPT: if (ctx == NULL) { BIO_printf(bio_err, "%s: No keytype specified.\n", prog); goto opthelp; } if (pkey_ctrl_string(ctx, opt_arg()) <= 0) { BIO_printf(bio_err, "%s: Error setting %s parameter:\n", prog, opt_arg()); ERR_print_errors(bio_err); goto end; } break; case OPT_GENPARAM: if (ctx != NULL) goto opthelp; do_param = 1; break; case OPT_TEXT: text = 1; break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &cipher) || do_param == 1) goto opthelp; if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE || EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE || EVP_CIPHER_mode(cipher) == EVP_CIPH_XTS_MODE || EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE) { BIO_printf(bio_err, "%s: cipher mode not supported\n", prog); goto end; } } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = do_param ? 0 : 1; if (ctx == NULL) goto opthelp; if (!app_passwd(passarg, NULL, &pass, NULL)) { BIO_puts(bio_err, "Error getting password\n"); goto end; } out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; EVP_PKEY_CTX_set_cb(ctx, genpkey_cb); EVP_PKEY_CTX_set_app_data(ctx, bio_err); if (do_param) { if (EVP_PKEY_paramgen(ctx, &pkey) <= 0) { BIO_puts(bio_err, "Error generating parameters\n"); ERR_print_errors(bio_err); goto end; } } else { if (EVP_PKEY_keygen(ctx, &pkey) <= 0) { BIO_puts(bio_err, "Error generating key\n"); ERR_print_errors(bio_err); goto end; } } if (do_param) { rv = PEM_write_bio_Parameters(out, pkey); } else if (outformat == FORMAT_PEM) { assert(private); rv = PEM_write_bio_PrivateKey(out, pkey, cipher, NULL, 0, NULL, pass); } else if (outformat == FORMAT_ASN1) { assert(private); rv = i2d_PrivateKey_bio(out, pkey); } else { BIO_printf(bio_err, "Bad format specified for key\n"); goto end; } if (rv <= 0) { BIO_puts(bio_err, "Error writing key\n"); ERR_print_errors(bio_err); } if (text) { if (do_param) rv = EVP_PKEY_print_params(out, pkey, 0, NULL); else rv = EVP_PKEY_print_private(out, pkey, 0, NULL); if (rv <= 0) { BIO_puts(bio_err, "Error printing key\n"); ERR_print_errors(bio_err); } } ret = 0; end: EVP_PKEY_free(pkey); EVP_PKEY_CTX_free(ctx); BIO_free_all(out); BIO_free(in); release_engine(e); OPENSSL_free(pass); return ret; } static int init_keygen_file(EVP_PKEY_CTX **pctx, const char *file, ENGINE *e) { BIO *pbio; EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *ctx = NULL; if (*pctx) { BIO_puts(bio_err, "Parameters already set!\n"); return 0; } pbio = BIO_new_file(file, "r"); if (!pbio) { BIO_printf(bio_err, "Can't open parameter file %s\n", file); return 0; } pkey = PEM_read_bio_Parameters(pbio, NULL); BIO_free(pbio); if (!pkey) { BIO_printf(bio_err, "Error reading parameter file %s\n", file); return 0; } ctx = EVP_PKEY_CTX_new(pkey, e); if (ctx == NULL) goto err; if (EVP_PKEY_keygen_init(ctx) <= 0) goto err; EVP_PKEY_free(pkey); *pctx = ctx; return 1; err: BIO_puts(bio_err, "Error initializing context\n"); ERR_print_errors(bio_err); EVP_PKEY_CTX_free(ctx); EVP_PKEY_free(pkey); return 0; } int init_gen_str(EVP_PKEY_CTX **pctx, const char *algname, ENGINE *e, int do_param) { EVP_PKEY_CTX *ctx = NULL; const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *tmpeng = NULL; int pkey_id; if (*pctx) { BIO_puts(bio_err, "Algorithm already set!\n"); return 0; } ameth = EVP_PKEY_asn1_find_str(&tmpeng, algname, -1); #ifndef OPENSSL_NO_ENGINE if (!ameth && e) ameth = ENGINE_get_pkey_asn1_meth_str(e, algname, -1); #endif if (!ameth) { BIO_printf(bio_err, "Algorithm %s not found\n", algname); return 0; } ERR_clear_error(); EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(tmpeng); #endif ctx = EVP_PKEY_CTX_new_id(pkey_id, e); if (!ctx) goto err; if (do_param) { if (EVP_PKEY_paramgen_init(ctx) <= 0) goto err; } else { if (EVP_PKEY_keygen_init(ctx) <= 0) goto err; } *pctx = ctx; return 1; err: BIO_printf(bio_err, "Error initializing %s context\n", algname); ERR_print_errors(bio_err); EVP_PKEY_CTX_free(ctx); return 0; } static int genpkey_cb(EVP_PKEY_CTX *ctx) { char c = '*'; BIO *b = EVP_PKEY_CTX_get_app_data(ctx); int p; p = EVP_PKEY_CTX_get_keygen_info(ctx, 0); if (p == 0) c = '.'; if (p == 1) c = '+'; if (p == 2) c = '*'; if (p == 3) c = '\n'; BIO_write(b, &c, 1); (void)BIO_flush(b); return 1; } openssl-1.1.1f/apps/genrsa.c000066400000000000000000000127051364063235100157410ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_RSA NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include # include # include # define DEFBITS 2048 # define DEFPRIMES 2 static int genrsa_cb(int p, int n, BN_GENCB *cb); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_3, OPT_F4, OPT_ENGINE, OPT_OUT, OPT_PASSOUT, OPT_CIPHER, OPT_PRIMES, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS genrsa_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"3", OPT_3, '-', "Use 3 for the E value"}, {"F4", OPT_F4, '-', "Use F4 (0x10001) for the E value"}, {"f4", OPT_F4, '-', "Use F4 (0x10001) for the E value"}, {"out", OPT_OUT, '>', "Output the key to specified file"}, OPT_R_OPTIONS, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"", OPT_CIPHER, '-', "Encrypt the output with any supported cipher"}, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {"primes", OPT_PRIMES, 'p', "Specify number of primes"}, {NULL} }; int genrsa_main(int argc, char **argv) { BN_GENCB *cb = BN_GENCB_new(); PW_CB_DATA cb_data; ENGINE *eng = NULL; BIGNUM *bn = BN_new(); BIO *out = NULL; const BIGNUM *e; RSA *rsa = NULL; const EVP_CIPHER *enc = NULL; int ret = 1, num = DEFBITS, private = 0, primes = DEFPRIMES; unsigned long f4 = RSA_F4; char *outfile = NULL, *passoutarg = NULL, *passout = NULL; char *prog, *hexe, *dece; OPTION_CHOICE o; if (bn == NULL || cb == NULL) goto end; BN_GENCB_set(cb, genrsa_cb, bio_err); prog = opt_init(argc, argv, genrsa_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: ret = 0; opt_help(genrsa_options); goto end; case OPT_3: f4 = 3; break; case OPT_F4: f4 = RSA_F4; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: eng = setup_engine(opt_arg(), 0); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &enc)) goto end; break; case OPT_PRIMES: if (!opt_int(opt_arg(), &primes)) goto end; break; } } argc = opt_num_rest(); argv = opt_rest(); if (argc == 1) { if (!opt_int(argv[0], &num) || num <= 0) goto end; if (num > OPENSSL_RSA_MAX_MODULUS_BITS) BIO_printf(bio_err, "Warning: It is not recommended to use more than %d bit for RSA keys.\n" " Your key size is %d! Larger key size may behave not as expected.\n", OPENSSL_RSA_MAX_MODULUS_BITS, num); } else if (argc > 0) { BIO_printf(bio_err, "Extra arguments given.\n"); goto opthelp; } private = 1; if (!app_passwd(NULL, passoutarg, NULL, &passout)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } out = bio_open_owner(outfile, FORMAT_PEM, private); if (out == NULL) goto end; BIO_printf(bio_err, "Generating RSA private key, %d bit long modulus (%d primes)\n", num, primes); rsa = eng ? RSA_new_method(eng) : RSA_new(); if (rsa == NULL) goto end; if (!BN_set_word(bn, f4) || !RSA_generate_multi_prime_key(rsa, num, primes, bn, cb)) goto end; RSA_get0_key(rsa, NULL, &e, NULL); hexe = BN_bn2hex(e); dece = BN_bn2dec(e); if (hexe && dece) { BIO_printf(bio_err, "e is %s (0x%s)\n", dece, hexe); } OPENSSL_free(hexe); OPENSSL_free(dece); cb_data.password = passout; cb_data.prompt_info = outfile; assert(private); if (!PEM_write_bio_RSAPrivateKey(out, rsa, enc, NULL, 0, (pem_password_cb *)password_callback, &cb_data)) goto end; ret = 0; end: BN_free(bn); BN_GENCB_free(cb); RSA_free(rsa); BIO_free_all(out); release_engine(eng); OPENSSL_free(passout); if (ret != 0) ERR_print_errors(bio_err); return ret; } static int genrsa_cb(int p, int n, BN_GENCB *cb) { char c = '*'; if (p == 0) c = '.'; if (p == 1) c = '+'; if (p == 2) c = '*'; if (p == 3) c = '\n'; BIO_write(BN_GENCB_get_arg(cb), &c, 1); (void)BIO_flush(BN_GENCB_get_arg(cb)); return 1; } #endif openssl-1.1.1f/apps/nseq.c000066400000000000000000000060021364063235100154210ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "apps.h" #include "progs.h" #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_TOSEQ, OPT_IN, OPT_OUT } OPTION_CHOICE; const OPTIONS nseq_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"toseq", OPT_TOSEQ, '-', "Output NS Sequence file"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {NULL} }; int nseq_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; X509 *x509 = NULL; NETSCAPE_CERT_SEQUENCE *seq = NULL; OPTION_CHOICE o; int toseq = 0, ret = 1, i; char *infile = NULL, *outfile = NULL, *prog; prog = opt_init(argc, argv, nseq_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: ret = 0; opt_help(nseq_options); goto end; case OPT_TOSEQ: toseq = 1; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; in = bio_open_default(infile, 'r', FORMAT_PEM); if (in == NULL) goto end; out = bio_open_default(outfile, 'w', FORMAT_PEM); if (out == NULL) goto end; if (toseq) { seq = NETSCAPE_CERT_SEQUENCE_new(); if (seq == NULL) goto end; seq->certs = sk_X509_new_null(); if (seq->certs == NULL) goto end; while ((x509 = PEM_read_bio_X509(in, NULL, NULL, NULL))) sk_X509_push(seq->certs, x509); if (!sk_X509_num(seq->certs)) { BIO_printf(bio_err, "%s: Error reading certs file %s\n", prog, infile); ERR_print_errors(bio_err); goto end; } PEM_write_bio_NETSCAPE_CERT_SEQUENCE(out, seq); ret = 0; goto end; } seq = PEM_read_bio_NETSCAPE_CERT_SEQUENCE(in, NULL, NULL, NULL); if (seq == NULL) { BIO_printf(bio_err, "%s: Error reading sequence file %s\n", prog, infile); ERR_print_errors(bio_err); goto end; } for (i = 0; i < sk_X509_num(seq->certs); i++) { x509 = sk_X509_value(seq->certs, i); dump_cert_text(out, x509); PEM_write_bio_X509(out, x509); } ret = 0; end: BIO_free(in); BIO_free_all(out); NETSCAPE_CERT_SEQUENCE_free(seq); return ret; } openssl-1.1.1f/apps/ocsp.c000066400000000000000000001432351364063235100154310ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_OCSP NON_EMPTY_TRANSLATION_UNIT #else # ifdef OPENSSL_SYS_VMS # define _XOPEN_SOURCE_EXTENDED/* So fd_set and friends get properly defined * on OpenVMS */ # endif # include # include # include # include # include /* Needs to be included before the openssl headers */ # include "apps.h" # include "progs.h" # include "internal/sockets.h" # include # include # include # include # include # include # include # include #ifndef HAVE_FORK # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) # define HAVE_FORK 0 # else # define HAVE_FORK 1 # endif #endif #if HAVE_FORK # undef NO_FORK #else # define NO_FORK #endif # if !defined(NO_FORK) && !defined(OPENSSL_NO_SOCK) \ && !defined(OPENSSL_NO_POSIX_IO) # define OCSP_DAEMON # include # include # include # include # define MAXERRLEN 1000 /* limit error text sent to syslog to 1000 bytes */ # else # undef LOG_INFO # undef LOG_WARNING # undef LOG_ERR # define LOG_INFO 0 # define LOG_WARNING 1 # define LOG_ERR 2 # endif # if defined(OPENSSL_SYS_VXWORKS) /* not supported */ int setpgid(pid_t pid, pid_t pgid) { errno = ENOSYS; return 0; } /* not supported */ pid_t fork(void) { errno = ENOSYS; return (pid_t) -1; } # endif /* Maximum leeway in validity period: default 5 minutes */ # define MAX_VALIDITY_PERIOD (5 * 60) static int add_ocsp_cert(OCSP_REQUEST **req, X509 *cert, const EVP_MD *cert_id_md, X509 *issuer, STACK_OF(OCSP_CERTID) *ids); static int add_ocsp_serial(OCSP_REQUEST **req, char *serial, const EVP_MD *cert_id_md, X509 *issuer, STACK_OF(OCSP_CERTID) *ids); static void print_ocsp_summary(BIO *out, OCSP_BASICRESP *bs, OCSP_REQUEST *req, STACK_OF(OPENSSL_STRING) *names, STACK_OF(OCSP_CERTID) *ids, long nsec, long maxage); static void make_ocsp_response(BIO *err, OCSP_RESPONSE **resp, OCSP_REQUEST *req, CA_DB *db, STACK_OF(X509) *ca, X509 *rcert, EVP_PKEY *rkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(X509) *rother, unsigned long flags, int nmin, int ndays, int badsig); static char **lookup_serial(CA_DB *db, ASN1_INTEGER *ser); static BIO *init_responder(const char *port); static int do_responder(OCSP_REQUEST **preq, BIO **pcbio, BIO *acbio, int timeout); static int send_ocsp_response(BIO *cbio, OCSP_RESPONSE *resp); static void log_message(int level, const char *fmt, ...); static char *prog; static int multi = 0; # ifdef OCSP_DAEMON static int acfd = (int) INVALID_SOCKET; static int index_changed(CA_DB *); static void spawn_loop(void); static int print_syslog(const char *str, size_t len, void *levPtr); static void socket_timeout(int signum); # endif # ifndef OPENSSL_NO_SOCK static OCSP_RESPONSE *query_responder(BIO *cbio, const char *host, const char *path, const STACK_OF(CONF_VALUE) *headers, OCSP_REQUEST *req, int req_timeout); # endif typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_OUTFILE, OPT_TIMEOUT, OPT_URL, OPT_HOST, OPT_PORT, OPT_IGNORE_ERR, OPT_NOVERIFY, OPT_NONCE, OPT_NO_NONCE, OPT_RESP_NO_CERTS, OPT_RESP_KEY_ID, OPT_NO_CERTS, OPT_NO_SIGNATURE_VERIFY, OPT_NO_CERT_VERIFY, OPT_NO_CHAIN, OPT_NO_CERT_CHECKS, OPT_NO_EXPLICIT, OPT_TRUST_OTHER, OPT_NO_INTERN, OPT_BADSIG, OPT_TEXT, OPT_REQ_TEXT, OPT_RESP_TEXT, OPT_REQIN, OPT_RESPIN, OPT_SIGNER, OPT_VAFILE, OPT_SIGN_OTHER, OPT_VERIFY_OTHER, OPT_CAFILE, OPT_CAPATH, OPT_NOCAFILE, OPT_NOCAPATH, OPT_VALIDITY_PERIOD, OPT_STATUS_AGE, OPT_SIGNKEY, OPT_REQOUT, OPT_RESPOUT, OPT_PATH, OPT_ISSUER, OPT_CERT, OPT_SERIAL, OPT_INDEX, OPT_CA, OPT_NMIN, OPT_REQUEST, OPT_NDAYS, OPT_RSIGNER, OPT_RKEY, OPT_ROTHER, OPT_RMD, OPT_RSIGOPT, OPT_HEADER, OPT_V_ENUM, OPT_MD, OPT_MULTI } OPTION_CHOICE; const OPTIONS ocsp_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"out", OPT_OUTFILE, '>', "Output filename"}, {"timeout", OPT_TIMEOUT, 'p', "Connection timeout (in seconds) to the OCSP responder"}, {"url", OPT_URL, 's', "Responder URL"}, {"host", OPT_HOST, 's', "TCP/IP hostname:port to connect to"}, {"port", OPT_PORT, 'p', "Port to run responder on"}, {"ignore_err", OPT_IGNORE_ERR, '-', "Ignore error on OCSP request or response and continue running"}, {"noverify", OPT_NOVERIFY, '-', "Don't verify response at all"}, {"nonce", OPT_NONCE, '-', "Add OCSP nonce to request"}, {"no_nonce", OPT_NO_NONCE, '-', "Don't add OCSP nonce to request"}, {"resp_no_certs", OPT_RESP_NO_CERTS, '-', "Don't include any certificates in response"}, {"resp_key_id", OPT_RESP_KEY_ID, '-', "Identify response by signing certificate key ID"}, # ifdef OCSP_DAEMON {"multi", OPT_MULTI, 'p', "run multiple responder processes"}, # endif {"no_certs", OPT_NO_CERTS, '-', "Don't include any certificates in signed request"}, {"no_signature_verify", OPT_NO_SIGNATURE_VERIFY, '-', "Don't check signature on response"}, {"no_cert_verify", OPT_NO_CERT_VERIFY, '-', "Don't check signing certificate"}, {"no_chain", OPT_NO_CHAIN, '-', "Don't chain verify response"}, {"no_cert_checks", OPT_NO_CERT_CHECKS, '-', "Don't do additional checks on signing certificate"}, {"no_explicit", OPT_NO_EXPLICIT, '-', "Do not explicitly check the chain, just verify the root"}, {"trust_other", OPT_TRUST_OTHER, '-', "Don't verify additional certificates"}, {"no_intern", OPT_NO_INTERN, '-', "Don't search certificates contained in response for signer"}, {"badsig", OPT_BADSIG, '-', "Corrupt last byte of loaded OSCP response signature (for test)"}, {"text", OPT_TEXT, '-', "Print text form of request and response"}, {"req_text", OPT_REQ_TEXT, '-', "Print text form of request"}, {"resp_text", OPT_RESP_TEXT, '-', "Print text form of response"}, {"reqin", OPT_REQIN, 's', "File with the DER-encoded request"}, {"respin", OPT_RESPIN, 's', "File with the DER-encoded response"}, {"signer", OPT_SIGNER, '<', "Certificate to sign OCSP request with"}, {"VAfile", OPT_VAFILE, '<', "Validator certificates file"}, {"sign_other", OPT_SIGN_OTHER, '<', "Additional certificates to include in signed request"}, {"verify_other", OPT_VERIFY_OTHER, '<', "Additional certificates to search for signer"}, {"CAfile", OPT_CAFILE, '<', "Trusted certificates file"}, {"CApath", OPT_CAPATH, '<', "Trusted certificates directory"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"validity_period", OPT_VALIDITY_PERIOD, 'u', "Maximum validity discrepancy in seconds"}, {"status_age", OPT_STATUS_AGE, 'p', "Maximum status age in seconds"}, {"signkey", OPT_SIGNKEY, 's', "Private key to sign OCSP request with"}, {"reqout", OPT_REQOUT, 's', "Output file for the DER-encoded request"}, {"respout", OPT_RESPOUT, 's', "Output file for the DER-encoded response"}, {"path", OPT_PATH, 's', "Path to use in OCSP request"}, {"issuer", OPT_ISSUER, '<', "Issuer certificate"}, {"cert", OPT_CERT, '<', "Certificate to check"}, {"serial", OPT_SERIAL, 's', "Serial number to check"}, {"index", OPT_INDEX, '<', "Certificate status index file"}, {"CA", OPT_CA, '<', "CA certificate"}, {"nmin", OPT_NMIN, 'p', "Number of minutes before next update"}, {"nrequest", OPT_REQUEST, 'p', "Number of requests to accept (default unlimited)"}, {"ndays", OPT_NDAYS, 'p', "Number of days before next update"}, {"rsigner", OPT_RSIGNER, '<', "Responder certificate to sign responses with"}, {"rkey", OPT_RKEY, '<', "Responder key to sign responses with"}, {"rother", OPT_ROTHER, '<', "Other certificates to include in response"}, {"rmd", OPT_RMD, 's', "Digest Algorithm to use in signature of OCSP response"}, {"rsigopt", OPT_RSIGOPT, 's', "OCSP response signature parameter in n:v form"}, {"header", OPT_HEADER, 's', "key=value header to add"}, {"", OPT_MD, '-', "Any supported digest algorithm (sha1,sha256, ... )"}, OPT_V_OPTIONS, {NULL} }; int ocsp_main(int argc, char **argv) { BIO *acbio = NULL, *cbio = NULL, *derbio = NULL, *out = NULL; const EVP_MD *cert_id_md = NULL, *rsign_md = NULL; STACK_OF(OPENSSL_STRING) *rsign_sigopts = NULL; int trailing_md = 0; CA_DB *rdb = NULL; EVP_PKEY *key = NULL, *rkey = NULL; OCSP_BASICRESP *bs = NULL; OCSP_REQUEST *req = NULL; OCSP_RESPONSE *resp = NULL; STACK_OF(CONF_VALUE) *headers = NULL; STACK_OF(OCSP_CERTID) *ids = NULL; STACK_OF(OPENSSL_STRING) *reqnames = NULL; STACK_OF(X509) *sign_other = NULL, *verify_other = NULL, *rother = NULL; STACK_OF(X509) *issuers = NULL; X509 *issuer = NULL, *cert = NULL; STACK_OF(X509) *rca_cert = NULL; X509 *signer = NULL, *rsigner = NULL; X509_STORE *store = NULL; X509_VERIFY_PARAM *vpm = NULL; const char *CAfile = NULL, *CApath = NULL; char *header, *value; char *host = NULL, *port = NULL, *path = "/", *outfile = NULL; char *rca_filename = NULL, *reqin = NULL, *respin = NULL; char *reqout = NULL, *respout = NULL, *ridx_filename = NULL; char *rsignfile = NULL, *rkeyfile = NULL; char *sign_certfile = NULL, *verify_certfile = NULL, *rcertfile = NULL; char *signfile = NULL, *keyfile = NULL; char *thost = NULL, *tport = NULL, *tpath = NULL; int noCAfile = 0, noCApath = 0; int accept_count = -1, add_nonce = 1, noverify = 0, use_ssl = -1; int vpmtouched = 0, badsig = 0, i, ignore_err = 0, nmin = 0, ndays = -1; int req_text = 0, resp_text = 0, ret = 1; int req_timeout = -1; long nsec = MAX_VALIDITY_PERIOD, maxage = -1; unsigned long sign_flags = 0, verify_flags = 0, rflags = 0; OPTION_CHOICE o; reqnames = sk_OPENSSL_STRING_new_null(); if (reqnames == NULL) goto end; ids = sk_OCSP_CERTID_new_null(); if (ids == NULL) goto end; if ((vpm = X509_VERIFY_PARAM_new()) == NULL) return 1; prog = opt_init(argc, argv, ocsp_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: ret = 0; opt_help(ocsp_options); goto end; case OPT_OUTFILE: outfile = opt_arg(); break; case OPT_TIMEOUT: #ifndef OPENSSL_NO_SOCK req_timeout = atoi(opt_arg()); #endif break; case OPT_URL: OPENSSL_free(thost); OPENSSL_free(tport); OPENSSL_free(tpath); thost = tport = tpath = NULL; if (!OCSP_parse_url(opt_arg(), &host, &port, &path, &use_ssl)) { BIO_printf(bio_err, "%s Error parsing URL\n", prog); goto end; } thost = host; tport = port; tpath = path; break; case OPT_HOST: host = opt_arg(); break; case OPT_PORT: port = opt_arg(); break; case OPT_IGNORE_ERR: ignore_err = 1; break; case OPT_NOVERIFY: noverify = 1; break; case OPT_NONCE: add_nonce = 2; break; case OPT_NO_NONCE: add_nonce = 0; break; case OPT_RESP_NO_CERTS: rflags |= OCSP_NOCERTS; break; case OPT_RESP_KEY_ID: rflags |= OCSP_RESPID_KEY; break; case OPT_NO_CERTS: sign_flags |= OCSP_NOCERTS; break; case OPT_NO_SIGNATURE_VERIFY: verify_flags |= OCSP_NOSIGS; break; case OPT_NO_CERT_VERIFY: verify_flags |= OCSP_NOVERIFY; break; case OPT_NO_CHAIN: verify_flags |= OCSP_NOCHAIN; break; case OPT_NO_CERT_CHECKS: verify_flags |= OCSP_NOCHECKS; break; case OPT_NO_EXPLICIT: verify_flags |= OCSP_NOEXPLICIT; break; case OPT_TRUST_OTHER: verify_flags |= OCSP_TRUSTOTHER; break; case OPT_NO_INTERN: verify_flags |= OCSP_NOINTERN; break; case OPT_BADSIG: badsig = 1; break; case OPT_TEXT: req_text = resp_text = 1; break; case OPT_REQ_TEXT: req_text = 1; break; case OPT_RESP_TEXT: resp_text = 1; break; case OPT_REQIN: reqin = opt_arg(); break; case OPT_RESPIN: respin = opt_arg(); break; case OPT_SIGNER: signfile = opt_arg(); break; case OPT_VAFILE: verify_certfile = opt_arg(); verify_flags |= OCSP_TRUSTOTHER; break; case OPT_SIGN_OTHER: sign_certfile = opt_arg(); break; case OPT_VERIFY_OTHER: verify_certfile = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto end; vpmtouched++; break; case OPT_VALIDITY_PERIOD: opt_long(opt_arg(), &nsec); break; case OPT_STATUS_AGE: opt_long(opt_arg(), &maxage); break; case OPT_SIGNKEY: keyfile = opt_arg(); break; case OPT_REQOUT: reqout = opt_arg(); break; case OPT_RESPOUT: respout = opt_arg(); break; case OPT_PATH: path = opt_arg(); break; case OPT_ISSUER: issuer = load_cert(opt_arg(), FORMAT_PEM, "issuer certificate"); if (issuer == NULL) goto end; if (issuers == NULL) { if ((issuers = sk_X509_new_null()) == NULL) goto end; } sk_X509_push(issuers, issuer); break; case OPT_CERT: X509_free(cert); cert = load_cert(opt_arg(), FORMAT_PEM, "certificate"); if (cert == NULL) goto end; if (cert_id_md == NULL) cert_id_md = EVP_sha1(); if (!add_ocsp_cert(&req, cert, cert_id_md, issuer, ids)) goto end; if (!sk_OPENSSL_STRING_push(reqnames, opt_arg())) goto end; trailing_md = 0; break; case OPT_SERIAL: if (cert_id_md == NULL) cert_id_md = EVP_sha1(); if (!add_ocsp_serial(&req, opt_arg(), cert_id_md, issuer, ids)) goto end; if (!sk_OPENSSL_STRING_push(reqnames, opt_arg())) goto end; trailing_md = 0; break; case OPT_INDEX: ridx_filename = opt_arg(); break; case OPT_CA: rca_filename = opt_arg(); break; case OPT_NMIN: opt_int(opt_arg(), &nmin); if (ndays == -1) ndays = 0; break; case OPT_REQUEST: opt_int(opt_arg(), &accept_count); break; case OPT_NDAYS: ndays = atoi(opt_arg()); break; case OPT_RSIGNER: rsignfile = opt_arg(); break; case OPT_RKEY: rkeyfile = opt_arg(); break; case OPT_ROTHER: rcertfile = opt_arg(); break; case OPT_RMD: /* Response MessageDigest */ if (!opt_md(opt_arg(), &rsign_md)) goto end; break; case OPT_RSIGOPT: if (rsign_sigopts == NULL) rsign_sigopts = sk_OPENSSL_STRING_new_null(); if (rsign_sigopts == NULL || !sk_OPENSSL_STRING_push(rsign_sigopts, opt_arg())) goto end; break; case OPT_HEADER: header = opt_arg(); value = strchr(header, '='); if (value == NULL) { BIO_printf(bio_err, "Missing = in header key=value\n"); goto opthelp; } *value++ = '\0'; if (!X509V3_add_value(header, value, &headers)) goto end; break; case OPT_MD: if (trailing_md) { BIO_printf(bio_err, "%s: Digest must be before -cert or -serial\n", prog); goto opthelp; } if (!opt_md(opt_unknown(), &cert_id_md)) goto opthelp; trailing_md = 1; break; case OPT_MULTI: # ifdef OCSP_DAEMON multi = atoi(opt_arg()); # endif break; } } if (trailing_md) { BIO_printf(bio_err, "%s: Digest must be before -cert or -serial\n", prog); goto opthelp; } argc = opt_num_rest(); if (argc != 0) goto opthelp; /* Have we anything to do? */ if (req == NULL && reqin == NULL && respin == NULL && !(port != NULL && ridx_filename != NULL)) goto opthelp; out = bio_open_default(outfile, 'w', FORMAT_TEXT); if (out == NULL) goto end; if (req == NULL && (add_nonce != 2)) add_nonce = 0; if (req == NULL && reqin != NULL) { derbio = bio_open_default(reqin, 'r', FORMAT_ASN1); if (derbio == NULL) goto end; req = d2i_OCSP_REQUEST_bio(derbio, NULL); BIO_free(derbio); if (req == NULL) { BIO_printf(bio_err, "Error reading OCSP request\n"); goto end; } } if (req == NULL && port != NULL) { acbio = init_responder(port); if (acbio == NULL) goto end; } if (rsignfile != NULL) { if (rkeyfile == NULL) rkeyfile = rsignfile; rsigner = load_cert(rsignfile, FORMAT_PEM, "responder certificate"); if (rsigner == NULL) { BIO_printf(bio_err, "Error loading responder certificate\n"); goto end; } if (!load_certs(rca_filename, &rca_cert, FORMAT_PEM, NULL, "CA certificate")) goto end; if (rcertfile != NULL) { if (!load_certs(rcertfile, &rother, FORMAT_PEM, NULL, "responder other certificates")) goto end; } rkey = load_key(rkeyfile, FORMAT_PEM, 0, NULL, NULL, "responder private key"); if (rkey == NULL) goto end; } if (ridx_filename != NULL && (rkey == NULL || rsigner == NULL || rca_cert == NULL)) { BIO_printf(bio_err, "Responder mode requires certificate, key, and CA.\n"); goto end; } if (ridx_filename != NULL) { rdb = load_index(ridx_filename, NULL); if (rdb == NULL || index_index(rdb) <= 0) { ret = 1; goto end; } } # ifdef OCSP_DAEMON if (multi && acbio != NULL) spawn_loop(); if (acbio != NULL && req_timeout > 0) signal(SIGALRM, socket_timeout); #endif if (acbio != NULL) log_message(LOG_INFO, "waiting for OCSP client connections..."); redo_accept: if (acbio != NULL) { # ifdef OCSP_DAEMON if (index_changed(rdb)) { CA_DB *newrdb = load_index(ridx_filename, NULL); if (newrdb != NULL && index_index(newrdb) > 0) { free_index(rdb); rdb = newrdb; } else { free_index(newrdb); log_message(LOG_ERR, "error reloading updated index: %s", ridx_filename); } } # endif req = NULL; if (!do_responder(&req, &cbio, acbio, req_timeout)) goto redo_accept; if (req == NULL) { resp = OCSP_response_create(OCSP_RESPONSE_STATUS_MALFORMEDREQUEST, NULL); send_ocsp_response(cbio, resp); goto done_resp; } } if (req == NULL && (signfile != NULL || reqout != NULL || host != NULL || add_nonce || ridx_filename != NULL)) { BIO_printf(bio_err, "Need an OCSP request for this operation!\n"); goto end; } if (req != NULL && add_nonce) { if (!OCSP_request_add1_nonce(req, NULL, -1)) goto end; } if (signfile != NULL) { if (keyfile == NULL) keyfile = signfile; signer = load_cert(signfile, FORMAT_PEM, "signer certificate"); if (signer == NULL) { BIO_printf(bio_err, "Error loading signer certificate\n"); goto end; } if (sign_certfile != NULL) { if (!load_certs(sign_certfile, &sign_other, FORMAT_PEM, NULL, "signer certificates")) goto end; } key = load_key(keyfile, FORMAT_PEM, 0, NULL, NULL, "signer private key"); if (key == NULL) goto end; if (!OCSP_request_sign (req, signer, key, NULL, sign_other, sign_flags)) { BIO_printf(bio_err, "Error signing OCSP request\n"); goto end; } } if (req_text && req != NULL) OCSP_REQUEST_print(out, req, 0); if (reqout != NULL) { derbio = bio_open_default(reqout, 'w', FORMAT_ASN1); if (derbio == NULL) goto end; i2d_OCSP_REQUEST_bio(derbio, req); BIO_free(derbio); } if (rdb != NULL) { make_ocsp_response(bio_err, &resp, req, rdb, rca_cert, rsigner, rkey, rsign_md, rsign_sigopts, rother, rflags, nmin, ndays, badsig); if (cbio != NULL) send_ocsp_response(cbio, resp); } else if (host != NULL) { # ifndef OPENSSL_NO_SOCK resp = process_responder(req, host, path, port, use_ssl, headers, req_timeout); if (resp == NULL) goto end; # else BIO_printf(bio_err, "Error creating connect BIO - sockets not supported.\n"); goto end; # endif } else if (respin != NULL) { derbio = bio_open_default(respin, 'r', FORMAT_ASN1); if (derbio == NULL) goto end; resp = d2i_OCSP_RESPONSE_bio(derbio, NULL); BIO_free(derbio); if (resp == NULL) { BIO_printf(bio_err, "Error reading OCSP response\n"); goto end; } } else { ret = 0; goto end; } done_resp: if (respout != NULL) { derbio = bio_open_default(respout, 'w', FORMAT_ASN1); if (derbio == NULL) goto end; i2d_OCSP_RESPONSE_bio(derbio, resp); BIO_free(derbio); } i = OCSP_response_status(resp); if (i != OCSP_RESPONSE_STATUS_SUCCESSFUL) { BIO_printf(out, "Responder Error: %s (%d)\n", OCSP_response_status_str(i), i); if (!ignore_err) goto end; } if (resp_text) OCSP_RESPONSE_print(out, resp, 0); /* If running as responder don't verify our own response */ if (cbio != NULL) { /* If not unlimited, see if we took all we should. */ if (accept_count != -1 && --accept_count <= 0) { ret = 0; goto end; } BIO_free_all(cbio); cbio = NULL; OCSP_REQUEST_free(req); req = NULL; OCSP_RESPONSE_free(resp); resp = NULL; goto redo_accept; } if (ridx_filename != NULL) { ret = 0; goto end; } if (store == NULL) { store = setup_verify(CAfile, CApath, noCAfile, noCApath); if (!store) goto end; } if (vpmtouched) X509_STORE_set1_param(store, vpm); if (verify_certfile != NULL) { if (!load_certs(verify_certfile, &verify_other, FORMAT_PEM, NULL, "validator certificate")) goto end; } bs = OCSP_response_get1_basic(resp); if (bs == NULL) { BIO_printf(bio_err, "Error parsing response\n"); goto end; } ret = 0; if (!noverify) { if (req != NULL && ((i = OCSP_check_nonce(req, bs)) <= 0)) { if (i == -1) BIO_printf(bio_err, "WARNING: no nonce in response\n"); else { BIO_printf(bio_err, "Nonce Verify error\n"); ret = 1; goto end; } } i = OCSP_basic_verify(bs, verify_other, store, verify_flags); if (i <= 0 && issuers) { i = OCSP_basic_verify(bs, issuers, store, OCSP_TRUSTOTHER); if (i > 0) ERR_clear_error(); } if (i <= 0) { BIO_printf(bio_err, "Response Verify Failure\n"); ERR_print_errors(bio_err); ret = 1; } else { BIO_printf(bio_err, "Response verify OK\n"); } } print_ocsp_summary(out, bs, req, reqnames, ids, nsec, maxage); end: ERR_print_errors(bio_err); X509_free(signer); X509_STORE_free(store); X509_VERIFY_PARAM_free(vpm); sk_OPENSSL_STRING_free(rsign_sigopts); EVP_PKEY_free(key); EVP_PKEY_free(rkey); X509_free(cert); sk_X509_pop_free(issuers, X509_free); X509_free(rsigner); sk_X509_pop_free(rca_cert, X509_free); free_index(rdb); BIO_free_all(cbio); BIO_free_all(acbio); BIO_free_all(out); OCSP_REQUEST_free(req); OCSP_RESPONSE_free(resp); OCSP_BASICRESP_free(bs); sk_OPENSSL_STRING_free(reqnames); sk_OCSP_CERTID_free(ids); sk_X509_pop_free(sign_other, X509_free); sk_X509_pop_free(verify_other, X509_free); sk_CONF_VALUE_pop_free(headers, X509V3_conf_free); OPENSSL_free(thost); OPENSSL_free(tport); OPENSSL_free(tpath); return ret; } static void log_message(int level, const char *fmt, ...) { va_list ap; va_start(ap, fmt); # ifdef OCSP_DAEMON if (multi) { char buf[1024]; if (vsnprintf(buf, sizeof(buf), fmt, ap) > 0) { syslog(level, "%s", buf); } if (level >= LOG_ERR) ERR_print_errors_cb(print_syslog, &level); } # endif if (!multi) { BIO_printf(bio_err, "%s: ", prog); BIO_vprintf(bio_err, fmt, ap); BIO_printf(bio_err, "\n"); } va_end(ap); } # ifdef OCSP_DAEMON static int print_syslog(const char *str, size_t len, void *levPtr) { int level = *(int *)levPtr; int ilen = (len > MAXERRLEN) ? MAXERRLEN : len; syslog(level, "%.*s", ilen, str); return ilen; } static int index_changed(CA_DB *rdb) { struct stat sb; if (rdb != NULL && stat(rdb->dbfname, &sb) != -1) { if (rdb->dbst.st_mtime != sb.st_mtime || rdb->dbst.st_ctime != sb.st_ctime || rdb->dbst.st_ino != sb.st_ino || rdb->dbst.st_dev != sb.st_dev) { syslog(LOG_INFO, "index file changed, reloading"); return 1; } } return 0; } static void killall(int ret, pid_t *kidpids) { int i; for (i = 0; i < multi; ++i) if (kidpids[i] != 0) (void)kill(kidpids[i], SIGTERM); OPENSSL_free(kidpids); sleep(1); exit(ret); } static int termsig = 0; static void noteterm (int sig) { termsig = sig; } /* * Loop spawning up to `multi` child processes, only child processes return * from this function. The parent process loops until receiving a termination * signal, kills extant children and exits without returning. */ static void spawn_loop(void) { pid_t *kidpids = NULL; int status; int procs = 0; int i; openlog(prog, LOG_PID, LOG_DAEMON); if (setpgid(0, 0)) { syslog(LOG_ERR, "fatal: error detaching from parent process group: %s", strerror(errno)); exit(1); } kidpids = app_malloc(multi * sizeof(*kidpids), "child PID array"); for (i = 0; i < multi; ++i) kidpids[i] = 0; signal(SIGINT, noteterm); signal(SIGTERM, noteterm); while (termsig == 0) { pid_t fpid; /* * Wait for a child to replace when we're at the limit. * Slow down if a child exited abnormally or waitpid() < 0 */ while (termsig == 0 && procs >= multi) { if ((fpid = waitpid(-1, &status, 0)) > 0) { for (i = 0; i < procs; ++i) { if (kidpids[i] == fpid) { kidpids[i] = 0; --procs; break; } } if (i >= multi) { syslog(LOG_ERR, "fatal: internal error: " "no matching child slot for pid: %ld", (long) fpid); killall(1, kidpids); } if (status != 0) { if (WIFEXITED(status)) syslog(LOG_WARNING, "child process: %ld, exit status: %d", (long)fpid, WEXITSTATUS(status)); else if (WIFSIGNALED(status)) syslog(LOG_WARNING, "child process: %ld, term signal %d%s", (long)fpid, WTERMSIG(status), #ifdef WCOREDUMP WCOREDUMP(status) ? " (core dumped)" : #endif ""); sleep(1); } break; } else if (errno != EINTR) { syslog(LOG_ERR, "fatal: waitpid(): %s", strerror(errno)); killall(1, kidpids); } } if (termsig) break; switch(fpid = fork()) { case -1: /* error */ /* System critically low on memory, pause and try again later */ sleep(30); break; case 0: /* child */ OPENSSL_free(kidpids); signal(SIGINT, SIG_DFL); signal(SIGTERM, SIG_DFL); if (termsig) _exit(0); if (RAND_poll() <= 0) { syslog(LOG_ERR, "fatal: RAND_poll() failed"); _exit(1); } return; default: /* parent */ for (i = 0; i < multi; ++i) { if (kidpids[i] == 0) { kidpids[i] = fpid; procs++; break; } } if (i >= multi) { syslog(LOG_ERR, "fatal: internal error: no free child slots"); killall(1, kidpids); } break; } } /* The loop above can only break on termsig */ syslog(LOG_INFO, "terminating on signal: %d", termsig); killall(0, kidpids); } # endif static int add_ocsp_cert(OCSP_REQUEST **req, X509 *cert, const EVP_MD *cert_id_md, X509 *issuer, STACK_OF(OCSP_CERTID) *ids) { OCSP_CERTID *id; if (issuer == NULL) { BIO_printf(bio_err, "No issuer certificate specified\n"); return 0; } if (*req == NULL) *req = OCSP_REQUEST_new(); if (*req == NULL) goto err; id = OCSP_cert_to_id(cert_id_md, cert, issuer); if (id == NULL || !sk_OCSP_CERTID_push(ids, id)) goto err; if (!OCSP_request_add0_id(*req, id)) goto err; return 1; err: BIO_printf(bio_err, "Error Creating OCSP request\n"); return 0; } static int add_ocsp_serial(OCSP_REQUEST **req, char *serial, const EVP_MD *cert_id_md, X509 *issuer, STACK_OF(OCSP_CERTID) *ids) { OCSP_CERTID *id; X509_NAME *iname; ASN1_BIT_STRING *ikey; ASN1_INTEGER *sno; if (issuer == NULL) { BIO_printf(bio_err, "No issuer certificate specified\n"); return 0; } if (*req == NULL) *req = OCSP_REQUEST_new(); if (*req == NULL) goto err; iname = X509_get_subject_name(issuer); ikey = X509_get0_pubkey_bitstr(issuer); sno = s2i_ASN1_INTEGER(NULL, serial); if (sno == NULL) { BIO_printf(bio_err, "Error converting serial number %s\n", serial); return 0; } id = OCSP_cert_id_new(cert_id_md, iname, ikey, sno); ASN1_INTEGER_free(sno); if (id == NULL || !sk_OCSP_CERTID_push(ids, id)) goto err; if (!OCSP_request_add0_id(*req, id)) goto err; return 1; err: BIO_printf(bio_err, "Error Creating OCSP request\n"); return 0; } static void print_ocsp_summary(BIO *out, OCSP_BASICRESP *bs, OCSP_REQUEST *req, STACK_OF(OPENSSL_STRING) *names, STACK_OF(OCSP_CERTID) *ids, long nsec, long maxage) { OCSP_CERTID *id; const char *name; int i, status, reason; ASN1_GENERALIZEDTIME *rev, *thisupd, *nextupd; if (bs == NULL || req == NULL || !sk_OPENSSL_STRING_num(names) || !sk_OCSP_CERTID_num(ids)) return; for (i = 0; i < sk_OCSP_CERTID_num(ids); i++) { id = sk_OCSP_CERTID_value(ids, i); name = sk_OPENSSL_STRING_value(names, i); BIO_printf(out, "%s: ", name); if (!OCSP_resp_find_status(bs, id, &status, &reason, &rev, &thisupd, &nextupd)) { BIO_puts(out, "ERROR: No Status found.\n"); continue; } /* * Check validity: if invalid write to output BIO so we know which * response this refers to. */ if (!OCSP_check_validity(thisupd, nextupd, nsec, maxage)) { BIO_puts(out, "WARNING: Status times invalid.\n"); ERR_print_errors(out); } BIO_printf(out, "%s\n", OCSP_cert_status_str(status)); BIO_puts(out, "\tThis Update: "); ASN1_GENERALIZEDTIME_print(out, thisupd); BIO_puts(out, "\n"); if (nextupd) { BIO_puts(out, "\tNext Update: "); ASN1_GENERALIZEDTIME_print(out, nextupd); BIO_puts(out, "\n"); } if (status != V_OCSP_CERTSTATUS_REVOKED) continue; if (reason != -1) BIO_printf(out, "\tReason: %s\n", OCSP_crl_reason_str(reason)); BIO_puts(out, "\tRevocation Time: "); ASN1_GENERALIZEDTIME_print(out, rev); BIO_puts(out, "\n"); } } static void make_ocsp_response(BIO *err, OCSP_RESPONSE **resp, OCSP_REQUEST *req, CA_DB *db, STACK_OF(X509) *ca, X509 *rcert, EVP_PKEY *rkey, const EVP_MD *rmd, STACK_OF(OPENSSL_STRING) *sigopts, STACK_OF(X509) *rother, unsigned long flags, int nmin, int ndays, int badsig) { ASN1_TIME *thisupd = NULL, *nextupd = NULL; OCSP_CERTID *cid; OCSP_BASICRESP *bs = NULL; int i, id_count; EVP_MD_CTX *mctx = NULL; EVP_PKEY_CTX *pkctx = NULL; id_count = OCSP_request_onereq_count(req); if (id_count <= 0) { *resp = OCSP_response_create(OCSP_RESPONSE_STATUS_MALFORMEDREQUEST, NULL); goto end; } bs = OCSP_BASICRESP_new(); thisupd = X509_gmtime_adj(NULL, 0); if (ndays != -1) nextupd = X509_time_adj_ex(NULL, ndays, nmin * 60, NULL); /* Examine each certificate id in the request */ for (i = 0; i < id_count; i++) { OCSP_ONEREQ *one; ASN1_INTEGER *serial; char **inf; int jj; int found = 0; ASN1_OBJECT *cert_id_md_oid; const EVP_MD *cert_id_md; one = OCSP_request_onereq_get0(req, i); cid = OCSP_onereq_get0_id(one); OCSP_id_get0_info(NULL, &cert_id_md_oid, NULL, NULL, cid); cert_id_md = EVP_get_digestbyobj(cert_id_md_oid); if (cert_id_md == NULL) { *resp = OCSP_response_create(OCSP_RESPONSE_STATUS_INTERNALERROR, NULL); goto end; } for (jj = 0; jj < sk_X509_num(ca) && !found; jj++) { X509 *ca_cert = sk_X509_value(ca, jj); OCSP_CERTID *ca_id = OCSP_cert_to_id(cert_id_md, NULL, ca_cert); if (OCSP_id_issuer_cmp(ca_id, cid) == 0) found = 1; OCSP_CERTID_free(ca_id); } if (!found) { OCSP_basic_add1_status(bs, cid, V_OCSP_CERTSTATUS_UNKNOWN, 0, NULL, thisupd, nextupd); continue; } OCSP_id_get0_info(NULL, NULL, NULL, &serial, cid); inf = lookup_serial(db, serial); if (inf == NULL) { OCSP_basic_add1_status(bs, cid, V_OCSP_CERTSTATUS_UNKNOWN, 0, NULL, thisupd, nextupd); } else if (inf[DB_type][0] == DB_TYPE_VAL) { OCSP_basic_add1_status(bs, cid, V_OCSP_CERTSTATUS_GOOD, 0, NULL, thisupd, nextupd); } else if (inf[DB_type][0] == DB_TYPE_REV) { ASN1_OBJECT *inst = NULL; ASN1_TIME *revtm = NULL; ASN1_GENERALIZEDTIME *invtm = NULL; OCSP_SINGLERESP *single; int reason = -1; unpack_revinfo(&revtm, &reason, &inst, &invtm, inf[DB_rev_date]); single = OCSP_basic_add1_status(bs, cid, V_OCSP_CERTSTATUS_REVOKED, reason, revtm, thisupd, nextupd); if (invtm != NULL) OCSP_SINGLERESP_add1_ext_i2d(single, NID_invalidity_date, invtm, 0, 0); else if (inst != NULL) OCSP_SINGLERESP_add1_ext_i2d(single, NID_hold_instruction_code, inst, 0, 0); ASN1_OBJECT_free(inst); ASN1_TIME_free(revtm); ASN1_GENERALIZEDTIME_free(invtm); } } OCSP_copy_nonce(bs, req); mctx = EVP_MD_CTX_new(); if ( mctx == NULL || !EVP_DigestSignInit(mctx, &pkctx, rmd, NULL, rkey)) { *resp = OCSP_response_create(OCSP_RESPONSE_STATUS_INTERNALERROR, NULL); goto end; } for (i = 0; i < sk_OPENSSL_STRING_num(sigopts); i++) { char *sigopt = sk_OPENSSL_STRING_value(sigopts, i); if (pkey_ctrl_string(pkctx, sigopt) <= 0) { BIO_printf(err, "parameter error \"%s\"\n", sigopt); ERR_print_errors(bio_err); *resp = OCSP_response_create(OCSP_RESPONSE_STATUS_INTERNALERROR, NULL); goto end; } } if (!OCSP_basic_sign_ctx(bs, rcert, mctx, rother, flags)) { *resp = OCSP_response_create(OCSP_RESPONSE_STATUS_INTERNALERROR, bs); goto end; } if (badsig) { const ASN1_OCTET_STRING *sig = OCSP_resp_get0_signature(bs); corrupt_signature(sig); } *resp = OCSP_response_create(OCSP_RESPONSE_STATUS_SUCCESSFUL, bs); end: EVP_MD_CTX_free(mctx); ASN1_TIME_free(thisupd); ASN1_TIME_free(nextupd); OCSP_BASICRESP_free(bs); } static char **lookup_serial(CA_DB *db, ASN1_INTEGER *ser) { int i; BIGNUM *bn = NULL; char *itmp, *row[DB_NUMBER], **rrow; for (i = 0; i < DB_NUMBER; i++) row[i] = NULL; bn = ASN1_INTEGER_to_BN(ser, NULL); OPENSSL_assert(bn); /* FIXME: should report an error at this * point and abort */ if (BN_is_zero(bn)) itmp = OPENSSL_strdup("00"); else itmp = BN_bn2hex(bn); row[DB_serial] = itmp; BN_free(bn); rrow = TXT_DB_get_by_index(db->db, DB_serial, row); OPENSSL_free(itmp); return rrow; } /* Quick and dirty OCSP server: read in and parse input request */ static BIO *init_responder(const char *port) { # ifdef OPENSSL_NO_SOCK BIO_printf(bio_err, "Error setting up accept BIO - sockets not supported.\n"); return NULL; # else BIO *acbio = NULL, *bufbio = NULL; bufbio = BIO_new(BIO_f_buffer()); if (bufbio == NULL) goto err; acbio = BIO_new(BIO_s_accept()); if (acbio == NULL || BIO_set_bind_mode(acbio, BIO_BIND_REUSEADDR) < 0 || BIO_set_accept_port(acbio, port) < 0) { log_message(LOG_ERR, "Error setting up accept BIO"); goto err; } BIO_set_accept_bios(acbio, bufbio); bufbio = NULL; if (BIO_do_accept(acbio) <= 0) { log_message(LOG_ERR, "Error starting accept"); goto err; } return acbio; err: BIO_free_all(acbio); BIO_free(bufbio); return NULL; # endif } # ifndef OPENSSL_NO_SOCK /* * Decode %xx URL-decoding in-place. Ignores mal-formed sequences. */ static int urldecode(char *p) { unsigned char *out = (unsigned char *)p; unsigned char *save = out; for (; *p; p++) { if (*p != '%') *out++ = *p; else if (isxdigit(_UC(p[1])) && isxdigit(_UC(p[2]))) { /* Don't check, can't fail because of ixdigit() call. */ *out++ = (OPENSSL_hexchar2int(p[1]) << 4) | OPENSSL_hexchar2int(p[2]); p += 2; } else return -1; } *out = '\0'; return (int)(out - save); } # endif # ifdef OCSP_DAEMON static void socket_timeout(int signum) { if (acfd != (int)INVALID_SOCKET) (void)shutdown(acfd, SHUT_RD); } # endif static int do_responder(OCSP_REQUEST **preq, BIO **pcbio, BIO *acbio, int timeout) { # ifdef OPENSSL_NO_SOCK return 0; # else int len; OCSP_REQUEST *req = NULL; char inbuf[2048], reqbuf[2048]; char *p, *q; BIO *cbio = NULL, *getbio = NULL, *b64 = NULL; const char *client; *preq = NULL; /* Connection loss before accept() is routine, ignore silently */ if (BIO_do_accept(acbio) <= 0) return 0; cbio = BIO_pop(acbio); *pcbio = cbio; client = BIO_get_peer_name(cbio); # ifdef OCSP_DAEMON if (timeout > 0) { (void) BIO_get_fd(cbio, &acfd); alarm(timeout); } # endif /* Read the request line. */ len = BIO_gets(cbio, reqbuf, sizeof(reqbuf)); if (len <= 0) goto out; if (strncmp(reqbuf, "GET ", 4) == 0) { /* Expecting GET {sp} /URL {sp} HTTP/1.x */ for (p = reqbuf + 4; *p == ' '; ++p) continue; if (*p != '/') { log_message(LOG_INFO, "Invalid request -- bad URL: %s", client); goto out; } p++; /* Splice off the HTTP version identifier. */ for (q = p; *q; q++) if (*q == ' ') break; if (strncmp(q, " HTTP/1.", 8) != 0) { log_message(LOG_INFO, "Invalid request -- bad HTTP version: %s", client); goto out; } *q = '\0'; /* * Skip "GET / HTTP..." requests often used by load-balancers. Note: * 'p' was incremented above to point to the first byte *after* the * leading slash, so with 'GET / ' it is now an empty string. */ if (p[0] == '\0') goto out; len = urldecode(p); if (len <= 0) { log_message(LOG_INFO, "Invalid request -- bad URL encoding: %s", client); goto out; } if ((getbio = BIO_new_mem_buf(p, len)) == NULL || (b64 = BIO_new(BIO_f_base64())) == NULL) { log_message(LOG_ERR, "Could not allocate base64 bio: %s", client); goto out; } BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL); getbio = BIO_push(b64, getbio); } else if (strncmp(reqbuf, "POST ", 5) != 0) { log_message(LOG_INFO, "Invalid request -- bad HTTP verb: %s", client); goto out; } /* Read and skip past the headers. */ for (;;) { len = BIO_gets(cbio, inbuf, sizeof(inbuf)); if (len <= 0) goto out; if ((inbuf[0] == '\r') || (inbuf[0] == '\n')) break; } # ifdef OCSP_DAEMON /* Clear alarm before we close the client socket */ alarm(0); timeout = 0; # endif /* Try to read OCSP request */ if (getbio != NULL) { req = d2i_OCSP_REQUEST_bio(getbio, NULL); BIO_free_all(getbio); } else { req = d2i_OCSP_REQUEST_bio(cbio, NULL); } if (req == NULL) log_message(LOG_ERR, "Error parsing OCSP request"); *preq = req; out: # ifdef OCSP_DAEMON if (timeout > 0) alarm(0); acfd = (int)INVALID_SOCKET; # endif return 1; # endif } static int send_ocsp_response(BIO *cbio, OCSP_RESPONSE *resp) { char http_resp[] = "HTTP/1.0 200 OK\r\nContent-type: application/ocsp-response\r\n" "Content-Length: %d\r\n\r\n"; if (cbio == NULL) return 0; BIO_printf(cbio, http_resp, i2d_OCSP_RESPONSE(resp, NULL)); i2d_OCSP_RESPONSE_bio(cbio, resp); (void)BIO_flush(cbio); return 1; } # ifndef OPENSSL_NO_SOCK static OCSP_RESPONSE *query_responder(BIO *cbio, const char *host, const char *path, const STACK_OF(CONF_VALUE) *headers, OCSP_REQUEST *req, int req_timeout) { int fd; int rv; int i; int add_host = 1; OCSP_REQ_CTX *ctx = NULL; OCSP_RESPONSE *rsp = NULL; fd_set confds; struct timeval tv; if (req_timeout != -1) BIO_set_nbio(cbio, 1); rv = BIO_do_connect(cbio); if ((rv <= 0) && ((req_timeout == -1) || !BIO_should_retry(cbio))) { BIO_puts(bio_err, "Error connecting BIO\n"); return NULL; } if (BIO_get_fd(cbio, &fd) < 0) { BIO_puts(bio_err, "Can't get connection fd\n"); goto err; } if (req_timeout != -1 && rv <= 0) { FD_ZERO(&confds); openssl_fdset(fd, &confds); tv.tv_usec = 0; tv.tv_sec = req_timeout; rv = select(fd + 1, NULL, (void *)&confds, NULL, &tv); if (rv == 0) { BIO_puts(bio_err, "Timeout on connect\n"); return NULL; } } ctx = OCSP_sendreq_new(cbio, path, NULL, -1); if (ctx == NULL) return NULL; for (i = 0; i < sk_CONF_VALUE_num(headers); i++) { CONF_VALUE *hdr = sk_CONF_VALUE_value(headers, i); if (add_host == 1 && strcasecmp("host", hdr->name) == 0) add_host = 0; if (!OCSP_REQ_CTX_add1_header(ctx, hdr->name, hdr->value)) goto err; } if (add_host == 1 && OCSP_REQ_CTX_add1_header(ctx, "Host", host) == 0) goto err; if (!OCSP_REQ_CTX_set1_req(ctx, req)) goto err; for (;;) { rv = OCSP_sendreq_nbio(&rsp, ctx); if (rv != -1) break; if (req_timeout == -1) continue; FD_ZERO(&confds); openssl_fdset(fd, &confds); tv.tv_usec = 0; tv.tv_sec = req_timeout; if (BIO_should_read(cbio)) { rv = select(fd + 1, (void *)&confds, NULL, NULL, &tv); } else if (BIO_should_write(cbio)) { rv = select(fd + 1, NULL, (void *)&confds, NULL, &tv); } else { BIO_puts(bio_err, "Unexpected retry condition\n"); goto err; } if (rv == 0) { BIO_puts(bio_err, "Timeout on request\n"); break; } if (rv == -1) { BIO_puts(bio_err, "Select error\n"); break; } } err: OCSP_REQ_CTX_free(ctx); return rsp; } OCSP_RESPONSE *process_responder(OCSP_REQUEST *req, const char *host, const char *path, const char *port, int use_ssl, STACK_OF(CONF_VALUE) *headers, int req_timeout) { BIO *cbio = NULL; SSL_CTX *ctx = NULL; OCSP_RESPONSE *resp = NULL; cbio = BIO_new_connect(host); if (cbio == NULL) { BIO_printf(bio_err, "Error creating connect BIO\n"); goto end; } if (port != NULL) BIO_set_conn_port(cbio, port); if (use_ssl == 1) { BIO *sbio; ctx = SSL_CTX_new(TLS_client_method()); if (ctx == NULL) { BIO_printf(bio_err, "Error creating SSL context.\n"); goto end; } SSL_CTX_set_mode(ctx, SSL_MODE_AUTO_RETRY); sbio = BIO_new_ssl(ctx, 1); cbio = BIO_push(sbio, cbio); } resp = query_responder(cbio, host, path, headers, req, req_timeout); if (resp == NULL) BIO_printf(bio_err, "Error querying OCSP responder\n"); end: BIO_free_all(cbio); SSL_CTX_free(ctx); return resp; } # endif #endif openssl-1.1.1f/apps/openssl-vms.cnf000066400000000000000000000252701364063235100172750ustar00rootroot00000000000000# # OpenSSL example configuration file. # This is mostly being used for generation of certificate requests. # # Note that you can include other files from the main configuration # file using the .include directive. #.include filename # This definition stops the following lines choking if HOME isn't # defined. HOME = . # Extra OBJECT IDENTIFIER info: #oid_file = $ENV::HOME/.oid oid_section = new_oids # To use this configuration file with the "-extfile" option of the # "openssl x509" utility, name here the section containing the # X.509v3 extensions to use: # extensions = # (Alternatively, use a configuration file that has only # X.509v3 extensions in its main [= default] section.) [ new_oids ] # We can add new OIDs in here for use by 'ca', 'req' and 'ts'. # Add a simple OID like this: # testoid1=1.2.3.4 # Or use config file substitution like this: # testoid2=${testoid1}.5.6 # Policies used by the TSA examples. tsa_policy1 = 1.2.3.4.1 tsa_policy2 = 1.2.3.4.5.6 tsa_policy3 = 1.2.3.4.5.7 #################################################################### [ ca ] default_ca = CA_default # The default ca section #################################################################### [ CA_default ] dir = sys\$disk:[.demoCA # Where everything is kept certs = $dir.certs] # Where the issued certs are kept crl_dir = $dir.crl] # Where the issued crl are kept database = $dir]index.txt # database index file. #unique_subject = no # Set to 'no' to allow creation of # several certs with same subject. new_certs_dir = $dir.newcerts] # default place for new certs. certificate = $dir]cacert.pem # The CA certificate serial = $dir]serial. # The current serial number crlnumber = $dir]crlnumber. # the current crl number # must be commented out to leave a V1 CRL crl = $dir]crl.pem # The current CRL private_key = $dir.private]cakey.pem# The private key x509_extensions = usr_cert # The extensions to add to the cert # Comment out the following two lines for the "traditional" # (and highly broken) format. name_opt = ca_default # Subject Name options cert_opt = ca_default # Certificate field options # Extension copying option: use with caution. # copy_extensions = copy # Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs # so this is commented out by default to leave a V1 CRL. # crlnumber must also be commented out to leave a V1 CRL. # crl_extensions = crl_ext default_days = 365 # how long to certify for default_crl_days= 30 # how long before next CRL default_md = default # use public key default MD preserve = no # keep passed DN ordering # A few difference way of specifying how similar the request should look # For type CA, the listed attributes must be the same, and the optional # and supplied fields are just that :-) policy = policy_match # For the CA policy [ policy_match ] countryName = match stateOrProvinceName = match organizationName = match organizationalUnitName = optional commonName = supplied emailAddress = optional # For the 'anything' policy # At this point in time, you must list all acceptable 'object' # types. [ policy_anything ] countryName = optional stateOrProvinceName = optional localityName = optional organizationName = optional organizationalUnitName = optional commonName = supplied emailAddress = optional #################################################################### [ req ] default_bits = 2048 default_keyfile = privkey.pem distinguished_name = req_distinguished_name attributes = req_attributes x509_extensions = v3_ca # The extensions to add to the self signed cert # Passwords for private keys if not present they will be prompted for # input_password = secret # output_password = secret # This sets a mask for permitted string types. There are several options. # default: PrintableString, T61String, BMPString. # pkix : PrintableString, BMPString (PKIX recommendation before 2004) # utf8only: only UTF8Strings (PKIX recommendation after 2004). # nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings). # MASK:XXXX a literal mask value. # WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings. string_mask = utf8only # req_extensions = v3_req # The extensions to add to a certificate request [ req_distinguished_name ] countryName = Country Name (2 letter code) countryName_default = AU countryName_min = 2 countryName_max = 2 stateOrProvinceName = State or Province Name (full name) stateOrProvinceName_default = Some-State localityName = Locality Name (eg, city) 0.organizationName = Organization Name (eg, company) 0.organizationName_default = Internet Widgits Pty Ltd # we can do this but it is not needed normally :-) #1.organizationName = Second Organization Name (eg, company) #1.organizationName_default = World Wide Web Pty Ltd organizationalUnitName = Organizational Unit Name (eg, section) #organizationalUnitName_default = commonName = Common Name (e.g. server FQDN or YOUR name) commonName_max = 64 emailAddress = Email Address emailAddress_max = 64 # SET-ex3 = SET extension number 3 [ req_attributes ] challengePassword = A challenge password challengePassword_min = 4 challengePassword_max = 20 unstructuredName = An optional company name [ usr_cert ] # These extensions are added when 'ca' signs a request. # This goes against PKIX guidelines but some CAs do it and some software # requires this to avoid interpreting an end user certificate as a CA. basicConstraints=CA:FALSE # Here are some examples of the usage of nsCertType. If it is omitted # the certificate can be used for anything *except* object signing. # This is OK for an SSL server. # nsCertType = server # For an object signing certificate this would be used. # nsCertType = objsign # For normal client use this is typical # nsCertType = client, email # and for everything including object signing: # nsCertType = client, email, objsign # This is typical in keyUsage for a client certificate. # keyUsage = nonRepudiation, digitalSignature, keyEncipherment # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid,issuer # This stuff is for subjectAltName and issuerAltname. # Import the email address. # subjectAltName=email:copy # An alternative to produce certificates that aren't # deprecated according to PKIX. # subjectAltName=email:move # Copy subject details # issuerAltName=issuer:copy #nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem #nsBaseUrl #nsRevocationUrl #nsRenewalUrl #nsCaPolicyUrl #nsSslServerName # This is required for TSA certificates. # extendedKeyUsage = critical,timeStamping [ v3_req ] # Extensions to add to a certificate request basicConstraints = CA:FALSE keyUsage = nonRepudiation, digitalSignature, keyEncipherment [ v3_ca ] # Extensions for a typical CA # PKIX recommendation. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid:always,issuer basicConstraints = critical,CA:true # Key usage: this is typical for a CA certificate. However since it will # prevent it being used as an test self-signed certificate it is best # left out by default. # keyUsage = cRLSign, keyCertSign # Some might want this also # nsCertType = sslCA, emailCA # Include email address in subject alt name: another PKIX recommendation # subjectAltName=email:copy # Copy issuer details # issuerAltName=issuer:copy # DER hex encoding of an extension: beware experts only! # obj=DER:02:03 # Where 'obj' is a standard or added object # You can even override a supported extension: # basicConstraints= critical, DER:30:03:01:01:FF [ crl_ext ] # CRL extensions. # Only issuerAltName and authorityKeyIdentifier make any sense in a CRL. # issuerAltName=issuer:copy authorityKeyIdentifier=keyid:always [ proxy_cert_ext ] # These extensions should be added when creating a proxy certificate # This goes against PKIX guidelines but some CAs do it and some software # requires this to avoid interpreting an end user certificate as a CA. basicConstraints=CA:FALSE # Here are some examples of the usage of nsCertType. If it is omitted # the certificate can be used for anything *except* object signing. # This is OK for an SSL server. # nsCertType = server # For an object signing certificate this would be used. # nsCertType = objsign # For normal client use this is typical # nsCertType = client, email # and for everything including object signing: # nsCertType = client, email, objsign # This is typical in keyUsage for a client certificate. # keyUsage = nonRepudiation, digitalSignature, keyEncipherment # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid,issuer # This stuff is for subjectAltName and issuerAltname. # Import the email address. # subjectAltName=email:copy # An alternative to produce certificates that aren't # deprecated according to PKIX. # subjectAltName=email:move # Copy subject details # issuerAltName=issuer:copy #nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem #nsBaseUrl #nsRevocationUrl #nsRenewalUrl #nsCaPolicyUrl #nsSslServerName # This really needs to be in place for it to be a proxy certificate. proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo #################################################################### [ tsa ] default_tsa = tsa_config1 # the default TSA section [ tsa_config1 ] # These are used by the TSA reply generation only. dir = sys\$disk:[.demoCA # TSA root directory serial = $dir]tsaserial. # The current serial number (mandatory) crypto_device = builtin # OpenSSL engine to use for signing signer_cert = $dir/tsacert.pem # The TSA signing certificate # (optional) certs = $dir.cacert.pem] # Certificate chain to include in reply # (optional) signer_key = $dir/private/tsakey.pem # The TSA private key (optional) signer_digest = sha256 # Signing digest to use. (Optional) default_policy = tsa_policy1 # Policy if request did not specify it # (optional) other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional) digests = sha1, sha256, sha384, sha512 # Acceptable message digests (mandatory) accuracy = secs:1, millisecs:500, microsecs:100 # (optional) clock_precision_digits = 0 # number of digits after dot. (optional) ordering = yes # Is ordering defined for timestamps? # (optional, default: no) tsa_name = yes # Must the TSA name be included in the reply? # (optional, default: no) ess_cert_id_chain = no # Must the ESS cert id chain be included? # (optional, default: no) ess_cert_id_alg = sha1 # algorithm to compute certificate # identifier (optional, default: sha1) openssl-1.1.1f/apps/openssl.c000066400000000000000000000523551364063235100161520ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_ENGINE # include #endif #include /* Needed to get the other O_xxx flags. */ #ifdef OPENSSL_SYS_VMS # include #endif #include "apps.h" #define INCLUDE_FUNCTION_TABLE #include "progs.h" /* Structure to hold the number of columns to be displayed and the * field width used to display them. */ typedef struct { int columns; int width; } DISPLAY_COLUMNS; /* Special sentinel to exit the program. */ #define EXIT_THE_PROGRAM (-1) /* * The LHASH callbacks ("hash" & "cmp") have been replaced by functions with * the base prototypes (we cast each variable inside the function to the * required type of "FUNCTION*"). This removes the necessity for * macro-generated wrapper functions. */ static LHASH_OF(FUNCTION) *prog_init(void); static int do_cmd(LHASH_OF(FUNCTION) *prog, int argc, char *argv[]); static void list_pkey(void); static void list_pkey_meth(void); static void list_type(FUNC_TYPE ft, int one); static void list_disabled(void); char *default_config_file = NULL; BIO *bio_in = NULL; BIO *bio_out = NULL; BIO *bio_err = NULL; static void calculate_columns(DISPLAY_COLUMNS *dc) { FUNCTION *f; int len, maxlen = 0; for (f = functions; f->name != NULL; ++f) if (f->type == FT_general || f->type == FT_md || f->type == FT_cipher) if ((len = strlen(f->name)) > maxlen) maxlen = len; dc->width = maxlen + 2; dc->columns = (80 - 1) / dc->width; } static int apps_startup(void) { #ifdef SIGPIPE signal(SIGPIPE, SIG_IGN); #endif /* Set non-default library initialisation settings */ if (!OPENSSL_init_ssl(OPENSSL_INIT_ENGINE_ALL_BUILTIN | OPENSSL_INIT_LOAD_CONFIG, NULL)) return 0; setup_ui_method(); return 1; } static void apps_shutdown(void) { destroy_ui_method(); destroy_prefix_method(); } static char *make_config_name(void) { const char *t; size_t len; char *p; if ((t = getenv("OPENSSL_CONF")) != NULL) return OPENSSL_strdup(t); t = X509_get_default_cert_area(); len = strlen(t) + 1 + strlen(OPENSSL_CONF) + 1; p = app_malloc(len, "config filename buffer"); strcpy(p, t); #ifndef OPENSSL_SYS_VMS strcat(p, "/"); #endif strcat(p, OPENSSL_CONF); return p; } int main(int argc, char *argv[]) { FUNCTION f, *fp; LHASH_OF(FUNCTION) *prog = NULL; char **copied_argv = NULL; char *p, *pname; char buf[1024]; const char *prompt; ARGS arg; int first, n, i, ret = 0; arg.argv = NULL; arg.size = 0; /* Set up some of the environment. */ default_config_file = make_config_name(); bio_in = dup_bio_in(FORMAT_TEXT); bio_out = dup_bio_out(FORMAT_TEXT); bio_err = dup_bio_err(FORMAT_TEXT); #if defined(OPENSSL_SYS_VMS) && defined(__DECC) copied_argv = argv = copy_argv(&argc, argv); #elif defined(_WIN32) /* * Replace argv[] with UTF-8 encoded strings. */ win32_utf8argv(&argc, &argv); #endif p = getenv("OPENSSL_DEBUG_MEMORY"); if (p != NULL && strcmp(p, "on") == 0) CRYPTO_set_mem_debug(1); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON); if (getenv("OPENSSL_FIPS")) { BIO_printf(bio_err, "FIPS mode not supported.\n"); return 1; } if (!apps_startup()) { BIO_printf(bio_err, "FATAL: Startup failure (dev note: apps_startup() failed)\n"); ERR_print_errors(bio_err); ret = 1; goto end; } prog = prog_init(); if (prog == NULL) { BIO_printf(bio_err, "FATAL: Startup failure (dev note: prog_init() failed)\n"); ERR_print_errors(bio_err); ret = 1; goto end; } pname = opt_progname(argv[0]); /* first check the program name */ f.name = pname; fp = lh_FUNCTION_retrieve(prog, &f); if (fp != NULL) { argv[0] = pname; ret = fp->func(argc, argv); goto end; } /* If there is stuff on the command line, run with that. */ if (argc != 1) { argc--; argv++; ret = do_cmd(prog, argc, argv); if (ret < 0) ret = 0; goto end; } /* ok, lets enter interactive mode */ for (;;) { ret = 0; /* Read a line, continue reading if line ends with \ */ for (p = buf, n = sizeof(buf), i = 0, first = 1; n > 0; first = 0) { prompt = first ? "OpenSSL> " : "> "; p[0] = '\0'; #ifndef READLINE fputs(prompt, stdout); fflush(stdout); if (!fgets(p, n, stdin)) goto end; if (p[0] == '\0') goto end; i = strlen(p); if (i <= 1) break; if (p[i - 2] != '\\') break; i -= 2; p += i; n -= i; #else { extern char *readline(const char *); extern void add_history(const char *cp); char *text; text = readline(prompt); if (text == NULL) goto end; i = strlen(text); if (i == 0 || i > n) break; if (text[i - 1] != '\\') { p += strlen(strcpy(p, text)); free(text); add_history(buf); break; } text[i - 1] = '\0'; p += strlen(strcpy(p, text)); free(text); n -= i; } #endif } if (!chopup_args(&arg, buf)) { BIO_printf(bio_err, "Can't parse (no memory?)\n"); break; } ret = do_cmd(prog, arg.argc, arg.argv); if (ret == EXIT_THE_PROGRAM) { ret = 0; goto end; } if (ret != 0) BIO_printf(bio_err, "error in %s\n", arg.argv[0]); (void)BIO_flush(bio_out); (void)BIO_flush(bio_err); } ret = 1; end: OPENSSL_free(copied_argv); OPENSSL_free(default_config_file); lh_FUNCTION_free(prog); OPENSSL_free(arg.argv); app_RAND_write(); BIO_free(bio_in); BIO_free_all(bio_out); apps_shutdown(); #ifndef OPENSSL_NO_CRYPTO_MDEBUG if (CRYPTO_mem_leaks(bio_err) <= 0) ret = 1; #endif BIO_free(bio_err); EXIT(ret); } static void list_cipher_fn(const EVP_CIPHER *c, const char *from, const char *to, void *arg) { if (c != NULL) { BIO_printf(arg, "%s\n", EVP_CIPHER_name(c)); } else { if (from == NULL) from = ""; if (to == NULL) to = ""; BIO_printf(arg, "%s => %s\n", from, to); } } static void list_md_fn(const EVP_MD *m, const char *from, const char *to, void *arg) { if (m != NULL) { BIO_printf(arg, "%s\n", EVP_MD_name(m)); } else { if (from == NULL) from = ""; if (to == NULL) to = ""; BIO_printf((BIO *)arg, "%s => %s\n", from, to); } } static void list_missing_help(void) { const FUNCTION *fp; const OPTIONS *o; for (fp = functions; fp->name != NULL; fp++) { if ((o = fp->help) != NULL) { /* If there is help, list what flags are not documented. */ for ( ; o->name != NULL; o++) { if (o->helpstr == NULL) BIO_printf(bio_out, "%s %s\n", fp->name, o->name); } } else if (fp->func != dgst_main) { /* If not aliased to the dgst command, */ BIO_printf(bio_out, "%s *\n", fp->name); } } } static void list_options_for_command(const char *command) { const FUNCTION *fp; const OPTIONS *o; for (fp = functions; fp->name != NULL; fp++) if (strcmp(fp->name, command) == 0) break; if (fp->name == NULL) { BIO_printf(bio_err, "Invalid command '%s'; type \"help\" for a list.\n", command); return; } if ((o = fp->help) == NULL) return; for ( ; o->name != NULL; o++) { if (o->name == OPT_HELP_STR || o->name == OPT_MORE_STR || o->name[0] == '\0') continue; BIO_printf(bio_out, "%s %c\n", o->name, o->valtype); } } /* Unified enum for help and list commands. */ typedef enum HELPLIST_CHOICE { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ONE, OPT_COMMANDS, OPT_DIGEST_COMMANDS, OPT_OPTIONS, OPT_DIGEST_ALGORITHMS, OPT_CIPHER_COMMANDS, OPT_CIPHER_ALGORITHMS, OPT_PK_ALGORITHMS, OPT_PK_METHOD, OPT_DISABLED, OPT_MISSING_HELP } HELPLIST_CHOICE; const OPTIONS list_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"1", OPT_ONE, '-', "List in one column"}, {"commands", OPT_COMMANDS, '-', "List of standard commands"}, {"digest-commands", OPT_DIGEST_COMMANDS, '-', "List of message digest commands"}, {"digest-algorithms", OPT_DIGEST_ALGORITHMS, '-', "List of message digest algorithms"}, {"cipher-commands", OPT_CIPHER_COMMANDS, '-', "List of cipher commands"}, {"cipher-algorithms", OPT_CIPHER_ALGORITHMS, '-', "List of cipher algorithms"}, {"public-key-algorithms", OPT_PK_ALGORITHMS, '-', "List of public key algorithms"}, {"public-key-methods", OPT_PK_METHOD, '-', "List of public key methods"}, {"disabled", OPT_DISABLED, '-', "List of disabled features"}, {"missing-help", OPT_MISSING_HELP, '-', "List missing detailed help strings"}, {"options", OPT_OPTIONS, 's', "List options for specified command"}, {NULL} }; int list_main(int argc, char **argv) { char *prog; HELPLIST_CHOICE o; int one = 0, done = 0; prog = opt_init(argc, argv, list_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: /* Never hit, but suppresses warning */ case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); return 1; case OPT_HELP: opt_help(list_options); break; case OPT_ONE: one = 1; break; case OPT_COMMANDS: list_type(FT_general, one); break; case OPT_DIGEST_COMMANDS: list_type(FT_md, one); break; case OPT_DIGEST_ALGORITHMS: EVP_MD_do_all_sorted(list_md_fn, bio_out); break; case OPT_CIPHER_COMMANDS: list_type(FT_cipher, one); break; case OPT_CIPHER_ALGORITHMS: EVP_CIPHER_do_all_sorted(list_cipher_fn, bio_out); break; case OPT_PK_ALGORITHMS: list_pkey(); break; case OPT_PK_METHOD: list_pkey_meth(); break; case OPT_DISABLED: list_disabled(); break; case OPT_MISSING_HELP: list_missing_help(); break; case OPT_OPTIONS: list_options_for_command(opt_arg()); break; } done = 1; } if (opt_num_rest() != 0) { BIO_printf(bio_err, "Extra arguments given.\n"); goto opthelp; } if (!done) goto opthelp; return 0; } typedef enum HELP_CHOICE { OPT_hERR = -1, OPT_hEOF = 0, OPT_hHELP } HELP_CHOICE; const OPTIONS help_options[] = { {OPT_HELP_STR, 1, '-', "Usage: help [options]\n"}, {OPT_HELP_STR, 1, '-', " help [command]\n"}, {"help", OPT_hHELP, '-', "Display this summary"}, {NULL} }; int help_main(int argc, char **argv) { FUNCTION *fp; int i, nl; FUNC_TYPE tp; char *prog; HELP_CHOICE o; DISPLAY_COLUMNS dc; prog = opt_init(argc, argv, help_options); while ((o = opt_next()) != OPT_hEOF) { switch (o) { case OPT_hERR: case OPT_hEOF: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); return 1; case OPT_hHELP: opt_help(help_options); return 0; } } if (opt_num_rest() == 1) { char *new_argv[3]; new_argv[0] = opt_rest()[0]; new_argv[1] = "--help"; new_argv[2] = NULL; return do_cmd(prog_init(), 2, new_argv); } if (opt_num_rest() != 0) { BIO_printf(bio_err, "Usage: %s\n", prog); return 1; } calculate_columns(&dc); BIO_printf(bio_err, "Standard commands"); i = 0; tp = FT_none; for (fp = functions; fp->name != NULL; fp++) { nl = 0; if (i++ % dc.columns == 0) { BIO_printf(bio_err, "\n"); nl = 1; } if (fp->type != tp) { tp = fp->type; if (!nl) BIO_printf(bio_err, "\n"); if (tp == FT_md) { i = 1; BIO_printf(bio_err, "\nMessage Digest commands (see the `dgst' command for more details)\n"); } else if (tp == FT_cipher) { i = 1; BIO_printf(bio_err, "\nCipher commands (see the `enc' command for more details)\n"); } } BIO_printf(bio_err, "%-*s", dc.width, fp->name); } BIO_printf(bio_err, "\n\n"); return 0; } static void list_type(FUNC_TYPE ft, int one) { FUNCTION *fp; int i = 0; DISPLAY_COLUMNS dc = {0}; if (!one) calculate_columns(&dc); for (fp = functions; fp->name != NULL; fp++) { if (fp->type != ft) continue; if (one) { BIO_printf(bio_out, "%s\n", fp->name); } else { if (i % dc.columns == 0 && i > 0) BIO_printf(bio_out, "\n"); BIO_printf(bio_out, "%-*s", dc.width, fp->name); i++; } } if (!one) BIO_printf(bio_out, "\n\n"); } static int do_cmd(LHASH_OF(FUNCTION) *prog, int argc, char *argv[]) { FUNCTION f, *fp; if (argc <= 0 || argv[0] == NULL) return 0; f.name = argv[0]; fp = lh_FUNCTION_retrieve(prog, &f); if (fp == NULL) { if (EVP_get_digestbyname(argv[0])) { f.type = FT_md; f.func = dgst_main; fp = &f; } else if (EVP_get_cipherbyname(argv[0])) { f.type = FT_cipher; f.func = enc_main; fp = &f; } } if (fp != NULL) { return fp->func(argc, argv); } if ((strncmp(argv[0], "no-", 3)) == 0) { /* * User is asking if foo is unsupported, by trying to "run" the * no-foo command. Strange. */ f.name = argv[0] + 3; if (lh_FUNCTION_retrieve(prog, &f) == NULL) { BIO_printf(bio_out, "%s\n", argv[0]); return 0; } BIO_printf(bio_out, "%s\n", argv[0] + 3); return 1; } if (strcmp(argv[0], "quit") == 0 || strcmp(argv[0], "q") == 0 || strcmp(argv[0], "exit") == 0 || strcmp(argv[0], "bye") == 0) /* Special value to mean "exit the program. */ return EXIT_THE_PROGRAM; BIO_printf(bio_err, "Invalid command '%s'; type \"help\" for a list.\n", argv[0]); return 1; } static void list_pkey(void) { int i; for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) { const EVP_PKEY_ASN1_METHOD *ameth; int pkey_id, pkey_base_id, pkey_flags; const char *pinfo, *pem_str; ameth = EVP_PKEY_asn1_get0(i); EVP_PKEY_asn1_get0_info(&pkey_id, &pkey_base_id, &pkey_flags, &pinfo, &pem_str, ameth); if (pkey_flags & ASN1_PKEY_ALIAS) { BIO_printf(bio_out, "Name: %s\n", OBJ_nid2ln(pkey_id)); BIO_printf(bio_out, "\tAlias for: %s\n", OBJ_nid2ln(pkey_base_id)); } else { BIO_printf(bio_out, "Name: %s\n", pinfo); BIO_printf(bio_out, "\tType: %s Algorithm\n", pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin"); BIO_printf(bio_out, "\tOID: %s\n", OBJ_nid2ln(pkey_id)); if (pem_str == NULL) pem_str = "(none)"; BIO_printf(bio_out, "\tPEM string: %s\n", pem_str); } } } static void list_pkey_meth(void) { size_t i; size_t meth_count = EVP_PKEY_meth_get_count(); for (i = 0; i < meth_count; i++) { const EVP_PKEY_METHOD *pmeth = EVP_PKEY_meth_get0(i); int pkey_id, pkey_flags; EVP_PKEY_meth_get0_info(&pkey_id, &pkey_flags, pmeth); BIO_printf(bio_out, "%s\n", OBJ_nid2ln(pkey_id)); BIO_printf(bio_out, "\tType: %s Algorithm\n", pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin"); } } static int function_cmp(const FUNCTION * a, const FUNCTION * b) { return strncmp(a->name, b->name, 8); } static unsigned long function_hash(const FUNCTION * a) { return OPENSSL_LH_strhash(a->name); } static int SortFnByName(const void *_f1, const void *_f2) { const FUNCTION *f1 = _f1; const FUNCTION *f2 = _f2; if (f1->type != f2->type) return f1->type - f2->type; return strcmp(f1->name, f2->name); } static void list_disabled(void) { BIO_puts(bio_out, "Disabled algorithms:\n"); #ifdef OPENSSL_NO_ARIA BIO_puts(bio_out, "ARIA\n"); #endif #ifdef OPENSSL_NO_BF BIO_puts(bio_out, "BF\n"); #endif #ifdef OPENSSL_NO_BLAKE2 BIO_puts(bio_out, "BLAKE2\n"); #endif #ifdef OPENSSL_NO_CAMELLIA BIO_puts(bio_out, "CAMELLIA\n"); #endif #ifdef OPENSSL_NO_CAST BIO_puts(bio_out, "CAST\n"); #endif #ifdef OPENSSL_NO_CMAC BIO_puts(bio_out, "CMAC\n"); #endif #ifdef OPENSSL_NO_CMS BIO_puts(bio_out, "CMS\n"); #endif #ifdef OPENSSL_NO_COMP BIO_puts(bio_out, "COMP\n"); #endif #ifdef OPENSSL_NO_DES BIO_puts(bio_out, "DES\n"); #endif #ifdef OPENSSL_NO_DGRAM BIO_puts(bio_out, "DGRAM\n"); #endif #ifdef OPENSSL_NO_DH BIO_puts(bio_out, "DH\n"); #endif #ifdef OPENSSL_NO_DSA BIO_puts(bio_out, "DSA\n"); #endif #if defined(OPENSSL_NO_DTLS) BIO_puts(bio_out, "DTLS\n"); #endif #if defined(OPENSSL_NO_DTLS1) BIO_puts(bio_out, "DTLS1\n"); #endif #if defined(OPENSSL_NO_DTLS1_2) BIO_puts(bio_out, "DTLS1_2\n"); #endif #ifdef OPENSSL_NO_EC BIO_puts(bio_out, "EC\n"); #endif #ifdef OPENSSL_NO_EC2M BIO_puts(bio_out, "EC2M\n"); #endif #ifdef OPENSSL_NO_ENGINE BIO_puts(bio_out, "ENGINE\n"); #endif #ifdef OPENSSL_NO_GOST BIO_puts(bio_out, "GOST\n"); #endif #ifdef OPENSSL_NO_HEARTBEATS BIO_puts(bio_out, "HEARTBEATS\n"); #endif #ifdef OPENSSL_NO_IDEA BIO_puts(bio_out, "IDEA\n"); #endif #ifdef OPENSSL_NO_MD2 BIO_puts(bio_out, "MD2\n"); #endif #ifdef OPENSSL_NO_MD4 BIO_puts(bio_out, "MD4\n"); #endif #ifdef OPENSSL_NO_MD5 BIO_puts(bio_out, "MD5\n"); #endif #ifdef OPENSSL_NO_MDC2 BIO_puts(bio_out, "MDC2\n"); #endif #ifdef OPENSSL_NO_OCB BIO_puts(bio_out, "OCB\n"); #endif #ifdef OPENSSL_NO_OCSP BIO_puts(bio_out, "OCSP\n"); #endif #ifdef OPENSSL_NO_PSK BIO_puts(bio_out, "PSK\n"); #endif #ifdef OPENSSL_NO_RC2 BIO_puts(bio_out, "RC2\n"); #endif #ifdef OPENSSL_NO_RC4 BIO_puts(bio_out, "RC4\n"); #endif #ifdef OPENSSL_NO_RC5 BIO_puts(bio_out, "RC5\n"); #endif #ifdef OPENSSL_NO_RMD160 BIO_puts(bio_out, "RMD160\n"); #endif #ifdef OPENSSL_NO_RSA BIO_puts(bio_out, "RSA\n"); #endif #ifdef OPENSSL_NO_SCRYPT BIO_puts(bio_out, "SCRYPT\n"); #endif #ifdef OPENSSL_NO_SCTP BIO_puts(bio_out, "SCTP\n"); #endif #ifdef OPENSSL_NO_SEED BIO_puts(bio_out, "SEED\n"); #endif #ifdef OPENSSL_NO_SM2 BIO_puts(bio_out, "SM2\n"); #endif #ifdef OPENSSL_NO_SM3 BIO_puts(bio_out, "SM3\n"); #endif #ifdef OPENSSL_NO_SM4 BIO_puts(bio_out, "SM4\n"); #endif #ifdef OPENSSL_NO_SOCK BIO_puts(bio_out, "SOCK\n"); #endif #ifdef OPENSSL_NO_SRP BIO_puts(bio_out, "SRP\n"); #endif #ifdef OPENSSL_NO_SRTP BIO_puts(bio_out, "SRTP\n"); #endif #ifdef OPENSSL_NO_SSL3 BIO_puts(bio_out, "SSL3\n"); #endif #ifdef OPENSSL_NO_TLS1 BIO_puts(bio_out, "TLS1\n"); #endif #ifdef OPENSSL_NO_TLS1_1 BIO_puts(bio_out, "TLS1_1\n"); #endif #ifdef OPENSSL_NO_TLS1_2 BIO_puts(bio_out, "TLS1_2\n"); #endif #ifdef OPENSSL_NO_WHIRLPOOL BIO_puts(bio_out, "WHIRLPOOL\n"); #endif #ifndef ZLIB BIO_puts(bio_out, "ZLIB\n"); #endif } static LHASH_OF(FUNCTION) *prog_init(void) { static LHASH_OF(FUNCTION) *ret = NULL; static int prog_inited = 0; FUNCTION *f; size_t i; if (prog_inited) return ret; prog_inited = 1; /* Sort alphabetically within category. For nicer help displays. */ for (i = 0, f = functions; f->name != NULL; ++f, ++i) ; qsort(functions, i, sizeof(*functions), SortFnByName); if ((ret = lh_FUNCTION_new(function_hash, function_cmp)) == NULL) return NULL; for (f = functions; f->name != NULL; f++) (void)lh_FUNCTION_insert(ret, f); return ret; } openssl-1.1.1f/apps/openssl.cnf000066400000000000000000000252351364063235100164730ustar00rootroot00000000000000# # OpenSSL example configuration file. # This is mostly being used for generation of certificate requests. # # Note that you can include other files from the main configuration # file using the .include directive. #.include filename # This definition stops the following lines choking if HOME isn't # defined. HOME = . # Extra OBJECT IDENTIFIER info: #oid_file = $ENV::HOME/.oid oid_section = new_oids # To use this configuration file with the "-extfile" option of the # "openssl x509" utility, name here the section containing the # X.509v3 extensions to use: # extensions = # (Alternatively, use a configuration file that has only # X.509v3 extensions in its main [= default] section.) [ new_oids ] # We can add new OIDs in here for use by 'ca', 'req' and 'ts'. # Add a simple OID like this: # testoid1=1.2.3.4 # Or use config file substitution like this: # testoid2=${testoid1}.5.6 # Policies used by the TSA examples. tsa_policy1 = 1.2.3.4.1 tsa_policy2 = 1.2.3.4.5.6 tsa_policy3 = 1.2.3.4.5.7 #################################################################### [ ca ] default_ca = CA_default # The default ca section #################################################################### [ CA_default ] dir = ./demoCA # Where everything is kept certs = $dir/certs # Where the issued certs are kept crl_dir = $dir/crl # Where the issued crl are kept database = $dir/index.txt # database index file. #unique_subject = no # Set to 'no' to allow creation of # several certs with same subject. new_certs_dir = $dir/newcerts # default place for new certs. certificate = $dir/cacert.pem # The CA certificate serial = $dir/serial # The current serial number crlnumber = $dir/crlnumber # the current crl number # must be commented out to leave a V1 CRL crl = $dir/crl.pem # The current CRL private_key = $dir/private/cakey.pem# The private key x509_extensions = usr_cert # The extensions to add to the cert # Comment out the following two lines for the "traditional" # (and highly broken) format. name_opt = ca_default # Subject Name options cert_opt = ca_default # Certificate field options # Extension copying option: use with caution. # copy_extensions = copy # Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs # so this is commented out by default to leave a V1 CRL. # crlnumber must also be commented out to leave a V1 CRL. # crl_extensions = crl_ext default_days = 365 # how long to certify for default_crl_days= 30 # how long before next CRL default_md = default # use public key default MD preserve = no # keep passed DN ordering # A few difference way of specifying how similar the request should look # For type CA, the listed attributes must be the same, and the optional # and supplied fields are just that :-) policy = policy_match # For the CA policy [ policy_match ] countryName = match stateOrProvinceName = match organizationName = match organizationalUnitName = optional commonName = supplied emailAddress = optional # For the 'anything' policy # At this point in time, you must list all acceptable 'object' # types. [ policy_anything ] countryName = optional stateOrProvinceName = optional localityName = optional organizationName = optional organizationalUnitName = optional commonName = supplied emailAddress = optional #################################################################### [ req ] default_bits = 2048 default_keyfile = privkey.pem distinguished_name = req_distinguished_name attributes = req_attributes x509_extensions = v3_ca # The extensions to add to the self signed cert # Passwords for private keys if not present they will be prompted for # input_password = secret # output_password = secret # This sets a mask for permitted string types. There are several options. # default: PrintableString, T61String, BMPString. # pkix : PrintableString, BMPString (PKIX recommendation before 2004) # utf8only: only UTF8Strings (PKIX recommendation after 2004). # nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings). # MASK:XXXX a literal mask value. # WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings. string_mask = utf8only # req_extensions = v3_req # The extensions to add to a certificate request [ req_distinguished_name ] countryName = Country Name (2 letter code) countryName_default = AU countryName_min = 2 countryName_max = 2 stateOrProvinceName = State or Province Name (full name) stateOrProvinceName_default = Some-State localityName = Locality Name (eg, city) 0.organizationName = Organization Name (eg, company) 0.organizationName_default = Internet Widgits Pty Ltd # we can do this but it is not needed normally :-) #1.organizationName = Second Organization Name (eg, company) #1.organizationName_default = World Wide Web Pty Ltd organizationalUnitName = Organizational Unit Name (eg, section) #organizationalUnitName_default = commonName = Common Name (e.g. server FQDN or YOUR name) commonName_max = 64 emailAddress = Email Address emailAddress_max = 64 # SET-ex3 = SET extension number 3 [ req_attributes ] challengePassword = A challenge password challengePassword_min = 4 challengePassword_max = 20 unstructuredName = An optional company name [ usr_cert ] # These extensions are added when 'ca' signs a request. # This goes against PKIX guidelines but some CAs do it and some software # requires this to avoid interpreting an end user certificate as a CA. basicConstraints=CA:FALSE # Here are some examples of the usage of nsCertType. If it is omitted # the certificate can be used for anything *except* object signing. # This is OK for an SSL server. # nsCertType = server # For an object signing certificate this would be used. # nsCertType = objsign # For normal client use this is typical # nsCertType = client, email # and for everything including object signing: # nsCertType = client, email, objsign # This is typical in keyUsage for a client certificate. # keyUsage = nonRepudiation, digitalSignature, keyEncipherment # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid,issuer # This stuff is for subjectAltName and issuerAltname. # Import the email address. # subjectAltName=email:copy # An alternative to produce certificates that aren't # deprecated according to PKIX. # subjectAltName=email:move # Copy subject details # issuerAltName=issuer:copy #nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem #nsBaseUrl #nsRevocationUrl #nsRenewalUrl #nsCaPolicyUrl #nsSslServerName # This is required for TSA certificates. # extendedKeyUsage = critical,timeStamping [ v3_req ] # Extensions to add to a certificate request basicConstraints = CA:FALSE keyUsage = nonRepudiation, digitalSignature, keyEncipherment [ v3_ca ] # Extensions for a typical CA # PKIX recommendation. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid:always,issuer basicConstraints = critical,CA:true # Key usage: this is typical for a CA certificate. However since it will # prevent it being used as an test self-signed certificate it is best # left out by default. # keyUsage = cRLSign, keyCertSign # Some might want this also # nsCertType = sslCA, emailCA # Include email address in subject alt name: another PKIX recommendation # subjectAltName=email:copy # Copy issuer details # issuerAltName=issuer:copy # DER hex encoding of an extension: beware experts only! # obj=DER:02:03 # Where 'obj' is a standard or added object # You can even override a supported extension: # basicConstraints= critical, DER:30:03:01:01:FF [ crl_ext ] # CRL extensions. # Only issuerAltName and authorityKeyIdentifier make any sense in a CRL. # issuerAltName=issuer:copy authorityKeyIdentifier=keyid:always [ proxy_cert_ext ] # These extensions should be added when creating a proxy certificate # This goes against PKIX guidelines but some CAs do it and some software # requires this to avoid interpreting an end user certificate as a CA. basicConstraints=CA:FALSE # Here are some examples of the usage of nsCertType. If it is omitted # the certificate can be used for anything *except* object signing. # This is OK for an SSL server. # nsCertType = server # For an object signing certificate this would be used. # nsCertType = objsign # For normal client use this is typical # nsCertType = client, email # and for everything including object signing: # nsCertType = client, email, objsign # This is typical in keyUsage for a client certificate. # keyUsage = nonRepudiation, digitalSignature, keyEncipherment # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid,issuer # This stuff is for subjectAltName and issuerAltname. # Import the email address. # subjectAltName=email:copy # An alternative to produce certificates that aren't # deprecated according to PKIX. # subjectAltName=email:move # Copy subject details # issuerAltName=issuer:copy #nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem #nsBaseUrl #nsRevocationUrl #nsRenewalUrl #nsCaPolicyUrl #nsSslServerName # This really needs to be in place for it to be a proxy certificate. proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo #################################################################### [ tsa ] default_tsa = tsa_config1 # the default TSA section [ tsa_config1 ] # These are used by the TSA reply generation only. dir = ./demoCA # TSA root directory serial = $dir/tsaserial # The current serial number (mandatory) crypto_device = builtin # OpenSSL engine to use for signing signer_cert = $dir/tsacert.pem # The TSA signing certificate # (optional) certs = $dir/cacert.pem # Certificate chain to include in reply # (optional) signer_key = $dir/private/tsakey.pem # The TSA private key (optional) signer_digest = sha256 # Signing digest to use. (Optional) default_policy = tsa_policy1 # Policy if request did not specify it # (optional) other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional) digests = sha1, sha256, sha384, sha512 # Acceptable message digests (mandatory) accuracy = secs:1, millisecs:500, microsecs:100 # (optional) clock_precision_digits = 0 # number of digits after dot. (optional) ordering = yes # Is ordering defined for timestamps? # (optional, default: no) tsa_name = yes # Must the TSA name be included in the reply? # (optional, default: no) ess_cert_id_chain = no # Must the ESS cert id chain be included? # (optional, default: no) ess_cert_id_alg = sha1 # algorithm to compute certificate # identifier (optional, default: sha1) openssl-1.1.1f/apps/opt.c000066400000000000000000000571631364063235100152730ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "apps.h" #include #if !defined(OPENSSL_SYS_MSDOS) # include OPENSSL_UNISTD #endif #include #include #include #include #include #include #define MAX_OPT_HELP_WIDTH 30 const char OPT_HELP_STR[] = "--"; const char OPT_MORE_STR[] = "---"; /* Our state */ static char **argv; static int argc; static int opt_index; static char *arg; static char *flag; static char *dunno; static const OPTIONS *unknown; static const OPTIONS *opts; static char prog[40]; /* * Return the simple name of the program; removing various platform gunk. */ #if defined(OPENSSL_SYS_WIN32) char *opt_progname(const char *argv0) { size_t i, n; const char *p; char *q; /* find the last '/', '\' or ':' */ for (p = argv0 + strlen(argv0); --p > argv0;) if (*p == '/' || *p == '\\' || *p == ':') { p++; break; } /* Strip off trailing nonsense. */ n = strlen(p); if (n > 4 && (strcmp(&p[n - 4], ".exe") == 0 || strcmp(&p[n - 4], ".EXE") == 0)) n -= 4; /* Copy over the name, in lowercase. */ if (n > sizeof(prog) - 1) n = sizeof(prog) - 1; for (q = prog, i = 0; i < n; i++, p++) *q++ = tolower((unsigned char)*p); *q = '\0'; return prog; } #elif defined(OPENSSL_SYS_VMS) char *opt_progname(const char *argv0) { const char *p, *q; /* Find last special character sys:[foo.bar]openssl */ for (p = argv0 + strlen(argv0); --p > argv0;) if (*p == ':' || *p == ']' || *p == '>') { p++; break; } q = strrchr(p, '.'); strncpy(prog, p, sizeof(prog) - 1); prog[sizeof(prog) - 1] = '\0'; if (q != NULL && q - p < sizeof(prog)) prog[q - p] = '\0'; return prog; } #else char *opt_progname(const char *argv0) { const char *p; /* Could use strchr, but this is like the ones above. */ for (p = argv0 + strlen(argv0); --p > argv0;) if (*p == '/') { p++; break; } strncpy(prog, p, sizeof(prog) - 1); prog[sizeof(prog) - 1] = '\0'; return prog; } #endif char *opt_getprog(void) { return prog; } /* Set up the arg parsing. */ char *opt_init(int ac, char **av, const OPTIONS *o) { /* Store state. */ argc = ac; argv = av; opt_index = 1; opts = o; opt_progname(av[0]); unknown = NULL; for (; o->name; ++o) { #ifndef NDEBUG const OPTIONS *next; int duplicated, i; #endif if (o->name == OPT_HELP_STR || o->name == OPT_MORE_STR) continue; #ifndef NDEBUG i = o->valtype; /* Make sure options are legit. */ assert(o->name[0] != '-'); assert(o->retval > 0); switch (i) { case 0: case '-': case '/': case '<': case '>': case 'E': case 'F': case 'M': case 'U': case 'f': case 'l': case 'n': case 'p': case 's': case 'u': case 'c': break; default: assert(0); } /* Make sure there are no duplicates. */ for (next = o + 1; next->name; ++next) { /* * Some compilers inline strcmp and the assert string is too long. */ duplicated = strcmp(o->name, next->name) == 0; assert(!duplicated); } #endif if (o->name[0] == '\0') { assert(unknown == NULL); unknown = o; assert(unknown->valtype == 0 || unknown->valtype == '-'); } } return prog; } static OPT_PAIR formats[] = { {"PEM/DER", OPT_FMT_PEMDER}, {"pkcs12", OPT_FMT_PKCS12}, {"smime", OPT_FMT_SMIME}, {"engine", OPT_FMT_ENGINE}, {"msblob", OPT_FMT_MSBLOB}, {"nss", OPT_FMT_NSS}, {"text", OPT_FMT_TEXT}, {"http", OPT_FMT_HTTP}, {"pvk", OPT_FMT_PVK}, {NULL} }; /* Print an error message about a failed format parse. */ int opt_format_error(const char *s, unsigned long flags) { OPT_PAIR *ap; if (flags == OPT_FMT_PEMDER) { BIO_printf(bio_err, "%s: Bad format \"%s\"; must be pem or der\n", prog, s); } else { BIO_printf(bio_err, "%s: Bad format \"%s\"; must be one of:\n", prog, s); for (ap = formats; ap->name; ap++) if (flags & ap->retval) BIO_printf(bio_err, " %s\n", ap->name); } return 0; } /* Parse a format string, put it into *result; return 0 on failure, else 1. */ int opt_format(const char *s, unsigned long flags, int *result) { switch (*s) { default: return 0; case 'D': case 'd': if ((flags & OPT_FMT_PEMDER) == 0) return opt_format_error(s, flags); *result = FORMAT_ASN1; break; case 'T': case 't': if ((flags & OPT_FMT_TEXT) == 0) return opt_format_error(s, flags); *result = FORMAT_TEXT; break; case 'N': case 'n': if ((flags & OPT_FMT_NSS) == 0) return opt_format_error(s, flags); if (strcmp(s, "NSS") != 0 && strcmp(s, "nss") != 0) return opt_format_error(s, flags); *result = FORMAT_NSS; break; case 'S': case 's': if ((flags & OPT_FMT_SMIME) == 0) return opt_format_error(s, flags); *result = FORMAT_SMIME; break; case 'M': case 'm': if ((flags & OPT_FMT_MSBLOB) == 0) return opt_format_error(s, flags); *result = FORMAT_MSBLOB; break; case 'E': case 'e': if ((flags & OPT_FMT_ENGINE) == 0) return opt_format_error(s, flags); *result = FORMAT_ENGINE; break; case 'H': case 'h': if ((flags & OPT_FMT_HTTP) == 0) return opt_format_error(s, flags); *result = FORMAT_HTTP; break; case '1': if ((flags & OPT_FMT_PKCS12) == 0) return opt_format_error(s, flags); *result = FORMAT_PKCS12; break; case 'P': case 'p': if (s[1] == '\0' || strcmp(s, "PEM") == 0 || strcmp(s, "pem") == 0) { if ((flags & OPT_FMT_PEMDER) == 0) return opt_format_error(s, flags); *result = FORMAT_PEM; } else if (strcmp(s, "PVK") == 0 || strcmp(s, "pvk") == 0) { if ((flags & OPT_FMT_PVK) == 0) return opt_format_error(s, flags); *result = FORMAT_PVK; } else if (strcmp(s, "P12") == 0 || strcmp(s, "p12") == 0 || strcmp(s, "PKCS12") == 0 || strcmp(s, "pkcs12") == 0) { if ((flags & OPT_FMT_PKCS12) == 0) return opt_format_error(s, flags); *result = FORMAT_PKCS12; } else { return 0; } break; } return 1; } /* Parse a cipher name, put it in *EVP_CIPHER; return 0 on failure, else 1. */ int opt_cipher(const char *name, const EVP_CIPHER **cipherp) { *cipherp = EVP_get_cipherbyname(name); if (*cipherp != NULL) return 1; BIO_printf(bio_err, "%s: Unrecognized flag %s\n", prog, name); return 0; } /* * Parse message digest name, put it in *EVP_MD; return 0 on failure, else 1. */ int opt_md(const char *name, const EVP_MD **mdp) { *mdp = EVP_get_digestbyname(name); if (*mdp != NULL) return 1; BIO_printf(bio_err, "%s: Unrecognized flag %s\n", prog, name); return 0; } /* Look through a list of name/value pairs. */ int opt_pair(const char *name, const OPT_PAIR* pairs, int *result) { const OPT_PAIR *pp; for (pp = pairs; pp->name; pp++) if (strcmp(pp->name, name) == 0) { *result = pp->retval; return 1; } BIO_printf(bio_err, "%s: Value must be one of:\n", prog); for (pp = pairs; pp->name; pp++) BIO_printf(bio_err, "\t%s\n", pp->name); return 0; } /* Parse an int, put it into *result; return 0 on failure, else 1. */ int opt_int(const char *value, int *result) { long l; if (!opt_long(value, &l)) return 0; *result = (int)l; if (*result != l) { BIO_printf(bio_err, "%s: Value \"%s\" outside integer range\n", prog, value); return 0; } return 1; } static void opt_number_error(const char *v) { size_t i = 0; struct strstr_pair_st { char *prefix; char *name; } b[] = { {"0x", "a hexadecimal"}, {"0X", "a hexadecimal"}, {"0", "an octal"} }; for (i = 0; i < OSSL_NELEM(b); i++) { if (strncmp(v, b[i].prefix, strlen(b[i].prefix)) == 0) { BIO_printf(bio_err, "%s: Can't parse \"%s\" as %s number\n", prog, v, b[i].name); return; } } BIO_printf(bio_err, "%s: Can't parse \"%s\" as a number\n", prog, v); return; } /* Parse a long, put it into *result; return 0 on failure, else 1. */ int opt_long(const char *value, long *result) { int oerrno = errno; long l; char *endp; errno = 0; l = strtol(value, &endp, 0); if (*endp || endp == value || ((l == LONG_MAX || l == LONG_MIN) && errno == ERANGE) || (l == 0 && errno != 0)) { opt_number_error(value); errno = oerrno; return 0; } *result = l; errno = oerrno; return 1; } #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L && \ defined(INTMAX_MAX) && defined(UINTMAX_MAX) /* Parse an intmax_t, put it into *result; return 0 on failure, else 1. */ int opt_imax(const char *value, intmax_t *result) { int oerrno = errno; intmax_t m; char *endp; errno = 0; m = strtoimax(value, &endp, 0); if (*endp || endp == value || ((m == INTMAX_MAX || m == INTMAX_MIN) && errno == ERANGE) || (m == 0 && errno != 0)) { opt_number_error(value); errno = oerrno; return 0; } *result = m; errno = oerrno; return 1; } /* Parse a uintmax_t, put it into *result; return 0 on failure, else 1. */ int opt_umax(const char *value, uintmax_t *result) { int oerrno = errno; uintmax_t m; char *endp; errno = 0; m = strtoumax(value, &endp, 0); if (*endp || endp == value || (m == UINTMAX_MAX && errno == ERANGE) || (m == 0 && errno != 0)) { opt_number_error(value); errno = oerrno; return 0; } *result = m; errno = oerrno; return 1; } #endif /* * Parse an unsigned long, put it into *result; return 0 on failure, else 1. */ int opt_ulong(const char *value, unsigned long *result) { int oerrno = errno; char *endptr; unsigned long l; errno = 0; l = strtoul(value, &endptr, 0); if (*endptr || endptr == value || ((l == ULONG_MAX) && errno == ERANGE) || (l == 0 && errno != 0)) { opt_number_error(value); errno = oerrno; return 0; } *result = l; errno = oerrno; return 1; } /* * We pass opt as an int but cast it to "enum range" so that all the * items in the OPT_V_ENUM enumeration are caught; this makes -Wswitch * in gcc do the right thing. */ enum range { OPT_V_ENUM }; int opt_verify(int opt, X509_VERIFY_PARAM *vpm) { int i; ossl_intmax_t t = 0; ASN1_OBJECT *otmp; X509_PURPOSE *xptmp; const X509_VERIFY_PARAM *vtmp; assert(vpm != NULL); assert(opt > OPT_V__FIRST); assert(opt < OPT_V__LAST); switch ((enum range)opt) { case OPT_V__FIRST: case OPT_V__LAST: return 0; case OPT_V_POLICY: otmp = OBJ_txt2obj(opt_arg(), 0); if (otmp == NULL) { BIO_printf(bio_err, "%s: Invalid Policy %s\n", prog, opt_arg()); return 0; } X509_VERIFY_PARAM_add0_policy(vpm, otmp); break; case OPT_V_PURPOSE: /* purpose name -> purpose index */ i = X509_PURPOSE_get_by_sname(opt_arg()); if (i < 0) { BIO_printf(bio_err, "%s: Invalid purpose %s\n", prog, opt_arg()); return 0; } /* purpose index -> purpose object */ xptmp = X509_PURPOSE_get0(i); /* purpose object -> purpose value */ i = X509_PURPOSE_get_id(xptmp); if (!X509_VERIFY_PARAM_set_purpose(vpm, i)) { BIO_printf(bio_err, "%s: Internal error setting purpose %s\n", prog, opt_arg()); return 0; } break; case OPT_V_VERIFY_NAME: vtmp = X509_VERIFY_PARAM_lookup(opt_arg()); if (vtmp == NULL) { BIO_printf(bio_err, "%s: Invalid verify name %s\n", prog, opt_arg()); return 0; } X509_VERIFY_PARAM_set1(vpm, vtmp); break; case OPT_V_VERIFY_DEPTH: i = atoi(opt_arg()); if (i >= 0) X509_VERIFY_PARAM_set_depth(vpm, i); break; case OPT_V_VERIFY_AUTH_LEVEL: i = atoi(opt_arg()); if (i >= 0) X509_VERIFY_PARAM_set_auth_level(vpm, i); break; case OPT_V_ATTIME: if (!opt_imax(opt_arg(), &t)) return 0; if (t != (time_t)t) { BIO_printf(bio_err, "%s: epoch time out of range %s\n", prog, opt_arg()); return 0; } X509_VERIFY_PARAM_set_time(vpm, (time_t)t); break; case OPT_V_VERIFY_HOSTNAME: if (!X509_VERIFY_PARAM_set1_host(vpm, opt_arg(), 0)) return 0; break; case OPT_V_VERIFY_EMAIL: if (!X509_VERIFY_PARAM_set1_email(vpm, opt_arg(), 0)) return 0; break; case OPT_V_VERIFY_IP: if (!X509_VERIFY_PARAM_set1_ip_asc(vpm, opt_arg())) return 0; break; case OPT_V_IGNORE_CRITICAL: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_IGNORE_CRITICAL); break; case OPT_V_ISSUER_CHECKS: /* NOP, deprecated */ break; case OPT_V_CRL_CHECK: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_CRL_CHECK); break; case OPT_V_CRL_CHECK_ALL: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL); break; case OPT_V_POLICY_CHECK: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_POLICY_CHECK); break; case OPT_V_EXPLICIT_POLICY: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_EXPLICIT_POLICY); break; case OPT_V_INHIBIT_ANY: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_INHIBIT_ANY); break; case OPT_V_INHIBIT_MAP: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_INHIBIT_MAP); break; case OPT_V_X509_STRICT: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_X509_STRICT); break; case OPT_V_EXTENDED_CRL: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_EXTENDED_CRL_SUPPORT); break; case OPT_V_USE_DELTAS: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_USE_DELTAS); break; case OPT_V_POLICY_PRINT: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_NOTIFY_POLICY); break; case OPT_V_CHECK_SS_SIG: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_CHECK_SS_SIGNATURE); break; case OPT_V_TRUSTED_FIRST: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_TRUSTED_FIRST); break; case OPT_V_SUITEB_128_ONLY: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_SUITEB_128_LOS_ONLY); break; case OPT_V_SUITEB_128: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_SUITEB_128_LOS); break; case OPT_V_SUITEB_192: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_SUITEB_192_LOS); break; case OPT_V_PARTIAL_CHAIN: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_PARTIAL_CHAIN); break; case OPT_V_NO_ALT_CHAINS: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_NO_ALT_CHAINS); break; case OPT_V_NO_CHECK_TIME: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_NO_CHECK_TIME); break; case OPT_V_ALLOW_PROXY_CERTS: X509_VERIFY_PARAM_set_flags(vpm, X509_V_FLAG_ALLOW_PROXY_CERTS); break; } return 1; } /* * Parse the next flag (and value if specified), return 0 if done, -1 on * error, otherwise the flag's retval. */ int opt_next(void) { char *p; const OPTIONS *o; int ival; long lval; unsigned long ulval; ossl_intmax_t imval; ossl_uintmax_t umval; /* Look at current arg; at end of the list? */ arg = NULL; p = argv[opt_index]; if (p == NULL) return 0; /* If word doesn't start with a -, we're done. */ if (*p != '-') return 0; /* Hit "--" ? We're done. */ opt_index++; if (strcmp(p, "--") == 0) return 0; /* Allow -nnn and --nnn */ if (*++p == '-') p++; flag = p - 1; /* If we have --flag=foo, snip it off */ if ((arg = strchr(p, '=')) != NULL) *arg++ = '\0'; for (o = opts; o->name; ++o) { /* If not this option, move on to the next one. */ if (strcmp(p, o->name) != 0) continue; /* If it doesn't take a value, make sure none was given. */ if (o->valtype == 0 || o->valtype == '-') { if (arg) { BIO_printf(bio_err, "%s: Option -%s does not take a value\n", prog, p); return -1; } return o->retval; } /* Want a value; get the next param if =foo not used. */ if (arg == NULL) { if (argv[opt_index] == NULL) { BIO_printf(bio_err, "%s: Option -%s needs a value\n", prog, o->name); return -1; } arg = argv[opt_index++]; } /* Syntax-check value. */ switch (o->valtype) { default: case 's': /* Just a string. */ break; case '/': if (app_isdir(arg) > 0) break; BIO_printf(bio_err, "%s: Not a directory: %s\n", prog, arg); return -1; case '<': /* Input file. */ break; case '>': /* Output file. */ break; case 'p': case 'n': if (!opt_int(arg, &ival) || (o->valtype == 'p' && ival <= 0)) { BIO_printf(bio_err, "%s: Non-positive number \"%s\" for -%s\n", prog, arg, o->name); return -1; } break; case 'M': if (!opt_imax(arg, &imval)) { BIO_printf(bio_err, "%s: Invalid number \"%s\" for -%s\n", prog, arg, o->name); return -1; } break; case 'U': if (!opt_umax(arg, &umval)) { BIO_printf(bio_err, "%s: Invalid number \"%s\" for -%s\n", prog, arg, o->name); return -1; } break; case 'l': if (!opt_long(arg, &lval)) { BIO_printf(bio_err, "%s: Invalid number \"%s\" for -%s\n", prog, arg, o->name); return -1; } break; case 'u': if (!opt_ulong(arg, &ulval)) { BIO_printf(bio_err, "%s: Invalid number \"%s\" for -%s\n", prog, arg, o->name); return -1; } break; case 'c': case 'E': case 'F': case 'f': if (opt_format(arg, o->valtype == 'c' ? OPT_FMT_PDS : o->valtype == 'E' ? OPT_FMT_PDE : o->valtype == 'F' ? OPT_FMT_PEMDER : OPT_FMT_ANY, &ival)) break; BIO_printf(bio_err, "%s: Invalid format \"%s\" for -%s\n", prog, arg, o->name); return -1; } /* Return the flag value. */ return o->retval; } if (unknown != NULL) { dunno = p; return unknown->retval; } BIO_printf(bio_err, "%s: Option unknown option -%s\n", prog, p); return -1; } /* Return the most recent flag parameter. */ char *opt_arg(void) { return arg; } /* Return the most recent flag. */ char *opt_flag(void) { return flag; } /* Return the unknown option. */ char *opt_unknown(void) { return dunno; } /* Return the rest of the arguments after parsing flags. */ char **opt_rest(void) { return &argv[opt_index]; } /* How many items in remaining args? */ int opt_num_rest(void) { int i = 0; char **pp; for (pp = opt_rest(); *pp; pp++, i++) continue; return i; } /* Return a string describing the parameter type. */ static const char *valtype2param(const OPTIONS *o) { switch (o->valtype) { case 0: case '-': return ""; case 's': return "val"; case '/': return "dir"; case '<': return "infile"; case '>': return "outfile"; case 'p': return "+int"; case 'n': return "int"; case 'l': return "long"; case 'u': return "ulong"; case 'E': return "PEM|DER|ENGINE"; case 'F': return "PEM|DER"; case 'f': return "format"; case 'M': return "intmax"; case 'U': return "uintmax"; } return "parm"; } void opt_help(const OPTIONS *list) { const OPTIONS *o; int i; int standard_prolog; int width = 5; char start[80 + 1]; char *p; const char *help; /* Starts with its own help message? */ standard_prolog = list[0].name != OPT_HELP_STR; /* Find the widest help. */ for (o = list; o->name; o++) { if (o->name == OPT_MORE_STR) continue; i = 2 + (int)strlen(o->name); if (o->valtype != '-') i += 1 + strlen(valtype2param(o)); if (i < MAX_OPT_HELP_WIDTH && i > width) width = i; assert(i < (int)sizeof(start)); } if (standard_prolog) BIO_printf(bio_err, "Usage: %s [options]\nValid options are:\n", prog); /* Now let's print. */ for (o = list; o->name; o++) { help = o->helpstr ? o->helpstr : "(No additional info)"; if (o->name == OPT_HELP_STR) { BIO_printf(bio_err, help, prog); continue; } /* Pad out prefix */ memset(start, ' ', sizeof(start) - 1); start[sizeof(start) - 1] = '\0'; if (o->name == OPT_MORE_STR) { /* Continuation of previous line; pad and print. */ start[width] = '\0'; BIO_printf(bio_err, "%s %s\n", start, help); continue; } /* Build up the "-flag [param]" part. */ p = start; *p++ = ' '; *p++ = '-'; if (o->name[0]) p += strlen(strcpy(p, o->name)); else *p++ = '*'; if (o->valtype != '-') { *p++ = ' '; p += strlen(strcpy(p, valtype2param(o))); } *p = ' '; if ((int)(p - start) >= MAX_OPT_HELP_WIDTH) { *p = '\0'; BIO_printf(bio_err, "%s\n", start); memset(start, ' ', sizeof(start)); } start[width] = '\0'; BIO_printf(bio_err, "%s %s\n", start, help); } } openssl-1.1.1f/apps/passwd.c000066400000000000000000000646671364063235100160010ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "apps.h" #include "progs.h" #include #include #include #include #ifndef OPENSSL_NO_DES # include #endif #include #include static unsigned const char cov_2char[64] = { /* from crypto/des/fcrypt.c */ 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A }; static const char ascii_dollar[] = { 0x24, 0x00 }; typedef enum { passwd_unset = 0, passwd_crypt, passwd_md5, passwd_apr1, passwd_sha256, passwd_sha512, passwd_aixmd5 } passwd_modes; static int do_passwd(int passed_salt, char **salt_p, char **salt_malloc_p, char *passwd, BIO *out, int quiet, int table, int reverse, size_t pw_maxlen, passwd_modes mode); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_IN, OPT_NOVERIFY, OPT_QUIET, OPT_TABLE, OPT_REVERSE, OPT_APR1, OPT_1, OPT_5, OPT_6, OPT_CRYPT, OPT_AIXMD5, OPT_SALT, OPT_STDIN, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS passwd_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"in", OPT_IN, '<', "Read passwords from file"}, {"noverify", OPT_NOVERIFY, '-', "Never verify when reading password from terminal"}, {"quiet", OPT_QUIET, '-', "No warnings"}, {"table", OPT_TABLE, '-', "Format output as table"}, {"reverse", OPT_REVERSE, '-', "Switch table columns"}, {"salt", OPT_SALT, 's', "Use provided salt"}, {"stdin", OPT_STDIN, '-', "Read passwords from stdin"}, {"6", OPT_6, '-', "SHA512-based password algorithm"}, {"5", OPT_5, '-', "SHA256-based password algorithm"}, {"apr1", OPT_APR1, '-', "MD5-based password algorithm, Apache variant"}, {"1", OPT_1, '-', "MD5-based password algorithm"}, {"aixmd5", OPT_AIXMD5, '-', "AIX MD5-based password algorithm"}, #ifndef OPENSSL_NO_DES {"crypt", OPT_CRYPT, '-', "Standard Unix password algorithm (default)"}, #endif OPT_R_OPTIONS, {NULL} }; int passwd_main(int argc, char **argv) { BIO *in = NULL; char *infile = NULL, *salt = NULL, *passwd = NULL, **passwds = NULL; char *salt_malloc = NULL, *passwd_malloc = NULL, *prog; OPTION_CHOICE o; int in_stdin = 0, pw_source_defined = 0; #ifndef OPENSSL_NO_UI_CONSOLE int in_noverify = 0; #endif int passed_salt = 0, quiet = 0, table = 0, reverse = 0; int ret = 1; passwd_modes mode = passwd_unset; size_t passwd_malloc_size = 0; size_t pw_maxlen = 256; /* arbitrary limit, should be enough for most * passwords */ prog = opt_init(argc, argv, passwd_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(passwd_options); ret = 0; goto end; case OPT_IN: if (pw_source_defined) goto opthelp; infile = opt_arg(); pw_source_defined = 1; break; case OPT_NOVERIFY: #ifndef OPENSSL_NO_UI_CONSOLE in_noverify = 1; #endif break; case OPT_QUIET: quiet = 1; break; case OPT_TABLE: table = 1; break; case OPT_REVERSE: reverse = 1; break; case OPT_1: if (mode != passwd_unset) goto opthelp; mode = passwd_md5; break; case OPT_5: if (mode != passwd_unset) goto opthelp; mode = passwd_sha256; break; case OPT_6: if (mode != passwd_unset) goto opthelp; mode = passwd_sha512; break; case OPT_APR1: if (mode != passwd_unset) goto opthelp; mode = passwd_apr1; break; case OPT_AIXMD5: if (mode != passwd_unset) goto opthelp; mode = passwd_aixmd5; break; case OPT_CRYPT: #ifndef OPENSSL_NO_DES if (mode != passwd_unset) goto opthelp; mode = passwd_crypt; #endif break; case OPT_SALT: passed_salt = 1; salt = opt_arg(); break; case OPT_STDIN: if (pw_source_defined) goto opthelp; in_stdin = 1; pw_source_defined = 1; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; } } argc = opt_num_rest(); argv = opt_rest(); if (*argv != NULL) { if (pw_source_defined) goto opthelp; pw_source_defined = 1; passwds = argv; } if (mode == passwd_unset) { /* use default */ mode = passwd_crypt; } #ifdef OPENSSL_NO_DES if (mode == passwd_crypt) goto opthelp; #endif if (infile != NULL && in_stdin) { BIO_printf(bio_err, "%s: Can't combine -in and -stdin\n", prog); goto end; } if (infile != NULL || in_stdin) { /* * If in_stdin is true, we know that infile is NULL, and that * bio_open_default() will give us back an alias for stdin. */ in = bio_open_default(infile, 'r', FORMAT_TEXT); if (in == NULL) goto end; } if (mode == passwd_crypt) pw_maxlen = 8; if (passwds == NULL) { /* no passwords on the command line */ passwd_malloc_size = pw_maxlen + 2; /* longer than necessary so that we can warn about truncation */ passwd = passwd_malloc = app_malloc(passwd_malloc_size, "password buffer"); } if ((in == NULL) && (passwds == NULL)) { /* * we use the following method to make sure what * in the 'else' section is always compiled, to * avoid rot of not-frequently-used code. */ if (1) { #ifndef OPENSSL_NO_UI_CONSOLE /* build a null-terminated list */ static char *passwds_static[2] = { NULL, NULL }; passwds = passwds_static; if (in == NULL) { if (EVP_read_pw_string (passwd_malloc, passwd_malloc_size, "Password: ", !(passed_salt || in_noverify)) != 0) goto end; } passwds[0] = passwd_malloc; } else { #endif BIO_printf(bio_err, "password required\n"); goto end; } } if (in == NULL) { assert(passwds != NULL); assert(*passwds != NULL); do { /* loop over list of passwords */ passwd = *passwds++; if (!do_passwd(passed_salt, &salt, &salt_malloc, passwd, bio_out, quiet, table, reverse, pw_maxlen, mode)) goto end; } while (*passwds != NULL); } else { /* in != NULL */ int done; assert(passwd != NULL); do { int r = BIO_gets(in, passwd, pw_maxlen + 1); if (r > 0) { char *c = (strchr(passwd, '\n')); if (c != NULL) { *c = 0; /* truncate at newline */ } else { /* ignore rest of line */ char trash[BUFSIZ]; do r = BIO_gets(in, trash, sizeof(trash)); while ((r > 0) && (!strchr(trash, '\n'))); } if (!do_passwd (passed_salt, &salt, &salt_malloc, passwd, bio_out, quiet, table, reverse, pw_maxlen, mode)) goto end; } done = (r <= 0); } while (!done); } ret = 0; end: #if 0 ERR_print_errors(bio_err); #endif OPENSSL_free(salt_malloc); OPENSSL_free(passwd_malloc); BIO_free(in); return ret; } /* * MD5-based password algorithm (should probably be available as a library * function; then the static buffer would not be acceptable). For magic * string "1", this should be compatible to the MD5-based BSD password * algorithm. For 'magic' string "apr1", this is compatible to the MD5-based * Apache password algorithm. (Apparently, the Apache password algorithm is * identical except that the 'magic' string was changed -- the laziest * application of the NIH principle I've ever encountered.) */ static char *md5crypt(const char *passwd, const char *magic, const char *salt) { /* "$apr1$..salt..$.......md5hash..........\0" */ static char out_buf[6 + 9 + 24 + 2]; unsigned char buf[MD5_DIGEST_LENGTH]; char ascii_magic[5]; /* "apr1" plus '\0' */ char ascii_salt[9]; /* Max 8 chars plus '\0' */ char *ascii_passwd = NULL; char *salt_out; int n; unsigned int i; EVP_MD_CTX *md = NULL, *md2 = NULL; size_t passwd_len, salt_len, magic_len; passwd_len = strlen(passwd); out_buf[0] = 0; magic_len = strlen(magic); OPENSSL_strlcpy(ascii_magic, magic, sizeof(ascii_magic)); #ifdef CHARSET_EBCDIC if ((magic[0] & 0x80) != 0) /* High bit is 1 in EBCDIC alnums */ ebcdic2ascii(ascii_magic, ascii_magic, magic_len); #endif /* The salt gets truncated to 8 chars */ OPENSSL_strlcpy(ascii_salt, salt, sizeof(ascii_salt)); salt_len = strlen(ascii_salt); #ifdef CHARSET_EBCDIC ebcdic2ascii(ascii_salt, ascii_salt, salt_len); #endif #ifdef CHARSET_EBCDIC ascii_passwd = OPENSSL_strdup(passwd); if (ascii_passwd == NULL) return NULL; ebcdic2ascii(ascii_passwd, ascii_passwd, passwd_len); passwd = ascii_passwd; #endif if (magic_len > 0) { OPENSSL_strlcat(out_buf, ascii_dollar, sizeof(out_buf)); if (magic_len > 4) /* assert it's "1" or "apr1" */ goto err; OPENSSL_strlcat(out_buf, ascii_magic, sizeof(out_buf)); OPENSSL_strlcat(out_buf, ascii_dollar, sizeof(out_buf)); } OPENSSL_strlcat(out_buf, ascii_salt, sizeof(out_buf)); if (strlen(out_buf) > 6 + 8) /* assert "$apr1$..salt.." */ goto err; salt_out = out_buf; if (magic_len > 0) salt_out += 2 + magic_len; if (salt_len > 8) goto err; md = EVP_MD_CTX_new(); if (md == NULL || !EVP_DigestInit_ex(md, EVP_md5(), NULL) || !EVP_DigestUpdate(md, passwd, passwd_len)) goto err; if (magic_len > 0) if (!EVP_DigestUpdate(md, ascii_dollar, 1) || !EVP_DigestUpdate(md, ascii_magic, magic_len) || !EVP_DigestUpdate(md, ascii_dollar, 1)) goto err; if (!EVP_DigestUpdate(md, ascii_salt, salt_len)) goto err; md2 = EVP_MD_CTX_new(); if (md2 == NULL || !EVP_DigestInit_ex(md2, EVP_md5(), NULL) || !EVP_DigestUpdate(md2, passwd, passwd_len) || !EVP_DigestUpdate(md2, ascii_salt, salt_len) || !EVP_DigestUpdate(md2, passwd, passwd_len) || !EVP_DigestFinal_ex(md2, buf, NULL)) goto err; for (i = passwd_len; i > sizeof(buf); i -= sizeof(buf)) { if (!EVP_DigestUpdate(md, buf, sizeof(buf))) goto err; } if (!EVP_DigestUpdate(md, buf, i)) goto err; n = passwd_len; while (n) { if (!EVP_DigestUpdate(md, (n & 1) ? "\0" : passwd, 1)) goto err; n >>= 1; } if (!EVP_DigestFinal_ex(md, buf, NULL)) return NULL; for (i = 0; i < 1000; i++) { if (!EVP_DigestInit_ex(md2, EVP_md5(), NULL)) goto err; if (!EVP_DigestUpdate(md2, (i & 1) ? (unsigned const char *)passwd : buf, (i & 1) ? passwd_len : sizeof(buf))) goto err; if (i % 3) { if (!EVP_DigestUpdate(md2, ascii_salt, salt_len)) goto err; } if (i % 7) { if (!EVP_DigestUpdate(md2, passwd, passwd_len)) goto err; } if (!EVP_DigestUpdate(md2, (i & 1) ? buf : (unsigned const char *)passwd, (i & 1) ? sizeof(buf) : passwd_len)) goto err; if (!EVP_DigestFinal_ex(md2, buf, NULL)) goto err; } EVP_MD_CTX_free(md2); EVP_MD_CTX_free(md); md2 = NULL; md = NULL; { /* transform buf into output string */ unsigned char buf_perm[sizeof(buf)]; int dest, source; char *output; /* silly output permutation */ for (dest = 0, source = 0; dest < 14; dest++, source = (source + 6) % 17) buf_perm[dest] = buf[source]; buf_perm[14] = buf[5]; buf_perm[15] = buf[11]; # ifndef PEDANTIC /* Unfortunately, this generates a "no * effect" warning */ assert(16 == sizeof(buf_perm)); # endif output = salt_out + salt_len; assert(output == out_buf + strlen(out_buf)); *output++ = ascii_dollar[0]; for (i = 0; i < 15; i += 3) { *output++ = cov_2char[buf_perm[i + 2] & 0x3f]; *output++ = cov_2char[((buf_perm[i + 1] & 0xf) << 2) | (buf_perm[i + 2] >> 6)]; *output++ = cov_2char[((buf_perm[i] & 3) << 4) | (buf_perm[i + 1] >> 4)]; *output++ = cov_2char[buf_perm[i] >> 2]; } assert(i == 15); *output++ = cov_2char[buf_perm[i] & 0x3f]; *output++ = cov_2char[buf_perm[i] >> 6]; *output = 0; assert(strlen(out_buf) < sizeof(out_buf)); #ifdef CHARSET_EBCDIC ascii2ebcdic(out_buf, out_buf, strlen(out_buf)); #endif } return out_buf; err: OPENSSL_free(ascii_passwd); EVP_MD_CTX_free(md2); EVP_MD_CTX_free(md); return NULL; } /* * SHA based password algorithm, describe by Ulrich Drepper here: * https://www.akkadia.org/drepper/SHA-crypt.txt * (note that it's in the public domain) */ static char *shacrypt(const char *passwd, const char *magic, const char *salt) { /* Prefix for optional rounds specification. */ static const char rounds_prefix[] = "rounds="; /* Maximum salt string length. */ # define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ # define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ # define ROUNDS_MIN 1000 /* Maximum number of rounds. */ # define ROUNDS_MAX 999999999 /* "$6$rounds=$......salt......$...shahash(up to 86 chars)...\0" */ static char out_buf[3 + 17 + 17 + 86 + 1]; unsigned char buf[SHA512_DIGEST_LENGTH]; unsigned char temp_buf[SHA512_DIGEST_LENGTH]; size_t buf_size = 0; char ascii_magic[2]; char ascii_salt[17]; /* Max 16 chars plus '\0' */ char *ascii_passwd = NULL; size_t n; EVP_MD_CTX *md = NULL, *md2 = NULL; const EVP_MD *sha = NULL; size_t passwd_len, salt_len, magic_len; unsigned int rounds = 5000; /* Default */ char rounds_custom = 0; char *p_bytes = NULL; char *s_bytes = NULL; char *cp = NULL; passwd_len = strlen(passwd); magic_len = strlen(magic); /* assert it's "5" or "6" */ if (magic_len != 1) return NULL; switch (magic[0]) { case '5': sha = EVP_sha256(); buf_size = 32; break; case '6': sha = EVP_sha512(); buf_size = 64; break; default: return NULL; } if (strncmp(salt, rounds_prefix, sizeof(rounds_prefix) - 1) == 0) { const char *num = salt + sizeof(rounds_prefix) - 1; char *endp; unsigned long int srounds = strtoul (num, &endp, 10); if (*endp == '$') { salt = endp + 1; if (srounds > ROUNDS_MAX) rounds = ROUNDS_MAX; else if (srounds < ROUNDS_MIN) rounds = ROUNDS_MIN; else rounds = (unsigned int)srounds; rounds_custom = 1; } else { return NULL; } } OPENSSL_strlcpy(ascii_magic, magic, sizeof(ascii_magic)); #ifdef CHARSET_EBCDIC if ((magic[0] & 0x80) != 0) /* High bit is 1 in EBCDIC alnums */ ebcdic2ascii(ascii_magic, ascii_magic, magic_len); #endif /* The salt gets truncated to 16 chars */ OPENSSL_strlcpy(ascii_salt, salt, sizeof(ascii_salt)); salt_len = strlen(ascii_salt); #ifdef CHARSET_EBCDIC ebcdic2ascii(ascii_salt, ascii_salt, salt_len); #endif #ifdef CHARSET_EBCDIC ascii_passwd = OPENSSL_strdup(passwd); if (ascii_passwd == NULL) return NULL; ebcdic2ascii(ascii_passwd, ascii_passwd, passwd_len); passwd = ascii_passwd; #endif out_buf[0] = 0; OPENSSL_strlcat(out_buf, ascii_dollar, sizeof(out_buf)); OPENSSL_strlcat(out_buf, ascii_magic, sizeof(out_buf)); OPENSSL_strlcat(out_buf, ascii_dollar, sizeof(out_buf)); if (rounds_custom) { char tmp_buf[80]; /* "rounds=999999999" */ sprintf(tmp_buf, "rounds=%u", rounds); #ifdef CHARSET_EBCDIC /* In case we're really on a ASCII based platform and just pretend */ if (tmp_buf[0] != 0x72) /* ASCII 'r' */ ebcdic2ascii(tmp_buf, tmp_buf, strlen(tmp_buf)); #endif OPENSSL_strlcat(out_buf, tmp_buf, sizeof(out_buf)); OPENSSL_strlcat(out_buf, ascii_dollar, sizeof(out_buf)); } OPENSSL_strlcat(out_buf, ascii_salt, sizeof(out_buf)); /* assert "$5$rounds=999999999$......salt......" */ if (strlen(out_buf) > 3 + 17 * rounds_custom + salt_len ) goto err; md = EVP_MD_CTX_new(); if (md == NULL || !EVP_DigestInit_ex(md, sha, NULL) || !EVP_DigestUpdate(md, passwd, passwd_len) || !EVP_DigestUpdate(md, ascii_salt, salt_len)) goto err; md2 = EVP_MD_CTX_new(); if (md2 == NULL || !EVP_DigestInit_ex(md2, sha, NULL) || !EVP_DigestUpdate(md2, passwd, passwd_len) || !EVP_DigestUpdate(md2, ascii_salt, salt_len) || !EVP_DigestUpdate(md2, passwd, passwd_len) || !EVP_DigestFinal_ex(md2, buf, NULL)) goto err; for (n = passwd_len; n > buf_size; n -= buf_size) { if (!EVP_DigestUpdate(md, buf, buf_size)) goto err; } if (!EVP_DigestUpdate(md, buf, n)) goto err; n = passwd_len; while (n) { if (!EVP_DigestUpdate(md, (n & 1) ? buf : (unsigned const char *)passwd, (n & 1) ? buf_size : passwd_len)) goto err; n >>= 1; } if (!EVP_DigestFinal_ex(md, buf, NULL)) return NULL; /* P sequence */ if (!EVP_DigestInit_ex(md2, sha, NULL)) goto err; for (n = passwd_len; n > 0; n--) if (!EVP_DigestUpdate(md2, passwd, passwd_len)) goto err; if (!EVP_DigestFinal_ex(md2, temp_buf, NULL)) return NULL; if ((p_bytes = OPENSSL_zalloc(passwd_len)) == NULL) goto err; for (cp = p_bytes, n = passwd_len; n > buf_size; n -= buf_size, cp += buf_size) memcpy(cp, temp_buf, buf_size); memcpy(cp, temp_buf, n); /* S sequence */ if (!EVP_DigestInit_ex(md2, sha, NULL)) goto err; for (n = 16 + buf[0]; n > 0; n--) if (!EVP_DigestUpdate(md2, ascii_salt, salt_len)) goto err; if (!EVP_DigestFinal_ex(md2, temp_buf, NULL)) return NULL; if ((s_bytes = OPENSSL_zalloc(salt_len)) == NULL) goto err; for (cp = s_bytes, n = salt_len; n > buf_size; n -= buf_size, cp += buf_size) memcpy(cp, temp_buf, buf_size); memcpy(cp, temp_buf, n); for (n = 0; n < rounds; n++) { if (!EVP_DigestInit_ex(md2, sha, NULL)) goto err; if (!EVP_DigestUpdate(md2, (n & 1) ? (unsigned const char *)p_bytes : buf, (n & 1) ? passwd_len : buf_size)) goto err; if (n % 3) { if (!EVP_DigestUpdate(md2, s_bytes, salt_len)) goto err; } if (n % 7) { if (!EVP_DigestUpdate(md2, p_bytes, passwd_len)) goto err; } if (!EVP_DigestUpdate(md2, (n & 1) ? buf : (unsigned const char *)p_bytes, (n & 1) ? buf_size : passwd_len)) goto err; if (!EVP_DigestFinal_ex(md2, buf, NULL)) goto err; } EVP_MD_CTX_free(md2); EVP_MD_CTX_free(md); md2 = NULL; md = NULL; OPENSSL_free(p_bytes); OPENSSL_free(s_bytes); p_bytes = NULL; s_bytes = NULL; cp = out_buf + strlen(out_buf); *cp++ = ascii_dollar[0]; # define b64_from_24bit(B2, B1, B0, N) \ do { \ unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ int i = (N); \ while (i-- > 0) \ { \ *cp++ = cov_2char[w & 0x3f]; \ w >>= 6; \ } \ } while (0) switch (magic[0]) { case '5': b64_from_24bit (buf[0], buf[10], buf[20], 4); b64_from_24bit (buf[21], buf[1], buf[11], 4); b64_from_24bit (buf[12], buf[22], buf[2], 4); b64_from_24bit (buf[3], buf[13], buf[23], 4); b64_from_24bit (buf[24], buf[4], buf[14], 4); b64_from_24bit (buf[15], buf[25], buf[5], 4); b64_from_24bit (buf[6], buf[16], buf[26], 4); b64_from_24bit (buf[27], buf[7], buf[17], 4); b64_from_24bit (buf[18], buf[28], buf[8], 4); b64_from_24bit (buf[9], buf[19], buf[29], 4); b64_from_24bit (0, buf[31], buf[30], 3); break; case '6': b64_from_24bit (buf[0], buf[21], buf[42], 4); b64_from_24bit (buf[22], buf[43], buf[1], 4); b64_from_24bit (buf[44], buf[2], buf[23], 4); b64_from_24bit (buf[3], buf[24], buf[45], 4); b64_from_24bit (buf[25], buf[46], buf[4], 4); b64_from_24bit (buf[47], buf[5], buf[26], 4); b64_from_24bit (buf[6], buf[27], buf[48], 4); b64_from_24bit (buf[28], buf[49], buf[7], 4); b64_from_24bit (buf[50], buf[8], buf[29], 4); b64_from_24bit (buf[9], buf[30], buf[51], 4); b64_from_24bit (buf[31], buf[52], buf[10], 4); b64_from_24bit (buf[53], buf[11], buf[32], 4); b64_from_24bit (buf[12], buf[33], buf[54], 4); b64_from_24bit (buf[34], buf[55], buf[13], 4); b64_from_24bit (buf[56], buf[14], buf[35], 4); b64_from_24bit (buf[15], buf[36], buf[57], 4); b64_from_24bit (buf[37], buf[58], buf[16], 4); b64_from_24bit (buf[59], buf[17], buf[38], 4); b64_from_24bit (buf[18], buf[39], buf[60], 4); b64_from_24bit (buf[40], buf[61], buf[19], 4); b64_from_24bit (buf[62], buf[20], buf[41], 4); b64_from_24bit (0, 0, buf[63], 2); break; default: goto err; } *cp = '\0'; #ifdef CHARSET_EBCDIC ascii2ebcdic(out_buf, out_buf, strlen(out_buf)); #endif return out_buf; err: EVP_MD_CTX_free(md2); EVP_MD_CTX_free(md); OPENSSL_free(p_bytes); OPENSSL_free(s_bytes); OPENSSL_free(ascii_passwd); return NULL; } static int do_passwd(int passed_salt, char **salt_p, char **salt_malloc_p, char *passwd, BIO *out, int quiet, int table, int reverse, size_t pw_maxlen, passwd_modes mode) { char *hash = NULL; assert(salt_p != NULL); assert(salt_malloc_p != NULL); /* first make sure we have a salt */ if (!passed_salt) { size_t saltlen = 0; size_t i; #ifndef OPENSSL_NO_DES if (mode == passwd_crypt) saltlen = 2; #endif /* !OPENSSL_NO_DES */ if (mode == passwd_md5 || mode == passwd_apr1 || mode == passwd_aixmd5) saltlen = 8; if (mode == passwd_sha256 || mode == passwd_sha512) saltlen = 16; assert(saltlen != 0); if (*salt_malloc_p == NULL) *salt_p = *salt_malloc_p = app_malloc(saltlen + 1, "salt buffer"); if (RAND_bytes((unsigned char *)*salt_p, saltlen) <= 0) goto end; for (i = 0; i < saltlen; i++) (*salt_p)[i] = cov_2char[(*salt_p)[i] & 0x3f]; /* 6 bits */ (*salt_p)[i] = 0; # ifdef CHARSET_EBCDIC /* The password encryption function will convert back to ASCII */ ascii2ebcdic(*salt_p, *salt_p, saltlen); # endif } assert(*salt_p != NULL); /* truncate password if necessary */ if ((strlen(passwd) > pw_maxlen)) { if (!quiet) /* * XXX: really we should know how to print a size_t, not cast it */ BIO_printf(bio_err, "Warning: truncating password to %u characters\n", (unsigned)pw_maxlen); passwd[pw_maxlen] = 0; } assert(strlen(passwd) <= pw_maxlen); /* now compute password hash */ #ifndef OPENSSL_NO_DES if (mode == passwd_crypt) hash = DES_crypt(passwd, *salt_p); #endif if (mode == passwd_md5 || mode == passwd_apr1) hash = md5crypt(passwd, (mode == passwd_md5 ? "1" : "apr1"), *salt_p); if (mode == passwd_aixmd5) hash = md5crypt(passwd, "", *salt_p); if (mode == passwd_sha256 || mode == passwd_sha512) hash = shacrypt(passwd, (mode == passwd_sha256 ? "5" : "6"), *salt_p); assert(hash != NULL); if (table && !reverse) BIO_printf(out, "%s\t%s\n", passwd, hash); else if (table && reverse) BIO_printf(out, "%s\t%s\n", hash, passwd); else BIO_printf(out, "%s\n", hash); return 1; end: return 0; } openssl-1.1.1f/apps/pca-cert.srl000066400000000000000000000000031364063235100165220ustar00rootroot0000000000000007 openssl-1.1.1f/apps/pca-key.pem000066400000000000000000000016241364063235100163500ustar00rootroot00000000000000-----BEGIN PRIVATE KEY----- MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBALYYjjtpLs/lfkPF xAFZ4V3He5mZFbsEakK9bA2fQaryreRwyfhbXbDJHyBV+c4xI5fbmmVd2t/us4k4 rMhGsBtL89SqCEHhPJpLFywiQVmJTAjANYrWkZK5uR/++YmZyzuLfPHLButuK6cF GKXw3NNToxjYooMf0mad2rPX3cKTAgMBAAECgYBvrJ+Nz/Pli9jjt2V9bqHH4Y7r o/avuwVv6Ltbn0+mhy4d6w3yQhYzVSTBr/iDe59YglUt1WFl8/4nKZrNOIzHJlav Sw4hd3fYBHxbT+DgZMQ9ikjHECWRdDffrnlTLsSJAcxnpMJBPe3dKCRDMUrqWUvB IIKaxyqmXJms5Y/wAQJBAPFL9NMKJcWBftMKXCasxsV0ZGjgqHGZODYjtGFN9jJO 6AbZrxfCcapTWG4RCC2o/EDEMN8aArEhfdrYY3lhXGsCQQDBMRzFevkD7SYXTw5G NA/gJOAsFMYbt7tebcCRsHT7t3ymVfO2QwK7ZF0f/SYvi7cMAPraHvO7s3kFdGTB kDx5AkAHBICASsFCdzurA5gef9PgFjx9WFtNwnkCChPK6KuKVwUkfdw7wqnvnDDs Mo6cVVfQwmPxeR4u7JxuavCprQ01AkEAp5ZGAh1J9Jj9CQ1AMbAp8WOrvzGKJTM9 641Dll4/LLif/d7j2kDJFuvaSMyeGnKVqGkVMq/U+QeYPR4Z5TuM6QJAWK05qFed wYgTZyVN0MY53ZOMAIWwjz0cr24TvDfmsZqIvguGL616GKQZKdKDZQyQHg+dCzqJ HgIoacuFDKz5CA== -----END PRIVATE KEY----- openssl-1.1.1f/apps/pca-req.pem000066400000000000000000000011731364063235100163460ustar00rootroot00000000000000-----BEGIN CERTIFICATE REQUEST----- MIIBnDCCAQUCAQAwXDELMAkGA1UEBhMCQVUxEzARBgNVBAgMClF1ZWVuc2xhbmQx GjAYBgNVBAoMEUNyeXB0U29mdCBQdHkgTHRkMRwwGgYDVQQDDBNUZXN0IFBDQSAo MTAyNCBiaXQpMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC2GI47aS7P5X5D xcQBWeFdx3uZmRW7BGpCvWwNn0Gq8q3kcMn4W12wyR8gVfnOMSOX25plXdrf7rOJ OKzIRrAbS/PUqghB4TyaSxcsIkFZiUwIwDWK1pGSubkf/vmJmcs7i3zxywbrbiun BRil8NzTU6MY2KKDH9Jmndqz193CkwIDAQABoAAwDQYJKoZIhvcNAQELBQADgYEA eJdCB0nHnFK0hek4biAxX0GuJXkknuUy46NKEhv3GBwt4gtO29bfkbQTGOsBBKNs KptlnkItscOXY+0lSva9K3XlwD9do7k2IZFtXJVayZVw1GcKybIY0l7B6kcSxG7T f3CsO+ifdrsJKtyoZNs96lBMrtXyGybt3mgQNdZauQU= -----END CERTIFICATE REQUEST----- openssl-1.1.1f/apps/pkcs12.c000066400000000000000000000756351364063235100156000ustar00rootroot00000000000000/* * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #if defined(OPENSSL_NO_DES) NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # define NOKEYS 0x1 # define NOCERTS 0x2 # define INFO 0x4 # define CLCERTS 0x8 # define CACERTS 0x10 #define PASSWD_BUF_SIZE 2048 static int get_cert_chain(X509 *cert, X509_STORE *store, STACK_OF(X509) **chain); int dump_certs_keys_p12(BIO *out, const PKCS12 *p12, const char *pass, int passlen, int options, char *pempass, const EVP_CIPHER *enc); int dump_certs_pkeys_bags(BIO *out, const STACK_OF(PKCS12_SAFEBAG) *bags, const char *pass, int passlen, int options, char *pempass, const EVP_CIPHER *enc); int dump_certs_pkeys_bag(BIO *out, const PKCS12_SAFEBAG *bags, const char *pass, int passlen, int options, char *pempass, const EVP_CIPHER *enc); void print_attribute(BIO *out, const ASN1_TYPE *av); int print_attribs(BIO *out, const STACK_OF(X509_ATTRIBUTE) *attrlst, const char *name); void hex_prin(BIO *out, unsigned char *buf, int len); static int alg_print(const X509_ALGOR *alg); int cert_load(BIO *in, STACK_OF(X509) *sk); static int set_pbe(int *ppbe, const char *str); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_CIPHER, OPT_NOKEYS, OPT_KEYEX, OPT_KEYSIG, OPT_NOCERTS, OPT_CLCERTS, OPT_CACERTS, OPT_NOOUT, OPT_INFO, OPT_CHAIN, OPT_TWOPASS, OPT_NOMACVER, OPT_DESCERT, OPT_EXPORT, OPT_NOITER, OPT_MACITER, OPT_NOMACITER, OPT_NOMAC, OPT_LMK, OPT_NODES, OPT_MACALG, OPT_CERTPBE, OPT_KEYPBE, OPT_INKEY, OPT_CERTFILE, OPT_NAME, OPT_CSP, OPT_CANAME, OPT_IN, OPT_OUT, OPT_PASSIN, OPT_PASSOUT, OPT_PASSWORD, OPT_CAPATH, OPT_CAFILE, OPT_NOCAPATH, OPT_NOCAFILE, OPT_ENGINE, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS pkcs12_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"nokeys", OPT_NOKEYS, '-', "Don't output private keys"}, {"keyex", OPT_KEYEX, '-', "Set MS key exchange type"}, {"keysig", OPT_KEYSIG, '-', "Set MS key signature type"}, {"nocerts", OPT_NOCERTS, '-', "Don't output certificates"}, {"clcerts", OPT_CLCERTS, '-', "Only output client certificates"}, {"cacerts", OPT_CACERTS, '-', "Only output CA certificates"}, {"noout", OPT_NOOUT, '-', "Don't output anything, just verify"}, {"info", OPT_INFO, '-', "Print info about PKCS#12 structure"}, {"chain", OPT_CHAIN, '-', "Add certificate chain"}, {"twopass", OPT_TWOPASS, '-', "Separate MAC, encryption passwords"}, {"nomacver", OPT_NOMACVER, '-', "Don't verify MAC"}, # ifndef OPENSSL_NO_RC2 {"descert", OPT_DESCERT, '-', "Encrypt output with 3DES (default RC2-40)"}, {"certpbe", OPT_CERTPBE, 's', "Certificate PBE algorithm (default RC2-40)"}, # else {"descert", OPT_DESCERT, '-', "Encrypt output with 3DES (the default)"}, {"certpbe", OPT_CERTPBE, 's', "Certificate PBE algorithm (default 3DES)"}, # endif {"export", OPT_EXPORT, '-', "Output PKCS12 file"}, {"noiter", OPT_NOITER, '-', "Don't use encryption iteration"}, {"maciter", OPT_MACITER, '-', "Use MAC iteration"}, {"nomaciter", OPT_NOMACITER, '-', "Don't use MAC iteration"}, {"nomac", OPT_NOMAC, '-', "Don't generate MAC"}, {"LMK", OPT_LMK, '-', "Add local machine keyset attribute to private key"}, {"nodes", OPT_NODES, '-', "Don't encrypt private keys"}, {"macalg", OPT_MACALG, 's', "Digest algorithm used in MAC (default SHA1)"}, {"keypbe", OPT_KEYPBE, 's', "Private key PBE algorithm (default 3DES)"}, OPT_R_OPTIONS, {"inkey", OPT_INKEY, 's', "Private key if not infile"}, {"certfile", OPT_CERTFILE, '<', "Load certs from file"}, {"name", OPT_NAME, 's', "Use name as friendly name"}, {"CSP", OPT_CSP, 's', "Microsoft CSP name"}, {"caname", OPT_CANAME, 's', "Use name as CA friendly name (can be repeated)"}, {"in", OPT_IN, '<', "Input filename"}, {"out", OPT_OUT, '>', "Output filename"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"password", OPT_PASSWORD, 's', "Set import/export password source"}, {"CApath", OPT_CAPATH, '/', "PEM-format directory of CA's"}, {"CAfile", OPT_CAFILE, '<', "PEM-format file of CA's"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"", OPT_CIPHER, '-', "Any supported cipher"}, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {NULL} }; int pkcs12_main(int argc, char **argv) { char *infile = NULL, *outfile = NULL, *keyname = NULL, *certfile = NULL; char *name = NULL, *csp_name = NULL; char pass[PASSWD_BUF_SIZE] = "", macpass[PASSWD_BUF_SIZE] = ""; int export_cert = 0, options = 0, chain = 0, twopass = 0, keytype = 0; int iter = PKCS12_DEFAULT_ITER, maciter = PKCS12_DEFAULT_ITER; # ifndef OPENSSL_NO_RC2 int cert_pbe = NID_pbe_WithSHA1And40BitRC2_CBC; # else int cert_pbe = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; # endif int key_pbe = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; int ret = 1, macver = 1, add_lmk = 0, private = 0; int noprompt = 0; char *passinarg = NULL, *passoutarg = NULL, *passarg = NULL; char *passin = NULL, *passout = NULL, *macalg = NULL; char *cpass = NULL, *mpass = NULL, *badpass = NULL; const char *CApath = NULL, *CAfile = NULL, *prog; int noCApath = 0, noCAfile = 0; ENGINE *e = NULL; BIO *in = NULL, *out = NULL; PKCS12 *p12 = NULL; STACK_OF(OPENSSL_STRING) *canames = NULL; const EVP_CIPHER *enc = EVP_des_ede3_cbc(); OPTION_CHOICE o; prog = opt_init(argc, argv, pkcs12_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(pkcs12_options); ret = 0; goto end; case OPT_NOKEYS: options |= NOKEYS; break; case OPT_KEYEX: keytype = KEY_EX; break; case OPT_KEYSIG: keytype = KEY_SIG; break; case OPT_NOCERTS: options |= NOCERTS; break; case OPT_CLCERTS: options |= CLCERTS; break; case OPT_CACERTS: options |= CACERTS; break; case OPT_NOOUT: options |= (NOKEYS | NOCERTS); break; case OPT_INFO: options |= INFO; break; case OPT_CHAIN: chain = 1; break; case OPT_TWOPASS: twopass = 1; break; case OPT_NOMACVER: macver = 0; break; case OPT_DESCERT: cert_pbe = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; break; case OPT_EXPORT: export_cert = 1; break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &enc)) goto opthelp; break; case OPT_NOITER: iter = 1; break; case OPT_MACITER: maciter = PKCS12_DEFAULT_ITER; break; case OPT_NOMACITER: maciter = 1; break; case OPT_NOMAC: maciter = -1; break; case OPT_MACALG: macalg = opt_arg(); break; case OPT_NODES: enc = NULL; break; case OPT_CERTPBE: if (!set_pbe(&cert_pbe, opt_arg())) goto opthelp; break; case OPT_KEYPBE: if (!set_pbe(&key_pbe, opt_arg())) goto opthelp; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_INKEY: keyname = opt_arg(); break; case OPT_CERTFILE: certfile = opt_arg(); break; case OPT_NAME: name = opt_arg(); break; case OPT_LMK: add_lmk = 1; break; case OPT_CSP: csp_name = opt_arg(); break; case OPT_CANAME: if (canames == NULL && (canames = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(canames, opt_arg()); break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_PASSWORD: passarg = opt_arg(); break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = 1; if (passarg != NULL) { if (export_cert) passoutarg = passarg; else passinarg = passarg; } if (!app_passwd(passinarg, passoutarg, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } if (cpass == NULL) { if (export_cert) cpass = passout; else cpass = passin; } if (cpass != NULL) { mpass = cpass; noprompt = 1; if (twopass) { if (export_cert) BIO_printf(bio_err, "Option -twopass cannot be used with -passout or -password\n"); else BIO_printf(bio_err, "Option -twopass cannot be used with -passin or -password\n"); goto end; } } else { cpass = pass; mpass = macpass; } if (twopass) { /* To avoid bit rot */ if (1) { #ifndef OPENSSL_NO_UI_CONSOLE if (EVP_read_pw_string( macpass, sizeof(macpass), "Enter MAC Password:", export_cert)) { BIO_printf(bio_err, "Can't read Password\n"); goto end; } } else { #endif BIO_printf(bio_err, "Unsupported option -twopass\n"); goto end; } } if (export_cert) { EVP_PKEY *key = NULL; X509 *ucert = NULL, *x = NULL; STACK_OF(X509) *certs = NULL; const EVP_MD *macmd = NULL; unsigned char *catmp = NULL; int i; if ((options & (NOCERTS | NOKEYS)) == (NOCERTS | NOKEYS)) { BIO_printf(bio_err, "Nothing to do!\n"); goto export_end; } if (options & NOCERTS) chain = 0; if (!(options & NOKEYS)) { key = load_key(keyname ? keyname : infile, FORMAT_PEM, 1, passin, e, "private key"); if (key == NULL) goto export_end; } /* Load in all certs in input file */ if (!(options & NOCERTS)) { if (!load_certs(infile, &certs, FORMAT_PEM, NULL, "certificates")) goto export_end; if (key != NULL) { /* Look for matching private key */ for (i = 0; i < sk_X509_num(certs); i++) { x = sk_X509_value(certs, i); if (X509_check_private_key(x, key)) { ucert = x; /* Zero keyid and alias */ X509_keyid_set1(ucert, NULL, 0); X509_alias_set1(ucert, NULL, 0); /* Remove from list */ (void)sk_X509_delete(certs, i); break; } } if (ucert == NULL) { BIO_printf(bio_err, "No certificate matches private key\n"); goto export_end; } } } /* Add any more certificates asked for */ if (certfile != NULL) { if (!load_certs(certfile, &certs, FORMAT_PEM, NULL, "certificates from certfile")) goto export_end; } /* If chaining get chain from user cert */ if (chain) { int vret; STACK_OF(X509) *chain2; X509_STORE *store; if ((store = setup_verify(CAfile, CApath, noCAfile, noCApath)) == NULL) goto export_end; vret = get_cert_chain(ucert, store, &chain2); X509_STORE_free(store); if (vret == X509_V_OK) { /* Exclude verified certificate */ for (i = 1; i < sk_X509_num(chain2); i++) sk_X509_push(certs, sk_X509_value(chain2, i)); /* Free first certificate */ X509_free(sk_X509_value(chain2, 0)); sk_X509_free(chain2); } else { if (vret != X509_V_ERR_UNSPECIFIED) BIO_printf(bio_err, "Error %s getting chain.\n", X509_verify_cert_error_string(vret)); else ERR_print_errors(bio_err); goto export_end; } } /* Add any CA names */ for (i = 0; i < sk_OPENSSL_STRING_num(canames); i++) { catmp = (unsigned char *)sk_OPENSSL_STRING_value(canames, i); X509_alias_set1(sk_X509_value(certs, i), catmp, -1); } if (csp_name != NULL && key != NULL) EVP_PKEY_add1_attr_by_NID(key, NID_ms_csp_name, MBSTRING_ASC, (unsigned char *)csp_name, -1); if (add_lmk && key != NULL) EVP_PKEY_add1_attr_by_NID(key, NID_LocalKeySet, 0, NULL, -1); if (!noprompt) { /* To avoid bit rot */ if (1) { #ifndef OPENSSL_NO_UI_CONSOLE if (EVP_read_pw_string(pass, sizeof(pass), "Enter Export Password:", 1)) { BIO_printf(bio_err, "Can't read Password\n"); goto export_end; } } else { #endif BIO_printf(bio_err, "Password required\n"); goto export_end; } } if (!twopass) OPENSSL_strlcpy(macpass, pass, sizeof(macpass)); p12 = PKCS12_create(cpass, name, key, ucert, certs, key_pbe, cert_pbe, iter, -1, keytype); if (!p12) { ERR_print_errors(bio_err); goto export_end; } if (macalg) { if (!opt_md(macalg, &macmd)) goto opthelp; } if (maciter != -1) PKCS12_set_mac(p12, mpass, -1, NULL, 0, maciter, macmd); assert(private); out = bio_open_owner(outfile, FORMAT_PKCS12, private); if (out == NULL) goto end; i2d_PKCS12_bio(out, p12); ret = 0; export_end: EVP_PKEY_free(key); sk_X509_pop_free(certs, X509_free); X509_free(ucert); goto end; } in = bio_open_default(infile, 'r', FORMAT_PKCS12); if (in == NULL) goto end; out = bio_open_owner(outfile, FORMAT_PEM, private); if (out == NULL) goto end; if ((p12 = d2i_PKCS12_bio(in, NULL)) == NULL) { ERR_print_errors(bio_err); goto end; } if (!noprompt) { if (1) { #ifndef OPENSSL_NO_UI_CONSOLE if (EVP_read_pw_string(pass, sizeof(pass), "Enter Import Password:", 0)) { BIO_printf(bio_err, "Can't read Password\n"); goto end; } } else { #endif BIO_printf(bio_err, "Password required\n"); goto end; } } if (!twopass) OPENSSL_strlcpy(macpass, pass, sizeof(macpass)); if ((options & INFO) && PKCS12_mac_present(p12)) { const ASN1_INTEGER *tmaciter; const X509_ALGOR *macalgid; const ASN1_OBJECT *macobj; const ASN1_OCTET_STRING *tmac; const ASN1_OCTET_STRING *tsalt; PKCS12_get0_mac(&tmac, &macalgid, &tsalt, &tmaciter, p12); /* current hash algorithms do not use parameters so extract just name, in future alg_print() may be needed */ X509_ALGOR_get0(&macobj, NULL, NULL, macalgid); BIO_puts(bio_err, "MAC: "); i2a_ASN1_OBJECT(bio_err, macobj); BIO_printf(bio_err, ", Iteration %ld\n", tmaciter != NULL ? ASN1_INTEGER_get(tmaciter) : 1L); BIO_printf(bio_err, "MAC length: %ld, salt length: %ld\n", tmac != NULL ? ASN1_STRING_length(tmac) : 0L, tsalt != NULL ? ASN1_STRING_length(tsalt) : 0L); } if (macver) { /* If we enter empty password try no password first */ if (!mpass[0] && PKCS12_verify_mac(p12, NULL, 0)) { /* If mac and crypto pass the same set it to NULL too */ if (!twopass) cpass = NULL; } else if (!PKCS12_verify_mac(p12, mpass, -1)) { /* * May be UTF8 from previous version of OpenSSL: * convert to a UTF8 form which will translate * to the same Unicode password. */ unsigned char *utmp; int utmplen; utmp = OPENSSL_asc2uni(mpass, -1, NULL, &utmplen); if (utmp == NULL) goto end; badpass = OPENSSL_uni2utf8(utmp, utmplen); OPENSSL_free(utmp); if (!PKCS12_verify_mac(p12, badpass, -1)) { BIO_printf(bio_err, "Mac verify error: invalid password?\n"); ERR_print_errors(bio_err); goto end; } else { BIO_printf(bio_err, "Warning: using broken algorithm\n"); if (!twopass) cpass = badpass; } } } assert(private); if (!dump_certs_keys_p12(out, p12, cpass, -1, options, passout, enc)) { BIO_printf(bio_err, "Error outputting keys and certificates\n"); ERR_print_errors(bio_err); goto end; } ret = 0; end: PKCS12_free(p12); release_engine(e); BIO_free(in); BIO_free_all(out); sk_OPENSSL_STRING_free(canames); OPENSSL_free(badpass); OPENSSL_free(passin); OPENSSL_free(passout); return ret; } int dump_certs_keys_p12(BIO *out, const PKCS12 *p12, const char *pass, int passlen, int options, char *pempass, const EVP_CIPHER *enc) { STACK_OF(PKCS7) *asafes = NULL; STACK_OF(PKCS12_SAFEBAG) *bags; int i, bagnid; int ret = 0; PKCS7 *p7; if ((asafes = PKCS12_unpack_authsafes(p12)) == NULL) return 0; for (i = 0; i < sk_PKCS7_num(asafes); i++) { p7 = sk_PKCS7_value(asafes, i); bagnid = OBJ_obj2nid(p7->type); if (bagnid == NID_pkcs7_data) { bags = PKCS12_unpack_p7data(p7); if (options & INFO) BIO_printf(bio_err, "PKCS7 Data\n"); } else if (bagnid == NID_pkcs7_encrypted) { if (options & INFO) { BIO_printf(bio_err, "PKCS7 Encrypted data: "); alg_print(p7->d.encrypted->enc_data->algorithm); } bags = PKCS12_unpack_p7encdata(p7, pass, passlen); } else { continue; } if (!bags) goto err; if (!dump_certs_pkeys_bags(out, bags, pass, passlen, options, pempass, enc)) { sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); goto err; } sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); bags = NULL; } ret = 1; err: sk_PKCS7_pop_free(asafes, PKCS7_free); return ret; } int dump_certs_pkeys_bags(BIO *out, const STACK_OF(PKCS12_SAFEBAG) *bags, const char *pass, int passlen, int options, char *pempass, const EVP_CIPHER *enc) { int i; for (i = 0; i < sk_PKCS12_SAFEBAG_num(bags); i++) { if (!dump_certs_pkeys_bag(out, sk_PKCS12_SAFEBAG_value(bags, i), pass, passlen, options, pempass, enc)) return 0; } return 1; } int dump_certs_pkeys_bag(BIO *out, const PKCS12_SAFEBAG *bag, const char *pass, int passlen, int options, char *pempass, const EVP_CIPHER *enc) { EVP_PKEY *pkey; PKCS8_PRIV_KEY_INFO *p8; const PKCS8_PRIV_KEY_INFO *p8c; X509 *x509; const STACK_OF(X509_ATTRIBUTE) *attrs; int ret = 0; attrs = PKCS12_SAFEBAG_get0_attrs(bag); switch (PKCS12_SAFEBAG_get_nid(bag)) { case NID_keyBag: if (options & INFO) BIO_printf(bio_err, "Key bag\n"); if (options & NOKEYS) return 1; print_attribs(out, attrs, "Bag Attributes"); p8c = PKCS12_SAFEBAG_get0_p8inf(bag); if ((pkey = EVP_PKCS82PKEY(p8c)) == NULL) return 0; print_attribs(out, PKCS8_pkey_get0_attrs(p8c), "Key Attributes"); ret = PEM_write_bio_PrivateKey(out, pkey, enc, NULL, 0, NULL, pempass); EVP_PKEY_free(pkey); break; case NID_pkcs8ShroudedKeyBag: if (options & INFO) { const X509_SIG *tp8; const X509_ALGOR *tp8alg; BIO_printf(bio_err, "Shrouded Keybag: "); tp8 = PKCS12_SAFEBAG_get0_pkcs8(bag); X509_SIG_get0(tp8, &tp8alg, NULL); alg_print(tp8alg); } if (options & NOKEYS) return 1; print_attribs(out, attrs, "Bag Attributes"); if ((p8 = PKCS12_decrypt_skey(bag, pass, passlen)) == NULL) return 0; if ((pkey = EVP_PKCS82PKEY(p8)) == NULL) { PKCS8_PRIV_KEY_INFO_free(p8); return 0; } print_attribs(out, PKCS8_pkey_get0_attrs(p8), "Key Attributes"); PKCS8_PRIV_KEY_INFO_free(p8); ret = PEM_write_bio_PrivateKey(out, pkey, enc, NULL, 0, NULL, pempass); EVP_PKEY_free(pkey); break; case NID_certBag: if (options & INFO) BIO_printf(bio_err, "Certificate bag\n"); if (options & NOCERTS) return 1; if (PKCS12_SAFEBAG_get0_attr(bag, NID_localKeyID)) { if (options & CACERTS) return 1; } else if (options & CLCERTS) return 1; print_attribs(out, attrs, "Bag Attributes"); if (PKCS12_SAFEBAG_get_bag_nid(bag) != NID_x509Certificate) return 1; if ((x509 = PKCS12_SAFEBAG_get1_cert(bag)) == NULL) return 0; dump_cert_text(out, x509); ret = PEM_write_bio_X509(out, x509); X509_free(x509); break; case NID_safeContentsBag: if (options & INFO) BIO_printf(bio_err, "Safe Contents bag\n"); print_attribs(out, attrs, "Bag Attributes"); return dump_certs_pkeys_bags(out, PKCS12_SAFEBAG_get0_safes(bag), pass, passlen, options, pempass, enc); default: BIO_printf(bio_err, "Warning unsupported bag type: "); i2a_ASN1_OBJECT(bio_err, PKCS12_SAFEBAG_get0_type(bag)); BIO_printf(bio_err, "\n"); return 1; } return ret; } /* Given a single certificate return a verified chain or NULL if error */ static int get_cert_chain(X509 *cert, X509_STORE *store, STACK_OF(X509) **chain) { X509_STORE_CTX *store_ctx = NULL; STACK_OF(X509) *chn = NULL; int i = 0; store_ctx = X509_STORE_CTX_new(); if (store_ctx == NULL) { i = X509_V_ERR_UNSPECIFIED; goto end; } if (!X509_STORE_CTX_init(store_ctx, store, cert, NULL)) { i = X509_V_ERR_UNSPECIFIED; goto end; } if (X509_verify_cert(store_ctx) > 0) chn = X509_STORE_CTX_get1_chain(store_ctx); else if ((i = X509_STORE_CTX_get_error(store_ctx)) == 0) i = X509_V_ERR_UNSPECIFIED; end: X509_STORE_CTX_free(store_ctx); *chain = chn; return i; } static int alg_print(const X509_ALGOR *alg) { int pbenid, aparamtype; const ASN1_OBJECT *aoid; const void *aparam; PBEPARAM *pbe = NULL; X509_ALGOR_get0(&aoid, &aparamtype, &aparam, alg); pbenid = OBJ_obj2nid(aoid); BIO_printf(bio_err, "%s", OBJ_nid2ln(pbenid)); /* * If PBE algorithm is PBES2 decode algorithm parameters * for additional details. */ if (pbenid == NID_pbes2) { PBE2PARAM *pbe2 = NULL; int encnid; if (aparamtype == V_ASN1_SEQUENCE) pbe2 = ASN1_item_unpack(aparam, ASN1_ITEM_rptr(PBE2PARAM)); if (pbe2 == NULL) { BIO_puts(bio_err, ", "); goto done; } X509_ALGOR_get0(&aoid, &aparamtype, &aparam, pbe2->keyfunc); pbenid = OBJ_obj2nid(aoid); X509_ALGOR_get0(&aoid, NULL, NULL, pbe2->encryption); encnid = OBJ_obj2nid(aoid); BIO_printf(bio_err, ", %s, %s", OBJ_nid2ln(pbenid), OBJ_nid2sn(encnid)); /* If KDF is PBKDF2 decode parameters */ if (pbenid == NID_id_pbkdf2) { PBKDF2PARAM *kdf = NULL; int prfnid; if (aparamtype == V_ASN1_SEQUENCE) kdf = ASN1_item_unpack(aparam, ASN1_ITEM_rptr(PBKDF2PARAM)); if (kdf == NULL) { BIO_puts(bio_err, ", "); goto done; } if (kdf->prf == NULL) { prfnid = NID_hmacWithSHA1; } else { X509_ALGOR_get0(&aoid, NULL, NULL, kdf->prf); prfnid = OBJ_obj2nid(aoid); } BIO_printf(bio_err, ", Iteration %ld, PRF %s", ASN1_INTEGER_get(kdf->iter), OBJ_nid2sn(prfnid)); PBKDF2PARAM_free(kdf); #ifndef OPENSSL_NO_SCRYPT } else if (pbenid == NID_id_scrypt) { SCRYPT_PARAMS *kdf = NULL; if (aparamtype == V_ASN1_SEQUENCE) kdf = ASN1_item_unpack(aparam, ASN1_ITEM_rptr(SCRYPT_PARAMS)); if (kdf == NULL) { BIO_puts(bio_err, ", "); goto done; } BIO_printf(bio_err, ", Salt length: %d, Cost(N): %ld, " "Block size(r): %ld, Parallelism(p): %ld", ASN1_STRING_length(kdf->salt), ASN1_INTEGER_get(kdf->costParameter), ASN1_INTEGER_get(kdf->blockSize), ASN1_INTEGER_get(kdf->parallelizationParameter)); SCRYPT_PARAMS_free(kdf); #endif } PBE2PARAM_free(pbe2); } else { if (aparamtype == V_ASN1_SEQUENCE) pbe = ASN1_item_unpack(aparam, ASN1_ITEM_rptr(PBEPARAM)); if (pbe == NULL) { BIO_puts(bio_err, ", "); goto done; } BIO_printf(bio_err, ", Iteration %ld", ASN1_INTEGER_get(pbe->iter)); PBEPARAM_free(pbe); } done: BIO_puts(bio_err, "\n"); return 1; } /* Load all certificates from a given file */ int cert_load(BIO *in, STACK_OF(X509) *sk) { int ret; X509 *cert; ret = 0; while ((cert = PEM_read_bio_X509(in, NULL, NULL, NULL))) { ret = 1; sk_X509_push(sk, cert); } if (ret) ERR_clear_error(); return ret; } /* Generalised x509 attribute value print */ void print_attribute(BIO *out, const ASN1_TYPE *av) { char *value; switch (av->type) { case V_ASN1_BMPSTRING: value = OPENSSL_uni2asc(av->value.bmpstring->data, av->value.bmpstring->length); BIO_printf(out, "%s\n", value); OPENSSL_free(value); break; case V_ASN1_OCTET_STRING: hex_prin(out, av->value.octet_string->data, av->value.octet_string->length); BIO_printf(out, "\n"); break; case V_ASN1_BIT_STRING: hex_prin(out, av->value.bit_string->data, av->value.bit_string->length); BIO_printf(out, "\n"); break; default: BIO_printf(out, "\n", av->type); break; } } /* Generalised attribute print: handle PKCS#8 and bag attributes */ int print_attribs(BIO *out, const STACK_OF(X509_ATTRIBUTE) *attrlst, const char *name) { X509_ATTRIBUTE *attr; ASN1_TYPE *av; int i, j, attr_nid; if (!attrlst) { BIO_printf(out, "%s: \n", name); return 1; } if (!sk_X509_ATTRIBUTE_num(attrlst)) { BIO_printf(out, "%s: \n", name); return 1; } BIO_printf(out, "%s\n", name); for (i = 0; i < sk_X509_ATTRIBUTE_num(attrlst); i++) { ASN1_OBJECT *attr_obj; attr = sk_X509_ATTRIBUTE_value(attrlst, i); attr_obj = X509_ATTRIBUTE_get0_object(attr); attr_nid = OBJ_obj2nid(attr_obj); BIO_printf(out, " "); if (attr_nid == NID_undef) { i2a_ASN1_OBJECT(out, attr_obj); BIO_printf(out, ": "); } else { BIO_printf(out, "%s: ", OBJ_nid2ln(attr_nid)); } if (X509_ATTRIBUTE_count(attr)) { for (j = 0; j < X509_ATTRIBUTE_count(attr); j++) { av = X509_ATTRIBUTE_get0_type(attr, j); print_attribute(out, av); } } else { BIO_printf(out, "\n"); } } return 1; } void hex_prin(BIO *out, unsigned char *buf, int len) { int i; for (i = 0; i < len; i++) BIO_printf(out, "%02X ", buf[i]); } static int set_pbe(int *ppbe, const char *str) { if (!str) return 0; if (strcmp(str, "NONE") == 0) { *ppbe = -1; return 1; } *ppbe = OBJ_txt2nid(str); if (*ppbe == NID_undef) { BIO_printf(bio_err, "Unknown PBE algorithm %s\n", str); return 0; } return 1; } #endif openssl-1.1.1f/apps/pkcs7.c000066400000000000000000000126071364063235100155120ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_NOOUT, OPT_TEXT, OPT_PRINT, OPT_PRINT_CERTS, OPT_ENGINE } OPTION_CHOICE; const OPTIONS pkcs7_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format - DER or PEM"}, {"in", OPT_IN, '<', "Input file"}, {"outform", OPT_OUTFORM, 'F', "Output format - DER or PEM"}, {"out", OPT_OUT, '>', "Output file"}, {"noout", OPT_NOOUT, '-', "Don't output encoded data"}, {"text", OPT_TEXT, '-', "Print full details of certificates"}, {"print", OPT_PRINT, '-', "Print out all fields of the PKCS7 structure"}, {"print_certs", OPT_PRINT_CERTS, '-', "Print_certs print any certs or crl in the input"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {NULL} }; int pkcs7_main(int argc, char **argv) { ENGINE *e = NULL; PKCS7 *p7 = NULL; BIO *in = NULL, *out = NULL; int informat = FORMAT_PEM, outformat = FORMAT_PEM; char *infile = NULL, *outfile = NULL, *prog; int i, print_certs = 0, text = 0, noout = 0, p7_print = 0, ret = 1; OPTION_CHOICE o; prog = opt_init(argc, argv, pkcs7_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(pkcs7_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_NOOUT: noout = 1; break; case OPT_TEXT: text = 1; break; case OPT_PRINT: p7_print = 1; break; case OPT_PRINT_CERTS: print_certs = 1; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; if (informat == FORMAT_ASN1) p7 = d2i_PKCS7_bio(in, NULL); else p7 = PEM_read_bio_PKCS7(in, NULL, NULL, NULL); if (p7 == NULL) { BIO_printf(bio_err, "unable to load PKCS7 object\n"); ERR_print_errors(bio_err); goto end; } out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; if (p7_print) PKCS7_print_ctx(out, p7, 0, NULL); if (print_certs) { STACK_OF(X509) *certs = NULL; STACK_OF(X509_CRL) *crls = NULL; i = OBJ_obj2nid(p7->type); switch (i) { case NID_pkcs7_signed: if (p7->d.sign != NULL) { certs = p7->d.sign->cert; crls = p7->d.sign->crl; } break; case NID_pkcs7_signedAndEnveloped: if (p7->d.signed_and_enveloped != NULL) { certs = p7->d.signed_and_enveloped->cert; crls = p7->d.signed_and_enveloped->crl; } break; default: break; } if (certs != NULL) { X509 *x; for (i = 0; i < sk_X509_num(certs); i++) { x = sk_X509_value(certs, i); if (text) X509_print(out, x); else dump_cert_text(out, x); if (!noout) PEM_write_bio_X509(out, x); BIO_puts(out, "\n"); } } if (crls != NULL) { X509_CRL *crl; for (i = 0; i < sk_X509_CRL_num(crls); i++) { crl = sk_X509_CRL_value(crls, i); X509_CRL_print_ex(out, crl, get_nameopt()); if (!noout) PEM_write_bio_X509_CRL(out, crl); BIO_puts(out, "\n"); } } ret = 0; goto end; } if (!noout) { if (outformat == FORMAT_ASN1) i = i2d_PKCS7_bio(out, p7); else i = PEM_write_bio_PKCS7(out, p7); if (!i) { BIO_printf(bio_err, "unable to write pkcs7 object\n"); ERR_print_errors(bio_err); goto end; } } ret = 0; end: PKCS7_free(p7); release_engine(e); BIO_free(in); BIO_free_all(out); return ret; } openssl-1.1.1f/apps/pkcs8.c000066400000000000000000000264171364063235100155170ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_ENGINE, OPT_IN, OPT_OUT, OPT_TOPK8, OPT_NOITER, OPT_NOCRYPT, #ifndef OPENSSL_NO_SCRYPT OPT_SCRYPT, OPT_SCRYPT_N, OPT_SCRYPT_R, OPT_SCRYPT_P, #endif OPT_V2, OPT_V1, OPT_V2PRF, OPT_ITER, OPT_PASSIN, OPT_PASSOUT, OPT_TRADITIONAL, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS pkcs8_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format (DER or PEM)"}, {"outform", OPT_OUTFORM, 'F', "Output format (DER or PEM)"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"topk8", OPT_TOPK8, '-', "Output PKCS8 file"}, {"noiter", OPT_NOITER, '-', "Use 1 as iteration count"}, {"nocrypt", OPT_NOCRYPT, '-', "Use or expect unencrypted private key"}, OPT_R_OPTIONS, {"v2", OPT_V2, 's', "Use PKCS#5 v2.0 and cipher"}, {"v1", OPT_V1, 's', "Use PKCS#5 v1.5 and cipher"}, {"v2prf", OPT_V2PRF, 's', "Set the PRF algorithm to use with PKCS#5 v2.0"}, {"iter", OPT_ITER, 'p', "Specify the iteration count"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"traditional", OPT_TRADITIONAL, '-', "use traditional format private key"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif #ifndef OPENSSL_NO_SCRYPT {"scrypt", OPT_SCRYPT, '-', "Use scrypt algorithm"}, {"scrypt_N", OPT_SCRYPT_N, 's', "Set scrypt N parameter"}, {"scrypt_r", OPT_SCRYPT_R, 's', "Set scrypt r parameter"}, {"scrypt_p", OPT_SCRYPT_P, 's', "Set scrypt p parameter"}, #endif {NULL} }; int pkcs8_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; ENGINE *e = NULL; EVP_PKEY *pkey = NULL; PKCS8_PRIV_KEY_INFO *p8inf = NULL; X509_SIG *p8 = NULL; const EVP_CIPHER *cipher = NULL; char *infile = NULL, *outfile = NULL; char *passinarg = NULL, *passoutarg = NULL, *prog; #ifndef OPENSSL_NO_UI_CONSOLE char pass[APP_PASS_LEN]; #endif char *passin = NULL, *passout = NULL, *p8pass = NULL; OPTION_CHOICE o; int nocrypt = 0, ret = 1, iter = PKCS12_DEFAULT_ITER; int informat = FORMAT_PEM, outformat = FORMAT_PEM, topk8 = 0, pbe_nid = -1; int private = 0, traditional = 0; #ifndef OPENSSL_NO_SCRYPT long scrypt_N = 0, scrypt_r = 0, scrypt_p = 0; #endif prog = opt_init(argc, argv, pkcs8_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(pkcs8_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_TOPK8: topk8 = 1; break; case OPT_NOITER: iter = 1; break; case OPT_NOCRYPT: nocrypt = 1; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_TRADITIONAL: traditional = 1; break; case OPT_V2: if (!opt_cipher(opt_arg(), &cipher)) goto opthelp; break; case OPT_V1: pbe_nid = OBJ_txt2nid(opt_arg()); if (pbe_nid == NID_undef) { BIO_printf(bio_err, "%s: Unknown PBE algorithm %s\n", prog, opt_arg()); goto opthelp; } break; case OPT_V2PRF: pbe_nid = OBJ_txt2nid(opt_arg()); if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, pbe_nid, NULL, NULL, 0)) { BIO_printf(bio_err, "%s: Unknown PRF algorithm %s\n", prog, opt_arg()); goto opthelp; } if (cipher == NULL) cipher = EVP_aes_256_cbc(); break; case OPT_ITER: if (!opt_int(opt_arg(), &iter)) goto opthelp; break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; #ifndef OPENSSL_NO_SCRYPT case OPT_SCRYPT: scrypt_N = 16384; scrypt_r = 8; scrypt_p = 1; if (cipher == NULL) cipher = EVP_aes_256_cbc(); break; case OPT_SCRYPT_N: if (!opt_long(opt_arg(), &scrypt_N) || scrypt_N <= 0) goto opthelp; break; case OPT_SCRYPT_R: if (!opt_long(opt_arg(), &scrypt_r) || scrypt_r <= 0) goto opthelp; break; case OPT_SCRYPT_P: if (!opt_long(opt_arg(), &scrypt_p) || scrypt_p <= 0) goto opthelp; break; #endif } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = 1; if (!app_passwd(passinarg, passoutarg, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } if ((pbe_nid == -1) && cipher == NULL) cipher = EVP_aes_256_cbc(); in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; if (topk8) { pkey = load_key(infile, informat, 1, passin, e, "key"); if (pkey == NULL) goto end; if ((p8inf = EVP_PKEY2PKCS8(pkey)) == NULL) { BIO_printf(bio_err, "Error converting key\n"); ERR_print_errors(bio_err); goto end; } if (nocrypt) { assert(private); if (outformat == FORMAT_PEM) { PEM_write_bio_PKCS8_PRIV_KEY_INFO(out, p8inf); } else if (outformat == FORMAT_ASN1) { i2d_PKCS8_PRIV_KEY_INFO_bio(out, p8inf); } else { BIO_printf(bio_err, "Bad format specified for key\n"); goto end; } } else { X509_ALGOR *pbe; if (cipher) { #ifndef OPENSSL_NO_SCRYPT if (scrypt_N && scrypt_r && scrypt_p) pbe = PKCS5_pbe2_set_scrypt(cipher, NULL, 0, NULL, scrypt_N, scrypt_r, scrypt_p); else #endif pbe = PKCS5_pbe2_set_iv(cipher, iter, NULL, 0, NULL, pbe_nid); } else { pbe = PKCS5_pbe_set(pbe_nid, iter, NULL, 0); } if (pbe == NULL) { BIO_printf(bio_err, "Error setting PBE algorithm\n"); ERR_print_errors(bio_err); goto end; } if (passout != NULL) { p8pass = passout; } else if (1) { /* To avoid bit rot */ #ifndef OPENSSL_NO_UI_CONSOLE p8pass = pass; if (EVP_read_pw_string (pass, sizeof(pass), "Enter Encryption Password:", 1)) { X509_ALGOR_free(pbe); goto end; } } else { #endif BIO_printf(bio_err, "Password required\n"); goto end; } p8 = PKCS8_set0_pbe(p8pass, strlen(p8pass), p8inf, pbe); if (p8 == NULL) { X509_ALGOR_free(pbe); BIO_printf(bio_err, "Error encrypting key\n"); ERR_print_errors(bio_err); goto end; } assert(private); if (outformat == FORMAT_PEM) PEM_write_bio_PKCS8(out, p8); else if (outformat == FORMAT_ASN1) i2d_PKCS8_bio(out, p8); else { BIO_printf(bio_err, "Bad format specified for key\n"); goto end; } } ret = 0; goto end; } if (nocrypt) { if (informat == FORMAT_PEM) { p8inf = PEM_read_bio_PKCS8_PRIV_KEY_INFO(in, NULL, NULL, NULL); } else if (informat == FORMAT_ASN1) { p8inf = d2i_PKCS8_PRIV_KEY_INFO_bio(in, NULL); } else { BIO_printf(bio_err, "Bad format specified for key\n"); goto end; } } else { if (informat == FORMAT_PEM) { p8 = PEM_read_bio_PKCS8(in, NULL, NULL, NULL); } else if (informat == FORMAT_ASN1) { p8 = d2i_PKCS8_bio(in, NULL); } else { BIO_printf(bio_err, "Bad format specified for key\n"); goto end; } if (p8 == NULL) { BIO_printf(bio_err, "Error reading key\n"); ERR_print_errors(bio_err); goto end; } if (passin != NULL) { p8pass = passin; } else if (1) { #ifndef OPENSSL_NO_UI_CONSOLE p8pass = pass; if (EVP_read_pw_string(pass, sizeof(pass), "Enter Password:", 0)) { BIO_printf(bio_err, "Can't read Password\n"); goto end; } } else { #endif BIO_printf(bio_err, "Password required\n"); goto end; } p8inf = PKCS8_decrypt(p8, p8pass, strlen(p8pass)); } if (p8inf == NULL) { BIO_printf(bio_err, "Error decrypting key\n"); ERR_print_errors(bio_err); goto end; } if ((pkey = EVP_PKCS82PKEY(p8inf)) == NULL) { BIO_printf(bio_err, "Error converting key\n"); ERR_print_errors(bio_err); goto end; } assert(private); if (outformat == FORMAT_PEM) { if (traditional) PEM_write_bio_PrivateKey_traditional(out, pkey, NULL, NULL, 0, NULL, passout); else PEM_write_bio_PrivateKey(out, pkey, NULL, NULL, 0, NULL, passout); } else if (outformat == FORMAT_ASN1) { i2d_PrivateKey_bio(out, pkey); } else { BIO_printf(bio_err, "Bad format specified for key\n"); goto end; } ret = 0; end: X509_SIG_free(p8); PKCS8_PRIV_KEY_INFO_free(p8inf); EVP_PKEY_free(pkey); release_engine(e); BIO_free_all(out); BIO_free(in); OPENSSL_free(passin); OPENSSL_free(passout); return ret; } openssl-1.1.1f/apps/pkey.c000066400000000000000000000163641364063235100154370ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "apps.h" #include "progs.h" #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_PASSIN, OPT_PASSOUT, OPT_ENGINE, OPT_IN, OPT_OUT, OPT_PUBIN, OPT_PUBOUT, OPT_TEXT_PUB, OPT_TEXT, OPT_NOOUT, OPT_MD, OPT_TRADITIONAL, OPT_CHECK, OPT_PUB_CHECK } OPTION_CHOICE; const OPTIONS pkey_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'f', "Input format (DER or PEM)"}, {"outform", OPT_OUTFORM, 'F', "Output format (DER or PEM)"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"in", OPT_IN, 's', "Input key"}, {"out", OPT_OUT, '>', "Output file"}, {"pubin", OPT_PUBIN, '-', "Read public key from input (default is private key)"}, {"pubout", OPT_PUBOUT, '-', "Output public key, not private"}, {"text_pub", OPT_TEXT_PUB, '-', "Only output public key components"}, {"text", OPT_TEXT, '-', "Output in plaintext as well"}, {"noout", OPT_NOOUT, '-', "Don't output the key"}, {"", OPT_MD, '-', "Any supported cipher"}, {"traditional", OPT_TRADITIONAL, '-', "Use traditional format for private keys"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"check", OPT_CHECK, '-', "Check key consistency"}, {"pubcheck", OPT_PUB_CHECK, '-', "Check public key consistency"}, {NULL} }; int pkey_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; ENGINE *e = NULL; EVP_PKEY *pkey = NULL; const EVP_CIPHER *cipher = NULL; char *infile = NULL, *outfile = NULL, *passin = NULL, *passout = NULL; char *passinarg = NULL, *passoutarg = NULL, *prog; OPTION_CHOICE o; int informat = FORMAT_PEM, outformat = FORMAT_PEM; int pubin = 0, pubout = 0, pubtext = 0, text = 0, noout = 0, ret = 1; int private = 0, traditional = 0, check = 0, pub_check = 0; prog = opt_init(argc, argv, pkey_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(pkey_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &informat)) goto opthelp; break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_PUBIN: pubin = pubout = pubtext = 1; break; case OPT_PUBOUT: pubout = 1; break; case OPT_TEXT_PUB: pubtext = text = 1; break; case OPT_TEXT: text = 1; break; case OPT_NOOUT: noout = 1; break; case OPT_TRADITIONAL: traditional = 1; break; case OPT_CHECK: check = 1; break; case OPT_PUB_CHECK: pub_check = 1; break; case OPT_MD: if (!opt_cipher(opt_unknown(), &cipher)) goto opthelp; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = !noout && !pubout ? 1 : 0; if (text && !pubtext) private = 1; if (!app_passwd(passinarg, passoutarg, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; if (pubin) pkey = load_pubkey(infile, informat, 1, passin, e, "Public Key"); else pkey = load_key(infile, informat, 1, passin, e, "key"); if (pkey == NULL) goto end; if (check || pub_check) { int r; EVP_PKEY_CTX *ctx; ctx = EVP_PKEY_CTX_new(pkey, e); if (ctx == NULL) { ERR_print_errors(bio_err); goto end; } if (check) r = EVP_PKEY_check(ctx); else r = EVP_PKEY_public_check(ctx); if (r == 1) { BIO_printf(out, "Key is valid\n"); } else { /* * Note: at least for RSA keys if this function returns * -1, there will be no error reasons. */ unsigned long err; BIO_printf(out, "Key is invalid\n"); while ((err = ERR_peek_error()) != 0) { BIO_printf(out, "Detailed error: %s\n", ERR_reason_error_string(err)); ERR_get_error(); /* remove err from error stack */ } } EVP_PKEY_CTX_free(ctx); } if (!noout) { if (outformat == FORMAT_PEM) { if (pubout) { if (!PEM_write_bio_PUBKEY(out, pkey)) goto end; } else { assert(private); if (traditional) { if (!PEM_write_bio_PrivateKey_traditional(out, pkey, cipher, NULL, 0, NULL, passout)) goto end; } else { if (!PEM_write_bio_PrivateKey(out, pkey, cipher, NULL, 0, NULL, passout)) goto end; } } } else if (outformat == FORMAT_ASN1) { if (pubout) { if (!i2d_PUBKEY_bio(out, pkey)) goto end; } else { assert(private); if (!i2d_PrivateKey_bio(out, pkey)) goto end; } } else { BIO_printf(bio_err, "Bad format specified for key\n"); goto end; } } if (text) { if (pubtext) { if (EVP_PKEY_print_public(out, pkey, 0, NULL) <= 0) goto end; } else { assert(private); if (EVP_PKEY_print_private(out, pkey, 0, NULL) <= 0) goto end; } } ret = 0; end: if (ret != 0) ERR_print_errors(bio_err); EVP_PKEY_free(pkey); release_engine(e); BIO_free_all(out); BIO_free(in); OPENSSL_free(passin); OPENSSL_free(passout); return ret; } openssl-1.1.1f/apps/pkeyparam.c000066400000000000000000000072461364063235100164570ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "apps.h" #include "progs.h" #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_IN, OPT_OUT, OPT_TEXT, OPT_NOOUT, OPT_ENGINE, OPT_CHECK } OPTION_CHOICE; const OPTIONS pkeyparam_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"text", OPT_TEXT, '-', "Print parameters as text"}, {"noout", OPT_NOOUT, '-', "Don't output encoded parameters"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"check", OPT_CHECK, '-', "Check key param consistency"}, {NULL} }; int pkeyparam_main(int argc, char **argv) { ENGINE *e = NULL; BIO *in = NULL, *out = NULL; EVP_PKEY *pkey = NULL; int text = 0, noout = 0, ret = 1, check = 0; OPTION_CHOICE o; char *infile = NULL, *outfile = NULL, *prog; prog = opt_init(argc, argv, pkeyparam_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(pkeyparam_options); ret = 0; goto end; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_TEXT: text = 1; break; case OPT_NOOUT: noout = 1; break; case OPT_CHECK: check = 1; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; in = bio_open_default(infile, 'r', FORMAT_PEM); if (in == NULL) goto end; out = bio_open_default(outfile, 'w', FORMAT_PEM); if (out == NULL) goto end; pkey = PEM_read_bio_Parameters(in, NULL); if (pkey == NULL) { BIO_printf(bio_err, "Error reading parameters\n"); ERR_print_errors(bio_err); goto end; } if (check) { int r; EVP_PKEY_CTX *ctx; ctx = EVP_PKEY_CTX_new(pkey, e); if (ctx == NULL) { ERR_print_errors(bio_err); goto end; } r = EVP_PKEY_param_check(ctx); if (r == 1) { BIO_printf(out, "Parameters are valid\n"); } else { /* * Note: at least for RSA keys if this function returns * -1, there will be no error reasons. */ unsigned long err; BIO_printf(out, "Parameters are invalid\n"); while ((err = ERR_peek_error()) != 0) { BIO_printf(out, "Detailed error: %s\n", ERR_reason_error_string(err)); ERR_get_error(); /* remove err from error stack */ } } EVP_PKEY_CTX_free(ctx); } if (!noout) PEM_write_bio_Parameters(out, pkey); if (text) EVP_PKEY_print_params(out, pkey, 0, NULL); ret = 0; end: EVP_PKEY_free(pkey); release_engine(e); BIO_free_all(out); BIO_free(in); return ret; } openssl-1.1.1f/apps/pkeyutl.c000066400000000000000000000371221364063235100161570ustar00rootroot00000000000000/* * Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "apps.h" #include "progs.h" #include #include #include #include #define KEY_NONE 0 #define KEY_PRIVKEY 1 #define KEY_PUBKEY 2 #define KEY_CERT 3 static EVP_PKEY_CTX *init_ctx(const char *kdfalg, int *pkeysize, const char *keyfile, int keyform, int key_type, char *passinarg, int pkey_op, ENGINE *e, const int impl); static int setup_peer(EVP_PKEY_CTX *ctx, int peerform, const char *file, ENGINE *e); static int do_keyop(EVP_PKEY_CTX *ctx, int pkey_op, unsigned char *out, size_t *poutlen, const unsigned char *in, size_t inlen); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_ENGINE_IMPL, OPT_IN, OPT_OUT, OPT_PUBIN, OPT_CERTIN, OPT_ASN1PARSE, OPT_HEXDUMP, OPT_SIGN, OPT_VERIFY, OPT_VERIFYRECOVER, OPT_REV, OPT_ENCRYPT, OPT_DECRYPT, OPT_DERIVE, OPT_SIGFILE, OPT_INKEY, OPT_PEERKEY, OPT_PASSIN, OPT_PEERFORM, OPT_KEYFORM, OPT_PKEYOPT, OPT_KDF, OPT_KDFLEN, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS pkeyutl_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"in", OPT_IN, '<', "Input file - default stdin"}, {"out", OPT_OUT, '>', "Output file - default stdout"}, {"pubin", OPT_PUBIN, '-', "Input is a public key"}, {"certin", OPT_CERTIN, '-', "Input is a cert with a public key"}, {"asn1parse", OPT_ASN1PARSE, '-', "asn1parse the output data"}, {"hexdump", OPT_HEXDUMP, '-', "Hex dump output"}, {"sign", OPT_SIGN, '-', "Sign input data with private key"}, {"verify", OPT_VERIFY, '-', "Verify with public key"}, {"verifyrecover", OPT_VERIFYRECOVER, '-', "Verify with public key, recover original data"}, {"rev", OPT_REV, '-', "Reverse the order of the input buffer"}, {"encrypt", OPT_ENCRYPT, '-', "Encrypt input data with public key"}, {"decrypt", OPT_DECRYPT, '-', "Decrypt input data with private key"}, {"derive", OPT_DERIVE, '-', "Derive shared secret"}, {"kdf", OPT_KDF, 's', "Use KDF algorithm"}, {"kdflen", OPT_KDFLEN, 'p', "KDF algorithm output length"}, {"sigfile", OPT_SIGFILE, '<', "Signature file (verify operation only)"}, {"inkey", OPT_INKEY, 's', "Input private key file"}, {"peerkey", OPT_PEERKEY, 's', "Peer key file used in key derivation"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"peerform", OPT_PEERFORM, 'E', "Peer key format - default PEM"}, {"keyform", OPT_KEYFORM, 'E', "Private key format - default PEM"}, {"pkeyopt", OPT_PKEYOPT, 's', "Public key options as opt:value"}, OPT_R_OPTIONS, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, {"engine_impl", OPT_ENGINE_IMPL, '-', "Also use engine given by -engine for crypto operations"}, #endif {NULL} }; int pkeyutl_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; ENGINE *e = NULL; EVP_PKEY_CTX *ctx = NULL; char *infile = NULL, *outfile = NULL, *sigfile = NULL, *passinarg = NULL; char hexdump = 0, asn1parse = 0, rev = 0, *prog; unsigned char *buf_in = NULL, *buf_out = NULL, *sig = NULL; OPTION_CHOICE o; int buf_inlen = 0, siglen = -1, keyform = FORMAT_PEM, peerform = FORMAT_PEM; int keysize = -1, pkey_op = EVP_PKEY_OP_SIGN, key_type = KEY_PRIVKEY; int engine_impl = 0; int ret = 1, rv = -1; size_t buf_outlen; const char *inkey = NULL; const char *peerkey = NULL; const char *kdfalg = NULL; int kdflen = 0; STACK_OF(OPENSSL_STRING) *pkeyopts = NULL; prog = opt_init(argc, argv, pkeyutl_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(pkeyutl_options); ret = 0; goto end; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_SIGFILE: sigfile = opt_arg(); break; case OPT_ENGINE_IMPL: engine_impl = 1; break; case OPT_INKEY: inkey = opt_arg(); break; case OPT_PEERKEY: peerkey = opt_arg(); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PEERFORM: if (!opt_format(opt_arg(), OPT_FMT_PDE, &peerform)) goto opthelp; break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PDE, &keyform)) goto opthelp; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_PUBIN: key_type = KEY_PUBKEY; break; case OPT_CERTIN: key_type = KEY_CERT; break; case OPT_ASN1PARSE: asn1parse = 1; break; case OPT_HEXDUMP: hexdump = 1; break; case OPT_SIGN: pkey_op = EVP_PKEY_OP_SIGN; break; case OPT_VERIFY: pkey_op = EVP_PKEY_OP_VERIFY; break; case OPT_VERIFYRECOVER: pkey_op = EVP_PKEY_OP_VERIFYRECOVER; break; case OPT_ENCRYPT: pkey_op = EVP_PKEY_OP_ENCRYPT; break; case OPT_DECRYPT: pkey_op = EVP_PKEY_OP_DECRYPT; break; case OPT_DERIVE: pkey_op = EVP_PKEY_OP_DERIVE; break; case OPT_KDF: pkey_op = EVP_PKEY_OP_DERIVE; key_type = KEY_NONE; kdfalg = opt_arg(); break; case OPT_KDFLEN: kdflen = atoi(opt_arg()); break; case OPT_REV: rev = 1; break; case OPT_PKEYOPT: if ((pkeyopts == NULL && (pkeyopts = sk_OPENSSL_STRING_new_null()) == NULL) || sk_OPENSSL_STRING_push(pkeyopts, opt_arg()) == 0) { BIO_puts(bio_err, "out of memory\n"); goto end; } break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; if (kdfalg != NULL) { if (kdflen == 0) { BIO_printf(bio_err, "%s: no KDF length given (-kdflen parameter).\n", prog); goto opthelp; } } else if (inkey == NULL) { BIO_printf(bio_err, "%s: no private key given (-inkey parameter).\n", prog); goto opthelp; } else if (peerkey != NULL && pkey_op != EVP_PKEY_OP_DERIVE) { BIO_printf(bio_err, "%s: no peer key given (-peerkey parameter).\n", prog); goto opthelp; } ctx = init_ctx(kdfalg, &keysize, inkey, keyform, key_type, passinarg, pkey_op, e, engine_impl); if (ctx == NULL) { BIO_printf(bio_err, "%s: Error initializing context\n", prog); ERR_print_errors(bio_err); goto end; } if (peerkey != NULL && !setup_peer(ctx, peerform, peerkey, e)) { BIO_printf(bio_err, "%s: Error setting up peer key\n", prog); ERR_print_errors(bio_err); goto end; } if (pkeyopts != NULL) { int num = sk_OPENSSL_STRING_num(pkeyopts); int i; for (i = 0; i < num; ++i) { const char *opt = sk_OPENSSL_STRING_value(pkeyopts, i); if (pkey_ctrl_string(ctx, opt) <= 0) { BIO_printf(bio_err, "%s: Can't set parameter \"%s\":\n", prog, opt); ERR_print_errors(bio_err); goto end; } } } if (sigfile != NULL && (pkey_op != EVP_PKEY_OP_VERIFY)) { BIO_printf(bio_err, "%s: Signature file specified for non verify\n", prog); goto end; } if (sigfile == NULL && (pkey_op == EVP_PKEY_OP_VERIFY)) { BIO_printf(bio_err, "%s: No signature file specified for verify\n", prog); goto end; } if (pkey_op != EVP_PKEY_OP_DERIVE) { in = bio_open_default(infile, 'r', FORMAT_BINARY); if (in == NULL) goto end; } out = bio_open_default(outfile, 'w', FORMAT_BINARY); if (out == NULL) goto end; if (sigfile != NULL) { BIO *sigbio = BIO_new_file(sigfile, "rb"); if (sigbio == NULL) { BIO_printf(bio_err, "Can't open signature file %s\n", sigfile); goto end; } siglen = bio_to_mem(&sig, keysize * 10, sigbio); BIO_free(sigbio); if (siglen < 0) { BIO_printf(bio_err, "Error reading signature data\n"); goto end; } } if (in != NULL) { /* Read the input data */ buf_inlen = bio_to_mem(&buf_in, keysize * 10, in); if (buf_inlen < 0) { BIO_printf(bio_err, "Error reading input Data\n"); goto end; } if (rev) { size_t i; unsigned char ctmp; size_t l = (size_t)buf_inlen; for (i = 0; i < l / 2; i++) { ctmp = buf_in[i]; buf_in[i] = buf_in[l - 1 - i]; buf_in[l - 1 - i] = ctmp; } } } /* Sanity check the input */ if (buf_inlen > EVP_MAX_MD_SIZE && (pkey_op == EVP_PKEY_OP_SIGN || pkey_op == EVP_PKEY_OP_VERIFY)) { BIO_printf(bio_err, "Error: The input data looks too long to be a hash\n"); goto end; } if (pkey_op == EVP_PKEY_OP_VERIFY) { rv = EVP_PKEY_verify(ctx, sig, (size_t)siglen, buf_in, (size_t)buf_inlen); if (rv == 1) { BIO_puts(out, "Signature Verified Successfully\n"); ret = 0; } else { BIO_puts(out, "Signature Verification Failure\n"); } goto end; } if (kdflen != 0) { buf_outlen = kdflen; rv = 1; } else { rv = do_keyop(ctx, pkey_op, NULL, (size_t *)&buf_outlen, buf_in, (size_t)buf_inlen); } if (rv > 0 && buf_outlen != 0) { buf_out = app_malloc(buf_outlen, "buffer output"); rv = do_keyop(ctx, pkey_op, buf_out, (size_t *)&buf_outlen, buf_in, (size_t)buf_inlen); } if (rv <= 0) { if (pkey_op != EVP_PKEY_OP_DERIVE) { BIO_puts(bio_err, "Public Key operation error\n"); } else { BIO_puts(bio_err, "Key derivation failed\n"); } ERR_print_errors(bio_err); goto end; } ret = 0; if (asn1parse) { if (!ASN1_parse_dump(out, buf_out, buf_outlen, 1, -1)) ERR_print_errors(bio_err); } else if (hexdump) { BIO_dump(out, (char *)buf_out, buf_outlen); } else { BIO_write(out, buf_out, buf_outlen); } end: EVP_PKEY_CTX_free(ctx); release_engine(e); BIO_free(in); BIO_free_all(out); OPENSSL_free(buf_in); OPENSSL_free(buf_out); OPENSSL_free(sig); sk_OPENSSL_STRING_free(pkeyopts); return ret; } static EVP_PKEY_CTX *init_ctx(const char *kdfalg, int *pkeysize, const char *keyfile, int keyform, int key_type, char *passinarg, int pkey_op, ENGINE *e, const int engine_impl) { EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *ctx = NULL; ENGINE *impl = NULL; char *passin = NULL; int rv = -1; X509 *x; if (((pkey_op == EVP_PKEY_OP_SIGN) || (pkey_op == EVP_PKEY_OP_DECRYPT) || (pkey_op == EVP_PKEY_OP_DERIVE)) && (key_type != KEY_PRIVKEY && kdfalg == NULL)) { BIO_printf(bio_err, "A private key is needed for this operation\n"); goto end; } if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } switch (key_type) { case KEY_PRIVKEY: pkey = load_key(keyfile, keyform, 0, passin, e, "Private Key"); break; case KEY_PUBKEY: pkey = load_pubkey(keyfile, keyform, 0, NULL, e, "Public Key"); break; case KEY_CERT: x = load_cert(keyfile, keyform, "Certificate"); if (x) { pkey = X509_get_pubkey(x); X509_free(x); } break; case KEY_NONE: break; } #ifndef OPENSSL_NO_ENGINE if (engine_impl) impl = e; #endif if (kdfalg != NULL) { int kdfnid = OBJ_sn2nid(kdfalg); if (kdfnid == NID_undef) { kdfnid = OBJ_ln2nid(kdfalg); if (kdfnid == NID_undef) { BIO_printf(bio_err, "The given KDF \"%s\" is unknown.\n", kdfalg); goto end; } } ctx = EVP_PKEY_CTX_new_id(kdfnid, impl); } else { if (pkey == NULL) goto end; *pkeysize = EVP_PKEY_size(pkey); ctx = EVP_PKEY_CTX_new(pkey, impl); EVP_PKEY_free(pkey); } if (ctx == NULL) goto end; switch (pkey_op) { case EVP_PKEY_OP_SIGN: rv = EVP_PKEY_sign_init(ctx); break; case EVP_PKEY_OP_VERIFY: rv = EVP_PKEY_verify_init(ctx); break; case EVP_PKEY_OP_VERIFYRECOVER: rv = EVP_PKEY_verify_recover_init(ctx); break; case EVP_PKEY_OP_ENCRYPT: rv = EVP_PKEY_encrypt_init(ctx); break; case EVP_PKEY_OP_DECRYPT: rv = EVP_PKEY_decrypt_init(ctx); break; case EVP_PKEY_OP_DERIVE: rv = EVP_PKEY_derive_init(ctx); break; } if (rv <= 0) { EVP_PKEY_CTX_free(ctx); ctx = NULL; } end: OPENSSL_free(passin); return ctx; } static int setup_peer(EVP_PKEY_CTX *ctx, int peerform, const char *file, ENGINE *e) { EVP_PKEY *peer = NULL; ENGINE *engine = NULL; int ret; if (peerform == FORMAT_ENGINE) engine = e; peer = load_pubkey(file, peerform, 0, NULL, engine, "Peer Key"); if (peer == NULL) { BIO_printf(bio_err, "Error reading peer key %s\n", file); ERR_print_errors(bio_err); return 0; } ret = EVP_PKEY_derive_set_peer(ctx, peer); EVP_PKEY_free(peer); if (ret <= 0) ERR_print_errors(bio_err); return ret; } static int do_keyop(EVP_PKEY_CTX *ctx, int pkey_op, unsigned char *out, size_t *poutlen, const unsigned char *in, size_t inlen) { int rv = 0; switch (pkey_op) { case EVP_PKEY_OP_VERIFYRECOVER: rv = EVP_PKEY_verify_recover(ctx, out, poutlen, in, inlen); break; case EVP_PKEY_OP_SIGN: rv = EVP_PKEY_sign(ctx, out, poutlen, in, inlen); break; case EVP_PKEY_OP_ENCRYPT: rv = EVP_PKEY_encrypt(ctx, out, poutlen, in, inlen); break; case EVP_PKEY_OP_DECRYPT: rv = EVP_PKEY_decrypt(ctx, out, poutlen, in, inlen); break; case EVP_PKEY_OP_DERIVE: rv = EVP_PKEY_derive(ctx, out, poutlen); break; } return rv; } openssl-1.1.1f/apps/prime.c000066400000000000000000000070711364063235100155760ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "apps.h" #include "progs.h" #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_HEX, OPT_GENERATE, OPT_BITS, OPT_SAFE, OPT_CHECKS } OPTION_CHOICE; const OPTIONS prime_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] [number...]\n"}, {OPT_HELP_STR, 1, '-', " number Number to check for primality\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"hex", OPT_HEX, '-', "Hex output"}, {"generate", OPT_GENERATE, '-', "Generate a prime"}, {"bits", OPT_BITS, 'p', "Size of number in bits"}, {"safe", OPT_SAFE, '-', "When used with -generate, generate a safe prime"}, {"checks", OPT_CHECKS, 'p', "Number of checks"}, {NULL} }; int prime_main(int argc, char **argv) { BIGNUM *bn = NULL; int hex = 0, checks = 20, generate = 0, bits = 0, safe = 0, ret = 1; char *prog; OPTION_CHOICE o; prog = opt_init(argc, argv, prime_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(prime_options); ret = 0; goto end; case OPT_HEX: hex = 1; break; case OPT_GENERATE: generate = 1; break; case OPT_BITS: bits = atoi(opt_arg()); break; case OPT_SAFE: safe = 1; break; case OPT_CHECKS: checks = atoi(opt_arg()); break; } } argc = opt_num_rest(); argv = opt_rest(); if (generate) { if (argc != 0) { BIO_printf(bio_err, "Extra arguments given.\n"); goto opthelp; } } else if (argc == 0) { BIO_printf(bio_err, "%s: No prime specified\n", prog); goto opthelp; } if (generate) { char *s; if (!bits) { BIO_printf(bio_err, "Specify the number of bits.\n"); goto end; } bn = BN_new(); if (bn == NULL) { BIO_printf(bio_err, "Out of memory.\n"); goto end; } if (!BN_generate_prime_ex(bn, bits, safe, NULL, NULL, NULL)) { BIO_printf(bio_err, "Failed to generate prime.\n"); goto end; } s = hex ? BN_bn2hex(bn) : BN_bn2dec(bn); if (s == NULL) { BIO_printf(bio_err, "Out of memory.\n"); goto end; } BIO_printf(bio_out, "%s\n", s); OPENSSL_free(s); } else { for ( ; *argv; argv++) { int r; if (hex) r = BN_hex2bn(&bn, argv[0]); else r = BN_dec2bn(&bn, argv[0]); if (!r) { BIO_printf(bio_err, "Failed to process value (%s)\n", argv[0]); goto end; } BN_print(bio_out, bn); BIO_printf(bio_out, " (%s) %s prime\n", argv[0], BN_is_prime_ex(bn, checks, NULL, NULL) ? "is" : "is not"); } } ret = 0; end: BN_free(bn); return ret; } openssl-1.1.1f/apps/privkey.pem000066400000000000000000000016241364063235100165100ustar00rootroot00000000000000-----BEGIN PRIVATE KEY----- MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBAMo7DFNMqywUA1O/ qvWqCOm6rGrUAcR+dKsSXw6y2qiKO7APDDyotc0b4Mxwqjga98npex2RBIwUoCGJ iEmMXo/a8RbXVUZ+ZwcAX7PC+XeXVC5qoajaBBkd2MvYmib/2PqnNrgvhHsUL5dO xhC7cRqxLM/g45k3Yyw+nGa+WkTdAgMBAAECgYBMBT5w4dVG0I8foGFnz+9hzWab Ee9IKjE5TcKmB93ilXQyjrWO5+zPmbc7ou6aAKk9IaPCTY1kCyzW7pho7Xdt+RFq TgVXGZZfqtixO7f2/5oqZAkd00eOn9ZrhBpVMu4yXbbDvhDyFe4/oy0HGDjRUhxa Lf6ZlBuTherxm4eFkQJBAPBQwRs9UtqaMAQlagA9pV5UsQjV1WT4IxDURMPfXgCd ETNkB6pP0SmxQm5xhv9N2HY1UtoWpug9s0OU5IJB15sCQQDXbfbjiujNbuOxCFNw 68JZaCFVdNovyOWORkpenQLNEjVkmTCS9OayK09ADEYtsdpUGKeF+2EYBNkFr5px CajnAkBMYI4PNz1HBuwt1SpMa0tMoMQnV7bbwVV7usskKbC5pzHZUHhzM6z5gEHp 0iEisT4Ty7zKXZqsgzefSgoaMAzzAkEAoCIaUhtwXzwdPfvNYnOs3J6doJMimECB +lbfcyLM8TimvadtRt+KGEg/OYGmLNM2UiqdY+duzdbUpvhYGcwvYwJAQvaoi9z2 CkiwSs/PFrLaNlfLJmXRsUBzmiWYoh6+IQJJorEXz7ewI72ee9RBO4s746cgUFwH Ri+qO+HhZFUBqQ== -----END PRIVATE KEY----- openssl-1.1.1f/apps/progs.pl000066400000000000000000000126721364063235100160100ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Generate progs.h file by looking for command mains in list of C files # passed on the command line. use strict; use warnings; use lib '.'; use configdata qw/@disablables %unified_info/; my %commands = (); my $cmdre = qr/^\s*int\s+([a-z_][a-z0-9_]*)_main\(\s*int\s+argc\s*,/; my $apps_openssl = shift @ARGV; my $YEAR = [localtime()]->[5] + 1900; # because the program apps/openssl has object files as sources, and # they then have the corresponding C files as source, we need to chain # the lookups in %unified_info my @openssl_source = map { @{$unified_info{sources}->{$_}} } grep { /\.o$/ } @{$unified_info{sources}->{$apps_openssl}}; foreach my $filename (@openssl_source) { open F, $filename or die "Couldn't open $filename: $!\n"; foreach ( grep /$cmdre/, ) { my @foo = /$cmdre/; $commands{$1} = 1; } close F; } @ARGV = sort keys %commands; print <<"EOF"; /* * WARNING: do not edit! * Generated by apps/progs.pl * * Copyright 1995-$YEAR The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ typedef enum FUNC_TYPE { FT_none, FT_general, FT_md, FT_cipher, FT_pkey, FT_md_alg, FT_cipher_alg } FUNC_TYPE; typedef struct function_st { FUNC_TYPE type; const char *name; int (*func)(int argc, char *argv[]); const OPTIONS *help; } FUNCTION; DEFINE_LHASH_OF(FUNCTION); EOF foreach (@ARGV) { printf "extern int %s_main(int argc, char *argv[]);\n", $_; } print "\n"; foreach (@ARGV) { printf "extern const OPTIONS %s_options[];\n", $_; } print "\n"; my %cmd_disabler = ( ciphers => "sock", genrsa => "rsa", rsautl => "rsa", gendsa => "dsa", dsaparam => "dsa", gendh => "dh", dhparam => "dh", ecparam => "ec", pkcs12 => "des", ); print "#ifdef INCLUDE_FUNCTION_TABLE\n"; print "static FUNCTION functions[] = {\n"; foreach my $cmd ( @ARGV ) { my $str = " {FT_general, \"$cmd\", ${cmd}_main, ${cmd}_options},\n"; if ($cmd =~ /^s_/) { print "#ifndef OPENSSL_NO_SOCK\n${str}#endif\n"; } elsif (grep { $cmd eq $_ } @disablables) { print "#ifndef OPENSSL_NO_" . uc($cmd) . "\n${str}#endif\n"; } elsif (my $disabler = $cmd_disabler{$cmd}) { print "#ifndef OPENSSL_NO_" . uc($disabler) . "\n${str}#endif\n"; } else { print $str; } } my %md_disabler = ( blake2b512 => "blake2", blake2s256 => "blake2", ); foreach my $cmd ( "md2", "md4", "md5", "gost", "sha1", "sha224", "sha256", "sha384", "sha512", "sha512-224", "sha512-256", "sha3-224", "sha3-256", "sha3-384", "sha3-512", "shake128", "shake256", "mdc2", "rmd160", "blake2b512", "blake2s256", "sm3" ) { my $str = " {FT_md, \"$cmd\", dgst_main},\n"; if (grep { $cmd eq $_ } @disablables) { print "#ifndef OPENSSL_NO_" . uc($cmd) . "\n${str}#endif\n"; } elsif (my $disabler = $md_disabler{$cmd}) { print "#ifndef OPENSSL_NO_" . uc($disabler) . "\n${str}#endif\n"; } else { print $str; } } my %cipher_disabler = ( des3 => "des", desx => "des", cast5 => "cast", ); foreach my $cmd ( "aes-128-cbc", "aes-128-ecb", "aes-192-cbc", "aes-192-ecb", "aes-256-cbc", "aes-256-ecb", "aria-128-cbc", "aria-128-cfb", "aria-128-ctr", "aria-128-ecb", "aria-128-ofb", "aria-128-cfb1", "aria-128-cfb8", "aria-192-cbc", "aria-192-cfb", "aria-192-ctr", "aria-192-ecb", "aria-192-ofb", "aria-192-cfb1", "aria-192-cfb8", "aria-256-cbc", "aria-256-cfb", "aria-256-ctr", "aria-256-ecb", "aria-256-ofb", "aria-256-cfb1", "aria-256-cfb8", "camellia-128-cbc", "camellia-128-ecb", "camellia-192-cbc", "camellia-192-ecb", "camellia-256-cbc", "camellia-256-ecb", "base64", "zlib", "des", "des3", "desx", "idea", "seed", "rc4", "rc4-40", "rc2", "bf", "cast", "rc5", "des-ecb", "des-ede", "des-ede3", "des-cbc", "des-ede-cbc","des-ede3-cbc", "des-cfb", "des-ede-cfb","des-ede3-cfb", "des-ofb", "des-ede-ofb","des-ede3-ofb", "idea-cbc","idea-ecb", "idea-cfb", "idea-ofb", "seed-cbc","seed-ecb", "seed-cfb", "seed-ofb", "rc2-cbc", "rc2-ecb", "rc2-cfb","rc2-ofb", "rc2-64-cbc", "rc2-40-cbc", "bf-cbc", "bf-ecb", "bf-cfb", "bf-ofb", "cast5-cbc","cast5-ecb", "cast5-cfb","cast5-ofb", "cast-cbc", "rc5-cbc", "rc5-ecb", "rc5-cfb", "rc5-ofb", "sm4-cbc", "sm4-ecb", "sm4-cfb", "sm4-ofb", "sm4-ctr" ) { my $str = " {FT_cipher, \"$cmd\", enc_main, enc_options},\n"; (my $algo = $cmd) =~ s/-.*//g; if ($cmd eq "zlib") { print "#ifdef ZLIB\n${str}#endif\n"; } elsif (grep { $algo eq $_ } @disablables) { print "#ifndef OPENSSL_NO_" . uc($algo) . "\n${str}#endif\n"; } elsif (my $disabler = $cipher_disabler{$algo}) { print "#ifndef OPENSSL_NO_" . uc($disabler) . "\n${str}#endif\n"; } else { print $str; } } print " {0, NULL, NULL}\n};\n"; print "#endif\n"; openssl-1.1.1f/apps/rand.c000066400000000000000000000065431364063235100154110ustar00rootroot00000000000000/* * Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "apps.h" #include "progs.h" #include #include #include #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_OUT, OPT_ENGINE, OPT_BASE64, OPT_HEX, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS rand_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [flags] num\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"out", OPT_OUT, '>', "Output file"}, OPT_R_OPTIONS, {"base64", OPT_BASE64, '-', "Base64 encode output"}, {"hex", OPT_HEX, '-', "Hex encode output"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {NULL} }; int rand_main(int argc, char **argv) { ENGINE *e = NULL; BIO *out = NULL; char *outfile = NULL, *prog; OPTION_CHOICE o; int format = FORMAT_BINARY, i, num = -1, r, ret = 1; prog = opt_init(argc, argv, rand_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(rand_options); ret = 0; goto end; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_BASE64: format = FORMAT_BASE64; break; case OPT_HEX: format = FORMAT_TEXT; break; } } argc = opt_num_rest(); argv = opt_rest(); if (argc == 1) { if (!opt_int(argv[0], &num) || num <= 0) goto end; } else if (argc > 0) { BIO_printf(bio_err, "Extra arguments given.\n"); goto opthelp; } out = bio_open_default(outfile, 'w', format); if (out == NULL) goto end; if (format == FORMAT_BASE64) { BIO *b64 = BIO_new(BIO_f_base64()); if (b64 == NULL) goto end; out = BIO_push(b64, out); } while (num > 0) { unsigned char buf[4096]; int chunk; chunk = num; if (chunk > (int)sizeof(buf)) chunk = sizeof(buf); r = RAND_bytes(buf, chunk); if (r <= 0) goto end; if (format != FORMAT_TEXT) { if (BIO_write(out, buf, chunk) != chunk) goto end; } else { for (i = 0; i < chunk; i++) if (BIO_printf(out, "%02x", buf[i]) != 2) goto end; } num -= chunk; } if (format == FORMAT_TEXT) BIO_puts(out, "\n"); if (BIO_flush(out) <= 0) goto end; ret = 0; end: if (ret != 0) ERR_print_errors(bio_err); release_engine(e); BIO_free_all(out); return ret; } openssl-1.1.1f/apps/rehash.c000066400000000000000000000364651364063235100157450ustar00rootroot00000000000000/* * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2013-2014 Timo Teräs * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "apps.h" #include "progs.h" #if defined(OPENSSL_SYS_UNIX) || defined(__APPLE__) || \ (defined(__VMS) && defined(__DECC) && __CRTL_VER >= 80300000) # include # include # include # include # include # include # include /* * Make sure that the processing of symbol names is treated the same as when * libcrypto is built. This is done automatically for public headers (see * include/openssl/__DECC_INCLUDE_PROLOGUE.H and __DECC_INCLUDE_EPILOGUE.H), * but not for internal headers. */ # ifdef __VMS # pragma names save # pragma names as_is,shortened # endif # include "internal/o_dir.h" # ifdef __VMS # pragma names restore # endif # include # include # include # ifndef PATH_MAX # define PATH_MAX 4096 # endif # ifndef NAME_MAX # define NAME_MAX 255 # endif # define MAX_COLLISIONS 256 # if defined(OPENSSL_SYS_VXWORKS) /* * VxWorks has no symbolic links */ # define lstat(path, buf) stat(path, buf) int symlink(const char *target, const char *linkpath) { errno = ENOSYS; return -1; } ssize_t readlink(const char *pathname, char *buf, size_t bufsiz) { errno = ENOSYS; return -1; } # endif typedef struct hentry_st { struct hentry_st *next; char *filename; unsigned short old_id; unsigned char need_symlink; unsigned char digest[EVP_MAX_MD_SIZE]; } HENTRY; typedef struct bucket_st { struct bucket_st *next; HENTRY *first_entry, *last_entry; unsigned int hash; unsigned short type; unsigned short num_needed; } BUCKET; enum Type { /* Keep in sync with |suffixes|, below. */ TYPE_CERT=0, TYPE_CRL=1 }; enum Hash { HASH_OLD, HASH_NEW, HASH_BOTH }; static int evpmdsize; static const EVP_MD *evpmd; static int remove_links = 1; static int verbose = 0; static BUCKET *hash_table[257]; static const char *suffixes[] = { "", "r" }; static const char *extensions[] = { "pem", "crt", "cer", "crl" }; static void bit_set(unsigned char *set, unsigned int bit) { set[bit >> 3] |= 1 << (bit & 0x7); } static int bit_isset(unsigned char *set, unsigned int bit) { return set[bit >> 3] & (1 << (bit & 0x7)); } /* * Process an entry; return number of errors. */ static int add_entry(enum Type type, unsigned int hash, const char *filename, const unsigned char *digest, int need_symlink, unsigned short old_id) { static BUCKET nilbucket; static HENTRY nilhentry; BUCKET *bp; HENTRY *ep, *found = NULL; unsigned int ndx = (type + hash) % OSSL_NELEM(hash_table); for (bp = hash_table[ndx]; bp; bp = bp->next) if (bp->type == type && bp->hash == hash) break; if (bp == NULL) { bp = app_malloc(sizeof(*bp), "hash bucket"); *bp = nilbucket; bp->next = hash_table[ndx]; bp->type = type; bp->hash = hash; hash_table[ndx] = bp; } for (ep = bp->first_entry; ep; ep = ep->next) { if (digest && memcmp(digest, ep->digest, evpmdsize) == 0) { BIO_printf(bio_err, "%s: warning: skipping duplicate %s in %s\n", opt_getprog(), type == TYPE_CERT ? "certificate" : "CRL", filename); return 0; } if (strcmp(filename, ep->filename) == 0) { found = ep; if (digest == NULL) break; } } ep = found; if (ep == NULL) { if (bp->num_needed >= MAX_COLLISIONS) { BIO_printf(bio_err, "%s: error: hash table overflow for %s\n", opt_getprog(), filename); return 1; } ep = app_malloc(sizeof(*ep), "collision bucket"); *ep = nilhentry; ep->old_id = ~0; ep->filename = OPENSSL_strdup(filename); if (bp->last_entry) bp->last_entry->next = ep; if (bp->first_entry == NULL) bp->first_entry = ep; bp->last_entry = ep; } if (old_id < ep->old_id) ep->old_id = old_id; if (need_symlink && !ep->need_symlink) { ep->need_symlink = 1; bp->num_needed++; memcpy(ep->digest, digest, evpmdsize); } return 0; } /* * Check if a symlink goes to the right spot; return 0 if okay. * This can be -1 if bad filename, or an error count. */ static int handle_symlink(const char *filename, const char *fullpath) { unsigned int hash = 0; int i, type, id; unsigned char ch; char linktarget[PATH_MAX], *endptr; ossl_ssize_t n; for (i = 0; i < 8; i++) { ch = filename[i]; if (!isxdigit(ch)) return -1; hash <<= 4; hash += OPENSSL_hexchar2int(ch); } if (filename[i++] != '.') return -1; for (type = OSSL_NELEM(suffixes) - 1; type > 0; type--) { const char *suffix = suffixes[type]; if (strncasecmp(suffix, &filename[i], strlen(suffix)) == 0) break; } i += strlen(suffixes[type]); id = strtoul(&filename[i], &endptr, 10); if (*endptr != '\0') return -1; n = readlink(fullpath, linktarget, sizeof(linktarget)); if (n < 0 || n >= (int)sizeof(linktarget)) return -1; linktarget[n] = 0; return add_entry(type, hash, linktarget, NULL, 0, id); } /* * process a file, return number of errors. */ static int do_file(const char *filename, const char *fullpath, enum Hash h) { STACK_OF (X509_INFO) *inf = NULL; X509_INFO *x; X509_NAME *name = NULL; BIO *b; const char *ext; unsigned char digest[EVP_MAX_MD_SIZE]; int type, errs = 0; size_t i; /* Does it end with a recognized extension? */ if ((ext = strrchr(filename, '.')) == NULL) goto end; for (i = 0; i < OSSL_NELEM(extensions); i++) { if (strcasecmp(extensions[i], ext + 1) == 0) break; } if (i >= OSSL_NELEM(extensions)) goto end; /* Does it have X.509 data in it? */ if ((b = BIO_new_file(fullpath, "r")) == NULL) { BIO_printf(bio_err, "%s: error: skipping %s, cannot open file\n", opt_getprog(), filename); errs++; goto end; } inf = PEM_X509_INFO_read_bio(b, NULL, NULL, NULL); BIO_free(b); if (inf == NULL) goto end; if (sk_X509_INFO_num(inf) != 1) { BIO_printf(bio_err, "%s: warning: skipping %s," "it does not contain exactly one certificate or CRL\n", opt_getprog(), filename); /* This is not an error. */ goto end; } x = sk_X509_INFO_value(inf, 0); if (x->x509 != NULL) { type = TYPE_CERT; name = X509_get_subject_name(x->x509); if (!X509_digest(x->x509, evpmd, digest, NULL)) { BIO_printf(bio_err, "out of memory\n"); ++errs; goto end; } } else if (x->crl != NULL) { type = TYPE_CRL; name = X509_CRL_get_issuer(x->crl); if (!X509_CRL_digest(x->crl, evpmd, digest, NULL)) { BIO_printf(bio_err, "out of memory\n"); ++errs; goto end; } } else { ++errs; goto end; } if (name != NULL) { if ((h == HASH_NEW) || (h == HASH_BOTH)) errs += add_entry(type, X509_NAME_hash(name), filename, digest, 1, ~0); if ((h == HASH_OLD) || (h == HASH_BOTH)) errs += add_entry(type, X509_NAME_hash_old(name), filename, digest, 1, ~0); } end: sk_X509_INFO_pop_free(inf, X509_INFO_free); return errs; } static void str_free(char *s) { OPENSSL_free(s); } static int ends_with_dirsep(const char *path) { if (*path != '\0') path += strlen(path) - 1; # if defined __VMS if (*path == ']' || *path == '>' || *path == ':') return 1; # elif defined _WIN32 if (*path == '\\') return 1; # endif return *path == '/'; } /* * Process a directory; return number of errors found. */ static int do_dir(const char *dirname, enum Hash h) { BUCKET *bp, *nextbp; HENTRY *ep, *nextep; OPENSSL_DIR_CTX *d = NULL; struct stat st; unsigned char idmask[MAX_COLLISIONS / 8]; int n, numfiles, nextid, buflen, errs = 0; size_t i; const char *pathsep; const char *filename; char *buf, *copy = NULL; STACK_OF(OPENSSL_STRING) *files = NULL; if (app_access(dirname, W_OK) < 0) { BIO_printf(bio_err, "Skipping %s, can't write\n", dirname); return 1; } buflen = strlen(dirname); pathsep = (buflen && !ends_with_dirsep(dirname)) ? "/": ""; buflen += NAME_MAX + 1 + 1; buf = app_malloc(buflen, "filename buffer"); if (verbose) BIO_printf(bio_out, "Doing %s\n", dirname); if ((files = sk_OPENSSL_STRING_new_null()) == NULL) { BIO_printf(bio_err, "Skipping %s, out of memory\n", dirname); errs = 1; goto err; } while ((filename = OPENSSL_DIR_read(&d, dirname)) != NULL) { if ((copy = OPENSSL_strdup(filename)) == NULL || sk_OPENSSL_STRING_push(files, copy) == 0) { OPENSSL_free(copy); BIO_puts(bio_err, "out of memory\n"); errs = 1; goto err; } } OPENSSL_DIR_end(&d); sk_OPENSSL_STRING_sort(files); numfiles = sk_OPENSSL_STRING_num(files); for (n = 0; n < numfiles; ++n) { filename = sk_OPENSSL_STRING_value(files, n); if (BIO_snprintf(buf, buflen, "%s%s%s", dirname, pathsep, filename) >= buflen) continue; if (lstat(buf, &st) < 0) continue; if (S_ISLNK(st.st_mode) && handle_symlink(filename, buf) == 0) continue; errs += do_file(filename, buf, h); } for (i = 0; i < OSSL_NELEM(hash_table); i++) { for (bp = hash_table[i]; bp; bp = nextbp) { nextbp = bp->next; nextid = 0; memset(idmask, 0, (bp->num_needed + 7) / 8); for (ep = bp->first_entry; ep; ep = ep->next) if (ep->old_id < bp->num_needed) bit_set(idmask, ep->old_id); for (ep = bp->first_entry; ep; ep = nextep) { nextep = ep->next; if (ep->old_id < bp->num_needed) { /* Link exists, and is used as-is */ BIO_snprintf(buf, buflen, "%08x.%s%d", bp->hash, suffixes[bp->type], ep->old_id); if (verbose) BIO_printf(bio_out, "link %s -> %s\n", ep->filename, buf); } else if (ep->need_symlink) { /* New link needed (it may replace something) */ while (bit_isset(idmask, nextid)) nextid++; BIO_snprintf(buf, buflen, "%s%s%n%08x.%s%d", dirname, pathsep, &n, bp->hash, suffixes[bp->type], nextid); if (verbose) BIO_printf(bio_out, "link %s -> %s\n", ep->filename, &buf[n]); if (unlink(buf) < 0 && errno != ENOENT) { BIO_printf(bio_err, "%s: Can't unlink %s, %s\n", opt_getprog(), buf, strerror(errno)); errs++; } if (symlink(ep->filename, buf) < 0) { BIO_printf(bio_err, "%s: Can't symlink %s, %s\n", opt_getprog(), ep->filename, strerror(errno)); errs++; } bit_set(idmask, nextid); } else if (remove_links) { /* Link to be deleted */ BIO_snprintf(buf, buflen, "%s%s%n%08x.%s%d", dirname, pathsep, &n, bp->hash, suffixes[bp->type], ep->old_id); if (verbose) BIO_printf(bio_out, "unlink %s\n", &buf[n]); if (unlink(buf) < 0 && errno != ENOENT) { BIO_printf(bio_err, "%s: Can't unlink %s, %s\n", opt_getprog(), buf, strerror(errno)); errs++; } } OPENSSL_free(ep->filename); OPENSSL_free(ep); } OPENSSL_free(bp); } hash_table[i] = NULL; } err: sk_OPENSSL_STRING_pop_free(files, str_free); OPENSSL_free(buf); return errs; } typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_COMPAT, OPT_OLD, OPT_N, OPT_VERBOSE } OPTION_CHOICE; const OPTIONS rehash_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] [cert-directory...]\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"h", OPT_HELP, '-', "Display this summary"}, {"compat", OPT_COMPAT, '-', "Create both new- and old-style hash links"}, {"old", OPT_OLD, '-', "Use old-style hash to generate links"}, {"n", OPT_N, '-', "Do not remove existing links"}, {"v", OPT_VERBOSE, '-', "Verbose output"}, {NULL} }; int rehash_main(int argc, char **argv) { const char *env, *prog; char *e, *m; int errs = 0; OPTION_CHOICE o; enum Hash h = HASH_NEW; prog = opt_init(argc, argv, rehash_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(rehash_options); goto end; case OPT_COMPAT: h = HASH_BOTH; break; case OPT_OLD: h = HASH_OLD; break; case OPT_N: remove_links = 0; break; case OPT_VERBOSE: verbose = 1; break; } } argc = opt_num_rest(); argv = opt_rest(); evpmd = EVP_sha1(); evpmdsize = EVP_MD_size(evpmd); if (*argv != NULL) { while (*argv != NULL) errs += do_dir(*argv++, h); } else if ((env = getenv(X509_get_default_cert_dir_env())) != NULL) { char lsc[2] = { LIST_SEPARATOR_CHAR, '\0' }; m = OPENSSL_strdup(env); for (e = strtok(m, lsc); e != NULL; e = strtok(NULL, lsc)) errs += do_dir(e, h); OPENSSL_free(m); } else { errs += do_dir(X509_get_default_cert_dir(), h); } end: return errs; } #else const OPTIONS rehash_options[] = { {NULL} }; int rehash_main(int argc, char **argv) { BIO_printf(bio_err, "Not available; use c_rehash script\n"); return 1; } #endif /* defined(OPENSSL_SYS_UNIX) || defined(__APPLE__) */ openssl-1.1.1f/apps/req.c000066400000000000000000001467251364063235100152630ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_RSA # include #endif #ifndef OPENSSL_NO_DSA # include #endif #define SECTION "req" #define BITS "default_bits" #define KEYFILE "default_keyfile" #define PROMPT "prompt" #define DISTINGUISHED_NAME "distinguished_name" #define ATTRIBUTES "attributes" #define V3_EXTENSIONS "x509_extensions" #define REQ_EXTENSIONS "req_extensions" #define STRING_MASK "string_mask" #define UTF8_IN "utf8" #define DEFAULT_KEY_LENGTH 2048 #define MIN_KEY_LENGTH 512 static int make_REQ(X509_REQ *req, EVP_PKEY *pkey, char *dn, int mutlirdn, int attribs, unsigned long chtype); static int build_subject(X509_REQ *req, const char *subj, unsigned long chtype, int multirdn); static int prompt_info(X509_REQ *req, STACK_OF(CONF_VALUE) *dn_sk, const char *dn_sect, STACK_OF(CONF_VALUE) *attr_sk, const char *attr_sect, int attribs, unsigned long chtype); static int auto_info(X509_REQ *req, STACK_OF(CONF_VALUE) *sk, STACK_OF(CONF_VALUE) *attr, int attribs, unsigned long chtype); static int add_attribute_object(X509_REQ *req, char *text, const char *def, char *value, int nid, int n_min, int n_max, unsigned long chtype); static int add_DN_object(X509_NAME *n, char *text, const char *def, char *value, int nid, int n_min, int n_max, unsigned long chtype, int mval); static int genpkey_cb(EVP_PKEY_CTX *ctx); static int build_data(char *text, const char *def, char *value, int n_min, int n_max, char *buf, const int buf_size, const char *desc1, const char *desc2 ); static int req_check_len(int len, int n_min, int n_max); static int check_end(const char *str, const char *end); static int join(char buf[], size_t buf_size, const char *name, const char *tail, const char *desc); static EVP_PKEY_CTX *set_keygen_ctx(const char *gstr, int *pkey_type, long *pkeylen, char **palgnam, ENGINE *keygen_engine); static CONF *req_conf = NULL; static CONF *addext_conf = NULL; static int batch = 0; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_ENGINE, OPT_KEYGEN_ENGINE, OPT_KEY, OPT_PUBKEY, OPT_NEW, OPT_CONFIG, OPT_KEYFORM, OPT_IN, OPT_OUT, OPT_KEYOUT, OPT_PASSIN, OPT_PASSOUT, OPT_NEWKEY, OPT_PKEYOPT, OPT_SIGOPT, OPT_BATCH, OPT_NEWHDR, OPT_MODULUS, OPT_VERIFY, OPT_NODES, OPT_NOOUT, OPT_VERBOSE, OPT_UTF8, OPT_NAMEOPT, OPT_REQOPT, OPT_SUBJ, OPT_SUBJECT, OPT_TEXT, OPT_X509, OPT_MULTIVALUE_RDN, OPT_DAYS, OPT_SET_SERIAL, OPT_ADDEXT, OPT_EXTENSIONS, OPT_REQEXTS, OPT_PRECERT, OPT_MD, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS req_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format - DER or PEM"}, {"outform", OPT_OUTFORM, 'F', "Output format - DER or PEM"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"key", OPT_KEY, 's', "Private key to use"}, {"keyform", OPT_KEYFORM, 'f', "Key file format"}, {"pubkey", OPT_PUBKEY, '-', "Output public key"}, {"new", OPT_NEW, '-', "New request"}, {"config", OPT_CONFIG, '<', "Request template file"}, {"keyout", OPT_KEYOUT, '>', "File to send the key to"}, {"passin", OPT_PASSIN, 's', "Private key password source"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, OPT_R_OPTIONS, {"newkey", OPT_NEWKEY, 's', "Specify as type:bits"}, {"pkeyopt", OPT_PKEYOPT, 's', "Public key options as opt:value"}, {"sigopt", OPT_SIGOPT, 's', "Signature parameter in n:v form"}, {"batch", OPT_BATCH, '-', "Do not ask anything during request generation"}, {"newhdr", OPT_NEWHDR, '-', "Output \"NEW\" in the header lines"}, {"modulus", OPT_MODULUS, '-', "RSA modulus"}, {"verify", OPT_VERIFY, '-', "Verify signature on REQ"}, {"nodes", OPT_NODES, '-', "Don't encrypt the output key"}, {"noout", OPT_NOOUT, '-', "Do not output REQ"}, {"verbose", OPT_VERBOSE, '-', "Verbose output"}, {"utf8", OPT_UTF8, '-', "Input characters are UTF8 (default ASCII)"}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, {"reqopt", OPT_REQOPT, 's', "Various request text options"}, {"text", OPT_TEXT, '-', "Text form of request"}, {"x509", OPT_X509, '-', "Output a x509 structure instead of a cert request"}, {OPT_MORE_STR, 1, 1, "(Required by some CA's)"}, {"subj", OPT_SUBJ, 's', "Set or modify request subject"}, {"subject", OPT_SUBJECT, '-', "Output the request's subject"}, {"multivalue-rdn", OPT_MULTIVALUE_RDN, '-', "Enable support for multivalued RDNs"}, {"days", OPT_DAYS, 'p', "Number of days cert is valid for"}, {"set_serial", OPT_SET_SERIAL, 's', "Serial number to use"}, {"addext", OPT_ADDEXT, 's', "Additional cert extension key=value pair (may be given more than once)"}, {"extensions", OPT_EXTENSIONS, 's', "Cert extension section (override value in config file)"}, {"reqexts", OPT_REQEXTS, 's', "Request extension section (override value in config file)"}, {"precert", OPT_PRECERT, '-', "Add a poison extension (implies -new)"}, {"", OPT_MD, '-', "Any supported digest"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, {"keygen_engine", OPT_KEYGEN_ENGINE, 's', "Specify engine to be used for key generation operations"}, #endif {NULL} }; /* * An LHASH of strings, where each string is an extension name. */ static unsigned long ext_name_hash(const OPENSSL_STRING *a) { return OPENSSL_LH_strhash((const char *)a); } static int ext_name_cmp(const OPENSSL_STRING *a, const OPENSSL_STRING *b) { return strcmp((const char *)a, (const char *)b); } static void exts_cleanup(OPENSSL_STRING *x) { OPENSSL_free((char *)x); } /* * Is the |kv| key already duplicated? This is remarkably tricky to get * right. Return 0 if unique, -1 on runtime error; 1 if found or a syntax * error. */ static int duplicated(LHASH_OF(OPENSSL_STRING) *addexts, char *kv) { char *p; size_t off; /* Check syntax. */ /* Skip leading whitespace, make a copy. */ while (*kv && isspace(*kv)) if (*++kv == '\0') return 1; if ((p = strchr(kv, '=')) == NULL) return 1; off = p - kv; if ((kv = OPENSSL_strdup(kv)) == NULL) return -1; /* Skip trailing space before the equal sign. */ for (p = kv + off; p > kv; --p) if (!isspace(p[-1])) break; if (p == kv) { OPENSSL_free(kv); return 1; } *p = '\0'; /* Finally have a clean "key"; see if it's there [by attempt to add it]. */ p = (char *)lh_OPENSSL_STRING_insert(addexts, (OPENSSL_STRING*)kv); if (p != NULL) { OPENSSL_free(p); return 1; } else if (lh_OPENSSL_STRING_error(addexts)) { OPENSSL_free(kv); return -1; } return 0; } int req_main(int argc, char **argv) { ASN1_INTEGER *serial = NULL; BIO *in = NULL, *out = NULL; ENGINE *e = NULL, *gen_eng = NULL; EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *genctx = NULL; STACK_OF(OPENSSL_STRING) *pkeyopts = NULL, *sigopts = NULL; LHASH_OF(OPENSSL_STRING) *addexts = NULL; X509 *x509ss = NULL; X509_REQ *req = NULL; const EVP_CIPHER *cipher = NULL; const EVP_MD *md_alg = NULL, *digest = NULL; BIO *addext_bio = NULL; char *extensions = NULL, *infile = NULL; char *outfile = NULL, *keyfile = NULL; char *keyalgstr = NULL, *p, *prog, *passargin = NULL, *passargout = NULL; char *passin = NULL, *passout = NULL; char *nofree_passin = NULL, *nofree_passout = NULL; char *req_exts = NULL, *subj = NULL; char *template = default_config_file, *keyout = NULL; const char *keyalg = NULL; OPTION_CHOICE o; int ret = 1, x509 = 0, days = 0, i = 0, newreq = 0, verbose = 0; int pkey_type = -1, private = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, keyform = FORMAT_PEM; int modulus = 0, multirdn = 0, verify = 0, noout = 0, text = 0; int nodes = 0, newhdr = 0, subject = 0, pubkey = 0, precert = 0; long newkey = -1; unsigned long chtype = MBSTRING_ASC, reqflag = 0; #ifndef OPENSSL_NO_DES cipher = EVP_des_ede3_cbc(); #endif prog = opt_init(argc, argv, req_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(req_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat)) goto opthelp; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_KEYGEN_ENGINE: #ifndef OPENSSL_NO_ENGINE gen_eng = ENGINE_by_id(opt_arg()); if (gen_eng == NULL) { BIO_printf(bio_err, "Can't find keygen engine %s\n", *argv); goto opthelp; } #endif break; case OPT_KEY: keyfile = opt_arg(); break; case OPT_PUBKEY: pubkey = 1; break; case OPT_NEW: newreq = 1; break; case OPT_CONFIG: template = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &keyform)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_KEYOUT: keyout = opt_arg(); break; case OPT_PASSIN: passargin = opt_arg(); break; case OPT_PASSOUT: passargout = opt_arg(); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_NEWKEY: keyalg = opt_arg(); newreq = 1; break; case OPT_PKEYOPT: if (!pkeyopts) pkeyopts = sk_OPENSSL_STRING_new_null(); if (!pkeyopts || !sk_OPENSSL_STRING_push(pkeyopts, opt_arg())) goto opthelp; break; case OPT_SIGOPT: if (!sigopts) sigopts = sk_OPENSSL_STRING_new_null(); if (!sigopts || !sk_OPENSSL_STRING_push(sigopts, opt_arg())) goto opthelp; break; case OPT_BATCH: batch = 1; break; case OPT_NEWHDR: newhdr = 1; break; case OPT_MODULUS: modulus = 1; break; case OPT_VERIFY: verify = 1; break; case OPT_NODES: nodes = 1; break; case OPT_NOOUT: noout = 1; break; case OPT_VERBOSE: verbose = 1; break; case OPT_UTF8: chtype = MBSTRING_UTF8; break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto opthelp; break; case OPT_REQOPT: if (!set_cert_ex(&reqflag, opt_arg())) goto opthelp; break; case OPT_TEXT: text = 1; break; case OPT_X509: x509 = 1; break; case OPT_DAYS: days = atoi(opt_arg()); break; case OPT_SET_SERIAL: if (serial != NULL) { BIO_printf(bio_err, "Serial number supplied twice\n"); goto opthelp; } serial = s2i_ASN1_INTEGER(NULL, opt_arg()); if (serial == NULL) goto opthelp; break; case OPT_SUBJECT: subject = 1; break; case OPT_SUBJ: subj = opt_arg(); break; case OPT_MULTIVALUE_RDN: multirdn = 1; break; case OPT_ADDEXT: p = opt_arg(); if (addexts == NULL) { addexts = lh_OPENSSL_STRING_new(ext_name_hash, ext_name_cmp); addext_bio = BIO_new(BIO_s_mem()); if (addexts == NULL || addext_bio == NULL) goto end; } i = duplicated(addexts, p); if (i == 1) goto opthelp; if (i < 0 || BIO_printf(addext_bio, "%s\n", opt_arg()) < 0) goto end; break; case OPT_EXTENSIONS: extensions = opt_arg(); break; case OPT_REQEXTS: req_exts = opt_arg(); break; case OPT_PRECERT: newreq = precert = 1; break; case OPT_MD: if (!opt_md(opt_unknown(), &md_alg)) goto opthelp; digest = md_alg; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; if (days && !x509) BIO_printf(bio_err, "Ignoring -days; not generating a certificate\n"); if (x509 && infile == NULL) newreq = 1; /* TODO: simplify this as pkey is still always NULL here */ private = newreq && (pkey == NULL) ? 1 : 0; if (!app_passwd(passargin, passargout, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } if (verbose) BIO_printf(bio_err, "Using configuration from %s\n", template); if ((req_conf = app_load_config(template)) == NULL) goto end; if (addext_bio) { if (verbose) BIO_printf(bio_err, "Using additional configuration from command line\n"); if ((addext_conf = app_load_config_bio(addext_bio, NULL)) == NULL) goto end; } if (template != default_config_file && !app_load_modules(req_conf)) goto end; if (req_conf != NULL) { p = NCONF_get_string(req_conf, NULL, "oid_file"); if (p == NULL) ERR_clear_error(); if (p != NULL) { BIO *oid_bio; oid_bio = BIO_new_file(p, "r"); if (oid_bio == NULL) { /*- BIO_printf(bio_err,"problems opening %s for extra oid's\n",p); ERR_print_errors(bio_err); */ } else { OBJ_create_objects(oid_bio); BIO_free(oid_bio); } } } if (!add_oid_section(req_conf)) goto end; if (md_alg == NULL) { p = NCONF_get_string(req_conf, SECTION, "default_md"); if (p == NULL) { ERR_clear_error(); } else { if (!opt_md(p, &md_alg)) goto opthelp; digest = md_alg; } } if (extensions == NULL) { extensions = NCONF_get_string(req_conf, SECTION, V3_EXTENSIONS); if (extensions == NULL) ERR_clear_error(); } if (extensions != NULL) { /* Check syntax of file */ X509V3_CTX ctx; X509V3_set_ctx_test(&ctx); X509V3_set_nconf(&ctx, req_conf); if (!X509V3_EXT_add_nconf(req_conf, &ctx, extensions, NULL)) { BIO_printf(bio_err, "Error Loading extension section %s\n", extensions); goto end; } } if (addext_conf != NULL) { /* Check syntax of command line extensions */ X509V3_CTX ctx; X509V3_set_ctx_test(&ctx); X509V3_set_nconf(&ctx, addext_conf); if (!X509V3_EXT_add_nconf(addext_conf, &ctx, "default", NULL)) { BIO_printf(bio_err, "Error Loading command line extensions\n"); goto end; } } if (passin == NULL) { passin = nofree_passin = NCONF_get_string(req_conf, SECTION, "input_password"); if (passin == NULL) ERR_clear_error(); } if (passout == NULL) { passout = nofree_passout = NCONF_get_string(req_conf, SECTION, "output_password"); if (passout == NULL) ERR_clear_error(); } p = NCONF_get_string(req_conf, SECTION, STRING_MASK); if (p == NULL) ERR_clear_error(); if (p != NULL && !ASN1_STRING_set_default_mask_asc(p)) { BIO_printf(bio_err, "Invalid global string mask setting %s\n", p); goto end; } if (chtype != MBSTRING_UTF8) { p = NCONF_get_string(req_conf, SECTION, UTF8_IN); if (p == NULL) ERR_clear_error(); else if (strcmp(p, "yes") == 0) chtype = MBSTRING_UTF8; } if (req_exts == NULL) { req_exts = NCONF_get_string(req_conf, SECTION, REQ_EXTENSIONS); if (req_exts == NULL) ERR_clear_error(); } if (req_exts != NULL) { /* Check syntax of file */ X509V3_CTX ctx; X509V3_set_ctx_test(&ctx); X509V3_set_nconf(&ctx, req_conf); if (!X509V3_EXT_add_nconf(req_conf, &ctx, req_exts, NULL)) { BIO_printf(bio_err, "Error Loading request extension section %s\n", req_exts); goto end; } } if (keyfile != NULL) { pkey = load_key(keyfile, keyform, 0, passin, e, "Private Key"); if (pkey == NULL) { /* load_key() has already printed an appropriate message */ goto end; } else { app_RAND_load_conf(req_conf, SECTION); } } if (newreq && (pkey == NULL)) { app_RAND_load_conf(req_conf, SECTION); if (!NCONF_get_number(req_conf, SECTION, BITS, &newkey)) { newkey = DEFAULT_KEY_LENGTH; } if (keyalg != NULL) { genctx = set_keygen_ctx(keyalg, &pkey_type, &newkey, &keyalgstr, gen_eng); if (genctx == NULL) goto end; } if (newkey < MIN_KEY_LENGTH && (pkey_type == EVP_PKEY_RSA || pkey_type == EVP_PKEY_DSA)) { BIO_printf(bio_err, "private key length is too short,\n"); BIO_printf(bio_err, "it needs to be at least %d bits, not %ld\n", MIN_KEY_LENGTH, newkey); goto end; } if (pkey_type == EVP_PKEY_RSA && newkey > OPENSSL_RSA_MAX_MODULUS_BITS) BIO_printf(bio_err, "Warning: It is not recommended to use more than %d bit for RSA keys.\n" " Your key size is %ld! Larger key size may behave not as expected.\n", OPENSSL_RSA_MAX_MODULUS_BITS, newkey); #ifndef OPENSSL_NO_DSA if (pkey_type == EVP_PKEY_DSA && newkey > OPENSSL_DSA_MAX_MODULUS_BITS) BIO_printf(bio_err, "Warning: It is not recommended to use more than %d bit for DSA keys.\n" " Your key size is %ld! Larger key size may behave not as expected.\n", OPENSSL_DSA_MAX_MODULUS_BITS, newkey); #endif if (genctx == NULL) { genctx = set_keygen_ctx(NULL, &pkey_type, &newkey, &keyalgstr, gen_eng); if (!genctx) goto end; } if (pkeyopts != NULL) { char *genopt; for (i = 0; i < sk_OPENSSL_STRING_num(pkeyopts); i++) { genopt = sk_OPENSSL_STRING_value(pkeyopts, i); if (pkey_ctrl_string(genctx, genopt) <= 0) { BIO_printf(bio_err, "parameter error \"%s\"\n", genopt); ERR_print_errors(bio_err); goto end; } } } if (pkey_type == EVP_PKEY_EC) { BIO_printf(bio_err, "Generating an EC private key\n"); } else { BIO_printf(bio_err, "Generating a %s private key\n", keyalgstr); } EVP_PKEY_CTX_set_cb(genctx, genpkey_cb); EVP_PKEY_CTX_set_app_data(genctx, bio_err); if (EVP_PKEY_keygen(genctx, &pkey) <= 0) { BIO_puts(bio_err, "Error Generating Key\n"); goto end; } EVP_PKEY_CTX_free(genctx); genctx = NULL; if (keyout == NULL) { keyout = NCONF_get_string(req_conf, SECTION, KEYFILE); if (keyout == NULL) ERR_clear_error(); } if (keyout == NULL) BIO_printf(bio_err, "writing new private key to stdout\n"); else BIO_printf(bio_err, "writing new private key to '%s'\n", keyout); out = bio_open_owner(keyout, outformat, private); if (out == NULL) goto end; p = NCONF_get_string(req_conf, SECTION, "encrypt_rsa_key"); if (p == NULL) { ERR_clear_error(); p = NCONF_get_string(req_conf, SECTION, "encrypt_key"); if (p == NULL) ERR_clear_error(); } if ((p != NULL) && (strcmp(p, "no") == 0)) cipher = NULL; if (nodes) cipher = NULL; i = 0; loop: assert(private); if (!PEM_write_bio_PrivateKey(out, pkey, cipher, NULL, 0, NULL, passout)) { if ((ERR_GET_REASON(ERR_peek_error()) == PEM_R_PROBLEMS_GETTING_PASSWORD) && (i < 3)) { ERR_clear_error(); i++; goto loop; } goto end; } BIO_free(out); out = NULL; BIO_printf(bio_err, "-----\n"); } if (!newreq) { in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; if (informat == FORMAT_ASN1) req = d2i_X509_REQ_bio(in, NULL); else req = PEM_read_bio_X509_REQ(in, NULL, NULL, NULL); if (req == NULL) { BIO_printf(bio_err, "unable to load X509 request\n"); goto end; } } if (newreq || x509) { if (pkey == NULL) { BIO_printf(bio_err, "you need to specify a private key\n"); goto end; } if (req == NULL) { req = X509_REQ_new(); if (req == NULL) { goto end; } i = make_REQ(req, pkey, subj, multirdn, !x509, chtype); subj = NULL; /* done processing '-subj' option */ if (!i) { BIO_printf(bio_err, "problems making Certificate Request\n"); goto end; } } if (x509) { EVP_PKEY *tmppkey; X509V3_CTX ext_ctx; if ((x509ss = X509_new()) == NULL) goto end; /* Set version to V3 */ if ((extensions != NULL || addext_conf != NULL) && !X509_set_version(x509ss, 2)) goto end; if (serial != NULL) { if (!X509_set_serialNumber(x509ss, serial)) goto end; } else { if (!rand_serial(NULL, X509_get_serialNumber(x509ss))) goto end; } if (!X509_set_issuer_name(x509ss, X509_REQ_get_subject_name(req))) goto end; if (days == 0) { /* set default days if it's not specified */ days = 30; } if (!set_cert_times(x509ss, NULL, NULL, days)) goto end; if (!X509_set_subject_name (x509ss, X509_REQ_get_subject_name(req))) goto end; tmppkey = X509_REQ_get0_pubkey(req); if (!tmppkey || !X509_set_pubkey(x509ss, tmppkey)) goto end; /* Set up V3 context struct */ X509V3_set_ctx(&ext_ctx, x509ss, x509ss, NULL, NULL, 0); X509V3_set_nconf(&ext_ctx, req_conf); /* Add extensions */ if (extensions != NULL && !X509V3_EXT_add_nconf(req_conf, &ext_ctx, extensions, x509ss)) { BIO_printf(bio_err, "Error Loading extension section %s\n", extensions); goto end; } if (addext_conf != NULL && !X509V3_EXT_add_nconf(addext_conf, &ext_ctx, "default", x509ss)) { BIO_printf(bio_err, "Error Loading command line extensions\n"); goto end; } /* If a pre-cert was requested, we need to add a poison extension */ if (precert) { if (X509_add1_ext_i2d(x509ss, NID_ct_precert_poison, NULL, 1, 0) != 1) { BIO_printf(bio_err, "Error adding poison extension\n"); goto end; } } i = do_X509_sign(x509ss, pkey, digest, sigopts); if (!i) { ERR_print_errors(bio_err); goto end; } } else { X509V3_CTX ext_ctx; /* Set up V3 context struct */ X509V3_set_ctx(&ext_ctx, NULL, NULL, req, NULL, 0); X509V3_set_nconf(&ext_ctx, req_conf); /* Add extensions */ if (req_exts != NULL && !X509V3_EXT_REQ_add_nconf(req_conf, &ext_ctx, req_exts, req)) { BIO_printf(bio_err, "Error Loading extension section %s\n", req_exts); goto end; } if (addext_conf != NULL && !X509V3_EXT_REQ_add_nconf(addext_conf, &ext_ctx, "default", req)) { BIO_printf(bio_err, "Error Loading command line extensions\n"); goto end; } i = do_X509_REQ_sign(req, pkey, digest, sigopts); if (!i) { ERR_print_errors(bio_err); goto end; } } } if (subj && x509) { BIO_printf(bio_err, "Cannot modify certificate subject\n"); goto end; } if (subj && !x509) { if (verbose) { BIO_printf(bio_err, "Modifying Request's Subject\n"); print_name(bio_err, "old subject=", X509_REQ_get_subject_name(req), get_nameopt()); } if (build_subject(req, subj, chtype, multirdn) == 0) { BIO_printf(bio_err, "ERROR: cannot modify subject\n"); ret = 1; goto end; } if (verbose) { print_name(bio_err, "new subject=", X509_REQ_get_subject_name(req), get_nameopt()); } } if (verify && !x509) { EVP_PKEY *tpubkey = pkey; if (tpubkey == NULL) { tpubkey = X509_REQ_get0_pubkey(req); if (tpubkey == NULL) goto end; } i = X509_REQ_verify(req, tpubkey); if (i < 0) { goto end; } else if (i == 0) { BIO_printf(bio_err, "verify failure\n"); ERR_print_errors(bio_err); } else { /* if (i > 0) */ BIO_printf(bio_err, "verify OK\n"); } } if (noout && !text && !modulus && !subject && !pubkey) { ret = 0; goto end; } out = bio_open_default(outfile, keyout != NULL && outfile != NULL && strcmp(keyout, outfile) == 0 ? 'a' : 'w', outformat); if (out == NULL) goto end; if (pubkey) { EVP_PKEY *tpubkey = X509_REQ_get0_pubkey(req); if (tpubkey == NULL) { BIO_printf(bio_err, "Error getting public key\n"); ERR_print_errors(bio_err); goto end; } PEM_write_bio_PUBKEY(out, tpubkey); } if (text) { if (x509) ret = X509_print_ex(out, x509ss, get_nameopt(), reqflag); else ret = X509_REQ_print_ex(out, req, get_nameopt(), reqflag); if (ret == 0) { if (x509) BIO_printf(bio_err, "Error printing certificate\n"); else BIO_printf(bio_err, "Error printing certificate request\n"); ERR_print_errors(bio_err); goto end; } } if (subject) { if (x509) print_name(out, "subject=", X509_get_subject_name(x509ss), get_nameopt()); else print_name(out, "subject=", X509_REQ_get_subject_name(req), get_nameopt()); } if (modulus) { EVP_PKEY *tpubkey; if (x509) tpubkey = X509_get0_pubkey(x509ss); else tpubkey = X509_REQ_get0_pubkey(req); if (tpubkey == NULL) { fprintf(stdout, "Modulus=unavailable\n"); goto end; } fprintf(stdout, "Modulus="); #ifndef OPENSSL_NO_RSA if (EVP_PKEY_base_id(tpubkey) == EVP_PKEY_RSA) { const BIGNUM *n; RSA_get0_key(EVP_PKEY_get0_RSA(tpubkey), &n, NULL, NULL); BN_print(out, n); } else #endif fprintf(stdout, "Wrong Algorithm type"); fprintf(stdout, "\n"); } if (!noout && !x509) { if (outformat == FORMAT_ASN1) i = i2d_X509_REQ_bio(out, req); else if (newhdr) i = PEM_write_bio_X509_REQ_NEW(out, req); else i = PEM_write_bio_X509_REQ(out, req); if (!i) { BIO_printf(bio_err, "unable to write X509 request\n"); goto end; } } if (!noout && x509 && (x509ss != NULL)) { if (outformat == FORMAT_ASN1) i = i2d_X509_bio(out, x509ss); else i = PEM_write_bio_X509(out, x509ss); if (!i) { BIO_printf(bio_err, "unable to write X509 certificate\n"); goto end; } } ret = 0; end: if (ret) { ERR_print_errors(bio_err); } NCONF_free(req_conf); NCONF_free(addext_conf); BIO_free(addext_bio); BIO_free(in); BIO_free_all(out); EVP_PKEY_free(pkey); EVP_PKEY_CTX_free(genctx); sk_OPENSSL_STRING_free(pkeyopts); sk_OPENSSL_STRING_free(sigopts); lh_OPENSSL_STRING_doall(addexts, exts_cleanup); lh_OPENSSL_STRING_free(addexts); #ifndef OPENSSL_NO_ENGINE ENGINE_free(gen_eng); #endif OPENSSL_free(keyalgstr); X509_REQ_free(req); X509_free(x509ss); ASN1_INTEGER_free(serial); release_engine(e); if (passin != nofree_passin) OPENSSL_free(passin); if (passout != nofree_passout) OPENSSL_free(passout); return ret; } static int make_REQ(X509_REQ *req, EVP_PKEY *pkey, char *subj, int multirdn, int attribs, unsigned long chtype) { int ret = 0, i; char no_prompt = 0; STACK_OF(CONF_VALUE) *dn_sk, *attr_sk = NULL; char *tmp, *dn_sect, *attr_sect; tmp = NCONF_get_string(req_conf, SECTION, PROMPT); if (tmp == NULL) ERR_clear_error(); if ((tmp != NULL) && strcmp(tmp, "no") == 0) no_prompt = 1; dn_sect = NCONF_get_string(req_conf, SECTION, DISTINGUISHED_NAME); if (dn_sect == NULL) { BIO_printf(bio_err, "unable to find '%s' in config\n", DISTINGUISHED_NAME); goto err; } dn_sk = NCONF_get_section(req_conf, dn_sect); if (dn_sk == NULL) { BIO_printf(bio_err, "unable to get '%s' section\n", dn_sect); goto err; } attr_sect = NCONF_get_string(req_conf, SECTION, ATTRIBUTES); if (attr_sect == NULL) { ERR_clear_error(); attr_sk = NULL; } else { attr_sk = NCONF_get_section(req_conf, attr_sect); if (attr_sk == NULL) { BIO_printf(bio_err, "unable to get '%s' section\n", attr_sect); goto err; } } /* setup version number */ if (!X509_REQ_set_version(req, 0L)) goto err; /* version 1 */ if (subj) i = build_subject(req, subj, chtype, multirdn); else if (no_prompt) i = auto_info(req, dn_sk, attr_sk, attribs, chtype); else i = prompt_info(req, dn_sk, dn_sect, attr_sk, attr_sect, attribs, chtype); if (!i) goto err; if (!X509_REQ_set_pubkey(req, pkey)) goto err; ret = 1; err: return ret; } /* * subject is expected to be in the format /type0=value0/type1=value1/type2=... * where characters may be escaped by \ */ static int build_subject(X509_REQ *req, const char *subject, unsigned long chtype, int multirdn) { X509_NAME *n; if ((n = parse_name(subject, chtype, multirdn)) == NULL) return 0; if (!X509_REQ_set_subject_name(req, n)) { X509_NAME_free(n); return 0; } X509_NAME_free(n); return 1; } static int prompt_info(X509_REQ *req, STACK_OF(CONF_VALUE) *dn_sk, const char *dn_sect, STACK_OF(CONF_VALUE) *attr_sk, const char *attr_sect, int attribs, unsigned long chtype) { int i; char *p, *q; char buf[100]; int nid, mval; long n_min, n_max; char *type, *value; const char *def; CONF_VALUE *v; X509_NAME *subj; subj = X509_REQ_get_subject_name(req); if (!batch) { BIO_printf(bio_err, "You are about to be asked to enter information that will be incorporated\n"); BIO_printf(bio_err, "into your certificate request.\n"); BIO_printf(bio_err, "What you are about to enter is what is called a Distinguished Name or a DN.\n"); BIO_printf(bio_err, "There are quite a few fields but you can leave some blank\n"); BIO_printf(bio_err, "For some fields there will be a default value,\n"); BIO_printf(bio_err, "If you enter '.', the field will be left blank.\n"); BIO_printf(bio_err, "-----\n"); } if (sk_CONF_VALUE_num(dn_sk)) { i = -1; start: for ( ; ; ) { i++; if (sk_CONF_VALUE_num(dn_sk) <= i) break; v = sk_CONF_VALUE_value(dn_sk, i); p = q = NULL; type = v->name; if (!check_end(type, "_min") || !check_end(type, "_max") || !check_end(type, "_default") || !check_end(type, "_value")) continue; /* * Skip past any leading X. X: X, etc to allow for multiple * instances */ for (p = v->name; *p; p++) if ((*p == ':') || (*p == ',') || (*p == '.')) { p++; if (*p) type = p; break; } if (*type == '+') { mval = -1; type++; } else { mval = 0; } /* If OBJ not recognised ignore it */ if ((nid = OBJ_txt2nid(type)) == NID_undef) goto start; if (!join(buf, sizeof(buf), v->name, "_default", "Name")) return 0; if ((def = NCONF_get_string(req_conf, dn_sect, buf)) == NULL) { ERR_clear_error(); def = ""; } if (!join(buf, sizeof(buf), v->name, "_value", "Name")) return 0; if ((value = NCONF_get_string(req_conf, dn_sect, buf)) == NULL) { ERR_clear_error(); value = NULL; } if (!join(buf, sizeof(buf), v->name, "_min", "Name")) return 0; if (!NCONF_get_number(req_conf, dn_sect, buf, &n_min)) { ERR_clear_error(); n_min = -1; } if (!join(buf, sizeof(buf), v->name, "_max", "Name")) return 0; if (!NCONF_get_number(req_conf, dn_sect, buf, &n_max)) { ERR_clear_error(); n_max = -1; } if (!add_DN_object(subj, v->value, def, value, nid, n_min, n_max, chtype, mval)) return 0; } if (X509_NAME_entry_count(subj) == 0) { BIO_printf(bio_err, "error, no objects specified in config file\n"); return 0; } if (attribs) { if ((attr_sk != NULL) && (sk_CONF_VALUE_num(attr_sk) > 0) && (!batch)) { BIO_printf(bio_err, "\nPlease enter the following 'extra' attributes\n"); BIO_printf(bio_err, "to be sent with your certificate request\n"); } i = -1; start2: for ( ; ; ) { i++; if ((attr_sk == NULL) || (sk_CONF_VALUE_num(attr_sk) <= i)) break; v = sk_CONF_VALUE_value(attr_sk, i); type = v->name; if ((nid = OBJ_txt2nid(type)) == NID_undef) goto start2; if (!join(buf, sizeof(buf), type, "_default", "Name")) return 0; if ((def = NCONF_get_string(req_conf, attr_sect, buf)) == NULL) { ERR_clear_error(); def = ""; } if (!join(buf, sizeof(buf), type, "_value", "Name")) return 0; if ((value = NCONF_get_string(req_conf, attr_sect, buf)) == NULL) { ERR_clear_error(); value = NULL; } if (!join(buf, sizeof(buf), type,"_min", "Name")) return 0; if (!NCONF_get_number(req_conf, attr_sect, buf, &n_min)) { ERR_clear_error(); n_min = -1; } if (!join(buf, sizeof(buf), type, "_max", "Name")) return 0; if (!NCONF_get_number(req_conf, attr_sect, buf, &n_max)) { ERR_clear_error(); n_max = -1; } if (!add_attribute_object(req, v->value, def, value, nid, n_min, n_max, chtype)) return 0; } } } else { BIO_printf(bio_err, "No template, please set one up.\n"); return 0; } return 1; } static int auto_info(X509_REQ *req, STACK_OF(CONF_VALUE) *dn_sk, STACK_OF(CONF_VALUE) *attr_sk, int attribs, unsigned long chtype) { int i, spec_char, plus_char; char *p, *q; char *type; CONF_VALUE *v; X509_NAME *subj; subj = X509_REQ_get_subject_name(req); for (i = 0; i < sk_CONF_VALUE_num(dn_sk); i++) { int mval; v = sk_CONF_VALUE_value(dn_sk, i); p = q = NULL; type = v->name; /* * Skip past any leading X. X: X, etc to allow for multiple instances */ for (p = v->name; *p; p++) { #ifndef CHARSET_EBCDIC spec_char = ((*p == ':') || (*p == ',') || (*p == '.')); #else spec_char = ((*p == os_toascii[':']) || (*p == os_toascii[',']) || (*p == os_toascii['.'])); #endif if (spec_char) { p++; if (*p) type = p; break; } } #ifndef CHARSET_EBCDIC plus_char = (*type == '+'); #else plus_char = (*type == os_toascii['+']); #endif if (plus_char) { type++; mval = -1; } else { mval = 0; } if (!X509_NAME_add_entry_by_txt(subj, type, chtype, (unsigned char *)v->value, -1, -1, mval)) return 0; } if (!X509_NAME_entry_count(subj)) { BIO_printf(bio_err, "error, no objects specified in config file\n"); return 0; } if (attribs) { for (i = 0; i < sk_CONF_VALUE_num(attr_sk); i++) { v = sk_CONF_VALUE_value(attr_sk, i); if (!X509_REQ_add1_attr_by_txt(req, v->name, chtype, (unsigned char *)v->value, -1)) return 0; } } return 1; } static int add_DN_object(X509_NAME *n, char *text, const char *def, char *value, int nid, int n_min, int n_max, unsigned long chtype, int mval) { int ret = 0; char buf[1024]; ret = build_data(text, def, value, n_min, n_max, buf, sizeof(buf), "DN value", "DN default"); if ((ret == 0) || (ret == 1)) return ret; ret = 1; if (!X509_NAME_add_entry_by_NID(n, nid, chtype, (unsigned char *)buf, -1, -1, mval)) ret = 0; return ret; } static int add_attribute_object(X509_REQ *req, char *text, const char *def, char *value, int nid, int n_min, int n_max, unsigned long chtype) { int ret = 0; char buf[1024]; ret = build_data(text, def, value, n_min, n_max, buf, sizeof(buf), "Attribute value", "Attribute default"); if ((ret == 0) || (ret == 1)) return ret; ret = 1; if (!X509_REQ_add1_attr_by_NID(req, nid, chtype, (unsigned char *)buf, -1)) { BIO_printf(bio_err, "Error adding attribute\n"); ERR_print_errors(bio_err); ret = 0; } return ret; } static int build_data(char *text, const char *def, char *value, int n_min, int n_max, char *buf, const int buf_size, const char *desc1, const char *desc2 ) { int i; start: if (!batch) BIO_printf(bio_err, "%s [%s]:", text, def); (void)BIO_flush(bio_err); if (value != NULL) { if (!join(buf, buf_size, value, "\n", desc1)) return 0; BIO_printf(bio_err, "%s\n", value); } else { buf[0] = '\0'; if (!batch) { if (!fgets(buf, buf_size, stdin)) return 0; } else { buf[0] = '\n'; buf[1] = '\0'; } } if (buf[0] == '\0') return 0; if (buf[0] == '\n') { if ((def == NULL) || (def[0] == '\0')) return 1; if (!join(buf, buf_size, def, "\n", desc2)) return 0; } else if ((buf[0] == '.') && (buf[1] == '\n')) { return 1; } i = strlen(buf); if (buf[i - 1] != '\n') { BIO_printf(bio_err, "weird input :-(\n"); return 0; } buf[--i] = '\0'; #ifdef CHARSET_EBCDIC ebcdic2ascii(buf, buf, i); #endif if (!req_check_len(i, n_min, n_max)) { if (batch || value) return 0; goto start; } return 2; } static int req_check_len(int len, int n_min, int n_max) { if ((n_min > 0) && (len < n_min)) { BIO_printf(bio_err, "string is too short, it needs to be at least %d bytes long\n", n_min); return 0; } if ((n_max >= 0) && (len > n_max)) { BIO_printf(bio_err, "string is too long, it needs to be no more than %d bytes long\n", n_max); return 0; } return 1; } /* Check if the end of a string matches 'end' */ static int check_end(const char *str, const char *end) { size_t elen, slen; const char *tmp; elen = strlen(end); slen = strlen(str); if (elen > slen) return 1; tmp = str + slen - elen; return strcmp(tmp, end); } /* * Merge the two strings together into the result buffer checking for * overflow and producing an error message if there is. */ static int join(char buf[], size_t buf_size, const char *name, const char *tail, const char *desc) { const size_t name_len = strlen(name), tail_len = strlen(tail); if (name_len + tail_len + 1 > buf_size) { BIO_printf(bio_err, "%s '%s' too long\n", desc, name); return 0; } memcpy(buf, name, name_len); memcpy(buf + name_len, tail, tail_len + 1); return 1; } static EVP_PKEY_CTX *set_keygen_ctx(const char *gstr, int *pkey_type, long *pkeylen, char **palgnam, ENGINE *keygen_engine) { EVP_PKEY_CTX *gctx = NULL; EVP_PKEY *param = NULL; long keylen = -1; BIO *pbio = NULL; const char *paramfile = NULL; if (gstr == NULL) { *pkey_type = EVP_PKEY_RSA; keylen = *pkeylen; } else if (gstr[0] >= '0' && gstr[0] <= '9') { *pkey_type = EVP_PKEY_RSA; keylen = atol(gstr); *pkeylen = keylen; } else if (strncmp(gstr, "param:", 6) == 0) { paramfile = gstr + 6; } else { const char *p = strchr(gstr, ':'); int len; ENGINE *tmpeng; const EVP_PKEY_ASN1_METHOD *ameth; if (p != NULL) len = p - gstr; else len = strlen(gstr); /* * The lookup of a the string will cover all engines so keep a note * of the implementation. */ ameth = EVP_PKEY_asn1_find_str(&tmpeng, gstr, len); if (ameth == NULL) { BIO_printf(bio_err, "Unknown algorithm %.*s\n", len, gstr); return NULL; } EVP_PKEY_asn1_get0_info(NULL, pkey_type, NULL, NULL, NULL, ameth); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(tmpeng); #endif if (*pkey_type == EVP_PKEY_RSA) { if (p != NULL) { keylen = atol(p + 1); *pkeylen = keylen; } else { keylen = *pkeylen; } } else if (p != NULL) { paramfile = p + 1; } } if (paramfile != NULL) { pbio = BIO_new_file(paramfile, "r"); if (pbio == NULL) { BIO_printf(bio_err, "Can't open parameter file %s\n", paramfile); return NULL; } param = PEM_read_bio_Parameters(pbio, NULL); if (param == NULL) { X509 *x; (void)BIO_reset(pbio); x = PEM_read_bio_X509(pbio, NULL, NULL, NULL); if (x != NULL) { param = X509_get_pubkey(x); X509_free(x); } } BIO_free(pbio); if (param == NULL) { BIO_printf(bio_err, "Error reading parameter file %s\n", paramfile); return NULL; } if (*pkey_type == -1) { *pkey_type = EVP_PKEY_id(param); } else if (*pkey_type != EVP_PKEY_base_id(param)) { BIO_printf(bio_err, "Key Type does not match parameters\n"); EVP_PKEY_free(param); return NULL; } } if (palgnam != NULL) { const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *tmpeng; const char *anam; ameth = EVP_PKEY_asn1_find(&tmpeng, *pkey_type); if (ameth == NULL) { BIO_puts(bio_err, "Internal error: can't find key algorithm\n"); return NULL; } EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &anam, ameth); *palgnam = OPENSSL_strdup(anam); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(tmpeng); #endif } if (param != NULL) { gctx = EVP_PKEY_CTX_new(param, keygen_engine); *pkeylen = EVP_PKEY_bits(param); EVP_PKEY_free(param); } else { gctx = EVP_PKEY_CTX_new_id(*pkey_type, keygen_engine); } if (gctx == NULL) { BIO_puts(bio_err, "Error allocating keygen context\n"); ERR_print_errors(bio_err); return NULL; } if (EVP_PKEY_keygen_init(gctx) <= 0) { BIO_puts(bio_err, "Error initializing keygen context\n"); ERR_print_errors(bio_err); EVP_PKEY_CTX_free(gctx); return NULL; } #ifndef OPENSSL_NO_RSA if ((*pkey_type == EVP_PKEY_RSA) && (keylen != -1)) { if (EVP_PKEY_CTX_set_rsa_keygen_bits(gctx, keylen) <= 0) { BIO_puts(bio_err, "Error setting RSA keysize\n"); ERR_print_errors(bio_err); EVP_PKEY_CTX_free(gctx); return NULL; } } #endif return gctx; } static int genpkey_cb(EVP_PKEY_CTX *ctx) { char c = '*'; BIO *b = EVP_PKEY_CTX_get_app_data(ctx); int p; p = EVP_PKEY_CTX_get_keygen_info(ctx, 0); if (p == 0) c = '.'; if (p == 1) c = '+'; if (p == 2) c = '*'; if (p == 3) c = '\n'; BIO_write(b, &c, 1); (void)BIO_flush(b); return 1; } static int do_sign_init(EVP_MD_CTX *ctx, EVP_PKEY *pkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts) { EVP_PKEY_CTX *pkctx = NULL; int i, def_nid; if (ctx == NULL) return 0; /* * EVP_PKEY_get_default_digest_nid() returns 2 if the digest is mandatory * for this algorithm. */ if (EVP_PKEY_get_default_digest_nid(pkey, &def_nid) == 2 && def_nid == NID_undef) { /* The signing algorithm requires there to be no digest */ md = NULL; } if (!EVP_DigestSignInit(ctx, &pkctx, md, NULL, pkey)) return 0; for (i = 0; i < sk_OPENSSL_STRING_num(sigopts); i++) { char *sigopt = sk_OPENSSL_STRING_value(sigopts, i); if (pkey_ctrl_string(pkctx, sigopt) <= 0) { BIO_printf(bio_err, "parameter error \"%s\"\n", sigopt); ERR_print_errors(bio_err); return 0; } } return 1; } int do_X509_sign(X509 *x, EVP_PKEY *pkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts) { int rv; EVP_MD_CTX *mctx = EVP_MD_CTX_new(); rv = do_sign_init(mctx, pkey, md, sigopts); if (rv > 0) rv = X509_sign_ctx(x, mctx); EVP_MD_CTX_free(mctx); return rv > 0 ? 1 : 0; } int do_X509_REQ_sign(X509_REQ *x, EVP_PKEY *pkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts) { int rv; EVP_MD_CTX *mctx = EVP_MD_CTX_new(); rv = do_sign_init(mctx, pkey, md, sigopts); if (rv > 0) rv = X509_REQ_sign_ctx(x, mctx); EVP_MD_CTX_free(mctx); return rv > 0 ? 1 : 0; } int do_X509_CRL_sign(X509_CRL *x, EVP_PKEY *pkey, const EVP_MD *md, STACK_OF(OPENSSL_STRING) *sigopts) { int rv; EVP_MD_CTX *mctx = EVP_MD_CTX_new(); rv = do_sign_init(mctx, pkey, md, sigopts); if (rv > 0) rv = X509_CRL_sign_ctx(x, mctx); EVP_MD_CTX_free(mctx); return rv > 0 ? 1 : 0; } openssl-1.1.1f/apps/req.pem000066400000000000000000000011631364063235100156040ustar00rootroot00000000000000-----BEGIN CERTIFICATE REQUEST----- MIIBlzCCAVcCAQAwXjELMAkGA1UEBhMCQVUxEzARBgNVBAgTClNvbWUtU3RhdGUx ITAfBgNVBAoTGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDEXMBUGA1UEAxMORXJp YyB0aGUgWW91bmcwge8wgaYGBSsOAwIMMIGcAkEA+ZiKEvZmc9MtnaFZh4NiZ3oZ S4J1PHvPrm9MXj5ntVheDPkdmBDTncyaGAJcMjwsyB/GvLDGd6yGCw/8eF+09wIV AK3VagOxGd/Q4Af5NbxR5FB7CXEjAkA2t/q7HgVLi0KeKvcDG8BRl3wuy7bCvpjg tWiJc/tpvcuzeuAayH89UofjAGueKjXDADiRffvSdhrNw5dkqdqlA0QAAkEAtUSo 84OekjitKGVjxLu0HvXck29pu+foad53vPKXAsuJdACj88BPqZ91Y9PIJf1GUh38 CuiHWi7z3cEDfZCyCKAAMAkGBSsOAwIbBQADLwAwLAIUTg8amKVBE9oqC5B75dDQ Chy3LdQCFHKodGEj3LjuTzdm/RTe2KZL9Uzf -----END CERTIFICATE REQUEST----- openssl-1.1.1f/apps/rsa.c000066400000000000000000000226131364063235100152460ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_RSA NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include # include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_ENGINE, OPT_IN, OPT_OUT, OPT_PUBIN, OPT_PUBOUT, OPT_PASSOUT, OPT_PASSIN, OPT_RSAPUBKEY_IN, OPT_RSAPUBKEY_OUT, /* Do not change the order here; see case statements below */ OPT_PVK_NONE, OPT_PVK_WEAK, OPT_PVK_STRONG, OPT_NOOUT, OPT_TEXT, OPT_MODULUS, OPT_CHECK, OPT_CIPHER } OPTION_CHOICE; const OPTIONS rsa_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'f', "Input format, one of DER PEM"}, {"outform", OPT_OUTFORM, 'f', "Output format, one of DER PEM PVK"}, {"in", OPT_IN, 's', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"pubin", OPT_PUBIN, '-', "Expect a public key in input file"}, {"pubout", OPT_PUBOUT, '-', "Output a public key"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"RSAPublicKey_in", OPT_RSAPUBKEY_IN, '-', "Input is an RSAPublicKey"}, {"RSAPublicKey_out", OPT_RSAPUBKEY_OUT, '-', "Output is an RSAPublicKey"}, {"noout", OPT_NOOUT, '-', "Don't print key out"}, {"text", OPT_TEXT, '-', "Print the key in text"}, {"modulus", OPT_MODULUS, '-', "Print the RSA key modulus"}, {"check", OPT_CHECK, '-', "Verify key consistency"}, {"", OPT_CIPHER, '-', "Any supported cipher"}, # if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_RC4) {"pvk-strong", OPT_PVK_STRONG, '-', "Enable 'Strong' PVK encoding level (default)"}, {"pvk-weak", OPT_PVK_WEAK, '-', "Enable 'Weak' PVK encoding level"}, {"pvk-none", OPT_PVK_NONE, '-', "Don't enforce PVK encoding"}, # endif # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {NULL} }; int rsa_main(int argc, char **argv) { ENGINE *e = NULL; BIO *out = NULL; RSA *rsa = NULL; const EVP_CIPHER *enc = NULL; char *infile = NULL, *outfile = NULL, *prog; char *passin = NULL, *passout = NULL, *passinarg = NULL, *passoutarg = NULL; int i, private = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, text = 0, check = 0; int noout = 0, modulus = 0, pubin = 0, pubout = 0, ret = 1; # if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_RC4) int pvk_encr = 2; # endif OPTION_CHOICE o; prog = opt_init(argc, argv, rsa_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(rsa_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_PUBIN: pubin = 1; break; case OPT_PUBOUT: pubout = 1; break; case OPT_RSAPUBKEY_IN: pubin = 2; break; case OPT_RSAPUBKEY_OUT: pubout = 2; break; case OPT_PVK_STRONG: /* pvk_encr:= 2 */ case OPT_PVK_WEAK: /* pvk_encr:= 1 */ case OPT_PVK_NONE: /* pvk_encr:= 0 */ # if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_RC4) pvk_encr = (o - OPT_PVK_NONE); # endif break; case OPT_NOOUT: noout = 1; break; case OPT_TEXT: text = 1; break; case OPT_MODULUS: modulus = 1; break; case OPT_CHECK: check = 1; break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &enc)) goto opthelp; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; private = (text && !pubin) || (!pubout && !noout) ? 1 : 0; if (!app_passwd(passinarg, passoutarg, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } if (check && pubin) { BIO_printf(bio_err, "Only private keys can be checked\n"); goto end; } { EVP_PKEY *pkey; if (pubin) { int tmpformat = -1; if (pubin == 2) { if (informat == FORMAT_PEM) tmpformat = FORMAT_PEMRSA; else if (informat == FORMAT_ASN1) tmpformat = FORMAT_ASN1RSA; } else { tmpformat = informat; } pkey = load_pubkey(infile, tmpformat, 1, passin, e, "Public Key"); } else { pkey = load_key(infile, informat, 1, passin, e, "Private Key"); } if (pkey != NULL) rsa = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); } if (rsa == NULL) { ERR_print_errors(bio_err); goto end; } out = bio_open_owner(outfile, outformat, private); if (out == NULL) goto end; if (text) { assert(pubin || private); if (!RSA_print(out, rsa, 0)) { perror(outfile); ERR_print_errors(bio_err); goto end; } } if (modulus) { const BIGNUM *n; RSA_get0_key(rsa, &n, NULL, NULL); BIO_printf(out, "Modulus="); BN_print(out, n); BIO_printf(out, "\n"); } if (check) { int r = RSA_check_key_ex(rsa, NULL); if (r == 1) { BIO_printf(out, "RSA key ok\n"); } else if (r == 0) { unsigned long err; while ((err = ERR_peek_error()) != 0 && ERR_GET_LIB(err) == ERR_LIB_RSA && ERR_GET_FUNC(err) == RSA_F_RSA_CHECK_KEY_EX && ERR_GET_REASON(err) != ERR_R_MALLOC_FAILURE) { BIO_printf(out, "RSA key error: %s\n", ERR_reason_error_string(err)); ERR_get_error(); /* remove err from error stack */ } } else if (r == -1) { ERR_print_errors(bio_err); goto end; } } if (noout) { ret = 0; goto end; } BIO_printf(bio_err, "writing RSA key\n"); if (outformat == FORMAT_ASN1) { if (pubout || pubin) { if (pubout == 2) i = i2d_RSAPublicKey_bio(out, rsa); else i = i2d_RSA_PUBKEY_bio(out, rsa); } else { assert(private); i = i2d_RSAPrivateKey_bio(out, rsa); } } else if (outformat == FORMAT_PEM) { if (pubout || pubin) { if (pubout == 2) i = PEM_write_bio_RSAPublicKey(out, rsa); else i = PEM_write_bio_RSA_PUBKEY(out, rsa); } else { assert(private); i = PEM_write_bio_RSAPrivateKey(out, rsa, enc, NULL, 0, NULL, passout); } # ifndef OPENSSL_NO_DSA } else if (outformat == FORMAT_MSBLOB || outformat == FORMAT_PVK) { EVP_PKEY *pk; pk = EVP_PKEY_new(); if (pk == NULL) goto end; EVP_PKEY_set1_RSA(pk, rsa); if (outformat == FORMAT_PVK) { if (pubin) { BIO_printf(bio_err, "PVK form impossible with public key input\n"); EVP_PKEY_free(pk); goto end; } assert(private); # ifdef OPENSSL_NO_RC4 BIO_printf(bio_err, "PVK format not supported\n"); EVP_PKEY_free(pk); goto end; # else i = i2b_PVK_bio(out, pk, pvk_encr, 0, passout); # endif } else if (pubin || pubout) { i = i2b_PublicKey_bio(out, pk); } else { assert(private); i = i2b_PrivateKey_bio(out, pk); } EVP_PKEY_free(pk); # endif } else { BIO_printf(bio_err, "bad output format specified for outfile\n"); goto end; } if (i <= 0) { BIO_printf(bio_err, "unable to write key\n"); ERR_print_errors(bio_err); } else { ret = 0; } end: release_engine(e); BIO_free_all(out); RSA_free(rsa); OPENSSL_free(passin); OPENSSL_free(passout); return ret; } #endif openssl-1.1.1f/apps/rsa8192.pem000066400000000000000000000143351364063235100161330ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIISKAIBAAKCBAEAiQ2f1X6Bte1DKD0OoCBKEikzPW+5w3oXk3WwnE97Wxzy6wJZ ebbZC3CZKKBnJeBMrysPf+lK+9+fP6Vm8bp1wvbcSIA59BDrX6irFSuM/bdnkbuF MFlDjt+uVrxwoyqfPi2IPot1HQg3l5mdyBqcTWvbOnU2L9HZxJfPUCjfzdTMPrMY 55/A20XL7tlV2opEfwhy3uVlveQBM0DnZ3MUQfrk+lRRNWv7yE4ScbOfER9fjvOm yJc3ZbOa3e+AMGGU9OqJ/fyOl0SGYyP2k23omy/idBV4uOs8QWdnAvq8UOzDdua3 tuf5Tn17XBurPJ8juwyPBNispkwwn8BjxAZVPhwUIcxFBg339IxJ9cW0WdVy4nNA LWo/8Ahlf+kZNnFNGCPFytU9gGMLMhab9w/rLrwa9qNe4L8Fmu1JxONn1WfhMOKE aFmycf2olJsYLgUIGYZrjnYu0p/7P3yhTOv8JIhmK+SzmA/I0xiQoF84rpaQzH2d PvxICOA9oQSowou0gLuBSZWm6LiXirg1DZCziU46v33ErQlWM1dSyNaUSzihcV59 mVD0nmzboXH75lGiyiZlp8cLbozzoCwvk9rYqpUGSBzbAy0ECCpabGpzO2Ug+oDi 71e5z4WMpeoR4IS8MaOG/GsJnwaXhiB/gNYfK+8pRADVk5StEAZDE2alSuCbDs0z d9zYr4/em5T9VZsLetxRE7pm/Es9yELuViz8/Tm0/8MVdmNYc/xZU1t6qYYFdyQ2 wlGDTiNPsjR8yXCkmBjKwqnuleu1X6LaZu3VPhEkXGcyFAquQUkSiMv0Yu74qAe0 bQ2v+jjZzP6AM9LUo89cW4Kd8SGD96BdNlAVPNMXoBcIOsZBwsOtETBd4KAyvkXE Ob17u+PLl4UPnSxm9ypKZunUNFRPxtKUyjySYnvlGL+kTjAXrIrZwKJqIn0uhnfa Ck3o7bU6yVMK22ODxy2/Vi3E0P6k5JLwnrF0VIOBqGhts66qo6mWDP8l6MZHARFd pU+nofssVmr8tLKmMmjYGMM5GmKIXRNBs0ksTwFnKRs9AmpE5owC8tTSVdTAkGuS os7QwLvyvNzq7BGJiVr0Iy3Dhsl1vzR35acNOrCsDl3DcCQONKJ2sVXV4pD3dBah mG3sR/jHgjasffJJ35uiGoAua9dbT7HG/+D0z1SHYaVqH8zO4VZSOnGJh/P9rtxx cckFDbiag/JMWig2lbnCjebTtp/BcUsK3TNaDOb7vb0LvbAeRJadd1EFu6PSlH3K LykSUPm4UedvUU3cWjqkSY5lITFJkVaIYOv/EljYtK7p7kFZFTaEwMAWxgsXU3pQ tTzVmq1gZ4vXPwcUq0zK50Frq0F7SQc21ZsunwIDAQABAoIEADuQAkDEpBausJsS PgL1RXuzECPJJJCBxTE+2qx0FoY4hJICCWTORHGmU8nGPE3Ht0wBiNDsULw6KXl9 psmzYW6D3qRbpdQebky6fu/KZ5H0XTyGpJGomaXELH5hkwo2gdKB805LSXB+m7p0 9o96kSdMkpBLVGtf5iZ8W4rY2LsZmlI9f7taQHSLVt/M8HTz1mTnBRU92QO3zZW6 xVa+OrWaFl18u3ZeIaSh2X40tBK68cqstXVD0r2OWuXNKobcQeJW8/XABzBShZ0c ihL0lzyqiN4uXrLu+Nbr22b+FU2OODy6dGk3U6/69NvI4piMCPlHsfhHOnFjd1ZW RIVywyUlCtLNdcn11CchuRro+0J3c2Ba+i9Cl9r3qzT11xFEGF8/XLyUBBCB+uGf 1dR/xJQhCA7cXWWLXyI/semxcvTaGpImP6kiIl1MAjHjXZTSdvyw4JmfXyYGhSjI P0mw3Xn7FXxJ/os9gOfNKz2nZHjr0q4sgWRYO+4vllkeL0GteZrg4oVaVpmZb7LH 77afhodLylhijlEtV5skfkPujbBLQk6E5Ez3U/huEt2NLg6guADmwxMxfBRliZO4 4Ex/td4cuggpEj3FGJV74qRvdvj/MF/uF7IxC/3WapPIsFBFH4zrJsUYt6u3L68I /KC/bfioDeUR/8ANw1DNh+UsnPV3GJIwDkIJKdppi2uXPahJyJQQ8Inps53nn8Gg GifS+HnOXNgMoKOJnZ9IDGjXpfjIs8dJNrGfDHF0mH30N2WARq2v/a3cNUC+f8Bq HSKQ9YrZopktMunsut8u7ZYbTmjIqJpXCaM0CCrSlzSMTDHFSj2tzLk6+qnxeGxB ZwIdShbdeK+0ETG91lE1e9RPQs/uXQP9+uCHJV0YpqQcA6pkCLYJfYpoSMu/Bafy AgfVZz6l5tyEnV0wCcbopsQShc1k9xtTbYNF1h9AQHknj6zeDW4iZMvmVeh3RovT 52OA2R8oLyauF+QaG6x2wUjEx13SJlaBarJZ4seZIOJ+a8+oNzKsbgokXc2cyC9p 5FAZz1OsOb68o93qD1Xvl7bY97fq2q55L7G1XHPPLtZE5lGiLGDtnAuwY8UPrdpr 7Mv2yIxB7xVGurXyHb5PvusR88XED6HMPfLBG/55ENHTal7G5mRix+IWSBAIkxA5 KZ0j8r5Ng4+wELZhqFQai39799bIAyiV6CEz4kyDXlo0kSSexp8o4iz5sPq5vp6h cCb7rdRw7uRnbXrHmXahxoB+ibXaurgV/6B2yurrU/UFoxEp2sHp8LXZGfF6ztY1 dMhSQAACK2vGy5yNagbkTHLgVaHicG5zavJBqzCE+lbPlCqhOUQPdOIwvjHNjdS/ DL3WV/ECggIBAMbW65wPk/i43nSyeZeYwcHtR1SUJqDXavYfBPC0VRhKz+7DVMFw Nwnocn6gITABc445W1yl7U3uww+LGuDlSlFnd8WuiXpVYud9/jeNu6Mu4wvNsnWr f4f4ua8CcS03GmqmcbROD2Z6by1AblCZ2UL1kv9cUX1FLVjPP1ESAGKoePt3BmZQ J1uJfK8HilNT8dcUlj/5CBi2uHxttDhoG0sxXE/SVsG9OD/Pjme0mj7gdzc6Ztd+ TALuvpNQR4pRzfo5XWDZBcEYntcEE3PxYJB1+vnZ8509ew5/yLHTbLjFxIcx71zY fhH0gM36Sz7mz37r0+E/QkRkc5bVIDC4LDnWmjpAde6QUx0d218ShNx6sJo4kt5c Dd7tEVx8nuX8AIZYgwsOb382anLyFRkkmEdK3gRvwQ6SWR36Ez5L7/mHWODpLAX5 mVBKSG4/ccFbc633/g0xHw0Nwajir/klckdakuYPlwF0yAxJSKDLhmNctDhRmxjC YP+fISkl5oTvFRzJH6HEyNu8M3ybRvmpPIjM5J5JpnB2IYbohYBR+T6/97C1DKrd mzL5PjlrWm0c1/d7LlDoP65fOShDMmj2zCiBAHHOM0Alokx+v5LmMd8NJumZIwGJ Rt5OpeMOhowz6j1AjYxYgV7PmJL6Ovpfb775od/aLaUbbwHz2uWIvfF7AoICAQCw c7NaO7oJVLJClhYw6OCvjT6oqtgNVWaennnDiJgzY9lv5HEgV0MAG0eYuB3hvj+w Y1P9DJxP1D+R+cshYrAFg8yU/3kaYVNI0Bl3ygX0eW1b/0HZTdocs+8kM/9PZQDR WrKQoU5lHvqRt99dXlD4NWGI2YQtzdZ8iet9QLqnjwRZabgE96mF01qKisMnFcsh KjT7ieheU4J15TZj/mdZRNK126d7e3q/rNj73e5EJ9tkYLcolSr4gpknUMJULSEi JH1/Qx7C/mTAMRsN5SkOthnGq0djCNWfPv/3JV0H67Uf5krFlnwLebrgfTYoPPdo yO7iBUNJzv6Qh22malLp4P8gzACkD7DGlSTnoB5cLwcjmDGg+i9WrUBbOiVTeQfZ kOj1o+Tz35ndpq/DDUVlqliB9krcxva+QHeJPH53EGI+YVg1nD+s/vUDZ3mQMGX9 DQou2L8uU6RnWNv/BihGcL8QvS4Ty6QyPOUPpD3zc70JQAEcQk9BxQNaELgJX0IN 22cYn22tYvElew9G41OpDqzBRcfbdJmKXQ2HcroShutYJQRGUpAXHk24fy6JVkIU ojF5U6cwextMja1ZIIZgh9eugIRUeIE7319nQNDzuXWjRCcoBLA25P7wnpHWDRpz D9ovXCIvdja74lL5psqobV6L5+fbLPkSgXoImKR0LQKCAgAIC9Jk8kxumCyIVGCP PeM5Uby9M3GMuKrfYsn0Y5e97+kSJF1dpojTodBgR2KQar6eVrvXt+8uZCcIjfx8 dUrYmHNEUJfHl4T1ESgkX1vkcpVFeQFruZDjk7EP3+1sgvpSroGTZkVBRFsTXbQZ FuCv0Pgt1TKG+zGmklxhj3TsiRy8MEjWAxBUp++ftZJnZNI4feDGnfEx7tLwVhAg 6DWSiWDO6hgQpvOLwX5lu+0x9itc1MQsnDO/OqIDnBAJDN5k7cVVkfKlqbVjxgpz eqUJs3yAd81f44kDQTCB4ahYocgeIGsrOqd/WoGL1EEPPo/O9wQP7VtlIRt8UwuG bS18+a4sBUfAa56xYu/pnPo7YcubsgZfcSIujzFQqMpVTClJRnOnEuJ4J1+PXzRz XAO9fs4VJ+CMEmgAyonUz4Xadxulnknlw//sO9VKgM69oFHCDHL/XamAAbqAdwvf 7R/+uy+Ol7romC0wMhb6SsIZazrvvH2mNtduAKZ638nAP1x/WbQp+6iVG7yJok7w 82Q7tO7baOePTXh12Rrt4mNPor0HLYxhra4GFgfqkumJ2Mz0esuZAozxJXFOq8ly beo9CVtXP5zbT6qNpeNismX6PLICaev8t+1iOZSE56WSLtefuuj/cOVrTMNDz1Rr pUkEVV2zjUSjlcScM538A9iL2QKCAgBLbBk0r6T0ihRsK9UucMxhnYEz/Vq+UEu9 70Vi1AciqEJv9nh4d3Q3HnH7EHANZxG4Jqzm1DYYVUQa9GfkTFeq88xFv/GW2hUM YY8RSfRDrIeXNEOETCe37x2AHw25dRXlZtw+wARPau91y9+Y/FCl18NqCHfcUEin ERjsf/eI2bPlODAlR2tZvZ7M60VBdqpN8cmV3zvI3e88z43xLfQlDyr1+v7a5Evy lEJnXlSTI2o+vKxtl103vjMSwA1gh63K90gBVsJWXQDZueOzi8mB9UqNRfcMmOEe 4YHttTXPxeu0x+4cCRfam9zKShsVFgI28vRQ/ijl6qmbQ5gV8wqf18GV1j1L4z0P lP6iVynDA4MMrug/w9DqPsHsfK0pwekeETfSj4y0xVXyjWZBfHG2ZBrS6mDTf+RG LC4sJgR0hjdILLnUqIX7PzuhieBHRrjBcopwvcryVWRHnI7kslAS0+yHjiWc5oW3 x5mtlum4HzelNYuD9cAE/95P6CeSMfp9CyIE/KSX4VvsRm6gQVkoQRKMxnQIFQ3w O5gl1l88vhjoo2HxYScgCp70BsDwiUNTqIR3NM+ZBHYFweVf3Gwz5LzHZT2rEZtD 6VXRP75Q/2wOLnqCO4bK4BUs6sqxcQZmOldruPkPynrY0oPfHHExjxZDvQu4/r80 Ls3n0L8yvQKCAgEAnYWS6EikwaQNpJEfiUnOlglgFz4EE1eVkrDbBY4J3oPU+doz DrqmsvgpSZIAfd2MUbkN4pOMsMTjbeIYWDnZDa1RoctKs3FhwFPHwAjQpznab4mn Bp81FMHM40qyb0NaNuFRwghdXvoQvBBX1p8oEnFzDRvTiuS/vTPTA8KDY8IeRp8R oGzKHpfziNwq/URpqj7pwi9odNjGZvR2IwYw9jCLPIqaEbMoSOdI0mg4MoYyqP4q nm7d4wqSDwrYxiXZ6f3nYpkhEY1lb0Wbksp1ig8sKSF4nDZRGK1RSfE+6gjBp94H X/Wog6Zb6NC9ZpusTiDLvuIUXcyUJvmHiWjSNqiTv8jurlwEsgSwhziEQfqLrtdV QI3PRMolBkD1iCk+HFE53r05LMf1bp3r4MS+naaQrLbIrl1kgDNGwVdgS+SCM7Bg TwEgE67iOb2iIoUpon/NyP4LesMzvdpsu2JFlfz13PmmQ34mFI7tWvOb3NA5DP3c 46C6SaWI0TD9B11nJbHGTYN3Si9n0EBgoDJEXUKeh3km9O47dgvkSug4WzhYsvrE rMlMLtKfp2w8HlMZpsUlToNCx6CI+tJrohzcs3BAVAbjFAXRKWGijB1rxwyDdHPv I+/wJTNaRNPQ1M0SwtEL/zJd21y3KSPn4eL+GP3efhlDSjtlDvZqkdAUsU8= -----END RSA PRIVATE KEY----- openssl-1.1.1f/apps/rsautl.c000066400000000000000000000176201364063235100157750ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_RSA NON_EMPTY_TRANSLATION_UNIT #else # include "apps.h" # include "progs.h" # include # include # include # include # define RSA_SIGN 1 # define RSA_VERIFY 2 # define RSA_ENCRYPT 3 # define RSA_DECRYPT 4 # define KEY_PRIVKEY 1 # define KEY_PUBKEY 2 # define KEY_CERT 3 typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_IN, OPT_OUT, OPT_ASN1PARSE, OPT_HEXDUMP, OPT_RAW, OPT_OAEP, OPT_SSL, OPT_PKCS, OPT_X931, OPT_SIGN, OPT_VERIFY, OPT_REV, OPT_ENCRYPT, OPT_DECRYPT, OPT_PUBIN, OPT_CERTIN, OPT_INKEY, OPT_PASSIN, OPT_KEYFORM, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS rsautl_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"inkey", OPT_INKEY, 's', "Input key"}, {"keyform", OPT_KEYFORM, 'E', "Private key format - default PEM"}, {"pubin", OPT_PUBIN, '-', "Input is an RSA public"}, {"certin", OPT_CERTIN, '-', "Input is a cert carrying an RSA public key"}, {"ssl", OPT_SSL, '-', "Use SSL v2 padding"}, {"raw", OPT_RAW, '-', "Use no padding"}, {"pkcs", OPT_PKCS, '-', "Use PKCS#1 v1.5 padding (default)"}, {"oaep", OPT_OAEP, '-', "Use PKCS#1 OAEP"}, {"sign", OPT_SIGN, '-', "Sign with private key"}, {"verify", OPT_VERIFY, '-', "Verify with public key"}, {"asn1parse", OPT_ASN1PARSE, '-', "Run output through asn1parse; useful with -verify"}, {"hexdump", OPT_HEXDUMP, '-', "Hex dump output"}, {"x931", OPT_X931, '-', "Use ANSI X9.31 padding"}, {"rev", OPT_REV, '-', "Reverse the order of the input buffer"}, {"encrypt", OPT_ENCRYPT, '-', "Encrypt with public key"}, {"decrypt", OPT_DECRYPT, '-', "Decrypt with private key"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, OPT_R_OPTIONS, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {NULL} }; int rsautl_main(int argc, char **argv) { BIO *in = NULL, *out = NULL; ENGINE *e = NULL; EVP_PKEY *pkey = NULL; RSA *rsa = NULL; X509 *x; char *infile = NULL, *outfile = NULL, *keyfile = NULL; char *passinarg = NULL, *passin = NULL, *prog; char rsa_mode = RSA_VERIFY, key_type = KEY_PRIVKEY; unsigned char *rsa_in = NULL, *rsa_out = NULL, pad = RSA_PKCS1_PADDING; int rsa_inlen, keyformat = FORMAT_PEM, keysize, ret = 1; int rsa_outlen = 0, hexdump = 0, asn1parse = 0, need_priv = 0, rev = 0; OPTION_CHOICE o; prog = opt_init(argc, argv, rsautl_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(rsautl_options); ret = 0; goto end; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PDE, &keyformat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_ASN1PARSE: asn1parse = 1; break; case OPT_HEXDUMP: hexdump = 1; break; case OPT_RAW: pad = RSA_NO_PADDING; break; case OPT_OAEP: pad = RSA_PKCS1_OAEP_PADDING; break; case OPT_SSL: pad = RSA_SSLV23_PADDING; break; case OPT_PKCS: pad = RSA_PKCS1_PADDING; break; case OPT_X931: pad = RSA_X931_PADDING; break; case OPT_SIGN: rsa_mode = RSA_SIGN; need_priv = 1; break; case OPT_VERIFY: rsa_mode = RSA_VERIFY; break; case OPT_REV: rev = 1; break; case OPT_ENCRYPT: rsa_mode = RSA_ENCRYPT; break; case OPT_DECRYPT: rsa_mode = RSA_DECRYPT; need_priv = 1; break; case OPT_PUBIN: key_type = KEY_PUBKEY; break; case OPT_CERTIN: key_type = KEY_CERT; break; case OPT_INKEY: keyfile = opt_arg(); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; if (need_priv && (key_type != KEY_PRIVKEY)) { BIO_printf(bio_err, "A private key is needed for this operation\n"); goto end; } if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } switch (key_type) { case KEY_PRIVKEY: pkey = load_key(keyfile, keyformat, 0, passin, e, "Private Key"); break; case KEY_PUBKEY: pkey = load_pubkey(keyfile, keyformat, 0, NULL, e, "Public Key"); break; case KEY_CERT: x = load_cert(keyfile, keyformat, "Certificate"); if (x) { pkey = X509_get_pubkey(x); X509_free(x); } break; } if (pkey == NULL) return 1; rsa = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); if (rsa == NULL) { BIO_printf(bio_err, "Error getting RSA key\n"); ERR_print_errors(bio_err); goto end; } in = bio_open_default(infile, 'r', FORMAT_BINARY); if (in == NULL) goto end; out = bio_open_default(outfile, 'w', FORMAT_BINARY); if (out == NULL) goto end; keysize = RSA_size(rsa); rsa_in = app_malloc(keysize * 2, "hold rsa key"); rsa_out = app_malloc(keysize, "output rsa key"); /* Read the input data */ rsa_inlen = BIO_read(in, rsa_in, keysize * 2); if (rsa_inlen < 0) { BIO_printf(bio_err, "Error reading input Data\n"); goto end; } if (rev) { int i; unsigned char ctmp; for (i = 0; i < rsa_inlen / 2; i++) { ctmp = rsa_in[i]; rsa_in[i] = rsa_in[rsa_inlen - 1 - i]; rsa_in[rsa_inlen - 1 - i] = ctmp; } } switch (rsa_mode) { case RSA_VERIFY: rsa_outlen = RSA_public_decrypt(rsa_inlen, rsa_in, rsa_out, rsa, pad); break; case RSA_SIGN: rsa_outlen = RSA_private_encrypt(rsa_inlen, rsa_in, rsa_out, rsa, pad); break; case RSA_ENCRYPT: rsa_outlen = RSA_public_encrypt(rsa_inlen, rsa_in, rsa_out, rsa, pad); break; case RSA_DECRYPT: rsa_outlen = RSA_private_decrypt(rsa_inlen, rsa_in, rsa_out, rsa, pad); break; } if (rsa_outlen < 0) { BIO_printf(bio_err, "RSA operation error\n"); ERR_print_errors(bio_err); goto end; } ret = 0; if (asn1parse) { if (!ASN1_parse_dump(out, rsa_out, rsa_outlen, 1, -1)) { ERR_print_errors(bio_err); } } else if (hexdump) { BIO_dump(out, (char *)rsa_out, rsa_outlen); } else { BIO_write(out, rsa_out, rsa_outlen); } end: RSA_free(rsa); release_engine(e); BIO_free(in); BIO_free_all(out); OPENSSL_free(rsa_in); OPENSSL_free(rsa_out); OPENSSL_free(passin); return ret; } #endif openssl-1.1.1f/apps/s1024key.pem000066400000000000000000000015731364063235100163040ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIICXgIBAAKBgQCzEfU8E+ZGTGtHXV5XhvM2Lg32fXUIjydXb34BGVPX6oN7+aNV S9eWayvW/+9/vUb0aCqilJrpFesgItV2T8VhhjOE++XUz46uNpcMU7wHMEAXUufP pztpFm8ZEk2tFKvadkSSoN8lb11juvZVkSkPlB65pFhSe4QKSp6J4HrkYwIDAQAB AoGBAKy8jvb0Lzby8q11yNLf7+78wCVdYi7ugMHcYA1JVFK8+zb1WfSm44FLQo/0 dSChAjgz36TTexeLODPYxleJndjVcOMVzsLJjSM8dLpXsTS4FCeMbhw2s2u+xqKY bbPWfk+HOTyJjfnkcC5Nbg44eOmruq0gSmBeUXVM5UntlTnxAkEA7TGCA3h7kx5E Bl4zl2pc3gPAGt+dyfk5Po9mGJUUXhF5p2zueGmYWW74TmOWB1kzt4QRdYMzFePq zfDNXEa1CwJBAMFErdY0xp0UJ13WwBbUTk8rujqQdHtjw0klhpbuKkjxu2hN0wwM 6p0D9qxF7JHaghqVRI0fAW/EE0OzdHMR9QkCQQDNR26dMFXKsoPu+vItljj/UEGf QG7gERiQ4yxaFBPHgdpGo0kT31eh9x9hQGDkxTe0GNG/YSgCRvm8+C3TMcKXAkBD dhGn36wkUFCddMSAM4NSJ1VN8/Z0y5HzCmI8dM3VwGtGMUQlxKxwOl30LEQzdS5M 0SWojNYXiT2gOBfBwtbhAkEAhafl5QEOIgUz+XazS/IlZ8goNKdDVfYgK3mHHjvv nY5G+AuGebdNkXJr4KSWxDcN+C2i47zuj4QXA16MAOandA== -----END RSA PRIVATE KEY----- openssl-1.1.1f/apps/s1024req.pem000066400000000000000000000012031364063235100162710ustar00rootroot00000000000000-----BEGIN CERTIFICATE REQUEST----- MIIBojCCAQsCAQAwZDELMAkGA1UEBhMCQVUxEzARBgNVBAgTClF1ZWVuc2xhbmQx GjAYBgNVBAoTEUNyeXB0U29mdCBQdHkgTHRkMSQwIgYDVQQDExtTZXJ2ZXIgdGVz dCBjZXJ0ICgxMDI0IGJpdCkwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBALMR 9TwT5kZMa0ddXleG8zYuDfZ9dQiPJ1dvfgEZU9fqg3v5o1VL15ZrK9b/73+9RvRo KqKUmukV6yAi1XZPxWGGM4T75dTPjq42lwxTvAcwQBdS58+nO2kWbxkSTa0Uq9p2 RJKg3yVvXWO69lWRKQ+UHrmkWFJ7hApKnongeuRjAgMBAAEwDQYJKoZIhvcNAQEE BQADgYEAStHlk4pBbwiNeQ2/PKTPPXzITYC8Gn0XMbrU94e/6JIKiO7aArq9Espq nrBSvC14dHcNl6NNvnkEKdQ7hAkcACfBbnOXA/oQvMBd4GD78cH3k0jVDoVUEjil frLfWlckW6WzpTktt0ZPDdAjJCmKVh0ABHimi7Bo9FC3wIGIe5M= -----END CERTIFICATE REQUEST----- openssl-1.1.1f/apps/s512-key.pem000066400000000000000000000007611364063235100163000ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIBPAIBAAJBAJ+zw4Qnlf8SMVIPFe9GEcStgOY2Ww/dgNdhjeD8ckUJNP5VZkVD TGiXav6ooKXfX3j/7tdkuD8Ey2//Kv7+ue0CAwEAAQJAN6W31vDEP2DjdqhzCDDu OA4NACqoiFqyblo7yc2tM4h4xMbC3Yx5UKMN9ZkCtX0gzrz6DyF47bdKcWBzNWCj gQIhANEoojVt7hq+SQ6MCN6FTAysGgQf56Q3TYoJMoWvdiXVAiEAw3e3rc+VJpOz rHuDo6bgpjUAAXM+v3fcpsfZSNO6V7kCIQCtbVjanpUwvZkMI9by02oUk9taki3b PzPfAfNPYAbCJQIhAJXNQDWyqwn/lGmR11cqY2y9nZ1+5w3yHGatLrcDnQHxAiEA vnlEGo8K85u+KwIOimM48ZG8oTk7iFdkqLJR1utT3aU= -----END RSA PRIVATE KEY----- openssl-1.1.1f/apps/s512-req.pem000066400000000000000000000007141364063235100162750ustar00rootroot00000000000000-----BEGIN CERTIFICATE REQUEST----- MIIBGzCBxgIBADBjMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5zbGFuZDEa MBgGA1UEChMRQ3J5cHRTb2Z0IFB0eSBMdGQxIzAhBgNVBAMTGlNlcnZlciB0ZXN0 IGNlcnQgKDUxMiBiaXQpMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJ+zw4Qnlf8S MVIPFe9GEcStgOY2Ww/dgNdhjeD8ckUJNP5VZkVDTGiXav6ooKXfX3j/7tdkuD8E y2//Kv7+ue0CAwEAATANBgkqhkiG9w0BAQQFAANBAAB+uQi+qwn6qRSHB8EUTvsm 5TNTHzYDeN39nyIbZNX2s0se3Srn2Bxft5YCwD3moFZ9QoyDHxE0h6qLX5yjD+8= -----END CERTIFICATE REQUEST----- openssl-1.1.1f/apps/s_apps.h000066400000000000000000000064641364063235100157610ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #define PORT "4433" #define PROTOCOL "tcp" typedef int (*do_server_cb)(int s, int stype, int prot, unsigned char *context); int do_server(int *accept_sock, const char *host, const char *port, int family, int type, int protocol, do_server_cb cb, unsigned char *context, int naccept, BIO *bio_s_out); int verify_callback(int ok, X509_STORE_CTX *ctx); int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file); int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key, STACK_OF(X509) *chain, int build_chain); int ssl_print_sigalgs(BIO *out, SSL *s); int ssl_print_point_formats(BIO *out, SSL *s); int ssl_print_groups(BIO *out, SSL *s, int noshared); int ssl_print_tmp_key(BIO *out, SSL *s); int init_client(int *sock, const char *host, const char *port, const char *bindhost, const char *bindport, int family, int type, int protocol); int should_retry(int i); long bio_dump_callback(BIO *bio, int cmd, const char *argp, int argi, long argl, long ret); void apps_ssl_info_callback(const SSL *s, int where, int ret); void msg_cb(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg); void tlsext_cb(SSL *s, int client_server, int type, const unsigned char *data, int len, void *arg); int generate_cookie_callback(SSL *ssl, unsigned char *cookie, unsigned int *cookie_len); int verify_cookie_callback(SSL *ssl, const unsigned char *cookie, unsigned int cookie_len); #ifdef __VMS /* 31 char symbol name limit */ # define generate_stateless_cookie_callback generate_stateless_cookie_cb # define verify_stateless_cookie_callback verify_stateless_cookie_cb #endif int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie, size_t *cookie_len); int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie, size_t cookie_len); typedef struct ssl_excert_st SSL_EXCERT; void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc); void ssl_excert_free(SSL_EXCERT *exc); int args_excert(int option, SSL_EXCERT **pexc); int load_excert(SSL_EXCERT **pexc); void print_verify_detail(SSL *s, BIO *bio); void print_ssl_summary(SSL *s); int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str, SSL_CTX *ctx); int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download); int ssl_load_stores(SSL_CTX *ctx, const char *vfyCApath, const char *vfyCAfile, const char *chCApath, const char *chCAfile, STACK_OF(X509_CRL) *crls, int crl_download); void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose); int set_keylog_file(SSL_CTX *ctx, const char *keylog_file); void print_ca_names(BIO *bio, SSL *s); openssl-1.1.1f/apps/s_cb.c000066400000000000000000001360041364063235100153670ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* callback functions used by s_client, s_server, and s_time */ #include #include #include /* for memcpy() and strcmp() */ #include "apps.h" #include #include #include #include #include #ifndef OPENSSL_NO_DH # include #endif #include "s_apps.h" #define COOKIE_SECRET_LENGTH 16 VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 }; #ifndef OPENSSL_NO_SOCK static unsigned char cookie_secret[COOKIE_SECRET_LENGTH]; static int cookie_initialized = 0; #endif static BIO *bio_keylog = NULL; static const char *lookup(int val, const STRINT_PAIR* list, const char* def) { for ( ; list->name; ++list) if (list->retval == val) return list->name; return def; } int verify_callback(int ok, X509_STORE_CTX *ctx) { X509 *err_cert; int err, depth; err_cert = X509_STORE_CTX_get_current_cert(ctx); err = X509_STORE_CTX_get_error(ctx); depth = X509_STORE_CTX_get_error_depth(ctx); if (!verify_args.quiet || !ok) { BIO_printf(bio_err, "depth=%d ", depth); if (err_cert != NULL) { X509_NAME_print_ex(bio_err, X509_get_subject_name(err_cert), 0, get_nameopt()); BIO_puts(bio_err, "\n"); } else { BIO_puts(bio_err, "\n"); } } if (!ok) { BIO_printf(bio_err, "verify error:num=%d:%s\n", err, X509_verify_cert_error_string(err)); if (verify_args.depth < 0 || verify_args.depth >= depth) { if (!verify_args.return_error) ok = 1; verify_args.error = err; } else { ok = 0; verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG; } } switch (err) { case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: BIO_puts(bio_err, "issuer= "); X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert), 0, get_nameopt()); BIO_puts(bio_err, "\n"); break; case X509_V_ERR_CERT_NOT_YET_VALID: case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: BIO_printf(bio_err, "notBefore="); ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert)); BIO_printf(bio_err, "\n"); break; case X509_V_ERR_CERT_HAS_EXPIRED: case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: BIO_printf(bio_err, "notAfter="); ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert)); BIO_printf(bio_err, "\n"); break; case X509_V_ERR_NO_EXPLICIT_POLICY: if (!verify_args.quiet) policies_print(ctx); break; } if (err == X509_V_OK && ok == 2 && !verify_args.quiet) policies_print(ctx); if (ok && !verify_args.quiet) BIO_printf(bio_err, "verify return:%d\n", ok); return ok; } int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file) { if (cert_file != NULL) { if (SSL_CTX_use_certificate_file(ctx, cert_file, SSL_FILETYPE_PEM) <= 0) { BIO_printf(bio_err, "unable to get certificate from '%s'\n", cert_file); ERR_print_errors(bio_err); return 0; } if (key_file == NULL) key_file = cert_file; if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) { BIO_printf(bio_err, "unable to get private key from '%s'\n", key_file); ERR_print_errors(bio_err); return 0; } /* * If we are using DSA, we can copy the parameters from the private * key */ /* * Now we know that a key and cert have been set against the SSL * context */ if (!SSL_CTX_check_private_key(ctx)) { BIO_printf(bio_err, "Private key does not match the certificate public key\n"); return 0; } } return 1; } int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key, STACK_OF(X509) *chain, int build_chain) { int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0; if (cert == NULL) return 1; if (SSL_CTX_use_certificate(ctx, cert) <= 0) { BIO_printf(bio_err, "error setting certificate\n"); ERR_print_errors(bio_err); return 0; } if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) { BIO_printf(bio_err, "error setting private key\n"); ERR_print_errors(bio_err); return 0; } /* * Now we know that a key and cert have been set against the SSL context */ if (!SSL_CTX_check_private_key(ctx)) { BIO_printf(bio_err, "Private key does not match the certificate public key\n"); return 0; } if (chain && !SSL_CTX_set1_chain(ctx, chain)) { BIO_printf(bio_err, "error setting certificate chain\n"); ERR_print_errors(bio_err); return 0; } if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) { BIO_printf(bio_err, "error building certificate chain\n"); ERR_print_errors(bio_err); return 0; } return 1; } static STRINT_PAIR cert_type_list[] = { {"RSA sign", TLS_CT_RSA_SIGN}, {"DSA sign", TLS_CT_DSS_SIGN}, {"RSA fixed DH", TLS_CT_RSA_FIXED_DH}, {"DSS fixed DH", TLS_CT_DSS_FIXED_DH}, {"ECDSA sign", TLS_CT_ECDSA_SIGN}, {"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH}, {"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH}, {"GOST01 Sign", TLS_CT_GOST01_SIGN}, {"GOST12 Sign", TLS_CT_GOST12_SIGN}, {NULL} }; static void ssl_print_client_cert_types(BIO *bio, SSL *s) { const unsigned char *p; int i; int cert_type_num = SSL_get0_certificate_types(s, &p); if (!cert_type_num) return; BIO_puts(bio, "Client Certificate Types: "); for (i = 0; i < cert_type_num; i++) { unsigned char cert_type = p[i]; const char *cname = lookup((int)cert_type, cert_type_list, NULL); if (i) BIO_puts(bio, ", "); if (cname != NULL) BIO_puts(bio, cname); else BIO_printf(bio, "UNKNOWN (%d),", cert_type); } BIO_puts(bio, "\n"); } static const char *get_sigtype(int nid) { switch (nid) { case EVP_PKEY_RSA: return "RSA"; case EVP_PKEY_RSA_PSS: return "RSA-PSS"; case EVP_PKEY_DSA: return "DSA"; case EVP_PKEY_EC: return "ECDSA"; case NID_ED25519: return "Ed25519"; case NID_ED448: return "Ed448"; case NID_id_GostR3410_2001: return "gost2001"; case NID_id_GostR3410_2012_256: return "gost2012_256"; case NID_id_GostR3410_2012_512: return "gost2012_512"; default: return NULL; } } static int do_print_sigalgs(BIO *out, SSL *s, int shared) { int i, nsig, client; client = SSL_is_server(s) ? 0 : 1; if (shared) nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL); else nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL); if (nsig == 0) return 1; if (shared) BIO_puts(out, "Shared "); if (client) BIO_puts(out, "Requested "); BIO_puts(out, "Signature Algorithms: "); for (i = 0; i < nsig; i++) { int hash_nid, sign_nid; unsigned char rhash, rsign; const char *sstr = NULL; if (shared) SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash); else SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash); if (i) BIO_puts(out, ":"); sstr = get_sigtype(sign_nid); if (sstr) BIO_printf(out, "%s", sstr); else BIO_printf(out, "0x%02X", (int)rsign); if (hash_nid != NID_undef) BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid)); else if (sstr == NULL) BIO_printf(out, "+0x%02X", (int)rhash); } BIO_puts(out, "\n"); return 1; } int ssl_print_sigalgs(BIO *out, SSL *s) { int nid; if (!SSL_is_server(s)) ssl_print_client_cert_types(out, s); do_print_sigalgs(out, s, 0); do_print_sigalgs(out, s, 1); if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef) BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid)); if (SSL_get_peer_signature_type_nid(s, &nid)) BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid)); return 1; } #ifndef OPENSSL_NO_EC int ssl_print_point_formats(BIO *out, SSL *s) { int i, nformats; const char *pformats; nformats = SSL_get0_ec_point_formats(s, &pformats); if (nformats <= 0) return 1; BIO_puts(out, "Supported Elliptic Curve Point Formats: "); for (i = 0; i < nformats; i++, pformats++) { if (i) BIO_puts(out, ":"); switch (*pformats) { case TLSEXT_ECPOINTFORMAT_uncompressed: BIO_puts(out, "uncompressed"); break; case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime: BIO_puts(out, "ansiX962_compressed_prime"); break; case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2: BIO_puts(out, "ansiX962_compressed_char2"); break; default: BIO_printf(out, "unknown(%d)", (int)*pformats); break; } } BIO_puts(out, "\n"); return 1; } int ssl_print_groups(BIO *out, SSL *s, int noshared) { int i, ngroups, *groups, nid; const char *gname; ngroups = SSL_get1_groups(s, NULL); if (ngroups <= 0) return 1; groups = app_malloc(ngroups * sizeof(int), "groups to print"); SSL_get1_groups(s, groups); BIO_puts(out, "Supported Elliptic Groups: "); for (i = 0; i < ngroups; i++) { if (i) BIO_puts(out, ":"); nid = groups[i]; /* If unrecognised print out hex version */ if (nid & TLSEXT_nid_unknown) { BIO_printf(out, "0x%04X", nid & 0xFFFF); } else { /* TODO(TLS1.3): Get group name here */ /* Use NIST name for curve if it exists */ gname = EC_curve_nid2nist(nid); if (gname == NULL) gname = OBJ_nid2sn(nid); BIO_printf(out, "%s", gname); } } OPENSSL_free(groups); if (noshared) { BIO_puts(out, "\n"); return 1; } BIO_puts(out, "\nShared Elliptic groups: "); ngroups = SSL_get_shared_group(s, -1); for (i = 0; i < ngroups; i++) { if (i) BIO_puts(out, ":"); nid = SSL_get_shared_group(s, i); /* TODO(TLS1.3): Convert for DH groups */ gname = EC_curve_nid2nist(nid); if (gname == NULL) gname = OBJ_nid2sn(nid); BIO_printf(out, "%s", gname); } if (ngroups == 0) BIO_puts(out, "NONE"); BIO_puts(out, "\n"); return 1; } #endif int ssl_print_tmp_key(BIO *out, SSL *s) { EVP_PKEY *key; if (!SSL_get_peer_tmp_key(s, &key)) return 1; BIO_puts(out, "Server Temp Key: "); switch (EVP_PKEY_id(key)) { case EVP_PKEY_RSA: BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key)); break; case EVP_PKEY_DH: BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key)); break; #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: { EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key); int nid; const char *cname; nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); EC_KEY_free(ec); cname = EC_curve_nid2nist(nid); if (cname == NULL) cname = OBJ_nid2sn(nid); BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key)); } break; #endif default: BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_id(key)), EVP_PKEY_bits(key)); } EVP_PKEY_free(key); return 1; } long bio_dump_callback(BIO *bio, int cmd, const char *argp, int argi, long argl, long ret) { BIO *out; out = (BIO *)BIO_get_callback_arg(bio); if (out == NULL) return ret; if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) { BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n", (void *)bio, (void *)argp, (unsigned long)argi, ret, ret); BIO_dump(out, argp, (int)ret); return ret; } else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) { BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n", (void *)bio, (void *)argp, (unsigned long)argi, ret, ret); BIO_dump(out, argp, (int)ret); } return ret; } void apps_ssl_info_callback(const SSL *s, int where, int ret) { const char *str; int w; w = where & ~SSL_ST_MASK; if (w & SSL_ST_CONNECT) str = "SSL_connect"; else if (w & SSL_ST_ACCEPT) str = "SSL_accept"; else str = "undefined"; if (where & SSL_CB_LOOP) { BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s)); } else if (where & SSL_CB_ALERT) { str = (where & SSL_CB_READ) ? "read" : "write"; BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n", str, SSL_alert_type_string_long(ret), SSL_alert_desc_string_long(ret)); } else if (where & SSL_CB_EXIT) { if (ret == 0) BIO_printf(bio_err, "%s:failed in %s\n", str, SSL_state_string_long(s)); else if (ret < 0) BIO_printf(bio_err, "%s:error in %s\n", str, SSL_state_string_long(s)); } } static STRINT_PAIR ssl_versions[] = { {"SSL 3.0", SSL3_VERSION}, {"TLS 1.0", TLS1_VERSION}, {"TLS 1.1", TLS1_1_VERSION}, {"TLS 1.2", TLS1_2_VERSION}, {"TLS 1.3", TLS1_3_VERSION}, {"DTLS 1.0", DTLS1_VERSION}, {"DTLS 1.0 (bad)", DTLS1_BAD_VER}, {NULL} }; static STRINT_PAIR alert_types[] = { {" close_notify", 0}, {" end_of_early_data", 1}, {" unexpected_message", 10}, {" bad_record_mac", 20}, {" decryption_failed", 21}, {" record_overflow", 22}, {" decompression_failure", 30}, {" handshake_failure", 40}, {" bad_certificate", 42}, {" unsupported_certificate", 43}, {" certificate_revoked", 44}, {" certificate_expired", 45}, {" certificate_unknown", 46}, {" illegal_parameter", 47}, {" unknown_ca", 48}, {" access_denied", 49}, {" decode_error", 50}, {" decrypt_error", 51}, {" export_restriction", 60}, {" protocol_version", 70}, {" insufficient_security", 71}, {" internal_error", 80}, {" inappropriate_fallback", 86}, {" user_canceled", 90}, {" no_renegotiation", 100}, {" missing_extension", 109}, {" unsupported_extension", 110}, {" certificate_unobtainable", 111}, {" unrecognized_name", 112}, {" bad_certificate_status_response", 113}, {" bad_certificate_hash_value", 114}, {" unknown_psk_identity", 115}, {" certificate_required", 116}, {NULL} }; static STRINT_PAIR handshakes[] = { {", HelloRequest", SSL3_MT_HELLO_REQUEST}, {", ClientHello", SSL3_MT_CLIENT_HELLO}, {", ServerHello", SSL3_MT_SERVER_HELLO}, {", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST}, {", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET}, {", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA}, {", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS}, {", Certificate", SSL3_MT_CERTIFICATE}, {", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE}, {", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST}, {", ServerHelloDone", SSL3_MT_SERVER_DONE}, {", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY}, {", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE}, {", Finished", SSL3_MT_FINISHED}, {", CertificateUrl", SSL3_MT_CERTIFICATE_URL}, {", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS}, {", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA}, {", KeyUpdate", SSL3_MT_KEY_UPDATE}, #ifndef OPENSSL_NO_NEXTPROTONEG {", NextProto", SSL3_MT_NEXT_PROTO}, #endif {", MessageHash", SSL3_MT_MESSAGE_HASH}, {NULL} }; void msg_cb(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) { BIO *bio = arg; const char *str_write_p = write_p ? ">>>" : "<<<"; const char *str_version = lookup(version, ssl_versions, "???"); const char *str_content_type = "", *str_details1 = "", *str_details2 = ""; const unsigned char* bp = buf; if (version == SSL3_VERSION || version == TLS1_VERSION || version == TLS1_1_VERSION || version == TLS1_2_VERSION || version == TLS1_3_VERSION || version == DTLS1_VERSION || version == DTLS1_BAD_VER) { switch (content_type) { case 20: str_content_type = ", ChangeCipherSpec"; break; case 21: str_content_type = ", Alert"; str_details1 = ", ???"; if (len == 2) { switch (bp[0]) { case 1: str_details1 = ", warning"; break; case 2: str_details1 = ", fatal"; break; } str_details2 = lookup((int)bp[1], alert_types, " ???"); } break; case 22: str_content_type = ", Handshake"; str_details1 = "???"; if (len > 0) str_details1 = lookup((int)bp[0], handshakes, "???"); break; case 23: str_content_type = ", ApplicationData"; break; #ifndef OPENSSL_NO_HEARTBEATS case 24: str_details1 = ", Heartbeat"; if (len > 0) { switch (bp[0]) { case 1: str_details1 = ", HeartbeatRequest"; break; case 2: str_details1 = ", HeartbeatResponse"; break; } } break; #endif } } BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version, str_content_type, (unsigned long)len, str_details1, str_details2); if (len > 0) { size_t num, i; BIO_printf(bio, " "); num = len; for (i = 0; i < num; i++) { if (i % 16 == 0 && i > 0) BIO_printf(bio, "\n "); BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]); } if (i < len) BIO_printf(bio, " ..."); BIO_printf(bio, "\n"); } (void)BIO_flush(bio); } static STRINT_PAIR tlsext_types[] = { {"server name", TLSEXT_TYPE_server_name}, {"max fragment length", TLSEXT_TYPE_max_fragment_length}, {"client certificate URL", TLSEXT_TYPE_client_certificate_url}, {"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys}, {"truncated HMAC", TLSEXT_TYPE_truncated_hmac}, {"status request", TLSEXT_TYPE_status_request}, {"user mapping", TLSEXT_TYPE_user_mapping}, {"client authz", TLSEXT_TYPE_client_authz}, {"server authz", TLSEXT_TYPE_server_authz}, {"cert type", TLSEXT_TYPE_cert_type}, {"supported_groups", TLSEXT_TYPE_supported_groups}, {"EC point formats", TLSEXT_TYPE_ec_point_formats}, {"SRP", TLSEXT_TYPE_srp}, {"signature algorithms", TLSEXT_TYPE_signature_algorithms}, {"use SRTP", TLSEXT_TYPE_use_srtp}, {"heartbeat", TLSEXT_TYPE_heartbeat}, {"session ticket", TLSEXT_TYPE_session_ticket}, {"renegotiation info", TLSEXT_TYPE_renegotiate}, {"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp}, {"TLS padding", TLSEXT_TYPE_padding}, #ifdef TLSEXT_TYPE_next_proto_neg {"next protocol", TLSEXT_TYPE_next_proto_neg}, #endif #ifdef TLSEXT_TYPE_encrypt_then_mac {"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac}, #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation {"application layer protocol negotiation", TLSEXT_TYPE_application_layer_protocol_negotiation}, #endif #ifdef TLSEXT_TYPE_extended_master_secret {"extended master secret", TLSEXT_TYPE_extended_master_secret}, #endif {"key share", TLSEXT_TYPE_key_share}, {"supported versions", TLSEXT_TYPE_supported_versions}, {"psk", TLSEXT_TYPE_psk}, {"psk kex modes", TLSEXT_TYPE_psk_kex_modes}, {"certificate authorities", TLSEXT_TYPE_certificate_authorities}, {"post handshake auth", TLSEXT_TYPE_post_handshake_auth}, {NULL} }; /* from rfc8446 4.2.3. + gost (https://tools.ietf.org/id/draft-smyshlyaev-tls12-gost-suites-04.html) */ static STRINT_PAIR signature_tls13_scheme_list[] = { {"rsa_pkcs1_sha1", 0x0201 /* TLSEXT_SIGALG_rsa_pkcs1_sha1 */}, {"ecdsa_sha1", 0x0203 /* TLSEXT_SIGALG_ecdsa_sha1 */}, /* {"rsa_pkcs1_sha224", 0x0301 TLSEXT_SIGALG_rsa_pkcs1_sha224}, not in rfc8446 */ /* {"ecdsa_sha224", 0x0303 TLSEXT_SIGALG_ecdsa_sha224} not in rfc8446 */ {"rsa_pkcs1_sha256", 0x0401 /* TLSEXT_SIGALG_rsa_pkcs1_sha256 */}, {"ecdsa_secp256r1_sha256", 0x0403 /* TLSEXT_SIGALG_ecdsa_secp256r1_sha256 */}, {"rsa_pkcs1_sha384", 0x0501 /* TLSEXT_SIGALG_rsa_pkcs1_sha384 */}, {"ecdsa_secp384r1_sha384", 0x0503 /* TLSEXT_SIGALG_ecdsa_secp384r1_sha384 */}, {"rsa_pkcs1_sha512", 0x0601 /* TLSEXT_SIGALG_rsa_pkcs1_sha512 */}, {"ecdsa_secp521r1_sha512", 0x0603 /* TLSEXT_SIGALG_ecdsa_secp521r1_sha512 */}, {"rsa_pss_rsae_sha256", 0x0804 /* TLSEXT_SIGALG_rsa_pss_rsae_sha256 */}, {"rsa_pss_rsae_sha384", 0x0805 /* TLSEXT_SIGALG_rsa_pss_rsae_sha384 */}, {"rsa_pss_rsae_sha512", 0x0806 /* TLSEXT_SIGALG_rsa_pss_rsae_sha512 */}, {"ed25519", 0x0807 /* TLSEXT_SIGALG_ed25519 */}, {"ed448", 0x0808 /* TLSEXT_SIGALG_ed448 */}, {"rsa_pss_pss_sha256", 0x0809 /* TLSEXT_SIGALG_rsa_pss_pss_sha256 */}, {"rsa_pss_pss_sha384", 0x080a /* TLSEXT_SIGALG_rsa_pss_pss_sha384 */}, {"rsa_pss_pss_sha512", 0x080b /* TLSEXT_SIGALG_rsa_pss_pss_sha512 */}, {"gostr34102001", 0xeded /* TLSEXT_SIGALG_gostr34102001_gostr3411 */}, {"gostr34102012_256", 0xeeee /* TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 */}, {"gostr34102012_512", 0xefef /* TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 */}, {NULL} }; /* from rfc5246 7.4.1.4.1. */ static STRINT_PAIR signature_tls12_alg_list[] = { {"anonymous", TLSEXT_signature_anonymous /* 0 */}, {"RSA", TLSEXT_signature_rsa /* 1 */}, {"DSA", TLSEXT_signature_dsa /* 2 */}, {"ECDSA", TLSEXT_signature_ecdsa /* 3 */}, {NULL} }; /* from rfc5246 7.4.1.4.1. */ static STRINT_PAIR signature_tls12_hash_list[] = { {"none", TLSEXT_hash_none /* 0 */}, {"MD5", TLSEXT_hash_md5 /* 1 */}, {"SHA1", TLSEXT_hash_sha1 /* 2 */}, {"SHA224", TLSEXT_hash_sha224 /* 3 */}, {"SHA256", TLSEXT_hash_sha256 /* 4 */}, {"SHA384", TLSEXT_hash_sha384 /* 5 */}, {"SHA512", TLSEXT_hash_sha512 /* 6 */}, {NULL} }; void tlsext_cb(SSL *s, int client_server, int type, const unsigned char *data, int len, void *arg) { BIO *bio = arg; const char *extname = lookup(type, tlsext_types, "unknown"); BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n", client_server ? "server" : "client", extname, type, len); BIO_dump(bio, (const char *)data, len); (void)BIO_flush(bio); } #ifndef OPENSSL_NO_SOCK int generate_cookie_callback(SSL *ssl, unsigned char *cookie, unsigned int *cookie_len) { unsigned char *buffer; size_t length = 0; unsigned short port; BIO_ADDR *lpeer = NULL, *peer = NULL; /* Initialize a random secret */ if (!cookie_initialized) { if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) { BIO_printf(bio_err, "error setting random cookie secret\n"); return 0; } cookie_initialized = 1; } if (SSL_is_dtls(ssl)) { lpeer = peer = BIO_ADDR_new(); if (peer == NULL) { BIO_printf(bio_err, "memory full\n"); return 0; } /* Read peer information */ (void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer); } else { peer = ourpeer; } /* Create buffer with peer's address and port */ if (!BIO_ADDR_rawaddress(peer, NULL, &length)) { BIO_printf(bio_err, "Failed getting peer address\n"); return 0; } OPENSSL_assert(length != 0); port = BIO_ADDR_rawport(peer); length += sizeof(port); buffer = app_malloc(length, "cookie generate buffer"); memcpy(buffer, &port, sizeof(port)); BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL); /* Calculate HMAC of buffer using the secret */ HMAC(EVP_sha1(), cookie_secret, COOKIE_SECRET_LENGTH, buffer, length, cookie, cookie_len); OPENSSL_free(buffer); BIO_ADDR_free(lpeer); return 1; } int verify_cookie_callback(SSL *ssl, const unsigned char *cookie, unsigned int cookie_len) { unsigned char result[EVP_MAX_MD_SIZE]; unsigned int resultlength; /* Note: we check cookie_initialized because if it's not, * it cannot be valid */ if (cookie_initialized && generate_cookie_callback(ssl, result, &resultlength) && cookie_len == resultlength && memcmp(result, cookie, resultlength) == 0) return 1; return 0; } int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie, size_t *cookie_len) { unsigned int temp; int res = generate_cookie_callback(ssl, cookie, &temp); *cookie_len = temp; return res; } int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie, size_t cookie_len) { return verify_cookie_callback(ssl, cookie, cookie_len); } #endif /* * Example of extended certificate handling. Where the standard support of * one certificate per algorithm is not sufficient an application can decide * which certificate(s) to use at runtime based on whatever criteria it deems * appropriate. */ /* Linked list of certificates, keys and chains */ struct ssl_excert_st { int certform; const char *certfile; int keyform; const char *keyfile; const char *chainfile; X509 *cert; EVP_PKEY *key; STACK_OF(X509) *chain; int build_chain; struct ssl_excert_st *next, *prev; }; static STRINT_PAIR chain_flags[] = { {"Overall Validity", CERT_PKEY_VALID}, {"Sign with EE key", CERT_PKEY_SIGN}, {"EE signature", CERT_PKEY_EE_SIGNATURE}, {"CA signature", CERT_PKEY_CA_SIGNATURE}, {"EE key parameters", CERT_PKEY_EE_PARAM}, {"CA key parameters", CERT_PKEY_CA_PARAM}, {"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN}, {"Issuer Name", CERT_PKEY_ISSUER_NAME}, {"Certificate Type", CERT_PKEY_CERT_TYPE}, {NULL} }; static void print_chain_flags(SSL *s, int flags) { STRINT_PAIR *pp; for (pp = chain_flags; pp->name; ++pp) BIO_printf(bio_err, "\t%s: %s\n", pp->name, (flags & pp->retval) ? "OK" : "NOT OK"); BIO_printf(bio_err, "\tSuite B: "); if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS) BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n"); else BIO_printf(bio_err, "not tested\n"); } /* * Very basic selection callback: just use any certificate chain reported as * valid. More sophisticated could prioritise according to local policy. */ static int set_cert_cb(SSL *ssl, void *arg) { int i, rv; SSL_EXCERT *exc = arg; #ifdef CERT_CB_TEST_RETRY static int retry_cnt; if (retry_cnt < 5) { retry_cnt++; BIO_printf(bio_err, "Certificate callback retry test: count %d\n", retry_cnt); return -1; } #endif SSL_certs_clear(ssl); if (exc == NULL) return 1; /* * Go to end of list and traverse backwards since we prepend newer * entries this retains the original order. */ while (exc->next != NULL) exc = exc->next; i = 0; while (exc != NULL) { i++; rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain); BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i); X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0, get_nameopt()); BIO_puts(bio_err, "\n"); print_chain_flags(ssl, rv); if (rv & CERT_PKEY_VALID) { if (!SSL_use_certificate(ssl, exc->cert) || !SSL_use_PrivateKey(ssl, exc->key)) { return 0; } /* * NB: we wouldn't normally do this as it is not efficient * building chains on each connection better to cache the chain * in advance. */ if (exc->build_chain) { if (!SSL_build_cert_chain(ssl, 0)) return 0; } else if (exc->chain != NULL) { SSL_set1_chain(ssl, exc->chain); } } exc = exc->prev; } return 1; } void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc) { SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc); } static int ssl_excert_prepend(SSL_EXCERT **pexc) { SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert"); memset(exc, 0, sizeof(*exc)); exc->next = *pexc; *pexc = exc; if (exc->next) { exc->certform = exc->next->certform; exc->keyform = exc->next->keyform; exc->next->prev = exc; } else { exc->certform = FORMAT_PEM; exc->keyform = FORMAT_PEM; } return 1; } void ssl_excert_free(SSL_EXCERT *exc) { SSL_EXCERT *curr; if (exc == NULL) return; while (exc) { X509_free(exc->cert); EVP_PKEY_free(exc->key); sk_X509_pop_free(exc->chain, X509_free); curr = exc; exc = exc->next; OPENSSL_free(curr); } } int load_excert(SSL_EXCERT **pexc) { SSL_EXCERT *exc = *pexc; if (exc == NULL) return 1; /* If nothing in list, free and set to NULL */ if (exc->certfile == NULL && exc->next == NULL) { ssl_excert_free(exc); *pexc = NULL; return 1; } for (; exc; exc = exc->next) { if (exc->certfile == NULL) { BIO_printf(bio_err, "Missing filename\n"); return 0; } exc->cert = load_cert(exc->certfile, exc->certform, "Server Certificate"); if (exc->cert == NULL) return 0; if (exc->keyfile != NULL) { exc->key = load_key(exc->keyfile, exc->keyform, 0, NULL, NULL, "Server Key"); } else { exc->key = load_key(exc->certfile, exc->certform, 0, NULL, NULL, "Server Key"); } if (exc->key == NULL) return 0; if (exc->chainfile != NULL) { if (!load_certs(exc->chainfile, &exc->chain, FORMAT_PEM, NULL, "Server Chain")) return 0; } } return 1; } enum range { OPT_X_ENUM }; int args_excert(int opt, SSL_EXCERT **pexc) { SSL_EXCERT *exc = *pexc; assert(opt > OPT_X__FIRST); assert(opt < OPT_X__LAST); if (exc == NULL) { if (!ssl_excert_prepend(&exc)) { BIO_printf(bio_err, " %s: Error initialising xcert\n", opt_getprog()); goto err; } *pexc = exc; } switch ((enum range)opt) { case OPT_X__FIRST: case OPT_X__LAST: return 0; case OPT_X_CERT: if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) { BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog()); goto err; } *pexc = exc; exc->certfile = opt_arg(); break; case OPT_X_KEY: if (exc->keyfile != NULL) { BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog()); goto err; } exc->keyfile = opt_arg(); break; case OPT_X_CHAIN: if (exc->chainfile != NULL) { BIO_printf(bio_err, "%s: Chain already specified\n", opt_getprog()); goto err; } exc->chainfile = opt_arg(); break; case OPT_X_CHAIN_BUILD: exc->build_chain = 1; break; case OPT_X_CERTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->certform)) return 0; break; case OPT_X_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->keyform)) return 0; break; } return 1; err: ERR_print_errors(bio_err); ssl_excert_free(exc); *pexc = NULL; return 0; } static void print_raw_cipherlist(SSL *s) { const unsigned char *rlist; static const unsigned char scsv_id[] = { 0, 0xFF }; size_t i, rlistlen, num; if (!SSL_is_server(s)) return; num = SSL_get0_raw_cipherlist(s, NULL); OPENSSL_assert(num == 2); rlistlen = SSL_get0_raw_cipherlist(s, &rlist); BIO_puts(bio_err, "Client cipher list: "); for (i = 0; i < rlistlen; i += num, rlist += num) { const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist); if (i) BIO_puts(bio_err, ":"); if (c != NULL) { BIO_puts(bio_err, SSL_CIPHER_get_name(c)); } else if (memcmp(rlist, scsv_id, num) == 0) { BIO_puts(bio_err, "SCSV"); } else { size_t j; BIO_puts(bio_err, "0x"); for (j = 0; j < num; j++) BIO_printf(bio_err, "%02X", rlist[j]); } } BIO_puts(bio_err, "\n"); } /* * Hex encoder for TLSA RRdata, not ':' delimited. */ static char *hexencode(const unsigned char *data, size_t len) { static const char *hex = "0123456789abcdef"; char *out; char *cp; size_t outlen = 2 * len + 1; int ilen = (int) outlen; if (outlen < len || ilen < 0 || outlen != (size_t)ilen) { BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n", opt_getprog(), len); exit(1); } cp = out = app_malloc(ilen, "TLSA hex data buffer"); while (len-- > 0) { *cp++ = hex[(*data >> 4) & 0x0f]; *cp++ = hex[*data++ & 0x0f]; } *cp = '\0'; return out; } void print_verify_detail(SSL *s, BIO *bio) { int mdpth; EVP_PKEY *mspki; long verify_err = SSL_get_verify_result(s); if (verify_err == X509_V_OK) { const char *peername = SSL_get0_peername(s); BIO_printf(bio, "Verification: OK\n"); if (peername != NULL) BIO_printf(bio, "Verified peername: %s\n", peername); } else { const char *reason = X509_verify_cert_error_string(verify_err); BIO_printf(bio, "Verification error: %s\n", reason); } if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) { uint8_t usage, selector, mtype; const unsigned char *data = NULL; size_t dlen = 0; char *hexdata; mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen); /* * The TLSA data field can be quite long when it is a certificate, * public key or even a SHA2-512 digest. Because the initial octets of * ASN.1 certificates and public keys contain mostly boilerplate OIDs * and lengths, we show the last 12 bytes of the data instead, as these * are more likely to distinguish distinct TLSA records. */ #define TLSA_TAIL_SIZE 12 if (dlen > TLSA_TAIL_SIZE) hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE); else hexdata = hexencode(data, dlen); BIO_printf(bio, "DANE TLSA %d %d %d %s%s %s at depth %d\n", usage, selector, mtype, (dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata, (mspki != NULL) ? "signed the certificate" : mdpth ? "matched TA certificate" : "matched EE certificate", mdpth); OPENSSL_free(hexdata); } } void print_ssl_summary(SSL *s) { const SSL_CIPHER *c; X509 *peer; BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s)); print_raw_cipherlist(s); c = SSL_get_current_cipher(s); BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c)); do_print_sigalgs(bio_err, s, 0); peer = SSL_get_peer_certificate(s); if (peer != NULL) { int nid; BIO_puts(bio_err, "Peer certificate: "); X509_NAME_print_ex(bio_err, X509_get_subject_name(peer), 0, get_nameopt()); BIO_puts(bio_err, "\n"); if (SSL_get_peer_signature_nid(s, &nid)) BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid)); if (SSL_get_peer_signature_type_nid(s, &nid)) BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid)); print_verify_detail(s, bio_err); } else { BIO_puts(bio_err, "No peer certificate\n"); } X509_free(peer); #ifndef OPENSSL_NO_EC ssl_print_point_formats(bio_err, s); if (SSL_is_server(s)) ssl_print_groups(bio_err, s, 1); else ssl_print_tmp_key(bio_err, s); #else if (!SSL_is_server(s)) ssl_print_tmp_key(bio_err, s); #endif } int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str, SSL_CTX *ctx) { int i; SSL_CONF_CTX_set_ssl_ctx(cctx, ctx); for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) { const char *flag = sk_OPENSSL_STRING_value(str, i); const char *arg = sk_OPENSSL_STRING_value(str, i + 1); if (SSL_CONF_cmd(cctx, flag, arg) <= 0) { if (arg != NULL) BIO_printf(bio_err, "Error with command: \"%s %s\"\n", flag, arg); else BIO_printf(bio_err, "Error with command: \"%s\"\n", flag); ERR_print_errors(bio_err); return 0; } } if (!SSL_CONF_CTX_finish(cctx)) { BIO_puts(bio_err, "Error finishing context\n"); ERR_print_errors(bio_err); return 0; } return 1; } static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls) { X509_CRL *crl; int i; for (i = 0; i < sk_X509_CRL_num(crls); i++) { crl = sk_X509_CRL_value(crls, i); X509_STORE_add_crl(st, crl); } return 1; } int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download) { X509_STORE *st; st = SSL_CTX_get_cert_store(ctx); add_crls_store(st, crls); if (crl_download) store_setup_crl_download(st); return 1; } int ssl_load_stores(SSL_CTX *ctx, const char *vfyCApath, const char *vfyCAfile, const char *chCApath, const char *chCAfile, STACK_OF(X509_CRL) *crls, int crl_download) { X509_STORE *vfy = NULL, *ch = NULL; int rv = 0; if (vfyCApath != NULL || vfyCAfile != NULL) { vfy = X509_STORE_new(); if (vfy == NULL) goto err; if (!X509_STORE_load_locations(vfy, vfyCAfile, vfyCApath)) goto err; add_crls_store(vfy, crls); SSL_CTX_set1_verify_cert_store(ctx, vfy); if (crl_download) store_setup_crl_download(vfy); } if (chCApath != NULL || chCAfile != NULL) { ch = X509_STORE_new(); if (ch == NULL) goto err; if (!X509_STORE_load_locations(ch, chCAfile, chCApath)) goto err; SSL_CTX_set1_chain_cert_store(ctx, ch); } rv = 1; err: X509_STORE_free(vfy); X509_STORE_free(ch); return rv; } /* Verbose print out of security callback */ typedef struct { BIO *out; int verbose; int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex); } security_debug_ex; static STRINT_PAIR callback_types[] = { {"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED}, {"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED}, {"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK}, #ifndef OPENSSL_NO_DH {"Temp DH key bits", SSL_SECOP_TMP_DH}, #endif {"Supported Curve", SSL_SECOP_CURVE_SUPPORTED}, {"Shared Curve", SSL_SECOP_CURVE_SHARED}, {"Check Curve", SSL_SECOP_CURVE_CHECK}, {"Supported Signature Algorithm", SSL_SECOP_SIGALG_SUPPORTED}, {"Shared Signature Algorithm", SSL_SECOP_SIGALG_SHARED}, {"Check Signature Algorithm", SSL_SECOP_SIGALG_CHECK}, {"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK}, {"Certificate chain EE key", SSL_SECOP_EE_KEY}, {"Certificate chain CA key", SSL_SECOP_CA_KEY}, {"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY}, {"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY}, {"Certificate chain CA digest", SSL_SECOP_CA_MD}, {"Peer chain CA digest", SSL_SECOP_PEER_CA_MD}, {"SSL compression", SSL_SECOP_COMPRESSION}, {"Session ticket", SSL_SECOP_TICKET}, {NULL} }; static int security_callback_debug(const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { security_debug_ex *sdb = ex; int rv, show_bits = 1, cert_md = 0; const char *nm; int show_nm; rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex); if (rv == 1 && sdb->verbose < 2) return 1; BIO_puts(sdb->out, "Security callback: "); nm = lookup(op, callback_types, NULL); show_nm = nm != NULL; switch (op) { case SSL_SECOP_TICKET: case SSL_SECOP_COMPRESSION: show_bits = 0; show_nm = 0; break; case SSL_SECOP_VERSION: BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???")); show_bits = 0; show_nm = 0; break; case SSL_SECOP_CA_MD: case SSL_SECOP_PEER_CA_MD: cert_md = 1; break; case SSL_SECOP_SIGALG_SUPPORTED: case SSL_SECOP_SIGALG_SHARED: case SSL_SECOP_SIGALG_CHECK: case SSL_SECOP_SIGALG_MASK: show_nm = 0; break; } if (show_nm) BIO_printf(sdb->out, "%s=", nm); switch (op & SSL_SECOP_OTHER_TYPE) { case SSL_SECOP_OTHER_CIPHER: BIO_puts(sdb->out, SSL_CIPHER_get_name(other)); break; #ifndef OPENSSL_NO_EC case SSL_SECOP_OTHER_CURVE: { const char *cname; cname = EC_curve_nid2nist(nid); if (cname == NULL) cname = OBJ_nid2sn(nid); BIO_puts(sdb->out, cname); } break; #endif #ifndef OPENSSL_NO_DH case SSL_SECOP_OTHER_DH: { DH *dh = other; BIO_printf(sdb->out, "%d", DH_bits(dh)); break; } #endif case SSL_SECOP_OTHER_CERT: { if (cert_md) { int sig_nid = X509_get_signature_nid(other); BIO_puts(sdb->out, OBJ_nid2sn(sig_nid)); } else { EVP_PKEY *pkey = X509_get0_pubkey(other); const char *algname = ""; EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &algname, EVP_PKEY_get0_asn1(pkey)); BIO_printf(sdb->out, "%s, bits=%d", algname, EVP_PKEY_bits(pkey)); } break; } case SSL_SECOP_OTHER_SIGALG: { const unsigned char *salg = other; const char *sname = NULL; int raw_sig_code = (salg[0] << 8) + salg[1]; /* always big endian (msb, lsb) */ /* raw_sig_code: signature_scheme from tls1.3, or signature_and_hash from tls1.2 */ if (nm != NULL) BIO_printf(sdb->out, "%s", nm); else BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x", op); sname = lookup(raw_sig_code, signature_tls13_scheme_list, NULL); if (sname != NULL) { BIO_printf(sdb->out, " scheme=%s", sname); } else { int alg_code = salg[1]; int hash_code = salg[0]; const char *alg_str = lookup(alg_code, signature_tls12_alg_list, NULL); const char *hash_str = lookup(hash_code, signature_tls12_hash_list, NULL); if (alg_str != NULL && hash_str != NULL) BIO_printf(sdb->out, " digest=%s, algorithm=%s", hash_str, alg_str); else BIO_printf(sdb->out, " scheme=unknown(0x%04x)", raw_sig_code); } } } if (show_bits) BIO_printf(sdb->out, ", security bits=%d", bits); BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no"); return rv; } void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose) { static security_debug_ex sdb; sdb.out = bio_err; sdb.verbose = verbose; sdb.old_cb = SSL_CTX_get_security_callback(ctx); SSL_CTX_set_security_callback(ctx, security_callback_debug); SSL_CTX_set0_security_ex_data(ctx, &sdb); } static void keylog_callback(const SSL *ssl, const char *line) { if (bio_keylog == NULL) { BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n"); return; } /* * There might be concurrent writers to the keylog file, so we must ensure * that the given line is written at once. */ BIO_printf(bio_keylog, "%s\n", line); (void)BIO_flush(bio_keylog); } int set_keylog_file(SSL_CTX *ctx, const char *keylog_file) { /* Close any open files */ BIO_free_all(bio_keylog); bio_keylog = NULL; if (ctx == NULL || keylog_file == NULL) { /* Keylogging is disabled, OK. */ return 0; } /* * Append rather than write in order to allow concurrent modification. * Furthermore, this preserves existing keylog files which is useful when * the tool is run multiple times. */ bio_keylog = BIO_new_file(keylog_file, "a"); if (bio_keylog == NULL) { BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file); return 1; } /* Write a header for seekable, empty files (this excludes pipes). */ if (BIO_tell(bio_keylog) == 0) { BIO_puts(bio_keylog, "# SSL/TLS secrets log file, generated by OpenSSL\n"); (void)BIO_flush(bio_keylog); } SSL_CTX_set_keylog_callback(ctx, keylog_callback); return 0; } void print_ca_names(BIO *bio, SSL *s) { const char *cs = SSL_is_server(s) ? "server" : "client"; const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s); int i; if (sk == NULL || sk_X509_NAME_num(sk) == 0) { if (!SSL_is_server(s)) BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs); return; } BIO_printf(bio, "---\nAcceptable %s certificate CA names\n",cs); for (i = 0; i < sk_X509_NAME_num(sk); i++) { X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt()); BIO_write(bio, "\n", 1); } } openssl-1.1.1f/apps/s_client.c000066400000000000000000003452771364063235100162770ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2005 Nokia. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include #include #include #include #ifndef OPENSSL_NO_SOCK /* * With IPv6, it looks like Digital has mixed up the proper order of * recursive header file inclusion, resulting in the compiler complaining * that u_int isn't defined, but only if _POSIX_C_SOURCE is defined, which is * needed to have fileno() declared correctly... So let's define u_int */ #if defined(OPENSSL_SYS_VMS_DECC) && !defined(__U_INT) # define __U_INT typedef unsigned int u_int; #endif #include "apps.h" #include "progs.h" #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_SRP # include #endif #ifndef OPENSSL_NO_CT # include #endif #include "s_apps.h" #include "timeouts.h" #include "internal/sockets.h" #if defined(__has_feature) # if __has_feature(memory_sanitizer) # include # endif #endif #undef BUFSIZZ #define BUFSIZZ 1024*8 #define S_CLIENT_IRC_READ_TIMEOUT 8 static char *prog; static int c_debug = 0; static int c_showcerts = 0; static char *keymatexportlabel = NULL; static int keymatexportlen = 20; static BIO *bio_c_out = NULL; static int c_quiet = 0; static char *sess_out = NULL; static SSL_SESSION *psksess = NULL; static void print_stuff(BIO *berr, SSL *con, int full); #ifndef OPENSSL_NO_OCSP static int ocsp_resp_cb(SSL *s, void *arg); #endif static int ldap_ExtendedResponse_parse(const char *buf, long rem); static int is_dNS_name(const char *host); static int saved_errno; static void save_errno(void) { saved_errno = errno; errno = 0; } static int restore_errno(void) { int ret = errno; errno = saved_errno; return ret; } static void do_ssl_shutdown(SSL *ssl) { int ret; do { /* We only do unidirectional shutdown */ ret = SSL_shutdown(ssl); if (ret < 0) { switch (SSL_get_error(ssl, ret)) { case SSL_ERROR_WANT_READ: case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_ASYNC: case SSL_ERROR_WANT_ASYNC_JOB: /* We just do busy waiting. Nothing clever */ continue; } ret = 0; } } while (ret < 0); } /* Default PSK identity and key */ static char *psk_identity = "Client_identity"; #ifndef OPENSSL_NO_PSK static unsigned int psk_client_cb(SSL *ssl, const char *hint, char *identity, unsigned int max_identity_len, unsigned char *psk, unsigned int max_psk_len) { int ret; long key_len; unsigned char *key; if (c_debug) BIO_printf(bio_c_out, "psk_client_cb\n"); if (!hint) { /* no ServerKeyExchange message */ if (c_debug) BIO_printf(bio_c_out, "NULL received PSK identity hint, continuing anyway\n"); } else if (c_debug) { BIO_printf(bio_c_out, "Received PSK identity hint '%s'\n", hint); } /* * lookup PSK identity and PSK key based on the given identity hint here */ ret = BIO_snprintf(identity, max_identity_len, "%s", psk_identity); if (ret < 0 || (unsigned int)ret > max_identity_len) goto out_err; if (c_debug) BIO_printf(bio_c_out, "created identity '%s' len=%d\n", identity, ret); /* convert the PSK key to binary */ key = OPENSSL_hexstr2buf(psk_key, &key_len); if (key == NULL) { BIO_printf(bio_err, "Could not convert PSK key '%s' to buffer\n", psk_key); return 0; } if (max_psk_len > INT_MAX || key_len > (long)max_psk_len) { BIO_printf(bio_err, "psk buffer of callback is too small (%d) for key (%ld)\n", max_psk_len, key_len); OPENSSL_free(key); return 0; } memcpy(psk, key, key_len); OPENSSL_free(key); if (c_debug) BIO_printf(bio_c_out, "created PSK len=%ld\n", key_len); return key_len; out_err: if (c_debug) BIO_printf(bio_err, "Error in PSK client callback\n"); return 0; } #endif const unsigned char tls13_aes128gcmsha256_id[] = { 0x13, 0x01 }; const unsigned char tls13_aes256gcmsha384_id[] = { 0x13, 0x02 }; static int psk_use_session_cb(SSL *s, const EVP_MD *md, const unsigned char **id, size_t *idlen, SSL_SESSION **sess) { SSL_SESSION *usesess = NULL; const SSL_CIPHER *cipher = NULL; if (psksess != NULL) { SSL_SESSION_up_ref(psksess); usesess = psksess; } else { long key_len; unsigned char *key = OPENSSL_hexstr2buf(psk_key, &key_len); if (key == NULL) { BIO_printf(bio_err, "Could not convert PSK key '%s' to buffer\n", psk_key); return 0; } /* We default to SHA-256 */ cipher = SSL_CIPHER_find(s, tls13_aes128gcmsha256_id); if (cipher == NULL) { BIO_printf(bio_err, "Error finding suitable ciphersuite\n"); OPENSSL_free(key); return 0; } usesess = SSL_SESSION_new(); if (usesess == NULL || !SSL_SESSION_set1_master_key(usesess, key, key_len) || !SSL_SESSION_set_cipher(usesess, cipher) || !SSL_SESSION_set_protocol_version(usesess, TLS1_3_VERSION)) { OPENSSL_free(key); goto err; } OPENSSL_free(key); } cipher = SSL_SESSION_get0_cipher(usesess); if (cipher == NULL) goto err; if (md != NULL && SSL_CIPHER_get_handshake_digest(cipher) != md) { /* PSK not usable, ignore it */ *id = NULL; *idlen = 0; *sess = NULL; SSL_SESSION_free(usesess); } else { *sess = usesess; *id = (unsigned char *)psk_identity; *idlen = strlen(psk_identity); } return 1; err: SSL_SESSION_free(usesess); return 0; } /* This is a context that we pass to callbacks */ typedef struct tlsextctx_st { BIO *biodebug; int ack; } tlsextctx; static int ssl_servername_cb(SSL *s, int *ad, void *arg) { tlsextctx *p = (tlsextctx *) arg; const char *hn = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); if (SSL_get_servername_type(s) != -1) p->ack = !SSL_session_reused(s) && hn != NULL; else BIO_printf(bio_err, "Can't use SSL_get_servername\n"); return SSL_TLSEXT_ERR_OK; } #ifndef OPENSSL_NO_SRP /* This is a context that we pass to all callbacks */ typedef struct srp_arg_st { char *srppassin; char *srplogin; int msg; /* copy from c_msg */ int debug; /* copy from c_debug */ int amp; /* allow more groups */ int strength; /* minimal size for N */ } SRP_ARG; # define SRP_NUMBER_ITERATIONS_FOR_PRIME 64 static int srp_Verify_N_and_g(const BIGNUM *N, const BIGNUM *g) { BN_CTX *bn_ctx = BN_CTX_new(); BIGNUM *p = BN_new(); BIGNUM *r = BN_new(); int ret = g != NULL && N != NULL && bn_ctx != NULL && BN_is_odd(N) && BN_is_prime_ex(N, SRP_NUMBER_ITERATIONS_FOR_PRIME, bn_ctx, NULL) == 1 && p != NULL && BN_rshift1(p, N) && /* p = (N-1)/2 */ BN_is_prime_ex(p, SRP_NUMBER_ITERATIONS_FOR_PRIME, bn_ctx, NULL) == 1 && r != NULL && /* verify g^((N-1)/2) == -1 (mod N) */ BN_mod_exp(r, g, p, N, bn_ctx) && BN_add_word(r, 1) && BN_cmp(r, N) == 0; BN_free(r); BN_free(p); BN_CTX_free(bn_ctx); return ret; } /*- * This callback is used here for two purposes: * - extended debugging * - making some primality tests for unknown groups * The callback is only called for a non default group. * * An application does not need the call back at all if * only the standard groups are used. In real life situations, * client and server already share well known groups, * thus there is no need to verify them. * Furthermore, in case that a server actually proposes a group that * is not one of those defined in RFC 5054, it is more appropriate * to add the group to a static list and then compare since * primality tests are rather cpu consuming. */ static int ssl_srp_verify_param_cb(SSL *s, void *arg) { SRP_ARG *srp_arg = (SRP_ARG *)arg; BIGNUM *N = NULL, *g = NULL; if (((N = SSL_get_srp_N(s)) == NULL) || ((g = SSL_get_srp_g(s)) == NULL)) return 0; if (srp_arg->debug || srp_arg->msg || srp_arg->amp == 1) { BIO_printf(bio_err, "SRP parameters:\n"); BIO_printf(bio_err, "\tN="); BN_print(bio_err, N); BIO_printf(bio_err, "\n\tg="); BN_print(bio_err, g); BIO_printf(bio_err, "\n"); } if (SRP_check_known_gN_param(g, N)) return 1; if (srp_arg->amp == 1) { if (srp_arg->debug) BIO_printf(bio_err, "SRP param N and g are not known params, going to check deeper.\n"); /* * The srp_moregroups is a real debugging feature. Implementors * should rather add the value to the known ones. The minimal size * has already been tested. */ if (BN_num_bits(g) <= BN_BITS && srp_Verify_N_and_g(N, g)) return 1; } BIO_printf(bio_err, "SRP param N and g rejected.\n"); return 0; } # define PWD_STRLEN 1024 static char *ssl_give_srp_client_pwd_cb(SSL *s, void *arg) { SRP_ARG *srp_arg = (SRP_ARG *)arg; char *pass = app_malloc(PWD_STRLEN + 1, "SRP password buffer"); PW_CB_DATA cb_tmp; int l; cb_tmp.password = (char *)srp_arg->srppassin; cb_tmp.prompt_info = "SRP user"; if ((l = password_callback(pass, PWD_STRLEN, 0, &cb_tmp)) < 0) { BIO_printf(bio_err, "Can't read Password\n"); OPENSSL_free(pass); return NULL; } *(pass + l) = '\0'; return pass; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG /* This the context that we pass to next_proto_cb */ typedef struct tlsextnextprotoctx_st { unsigned char *data; size_t len; int status; } tlsextnextprotoctx; static tlsextnextprotoctx next_proto; static int next_proto_cb(SSL *s, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { tlsextnextprotoctx *ctx = arg; if (!c_quiet) { /* We can assume that |in| is syntactically valid. */ unsigned i; BIO_printf(bio_c_out, "Protocols advertised by server: "); for (i = 0; i < inlen;) { if (i) BIO_write(bio_c_out, ", ", 2); BIO_write(bio_c_out, &in[i + 1], in[i]); i += in[i] + 1; } BIO_write(bio_c_out, "\n", 1); } ctx->status = SSL_select_next_proto(out, outlen, in, inlen, ctx->data, ctx->len); return SSL_TLSEXT_ERR_OK; } #endif /* ndef OPENSSL_NO_NEXTPROTONEG */ static int serverinfo_cli_parse_cb(SSL *s, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *arg) { char pem_name[100]; unsigned char ext_buf[4 + 65536]; /* Reconstruct the type/len fields prior to extension data */ inlen &= 0xffff; /* for formal memcmpy correctness */ ext_buf[0] = (unsigned char)(ext_type >> 8); ext_buf[1] = (unsigned char)(ext_type); ext_buf[2] = (unsigned char)(inlen >> 8); ext_buf[3] = (unsigned char)(inlen); memcpy(ext_buf + 4, in, inlen); BIO_snprintf(pem_name, sizeof(pem_name), "SERVERINFO FOR EXTENSION %d", ext_type); PEM_write_bio(bio_c_out, pem_name, "", ext_buf, 4 + inlen); return 1; } /* * Hex decoder that tolerates optional whitespace. Returns number of bytes * produced, advances inptr to end of input string. */ static ossl_ssize_t hexdecode(const char **inptr, void *result) { unsigned char **out = (unsigned char **)result; const char *in = *inptr; unsigned char *ret = app_malloc(strlen(in) / 2, "hexdecode"); unsigned char *cp = ret; uint8_t byte; int nibble = 0; if (ret == NULL) return -1; for (byte = 0; *in; ++in) { int x; if (isspace(_UC(*in))) continue; x = OPENSSL_hexchar2int(*in); if (x < 0) { OPENSSL_free(ret); return 0; } byte |= (char)x; if ((nibble ^= 1) == 0) { *cp++ = byte; byte = 0; } else { byte <<= 4; } } if (nibble != 0) { OPENSSL_free(ret); return 0; } *inptr = in; return cp - (*out = ret); } /* * Decode unsigned 0..255, returns 1 on success, <= 0 on failure. Advances * inptr to next field skipping leading whitespace. */ static ossl_ssize_t checked_uint8(const char **inptr, void *out) { uint8_t *result = (uint8_t *)out; const char *in = *inptr; char *endp; long v; int e; save_errno(); v = strtol(in, &endp, 10); e = restore_errno(); if (((v == LONG_MIN || v == LONG_MAX) && e == ERANGE) || endp == in || !isspace(_UC(*endp)) || v != (*result = (uint8_t) v)) { return -1; } for (in = endp; isspace(_UC(*in)); ++in) continue; *inptr = in; return 1; } struct tlsa_field { void *var; const char *name; ossl_ssize_t (*parser)(const char **, void *); }; static int tlsa_import_rr(SSL *con, const char *rrdata) { /* Not necessary to re-init these values; the "parsers" do that. */ static uint8_t usage; static uint8_t selector; static uint8_t mtype; static unsigned char *data; static struct tlsa_field tlsa_fields[] = { { &usage, "usage", checked_uint8 }, { &selector, "selector", checked_uint8 }, { &mtype, "mtype", checked_uint8 }, { &data, "data", hexdecode }, { NULL, } }; struct tlsa_field *f; int ret; const char *cp = rrdata; ossl_ssize_t len = 0; for (f = tlsa_fields; f->var; ++f) { /* Returns number of bytes produced, advances cp to next field */ if ((len = f->parser(&cp, f->var)) <= 0) { BIO_printf(bio_err, "%s: warning: bad TLSA %s field in: %s\n", prog, f->name, rrdata); return 0; } } /* The data field is last, so len is its length */ ret = SSL_dane_tlsa_add(con, usage, selector, mtype, data, len); OPENSSL_free(data); if (ret == 0) { ERR_print_errors(bio_err); BIO_printf(bio_err, "%s: warning: unusable TLSA rrdata: %s\n", prog, rrdata); return 0; } if (ret < 0) { ERR_print_errors(bio_err); BIO_printf(bio_err, "%s: warning: error loading TLSA rrdata: %s\n", prog, rrdata); return 0; } return ret; } static int tlsa_import_rrset(SSL *con, STACK_OF(OPENSSL_STRING) *rrset) { int num = sk_OPENSSL_STRING_num(rrset); int count = 0; int i; for (i = 0; i < num; ++i) { char *rrdata = sk_OPENSSL_STRING_value(rrset, i); if (tlsa_import_rr(con, rrdata) > 0) ++count; } return count > 0; } typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_4, OPT_6, OPT_HOST, OPT_PORT, OPT_CONNECT, OPT_BIND, OPT_UNIX, OPT_XMPPHOST, OPT_VERIFY, OPT_NAMEOPT, OPT_CERT, OPT_CRL, OPT_CRL_DOWNLOAD, OPT_SESS_OUT, OPT_SESS_IN, OPT_CERTFORM, OPT_CRLFORM, OPT_VERIFY_RET_ERROR, OPT_VERIFY_QUIET, OPT_BRIEF, OPT_PREXIT, OPT_CRLF, OPT_QUIET, OPT_NBIO, OPT_SSL_CLIENT_ENGINE, OPT_IGN_EOF, OPT_NO_IGN_EOF, OPT_DEBUG, OPT_TLSEXTDEBUG, OPT_STATUS, OPT_WDEBUG, OPT_MSG, OPT_MSGFILE, OPT_ENGINE, OPT_TRACE, OPT_SECURITY_DEBUG, OPT_SECURITY_DEBUG_VERBOSE, OPT_SHOWCERTS, OPT_NBIO_TEST, OPT_STATE, OPT_PSK_IDENTITY, OPT_PSK, OPT_PSK_SESS, #ifndef OPENSSL_NO_SRP OPT_SRPUSER, OPT_SRPPASS, OPT_SRP_STRENGTH, OPT_SRP_LATEUSER, OPT_SRP_MOREGROUPS, #endif OPT_SSL3, OPT_SSL_CONFIG, OPT_TLS1_3, OPT_TLS1_2, OPT_TLS1_1, OPT_TLS1, OPT_DTLS, OPT_DTLS1, OPT_DTLS1_2, OPT_SCTP, OPT_TIMEOUT, OPT_MTU, OPT_KEYFORM, OPT_PASS, OPT_CERT_CHAIN, OPT_CAPATH, OPT_NOCAPATH, OPT_CHAINCAPATH, OPT_VERIFYCAPATH, OPT_KEY, OPT_RECONNECT, OPT_BUILD_CHAIN, OPT_CAFILE, OPT_NOCAFILE, OPT_CHAINCAFILE, OPT_VERIFYCAFILE, OPT_NEXTPROTONEG, OPT_ALPN, OPT_SERVERINFO, OPT_STARTTLS, OPT_SERVERNAME, OPT_NOSERVERNAME, OPT_ASYNC, OPT_USE_SRTP, OPT_KEYMATEXPORT, OPT_KEYMATEXPORTLEN, OPT_PROTOHOST, OPT_MAXFRAGLEN, OPT_MAX_SEND_FRAG, OPT_SPLIT_SEND_FRAG, OPT_MAX_PIPELINES, OPT_READ_BUF, OPT_KEYLOG_FILE, OPT_EARLY_DATA, OPT_REQCAFILE, OPT_V_ENUM, OPT_X_ENUM, OPT_S_ENUM, OPT_FALLBACKSCSV, OPT_NOCMDS, OPT_PROXY, OPT_DANE_TLSA_DOMAIN, #ifndef OPENSSL_NO_CT OPT_CT, OPT_NOCT, OPT_CTLOG_FILE, #endif OPT_DANE_TLSA_RRDATA, OPT_DANE_EE_NO_NAME, OPT_ENABLE_PHA, OPT_SCTP_LABEL_BUG, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS s_client_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"host", OPT_HOST, 's', "Use -connect instead"}, {"port", OPT_PORT, 'p', "Use -connect instead"}, {"connect", OPT_CONNECT, 's', "TCP/IP where to connect (default is :" PORT ")"}, {"bind", OPT_BIND, 's', "bind local address for connection"}, {"proxy", OPT_PROXY, 's', "Connect to via specified proxy to the real server"}, #ifdef AF_UNIX {"unix", OPT_UNIX, 's', "Connect over the specified Unix-domain socket"}, #endif {"4", OPT_4, '-', "Use IPv4 only"}, #ifdef AF_INET6 {"6", OPT_6, '-', "Use IPv6 only"}, #endif {"verify", OPT_VERIFY, 'p', "Turn on peer certificate verification"}, {"cert", OPT_CERT, '<', "Certificate file to use, PEM format assumed"}, {"certform", OPT_CERTFORM, 'F', "Certificate format (PEM or DER) PEM default"}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, {"key", OPT_KEY, 's', "Private key file to use, if not in -cert file"}, {"keyform", OPT_KEYFORM, 'E', "Key format (PEM, DER or engine) PEM default"}, {"pass", OPT_PASS, 's', "Private key file pass phrase source"}, {"CApath", OPT_CAPATH, '/', "PEM format directory of CA's"}, {"CAfile", OPT_CAFILE, '<', "PEM format file of CA's"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"requestCAfile", OPT_REQCAFILE, '<', "PEM format file of CA names to send to the server"}, {"dane_tlsa_domain", OPT_DANE_TLSA_DOMAIN, 's', "DANE TLSA base domain"}, {"dane_tlsa_rrdata", OPT_DANE_TLSA_RRDATA, 's', "DANE TLSA rrdata presentation form"}, {"dane_ee_no_namechecks", OPT_DANE_EE_NO_NAME, '-', "Disable name checks when matching DANE-EE(3) TLSA records"}, {"reconnect", OPT_RECONNECT, '-', "Drop and re-make the connection with the same Session-ID"}, {"showcerts", OPT_SHOWCERTS, '-', "Show all certificates sent by the server"}, {"debug", OPT_DEBUG, '-', "Extra output"}, {"msg", OPT_MSG, '-', "Show protocol messages"}, {"msgfile", OPT_MSGFILE, '>', "File to send output of -msg or -trace, instead of stdout"}, {"nbio_test", OPT_NBIO_TEST, '-', "More ssl protocol testing"}, {"state", OPT_STATE, '-', "Print the ssl states"}, {"crlf", OPT_CRLF, '-', "Convert LF from terminal into CRLF"}, {"quiet", OPT_QUIET, '-', "No s_client output"}, {"ign_eof", OPT_IGN_EOF, '-', "Ignore input eof (default when -quiet)"}, {"no_ign_eof", OPT_NO_IGN_EOF, '-', "Don't ignore input eof"}, {"starttls", OPT_STARTTLS, 's', "Use the appropriate STARTTLS command before starting TLS"}, {"xmpphost", OPT_XMPPHOST, 's', "Alias of -name option for \"-starttls xmpp[-server]\""}, OPT_R_OPTIONS, {"sess_out", OPT_SESS_OUT, '>', "File to write SSL session to"}, {"sess_in", OPT_SESS_IN, '<', "File to read SSL session from"}, #ifndef OPENSSL_NO_SRTP {"use_srtp", OPT_USE_SRTP, 's', "Offer SRTP key management with a colon-separated profile list"}, #endif {"keymatexport", OPT_KEYMATEXPORT, 's', "Export keying material using label"}, {"keymatexportlen", OPT_KEYMATEXPORTLEN, 'p', "Export len bytes of keying material (default 20)"}, {"maxfraglen", OPT_MAXFRAGLEN, 'p', "Enable Maximum Fragment Length Negotiation (len values: 512, 1024, 2048 and 4096)"}, {"fallback_scsv", OPT_FALLBACKSCSV, '-', "Send the fallback SCSV"}, {"name", OPT_PROTOHOST, 's', "Hostname to use for \"-starttls lmtp\", \"-starttls smtp\" or \"-starttls xmpp[-server]\""}, {"CRL", OPT_CRL, '<', "CRL file to use"}, {"crl_download", OPT_CRL_DOWNLOAD, '-', "Download CRL from distribution points"}, {"CRLform", OPT_CRLFORM, 'F', "CRL format (PEM or DER) PEM is default"}, {"verify_return_error", OPT_VERIFY_RET_ERROR, '-', "Close connection on verification error"}, {"verify_quiet", OPT_VERIFY_QUIET, '-', "Restrict verify output to errors"}, {"brief", OPT_BRIEF, '-', "Restrict output to brief summary of connection parameters"}, {"prexit", OPT_PREXIT, '-', "Print session information when the program exits"}, {"security_debug", OPT_SECURITY_DEBUG, '-', "Enable security debug messages"}, {"security_debug_verbose", OPT_SECURITY_DEBUG_VERBOSE, '-', "Output more security debug output"}, {"cert_chain", OPT_CERT_CHAIN, '<', "Certificate chain file (in PEM format)"}, {"chainCApath", OPT_CHAINCAPATH, '/', "Use dir as certificate store path to build CA certificate chain"}, {"verifyCApath", OPT_VERIFYCAPATH, '/', "Use dir as certificate store path to verify CA certificate"}, {"build_chain", OPT_BUILD_CHAIN, '-', "Build certificate chain"}, {"chainCAfile", OPT_CHAINCAFILE, '<', "CA file for certificate chain (PEM format)"}, {"verifyCAfile", OPT_VERIFYCAFILE, '<', "CA file for certificate verification (PEM format)"}, {"nocommands", OPT_NOCMDS, '-', "Do not use interactive command letters"}, {"servername", OPT_SERVERNAME, 's', "Set TLS extension servername (SNI) in ClientHello (default)"}, {"noservername", OPT_NOSERVERNAME, '-', "Do not send the server name (SNI) extension in the ClientHello"}, {"tlsextdebug", OPT_TLSEXTDEBUG, '-', "Hex dump of all TLS extensions received"}, #ifndef OPENSSL_NO_OCSP {"status", OPT_STATUS, '-', "Request certificate status from server"}, #endif {"serverinfo", OPT_SERVERINFO, 's', "types Send empty ClientHello extensions (comma-separated numbers)"}, {"alpn", OPT_ALPN, 's', "Enable ALPN extension, considering named protocols supported (comma-separated list)"}, {"async", OPT_ASYNC, '-', "Support asynchronous operation"}, {"ssl_config", OPT_SSL_CONFIG, 's', "Use specified configuration file"}, {"max_send_frag", OPT_MAX_SEND_FRAG, 'p', "Maximum Size of send frames "}, {"split_send_frag", OPT_SPLIT_SEND_FRAG, 'p', "Size used to split data for encrypt pipelines"}, {"max_pipelines", OPT_MAX_PIPELINES, 'p', "Maximum number of encrypt/decrypt pipelines to be used"}, {"read_buf", OPT_READ_BUF, 'p', "Default read buffer size to be used for connections"}, OPT_S_OPTIONS, OPT_V_OPTIONS, OPT_X_OPTIONS, #ifndef OPENSSL_NO_SSL3 {"ssl3", OPT_SSL3, '-', "Just use SSLv3"}, #endif #ifndef OPENSSL_NO_TLS1 {"tls1", OPT_TLS1, '-', "Just use TLSv1"}, #endif #ifndef OPENSSL_NO_TLS1_1 {"tls1_1", OPT_TLS1_1, '-', "Just use TLSv1.1"}, #endif #ifndef OPENSSL_NO_TLS1_2 {"tls1_2", OPT_TLS1_2, '-', "Just use TLSv1.2"}, #endif #ifndef OPENSSL_NO_TLS1_3 {"tls1_3", OPT_TLS1_3, '-', "Just use TLSv1.3"}, #endif #ifndef OPENSSL_NO_DTLS {"dtls", OPT_DTLS, '-', "Use any version of DTLS"}, {"timeout", OPT_TIMEOUT, '-', "Enable send/receive timeout on DTLS connections"}, {"mtu", OPT_MTU, 'p', "Set the link layer MTU"}, #endif #ifndef OPENSSL_NO_DTLS1 {"dtls1", OPT_DTLS1, '-', "Just use DTLSv1"}, #endif #ifndef OPENSSL_NO_DTLS1_2 {"dtls1_2", OPT_DTLS1_2, '-', "Just use DTLSv1.2"}, #endif #ifndef OPENSSL_NO_SCTP {"sctp", OPT_SCTP, '-', "Use SCTP"}, {"sctp_label_bug", OPT_SCTP_LABEL_BUG, '-', "Enable SCTP label length bug"}, #endif #ifndef OPENSSL_NO_SSL_TRACE {"trace", OPT_TRACE, '-', "Show trace output of protocol messages"}, #endif #ifdef WATT32 {"wdebug", OPT_WDEBUG, '-', "WATT-32 tcp debugging"}, #endif {"nbio", OPT_NBIO, '-', "Use non-blocking IO"}, {"psk_identity", OPT_PSK_IDENTITY, 's', "PSK identity"}, {"psk", OPT_PSK, 's', "PSK in hex (without 0x)"}, {"psk_session", OPT_PSK_SESS, '<', "File to read PSK SSL session from"}, #ifndef OPENSSL_NO_SRP {"srpuser", OPT_SRPUSER, 's', "SRP authentication for 'user'"}, {"srppass", OPT_SRPPASS, 's', "Password for 'user'"}, {"srp_lateuser", OPT_SRP_LATEUSER, '-', "SRP username into second ClientHello message"}, {"srp_moregroups", OPT_SRP_MOREGROUPS, '-', "Tolerate other than the known g N values."}, {"srp_strength", OPT_SRP_STRENGTH, 'p', "Minimal length in bits for N"}, #endif #ifndef OPENSSL_NO_NEXTPROTONEG {"nextprotoneg", OPT_NEXTPROTONEG, 's', "Enable NPN extension, considering named protocols supported (comma-separated list)"}, #endif #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, {"ssl_client_engine", OPT_SSL_CLIENT_ENGINE, 's', "Specify engine to be used for client certificate operations"}, #endif #ifndef OPENSSL_NO_CT {"ct", OPT_CT, '-', "Request and parse SCTs (also enables OCSP stapling)"}, {"noct", OPT_NOCT, '-', "Do not request or parse SCTs (default)"}, {"ctlogfile", OPT_CTLOG_FILE, '<', "CT log list CONF file"}, #endif {"keylogfile", OPT_KEYLOG_FILE, '>', "Write TLS secrets to file"}, {"early_data", OPT_EARLY_DATA, '<', "File to send as early data"}, {"enable_pha", OPT_ENABLE_PHA, '-', "Enable post-handshake-authentication"}, {NULL, OPT_EOF, 0x00, NULL} }; typedef enum PROTOCOL_choice { PROTO_OFF, PROTO_SMTP, PROTO_POP3, PROTO_IMAP, PROTO_FTP, PROTO_TELNET, PROTO_XMPP, PROTO_XMPP_SERVER, PROTO_CONNECT, PROTO_IRC, PROTO_MYSQL, PROTO_POSTGRES, PROTO_LMTP, PROTO_NNTP, PROTO_SIEVE, PROTO_LDAP } PROTOCOL_CHOICE; static const OPT_PAIR services[] = { {"smtp", PROTO_SMTP}, {"pop3", PROTO_POP3}, {"imap", PROTO_IMAP}, {"ftp", PROTO_FTP}, {"xmpp", PROTO_XMPP}, {"xmpp-server", PROTO_XMPP_SERVER}, {"telnet", PROTO_TELNET}, {"irc", PROTO_IRC}, {"mysql", PROTO_MYSQL}, {"postgres", PROTO_POSTGRES}, {"lmtp", PROTO_LMTP}, {"nntp", PROTO_NNTP}, {"sieve", PROTO_SIEVE}, {"ldap", PROTO_LDAP}, {NULL, 0} }; #define IS_INET_FLAG(o) \ (o == OPT_4 || o == OPT_6 || o == OPT_HOST || o == OPT_PORT || o == OPT_CONNECT) #define IS_UNIX_FLAG(o) (o == OPT_UNIX) #define IS_PROT_FLAG(o) \ (o == OPT_SSL3 || o == OPT_TLS1 || o == OPT_TLS1_1 || o == OPT_TLS1_2 \ || o == OPT_TLS1_3 || o == OPT_DTLS || o == OPT_DTLS1 || o == OPT_DTLS1_2) /* Free |*dest| and optionally set it to a copy of |source|. */ static void freeandcopy(char **dest, const char *source) { OPENSSL_free(*dest); *dest = NULL; if (source != NULL) *dest = OPENSSL_strdup(source); } static int new_session_cb(SSL *s, SSL_SESSION *sess) { if (sess_out != NULL) { BIO *stmp = BIO_new_file(sess_out, "w"); if (stmp == NULL) { BIO_printf(bio_err, "Error writing session file %s\n", sess_out); } else { PEM_write_bio_SSL_SESSION(stmp, sess); BIO_free(stmp); } } /* * Session data gets dumped on connection for TLSv1.2 and below, and on * arrival of the NewSessionTicket for TLSv1.3. */ if (SSL_version(s) == TLS1_3_VERSION) { BIO_printf(bio_c_out, "---\nPost-Handshake New Session Ticket arrived:\n"); SSL_SESSION_print(bio_c_out, sess); BIO_printf(bio_c_out, "---\n"); } /* * We always return a "fail" response so that the session gets freed again * because we haven't used the reference. */ return 0; } int s_client_main(int argc, char **argv) { BIO *sbio; EVP_PKEY *key = NULL; SSL *con = NULL; SSL_CTX *ctx = NULL; STACK_OF(X509) *chain = NULL; X509 *cert = NULL; X509_VERIFY_PARAM *vpm = NULL; SSL_EXCERT *exc = NULL; SSL_CONF_CTX *cctx = NULL; STACK_OF(OPENSSL_STRING) *ssl_args = NULL; char *dane_tlsa_domain = NULL; STACK_OF(OPENSSL_STRING) *dane_tlsa_rrset = NULL; int dane_ee_no_name = 0; STACK_OF(X509_CRL) *crls = NULL; const SSL_METHOD *meth = TLS_client_method(); const char *CApath = NULL, *CAfile = NULL; char *cbuf = NULL, *sbuf = NULL; char *mbuf = NULL, *proxystr = NULL, *connectstr = NULL, *bindstr = NULL; char *cert_file = NULL, *key_file = NULL, *chain_file = NULL; char *chCApath = NULL, *chCAfile = NULL, *host = NULL; char *port = OPENSSL_strdup(PORT); char *bindhost = NULL, *bindport = NULL; char *passarg = NULL, *pass = NULL, *vfyCApath = NULL, *vfyCAfile = NULL; char *ReqCAfile = NULL; char *sess_in = NULL, *crl_file = NULL, *p; const char *protohost = NULL; struct timeval timeout, *timeoutp; fd_set readfds, writefds; int noCApath = 0, noCAfile = 0; int build_chain = 0, cbuf_len, cbuf_off, cert_format = FORMAT_PEM; int key_format = FORMAT_PEM, crlf = 0, full_log = 1, mbuf_len = 0; int prexit = 0; int sdebug = 0; int reconnect = 0, verify = SSL_VERIFY_NONE, vpmtouched = 0; int ret = 1, in_init = 1, i, nbio_test = 0, s = -1, k, width, state = 0; int sbuf_len, sbuf_off, cmdletters = 1; int socket_family = AF_UNSPEC, socket_type = SOCK_STREAM, protocol = 0; int starttls_proto = PROTO_OFF, crl_format = FORMAT_PEM, crl_download = 0; int write_tty, read_tty, write_ssl, read_ssl, tty_on, ssl_pending; #if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_MSDOS) int at_eof = 0; #endif int read_buf_len = 0; int fallback_scsv = 0; OPTION_CHOICE o; #ifndef OPENSSL_NO_DTLS int enable_timeouts = 0; long socket_mtu = 0; #endif #ifndef OPENSSL_NO_ENGINE ENGINE *ssl_client_engine = NULL; #endif ENGINE *e = NULL; #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS) struct timeval tv; #endif const char *servername = NULL; int noservername = 0; const char *alpn_in = NULL; tlsextctx tlsextcbp = { NULL, 0 }; const char *ssl_config = NULL; #define MAX_SI_TYPES 100 unsigned short serverinfo_types[MAX_SI_TYPES]; int serverinfo_count = 0, start = 0, len; #ifndef OPENSSL_NO_NEXTPROTONEG const char *next_proto_neg_in = NULL; #endif #ifndef OPENSSL_NO_SRP char *srppass = NULL; int srp_lateuser = 0; SRP_ARG srp_arg = { NULL, NULL, 0, 0, 0, 1024 }; #endif #ifndef OPENSSL_NO_SRTP char *srtp_profiles = NULL; #endif #ifndef OPENSSL_NO_CT char *ctlog_file = NULL; int ct_validation = 0; #endif int min_version = 0, max_version = 0, prot_opt = 0, no_prot_opt = 0; int async = 0; unsigned int max_send_fragment = 0; unsigned int split_send_fragment = 0, max_pipelines = 0; enum { use_inet, use_unix, use_unknown } connect_type = use_unknown; int count4or6 = 0; uint8_t maxfraglen = 0; int c_nbio = 0, c_msg = 0, c_ign_eof = 0, c_brief = 0; int c_tlsextdebug = 0; #ifndef OPENSSL_NO_OCSP int c_status_req = 0; #endif BIO *bio_c_msg = NULL; const char *keylog_file = NULL, *early_data_file = NULL; #ifndef OPENSSL_NO_DTLS int isdtls = 0; #endif char *psksessf = NULL; int enable_pha = 0; #ifndef OPENSSL_NO_SCTP int sctp_label_bug = 0; #endif FD_ZERO(&readfds); FD_ZERO(&writefds); /* Known false-positive of MemorySanitizer. */ #if defined(__has_feature) # if __has_feature(memory_sanitizer) __msan_unpoison(&readfds, sizeof(readfds)); __msan_unpoison(&writefds, sizeof(writefds)); # endif #endif prog = opt_progname(argv[0]); c_quiet = 0; c_debug = 0; c_showcerts = 0; c_nbio = 0; vpm = X509_VERIFY_PARAM_new(); cctx = SSL_CONF_CTX_new(); if (vpm == NULL || cctx == NULL) { BIO_printf(bio_err, "%s: out of memory\n", prog); goto end; } cbuf = app_malloc(BUFSIZZ, "cbuf"); sbuf = app_malloc(BUFSIZZ, "sbuf"); mbuf = app_malloc(BUFSIZZ, "mbuf"); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_CLIENT | SSL_CONF_FLAG_CMDLINE); prog = opt_init(argc, argv, s_client_options); while ((o = opt_next()) != OPT_EOF) { /* Check for intermixing flags. */ if (connect_type == use_unix && IS_INET_FLAG(o)) { BIO_printf(bio_err, "%s: Intermixed protocol flags (unix and internet domains)\n", prog); goto end; } if (connect_type == use_inet && IS_UNIX_FLAG(o)) { BIO_printf(bio_err, "%s: Intermixed protocol flags (internet and unix domains)\n", prog); goto end; } if (IS_PROT_FLAG(o) && ++prot_opt > 1) { BIO_printf(bio_err, "Cannot supply multiple protocol flags\n"); goto end; } if (IS_NO_PROT_FLAG(o)) no_prot_opt++; if (prot_opt == 1 && no_prot_opt) { BIO_printf(bio_err, "Cannot supply both a protocol flag and '-no_'\n"); goto end; } switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(s_client_options); ret = 0; goto end; case OPT_4: connect_type = use_inet; socket_family = AF_INET; count4or6++; break; #ifdef AF_INET6 case OPT_6: connect_type = use_inet; socket_family = AF_INET6; count4or6++; break; #endif case OPT_HOST: connect_type = use_inet; freeandcopy(&host, opt_arg()); break; case OPT_PORT: connect_type = use_inet; freeandcopy(&port, opt_arg()); break; case OPT_CONNECT: connect_type = use_inet; freeandcopy(&connectstr, opt_arg()); break; case OPT_BIND: freeandcopy(&bindstr, opt_arg()); break; case OPT_PROXY: proxystr = opt_arg(); starttls_proto = PROTO_CONNECT; break; #ifdef AF_UNIX case OPT_UNIX: connect_type = use_unix; socket_family = AF_UNIX; freeandcopy(&host, opt_arg()); break; #endif case OPT_XMPPHOST: /* fall through, since this is an alias */ case OPT_PROTOHOST: protohost = opt_arg(); break; case OPT_VERIFY: verify = SSL_VERIFY_PEER; verify_args.depth = atoi(opt_arg()); if (!c_quiet) BIO_printf(bio_err, "verify depth is %d\n", verify_args.depth); break; case OPT_CERT: cert_file = opt_arg(); break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto end; break; case OPT_CRL: crl_file = opt_arg(); break; case OPT_CRL_DOWNLOAD: crl_download = 1; break; case OPT_SESS_OUT: sess_out = opt_arg(); break; case OPT_SESS_IN: sess_in = opt_arg(); break; case OPT_CERTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &cert_format)) goto opthelp; break; case OPT_CRLFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &crl_format)) goto opthelp; break; case OPT_VERIFY_RET_ERROR: verify = SSL_VERIFY_PEER; verify_args.return_error = 1; break; case OPT_VERIFY_QUIET: verify_args.quiet = 1; break; case OPT_BRIEF: c_brief = verify_args.quiet = c_quiet = 1; break; case OPT_S_CASES: if (ssl_args == NULL) ssl_args = sk_OPENSSL_STRING_new_null(); if (ssl_args == NULL || !sk_OPENSSL_STRING_push(ssl_args, opt_flag()) || !sk_OPENSSL_STRING_push(ssl_args, opt_arg())) { BIO_printf(bio_err, "%s: Memory allocation failure\n", prog); goto end; } break; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto end; vpmtouched++; break; case OPT_X_CASES: if (!args_excert(o, &exc)) goto end; break; case OPT_PREXIT: prexit = 1; break; case OPT_CRLF: crlf = 1; break; case OPT_QUIET: c_quiet = c_ign_eof = 1; break; case OPT_NBIO: c_nbio = 1; break; case OPT_NOCMDS: cmdletters = 0; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 1); break; case OPT_SSL_CLIENT_ENGINE: #ifndef OPENSSL_NO_ENGINE ssl_client_engine = ENGINE_by_id(opt_arg()); if (ssl_client_engine == NULL) { BIO_printf(bio_err, "Error getting client auth engine\n"); goto opthelp; } #endif break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_IGN_EOF: c_ign_eof = 1; break; case OPT_NO_IGN_EOF: c_ign_eof = 0; break; case OPT_DEBUG: c_debug = 1; break; case OPT_TLSEXTDEBUG: c_tlsextdebug = 1; break; case OPT_STATUS: #ifndef OPENSSL_NO_OCSP c_status_req = 1; #endif break; case OPT_WDEBUG: #ifdef WATT32 dbug_init(); #endif break; case OPT_MSG: c_msg = 1; break; case OPT_MSGFILE: bio_c_msg = BIO_new_file(opt_arg(), "w"); break; case OPT_TRACE: #ifndef OPENSSL_NO_SSL_TRACE c_msg = 2; #endif break; case OPT_SECURITY_DEBUG: sdebug = 1; break; case OPT_SECURITY_DEBUG_VERBOSE: sdebug = 2; break; case OPT_SHOWCERTS: c_showcerts = 1; break; case OPT_NBIO_TEST: nbio_test = 1; break; case OPT_STATE: state = 1; break; case OPT_PSK_IDENTITY: psk_identity = opt_arg(); break; case OPT_PSK: for (p = psk_key = opt_arg(); *p; p++) { if (isxdigit(_UC(*p))) continue; BIO_printf(bio_err, "Not a hex number '%s'\n", psk_key); goto end; } break; case OPT_PSK_SESS: psksessf = opt_arg(); break; #ifndef OPENSSL_NO_SRP case OPT_SRPUSER: srp_arg.srplogin = opt_arg(); if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; break; case OPT_SRPPASS: srppass = opt_arg(); if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; break; case OPT_SRP_STRENGTH: srp_arg.strength = atoi(opt_arg()); BIO_printf(bio_err, "SRP minimal length for N is %d\n", srp_arg.strength); if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; break; case OPT_SRP_LATEUSER: srp_lateuser = 1; if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; break; case OPT_SRP_MOREGROUPS: srp_arg.amp = 1; if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; break; #endif case OPT_SSL_CONFIG: ssl_config = opt_arg(); break; case OPT_SSL3: min_version = SSL3_VERSION; max_version = SSL3_VERSION; break; case OPT_TLS1_3: min_version = TLS1_3_VERSION; max_version = TLS1_3_VERSION; break; case OPT_TLS1_2: min_version = TLS1_2_VERSION; max_version = TLS1_2_VERSION; break; case OPT_TLS1_1: min_version = TLS1_1_VERSION; max_version = TLS1_1_VERSION; break; case OPT_TLS1: min_version = TLS1_VERSION; max_version = TLS1_VERSION; break; case OPT_DTLS: #ifndef OPENSSL_NO_DTLS meth = DTLS_client_method(); socket_type = SOCK_DGRAM; isdtls = 1; #endif break; case OPT_DTLS1: #ifndef OPENSSL_NO_DTLS1 meth = DTLS_client_method(); min_version = DTLS1_VERSION; max_version = DTLS1_VERSION; socket_type = SOCK_DGRAM; isdtls = 1; #endif break; case OPT_DTLS1_2: #ifndef OPENSSL_NO_DTLS1_2 meth = DTLS_client_method(); min_version = DTLS1_2_VERSION; max_version = DTLS1_2_VERSION; socket_type = SOCK_DGRAM; isdtls = 1; #endif break; case OPT_SCTP: #ifndef OPENSSL_NO_SCTP protocol = IPPROTO_SCTP; #endif break; case OPT_SCTP_LABEL_BUG: #ifndef OPENSSL_NO_SCTP sctp_label_bug = 1; #endif break; case OPT_TIMEOUT: #ifndef OPENSSL_NO_DTLS enable_timeouts = 1; #endif break; case OPT_MTU: #ifndef OPENSSL_NO_DTLS socket_mtu = atol(opt_arg()); #endif break; case OPT_FALLBACKSCSV: fallback_scsv = 1; break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PDE, &key_format)) goto opthelp; break; case OPT_PASS: passarg = opt_arg(); break; case OPT_CERT_CHAIN: chain_file = opt_arg(); break; case OPT_KEY: key_file = opt_arg(); break; case OPT_RECONNECT: reconnect = 5; break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_CHAINCAPATH: chCApath = opt_arg(); break; case OPT_VERIFYCAPATH: vfyCApath = opt_arg(); break; case OPT_BUILD_CHAIN: build_chain = 1; break; case OPT_REQCAFILE: ReqCAfile = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_NOCAFILE: noCAfile = 1; break; #ifndef OPENSSL_NO_CT case OPT_NOCT: ct_validation = 0; break; case OPT_CT: ct_validation = 1; break; case OPT_CTLOG_FILE: ctlog_file = opt_arg(); break; #endif case OPT_CHAINCAFILE: chCAfile = opt_arg(); break; case OPT_VERIFYCAFILE: vfyCAfile = opt_arg(); break; case OPT_DANE_TLSA_DOMAIN: dane_tlsa_domain = opt_arg(); break; case OPT_DANE_TLSA_RRDATA: if (dane_tlsa_rrset == NULL) dane_tlsa_rrset = sk_OPENSSL_STRING_new_null(); if (dane_tlsa_rrset == NULL || !sk_OPENSSL_STRING_push(dane_tlsa_rrset, opt_arg())) { BIO_printf(bio_err, "%s: Memory allocation failure\n", prog); goto end; } break; case OPT_DANE_EE_NO_NAME: dane_ee_no_name = 1; break; case OPT_NEXTPROTONEG: #ifndef OPENSSL_NO_NEXTPROTONEG next_proto_neg_in = opt_arg(); #endif break; case OPT_ALPN: alpn_in = opt_arg(); break; case OPT_SERVERINFO: p = opt_arg(); len = strlen(p); for (start = 0, i = 0; i <= len; ++i) { if (i == len || p[i] == ',') { serverinfo_types[serverinfo_count] = atoi(p + start); if (++serverinfo_count == MAX_SI_TYPES) break; start = i + 1; } } break; case OPT_STARTTLS: if (!opt_pair(opt_arg(), services, &starttls_proto)) goto end; break; case OPT_SERVERNAME: servername = opt_arg(); break; case OPT_NOSERVERNAME: noservername = 1; break; case OPT_USE_SRTP: #ifndef OPENSSL_NO_SRTP srtp_profiles = opt_arg(); #endif break; case OPT_KEYMATEXPORT: keymatexportlabel = opt_arg(); break; case OPT_KEYMATEXPORTLEN: keymatexportlen = atoi(opt_arg()); break; case OPT_ASYNC: async = 1; break; case OPT_MAXFRAGLEN: len = atoi(opt_arg()); switch (len) { case 512: maxfraglen = TLSEXT_max_fragment_length_512; break; case 1024: maxfraglen = TLSEXT_max_fragment_length_1024; break; case 2048: maxfraglen = TLSEXT_max_fragment_length_2048; break; case 4096: maxfraglen = TLSEXT_max_fragment_length_4096; break; default: BIO_printf(bio_err, "%s: Max Fragment Len %u is out of permitted values", prog, len); goto opthelp; } break; case OPT_MAX_SEND_FRAG: max_send_fragment = atoi(opt_arg()); break; case OPT_SPLIT_SEND_FRAG: split_send_fragment = atoi(opt_arg()); break; case OPT_MAX_PIPELINES: max_pipelines = atoi(opt_arg()); break; case OPT_READ_BUF: read_buf_len = atoi(opt_arg()); break; case OPT_KEYLOG_FILE: keylog_file = opt_arg(); break; case OPT_EARLY_DATA: early_data_file = opt_arg(); break; case OPT_ENABLE_PHA: enable_pha = 1; break; } } if (count4or6 >= 2) { BIO_printf(bio_err, "%s: Can't use both -4 and -6\n", prog); goto opthelp; } if (noservername) { if (servername != NULL) { BIO_printf(bio_err, "%s: Can't use -servername and -noservername together\n", prog); goto opthelp; } if (dane_tlsa_domain != NULL) { BIO_printf(bio_err, "%s: Can't use -dane_tlsa_domain and -noservername together\n", prog); goto opthelp; } } argc = opt_num_rest(); if (argc == 1) { /* If there's a positional argument, it's the equivalent of * OPT_CONNECT. * Don't allow -connect and a separate argument. */ if (connectstr != NULL) { BIO_printf(bio_err, "%s: must not provide both -connect option and target parameter\n", prog); goto opthelp; } connect_type = use_inet; freeandcopy(&connectstr, *opt_rest()); } else if (argc != 0) { goto opthelp; } #ifndef OPENSSL_NO_NEXTPROTONEG if (min_version == TLS1_3_VERSION && next_proto_neg_in != NULL) { BIO_printf(bio_err, "Cannot supply -nextprotoneg with TLSv1.3\n"); goto opthelp; } #endif if (proxystr != NULL) { int res; char *tmp_host = host, *tmp_port = port; if (connectstr == NULL) { BIO_printf(bio_err, "%s: -proxy requires use of -connect or target parameter\n", prog); goto opthelp; } res = BIO_parse_hostserv(proxystr, &host, &port, BIO_PARSE_PRIO_HOST); if (tmp_host != host) OPENSSL_free(tmp_host); if (tmp_port != port) OPENSSL_free(tmp_port); if (!res) { BIO_printf(bio_err, "%s: -proxy argument malformed or ambiguous\n", prog); goto end; } } else { int res = 1; char *tmp_host = host, *tmp_port = port; if (connectstr != NULL) res = BIO_parse_hostserv(connectstr, &host, &port, BIO_PARSE_PRIO_HOST); if (tmp_host != host) OPENSSL_free(tmp_host); if (tmp_port != port) OPENSSL_free(tmp_port); if (!res) { BIO_printf(bio_err, "%s: -connect argument or target parameter malformed or ambiguous\n", prog); goto end; } } if (bindstr != NULL) { int res; res = BIO_parse_hostserv(bindstr, &bindhost, &bindport, BIO_PARSE_PRIO_HOST); if (!res) { BIO_printf(bio_err, "%s: -bind argument parameter malformed or ambiguous\n", prog); goto end; } } #ifdef AF_UNIX if (socket_family == AF_UNIX && socket_type != SOCK_STREAM) { BIO_printf(bio_err, "Can't use unix sockets and datagrams together\n"); goto end; } #endif #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP) { if (socket_type != SOCK_DGRAM) { BIO_printf(bio_err, "Can't use -sctp without DTLS\n"); goto end; } /* SCTP is unusual. It uses DTLS over a SOCK_STREAM protocol */ socket_type = SOCK_STREAM; } #endif #if !defined(OPENSSL_NO_NEXTPROTONEG) next_proto.status = -1; if (next_proto_neg_in) { next_proto.data = next_protos_parse(&next_proto.len, next_proto_neg_in); if (next_proto.data == NULL) { BIO_printf(bio_err, "Error parsing -nextprotoneg argument\n"); goto end; } } else next_proto.data = NULL; #endif if (!app_passwd(passarg, NULL, &pass, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } if (key_file == NULL) key_file = cert_file; if (key_file != NULL) { key = load_key(key_file, key_format, 0, pass, e, "client certificate private key file"); if (key == NULL) { ERR_print_errors(bio_err); goto end; } } if (cert_file != NULL) { cert = load_cert(cert_file, cert_format, "client certificate file"); if (cert == NULL) { ERR_print_errors(bio_err); goto end; } } if (chain_file != NULL) { if (!load_certs(chain_file, &chain, FORMAT_PEM, NULL, "client certificate chain")) goto end; } if (crl_file != NULL) { X509_CRL *crl; crl = load_crl(crl_file, crl_format); if (crl == NULL) { BIO_puts(bio_err, "Error loading CRL\n"); ERR_print_errors(bio_err); goto end; } crls = sk_X509_CRL_new_null(); if (crls == NULL || !sk_X509_CRL_push(crls, crl)) { BIO_puts(bio_err, "Error adding CRL\n"); ERR_print_errors(bio_err); X509_CRL_free(crl); goto end; } } if (!load_excert(&exc)) goto end; if (bio_c_out == NULL) { if (c_quiet && !c_debug) { bio_c_out = BIO_new(BIO_s_null()); if (c_msg && bio_c_msg == NULL) bio_c_msg = dup_bio_out(FORMAT_TEXT); } else if (bio_c_out == NULL) bio_c_out = dup_bio_out(FORMAT_TEXT); } #ifndef OPENSSL_NO_SRP if (!app_passwd(srppass, NULL, &srp_arg.srppassin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } #endif ctx = SSL_CTX_new(meth); if (ctx == NULL) { ERR_print_errors(bio_err); goto end; } SSL_CTX_clear_mode(ctx, SSL_MODE_AUTO_RETRY); if (sdebug) ssl_ctx_security_debug(ctx, sdebug); if (!config_ctx(cctx, ssl_args, ctx)) goto end; if (ssl_config != NULL) { if (SSL_CTX_config(ctx, ssl_config) == 0) { BIO_printf(bio_err, "Error using configuration \"%s\"\n", ssl_config); ERR_print_errors(bio_err); goto end; } } #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP && sctp_label_bug == 1) SSL_CTX_set_mode(ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); #endif if (min_version != 0 && SSL_CTX_set_min_proto_version(ctx, min_version) == 0) goto end; if (max_version != 0 && SSL_CTX_set_max_proto_version(ctx, max_version) == 0) goto end; if (vpmtouched && !SSL_CTX_set1_param(ctx, vpm)) { BIO_printf(bio_err, "Error setting verify params\n"); ERR_print_errors(bio_err); goto end; } if (async) { SSL_CTX_set_mode(ctx, SSL_MODE_ASYNC); } if (max_send_fragment > 0 && !SSL_CTX_set_max_send_fragment(ctx, max_send_fragment)) { BIO_printf(bio_err, "%s: Max send fragment size %u is out of permitted range\n", prog, max_send_fragment); goto end; } if (split_send_fragment > 0 && !SSL_CTX_set_split_send_fragment(ctx, split_send_fragment)) { BIO_printf(bio_err, "%s: Split send fragment size %u is out of permitted range\n", prog, split_send_fragment); goto end; } if (max_pipelines > 0 && !SSL_CTX_set_max_pipelines(ctx, max_pipelines)) { BIO_printf(bio_err, "%s: Max pipelines %u is out of permitted range\n", prog, max_pipelines); goto end; } if (read_buf_len > 0) { SSL_CTX_set_default_read_buffer_len(ctx, read_buf_len); } if (maxfraglen > 0 && !SSL_CTX_set_tlsext_max_fragment_length(ctx, maxfraglen)) { BIO_printf(bio_err, "%s: Max Fragment Length code %u is out of permitted values" "\n", prog, maxfraglen); goto end; } if (!ssl_load_stores(ctx, vfyCApath, vfyCAfile, chCApath, chCAfile, crls, crl_download)) { BIO_printf(bio_err, "Error loading store locations\n"); ERR_print_errors(bio_err); goto end; } if (ReqCAfile != NULL) { STACK_OF(X509_NAME) *nm = sk_X509_NAME_new_null(); if (nm == NULL || !SSL_add_file_cert_subjects_to_stack(nm, ReqCAfile)) { sk_X509_NAME_pop_free(nm, X509_NAME_free); BIO_printf(bio_err, "Error loading CA names\n"); ERR_print_errors(bio_err); goto end; } SSL_CTX_set0_CA_list(ctx, nm); } #ifndef OPENSSL_NO_ENGINE if (ssl_client_engine) { if (!SSL_CTX_set_client_cert_engine(ctx, ssl_client_engine)) { BIO_puts(bio_err, "Error setting client auth engine\n"); ERR_print_errors(bio_err); ENGINE_free(ssl_client_engine); goto end; } ENGINE_free(ssl_client_engine); } #endif #ifndef OPENSSL_NO_PSK if (psk_key != NULL) { if (c_debug) BIO_printf(bio_c_out, "PSK key given, setting client callback\n"); SSL_CTX_set_psk_client_callback(ctx, psk_client_cb); } #endif if (psksessf != NULL) { BIO *stmp = BIO_new_file(psksessf, "r"); if (stmp == NULL) { BIO_printf(bio_err, "Can't open PSK session file %s\n", psksessf); ERR_print_errors(bio_err); goto end; } psksess = PEM_read_bio_SSL_SESSION(stmp, NULL, 0, NULL); BIO_free(stmp); if (psksess == NULL) { BIO_printf(bio_err, "Can't read PSK session file %s\n", psksessf); ERR_print_errors(bio_err); goto end; } } if (psk_key != NULL || psksess != NULL) SSL_CTX_set_psk_use_session_callback(ctx, psk_use_session_cb); #ifndef OPENSSL_NO_SRTP if (srtp_profiles != NULL) { /* Returns 0 on success! */ if (SSL_CTX_set_tlsext_use_srtp(ctx, srtp_profiles) != 0) { BIO_printf(bio_err, "Error setting SRTP profile\n"); ERR_print_errors(bio_err); goto end; } } #endif if (exc != NULL) ssl_ctx_set_excert(ctx, exc); #if !defined(OPENSSL_NO_NEXTPROTONEG) if (next_proto.data != NULL) SSL_CTX_set_next_proto_select_cb(ctx, next_proto_cb, &next_proto); #endif if (alpn_in) { size_t alpn_len; unsigned char *alpn = next_protos_parse(&alpn_len, alpn_in); if (alpn == NULL) { BIO_printf(bio_err, "Error parsing -alpn argument\n"); goto end; } /* Returns 0 on success! */ if (SSL_CTX_set_alpn_protos(ctx, alpn, alpn_len) != 0) { BIO_printf(bio_err, "Error setting ALPN\n"); goto end; } OPENSSL_free(alpn); } for (i = 0; i < serverinfo_count; i++) { if (!SSL_CTX_add_client_custom_ext(ctx, serverinfo_types[i], NULL, NULL, NULL, serverinfo_cli_parse_cb, NULL)) { BIO_printf(bio_err, "Warning: Unable to add custom extension %u, skipping\n", serverinfo_types[i]); } } if (state) SSL_CTX_set_info_callback(ctx, apps_ssl_info_callback); #ifndef OPENSSL_NO_CT /* Enable SCT processing, without early connection termination */ if (ct_validation && !SSL_CTX_enable_ct(ctx, SSL_CT_VALIDATION_PERMISSIVE)) { ERR_print_errors(bio_err); goto end; } if (!ctx_set_ctlog_list_file(ctx, ctlog_file)) { if (ct_validation) { ERR_print_errors(bio_err); goto end; } /* * If CT validation is not enabled, the log list isn't needed so don't * show errors or abort. We try to load it regardless because then we * can show the names of the logs any SCTs came from (SCTs may be seen * even with validation disabled). */ ERR_clear_error(); } #endif SSL_CTX_set_verify(ctx, verify, verify_callback); if (!ctx_set_verify_locations(ctx, CAfile, CApath, noCAfile, noCApath)) { ERR_print_errors(bio_err); goto end; } ssl_ctx_add_crls(ctx, crls, crl_download); if (!set_cert_key_stuff(ctx, cert, key, chain, build_chain)) goto end; if (!noservername) { tlsextcbp.biodebug = bio_err; SSL_CTX_set_tlsext_servername_callback(ctx, ssl_servername_cb); SSL_CTX_set_tlsext_servername_arg(ctx, &tlsextcbp); } # ifndef OPENSSL_NO_SRP if (srp_arg.srplogin) { if (!srp_lateuser && !SSL_CTX_set_srp_username(ctx, srp_arg.srplogin)) { BIO_printf(bio_err, "Unable to set SRP username\n"); goto end; } srp_arg.msg = c_msg; srp_arg.debug = c_debug; SSL_CTX_set_srp_cb_arg(ctx, &srp_arg); SSL_CTX_set_srp_client_pwd_callback(ctx, ssl_give_srp_client_pwd_cb); SSL_CTX_set_srp_strength(ctx, srp_arg.strength); if (c_msg || c_debug || srp_arg.amp == 0) SSL_CTX_set_srp_verify_param_callback(ctx, ssl_srp_verify_param_cb); } # endif if (dane_tlsa_domain != NULL) { if (SSL_CTX_dane_enable(ctx) <= 0) { BIO_printf(bio_err, "%s: Error enabling DANE TLSA authentication.\n", prog); ERR_print_errors(bio_err); goto end; } } /* * In TLSv1.3 NewSessionTicket messages arrive after the handshake and can * come at any time. Therefore we use a callback to write out the session * when we know about it. This approach works for < TLSv1.3 as well. */ SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE); SSL_CTX_sess_set_new_cb(ctx, new_session_cb); if (set_keylog_file(ctx, keylog_file)) goto end; con = SSL_new(ctx); if (con == NULL) goto end; if (enable_pha) SSL_set_post_handshake_auth(con, 1); if (sess_in != NULL) { SSL_SESSION *sess; BIO *stmp = BIO_new_file(sess_in, "r"); if (stmp == NULL) { BIO_printf(bio_err, "Can't open session file %s\n", sess_in); ERR_print_errors(bio_err); goto end; } sess = PEM_read_bio_SSL_SESSION(stmp, NULL, 0, NULL); BIO_free(stmp); if (sess == NULL) { BIO_printf(bio_err, "Can't open session file %s\n", sess_in); ERR_print_errors(bio_err); goto end; } if (!SSL_set_session(con, sess)) { BIO_printf(bio_err, "Can't set session\n"); ERR_print_errors(bio_err); goto end; } SSL_SESSION_free(sess); } if (fallback_scsv) SSL_set_mode(con, SSL_MODE_SEND_FALLBACK_SCSV); if (!noservername && (servername != NULL || dane_tlsa_domain == NULL)) { if (servername == NULL) { if(host == NULL || is_dNS_name(host)) servername = (host == NULL) ? "localhost" : host; } if (servername != NULL && !SSL_set_tlsext_host_name(con, servername)) { BIO_printf(bio_err, "Unable to set TLS servername extension.\n"); ERR_print_errors(bio_err); goto end; } } if (dane_tlsa_domain != NULL) { if (SSL_dane_enable(con, dane_tlsa_domain) <= 0) { BIO_printf(bio_err, "%s: Error enabling DANE TLSA " "authentication.\n", prog); ERR_print_errors(bio_err); goto end; } if (dane_tlsa_rrset == NULL) { BIO_printf(bio_err, "%s: DANE TLSA authentication requires at " "least one -dane_tlsa_rrdata option.\n", prog); goto end; } if (tlsa_import_rrset(con, dane_tlsa_rrset) <= 0) { BIO_printf(bio_err, "%s: Failed to import any TLSA " "records.\n", prog); goto end; } if (dane_ee_no_name) SSL_dane_set_flags(con, DANE_FLAG_NO_DANE_EE_NAMECHECKS); } else if (dane_tlsa_rrset != NULL) { BIO_printf(bio_err, "%s: DANE TLSA authentication requires the " "-dane_tlsa_domain option.\n", prog); goto end; } re_start: if (init_client(&s, host, port, bindhost, bindport, socket_family, socket_type, protocol) == 0) { BIO_printf(bio_err, "connect:errno=%d\n", get_last_socket_error()); BIO_closesocket(s); goto end; } BIO_printf(bio_c_out, "CONNECTED(%08X)\n", s); if (c_nbio) { if (!BIO_socket_nbio(s, 1)) { ERR_print_errors(bio_err); goto end; } BIO_printf(bio_c_out, "Turned on non blocking io\n"); } #ifndef OPENSSL_NO_DTLS if (isdtls) { union BIO_sock_info_u peer_info; #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP) sbio = BIO_new_dgram_sctp(s, BIO_NOCLOSE); else #endif sbio = BIO_new_dgram(s, BIO_NOCLOSE); if ((peer_info.addr = BIO_ADDR_new()) == NULL) { BIO_printf(bio_err, "memory allocation failure\n"); BIO_closesocket(s); goto end; } if (!BIO_sock_info(s, BIO_SOCK_INFO_ADDRESS, &peer_info)) { BIO_printf(bio_err, "getsockname:errno=%d\n", get_last_socket_error()); BIO_ADDR_free(peer_info.addr); BIO_closesocket(s); goto end; } (void)BIO_ctrl_set_connected(sbio, peer_info.addr); BIO_ADDR_free(peer_info.addr); peer_info.addr = NULL; if (enable_timeouts) { timeout.tv_sec = 0; timeout.tv_usec = DGRAM_RCV_TIMEOUT; BIO_ctrl(sbio, BIO_CTRL_DGRAM_SET_RECV_TIMEOUT, 0, &timeout); timeout.tv_sec = 0; timeout.tv_usec = DGRAM_SND_TIMEOUT; BIO_ctrl(sbio, BIO_CTRL_DGRAM_SET_SEND_TIMEOUT, 0, &timeout); } if (socket_mtu) { if (socket_mtu < DTLS_get_link_min_mtu(con)) { BIO_printf(bio_err, "MTU too small. Must be at least %ld\n", DTLS_get_link_min_mtu(con)); BIO_free(sbio); goto shut; } SSL_set_options(con, SSL_OP_NO_QUERY_MTU); if (!DTLS_set_link_mtu(con, socket_mtu)) { BIO_printf(bio_err, "Failed to set MTU\n"); BIO_free(sbio); goto shut; } } else { /* want to do MTU discovery */ BIO_ctrl(sbio, BIO_CTRL_DGRAM_MTU_DISCOVER, 0, NULL); } } else #endif /* OPENSSL_NO_DTLS */ sbio = BIO_new_socket(s, BIO_NOCLOSE); if (nbio_test) { BIO *test; test = BIO_new(BIO_f_nbio_test()); sbio = BIO_push(test, sbio); } if (c_debug) { BIO_set_callback(sbio, bio_dump_callback); BIO_set_callback_arg(sbio, (char *)bio_c_out); } if (c_msg) { #ifndef OPENSSL_NO_SSL_TRACE if (c_msg == 2) SSL_set_msg_callback(con, SSL_trace); else #endif SSL_set_msg_callback(con, msg_cb); SSL_set_msg_callback_arg(con, bio_c_msg ? bio_c_msg : bio_c_out); } if (c_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_c_out); } #ifndef OPENSSL_NO_OCSP if (c_status_req) { SSL_set_tlsext_status_type(con, TLSEXT_STATUSTYPE_ocsp); SSL_CTX_set_tlsext_status_cb(ctx, ocsp_resp_cb); SSL_CTX_set_tlsext_status_arg(ctx, bio_c_out); } #endif SSL_set_bio(con, sbio, sbio); SSL_set_connect_state(con); /* ok, lets connect */ if (fileno_stdin() > SSL_get_fd(con)) width = fileno_stdin() + 1; else width = SSL_get_fd(con) + 1; read_tty = 1; write_tty = 0; tty_on = 0; read_ssl = 1; write_ssl = 1; cbuf_len = 0; cbuf_off = 0; sbuf_len = 0; sbuf_off = 0; switch ((PROTOCOL_CHOICE) starttls_proto) { case PROTO_OFF: break; case PROTO_LMTP: case PROTO_SMTP: { /* * This is an ugly hack that does a lot of assumptions. We do * have to handle multi-line responses which may come in a single * packet or not. We therefore have to use BIO_gets() which does * need a buffering BIO. So during the initial chitchat we do * push a buffering BIO into the chain that is removed again * later on to not disturb the rest of the s_client operation. */ int foundit = 0; BIO *fbio = BIO_new(BIO_f_buffer()); BIO_push(fbio, sbio); /* Wait for multi-line response to end from LMTP or SMTP */ do { mbuf_len = BIO_gets(fbio, mbuf, BUFSIZZ); } while (mbuf_len > 3 && mbuf[3] == '-'); if (protohost == NULL) protohost = "mail.example.com"; if (starttls_proto == (int)PROTO_LMTP) BIO_printf(fbio, "LHLO %s\r\n", protohost); else BIO_printf(fbio, "EHLO %s\r\n", protohost); (void)BIO_flush(fbio); /* * Wait for multi-line response to end LHLO LMTP or EHLO SMTP * response. */ do { mbuf_len = BIO_gets(fbio, mbuf, BUFSIZZ); if (strstr(mbuf, "STARTTLS")) foundit = 1; } while (mbuf_len > 3 && mbuf[3] == '-'); (void)BIO_flush(fbio); BIO_pop(fbio); BIO_free(fbio); if (!foundit) BIO_printf(bio_err, "Didn't find STARTTLS in server response," " trying anyway...\n"); BIO_printf(sbio, "STARTTLS\r\n"); BIO_read(sbio, sbuf, BUFSIZZ); } break; case PROTO_POP3: { BIO_read(sbio, mbuf, BUFSIZZ); BIO_printf(sbio, "STLS\r\n"); mbuf_len = BIO_read(sbio, sbuf, BUFSIZZ); if (mbuf_len < 0) { BIO_printf(bio_err, "BIO_read failed\n"); goto end; } } break; case PROTO_IMAP: { int foundit = 0; BIO *fbio = BIO_new(BIO_f_buffer()); BIO_push(fbio, sbio); BIO_gets(fbio, mbuf, BUFSIZZ); /* STARTTLS command requires CAPABILITY... */ BIO_printf(fbio, ". CAPABILITY\r\n"); (void)BIO_flush(fbio); /* wait for multi-line CAPABILITY response */ do { mbuf_len = BIO_gets(fbio, mbuf, BUFSIZZ); if (strstr(mbuf, "STARTTLS")) foundit = 1; } while (mbuf_len > 3 && mbuf[0] != '.'); (void)BIO_flush(fbio); BIO_pop(fbio); BIO_free(fbio); if (!foundit) BIO_printf(bio_err, "Didn't find STARTTLS in server response," " trying anyway...\n"); BIO_printf(sbio, ". STARTTLS\r\n"); BIO_read(sbio, sbuf, BUFSIZZ); } break; case PROTO_FTP: { BIO *fbio = BIO_new(BIO_f_buffer()); BIO_push(fbio, sbio); /* wait for multi-line response to end from FTP */ do { mbuf_len = BIO_gets(fbio, mbuf, BUFSIZZ); } while (mbuf_len > 3 && (!isdigit(mbuf[0]) || !isdigit(mbuf[1]) || !isdigit(mbuf[2]) || mbuf[3] != ' ')); (void)BIO_flush(fbio); BIO_pop(fbio); BIO_free(fbio); BIO_printf(sbio, "AUTH TLS\r\n"); BIO_read(sbio, sbuf, BUFSIZZ); } break; case PROTO_XMPP: case PROTO_XMPP_SERVER: { int seen = 0; BIO_printf(sbio, "", starttls_proto == PROTO_XMPP ? "client" : "server", protohost ? protohost : host); seen = BIO_read(sbio, mbuf, BUFSIZZ); if (seen < 0) { BIO_printf(bio_err, "BIO_read failed\n"); goto end; } mbuf[seen] = '\0'; while (!strstr (mbuf, ""); seen = BIO_read(sbio, sbuf, BUFSIZZ); if (seen < 0) { BIO_printf(bio_err, "BIO_read failed\n"); goto shut; } sbuf[seen] = '\0'; if (!strstr(sbuf, " 2); } (void)BIO_flush(fbio); BIO_pop(fbio); BIO_free(fbio); if (foundit != success) { goto shut; } } break; case PROTO_IRC: { int numeric; BIO *fbio = BIO_new(BIO_f_buffer()); BIO_push(fbio, sbio); BIO_printf(fbio, "STARTTLS\r\n"); (void)BIO_flush(fbio); width = SSL_get_fd(con) + 1; do { numeric = 0; FD_ZERO(&readfds); openssl_fdset(SSL_get_fd(con), &readfds); timeout.tv_sec = S_CLIENT_IRC_READ_TIMEOUT; timeout.tv_usec = 0; /* * If the IRCd doesn't respond within * S_CLIENT_IRC_READ_TIMEOUT seconds, assume * it doesn't support STARTTLS. Many IRCds * will not give _any_ sort of response to a * STARTTLS command when it's not supported. */ if (!BIO_get_buffer_num_lines(fbio) && !BIO_pending(fbio) && !BIO_pending(sbio) && select(width, (void *)&readfds, NULL, NULL, &timeout) < 1) { BIO_printf(bio_err, "Timeout waiting for response (%d seconds).\n", S_CLIENT_IRC_READ_TIMEOUT); break; } mbuf_len = BIO_gets(fbio, mbuf, BUFSIZZ); if (mbuf_len < 1 || sscanf(mbuf, "%*s %d", &numeric) != 1) break; /* :example.net 451 STARTTLS :You have not registered */ /* :example.net 421 STARTTLS :Unknown command */ if ((numeric == 451 || numeric == 421) && strstr(mbuf, "STARTTLS") != NULL) { BIO_printf(bio_err, "STARTTLS not supported: %s", mbuf); break; } if (numeric == 691) { BIO_printf(bio_err, "STARTTLS negotiation failed: "); ERR_print_errors(bio_err); break; } } while (numeric != 670); (void)BIO_flush(fbio); BIO_pop(fbio); BIO_free(fbio); if (numeric != 670) { BIO_printf(bio_err, "Server does not support STARTTLS.\n"); ret = 1; goto shut; } } break; case PROTO_MYSQL: { /* SSL request packet */ static const unsigned char ssl_req[] = { /* payload_length, sequence_id */ 0x20, 0x00, 0x00, 0x01, /* payload */ /* capability flags, CLIENT_SSL always set */ 0x85, 0xae, 0x7f, 0x00, /* max-packet size */ 0x00, 0x00, 0x00, 0x01, /* character set */ 0x21, /* string[23] reserved (all [0]) */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; int bytes = 0; int ssl_flg = 0x800; int pos; const unsigned char *packet = (const unsigned char *)sbuf; /* Receiving Initial Handshake packet. */ bytes = BIO_read(sbio, (void *)packet, BUFSIZZ); if (bytes < 0) { BIO_printf(bio_err, "BIO_read failed\n"); goto shut; /* Packet length[3], Packet number[1] + minimum payload[17] */ } else if (bytes < 21) { BIO_printf(bio_err, "MySQL packet too short.\n"); goto shut; } else if (bytes != (4 + packet[0] + (packet[1] << 8) + (packet[2] << 16))) { BIO_printf(bio_err, "MySQL packet length does not match.\n"); goto shut; /* protocol version[1] */ } else if (packet[4] != 0xA) { BIO_printf(bio_err, "Only MySQL protocol version 10 is supported.\n"); goto shut; } pos = 5; /* server version[string+NULL] */ for (;;) { if (pos >= bytes) { BIO_printf(bio_err, "Cannot confirm server version. "); goto shut; } else if (packet[pos++] == '\0') { break; } } /* make sure we have at least 15 bytes left in the packet */ if (pos + 15 > bytes) { BIO_printf(bio_err, "MySQL server handshake packet is broken.\n"); goto shut; } pos += 12; /* skip over conn id[4] + SALT[8] */ if (packet[pos++] != '\0') { /* verify filler */ BIO_printf(bio_err, "MySQL packet is broken.\n"); goto shut; } /* capability flags[2] */ if (!((packet[pos] + (packet[pos + 1] << 8)) & ssl_flg)) { BIO_printf(bio_err, "MySQL server does not support SSL.\n"); goto shut; } /* Sending SSL Handshake packet. */ BIO_write(sbio, ssl_req, sizeof(ssl_req)); (void)BIO_flush(sbio); } break; case PROTO_POSTGRES: { static const unsigned char ssl_request[] = { /* Length SSLRequest */ 0, 0, 0, 8, 4, 210, 22, 47 }; int bytes; /* Send SSLRequest packet */ BIO_write(sbio, ssl_request, 8); (void)BIO_flush(sbio); /* Reply will be a single S if SSL is enabled */ bytes = BIO_read(sbio, sbuf, BUFSIZZ); if (bytes != 1 || sbuf[0] != 'S') goto shut; } break; case PROTO_NNTP: { int foundit = 0; BIO *fbio = BIO_new(BIO_f_buffer()); BIO_push(fbio, sbio); BIO_gets(fbio, mbuf, BUFSIZZ); /* STARTTLS command requires CAPABILITIES... */ BIO_printf(fbio, "CAPABILITIES\r\n"); (void)BIO_flush(fbio); /* wait for multi-line CAPABILITIES response */ do { mbuf_len = BIO_gets(fbio, mbuf, BUFSIZZ); if (strstr(mbuf, "STARTTLS")) foundit = 1; } while (mbuf_len > 1 && mbuf[0] != '.'); (void)BIO_flush(fbio); BIO_pop(fbio); BIO_free(fbio); if (!foundit) BIO_printf(bio_err, "Didn't find STARTTLS in server response," " trying anyway...\n"); BIO_printf(sbio, "STARTTLS\r\n"); mbuf_len = BIO_read(sbio, mbuf, BUFSIZZ); if (mbuf_len < 0) { BIO_printf(bio_err, "BIO_read failed\n"); goto end; } mbuf[mbuf_len] = '\0'; if (strstr(mbuf, "382") == NULL) { BIO_printf(bio_err, "STARTTLS failed: %s", mbuf); goto shut; } } break; case PROTO_SIEVE: { int foundit = 0; BIO *fbio = BIO_new(BIO_f_buffer()); BIO_push(fbio, sbio); /* wait for multi-line response to end from Sieve */ do { mbuf_len = BIO_gets(fbio, mbuf, BUFSIZZ); /* * According to RFC 5804 § 1.7, capability * is case-insensitive, make it uppercase */ if (mbuf_len > 1 && mbuf[0] == '"') { make_uppercase(mbuf); if (strncmp(mbuf, "\"STARTTLS\"", 10) == 0) foundit = 1; } } while (mbuf_len > 1 && mbuf[0] == '"'); (void)BIO_flush(fbio); BIO_pop(fbio); BIO_free(fbio); if (!foundit) BIO_printf(bio_err, "Didn't find STARTTLS in server response," " trying anyway...\n"); BIO_printf(sbio, "STARTTLS\r\n"); mbuf_len = BIO_read(sbio, mbuf, BUFSIZZ); if (mbuf_len < 0) { BIO_printf(bio_err, "BIO_read failed\n"); goto end; } mbuf[mbuf_len] = '\0'; if (mbuf_len < 2) { BIO_printf(bio_err, "STARTTLS failed: %s", mbuf); goto shut; } /* * According to RFC 5804 § 2.2, response codes are case- * insensitive, make it uppercase but preserve the response. */ strncpy(sbuf, mbuf, 2); make_uppercase(sbuf); if (strncmp(sbuf, "OK", 2) != 0) { BIO_printf(bio_err, "STARTTLS not supported: %s", mbuf); goto shut; } } break; case PROTO_LDAP: { /* StartTLS Operation according to RFC 4511 */ static char ldap_tls_genconf[] = "asn1=SEQUENCE:LDAPMessage\n" "[LDAPMessage]\n" "messageID=INTEGER:1\n" "extendedReq=EXPLICIT:23A,IMPLICIT:0C," "FORMAT:ASCII,OCT:1.3.6.1.4.1.1466.20037\n"; long errline = -1; char *genstr = NULL; int result = -1; ASN1_TYPE *atyp = NULL; BIO *ldapbio = BIO_new(BIO_s_mem()); CONF *cnf = NCONF_new(NULL); if (cnf == NULL) { BIO_free(ldapbio); goto end; } BIO_puts(ldapbio, ldap_tls_genconf); if (NCONF_load_bio(cnf, ldapbio, &errline) <= 0) { BIO_free(ldapbio); NCONF_free(cnf); if (errline <= 0) { BIO_printf(bio_err, "NCONF_load_bio failed\n"); goto end; } else { BIO_printf(bio_err, "Error on line %ld\n", errline); goto end; } } BIO_free(ldapbio); genstr = NCONF_get_string(cnf, "default", "asn1"); if (genstr == NULL) { NCONF_free(cnf); BIO_printf(bio_err, "NCONF_get_string failed\n"); goto end; } atyp = ASN1_generate_nconf(genstr, cnf); if (atyp == NULL) { NCONF_free(cnf); BIO_printf(bio_err, "ASN1_generate_nconf failed\n"); goto end; } NCONF_free(cnf); /* Send SSLRequest packet */ BIO_write(sbio, atyp->value.sequence->data, atyp->value.sequence->length); (void)BIO_flush(sbio); ASN1_TYPE_free(atyp); mbuf_len = BIO_read(sbio, mbuf, BUFSIZZ); if (mbuf_len < 0) { BIO_printf(bio_err, "BIO_read failed\n"); goto end; } result = ldap_ExtendedResponse_parse(mbuf, mbuf_len); if (result < 0) { BIO_printf(bio_err, "ldap_ExtendedResponse_parse failed\n"); goto shut; } else if (result > 0) { BIO_printf(bio_err, "STARTTLS failed, LDAP Result Code: %i\n", result); goto shut; } mbuf_len = 0; } break; } if (early_data_file != NULL && ((SSL_get0_session(con) != NULL && SSL_SESSION_get_max_early_data(SSL_get0_session(con)) > 0) || (psksess != NULL && SSL_SESSION_get_max_early_data(psksess) > 0))) { BIO *edfile = BIO_new_file(early_data_file, "r"); size_t readbytes, writtenbytes; int finish = 0; if (edfile == NULL) { BIO_printf(bio_err, "Cannot open early data file\n"); goto shut; } while (!finish) { if (!BIO_read_ex(edfile, cbuf, BUFSIZZ, &readbytes)) finish = 1; while (!SSL_write_early_data(con, cbuf, readbytes, &writtenbytes)) { switch (SSL_get_error(con, 0)) { case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_ASYNC: case SSL_ERROR_WANT_READ: /* Just keep trying - busy waiting */ continue; default: BIO_printf(bio_err, "Error writing early data\n"); BIO_free(edfile); ERR_print_errors(bio_err); goto shut; } } } BIO_free(edfile); } for (;;) { FD_ZERO(&readfds); FD_ZERO(&writefds); if (SSL_is_dtls(con) && DTLSv1_get_timeout(con, &timeout)) timeoutp = &timeout; else timeoutp = NULL; if (!SSL_is_init_finished(con) && SSL_total_renegotiations(con) == 0 && SSL_get_key_update_type(con) == SSL_KEY_UPDATE_NONE) { in_init = 1; tty_on = 0; } else { tty_on = 1; if (in_init) { in_init = 0; if (c_brief) { BIO_puts(bio_err, "CONNECTION ESTABLISHED\n"); print_ssl_summary(con); } print_stuff(bio_c_out, con, full_log); if (full_log > 0) full_log--; if (starttls_proto) { BIO_write(bio_err, mbuf, mbuf_len); /* We don't need to know any more */ if (!reconnect) starttls_proto = PROTO_OFF; } if (reconnect) { reconnect--; BIO_printf(bio_c_out, "drop connection and then reconnect\n"); do_ssl_shutdown(con); SSL_set_connect_state(con); BIO_closesocket(SSL_get_fd(con)); goto re_start; } } } ssl_pending = read_ssl && SSL_has_pending(con); if (!ssl_pending) { #if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_MSDOS) if (tty_on) { /* * Note that select() returns when read _would not block_, * and EOF satisfies that. To avoid a CPU-hogging loop, * set the flag so we exit. */ if (read_tty && !at_eof) openssl_fdset(fileno_stdin(), &readfds); #if !defined(OPENSSL_SYS_VMS) if (write_tty) openssl_fdset(fileno_stdout(), &writefds); #endif } if (read_ssl) openssl_fdset(SSL_get_fd(con), &readfds); if (write_ssl) openssl_fdset(SSL_get_fd(con), &writefds); #else if (!tty_on || !write_tty) { if (read_ssl) openssl_fdset(SSL_get_fd(con), &readfds); if (write_ssl) openssl_fdset(SSL_get_fd(con), &writefds); } #endif /* * Note: under VMS with SOCKETSHR the second parameter is * currently of type (int *) whereas under other systems it is * (void *) if you don't have a cast it will choke the compiler: * if you do have a cast then you can either go for (int *) or * (void *). */ #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS) /* * Under Windows/DOS we make the assumption that we can always * write to the tty: therefore if we need to write to the tty we * just fall through. Otherwise we timeout the select every * second and see if there are any keypresses. Note: this is a * hack, in a proper Windows application we wouldn't do this. */ i = 0; if (!write_tty) { if (read_tty) { tv.tv_sec = 1; tv.tv_usec = 0; i = select(width, (void *)&readfds, (void *)&writefds, NULL, &tv); if (!i && (!has_stdin_waiting() || !read_tty)) continue; } else i = select(width, (void *)&readfds, (void *)&writefds, NULL, timeoutp); } #else i = select(width, (void *)&readfds, (void *)&writefds, NULL, timeoutp); #endif if (i < 0) { BIO_printf(bio_err, "bad select %d\n", get_last_socket_error()); goto shut; } } if (SSL_is_dtls(con) && DTLSv1_handle_timeout(con) > 0) BIO_printf(bio_err, "TIMEOUT occurred\n"); if (!ssl_pending && FD_ISSET(SSL_get_fd(con), &writefds)) { k = SSL_write(con, &(cbuf[cbuf_off]), (unsigned int)cbuf_len); switch (SSL_get_error(con, k)) { case SSL_ERROR_NONE: cbuf_off += k; cbuf_len -= k; if (k <= 0) goto end; /* we have done a write(con,NULL,0); */ if (cbuf_len <= 0) { read_tty = 1; write_ssl = 0; } else { /* if (cbuf_len > 0) */ read_tty = 0; write_ssl = 1; } break; case SSL_ERROR_WANT_WRITE: BIO_printf(bio_c_out, "write W BLOCK\n"); write_ssl = 1; read_tty = 0; break; case SSL_ERROR_WANT_ASYNC: BIO_printf(bio_c_out, "write A BLOCK\n"); wait_for_async(con); write_ssl = 1; read_tty = 0; break; case SSL_ERROR_WANT_READ: BIO_printf(bio_c_out, "write R BLOCK\n"); write_tty = 0; read_ssl = 1; write_ssl = 0; break; case SSL_ERROR_WANT_X509_LOOKUP: BIO_printf(bio_c_out, "write X BLOCK\n"); break; case SSL_ERROR_ZERO_RETURN: if (cbuf_len != 0) { BIO_printf(bio_c_out, "shutdown\n"); ret = 0; goto shut; } else { read_tty = 1; write_ssl = 0; break; } case SSL_ERROR_SYSCALL: if ((k != 0) || (cbuf_len != 0)) { BIO_printf(bio_err, "write:errno=%d\n", get_last_socket_error()); goto shut; } else { read_tty = 1; write_ssl = 0; } break; case SSL_ERROR_WANT_ASYNC_JOB: /* This shouldn't ever happen in s_client - treat as an error */ case SSL_ERROR_SSL: ERR_print_errors(bio_err); goto shut; } } #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_VMS) /* Assume Windows/DOS/BeOS can always write */ else if (!ssl_pending && write_tty) #else else if (!ssl_pending && FD_ISSET(fileno_stdout(), &writefds)) #endif { #ifdef CHARSET_EBCDIC ascii2ebcdic(&(sbuf[sbuf_off]), &(sbuf[sbuf_off]), sbuf_len); #endif i = raw_write_stdout(&(sbuf[sbuf_off]), sbuf_len); if (i <= 0) { BIO_printf(bio_c_out, "DONE\n"); ret = 0; goto shut; } sbuf_len -= i; sbuf_off += i; if (sbuf_len <= 0) { read_ssl = 1; write_tty = 0; } } else if (ssl_pending || FD_ISSET(SSL_get_fd(con), &readfds)) { #ifdef RENEG { static int iiii; if (++iiii == 52) { SSL_renegotiate(con); iiii = 0; } } #endif k = SSL_read(con, sbuf, 1024 /* BUFSIZZ */ ); switch (SSL_get_error(con, k)) { case SSL_ERROR_NONE: if (k <= 0) goto end; sbuf_off = 0; sbuf_len = k; read_ssl = 0; write_tty = 1; break; case SSL_ERROR_WANT_ASYNC: BIO_printf(bio_c_out, "read A BLOCK\n"); wait_for_async(con); write_tty = 0; read_ssl = 1; if ((read_tty == 0) && (write_ssl == 0)) write_ssl = 1; break; case SSL_ERROR_WANT_WRITE: BIO_printf(bio_c_out, "read W BLOCK\n"); write_ssl = 1; read_tty = 0; break; case SSL_ERROR_WANT_READ: BIO_printf(bio_c_out, "read R BLOCK\n"); write_tty = 0; read_ssl = 1; if ((read_tty == 0) && (write_ssl == 0)) write_ssl = 1; break; case SSL_ERROR_WANT_X509_LOOKUP: BIO_printf(bio_c_out, "read X BLOCK\n"); break; case SSL_ERROR_SYSCALL: ret = get_last_socket_error(); if (c_brief) BIO_puts(bio_err, "CONNECTION CLOSED BY SERVER\n"); else BIO_printf(bio_err, "read:errno=%d\n", ret); goto shut; case SSL_ERROR_ZERO_RETURN: BIO_printf(bio_c_out, "closed\n"); ret = 0; goto shut; case SSL_ERROR_WANT_ASYNC_JOB: /* This shouldn't ever happen in s_client. Treat as an error */ case SSL_ERROR_SSL: ERR_print_errors(bio_err); goto shut; } } /* OPENSSL_SYS_MSDOS includes OPENSSL_SYS_WINDOWS */ #if defined(OPENSSL_SYS_MSDOS) else if (has_stdin_waiting()) #else else if (FD_ISSET(fileno_stdin(), &readfds)) #endif { if (crlf) { int j, lf_num; i = raw_read_stdin(cbuf, BUFSIZZ / 2); lf_num = 0; /* both loops are skipped when i <= 0 */ for (j = 0; j < i; j++) if (cbuf[j] == '\n') lf_num++; for (j = i - 1; j >= 0; j--) { cbuf[j + lf_num] = cbuf[j]; if (cbuf[j] == '\n') { lf_num--; i++; cbuf[j + lf_num] = '\r'; } } assert(lf_num == 0); } else i = raw_read_stdin(cbuf, BUFSIZZ); #if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_MSDOS) if (i == 0) at_eof = 1; #endif if ((!c_ign_eof) && ((i <= 0) || (cbuf[0] == 'Q' && cmdletters))) { BIO_printf(bio_err, "DONE\n"); ret = 0; goto shut; } if ((!c_ign_eof) && (cbuf[0] == 'R' && cmdletters)) { BIO_printf(bio_err, "RENEGOTIATING\n"); SSL_renegotiate(con); cbuf_len = 0; } else if (!c_ign_eof && (cbuf[0] == 'K' || cbuf[0] == 'k' ) && cmdletters) { BIO_printf(bio_err, "KEYUPDATE\n"); SSL_key_update(con, cbuf[0] == 'K' ? SSL_KEY_UPDATE_REQUESTED : SSL_KEY_UPDATE_NOT_REQUESTED); cbuf_len = 0; } #ifndef OPENSSL_NO_HEARTBEATS else if ((!c_ign_eof) && (cbuf[0] == 'B' && cmdletters)) { BIO_printf(bio_err, "HEARTBEATING\n"); SSL_heartbeat(con); cbuf_len = 0; } #endif else { cbuf_len = i; cbuf_off = 0; #ifdef CHARSET_EBCDIC ebcdic2ascii(cbuf, cbuf, i); #endif } write_ssl = 1; read_tty = 0; } } ret = 0; shut: if (in_init) print_stuff(bio_c_out, con, full_log); do_ssl_shutdown(con); /* * If we ended with an alert being sent, but still with data in the * network buffer to be read, then calling BIO_closesocket() will * result in a TCP-RST being sent. On some platforms (notably * Windows) then this will result in the peer immediately abandoning * the connection including any buffered alert data before it has * had a chance to be read. Shutting down the sending side first, * and then closing the socket sends TCP-FIN first followed by * TCP-RST. This seems to allow the peer to read the alert data. */ shutdown(SSL_get_fd(con), 1); /* SHUT_WR */ /* * We just said we have nothing else to say, but it doesn't mean that * the other side has nothing. It's even recommended to consume incoming * data. [In testing context this ensures that alerts are passed on...] */ timeout.tv_sec = 0; timeout.tv_usec = 500000; /* some extreme round-trip */ do { FD_ZERO(&readfds); openssl_fdset(s, &readfds); } while (select(s + 1, &readfds, NULL, NULL, &timeout) > 0 && BIO_read(sbio, sbuf, BUFSIZZ) > 0); BIO_closesocket(SSL_get_fd(con)); end: if (con != NULL) { if (prexit != 0) print_stuff(bio_c_out, con, 1); SSL_free(con); } SSL_SESSION_free(psksess); #if !defined(OPENSSL_NO_NEXTPROTONEG) OPENSSL_free(next_proto.data); #endif SSL_CTX_free(ctx); set_keylog_file(NULL, NULL); X509_free(cert); sk_X509_CRL_pop_free(crls, X509_CRL_free); EVP_PKEY_free(key); sk_X509_pop_free(chain, X509_free); OPENSSL_free(pass); #ifndef OPENSSL_NO_SRP OPENSSL_free(srp_arg.srppassin); #endif OPENSSL_free(connectstr); OPENSSL_free(bindstr); OPENSSL_free(host); OPENSSL_free(port); X509_VERIFY_PARAM_free(vpm); ssl_excert_free(exc); sk_OPENSSL_STRING_free(ssl_args); sk_OPENSSL_STRING_free(dane_tlsa_rrset); SSL_CONF_CTX_free(cctx); OPENSSL_clear_free(cbuf, BUFSIZZ); OPENSSL_clear_free(sbuf, BUFSIZZ); OPENSSL_clear_free(mbuf, BUFSIZZ); release_engine(e); BIO_free(bio_c_out); bio_c_out = NULL; BIO_free(bio_c_msg); bio_c_msg = NULL; return ret; } static void print_stuff(BIO *bio, SSL *s, int full) { X509 *peer = NULL; STACK_OF(X509) *sk; const SSL_CIPHER *c; int i, istls13 = (SSL_version(s) == TLS1_3_VERSION); long verify_result; #ifndef OPENSSL_NO_COMP const COMP_METHOD *comp, *expansion; #endif unsigned char *exportedkeymat; #ifndef OPENSSL_NO_CT const SSL_CTX *ctx = SSL_get_SSL_CTX(s); #endif if (full) { int got_a_chain = 0; sk = SSL_get_peer_cert_chain(s); if (sk != NULL) { got_a_chain = 1; BIO_printf(bio, "---\nCertificate chain\n"); for (i = 0; i < sk_X509_num(sk); i++) { BIO_printf(bio, "%2d s:", i); X509_NAME_print_ex(bio, X509_get_subject_name(sk_X509_value(sk, i)), 0, get_nameopt()); BIO_puts(bio, "\n"); BIO_printf(bio, " i:"); X509_NAME_print_ex(bio, X509_get_issuer_name(sk_X509_value(sk, i)), 0, get_nameopt()); BIO_puts(bio, "\n"); if (c_showcerts) PEM_write_bio_X509(bio, sk_X509_value(sk, i)); } } BIO_printf(bio, "---\n"); peer = SSL_get_peer_certificate(s); if (peer != NULL) { BIO_printf(bio, "Server certificate\n"); /* Redundant if we showed the whole chain */ if (!(c_showcerts && got_a_chain)) PEM_write_bio_X509(bio, peer); dump_cert_text(bio, peer); } else { BIO_printf(bio, "no peer certificate available\n"); } print_ca_names(bio, s); ssl_print_sigalgs(bio, s); ssl_print_tmp_key(bio, s); #ifndef OPENSSL_NO_CT /* * When the SSL session is anonymous, or resumed via an abbreviated * handshake, no SCTs are provided as part of the handshake. While in * a resumed session SCTs may be present in the session's certificate, * no callbacks are invoked to revalidate these, and in any case that * set of SCTs may be incomplete. Thus it makes little sense to * attempt to display SCTs from a resumed session's certificate, and of * course none are associated with an anonymous peer. */ if (peer != NULL && !SSL_session_reused(s) && SSL_ct_is_enabled(s)) { const STACK_OF(SCT) *scts = SSL_get0_peer_scts(s); int sct_count = scts != NULL ? sk_SCT_num(scts) : 0; BIO_printf(bio, "---\nSCTs present (%i)\n", sct_count); if (sct_count > 0) { const CTLOG_STORE *log_store = SSL_CTX_get0_ctlog_store(ctx); BIO_printf(bio, "---\n"); for (i = 0; i < sct_count; ++i) { SCT *sct = sk_SCT_value(scts, i); BIO_printf(bio, "SCT validation status: %s\n", SCT_validation_status_string(sct)); SCT_print(sct, bio, 0, log_store); if (i < sct_count - 1) BIO_printf(bio, "\n---\n"); } BIO_printf(bio, "\n"); } } #endif BIO_printf(bio, "---\nSSL handshake has read %ju bytes " "and written %ju bytes\n", BIO_number_read(SSL_get_rbio(s)), BIO_number_written(SSL_get_wbio(s))); } print_verify_detail(s, bio); BIO_printf(bio, (SSL_session_reused(s) ? "---\nReused, " : "---\nNew, ")); c = SSL_get_current_cipher(s); BIO_printf(bio, "%s, Cipher is %s\n", SSL_CIPHER_get_version(c), SSL_CIPHER_get_name(c)); if (peer != NULL) { EVP_PKEY *pktmp; pktmp = X509_get0_pubkey(peer); BIO_printf(bio, "Server public key is %d bit\n", EVP_PKEY_bits(pktmp)); } BIO_printf(bio, "Secure Renegotiation IS%s supported\n", SSL_get_secure_renegotiation_support(s) ? "" : " NOT"); #ifndef OPENSSL_NO_COMP comp = SSL_get_current_compression(s); expansion = SSL_get_current_expansion(s); BIO_printf(bio, "Compression: %s\n", comp ? SSL_COMP_get_name(comp) : "NONE"); BIO_printf(bio, "Expansion: %s\n", expansion ? SSL_COMP_get_name(expansion) : "NONE"); #endif #ifdef SSL_DEBUG { /* Print out local port of connection: useful for debugging */ int sock; union BIO_sock_info_u info; sock = SSL_get_fd(s); if ((info.addr = BIO_ADDR_new()) != NULL && BIO_sock_info(sock, BIO_SOCK_INFO_ADDRESS, &info)) { BIO_printf(bio_c_out, "LOCAL PORT is %u\n", ntohs(BIO_ADDR_rawport(info.addr))); } BIO_ADDR_free(info.addr); } #endif #if !defined(OPENSSL_NO_NEXTPROTONEG) if (next_proto.status != -1) { const unsigned char *proto; unsigned int proto_len; SSL_get0_next_proto_negotiated(s, &proto, &proto_len); BIO_printf(bio, "Next protocol: (%d) ", next_proto.status); BIO_write(bio, proto, proto_len); BIO_write(bio, "\n", 1); } #endif { const unsigned char *proto; unsigned int proto_len; SSL_get0_alpn_selected(s, &proto, &proto_len); if (proto_len > 0) { BIO_printf(bio, "ALPN protocol: "); BIO_write(bio, proto, proto_len); BIO_write(bio, "\n", 1); } else BIO_printf(bio, "No ALPN negotiated\n"); } #ifndef OPENSSL_NO_SRTP { SRTP_PROTECTION_PROFILE *srtp_profile = SSL_get_selected_srtp_profile(s); if (srtp_profile) BIO_printf(bio, "SRTP Extension negotiated, profile=%s\n", srtp_profile->name); } #endif if (istls13) { switch (SSL_get_early_data_status(s)) { case SSL_EARLY_DATA_NOT_SENT: BIO_printf(bio, "Early data was not sent\n"); break; case SSL_EARLY_DATA_REJECTED: BIO_printf(bio, "Early data was rejected\n"); break; case SSL_EARLY_DATA_ACCEPTED: BIO_printf(bio, "Early data was accepted\n"); break; } /* * We also print the verify results when we dump session information, * but in TLSv1.3 we may not get that right away (or at all) depending * on when we get a NewSessionTicket. Therefore we print it now as well. */ verify_result = SSL_get_verify_result(s); BIO_printf(bio, "Verify return code: %ld (%s)\n", verify_result, X509_verify_cert_error_string(verify_result)); } else { /* In TLSv1.3 we do this on arrival of a NewSessionTicket */ SSL_SESSION_print(bio, SSL_get_session(s)); } if (SSL_get_session(s) != NULL && keymatexportlabel != NULL) { BIO_printf(bio, "Keying material exporter:\n"); BIO_printf(bio, " Label: '%s'\n", keymatexportlabel); BIO_printf(bio, " Length: %i bytes\n", keymatexportlen); exportedkeymat = app_malloc(keymatexportlen, "export key"); if (!SSL_export_keying_material(s, exportedkeymat, keymatexportlen, keymatexportlabel, strlen(keymatexportlabel), NULL, 0, 0)) { BIO_printf(bio, " Error\n"); } else { BIO_printf(bio, " Keying material: "); for (i = 0; i < keymatexportlen; i++) BIO_printf(bio, "%02X", exportedkeymat[i]); BIO_printf(bio, "\n"); } OPENSSL_free(exportedkeymat); } BIO_printf(bio, "---\n"); X509_free(peer); /* flush, or debugging output gets mixed with http response */ (void)BIO_flush(bio); } # ifndef OPENSSL_NO_OCSP static int ocsp_resp_cb(SSL *s, void *arg) { const unsigned char *p; int len; OCSP_RESPONSE *rsp; len = SSL_get_tlsext_status_ocsp_resp(s, &p); BIO_puts(arg, "OCSP response: "); if (p == NULL) { BIO_puts(arg, "no response sent\n"); return 1; } rsp = d2i_OCSP_RESPONSE(NULL, &p, len); if (rsp == NULL) { BIO_puts(arg, "response parse error\n"); BIO_dump_indent(arg, (char *)p, len, 4); return 0; } BIO_puts(arg, "\n======================================\n"); OCSP_RESPONSE_print(arg, rsp, 0); BIO_puts(arg, "======================================\n"); OCSP_RESPONSE_free(rsp); return 1; } # endif static int ldap_ExtendedResponse_parse(const char *buf, long rem) { const unsigned char *cur, *end; long len; int tag, xclass, inf, ret = -1; cur = (const unsigned char *)buf; end = cur + rem; /* * From RFC 4511: * * LDAPMessage ::= SEQUENCE { * messageID MessageID, * protocolOp CHOICE { * ... * extendedResp ExtendedResponse, * ... }, * controls [0] Controls OPTIONAL } * * ExtendedResponse ::= [APPLICATION 24] SEQUENCE { * COMPONENTS OF LDAPResult, * responseName [10] LDAPOID OPTIONAL, * responseValue [11] OCTET STRING OPTIONAL } * * LDAPResult ::= SEQUENCE { * resultCode ENUMERATED { * success (0), * ... * other (80), * ... }, * matchedDN LDAPDN, * diagnosticMessage LDAPString, * referral [3] Referral OPTIONAL } */ /* pull SEQUENCE */ inf = ASN1_get_object(&cur, &len, &tag, &xclass, rem); if (inf != V_ASN1_CONSTRUCTED || tag != V_ASN1_SEQUENCE || (rem = end - cur, len > rem)) { BIO_printf(bio_err, "Unexpected LDAP response\n"); goto end; } rem = len; /* ensure that we don't overstep the SEQUENCE */ /* pull MessageID */ inf = ASN1_get_object(&cur, &len, &tag, &xclass, rem); if (inf != V_ASN1_UNIVERSAL || tag != V_ASN1_INTEGER || (rem = end - cur, len > rem)) { BIO_printf(bio_err, "No MessageID\n"); goto end; } cur += len; /* shall we check for MessageId match or just skip? */ /* pull [APPLICATION 24] */ rem = end - cur; inf = ASN1_get_object(&cur, &len, &tag, &xclass, rem); if (inf != V_ASN1_CONSTRUCTED || xclass != V_ASN1_APPLICATION || tag != 24) { BIO_printf(bio_err, "Not ExtendedResponse\n"); goto end; } /* pull resultCode */ rem = end - cur; inf = ASN1_get_object(&cur, &len, &tag, &xclass, rem); if (inf != V_ASN1_UNIVERSAL || tag != V_ASN1_ENUMERATED || len == 0 || (rem = end - cur, len > rem)) { BIO_printf(bio_err, "Not LDAPResult\n"); goto end; } /* len should always be one, but just in case... */ for (ret = 0, inf = 0; inf < len; inf++) { ret <<= 8; ret |= cur[inf]; } /* There is more data, but we don't care... */ end: return ret; } /* * Host dNS Name verifier: used for checking that the hostname is in dNS format * before setting it as SNI */ static int is_dNS_name(const char *host) { const size_t MAX_LABEL_LENGTH = 63; size_t i; int isdnsname = 0; size_t length = strlen(host); size_t label_length = 0; int all_numeric = 1; /* * Deviation from strict DNS name syntax, also check names with '_' * Check DNS name syntax, any '-' or '.' must be internal, * and on either side of each '.' we can't have a '-' or '.'. * * If the name has just one label, we don't consider it a DNS name. */ for (i = 0; i < length && label_length < MAX_LABEL_LENGTH; ++i) { char c = host[i]; if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_') { label_length += 1; all_numeric = 0; continue; } if (c >= '0' && c <= '9') { label_length += 1; continue; } /* Dot and hyphen cannot be first or last. */ if (i > 0 && i < length - 1) { if (c == '-') { label_length += 1; continue; } /* * Next to a dot the preceding and following characters must not be * another dot or a hyphen. Otherwise, record that the name is * plausible, since it has two or more labels. */ if (c == '.' && host[i + 1] != '.' && host[i - 1] != '-' && host[i + 1] != '-') { label_length = 0; isdnsname = 1; continue; } } isdnsname = 0; break; } /* dNS name must not be all numeric and labels must be shorter than 64 characters. */ isdnsname &= !all_numeric && !(label_length == MAX_LABEL_LENGTH); return isdnsname; } #endif /* OPENSSL_NO_SOCK */ openssl-1.1.1f/apps/s_server.c000066400000000000000000003501701364063235100163130ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * Copyright 2005 Nokia. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #if defined(_WIN32) /* Included before async.h to avoid some warnings */ # include #endif #include #include #include #ifndef OPENSSL_NO_SOCK /* * With IPv6, it looks like Digital has mixed up the proper order of * recursive header file inclusion, resulting in the compiler complaining * that u_int isn't defined, but only if _POSIX_C_SOURCE is defined, which is * needed to have fileno() declared correctly... So let's define u_int */ #if defined(OPENSSL_SYS_VMS_DECC) && !defined(__U_INT) # define __U_INT typedef unsigned int u_int; #endif #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #ifndef OPENSSL_NO_DH # include #endif #ifndef OPENSSL_NO_RSA # include #endif #ifndef OPENSSL_NO_SRP # include #endif #include "s_apps.h" #include "timeouts.h" #ifdef CHARSET_EBCDIC #include #endif #include "internal/sockets.h" static int not_resumable_sess_cb(SSL *s, int is_forward_secure); static int sv_body(int s, int stype, int prot, unsigned char *context); static int www_body(int s, int stype, int prot, unsigned char *context); static int rev_body(int s, int stype, int prot, unsigned char *context); static void close_accept_socket(void); static int init_ssl_connection(SSL *s); static void print_stats(BIO *bp, SSL_CTX *ctx); static int generate_session_id(SSL *ssl, unsigned char *id, unsigned int *id_len); static void init_session_cache_ctx(SSL_CTX *sctx); static void free_sessions(void); #ifndef OPENSSL_NO_DH static DH *load_dh_param(const char *dhfile); #endif static void print_connection_info(SSL *con); static const int bufsize = 16 * 1024; static int accept_socket = -1; #define TEST_CERT "server.pem" #define TEST_CERT2 "server2.pem" static int s_nbio = 0; static int s_nbio_test = 0; static int s_crlf = 0; static SSL_CTX *ctx = NULL; static SSL_CTX *ctx2 = NULL; static int www = 0; static BIO *bio_s_out = NULL; static BIO *bio_s_msg = NULL; static int s_debug = 0; static int s_tlsextdebug = 0; static int s_msg = 0; static int s_quiet = 0; static int s_ign_eof = 0; static int s_brief = 0; static char *keymatexportlabel = NULL; static int keymatexportlen = 20; static int async = 0; static const char *session_id_prefix = NULL; #ifndef OPENSSL_NO_DTLS static int enable_timeouts = 0; static long socket_mtu; #endif /* * We define this but make it always be 0 in no-dtls builds to simplify the * code. */ static int dtlslisten = 0; static int stateless = 0; static int early_data = 0; static SSL_SESSION *psksess = NULL; static char *psk_identity = "Client_identity"; char *psk_key = NULL; /* by default PSK is not used */ #ifndef OPENSSL_NO_PSK static unsigned int psk_server_cb(SSL *ssl, const char *identity, unsigned char *psk, unsigned int max_psk_len) { long key_len = 0; unsigned char *key; if (s_debug) BIO_printf(bio_s_out, "psk_server_cb\n"); if (identity == NULL) { BIO_printf(bio_err, "Error: client did not send PSK identity\n"); goto out_err; } if (s_debug) BIO_printf(bio_s_out, "identity_len=%d identity=%s\n", (int)strlen(identity), identity); /* here we could lookup the given identity e.g. from a database */ if (strcmp(identity, psk_identity) != 0) { BIO_printf(bio_s_out, "PSK warning: client identity not what we expected" " (got '%s' expected '%s')\n", identity, psk_identity); } else { if (s_debug) BIO_printf(bio_s_out, "PSK client identity found\n"); } /* convert the PSK key to binary */ key = OPENSSL_hexstr2buf(psk_key, &key_len); if (key == NULL) { BIO_printf(bio_err, "Could not convert PSK key '%s' to buffer\n", psk_key); return 0; } if (key_len > (int)max_psk_len) { BIO_printf(bio_err, "psk buffer of callback is too small (%d) for key (%ld)\n", max_psk_len, key_len); OPENSSL_free(key); return 0; } memcpy(psk, key, key_len); OPENSSL_free(key); if (s_debug) BIO_printf(bio_s_out, "fetched PSK len=%ld\n", key_len); return key_len; out_err: if (s_debug) BIO_printf(bio_err, "Error in PSK server callback\n"); (void)BIO_flush(bio_err); (void)BIO_flush(bio_s_out); return 0; } #endif static int psk_find_session_cb(SSL *ssl, const unsigned char *identity, size_t identity_len, SSL_SESSION **sess) { SSL_SESSION *tmpsess = NULL; unsigned char *key; long key_len; const SSL_CIPHER *cipher = NULL; if (strlen(psk_identity) != identity_len || memcmp(psk_identity, identity, identity_len) != 0) { *sess = NULL; return 1; } if (psksess != NULL) { SSL_SESSION_up_ref(psksess); *sess = psksess; return 1; } key = OPENSSL_hexstr2buf(psk_key, &key_len); if (key == NULL) { BIO_printf(bio_err, "Could not convert PSK key '%s' to buffer\n", psk_key); return 0; } /* We default to SHA256 */ cipher = SSL_CIPHER_find(ssl, tls13_aes128gcmsha256_id); if (cipher == NULL) { BIO_printf(bio_err, "Error finding suitable ciphersuite\n"); OPENSSL_free(key); return 0; } tmpsess = SSL_SESSION_new(); if (tmpsess == NULL || !SSL_SESSION_set1_master_key(tmpsess, key, key_len) || !SSL_SESSION_set_cipher(tmpsess, cipher) || !SSL_SESSION_set_protocol_version(tmpsess, SSL_version(ssl))) { OPENSSL_free(key); return 0; } OPENSSL_free(key); *sess = tmpsess; return 1; } #ifndef OPENSSL_NO_SRP /* This is a context that we pass to callbacks */ typedef struct srpsrvparm_st { char *login; SRP_VBASE *vb; SRP_user_pwd *user; } srpsrvparm; static srpsrvparm srp_callback_parm; /* * This callback pretends to require some asynchronous logic in order to * obtain a verifier. When the callback is called for a new connection we * return with a negative value. This will provoke the accept etc to return * with an LOOKUP_X509. The main logic of the reinvokes the suspended call * (which would normally occur after a worker has finished) and we set the * user parameters. */ static int ssl_srp_server_param_cb(SSL *s, int *ad, void *arg) { srpsrvparm *p = (srpsrvparm *) arg; int ret = SSL3_AL_FATAL; if (p->login == NULL && p->user == NULL) { p->login = SSL_get_srp_username(s); BIO_printf(bio_err, "SRP username = \"%s\"\n", p->login); return -1; } if (p->user == NULL) { BIO_printf(bio_err, "User %s doesn't exist\n", p->login); goto err; } if (SSL_set_srp_server_param (s, p->user->N, p->user->g, p->user->s, p->user->v, p->user->info) < 0) { *ad = SSL_AD_INTERNAL_ERROR; goto err; } BIO_printf(bio_err, "SRP parameters set: username = \"%s\" info=\"%s\" \n", p->login, p->user->info); ret = SSL_ERROR_NONE; err: SRP_user_pwd_free(p->user); p->user = NULL; p->login = NULL; return ret; } #endif static int local_argc = 0; static char **local_argv; #ifdef CHARSET_EBCDIC static int ebcdic_new(BIO *bi); static int ebcdic_free(BIO *a); static int ebcdic_read(BIO *b, char *out, int outl); static int ebcdic_write(BIO *b, const char *in, int inl); static long ebcdic_ctrl(BIO *b, int cmd, long num, void *ptr); static int ebcdic_gets(BIO *bp, char *buf, int size); static int ebcdic_puts(BIO *bp, const char *str); # define BIO_TYPE_EBCDIC_FILTER (18|0x0200) static BIO_METHOD *methods_ebcdic = NULL; /* This struct is "unwarranted chumminess with the compiler." */ typedef struct { size_t alloced; char buff[1]; } EBCDIC_OUTBUFF; static const BIO_METHOD *BIO_f_ebcdic_filter() { if (methods_ebcdic == NULL) { methods_ebcdic = BIO_meth_new(BIO_TYPE_EBCDIC_FILTER, "EBCDIC/ASCII filter"); if (methods_ebcdic == NULL || !BIO_meth_set_write(methods_ebcdic, ebcdic_write) || !BIO_meth_set_read(methods_ebcdic, ebcdic_read) || !BIO_meth_set_puts(methods_ebcdic, ebcdic_puts) || !BIO_meth_set_gets(methods_ebcdic, ebcdic_gets) || !BIO_meth_set_ctrl(methods_ebcdic, ebcdic_ctrl) || !BIO_meth_set_create(methods_ebcdic, ebcdic_new) || !BIO_meth_set_destroy(methods_ebcdic, ebcdic_free)) return NULL; } return methods_ebcdic; } static int ebcdic_new(BIO *bi) { EBCDIC_OUTBUFF *wbuf; wbuf = app_malloc(sizeof(*wbuf) + 1024, "ebcdic wbuf"); wbuf->alloced = 1024; wbuf->buff[0] = '\0'; BIO_set_data(bi, wbuf); BIO_set_init(bi, 1); return 1; } static int ebcdic_free(BIO *a) { EBCDIC_OUTBUFF *wbuf; if (a == NULL) return 0; wbuf = BIO_get_data(a); OPENSSL_free(wbuf); BIO_set_data(a, NULL); BIO_set_init(a, 0); return 1; } static int ebcdic_read(BIO *b, char *out, int outl) { int ret = 0; BIO *next = BIO_next(b); if (out == NULL || outl == 0) return 0; if (next == NULL) return 0; ret = BIO_read(next, out, outl); if (ret > 0) ascii2ebcdic(out, out, ret); return ret; } static int ebcdic_write(BIO *b, const char *in, int inl) { EBCDIC_OUTBUFF *wbuf; BIO *next = BIO_next(b); int ret = 0; int num; if ((in == NULL) || (inl <= 0)) return 0; if (next == NULL) return 0; wbuf = (EBCDIC_OUTBUFF *) BIO_get_data(b); if (inl > (num = wbuf->alloced)) { num = num + num; /* double the size */ if (num < inl) num = inl; OPENSSL_free(wbuf); wbuf = app_malloc(sizeof(*wbuf) + num, "grow ebcdic wbuf"); wbuf->alloced = num; wbuf->buff[0] = '\0'; BIO_set_data(b, wbuf); } ebcdic2ascii(wbuf->buff, in, inl); ret = BIO_write(next, wbuf->buff, inl); return ret; } static long ebcdic_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret; BIO *next = BIO_next(b); if (next == NULL) return 0; switch (cmd) { case BIO_CTRL_DUP: ret = 0L; break; default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static int ebcdic_gets(BIO *bp, char *buf, int size) { int i, ret = 0; BIO *next = BIO_next(bp); if (next == NULL) return 0; /* return(BIO_gets(bp->next_bio,buf,size));*/ for (i = 0; i < size - 1; ++i) { ret = ebcdic_read(bp, &buf[i], 1); if (ret <= 0) break; else if (buf[i] == '\n') { ++i; break; } } if (i < size) buf[i] = '\0'; return (ret < 0 && i == 0) ? ret : i; } static int ebcdic_puts(BIO *bp, const char *str) { if (BIO_next(bp) == NULL) return 0; return ebcdic_write(bp, str, strlen(str)); } #endif /* This is a context that we pass to callbacks */ typedef struct tlsextctx_st { char *servername; BIO *biodebug; int extension_error; } tlsextctx; static int ssl_servername_cb(SSL *s, int *ad, void *arg) { tlsextctx *p = (tlsextctx *) arg; const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); if (servername != NULL && p->biodebug != NULL) { const char *cp = servername; unsigned char uc; BIO_printf(p->biodebug, "Hostname in TLS extension: \""); while ((uc = *cp++) != 0) BIO_printf(p->biodebug, isascii(uc) && isprint(uc) ? "%c" : "\\x%02x", uc); BIO_printf(p->biodebug, "\"\n"); } if (p->servername == NULL) return SSL_TLSEXT_ERR_NOACK; if (servername != NULL) { if (strcasecmp(servername, p->servername)) return p->extension_error; if (ctx2 != NULL) { BIO_printf(p->biodebug, "Switching server context.\n"); SSL_set_SSL_CTX(s, ctx2); } } return SSL_TLSEXT_ERR_OK; } /* Structure passed to cert status callback */ typedef struct tlsextstatusctx_st { int timeout; /* File to load OCSP Response from (or NULL if no file) */ char *respin; /* Default responder to use */ char *host, *path, *port; int use_ssl; int verbose; } tlsextstatusctx; static tlsextstatusctx tlscstatp = { -1 }; #ifndef OPENSSL_NO_OCSP /* * Helper function to get an OCSP_RESPONSE from a responder. This is a * simplified version. It examines certificates each time and makes one OCSP * responder query for each request. A full version would store details such as * the OCSP certificate IDs and minimise the number of OCSP responses by caching * them until they were considered "expired". */ static int get_ocsp_resp_from_responder(SSL *s, tlsextstatusctx *srctx, OCSP_RESPONSE **resp) { char *host = NULL, *port = NULL, *path = NULL; int use_ssl; STACK_OF(OPENSSL_STRING) *aia = NULL; X509 *x = NULL; X509_STORE_CTX *inctx = NULL; X509_OBJECT *obj; OCSP_REQUEST *req = NULL; OCSP_CERTID *id = NULL; STACK_OF(X509_EXTENSION) *exts; int ret = SSL_TLSEXT_ERR_NOACK; int i; /* Build up OCSP query from server certificate */ x = SSL_get_certificate(s); aia = X509_get1_ocsp(x); if (aia != NULL) { if (!OCSP_parse_url(sk_OPENSSL_STRING_value(aia, 0), &host, &port, &path, &use_ssl)) { BIO_puts(bio_err, "cert_status: can't parse AIA URL\n"); goto err; } if (srctx->verbose) BIO_printf(bio_err, "cert_status: AIA URL: %s\n", sk_OPENSSL_STRING_value(aia, 0)); } else { if (srctx->host == NULL) { BIO_puts(bio_err, "cert_status: no AIA and no default responder URL\n"); goto done; } host = srctx->host; path = srctx->path; port = srctx->port; use_ssl = srctx->use_ssl; } inctx = X509_STORE_CTX_new(); if (inctx == NULL) goto err; if (!X509_STORE_CTX_init(inctx, SSL_CTX_get_cert_store(SSL_get_SSL_CTX(s)), NULL, NULL)) goto err; obj = X509_STORE_CTX_get_obj_by_subject(inctx, X509_LU_X509, X509_get_issuer_name(x)); if (obj == NULL) { BIO_puts(bio_err, "cert_status: Can't retrieve issuer certificate.\n"); goto done; } id = OCSP_cert_to_id(NULL, x, X509_OBJECT_get0_X509(obj)); X509_OBJECT_free(obj); if (id == NULL) goto err; req = OCSP_REQUEST_new(); if (req == NULL) goto err; if (!OCSP_request_add0_id(req, id)) goto err; id = NULL; /* Add any extensions to the request */ SSL_get_tlsext_status_exts(s, &exts); for (i = 0; i < sk_X509_EXTENSION_num(exts); i++) { X509_EXTENSION *ext = sk_X509_EXTENSION_value(exts, i); if (!OCSP_REQUEST_add_ext(req, ext, -1)) goto err; } *resp = process_responder(req, host, path, port, use_ssl, NULL, srctx->timeout); if (*resp == NULL) { BIO_puts(bio_err, "cert_status: error querying responder\n"); goto done; } ret = SSL_TLSEXT_ERR_OK; goto done; err: ret = SSL_TLSEXT_ERR_ALERT_FATAL; done: /* * If we parsed aia we need to free; otherwise they were copied and we * don't */ if (aia != NULL) { OPENSSL_free(host); OPENSSL_free(path); OPENSSL_free(port); X509_email_free(aia); } OCSP_CERTID_free(id); OCSP_REQUEST_free(req); X509_STORE_CTX_free(inctx); return ret; } /* * Certificate Status callback. This is called when a client includes a * certificate status request extension. The response is either obtained from a * file, or from an OCSP responder. */ static int cert_status_cb(SSL *s, void *arg) { tlsextstatusctx *srctx = arg; OCSP_RESPONSE *resp = NULL; unsigned char *rspder = NULL; int rspderlen; int ret = SSL_TLSEXT_ERR_ALERT_FATAL; if (srctx->verbose) BIO_puts(bio_err, "cert_status: callback called\n"); if (srctx->respin != NULL) { BIO *derbio = bio_open_default(srctx->respin, 'r', FORMAT_ASN1); if (derbio == NULL) { BIO_puts(bio_err, "cert_status: Cannot open OCSP response file\n"); goto err; } resp = d2i_OCSP_RESPONSE_bio(derbio, NULL); BIO_free(derbio); if (resp == NULL) { BIO_puts(bio_err, "cert_status: Error reading OCSP response\n"); goto err; } } else { ret = get_ocsp_resp_from_responder(s, srctx, &resp); if (ret != SSL_TLSEXT_ERR_OK) goto err; } rspderlen = i2d_OCSP_RESPONSE(resp, &rspder); if (rspderlen <= 0) goto err; SSL_set_tlsext_status_ocsp_resp(s, rspder, rspderlen); if (srctx->verbose) { BIO_puts(bio_err, "cert_status: ocsp response sent:\n"); OCSP_RESPONSE_print(bio_err, resp, 2); } ret = SSL_TLSEXT_ERR_OK; err: if (ret != SSL_TLSEXT_ERR_OK) ERR_print_errors(bio_err); OCSP_RESPONSE_free(resp); return ret; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG /* This is the context that we pass to next_proto_cb */ typedef struct tlsextnextprotoctx_st { unsigned char *data; size_t len; } tlsextnextprotoctx; static int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { tlsextnextprotoctx *next_proto = arg; *data = next_proto->data; *len = next_proto->len; return SSL_TLSEXT_ERR_OK; } #endif /* ndef OPENSSL_NO_NEXTPROTONEG */ /* This the context that we pass to alpn_cb */ typedef struct tlsextalpnctx_st { unsigned char *data; size_t len; } tlsextalpnctx; static int alpn_cb(SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { tlsextalpnctx *alpn_ctx = arg; if (!s_quiet) { /* We can assume that |in| is syntactically valid. */ unsigned int i; BIO_printf(bio_s_out, "ALPN protocols advertised by the client: "); for (i = 0; i < inlen;) { if (i) BIO_write(bio_s_out, ", ", 2); BIO_write(bio_s_out, &in[i + 1], in[i]); i += in[i] + 1; } BIO_write(bio_s_out, "\n", 1); } if (SSL_select_next_proto ((unsigned char **)out, outlen, alpn_ctx->data, alpn_ctx->len, in, inlen) != OPENSSL_NPN_NEGOTIATED) { return SSL_TLSEXT_ERR_NOACK; } if (!s_quiet) { BIO_printf(bio_s_out, "ALPN protocols selected: "); BIO_write(bio_s_out, *out, *outlen); BIO_write(bio_s_out, "\n", 1); } return SSL_TLSEXT_ERR_OK; } static int not_resumable_sess_cb(SSL *s, int is_forward_secure) { /* disable resumption for sessions with forward secure ciphers */ return is_forward_secure; } typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_4, OPT_6, OPT_ACCEPT, OPT_PORT, OPT_UNIX, OPT_UNLINK, OPT_NACCEPT, OPT_VERIFY, OPT_NAMEOPT, OPT_UPPER_V_VERIFY, OPT_CONTEXT, OPT_CERT, OPT_CRL, OPT_CRL_DOWNLOAD, OPT_SERVERINFO, OPT_CERTFORM, OPT_KEY, OPT_KEYFORM, OPT_PASS, OPT_CERT_CHAIN, OPT_DHPARAM, OPT_DCERTFORM, OPT_DCERT, OPT_DKEYFORM, OPT_DPASS, OPT_DKEY, OPT_DCERT_CHAIN, OPT_NOCERT, OPT_CAPATH, OPT_NOCAPATH, OPT_CHAINCAPATH, OPT_VERIFYCAPATH, OPT_NO_CACHE, OPT_EXT_CACHE, OPT_CRLFORM, OPT_VERIFY_RET_ERROR, OPT_VERIFY_QUIET, OPT_BUILD_CHAIN, OPT_CAFILE, OPT_NOCAFILE, OPT_CHAINCAFILE, OPT_VERIFYCAFILE, OPT_NBIO, OPT_NBIO_TEST, OPT_IGN_EOF, OPT_NO_IGN_EOF, OPT_DEBUG, OPT_TLSEXTDEBUG, OPT_STATUS, OPT_STATUS_VERBOSE, OPT_STATUS_TIMEOUT, OPT_STATUS_URL, OPT_STATUS_FILE, OPT_MSG, OPT_MSGFILE, OPT_TRACE, OPT_SECURITY_DEBUG, OPT_SECURITY_DEBUG_VERBOSE, OPT_STATE, OPT_CRLF, OPT_QUIET, OPT_BRIEF, OPT_NO_DHE, OPT_NO_RESUME_EPHEMERAL, OPT_PSK_IDENTITY, OPT_PSK_HINT, OPT_PSK, OPT_PSK_SESS, OPT_SRPVFILE, OPT_SRPUSERSEED, OPT_REV, OPT_WWW, OPT_UPPER_WWW, OPT_HTTP, OPT_ASYNC, OPT_SSL_CONFIG, OPT_MAX_SEND_FRAG, OPT_SPLIT_SEND_FRAG, OPT_MAX_PIPELINES, OPT_READ_BUF, OPT_SSL3, OPT_TLS1_3, OPT_TLS1_2, OPT_TLS1_1, OPT_TLS1, OPT_DTLS, OPT_DTLS1, OPT_DTLS1_2, OPT_SCTP, OPT_TIMEOUT, OPT_MTU, OPT_LISTEN, OPT_STATELESS, OPT_ID_PREFIX, OPT_SERVERNAME, OPT_SERVERNAME_FATAL, OPT_CERT2, OPT_KEY2, OPT_NEXTPROTONEG, OPT_ALPN, OPT_SRTP_PROFILES, OPT_KEYMATEXPORT, OPT_KEYMATEXPORTLEN, OPT_KEYLOG_FILE, OPT_MAX_EARLY, OPT_RECV_MAX_EARLY, OPT_EARLY_DATA, OPT_S_NUM_TICKETS, OPT_ANTI_REPLAY, OPT_NO_ANTI_REPLAY, OPT_SCTP_LABEL_BUG, OPT_R_ENUM, OPT_S_ENUM, OPT_V_ENUM, OPT_X_ENUM } OPTION_CHOICE; const OPTIONS s_server_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"port", OPT_PORT, 'p', "TCP/IP port to listen on for connections (default is " PORT ")"}, {"accept", OPT_ACCEPT, 's', "TCP/IP optional host and port to listen on for connections (default is *:" PORT ")"}, #ifdef AF_UNIX {"unix", OPT_UNIX, 's', "Unix domain socket to accept on"}, #endif {"4", OPT_4, '-', "Use IPv4 only"}, {"6", OPT_6, '-', "Use IPv6 only"}, #ifdef AF_UNIX {"unlink", OPT_UNLINK, '-', "For -unix, unlink existing socket first"}, #endif {"context", OPT_CONTEXT, 's', "Set session ID context"}, {"verify", OPT_VERIFY, 'n', "Turn on peer certificate verification"}, {"Verify", OPT_UPPER_V_VERIFY, 'n', "Turn on peer certificate verification, must have a cert"}, {"cert", OPT_CERT, '<', "Certificate file to use; default is " TEST_CERT}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, {"naccept", OPT_NACCEPT, 'p', "Terminate after #num connections"}, {"serverinfo", OPT_SERVERINFO, 's', "PEM serverinfo file for certificate"}, {"certform", OPT_CERTFORM, 'F', "Certificate format (PEM or DER) PEM default"}, {"key", OPT_KEY, 's', "Private Key if not in -cert; default is " TEST_CERT}, {"keyform", OPT_KEYFORM, 'f', "Key format (PEM, DER or ENGINE) PEM default"}, {"pass", OPT_PASS, 's', "Private key file pass phrase source"}, {"dcert", OPT_DCERT, '<', "Second certificate file to use (usually for DSA)"}, {"dhparam", OPT_DHPARAM, '<', "DH parameters file to use"}, {"dcertform", OPT_DCERTFORM, 'F', "Second certificate format (PEM or DER) PEM default"}, {"dkey", OPT_DKEY, '<', "Second private key file to use (usually for DSA)"}, {"dkeyform", OPT_DKEYFORM, 'F', "Second key format (PEM, DER or ENGINE) PEM default"}, {"dpass", OPT_DPASS, 's', "Second private key file pass phrase source"}, {"nbio_test", OPT_NBIO_TEST, '-', "Test with the non-blocking test bio"}, {"crlf", OPT_CRLF, '-', "Convert LF from terminal into CRLF"}, {"debug", OPT_DEBUG, '-', "Print more output"}, {"msg", OPT_MSG, '-', "Show protocol messages"}, {"msgfile", OPT_MSGFILE, '>', "File to send output of -msg or -trace, instead of stdout"}, {"state", OPT_STATE, '-', "Print the SSL states"}, {"CAfile", OPT_CAFILE, '<', "PEM format file of CA's"}, {"CApath", OPT_CAPATH, '/', "PEM format directory of CA's"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"nocert", OPT_NOCERT, '-', "Don't use any certificates (Anon-DH)"}, {"quiet", OPT_QUIET, '-', "No server output"}, {"no_resume_ephemeral", OPT_NO_RESUME_EPHEMERAL, '-', "Disable caching and tickets if ephemeral (EC)DH is used"}, {"www", OPT_WWW, '-', "Respond to a 'GET /' with a status page"}, {"WWW", OPT_UPPER_WWW, '-', "Respond to a 'GET with the file ./path"}, {"servername", OPT_SERVERNAME, 's', "Servername for HostName TLS extension"}, {"servername_fatal", OPT_SERVERNAME_FATAL, '-', "mismatch send fatal alert (default warning alert)"}, {"cert2", OPT_CERT2, '<', "Certificate file to use for servername; default is" TEST_CERT2}, {"key2", OPT_KEY2, '<', "-Private Key file to use for servername if not in -cert2"}, {"tlsextdebug", OPT_TLSEXTDEBUG, '-', "Hex dump of all TLS extensions received"}, {"HTTP", OPT_HTTP, '-', "Like -WWW but ./path includes HTTP headers"}, {"id_prefix", OPT_ID_PREFIX, 's', "Generate SSL/TLS session IDs prefixed by arg"}, OPT_R_OPTIONS, {"keymatexport", OPT_KEYMATEXPORT, 's', "Export keying material using label"}, {"keymatexportlen", OPT_KEYMATEXPORTLEN, 'p', "Export len bytes of keying material (default 20)"}, {"CRL", OPT_CRL, '<', "CRL file to use"}, {"crl_download", OPT_CRL_DOWNLOAD, '-', "Download CRL from distribution points"}, {"cert_chain", OPT_CERT_CHAIN, '<', "certificate chain file in PEM format"}, {"dcert_chain", OPT_DCERT_CHAIN, '<', "second certificate chain file in PEM format"}, {"chainCApath", OPT_CHAINCAPATH, '/', "use dir as certificate store path to build CA certificate chain"}, {"verifyCApath", OPT_VERIFYCAPATH, '/', "use dir as certificate store path to verify CA certificate"}, {"no_cache", OPT_NO_CACHE, '-', "Disable session cache"}, {"ext_cache", OPT_EXT_CACHE, '-', "Disable internal cache, setup and use external cache"}, {"CRLform", OPT_CRLFORM, 'F', "CRL format (PEM or DER) PEM is default"}, {"verify_return_error", OPT_VERIFY_RET_ERROR, '-', "Close connection on verification error"}, {"verify_quiet", OPT_VERIFY_QUIET, '-', "No verify output except verify errors"}, {"build_chain", OPT_BUILD_CHAIN, '-', "Build certificate chain"}, {"chainCAfile", OPT_CHAINCAFILE, '<', "CA file for certificate chain (PEM format)"}, {"verifyCAfile", OPT_VERIFYCAFILE, '<', "CA file for certificate verification (PEM format)"}, {"ign_eof", OPT_IGN_EOF, '-', "ignore input eof (default when -quiet)"}, {"no_ign_eof", OPT_NO_IGN_EOF, '-', "Do not ignore input eof"}, #ifndef OPENSSL_NO_OCSP {"status", OPT_STATUS, '-', "Request certificate status from server"}, {"status_verbose", OPT_STATUS_VERBOSE, '-', "Print more output in certificate status callback"}, {"status_timeout", OPT_STATUS_TIMEOUT, 'n', "Status request responder timeout"}, {"status_url", OPT_STATUS_URL, 's', "Status request fallback URL"}, {"status_file", OPT_STATUS_FILE, '<', "File containing DER encoded OCSP Response"}, #endif #ifndef OPENSSL_NO_SSL_TRACE {"trace", OPT_TRACE, '-', "trace protocol messages"}, #endif {"security_debug", OPT_SECURITY_DEBUG, '-', "Print output from SSL/TLS security framework"}, {"security_debug_verbose", OPT_SECURITY_DEBUG_VERBOSE, '-', "Print more output from SSL/TLS security framework"}, {"brief", OPT_BRIEF, '-', "Restrict output to brief summary of connection parameters"}, {"rev", OPT_REV, '-', "act as a simple test server which just sends back with the received text reversed"}, {"async", OPT_ASYNC, '-', "Operate in asynchronous mode"}, {"ssl_config", OPT_SSL_CONFIG, 's', "Configure SSL_CTX using the configuration 'val'"}, {"max_send_frag", OPT_MAX_SEND_FRAG, 'p', "Maximum Size of send frames "}, {"split_send_frag", OPT_SPLIT_SEND_FRAG, 'p', "Size used to split data for encrypt pipelines"}, {"max_pipelines", OPT_MAX_PIPELINES, 'p', "Maximum number of encrypt/decrypt pipelines to be used"}, {"read_buf", OPT_READ_BUF, 'p', "Default read buffer size to be used for connections"}, OPT_S_OPTIONS, OPT_V_OPTIONS, OPT_X_OPTIONS, {"nbio", OPT_NBIO, '-', "Use non-blocking IO"}, {"psk_identity", OPT_PSK_IDENTITY, 's', "PSK identity to expect"}, #ifndef OPENSSL_NO_PSK {"psk_hint", OPT_PSK_HINT, 's', "PSK identity hint to use"}, #endif {"psk", OPT_PSK, 's', "PSK in hex (without 0x)"}, {"psk_session", OPT_PSK_SESS, '<', "File to read PSK SSL session from"}, #ifndef OPENSSL_NO_SRP {"srpvfile", OPT_SRPVFILE, '<', "The verifier file for SRP"}, {"srpuserseed", OPT_SRPUSERSEED, 's', "A seed string for a default user salt"}, #endif #ifndef OPENSSL_NO_SSL3 {"ssl3", OPT_SSL3, '-', "Just talk SSLv3"}, #endif #ifndef OPENSSL_NO_TLS1 {"tls1", OPT_TLS1, '-', "Just talk TLSv1"}, #endif #ifndef OPENSSL_NO_TLS1_1 {"tls1_1", OPT_TLS1_1, '-', "Just talk TLSv1.1"}, #endif #ifndef OPENSSL_NO_TLS1_2 {"tls1_2", OPT_TLS1_2, '-', "just talk TLSv1.2"}, #endif #ifndef OPENSSL_NO_TLS1_3 {"tls1_3", OPT_TLS1_3, '-', "just talk TLSv1.3"}, #endif #ifndef OPENSSL_NO_DTLS {"dtls", OPT_DTLS, '-', "Use any DTLS version"}, {"timeout", OPT_TIMEOUT, '-', "Enable timeouts"}, {"mtu", OPT_MTU, 'p', "Set link layer MTU"}, {"listen", OPT_LISTEN, '-', "Listen for a DTLS ClientHello with a cookie and then connect"}, #endif {"stateless", OPT_STATELESS, '-', "Require TLSv1.3 cookies"}, #ifndef OPENSSL_NO_DTLS1 {"dtls1", OPT_DTLS1, '-', "Just talk DTLSv1"}, #endif #ifndef OPENSSL_NO_DTLS1_2 {"dtls1_2", OPT_DTLS1_2, '-', "Just talk DTLSv1.2"}, #endif #ifndef OPENSSL_NO_SCTP {"sctp", OPT_SCTP, '-', "Use SCTP"}, {"sctp_label_bug", OPT_SCTP_LABEL_BUG, '-', "Enable SCTP label length bug"}, #endif #ifndef OPENSSL_NO_DH {"no_dhe", OPT_NO_DHE, '-', "Disable ephemeral DH"}, #endif #ifndef OPENSSL_NO_NEXTPROTONEG {"nextprotoneg", OPT_NEXTPROTONEG, 's', "Set the advertised protocols for the NPN extension (comma-separated list)"}, #endif #ifndef OPENSSL_NO_SRTP {"use_srtp", OPT_SRTP_PROFILES, 's', "Offer SRTP key management with a colon-separated profile list"}, #endif {"alpn", OPT_ALPN, 's', "Set the advertised protocols for the ALPN extension (comma-separated list)"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"keylogfile", OPT_KEYLOG_FILE, '>', "Write TLS secrets to file"}, {"max_early_data", OPT_MAX_EARLY, 'n', "The maximum number of bytes of early data as advertised in tickets"}, {"recv_max_early_data", OPT_RECV_MAX_EARLY, 'n', "The maximum number of bytes of early data (hard limit)"}, {"early_data", OPT_EARLY_DATA, '-', "Attempt to read early data"}, {"num_tickets", OPT_S_NUM_TICKETS, 'n', "The number of TLSv1.3 session tickets that a server will automatically issue" }, {"anti_replay", OPT_ANTI_REPLAY, '-', "Switch on anti-replay protection (default)"}, {"no_anti_replay", OPT_NO_ANTI_REPLAY, '-', "Switch off anti-replay protection"}, {NULL, OPT_EOF, 0, NULL} }; #define IS_PROT_FLAG(o) \ (o == OPT_SSL3 || o == OPT_TLS1 || o == OPT_TLS1_1 || o == OPT_TLS1_2 \ || o == OPT_TLS1_3 || o == OPT_DTLS || o == OPT_DTLS1 || o == OPT_DTLS1_2) int s_server_main(int argc, char *argv[]) { ENGINE *engine = NULL; EVP_PKEY *s_key = NULL, *s_dkey = NULL; SSL_CONF_CTX *cctx = NULL; const SSL_METHOD *meth = TLS_server_method(); SSL_EXCERT *exc = NULL; STACK_OF(OPENSSL_STRING) *ssl_args = NULL; STACK_OF(X509) *s_chain = NULL, *s_dchain = NULL; STACK_OF(X509_CRL) *crls = NULL; X509 *s_cert = NULL, *s_dcert = NULL; X509_VERIFY_PARAM *vpm = NULL; const char *CApath = NULL, *CAfile = NULL, *chCApath = NULL, *chCAfile = NULL; char *dpassarg = NULL, *dpass = NULL; char *passarg = NULL, *pass = NULL, *vfyCApath = NULL, *vfyCAfile = NULL; char *crl_file = NULL, *prog; #ifdef AF_UNIX int unlink_unix_path = 0; #endif do_server_cb server_cb; int vpmtouched = 0, build_chain = 0, no_cache = 0, ext_cache = 0; #ifndef OPENSSL_NO_DH char *dhfile = NULL; int no_dhe = 0; #endif int nocert = 0, ret = 1; int noCApath = 0, noCAfile = 0; int s_cert_format = FORMAT_PEM, s_key_format = FORMAT_PEM; int s_dcert_format = FORMAT_PEM, s_dkey_format = FORMAT_PEM; int rev = 0, naccept = -1, sdebug = 0; int socket_family = AF_UNSPEC, socket_type = SOCK_STREAM, protocol = 0; int state = 0, crl_format = FORMAT_PEM, crl_download = 0; char *host = NULL; char *port = BUF_strdup(PORT); unsigned char *context = NULL; OPTION_CHOICE o; EVP_PKEY *s_key2 = NULL; X509 *s_cert2 = NULL; tlsextctx tlsextcbp = { NULL, NULL, SSL_TLSEXT_ERR_ALERT_WARNING }; const char *ssl_config = NULL; int read_buf_len = 0; #ifndef OPENSSL_NO_NEXTPROTONEG const char *next_proto_neg_in = NULL; tlsextnextprotoctx next_proto = { NULL, 0 }; #endif const char *alpn_in = NULL; tlsextalpnctx alpn_ctx = { NULL, 0 }; #ifndef OPENSSL_NO_PSK /* by default do not send a PSK identity hint */ char *psk_identity_hint = NULL; #endif char *p; #ifndef OPENSSL_NO_SRP char *srpuserseed = NULL; char *srp_verifier_file = NULL; #endif #ifndef OPENSSL_NO_SRTP char *srtp_profiles = NULL; #endif int min_version = 0, max_version = 0, prot_opt = 0, no_prot_opt = 0; int s_server_verify = SSL_VERIFY_NONE; int s_server_session_id_context = 1; /* anything will do */ const char *s_cert_file = TEST_CERT, *s_key_file = NULL, *s_chain_file = NULL; const char *s_cert_file2 = TEST_CERT2, *s_key_file2 = NULL; char *s_dcert_file = NULL, *s_dkey_file = NULL, *s_dchain_file = NULL; #ifndef OPENSSL_NO_OCSP int s_tlsextstatus = 0; #endif int no_resume_ephemeral = 0; unsigned int max_send_fragment = 0; unsigned int split_send_fragment = 0, max_pipelines = 0; const char *s_serverinfo_file = NULL; const char *keylog_file = NULL; int max_early_data = -1, recv_max_early_data = -1; char *psksessf = NULL; #ifndef OPENSSL_NO_SCTP int sctp_label_bug = 0; #endif /* Init of few remaining global variables */ local_argc = argc; local_argv = argv; ctx = ctx2 = NULL; s_nbio = s_nbio_test = 0; www = 0; bio_s_out = NULL; s_debug = 0; s_msg = 0; s_quiet = 0; s_brief = 0; async = 0; cctx = SSL_CONF_CTX_new(); vpm = X509_VERIFY_PARAM_new(); if (cctx == NULL || vpm == NULL) goto end; SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_SERVER | SSL_CONF_FLAG_CMDLINE); prog = opt_init(argc, argv, s_server_options); while ((o = opt_next()) != OPT_EOF) { if (IS_PROT_FLAG(o) && ++prot_opt > 1) { BIO_printf(bio_err, "Cannot supply multiple protocol flags\n"); goto end; } if (IS_NO_PROT_FLAG(o)) no_prot_opt++; if (prot_opt == 1 && no_prot_opt) { BIO_printf(bio_err, "Cannot supply both a protocol flag and '-no_'\n"); goto end; } switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(s_server_options); ret = 0; goto end; case OPT_4: #ifdef AF_UNIX if (socket_family == AF_UNIX) { OPENSSL_free(host); host = NULL; OPENSSL_free(port); port = NULL; } #endif socket_family = AF_INET; break; case OPT_6: if (1) { #ifdef AF_INET6 #ifdef AF_UNIX if (socket_family == AF_UNIX) { OPENSSL_free(host); host = NULL; OPENSSL_free(port); port = NULL; } #endif socket_family = AF_INET6; } else { #endif BIO_printf(bio_err, "%s: IPv6 domain sockets unsupported\n", prog); goto end; } break; case OPT_PORT: #ifdef AF_UNIX if (socket_family == AF_UNIX) { socket_family = AF_UNSPEC; } #endif OPENSSL_free(port); port = NULL; OPENSSL_free(host); host = NULL; if (BIO_parse_hostserv(opt_arg(), NULL, &port, BIO_PARSE_PRIO_SERV) < 1) { BIO_printf(bio_err, "%s: -port argument malformed or ambiguous\n", port); goto end; } break; case OPT_ACCEPT: #ifdef AF_UNIX if (socket_family == AF_UNIX) { socket_family = AF_UNSPEC; } #endif OPENSSL_free(port); port = NULL; OPENSSL_free(host); host = NULL; if (BIO_parse_hostserv(opt_arg(), &host, &port, BIO_PARSE_PRIO_SERV) < 1) { BIO_printf(bio_err, "%s: -accept argument malformed or ambiguous\n", port); goto end; } break; #ifdef AF_UNIX case OPT_UNIX: socket_family = AF_UNIX; OPENSSL_free(host); host = BUF_strdup(opt_arg()); OPENSSL_free(port); port = NULL; break; case OPT_UNLINK: unlink_unix_path = 1; break; #endif case OPT_NACCEPT: naccept = atol(opt_arg()); break; case OPT_VERIFY: s_server_verify = SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE; verify_args.depth = atoi(opt_arg()); if (!s_quiet) BIO_printf(bio_err, "verify depth is %d\n", verify_args.depth); break; case OPT_UPPER_V_VERIFY: s_server_verify = SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT | SSL_VERIFY_CLIENT_ONCE; verify_args.depth = atoi(opt_arg()); if (!s_quiet) BIO_printf(bio_err, "verify depth is %d, must return a certificate\n", verify_args.depth); break; case OPT_CONTEXT: context = (unsigned char *)opt_arg(); break; case OPT_CERT: s_cert_file = opt_arg(); break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto end; break; case OPT_CRL: crl_file = opt_arg(); break; case OPT_CRL_DOWNLOAD: crl_download = 1; break; case OPT_SERVERINFO: s_serverinfo_file = opt_arg(); break; case OPT_CERTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &s_cert_format)) goto opthelp; break; case OPT_KEY: s_key_file = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &s_key_format)) goto opthelp; break; case OPT_PASS: passarg = opt_arg(); break; case OPT_CERT_CHAIN: s_chain_file = opt_arg(); break; case OPT_DHPARAM: #ifndef OPENSSL_NO_DH dhfile = opt_arg(); #endif break; case OPT_DCERTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &s_dcert_format)) goto opthelp; break; case OPT_DCERT: s_dcert_file = opt_arg(); break; case OPT_DKEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &s_dkey_format)) goto opthelp; break; case OPT_DPASS: dpassarg = opt_arg(); break; case OPT_DKEY: s_dkey_file = opt_arg(); break; case OPT_DCERT_CHAIN: s_dchain_file = opt_arg(); break; case OPT_NOCERT: nocert = 1; break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_CHAINCAPATH: chCApath = opt_arg(); break; case OPT_VERIFYCAPATH: vfyCApath = opt_arg(); break; case OPT_NO_CACHE: no_cache = 1; break; case OPT_EXT_CACHE: ext_cache = 1; break; case OPT_CRLFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &crl_format)) goto opthelp; break; case OPT_S_CASES: case OPT_S_NUM_TICKETS: case OPT_ANTI_REPLAY: case OPT_NO_ANTI_REPLAY: if (ssl_args == NULL) ssl_args = sk_OPENSSL_STRING_new_null(); if (ssl_args == NULL || !sk_OPENSSL_STRING_push(ssl_args, opt_flag()) || !sk_OPENSSL_STRING_push(ssl_args, opt_arg())) { BIO_printf(bio_err, "%s: Memory allocation failure\n", prog); goto end; } break; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto end; vpmtouched++; break; case OPT_X_CASES: if (!args_excert(o, &exc)) goto end; break; case OPT_VERIFY_RET_ERROR: verify_args.return_error = 1; break; case OPT_VERIFY_QUIET: verify_args.quiet = 1; break; case OPT_BUILD_CHAIN: build_chain = 1; break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_CHAINCAFILE: chCAfile = opt_arg(); break; case OPT_VERIFYCAFILE: vfyCAfile = opt_arg(); break; case OPT_NBIO: s_nbio = 1; break; case OPT_NBIO_TEST: s_nbio = s_nbio_test = 1; break; case OPT_IGN_EOF: s_ign_eof = 1; break; case OPT_NO_IGN_EOF: s_ign_eof = 0; break; case OPT_DEBUG: s_debug = 1; break; case OPT_TLSEXTDEBUG: s_tlsextdebug = 1; break; case OPT_STATUS: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; #endif break; case OPT_STATUS_VERBOSE: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = tlscstatp.verbose = 1; #endif break; case OPT_STATUS_TIMEOUT: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; tlscstatp.timeout = atoi(opt_arg()); #endif break; case OPT_STATUS_URL: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; if (!OCSP_parse_url(opt_arg(), &tlscstatp.host, &tlscstatp.port, &tlscstatp.path, &tlscstatp.use_ssl)) { BIO_printf(bio_err, "Error parsing URL\n"); goto end; } #endif break; case OPT_STATUS_FILE: #ifndef OPENSSL_NO_OCSP s_tlsextstatus = 1; tlscstatp.respin = opt_arg(); #endif break; case OPT_MSG: s_msg = 1; break; case OPT_MSGFILE: bio_s_msg = BIO_new_file(opt_arg(), "w"); break; case OPT_TRACE: #ifndef OPENSSL_NO_SSL_TRACE s_msg = 2; #endif break; case OPT_SECURITY_DEBUG: sdebug = 1; break; case OPT_SECURITY_DEBUG_VERBOSE: sdebug = 2; break; case OPT_STATE: state = 1; break; case OPT_CRLF: s_crlf = 1; break; case OPT_QUIET: s_quiet = 1; break; case OPT_BRIEF: s_quiet = s_brief = verify_args.quiet = 1; break; case OPT_NO_DHE: #ifndef OPENSSL_NO_DH no_dhe = 1; #endif break; case OPT_NO_RESUME_EPHEMERAL: no_resume_ephemeral = 1; break; case OPT_PSK_IDENTITY: psk_identity = opt_arg(); break; case OPT_PSK_HINT: #ifndef OPENSSL_NO_PSK psk_identity_hint = opt_arg(); #endif break; case OPT_PSK: for (p = psk_key = opt_arg(); *p; p++) { if (isxdigit(_UC(*p))) continue; BIO_printf(bio_err, "Not a hex number '%s'\n", psk_key); goto end; } break; case OPT_PSK_SESS: psksessf = opt_arg(); break; case OPT_SRPVFILE: #ifndef OPENSSL_NO_SRP srp_verifier_file = opt_arg(); if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; #endif break; case OPT_SRPUSERSEED: #ifndef OPENSSL_NO_SRP srpuserseed = opt_arg(); if (min_version < TLS1_VERSION) min_version = TLS1_VERSION; #endif break; case OPT_REV: rev = 1; break; case OPT_WWW: www = 1; break; case OPT_UPPER_WWW: www = 2; break; case OPT_HTTP: www = 3; break; case OPT_SSL_CONFIG: ssl_config = opt_arg(); break; case OPT_SSL3: min_version = SSL3_VERSION; max_version = SSL3_VERSION; break; case OPT_TLS1_3: min_version = TLS1_3_VERSION; max_version = TLS1_3_VERSION; break; case OPT_TLS1_2: min_version = TLS1_2_VERSION; max_version = TLS1_2_VERSION; break; case OPT_TLS1_1: min_version = TLS1_1_VERSION; max_version = TLS1_1_VERSION; break; case OPT_TLS1: min_version = TLS1_VERSION; max_version = TLS1_VERSION; break; case OPT_DTLS: #ifndef OPENSSL_NO_DTLS meth = DTLS_server_method(); socket_type = SOCK_DGRAM; #endif break; case OPT_DTLS1: #ifndef OPENSSL_NO_DTLS meth = DTLS_server_method(); min_version = DTLS1_VERSION; max_version = DTLS1_VERSION; socket_type = SOCK_DGRAM; #endif break; case OPT_DTLS1_2: #ifndef OPENSSL_NO_DTLS meth = DTLS_server_method(); min_version = DTLS1_2_VERSION; max_version = DTLS1_2_VERSION; socket_type = SOCK_DGRAM; #endif break; case OPT_SCTP: #ifndef OPENSSL_NO_SCTP protocol = IPPROTO_SCTP; #endif break; case OPT_SCTP_LABEL_BUG: #ifndef OPENSSL_NO_SCTP sctp_label_bug = 1; #endif break; case OPT_TIMEOUT: #ifndef OPENSSL_NO_DTLS enable_timeouts = 1; #endif break; case OPT_MTU: #ifndef OPENSSL_NO_DTLS socket_mtu = atol(opt_arg()); #endif break; case OPT_LISTEN: #ifndef OPENSSL_NO_DTLS dtlslisten = 1; #endif break; case OPT_STATELESS: stateless = 1; break; case OPT_ID_PREFIX: session_id_prefix = opt_arg(); break; case OPT_ENGINE: engine = setup_engine(opt_arg(), 1); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_SERVERNAME: tlsextcbp.servername = opt_arg(); break; case OPT_SERVERNAME_FATAL: tlsextcbp.extension_error = SSL_TLSEXT_ERR_ALERT_FATAL; break; case OPT_CERT2: s_cert_file2 = opt_arg(); break; case OPT_KEY2: s_key_file2 = opt_arg(); break; case OPT_NEXTPROTONEG: # ifndef OPENSSL_NO_NEXTPROTONEG next_proto_neg_in = opt_arg(); #endif break; case OPT_ALPN: alpn_in = opt_arg(); break; case OPT_SRTP_PROFILES: #ifndef OPENSSL_NO_SRTP srtp_profiles = opt_arg(); #endif break; case OPT_KEYMATEXPORT: keymatexportlabel = opt_arg(); break; case OPT_KEYMATEXPORTLEN: keymatexportlen = atoi(opt_arg()); break; case OPT_ASYNC: async = 1; break; case OPT_MAX_SEND_FRAG: max_send_fragment = atoi(opt_arg()); break; case OPT_SPLIT_SEND_FRAG: split_send_fragment = atoi(opt_arg()); break; case OPT_MAX_PIPELINES: max_pipelines = atoi(opt_arg()); break; case OPT_READ_BUF: read_buf_len = atoi(opt_arg()); break; case OPT_KEYLOG_FILE: keylog_file = opt_arg(); break; case OPT_MAX_EARLY: max_early_data = atoi(opt_arg()); if (max_early_data < 0) { BIO_printf(bio_err, "Invalid value for max_early_data\n"); goto end; } break; case OPT_RECV_MAX_EARLY: recv_max_early_data = atoi(opt_arg()); if (recv_max_early_data < 0) { BIO_printf(bio_err, "Invalid value for recv_max_early_data\n"); goto end; } break; case OPT_EARLY_DATA: early_data = 1; if (max_early_data == -1) max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; break; } } argc = opt_num_rest(); argv = opt_rest(); #ifndef OPENSSL_NO_NEXTPROTONEG if (min_version == TLS1_3_VERSION && next_proto_neg_in != NULL) { BIO_printf(bio_err, "Cannot supply -nextprotoneg with TLSv1.3\n"); goto opthelp; } #endif #ifndef OPENSSL_NO_DTLS if (www && socket_type == SOCK_DGRAM) { BIO_printf(bio_err, "Can't use -HTTP, -www or -WWW with DTLS\n"); goto end; } if (dtlslisten && socket_type != SOCK_DGRAM) { BIO_printf(bio_err, "Can only use -listen with DTLS\n"); goto end; } #endif if (stateless && socket_type != SOCK_STREAM) { BIO_printf(bio_err, "Can only use --stateless with TLS\n"); goto end; } #ifdef AF_UNIX if (socket_family == AF_UNIX && socket_type != SOCK_STREAM) { BIO_printf(bio_err, "Can't use unix sockets and datagrams together\n"); goto end; } #endif if (early_data && (www > 0 || rev)) { BIO_printf(bio_err, "Can't use -early_data in combination with -www, -WWW, -HTTP, or -rev\n"); goto end; } #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP) { if (socket_type != SOCK_DGRAM) { BIO_printf(bio_err, "Can't use -sctp without DTLS\n"); goto end; } /* SCTP is unusual. It uses DTLS over a SOCK_STREAM protocol */ socket_type = SOCK_STREAM; } #endif if (!app_passwd(passarg, dpassarg, &pass, &dpass)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } if (s_key_file == NULL) s_key_file = s_cert_file; if (s_key_file2 == NULL) s_key_file2 = s_cert_file2; if (!load_excert(&exc)) goto end; if (nocert == 0) { s_key = load_key(s_key_file, s_key_format, 0, pass, engine, "server certificate private key file"); if (s_key == NULL) { ERR_print_errors(bio_err); goto end; } s_cert = load_cert(s_cert_file, s_cert_format, "server certificate file"); if (s_cert == NULL) { ERR_print_errors(bio_err); goto end; } if (s_chain_file != NULL) { if (!load_certs(s_chain_file, &s_chain, FORMAT_PEM, NULL, "server certificate chain")) goto end; } if (tlsextcbp.servername != NULL) { s_key2 = load_key(s_key_file2, s_key_format, 0, pass, engine, "second server certificate private key file"); if (s_key2 == NULL) { ERR_print_errors(bio_err); goto end; } s_cert2 = load_cert(s_cert_file2, s_cert_format, "second server certificate file"); if (s_cert2 == NULL) { ERR_print_errors(bio_err); goto end; } } } #if !defined(OPENSSL_NO_NEXTPROTONEG) if (next_proto_neg_in) { next_proto.data = next_protos_parse(&next_proto.len, next_proto_neg_in); if (next_proto.data == NULL) goto end; } #endif alpn_ctx.data = NULL; if (alpn_in) { alpn_ctx.data = next_protos_parse(&alpn_ctx.len, alpn_in); if (alpn_ctx.data == NULL) goto end; } if (crl_file != NULL) { X509_CRL *crl; crl = load_crl(crl_file, crl_format); if (crl == NULL) { BIO_puts(bio_err, "Error loading CRL\n"); ERR_print_errors(bio_err); goto end; } crls = sk_X509_CRL_new_null(); if (crls == NULL || !sk_X509_CRL_push(crls, crl)) { BIO_puts(bio_err, "Error adding CRL\n"); ERR_print_errors(bio_err); X509_CRL_free(crl); goto end; } } if (s_dcert_file != NULL) { if (s_dkey_file == NULL) s_dkey_file = s_dcert_file; s_dkey = load_key(s_dkey_file, s_dkey_format, 0, dpass, engine, "second certificate private key file"); if (s_dkey == NULL) { ERR_print_errors(bio_err); goto end; } s_dcert = load_cert(s_dcert_file, s_dcert_format, "second server certificate file"); if (s_dcert == NULL) { ERR_print_errors(bio_err); goto end; } if (s_dchain_file != NULL) { if (!load_certs(s_dchain_file, &s_dchain, FORMAT_PEM, NULL, "second server certificate chain")) goto end; } } if (bio_s_out == NULL) { if (s_quiet && !s_debug) { bio_s_out = BIO_new(BIO_s_null()); if (s_msg && bio_s_msg == NULL) bio_s_msg = dup_bio_out(FORMAT_TEXT); } else { if (bio_s_out == NULL) bio_s_out = dup_bio_out(FORMAT_TEXT); } } #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC) if (nocert) #endif { s_cert_file = NULL; s_key_file = NULL; s_dcert_file = NULL; s_dkey_file = NULL; s_cert_file2 = NULL; s_key_file2 = NULL; } ctx = SSL_CTX_new(meth); if (ctx == NULL) { ERR_print_errors(bio_err); goto end; } SSL_CTX_clear_mode(ctx, SSL_MODE_AUTO_RETRY); if (sdebug) ssl_ctx_security_debug(ctx, sdebug); if (!config_ctx(cctx, ssl_args, ctx)) goto end; if (ssl_config) { if (SSL_CTX_config(ctx, ssl_config) == 0) { BIO_printf(bio_err, "Error using configuration \"%s\"\n", ssl_config); ERR_print_errors(bio_err); goto end; } } #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP && sctp_label_bug == 1) SSL_CTX_set_mode(ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); #endif if (min_version != 0 && SSL_CTX_set_min_proto_version(ctx, min_version) == 0) goto end; if (max_version != 0 && SSL_CTX_set_max_proto_version(ctx, max_version) == 0) goto end; if (session_id_prefix) { if (strlen(session_id_prefix) >= 32) BIO_printf(bio_err, "warning: id_prefix is too long, only one new session will be possible\n"); if (!SSL_CTX_set_generate_session_id(ctx, generate_session_id)) { BIO_printf(bio_err, "error setting 'id_prefix'\n"); ERR_print_errors(bio_err); goto end; } BIO_printf(bio_err, "id_prefix '%s' set.\n", session_id_prefix); } SSL_CTX_set_quiet_shutdown(ctx, 1); if (exc != NULL) ssl_ctx_set_excert(ctx, exc); if (state) SSL_CTX_set_info_callback(ctx, apps_ssl_info_callback); if (no_cache) SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF); else if (ext_cache) init_session_cache_ctx(ctx); else SSL_CTX_sess_set_cache_size(ctx, 128); if (async) { SSL_CTX_set_mode(ctx, SSL_MODE_ASYNC); } if (max_send_fragment > 0 && !SSL_CTX_set_max_send_fragment(ctx, max_send_fragment)) { BIO_printf(bio_err, "%s: Max send fragment size %u is out of permitted range\n", prog, max_send_fragment); goto end; } if (split_send_fragment > 0 && !SSL_CTX_set_split_send_fragment(ctx, split_send_fragment)) { BIO_printf(bio_err, "%s: Split send fragment size %u is out of permitted range\n", prog, split_send_fragment); goto end; } if (max_pipelines > 0 && !SSL_CTX_set_max_pipelines(ctx, max_pipelines)) { BIO_printf(bio_err, "%s: Max pipelines %u is out of permitted range\n", prog, max_pipelines); goto end; } if (read_buf_len > 0) { SSL_CTX_set_default_read_buffer_len(ctx, read_buf_len); } #ifndef OPENSSL_NO_SRTP if (srtp_profiles != NULL) { /* Returns 0 on success! */ if (SSL_CTX_set_tlsext_use_srtp(ctx, srtp_profiles) != 0) { BIO_printf(bio_err, "Error setting SRTP profile\n"); ERR_print_errors(bio_err); goto end; } } #endif if (!ctx_set_verify_locations(ctx, CAfile, CApath, noCAfile, noCApath)) { ERR_print_errors(bio_err); goto end; } if (vpmtouched && !SSL_CTX_set1_param(ctx, vpm)) { BIO_printf(bio_err, "Error setting verify params\n"); ERR_print_errors(bio_err); goto end; } ssl_ctx_add_crls(ctx, crls, 0); if (!ssl_load_stores(ctx, vfyCApath, vfyCAfile, chCApath, chCAfile, crls, crl_download)) { BIO_printf(bio_err, "Error loading store locations\n"); ERR_print_errors(bio_err); goto end; } if (s_cert2) { ctx2 = SSL_CTX_new(meth); if (ctx2 == NULL) { ERR_print_errors(bio_err); goto end; } } if (ctx2 != NULL) { BIO_printf(bio_s_out, "Setting secondary ctx parameters\n"); if (sdebug) ssl_ctx_security_debug(ctx2, sdebug); if (session_id_prefix) { if (strlen(session_id_prefix) >= 32) BIO_printf(bio_err, "warning: id_prefix is too long, only one new session will be possible\n"); if (!SSL_CTX_set_generate_session_id(ctx2, generate_session_id)) { BIO_printf(bio_err, "error setting 'id_prefix'\n"); ERR_print_errors(bio_err); goto end; } BIO_printf(bio_err, "id_prefix '%s' set.\n", session_id_prefix); } SSL_CTX_set_quiet_shutdown(ctx2, 1); if (exc != NULL) ssl_ctx_set_excert(ctx2, exc); if (state) SSL_CTX_set_info_callback(ctx2, apps_ssl_info_callback); if (no_cache) SSL_CTX_set_session_cache_mode(ctx2, SSL_SESS_CACHE_OFF); else if (ext_cache) init_session_cache_ctx(ctx2); else SSL_CTX_sess_set_cache_size(ctx2, 128); if (async) SSL_CTX_set_mode(ctx2, SSL_MODE_ASYNC); if (!ctx_set_verify_locations(ctx2, CAfile, CApath, noCAfile, noCApath)) { ERR_print_errors(bio_err); goto end; } if (vpmtouched && !SSL_CTX_set1_param(ctx2, vpm)) { BIO_printf(bio_err, "Error setting verify params\n"); ERR_print_errors(bio_err); goto end; } ssl_ctx_add_crls(ctx2, crls, 0); if (!config_ctx(cctx, ssl_args, ctx2)) goto end; } #ifndef OPENSSL_NO_NEXTPROTONEG if (next_proto.data) SSL_CTX_set_next_protos_advertised_cb(ctx, next_proto_cb, &next_proto); #endif if (alpn_ctx.data) SSL_CTX_set_alpn_select_cb(ctx, alpn_cb, &alpn_ctx); #ifndef OPENSSL_NO_DH if (!no_dhe) { DH *dh = NULL; if (dhfile != NULL) dh = load_dh_param(dhfile); else if (s_cert_file != NULL) dh = load_dh_param(s_cert_file); if (dh != NULL) { BIO_printf(bio_s_out, "Setting temp DH parameters\n"); } else { BIO_printf(bio_s_out, "Using default temp DH parameters\n"); } (void)BIO_flush(bio_s_out); if (dh == NULL) { SSL_CTX_set_dh_auto(ctx, 1); } else if (!SSL_CTX_set_tmp_dh(ctx, dh)) { BIO_puts(bio_err, "Error setting temp DH parameters\n"); ERR_print_errors(bio_err); DH_free(dh); goto end; } if (ctx2 != NULL) { if (!dhfile) { DH *dh2 = load_dh_param(s_cert_file2); if (dh2 != NULL) { BIO_printf(bio_s_out, "Setting temp DH parameters\n"); (void)BIO_flush(bio_s_out); DH_free(dh); dh = dh2; } } if (dh == NULL) { SSL_CTX_set_dh_auto(ctx2, 1); } else if (!SSL_CTX_set_tmp_dh(ctx2, dh)) { BIO_puts(bio_err, "Error setting temp DH parameters\n"); ERR_print_errors(bio_err); DH_free(dh); goto end; } } DH_free(dh); } #endif if (!set_cert_key_stuff(ctx, s_cert, s_key, s_chain, build_chain)) goto end; if (s_serverinfo_file != NULL && !SSL_CTX_use_serverinfo_file(ctx, s_serverinfo_file)) { ERR_print_errors(bio_err); goto end; } if (ctx2 != NULL && !set_cert_key_stuff(ctx2, s_cert2, s_key2, NULL, build_chain)) goto end; if (s_dcert != NULL) { if (!set_cert_key_stuff(ctx, s_dcert, s_dkey, s_dchain, build_chain)) goto end; } if (no_resume_ephemeral) { SSL_CTX_set_not_resumable_session_callback(ctx, not_resumable_sess_cb); if (ctx2 != NULL) SSL_CTX_set_not_resumable_session_callback(ctx2, not_resumable_sess_cb); } #ifndef OPENSSL_NO_PSK if (psk_key != NULL) { if (s_debug) BIO_printf(bio_s_out, "PSK key given, setting server callback\n"); SSL_CTX_set_psk_server_callback(ctx, psk_server_cb); } if (!SSL_CTX_use_psk_identity_hint(ctx, psk_identity_hint)) { BIO_printf(bio_err, "error setting PSK identity hint to context\n"); ERR_print_errors(bio_err); goto end; } #endif if (psksessf != NULL) { BIO *stmp = BIO_new_file(psksessf, "r"); if (stmp == NULL) { BIO_printf(bio_err, "Can't open PSK session file %s\n", psksessf); ERR_print_errors(bio_err); goto end; } psksess = PEM_read_bio_SSL_SESSION(stmp, NULL, 0, NULL); BIO_free(stmp); if (psksess == NULL) { BIO_printf(bio_err, "Can't read PSK session file %s\n", psksessf); ERR_print_errors(bio_err); goto end; } } if (psk_key != NULL || psksess != NULL) SSL_CTX_set_psk_find_session_callback(ctx, psk_find_session_cb); SSL_CTX_set_verify(ctx, s_server_verify, verify_callback); if (!SSL_CTX_set_session_id_context(ctx, (void *)&s_server_session_id_context, sizeof(s_server_session_id_context))) { BIO_printf(bio_err, "error setting session id context\n"); ERR_print_errors(bio_err); goto end; } /* Set DTLS cookie generation and verification callbacks */ SSL_CTX_set_cookie_generate_cb(ctx, generate_cookie_callback); SSL_CTX_set_cookie_verify_cb(ctx, verify_cookie_callback); /* Set TLS1.3 cookie generation and verification callbacks */ SSL_CTX_set_stateless_cookie_generate_cb(ctx, generate_stateless_cookie_callback); SSL_CTX_set_stateless_cookie_verify_cb(ctx, verify_stateless_cookie_callback); if (ctx2 != NULL) { SSL_CTX_set_verify(ctx2, s_server_verify, verify_callback); if (!SSL_CTX_set_session_id_context(ctx2, (void *)&s_server_session_id_context, sizeof(s_server_session_id_context))) { BIO_printf(bio_err, "error setting session id context\n"); ERR_print_errors(bio_err); goto end; } tlsextcbp.biodebug = bio_s_out; SSL_CTX_set_tlsext_servername_callback(ctx2, ssl_servername_cb); SSL_CTX_set_tlsext_servername_arg(ctx2, &tlsextcbp); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_servername_cb); SSL_CTX_set_tlsext_servername_arg(ctx, &tlsextcbp); } #ifndef OPENSSL_NO_SRP if (srp_verifier_file != NULL) { srp_callback_parm.vb = SRP_VBASE_new(srpuserseed); srp_callback_parm.user = NULL; srp_callback_parm.login = NULL; if ((ret = SRP_VBASE_init(srp_callback_parm.vb, srp_verifier_file)) != SRP_NO_ERROR) { BIO_printf(bio_err, "Cannot initialize SRP verifier file \"%s\":ret=%d\n", srp_verifier_file, ret); goto end; } SSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, verify_callback); SSL_CTX_set_srp_cb_arg(ctx, &srp_callback_parm); SSL_CTX_set_srp_username_callback(ctx, ssl_srp_server_param_cb); } else #endif if (CAfile != NULL) { SSL_CTX_set_client_CA_list(ctx, SSL_load_client_CA_file(CAfile)); if (ctx2) SSL_CTX_set_client_CA_list(ctx2, SSL_load_client_CA_file(CAfile)); } #ifndef OPENSSL_NO_OCSP if (s_tlsextstatus) { SSL_CTX_set_tlsext_status_cb(ctx, cert_status_cb); SSL_CTX_set_tlsext_status_arg(ctx, &tlscstatp); if (ctx2) { SSL_CTX_set_tlsext_status_cb(ctx2, cert_status_cb); SSL_CTX_set_tlsext_status_arg(ctx2, &tlscstatp); } } #endif if (set_keylog_file(ctx, keylog_file)) goto end; if (max_early_data >= 0) SSL_CTX_set_max_early_data(ctx, max_early_data); if (recv_max_early_data >= 0) SSL_CTX_set_recv_max_early_data(ctx, recv_max_early_data); if (rev) server_cb = rev_body; else if (www) server_cb = www_body; else server_cb = sv_body; #ifdef AF_UNIX if (socket_family == AF_UNIX && unlink_unix_path) unlink(host); #endif do_server(&accept_socket, host, port, socket_family, socket_type, protocol, server_cb, context, naccept, bio_s_out); print_stats(bio_s_out, ctx); ret = 0; end: SSL_CTX_free(ctx); SSL_SESSION_free(psksess); set_keylog_file(NULL, NULL); X509_free(s_cert); sk_X509_CRL_pop_free(crls, X509_CRL_free); X509_free(s_dcert); EVP_PKEY_free(s_key); EVP_PKEY_free(s_dkey); sk_X509_pop_free(s_chain, X509_free); sk_X509_pop_free(s_dchain, X509_free); OPENSSL_free(pass); OPENSSL_free(dpass); OPENSSL_free(host); OPENSSL_free(port); X509_VERIFY_PARAM_free(vpm); free_sessions(); OPENSSL_free(tlscstatp.host); OPENSSL_free(tlscstatp.port); OPENSSL_free(tlscstatp.path); SSL_CTX_free(ctx2); X509_free(s_cert2); EVP_PKEY_free(s_key2); #ifndef OPENSSL_NO_NEXTPROTONEG OPENSSL_free(next_proto.data); #endif OPENSSL_free(alpn_ctx.data); ssl_excert_free(exc); sk_OPENSSL_STRING_free(ssl_args); SSL_CONF_CTX_free(cctx); release_engine(engine); BIO_free(bio_s_out); bio_s_out = NULL; BIO_free(bio_s_msg); bio_s_msg = NULL; #ifdef CHARSET_EBCDIC BIO_meth_free(methods_ebcdic); #endif return ret; } static void print_stats(BIO *bio, SSL_CTX *ssl_ctx) { BIO_printf(bio, "%4ld items in the session cache\n", SSL_CTX_sess_number(ssl_ctx)); BIO_printf(bio, "%4ld client connects (SSL_connect())\n", SSL_CTX_sess_connect(ssl_ctx)); BIO_printf(bio, "%4ld client renegotiates (SSL_connect())\n", SSL_CTX_sess_connect_renegotiate(ssl_ctx)); BIO_printf(bio, "%4ld client connects that finished\n", SSL_CTX_sess_connect_good(ssl_ctx)); BIO_printf(bio, "%4ld server accepts (SSL_accept())\n", SSL_CTX_sess_accept(ssl_ctx)); BIO_printf(bio, "%4ld server renegotiates (SSL_accept())\n", SSL_CTX_sess_accept_renegotiate(ssl_ctx)); BIO_printf(bio, "%4ld server accepts that finished\n", SSL_CTX_sess_accept_good(ssl_ctx)); BIO_printf(bio, "%4ld session cache hits\n", SSL_CTX_sess_hits(ssl_ctx)); BIO_printf(bio, "%4ld session cache misses\n", SSL_CTX_sess_misses(ssl_ctx)); BIO_printf(bio, "%4ld session cache timeouts\n", SSL_CTX_sess_timeouts(ssl_ctx)); BIO_printf(bio, "%4ld callback cache hits\n", SSL_CTX_sess_cb_hits(ssl_ctx)); BIO_printf(bio, "%4ld cache full overflows (%ld allowed)\n", SSL_CTX_sess_cache_full(ssl_ctx), SSL_CTX_sess_get_cache_size(ssl_ctx)); } static int sv_body(int s, int stype, int prot, unsigned char *context) { char *buf = NULL; fd_set readfds; int ret = 1, width; int k, i; unsigned long l; SSL *con = NULL; BIO *sbio; struct timeval timeout; #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS)) struct timeval *timeoutp; #endif #ifndef OPENSSL_NO_DTLS # ifndef OPENSSL_NO_SCTP int isdtls = (stype == SOCK_DGRAM || prot == IPPROTO_SCTP); # else int isdtls = (stype == SOCK_DGRAM); # endif #endif buf = app_malloc(bufsize, "server buffer"); if (s_nbio) { if (!BIO_socket_nbio(s, 1)) ERR_print_errors(bio_err); else if (!s_quiet) BIO_printf(bio_err, "Turned on non blocking io\n"); } con = SSL_new(ctx); if (con == NULL) { ret = -1; goto err; } if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (context != NULL && !SSL_set_session_id_context(con, context, strlen((char *)context))) { BIO_printf(bio_err, "Error setting session id context\n"); ret = -1; goto err; } if (!SSL_clear(con)) { BIO_printf(bio_err, "Error clearing SSL connection\n"); ret = -1; goto err; } #ifndef OPENSSL_NO_DTLS if (isdtls) { # ifndef OPENSSL_NO_SCTP if (prot == IPPROTO_SCTP) sbio = BIO_new_dgram_sctp(s, BIO_NOCLOSE); else # endif sbio = BIO_new_dgram(s, BIO_NOCLOSE); if (enable_timeouts) { timeout.tv_sec = 0; timeout.tv_usec = DGRAM_RCV_TIMEOUT; BIO_ctrl(sbio, BIO_CTRL_DGRAM_SET_RECV_TIMEOUT, 0, &timeout); timeout.tv_sec = 0; timeout.tv_usec = DGRAM_SND_TIMEOUT; BIO_ctrl(sbio, BIO_CTRL_DGRAM_SET_SEND_TIMEOUT, 0, &timeout); } if (socket_mtu) { if (socket_mtu < DTLS_get_link_min_mtu(con)) { BIO_printf(bio_err, "MTU too small. Must be at least %ld\n", DTLS_get_link_min_mtu(con)); ret = -1; BIO_free(sbio); goto err; } SSL_set_options(con, SSL_OP_NO_QUERY_MTU); if (!DTLS_set_link_mtu(con, socket_mtu)) { BIO_printf(bio_err, "Failed to set MTU\n"); ret = -1; BIO_free(sbio); goto err; } } else /* want to do MTU discovery */ BIO_ctrl(sbio, BIO_CTRL_DGRAM_MTU_DISCOVER, 0, NULL); # ifndef OPENSSL_NO_SCTP if (prot != IPPROTO_SCTP) # endif /* Turn on cookie exchange. Not necessary for SCTP */ SSL_set_options(con, SSL_OP_COOKIE_EXCHANGE); } else #endif sbio = BIO_new_socket(s, BIO_NOCLOSE); if (sbio == NULL) { BIO_printf(bio_err, "Unable to create BIO\n"); ERR_print_errors(bio_err); goto err; } if (s_nbio_test) { BIO *test; test = BIO_new(BIO_f_nbio_test()); sbio = BIO_push(test, sbio); } SSL_set_bio(con, sbio, sbio); SSL_set_accept_state(con); /* SSL_set_fd(con,s); */ if (s_debug) { BIO_set_callback(SSL_get_rbio(con), bio_dump_callback); BIO_set_callback_arg(SSL_get_rbio(con), (char *)bio_s_out); } if (s_msg) { #ifndef OPENSSL_NO_SSL_TRACE if (s_msg == 2) SSL_set_msg_callback(con, SSL_trace); else #endif SSL_set_msg_callback(con, msg_cb); SSL_set_msg_callback_arg(con, bio_s_msg ? bio_s_msg : bio_s_out); } if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (early_data) { int write_header = 1, edret = SSL_READ_EARLY_DATA_ERROR; size_t readbytes; while (edret != SSL_READ_EARLY_DATA_FINISH) { for (;;) { edret = SSL_read_early_data(con, buf, bufsize, &readbytes); if (edret != SSL_READ_EARLY_DATA_ERROR) break; switch (SSL_get_error(con, 0)) { case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_ASYNC: case SSL_ERROR_WANT_READ: /* Just keep trying - busy waiting */ continue; default: BIO_printf(bio_err, "Error reading early data\n"); ERR_print_errors(bio_err); goto err; } } if (readbytes > 0) { if (write_header) { BIO_printf(bio_s_out, "Early data received:\n"); write_header = 0; } raw_write_stdout(buf, (unsigned int)readbytes); (void)BIO_flush(bio_s_out); } } if (write_header) { if (SSL_get_early_data_status(con) == SSL_EARLY_DATA_NOT_SENT) BIO_printf(bio_s_out, "No early data received\n"); else BIO_printf(bio_s_out, "Early data was rejected\n"); } else { BIO_printf(bio_s_out, "\nEnd of early data\n"); } if (SSL_is_init_finished(con)) print_connection_info(con); } if (fileno_stdin() > s) width = fileno_stdin() + 1; else width = s + 1; for (;;) { int read_from_terminal; int read_from_sslcon; read_from_terminal = 0; read_from_sslcon = SSL_has_pending(con) || (async && SSL_waiting_for_async(con)); if (!read_from_sslcon) { FD_ZERO(&readfds); #if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_MSDOS) openssl_fdset(fileno_stdin(), &readfds); #endif openssl_fdset(s, &readfds); /* * Note: under VMS with SOCKETSHR the second parameter is * currently of type (int *) whereas under other systems it is * (void *) if you don't have a cast it will choke the compiler: * if you do have a cast then you can either go for (int *) or * (void *). */ #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MSDOS) /* * Under DOS (non-djgpp) and Windows we can't select on stdin: * only on sockets. As a workaround we timeout the select every * second and check for any keypress. In a proper Windows * application we wouldn't do this because it is inefficient. */ timeout.tv_sec = 1; timeout.tv_usec = 0; i = select(width, (void *)&readfds, NULL, NULL, &timeout); if (has_stdin_waiting()) read_from_terminal = 1; if ((i < 0) || (!i && !read_from_terminal)) continue; #else if (SSL_is_dtls(con) && DTLSv1_get_timeout(con, &timeout)) timeoutp = &timeout; else timeoutp = NULL; i = select(width, (void *)&readfds, NULL, NULL, timeoutp); if ((SSL_is_dtls(con)) && DTLSv1_handle_timeout(con) > 0) BIO_printf(bio_err, "TIMEOUT occurred\n"); if (i <= 0) continue; if (FD_ISSET(fileno_stdin(), &readfds)) read_from_terminal = 1; #endif if (FD_ISSET(s, &readfds)) read_from_sslcon = 1; } if (read_from_terminal) { if (s_crlf) { int j, lf_num; i = raw_read_stdin(buf, bufsize / 2); lf_num = 0; /* both loops are skipped when i <= 0 */ for (j = 0; j < i; j++) if (buf[j] == '\n') lf_num++; for (j = i - 1; j >= 0; j--) { buf[j + lf_num] = buf[j]; if (buf[j] == '\n') { lf_num--; i++; buf[j + lf_num] = '\r'; } } assert(lf_num == 0); } else { i = raw_read_stdin(buf, bufsize); } if (!s_quiet && !s_brief) { if ((i <= 0) || (buf[0] == 'Q')) { BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); BIO_closesocket(s); close_accept_socket(); ret = -11; goto err; } if ((i <= 0) || (buf[0] == 'q')) { BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); if (SSL_version(con) != DTLS1_VERSION) BIO_closesocket(s); /* * close_accept_socket(); ret= -11; */ goto err; } #ifndef OPENSSL_NO_HEARTBEATS if ((buf[0] == 'B') && ((buf[1] == '\n') || (buf[1] == '\r'))) { BIO_printf(bio_err, "HEARTBEATING\n"); SSL_heartbeat(con); i = 0; continue; } #endif if ((buf[0] == 'r') && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_renegotiate(con); i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; /* 13; */ continue; } if ((buf[0] == 'R') && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_set_verify(con, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE, NULL); SSL_renegotiate(con); i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; /* 13; */ continue; } if ((buf[0] == 'K' || buf[0] == 'k') && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_key_update(con, buf[0] == 'K' ? SSL_KEY_UPDATE_REQUESTED : SSL_KEY_UPDATE_NOT_REQUESTED); i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; continue; } if (buf[0] == 'c' && ((buf[1] == '\n') || (buf[1] == '\r'))) { SSL_set_verify(con, SSL_VERIFY_PEER, NULL); i = SSL_verify_client_post_handshake(con); if (i == 0) { printf("Failed to initiate request\n"); ERR_print_errors(bio_err); } else { i = SSL_do_handshake(con); printf("SSL_do_handshake -> %d\n", i); i = 0; } continue; } if (buf[0] == 'P') { static const char *str = "Lets print some clear text\n"; BIO_write(SSL_get_wbio(con), str, strlen(str)); } if (buf[0] == 'S') { print_stats(bio_s_out, SSL_get_SSL_CTX(con)); } } #ifdef CHARSET_EBCDIC ebcdic2ascii(buf, buf, i); #endif l = k = 0; for (;;) { /* should do a select for the write */ #ifdef RENEG static count = 0; if (++count == 100) { count = 0; SSL_renegotiate(con); } #endif k = SSL_write(con, &(buf[l]), (unsigned int)i); #ifndef OPENSSL_NO_SRP while (SSL_get_error(con, k) == SSL_ERROR_WANT_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during write\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); k = SSL_write(con, &(buf[l]), (unsigned int)i); } #endif switch (SSL_get_error(con, k)) { case SSL_ERROR_NONE: break; case SSL_ERROR_WANT_ASYNC: BIO_printf(bio_s_out, "Write BLOCK (Async)\n"); (void)BIO_flush(bio_s_out); wait_for_async(con); break; case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_READ: case SSL_ERROR_WANT_X509_LOOKUP: BIO_printf(bio_s_out, "Write BLOCK\n"); (void)BIO_flush(bio_s_out); break; case SSL_ERROR_WANT_ASYNC_JOB: /* * This shouldn't ever happen in s_server. Treat as an error */ case SSL_ERROR_SYSCALL: case SSL_ERROR_SSL: BIO_printf(bio_s_out, "ERROR\n"); (void)BIO_flush(bio_s_out); ERR_print_errors(bio_err); ret = 1; goto err; /* break; */ case SSL_ERROR_ZERO_RETURN: BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); ret = 1; goto err; } if (k > 0) { l += k; i -= k; } if (i <= 0) break; } } if (read_from_sslcon) { /* * init_ssl_connection handles all async events itself so if we're * waiting for async then we shouldn't go back into * init_ssl_connection */ if ((!async || !SSL_waiting_for_async(con)) && !SSL_is_init_finished(con)) { i = init_ssl_connection(con); if (i < 0) { ret = 0; goto err; } else if (i == 0) { ret = 1; goto err; } } else { again: i = SSL_read(con, (char *)buf, bufsize); #ifndef OPENSSL_NO_SRP while (SSL_get_error(con, i) == SSL_ERROR_WANT_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during read\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); i = SSL_read(con, (char *)buf, bufsize); } #endif switch (SSL_get_error(con, i)) { case SSL_ERROR_NONE: #ifdef CHARSET_EBCDIC ascii2ebcdic(buf, buf, i); #endif raw_write_stdout(buf, (unsigned int)i); (void)BIO_flush(bio_s_out); if (SSL_has_pending(con)) goto again; break; case SSL_ERROR_WANT_ASYNC: BIO_printf(bio_s_out, "Read BLOCK (Async)\n"); (void)BIO_flush(bio_s_out); wait_for_async(con); break; case SSL_ERROR_WANT_WRITE: case SSL_ERROR_WANT_READ: BIO_printf(bio_s_out, "Read BLOCK\n"); (void)BIO_flush(bio_s_out); break; case SSL_ERROR_WANT_ASYNC_JOB: /* * This shouldn't ever happen in s_server. Treat as an error */ case SSL_ERROR_SYSCALL: case SSL_ERROR_SSL: BIO_printf(bio_s_out, "ERROR\n"); (void)BIO_flush(bio_s_out); ERR_print_errors(bio_err); ret = 1; goto err; case SSL_ERROR_ZERO_RETURN: BIO_printf(bio_s_out, "DONE\n"); (void)BIO_flush(bio_s_out); ret = 1; goto err; } } } } err: if (con != NULL) { BIO_printf(bio_s_out, "shutting down SSL\n"); SSL_set_shutdown(con, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); SSL_free(con); } BIO_printf(bio_s_out, "CONNECTION CLOSED\n"); OPENSSL_clear_free(buf, bufsize); return ret; } static void close_accept_socket(void) { BIO_printf(bio_err, "shutdown accept socket\n"); if (accept_socket >= 0) { BIO_closesocket(accept_socket); } } static int is_retryable(SSL *con, int i) { int err = SSL_get_error(con, i); /* If it's not a fatal error, it must be retryable */ return (err != SSL_ERROR_SSL) && (err != SSL_ERROR_SYSCALL) && (err != SSL_ERROR_ZERO_RETURN); } static int init_ssl_connection(SSL *con) { int i; long verify_err; int retry = 0; if (dtlslisten || stateless) { BIO_ADDR *client = NULL; if (dtlslisten) { if ((client = BIO_ADDR_new()) == NULL) { BIO_printf(bio_err, "ERROR - memory\n"); return 0; } i = DTLSv1_listen(con, client); } else { i = SSL_stateless(con); } if (i > 0) { BIO *wbio; int fd = -1; if (dtlslisten) { wbio = SSL_get_wbio(con); if (wbio) { BIO_get_fd(wbio, &fd); } if (!wbio || BIO_connect(fd, client, 0) == 0) { BIO_printf(bio_err, "ERROR - unable to connect\n"); BIO_ADDR_free(client); return 0; } (void)BIO_ctrl_set_connected(wbio, client); BIO_ADDR_free(client); dtlslisten = 0; } else { stateless = 0; } i = SSL_accept(con); } else { BIO_ADDR_free(client); } } else { do { i = SSL_accept(con); if (i <= 0) retry = is_retryable(con, i); #ifdef CERT_CB_TEST_RETRY { while (i <= 0 && SSL_get_error(con, i) == SSL_ERROR_WANT_X509_LOOKUP && SSL_get_state(con) == TLS_ST_SR_CLNT_HELLO) { BIO_printf(bio_err, "LOOKUP from certificate callback during accept\n"); i = SSL_accept(con); if (i <= 0) retry = is_retryable(con, i); } } #endif #ifndef OPENSSL_NO_SRP while (i <= 0 && SSL_get_error(con, i) == SSL_ERROR_WANT_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP during accept %s\n", srp_callback_parm.login); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); i = SSL_accept(con); if (i <= 0) retry = is_retryable(con, i); } #endif } while (i < 0 && SSL_waiting_for_async(con)); } if (i <= 0) { if (((dtlslisten || stateless) && i == 0) || (!dtlslisten && !stateless && retry)) { BIO_printf(bio_s_out, "DELAY\n"); return 1; } BIO_printf(bio_err, "ERROR\n"); verify_err = SSL_get_verify_result(con); if (verify_err != X509_V_OK) { BIO_printf(bio_err, "verify error:%s\n", X509_verify_cert_error_string(verify_err)); } /* Always print any error messages */ ERR_print_errors(bio_err); return 0; } print_connection_info(con); return 1; } static void print_connection_info(SSL *con) { const char *str; X509 *peer; char buf[BUFSIZ]; #if !defined(OPENSSL_NO_NEXTPROTONEG) const unsigned char *next_proto_neg; unsigned next_proto_neg_len; #endif unsigned char *exportedkeymat; int i; if (s_brief) print_ssl_summary(con); PEM_write_bio_SSL_SESSION(bio_s_out, SSL_get_session(con)); peer = SSL_get_peer_certificate(con); if (peer != NULL) { BIO_printf(bio_s_out, "Client certificate\n"); PEM_write_bio_X509(bio_s_out, peer); dump_cert_text(bio_s_out, peer); X509_free(peer); peer = NULL; } if (SSL_get_shared_ciphers(con, buf, sizeof(buf)) != NULL) BIO_printf(bio_s_out, "Shared ciphers:%s\n", buf); str = SSL_CIPHER_get_name(SSL_get_current_cipher(con)); ssl_print_sigalgs(bio_s_out, con); #ifndef OPENSSL_NO_EC ssl_print_point_formats(bio_s_out, con); ssl_print_groups(bio_s_out, con, 0); #endif print_ca_names(bio_s_out, con); BIO_printf(bio_s_out, "CIPHER is %s\n", (str != NULL) ? str : "(NONE)"); #if !defined(OPENSSL_NO_NEXTPROTONEG) SSL_get0_next_proto_negotiated(con, &next_proto_neg, &next_proto_neg_len); if (next_proto_neg) { BIO_printf(bio_s_out, "NEXTPROTO is "); BIO_write(bio_s_out, next_proto_neg, next_proto_neg_len); BIO_printf(bio_s_out, "\n"); } #endif #ifndef OPENSSL_NO_SRTP { SRTP_PROTECTION_PROFILE *srtp_profile = SSL_get_selected_srtp_profile(con); if (srtp_profile) BIO_printf(bio_s_out, "SRTP Extension negotiated, profile=%s\n", srtp_profile->name); } #endif if (SSL_session_reused(con)) BIO_printf(bio_s_out, "Reused session-id\n"); BIO_printf(bio_s_out, "Secure Renegotiation IS%s supported\n", SSL_get_secure_renegotiation_support(con) ? "" : " NOT"); if ((SSL_get_options(con) & SSL_OP_NO_RENEGOTIATION)) BIO_printf(bio_s_out, "Renegotiation is DISABLED\n"); if (keymatexportlabel != NULL) { BIO_printf(bio_s_out, "Keying material exporter:\n"); BIO_printf(bio_s_out, " Label: '%s'\n", keymatexportlabel); BIO_printf(bio_s_out, " Length: %i bytes\n", keymatexportlen); exportedkeymat = app_malloc(keymatexportlen, "export key"); if (!SSL_export_keying_material(con, exportedkeymat, keymatexportlen, keymatexportlabel, strlen(keymatexportlabel), NULL, 0, 0)) { BIO_printf(bio_s_out, " Error\n"); } else { BIO_printf(bio_s_out, " Keying material: "); for (i = 0; i < keymatexportlen; i++) BIO_printf(bio_s_out, "%02X", exportedkeymat[i]); BIO_printf(bio_s_out, "\n"); } OPENSSL_free(exportedkeymat); } (void)BIO_flush(bio_s_out); } #ifndef OPENSSL_NO_DH static DH *load_dh_param(const char *dhfile) { DH *ret = NULL; BIO *bio; if ((bio = BIO_new_file(dhfile, "r")) == NULL) goto err; ret = PEM_read_bio_DHparams(bio, NULL, NULL, NULL); err: BIO_free(bio); return ret; } #endif static int www_body(int s, int stype, int prot, unsigned char *context) { char *buf = NULL; int ret = 1; int i, j, k, dot; SSL *con; const SSL_CIPHER *c; BIO *io, *ssl_bio, *sbio; #ifdef RENEG int total_bytes = 0; #endif int width; fd_set readfds; /* Set width for a select call if needed */ width = s + 1; buf = app_malloc(bufsize, "server www buffer"); io = BIO_new(BIO_f_buffer()); ssl_bio = BIO_new(BIO_f_ssl()); if ((io == NULL) || (ssl_bio == NULL)) goto err; if (s_nbio) { if (!BIO_socket_nbio(s, 1)) ERR_print_errors(bio_err); else if (!s_quiet) BIO_printf(bio_err, "Turned on non blocking io\n"); } /* lets make the output buffer a reasonable size */ if (!BIO_set_write_buffer_size(io, bufsize)) goto err; if ((con = SSL_new(ctx)) == NULL) goto err; if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (context != NULL && !SSL_set_session_id_context(con, context, strlen((char *)context))) { SSL_free(con); goto err; } sbio = BIO_new_socket(s, BIO_NOCLOSE); if (s_nbio_test) { BIO *test; test = BIO_new(BIO_f_nbio_test()); sbio = BIO_push(test, sbio); } SSL_set_bio(con, sbio, sbio); SSL_set_accept_state(con); /* No need to free |con| after this. Done by BIO_free(ssl_bio) */ BIO_set_ssl(ssl_bio, con, BIO_CLOSE); BIO_push(io, ssl_bio); #ifdef CHARSET_EBCDIC io = BIO_push(BIO_new(BIO_f_ebcdic_filter()), io); #endif if (s_debug) { BIO_set_callback(SSL_get_rbio(con), bio_dump_callback); BIO_set_callback_arg(SSL_get_rbio(con), (char *)bio_s_out); } if (s_msg) { #ifndef OPENSSL_NO_SSL_TRACE if (s_msg == 2) SSL_set_msg_callback(con, SSL_trace); else #endif SSL_set_msg_callback(con, msg_cb); SSL_set_msg_callback_arg(con, bio_s_msg ? bio_s_msg : bio_s_out); } for (;;) { i = BIO_gets(io, buf, bufsize - 1); if (i < 0) { /* error */ if (!BIO_should_retry(io) && !SSL_waiting_for_async(con)) { if (!s_quiet) ERR_print_errors(bio_err); goto err; } else { BIO_printf(bio_s_out, "read R BLOCK\n"); #ifndef OPENSSL_NO_SRP if (BIO_should_io_special(io) && BIO_get_retry_reason(io) == BIO_RR_SSL_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during read\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); continue; } #endif #if !defined(OPENSSL_SYS_MSDOS) sleep(1); #endif continue; } } else if (i == 0) { /* end of input */ ret = 1; goto end; } /* else we have data */ if (((www == 1) && (strncmp("GET ", buf, 4) == 0)) || ((www == 2) && (strncmp("GET /stats ", buf, 11) == 0))) { char *p; X509 *peer = NULL; STACK_OF(SSL_CIPHER) *sk; static const char *space = " "; if (www == 1 && strncmp("GET /reneg", buf, 10) == 0) { if (strncmp("GET /renegcert", buf, 14) == 0) SSL_set_verify(con, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE, NULL); i = SSL_renegotiate(con); BIO_printf(bio_s_out, "SSL_renegotiate -> %d\n", i); /* Send the HelloRequest */ i = SSL_do_handshake(con); if (i <= 0) { BIO_printf(bio_s_out, "SSL_do_handshake() Retval %d\n", SSL_get_error(con, i)); ERR_print_errors(bio_err); goto err; } /* Wait for a ClientHello to come back */ FD_ZERO(&readfds); openssl_fdset(s, &readfds); i = select(width, (void *)&readfds, NULL, NULL, NULL); if (i <= 0 || !FD_ISSET(s, &readfds)) { BIO_printf(bio_s_out, "Error waiting for client response\n"); ERR_print_errors(bio_err); goto err; } /* * We're not actually expecting any data here and we ignore * any that is sent. This is just to force the handshake that * we're expecting to come from the client. If they haven't * sent one there's not much we can do. */ BIO_gets(io, buf, bufsize - 1); } BIO_puts(io, "HTTP/1.0 200 ok\r\nContent-type: text/html\r\n\r\n"); BIO_puts(io, "\n"); BIO_puts(io, "
\n");
            /* BIO_puts(io, OpenSSL_version(OPENSSL_VERSION)); */
            BIO_puts(io, "\n");
            for (i = 0; i < local_argc; i++) {
                const char *myp;
                for (myp = local_argv[i]; *myp; myp++)
                    switch (*myp) {
                    case '<':
                        BIO_puts(io, "<");
                        break;
                    case '>':
                        BIO_puts(io, ">");
                        break;
                    case '&':
                        BIO_puts(io, "&");
                        break;
                    default:
                        BIO_write(io, myp, 1);
                        break;
                    }
                BIO_write(io, " ", 1);
            }
            BIO_puts(io, "\n");

            BIO_printf(io,
                       "Secure Renegotiation IS%s supported\n",
                       SSL_get_secure_renegotiation_support(con) ?
                       "" : " NOT");

            /*
             * The following is evil and should not really be done
             */
            BIO_printf(io, "Ciphers supported in s_server binary\n");
            sk = SSL_get_ciphers(con);
            j = sk_SSL_CIPHER_num(sk);
            for (i = 0; i < j; i++) {
                c = sk_SSL_CIPHER_value(sk, i);
                BIO_printf(io, "%-11s:%-25s ",
                           SSL_CIPHER_get_version(c), SSL_CIPHER_get_name(c));
                if ((((i + 1) % 2) == 0) && (i + 1 != j))
                    BIO_puts(io, "\n");
            }
            BIO_puts(io, "\n");
            p = SSL_get_shared_ciphers(con, buf, bufsize);
            if (p != NULL) {
                BIO_printf(io,
                           "---\nCiphers common between both SSL end points:\n");
                j = i = 0;
                while (*p) {
                    if (*p == ':') {
                        BIO_write(io, space, 26 - j);
                        i++;
                        j = 0;
                        BIO_write(io, ((i % 3) ? " " : "\n"), 1);
                    } else {
                        BIO_write(io, p, 1);
                        j++;
                    }
                    p++;
                }
                BIO_puts(io, "\n");
            }
            ssl_print_sigalgs(io, con);
#ifndef OPENSSL_NO_EC
            ssl_print_groups(io, con, 0);
#endif
            print_ca_names(io, con);
            BIO_printf(io, (SSL_session_reused(con)
                            ? "---\nReused, " : "---\nNew, "));
            c = SSL_get_current_cipher(con);
            BIO_printf(io, "%s, Cipher is %s\n",
                       SSL_CIPHER_get_version(c), SSL_CIPHER_get_name(c));
            SSL_SESSION_print(io, SSL_get_session(con));
            BIO_printf(io, "---\n");
            print_stats(io, SSL_get_SSL_CTX(con));
            BIO_printf(io, "---\n");
            peer = SSL_get_peer_certificate(con);
            if (peer != NULL) {
                BIO_printf(io, "Client certificate\n");
                X509_print(io, peer);
                PEM_write_bio_X509(io, peer);
                X509_free(peer);
                peer = NULL;
            } else {
                BIO_puts(io, "no client certificate available\n");
            }
            BIO_puts(io, "
\r\n\r\n"); break; } else if ((www == 2 || www == 3) && (strncmp("GET /", buf, 5) == 0)) { BIO *file; char *p, *e; static const char *text = "HTTP/1.0 200 ok\r\nContent-type: text/plain\r\n\r\n"; /* skip the '/' */ p = &(buf[5]); dot = 1; for (e = p; *e != '\0'; e++) { if (e[0] == ' ') break; if (e[0] == ':') { /* Windows drive. We treat this the same way as ".." */ dot = -1; break; } switch (dot) { case 1: dot = (e[0] == '.') ? 2 : 0; break; case 2: dot = (e[0] == '.') ? 3 : 0; break; case 3: dot = (e[0] == '/' || e[0] == '\\') ? -1 : 0; break; } if (dot == 0) dot = (e[0] == '/' || e[0] == '\\') ? 1 : 0; } dot = (dot == 3) || (dot == -1); /* filename contains ".." * component */ if (*e == '\0') { BIO_puts(io, text); BIO_printf(io, "'%s' is an invalid file name\r\n", p); break; } *e = '\0'; if (dot) { BIO_puts(io, text); BIO_printf(io, "'%s' contains '..' or ':'\r\n", p); break; } if (*p == '/' || *p == '\\') { BIO_puts(io, text); BIO_printf(io, "'%s' is an invalid path\r\n", p); break; } /* if a directory, do the index thang */ if (app_isdir(p) > 0) { BIO_puts(io, text); BIO_printf(io, "'%s' is a directory\r\n", p); break; } if ((file = BIO_new_file(p, "r")) == NULL) { BIO_puts(io, text); BIO_printf(io, "Error opening '%s'\r\n", p); ERR_print_errors(io); break; } if (!s_quiet) BIO_printf(bio_err, "FILE:%s\n", p); if (www == 2) { i = strlen(p); if (((i > 5) && (strcmp(&(p[i - 5]), ".html") == 0)) || ((i > 4) && (strcmp(&(p[i - 4]), ".php") == 0)) || ((i > 4) && (strcmp(&(p[i - 4]), ".htm") == 0))) BIO_puts(io, "HTTP/1.0 200 ok\r\nContent-type: text/html\r\n\r\n"); else BIO_puts(io, "HTTP/1.0 200 ok\r\nContent-type: text/plain\r\n\r\n"); } /* send the file */ for (;;) { i = BIO_read(file, buf, bufsize); if (i <= 0) break; #ifdef RENEG total_bytes += i; BIO_printf(bio_err, "%d\n", i); if (total_bytes > 3 * 1024) { total_bytes = 0; BIO_printf(bio_err, "RENEGOTIATE\n"); SSL_renegotiate(con); } #endif for (j = 0; j < i;) { #ifdef RENEG static count = 0; if (++count == 13) { SSL_renegotiate(con); } #endif k = BIO_write(io, &(buf[j]), i - j); if (k <= 0) { if (!BIO_should_retry(io) && !SSL_waiting_for_async(con)) goto write_error; else { BIO_printf(bio_s_out, "rwrite W BLOCK\n"); } } else { j += k; } } } write_error: BIO_free(file); break; } } for (;;) { i = (int)BIO_flush(io); if (i <= 0) { if (!BIO_should_retry(io)) break; } else break; } end: /* make sure we re-use sessions */ SSL_set_shutdown(con, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); err: OPENSSL_free(buf); BIO_free_all(io); return ret; } static int rev_body(int s, int stype, int prot, unsigned char *context) { char *buf = NULL; int i; int ret = 1; SSL *con; BIO *io, *ssl_bio, *sbio; buf = app_malloc(bufsize, "server rev buffer"); io = BIO_new(BIO_f_buffer()); ssl_bio = BIO_new(BIO_f_ssl()); if ((io == NULL) || (ssl_bio == NULL)) goto err; /* lets make the output buffer a reasonable size */ if (!BIO_set_write_buffer_size(io, bufsize)) goto err; if ((con = SSL_new(ctx)) == NULL) goto err; if (s_tlsextdebug) { SSL_set_tlsext_debug_callback(con, tlsext_cb); SSL_set_tlsext_debug_arg(con, bio_s_out); } if (context != NULL && !SSL_set_session_id_context(con, context, strlen((char *)context))) { SSL_free(con); ERR_print_errors(bio_err); goto err; } sbio = BIO_new_socket(s, BIO_NOCLOSE); SSL_set_bio(con, sbio, sbio); SSL_set_accept_state(con); /* No need to free |con| after this. Done by BIO_free(ssl_bio) */ BIO_set_ssl(ssl_bio, con, BIO_CLOSE); BIO_push(io, ssl_bio); #ifdef CHARSET_EBCDIC io = BIO_push(BIO_new(BIO_f_ebcdic_filter()), io); #endif if (s_debug) { BIO_set_callback(SSL_get_rbio(con), bio_dump_callback); BIO_set_callback_arg(SSL_get_rbio(con), (char *)bio_s_out); } if (s_msg) { #ifndef OPENSSL_NO_SSL_TRACE if (s_msg == 2) SSL_set_msg_callback(con, SSL_trace); else #endif SSL_set_msg_callback(con, msg_cb); SSL_set_msg_callback_arg(con, bio_s_msg ? bio_s_msg : bio_s_out); } for (;;) { i = BIO_do_handshake(io); if (i > 0) break; if (!BIO_should_retry(io)) { BIO_puts(bio_err, "CONNECTION FAILURE\n"); ERR_print_errors(bio_err); goto end; } #ifndef OPENSSL_NO_SRP if (BIO_should_io_special(io) && BIO_get_retry_reason(io) == BIO_RR_SSL_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during accept\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); continue; } #endif } BIO_printf(bio_err, "CONNECTION ESTABLISHED\n"); print_ssl_summary(con); for (;;) { i = BIO_gets(io, buf, bufsize - 1); if (i < 0) { /* error */ if (!BIO_should_retry(io)) { if (!s_quiet) ERR_print_errors(bio_err); goto err; } else { BIO_printf(bio_s_out, "read R BLOCK\n"); #ifndef OPENSSL_NO_SRP if (BIO_should_io_special(io) && BIO_get_retry_reason(io) == BIO_RR_SSL_X509_LOOKUP) { BIO_printf(bio_s_out, "LOOKUP renego during read\n"); SRP_user_pwd_free(srp_callback_parm.user); srp_callback_parm.user = SRP_VBASE_get1_by_user(srp_callback_parm.vb, srp_callback_parm.login); if (srp_callback_parm.user) BIO_printf(bio_s_out, "LOOKUP done %s\n", srp_callback_parm.user->info); else BIO_printf(bio_s_out, "LOOKUP not successful\n"); continue; } #endif #if !defined(OPENSSL_SYS_MSDOS) sleep(1); #endif continue; } } else if (i == 0) { /* end of input */ ret = 1; BIO_printf(bio_err, "CONNECTION CLOSED\n"); goto end; } else { char *p = buf + i - 1; while (i && (*p == '\n' || *p == '\r')) { p--; i--; } if (!s_ign_eof && (i == 5) && (strncmp(buf, "CLOSE", 5) == 0)) { ret = 1; BIO_printf(bio_err, "CONNECTION CLOSED\n"); goto end; } BUF_reverse((unsigned char *)buf, NULL, i); buf[i] = '\n'; BIO_write(io, buf, i + 1); for (;;) { i = BIO_flush(io); if (i > 0) break; if (!BIO_should_retry(io)) goto end; } } } end: /* make sure we re-use sessions */ SSL_set_shutdown(con, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); err: OPENSSL_free(buf); BIO_free_all(io); return ret; } #define MAX_SESSION_ID_ATTEMPTS 10 static int generate_session_id(SSL *ssl, unsigned char *id, unsigned int *id_len) { unsigned int count = 0; do { if (RAND_bytes(id, *id_len) <= 0) return 0; /* * Prefix the session_id with the required prefix. NB: If our prefix * is too long, clip it - but there will be worse effects anyway, eg. * the server could only possibly create 1 session ID (ie. the * prefix!) so all future session negotiations will fail due to * conflicts. */ memcpy(id, session_id_prefix, (strlen(session_id_prefix) < *id_len) ? strlen(session_id_prefix) : *id_len); } while (SSL_has_matching_session_id(ssl, id, *id_len) && (++count < MAX_SESSION_ID_ATTEMPTS)); if (count >= MAX_SESSION_ID_ATTEMPTS) return 0; return 1; } /* * By default s_server uses an in-memory cache which caches SSL_SESSION * structures without any serialisation. This hides some bugs which only * become apparent in deployed servers. By implementing a basic external * session cache some issues can be debugged using s_server. */ typedef struct simple_ssl_session_st { unsigned char *id; unsigned int idlen; unsigned char *der; int derlen; struct simple_ssl_session_st *next; } simple_ssl_session; static simple_ssl_session *first = NULL; static int add_session(SSL *ssl, SSL_SESSION *session) { simple_ssl_session *sess = app_malloc(sizeof(*sess), "get session"); unsigned char *p; SSL_SESSION_get_id(session, &sess->idlen); sess->derlen = i2d_SSL_SESSION(session, NULL); if (sess->derlen < 0) { BIO_printf(bio_err, "Error encoding session\n"); OPENSSL_free(sess); return 0; } sess->id = OPENSSL_memdup(SSL_SESSION_get_id(session, NULL), sess->idlen); sess->der = app_malloc(sess->derlen, "get session buffer"); if (!sess->id) { BIO_printf(bio_err, "Out of memory adding to external cache\n"); OPENSSL_free(sess->id); OPENSSL_free(sess->der); OPENSSL_free(sess); return 0; } p = sess->der; /* Assume it still works. */ if (i2d_SSL_SESSION(session, &p) != sess->derlen) { BIO_printf(bio_err, "Unexpected session encoding length\n"); OPENSSL_free(sess->id); OPENSSL_free(sess->der); OPENSSL_free(sess); return 0; } sess->next = first; first = sess; BIO_printf(bio_err, "New session added to external cache\n"); return 0; } static SSL_SESSION *get_session(SSL *ssl, const unsigned char *id, int idlen, int *do_copy) { simple_ssl_session *sess; *do_copy = 0; for (sess = first; sess; sess = sess->next) { if (idlen == (int)sess->idlen && !memcmp(sess->id, id, idlen)) { const unsigned char *p = sess->der; BIO_printf(bio_err, "Lookup session: cache hit\n"); return d2i_SSL_SESSION(NULL, &p, sess->derlen); } } BIO_printf(bio_err, "Lookup session: cache miss\n"); return NULL; } static void del_session(SSL_CTX *sctx, SSL_SESSION *session) { simple_ssl_session *sess, *prev = NULL; const unsigned char *id; unsigned int idlen; id = SSL_SESSION_get_id(session, &idlen); for (sess = first; sess; sess = sess->next) { if (idlen == sess->idlen && !memcmp(sess->id, id, idlen)) { if (prev) prev->next = sess->next; else first = sess->next; OPENSSL_free(sess->id); OPENSSL_free(sess->der); OPENSSL_free(sess); return; } prev = sess; } } static void init_session_cache_ctx(SSL_CTX *sctx) { SSL_CTX_set_session_cache_mode(sctx, SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_SERVER); SSL_CTX_sess_set_new_cb(sctx, add_session); SSL_CTX_sess_set_get_cb(sctx, get_session); SSL_CTX_sess_set_remove_cb(sctx, del_session); } static void free_sessions(void) { simple_ssl_session *sess, *tsess; for (sess = first; sess;) { OPENSSL_free(sess->id); OPENSSL_free(sess->der); tsess = sess; sess = sess->next; OPENSSL_free(tsess); } first = NULL; } #endif /* OPENSSL_NO_SOCK */ openssl-1.1.1f/apps/s_socket.c000066400000000000000000000326671364063235100163050ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* socket-related functions used by s_client and s_server */ #include #include #include #include #include #include /* * With IPv6, it looks like Digital has mixed up the proper order of * recursive header file inclusion, resulting in the compiler complaining * that u_int isn't defined, but only if _POSIX_C_SOURCE is defined, which is * needed to have fileno() declared correctly... So let's define u_int */ #if defined(OPENSSL_SYS_VMS_DECC) && !defined(__U_INT) # define __U_INT typedef unsigned int u_int; #endif #ifndef OPENSSL_NO_SOCK # include "apps.h" # include "s_apps.h" # include "internal/sockets.h" # include # include /* Keep track of our peer's address for the cookie callback */ BIO_ADDR *ourpeer = NULL; /* * init_client - helper routine to set up socket communication * @sock: pointer to storage of resulting socket. * @host: the host name or path (for AF_UNIX) to connect to. * @port: the port to connect to (ignored for AF_UNIX). * @bindhost: source host or path (for AF_UNIX). * @bindport: source port (ignored for AF_UNIX). * @family: desired socket family, may be AF_INET, AF_INET6, AF_UNIX or * AF_UNSPEC * @type: socket type, must be SOCK_STREAM or SOCK_DGRAM * @protocol: socket protocol, e.g. IPPROTO_TCP or IPPROTO_UDP (or 0 for any) * * This will create a socket and use it to connect to a host:port, or if * family == AF_UNIX, to the path found in host. * * If the host has more than one address, it will try them one by one until * a successful connection is established. The resulting socket will be * found in *sock on success, it will be given INVALID_SOCKET otherwise. * * Returns 1 on success, 0 on failure. */ int init_client(int *sock, const char *host, const char *port, const char *bindhost, const char *bindport, int family, int type, int protocol) { BIO_ADDRINFO *res = NULL; BIO_ADDRINFO *bindaddr = NULL; const BIO_ADDRINFO *ai = NULL; const BIO_ADDRINFO *bi = NULL; int found = 0; int ret; if (BIO_sock_init() != 1) return 0; ret = BIO_lookup_ex(host, port, BIO_LOOKUP_CLIENT, family, type, protocol, &res); if (ret == 0) { ERR_print_errors(bio_err); return 0; } if (bindhost != NULL || bindport != NULL) { ret = BIO_lookup_ex(bindhost, bindport, BIO_LOOKUP_CLIENT, family, type, protocol, &bindaddr); if (ret == 0) { ERR_print_errors (bio_err); goto out; } } ret = 0; for (ai = res; ai != NULL; ai = BIO_ADDRINFO_next(ai)) { /* Admittedly, these checks are quite paranoid, we should not get * anything in the BIO_ADDRINFO chain that we haven't * asked for. */ OPENSSL_assert((family == AF_UNSPEC || family == BIO_ADDRINFO_family(ai)) && (type == 0 || type == BIO_ADDRINFO_socktype(ai)) && (protocol == 0 || protocol == BIO_ADDRINFO_protocol(ai))); if (bindaddr != NULL) { for (bi = bindaddr; bi != NULL; bi = BIO_ADDRINFO_next(bi)) { if (BIO_ADDRINFO_family(bi) == BIO_ADDRINFO_family(ai)) break; } if (bi == NULL) continue; ++found; } *sock = BIO_socket(BIO_ADDRINFO_family(ai), BIO_ADDRINFO_socktype(ai), BIO_ADDRINFO_protocol(ai), 0); if (*sock == INVALID_SOCKET) { /* Maybe the kernel doesn't support the socket family, even if * BIO_lookup() added it in the returned result... */ continue; } if (bi != NULL) { if (!BIO_bind(*sock, BIO_ADDRINFO_address(bi), BIO_SOCK_REUSEADDR)) { BIO_closesocket(*sock); *sock = INVALID_SOCKET; break; } } #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP) { /* * For SCTP we have to set various options on the socket prior to * connecting. This is done automatically by BIO_new_dgram_sctp(). * We don't actually need the created BIO though so we free it again * immediately. */ BIO *tmpbio = BIO_new_dgram_sctp(*sock, BIO_NOCLOSE); if (tmpbio == NULL) { ERR_print_errors(bio_err); return 0; } BIO_free(tmpbio); } #endif if (!BIO_connect(*sock, BIO_ADDRINFO_address(ai), protocol == IPPROTO_TCP ? BIO_SOCK_NODELAY : 0)) { BIO_closesocket(*sock); *sock = INVALID_SOCKET; continue; } /* Success, don't try any more addresses */ break; } if (*sock == INVALID_SOCKET) { if (bindaddr != NULL && !found) { BIO_printf(bio_err, "Can't bind %saddress for %s%s%s\n", BIO_ADDRINFO_family(res) == AF_INET6 ? "IPv6 " : BIO_ADDRINFO_family(res) == AF_INET ? "IPv4 " : BIO_ADDRINFO_family(res) == AF_UNIX ? "unix " : "", bindhost != NULL ? bindhost : "", bindport != NULL ? ":" : "", bindport != NULL ? bindport : ""); ERR_clear_error(); ret = 0; } ERR_print_errors(bio_err); } else { /* Remove any stale errors from previous connection attempts */ ERR_clear_error(); ret = 1; } out: if (bindaddr != NULL) { BIO_ADDRINFO_free (bindaddr); } BIO_ADDRINFO_free(res); return ret; } /* * do_server - helper routine to perform a server operation * @accept_sock: pointer to storage of resulting socket. * @host: the host name or path (for AF_UNIX) to connect to. * @port: the port to connect to (ignored for AF_UNIX). * @family: desired socket family, may be AF_INET, AF_INET6, AF_UNIX or * AF_UNSPEC * @type: socket type, must be SOCK_STREAM or SOCK_DGRAM * @cb: pointer to a function that receives the accepted socket and * should perform the communication with the connecting client. * @context: pointer to memory that's passed verbatim to the cb function. * @naccept: number of times an incoming connect should be accepted. If -1, * unlimited number. * * This will create a socket and use it to listen to a host:port, or if * family == AF_UNIX, to the path found in host, then start accepting * incoming connections and run cb on the resulting socket. * * 0 on failure, something other on success. */ int do_server(int *accept_sock, const char *host, const char *port, int family, int type, int protocol, do_server_cb cb, unsigned char *context, int naccept, BIO *bio_s_out) { int asock = 0; int sock; int i; BIO_ADDRINFO *res = NULL; const BIO_ADDRINFO *next; int sock_family, sock_type, sock_protocol, sock_port; const BIO_ADDR *sock_address; int sock_options = BIO_SOCK_REUSEADDR; int ret = 0; if (BIO_sock_init() != 1) return 0; if (!BIO_lookup_ex(host, port, BIO_LOOKUP_SERVER, family, type, protocol, &res)) { ERR_print_errors(bio_err); return 0; } /* Admittedly, these checks are quite paranoid, we should not get * anything in the BIO_ADDRINFO chain that we haven't asked for */ OPENSSL_assert((family == AF_UNSPEC || family == BIO_ADDRINFO_family(res)) && (type == 0 || type == BIO_ADDRINFO_socktype(res)) && (protocol == 0 || protocol == BIO_ADDRINFO_protocol(res))); sock_family = BIO_ADDRINFO_family(res); sock_type = BIO_ADDRINFO_socktype(res); sock_protocol = BIO_ADDRINFO_protocol(res); sock_address = BIO_ADDRINFO_address(res); next = BIO_ADDRINFO_next(res); if (sock_family == AF_INET6) sock_options |= BIO_SOCK_V6_ONLY; if (next != NULL && BIO_ADDRINFO_socktype(next) == sock_type && BIO_ADDRINFO_protocol(next) == sock_protocol) { if (sock_family == AF_INET && BIO_ADDRINFO_family(next) == AF_INET6) { sock_family = AF_INET6; sock_address = BIO_ADDRINFO_address(next); } else if (sock_family == AF_INET6 && BIO_ADDRINFO_family(next) == AF_INET) { sock_options &= ~BIO_SOCK_V6_ONLY; } } asock = BIO_socket(sock_family, sock_type, sock_protocol, 0); if (asock == INVALID_SOCKET || !BIO_listen(asock, sock_address, sock_options)) { BIO_ADDRINFO_free(res); ERR_print_errors(bio_err); if (asock != INVALID_SOCKET) BIO_closesocket(asock); goto end; } #ifndef OPENSSL_NO_SCTP if (protocol == IPPROTO_SCTP) { /* * For SCTP we have to set various options on the socket prior to * accepting. This is done automatically by BIO_new_dgram_sctp(). * We don't actually need the created BIO though so we free it again * immediately. */ BIO *tmpbio = BIO_new_dgram_sctp(asock, BIO_NOCLOSE); if (tmpbio == NULL) { BIO_closesocket(asock); ERR_print_errors(bio_err); goto end; } BIO_free(tmpbio); } #endif sock_port = BIO_ADDR_rawport(sock_address); BIO_ADDRINFO_free(res); res = NULL; if (sock_port == 0) { /* dynamically allocated port, report which one */ union BIO_sock_info_u info; char *hostname = NULL; char *service = NULL; int success = 0; if ((info.addr = BIO_ADDR_new()) != NULL && BIO_sock_info(asock, BIO_SOCK_INFO_ADDRESS, &info) && (hostname = BIO_ADDR_hostname_string(info.addr, 1)) != NULL && (service = BIO_ADDR_service_string(info.addr, 1)) != NULL && BIO_printf(bio_s_out, strchr(hostname, ':') == NULL ? /* IPv4 */ "ACCEPT %s:%s\n" : /* IPv6 */ "ACCEPT [%s]:%s\n", hostname, service) > 0) success = 1; (void)BIO_flush(bio_s_out); OPENSSL_free(hostname); OPENSSL_free(service); BIO_ADDR_free(info.addr); if (!success) { BIO_closesocket(asock); ERR_print_errors(bio_err); goto end; } } else { (void)BIO_printf(bio_s_out, "ACCEPT\n"); (void)BIO_flush(bio_s_out); } if (accept_sock != NULL) *accept_sock = asock; for (;;) { char sink[64]; struct timeval timeout; fd_set readfds; if (type == SOCK_STREAM) { BIO_ADDR_free(ourpeer); ourpeer = BIO_ADDR_new(); if (ourpeer == NULL) { BIO_closesocket(asock); ERR_print_errors(bio_err); goto end; } do { sock = BIO_accept_ex(asock, ourpeer, 0); } while (sock < 0 && BIO_sock_should_retry(sock)); if (sock < 0) { ERR_print_errors(bio_err); BIO_closesocket(asock); break; } BIO_set_tcp_ndelay(sock, 1); i = (*cb)(sock, type, protocol, context); /* * If we ended with an alert being sent, but still with data in the * network buffer to be read, then calling BIO_closesocket() will * result in a TCP-RST being sent. On some platforms (notably * Windows) then this will result in the peer immediately abandoning * the connection including any buffered alert data before it has * had a chance to be read. Shutting down the sending side first, * and then closing the socket sends TCP-FIN first followed by * TCP-RST. This seems to allow the peer to read the alert data. */ shutdown(sock, 1); /* SHUT_WR */ /* * We just said we have nothing else to say, but it doesn't mean * that the other side has nothing. It's even recommended to * consume incoming data. [In testing context this ensures that * alerts are passed on...] */ timeout.tv_sec = 0; timeout.tv_usec = 500000; /* some extreme round-trip */ do { FD_ZERO(&readfds); openssl_fdset(sock, &readfds); } while (select(sock + 1, &readfds, NULL, NULL, &timeout) > 0 && readsocket(sock, sink, sizeof(sink)) > 0); BIO_closesocket(sock); } else { i = (*cb)(asock, type, protocol, context); } if (naccept != -1) naccept--; if (i < 0 || naccept == 0) { BIO_closesocket(asock); ret = i; break; } } end: # ifdef AF_UNIX if (family == AF_UNIX) unlink(host); # endif BIO_ADDR_free(ourpeer); ourpeer = NULL; return ret; } #endif /* OPENSSL_NO_SOCK */ openssl-1.1.1f/apps/s_time.c000066400000000000000000000275341364063235100157500ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #ifndef OPENSSL_NO_SOCK #include "apps.h" #include "progs.h" #include #include #include #include "s_apps.h" #include #include #if !defined(OPENSSL_SYS_MSDOS) # include OPENSSL_UNISTD #endif #define SSL_CONNECT_NAME "localhost:4433" #define SECONDS 30 #define SECONDSSTR "30" static SSL *doConnection(SSL *scon, const char *host, SSL_CTX *ctx); /* * Define a HTTP get command globally. * Also define the size of the command, this is two bytes less than * the size of the string because the %s is replaced by the URL. */ static const char fmt_http_get_cmd[] = "GET %s HTTP/1.0\r\n\r\n"; static const size_t fmt_http_get_cmd_size = sizeof(fmt_http_get_cmd) - 2; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_CONNECT, OPT_CIPHER, OPT_CIPHERSUITES, OPT_CERT, OPT_NAMEOPT, OPT_KEY, OPT_CAPATH, OPT_CAFILE, OPT_NOCAPATH, OPT_NOCAFILE, OPT_NEW, OPT_REUSE, OPT_BUGS, OPT_VERIFY, OPT_TIME, OPT_SSL3, OPT_WWW } OPTION_CHOICE; const OPTIONS s_time_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"connect", OPT_CONNECT, 's', "Where to connect as post:port (default is " SSL_CONNECT_NAME ")"}, {"cipher", OPT_CIPHER, 's', "TLSv1.2 and below cipher list to be used"}, {"ciphersuites", OPT_CIPHERSUITES, 's', "Specify TLSv1.3 ciphersuites to be used"}, {"cert", OPT_CERT, '<', "Cert file to use, PEM format assumed"}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, {"key", OPT_KEY, '<', "File with key, PEM; default is -cert file"}, {"CApath", OPT_CAPATH, '/', "PEM format directory of CA's"}, {"cafile", OPT_CAFILE, '<', "PEM format file of CA's"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"new", OPT_NEW, '-', "Just time new connections"}, {"reuse", OPT_REUSE, '-', "Just time connection reuse"}, {"bugs", OPT_BUGS, '-', "Turn on SSL bug compatibility"}, {"verify", OPT_VERIFY, 'p', "Turn on peer certificate verification, set depth"}, {"time", OPT_TIME, 'p', "Seconds to collect data, default " SECONDSSTR}, {"www", OPT_WWW, 's', "Fetch specified page from the site"}, #ifndef OPENSSL_NO_SSL3 {"ssl3", OPT_SSL3, '-', "Just use SSLv3"}, #endif {NULL} }; #define START 0 #define STOP 1 static double tm_Time_F(int s) { return app_tminterval(s, 1); } int s_time_main(int argc, char **argv) { char buf[1024 * 8]; SSL *scon = NULL; SSL_CTX *ctx = NULL; const SSL_METHOD *meth = NULL; char *CApath = NULL, *CAfile = NULL, *cipher = NULL, *ciphersuites = NULL; char *www_path = NULL; char *host = SSL_CONNECT_NAME, *certfile = NULL, *keyfile = NULL, *prog; double totalTime = 0.0; int noCApath = 0, noCAfile = 0; int maxtime = SECONDS, nConn = 0, perform = 3, ret = 1, i, st_bugs = 0; long bytes_read = 0, finishtime = 0; OPTION_CHOICE o; int max_version = 0, ver, buf_len; size_t buf_size; meth = TLS_client_method(); prog = opt_init(argc, argv, s_time_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(s_time_options); ret = 0; goto end; case OPT_CONNECT: host = opt_arg(); break; case OPT_REUSE: perform = 2; break; case OPT_NEW: perform = 1; break; case OPT_VERIFY: if (!opt_int(opt_arg(), &verify_args.depth)) goto opthelp; BIO_printf(bio_err, "%s: verify depth is %d\n", prog, verify_args.depth); break; case OPT_CERT: certfile = opt_arg(); break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto end; break; case OPT_KEY: keyfile = opt_arg(); break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_CIPHER: cipher = opt_arg(); break; case OPT_CIPHERSUITES: ciphersuites = opt_arg(); break; case OPT_BUGS: st_bugs = 1; break; case OPT_TIME: if (!opt_int(opt_arg(), &maxtime)) goto opthelp; break; case OPT_WWW: www_path = opt_arg(); buf_size = strlen(www_path) + fmt_http_get_cmd_size; if (buf_size > sizeof(buf)) { BIO_printf(bio_err, "%s: -www option is too long\n", prog); goto end; } break; case OPT_SSL3: max_version = SSL3_VERSION; break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; if (cipher == NULL) cipher = getenv("SSL_CIPHER"); if ((ctx = SSL_CTX_new(meth)) == NULL) goto end; SSL_CTX_set_mode(ctx, SSL_MODE_AUTO_RETRY); SSL_CTX_set_quiet_shutdown(ctx, 1); if (SSL_CTX_set_max_proto_version(ctx, max_version) == 0) goto end; if (st_bugs) SSL_CTX_set_options(ctx, SSL_OP_ALL); if (cipher != NULL && !SSL_CTX_set_cipher_list(ctx, cipher)) goto end; if (ciphersuites != NULL && !SSL_CTX_set_ciphersuites(ctx, ciphersuites)) goto end; if (!set_cert_stuff(ctx, certfile, keyfile)) goto end; if (!ctx_set_verify_locations(ctx, CAfile, CApath, noCAfile, noCApath)) { ERR_print_errors(bio_err); goto end; } if (!(perform & 1)) goto next; printf("Collecting connection statistics for %d seconds\n", maxtime); /* Loop and time how long it takes to make connections */ bytes_read = 0; finishtime = (long)time(NULL) + maxtime; tm_Time_F(START); for (;;) { if (finishtime < (long)time(NULL)) break; if ((scon = doConnection(NULL, host, ctx)) == NULL) goto end; if (www_path != NULL) { buf_len = BIO_snprintf(buf, sizeof(buf), fmt_http_get_cmd, www_path); if (buf_len <= 0 || SSL_write(scon, buf, buf_len) <= 0) goto end; while ((i = SSL_read(scon, buf, sizeof(buf))) > 0) bytes_read += i; } SSL_set_shutdown(scon, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); BIO_closesocket(SSL_get_fd(scon)); nConn += 1; if (SSL_session_reused(scon)) { ver = 'r'; } else { ver = SSL_version(scon); if (ver == TLS1_VERSION) ver = 't'; else if (ver == SSL3_VERSION) ver = '3'; else ver = '*'; } fputc(ver, stdout); fflush(stdout); SSL_free(scon); scon = NULL; } totalTime += tm_Time_F(STOP); /* Add the time for this iteration */ i = (int)((long)time(NULL) - finishtime + maxtime); printf ("\n\n%d connections in %.2fs; %.2f connections/user sec, bytes read %ld\n", nConn, totalTime, ((double)nConn / totalTime), bytes_read); printf ("%d connections in %ld real seconds, %ld bytes read per connection\n", nConn, (long)time(NULL) - finishtime + maxtime, bytes_read / nConn); /* * Now loop and time connections using the same session id over and over */ next: if (!(perform & 2)) goto end; printf("\n\nNow timing with session id reuse.\n"); /* Get an SSL object so we can reuse the session id */ if ((scon = doConnection(NULL, host, ctx)) == NULL) { BIO_printf(bio_err, "Unable to get connection\n"); goto end; } if (www_path != NULL) { buf_len = BIO_snprintf(buf, sizeof(buf), fmt_http_get_cmd, www_path); if (buf_len <= 0 || SSL_write(scon, buf, buf_len) <= 0) goto end; while ((i = SSL_read(scon, buf, sizeof(buf))) > 0) continue; } SSL_set_shutdown(scon, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); BIO_closesocket(SSL_get_fd(scon)); nConn = 0; totalTime = 0.0; finishtime = (long)time(NULL) + maxtime; printf("starting\n"); bytes_read = 0; tm_Time_F(START); for (;;) { if (finishtime < (long)time(NULL)) break; if ((doConnection(scon, host, ctx)) == NULL) goto end; if (www_path != NULL) { buf_len = BIO_snprintf(buf, sizeof(buf), fmt_http_get_cmd, www_path); if (buf_len <= 0 || SSL_write(scon, buf, buf_len) <= 0) goto end; while ((i = SSL_read(scon, buf, sizeof(buf))) > 0) bytes_read += i; } SSL_set_shutdown(scon, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); BIO_closesocket(SSL_get_fd(scon)); nConn += 1; if (SSL_session_reused(scon)) { ver = 'r'; } else { ver = SSL_version(scon); if (ver == TLS1_VERSION) ver = 't'; else if (ver == SSL3_VERSION) ver = '3'; else ver = '*'; } fputc(ver, stdout); fflush(stdout); } totalTime += tm_Time_F(STOP); /* Add the time for this iteration */ printf ("\n\n%d connections in %.2fs; %.2f connections/user sec, bytes read %ld\n", nConn, totalTime, ((double)nConn / totalTime), bytes_read); printf ("%d connections in %ld real seconds, %ld bytes read per connection\n", nConn, (long)time(NULL) - finishtime + maxtime, bytes_read / nConn); ret = 0; end: SSL_free(scon); SSL_CTX_free(ctx); return ret; } /*- * doConnection - make a connection */ static SSL *doConnection(SSL *scon, const char *host, SSL_CTX *ctx) { BIO *conn; SSL *serverCon; int i; if ((conn = BIO_new(BIO_s_connect())) == NULL) return NULL; BIO_set_conn_hostname(conn, host); BIO_set_conn_mode(conn, BIO_SOCK_NODELAY); if (scon == NULL) serverCon = SSL_new(ctx); else { serverCon = scon; SSL_set_connect_state(serverCon); } SSL_set_bio(serverCon, conn, conn); /* ok, lets connect */ i = SSL_connect(serverCon); if (i <= 0) { BIO_printf(bio_err, "ERROR\n"); if (verify_args.error != X509_V_OK) BIO_printf(bio_err, "verify error:%s\n", X509_verify_cert_error_string(verify_args.error)); else ERR_print_errors(bio_err); if (scon == NULL) SSL_free(serverCon); return NULL; } #if defined(SOL_SOCKET) && defined(SO_LINGER) { struct linger no_linger; int fd; no_linger.l_onoff = 1; no_linger.l_linger = 0; fd = SSL_get_fd(serverCon); if (fd >= 0) (void)setsockopt(fd, SOL_SOCKET, SO_LINGER, (char*)&no_linger, sizeof(no_linger)); } #endif return serverCon; } #endif /* OPENSSL_NO_SOCK */ openssl-1.1.1f/apps/server.pem000066400000000000000000000054471364063235100163340ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIDJTCCAg2gAwIBAgIBAjANBgkqhkiG9w0BAQsFADASMRAwDgYDVQQDDAdSb290 IENBMCAXDTE2MDExNDIyMjk0NloYDzIxMTYwMTE1MjIyOTQ2WjAZMRcwFQYDVQQD DA5zZXJ2ZXIuZXhhbXBsZTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB ANVdYGrf/GHuSKqMEUhDpW22Ul2qmEmxYZI1sfw6BCUMbXn/tNXJ6VwcO+Crs7h9 o95tveDd11q/FEcRQl6mgtBhwX/dE0bmCYUHDvLU/Bpk0gqtIKsga5bwrczEGVNV 3AEdpLPvirRJU12KBRzx3OFEv8XX4ncZV1yXC3XuiENxD8pswbSyUKd3RmxYDxG/ 8XYkWq45QrdRZynh0FUwbxfkkeqt+CjCQ2+iZKn7nZiSYkg+6w1PgkqK/z9y7pa1 rqHBmLrvfZB1bf9aUp6r9cB+0IdD24UHBw99OHr90dPuZR3T6jlqhzfuStPgDW71 cKzCvfFu85KVXqnwoWWVk40CAwEAAaN9MHswHQYDVR0OBBYEFMDnhL/oWSczELBS T1FSLwbWwHrNMB8GA1UdIwQYMBaAFHB/Lq6DaFmYBCMqzes+F80k3QFJMAkGA1Ud EwQCMAAwEwYDVR0lBAwwCgYIKwYBBQUHAwEwGQYDVR0RBBIwEIIOc2VydmVyLmV4 YW1wbGUwDQYJKoZIhvcNAQELBQADggEBAHvTBEN1ig8RrsT716Ginv4gGNX0LzGI RrZ1jO7lm5emuaPNYJpGw0iX5Zdo91qGNXPZaZ75X3S55pQTActq3OPEBOll2pyk iyjz+Zp/v5cfRZLlBbFW5gv2R94eibYr4U3fSn4B0yPcl4xH/l/HzJhGDsSDW8qK 8VIJvmvsPwmL0JMCv+FR59F+NFYZdND/KCXet59WUpF9ICmFCoBEX3EyJXEPwhbi X2sdPzJbCjx0HLli8e0HUKNttLQxCsBTRGo6iISLLamwN47mGDa9miBADwGSiz2q YeeuLO02zToHhnQ6KbPXOrQAqcL1kngO4g+j/ru+4AZThFkdkGnltvk= -----END CERTIFICATE----- -----BEGIN PRIVATE KEY----- MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDVXWBq3/xh7kiq jBFIQ6VttlJdqphJsWGSNbH8OgQlDG15/7TVyelcHDvgq7O4faPebb3g3ddavxRH EUJepoLQYcF/3RNG5gmFBw7y1PwaZNIKrSCrIGuW8K3MxBlTVdwBHaSz74q0SVNd igUc8dzhRL/F1+J3GVdclwt17ohDcQ/KbMG0slCnd0ZsWA8Rv/F2JFquOUK3UWcp 4dBVMG8X5JHqrfgowkNvomSp+52YkmJIPusNT4JKiv8/cu6Wta6hwZi6732QdW3/ WlKeq/XAftCHQ9uFBwcPfTh6/dHT7mUd0+o5aoc37krT4A1u9XCswr3xbvOSlV6p 8KFllZONAgMBAAECggEADLTt7A+A2Vg2jamf0dztejY0e42QWjstI2b9PZc67fXq gyx+WYkX07t+uWegYWliG/oPJ9guXiIpE/5sJHToL37S5kmFP2CtynVcJ4wVo4DD nY0n9+kLX0bgIuS+2V6wpoRcbbbjXM9NHrH8kfe5ftT4UtEDlLI2qLX6IcDd7p4u OYjILChR8GSGTw96yIy2Ws/1Uq9PMw64JoT4RcK5QqnkcPMDFRH1SeLOL+zXP2c4 nEl9yOy3HauZKxwl/Ry/XK1s3DdjopIAU29ut+hAuMiTb06kzZnumL9NoplKoZtU otw/gVcCKhT+Ep+p6i8InLF0XEME8A0qUR0niWebgQKBgQD6vkxR49B8ZZQrzjw4 XKs1lI9cP7cgPiuWlDHMNjYou3WbOaGrMeScvbB1Ldh9A8pjAhxlw8AaV/xs4qcA trmVmSISVMVyc1wSGlJXWi2nUzTNs9OE3vj22SyStihf8UUZtWwX2b5Y4JrYhA/V +ThGGqHR03oLNLShNLtJc2c7YQKBgQDZ1nkibEyrepexw/fnwkw61IJKq9wRIh1G PREakhbe9wU5ie0knuf9razt7awzQiwFmlixmWqsM7UEtLuXNnNPciwdrKhhbvrd vD/rkbIEHEPllIhFlDtOzn3hRBWTzWmXFjpou/2LvHTSbVis4IYVZymTp2jb1ZLs 7VbiG9JTrQKBgQDc6n75g1szzpdehQT/r33U5j/syeJBUSU8NPMu9fB/sLHsgjlT SNEf2+y1QSBE/Or6kmiMrIv7advn30W+Vj9qc5HWTsPrk4HiHTjA553jl2alebN5 lK4LZspjtIQcC8mS3goPdXPEgJdM/gWpwzr2YQ6DfOxBJT2j7n64NyoT4QKBgH7/ yx+GhCx1DHtXBPDZFhg2TL+78lEK0oZgk9gp06up2CHzh44SFq6O0oLkTcCUk5Ww poTkLIy4mJBlzfgahp+KsK2cO46SZS9g0ONFzcMXt33hWpE2Gl2XhUwPpYTF/QlY rDTjZK5S8Mi9dzVSsNlJi7PJphiEK2R1+nFYRwcBAoGBANWoIG85jpXAOnq/Kcgx Rl3YivR0Ke6r1tFlP58rT7X3EkiboXyQl5vLIFCAwUte6RGrLl1dy3Qyh80B9ySL Jx6vj42CK7vgv6A96TuVYhnXTnEI6ZvwAQ2VGaw4BizhjALs/kdSE/og9aSCs3ws KQypwAFz0tbHxaNag/bSAN0J -----END PRIVATE KEY----- openssl-1.1.1f/apps/server.srl000066400000000000000000000000031364063235100163320ustar00rootroot0000000000000001 openssl-1.1.1f/apps/server2.pem000066400000000000000000000063301364063235100164060ustar00rootroot00000000000000subject= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = Test Server Cert #2 issuer= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = OpenSSL Test Intermediate CA -----BEGIN CERTIFICATE----- MIID6jCCAtKgAwIBAgIJALnu1NlVpZ60MA0GCSqGSIb3DQEBBQUAMHAxCzAJBgNV BAYTAlVLMRYwFAYDVQQKDA1PcGVuU1NMIEdyb3VwMSIwIAYDVQQLDBlGT1IgVEVT VElORyBQVVJQT1NFUyBPTkxZMSUwIwYDVQQDDBxPcGVuU1NMIFRlc3QgSW50ZXJt ZWRpYXRlIENBMB4XDTExMTIwODE0MDE0OFoXDTIxMTAxNjE0MDE0OFowZzELMAkG A1UEBhMCVUsxFjAUBgNVBAoMDU9wZW5TU0wgR3JvdXAxIjAgBgNVBAsMGUZPUiBU RVNUSU5HIFBVUlBPU0VTIE9OTFkxHDAaBgNVBAMME1Rlc3QgU2VydmVyIENlcnQg IzIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDrdi7j9yctG+L4EjBy gjPmEqZzOJEQba26MoQGzglU7e5Xf59Rb/hgVQuKAoiZe7/R8rK4zJ4W7iXdXw0L qBpyG8B5aGKeI32w+A9TcBApoXXL2CrYQEQjZwUIpLlYBIi2NkJj3nVkq5dgl1gO ALiQ+W8jg3kzg5Ec9rimp9r93N8wsSL3awsafurmYCvOf7leHaMP1WJ/zDRGUNHG /WtDjXc8ZUG1+6EXU9Jc2Fs+2Omf7fcN0l00AK/wPg8OaNS0rKyGq9JdIT9FRGV1 bXe/rx58FaE5CItdwCSYhJvF/O95LWQoxJXye5bCFLmvDTEyVq9FMSCptfsmbXjE ZGsXAgMBAAGjgY8wgYwwDAYDVR0TAQH/BAIwADAOBgNVHQ8BAf8EBAMCBeAwLAYJ YIZIAYb4QgENBB8WHU9wZW5TU0wgR2VuZXJhdGVkIENlcnRpZmljYXRlMB0GA1Ud DgQWBBR52UaWWTKzZGDH/X4mWNcuqeQVazAfBgNVHSMEGDAWgBQ2w2yI55X+sL3s zj49hqshgYfa2jANBgkqhkiG9w0BAQUFAAOCAQEANBW+XYLlHBqVY/31ie+3gRlS LPfy4SIqn0t3RJjagT29MXprblBO2cbMO8VGjkQdKGpmMXjxbht2arOOUXRHX4n/ XTyn/QHEf0bcwIITMReO3DZUPAEw8hSjn9xEOM0IRVOCP+mH5fi74QzzQaZVCyYg 5VtLKdww/+sc0nCbKl2KWgDluriH0nfVx95qgW3mg9dhXRr0zmf1w2zkBHYpARYL Dew6Z8EE4tS3HJu8/qM6meWzNtrfonQ3eiiMxjZBxzV46jchBwa2z9XYhP6AmpPb oeTSzcQNbWsxaGYzWo46oLDUZmJOwSBawbS31bZNMCoPIY6ukoesCzFSsUKZww== -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIIEowIBAAKCAQEA63Yu4/cnLRvi+BIwcoIz5hKmcziREG2tujKEBs4JVO3uV3+f UW/4YFULigKImXu/0fKyuMyeFu4l3V8NC6gachvAeWhiniN9sPgPU3AQKaF1y9gq 2EBEI2cFCKS5WASItjZCY951ZKuXYJdYDgC4kPlvI4N5M4ORHPa4pqfa/dzfMLEi 92sLGn7q5mArzn+5Xh2jD9Vif8w0RlDRxv1rQ413PGVBtfuhF1PSXNhbPtjpn+33 DdJdNACv8D4PDmjUtKyshqvSXSE/RURldW13v68efBWhOQiLXcAkmISbxfzveS1k KMSV8nuWwhS5rw0xMlavRTEgqbX7Jm14xGRrFwIDAQABAoIBAHLsTPihIfLnYIE5 x4GsQQ5zXeBw5ITDM37ktwHnQDC+rIzyUl1aLD1AZRBoKinXd4lOTqLZ4/NHKx4A DYr58mZtWyUmqLOMmQVuHXTZBlp7XtYuXMMNovQwjQlp9LicBeoBU6gQ5PVMtubD F4xGF89Sn0cTHW3iMkqTtQ5KcR1j57OcJO0FEb1vPvk2MXI5ZyAatUYE7YacbEzd rg02uIwx3FqNSkuSI79uz4hMdV5TPtuhxx9nTwj9aLUhXFeZ0mn2PVgVzEnnMoJb +znlsZDgzDlJqdaD744YGWh8Z3OEssB35KfzFcdOeO6yH8lmv2Zfznk7pNPT7LTb Lae9VgkCgYEA92p1qnAB3NtJtNcaW53i0S5WJgS1hxWKvUDx3lTB9s8X9fHpqL1a E94fDfWzp/hax6FefUKIvBOukPLQ6bYjTMiFoOHzVirghAIuIUoMI5VtLhwD1hKs Lr7l/dptMgKb1nZHyXoKHRBthsy3K4+udsPi8TzMvYElgEqyQIe/Rk0CgYEA86GL 8HC6zLszzKERDPBxrboRmoFvVUCTQDhsfj1M8aR3nQ8V5LkdIJc7Wqm/Ggfk9QRf rJ8M2WUMlU5CNnCn/KCrKzCNZIReze3fV+HnKdbcXGLvgbHPrhnz8yYehUFG+RGq bVyDWRU94T38izy2s5qMYrMJWZEYyXncSPbfcPMCgYAtaXfxcZ+V5xYPQFARMtiX 5nZfggvDoJuXgx0h3tK/N2HBfcaSdzbaYLG4gTmZggc/jwnl2dl5E++9oSPhUdIG 3ONSFUbxsOsGr9PBvnKd8WZZyUCXAVRjPBzAzF+whzQNWCZy/5htnz9LN7YDI9s0 5113Q96cheDZPFydZY0hHQKBgQDVbEhNukM5xCiNcu+f2SaMnLp9EjQ4h5g3IvaP 5B16daw/Dw8LzcohWboqIxeAsze0GD/D1ZUJAEd0qBjC3g+a9BjefervCjKOzXng 38mEUm+6EwVjJSQcjSmycEs+Sr/kwr/8i5WYvU32+jk4tFgMoC+o6tQe/Uesf68k z/dPVwKBgGbF7Vv1/3SmhlOy+zYyvJ0CrWtKxH9QP6tLIEgEpd8x7YTSuCH94yok kToMXYA3sWNPt22GbRDZ+rcp4c7HkDx6I6vpdP9aQEwJTp0EPy0sgWr2XwYmreIQ NFmkk8Itn9EY2R9VBaP7GLv5kvwxDdLAnmwGmzVtbmaVdxCaBwUk -----END RSA PRIVATE KEY----- openssl-1.1.1f/apps/sess_id.c000066400000000000000000000126261364063235100161150ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_IN, OPT_OUT, OPT_TEXT, OPT_CERT, OPT_NOOUT, OPT_CONTEXT } OPTION_CHOICE; const OPTIONS sess_id_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'F', "Input format - default PEM (DER or PEM)"}, {"outform", OPT_OUTFORM, 'f', "Output format - default PEM (PEM, DER or NSS)"}, {"in", OPT_IN, 's', "Input file - default stdin"}, {"out", OPT_OUT, '>', "Output file - default stdout"}, {"text", OPT_TEXT, '-', "Print ssl session id details"}, {"cert", OPT_CERT, '-', "Output certificate "}, {"noout", OPT_NOOUT, '-', "Don't output the encoded session info"}, {"context", OPT_CONTEXT, 's', "Set the session ID context"}, {NULL} }; static SSL_SESSION *load_sess_id(char *file, int format); int sess_id_main(int argc, char **argv) { SSL_SESSION *x = NULL; X509 *peer = NULL; BIO *out = NULL; char *infile = NULL, *outfile = NULL, *context = NULL, *prog; int informat = FORMAT_PEM, outformat = FORMAT_PEM; int cert = 0, noout = 0, text = 0, ret = 1, i, num = 0; OPTION_CHOICE o; prog = opt_init(argc, argv, sess_id_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(sess_id_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat)) goto opthelp; break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER | OPT_FMT_NSS, &outformat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_TEXT: text = ++num; break; case OPT_CERT: cert = ++num; break; case OPT_NOOUT: noout = ++num; break; case OPT_CONTEXT: context = opt_arg(); break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; x = load_sess_id(infile, informat); if (x == NULL) { goto end; } peer = SSL_SESSION_get0_peer(x); if (context != NULL) { size_t ctx_len = strlen(context); if (ctx_len > SSL_MAX_SID_CTX_LENGTH) { BIO_printf(bio_err, "Context too long\n"); goto end; } if (!SSL_SESSION_set1_id_context(x, (unsigned char *)context, ctx_len)) { BIO_printf(bio_err, "Error setting id context\n"); goto end; } } if (!noout || text) { out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; } if (text) { SSL_SESSION_print(out, x); if (cert) { if (peer == NULL) BIO_puts(out, "No certificate present\n"); else X509_print(out, peer); } } if (!noout && !cert) { if (outformat == FORMAT_ASN1) { i = i2d_SSL_SESSION_bio(out, x); } else if (outformat == FORMAT_PEM) { i = PEM_write_bio_SSL_SESSION(out, x); } else if (outformat == FORMAT_NSS) { i = SSL_SESSION_print_keylog(out, x); } else { BIO_printf(bio_err, "bad output format specified for outfile\n"); goto end; } if (!i) { BIO_printf(bio_err, "unable to write SSL_SESSION\n"); goto end; } } else if (!noout && (peer != NULL)) { /* just print the certificate */ if (outformat == FORMAT_ASN1) { i = (int)i2d_X509_bio(out, peer); } else if (outformat == FORMAT_PEM) { i = PEM_write_bio_X509(out, peer); } else { BIO_printf(bio_err, "bad output format specified for outfile\n"); goto end; } if (!i) { BIO_printf(bio_err, "unable to write X509\n"); goto end; } } ret = 0; end: BIO_free_all(out); SSL_SESSION_free(x); return ret; } static SSL_SESSION *load_sess_id(char *infile, int format) { SSL_SESSION *x = NULL; BIO *in = NULL; in = bio_open_default(infile, 'r', format); if (in == NULL) goto end; if (format == FORMAT_ASN1) x = d2i_SSL_SESSION_bio(in, NULL); else x = PEM_read_bio_SSL_SESSION(in, NULL, NULL, NULL); if (x == NULL) { BIO_printf(bio_err, "unable to load SSL_SESSION\n"); ERR_print_errors(bio_err); goto end; } end: BIO_free(in); return x; } openssl-1.1.1f/apps/smime.c000066400000000000000000000517141364063235100155770ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* S/MIME utility function */ #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include static int save_certs(char *signerfile, STACK_OF(X509) *signers); static int smime_cb(int ok, X509_STORE_CTX *ctx); #define SMIME_OP 0x10 #define SMIME_IP 0x20 #define SMIME_SIGNERS 0x40 #define SMIME_ENCRYPT (1 | SMIME_OP) #define SMIME_DECRYPT (2 | SMIME_IP) #define SMIME_SIGN (3 | SMIME_OP | SMIME_SIGNERS) #define SMIME_VERIFY (4 | SMIME_IP) #define SMIME_PK7OUT (5 | SMIME_IP | SMIME_OP) #define SMIME_RESIGN (6 | SMIME_IP | SMIME_OP | SMIME_SIGNERS) typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENCRYPT, OPT_DECRYPT, OPT_SIGN, OPT_RESIGN, OPT_VERIFY, OPT_PK7OUT, OPT_TEXT, OPT_NOINTERN, OPT_NOVERIFY, OPT_NOCHAIN, OPT_NOCERTS, OPT_NOATTR, OPT_NODETACH, OPT_NOSMIMECAP, OPT_BINARY, OPT_NOSIGS, OPT_STREAM, OPT_INDEF, OPT_NOINDEF, OPT_CRLFEOL, OPT_ENGINE, OPT_PASSIN, OPT_TO, OPT_FROM, OPT_SUBJECT, OPT_SIGNER, OPT_RECIP, OPT_MD, OPT_CIPHER, OPT_INKEY, OPT_KEYFORM, OPT_CERTFILE, OPT_CAFILE, OPT_R_ENUM, OPT_V_ENUM, OPT_CAPATH, OPT_NOCAFILE, OPT_NOCAPATH, OPT_IN, OPT_INFORM, OPT_OUT, OPT_OUTFORM, OPT_CONTENT } OPTION_CHOICE; const OPTIONS smime_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] cert.pem...\n"}, {OPT_HELP_STR, 1, '-', " cert.pem... recipient certs for encryption\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"encrypt", OPT_ENCRYPT, '-', "Encrypt message"}, {"decrypt", OPT_DECRYPT, '-', "Decrypt encrypted message"}, {"sign", OPT_SIGN, '-', "Sign message"}, {"verify", OPT_VERIFY, '-', "Verify signed message"}, {"pk7out", OPT_PK7OUT, '-', "Output PKCS#7 structure"}, {"nointern", OPT_NOINTERN, '-', "Don't search certificates in message for signer"}, {"nosigs", OPT_NOSIGS, '-', "Don't verify message signature"}, {"noverify", OPT_NOVERIFY, '-', "Don't verify signers certificate"}, {"nocerts", OPT_NOCERTS, '-', "Don't include signers certificate when signing"}, {"nodetach", OPT_NODETACH, '-', "Use opaque signing"}, {"noattr", OPT_NOATTR, '-', "Don't include any signed attributes"}, {"binary", OPT_BINARY, '-', "Don't translate message to text"}, {"certfile", OPT_CERTFILE, '<', "Other certificates file"}, {"signer", OPT_SIGNER, 's', "Signer certificate file"}, {"recip", OPT_RECIP, '<', "Recipient certificate file for decryption"}, {"in", OPT_IN, '<', "Input file"}, {"inform", OPT_INFORM, 'c', "Input format SMIME (default), PEM or DER"}, {"inkey", OPT_INKEY, 's', "Input private key (if not signer or recipient)"}, {"keyform", OPT_KEYFORM, 'f', "Input private key format (PEM or ENGINE)"}, {"out", OPT_OUT, '>', "Output file"}, {"outform", OPT_OUTFORM, 'c', "Output format SMIME (default), PEM or DER"}, {"content", OPT_CONTENT, '<', "Supply or override content for detached signature"}, {"to", OPT_TO, 's', "To address"}, {"from", OPT_FROM, 's', "From address"}, {"subject", OPT_SUBJECT, 's', "Subject"}, {"text", OPT_TEXT, '-', "Include or delete text MIME headers"}, {"CApath", OPT_CAPATH, '/', "Trusted certificates directory"}, {"CAfile", OPT_CAFILE, '<', "Trusted certificates file"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"resign", OPT_RESIGN, '-', "Resign a signed message"}, {"nochain", OPT_NOCHAIN, '-', "set PKCS7_NOCHAIN so certificates contained in the message are not used as untrusted CAs" }, {"nosmimecap", OPT_NOSMIMECAP, '-', "Omit the SMIMECapabilities attribute"}, {"stream", OPT_STREAM, '-', "Enable CMS streaming" }, {"indef", OPT_INDEF, '-', "Same as -stream" }, {"noindef", OPT_NOINDEF, '-', "Disable CMS streaming"}, {"crlfeol", OPT_CRLFEOL, '-', "Use CRLF as EOL termination instead of CR only"}, OPT_R_OPTIONS, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"md", OPT_MD, 's', "Digest algorithm to use when signing or resigning"}, {"", OPT_CIPHER, '-', "Any supported cipher"}, OPT_V_OPTIONS, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {NULL} }; int smime_main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *indata = NULL; EVP_PKEY *key = NULL; PKCS7 *p7 = NULL; STACK_OF(OPENSSL_STRING) *sksigners = NULL, *skkeys = NULL; STACK_OF(X509) *encerts = NULL, *other = NULL; X509 *cert = NULL, *recip = NULL, *signer = NULL; X509_STORE *store = NULL; X509_VERIFY_PARAM *vpm = NULL; const EVP_CIPHER *cipher = NULL; const EVP_MD *sign_md = NULL; const char *CAfile = NULL, *CApath = NULL, *prog = NULL; char *certfile = NULL, *keyfile = NULL, *contfile = NULL; char *infile = NULL, *outfile = NULL, *signerfile = NULL, *recipfile = NULL; char *passinarg = NULL, *passin = NULL, *to = NULL, *from = NULL, *subject = NULL; OPTION_CHOICE o; int noCApath = 0, noCAfile = 0; int flags = PKCS7_DETACHED, operation = 0, ret = 0, indef = 0; int informat = FORMAT_SMIME, outformat = FORMAT_SMIME, keyform = FORMAT_PEM; int vpmtouched = 0, rv = 0; ENGINE *e = NULL; const char *mime_eol = "\n"; if ((vpm = X509_VERIFY_PARAM_new()) == NULL) return 1; prog = opt_init(argc, argv, smime_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(smime_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_PDS, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_PDS, &outformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENCRYPT: operation = SMIME_ENCRYPT; break; case OPT_DECRYPT: operation = SMIME_DECRYPT; break; case OPT_SIGN: operation = SMIME_SIGN; break; case OPT_RESIGN: operation = SMIME_RESIGN; break; case OPT_VERIFY: operation = SMIME_VERIFY; break; case OPT_PK7OUT: operation = SMIME_PK7OUT; break; case OPT_TEXT: flags |= PKCS7_TEXT; break; case OPT_NOINTERN: flags |= PKCS7_NOINTERN; break; case OPT_NOVERIFY: flags |= PKCS7_NOVERIFY; break; case OPT_NOCHAIN: flags |= PKCS7_NOCHAIN; break; case OPT_NOCERTS: flags |= PKCS7_NOCERTS; break; case OPT_NOATTR: flags |= PKCS7_NOATTR; break; case OPT_NODETACH: flags &= ~PKCS7_DETACHED; break; case OPT_NOSMIMECAP: flags |= PKCS7_NOSMIMECAP; break; case OPT_BINARY: flags |= PKCS7_BINARY; break; case OPT_NOSIGS: flags |= PKCS7_NOSIGS; break; case OPT_STREAM: case OPT_INDEF: indef = 1; break; case OPT_NOINDEF: indef = 0; break; case OPT_CRLFEOL: flags |= PKCS7_CRLFEOL; mime_eol = "\r\n"; break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_TO: to = opt_arg(); break; case OPT_FROM: from = opt_arg(); break; case OPT_SUBJECT: subject = opt_arg(); break; case OPT_SIGNER: /* If previous -signer argument add signer to list */ if (signerfile != NULL) { if (sksigners == NULL && (sksigners = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(sksigners, signerfile); if (keyfile == NULL) keyfile = signerfile; if (skkeys == NULL && (skkeys = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(skkeys, keyfile); keyfile = NULL; } signerfile = opt_arg(); break; case OPT_RECIP: recipfile = opt_arg(); break; case OPT_MD: if (!opt_md(opt_arg(), &sign_md)) goto opthelp; break; case OPT_CIPHER: if (!opt_cipher(opt_unknown(), &cipher)) goto opthelp; break; case OPT_INKEY: /* If previous -inkey argument add signer to list */ if (keyfile != NULL) { if (signerfile == NULL) { BIO_printf(bio_err, "%s: Must have -signer before -inkey\n", prog); goto opthelp; } if (sksigners == NULL && (sksigners = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(sksigners, signerfile); signerfile = NULL; if (skkeys == NULL && (skkeys = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(skkeys, keyfile); } keyfile = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &keyform)) goto opthelp; break; case OPT_CERTFILE: certfile = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_CONTENT: contfile = opt_arg(); break; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto opthelp; vpmtouched++; break; } } argc = opt_num_rest(); argv = opt_rest(); if (!(operation & SMIME_SIGNERS) && (skkeys != NULL || sksigners != NULL)) { BIO_puts(bio_err, "Multiple signers or keys not allowed\n"); goto opthelp; } if (operation & SMIME_SIGNERS) { /* Check to see if any final signer needs to be appended */ if (keyfile && !signerfile) { BIO_puts(bio_err, "Illegal -inkey without -signer\n"); goto opthelp; } if (signerfile != NULL) { if (sksigners == NULL && (sksigners = sk_OPENSSL_STRING_new_null()) == NULL) goto end; sk_OPENSSL_STRING_push(sksigners, signerfile); if (!skkeys && (skkeys = sk_OPENSSL_STRING_new_null()) == NULL) goto end; if (!keyfile) keyfile = signerfile; sk_OPENSSL_STRING_push(skkeys, keyfile); } if (sksigners == NULL) { BIO_printf(bio_err, "No signer certificate specified\n"); goto opthelp; } signerfile = NULL; keyfile = NULL; } else if (operation == SMIME_DECRYPT) { if (recipfile == NULL && keyfile == NULL) { BIO_printf(bio_err, "No recipient certificate or key specified\n"); goto opthelp; } } else if (operation == SMIME_ENCRYPT) { if (argc == 0) { BIO_printf(bio_err, "No recipient(s) certificate(s) specified\n"); goto opthelp; } } else if (!operation) { goto opthelp; } if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } ret = 2; if (!(operation & SMIME_SIGNERS)) flags &= ~PKCS7_DETACHED; if (!(operation & SMIME_OP)) { if (flags & PKCS7_BINARY) outformat = FORMAT_BINARY; } if (!(operation & SMIME_IP)) { if (flags & PKCS7_BINARY) informat = FORMAT_BINARY; } if (operation == SMIME_ENCRYPT) { if (cipher == NULL) { #ifndef OPENSSL_NO_DES cipher = EVP_des_ede3_cbc(); #else BIO_printf(bio_err, "No cipher selected\n"); goto end; #endif } encerts = sk_X509_new_null(); if (encerts == NULL) goto end; while (*argv != NULL) { cert = load_cert(*argv, FORMAT_PEM, "recipient certificate file"); if (cert == NULL) goto end; sk_X509_push(encerts, cert); cert = NULL; argv++; } } if (certfile != NULL) { if (!load_certs(certfile, &other, FORMAT_PEM, NULL, "certificate file")) { ERR_print_errors(bio_err); goto end; } } if (recipfile != NULL && (operation == SMIME_DECRYPT)) { if ((recip = load_cert(recipfile, FORMAT_PEM, "recipient certificate file")) == NULL) { ERR_print_errors(bio_err); goto end; } } if (operation == SMIME_DECRYPT) { if (keyfile == NULL) keyfile = recipfile; } else if (operation == SMIME_SIGN) { if (keyfile == NULL) keyfile = signerfile; } else { keyfile = NULL; } if (keyfile != NULL) { key = load_key(keyfile, keyform, 0, passin, e, "signing key file"); if (key == NULL) goto end; } in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; if (operation & SMIME_IP) { if (informat == FORMAT_SMIME) { p7 = SMIME_read_PKCS7(in, &indata); } else if (informat == FORMAT_PEM) { p7 = PEM_read_bio_PKCS7(in, NULL, NULL, NULL); } else if (informat == FORMAT_ASN1) { p7 = d2i_PKCS7_bio(in, NULL); } else { BIO_printf(bio_err, "Bad input format for PKCS#7 file\n"); goto end; } if (p7 == NULL) { BIO_printf(bio_err, "Error reading S/MIME message\n"); goto end; } if (contfile != NULL) { BIO_free(indata); if ((indata = BIO_new_file(contfile, "rb")) == NULL) { BIO_printf(bio_err, "Can't read content file %s\n", contfile); goto end; } } } out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; if (operation == SMIME_VERIFY) { if ((store = setup_verify(CAfile, CApath, noCAfile, noCApath)) == NULL) goto end; X509_STORE_set_verify_cb(store, smime_cb); if (vpmtouched) X509_STORE_set1_param(store, vpm); } ret = 3; if (operation == SMIME_ENCRYPT) { if (indef) flags |= PKCS7_STREAM; p7 = PKCS7_encrypt(encerts, in, cipher, flags); } else if (operation & SMIME_SIGNERS) { int i; /* * If detached data content we only enable streaming if S/MIME output * format. */ if (operation == SMIME_SIGN) { if (flags & PKCS7_DETACHED) { if (outformat == FORMAT_SMIME) flags |= PKCS7_STREAM; } else if (indef) { flags |= PKCS7_STREAM; } flags |= PKCS7_PARTIAL; p7 = PKCS7_sign(NULL, NULL, other, in, flags); if (p7 == NULL) goto end; if (flags & PKCS7_NOCERTS) { for (i = 0; i < sk_X509_num(other); i++) { X509 *x = sk_X509_value(other, i); PKCS7_add_certificate(p7, x); } } } else { flags |= PKCS7_REUSE_DIGEST; } for (i = 0; i < sk_OPENSSL_STRING_num(sksigners); i++) { signerfile = sk_OPENSSL_STRING_value(sksigners, i); keyfile = sk_OPENSSL_STRING_value(skkeys, i); signer = load_cert(signerfile, FORMAT_PEM, "signer certificate"); if (signer == NULL) goto end; key = load_key(keyfile, keyform, 0, passin, e, "signing key file"); if (key == NULL) goto end; if (!PKCS7_sign_add_signer(p7, signer, key, sign_md, flags)) goto end; X509_free(signer); signer = NULL; EVP_PKEY_free(key); key = NULL; } /* If not streaming or resigning finalize structure */ if ((operation == SMIME_SIGN) && !(flags & PKCS7_STREAM)) { if (!PKCS7_final(p7, in, flags)) goto end; } } if (p7 == NULL) { BIO_printf(bio_err, "Error creating PKCS#7 structure\n"); goto end; } ret = 4; if (operation == SMIME_DECRYPT) { if (!PKCS7_decrypt(p7, key, recip, out, flags)) { BIO_printf(bio_err, "Error decrypting PKCS#7 structure\n"); goto end; } } else if (operation == SMIME_VERIFY) { STACK_OF(X509) *signers; if (PKCS7_verify(p7, other, store, indata, out, flags)) BIO_printf(bio_err, "Verification successful\n"); else { BIO_printf(bio_err, "Verification failure\n"); goto end; } signers = PKCS7_get0_signers(p7, other, flags); if (!save_certs(signerfile, signers)) { BIO_printf(bio_err, "Error writing signers to %s\n", signerfile); ret = 5; goto end; } sk_X509_free(signers); } else if (operation == SMIME_PK7OUT) { PEM_write_bio_PKCS7(out, p7); } else { if (to) BIO_printf(out, "To: %s%s", to, mime_eol); if (from) BIO_printf(out, "From: %s%s", from, mime_eol); if (subject) BIO_printf(out, "Subject: %s%s", subject, mime_eol); if (outformat == FORMAT_SMIME) { if (operation == SMIME_RESIGN) rv = SMIME_write_PKCS7(out, p7, indata, flags); else rv = SMIME_write_PKCS7(out, p7, in, flags); } else if (outformat == FORMAT_PEM) { rv = PEM_write_bio_PKCS7_stream(out, p7, in, flags); } else if (outformat == FORMAT_ASN1) { rv = i2d_PKCS7_bio_stream(out, p7, in, flags); } else { BIO_printf(bio_err, "Bad output format for PKCS#7 file\n"); goto end; } if (rv == 0) { BIO_printf(bio_err, "Error writing output\n"); ret = 3; goto end; } } ret = 0; end: if (ret) ERR_print_errors(bio_err); sk_X509_pop_free(encerts, X509_free); sk_X509_pop_free(other, X509_free); X509_VERIFY_PARAM_free(vpm); sk_OPENSSL_STRING_free(sksigners); sk_OPENSSL_STRING_free(skkeys); X509_STORE_free(store); X509_free(cert); X509_free(recip); X509_free(signer); EVP_PKEY_free(key); PKCS7_free(p7); release_engine(e); BIO_free(in); BIO_free(indata); BIO_free_all(out); OPENSSL_free(passin); return ret; } static int save_certs(char *signerfile, STACK_OF(X509) *signers) { int i; BIO *tmp; if (signerfile == NULL) return 1; tmp = BIO_new_file(signerfile, "w"); if (tmp == NULL) return 0; for (i = 0; i < sk_X509_num(signers); i++) PEM_write_bio_X509(tmp, sk_X509_value(signers, i)); BIO_free(tmp); return 1; } /* Minimal callback just to output policy info (if any) */ static int smime_cb(int ok, X509_STORE_CTX *ctx) { int error; error = X509_STORE_CTX_get_error(ctx); if ((error != X509_V_ERR_NO_EXPLICIT_POLICY) && ((error != X509_V_OK) || (ok != 2))) return ok; policies_print(ctx); return ok; } openssl-1.1.1f/apps/speed.c000066400000000000000000003602601364063235100155640ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #undef SECONDS #define SECONDS 3 #define RSA_SECONDS 10 #define DSA_SECONDS 10 #define ECDSA_SECONDS 10 #define ECDH_SECONDS 10 #define EdDSA_SECONDS 10 #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #if !defined(OPENSSL_SYS_MSDOS) # include OPENSSL_UNISTD #endif #if defined(_WIN32) # include #endif #include #ifndef OPENSSL_NO_DES # include #endif #include #ifndef OPENSSL_NO_CAMELLIA # include #endif #ifndef OPENSSL_NO_MD2 # include #endif #ifndef OPENSSL_NO_MDC2 # include #endif #ifndef OPENSSL_NO_MD4 # include #endif #ifndef OPENSSL_NO_MD5 # include #endif #include #include #ifndef OPENSSL_NO_RMD160 # include #endif #ifndef OPENSSL_NO_WHIRLPOOL # include #endif #ifndef OPENSSL_NO_RC4 # include #endif #ifndef OPENSSL_NO_RC5 # include #endif #ifndef OPENSSL_NO_RC2 # include #endif #ifndef OPENSSL_NO_IDEA # include #endif #ifndef OPENSSL_NO_SEED # include #endif #ifndef OPENSSL_NO_BF # include #endif #ifndef OPENSSL_NO_CAST # include #endif #ifndef OPENSSL_NO_RSA # include # include "./testrsa.h" #endif #include #ifndef OPENSSL_NO_DSA # include # include "./testdsa.h" #endif #ifndef OPENSSL_NO_EC # include #endif #include #ifndef HAVE_FORK # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS) # define HAVE_FORK 0 # else # define HAVE_FORK 1 # endif #endif #if HAVE_FORK # undef NO_FORK #else # define NO_FORK #endif #define MAX_MISALIGNMENT 63 #define MAX_ECDH_SIZE 256 #define MISALIGN 64 typedef struct openssl_speed_sec_st { int sym; int rsa; int dsa; int ecdsa; int ecdh; int eddsa; } openssl_speed_sec_t; static volatile int run = 0; static int mr = 0; static int usertime = 1; #ifndef OPENSSL_NO_MD2 static int EVP_Digest_MD2_loop(void *args); #endif #ifndef OPENSSL_NO_MDC2 static int EVP_Digest_MDC2_loop(void *args); #endif #ifndef OPENSSL_NO_MD4 static int EVP_Digest_MD4_loop(void *args); #endif #ifndef OPENSSL_NO_MD5 static int MD5_loop(void *args); static int HMAC_loop(void *args); #endif static int SHA1_loop(void *args); static int SHA256_loop(void *args); static int SHA512_loop(void *args); #ifndef OPENSSL_NO_WHIRLPOOL static int WHIRLPOOL_loop(void *args); #endif #ifndef OPENSSL_NO_RMD160 static int EVP_Digest_RMD160_loop(void *args); #endif #ifndef OPENSSL_NO_RC4 static int RC4_loop(void *args); #endif #ifndef OPENSSL_NO_DES static int DES_ncbc_encrypt_loop(void *args); static int DES_ede3_cbc_encrypt_loop(void *args); #endif static int AES_cbc_128_encrypt_loop(void *args); static int AES_cbc_192_encrypt_loop(void *args); static int AES_ige_128_encrypt_loop(void *args); static int AES_cbc_256_encrypt_loop(void *args); static int AES_ige_192_encrypt_loop(void *args); static int AES_ige_256_encrypt_loop(void *args); static int CRYPTO_gcm128_aad_loop(void *args); static int RAND_bytes_loop(void *args); static int EVP_Update_loop(void *args); static int EVP_Update_loop_ccm(void *args); static int EVP_Update_loop_aead(void *args); static int EVP_Digest_loop(void *args); #ifndef OPENSSL_NO_RSA static int RSA_sign_loop(void *args); static int RSA_verify_loop(void *args); #endif #ifndef OPENSSL_NO_DSA static int DSA_sign_loop(void *args); static int DSA_verify_loop(void *args); #endif #ifndef OPENSSL_NO_EC static int ECDSA_sign_loop(void *args); static int ECDSA_verify_loop(void *args); static int EdDSA_sign_loop(void *args); static int EdDSA_verify_loop(void *args); #endif static double Time_F(int s); static void print_message(const char *s, long num, int length, int tm); static void pkey_print_message(const char *str, const char *str2, long num, unsigned int bits, int sec); static void print_result(int alg, int run_no, int count, double time_used); #ifndef NO_FORK static int do_multi(int multi, int size_num); #endif static const int lengths_list[] = { 16, 64, 256, 1024, 8 * 1024, 16 * 1024 }; static const int *lengths = lengths_list; static const int aead_lengths_list[] = { 2, 31, 136, 1024, 8 * 1024, 16 * 1024 }; #define START 0 #define STOP 1 #ifdef SIGALRM static void alarmed(int sig) { signal(SIGALRM, alarmed); run = 0; } static double Time_F(int s) { double ret = app_tminterval(s, usertime); if (s == STOP) alarm(0); return ret; } #elif defined(_WIN32) # define SIGALRM -1 static unsigned int lapse; static volatile unsigned int schlock; static void alarm_win32(unsigned int secs) { lapse = secs * 1000; } # define alarm alarm_win32 static DWORD WINAPI sleepy(VOID * arg) { schlock = 1; Sleep(lapse); run = 0; return 0; } static double Time_F(int s) { double ret; static HANDLE thr; if (s == START) { schlock = 0; thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); if (thr == NULL) { DWORD err = GetLastError(); BIO_printf(bio_err, "unable to CreateThread (%lu)", err); ExitProcess(err); } while (!schlock) Sleep(0); /* scheduler spinlock */ ret = app_tminterval(s, usertime); } else { ret = app_tminterval(s, usertime); if (run) TerminateThread(thr, 0); CloseHandle(thr); } return ret; } #else static double Time_F(int s) { return app_tminterval(s, usertime); } #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds); #define found(value, pairs, result)\ opt_found(value, result, pairs, OSSL_NELEM(pairs)) static int opt_found(const char *name, unsigned int *result, const OPT_PAIR pairs[], unsigned int nbelem) { unsigned int idx; for (idx = 0; idx < nbelem; ++idx, pairs++) if (strcmp(name, pairs->name) == 0) { *result = pairs->retval; return 1; } return 0; } typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD } OPTION_CHOICE; const OPTIONS speed_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"}, {"decrypt", OPT_DECRYPT, '-', "Time decryption instead of encryption (only EVP)"}, {"aead", OPT_AEAD, '-', "Benchmark EVP-named AEAD cipher in TLS-like sequence"}, {"mb", OPT_MB, '-', "Enable (tls1>=1) multi-block mode on EVP-named cipher"}, {"mr", OPT_MR, '-', "Produce machine readable output"}, #ifndef NO_FORK {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, #endif #ifndef OPENSSL_NO_ASYNC {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start specified number of jobs"}, #endif OPT_R_OPTIONS, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"elapsed", OPT_ELAPSED, '-', "Use wall-clock time instead of CPU user time as divisor"}, {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"}, {"seconds", OPT_SECONDS, 'p', "Run benchmarks for specified amount of seconds"}, {"bytes", OPT_BYTES, 'p', "Run [non-PKI] benchmarks on custom-sized buffer"}, {"misalign", OPT_MISALIGN, 'p', "Use specified offset to mis-align buffers"}, {NULL} }; #define D_MD2 0 #define D_MDC2 1 #define D_MD4 2 #define D_MD5 3 #define D_HMAC 4 #define D_SHA1 5 #define D_RMD160 6 #define D_RC4 7 #define D_CBC_DES 8 #define D_EDE3_DES 9 #define D_CBC_IDEA 10 #define D_CBC_SEED 11 #define D_CBC_RC2 12 #define D_CBC_RC5 13 #define D_CBC_BF 14 #define D_CBC_CAST 15 #define D_CBC_128_AES 16 #define D_CBC_192_AES 17 #define D_CBC_256_AES 18 #define D_CBC_128_CML 19 #define D_CBC_192_CML 20 #define D_CBC_256_CML 21 #define D_EVP 22 #define D_SHA256 23 #define D_SHA512 24 #define D_WHIRLPOOL 25 #define D_IGE_128_AES 26 #define D_IGE_192_AES 27 #define D_IGE_256_AES 28 #define D_GHASH 29 #define D_RAND 30 /* name of algorithms to test */ static const char *names[] = { "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", "des cbc", "des ede3", "idea cbc", "seed cbc", "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", "evp", "sha256", "sha512", "whirlpool", "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash", "rand" }; #define ALGOR_NUM OSSL_NELEM(names) /* list of configured algorithm (remaining) */ static const OPT_PAIR doit_choices[] = { #ifndef OPENSSL_NO_MD2 {"md2", D_MD2}, #endif #ifndef OPENSSL_NO_MDC2 {"mdc2", D_MDC2}, #endif #ifndef OPENSSL_NO_MD4 {"md4", D_MD4}, #endif #ifndef OPENSSL_NO_MD5 {"md5", D_MD5}, {"hmac", D_HMAC}, #endif {"sha1", D_SHA1}, {"sha256", D_SHA256}, {"sha512", D_SHA512}, #ifndef OPENSSL_NO_WHIRLPOOL {"whirlpool", D_WHIRLPOOL}, #endif #ifndef OPENSSL_NO_RMD160 {"ripemd", D_RMD160}, {"rmd160", D_RMD160}, {"ripemd160", D_RMD160}, #endif #ifndef OPENSSL_NO_RC4 {"rc4", D_RC4}, #endif #ifndef OPENSSL_NO_DES {"des-cbc", D_CBC_DES}, {"des-ede3", D_EDE3_DES}, #endif {"aes-128-cbc", D_CBC_128_AES}, {"aes-192-cbc", D_CBC_192_AES}, {"aes-256-cbc", D_CBC_256_AES}, {"aes-128-ige", D_IGE_128_AES}, {"aes-192-ige", D_IGE_192_AES}, {"aes-256-ige", D_IGE_256_AES}, #ifndef OPENSSL_NO_RC2 {"rc2-cbc", D_CBC_RC2}, {"rc2", D_CBC_RC2}, #endif #ifndef OPENSSL_NO_RC5 {"rc5-cbc", D_CBC_RC5}, {"rc5", D_CBC_RC5}, #endif #ifndef OPENSSL_NO_IDEA {"idea-cbc", D_CBC_IDEA}, {"idea", D_CBC_IDEA}, #endif #ifndef OPENSSL_NO_SEED {"seed-cbc", D_CBC_SEED}, {"seed", D_CBC_SEED}, #endif #ifndef OPENSSL_NO_BF {"bf-cbc", D_CBC_BF}, {"blowfish", D_CBC_BF}, {"bf", D_CBC_BF}, #endif #ifndef OPENSSL_NO_CAST {"cast-cbc", D_CBC_CAST}, {"cast", D_CBC_CAST}, {"cast5", D_CBC_CAST}, #endif {"ghash", D_GHASH}, {"rand", D_RAND} }; static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)]; #ifndef OPENSSL_NO_DSA # define R_DSA_512 0 # define R_DSA_1024 1 # define R_DSA_2048 2 static const OPT_PAIR dsa_choices[] = { {"dsa512", R_DSA_512}, {"dsa1024", R_DSA_1024}, {"dsa2048", R_DSA_2048} }; # define DSA_NUM OSSL_NELEM(dsa_choices) static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_DSA */ #define R_RSA_512 0 #define R_RSA_1024 1 #define R_RSA_2048 2 #define R_RSA_3072 3 #define R_RSA_4096 4 #define R_RSA_7680 5 #define R_RSA_15360 6 #ifndef OPENSSL_NO_RSA static const OPT_PAIR rsa_choices[] = { {"rsa512", R_RSA_512}, {"rsa1024", R_RSA_1024}, {"rsa2048", R_RSA_2048}, {"rsa3072", R_RSA_3072}, {"rsa4096", R_RSA_4096}, {"rsa7680", R_RSA_7680}, {"rsa15360", R_RSA_15360} }; # define RSA_NUM OSSL_NELEM(rsa_choices) static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_RSA */ enum { R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521, #ifndef OPENSSL_NO_EC2M R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571, R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571, #endif R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1, R_EC_BRP512R1, R_EC_BRP512T1, R_EC_X25519, R_EC_X448 }; #ifndef OPENSSL_NO_EC static OPT_PAIR ecdsa_choices[] = { {"ecdsap160", R_EC_P160}, {"ecdsap192", R_EC_P192}, {"ecdsap224", R_EC_P224}, {"ecdsap256", R_EC_P256}, {"ecdsap384", R_EC_P384}, {"ecdsap521", R_EC_P521}, # ifndef OPENSSL_NO_EC2M {"ecdsak163", R_EC_K163}, {"ecdsak233", R_EC_K233}, {"ecdsak283", R_EC_K283}, {"ecdsak409", R_EC_K409}, {"ecdsak571", R_EC_K571}, {"ecdsab163", R_EC_B163}, {"ecdsab233", R_EC_B233}, {"ecdsab283", R_EC_B283}, {"ecdsab409", R_EC_B409}, {"ecdsab571", R_EC_B571}, # endif {"ecdsabrp256r1", R_EC_BRP256R1}, {"ecdsabrp256t1", R_EC_BRP256T1}, {"ecdsabrp384r1", R_EC_BRP384R1}, {"ecdsabrp384t1", R_EC_BRP384T1}, {"ecdsabrp512r1", R_EC_BRP512R1}, {"ecdsabrp512t1", R_EC_BRP512T1} }; # define ECDSA_NUM OSSL_NELEM(ecdsa_choices) static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */ static const OPT_PAIR ecdh_choices[] = { {"ecdhp160", R_EC_P160}, {"ecdhp192", R_EC_P192}, {"ecdhp224", R_EC_P224}, {"ecdhp256", R_EC_P256}, {"ecdhp384", R_EC_P384}, {"ecdhp521", R_EC_P521}, # ifndef OPENSSL_NO_EC2M {"ecdhk163", R_EC_K163}, {"ecdhk233", R_EC_K233}, {"ecdhk283", R_EC_K283}, {"ecdhk409", R_EC_K409}, {"ecdhk571", R_EC_K571}, {"ecdhb163", R_EC_B163}, {"ecdhb233", R_EC_B233}, {"ecdhb283", R_EC_B283}, {"ecdhb409", R_EC_B409}, {"ecdhb571", R_EC_B571}, # endif {"ecdhbrp256r1", R_EC_BRP256R1}, {"ecdhbrp256t1", R_EC_BRP256T1}, {"ecdhbrp384r1", R_EC_BRP384R1}, {"ecdhbrp384t1", R_EC_BRP384T1}, {"ecdhbrp512r1", R_EC_BRP512R1}, {"ecdhbrp512t1", R_EC_BRP512T1}, {"ecdhx25519", R_EC_X25519}, {"ecdhx448", R_EC_X448} }; # define EC_NUM OSSL_NELEM(ecdh_choices) static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */ #define R_EC_Ed25519 0 #define R_EC_Ed448 1 static OPT_PAIR eddsa_choices[] = { {"ed25519", R_EC_Ed25519}, {"ed448", R_EC_Ed448} }; # define EdDSA_NUM OSSL_NELEM(eddsa_choices) static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_EC */ #ifndef SIGALRM # define COND(d) (count < (d)) # define COUNT(d) (d) #else # define COND(unused_cond) (run && count<0x7fffffff) # define COUNT(d) (count) #endif /* SIGALRM */ typedef struct loopargs_st { ASYNC_JOB *inprogress_job; ASYNC_WAIT_CTX *wait_ctx; unsigned char *buf; unsigned char *buf2; unsigned char *buf_malloc; unsigned char *buf2_malloc; unsigned char *key; unsigned int siglen; size_t sigsize; #ifndef OPENSSL_NO_RSA RSA *rsa_key[RSA_NUM]; #endif #ifndef OPENSSL_NO_DSA DSA *dsa_key[DSA_NUM]; #endif #ifndef OPENSSL_NO_EC EC_KEY *ecdsa[ECDSA_NUM]; EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; EVP_MD_CTX *eddsa_ctx[EdDSA_NUM]; unsigned char *secret_a; unsigned char *secret_b; size_t outlen[EC_NUM]; #endif EVP_CIPHER_CTX *ctx; HMAC_CTX *hctx; GCM128_CONTEXT *gcm_ctx; } loopargs_t; static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t * loopargs); static unsigned int testnum; /* Nb of iterations to do per algorithm and key-size */ static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)]; #ifndef OPENSSL_NO_MD2 static int EVP_Digest_MD2_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md2[MD2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_MDC2 static int EVP_Digest_MDC2_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char mdc2[MDC2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MDC2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_MD4 static int EVP_Digest_MD4_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md4[MD4_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD4][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_MD5 static int MD5_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md5[MD5_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD5][testnum]); count++) MD5(buf, lengths[testnum], md5); return count; } static int HMAC_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; HMAC_CTX *hctx = tempargs->hctx; unsigned char hmac[MD5_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_HMAC][testnum]); count++) { HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); HMAC_Update(hctx, buf, lengths[testnum]); HMAC_Final(hctx, hmac, NULL); } return count; } #endif static int SHA1_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha[SHA_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA1][testnum]); count++) SHA1(buf, lengths[testnum], sha); return count; } static int SHA256_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha256[SHA256_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA256][testnum]); count++) SHA256(buf, lengths[testnum], sha256); return count; } static int SHA512_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha512[SHA512_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA512][testnum]); count++) SHA512(buf, lengths[testnum], sha512); return count; } #ifndef OPENSSL_NO_WHIRLPOOL static int WHIRLPOOL_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) WHIRLPOOL(buf, lengths[testnum], whirlpool); return count; } #endif #ifndef OPENSSL_NO_RMD160 static int EVP_Digest_RMD160_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_RMD160][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), NULL, EVP_ripemd160(), NULL)) return -1; } return count; } #endif #ifndef OPENSSL_NO_RC4 static RC4_KEY rc4_ks; static int RC4_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RC4][testnum]); count++) RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf); return count; } #endif #ifndef OPENSSL_NO_DES static unsigned char DES_iv[8]; static DES_key_schedule sch; static DES_key_schedule sch2; static DES_key_schedule sch3; static int DES_ncbc_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_DES][testnum]); count++) DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, &DES_iv, DES_ENCRYPT); return count; } static int DES_ede3_cbc_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT); return count; } #endif #define MAX_BLOCK_SIZE 128 static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; static AES_KEY aes_ks1, aes_ks2, aes_ks3; static int AES_cbc_128_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_cbc_192_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_cbc_256_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int AES_ige_128_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_ige_192_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_ige_256_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int CRYPTO_gcm128_aad_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; int count; for (count = 0; COND(c[D_GHASH][testnum]); count++) CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); return count; } static int RAND_bytes_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RAND][testnum]); count++) RAND_bytes(buf, lengths[testnum]); return count; } static long save_count = 0; static int decrypt = 0; static int EVP_Update_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count, rc; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif if (decrypt) { for (count = 0; COND(nb_iter); count++) { rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } else { for (count = 0; COND(nb_iter); count++) { rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } if (decrypt) EVP_DecryptFinal_ex(ctx, buf, &outl); else EVP_EncryptFinal_ex(ctx, buf, &outl); return count; } /* * CCM does not support streaming. For the purpose of performance measurement, * each message is encrypted using the same (key,iv)-pair. Do not use this * code in your application. */ static int EVP_Update_loop_ccm(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count; unsigned char tag[12]; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif if (decrypt) { for (count = 0; COND(nb_iter); count++) { EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag); /* reset iv */ EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); /* counter is reset on every update */ EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); } } else { for (count = 0; COND(nb_iter); count++) { /* restore iv length field */ EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]); /* counter is reset on every update */ EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); } } if (decrypt) EVP_DecryptFinal_ex(ctx, buf, &outl); else EVP_EncryptFinal_ex(ctx, buf, &outl); return count; } /* * To make AEAD benchmarking more relevant perform TLS-like operations, * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as * payload length is not actually limited by 16KB... */ static int EVP_Update_loop_aead(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count; unsigned char aad[13] = { 0xcc }; unsigned char faketag[16] = { 0xcc }; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif if (decrypt) { for (count = 0; COND(nb_iter); count++) { EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(faketag), faketag); EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); EVP_DecryptFinal_ex(ctx, buf + outl, &outl); } } else { for (count = 0; COND(nb_iter); count++) { EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv); EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); EVP_EncryptFinal_ex(ctx, buf + outl, &outl); } } return count; } static const EVP_MD *evp_md = NULL; static int EVP_Digest_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md[EVP_MAX_MD_SIZE]; int count; #ifndef SIGALRM int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; #endif for (count = 0; COND(nb_iter); count++) { if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL)) return -1; } return count; } #ifndef OPENSSL_NO_RSA static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */ static int RSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; unsigned int *rsa_num = &tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][0]); count++) { ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); if (ret == 0) { BIO_printf(bio_err, "RSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int RSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; unsigned int rsa_num = tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][1]); count++) { ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); if (ret <= 0) { BIO_printf(bio_err, "RSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif #ifndef OPENSSL_NO_DSA static long dsa_c[DSA_NUM][2]; static int DSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; unsigned int *siglen = &tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][0]); count++) { ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); if (ret == 0) { BIO_printf(bio_err, "DSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int DSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; unsigned int siglen = tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][1]); count++) { ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); if (ret <= 0) { BIO_printf(bio_err, "DSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif #ifndef OPENSSL_NO_EC static long ecdsa_c[ECDSA_NUM][2]; static int ECDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; unsigned int *ecdsasiglen = &tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][0]); count++) { ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret == 0) { BIO_printf(bio_err, "ECDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int ECDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; unsigned int ecdsasiglen = tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][1]); count++) { ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret != 1) { BIO_printf(bio_err, "ECDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } /* ******************************************************************** */ static long ecdh_c[EC_NUM][1]; static int ECDH_EVP_derive_key_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; unsigned char *derived_secret = tempargs->secret_a; int count; size_t *outlen = &(tempargs->outlen[testnum]); for (count = 0; COND(ecdh_c[testnum][0]); count++) EVP_PKEY_derive(ctx, derived_secret, outlen); return count; } static long eddsa_c[EdDSA_NUM][2]; static int EdDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx; unsigned char *eddsasig = tempargs->buf2; size_t *eddsasigsize = &tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][0]); count++) { ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret == 0) { BIO_printf(bio_err, "EdDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int EdDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx; unsigned char *eddsasig = tempargs->buf2; size_t eddsasigsize = tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][1]); count++) { ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret != 1) { BIO_printf(bio_err, "EdDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif /* OPENSSL_NO_EC */ static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t * loopargs) { int job_op_count = 0; int total_op_count = 0; int num_inprogress = 0; int error = 0, i = 0, ret = 0; OSSL_ASYNC_FD job_fd = 0; size_t num_job_fds = 0; if (async_jobs == 0) { return loop_function((void *)&loopargs); } for (i = 0; i < async_jobs && !error; i++) { loopargs_t *looparg_item = loopargs + i; /* Copy pointer content (looparg_t item address) into async context */ ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)&looparg_item, sizeof(looparg_item)); switch (ret) { case ASYNC_PAUSE: ++num_inprogress; break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } break; case ASYNC_NO_JOBS: case ASYNC_ERR: BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } while (num_inprogress > 0) { #if defined(OPENSSL_SYS_WINDOWS) DWORD avail = 0; #elif defined(OPENSSL_SYS_UNIX) int select_result = 0; OSSL_ASYNC_FD max_fd = 0; fd_set waitfdset; FD_ZERO(&waitfdset); for (i = 0; i < async_jobs && num_inprogress > 0; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); FD_SET(job_fd, &waitfdset); if (job_fd > max_fd) max_fd = job_fd; } if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { BIO_printf(bio_err, "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " "Decrease the value of async_jobs\n", max_fd, FD_SETSIZE); ERR_print_errors(bio_err); error = 1; break; } select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); if (select_result == -1 && errno == EINTR) continue; if (select_result == -1) { BIO_printf(bio_err, "Failure in the select\n"); ERR_print_errors(bio_err); error = 1; break; } if (select_result == 0) continue; #endif for (i = 0; i < async_jobs; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); #if defined(OPENSSL_SYS_UNIX) if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) continue; #elif defined(OPENSSL_SYS_WINDOWS) if (num_job_fds == 1 && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0) continue; #endif ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)(loopargs + i), sizeof(loopargs_t)); switch (ret) { case ASYNC_PAUSE: break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } --num_inprogress; loopargs[i].inprogress_job = NULL; break; case ASYNC_NO_JOBS: case ASYNC_ERR: --num_inprogress; loopargs[i].inprogress_job = NULL; BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } } return error ? -1 : total_op_count; } int speed_main(int argc, char **argv) { ENGINE *e = NULL; loopargs_t *loopargs = NULL; const char *prog; const char *engine_id = NULL; const EVP_CIPHER *evp_cipher = NULL; double d = 0.0; OPTION_CHOICE o; int async_init = 0, multiblock = 0, pr_header = 0; int doit[ALGOR_NUM] = { 0 }; int ret = 1, misalign = 0, lengths_single = 0, aead = 0; long count = 0; unsigned int size_num = OSSL_NELEM(lengths_list); unsigned int i, k, loop, loopargs_len = 0, async_jobs = 0; int keylen; int buflen; #ifndef NO_FORK int multi = 0; #endif #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \ || !defined(OPENSSL_NO_EC) long rsa_count = 1; #endif openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS, ECDSA_SECONDS, ECDH_SECONDS, EdDSA_SECONDS }; /* What follows are the buffers and key material. */ #ifndef OPENSSL_NO_RC5 RC5_32_KEY rc5_ks; #endif #ifndef OPENSSL_NO_RC2 RC2_KEY rc2_ks; #endif #ifndef OPENSSL_NO_IDEA IDEA_KEY_SCHEDULE idea_ks; #endif #ifndef OPENSSL_NO_SEED SEED_KEY_SCHEDULE seed_ks; #endif #ifndef OPENSSL_NO_BF BF_KEY bf_ks; #endif #ifndef OPENSSL_NO_CAST CAST_KEY cast_ks; #endif static const unsigned char key16[16] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }; static const unsigned char key24[24] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; static const unsigned char key32[32] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 }; #ifndef OPENSSL_NO_CAMELLIA static const unsigned char ckey24[24] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; static const unsigned char ckey32[32] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 }; CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; #endif #ifndef OPENSSL_NO_DES static DES_cblock key = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 }; static DES_cblock key2 = { 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }; static DES_cblock key3 = { 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; #endif #ifndef OPENSSL_NO_RSA static const unsigned int rsa_bits[RSA_NUM] = { 512, 1024, 2048, 3072, 4096, 7680, 15360 }; static const unsigned char *rsa_data[RSA_NUM] = { test512, test1024, test2048, test3072, test4096, test7680, test15360 }; static const int rsa_data_length[RSA_NUM] = { sizeof(test512), sizeof(test1024), sizeof(test2048), sizeof(test3072), sizeof(test4096), sizeof(test7680), sizeof(test15360) }; int rsa_doit[RSA_NUM] = { 0 }; int primes = RSA_DEFAULT_PRIME_NUM; #endif #ifndef OPENSSL_NO_DSA static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; int dsa_doit[DSA_NUM] = { 0 }; #endif #ifndef OPENSSL_NO_EC /* * We only test over the following curves as they are representative, To * add tests over more curves, simply add the curve NID and curve name to * the following arrays and increase the |ecdh_choices| list accordingly. */ static const struct { const char *name; unsigned int nid; unsigned int bits; } test_curves[] = { /* Prime Curves */ {"secp160r1", NID_secp160r1, 160}, {"nistp192", NID_X9_62_prime192v1, 192}, {"nistp224", NID_secp224r1, 224}, {"nistp256", NID_X9_62_prime256v1, 256}, {"nistp384", NID_secp384r1, 384}, {"nistp521", NID_secp521r1, 521}, # ifndef OPENSSL_NO_EC2M /* Binary Curves */ {"nistk163", NID_sect163k1, 163}, {"nistk233", NID_sect233k1, 233}, {"nistk283", NID_sect283k1, 283}, {"nistk409", NID_sect409k1, 409}, {"nistk571", NID_sect571k1, 571}, {"nistb163", NID_sect163r2, 163}, {"nistb233", NID_sect233r1, 233}, {"nistb283", NID_sect283r1, 283}, {"nistb409", NID_sect409r1, 409}, {"nistb571", NID_sect571r1, 571}, # endif {"brainpoolP256r1", NID_brainpoolP256r1, 256}, {"brainpoolP256t1", NID_brainpoolP256t1, 256}, {"brainpoolP384r1", NID_brainpoolP384r1, 384}, {"brainpoolP384t1", NID_brainpoolP384t1, 384}, {"brainpoolP512r1", NID_brainpoolP512r1, 512}, {"brainpoolP512t1", NID_brainpoolP512t1, 512}, /* Other and ECDH only ones */ {"X25519", NID_X25519, 253}, {"X448", NID_X448, 448} }; static const struct { const char *name; unsigned int nid; unsigned int bits; size_t sigsize; } test_ed_curves[] = { /* EdDSA */ {"Ed25519", NID_ED25519, 253, 64}, {"Ed448", NID_ED448, 456, 114} }; int ecdsa_doit[ECDSA_NUM] = { 0 }; int ecdh_doit[EC_NUM] = { 0 }; int eddsa_doit[EdDSA_NUM] = { 0 }; OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM); OPENSSL_assert(OSSL_NELEM(test_ed_curves) >= EdDSA_NUM); #endif /* ndef OPENSSL_NO_EC */ prog = opt_init(argc, argv, speed_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opterr: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(speed_options); ret = 0; goto end; case OPT_ELAPSED: usertime = 0; break; case OPT_EVP: evp_md = NULL; evp_cipher = EVP_get_cipherbyname(opt_arg()); if (evp_cipher == NULL) evp_md = EVP_get_digestbyname(opt_arg()); if (evp_cipher == NULL && evp_md == NULL) { BIO_printf(bio_err, "%s: %s is an unknown cipher or digest\n", prog, opt_arg()); goto end; } doit[D_EVP] = 1; break; case OPT_DECRYPT: decrypt = 1; break; case OPT_ENGINE: /* * In a forked execution, an engine might need to be * initialised by each child process, not by the parent. * So store the name here and run setup_engine() later on. */ engine_id = opt_arg(); break; case OPT_MULTI: #ifndef NO_FORK multi = atoi(opt_arg()); #endif break; case OPT_ASYNCJOBS: #ifndef OPENSSL_NO_ASYNC async_jobs = atoi(opt_arg()); if (!ASYNC_is_capable()) { BIO_printf(bio_err, "%s: async_jobs specified but async not supported\n", prog); goto opterr; } if (async_jobs > 99999) { BIO_printf(bio_err, "%s: too many async_jobs\n", prog); goto opterr; } #endif break; case OPT_MISALIGN: if (!opt_int(opt_arg(), &misalign)) goto end; if (misalign > MISALIGN) { BIO_printf(bio_err, "%s: Maximum offset is %d\n", prog, MISALIGN); goto opterr; } break; case OPT_MR: mr = 1; break; case OPT_MB: multiblock = 1; #ifdef OPENSSL_NO_MULTIBLOCK BIO_printf(bio_err, "%s: -mb specified but multi-block support is disabled\n", prog); goto end; #endif break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_PRIMES: if (!opt_int(opt_arg(), &primes)) goto end; break; case OPT_SECONDS: seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa = seconds.ecdh = seconds.eddsa = atoi(opt_arg()); break; case OPT_BYTES: lengths_single = atoi(opt_arg()); lengths = &lengths_single; size_num = 1; break; case OPT_AEAD: aead = 1; break; } } argc = opt_num_rest(); argv = opt_rest(); /* Remaining arguments are algorithms. */ for (; *argv; argv++) { if (found(*argv, doit_choices, &i)) { doit[i] = 1; continue; } #ifndef OPENSSL_NO_DES if (strcmp(*argv, "des") == 0) { doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; continue; } #endif if (strcmp(*argv, "sha") == 0) { doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; continue; } #ifndef OPENSSL_NO_RSA if (strcmp(*argv, "openssl") == 0) continue; if (strcmp(*argv, "rsa") == 0) { for (loop = 0; loop < OSSL_NELEM(rsa_doit); loop++) rsa_doit[loop] = 1; continue; } if (found(*argv, rsa_choices, &i)) { rsa_doit[i] = 1; continue; } #endif #ifndef OPENSSL_NO_DSA if (strcmp(*argv, "dsa") == 0) { dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] = dsa_doit[R_DSA_2048] = 1; continue; } if (found(*argv, dsa_choices, &i)) { dsa_doit[i] = 2; continue; } #endif if (strcmp(*argv, "aes") == 0) { doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; continue; } #ifndef OPENSSL_NO_CAMELLIA if (strcmp(*argv, "camellia") == 0) { doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; continue; } #endif #ifndef OPENSSL_NO_EC if (strcmp(*argv, "ecdsa") == 0) { for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) ecdsa_doit[loop] = 1; continue; } if (found(*argv, ecdsa_choices, &i)) { ecdsa_doit[i] = 2; continue; } if (strcmp(*argv, "ecdh") == 0) { for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) ecdh_doit[loop] = 1; continue; } if (found(*argv, ecdh_choices, &i)) { ecdh_doit[i] = 2; continue; } if (strcmp(*argv, "eddsa") == 0) { for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) eddsa_doit[loop] = 1; continue; } if (found(*argv, eddsa_choices, &i)) { eddsa_doit[i] = 2; continue; } #endif BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv); goto end; } /* Sanity checks */ if (aead) { if (evp_cipher == NULL) { BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n"); goto end; } else if (!(EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { BIO_printf(bio_err, "%s is not an AEAD cipher\n", OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); goto end; } } if (multiblock) { if (evp_cipher == NULL) { BIO_printf(bio_err,"-mb can be used only with a multi-block" " capable cipher\n"); goto end; } else if (!(EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { BIO_printf(bio_err, "%s is not a multi-block capable\n", OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); goto end; } else if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with -mb"); goto end; } } /* Initialize the job pool if async mode is enabled */ if (async_jobs > 0) { async_init = ASYNC_init_thread(async_jobs, async_jobs); if (!async_init) { BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); goto end; } } loopargs_len = (async_jobs == 0 ? 1 : async_jobs); loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); for (i = 0; i < loopargs_len; i++) { if (async_jobs > 0) { loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); if (loopargs[i].wait_ctx == NULL) { BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); goto end; } } buflen = lengths[size_num - 1]; if (buflen < 36) /* size of random vector in RSA benchmark */ buflen = 36; buflen += MAX_MISALIGNMENT + 1; loopargs[i].buf_malloc = app_malloc(buflen, "input buffer"); loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer"); memset(loopargs[i].buf_malloc, 0, buflen); memset(loopargs[i].buf2_malloc, 0, buflen); /* Align the start of buffers on a 64 byte boundary */ loopargs[i].buf = loopargs[i].buf_malloc + misalign; loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; #ifndef OPENSSL_NO_EC loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); #endif } #ifndef NO_FORK if (multi && do_multi(multi, size_num)) goto show_res; #endif /* Initialize the engine after the fork */ e = setup_engine(engine_id, 0); /* No parameters; turn on everything. */ if ((argc == 0) && !doit[D_EVP]) { for (i = 0; i < ALGOR_NUM; i++) if (i != D_EVP) doit[i] = 1; #ifndef OPENSSL_NO_RSA for (i = 0; i < RSA_NUM; i++) rsa_doit[i] = 1; #endif #ifndef OPENSSL_NO_DSA for (i = 0; i < DSA_NUM; i++) dsa_doit[i] = 1; #endif #ifndef OPENSSL_NO_EC for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) ecdsa_doit[loop] = 1; for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) ecdh_doit[loop] = 1; for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) eddsa_doit[loop] = 1; #endif } for (i = 0; i < ALGOR_NUM; i++) if (doit[i]) pr_header++; if (usertime == 0 && !mr) BIO_printf(bio_err, "You have chosen to measure elapsed time " "instead of user CPU time.\n"); #ifndef OPENSSL_NO_RSA for (i = 0; i < loopargs_len; i++) { if (primes > RSA_DEFAULT_PRIME_NUM) { /* for multi-prime RSA, skip this */ break; } for (k = 0; k < RSA_NUM; k++) { const unsigned char *p; p = rsa_data[k]; loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); if (loopargs[i].rsa_key[k] == NULL) { BIO_printf(bio_err, "internal error loading RSA key number %d\n", k); goto end; } } } #endif #ifndef OPENSSL_NO_DSA for (i = 0; i < loopargs_len; i++) { loopargs[i].dsa_key[0] = get_dsa(512); loopargs[i].dsa_key[1] = get_dsa(1024); loopargs[i].dsa_key[2] = get_dsa(2048); } #endif #ifndef OPENSSL_NO_DES DES_set_key_unchecked(&key, &sch); DES_set_key_unchecked(&key2, &sch2); DES_set_key_unchecked(&key3, &sch3); #endif AES_set_encrypt_key(key16, 128, &aes_ks1); AES_set_encrypt_key(key24, 192, &aes_ks2); AES_set_encrypt_key(key32, 256, &aes_ks3); #ifndef OPENSSL_NO_CAMELLIA Camellia_set_key(key16, 128, &camellia_ks1); Camellia_set_key(ckey24, 192, &camellia_ks2); Camellia_set_key(ckey32, 256, &camellia_ks3); #endif #ifndef OPENSSL_NO_IDEA IDEA_set_encrypt_key(key16, &idea_ks); #endif #ifndef OPENSSL_NO_SEED SEED_set_key(key16, &seed_ks); #endif #ifndef OPENSSL_NO_RC4 RC4_set_key(&rc4_ks, 16, key16); #endif #ifndef OPENSSL_NO_RC2 RC2_set_key(&rc2_ks, 16, key16, 128); #endif #ifndef OPENSSL_NO_RC5 RC5_32_set_key(&rc5_ks, 16, key16, 12); #endif #ifndef OPENSSL_NO_BF BF_set_key(&bf_ks, 16, key16); #endif #ifndef OPENSSL_NO_CAST CAST_set_key(&cast_ks, 16, key16); #endif #ifndef SIGALRM # ifndef OPENSSL_NO_DES BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); count = 10; do { long it; count *= 2; Time_F(START); for (it = count; it; it--) DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); d = Time_F(STOP); } while (d < 3); save_count = count; c[D_MD2][0] = count / 10; c[D_MDC2][0] = count / 10; c[D_MD4][0] = count; c[D_MD5][0] = count; c[D_HMAC][0] = count; c[D_SHA1][0] = count; c[D_RMD160][0] = count; c[D_RC4][0] = count * 5; c[D_CBC_DES][0] = count; c[D_EDE3_DES][0] = count / 3; c[D_CBC_IDEA][0] = count; c[D_CBC_SEED][0] = count; c[D_CBC_RC2][0] = count; c[D_CBC_RC5][0] = count; c[D_CBC_BF][0] = count; c[D_CBC_CAST][0] = count; c[D_CBC_128_AES][0] = count; c[D_CBC_192_AES][0] = count; c[D_CBC_256_AES][0] = count; c[D_CBC_128_CML][0] = count; c[D_CBC_192_CML][0] = count; c[D_CBC_256_CML][0] = count; c[D_SHA256][0] = count; c[D_SHA512][0] = count; c[D_WHIRLPOOL][0] = count; c[D_IGE_128_AES][0] = count; c[D_IGE_192_AES][0] = count; c[D_IGE_256_AES][0] = count; c[D_GHASH][0] = count; c[D_RAND][0] = count; for (i = 1; i < size_num; i++) { long l0, l1; l0 = (long)lengths[0]; l1 = (long)lengths[i]; c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1; l0 = (long)lengths[i - 1]; c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; } # ifndef OPENSSL_NO_RSA rsa_c[R_RSA_512][0] = count / 2000; rsa_c[R_RSA_512][1] = count / 400; for (i = 1; i < RSA_NUM; i++) { rsa_c[i][0] = rsa_c[i - 1][0] / 8; rsa_c[i][1] = rsa_c[i - 1][1] / 4; if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0) rsa_doit[i] = 0; else { if (rsa_c[i][0] == 0) { rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ rsa_c[i][1] = 20; } } } # endif # ifndef OPENSSL_NO_DSA dsa_c[R_DSA_512][0] = count / 1000; dsa_c[R_DSA_512][1] = count / 1000 / 2; for (i = 1; i < DSA_NUM; i++) { dsa_c[i][0] = dsa_c[i - 1][0] / 4; dsa_c[i][1] = dsa_c[i - 1][1] / 4; if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0) dsa_doit[i] = 0; else { if (dsa_c[i][0] == 0) { dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ dsa_c[i][1] = 1; } } } # endif # ifndef OPENSSL_NO_EC ecdsa_c[R_EC_P160][0] = count / 1000; ecdsa_c[R_EC_P160][1] = count / 1000 / 2; for (i = R_EC_P192; i <= R_EC_P521; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } # ifndef OPENSSL_NO_EC2M ecdsa_c[R_EC_K163][0] = count / 1000; ecdsa_c[R_EC_K163][1] = count / 1000 / 2; for (i = R_EC_K233; i <= R_EC_K571; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } ecdsa_c[R_EC_B163][0] = count / 1000; ecdsa_c[R_EC_B163][1] = count / 1000 / 2; for (i = R_EC_B233; i <= R_EC_B571; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } # endif ecdh_c[R_EC_P160][0] = count / 1000; for (i = R_EC_P192; i <= R_EC_P521; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } # ifndef OPENSSL_NO_EC2M ecdh_c[R_EC_K163][0] = count / 1000; for (i = R_EC_K233; i <= R_EC_K571; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } ecdh_c[R_EC_B163][0] = count / 1000; for (i = R_EC_B233; i <= R_EC_B571; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } # endif /* repeated code good to factorize */ ecdh_c[R_EC_BRP256R1][0] = count / 1000; for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) { ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } ecdh_c[R_EC_BRP256T1][0] = count / 1000; for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) { ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } /* default iteration count for the last two EC Curves */ ecdh_c[R_EC_X25519][0] = count / 1800; ecdh_c[R_EC_X448][0] = count / 7200; eddsa_c[R_EC_Ed25519][0] = count / 1800; eddsa_c[R_EC_Ed448][0] = count / 7200; # endif # else /* not worth fixing */ # error "You cannot disable DES on systems without SIGALRM." # endif /* OPENSSL_NO_DES */ #elif SIGALRM > 0 signal(SIGALRM, alarmed); #endif /* SIGALRM */ #ifndef OPENSSL_NO_MD2 if (doit[D_MD2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); d = Time_F(STOP); print_result(D_MD2, testnum, count, d); } } #endif #ifndef OPENSSL_NO_MDC2 if (doit[D_MDC2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); d = Time_F(STOP); print_result(D_MDC2, testnum, count, d); } } #endif #ifndef OPENSSL_NO_MD4 if (doit[D_MD4]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); d = Time_F(STOP); print_result(D_MD4, testnum, count, d); } } #endif #ifndef OPENSSL_NO_MD5 if (doit[D_MD5]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, MD5_loop, loopargs); d = Time_F(STOP); print_result(D_MD5, testnum, count, d); } } if (doit[D_HMAC]) { static const char hmac_key[] = "This is a key..."; int len = strlen(hmac_key); for (i = 0; i < loopargs_len; i++) { loopargs[i].hctx = HMAC_CTX_new(); if (loopargs[i].hctx == NULL) { BIO_printf(bio_err, "HMAC malloc failure, exiting..."); exit(1); } HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL); } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, HMAC_loop, loopargs); d = Time_F(STOP); print_result(D_HMAC, testnum, count, d); } for (i = 0; i < loopargs_len; i++) { HMAC_CTX_free(loopargs[i].hctx); } } #endif if (doit[D_SHA1]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA1_loop, loopargs); d = Time_F(STOP); print_result(D_SHA1, testnum, count, d); } } if (doit[D_SHA256]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA256_loop, loopargs); d = Time_F(STOP); print_result(D_SHA256, testnum, count, d); } } if (doit[D_SHA512]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA512_loop, loopargs); d = Time_F(STOP); print_result(D_SHA512, testnum, count, d); } } #ifndef OPENSSL_NO_WHIRLPOOL if (doit[D_WHIRLPOOL]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); d = Time_F(STOP); print_result(D_WHIRLPOOL, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RMD160 if (doit[D_RMD160]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); d = Time_F(STOP); print_result(D_RMD160, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RC4 if (doit[D_RC4]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, RC4_loop, loopargs); d = Time_F(STOP); print_result(D_RC4, testnum, count, d); } } #endif #ifndef OPENSSL_NO_DES if (doit[D_CBC_DES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_DES, testnum, count, d); } } if (doit[D_EDE3_DES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_EDE3_DES, testnum, count, d); } } #endif if (doit[D_CBC_128_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_128_AES, testnum, count, d); } } if (doit[D_CBC_192_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_192_AES, testnum, count, d); } } if (doit[D_CBC_256_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_256_AES, testnum, count, d); } } if (doit[D_IGE_128_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_128_AES, testnum, count, d); } } if (doit[D_IGE_192_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_192_AES, testnum, count, d); } } if (doit[D_IGE_256_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_256_AES, testnum, count, d); } } if (doit[D_GHASH]) { for (i = 0; i < loopargs_len; i++) { loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12); } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); d = Time_F(STOP); print_result(D_GHASH, testnum, count, d); } for (i = 0; i < loopargs_len; i++) CRYPTO_gcm128_release(loopargs[i].gcm_ctx); } #ifndef OPENSSL_NO_CAMELLIA if (doit[D_CBC_128_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_128_CML]); doit[D_CBC_128_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_128_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks1, iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_128_CML, testnum, count, d); } } if (doit[D_CBC_192_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_192_CML]); doit[D_CBC_192_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0; COND(c[D_CBC_192_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks2, iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_192_CML, testnum, count, d); } } if (doit[D_CBC_256_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_256_CML]); doit[D_CBC_256_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_256_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks3, iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_256_CML, testnum, count, d); } } #endif #ifndef OPENSSL_NO_IDEA if (doit[D_CBC_IDEA]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_IDEA]); doit[D_CBC_IDEA] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_IDEA][testnum]); count++) IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &idea_ks, iv, IDEA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_IDEA, testnum, count, d); } } #endif #ifndef OPENSSL_NO_SEED if (doit[D_CBC_SEED]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_SEED]); doit[D_CBC_SEED] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_SEED][testnum]); count++) SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &seed_ks, iv, 1); d = Time_F(STOP); print_result(D_CBC_SEED, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RC2 if (doit[D_CBC_RC2]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_RC2]); doit[D_CBC_RC2] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0; COND(c[D_CBC_RC2][testnum]); count++) RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &rc2_ks, iv, RC2_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_RC2, testnum, count, d); } } #endif #ifndef OPENSSL_NO_RC5 if (doit[D_CBC_RC5]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_RC5]); doit[D_CBC_RC5] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0; COND(c[D_CBC_RC5][testnum]); count++) RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &rc5_ks, iv, RC5_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_RC5, testnum, count, d); } } #endif #ifndef OPENSSL_NO_BF if (doit[D_CBC_BF]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_BF]); doit[D_CBC_BF] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_BF][testnum]); count++) BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &bf_ks, iv, BF_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_BF, testnum, count, d); } } #endif #ifndef OPENSSL_NO_CAST if (doit[D_CBC_CAST]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_CAST]); doit[D_CBC_CAST] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_CAST][testnum]); count++) CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &cast_ks, iv, CAST_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_CAST, testnum, count, d); } } #endif if (doit[D_RAND]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs); d = Time_F(STOP); print_result(D_RAND, testnum, count, d); } } if (doit[D_EVP]) { if (evp_cipher != NULL) { int (*loopfunc)(void *args) = EVP_Update_loop; if (multiblock && (EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { multiblock_speed(evp_cipher, lengths_single, &seconds); ret = 0; goto end; } names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) { loopfunc = EVP_Update_loop_ccm; } else if (aead && (EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { loopfunc = EVP_Update_loop_aead; if (lengths == lengths_list) { lengths = aead_lengths_list; size_num = OSSL_NELEM(aead_lengths_list); } } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], save_count, lengths[testnum], seconds.sym); for (k = 0; k < loopargs_len; k++) { loopargs[k].ctx = EVP_CIPHER_CTX_new(); if (loopargs[k].ctx == NULL) { BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n"); exit(1); } if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL, iv, decrypt ? 0 : 1)) { BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); ERR_print_errors(bio_err); exit(1); } EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx); loopargs[k].key = app_malloc(keylen, "evp_cipher key"); EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key); if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL, loopargs[k].key, NULL, -1)) { BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); ERR_print_errors(bio_err); exit(1); } OPENSSL_clear_free(loopargs[k].key, keylen); } Time_F(START); count = run_benchmark(async_jobs, loopfunc, loopargs); d = Time_F(STOP); for (k = 0; k < loopargs_len; k++) { EVP_CIPHER_CTX_free(loopargs[k].ctx); } print_result(D_EVP, testnum, count, d); } } else if (evp_md != NULL) { names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], save_count, lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); d = Time_F(STOP); print_result(D_EVP, testnum, count, d); } } } for (i = 0; i < loopargs_len; i++) if (RAND_bytes(loopargs[i].buf, 36) <= 0) goto end; #ifndef OPENSSL_NO_RSA for (testnum = 0; testnum < RSA_NUM; testnum++) { int st = 0; if (!rsa_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { if (primes > 2) { /* we haven't set keys yet, generate multi-prime RSA keys */ BIGNUM *bn = BN_new(); if (bn == NULL) goto end; if (!BN_set_word(bn, RSA_F4)) { BN_free(bn); goto end; } BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n", rsa_choices[testnum].name); loopargs[i].rsa_key[testnum] = RSA_new(); if (loopargs[i].rsa_key[testnum] == NULL) { BN_free(bn); goto end; } if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum], rsa_bits[testnum], primes, bn, NULL)) { BN_free(bn); goto end; } BN_free(bn); } st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "RSA sign failure. No RSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("private", "rsa", rsa_c[testnum][0], rsa_bits[testnum], seconds.rsa); /* RSA_blinding_on(rsa_key[testnum],NULL); */ Time_F(START); count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n" : "%ld %u bits private RSA's in %.2fs\n", count, rsa_bits[testnum], d); rsa_results[testnum][0] = (double)count / d; rsa_count = count; } for (i = 0; i < loopargs_len; i++) { st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st <= 0) break; } if (st <= 0) { BIO_printf(bio_err, "RSA verify failure. No RSA verify will be done.\n"); ERR_print_errors(bio_err); rsa_doit[testnum] = 0; } else { pkey_print_message("public", "rsa", rsa_c[testnum][1], rsa_bits[testnum], seconds.rsa); Time_F(START); count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n" : "%ld %u bits public RSA's in %.2fs\n", count, rsa_bits[testnum], d); rsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < RSA_NUM; testnum++) rsa_doit[testnum] = 0; } } #endif /* OPENSSL_NO_RSA */ for (i = 0; i < loopargs_len; i++) if (RAND_bytes(loopargs[i].buf, 36) <= 0) goto end; #ifndef OPENSSL_NO_DSA for (testnum = 0; testnum < DSA_NUM; testnum++) { int st = 0; if (!dsa_doit[testnum]) continue; /* DSA_generate_key(dsa_key[testnum]); */ /* DSA_sign_setup(dsa_key[testnum],NULL); */ for (i = 0; i < loopargs_len; i++) { st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "DSA sign failure. No DSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", "dsa", dsa_c[testnum][0], dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R3:%ld:%u:%.2f\n" : "%ld %u bits DSA signs in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][0] = (double)count / d; rsa_count = count; } for (i = 0; i < loopargs_len; i++) { st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st <= 0) break; } if (st <= 0) { BIO_printf(bio_err, "DSA verify failure. No DSA verify will be done.\n"); ERR_print_errors(bio_err); dsa_doit[testnum] = 0; } else { pkey_print_message("verify", "dsa", dsa_c[testnum][1], dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R4:%ld:%u:%.2f\n" : "%ld %u bits DSA verify in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < DSA_NUM; testnum++) dsa_doit[testnum] = 0; } } #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_EC for (testnum = 0; testnum < ECDSA_NUM; testnum++) { int st = 1; if (!ecdsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum].nid); if (loopargs[i].ecdsa[testnum] == NULL) { st = 0; break; } } if (st == 0) { BIO_printf(bio_err, "ECDSA failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { for (i = 0; i < loopargs_len; i++) { EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); /* Perform ECDSA signature test */ EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].ecdsa[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "ECDSA sign failure. No ECDSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", "ecdsa", ecdsa_c[testnum][0], test_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R5:%ld:%u:%.2f\n" : "%ld %u bits ECDSA signs in %.2fs \n", count, test_curves[testnum].bits, d); ecdsa_results[testnum][0] = (double)count / d; rsa_count = count; } /* Perform ECDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].ecdsa[testnum]); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "ECDSA verify failure. No ECDSA verify will be done.\n"); ERR_print_errors(bio_err); ecdsa_doit[testnum] = 0; } else { pkey_print_message("verify", "ecdsa", ecdsa_c[testnum][1], test_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R6:%ld:%u:%.2f\n" : "%ld %u bits ECDSA verify in %.2fs\n", count, test_curves[testnum].bits, d); ecdsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < ECDSA_NUM; testnum++) ecdsa_doit[testnum] = 0; } } } for (testnum = 0; testnum < EC_NUM; testnum++) { int ecdh_checks = 1; if (!ecdh_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { EVP_PKEY_CTX *kctx = NULL; EVP_PKEY_CTX *test_ctx = NULL; EVP_PKEY_CTX *ctx = NULL; EVP_PKEY *key_A = NULL; EVP_PKEY *key_B = NULL; size_t outlen; size_t test_outlen; /* Ensure that the error queue is empty */ if (ERR_peek_error()) { BIO_printf(bio_err, "WARNING: the error queue contains previous unhandled errors.\n"); ERR_print_errors(bio_err); } /* Let's try to create a ctx directly from the NID: this works for * curves like Curve25519 that are not implemented through the low * level EC interface. * If this fails we try creating a EVP_PKEY_EC generic param ctx, * then we set the curve by NID before deriving the actual keygen * ctx for that specific curve. */ kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */ if (!kctx) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *params = NULL; /* If we reach this code EVP_PKEY_CTX_new_id() failed and a * "int_ctx_new:unsupported algorithm" error was added to the * error queue. * We remove it from the error queue as we are handling it. */ unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */ if (error == ERR_peek_last_error() && /* oldest and latest errors match */ /* check that the error origin matches */ ERR_GET_LIB(error) == ERR_LIB_EVP && ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW && ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM) ERR_get_error(); /* pop error from queue */ if (ERR_peek_error()) { BIO_printf(bio_err, "Unhandled error in the error queue during ECDH init.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } if ( /* Create the context for parameter generation */ !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) || /* Initialise the parameter generation */ !EVP_PKEY_paramgen_init(pctx) || /* Set the curve by NID */ !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, test_curves [testnum].nid) || /* Create the parameter object params */ !EVP_PKEY_paramgen(pctx, ¶ms)) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH EC params init failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Create the context for the key generation */ kctx = EVP_PKEY_CTX_new(params, NULL); EVP_PKEY_free(params); params = NULL; EVP_PKEY_CTX_free(pctx); pctx = NULL; } if (kctx == NULL || /* keygen ctx is not null */ EVP_PKEY_keygen_init(kctx) <= 0/* init keygen ctx */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH keygen failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } if (EVP_PKEY_keygen(kctx, &key_A) <= 0 || /* generate secret key A */ EVP_PKEY_keygen(kctx, &key_B) <= 0 || /* generate secret key B */ !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */ EVP_PKEY_derive_init(ctx) <= 0 || /* init derivation ctx */ EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 || /* set peer pubkey in ctx */ EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 || /* determine max length */ outlen == 0 || /* ensure outlen is a valid size */ outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH key generation failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Here we perform a test run, comparing the output of a*B and b*A; * we try this here and assume that further EVP_PKEY_derive calls * never fail, so we can skip checks in the actually benchmarked * code, for maximum performance. */ if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */ !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */ !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */ !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */ !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */ !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */ test_outlen != outlen /* compare output length */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computation failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ if (CRYPTO_memcmp(loopargs[i].secret_a, loopargs[i].secret_b, outlen)) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computations don't match.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } loopargs[i].ecdh_ctx[testnum] = ctx; loopargs[i].outlen[testnum] = outlen; EVP_PKEY_free(key_A); EVP_PKEY_free(key_B); EVP_PKEY_CTX_free(kctx); kctx = NULL; EVP_PKEY_CTX_free(test_ctx); test_ctx = NULL; } if (ecdh_checks != 0) { pkey_print_message("", "ecdh", ecdh_c[testnum][0], test_curves[testnum].bits, seconds.ecdh); Time_F(START); count = run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R7:%ld:%d:%.2f\n" : "%ld %u-bits ECDH ops in %.2fs\n", count, test_curves[testnum].bits, d); ecdh_results[testnum][0] = (double)count / d; rsa_count = count; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < OSSL_NELEM(ecdh_doit); testnum++) ecdh_doit[testnum] = 0; } } for (testnum = 0; testnum < EdDSA_NUM; testnum++) { int st = 1; EVP_PKEY *ed_pkey = NULL; EVP_PKEY_CTX *ed_pctx = NULL; if (!eddsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new(); if (loopargs[i].eddsa_ctx[testnum] == NULL) { st = 0; break; } if ((ed_pctx = EVP_PKEY_CTX_new_id(test_ed_curves[testnum].nid, NULL)) == NULL || EVP_PKEY_keygen_init(ed_pctx) <= 0 || EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) { st = 0; EVP_PKEY_CTX_free(ed_pctx); break; } EVP_PKEY_CTX_free(ed_pctx); if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL, NULL, ed_pkey)) { st = 0; EVP_PKEY_free(ed_pkey); break; } EVP_PKEY_free(ed_pkey); } if (st == 0) { BIO_printf(bio_err, "EdDSA failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { for (i = 0; i < loopargs_len; i++) { /* Perform EdDSA signature test */ loopargs[i].sigsize = test_ed_curves[testnum].sigsize; st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 20); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "EdDSA sign failure. No EdDSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", test_ed_curves[testnum].name, eddsa_c[testnum][0], test_ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R8:%ld:%u:%s:%.2f\n" : "%ld %u bits %s signs in %.2fs \n", count, test_ed_curves[testnum].bits, test_ed_curves[testnum].name, d); eddsa_results[testnum][0] = (double)count / d; rsa_count = count; } /* Perform EdDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = EVP_DigestVerify(loopargs[i].eddsa_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 20); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "EdDSA verify failure. No EdDSA verify will be done.\n"); ERR_print_errors(bio_err); eddsa_doit[testnum] = 0; } else { pkey_print_message("verify", test_ed_curves[testnum].name, eddsa_c[testnum][1], test_ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R9:%ld:%u:%s:%.2f\n" : "%ld %u bits %s verify in %.2fs\n", count, test_ed_curves[testnum].bits, test_ed_curves[testnum].name, d); eddsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < EdDSA_NUM; testnum++) eddsa_doit[testnum] = 0; } } } #endif /* OPENSSL_NO_EC */ #ifndef NO_FORK show_res: #endif if (!mr) { printf("%s\n", OpenSSL_version(OPENSSL_VERSION)); printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); printf("options:"); printf("%s ", BN_options()); #ifndef OPENSSL_NO_MD2 printf("%s ", MD2_options()); #endif #ifndef OPENSSL_NO_RC4 printf("%s ", RC4_options()); #endif #ifndef OPENSSL_NO_DES printf("%s ", DES_options()); #endif printf("%s ", AES_options()); #ifndef OPENSSL_NO_IDEA printf("%s ", IDEA_options()); #endif #ifndef OPENSSL_NO_BF printf("%s ", BF_options()); #endif printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); } if (pr_header) { if (mr) printf("+H"); else { printf ("The 'numbers' are in 1000s of bytes per second processed.\n"); printf("type "); } for (testnum = 0; testnum < size_num; testnum++) printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); printf("\n"); } for (k = 0; k < ALGOR_NUM; k++) { if (!doit[k]) continue; if (mr) printf("+F:%u:%s", k, names[k]); else printf("%-13s", names[k]); for (testnum = 0; testnum < size_num; testnum++) { if (results[k][testnum] > 10000 && !mr) printf(" %11.2fk", results[k][testnum] / 1e3); else printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); } printf("\n"); } #ifndef OPENSSL_NO_RSA testnum = 1; for (k = 0; k < RSA_NUM; k++) { if (!rsa_doit[k]) continue; if (testnum && !mr) { printf("%18ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F2:%u:%u:%f:%f\n", k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); else printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1], rsa_results[k][0], rsa_results[k][1]); } #endif #ifndef OPENSSL_NO_DSA testnum = 1; for (k = 0; k < DSA_NUM; k++) { if (!dsa_doit[k]) continue; if (testnum && !mr) { printf("%18ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F3:%u:%u:%f:%f\n", k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); else printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1], dsa_results[k][0], dsa_results[k][1]); } #endif #ifndef OPENSSL_NO_EC testnum = 1; for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) { if (!ecdsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F4:%u:%u:%f:%f\n", k, test_curves[k].bits, ecdsa_results[k][0], ecdsa_results[k][1]); else printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", test_curves[k].bits, test_curves[k].name, 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1], ecdsa_results[k][0], ecdsa_results[k][1]); } testnum = 1; for (k = 0; k < EC_NUM; k++) { if (!ecdh_doit[k]) continue; if (testnum && !mr) { printf("%30sop op/s\n", " "); testnum = 0; } if (mr) printf("+F5:%u:%u:%f:%f\n", k, test_curves[k].bits, ecdh_results[k][0], 1.0 / ecdh_results[k][0]); else printf("%4u bits ecdh (%s) %8.4fs %8.1f\n", test_curves[k].bits, test_curves[k].name, 1.0 / ecdh_results[k][0], ecdh_results[k][0]); } testnum = 1; for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) { if (!eddsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F6:%u:%u:%s:%f:%f\n", k, test_ed_curves[k].bits, test_ed_curves[k].name, eddsa_results[k][0], eddsa_results[k][1]); else printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n", test_ed_curves[k].bits, test_ed_curves[k].name, 1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1], eddsa_results[k][0], eddsa_results[k][1]); } #endif ret = 0; end: ERR_print_errors(bio_err); for (i = 0; i < loopargs_len; i++) { OPENSSL_free(loopargs[i].buf_malloc); OPENSSL_free(loopargs[i].buf2_malloc); #ifndef OPENSSL_NO_RSA for (k = 0; k < RSA_NUM; k++) RSA_free(loopargs[i].rsa_key[k]); #endif #ifndef OPENSSL_NO_DSA for (k = 0; k < DSA_NUM; k++) DSA_free(loopargs[i].dsa_key[k]); #endif #ifndef OPENSSL_NO_EC for (k = 0; k < ECDSA_NUM; k++) EC_KEY_free(loopargs[i].ecdsa[k]); for (k = 0; k < EC_NUM; k++) EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); for (k = 0; k < EdDSA_NUM; k++) EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]); OPENSSL_free(loopargs[i].secret_a); OPENSSL_free(loopargs[i].secret_b); #endif } if (async_jobs > 0) { for (i = 0; i < loopargs_len; i++) ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); } if (async_init) { ASYNC_cleanup_thread(); } OPENSSL_free(loopargs); release_engine(e); return ret; } static void print_message(const char *s, long num, int length, int tm) { #ifdef SIGALRM BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n" : "Doing %s for %ds on %d size blocks: ", s, tm, length); (void)BIO_flush(bio_err); run = 1; alarm(tm); #else BIO_printf(bio_err, mr ? "+DN:%s:%ld:%d\n" : "Doing %s %ld times on %d size blocks: ", s, num, length); (void)BIO_flush(bio_err); #endif } static void pkey_print_message(const char *str, const char *str2, long num, unsigned int bits, int tm) { #ifdef SIGALRM BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n" : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm); (void)BIO_flush(bio_err); run = 1; alarm(tm); #else BIO_printf(bio_err, mr ? "+DNP:%ld:%d:%s:%s\n" : "Doing %ld %u bits %s %s's: ", num, bits, str, str2); (void)BIO_flush(bio_err); #endif } static void print_result(int alg, int run_no, int count, double time_used) { if (count == -1) { BIO_puts(bio_err, "EVP error!\n"); exit(1); } BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s's in %.2fs\n", count, names[alg], time_used); results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; } #ifndef NO_FORK static char *sstrsep(char **string, const char *delim) { char isdelim[256]; char *token = *string; if (**string == 0) return NULL; memset(isdelim, 0, sizeof(isdelim)); isdelim[0] = 1; while (*delim) { isdelim[(unsigned char)(*delim)] = 1; delim++; } while (!isdelim[(unsigned char)(**string)]) { (*string)++; } if (**string) { **string = 0; (*string)++; } return token; } static int do_multi(int multi, int size_num) { int n; int fd[2]; int *fds; static char sep[] = ":"; fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi"); for (n = 0; n < multi; ++n) { if (pipe(fd) == -1) { BIO_printf(bio_err, "pipe failure\n"); exit(1); } fflush(stdout); (void)BIO_flush(bio_err); if (fork()) { close(fd[1]); fds[n] = fd[0]; } else { close(fd[0]); close(1); if (dup(fd[1]) == -1) { BIO_printf(bio_err, "dup failed\n"); exit(1); } close(fd[1]); mr = 1; usertime = 0; free(fds); return 0; } printf("Forked child %d\n", n); } /* for now, assume the pipe is long enough to take all the output */ for (n = 0; n < multi; ++n) { FILE *f; char buf[1024]; char *p; f = fdopen(fds[n], "r"); while (fgets(buf, sizeof(buf), f)) { p = strchr(buf, '\n'); if (p) *p = '\0'; if (buf[0] != '+') { BIO_printf(bio_err, "Don't understand line '%s' from child %d\n", buf, n); continue; } printf("Got: %s from %d\n", buf, n); if (strncmp(buf, "+F:", 3) == 0) { int alg; int j; p = buf + 3; alg = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); for (j = 0; j < size_num; ++j) results[alg][j] += atof(sstrsep(&p, sep)); } else if (strncmp(buf, "+F2:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); rsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); rsa_results[k][1] += d; } # ifndef OPENSSL_NO_DSA else if (strncmp(buf, "+F3:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); dsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); dsa_results[k][1] += d; } # endif # ifndef OPENSSL_NO_EC else if (strncmp(buf, "+F4:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); ecdsa_results[k][1] += d; } else if (strncmp(buf, "+F5:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdh_results[k][0] += d; } else if (strncmp(buf, "+F6:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); eddsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); eddsa_results[k][1] += d; } # endif else if (strncmp(buf, "+H:", 3) == 0) { ; } else BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n); } fclose(f); } free(fds); return 1; } #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds) { static const int mblengths_list[] = { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; const int *mblengths = mblengths_list; int j, count, keylen, num = OSSL_NELEM(mblengths_list); const char *alg_name; unsigned char *inp, *out, *key, no_key[32], no_iv[16]; EVP_CIPHER_CTX *ctx; double d = 0.0; if (lengths_single) { mblengths = &lengths_single; num = 1; } inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv); keylen = EVP_CIPHER_CTX_key_length(ctx); key = app_malloc(keylen, "evp_cipher key"); EVP_CIPHER_CTX_rand_key(ctx, key); EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); OPENSSL_clear_free(key, keylen); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key); alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); for (j = 0; j < num; j++) { print_message(alg_name, 0, mblengths[j], seconds->sym); Time_F(START); for (count = 0; run && count < 0x7fffffff; count++) { unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; size_t len = mblengths[j]; int packlen; memset(aad, 0, 8); /* avoid uninitialized values */ aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */ aad[9] = 3; /* version */ aad[10] = 2; aad[11] = 0; /* length */ aad[12] = 0; mb_param.out = NULL; mb_param.inp = aad; mb_param.len = len; mb_param.interleave = 8; packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, sizeof(mb_param), &mb_param); if (packlen > 0) { mb_param.out = out; mb_param.inp = inp; mb_param.len = len; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, sizeof(mb_param), &mb_param); } else { int pad; RAND_bytes(out, 16); len += 16; aad[11] = (unsigned char)(len >> 8); aad[12] = (unsigned char)(len); pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, EVP_AEAD_TLS1_AAD_LEN, aad); EVP_Cipher(ctx, out, inp, len + pad); } } d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s's in %.2fs\n", count, "evp", d); results[D_EVP][j] = ((double)count) / d * mblengths[j]; } if (mr) { fprintf(stdout, "+H"); for (j = 0; j < num; j++) fprintf(stdout, ":%d", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); for (j = 0; j < num; j++) fprintf(stdout, ":%.2f", results[D_EVP][j]); fprintf(stdout, "\n"); } else { fprintf(stdout, "The 'numbers' are in 1000s of bytes per second processed.\n"); fprintf(stdout, "type "); for (j = 0; j < num; j++) fprintf(stdout, "%7d bytes", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "%-24s", alg_name); for (j = 0; j < num; j++) { if (results[D_EVP][j] > 10000) fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); else fprintf(stdout, " %11.2f ", results[D_EVP][j]); } fprintf(stdout, "\n"); } OPENSSL_free(inp); OPENSSL_free(out); EVP_CIPHER_CTX_free(ctx); } openssl-1.1.1f/apps/spkac.c000066400000000000000000000133521364063235100155620ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_NOOUT, OPT_PUBKEY, OPT_VERIFY, OPT_IN, OPT_OUT, OPT_ENGINE, OPT_KEY, OPT_CHALLENGE, OPT_PASSIN, OPT_SPKAC, OPT_SPKSECT, OPT_KEYFORM } OPTION_CHOICE; const OPTIONS spkac_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"in", OPT_IN, '<', "Input file"}, {"out", OPT_OUT, '>', "Output file"}, {"key", OPT_KEY, '<', "Create SPKAC using private key"}, {"keyform", OPT_KEYFORM, 'f', "Private key file format - default PEM (PEM, DER, or ENGINE)"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"challenge", OPT_CHALLENGE, 's', "Challenge string"}, {"spkac", OPT_SPKAC, 's', "Alternative SPKAC name"}, {"noout", OPT_NOOUT, '-', "Don't print SPKAC"}, {"pubkey", OPT_PUBKEY, '-', "Output public key"}, {"verify", OPT_VERIFY, '-', "Verify SPKAC signature"}, {"spksect", OPT_SPKSECT, 's', "Specify the name of an SPKAC-dedicated section of configuration"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {NULL} }; int spkac_main(int argc, char **argv) { BIO *out = NULL; CONF *conf = NULL; ENGINE *e = NULL; EVP_PKEY *pkey = NULL; NETSCAPE_SPKI *spki = NULL; char *challenge = NULL, *keyfile = NULL; char *infile = NULL, *outfile = NULL, *passinarg = NULL, *passin = NULL; char *spkstr = NULL, *prog; const char *spkac = "SPKAC", *spksect = "default"; int i, ret = 1, verify = 0, noout = 0, pubkey = 0; int keyformat = FORMAT_PEM; OPTION_CHOICE o; prog = opt_init(argc, argv, spkac_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(spkac_options); ret = 0; goto end; case OPT_IN: infile = opt_arg(); break; case OPT_OUT: outfile = opt_arg(); break; case OPT_NOOUT: noout = 1; break; case OPT_PUBKEY: pubkey = 1; break; case OPT_VERIFY: verify = 1; break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_KEY: keyfile = opt_arg(); break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &keyformat)) goto opthelp; break; case OPT_CHALLENGE: challenge = opt_arg(); break; case OPT_SPKAC: spkac = opt_arg(); break; case OPT_SPKSECT: spksect = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; } } argc = opt_num_rest(); if (argc != 0) goto opthelp; if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } if (keyfile != NULL) { pkey = load_key(strcmp(keyfile, "-") ? keyfile : NULL, keyformat, 1, passin, e, "private key"); if (pkey == NULL) goto end; spki = NETSCAPE_SPKI_new(); if (spki == NULL) goto end; if (challenge != NULL) ASN1_STRING_set(spki->spkac->challenge, challenge, (int)strlen(challenge)); NETSCAPE_SPKI_set_pubkey(spki, pkey); NETSCAPE_SPKI_sign(spki, pkey, EVP_md5()); spkstr = NETSCAPE_SPKI_b64_encode(spki); if (spkstr == NULL) goto end; out = bio_open_default(outfile, 'w', FORMAT_TEXT); if (out == NULL) { OPENSSL_free(spkstr); goto end; } BIO_printf(out, "SPKAC=%s\n", spkstr); OPENSSL_free(spkstr); ret = 0; goto end; } if ((conf = app_load_config(infile)) == NULL) goto end; spkstr = NCONF_get_string(conf, spksect, spkac); if (spkstr == NULL) { BIO_printf(bio_err, "Can't find SPKAC called \"%s\"\n", spkac); ERR_print_errors(bio_err); goto end; } spki = NETSCAPE_SPKI_b64_decode(spkstr, -1); if (spki == NULL) { BIO_printf(bio_err, "Error loading SPKAC\n"); ERR_print_errors(bio_err); goto end; } out = bio_open_default(outfile, 'w', FORMAT_TEXT); if (out == NULL) goto end; if (!noout) NETSCAPE_SPKI_print(out, spki); pkey = NETSCAPE_SPKI_get_pubkey(spki); if (verify) { i = NETSCAPE_SPKI_verify(spki, pkey); if (i > 0) { BIO_printf(bio_err, "Signature OK\n"); } else { BIO_printf(bio_err, "Signature Failure\n"); ERR_print_errors(bio_err); goto end; } } if (pubkey) PEM_write_bio_PUBKEY(out, pkey); ret = 0; end: NCONF_free(conf); NETSCAPE_SPKI_free(spki); BIO_free_all(out); EVP_PKEY_free(pkey); release_engine(e); OPENSSL_free(passin); return ret; } openssl-1.1.1f/apps/srp.c000066400000000000000000000502511364063235100152640ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2004, EdelKey Project. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Christophe Renou and Peter Sylvester, * for the EdelKey project. */ #include #ifdef OPENSSL_NO_SRP NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include # include # include # include # include # include "apps.h" # include "progs.h" # define BASE_SECTION "srp" # define CONFIG_FILE "openssl.cnf" # define ENV_DATABASE "srpvfile" # define ENV_DEFAULT_SRP "default_srp" static int get_index(CA_DB *db, char *id, char type) { char **pp; int i; if (id == NULL) return -1; if (type == DB_SRP_INDEX) { for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) { pp = sk_OPENSSL_PSTRING_value(db->db->data, i); if (pp[DB_srptype][0] == DB_SRP_INDEX && strcmp(id, pp[DB_srpid]) == 0) return i; } } else { for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) { pp = sk_OPENSSL_PSTRING_value(db->db->data, i); if (pp[DB_srptype][0] != DB_SRP_INDEX && strcmp(id, pp[DB_srpid]) == 0) return i; } } return -1; } static void print_entry(CA_DB *db, int indx, int verbose, char *s) { if (indx >= 0 && verbose) { int j; char **pp = sk_OPENSSL_PSTRING_value(db->db->data, indx); BIO_printf(bio_err, "%s \"%s\"\n", s, pp[DB_srpid]); for (j = 0; j < DB_NUMBER; j++) { BIO_printf(bio_err, " %d = \"%s\"\n", j, pp[j]); } } } static void print_index(CA_DB *db, int indexindex, int verbose) { print_entry(db, indexindex, verbose, "g N entry"); } static void print_user(CA_DB *db, int userindex, int verbose) { if (verbose > 0) { char **pp = sk_OPENSSL_PSTRING_value(db->db->data, userindex); if (pp[DB_srptype][0] != 'I') { print_entry(db, userindex, verbose, "User entry"); print_entry(db, get_index(db, pp[DB_srpgN], 'I'), verbose, "g N entry"); } } } static int update_index(CA_DB *db, char **row) { char **irow; int i; irow = app_malloc(sizeof(*irow) * (DB_NUMBER + 1), "row pointers"); for (i = 0; i < DB_NUMBER; i++) irow[i] = row[i]; irow[DB_NUMBER] = NULL; if (!TXT_DB_insert(db->db, irow)) { BIO_printf(bio_err, "failed to update srpvfile\n"); BIO_printf(bio_err, "TXT_DB error number %ld\n", db->db->error); OPENSSL_free(irow); return 0; } return 1; } static char *lookup_conf(const CONF *conf, const char *section, const char *tag) { char *entry = NCONF_get_string(conf, section, tag); if (entry == NULL) BIO_printf(bio_err, "variable lookup failed for %s::%s\n", section, tag); return entry; } static char *srp_verify_user(const char *user, const char *srp_verifier, char *srp_usersalt, const char *g, const char *N, const char *passin, int verbose) { char password[1025]; PW_CB_DATA cb_tmp; char *verifier = NULL; char *gNid = NULL; int len; cb_tmp.prompt_info = user; cb_tmp.password = passin; len = password_callback(password, sizeof(password)-1, 0, &cb_tmp); if (len > 0) { password[len] = 0; if (verbose) BIO_printf(bio_err, "Validating\n user=\"%s\"\n srp_verifier=\"%s\"\n srp_usersalt=\"%s\"\n g=\"%s\"\n N=\"%s\"\n", user, srp_verifier, srp_usersalt, g, N); if (verbose > 1) BIO_printf(bio_err, "Pass %s\n", password); OPENSSL_assert(srp_usersalt != NULL); if ((gNid = SRP_create_verifier(user, password, &srp_usersalt, &verifier, N, g)) == NULL) { BIO_printf(bio_err, "Internal error validating SRP verifier\n"); } else { if (strcmp(verifier, srp_verifier)) gNid = NULL; OPENSSL_free(verifier); } OPENSSL_cleanse(password, len); } return gNid; } static char *srp_create_user(char *user, char **srp_verifier, char **srp_usersalt, char *g, char *N, char *passout, int verbose) { char password[1025]; PW_CB_DATA cb_tmp; char *gNid = NULL; char *salt = NULL; int len; cb_tmp.prompt_info = user; cb_tmp.password = passout; len = password_callback(password, sizeof(password)-1, 1, &cb_tmp); if (len > 0) { password[len] = 0; if (verbose) BIO_printf(bio_err, "Creating\n user=\"%s\"\n g=\"%s\"\n N=\"%s\"\n", user, g, N); if ((gNid = SRP_create_verifier(user, password, &salt, srp_verifier, N, g)) == NULL) { BIO_printf(bio_err, "Internal error creating SRP verifier\n"); } else { *srp_usersalt = salt; } OPENSSL_cleanse(password, len); if (verbose > 1) BIO_printf(bio_err, "gNid=%s salt =\"%s\"\n verifier =\"%s\"\n", gNid, salt, *srp_verifier); } return gNid; } typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_VERBOSE, OPT_CONFIG, OPT_NAME, OPT_SRPVFILE, OPT_ADD, OPT_DELETE, OPT_MODIFY, OPT_LIST, OPT_GN, OPT_USERINFO, OPT_PASSIN, OPT_PASSOUT, OPT_ENGINE, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS srp_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"verbose", OPT_VERBOSE, '-', "Talk a lot while doing things"}, {"config", OPT_CONFIG, '<', "A config file"}, {"name", OPT_NAME, 's', "The particular srp definition to use"}, {"srpvfile", OPT_SRPVFILE, '<', "The srp verifier file name"}, {"add", OPT_ADD, '-', "Add a user and srp verifier"}, {"modify", OPT_MODIFY, '-', "Modify the srp verifier of an existing user"}, {"delete", OPT_DELETE, '-', "Delete user from verifier file"}, {"list", OPT_LIST, '-', "List users"}, {"gn", OPT_GN, 's', "Set g and N values to be used for new verifier"}, {"userinfo", OPT_USERINFO, 's', "Additional info to be set for user"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, OPT_R_OPTIONS, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {NULL} }; int srp_main(int argc, char **argv) { ENGINE *e = NULL; CA_DB *db = NULL; CONF *conf = NULL; int gNindex = -1, maxgN = -1, ret = 1, errors = 0, verbose = 0, i; int doupdatedb = 0, mode = OPT_ERR; char *user = NULL, *passinarg = NULL, *passoutarg = NULL; char *passin = NULL, *passout = NULL, *gN = NULL, *userinfo = NULL; char *section = NULL; char **gNrow = NULL, *configfile = NULL; char *srpvfile = NULL, **pp, *prog; OPTION_CHOICE o; prog = opt_init(argc, argv, srp_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(srp_options); ret = 0; goto end; case OPT_VERBOSE: verbose++; break; case OPT_CONFIG: configfile = opt_arg(); break; case OPT_NAME: section = opt_arg(); break; case OPT_SRPVFILE: srpvfile = opt_arg(); break; case OPT_ADD: case OPT_DELETE: case OPT_MODIFY: case OPT_LIST: if (mode != OPT_ERR) { BIO_printf(bio_err, "%s: Only one of -add/-delete/-modify/-list\n", prog); goto opthelp; } mode = o; break; case OPT_GN: gN = opt_arg(); break; case OPT_USERINFO: userinfo = opt_arg(); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; } } argc = opt_num_rest(); argv = opt_rest(); if (srpvfile != NULL && configfile != NULL) { BIO_printf(bio_err, "-srpvfile and -configfile cannot be specified together.\n"); goto end; } if (mode == OPT_ERR) { BIO_printf(bio_err, "Exactly one of the options -add, -delete, -modify -list must be specified.\n"); goto opthelp; } if (mode == OPT_DELETE || mode == OPT_MODIFY || mode == OPT_ADD) { if (argc == 0) { BIO_printf(bio_err, "Need at least one user.\n"); goto opthelp; } user = *argv++; } if ((passinarg != NULL || passoutarg != NULL) && argc != 1) { BIO_printf(bio_err, "-passin, -passout arguments only valid with one user.\n"); goto opthelp; } if (!app_passwd(passinarg, passoutarg, &passin, &passout)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } if (srpvfile == NULL) { if (configfile == NULL) configfile = default_config_file; if (verbose) BIO_printf(bio_err, "Using configuration from %s\n", configfile); conf = app_load_config(configfile); if (conf == NULL) goto end; if (configfile != default_config_file && !app_load_modules(conf)) goto end; /* Lets get the config section we are using */ if (section == NULL) { if (verbose) BIO_printf(bio_err, "trying to read " ENV_DEFAULT_SRP " in " BASE_SECTION "\n"); section = lookup_conf(conf, BASE_SECTION, ENV_DEFAULT_SRP); if (section == NULL) goto end; } app_RAND_load_conf(conf, BASE_SECTION); if (verbose) BIO_printf(bio_err, "trying to read " ENV_DATABASE " in section \"%s\"\n", section); srpvfile = lookup_conf(conf, section, ENV_DATABASE); if (srpvfile == NULL) goto end; } if (verbose) BIO_printf(bio_err, "Trying to read SRP verifier file \"%s\"\n", srpvfile); db = load_index(srpvfile, NULL); if (db == NULL) goto end; /* Lets check some fields */ for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) { pp = sk_OPENSSL_PSTRING_value(db->db->data, i); if (pp[DB_srptype][0] == DB_SRP_INDEX) { maxgN = i; if ((gNindex < 0) && (gN != NULL) && strcmp(gN, pp[DB_srpid]) == 0) gNindex = i; print_index(db, i, verbose > 1); } } if (verbose) BIO_printf(bio_err, "Database initialised\n"); if (gNindex >= 0) { gNrow = sk_OPENSSL_PSTRING_value(db->db->data, gNindex); print_entry(db, gNindex, verbose > 1, "Default g and N"); } else if (maxgN > 0 && !SRP_get_default_gN(gN)) { BIO_printf(bio_err, "No g and N value for index \"%s\"\n", gN); goto end; } else { if (verbose) BIO_printf(bio_err, "Database has no g N information.\n"); gNrow = NULL; } if (verbose > 1) BIO_printf(bio_err, "Starting user processing\n"); while (mode == OPT_LIST || user != NULL) { int userindex = -1; if (user != NULL && verbose > 1) BIO_printf(bio_err, "Processing user \"%s\"\n", user); if ((userindex = get_index(db, user, 'U')) >= 0) print_user(db, userindex, (verbose > 0) || mode == OPT_LIST); if (mode == OPT_LIST) { if (user == NULL) { BIO_printf(bio_err, "List all users\n"); for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) print_user(db, i, 1); } else if (userindex < 0) { BIO_printf(bio_err, "user \"%s\" does not exist, ignored. t\n", user); errors++; } } else if (mode == OPT_ADD) { if (userindex >= 0) { /* reactivation of a new user */ char **row = sk_OPENSSL_PSTRING_value(db->db->data, userindex); BIO_printf(bio_err, "user \"%s\" reactivated.\n", user); row[DB_srptype][0] = 'V'; doupdatedb = 1; } else { char *row[DB_NUMBER]; char *gNid; row[DB_srpverifier] = NULL; row[DB_srpsalt] = NULL; row[DB_srpinfo] = NULL; if (! (gNid = srp_create_user(user, &(row[DB_srpverifier]), &(row[DB_srpsalt]), gNrow ? gNrow[DB_srpsalt] : gN, gNrow ? gNrow[DB_srpverifier] : NULL, passout, verbose))) { BIO_printf(bio_err, "Cannot create srp verifier for user \"%s\", operation abandoned .\n", user); errors++; goto end; } row[DB_srpid] = OPENSSL_strdup(user); row[DB_srptype] = OPENSSL_strdup("v"); row[DB_srpgN] = OPENSSL_strdup(gNid); if ((row[DB_srpid] == NULL) || (row[DB_srpgN] == NULL) || (row[DB_srptype] == NULL) || (row[DB_srpverifier] == NULL) || (row[DB_srpsalt] == NULL) || (userinfo && ((row[DB_srpinfo] = OPENSSL_strdup(userinfo)) == NULL)) || !update_index(db, row)) { OPENSSL_free(row[DB_srpid]); OPENSSL_free(row[DB_srpgN]); OPENSSL_free(row[DB_srpinfo]); OPENSSL_free(row[DB_srptype]); OPENSSL_free(row[DB_srpverifier]); OPENSSL_free(row[DB_srpsalt]); goto end; } doupdatedb = 1; } } else if (mode == OPT_MODIFY) { if (userindex < 0) { BIO_printf(bio_err, "user \"%s\" does not exist, operation ignored.\n", user); errors++; } else { char **row = sk_OPENSSL_PSTRING_value(db->db->data, userindex); char type = row[DB_srptype][0]; if (type == 'v') { BIO_printf(bio_err, "user \"%s\" already updated, operation ignored.\n", user); errors++; } else { char *gNid; if (row[DB_srptype][0] == 'V') { int user_gN; char **irow = NULL; if (verbose) BIO_printf(bio_err, "Verifying password for user \"%s\"\n", user); if ((user_gN = get_index(db, row[DB_srpgN], DB_SRP_INDEX)) >= 0) irow = sk_OPENSSL_PSTRING_value(db->db->data, userindex); if (!srp_verify_user (user, row[DB_srpverifier], row[DB_srpsalt], irow ? irow[DB_srpsalt] : row[DB_srpgN], irow ? irow[DB_srpverifier] : NULL, passin, verbose)) { BIO_printf(bio_err, "Invalid password for user \"%s\", operation abandoned.\n", user); errors++; goto end; } } if (verbose) BIO_printf(bio_err, "Password for user \"%s\" ok.\n", user); if (! (gNid = srp_create_user(user, &(row[DB_srpverifier]), &(row[DB_srpsalt]), gNrow ? gNrow[DB_srpsalt] : NULL, gNrow ? gNrow[DB_srpverifier] : NULL, passout, verbose))) { BIO_printf(bio_err, "Cannot create srp verifier for user \"%s\", operation abandoned.\n", user); errors++; goto end; } row[DB_srptype][0] = 'v'; row[DB_srpgN] = OPENSSL_strdup(gNid); if (row[DB_srpid] == NULL || row[DB_srpgN] == NULL || row[DB_srptype] == NULL || row[DB_srpverifier] == NULL || row[DB_srpsalt] == NULL || (userinfo && ((row[DB_srpinfo] = OPENSSL_strdup(userinfo)) == NULL))) goto end; doupdatedb = 1; } } } else if (mode == OPT_DELETE) { if (userindex < 0) { BIO_printf(bio_err, "user \"%s\" does not exist, operation ignored. t\n", user); errors++; } else { char **xpp = sk_OPENSSL_PSTRING_value(db->db->data, userindex); BIO_printf(bio_err, "user \"%s\" revoked. t\n", user); xpp[DB_srptype][0] = 'R'; doupdatedb = 1; } } user = *argv++; if (user == NULL) { /* no more processing in any mode if no users left */ break; } } if (verbose) BIO_printf(bio_err, "User procession done.\n"); if (doupdatedb) { /* Lets check some fields */ for (i = 0; i < sk_OPENSSL_PSTRING_num(db->db->data); i++) { pp = sk_OPENSSL_PSTRING_value(db->db->data, i); if (pp[DB_srptype][0] == 'v') { pp[DB_srptype][0] = 'V'; print_user(db, i, verbose); } } if (verbose) BIO_printf(bio_err, "Trying to update srpvfile.\n"); if (!save_index(srpvfile, "new", db)) goto end; if (verbose) BIO_printf(bio_err, "Temporary srpvfile created.\n"); if (!rotate_index(srpvfile, "new", "old")) goto end; if (verbose) BIO_printf(bio_err, "srpvfile updated.\n"); } ret = (errors != 0); end: if (errors != 0) if (verbose) BIO_printf(bio_err, "User errors %d.\n", errors); if (verbose) BIO_printf(bio_err, "SRP terminating with code %d.\n", ret); OPENSSL_free(passin); OPENSSL_free(passout); if (ret) ERR_print_errors(bio_err); NCONF_free(conf); free_index(db); release_engine(e); return ret; } #endif openssl-1.1.1f/apps/storeutl.c000066400000000000000000000402041364063235100163360ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "apps.h" #include "progs.h" #include #include #include #include /* s2i_ASN1_INTEGER */ static int process(const char *uri, const UI_METHOD *uimeth, PW_CB_DATA *uidata, int expected, int criterion, OSSL_STORE_SEARCH *search, int text, int noout, int recursive, int indent, BIO *out, const char *prog); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_OUT, OPT_PASSIN, OPT_NOOUT, OPT_TEXT, OPT_RECURSIVE, OPT_SEARCHFOR_CERTS, OPT_SEARCHFOR_KEYS, OPT_SEARCHFOR_CRLS, OPT_CRITERION_SUBJECT, OPT_CRITERION_ISSUER, OPT_CRITERION_SERIAL, OPT_CRITERION_FINGERPRINT, OPT_CRITERION_ALIAS, OPT_MD } OPTION_CHOICE; const OPTIONS storeutl_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] uri\nValid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"out", OPT_OUT, '>', "Output file - default stdout"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"text", OPT_TEXT, '-', "Print a text form of the objects"}, {"noout", OPT_NOOUT, '-', "No PEM output, just status"}, {"certs", OPT_SEARCHFOR_CERTS, '-', "Search for certificates only"}, {"keys", OPT_SEARCHFOR_KEYS, '-', "Search for keys only"}, {"crls", OPT_SEARCHFOR_CRLS, '-', "Search for CRLs only"}, {"subject", OPT_CRITERION_SUBJECT, 's', "Search by subject"}, {"issuer", OPT_CRITERION_ISSUER, 's', "Search by issuer and serial, issuer name"}, {"serial", OPT_CRITERION_SERIAL, 's', "Search by issuer and serial, serial number"}, {"fingerprint", OPT_CRITERION_FINGERPRINT, 's', "Search by public key fingerprint, given in hex"}, {"alias", OPT_CRITERION_ALIAS, 's', "Search by alias"}, {"", OPT_MD, '-', "Any supported digest"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"r", OPT_RECURSIVE, '-', "Recurse through names"}, {NULL} }; int storeutl_main(int argc, char *argv[]) { int ret = 1, noout = 0, text = 0, recursive = 0; char *outfile = NULL, *passin = NULL, *passinarg = NULL; BIO *out = NULL; ENGINE *e = NULL; OPTION_CHOICE o; char *prog = opt_init(argc, argv, storeutl_options); PW_CB_DATA pw_cb_data; int expected = 0; int criterion = 0; X509_NAME *subject = NULL, *issuer = NULL; ASN1_INTEGER *serial = NULL; unsigned char *fingerprint = NULL; size_t fingerprintlen = 0; char *alias = NULL; OSSL_STORE_SEARCH *search = NULL; const EVP_MD *digest = NULL; while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(storeutl_options); ret = 0; goto end; case OPT_OUT: outfile = opt_arg(); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_NOOUT: noout = 1; break; case OPT_TEXT: text = 1; break; case OPT_RECURSIVE: recursive = 1; break; case OPT_SEARCHFOR_CERTS: case OPT_SEARCHFOR_KEYS: case OPT_SEARCHFOR_CRLS: if (expected != 0) { BIO_printf(bio_err, "%s: only one search type can be given.\n", prog); goto end; } { static const struct { enum OPTION_choice choice; int type; } map[] = { {OPT_SEARCHFOR_CERTS, OSSL_STORE_INFO_CERT}, {OPT_SEARCHFOR_KEYS, OSSL_STORE_INFO_PKEY}, {OPT_SEARCHFOR_CRLS, OSSL_STORE_INFO_CRL}, }; size_t i; for (i = 0; i < OSSL_NELEM(map); i++) { if (o == map[i].choice) { expected = map[i].type; break; } } /* * If expected wasn't set at this point, it means the map * isn't synchronised with the possible options leading here. */ OPENSSL_assert(expected != 0); } break; case OPT_CRITERION_SUBJECT: if (criterion != 0) { BIO_printf(bio_err, "%s: criterion already given.\n", prog); goto end; } criterion = OSSL_STORE_SEARCH_BY_NAME; if (subject != NULL) { BIO_printf(bio_err, "%s: subject already given.\n", prog); goto end; } if ((subject = parse_name(opt_arg(), MBSTRING_UTF8, 1)) == NULL) { BIO_printf(bio_err, "%s: can't parse subject argument.\n", prog); goto end; } break; case OPT_CRITERION_ISSUER: if (criterion != 0 || (criterion == OSSL_STORE_SEARCH_BY_ISSUER_SERIAL && issuer != NULL)) { BIO_printf(bio_err, "%s: criterion already given.\n", prog); goto end; } criterion = OSSL_STORE_SEARCH_BY_ISSUER_SERIAL; if (issuer != NULL) { BIO_printf(bio_err, "%s: issuer already given.\n", prog); goto end; } if ((issuer = parse_name(opt_arg(), MBSTRING_UTF8, 1)) == NULL) { BIO_printf(bio_err, "%s: can't parse issuer argument.\n", prog); goto end; } break; case OPT_CRITERION_SERIAL: if (criterion != 0 || (criterion == OSSL_STORE_SEARCH_BY_ISSUER_SERIAL && serial != NULL)) { BIO_printf(bio_err, "%s: criterion already given.\n", prog); goto end; } criterion = OSSL_STORE_SEARCH_BY_ISSUER_SERIAL; if (serial != NULL) { BIO_printf(bio_err, "%s: serial number already given.\n", prog); goto end; } if ((serial = s2i_ASN1_INTEGER(NULL, opt_arg())) == NULL) { BIO_printf(bio_err, "%s: can't parse serial number argument.\n", prog); goto end; } break; case OPT_CRITERION_FINGERPRINT: if (criterion != 0 || (criterion == OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT && fingerprint != NULL)) { BIO_printf(bio_err, "%s: criterion already given.\n", prog); goto end; } criterion = OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT; if (fingerprint != NULL) { BIO_printf(bio_err, "%s: fingerprint already given.\n", prog); goto end; } { long tmplen = 0; if ((fingerprint = OPENSSL_hexstr2buf(opt_arg(), &tmplen)) == NULL) { BIO_printf(bio_err, "%s: can't parse fingerprint argument.\n", prog); goto end; } fingerprintlen = (size_t)tmplen; } break; case OPT_CRITERION_ALIAS: if (criterion != 0) { BIO_printf(bio_err, "%s: criterion already given.\n", prog); goto end; } criterion = OSSL_STORE_SEARCH_BY_ALIAS; if (alias != NULL) { BIO_printf(bio_err, "%s: alias already given.\n", prog); goto end; } if ((alias = OPENSSL_strdup(opt_arg())) == NULL) { BIO_printf(bio_err, "%s: can't parse alias argument.\n", prog); goto end; } break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_MD: if (!opt_md(opt_unknown(), &digest)) goto opthelp; } } argc = opt_num_rest(); argv = opt_rest(); if (argc == 0) { BIO_printf(bio_err, "%s: No URI given, nothing to do...\n", prog); goto opthelp; } if (argc > 1) { BIO_printf(bio_err, "%s: Unknown extra parameters after URI\n", prog); goto opthelp; } if (criterion != 0) { switch (criterion) { case OSSL_STORE_SEARCH_BY_NAME: if ((search = OSSL_STORE_SEARCH_by_name(subject)) == NULL) { ERR_print_errors(bio_err); goto end; } break; case OSSL_STORE_SEARCH_BY_ISSUER_SERIAL: if (issuer == NULL || serial == NULL) { BIO_printf(bio_err, "%s: both -issuer and -serial must be given.\n", prog); goto end; } if ((search = OSSL_STORE_SEARCH_by_issuer_serial(issuer, serial)) == NULL) { ERR_print_errors(bio_err); goto end; } break; case OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT: if ((search = OSSL_STORE_SEARCH_by_key_fingerprint(digest, fingerprint, fingerprintlen)) == NULL) { ERR_print_errors(bio_err); goto end; } break; case OSSL_STORE_SEARCH_BY_ALIAS: if ((search = OSSL_STORE_SEARCH_by_alias(alias)) == NULL) { ERR_print_errors(bio_err); goto end; } break; } } if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting passwords\n"); goto end; } pw_cb_data.password = passin; pw_cb_data.prompt_info = argv[0]; out = bio_open_default(outfile, 'w', FORMAT_TEXT); if (out == NULL) goto end; ret = process(argv[0], get_ui_method(), &pw_cb_data, expected, criterion, search, text, noout, recursive, 0, out, prog); end: OPENSSL_free(fingerprint); OPENSSL_free(alias); ASN1_INTEGER_free(serial); X509_NAME_free(subject); X509_NAME_free(issuer); OSSL_STORE_SEARCH_free(search); BIO_free_all(out); OPENSSL_free(passin); release_engine(e); return ret; } static int indent_printf(int indent, BIO *bio, const char *format, ...) { va_list args; int ret; va_start(args, format); ret = BIO_printf(bio, "%*s", indent, "") + BIO_vprintf(bio, format, args); va_end(args); return ret; } static int process(const char *uri, const UI_METHOD *uimeth, PW_CB_DATA *uidata, int expected, int criterion, OSSL_STORE_SEARCH *search, int text, int noout, int recursive, int indent, BIO *out, const char *prog) { OSSL_STORE_CTX *store_ctx = NULL; int ret = 1, items = 0; if ((store_ctx = OSSL_STORE_open(uri, uimeth, uidata, NULL, NULL)) == NULL) { BIO_printf(bio_err, "Couldn't open file or uri %s\n", uri); ERR_print_errors(bio_err); return ret; } if (expected != 0) { if (!OSSL_STORE_expect(store_ctx, expected)) { ERR_print_errors(bio_err); goto end2; } } if (criterion != 0) { if (!OSSL_STORE_supports_search(store_ctx, criterion)) { BIO_printf(bio_err, "%s: the store scheme doesn't support the given search criteria.\n", prog); goto end2; } if (!OSSL_STORE_find(store_ctx, search)) { ERR_print_errors(bio_err); goto end2; } } /* From here on, we count errors, and we'll return the count at the end */ ret = 0; for (;;) { OSSL_STORE_INFO *info = OSSL_STORE_load(store_ctx); int type = info == NULL ? 0 : OSSL_STORE_INFO_get_type(info); const char *infostr = info == NULL ? NULL : OSSL_STORE_INFO_type_string(type); if (info == NULL) { if (OSSL_STORE_eof(store_ctx)) break; if (OSSL_STORE_error(store_ctx)) { if (recursive) ERR_clear_error(); else ERR_print_errors(bio_err); ret++; continue; } BIO_printf(bio_err, "ERROR: OSSL_STORE_load() returned NULL without " "eof or error indications\n"); BIO_printf(bio_err, " This is an error in the loader\n"); ERR_print_errors(bio_err); ret++; break; } if (type == OSSL_STORE_INFO_NAME) { const char *name = OSSL_STORE_INFO_get0_NAME(info); const char *desc = OSSL_STORE_INFO_get0_NAME_description(info); indent_printf(indent, bio_out, "%d: %s: %s\n", items, infostr, name); if (desc != NULL) indent_printf(indent, bio_out, "%s\n", desc); } else { indent_printf(indent, bio_out, "%d: %s\n", items, infostr); } /* * Unfortunately, PEM_X509_INFO_write_bio() is sorely lacking in * functionality, so we must figure out how exactly to write things * ourselves... */ switch (type) { case OSSL_STORE_INFO_NAME: if (recursive) { const char *suburi = OSSL_STORE_INFO_get0_NAME(info); ret += process(suburi, uimeth, uidata, expected, criterion, search, text, noout, recursive, indent + 2, out, prog); } break; case OSSL_STORE_INFO_PARAMS: if (text) EVP_PKEY_print_params(out, OSSL_STORE_INFO_get0_PARAMS(info), 0, NULL); if (!noout) PEM_write_bio_Parameters(out, OSSL_STORE_INFO_get0_PARAMS(info)); break; case OSSL_STORE_INFO_PKEY: if (text) EVP_PKEY_print_private(out, OSSL_STORE_INFO_get0_PKEY(info), 0, NULL); if (!noout) PEM_write_bio_PrivateKey(out, OSSL_STORE_INFO_get0_PKEY(info), NULL, NULL, 0, NULL, NULL); break; case OSSL_STORE_INFO_CERT: if (text) X509_print(out, OSSL_STORE_INFO_get0_CERT(info)); if (!noout) PEM_write_bio_X509(out, OSSL_STORE_INFO_get0_CERT(info)); break; case OSSL_STORE_INFO_CRL: if (text) X509_CRL_print(out, OSSL_STORE_INFO_get0_CRL(info)); if (!noout) PEM_write_bio_X509_CRL(out, OSSL_STORE_INFO_get0_CRL(info)); break; default: BIO_printf(bio_err, "!!! Unknown code\n"); ret++; break; } items++; OSSL_STORE_INFO_free(info); } indent_printf(indent, out, "Total found: %d\n", items); end2: if (!OSSL_STORE_close(store_ctx)) { ERR_print_errors(bio_err); ret++; } return ret; } openssl-1.1.1f/apps/testCA.pem000066400000000000000000000006601364063235100162010ustar00rootroot00000000000000-----BEGIN CERTIFICATE REQUEST----- MIIBBzCBsgIBADBNMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5zbGFuZDEX MBUGA1UEChMOTWluY29tIFB0eSBMdGQxEDAOBgNVBAMTB1RFU1QgQ0EwXDANBgkq hkiG9w0BAQEFAANLADBIAkEAzW9brgA8efT2ODB+NrsflJZj3KKqKsm4OrXTRqfL VETj1ws/zCXl42XJAxdWQMCP0liKfc9Ut4xi1qCVI7N07wIDAQABoAAwDQYJKoZI hvcNAQEEBQADQQBjZZ42Det9Uw0AFwJy4ufUEy5Cv74pxBp5SZnljgHY+Az0Hs2S uNkIegr2ITX5azKi9nOkg9ZmsmGG13FIjiC/ -----END CERTIFICATE REQUEST----- openssl-1.1.1f/apps/testdsa.h000066400000000000000000000274231364063235100161410ustar00rootroot00000000000000/* * Copyright 1998-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* used by speed.c */ DSA *get_dsa(int); static unsigned char dsa512_priv[] = { 0x65, 0xe5, 0xc7, 0x38, 0x60, 0x24, 0xb5, 0x89, 0xd4, 0x9c, 0xeb, 0x4c, 0x9c, 0x1d, 0x7a, 0x22, 0xbd, 0xd1, 0xc2, 0xd2, }; static unsigned char dsa512_pub[] = { 0x00, 0x95, 0xa7, 0x0d, 0xec, 0x93, 0x68, 0xba, 0x5f, 0xf7, 0x5f, 0x07, 0xf2, 0x3b, 0xad, 0x6b, 0x01, 0xdc, 0xbe, 0xec, 0xde, 0x04, 0x7a, 0x3a, 0x27, 0xb3, 0xec, 0x49, 0xfd, 0x08, 0x43, 0x3d, 0x7e, 0xa8, 0x2c, 0x5e, 0x7b, 0xbb, 0xfc, 0xf4, 0x6e, 0xeb, 0x6c, 0xb0, 0x6e, 0xf8, 0x02, 0x12, 0x8c, 0x38, 0x5d, 0x83, 0x56, 0x7d, 0xee, 0x53, 0x05, 0x3e, 0x24, 0x84, 0xbe, 0xba, 0x0a, 0x6b, 0xc8, }; static unsigned char dsa512_p[] = { 0x9D, 0x1B, 0x69, 0x8E, 0x26, 0xDB, 0xF2, 0x2B, 0x11, 0x70, 0x19, 0x86, 0xF6, 0x19, 0xC8, 0xF8, 0x19, 0xF2, 0x18, 0x53, 0x94, 0x46, 0x06, 0xD0, 0x62, 0x50, 0x33, 0x4B, 0x02, 0x3C, 0x52, 0x30, 0x03, 0x8B, 0x3B, 0xF9, 0x5F, 0xD1, 0x24, 0x06, 0x4F, 0x7B, 0x4C, 0xBA, 0xAA, 0x40, 0x9B, 0xFD, 0x96, 0xE4, 0x37, 0x33, 0xBB, 0x2D, 0x5A, 0xD7, 0x5A, 0x11, 0x40, 0x66, 0xA2, 0x76, 0x7D, 0x31, }; static unsigned char dsa512_q[] = { 0xFB, 0x53, 0xEF, 0x50, 0xB4, 0x40, 0x92, 0x31, 0x56, 0x86, 0x53, 0x7A, 0xE8, 0x8B, 0x22, 0x9A, 0x49, 0xFB, 0x71, 0x8F, }; static unsigned char dsa512_g[] = { 0x83, 0x3E, 0x88, 0xE5, 0xC5, 0x89, 0x73, 0xCE, 0x3B, 0x6C, 0x01, 0x49, 0xBF, 0xB3, 0xC7, 0x9F, 0x0A, 0xEA, 0x44, 0x91, 0xE5, 0x30, 0xAA, 0xD9, 0xBE, 0x5B, 0x5F, 0xB7, 0x10, 0xD7, 0x89, 0xB7, 0x8E, 0x74, 0xFB, 0xCF, 0x29, 0x1E, 0xEB, 0xA8, 0x2C, 0x54, 0x51, 0xB8, 0x10, 0xDE, 0xA0, 0xCE, 0x2F, 0xCC, 0x24, 0x6B, 0x90, 0x77, 0xDE, 0xA2, 0x68, 0xA6, 0x52, 0x12, 0xA2, 0x03, 0x9D, 0x20, }; static unsigned char dsa1024_priv[] = { 0x7d, 0x21, 0xda, 0xbb, 0x62, 0x15, 0x47, 0x36, 0x07, 0x67, 0x12, 0xe8, 0x8c, 0xaa, 0x1c, 0xcd, 0x38, 0x12, 0x61, 0x18, }; static unsigned char dsa1024_pub[] = { 0x3c, 0x4e, 0x9c, 0x2a, 0x7f, 0x16, 0xc1, 0x25, 0xeb, 0xac, 0x78, 0x63, 0x90, 0x14, 0x8c, 0x8b, 0xf4, 0x68, 0x43, 0x3c, 0x2d, 0xee, 0x65, 0x50, 0x7d, 0x9c, 0x8f, 0x8c, 0x8a, 0x51, 0xd6, 0x11, 0x2b, 0x99, 0xaf, 0x1e, 0x90, 0x97, 0xb5, 0xd3, 0xa6, 0x20, 0x25, 0xd6, 0xfe, 0x43, 0x02, 0xd5, 0x91, 0x7d, 0xa7, 0x8c, 0xdb, 0xc9, 0x85, 0xa3, 0x36, 0x48, 0xf7, 0x68, 0xaa, 0x60, 0xb1, 0xf7, 0x05, 0x68, 0x3a, 0xa3, 0x3f, 0xd3, 0x19, 0x82, 0xd8, 0x82, 0x7a, 0x77, 0xfb, 0xef, 0xf4, 0x15, 0x0a, 0xeb, 0x06, 0x04, 0x7f, 0x53, 0x07, 0x0c, 0xbc, 0xcb, 0x2d, 0x83, 0xdb, 0x3e, 0xd1, 0x28, 0xa5, 0xa1, 0x31, 0xe0, 0x67, 0xfa, 0x50, 0xde, 0x9b, 0x07, 0x83, 0x7e, 0x2c, 0x0b, 0xc3, 0x13, 0x50, 0x61, 0xe5, 0xad, 0xbd, 0x36, 0xb8, 0x97, 0x4e, 0x40, 0x7d, 0xe8, 0x83, 0x0d, 0xbc, 0x4b }; static unsigned char dsa1024_p[] = { 0xA7, 0x3F, 0x6E, 0x85, 0xBF, 0x41, 0x6A, 0x29, 0x7D, 0xF0, 0x9F, 0x47, 0x19, 0x30, 0x90, 0x9A, 0x09, 0x1D, 0xDA, 0x6A, 0x33, 0x1E, 0xC5, 0x3D, 0x86, 0x96, 0xB3, 0x15, 0xE0, 0x53, 0x2E, 0x8F, 0xE0, 0x59, 0x82, 0x73, 0x90, 0x3E, 0x75, 0x31, 0x99, 0x47, 0x7A, 0x52, 0xFB, 0x85, 0xE4, 0xD9, 0xA6, 0x7B, 0x38, 0x9B, 0x68, 0x8A, 0x84, 0x9B, 0x87, 0xC6, 0x1E, 0xB5, 0x7E, 0x86, 0x4B, 0x53, 0x5B, 0x59, 0xCF, 0x71, 0x65, 0x19, 0x88, 0x6E, 0xCE, 0x66, 0xAE, 0x6B, 0x88, 0x36, 0xFB, 0xEC, 0x28, 0xDC, 0xC2, 0xD7, 0xA5, 0xBB, 0xE5, 0x2C, 0x39, 0x26, 0x4B, 0xDA, 0x9A, 0x70, 0x18, 0x95, 0x37, 0x95, 0x10, 0x56, 0x23, 0xF6, 0x15, 0xED, 0xBA, 0x04, 0x5E, 0xDE, 0x39, 0x4F, 0xFD, 0xB7, 0x43, 0x1F, 0xB5, 0xA4, 0x65, 0x6F, 0xCD, 0x80, 0x11, 0xE4, 0x70, 0x95, 0x5B, 0x50, 0xCD, 0x49, }; static unsigned char dsa1024_q[] = { 0xF7, 0x07, 0x31, 0xED, 0xFA, 0x6C, 0x06, 0x03, 0xD5, 0x85, 0x8A, 0x1C, 0xAC, 0x9C, 0x65, 0xE7, 0x50, 0x66, 0x65, 0x6F, }; static unsigned char dsa1024_g[] = { 0x4D, 0xDF, 0x4C, 0x03, 0xA6, 0x91, 0x8A, 0xF5, 0x19, 0x6F, 0x50, 0x46, 0x25, 0x99, 0xE5, 0x68, 0x6F, 0x30, 0xE3, 0x69, 0xE1, 0xE5, 0xB3, 0x5D, 0x98, 0xBB, 0x28, 0x86, 0x48, 0xFC, 0xDE, 0x99, 0x04, 0x3F, 0x5F, 0x88, 0x0C, 0x9C, 0x73, 0x24, 0x0D, 0x20, 0x5D, 0xB9, 0x2A, 0x9A, 0x3F, 0x18, 0x96, 0x27, 0xE4, 0x62, 0x87, 0xC1, 0x7B, 0x74, 0x62, 0x53, 0xFC, 0x61, 0x27, 0xA8, 0x7A, 0x91, 0x09, 0x9D, 0xB6, 0xF1, 0x4D, 0x9C, 0x54, 0x0F, 0x58, 0x06, 0xEE, 0x49, 0x74, 0x07, 0xCE, 0x55, 0x7E, 0x23, 0xCE, 0x16, 0xF6, 0xCA, 0xDC, 0x5A, 0x61, 0x01, 0x7E, 0xC9, 0x71, 0xB5, 0x4D, 0xF6, 0xDC, 0x34, 0x29, 0x87, 0x68, 0xF6, 0x5E, 0x20, 0x93, 0xB3, 0xDB, 0xF5, 0xE4, 0x09, 0x6C, 0x41, 0x17, 0x95, 0x92, 0xEB, 0x01, 0xB5, 0x73, 0xA5, 0x6A, 0x7E, 0xD8, 0x32, 0xED, 0x0E, 0x02, 0xB8, }; static unsigned char dsa2048_priv[] = { 0x32, 0x67, 0x92, 0xf6, 0xc4, 0xe2, 0xe2, 0xe8, 0xa0, 0x8b, 0x6b, 0x45, 0x0c, 0x8a, 0x76, 0xb0, 0xee, 0xcf, 0x91, 0xa7, }; static unsigned char dsa2048_pub[] = { 0x17, 0x8f, 0xa8, 0x11, 0x84, 0x92, 0xec, 0x83, 0x47, 0xc7, 0x6a, 0xb0, 0x92, 0xaf, 0x5a, 0x20, 0x37, 0xa3, 0x64, 0x79, 0xd2, 0xd0, 0x3d, 0xcd, 0xe0, 0x61, 0x88, 0x88, 0x21, 0xcc, 0x74, 0x5d, 0xce, 0x4c, 0x51, 0x47, 0xf0, 0xc5, 0x5c, 0x4c, 0x82, 0x7a, 0xaf, 0x72, 0xad, 0xb9, 0xe0, 0x53, 0xf2, 0x78, 0xb7, 0xf0, 0xb5, 0x48, 0x7f, 0x8a, 0x3a, 0x18, 0xd1, 0x9f, 0x8b, 0x7d, 0xa5, 0x47, 0xb7, 0x95, 0xab, 0x98, 0xf8, 0x7b, 0x74, 0x50, 0x56, 0x8e, 0x57, 0xf0, 0xee, 0xf5, 0xb7, 0xba, 0xab, 0x85, 0x86, 0xf9, 0x2b, 0xef, 0x41, 0x56, 0xa0, 0xa4, 0x9f, 0xb7, 0x38, 0x00, 0x46, 0x0a, 0xa6, 0xf1, 0xfc, 0x1f, 0xd8, 0x4e, 0x85, 0x44, 0x92, 0x43, 0x21, 0x5d, 0x6e, 0xcc, 0xc2, 0xcb, 0x26, 0x31, 0x0d, 0x21, 0xc4, 0xbd, 0x8d, 0x24, 0xbc, 0xd9, 0x18, 0x19, 0xd7, 0xdc, 0xf1, 0xe7, 0x93, 0x50, 0x48, 0x03, 0x2c, 0xae, 0x2e, 0xe7, 0x49, 0x88, 0x5f, 0x93, 0x57, 0x27, 0x99, 0x36, 0xb4, 0x20, 0xab, 0xfc, 0xa7, 0x2b, 0xf2, 0xd9, 0x98, 0xd7, 0xd4, 0x34, 0x9d, 0x96, 0x50, 0x58, 0x9a, 0xea, 0x54, 0xf3, 0xee, 0xf5, 0x63, 0x14, 0xee, 0x85, 0x83, 0x74, 0x76, 0xe1, 0x52, 0x95, 0xc3, 0xf7, 0xeb, 0x04, 0x04, 0x7b, 0xa7, 0x28, 0x1b, 0xcc, 0xea, 0x4a, 0x4e, 0x84, 0xda, 0xd8, 0x9c, 0x79, 0xd8, 0x9b, 0x66, 0x89, 0x2f, 0xcf, 0xac, 0xd7, 0x79, 0xf9, 0xa9, 0xd8, 0x45, 0x13, 0x78, 0xb9, 0x00, 0x14, 0xc9, 0x7e, 0x22, 0x51, 0x86, 0x67, 0xb0, 0x9f, 0x26, 0x11, 0x23, 0xc8, 0x38, 0xd7, 0x70, 0x1d, 0x15, 0x8e, 0x4d, 0x4f, 0x95, 0x97, 0x40, 0xa1, 0xc2, 0x7e, 0x01, 0x18, 0x72, 0xf4, 0x10, 0xe6, 0x8d, 0x52, 0x16, 0x7f, 0xf2, 0xc9, 0xf8, 0x33, 0x8b, 0x33, 0xb7, 0xce, }; static unsigned char dsa2048_p[] = { 0xA0, 0x25, 0xFA, 0xAD, 0xF4, 0x8E, 0xB9, 0xE5, 0x99, 0xF3, 0x5D, 0x6F, 0x4F, 0x83, 0x34, 0xE2, 0x7E, 0xCF, 0x6F, 0xBF, 0x30, 0xAF, 0x6F, 0x81, 0xEB, 0xF8, 0xC4, 0x13, 0xD9, 0xA0, 0x5D, 0x8B, 0x5C, 0x8E, 0xDC, 0xC2, 0x1D, 0x0B, 0x41, 0x32, 0xB0, 0x1F, 0xFE, 0xEF, 0x0C, 0xC2, 0xA2, 0x7E, 0x68, 0x5C, 0x28, 0x21, 0xE9, 0xF5, 0xB1, 0x58, 0x12, 0x63, 0x4C, 0x19, 0x4E, 0xFF, 0x02, 0x4B, 0x92, 0xED, 0xD2, 0x07, 0x11, 0x4D, 0x8C, 0x58, 0x16, 0x5C, 0x55, 0x8E, 0xAD, 0xA3, 0x67, 0x7D, 0xB9, 0x86, 0x6E, 0x0B, 0xE6, 0x54, 0x6F, 0x40, 0xAE, 0x0E, 0x67, 0x4C, 0xF9, 0x12, 0x5B, 0x3C, 0x08, 0x7A, 0xF7, 0xFC, 0x67, 0x86, 0x69, 0xE7, 0x0A, 0x94, 0x40, 0xBF, 0x8B, 0x76, 0xFE, 0x26, 0xD1, 0xF2, 0xA1, 0x1A, 0x84, 0xA1, 0x43, 0x56, 0x28, 0xBC, 0x9A, 0x5F, 0xD7, 0x3B, 0x69, 0x89, 0x8A, 0x36, 0x2C, 0x51, 0xDF, 0x12, 0x77, 0x2F, 0x57, 0x7B, 0xA0, 0xAA, 0xDD, 0x7F, 0xA1, 0x62, 0x3B, 0x40, 0x7B, 0x68, 0x1A, 0x8F, 0x0D, 0x38, 0xBB, 0x21, 0x5D, 0x18, 0xFC, 0x0F, 0x46, 0xF7, 0xA3, 0xB0, 0x1D, 0x23, 0xC3, 0xD2, 0xC7, 0x72, 0x51, 0x18, 0xDF, 0x46, 0x95, 0x79, 0xD9, 0xBD, 0xB5, 0x19, 0x02, 0x2C, 0x87, 0xDC, 0xE7, 0x57, 0x82, 0x7E, 0xF1, 0x8B, 0x06, 0x3D, 0x00, 0xA5, 0x7B, 0x6B, 0x26, 0x27, 0x91, 0x0F, 0x6A, 0x77, 0xE4, 0xD5, 0x04, 0xE4, 0x12, 0x2C, 0x42, 0xFF, 0xD2, 0x88, 0xBB, 0xD3, 0x92, 0xA0, 0xF9, 0xC8, 0x51, 0x64, 0x14, 0x5C, 0xD8, 0xF9, 0x6C, 0x47, 0x82, 0xB4, 0x1C, 0x7F, 0x09, 0xB8, 0xF0, 0x25, 0x83, 0x1D, 0x3F, 0x3F, 0x05, 0xB3, 0x21, 0x0A, 0x5D, 0xA7, 0xD8, 0x54, 0xC3, 0x65, 0x7D, 0xC3, 0xB0, 0x1D, 0xBF, 0xAE, 0xF8, 0x68, 0xCF, 0x9B, }; static unsigned char dsa2048_q[] = { 0x97, 0xE7, 0x33, 0x4D, 0xD3, 0x94, 0x3E, 0x0B, 0xDB, 0x62, 0x74, 0xC6, 0xA1, 0x08, 0xDD, 0x19, 0xA3, 0x75, 0x17, 0x1B, }; static unsigned char dsa2048_g[] = { 0x2C, 0x78, 0x16, 0x59, 0x34, 0x63, 0xF4, 0xF3, 0x92, 0xFC, 0xB5, 0xA5, 0x4F, 0x13, 0xDE, 0x2F, 0x1C, 0xA4, 0x3C, 0xAE, 0xAD, 0x38, 0x3F, 0x7E, 0x90, 0xBF, 0x96, 0xA6, 0xAE, 0x25, 0x90, 0x72, 0xF5, 0x8E, 0x80, 0x0C, 0x39, 0x1C, 0xD9, 0xEC, 0xBA, 0x90, 0x5B, 0x3A, 0xE8, 0x58, 0x6C, 0x9E, 0x30, 0x42, 0x37, 0x02, 0x31, 0x82, 0xBC, 0x6A, 0xDF, 0x6A, 0x09, 0x29, 0xE3, 0xC0, 0x46, 0xD1, 0xCB, 0x85, 0xEC, 0x0C, 0x30, 0x5E, 0xEA, 0xC8, 0x39, 0x8E, 0x22, 0x9F, 0x22, 0x10, 0xD2, 0x34, 0x61, 0x68, 0x37, 0x3D, 0x2E, 0x4A, 0x5B, 0x9A, 0xF5, 0xC1, 0x48, 0xC6, 0xF6, 0xDC, 0x63, 0x1A, 0xD3, 0x96, 0x64, 0xBA, 0x34, 0xC9, 0xD1, 0xA0, 0xD1, 0xAE, 0x6C, 0x2F, 0x48, 0x17, 0x93, 0x14, 0x43, 0xED, 0xF0, 0x21, 0x30, 0x19, 0xC3, 0x1B, 0x5F, 0xDE, 0xA3, 0xF0, 0x70, 0x78, 0x18, 0xE1, 0xA8, 0xE4, 0xEE, 0x2E, 0x00, 0xA5, 0xE4, 0xB3, 0x17, 0xC8, 0x0C, 0x7D, 0x6E, 0x42, 0xDC, 0xB7, 0x46, 0x00, 0x36, 0x4D, 0xD4, 0x46, 0xAA, 0x3D, 0x3C, 0x46, 0x89, 0x40, 0xBF, 0x1D, 0x84, 0x77, 0x0A, 0x75, 0xF3, 0x87, 0x1D, 0x08, 0x4C, 0xA6, 0xD1, 0xA9, 0x1C, 0x1E, 0x12, 0x1E, 0xE1, 0xC7, 0x30, 0x28, 0x76, 0xA5, 0x7F, 0x6C, 0x85, 0x96, 0x2B, 0x6F, 0xDB, 0x80, 0x66, 0x26, 0xAE, 0xF5, 0x93, 0xC7, 0x8E, 0xAE, 0x9A, 0xED, 0xE4, 0xCA, 0x04, 0xEA, 0x3B, 0x72, 0xEF, 0xDC, 0x87, 0xED, 0x0D, 0xA5, 0x4C, 0x4A, 0xDD, 0x71, 0x22, 0x64, 0x59, 0x69, 0x4E, 0x8E, 0xBF, 0x43, 0xDC, 0xAB, 0x8E, 0x66, 0xBB, 0x01, 0xB6, 0xF4, 0xE7, 0xFD, 0xD2, 0xAD, 0x9F, 0x36, 0xC1, 0xA0, 0x29, 0x99, 0xD1, 0x96, 0x70, 0x59, 0x06, 0x78, 0x35, 0xBD, 0x65, 0x55, 0x52, 0x9E, 0xF8, 0xB2, 0xE5, 0x38, }; typedef struct testdsa_st { unsigned char *priv; unsigned char *pub; unsigned char *p; unsigned char *g; unsigned char *q; int priv_l; int pub_l; int p_l; int g_l; int q_l; } testdsa; #define set_dsa_ptr(st, bits) \ do { \ st.priv = dsa##bits##_priv; \ st.pub = dsa##bits##_pub; \ st.p = dsa##bits##_p; \ st.g = dsa##bits##_g; \ st.q = dsa##bits##_q; \ st.priv_l = sizeof(dsa##bits##_priv); \ st.pub_l = sizeof(dsa##bits##_pub); \ st.p_l = sizeof(dsa##bits##_p); \ st.g_l = sizeof(dsa##bits##_g); \ st.q_l = sizeof(dsa##bits##_q); \ } while (0) DSA *get_dsa(int dsa_bits) { DSA *dsa; BIGNUM *priv_key, *pub_key, *p, *q, *g; testdsa dsa_t; switch (dsa_bits) { case 512: set_dsa_ptr(dsa_t, 512); break; case 1024: set_dsa_ptr(dsa_t, 1024); break; case 2048: set_dsa_ptr(dsa_t, 2048); break; default: return NULL; } if ((dsa = DSA_new()) == NULL) return NULL; priv_key = BN_bin2bn(dsa_t.priv, dsa_t.priv_l, NULL); pub_key = BN_bin2bn(dsa_t.pub, dsa_t.pub_l, NULL); p = BN_bin2bn(dsa_t.p, dsa_t.p_l, NULL); q = BN_bin2bn(dsa_t.q, dsa_t.q_l, NULL); g = BN_bin2bn(dsa_t.g, dsa_t.g_l, NULL); if ((priv_key == NULL) || (pub_key == NULL) || (p == NULL) || (q == NULL) || (g == NULL)) { goto err; } if (!DSA_set0_pqg(dsa, p, q, g)) goto err; if (!DSA_set0_key(dsa, pub_key, priv_key)) goto err; return dsa; err: DSA_free(dsa); BN_free(priv_key); BN_free(pub_key); BN_free(p); BN_free(q); BN_free(g); return NULL; } openssl-1.1.1f/apps/testrsa.h000066400000000000000000003621721364063235100161620ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ static unsigned char test512[] = { 0x30, 0x82, 0x01, 0x3a, 0x02, 0x01, 0x00, 0x02, 0x41, 0x00, 0xd6, 0x33, 0xb9, 0xc8, 0xfb, 0x4f, 0x3c, 0x7d, 0xc0, 0x01, 0x86, 0xd0, 0xe7, 0xa0, 0x55, 0xf2, 0x95, 0x93, 0xcc, 0x4f, 0xb7, 0x5b, 0x67, 0x5b, 0x94, 0x68, 0xc9, 0x34, 0x15, 0xde, 0xa5, 0x2e, 0x1c, 0x33, 0xc2, 0x6e, 0xfc, 0x34, 0x5e, 0x71, 0x13, 0xb7, 0xd6, 0xee, 0xd8, 0xa5, 0x65, 0x05, 0x72, 0x87, 0xa8, 0xb0, 0x77, 0xfe, 0x57, 0xf5, 0xfc, 0x5f, 0x55, 0x83, 0x87, 0xdd, 0x57, 0x49, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x41, 0x00, 0xa7, 0xf7, 0x91, 0xc5, 0x0f, 0x84, 0x57, 0xdc, 0x07, 0xf7, 0x6a, 0x7f, 0x60, 0x52, 0xb3, 0x72, 0xf1, 0x66, 0x1f, 0x7d, 0x97, 0x3b, 0x9e, 0xb6, 0x0a, 0x8f, 0x8c, 0xcf, 0x42, 0x23, 0x00, 0x04, 0xd4, 0x28, 0x0e, 0x1c, 0x90, 0xc4, 0x11, 0x25, 0x25, 0xa5, 0x93, 0xa5, 0x2f, 0x70, 0x02, 0xdf, 0x81, 0x9c, 0x49, 0x03, 0xa0, 0xf8, 0x6d, 0x54, 0x2e, 0x26, 0xde, 0xaa, 0x85, 0x59, 0xa8, 0x31, 0x02, 0x21, 0x00, 0xeb, 0x47, 0xd7, 0x3b, 0xf6, 0xc3, 0xdd, 0x5a, 0x46, 0xc5, 0xb9, 0x2b, 0x9a, 0xa0, 0x09, 0x8f, 0xa6, 0xfb, 0xf3, 0x78, 0x7a, 0x33, 0x70, 0x9d, 0x0f, 0x42, 0x6b, 0x13, 0x68, 0x24, 0xd3, 0x15, 0x02, 0x21, 0x00, 0xe9, 0x10, 0xb0, 0xb3, 0x0d, 0xe2, 0x82, 0x68, 0x77, 0x8a, 0x6e, 0x7c, 0xda, 0xbc, 0x3e, 0x53, 0x83, 0xfb, 0xd6, 0x22, 0xe7, 0xb5, 0xae, 0x6e, 0x80, 0xda, 0x00, 0x55, 0x97, 0xc1, 0xd0, 0x65, 0x02, 0x20, 0x4c, 0xf8, 0x73, 0xb1, 0x6a, 0x49, 0x29, 0x61, 0x1f, 0x46, 0x10, 0x0d, 0xf3, 0xc7, 0xe7, 0x58, 0xd7, 0x88, 0x15, 0x5e, 0x94, 0x9b, 0xbf, 0x7b, 0xa2, 0x42, 0x58, 0x45, 0x41, 0x0c, 0xcb, 0x01, 0x02, 0x20, 0x12, 0x11, 0xba, 0x31, 0x57, 0x9d, 0x3d, 0x11, 0x0e, 0x5b, 0x8c, 0x2f, 0x5f, 0xe2, 0x02, 0x4f, 0x05, 0x47, 0x8c, 0x15, 0x8e, 0xb3, 0x56, 0x3f, 0xb8, 0xfb, 0xad, 0xd4, 0xf4, 0xfc, 0x10, 0xc5, 0x02, 0x20, 0x18, 0xa1, 0x29, 0x99, 0x5b, 0xd9, 0xc8, 0xd4, 0xfc, 0x49, 0x7a, 0x2a, 0x21, 0x2c, 0x49, 0xe4, 0x4f, 0xeb, 0xef, 0x51, 0xf1, 0xab, 0x6d, 0xfb, 0x4b, 0x14, 0xe9, 0x4b, 0x52, 0xb5, 0x82, 0x2c, }; static unsigned char test1024[] = { 0x30, 0x82, 0x02, 0x5c, 0x02, 0x01, 0x00, 0x02, 0x81, 0x81, 0x00, 0xdc, 0x98, 0x43, 0xe8, 0x3d, 0x43, 0x5b, 0xe4, 0x05, 0xcd, 0xd0, 0xa9, 0x3e, 0xcb, 0x83, 0x75, 0xf6, 0xb5, 0xa5, 0x9f, 0x6b, 0xe9, 0x34, 0x41, 0x29, 0x18, 0xfa, 0x6a, 0x55, 0x4d, 0x70, 0xfc, 0xec, 0xae, 0x87, 0x38, 0x0a, 0x20, 0xa9, 0xc0, 0x45, 0x77, 0x6e, 0x57, 0x60, 0x57, 0xf4, 0xed, 0x96, 0x22, 0xcb, 0x8f, 0xe1, 0x33, 0x3a, 0x17, 0x1f, 0xed, 0x37, 0xa5, 0x6f, 0xeb, 0xa6, 0xbc, 0x12, 0x80, 0x1d, 0x53, 0xbd, 0x70, 0xeb, 0x21, 0x76, 0x3e, 0xc9, 0x2f, 0x1a, 0x45, 0x24, 0x82, 0xff, 0xcd, 0x59, 0x32, 0x06, 0x2e, 0x12, 0x3b, 0x23, 0x78, 0xed, 0x12, 0x3d, 0xe0, 0x8d, 0xf9, 0x67, 0x4f, 0x37, 0x4e, 0x47, 0x02, 0x4c, 0x2d, 0xc0, 0x4f, 0x1f, 0xb3, 0x94, 0xe1, 0x41, 0x2e, 0x2d, 0x90, 0x10, 0xfc, 0x82, 0x91, 0x8b, 0x0f, 0x22, 0xd4, 0xf2, 0xfc, 0x2c, 0xab, 0x53, 0x55, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x81, 0x80, 0x2b, 0xcc, 0x3f, 0x8f, 0x58, 0xba, 0x8b, 0x00, 0x16, 0xf6, 0xea, 0x3a, 0xf0, 0x30, 0xd0, 0x05, 0x17, 0xda, 0xb0, 0xeb, 0x9a, 0x2d, 0x4f, 0x26, 0xb0, 0xd6, 0x38, 0xc1, 0xeb, 0xf5, 0xd8, 0x3d, 0x1f, 0x70, 0xf7, 0x7f, 0xf4, 0xe2, 0xcf, 0x51, 0x51, 0x79, 0x88, 0xfa, 0xe8, 0x32, 0x0e, 0x7b, 0x2d, 0x97, 0xf2, 0xfa, 0xba, 0x27, 0xc5, 0x9c, 0xd9, 0xc5, 0xeb, 0x8a, 0x79, 0x52, 0x3c, 0x64, 0x34, 0x7d, 0xc2, 0xcf, 0x28, 0xc7, 0x4e, 0xd5, 0x43, 0x0b, 0xd1, 0xa6, 0xca, 0x6d, 0x03, 0x2d, 0x72, 0x23, 0xbc, 0x6d, 0x05, 0xfa, 0x16, 0x09, 0x2f, 0x2e, 0x5c, 0xb6, 0xee, 0x74, 0xdd, 0xd2, 0x48, 0x8e, 0x36, 0x0c, 0x06, 0x3d, 0x4d, 0xe5, 0x10, 0x82, 0xeb, 0x6a, 0xf3, 0x4b, 0x9f, 0xd6, 0xed, 0x11, 0xb1, 0x6e, 0xec, 0xf4, 0xfe, 0x8e, 0x75, 0x94, 0x20, 0x2f, 0xcb, 0xac, 0x46, 0xf1, 0x02, 0x41, 0x00, 0xf9, 0x8c, 0xa3, 0x85, 0xb1, 0xdd, 0x29, 0xaf, 0x65, 0xc1, 0x33, 0xf3, 0x95, 0xc5, 0x52, 0x68, 0x0b, 0xd4, 0xf1, 0xe5, 0x0e, 0x02, 0x9f, 0x4f, 0xfa, 0x77, 0xdc, 0x46, 0x9e, 0xc7, 0xa6, 0xe4, 0x16, 0x29, 0xda, 0xb0, 0x07, 0xcf, 0x5b, 0xa9, 0x12, 0x8a, 0xdd, 0x63, 0x0a, 0xde, 0x2e, 0x8c, 0x66, 0x8b, 0x8c, 0xdc, 0x19, 0xa3, 0x7e, 0xf4, 0x3b, 0xd0, 0x1a, 0x8c, 0xa4, 0xc2, 0xe1, 0xd3, 0x02, 0x41, 0x00, 0xe2, 0x4c, 0x05, 0xf2, 0x04, 0x86, 0x4e, 0x61, 0x43, 0xdb, 0xb0, 0xb9, 0x96, 0x86, 0x52, 0x2c, 0xca, 0x8d, 0x7b, 0xab, 0x0b, 0x13, 0x0d, 0x7e, 0x38, 0x5b, 0xe2, 0x2e, 0x7b, 0x0e, 0xe7, 0x19, 0x99, 0x38, 0xe7, 0xf2, 0x21, 0xbd, 0x85, 0x85, 0xe3, 0xfd, 0x28, 0x77, 0x20, 0x31, 0x71, 0x2c, 0xd0, 0xff, 0xfb, 0x2e, 0xaf, 0x85, 0xb4, 0x86, 0xca, 0xf3, 0xbb, 0xca, 0xaa, 0x0f, 0x95, 0x37, 0x02, 0x40, 0x0e, 0x41, 0x9a, 0x95, 0xe8, 0xb3, 0x59, 0xce, 0x4b, 0x61, 0xde, 0x35, 0xec, 0x38, 0x79, 0x9c, 0xb8, 0x10, 0x52, 0x41, 0x63, 0xab, 0x82, 0xae, 0x6f, 0x00, 0xa9, 0xf4, 0xde, 0xdd, 0x49, 0x0b, 0x7e, 0xb8, 0xa5, 0x65, 0xa9, 0x0c, 0x8f, 0x8f, 0xf9, 0x1f, 0x35, 0xc6, 0x92, 0xb8, 0x5e, 0xb0, 0x66, 0xab, 0x52, 0x40, 0xc0, 0xb6, 0x36, 0x6a, 0x7d, 0x80, 0x46, 0x04, 0x02, 0xe5, 0x9f, 0x41, 0x02, 0x41, 0x00, 0xc0, 0xad, 0xcc, 0x4e, 0x21, 0xee, 0x1d, 0x24, 0x91, 0xfb, 0xa7, 0x80, 0x8d, 0x9a, 0xb6, 0xb3, 0x2e, 0x8f, 0xc2, 0xe1, 0x82, 0xdf, 0x69, 0x18, 0xb4, 0x71, 0xff, 0xa6, 0x65, 0xde, 0xed, 0x84, 0x8d, 0x42, 0xb7, 0xb3, 0x21, 0x69, 0x56, 0x1c, 0x07, 0x60, 0x51, 0x29, 0x04, 0xff, 0x34, 0x06, 0xdd, 0xb9, 0x67, 0x2c, 0x7c, 0x04, 0x93, 0x0e, 0x46, 0x15, 0xbb, 0x2a, 0xb7, 0x1b, 0xe7, 0x87, 0x02, 0x40, 0x78, 0xda, 0x5d, 0x07, 0x51, 0x0c, 0x16, 0x7a, 0x9f, 0x29, 0x20, 0x84, 0x0d, 0x42, 0xfa, 0xd7, 0x00, 0xd8, 0x77, 0x7e, 0xb0, 0xb0, 0x6b, 0xd6, 0x5b, 0x53, 0xb8, 0x9b, 0x7a, 0xcd, 0xc7, 0x2b, 0xb8, 0x6a, 0x63, 0xa9, 0xfb, 0x6f, 0xa4, 0x72, 0xbf, 0x4c, 0x5d, 0x00, 0x14, 0xba, 0xfa, 0x59, 0x88, 0xed, 0xe4, 0xe0, 0x8c, 0xa2, 0xec, 0x14, 0x7e, 0x2d, 0xe2, 0xf0, 0x46, 0x49, 0x95, 0x45, }; static unsigned char test2048[] = { 0x30, 0x82, 0x04, 0xa3, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01, 0x01, 0x00, 0xc0, 0xc0, 0xce, 0x3e, 0x3c, 0x53, 0x67, 0x3f, 0x4f, 0xc5, 0x2f, 0xa4, 0xc2, 0x5a, 0x2f, 0x58, 0xfd, 0x27, 0x52, 0x6a, 0xe8, 0xcf, 0x4a, 0x73, 0x47, 0x8d, 0x25, 0x0f, 0x5f, 0x03, 0x26, 0x78, 0xef, 0xf0, 0x22, 0x12, 0xd3, 0xde, 0x47, 0xb2, 0x1c, 0x0b, 0x38, 0x63, 0x1a, 0x6c, 0x85, 0x7a, 0x80, 0xc6, 0x8f, 0xa0, 0x41, 0xaf, 0x62, 0xc4, 0x67, 0x32, 0x88, 0xf8, 0xa6, 0x9c, 0xf5, 0x23, 0x1d, 0xe4, 0xac, 0x3f, 0x29, 0xf9, 0xec, 0xe1, 0x8b, 0x26, 0x03, 0x2c, 0xb2, 0xab, 0xf3, 0x7d, 0xb5, 0xca, 0x49, 0xc0, 0x8f, 0x1c, 0xdf, 0x33, 0x3a, 0x60, 0xda, 0x3c, 0xb0, 0x16, 0xf8, 0xa9, 0x12, 0x8f, 0x64, 0xac, 0x23, 0x0c, 0x69, 0x64, 0x97, 0x5d, 0x99, 0xd4, 0x09, 0x83, 0x9b, 0x61, 0xd3, 0xac, 0xf0, 0xde, 0xdd, 0x5e, 0x9f, 0x44, 0x94, 0xdb, 0x3a, 0x4d, 0x97, 0xe8, 0x52, 0x29, 0xf7, 0xdb, 0x94, 0x07, 0x45, 0x90, 0x78, 0x1e, 0x31, 0x0b, 0x80, 0xf7, 0x57, 0xad, 0x1c, 0x79, 0xc5, 0xcb, 0x32, 0xb0, 0xce, 0xcd, 0x74, 0xb3, 0xe2, 0x94, 0xc5, 0x78, 0x2f, 0x34, 0x1a, 0x45, 0xf7, 0x8c, 0x52, 0xa5, 0xbc, 0x8d, 0xec, 0xd1, 0x2f, 0x31, 0x3b, 0xf0, 0x49, 0x59, 0x5e, 0x88, 0x9d, 0x15, 0x92, 0x35, 0x32, 0xc1, 0xe7, 0x61, 0xec, 0x50, 0x48, 0x7c, 0xba, 0x05, 0xf9, 0xf8, 0xf8, 0xa7, 0x8c, 0x83, 0xe8, 0x66, 0x5b, 0xeb, 0xfe, 0xd8, 0x4f, 0xdd, 0x6d, 0x36, 0xc0, 0xb2, 0x90, 0x0f, 0xb8, 0x52, 0xf9, 0x04, 0x9b, 0x40, 0x2c, 0x27, 0xd6, 0x36, 0x8e, 0xc2, 0x1b, 0x44, 0xf3, 0x92, 0xd5, 0x15, 0x9e, 0x9a, 0xbc, 0xf3, 0x7d, 0x03, 0xd7, 0x02, 0x14, 0x20, 0xe9, 0x10, 0x92, 0xfd, 0xf9, 0xfc, 0x8f, 0xe5, 0x18, 0xe1, 0x95, 0xcc, 0x9e, 0x60, 0xa6, 0xfa, 0x38, 0x4d, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x01, 0x00, 0x00, 0xc3, 0xc3, 0x0d, 0xb4, 0x27, 0x90, 0x8d, 0x4b, 0xbf, 0xb8, 0x84, 0xaa, 0xd0, 0xb8, 0xc7, 0x5d, 0x99, 0xbe, 0x55, 0xf6, 0x3e, 0x7c, 0x49, 0x20, 0xcb, 0x8a, 0x8e, 0x19, 0x0e, 0x66, 0x24, 0xac, 0xaf, 0x03, 0x33, 0x97, 0xeb, 0x95, 0xd5, 0x3b, 0x0f, 0x40, 0x56, 0x04, 0x50, 0xd1, 0xe6, 0xbe, 0x84, 0x0b, 0x25, 0xd3, 0x9c, 0xe2, 0x83, 0x6c, 0xf5, 0x62, 0x5d, 0xba, 0x2b, 0x7d, 0x3d, 0x7a, 0x6c, 0xe1, 0xd2, 0x0e, 0x54, 0x93, 0x80, 0x01, 0x91, 0x51, 0x09, 0xe8, 0x5b, 0x8e, 0x47, 0xbd, 0x64, 0xe4, 0x0e, 0x03, 0x83, 0x55, 0xcf, 0x5a, 0x37, 0xf0, 0x25, 0xb5, 0x7d, 0x21, 0xd7, 0x69, 0xdf, 0x6f, 0xc2, 0xcf, 0x10, 0xc9, 0x8a, 0x40, 0x9f, 0x7a, 0x70, 0xc0, 0xe8, 0xe8, 0xc0, 0xe6, 0x9a, 0x15, 0x0a, 0x8d, 0x4e, 0x46, 0xcb, 0x7a, 0xdb, 0xb3, 0xcb, 0x83, 0x02, 0xc4, 0xf0, 0xab, 0xeb, 0x02, 0x01, 0x0e, 0x23, 0xfc, 0x1d, 0xc4, 0xbd, 0xd4, 0xaa, 0x5d, 0x31, 0x46, 0x99, 0xce, 0x9e, 0xf8, 0x04, 0x75, 0x10, 0x67, 0xc4, 0x53, 0x47, 0x44, 0xfa, 0xc2, 0x25, 0x73, 0x7e, 0xd0, 0x8e, 0x59, 0xd1, 0xb2, 0x5a, 0xf4, 0xc7, 0x18, 0x92, 0x2f, 0x39, 0xab, 0xcd, 0xa3, 0xb5, 0xc2, 0xb9, 0xc7, 0xb9, 0x1b, 0x9f, 0x48, 0xfa, 0x13, 0xc6, 0x98, 0x4d, 0xca, 0x84, 0x9c, 0x06, 0xca, 0xe7, 0x89, 0x01, 0x04, 0xc4, 0x6c, 0xfd, 0x29, 0x59, 0x35, 0xe7, 0xf3, 0xdd, 0xce, 0x64, 0x59, 0xbf, 0x21, 0x13, 0xa9, 0x9f, 0x0e, 0xc5, 0xff, 0xbd, 0x33, 0x00, 0xec, 0xac, 0x6b, 0x11, 0xef, 0x51, 0x5e, 0xad, 0x07, 0x15, 0xde, 0xb8, 0x5f, 0xc6, 0xb9, 0xa3, 0x22, 0x65, 0x46, 0x83, 0x14, 0xdf, 0xd0, 0xf1, 0x44, 0x8a, 0xe1, 0x9c, 0x23, 0x33, 0xb4, 0x97, 0x33, 0xe6, 0x6b, 0x81, 0x02, 0x81, 0x81, 0x00, 0xec, 0x12, 0xa7, 0x59, 0x74, 0x6a, 0xde, 0x3e, 0xad, 0xd8, 0x36, 0x80, 0x50, 0xa2, 0xd5, 0x21, 0x81, 0x07, 0xf1, 0xd0, 0x91, 0xf2, 0x6c, 0x12, 0x2f, 0x9d, 0x1a, 0x26, 0xf8, 0x30, 0x65, 0xdf, 0xe8, 0xc0, 0x9b, 0x6a, 0x30, 0x98, 0x82, 0x87, 0xec, 0xa2, 0x56, 0x87, 0x62, 0x6f, 0xe7, 0x9f, 0xf6, 0x56, 0xe6, 0x71, 0x8f, 0x49, 0x86, 0x93, 0x5a, 0x4d, 0x34, 0x58, 0xfe, 0xd9, 0x04, 0x13, 0xaf, 0x79, 0xb7, 0xad, 0x11, 0xd1, 0x30, 0x9a, 0x14, 0x06, 0xa0, 0xfa, 0xb7, 0x55, 0xdc, 0x6c, 0x5a, 0x4c, 0x2c, 0x59, 0x56, 0xf6, 0xe8, 0x9d, 0xaf, 0x0a, 0x78, 0x99, 0x06, 0x06, 0x9e, 0xe7, 0x9c, 0x51, 0x55, 0x43, 0xfc, 0x3b, 0x6c, 0x0b, 0xbf, 0x2d, 0x41, 0xa7, 0xaf, 0xb7, 0xe0, 0xe8, 0x28, 0x18, 0xb4, 0x13, 0xd1, 0xe6, 0x97, 0xd0, 0x9f, 0x6a, 0x80, 0xca, 0xdd, 0x1a, 0x7e, 0x15, 0x02, 0x81, 0x81, 0x00, 0xd1, 0x06, 0x0c, 0x1f, 0xe3, 0xd0, 0xab, 0xd6, 0xca, 0x7c, 0xbc, 0x7d, 0x13, 0x35, 0xce, 0x27, 0xcd, 0xd8, 0x49, 0x51, 0x63, 0x64, 0x0f, 0xca, 0x06, 0x12, 0xfc, 0x07, 0x3e, 0xaf, 0x61, 0x6d, 0xe2, 0x53, 0x39, 0x27, 0xae, 0xc3, 0x11, 0x9e, 0x94, 0x01, 0x4f, 0xe3, 0xf3, 0x67, 0xf9, 0x77, 0xf9, 0xe7, 0x95, 0x3a, 0x6f, 0xe2, 0x20, 0x73, 0x3e, 0xa4, 0x7a, 0x28, 0xd4, 0x61, 0x97, 0xf6, 0x17, 0xa0, 0x23, 0x10, 0x2b, 0xce, 0x84, 0x57, 0x7e, 0x25, 0x1f, 0xf4, 0xa8, 0x54, 0xd2, 0x65, 0x94, 0xcc, 0x95, 0x0a, 0xab, 0x30, 0xc1, 0x59, 0x1f, 0x61, 0x8e, 0xb9, 0x6b, 0xd7, 0x4e, 0xb9, 0x83, 0x43, 0x79, 0x85, 0x11, 0xbc, 0x0f, 0xae, 0x25, 0x20, 0x05, 0xbc, 0xd2, 0x48, 0xa1, 0x68, 0x09, 0x84, 0xf6, 0x12, 0x9a, 0x66, 0xb9, 0x2b, 0xbb, 0x76, 0x03, 0x17, 0x46, 0x4e, 0x97, 0x59, 0x02, 0x81, 0x80, 0x09, 0x4c, 0xfa, 0xd6, 0xe5, 0x65, 0x48, 0x78, 0x43, 0xb5, 0x1f, 0x00, 0x93, 0x2c, 0xb7, 0x24, 0xe8, 0xc6, 0x7d, 0x5a, 0x70, 0x45, 0x92, 0xc8, 0x6c, 0xa3, 0xcd, 0xe1, 0xf7, 0x29, 0x40, 0xfa, 0x3f, 0x5b, 0x47, 0x44, 0x39, 0xc1, 0xe8, 0x72, 0x9e, 0x7a, 0x0e, 0xda, 0xaa, 0xa0, 0x2a, 0x09, 0xfd, 0x54, 0x93, 0x23, 0xaa, 0x37, 0x85, 0x5b, 0xcc, 0xd4, 0xf9, 0xd8, 0xff, 0xc1, 0x61, 0x0d, 0xbd, 0x7e, 0x18, 0x24, 0x73, 0x6d, 0x40, 0x72, 0xf1, 0x93, 0x09, 0x48, 0x97, 0x6c, 0x84, 0x90, 0xa8, 0x46, 0x14, 0x01, 0x39, 0x11, 0xe5, 0x3c, 0x41, 0x27, 0x32, 0x75, 0x24, 0xed, 0xa1, 0xd9, 0x12, 0x29, 0x8a, 0x28, 0x71, 0x89, 0x8d, 0xca, 0x30, 0xb0, 0x01, 0xc4, 0x2f, 0x82, 0x19, 0x14, 0x4c, 0x70, 0x1c, 0xb8, 0x23, 0x2e, 0xe8, 0x90, 0x49, 0x97, 0x92, 0x97, 0x6b, 0x7a, 0x9d, 0xb9, 0x02, 0x81, 0x80, 0x0f, 0x0e, 0xa1, 0x76, 0xf6, 0xa1, 0x44, 0x8f, 0xaf, 0x7c, 0x76, 0xd3, 0x87, 0xbb, 0xbb, 0x83, 0x10, 0x88, 0x01, 0x18, 0x14, 0xd1, 0xd3, 0x75, 0x59, 0x24, 0xaa, 0xf5, 0x16, 0xa5, 0xe9, 0x9d, 0xd1, 0xcc, 0xee, 0xf4, 0x15, 0xd9, 0xc5, 0x7e, 0x27, 0xe9, 0x44, 0x49, 0x06, 0x72, 0xb9, 0xfc, 0xd3, 0x8a, 0xc4, 0x2c, 0x36, 0x7d, 0x12, 0x9b, 0x5a, 0xaa, 0xdc, 0x85, 0xee, 0x6e, 0xad, 0x54, 0xb3, 0xf4, 0xfc, 0x31, 0xa1, 0x06, 0x3a, 0x70, 0x57, 0x0c, 0xf3, 0x95, 0x5b, 0x3e, 0xe8, 0xfd, 0x1a, 0x4f, 0xf6, 0x78, 0x93, 0x46, 0x6a, 0xd7, 0x31, 0xb4, 0x84, 0x64, 0x85, 0x09, 0x38, 0x89, 0x92, 0x94, 0x1c, 0xbf, 0xe2, 0x3c, 0x2a, 0xe0, 0xff, 0x99, 0xa3, 0xf0, 0x2b, 0x31, 0xc2, 0x36, 0xcd, 0x60, 0xbf, 0x9d, 0x2d, 0x74, 0x32, 0xe8, 0x9c, 0x93, 0x6e, 0xbb, 0x91, 0x7b, 0xfd, 0xd9, 0x02, 0x81, 0x81, 0x00, 0xa2, 0x71, 0x25, 0x38, 0xeb, 0x2a, 0xe9, 0x37, 0xcd, 0xfe, 0x44, 0xce, 0x90, 0x3f, 0x52, 0x87, 0x84, 0x52, 0x1b, 0xae, 0x8d, 0x22, 0x94, 0xce, 0x38, 0xe6, 0x04, 0x88, 0x76, 0x85, 0x9a, 0xd3, 0x14, 0x09, 0xe5, 0x69, 0x9a, 0xff, 0x58, 0x92, 0x02, 0x6a, 0x7d, 0x7c, 0x1e, 0x2c, 0xfd, 0xa8, 0xca, 0x32, 0x14, 0x4f, 0x0d, 0x84, 0x0d, 0x37, 0x43, 0xbf, 0xe4, 0x5d, 0x12, 0xc8, 0x24, 0x91, 0x27, 0x8d, 0x46, 0xd9, 0x54, 0x53, 0xe7, 0x62, 0x71, 0xa8, 0x2b, 0x71, 0x41, 0x8d, 0x75, 0xf8, 0x3a, 0xa0, 0x61, 0x29, 0x46, 0xa6, 0xe5, 0x82, 0xfa, 0x3a, 0xd9, 0x08, 0xfa, 0xfc, 0x63, 0xfd, 0x6b, 0x30, 0xbc, 0xf4, 0x4e, 0x9e, 0x8c, 0x25, 0x0c, 0xb6, 0x55, 0xe7, 0x3c, 0xd4, 0x4e, 0x0b, 0xfd, 0x8b, 0xc3, 0x0e, 0x1d, 0x9c, 0x44, 0x57, 0x8f, 0x1f, 0x86, 0xf7, 0xd5, 0x1b, 0xe4, 0x95, }; static unsigned char test3072[] = { 0x30, 0x82, 0x06, 0xe3, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01, 0x81, 0x00, 0xbc, 0x3b, 0x23, 0xc0, 0x33, 0xa7, 0x8b, 0xaa, 0xca, 0xa3, 0x8c, 0x94, 0xf2, 0x4c, 0x52, 0x08, 0x85, 0x80, 0xfc, 0x36, 0x15, 0xfa, 0x03, 0x06, 0xb6, 0xd6, 0x3f, 0x60, 0x8a, 0x89, 0x0d, 0xba, 0x1a, 0x51, 0x0b, 0x12, 0xea, 0x71, 0x77, 0xf6, 0x3a, 0x30, 0x21, 0x3d, 0x24, 0xf8, 0x2e, 0xd0, 0x17, 0x3a, 0x85, 0x94, 0x25, 0x42, 0x89, 0xff, 0x6a, 0x68, 0xdf, 0x1f, 0x86, 0xae, 0xa5, 0xbb, 0x9a, 0x79, 0xf6, 0x69, 0x94, 0xfe, 0xde, 0xfe, 0xce, 0x1b, 0x2e, 0xae, 0x1d, 0x91, 0xcb, 0xb9, 0xf1, 0x2d, 0xd8, 0x00, 0x82, 0x51, 0x8e, 0xf9, 0xfd, 0xac, 0xf1, 0x0e, 0x7f, 0xb7, 0x95, 0x85, 0x35, 0xf9, 0xcb, 0xbe, 0x5f, 0xd3, 0x58, 0xe3, 0xa1, 0x54, 0x9e, 0x30, 0xb1, 0x8d, 0x01, 0x97, 0x82, 0x06, 0x8e, 0x77, 0xfb, 0xce, 0x50, 0x2f, 0xbf, 0xf1, 0xff, 0x57, 0x0a, 0x42, 0x03, 0xfd, 0x0e, 0xba, 0x1e, 0xca, 0x85, 0xc1, 0x9b, 0xa5, 0x9d, 0x09, 0x0e, 0xe9, 0xbb, 0xc5, 0x73, 0x47, 0x0d, 0x39, 0x3c, 0x64, 0x06, 0x9a, 0x79, 0x3f, 0x50, 0x87, 0x9c, 0x18, 0x2d, 0x62, 0x01, 0xfc, 0xed, 0xc1, 0x58, 0x28, 0x21, 0x94, 0x1e, 0xf9, 0x2d, 0x96, 0x4f, 0xd0, 0xbc, 0xf1, 0xe0, 0x8a, 0xfa, 0x4d, 0xb6, 0x78, 0x4a, 0xde, 0x17, 0x59, 0xb0, 0x22, 0xa0, 0x9a, 0xd3, 0x70, 0xb6, 0xc2, 0xbe, 0xbc, 0x96, 0xca, 0x41, 0x5f, 0x58, 0x4e, 0xce, 0xef, 0x64, 0x45, 0xdd, 0x3f, 0x81, 0x92, 0xcc, 0x40, 0x79, 0xfc, 0x19, 0xe2, 0xbc, 0x77, 0x2f, 0x43, 0xfb, 0x8e, 0xad, 0x82, 0x4a, 0x0b, 0xb1, 0xbc, 0x09, 0x8a, 0x80, 0xc3, 0x0f, 0xef, 0xd2, 0x06, 0xd3, 0x4b, 0x0c, 0x7f, 0xae, 0x60, 0x3f, 0x2e, 0x52, 0xb4, 0xe4, 0xc2, 0x5c, 0xa6, 0x71, 0xc0, 0x13, 0x9c, 0xca, 0xa6, 0x0d, 0x13, 0xd7, 0xb7, 0x14, 0x94, 0x3f, 0x0d, 0x8b, 0x06, 0x70, 0x2f, 0x15, 0x82, 0x8d, 0x47, 0x45, 0xa6, 0x00, 0x8a, 0x14, 0x91, 0xde, 0x2f, 0x50, 0x17, 0xe3, 0x1d, 0x34, 0x29, 0x8c, 0xe4, 0x57, 0x74, 0x2a, 0x3a, 0x82, 0x65, 0x26, 0xf7, 0x8d, 0xcc, 0x1b, 0x8f, 0xaf, 0xe5, 0x85, 0xe5, 0xbe, 0x85, 0xd6, 0xb7, 0x04, 0xe8, 0xf5, 0xd4, 0x74, 0xe2, 0x54, 0x14, 0xdd, 0x58, 0xcf, 0x1f, 0x11, 0x8a, 0x9f, 0x82, 0xa2, 0x01, 0xf9, 0xc2, 0xdf, 0x7b, 0x84, 0xb1, 0xd8, 0x5b, 0x70, 0xbb, 0x24, 0xe7, 0xd0, 0x2a, 0x75, 0x3d, 0x55, 0xac, 0x45, 0xe9, 0xab, 0xc6, 0x84, 0x8a, 0xe7, 0x6d, 0x26, 0x12, 0x89, 0xb5, 0x67, 0xe8, 0x46, 0x9d, 0x46, 0x1a, 0xfa, 0x2d, 0xc0, 0x5b, 0x60, 0x46, 0x8b, 0xb7, 0x32, 0x03, 0xff, 0x75, 0xee, 0x9f, 0x3c, 0xdd, 0xb6, 0x35, 0x4e, 0x82, 0xbd, 0x99, 0x73, 0x51, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x01, 0x80, 0x42, 0xee, 0xa4, 0x9f, 0xcb, 0xbe, 0x60, 0x23, 0xb3, 0x3a, 0xc4, 0xda, 0x91, 0xee, 0x21, 0x9d, 0x76, 0x1b, 0x8f, 0x93, 0x8b, 0xed, 0x02, 0xf6, 0x78, 0x3d, 0x66, 0xfb, 0xe5, 0x47, 0x26, 0xe2, 0x6e, 0x49, 0x33, 0x2e, 0xde, 0xbe, 0xca, 0x71, 0x7b, 0xef, 0x71, 0x62, 0x54, 0xab, 0x0b, 0xba, 0x63, 0x08, 0x24, 0x47, 0xb1, 0x98, 0x1f, 0x89, 0xfb, 0x44, 0x9f, 0x52, 0x8e, 0x89, 0xbb, 0xd5, 0x21, 0xf1, 0x0c, 0x76, 0x2e, 0xcd, 0x12, 0x6e, 0x78, 0xcb, 0xa1, 0xa5, 0xb8, 0x4e, 0x07, 0xab, 0x6e, 0xdf, 0x66, 0x57, 0x87, 0xff, 0x88, 0x5f, 0xcc, 0x9c, 0x9a, 0x7b, 0x15, 0x5f, 0x2a, 0x83, 0xdb, 0xd5, 0x9f, 0x65, 0x6a, 0x9d, 0xb4, 0x95, 0xfc, 0xe0, 0x22, 0x00, 0x1e, 0xa2, 0x8d, 0x56, 0x5a, 0x9e, 0x0a, 0x3b, 0x10, 0x07, 0x24, 0xec, 0x55, 0xcc, 0xaf, 0x87, 0x3b, 0xd6, 0x8d, 0xa4, 0x86, 0x80, 0x18, 0x42, 0xdb, 0x9d, 0x24, 0xc3, 0x97, 0x3b, 0x89, 0x5a, 0x03, 0xb3, 0x0a, 0x72, 0xd1, 0x78, 0xf0, 0xc8, 0x80, 0xb0, 0x9d, 0x3c, 0xae, 0x5e, 0x0a, 0x5b, 0x6e, 0x87, 0xd3, 0x3d, 0x25, 0x2e, 0x03, 0x33, 0x01, 0xfd, 0xb1, 0xa5, 0xd9, 0x58, 0x01, 0xb9, 0xaf, 0xf6, 0x32, 0x6a, 0x38, 0xe7, 0x39, 0x63, 0x3c, 0xfc, 0x0c, 0x41, 0x90, 0x28, 0x40, 0x03, 0xcd, 0xfb, 0xde, 0x80, 0x74, 0x21, 0xaa, 0xae, 0x58, 0xe9, 0x97, 0x18, 0x85, 0x58, 0x3d, 0x2b, 0xd6, 0x61, 0xf6, 0xe8, 0xbc, 0x6d, 0x2a, 0xf3, 0xb8, 0xea, 0x8c, 0x64, 0x44, 0xc6, 0xd3, 0x9f, 0x00, 0x7b, 0xb2, 0x52, 0x18, 0x11, 0x04, 0x96, 0xb7, 0x05, 0xbb, 0xc2, 0x38, 0x5b, 0xa7, 0x0a, 0x84, 0xb6, 0x4f, 0x02, 0x63, 0xa4, 0x57, 0x00, 0xe3, 0xde, 0xe4, 0xf2, 0xb3, 0x55, 0xd9, 0x00, 0xa9, 0xd2, 0x5c, 0x69, 0x9f, 0xe5, 0x80, 0x4f, 0x23, 0x7c, 0xd9, 0xa7, 0x77, 0x4a, 0xbb, 0x09, 0x6d, 0x45, 0x02, 0xcf, 0x32, 0x90, 0xfd, 0x10, 0xb6, 0xb3, 0x93, 0xd9, 0x3b, 0x1d, 0x57, 0x66, 0xb5, 0xb3, 0xb1, 0x6e, 0x53, 0x5f, 0x04, 0x60, 0x29, 0xcd, 0xe8, 0xb8, 0xab, 0x62, 0x82, 0x33, 0x40, 0xc7, 0xf8, 0x64, 0x60, 0x0e, 0xab, 0x06, 0x3e, 0xa0, 0xa3, 0x62, 0x11, 0x3f, 0x67, 0x5d, 0x24, 0x9e, 0x60, 0x29, 0xdc, 0x4c, 0xd5, 0x13, 0xee, 0x3d, 0xb7, 0x84, 0x93, 0x27, 0xb5, 0x6a, 0xf9, 0xf0, 0xdd, 0x50, 0xac, 0x46, 0x3c, 0xe6, 0xd5, 0xec, 0xf7, 0xb7, 0x9f, 0x23, 0x39, 0x9c, 0x88, 0x8c, 0x5a, 0x62, 0x3f, 0x8d, 0x4a, 0xd7, 0xeb, 0x5e, 0x1e, 0x49, 0xf8, 0xa9, 0x53, 0x11, 0x75, 0xd0, 0x43, 0x1e, 0xc7, 0x29, 0x22, 0x80, 0x1f, 0xc5, 0x83, 0x8d, 0x20, 0x04, 0x87, 0x7f, 0x57, 0x8c, 0xf5, 0xa1, 0x02, 0x81, 0xc1, 0x00, 0xf7, 0xaa, 0xf5, 0xa5, 0x00, 0xdb, 0xd6, 0x11, 0xfc, 0x07, 0x6d, 0x22, 0x24, 0x2b, 0x4b, 0xc5, 0x67, 0x0f, 0x37, 0xa5, 0xdb, 0x8f, 0x38, 0xe2, 0x05, 0x43, 0x9a, 0x44, 0x05, 0x3f, 0xa9, 0xac, 0x4c, 0x98, 0x3c, 0x72, 0x38, 0xc3, 0x89, 0x33, 0x58, 0x73, 0x51, 0xcc, 0x5d, 0x2f, 0x8f, 0x6d, 0x3f, 0xa1, 0x22, 0x9e, 0xfb, 0x9a, 0xb4, 0xb8, 0x79, 0x95, 0xaf, 0x83, 0xcf, 0x5a, 0xb7, 0x14, 0x14, 0x0c, 0x51, 0x8a, 0x11, 0xe6, 0xd6, 0x21, 0x1e, 0x17, 0x13, 0xd3, 0x69, 0x7a, 0x3a, 0xd5, 0xaf, 0x3f, 0xb8, 0x25, 0x01, 0xcb, 0x2b, 0xe6, 0xfc, 0x03, 0xd8, 0xd4, 0xf7, 0x20, 0xe0, 0x21, 0xef, 0x1a, 0xca, 0x61, 0xeb, 0x8e, 0x96, 0x45, 0x8e, 0x5c, 0xe6, 0x81, 0x0b, 0x2d, 0x05, 0x32, 0xf9, 0x41, 0x62, 0xb4, 0x33, 0x98, 0x10, 0x3a, 0xcd, 0xf0, 0x7a, 0x8b, 0x1a, 0x48, 0xd7, 0x3b, 0x01, 0xf5, 0x18, 0x65, 0x8f, 0x3c, 0xc2, 0x31, 0x3b, 0xd3, 0xa7, 0x17, 0x5f, 0x7c, 0x0c, 0xe7, 0x25, 0x18, 0x5a, 0x08, 0xe1, 0x09, 0x89, 0x13, 0xa7, 0xc5, 0x12, 0xab, 0x88, 0x30, 0xcd, 0x06, 0xf9, 0xba, 0x6f, 0xca, 0x9c, 0x8a, 0xda, 0x3e, 0x53, 0x90, 0xd7, 0x16, 0x2e, 0xfc, 0xbc, 0xad, 0xd6, 0x3d, 0xc0, 0x66, 0x4c, 0x02, 0x3d, 0x31, 0xfd, 0x6c, 0xdb, 0x1c, 0xdf, 0x96, 0x33, 0x23, 0x02, 0x81, 0xc1, 0x00, 0xc2, 0x90, 0x47, 0xc4, 0xfb, 0x59, 0xf0, 0xc5, 0x14, 0x75, 0x29, 0xfa, 0x77, 0xa1, 0x8d, 0xd4, 0x90, 0xa1, 0x0d, 0x3f, 0x16, 0x88, 0xe3, 0x4c, 0x8f, 0x8f, 0x18, 0x8c, 0x9c, 0x8a, 0xd5, 0xa7, 0x41, 0x99, 0xf3, 0x80, 0x8e, 0xb1, 0xb8, 0x63, 0xd8, 0x3f, 0x95, 0xd0, 0xd0, 0x2b, 0xf5, 0xe6, 0x93, 0xe8, 0xfe, 0xd0, 0x73, 0xd5, 0xbd, 0xb4, 0xee, 0x51, 0x19, 0x6a, 0x10, 0xca, 0xc8, 0xba, 0xa4, 0x4d, 0x84, 0x54, 0x38, 0x17, 0xb5, 0xd0, 0xa8, 0x75, 0x22, 0xc5, 0x1b, 0x61, 0xa6, 0x51, 0x88, 0x63, 0xf0, 0x4f, 0xd1, 0x88, 0xd9, 0x16, 0x49, 0x30, 0xe1, 0xa8, 0x47, 0xc9, 0x30, 0x1d, 0x5c, 0x75, 0xd8, 0x89, 0xb6, 0x1d, 0x45, 0xd8, 0x0f, 0x94, 0x89, 0xb3, 0xe4, 0x51, 0xfa, 0x21, 0xff, 0x6f, 0xb6, 0x30, 0x6f, 0x33, 0x24, 0xbc, 0x09, 0x98, 0xe9, 0x20, 0x02, 0x0b, 0xde, 0xff, 0xc5, 0x06, 0xb6, 0x28, 0xa3, 0xa1, 0x07, 0xe8, 0xe1, 0xd2, 0xc2, 0xf1, 0xd1, 0x23, 0x6b, 0x4c, 0x3a, 0xae, 0x85, 0xec, 0xf9, 0xff, 0xa7, 0x9b, 0x25, 0xb8, 0x95, 0x1d, 0xa8, 0x14, 0x81, 0x4f, 0x79, 0x4f, 0xd6, 0x39, 0x5d, 0xe6, 0x5f, 0xd2, 0x34, 0x54, 0x8b, 0x1e, 0x40, 0x4c, 0x15, 0x5a, 0x45, 0xce, 0x0c, 0xb0, 0xdf, 0xa1, 0x17, 0xb8, 0xb0, 0x6a, 0x82, 0xa5, 0x97, 0x92, 0x70, 0xfb, 0x02, 0x81, 0xc0, 0x77, 0x46, 0x44, 0x2b, 0x04, 0xf0, 0xda, 0x75, 0xaa, 0xd4, 0xc0, 0xc0, 0x32, 0x7f, 0x0f, 0x6c, 0xb0, 0x27, 0x69, 0xfb, 0x5c, 0x73, 0xeb, 0x47, 0x1e, 0x95, 0xe2, 0x13, 0x64, 0x1b, 0xb6, 0xd1, 0x1d, 0xca, 0x2b, 0x42, 0x2f, 0x08, 0x2c, 0x69, 0x27, 0xed, 0xd1, 0xb5, 0x04, 0x23, 0xc5, 0x85, 0x2d, 0xa1, 0xa2, 0x94, 0xc2, 0x43, 0x4d, 0x49, 0x92, 0x74, 0x7e, 0x24, 0x92, 0x95, 0xf3, 0x99, 0x9d, 0xd6, 0x18, 0xe6, 0xcf, 0x9c, 0x45, 0xff, 0x89, 0x08, 0x40, 0x2a, 0x0e, 0xa0, 0x28, 0xf9, 0x83, 0xfe, 0xc1, 0xe6, 0x40, 0xa8, 0xe2, 0x29, 0xc9, 0xb0, 0xe8, 0x9a, 0x17, 0xb2, 0x23, 0x7e, 0xf4, 0x32, 0x08, 0xc9, 0x83, 0xb2, 0x15, 0xb8, 0xc5, 0xc9, 0x03, 0xd1, 0x9d, 0xda, 0x3e, 0xa8, 0xbf, 0xd5, 0xb7, 0x7d, 0x65, 0x63, 0x94, 0x5d, 0x5d, 0x94, 0xb4, 0xcf, 0x8d, 0x07, 0x0b, 0x70, 0x85, 0x8e, 0xce, 0x03, 0x0b, 0x2a, 0x8d, 0xb3, 0x3c, 0x46, 0xc0, 0x2f, 0xc7, 0x72, 0x6c, 0x9c, 0x5d, 0x07, 0x0f, 0x45, 0x3b, 0x6b, 0x66, 0x32, 0xab, 0x17, 0x83, 0xd8, 0x4c, 0x2c, 0x84, 0x71, 0x19, 0x8f, 0xaa, 0x0a, 0xff, 0xbc, 0xf7, 0x42, 0x10, 0xe8, 0xae, 0x4d, 0x26, 0xaf, 0xdd, 0x06, 0x33, 0x29, 0x66, 0x21, 0x5d, 0xf5, 0xae, 0x17, 0x07, 0x1f, 0x87, 0x9e, 0xae, 0x27, 0x1d, 0xd5, 0x02, 0x81, 0xc0, 0x56, 0x17, 0x4f, 0x9a, 0x8a, 0xf9, 0xde, 0x3e, 0xe6, 0x71, 0x7d, 0x94, 0xb5, 0xb0, 0xc7, 0xb8, 0x62, 0x12, 0xd1, 0x70, 0xb4, 0x00, 0xf8, 0x4a, 0xdd, 0x4f, 0x1d, 0x36, 0xc2, 0xe1, 0xef, 0xee, 0x25, 0x6a, 0x00, 0xc4, 0x46, 0xdf, 0xbe, 0xce, 0x77, 0x56, 0x93, 0x6d, 0x25, 0x5f, 0xfe, 0x5b, 0xfb, 0xe0, 0xe2, 0x37, 0xcc, 0xb9, 0xac, 0x4a, 0xce, 0x15, 0x16, 0xa0, 0xc7, 0x33, 0x63, 0xa4, 0xaa, 0xa5, 0x1e, 0x43, 0xc1, 0xda, 0x43, 0xfa, 0x43, 0x40, 0x29, 0x95, 0x7c, 0x2b, 0x36, 0x53, 0xe7, 0x7d, 0x09, 0x4d, 0xd8, 0x52, 0xac, 0x74, 0x5f, 0x08, 0x81, 0x21, 0x5c, 0x3a, 0x5a, 0xce, 0xf3, 0x25, 0xb6, 0x1e, 0x21, 0x76, 0x4c, 0x7c, 0x71, 0x50, 0x71, 0xaa, 0x27, 0x02, 0x5b, 0x23, 0x06, 0x0b, 0x21, 0x5b, 0xc7, 0x28, 0xa3, 0x3d, 0x8d, 0x25, 0x9b, 0x2a, 0x2d, 0x9d, 0xa1, 0x1c, 0x1d, 0xcb, 0x7d, 0x78, 0xf8, 0x06, 0x7e, 0x20, 0x7f, 0x24, 0x2a, 0x5c, 0xa4, 0x04, 0xff, 0x2a, 0x68, 0xe0, 0xe6, 0xa3, 0xd8, 0x6f, 0x56, 0x73, 0xa1, 0x3a, 0x4e, 0xc9, 0x23, 0xa1, 0x87, 0x22, 0x6a, 0x74, 0x78, 0x3f, 0x44, 0x1c, 0x77, 0x13, 0xe5, 0x51, 0xef, 0x89, 0x00, 0x3c, 0x6a, 0x4a, 0x5a, 0x8e, 0xf5, 0x30, 0xa2, 0x93, 0x7e, 0x92, 0x9b, 0x85, 0x55, 0xaf, 0xfe, 0x24, 0xaf, 0x57, 0x02, 0x81, 0xc1, 0x00, 0xa4, 0xc2, 0x6a, 0x59, 0x45, 0xea, 0x71, 0x7d, 0x4c, 0xaf, 0xaf, 0xd6, 0x55, 0x97, 0x73, 0xc5, 0xa1, 0x3c, 0xf6, 0x59, 0x23, 0xb6, 0x1f, 0x5e, 0x9c, 0x96, 0x0f, 0x97, 0x66, 0x82, 0x91, 0x48, 0x36, 0x70, 0x02, 0x67, 0xde, 0x34, 0xa6, 0x95, 0x7b, 0x51, 0x43, 0x66, 0xa4, 0x16, 0x45, 0x59, 0x12, 0xdb, 0x35, 0x19, 0x4b, 0xbf, 0x1d, 0xab, 0xf3, 0x3f, 0xb4, 0xb4, 0x6f, 0x66, 0xb0, 0x67, 0xc6, 0x77, 0x2c, 0x46, 0xa8, 0x03, 0x64, 0x9a, 0x13, 0x9d, 0x40, 0x22, 0x56, 0x76, 0x1a, 0x7c, 0x1e, 0xe2, 0xda, 0x7f, 0x09, 0xcf, 0x10, 0xe3, 0xf2, 0xf4, 0x2a, 0x3b, 0x46, 0xc7, 0x61, 0x9b, 0xef, 0x4a, 0x18, 0x60, 0x8c, 0x32, 0x71, 0xb9, 0xdd, 0xac, 0xa0, 0xc6, 0x8d, 0x3f, 0xab, 0xc3, 0x21, 0x2c, 0xeb, 0x91, 0x8f, 0xc7, 0x43, 0x0d, 0x0c, 0x67, 0x9e, 0xab, 0xe6, 0x8d, 0xb6, 0x2d, 0x41, 0xca, 0x43, 0xd8, 0xcb, 0x30, 0xfb, 0x3b, 0x40, 0x0d, 0x10, 0x9b, 0xb1, 0x55, 0x93, 0x73, 0x8b, 0x60, 0xef, 0xc0, 0xee, 0xc0, 0xa6, 0x7a, 0x79, 0x90, 0xfd, 0x4c, 0x25, 0xd4, 0x4f, 0x67, 0xbe, 0xf7, 0x86, 0x3c, 0x5d, 0x2b, 0x7d, 0x97, 0x3d, 0xa2, 0x91, 0xa5, 0x06, 0x69, 0xf6, 0x7a, 0xb8, 0x77, 0xe6, 0x70, 0xa9, 0xd8, 0x86, 0x4b, 0xa6, 0xcf, 0x67, 0x1d, 0x33, 0xcf, 0xfe, 0x3e }; static unsigned char test4096[] = { 0x30, 0x82, 0x09, 0x29, 0x02, 0x01, 0x00, 0x02, 0x82, 0x02, 0x01, 0x00, 0xc0, 0x71, 0xac, 0x1a, 0x13, 0x88, 0x82, 0x43, 0x3b, 0x51, 0x57, 0x71, 0x8d, 0xb6, 0x2b, 0x82, 0x65, 0x21, 0x53, 0x5f, 0x28, 0x29, 0x4f, 0x8d, 0x7c, 0x8a, 0xb9, 0x44, 0xb3, 0x28, 0x41, 0x4f, 0xd3, 0xfa, 0x6a, 0xf8, 0xb9, 0x28, 0x50, 0x39, 0x67, 0x53, 0x2c, 0x3c, 0xd7, 0xcb, 0x96, 0x41, 0x40, 0x32, 0xbb, 0xeb, 0x70, 0xae, 0x1f, 0xb0, 0x65, 0xf7, 0x3a, 0xd9, 0x22, 0xfd, 0x10, 0xae, 0xbd, 0x02, 0xe2, 0xdd, 0xf3, 0xc2, 0x79, 0x3c, 0xc6, 0xfc, 0x75, 0xbb, 0xaf, 0x4e, 0x3a, 0x36, 0xc2, 0x4f, 0xea, 0x25, 0xdf, 0x13, 0x16, 0x4b, 0x20, 0xfe, 0x4b, 0x69, 0x16, 0xc4, 0x7f, 0x1a, 0x43, 0xa6, 0x17, 0x1b, 0xb9, 0x0a, 0xf3, 0x09, 0x86, 0x28, 0x89, 0xcf, 0x2c, 0xd0, 0xd4, 0x81, 0xaf, 0xc6, 0x6d, 0xe6, 0x21, 0x8d, 0xee, 0xef, 0xea, 0xdc, 0xb7, 0xc6, 0x3b, 0x63, 0x9f, 0x0e, 0xad, 0x89, 0x78, 0x23, 0x18, 0xbf, 0x70, 0x7e, 0x84, 0xe0, 0x37, 0xec, 0xdb, 0x8e, 0x9c, 0x3e, 0x6a, 0x19, 0xcc, 0x99, 0x72, 0xe6, 0xb5, 0x7d, 0x6d, 0xfa, 0xe5, 0xd3, 0xe4, 0x90, 0xb5, 0xb2, 0xb2, 0x12, 0x70, 0x4e, 0xca, 0xf8, 0x10, 0xf8, 0xa3, 0x14, 0xc2, 0x48, 0x19, 0xeb, 0x60, 0x99, 0xbb, 0x2a, 0x1f, 0xb1, 0x7a, 0xb1, 0x3d, 0x24, 0xfb, 0xa0, 0x29, 0xda, 0xbd, 0x1b, 0xd7, 0xa4, 0xbf, 0xef, 0x60, 0x2d, 0x22, 0xca, 0x65, 0x98, 0xf1, 0xc4, 0xe1, 0xc9, 0x02, 0x6b, 0x16, 0x28, 0x2f, 0xa1, 0xaa, 0x79, 0x00, 0xda, 0xdc, 0x7c, 0x43, 0xf7, 0x42, 0x3c, 0xa0, 0xef, 0x68, 0xf7, 0xdf, 0xb9, 0x69, 0xfb, 0x8e, 0x01, 0xed, 0x01, 0x42, 0xb5, 0x4e, 0x57, 0xa6, 0x26, 0xb8, 0xd0, 0x7b, 0x56, 0x6d, 0x03, 0xc6, 0x40, 0x8c, 0x8c, 0x2a, 0x55, 0xd7, 0x9c, 0x35, 0x00, 0x94, 0x93, 0xec, 0x03, 0xeb, 0x22, 0xef, 0x77, 0xbb, 0x79, 0x13, 0x3f, 0x15, 0xa1, 0x8f, 0xca, 0xdf, 0xfd, 0xd3, 0xb8, 0xe1, 0xd4, 0xcc, 0x09, 0x3f, 0x3c, 0x2c, 0xdb, 0xd1, 0x49, 0x7f, 0x38, 0x07, 0x83, 0x6d, 0xeb, 0x08, 0x66, 0xe9, 0x06, 0x44, 0x12, 0xac, 0x95, 0x22, 0x90, 0x23, 0x67, 0xd4, 0x08, 0xcc, 0xf4, 0xb7, 0xdc, 0xcc, 0x87, 0xd4, 0xac, 0x69, 0x35, 0x4c, 0xb5, 0x39, 0x36, 0xcd, 0xa4, 0xd2, 0x95, 0xca, 0x0d, 0xc5, 0xda, 0xc2, 0xc5, 0x22, 0x32, 0x28, 0x08, 0xe3, 0xd2, 0x8b, 0x38, 0x30, 0xdc, 0x8c, 0x75, 0x4f, 0x6a, 0xec, 0x7a, 0xac, 0x16, 0x3e, 0xa8, 0xd4, 0x6a, 0x45, 0xe1, 0xa8, 0x4f, 0x2e, 0x80, 0x34, 0xaa, 0x54, 0x1b, 0x02, 0x95, 0x7d, 0x8a, 0x6d, 0xcc, 0x79, 0xca, 0xf2, 0xa4, 0x2e, 0x8d, 0xfb, 0xfe, 0x15, 0x51, 0x10, 0x0e, 0x4d, 0x88, 0xb1, 0xc7, 0xf4, 0x79, 0xdb, 0xf0, 0xb4, 0x56, 0x44, 0x37, 0xca, 0x5a, 0xc1, 0x8c, 0x48, 0xac, 0xae, 0x48, 0x80, 0x83, 0x01, 0x3f, 0xde, 0xd9, 0xd3, 0x2c, 0x51, 0x46, 0xb1, 0x41, 0xb6, 0xc6, 0x91, 0x72, 0xf9, 0x83, 0x55, 0x1b, 0x8c, 0xba, 0xf3, 0x73, 0xe5, 0x2c, 0x74, 0x50, 0x3a, 0xbe, 0xc5, 0x2f, 0xa7, 0xb2, 0x6d, 0x8c, 0x9e, 0x13, 0x77, 0xa3, 0x13, 0xcd, 0x6d, 0x8c, 0x45, 0xe1, 0xfc, 0x0b, 0xb7, 0x69, 0xe9, 0x27, 0xbc, 0x65, 0xc3, 0xfa, 0x9b, 0xd0, 0xef, 0xfe, 0xe8, 0x1f, 0xb3, 0x5e, 0x34, 0xf4, 0x8c, 0xea, 0xfc, 0xd3, 0x81, 0xbf, 0x3d, 0x30, 0xb2, 0xb4, 0x01, 0xe8, 0x43, 0x0f, 0xba, 0x02, 0x23, 0x42, 0x76, 0x82, 0x31, 0x73, 0x91, 0xed, 0x07, 0x46, 0x61, 0x0d, 0x39, 0x83, 0x40, 0xce, 0x7a, 0xd4, 0xdb, 0x80, 0x2c, 0x1f, 0x0d, 0xd1, 0x34, 0xd4, 0x92, 0xe3, 0xd4, 0xf1, 0xc2, 0x01, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x02, 0x01, 0x00, 0x97, 0x6c, 0xda, 0x6e, 0xea, 0x4f, 0xcf, 0xaf, 0xf7, 0x4c, 0xd9, 0xf1, 0x90, 0x00, 0x77, 0xdb, 0xf2, 0x97, 0x76, 0x72, 0xb9, 0xb7, 0x47, 0xd1, 0x9c, 0xdd, 0xcb, 0x4a, 0x33, 0x6e, 0xc9, 0x75, 0x76, 0xe6, 0xe4, 0xa5, 0x31, 0x8c, 0x77, 0x13, 0xb4, 0x29, 0xcd, 0xf5, 0x52, 0x17, 0xef, 0xf3, 0x08, 0x00, 0xe3, 0xbd, 0x2e, 0xbc, 0xd4, 0x52, 0x88, 0xe9, 0x30, 0x75, 0x0b, 0x02, 0xf5, 0xcd, 0x89, 0x0c, 0x6c, 0x57, 0x19, 0x27, 0x3d, 0x1e, 0x85, 0xb4, 0xc1, 0x2f, 0x1d, 0x92, 0x00, 0x5c, 0x76, 0x29, 0x4b, 0xa4, 0xe1, 0x12, 0xb3, 0xc8, 0x09, 0xfe, 0x0e, 0x78, 0x72, 0x61, 0xcb, 0x61, 0x6f, 0x39, 0x91, 0x95, 0x4e, 0xd5, 0x3e, 0xc7, 0x8f, 0xb8, 0xf6, 0x36, 0xfe, 0x9c, 0x93, 0x9a, 0x38, 0x25, 0x7a, 0xf4, 0x4a, 0x12, 0xd4, 0xa0, 0x13, 0xbd, 0xf9, 0x1d, 0x12, 0x3e, 0x21, 0x39, 0xfb, 0x72, 0xe0, 0x05, 0x3d, 0xc3, 0xe5, 0x50, 0xa8, 0x5d, 0x85, 0xa3, 0xea, 0x5f, 0x1c, 0xb2, 0x3f, 0xea, 0x6d, 0x03, 0x91, 0x55, 0xd8, 0x19, 0x0a, 0x21, 0x12, 0x16, 0xd9, 0x12, 0xc4, 0xe6, 0x07, 0x18, 0x5b, 0x26, 0xa4, 0xae, 0xed, 0x2b, 0xb7, 0xa6, 0xed, 0xf8, 0xad, 0xec, 0x77, 0xe6, 0x7f, 0x4f, 0x76, 0x00, 0xc0, 0xfa, 0x15, 0x92, 0xb4, 0x2c, 0x22, 0xc2, 0xeb, 0x6a, 0xad, 0x14, 0x05, 0xb2, 0xe5, 0x8a, 0x9e, 0x85, 0x83, 0xcc, 0x04, 0xf1, 0x56, 0x78, 0x44, 0x5e, 0xde, 0xe0, 0x60, 0x1a, 0x65, 0x79, 0x31, 0x23, 0x05, 0xbb, 0x01, 0xff, 0xdd, 0x2e, 0xb7, 0xb3, 0xaa, 0x74, 0xe0, 0xa5, 0x94, 0xaf, 0x4b, 0xde, 0x58, 0x0f, 0x55, 0xde, 0x33, 0xf6, 0xe3, 0xd6, 0x34, 0x36, 0x57, 0xd6, 0x79, 0x91, 0x2e, 0xbe, 0x3b, 0xd9, 0x4e, 0xb6, 0x9d, 0x21, 0x5c, 0xd3, 0x48, 0x14, 0x7f, 0x4a, 0xc4, 0x60, 0xa9, 0x29, 0xf8, 0x53, 0x7f, 0x88, 0x11, 0x2d, 0xb5, 0xc5, 0x2d, 0x6f, 0xee, 0x85, 0x0b, 0xf7, 0x8d, 0x9a, 0xbe, 0xb0, 0x42, 0xf2, 0x2e, 0x71, 0xaf, 0x19, 0x31, 0x6d, 0xec, 0xcd, 0x6f, 0x2b, 0x23, 0xdf, 0xb4, 0x40, 0xaf, 0x2c, 0x0a, 0xc3, 0x1b, 0x7d, 0x7d, 0x03, 0x1d, 0x4b, 0xf3, 0xb5, 0xe0, 0x85, 0xd8, 0xdf, 0x91, 0x6b, 0x0a, 0x69, 0xf7, 0xf2, 0x69, 0x66, 0x5b, 0xf1, 0xcf, 0x46, 0x7d, 0xe9, 0x70, 0xfa, 0x6d, 0x7e, 0x75, 0x4e, 0xa9, 0x77, 0xe6, 0x8c, 0x02, 0xf7, 0x14, 0x4d, 0xa5, 0x41, 0x8f, 0x3f, 0xc1, 0x62, 0x1e, 0x71, 0x5e, 0x38, 0xb4, 0xd6, 0xe6, 0xe1, 0x4b, 0xc2, 0x2c, 0x30, 0x83, 0x81, 0x6f, 0x49, 0x2e, 0x96, 0xe6, 0xc9, 0x9a, 0xf7, 0x5d, 0x09, 0xa0, 0x55, 0x02, 0xa5, 0x3a, 0x25, 0x23, 0xd0, 0x92, 0xc3, 0xa3, 0xe3, 0x0e, 0x12, 0x2f, 0x4d, 0xef, 0xf3, 0x55, 0x5a, 0xbe, 0xe6, 0x19, 0x86, 0x31, 0xab, 0x75, 0x9a, 0xd3, 0xf0, 0x2c, 0xc5, 0x41, 0x92, 0xd9, 0x1f, 0x5f, 0x11, 0x8c, 0x75, 0x1c, 0x63, 0xd0, 0x02, 0x80, 0x2c, 0x68, 0xcb, 0x93, 0xfb, 0x51, 0x73, 0x49, 0xb4, 0x60, 0xda, 0xe2, 0x26, 0xaf, 0xa9, 0x46, 0x12, 0xb8, 0xec, 0x50, 0xdd, 0x12, 0x06, 0x5f, 0xce, 0x59, 0xe6, 0xf6, 0x1c, 0xe0, 0x54, 0x10, 0xad, 0xf6, 0xcd, 0x98, 0xcc, 0x0f, 0xfb, 0xcb, 0x41, 0x14, 0x9d, 0xed, 0xe4, 0xb4, 0x74, 0x5f, 0x09, 0x60, 0xc7, 0x12, 0xf6, 0x7b, 0x3c, 0x8f, 0xa7, 0x20, 0xbc, 0xe4, 0xb1, 0xef, 0xeb, 0xa4, 0x93, 0xc5, 0x06, 0xca, 0x9a, 0x27, 0x9d, 0x87, 0xf3, 0xde, 0xca, 0xe5, 0xe7, 0xf6, 0x1c, 0x01, 0x65, 0x5b, 0xfb, 0x19, 0x79, 0x6e, 0x08, 0x26, 0xc5, 0xc8, 0x28, 0x0e, 0xb6, 0x3b, 0x07, 0x08, 0xc1, 0x02, 0x82, 0x01, 0x01, 0x00, 0xe8, 0x1c, 0x73, 0xa6, 0xb8, 0xe0, 0x0e, 0x6d, 0x8d, 0x1b, 0xb9, 0x53, 0xed, 0x58, 0x94, 0xe6, 0x1d, 0x60, 0x14, 0x5c, 0x76, 0x43, 0xc4, 0x58, 0x19, 0xc4, 0x24, 0xe8, 0xbc, 0x1b, 0x3b, 0x0b, 0x13, 0x24, 0x45, 0x54, 0x0e, 0xcc, 0x37, 0xf0, 0xe0, 0x63, 0x7d, 0xc3, 0xf7, 0xfb, 0x81, 0x74, 0x81, 0xc4, 0x0f, 0x1a, 0x21, 0x48, 0xaf, 0xce, 0xc1, 0xc4, 0x94, 0x18, 0x06, 0x44, 0x8d, 0xd3, 0xd2, 0x22, 0x2d, 0x2d, 0x3e, 0x5a, 0x31, 0xdc, 0x95, 0x8e, 0xf4, 0x41, 0xfc, 0x58, 0xc9, 0x40, 0x92, 0x17, 0x5f, 0xe3, 0xda, 0xac, 0x9e, 0x3f, 0x1c, 0x2a, 0x6b, 0x58, 0x5f, 0x48, 0x78, 0x20, 0xb1, 0xaf, 0x24, 0x9b, 0x3c, 0x20, 0x8b, 0x93, 0x25, 0x9e, 0xe6, 0x6b, 0xbc, 0x13, 0x42, 0x14, 0x6c, 0x36, 0x31, 0xff, 0x7a, 0xd1, 0xc1, 0x1a, 0x26, 0x14, 0x7f, 0xa9, 0x76, 0xa7, 0x0c, 0xf8, 0xcc, 0xed, 0x07, 0x6a, 0xd2, 0xdf, 0x62, 0xee, 0x0a, 0x7c, 0x84, 0xcb, 0x49, 0x90, 0xb2, 0x03, 0x0d, 0xa2, 0x82, 0x06, 0x77, 0xf1, 0xcd, 0x67, 0xf2, 0x47, 0x21, 0x02, 0x3f, 0x43, 0x21, 0xf0, 0x46, 0x30, 0x62, 0x51, 0x72, 0xb1, 0xe7, 0x48, 0xc6, 0x67, 0x12, 0xcd, 0x9e, 0xd6, 0x15, 0xe5, 0x21, 0xed, 0xfa, 0x8f, 0x30, 0xa6, 0x41, 0xfe, 0xb6, 0xfa, 0x8f, 0x34, 0x14, 0x19, 0xe8, 0x11, 0xf7, 0xa5, 0x77, 0x3e, 0xb7, 0xf9, 0x39, 0x07, 0x8c, 0x67, 0x2a, 0xab, 0x7b, 0x08, 0xf8, 0xb0, 0x06, 0xa8, 0xea, 0x2f, 0x8f, 0xfa, 0xcc, 0xcc, 0x40, 0xce, 0xf3, 0x70, 0x4f, 0x3f, 0x7f, 0xe2, 0x0c, 0xea, 0x76, 0x4a, 0x35, 0x4e, 0x47, 0xad, 0x2b, 0xa7, 0x97, 0x5d, 0x74, 0x43, 0x97, 0x90, 0xd2, 0xfb, 0xd9, 0xf9, 0x96, 0x01, 0x33, 0x05, 0xed, 0x7b, 0x03, 0x05, 0xad, 0xf8, 0x49, 0x03, 0x02, 0x82, 0x01, 0x01, 0x00, 0xd4, 0x40, 0x17, 0x66, 0x10, 0x92, 0x95, 0xc8, 0xec, 0x62, 0xa9, 0x7a, 0xcb, 0x93, 0x8e, 0xe6, 0x53, 0xd4, 0x80, 0x48, 0x27, 0x4b, 0x41, 0xce, 0x61, 0xdf, 0xbf, 0x94, 0xa4, 0x3d, 0x71, 0x03, 0x0b, 0xed, 0x25, 0x71, 0x98, 0xa4, 0xd6, 0xd5, 0x4a, 0x57, 0xf5, 0x6c, 0x1b, 0xda, 0x21, 0x7d, 0x35, 0x45, 0xb3, 0xf3, 0x6a, 0xd9, 0xd3, 0x43, 0xe8, 0x5c, 0x54, 0x1c, 0x83, 0x1b, 0xb4, 0x5f, 0xf2, 0x97, 0x24, 0x2e, 0xdc, 0x40, 0xde, 0x92, 0x23, 0x59, 0x8e, 0xbc, 0xd2, 0xa1, 0xf2, 0xe0, 0x4c, 0xdd, 0x0b, 0xd1, 0xe7, 0xae, 0x65, 0xbc, 0xb5, 0xf5, 0x5b, 0x98, 0xe9, 0xd7, 0xc2, 0xb7, 0x0e, 0x55, 0x71, 0x0e, 0x3c, 0x0a, 0x24, 0x6b, 0xa6, 0xe6, 0x14, 0x61, 0x11, 0xfd, 0x33, 0x42, 0x99, 0x2b, 0x84, 0x77, 0x74, 0x92, 0x91, 0xf5, 0x79, 0x79, 0xcf, 0xad, 0x8e, 0x04, 0xef, 0x80, 0x1e, 0x57, 0xf4, 0x14, 0xf5, 0x35, 0x09, 0x74, 0xb2, 0x13, 0x71, 0x58, 0x6b, 0xea, 0x32, 0x5d, 0xf3, 0xd3, 0x76, 0x48, 0x39, 0x10, 0x23, 0x84, 0x9d, 0xbe, 0x92, 0x77, 0x4a, 0xed, 0x70, 0x3e, 0x1a, 0xa2, 0x6c, 0xb3, 0x81, 0x00, 0xc3, 0xc9, 0xe4, 0x52, 0xc8, 0x24, 0x88, 0x0c, 0x41, 0xad, 0x87, 0x5a, 0xea, 0xa3, 0x7a, 0x85, 0x1c, 0x5e, 0x31, 0x7f, 0xc3, 0x35, 0xc6, 0xfa, 0x10, 0xc8, 0x75, 0x10, 0xc4, 0x96, 0x99, 0xe7, 0xfe, 0x01, 0xb4, 0x74, 0xdb, 0xb4, 0x11, 0xc3, 0xc8, 0x8c, 0xf6, 0xf7, 0x3b, 0x66, 0x50, 0xfc, 0xdb, 0xeb, 0xca, 0x47, 0x85, 0x89, 0xe1, 0x65, 0xd9, 0x62, 0x34, 0x3c, 0x70, 0xd8, 0x2e, 0xb4, 0x2f, 0x65, 0x3c, 0x4a, 0xa6, 0x2a, 0xe7, 0xc7, 0xd8, 0x41, 0x8f, 0x8a, 0x43, 0xbf, 0x42, 0xf2, 0x4d, 0xbc, 0xfc, 0x9e, 0x27, 0x95, 0xfb, 0x75, 0xff, 0xab, 0x02, 0x82, 0x01, 0x00, 0x41, 0x2f, 0x44, 0x57, 0x6d, 0x12, 0x17, 0x5b, 0x32, 0xc6, 0xb7, 0x6c, 0x57, 0x7a, 0x8a, 0x0e, 0x79, 0xef, 0x72, 0xa8, 0x68, 0xda, 0x2d, 0x38, 0xe4, 0xbb, 0x8d, 0xf6, 0x02, 0x65, 0xcf, 0x56, 0x13, 0xe1, 0x1a, 0xcb, 0x39, 0x80, 0xa6, 0xb1, 0x32, 0x03, 0x1e, 0xdd, 0xbb, 0x35, 0xd9, 0xac, 0x43, 0x89, 0x31, 0x08, 0x90, 0x92, 0x5e, 0x35, 0x3d, 0x7b, 0x9c, 0x6f, 0x86, 0xcb, 0x17, 0xdd, 0x85, 0xe4, 0xed, 0x35, 0x08, 0x8e, 0xc1, 0xf4, 0x05, 0xd8, 0x68, 0xc6, 0x63, 0x3c, 0xf7, 0xff, 0xf7, 0x47, 0x33, 0x39, 0xc5, 0x3e, 0xb7, 0x0e, 0x58, 0x35, 0x9d, 0x81, 0xea, 0xf8, 0x6a, 0x2c, 0x1c, 0x5a, 0x68, 0x78, 0x64, 0x11, 0x6b, 0xc1, 0x3e, 0x4e, 0x7a, 0xbd, 0x84, 0xcb, 0x0f, 0xc2, 0xb6, 0x85, 0x1d, 0xd3, 0x76, 0xc5, 0x93, 0x6a, 0x69, 0x89, 0x56, 0x34, 0xdc, 0x4a, 0x9b, 0xbc, 0xff, 0xa8, 0x0d, 0x6e, 0x35, 0x9c, 0x60, 0xa7, 0x23, 0x30, 0xc7, 0x06, 0x64, 0x39, 0x8b, 0x94, 0x89, 0xee, 0xba, 0x7f, 0x60, 0x8d, 0xfa, 0xb6, 0x97, 0x76, 0xdc, 0x51, 0x4a, 0x3c, 0xeb, 0x3a, 0x14, 0x2c, 0x20, 0x60, 0x69, 0x4a, 0x86, 0xfe, 0x8c, 0x21, 0x84, 0x49, 0x54, 0xb3, 0x20, 0xe1, 0x01, 0x7f, 0x58, 0xdf, 0x7f, 0xb5, 0x21, 0x51, 0x8c, 0x47, 0x9f, 0x91, 0xeb, 0x97, 0x3e, 0xf2, 0x54, 0xcf, 0x16, 0x46, 0xf9, 0xd9, 0xb6, 0xe7, 0x64, 0xc9, 0xd0, 0x54, 0xea, 0x2f, 0xa1, 0xcf, 0xa5, 0x7f, 0x28, 0x8d, 0x84, 0xec, 0xd5, 0x39, 0x03, 0x76, 0x5b, 0x2d, 0x8e, 0x43, 0xf2, 0x01, 0x24, 0xc9, 0x6f, 0xc0, 0xf5, 0x69, 0x6f, 0x7d, 0xb5, 0x85, 0xd2, 0x5f, 0x7f, 0x78, 0x40, 0x07, 0x7f, 0x09, 0x15, 0xb5, 0x1f, 0x28, 0x65, 0x10, 0xe4, 0x19, 0xa8, 0xc6, 0x9e, 0x8d, 0xdc, 0xcb, 0x02, 0x82, 0x01, 0x00, 0x13, 0x01, 0xee, 0x56, 0x80, 0x93, 0x70, 0x00, 0x7f, 0x52, 0xd2, 0x94, 0xa1, 0x98, 0x84, 0x4a, 0x92, 0x25, 0x4c, 0x9b, 0xa9, 0x91, 0x2e, 0xc2, 0x79, 0xb7, 0x5c, 0xe3, 0xc5, 0xd5, 0x8e, 0xc2, 0x54, 0x16, 0x17, 0xad, 0x55, 0x9b, 0x25, 0x76, 0x12, 0x63, 0x50, 0x22, 0x2f, 0x58, 0x58, 0x79, 0x6b, 0x04, 0xe3, 0xf9, 0x9f, 0x8f, 0x04, 0x41, 0x67, 0x94, 0xa5, 0x1f, 0xac, 0x8a, 0x15, 0x9c, 0x26, 0x10, 0x6c, 0xf8, 0x19, 0x57, 0x61, 0xd7, 0x3a, 0x7d, 0x31, 0xb0, 0x2d, 0x38, 0xbd, 0x94, 0x62, 0xad, 0xc4, 0xfa, 0x36, 0x42, 0x42, 0xf0, 0x24, 0x67, 0x65, 0x9d, 0x8b, 0x0b, 0x7c, 0x6f, 0x82, 0x44, 0x1a, 0x8c, 0xc8, 0xc9, 0xab, 0xbb, 0x4c, 0x45, 0xfc, 0x7b, 0x38, 0xee, 0x30, 0xe1, 0xfc, 0xef, 0x8d, 0xbc, 0x58, 0xdf, 0x2b, 0x5d, 0x0d, 0x54, 0xe0, 0x49, 0x4d, 0x97, 0x99, 0x8f, 0x22, 0xa8, 0x83, 0xbe, 0x40, 0xbb, 0x50, 0x2e, 0x78, 0x28, 0x0f, 0x95, 0x78, 0x8c, 0x8f, 0x98, 0x24, 0x56, 0xc2, 0x97, 0xf3, 0x2c, 0x43, 0xd2, 0x03, 0x82, 0x66, 0x81, 0x72, 0x5f, 0x53, 0x16, 0xec, 0xb1, 0xb1, 0x04, 0x5e, 0x40, 0x20, 0x48, 0x7b, 0x3f, 0x02, 0x97, 0x6a, 0xeb, 0x96, 0x12, 0x21, 0x35, 0xfe, 0x1f, 0x47, 0xc0, 0x95, 0xea, 0xc5, 0x8a, 0x08, 0x84, 0x4f, 0x5e, 0x63, 0x94, 0x60, 0x0f, 0x71, 0x5b, 0x7f, 0x4a, 0xec, 0x4f, 0x60, 0xc6, 0xba, 0x4a, 0x24, 0xf1, 0x20, 0x8b, 0xa7, 0x2e, 0x3a, 0xce, 0x8d, 0xe0, 0x27, 0x1d, 0xb5, 0x8e, 0xb4, 0x21, 0xc5, 0xe2, 0xa6, 0x16, 0x0a, 0x51, 0x83, 0x55, 0x88, 0xd1, 0x30, 0x11, 0x63, 0xd5, 0xd7, 0x8d, 0xae, 0x16, 0x12, 0x82, 0xc4, 0x85, 0x00, 0x4e, 0x27, 0x83, 0xa5, 0x7c, 0x90, 0x2e, 0xe5, 0xa2, 0xa3, 0xd3, 0x4c, 0x63, 0x02, 0x82, 0x01, 0x01, 0x00, 0x86, 0x08, 0x98, 0x98, 0xa5, 0x00, 0x05, 0x39, 0x77, 0xd9, 0x66, 0xb3, 0xcf, 0xca, 0xa0, 0x71, 0xb3, 0x50, 0xce, 0x3d, 0xb1, 0x93, 0x95, 0x35, 0xc4, 0xd4, 0x2e, 0x90, 0xdf, 0x0f, 0xfc, 0x60, 0xc1, 0x94, 0x68, 0x61, 0x43, 0xca, 0x9a, 0x23, 0x4a, 0x1e, 0x45, 0x72, 0x99, 0xb5, 0x1e, 0x61, 0x8d, 0x77, 0x0f, 0xa0, 0xbb, 0xd7, 0x77, 0xb4, 0x2a, 0x15, 0x11, 0x88, 0x2d, 0xb3, 0x56, 0x61, 0x5e, 0x6a, 0xed, 0xa4, 0x46, 0x4a, 0x3f, 0x50, 0x11, 0xd6, 0xba, 0xb6, 0xd7, 0x95, 0x65, 0x53, 0xc3, 0xa1, 0x8f, 0xe0, 0xa3, 0xf5, 0x1c, 0xfd, 0xaf, 0x6e, 0x43, 0xd7, 0x17, 0xa7, 0xd3, 0x81, 0x1b, 0xa4, 0xdf, 0xe0, 0x97, 0x8a, 0x46, 0x03, 0xd3, 0x46, 0x0e, 0x83, 0x48, 0x4e, 0xd2, 0x02, 0xcb, 0xc0, 0xad, 0x79, 0x95, 0x8c, 0x96, 0xba, 0x40, 0x34, 0x11, 0x71, 0x5e, 0xe9, 0x11, 0xf9, 0xc5, 0x4a, 0x5e, 0x91, 0x9d, 0xf5, 0x92, 0x4f, 0xeb, 0xc6, 0x70, 0x02, 0x2d, 0x3d, 0x04, 0xaa, 0xe9, 0x3a, 0x8e, 0xd5, 0xa8, 0xad, 0xf7, 0xce, 0x0d, 0x16, 0xb2, 0xec, 0x0a, 0x9c, 0xf5, 0x94, 0x39, 0xb9, 0x8a, 0xfc, 0x1e, 0xf9, 0xcc, 0xf2, 0x5f, 0x21, 0x31, 0x74, 0x72, 0x6b, 0x64, 0xae, 0x35, 0x61, 0x8d, 0x0d, 0xcb, 0xe7, 0xda, 0x39, 0xca, 0xf3, 0x21, 0x66, 0x0b, 0x95, 0xd7, 0x0a, 0x7c, 0xca, 0xa1, 0xa9, 0x5a, 0xe8, 0xac, 0xe0, 0x71, 0x54, 0xaf, 0x28, 0xcf, 0xd5, 0x70, 0x89, 0xe0, 0xf3, 0x9e, 0x43, 0x6c, 0x8d, 0x7b, 0x99, 0x01, 0x68, 0x4d, 0xa1, 0x45, 0x46, 0x0c, 0x43, 0xbc, 0xcc, 0x2c, 0xdd, 0xc5, 0x46, 0xc8, 0x4e, 0x0e, 0xbe, 0xed, 0xb9, 0x26, 0xab, 0x2e, 0xdb, 0xeb, 0x8f, 0xff, 0xdb, 0xb0, 0xc6, 0x55, 0xaf, 0xf8, 0x2a, 0x91, 0x9d, 0x50, 0x44, 0x21, 0x17, }; static unsigned char test7680[] = { 0x30, 0x82, 0x11, 0x09, 0x02, 0x01, 0x00, 0x02, 0x82, 0x03, 0xc1, 0x00, 0xe3, 0x27, 0x46, 0x99, 0xb5, 0x17, 0xab, 0xfa, 0x65, 0x05, 0x7a, 0x06, 0x81, 0x14, 0xce, 0x43, 0x21, 0x49, 0x0f, 0x08, 0xf1, 0x70, 0xb4, 0xc1, 0x10, 0xd1, 0x87, 0xf8, 0x29, 0x91, 0x36, 0x66, 0x2d, 0xbe, 0x7b, 0x1d, 0xa2, 0x0b, 0x20, 0x38, 0xd9, 0x8e, 0x78, 0x27, 0xcf, 0xb5, 0x45, 0x58, 0x3d, 0xf4, 0xda, 0xf0, 0xdc, 0x21, 0x17, 0x52, 0xcd, 0x68, 0xe2, 0x81, 0xac, 0x88, 0x61, 0x10, 0xbc, 0xb0, 0x7f, 0xe4, 0xf3, 0x78, 0xb7, 0x28, 0x6c, 0x5f, 0x5c, 0xc2, 0x8d, 0x3d, 0xb0, 0x87, 0x41, 0x15, 0x2e, 0x09, 0x5f, 0xea, 0x06, 0x7f, 0xe9, 0x35, 0x18, 0x90, 0x50, 0xad, 0xf6, 0xb9, 0xfd, 0x33, 0x02, 0x1a, 0x99, 0x9e, 0xa5, 0x7d, 0x2c, 0x3b, 0x24, 0xe7, 0x31, 0x35, 0x73, 0x9a, 0xb0, 0xfe, 0x03, 0xfc, 0xc6, 0x98, 0x78, 0xd9, 0x66, 0x95, 0xa5, 0x12, 0xbc, 0x1e, 0x82, 0xbc, 0xf1, 0xc5, 0x31, 0xcd, 0xa6, 0xb1, 0x0c, 0x02, 0xbf, 0x7f, 0xb7, 0xaf, 0x5f, 0xd6, 0xed, 0xf7, 0xc1, 0x59, 0x86, 0x3a, 0x35, 0x95, 0x54, 0x21, 0x8d, 0x6a, 0xb3, 0xd1, 0x2b, 0x71, 0xf5, 0xf1, 0x66, 0x00, 0xb1, 0x88, 0xee, 0x3b, 0xa4, 0x41, 0x52, 0x1a, 0xf5, 0x0e, 0x32, 0xb6, 0xbf, 0x52, 0xab, 0x51, 0x55, 0x91, 0x32, 0x4f, 0xaf, 0x91, 0xac, 0xf7, 0xff, 0x8e, 0x3b, 0x2b, 0x61, 0xe9, 0x6d, 0x1d, 0x68, 0x80, 0x90, 0x79, 0x34, 0x96, 0xca, 0x49, 0x43, 0x7c, 0x89, 0x4e, 0x5e, 0x31, 0xb5, 0xce, 0x01, 0x9b, 0x09, 0xaf, 0x92, 0x06, 0x24, 0xe7, 0x22, 0x35, 0xcc, 0xa2, 0x0b, 0xfb, 0x5b, 0x87, 0x65, 0x71, 0xff, 0x64, 0x3e, 0xf9, 0xe8, 0x33, 0xa0, 0xc3, 0x4e, 0xb2, 0x41, 0x98, 0x54, 0xeb, 0x13, 0x99, 0xfb, 0x32, 0x78, 0x7e, 0xda, 0x4f, 0xd3, 0x46, 0x6a, 0xb5, 0x78, 0x81, 0x3f, 0x04, 0x13, 0x5f, 0x67, 0xaf, 0x88, 0xa5, 0x9e, 0x0d, 0xc5, 0xf3, 0xe7, 0x4c, 0x51, 0xf5, 0x51, 0x4a, 0xa4, 0x58, 0x64, 0xd9, 0xa2, 0x32, 0x54, 0x36, 0xce, 0x38, 0xd8, 0xc2, 0x0e, 0x0d, 0x60, 0x8e, 0x32, 0x7f, 0x90, 0x8a, 0xbc, 0x88, 0xbe, 0x6a, 0xc0, 0x47, 0x0f, 0x02, 0x41, 0xff, 0x3b, 0x7e, 0xc5, 0xa6, 0x33, 0x1d, 0x19, 0xd1, 0xd5, 0x67, 0x6c, 0xbf, 0x16, 0xb0, 0x7e, 0x80, 0x10, 0xbf, 0x7f, 0xdd, 0xd0, 0xf4, 0xc3, 0x94, 0x2c, 0x9a, 0x2c, 0xda, 0x69, 0x4e, 0xd6, 0x7b, 0x40, 0x4d, 0x2a, 0x27, 0xcb, 0x5a, 0xe5, 0x2d, 0x3f, 0x7d, 0x51, 0x9d, 0x9f, 0x70, 0xde, 0x50, 0xb1, 0xd3, 0xd2, 0x38, 0x4d, 0x1c, 0xca, 0xc2, 0x1e, 0x80, 0xd0, 0x36, 0x82, 0x04, 0xe6, 0x17, 0x79, 0x9f, 0x2e, 0xc9, 0xed, 0x2b, 0xd5, 0x1b, 0xfa, 0x7d, 0x1a, 0x80, 0xb5, 0x0e, 0x2f, 0x05, 0xbe, 0x4a, 0x1b, 0xfe, 0x0a, 0xad, 0x01, 0xde, 0x91, 0xc8, 0xf9, 0x81, 0xbe, 0xc7, 0xaf, 0xe7, 0x87, 0xed, 0x9d, 0xb8, 0x6c, 0xad, 0x65, 0xed, 0x5e, 0xd3, 0x67, 0x8c, 0x62, 0x3a, 0xe7, 0xfd, 0x67, 0xe0, 0xbb, 0x57, 0xaf, 0x56, 0xeb, 0x4a, 0x58, 0x6e, 0xad, 0xf2, 0xbe, 0xc3, 0x70, 0x29, 0xf8, 0xeb, 0x68, 0x45, 0xa0, 0xbd, 0xcd, 0xa5, 0xb4, 0xd9, 0x01, 0xb7, 0x44, 0xeb, 0x97, 0xf3, 0x0c, 0x56, 0xe4, 0x26, 0xd0, 0xa5, 0xb1, 0xa3, 0x49, 0x6e, 0x88, 0xf2, 0x22, 0xe2, 0x7b, 0x58, 0x3a, 0xd9, 0x52, 0xa4, 0xb1, 0x4c, 0x5c, 0x7c, 0xf0, 0x88, 0x7b, 0x9f, 0x06, 0xe9, 0x32, 0x4e, 0xf2, 0x64, 0x83, 0x8b, 0xa2, 0xea, 0x1d, 0x25, 0xf1, 0x8d, 0x16, 0x8b, 0xe0, 0xab, 0xd2, 0xe9, 0xe4, 0x6b, 0x7d, 0x76, 0x98, 0x22, 0x53, 0x31, 0x6b, 0xcc, 0xf1, 0xe5, 0x1d, 0xd7, 0xa5, 0xb0, 0xea, 0x6b, 0x38, 0x14, 0x0c, 0x06, 0x10, 0x27, 0xd8, 0x33, 0xf3, 0x9a, 0xae, 0x94, 0xdd, 0x0b, 0xb4, 0x6d, 0xe5, 0x91, 0xdd, 0xf1, 0x0f, 0x27, 0xa4, 0x94, 0x55, 0xf0, 0xde, 0x07, 0x29, 0xe6, 0x3f, 0x26, 0x19, 0xa1, 0xdd, 0xd1, 0x06, 0x99, 0xda, 0x54, 0x23, 0x3c, 0xf5, 0x5c, 0x2e, 0x96, 0xa9, 0x21, 0x23, 0x25, 0x2e, 0x6f, 0xf1, 0xf9, 0x11, 0x54, 0xe5, 0x7b, 0xb9, 0x1f, 0x11, 0xe2, 0x9e, 0x6b, 0x61, 0x8b, 0xa3, 0x8b, 0xc1, 0x20, 0x9b, 0xfb, 0x51, 0xef, 0xbb, 0xb9, 0xf6, 0xaf, 0x66, 0xb3, 0x2c, 0x25, 0xef, 0x76, 0xcb, 0xbf, 0x7a, 0x93, 0x2f, 0xe1, 0x17, 0x56, 0xc1, 0x00, 0x33, 0xb5, 0xd9, 0x91, 0x05, 0x31, 0xcc, 0x72, 0xcd, 0x4a, 0x93, 0x9a, 0xe3, 0x21, 0x42, 0x9e, 0xb8, 0x4e, 0x6c, 0x27, 0x93, 0xf0, 0x7f, 0x22, 0xdb, 0xe5, 0xb3, 0xa3, 0xf7, 0xe7, 0x80, 0xbb, 0x91, 0xca, 0xf7, 0xe8, 0x52, 0xb8, 0x11, 0x64, 0x66, 0x25, 0x94, 0xf8, 0x6f, 0x0b, 0x3b, 0xb7, 0xff, 0x80, 0x9e, 0x36, 0xe9, 0x88, 0x2e, 0xab, 0x05, 0xbf, 0x99, 0x9f, 0x2b, 0x4f, 0xc6, 0xb1, 0x13, 0x5b, 0x06, 0xff, 0x0a, 0x7b, 0xbc, 0x7f, 0x07, 0xa0, 0x35, 0xc2, 0x2d, 0x44, 0x3e, 0xad, 0x44, 0xcb, 0x47, 0x18, 0x26, 0x71, 0x7b, 0x17, 0xc9, 0x6d, 0xb5, 0x4b, 0xcf, 0xdf, 0x14, 0x2c, 0x6c, 0xdf, 0x21, 0xce, 0x93, 0x49, 0x34, 0x69, 0x49, 0xfd, 0x3e, 0x71, 0x5b, 0xfa, 0x07, 0xc5, 0x7e, 0x5e, 0x54, 0x1a, 0x3c, 0xa6, 0x29, 0xb5, 0xbf, 0x0d, 0xf1, 0xc6, 0xa4, 0x61, 0xd6, 0x17, 0x1d, 0xf0, 0xa2, 0x78, 0x8f, 0xbc, 0x7e, 0x0c, 0xb4, 0xf0, 0x1e, 0x05, 0xea, 0xb5, 0xad, 0x68, 0x95, 0x0b, 0x27, 0xb4, 0x29, 0x7c, 0x70, 0x2a, 0x9a, 0x0a, 0x39, 0xd4, 0x76, 0xb7, 0x72, 0x30, 0x5e, 0xae, 0x9c, 0x4a, 0x55, 0xc7, 0x46, 0xd7, 0x5f, 0xbe, 0x10, 0x61, 0x25, 0x18, 0x7a, 0x9f, 0xd3, 0x05, 0x3d, 0x6f, 0x9a, 0x1e, 0xec, 0x2b, 0x03, 0xe0, 0x49, 0x6a, 0x9c, 0xd6, 0xdb, 0xc2, 0xa1, 0xe1, 0x0a, 0xbb, 0x31, 0x42, 0xc8, 0x43, 0x4e, 0x7c, 0xa9, 0x7c, 0x60, 0xea, 0xbe, 0xf1, 0x8b, 0xe8, 0xb2, 0x90, 0x83, 0x14, 0x21, 0xe4, 0xb3, 0x0d, 0x7c, 0x63, 0x3c, 0x98, 0x55, 0xc6, 0x44, 0xa6, 0xa8, 0x1e, 0x42, 0xb7, 0x89, 0xa8, 0xbd, 0xb8, 0x34, 0x3d, 0x09, 0x80, 0x99, 0x73, 0x9f, 0xaf, 0x17, 0x56, 0xf2, 0x73, 0x3e, 0x1e, 0x6e, 0xe9, 0x18, 0xa0, 0x5b, 0x69, 0xce, 0xfd, 0x3d, 0x77, 0x81, 0x95, 0x3b, 0xf1, 0xde, 0x26, 0xe9, 0x27, 0xef, 0x92, 0x2a, 0x97, 0xdc, 0x95, 0xa5, 0xa3, 0xb0, 0xfb, 0x96, 0x89, 0x4f, 0xe6, 0xc1, 0x42, 0x0b, 0xfd, 0xb4, 0x6d, 0x0a, 0x9f, 0x9b, 0x31, 0xd8, 0x21, 0x38, 0x8a, 0xee, 0xb6, 0x5c, 0x12, 0xa8, 0xb4, 0x07, 0x79, 0x41, 0xa7, 0x7f, 0x13, 0x74, 0xad, 0x0b, 0xee, 0x28, 0x52, 0xac, 0x2f, 0x4d, 0x30, 0x1c, 0xc5, 0xa6, 0xa5, 0x61, 0x42, 0xbd, 0xe1, 0x4f, 0xd3, 0xec, 0x66, 0xf2, 0x63, 0xf4, 0x93, 0xdb, 0x35, 0x2d, 0x3b, 0x71, 0x25, 0x09, 0xde, 0xda, 0x46, 0xda, 0xe2, 0xa7, 0xa3, 0xdf, 0xcd, 0xbf, 0x58, 0x05, 0x25, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x03, 0xc0, 0x5f, 0xd5, 0x15, 0x1b, 0x09, 0xe4, 0xa7, 0xc0, 0xa6, 0xd8, 0x0d, 0xa8, 0x2a, 0xd3, 0x1d, 0x46, 0x03, 0x07, 0xf0, 0x98, 0xe4, 0x4b, 0x99, 0x66, 0x8e, 0x72, 0xe7, 0xbb, 0x51, 0xc6, 0x1a, 0xbe, 0x36, 0xf4, 0x52, 0xba, 0xa8, 0xbf, 0xaa, 0xe3, 0x71, 0x1d, 0x83, 0x21, 0xc0, 0xa6, 0x88, 0x4f, 0xf7, 0x2b, 0x93, 0x26, 0xe4, 0xa7, 0xed, 0x50, 0x18, 0xaa, 0xf4, 0x4c, 0xa2, 0xfe, 0x92, 0x7c, 0xde, 0x2e, 0x54, 0x76, 0xc2, 0x25, 0x1e, 0x98, 0xa6, 0x48, 0x01, 0x39, 0x6f, 0x1f, 0x24, 0x97, 0x9b, 0x64, 0x95, 0x1c, 0x8d, 0x63, 0x8d, 0x44, 0x6f, 0x9d, 0xdf, 0xf4, 0x1a, 0xa5, 0x9a, 0x1e, 0xd3, 0x6c, 0xae, 0xa9, 0x8c, 0x3f, 0xfb, 0x2f, 0x78, 0xf6, 0xa6, 0xd6, 0x06, 0xd3, 0xb7, 0x26, 0xff, 0x1e, 0xdb, 0x8d, 0xcc, 0x37, 0x4d, 0x5c, 0xe2, 0xc3, 0xa5, 0x75, 0xe6, 0xf9, 0xb4, 0x4c, 0x84, 0x6f, 0x9e, 0x58, 0x55, 0xc8, 0x01, 0xfa, 0x32, 0xd2, 0x6e, 0x2b, 0x45, 0xf2, 0xc6, 0x48, 0xad, 0x40, 0xd8, 0xb9, 0x3c, 0x1b, 0xf8, 0xf7, 0x82, 0xd3, 0x0e, 0x73, 0xe3, 0xb1, 0x5b, 0x82, 0x71, 0x77, 0x3f, 0x6f, 0x36, 0x9a, 0xe0, 0xec, 0x51, 0xf8, 0x5f, 0x84, 0x92, 0xee, 0xb8, 0x7e, 0xe7, 0x1a, 0x14, 0x50, 0x82, 0x7a, 0x4d, 0xe6, 0xd6, 0xa3, 0x76, 0x24, 0x8a, 0x5f, 0xfe, 0x19, 0xdd, 0xd7, 0xf7, 0x5b, 0xae, 0x18, 0x04, 0x90, 0xcd, 0x5c, 0xe5, 0x64, 0xe8, 0x04, 0xb1, 0x06, 0xa5, 0xdd, 0xf8, 0x9d, 0x71, 0x13, 0xaa, 0x36, 0x7f, 0x61, 0x27, 0xf4, 0xac, 0x95, 0x7d, 0x1a, 0x99, 0x7d, 0xe0, 0xd5, 0x9c, 0x5a, 0xad, 0x9a, 0xff, 0x54, 0xb0, 0xb1, 0x55, 0x45, 0x2d, 0x19, 0x58, 0x52, 0x28, 0xdd, 0xe0, 0xb5, 0x65, 0x52, 0x97, 0x45, 0xf0, 0x2b, 0x98, 0x1f, 0x61, 0x6c, 0x9d, 0xaa, 0x59, 0x85, 0xf9, 0x97, 0x7b, 0xbd, 0xeb, 0x95, 0x81, 0xfb, 0x29, 0x8c, 0xf0, 0x52, 0xdf, 0xed, 0xee, 0xb2, 0x00, 0x32, 0x35, 0x14, 0xa8, 0xa4, 0xca, 0x91, 0xff, 0x18, 0xb7, 0x96, 0xfb, 0x32, 0x62, 0xa9, 0xa0, 0xd0, 0x77, 0x43, 0xf5, 0x99, 0xd1, 0xee, 0xe8, 0xad, 0x1a, 0x2c, 0xd4, 0xeb, 0xe1, 0xf5, 0x01, 0x41, 0x78, 0xc0, 0x27, 0x19, 0x50, 0x2e, 0xba, 0x22, 0xd1, 0xeb, 0xb3, 0xa5, 0x27, 0x0b, 0xec, 0xf9, 0x26, 0x7e, 0x1f, 0xe7, 0x17, 0x9f, 0x39, 0xa8, 0x72, 0x22, 0x63, 0x79, 0x6a, 0x9c, 0x89, 0x55, 0x9a, 0xb4, 0x61, 0x41, 0xbc, 0xaa, 0x14, 0x37, 0x29, 0x03, 0xc0, 0x52, 0x4e, 0x31, 0x44, 0x8f, 0x2e, 0x17, 0x81, 0x88, 0xf4, 0xce, 0xda, 0x41, 0xb8, 0xd5, 0x14, 0x91, 0x8c, 0xca, 0xd2, 0x0d, 0x99, 0x06, 0x09, 0xc2, 0xb7, 0xe8, 0xae, 0xfa, 0x01, 0xea, 0x99, 0x62, 0x68, 0xb6, 0xdf, 0xc8, 0x27, 0xae, 0xbf, 0xb0, 0x9b, 0x5b, 0x1a, 0xa2, 0xe2, 0x5a, 0x7a, 0xe5, 0x4b, 0x92, 0x1f, 0xff, 0x73, 0xae, 0x16, 0x40, 0x78, 0x42, 0x28, 0xbb, 0x13, 0x5e, 0xbc, 0x71, 0x7a, 0x78, 0x3e, 0xd8, 0x1b, 0xc2, 0x2c, 0xd6, 0xdc, 0xfa, 0x39, 0x72, 0xf8, 0xa2, 0x2c, 0x8b, 0x1c, 0x5d, 0xab, 0xb8, 0x07, 0xc7, 0xae, 0x29, 0x93, 0x68, 0xbf, 0x61, 0xe9, 0xa4, 0x37, 0x83, 0x7d, 0x13, 0xc7, 0x18, 0xf0, 0x7d, 0xa4, 0x20, 0x47, 0x14, 0x68, 0x95, 0x46, 0x56, 0x6d, 0xd5, 0x7b, 0xe1, 0x51, 0x8f, 0x96, 0xc1, 0x7b, 0x35, 0x09, 0x7a, 0x89, 0x0e, 0xdf, 0x12, 0xd5, 0xe1, 0x9c, 0x2a, 0x94, 0x95, 0x43, 0x93, 0x48, 0xa6, 0x23, 0xe6, 0xd8, 0xf2, 0xb8, 0x0e, 0xba, 0x6d, 0x61, 0x03, 0xaf, 0x40, 0x63, 0x2b, 0x2f, 0xee, 0x61, 0x4c, 0xc4, 0x70, 0x3d, 0x78, 0xc1, 0x4f, 0x8e, 0x0b, 0x9b, 0x06, 0x35, 0x6d, 0x6d, 0x83, 0x37, 0xbb, 0x39, 0x7d, 0x7f, 0x33, 0x93, 0xc4, 0xeb, 0x8e, 0xfc, 0xda, 0xf0, 0x54, 0xfe, 0x1d, 0xc4, 0xd3, 0x83, 0x99, 0xdf, 0x65, 0xee, 0x00, 0x7d, 0x86, 0x27, 0xd4, 0x3a, 0x6b, 0xe6, 0x82, 0x8e, 0x58, 0x2d, 0x03, 0x38, 0xef, 0x6c, 0x82, 0x87, 0x18, 0x3b, 0x47, 0xe7, 0xbc, 0xe1, 0x58, 0x70, 0x4d, 0x46, 0x96, 0x34, 0x60, 0x96, 0x15, 0x09, 0x3c, 0x84, 0x40, 0xaf, 0x80, 0x32, 0x75, 0xc7, 0x23, 0x6c, 0xfb, 0x1d, 0x57, 0x73, 0x19, 0x09, 0xe8, 0x1a, 0x4c, 0x02, 0x5c, 0x7e, 0x4e, 0xbe, 0x75, 0xf8, 0x73, 0xff, 0x2d, 0x54, 0x19, 0x55, 0xf5, 0xf4, 0x1b, 0xc9, 0xbc, 0xc2, 0x19, 0xcb, 0xb7, 0x4e, 0x6a, 0x0d, 0xff, 0xca, 0x7d, 0xd0, 0x88, 0x91, 0x8b, 0x9b, 0x21, 0xa4, 0xa2, 0x43, 0x0d, 0xbc, 0x9e, 0x73, 0x7d, 0x54, 0x7d, 0x95, 0xcc, 0x63, 0x5e, 0xc1, 0xb8, 0xe6, 0x27, 0xff, 0x20, 0x07, 0xe8, 0x6e, 0x7e, 0xf2, 0x0f, 0x5a, 0x09, 0xef, 0xe5, 0x4d, 0x80, 0x39, 0x95, 0xd5, 0xf4, 0xee, 0x3b, 0xca, 0x7c, 0x73, 0xf8, 0x39, 0x5a, 0xc1, 0x1d, 0x7d, 0x94, 0x72, 0x32, 0xad, 0x58, 0xe2, 0xfc, 0x71, 0x6e, 0x66, 0xaa, 0xa1, 0x59, 0xd6, 0xac, 0xab, 0xbe, 0x8c, 0x53, 0x99, 0xcd, 0xe8, 0x2d, 0xb5, 0xb3, 0x46, 0x58, 0x2e, 0x16, 0xd7, 0x4d, 0x8b, 0x7d, 0x4a, 0xb1, 0x4c, 0x85, 0x91, 0x1b, 0x57, 0x54, 0xf8, 0x14, 0x59, 0xdb, 0xc4, 0x2c, 0x9c, 0x08, 0x6d, 0x3d, 0xd7, 0xf6, 0xa6, 0xe6, 0xb3, 0x2a, 0xe7, 0x29, 0x1c, 0xab, 0xb4, 0xed, 0x13, 0x19, 0xf8, 0xb6, 0x60, 0x92, 0x44, 0x53, 0xd4, 0xa9, 0x7e, 0xba, 0x21, 0xa2, 0xdc, 0x6e, 0xa5, 0x5e, 0x53, 0x59, 0x3c, 0x52, 0x61, 0x7b, 0x5f, 0x19, 0xad, 0xc8, 0x6d, 0x68, 0x8d, 0x7a, 0xc9, 0xd6, 0xef, 0xeb, 0x67, 0x4f, 0xca, 0xe7, 0xf6, 0x29, 0x36, 0x97, 0xfb, 0x3e, 0x37, 0x95, 0x85, 0x71, 0x70, 0xf6, 0x63, 0x86, 0x2a, 0x29, 0xd7, 0x9a, 0x96, 0x76, 0xa7, 0x47, 0x98, 0x4e, 0x06, 0x31, 0xaf, 0xf3, 0x4f, 0x2a, 0x65, 0x90, 0x6a, 0x4b, 0x8e, 0x43, 0x79, 0xe2, 0xdd, 0xce, 0x08, 0x1c, 0x01, 0xec, 0x38, 0x41, 0xdd, 0x19, 0xd8, 0xf3, 0x36, 0x03, 0x35, 0x03, 0xaf, 0x1c, 0x45, 0x3c, 0xac, 0x13, 0xaa, 0x36, 0x16, 0x48, 0x77, 0xb3, 0xbe, 0xa3, 0xb3, 0x9d, 0x7f, 0x20, 0xca, 0x74, 0x65, 0xac, 0x93, 0xa7, 0x54, 0xad, 0xc8, 0x68, 0x0e, 0xf8, 0x44, 0x1f, 0xad, 0x2c, 0xb7, 0x9a, 0x9a, 0x07, 0xe5, 0xcd, 0x87, 0xe0, 0x14, 0xb5, 0xaf, 0xd3, 0xd7, 0xcf, 0x13, 0x9f, 0x3b, 0xbd, 0xfe, 0x29, 0x0b, 0x72, 0xf5, 0x4c, 0x54, 0x94, 0xc7, 0x66, 0xec, 0xa8, 0x41, 0x96, 0x3d, 0x17, 0xed, 0x19, 0xc0, 0x82, 0x3e, 0x5f, 0x9a, 0x91, 0xfe, 0xd1, 0x2f, 0xb8, 0x94, 0xaa, 0x58, 0x68, 0x95, 0x31, 0x87, 0x57, 0x9a, 0x75, 0x94, 0x4d, 0x38, 0x7d, 0x56, 0x82, 0x81, 0x9c, 0xb9, 0x34, 0x2b, 0xe7, 0x40, 0xd9, 0x3c, 0x77, 0x5b, 0x95, 0x51, 0x06, 0x11, 0x41, 0xe3, 0x8b, 0xb7, 0x32, 0xeb, 0xe1, 0x05, 0x1b, 0x10, 0xa8, 0x0e, 0xa1, 0x02, 0x82, 0x01, 0xe1, 0x00, 0xfa, 0x38, 0x34, 0xfe, 0x55, 0x87, 0x71, 0x62, 0x47, 0x00, 0x33, 0x64, 0x67, 0x70, 0x79, 0x76, 0xdf, 0xfe, 0xc3, 0x28, 0x38, 0xdf, 0x90, 0xd4, 0xc0, 0xee, 0x98, 0xbf, 0x9d, 0x9b, 0x85, 0xd8, 0x61, 0x65, 0xa5, 0x70, 0xf5, 0xd2, 0x2c, 0xbf, 0x2f, 0xb5, 0x55, 0x79, 0x92, 0x13, 0xba, 0x4d, 0x3c, 0x39, 0xbf, 0xd5, 0x31, 0x13, 0x7a, 0x31, 0xf4, 0x8b, 0xce, 0xf8, 0xd0, 0xd3, 0x9b, 0xe2, 0xee, 0x31, 0xdb, 0xba, 0xcc, 0x1a, 0xba, 0x1c, 0x8d, 0xee, 0xea, 0xcb, 0xd3, 0x5a, 0xad, 0x87, 0xd6, 0xf9, 0x15, 0x2f, 0x6e, 0x00, 0x06, 0x74, 0x25, 0x8d, 0xff, 0xc8, 0xa6, 0x11, 0x1c, 0xe8, 0x16, 0x1a, 0xde, 0x53, 0x05, 0xb9, 0x53, 0x55, 0x28, 0x83, 0x3d, 0xbe, 0x61, 0x0c, 0xc4, 0x98, 0x7d, 0xf6, 0xec, 0x36, 0xc3, 0xe5, 0xe7, 0x1d, 0x14, 0x64, 0xcb, 0x0d, 0x62, 0x5d, 0x7a, 0xcd, 0x88, 0xfc, 0x66, 0x4e, 0xf9, 0x36, 0x47, 0x95, 0x18, 0x3a, 0x48, 0x2a, 0xff, 0x62, 0x8f, 0x6c, 0xe2, 0xc2, 0xe9, 0xd3, 0x6a, 0x45, 0x5c, 0xf5, 0x89, 0x53, 0x5c, 0xbe, 0xcf, 0xad, 0x87, 0x22, 0x9c, 0x31, 0x48, 0xdb, 0xd8, 0xe4, 0xe5, 0x38, 0xae, 0xc2, 0xb0, 0xd2, 0xba, 0xb7, 0x30, 0x53, 0x2d, 0xb1, 0x35, 0xf1, 0x58, 0x0f, 0x8a, 0x06, 0x51, 0x76, 0xb9, 0x2c, 0x32, 0xe0, 0xd1, 0xaa, 0x82, 0x34, 0x69, 0x71, 0x1c, 0x5f, 0x35, 0xa8, 0x9d, 0x11, 0xac, 0x13, 0xdb, 0x7b, 0xf6, 0x93, 0xe3, 0xb9, 0xbd, 0xd9, 0xb2, 0x86, 0xff, 0x61, 0x88, 0x2b, 0x72, 0x5c, 0x84, 0xe1, 0x0c, 0x72, 0xab, 0x44, 0xff, 0x23, 0x13, 0xaf, 0xd1, 0x5a, 0xd3, 0xea, 0x73, 0xfe, 0xd5, 0xa4, 0x7d, 0x9e, 0x4e, 0xac, 0x03, 0x93, 0x72, 0x14, 0x2d, 0x96, 0x6f, 0xee, 0xb4, 0xcd, 0x4e, 0xab, 0xea, 0x71, 0x93, 0x81, 0xe0, 0x3d, 0xcd, 0x61, 0x96, 0x25, 0x76, 0xbd, 0xc4, 0xb5, 0xdd, 0x7c, 0xf1, 0xb9, 0xe1, 0x2c, 0x58, 0x1b, 0xa4, 0x46, 0x4b, 0x12, 0x57, 0x58, 0xaa, 0x3a, 0xae, 0x89, 0xa3, 0xb3, 0xcf, 0x1f, 0x8d, 0x67, 0xdf, 0x6d, 0x7e, 0x8e, 0xfa, 0xc5, 0x09, 0x73, 0x46, 0x56, 0x55, 0x90, 0xeb, 0x77, 0x4e, 0x16, 0x4f, 0x68, 0x7b, 0x1f, 0x61, 0x23, 0xec, 0xa9, 0x71, 0x30, 0x33, 0x25, 0xc7, 0x4e, 0x26, 0x2e, 0x4e, 0x2b, 0xc2, 0x64, 0x5f, 0xf5, 0x8f, 0x7a, 0x4b, 0x1c, 0x06, 0xb3, 0x91, 0xf6, 0x9b, 0x51, 0xb7, 0xb0, 0x64, 0x72, 0x04, 0xe5, 0xfa, 0x14, 0x2f, 0xed, 0x61, 0x29, 0x03, 0x73, 0x19, 0x15, 0x6e, 0x2c, 0x8b, 0x0e, 0xec, 0x4d, 0xf1, 0xe3, 0x6f, 0x58, 0x7c, 0xc9, 0x48, 0x67, 0x3f, 0x51, 0xb5, 0xb7, 0x26, 0x46, 0xa7, 0x25, 0x79, 0x55, 0xfe, 0x3a, 0x44, 0xb4, 0x44, 0xfc, 0xb8, 0x14, 0x34, 0x47, 0xd7, 0xa3, 0x0e, 0x76, 0xe7, 0x83, 0x9a, 0x02, 0xc3, 0xcf, 0x2b, 0xd9, 0x83, 0x93, 0xd5, 0xee, 0x99, 0x74, 0x45, 0x62, 0x23, 0xa6, 0x02, 0xc9, 0xc0, 0x10, 0x70, 0x0a, 0x99, 0x29, 0x0c, 0x79, 0x04, 0x4c, 0x77, 0x21, 0x96, 0xf0, 0xa5, 0x17, 0x22, 0xbe, 0xab, 0x9b, 0xd7, 0x42, 0xd3, 0xe9, 0xc0, 0x42, 0x44, 0x7d, 0x9d, 0xc9, 0x3d, 0xf9, 0x36, 0x97, 0x1b, 0x75, 0x52, 0x8f, 0xe9, 0xb9, 0x8c, 0xa7, 0x64, 0x19, 0x5b, 0x5d, 0x60, 0xb4, 0x42, 0x95, 0xc9, 0xdb, 0x82, 0x03, 0xc6, 0xb0, 0x28, 0x72, 0x64, 0x03, 0x41, 0x4d, 0x8f, 0xc6, 0xd0, 0xcd, 0x02, 0x82, 0x01, 0xe1, 0x00, 0xe8, 0x66, 0xa7, 0xf9, 0x0f, 0x5a, 0x21, 0xfc, 0x88, 0x4e, 0x91, 0xd5, 0x4a, 0xf0, 0xf4, 0x32, 0xe5, 0x0d, 0xf3, 0x06, 0x95, 0xd0, 0x4e, 0x47, 0x0c, 0x04, 0x66, 0x77, 0xfd, 0xb8, 0x93, 0x0d, 0xff, 0x8f, 0x97, 0xa0, 0x4a, 0x36, 0x37, 0xa6, 0x5e, 0x95, 0x79, 0xc8, 0xb2, 0x21, 0x98, 0x81, 0xf1, 0xb8, 0xf4, 0x52, 0xaf, 0x3c, 0x8c, 0x86, 0x85, 0x55, 0x56, 0xfc, 0x90, 0xe3, 0x32, 0x50, 0x7c, 0x54, 0x07, 0x9e, 0xed, 0xfc, 0xd4, 0xb9, 0x5c, 0x98, 0x22, 0xfb, 0x72, 0xd7, 0x83, 0xf0, 0xd1, 0x61, 0x10, 0xbd, 0x68, 0x5d, 0x72, 0xc1, 0xce, 0x92, 0x43, 0x77, 0x9f, 0xb8, 0x8d, 0x8e, 0xf2, 0xe3, 0x62, 0x4a, 0x93, 0x03, 0xd3, 0xd9, 0x01, 0xa8, 0x99, 0x6f, 0xa3, 0x4c, 0x6d, 0x7a, 0xf2, 0x9e, 0x8e, 0x6b, 0xbc, 0xe4, 0x9d, 0x8e, 0xe7, 0x25, 0x86, 0xa4, 0xa9, 0xc2, 0xef, 0xdf, 0xbb, 0x6e, 0x3d, 0x4b, 0x57, 0x95, 0x81, 0x6f, 0x68, 0x3f, 0x19, 0xa8, 0xff, 0x5a, 0x08, 0x7a, 0xe4, 0x4c, 0x4e, 0xb4, 0xea, 0xf4, 0xc8, 0x2f, 0xef, 0x8c, 0x5e, 0xcd, 0x62, 0x1c, 0x8c, 0x93, 0x60, 0x5d, 0xa3, 0x11, 0x64, 0x0b, 0xeb, 0x6d, 0x21, 0xbc, 0x3a, 0x5b, 0x5c, 0x0c, 0xa7, 0x8a, 0xc6, 0xa8, 0xe1, 0x48, 0x81, 0x01, 0xb5, 0x65, 0xab, 0x2e, 0xbe, 0x38, 0x94, 0xf7, 0xa6, 0x33, 0xc1, 0x6e, 0x0b, 0x88, 0x38, 0xe7, 0x1b, 0x04, 0x9a, 0x10, 0x2d, 0x1d, 0x3f, 0x5f, 0x5f, 0xc8, 0xef, 0xcd, 0xc5, 0x16, 0xdc, 0x84, 0xc0, 0x66, 0xe0, 0xa3, 0xfc, 0xfa, 0x96, 0xc7, 0xb7, 0xec, 0x4f, 0x40, 0x0a, 0xc5, 0xbe, 0x6d, 0x39, 0x4a, 0x7e, 0x91, 0x4f, 0xe1, 0x03, 0xd2, 0x39, 0xbc, 0x87, 0x69, 0xa1, 0xf0, 0x6d, 0x11, 0xf5, 0xb4, 0x9d, 0xae, 0x76, 0x6b, 0xc6, 0xbf, 0xe4, 0x47, 0xbc, 0x4d, 0x13, 0x88, 0xa8, 0x83, 0xf5, 0xae, 0x1d, 0xfb, 0x4d, 0x4c, 0x44, 0x03, 0xd8, 0xa4, 0x2e, 0x4d, 0xf8, 0x5f, 0x45, 0x94, 0x58, 0xd7, 0xd9, 0x4b, 0x47, 0xd8, 0xfc, 0x35, 0x05, 0xed, 0xb4, 0xb6, 0xc2, 0x36, 0x2e, 0xba, 0xd2, 0x7a, 0xba, 0x69, 0x34, 0xbf, 0xf1, 0xa1, 0x5e, 0x17, 0x71, 0x89, 0xd3, 0x54, 0x57, 0x05, 0x2b, 0x82, 0xe3, 0x0a, 0x64, 0x5c, 0x3b, 0x8c, 0x6b, 0xc7, 0x10, 0x8a, 0xb5, 0xd3, 0xd7, 0x90, 0xeb, 0xdb, 0x1d, 0xa0, 0xbf, 0x6b, 0xea, 0xcd, 0x31, 0x7a, 0x8d, 0x64, 0xcc, 0x58, 0xc0, 0x07, 0xa4, 0x6e, 0x14, 0x0b, 0xf3, 0xea, 0x3e, 0x87, 0x9f, 0x7c, 0xb8, 0x1c, 0x22, 0x26, 0x8a, 0x7d, 0x90, 0xdd, 0x57, 0x28, 0x38, 0xcc, 0x0e, 0x71, 0x92, 0x89, 0xee, 0x79, 0x88, 0xbc, 0x05, 0x21, 0xda, 0x42, 0x92, 0x52, 0x66, 0xac, 0x4a, 0xe5, 0xf5, 0x6e, 0x47, 0xd5, 0xba, 0x37, 0xd3, 0x7c, 0x89, 0xd4, 0xd8, 0x6f, 0xde, 0x63, 0x44, 0xb5, 0x88, 0xdd, 0xb1, 0x30, 0xb4, 0x6d, 0xcd, 0xbf, 0xc8, 0x34, 0x27, 0x59, 0x7d, 0x79, 0xdc, 0x96, 0x5b, 0x8e, 0xc0, 0x87, 0xc0, 0x4e, 0x40, 0x07, 0x13, 0x91, 0x6b, 0x3a, 0x12, 0x03, 0x64, 0x70, 0xaf, 0x80, 0x24, 0x1c, 0x5c, 0xfb, 0xf5, 0xc0, 0x74, 0x5e, 0xaf, 0x06, 0x18, 0x04, 0x67, 0x4a, 0xbd, 0xac, 0xd7, 0xca, 0xbe, 0x4e, 0xa1, 0x19, 0x48, 0x7d, 0xa6, 0x59, 0xf6, 0x1a, 0x62, 0x50, 0x53, 0x46, 0xa4, 0x5b, 0x9c, 0x5a, 0xfd, 0x89, 0x9d, 0xd4, 0xde, 0xf4, 0xa7, 0x3d, 0x88, 0x73, 0xa5, 0xb9, 0x02, 0x82, 0x01, 0xe1, 0x00, 0xe7, 0x70, 0x59, 0xc3, 0xed, 0xc4, 0x6b, 0xa1, 0xa5, 0x5e, 0x90, 0x2a, 0x8c, 0x6a, 0xc2, 0x4e, 0xab, 0xfc, 0xee, 0xf2, 0x23, 0x38, 0xd6, 0xb3, 0x93, 0x08, 0x9e, 0x0c, 0x8e, 0x71, 0x2d, 0xa9, 0xe8, 0xdc, 0xa5, 0xdc, 0x07, 0xe3, 0xb1, 0x33, 0xdd, 0xa2, 0xf2, 0x3e, 0x92, 0x58, 0xe0, 0xf7, 0x53, 0x7f, 0x6e, 0xea, 0x78, 0x8c, 0x35, 0x78, 0x43, 0x63, 0x95, 0xbb, 0x1b, 0x1c, 0xbf, 0x91, 0x75, 0x14, 0x74, 0xd3, 0x20, 0xba, 0x8f, 0xee, 0x9d, 0x71, 0xa1, 0x87, 0x8a, 0x24, 0xd3, 0x61, 0x53, 0xfb, 0xec, 0x16, 0x84, 0xbe, 0x4d, 0x39, 0xdd, 0x0a, 0xac, 0xce, 0x20, 0x9c, 0xaf, 0x8a, 0x13, 0xf8, 0x22, 0x2f, 0xd4, 0x99, 0x88, 0x74, 0xba, 0x16, 0x3a, 0x63, 0xff, 0x4c, 0x5a, 0x03, 0x5a, 0x6f, 0xac, 0x29, 0x33, 0xa5, 0x50, 0xd1, 0xda, 0xed, 0x27, 0xcb, 0x67, 0x72, 0x63, 0x85, 0xfc, 0xf0, 0xc8, 0x88, 0xbf, 0x85, 0xef, 0x4b, 0xfe, 0xae, 0xd9, 0xd5, 0xbb, 0x86, 0xa4, 0x76, 0xe8, 0x7f, 0xb4, 0xdb, 0xb1, 0xee, 0x1a, 0x7f, 0x99, 0xd7, 0x9b, 0x6f, 0x7a, 0x94, 0x5c, 0xec, 0x2c, 0x60, 0x81, 0xad, 0xa7, 0xbe, 0x80, 0x2e, 0x9f, 0xa6, 0xc0, 0xfb, 0x09, 0x6d, 0x2b, 0xab, 0xa4, 0x15, 0xc7, 0x79, 0x46, 0x24, 0x89, 0x5c, 0x32, 0xb9, 0x87, 0xa9, 0x54, 0x1e, 0x12, 0x90, 0x8e, 0x02, 0x80, 0x8c, 0xf8, 0xdb, 0x2f, 0xbc, 0x98, 0x1b, 0xa2, 0x78, 0x73, 0x89, 0x03, 0x97, 0xe3, 0x09, 0x08, 0x8b, 0x75, 0xcf, 0xdc, 0x23, 0x90, 0x59, 0xef, 0x5b, 0x98, 0x24, 0xb8, 0xe8, 0xcf, 0x75, 0xf0, 0x2f, 0xb7, 0xa3, 0xe6, 0x17, 0x06, 0xf0, 0x52, 0xfe, 0x21, 0x0a, 0x16, 0x8e, 0xf8, 0xe1, 0xae, 0x25, 0x11, 0x5d, 0x8c, 0x95, 0x1b, 0x4f, 0x45, 0xb8, 0xa8, 0xcd, 0xe6, 0xf9, 0xca, 0xa0, 0x54, 0x93, 0x95, 0x86, 0x6f, 0xe4, 0x93, 0x22, 0x0f, 0xf2, 0xcf, 0xbd, 0x23, 0xb0, 0xf4, 0x8f, 0x99, 0xa7, 0x67, 0x99, 0x05, 0x13, 0x1f, 0xeb, 0x88, 0xf8, 0xe2, 0x3b, 0xb9, 0x49, 0x35, 0x89, 0x4f, 0xb8, 0x06, 0x37, 0x36, 0xda, 0x75, 0x25, 0x0f, 0x0a, 0xaa, 0xc2, 0x6c, 0x3e, 0xb1, 0x2d, 0x16, 0xf3, 0x17, 0xdb, 0xe2, 0x16, 0x32, 0x39, 0x92, 0x4b, 0x5f, 0xc0, 0x5f, 0x6e, 0xd0, 0x1c, 0x7e, 0xc0, 0x51, 0xd9, 0xb3, 0xe2, 0x37, 0xc7, 0xe0, 0x40, 0x13, 0x7d, 0x06, 0xcd, 0xcd, 0x72, 0xb6, 0x53, 0x2d, 0x7e, 0x60, 0x49, 0xfe, 0x31, 0xe1, 0xd0, 0x0e, 0x4c, 0x98, 0x93, 0xe0, 0xf6, 0xf2, 0xfa, 0x99, 0x7f, 0x65, 0xd8, 0x15, 0xc6, 0x3a, 0xb8, 0x4d, 0x63, 0x21, 0x78, 0xe4, 0x19, 0x6b, 0xbd, 0xde, 0x40, 0x5b, 0x8c, 0xfa, 0x49, 0x75, 0x23, 0x8f, 0x14, 0xc2, 0x3b, 0xa3, 0x9b, 0xc5, 0x80, 0x1a, 0xa3, 0x60, 0xd7, 0x17, 0x27, 0xf0, 0x18, 0x0f, 0xba, 0x02, 0xf7, 0x7a, 0xed, 0xa4, 0x00, 0x77, 0xde, 0x4b, 0xdd, 0xf9, 0xd7, 0x3e, 0x75, 0xed, 0x1a, 0x43, 0x26, 0x71, 0x1b, 0xbc, 0x72, 0xf5, 0x70, 0x72, 0x03, 0x70, 0x25, 0x87, 0x81, 0x6a, 0x92, 0x2d, 0xb7, 0x02, 0xf0, 0x10, 0x79, 0x65, 0x9d, 0x4e, 0x11, 0x7d, 0x5c, 0x5b, 0x37, 0xaa, 0xb4, 0xfa, 0x43, 0x66, 0x48, 0x6c, 0x67, 0x64, 0x9e, 0x15, 0x75, 0x36, 0xe7, 0x25, 0x55, 0x07, 0x7f, 0x74, 0x1f, 0x2c, 0x28, 0x76, 0xe7, 0x9b, 0x3d, 0x91, 0x0b, 0xcd, 0x6a, 0x1d, 0x5a, 0xea, 0x63, 0xd0, 0xf9, 0x02, 0x82, 0x01, 0xe0, 0x3e, 0x31, 0xf2, 0xf4, 0x29, 0x92, 0xa2, 0x93, 0xd5, 0xda, 0xc9, 0x16, 0x7e, 0xf6, 0xdb, 0x33, 0x9f, 0xaf, 0x4b, 0x01, 0xd1, 0x28, 0x2d, 0x3a, 0xc0, 0x51, 0x91, 0x26, 0xbd, 0xa5, 0x1e, 0xdd, 0xd9, 0x2e, 0x11, 0x93, 0x19, 0x29, 0x47, 0x5d, 0x63, 0xe4, 0xb6, 0xf1, 0xea, 0x12, 0x29, 0xa1, 0x65, 0x12, 0x6d, 0x78, 0x8f, 0x63, 0x31, 0xec, 0x72, 0x54, 0x73, 0x72, 0x26, 0x48, 0x57, 0x57, 0xc8, 0xde, 0x28, 0x27, 0xf5, 0x62, 0xfb, 0x7f, 0x1b, 0xf3, 0xaf, 0x31, 0x01, 0xfc, 0x01, 0x58, 0x7a, 0x80, 0x72, 0x9d, 0x6e, 0x07, 0xcc, 0x45, 0x67, 0xc6, 0x26, 0xfe, 0x25, 0xa5, 0x9b, 0x64, 0xcd, 0x45, 0xe3, 0x31, 0x38, 0x05, 0x07, 0x36, 0x05, 0x46, 0x9c, 0xc1, 0x8e, 0xbf, 0x4e, 0x71, 0x5f, 0xea, 0xe5, 0x0c, 0x9a, 0x41, 0xc8, 0x94, 0xcc, 0xf1, 0x73, 0x06, 0x30, 0x54, 0x76, 0x23, 0xb7, 0x22, 0x7a, 0x8e, 0xe6, 0x42, 0xa1, 0xa0, 0x32, 0x12, 0xe9, 0x08, 0x1c, 0x46, 0x79, 0x0c, 0x82, 0x7a, 0x95, 0x79, 0xbf, 0x83, 0x80, 0xeb, 0xab, 0x3d, 0x32, 0xc5, 0xde, 0x62, 0xeb, 0x90, 0x29, 0x73, 0x05, 0xc8, 0x0a, 0xb1, 0x51, 0xf1, 0x23, 0xdd, 0x1e, 0xf5, 0x02, 0x3e, 0x74, 0xbc, 0x24, 0x0c, 0x60, 0x36, 0x2a, 0x28, 0x4d, 0xe6, 0x86, 0x98, 0x7c, 0xd9, 0xe1, 0xac, 0x21, 0x33, 0xaa, 0xa9, 0x8b, 0xb6, 0x8a, 0x1b, 0xf7, 0x54, 0x14, 0xf3, 0x0d, 0x4f, 0xcd, 0x7c, 0xf5, 0xc2, 0x6d, 0xc2, 0xf0, 0xe2, 0xfc, 0x63, 0x1e, 0xa6, 0xa9, 0xa9, 0xd9, 0x73, 0x2a, 0xd5, 0x0a, 0x38, 0xd8, 0xc0, 0xb7, 0xe1, 0x51, 0xe4, 0x23, 0x37, 0xf7, 0x85, 0x66, 0x0e, 0x3f, 0x1a, 0x8c, 0xcf, 0x12, 0xa2, 0x47, 0x6f, 0x73, 0x91, 0x21, 0xe3, 0x93, 0x6b, 0x74, 0x4f, 0xc5, 0xa1, 0xe7, 0x32, 0xf7, 0x86, 0xdd, 0x1a, 0x6e, 0x96, 0xda, 0x32, 0x1d, 0xdd, 0xfa, 0x42, 0xd5, 0xd4, 0xfd, 0xae, 0x7a, 0xa1, 0xed, 0x3d, 0x79, 0xfe, 0x88, 0x84, 0x43, 0xa7, 0xec, 0xf3, 0x7a, 0x13, 0xaa, 0xa1, 0x82, 0x02, 0x83, 0x19, 0x43, 0x0a, 0x46, 0x78, 0x07, 0xd9, 0x4d, 0xff, 0xac, 0x67, 0xd6, 0x29, 0x89, 0xfe, 0x2b, 0xab, 0x5f, 0x9a, 0x87, 0x99, 0x80, 0xaf, 0x70, 0x4a, 0x6a, 0xb9, 0x5a, 0xc2, 0xac, 0x7f, 0xa2, 0xc7, 0xad, 0xe2, 0x1f, 0xec, 0xc5, 0x12, 0x17, 0x08, 0x87, 0x8f, 0x20, 0x95, 0xbe, 0xaf, 0x62, 0x2c, 0xc2, 0x3f, 0x89, 0x56, 0xd8, 0x50, 0x96, 0x97, 0x72, 0xe2, 0x92, 0xe1, 0x2a, 0xd8, 0x84, 0x9f, 0x31, 0xe3, 0x06, 0xd8, 0xe5, 0x91, 0x63, 0x19, 0xe1, 0x27, 0xad, 0xe2, 0xf2, 0x0a, 0x5e, 0x78, 0x8b, 0x1b, 0x13, 0x31, 0x4b, 0xbd, 0x77, 0xb2, 0xd6, 0x5c, 0x92, 0x81, 0x50, 0x02, 0x37, 0xd2, 0xe6, 0xeb, 0x66, 0x6b, 0xaa, 0xfc, 0xcd, 0x54, 0x5d, 0xb8, 0x03, 0x87, 0xe8, 0xfa, 0xb2, 0xde, 0xcb, 0xf8, 0x6e, 0x58, 0xde, 0xcb, 0x09, 0x54, 0x8a, 0x9f, 0x46, 0xa3, 0x7e, 0x8d, 0x15, 0xff, 0x1b, 0x0d, 0x89, 0xc4, 0x1a, 0x21, 0x31, 0x5e, 0xed, 0x0b, 0x67, 0x3c, 0x70, 0xed, 0x92, 0x48, 0xef, 0xec, 0xf0, 0x77, 0xc2, 0x79, 0x6c, 0x06, 0x09, 0xaa, 0xab, 0xf6, 0x4c, 0xcd, 0xfa, 0x7e, 0x4a, 0x88, 0xdc, 0xa8, 0x9b, 0xd3, 0x69, 0x94, 0x88, 0x09, 0x1d, 0x30, 0x43, 0x9e, 0x2c, 0xcb, 0x01, 0x1d, 0x4a, 0x3b, 0x04, 0xec, 0x0e, 0xb1, 0xde, 0x09, 0xad, 0x29, 0x02, 0x82, 0x01, 0xe1, 0x00, 0x9f, 0x02, 0x13, 0x7a, 0xd0, 0xa9, 0x8a, 0x7a, 0xa0, 0x05, 0xbb, 0x44, 0x6f, 0xaf, 0xf7, 0xe3, 0xd4, 0x35, 0xef, 0x73, 0x39, 0xd5, 0xe0, 0xa2, 0x0f, 0x1a, 0x25, 0xa8, 0xf7, 0xc2, 0xa5, 0xec, 0x57, 0xf8, 0x0d, 0x2a, 0xb6, 0x64, 0x03, 0x8c, 0x22, 0x0f, 0xe7, 0x98, 0xa1, 0x12, 0xfe, 0x24, 0xef, 0x61, 0x28, 0x9f, 0xa7, 0x22, 0x6b, 0x6d, 0xab, 0x8d, 0x7d, 0x2a, 0x8b, 0xae, 0x8b, 0xfd, 0xcb, 0xd5, 0x0b, 0x79, 0x1b, 0x89, 0xcb, 0x5b, 0x7a, 0x8c, 0xdc, 0xe8, 0x8d, 0xdd, 0x35, 0x9f, 0x06, 0x69, 0x64, 0x12, 0xeb, 0x46, 0x79, 0xdf, 0x82, 0x2c, 0x89, 0x75, 0x9e, 0x7a, 0xec, 0xad, 0xe5, 0x88, 0x31, 0xfa, 0x86, 0x93, 0xca, 0xf1, 0x2d, 0x9b, 0x62, 0x5a, 0xe9, 0x43, 0x09, 0xf3, 0x8c, 0xe5, 0xc7, 0xc0, 0xce, 0x86, 0xe7, 0xdb, 0xc7, 0x4d, 0x27, 0xd5, 0xee, 0x76, 0xce, 0x35, 0x30, 0x47, 0xef, 0x00, 0x1b, 0x69, 0x9a, 0x3f, 0xa5, 0x2a, 0xc9, 0x07, 0xab, 0x99, 0xba, 0x2a, 0xe7, 0xfb, 0xa9, 0x4e, 0xb9, 0xae, 0x2c, 0x50, 0xfc, 0x35, 0x49, 0xe6, 0x97, 0x78, 0x3c, 0xb1, 0x59, 0xd7, 0x1d, 0x4e, 0x4e, 0xea, 0xde, 0xa0, 0xd0, 0xc4, 0x1d, 0xb1, 0xd3, 0x53, 0x1e, 0xf9, 0xbf, 0xb3, 0x6a, 0x17, 0xb4, 0xda, 0xcc, 0x27, 0x19, 0xc6, 0x35, 0xe8, 0x28, 0xd3, 0xe3, 0x76, 0x3a, 0xdc, 0xd0, 0x75, 0xc8, 0xb4, 0x6c, 0xbe, 0x84, 0x2a, 0x45, 0xd1, 0x43, 0x22, 0x54, 0xd7, 0xc5, 0xd0, 0xd7, 0x73, 0x35, 0x6b, 0xa8, 0xfa, 0xad, 0x60, 0xc0, 0x64, 0xc1, 0x58, 0x89, 0x09, 0x81, 0x0a, 0x0b, 0xea, 0x33, 0x91, 0xb0, 0xef, 0x53, 0x50, 0x41, 0xae, 0xd9, 0xee, 0xbe, 0x9e, 0xf0, 0x0b, 0xa0, 0x7c, 0xbf, 0x3f, 0xc9, 0x4b, 0xe0, 0x48, 0xd8, 0x10, 0xd5, 0x2e, 0xce, 0xf0, 0x7c, 0xd8, 0x05, 0xde, 0x09, 0x7e, 0x8c, 0x63, 0x4c, 0xdb, 0x8b, 0x91, 0xcd, 0x7f, 0xb6, 0x6b, 0xad, 0xce, 0xb1, 0x17, 0x6c, 0xf7, 0x08, 0x0d, 0x7c, 0xda, 0x4f, 0x0a, 0x07, 0xd0, 0xae, 0x72, 0x3c, 0x67, 0x4a, 0x44, 0x54, 0x47, 0xce, 0xe1, 0x17, 0x07, 0x12, 0xde, 0x52, 0xef, 0xef, 0x4c, 0x2b, 0x42, 0x7d, 0x09, 0x80, 0x36, 0x34, 0xdc, 0x45, 0x6f, 0xb0, 0x2d, 0xab, 0xa0, 0x0c, 0x58, 0xae, 0x35, 0xd3, 0x9b, 0x37, 0xc1, 0x1d, 0xeb, 0xfe, 0xc3, 0x04, 0xc9, 0x1d, 0xe7, 0x3d, 0x16, 0x64, 0xed, 0xf5, 0xe8, 0xdf, 0x99, 0xa4, 0xfb, 0xad, 0x79, 0x88, 0xd5, 0x8c, 0x62, 0x33, 0x9e, 0x35, 0xa6, 0x7f, 0x9d, 0xb6, 0x1a, 0x40, 0x6d, 0xc3, 0x89, 0x5d, 0x7b, 0xe2, 0xc8, 0xd3, 0x16, 0x13, 0x07, 0x9a, 0x38, 0x22, 0x33, 0x03, 0xac, 0x70, 0x3e, 0xce, 0x32, 0x56, 0x0b, 0x58, 0x56, 0xb8, 0xe9, 0xd8, 0x42, 0x35, 0x6c, 0xb9, 0x02, 0xb3, 0x64, 0xeb, 0xaa, 0x09, 0x3f, 0xac, 0x66, 0x08, 0xb4, 0x5f, 0x3e, 0xb4, 0xec, 0x39, 0xb1, 0x99, 0xe4, 0x5d, 0x1d, 0x32, 0x14, 0xc1, 0x48, 0x8f, 0x6c, 0x65, 0x87, 0x34, 0x50, 0xa4, 0xf4, 0x9b, 0x5b, 0x2e, 0xb5, 0x79, 0x0d, 0x11, 0x62, 0xa4, 0x35, 0x9c, 0x6f, 0x92, 0xd0, 0x68, 0x07, 0xdd, 0x69, 0x85, 0x48, 0xe3, 0x5d, 0x10, 0x34, 0xaf, 0xea, 0x41, 0x72, 0x5a, 0x71, 0x00, 0xf8, 0xe6, 0x47, 0x7f, 0xa0, 0x6f, 0x91, 0x96, 0x40, 0x00, 0x40, 0x70, 0xfb, 0x63, 0xcf, 0xc9, 0x36, 0x04, 0x1c, 0x3b, 0x11, 0x08, 0x29, 0x81, 0x9f }; static unsigned char test15360[] = { 0x30, 0x82, 0x21, 0xe8, 0x02, 0x01, 0x00, 0x02, 0x82, 0x07, 0x81, 0x00, 0xad, 0x3f, 0xaa, 0xdc, 0x8c, 0x85, 0xcb, 0x60, 0xd2, 0xf5, 0x30, 0xa1, 0x0f, 0x26, 0xec, 0xdf, 0xfc, 0x91, 0x39, 0xbd, 0x3e, 0x8f, 0x99, 0x64, 0x1e, 0x51, 0xd2, 0x27, 0x5e, 0x76, 0xcd, 0x86, 0x33, 0x07, 0xf9, 0xbd, 0x3b, 0x06, 0xc3, 0x3c, 0x85, 0xcb, 0x7e, 0x91, 0x14, 0xb0, 0x0b, 0x77, 0x22, 0x30, 0x71, 0xb8, 0xbb, 0x74, 0x30, 0x33, 0x35, 0x56, 0x34, 0x47, 0x10, 0x8f, 0x88, 0xe2, 0x6f, 0xdc, 0x3b, 0xe9, 0x58, 0x9d, 0x0c, 0xdc, 0x8f, 0x70, 0x41, 0x7a, 0x12, 0xd2, 0x9a, 0x35, 0xbe, 0x0a, 0x57, 0x13, 0x0c, 0xe9, 0xbf, 0x77, 0x54, 0x00, 0x74, 0xb7, 0x1a, 0x3e, 0xa7, 0xe9, 0xb6, 0xe7, 0x4f, 0x1e, 0xa4, 0xc0, 0x7c, 0x4c, 0x66, 0xc5, 0xce, 0xad, 0x96, 0x1b, 0xe2, 0x1a, 0xf1, 0x3d, 0x8b, 0x50, 0xcf, 0xe2, 0x15, 0x21, 0x6d, 0x83, 0x95, 0x00, 0xee, 0x97, 0xc4, 0xae, 0xc9, 0x38, 0x62, 0x6c, 0xb2, 0xe7, 0x7f, 0x15, 0x0a, 0xab, 0x86, 0xb9, 0xd9, 0x8a, 0xf8, 0xeb, 0x88, 0x5d, 0xdc, 0x0c, 0x1e, 0xc5, 0xe6, 0xa1, 0x7b, 0xbf, 0xf1, 0x02, 0xe3, 0xad, 0xf8, 0xed, 0x17, 0x9f, 0x83, 0x11, 0x31, 0x3b, 0xad, 0xb4, 0xf9, 0x8d, 0x1d, 0x56, 0x9b, 0xac, 0x68, 0x55, 0x0a, 0x74, 0x20, 0xee, 0x57, 0xe7, 0x1c, 0x6d, 0x05, 0xa1, 0x4e, 0xa5, 0x11, 0x99, 0xb4, 0x86, 0xdb, 0x58, 0xe7, 0xf6, 0xb6, 0x4f, 0x92, 0x58, 0x57, 0x9b, 0x74, 0x04, 0xe5, 0xd1, 0x1d, 0x7c, 0x4b, 0xb8, 0x1f, 0x5d, 0x0e, 0x93, 0xee, 0x44, 0x18, 0xb6, 0x58, 0x0e, 0xa1, 0x0b, 0x8e, 0x2e, 0x99, 0x4c, 0x72, 0x91, 0xfa, 0xfa, 0xe2, 0x22, 0x05, 0x5d, 0x2b, 0x2d, 0xd8, 0x60, 0xd5, 0x1b, 0x08, 0x56, 0x2b, 0xb5, 0x21, 0xdb, 0x1a, 0xe6, 0xa8, 0x39, 0xa2, 0xf4, 0x58, 0xcb, 0xd2, 0xf9, 0xce, 0xc0, 0x1e, 0x1b, 0xf9, 0xa7, 0x37, 0xca, 0xa3, 0x77, 0x6e, 0xb1, 0xaf, 0x33, 0xb5, 0x6d, 0x5f, 0x33, 0x2e, 0x1a, 0x34, 0xdb, 0x42, 0xbe, 0x5f, 0xf9, 0x09, 0xb7, 0x9f, 0xd4, 0x09, 0xfb, 0x87, 0x13, 0x3c, 0xe2, 0x27, 0xb8, 0xf3, 0x1d, 0x7e, 0x92, 0xdd, 0x87, 0x86, 0x55, 0x69, 0x9b, 0x55, 0xcd, 0xef, 0x7a, 0x71, 0x5d, 0x81, 0x3a, 0xd9, 0xf7, 0x7f, 0xde, 0xe0, 0x92, 0xd9, 0x78, 0x0f, 0x1d, 0x43, 0xb1, 0x1e, 0x29, 0xc1, 0x49, 0xb6, 0x5e, 0x85, 0x83, 0xd9, 0x04, 0xfd, 0x79, 0xd8, 0x47, 0x03, 0x2e, 0x85, 0x19, 0xfd, 0x63, 0xe7, 0xa4, 0x8b, 0xc0, 0x94, 0x0e, 0xb7, 0x54, 0x97, 0xd6, 0x44, 0x5d, 0x63, 0x12, 0xff, 0xdd, 0xde, 0x2c, 0x00, 0x0e, 0xc9, 0xca, 0x7e, 0xa2, 0x65, 0x25, 0xb0, 0x1d, 0xa9, 0x20, 0x4f, 0xdd, 0xea, 0x3a, 0xb5, 0xe8, 0x0f, 0xf3, 0xb2, 0xb7, 0x00, 0x4a, 0xe8, 0xa4, 0x83, 0x49, 0xbd, 0x78, 0xdf, 0xac, 0x2c, 0x37, 0x81, 0xb3, 0xf3, 0xb7, 0x13, 0x93, 0x3e, 0xb2, 0x79, 0x55, 0xf2, 0xd8, 0x9c, 0xf7, 0xf2, 0xf1, 0xd5, 0x6c, 0x9c, 0xff, 0xec, 0xf4, 0xea, 0x08, 0x3c, 0x65, 0x35, 0xb7, 0x09, 0x03, 0x6d, 0x99, 0x1d, 0x5b, 0x73, 0x06, 0x61, 0xb4, 0xf0, 0xc5, 0xdb, 0x3e, 0xe0, 0x1d, 0xa8, 0x5b, 0x7a, 0x5b, 0x5b, 0x9c, 0x11, 0x75, 0x83, 0x1d, 0xf4, 0x73, 0x27, 0xf3, 0x79, 0xf2, 0x82, 0xd6, 0x28, 0x45, 0x58, 0x23, 0x6c, 0x29, 0xd3, 0x50, 0x51, 0x1b, 0x38, 0xef, 0x89, 0x90, 0x84, 0xa2, 0x4c, 0x35, 0x7b, 0x30, 0x5e, 0xbd, 0x1a, 0xd5, 0xdf, 0xcd, 0xcd, 0x74, 0x3f, 0x2e, 0x01, 0xea, 0x33, 0x07, 0x74, 0xfb, 0x86, 0x75, 0x20, 0x0e, 0x4f, 0xbf, 0x65, 0xd4, 0x15, 0x19, 0x6f, 0x8d, 0x37, 0xcd, 0xb6, 0x6f, 0x50, 0x9d, 0x5e, 0x04, 0x81, 0x7d, 0xec, 0xd6, 0xbb, 0x40, 0x1b, 0xe0, 0xf5, 0xd5, 0x86, 0x26, 0xc5, 0x41, 0x84, 0x0e, 0x3e, 0x73, 0xb7, 0xa4, 0xbe, 0x2a, 0xfe, 0xd7, 0xe4, 0x4d, 0x5c, 0x2d, 0x6a, 0x04, 0xe6, 0xdd, 0x28, 0xa0, 0x75, 0x4c, 0xe0, 0x23, 0x2c, 0xad, 0xec, 0xaa, 0x72, 0xfd, 0x03, 0xc0, 0x65, 0xfa, 0xc4, 0x3c, 0x25, 0x10, 0xae, 0x3f, 0x09, 0x96, 0x4e, 0xff, 0xfe, 0xc7, 0xe4, 0x9e, 0xec, 0xb5, 0x6e, 0xec, 0xf3, 0x7a, 0x83, 0x7a, 0x8b, 0xbb, 0x91, 0x8d, 0xab, 0x3c, 0x4d, 0x7f, 0x34, 0x77, 0xbe, 0x0c, 0x87, 0xf2, 0xc3, 0xd6, 0xcb, 0xcc, 0xfa, 0x1e, 0xaf, 0x21, 0x24, 0xe9, 0xaa, 0x89, 0x61, 0x0c, 0x7a, 0x1c, 0x7d, 0x00, 0x87, 0x69, 0x30, 0xa0, 0xb4, 0x3b, 0x96, 0x1c, 0x00, 0x14, 0x07, 0xb8, 0x3f, 0x59, 0x62, 0x3a, 0x3f, 0xfb, 0x68, 0xb8, 0x81, 0x7d, 0x4a, 0x9d, 0x1c, 0xa2, 0x07, 0xa3, 0xb1, 0x42, 0x7b, 0xfa, 0x9b, 0xbc, 0x94, 0x30, 0x7e, 0xea, 0xe7, 0x40, 0x7e, 0xd4, 0x0f, 0x33, 0x3b, 0x57, 0xda, 0x8b, 0x6d, 0x64, 0xd5, 0xe4, 0x91, 0x83, 0xf0, 0x3d, 0xae, 0x8b, 0x91, 0xf0, 0xcd, 0xb1, 0xa0, 0xe0, 0x0d, 0xe1, 0xbb, 0x22, 0x78, 0x1f, 0x3a, 0xe5, 0x53, 0x28, 0xf0, 0x35, 0xae, 0x71, 0xe6, 0xfd, 0x63, 0xb2, 0x9c, 0x3f, 0xdd, 0x95, 0x7b, 0xc4, 0xe9, 0x2f, 0xd9, 0x93, 0x3a, 0x10, 0x42, 0x1c, 0x90, 0xab, 0xfb, 0xd3, 0x02, 0xe9, 0x59, 0xbc, 0x53, 0x7e, 0xf3, 0xe1, 0x52, 0x15, 0xa6, 0x58, 0x9e, 0xc1, 0xa6, 0x0e, 0x2e, 0x35, 0x07, 0x3a, 0xc3, 0x1f, 0xaa, 0x58, 0xe7, 0xc6, 0x33, 0x6a, 0x39, 0x4b, 0x21, 0x15, 0x3d, 0x92, 0x4e, 0x5e, 0xf9, 0x01, 0xd6, 0x0f, 0x28, 0x61, 0x15, 0xdf, 0xed, 0x6f, 0x75, 0xc4, 0x8f, 0xcb, 0x16, 0x55, 0x09, 0xc7, 0x24, 0xb2, 0x0c, 0x49, 0x25, 0x8d, 0x5e, 0xf1, 0x0e, 0xe0, 0xe2, 0xc4, 0xcc, 0x1f, 0x4e, 0x60, 0x5c, 0x5e, 0xc6, 0x7f, 0x68, 0x7f, 0xdb, 0x1a, 0x01, 0x67, 0x07, 0xb1, 0x56, 0x93, 0xf2, 0x26, 0x81, 0xc0, 0x33, 0xb8, 0x48, 0xf9, 0x2c, 0x5c, 0x18, 0x29, 0xed, 0xe0, 0x6c, 0xa0, 0xac, 0xd2, 0x90, 0x4b, 0x52, 0x87, 0xbb, 0xb5, 0x05, 0xd8, 0x56, 0xc5, 0xb8, 0x8f, 0x3f, 0x49, 0x52, 0x9a, 0xa2, 0xd0, 0x40, 0x80, 0x5b, 0x16, 0x15, 0xbc, 0x74, 0x8e, 0x00, 0x10, 0xaf, 0xfb, 0x6d, 0xba, 0xcb, 0xbc, 0xe6, 0x13, 0x75, 0xce, 0x27, 0xae, 0x85, 0x57, 0x6c, 0xc0, 0x8a, 0x84, 0x6f, 0x34, 0x16, 0xd4, 0x35, 0xd2, 0xcc, 0x55, 0x00, 0xc1, 0xd8, 0x28, 0x2c, 0x9c, 0x84, 0x78, 0xbf, 0xf0, 0x3b, 0x0d, 0x9f, 0x81, 0xd4, 0xef, 0x99, 0x77, 0x53, 0xd2, 0x8e, 0x43, 0x52, 0xf0, 0x32, 0x7e, 0xba, 0xbf, 0xb6, 0x0e, 0x9d, 0x9b, 0x00, 0xd0, 0x50, 0x55, 0x67, 0x5a, 0x2c, 0x8b, 0x9b, 0x29, 0xfb, 0x41, 0x74, 0x4c, 0xb7, 0xd8, 0x98, 0xa2, 0xfb, 0x73, 0x07, 0x96, 0xef, 0xcd, 0x47, 0x13, 0x1d, 0xe2, 0xb1, 0xac, 0xf3, 0xcf, 0x47, 0x98, 0x7b, 0x6f, 0xf6, 0x32, 0x44, 0x41, 0x78, 0x09, 0x8e, 0x64, 0x0c, 0xbf, 0xe2, 0x0f, 0x8c, 0x44, 0x2f, 0x4e, 0x55, 0xe0, 0xc6, 0xfd, 0x05, 0x74, 0x18, 0x1a, 0xb9, 0xfa, 0xcb, 0xd3, 0xfa, 0x69, 0x50, 0x63, 0xce, 0x2b, 0xef, 0x92, 0x0f, 0x11, 0xd4, 0x9b, 0x53, 0x6c, 0xed, 0xc5, 0x0b, 0x7c, 0xbd, 0xa1, 0x5d, 0xdf, 0xab, 0xcf, 0xaa, 0x83, 0x5e, 0xa8, 0xc5, 0xfe, 0x91, 0x2b, 0x23, 0x1f, 0x39, 0x3d, 0x71, 0x74, 0xbf, 0xa2, 0xf1, 0xda, 0x2f, 0x29, 0x02, 0x9b, 0xea, 0x48, 0x2c, 0xaf, 0xe7, 0xa9, 0xf5, 0x68, 0xab, 0x8f, 0x18, 0xb9, 0x7b, 0x28, 0xf0, 0x92, 0xfb, 0x07, 0xd7, 0xbd, 0x43, 0xcd, 0x7f, 0xfc, 0xb9, 0x5f, 0x24, 0xf8, 0x48, 0x2e, 0xbe, 0x42, 0x87, 0x80, 0x38, 0x78, 0x9e, 0x8c, 0x52, 0x6d, 0xfa, 0x2e, 0x46, 0x35, 0x7a, 0x59, 0x88, 0xb9, 0x3e, 0xcb, 0x79, 0xb4, 0x8a, 0x9e, 0xd5, 0xd0, 0x30, 0x8c, 0xb2, 0x0c, 0x9d, 0x8d, 0x2d, 0x64, 0x0b, 0xf6, 0xeb, 0xf1, 0xde, 0xea, 0x74, 0xfc, 0xbc, 0x01, 0x18, 0x48, 0x4e, 0x35, 0x02, 0x83, 0x01, 0xb2, 0x50, 0xa0, 0x44, 0x19, 0x30, 0x00, 0x12, 0x4a, 0xa0, 0x6d, 0x6b, 0x8b, 0xf1, 0xce, 0xda, 0x2e, 0x16, 0x35, 0x52, 0x26, 0xf9, 0xbe, 0xb1, 0x37, 0xfc, 0x0a, 0x8b, 0x6f, 0x06, 0x11, 0x7b, 0xf7, 0xa8, 0x40, 0xbd, 0x8d, 0x94, 0xa4, 0xa2, 0xe0, 0xb6, 0xdf, 0x62, 0xc0, 0x6f, 0xb3, 0x5d, 0x84, 0xb9, 0xaa, 0x2f, 0xc1, 0x3b, 0xcb, 0x20, 0xc6, 0x68, 0x69, 0x15, 0x74, 0xbc, 0xdb, 0x43, 0x9c, 0x4a, 0xfc, 0x72, 0xc1, 0xf5, 0x87, 0x80, 0xe8, 0x6c, 0xd5, 0xc1, 0x2e, 0x34, 0x5e, 0x96, 0x76, 0x08, 0x3e, 0x45, 0xe4, 0xa0, 0x4a, 0x7a, 0xc1, 0x67, 0x38, 0xf2, 0x31, 0x1f, 0x7b, 0x0f, 0x54, 0xbd, 0x0d, 0x1f, 0x9e, 0x8e, 0x99, 0x8b, 0x58, 0xd9, 0x94, 0x87, 0xaa, 0x8b, 0x82, 0x5d, 0x5e, 0xe8, 0x50, 0xf4, 0xf2, 0xc7, 0xe9, 0x85, 0x6b, 0xd2, 0xef, 0x13, 0xc1, 0xed, 0x57, 0x2a, 0xc5, 0xd6, 0x5d, 0xa4, 0x3b, 0x29, 0xba, 0xab, 0x1b, 0xaa, 0x21, 0x41, 0xe9, 0xdc, 0x47, 0x88, 0xef, 0x0c, 0xfc, 0xb2, 0xdc, 0xf7, 0xdb, 0x55, 0x4d, 0x70, 0xc7, 0xe2, 0x8a, 0x8a, 0xe1, 0xde, 0xcf, 0xe5, 0xca, 0x23, 0x36, 0x29, 0xe5, 0xfc, 0x54, 0x66, 0xda, 0xe9, 0xab, 0x58, 0x20, 0xb2, 0x8e, 0xb2, 0x7d, 0x5d, 0xb8, 0xc7, 0x6c, 0x48, 0x53, 0x2b, 0x47, 0xe0, 0x12, 0x00, 0x0e, 0xfe, 0xa5, 0x93, 0x34, 0xf9, 0x3e, 0xa6, 0x3f, 0x56, 0xaa, 0x43, 0x65, 0xbb, 0x5a, 0x70, 0x3e, 0x62, 0xac, 0x3f, 0x5b, 0x90, 0x02, 0x50, 0x5d, 0x05, 0xa8, 0xd5, 0x67, 0x1a, 0x62, 0xec, 0xd4, 0xde, 0x29, 0x04, 0xac, 0x6d, 0x15, 0x5d, 0xa0, 0xec, 0xf2, 0x57, 0x13, 0x0e, 0x17, 0x96, 0x0c, 0x32, 0x6a, 0xc5, 0xe0, 0xa8, 0xff, 0x85, 0xa4, 0xa3, 0xe3, 0x0e, 0x35, 0x5d, 0xd1, 0x28, 0x84, 0xaa, 0xc4, 0x84, 0xcd, 0x25, 0x63, 0x85, 0x82, 0x3e, 0x12, 0x30, 0x17, 0x57, 0x45, 0xb8, 0xb4, 0x34, 0x01, 0x3a, 0xa2, 0x77, 0x61, 0xc8, 0x3d, 0x1f, 0xc5, 0x0e, 0x4a, 0xbb, 0xf6, 0xa0, 0x5d, 0x79, 0x4b, 0xc8, 0xf3, 0x9c, 0x87, 0x05, 0x2f, 0xea, 0x25, 0x28, 0x91, 0x69, 0x77, 0x7c, 0xba, 0xea, 0x4a, 0x75, 0x2e, 0x2b, 0x17, 0x83, 0x50, 0x32, 0x43, 0x4f, 0xcd, 0xf1, 0x77, 0xb1, 0x22, 0x0a, 0x8b, 0x69, 0x58, 0x09, 0x35, 0x07, 0x6d, 0x61, 0x4a, 0x8d, 0x18, 0x65, 0x6e, 0x9b, 0x62, 0x07, 0xd0, 0x6a, 0x92, 0x39, 0x05, 0x80, 0x14, 0xfa, 0x1c, 0x93, 0x84, 0x0c, 0xb5, 0x8c, 0x41, 0x91, 0x4e, 0x48, 0xf0, 0xf2, 0xba, 0x1d, 0x73, 0x2f, 0x1e, 0xa1, 0x55, 0xc3, 0x02, 0x8c, 0xb1, 0xf2, 0x37, 0xa6, 0x9a, 0x6b, 0xcd, 0x45, 0x2e, 0x08, 0x90, 0x26, 0x63, 0x91, 0xff, 0x22, 0x5e, 0xcd, 0xae, 0x9b, 0x19, 0x1e, 0x10, 0x62, 0x4e, 0x1f, 0x2d, 0x81, 0x69, 0x4f, 0x41, 0xe5, 0x94, 0xff, 0x7e, 0xcc, 0x15, 0x36, 0x1e, 0x29, 0x59, 0x37, 0xe7, 0x64, 0x40, 0x17, 0x1a, 0x32, 0xba, 0x01, 0x26, 0x30, 0x80, 0x60, 0x07, 0x86, 0x6e, 0xd4, 0xb3, 0xe2, 0x44, 0x16, 0x33, 0xf2, 0x4c, 0x84, 0x0e, 0xb1, 0x4a, 0xc7, 0x92, 0xa6, 0xa3, 0x42, 0x36, 0x05, 0x3e, 0x74, 0xa8, 0xb1, 0xc5, 0x63, 0x59, 0x0d, 0x1e, 0x36, 0x45, 0x2b, 0x36, 0x5e, 0xca, 0xab, 0x97, 0x49, 0xd3, 0xab, 0xae, 0x63, 0x0a, 0xd1, 0x03, 0x57, 0x88, 0xa4, 0xa4, 0x3c, 0xda, 0x15, 0x49, 0x1a, 0x5d, 0xe6, 0x5e, 0xb9, 0x82, 0x23, 0xc0, 0x83, 0x96, 0xfe, 0x38, 0x0b, 0x80, 0x0e, 0xde, 0x22, 0xeb, 0x5d, 0xe4, 0x56, 0x32, 0xbe, 0xe0, 0xc0, 0x6e, 0x69, 0x63, 0x27, 0x4e, 0x00, 0x58, 0x80, 0x70, 0xd9, 0xcc, 0x4e, 0xae, 0x6c, 0x5e, 0x6a, 0x43, 0x81, 0xfd, 0x45, 0xb2, 0xa4, 0x6c, 0xf0, 0x9c, 0x66, 0x5c, 0x7d, 0x5c, 0x78, 0x55, 0x33, 0x4b, 0x3c, 0x3b, 0x1d, 0x18, 0x58, 0x79, 0x6a, 0x02, 0xec, 0xce, 0x53, 0x69, 0xc0, 0x17, 0xed, 0x57, 0xaf, 0x71, 0x5b, 0x42, 0x1b, 0x49, 0xd8, 0xe8, 0x96, 0x80, 0xb6, 0x48, 0x1b, 0x7c, 0xf8, 0x74, 0x1c, 0xb1, 0xc4, 0x10, 0xb7, 0xf4, 0x97, 0x7e, 0x6b, 0x8f, 0x54, 0xba, 0x37, 0xb9, 0x35, 0x9e, 0x7b, 0x17, 0x16, 0x9b, 0x89, 0x39, 0xae, 0x4f, 0x2e, 0x18, 0x65, 0xb4, 0x76, 0x20, 0x9a, 0x58, 0xe2, 0x57, 0x6e, 0x1c, 0x3f, 0x8e, 0x9a, 0xbb, 0xd8, 0xfc, 0x4c, 0xd6, 0x2d, 0xc1, 0xa6, 0x46, 0xac, 0x13, 0x1e, 0xa7, 0xf7, 0x1d, 0x28, 0x3a, 0xf4, 0xd6, 0x48, 0xfb, 0xe5, 0xb3, 0x84, 0x94, 0x47, 0x92, 0xae, 0x9a, 0x58, 0xc5, 0xac, 0x23, 0x1b, 0xb5, 0xcd, 0x96, 0xd2, 0x5e, 0xb2, 0x41, 0xfc, 0x9a, 0xae, 0x19, 0xf1, 0x7b, 0x4b, 0x53, 0x1b, 0xfa, 0xa5, 0x0c, 0x49, 0x6d, 0xff, 0xf4, 0x51, 0x88, 0x19, 0x04, 0xd9, 0x85, 0x8e, 0xe2, 0x3a, 0x62, 0x31, 0x5c, 0x6e, 0xe8, 0x4d, 0x04, 0x1d, 0xd8, 0xc2, 0x7b, 0x51, 0xe7, 0x59, 0xbc, 0x85, 0x5c, 0xc4, 0xcc, 0xad, 0xcb, 0x93, 0x69, 0x18, 0xe4, 0x71, 0x9e, 0x63, 0x33, 0x99, 0xb6, 0x3b, 0x23, 0x11, 0x17, 0x7a, 0x3d, 0x6f, 0xb9, 0x6b, 0xf1, 0xf2, 0xa7, 0x03, 0xfd, 0xf0, 0xcd, 0x5b, 0xb5, 0xda, 0x9a, 0xd9, 0x95, 0x02, 0x76, 0xd8, 0x38, 0xd3, 0xbd, 0xa0, 0x4a, 0x9a, 0xab, 0x70, 0xde, 0xc6, 0xf9, 0xa5, 0x19, 0x9c, 0xc4, 0xf9, 0x07, 0x4d, 0xea, 0x15, 0xc2, 0x91, 0x4d, 0x54, 0xa9, 0x2c, 0xca, 0xdf, 0xaa, 0xd1, 0xc4, 0xc0, 0x18, 0x77, 0x28, 0x2a, 0x2c, 0xc3, 0x7c, 0x26, 0xbd, 0xd8, 0x0d, 0x51, 0xa1, 0x4d, 0xad, 0x76, 0x76, 0xaa, 0xa9, 0x45, 0x82, 0x4f, 0x76, 0xfb, 0x1a, 0xd3, 0x71, 0x3c, 0x55, 0xa2, 0x5c, 0xe0, 0xd6, 0xda, 0x35, 0xbe, 0x25, 0x23, 0x26, 0x51, 0xc6, 0xb4, 0xf3, 0x3e, 0x2c, 0x54, 0x09, 0xc7, 0x6f, 0xa5, 0x08, 0x81, 0xba, 0x75, 0xda, 0xcb, 0x4d, 0x05, 0xdd, 0xca, 0x93, 0x48, 0x30, 0xe8, 0x4a, 0x1f, 0xfd, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x07, 0x80, 0x25, 0x2f, 0xbc, 0x49, 0xf8, 0xb3, 0xa3, 0x32, 0xd6, 0x35, 0x20, 0xca, 0x01, 0x49, 0x96, 0xa0, 0x81, 0x42, 0xde, 0xc4, 0xdb, 0x0f, 0xd1, 0x99, 0xe6, 0xd4, 0x23, 0x2a, 0xa6, 0x21, 0x13, 0xfe, 0x51, 0x27, 0xce, 0x18, 0x2a, 0xfa, 0x49, 0x9f, 0xcd, 0x0c, 0x1f, 0xcf, 0x9e, 0x44, 0x27, 0x41, 0xdc, 0x09, 0xcf, 0xef, 0x19, 0xf5, 0x57, 0x7f, 0x36, 0x5c, 0x99, 0x7e, 0x03, 0x74, 0xfb, 0xa9, 0xb6, 0xde, 0xeb, 0xd1, 0x2b, 0x5f, 0x12, 0x6a, 0xa9, 0x33, 0x2c, 0x2a, 0xba, 0xad, 0x8f, 0xc2, 0x27, 0x57, 0x6a, 0xd7, 0x40, 0xf7, 0x4f, 0x4c, 0x9a, 0xb0, 0x3a, 0x5d, 0x2e, 0xf9, 0xf1, 0xea, 0xbd, 0x82, 0xaa, 0xbd, 0xe6, 0x19, 0x16, 0xd5, 0x03, 0x5e, 0x43, 0xfd, 0x88, 0x71, 0xd5, 0xb7, 0x78, 0xbe, 0x80, 0x0f, 0xc9, 0x7f, 0x3a, 0x8f, 0xe1, 0x44, 0xd4, 0x0f, 0xce, 0x26, 0xaf, 0x65, 0xe0, 0xf5, 0x04, 0x53, 0x56, 0x97, 0x4f, 0xf4, 0xc1, 0x44, 0x8d, 0xf7, 0x88, 0x55, 0x47, 0x16, 0xaf, 0x3f, 0x8e, 0x42, 0xdf, 0xbc, 0x14, 0xc3, 0xe6, 0x9f, 0x0d, 0x69, 0x54, 0x5b, 0x7c, 0x49, 0xcf, 0xbf, 0x42, 0x4f, 0xc7, 0x64, 0x8a, 0xe5, 0x84, 0x87, 0x20, 0x9b, 0xfd, 0x70, 0x25, 0x38, 0xd3, 0xb4, 0x97, 0x78, 0xf1, 0x4f, 0x3f, 0x0f, 0xbb, 0x9c, 0xa3, 0x17, 0xd5, 0x4e, 0x4b, 0xac, 0x82, 0x9a, 0x73, 0xb7, 0xc5, 0xec, 0x10, 0x7a, 0x7b, 0xdb, 0x77, 0x2c, 0xb1, 0xf3, 0x8f, 0xc3, 0xa5, 0x31, 0x11, 0x32, 0x55, 0x35, 0xb5, 0x77, 0xd2, 0x62, 0x19, 0x46, 0x92, 0x94, 0xbb, 0x61, 0x0f, 0x30, 0x94, 0x8a, 0xf6, 0xf7, 0x30, 0xe0, 0xa2, 0x8c, 0x1b, 0xff, 0x8c, 0x29, 0x44, 0xb4, 0xb7, 0xb6, 0x5f, 0x4d, 0x52, 0xc6, 0x07, 0xe1, 0x28, 0x8c, 0xae, 0x88, 0x8a, 0x22, 0xbd, 0xd7, 0x36, 0xe4, 0x8f, 0xd1, 0xeb, 0x65, 0x54, 0x19, 0x5f, 0xba, 0xfb, 0xfc, 0x91, 0xa1, 0xa4, 0xb8, 0xa4, 0x2d, 0x85, 0x20, 0xc4, 0xe5, 0xa7, 0x4e, 0xdb, 0xa4, 0xc5, 0xcc, 0x2f, 0x37, 0x41, 0x29, 0x47, 0x15, 0xff, 0x04, 0x80, 0x08, 0x37, 0xce, 0xc5, 0xe3, 0x5a, 0x3f, 0x83, 0xbb, 0x03, 0x9e, 0xfe, 0xec, 0xe4, 0x11, 0x41, 0x12, 0x13, 0xf2, 0x00, 0xe5, 0x1a, 0x02, 0x49, 0xeb, 0xdb, 0x57, 0xe4, 0xce, 0xa0, 0x3f, 0xfd, 0x3c, 0x73, 0x2b, 0x92, 0x44, 0x79, 0x9e, 0x12, 0x4f, 0xfa, 0xe4, 0x53, 0x62, 0xf2, 0xb0, 0xe2, 0x8a, 0xf0, 0x93, 0xa8, 0x1d, 0xee, 0x8d, 0x58, 0x7a, 0x4c, 0x29, 0x91, 0x29, 0xc1, 0xa4, 0xd5, 0xe6, 0x37, 0x1b, 0x75, 0x5b, 0xb6, 0x6b, 0x76, 0x2e, 0xcb, 0xbd, 0xa9, 0xbe, 0x4c, 0x2e, 0x21, 0xa6, 0x38, 0xde, 0x66, 0x2f, 0x51, 0xea, 0x4c, 0xba, 0x3f, 0x4a, 0xfe, 0x7a, 0x15, 0xb3, 0x72, 0x26, 0xba, 0xcf, 0x9e, 0x1b, 0x03, 0xa6, 0xaa, 0x65, 0x68, 0xd3, 0x8c, 0x15, 0x17, 0xe9, 0x11, 0x18, 0x3c, 0xb6, 0xf8, 0x02, 0x54, 0x98, 0x49, 0xfa, 0x35, 0x3c, 0xcd, 0xac, 0xc8, 0x2b, 0x1a, 0x63, 0x93, 0x03, 0x05, 0xa1, 0x41, 0xbe, 0x12, 0xca, 0x15, 0x47, 0x72, 0x63, 0x77, 0x26, 0xd0, 0xe7, 0x8f, 0x0d, 0x6e, 0x9c, 0xac, 0x07, 0xbe, 0x03, 0x22, 0xd0, 0x39, 0x63, 0x8d, 0x9b, 0xc6, 0x20, 0x81, 0xb5, 0x67, 0x15, 0xf6, 0xb0, 0xe3, 0xb9, 0x3e, 0xb7, 0x3f, 0x8f, 0x46, 0xc9, 0x74, 0x10, 0x1e, 0x53, 0xf1, 0xd4, 0x30, 0x4d, 0x6e, 0x72, 0xb4, 0x73, 0x1c, 0xb6, 0x79, 0x82, 0x60, 0x2e, 0x2a, 0x7d, 0x82, 0x95, 0xb5, 0x7c, 0x4d, 0x44, 0xcb, 0xd8, 0x8a, 0x17, 0xe8, 0x50, 0x29, 0xd8, 0x3a, 0xeb, 0x29, 0xc1, 0x83, 0x0f, 0xd9, 0xaf, 0xcc, 0xfa, 0xea, 0x3a, 0x47, 0x5d, 0x33, 0x1f, 0xe8, 0x33, 0x5b, 0x88, 0x8e, 0xdb, 0xd5, 0x1e, 0xaf, 0x4a, 0x5f, 0xc0, 0xfa, 0xf0, 0xb5, 0xa3, 0x5b, 0xda, 0x38, 0xb7, 0x38, 0x5e, 0xce, 0x81, 0x44, 0xf7, 0x66, 0x62, 0x64, 0x1d, 0x04, 0xf0, 0x8a, 0x4f, 0xa2, 0x80, 0x76, 0x83, 0x23, 0x89, 0x61, 0x6b, 0xc3, 0xb7, 0xee, 0xb5, 0x06, 0x33, 0xad, 0x63, 0x04, 0x78, 0xc9, 0xde, 0x32, 0xde, 0xcf, 0x18, 0xb9, 0xb0, 0x3b, 0xee, 0x0a, 0x58, 0xea, 0xad, 0xbc, 0x1e, 0x77, 0xa0, 0x93, 0xf7, 0xae, 0x9e, 0xb6, 0x31, 0x59, 0x8e, 0xb1, 0x03, 0x8f, 0xbb, 0xa4, 0x25, 0x0c, 0x2e, 0xd7, 0xe2, 0x62, 0x5c, 0xf1, 0x68, 0xe9, 0x76, 0xd7, 0x23, 0x14, 0x45, 0xaf, 0xcb, 0x09, 0x50, 0x05, 0x3f, 0xa0, 0xf9, 0xc3, 0x9e, 0x89, 0x05, 0xa8, 0x3b, 0x54, 0x55, 0x32, 0x74, 0x91, 0x46, 0xc1, 0x2c, 0x96, 0x7e, 0x60, 0xad, 0xfa, 0xbb, 0xcd, 0x09, 0x7b, 0x39, 0x10, 0x82, 0x8a, 0xc0, 0x5a, 0x0d, 0xab, 0xb3, 0x71, 0x45, 0xad, 0x39, 0x8e, 0xec, 0x4d, 0x91, 0x8d, 0xda, 0x8d, 0xfa, 0xb0, 0xad, 0x44, 0x3c, 0xc9, 0x21, 0x56, 0x22, 0xfc, 0xd3, 0xba, 0xb7, 0x3c, 0xe3, 0x8d, 0xda, 0x59, 0x34, 0x42, 0xdd, 0x04, 0x5b, 0x8e, 0x2b, 0xc7, 0x94, 0xd5, 0x42, 0xe0, 0x4a, 0x6f, 0x35, 0x5a, 0x27, 0x82, 0xd8, 0x82, 0x40, 0xee, 0x0f, 0xa6, 0xef, 0xe4, 0x70, 0xe3, 0x30, 0xb7, 0x2d, 0xd4, 0xbb, 0x27, 0xb2, 0xbf, 0xad, 0x49, 0x45, 0xbc, 0xeb, 0xbe, 0xb7, 0xd8, 0xe3, 0xb1, 0xf3, 0xeb, 0x41, 0x20, 0x9b, 0x21, 0x54, 0xc3, 0xa8, 0xaf, 0x9f, 0x20, 0x5c, 0x15, 0x8e, 0x25, 0xbc, 0xbc, 0x69, 0x91, 0xfe, 0xda, 0xad, 0xe5, 0x37, 0x7d, 0xb0, 0x51, 0x14, 0xae, 0x8f, 0x35, 0x15, 0x0a, 0xd4, 0x49, 0xa7, 0xd9, 0x20, 0x70, 0xa4, 0xf2, 0xf4, 0x24, 0x66, 0x52, 0xd1, 0xa5, 0x22, 0xea, 0x29, 0xd9, 0xb2, 0x82, 0x8d, 0x36, 0x66, 0x75, 0x6e, 0xd5, 0x8c, 0x54, 0x08, 0x21, 0xf2, 0xee, 0x78, 0xc7, 0x1f, 0x9c, 0x63, 0x5d, 0x88, 0x56, 0xd1, 0xa0, 0x80, 0x33, 0x60, 0x55, 0x23, 0x72, 0xd6, 0xb0, 0x1a, 0x50, 0xde, 0x25, 0x70, 0xb5, 0x77, 0x42, 0xf8, 0x19, 0x18, 0x15, 0x8f, 0xfd, 0x0c, 0x6a, 0x46, 0x1f, 0xbf, 0xe7, 0x60, 0x91, 0xe7, 0xbb, 0x25, 0x63, 0x66, 0xff, 0x11, 0x97, 0xbb, 0xfd, 0x3a, 0x17, 0x94, 0x77, 0xb4, 0xc5, 0x21, 0xba, 0x30, 0x94, 0xdd, 0xe5, 0xeb, 0x1d, 0x01, 0xba, 0xf9, 0xb0, 0x30, 0xdb, 0x11, 0x93, 0xb7, 0xfa, 0x79, 0xe8, 0x5e, 0xb3, 0x39, 0xf4, 0x51, 0x68, 0x31, 0xce, 0xe9, 0x0e, 0x93, 0xde, 0xff, 0xec, 0x27, 0xbd, 0xa6, 0x1a, 0x4c, 0xe0, 0x92, 0x5c, 0xd4, 0x07, 0xd2, 0xa1, 0xdd, 0x12, 0x83, 0xd2, 0x9a, 0x79, 0xb3, 0x3c, 0xfb, 0x07, 0xe3, 0x18, 0x1a, 0xa3, 0x24, 0x80, 0xb4, 0xcc, 0xf4, 0xc6, 0xa5, 0x6c, 0x25, 0xd7, 0x99, 0x1a, 0x30, 0xf0, 0xa9, 0xfc, 0x2e, 0x83, 0x44, 0xac, 0x64, 0x76, 0x34, 0xb0, 0xa6, 0x6f, 0x20, 0x5a, 0x14, 0xf2, 0x07, 0xa7, 0x6f, 0x4d, 0xab, 0xf5, 0xfc, 0x9d, 0xd6, 0x3e, 0x82, 0x48, 0x31, 0x25, 0x47, 0xc9, 0x0e, 0x1d, 0xdb, 0x98, 0x91, 0x56, 0xf5, 0xfe, 0x66, 0x8d, 0x48, 0xf0, 0x4c, 0x6c, 0x2c, 0x96, 0x54, 0x43, 0xec, 0x76, 0xf2, 0xe1, 0x76, 0x68, 0xc8, 0xe1, 0xde, 0x0d, 0x8e, 0x6f, 0xfc, 0x15, 0xd5, 0x93, 0x92, 0xfe, 0xca, 0x9b, 0x30, 0x61, 0x03, 0x0b, 0xca, 0x99, 0x2f, 0xd3, 0x15, 0xe9, 0x66, 0x81, 0xbd, 0x56, 0x17, 0x14, 0x4a, 0x2e, 0xf1, 0x34, 0x84, 0x55, 0x9d, 0xc0, 0x2b, 0xa7, 0x4a, 0xee, 0xf1, 0x7c, 0x67, 0xc7, 0xf3, 0x08, 0x1e, 0x6d, 0x6b, 0x5b, 0xcc, 0x81, 0x91, 0x5c, 0x94, 0x1a, 0x80, 0xda, 0x3a, 0xce, 0x36, 0x05, 0xb0, 0x7a, 0xe8, 0xd0, 0xb4, 0x57, 0x9c, 0xf9, 0xea, 0xf3, 0x26, 0x1d, 0xcb, 0xf8, 0xdd, 0x65, 0xaf, 0xf7, 0xcd, 0xf7, 0xa1, 0x3d, 0xfc, 0x9a, 0x3b, 0x08, 0xb9, 0xfa, 0x3c, 0x16, 0x49, 0x4a, 0xf1, 0xba, 0x4d, 0x31, 0xdd, 0x5e, 0x4f, 0x3d, 0x66, 0x22, 0x1b, 0x08, 0x91, 0x7d, 0xc6, 0xaf, 0x15, 0x07, 0x3c, 0xa1, 0xf7, 0x07, 0xfd, 0x3e, 0x90, 0xbb, 0x6f, 0x7a, 0xe9, 0xe1, 0x2f, 0xb9, 0xee, 0x91, 0x8e, 0x18, 0xcc, 0x8d, 0x1d, 0x22, 0xa0, 0xa0, 0x28, 0x25, 0xfc, 0xd4, 0x94, 0xd3, 0xaa, 0xcf, 0xce, 0xd0, 0x85, 0x82, 0x6f, 0x20, 0x9f, 0x55, 0x0e, 0xe5, 0x72, 0x0d, 0x17, 0x3e, 0x34, 0xc7, 0x2c, 0x0a, 0x14, 0x45, 0x27, 0xe2, 0xc7, 0x2f, 0x86, 0xa1, 0x55, 0x3e, 0x78, 0x03, 0xe9, 0x78, 0x2e, 0xd3, 0x99, 0xee, 0xa0, 0x14, 0xf8, 0xe3, 0x6c, 0xeb, 0x3f, 0x9a, 0xf3, 0x15, 0xce, 0xd5, 0x76, 0xf6, 0x3a, 0x86, 0x30, 0x76, 0xf9, 0x88, 0x30, 0xf5, 0x4a, 0x50, 0x58, 0x80, 0xe9, 0xd9, 0xd4, 0xb9, 0x34, 0x42, 0xa6, 0x4e, 0x9c, 0x1a, 0x07, 0x16, 0x9e, 0xee, 0xe4, 0x88, 0x04, 0x8e, 0xa8, 0xe7, 0xcd, 0xe8, 0x47, 0x1e, 0x54, 0x45, 0xd2, 0x65, 0xd8, 0xee, 0x4b, 0xbd, 0xd0, 0x85, 0xaa, 0xfb, 0x06, 0x53, 0x91, 0x7e, 0xe0, 0x59, 0x20, 0x57, 0x6a, 0xee, 0xd8, 0x9f, 0x77, 0x7f, 0xd7, 0x40, 0x63, 0xbb, 0x21, 0x75, 0x76, 0x11, 0x27, 0xcf, 0x05, 0xbb, 0x41, 0x30, 0x98, 0xbf, 0xdc, 0x5f, 0xc6, 0xa4, 0x1e, 0x30, 0xa1, 0x53, 0xd4, 0x36, 0x7f, 0x2e, 0x86, 0xd7, 0xd9, 0x95, 0x29, 0xd5, 0x46, 0x18, 0x60, 0x27, 0xe4, 0x6f, 0xcb, 0xf4, 0xe2, 0xfe, 0xff, 0x3e, 0xff, 0x15, 0xc6, 0xf2, 0x31, 0xf9, 0x2a, 0xc8, 0x05, 0x4e, 0x7c, 0x2e, 0x92, 0xc8, 0x41, 0x4f, 0x9e, 0x23, 0x21, 0x4d, 0x74, 0xf8, 0xc3, 0x44, 0x39, 0xc2, 0x69, 0x4b, 0x2e, 0x76, 0x5e, 0x44, 0x12, 0x65, 0x31, 0x98, 0xbe, 0x0a, 0x10, 0x11, 0x12, 0x2c, 0x67, 0x3d, 0x85, 0x2e, 0xd3, 0x97, 0x54, 0x1e, 0xb6, 0xad, 0xd9, 0x45, 0x11, 0x53, 0x04, 0x7c, 0x3f, 0xf4, 0xc9, 0xac, 0x82, 0x1b, 0x84, 0xf4, 0x20, 0x6b, 0xf1, 0xf5, 0x72, 0x04, 0x24, 0xc1, 0xd3, 0x42, 0x43, 0x52, 0x9d, 0x2d, 0xd3, 0x89, 0x8e, 0xd8, 0x28, 0xb9, 0xa2, 0xb4, 0xed, 0xbc, 0x76, 0x87, 0x55, 0x67, 0x39, 0xd9, 0xb7, 0x20, 0x6a, 0xec, 0xec, 0xb8, 0x14, 0x51, 0x91, 0xb9, 0x96, 0x0f, 0x7a, 0x3a, 0x12, 0xde, 0x14, 0x3b, 0x83, 0xcf, 0x41, 0x5b, 0x5d, 0xff, 0x33, 0x68, 0xdb, 0x53, 0x64, 0x93, 0xb1, 0xc3, 0x8a, 0x46, 0xa8, 0x44, 0x9c, 0x14, 0x12, 0x6c, 0x92, 0x6f, 0xae, 0xc3, 0x45, 0xb2, 0xa1, 0x67, 0x81, 0x3c, 0x22, 0x47, 0xfd, 0xa4, 0x7a, 0x79, 0xa8, 0x0a, 0xfb, 0x7a, 0x91, 0x6e, 0xe9, 0x53, 0xec, 0x98, 0x82, 0x57, 0xad, 0x05, 0x38, 0x55, 0xc1, 0xce, 0x3a, 0x04, 0x4d, 0x12, 0x72, 0x37, 0x4a, 0x36, 0x54, 0x3f, 0x67, 0x8a, 0xee, 0xd9, 0xf3, 0x80, 0xd5, 0xd7, 0xb8, 0xfc, 0x6e, 0x4f, 0x60, 0x2b, 0x5a, 0xa4, 0xc5, 0x05, 0xdb, 0xe5, 0x09, 0xe3, 0xeb, 0xa2, 0x51, 0x33, 0x30, 0x96, 0x46, 0x01, 0x26, 0x8f, 0x38, 0xc9, 0x97, 0x32, 0x2d, 0xb4, 0x59, 0x15, 0x15, 0x38, 0x66, 0x66, 0xfe, 0xcb, 0xee, 0xc1, 0xf6, 0x4e, 0xb7, 0xdf, 0x7b, 0x63, 0xe6, 0x3f, 0xe0, 0x1c, 0x97, 0xed, 0x86, 0xf3, 0xd2, 0xad, 0x42, 0x29, 0x20, 0x28, 0xa6, 0x59, 0x58, 0x7d, 0x8f, 0x5c, 0x43, 0x07, 0xd1, 0x7e, 0x83, 0xba, 0x9c, 0x1b, 0xfe, 0x17, 0x9e, 0xc8, 0x09, 0x63, 0x9a, 0x2d, 0x61, 0x33, 0x51, 0x46, 0x01, 0xa8, 0xe9, 0x43, 0x1e, 0x4e, 0xfe, 0x61, 0x1a, 0x28, 0x11, 0x65, 0x70, 0x43, 0x9f, 0xfc, 0x21, 0x1d, 0x76, 0x7b, 0x40, 0x08, 0x18, 0xd3, 0xe8, 0xc2, 0xe3, 0x8c, 0xe7, 0x27, 0xc2, 0xec, 0xb0, 0x08, 0x3e, 0x6b, 0x8f, 0x77, 0x6d, 0x9e, 0xa6, 0xab, 0xce, 0x9a, 0xf8, 0x8f, 0x77, 0xb3, 0xf4, 0xe8, 0x8b, 0xe7, 0xd9, 0xa1, 0x95, 0x40, 0x6b, 0xca, 0x21, 0x98, 0xff, 0xdc, 0xdc, 0x96, 0xc3, 0x08, 0x81, 0x72, 0x9a, 0xdd, 0xe2, 0xcf, 0x95, 0x99, 0xa6, 0xa3, 0x5e, 0x9e, 0x25, 0x60, 0xa3, 0xc3, 0x39, 0xf7, 0x54, 0x6c, 0xf2, 0x75, 0xa9, 0x38, 0x12, 0x38, 0x4d, 0x42, 0xe8, 0xec, 0x13, 0x25, 0xa0, 0xf8, 0x04, 0xb8, 0xf6, 0x66, 0x0b, 0x56, 0xe1, 0xfb, 0x26, 0x03, 0xe6, 0xa5, 0xf1, 0x4d, 0x7f, 0xa5, 0x9d, 0x58, 0x71, 0xd8, 0xc7, 0x6a, 0xbe, 0xdc, 0x90, 0x89, 0xb1, 0x36, 0xb4, 0xb6, 0xb4, 0xbb, 0xaf, 0x6e, 0x43, 0x10, 0xa6, 0xea, 0xee, 0x12, 0xcb, 0x08, 0x2c, 0x4e, 0x66, 0xf0, 0x1f, 0xf4, 0xbf, 0xd3, 0xeb, 0x63, 0x48, 0xd0, 0xbe, 0x8a, 0xed, 0x24, 0xdb, 0x0f, 0x23, 0x1d, 0x2e, 0x30, 0x97, 0x0f, 0xd8, 0xc6, 0x3b, 0x04, 0x2f, 0x33, 0x78, 0x20, 0x6e, 0xb1, 0x33, 0x03, 0x27, 0xac, 0x0a, 0x37, 0x15, 0x31, 0xef, 0x4d, 0x43, 0xcc, 0xa0, 0x49, 0x80, 0xe3, 0x8c, 0xc0, 0xf3, 0xf7, 0x2d, 0x37, 0x1d, 0xd3, 0x90, 0x5f, 0xad, 0x31, 0xb5, 0x95, 0x17, 0x69, 0x4b, 0xec, 0x84, 0x9d, 0x2b, 0x8d, 0xdd, 0x9b, 0x58, 0x04, 0xba, 0x28, 0x0e, 0x28, 0xc1, 0x54, 0x6c, 0xb0, 0x25, 0x0c, 0x4f, 0x98, 0x47, 0xf7, 0x93, 0xc2, 0xae, 0x2f, 0x6d, 0x29, 0x9c, 0x3d, 0xe3, 0xb5, 0xe3, 0x28, 0x43, 0x14, 0xe6, 0x92, 0x4c, 0x79, 0x90, 0x59, 0x75, 0x77, 0x56, 0x43, 0xda, 0xac, 0xa9, 0x42, 0xd7, 0xca, 0x95, 0x73, 0x26, 0x54, 0x1f, 0x3a, 0x8a, 0x37, 0x64, 0xd7, 0xcf, 0xe1, 0x31, 0xf7, 0x40, 0x59, 0xfd, 0xff, 0xea, 0x72, 0xfd, 0xc4, 0xde, 0xe3, 0x4d, 0x8a, 0xf5, 0x80, 0xc0, 0x61, 0x21, 0xbd, 0xbd, 0x8e, 0x42, 0xd5, 0x4c, 0xe4, 0xf4, 0x78, 0x31, 0xca, 0xf1, 0xec, 0x7c, 0x7b, 0x85, 0x6a, 0x05, 0x54, 0xbe, 0x38, 0x54, 0x2f, 0x1f, 0xda, 0x9f, 0x98, 0xe2, 0x79, 0xd7, 0x42, 0xca, 0xba, 0x85, 0x21, 0xe2, 0xcb, 0x2b, 0xae, 0x4a, 0x4e, 0x35, 0xfb, 0xcf, 0x3d, 0xc5, 0xae, 0x27, 0x30, 0xa9, 0x45, 0xe6, 0x3b, 0x43, 0x3e, 0x35, 0xe3, 0xf2, 0x0d, 0x53, 0x32, 0x2b, 0xf6, 0xe6, 0xc7, 0xd5, 0x02, 0x82, 0x03, 0xc1, 0x00, 0xd4, 0x04, 0x9b, 0xef, 0x5d, 0x58, 0xb0, 0xa3, 0xaa, 0xd2, 0xab, 0x53, 0x65, 0x99, 0x03, 0x49, 0x48, 0x4d, 0xf5, 0xdf, 0x5d, 0x16, 0x14, 0x11, 0x60, 0x45, 0x1b, 0xff, 0x4a, 0x60, 0x2b, 0x37, 0x63, 0xf6, 0xa7, 0x8a, 0xa8, 0xff, 0x08, 0x97, 0x08, 0xfc, 0xbb, 0xb3, 0x20, 0xa3, 0xcd, 0xd9, 0x58, 0xdb, 0x16, 0x1b, 0x88, 0x02, 0x1e, 0x0f, 0x43, 0x9b, 0x16, 0x7e, 0xbe, 0xb1, 0x9c, 0x13, 0x10, 0xdc, 0xa1, 0x56, 0xff, 0xa3, 0xff, 0x5e, 0x69, 0x30, 0xee, 0x7e, 0x76, 0x5f, 0x84, 0x94, 0xeb, 0x8f, 0x58, 0xf8, 0xcf, 0xbb, 0x99, 0x6e, 0xf0, 0xd8, 0x32, 0xf6, 0xce, 0x48, 0x6f, 0x7c, 0xc8, 0x8f, 0xd3, 0x86, 0x22, 0x49, 0x9f, 0xde, 0x11, 0x05, 0xa4, 0xdc, 0x92, 0xfb, 0x0f, 0xfa, 0x09, 0x4d, 0x17, 0x1a, 0xe2, 0x76, 0x67, 0x40, 0xa9, 0x5b, 0x1b, 0x54, 0x66, 0x48, 0xf7, 0xc3, 0x59, 0xd4, 0xcf, 0x55, 0xd0, 0x7f, 0x3b, 0xb0, 0xa2, 0xd8, 0xec, 0xb7, 0x88, 0xe7, 0xb0, 0x30, 0x72, 0x42, 0x65, 0xe2, 0x91, 0xa7, 0x9b, 0xf6, 0x07, 0x45, 0x52, 0x51, 0xaa, 0xbe, 0x32, 0x35, 0xe4, 0x88, 0x23, 0xe7, 0xcb, 0x3c, 0x1c, 0xfb, 0x0b, 0x96, 0xd5, 0xb3, 0x92, 0x86, 0x79, 0x5b, 0x47, 0x93, 0xd6, 0xbd, 0xc7, 0x21, 0x17, 0xd0, 0xc9, 0xc7, 0x69, 0x84, 0x80, 0x98, 0xaf, 0x2c, 0x63, 0xd1, 0xef, 0x6e, 0xca, 0x84, 0x30, 0x32, 0x83, 0x2d, 0x49, 0xbb, 0x1f, 0x2a, 0xfe, 0x40, 0x7c, 0x03, 0xd4, 0x45, 0xdc, 0xfe, 0x94, 0xf9, 0xe4, 0x36, 0x47, 0xfa, 0x7e, 0x2e, 0x93, 0x03, 0xf8, 0x15, 0xf9, 0xce, 0xc3, 0x5b, 0x76, 0x10, 0xec, 0x89, 0x8c, 0xce, 0x25, 0xa5, 0x77, 0x9a, 0xc5, 0x1e, 0xdd, 0x07, 0x1b, 0x5b, 0xac, 0x6f, 0xdb, 0x94, 0x85, 0xdf, 0x02, 0x22, 0xd1, 0xa9, 0x01, 0x8e, 0x63, 0xa1, 0xee, 0x94, 0x9c, 0xdb, 0xb4, 0x1a, 0x43, 0xe1, 0x1f, 0x4e, 0x2f, 0x68, 0x50, 0x0c, 0x2f, 0x5b, 0xc5, 0x1b, 0xe1, 0x8d, 0x4b, 0xe0, 0x63, 0x8d, 0x7a, 0x30, 0xbe, 0xb7, 0x2e, 0x02, 0xc6, 0x02, 0xac, 0xa8, 0xb8, 0x65, 0xc6, 0x28, 0xee, 0xe4, 0xec, 0x99, 0xa1, 0x9a, 0xfd, 0x1f, 0xb5, 0x85, 0x7a, 0x94, 0x16, 0xe2, 0xe7, 0x74, 0x06, 0x54, 0x1b, 0xd0, 0xaf, 0x58, 0x4e, 0x50, 0x7e, 0xd6, 0xe4, 0x31, 0xd2, 0x0c, 0xd7, 0x9d, 0xe2, 0x00, 0x30, 0xbe, 0x26, 0x30, 0x48, 0x99, 0x98, 0x58, 0x54, 0x5a, 0xc4, 0x0a, 0x6c, 0xa1, 0x06, 0xe9, 0x38, 0xe6, 0x79, 0x39, 0x00, 0x9e, 0xb6, 0xe3, 0xf7, 0x01, 0xcf, 0x2f, 0x82, 0x5e, 0xc3, 0x21, 0x1b, 0x79, 0x93, 0xb5, 0xe4, 0x39, 0x9d, 0x32, 0x9d, 0x72, 0xa4, 0xa8, 0xc9, 0x90, 0xce, 0xaf, 0xc0, 0x00, 0xad, 0x20, 0x87, 0x26, 0xc7, 0xd3, 0x5f, 0x2e, 0xf0, 0x5e, 0xf8, 0x8b, 0x85, 0xa3, 0xc6, 0x66, 0xd8, 0x2f, 0x86, 0xfe, 0x7d, 0x8d, 0x22, 0xa5, 0x6d, 0x68, 0x3e, 0x87, 0x6e, 0xf7, 0xf1, 0xf0, 0x07, 0xc4, 0xe3, 0xf1, 0x84, 0xc4, 0x93, 0x42, 0x06, 0x20, 0x80, 0x64, 0xb3, 0x52, 0x5c, 0xa5, 0xcf, 0xee, 0xfe, 0xa4, 0x09, 0x41, 0xbe, 0xaa, 0x78, 0x52, 0x76, 0x3f, 0xf7, 0xe8, 0xa1, 0x6b, 0x0a, 0xbc, 0x22, 0xbe, 0xdf, 0x72, 0x7b, 0xea, 0x90, 0x43, 0xee, 0xc2, 0x0b, 0x26, 0xdc, 0x02, 0x26, 0xa7, 0x50, 0x04, 0x7a, 0x06, 0x91, 0xae, 0x93, 0xd5, 0xd2, 0xc9, 0xa1, 0xe1, 0xfc, 0xb9, 0x8c, 0x94, 0xca, 0xa8, 0x1c, 0x2c, 0x57, 0x97, 0x3e, 0x50, 0xed, 0x93, 0x45, 0x7a, 0x2c, 0x59, 0x7b, 0x34, 0x8f, 0xcd, 0xd6, 0x17, 0x93, 0xd8, 0xde, 0xe8, 0xb0, 0x9e, 0x27, 0x15, 0xc5, 0xbb, 0xa5, 0xbb, 0xc2, 0x30, 0x9b, 0xc7, 0x27, 0x02, 0x18, 0xd8, 0xdb, 0xa4, 0x84, 0x37, 0x64, 0xf7, 0xf7, 0xf1, 0xc8, 0x86, 0x4c, 0x64, 0x97, 0x08, 0xe9, 0x4e, 0x0e, 0xb6, 0x92, 0xe9, 0x4c, 0x7b, 0x7f, 0xe1, 0xcc, 0xa0, 0x71, 0xa7, 0x34, 0x48, 0x46, 0xbb, 0x37, 0xce, 0xb0, 0x4d, 0x39, 0xa8, 0x0e, 0xab, 0xf6, 0x2f, 0x7c, 0x88, 0xae, 0xcf, 0x90, 0xc6, 0x01, 0xd3, 0x5b, 0x37, 0xe9, 0xb1, 0x28, 0x42, 0x14, 0xbf, 0x59, 0x35, 0x04, 0xab, 0x46, 0x6e, 0xa8, 0x29, 0xe2, 0x7a, 0x77, 0x0e, 0x07, 0x67, 0xe4, 0x2b, 0x03, 0xd2, 0x02, 0x36, 0x16, 0xd7, 0x81, 0x5d, 0x38, 0x9c, 0x68, 0x9c, 0xf5, 0x9e, 0x49, 0x7d, 0x99, 0xfd, 0xcd, 0x1d, 0xd2, 0xdf, 0x3c, 0x36, 0x19, 0x85, 0xaa, 0xb1, 0x30, 0x7a, 0x21, 0xb1, 0x83, 0x16, 0xcf, 0xd1, 0x75, 0xa5, 0x9d, 0xd7, 0xc1, 0x60, 0xa8, 0xdb, 0x1e, 0xb9, 0x3e, 0x9c, 0x12, 0x42, 0xe8, 0x47, 0x49, 0x18, 0x9f, 0x5c, 0x12, 0xd1, 0x69, 0xd5, 0x7d, 0xa8, 0x3c, 0xda, 0x35, 0x8a, 0x6c, 0x63, 0xb8, 0x62, 0x8a, 0x61, 0xfa, 0xf2, 0x61, 0x11, 0x1e, 0xb6, 0xf3, 0x5c, 0x62, 0x9d, 0xa7, 0x62, 0x0c, 0x87, 0x93, 0xe2, 0x23, 0x6c, 0x3d, 0xa9, 0x2c, 0x4b, 0xd5, 0x7f, 0xfe, 0x72, 0x27, 0x36, 0x06, 0xcb, 0x65, 0x38, 0xef, 0x13, 0x57, 0x6a, 0xc9, 0xc6, 0x4f, 0x51, 0xd0, 0x90, 0x06, 0xa0, 0x23, 0x65, 0x95, 0xce, 0x16, 0x8f, 0x8d, 0xb2, 0xf9, 0x7f, 0x3c, 0x2c, 0x30, 0x5a, 0x38, 0xf1, 0x62, 0x79, 0x4b, 0xe5, 0xd7, 0x0a, 0x3f, 0x83, 0x5f, 0x46, 0x26, 0x97, 0xb7, 0x08, 0x8c, 0x5b, 0xb8, 0x02, 0x28, 0xf2, 0x4d, 0xdf, 0x93, 0x97, 0xc5, 0x94, 0x4b, 0x0e, 0x42, 0xc3, 0x35, 0x91, 0x6b, 0x69, 0x61, 0x76, 0x7f, 0x94, 0xcf, 0x0b, 0x81, 0x33, 0xff, 0xf3, 0x0c, 0xc7, 0x01, 0x94, 0x94, 0xa9, 0xed, 0xcd, 0x4b, 0xc8, 0xcb, 0x91, 0xf9, 0x7a, 0x47, 0xcd, 0x79, 0x3c, 0xa6, 0xde, 0x52, 0xd2, 0x47, 0x5c, 0x10, 0x62, 0xbb, 0xe5, 0x32, 0xde, 0x83, 0xcf, 0xa8, 0x52, 0xb3, 0xe7, 0xf9, 0xec, 0x17, 0x34, 0xbf, 0x33, 0x5d, 0xb2, 0x4e, 0x56, 0xf7, 0x29, 0xd9, 0x5c, 0x1b, 0x83, 0x01, 0xbb, 0xb9, 0x2b, 0x95, 0x52, 0x08, 0xab, 0xa4, 0x51, 0x03, 0xa1, 0xfb, 0x6a, 0x50, 0xcd, 0xa8, 0x9d, 0x95, 0x6f, 0x7e, 0xb1, 0x80, 0x1e, 0x9d, 0x81, 0x01, 0x26, 0x41, 0x78, 0x36, 0x3c, 0x8a, 0x44, 0xf4, 0x98, 0x88, 0x1c, 0x5d, 0x06, 0xd3, 0xd2, 0xb2, 0x58, 0x7d, 0xa1, 0x45, 0x1b, 0xbf, 0x8c, 0xf6, 0x6a, 0xfa, 0xfd, 0x08, 0x29, 0x3e, 0x91, 0x57, 0xf1, 0x3d, 0x20, 0xed, 0x49, 0x6e, 0x9c, 0x46, 0xd5, 0x08, 0x8d, 0x9b, 0xf8, 0xef, 0xa3, 0x3a, 0x98, 0xcb, 0xb4, 0xcb, 0x5b, 0x30, 0x25, 0x20, 0xcc, 0x04, 0xa1, 0xeb, 0xeb, 0xee, 0x1b, 0x36, 0x85, 0xc1, 0x93, 0x16, 0x5a, 0x31, 0xdf, 0xd6, 0x0e, 0x73, 0x9e, 0x63, 0x6e, 0x96, 0x90, 0x54, 0xd2, 0xc2, 0x53, 0x69, 0x93, 0xd5, 0x54, 0xca, 0xd8, 0x84, 0xf7, 0x8f, 0x9a, 0xd1, 0x80, 0x0d, 0x57, 0xa8, 0x26, 0xbe, 0x45, 0x64, 0xd5, 0x2b, 0xbb, 0x45, 0xb5, 0x08, 0xb9, 0x37, 0x57, 0x02, 0x82, 0x03, 0xc1, 0x00, 0xd1, 0x30, 0x2e, 0xb7, 0x9b, 0xe7, 0x5d, 0x13, 0x74, 0x1f, 0x52, 0xf2, 0x02, 0x18, 0xe9, 0x07, 0x87, 0x9e, 0xed, 0xde, 0x83, 0x92, 0xcf, 0x73, 0x61, 0x21, 0xc4, 0x62, 0x30, 0x6c, 0xa2, 0x36, 0xbd, 0xe2, 0xc5, 0x19, 0xf6, 0xdf, 0x51, 0x7b, 0xca, 0xd4, 0xe4, 0x51, 0x83, 0x49, 0x27, 0xdd, 0xbd, 0xb0, 0x10, 0x79, 0x39, 0xdd, 0x0e, 0x3d, 0x65, 0xad, 0x6d, 0xa3, 0x95, 0x52, 0x85, 0xdb, 0x18, 0x94, 0x60, 0xaa, 0xc0, 0xc8, 0x8b, 0xdb, 0xfe, 0xf9, 0xf0, 0x86, 0xf9, 0x33, 0x8a, 0xd7, 0xbe, 0x8d, 0x43, 0x83, 0x4d, 0xe4, 0x17, 0x2b, 0x46, 0x54, 0x44, 0x1b, 0xbe, 0x52, 0x64, 0x47, 0x02, 0x6c, 0x4a, 0x64, 0xb4, 0x3f, 0x21, 0x2f, 0xbb, 0xe3, 0x72, 0x7c, 0x26, 0x14, 0xdf, 0x80, 0x50, 0xd4, 0x94, 0xe9, 0xc6, 0x7d, 0x71, 0xd8, 0xaf, 0xfb, 0x74, 0x36, 0x33, 0xbe, 0x58, 0x63, 0xad, 0xcb, 0xdf, 0xc0, 0x73, 0x9e, 0x19, 0xb0, 0x65, 0xe1, 0xd1, 0x10, 0x44, 0xf1, 0xf0, 0x08, 0xa3, 0x09, 0x25, 0xeb, 0xd5, 0xcb, 0xdd, 0x98, 0xdd, 0xbc, 0x09, 0x2c, 0xef, 0xc1, 0x8d, 0x43, 0x15, 0x41, 0xc2, 0xa1, 0x84, 0x37, 0x70, 0x5a, 0xd5, 0xf5, 0xb2, 0x6a, 0x1f, 0xbb, 0xcc, 0x30, 0xb9, 0xd9, 0xc7, 0x36, 0x21, 0xf3, 0x69, 0x3e, 0x91, 0x38, 0x4d, 0xa5, 0xc4, 0xf7, 0x84, 0x90, 0x34, 0x0e, 0x47, 0x7e, 0x26, 0xf2, 0x98, 0x25, 0x26, 0xda, 0xf0, 0x4e, 0x55, 0xea, 0x4d, 0x9b, 0x8a, 0x4a, 0xe1, 0x1f, 0xa0, 0x07, 0x90, 0x9e, 0x59, 0x64, 0xae, 0xd9, 0xd6, 0x7e, 0x72, 0xa1, 0xc4, 0xea, 0x7d, 0xbd, 0x1f, 0x7d, 0x2b, 0xd9, 0x2c, 0xdc, 0x8b, 0xc0, 0xda, 0x52, 0x0c, 0xd1, 0xd0, 0x56, 0xb7, 0x93, 0xc7, 0x26, 0x79, 0x71, 0xd0, 0x0d, 0xae, 0xaa, 0xa7, 0xe4, 0xc1, 0x59, 0x27, 0x68, 0x97, 0x9a, 0xff, 0x3d, 0x36, 0x07, 0x55, 0x77, 0x07, 0x97, 0x69, 0xf3, 0x99, 0x91, 0x3f, 0x63, 0xfd, 0x70, 0x8c, 0xa1, 0xeb, 0xc5, 0x21, 0xa3, 0xfe, 0x99, 0x96, 0x11, 0x37, 0xb9, 0xe6, 0x93, 0xf8, 0xd0, 0xb1, 0xa3, 0x57, 0x7a, 0xa8, 0x63, 0xdd, 0x09, 0x56, 0xb0, 0x3b, 0xa6, 0x59, 0xc7, 0x89, 0x54, 0x16, 0xe9, 0x2d, 0x78, 0x7d, 0xaf, 0x4e, 0x0a, 0x5b, 0x62, 0x3b, 0x0b, 0xcb, 0x24, 0x89, 0x4e, 0x1c, 0x3d, 0xe1, 0xbd, 0x5a, 0x3e, 0xc5, 0xfd, 0x15, 0x3d, 0x08, 0x38, 0x33, 0x5e, 0x37, 0x4c, 0xe3, 0xe3, 0xe9, 0xc4, 0x1d, 0x2b, 0xd4, 0x58, 0x25, 0x58, 0x23, 0x8e, 0xc6, 0x83, 0x9a, 0xf3, 0x9a, 0x78, 0xe9, 0xa7, 0xca, 0xd7, 0xdd, 0x89, 0x20, 0x6e, 0x02, 0xea, 0x6b, 0x37, 0x74, 0xda, 0xa0, 0xc2, 0x5a, 0x2b, 0x80, 0x1c, 0x28, 0x91, 0x0d, 0x50, 0x64, 0xf0, 0x12, 0xe7, 0xc4, 0x7e, 0xdd, 0x28, 0x3b, 0x26, 0x9a, 0xf4, 0x39, 0x56, 0xa4, 0x72, 0x4d, 0xcb, 0x67, 0x3c, 0x68, 0xb2, 0x6f, 0xf0, 0xd0, 0x15, 0x90, 0xc8, 0x08, 0xbb, 0x0b, 0x08, 0x6b, 0x8a, 0xde, 0x41, 0x57, 0xbc, 0x63, 0x0e, 0x00, 0x8d, 0xf8, 0xdd, 0x93, 0xce, 0x58, 0x7b, 0xa8, 0xb9, 0x64, 0x26, 0x06, 0xe7, 0x71, 0x23, 0x0f, 0x41, 0xf1, 0xb7, 0xae, 0x59, 0x2e, 0xd0, 0x73, 0xc5, 0xd9, 0xdc, 0x0e, 0x1c, 0x02, 0x58, 0x69, 0xb3, 0x15, 0x6d, 0x96, 0x2b, 0xdb, 0x7b, 0x3b, 0x6c, 0x38, 0x32, 0x6b, 0xd8, 0x08, 0xb2, 0xbd, 0xa7, 0x49, 0x43, 0xeb, 0x90, 0x42, 0x70, 0xc5, 0xba, 0xcd, 0x4a, 0x44, 0x8f, 0x83, 0x0d, 0x17, 0x51, 0x5a, 0x95, 0xa2, 0x57, 0x9a, 0x16, 0x19, 0x91, 0xbb, 0x90, 0x5c, 0x2a, 0x16, 0xe8, 0x26, 0x10, 0x3c, 0xb7, 0x10, 0x5c, 0xf8, 0xc5, 0x15, 0x2b, 0x70, 0x75, 0x69, 0xba, 0x7b, 0x3d, 0x0b, 0x57, 0xac, 0x39, 0x12, 0x2e, 0xd6, 0xd9, 0x13, 0x74, 0x8e, 0xa8, 0x0b, 0x17, 0xe1, 0x03, 0x7a, 0xba, 0x1d, 0x07, 0x91, 0x8c, 0x2a, 0x3a, 0x8d, 0xe0, 0x2a, 0x94, 0xd4, 0x16, 0x35, 0x64, 0x8b, 0x92, 0x2c, 0x2f, 0xa4, 0x18, 0xfe, 0x3f, 0x02, 0x19, 0x8c, 0xb9, 0xeb, 0xaf, 0x01, 0x06, 0xa8, 0x37, 0x7f, 0xe2, 0x44, 0x10, 0xce, 0xeb, 0x8d, 0xd0, 0x73, 0xc4, 0x1e, 0x3d, 0x2c, 0xaf, 0x77, 0xb2, 0xef, 0xe5, 0x95, 0x8b, 0xdf, 0x02, 0xfc, 0x93, 0xb8, 0xa9, 0x27, 0x88, 0x1d, 0x1d, 0x82, 0x9f, 0xb6, 0xe4, 0x12, 0x05, 0x79, 0xb6, 0x1c, 0x41, 0x0d, 0xc1, 0x53, 0x49, 0x8f, 0x3d, 0xc9, 0xad, 0x84, 0xcb, 0x0b, 0x88, 0x7e, 0xfe, 0x73, 0x59, 0x21, 0x64, 0xc5, 0x50, 0x53, 0xdc, 0x98, 0xc6, 0x43, 0xb8, 0xf5, 0xc3, 0xa1, 0xf5, 0xb2, 0xd8, 0x86, 0xe9, 0xae, 0x98, 0xf9, 0x3b, 0x99, 0xc0, 0xe7, 0xd7, 0x4a, 0xed, 0xac, 0x89, 0x84, 0xb0, 0x8e, 0xd3, 0xab, 0xec, 0x03, 0x02, 0x12, 0x4b, 0x44, 0x17, 0x4d, 0x98, 0x26, 0x1e, 0x51, 0xc5, 0xbb, 0xcd, 0xdc, 0x50, 0xab, 0x83, 0x37, 0x49, 0x90, 0x1e, 0x34, 0xad, 0x81, 0x22, 0x6c, 0xe4, 0xdd, 0x19, 0x01, 0x09, 0x25, 0x2d, 0x9e, 0x52, 0x90, 0x72, 0xa1, 0x68, 0x3d, 0x0c, 0x49, 0x99, 0x19, 0x75, 0x5a, 0xca, 0x08, 0x69, 0xa1, 0xd2, 0x88, 0x8c, 0xea, 0xcf, 0x9c, 0xbc, 0x23, 0xad, 0x3f, 0xb9, 0xfc, 0xb9, 0x30, 0x0d, 0xd6, 0xd9, 0x65, 0x0c, 0x7e, 0x99, 0x68, 0x35, 0x26, 0x07, 0xd1, 0x55, 0xbf, 0x8e, 0xde, 0xe7, 0xe7, 0x01, 0xcb, 0xca, 0x0a, 0x39, 0x2e, 0xcc, 0x19, 0xec, 0x77, 0xf3, 0xab, 0xb2, 0xe6, 0x0e, 0x54, 0x06, 0x01, 0x50, 0x77, 0xd3, 0x61, 0x36, 0x05, 0x90, 0xe4, 0xd8, 0xc4, 0x1d, 0xf5, 0xc7, 0xfa, 0x65, 0xf0, 0x46, 0x6a, 0x5f, 0xa7, 0xc3, 0x8c, 0x6f, 0x04, 0x7f, 0xcf, 0x97, 0xb9, 0x68, 0x92, 0x31, 0x09, 0x02, 0x9f, 0x22, 0xc9, 0xf8, 0xe6, 0x7e, 0xa8, 0x95, 0x5b, 0x6b, 0xfe, 0x9c, 0x4e, 0x63, 0x2d, 0x8c, 0x1a, 0x4c, 0x8b, 0x14, 0x79, 0x08, 0xd5, 0x96, 0x76, 0xd1, 0xb4, 0x2f, 0xae, 0x5d, 0x91, 0x88, 0x7c, 0xdd, 0xd2, 0x06, 0x86, 0xcf, 0x0a, 0x83, 0x6f, 0xda, 0xca, 0x71, 0x7c, 0xe7, 0xe5, 0x34, 0xa8, 0x9a, 0x53, 0x8d, 0xa5, 0xaa, 0x5d, 0xb5, 0x17, 0x81, 0x34, 0x6f, 0xbe, 0xbb, 0xb6, 0x58, 0x22, 0x90, 0x80, 0xf6, 0x9c, 0x1c, 0xb0, 0x79, 0x8f, 0x92, 0x5b, 0x7d, 0x1c, 0x71, 0x5f, 0xb4, 0x87, 0x36, 0xbe, 0x81, 0x8d, 0x4a, 0xfc, 0x28, 0x72, 0x81, 0xaf, 0x5f, 0xbd, 0x5f, 0x99, 0xe3, 0xc9, 0x37, 0xb0, 0x6e, 0xad, 0x70, 0x96, 0xfa, 0xe3, 0x99, 0xf7, 0x08, 0x14, 0x21, 0x21, 0xb7, 0x1a, 0xaa, 0xe8, 0x07, 0xb6, 0xfd, 0xa3, 0x7a, 0x2d, 0x93, 0x64, 0x8f, 0x89, 0x2c, 0x71, 0x49, 0x71, 0xb8, 0x45, 0xca, 0xe0, 0x7c, 0x00, 0x8d, 0xbd, 0xb8, 0x1c, 0x3a, 0x94, 0xa2, 0xa7, 0x6d, 0x0a, 0x2e, 0x84, 0xaf, 0xbd, 0xab, 0x05, 0x95, 0x64, 0x8b, 0x05, 0xc8, 0xc9, 0x4e, 0xea, 0xb5, 0x96, 0x4a, 0x47, 0xdd, 0xf2, 0xcb, 0x02, 0x82, 0x03, 0xc0, 0x59, 0xb3, 0xd9, 0x85, 0xdc, 0xa8, 0xb9, 0x93, 0x85, 0xa2, 0xbc, 0x79, 0xfc, 0x72, 0x50, 0xc1, 0xa0, 0xa5, 0xdb, 0x71, 0x35, 0xa1, 0x31, 0xbc, 0x68, 0x4e, 0xd5, 0x19, 0x9e, 0x0e, 0x32, 0x3a, 0xad, 0x40, 0x9e, 0x82, 0x3c, 0x1e, 0x2b, 0x34, 0x3b, 0xc9, 0x32, 0x61, 0x07, 0x5e, 0x46, 0xa9, 0xbe, 0xbe, 0x73, 0x0c, 0x12, 0xef, 0x52, 0x68, 0x82, 0xe2, 0x0b, 0x12, 0x74, 0xfc, 0x10, 0x5c, 0xc0, 0xb5, 0x98, 0x4d, 0x86, 0xbb, 0x8c, 0x40, 0x15, 0xa1, 0x6e, 0x46, 0x73, 0x2e, 0xd6, 0x99, 0x6b, 0x50, 0xab, 0x04, 0x1a, 0x5f, 0xf4, 0xfa, 0xcb, 0x4b, 0xad, 0xc4, 0x5e, 0x62, 0xa7, 0x48, 0xd4, 0x52, 0x85, 0xdc, 0x2a, 0x85, 0x9b, 0xee, 0x08, 0xa5, 0xaa, 0xaa, 0xe8, 0x44, 0xf0, 0xed, 0x89, 0x21, 0xe4, 0xb4, 0xab, 0x3c, 0x0d, 0x53, 0x7e, 0x53, 0xdd, 0xac, 0x47, 0xda, 0x77, 0x79, 0x5f, 0x78, 0x7a, 0x80, 0x84, 0x46, 0x50, 0xaa, 0xdb, 0x3b, 0x8c, 0x6b, 0xda, 0xb0, 0xac, 0x0a, 0xd3, 0x4c, 0xe4, 0x6e, 0x87, 0xd1, 0xb2, 0x5a, 0xd5, 0x98, 0xae, 0xcb, 0x7e, 0xc2, 0x19, 0xdc, 0x53, 0x64, 0x86, 0x4c, 0x7b, 0xe0, 0x63, 0x22, 0x94, 0x34, 0xad, 0x15, 0xdc, 0xd8, 0xa8, 0x5f, 0xc6, 0x58, 0xf6, 0x72, 0x34, 0xdd, 0xfb, 0x85, 0x8a, 0xd9, 0xa3, 0xfb, 0x3b, 0xad, 0x5d, 0xf0, 0x1a, 0x0b, 0xa8, 0x91, 0xe7, 0x7d, 0x26, 0x27, 0x38, 0xf8, 0xe0, 0x49, 0x1b, 0x56, 0xc5, 0x5b, 0xe3, 0x1c, 0x7b, 0xa3, 0x53, 0x6d, 0x22, 0xfa, 0xd7, 0x63, 0x5f, 0xf0, 0xcb, 0x92, 0x49, 0x01, 0x54, 0xe5, 0x77, 0x5b, 0xd3, 0xab, 0xce, 0xb8, 0x3a, 0x5b, 0xb8, 0x07, 0x40, 0x46, 0x51, 0xe4, 0x59, 0xa2, 0x45, 0x41, 0xcc, 0x81, 0x6c, 0xe3, 0xa6, 0xb3, 0xa0, 0x30, 0x4a, 0x67, 0x10, 0xed, 0xc0, 0x8a, 0xcd, 0xfc, 0xa5, 0x44, 0x9b, 0x59, 0x19, 0x4a, 0x43, 0x8d, 0xec, 0x00, 0xd8, 0x6d, 0xf9, 0xf0, 0x2d, 0xd9, 0x55, 0xfc, 0x05, 0xe2, 0x12, 0x48, 0x4d, 0xd6, 0x7d, 0xec, 0x41, 0xc4, 0x9e, 0xe2, 0xed, 0x84, 0x14, 0x29, 0x0e, 0x5b, 0x81, 0x0b, 0xb0, 0x87, 0x8a, 0xd3, 0x35, 0x5c, 0xad, 0xdb, 0xcc, 0xa1, 0x3c, 0xcb, 0x8b, 0x23, 0x55, 0x69, 0xf1, 0x83, 0x84, 0x81, 0x36, 0xae, 0xd5, 0xf3, 0x98, 0xb6, 0xb2, 0xb5, 0xa1, 0x79, 0x6d, 0x80, 0x8f, 0x2e, 0x25, 0x71, 0x4e, 0x16, 0xff, 0xa0, 0x7c, 0xa4, 0x62, 0x8c, 0x44, 0x85, 0x64, 0x90, 0x7c, 0xac, 0x10, 0x36, 0xf2, 0xf2, 0xfb, 0x20, 0x2b, 0xa1, 0x27, 0xd0, 0xcc, 0x27, 0xfd, 0xb0, 0xba, 0x3e, 0x37, 0xb1, 0xa8, 0x9d, 0x3c, 0x82, 0x63, 0xd0, 0x16, 0x6d, 0x7a, 0xdd, 0x2e, 0xea, 0xe5, 0x87, 0xd6, 0x64, 0x72, 0xdb, 0x60, 0x53, 0x38, 0x18, 0x66, 0x1d, 0x25, 0xf6, 0x08, 0x92, 0x7f, 0x68, 0x5b, 0x79, 0x07, 0xde, 0x93, 0xee, 0xf8, 0x8f, 0xce, 0x28, 0xcf, 0xb1, 0x5b, 0x43, 0x51, 0xdf, 0xf5, 0xac, 0xe8, 0x9c, 0x95, 0x14, 0x8a, 0x67, 0xe1, 0x25, 0xfe, 0x11, 0xa2, 0x40, 0xf8, 0xdd, 0xcf, 0xf5, 0x17, 0x94, 0xb6, 0x88, 0x10, 0xa2, 0x90, 0x58, 0xef, 0xaf, 0x73, 0xf8, 0x7c, 0x9b, 0x20, 0x30, 0x79, 0xca, 0x3f, 0xa9, 0x22, 0x40, 0xfd, 0xcc, 0xb0, 0x5d, 0x0d, 0x97, 0x6b, 0xc0, 0x75, 0x35, 0x33, 0xc5, 0x76, 0x45, 0x6e, 0x9b, 0x78, 0xe7, 0xb4, 0x04, 0xb3, 0xba, 0x3b, 0x93, 0xb1, 0xa9, 0x8f, 0xa1, 0x24, 0x5d, 0x1c, 0x0e, 0x66, 0xc0, 0xc6, 0xcc, 0xd6, 0xb7, 0x88, 0x9d, 0xb8, 0x45, 0xe3, 0xaa, 0xc9, 0x6c, 0xfd, 0x37, 0xdc, 0x85, 0xd5, 0x49, 0xfd, 0xef, 0xeb, 0xf9, 0x7a, 0x3f, 0x7a, 0x4f, 0x86, 0x49, 0xaa, 0x9f, 0x08, 0x12, 0x0b, 0x11, 0x35, 0x5c, 0xd5, 0xd3, 0xda, 0x14, 0x50, 0x03, 0x2c, 0x24, 0x26, 0x0e, 0x29, 0x18, 0xcc, 0x1d, 0x0a, 0x7c, 0x94, 0x8b, 0xc0, 0xa0, 0x3f, 0xea, 0xf8, 0xf8, 0xa9, 0x1d, 0x65, 0x31, 0x6f, 0x3b, 0xa6, 0xd0, 0xfc, 0x26, 0xb0, 0x4e, 0x3a, 0x66, 0xe7, 0x32, 0x10, 0x2e, 0x84, 0x47, 0xad, 0xa9, 0x18, 0xfc, 0xa3, 0x8b, 0x74, 0x84, 0x4f, 0xd4, 0x25, 0x93, 0x0f, 0xdb, 0x2e, 0xae, 0x88, 0x8e, 0x28, 0xf8, 0x0f, 0xaa, 0x60, 0xd4, 0xbe, 0xad, 0x66, 0x0c, 0x0d, 0x01, 0xbd, 0x8d, 0xc4, 0xfc, 0x48, 0xef, 0x78, 0x14, 0x34, 0xee, 0xb3, 0xbc, 0xd4, 0xbb, 0x1f, 0x7c, 0x12, 0x5c, 0x9b, 0xeb, 0x77, 0x3e, 0x2c, 0x6e, 0x31, 0x59, 0xe6, 0x78, 0xc5, 0xe8, 0xa4, 0xdd, 0xf1, 0xef, 0x5d, 0x27, 0x45, 0x31, 0x13, 0xd0, 0x21, 0xa1, 0x13, 0xce, 0xac, 0x7e, 0xbb, 0xfb, 0x32, 0xeb, 0x76, 0x31, 0xc4, 0xba, 0xdf, 0xfb, 0x5a, 0x1b, 0xc9, 0x9e, 0x74, 0xa0, 0x9e, 0x26, 0x82, 0xd5, 0x6e, 0x1d, 0xc3, 0x0e, 0xd1, 0x6d, 0xdb, 0x43, 0xb3, 0x0b, 0x14, 0xcb, 0xf1, 0xad, 0x62, 0x34, 0x49, 0xb8, 0xd3, 0x08, 0xca, 0x93, 0xf1, 0x42, 0xb2, 0x4b, 0x23, 0x79, 0x93, 0xde, 0x18, 0x58, 0xf3, 0x66, 0xfa, 0xdc, 0xab, 0xca, 0x33, 0x22, 0x2b, 0x5c, 0x8c, 0x12, 0xc1, 0x7b, 0x2e, 0x52, 0x72, 0xa7, 0x78, 0x4a, 0x49, 0xa1, 0x53, 0x02, 0x76, 0x2d, 0x2e, 0xf8, 0x43, 0x3c, 0xe8, 0xfa, 0xb7, 0xff, 0x39, 0xed, 0x74, 0x9e, 0x11, 0x61, 0x33, 0xde, 0x2a, 0x55, 0xe6, 0x4a, 0xe7, 0x97, 0xa6, 0xb2, 0xc3, 0x40, 0x41, 0x52, 0x66, 0xcf, 0xbf, 0xf8, 0x8e, 0x08, 0xea, 0x96, 0x4d, 0x03, 0xc9, 0xbe, 0x3c, 0x4e, 0x36, 0x8c, 0x6f, 0x4d, 0x1e, 0xcd, 0x31, 0x6d, 0x53, 0xea, 0x9e, 0xf0, 0x8e, 0x35, 0x97, 0x37, 0x54, 0xe9, 0x0f, 0xb8, 0x23, 0x25, 0x69, 0x5b, 0xb5, 0xff, 0xc3, 0x5a, 0x2d, 0x10, 0x6a, 0xc0, 0xb8, 0xee, 0x0d, 0x31, 0x5b, 0xe4, 0x69, 0x40, 0x62, 0xa7, 0x1b, 0x16, 0xfa, 0xd6, 0xb8, 0xba, 0xc8, 0x6a, 0xa3, 0x29, 0xdd, 0x9b, 0x4d, 0xd7, 0x96, 0xef, 0x31, 0x74, 0xac, 0x37, 0x10, 0x91, 0x30, 0x0c, 0x15, 0x3f, 0x09, 0xb6, 0x7d, 0x22, 0xfb, 0x8c, 0x6f, 0xc3, 0x93, 0xa3, 0x98, 0xa6, 0x23, 0xa4, 0x55, 0xe0, 0x9e, 0x23, 0x06, 0xa9, 0x78, 0xe9, 0xb3, 0x88, 0xc9, 0xb7, 0x83, 0x05, 0x46, 0x11, 0x3a, 0x0a, 0xb9, 0x74, 0x5b, 0xa0, 0xb5, 0x06, 0x96, 0x86, 0xb6, 0xf4, 0x9d, 0x0d, 0x86, 0x43, 0xa8, 0x40, 0x4b, 0x08, 0x93, 0x7c, 0xad, 0xb0, 0x50, 0xb4, 0xd0, 0xe7, 0xad, 0xd0, 0x54, 0x5e, 0x15, 0xaf, 0xad, 0x34, 0x12, 0x86, 0xb3, 0x29, 0x3b, 0x20, 0xc9, 0xad, 0xeb, 0xc2, 0x65, 0xf3, 0x5c, 0x2d, 0xe5, 0xff, 0xfd, 0x81, 0x79, 0xf5, 0x11, 0x6f, 0xf7, 0xca, 0x0c, 0x76, 0xf0, 0xd4, 0x02, 0x9d, 0xb7, 0x76, 0x39, 0x6d, 0x32, 0x6a, 0xb8, 0x30, 0xa4, 0x01, 0xcc, 0x10, 0xef, 0xb1, 0x0e, 0x41, 0x22, 0x82, 0x5b, 0x22, 0xcb, 0x32, 0x19, 0x2e, 0xa3, 0x0a, 0xce, 0x05, 0xdd, 0xe8, 0x4a, 0x58, 0x92, 0xe1, 0x02, 0x82, 0x03, 0xc0, 0x22, 0x0f, 0x95, 0x5b, 0xc2, 0x1f, 0xde, 0xf0, 0xde, 0xf4, 0x86, 0xbd, 0xef, 0x07, 0x7d, 0x52, 0x03, 0x8c, 0x26, 0x31, 0x17, 0xfd, 0x5c, 0x97, 0xed, 0xd5, 0xe0, 0xb3, 0x18, 0x2d, 0x68, 0x10, 0x3f, 0xc4, 0xdf, 0xd1, 0x05, 0x78, 0x81, 0x3d, 0x05, 0xde, 0xba, 0x3a, 0x67, 0x85, 0x0e, 0xdf, 0xb5, 0x16, 0x28, 0xe8, 0x84, 0x3a, 0x71, 0x2a, 0x20, 0x17, 0x28, 0x05, 0xfd, 0xb7, 0x4d, 0x22, 0x4a, 0x93, 0x46, 0x56, 0x27, 0x43, 0xc0, 0x3a, 0x16, 0xff, 0x3d, 0x61, 0xcc, 0xcb, 0xce, 0xac, 0xa8, 0x53, 0x3a, 0x0d, 0xf4, 0x2d, 0xd2, 0x73, 0xf2, 0x64, 0xa0, 0x1e, 0x60, 0x53, 0xec, 0x0d, 0xff, 0xe0, 0x00, 0x10, 0xfb, 0xa4, 0x57, 0xd3, 0xfc, 0xe4, 0xe0, 0xec, 0x44, 0x0b, 0x1c, 0x05, 0x39, 0xa4, 0x13, 0x87, 0x29, 0x11, 0x9d, 0xea, 0xe9, 0x64, 0xa9, 0x1c, 0x76, 0x3a, 0x65, 0x0b, 0xfd, 0xed, 0x77, 0x46, 0x4f, 0xcd, 0x0b, 0x63, 0xc4, 0x83, 0x0b, 0x56, 0x79, 0xd3, 0x67, 0x01, 0x11, 0x02, 0xd9, 0x50, 0xd8, 0x23, 0xf4, 0xb6, 0x02, 0x4c, 0xae, 0xb5, 0xc9, 0x68, 0x1b, 0x87, 0x33, 0xbb, 0xdc, 0x64, 0x0e, 0x32, 0x34, 0xb2, 0x25, 0xaa, 0x76, 0xdd, 0x7e, 0xc3, 0x46, 0x51, 0x1c, 0xc1, 0xd0, 0x05, 0x09, 0x6c, 0x27, 0xd3, 0xcf, 0x33, 0x7a, 0xb9, 0x26, 0x24, 0x23, 0x4a, 0x93, 0x9f, 0x4b, 0x96, 0xc7, 0xe2, 0xb2, 0x51, 0x42, 0x4d, 0x5d, 0xd9, 0x73, 0x75, 0xce, 0x23, 0x28, 0x56, 0x5e, 0xe7, 0x96, 0x58, 0x04, 0xfd, 0x33, 0x93, 0x08, 0x41, 0x62, 0x02, 0x7e, 0xc9, 0xc6, 0x55, 0x64, 0x19, 0xda, 0x39, 0xb8, 0x5d, 0x09, 0x47, 0xf3, 0xdd, 0x77, 0xee, 0xea, 0x35, 0x73, 0x95, 0xdb, 0x18, 0x4d, 0xd1, 0xfe, 0xee, 0x40, 0x31, 0x2a, 0x22, 0x91, 0x69, 0xd6, 0xed, 0x9c, 0x54, 0x14, 0x73, 0x61, 0x61, 0xe7, 0x1d, 0x34, 0x96, 0x47, 0xff, 0x28, 0x7a, 0x48, 0xa3, 0xf4, 0xcd, 0x64, 0x23, 0xe2, 0x52, 0x2f, 0x20, 0x8f, 0x04, 0xb3, 0xdc, 0xf0, 0x29, 0x67, 0x88, 0x76, 0x79, 0xdb, 0x86, 0xa7, 0x95, 0xf0, 0x15, 0x81, 0xbb, 0x98, 0xee, 0xff, 0x55, 0x7c, 0xb0, 0xee, 0x67, 0x65, 0xfd, 0xf2, 0x29, 0x0f, 0x85, 0x51, 0xf9, 0xac, 0x5c, 0x55, 0x5a, 0xde, 0x40, 0x62, 0x58, 0x55, 0x9f, 0x09, 0x4c, 0x2e, 0x28, 0x75, 0xbc, 0x48, 0xe2, 0x97, 0x85, 0xb3, 0x83, 0xeb, 0x21, 0x49, 0x21, 0xd4, 0xed, 0x74, 0x4f, 0xc1, 0x6c, 0x34, 0x8c, 0x11, 0xb0, 0x93, 0x41, 0x99, 0x23, 0x2e, 0xa4, 0xc1, 0x9f, 0x34, 0x74, 0x64, 0xbb, 0xd7, 0x4f, 0x8f, 0x9f, 0x3a, 0x0c, 0x4f, 0x5e, 0xdd, 0x41, 0x07, 0xf1, 0xfd, 0x5a, 0x9d, 0xe6, 0x77, 0xd8, 0x7e, 0x71, 0x7b, 0xad, 0xf7, 0x76, 0x13, 0x71, 0x90, 0xb3, 0x0f, 0x46, 0x8e, 0xee, 0x7b, 0x33, 0x97, 0x5d, 0x21, 0x3b, 0xa0, 0x58, 0x9e, 0xb7, 0x87, 0x30, 0x8f, 0xc1, 0x23, 0x2c, 0xde, 0xf7, 0x0d, 0xa9, 0xd6, 0x50, 0xeb, 0x35, 0x7a, 0x82, 0xab, 0x22, 0x49, 0x86, 0xd4, 0x61, 0xc7, 0xc2, 0x4e, 0x77, 0xfc, 0x16, 0x0b, 0xaf, 0x81, 0x6a, 0x47, 0xea, 0xac, 0x7e, 0x51, 0x4c, 0x56, 0x30, 0x21, 0x46, 0x41, 0xc3, 0x92, 0x60, 0x99, 0x4f, 0x88, 0x36, 0x3b, 0x27, 0xb4, 0xb2, 0x7e, 0x44, 0x2f, 0xdd, 0x95, 0xe4, 0x5e, 0x16, 0x1f, 0xa7, 0x32, 0x6b, 0x60, 0x24, 0x0f, 0xf2, 0xe6, 0x35, 0x3c, 0x0c, 0x3e, 0xb5, 0xd6, 0xdd, 0x63, 0xe2, 0x76, 0x35, 0x38, 0x79, 0xbf, 0xa5, 0x23, 0xa4, 0xdd, 0xeb, 0x01, 0x48, 0xd0, 0x60, 0x86, 0x11, 0x38, 0x5f, 0x9e, 0x6b, 0x00, 0x67, 0xd2, 0x5b, 0x41, 0x0a, 0x5e, 0x13, 0x0f, 0xa1, 0x9e, 0x90, 0x85, 0xa6, 0x7f, 0xe5, 0x4b, 0x9e, 0x93, 0x4e, 0x5b, 0x1f, 0x47, 0x62, 0xb0, 0x23, 0xbe, 0x82, 0xa9, 0xd9, 0xb6, 0x2e, 0xfd, 0xb1, 0x10, 0xca, 0xe0, 0xc9, 0x5d, 0xf6, 0x85, 0x18, 0x6c, 0x9c, 0x1d, 0x1f, 0x7c, 0xf6, 0x55, 0x09, 0x80, 0xcf, 0xac, 0xfe, 0x37, 0x6a, 0x4f, 0x96, 0xaa, 0x40, 0x79, 0x8b, 0x4a, 0xf2, 0x96, 0x79, 0x12, 0x1a, 0x26, 0x87, 0x06, 0x35, 0x4d, 0xd4, 0x3e, 0x14, 0x39, 0xe5, 0x6c, 0x39, 0x0f, 0x84, 0xb3, 0x5f, 0xed, 0xf4, 0xff, 0x89, 0x52, 0x05, 0x00, 0xf1, 0xd1, 0xc3, 0xcf, 0x54, 0x10, 0x24, 0x7c, 0xa6, 0xb5, 0x95, 0xa8, 0x6e, 0x13, 0x3e, 0x4a, 0x40, 0x6c, 0xf9, 0x63, 0x90, 0x44, 0x52, 0x07, 0x53, 0xb7, 0x51, 0xd9, 0x18, 0x47, 0x2e, 0xb0, 0x4e, 0x0f, 0x09, 0x99, 0x3a, 0x97, 0x26, 0x53, 0xa6, 0x02, 0x06, 0x0e, 0x93, 0xe1, 0x0b, 0xc5, 0xa9, 0x14, 0xd3, 0xd6, 0x8a, 0x29, 0x75, 0xcd, 0xb6, 0x7b, 0x64, 0x7c, 0xdd, 0x7e, 0xb4, 0x0a, 0x87, 0x48, 0x4a, 0x1b, 0x0e, 0x74, 0x4c, 0xd3, 0x0e, 0x96, 0x0e, 0x53, 0xc4, 0x3d, 0x7b, 0x1c, 0x87, 0x6a, 0x15, 0xd8, 0x77, 0xba, 0xe6, 0xa0, 0x2f, 0x2c, 0x1a, 0x9d, 0xde, 0x79, 0xfd, 0xab, 0x44, 0x80, 0xf0, 0x37, 0x9a, 0x3b, 0xf8, 0xde, 0x3d, 0x29, 0xcb, 0x89, 0x64, 0x4b, 0x57, 0xe7, 0x6b, 0x84, 0x09, 0x27, 0x17, 0x2f, 0xb2, 0xba, 0x3d, 0x09, 0xc9, 0x3c, 0x89, 0xe6, 0x19, 0x73, 0x83, 0xf7, 0xc6, 0x19, 0x18, 0x96, 0xb2, 0x7d, 0x1e, 0x9f, 0x70, 0x1f, 0xfc, 0x1f, 0xe2, 0xb5, 0x69, 0x1e, 0xf4, 0x65, 0x91, 0xce, 0x4b, 0xdc, 0x74, 0x49, 0x21, 0x64, 0x8b, 0x33, 0x50, 0xd2, 0xc1, 0x33, 0x62, 0x5b, 0xde, 0x0a, 0x72, 0xbe, 0xc0, 0x05, 0x51, 0x15, 0x80, 0xed, 0x32, 0x3a, 0x64, 0xa2, 0x73, 0x68, 0x5b, 0x16, 0xcf, 0x70, 0x5c, 0x98, 0xe5, 0x67, 0x45, 0x60, 0x57, 0x2b, 0x47, 0x0a, 0x22, 0x73, 0xc3, 0x56, 0x33, 0x3e, 0x14, 0x1d, 0x0c, 0xd1, 0x03, 0x08, 0x92, 0x21, 0x2b, 0xa9, 0x6e, 0x6b, 0xf9, 0x0c, 0x1e, 0x86, 0xdd, 0xb5, 0xbb, 0xa4, 0xa5, 0x82, 0x99, 0x98, 0x49, 0x36, 0xec, 0x98, 0x98, 0x95, 0xac, 0xc2, 0xa0, 0x1f, 0xa5, 0x7e, 0x67, 0xd1, 0xcf, 0x6a, 0xf4, 0x16, 0x08, 0x7a, 0x8d, 0x0b, 0xae, 0x12, 0x51, 0xe6, 0x8e, 0xe6, 0xcd, 0xa1, 0xaa, 0x6d, 0xe4, 0x54, 0xd4, 0x69, 0x1b, 0x09, 0x6a, 0xba, 0x5e, 0x0b, 0x11, 0x9c, 0x83, 0xb3, 0x5c, 0x67, 0xbb, 0x2d, 0xf8, 0x66, 0x1c, 0x33, 0xb8, 0x22, 0x58, 0x10, 0x96, 0xe9, 0x99, 0xaf, 0x0b, 0x2a, 0xf1, 0xe0, 0xcb, 0x56, 0xfb, 0x6d, 0x04, 0x40, 0xec, 0x37, 0x67, 0x1e, 0x08, 0x7a, 0x1c, 0xe9, 0xd8, 0x54, 0xf7, 0xd4, 0xc7, 0x3c, 0x45, 0x23, 0x2b, 0x76, 0xd2, 0x62, 0xc2, 0x53, 0xce, 0xfe, 0x02, 0xc4, 0xd9, 0xf6, 0x3c, 0xed, 0x49, 0x47, 0x21, 0xf9, 0x03, 0x3a, 0xa0, 0x16, 0x3a, 0xfe, 0x0c, 0x2f, 0x54, 0x7e, 0x85, 0x29, 0x7b, 0xc0, 0xaf, 0xa8, 0x5d, 0x31, 0x25, 0xda, 0xa7, 0xe3, 0x92, 0x1b, 0x64, 0x01, 0x1b, 0x3f, 0x6e, 0x47, 0xc5, 0x5a, 0x84, 0x52, 0x17, 0x02, 0x82, 0x03, 0xc1, 0x00, 0x81, 0x99, 0x2e, 0x72, 0x41, 0x6e, 0x86, 0xeb, 0x6f, 0x42, 0xd1, 0x38, 0x6e, 0xaa, 0x1a, 0xd5, 0x0a, 0xad, 0x51, 0xb1, 0xce, 0xd6, 0x35, 0xbe, 0x34, 0xd8, 0xc1, 0xe4, 0x5f, 0xdf, 0x2e, 0xe4, 0x90, 0xf2, 0x61, 0x21, 0x46, 0xc6, 0xfe, 0xab, 0x0f, 0x6c, 0x97, 0x78, 0xcd, 0x55, 0x86, 0x83, 0x61, 0x99, 0x49, 0x14, 0x86, 0xc6, 0x86, 0xf1, 0x41, 0x66, 0xc9, 0x39, 0x52, 0x99, 0x49, 0x07, 0xd6, 0x9d, 0xb7, 0x40, 0x34, 0x5f, 0xe7, 0x3a, 0xfa, 0x95, 0xeb, 0xa1, 0x03, 0xb7, 0x52, 0x71, 0x93, 0x30, 0x0b, 0x51, 0x58, 0x82, 0x07, 0x2f, 0x44, 0xa9, 0x4f, 0x9b, 0x1b, 0xf3, 0xd6, 0x21, 0x3d, 0x68, 0xef, 0x3f, 0xaf, 0xc2, 0x6f, 0xa0, 0xd5, 0x2b, 0xb8, 0x73, 0x84, 0x67, 0x36, 0x8b, 0xa4, 0x25, 0xe0, 0x86, 0xd9, 0x14, 0x5c, 0x6c, 0xd8, 0x61, 0xe1, 0x0a, 0x6c, 0xaf, 0xbb, 0x9c, 0xf6, 0x74, 0xca, 0x5a, 0x04, 0xac, 0x85, 0xc1, 0x1b, 0x4d, 0xf2, 0x07, 0xb6, 0x1e, 0x97, 0x7b, 0x75, 0xdf, 0x9b, 0x8a, 0x31, 0xc6, 0x90, 0xd5, 0x8d, 0x39, 0xc2, 0x54, 0xf4, 0xe2, 0x83, 0x57, 0x12, 0x19, 0xf5, 0xb2, 0xd2, 0x53, 0x81, 0x6d, 0xf0, 0x09, 0xc9, 0x80, 0x8b, 0x07, 0x7c, 0x59, 0xcd, 0x78, 0x00, 0xd6, 0x44, 0x7f, 0xe4, 0xdb, 0x77, 0x02, 0x00, 0x25, 0x79, 0x91, 0xc9, 0xde, 0xd0, 0xed, 0x3f, 0xfc, 0x37, 0x36, 0xea, 0xf0, 0x56, 0x50, 0xe7, 0x38, 0xca, 0xe1, 0x67, 0x12, 0x96, 0x55, 0x3e, 0xff, 0x97, 0xe5, 0xa7, 0x03, 0x5b, 0x72, 0x80, 0xd6, 0xa5, 0x23, 0x39, 0x78, 0x07, 0xc8, 0x83, 0x19, 0x74, 0xfb, 0x79, 0xc2, 0x9e, 0xbd, 0xf9, 0xaf, 0x09, 0x0f, 0xbd, 0x3d, 0x34, 0xe8, 0x44, 0x89, 0xb1, 0xf1, 0x2b, 0xa5, 0xff, 0x22, 0xc9, 0x47, 0xe2, 0x31, 0xb5, 0x6b, 0x8a, 0x65, 0x5f, 0x81, 0x5f, 0x89, 0xb0, 0x03, 0x5d, 0x53, 0x0e, 0xdd, 0xfb, 0xe5, 0x70, 0xaa, 0xd2, 0x37, 0x4d, 0xa1, 0x7c, 0xf2, 0xe4, 0x7f, 0xf1, 0x4a, 0xaf, 0x12, 0xd1, 0x83, 0xdc, 0xb2, 0x9e, 0xc1, 0x95, 0x3d, 0x04, 0x9f, 0xa3, 0xad, 0xcc, 0x78, 0x14, 0x9a, 0xf9, 0x58, 0x39, 0x08, 0x15, 0xda, 0x1b, 0x94, 0x50, 0x2d, 0x44, 0xc0, 0x23, 0x1c, 0x36, 0x5f, 0x16, 0x08, 0xa3, 0xdf, 0x9e, 0x4f, 0xbb, 0x07, 0xcd, 0xe3, 0x8c, 0xbf, 0xf1, 0xc3, 0x3e, 0x98, 0xf8, 0x49, 0x79, 0x58, 0xc9, 0x0f, 0x47, 0xc0, 0xab, 0x2f, 0x21, 0x63, 0xf6, 0xe6, 0xfe, 0x8a, 0xea, 0xbc, 0x32, 0x63, 0xca, 0x75, 0xf8, 0xa4, 0x1b, 0x6c, 0xfe, 0x9a, 0x6e, 0x68, 0x1f, 0x48, 0x59, 0xfb, 0x34, 0x43, 0x10, 0xd5, 0x0d, 0x80, 0x54, 0xcb, 0x67, 0x21, 0xc7, 0x13, 0x85, 0x38, 0x0c, 0xf9, 0x40, 0x2e, 0x2e, 0x4a, 0x05, 0x9e, 0x51, 0xae, 0xdd, 0xba, 0x23, 0x83, 0x66, 0x2a, 0xbf, 0x7f, 0xca, 0x9c, 0x6c, 0x2d, 0x6b, 0x7d, 0x68, 0x52, 0x81, 0x56, 0x2f, 0xea, 0xf9, 0xe7, 0xf1, 0x55, 0x16, 0xfc, 0x29, 0xe2, 0xa5, 0x1e, 0x0a, 0x06, 0xe0, 0x85, 0x4e, 0xa6, 0x5d, 0x20, 0x9d, 0x2b, 0xa2, 0xad, 0xaa, 0xd6, 0x9b, 0xd2, 0x98, 0x29, 0x45, 0x5c, 0x55, 0xc0, 0x91, 0xa2, 0x65, 0xcd, 0xac, 0xc6, 0x1a, 0x53, 0xa1, 0x46, 0x13, 0xf9, 0xfe, 0x1a, 0xf6, 0xdf, 0xa5, 0x1a, 0x58, 0x7c, 0x81, 0x2e, 0x46, 0x46, 0xf7, 0x2f, 0xd6, 0xaa, 0x21, 0xb0, 0x0e, 0x7e, 0xac, 0xb8, 0xc6, 0x76, 0x62, 0x82, 0x3b, 0x0a, 0x36, 0xbe, 0x97, 0x16, 0xd5, 0x79, 0x55, 0x15, 0x64, 0x2a, 0xbe, 0x19, 0x4e, 0x93, 0x3b, 0x44, 0x7c, 0xe2, 0xfc, 0x18, 0x4e, 0x83, 0x37, 0xfb, 0x26, 0x78, 0x6d, 0x24, 0x6b, 0x48, 0x21, 0x67, 0xde, 0xf5, 0x00, 0x22, 0x9a, 0xec, 0x40, 0x16, 0x96, 0x8a, 0x3f, 0xd5, 0xa6, 0x5e, 0x03, 0x84, 0xbb, 0x15, 0x4d, 0x55, 0x71, 0x00, 0x90, 0xc2, 0x96, 0x25, 0x01, 0xab, 0xe6, 0x47, 0x44, 0x6f, 0xf9, 0x53, 0x80, 0x2b, 0xa8, 0x83, 0xc8, 0x14, 0x77, 0x13, 0x00, 0x66, 0xee, 0x7e, 0x7a, 0xa0, 0x28, 0x65, 0xf3, 0x31, 0xb6, 0xac, 0xd7, 0x87, 0x84, 0x29, 0xed, 0x5b, 0xcd, 0x74, 0xc0, 0x89, 0x51, 0x11, 0x9a, 0xd5, 0x7b, 0xe0, 0x9c, 0xd0, 0x8d, 0x72, 0xe3, 0x77, 0xda, 0x0a, 0xc2, 0xdc, 0x6f, 0xad, 0x49, 0x03, 0xfa, 0xe6, 0x7e, 0xa6, 0x24, 0x32, 0xe6, 0x8f, 0xd9, 0x70, 0xfa, 0x59, 0x70, 0xa9, 0xa3, 0x08, 0x7d, 0x89, 0xc4, 0x96, 0x61, 0xc2, 0xf5, 0xe5, 0xb5, 0x3b, 0x0d, 0xec, 0xb8, 0x9c, 0xee, 0x09, 0x77, 0x27, 0xbd, 0x35, 0x66, 0x90, 0x9e, 0x46, 0xf7, 0xbd, 0xa6, 0xc5, 0x31, 0xd4, 0x6a, 0x52, 0x17, 0x5d, 0x0a, 0x0e, 0x2c, 0x34, 0x7a, 0x6a, 0x21, 0xac, 0x42, 0xf0, 0x31, 0xde, 0x48, 0xe0, 0x27, 0xd0, 0x79, 0xc9, 0x06, 0x94, 0x7b, 0x51, 0x4b, 0x5b, 0x02, 0x6a, 0x19, 0xba, 0x71, 0x45, 0x9c, 0xdf, 0xe6, 0x30, 0x9e, 0xaa, 0xad, 0xa1, 0x87, 0xf6, 0x37, 0xde, 0xa2, 0x97, 0x68, 0x20, 0x2d, 0x5a, 0xdc, 0xdd, 0x91, 0x63, 0x5f, 0x79, 0xda, 0x99, 0x20, 0x3a, 0x4b, 0xe5, 0x43, 0x0e, 0x12, 0x70, 0x57, 0x91, 0xfa, 0xee, 0xc4, 0xb6, 0xb6, 0xb1, 0xf1, 0x06, 0xbd, 0xcf, 0x8d, 0x2a, 0x05, 0xc0, 0x07, 0x23, 0x84, 0x85, 0xef, 0x9c, 0xbb, 0x6f, 0x5f, 0x4a, 0x9a, 0x27, 0x9f, 0x9f, 0x32, 0x97, 0xe8, 0x24, 0xb9, 0x64, 0x2c, 0x39, 0xff, 0x2f, 0x4b, 0xc4, 0x7e, 0x65, 0xfe, 0xbb, 0x5c, 0xa0, 0xb2, 0x6e, 0xc4, 0xb6, 0x93, 0x2b, 0x51, 0x9e, 0x2e, 0x1f, 0xd8, 0xcf, 0x60, 0xe0, 0x75, 0x15, 0xf9, 0xa0, 0x67, 0x99, 0x88, 0x2b, 0x76, 0xce, 0x41, 0x42, 0x10, 0x29, 0x89, 0xbf, 0xca, 0xb7, 0x61, 0x08, 0x94, 0xee, 0xa0, 0xb3, 0x3a, 0x09, 0xc5, 0x6f, 0x04, 0xf9, 0x1b, 0xb5, 0x64, 0x99, 0x08, 0xe4, 0xcc, 0xce, 0xdf, 0x71, 0x65, 0x8a, 0x6d, 0x62, 0xde, 0x76, 0x1d, 0x6d, 0x6b, 0x78, 0x22, 0x32, 0x63, 0xdd, 0x53, 0x7d, 0xec, 0xed, 0x9d, 0x82, 0xa9, 0x2c, 0x5c, 0x8a, 0x17, 0xdd, 0x85, 0xf9, 0xd2, 0xac, 0x6e, 0x98, 0x60, 0x2e, 0x08, 0xd4, 0x06, 0x76, 0xf4, 0x97, 0xca, 0xb1, 0x72, 0x50, 0x5b, 0x83, 0xea, 0xbb, 0x39, 0x0f, 0x18, 0xb3, 0xb8, 0x03, 0xee, 0x7c, 0x84, 0xa9, 0x69, 0xcd, 0x1d, 0xbd, 0xe2, 0xb7, 0xce, 0xe2, 0x6f, 0x03, 0x49, 0x52, 0x67, 0xa0, 0x1b, 0x23, 0x43, 0x92, 0x2c, 0x7c, 0x3b, 0x65, 0xe8, 0x61, 0x99, 0xde, 0xb5, 0xf1, 0x63, 0x73, 0x92, 0x6c, 0x70, 0x8b, 0x83, 0x10, 0xb4, 0x06, 0x2c, 0x99, 0x12, 0x73, 0xec, 0x87, 0x92, 0x09, 0x67, 0x96, 0xd6, 0x9c, 0x9f, 0x35, 0x48, 0x48, 0x3b, 0x44, 0x00, 0x73, 0x1c, 0x59, 0xeb, 0x81, 0x7b, 0xd1, 0xda, 0x76, 0xcf, 0xc2, 0x4d, 0xf1, 0xa2, 0x5b, 0x2f, 0x5f, 0x91, 0x29, 0x6e, 0x08, 0x37, 0xd6, 0xaa, 0xd2, 0xf8, 0x4f, 0x5e, 0x00, 0x16, 0x52 }; openssl-1.1.1f/apps/timeouts.h000066400000000000000000000010601364063235100163300ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_APPS_TIMEOUTS_H # define OSSL_APPS_TIMEOUTS_H /* numbers in us */ # define DGRAM_RCV_TIMEOUT 250000 # define DGRAM_SND_TIMEOUT 250000 #endif /* ! OSSL_APPS_TIMEOUTS_H */ openssl-1.1.1f/apps/ts.c000066400000000000000000000744601364063235100151160ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_TS NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include "apps.h" # include "progs.h" # include # include # include # include # include # include /* Request nonce length, in bits (must be a multiple of 8). */ # define NONCE_LENGTH 64 /* Name of config entry that defines the OID file. */ # define ENV_OID_FILE "oid_file" /* Is |EXACTLY_ONE| of three pointers set? */ # define EXACTLY_ONE(a, b, c) \ (( a && !b && !c) || \ ( b && !a && !c) || \ ( c && !a && !b)) static ASN1_OBJECT *txt2obj(const char *oid); static CONF *load_config_file(const char *configfile); /* Query related functions. */ static int query_command(const char *data, const char *digest, const EVP_MD *md, const char *policy, int no_nonce, int cert, const char *in, const char *out, int text); static TS_REQ *create_query(BIO *data_bio, const char *digest, const EVP_MD *md, const char *policy, int no_nonce, int cert); static int create_digest(BIO *input, const char *digest, const EVP_MD *md, unsigned char **md_value); static ASN1_INTEGER *create_nonce(int bits); /* Reply related functions. */ static int reply_command(CONF *conf, const char *section, const char *engine, const char *queryfile, const char *passin, const char *inkey, const EVP_MD *md, const char *signer, const char *chain, const char *policy, const char *in, int token_in, const char *out, int token_out, int text); static TS_RESP *read_PKCS7(BIO *in_bio); static TS_RESP *create_response(CONF *conf, const char *section, const char *engine, const char *queryfile, const char *passin, const char *inkey, const EVP_MD *md, const char *signer, const char *chain, const char *policy); static ASN1_INTEGER *serial_cb(TS_RESP_CTX *ctx, void *data); static ASN1_INTEGER *next_serial(const char *serialfile); static int save_ts_serial(const char *serialfile, ASN1_INTEGER *serial); /* Verify related functions. */ static int verify_command(const char *data, const char *digest, const char *queryfile, const char *in, int token_in, const char *CApath, const char *CAfile, const char *untrusted, X509_VERIFY_PARAM *vpm); static TS_VERIFY_CTX *create_verify_ctx(const char *data, const char *digest, const char *queryfile, const char *CApath, const char *CAfile, const char *untrusted, X509_VERIFY_PARAM *vpm); static X509_STORE *create_cert_store(const char *CApath, const char *CAfile, X509_VERIFY_PARAM *vpm); static int verify_cb(int ok, X509_STORE_CTX *ctx); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_CONFIG, OPT_SECTION, OPT_QUERY, OPT_DATA, OPT_DIGEST, OPT_TSPOLICY, OPT_NO_NONCE, OPT_CERT, OPT_IN, OPT_TOKEN_IN, OPT_OUT, OPT_TOKEN_OUT, OPT_TEXT, OPT_REPLY, OPT_QUERYFILE, OPT_PASSIN, OPT_INKEY, OPT_SIGNER, OPT_CHAIN, OPT_VERIFY, OPT_CAPATH, OPT_CAFILE, OPT_UNTRUSTED, OPT_MD, OPT_V_ENUM, OPT_R_ENUM } OPTION_CHOICE; const OPTIONS ts_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"config", OPT_CONFIG, '<', "Configuration file"}, {"section", OPT_SECTION, 's', "Section to use within config file"}, {"query", OPT_QUERY, '-', "Generate a TS query"}, {"data", OPT_DATA, '<', "File to hash"}, {"digest", OPT_DIGEST, 's', "Digest (as a hex string)"}, OPT_R_OPTIONS, {"tspolicy", OPT_TSPOLICY, 's', "Policy OID to use"}, {"no_nonce", OPT_NO_NONCE, '-', "Do not include a nonce"}, {"cert", OPT_CERT, '-', "Put cert request into query"}, {"in", OPT_IN, '<', "Input file"}, {"token_in", OPT_TOKEN_IN, '-', "Input is a PKCS#7 file"}, {"out", OPT_OUT, '>', "Output file"}, {"token_out", OPT_TOKEN_OUT, '-', "Output is a PKCS#7 file"}, {"text", OPT_TEXT, '-', "Output text (not DER)"}, {"reply", OPT_REPLY, '-', "Generate a TS reply"}, {"queryfile", OPT_QUERYFILE, '<', "File containing a TS query"}, {"passin", OPT_PASSIN, 's', "Input file pass phrase source"}, {"inkey", OPT_INKEY, 's', "File with private key for reply"}, {"signer", OPT_SIGNER, 's', "Signer certificate file"}, {"chain", OPT_CHAIN, '<', "File with signer CA chain"}, {"verify", OPT_VERIFY, '-', "Verify a TS response"}, {"CApath", OPT_CAPATH, '/', "Path to trusted CA files"}, {"CAfile", OPT_CAFILE, '<', "File with trusted CA certs"}, {"untrusted", OPT_UNTRUSTED, '<', "File with untrusted certs"}, {"", OPT_MD, '-', "Any supported digest"}, # ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, # endif {OPT_HELP_STR, 1, '-', "\nOptions specific to 'ts -verify': \n"}, OPT_V_OPTIONS, {OPT_HELP_STR, 1, '-', "\n"}, {NULL} }; /* * This command is so complex, special help is needed. */ static char* opt_helplist[] = { "Typical uses:", "ts -query [-rand file...] [-config file] [-data file]", " [-digest hexstring] [-tspolicy oid] [-no_nonce] [-cert]", " [-in file] [-out file] [-text]", " or", "ts -reply [-config file] [-section tsa_section]", " [-queryfile file] [-passin password]", " [-signer tsa_cert.pem] [-inkey private_key.pem]", " [-chain certs_file.pem] [-tspolicy oid]", " [-in file] [-token_in] [-out file] [-token_out]", # ifndef OPENSSL_NO_ENGINE " [-text] [-engine id]", # else " [-text]", # endif " or", "ts -verify -CApath dir -CAfile file.pem -untrusted file.pem", " [-data file] [-digest hexstring]", " [-queryfile file] -in file [-token_in]", " [[options specific to 'ts -verify']]", NULL, }; int ts_main(int argc, char **argv) { CONF *conf = NULL; const char *CAfile = NULL, *untrusted = NULL, *prog; const char *configfile = default_config_file, *engine = NULL; const char *section = NULL; char **helpp; char *password = NULL; char *data = NULL, *digest = NULL, *policy = NULL; char *in = NULL, *out = NULL, *queryfile = NULL, *passin = NULL; char *inkey = NULL, *signer = NULL, *chain = NULL, *CApath = NULL; const EVP_MD *md = NULL; OPTION_CHOICE o, mode = OPT_ERR; int ret = 1, no_nonce = 0, cert = 0, text = 0; int vpmtouched = 0; X509_VERIFY_PARAM *vpm = NULL; /* Input is ContentInfo instead of TimeStampResp. */ int token_in = 0; /* Output is ContentInfo instead of TimeStampResp. */ int token_out = 0; if ((vpm = X509_VERIFY_PARAM_new()) == NULL) goto end; prog = opt_init(argc, argv, ts_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(ts_options); for (helpp = opt_helplist; *helpp; ++helpp) BIO_printf(bio_err, "%s\n", *helpp); ret = 0; goto end; case OPT_CONFIG: configfile = opt_arg(); break; case OPT_SECTION: section = opt_arg(); break; case OPT_QUERY: case OPT_REPLY: case OPT_VERIFY: if (mode != OPT_ERR) goto opthelp; mode = o; break; case OPT_DATA: data = opt_arg(); break; case OPT_DIGEST: digest = opt_arg(); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_TSPOLICY: policy = opt_arg(); break; case OPT_NO_NONCE: no_nonce = 1; break; case OPT_CERT: cert = 1; break; case OPT_IN: in = opt_arg(); break; case OPT_TOKEN_IN: token_in = 1; break; case OPT_OUT: out = opt_arg(); break; case OPT_TOKEN_OUT: token_out = 1; break; case OPT_TEXT: text = 1; break; case OPT_QUERYFILE: queryfile = opt_arg(); break; case OPT_PASSIN: passin = opt_arg(); break; case OPT_INKEY: inkey = opt_arg(); break; case OPT_SIGNER: signer = opt_arg(); break; case OPT_CHAIN: chain = opt_arg(); break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_UNTRUSTED: untrusted = opt_arg(); break; case OPT_ENGINE: engine = opt_arg(); break; case OPT_MD: if (!opt_md(opt_unknown(), &md)) goto opthelp; break; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto end; vpmtouched++; break; } } if (mode == OPT_ERR || opt_num_rest() != 0) goto opthelp; if (mode == OPT_REPLY && passin && !app_passwd(passin, NULL, &password, NULL)) { BIO_printf(bio_err, "Error getting password.\n"); goto end; } if ((conf = load_config_file(configfile)) == NULL) goto end; if (configfile != default_config_file && !app_load_modules(conf)) goto end; /* Check parameter consistency and execute the appropriate function. */ if (mode == OPT_QUERY) { if (vpmtouched) goto opthelp; if ((data != NULL) && (digest != NULL)) goto opthelp; ret = !query_command(data, digest, md, policy, no_nonce, cert, in, out, text); } else if (mode == OPT_REPLY) { if (vpmtouched) goto opthelp; if ((in != NULL) && (queryfile != NULL)) goto opthelp; if (in == NULL) { if ((conf == NULL) || (token_in != 0)) goto opthelp; } ret = !reply_command(conf, section, engine, queryfile, password, inkey, md, signer, chain, policy, in, token_in, out, token_out, text); } else if (mode == OPT_VERIFY) { if ((in == NULL) || !EXACTLY_ONE(queryfile, data, digest)) goto opthelp; ret = !verify_command(data, digest, queryfile, in, token_in, CApath, CAfile, untrusted, vpmtouched ? vpm : NULL); } else { goto opthelp; } end: X509_VERIFY_PARAM_free(vpm); NCONF_free(conf); OPENSSL_free(password); return ret; } /* * Configuration file-related function definitions. */ static ASN1_OBJECT *txt2obj(const char *oid) { ASN1_OBJECT *oid_obj = NULL; if ((oid_obj = OBJ_txt2obj(oid, 0)) == NULL) BIO_printf(bio_err, "cannot convert %s to OID\n", oid); return oid_obj; } static CONF *load_config_file(const char *configfile) { CONF *conf = app_load_config(configfile); if (conf != NULL) { const char *p; BIO_printf(bio_err, "Using configuration from %s\n", configfile); p = NCONF_get_string(conf, NULL, ENV_OID_FILE); if (p != NULL) { BIO *oid_bio = BIO_new_file(p, "r"); if (!oid_bio) ERR_print_errors(bio_err); else { OBJ_create_objects(oid_bio); BIO_free_all(oid_bio); } } else ERR_clear_error(); if (!add_oid_section(conf)) ERR_print_errors(bio_err); } return conf; } /* * Query-related method definitions. */ static int query_command(const char *data, const char *digest, const EVP_MD *md, const char *policy, int no_nonce, int cert, const char *in, const char *out, int text) { int ret = 0; TS_REQ *query = NULL; BIO *in_bio = NULL; BIO *data_bio = NULL; BIO *out_bio = NULL; /* Build query object. */ if (in != NULL) { if ((in_bio = bio_open_default(in, 'r', FORMAT_ASN1)) == NULL) goto end; query = d2i_TS_REQ_bio(in_bio, NULL); } else { if (digest == NULL && (data_bio = bio_open_default(data, 'r', FORMAT_ASN1)) == NULL) goto end; query = create_query(data_bio, digest, md, policy, no_nonce, cert); } if (query == NULL) goto end; if (text) { if ((out_bio = bio_open_default(out, 'w', FORMAT_TEXT)) == NULL) goto end; if (!TS_REQ_print_bio(out_bio, query)) goto end; } else { if ((out_bio = bio_open_default(out, 'w', FORMAT_ASN1)) == NULL) goto end; if (!i2d_TS_REQ_bio(out_bio, query)) goto end; } ret = 1; end: ERR_print_errors(bio_err); BIO_free_all(in_bio); BIO_free_all(data_bio); BIO_free_all(out_bio); TS_REQ_free(query); return ret; } static TS_REQ *create_query(BIO *data_bio, const char *digest, const EVP_MD *md, const char *policy, int no_nonce, int cert) { int ret = 0; TS_REQ *ts_req = NULL; int len; TS_MSG_IMPRINT *msg_imprint = NULL; X509_ALGOR *algo = NULL; unsigned char *data = NULL; ASN1_OBJECT *policy_obj = NULL; ASN1_INTEGER *nonce_asn1 = NULL; if (md == NULL && (md = EVP_get_digestbyname("sha1")) == NULL) goto err; if ((ts_req = TS_REQ_new()) == NULL) goto err; if (!TS_REQ_set_version(ts_req, 1)) goto err; if ((msg_imprint = TS_MSG_IMPRINT_new()) == NULL) goto err; if ((algo = X509_ALGOR_new()) == NULL) goto err; if ((algo->algorithm = OBJ_nid2obj(EVP_MD_type(md))) == NULL) goto err; if ((algo->parameter = ASN1_TYPE_new()) == NULL) goto err; algo->parameter->type = V_ASN1_NULL; if (!TS_MSG_IMPRINT_set_algo(msg_imprint, algo)) goto err; if ((len = create_digest(data_bio, digest, md, &data)) == 0) goto err; if (!TS_MSG_IMPRINT_set_msg(msg_imprint, data, len)) goto err; if (!TS_REQ_set_msg_imprint(ts_req, msg_imprint)) goto err; if (policy && (policy_obj = txt2obj(policy)) == NULL) goto err; if (policy_obj && !TS_REQ_set_policy_id(ts_req, policy_obj)) goto err; /* Setting nonce if requested. */ if (!no_nonce && (nonce_asn1 = create_nonce(NONCE_LENGTH)) == NULL) goto err; if (nonce_asn1 && !TS_REQ_set_nonce(ts_req, nonce_asn1)) goto err; if (!TS_REQ_set_cert_req(ts_req, cert)) goto err; ret = 1; err: if (!ret) { TS_REQ_free(ts_req); ts_req = NULL; BIO_printf(bio_err, "could not create query\n"); ERR_print_errors(bio_err); } TS_MSG_IMPRINT_free(msg_imprint); X509_ALGOR_free(algo); OPENSSL_free(data); ASN1_OBJECT_free(policy_obj); ASN1_INTEGER_free(nonce_asn1); return ts_req; } static int create_digest(BIO *input, const char *digest, const EVP_MD *md, unsigned char **md_value) { int md_value_len; int rv = 0; EVP_MD_CTX *md_ctx = NULL; md_value_len = EVP_MD_size(md); if (md_value_len < 0) return 0; if (input != NULL) { unsigned char buffer[4096]; int length; md_ctx = EVP_MD_CTX_new(); if (md_ctx == NULL) return 0; *md_value = app_malloc(md_value_len, "digest buffer"); if (!EVP_DigestInit(md_ctx, md)) goto err; while ((length = BIO_read(input, buffer, sizeof(buffer))) > 0) { if (!EVP_DigestUpdate(md_ctx, buffer, length)) goto err; } if (!EVP_DigestFinal(md_ctx, *md_value, NULL)) goto err; md_value_len = EVP_MD_size(md); } else { long digest_len; *md_value = OPENSSL_hexstr2buf(digest, &digest_len); if (!*md_value || md_value_len != digest_len) { OPENSSL_free(*md_value); *md_value = NULL; BIO_printf(bio_err, "bad digest, %d bytes " "must be specified\n", md_value_len); return 0; } } rv = md_value_len; err: EVP_MD_CTX_free(md_ctx); return rv; } static ASN1_INTEGER *create_nonce(int bits) { unsigned char buf[20]; ASN1_INTEGER *nonce = NULL; int len = (bits - 1) / 8 + 1; int i; if (len > (int)sizeof(buf)) goto err; if (RAND_bytes(buf, len) <= 0) goto err; /* Find the first non-zero byte and creating ASN1_INTEGER object. */ for (i = 0; i < len && !buf[i]; ++i) continue; if ((nonce = ASN1_INTEGER_new()) == NULL) goto err; OPENSSL_free(nonce->data); nonce->length = len - i; nonce->data = app_malloc(nonce->length + 1, "nonce buffer"); memcpy(nonce->data, buf + i, nonce->length); return nonce; err: BIO_printf(bio_err, "could not create nonce\n"); ASN1_INTEGER_free(nonce); return NULL; } /* * Reply-related method definitions. */ static int reply_command(CONF *conf, const char *section, const char *engine, const char *queryfile, const char *passin, const char *inkey, const EVP_MD *md, const char *signer, const char *chain, const char *policy, const char *in, int token_in, const char *out, int token_out, int text) { int ret = 0; TS_RESP *response = NULL; BIO *in_bio = NULL; BIO *query_bio = NULL; BIO *inkey_bio = NULL; BIO *signer_bio = NULL; BIO *out_bio = NULL; if (in != NULL) { if ((in_bio = BIO_new_file(in, "rb")) == NULL) goto end; if (token_in) { response = read_PKCS7(in_bio); } else { response = d2i_TS_RESP_bio(in_bio, NULL); } } else { response = create_response(conf, section, engine, queryfile, passin, inkey, md, signer, chain, policy); if (response != NULL) BIO_printf(bio_err, "Response has been generated.\n"); else BIO_printf(bio_err, "Response is not generated.\n"); } if (response == NULL) goto end; /* Write response. */ if (text) { if ((out_bio = bio_open_default(out, 'w', FORMAT_TEXT)) == NULL) goto end; if (token_out) { TS_TST_INFO *tst_info = TS_RESP_get_tst_info(response); if (!TS_TST_INFO_print_bio(out_bio, tst_info)) goto end; } else { if (!TS_RESP_print_bio(out_bio, response)) goto end; } } else { if ((out_bio = bio_open_default(out, 'w', FORMAT_ASN1)) == NULL) goto end; if (token_out) { PKCS7 *token = TS_RESP_get_token(response); if (!i2d_PKCS7_bio(out_bio, token)) goto end; } else { if (!i2d_TS_RESP_bio(out_bio, response)) goto end; } } ret = 1; end: ERR_print_errors(bio_err); BIO_free_all(in_bio); BIO_free_all(query_bio); BIO_free_all(inkey_bio); BIO_free_all(signer_bio); BIO_free_all(out_bio); TS_RESP_free(response); return ret; } /* Reads a PKCS7 token and adds default 'granted' status info to it. */ static TS_RESP *read_PKCS7(BIO *in_bio) { int ret = 0; PKCS7 *token = NULL; TS_TST_INFO *tst_info = NULL; TS_RESP *resp = NULL; TS_STATUS_INFO *si = NULL; if ((token = d2i_PKCS7_bio(in_bio, NULL)) == NULL) goto end; if ((tst_info = PKCS7_to_TS_TST_INFO(token)) == NULL) goto end; if ((resp = TS_RESP_new()) == NULL) goto end; if ((si = TS_STATUS_INFO_new()) == NULL) goto end; if (!TS_STATUS_INFO_set_status(si, TS_STATUS_GRANTED)) goto end; if (!TS_RESP_set_status_info(resp, si)) goto end; TS_RESP_set_tst_info(resp, token, tst_info); token = NULL; /* Ownership is lost. */ tst_info = NULL; /* Ownership is lost. */ ret = 1; end: PKCS7_free(token); TS_TST_INFO_free(tst_info); if (!ret) { TS_RESP_free(resp); resp = NULL; } TS_STATUS_INFO_free(si); return resp; } static TS_RESP *create_response(CONF *conf, const char *section, const char *engine, const char *queryfile, const char *passin, const char *inkey, const EVP_MD *md, const char *signer, const char *chain, const char *policy) { int ret = 0; TS_RESP *response = NULL; BIO *query_bio = NULL; TS_RESP_CTX *resp_ctx = NULL; if ((query_bio = BIO_new_file(queryfile, "rb")) == NULL) goto end; if ((section = TS_CONF_get_tsa_section(conf, section)) == NULL) goto end; if ((resp_ctx = TS_RESP_CTX_new()) == NULL) goto end; if (!TS_CONF_set_serial(conf, section, serial_cb, resp_ctx)) goto end; # ifndef OPENSSL_NO_ENGINE if (!TS_CONF_set_crypto_device(conf, section, engine)) goto end; # endif if (!TS_CONF_set_signer_cert(conf, section, signer, resp_ctx)) goto end; if (!TS_CONF_set_certs(conf, section, chain, resp_ctx)) goto end; if (!TS_CONF_set_signer_key(conf, section, inkey, passin, resp_ctx)) goto end; if (md) { if (!TS_RESP_CTX_set_signer_digest(resp_ctx, md)) goto end; } else if (!TS_CONF_set_signer_digest(conf, section, NULL, resp_ctx)) { goto end; } if (!TS_CONF_set_ess_cert_id_digest(conf, section, resp_ctx)) goto end; if (!TS_CONF_set_def_policy(conf, section, policy, resp_ctx)) goto end; if (!TS_CONF_set_policies(conf, section, resp_ctx)) goto end; if (!TS_CONF_set_digests(conf, section, resp_ctx)) goto end; if (!TS_CONF_set_accuracy(conf, section, resp_ctx)) goto end; if (!TS_CONF_set_clock_precision_digits(conf, section, resp_ctx)) goto end; if (!TS_CONF_set_ordering(conf, section, resp_ctx)) goto end; if (!TS_CONF_set_tsa_name(conf, section, resp_ctx)) goto end; if (!TS_CONF_set_ess_cert_id_chain(conf, section, resp_ctx)) goto end; if ((response = TS_RESP_create_response(resp_ctx, query_bio)) == NULL) goto end; ret = 1; end: if (!ret) { TS_RESP_free(response); response = NULL; } TS_RESP_CTX_free(resp_ctx); BIO_free_all(query_bio); return response; } static ASN1_INTEGER *serial_cb(TS_RESP_CTX *ctx, void *data) { const char *serial_file = (const char *)data; ASN1_INTEGER *serial = next_serial(serial_file); if (serial == NULL) { TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Error during serial number " "generation."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_ADD_INFO_NOT_AVAILABLE); } else { save_ts_serial(serial_file, serial); } return serial; } static ASN1_INTEGER *next_serial(const char *serialfile) { int ret = 0; BIO *in = NULL; ASN1_INTEGER *serial = NULL; BIGNUM *bn = NULL; if ((serial = ASN1_INTEGER_new()) == NULL) goto err; if ((in = BIO_new_file(serialfile, "r")) == NULL) { ERR_clear_error(); BIO_printf(bio_err, "Warning: could not open file %s for " "reading, using serial number: 1\n", serialfile); if (!ASN1_INTEGER_set(serial, 1)) goto err; } else { char buf[1024]; if (!a2i_ASN1_INTEGER(in, serial, buf, sizeof(buf))) { BIO_printf(bio_err, "unable to load number from %s\n", serialfile); goto err; } if ((bn = ASN1_INTEGER_to_BN(serial, NULL)) == NULL) goto err; ASN1_INTEGER_free(serial); serial = NULL; if (!BN_add_word(bn, 1)) goto err; if ((serial = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) goto err; } ret = 1; err: if (!ret) { ASN1_INTEGER_free(serial); serial = NULL; } BIO_free_all(in); BN_free(bn); return serial; } static int save_ts_serial(const char *serialfile, ASN1_INTEGER *serial) { int ret = 0; BIO *out = NULL; if ((out = BIO_new_file(serialfile, "w")) == NULL) goto err; if (i2a_ASN1_INTEGER(out, serial) <= 0) goto err; if (BIO_puts(out, "\n") <= 0) goto err; ret = 1; err: if (!ret) BIO_printf(bio_err, "could not save serial number to %s\n", serialfile); BIO_free_all(out); return ret; } /* * Verify-related method definitions. */ static int verify_command(const char *data, const char *digest, const char *queryfile, const char *in, int token_in, const char *CApath, const char *CAfile, const char *untrusted, X509_VERIFY_PARAM *vpm) { BIO *in_bio = NULL; PKCS7 *token = NULL; TS_RESP *response = NULL; TS_VERIFY_CTX *verify_ctx = NULL; int ret = 0; if ((in_bio = BIO_new_file(in, "rb")) == NULL) goto end; if (token_in) { if ((token = d2i_PKCS7_bio(in_bio, NULL)) == NULL) goto end; } else { if ((response = d2i_TS_RESP_bio(in_bio, NULL)) == NULL) goto end; } if ((verify_ctx = create_verify_ctx(data, digest, queryfile, CApath, CAfile, untrusted, vpm)) == NULL) goto end; ret = token_in ? TS_RESP_verify_token(verify_ctx, token) : TS_RESP_verify_response(verify_ctx, response); end: printf("Verification: "); if (ret) printf("OK\n"); else { printf("FAILED\n"); ERR_print_errors(bio_err); } BIO_free_all(in_bio); PKCS7_free(token); TS_RESP_free(response); TS_VERIFY_CTX_free(verify_ctx); return ret; } static TS_VERIFY_CTX *create_verify_ctx(const char *data, const char *digest, const char *queryfile, const char *CApath, const char *CAfile, const char *untrusted, X509_VERIFY_PARAM *vpm) { TS_VERIFY_CTX *ctx = NULL; BIO *input = NULL; TS_REQ *request = NULL; int ret = 0; int f = 0; if (data != NULL || digest != NULL) { if ((ctx = TS_VERIFY_CTX_new()) == NULL) goto err; f = TS_VFY_VERSION | TS_VFY_SIGNER; if (data != NULL) { BIO *out = NULL; f |= TS_VFY_DATA; if ((out = BIO_new_file(data, "rb")) == NULL) goto err; if (TS_VERIFY_CTX_set_data(ctx, out) == NULL) { BIO_free_all(out); goto err; } } else if (digest != NULL) { long imprint_len; unsigned char *hexstr = OPENSSL_hexstr2buf(digest, &imprint_len); f |= TS_VFY_IMPRINT; if (TS_VERIFY_CTX_set_imprint(ctx, hexstr, imprint_len) == NULL) { BIO_printf(bio_err, "invalid digest string\n"); goto err; } } } else if (queryfile != NULL) { if ((input = BIO_new_file(queryfile, "rb")) == NULL) goto err; if ((request = d2i_TS_REQ_bio(input, NULL)) == NULL) goto err; if ((ctx = TS_REQ_to_TS_VERIFY_CTX(request, NULL)) == NULL) goto err; } else { return NULL; } /* Add the signature verification flag and arguments. */ TS_VERIFY_CTX_add_flags(ctx, f | TS_VFY_SIGNATURE); /* Initialising the X509_STORE object. */ if (TS_VERIFY_CTX_set_store(ctx, create_cert_store(CApath, CAfile, vpm)) == NULL) goto err; /* Loading untrusted certificates. */ if (untrusted && TS_VERIFY_CTS_set_certs(ctx, TS_CONF_load_certs(untrusted)) == NULL) goto err; ret = 1; err: if (!ret) { TS_VERIFY_CTX_free(ctx); ctx = NULL; } BIO_free_all(input); TS_REQ_free(request); return ctx; } static X509_STORE *create_cert_store(const char *CApath, const char *CAfile, X509_VERIFY_PARAM *vpm) { X509_STORE *cert_ctx = NULL; X509_LOOKUP *lookup = NULL; int i; cert_ctx = X509_STORE_new(); X509_STORE_set_verify_cb(cert_ctx, verify_cb); if (CApath != NULL) { lookup = X509_STORE_add_lookup(cert_ctx, X509_LOOKUP_hash_dir()); if (lookup == NULL) { BIO_printf(bio_err, "memory allocation failure\n"); goto err; } i = X509_LOOKUP_add_dir(lookup, CApath, X509_FILETYPE_PEM); if (!i) { BIO_printf(bio_err, "Error loading directory %s\n", CApath); goto err; } } if (CAfile != NULL) { lookup = X509_STORE_add_lookup(cert_ctx, X509_LOOKUP_file()); if (lookup == NULL) { BIO_printf(bio_err, "memory allocation failure\n"); goto err; } i = X509_LOOKUP_load_file(lookup, CAfile, X509_FILETYPE_PEM); if (!i) { BIO_printf(bio_err, "Error loading file %s\n", CAfile); goto err; } } if (vpm != NULL) X509_STORE_set1_param(cert_ctx, vpm); return cert_ctx; err: X509_STORE_free(cert_ctx); return NULL; } static int verify_cb(int ok, X509_STORE_CTX *ctx) { return ok; } #endif /* ndef OPENSSL_NO_TS */ openssl-1.1.1f/apps/tsget.in000066400000000000000000000147151364063235100157770ustar00rootroot00000000000000#!{- $config{HASHBANGPERL} -} # Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. # Copyright (c) 2002 The OpenTSA Project. All rights reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html use strict; use IO::Handle; use Getopt::Std; use File::Basename; use WWW::Curl::Easy; use vars qw(%options); # Callback for reading the body. sub read_body { my ($maxlength, $state) = @_; my $return_data = ""; my $data_len = length ${$state->{data}}; if ($state->{bytes} < $data_len) { $data_len = $data_len - $state->{bytes}; $data_len = $maxlength if $data_len > $maxlength; $return_data = substr ${$state->{data}}, $state->{bytes}, $data_len; $state->{bytes} += $data_len; } return $return_data; } # Callback for writing the body into a variable. sub write_body { my ($data, $pointer) = @_; ${$pointer} .= $data; return length($data); } # Initialise a new Curl object. sub create_curl { my $url = shift; # Create Curl object. my $curl = WWW::Curl::Easy::new(); # Error-handling related options. $curl->setopt(CURLOPT_VERBOSE, 1) if $options{d}; $curl->setopt(CURLOPT_FAILONERROR, 1); $curl->setopt(CURLOPT_USERAGENT, "OpenTSA tsget.pl/openssl-{- $config{version} -}"); # Options for POST method. $curl->setopt(CURLOPT_UPLOAD, 1); $curl->setopt(CURLOPT_CUSTOMREQUEST, "POST"); $curl->setopt(CURLOPT_HTTPHEADER, ["Content-Type: application/timestamp-query", "Accept: application/timestamp-reply,application/timestamp-response"]); $curl->setopt(CURLOPT_READFUNCTION, \&read_body); $curl->setopt(CURLOPT_HEADERFUNCTION, sub { return length($_[0]); }); # Options for getting the result. $curl->setopt(CURLOPT_WRITEFUNCTION, \&write_body); # SSL related options. $curl->setopt(CURLOPT_SSLKEYTYPE, "PEM"); $curl->setopt(CURLOPT_SSL_VERIFYPEER, 1); # Verify server's certificate. $curl->setopt(CURLOPT_SSL_VERIFYHOST, 2); # Check server's CN. $curl->setopt(CURLOPT_SSLKEY, $options{k}) if defined($options{k}); $curl->setopt(CURLOPT_SSLKEYPASSWD, $options{p}) if defined($options{p}); $curl->setopt(CURLOPT_SSLCERT, $options{c}) if defined($options{c}); $curl->setopt(CURLOPT_CAINFO, $options{C}) if defined($options{C}); $curl->setopt(CURLOPT_CAPATH, $options{P}) if defined($options{P}); $curl->setopt(CURLOPT_RANDOM_FILE, $options{r}) if defined($options{r}); $curl->setopt(CURLOPT_EGDSOCKET, $options{g}) if defined($options{g}); # Setting destination. $curl->setopt(CURLOPT_URL, $url); return $curl; } # Send a request and returns the body back. sub get_timestamp { my $curl = shift; my $body = shift; my $ts_body; local $::error_buf; # Error-handling related options. $curl->setopt(CURLOPT_ERRORBUFFER, "::error_buf"); # Options for POST method. $curl->setopt(CURLOPT_INFILE, {data => $body, bytes => 0}); $curl->setopt(CURLOPT_INFILESIZE, length(${$body})); # Options for getting the result. $curl->setopt(CURLOPT_FILE, \$ts_body); # Send the request... my $error_code = $curl->perform(); my $error_string; if ($error_code != 0) { my $http_code = $curl->getinfo(CURLINFO_HTTP_CODE); $error_string = "could not get timestamp"; $error_string .= ", http code: $http_code" unless $http_code == 0; $error_string .= ", curl code: $error_code"; $error_string .= " ($::error_buf)" if defined($::error_buf); } else { my $ct = $curl->getinfo(CURLINFO_CONTENT_TYPE); if (lc($ct) ne "application/timestamp-reply" && lc($ct) ne "application/timestamp-response") { $error_string = "unexpected content type returned: $ct"; } } return ($ts_body, $error_string); } # Print usage information and exists. sub usage { print STDERR "usage: $0 -h [-e ] [-o ] "; print STDERR "[-v] [-d] [-k ] [-p ] "; print STDERR "[-c ] [-C ] [-P ] "; print STDERR "[-r ] [-g ] []...\n"; exit 1; } # ---------------------------------------------------------------------- # Main program # ---------------------------------------------------------------------- # Getting command-line options (default comes from TSGET environment variable). my $getopt_arg = "h:e:o:vdk:p:c:C:P:r:g:"; if (exists $ENV{TSGET}) { my @old_argv = @ARGV; @ARGV = split /\s+/, $ENV{TSGET}; getopts($getopt_arg, \%options) or usage; @ARGV = @old_argv; } getopts($getopt_arg, \%options) or usage; # Checking argument consistency. if (!exists($options{h}) || (@ARGV == 0 && !exists($options{o})) || (@ARGV > 1 && exists($options{o}))) { print STDERR "Inconsistent command line options.\n"; usage; } # Setting defaults. @ARGV = ("-") unless @ARGV != 0; $options{e} = ".tsr" unless defined($options{e}); # Processing requests. my $curl = create_curl $options{h}; undef $/; # For reading whole files. REQUEST: foreach (@ARGV) { my $input = $_; my ($base, $path) = fileparse($input, '\.[^.]*'); my $output_base = $base . $options{e}; my $output = defined($options{o}) ? $options{o} : $path . $output_base; STDERR->printflush("$input: ") if $options{v}; # Read request. my $body; if ($input eq "-") { # Read the request from STDIN; $body = ; } else { # Read the request from file. open INPUT, "<" . $input or warn("$input: could not open input file: $!\n"), next REQUEST; $body = ; close INPUT or warn("$input: could not close input file: $!\n"), next REQUEST; } # Send request. STDERR->printflush("sending request") if $options{v}; my ($ts_body, $error) = get_timestamp $curl, \$body; if (defined($error)) { die "$input: fatal error: $error\n"; } STDERR->printflush(", reply received") if $options{v}; # Write response. if ($output eq "-") { # Write to STDOUT. print $ts_body; } else { # Write to file. open OUTPUT, ">", $output or warn("$output: could not open output file: $!\n"), next REQUEST; print OUTPUT $ts_body; close OUTPUT or warn("$output: could not close output file: $!\n"), next REQUEST; } STDERR->printflush(", $output written.\n") if $options{v}; } $curl->cleanup(); openssl-1.1.1f/apps/verify.c000066400000000000000000000250221364063235100157620ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include static int cb(int ok, X509_STORE_CTX *ctx); static int check(X509_STORE *ctx, const char *file, STACK_OF(X509) *uchain, STACK_OF(X509) *tchain, STACK_OF(X509_CRL) *crls, int show_chain); static int v_verbose = 0, vflags = 0; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ENGINE, OPT_CAPATH, OPT_CAFILE, OPT_NOCAPATH, OPT_NOCAFILE, OPT_UNTRUSTED, OPT_TRUSTED, OPT_CRLFILE, OPT_CRL_DOWNLOAD, OPT_SHOW_CHAIN, OPT_V_ENUM, OPT_NAMEOPT, OPT_VERBOSE } OPTION_CHOICE; const OPTIONS verify_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] cert.pem...\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, {"verbose", OPT_VERBOSE, '-', "Print extra information about the operations being performed."}, {"CApath", OPT_CAPATH, '/', "A directory of trusted certificates"}, {"CAfile", OPT_CAFILE, '<', "A file of trusted certificates"}, {"no-CAfile", OPT_NOCAFILE, '-', "Do not load the default certificates file"}, {"no-CApath", OPT_NOCAPATH, '-', "Do not load certificates from the default certificates directory"}, {"untrusted", OPT_UNTRUSTED, '<', "A file of untrusted certificates"}, {"trusted", OPT_TRUSTED, '<', "A file of trusted certificates"}, {"CRLfile", OPT_CRLFILE, '<', "File containing one or more CRL's (in PEM format) to load"}, {"crl_download", OPT_CRL_DOWNLOAD, '-', "Attempt to download CRL information for this certificate"}, {"show_chain", OPT_SHOW_CHAIN, '-', "Display information about the certificate chain"}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, OPT_V_OPTIONS, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {NULL} }; int verify_main(int argc, char **argv) { ENGINE *e = NULL; STACK_OF(X509) *untrusted = NULL, *trusted = NULL; STACK_OF(X509_CRL) *crls = NULL; X509_STORE *store = NULL; X509_VERIFY_PARAM *vpm = NULL; const char *prog, *CApath = NULL, *CAfile = NULL; int noCApath = 0, noCAfile = 0; int vpmtouched = 0, crl_download = 0, show_chain = 0, i = 0, ret = 1; OPTION_CHOICE o; if ((vpm = X509_VERIFY_PARAM_new()) == NULL) goto end; prog = opt_init(argc, argv, verify_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(verify_options); BIO_printf(bio_err, "Recognized usages:\n"); for (i = 0; i < X509_PURPOSE_get_count(); i++) { X509_PURPOSE *ptmp; ptmp = X509_PURPOSE_get0(i); BIO_printf(bio_err, "\t%-10s\t%s\n", X509_PURPOSE_get0_sname(ptmp), X509_PURPOSE_get0_name(ptmp)); } BIO_printf(bio_err, "Recognized verify names:\n"); for (i = 0; i < X509_VERIFY_PARAM_get_count(); i++) { const X509_VERIFY_PARAM *vptmp; vptmp = X509_VERIFY_PARAM_get0(i); BIO_printf(bio_err, "\t%-10s\n", X509_VERIFY_PARAM_get0_name(vptmp)); } ret = 0; goto end; case OPT_V_CASES: if (!opt_verify(o, vpm)) goto end; vpmtouched++; break; case OPT_CAPATH: CApath = opt_arg(); break; case OPT_CAFILE: CAfile = opt_arg(); break; case OPT_NOCAPATH: noCApath = 1; break; case OPT_NOCAFILE: noCAfile = 1; break; case OPT_UNTRUSTED: /* Zero or more times */ if (!load_certs(opt_arg(), &untrusted, FORMAT_PEM, NULL, "untrusted certificates")) goto end; break; case OPT_TRUSTED: /* Zero or more times */ noCAfile = 1; noCApath = 1; if (!load_certs(opt_arg(), &trusted, FORMAT_PEM, NULL, "trusted certificates")) goto end; break; case OPT_CRLFILE: /* Zero or more times */ if (!load_crls(opt_arg(), &crls, FORMAT_PEM, NULL, "other CRLs")) goto end; break; case OPT_CRL_DOWNLOAD: crl_download = 1; break; case OPT_ENGINE: if ((e = setup_engine(opt_arg(), 0)) == NULL) { /* Failure message already displayed */ goto end; } break; case OPT_SHOW_CHAIN: show_chain = 1; break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto end; break; case OPT_VERBOSE: v_verbose = 1; break; } } argc = opt_num_rest(); argv = opt_rest(); if (trusted != NULL && (CAfile || CApath)) { BIO_printf(bio_err, "%s: Cannot use -trusted with -CAfile or -CApath\n", prog); goto end; } if ((store = setup_verify(CAfile, CApath, noCAfile, noCApath)) == NULL) goto end; X509_STORE_set_verify_cb(store, cb); if (vpmtouched) X509_STORE_set1_param(store, vpm); ERR_clear_error(); if (crl_download) store_setup_crl_download(store); ret = 0; if (argc < 1) { if (check(store, NULL, untrusted, trusted, crls, show_chain) != 1) ret = -1; } else { for (i = 0; i < argc; i++) if (check(store, argv[i], untrusted, trusted, crls, show_chain) != 1) ret = -1; } end: X509_VERIFY_PARAM_free(vpm); X509_STORE_free(store); sk_X509_pop_free(untrusted, X509_free); sk_X509_pop_free(trusted, X509_free); sk_X509_CRL_pop_free(crls, X509_CRL_free); release_engine(e); return (ret < 0 ? 2 : ret); } static int check(X509_STORE *ctx, const char *file, STACK_OF(X509) *uchain, STACK_OF(X509) *tchain, STACK_OF(X509_CRL) *crls, int show_chain) { X509 *x = NULL; int i = 0, ret = 0; X509_STORE_CTX *csc; STACK_OF(X509) *chain = NULL; int num_untrusted; x = load_cert(file, FORMAT_PEM, "certificate file"); if (x == NULL) goto end; csc = X509_STORE_CTX_new(); if (csc == NULL) { printf("error %s: X.509 store context allocation failed\n", (file == NULL) ? "stdin" : file); goto end; } X509_STORE_set_flags(ctx, vflags); if (!X509_STORE_CTX_init(csc, ctx, x, uchain)) { X509_STORE_CTX_free(csc); printf("error %s: X.509 store context initialization failed\n", (file == NULL) ? "stdin" : file); goto end; } if (tchain != NULL) X509_STORE_CTX_set0_trusted_stack(csc, tchain); if (crls != NULL) X509_STORE_CTX_set0_crls(csc, crls); i = X509_verify_cert(csc); if (i > 0 && X509_STORE_CTX_get_error(csc) == X509_V_OK) { printf("%s: OK\n", (file == NULL) ? "stdin" : file); ret = 1; if (show_chain) { int j; chain = X509_STORE_CTX_get1_chain(csc); num_untrusted = X509_STORE_CTX_get_num_untrusted(csc); printf("Chain:\n"); for (j = 0; j < sk_X509_num(chain); j++) { X509 *cert = sk_X509_value(chain, j); printf("depth=%d: ", j); X509_NAME_print_ex_fp(stdout, X509_get_subject_name(cert), 0, get_nameopt()); if (j < num_untrusted) printf(" (untrusted)"); printf("\n"); } sk_X509_pop_free(chain, X509_free); } } else { printf("error %s: verification failed\n", (file == NULL) ? "stdin" : file); } X509_STORE_CTX_free(csc); end: if (i <= 0) ERR_print_errors(bio_err); X509_free(x); return ret; } static int cb(int ok, X509_STORE_CTX *ctx) { int cert_error = X509_STORE_CTX_get_error(ctx); X509 *current_cert = X509_STORE_CTX_get_current_cert(ctx); if (!ok) { if (current_cert != NULL) { X509_NAME_print_ex(bio_err, X509_get_subject_name(current_cert), 0, get_nameopt()); BIO_printf(bio_err, "\n"); } BIO_printf(bio_err, "%serror %d at %d depth lookup: %s\n", X509_STORE_CTX_get0_parent_ctx(ctx) ? "[CRL path] " : "", cert_error, X509_STORE_CTX_get_error_depth(ctx), X509_verify_cert_error_string(cert_error)); /* * Pretend that some errors are ok, so they don't stop further * processing of the certificate chain. Setting ok = 1 does this. * After X509_verify_cert() is done, we verify that there were * no actual errors, even if the returned value was positive. */ switch (cert_error) { case X509_V_ERR_NO_EXPLICIT_POLICY: policies_print(ctx); /* fall thru */ case X509_V_ERR_CERT_HAS_EXPIRED: /* Continue even if the leaf is a self signed cert */ case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: /* Continue after extension errors too */ case X509_V_ERR_INVALID_CA: case X509_V_ERR_INVALID_NON_CA: case X509_V_ERR_PATH_LENGTH_EXCEEDED: case X509_V_ERR_INVALID_PURPOSE: case X509_V_ERR_CRL_HAS_EXPIRED: case X509_V_ERR_CRL_NOT_YET_VALID: case X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION: ok = 1; } return ok; } if (cert_error == X509_V_OK && ok == 2) policies_print(ctx); if (!v_verbose) ERR_clear_error(); return ok; } openssl-1.1.1f/apps/version.c000066400000000000000000000121131364063235100161400ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #ifndef OPENSSL_NO_MD2 # include #endif #ifndef OPENSSL_NO_RC4 # include #endif #ifndef OPENSSL_NO_DES # include #endif #ifndef OPENSSL_NO_IDEA # include #endif #ifndef OPENSSL_NO_BF # include #endif typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_B, OPT_D, OPT_E, OPT_F, OPT_O, OPT_P, OPT_V, OPT_A, OPT_R } OPTION_CHOICE; const OPTIONS version_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"a", OPT_A, '-', "Show all data"}, {"b", OPT_B, '-', "Show build date"}, {"d", OPT_D, '-', "Show configuration directory"}, {"e", OPT_E, '-', "Show engines directory"}, {"f", OPT_F, '-', "Show compiler flags used"}, {"o", OPT_O, '-', "Show some internal datatype options"}, {"p", OPT_P, '-', "Show target build platform"}, {"r", OPT_R, '-', "Show random seeding options"}, {"v", OPT_V, '-', "Show library version"}, {NULL} }; #if defined(OPENSSL_RAND_SEED_DEVRANDOM) || defined(OPENSSL_RAND_SEED_EGD) static void printlist(const char *prefix, const char **dev) { printf("%s (", prefix); for ( ; *dev != NULL; dev++) printf(" \"%s\"", *dev); printf(" )"); } #endif int version_main(int argc, char **argv) { int ret = 1, dirty = 0, seed = 0; int cflags = 0, version = 0, date = 0, options = 0, platform = 0, dir = 0; int engdir = 0; char *prog; OPTION_CHOICE o; prog = opt_init(argc, argv, version_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(version_options); ret = 0; goto end; case OPT_B: dirty = date = 1; break; case OPT_D: dirty = dir = 1; break; case OPT_E: dirty = engdir = 1; break; case OPT_F: dirty = cflags = 1; break; case OPT_O: dirty = options = 1; break; case OPT_P: dirty = platform = 1; break; case OPT_R: dirty = seed = 1; break; case OPT_V: dirty = version = 1; break; case OPT_A: seed = options = cflags = version = date = platform = dir = engdir = 1; break; } } if (opt_num_rest() != 0) { BIO_printf(bio_err, "Extra parameters given.\n"); goto opthelp; } if (!dirty) version = 1; if (version) { if (OpenSSL_version_num() == OPENSSL_VERSION_NUMBER) printf("%s\n", OpenSSL_version(OPENSSL_VERSION)); else printf("%s (Library: %s)\n", OPENSSL_VERSION_TEXT, OpenSSL_version(OPENSSL_VERSION)); } if (date) printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); if (platform) printf("%s\n", OpenSSL_version(OPENSSL_PLATFORM)); if (options) { printf("options: "); printf("%s ", BN_options()); #ifndef OPENSSL_NO_MD2 printf("%s ", MD2_options()); #endif #ifndef OPENSSL_NO_RC4 printf("%s ", RC4_options()); #endif #ifndef OPENSSL_NO_DES printf("%s ", DES_options()); #endif #ifndef OPENSSL_NO_IDEA printf("%s ", IDEA_options()); #endif #ifndef OPENSSL_NO_BF printf("%s ", BF_options()); #endif printf("\n"); } if (cflags) printf("%s\n", OpenSSL_version(OPENSSL_CFLAGS)); if (dir) printf("%s\n", OpenSSL_version(OPENSSL_DIR)); if (engdir) printf("%s\n", OpenSSL_version(OPENSSL_ENGINES_DIR)); if (seed) { printf("Seeding source:"); #ifdef OPENSSL_RAND_SEED_RTDSC printf(" rtdsc"); #endif #ifdef OPENSSL_RAND_SEED_RDCPU printf(" rdrand ( rdseed rdrand )"); #endif #ifdef OPENSSL_RAND_SEED_LIBRANDOM printf(" C-library-random"); #endif #ifdef OPENSSL_RAND_SEED_GETRANDOM printf(" getrandom-syscall"); #endif #ifdef OPENSSL_RAND_SEED_DEVRANDOM { static const char *dev[] = { DEVRANDOM, NULL }; printlist(" random-device", dev); } #endif #ifdef OPENSSL_RAND_SEED_EGD { static const char *dev[] = { DEVRANDOM_EGD, NULL }; printlist(" EGD", dev); } #endif #ifdef OPENSSL_RAND_SEED_NONE printf(" none"); #endif #ifdef OPENSSL_RAND_SEED_OS printf(" os-specific"); #endif printf("\n"); } ret = 0; end: return ret; } openssl-1.1.1f/apps/vms_decc_init.c000066400000000000000000000147051364063235100172720ustar00rootroot00000000000000/* * Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #if defined( __VMS) && !defined( OPENSSL_NO_DECC_INIT) && \ defined( __DECC) && !defined( __VAX) && (__CRTL_VER >= 70301000) # define USE_DECC_INIT 1 #endif #ifdef USE_DECC_INIT /* * ---------------------------------------------------------------------- * decc_init() On non-VAX systems, uses LIB$INITIALIZE to set a collection * of C RTL features without using the DECC$* logical name method. * ---------------------------------------------------------------------- */ # include # include # include # include "apps.h" /* Global storage. */ /* Flag to sense if decc_init() was called. */ int decc_init_done = -1; /* Structure to hold a DECC$* feature name and its desired value. */ typedef struct { char *name; int value; } decc_feat_t; /* * Array of DECC$* feature names and their desired values. Note: * DECC$ARGV_PARSE_STYLE is the urgent one. */ decc_feat_t decc_feat_array[] = { /* Preserve command-line case with SET PROCESS/PARSE_STYLE=EXTENDED */ {"DECC$ARGV_PARSE_STYLE", 1}, /* Preserve case for file names on ODS5 disks. */ {"DECC$EFS_CASE_PRESERVE", 1}, /* * Enable multiple dots (and most characters) in ODS5 file names, while * preserving VMS-ness of ";version". */ {"DECC$EFS_CHARSET", 1}, /* List terminator. */ {(char *)NULL, 0} }; char **copy_argv(int *argc, char *argv[]) { /*- * The note below is for historical purpose. On VMS now we always * copy argv "safely." * * 2011-03-22 SMS. * If we have 32-bit pointers everywhere, then we're safe, and * we bypass this mess, as on non-VMS systems. * Problem 1: Compaq/HP C before V7.3 always used 32-bit * pointers for argv[]. * Fix 1: For a 32-bit argv[], when we're using 64-bit pointers * everywhere else, we always allocate and use a 64-bit * duplicate of argv[]. * Problem 2: Compaq/HP C V7.3 (Alpha, IA64) before ECO1 failed * to NULL-terminate a 64-bit argv[]. (As this was written, the * compiler ECO was available only on IA64.) * Fix 2: Unless advised not to (VMS_TRUST_ARGV), we test a * 64-bit argv[argc] for NULL, and, if necessary, use a * (properly) NULL-terminated (64-bit) duplicate of argv[]. * The same code is used in either case to duplicate argv[]. * Some of these decisions could be handled in preprocessing, * but the code tends to get even uglier, and the penalty for * deciding at compile- or run-time is tiny. */ int i, count = *argc; char **newargv = app_malloc(sizeof(*newargv) * (count + 1), "argv copy"); for (i = 0; i < count; i++) newargv[i] = argv[i]; newargv[i] = NULL; *argc = i; return newargv; } /* LIB$INITIALIZE initialization function. */ static void decc_init(void) { char *openssl_debug_decc_init; int verbose = 0; int feat_index; int feat_value; int feat_value_max; int feat_value_min; int i; int sts; /* Get debug option. */ openssl_debug_decc_init = getenv("OPENSSL_DEBUG_DECC_INIT"); if (openssl_debug_decc_init != NULL) { verbose = strtol(openssl_debug_decc_init, NULL, 10); if (verbose <= 0) { verbose = 1; } } /* Set the global flag to indicate that LIB$INITIALIZE worked. */ decc_init_done = 1; /* Loop through all items in the decc_feat_array[]. */ for (i = 0; decc_feat_array[i].name != NULL; i++) { /* Get the feature index. */ feat_index = decc$feature_get_index(decc_feat_array[i].name); if (feat_index >= 0) { /* Valid item. Collect its properties. */ feat_value = decc$feature_get_value(feat_index, 1); feat_value_min = decc$feature_get_value(feat_index, 2); feat_value_max = decc$feature_get_value(feat_index, 3); /* Check the validity of our desired value. */ if ((decc_feat_array[i].value >= feat_value_min) && (decc_feat_array[i].value <= feat_value_max)) { /* Valid value. Set it if necessary. */ if (feat_value != decc_feat_array[i].value) { sts = decc$feature_set_value(feat_index, 1, decc_feat_array[i].value); if (verbose > 1) { fprintf(stderr, " %s = %d, sts = %d.\n", decc_feat_array[i].name, decc_feat_array[i].value, sts); } } } else { /* Invalid DECC feature value. */ fprintf(stderr, " INVALID DECC$FEATURE VALUE, %d: %d <= %s <= %d.\n", feat_value, feat_value_min, decc_feat_array[i].name, feat_value_max); } } else { /* Invalid DECC feature name. */ fprintf(stderr, " UNKNOWN DECC$FEATURE: %s.\n", decc_feat_array[i].name); } } if (verbose > 0) { fprintf(stderr, " DECC_INIT complete.\n"); } } /* Get "decc_init()" into a valid, loaded LIB$INITIALIZE PSECT. */ # pragma nostandard /* * Establish the LIB$INITIALIZE PSECTs, with proper alignment and other * attributes. Note that "nopic" is significant only on VAX. */ # pragma extern_model save # if __INITIAL_POINTER_SIZE == 64 # define PSECT_ALIGN 3 # else # define PSECT_ALIGN 2 # endif # pragma extern_model strict_refdef "LIB$INITIALIZ" PSECT_ALIGN, nopic, nowrt const int spare[8] = { 0 }; # pragma extern_model strict_refdef "LIB$INITIALIZE" PSECT_ALIGN, nopic, nowrt void (*const x_decc_init) () = decc_init; # pragma extern_model restore /* Fake reference to ensure loading the LIB$INITIALIZE PSECT. */ # pragma extern_model save int LIB$INITIALIZE(void); # pragma extern_model strict_refdef int dmy_lib$initialize = (int)LIB$INITIALIZE; # pragma extern_model restore # pragma standard #else /* def USE_DECC_INIT */ /* Dummy code to avoid a %CC-W-EMPTYFILE complaint. */ int decc_init_dummy(void); #endif /* def USE_DECC_INIT */ openssl-1.1.1f/apps/vms_term_sock.c000066400000000000000000000425051364063235100173360ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2016 VMS Software, Inc. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef __VMS # define OPENSSL_SYS_VMS # pragma message disable DOLLARID # include # if !defined(_POSIX_C_SOURCE) && defined(OPENSSL_SYS_VMS) /* * On VMS, you need to define this to get the declaration of fileno(). The * value 2 is to make sure no function defined in POSIX-2 is left undefined. */ # define _POSIX_C_SOURCE 2 # endif # include # undef _POSIX_C_SOURCE # include # include # include # include # include # include # include # include # include # ifdef __alpha # include # else typedef struct _iosb { /* Copied from IOSBDEF.H for Alpha */ # pragma __nomember_alignment __union { __struct { unsigned short int iosb$w_status; /* Final I/O status */ __union { __struct { /* 16-bit byte count variant */ unsigned short int iosb$w_bcnt; /* 16-bit byte count */ __union { unsigned int iosb$l_dev_depend; /* 32-bit device dependent info */ unsigned int iosb$l_pid; /* 32-bit pid */ } iosb$r_l; } iosb$r_bcnt_16; __struct { /* 32-bit byte count variant */ unsigned int iosb$l_bcnt; /* 32-bit byte count (unaligned) */ unsigned short int iosb$w_dev_depend_high; /* 16-bit device dependent info */ } iosb$r_bcnt_32; } iosb$r_devdepend; } iosb$r_io_64; __struct { __union { unsigned int iosb$l_getxxi_status; /* Final GETxxI status */ unsigned int iosb$l_reg_status; /* Final $Registry status */ } iosb$r_l_status; unsigned int iosb$l_reserved; /* Reserved field */ } iosb$r_get_64; } iosb$r_io_get; } IOSB; # if !defined(__VAXC) # define iosb$w_status iosb$r_io_get.iosb$r_io_64.iosb$w_status # define iosb$w_bcnt iosb$r_io_get.iosb$r_io_64.iosb$r_devdepend.iosb$r_bcnt_16.iosb$w_bcnt # define iosb$r_l iosb$r_io_get.iosb$r_io_64.iosb$r_devdepend.iosb$r_bcnt_16.iosb$r_l # define iosb$l_dev_depend iosb$r_l.iosb$l_dev_depend # define iosb$l_pid iosb$r_l.iosb$l_pid # define iosb$l_bcnt iosb$r_io_get.iosb$r_io_64.iosb$r_devdepend.iosb$r_bcnt_32.iosb$l_bcnt # define iosb$w_dev_depend_high iosb$r_io_get.iosb$r_io_64.iosb$r_devdepend.iosb$r_bcnt_32.iosb$w_dev_depend_high # define iosb$l_getxxi_status iosb$r_io_get.iosb$r_get_64.iosb$r_l_status.iosb$l_getxxi_status # define iosb$l_reg_status iosb$r_io_get.iosb$r_get_64.iosb$r_l_status.iosb$l_reg_status # endif /* #if !defined(__VAXC) */ # endif /* End of IOSBDEF */ # include # include # include # include # include # include # include "vms_term_sock.h" # ifdef __alpha static struct _iosb TerminalDeviceIosb; # else IOSB TerminalDeviceIosb; # endif static char TerminalDeviceBuff[255 + 2]; static int TerminalSocketPair[2] = {0, 0}; static unsigned short TerminalDeviceChan = 0; static int CreateSocketPair (int, int, int, int *); static void SocketPairTimeoutAst (int); static int TerminalDeviceAst (int); static void LogMessage (char *, ...); /* ** Socket Pair Timeout Value (must be 0-59 seconds) */ # define SOCKET_PAIR_TIMEOUT_VALUE 20 /* ** Socket Pair Timeout Block which is passed to timeout AST */ typedef struct _SocketPairTimeoutBlock { unsigned short SockChan1; unsigned short SockChan2; } SPTB; # ifdef TERM_SOCK_TEST /*----------------------------------------------------------------------------*/ /* */ /*----------------------------------------------------------------------------*/ int main (int argc, char *argv[], char *envp[]) { char TermBuff[80]; int TermSock, status, len; LogMessage ("Enter 'q' or 'Q' to quit ..."); while (strcasecmp (TermBuff, "Q")) { /* ** Create the terminal socket */ status = TerminalSocket (TERM_SOCK_CREATE, &TermSock); if (status != TERM_SOCK_SUCCESS) exit (1); /* ** Process the terminal input */ LogMessage ("Waiting on terminal I/O ...\n"); len = recv (TermSock, TermBuff, sizeof(TermBuff), 0) ; TermBuff[len] = '\0'; LogMessage ("Received terminal I/O [%s]", TermBuff); /* ** Delete the terminal socket */ status = TerminalSocket (TERM_SOCK_DELETE, &TermSock); if (status != TERM_SOCK_SUCCESS) exit (1); } return 1; } # endif /*----------------------------------------------------------------------------*/ /* */ /*----------------------------------------------------------------------------*/ int TerminalSocket (int FunctionCode, int *ReturnSocket) { int status; $DESCRIPTOR (TerminalDeviceDesc, "SYS$COMMAND"); /* ** Process the requested function code */ switch (FunctionCode) { case TERM_SOCK_CREATE: /* ** Create a socket pair */ status = CreateSocketPair (AF_INET, SOCK_STREAM, 0, TerminalSocketPair); if (status == -1) { LogMessage ("TerminalSocket: CreateSocketPair () - %08X", status); if (TerminalSocketPair[0]) close (TerminalSocketPair[0]); if (TerminalSocketPair[1]) close (TerminalSocketPair[1]); return TERM_SOCK_FAILURE; } /* ** Assign a channel to the terminal device */ status = sys$assign (&TerminalDeviceDesc, &TerminalDeviceChan, 0, 0, 0); if (! (status & 1)) { LogMessage ("TerminalSocket: SYS$ASSIGN () - %08X", status); close (TerminalSocketPair[0]); close (TerminalSocketPair[1]); return TERM_SOCK_FAILURE; } /* ** Queue an async IO to the terminal device */ status = sys$qio (EFN$C_ENF, TerminalDeviceChan, IO$_READVBLK, &TerminalDeviceIosb, TerminalDeviceAst, 0, TerminalDeviceBuff, sizeof(TerminalDeviceBuff) - 2, 0, 0, 0, 0); if (! (status & 1)) { LogMessage ("TerminalSocket: SYS$QIO () - %08X", status); close (TerminalSocketPair[0]); close (TerminalSocketPair[1]); return TERM_SOCK_FAILURE; } /* ** Return the input side of the socket pair */ *ReturnSocket = TerminalSocketPair[1]; break; case TERM_SOCK_DELETE: /* ** Cancel any pending IO on the terminal channel */ status = sys$cancel (TerminalDeviceChan); if (! (status & 1)) { LogMessage ("TerminalSocket: SYS$CANCEL () - %08X", status); close (TerminalSocketPair[0]); close (TerminalSocketPair[1]); return TERM_SOCK_FAILURE; } /* ** Deassign the terminal channel */ status = sys$dassgn (TerminalDeviceChan); if (! (status & 1)) { LogMessage ("TerminalSocket: SYS$DASSGN () - %08X", status); close (TerminalSocketPair[0]); close (TerminalSocketPair[1]); return TERM_SOCK_FAILURE; } /* ** Close the terminal socket pair */ close (TerminalSocketPair[0]); close (TerminalSocketPair[1]); /* ** Return the initialized socket */ *ReturnSocket = 0; break; default: /* ** Invalid function code */ LogMessage ("TerminalSocket: Invalid Function Code - %d", FunctionCode); return TERM_SOCK_FAILURE; break; } /* ** Return success */ return TERM_SOCK_SUCCESS; } /*----------------------------------------------------------------------------*/ /* */ /*----------------------------------------------------------------------------*/ static int CreateSocketPair (int SocketFamily, int SocketType, int SocketProtocol, int *SocketPair) { struct dsc$descriptor AscTimeDesc = {0, DSC$K_DTYPE_T, DSC$K_CLASS_S, NULL}; static const char* LocalHostAddr = {"127.0.0.1"}; unsigned short TcpAcceptChan = 0, TcpDeviceChan = 0; unsigned long BinTimeBuff[2]; struct sockaddr_in sin; char AscTimeBuff[32]; short LocalHostPort; int status; unsigned int slen; # ifdef __alpha struct _iosb iosb; # else IOSB iosb; # endif int SockDesc1 = 0, SockDesc2 = 0; SPTB sptb; $DESCRIPTOR (TcpDeviceDesc, "TCPIP$DEVICE"); /* ** Create a socket */ SockDesc1 = socket (SocketFamily, SocketType, 0); if (SockDesc1 < 0) { LogMessage ("CreateSocketPair: socket () - %d", errno); return -1; } /* ** Initialize the socket information */ slen = sizeof(sin); memset ((char *) &sin, 0, slen); sin.sin_family = SocketFamily; sin.sin_addr.s_addr = inet_addr (LocalHostAddr); sin.sin_port = 0; /* ** Bind the socket to the local IP */ status = bind (SockDesc1, (struct sockaddr *) &sin, slen); if (status < 0) { LogMessage ("CreateSocketPair: bind () - %d", errno); close (SockDesc1); return -1; } /* ** Get the socket name so we can save the port number */ status = getsockname (SockDesc1, (struct sockaddr *) &sin, &slen); if (status < 0) { LogMessage ("CreateSocketPair: getsockname () - %d", errno); close (SockDesc1); return -1; } else LocalHostPort = sin.sin_port; /* ** Setup a listen for the socket */ listen (SockDesc1, 5); /* ** Get the binary (64-bit) time of the specified timeout value */ sprintf (AscTimeBuff, "0 0:0:%02d.00", SOCKET_PAIR_TIMEOUT_VALUE); AscTimeDesc.dsc$w_length = strlen (AscTimeBuff); AscTimeDesc.dsc$a_pointer = AscTimeBuff; status = sys$bintim (&AscTimeDesc, BinTimeBuff); if (! (status & 1)) { LogMessage ("CreateSocketPair: SYS$BINTIM () - %08X", status); close (SockDesc1); return -1; } /* ** Assign another channel to the TCP/IP device for the accept. ** This is the channel that ends up being connected to. */ status = sys$assign (&TcpDeviceDesc, &TcpDeviceChan, 0, 0, 0); if (! (status & 1)) { LogMessage ("CreateSocketPair: SYS$ASSIGN () - %08X", status); close (SockDesc1); return -1; } /* ** Get the channel of the first socket for the accept */ TcpAcceptChan = decc$get_sdc (SockDesc1); /* ** Perform the accept using $QIO so we can do this asynchronously */ status = sys$qio (EFN$C_ENF, TcpAcceptChan, IO$_ACCESS | IO$M_ACCEPT, &iosb, 0, 0, 0, 0, 0, &TcpDeviceChan, 0, 0); if (! (status & 1)) { LogMessage ("CreateSocketPair: SYS$QIO () - %08X", status); close (SockDesc1); sys$dassgn (TcpDeviceChan); return -1; } /* ** Create the second socket to do the connect */ SockDesc2 = socket (SocketFamily, SocketType, 0); if (SockDesc2 < 0) { LogMessage ("CreateSocketPair: socket () - %d", errno); sys$cancel (TcpAcceptChan); close (SockDesc1); sys$dassgn (TcpDeviceChan); return (-1) ; } /* ** Setup the Socket Pair Timeout Block */ sptb.SockChan1 = TcpAcceptChan; sptb.SockChan2 = decc$get_sdc (SockDesc2); /* ** Before we block on the connect, set a timer that can cancel I/O on our ** two sockets if it never connects. */ status = sys$setimr (EFN$C_ENF, BinTimeBuff, SocketPairTimeoutAst, &sptb, 0); if (! (status & 1)) { LogMessage ("CreateSocketPair: SYS$SETIMR () - %08X", status); sys$cancel (TcpAcceptChan); close (SockDesc1); close (SockDesc2); sys$dassgn (TcpDeviceChan); return -1; } /* ** Now issue the connect */ memset ((char *) &sin, 0, sizeof(sin)) ; sin.sin_family = SocketFamily; sin.sin_addr.s_addr = inet_addr (LocalHostAddr) ; sin.sin_port = LocalHostPort ; status = connect (SockDesc2, (struct sockaddr *) &sin, sizeof(sin)); if (status < 0 ) { LogMessage ("CreateSocketPair: connect () - %d", errno); sys$cantim (&sptb, 0); sys$cancel (TcpAcceptChan); close (SockDesc1); close (SockDesc2); sys$dassgn (TcpDeviceChan); return -1; } /* ** Wait for the asynch $QIO to finish. Note that if the I/O was aborted ** (SS$_ABORT), then we probably canceled it from the AST routine - so log ** a timeout. */ status = sys$synch (EFN$C_ENF, &iosb); if (! (iosb.iosb$w_status & 1)) { if (iosb.iosb$w_status == SS$_ABORT) LogMessage ("CreateSocketPair: SYS$QIO(iosb) timeout"); else { LogMessage ("CreateSocketPair: SYS$QIO(iosb) - %d", iosb.iosb$w_status); sys$cantim (&sptb, 0); } close (SockDesc1); close (SockDesc2); sys$dassgn (TcpDeviceChan); return -1; } /* ** Here we're successfully connected, so cancel the timer, convert the ** I/O channel to a socket fd, close the listener socket and return the ** connected pair. */ sys$cantim (&sptb, 0); close (SockDesc1) ; SocketPair[0] = SockDesc2 ; SocketPair[1] = socket_fd (TcpDeviceChan); return (0) ; } /*----------------------------------------------------------------------------*/ /* */ /*----------------------------------------------------------------------------*/ static void SocketPairTimeoutAst (int astparm) { SPTB *sptb = (SPTB *) astparm; sys$cancel (sptb->SockChan2); /* Cancel the connect() */ sys$cancel (sptb->SockChan1); /* Cancel the accept() */ return; } /*----------------------------------------------------------------------------*/ /* */ /*----------------------------------------------------------------------------*/ static int TerminalDeviceAst (int astparm) { int status; /* ** Terminate the terminal buffer */ TerminalDeviceBuff[TerminalDeviceIosb.iosb$w_bcnt] = '\0'; strcat (TerminalDeviceBuff, "\n"); /* ** Send the data read from the terminal device through the socket pair */ send (TerminalSocketPair[0], TerminalDeviceBuff, TerminalDeviceIosb.iosb$w_bcnt + 1, 0); /* ** Queue another async IO to the terminal device */ status = sys$qio (EFN$C_ENF, TerminalDeviceChan, IO$_READVBLK, &TerminalDeviceIosb, TerminalDeviceAst, 0, TerminalDeviceBuff, sizeof(TerminalDeviceBuff) - 1, 0, 0, 0, 0); /* ** Return status */ return status; } /*----------------------------------------------------------------------------*/ /* */ /*----------------------------------------------------------------------------*/ static void LogMessage (char *msg, ...) { char *Month[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; static unsigned int pid = 0; va_list args; time_t CurTime; struct tm *LocTime; char MsgBuff[256]; /* ** Get the process pid */ if (pid == 0) pid = getpid (); /* ** Convert the current time into local time */ CurTime = time (NULL); LocTime = localtime (&CurTime); /* ** Format the message buffer */ sprintf (MsgBuff, "%02d-%s-%04d %02d:%02d:%02d [%08X] %s\n", LocTime->tm_mday, Month[LocTime->tm_mon], (LocTime->tm_year + 1900), LocTime->tm_hour, LocTime->tm_min, LocTime->tm_sec, pid, msg); /* ** Get any variable arguments and add them to the print of the message ** buffer */ va_start (args, msg); vfprintf (stderr, MsgBuff, args); va_end (args); /* ** Flush standard error output */ fsync (fileno (stderr)); return; } #endif openssl-1.1.1f/apps/vms_term_sock.h000066400000000000000000000014061364063235100173360ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2016 VMS Software, Inc. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_APPS_VMS_TERM_SOCK_H # define OSSL_APPS_VMS_TERM_SOCK_H /* ** Terminal Socket Function Codes */ # define TERM_SOCK_CREATE 1 # define TERM_SOCK_DELETE 2 /* ** Terminal Socket Status Codes */ # define TERM_SOCK_FAILURE 0 # define TERM_SOCK_SUCCESS 1 /* ** Terminal Socket Prototype */ int TerminalSocket (int FunctionCode, int *ReturnSocket); #endif openssl-1.1.1f/apps/win32_init.c000066400000000000000000000206321364063235100164450ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #if defined(CP_UTF8) static UINT saved_cp; static int newargc; static char **newargv; static void cleanup(void) { int i; SetConsoleOutputCP(saved_cp); for (i = 0; i < newargc; i++) free(newargv[i]); free(newargv); } /* * Incrementally [re]allocate newargv and keep it NULL-terminated. */ static int validate_argv(int argc) { static int size = 0; if (argc >= size) { char **ptr; while (argc >= size) size += 64; ptr = realloc(newargv, size * sizeof(newargv[0])); if (ptr == NULL) return 0; (newargv = ptr)[argc] = NULL; } else { newargv[argc] = NULL; } return 1; } static int process_glob(WCHAR *wstr, int wlen) { int i, slash, udlen; WCHAR saved_char; WIN32_FIND_DATAW data; HANDLE h; /* * Note that we support wildcard characters only in filename part * of the path, and not in directories. Windows users are used to * this, that's why recursive glob processing is not implemented. */ /* * Start by looking for last slash or backslash, ... */ for (slash = 0, i = 0; i < wlen; i++) if (wstr[i] == L'/' || wstr[i] == L'\\') slash = i + 1; /* * ... then look for asterisk or question mark in the file name. */ for (i = slash; i < wlen; i++) if (wstr[i] == L'*' || wstr[i] == L'?') break; if (i == wlen) return 0; /* definitely not a glob */ saved_char = wstr[wlen]; wstr[wlen] = L'\0'; h = FindFirstFileW(wstr, &data); wstr[wlen] = saved_char; if (h == INVALID_HANDLE_VALUE) return 0; /* not a valid glob, just pass... */ if (slash) udlen = WideCharToMultiByte(CP_UTF8, 0, wstr, slash, NULL, 0, NULL, NULL); else udlen = 0; do { int uflen; char *arg; /* * skip over . and .. */ if (data.cFileName[0] == L'.') { if ((data.cFileName[1] == L'\0') || (data.cFileName[1] == L'.' && data.cFileName[2] == L'\0')) continue; } if (!validate_argv(newargc + 1)) break; /* * -1 below means "scan for trailing '\0' *and* count it", * so that |uflen| covers even trailing '\0'. */ uflen = WideCharToMultiByte(CP_UTF8, 0, data.cFileName, -1, NULL, 0, NULL, NULL); arg = malloc(udlen + uflen); if (arg == NULL) break; if (udlen) WideCharToMultiByte(CP_UTF8, 0, wstr, slash, arg, udlen, NULL, NULL); WideCharToMultiByte(CP_UTF8, 0, data.cFileName, -1, arg + udlen, uflen, NULL, NULL); newargv[newargc++] = arg; } while (FindNextFileW(h, &data)); CloseHandle(h); return 1; } void win32_utf8argv(int *argc, char **argv[]) { const WCHAR *wcmdline; WCHAR *warg, *wend, *p; int wlen, ulen, valid = 1; char *arg; if (GetEnvironmentVariableW(L"OPENSSL_WIN32_UTF8", NULL, 0) == 0) return; newargc = 0; newargv = NULL; if (!validate_argv(newargc)) return; wcmdline = GetCommandLineW(); if (wcmdline == NULL) return; /* * make a copy of the command line, since we might have to modify it... */ wlen = wcslen(wcmdline); p = _alloca((wlen + 1) * sizeof(WCHAR)); wcscpy(p, wcmdline); while (*p != L'\0') { int in_quote = 0; if (*p == L' ' || *p == L'\t') { p++; /* skip over white spaces */ continue; } /* * Note: because we may need to fiddle with the number of backslashes, * the argument string is copied into itself. This is safe because * the number of characters will never expand. */ warg = wend = p; while (*p != L'\0' && (in_quote || (*p != L' ' && *p != L'\t'))) { switch (*p) { case L'\\': /* * Microsoft documentation on how backslashes are treated * is: * * + Backslashes are interpreted literally, unless they * immediately precede a double quotation mark. * + If an even number of backslashes is followed by a double * quotation mark, one backslash is placed in the argv array * for every pair of backslashes, and the double quotation * mark is interpreted as a string delimiter. * + If an odd number of backslashes is followed by a double * quotation mark, one backslash is placed in the argv array * for every pair of backslashes, and the double quotation * mark is "escaped" by the remaining backslash, causing a * literal double quotation mark (") to be placed in argv. * * Ref: https://msdn.microsoft.com/en-us/library/17w5ykft.aspx * * Though referred page doesn't mention it, multiple qouble * quotes are also special. Pair of double quotes in quoted * string is counted as single double quote. */ { const WCHAR *q = p; int i; while (*p == L'\\') p++; if (*p == L'"') { int i; for (i = (p - q) / 2; i > 0; i--) *wend++ = L'\\'; /* * if odd amount of backslashes before the quote, * said quote is part of the argument, not a delimiter */ if ((p - q) % 2 == 1) *wend++ = *p++; } else { for (i = p - q; i > 0; i--) *wend++ = L'\\'; } } break; case L'"': /* * Without the preceding backslash (or when preceded with an * even number of backslashes), the double quote is a simple * string delimiter and just slightly change the parsing state */ if (in_quote && p[1] == L'"') *wend++ = *p++; else in_quote = !in_quote; p++; break; default: /* * Any other non-delimiter character is just taken verbatim */ *wend++ = *p++; } } wlen = wend - warg; if (wlen == 0 || !process_glob(warg, wlen)) { if (!validate_argv(newargc + 1)) { valid = 0; break; } ulen = 0; if (wlen > 0) { ulen = WideCharToMultiByte(CP_UTF8, 0, warg, wlen, NULL, 0, NULL, NULL); if (ulen <= 0) continue; } arg = malloc(ulen + 1); if (arg == NULL) { valid = 0; break; } if (wlen > 0) WideCharToMultiByte(CP_UTF8, 0, warg, wlen, arg, ulen, NULL, NULL); arg[ulen] = '\0'; newargv[newargc++] = arg; } } if (valid) { saved_cp = GetConsoleOutputCP(); SetConsoleOutputCP(CP_UTF8); *argc = newargc; *argv = newargv; atexit(cleanup); } else if (newargv != NULL) { int i; for (i = 0; i < newargc; i++) free(newargv[i]); free(newargv); newargc = 0; newargv = NULL; } return; } #else void win32_utf8argv(int *argc, char **argv[]) { return; } #endif openssl-1.1.1f/apps/x509.c000066400000000000000000001163761364063235100152000ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_RSA # include #endif #ifndef OPENSSL_NO_DSA # include #endif #undef POSTFIX #define POSTFIX ".srl" #define DEF_DAYS 30 static int callb(int ok, X509_STORE_CTX *ctx); static int sign(X509 *x, EVP_PKEY *pkey, int days, int clrext, const EVP_MD *digest, CONF *conf, const char *section, int preserve_dates); static int x509_certify(X509_STORE *ctx, const char *CAfile, const EVP_MD *digest, X509 *x, X509 *xca, EVP_PKEY *pkey, STACK_OF(OPENSSL_STRING) *sigopts, const char *serialfile, int create, int days, int clrext, CONF *conf, const char *section, ASN1_INTEGER *sno, int reqfile, int preserve_dates); static int purpose_print(BIO *bio, X509 *cert, X509_PURPOSE *pt); static int print_x509v3_exts(BIO *bio, X509 *x, const char *exts); typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_INFORM, OPT_OUTFORM, OPT_KEYFORM, OPT_REQ, OPT_CAFORM, OPT_CAKEYFORM, OPT_SIGOPT, OPT_DAYS, OPT_PASSIN, OPT_EXTFILE, OPT_EXTENSIONS, OPT_IN, OPT_OUT, OPT_SIGNKEY, OPT_CA, OPT_CAKEY, OPT_CASERIAL, OPT_SET_SERIAL, OPT_FORCE_PUBKEY, OPT_ADDTRUST, OPT_ADDREJECT, OPT_SETALIAS, OPT_CERTOPT, OPT_NAMEOPT, OPT_C, OPT_EMAIL, OPT_OCSP_URI, OPT_SERIAL, OPT_NEXT_SERIAL, OPT_MODULUS, OPT_PUBKEY, OPT_X509TOREQ, OPT_TEXT, OPT_HASH, OPT_ISSUER_HASH, OPT_SUBJECT, OPT_ISSUER, OPT_FINGERPRINT, OPT_DATES, OPT_PURPOSE, OPT_STARTDATE, OPT_ENDDATE, OPT_CHECKEND, OPT_CHECKHOST, OPT_CHECKEMAIL, OPT_CHECKIP, OPT_NOOUT, OPT_TRUSTOUT, OPT_CLRTRUST, OPT_CLRREJECT, OPT_ALIAS, OPT_CACREATESERIAL, OPT_CLREXT, OPT_OCSPID, OPT_SUBJECT_HASH_OLD, OPT_ISSUER_HASH_OLD, OPT_BADSIG, OPT_MD, OPT_ENGINE, OPT_NOCERT, OPT_PRESERVE_DATES, OPT_R_ENUM, OPT_EXT } OPTION_CHOICE; const OPTIONS x509_options[] = { {"help", OPT_HELP, '-', "Display this summary"}, {"inform", OPT_INFORM, 'f', "Input format - default PEM (one of DER or PEM)"}, {"in", OPT_IN, '<', "Input file - default stdin"}, {"outform", OPT_OUTFORM, 'f', "Output format - default PEM (one of DER or PEM)"}, {"out", OPT_OUT, '>', "Output file - default stdout"}, {"keyform", OPT_KEYFORM, 'E', "Private key format - default PEM"}, {"passin", OPT_PASSIN, 's', "Private key password/pass-phrase source"}, {"serial", OPT_SERIAL, '-', "Print serial number value"}, {"subject_hash", OPT_HASH, '-', "Print subject hash value"}, {"issuer_hash", OPT_ISSUER_HASH, '-', "Print issuer hash value"}, {"hash", OPT_HASH, '-', "Synonym for -subject_hash"}, {"subject", OPT_SUBJECT, '-', "Print subject DN"}, {"issuer", OPT_ISSUER, '-', "Print issuer DN"}, {"email", OPT_EMAIL, '-', "Print email address(es)"}, {"startdate", OPT_STARTDATE, '-', "Set notBefore field"}, {"enddate", OPT_ENDDATE, '-', "Set notAfter field"}, {"purpose", OPT_PURPOSE, '-', "Print out certificate purposes"}, {"dates", OPT_DATES, '-', "Both Before and After dates"}, {"modulus", OPT_MODULUS, '-', "Print the RSA key modulus"}, {"pubkey", OPT_PUBKEY, '-', "Output the public key"}, {"fingerprint", OPT_FINGERPRINT, '-', "Print the certificate fingerprint"}, {"alias", OPT_ALIAS, '-', "Output certificate alias"}, {"noout", OPT_NOOUT, '-', "No output, just status"}, {"nocert", OPT_NOCERT, '-', "No certificate output"}, {"ocspid", OPT_OCSPID, '-', "Print OCSP hash values for the subject name and public key"}, {"ocsp_uri", OPT_OCSP_URI, '-', "Print OCSP Responder URL(s)"}, {"trustout", OPT_TRUSTOUT, '-', "Output a trusted certificate"}, {"clrtrust", OPT_CLRTRUST, '-', "Clear all trusted purposes"}, {"clrext", OPT_CLREXT, '-', "Clear all certificate extensions"}, {"addtrust", OPT_ADDTRUST, 's', "Trust certificate for a given purpose"}, {"addreject", OPT_ADDREJECT, 's', "Reject certificate for a given purpose"}, {"setalias", OPT_SETALIAS, 's', "Set certificate alias"}, {"days", OPT_DAYS, 'n', "How long till expiry of a signed certificate - def 30 days"}, {"checkend", OPT_CHECKEND, 'M', "Check whether the cert expires in the next arg seconds"}, {OPT_MORE_STR, 1, 1, "Exit 1 if so, 0 if not"}, {"signkey", OPT_SIGNKEY, 's', "Self sign cert with arg"}, {"x509toreq", OPT_X509TOREQ, '-', "Output a certification request object"}, {"req", OPT_REQ, '-', "Input is a certificate request, sign and output"}, {"CA", OPT_CA, '<', "Set the CA certificate, must be PEM format"}, {"CAkey", OPT_CAKEY, 's', "The CA key, must be PEM format; if not in CAfile"}, {"CAcreateserial", OPT_CACREATESERIAL, '-', "Create serial number file if it does not exist"}, {"CAserial", OPT_CASERIAL, 's', "Serial file"}, {"set_serial", OPT_SET_SERIAL, 's', "Serial number to use"}, {"text", OPT_TEXT, '-', "Print the certificate in text form"}, {"ext", OPT_EXT, 's', "Print various X509V3 extensions"}, {"C", OPT_C, '-', "Print out C code forms"}, {"extfile", OPT_EXTFILE, '<', "File with X509V3 extensions to add"}, OPT_R_OPTIONS, {"extensions", OPT_EXTENSIONS, 's', "Section from config file to use"}, {"nameopt", OPT_NAMEOPT, 's', "Various certificate name options"}, {"certopt", OPT_CERTOPT, 's', "Various certificate text options"}, {"checkhost", OPT_CHECKHOST, 's', "Check certificate matches host"}, {"checkemail", OPT_CHECKEMAIL, 's', "Check certificate matches email"}, {"checkip", OPT_CHECKIP, 's', "Check certificate matches ipaddr"}, {"CAform", OPT_CAFORM, 'F', "CA format - default PEM"}, {"CAkeyform", OPT_CAKEYFORM, 'E', "CA key format - default PEM"}, {"sigopt", OPT_SIGOPT, 's', "Signature parameter in n:v form"}, {"force_pubkey", OPT_FORCE_PUBKEY, '<', "Force the Key to put inside certificate"}, {"next_serial", OPT_NEXT_SERIAL, '-', "Increment current certificate serial number"}, {"clrreject", OPT_CLRREJECT, '-', "Clears all the prohibited or rejected uses of the certificate"}, {"badsig", OPT_BADSIG, '-', "Corrupt last byte of certificate signature (for test)"}, {"", OPT_MD, '-', "Any supported digest"}, #ifndef OPENSSL_NO_MD5 {"subject_hash_old", OPT_SUBJECT_HASH_OLD, '-', "Print old-style (MD5) issuer hash value"}, {"issuer_hash_old", OPT_ISSUER_HASH_OLD, '-', "Print old-style (MD5) subject hash value"}, #endif #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"preserve_dates", OPT_PRESERVE_DATES, '-', "preserve existing dates when signing"}, {NULL} }; int x509_main(int argc, char **argv) { ASN1_INTEGER *sno = NULL; ASN1_OBJECT *objtmp = NULL; BIO *out = NULL; CONF *extconf = NULL; EVP_PKEY *Upkey = NULL, *CApkey = NULL, *fkey = NULL; STACK_OF(ASN1_OBJECT) *trust = NULL, *reject = NULL; STACK_OF(OPENSSL_STRING) *sigopts = NULL; X509 *x = NULL, *xca = NULL; X509_REQ *req = NULL, *rq = NULL; X509_STORE *ctx = NULL; const EVP_MD *digest = NULL; char *CAkeyfile = NULL, *CAserial = NULL, *fkeyfile = NULL, *alias = NULL; char *checkhost = NULL, *checkemail = NULL, *checkip = NULL, *exts = NULL; char *extsect = NULL, *extfile = NULL, *passin = NULL, *passinarg = NULL; char *infile = NULL, *outfile = NULL, *keyfile = NULL, *CAfile = NULL; char *prog; int x509req = 0, days = DEF_DAYS, modulus = 0, pubkey = 0, pprint = 0; int C = 0, CAformat = FORMAT_PEM, CAkeyformat = FORMAT_PEM; int fingerprint = 0, reqfile = 0, checkend = 0; int informat = FORMAT_PEM, outformat = FORMAT_PEM, keyformat = FORMAT_PEM; int next_serial = 0, subject_hash = 0, issuer_hash = 0, ocspid = 0; int noout = 0, sign_flag = 0, CA_flag = 0, CA_createserial = 0, email = 0; int ocsp_uri = 0, trustout = 0, clrtrust = 0, clrreject = 0, aliasout = 0; int ret = 1, i, num = 0, badsig = 0, clrext = 0, nocert = 0; int text = 0, serial = 0, subject = 0, issuer = 0, startdate = 0, ext = 0; int enddate = 0; time_t checkoffset = 0; unsigned long certflag = 0; int preserve_dates = 0; OPTION_CHOICE o; ENGINE *e = NULL; #ifndef OPENSSL_NO_MD5 int subject_hash_old = 0, issuer_hash_old = 0; #endif ctx = X509_STORE_new(); if (ctx == NULL) goto end; X509_STORE_set_verify_cb(ctx, callb); prog = opt_init(argc, argv, x509_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(x509_options); ret = 0; goto end; case OPT_INFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &informat)) goto opthelp; break; case OPT_IN: infile = opt_arg(); break; case OPT_OUTFORM: if (!opt_format(opt_arg(), OPT_FMT_ANY, &outformat)) goto opthelp; break; case OPT_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PDE, &keyformat)) goto opthelp; break; case OPT_CAFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &CAformat)) goto opthelp; break; case OPT_CAKEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PDE, &CAkeyformat)) goto opthelp; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_REQ: reqfile = 1; break; case OPT_SIGOPT: if (!sigopts) sigopts = sk_OPENSSL_STRING_new_null(); if (!sigopts || !sk_OPENSSL_STRING_push(sigopts, opt_arg())) goto opthelp; break; case OPT_DAYS: if (preserve_dates) goto opthelp; days = atoi(opt_arg()); break; case OPT_PASSIN: passinarg = opt_arg(); break; case OPT_EXTFILE: extfile = opt_arg(); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_EXTENSIONS: extsect = opt_arg(); break; case OPT_SIGNKEY: keyfile = opt_arg(); sign_flag = ++num; break; case OPT_CA: CAfile = opt_arg(); CA_flag = ++num; break; case OPT_CAKEY: CAkeyfile = opt_arg(); break; case OPT_CASERIAL: CAserial = opt_arg(); break; case OPT_SET_SERIAL: if (sno != NULL) { BIO_printf(bio_err, "Serial number supplied twice\n"); goto opthelp; } if ((sno = s2i_ASN1_INTEGER(NULL, opt_arg())) == NULL) goto opthelp; break; case OPT_FORCE_PUBKEY: fkeyfile = opt_arg(); break; case OPT_ADDTRUST: if ((objtmp = OBJ_txt2obj(opt_arg(), 0)) == NULL) { BIO_printf(bio_err, "%s: Invalid trust object value %s\n", prog, opt_arg()); goto opthelp; } if (trust == NULL && (trust = sk_ASN1_OBJECT_new_null()) == NULL) goto end; sk_ASN1_OBJECT_push(trust, objtmp); objtmp = NULL; trustout = 1; break; case OPT_ADDREJECT: if ((objtmp = OBJ_txt2obj(opt_arg(), 0)) == NULL) { BIO_printf(bio_err, "%s: Invalid reject object value %s\n", prog, opt_arg()); goto opthelp; } if (reject == NULL && (reject = sk_ASN1_OBJECT_new_null()) == NULL) goto end; sk_ASN1_OBJECT_push(reject, objtmp); objtmp = NULL; trustout = 1; break; case OPT_SETALIAS: alias = opt_arg(); trustout = 1; break; case OPT_CERTOPT: if (!set_cert_ex(&certflag, opt_arg())) goto opthelp; break; case OPT_NAMEOPT: if (!set_nameopt(opt_arg())) goto opthelp; break; case OPT_ENGINE: e = setup_engine(opt_arg(), 0); break; case OPT_C: C = ++num; break; case OPT_EMAIL: email = ++num; break; case OPT_OCSP_URI: ocsp_uri = ++num; break; case OPT_SERIAL: serial = ++num; break; case OPT_NEXT_SERIAL: next_serial = ++num; break; case OPT_MODULUS: modulus = ++num; break; case OPT_PUBKEY: pubkey = ++num; break; case OPT_X509TOREQ: x509req = ++num; break; case OPT_TEXT: text = ++num; break; case OPT_SUBJECT: subject = ++num; break; case OPT_ISSUER: issuer = ++num; break; case OPT_FINGERPRINT: fingerprint = ++num; break; case OPT_HASH: subject_hash = ++num; break; case OPT_ISSUER_HASH: issuer_hash = ++num; break; case OPT_PURPOSE: pprint = ++num; break; case OPT_STARTDATE: startdate = ++num; break; case OPT_ENDDATE: enddate = ++num; break; case OPT_NOOUT: noout = ++num; break; case OPT_EXT: ext = ++num; exts = opt_arg(); break; case OPT_NOCERT: nocert = 1; break; case OPT_TRUSTOUT: trustout = 1; break; case OPT_CLRTRUST: clrtrust = ++num; break; case OPT_CLRREJECT: clrreject = ++num; break; case OPT_ALIAS: aliasout = ++num; break; case OPT_CACREATESERIAL: CA_createserial = ++num; break; case OPT_CLREXT: clrext = 1; break; case OPT_OCSPID: ocspid = ++num; break; case OPT_BADSIG: badsig = 1; break; #ifndef OPENSSL_NO_MD5 case OPT_SUBJECT_HASH_OLD: subject_hash_old = ++num; break; case OPT_ISSUER_HASH_OLD: issuer_hash_old = ++num; break; #else case OPT_SUBJECT_HASH_OLD: case OPT_ISSUER_HASH_OLD: break; #endif case OPT_DATES: startdate = ++num; enddate = ++num; break; case OPT_CHECKEND: checkend = 1; { intmax_t temp = 0; if (!opt_imax(opt_arg(), &temp)) goto opthelp; checkoffset = (time_t)temp; if ((intmax_t)checkoffset != temp) { BIO_printf(bio_err, "%s: checkend time out of range %s\n", prog, opt_arg()); goto opthelp; } } break; case OPT_CHECKHOST: checkhost = opt_arg(); break; case OPT_CHECKEMAIL: checkemail = opt_arg(); break; case OPT_CHECKIP: checkip = opt_arg(); break; case OPT_PRESERVE_DATES: if (days != DEF_DAYS) goto opthelp; preserve_dates = 1; break; case OPT_MD: if (!opt_md(opt_unknown(), &digest)) goto opthelp; } } argc = opt_num_rest(); argv = opt_rest(); if (argc != 0) { BIO_printf(bio_err, "%s: Unknown parameter %s\n", prog, argv[0]); goto opthelp; } if (!app_passwd(passinarg, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } if (!X509_STORE_set_default_paths(ctx)) { ERR_print_errors(bio_err); goto end; } if (fkeyfile != NULL) { fkey = load_pubkey(fkeyfile, keyformat, 0, NULL, e, "Forced key"); if (fkey == NULL) goto end; } if ((CAkeyfile == NULL) && (CA_flag) && (CAformat == FORMAT_PEM)) { CAkeyfile = CAfile; } else if ((CA_flag) && (CAkeyfile == NULL)) { BIO_printf(bio_err, "need to specify a CAkey if using the CA command\n"); goto end; } if (extfile != NULL) { X509V3_CTX ctx2; if ((extconf = app_load_config(extfile)) == NULL) goto end; if (extsect == NULL) { extsect = NCONF_get_string(extconf, "default", "extensions"); if (extsect == NULL) { ERR_clear_error(); extsect = "default"; } } X509V3_set_ctx_test(&ctx2); X509V3_set_nconf(&ctx2, extconf); if (!X509V3_EXT_add_nconf(extconf, &ctx2, extsect, NULL)) { BIO_printf(bio_err, "Error Loading extension section %s\n", extsect); ERR_print_errors(bio_err); goto end; } } if (reqfile) { EVP_PKEY *pkey; BIO *in; if (!sign_flag && !CA_flag) { BIO_printf(bio_err, "We need a private key to sign with\n"); goto end; } in = bio_open_default(infile, 'r', informat); if (in == NULL) goto end; req = PEM_read_bio_X509_REQ(in, NULL, NULL, NULL); BIO_free(in); if (req == NULL) { ERR_print_errors(bio_err); goto end; } if ((pkey = X509_REQ_get0_pubkey(req)) == NULL) { BIO_printf(bio_err, "error unpacking public key\n"); goto end; } i = X509_REQ_verify(req, pkey); if (i < 0) { BIO_printf(bio_err, "Signature verification error\n"); ERR_print_errors(bio_err); goto end; } if (i == 0) { BIO_printf(bio_err, "Signature did not match the certificate request\n"); goto end; } else { BIO_printf(bio_err, "Signature ok\n"); } print_name(bio_err, "subject=", X509_REQ_get_subject_name(req), get_nameopt()); if ((x = X509_new()) == NULL) goto end; if (sno == NULL) { sno = ASN1_INTEGER_new(); if (sno == NULL || !rand_serial(NULL, sno)) goto end; if (!X509_set_serialNumber(x, sno)) goto end; ASN1_INTEGER_free(sno); sno = NULL; } else if (!X509_set_serialNumber(x, sno)) { goto end; } if (!X509_set_issuer_name(x, X509_REQ_get_subject_name(req))) goto end; if (!X509_set_subject_name(x, X509_REQ_get_subject_name(req))) goto end; if (!set_cert_times(x, NULL, NULL, days)) goto end; if (fkey != NULL) { X509_set_pubkey(x, fkey); } else { pkey = X509_REQ_get0_pubkey(req); X509_set_pubkey(x, pkey); } } else { x = load_cert(infile, informat, "Certificate"); } if (x == NULL) goto end; if (CA_flag) { xca = load_cert(CAfile, CAformat, "CA Certificate"); if (xca == NULL) goto end; } out = bio_open_default(outfile, 'w', outformat); if (out == NULL) goto end; if (!noout || text || next_serial) OBJ_create("2.99999.3", "SET.ex3", "SET x509v3 extension 3"); if (alias) X509_alias_set1(x, (unsigned char *)alias, -1); if (clrtrust) X509_trust_clear(x); if (clrreject) X509_reject_clear(x); if (trust != NULL) { for (i = 0; i < sk_ASN1_OBJECT_num(trust); i++) { objtmp = sk_ASN1_OBJECT_value(trust, i); X509_add1_trust_object(x, objtmp); } objtmp = NULL; } if (reject != NULL) { for (i = 0; i < sk_ASN1_OBJECT_num(reject); i++) { objtmp = sk_ASN1_OBJECT_value(reject, i); X509_add1_reject_object(x, objtmp); } objtmp = NULL; } if (badsig) { const ASN1_BIT_STRING *signature; X509_get0_signature(&signature, NULL, x); corrupt_signature(signature); } if (num) { for (i = 1; i <= num; i++) { if (issuer == i) { print_name(out, "issuer=", X509_get_issuer_name(x), get_nameopt()); } else if (subject == i) { print_name(out, "subject=", X509_get_subject_name(x), get_nameopt()); } else if (serial == i) { BIO_printf(out, "serial="); i2a_ASN1_INTEGER(out, X509_get_serialNumber(x)); BIO_printf(out, "\n"); } else if (next_serial == i) { ASN1_INTEGER *ser = X509_get_serialNumber(x); BIGNUM *bnser = ASN1_INTEGER_to_BN(ser, NULL); if (!bnser) goto end; if (!BN_add_word(bnser, 1)) goto end; ser = BN_to_ASN1_INTEGER(bnser, NULL); if (!ser) goto end; BN_free(bnser); i2a_ASN1_INTEGER(out, ser); ASN1_INTEGER_free(ser); BIO_puts(out, "\n"); } else if ((email == i) || (ocsp_uri == i)) { int j; STACK_OF(OPENSSL_STRING) *emlst; if (email == i) emlst = X509_get1_email(x); else emlst = X509_get1_ocsp(x); for (j = 0; j < sk_OPENSSL_STRING_num(emlst); j++) BIO_printf(out, "%s\n", sk_OPENSSL_STRING_value(emlst, j)); X509_email_free(emlst); } else if (aliasout == i) { unsigned char *alstr; alstr = X509_alias_get0(x, NULL); if (alstr) BIO_printf(out, "%s\n", alstr); else BIO_puts(out, "\n"); } else if (subject_hash == i) { BIO_printf(out, "%08lx\n", X509_subject_name_hash(x)); } #ifndef OPENSSL_NO_MD5 else if (subject_hash_old == i) { BIO_printf(out, "%08lx\n", X509_subject_name_hash_old(x)); } #endif else if (issuer_hash == i) { BIO_printf(out, "%08lx\n", X509_issuer_name_hash(x)); } #ifndef OPENSSL_NO_MD5 else if (issuer_hash_old == i) { BIO_printf(out, "%08lx\n", X509_issuer_name_hash_old(x)); } #endif else if (pprint == i) { X509_PURPOSE *ptmp; int j; BIO_printf(out, "Certificate purposes:\n"); for (j = 0; j < X509_PURPOSE_get_count(); j++) { ptmp = X509_PURPOSE_get0(j); purpose_print(out, x, ptmp); } } else if (modulus == i) { EVP_PKEY *pkey; pkey = X509_get0_pubkey(x); if (pkey == NULL) { BIO_printf(bio_err, "Modulus=unavailable\n"); ERR_print_errors(bio_err); goto end; } BIO_printf(out, "Modulus="); #ifndef OPENSSL_NO_RSA if (EVP_PKEY_id(pkey) == EVP_PKEY_RSA) { const BIGNUM *n; RSA_get0_key(EVP_PKEY_get0_RSA(pkey), &n, NULL, NULL); BN_print(out, n); } else #endif #ifndef OPENSSL_NO_DSA if (EVP_PKEY_id(pkey) == EVP_PKEY_DSA) { const BIGNUM *dsapub = NULL; DSA_get0_key(EVP_PKEY_get0_DSA(pkey), &dsapub, NULL); BN_print(out, dsapub); } else #endif { BIO_printf(out, "Wrong Algorithm type"); } BIO_printf(out, "\n"); } else if (pubkey == i) { EVP_PKEY *pkey; pkey = X509_get0_pubkey(x); if (pkey == NULL) { BIO_printf(bio_err, "Error getting public key\n"); ERR_print_errors(bio_err); goto end; } PEM_write_bio_PUBKEY(out, pkey); } else if (C == i) { unsigned char *d; char *m; int len; print_name(out, "/*\n" " * Subject: ", X509_get_subject_name(x), get_nameopt()); print_name(out, " * Issuer: ", X509_get_issuer_name(x), get_nameopt()); BIO_puts(out, " */\n"); len = i2d_X509(x, NULL); m = app_malloc(len, "x509 name buffer"); d = (unsigned char *)m; len = i2d_X509_NAME(X509_get_subject_name(x), &d); print_array(out, "the_subject_name", len, (unsigned char *)m); d = (unsigned char *)m; len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(x), &d); print_array(out, "the_public_key", len, (unsigned char *)m); d = (unsigned char *)m; len = i2d_X509(x, &d); print_array(out, "the_certificate", len, (unsigned char *)m); OPENSSL_free(m); } else if (text == i) { X509_print_ex(out, x, get_nameopt(), certflag); } else if (startdate == i) { BIO_puts(out, "notBefore="); ASN1_TIME_print(out, X509_get0_notBefore(x)); BIO_puts(out, "\n"); } else if (enddate == i) { BIO_puts(out, "notAfter="); ASN1_TIME_print(out, X509_get0_notAfter(x)); BIO_puts(out, "\n"); } else if (fingerprint == i) { int j; unsigned int n; unsigned char md[EVP_MAX_MD_SIZE]; const EVP_MD *fdig = digest; if (fdig == NULL) fdig = EVP_sha1(); if (!X509_digest(x, fdig, md, &n)) { BIO_printf(bio_err, "out of memory\n"); goto end; } BIO_printf(out, "%s Fingerprint=", OBJ_nid2sn(EVP_MD_type(fdig))); for (j = 0; j < (int)n; j++) { BIO_printf(out, "%02X%c", md[j], (j + 1 == (int)n) ? '\n' : ':'); } } /* should be in the library */ else if ((sign_flag == i) && (x509req == 0)) { BIO_printf(bio_err, "Getting Private key\n"); if (Upkey == NULL) { Upkey = load_key(keyfile, keyformat, 0, passin, e, "Private key"); if (Upkey == NULL) goto end; } if (!sign(x, Upkey, days, clrext, digest, extconf, extsect, preserve_dates)) goto end; } else if (CA_flag == i) { BIO_printf(bio_err, "Getting CA Private Key\n"); if (CAkeyfile != NULL) { CApkey = load_key(CAkeyfile, CAkeyformat, 0, passin, e, "CA Private Key"); if (CApkey == NULL) goto end; } if (!x509_certify(ctx, CAfile, digest, x, xca, CApkey, sigopts, CAserial, CA_createserial, days, clrext, extconf, extsect, sno, reqfile, preserve_dates)) goto end; } else if (x509req == i) { EVP_PKEY *pk; BIO_printf(bio_err, "Getting request Private Key\n"); if (keyfile == NULL) { BIO_printf(bio_err, "no request key file specified\n"); goto end; } else { pk = load_key(keyfile, keyformat, 0, passin, e, "request key"); if (pk == NULL) goto end; } BIO_printf(bio_err, "Generating certificate request\n"); rq = X509_to_X509_REQ(x, pk, digest); EVP_PKEY_free(pk); if (rq == NULL) { ERR_print_errors(bio_err); goto end; } if (!noout) { X509_REQ_print_ex(out, rq, get_nameopt(), X509_FLAG_COMPAT); PEM_write_bio_X509_REQ(out, rq); } noout = 1; } else if (ocspid == i) { X509_ocspid_print(out, x); } else if (ext == i) { print_x509v3_exts(out, x, exts); } } } if (checkend) { time_t tcheck = time(NULL) + checkoffset; if (X509_cmp_time(X509_get0_notAfter(x), &tcheck) < 0) { BIO_printf(out, "Certificate will expire\n"); ret = 1; } else { BIO_printf(out, "Certificate will not expire\n"); ret = 0; } goto end; } print_cert_checks(out, x, checkhost, checkemail, checkip); if (noout || nocert) { ret = 0; goto end; } if (outformat == FORMAT_ASN1) { i = i2d_X509_bio(out, x); } else if (outformat == FORMAT_PEM) { if (trustout) i = PEM_write_bio_X509_AUX(out, x); else i = PEM_write_bio_X509(out, x); } else { BIO_printf(bio_err, "bad output format specified for outfile\n"); goto end; } if (!i) { BIO_printf(bio_err, "unable to write certificate\n"); ERR_print_errors(bio_err); goto end; } ret = 0; end: NCONF_free(extconf); BIO_free_all(out); X509_STORE_free(ctx); X509_REQ_free(req); X509_free(x); X509_free(xca); EVP_PKEY_free(Upkey); EVP_PKEY_free(CApkey); EVP_PKEY_free(fkey); sk_OPENSSL_STRING_free(sigopts); X509_REQ_free(rq); ASN1_INTEGER_free(sno); sk_ASN1_OBJECT_pop_free(trust, ASN1_OBJECT_free); sk_ASN1_OBJECT_pop_free(reject, ASN1_OBJECT_free); ASN1_OBJECT_free(objtmp); release_engine(e); OPENSSL_free(passin); return ret; } static ASN1_INTEGER *x509_load_serial(const char *CAfile, const char *serialfile, int create) { char *buf = NULL; ASN1_INTEGER *bs = NULL; BIGNUM *serial = NULL; if (serialfile == NULL) { const char *p = strrchr(CAfile, '.'); size_t len = p != NULL ? (size_t)(p - CAfile) : strlen(CAfile); buf = app_malloc(len + sizeof(POSTFIX), "serial# buffer"); memcpy(buf, CAfile, len); memcpy(buf + len, POSTFIX, sizeof(POSTFIX)); serialfile = buf; } serial = load_serial(serialfile, create, NULL); if (serial == NULL) goto end; if (!BN_add_word(serial, 1)) { BIO_printf(bio_err, "add_word failure\n"); goto end; } if (!save_serial(serialfile, NULL, serial, &bs)) goto end; end: OPENSSL_free(buf); BN_free(serial); return bs; } static int x509_certify(X509_STORE *ctx, const char *CAfile, const EVP_MD *digest, X509 *x, X509 *xca, EVP_PKEY *pkey, STACK_OF(OPENSSL_STRING) *sigopts, const char *serialfile, int create, int days, int clrext, CONF *conf, const char *section, ASN1_INTEGER *sno, int reqfile, int preserve_dates) { int ret = 0; ASN1_INTEGER *bs = NULL; X509_STORE_CTX *xsc = NULL; EVP_PKEY *upkey; upkey = X509_get0_pubkey(xca); if (upkey == NULL) { BIO_printf(bio_err, "Error obtaining CA X509 public key\n"); goto end; } EVP_PKEY_copy_parameters(upkey, pkey); xsc = X509_STORE_CTX_new(); if (xsc == NULL || !X509_STORE_CTX_init(xsc, ctx, x, NULL)) { BIO_printf(bio_err, "Error initialising X509 store\n"); goto end; } if (sno) bs = sno; else if ((bs = x509_load_serial(CAfile, serialfile, create)) == NULL) goto end; /* * NOTE: this certificate can/should be self signed, unless it was a * certificate request in which case it is not. */ X509_STORE_CTX_set_cert(xsc, x); X509_STORE_CTX_set_flags(xsc, X509_V_FLAG_CHECK_SS_SIGNATURE); if (!reqfile && X509_verify_cert(xsc) <= 0) goto end; if (!X509_check_private_key(xca, pkey)) { BIO_printf(bio_err, "CA certificate and CA private key do not match\n"); goto end; } if (!X509_set_issuer_name(x, X509_get_subject_name(xca))) goto end; if (!X509_set_serialNumber(x, bs)) goto end; if (!preserve_dates && !set_cert_times(x, NULL, NULL, days)) goto end; if (clrext) { while (X509_get_ext_count(x) > 0) X509_delete_ext(x, 0); } if (conf != NULL) { X509V3_CTX ctx2; X509_set_version(x, 2); /* version 3 certificate */ X509V3_set_ctx(&ctx2, xca, x, NULL, NULL, 0); X509V3_set_nconf(&ctx2, conf); if (!X509V3_EXT_add_nconf(conf, &ctx2, section, x)) goto end; } if (!do_X509_sign(x, pkey, digest, sigopts)) goto end; ret = 1; end: X509_STORE_CTX_free(xsc); if (!ret) ERR_print_errors(bio_err); if (!sno) ASN1_INTEGER_free(bs); return ret; } static int callb(int ok, X509_STORE_CTX *ctx) { int err; X509 *err_cert; /* * it is ok to use a self signed certificate This case will catch both * the initial ok == 0 and the final ok == 1 calls to this function */ err = X509_STORE_CTX_get_error(ctx); if (err == X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT) return 1; /* * BAD we should have gotten an error. Normally if everything worked * X509_STORE_CTX_get_error(ctx) will still be set to * DEPTH_ZERO_SELF_.... */ if (ok) { BIO_printf(bio_err, "error with certificate to be certified - should be self signed\n"); return 0; } else { err_cert = X509_STORE_CTX_get_current_cert(ctx); print_name(bio_err, NULL, X509_get_subject_name(err_cert), 0); BIO_printf(bio_err, "error with certificate - error %d at depth %d\n%s\n", err, X509_STORE_CTX_get_error_depth(ctx), X509_verify_cert_error_string(err)); return 1; } } /* self sign */ static int sign(X509 *x, EVP_PKEY *pkey, int days, int clrext, const EVP_MD *digest, CONF *conf, const char *section, int preserve_dates) { if (!X509_set_issuer_name(x, X509_get_subject_name(x))) goto err; if (!preserve_dates && !set_cert_times(x, NULL, NULL, days)) goto err; if (!X509_set_pubkey(x, pkey)) goto err; if (clrext) { while (X509_get_ext_count(x) > 0) X509_delete_ext(x, 0); } if (conf != NULL) { X509V3_CTX ctx; X509_set_version(x, 2); /* version 3 certificate */ X509V3_set_ctx(&ctx, x, x, NULL, NULL, 0); X509V3_set_nconf(&ctx, conf); if (!X509V3_EXT_add_nconf(conf, &ctx, section, x)) goto err; } if (!X509_sign(x, pkey, digest)) goto err; return 1; err: ERR_print_errors(bio_err); return 0; } static int purpose_print(BIO *bio, X509 *cert, X509_PURPOSE *pt) { int id, i, idret; const char *pname; id = X509_PURPOSE_get_id(pt); pname = X509_PURPOSE_get0_name(pt); for (i = 0; i < 2; i++) { idret = X509_check_purpose(cert, id, i); BIO_printf(bio, "%s%s : ", pname, i ? " CA" : ""); if (idret == 1) BIO_printf(bio, "Yes\n"); else if (idret == 0) BIO_printf(bio, "No\n"); else BIO_printf(bio, "Yes (WARNING code=%d)\n", idret); } return 1; } static int parse_ext_names(char *names, const char **result) { char *p, *q; int cnt = 0, len = 0; p = q = names; len = strlen(names); while (q - names <= len) { if (*q != ',' && *q != '\0') { q++; continue; } if (p != q) { /* found */ if (result != NULL) { result[cnt] = p; *q = '\0'; } cnt++; } p = ++q; } return cnt; } static int print_x509v3_exts(BIO *bio, X509 *x, const char *ext_names) { const STACK_OF(X509_EXTENSION) *exts = NULL; STACK_OF(X509_EXTENSION) *exts2 = NULL; X509_EXTENSION *ext = NULL; ASN1_OBJECT *obj; int i, j, ret = 0, num, nn = 0; const char *sn, **names = NULL; char *tmp_ext_names = NULL; exts = X509_get0_extensions(x); if ((num = sk_X509_EXTENSION_num(exts)) <= 0) { BIO_printf(bio, "No extensions in certificate\n"); ret = 1; goto end; } /* parse comma separated ext name string */ if ((tmp_ext_names = OPENSSL_strdup(ext_names)) == NULL) goto end; if ((nn = parse_ext_names(tmp_ext_names, NULL)) == 0) { BIO_printf(bio, "Invalid extension names: %s\n", ext_names); goto end; } if ((names = OPENSSL_malloc(sizeof(char *) * nn)) == NULL) goto end; parse_ext_names(tmp_ext_names, names); for (i = 0; i < num; i++) { ext = sk_X509_EXTENSION_value(exts, i); /* check if this ext is what we want */ obj = X509_EXTENSION_get_object(ext); sn = OBJ_nid2sn(OBJ_obj2nid(obj)); if (sn == NULL || strcmp(sn, "UNDEF") == 0) continue; for (j = 0; j < nn; j++) { if (strcmp(sn, names[j]) == 0) { /* push the extension into a new stack */ if (exts2 == NULL && (exts2 = sk_X509_EXTENSION_new_null()) == NULL) goto end; if (!sk_X509_EXTENSION_push(exts2, ext)) goto end; } } } if (!sk_X509_EXTENSION_num(exts2)) { BIO_printf(bio, "No extensions matched with %s\n", ext_names); ret = 1; goto end; } ret = X509V3_extensions_print(bio, NULL, exts2, 0, 0); end: sk_X509_EXTENSION_free(exts2); OPENSSL_free(names); OPENSSL_free(tmp_ext_names); return ret; } openssl-1.1.1f/appveyor.yml000066400000000000000000000046751364063235100157520ustar00rootroot00000000000000image: - Visual Studio 2017 platform: - x64 - x86 environment: fast_finish: true matrix: - VSVER: 15 configuration: - shared - plain - minimal before_build: - ps: >- Install-Module VSSetup -Scope CurrentUser - ps: >- Get-VSSetupInstance -All - ps: >- gci env:* | sort-object name - ps: >- If ($env:Platform -Match "x86") { $env:VCVARS_PLATFORM="x86" $env:TARGET="VC-WIN32 no-asm --strict-warnings" } Else { $env:VCVARS_PLATFORM="amd64" $env:TARGET="VC-WIN64A-masm" } - ps: >- If ($env:Configuration -Match "shared") { $env:SHARED="no-makedepend" } ElseIf ($env:Configuration -Match "minimal") { $env:SHARED="no-shared no-dso no-makedepend no-aria no-async no-autoload-config no-blake2 no-bf no-camellia no-cast no-chacha no-cmac no-cms no-comp no-ct no-des no-dgram no-dh no-dsa no-dtls no-ec2m no-engine no-filenames no-gost no-idea no-mdc2 no-md4 no-multiblock no-nextprotoneg no-ocsp no-ocb no-poly1305 no-psk no-rc2 no-rc4 no-rmd160 no-seed no-siphash no-sm2 no-sm3 no-sm4 no-srp no-srtp no-ssl3 no-ssl3-method no-ts no-ui-console no-whirlpool no-asm -DOPENSSL_SMALL_FOOTPRINT" } Else { $env:SHARED="no-shared no-makedepend" } - call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat" %VCVARS_PLATFORM% - mkdir _build - cd _build - perl ..\Configure %TARGET% %SHARED% - perl configdata.pm --dump - cd .. - ps: >- if (-not $env:APPVEYOR_PULL_REQUEST_NUMBER` -or (&git log -2 | Select-String "\[extended tests\]") ) { $env:EXTENDED_TESTS="yes" } build_script: - cd _build - ps: >- If ($env:Configuration -Match "shared" -or $env:EXTENDED_TESTS) { cmd /c "nmake build_all_generated 2>&1" cmd /c "nmake PERL=no-perl 2>&1" } - cd .. test_script: - cd _build - ps: >- If ($env:Configuration -Match "shared" -or $env:EXTENDED_TESTS) { if ($env:EXTENDED_TESTS) { cmd /c "nmake test V=1 2>&1" } Else { cmd /c "nmake test V=1 TESTS=-test_fuzz 2>&1" } } - ps: >- if ($env:EXTENDED_TESTS) { mkdir ..\_install cmd /c "nmake install DESTDIR=..\_install 2>&1" } - cd .. openssl-1.1.1f/build.info000066400000000000000000000100031364063235100153140ustar00rootroot00000000000000{- our $sover = $config{shlib_version_number}; our $sover_filename = $sover; $sover_filename =~ s|\.|_|g if $config{target} =~ /^mingw/ || $config{target} =~ /^VC-/; $sover_filename = sprintf "%02d%02d", split m|\.|, $config{shlib_version_number} if $config{target} =~ /^vms/; ""; -} LIBS=libcrypto libssl INCLUDE[libcrypto]=. include INCLUDE[libssl]=. include DEPEND[libssl]=libcrypto # Empty DEPEND "indices" means the dependencies are expected to be built # unconditionally before anything else. DEPEND[]=include/openssl/opensslconf.h include/crypto/bn_conf.h \ include/crypto/dso_conf.h DEPEND[include/openssl/opensslconf.h]=configdata.pm GENERATE[include/openssl/opensslconf.h]=include/openssl/opensslconf.h.in DEPEND[include/crypto/bn_conf.h]=configdata.pm GENERATE[include/crypto/bn_conf.h]=include/crypto/bn_conf.h.in DEPEND[include/crypto/dso_conf.h]=configdata.pm GENERATE[include/crypto/dso_conf.h]=include/crypto/dso_conf.h.in IF[{- defined $target{shared_defflag} -}] IF[{- $config{target} =~ /^mingw/ -}] GENERATE[libcrypto.def]=util/mkdef.pl crypto 32 DEPEND[libcrypto.def]=util/libcrypto.num GENERATE[libssl.def]=util/mkdef.pl ssl 32 DEPEND[libssl.def]=util/libssl.num SHARED_SOURCE[libcrypto]=libcrypto.def SHARED_SOURCE[libssl]=libssl.def ELSIF[{- $config{target} =~ /^aix/ -}] GENERATE[libcrypto.map]=util/mkdef.pl crypto aix DEPEND[libcrypto.map]=util/libcrypto.num GENERATE[libssl.map]=util/mkdef.pl ssl aix DEPEND[libssl.map]=util/libssl.num SHARED_SOURCE[libcrypto]=libcrypto.map SHARED_SOURCE[libssl]=libssl.map ELSE GENERATE[libcrypto.map]=util/mkdef.pl crypto linux DEPEND[libcrypto.map]=util/libcrypto.num GENERATE[libssl.map]=util/mkdef.pl ssl linux DEPEND[libssl.map]=util/libssl.num SHARED_SOURCE[libcrypto]=libcrypto.map SHARED_SOURCE[libssl]=libssl.map ENDIF ENDIF # VMS and VC don't have parametrised .def / .symvec generation, so they get # special treatment, since we know they do use these files IF[{- $config{target} =~ /^VC-/ -}] GENERATE[libcrypto.def]=util/mkdef.pl crypto 32 DEPEND[libcrypto.def]=util/libcrypto.num GENERATE[libssl.def]=util/mkdef.pl ssl 32 DEPEND[libssl.def]=util/libssl.num SHARED_SOURCE[libcrypto]=libcrypto.def SHARED_SOURCE[libssl]=libssl.def ELSIF[{- $config{target} =~ /^vms/ -}] GENERATE[libcrypto.opt]=util/mkdef.pl crypto "VMS" DEPEND[libcrypto.opt]=util/libcrypto.num GENERATE[libssl.opt]=util/mkdef.pl ssl "VMS" DEPEND[libssl.opt]=util/libssl.num SHARED_SOURCE[libcrypto]=libcrypto.opt SHARED_SOURCE[libssl]=libssl.opt ENDIF IF[{- $config{target} =~ /^(?:Cygwin|mingw|VC-)/ -}] GENERATE[libcrypto.rc]=util/mkrc.pl libcrypto GENERATE[libssl.rc]=util/mkrc.pl libssl SHARED_SOURCE[libcrypto]=libcrypto.rc SHARED_SOURCE[libssl]=libssl.rc ENDIF IF[{- $config{target} =~ /^Cygwin/ -}] SHARED_NAME[libcrypto]=cygcrypto-{- $sover_filename -} SHARED_NAME[libssl]=cygssl-{- $sover_filename -} ELSIF[{- $config{target} =~ /^mingw/ -}] SHARED_NAME[libcrypto]=libcrypto-{- $sover_filename -}{- $config{target} eq "mingw64" ? "-x64" : "" -} SHARED_NAME[libssl]=libssl-{- $sover_filename -}{- $config{target} eq "mingw64" ? "-x64" : "" -} ELSIF[{- $config{target} =~ /^VC-/ -}] SHARED_NAME[libcrypto]=libcrypto-{- $sover_filename -}{- $target{multilib} -} SHARED_NAME[libssl]=libssl-{- $sover_filename -}{- $target{multilib} -} ENDIF # VMS has a cultural standard where all libraries are prefixed. # For OpenSSL, the choice is 'ossl$' (this prefix was claimed in a # conversation with VSI, Tuesday January 26 2016) # Also, it seems it's usual to have the pointer size the libraries # were built for as part of the name. IF[{- $config{target} =~ /^vms/ -}] RENAME[libcrypto]=ossl$libcrypto{- $target{pointer_size} -} RENAME[libssl]=ossl$libssl{- $target{pointer_size} -} SHARED_NAME[libcrypto]=ossl$libcrypto{- $sover_filename -}_shr{- $target{pointer_size} -} SHARED_NAME[libssl]=ossl$libssl{- $sover_filename -}_shr{- $target{pointer_size} -} ENDIF openssl-1.1.1f/config000077500000000000000000000676431364063235100145610ustar00rootroot00000000000000#!/bin/sh # Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # OpenSSL config: determine the operating system and run ./Configure # Derived from minarch and GuessOS from Apache. # # Do "config -h" for usage information. SUFFIX="" DRYRUN="false" VERBOSE="false" EXE="" THERE=`dirname $0` # pick up any command line args to config for i do case "$i" in -d*) options=$options" --debug";; -t*) DRYRUN="true" VERBOSE="true";; -v*) VERBOSE="true";; -h*) DRYRUN="true"; cat </dev/null` || MACHINE="unknown" [ "$RELEASE" ] || RELEASE=`(uname -r) 2>/dev/null` || RELEASE="unknown" [ "$SYSTEM" ] || SYSTEM=`(uname -s) 2>/dev/null` || SYSTEM="unknown" [ "$BUILD" ] || VERSION=`(uname -v) 2>/dev/null` || VERSION="unknown" # Now test for ISC and SCO, since it is has a braindamaged uname. # # We need to work around FreeBSD 1.1.5.1 ( XREL=`uname -X 2>/dev/null | grep "^Release" | awk '{print $3}'` if [ "x$XREL" != "x" ]; then if [ -f /etc/kconfig ]; then case "$XREL" in 4.0|4.1) echo "${MACHINE}-whatever-isc4"; exit 0 ;; esac else case "$XREL" in 3.2v4.2) echo "whatever-whatever-sco3"; exit 0 ;; 3.2v5.0*) echo "whatever-whatever-sco5"; exit 0 ;; 4.2MP) case "x${VERSION}" in x2.0*) echo "whatever-whatever-unixware20"; exit 0 ;; x2.1*) echo "whatever-whatever-unixware21"; exit 0 ;; x2*) echo "whatever-whatever-unixware2"; exit 0 ;; esac ;; 4.2) echo "whatever-whatever-unixware1"; exit 0 ;; 5*) case "x${VERSION}" in # We hardcode i586 in place of ${MACHINE} for the # following reason. The catch is that even though Pentium # is minimum requirement for platforms in question, # ${MACHINE} gets always assigned to i386. Now, problem # with i386 is that it makes ./config pass 386 to # ./Configure, which in turn makes make generate # inefficient SHA-1 (for this moment) code. x[678]*) echo "i586-sco-unixware7"; exit 0 ;; esac ;; esac fi fi # Now we simply scan though... In most cases, the SYSTEM info is enough # case "${SYSTEM}:${RELEASE}:${VERSION}:${MACHINE}" in A/UX:*) echo "m68k-apple-aux3"; exit 0 ;; AIX:[3-9]:4:*) echo "${MACHINE}-ibm-aix"; exit 0 ;; AIX:*:[5-9]:*) echo "${MACHINE}-ibm-aix"; exit 0 ;; AIX:*) echo "${MACHINE}-ibm-aix3"; exit 0 ;; HI-UX:*) echo "${MACHINE}-hi-hiux"; exit 0 ;; HP-UX:*) HPUXVER=`echo ${RELEASE}|sed -e 's/[^.]*.[0B]*//'` case "$HPUXVER" in 1[0-9].*) # HPUX 10 and 11 targets are unified echo "${MACHINE}-hp-hpux1x"; exit 0 ;; *) echo "${MACHINE}-hp-hpux"; exit 0 ;; esac ;; IRIX:6.*) echo "mips3-sgi-irix"; exit 0 ;; IRIX64:*) echo "mips4-sgi-irix64"; exit 0 ;; Linux:[2-9].*) echo "${MACHINE}-whatever-linux2"; exit 0 ;; Linux:1.*) echo "${MACHINE}-whatever-linux1"; exit 0 ;; GNU*) echo "hurd-x86"; exit 0; ;; LynxOS:*) echo "${MACHINE}-lynx-lynxos"; exit 0 ;; BSD/OS:4.*) # BSD/OS always says 386 echo "i486-whatever-bsdi4"; exit 0 ;; BSD/386:*:*:*486*|BSD/OS:*:*:*:*486*) case `/sbin/sysctl -n hw.model` in Pentium*) echo "i586-whatever-bsdi"; exit 0 ;; *) echo "i386-whatever-bsdi"; exit 0 ;; esac; ;; BSD/386:*|BSD/OS:*) echo "${MACHINE}-whatever-bsdi"; exit 0 ;; FreeBSD:*:*:*386*) VERS=`echo ${RELEASE} | sed -e 's/[-(].*//'` MACH=`sysctl -n hw.model` ARCH='whatever' case ${MACH} in *386* ) MACH="i386" ;; *486* ) MACH="i486" ;; Pentium\ II*) MACH="i686" ;; Pentium* ) MACH="i586" ;; * ) MACH="$MACHINE" ;; esac case ${MACH} in i[0-9]86 ) ARCH="pc" ;; esac echo "${MACH}-${ARCH}-freebsd${VERS}"; exit 0 ;; DragonFly:*) echo "${MACHINE}-whatever-dragonfly"; exit 0 ;; FreeBSD:*) echo "${MACHINE}-whatever-freebsd"; exit 0 ;; Haiku:*) echo "${MACHINE}-whatever-haiku"; exit 0 ;; NetBSD:*:*:*386*) echo "`(/usr/sbin/sysctl -n hw.model || /sbin/sysctl -n hw.model) | sed 's,.*\(.\)86-class.*,i\186,'`-whatever-netbsd"; exit 0 ;; NetBSD:*) echo "${MACHINE}-whatever-netbsd"; exit 0 ;; OpenBSD:*) echo "${MACHINE}-whatever-openbsd"; exit 0 ;; OpenUNIX:*) echo "${MACHINE}-unknown-OpenUNIX${VERSION}"; exit 0 ;; OSF1:*:*:*alpha*) OSFMAJOR=`echo ${RELEASE}| sed -e 's/^V\([0-9]*\)\..*$/\1/'` case "$OSFMAJOR" in 4|5) echo "${MACHINE}-dec-tru64"; exit 0 ;; 1|2|3) echo "${MACHINE}-dec-osf"; exit 0 ;; *) echo "${MACHINE}-dec-osf"; exit 0 ;; esac ;; Paragon*:*:*:*) echo "i860-intel-osf1"; exit 0 ;; Rhapsody:*) echo "ppc-apple-rhapsody"; exit 0 ;; Darwin:*) case "$MACHINE" in Power*) echo "ppc-apple-darwin${VERSION}" ;; x86_64) echo "x86_64-apple-darwin${VERSION}" ;; *) echo "i686-apple-darwin${VERSION}" ;; esac exit 0 ;; SunOS:5.*) echo "${MACHINE}-whatever-solaris2"; exit 0 ;; SunOS:*) echo "${MACHINE}-sun-sunos4"; exit 0 ;; UNIX_System_V:4.*:*) echo "${MACHINE}-whatever-sysv4"; exit 0 ;; VOS:*:*:i786) echo "i386-stratus-vos"; exit 0 ;; VOS:*:*:*) echo "hppa1.1-stratus-vos"; exit 0 ;; *:4*:R4*:m88k) echo "${MACHINE}-whatever-sysv4"; exit 0 ;; DYNIX/ptx:4*:*) echo "${MACHINE}-whatever-sysv4"; exit 0 ;; *:4.0:3.0:3[34]?? | *:4.0:3.0:3[34]??,*) echo "i486-ncr-sysv4"; exit 0 ;; ULTRIX:*) echo "${MACHINE}-unknown-ultrix"; exit 0 ;; POSIX-BC*) echo "${MACHINE}-siemens-sysv4"; exit 0 # Here, $MACHINE == "BS2000" ;; machten:*) echo "${MACHINE}-tenon-${SYSTEM}"; exit 0; ;; library:*) echo "${MACHINE}-ncr-sysv4"; exit 0 ;; ConvexOS:*:11.0:*) echo "${MACHINE}-v11-${SYSTEM}"; exit 0; ;; # The following combinations are supported # MINGW64* on x86_64 => mingw64 # MINGW32* on x86_64 => mingw # MINGW32* on i?86 => mingw # # MINGW64* on i?86 isn't expected to work... MINGW64*:*:*:x86_64) echo "${MACHINE}-whatever-mingw64"; exit 0; ;; MINGW*) echo "${MACHINE}-whatever-mingw"; exit 0; ;; CYGWIN*) echo "${MACHINE}-pc-cygwin"; exit 0 ;; vxworks*) echo "${MACHINE}-whatever-vxworks"; exit 0; ;; esac # # Ugg. These are all we can determine by what we know about # the output of uname. Be more creative: # # Do the Apollo stuff first. Here, we just simply assume # that the existence of the /usr/apollo directory is proof # enough if [ -d /usr/apollo ]; then echo "whatever-apollo-whatever" exit 0 fi # Now NeXT ISNEXT=`hostinfo 2>/dev/null` case "$ISNEXT" in *'NeXT Mach 3.3'*) echo "whatever-next-nextstep3.3"; exit 0 ;; *NeXT*) echo "whatever-next-nextstep"; exit 0 ;; esac # At this point we gone through all the one's # we know of: Punt echo "${MACHINE}-whatever-${SYSTEM}" exit 0 ) 2>/dev/null | ( # --------------------------------------------------------------------------- # this is where the translation occurs into SSLeay terms # --------------------------------------------------------------------------- # Only set CC if not supplied already if [ -z "$CROSS_COMPILE$CC" ]; then GCCVER=`sh -c "gcc -dumpversion" 2>/dev/null` if [ "$GCCVER" != "" ]; then # then strip off whatever prefix egcs prepends the number with... # Hopefully, this will work for any future prefixes as well. GCCVER=`echo $GCCVER | LC_ALL=C sed 's/^[a-zA-Z]*\-//'` # Since gcc 3.1 gcc --version behaviour has changed. gcc -dumpversion # does give us what we want though, so we use that. We just just the # major and minor version numbers. # peak single digit before and after first dot, e.g. 2.95.1 gives 29 GCCVER=`echo $GCCVER | sed 's/\([0-9]\)\.\([0-9]\).*/\1\2/'` CC=gcc else CC=cc fi fi GCCVER=${GCCVER:-0} if [ "$SYSTEM" = "HP-UX" ];then # By default gcc is a ILP32 compiler (with long long == 64). GCC_BITS="32" if [ $GCCVER -ge 30 ]; then # PA64 support only came in with gcc 3.0.x. # We check if the preprocessor symbol __LP64__ is defined... if echo "__LP64__" | gcc -v -E -x c - 2>/dev/null | grep "^__LP64__" 2>&1 > /dev/null; then : # __LP64__ has slipped through, it therefore is not defined else GCC_BITS="64" fi fi fi if [ "$SYSTEM" = "SunOS" ]; then if [ $GCCVER -ge 30 ]; then # 64-bit ABI isn't officially supported in gcc 3.0, but it appears # to be working, at the very least 'make test' passes... if gcc -v -E -x c /dev/null 2>&1 | grep __arch64__ > /dev/null; then GCC_ARCH="-m64" else GCC_ARCH="-m32" fi fi # check for WorkShop C, expected output is "cc: blah-blah C x.x" CCVER=`(cc -V 2>&1) 2>/dev/null | \ egrep -e '^cc: .* C [0-9]\.[0-9]' | \ sed 's/.* C \([0-9]\)\.\([0-9]\).*/\1\2/'` CCVER=${CCVER:-0} if [ $MACHINE != i86pc -a $CCVER -gt 40 ]; then CC=cc # overrides gcc!!! if [ $CCVER -eq 50 ]; then echo "WARNING! Detected WorkShop C 5.0. Do make sure you have" echo " patch #107357-01 or later applied." sleep 5 fi fi fi if [ "${SYSTEM}" = "AIX" ]; then # favor vendor cc over gcc (cc) 2>&1 | grep -iv "not found" > /dev/null && CC=cc fi CCVER=${CCVER:-0} # read the output of the embedded GuessOS read GUESSOS echo Operating system: $GUESSOS # now map the output into SSLeay terms ... really should hack into the # script above so we end up with values in vars but that would take # more time that I want to waste at the moment case "$GUESSOS" in uClinux*64*) OUT=uClinux-dist64 ;; uClinux*) OUT=uClinux-dist ;; mips3-sgi-irix) OUT="irix-mips3-$CC" ;; mips4-sgi-irix64) echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure irix64-mips4-$CC' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi OUT="irix-mips3-$CC" ;; ppc-apple-rhapsody) OUT="rhapsody-ppc-cc" ;; ppc-apple-darwin*) ISA64=`(sysctl -n hw.optional.64bitops) 2>/dev/null` if [ "$ISA64" = "1" -a -z "$KERNEL_BITS" ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure darwin64-ppc-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi if [ "$ISA64" = "1" -a "$KERNEL_BITS" = "64" ]; then OUT="darwin64-ppc-cc" else OUT="darwin-ppc-cc" fi ;; i?86-apple-darwin*) ISA64=`(sysctl -n hw.optional.x86_64) 2>/dev/null` if [ "$ISA64" = "1" -a -z "$KERNEL_BITS" ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke 'KERNEL_BITS=64 $THERE/config $options'." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 1" 2; stty -icanon min 0 time 50; read waste; exit 0) <&1 || exit fi fi if [ "$ISA64" = "1" -a "$KERNEL_BITS" = "64" ]; then OUT="darwin64-x86_64-cc" else OUT="darwin-i386-cc" fi ;; x86_64-apple-darwin*) if [ "$KERNEL_BITS" = "32" ]; then OUT="darwin-i386-cc" else OUT="darwin64-x86_64-cc" fi ;; armv6+7-*-iphoneos) __CNF_CFLAGS="$__CNF_CFLAGS -arch armv6 -arch armv7" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -arch armv6 -arch armv7" OUT="iphoneos-cross" ;; *-*-iphoneos) __CNF_CFLAGS="$__CNF_CFLAGS -arch ${MACHINE}" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -arch ${MACHINE}" OUT="iphoneos-cross" ;; arm64-*-iphoneos|*-*-ios64) OUT="ios64-cross" ;; alpha-*-linux2) ISA=`awk '/cpu model/{print$4;exit(0);}' /proc/cpuinfo` OUT="linux-alpha-$CC" if [ "$CC" = "gcc" ]; then case ${ISA:-generic} in EV5|EV45) __CNF_CFLAGS="$__CNF_CFLAGS -mcpu=ev5" __CNF_CXXFLAGS="$__CNF_CFLAGS -mcpu=ev5";; EV56|PCA56) __CNF_CFLAGS="$__CNF_CFLAGS -mcpu=ev56" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -mcpu=ev56";; *) __CNF_CFLAGS="$__CNF_CFLAGS -mcpu=ev6" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -mcpu=ev6";; esac fi ;; ppc64-*-linux2) if [ -z "$KERNEL_BITS" ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure linux-ppc64' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi if [ "$KERNEL_BITS" = "64" ]; then OUT="linux-ppc64" else OUT="linux-ppc" if (echo "__LP64__" | gcc -E -x c - 2>/dev/null | grep "^__LP64__" 2>&1 > /dev/null); then :; else __CNF_CFLAGS="$__CNF_CFLAGS -m32" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -m32" fi fi ;; ppc64le-*-linux2) OUT="linux-ppc64le" ;; ppc-*-linux2) OUT="linux-ppc" ;; mips64*-*-linux2) echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure linux64-mips64' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi OUT="linux-mips64" ;; mips*-*-linux2) OUT="linux-mips32" ;; ppc60x-*-vxworks*) OUT="vxworks-ppc60x" ;; ppcgen-*-vxworks*) OUT="vxworks-ppcgen" ;; pentium-*-vxworks*) OUT="vxworks-pentium" ;; simlinux-*-vxworks*) OUT="vxworks-simlinux" ;; mips-*-vxworks*) OUT="vxworks-mips";; ia64-*-linux?) OUT="linux-ia64" ;; sparc64-*-linux2) echo "WARNING! If you *know* that your GNU C supports 64-bit/V9 ABI" echo " and wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure linux64-sparcv9' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi OUT="linux-sparcv9" ;; sparc-*-linux2) KARCH=`awk '/^type/{print$3;exit(0);}' /proc/cpuinfo` case ${KARCH:-sun4} in sun4u*) OUT="linux-sparcv9" ;; sun4m) OUT="linux-sparcv8" ;; sun4d) OUT="linux-sparcv8" ;; *) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; esac ;; parisc*-*-linux2) # 64-bit builds under parisc64 linux are not supported and # compiler is expected to generate 32-bit objects... CPUARCH=`awk '/cpu family/{print substr($5,1,3); exit(0);}' /proc/cpuinfo` CPUSCHEDULE=`awk '/^cpu.[ ]*: PA/{print substr($3,3); exit(0);}' /proc/cpuinfo` # ??TODO ?? Model transformations # 0. CPU Architecture for the 1.1 processor has letter suffixes. We strip that off # assuming no further arch. identification will ever be used by GCC. # 1. I'm most concerned about whether is a 7300LC is closer to a 7100 versus a 7100LC. # 2. The variant 64-bit processors cause concern should GCC support explicit schedulers # for these chips in the future. # PA7300LC -> 7100LC (1.1) # PA8200 -> 8000 (2.0) # PA8500 -> 8000 (2.0) # PA8600 -> 8000 (2.0) CPUSCHEDULE=`echo $CPUSCHEDULE|sed -e 's/7300LC/7100LC/' -e 's/8.00/8000/'` # Finish Model transformations __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" __CNF_CFLAGS="$__CNF_CFLAGS -mschedule=$CPUSCHEDULE -march=$CPUARCH" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -mschedule=$CPUSCHEDULE -march=$CPUARCH" OUT="linux-generic32" ;; armv[1-3]*-*-linux2) OUT="linux-generic32" ;; armv[7-9]*-*-linux2) OUT="linux-armv4" __CNF_CFLAGS="$__CNF_CFLAGS -march=armv7-a" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -march=armv7-a" ;; arm*-*-linux2) OUT="linux-armv4" ;; aarch64-*-linux2) OUT="linux-aarch64" ;; sh*b-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; sh*-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DL_ENDIAN" ;; m68k*-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; s390-*-linux2) OUT="linux-generic32"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; s390x-*-linux2) # To be uncommented when glibc bug is fixed, see Configure... #if egrep -e '^features.* highgprs' /proc/cpuinfo >/dev/null ; then # echo "WARNING! If you wish to build \"highgprs\" 32-bit library, then you" # echo " have to invoke './Configure linux32-s390x' *manually*." # if [ "$DRYRUN" = "false" -a -t -1 ]; then # echo " You have about 5 seconds to press Ctrl-C to abort." # (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 # fi #fi OUT="linux64-s390x" ;; x86_64-*-linux?) if $CC -dM -E -x c /dev/null 2>&1 | grep -q ILP32 > /dev/null; then OUT="linux-x32" else OUT="linux-x86_64" fi ;; *86-*-linux2) # On machines where the compiler understands -m32, prefer a # config target that uses it if $CC -m32 -E -x c /dev/null > /dev/null 2>&1; then OUT="linux-x86" else OUT="linux-elf" fi ;; *86-*-linux1) OUT="linux-aout" ;; *-*-linux?) OUT="linux-generic32" ;; sun4[uv]*-*-solaris2) OUT="solaris-sparcv9-$CC" ISA64=`(isainfo) 2>/dev/null | grep sparcv9` if [ "$ISA64" != "" -a "$KERNEL_BITS" = "" ]; then if [ "$CC" = "cc" -a $CCVER -ge 50 ]; then echo "WARNING! If you wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure solaris64-sparcv9-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi elif [ "$CC" = "gcc" -a "$GCC_ARCH" = "-m64" ]; then # $GCC_ARCH denotes default ABI chosen by compiler driver # (first one found on the $PATH). I assume that user # expects certain consistency with the rest of his builds # and therefore switch over to 64-bit. OUT="solaris64-sparcv9-gcc" echo "WARNING! If you wish to build 32-bit library, then you have to" echo " invoke '$THERE/Configure solaris-sparcv9-gcc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi elif [ "$GCC_ARCH" = "-m32" ]; then echo "NOTICE! If you *know* that your GNU C supports 64-bit/V9 ABI" echo " and wish to build 64-bit library, then you have to" echo " invoke '$THERE/Configure solaris64-sparcv9-gcc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi fi if [ "$ISA64" != "" -a "$KERNEL_BITS" = "64" ]; then OUT="solaris64-sparcv9-$CC" fi ;; sun4m-*-solaris2) OUT="solaris-sparcv8-$CC" ;; sun4d-*-solaris2) OUT="solaris-sparcv8-$CC" ;; sun4*-*-solaris2) OUT="solaris-sparcv7-$CC" ;; *86*-*-solaris2) ISA64=`(isainfo) 2>/dev/null | grep amd64` if [ "$ISA64" != "" -a ${KERNEL_BITS:-64} -eq 64 ]; then OUT="solaris64-x86_64-$CC" else OUT="solaris-x86-$CC" if [ `uname -r | sed -e 's/5\.//'` -lt 10 ]; then options="$options no-sse2" fi fi ;; *-*-sunos4) OUT="sunos-$CC" ;; *86*-*-bsdi4) OUT="BSD-x86-elf"; options="$options no-sse2"; __CNF_LDFLAGS="$__CNF_LDFLAGS -ldl" ;; alpha*-*-*bsd*) OUT="BSD-generic64"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DL_ENDIAN" ;; powerpc64-*-*bsd*) OUT="BSD-generic64"; __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DB_ENDIAN" ;; sparc64-*-*bsd*) OUT="BSD-sparc64" ;; ia64-*-*bsd*) OUT="BSD-ia64" ;; x86_64-*-dragonfly*) OUT="BSD-x86_64" ;; amd64-*-*bsd*) OUT="BSD-x86_64" ;; *86*-*-*bsd*) # mimic ld behaviour when it's looking for libc... if [ -L /usr/lib/libc.so ]; then # [Free|Net]BSD libc=/usr/lib/libc.so else # OpenBSD # ld searches for highest libc.so.* and so do we libc=`(ls /usr/lib/libc.so.* /lib/libc.so.* | tail -1) 2>/dev/null` fi case "`(file -L $libc) 2>/dev/null`" in *ELF*) OUT="BSD-x86-elf" ;; *) OUT="BSD-x86"; options="$options no-sse2" ;; esac ;; *-*-*bsd*) OUT="BSD-generic32" ;; x86_64-*-haiku) OUT="haiku-x86_64" ;; *-*-haiku) OUT="haiku-x86" ;; *-*-osf) OUT="osf1-alpha-cc" ;; *-*-tru64) OUT="tru64-alpha-cc" ;; *-*-[Uu]nix[Ww]are7) if [ "$CC" = "gcc" ]; then OUT="unixware-7-gcc" ; options="$options no-sse2" else OUT="unixware-7" ; options="$options no-sse2" __CNF_CPPFLAGS="$__CNF_CPPFLAGS -D__i386__" fi ;; *-*-[Uu]nix[Ww]are20*) OUT="unixware-2.0"; options="$options no-sse2 no-sha512" ;; *-*-[Uu]nix[Ww]are21*) OUT="unixware-2.1"; options="$options no-sse2 no-sha512" ;; *-*-vos) options="$options no-threads no-shared no-asm no-dso" EXE=".pm" OUT="vos-$CC" ;; BS2000-siemens-sysv4) OUT="BS2000-OSD" ;; *-hpux1*) if [ $CC = "gcc" -a $GCC_BITS = "64" ]; then OUT="hpux64-parisc2-gcc" fi [ "$KERNEL_BITS" ] || KERNEL_BITS=`(getconf KERNEL_BITS) 2>/dev/null` KERNEL_BITS=${KERNEL_BITS:-32} CPU_VERSION=`(getconf CPU_VERSION) 2>/dev/null` CPU_VERSION=${CPU_VERSION:-0} # See for further info on CPU_VERSION. if [ $CPU_VERSION -ge 768 ]; then # IA-64 CPU if [ $KERNEL_BITS -eq 64 -a "$CC" = "cc" ]; then OUT="hpux64-ia64-cc" else OUT="hpux-ia64-cc" fi elif [ $CPU_VERSION -ge 532 ]; then # PA-RISC 2.x CPU # PA-RISC 2.0 is no longer supported as separate 32-bit # target. This is compensated for by run-time detection # in most critical assembly modules and taking advantage # of 2.0 architecture in PA-RISC 1.1 build. OUT=${OUT:-"hpux-parisc1_1-${CC}"} if [ $KERNEL_BITS -eq 64 -a "$CC" = "cc" ]; then echo "WARNING! If you wish to build 64-bit library then you have to" echo " invoke '$THERE/Configure hpux64-parisc2-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have about 5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi elif [ $CPU_VERSION -ge 528 ]; then # PA-RISC 1.1+ CPU OUT="hpux-parisc1_1-${CC}" elif [ $CPU_VERSION -ge 523 ]; then # PA-RISC 1.0 CPU OUT="hpux-parisc-${CC}" else # Motorola(?) CPU OUT="hpux-$CC" fi __CNF_CPPFLAGS="$__CNF_CPPFLAGS -D_REENTRANT" ;; *-hpux) OUT="hpux-parisc-$CC" ;; *-aix) [ "$KERNEL_BITS" ] || KERNEL_BITS=`(getconf KERNEL_BITMODE) 2>/dev/null` KERNEL_BITS=${KERNEL_BITS:-32} OBJECT_MODE=${OBJECT_MODE:-32} if [ "$CC" = "gcc" ]; then OUT="aix-gcc" if [ $OBJECT_MODE -eq 64 ]; then echo 'Your $OBJECT_MODE was found to be set to 64' OUT="aix64-gcc" fi elif [ $OBJECT_MODE -eq 64 ]; then echo 'Your $OBJECT_MODE was found to be set to 64' OUT="aix64-cc" else OUT="aix-cc" if [ $KERNEL_BITS -eq 64 ]; then echo "WARNING! If you wish to build 64-bit kit, then you have to" echo " invoke '$THERE/Configure aix64-cc' *manually*." if [ "$DRYRUN" = "false" -a -t 1 ]; then echo " You have ~5 seconds to press Ctrl-C to abort." (trap "stty `stty -g`; exit 0" 2 0; stty -icanon min 0 time 50; read waste) <&1 fi fi fi if (lsattr -E -O -l `lsdev -c processor|awk '{print$1;exit}'` | grep -i powerpc) >/dev/null 2>&1; then : # this applies even to Power3 and later, as they return PowerPC_POWER[345] else options="$options no-asm" fi ;; # these are all covered by the catchall below i[3456]86-*-cygwin) OUT="Cygwin-x86" ;; *-*-cygwin) OUT="Cygwin-${MACHINE}" ;; x86-*-android|i?86-*-android) OUT="android-x86" ;; armv[7-9]*-*-android) OUT="android-armeabi" __CNF_CFLAGS="$__CNF_CFLAGS -march=armv7-a" __CNF_CXXFLAGS="$__CNF_CXXFLAGS -march=armv7-a";; arm*-*-android) OUT="android-armeabi" ;; *) OUT=`echo $GUESSOS | awk -F- '{print $3}'`;; esac # NB: This atalla support has been superseded by the ENGINE support # That contains its own header and definitions anyway. Support can # be enabled or disabled on any supported platform without external # headers, eg. by adding the "hw-atalla" switch to ./config or # perl Configure # # See whether we can compile Atalla support #if [ -f /usr/include/atasi.h ] #then # __CNF_CPPFLAGS="$__CNF_CPPFLAGS -DATALLA" #fi if [ -n "$CONFIG_OPTIONS" ]; then options="$options $CONFIG_OPTIONS" fi # gcc < 2.8 does not support -march=ultrasparc if [ "$OUT" = solaris-sparcv9-gcc -a $GCCVER -lt 28 ] then echo "WARNING! Falling down to 'solaris-sparcv8-gcc'." echo " Upgrade to gcc-2.8 or later." sleep 5 OUT=solaris-sparcv8-gcc fi if [ "$OUT" = "linux-sparcv9" -a $GCCVER -lt 28 ] then echo "WARNING! Falling down to 'linux-sparcv8'." echo " Upgrade to gcc-2.8 or later." sleep 5 OUT=linux-sparcv8 fi case "$GUESSOS" in i386-*) options="$options 386" ;; esac for i in aes aria bf camellia cast des dh dsa ec hmac idea md2 md5 mdc2 rc2 rc4 rc5 ripemd rsa seed sha sm2 sm3 sm4 do if [ ! -d $THERE/crypto/$i ] then options="$options no-$i" fi done if [ -z "$OUT" ]; then OUT="$CC" fi if [ ".$PERL" = . ] ; then for i in . `echo $PATH | sed 's/:/ /g'`; do if [ -f "$i/perl5$EXE" ] ; then PERL="$i/perl5$EXE" break; fi; done fi if [ ".$PERL" = . ] ; then for i in . `echo $PATH | sed 's/:/ /g'`; do if [ -f "$i/perl$EXE" ] ; then if "$i/perl$EXE" -e 'exit($]<5.0)'; then PERL="$i/perl$EXE" break; fi; fi; done fi if [ ".$PERL" = . ] ; then echo "You need Perl 5." exit 1 fi # run Configure to check to see if we need to specify the # compiler for the platform ... in which case we add it on # the end ... otherwise we leave it off $PERL $THERE/Configure LIST | grep "$OUT-$CC" > /dev/null if [ $? = "0" ]; then OUT="$OUT-$CC" fi OUT="$OUT" if [ "$OUT" = "darwin64-x86_64-cc" ]; then echo "WARNING! If you wish to build 32-bit libraries, then you have to" echo " invoke 'KERNEL_BITS=32 $THERE/config $options'." fi if $PERL $THERE/Configure LIST | grep "$OUT" > /dev/null; then if [ "$VERBOSE" = "true" ]; then echo /usr/bin/env \ __CNF_CPPDEFINES="'$__CNF_CPPDEFINES'" \ __CNF_CPPINCLUDES="'$__CNF_CPPINCLUDES'" \ __CNF_CPPFLAGS="'$__CNF_CPPFLAGS'" \ __CNF_CFLAGS="'$__CNF_CFLAGS'" \ __CNF_CXXFLAGS="'$__CNF_CXXFLAGS'" \ __CNF_LDFLAGS="'$__CNF_LDFLAGS'" \ __CNF_LDLIBS="'$__CNF_LDLIBS'" \ $PERL $THERE/Configure $OUT $options fi if [ "$DRYRUN" = "false" ]; then # eval to make sure quoted options, possibly with spaces inside, # are treated right eval /usr/bin/env \ __CNF_CPPDEFINES="'$__CNF_CPPDEFINES'" \ __CNF_CPPINCLUDES="'$__CNF_CPPINCLUDES'" \ __CNF_CPPFLAGS="'$__CNF_CPPFLAGS'" \ __CNF_CFLAGS="'$__CNF_CFLAGS'" \ __CNF_CXXFLAGS="'$__CNF_CXXFLAGS'" \ __CNF_LDFLAGS="'$__CNF_LDFLAGS'" \ __CNF_LDLIBS="'$__CNF_LDLIBS'" \ $PERL $THERE/Configure $OUT $options fi else echo "This system ($OUT) is not supported. See file INSTALL for details." exit 1 fi # Do not add anothing from here on, so we don't lose the Configure exit code ) openssl-1.1.1f/config.com000066400000000000000000000047161364063235100153230ustar00rootroot00000000000000$ ! OpenSSL config: determine the architecture and run Configure $ ! Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. $ ! $ ! Licensed under the OpenSSL license (the "License"). You may not use $ ! this file except in compliance with the License. You can obtain a $ ! copy in the file LICENSE in the source distribution or at $ ! https://www.openssl.org/source/license.html $ ! $ ! Very simple for the moment, it will take the following arguments: $ ! $ ! -32 or 32 sets /POINTER_SIZE=32 $ ! -64 or 64 sets /POINTER_SIZE=64 $ ! -d sets debugging $ ! -h prints a usage and exits $ ! -t test mode, doesn't run Configure $ $ arch = f$edit( f$getsyi( "arch_name"), "lowercase") $ pointer_size = "" $ dryrun = 0 $ verbose = 0 $ here = F$PARSE("A.;",F$ENVIRONMENT("PROCEDURE"),,,"SYNTAX_ONLY") - "A.;" $ $ collected_args = "" $ P_index = 0 $ LOOP1: $ P_index = P_index + 1 $ IF P_index .GT. 8 THEN GOTO ENDLOOP1 $ P = F$EDIT(P1,"TRIM,LOWERCASE") $ IF P .EQS. "-h" $ THEN $ dryrun = 1 $ P = "" $ TYPE SYS$INPUT $ DECK Usage: @config [options] -32 or 32 Build with 32-bit pointer size. -64 or 64 Build with 64-bit pointer size. -d Build with debugging. -t Test mode, do not run the Configure perl script. -v Verbose mode, show the exact Configure call that is being made. -h This help. Any other text will be passed to the Configure perl script. See INSTALL for instructions. $ EOD $ ENDIF $ IF P .EQS. "-t" $ THEN $ dryrun = 1 $ verbose = 1 $ P = "" $ ENDIF $ IF P .EQS. "-v" $ THEN $ verbose = 1 $ P = "" $ ENDIF $ IF P .EQS. "-32" .OR. P .EQS. "32" $ THEN $ pointer_size = "-P32" $ P = "" $ ENDIF $ IF P .EQS. "-64" .OR. P .EQS. "64" $ THEN $ pointer_size = "-P64" $ P = "" $ ENDIF $ IF P .EQS. "-d" $ THEN $ collected_args = collected_args + " --debug" $ P = "" $ ENDIF $ IF P .NES. "" THEN - collected_args = collected_args + " """ + P1 + """" $ P1 = P2 $ P2 = P3 $ P3 = P4 $ P4 = P5 $ P5 = P6 $ P6 = P7 $ P7 = P8 $ P8 = "" $ GOTO LOOP1 $ ENDLOOP1: $ $ target = "vms-''arch'''pointer_size'" $ IF verbose THEN - WRITE SYS$OUTPUT "PERL ''here'Configure ""''target'""",collected_args $ IF .not. dryrun THEN - PERL 'here'Configure "''target'"'collected_args' $ EXIT $STATUS openssl-1.1.1f/crypto/000077500000000000000000000000001364063235100146665ustar00rootroot00000000000000openssl-1.1.1f/crypto/LPdir_nyi.c000066400000000000000000000040321364063235100167220ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004, Richard Levitte * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef LPDIR_H # include "LPdir.h" #endif struct LP_dir_context_st { void *dummy; }; const char *LP_find_file(LP_DIR_CTX **ctx, const char *directory) { errno = EINVAL; return 0; } int LP_find_file_end(LP_DIR_CTX **ctx) { errno = EINVAL; return 0; } openssl-1.1.1f/crypto/LPdir_unix.c000066400000000000000000000116061364063235100171130ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004, 2018, Richard Levitte * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #ifndef LPDIR_H # include "LPdir.h" #endif #ifdef __VMS # include #endif /* * The POSIX macro for the maximum number of characters in a file path is * NAME_MAX. However, some operating systems use PATH_MAX instead. * Therefore, it seems natural to first check for PATH_MAX and use that, and * if it doesn't exist, use NAME_MAX. */ #if defined(PATH_MAX) # define LP_ENTRY_SIZE PATH_MAX #elif defined(NAME_MAX) # define LP_ENTRY_SIZE NAME_MAX #endif /* * Of course, there's the possibility that neither PATH_MAX nor NAME_MAX * exist. It's also possible that NAME_MAX exists but is define to a very * small value (HP-UX offers 14), so we need to check if we got a result, and * if it meets a minimum standard, and create or change it if not. */ #if !defined(LP_ENTRY_SIZE) || LP_ENTRY_SIZE<255 # undef LP_ENTRY_SIZE # define LP_ENTRY_SIZE 255 #endif struct LP_dir_context_st { DIR *dir; char entry_name[LP_ENTRY_SIZE + 1]; #ifdef __VMS int expect_file_generations; char previous_entry_name[LP_ENTRY_SIZE + 1]; #endif }; const char *LP_find_file(LP_DIR_CTX **ctx, const char *directory) { struct dirent *direntry = NULL; if (ctx == NULL || directory == NULL) { errno = EINVAL; return 0; } errno = 0; if (*ctx == NULL) { *ctx = malloc(sizeof(**ctx)); if (*ctx == NULL) { errno = ENOMEM; return 0; } memset(*ctx, 0, sizeof(**ctx)); #ifdef __VMS { char c = directory[strlen(directory) - 1]; if (c == ']' || c == '>' || c == ':') (*ctx)->expect_file_generations = 1; } #endif (*ctx)->dir = opendir(directory); if ((*ctx)->dir == NULL) { int save_errno = errno; /* Probably not needed, but I'm paranoid */ free(*ctx); *ctx = NULL; errno = save_errno; return 0; } } #ifdef __VMS strncpy((*ctx)->previous_entry_name, (*ctx)->entry_name, sizeof((*ctx)->previous_entry_name)); again: #endif direntry = readdir((*ctx)->dir); if (direntry == NULL) { return 0; } OPENSSL_strlcpy((*ctx)->entry_name, direntry->d_name, sizeof((*ctx)->entry_name)); #ifdef __VMS if ((*ctx)->expect_file_generations) { char *p = (*ctx)->entry_name + strlen((*ctx)->entry_name); while(p > (*ctx)->entry_name && isdigit(p[-1])) p--; if (p > (*ctx)->entry_name && p[-1] == ';') p[-1] = '\0'; if (strcasecmp((*ctx)->entry_name, (*ctx)->previous_entry_name) == 0) goto again; } #endif return (*ctx)->entry_name; } int LP_find_file_end(LP_DIR_CTX **ctx) { if (ctx != NULL && *ctx != NULL) { int ret = closedir((*ctx)->dir); free(*ctx); switch (ret) { case 0: return 1; case -1: return 0; default: break; } } errno = EINVAL; return 0; } openssl-1.1.1f/crypto/LPdir_vms.c000066400000000000000000000142731364063235100167400ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004, Richard Levitte * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #ifndef LPDIR_H # include "LPdir.h" #endif #include "vms_rms.h" /* Some compiler options hide EVMSERR. */ #ifndef EVMSERR # define EVMSERR 65535 /* error for non-translatable VMS errors */ #endif struct LP_dir_context_st { unsigned long VMS_context; char filespec[NAMX_MAXRSS + 1]; char result[NAMX_MAXRSS + 1]; struct dsc$descriptor_d filespec_dsc; struct dsc$descriptor_d result_dsc; }; const char *LP_find_file(LP_DIR_CTX **ctx, const char *directory) { int status; char *p, *r; size_t l; unsigned long flags = 0; /* Arrange 32-bit pointer to (copied) string storage, if needed. */ #if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size save # pragma pointer_size 32 char *ctx_filespec_32p; # pragma pointer_size restore char ctx_filespec_32[NAMX_MAXRSS + 1]; #endif /* __INITIAL_POINTER_SIZE == 64 */ #ifdef NAML$C_MAXRSS flags |= LIB$M_FIL_LONG_NAMES; #endif if (ctx == NULL || directory == NULL) { errno = EINVAL; return 0; } errno = 0; if (*ctx == NULL) { size_t filespeclen = strlen(directory); char *filespec = NULL; if (filespeclen == 0) { errno = ENOENT; return 0; } /* MUST be a VMS directory specification! Let's estimate if it is. */ if (directory[filespeclen - 1] != ']' && directory[filespeclen - 1] != '>' && directory[filespeclen - 1] != ':') { errno = EINVAL; return 0; } filespeclen += 4; /* "*.*;" */ if (filespeclen > NAMX_MAXRSS) { errno = ENAMETOOLONG; return 0; } *ctx = malloc(sizeof(**ctx)); if (*ctx == NULL) { errno = ENOMEM; return 0; } memset(*ctx, 0, sizeof(**ctx)); strcpy((*ctx)->filespec, directory); strcat((*ctx)->filespec, "*.*;"); /* Arrange 32-bit pointer to (copied) string storage, if needed. */ #if __INITIAL_POINTER_SIZE == 64 # define CTX_FILESPEC ctx_filespec_32p /* Copy the file name to storage with a 32-bit pointer. */ ctx_filespec_32p = ctx_filespec_32; strcpy(ctx_filespec_32p, (*ctx)->filespec); #else /* __INITIAL_POINTER_SIZE == 64 */ # define CTX_FILESPEC (*ctx)->filespec #endif /* __INITIAL_POINTER_SIZE == 64 [else] */ (*ctx)->filespec_dsc.dsc$w_length = filespeclen; (*ctx)->filespec_dsc.dsc$b_dtype = DSC$K_DTYPE_T; (*ctx)->filespec_dsc.dsc$b_class = DSC$K_CLASS_S; (*ctx)->filespec_dsc.dsc$a_pointer = CTX_FILESPEC; } (*ctx)->result_dsc.dsc$w_length = 0; (*ctx)->result_dsc.dsc$b_dtype = DSC$K_DTYPE_T; (*ctx)->result_dsc.dsc$b_class = DSC$K_CLASS_D; (*ctx)->result_dsc.dsc$a_pointer = 0; status = lib$find_file(&(*ctx)->filespec_dsc, &(*ctx)->result_dsc, &(*ctx)->VMS_context, 0, 0, 0, &flags); if (status == RMS$_NMF) { errno = 0; vaxc$errno = status; return NULL; } if (!$VMS_STATUS_SUCCESS(status)) { errno = EVMSERR; vaxc$errno = status; return NULL; } /* * Quick, cheap and dirty way to discard any device and directory, since * we only want file names */ l = (*ctx)->result_dsc.dsc$w_length; p = (*ctx)->result_dsc.dsc$a_pointer; r = p; for (; *p; p++) { if (*p == '^' && p[1] != '\0') { /* Take care of ODS-5 escapes */ p++; } else if (*p == ':' || *p == '>' || *p == ']') { l -= p + 1 - r; r = p + 1; } else if (*p == ';') { l = p - r; break; } } strncpy((*ctx)->result, r, l); (*ctx)->result[l] = '\0'; str$free1_dx(&(*ctx)->result_dsc); return (*ctx)->result; } int LP_find_file_end(LP_DIR_CTX **ctx) { if (ctx != NULL && *ctx != NULL) { int status = lib$find_file_end(&(*ctx)->VMS_context); free(*ctx); if (!$VMS_STATUS_SUCCESS(status)) { errno = EVMSERR; vaxc$errno = status; return 0; } return 1; } errno = EINVAL; return 0; } openssl-1.1.1f/crypto/LPdir_win.c000066400000000000000000000156041364063235100167270ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004, Richard Levitte * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "internal/numbers.h" #ifndef LPDIR_H # include "LPdir.h" #endif /* * We're most likely overcautious here, but let's reserve for broken WinCE * headers and explicitly opt for UNICODE call. Keep in mind that our WinCE * builds are compiled with -DUNICODE [as well as -D_UNICODE]. */ #if defined(LP_SYS_WINCE) && !defined(FindFirstFile) # define FindFirstFile FindFirstFileW #endif #if defined(LP_SYS_WINCE) && !defined(FindNextFile) # define FindNextFile FindNextFileW #endif #ifndef NAME_MAX # define NAME_MAX 255 #endif #ifdef CP_UTF8 # define CP_DEFAULT CP_UTF8 #else # define CP_DEFAULT CP_ACP #endif struct LP_dir_context_st { WIN32_FIND_DATA ctx; HANDLE handle; char entry_name[NAME_MAX + 1]; }; const char *LP_find_file(LP_DIR_CTX **ctx, const char *directory) { if (ctx == NULL || directory == NULL) { errno = EINVAL; return 0; } errno = 0; if (*ctx == NULL) { size_t dirlen = strlen(directory); if (dirlen == 0 || dirlen > INT_MAX - 3) { errno = ENOENT; return 0; } *ctx = malloc(sizeof(**ctx)); if (*ctx == NULL) { errno = ENOMEM; return 0; } memset(*ctx, 0, sizeof(**ctx)); if (sizeof(TCHAR) != sizeof(char)) { TCHAR *wdir = NULL; /* len_0 denotes string length *with* trailing 0 */ size_t index = 0, len_0 = dirlen + 1; #ifdef LP_MULTIBYTE_AVAILABLE int sz = 0; UINT cp; do { # ifdef CP_UTF8 if ((sz = MultiByteToWideChar((cp = CP_UTF8), 0, directory, len_0, NULL, 0)) > 0 || GetLastError() != ERROR_NO_UNICODE_TRANSLATION) break; # endif sz = MultiByteToWideChar((cp = CP_ACP), 0, directory, len_0, NULL, 0); } while (0); if (sz > 0) { /* * allocate two additional characters in case we need to * concatenate asterisk, |sz| covers trailing '\0'! */ wdir = _alloca((sz + 2) * sizeof(TCHAR)); if (!MultiByteToWideChar(cp, 0, directory, len_0, (WCHAR *)wdir, sz)) { free(*ctx); *ctx = NULL; errno = EINVAL; return 0; } } else #endif { sz = len_0; /* * allocate two additional characters in case we need to * concatenate asterisk, |sz| covers trailing '\0'! */ wdir = _alloca((sz + 2) * sizeof(TCHAR)); for (index = 0; index < len_0; index++) wdir[index] = (TCHAR)directory[index]; } sz--; /* wdir[sz] is trailing '\0' now */ if (wdir[sz - 1] != TEXT('*')) { if (wdir[sz - 1] != TEXT('/') && wdir[sz - 1] != TEXT('\\')) _tcscpy(wdir + sz, TEXT("/*")); else _tcscpy(wdir + sz, TEXT("*")); } (*ctx)->handle = FindFirstFile(wdir, &(*ctx)->ctx); } else { if (directory[dirlen - 1] != '*') { char *buf = _alloca(dirlen + 3); strcpy(buf, directory); if (buf[dirlen - 1] != '/' && buf[dirlen - 1] != '\\') strcpy(buf + dirlen, "/*"); else strcpy(buf + dirlen, "*"); directory = buf; } (*ctx)->handle = FindFirstFile((TCHAR *)directory, &(*ctx)->ctx); } if ((*ctx)->handle == INVALID_HANDLE_VALUE) { free(*ctx); *ctx = NULL; errno = EINVAL; return 0; } } else { if (FindNextFile((*ctx)->handle, &(*ctx)->ctx) == FALSE) { return 0; } } if (sizeof(TCHAR) != sizeof(char)) { TCHAR *wdir = (*ctx)->ctx.cFileName; size_t index, len_0 = 0; while (wdir[len_0] && len_0 < (sizeof((*ctx)->entry_name) - 1)) len_0++; len_0++; #ifdef LP_MULTIBYTE_AVAILABLE if (!WideCharToMultiByte(CP_DEFAULT, 0, (WCHAR *)wdir, len_0, (*ctx)->entry_name, sizeof((*ctx)->entry_name), NULL, 0)) #endif for (index = 0; index < len_0; index++) (*ctx)->entry_name[index] = (char)wdir[index]; } else strncpy((*ctx)->entry_name, (const char *)(*ctx)->ctx.cFileName, sizeof((*ctx)->entry_name) - 1); (*ctx)->entry_name[sizeof((*ctx)->entry_name) - 1] = '\0'; return (*ctx)->entry_name; } int LP_find_file_end(LP_DIR_CTX **ctx) { if (ctx != NULL && *ctx != NULL) { FindClose((*ctx)->handle); free(*ctx); *ctx = NULL; return 1; } errno = EINVAL; return 0; } openssl-1.1.1f/crypto/LPdir_win32.c000066400000000000000000000035451364063235100170750ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004, Richard Levitte * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define LP_SYS_WIN32 #define LP_MULTIBYTE_AVAILABLE #include "LPdir_win.c" openssl-1.1.1f/crypto/LPdir_wince.c000066400000000000000000000037171364063235100172410ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004, Richard Levitte * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define LP_SYS_WINCE /* * We might want to define LP_MULTIBYTE_AVAILABLE here. It's currently under * investigation what the exact conditions would be */ #include "LPdir_win.c" openssl-1.1.1f/crypto/aes/000077500000000000000000000000001364063235100154365ustar00rootroot00000000000000openssl-1.1.1f/crypto/aes/aes_cbc.c000066400000000000000000000014561364063235100171670ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include void AES_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec, const int enc) { if (enc) CRYPTO_cbc128_encrypt(in, out, len, key, ivec, (block128_f) AES_encrypt); else CRYPTO_cbc128_decrypt(in, out, len, key, ivec, (block128_f) AES_decrypt); } openssl-1.1.1f/crypto/aes/aes_cfb.c000066400000000000000000000030731364063235100171670ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include /* * The input and output encrypted as though 128bit cfb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void AES_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_encrypt(in, out, length, key, ivec, num, enc, (block128_f) AES_encrypt); } /* N.B. This expects the input to be packed, MS bit first */ void AES_cfb1_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_1_encrypt(in, out, length, key, ivec, num, enc, (block128_f) AES_encrypt); } void AES_cfb8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_8_encrypt(in, out, length, key, ivec, num, enc, (block128_f) AES_encrypt); } openssl-1.1.1f/crypto/aes/aes_core.c000066400000000000000000001724261364063235100173760ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /** * rijndael-alg-fst.c * * @version 3.0 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen * @author Antoon Bosselaers * @author Paulo Barreto * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Note: rewritten a little bit to provide error control and an OpenSSL- compatible API */ #include #include #include #include #include "aes_local.h" #ifndef AES_ASM /*- Te0[x] = S [x].[02, 01, 01, 03]; Te1[x] = S [x].[03, 02, 01, 01]; Te2[x] = S [x].[01, 03, 02, 01]; Te3[x] = S [x].[01, 01, 03, 02]; Td0[x] = Si[x].[0e, 09, 0d, 0b]; Td1[x] = Si[x].[0b, 0e, 09, 0d]; Td2[x] = Si[x].[0d, 0b, 0e, 09]; Td3[x] = Si[x].[09, 0d, 0b, 0e]; Td4[x] = Si[x].[01]; */ static const u32 Te0[256] = { 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU, 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U, 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU, 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU, 0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U, 0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU, 0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU, 0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU, 0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU, 0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU, 0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U, 0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU, 0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU, 0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U, 0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU, 0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU, 0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU, 0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU, 0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU, 0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U, 0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU, 0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU, 0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU, 0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU, 0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U, 0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U, 0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U, 0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U, 0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU, 0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U, 0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U, 0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU, 0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU, 0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U, 0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U, 0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U, 0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU, 0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U, 0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU, 0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U, 0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU, 0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U, 0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U, 0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU, 0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U, 0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U, 0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U, 0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U, 0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U, 0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U, 0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U, 0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U, 0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU, 0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U, 0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U, 0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U, 0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U, 0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U, 0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U, 0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU, 0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U, 0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U, 0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U, 0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU, }; static const u32 Te1[256] = { 0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU, 0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U, 0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU, 0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U, 0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU, 0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U, 0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU, 0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U, 0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U, 0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU, 0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U, 0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U, 0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U, 0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU, 0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U, 0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U, 0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU, 0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U, 0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U, 0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U, 0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU, 0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU, 0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U, 0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU, 0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU, 0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U, 0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU, 0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U, 0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU, 0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U, 0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U, 0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U, 0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU, 0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U, 0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU, 0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U, 0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU, 0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U, 0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U, 0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU, 0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU, 0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU, 0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U, 0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U, 0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU, 0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U, 0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU, 0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U, 0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU, 0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U, 0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU, 0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU, 0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U, 0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU, 0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U, 0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU, 0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U, 0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U, 0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U, 0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU, 0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU, 0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U, 0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU, 0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U, }; static const u32 Te2[256] = { 0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU, 0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U, 0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU, 0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U, 0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU, 0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U, 0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU, 0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U, 0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U, 0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU, 0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U, 0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U, 0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U, 0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU, 0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U, 0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U, 0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU, 0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U, 0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U, 0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U, 0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU, 0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU, 0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U, 0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU, 0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU, 0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U, 0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU, 0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U, 0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU, 0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U, 0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U, 0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U, 0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU, 0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U, 0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU, 0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U, 0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU, 0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U, 0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U, 0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU, 0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU, 0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU, 0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U, 0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U, 0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU, 0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U, 0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU, 0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U, 0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU, 0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U, 0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU, 0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU, 0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U, 0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU, 0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U, 0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU, 0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U, 0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U, 0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U, 0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU, 0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU, 0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U, 0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU, 0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U, }; static const u32 Te3[256] = { 0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U, 0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U, 0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U, 0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU, 0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU, 0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU, 0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U, 0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU, 0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU, 0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U, 0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U, 0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU, 0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU, 0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU, 0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU, 0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU, 0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U, 0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU, 0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU, 0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U, 0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U, 0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U, 0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U, 0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U, 0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU, 0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U, 0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU, 0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU, 0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U, 0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U, 0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U, 0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU, 0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U, 0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU, 0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU, 0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U, 0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U, 0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU, 0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U, 0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU, 0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U, 0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U, 0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U, 0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U, 0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU, 0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U, 0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU, 0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U, 0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU, 0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U, 0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU, 0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU, 0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU, 0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU, 0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U, 0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U, 0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U, 0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U, 0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U, 0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U, 0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU, 0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U, 0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU, 0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU, }; static const u32 Td0[256] = { 0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U, 0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U, 0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U, 0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU, 0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U, 0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U, 0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU, 0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U, 0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU, 0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U, 0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U, 0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U, 0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U, 0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU, 0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U, 0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU, 0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U, 0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU, 0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U, 0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U, 0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U, 0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU, 0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U, 0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU, 0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U, 0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU, 0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U, 0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU, 0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU, 0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U, 0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU, 0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U, 0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU, 0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U, 0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U, 0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U, 0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU, 0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U, 0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U, 0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU, 0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U, 0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U, 0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U, 0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U, 0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U, 0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU, 0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U, 0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U, 0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U, 0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U, 0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U, 0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU, 0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU, 0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU, 0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU, 0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U, 0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U, 0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU, 0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU, 0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U, 0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU, 0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U, 0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U, 0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U, }; static const u32 Td1[256] = { 0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU, 0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U, 0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU, 0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U, 0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U, 0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U, 0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U, 0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U, 0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U, 0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU, 0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU, 0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU, 0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U, 0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU, 0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U, 0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U, 0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U, 0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU, 0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU, 0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U, 0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU, 0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U, 0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU, 0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU, 0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U, 0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U, 0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U, 0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU, 0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U, 0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU, 0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U, 0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U, 0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U, 0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU, 0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U, 0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U, 0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U, 0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U, 0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U, 0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U, 0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU, 0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU, 0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U, 0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU, 0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U, 0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU, 0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU, 0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U, 0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU, 0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U, 0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U, 0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U, 0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U, 0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U, 0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U, 0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U, 0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU, 0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U, 0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U, 0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU, 0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U, 0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U, 0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U, 0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U, }; static const u32 Td2[256] = { 0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U, 0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U, 0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U, 0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U, 0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU, 0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U, 0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U, 0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U, 0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U, 0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU, 0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U, 0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U, 0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU, 0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U, 0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U, 0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U, 0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U, 0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U, 0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U, 0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU, 0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U, 0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U, 0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U, 0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U, 0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U, 0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU, 0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU, 0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U, 0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU, 0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U, 0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU, 0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU, 0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU, 0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU, 0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U, 0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U, 0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U, 0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U, 0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U, 0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U, 0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U, 0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU, 0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU, 0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U, 0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U, 0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU, 0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU, 0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U, 0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U, 0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U, 0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U, 0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U, 0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U, 0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U, 0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU, 0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U, 0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U, 0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U, 0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U, 0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U, 0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U, 0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU, 0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U, 0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U, }; static const u32 Td3[256] = { 0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU, 0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU, 0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U, 0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U, 0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU, 0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU, 0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U, 0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU, 0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U, 0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU, 0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U, 0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U, 0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U, 0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U, 0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U, 0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU, 0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU, 0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U, 0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U, 0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU, 0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU, 0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U, 0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U, 0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U, 0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U, 0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU, 0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U, 0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U, 0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU, 0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU, 0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U, 0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U, 0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U, 0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU, 0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U, 0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U, 0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U, 0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U, 0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U, 0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U, 0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U, 0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU, 0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U, 0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U, 0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU, 0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU, 0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U, 0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU, 0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U, 0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U, 0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U, 0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U, 0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U, 0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U, 0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU, 0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU, 0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU, 0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU, 0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U, 0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U, 0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U, 0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU, 0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U, 0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U, }; static const u8 Td4[256] = { 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U, 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU, 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U, 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU, 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU, 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU, 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U, 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U, 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U, 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U, 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU, 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U, 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU, 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U, 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U, 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU, 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU, 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U, 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U, 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU, 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U, 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU, 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U, 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U, 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U, 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU, 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU, 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU, 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U, 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U, 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U, 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU, }; static const u32 rcon[] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; /** * Expand the cipher key into the encryption key schedule. */ int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i = 0; u32 temp; if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; rk = key->rd_key; if (bits == 128) key->rounds = 10; else if (bits == 192) key->rounds = 12; else key->rounds = 14; rk[0] = GETU32(userKey ); rk[1] = GETU32(userKey + 4); rk[2] = GETU32(userKey + 8); rk[3] = GETU32(userKey + 12); if (bits == 128) { while (1) { temp = rk[3]; rk[4] = rk[0] ^ (Te2[(temp >> 16) & 0xff] & 0xff000000) ^ (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (Te0[(temp ) & 0xff] & 0x0000ff00) ^ (Te1[(temp >> 24) ] & 0x000000ff) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { return 0; } rk += 4; } } rk[4] = GETU32(userKey + 16); rk[5] = GETU32(userKey + 20); if (bits == 192) { while (1) { temp = rk[ 5]; rk[ 6] = rk[ 0] ^ (Te2[(temp >> 16) & 0xff] & 0xff000000) ^ (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (Te0[(temp ) & 0xff] & 0x0000ff00) ^ (Te1[(temp >> 24) ] & 0x000000ff) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { return 0; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } rk[6] = GETU32(userKey + 24); rk[7] = GETU32(userKey + 28); if (bits == 256) { while (1) { temp = rk[ 7]; rk[ 8] = rk[ 0] ^ (Te2[(temp >> 16) & 0xff] & 0xff000000) ^ (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (Te0[(temp ) & 0xff] & 0x0000ff00) ^ (Te1[(temp >> 24) ] & 0x000000ff) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { return 0; } temp = rk[11]; rk[12] = rk[ 4] ^ (Te2[(temp >> 24) ] & 0xff000000) ^ (Te3[(temp >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(temp >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(temp ) & 0xff] & 0x000000ff); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } return 0; } /** * Expand the cipher key into the decryption key schedule. */ int AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i, j, status; u32 temp; /* first, start with an encryption schedule */ status = AES_set_encrypt_key(userKey, bits, key); if (status < 0) return status; rk = key->rd_key; /* invert the order of the round keys: */ for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < (key->rounds); i++) { rk += 4; rk[0] = Td0[Te1[(rk[0] >> 24) ] & 0xff] ^ Td1[Te1[(rk[0] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[0] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[0] ) & 0xff] & 0xff]; rk[1] = Td0[Te1[(rk[1] >> 24) ] & 0xff] ^ Td1[Te1[(rk[1] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[1] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[1] ) & 0xff] & 0xff]; rk[2] = Td0[Te1[(rk[2] >> 24) ] & 0xff] ^ Td1[Te1[(rk[2] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[2] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[2] ) & 0xff] & 0xff]; rk[3] = Td0[Te1[(rk[3] >> 24) ] & 0xff] ^ Td1[Te1[(rk[3] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[3] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[3] ) & 0xff] & 0xff]; } return 0; } /* * Encrypt a single block * in and out can overlap */ void AES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t0, t1, t2, t3; #ifndef FULL_UNROLL int r; #endif /* ?FULL_UNROLL */ assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #ifdef FULL_UNROLL /* round 1: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[ 4]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[ 5]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[ 6]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[ 7]; /* round 2: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[ 8]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[ 9]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11]; /* round 3: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[12]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[13]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[14]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[15]; /* round 4: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[16]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[17]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[18]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[19]; /* round 5: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[20]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[21]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[22]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[23]; /* round 6: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[24]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[25]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[26]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[27]; /* round 7: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[28]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[29]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[30]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[31]; /* round 8: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[32]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[33]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[34]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[35]; /* round 9: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[36]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[37]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[38]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[39]; if (key->rounds > 10) { /* round 10: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[40]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[41]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[42]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[43]; /* round 11: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[44]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[45]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[46]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[47]; if (key->rounds > 12) { /* round 12: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[48]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[49]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[50]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[51]; /* round 13: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[52]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[53]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[54]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[55]; } } rk += key->rounds << 2; #else /* !FULL_UNROLL */ /* * Nr - 1 full rounds: */ r = key->rounds >> 1; for (;;) { t0 = Te0[(s0 >> 24) ] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[(s3 ) & 0xff] ^ rk[4]; t1 = Te0[(s1 >> 24) ] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[(s0 ) & 0xff] ^ rk[5]; t2 = Te0[(s2 >> 24) ] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[(s1 ) & 0xff] ^ rk[6]; t3 = Te0[(s3 >> 24) ] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[(s2 ) & 0xff] ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Te0[(t0 >> 24) ] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[(t3 ) & 0xff] ^ rk[0]; s1 = Te0[(t1 >> 24) ] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[(t0 ) & 0xff] ^ rk[1]; s2 = Te0[(t2 >> 24) ] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[(t1 ) & 0xff] ^ rk[2]; s3 = Te0[(t3 >> 24) ] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[(t2 ) & 0xff] ^ rk[3]; } #endif /* ?FULL_UNROLL */ /* * apply last round and * map cipher state to byte array block: */ s0 = (Te2[(t0 >> 24) ] & 0xff000000) ^ (Te3[(t1 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t2 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t3 ) & 0xff] & 0x000000ff) ^ rk[0]; PUTU32(out , s0); s1 = (Te2[(t1 >> 24) ] & 0xff000000) ^ (Te3[(t2 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t3 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t0 ) & 0xff] & 0x000000ff) ^ rk[1]; PUTU32(out + 4, s1); s2 = (Te2[(t2 >> 24) ] & 0xff000000) ^ (Te3[(t3 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t0 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t1 ) & 0xff] & 0x000000ff) ^ rk[2]; PUTU32(out + 8, s2); s3 = (Te2[(t3 >> 24) ] & 0xff000000) ^ (Te3[(t0 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t1 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t2 ) & 0xff] & 0x000000ff) ^ rk[3]; PUTU32(out + 12, s3); } /* * Decrypt a single block * in and out can overlap */ void AES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t0, t1, t2, t3; #ifndef FULL_UNROLL int r; #endif /* ?FULL_UNROLL */ assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #ifdef FULL_UNROLL /* round 1: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[ 4]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[ 5]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[ 6]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[ 7]; /* round 2: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[ 8]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[ 9]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[10]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[11]; /* round 3: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[12]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[13]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[14]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[15]; /* round 4: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[16]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[17]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[18]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[19]; /* round 5: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[20]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[21]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[22]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[23]; /* round 6: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[24]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[25]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[26]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[27]; /* round 7: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[28]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[29]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[30]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[31]; /* round 8: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[32]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[33]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[34]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[35]; /* round 9: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[36]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[37]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[38]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[39]; if (key->rounds > 10) { /* round 10: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[40]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[41]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[42]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[43]; /* round 11: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[44]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[45]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[46]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[47]; if (key->rounds > 12) { /* round 12: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[48]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[49]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[50]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[51]; /* round 13: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[52]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[53]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[54]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[55]; } } rk += key->rounds << 2; #else /* !FULL_UNROLL */ /* * Nr - 1 full rounds: */ r = key->rounds >> 1; for (;;) { t0 = Td0[(s0 >> 24) ] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[(s1 ) & 0xff] ^ rk[4]; t1 = Td0[(s1 >> 24) ] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[(s2 ) & 0xff] ^ rk[5]; t2 = Td0[(s2 >> 24) ] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[(s3 ) & 0xff] ^ rk[6]; t3 = Td0[(s3 >> 24) ] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[(s0 ) & 0xff] ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Td0[(t0 >> 24) ] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[(t1 ) & 0xff] ^ rk[0]; s1 = Td0[(t1 >> 24) ] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[(t2 ) & 0xff] ^ rk[1]; s2 = Td0[(t2 >> 24) ] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[(t3 ) & 0xff] ^ rk[2]; s3 = Td0[(t3 >> 24) ] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[(t0 ) & 0xff] ^ rk[3]; } #endif /* ?FULL_UNROLL */ /* * apply last round and * map cipher state to byte array block: */ s0 = ((u32)Td4[(t0 >> 24) ] << 24) ^ ((u32)Td4[(t3 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t2 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t1 ) & 0xff]) ^ rk[0]; PUTU32(out , s0); s1 = ((u32)Td4[(t1 >> 24) ] << 24) ^ ((u32)Td4[(t0 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t3 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t2 ) & 0xff]) ^ rk[1]; PUTU32(out + 4, s1); s2 = ((u32)Td4[(t2 >> 24) ] << 24) ^ ((u32)Td4[(t1 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t0 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t3 ) & 0xff]) ^ rk[2]; PUTU32(out + 8, s2); s3 = ((u32)Td4[(t3 >> 24) ] << 24) ^ ((u32)Td4[(t2 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t1 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t0 ) & 0xff]) ^ rk[3]; PUTU32(out + 12, s3); } #else /* AES_ASM */ static const u8 Te4[256] = { 0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U, 0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U, 0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U, 0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U, 0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU, 0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U, 0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU, 0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U, 0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U, 0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U, 0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU, 0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU, 0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U, 0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U, 0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U, 0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U, 0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U, 0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U, 0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U, 0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU, 0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU, 0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U, 0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U, 0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U, 0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U, 0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU, 0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU, 0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU, 0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U, 0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU, 0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U, 0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U }; static const u32 rcon[] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; /** * Expand the cipher key into the encryption key schedule. */ int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i = 0; u32 temp; if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; rk = key->rd_key; if (bits == 128) key->rounds = 10; else if (bits == 192) key->rounds = 12; else key->rounds = 14; rk[0] = GETU32(userKey ); rk[1] = GETU32(userKey + 4); rk[2] = GETU32(userKey + 8); rk[3] = GETU32(userKey + 12); if (bits == 128) { while (1) { temp = rk[3]; rk[4] = rk[0] ^ ((u32)Te4[(temp >> 16) & 0xff] << 24) ^ ((u32)Te4[(temp >> 8) & 0xff] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ]) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { return 0; } rk += 4; } } rk[4] = GETU32(userKey + 16); rk[5] = GETU32(userKey + 20); if (bits == 192) { while (1) { temp = rk[ 5]; rk[ 6] = rk[ 0] ^ ((u32)Te4[(temp >> 16) & 0xff] << 24) ^ ((u32)Te4[(temp >> 8) & 0xff] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ]) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { return 0; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } rk[6] = GETU32(userKey + 24); rk[7] = GETU32(userKey + 28); if (bits == 256) { while (1) { temp = rk[ 7]; rk[ 8] = rk[ 0] ^ ((u32)Te4[(temp >> 16) & 0xff] << 24) ^ ((u32)Te4[(temp >> 8) & 0xff] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ]) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { return 0; } temp = rk[11]; rk[12] = rk[ 4] ^ ((u32)Te4[(temp >> 24) ] << 24) ^ ((u32)Te4[(temp >> 16) & 0xff] << 16) ^ ((u32)Te4[(temp >> 8) & 0xff] << 8) ^ ((u32)Te4[(temp ) & 0xff]); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } return 0; } /** * Expand the cipher key into the decryption key schedule. */ int AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i, j, status; u32 temp; /* first, start with an encryption schedule */ status = AES_set_encrypt_key(userKey, bits, key); if (status < 0) return status; rk = key->rd_key; /* invert the order of the round keys: */ for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < (key->rounds); i++) { rk += 4; for (j = 0; j < 4; j++) { u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; tp1 = rk[j]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) rk[j] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,24) ^ ROTATE(tpb,8); #else rk[j] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 8) ^ (tp9 << 24) ^ (tpb >> 24) ^ (tpb << 8); #endif } } return 0; } #endif /* AES_ASM */ openssl-1.1.1f/crypto/aes/aes_ecb.c000066400000000000000000000013271364063235100171660ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "aes_local.h" void AES_ecb_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key, const int enc) { assert(in && out && key); assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc)); if (AES_ENCRYPT == enc) AES_encrypt(in, out, key); else AES_decrypt(in, out, key); } openssl-1.1.1f/crypto/aes/aes_ige.c000066400000000000000000000225631364063235100172060ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include "aes_local.h" #define N_WORDS (AES_BLOCK_SIZE / sizeof(unsigned long)) typedef struct { unsigned long data[N_WORDS]; } aes_block_t; /* XXX: probably some better way to do this */ #if defined(__i386__) || defined(__x86_64__) # define UNALIGNED_MEMOPS_ARE_FAST 1 #else # define UNALIGNED_MEMOPS_ARE_FAST 0 #endif #if UNALIGNED_MEMOPS_ARE_FAST # define load_block(d, s) (d) = *(const aes_block_t *)(s) # define store_block(d, s) *(aes_block_t *)(d) = (s) #else # define load_block(d, s) memcpy((d).data, (s), AES_BLOCK_SIZE) # define store_block(d, s) memcpy((d), (s).data, AES_BLOCK_SIZE) #endif /* N.B. The IV for this mode is _twice_ the block size */ void AES_ige_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, const int enc) { size_t n; size_t len = length; if (length == 0) return; OPENSSL_assert(in && out && key && ivec); OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc)); OPENSSL_assert((length % AES_BLOCK_SIZE) == 0); len = length / AES_BLOCK_SIZE; if (AES_ENCRYPT == enc) { if (in != out && (UNALIGNED_MEMOPS_ARE_FAST || ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) == 0)) { aes_block_t *ivp = (aes_block_t *) ivec; aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE); while (len) { aes_block_t *inp = (aes_block_t *) in; aes_block_t *outp = (aes_block_t *) out; for (n = 0; n < N_WORDS; ++n) outp->data[n] = inp->data[n] ^ ivp->data[n]; AES_encrypt((unsigned char *)outp->data, (unsigned char *)outp->data, key); for (n = 0; n < N_WORDS; ++n) outp->data[n] ^= iv2p->data[n]; ivp = outp; iv2p = inp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, ivp->data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE); } else { aes_block_t tmp, tmp2; aes_block_t iv; aes_block_t iv2; load_block(iv, ivec); load_block(iv2, ivec + AES_BLOCK_SIZE); while (len) { load_block(tmp, in); for (n = 0; n < N_WORDS; ++n) tmp2.data[n] = tmp.data[n] ^ iv.data[n]; AES_encrypt((unsigned char *)tmp2.data, (unsigned char *)tmp2.data, key); for (n = 0; n < N_WORDS; ++n) tmp2.data[n] ^= iv2.data[n]; store_block(out, tmp2); iv = tmp2; iv2 = tmp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, iv.data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE); } } else { if (in != out && (UNALIGNED_MEMOPS_ARE_FAST || ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) == 0)) { aes_block_t *ivp = (aes_block_t *) ivec; aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE); while (len) { aes_block_t tmp; aes_block_t *inp = (aes_block_t *) in; aes_block_t *outp = (aes_block_t *) out; for (n = 0; n < N_WORDS; ++n) tmp.data[n] = inp->data[n] ^ iv2p->data[n]; AES_decrypt((unsigned char *)tmp.data, (unsigned char *)outp->data, key); for (n = 0; n < N_WORDS; ++n) outp->data[n] ^= ivp->data[n]; ivp = inp; iv2p = outp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, ivp->data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE); } else { aes_block_t tmp, tmp2; aes_block_t iv; aes_block_t iv2; load_block(iv, ivec); load_block(iv2, ivec + AES_BLOCK_SIZE); while (len) { load_block(tmp, in); tmp2 = tmp; for (n = 0; n < N_WORDS; ++n) tmp.data[n] ^= iv2.data[n]; AES_decrypt((unsigned char *)tmp.data, (unsigned char *)tmp.data, key); for (n = 0; n < N_WORDS; ++n) tmp.data[n] ^= iv.data[n]; store_block(out, tmp); iv = tmp2; iv2 = tmp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, iv.data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE); } } } /* * Note that its effectively impossible to do biIGE in anything other * than a single pass, so no provision is made for chaining. */ /* N.B. The IV for this mode is _four times_ the block size */ void AES_bi_ige_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, const AES_KEY *key2, const unsigned char *ivec, const int enc) { size_t n; size_t len = length; unsigned char tmp[AES_BLOCK_SIZE]; unsigned char tmp2[AES_BLOCK_SIZE]; unsigned char tmp3[AES_BLOCK_SIZE]; unsigned char prev[AES_BLOCK_SIZE]; const unsigned char *iv; const unsigned char *iv2; OPENSSL_assert(in && out && key && ivec); OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc)); OPENSSL_assert((length % AES_BLOCK_SIZE) == 0); if (AES_ENCRYPT == enc) { /* * XXX: Do a separate case for when in != out (strictly should check * for overlap, too) */ /* First the forward pass */ iv = ivec; iv2 = ivec + AES_BLOCK_SIZE; while (len >= AES_BLOCK_SIZE) { for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] = in[n] ^ iv[n]; AES_encrypt(out, out, key); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv2[n]; iv = out; memcpy(prev, in, AES_BLOCK_SIZE); iv2 = prev; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } /* And now backwards */ iv = ivec + AES_BLOCK_SIZE * 2; iv2 = ivec + AES_BLOCK_SIZE * 3; len = length; while (len >= AES_BLOCK_SIZE) { out -= AES_BLOCK_SIZE; /* * XXX: reduce copies by alternating between buffers */ memcpy(tmp, out, AES_BLOCK_SIZE); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv[n]; /* * hexdump(stdout, "out ^ iv", out, AES_BLOCK_SIZE); */ AES_encrypt(out, out, key); /* * hexdump(stdout,"enc", out, AES_BLOCK_SIZE); */ /* * hexdump(stdout,"iv2", iv2, AES_BLOCK_SIZE); */ for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv2[n]; /* * hexdump(stdout,"out", out, AES_BLOCK_SIZE); */ iv = out; memcpy(prev, tmp, AES_BLOCK_SIZE); iv2 = prev; len -= AES_BLOCK_SIZE; } } else { /* First backwards */ iv = ivec + AES_BLOCK_SIZE * 2; iv2 = ivec + AES_BLOCK_SIZE * 3; in += length; out += length; while (len >= AES_BLOCK_SIZE) { in -= AES_BLOCK_SIZE; out -= AES_BLOCK_SIZE; memcpy(tmp, in, AES_BLOCK_SIZE); memcpy(tmp2, in, AES_BLOCK_SIZE); for (n = 0; n < AES_BLOCK_SIZE; ++n) tmp[n] ^= iv2[n]; AES_decrypt(tmp, out, key); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv[n]; memcpy(tmp3, tmp2, AES_BLOCK_SIZE); iv = tmp3; iv2 = out; len -= AES_BLOCK_SIZE; } /* And now forwards */ iv = ivec; iv2 = ivec + AES_BLOCK_SIZE; len = length; while (len >= AES_BLOCK_SIZE) { memcpy(tmp, out, AES_BLOCK_SIZE); memcpy(tmp2, out, AES_BLOCK_SIZE); for (n = 0; n < AES_BLOCK_SIZE; ++n) tmp[n] ^= iv2[n]; AES_decrypt(tmp, out, key); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv[n]; memcpy(tmp3, tmp2, AES_BLOCK_SIZE); iv = tmp3; iv2 = out; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } } } openssl-1.1.1f/crypto/aes/aes_local.h000066400000000000000000000025051364063235100175330ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_AES_LOCAL_H # define OSSL_CRYPTO_AES_LOCAL_H # include # include # include # include # if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define SWAP(x) (_lrotl(x, 8) & 0x00ff00ff | _lrotr(x, 8) & 0xff00ff00) # define GETU32(p) SWAP(*((u32 *)(p))) # define PUTU32(ct, st) { *((u32 *)(ct)) = SWAP((st)); } # else # define GETU32(pt) (((u32)(pt)[0] << 24) ^ ((u32)(pt)[1] << 16) ^ ((u32)(pt)[2] << 8) ^ ((u32)(pt)[3])) # define PUTU32(ct, st) { (ct)[0] = (u8)((st) >> 24); (ct)[1] = (u8)((st) >> 16); (ct)[2] = (u8)((st) >> 8); (ct)[3] = (u8)(st); } # endif # ifdef AES_LONG typedef unsigned long u32; # else typedef unsigned int u32; # endif typedef unsigned short u16; typedef unsigned char u8; # define MAXKC (256/32) # define MAXKB (256/8) # define MAXNR 14 /* This controls loop-unrolling in aes_core.c */ # undef FULL_UNROLL #endif /* !OSSL_CRYPTO_AES_LOCAL_H */ openssl-1.1.1f/crypto/aes/aes_misc.c000066400000000000000000000010221364063235100173600ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "aes_local.h" const char *AES_options(void) { #ifdef FULL_UNROLL return "aes(full)"; #else return "aes(partial)"; #endif } openssl-1.1.1f/crypto/aes/aes_ofb.c000066400000000000000000000012561364063235100172040ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include void AES_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num) { CRYPTO_ofb128_encrypt(in, out, length, key, ivec, num, (block128_f) AES_encrypt); } openssl-1.1.1f/crypto/aes/aes_wrap.c000066400000000000000000000016441364063235100174100ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include int AES_wrap_key(AES_KEY *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, unsigned int inlen) { return CRYPTO_128_wrap(key, iv, out, in, inlen, (block128_f) AES_encrypt); } int AES_unwrap_key(AES_KEY *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, unsigned int inlen) { return CRYPTO_128_unwrap(key, iv, out, in, inlen, (block128_f) AES_decrypt); } openssl-1.1.1f/crypto/aes/aes_x86core.c000066400000000000000000001205161364063235100177350ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This is experimental x86[_64] derivative. It assumes little-endian * byte order and expects CPU to sustain unaligned memory references. * It is used as playground for cache-time attack mitigations and * serves as reference C implementation for x86[_64] as well as some * other assembly modules. */ /** * rijndael-alg-fst.c * * @version 3.0 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen * @author Antoon Bosselaers * @author Paulo Barreto * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "aes_local.h" /* * These two parameters control which table, 256-byte or 2KB, is * referenced in outer and respectively inner rounds. */ #define AES_COMPACT_IN_OUTER_ROUNDS #ifdef AES_COMPACT_IN_OUTER_ROUNDS /* AES_COMPACT_IN_OUTER_ROUNDS costs ~30% in performance, while * adding AES_COMPACT_IN_INNER_ROUNDS reduces benchmark *further* * by factor of ~2. */ # undef AES_COMPACT_IN_INNER_ROUNDS #endif #if 1 static void prefetch256(const void *table) { volatile unsigned long *t=(void *)table,ret; unsigned long sum; int i; /* 32 is common least cache-line size */ for (sum=0,i=0;i<256/sizeof(t[0]);i+=32/sizeof(t[0])) sum ^= t[i]; ret = sum; } #else # define prefetch256(t) #endif #undef GETU32 #define GETU32(p) (*((u32*)(p))) #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__) typedef unsigned __int64 u64; #define U64(C) C##UI64 #elif defined(__arch64__) typedef unsigned long u64; #define U64(C) C##UL #else typedef unsigned long long u64; #define U64(C) C##ULL #endif #undef ROTATE #if defined(_MSC_VER) # define ROTATE(a,n) _lrotl(a,n) #elif defined(__ICC) # define ROTATE(a,n) _rotl(a,n) #elif defined(__GNUC__) && __GNUC__>=2 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) # define ROTATE(a,n) ({ register unsigned int ret; \ asm ( \ "roll %1,%0" \ : "=r"(ret) \ : "I"(n), "0"(a) \ : "cc"); \ ret; \ }) # endif #endif /*- Te [x] = S [x].[02, 01, 01, 03, 02, 01, 01, 03]; Te0[x] = S [x].[02, 01, 01, 03]; Te1[x] = S [x].[03, 02, 01, 01]; Te2[x] = S [x].[01, 03, 02, 01]; Te3[x] = S [x].[01, 01, 03, 02]; */ #define Te0 (u32)((u64*)((u8*)Te+0)) #define Te1 (u32)((u64*)((u8*)Te+3)) #define Te2 (u32)((u64*)((u8*)Te+2)) #define Te3 (u32)((u64*)((u8*)Te+1)) /*- Td [x] = Si[x].[0e, 09, 0d, 0b, 0e, 09, 0d, 0b]; Td0[x] = Si[x].[0e, 09, 0d, 0b]; Td1[x] = Si[x].[0b, 0e, 09, 0d]; Td2[x] = Si[x].[0d, 0b, 0e, 09]; Td3[x] = Si[x].[09, 0d, 0b, 0e]; Td4[x] = Si[x].[01]; */ #define Td0 (u32)((u64*)((u8*)Td+0)) #define Td1 (u32)((u64*)((u8*)Td+3)) #define Td2 (u32)((u64*)((u8*)Td+2)) #define Td3 (u32)((u64*)((u8*)Td+1)) static const u64 Te[256] = { U64(0xa56363c6a56363c6), U64(0x847c7cf8847c7cf8), U64(0x997777ee997777ee), U64(0x8d7b7bf68d7b7bf6), U64(0x0df2f2ff0df2f2ff), U64(0xbd6b6bd6bd6b6bd6), U64(0xb16f6fdeb16f6fde), U64(0x54c5c59154c5c591), U64(0x5030306050303060), U64(0x0301010203010102), U64(0xa96767cea96767ce), U64(0x7d2b2b567d2b2b56), U64(0x19fefee719fefee7), U64(0x62d7d7b562d7d7b5), U64(0xe6abab4de6abab4d), U64(0x9a7676ec9a7676ec), U64(0x45caca8f45caca8f), U64(0x9d82821f9d82821f), U64(0x40c9c98940c9c989), U64(0x877d7dfa877d7dfa), U64(0x15fafaef15fafaef), U64(0xeb5959b2eb5959b2), U64(0xc947478ec947478e), U64(0x0bf0f0fb0bf0f0fb), U64(0xecadad41ecadad41), U64(0x67d4d4b367d4d4b3), U64(0xfda2a25ffda2a25f), U64(0xeaafaf45eaafaf45), U64(0xbf9c9c23bf9c9c23), U64(0xf7a4a453f7a4a453), U64(0x967272e4967272e4), U64(0x5bc0c09b5bc0c09b), U64(0xc2b7b775c2b7b775), U64(0x1cfdfde11cfdfde1), U64(0xae93933dae93933d), U64(0x6a26264c6a26264c), U64(0x5a36366c5a36366c), U64(0x413f3f7e413f3f7e), U64(0x02f7f7f502f7f7f5), U64(0x4fcccc834fcccc83), U64(0x5c3434685c343468), U64(0xf4a5a551f4a5a551), U64(0x34e5e5d134e5e5d1), U64(0x08f1f1f908f1f1f9), U64(0x937171e2937171e2), U64(0x73d8d8ab73d8d8ab), U64(0x5331316253313162), U64(0x3f15152a3f15152a), U64(0x0c0404080c040408), U64(0x52c7c79552c7c795), U64(0x6523234665232346), U64(0x5ec3c39d5ec3c39d), U64(0x2818183028181830), U64(0xa1969637a1969637), U64(0x0f05050a0f05050a), U64(0xb59a9a2fb59a9a2f), U64(0x0907070e0907070e), U64(0x3612122436121224), U64(0x9b80801b9b80801b), U64(0x3de2e2df3de2e2df), U64(0x26ebebcd26ebebcd), U64(0x6927274e6927274e), U64(0xcdb2b27fcdb2b27f), U64(0x9f7575ea9f7575ea), U64(0x1b0909121b090912), U64(0x9e83831d9e83831d), U64(0x742c2c58742c2c58), U64(0x2e1a1a342e1a1a34), U64(0x2d1b1b362d1b1b36), U64(0xb26e6edcb26e6edc), U64(0xee5a5ab4ee5a5ab4), U64(0xfba0a05bfba0a05b), U64(0xf65252a4f65252a4), U64(0x4d3b3b764d3b3b76), U64(0x61d6d6b761d6d6b7), U64(0xceb3b37dceb3b37d), U64(0x7b2929527b292952), U64(0x3ee3e3dd3ee3e3dd), U64(0x712f2f5e712f2f5e), U64(0x9784841397848413), U64(0xf55353a6f55353a6), U64(0x68d1d1b968d1d1b9), U64(0x0000000000000000), U64(0x2cededc12cededc1), U64(0x6020204060202040), U64(0x1ffcfce31ffcfce3), U64(0xc8b1b179c8b1b179), U64(0xed5b5bb6ed5b5bb6), U64(0xbe6a6ad4be6a6ad4), U64(0x46cbcb8d46cbcb8d), U64(0xd9bebe67d9bebe67), U64(0x4b3939724b393972), U64(0xde4a4a94de4a4a94), U64(0xd44c4c98d44c4c98), U64(0xe85858b0e85858b0), U64(0x4acfcf854acfcf85), U64(0x6bd0d0bb6bd0d0bb), U64(0x2aefefc52aefefc5), U64(0xe5aaaa4fe5aaaa4f), U64(0x16fbfbed16fbfbed), U64(0xc5434386c5434386), U64(0xd74d4d9ad74d4d9a), U64(0x5533336655333366), U64(0x9485851194858511), U64(0xcf45458acf45458a), U64(0x10f9f9e910f9f9e9), U64(0x0602020406020204), U64(0x817f7ffe817f7ffe), U64(0xf05050a0f05050a0), U64(0x443c3c78443c3c78), U64(0xba9f9f25ba9f9f25), U64(0xe3a8a84be3a8a84b), U64(0xf35151a2f35151a2), U64(0xfea3a35dfea3a35d), U64(0xc0404080c0404080), U64(0x8a8f8f058a8f8f05), U64(0xad92923fad92923f), U64(0xbc9d9d21bc9d9d21), U64(0x4838387048383870), U64(0x04f5f5f104f5f5f1), U64(0xdfbcbc63dfbcbc63), U64(0xc1b6b677c1b6b677), U64(0x75dadaaf75dadaaf), U64(0x6321214263212142), U64(0x3010102030101020), U64(0x1affffe51affffe5), U64(0x0ef3f3fd0ef3f3fd), U64(0x6dd2d2bf6dd2d2bf), U64(0x4ccdcd814ccdcd81), U64(0x140c0c18140c0c18), U64(0x3513132635131326), U64(0x2fececc32fececc3), U64(0xe15f5fbee15f5fbe), U64(0xa2979735a2979735), U64(0xcc444488cc444488), U64(0x3917172e3917172e), U64(0x57c4c49357c4c493), U64(0xf2a7a755f2a7a755), U64(0x827e7efc827e7efc), U64(0x473d3d7a473d3d7a), U64(0xac6464c8ac6464c8), U64(0xe75d5dbae75d5dba), U64(0x2b1919322b191932), U64(0x957373e6957373e6), U64(0xa06060c0a06060c0), U64(0x9881811998818119), U64(0xd14f4f9ed14f4f9e), U64(0x7fdcdca37fdcdca3), U64(0x6622224466222244), U64(0x7e2a2a547e2a2a54), U64(0xab90903bab90903b), U64(0x8388880b8388880b), U64(0xca46468cca46468c), U64(0x29eeeec729eeeec7), U64(0xd3b8b86bd3b8b86b), U64(0x3c1414283c141428), U64(0x79dedea779dedea7), U64(0xe25e5ebce25e5ebc), U64(0x1d0b0b161d0b0b16), U64(0x76dbdbad76dbdbad), U64(0x3be0e0db3be0e0db), U64(0x5632326456323264), U64(0x4e3a3a744e3a3a74), U64(0x1e0a0a141e0a0a14), U64(0xdb494992db494992), U64(0x0a06060c0a06060c), U64(0x6c2424486c242448), U64(0xe45c5cb8e45c5cb8), U64(0x5dc2c29f5dc2c29f), U64(0x6ed3d3bd6ed3d3bd), U64(0xefacac43efacac43), U64(0xa66262c4a66262c4), U64(0xa8919139a8919139), U64(0xa4959531a4959531), U64(0x37e4e4d337e4e4d3), U64(0x8b7979f28b7979f2), U64(0x32e7e7d532e7e7d5), U64(0x43c8c88b43c8c88b), U64(0x5937376e5937376e), U64(0xb76d6ddab76d6dda), U64(0x8c8d8d018c8d8d01), U64(0x64d5d5b164d5d5b1), U64(0xd24e4e9cd24e4e9c), U64(0xe0a9a949e0a9a949), U64(0xb46c6cd8b46c6cd8), U64(0xfa5656acfa5656ac), U64(0x07f4f4f307f4f4f3), U64(0x25eaeacf25eaeacf), U64(0xaf6565caaf6565ca), U64(0x8e7a7af48e7a7af4), U64(0xe9aeae47e9aeae47), U64(0x1808081018080810), U64(0xd5baba6fd5baba6f), U64(0x887878f0887878f0), U64(0x6f25254a6f25254a), U64(0x722e2e5c722e2e5c), U64(0x241c1c38241c1c38), U64(0xf1a6a657f1a6a657), U64(0xc7b4b473c7b4b473), U64(0x51c6c69751c6c697), U64(0x23e8e8cb23e8e8cb), U64(0x7cdddda17cdddda1), U64(0x9c7474e89c7474e8), U64(0x211f1f3e211f1f3e), U64(0xdd4b4b96dd4b4b96), U64(0xdcbdbd61dcbdbd61), U64(0x868b8b0d868b8b0d), U64(0x858a8a0f858a8a0f), U64(0x907070e0907070e0), U64(0x423e3e7c423e3e7c), U64(0xc4b5b571c4b5b571), U64(0xaa6666ccaa6666cc), U64(0xd8484890d8484890), U64(0x0503030605030306), U64(0x01f6f6f701f6f6f7), U64(0x120e0e1c120e0e1c), U64(0xa36161c2a36161c2), U64(0x5f35356a5f35356a), U64(0xf95757aef95757ae), U64(0xd0b9b969d0b9b969), U64(0x9186861791868617), U64(0x58c1c19958c1c199), U64(0x271d1d3a271d1d3a), U64(0xb99e9e27b99e9e27), U64(0x38e1e1d938e1e1d9), U64(0x13f8f8eb13f8f8eb), U64(0xb398982bb398982b), U64(0x3311112233111122), U64(0xbb6969d2bb6969d2), U64(0x70d9d9a970d9d9a9), U64(0x898e8e07898e8e07), U64(0xa7949433a7949433), U64(0xb69b9b2db69b9b2d), U64(0x221e1e3c221e1e3c), U64(0x9287871592878715), U64(0x20e9e9c920e9e9c9), U64(0x49cece8749cece87), U64(0xff5555aaff5555aa), U64(0x7828285078282850), U64(0x7adfdfa57adfdfa5), U64(0x8f8c8c038f8c8c03), U64(0xf8a1a159f8a1a159), U64(0x8089890980898909), U64(0x170d0d1a170d0d1a), U64(0xdabfbf65dabfbf65), U64(0x31e6e6d731e6e6d7), U64(0xc6424284c6424284), U64(0xb86868d0b86868d0), U64(0xc3414182c3414182), U64(0xb0999929b0999929), U64(0x772d2d5a772d2d5a), U64(0x110f0f1e110f0f1e), U64(0xcbb0b07bcbb0b07b), U64(0xfc5454a8fc5454a8), U64(0xd6bbbb6dd6bbbb6d), U64(0x3a16162c3a16162c) }; static const u8 Te4[256] = { 0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U, 0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U, 0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U, 0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U, 0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU, 0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U, 0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU, 0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U, 0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U, 0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U, 0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU, 0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU, 0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U, 0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U, 0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U, 0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U, 0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U, 0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U, 0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U, 0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU, 0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU, 0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U, 0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U, 0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U, 0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U, 0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU, 0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU, 0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU, 0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U, 0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU, 0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U, 0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U }; static const u64 Td[256] = { U64(0x50a7f45150a7f451), U64(0x5365417e5365417e), U64(0xc3a4171ac3a4171a), U64(0x965e273a965e273a), U64(0xcb6bab3bcb6bab3b), U64(0xf1459d1ff1459d1f), U64(0xab58faacab58faac), U64(0x9303e34b9303e34b), U64(0x55fa302055fa3020), U64(0xf66d76adf66d76ad), U64(0x9176cc889176cc88), U64(0x254c02f5254c02f5), U64(0xfcd7e54ffcd7e54f), U64(0xd7cb2ac5d7cb2ac5), U64(0x8044352680443526), U64(0x8fa362b58fa362b5), U64(0x495ab1de495ab1de), U64(0x671bba25671bba25), U64(0x980eea45980eea45), U64(0xe1c0fe5de1c0fe5d), U64(0x02752fc302752fc3), U64(0x12f04c8112f04c81), U64(0xa397468da397468d), U64(0xc6f9d36bc6f9d36b), U64(0xe75f8f03e75f8f03), U64(0x959c9215959c9215), U64(0xeb7a6dbfeb7a6dbf), U64(0xda595295da595295), U64(0x2d83bed42d83bed4), U64(0xd3217458d3217458), U64(0x2969e0492969e049), U64(0x44c8c98e44c8c98e), U64(0x6a89c2756a89c275), U64(0x78798ef478798ef4), U64(0x6b3e58996b3e5899), U64(0xdd71b927dd71b927), U64(0xb64fe1beb64fe1be), U64(0x17ad88f017ad88f0), U64(0x66ac20c966ac20c9), U64(0xb43ace7db43ace7d), U64(0x184adf63184adf63), U64(0x82311ae582311ae5), U64(0x6033519760335197), U64(0x457f5362457f5362), U64(0xe07764b1e07764b1), U64(0x84ae6bbb84ae6bbb), U64(0x1ca081fe1ca081fe), U64(0x942b08f9942b08f9), U64(0x5868487058684870), U64(0x19fd458f19fd458f), U64(0x876cde94876cde94), U64(0xb7f87b52b7f87b52), U64(0x23d373ab23d373ab), U64(0xe2024b72e2024b72), U64(0x578f1fe3578f1fe3), U64(0x2aab55662aab5566), U64(0x0728ebb20728ebb2), U64(0x03c2b52f03c2b52f), U64(0x9a7bc5869a7bc586), U64(0xa50837d3a50837d3), U64(0xf2872830f2872830), U64(0xb2a5bf23b2a5bf23), U64(0xba6a0302ba6a0302), U64(0x5c8216ed5c8216ed), U64(0x2b1ccf8a2b1ccf8a), U64(0x92b479a792b479a7), U64(0xf0f207f3f0f207f3), U64(0xa1e2694ea1e2694e), U64(0xcdf4da65cdf4da65), U64(0xd5be0506d5be0506), U64(0x1f6234d11f6234d1), U64(0x8afea6c48afea6c4), U64(0x9d532e349d532e34), U64(0xa055f3a2a055f3a2), U64(0x32e18a0532e18a05), U64(0x75ebf6a475ebf6a4), U64(0x39ec830b39ec830b), U64(0xaaef6040aaef6040), U64(0x069f715e069f715e), U64(0x51106ebd51106ebd), U64(0xf98a213ef98a213e), U64(0x3d06dd963d06dd96), U64(0xae053eddae053edd), U64(0x46bde64d46bde64d), U64(0xb58d5491b58d5491), U64(0x055dc471055dc471), U64(0x6fd406046fd40604), U64(0xff155060ff155060), U64(0x24fb981924fb9819), U64(0x97e9bdd697e9bdd6), U64(0xcc434089cc434089), U64(0x779ed967779ed967), U64(0xbd42e8b0bd42e8b0), U64(0x888b8907888b8907), U64(0x385b19e7385b19e7), U64(0xdbeec879dbeec879), U64(0x470a7ca1470a7ca1), U64(0xe90f427ce90f427c), U64(0xc91e84f8c91e84f8), U64(0x0000000000000000), U64(0x8386800983868009), U64(0x48ed2b3248ed2b32), U64(0xac70111eac70111e), U64(0x4e725a6c4e725a6c), U64(0xfbff0efdfbff0efd), U64(0x5638850f5638850f), U64(0x1ed5ae3d1ed5ae3d), U64(0x27392d3627392d36), U64(0x64d90f0a64d90f0a), U64(0x21a65c6821a65c68), U64(0xd1545b9bd1545b9b), U64(0x3a2e36243a2e3624), U64(0xb1670a0cb1670a0c), U64(0x0fe757930fe75793), U64(0xd296eeb4d296eeb4), U64(0x9e919b1b9e919b1b), U64(0x4fc5c0804fc5c080), U64(0xa220dc61a220dc61), U64(0x694b775a694b775a), U64(0x161a121c161a121c), U64(0x0aba93e20aba93e2), U64(0xe52aa0c0e52aa0c0), U64(0x43e0223c43e0223c), U64(0x1d171b121d171b12), U64(0x0b0d090e0b0d090e), U64(0xadc78bf2adc78bf2), U64(0xb9a8b62db9a8b62d), U64(0xc8a91e14c8a91e14), U64(0x8519f1578519f157), U64(0x4c0775af4c0775af), U64(0xbbdd99eebbdd99ee), U64(0xfd607fa3fd607fa3), U64(0x9f2601f79f2601f7), U64(0xbcf5725cbcf5725c), U64(0xc53b6644c53b6644), U64(0x347efb5b347efb5b), U64(0x7629438b7629438b), U64(0xdcc623cbdcc623cb), U64(0x68fcedb668fcedb6), U64(0x63f1e4b863f1e4b8), U64(0xcadc31d7cadc31d7), U64(0x1085634210856342), U64(0x4022971340229713), U64(0x2011c6842011c684), U64(0x7d244a857d244a85), U64(0xf83dbbd2f83dbbd2), U64(0x1132f9ae1132f9ae), U64(0x6da129c76da129c7), U64(0x4b2f9e1d4b2f9e1d), U64(0xf330b2dcf330b2dc), U64(0xec52860dec52860d), U64(0xd0e3c177d0e3c177), U64(0x6c16b32b6c16b32b), U64(0x99b970a999b970a9), U64(0xfa489411fa489411), U64(0x2264e9472264e947), U64(0xc48cfca8c48cfca8), U64(0x1a3ff0a01a3ff0a0), U64(0xd82c7d56d82c7d56), U64(0xef903322ef903322), U64(0xc74e4987c74e4987), U64(0xc1d138d9c1d138d9), U64(0xfea2ca8cfea2ca8c), U64(0x360bd498360bd498), U64(0xcf81f5a6cf81f5a6), U64(0x28de7aa528de7aa5), U64(0x268eb7da268eb7da), U64(0xa4bfad3fa4bfad3f), U64(0xe49d3a2ce49d3a2c), U64(0x0d9278500d927850), U64(0x9bcc5f6a9bcc5f6a), U64(0x62467e5462467e54), U64(0xc2138df6c2138df6), U64(0xe8b8d890e8b8d890), U64(0x5ef7392e5ef7392e), U64(0xf5afc382f5afc382), U64(0xbe805d9fbe805d9f), U64(0x7c93d0697c93d069), U64(0xa92dd56fa92dd56f), U64(0xb31225cfb31225cf), U64(0x3b99acc83b99acc8), U64(0xa77d1810a77d1810), U64(0x6e639ce86e639ce8), U64(0x7bbb3bdb7bbb3bdb), U64(0x097826cd097826cd), U64(0xf418596ef418596e), U64(0x01b79aec01b79aec), U64(0xa89a4f83a89a4f83), U64(0x656e95e6656e95e6), U64(0x7ee6ffaa7ee6ffaa), U64(0x08cfbc2108cfbc21), U64(0xe6e815efe6e815ef), U64(0xd99be7bad99be7ba), U64(0xce366f4ace366f4a), U64(0xd4099fead4099fea), U64(0xd67cb029d67cb029), U64(0xafb2a431afb2a431), U64(0x31233f2a31233f2a), U64(0x3094a5c63094a5c6), U64(0xc066a235c066a235), U64(0x37bc4e7437bc4e74), U64(0xa6ca82fca6ca82fc), U64(0xb0d090e0b0d090e0), U64(0x15d8a73315d8a733), U64(0x4a9804f14a9804f1), U64(0xf7daec41f7daec41), U64(0x0e50cd7f0e50cd7f), U64(0x2ff691172ff69117), U64(0x8dd64d768dd64d76), U64(0x4db0ef434db0ef43), U64(0x544daacc544daacc), U64(0xdf0496e4df0496e4), U64(0xe3b5d19ee3b5d19e), U64(0x1b886a4c1b886a4c), U64(0xb81f2cc1b81f2cc1), U64(0x7f5165467f516546), U64(0x04ea5e9d04ea5e9d), U64(0x5d358c015d358c01), U64(0x737487fa737487fa), U64(0x2e410bfb2e410bfb), U64(0x5a1d67b35a1d67b3), U64(0x52d2db9252d2db92), U64(0x335610e9335610e9), U64(0x1347d66d1347d66d), U64(0x8c61d79a8c61d79a), U64(0x7a0ca1377a0ca137), U64(0x8e14f8598e14f859), U64(0x893c13eb893c13eb), U64(0xee27a9ceee27a9ce), U64(0x35c961b735c961b7), U64(0xede51ce1ede51ce1), U64(0x3cb1477a3cb1477a), U64(0x59dfd29c59dfd29c), U64(0x3f73f2553f73f255), U64(0x79ce141879ce1418), U64(0xbf37c773bf37c773), U64(0xeacdf753eacdf753), U64(0x5baafd5f5baafd5f), U64(0x146f3ddf146f3ddf), U64(0x86db447886db4478), U64(0x81f3afca81f3afca), U64(0x3ec468b93ec468b9), U64(0x2c3424382c342438), U64(0x5f40a3c25f40a3c2), U64(0x72c31d1672c31d16), U64(0x0c25e2bc0c25e2bc), U64(0x8b493c288b493c28), U64(0x41950dff41950dff), U64(0x7101a8397101a839), U64(0xdeb30c08deb30c08), U64(0x9ce4b4d89ce4b4d8), U64(0x90c1566490c15664), U64(0x6184cb7b6184cb7b), U64(0x70b632d570b632d5), U64(0x745c6c48745c6c48), U64(0x4257b8d04257b8d0) }; static const u8 Td4[256] = { 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U, 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU, 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U, 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU, 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU, 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU, 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U, 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U, 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U, 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U, 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU, 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U, 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU, 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U, 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U, 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU, 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU, 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U, 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U, 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU, 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U, 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU, 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U, 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U, 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U, 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU, 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU, 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU, 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U, 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U, 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U, 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU }; static const u32 rcon[] = { 0x00000001U, 0x00000002U, 0x00000004U, 0x00000008U, 0x00000010U, 0x00000020U, 0x00000040U, 0x00000080U, 0x0000001bU, 0x00000036U, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; /** * Expand the cipher key into the encryption key schedule. */ int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i = 0; u32 temp; if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; rk = key->rd_key; if (bits==128) key->rounds = 10; else if (bits==192) key->rounds = 12; else key->rounds = 14; rk[0] = GETU32(userKey ); rk[1] = GETU32(userKey + 4); rk[2] = GETU32(userKey + 8); rk[3] = GETU32(userKey + 12); if (bits == 128) { while (1) { temp = rk[3]; rk[4] = rk[0] ^ ((u32)Te4[(temp >> 8) & 0xff] ) ^ ((u32)Te4[(temp >> 16) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 24) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { return 0; } rk += 4; } } rk[4] = GETU32(userKey + 16); rk[5] = GETU32(userKey + 20); if (bits == 192) { while (1) { temp = rk[ 5]; rk[ 6] = rk[ 0] ^ ((u32)Te4[(temp >> 8) & 0xff] ) ^ ((u32)Te4[(temp >> 16) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 24) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { return 0; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } rk[6] = GETU32(userKey + 24); rk[7] = GETU32(userKey + 28); if (bits == 256) { while (1) { temp = rk[ 7]; rk[ 8] = rk[ 0] ^ ((u32)Te4[(temp >> 8) & 0xff] ) ^ ((u32)Te4[(temp >> 16) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 24) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { return 0; } temp = rk[11]; rk[12] = rk[ 4] ^ ((u32)Te4[(temp ) & 0xff] ) ^ ((u32)Te4[(temp >> 8) & 0xff] << 8) ^ ((u32)Te4[(temp >> 16) & 0xff] << 16) ^ ((u32)Te4[(temp >> 24) ] << 24); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } return 0; } /** * Expand the cipher key into the decryption key schedule. */ int AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i, j, status; u32 temp; /* first, start with an encryption schedule */ status = AES_set_encrypt_key(userKey, bits, key); if (status < 0) return status; rk = key->rd_key; /* invert the order of the round keys: */ for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < (key->rounds); i++) { rk += 4; #if 1 for (j = 0; j < 4; j++) { u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; tp1 = rk[j]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) rk[j] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,8) ^ ROTATE(tpb,24); #else rk[j] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 24) ^ (tp9 << 8) ^ (tpb >> 8) ^ (tpb << 24); #endif } #else rk[0] = Td0[Te2[(rk[0] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[0] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[0] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[0] >> 24) ] & 0xff]; rk[1] = Td0[Te2[(rk[1] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[1] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[1] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[1] >> 24) ] & 0xff]; rk[2] = Td0[Te2[(rk[2] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[2] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[2] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[2] >> 24) ] & 0xff]; rk[3] = Td0[Te2[(rk[3] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[3] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[3] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[3] >> 24) ] & 0xff]; #endif } return 0; } /* * Encrypt a single block * in and out can overlap */ void AES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t[4]; int r; assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #if defined(AES_COMPACT_IN_OUTER_ROUNDS) prefetch256(Te4); t[0] = (u32)Te4[(s0 ) & 0xff] ^ (u32)Te4[(s1 >> 8) & 0xff] << 8 ^ (u32)Te4[(s2 >> 16) & 0xff] << 16 ^ (u32)Te4[(s3 >> 24) ] << 24; t[1] = (u32)Te4[(s1 ) & 0xff] ^ (u32)Te4[(s2 >> 8) & 0xff] << 8 ^ (u32)Te4[(s3 >> 16) & 0xff] << 16 ^ (u32)Te4[(s0 >> 24) ] << 24; t[2] = (u32)Te4[(s2 ) & 0xff] ^ (u32)Te4[(s3 >> 8) & 0xff] << 8 ^ (u32)Te4[(s0 >> 16) & 0xff] << 16 ^ (u32)Te4[(s1 >> 24) ] << 24; t[3] = (u32)Te4[(s3 ) & 0xff] ^ (u32)Te4[(s0 >> 8) & 0xff] << 8 ^ (u32)Te4[(s1 >> 16) & 0xff] << 16 ^ (u32)Te4[(s2 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 r0, r1, r2; for (i = 0; i < 4; i++) { r0 = t[i]; r1 = r0 & 0x80808080; r2 = ((r0 & 0x7f7f7f7f) << 1) ^ ((r1 - (r1 >> 7)) & 0x1b1b1b1b); #if defined(ROTATE) t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^ ROTATE(r0,16) ^ ROTATE(r0,8); #else t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^ (r0 << 16) ^ (r0 >> 16) ^ (r0 << 8) ^ (r0 >> 24); #endif t[i] ^= rk[4+i]; } } #else t[0] = Te0[(s0 ) & 0xff] ^ Te1[(s1 >> 8) & 0xff] ^ Te2[(s2 >> 16) & 0xff] ^ Te3[(s3 >> 24) ] ^ rk[4]; t[1] = Te0[(s1 ) & 0xff] ^ Te1[(s2 >> 8) & 0xff] ^ Te2[(s3 >> 16) & 0xff] ^ Te3[(s0 >> 24) ] ^ rk[5]; t[2] = Te0[(s2 ) & 0xff] ^ Te1[(s3 >> 8) & 0xff] ^ Te2[(s0 >> 16) & 0xff] ^ Te3[(s1 >> 24) ] ^ rk[6]; t[3] = Te0[(s3 ) & 0xff] ^ Te1[(s0 >> 8) & 0xff] ^ Te2[(s1 >> 16) & 0xff] ^ Te3[(s2 >> 24) ] ^ rk[7]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; /* * Nr - 2 full rounds: */ for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) { #if defined(AES_COMPACT_IN_INNER_ROUNDS) t[0] = (u32)Te4[(s0 ) & 0xff] ^ (u32)Te4[(s1 >> 8) & 0xff] << 8 ^ (u32)Te4[(s2 >> 16) & 0xff] << 16 ^ (u32)Te4[(s3 >> 24) ] << 24; t[1] = (u32)Te4[(s1 ) & 0xff] ^ (u32)Te4[(s2 >> 8) & 0xff] << 8 ^ (u32)Te4[(s3 >> 16) & 0xff] << 16 ^ (u32)Te4[(s0 >> 24) ] << 24; t[2] = (u32)Te4[(s2 ) & 0xff] ^ (u32)Te4[(s3 >> 8) & 0xff] << 8 ^ (u32)Te4[(s0 >> 16) & 0xff] << 16 ^ (u32)Te4[(s1 >> 24) ] << 24; t[3] = (u32)Te4[(s3 ) & 0xff] ^ (u32)Te4[(s0 >> 8) & 0xff] << 8 ^ (u32)Te4[(s1 >> 16) & 0xff] << 16 ^ (u32)Te4[(s2 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 r0, r1, r2; for (i = 0; i < 4; i++) { r0 = t[i]; r1 = r0 & 0x80808080; r2 = ((r0 & 0x7f7f7f7f) << 1) ^ ((r1 - (r1 >> 7)) & 0x1b1b1b1b); #if defined(ROTATE) t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^ ROTATE(r0,16) ^ ROTATE(r0,8); #else t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^ (r0 << 16) ^ (r0 >> 16) ^ (r0 << 8) ^ (r0 >> 24); #endif t[i] ^= rk[i]; } } #else t[0] = Te0[(s0 ) & 0xff] ^ Te1[(s1 >> 8) & 0xff] ^ Te2[(s2 >> 16) & 0xff] ^ Te3[(s3 >> 24) ] ^ rk[0]; t[1] = Te0[(s1 ) & 0xff] ^ Te1[(s2 >> 8) & 0xff] ^ Te2[(s3 >> 16) & 0xff] ^ Te3[(s0 >> 24) ] ^ rk[1]; t[2] = Te0[(s2 ) & 0xff] ^ Te1[(s3 >> 8) & 0xff] ^ Te2[(s0 >> 16) & 0xff] ^ Te3[(s1 >> 24) ] ^ rk[2]; t[3] = Te0[(s3 ) & 0xff] ^ Te1[(s0 >> 8) & 0xff] ^ Te2[(s1 >> 16) & 0xff] ^ Te3[(s2 >> 24) ] ^ rk[3]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; } /* * apply last round and * map cipher state to byte array block: */ #if defined(AES_COMPACT_IN_OUTER_ROUNDS) prefetch256(Te4); *(u32*)(out+0) = (u32)Te4[(s0 ) & 0xff] ^ (u32)Te4[(s1 >> 8) & 0xff] << 8 ^ (u32)Te4[(s2 >> 16) & 0xff] << 16 ^ (u32)Te4[(s3 >> 24) ] << 24 ^ rk[0]; *(u32*)(out+4) = (u32)Te4[(s1 ) & 0xff] ^ (u32)Te4[(s2 >> 8) & 0xff] << 8 ^ (u32)Te4[(s3 >> 16) & 0xff] << 16 ^ (u32)Te4[(s0 >> 24) ] << 24 ^ rk[1]; *(u32*)(out+8) = (u32)Te4[(s2 ) & 0xff] ^ (u32)Te4[(s3 >> 8) & 0xff] << 8 ^ (u32)Te4[(s0 >> 16) & 0xff] << 16 ^ (u32)Te4[(s1 >> 24) ] << 24 ^ rk[2]; *(u32*)(out+12) = (u32)Te4[(s3 ) & 0xff] ^ (u32)Te4[(s0 >> 8) & 0xff] << 8 ^ (u32)Te4[(s1 >> 16) & 0xff] << 16 ^ (u32)Te4[(s2 >> 24) ] << 24 ^ rk[3]; #else *(u32*)(out+0) = (Te2[(s0 ) & 0xff] & 0x000000ffU) ^ (Te3[(s1 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s2 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s3 >> 24) ] & 0xff000000U) ^ rk[0]; *(u32*)(out+4) = (Te2[(s1 ) & 0xff] & 0x000000ffU) ^ (Te3[(s2 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s3 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s0 >> 24) ] & 0xff000000U) ^ rk[1]; *(u32*)(out+8) = (Te2[(s2 ) & 0xff] & 0x000000ffU) ^ (Te3[(s3 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s0 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s1 >> 24) ] & 0xff000000U) ^ rk[2]; *(u32*)(out+12) = (Te2[(s3 ) & 0xff] & 0x000000ffU) ^ (Te3[(s0 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s1 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s2 >> 24) ] & 0xff000000U) ^ rk[3]; #endif } /* * Decrypt a single block * in and out can overlap */ void AES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t[4]; int r; assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #if defined(AES_COMPACT_IN_OUTER_ROUNDS) prefetch256(Td4); t[0] = (u32)Td4[(s0 ) & 0xff] ^ (u32)Td4[(s3 >> 8) & 0xff] << 8 ^ (u32)Td4[(s2 >> 16) & 0xff] << 16 ^ (u32)Td4[(s1 >> 24) ] << 24; t[1] = (u32)Td4[(s1 ) & 0xff] ^ (u32)Td4[(s0 >> 8) & 0xff] << 8 ^ (u32)Td4[(s3 >> 16) & 0xff] << 16 ^ (u32)Td4[(s2 >> 24) ] << 24; t[2] = (u32)Td4[(s2 ) & 0xff] ^ (u32)Td4[(s1 >> 8) & 0xff] << 8 ^ (u32)Td4[(s0 >> 16) & 0xff] << 16 ^ (u32)Td4[(s3 >> 24) ] << 24; t[3] = (u32)Td4[(s3 ) & 0xff] ^ (u32)Td4[(s2 >> 8) & 0xff] << 8 ^ (u32)Td4[(s1 >> 16) & 0xff] << 16 ^ (u32)Td4[(s0 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; for (i = 0; i < 4; i++) { tp1 = t[i]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) t[i] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,8) ^ ROTATE(tpb,24); #else t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 24) ^ (tp9 << 8) ^ (tpb >> 8) ^ (tpb << 24); #endif t[i] ^= rk[4+i]; } } #else t[0] = Td0[(s0 ) & 0xff] ^ Td1[(s3 >> 8) & 0xff] ^ Td2[(s2 >> 16) & 0xff] ^ Td3[(s1 >> 24) ] ^ rk[4]; t[1] = Td0[(s1 ) & 0xff] ^ Td1[(s0 >> 8) & 0xff] ^ Td2[(s3 >> 16) & 0xff] ^ Td3[(s2 >> 24) ] ^ rk[5]; t[2] = Td0[(s2 ) & 0xff] ^ Td1[(s1 >> 8) & 0xff] ^ Td2[(s0 >> 16) & 0xff] ^ Td3[(s3 >> 24) ] ^ rk[6]; t[3] = Td0[(s3 ) & 0xff] ^ Td1[(s2 >> 8) & 0xff] ^ Td2[(s1 >> 16) & 0xff] ^ Td3[(s0 >> 24) ] ^ rk[7]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; /* * Nr - 2 full rounds: */ for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) { #if defined(AES_COMPACT_IN_INNER_ROUNDS) t[0] = (u32)Td4[(s0 ) & 0xff] ^ (u32)Td4[(s3 >> 8) & 0xff] << 8 ^ (u32)Td4[(s2 >> 16) & 0xff] << 16 ^ (u32)Td4[(s1 >> 24) ] << 24; t[1] = (u32)Td4[(s1 ) & 0xff] ^ (u32)Td4[(s0 >> 8) & 0xff] << 8 ^ (u32)Td4[(s3 >> 16) & 0xff] << 16 ^ (u32)Td4[(s2 >> 24) ] << 24; t[2] = (u32)Td4[(s2 ) & 0xff] ^ (u32)Td4[(s1 >> 8) & 0xff] << 8 ^ (u32)Td4[(s0 >> 16) & 0xff] << 16 ^ (u32)Td4[(s3 >> 24) ] << 24; t[3] = (u32)Td4[(s3 ) & 0xff] ^ (u32)Td4[(s2 >> 8) & 0xff] << 8 ^ (u32)Td4[(s1 >> 16) & 0xff] << 16 ^ (u32)Td4[(s0 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; for (i = 0; i < 4; i++) { tp1 = t[i]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) t[i] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,8) ^ ROTATE(tpb,24); #else t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 24) ^ (tp9 << 8) ^ (tpb >> 8) ^ (tpb << 24); #endif t[i] ^= rk[i]; } } #else t[0] = Td0[(s0 ) & 0xff] ^ Td1[(s3 >> 8) & 0xff] ^ Td2[(s2 >> 16) & 0xff] ^ Td3[(s1 >> 24) ] ^ rk[0]; t[1] = Td0[(s1 ) & 0xff] ^ Td1[(s0 >> 8) & 0xff] ^ Td2[(s3 >> 16) & 0xff] ^ Td3[(s2 >> 24) ] ^ rk[1]; t[2] = Td0[(s2 ) & 0xff] ^ Td1[(s1 >> 8) & 0xff] ^ Td2[(s0 >> 16) & 0xff] ^ Td3[(s3 >> 24) ] ^ rk[2]; t[3] = Td0[(s3 ) & 0xff] ^ Td1[(s2 >> 8) & 0xff] ^ Td2[(s1 >> 16) & 0xff] ^ Td3[(s0 >> 24) ] ^ rk[3]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; } /* * apply last round and * map cipher state to byte array block: */ prefetch256(Td4); *(u32*)(out+0) = ((u32)Td4[(s0 ) & 0xff]) ^ ((u32)Td4[(s3 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s2 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s1 >> 24) ] << 24) ^ rk[0]; *(u32*)(out+4) = ((u32)Td4[(s1 ) & 0xff]) ^ ((u32)Td4[(s0 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s3 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s2 >> 24) ] << 24) ^ rk[1]; *(u32*)(out+8) = ((u32)Td4[(s2 ) & 0xff]) ^ ((u32)Td4[(s1 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s0 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s3 >> 24) ] << 24) ^ rk[2]; *(u32*)(out+12) = ((u32)Td4[(s3 ) & 0xff]) ^ ((u32)Td4[(s2 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s1 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s0 >> 24) ] << 24) ^ rk[3]; } openssl-1.1.1f/crypto/aes/asm/000077500000000000000000000000001364063235100162165ustar00rootroot00000000000000openssl-1.1.1f/crypto/aes/asm/aes-armv4.pl000066400000000000000000001016271364063235100203610ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # AES for ARMv4 # January 2007. # # Code uses single 1K S-box and is >2 times faster than code generated # by gcc-3.4.1. This is thanks to unique feature of ARMv4 ISA, which # allows to merge logical or arithmetic operation with shift or rotate # in one instruction and emit combined result every cycle. The module # is endian-neutral. The performance is ~42 cycles/byte for 128-bit # key [on single-issue Xscale PXA250 core]. # May 2007. # # AES_set_[en|de]crypt_key is added. # July 2010. # # Rescheduling for dual-issue pipeline resulted in 12% improvement on # Cortex A8 core and ~25 cycles per byte processed with 128-bit key. # February 2011. # # Profiler-assisted and platform-specific optimization resulted in 16% # improvement on Cortex A8 core and ~21.5 cycles per byte. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $s0="r0"; $s1="r1"; $s2="r2"; $s3="r3"; $t1="r4"; $t2="r5"; $t3="r6"; $i1="r7"; $i2="r8"; $i3="r9"; $tbl="r10"; $key="r11"; $rounds="r12"; $code=<<___; #ifndef __KERNEL__ # include "arm_arch.h" #else # define __ARM_ARCH__ __LINUX_ARM_ARCH__ #endif .text #if defined(__thumb2__) && !defined(__APPLE__) .syntax unified .thumb #else .code 32 #undef __thumb2__ #endif .type AES_Te,%object .align 5 AES_Te: .word 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d .word 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554 .word 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d .word 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a .word 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87 .word 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b .word 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea .word 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b .word 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a .word 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f .word 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108 .word 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f .word 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e .word 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5 .word 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d .word 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f .word 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e .word 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb .word 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce .word 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497 .word 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c .word 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed .word 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b .word 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a .word 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16 .word 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594 .word 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81 .word 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3 .word 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a .word 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504 .word 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163 .word 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d .word 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f .word 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739 .word 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47 .word 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395 .word 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f .word 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883 .word 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c .word 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76 .word 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e .word 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4 .word 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6 .word 0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b .word 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7 .word 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0 .word 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25 .word 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818 .word 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72 .word 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651 .word 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21 .word 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85 .word 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa .word 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12 .word 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0 .word 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9 .word 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133 .word 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7 .word 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920 .word 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a .word 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17 .word 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8 .word 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11 .word 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a @ Te4[256] .byte 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 .byte 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 .byte 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 .byte 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 .byte 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc .byte 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 .byte 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a .byte 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 .byte 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 .byte 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 .byte 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b .byte 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf .byte 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 .byte 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 .byte 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 .byte 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 .byte 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 .byte 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 .byte 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 .byte 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb .byte 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c .byte 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 .byte 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 .byte 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 .byte 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 .byte 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a .byte 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e .byte 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e .byte 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 .byte 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf .byte 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 .byte 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 @ rcon[] .word 0x01000000, 0x02000000, 0x04000000, 0x08000000 .word 0x10000000, 0x20000000, 0x40000000, 0x80000000 .word 0x1B000000, 0x36000000, 0, 0, 0, 0, 0, 0 .size AES_Te,.-AES_Te @ void AES_encrypt(const unsigned char *in, unsigned char *out, @ const AES_KEY *key) { .global AES_encrypt .type AES_encrypt,%function .align 5 AES_encrypt: #ifndef __thumb2__ sub r3,pc,#8 @ AES_encrypt #else adr r3,. #endif stmdb sp!,{r1,r4-r12,lr} #if defined(__thumb2__) || defined(__APPLE__) adr $tbl,AES_Te #else sub $tbl,r3,#AES_encrypt-AES_Te @ Te #endif mov $rounds,r0 @ inp mov $key,r2 #if __ARM_ARCH__<7 ldrb $s0,[$rounds,#3] @ load input data in endian-neutral ldrb $t1,[$rounds,#2] @ manner... ldrb $t2,[$rounds,#1] ldrb $t3,[$rounds,#0] orr $s0,$s0,$t1,lsl#8 ldrb $s1,[$rounds,#7] orr $s0,$s0,$t2,lsl#16 ldrb $t1,[$rounds,#6] orr $s0,$s0,$t3,lsl#24 ldrb $t2,[$rounds,#5] ldrb $t3,[$rounds,#4] orr $s1,$s1,$t1,lsl#8 ldrb $s2,[$rounds,#11] orr $s1,$s1,$t2,lsl#16 ldrb $t1,[$rounds,#10] orr $s1,$s1,$t3,lsl#24 ldrb $t2,[$rounds,#9] ldrb $t3,[$rounds,#8] orr $s2,$s2,$t1,lsl#8 ldrb $s3,[$rounds,#15] orr $s2,$s2,$t2,lsl#16 ldrb $t1,[$rounds,#14] orr $s2,$s2,$t3,lsl#24 ldrb $t2,[$rounds,#13] ldrb $t3,[$rounds,#12] orr $s3,$s3,$t1,lsl#8 orr $s3,$s3,$t2,lsl#16 orr $s3,$s3,$t3,lsl#24 #else ldr $s0,[$rounds,#0] ldr $s1,[$rounds,#4] ldr $s2,[$rounds,#8] ldr $s3,[$rounds,#12] #ifdef __ARMEL__ rev $s0,$s0 rev $s1,$s1 rev $s2,$s2 rev $s3,$s3 #endif #endif bl _armv4_AES_encrypt ldr $rounds,[sp],#4 @ pop out #if __ARM_ARCH__>=7 #ifdef __ARMEL__ rev $s0,$s0 rev $s1,$s1 rev $s2,$s2 rev $s3,$s3 #endif str $s0,[$rounds,#0] str $s1,[$rounds,#4] str $s2,[$rounds,#8] str $s3,[$rounds,#12] #else mov $t1,$s0,lsr#24 @ write output in endian-neutral mov $t2,$s0,lsr#16 @ manner... mov $t3,$s0,lsr#8 strb $t1,[$rounds,#0] strb $t2,[$rounds,#1] mov $t1,$s1,lsr#24 strb $t3,[$rounds,#2] mov $t2,$s1,lsr#16 strb $s0,[$rounds,#3] mov $t3,$s1,lsr#8 strb $t1,[$rounds,#4] strb $t2,[$rounds,#5] mov $t1,$s2,lsr#24 strb $t3,[$rounds,#6] mov $t2,$s2,lsr#16 strb $s1,[$rounds,#7] mov $t3,$s2,lsr#8 strb $t1,[$rounds,#8] strb $t2,[$rounds,#9] mov $t1,$s3,lsr#24 strb $t3,[$rounds,#10] mov $t2,$s3,lsr#16 strb $s2,[$rounds,#11] mov $t3,$s3,lsr#8 strb $t1,[$rounds,#12] strb $t2,[$rounds,#13] strb $t3,[$rounds,#14] strb $s3,[$rounds,#15] #endif #if __ARM_ARCH__>=5 ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size AES_encrypt,.-AES_encrypt .type _armv4_AES_encrypt,%function .align 2 _armv4_AES_encrypt: str lr,[sp,#-4]! @ push lr ldmia $key!,{$t1-$i1} eor $s0,$s0,$t1 ldr $rounds,[$key,#240-16] eor $s1,$s1,$t2 eor $s2,$s2,$t3 eor $s3,$s3,$i1 sub $rounds,$rounds,#1 mov lr,#255 and $i1,lr,$s0 and $i2,lr,$s0,lsr#8 and $i3,lr,$s0,lsr#16 mov $s0,$s0,lsr#24 .Lenc_loop: ldr $t1,[$tbl,$i1,lsl#2] @ Te3[s0>>0] and $i1,lr,$s1,lsr#16 @ i0 ldr $t2,[$tbl,$i2,lsl#2] @ Te2[s0>>8] and $i2,lr,$s1 ldr $t3,[$tbl,$i3,lsl#2] @ Te1[s0>>16] and $i3,lr,$s1,lsr#8 ldr $s0,[$tbl,$s0,lsl#2] @ Te0[s0>>24] mov $s1,$s1,lsr#24 ldr $i1,[$tbl,$i1,lsl#2] @ Te1[s1>>16] ldr $i2,[$tbl,$i2,lsl#2] @ Te3[s1>>0] ldr $i3,[$tbl,$i3,lsl#2] @ Te2[s1>>8] eor $s0,$s0,$i1,ror#8 ldr $s1,[$tbl,$s1,lsl#2] @ Te0[s1>>24] and $i1,lr,$s2,lsr#8 @ i0 eor $t2,$t2,$i2,ror#8 and $i2,lr,$s2,lsr#16 @ i1 eor $t3,$t3,$i3,ror#8 and $i3,lr,$s2 ldr $i1,[$tbl,$i1,lsl#2] @ Te2[s2>>8] eor $s1,$s1,$t1,ror#24 ldr $i2,[$tbl,$i2,lsl#2] @ Te1[s2>>16] mov $s2,$s2,lsr#24 ldr $i3,[$tbl,$i3,lsl#2] @ Te3[s2>>0] eor $s0,$s0,$i1,ror#16 ldr $s2,[$tbl,$s2,lsl#2] @ Te0[s2>>24] and $i1,lr,$s3 @ i0 eor $s1,$s1,$i2,ror#8 and $i2,lr,$s3,lsr#8 @ i1 eor $t3,$t3,$i3,ror#16 and $i3,lr,$s3,lsr#16 @ i2 ldr $i1,[$tbl,$i1,lsl#2] @ Te3[s3>>0] eor $s2,$s2,$t2,ror#16 ldr $i2,[$tbl,$i2,lsl#2] @ Te2[s3>>8] mov $s3,$s3,lsr#24 ldr $i3,[$tbl,$i3,lsl#2] @ Te1[s3>>16] eor $s0,$s0,$i1,ror#24 ldr $i1,[$key],#16 eor $s1,$s1,$i2,ror#16 ldr $s3,[$tbl,$s3,lsl#2] @ Te0[s3>>24] eor $s2,$s2,$i3,ror#8 ldr $t1,[$key,#-12] eor $s3,$s3,$t3,ror#8 ldr $t2,[$key,#-8] eor $s0,$s0,$i1 ldr $t3,[$key,#-4] and $i1,lr,$s0 eor $s1,$s1,$t1 and $i2,lr,$s0,lsr#8 eor $s2,$s2,$t2 and $i3,lr,$s0,lsr#16 eor $s3,$s3,$t3 mov $s0,$s0,lsr#24 subs $rounds,$rounds,#1 bne .Lenc_loop add $tbl,$tbl,#2 ldrb $t1,[$tbl,$i1,lsl#2] @ Te4[s0>>0] and $i1,lr,$s1,lsr#16 @ i0 ldrb $t2,[$tbl,$i2,lsl#2] @ Te4[s0>>8] and $i2,lr,$s1 ldrb $t3,[$tbl,$i3,lsl#2] @ Te4[s0>>16] and $i3,lr,$s1,lsr#8 ldrb $s0,[$tbl,$s0,lsl#2] @ Te4[s0>>24] mov $s1,$s1,lsr#24 ldrb $i1,[$tbl,$i1,lsl#2] @ Te4[s1>>16] ldrb $i2,[$tbl,$i2,lsl#2] @ Te4[s1>>0] ldrb $i3,[$tbl,$i3,lsl#2] @ Te4[s1>>8] eor $s0,$i1,$s0,lsl#8 ldrb $s1,[$tbl,$s1,lsl#2] @ Te4[s1>>24] and $i1,lr,$s2,lsr#8 @ i0 eor $t2,$i2,$t2,lsl#8 and $i2,lr,$s2,lsr#16 @ i1 eor $t3,$i3,$t3,lsl#8 and $i3,lr,$s2 ldrb $i1,[$tbl,$i1,lsl#2] @ Te4[s2>>8] eor $s1,$t1,$s1,lsl#24 ldrb $i2,[$tbl,$i2,lsl#2] @ Te4[s2>>16] mov $s2,$s2,lsr#24 ldrb $i3,[$tbl,$i3,lsl#2] @ Te4[s2>>0] eor $s0,$i1,$s0,lsl#8 ldrb $s2,[$tbl,$s2,lsl#2] @ Te4[s2>>24] and $i1,lr,$s3 @ i0 eor $s1,$s1,$i2,lsl#16 and $i2,lr,$s3,lsr#8 @ i1 eor $t3,$i3,$t3,lsl#8 and $i3,lr,$s3,lsr#16 @ i2 ldrb $i1,[$tbl,$i1,lsl#2] @ Te4[s3>>0] eor $s2,$t2,$s2,lsl#24 ldrb $i2,[$tbl,$i2,lsl#2] @ Te4[s3>>8] mov $s3,$s3,lsr#24 ldrb $i3,[$tbl,$i3,lsl#2] @ Te4[s3>>16] eor $s0,$i1,$s0,lsl#8 ldr $i1,[$key,#0] ldrb $s3,[$tbl,$s3,lsl#2] @ Te4[s3>>24] eor $s1,$s1,$i2,lsl#8 ldr $t1,[$key,#4] eor $s2,$s2,$i3,lsl#16 ldr $t2,[$key,#8] eor $s3,$t3,$s3,lsl#24 ldr $t3,[$key,#12] eor $s0,$s0,$i1 eor $s1,$s1,$t1 eor $s2,$s2,$t2 eor $s3,$s3,$t3 sub $tbl,$tbl,#2 ldr pc,[sp],#4 @ pop and return .size _armv4_AES_encrypt,.-_armv4_AES_encrypt .global AES_set_encrypt_key .type AES_set_encrypt_key,%function .align 5 AES_set_encrypt_key: _armv4_AES_set_encrypt_key: #ifndef __thumb2__ sub r3,pc,#8 @ AES_set_encrypt_key #else adr r3,. #endif teq r0,#0 #ifdef __thumb2__ itt eq @ Thumb2 thing, sanity check in ARM #endif moveq r0,#-1 beq .Labrt teq r2,#0 #ifdef __thumb2__ itt eq @ Thumb2 thing, sanity check in ARM #endif moveq r0,#-1 beq .Labrt teq r1,#128 beq .Lok teq r1,#192 beq .Lok teq r1,#256 #ifdef __thumb2__ itt ne @ Thumb2 thing, sanity check in ARM #endif movne r0,#-1 bne .Labrt .Lok: stmdb sp!,{r4-r12,lr} mov $rounds,r0 @ inp mov lr,r1 @ bits mov $key,r2 @ key #if defined(__thumb2__) || defined(__APPLE__) adr $tbl,AES_Te+1024 @ Te4 #else sub $tbl,r3,#_armv4_AES_set_encrypt_key-AES_Te-1024 @ Te4 #endif #if __ARM_ARCH__<7 ldrb $s0,[$rounds,#3] @ load input data in endian-neutral ldrb $t1,[$rounds,#2] @ manner... ldrb $t2,[$rounds,#1] ldrb $t3,[$rounds,#0] orr $s0,$s0,$t1,lsl#8 ldrb $s1,[$rounds,#7] orr $s0,$s0,$t2,lsl#16 ldrb $t1,[$rounds,#6] orr $s0,$s0,$t3,lsl#24 ldrb $t2,[$rounds,#5] ldrb $t3,[$rounds,#4] orr $s1,$s1,$t1,lsl#8 ldrb $s2,[$rounds,#11] orr $s1,$s1,$t2,lsl#16 ldrb $t1,[$rounds,#10] orr $s1,$s1,$t3,lsl#24 ldrb $t2,[$rounds,#9] ldrb $t3,[$rounds,#8] orr $s2,$s2,$t1,lsl#8 ldrb $s3,[$rounds,#15] orr $s2,$s2,$t2,lsl#16 ldrb $t1,[$rounds,#14] orr $s2,$s2,$t3,lsl#24 ldrb $t2,[$rounds,#13] ldrb $t3,[$rounds,#12] orr $s3,$s3,$t1,lsl#8 str $s0,[$key],#16 orr $s3,$s3,$t2,lsl#16 str $s1,[$key,#-12] orr $s3,$s3,$t3,lsl#24 str $s2,[$key,#-8] str $s3,[$key,#-4] #else ldr $s0,[$rounds,#0] ldr $s1,[$rounds,#4] ldr $s2,[$rounds,#8] ldr $s3,[$rounds,#12] #ifdef __ARMEL__ rev $s0,$s0 rev $s1,$s1 rev $s2,$s2 rev $s3,$s3 #endif str $s0,[$key],#16 str $s1,[$key,#-12] str $s2,[$key,#-8] str $s3,[$key,#-4] #endif teq lr,#128 bne .Lnot128 mov $rounds,#10 str $rounds,[$key,#240-16] add $t3,$tbl,#256 @ rcon mov lr,#255 .L128_loop: and $t2,lr,$s3,lsr#24 and $i1,lr,$s3,lsr#16 ldrb $t2,[$tbl,$t2] and $i2,lr,$s3,lsr#8 ldrb $i1,[$tbl,$i1] and $i3,lr,$s3 ldrb $i2,[$tbl,$i2] orr $t2,$t2,$i1,lsl#24 ldrb $i3,[$tbl,$i3] orr $t2,$t2,$i2,lsl#16 ldr $t1,[$t3],#4 @ rcon[i++] orr $t2,$t2,$i3,lsl#8 eor $t2,$t2,$t1 eor $s0,$s0,$t2 @ rk[4]=rk[0]^... eor $s1,$s1,$s0 @ rk[5]=rk[1]^rk[4] str $s0,[$key],#16 eor $s2,$s2,$s1 @ rk[6]=rk[2]^rk[5] str $s1,[$key,#-12] eor $s3,$s3,$s2 @ rk[7]=rk[3]^rk[6] str $s2,[$key,#-8] subs $rounds,$rounds,#1 str $s3,[$key,#-4] bne .L128_loop sub r2,$key,#176 b .Ldone .Lnot128: #if __ARM_ARCH__<7 ldrb $i2,[$rounds,#19] ldrb $t1,[$rounds,#18] ldrb $t2,[$rounds,#17] ldrb $t3,[$rounds,#16] orr $i2,$i2,$t1,lsl#8 ldrb $i3,[$rounds,#23] orr $i2,$i2,$t2,lsl#16 ldrb $t1,[$rounds,#22] orr $i2,$i2,$t3,lsl#24 ldrb $t2,[$rounds,#21] ldrb $t3,[$rounds,#20] orr $i3,$i3,$t1,lsl#8 orr $i3,$i3,$t2,lsl#16 str $i2,[$key],#8 orr $i3,$i3,$t3,lsl#24 str $i3,[$key,#-4] #else ldr $i2,[$rounds,#16] ldr $i3,[$rounds,#20] #ifdef __ARMEL__ rev $i2,$i2 rev $i3,$i3 #endif str $i2,[$key],#8 str $i3,[$key,#-4] #endif teq lr,#192 bne .Lnot192 mov $rounds,#12 str $rounds,[$key,#240-24] add $t3,$tbl,#256 @ rcon mov lr,#255 mov $rounds,#8 .L192_loop: and $t2,lr,$i3,lsr#24 and $i1,lr,$i3,lsr#16 ldrb $t2,[$tbl,$t2] and $i2,lr,$i3,lsr#8 ldrb $i1,[$tbl,$i1] and $i3,lr,$i3 ldrb $i2,[$tbl,$i2] orr $t2,$t2,$i1,lsl#24 ldrb $i3,[$tbl,$i3] orr $t2,$t2,$i2,lsl#16 ldr $t1,[$t3],#4 @ rcon[i++] orr $t2,$t2,$i3,lsl#8 eor $i3,$t2,$t1 eor $s0,$s0,$i3 @ rk[6]=rk[0]^... eor $s1,$s1,$s0 @ rk[7]=rk[1]^rk[6] str $s0,[$key],#24 eor $s2,$s2,$s1 @ rk[8]=rk[2]^rk[7] str $s1,[$key,#-20] eor $s3,$s3,$s2 @ rk[9]=rk[3]^rk[8] str $s2,[$key,#-16] subs $rounds,$rounds,#1 str $s3,[$key,#-12] #ifdef __thumb2__ itt eq @ Thumb2 thing, sanity check in ARM #endif subeq r2,$key,#216 beq .Ldone ldr $i1,[$key,#-32] ldr $i2,[$key,#-28] eor $i1,$i1,$s3 @ rk[10]=rk[4]^rk[9] eor $i3,$i2,$i1 @ rk[11]=rk[5]^rk[10] str $i1,[$key,#-8] str $i3,[$key,#-4] b .L192_loop .Lnot192: #if __ARM_ARCH__<7 ldrb $i2,[$rounds,#27] ldrb $t1,[$rounds,#26] ldrb $t2,[$rounds,#25] ldrb $t3,[$rounds,#24] orr $i2,$i2,$t1,lsl#8 ldrb $i3,[$rounds,#31] orr $i2,$i2,$t2,lsl#16 ldrb $t1,[$rounds,#30] orr $i2,$i2,$t3,lsl#24 ldrb $t2,[$rounds,#29] ldrb $t3,[$rounds,#28] orr $i3,$i3,$t1,lsl#8 orr $i3,$i3,$t2,lsl#16 str $i2,[$key],#8 orr $i3,$i3,$t3,lsl#24 str $i3,[$key,#-4] #else ldr $i2,[$rounds,#24] ldr $i3,[$rounds,#28] #ifdef __ARMEL__ rev $i2,$i2 rev $i3,$i3 #endif str $i2,[$key],#8 str $i3,[$key,#-4] #endif mov $rounds,#14 str $rounds,[$key,#240-32] add $t3,$tbl,#256 @ rcon mov lr,#255 mov $rounds,#7 .L256_loop: and $t2,lr,$i3,lsr#24 and $i1,lr,$i3,lsr#16 ldrb $t2,[$tbl,$t2] and $i2,lr,$i3,lsr#8 ldrb $i1,[$tbl,$i1] and $i3,lr,$i3 ldrb $i2,[$tbl,$i2] orr $t2,$t2,$i1,lsl#24 ldrb $i3,[$tbl,$i3] orr $t2,$t2,$i2,lsl#16 ldr $t1,[$t3],#4 @ rcon[i++] orr $t2,$t2,$i3,lsl#8 eor $i3,$t2,$t1 eor $s0,$s0,$i3 @ rk[8]=rk[0]^... eor $s1,$s1,$s0 @ rk[9]=rk[1]^rk[8] str $s0,[$key],#32 eor $s2,$s2,$s1 @ rk[10]=rk[2]^rk[9] str $s1,[$key,#-28] eor $s3,$s3,$s2 @ rk[11]=rk[3]^rk[10] str $s2,[$key,#-24] subs $rounds,$rounds,#1 str $s3,[$key,#-20] #ifdef __thumb2__ itt eq @ Thumb2 thing, sanity check in ARM #endif subeq r2,$key,#256 beq .Ldone and $t2,lr,$s3 and $i1,lr,$s3,lsr#8 ldrb $t2,[$tbl,$t2] and $i2,lr,$s3,lsr#16 ldrb $i1,[$tbl,$i1] and $i3,lr,$s3,lsr#24 ldrb $i2,[$tbl,$i2] orr $t2,$t2,$i1,lsl#8 ldrb $i3,[$tbl,$i3] orr $t2,$t2,$i2,lsl#16 ldr $t1,[$key,#-48] orr $t2,$t2,$i3,lsl#24 ldr $i1,[$key,#-44] ldr $i2,[$key,#-40] eor $t1,$t1,$t2 @ rk[12]=rk[4]^... ldr $i3,[$key,#-36] eor $i1,$i1,$t1 @ rk[13]=rk[5]^rk[12] str $t1,[$key,#-16] eor $i2,$i2,$i1 @ rk[14]=rk[6]^rk[13] str $i1,[$key,#-12] eor $i3,$i3,$i2 @ rk[15]=rk[7]^rk[14] str $i2,[$key,#-8] str $i3,[$key,#-4] b .L256_loop .align 2 .Ldone: mov r0,#0 ldmia sp!,{r4-r12,lr} .Labrt: #if __ARM_ARCH__>=5 ret @ bx lr #else tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size AES_set_encrypt_key,.-AES_set_encrypt_key .global AES_set_decrypt_key .type AES_set_decrypt_key,%function .align 5 AES_set_decrypt_key: str lr,[sp,#-4]! @ push lr bl _armv4_AES_set_encrypt_key teq r0,#0 ldr lr,[sp],#4 @ pop lr bne .Labrt mov r0,r2 @ AES_set_encrypt_key preserves r2, mov r1,r2 @ which is AES_KEY *key b _armv4_AES_set_enc2dec_key .size AES_set_decrypt_key,.-AES_set_decrypt_key @ void AES_set_enc2dec_key(const AES_KEY *inp,AES_KEY *out) .global AES_set_enc2dec_key .type AES_set_enc2dec_key,%function .align 5 AES_set_enc2dec_key: _armv4_AES_set_enc2dec_key: stmdb sp!,{r4-r12,lr} ldr $rounds,[r0,#240] mov $i1,r0 @ input add $i2,r0,$rounds,lsl#4 mov $key,r1 @ output add $tbl,r1,$rounds,lsl#4 str $rounds,[r1,#240] .Linv: ldr $s0,[$i1],#16 ldr $s1,[$i1,#-12] ldr $s2,[$i1,#-8] ldr $s3,[$i1,#-4] ldr $t1,[$i2],#-16 ldr $t2,[$i2,#16+4] ldr $t3,[$i2,#16+8] ldr $i3,[$i2,#16+12] str $s0,[$tbl],#-16 str $s1,[$tbl,#16+4] str $s2,[$tbl,#16+8] str $s3,[$tbl,#16+12] str $t1,[$key],#16 str $t2,[$key,#-12] str $t3,[$key,#-8] str $i3,[$key,#-4] teq $i1,$i2 bne .Linv ldr $s0,[$i1] ldr $s1,[$i1,#4] ldr $s2,[$i1,#8] ldr $s3,[$i1,#12] str $s0,[$key] str $s1,[$key,#4] str $s2,[$key,#8] str $s3,[$key,#12] sub $key,$key,$rounds,lsl#3 ___ $mask80=$i1; $mask1b=$i2; $mask7f=$i3; $code.=<<___; ldr $s0,[$key,#16]! @ prefetch tp1 mov $mask80,#0x80 mov $mask1b,#0x1b orr $mask80,$mask80,#0x8000 orr $mask1b,$mask1b,#0x1b00 orr $mask80,$mask80,$mask80,lsl#16 orr $mask1b,$mask1b,$mask1b,lsl#16 sub $rounds,$rounds,#1 mvn $mask7f,$mask80 mov $rounds,$rounds,lsl#2 @ (rounds-1)*4 .Lmix: and $t1,$s0,$mask80 and $s1,$s0,$mask7f sub $t1,$t1,$t1,lsr#7 and $t1,$t1,$mask1b eor $s1,$t1,$s1,lsl#1 @ tp2 and $t1,$s1,$mask80 and $s2,$s1,$mask7f sub $t1,$t1,$t1,lsr#7 and $t1,$t1,$mask1b eor $s2,$t1,$s2,lsl#1 @ tp4 and $t1,$s2,$mask80 and $s3,$s2,$mask7f sub $t1,$t1,$t1,lsr#7 and $t1,$t1,$mask1b eor $s3,$t1,$s3,lsl#1 @ tp8 eor $t1,$s1,$s2 eor $t2,$s0,$s3 @ tp9 eor $t1,$t1,$s3 @ tpe eor $t1,$t1,$s1,ror#24 eor $t1,$t1,$t2,ror#24 @ ^= ROTATE(tpb=tp9^tp2,8) eor $t1,$t1,$s2,ror#16 eor $t1,$t1,$t2,ror#16 @ ^= ROTATE(tpd=tp9^tp4,16) eor $t1,$t1,$t2,ror#8 @ ^= ROTATE(tp9,24) ldr $s0,[$key,#4] @ prefetch tp1 str $t1,[$key],#4 subs $rounds,$rounds,#1 bne .Lmix mov r0,#0 #if __ARM_ARCH__>=5 ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size AES_set_enc2dec_key,.-AES_set_enc2dec_key .type AES_Td,%object .align 5 AES_Td: .word 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96 .word 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393 .word 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25 .word 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f .word 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1 .word 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6 .word 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da .word 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844 .word 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd .word 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4 .word 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45 .word 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94 .word 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7 .word 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a .word 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5 .word 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c .word 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1 .word 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a .word 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75 .word 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051 .word 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46 .word 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff .word 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77 .word 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb .word 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000 .word 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e .word 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927 .word 0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a .word 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e .word 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16 .word 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d .word 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8 .word 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd .word 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34 .word 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163 .word 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120 .word 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d .word 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0 .word 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422 .word 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef .word 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36 .word 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4 .word 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662 .word 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e, 0x82c3aff5 .word 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3 .word 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b .word 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8 .word 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6 .word 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6 .word 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0 .word 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815 .word 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f .word 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df .word 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f .word 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e .word 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713 .word 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89 .word 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c .word 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf .word 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86 .word 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f .word 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541 .word 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190 .word 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742 @ Td4[256] .byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 .byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb .byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 .byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb .byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d .byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e .byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 .byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 .byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 .byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 .byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda .byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 .byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a .byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 .byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 .byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b .byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea .byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 .byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 .byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e .byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 .byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b .byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 .byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 .byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 .byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f .byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d .byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef .byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 .byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 .byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 .byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d .size AES_Td,.-AES_Td @ void AES_decrypt(const unsigned char *in, unsigned char *out, @ const AES_KEY *key) { .global AES_decrypt .type AES_decrypt,%function .align 5 AES_decrypt: #ifndef __thumb2__ sub r3,pc,#8 @ AES_decrypt #else adr r3,. #endif stmdb sp!,{r1,r4-r12,lr} #if defined(__thumb2__) || defined(__APPLE__) adr $tbl,AES_Td #else sub $tbl,r3,#AES_decrypt-AES_Td @ Td #endif mov $rounds,r0 @ inp mov $key,r2 #if __ARM_ARCH__<7 ldrb $s0,[$rounds,#3] @ load input data in endian-neutral ldrb $t1,[$rounds,#2] @ manner... ldrb $t2,[$rounds,#1] ldrb $t3,[$rounds,#0] orr $s0,$s0,$t1,lsl#8 ldrb $s1,[$rounds,#7] orr $s0,$s0,$t2,lsl#16 ldrb $t1,[$rounds,#6] orr $s0,$s0,$t3,lsl#24 ldrb $t2,[$rounds,#5] ldrb $t3,[$rounds,#4] orr $s1,$s1,$t1,lsl#8 ldrb $s2,[$rounds,#11] orr $s1,$s1,$t2,lsl#16 ldrb $t1,[$rounds,#10] orr $s1,$s1,$t3,lsl#24 ldrb $t2,[$rounds,#9] ldrb $t3,[$rounds,#8] orr $s2,$s2,$t1,lsl#8 ldrb $s3,[$rounds,#15] orr $s2,$s2,$t2,lsl#16 ldrb $t1,[$rounds,#14] orr $s2,$s2,$t3,lsl#24 ldrb $t2,[$rounds,#13] ldrb $t3,[$rounds,#12] orr $s3,$s3,$t1,lsl#8 orr $s3,$s3,$t2,lsl#16 orr $s3,$s3,$t3,lsl#24 #else ldr $s0,[$rounds,#0] ldr $s1,[$rounds,#4] ldr $s2,[$rounds,#8] ldr $s3,[$rounds,#12] #ifdef __ARMEL__ rev $s0,$s0 rev $s1,$s1 rev $s2,$s2 rev $s3,$s3 #endif #endif bl _armv4_AES_decrypt ldr $rounds,[sp],#4 @ pop out #if __ARM_ARCH__>=7 #ifdef __ARMEL__ rev $s0,$s0 rev $s1,$s1 rev $s2,$s2 rev $s3,$s3 #endif str $s0,[$rounds,#0] str $s1,[$rounds,#4] str $s2,[$rounds,#8] str $s3,[$rounds,#12] #else mov $t1,$s0,lsr#24 @ write output in endian-neutral mov $t2,$s0,lsr#16 @ manner... mov $t3,$s0,lsr#8 strb $t1,[$rounds,#0] strb $t2,[$rounds,#1] mov $t1,$s1,lsr#24 strb $t3,[$rounds,#2] mov $t2,$s1,lsr#16 strb $s0,[$rounds,#3] mov $t3,$s1,lsr#8 strb $t1,[$rounds,#4] strb $t2,[$rounds,#5] mov $t1,$s2,lsr#24 strb $t3,[$rounds,#6] mov $t2,$s2,lsr#16 strb $s1,[$rounds,#7] mov $t3,$s2,lsr#8 strb $t1,[$rounds,#8] strb $t2,[$rounds,#9] mov $t1,$s3,lsr#24 strb $t3,[$rounds,#10] mov $t2,$s3,lsr#16 strb $s2,[$rounds,#11] mov $t3,$s3,lsr#8 strb $t1,[$rounds,#12] strb $t2,[$rounds,#13] strb $t3,[$rounds,#14] strb $s3,[$rounds,#15] #endif #if __ARM_ARCH__>=5 ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size AES_decrypt,.-AES_decrypt .type _armv4_AES_decrypt,%function .align 2 _armv4_AES_decrypt: str lr,[sp,#-4]! @ push lr ldmia $key!,{$t1-$i1} eor $s0,$s0,$t1 ldr $rounds,[$key,#240-16] eor $s1,$s1,$t2 eor $s2,$s2,$t3 eor $s3,$s3,$i1 sub $rounds,$rounds,#1 mov lr,#255 and $i1,lr,$s0,lsr#16 and $i2,lr,$s0,lsr#8 and $i3,lr,$s0 mov $s0,$s0,lsr#24 .Ldec_loop: ldr $t1,[$tbl,$i1,lsl#2] @ Td1[s0>>16] and $i1,lr,$s1 @ i0 ldr $t2,[$tbl,$i2,lsl#2] @ Td2[s0>>8] and $i2,lr,$s1,lsr#16 ldr $t3,[$tbl,$i3,lsl#2] @ Td3[s0>>0] and $i3,lr,$s1,lsr#8 ldr $s0,[$tbl,$s0,lsl#2] @ Td0[s0>>24] mov $s1,$s1,lsr#24 ldr $i1,[$tbl,$i1,lsl#2] @ Td3[s1>>0] ldr $i2,[$tbl,$i2,lsl#2] @ Td1[s1>>16] ldr $i3,[$tbl,$i3,lsl#2] @ Td2[s1>>8] eor $s0,$s0,$i1,ror#24 ldr $s1,[$tbl,$s1,lsl#2] @ Td0[s1>>24] and $i1,lr,$s2,lsr#8 @ i0 eor $t2,$i2,$t2,ror#8 and $i2,lr,$s2 @ i1 eor $t3,$i3,$t3,ror#8 and $i3,lr,$s2,lsr#16 ldr $i1,[$tbl,$i1,lsl#2] @ Td2[s2>>8] eor $s1,$s1,$t1,ror#8 ldr $i2,[$tbl,$i2,lsl#2] @ Td3[s2>>0] mov $s2,$s2,lsr#24 ldr $i3,[$tbl,$i3,lsl#2] @ Td1[s2>>16] eor $s0,$s0,$i1,ror#16 ldr $s2,[$tbl,$s2,lsl#2] @ Td0[s2>>24] and $i1,lr,$s3,lsr#16 @ i0 eor $s1,$s1,$i2,ror#24 and $i2,lr,$s3,lsr#8 @ i1 eor $t3,$i3,$t3,ror#8 and $i3,lr,$s3 @ i2 ldr $i1,[$tbl,$i1,lsl#2] @ Td1[s3>>16] eor $s2,$s2,$t2,ror#8 ldr $i2,[$tbl,$i2,lsl#2] @ Td2[s3>>8] mov $s3,$s3,lsr#24 ldr $i3,[$tbl,$i3,lsl#2] @ Td3[s3>>0] eor $s0,$s0,$i1,ror#8 ldr $i1,[$key],#16 eor $s1,$s1,$i2,ror#16 ldr $s3,[$tbl,$s3,lsl#2] @ Td0[s3>>24] eor $s2,$s2,$i3,ror#24 ldr $t1,[$key,#-12] eor $s0,$s0,$i1 ldr $t2,[$key,#-8] eor $s3,$s3,$t3,ror#8 ldr $t3,[$key,#-4] and $i1,lr,$s0,lsr#16 eor $s1,$s1,$t1 and $i2,lr,$s0,lsr#8 eor $s2,$s2,$t2 and $i3,lr,$s0 eor $s3,$s3,$t3 mov $s0,$s0,lsr#24 subs $rounds,$rounds,#1 bne .Ldec_loop add $tbl,$tbl,#1024 ldr $t2,[$tbl,#0] @ prefetch Td4 ldr $t3,[$tbl,#32] ldr $t1,[$tbl,#64] ldr $t2,[$tbl,#96] ldr $t3,[$tbl,#128] ldr $t1,[$tbl,#160] ldr $t2,[$tbl,#192] ldr $t3,[$tbl,#224] ldrb $s0,[$tbl,$s0] @ Td4[s0>>24] ldrb $t1,[$tbl,$i1] @ Td4[s0>>16] and $i1,lr,$s1 @ i0 ldrb $t2,[$tbl,$i2] @ Td4[s0>>8] and $i2,lr,$s1,lsr#16 ldrb $t3,[$tbl,$i3] @ Td4[s0>>0] and $i3,lr,$s1,lsr#8 add $s1,$tbl,$s1,lsr#24 ldrb $i1,[$tbl,$i1] @ Td4[s1>>0] ldrb $s1,[$s1] @ Td4[s1>>24] ldrb $i2,[$tbl,$i2] @ Td4[s1>>16] eor $s0,$i1,$s0,lsl#24 ldrb $i3,[$tbl,$i3] @ Td4[s1>>8] eor $s1,$t1,$s1,lsl#8 and $i1,lr,$s2,lsr#8 @ i0 eor $t2,$t2,$i2,lsl#8 and $i2,lr,$s2 @ i1 ldrb $i1,[$tbl,$i1] @ Td4[s2>>8] eor $t3,$t3,$i3,lsl#8 ldrb $i2,[$tbl,$i2] @ Td4[s2>>0] and $i3,lr,$s2,lsr#16 add $s2,$tbl,$s2,lsr#24 ldrb $s2,[$s2] @ Td4[s2>>24] eor $s0,$s0,$i1,lsl#8 ldrb $i3,[$tbl,$i3] @ Td4[s2>>16] eor $s1,$i2,$s1,lsl#16 and $i1,lr,$s3,lsr#16 @ i0 eor $s2,$t2,$s2,lsl#16 and $i2,lr,$s3,lsr#8 @ i1 ldrb $i1,[$tbl,$i1] @ Td4[s3>>16] eor $t3,$t3,$i3,lsl#16 ldrb $i2,[$tbl,$i2] @ Td4[s3>>8] and $i3,lr,$s3 @ i2 add $s3,$tbl,$s3,lsr#24 ldrb $i3,[$tbl,$i3] @ Td4[s3>>0] ldrb $s3,[$s3] @ Td4[s3>>24] eor $s0,$s0,$i1,lsl#16 ldr $i1,[$key,#0] eor $s1,$s1,$i2,lsl#8 ldr $t1,[$key,#4] eor $s2,$i3,$s2,lsl#8 ldr $t2,[$key,#8] eor $s3,$t3,$s3,lsl#24 ldr $t3,[$key,#12] eor $s0,$s0,$i1 eor $s1,$s1,$t1 eor $s2,$s2,$t2 eor $s3,$s3,$t3 sub $tbl,$tbl,#1024 ldr pc,[sp],#4 @ pop and return .size _armv4_AES_decrypt,.-_armv4_AES_decrypt .asciz "AES for ARMv4, CRYPTOGAMS by " .align 2 ___ $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 $code =~ s/\bret\b/bx\tlr/gm; open SELF,$0; while() { next if (/^#!/); last if (!s/^#/@/ and !/^$/); print; } close SELF; print $code; close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/aes/asm/aes-c64xplus.pl000066400000000000000000001263771364063235100210310ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # [Endian-neutral] AES for C64x+. # # Even though SPLOOPs are scheduled for 13 cycles, and thus expected # performance is ~8.5 cycles per byte processed with 128-bit key, # measured performance turned to be ~10 cycles per byte. Discrepancy # must be caused by limitations of L1D memory banking(*), see SPRU871 # TI publication for further details. If any consolation it's still # ~20% faster than TI's linear assembly module anyway... Compared to # aes_core.c compiled with cl6x 6.0 with -mv6400+ -o2 options this # code is 3.75x faster and almost 3x smaller (tables included). # # (*) This means that there might be subtle correlation between data # and timing and one can wonder if it can be ... attacked:-( # On the other hand this also means that *if* one chooses to # implement *4* T-tables variant [instead of 1 T-table as in # this implementation, or in addition to], then one ought to # *interleave* them. Even though it complicates addressing, # references to interleaved tables would be guaranteed not to # clash. I reckon that it should be possible to break 8 cycles # per byte "barrier," i.e. improve by ~20%, naturally at the # cost of 8x increased pressure on L1D. 8x because you'd have # to interleave both Te and Td tables... while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; ($TEA,$TEB)=("A5","B5"); ($KPA,$KPB)=("A3","B1"); @K=("A6","B6","A7","B7"); @s=("A8","B8","A9","B9"); @Te0=@Td0=("A16","B16","A17","B17"); @Te1=@Td1=("A18","B18","A19","B19"); @Te2=@Td2=("A20","B20","A21","B21"); @Te3=@Td3=("A22","B22","A23","B23"); $code=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .nocmp .asg AES_encrypt,_AES_encrypt .asg AES_decrypt,_AES_decrypt .asg AES_set_encrypt_key,_AES_set_encrypt_key .asg AES_set_decrypt_key,_AES_set_decrypt_key .asg AES_ctr32_encrypt,_AES_ctr32_encrypt .endif .asg B3,RA .asg A4,INP .asg B4,OUT .asg A6,KEY .asg A4,RET .asg B15,SP .eval 24,EXT0 .eval 16,EXT1 .eval 8,EXT2 .eval 0,EXT3 .eval 8,TBL1 .eval 16,TBL2 .eval 24,TBL3 .if .BIG_ENDIAN .eval 24-EXT0,EXT0 .eval 24-EXT1,EXT1 .eval 24-EXT2,EXT2 .eval 24-EXT3,EXT3 .eval 32-TBL1,TBL1 .eval 32-TBL2,TBL2 .eval 32-TBL3,TBL3 .endif .global _AES_encrypt _AES_encrypt: .asmfunc MVK 1,B2 __encrypt: .if __TI_EABI__ [B2] LDNDW *INP++,A9:A8 ; load input || MVKL \$PCR_OFFSET(AES_Te,__encrypt),$TEA || ADDKPC __encrypt,B0 [B2] LDNDW *INP++,B9:B8 || MVKH \$PCR_OFFSET(AES_Te,__encrypt),$TEA || ADD 0,KEY,$KPA || ADD 4,KEY,$KPB .else [B2] LDNDW *INP++,A9:A8 ; load input || MVKL (AES_Te-__encrypt),$TEA || ADDKPC __encrypt,B0 [B2] LDNDW *INP++,B9:B8 || MVKH (AES_Te-__encrypt),$TEA || ADD 0,KEY,$KPA || ADD 4,KEY,$KPB .endif LDW *$KPA++[2],$Te0[0] ; zero round key || LDW *$KPB++[2],$Te0[1] || MVK 60,A0 || ADD B0,$TEA,$TEA ; AES_Te LDW *KEY[A0],B0 ; rounds || MVK 1024,A0 ; sizeof(AES_Te) LDW *$KPA++[2],$Te0[2] || LDW *$KPB++[2],$Te0[3] || MV $TEA,$TEB NOP .if .BIG_ENDIAN MV A9,$s[0] || MV A8,$s[1] || MV B9,$s[2] || MV B8,$s[3] .else MV A8,$s[0] || MV A9,$s[1] || MV B8,$s[2] || MV B9,$s[3] .endif XOR $Te0[0],$s[0],$s[0] || XOR $Te0[1],$s[1],$s[1] || LDW *$KPA++[2],$K[0] ; 1st round key || LDW *$KPB++[2],$K[1] SUB B0,2,B0 SPLOOPD 13 || MVC B0,ILC || LDW *$KPA++[2],$K[2] || LDW *$KPB++[2],$K[3] ;;==================================================================== EXTU $s[1],EXT1,24,$Te1[1] || EXTU $s[0],EXT3,24,$Te3[0] LDW *${TEB}[$Te1[1]],$Te1[1] ; Te1[s1>>8], t0 || LDW *${TEA}[$Te3[0]],$Te3[0] ; Te3[s0>>24], t1 || XOR $s[2],$Te0[2],$s[2] ; modulo-scheduled || XOR $s[3],$Te0[3],$s[3] ; modulo-scheduled || EXTU $s[1],EXT3,24,$Te3[1] || EXTU $s[0],EXT1,24,$Te1[0] LDW *${TEB}[$Te3[1]],$Te3[1] ; Te3[s1>>24], t2 || LDW *${TEA}[$Te1[0]],$Te1[0] ; Te1[s0>>8], t3 || EXTU $s[2],EXT2,24,$Te2[2] || EXTU $s[3],EXT2,24,$Te2[3] LDW *${TEA}[$Te2[2]],$Te2[2] ; Te2[s2>>16], t0 || LDW *${TEB}[$Te2[3]],$Te2[3] ; Te2[s3>>16], t1 || EXTU $s[3],EXT3,24,$Te3[3] || EXTU $s[2],EXT1,24,$Te1[2] LDW *${TEB}[$Te3[3]],$Te3[3] ; Te3[s3>>24], t0 || LDW *${TEA}[$Te1[2]],$Te1[2] ; Te1[s2>>8], t1 || EXTU $s[0],EXT2,24,$Te2[0] || EXTU $s[1],EXT2,24,$Te2[1] LDW *${TEA}[$Te2[0]],$Te2[0] ; Te2[s0>>16], t2 || LDW *${TEB}[$Te2[1]],$Te2[1] ; Te2[s1>>16], t3 || EXTU $s[3],EXT1,24,$Te1[3] || EXTU $s[2],EXT3,24,$Te3[2] LDW *${TEB}[$Te1[3]],$Te1[3] ; Te1[s3>>8], t2 || LDW *${TEA}[$Te3[2]],$Te3[2] ; Te3[s2>>24], t3 || ROTL $Te1[1],TBL1,$Te3[0] ; t0 || ROTL $Te3[0],TBL3,$Te1[1] ; t1 || EXTU $s[0],EXT0,24,$Te0[0] || EXTU $s[1],EXT0,24,$Te0[1] LDW *${TEA}[$Te0[0]],$Te0[0] ; Te0[s0], t0 || LDW *${TEB}[$Te0[1]],$Te0[1] ; Te0[s1], t1 || ROTL $Te3[1],TBL3,$Te1[0] ; t2 || ROTL $Te1[0],TBL1,$Te3[1] ; t3 || EXTU $s[2],EXT0,24,$Te0[2] || EXTU $s[3],EXT0,24,$Te0[3] LDW *${TEA}[$Te0[2]],$Te0[2] ; Te0[s2], t2 || LDW *${TEB}[$Te0[3]],$Te0[3] ; Te0[s3], t3 || ROTL $Te2[2],TBL2,$Te2[2] ; t0 || ROTL $Te2[3],TBL2,$Te2[3] ; t1 || XOR $K[0],$Te3[0],$s[0] || XOR $K[1],$Te1[1],$s[1] ROTL $Te3[3],TBL3,$Te1[2] ; t0 || ROTL $Te1[2],TBL1,$Te3[3] ; t1 || XOR $K[2],$Te1[0],$s[2] || XOR $K[3],$Te3[1],$s[3] || LDW *$KPA++[2],$K[0] ; next round key || LDW *$KPB++[2],$K[1] ROTL $Te2[0],TBL2,$Te2[0] ; t2 || ROTL $Te2[1],TBL2,$Te2[1] ; t3 || XOR $s[0],$Te2[2],$s[0] || XOR $s[1],$Te2[3],$s[1] || LDW *$KPA++[2],$K[2] || LDW *$KPB++[2],$K[3] ROTL $Te1[3],TBL1,$Te3[2] ; t2 || ROTL $Te3[2],TBL3,$Te1[3] ; t3 || XOR $s[0],$Te1[2],$s[0] || XOR $s[1],$Te3[3],$s[1] XOR $s[2],$Te2[0],$s[2] || XOR $s[3],$Te2[1],$s[3] || XOR $s[0],$Te0[0],$s[0] || XOR $s[1],$Te0[1],$s[1] SPKERNEL || XOR.L $s[2],$Te3[2],$s[2] || XOR.L $s[3],$Te1[3],$s[3] ;;==================================================================== ADD.D ${TEA},A0,${TEA} ; point to Te4 || ADD.D ${TEB},A0,${TEB} || EXTU $s[1],EXT1,24,$Te1[1] || EXTU $s[0],EXT3,24,$Te3[0] LDBU *${TEB}[$Te1[1]],$Te1[1] ; Te1[s1>>8], t0 || LDBU *${TEA}[$Te3[0]],$Te3[0] ; Te3[s0>>24], t1 || XOR $s[2],$Te0[2],$s[2] ; modulo-scheduled || XOR $s[3],$Te0[3],$s[3] ; modulo-scheduled || EXTU $s[0],EXT0,24,$Te0[0] || EXTU $s[1],EXT0,24,$Te0[1] LDBU *${TEA}[$Te0[0]],$Te0[0] ; Te0[s0], t0 || LDBU *${TEB}[$Te0[1]],$Te0[1] ; Te0[s1], t1 || EXTU $s[3],EXT3,24,$Te3[3] || EXTU $s[2],EXT1,24,$Te1[2] LDBU *${TEB}[$Te3[3]],$Te3[3] ; Te3[s3>>24], t0 || LDBU *${TEA}[$Te1[2]],$Te1[2] ; Te1[s2>>8], t1 || EXTU $s[2],EXT2,24,$Te2[2] || EXTU $s[3],EXT2,24,$Te2[3] LDBU *${TEA}[$Te2[2]],$Te2[2] ; Te2[s2>>16], t0 || LDBU *${TEB}[$Te2[3]],$Te2[3] ; Te2[s3>>16], t1 || EXTU $s[1],EXT3,24,$Te3[1] || EXTU $s[0],EXT1,24,$Te1[0] LDBU *${TEB}[$Te3[1]],$Te3[1] ; Te3[s1>>24], t2 || LDBU *${TEA}[$Te1[0]],$Te1[0] ; Te1[s0>>8], t3 || EXTU $s[3],EXT1,24,$Te1[3] || EXTU $s[2],EXT3,24,$Te3[2] LDBU *${TEB}[$Te1[3]],$Te1[3] ; Te1[s3>>8], t2 || LDBU *${TEA}[$Te3[2]],$Te3[2] ; Te3[s2>>24], t3 || EXTU $s[2],EXT0,24,$Te0[2] || EXTU $s[3],EXT0,24,$Te0[3] LDBU *${TEA}[$Te0[2]],$Te0[2] ; Te0[s2], t2 || LDBU *${TEB}[$Te0[3]],$Te0[3] ; Te0[s3], t3 || EXTU $s[0],EXT2,24,$Te2[0] || EXTU $s[1],EXT2,24,$Te2[1] LDBU *${TEA}[$Te2[0]],$Te2[0] ; Te2[s0>>16], t2 || LDBU *${TEB}[$Te2[1]],$Te2[1] ; Te2[s1>>16], t3 .if .BIG_ENDIAN PACK2 $Te0[0],$Te1[1],$Te0[0] || PACK2 $Te0[1],$Te1[2],$Te0[1] PACK2 $Te2[2],$Te3[3],$Te2[2] || PACK2 $Te2[3],$Te3[0],$Te2[3] PACKL4 $Te0[0],$Te2[2],$Te0[0] || PACKL4 $Te0[1],$Te2[3],$Te0[1] XOR $K[0],$Te0[0],$Te0[0] ; s[0] || XOR $K[1],$Te0[1],$Te0[1] ; s[1] PACK2 $Te0[2],$Te1[3],$Te0[2] || PACK2 $Te0[3],$Te1[0],$Te0[3] PACK2 $Te2[0],$Te3[1],$Te2[0] || PACK2 $Te2[1],$Te3[2],$Te2[1] || BNOP RA PACKL4 $Te0[2],$Te2[0],$Te0[2] || PACKL4 $Te0[3],$Te2[1],$Te0[3] XOR $K[2],$Te0[2],$Te0[2] ; s[2] || XOR $K[3],$Te0[3],$Te0[3] ; s[3] MV $Te0[0],A9 || MV $Te0[1],A8 MV $Te0[2],B9 || MV $Te0[3],B8 || [B2] STNDW A9:A8,*OUT++ [B2] STNDW B9:B8,*OUT++ .else PACK2 $Te1[1],$Te0[0],$Te1[1] || PACK2 $Te1[2],$Te0[1],$Te1[2] PACK2 $Te3[3],$Te2[2],$Te3[3] || PACK2 $Te3[0],$Te2[3],$Te3[0] PACKL4 $Te3[3],$Te1[1],$Te1[1] || PACKL4 $Te3[0],$Te1[2],$Te1[2] XOR $K[0],$Te1[1],$Te1[1] ; s[0] || XOR $K[1],$Te1[2],$Te1[2] ; s[1] PACK2 $Te1[3],$Te0[2],$Te1[3] || PACK2 $Te1[0],$Te0[3],$Te1[0] PACK2 $Te3[1],$Te2[0],$Te3[1] || PACK2 $Te3[2],$Te2[1],$Te3[2] || BNOP RA PACKL4 $Te3[1],$Te1[3],$Te1[3] || PACKL4 $Te3[2],$Te1[0],$Te1[0] XOR $K[2],$Te1[3],$Te1[3] ; s[2] || XOR $K[3],$Te1[0],$Te1[0] ; s[3] MV $Te1[1],A8 || MV $Te1[2],A9 MV $Te1[3],B8 || MV $Te1[0],B9 || [B2] STNDW A9:A8,*OUT++ [B2] STNDW B9:B8,*OUT++ .endif .endasmfunc .global _AES_decrypt _AES_decrypt: .asmfunc MVK 1,B2 __decrypt: .if __TI_EABI__ [B2] LDNDW *INP++,A9:A8 ; load input || MVKL \$PCR_OFFSET(AES_Td,__decrypt),$TEA || ADDKPC __decrypt,B0 [B2] LDNDW *INP++,B9:B8 || MVKH \$PCR_OFFSET(AES_Td,__decrypt),$TEA || ADD 0,KEY,$KPA || ADD 4,KEY,$KPB .else [B2] LDNDW *INP++,A9:A8 ; load input || MVKL (AES_Td-__decrypt),$TEA || ADDKPC __decrypt,B0 [B2] LDNDW *INP++,B9:B8 || MVKH (AES_Td-__decrypt),$TEA || ADD 0,KEY,$KPA || ADD 4,KEY,$KPB .endif LDW *$KPA++[2],$Td0[0] ; zero round key || LDW *$KPB++[2],$Td0[1] || MVK 60,A0 || ADD B0,$TEA,$TEA ; AES_Td LDW *KEY[A0],B0 ; rounds || MVK 1024,A0 ; sizeof(AES_Td) LDW *$KPA++[2],$Td0[2] || LDW *$KPB++[2],$Td0[3] || MV $TEA,$TEB NOP .if .BIG_ENDIAN MV A9,$s[0] || MV A8,$s[1] || MV B9,$s[2] || MV B8,$s[3] .else MV A8,$s[0] || MV A9,$s[1] || MV B8,$s[2] || MV B9,$s[3] .endif XOR $Td0[0],$s[0],$s[0] || XOR $Td0[1],$s[1],$s[1] || LDW *$KPA++[2],$K[0] ; 1st round key || LDW *$KPB++[2],$K[1] SUB B0,2,B0 SPLOOPD 13 || MVC B0,ILC || LDW *$KPA++[2],$K[2] || LDW *$KPB++[2],$K[3] ;;==================================================================== EXTU $s[1],EXT3,24,$Td3[1] || EXTU $s[0],EXT1,24,$Td1[0] LDW *${TEB}[$Td3[1]],$Td3[1] ; Td3[s1>>24], t0 || LDW *${TEA}[$Td1[0]],$Td1[0] ; Td1[s0>>8], t1 || XOR $s[2],$Td0[2],$s[2] ; modulo-scheduled || XOR $s[3],$Td0[3],$s[3] ; modulo-scheduled || EXTU $s[1],EXT1,24,$Td1[1] || EXTU $s[0],EXT3,24,$Td3[0] LDW *${TEB}[$Td1[1]],$Td1[1] ; Td1[s1>>8], t2 || LDW *${TEA}[$Td3[0]],$Td3[0] ; Td3[s0>>24], t3 || EXTU $s[2],EXT2,24,$Td2[2] || EXTU $s[3],EXT2,24,$Td2[3] LDW *${TEA}[$Td2[2]],$Td2[2] ; Td2[s2>>16], t0 || LDW *${TEB}[$Td2[3]],$Td2[3] ; Td2[s3>>16], t1 || EXTU $s[3],EXT1,24,$Td1[3] || EXTU $s[2],EXT3,24,$Td3[2] LDW *${TEB}[$Td1[3]],$Td1[3] ; Td1[s3>>8], t0 || LDW *${TEA}[$Td3[2]],$Td3[2] ; Td3[s2>>24], t1 || EXTU $s[0],EXT2,24,$Td2[0] || EXTU $s[1],EXT2,24,$Td2[1] LDW *${TEA}[$Td2[0]],$Td2[0] ; Td2[s0>>16], t2 || LDW *${TEB}[$Td2[1]],$Td2[1] ; Td2[s1>>16], t3 || EXTU $s[3],EXT3,24,$Td3[3] || EXTU $s[2],EXT1,24,$Td1[2] LDW *${TEB}[$Td3[3]],$Td3[3] ; Td3[s3>>24], t2 || LDW *${TEA}[$Td1[2]],$Td1[2] ; Td1[s2>>8], t3 || ROTL $Td3[1],TBL3,$Td1[0] ; t0 || ROTL $Td1[0],TBL1,$Td3[1] ; t1 || EXTU $s[0],EXT0,24,$Td0[0] || EXTU $s[1],EXT0,24,$Td0[1] LDW *${TEA}[$Td0[0]],$Td0[0] ; Td0[s0], t0 || LDW *${TEB}[$Td0[1]],$Td0[1] ; Td0[s1], t1 || ROTL $Td1[1],TBL1,$Td3[0] ; t2 || ROTL $Td3[0],TBL3,$Td1[1] ; t3 || EXTU $s[2],EXT0,24,$Td0[2] || EXTU $s[3],EXT0,24,$Td0[3] LDW *${TEA}[$Td0[2]],$Td0[2] ; Td0[s2], t2 || LDW *${TEB}[$Td0[3]],$Td0[3] ; Td0[s3], t3 || ROTL $Td2[2],TBL2,$Td2[2] ; t0 || ROTL $Td2[3],TBL2,$Td2[3] ; t1 || XOR $K[0],$Td1[0],$s[0] || XOR $K[1],$Td3[1],$s[1] ROTL $Td1[3],TBL1,$Td3[2] ; t0 || ROTL $Td3[2],TBL3,$Td1[3] ; t1 || XOR $K[2],$Td3[0],$s[2] || XOR $K[3],$Td1[1],$s[3] || LDW *$KPA++[2],$K[0] ; next round key || LDW *$KPB++[2],$K[1] ROTL $Td2[0],TBL2,$Td2[0] ; t2 || ROTL $Td2[1],TBL2,$Td2[1] ; t3 || XOR $s[0],$Td2[2],$s[0] || XOR $s[1],$Td2[3],$s[1] || LDW *$KPA++[2],$K[2] || LDW *$KPB++[2],$K[3] ROTL $Td3[3],TBL3,$Td1[2] ; t2 || ROTL $Td1[2],TBL1,$Td3[3] ; t3 || XOR $s[0],$Td3[2],$s[0] || XOR $s[1],$Td1[3],$s[1] XOR $s[2],$Td2[0],$s[2] || XOR $s[3],$Td2[1],$s[3] || XOR $s[0],$Td0[0],$s[0] || XOR $s[1],$Td0[1],$s[1] SPKERNEL || XOR.L $s[2],$Td1[2],$s[2] || XOR.L $s[3],$Td3[3],$s[3] ;;==================================================================== ADD.D ${TEA},A0,${TEA} ; point to Td4 || ADD.D ${TEB},A0,${TEB} || EXTU $s[1],EXT3,24,$Td3[1] || EXTU $s[0],EXT1,24,$Td1[0] LDBU *${TEB}[$Td3[1]],$Td3[1] ; Td3[s1>>24], t0 || LDBU *${TEA}[$Td1[0]],$Td1[0] ; Td1[s0>>8], t1 || XOR $s[2],$Td0[2],$s[2] ; modulo-scheduled || XOR $s[3],$Td0[3],$s[3] ; modulo-scheduled || EXTU $s[0],EXT0,24,$Td0[0] || EXTU $s[1],EXT0,24,$Td0[1] LDBU *${TEA}[$Td0[0]],$Td0[0] ; Td0[s0], t0 || LDBU *${TEB}[$Td0[1]],$Td0[1] ; Td0[s1], t1 || EXTU $s[2],EXT2,24,$Td2[2] || EXTU $s[3],EXT2,24,$Td2[3] LDBU *${TEA}[$Td2[2]],$Td2[2] ; Td2[s2>>16], t0 || LDBU *${TEB}[$Td2[3]],$Td2[3] ; Td2[s3>>16], t1 || EXTU $s[3],EXT1,24,$Td1[3] || EXTU $s[2],EXT3,24,$Td3[2] LDBU *${TEB}[$Td1[3]],$Td1[3] ; Td1[s3>>8], t0 || LDBU *${TEA}[$Td3[2]],$Td3[2] ; Td3[s2>>24], t1 || EXTU $s[1],EXT1,24,$Td1[1] || EXTU $s[0],EXT3,24,$Td3[0] LDBU *${TEB}[$Td1[1]],$Td1[1] ; Td1[s1>>8], t2 || LDBU *${TEA}[$Td3[0]],$Td3[0] ; Td3[s0>>24], t3 || EXTU $s[0],EXT2,24,$Td2[0] || EXTU $s[1],EXT2,24,$Td2[1] LDBU *${TEA}[$Td2[0]],$Td2[0] ; Td2[s0>>16], t2 || LDBU *${TEB}[$Td2[1]],$Td2[1] ; Td2[s1>>16], t3 || EXTU $s[3],EXT3,24,$Td3[3] || EXTU $s[2],EXT1,24,$Td1[2] LDBU *${TEB}[$Td3[3]],$Td3[3] ; Td3[s3>>24], t2 || LDBU *${TEA}[$Td1[2]],$Td1[2] ; Td1[s2>>8], t3 || EXTU $s[2],EXT0,24,$Td0[2] || EXTU $s[3],EXT0,24,$Td0[3] LDBU *${TEA}[$Td0[2]],$Td0[2] ; Td0[s2], t2 || LDBU *${TEB}[$Td0[3]],$Td0[3] ; Td0[s3], t3 .if .BIG_ENDIAN PACK2 $Td0[0],$Td1[3],$Td0[0] || PACK2 $Td0[1],$Td1[0],$Td0[1] PACK2 $Td2[2],$Td3[1],$Td2[2] || PACK2 $Td2[3],$Td3[2],$Td2[3] PACKL4 $Td0[0],$Td2[2],$Td0[0] || PACKL4 $Td0[1],$Td2[3],$Td0[1] XOR $K[0],$Td0[0],$Td0[0] ; s[0] || XOR $K[1],$Td0[1],$Td0[1] ; s[1] PACK2 $Td0[2],$Td1[1],$Td0[2] || PACK2 $Td0[3],$Td1[2],$Td0[3] PACK2 $Td2[0],$Td3[3],$Td2[0] || PACK2 $Td2[1],$Td3[0],$Td2[1] || BNOP RA PACKL4 $Td0[2],$Td2[0],$Td0[2] || PACKL4 $Td0[3],$Td2[1],$Td0[3] XOR $K[2],$Td0[2],$Td0[2] ; s[2] || XOR $K[3],$Td0[3],$Td0[3] ; s[3] MV $Td0[0],A9 || MV $Td0[1],A8 MV $Td0[2],B9 || MV $Td0[3],B8 || [B2] STNDW A9:A8,*OUT++ [B2] STNDW B9:B8,*OUT++ .else PACK2 $Td1[3],$Td0[0],$Td1[3] || PACK2 $Td1[0],$Td0[1],$Td1[0] PACK2 $Td3[1],$Td2[2],$Td3[1] || PACK2 $Td3[2],$Td2[3],$Td3[2] PACKL4 $Td3[1],$Td1[3],$Td1[3] || PACKL4 $Td3[2],$Td1[0],$Td1[0] XOR $K[0],$Td1[3],$Td1[3] ; s[0] || XOR $K[1],$Td1[0],$Td1[0] ; s[1] PACK2 $Td1[1],$Td0[2],$Td1[1] || PACK2 $Td1[2],$Td0[3],$Td1[2] PACK2 $Td3[3],$Td2[0],$Td3[3] || PACK2 $Td3[0],$Td2[1],$Td3[0] || BNOP RA PACKL4 $Td3[3],$Td1[1],$Td1[1] || PACKL4 $Td3[0],$Td1[2],$Td1[2] XOR $K[2],$Td1[1],$Td1[1] ; s[2] || XOR $K[3],$Td1[2],$Td1[2] ; s[3] MV $Td1[3],A8 || MV $Td1[0],A9 MV $Td1[1],B8 || MV $Td1[2],B9 || [B2] STNDW A9:A8,*OUT++ [B2] STNDW B9:B8,*OUT++ .endif .endasmfunc ___ { my @K=(@K,@s); # extended key my @Te4=map("B$_",(16..19)); my @Kx9=@Te0; # used in AES_set_decrypt_key my @KxB=@Te1; my @KxD=@Te2; my @KxE=@Te3; $code.=<<___; .asg OUT,BITS .global _AES_set_encrypt_key _AES_set_encrypt_key: __set_encrypt_key: .asmfunc MV INP,A0 || SHRU BITS,5,BITS ; 128-192-256 -> 4-6-8 || MV KEY,A1 [!A0] B RA ||[!A0] MVK -1,RET ||[!A0] MVK 1,A1 ; only one B RA [!A1] B RA ||[!A1] MVK -1,RET ||[!A1] MVK 0,A0 || MVK 0,B0 || MVK 0,A1 [A0] LDNDW *INP++,A9:A8 || [A0] CMPEQ 4,BITS,B0 || [A0] CMPLT 3,BITS,A1 [B0] B key128? || [A1] LDNDW *INP++,B9:B8 || [A0] CMPEQ 6,BITS,B0 || [A0] CMPLT 5,BITS,A1 [B0] B key192? || [A1] LDNDW *INP++,B17:B16 || [A0] CMPEQ 8,BITS,B0 || [A0] CMPLT 7,BITS,A1 [B0] B key256? || [A1] LDNDW *INP++,B19:B18 .if __TI_EABI__ [A0] ADD 0,KEY,$KPA || [A0] ADD 4,KEY,$KPB || [A0] MVKL \$PCR_OFFSET(AES_Te4,__set_encrypt_key),$TEA || [A0] ADDKPC __set_encrypt_key,B6 [A0] MVKH \$PCR_OFFSET(AES_Te4,__set_encrypt_key),$TEA [A0] ADD B6,$TEA,$TEA ; AES_Te4 .else [A0] ADD 0,KEY,$KPA || [A0] ADD 4,KEY,$KPB || [A0] MVKL (AES_Te4-__set_encrypt_key),$TEA || [A0] ADDKPC __set_encrypt_key,B6 [A0] MVKH (AES_Te4-__set_encrypt_key),$TEA [A0] ADD B6,$TEA,$TEA ; AES_Te4 .endif NOP NOP BNOP RA,5 || MVK -2,RET ; unknown bit length || MVK 0,B0 ; redundant ;;==================================================================== ;;==================================================================== key128?: .if .BIG_ENDIAN MV A9,$K[0] || MV A8,$K[1] || MV B9,$Te4[2] || MV B8,$K[3] .else MV A8,$K[0] || MV A9,$K[1] || MV B8,$Te4[2] || MV B9,$K[3] .endif MVK 256,A0 || MVK 9,B0 SPLOOPD 14 || MVC B0,ILC || MV $TEA,$TEB || ADD $TEA,A0,A30 ; rcon ;;==================================================================== LDW *A30++[1],A31 ; rcon[i] || MV $Te4[2],$K[2] || EXTU $K[3],EXT1,24,$Te4[0] LDBU *${TEB}[$Te4[0]],$Te4[0] || MV $K[3],A0 || EXTU $K[3],EXT2,24,$Te4[1] LDBU *${TEB}[$Te4[1]],$Te4[1] || EXTU A0,EXT3,24,A0 || EXTU $K[3],EXT0,24,$Te4[3] .if .BIG_ENDIAN LDBU *${TEA}[A0],$Te4[3] || LDBU *${TEB}[$Te4[3]],A0 .else LDBU *${TEA}[A0],A0 || LDBU *${TEB}[$Te4[3]],$Te4[3] .endif STW $K[0],*$KPA++[2] || STW $K[1],*$KPB++[2] STW $K[2],*$KPA++[2] || STW $K[3],*$KPB++[2] XOR A31,$K[0],$K[0] ; ^=rcon[i] .if .BIG_ENDIAN PACK2 $Te4[0],$Te4[1],$Te4[1] PACK2 $Te4[3],A0,$Te4[3] PACKL4 $Te4[1],$Te4[3],$Te4[3] .else PACK2 $Te4[1],$Te4[0],$Te4[1] PACK2 $Te4[3],A0,$Te4[3] PACKL4 $Te4[3],$Te4[1],$Te4[3] .endif XOR $Te4[3],$K[0],$Te4[0] ; K[0] XOR $Te4[0],$K[1],$K[1] ; K[1] MV $Te4[0],$K[0] || XOR $K[1],$K[2],$Te4[2] ; K[2] XOR $Te4[2],$K[3],$K[3] ; K[3] SPKERNEL ;;==================================================================== BNOP RA MV $Te4[2],$K[2] || STW $K[0],*$KPA++[2] || STW $K[1],*$KPB++[2] STW $K[2],*$KPA++[2] || STW $K[3],*$KPB++[2] MVK 10,B0 ; rounds STW B0,*++${KPB}[15] MVK 0,RET ;;==================================================================== ;;==================================================================== key192?: .if .BIG_ENDIAN MV A9,$K[0] || MV A8,$K[1] || MV B9,$K[2] || MV B8,$K[3] MV B17,$Te4[2] || MV B16,$K[5] .else MV A8,$K[0] || MV A9,$K[1] || MV B8,$K[2] || MV B9,$K[3] MV B16,$Te4[2] || MV B17,$K[5] .endif MVK 256,A0 || MVK 6,B0 MV $TEA,$TEB || ADD $TEA,A0,A30 ; rcon ;;==================================================================== loop192?: LDW *A30++[1],A31 ; rcon[i] || MV $Te4[2],$K[4] || EXTU $K[5],EXT1,24,$Te4[0] LDBU *${TEB}[$Te4[0]],$Te4[0] || MV $K[5],A0 || EXTU $K[5],EXT2,24,$Te4[1] LDBU *${TEB}[$Te4[1]],$Te4[1] || EXTU A0,EXT3,24,A0 || EXTU $K[5],EXT0,24,$Te4[3] .if .BIG_ENDIAN LDBU *${TEA}[A0],$Te4[3] || LDBU *${TEB}[$Te4[3]],A0 .else LDBU *${TEA}[A0],A0 || LDBU *${TEB}[$Te4[3]],$Te4[3] .endif STW $K[0],*$KPA++[2] || STW $K[1],*$KPB++[2] STW $K[2],*$KPA++[2] || STW $K[3],*$KPB++[2] STW $K[4],*$KPA++[2] || STW $K[5],*$KPB++[2] XOR A31,$K[0],$K[0] ; ^=rcon[i] .if .BIG_ENDIAN PACK2 $Te4[0],$Te4[1],$Te4[1] || PACK2 $Te4[3],A0,$Te4[3] PACKL4 $Te4[1],$Te4[3],$Te4[3] .else PACK2 $Te4[1],$Te4[0],$Te4[1] || PACK2 $Te4[3],A0,$Te4[3] PACKL4 $Te4[3],$Te4[1],$Te4[3] .endif BDEC loop192?,B0 || XOR $Te4[3],$K[0],$Te4[0] ; K[0] XOR $Te4[0],$K[1],$K[1] ; K[1] MV $Te4[0],$K[0] || XOR $K[1],$K[2],$Te4[2] ; K[2] XOR $Te4[2],$K[3],$K[3] ; K[3] MV $Te4[2],$K[2] || XOR $K[3],$K[4],$Te4[2] ; K[4] XOR $Te4[2],$K[5],$K[5] ; K[5] ;;==================================================================== BNOP RA STW $K[0],*$KPA++[2] || STW $K[1],*$KPB++[2] STW $K[2],*$KPA++[2] || STW $K[3],*$KPB++[2] MVK 12,B0 ; rounds STW B0,*++${KPB}[7] MVK 0,RET ;;==================================================================== ;;==================================================================== key256?: .if .BIG_ENDIAN MV A9,$K[0] || MV A8,$K[1] || MV B9,$K[2] || MV B8,$K[3] MV B17,$K[4] || MV B16,$K[5] || MV B19,$Te4[2] || MV B18,$K[7] .else MV A8,$K[0] || MV A9,$K[1] || MV B8,$K[2] || MV B9,$K[3] MV B16,$K[4] || MV B17,$K[5] || MV B18,$Te4[2] || MV B19,$K[7] .endif MVK 256,A0 || MVK 6,B0 MV $TEA,$TEB || ADD $TEA,A0,A30 ; rcon ;;==================================================================== loop256?: LDW *A30++[1],A31 ; rcon[i] || MV $Te4[2],$K[6] || EXTU $K[7],EXT1,24,$Te4[0] LDBU *${TEB}[$Te4[0]],$Te4[0] || MV $K[7],A0 || EXTU $K[7],EXT2,24,$Te4[1] LDBU *${TEB}[$Te4[1]],$Te4[1] || EXTU A0,EXT3,24,A0 || EXTU $K[7],EXT0,24,$Te4[3] .if .BIG_ENDIAN LDBU *${TEA}[A0],$Te4[3] || LDBU *${TEB}[$Te4[3]],A0 .else LDBU *${TEA}[A0],A0 || LDBU *${TEB}[$Te4[3]],$Te4[3] .endif STW $K[0],*$KPA++[2] || STW $K[1],*$KPB++[2] STW $K[2],*$KPA++[2] || STW $K[3],*$KPB++[2] STW $K[4],*$KPA++[2] || STW $K[5],*$KPB++[2] STW $K[6],*$KPA++[2] || STW $K[7],*$KPB++[2] || XOR A31,$K[0],$K[0] ; ^=rcon[i] .if .BIG_ENDIAN PACK2 $Te4[0],$Te4[1],$Te4[1] || PACK2 $Te4[3],A0,$Te4[3] PACKL4 $Te4[1],$Te4[3],$Te4[3] ||[!B0] B done256? .else PACK2 $Te4[1],$Te4[0],$Te4[1] || PACK2 $Te4[3],A0,$Te4[3] PACKL4 $Te4[3],$Te4[1],$Te4[3] ||[!B0] B done256? .endif XOR $Te4[3],$K[0],$Te4[0] ; K[0] XOR $Te4[0],$K[1],$K[1] ; K[1] MV $Te4[0],$K[0] || XOR $K[1],$K[2],$Te4[2] ; K[2] XOR $Te4[2],$K[3],$K[3] ; K[3] MV $Te4[2],$K[2] || [B0] EXTU $K[3],EXT0,24,$Te4[0] || [B0] SUB B0,1,B0 LDBU *${TEB}[$Te4[0]],$Te4[0] || MV $K[3],A0 || EXTU $K[3],EXT1,24,$Te4[1] LDBU *${TEB}[$Te4[1]],$Te4[1] || EXTU A0,EXT2,24,A0 || EXTU $K[3],EXT3,24,$Te4[3] .if .BIG_ENDIAN LDBU *${TEA}[A0],$Te4[3] || LDBU *${TEB}[$Te4[3]],A0 NOP 3 PACK2 $Te4[0],$Te4[1],$Te4[1] PACK2 $Te4[3],A0,$Te4[3] || B loop256? PACKL4 $Te4[1],$Te4[3],$Te4[3] .else LDBU *${TEA}[A0],A0 || LDBU *${TEB}[$Te4[3]],$Te4[3] NOP 3 PACK2 $Te4[1],$Te4[0],$Te4[1] PACK2 $Te4[3],A0,$Te4[3] || B loop256? PACKL4 $Te4[3],$Te4[1],$Te4[3] .endif XOR $Te4[3],$K[4],$Te4[0] ; K[4] XOR $Te4[0],$K[5],$K[5] ; K[5] MV $Te4[0],$K[4] || XOR $K[5],$K[6],$Te4[2] ; K[6] XOR $Te4[2],$K[7],$K[7] ; K[7] ;;==================================================================== done256?: BNOP RA STW $K[0],*$KPA++[2] || STW $K[1],*$KPB++[2] STW $K[2],*$KPA++[2] || STW $K[3],*$KPB++[2] MVK 14,B0 ; rounds STW B0,*--${KPB}[1] MVK 0,RET .endasmfunc .global _AES_set_decrypt_key _AES_set_decrypt_key: .asmfunc B __set_encrypt_key ; guarantee local call MV KEY,B30 ; B30 is not modified MV RA, B31 ; B31 is not modified ADDKPC ret?,RA,2 ret?: ; B0 holds rounds or zero [!B0] BNOP B31 ; return if zero [B0] SHL B0,4,A0 ; offset to last round key [B0] SHRU B0,1,B1 [B0] SUB B1,1,B1 [B0] MVK 0x0000001B,B3 ; AES polynomial [B0] MVKH 0x07000000,B3 SPLOOPD 9 ; flip round keys || MVC B1,ILC || MV B30,$KPA || ADD B30,A0,$KPB || MVK 16,A0 ; sizeof(round key) ;;==================================================================== LDW *${KPA}[0],A16 || LDW *${KPB}[0],B16 LDW *${KPA}[1],A17 || LDW *${KPB}[1],B17 LDW *${KPA}[2],A18 || LDW *${KPB}[2],B18 LDW *${KPA}[3],A19 || ADD $KPA,A0,$KPA || LDW *${KPB}[3],B19 || SUB $KPB,A0,$KPB NOP STW B16,*${KPA}[-4] || STW A16,*${KPB}[4] STW B17,*${KPA}[-3] || STW A17,*${KPB}[5] STW B18,*${KPA}[-2] || STW A18,*${KPB}[6] STW B19,*${KPA}[-1] || STW A19,*${KPB}[7] SPKERNEL ;;==================================================================== SUB B0,1,B0 ; skip last round || ADD B30,A0,$KPA ; skip first round || ADD B30,A0,$KPB || MVC GFPGFR,B30 ; save GFPGFR LDW *${KPA}[0],$K[0] || LDW *${KPB}[1],$K[1] || MVC B3,GFPGFR LDW *${KPA}[2],$K[2] || LDW *${KPB}[3],$K[3] MVK 0x00000909,A24 || MVK 0x00000B0B,B24 MVKH 0x09090000,A24 || MVKH 0x0B0B0000,B24 MVC B0,ILC || SUB B0,1,B0 GMPY4 $K[0],A24,$Kx9[0] ; ·0x09 || GMPY4 $K[1],A24,$Kx9[1] || MVK 0x00000D0D,A25 || MVK 0x00000E0E,B25 GMPY4 $K[2],A24,$Kx9[2] || GMPY4 $K[3],A24,$Kx9[3] || MVKH 0x0D0D0000,A25 || MVKH 0x0E0E0000,B25 GMPY4 $K[0],B24,$KxB[0] ; ·0x0B || GMPY4 $K[1],B24,$KxB[1] GMPY4 $K[2],B24,$KxB[2] || GMPY4 $K[3],B24,$KxB[3] SPLOOP 11 ; InvMixColumns ;;==================================================================== GMPY4 $K[0],A25,$KxD[0] ; ·0x0D || GMPY4 $K[1],A25,$KxD[1] || SWAP2 $Kx9[0],$Kx9[0] ; rotate by 16 || SWAP2 $Kx9[1],$Kx9[1] || MV $K[0],$s[0] ; this or DINT || MV $K[1],$s[1] || [B0] LDW *${KPA}[4],$K[0] || [B0] LDW *${KPB}[5],$K[1] GMPY4 $K[2],A25,$KxD[2] || GMPY4 $K[3],A25,$KxD[3] || SWAP2 $Kx9[2],$Kx9[2] || SWAP2 $Kx9[3],$Kx9[3] || MV $K[2],$s[2] || MV $K[3],$s[3] || [B0] LDW *${KPA}[6],$K[2] || [B0] LDW *${KPB}[7],$K[3] GMPY4 $s[0],B25,$KxE[0] ; ·0x0E || GMPY4 $s[1],B25,$KxE[1] || XOR $Kx9[0],$KxB[0],$KxB[0] || XOR $Kx9[1],$KxB[1],$KxB[1] GMPY4 $s[2],B25,$KxE[2] || GMPY4 $s[3],B25,$KxE[3] || XOR $Kx9[2],$KxB[2],$KxB[2] || XOR $Kx9[3],$KxB[3],$KxB[3] ROTL $KxB[0],TBL3,$KxB[0] || ROTL $KxB[1],TBL3,$KxB[1] || SWAP2 $KxD[0],$KxD[0] ; rotate by 16 || SWAP2 $KxD[1],$KxD[1] ROTL $KxB[2],TBL3,$KxB[2] || ROTL $KxB[3],TBL3,$KxB[3] || SWAP2 $KxD[2],$KxD[2] || SWAP2 $KxD[3],$KxD[3] XOR $KxE[0],$KxD[0],$KxE[0] || XOR $KxE[1],$KxD[1],$KxE[1] || [B0] GMPY4 $K[0],A24,$Kx9[0] ; ·0x09 || [B0] GMPY4 $K[1],A24,$Kx9[1] || ADDAW $KPA,4,$KPA XOR $KxE[2],$KxD[2],$KxE[2] || XOR $KxE[3],$KxD[3],$KxE[3] || [B0] GMPY4 $K[2],A24,$Kx9[2] || [B0] GMPY4 $K[3],A24,$Kx9[3] || ADDAW $KPB,4,$KPB XOR $KxB[0],$KxE[0],$KxE[0] || XOR $KxB[1],$KxE[1],$KxE[1] || [B0] GMPY4 $K[0],B24,$KxB[0] ; ·0x0B || [B0] GMPY4 $K[1],B24,$KxB[1] XOR $KxB[2],$KxE[2],$KxE[2] || XOR $KxB[3],$KxE[3],$KxE[3] || [B0] GMPY4 $K[2],B24,$KxB[2] || [B0] GMPY4 $K[3],B24,$KxB[3] || STW $KxE[0],*${KPA}[-4] || STW $KxE[1],*${KPB}[-3] STW $KxE[2],*${KPA}[-2] || STW $KxE[3],*${KPB}[-1] || [B0] SUB B0,1,B0 SPKERNEL ;;==================================================================== BNOP B31,3 MVC B30,GFPGFR ; restore GFPGFR(*) MVK 0,RET .endasmfunc ___ # (*) Even though ABI doesn't specify GFPGFR as non-volatile, there # are code samples out there that *assume* its default value. } { my ($inp,$out,$blocks,$key,$ivp)=("A4","B4","A6","B6","A8"); $code.=<<___; .global _AES_ctr32_encrypt _AES_ctr32_encrypt: .asmfunc LDNDW *${ivp}[0],A31:A30 ; load counter value || MV $blocks,A2 ; reassign $blocks || DMV RA,$key,B27:B26 ; reassign RA and $key LDNDW *${ivp}[1],B31:B30 || MVK 0,B2 ; don't let __encrypt load input || MVK 0,A1 ; and postpone writing output .if .BIG_ENDIAN NOP .else NOP 4 SWAP2 B31,B31 ; keep least significant 32 bits SWAP4 B31,B31 ; in host byte order .endif ctr32_loop?: [A2] BNOP __encrypt || [A1] XOR A29,A9,A9 ; input^Ek(counter) || [A1] XOR A28,A8,A8 || [A2] LDNDW *INP++,A29:A28 ; load input [!A2] BNOP B27 ; return || [A1] XOR B29,B9,B9 || [A1] XOR B28,B8,B8 || [A2] LDNDW *INP++,B29:B28 .if .BIG_ENDIAN [A1] STNDW A9:A8,*OUT++ ; save output || [A2] DMV A31,A30,A9:A8 ; pass counter value to __encrypt [A1] STNDW B9:B8,*OUT++ || [A2] DMV B31,B30,B9:B8 || [A2] ADD B30,1,B30 ; counter++ .else [A1] STNDW A9:A8,*OUT++ ; save output || [A2] DMV A31,A30,A9:A8 || [A2] SWAP2 B31,B0 || [A2] ADD B31,1,B31 ; counter++ [A1] STNDW B9:B8,*OUT++ || [A2] MV B30,B8 || [A2] SWAP4 B0,B9 .endif [A2] ADDKPC ctr32_loop?,RA ; return to ctr32_loop? || [A2] MV B26,KEY ; pass $key || [A2] SUB A2,1,A2 ; $blocks-- ||[!A1] MVK 1,A1 NOP NOP .endasmfunc ___ } # Tables are kept in endian-neutral manner $code.=<<___; .if __TI_EABI__ .sect ".text:aes_asm.const" .else .sect ".const:aes_asm" .endif .align 128 AES_Te: .byte 0xc6,0x63,0x63,0xa5, 0xf8,0x7c,0x7c,0x84 .byte 0xee,0x77,0x77,0x99, 0xf6,0x7b,0x7b,0x8d .byte 0xff,0xf2,0xf2,0x0d, 0xd6,0x6b,0x6b,0xbd .byte 0xde,0x6f,0x6f,0xb1, 0x91,0xc5,0xc5,0x54 .byte 0x60,0x30,0x30,0x50, 0x02,0x01,0x01,0x03 .byte 0xce,0x67,0x67,0xa9, 0x56,0x2b,0x2b,0x7d .byte 0xe7,0xfe,0xfe,0x19, 0xb5,0xd7,0xd7,0x62 .byte 0x4d,0xab,0xab,0xe6, 0xec,0x76,0x76,0x9a .byte 0x8f,0xca,0xca,0x45, 0x1f,0x82,0x82,0x9d .byte 0x89,0xc9,0xc9,0x40, 0xfa,0x7d,0x7d,0x87 .byte 0xef,0xfa,0xfa,0x15, 0xb2,0x59,0x59,0xeb .byte 0x8e,0x47,0x47,0xc9, 0xfb,0xf0,0xf0,0x0b .byte 0x41,0xad,0xad,0xec, 0xb3,0xd4,0xd4,0x67 .byte 0x5f,0xa2,0xa2,0xfd, 0x45,0xaf,0xaf,0xea .byte 0x23,0x9c,0x9c,0xbf, 0x53,0xa4,0xa4,0xf7 .byte 0xe4,0x72,0x72,0x96, 0x9b,0xc0,0xc0,0x5b .byte 0x75,0xb7,0xb7,0xc2, 0xe1,0xfd,0xfd,0x1c .byte 0x3d,0x93,0x93,0xae, 0x4c,0x26,0x26,0x6a .byte 0x6c,0x36,0x36,0x5a, 0x7e,0x3f,0x3f,0x41 .byte 0xf5,0xf7,0xf7,0x02, 0x83,0xcc,0xcc,0x4f .byte 0x68,0x34,0x34,0x5c, 0x51,0xa5,0xa5,0xf4 .byte 0xd1,0xe5,0xe5,0x34, 0xf9,0xf1,0xf1,0x08 .byte 0xe2,0x71,0x71,0x93, 0xab,0xd8,0xd8,0x73 .byte 0x62,0x31,0x31,0x53, 0x2a,0x15,0x15,0x3f .byte 0x08,0x04,0x04,0x0c, 0x95,0xc7,0xc7,0x52 .byte 0x46,0x23,0x23,0x65, 0x9d,0xc3,0xc3,0x5e .byte 0x30,0x18,0x18,0x28, 0x37,0x96,0x96,0xa1 .byte 0x0a,0x05,0x05,0x0f, 0x2f,0x9a,0x9a,0xb5 .byte 0x0e,0x07,0x07,0x09, 0x24,0x12,0x12,0x36 .byte 0x1b,0x80,0x80,0x9b, 0xdf,0xe2,0xe2,0x3d .byte 0xcd,0xeb,0xeb,0x26, 0x4e,0x27,0x27,0x69 .byte 0x7f,0xb2,0xb2,0xcd, 0xea,0x75,0x75,0x9f .byte 0x12,0x09,0x09,0x1b, 0x1d,0x83,0x83,0x9e .byte 0x58,0x2c,0x2c,0x74, 0x34,0x1a,0x1a,0x2e .byte 0x36,0x1b,0x1b,0x2d, 0xdc,0x6e,0x6e,0xb2 .byte 0xb4,0x5a,0x5a,0xee, 0x5b,0xa0,0xa0,0xfb .byte 0xa4,0x52,0x52,0xf6, 0x76,0x3b,0x3b,0x4d .byte 0xb7,0xd6,0xd6,0x61, 0x7d,0xb3,0xb3,0xce .byte 0x52,0x29,0x29,0x7b, 0xdd,0xe3,0xe3,0x3e .byte 0x5e,0x2f,0x2f,0x71, 0x13,0x84,0x84,0x97 .byte 0xa6,0x53,0x53,0xf5, 0xb9,0xd1,0xd1,0x68 .byte 0x00,0x00,0x00,0x00, 0xc1,0xed,0xed,0x2c .byte 0x40,0x20,0x20,0x60, 0xe3,0xfc,0xfc,0x1f .byte 0x79,0xb1,0xb1,0xc8, 0xb6,0x5b,0x5b,0xed .byte 0xd4,0x6a,0x6a,0xbe, 0x8d,0xcb,0xcb,0x46 .byte 0x67,0xbe,0xbe,0xd9, 0x72,0x39,0x39,0x4b .byte 0x94,0x4a,0x4a,0xde, 0x98,0x4c,0x4c,0xd4 .byte 0xb0,0x58,0x58,0xe8, 0x85,0xcf,0xcf,0x4a .byte 0xbb,0xd0,0xd0,0x6b, 0xc5,0xef,0xef,0x2a .byte 0x4f,0xaa,0xaa,0xe5, 0xed,0xfb,0xfb,0x16 .byte 0x86,0x43,0x43,0xc5, 0x9a,0x4d,0x4d,0xd7 .byte 0x66,0x33,0x33,0x55, 0x11,0x85,0x85,0x94 .byte 0x8a,0x45,0x45,0xcf, 0xe9,0xf9,0xf9,0x10 .byte 0x04,0x02,0x02,0x06, 0xfe,0x7f,0x7f,0x81 .byte 0xa0,0x50,0x50,0xf0, 0x78,0x3c,0x3c,0x44 .byte 0x25,0x9f,0x9f,0xba, 0x4b,0xa8,0xa8,0xe3 .byte 0xa2,0x51,0x51,0xf3, 0x5d,0xa3,0xa3,0xfe .byte 0x80,0x40,0x40,0xc0, 0x05,0x8f,0x8f,0x8a .byte 0x3f,0x92,0x92,0xad, 0x21,0x9d,0x9d,0xbc .byte 0x70,0x38,0x38,0x48, 0xf1,0xf5,0xf5,0x04 .byte 0x63,0xbc,0xbc,0xdf, 0x77,0xb6,0xb6,0xc1 .byte 0xaf,0xda,0xda,0x75, 0x42,0x21,0x21,0x63 .byte 0x20,0x10,0x10,0x30, 0xe5,0xff,0xff,0x1a .byte 0xfd,0xf3,0xf3,0x0e, 0xbf,0xd2,0xd2,0x6d .byte 0x81,0xcd,0xcd,0x4c, 0x18,0x0c,0x0c,0x14 .byte 0x26,0x13,0x13,0x35, 0xc3,0xec,0xec,0x2f .byte 0xbe,0x5f,0x5f,0xe1, 0x35,0x97,0x97,0xa2 .byte 0x88,0x44,0x44,0xcc, 0x2e,0x17,0x17,0x39 .byte 0x93,0xc4,0xc4,0x57, 0x55,0xa7,0xa7,0xf2 .byte 0xfc,0x7e,0x7e,0x82, 0x7a,0x3d,0x3d,0x47 .byte 0xc8,0x64,0x64,0xac, 0xba,0x5d,0x5d,0xe7 .byte 0x32,0x19,0x19,0x2b, 0xe6,0x73,0x73,0x95 .byte 0xc0,0x60,0x60,0xa0, 0x19,0x81,0x81,0x98 .byte 0x9e,0x4f,0x4f,0xd1, 0xa3,0xdc,0xdc,0x7f .byte 0x44,0x22,0x22,0x66, 0x54,0x2a,0x2a,0x7e .byte 0x3b,0x90,0x90,0xab, 0x0b,0x88,0x88,0x83 .byte 0x8c,0x46,0x46,0xca, 0xc7,0xee,0xee,0x29 .byte 0x6b,0xb8,0xb8,0xd3, 0x28,0x14,0x14,0x3c .byte 0xa7,0xde,0xde,0x79, 0xbc,0x5e,0x5e,0xe2 .byte 0x16,0x0b,0x0b,0x1d, 0xad,0xdb,0xdb,0x76 .byte 0xdb,0xe0,0xe0,0x3b, 0x64,0x32,0x32,0x56 .byte 0x74,0x3a,0x3a,0x4e, 0x14,0x0a,0x0a,0x1e .byte 0x92,0x49,0x49,0xdb, 0x0c,0x06,0x06,0x0a .byte 0x48,0x24,0x24,0x6c, 0xb8,0x5c,0x5c,0xe4 .byte 0x9f,0xc2,0xc2,0x5d, 0xbd,0xd3,0xd3,0x6e .byte 0x43,0xac,0xac,0xef, 0xc4,0x62,0x62,0xa6 .byte 0x39,0x91,0x91,0xa8, 0x31,0x95,0x95,0xa4 .byte 0xd3,0xe4,0xe4,0x37, 0xf2,0x79,0x79,0x8b .byte 0xd5,0xe7,0xe7,0x32, 0x8b,0xc8,0xc8,0x43 .byte 0x6e,0x37,0x37,0x59, 0xda,0x6d,0x6d,0xb7 .byte 0x01,0x8d,0x8d,0x8c, 0xb1,0xd5,0xd5,0x64 .byte 0x9c,0x4e,0x4e,0xd2, 0x49,0xa9,0xa9,0xe0 .byte 0xd8,0x6c,0x6c,0xb4, 0xac,0x56,0x56,0xfa .byte 0xf3,0xf4,0xf4,0x07, 0xcf,0xea,0xea,0x25 .byte 0xca,0x65,0x65,0xaf, 0xf4,0x7a,0x7a,0x8e .byte 0x47,0xae,0xae,0xe9, 0x10,0x08,0x08,0x18 .byte 0x6f,0xba,0xba,0xd5, 0xf0,0x78,0x78,0x88 .byte 0x4a,0x25,0x25,0x6f, 0x5c,0x2e,0x2e,0x72 .byte 0x38,0x1c,0x1c,0x24, 0x57,0xa6,0xa6,0xf1 .byte 0x73,0xb4,0xb4,0xc7, 0x97,0xc6,0xc6,0x51 .byte 0xcb,0xe8,0xe8,0x23, 0xa1,0xdd,0xdd,0x7c .byte 0xe8,0x74,0x74,0x9c, 0x3e,0x1f,0x1f,0x21 .byte 0x96,0x4b,0x4b,0xdd, 0x61,0xbd,0xbd,0xdc .byte 0x0d,0x8b,0x8b,0x86, 0x0f,0x8a,0x8a,0x85 .byte 0xe0,0x70,0x70,0x90, 0x7c,0x3e,0x3e,0x42 .byte 0x71,0xb5,0xb5,0xc4, 0xcc,0x66,0x66,0xaa .byte 0x90,0x48,0x48,0xd8, 0x06,0x03,0x03,0x05 .byte 0xf7,0xf6,0xf6,0x01, 0x1c,0x0e,0x0e,0x12 .byte 0xc2,0x61,0x61,0xa3, 0x6a,0x35,0x35,0x5f .byte 0xae,0x57,0x57,0xf9, 0x69,0xb9,0xb9,0xd0 .byte 0x17,0x86,0x86,0x91, 0x99,0xc1,0xc1,0x58 .byte 0x3a,0x1d,0x1d,0x27, 0x27,0x9e,0x9e,0xb9 .byte 0xd9,0xe1,0xe1,0x38, 0xeb,0xf8,0xf8,0x13 .byte 0x2b,0x98,0x98,0xb3, 0x22,0x11,0x11,0x33 .byte 0xd2,0x69,0x69,0xbb, 0xa9,0xd9,0xd9,0x70 .byte 0x07,0x8e,0x8e,0x89, 0x33,0x94,0x94,0xa7 .byte 0x2d,0x9b,0x9b,0xb6, 0x3c,0x1e,0x1e,0x22 .byte 0x15,0x87,0x87,0x92, 0xc9,0xe9,0xe9,0x20 .byte 0x87,0xce,0xce,0x49, 0xaa,0x55,0x55,0xff .byte 0x50,0x28,0x28,0x78, 0xa5,0xdf,0xdf,0x7a .byte 0x03,0x8c,0x8c,0x8f, 0x59,0xa1,0xa1,0xf8 .byte 0x09,0x89,0x89,0x80, 0x1a,0x0d,0x0d,0x17 .byte 0x65,0xbf,0xbf,0xda, 0xd7,0xe6,0xe6,0x31 .byte 0x84,0x42,0x42,0xc6, 0xd0,0x68,0x68,0xb8 .byte 0x82,0x41,0x41,0xc3, 0x29,0x99,0x99,0xb0 .byte 0x5a,0x2d,0x2d,0x77, 0x1e,0x0f,0x0f,0x11 .byte 0x7b,0xb0,0xb0,0xcb, 0xa8,0x54,0x54,0xfc .byte 0x6d,0xbb,0xbb,0xd6, 0x2c,0x16,0x16,0x3a AES_Te4: .byte 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 .byte 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 .byte 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 .byte 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 .byte 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc .byte 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 .byte 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a .byte 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 .byte 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 .byte 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 .byte 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b .byte 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf .byte 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 .byte 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 .byte 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 .byte 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 .byte 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 .byte 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 .byte 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 .byte 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb .byte 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c .byte 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 .byte 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 .byte 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 .byte 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 .byte 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a .byte 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e .byte 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e .byte 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 .byte 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf .byte 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 .byte 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 rcon: .byte 0x01,0x00,0x00,0x00, 0x02,0x00,0x00,0x00 .byte 0x04,0x00,0x00,0x00, 0x08,0x00,0x00,0x00 .byte 0x10,0x00,0x00,0x00, 0x20,0x00,0x00,0x00 .byte 0x40,0x00,0x00,0x00, 0x80,0x00,0x00,0x00 .byte 0x1B,0x00,0x00,0x00, 0x36,0x00,0x00,0x00 .align 128 AES_Td: .byte 0x51,0xf4,0xa7,0x50, 0x7e,0x41,0x65,0x53 .byte 0x1a,0x17,0xa4,0xc3, 0x3a,0x27,0x5e,0x96 .byte 0x3b,0xab,0x6b,0xcb, 0x1f,0x9d,0x45,0xf1 .byte 0xac,0xfa,0x58,0xab, 0x4b,0xe3,0x03,0x93 .byte 0x20,0x30,0xfa,0x55, 0xad,0x76,0x6d,0xf6 .byte 0x88,0xcc,0x76,0x91, 0xf5,0x02,0x4c,0x25 .byte 0x4f,0xe5,0xd7,0xfc, 0xc5,0x2a,0xcb,0xd7 .byte 0x26,0x35,0x44,0x80, 0xb5,0x62,0xa3,0x8f .byte 0xde,0xb1,0x5a,0x49, 0x25,0xba,0x1b,0x67 .byte 0x45,0xea,0x0e,0x98, 0x5d,0xfe,0xc0,0xe1 .byte 0xc3,0x2f,0x75,0x02, 0x81,0x4c,0xf0,0x12 .byte 0x8d,0x46,0x97,0xa3, 0x6b,0xd3,0xf9,0xc6 .byte 0x03,0x8f,0x5f,0xe7, 0x15,0x92,0x9c,0x95 .byte 0xbf,0x6d,0x7a,0xeb, 0x95,0x52,0x59,0xda .byte 0xd4,0xbe,0x83,0x2d, 0x58,0x74,0x21,0xd3 .byte 0x49,0xe0,0x69,0x29, 0x8e,0xc9,0xc8,0x44 .byte 0x75,0xc2,0x89,0x6a, 0xf4,0x8e,0x79,0x78 .byte 0x99,0x58,0x3e,0x6b, 0x27,0xb9,0x71,0xdd .byte 0xbe,0xe1,0x4f,0xb6, 0xf0,0x88,0xad,0x17 .byte 0xc9,0x20,0xac,0x66, 0x7d,0xce,0x3a,0xb4 .byte 0x63,0xdf,0x4a,0x18, 0xe5,0x1a,0x31,0x82 .byte 0x97,0x51,0x33,0x60, 0x62,0x53,0x7f,0x45 .byte 0xb1,0x64,0x77,0xe0, 0xbb,0x6b,0xae,0x84 .byte 0xfe,0x81,0xa0,0x1c, 0xf9,0x08,0x2b,0x94 .byte 0x70,0x48,0x68,0x58, 0x8f,0x45,0xfd,0x19 .byte 0x94,0xde,0x6c,0x87, 0x52,0x7b,0xf8,0xb7 .byte 0xab,0x73,0xd3,0x23, 0x72,0x4b,0x02,0xe2 .byte 0xe3,0x1f,0x8f,0x57, 0x66,0x55,0xab,0x2a .byte 0xb2,0xeb,0x28,0x07, 0x2f,0xb5,0xc2,0x03 .byte 0x86,0xc5,0x7b,0x9a, 0xd3,0x37,0x08,0xa5 .byte 0x30,0x28,0x87,0xf2, 0x23,0xbf,0xa5,0xb2 .byte 0x02,0x03,0x6a,0xba, 0xed,0x16,0x82,0x5c .byte 0x8a,0xcf,0x1c,0x2b, 0xa7,0x79,0xb4,0x92 .byte 0xf3,0x07,0xf2,0xf0, 0x4e,0x69,0xe2,0xa1 .byte 0x65,0xda,0xf4,0xcd, 0x06,0x05,0xbe,0xd5 .byte 0xd1,0x34,0x62,0x1f, 0xc4,0xa6,0xfe,0x8a .byte 0x34,0x2e,0x53,0x9d, 0xa2,0xf3,0x55,0xa0 .byte 0x05,0x8a,0xe1,0x32, 0xa4,0xf6,0xeb,0x75 .byte 0x0b,0x83,0xec,0x39, 0x40,0x60,0xef,0xaa .byte 0x5e,0x71,0x9f,0x06, 0xbd,0x6e,0x10,0x51 .byte 0x3e,0x21,0x8a,0xf9, 0x96,0xdd,0x06,0x3d .byte 0xdd,0x3e,0x05,0xae, 0x4d,0xe6,0xbd,0x46 .byte 0x91,0x54,0x8d,0xb5, 0x71,0xc4,0x5d,0x05 .byte 0x04,0x06,0xd4,0x6f, 0x60,0x50,0x15,0xff .byte 0x19,0x98,0xfb,0x24, 0xd6,0xbd,0xe9,0x97 .byte 0x89,0x40,0x43,0xcc, 0x67,0xd9,0x9e,0x77 .byte 0xb0,0xe8,0x42,0xbd, 0x07,0x89,0x8b,0x88 .byte 0xe7,0x19,0x5b,0x38, 0x79,0xc8,0xee,0xdb .byte 0xa1,0x7c,0x0a,0x47, 0x7c,0x42,0x0f,0xe9 .byte 0xf8,0x84,0x1e,0xc9, 0x00,0x00,0x00,0x00 .byte 0x09,0x80,0x86,0x83, 0x32,0x2b,0xed,0x48 .byte 0x1e,0x11,0x70,0xac, 0x6c,0x5a,0x72,0x4e .byte 0xfd,0x0e,0xff,0xfb, 0x0f,0x85,0x38,0x56 .byte 0x3d,0xae,0xd5,0x1e, 0x36,0x2d,0x39,0x27 .byte 0x0a,0x0f,0xd9,0x64, 0x68,0x5c,0xa6,0x21 .byte 0x9b,0x5b,0x54,0xd1, 0x24,0x36,0x2e,0x3a .byte 0x0c,0x0a,0x67,0xb1, 0x93,0x57,0xe7,0x0f .byte 0xb4,0xee,0x96,0xd2, 0x1b,0x9b,0x91,0x9e .byte 0x80,0xc0,0xc5,0x4f, 0x61,0xdc,0x20,0xa2 .byte 0x5a,0x77,0x4b,0x69, 0x1c,0x12,0x1a,0x16 .byte 0xe2,0x93,0xba,0x0a, 0xc0,0xa0,0x2a,0xe5 .byte 0x3c,0x22,0xe0,0x43, 0x12,0x1b,0x17,0x1d .byte 0x0e,0x09,0x0d,0x0b, 0xf2,0x8b,0xc7,0xad .byte 0x2d,0xb6,0xa8,0xb9, 0x14,0x1e,0xa9,0xc8 .byte 0x57,0xf1,0x19,0x85, 0xaf,0x75,0x07,0x4c .byte 0xee,0x99,0xdd,0xbb, 0xa3,0x7f,0x60,0xfd .byte 0xf7,0x01,0x26,0x9f, 0x5c,0x72,0xf5,0xbc .byte 0x44,0x66,0x3b,0xc5, 0x5b,0xfb,0x7e,0x34 .byte 0x8b,0x43,0x29,0x76, 0xcb,0x23,0xc6,0xdc .byte 0xb6,0xed,0xfc,0x68, 0xb8,0xe4,0xf1,0x63 .byte 0xd7,0x31,0xdc,0xca, 0x42,0x63,0x85,0x10 .byte 0x13,0x97,0x22,0x40, 0x84,0xc6,0x11,0x20 .byte 0x85,0x4a,0x24,0x7d, 0xd2,0xbb,0x3d,0xf8 .byte 0xae,0xf9,0x32,0x11, 0xc7,0x29,0xa1,0x6d .byte 0x1d,0x9e,0x2f,0x4b, 0xdc,0xb2,0x30,0xf3 .byte 0x0d,0x86,0x52,0xec, 0x77,0xc1,0xe3,0xd0 .byte 0x2b,0xb3,0x16,0x6c, 0xa9,0x70,0xb9,0x99 .byte 0x11,0x94,0x48,0xfa, 0x47,0xe9,0x64,0x22 .byte 0xa8,0xfc,0x8c,0xc4, 0xa0,0xf0,0x3f,0x1a .byte 0x56,0x7d,0x2c,0xd8, 0x22,0x33,0x90,0xef .byte 0x87,0x49,0x4e,0xc7, 0xd9,0x38,0xd1,0xc1 .byte 0x8c,0xca,0xa2,0xfe, 0x98,0xd4,0x0b,0x36 .byte 0xa6,0xf5,0x81,0xcf, 0xa5,0x7a,0xde,0x28 .byte 0xda,0xb7,0x8e,0x26, 0x3f,0xad,0xbf,0xa4 .byte 0x2c,0x3a,0x9d,0xe4, 0x50,0x78,0x92,0x0d .byte 0x6a,0x5f,0xcc,0x9b, 0x54,0x7e,0x46,0x62 .byte 0xf6,0x8d,0x13,0xc2, 0x90,0xd8,0xb8,0xe8 .byte 0x2e,0x39,0xf7,0x5e, 0x82,0xc3,0xaf,0xf5 .byte 0x9f,0x5d,0x80,0xbe, 0x69,0xd0,0x93,0x7c .byte 0x6f,0xd5,0x2d,0xa9, 0xcf,0x25,0x12,0xb3 .byte 0xc8,0xac,0x99,0x3b, 0x10,0x18,0x7d,0xa7 .byte 0xe8,0x9c,0x63,0x6e, 0xdb,0x3b,0xbb,0x7b .byte 0xcd,0x26,0x78,0x09, 0x6e,0x59,0x18,0xf4 .byte 0xec,0x9a,0xb7,0x01, 0x83,0x4f,0x9a,0xa8 .byte 0xe6,0x95,0x6e,0x65, 0xaa,0xff,0xe6,0x7e .byte 0x21,0xbc,0xcf,0x08, 0xef,0x15,0xe8,0xe6 .byte 0xba,0xe7,0x9b,0xd9, 0x4a,0x6f,0x36,0xce .byte 0xea,0x9f,0x09,0xd4, 0x29,0xb0,0x7c,0xd6 .byte 0x31,0xa4,0xb2,0xaf, 0x2a,0x3f,0x23,0x31 .byte 0xc6,0xa5,0x94,0x30, 0x35,0xa2,0x66,0xc0 .byte 0x74,0x4e,0xbc,0x37, 0xfc,0x82,0xca,0xa6 .byte 0xe0,0x90,0xd0,0xb0, 0x33,0xa7,0xd8,0x15 .byte 0xf1,0x04,0x98,0x4a, 0x41,0xec,0xda,0xf7 .byte 0x7f,0xcd,0x50,0x0e, 0x17,0x91,0xf6,0x2f .byte 0x76,0x4d,0xd6,0x8d, 0x43,0xef,0xb0,0x4d .byte 0xcc,0xaa,0x4d,0x54, 0xe4,0x96,0x04,0xdf .byte 0x9e,0xd1,0xb5,0xe3, 0x4c,0x6a,0x88,0x1b .byte 0xc1,0x2c,0x1f,0xb8, 0x46,0x65,0x51,0x7f .byte 0x9d,0x5e,0xea,0x04, 0x01,0x8c,0x35,0x5d .byte 0xfa,0x87,0x74,0x73, 0xfb,0x0b,0x41,0x2e .byte 0xb3,0x67,0x1d,0x5a, 0x92,0xdb,0xd2,0x52 .byte 0xe9,0x10,0x56,0x33, 0x6d,0xd6,0x47,0x13 .byte 0x9a,0xd7,0x61,0x8c, 0x37,0xa1,0x0c,0x7a .byte 0x59,0xf8,0x14,0x8e, 0xeb,0x13,0x3c,0x89 .byte 0xce,0xa9,0x27,0xee, 0xb7,0x61,0xc9,0x35 .byte 0xe1,0x1c,0xe5,0xed, 0x7a,0x47,0xb1,0x3c .byte 0x9c,0xd2,0xdf,0x59, 0x55,0xf2,0x73,0x3f .byte 0x18,0x14,0xce,0x79, 0x73,0xc7,0x37,0xbf .byte 0x53,0xf7,0xcd,0xea, 0x5f,0xfd,0xaa,0x5b .byte 0xdf,0x3d,0x6f,0x14, 0x78,0x44,0xdb,0x86 .byte 0xca,0xaf,0xf3,0x81, 0xb9,0x68,0xc4,0x3e .byte 0x38,0x24,0x34,0x2c, 0xc2,0xa3,0x40,0x5f .byte 0x16,0x1d,0xc3,0x72, 0xbc,0xe2,0x25,0x0c .byte 0x28,0x3c,0x49,0x8b, 0xff,0x0d,0x95,0x41 .byte 0x39,0xa8,0x01,0x71, 0x08,0x0c,0xb3,0xde .byte 0xd8,0xb4,0xe4,0x9c, 0x64,0x56,0xc1,0x90 .byte 0x7b,0xcb,0x84,0x61, 0xd5,0x32,0xb6,0x70 .byte 0x48,0x6c,0x5c,0x74, 0xd0,0xb8,0x57,0x42 AES_Td4: .byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 .byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb .byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 .byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb .byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d .byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e .byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 .byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 .byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 .byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 .byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda .byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 .byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a .byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 .byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 .byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b .byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea .byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 .byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 .byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e .byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 .byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b .byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 .byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 .byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 .byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f .byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d .byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef .byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 .byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 .byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 .byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d .cstring "AES for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aes-ia64.S000066400000000000000000001212201364063235100176510ustar00rootroot00000000000000// Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. // // Licensed under the OpenSSL license (the "License"). You may not use // this file except in compliance with the License. You can obtain a copy // in the file LICENSE in the source distribution or at // https://www.openssl.org/source/license.html // // ==================================================================== // Written by Andy Polyakov for the OpenSSL // project. Rights for redistribution and usage in source and binary // forms are granted according to the OpenSSL license. // ==================================================================== // // What's wrong with compiler generated code? Compiler never uses // variable 'shr' which is pairable with 'extr'/'dep' instructions. // Then it uses 'zxt' which is an I-type, but can be replaced with // 'and' which in turn can be assigned to M-port [there're double as // much M-ports as there're I-ports on Itanium 2]. By sacrificing few // registers for small constants (255, 24 and 16) to be used with // 'shr' and 'and' instructions I can achieve better ILP, Instruction // Level Parallelism, and performance. This code outperforms GCC 3.3 // generated code by over factor of 2 (two), GCC 3.4 - by 70% and // HP C - by 40%. Measured best-case scenario, i.e. aligned // big-endian input, ECB timing on Itanium 2 is (18 + 13*rounds) // ticks per block, or 9.25 CPU cycles per byte for 128 bit key. // Version 1.2 mitigates the hazard of cache-timing attacks by // a) compressing S-boxes from 8KB to 2KB+256B, b) scheduling // references to S-boxes for L2 cache latency, c) prefetching T[ed]4 // prior last round. As result performance dropped to (26 + 15*rounds) // ticks per block or 11 cycles per byte processed with 128-bit key. // This is ~16% deterioration. For reference Itanium 2 L1 cache has // 64 bytes line size and L2 - 128 bytes... .ident "aes-ia64.S, version 1.2" .ident "IA-64 ISA artwork by Andy Polyakov " .explicit .text rk0=r8; rk1=r9; pfssave=r2; lcsave=r10; prsave=r3; maskff=r11; twenty4=r14; sixteen=r15; te00=r16; te11=r17; te22=r18; te33=r19; te01=r20; te12=r21; te23=r22; te30=r23; te02=r24; te13=r25; te20=r26; te31=r27; te03=r28; te10=r29; te21=r30; te32=r31; // these are rotating... t0=r32; s0=r33; t1=r34; s1=r35; t2=r36; s2=r37; t3=r38; s3=r39; te0=r40; te1=r41; te2=r42; te3=r43; #if defined(_HPUX_SOURCE) && !defined(_LP64) # define ADDP addp4 #else # define ADDP add #endif // Offsets from Te0 #define TE0 0 #define TE2 2 #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) #define TE1 3 #define TE3 1 #else #define TE1 1 #define TE3 3 #endif // This implies that AES_KEY comprises 32-bit key schedule elements // even on LP64 platforms. #ifndef KSZ # define KSZ 4 # define LDKEY ld4 #endif .proc _ia64_AES_encrypt# // Input: rk0-rk1 // te0 // te3 as AES_KEY->rounds!!! // s0-s3 // maskff,twenty4,sixteen // Output: r16,r20,r24,r28 as s0-s3 // Clobber: r16-r31,rk0-rk1,r32-r43 .align 32 _ia64_AES_encrypt: .prologue .altrp b6 .body { .mmi; alloc r16=ar.pfs,12,0,0,8 LDKEY t0=[rk0],2*KSZ mov pr.rot=1<<16 } { .mmi; LDKEY t1=[rk1],2*KSZ add te1=TE1,te0 add te3=-3,te3 };; { .mib; LDKEY t2=[rk0],2*KSZ mov ar.ec=2 } { .mib; LDKEY t3=[rk1],2*KSZ add te2=TE2,te0 brp.loop.imp .Le_top,.Le_end-16 };; { .mmi; xor s0=s0,t0 xor s1=s1,t1 mov ar.lc=te3 } { .mmi; xor s2=s2,t2 xor s3=s3,t3 add te3=TE3,te0 };; .align 32 .Le_top: { .mmi; (p0) LDKEY t0=[rk0],2*KSZ // 0/0:rk[0] (p0) and te33=s3,maskff // 0/0:s3&0xff (p0) extr.u te22=s2,8,8 } // 0/0:s2>>8&0xff { .mmi; (p0) LDKEY t1=[rk1],2*KSZ // 0/1:rk[1] (p0) and te30=s0,maskff // 0/1:s0&0xff (p0) shr.u te00=s0,twenty4 };; // 0/0:s0>>24 { .mmi; (p0) LDKEY t2=[rk0],2*KSZ // 1/2:rk[2] (p0) shladd te33=te33,3,te3 // 1/0:te0+s0>>24 (p0) extr.u te23=s3,8,8 } // 1/1:s3>>8&0xff { .mmi; (p0) LDKEY t3=[rk1],2*KSZ // 1/3:rk[3] (p0) shladd te30=te30,3,te3 // 1/1:te3+s0 (p0) shr.u te01=s1,twenty4 };; // 1/1:s1>>24 { .mmi; (p0) ld4 te33=[te33] // 2/0:te3[s3&0xff] (p0) shladd te22=te22,3,te2 // 2/0:te2+s2>>8&0xff (p0) extr.u te20=s0,8,8 } // 2/2:s0>>8&0xff { .mmi; (p0) ld4 te30=[te30] // 2/1:te3[s0] (p0) shladd te23=te23,3,te2 // 2/1:te2+s3>>8 (p0) shr.u te02=s2,twenty4 };; // 2/2:s2>>24 { .mmi; (p0) ld4 te22=[te22] // 3/0:te2[s2>>8] (p0) shladd te20=te20,3,te2 // 3/2:te2+s0>>8 (p0) extr.u te21=s1,8,8 } // 3/3:s1>>8&0xff { .mmi; (p0) ld4 te23=[te23] // 3/1:te2[s3>>8] (p0) shladd te00=te00,3,te0 // 3/0:te0+s0>>24 (p0) shr.u te03=s3,twenty4 };; // 3/3:s3>>24 { .mmi; (p0) ld4 te20=[te20] // 4/2:te2[s0>>8] (p0) shladd te21=te21,3,te2 // 4/3:te3+s2 (p0) extr.u te11=s1,16,8 } // 4/0:s1>>16&0xff { .mmi; (p0) ld4 te00=[te00] // 4/0:te0[s0>>24] (p0) shladd te01=te01,3,te0 // 4/1:te0+s1>>24 (p0) shr.u te13=s3,sixteen };; // 4/2:s3>>16 { .mmi; (p0) ld4 te21=[te21] // 5/3:te2[s1>>8] (p0) shladd te11=te11,3,te1 // 5/0:te1+s1>>16 (p0) extr.u te12=s2,16,8 } // 5/1:s2>>16&0xff { .mmi; (p0) ld4 te01=[te01] // 5/1:te0[s1>>24] (p0) shladd te02=te02,3,te0 // 5/2:te0+s2>>24 (p0) and te31=s1,maskff };; // 5/2:s1&0xff { .mmi; (p0) ld4 te11=[te11] // 6/0:te1[s1>>16] (p0) shladd te12=te12,3,te1 // 6/1:te1+s2>>16 (p0) extr.u te10=s0,16,8 } // 6/3:s0>>16&0xff { .mmi; (p0) ld4 te02=[te02] // 6/2:te0[s2>>24] (p0) shladd te03=te03,3,te0 // 6/3:te1+s0>>16 (p0) and te32=s2,maskff };; // 6/3:s2&0xff { .mmi; (p0) ld4 te12=[te12] // 7/1:te1[s2>>16] (p0) shladd te31=te31,3,te3 // 7/2:te3+s1&0xff (p0) and te13=te13,maskff} // 7/2:s3>>16&0xff { .mmi; (p0) ld4 te03=[te03] // 7/3:te0[s3>>24] (p0) shladd te32=te32,3,te3 // 7/3:te3+s2 (p0) xor t0=t0,te33 };; // 7/0: { .mmi; (p0) ld4 te31=[te31] // 8/2:te3[s1] (p0) shladd te13=te13,3,te1 // 8/2:te1+s3>>16 (p0) xor t0=t0,te22 } // 8/0: { .mmi; (p0) ld4 te32=[te32] // 8/3:te3[s2] (p0) shladd te10=te10,3,te1 // 8/3:te1+s0>>16 (p0) xor t1=t1,te30 };; // 8/1: { .mmi; (p0) ld4 te13=[te13] // 9/2:te1[s3>>16] (p0) ld4 te10=[te10] // 9/3:te1[s0>>16] (p0) xor t0=t0,te00 };; // 9/0: !L2 scheduling { .mmi; (p0) xor t1=t1,te23 // 10[9]/1: (p0) xor t2=t2,te20 // 10[9]/2: (p0) xor t3=t3,te21 };; // 10[9]/3: { .mmi; (p0) xor t0=t0,te11 // 11[10]/0:done! (p0) xor t1=t1,te01 // 11[10]/1: (p0) xor t2=t2,te02 };; // 11[10]/2: !L2 scheduling { .mmi; (p0) xor t3=t3,te03 // 12[10]/3: (p16) cmp.eq p0,p17=r0,r0 };; // 12[10]/clear (p17) { .mmi; (p0) xor t1=t1,te12 // 13[11]/1:done! (p0) xor t2=t2,te31 // 13[11]/2: (p0) xor t3=t3,te32 } // 13[11]/3: { .mmi; (p17) add te0=2048,te0 // 13[11]/ (p17) add te1=2048+64-TE1,te1};; // 13[11]/ { .mib; (p0) xor t2=t2,te13 // 14[12]/2:done! (p17) add te2=2048+128-TE2,te2} // 14[12]/ { .mib; (p0) xor t3=t3,te10 // 14[12]/3:done! (p17) add te3=2048+192-TE3,te3 // 14[12]/ br.ctop.sptk .Le_top };; .Le_end: { .mmi; ld8 te12=[te0] // prefetch Te4 ld8 te31=[te1] } { .mmi; ld8 te10=[te2] ld8 te32=[te3] } { .mmi; LDKEY t0=[rk0],2*KSZ // 0/0:rk[0] and te33=s3,maskff // 0/0:s3&0xff extr.u te22=s2,8,8 } // 0/0:s2>>8&0xff { .mmi; LDKEY t1=[rk1],2*KSZ // 0/1:rk[1] and te30=s0,maskff // 0/1:s0&0xff shr.u te00=s0,twenty4 };; // 0/0:s0>>24 { .mmi; LDKEY t2=[rk0],2*KSZ // 1/2:rk[2] add te33=te33,te0 // 1/0:te0+s0>>24 extr.u te23=s3,8,8 } // 1/1:s3>>8&0xff { .mmi; LDKEY t3=[rk1],2*KSZ // 1/3:rk[3] add te30=te30,te0 // 1/1:te0+s0 shr.u te01=s1,twenty4 };; // 1/1:s1>>24 { .mmi; ld1 te33=[te33] // 2/0:te0[s3&0xff] add te22=te22,te0 // 2/0:te0+s2>>8&0xff extr.u te20=s0,8,8 } // 2/2:s0>>8&0xff { .mmi; ld1 te30=[te30] // 2/1:te0[s0] add te23=te23,te0 // 2/1:te0+s3>>8 shr.u te02=s2,twenty4 };; // 2/2:s2>>24 { .mmi; ld1 te22=[te22] // 3/0:te0[s2>>8] add te20=te20,te0 // 3/2:te0+s0>>8 extr.u te21=s1,8,8 } // 3/3:s1>>8&0xff { .mmi; ld1 te23=[te23] // 3/1:te0[s3>>8] add te00=te00,te0 // 3/0:te0+s0>>24 shr.u te03=s3,twenty4 };; // 3/3:s3>>24 { .mmi; ld1 te20=[te20] // 4/2:te0[s0>>8] add te21=te21,te0 // 4/3:te0+s2 extr.u te11=s1,16,8 } // 4/0:s1>>16&0xff { .mmi; ld1 te00=[te00] // 4/0:te0[s0>>24] add te01=te01,te0 // 4/1:te0+s1>>24 shr.u te13=s3,sixteen };; // 4/2:s3>>16 { .mmi; ld1 te21=[te21] // 5/3:te0[s1>>8] add te11=te11,te0 // 5/0:te0+s1>>16 extr.u te12=s2,16,8 } // 5/1:s2>>16&0xff { .mmi; ld1 te01=[te01] // 5/1:te0[s1>>24] add te02=te02,te0 // 5/2:te0+s2>>24 and te31=s1,maskff };; // 5/2:s1&0xff { .mmi; ld1 te11=[te11] // 6/0:te0[s1>>16] add te12=te12,te0 // 6/1:te0+s2>>16 extr.u te10=s0,16,8 } // 6/3:s0>>16&0xff { .mmi; ld1 te02=[te02] // 6/2:te0[s2>>24] add te03=te03,te0 // 6/3:te0+s0>>16 and te32=s2,maskff };; // 6/3:s2&0xff { .mmi; ld1 te12=[te12] // 7/1:te0[s2>>16] add te31=te31,te0 // 7/2:te0+s1&0xff dep te33=te22,te33,8,8} // 7/0: { .mmi; ld1 te03=[te03] // 7/3:te0[s3>>24] add te32=te32,te0 // 7/3:te0+s2 and te13=te13,maskff};; // 7/2:s3>>16&0xff { .mmi; ld1 te31=[te31] // 8/2:te0[s1] add te13=te13,te0 // 8/2:te0+s3>>16 dep te30=te23,te30,8,8} // 8/1: { .mmi; ld1 te32=[te32] // 8/3:te0[s2] add te10=te10,te0 // 8/3:te0+s0>>16 shl te00=te00,twenty4};; // 8/0: { .mii; ld1 te13=[te13] // 9/2:te0[s3>>16] dep te33=te11,te33,16,8 // 9/0: shl te01=te01,twenty4};; // 9/1: { .mii; ld1 te10=[te10] // 10/3:te0[s0>>16] dep te31=te20,te31,8,8 // 10/2: shl te02=te02,twenty4};; // 10/2: { .mii; xor t0=t0,te33 // 11/0: dep te32=te21,te32,8,8 // 11/3: shl te12=te12,sixteen};; // 11/1: { .mii; xor r16=t0,te00 // 12/0:done! dep te31=te13,te31,16,8 // 12/2: shl te03=te03,twenty4};; // 12/3: { .mmi; xor t1=t1,te01 // 13/1: xor t2=t2,te02 // 13/2: dep te32=te10,te32,16,8};; // 13/3: { .mmi; xor t1=t1,te30 // 14/1: xor r24=t2,te31 // 14/2:done! xor t3=t3,te32 };; // 14/3: { .mib; xor r20=t1,te12 // 15/1:done! xor r28=t3,te03 // 15/3:done! br.ret.sptk b6 };; .endp _ia64_AES_encrypt# // void AES_encrypt (const void *in,void *out,const AES_KEY *key); .global AES_encrypt# .proc AES_encrypt# .align 32 AES_encrypt: .prologue .save ar.pfs,pfssave { .mmi; alloc pfssave=ar.pfs,3,1,12,0 and out0=3,in0 mov r3=ip } { .mmi; ADDP in0=0,in0 mov loc0=psr.um ADDP out11=KSZ*60,in2 };; // &AES_KEY->rounds { .mmi; ld4 out11=[out11] // AES_KEY->rounds add out8=(AES_Te#-AES_encrypt#),r3 // Te0 .save pr,prsave mov prsave=pr } { .mmi; rum 1<<3 // clear um.ac .save ar.lc,lcsave mov lcsave=ar.lc };; .body #if defined(_HPUX_SOURCE) // HPUX is big-endian, cut 15+15 cycles... { .mib; cmp.ne p6,p0=out0,r0 add out0=4,in0 (p6) br.dpnt.many .Le_i_unaligned };; { .mmi; ld4 out1=[in0],8 // s0 and out9=3,in1 mov twenty4=24 } { .mmi; ld4 out3=[out0],8 // s1 ADDP rk0=0,in2 mov sixteen=16 };; { .mmi; ld4 out5=[in0] // s2 cmp.ne p6,p0=out9,r0 mov maskff=0xff } { .mmb; ld4 out7=[out0] // s3 ADDP rk1=KSZ,in2 br.call.sptk.many b6=_ia64_AES_encrypt };; { .mib; ADDP in0=4,in1 ADDP in1=0,in1 (p6) br.spnt .Le_o_unaligned };; { .mii; mov psr.um=loc0 mov ar.pfs=pfssave mov ar.lc=lcsave };; { .mmi; st4 [in1]=r16,8 // s0 st4 [in0]=r20,8 // s1 mov pr=prsave,0x1ffff };; { .mmb; st4 [in1]=r24 // s2 st4 [in0]=r28 // s3 br.ret.sptk.many b0 };; #endif .align 32 .Le_i_unaligned: { .mmi; add out0=1,in0 add out2=2,in0 add out4=3,in0 };; { .mmi; ld1 r16=[in0],4 ld1 r17=[out0],4 }//;; { .mmi; ld1 r18=[out2],4 ld1 out1=[out4],4 };; // s0 { .mmi; ld1 r20=[in0],4 ld1 r21=[out0],4 }//;; { .mmi; ld1 r22=[out2],4 ld1 out3=[out4],4 };; // s1 { .mmi; ld1 r24=[in0],4 ld1 r25=[out0],4 }//;; { .mmi; ld1 r26=[out2],4 ld1 out5=[out4],4 };; // s2 { .mmi; ld1 r28=[in0] ld1 r29=[out0] }//;; { .mmi; ld1 r30=[out2] ld1 out7=[out4] };; // s3 { .mii; dep out1=r16,out1,24,8 //;; dep out3=r20,out3,24,8 }//;; { .mii; ADDP rk0=0,in2 dep out5=r24,out5,24,8 //;; dep out7=r28,out7,24,8 };; { .mii; ADDP rk1=KSZ,in2 dep out1=r17,out1,16,8 //;; dep out3=r21,out3,16,8 }//;; { .mii; mov twenty4=24 dep out5=r25,out5,16,8 //;; dep out7=r29,out7,16,8 };; { .mii; mov sixteen=16 dep out1=r18,out1,8,8 //;; dep out3=r22,out3,8,8 }//;; { .mii; mov maskff=0xff dep out5=r26,out5,8,8 //;; dep out7=r30,out7,8,8 };; { .mib; br.call.sptk.many b6=_ia64_AES_encrypt };; .Le_o_unaligned: { .mii; ADDP out0=0,in1 extr.u r17=r16,8,8 // s0 shr.u r19=r16,twenty4 }//;; { .mii; ADDP out1=1,in1 extr.u r18=r16,16,8 shr.u r23=r20,twenty4 }//;; // s1 { .mii; ADDP out2=2,in1 extr.u r21=r20,8,8 shr.u r22=r20,sixteen }//;; { .mii; ADDP out3=3,in1 extr.u r25=r24,8,8 // s2 shr.u r27=r24,twenty4 };; { .mii; st1 [out3]=r16,4 extr.u r26=r24,16,8 shr.u r31=r28,twenty4 }//;; // s3 { .mii; st1 [out2]=r17,4 extr.u r29=r28,8,8 shr.u r30=r28,sixteen }//;; { .mmi; st1 [out1]=r18,4 st1 [out0]=r19,4 };; { .mmi; st1 [out3]=r20,4 st1 [out2]=r21,4 }//;; { .mmi; st1 [out1]=r22,4 st1 [out0]=r23,4 };; { .mmi; st1 [out3]=r24,4 st1 [out2]=r25,4 mov pr=prsave,0x1ffff }//;; { .mmi; st1 [out1]=r26,4 st1 [out0]=r27,4 mov ar.pfs=pfssave };; { .mmi; st1 [out3]=r28 st1 [out2]=r29 mov ar.lc=lcsave }//;; { .mmi; st1 [out1]=r30 st1 [out0]=r31 } { .mfb; mov psr.um=loc0 // restore user mask br.ret.sptk.many b0 };; .endp AES_encrypt# // *AES_decrypt are autogenerated by the following script: #if 0 #!/usr/bin/env perl print "// *AES_decrypt are autogenerated by the following script:\n#if 0\n"; open(PROG,'<'.$0); while() { print; } close(PROG); print "#endif\n"; while(<>) { $process=1 if (/\.proc\s+_ia64_AES_encrypt/); next if (!$process); #s/te00=s0/td00=s0/; s/te00/td00/g; s/te11=s1/td13=s3/; s/te11/td13/g; #s/te22=s2/td22=s2/; s/te22/td22/g; s/te33=s3/td31=s1/; s/te33/td31/g; #s/te01=s1/td01=s1/; s/te01/td01/g; s/te12=s2/td10=s0/; s/te12/td10/g; #s/te23=s3/td23=s3/; s/te23/td23/g; s/te30=s0/td32=s2/; s/te30/td32/g; #s/te02=s2/td02=s2/; s/te02/td02/g; s/te13=s3/td11=s1/; s/te13/td11/g; #s/te20=s0/td20=s0/; s/te20/td20/g; s/te31=s1/td33=s3/; s/te31/td33/g; #s/te03=s3/td03=s3/; s/te03/td03/g; s/te10=s0/td12=s2/; s/te10/td12/g; #s/te21=s1/td21=s1/; s/te21/td21/g; s/te32=s2/td30=s0/; s/te32/td30/g; s/td/te/g; s/AES_encrypt/AES_decrypt/g; s/\.Le_/.Ld_/g; s/AES_Te#/AES_Td#/g; print; exit if (/\.endp\s+AES_decrypt/); } #endif .proc _ia64_AES_decrypt# // Input: rk0-rk1 // te0 // te3 as AES_KEY->rounds!!! // s0-s3 // maskff,twenty4,sixteen // Output: r16,r20,r24,r28 as s0-s3 // Clobber: r16-r31,rk0-rk1,r32-r43 .align 32 _ia64_AES_decrypt: .prologue .altrp b6 .body { .mmi; alloc r16=ar.pfs,12,0,0,8 LDKEY t0=[rk0],2*KSZ mov pr.rot=1<<16 } { .mmi; LDKEY t1=[rk1],2*KSZ add te1=TE1,te0 add te3=-3,te3 };; { .mib; LDKEY t2=[rk0],2*KSZ mov ar.ec=2 } { .mib; LDKEY t3=[rk1],2*KSZ add te2=TE2,te0 brp.loop.imp .Ld_top,.Ld_end-16 };; { .mmi; xor s0=s0,t0 xor s1=s1,t1 mov ar.lc=te3 } { .mmi; xor s2=s2,t2 xor s3=s3,t3 add te3=TE3,te0 };; .align 32 .Ld_top: { .mmi; (p0) LDKEY t0=[rk0],2*KSZ // 0/0:rk[0] (p0) and te31=s1,maskff // 0/0:s3&0xff (p0) extr.u te22=s2,8,8 } // 0/0:s2>>8&0xff { .mmi; (p0) LDKEY t1=[rk1],2*KSZ // 0/1:rk[1] (p0) and te32=s2,maskff // 0/1:s0&0xff (p0) shr.u te00=s0,twenty4 };; // 0/0:s0>>24 { .mmi; (p0) LDKEY t2=[rk0],2*KSZ // 1/2:rk[2] (p0) shladd te31=te31,3,te3 // 1/0:te0+s0>>24 (p0) extr.u te23=s3,8,8 } // 1/1:s3>>8&0xff { .mmi; (p0) LDKEY t3=[rk1],2*KSZ // 1/3:rk[3] (p0) shladd te32=te32,3,te3 // 1/1:te3+s0 (p0) shr.u te01=s1,twenty4 };; // 1/1:s1>>24 { .mmi; (p0) ld4 te31=[te31] // 2/0:te3[s3&0xff] (p0) shladd te22=te22,3,te2 // 2/0:te2+s2>>8&0xff (p0) extr.u te20=s0,8,8 } // 2/2:s0>>8&0xff { .mmi; (p0) ld4 te32=[te32] // 2/1:te3[s0] (p0) shladd te23=te23,3,te2 // 2/1:te2+s3>>8 (p0) shr.u te02=s2,twenty4 };; // 2/2:s2>>24 { .mmi; (p0) ld4 te22=[te22] // 3/0:te2[s2>>8] (p0) shladd te20=te20,3,te2 // 3/2:te2+s0>>8 (p0) extr.u te21=s1,8,8 } // 3/3:s1>>8&0xff { .mmi; (p0) ld4 te23=[te23] // 3/1:te2[s3>>8] (p0) shladd te00=te00,3,te0 // 3/0:te0+s0>>24 (p0) shr.u te03=s3,twenty4 };; // 3/3:s3>>24 { .mmi; (p0) ld4 te20=[te20] // 4/2:te2[s0>>8] (p0) shladd te21=te21,3,te2 // 4/3:te3+s2 (p0) extr.u te13=s3,16,8 } // 4/0:s1>>16&0xff { .mmi; (p0) ld4 te00=[te00] // 4/0:te0[s0>>24] (p0) shladd te01=te01,3,te0 // 4/1:te0+s1>>24 (p0) shr.u te11=s1,sixteen };; // 4/2:s3>>16 { .mmi; (p0) ld4 te21=[te21] // 5/3:te2[s1>>8] (p0) shladd te13=te13,3,te1 // 5/0:te1+s1>>16 (p0) extr.u te10=s0,16,8 } // 5/1:s2>>16&0xff { .mmi; (p0) ld4 te01=[te01] // 5/1:te0[s1>>24] (p0) shladd te02=te02,3,te0 // 5/2:te0+s2>>24 (p0) and te33=s3,maskff };; // 5/2:s1&0xff { .mmi; (p0) ld4 te13=[te13] // 6/0:te1[s1>>16] (p0) shladd te10=te10,3,te1 // 6/1:te1+s2>>16 (p0) extr.u te12=s2,16,8 } // 6/3:s0>>16&0xff { .mmi; (p0) ld4 te02=[te02] // 6/2:te0[s2>>24] (p0) shladd te03=te03,3,te0 // 6/3:te1+s0>>16 (p0) and te30=s0,maskff };; // 6/3:s2&0xff { .mmi; (p0) ld4 te10=[te10] // 7/1:te1[s2>>16] (p0) shladd te33=te33,3,te3 // 7/2:te3+s1&0xff (p0) and te11=te11,maskff} // 7/2:s3>>16&0xff { .mmi; (p0) ld4 te03=[te03] // 7/3:te0[s3>>24] (p0) shladd te30=te30,3,te3 // 7/3:te3+s2 (p0) xor t0=t0,te31 };; // 7/0: { .mmi; (p0) ld4 te33=[te33] // 8/2:te3[s1] (p0) shladd te11=te11,3,te1 // 8/2:te1+s3>>16 (p0) xor t0=t0,te22 } // 8/0: { .mmi; (p0) ld4 te30=[te30] // 8/3:te3[s2] (p0) shladd te12=te12,3,te1 // 8/3:te1+s0>>16 (p0) xor t1=t1,te32 };; // 8/1: { .mmi; (p0) ld4 te11=[te11] // 9/2:te1[s3>>16] (p0) ld4 te12=[te12] // 9/3:te1[s0>>16] (p0) xor t0=t0,te00 };; // 9/0: !L2 scheduling { .mmi; (p0) xor t1=t1,te23 // 10[9]/1: (p0) xor t2=t2,te20 // 10[9]/2: (p0) xor t3=t3,te21 };; // 10[9]/3: { .mmi; (p0) xor t0=t0,te13 // 11[10]/0:done! (p0) xor t1=t1,te01 // 11[10]/1: (p0) xor t2=t2,te02 };; // 11[10]/2: !L2 scheduling { .mmi; (p0) xor t3=t3,te03 // 12[10]/3: (p16) cmp.eq p0,p17=r0,r0 };; // 12[10]/clear (p17) { .mmi; (p0) xor t1=t1,te10 // 13[11]/1:done! (p0) xor t2=t2,te33 // 13[11]/2: (p0) xor t3=t3,te30 } // 13[11]/3: { .mmi; (p17) add te0=2048,te0 // 13[11]/ (p17) add te1=2048+64-TE1,te1};; // 13[11]/ { .mib; (p0) xor t2=t2,te11 // 14[12]/2:done! (p17) add te2=2048+128-TE2,te2} // 14[12]/ { .mib; (p0) xor t3=t3,te12 // 14[12]/3:done! (p17) add te3=2048+192-TE3,te3 // 14[12]/ br.ctop.sptk .Ld_top };; .Ld_end: { .mmi; ld8 te10=[te0] // prefetch Td4 ld8 te33=[te1] } { .mmi; ld8 te12=[te2] ld8 te30=[te3] } { .mmi; LDKEY t0=[rk0],2*KSZ // 0/0:rk[0] and te31=s1,maskff // 0/0:s3&0xff extr.u te22=s2,8,8 } // 0/0:s2>>8&0xff { .mmi; LDKEY t1=[rk1],2*KSZ // 0/1:rk[1] and te32=s2,maskff // 0/1:s0&0xff shr.u te00=s0,twenty4 };; // 0/0:s0>>24 { .mmi; LDKEY t2=[rk0],2*KSZ // 1/2:rk[2] add te31=te31,te0 // 1/0:te0+s0>>24 extr.u te23=s3,8,8 } // 1/1:s3>>8&0xff { .mmi; LDKEY t3=[rk1],2*KSZ // 1/3:rk[3] add te32=te32,te0 // 1/1:te0+s0 shr.u te01=s1,twenty4 };; // 1/1:s1>>24 { .mmi; ld1 te31=[te31] // 2/0:te0[s3&0xff] add te22=te22,te0 // 2/0:te0+s2>>8&0xff extr.u te20=s0,8,8 } // 2/2:s0>>8&0xff { .mmi; ld1 te32=[te32] // 2/1:te0[s0] add te23=te23,te0 // 2/1:te0+s3>>8 shr.u te02=s2,twenty4 };; // 2/2:s2>>24 { .mmi; ld1 te22=[te22] // 3/0:te0[s2>>8] add te20=te20,te0 // 3/2:te0+s0>>8 extr.u te21=s1,8,8 } // 3/3:s1>>8&0xff { .mmi; ld1 te23=[te23] // 3/1:te0[s3>>8] add te00=te00,te0 // 3/0:te0+s0>>24 shr.u te03=s3,twenty4 };; // 3/3:s3>>24 { .mmi; ld1 te20=[te20] // 4/2:te0[s0>>8] add te21=te21,te0 // 4/3:te0+s2 extr.u te13=s3,16,8 } // 4/0:s1>>16&0xff { .mmi; ld1 te00=[te00] // 4/0:te0[s0>>24] add te01=te01,te0 // 4/1:te0+s1>>24 shr.u te11=s1,sixteen };; // 4/2:s3>>16 { .mmi; ld1 te21=[te21] // 5/3:te0[s1>>8] add te13=te13,te0 // 5/0:te0+s1>>16 extr.u te10=s0,16,8 } // 5/1:s2>>16&0xff { .mmi; ld1 te01=[te01] // 5/1:te0[s1>>24] add te02=te02,te0 // 5/2:te0+s2>>24 and te33=s3,maskff };; // 5/2:s1&0xff { .mmi; ld1 te13=[te13] // 6/0:te0[s1>>16] add te10=te10,te0 // 6/1:te0+s2>>16 extr.u te12=s2,16,8 } // 6/3:s0>>16&0xff { .mmi; ld1 te02=[te02] // 6/2:te0[s2>>24] add te03=te03,te0 // 6/3:te0+s0>>16 and te30=s0,maskff };; // 6/3:s2&0xff { .mmi; ld1 te10=[te10] // 7/1:te0[s2>>16] add te33=te33,te0 // 7/2:te0+s1&0xff dep te31=te22,te31,8,8} // 7/0: { .mmi; ld1 te03=[te03] // 7/3:te0[s3>>24] add te30=te30,te0 // 7/3:te0+s2 and te11=te11,maskff};; // 7/2:s3>>16&0xff { .mmi; ld1 te33=[te33] // 8/2:te0[s1] add te11=te11,te0 // 8/2:te0+s3>>16 dep te32=te23,te32,8,8} // 8/1: { .mmi; ld1 te30=[te30] // 8/3:te0[s2] add te12=te12,te0 // 8/3:te0+s0>>16 shl te00=te00,twenty4};; // 8/0: { .mii; ld1 te11=[te11] // 9/2:te0[s3>>16] dep te31=te13,te31,16,8 // 9/0: shl te01=te01,twenty4};; // 9/1: { .mii; ld1 te12=[te12] // 10/3:te0[s0>>16] dep te33=te20,te33,8,8 // 10/2: shl te02=te02,twenty4};; // 10/2: { .mii; xor t0=t0,te31 // 11/0: dep te30=te21,te30,8,8 // 11/3: shl te10=te10,sixteen};; // 11/1: { .mii; xor r16=t0,te00 // 12/0:done! dep te33=te11,te33,16,8 // 12/2: shl te03=te03,twenty4};; // 12/3: { .mmi; xor t1=t1,te01 // 13/1: xor t2=t2,te02 // 13/2: dep te30=te12,te30,16,8};; // 13/3: { .mmi; xor t1=t1,te32 // 14/1: xor r24=t2,te33 // 14/2:done! xor t3=t3,te30 };; // 14/3: { .mib; xor r20=t1,te10 // 15/1:done! xor r28=t3,te03 // 15/3:done! br.ret.sptk b6 };; .endp _ia64_AES_decrypt# // void AES_decrypt (const void *in,void *out,const AES_KEY *key); .global AES_decrypt# .proc AES_decrypt# .align 32 AES_decrypt: .prologue .save ar.pfs,pfssave { .mmi; alloc pfssave=ar.pfs,3,1,12,0 and out0=3,in0 mov r3=ip } { .mmi; ADDP in0=0,in0 mov loc0=psr.um ADDP out11=KSZ*60,in2 };; // &AES_KEY->rounds { .mmi; ld4 out11=[out11] // AES_KEY->rounds add out8=(AES_Td#-AES_decrypt#),r3 // Te0 .save pr,prsave mov prsave=pr } { .mmi; rum 1<<3 // clear um.ac .save ar.lc,lcsave mov lcsave=ar.lc };; .body #if defined(_HPUX_SOURCE) // HPUX is big-endian, cut 15+15 cycles... { .mib; cmp.ne p6,p0=out0,r0 add out0=4,in0 (p6) br.dpnt.many .Ld_i_unaligned };; { .mmi; ld4 out1=[in0],8 // s0 and out9=3,in1 mov twenty4=24 } { .mmi; ld4 out3=[out0],8 // s1 ADDP rk0=0,in2 mov sixteen=16 };; { .mmi; ld4 out5=[in0] // s2 cmp.ne p6,p0=out9,r0 mov maskff=0xff } { .mmb; ld4 out7=[out0] // s3 ADDP rk1=KSZ,in2 br.call.sptk.many b6=_ia64_AES_decrypt };; { .mib; ADDP in0=4,in1 ADDP in1=0,in1 (p6) br.spnt .Ld_o_unaligned };; { .mii; mov psr.um=loc0 mov ar.pfs=pfssave mov ar.lc=lcsave };; { .mmi; st4 [in1]=r16,8 // s0 st4 [in0]=r20,8 // s1 mov pr=prsave,0x1ffff };; { .mmb; st4 [in1]=r24 // s2 st4 [in0]=r28 // s3 br.ret.sptk.many b0 };; #endif .align 32 .Ld_i_unaligned: { .mmi; add out0=1,in0 add out2=2,in0 add out4=3,in0 };; { .mmi; ld1 r16=[in0],4 ld1 r17=[out0],4 }//;; { .mmi; ld1 r18=[out2],4 ld1 out1=[out4],4 };; // s0 { .mmi; ld1 r20=[in0],4 ld1 r21=[out0],4 }//;; { .mmi; ld1 r22=[out2],4 ld1 out3=[out4],4 };; // s1 { .mmi; ld1 r24=[in0],4 ld1 r25=[out0],4 }//;; { .mmi; ld1 r26=[out2],4 ld1 out5=[out4],4 };; // s2 { .mmi; ld1 r28=[in0] ld1 r29=[out0] }//;; { .mmi; ld1 r30=[out2] ld1 out7=[out4] };; // s3 { .mii; dep out1=r16,out1,24,8 //;; dep out3=r20,out3,24,8 }//;; { .mii; ADDP rk0=0,in2 dep out5=r24,out5,24,8 //;; dep out7=r28,out7,24,8 };; { .mii; ADDP rk1=KSZ,in2 dep out1=r17,out1,16,8 //;; dep out3=r21,out3,16,8 }//;; { .mii; mov twenty4=24 dep out5=r25,out5,16,8 //;; dep out7=r29,out7,16,8 };; { .mii; mov sixteen=16 dep out1=r18,out1,8,8 //;; dep out3=r22,out3,8,8 }//;; { .mii; mov maskff=0xff dep out5=r26,out5,8,8 //;; dep out7=r30,out7,8,8 };; { .mib; br.call.sptk.many b6=_ia64_AES_decrypt };; .Ld_o_unaligned: { .mii; ADDP out0=0,in1 extr.u r17=r16,8,8 // s0 shr.u r19=r16,twenty4 }//;; { .mii; ADDP out1=1,in1 extr.u r18=r16,16,8 shr.u r23=r20,twenty4 }//;; // s1 { .mii; ADDP out2=2,in1 extr.u r21=r20,8,8 shr.u r22=r20,sixteen }//;; { .mii; ADDP out3=3,in1 extr.u r25=r24,8,8 // s2 shr.u r27=r24,twenty4 };; { .mii; st1 [out3]=r16,4 extr.u r26=r24,16,8 shr.u r31=r28,twenty4 }//;; // s3 { .mii; st1 [out2]=r17,4 extr.u r29=r28,8,8 shr.u r30=r28,sixteen }//;; { .mmi; st1 [out1]=r18,4 st1 [out0]=r19,4 };; { .mmi; st1 [out3]=r20,4 st1 [out2]=r21,4 }//;; { .mmi; st1 [out1]=r22,4 st1 [out0]=r23,4 };; { .mmi; st1 [out3]=r24,4 st1 [out2]=r25,4 mov pr=prsave,0x1ffff }//;; { .mmi; st1 [out1]=r26,4 st1 [out0]=r27,4 mov ar.pfs=pfssave };; { .mmi; st1 [out3]=r28 st1 [out2]=r29 mov ar.lc=lcsave }//;; { .mmi; st1 [out1]=r30 st1 [out0]=r31 } { .mfb; mov psr.um=loc0 // restore user mask br.ret.sptk.many b0 };; .endp AES_decrypt# // leave it in .text segment... .align 64 .global AES_Te# .type AES_Te#,@object AES_Te: data4 0xc66363a5,0xc66363a5, 0xf87c7c84,0xf87c7c84 data4 0xee777799,0xee777799, 0xf67b7b8d,0xf67b7b8d data4 0xfff2f20d,0xfff2f20d, 0xd66b6bbd,0xd66b6bbd data4 0xde6f6fb1,0xde6f6fb1, 0x91c5c554,0x91c5c554 data4 0x60303050,0x60303050, 0x02010103,0x02010103 data4 0xce6767a9,0xce6767a9, 0x562b2b7d,0x562b2b7d data4 0xe7fefe19,0xe7fefe19, 0xb5d7d762,0xb5d7d762 data4 0x4dababe6,0x4dababe6, 0xec76769a,0xec76769a data4 0x8fcaca45,0x8fcaca45, 0x1f82829d,0x1f82829d data4 0x89c9c940,0x89c9c940, 0xfa7d7d87,0xfa7d7d87 data4 0xeffafa15,0xeffafa15, 0xb25959eb,0xb25959eb data4 0x8e4747c9,0x8e4747c9, 0xfbf0f00b,0xfbf0f00b data4 0x41adadec,0x41adadec, 0xb3d4d467,0xb3d4d467 data4 0x5fa2a2fd,0x5fa2a2fd, 0x45afafea,0x45afafea data4 0x239c9cbf,0x239c9cbf, 0x53a4a4f7,0x53a4a4f7 data4 0xe4727296,0xe4727296, 0x9bc0c05b,0x9bc0c05b data4 0x75b7b7c2,0x75b7b7c2, 0xe1fdfd1c,0xe1fdfd1c data4 0x3d9393ae,0x3d9393ae, 0x4c26266a,0x4c26266a data4 0x6c36365a,0x6c36365a, 0x7e3f3f41,0x7e3f3f41 data4 0xf5f7f702,0xf5f7f702, 0x83cccc4f,0x83cccc4f data4 0x6834345c,0x6834345c, 0x51a5a5f4,0x51a5a5f4 data4 0xd1e5e534,0xd1e5e534, 0xf9f1f108,0xf9f1f108 data4 0xe2717193,0xe2717193, 0xabd8d873,0xabd8d873 data4 0x62313153,0x62313153, 0x2a15153f,0x2a15153f data4 0x0804040c,0x0804040c, 0x95c7c752,0x95c7c752 data4 0x46232365,0x46232365, 0x9dc3c35e,0x9dc3c35e data4 0x30181828,0x30181828, 0x379696a1,0x379696a1 data4 0x0a05050f,0x0a05050f, 0x2f9a9ab5,0x2f9a9ab5 data4 0x0e070709,0x0e070709, 0x24121236,0x24121236 data4 0x1b80809b,0x1b80809b, 0xdfe2e23d,0xdfe2e23d data4 0xcdebeb26,0xcdebeb26, 0x4e272769,0x4e272769 data4 0x7fb2b2cd,0x7fb2b2cd, 0xea75759f,0xea75759f data4 0x1209091b,0x1209091b, 0x1d83839e,0x1d83839e data4 0x582c2c74,0x582c2c74, 0x341a1a2e,0x341a1a2e data4 0x361b1b2d,0x361b1b2d, 0xdc6e6eb2,0xdc6e6eb2 data4 0xb45a5aee,0xb45a5aee, 0x5ba0a0fb,0x5ba0a0fb data4 0xa45252f6,0xa45252f6, 0x763b3b4d,0x763b3b4d data4 0xb7d6d661,0xb7d6d661, 0x7db3b3ce,0x7db3b3ce data4 0x5229297b,0x5229297b, 0xdde3e33e,0xdde3e33e data4 0x5e2f2f71,0x5e2f2f71, 0x13848497,0x13848497 data4 0xa65353f5,0xa65353f5, 0xb9d1d168,0xb9d1d168 data4 0x00000000,0x00000000, 0xc1eded2c,0xc1eded2c data4 0x40202060,0x40202060, 0xe3fcfc1f,0xe3fcfc1f data4 0x79b1b1c8,0x79b1b1c8, 0xb65b5bed,0xb65b5bed data4 0xd46a6abe,0xd46a6abe, 0x8dcbcb46,0x8dcbcb46 data4 0x67bebed9,0x67bebed9, 0x7239394b,0x7239394b data4 0x944a4ade,0x944a4ade, 0x984c4cd4,0x984c4cd4 data4 0xb05858e8,0xb05858e8, 0x85cfcf4a,0x85cfcf4a data4 0xbbd0d06b,0xbbd0d06b, 0xc5efef2a,0xc5efef2a data4 0x4faaaae5,0x4faaaae5, 0xedfbfb16,0xedfbfb16 data4 0x864343c5,0x864343c5, 0x9a4d4dd7,0x9a4d4dd7 data4 0x66333355,0x66333355, 0x11858594,0x11858594 data4 0x8a4545cf,0x8a4545cf, 0xe9f9f910,0xe9f9f910 data4 0x04020206,0x04020206, 0xfe7f7f81,0xfe7f7f81 data4 0xa05050f0,0xa05050f0, 0x783c3c44,0x783c3c44 data4 0x259f9fba,0x259f9fba, 0x4ba8a8e3,0x4ba8a8e3 data4 0xa25151f3,0xa25151f3, 0x5da3a3fe,0x5da3a3fe data4 0x804040c0,0x804040c0, 0x058f8f8a,0x058f8f8a data4 0x3f9292ad,0x3f9292ad, 0x219d9dbc,0x219d9dbc data4 0x70383848,0x70383848, 0xf1f5f504,0xf1f5f504 data4 0x63bcbcdf,0x63bcbcdf, 0x77b6b6c1,0x77b6b6c1 data4 0xafdada75,0xafdada75, 0x42212163,0x42212163 data4 0x20101030,0x20101030, 0xe5ffff1a,0xe5ffff1a data4 0xfdf3f30e,0xfdf3f30e, 0xbfd2d26d,0xbfd2d26d data4 0x81cdcd4c,0x81cdcd4c, 0x180c0c14,0x180c0c14 data4 0x26131335,0x26131335, 0xc3ecec2f,0xc3ecec2f data4 0xbe5f5fe1,0xbe5f5fe1, 0x359797a2,0x359797a2 data4 0x884444cc,0x884444cc, 0x2e171739,0x2e171739 data4 0x93c4c457,0x93c4c457, 0x55a7a7f2,0x55a7a7f2 data4 0xfc7e7e82,0xfc7e7e82, 0x7a3d3d47,0x7a3d3d47 data4 0xc86464ac,0xc86464ac, 0xba5d5de7,0xba5d5de7 data4 0x3219192b,0x3219192b, 0xe6737395,0xe6737395 data4 0xc06060a0,0xc06060a0, 0x19818198,0x19818198 data4 0x9e4f4fd1,0x9e4f4fd1, 0xa3dcdc7f,0xa3dcdc7f data4 0x44222266,0x44222266, 0x542a2a7e,0x542a2a7e data4 0x3b9090ab,0x3b9090ab, 0x0b888883,0x0b888883 data4 0x8c4646ca,0x8c4646ca, 0xc7eeee29,0xc7eeee29 data4 0x6bb8b8d3,0x6bb8b8d3, 0x2814143c,0x2814143c data4 0xa7dede79,0xa7dede79, 0xbc5e5ee2,0xbc5e5ee2 data4 0x160b0b1d,0x160b0b1d, 0xaddbdb76,0xaddbdb76 data4 0xdbe0e03b,0xdbe0e03b, 0x64323256,0x64323256 data4 0x743a3a4e,0x743a3a4e, 0x140a0a1e,0x140a0a1e data4 0x924949db,0x924949db, 0x0c06060a,0x0c06060a data4 0x4824246c,0x4824246c, 0xb85c5ce4,0xb85c5ce4 data4 0x9fc2c25d,0x9fc2c25d, 0xbdd3d36e,0xbdd3d36e data4 0x43acacef,0x43acacef, 0xc46262a6,0xc46262a6 data4 0x399191a8,0x399191a8, 0x319595a4,0x319595a4 data4 0xd3e4e437,0xd3e4e437, 0xf279798b,0xf279798b data4 0xd5e7e732,0xd5e7e732, 0x8bc8c843,0x8bc8c843 data4 0x6e373759,0x6e373759, 0xda6d6db7,0xda6d6db7 data4 0x018d8d8c,0x018d8d8c, 0xb1d5d564,0xb1d5d564 data4 0x9c4e4ed2,0x9c4e4ed2, 0x49a9a9e0,0x49a9a9e0 data4 0xd86c6cb4,0xd86c6cb4, 0xac5656fa,0xac5656fa data4 0xf3f4f407,0xf3f4f407, 0xcfeaea25,0xcfeaea25 data4 0xca6565af,0xca6565af, 0xf47a7a8e,0xf47a7a8e data4 0x47aeaee9,0x47aeaee9, 0x10080818,0x10080818 data4 0x6fbabad5,0x6fbabad5, 0xf0787888,0xf0787888 data4 0x4a25256f,0x4a25256f, 0x5c2e2e72,0x5c2e2e72 data4 0x381c1c24,0x381c1c24, 0x57a6a6f1,0x57a6a6f1 data4 0x73b4b4c7,0x73b4b4c7, 0x97c6c651,0x97c6c651 data4 0xcbe8e823,0xcbe8e823, 0xa1dddd7c,0xa1dddd7c data4 0xe874749c,0xe874749c, 0x3e1f1f21,0x3e1f1f21 data4 0x964b4bdd,0x964b4bdd, 0x61bdbddc,0x61bdbddc data4 0x0d8b8b86,0x0d8b8b86, 0x0f8a8a85,0x0f8a8a85 data4 0xe0707090,0xe0707090, 0x7c3e3e42,0x7c3e3e42 data4 0x71b5b5c4,0x71b5b5c4, 0xcc6666aa,0xcc6666aa data4 0x904848d8,0x904848d8, 0x06030305,0x06030305 data4 0xf7f6f601,0xf7f6f601, 0x1c0e0e12,0x1c0e0e12 data4 0xc26161a3,0xc26161a3, 0x6a35355f,0x6a35355f data4 0xae5757f9,0xae5757f9, 0x69b9b9d0,0x69b9b9d0 data4 0x17868691,0x17868691, 0x99c1c158,0x99c1c158 data4 0x3a1d1d27,0x3a1d1d27, 0x279e9eb9,0x279e9eb9 data4 0xd9e1e138,0xd9e1e138, 0xebf8f813,0xebf8f813 data4 0x2b9898b3,0x2b9898b3, 0x22111133,0x22111133 data4 0xd26969bb,0xd26969bb, 0xa9d9d970,0xa9d9d970 data4 0x078e8e89,0x078e8e89, 0x339494a7,0x339494a7 data4 0x2d9b9bb6,0x2d9b9bb6, 0x3c1e1e22,0x3c1e1e22 data4 0x15878792,0x15878792, 0xc9e9e920,0xc9e9e920 data4 0x87cece49,0x87cece49, 0xaa5555ff,0xaa5555ff data4 0x50282878,0x50282878, 0xa5dfdf7a,0xa5dfdf7a data4 0x038c8c8f,0x038c8c8f, 0x59a1a1f8,0x59a1a1f8 data4 0x09898980,0x09898980, 0x1a0d0d17,0x1a0d0d17 data4 0x65bfbfda,0x65bfbfda, 0xd7e6e631,0xd7e6e631 data4 0x844242c6,0x844242c6, 0xd06868b8,0xd06868b8 data4 0x824141c3,0x824141c3, 0x299999b0,0x299999b0 data4 0x5a2d2d77,0x5a2d2d77, 0x1e0f0f11,0x1e0f0f11 data4 0x7bb0b0cb,0x7bb0b0cb, 0xa85454fc,0xa85454fc data4 0x6dbbbbd6,0x6dbbbbd6, 0x2c16163a,0x2c16163a // Te4: data1 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 data1 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 data1 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 data1 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 data1 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc data1 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 data1 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a data1 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 data1 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 data1 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 data1 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b data1 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf data1 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 data1 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 data1 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 data1 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 data1 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 data1 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 data1 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 data1 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb data1 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c data1 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 data1 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 data1 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 data1 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 data1 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a data1 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e data1 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e data1 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 data1 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf data1 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 data1 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 .size AES_Te#,2048+256 // HP-UX assembler fails to ".-AES_Te#" .align 64 .global AES_Td# .type AES_Td#,@object AES_Td: data4 0x51f4a750,0x51f4a750, 0x7e416553,0x7e416553 data4 0x1a17a4c3,0x1a17a4c3, 0x3a275e96,0x3a275e96 data4 0x3bab6bcb,0x3bab6bcb, 0x1f9d45f1,0x1f9d45f1 data4 0xacfa58ab,0xacfa58ab, 0x4be30393,0x4be30393 data4 0x2030fa55,0x2030fa55, 0xad766df6,0xad766df6 data4 0x88cc7691,0x88cc7691, 0xf5024c25,0xf5024c25 data4 0x4fe5d7fc,0x4fe5d7fc, 0xc52acbd7,0xc52acbd7 data4 0x26354480,0x26354480, 0xb562a38f,0xb562a38f data4 0xdeb15a49,0xdeb15a49, 0x25ba1b67,0x25ba1b67 data4 0x45ea0e98,0x45ea0e98, 0x5dfec0e1,0x5dfec0e1 data4 0xc32f7502,0xc32f7502, 0x814cf012,0x814cf012 data4 0x8d4697a3,0x8d4697a3, 0x6bd3f9c6,0x6bd3f9c6 data4 0x038f5fe7,0x038f5fe7, 0x15929c95,0x15929c95 data4 0xbf6d7aeb,0xbf6d7aeb, 0x955259da,0x955259da data4 0xd4be832d,0xd4be832d, 0x587421d3,0x587421d3 data4 0x49e06929,0x49e06929, 0x8ec9c844,0x8ec9c844 data4 0x75c2896a,0x75c2896a, 0xf48e7978,0xf48e7978 data4 0x99583e6b,0x99583e6b, 0x27b971dd,0x27b971dd data4 0xbee14fb6,0xbee14fb6, 0xf088ad17,0xf088ad17 data4 0xc920ac66,0xc920ac66, 0x7dce3ab4,0x7dce3ab4 data4 0x63df4a18,0x63df4a18, 0xe51a3182,0xe51a3182 data4 0x97513360,0x97513360, 0x62537f45,0x62537f45 data4 0xb16477e0,0xb16477e0, 0xbb6bae84,0xbb6bae84 data4 0xfe81a01c,0xfe81a01c, 0xf9082b94,0xf9082b94 data4 0x70486858,0x70486858, 0x8f45fd19,0x8f45fd19 data4 0x94de6c87,0x94de6c87, 0x527bf8b7,0x527bf8b7 data4 0xab73d323,0xab73d323, 0x724b02e2,0x724b02e2 data4 0xe31f8f57,0xe31f8f57, 0x6655ab2a,0x6655ab2a data4 0xb2eb2807,0xb2eb2807, 0x2fb5c203,0x2fb5c203 data4 0x86c57b9a,0x86c57b9a, 0xd33708a5,0xd33708a5 data4 0x302887f2,0x302887f2, 0x23bfa5b2,0x23bfa5b2 data4 0x02036aba,0x02036aba, 0xed16825c,0xed16825c data4 0x8acf1c2b,0x8acf1c2b, 0xa779b492,0xa779b492 data4 0xf307f2f0,0xf307f2f0, 0x4e69e2a1,0x4e69e2a1 data4 0x65daf4cd,0x65daf4cd, 0x0605bed5,0x0605bed5 data4 0xd134621f,0xd134621f, 0xc4a6fe8a,0xc4a6fe8a data4 0x342e539d,0x342e539d, 0xa2f355a0,0xa2f355a0 data4 0x058ae132,0x058ae132, 0xa4f6eb75,0xa4f6eb75 data4 0x0b83ec39,0x0b83ec39, 0x4060efaa,0x4060efaa data4 0x5e719f06,0x5e719f06, 0xbd6e1051,0xbd6e1051 data4 0x3e218af9,0x3e218af9, 0x96dd063d,0x96dd063d data4 0xdd3e05ae,0xdd3e05ae, 0x4de6bd46,0x4de6bd46 data4 0x91548db5,0x91548db5, 0x71c45d05,0x71c45d05 data4 0x0406d46f,0x0406d46f, 0x605015ff,0x605015ff data4 0x1998fb24,0x1998fb24, 0xd6bde997,0xd6bde997 data4 0x894043cc,0x894043cc, 0x67d99e77,0x67d99e77 data4 0xb0e842bd,0xb0e842bd, 0x07898b88,0x07898b88 data4 0xe7195b38,0xe7195b38, 0x79c8eedb,0x79c8eedb data4 0xa17c0a47,0xa17c0a47, 0x7c420fe9,0x7c420fe9 data4 0xf8841ec9,0xf8841ec9, 0x00000000,0x00000000 data4 0x09808683,0x09808683, 0x322bed48,0x322bed48 data4 0x1e1170ac,0x1e1170ac, 0x6c5a724e,0x6c5a724e data4 0xfd0efffb,0xfd0efffb, 0x0f853856,0x0f853856 data4 0x3daed51e,0x3daed51e, 0x362d3927,0x362d3927 data4 0x0a0fd964,0x0a0fd964, 0x685ca621,0x685ca621 data4 0x9b5b54d1,0x9b5b54d1, 0x24362e3a,0x24362e3a data4 0x0c0a67b1,0x0c0a67b1, 0x9357e70f,0x9357e70f data4 0xb4ee96d2,0xb4ee96d2, 0x1b9b919e,0x1b9b919e data4 0x80c0c54f,0x80c0c54f, 0x61dc20a2,0x61dc20a2 data4 0x5a774b69,0x5a774b69, 0x1c121a16,0x1c121a16 data4 0xe293ba0a,0xe293ba0a, 0xc0a02ae5,0xc0a02ae5 data4 0x3c22e043,0x3c22e043, 0x121b171d,0x121b171d data4 0x0e090d0b,0x0e090d0b, 0xf28bc7ad,0xf28bc7ad data4 0x2db6a8b9,0x2db6a8b9, 0x141ea9c8,0x141ea9c8 data4 0x57f11985,0x57f11985, 0xaf75074c,0xaf75074c data4 0xee99ddbb,0xee99ddbb, 0xa37f60fd,0xa37f60fd data4 0xf701269f,0xf701269f, 0x5c72f5bc,0x5c72f5bc data4 0x44663bc5,0x44663bc5, 0x5bfb7e34,0x5bfb7e34 data4 0x8b432976,0x8b432976, 0xcb23c6dc,0xcb23c6dc data4 0xb6edfc68,0xb6edfc68, 0xb8e4f163,0xb8e4f163 data4 0xd731dcca,0xd731dcca, 0x42638510,0x42638510 data4 0x13972240,0x13972240, 0x84c61120,0x84c61120 data4 0x854a247d,0x854a247d, 0xd2bb3df8,0xd2bb3df8 data4 0xaef93211,0xaef93211, 0xc729a16d,0xc729a16d data4 0x1d9e2f4b,0x1d9e2f4b, 0xdcb230f3,0xdcb230f3 data4 0x0d8652ec,0x0d8652ec, 0x77c1e3d0,0x77c1e3d0 data4 0x2bb3166c,0x2bb3166c, 0xa970b999,0xa970b999 data4 0x119448fa,0x119448fa, 0x47e96422,0x47e96422 data4 0xa8fc8cc4,0xa8fc8cc4, 0xa0f03f1a,0xa0f03f1a data4 0x567d2cd8,0x567d2cd8, 0x223390ef,0x223390ef data4 0x87494ec7,0x87494ec7, 0xd938d1c1,0xd938d1c1 data4 0x8ccaa2fe,0x8ccaa2fe, 0x98d40b36,0x98d40b36 data4 0xa6f581cf,0xa6f581cf, 0xa57ade28,0xa57ade28 data4 0xdab78e26,0xdab78e26, 0x3fadbfa4,0x3fadbfa4 data4 0x2c3a9de4,0x2c3a9de4, 0x5078920d,0x5078920d data4 0x6a5fcc9b,0x6a5fcc9b, 0x547e4662,0x547e4662 data4 0xf68d13c2,0xf68d13c2, 0x90d8b8e8,0x90d8b8e8 data4 0x2e39f75e,0x2e39f75e, 0x82c3aff5,0x82c3aff5 data4 0x9f5d80be,0x9f5d80be, 0x69d0937c,0x69d0937c data4 0x6fd52da9,0x6fd52da9, 0xcf2512b3,0xcf2512b3 data4 0xc8ac993b,0xc8ac993b, 0x10187da7,0x10187da7 data4 0xe89c636e,0xe89c636e, 0xdb3bbb7b,0xdb3bbb7b data4 0xcd267809,0xcd267809, 0x6e5918f4,0x6e5918f4 data4 0xec9ab701,0xec9ab701, 0x834f9aa8,0x834f9aa8 data4 0xe6956e65,0xe6956e65, 0xaaffe67e,0xaaffe67e data4 0x21bccf08,0x21bccf08, 0xef15e8e6,0xef15e8e6 data4 0xbae79bd9,0xbae79bd9, 0x4a6f36ce,0x4a6f36ce data4 0xea9f09d4,0xea9f09d4, 0x29b07cd6,0x29b07cd6 data4 0x31a4b2af,0x31a4b2af, 0x2a3f2331,0x2a3f2331 data4 0xc6a59430,0xc6a59430, 0x35a266c0,0x35a266c0 data4 0x744ebc37,0x744ebc37, 0xfc82caa6,0xfc82caa6 data4 0xe090d0b0,0xe090d0b0, 0x33a7d815,0x33a7d815 data4 0xf104984a,0xf104984a, 0x41ecdaf7,0x41ecdaf7 data4 0x7fcd500e,0x7fcd500e, 0x1791f62f,0x1791f62f data4 0x764dd68d,0x764dd68d, 0x43efb04d,0x43efb04d data4 0xccaa4d54,0xccaa4d54, 0xe49604df,0xe49604df data4 0x9ed1b5e3,0x9ed1b5e3, 0x4c6a881b,0x4c6a881b data4 0xc12c1fb8,0xc12c1fb8, 0x4665517f,0x4665517f data4 0x9d5eea04,0x9d5eea04, 0x018c355d,0x018c355d data4 0xfa877473,0xfa877473, 0xfb0b412e,0xfb0b412e data4 0xb3671d5a,0xb3671d5a, 0x92dbd252,0x92dbd252 data4 0xe9105633,0xe9105633, 0x6dd64713,0x6dd64713 data4 0x9ad7618c,0x9ad7618c, 0x37a10c7a,0x37a10c7a data4 0x59f8148e,0x59f8148e, 0xeb133c89,0xeb133c89 data4 0xcea927ee,0xcea927ee, 0xb761c935,0xb761c935 data4 0xe11ce5ed,0xe11ce5ed, 0x7a47b13c,0x7a47b13c data4 0x9cd2df59,0x9cd2df59, 0x55f2733f,0x55f2733f data4 0x1814ce79,0x1814ce79, 0x73c737bf,0x73c737bf data4 0x53f7cdea,0x53f7cdea, 0x5ffdaa5b,0x5ffdaa5b data4 0xdf3d6f14,0xdf3d6f14, 0x7844db86,0x7844db86 data4 0xcaaff381,0xcaaff381, 0xb968c43e,0xb968c43e data4 0x3824342c,0x3824342c, 0xc2a3405f,0xc2a3405f data4 0x161dc372,0x161dc372, 0xbce2250c,0xbce2250c data4 0x283c498b,0x283c498b, 0xff0d9541,0xff0d9541 data4 0x39a80171,0x39a80171, 0x080cb3de,0x080cb3de data4 0xd8b4e49c,0xd8b4e49c, 0x6456c190,0x6456c190 data4 0x7bcb8461,0x7bcb8461, 0xd532b670,0xd532b670 data4 0x486c5c74,0x486c5c74, 0xd0b85742,0xd0b85742 // Td4: data1 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 data1 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb data1 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 data1 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb data1 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d data1 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e data1 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 data1 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 data1 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 data1 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 data1 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda data1 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 data1 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a data1 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 data1 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 data1 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b data1 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea data1 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 data1 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 data1 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e data1 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 data1 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b data1 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 data1 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 data1 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 data1 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f data1 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d data1 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef data1 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 data1 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 data1 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 data1 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d .size AES_Td#,2048+256 // HP-UX assembler fails to ".-AES_Td#" openssl-1.1.1f/crypto/aes/asm/aes-mips.pl000066400000000000000000001503731364063235100203020ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # AES for MIPS # October 2010 # # Code uses 1K[+256B] S-box and on single-issue core [such as R5000] # spends ~68 cycles per byte processed with 128-bit key. This is ~16% # faster than gcc-generated code, which is not very impressive. But # recall that compressed S-box requires extra processing, namely # additional rotations. Rotations are implemented with lwl/lwr pairs, # which is normally used for loading unaligned data. Another cool # thing about this module is its endian neutrality, which means that # it processes data without ever changing byte order... # September 2012 # # Add MIPS32R2 (~10% less instructions) and SmartMIPS ASE (further # ~25% less instructions) code. Note that there is no run-time switch, # instead, code path is chosen upon pre-process time, pass -mips32r2 # or/and -msmartmips. ###################################################################### # There is a number of MIPS ABI in use, O32 and N32/64 are most # widely used. Then there is a new contender: NUBI. It appears that if # one picks the latter, it's possible to arrange code in ABI neutral # manner. Therefore let's stick to NUBI register layout: # ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); # # The return value is placed in $a0. Following coding rules facilitate # interoperability: # # - never ever touch $tp, "thread pointer", former $gp; # - copy return value to $t0, former $v0 [or to $a0 if you're adapting # old code]; # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; # # For reference here is register layout for N32/64 MIPS ABIs: # # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); # $flavour = shift || "o32"; # supported flavours are o32,n32,64,nubi32,nubi64 if ($flavour =~ /64|n32/i) { $PTR_LA="dla"; $PTR_ADD="daddu"; # incidentally works even on n32 $PTR_SUB="dsubu"; # incidentally works even on n32 $PTR_INS="dins"; $REG_S="sd"; $REG_L="ld"; $PTR_SLL="dsll"; # incidentally works even on n32 $SZREG=8; } else { $PTR_LA="la"; $PTR_ADD="addu"; $PTR_SUB="subu"; $PTR_INS="ins"; $REG_S="sw"; $REG_L="lw"; $PTR_SLL="sll"; $SZREG=4; } $pf = ($flavour =~ /nubi/i) ? $t0 : $t2; # # # ###################################################################### $big_endian=(`echo MIPSEB | $ENV{CC} -E -`=~/MIPSEB/)?0:1 if ($ENV{CC}); for (@ARGV) { $output=$_ if (/\w[\w\-]*\.\w+$/); } open STDOUT,">$output"; if (!defined($big_endian)) { $big_endian=(unpack('L',pack('N',1))==1); } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; my ($MSB,$LSB)=(0,3); # automatically converted to little-endian $code.=<<___; #include "mips_arch.h" .text #if !defined(__mips_eabi) && (!defined(__vxworks) || defined(__pic__)) .option pic2 #endif .set noat ___ {{{ my $FRAMESIZE=16*$SZREG; my $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? "0xc0fff008" : "0xc0ff0000"; my ($inp,$out,$key,$Tbl,$s0,$s1,$s2,$s3)=($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7); my ($i0,$i1,$i2,$i3)=($at,$t0,$t1,$t2); my ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9,$t10,$t11) = map("\$$_",(12..23)); my ($key0,$cnt)=($gp,$fp); # instruction ordering is "stolen" from output from MIPSpro assembler # invoked with -mips3 -O3 arguments... $code.=<<___; .align 5 .ent _mips_AES_encrypt _mips_AES_encrypt: .frame $sp,0,$ra .set reorder lw $t0,0($key) lw $t1,4($key) lw $t2,8($key) lw $t3,12($key) lw $cnt,240($key) $PTR_ADD $key0,$key,16 xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 subu $cnt,1 #if defined(__mips_smartmips) ext $i0,$s1,16,8 .Loop_enc: ext $i1,$s2,16,8 ext $i2,$s3,16,8 ext $i3,$s0,16,8 lwxs $t0,$i0($Tbl) # Te1[s1>>16] ext $i0,$s2,8,8 lwxs $t1,$i1($Tbl) # Te1[s2>>16] ext $i1,$s3,8,8 lwxs $t2,$i2($Tbl) # Te1[s3>>16] ext $i2,$s0,8,8 lwxs $t3,$i3($Tbl) # Te1[s0>>16] ext $i3,$s1,8,8 lwxs $t4,$i0($Tbl) # Te2[s2>>8] ext $i0,$s3,0,8 lwxs $t5,$i1($Tbl) # Te2[s3>>8] ext $i1,$s0,0,8 lwxs $t6,$i2($Tbl) # Te2[s0>>8] ext $i2,$s1,0,8 lwxs $t7,$i3($Tbl) # Te2[s1>>8] ext $i3,$s2,0,8 lwxs $t8,$i0($Tbl) # Te3[s3] ext $i0,$s0,24,8 lwxs $t9,$i1($Tbl) # Te3[s0] ext $i1,$s1,24,8 lwxs $t10,$i2($Tbl) # Te3[s1] ext $i2,$s2,24,8 lwxs $t11,$i3($Tbl) # Te3[s2] ext $i3,$s3,24,8 rotr $t0,$t0,8 rotr $t1,$t1,8 rotr $t2,$t2,8 rotr $t3,$t3,8 rotr $t4,$t4,16 rotr $t5,$t5,16 rotr $t6,$t6,16 rotr $t7,$t7,16 xor $t0,$t4 lwxs $t4,$i0($Tbl) # Te0[s0>>24] xor $t1,$t5 lwxs $t5,$i1($Tbl) # Te0[s1>>24] xor $t2,$t6 lwxs $t6,$i2($Tbl) # Te0[s2>>24] xor $t3,$t7 lwxs $t7,$i3($Tbl) # Te0[s3>>24] rotr $t8,$t8,24 lw $s0,0($key0) rotr $t9,$t9,24 lw $s1,4($key0) rotr $t10,$t10,24 lw $s2,8($key0) rotr $t11,$t11,24 lw $s3,12($key0) xor $t0,$t8 xor $t1,$t9 xor $t2,$t10 xor $t3,$t11 xor $t0,$t4 xor $t1,$t5 xor $t2,$t6 xor $t3,$t7 subu $cnt,1 $PTR_ADD $key0,16 xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 .set noreorder bnez $cnt,.Loop_enc ext $i0,$s1,16,8 _xtr $i0,$s1,16-2 #else _xtr $i0,$s1,16-2 .Loop_enc: _xtr $i1,$s2,16-2 _xtr $i2,$s3,16-2 _xtr $i3,$s0,16-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) lw $t0,0($i0) # Te1[s1>>16] _xtr $i0,$s2,8-2 lw $t1,0($i1) # Te1[s2>>16] _xtr $i1,$s3,8-2 lw $t2,0($i2) # Te1[s3>>16] _xtr $i2,$s0,8-2 lw $t3,0($i3) # Te1[s0>>16] _xtr $i3,$s1,8-2 #else lwl $t0,3($i0) # Te1[s1>>16] lwl $t1,3($i1) # Te1[s2>>16] lwl $t2,3($i2) # Te1[s3>>16] lwl $t3,3($i3) # Te1[s0>>16] lwr $t0,2($i0) # Te1[s1>>16] _xtr $i0,$s2,8-2 lwr $t1,2($i1) # Te1[s2>>16] _xtr $i1,$s3,8-2 lwr $t2,2($i2) # Te1[s3>>16] _xtr $i2,$s0,8-2 lwr $t3,2($i3) # Te1[s0>>16] _xtr $i3,$s1,8-2 #endif and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) rotr $t0,$t0,8 rotr $t1,$t1,8 rotr $t2,$t2,8 rotr $t3,$t3,8 # if defined(_MIPSEL) lw $t4,0($i0) # Te2[s2>>8] _xtr $i0,$s3,0-2 lw $t5,0($i1) # Te2[s3>>8] _xtr $i1,$s0,0-2 lw $t6,0($i2) # Te2[s0>>8] _xtr $i2,$s1,0-2 lw $t7,0($i3) # Te2[s1>>8] _xtr $i3,$s2,0-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lw $t8,0($i0) # Te3[s3] $PTR_INS $i0,$s0,2,8 lw $t9,0($i1) # Te3[s0] $PTR_INS $i1,$s1,2,8 lw $t10,0($i2) # Te3[s1] $PTR_INS $i2,$s2,2,8 lw $t11,0($i3) # Te3[s2] $PTR_INS $i3,$s3,2,8 # else lw $t4,0($i0) # Te2[s2>>8] $PTR_INS $i0,$s3,2,8 lw $t5,0($i1) # Te2[s3>>8] $PTR_INS $i1,$s0,2,8 lw $t6,0($i2) # Te2[s0>>8] $PTR_INS $i2,$s1,2,8 lw $t7,0($i3) # Te2[s1>>8] $PTR_INS $i3,$s2,2,8 lw $t8,0($i0) # Te3[s3] _xtr $i0,$s0,24-2 lw $t9,0($i1) # Te3[s0] _xtr $i1,$s1,24-2 lw $t10,0($i2) # Te3[s1] _xtr $i2,$s2,24-2 lw $t11,0($i3) # Te3[s2] _xtr $i3,$s3,24-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl # endif rotr $t4,$t4,16 rotr $t5,$t5,16 rotr $t6,$t6,16 rotr $t7,$t7,16 rotr $t8,$t8,24 rotr $t9,$t9,24 rotr $t10,$t10,24 rotr $t11,$t11,24 #else lwl $t4,2($i0) # Te2[s2>>8] lwl $t5,2($i1) # Te2[s3>>8] lwl $t6,2($i2) # Te2[s0>>8] lwl $t7,2($i3) # Te2[s1>>8] lwr $t4,1($i0) # Te2[s2>>8] _xtr $i0,$s3,0-2 lwr $t5,1($i1) # Te2[s3>>8] _xtr $i1,$s0,0-2 lwr $t6,1($i2) # Te2[s0>>8] _xtr $i2,$s1,0-2 lwr $t7,1($i3) # Te2[s1>>8] _xtr $i3,$s2,0-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lwl $t8,1($i0) # Te3[s3] lwl $t9,1($i1) # Te3[s0] lwl $t10,1($i2) # Te3[s1] lwl $t11,1($i3) # Te3[s2] lwr $t8,0($i0) # Te3[s3] _xtr $i0,$s0,24-2 lwr $t9,0($i1) # Te3[s0] _xtr $i1,$s1,24-2 lwr $t10,0($i2) # Te3[s1] _xtr $i2,$s2,24-2 lwr $t11,0($i3) # Te3[s2] _xtr $i3,$s3,24-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #endif xor $t0,$t4 lw $t4,0($i0) # Te0[s0>>24] xor $t1,$t5 lw $t5,0($i1) # Te0[s1>>24] xor $t2,$t6 lw $t6,0($i2) # Te0[s2>>24] xor $t3,$t7 lw $t7,0($i3) # Te0[s3>>24] xor $t0,$t8 lw $s0,0($key0) xor $t1,$t9 lw $s1,4($key0) xor $t2,$t10 lw $s2,8($key0) xor $t3,$t11 lw $s3,12($key0) xor $t0,$t4 xor $t1,$t5 xor $t2,$t6 xor $t3,$t7 subu $cnt,1 $PTR_ADD $key0,16 xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 .set noreorder bnez $cnt,.Loop_enc _xtr $i0,$s1,16-2 #endif .set reorder _xtr $i1,$s2,16-2 _xtr $i2,$s3,16-2 _xtr $i3,$s0,16-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $t0,2($i0) # Te4[s1>>16] _xtr $i0,$s2,8-2 lbu $t1,2($i1) # Te4[s2>>16] _xtr $i1,$s3,8-2 lbu $t2,2($i2) # Te4[s3>>16] _xtr $i2,$s0,8-2 lbu $t3,2($i3) # Te4[s0>>16] _xtr $i3,$s1,8-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) # if defined(_MIPSEL) lbu $t4,2($i0) # Te4[s2>>8] $PTR_INS $i0,$s0,2,8 lbu $t5,2($i1) # Te4[s3>>8] $PTR_INS $i1,$s1,2,8 lbu $t6,2($i2) # Te4[s0>>8] $PTR_INS $i2,$s2,2,8 lbu $t7,2($i3) # Te4[s1>>8] $PTR_INS $i3,$s3,2,8 lbu $t8,2($i0) # Te4[s0>>24] _xtr $i0,$s3,0-2 lbu $t9,2($i1) # Te4[s1>>24] _xtr $i1,$s0,0-2 lbu $t10,2($i2) # Te4[s2>>24] _xtr $i2,$s1,0-2 lbu $t11,2($i3) # Te4[s3>>24] _xtr $i3,$s2,0-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl # else lbu $t4,2($i0) # Te4[s2>>8] _xtr $i0,$s0,24-2 lbu $t5,2($i1) # Te4[s3>>8] _xtr $i1,$s1,24-2 lbu $t6,2($i2) # Te4[s0>>8] _xtr $i2,$s2,24-2 lbu $t7,2($i3) # Te4[s1>>8] _xtr $i3,$s3,24-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $t8,2($i0) # Te4[s0>>24] $PTR_INS $i0,$s3,2,8 lbu $t9,2($i1) # Te4[s1>>24] $PTR_INS $i1,$s0,2,8 lbu $t10,2($i2) # Te4[s2>>24] $PTR_INS $i2,$s1,2,8 lbu $t11,2($i3) # Te4[s3>>24] $PTR_INS $i3,$s2,2,8 # endif _ins $t0,16 _ins $t1,16 _ins $t2,16 _ins $t3,16 _ins2 $t0,$t4,8 lbu $t4,2($i0) # Te4[s3] _ins2 $t1,$t5,8 lbu $t5,2($i1) # Te4[s0] _ins2 $t2,$t6,8 lbu $t6,2($i2) # Te4[s1] _ins2 $t3,$t7,8 lbu $t7,2($i3) # Te4[s2] _ins2 $t0,$t8,24 lw $s0,0($key0) _ins2 $t1,$t9,24 lw $s1,4($key0) _ins2 $t2,$t10,24 lw $s2,8($key0) _ins2 $t3,$t11,24 lw $s3,12($key0) _ins2 $t0,$t4,0 _ins2 $t1,$t5,0 _ins2 $t2,$t6,0 _ins2 $t3,$t7,0 #else lbu $t4,2($i0) # Te4[s2>>8] _xtr $i0,$s0,24-2 lbu $t5,2($i1) # Te4[s3>>8] _xtr $i1,$s1,24-2 lbu $t6,2($i2) # Te4[s0>>8] _xtr $i2,$s2,24-2 lbu $t7,2($i3) # Te4[s1>>8] _xtr $i3,$s3,24-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $t8,2($i0) # Te4[s0>>24] _xtr $i0,$s3,0-2 lbu $t9,2($i1) # Te4[s1>>24] _xtr $i1,$s0,0-2 lbu $t10,2($i2) # Te4[s2>>24] _xtr $i2,$s1,0-2 lbu $t11,2($i3) # Te4[s3>>24] _xtr $i3,$s2,0-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl _ins $t0,16 _ins $t1,16 _ins $t2,16 _ins $t3,16 _ins $t4,8 _ins $t5,8 _ins $t6,8 _ins $t7,8 xor $t0,$t4 lbu $t4,2($i0) # Te4[s3] xor $t1,$t5 lbu $t5,2($i1) # Te4[s0] xor $t2,$t6 lbu $t6,2($i2) # Te4[s1] xor $t3,$t7 lbu $t7,2($i3) # Te4[s2] _ins $t8,24 lw $s0,0($key0) _ins $t9,24 lw $s1,4($key0) _ins $t10,24 lw $s2,8($key0) _ins $t11,24 lw $s3,12($key0) xor $t0,$t8 xor $t1,$t9 xor $t2,$t10 xor $t3,$t11 _ins $t4,0 _ins $t5,0 _ins $t6,0 _ins $t7,0 xor $t0,$t4 xor $t1,$t5 xor $t2,$t6 xor $t3,$t7 #endif xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 jr $ra .end _mips_AES_encrypt .align 5 .globl AES_encrypt .ent AES_encrypt AES_encrypt: .frame $sp,$FRAMESIZE,$ra .mask $SAVED_REGS_MASK,-$SZREG .set noreorder ___ $code.=<<___ if ($flavour =~ /o32/i); # o32 PIC-ification .cpload $pf ___ $code.=<<___; $PTR_SUB $sp,$FRAMESIZE $REG_S $ra,$FRAMESIZE-1*$SZREG($sp) $REG_S $fp,$FRAMESIZE-2*$SZREG($sp) $REG_S $s11,$FRAMESIZE-3*$SZREG($sp) $REG_S $s10,$FRAMESIZE-4*$SZREG($sp) $REG_S $s9,$FRAMESIZE-5*$SZREG($sp) $REG_S $s8,$FRAMESIZE-6*$SZREG($sp) $REG_S $s7,$FRAMESIZE-7*$SZREG($sp) $REG_S $s6,$FRAMESIZE-8*$SZREG($sp) $REG_S $s5,$FRAMESIZE-9*$SZREG($sp) $REG_S $s4,$FRAMESIZE-10*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue $REG_S \$15,$FRAMESIZE-11*$SZREG($sp) $REG_S \$14,$FRAMESIZE-12*$SZREG($sp) $REG_S \$13,$FRAMESIZE-13*$SZREG($sp) $REG_S \$12,$FRAMESIZE-14*$SZREG($sp) $REG_S $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___ if ($flavour !~ /o32/i); # non-o32 PIC-ification .cplocal $Tbl .cpsetup $pf,$zero,AES_encrypt ___ $code.=<<___; .set reorder $PTR_LA $Tbl,AES_Te # PIC-ified 'load address' #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) lw $s0,0($inp) lw $s1,4($inp) lw $s2,8($inp) lw $s3,12($inp) #else lwl $s0,0+$MSB($inp) lwl $s1,4+$MSB($inp) lwl $s2,8+$MSB($inp) lwl $s3,12+$MSB($inp) lwr $s0,0+$LSB($inp) lwr $s1,4+$LSB($inp) lwr $s2,8+$LSB($inp) lwr $s3,12+$LSB($inp) #endif bal _mips_AES_encrypt #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) sw $s0,0($out) sw $s1,4($out) sw $s2,8($out) sw $s3,12($out) #else swr $s0,0+$LSB($out) swr $s1,4+$LSB($out) swr $s2,8+$LSB($out) swr $s3,12+$LSB($out) swl $s0,0+$MSB($out) swl $s1,4+$MSB($out) swl $s2,8+$MSB($out) swl $s3,12+$MSB($out) #endif .set noreorder $REG_L $ra,$FRAMESIZE-1*$SZREG($sp) $REG_L $fp,$FRAMESIZE-2*$SZREG($sp) $REG_L $s11,$FRAMESIZE-3*$SZREG($sp) $REG_L $s10,$FRAMESIZE-4*$SZREG($sp) $REG_L $s9,$FRAMESIZE-5*$SZREG($sp) $REG_L $s8,$FRAMESIZE-6*$SZREG($sp) $REG_L $s7,$FRAMESIZE-7*$SZREG($sp) $REG_L $s6,$FRAMESIZE-8*$SZREG($sp) $REG_L $s5,$FRAMESIZE-9*$SZREG($sp) $REG_L $s4,$FRAMESIZE-10*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L \$15,$FRAMESIZE-11*$SZREG($sp) $REG_L \$14,$FRAMESIZE-12*$SZREG($sp) $REG_L \$13,$FRAMESIZE-13*$SZREG($sp) $REG_L \$12,$FRAMESIZE-14*$SZREG($sp) $REG_L $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE .end AES_encrypt ___ $code.=<<___; .align 5 .ent _mips_AES_decrypt _mips_AES_decrypt: .frame $sp,0,$ra .set reorder lw $t0,0($key) lw $t1,4($key) lw $t2,8($key) lw $t3,12($key) lw $cnt,240($key) $PTR_ADD $key0,$key,16 xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 subu $cnt,1 #if defined(__mips_smartmips) ext $i0,$s3,16,8 .Loop_dec: ext $i1,$s0,16,8 ext $i2,$s1,16,8 ext $i3,$s2,16,8 lwxs $t0,$i0($Tbl) # Td1[s3>>16] ext $i0,$s2,8,8 lwxs $t1,$i1($Tbl) # Td1[s0>>16] ext $i1,$s3,8,8 lwxs $t2,$i2($Tbl) # Td1[s1>>16] ext $i2,$s0,8,8 lwxs $t3,$i3($Tbl) # Td1[s2>>16] ext $i3,$s1,8,8 lwxs $t4,$i0($Tbl) # Td2[s2>>8] ext $i0,$s1,0,8 lwxs $t5,$i1($Tbl) # Td2[s3>>8] ext $i1,$s2,0,8 lwxs $t6,$i2($Tbl) # Td2[s0>>8] ext $i2,$s3,0,8 lwxs $t7,$i3($Tbl) # Td2[s1>>8] ext $i3,$s0,0,8 lwxs $t8,$i0($Tbl) # Td3[s1] ext $i0,$s0,24,8 lwxs $t9,$i1($Tbl) # Td3[s2] ext $i1,$s1,24,8 lwxs $t10,$i2($Tbl) # Td3[s3] ext $i2,$s2,24,8 lwxs $t11,$i3($Tbl) # Td3[s0] ext $i3,$s3,24,8 rotr $t0,$t0,8 rotr $t1,$t1,8 rotr $t2,$t2,8 rotr $t3,$t3,8 rotr $t4,$t4,16 rotr $t5,$t5,16 rotr $t6,$t6,16 rotr $t7,$t7,16 xor $t0,$t4 lwxs $t4,$i0($Tbl) # Td0[s0>>24] xor $t1,$t5 lwxs $t5,$i1($Tbl) # Td0[s1>>24] xor $t2,$t6 lwxs $t6,$i2($Tbl) # Td0[s2>>24] xor $t3,$t7 lwxs $t7,$i3($Tbl) # Td0[s3>>24] rotr $t8,$t8,24 lw $s0,0($key0) rotr $t9,$t9,24 lw $s1,4($key0) rotr $t10,$t10,24 lw $s2,8($key0) rotr $t11,$t11,24 lw $s3,12($key0) xor $t0,$t8 xor $t1,$t9 xor $t2,$t10 xor $t3,$t11 xor $t0,$t4 xor $t1,$t5 xor $t2,$t6 xor $t3,$t7 subu $cnt,1 $PTR_ADD $key0,16 xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 .set noreorder bnez $cnt,.Loop_dec ext $i0,$s3,16,8 _xtr $i0,$s3,16-2 #else _xtr $i0,$s3,16-2 .Loop_dec: _xtr $i1,$s0,16-2 _xtr $i2,$s1,16-2 _xtr $i3,$s2,16-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) lw $t0,0($i0) # Td1[s3>>16] _xtr $i0,$s2,8-2 lw $t1,0($i1) # Td1[s0>>16] _xtr $i1,$s3,8-2 lw $t2,0($i2) # Td1[s1>>16] _xtr $i2,$s0,8-2 lw $t3,0($i3) # Td1[s2>>16] _xtr $i3,$s1,8-2 #else lwl $t0,3($i0) # Td1[s3>>16] lwl $t1,3($i1) # Td1[s0>>16] lwl $t2,3($i2) # Td1[s1>>16] lwl $t3,3($i3) # Td1[s2>>16] lwr $t0,2($i0) # Td1[s3>>16] _xtr $i0,$s2,8-2 lwr $t1,2($i1) # Td1[s0>>16] _xtr $i1,$s3,8-2 lwr $t2,2($i2) # Td1[s1>>16] _xtr $i2,$s0,8-2 lwr $t3,2($i3) # Td1[s2>>16] _xtr $i3,$s1,8-2 #endif and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) rotr $t0,$t0,8 rotr $t1,$t1,8 rotr $t2,$t2,8 rotr $t3,$t3,8 # if defined(_MIPSEL) lw $t4,0($i0) # Td2[s2>>8] _xtr $i0,$s1,0-2 lw $t5,0($i1) # Td2[s3>>8] _xtr $i1,$s2,0-2 lw $t6,0($i2) # Td2[s0>>8] _xtr $i2,$s3,0-2 lw $t7,0($i3) # Td2[s1>>8] _xtr $i3,$s0,0-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lw $t8,0($i0) # Td3[s1] $PTR_INS $i0,$s0,2,8 lw $t9,0($i1) # Td3[s2] $PTR_INS $i1,$s1,2,8 lw $t10,0($i2) # Td3[s3] $PTR_INS $i2,$s2,2,8 lw $t11,0($i3) # Td3[s0] $PTR_INS $i3,$s3,2,8 #else lw $t4,0($i0) # Td2[s2>>8] $PTR_INS $i0,$s1,2,8 lw $t5,0($i1) # Td2[s3>>8] $PTR_INS $i1,$s2,2,8 lw $t6,0($i2) # Td2[s0>>8] $PTR_INS $i2,$s3,2,8 lw $t7,0($i3) # Td2[s1>>8] $PTR_INS $i3,$s0,2,8 lw $t8,0($i0) # Td3[s1] _xtr $i0,$s0,24-2 lw $t9,0($i1) # Td3[s2] _xtr $i1,$s1,24-2 lw $t10,0($i2) # Td3[s3] _xtr $i2,$s2,24-2 lw $t11,0($i3) # Td3[s0] _xtr $i3,$s3,24-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #endif rotr $t4,$t4,16 rotr $t5,$t5,16 rotr $t6,$t6,16 rotr $t7,$t7,16 rotr $t8,$t8,24 rotr $t9,$t9,24 rotr $t10,$t10,24 rotr $t11,$t11,24 #else lwl $t4,2($i0) # Td2[s2>>8] lwl $t5,2($i1) # Td2[s3>>8] lwl $t6,2($i2) # Td2[s0>>8] lwl $t7,2($i3) # Td2[s1>>8] lwr $t4,1($i0) # Td2[s2>>8] _xtr $i0,$s1,0-2 lwr $t5,1($i1) # Td2[s3>>8] _xtr $i1,$s2,0-2 lwr $t6,1($i2) # Td2[s0>>8] _xtr $i2,$s3,0-2 lwr $t7,1($i3) # Td2[s1>>8] _xtr $i3,$s0,0-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lwl $t8,1($i0) # Td3[s1] lwl $t9,1($i1) # Td3[s2] lwl $t10,1($i2) # Td3[s3] lwl $t11,1($i3) # Td3[s0] lwr $t8,0($i0) # Td3[s1] _xtr $i0,$s0,24-2 lwr $t9,0($i1) # Td3[s2] _xtr $i1,$s1,24-2 lwr $t10,0($i2) # Td3[s3] _xtr $i2,$s2,24-2 lwr $t11,0($i3) # Td3[s0] _xtr $i3,$s3,24-2 and $i0,0x3fc and $i1,0x3fc and $i2,0x3fc and $i3,0x3fc $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #endif xor $t0,$t4 lw $t4,0($i0) # Td0[s0>>24] xor $t1,$t5 lw $t5,0($i1) # Td0[s1>>24] xor $t2,$t6 lw $t6,0($i2) # Td0[s2>>24] xor $t3,$t7 lw $t7,0($i3) # Td0[s3>>24] xor $t0,$t8 lw $s0,0($key0) xor $t1,$t9 lw $s1,4($key0) xor $t2,$t10 lw $s2,8($key0) xor $t3,$t11 lw $s3,12($key0) xor $t0,$t4 xor $t1,$t5 xor $t2,$t6 xor $t3,$t7 subu $cnt,1 $PTR_ADD $key0,16 xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 .set noreorder bnez $cnt,.Loop_dec _xtr $i0,$s3,16-2 #endif .set reorder lw $t4,1024($Tbl) # prefetch Td4 _xtr $i0,$s3,16 lw $t5,1024+32($Tbl) _xtr $i1,$s0,16 lw $t6,1024+64($Tbl) _xtr $i2,$s1,16 lw $t7,1024+96($Tbl) _xtr $i3,$s2,16 lw $t8,1024+128($Tbl) and $i0,0xff lw $t9,1024+160($Tbl) and $i1,0xff lw $t10,1024+192($Tbl) and $i2,0xff lw $t11,1024+224($Tbl) and $i3,0xff $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $t0,1024($i0) # Td4[s3>>16] _xtr $i0,$s2,8 lbu $t1,1024($i1) # Td4[s0>>16] _xtr $i1,$s3,8 lbu $t2,1024($i2) # Td4[s1>>16] _xtr $i2,$s0,8 lbu $t3,1024($i3) # Td4[s2>>16] _xtr $i3,$s1,8 and $i0,0xff and $i1,0xff and $i2,0xff and $i3,0xff $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) # if defined(_MIPSEL) lbu $t4,1024($i0) # Td4[s2>>8] $PTR_INS $i0,$s0,0,8 lbu $t5,1024($i1) # Td4[s3>>8] $PTR_INS $i1,$s1,0,8 lbu $t6,1024($i2) # Td4[s0>>8] $PTR_INS $i2,$s2,0,8 lbu $t7,1024($i3) # Td4[s1>>8] $PTR_INS $i3,$s3,0,8 lbu $t8,1024($i0) # Td4[s0>>24] _xtr $i0,$s1,0 lbu $t9,1024($i1) # Td4[s1>>24] _xtr $i1,$s2,0 lbu $t10,1024($i2) # Td4[s2>>24] _xtr $i2,$s3,0 lbu $t11,1024($i3) # Td4[s3>>24] _xtr $i3,$s0,0 $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl # else lbu $t4,1024($i0) # Td4[s2>>8] _xtr $i0,$s0,24 lbu $t5,1024($i1) # Td4[s3>>8] _xtr $i1,$s1,24 lbu $t6,1024($i2) # Td4[s0>>8] _xtr $i2,$s2,24 lbu $t7,1024($i3) # Td4[s1>>8] _xtr $i3,$s3,24 $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $t8,1024($i0) # Td4[s0>>24] $PTR_INS $i0,$s1,0,8 lbu $t9,1024($i1) # Td4[s1>>24] $PTR_INS $i1,$s2,0,8 lbu $t10,1024($i2) # Td4[s2>>24] $PTR_INS $i2,$s3,0,8 lbu $t11,1024($i3) # Td4[s3>>24] $PTR_INS $i3,$s0,0,8 # endif _ins $t0,16 _ins $t1,16 _ins $t2,16 _ins $t3,16 _ins2 $t0,$t4,8 lbu $t4,1024($i0) # Td4[s1] _ins2 $t1,$t5,8 lbu $t5,1024($i1) # Td4[s2] _ins2 $t2,$t6,8 lbu $t6,1024($i2) # Td4[s3] _ins2 $t3,$t7,8 lbu $t7,1024($i3) # Td4[s0] _ins2 $t0,$t8,24 lw $s0,0($key0) _ins2 $t1,$t9,24 lw $s1,4($key0) _ins2 $t2,$t10,24 lw $s2,8($key0) _ins2 $t3,$t11,24 lw $s3,12($key0) _ins2 $t0,$t4,0 _ins2 $t1,$t5,0 _ins2 $t2,$t6,0 _ins2 $t3,$t7,0 #else lbu $t4,1024($i0) # Td4[s2>>8] _xtr $i0,$s0,24 lbu $t5,1024($i1) # Td4[s3>>8] _xtr $i1,$s1,24 lbu $t6,1024($i2) # Td4[s0>>8] _xtr $i2,$s2,24 lbu $t7,1024($i3) # Td4[s1>>8] _xtr $i3,$s3,24 $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $t8,1024($i0) # Td4[s0>>24] _xtr $i0,$s1,0 lbu $t9,1024($i1) # Td4[s1>>24] _xtr $i1,$s2,0 lbu $t10,1024($i2) # Td4[s2>>24] _xtr $i2,$s3,0 lbu $t11,1024($i3) # Td4[s3>>24] _xtr $i3,$s0,0 $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl _ins $t0,16 _ins $t1,16 _ins $t2,16 _ins $t3,16 _ins $t4,8 _ins $t5,8 _ins $t6,8 _ins $t7,8 xor $t0,$t4 lbu $t4,1024($i0) # Td4[s1] xor $t1,$t5 lbu $t5,1024($i1) # Td4[s2] xor $t2,$t6 lbu $t6,1024($i2) # Td4[s3] xor $t3,$t7 lbu $t7,1024($i3) # Td4[s0] _ins $t8,24 lw $s0,0($key0) _ins $t9,24 lw $s1,4($key0) _ins $t10,24 lw $s2,8($key0) _ins $t11,24 lw $s3,12($key0) xor $t0,$t8 xor $t1,$t9 xor $t2,$t10 xor $t3,$t11 _ins $t4,0 _ins $t5,0 _ins $t6,0 _ins $t7,0 xor $t0,$t4 xor $t1,$t5 xor $t2,$t6 xor $t3,$t7 #endif xor $s0,$t0 xor $s1,$t1 xor $s2,$t2 xor $s3,$t3 jr $ra .end _mips_AES_decrypt .align 5 .globl AES_decrypt .ent AES_decrypt AES_decrypt: .frame $sp,$FRAMESIZE,$ra .mask $SAVED_REGS_MASK,-$SZREG .set noreorder ___ $code.=<<___ if ($flavour =~ /o32/i); # o32 PIC-ification .cpload $pf ___ $code.=<<___; $PTR_SUB $sp,$FRAMESIZE $REG_S $ra,$FRAMESIZE-1*$SZREG($sp) $REG_S $fp,$FRAMESIZE-2*$SZREG($sp) $REG_S $s11,$FRAMESIZE-3*$SZREG($sp) $REG_S $s10,$FRAMESIZE-4*$SZREG($sp) $REG_S $s9,$FRAMESIZE-5*$SZREG($sp) $REG_S $s8,$FRAMESIZE-6*$SZREG($sp) $REG_S $s7,$FRAMESIZE-7*$SZREG($sp) $REG_S $s6,$FRAMESIZE-8*$SZREG($sp) $REG_S $s5,$FRAMESIZE-9*$SZREG($sp) $REG_S $s4,$FRAMESIZE-10*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue $REG_S \$15,$FRAMESIZE-11*$SZREG($sp) $REG_S \$14,$FRAMESIZE-12*$SZREG($sp) $REG_S \$13,$FRAMESIZE-13*$SZREG($sp) $REG_S \$12,$FRAMESIZE-14*$SZREG($sp) $REG_S $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___ if ($flavour !~ /o32/i); # non-o32 PIC-ification .cplocal $Tbl .cpsetup $pf,$zero,AES_decrypt ___ $code.=<<___; .set reorder $PTR_LA $Tbl,AES_Td # PIC-ified 'load address' #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) lw $s0,0($inp) lw $s1,4($inp) lw $s2,8($inp) lw $s3,12($inp) #else lwl $s0,0+$MSB($inp) lwl $s1,4+$MSB($inp) lwl $s2,8+$MSB($inp) lwl $s3,12+$MSB($inp) lwr $s0,0+$LSB($inp) lwr $s1,4+$LSB($inp) lwr $s2,8+$LSB($inp) lwr $s3,12+$LSB($inp) #endif bal _mips_AES_decrypt #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) sw $s0,0($out) sw $s1,4($out) sw $s2,8($out) sw $s3,12($out) #else swr $s0,0+$LSB($out) swr $s1,4+$LSB($out) swr $s2,8+$LSB($out) swr $s3,12+$LSB($out) swl $s0,0+$MSB($out) swl $s1,4+$MSB($out) swl $s2,8+$MSB($out) swl $s3,12+$MSB($out) #endif .set noreorder $REG_L $ra,$FRAMESIZE-1*$SZREG($sp) $REG_L $fp,$FRAMESIZE-2*$SZREG($sp) $REG_L $s11,$FRAMESIZE-3*$SZREG($sp) $REG_L $s10,$FRAMESIZE-4*$SZREG($sp) $REG_L $s9,$FRAMESIZE-5*$SZREG($sp) $REG_L $s8,$FRAMESIZE-6*$SZREG($sp) $REG_L $s7,$FRAMESIZE-7*$SZREG($sp) $REG_L $s6,$FRAMESIZE-8*$SZREG($sp) $REG_L $s5,$FRAMESIZE-9*$SZREG($sp) $REG_L $s4,$FRAMESIZE-10*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L \$15,$FRAMESIZE-11*$SZREG($sp) $REG_L \$14,$FRAMESIZE-12*$SZREG($sp) $REG_L \$13,$FRAMESIZE-13*$SZREG($sp) $REG_L \$12,$FRAMESIZE-14*$SZREG($sp) $REG_L $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE .end AES_decrypt ___ }}} {{{ my $FRAMESIZE=8*$SZREG; my $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? "0xc000f008" : "0xc0000000"; my ($inp,$bits,$key,$Tbl)=($a0,$a1,$a2,$a3); my ($rk0,$rk1,$rk2,$rk3,$rk4,$rk5,$rk6,$rk7)=($a4,$a5,$a6,$a7,$s0,$s1,$s2,$s3); my ($i0,$i1,$i2,$i3)=($at,$t0,$t1,$t2); my ($rcon,$cnt)=($gp,$fp); $code.=<<___; .align 5 .ent _mips_AES_set_encrypt_key _mips_AES_set_encrypt_key: .frame $sp,0,$ra .set noreorder beqz $inp,.Lekey_done li $t0,-1 beqz $key,.Lekey_done $PTR_ADD $rcon,$Tbl,256 .set reorder #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) lw $rk0,0($inp) # load 128 bits lw $rk1,4($inp) lw $rk2,8($inp) lw $rk3,12($inp) #else lwl $rk0,0+$MSB($inp) # load 128 bits lwl $rk1,4+$MSB($inp) lwl $rk2,8+$MSB($inp) lwl $rk3,12+$MSB($inp) lwr $rk0,0+$LSB($inp) lwr $rk1,4+$LSB($inp) lwr $rk2,8+$LSB($inp) lwr $rk3,12+$LSB($inp) #endif li $at,128 .set noreorder beq $bits,$at,.L128bits li $cnt,10 .set reorder #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) lw $rk4,16($inp) # load 192 bits lw $rk5,20($inp) #else lwl $rk4,16+$MSB($inp) # load 192 bits lwl $rk5,20+$MSB($inp) lwr $rk4,16+$LSB($inp) lwr $rk5,20+$LSB($inp) #endif li $at,192 .set noreorder beq $bits,$at,.L192bits li $cnt,8 .set reorder #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) lw $rk6,24($inp) # load 256 bits lw $rk7,28($inp) #else lwl $rk6,24+$MSB($inp) # load 256 bits lwl $rk7,28+$MSB($inp) lwr $rk6,24+$LSB($inp) lwr $rk7,28+$LSB($inp) #endif li $at,256 .set noreorder beq $bits,$at,.L256bits li $cnt,7 b .Lekey_done li $t0,-2 .align 4 .L128bits: .set reorder srl $i0,$rk3,16 srl $i1,$rk3,8 and $i0,0xff and $i1,0xff and $i2,$rk3,0xff srl $i3,$rk3,24 $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $i0,0($i0) lbu $i1,0($i1) lbu $i2,0($i2) lbu $i3,0($i3) sw $rk0,0($key) sw $rk1,4($key) sw $rk2,8($key) sw $rk3,12($key) subu $cnt,1 $PTR_ADD $key,16 _bias $i0,24 _bias $i1,16 _bias $i2,8 _bias $i3,0 xor $rk0,$i0 lw $i0,0($rcon) xor $rk0,$i1 xor $rk0,$i2 xor $rk0,$i3 xor $rk0,$i0 xor $rk1,$rk0 xor $rk2,$rk1 xor $rk3,$rk2 .set noreorder bnez $cnt,.L128bits $PTR_ADD $rcon,4 sw $rk0,0($key) sw $rk1,4($key) sw $rk2,8($key) li $cnt,10 sw $rk3,12($key) li $t0,0 sw $cnt,80($key) b .Lekey_done $PTR_SUB $key,10*16 .align 4 .L192bits: .set reorder srl $i0,$rk5,16 srl $i1,$rk5,8 and $i0,0xff and $i1,0xff and $i2,$rk5,0xff srl $i3,$rk5,24 $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $i0,0($i0) lbu $i1,0($i1) lbu $i2,0($i2) lbu $i3,0($i3) sw $rk0,0($key) sw $rk1,4($key) sw $rk2,8($key) sw $rk3,12($key) sw $rk4,16($key) sw $rk5,20($key) subu $cnt,1 $PTR_ADD $key,24 _bias $i0,24 _bias $i1,16 _bias $i2,8 _bias $i3,0 xor $rk0,$i0 lw $i0,0($rcon) xor $rk0,$i1 xor $rk0,$i2 xor $rk0,$i3 xor $rk0,$i0 xor $rk1,$rk0 xor $rk2,$rk1 xor $rk3,$rk2 xor $rk4,$rk3 xor $rk5,$rk4 .set noreorder bnez $cnt,.L192bits $PTR_ADD $rcon,4 sw $rk0,0($key) sw $rk1,4($key) sw $rk2,8($key) li $cnt,12 sw $rk3,12($key) li $t0,0 sw $cnt,48($key) b .Lekey_done $PTR_SUB $key,12*16 .align 4 .L256bits: .set reorder srl $i0,$rk7,16 srl $i1,$rk7,8 and $i0,0xff and $i1,0xff and $i2,$rk7,0xff srl $i3,$rk7,24 $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $i0,0($i0) lbu $i1,0($i1) lbu $i2,0($i2) lbu $i3,0($i3) sw $rk0,0($key) sw $rk1,4($key) sw $rk2,8($key) sw $rk3,12($key) sw $rk4,16($key) sw $rk5,20($key) sw $rk6,24($key) sw $rk7,28($key) subu $cnt,1 _bias $i0,24 _bias $i1,16 _bias $i2,8 _bias $i3,0 xor $rk0,$i0 lw $i0,0($rcon) xor $rk0,$i1 xor $rk0,$i2 xor $rk0,$i3 xor $rk0,$i0 xor $rk1,$rk0 xor $rk2,$rk1 xor $rk3,$rk2 beqz $cnt,.L256bits_done srl $i0,$rk3,24 srl $i1,$rk3,16 srl $i2,$rk3,8 and $i3,$rk3,0xff and $i1,0xff and $i2,0xff $PTR_ADD $i0,$Tbl $PTR_ADD $i1,$Tbl $PTR_ADD $i2,$Tbl $PTR_ADD $i3,$Tbl lbu $i0,0($i0) lbu $i1,0($i1) lbu $i2,0($i2) lbu $i3,0($i3) sll $i0,24 sll $i1,16 sll $i2,8 xor $rk4,$i0 xor $rk4,$i1 xor $rk4,$i2 xor $rk4,$i3 xor $rk5,$rk4 xor $rk6,$rk5 xor $rk7,$rk6 $PTR_ADD $key,32 .set noreorder b .L256bits $PTR_ADD $rcon,4 .L256bits_done: sw $rk0,32($key) sw $rk1,36($key) sw $rk2,40($key) li $cnt,14 sw $rk3,44($key) li $t0,0 sw $cnt,48($key) $PTR_SUB $key,12*16 .Lekey_done: jr $ra nop .end _mips_AES_set_encrypt_key .globl AES_set_encrypt_key .ent AES_set_encrypt_key AES_set_encrypt_key: .frame $sp,$FRAMESIZE,$ra .mask $SAVED_REGS_MASK,-$SZREG .set noreorder ___ $code.=<<___ if ($flavour =~ /o32/i); # o32 PIC-ification .cpload $pf ___ $code.=<<___; $PTR_SUB $sp,$FRAMESIZE $REG_S $ra,$FRAMESIZE-1*$SZREG($sp) $REG_S $fp,$FRAMESIZE-2*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue $REG_S $s3,$FRAMESIZE-3*$SZREG($sp) $REG_S $s2,$FRAMESIZE-4*$SZREG($sp) $REG_S $s1,$FRAMESIZE-5*$SZREG($sp) $REG_S $s0,$FRAMESIZE-6*$SZREG($sp) $REG_S $gp,$FRAMESIZE-7*$SZREG($sp) ___ $code.=<<___ if ($flavour !~ /o32/i); # non-o32 PIC-ification .cplocal $Tbl .cpsetup $pf,$zero,AES_set_encrypt_key ___ $code.=<<___; .set reorder $PTR_LA $Tbl,AES_Te4 # PIC-ified 'load address' bal _mips_AES_set_encrypt_key .set noreorder move $a0,$t0 $REG_L $ra,$FRAMESIZE-1*$SZREG($sp) $REG_L $fp,$FRAMESIZE-2*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $s3,$FRAMESIZE-11*$SZREG($sp) $REG_L $s2,$FRAMESIZE-12*$SZREG($sp) $REG_L $s1,$FRAMESIZE-13*$SZREG($sp) $REG_L $s0,$FRAMESIZE-14*$SZREG($sp) $REG_L $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE .end AES_set_encrypt_key ___ my ($head,$tail)=($inp,$bits); my ($tp1,$tp2,$tp4,$tp8,$tp9,$tpb,$tpd,$tpe)=($a4,$a5,$a6,$a7,$s0,$s1,$s2,$s3); my ($m,$x80808080,$x7f7f7f7f,$x1b1b1b1b)=($at,$t0,$t1,$t2); $code.=<<___; .align 5 .globl AES_set_decrypt_key .ent AES_set_decrypt_key AES_set_decrypt_key: .frame $sp,$FRAMESIZE,$ra .mask $SAVED_REGS_MASK,-$SZREG .set noreorder ___ $code.=<<___ if ($flavour =~ /o32/i); # o32 PIC-ification .cpload $pf ___ $code.=<<___; $PTR_SUB $sp,$FRAMESIZE $REG_S $ra,$FRAMESIZE-1*$SZREG($sp) $REG_S $fp,$FRAMESIZE-2*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue $REG_S $s3,$FRAMESIZE-3*$SZREG($sp) $REG_S $s2,$FRAMESIZE-4*$SZREG($sp) $REG_S $s1,$FRAMESIZE-5*$SZREG($sp) $REG_S $s0,$FRAMESIZE-6*$SZREG($sp) $REG_S $gp,$FRAMESIZE-7*$SZREG($sp) ___ $code.=<<___ if ($flavour !~ /o32/i); # non-o32 PIC-ification .cplocal $Tbl .cpsetup $pf,$zero,AES_set_decrypt_key ___ $code.=<<___; .set reorder $PTR_LA $Tbl,AES_Te4 # PIC-ified 'load address' bal _mips_AES_set_encrypt_key bltz $t0,.Ldkey_done sll $at,$cnt,4 $PTR_ADD $head,$key,0 $PTR_ADD $tail,$key,$at .align 4 .Lswap: lw $rk0,0($head) lw $rk1,4($head) lw $rk2,8($head) lw $rk3,12($head) lw $rk4,0($tail) lw $rk5,4($tail) lw $rk6,8($tail) lw $rk7,12($tail) sw $rk0,0($tail) sw $rk1,4($tail) sw $rk2,8($tail) sw $rk3,12($tail) $PTR_ADD $head,16 $PTR_SUB $tail,16 sw $rk4,-16($head) sw $rk5,-12($head) sw $rk6,-8($head) sw $rk7,-4($head) bne $head,$tail,.Lswap lw $tp1,16($key) # modulo-scheduled lui $x80808080,0x8080 subu $cnt,1 or $x80808080,0x8080 sll $cnt,2 $PTR_ADD $key,16 lui $x1b1b1b1b,0x1b1b nor $x7f7f7f7f,$zero,$x80808080 or $x1b1b1b1b,0x1b1b .align 4 .Lmix: and $m,$tp1,$x80808080 and $tp2,$tp1,$x7f7f7f7f srl $tp4,$m,7 addu $tp2,$tp2 # tp2<<1 subu $m,$tp4 and $m,$x1b1b1b1b xor $tp2,$m and $m,$tp2,$x80808080 and $tp4,$tp2,$x7f7f7f7f srl $tp8,$m,7 addu $tp4,$tp4 # tp4<<1 subu $m,$tp8 and $m,$x1b1b1b1b xor $tp4,$m and $m,$tp4,$x80808080 and $tp8,$tp4,$x7f7f7f7f srl $tp9,$m,7 addu $tp8,$tp8 # tp8<<1 subu $m,$tp9 and $m,$x1b1b1b1b xor $tp8,$m xor $tp9,$tp8,$tp1 xor $tpe,$tp8,$tp4 xor $tpb,$tp9,$tp2 xor $tpd,$tp9,$tp4 #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) rotr $tp1,$tpd,16 xor $tpe,$tp2 rotr $tp2,$tp9,8 xor $tpe,$tp1 rotr $tp4,$tpb,24 xor $tpe,$tp2 lw $tp1,4($key) # modulo-scheduled xor $tpe,$tp4 #else _ror $tp1,$tpd,16 xor $tpe,$tp2 _ror $tp2,$tpd,-16 xor $tpe,$tp1 _ror $tp1,$tp9,8 xor $tpe,$tp2 _ror $tp2,$tp9,-24 xor $tpe,$tp1 _ror $tp1,$tpb,24 xor $tpe,$tp2 _ror $tp2,$tpb,-8 xor $tpe,$tp1 lw $tp1,4($key) # modulo-scheduled xor $tpe,$tp2 #endif subu $cnt,1 sw $tpe,0($key) $PTR_ADD $key,4 bnez $cnt,.Lmix li $t0,0 .Ldkey_done: .set noreorder move $a0,$t0 $REG_L $ra,$FRAMESIZE-1*$SZREG($sp) $REG_L $fp,$FRAMESIZE-2*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $s3,$FRAMESIZE-11*$SZREG($sp) $REG_L $s2,$FRAMESIZE-12*$SZREG($sp) $REG_L $s1,$FRAMESIZE-13*$SZREG($sp) $REG_L $s0,$FRAMESIZE-14*$SZREG($sp) $REG_L $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE .end AES_set_decrypt_key ___ }}} ###################################################################### # Tables are kept in endian-neutral manner $code.=<<___; .rdata .align 10 AES_Te: .byte 0xc6,0x63,0x63,0xa5, 0xf8,0x7c,0x7c,0x84 # Te0 .byte 0xee,0x77,0x77,0x99, 0xf6,0x7b,0x7b,0x8d .byte 0xff,0xf2,0xf2,0x0d, 0xd6,0x6b,0x6b,0xbd .byte 0xde,0x6f,0x6f,0xb1, 0x91,0xc5,0xc5,0x54 .byte 0x60,0x30,0x30,0x50, 0x02,0x01,0x01,0x03 .byte 0xce,0x67,0x67,0xa9, 0x56,0x2b,0x2b,0x7d .byte 0xe7,0xfe,0xfe,0x19, 0xb5,0xd7,0xd7,0x62 .byte 0x4d,0xab,0xab,0xe6, 0xec,0x76,0x76,0x9a .byte 0x8f,0xca,0xca,0x45, 0x1f,0x82,0x82,0x9d .byte 0x89,0xc9,0xc9,0x40, 0xfa,0x7d,0x7d,0x87 .byte 0xef,0xfa,0xfa,0x15, 0xb2,0x59,0x59,0xeb .byte 0x8e,0x47,0x47,0xc9, 0xfb,0xf0,0xf0,0x0b .byte 0x41,0xad,0xad,0xec, 0xb3,0xd4,0xd4,0x67 .byte 0x5f,0xa2,0xa2,0xfd, 0x45,0xaf,0xaf,0xea .byte 0x23,0x9c,0x9c,0xbf, 0x53,0xa4,0xa4,0xf7 .byte 0xe4,0x72,0x72,0x96, 0x9b,0xc0,0xc0,0x5b .byte 0x75,0xb7,0xb7,0xc2, 0xe1,0xfd,0xfd,0x1c .byte 0x3d,0x93,0x93,0xae, 0x4c,0x26,0x26,0x6a .byte 0x6c,0x36,0x36,0x5a, 0x7e,0x3f,0x3f,0x41 .byte 0xf5,0xf7,0xf7,0x02, 0x83,0xcc,0xcc,0x4f .byte 0x68,0x34,0x34,0x5c, 0x51,0xa5,0xa5,0xf4 .byte 0xd1,0xe5,0xe5,0x34, 0xf9,0xf1,0xf1,0x08 .byte 0xe2,0x71,0x71,0x93, 0xab,0xd8,0xd8,0x73 .byte 0x62,0x31,0x31,0x53, 0x2a,0x15,0x15,0x3f .byte 0x08,0x04,0x04,0x0c, 0x95,0xc7,0xc7,0x52 .byte 0x46,0x23,0x23,0x65, 0x9d,0xc3,0xc3,0x5e .byte 0x30,0x18,0x18,0x28, 0x37,0x96,0x96,0xa1 .byte 0x0a,0x05,0x05,0x0f, 0x2f,0x9a,0x9a,0xb5 .byte 0x0e,0x07,0x07,0x09, 0x24,0x12,0x12,0x36 .byte 0x1b,0x80,0x80,0x9b, 0xdf,0xe2,0xe2,0x3d .byte 0xcd,0xeb,0xeb,0x26, 0x4e,0x27,0x27,0x69 .byte 0x7f,0xb2,0xb2,0xcd, 0xea,0x75,0x75,0x9f .byte 0x12,0x09,0x09,0x1b, 0x1d,0x83,0x83,0x9e .byte 0x58,0x2c,0x2c,0x74, 0x34,0x1a,0x1a,0x2e .byte 0x36,0x1b,0x1b,0x2d, 0xdc,0x6e,0x6e,0xb2 .byte 0xb4,0x5a,0x5a,0xee, 0x5b,0xa0,0xa0,0xfb .byte 0xa4,0x52,0x52,0xf6, 0x76,0x3b,0x3b,0x4d .byte 0xb7,0xd6,0xd6,0x61, 0x7d,0xb3,0xb3,0xce .byte 0x52,0x29,0x29,0x7b, 0xdd,0xe3,0xe3,0x3e .byte 0x5e,0x2f,0x2f,0x71, 0x13,0x84,0x84,0x97 .byte 0xa6,0x53,0x53,0xf5, 0xb9,0xd1,0xd1,0x68 .byte 0x00,0x00,0x00,0x00, 0xc1,0xed,0xed,0x2c .byte 0x40,0x20,0x20,0x60, 0xe3,0xfc,0xfc,0x1f .byte 0x79,0xb1,0xb1,0xc8, 0xb6,0x5b,0x5b,0xed .byte 0xd4,0x6a,0x6a,0xbe, 0x8d,0xcb,0xcb,0x46 .byte 0x67,0xbe,0xbe,0xd9, 0x72,0x39,0x39,0x4b .byte 0x94,0x4a,0x4a,0xde, 0x98,0x4c,0x4c,0xd4 .byte 0xb0,0x58,0x58,0xe8, 0x85,0xcf,0xcf,0x4a .byte 0xbb,0xd0,0xd0,0x6b, 0xc5,0xef,0xef,0x2a .byte 0x4f,0xaa,0xaa,0xe5, 0xed,0xfb,0xfb,0x16 .byte 0x86,0x43,0x43,0xc5, 0x9a,0x4d,0x4d,0xd7 .byte 0x66,0x33,0x33,0x55, 0x11,0x85,0x85,0x94 .byte 0x8a,0x45,0x45,0xcf, 0xe9,0xf9,0xf9,0x10 .byte 0x04,0x02,0x02,0x06, 0xfe,0x7f,0x7f,0x81 .byte 0xa0,0x50,0x50,0xf0, 0x78,0x3c,0x3c,0x44 .byte 0x25,0x9f,0x9f,0xba, 0x4b,0xa8,0xa8,0xe3 .byte 0xa2,0x51,0x51,0xf3, 0x5d,0xa3,0xa3,0xfe .byte 0x80,0x40,0x40,0xc0, 0x05,0x8f,0x8f,0x8a .byte 0x3f,0x92,0x92,0xad, 0x21,0x9d,0x9d,0xbc .byte 0x70,0x38,0x38,0x48, 0xf1,0xf5,0xf5,0x04 .byte 0x63,0xbc,0xbc,0xdf, 0x77,0xb6,0xb6,0xc1 .byte 0xaf,0xda,0xda,0x75, 0x42,0x21,0x21,0x63 .byte 0x20,0x10,0x10,0x30, 0xe5,0xff,0xff,0x1a .byte 0xfd,0xf3,0xf3,0x0e, 0xbf,0xd2,0xd2,0x6d .byte 0x81,0xcd,0xcd,0x4c, 0x18,0x0c,0x0c,0x14 .byte 0x26,0x13,0x13,0x35, 0xc3,0xec,0xec,0x2f .byte 0xbe,0x5f,0x5f,0xe1, 0x35,0x97,0x97,0xa2 .byte 0x88,0x44,0x44,0xcc, 0x2e,0x17,0x17,0x39 .byte 0x93,0xc4,0xc4,0x57, 0x55,0xa7,0xa7,0xf2 .byte 0xfc,0x7e,0x7e,0x82, 0x7a,0x3d,0x3d,0x47 .byte 0xc8,0x64,0x64,0xac, 0xba,0x5d,0x5d,0xe7 .byte 0x32,0x19,0x19,0x2b, 0xe6,0x73,0x73,0x95 .byte 0xc0,0x60,0x60,0xa0, 0x19,0x81,0x81,0x98 .byte 0x9e,0x4f,0x4f,0xd1, 0xa3,0xdc,0xdc,0x7f .byte 0x44,0x22,0x22,0x66, 0x54,0x2a,0x2a,0x7e .byte 0x3b,0x90,0x90,0xab, 0x0b,0x88,0x88,0x83 .byte 0x8c,0x46,0x46,0xca, 0xc7,0xee,0xee,0x29 .byte 0x6b,0xb8,0xb8,0xd3, 0x28,0x14,0x14,0x3c .byte 0xa7,0xde,0xde,0x79, 0xbc,0x5e,0x5e,0xe2 .byte 0x16,0x0b,0x0b,0x1d, 0xad,0xdb,0xdb,0x76 .byte 0xdb,0xe0,0xe0,0x3b, 0x64,0x32,0x32,0x56 .byte 0x74,0x3a,0x3a,0x4e, 0x14,0x0a,0x0a,0x1e .byte 0x92,0x49,0x49,0xdb, 0x0c,0x06,0x06,0x0a .byte 0x48,0x24,0x24,0x6c, 0xb8,0x5c,0x5c,0xe4 .byte 0x9f,0xc2,0xc2,0x5d, 0xbd,0xd3,0xd3,0x6e .byte 0x43,0xac,0xac,0xef, 0xc4,0x62,0x62,0xa6 .byte 0x39,0x91,0x91,0xa8, 0x31,0x95,0x95,0xa4 .byte 0xd3,0xe4,0xe4,0x37, 0xf2,0x79,0x79,0x8b .byte 0xd5,0xe7,0xe7,0x32, 0x8b,0xc8,0xc8,0x43 .byte 0x6e,0x37,0x37,0x59, 0xda,0x6d,0x6d,0xb7 .byte 0x01,0x8d,0x8d,0x8c, 0xb1,0xd5,0xd5,0x64 .byte 0x9c,0x4e,0x4e,0xd2, 0x49,0xa9,0xa9,0xe0 .byte 0xd8,0x6c,0x6c,0xb4, 0xac,0x56,0x56,0xfa .byte 0xf3,0xf4,0xf4,0x07, 0xcf,0xea,0xea,0x25 .byte 0xca,0x65,0x65,0xaf, 0xf4,0x7a,0x7a,0x8e .byte 0x47,0xae,0xae,0xe9, 0x10,0x08,0x08,0x18 .byte 0x6f,0xba,0xba,0xd5, 0xf0,0x78,0x78,0x88 .byte 0x4a,0x25,0x25,0x6f, 0x5c,0x2e,0x2e,0x72 .byte 0x38,0x1c,0x1c,0x24, 0x57,0xa6,0xa6,0xf1 .byte 0x73,0xb4,0xb4,0xc7, 0x97,0xc6,0xc6,0x51 .byte 0xcb,0xe8,0xe8,0x23, 0xa1,0xdd,0xdd,0x7c .byte 0xe8,0x74,0x74,0x9c, 0x3e,0x1f,0x1f,0x21 .byte 0x96,0x4b,0x4b,0xdd, 0x61,0xbd,0xbd,0xdc .byte 0x0d,0x8b,0x8b,0x86, 0x0f,0x8a,0x8a,0x85 .byte 0xe0,0x70,0x70,0x90, 0x7c,0x3e,0x3e,0x42 .byte 0x71,0xb5,0xb5,0xc4, 0xcc,0x66,0x66,0xaa .byte 0x90,0x48,0x48,0xd8, 0x06,0x03,0x03,0x05 .byte 0xf7,0xf6,0xf6,0x01, 0x1c,0x0e,0x0e,0x12 .byte 0xc2,0x61,0x61,0xa3, 0x6a,0x35,0x35,0x5f .byte 0xae,0x57,0x57,0xf9, 0x69,0xb9,0xb9,0xd0 .byte 0x17,0x86,0x86,0x91, 0x99,0xc1,0xc1,0x58 .byte 0x3a,0x1d,0x1d,0x27, 0x27,0x9e,0x9e,0xb9 .byte 0xd9,0xe1,0xe1,0x38, 0xeb,0xf8,0xf8,0x13 .byte 0x2b,0x98,0x98,0xb3, 0x22,0x11,0x11,0x33 .byte 0xd2,0x69,0x69,0xbb, 0xa9,0xd9,0xd9,0x70 .byte 0x07,0x8e,0x8e,0x89, 0x33,0x94,0x94,0xa7 .byte 0x2d,0x9b,0x9b,0xb6, 0x3c,0x1e,0x1e,0x22 .byte 0x15,0x87,0x87,0x92, 0xc9,0xe9,0xe9,0x20 .byte 0x87,0xce,0xce,0x49, 0xaa,0x55,0x55,0xff .byte 0x50,0x28,0x28,0x78, 0xa5,0xdf,0xdf,0x7a .byte 0x03,0x8c,0x8c,0x8f, 0x59,0xa1,0xa1,0xf8 .byte 0x09,0x89,0x89,0x80, 0x1a,0x0d,0x0d,0x17 .byte 0x65,0xbf,0xbf,0xda, 0xd7,0xe6,0xe6,0x31 .byte 0x84,0x42,0x42,0xc6, 0xd0,0x68,0x68,0xb8 .byte 0x82,0x41,0x41,0xc3, 0x29,0x99,0x99,0xb0 .byte 0x5a,0x2d,0x2d,0x77, 0x1e,0x0f,0x0f,0x11 .byte 0x7b,0xb0,0xb0,0xcb, 0xa8,0x54,0x54,0xfc .byte 0x6d,0xbb,0xbb,0xd6, 0x2c,0x16,0x16,0x3a AES_Td: .byte 0x51,0xf4,0xa7,0x50, 0x7e,0x41,0x65,0x53 # Td0 .byte 0x1a,0x17,0xa4,0xc3, 0x3a,0x27,0x5e,0x96 .byte 0x3b,0xab,0x6b,0xcb, 0x1f,0x9d,0x45,0xf1 .byte 0xac,0xfa,0x58,0xab, 0x4b,0xe3,0x03,0x93 .byte 0x20,0x30,0xfa,0x55, 0xad,0x76,0x6d,0xf6 .byte 0x88,0xcc,0x76,0x91, 0xf5,0x02,0x4c,0x25 .byte 0x4f,0xe5,0xd7,0xfc, 0xc5,0x2a,0xcb,0xd7 .byte 0x26,0x35,0x44,0x80, 0xb5,0x62,0xa3,0x8f .byte 0xde,0xb1,0x5a,0x49, 0x25,0xba,0x1b,0x67 .byte 0x45,0xea,0x0e,0x98, 0x5d,0xfe,0xc0,0xe1 .byte 0xc3,0x2f,0x75,0x02, 0x81,0x4c,0xf0,0x12 .byte 0x8d,0x46,0x97,0xa3, 0x6b,0xd3,0xf9,0xc6 .byte 0x03,0x8f,0x5f,0xe7, 0x15,0x92,0x9c,0x95 .byte 0xbf,0x6d,0x7a,0xeb, 0x95,0x52,0x59,0xda .byte 0xd4,0xbe,0x83,0x2d, 0x58,0x74,0x21,0xd3 .byte 0x49,0xe0,0x69,0x29, 0x8e,0xc9,0xc8,0x44 .byte 0x75,0xc2,0x89,0x6a, 0xf4,0x8e,0x79,0x78 .byte 0x99,0x58,0x3e,0x6b, 0x27,0xb9,0x71,0xdd .byte 0xbe,0xe1,0x4f,0xb6, 0xf0,0x88,0xad,0x17 .byte 0xc9,0x20,0xac,0x66, 0x7d,0xce,0x3a,0xb4 .byte 0x63,0xdf,0x4a,0x18, 0xe5,0x1a,0x31,0x82 .byte 0x97,0x51,0x33,0x60, 0x62,0x53,0x7f,0x45 .byte 0xb1,0x64,0x77,0xe0, 0xbb,0x6b,0xae,0x84 .byte 0xfe,0x81,0xa0,0x1c, 0xf9,0x08,0x2b,0x94 .byte 0x70,0x48,0x68,0x58, 0x8f,0x45,0xfd,0x19 .byte 0x94,0xde,0x6c,0x87, 0x52,0x7b,0xf8,0xb7 .byte 0xab,0x73,0xd3,0x23, 0x72,0x4b,0x02,0xe2 .byte 0xe3,0x1f,0x8f,0x57, 0x66,0x55,0xab,0x2a .byte 0xb2,0xeb,0x28,0x07, 0x2f,0xb5,0xc2,0x03 .byte 0x86,0xc5,0x7b,0x9a, 0xd3,0x37,0x08,0xa5 .byte 0x30,0x28,0x87,0xf2, 0x23,0xbf,0xa5,0xb2 .byte 0x02,0x03,0x6a,0xba, 0xed,0x16,0x82,0x5c .byte 0x8a,0xcf,0x1c,0x2b, 0xa7,0x79,0xb4,0x92 .byte 0xf3,0x07,0xf2,0xf0, 0x4e,0x69,0xe2,0xa1 .byte 0x65,0xda,0xf4,0xcd, 0x06,0x05,0xbe,0xd5 .byte 0xd1,0x34,0x62,0x1f, 0xc4,0xa6,0xfe,0x8a .byte 0x34,0x2e,0x53,0x9d, 0xa2,0xf3,0x55,0xa0 .byte 0x05,0x8a,0xe1,0x32, 0xa4,0xf6,0xeb,0x75 .byte 0x0b,0x83,0xec,0x39, 0x40,0x60,0xef,0xaa .byte 0x5e,0x71,0x9f,0x06, 0xbd,0x6e,0x10,0x51 .byte 0x3e,0x21,0x8a,0xf9, 0x96,0xdd,0x06,0x3d .byte 0xdd,0x3e,0x05,0xae, 0x4d,0xe6,0xbd,0x46 .byte 0x91,0x54,0x8d,0xb5, 0x71,0xc4,0x5d,0x05 .byte 0x04,0x06,0xd4,0x6f, 0x60,0x50,0x15,0xff .byte 0x19,0x98,0xfb,0x24, 0xd6,0xbd,0xe9,0x97 .byte 0x89,0x40,0x43,0xcc, 0x67,0xd9,0x9e,0x77 .byte 0xb0,0xe8,0x42,0xbd, 0x07,0x89,0x8b,0x88 .byte 0xe7,0x19,0x5b,0x38, 0x79,0xc8,0xee,0xdb .byte 0xa1,0x7c,0x0a,0x47, 0x7c,0x42,0x0f,0xe9 .byte 0xf8,0x84,0x1e,0xc9, 0x00,0x00,0x00,0x00 .byte 0x09,0x80,0x86,0x83, 0x32,0x2b,0xed,0x48 .byte 0x1e,0x11,0x70,0xac, 0x6c,0x5a,0x72,0x4e .byte 0xfd,0x0e,0xff,0xfb, 0x0f,0x85,0x38,0x56 .byte 0x3d,0xae,0xd5,0x1e, 0x36,0x2d,0x39,0x27 .byte 0x0a,0x0f,0xd9,0x64, 0x68,0x5c,0xa6,0x21 .byte 0x9b,0x5b,0x54,0xd1, 0x24,0x36,0x2e,0x3a .byte 0x0c,0x0a,0x67,0xb1, 0x93,0x57,0xe7,0x0f .byte 0xb4,0xee,0x96,0xd2, 0x1b,0x9b,0x91,0x9e .byte 0x80,0xc0,0xc5,0x4f, 0x61,0xdc,0x20,0xa2 .byte 0x5a,0x77,0x4b,0x69, 0x1c,0x12,0x1a,0x16 .byte 0xe2,0x93,0xba,0x0a, 0xc0,0xa0,0x2a,0xe5 .byte 0x3c,0x22,0xe0,0x43, 0x12,0x1b,0x17,0x1d .byte 0x0e,0x09,0x0d,0x0b, 0xf2,0x8b,0xc7,0xad .byte 0x2d,0xb6,0xa8,0xb9, 0x14,0x1e,0xa9,0xc8 .byte 0x57,0xf1,0x19,0x85, 0xaf,0x75,0x07,0x4c .byte 0xee,0x99,0xdd,0xbb, 0xa3,0x7f,0x60,0xfd .byte 0xf7,0x01,0x26,0x9f, 0x5c,0x72,0xf5,0xbc .byte 0x44,0x66,0x3b,0xc5, 0x5b,0xfb,0x7e,0x34 .byte 0x8b,0x43,0x29,0x76, 0xcb,0x23,0xc6,0xdc .byte 0xb6,0xed,0xfc,0x68, 0xb8,0xe4,0xf1,0x63 .byte 0xd7,0x31,0xdc,0xca, 0x42,0x63,0x85,0x10 .byte 0x13,0x97,0x22,0x40, 0x84,0xc6,0x11,0x20 .byte 0x85,0x4a,0x24,0x7d, 0xd2,0xbb,0x3d,0xf8 .byte 0xae,0xf9,0x32,0x11, 0xc7,0x29,0xa1,0x6d .byte 0x1d,0x9e,0x2f,0x4b, 0xdc,0xb2,0x30,0xf3 .byte 0x0d,0x86,0x52,0xec, 0x77,0xc1,0xe3,0xd0 .byte 0x2b,0xb3,0x16,0x6c, 0xa9,0x70,0xb9,0x99 .byte 0x11,0x94,0x48,0xfa, 0x47,0xe9,0x64,0x22 .byte 0xa8,0xfc,0x8c,0xc4, 0xa0,0xf0,0x3f,0x1a .byte 0x56,0x7d,0x2c,0xd8, 0x22,0x33,0x90,0xef .byte 0x87,0x49,0x4e,0xc7, 0xd9,0x38,0xd1,0xc1 .byte 0x8c,0xca,0xa2,0xfe, 0x98,0xd4,0x0b,0x36 .byte 0xa6,0xf5,0x81,0xcf, 0xa5,0x7a,0xde,0x28 .byte 0xda,0xb7,0x8e,0x26, 0x3f,0xad,0xbf,0xa4 .byte 0x2c,0x3a,0x9d,0xe4, 0x50,0x78,0x92,0x0d .byte 0x6a,0x5f,0xcc,0x9b, 0x54,0x7e,0x46,0x62 .byte 0xf6,0x8d,0x13,0xc2, 0x90,0xd8,0xb8,0xe8 .byte 0x2e,0x39,0xf7,0x5e, 0x82,0xc3,0xaf,0xf5 .byte 0x9f,0x5d,0x80,0xbe, 0x69,0xd0,0x93,0x7c .byte 0x6f,0xd5,0x2d,0xa9, 0xcf,0x25,0x12,0xb3 .byte 0xc8,0xac,0x99,0x3b, 0x10,0x18,0x7d,0xa7 .byte 0xe8,0x9c,0x63,0x6e, 0xdb,0x3b,0xbb,0x7b .byte 0xcd,0x26,0x78,0x09, 0x6e,0x59,0x18,0xf4 .byte 0xec,0x9a,0xb7,0x01, 0x83,0x4f,0x9a,0xa8 .byte 0xe6,0x95,0x6e,0x65, 0xaa,0xff,0xe6,0x7e .byte 0x21,0xbc,0xcf,0x08, 0xef,0x15,0xe8,0xe6 .byte 0xba,0xe7,0x9b,0xd9, 0x4a,0x6f,0x36,0xce .byte 0xea,0x9f,0x09,0xd4, 0x29,0xb0,0x7c,0xd6 .byte 0x31,0xa4,0xb2,0xaf, 0x2a,0x3f,0x23,0x31 .byte 0xc6,0xa5,0x94,0x30, 0x35,0xa2,0x66,0xc0 .byte 0x74,0x4e,0xbc,0x37, 0xfc,0x82,0xca,0xa6 .byte 0xe0,0x90,0xd0,0xb0, 0x33,0xa7,0xd8,0x15 .byte 0xf1,0x04,0x98,0x4a, 0x41,0xec,0xda,0xf7 .byte 0x7f,0xcd,0x50,0x0e, 0x17,0x91,0xf6,0x2f .byte 0x76,0x4d,0xd6,0x8d, 0x43,0xef,0xb0,0x4d .byte 0xcc,0xaa,0x4d,0x54, 0xe4,0x96,0x04,0xdf .byte 0x9e,0xd1,0xb5,0xe3, 0x4c,0x6a,0x88,0x1b .byte 0xc1,0x2c,0x1f,0xb8, 0x46,0x65,0x51,0x7f .byte 0x9d,0x5e,0xea,0x04, 0x01,0x8c,0x35,0x5d .byte 0xfa,0x87,0x74,0x73, 0xfb,0x0b,0x41,0x2e .byte 0xb3,0x67,0x1d,0x5a, 0x92,0xdb,0xd2,0x52 .byte 0xe9,0x10,0x56,0x33, 0x6d,0xd6,0x47,0x13 .byte 0x9a,0xd7,0x61,0x8c, 0x37,0xa1,0x0c,0x7a .byte 0x59,0xf8,0x14,0x8e, 0xeb,0x13,0x3c,0x89 .byte 0xce,0xa9,0x27,0xee, 0xb7,0x61,0xc9,0x35 .byte 0xe1,0x1c,0xe5,0xed, 0x7a,0x47,0xb1,0x3c .byte 0x9c,0xd2,0xdf,0x59, 0x55,0xf2,0x73,0x3f .byte 0x18,0x14,0xce,0x79, 0x73,0xc7,0x37,0xbf .byte 0x53,0xf7,0xcd,0xea, 0x5f,0xfd,0xaa,0x5b .byte 0xdf,0x3d,0x6f,0x14, 0x78,0x44,0xdb,0x86 .byte 0xca,0xaf,0xf3,0x81, 0xb9,0x68,0xc4,0x3e .byte 0x38,0x24,0x34,0x2c, 0xc2,0xa3,0x40,0x5f .byte 0x16,0x1d,0xc3,0x72, 0xbc,0xe2,0x25,0x0c .byte 0x28,0x3c,0x49,0x8b, 0xff,0x0d,0x95,0x41 .byte 0x39,0xa8,0x01,0x71, 0x08,0x0c,0xb3,0xde .byte 0xd8,0xb4,0xe4,0x9c, 0x64,0x56,0xc1,0x90 .byte 0x7b,0xcb,0x84,0x61, 0xd5,0x32,0xb6,0x70 .byte 0x48,0x6c,0x5c,0x74, 0xd0,0xb8,0x57,0x42 .byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 # Td4 .byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb .byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 .byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb .byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d .byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e .byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 .byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 .byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 .byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 .byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda .byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 .byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a .byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 .byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 .byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b .byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea .byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 .byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 .byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e .byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 .byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b .byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 .byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 .byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 .byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f .byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d .byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef .byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 .byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 .byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 .byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d AES_Te4: .byte 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 # Te4 .byte 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 .byte 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 .byte 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 .byte 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc .byte 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 .byte 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a .byte 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 .byte 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 .byte 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 .byte 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b .byte 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf .byte 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 .byte 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 .byte 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 .byte 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 .byte 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 .byte 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 .byte 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 .byte 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb .byte 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c .byte 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 .byte 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 .byte 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 .byte 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 .byte 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a .byte 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e .byte 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e .byte 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 .byte 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf .byte 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 .byte 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 .byte 0x01,0x00,0x00,0x00, 0x02,0x00,0x00,0x00 # rcon .byte 0x04,0x00,0x00,0x00, 0x08,0x00,0x00,0x00 .byte 0x10,0x00,0x00,0x00, 0x20,0x00,0x00,0x00 .byte 0x40,0x00,0x00,0x00, 0x80,0x00,0x00,0x00 .byte 0x1B,0x00,0x00,0x00, 0x36,0x00,0x00,0x00 ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; # made-up _instructions, _xtr, _ins, _ror and _bias, cope # with byte order dependencies... if (/^\s+_/) { s/(_[a-z]+\s+)(\$[0-9]+),([^,]+)(#.*)*$/$1$2,$2,$3/; s/_xtr\s+(\$[0-9]+),(\$[0-9]+),([0-9]+(\-2)*)/ sprintf("srl\t$1,$2,%d",$big_endian ? eval($3) : eval("24-$3"))/e or s/_ins\s+(\$[0-9]+),(\$[0-9]+),([0-9]+)/ sprintf("sll\t$1,$2,%d",$big_endian ? eval($3) : eval("24-$3"))/e or s/_ins2\s+(\$[0-9]+),(\$[0-9]+),([0-9]+)/ sprintf("ins\t$1,$2,%d,8",$big_endian ? eval($3) : eval("24-$3"))/e or s/_ror\s+(\$[0-9]+),(\$[0-9]+),(\-?[0-9]+)/ sprintf("srl\t$1,$2,%d",$big_endian ? eval($3) : eval("$3*-1"))/e or s/_bias\s+(\$[0-9]+),(\$[0-9]+),([0-9]+)/ sprintf("sll\t$1,$2,%d",$big_endian ? eval($3) : eval("($3-16)&31"))/e; s/srl\s+(\$[0-9]+),(\$[0-9]+),\-([0-9]+)/ sprintf("sll\t$1,$2,$3")/e or s/srl\s+(\$[0-9]+),(\$[0-9]+),0/ sprintf("and\t$1,$2,0xff")/e or s/(sll\s+\$[0-9]+,\$[0-9]+,0)/#$1/; } # convert lwl/lwr and swr/swl to little-endian order if (!$big_endian && /^\s+[sl]w[lr]\s+/) { s/([sl]wl.*)([0-9]+)\((\$[0-9]+)\)/ sprintf("$1%d($3)",eval("$2-$2%4+($2%4-1)&3"))/e or s/([sl]wr.*)([0-9]+)\((\$[0-9]+)\)/ sprintf("$1%d($3)",eval("$2-$2%4+($2%4+1)&3"))/e; } if (!$big_endian) { s/(rotr\s+\$[0-9]+,\$[0-9]+),([0-9]+)/sprintf("$1,%d",32-$2)/e; s/(ext\s+\$[0-9]+,\$[0-9]+),([0-9]+),8/sprintf("$1,%d,8",24-$2)/e; } print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aes-parisc.pl000066400000000000000000000714111364063235100206060ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # AES for PA-RISC. # # June 2009. # # The module is mechanical transliteration of aes-sparcv9.pl, but with # a twist: S-boxes are compressed even further down to 1K+256B. On # PA-7100LC performance is ~40% better than gcc 3.2 generated code and # is about 33 cycles per byte processed with 128-bit key. Newer CPUs # perform at 16 cycles per byte. It's not faster than code generated # by vendor compiler, but recall that it has compressed S-boxes, which # requires extra processing. # # Special thanks to polarhome.com for providing HP-UX account. $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $FRAME_MARKER =80; $SAVED_RP =16; $PUSH ="std"; $PUSHMA ="std,ma"; $POP ="ldd"; $POPMB ="ldd,mb"; } else { $LEVEL ="1.0"; $SIZE_T =4; $FRAME_MARKER =48; $SAVED_RP =20; $PUSH ="stw"; $PUSHMA ="stwm"; $POP ="ldw"; $POPMB ="ldwm"; } $FRAME=16*$SIZE_T+$FRAME_MARKER;# 16 saved regs + frame marker # [+ argument transfer] $inp="%r26"; # arg0 $out="%r25"; # arg1 $key="%r24"; # arg2 ($s0,$s1,$s2,$s3) = ("%r1","%r2","%r3","%r4"); ($t0,$t1,$t2,$t3) = ("%r5","%r6","%r7","%r8"); ($acc0, $acc1, $acc2, $acc3, $acc4, $acc5, $acc6, $acc7, $acc8, $acc9,$acc10,$acc11,$acc12,$acc13,$acc14,$acc15) = ("%r9","%r10","%r11","%r12","%r13","%r14","%r15","%r16", "%r17","%r18","%r19","%r20","%r21","%r22","%r23","%r26"); $tbl="%r28"; $rounds="%r29"; $code=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT AES_encrypt,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR .ALIGN 64 AES_encrypt .PROC .CALLINFO FRAME=`$FRAME-16*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=18 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) $PUSH %r12,`-$FRAME+9*$SIZE_T`(%sp) $PUSH %r13,`-$FRAME+10*$SIZE_T`(%sp) $PUSH %r14,`-$FRAME+11*$SIZE_T`(%sp) $PUSH %r15,`-$FRAME+12*$SIZE_T`(%sp) $PUSH %r16,`-$FRAME+13*$SIZE_T`(%sp) $PUSH %r17,`-$FRAME+14*$SIZE_T`(%sp) $PUSH %r18,`-$FRAME+15*$SIZE_T`(%sp) blr %r0,$tbl ldi 3,$t0 L\$enc_pic andcm $tbl,$t0,$tbl ldo L\$AES_Te-L\$enc_pic($tbl),$tbl and $inp,$t0,$t0 sub $inp,$t0,$inp ldw 0($inp),$s0 ldw 4($inp),$s1 ldw 8($inp),$s2 comib,= 0,$t0,L\$enc_inp_aligned ldw 12($inp),$s3 sh3addl $t0,%r0,$t0 subi 32,$t0,$t0 mtctl $t0,%cr11 ldw 16($inp),$t1 vshd $s0,$s1,$s0 vshd $s1,$s2,$s1 vshd $s2,$s3,$s2 vshd $s3,$t1,$s3 L\$enc_inp_aligned bl _parisc_AES_encrypt,%r31 nop extru,<> $out,31,2,%r0 b L\$enc_out_aligned nop _srm $s0,24,$acc0 _srm $s0,16,$acc1 stb $acc0,0($out) _srm $s0,8,$acc2 stb $acc1,1($out) _srm $s1,24,$acc4 stb $acc2,2($out) _srm $s1,16,$acc5 stb $s0,3($out) _srm $s1,8,$acc6 stb $acc4,4($out) _srm $s2,24,$acc0 stb $acc5,5($out) _srm $s2,16,$acc1 stb $acc6,6($out) _srm $s2,8,$acc2 stb $s1,7($out) _srm $s3,24,$acc4 stb $acc0,8($out) _srm $s3,16,$acc5 stb $acc1,9($out) _srm $s3,8,$acc6 stb $acc2,10($out) stb $s2,11($out) stb $acc4,12($out) stb $acc5,13($out) stb $acc6,14($out) b L\$enc_done stb $s3,15($out) L\$enc_out_aligned stw $s0,0($out) stw $s1,4($out) stw $s2,8($out) stw $s3,12($out) L\$enc_done $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 $POP `-$FRAME+9*$SIZE_T`(%sp),%r12 $POP `-$FRAME+10*$SIZE_T`(%sp),%r13 $POP `-$FRAME+11*$SIZE_T`(%sp),%r14 $POP `-$FRAME+12*$SIZE_T`(%sp),%r15 $POP `-$FRAME+13*$SIZE_T`(%sp),%r16 $POP `-$FRAME+14*$SIZE_T`(%sp),%r17 $POP `-$FRAME+15*$SIZE_T`(%sp),%r18 bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .ALIGN 16 _parisc_AES_encrypt .PROC .CALLINFO MILLICODE .ENTRY ldw 240($key),$rounds ldw 0($key),$t0 ldw 4($key),$t1 ldw 8($key),$t2 _srm $rounds,1,$rounds xor $t0,$s0,$s0 ldw 12($key),$t3 _srm $s0,24,$acc0 xor $t1,$s1,$s1 ldw 16($key),$t0 _srm $s1,16,$acc1 xor $t2,$s2,$s2 ldw 20($key),$t1 xor $t3,$s3,$s3 ldw 24($key),$t2 ldw 28($key),$t3 L\$enc_loop _srm $s2,8,$acc2 ldwx,s $acc0($tbl),$acc0 _srm $s3,0,$acc3 ldwx,s $acc1($tbl),$acc1 _srm $s1,24,$acc4 ldwx,s $acc2($tbl),$acc2 _srm $s2,16,$acc5 ldwx,s $acc3($tbl),$acc3 _srm $s3,8,$acc6 ldwx,s $acc4($tbl),$acc4 _srm $s0,0,$acc7 ldwx,s $acc5($tbl),$acc5 _srm $s2,24,$acc8 ldwx,s $acc6($tbl),$acc6 _srm $s3,16,$acc9 ldwx,s $acc7($tbl),$acc7 _srm $s0,8,$acc10 ldwx,s $acc8($tbl),$acc8 _srm $s1,0,$acc11 ldwx,s $acc9($tbl),$acc9 _srm $s3,24,$acc12 ldwx,s $acc10($tbl),$acc10 _srm $s0,16,$acc13 ldwx,s $acc11($tbl),$acc11 _srm $s1,8,$acc14 ldwx,s $acc12($tbl),$acc12 _srm $s2,0,$acc15 ldwx,s $acc13($tbl),$acc13 ldwx,s $acc14($tbl),$acc14 ldwx,s $acc15($tbl),$acc15 addib,= -1,$rounds,L\$enc_last ldo 32($key),$key _ror $acc1,8,$acc1 xor $acc0,$t0,$t0 ldw 0($key),$s0 _ror $acc2,16,$acc2 xor $acc1,$t0,$t0 ldw 4($key),$s1 _ror $acc3,24,$acc3 xor $acc2,$t0,$t0 ldw 8($key),$s2 _ror $acc5,8,$acc5 xor $acc3,$t0,$t0 ldw 12($key),$s3 _ror $acc6,16,$acc6 xor $acc4,$t1,$t1 _ror $acc7,24,$acc7 xor $acc5,$t1,$t1 _ror $acc9,8,$acc9 xor $acc6,$t1,$t1 _ror $acc10,16,$acc10 xor $acc7,$t1,$t1 _ror $acc11,24,$acc11 xor $acc8,$t2,$t2 _ror $acc13,8,$acc13 xor $acc9,$t2,$t2 _ror $acc14,16,$acc14 xor $acc10,$t2,$t2 _ror $acc15,24,$acc15 xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 _srm $t0,24,$acc0 xor $acc14,$t3,$t3 _srm $t1,16,$acc1 xor $acc15,$t3,$t3 _srm $t2,8,$acc2 ldwx,s $acc0($tbl),$acc0 _srm $t3,0,$acc3 ldwx,s $acc1($tbl),$acc1 _srm $t1,24,$acc4 ldwx,s $acc2($tbl),$acc2 _srm $t2,16,$acc5 ldwx,s $acc3($tbl),$acc3 _srm $t3,8,$acc6 ldwx,s $acc4($tbl),$acc4 _srm $t0,0,$acc7 ldwx,s $acc5($tbl),$acc5 _srm $t2,24,$acc8 ldwx,s $acc6($tbl),$acc6 _srm $t3,16,$acc9 ldwx,s $acc7($tbl),$acc7 _srm $t0,8,$acc10 ldwx,s $acc8($tbl),$acc8 _srm $t1,0,$acc11 ldwx,s $acc9($tbl),$acc9 _srm $t3,24,$acc12 ldwx,s $acc10($tbl),$acc10 _srm $t0,16,$acc13 ldwx,s $acc11($tbl),$acc11 _srm $t1,8,$acc14 ldwx,s $acc12($tbl),$acc12 _srm $t2,0,$acc15 ldwx,s $acc13($tbl),$acc13 _ror $acc1,8,$acc1 ldwx,s $acc14($tbl),$acc14 _ror $acc2,16,$acc2 xor $acc0,$s0,$s0 ldwx,s $acc15($tbl),$acc15 _ror $acc3,24,$acc3 xor $acc1,$s0,$s0 ldw 16($key),$t0 _ror $acc5,8,$acc5 xor $acc2,$s0,$s0 ldw 20($key),$t1 _ror $acc6,16,$acc6 xor $acc3,$s0,$s0 ldw 24($key),$t2 _ror $acc7,24,$acc7 xor $acc4,$s1,$s1 ldw 28($key),$t3 _ror $acc9,8,$acc9 xor $acc5,$s1,$s1 ldw 1024+0($tbl),%r0 ; prefetch te4 _ror $acc10,16,$acc10 xor $acc6,$s1,$s1 ldw 1024+32($tbl),%r0 ; prefetch te4 _ror $acc11,24,$acc11 xor $acc7,$s1,$s1 ldw 1024+64($tbl),%r0 ; prefetch te4 _ror $acc13,8,$acc13 xor $acc8,$s2,$s2 ldw 1024+96($tbl),%r0 ; prefetch te4 _ror $acc14,16,$acc14 xor $acc9,$s2,$s2 ldw 1024+128($tbl),%r0 ; prefetch te4 _ror $acc15,24,$acc15 xor $acc10,$s2,$s2 ldw 1024+160($tbl),%r0 ; prefetch te4 _srm $s0,24,$acc0 xor $acc11,$s2,$s2 ldw 1024+192($tbl),%r0 ; prefetch te4 xor $acc12,$acc14,$acc14 xor $acc13,$s3,$s3 ldw 1024+224($tbl),%r0 ; prefetch te4 _srm $s1,16,$acc1 xor $acc14,$s3,$s3 b L\$enc_loop xor $acc15,$s3,$s3 .ALIGN 16 L\$enc_last ldo 1024($tbl),$rounds _ror $acc1,8,$acc1 xor $acc0,$t0,$t0 ldw 0($key),$s0 _ror $acc2,16,$acc2 xor $acc1,$t0,$t0 ldw 4($key),$s1 _ror $acc3,24,$acc3 xor $acc2,$t0,$t0 ldw 8($key),$s2 _ror $acc5,8,$acc5 xor $acc3,$t0,$t0 ldw 12($key),$s3 _ror $acc6,16,$acc6 xor $acc4,$t1,$t1 _ror $acc7,24,$acc7 xor $acc5,$t1,$t1 _ror $acc9,8,$acc9 xor $acc6,$t1,$t1 _ror $acc10,16,$acc10 xor $acc7,$t1,$t1 _ror $acc11,24,$acc11 xor $acc8,$t2,$t2 _ror $acc13,8,$acc13 xor $acc9,$t2,$t2 _ror $acc14,16,$acc14 xor $acc10,$t2,$t2 _ror $acc15,24,$acc15 xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 _srm $t0,24,$acc0 xor $acc14,$t3,$t3 _srm $t1,16,$acc1 xor $acc15,$t3,$t3 _srm $t2,8,$acc2 ldbx $acc0($rounds),$acc0 _srm $t1,24,$acc4 ldbx $acc1($rounds),$acc1 _srm $t2,16,$acc5 _srm $t3,0,$acc3 ldbx $acc2($rounds),$acc2 ldbx $acc3($rounds),$acc3 _srm $t3,8,$acc6 ldbx $acc4($rounds),$acc4 _srm $t2,24,$acc8 ldbx $acc5($rounds),$acc5 _srm $t3,16,$acc9 _srm $t0,0,$acc7 ldbx $acc6($rounds),$acc6 ldbx $acc7($rounds),$acc7 _srm $t0,8,$acc10 ldbx $acc8($rounds),$acc8 _srm $t3,24,$acc12 ldbx $acc9($rounds),$acc9 _srm $t0,16,$acc13 _srm $t1,0,$acc11 ldbx $acc10($rounds),$acc10 _srm $t1,8,$acc14 ldbx $acc11($rounds),$acc11 ldbx $acc12($rounds),$acc12 ldbx $acc13($rounds),$acc13 _srm $t2,0,$acc15 ldbx $acc14($rounds),$acc14 dep $acc0,7,8,$acc3 ldbx $acc15($rounds),$acc15 dep $acc4,7,8,$acc7 dep $acc1,15,8,$acc3 dep $acc5,15,8,$acc7 dep $acc2,23,8,$acc3 dep $acc6,23,8,$acc7 xor $acc3,$s0,$s0 xor $acc7,$s1,$s1 dep $acc8,7,8,$acc11 dep $acc12,7,8,$acc15 dep $acc9,15,8,$acc11 dep $acc13,15,8,$acc15 dep $acc10,23,8,$acc11 dep $acc14,23,8,$acc15 xor $acc11,$s2,$s2 bv (%r31) .EXIT xor $acc15,$s3,$s3 .PROCEND .ALIGN 64 L\$AES_Te .WORD 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d .WORD 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554 .WORD 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d .WORD 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a .WORD 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87 .WORD 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b .WORD 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea .WORD 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b .WORD 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a .WORD 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f .WORD 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108 .WORD 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f .WORD 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e .WORD 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5 .WORD 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d .WORD 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f .WORD 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e .WORD 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb .WORD 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce .WORD 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497 .WORD 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c .WORD 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed .WORD 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b .WORD 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a .WORD 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16 .WORD 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594 .WORD 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81 .WORD 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3 .WORD 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a .WORD 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504 .WORD 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163 .WORD 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d .WORD 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f .WORD 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739 .WORD 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47 .WORD 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395 .WORD 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f .WORD 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883 .WORD 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c .WORD 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76 .WORD 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e .WORD 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4 .WORD 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6 .WORD 0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b .WORD 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7 .WORD 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0 .WORD 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25 .WORD 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818 .WORD 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72 .WORD 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651 .WORD 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21 .WORD 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85 .WORD 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa .WORD 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12 .WORD 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0 .WORD 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9 .WORD 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133 .WORD 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7 .WORD 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920 .WORD 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a .WORD 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17 .WORD 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8 .WORD 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11 .WORD 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a .BYTE 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 .BYTE 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 .BYTE 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 .BYTE 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 .BYTE 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc .BYTE 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 .BYTE 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a .BYTE 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 .BYTE 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 .BYTE 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 .BYTE 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b .BYTE 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf .BYTE 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 .BYTE 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 .BYTE 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 .BYTE 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 .BYTE 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 .BYTE 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 .BYTE 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 .BYTE 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb .BYTE 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c .BYTE 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 .BYTE 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 .BYTE 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 .BYTE 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 .BYTE 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a .BYTE 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e .BYTE 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e .BYTE 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 .BYTE 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf .BYTE 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 .BYTE 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ___ $code.=<<___; .EXPORT AES_decrypt,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR .ALIGN 16 AES_decrypt .PROC .CALLINFO FRAME=`$FRAME-16*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=18 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) $PUSH %r12,`-$FRAME+9*$SIZE_T`(%sp) $PUSH %r13,`-$FRAME+10*$SIZE_T`(%sp) $PUSH %r14,`-$FRAME+11*$SIZE_T`(%sp) $PUSH %r15,`-$FRAME+12*$SIZE_T`(%sp) $PUSH %r16,`-$FRAME+13*$SIZE_T`(%sp) $PUSH %r17,`-$FRAME+14*$SIZE_T`(%sp) $PUSH %r18,`-$FRAME+15*$SIZE_T`(%sp) blr %r0,$tbl ldi 3,$t0 L\$dec_pic andcm $tbl,$t0,$tbl ldo L\$AES_Td-L\$dec_pic($tbl),$tbl and $inp,$t0,$t0 sub $inp,$t0,$inp ldw 0($inp),$s0 ldw 4($inp),$s1 ldw 8($inp),$s2 comib,= 0,$t0,L\$dec_inp_aligned ldw 12($inp),$s3 sh3addl $t0,%r0,$t0 subi 32,$t0,$t0 mtctl $t0,%cr11 ldw 16($inp),$t1 vshd $s0,$s1,$s0 vshd $s1,$s2,$s1 vshd $s2,$s3,$s2 vshd $s3,$t1,$s3 L\$dec_inp_aligned bl _parisc_AES_decrypt,%r31 nop extru,<> $out,31,2,%r0 b L\$dec_out_aligned nop _srm $s0,24,$acc0 _srm $s0,16,$acc1 stb $acc0,0($out) _srm $s0,8,$acc2 stb $acc1,1($out) _srm $s1,24,$acc4 stb $acc2,2($out) _srm $s1,16,$acc5 stb $s0,3($out) _srm $s1,8,$acc6 stb $acc4,4($out) _srm $s2,24,$acc0 stb $acc5,5($out) _srm $s2,16,$acc1 stb $acc6,6($out) _srm $s2,8,$acc2 stb $s1,7($out) _srm $s3,24,$acc4 stb $acc0,8($out) _srm $s3,16,$acc5 stb $acc1,9($out) _srm $s3,8,$acc6 stb $acc2,10($out) stb $s2,11($out) stb $acc4,12($out) stb $acc5,13($out) stb $acc6,14($out) b L\$dec_done stb $s3,15($out) L\$dec_out_aligned stw $s0,0($out) stw $s1,4($out) stw $s2,8($out) stw $s3,12($out) L\$dec_done $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 $POP `-$FRAME+9*$SIZE_T`(%sp),%r12 $POP `-$FRAME+10*$SIZE_T`(%sp),%r13 $POP `-$FRAME+11*$SIZE_T`(%sp),%r14 $POP `-$FRAME+12*$SIZE_T`(%sp),%r15 $POP `-$FRAME+13*$SIZE_T`(%sp),%r16 $POP `-$FRAME+14*$SIZE_T`(%sp),%r17 $POP `-$FRAME+15*$SIZE_T`(%sp),%r18 bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .ALIGN 16 _parisc_AES_decrypt .PROC .CALLINFO MILLICODE .ENTRY ldw 240($key),$rounds ldw 0($key),$t0 ldw 4($key),$t1 ldw 8($key),$t2 ldw 12($key),$t3 _srm $rounds,1,$rounds xor $t0,$s0,$s0 ldw 16($key),$t0 xor $t1,$s1,$s1 ldw 20($key),$t1 _srm $s0,24,$acc0 xor $t2,$s2,$s2 ldw 24($key),$t2 xor $t3,$s3,$s3 ldw 28($key),$t3 _srm $s3,16,$acc1 L\$dec_loop _srm $s2,8,$acc2 ldwx,s $acc0($tbl),$acc0 _srm $s1,0,$acc3 ldwx,s $acc1($tbl),$acc1 _srm $s1,24,$acc4 ldwx,s $acc2($tbl),$acc2 _srm $s0,16,$acc5 ldwx,s $acc3($tbl),$acc3 _srm $s3,8,$acc6 ldwx,s $acc4($tbl),$acc4 _srm $s2,0,$acc7 ldwx,s $acc5($tbl),$acc5 _srm $s2,24,$acc8 ldwx,s $acc6($tbl),$acc6 _srm $s1,16,$acc9 ldwx,s $acc7($tbl),$acc7 _srm $s0,8,$acc10 ldwx,s $acc8($tbl),$acc8 _srm $s3,0,$acc11 ldwx,s $acc9($tbl),$acc9 _srm $s3,24,$acc12 ldwx,s $acc10($tbl),$acc10 _srm $s2,16,$acc13 ldwx,s $acc11($tbl),$acc11 _srm $s1,8,$acc14 ldwx,s $acc12($tbl),$acc12 _srm $s0,0,$acc15 ldwx,s $acc13($tbl),$acc13 ldwx,s $acc14($tbl),$acc14 ldwx,s $acc15($tbl),$acc15 addib,= -1,$rounds,L\$dec_last ldo 32($key),$key _ror $acc1,8,$acc1 xor $acc0,$t0,$t0 ldw 0($key),$s0 _ror $acc2,16,$acc2 xor $acc1,$t0,$t0 ldw 4($key),$s1 _ror $acc3,24,$acc3 xor $acc2,$t0,$t0 ldw 8($key),$s2 _ror $acc5,8,$acc5 xor $acc3,$t0,$t0 ldw 12($key),$s3 _ror $acc6,16,$acc6 xor $acc4,$t1,$t1 _ror $acc7,24,$acc7 xor $acc5,$t1,$t1 _ror $acc9,8,$acc9 xor $acc6,$t1,$t1 _ror $acc10,16,$acc10 xor $acc7,$t1,$t1 _ror $acc11,24,$acc11 xor $acc8,$t2,$t2 _ror $acc13,8,$acc13 xor $acc9,$t2,$t2 _ror $acc14,16,$acc14 xor $acc10,$t2,$t2 _ror $acc15,24,$acc15 xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 _srm $t0,24,$acc0 xor $acc14,$t3,$t3 xor $acc15,$t3,$t3 _srm $t3,16,$acc1 _srm $t2,8,$acc2 ldwx,s $acc0($tbl),$acc0 _srm $t1,0,$acc3 ldwx,s $acc1($tbl),$acc1 _srm $t1,24,$acc4 ldwx,s $acc2($tbl),$acc2 _srm $t0,16,$acc5 ldwx,s $acc3($tbl),$acc3 _srm $t3,8,$acc6 ldwx,s $acc4($tbl),$acc4 _srm $t2,0,$acc7 ldwx,s $acc5($tbl),$acc5 _srm $t2,24,$acc8 ldwx,s $acc6($tbl),$acc6 _srm $t1,16,$acc9 ldwx,s $acc7($tbl),$acc7 _srm $t0,8,$acc10 ldwx,s $acc8($tbl),$acc8 _srm $t3,0,$acc11 ldwx,s $acc9($tbl),$acc9 _srm $t3,24,$acc12 ldwx,s $acc10($tbl),$acc10 _srm $t2,16,$acc13 ldwx,s $acc11($tbl),$acc11 _srm $t1,8,$acc14 ldwx,s $acc12($tbl),$acc12 _srm $t0,0,$acc15 ldwx,s $acc13($tbl),$acc13 _ror $acc1,8,$acc1 ldwx,s $acc14($tbl),$acc14 _ror $acc2,16,$acc2 xor $acc0,$s0,$s0 ldwx,s $acc15($tbl),$acc15 _ror $acc3,24,$acc3 xor $acc1,$s0,$s0 ldw 16($key),$t0 _ror $acc5,8,$acc5 xor $acc2,$s0,$s0 ldw 20($key),$t1 _ror $acc6,16,$acc6 xor $acc3,$s0,$s0 ldw 24($key),$t2 _ror $acc7,24,$acc7 xor $acc4,$s1,$s1 ldw 28($key),$t3 _ror $acc9,8,$acc9 xor $acc5,$s1,$s1 ldw 1024+0($tbl),%r0 ; prefetch td4 _ror $acc10,16,$acc10 xor $acc6,$s1,$s1 ldw 1024+32($tbl),%r0 ; prefetch td4 _ror $acc11,24,$acc11 xor $acc7,$s1,$s1 ldw 1024+64($tbl),%r0 ; prefetch td4 _ror $acc13,8,$acc13 xor $acc8,$s2,$s2 ldw 1024+96($tbl),%r0 ; prefetch td4 _ror $acc14,16,$acc14 xor $acc9,$s2,$s2 ldw 1024+128($tbl),%r0 ; prefetch td4 _ror $acc15,24,$acc15 xor $acc10,$s2,$s2 ldw 1024+160($tbl),%r0 ; prefetch td4 _srm $s0,24,$acc0 xor $acc11,$s2,$s2 ldw 1024+192($tbl),%r0 ; prefetch td4 xor $acc12,$acc14,$acc14 xor $acc13,$s3,$s3 ldw 1024+224($tbl),%r0 ; prefetch td4 xor $acc14,$s3,$s3 xor $acc15,$s3,$s3 b L\$dec_loop _srm $s3,16,$acc1 .ALIGN 16 L\$dec_last ldo 1024($tbl),$rounds _ror $acc1,8,$acc1 xor $acc0,$t0,$t0 ldw 0($key),$s0 _ror $acc2,16,$acc2 xor $acc1,$t0,$t0 ldw 4($key),$s1 _ror $acc3,24,$acc3 xor $acc2,$t0,$t0 ldw 8($key),$s2 _ror $acc5,8,$acc5 xor $acc3,$t0,$t0 ldw 12($key),$s3 _ror $acc6,16,$acc6 xor $acc4,$t1,$t1 _ror $acc7,24,$acc7 xor $acc5,$t1,$t1 _ror $acc9,8,$acc9 xor $acc6,$t1,$t1 _ror $acc10,16,$acc10 xor $acc7,$t1,$t1 _ror $acc11,24,$acc11 xor $acc8,$t2,$t2 _ror $acc13,8,$acc13 xor $acc9,$t2,$t2 _ror $acc14,16,$acc14 xor $acc10,$t2,$t2 _ror $acc15,24,$acc15 xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 _srm $t0,24,$acc0 xor $acc14,$t3,$t3 xor $acc15,$t3,$t3 _srm $t3,16,$acc1 _srm $t2,8,$acc2 ldbx $acc0($rounds),$acc0 _srm $t1,24,$acc4 ldbx $acc1($rounds),$acc1 _srm $t0,16,$acc5 _srm $t1,0,$acc3 ldbx $acc2($rounds),$acc2 ldbx $acc3($rounds),$acc3 _srm $t3,8,$acc6 ldbx $acc4($rounds),$acc4 _srm $t2,24,$acc8 ldbx $acc5($rounds),$acc5 _srm $t1,16,$acc9 _srm $t2,0,$acc7 ldbx $acc6($rounds),$acc6 ldbx $acc7($rounds),$acc7 _srm $t0,8,$acc10 ldbx $acc8($rounds),$acc8 _srm $t3,24,$acc12 ldbx $acc9($rounds),$acc9 _srm $t2,16,$acc13 _srm $t3,0,$acc11 ldbx $acc10($rounds),$acc10 _srm $t1,8,$acc14 ldbx $acc11($rounds),$acc11 ldbx $acc12($rounds),$acc12 ldbx $acc13($rounds),$acc13 _srm $t0,0,$acc15 ldbx $acc14($rounds),$acc14 dep $acc0,7,8,$acc3 ldbx $acc15($rounds),$acc15 dep $acc4,7,8,$acc7 dep $acc1,15,8,$acc3 dep $acc5,15,8,$acc7 dep $acc2,23,8,$acc3 dep $acc6,23,8,$acc7 xor $acc3,$s0,$s0 xor $acc7,$s1,$s1 dep $acc8,7,8,$acc11 dep $acc12,7,8,$acc15 dep $acc9,15,8,$acc11 dep $acc13,15,8,$acc15 dep $acc10,23,8,$acc11 dep $acc14,23,8,$acc15 xor $acc11,$s2,$s2 bv (%r31) .EXIT xor $acc15,$s3,$s3 .PROCEND .ALIGN 64 L\$AES_Td .WORD 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96 .WORD 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393 .WORD 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25 .WORD 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f .WORD 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1 .WORD 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6 .WORD 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da .WORD 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844 .WORD 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd .WORD 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4 .WORD 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45 .WORD 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94 .WORD 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7 .WORD 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a .WORD 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5 .WORD 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c .WORD 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1 .WORD 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a .WORD 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75 .WORD 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051 .WORD 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46 .WORD 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff .WORD 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77 .WORD 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb .WORD 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000 .WORD 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e .WORD 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927 .WORD 0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a .WORD 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e .WORD 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16 .WORD 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d .WORD 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8 .WORD 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd .WORD 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34 .WORD 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163 .WORD 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120 .WORD 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d .WORD 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0 .WORD 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422 .WORD 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef .WORD 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36 .WORD 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4 .WORD 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662 .WORD 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e, 0x82c3aff5 .WORD 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3 .WORD 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b .WORD 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8 .WORD 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6 .WORD 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6 .WORD 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0 .WORD 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815 .WORD 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f .WORD 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df .WORD 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f .WORD 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e .WORD 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713 .WORD 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89 .WORD 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c .WORD 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf .WORD 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86 .WORD 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f .WORD 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541 .WORD 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190 .WORD 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742 .BYTE 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 .BYTE 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb .BYTE 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 .BYTE 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb .BYTE 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d .BYTE 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e .BYTE 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 .BYTE 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 .BYTE 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 .BYTE 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 .BYTE 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda .BYTE 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 .BYTE 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a .BYTE 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 .BYTE 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 .BYTE 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b .BYTE 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea .BYTE 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 .BYTE 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 .BYTE 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e .BYTE 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 .BYTE 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b .BYTE 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 .BYTE 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 .BYTE 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 .BYTE 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f .BYTE 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d .BYTE 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef .BYTE 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 .BYTE 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 .BYTE 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 .BYTE 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d .STRINGZ "AES for PA-RISC, CRYPTOGAMS by " ___ if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler/) { $gnuas = 1; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; # translate made up instructions: _ror, _srm s/_ror(\s+)(%r[0-9]+),/shd$1$2,$2,/ or s/_srm(\s+%r[0-9]+),([0-9]+),/ $SIZE_T==4 ? sprintf("extru%s,%d,8,",$1,31-$2) : sprintf("extrd,u%s,%d,8,",$1,63-$2)/e; s/(\.LEVEL\s+2\.0)W/$1w/ if ($gnuas && $SIZE_T==8); s/\.SPACE\s+\$TEXT\$/.text/ if ($gnuas && $SIZE_T==8); s/\.SUBSPA.*// if ($gnuas && $SIZE_T==8); s/,\*/,/ if ($SIZE_T==4); s/\bbv\b(.*\(%r2\))/bve$1/ if ($SIZE_T==8); print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aes-ppc.pl000066400000000000000000001160741364063235100201140ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # Needs more work: key setup, CBC routine... # # ppc_AES_[en|de]crypt perform at 18 cycles per byte processed with # 128-bit key, which is ~40% better than 64-bit code generated by gcc # 4.0. But these are not the ones currently used! Their "compact" # counterparts are, for security reason. ppc_AES_encrypt_compact runs # at 1/2 of ppc_AES_encrypt speed, while ppc_AES_decrypt_compact - # at 1/3 of ppc_AES_decrypt. # February 2010 # # Rescheduling instructions to favour Power6 pipeline gave 10% # performance improvement on the platform in question (and marginal # improvement even on others). It should be noted that Power6 fails # to process byte in 18 cycles, only in 23, because it fails to issue # 4 load instructions in two cycles, only in 3. As result non-compact # block subroutines are 25% slower than one would expect. Compact # functions scale better, because they have pure computational part, # which scales perfectly with clock frequency. To be specific # ppc_AES_encrypt_compact operates at 42 cycles per byte, while # ppc_AES_decrypt_compact - at 55 (in 64-bit build). $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; } else { die "nonsense $flavour"; } $LITTLE_ENDIAN = ($flavour=~/le$/) ? $SIZE_T : 0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=32*$SIZE_T; sub _data_word() { my $i; while(defined($i=shift)) { $code.=sprintf"\t.long\t0x%08x,0x%08x\n",$i,$i; } } $sp="r1"; $toc="r2"; $inp="r3"; $out="r4"; $key="r5"; $Tbl0="r3"; $Tbl1="r6"; $Tbl2="r7"; $Tbl3=$out; # stay away from "r2"; $out is offloaded to stack $s0="r8"; $s1="r9"; $s2="r10"; $s3="r11"; $t0="r12"; $t1="r0"; # stay away from "r13"; $t2="r14"; $t3="r15"; $acc00="r16"; $acc01="r17"; $acc02="r18"; $acc03="r19"; $acc04="r20"; $acc05="r21"; $acc06="r22"; $acc07="r23"; $acc08="r24"; $acc09="r25"; $acc10="r26"; $acc11="r27"; $acc12="r28"; $acc13="r29"; $acc14="r30"; $acc15="r31"; $mask80=$Tbl2; $mask1b=$Tbl3; $code.=<<___; .machine "any" .text .align 7 LAES_Te: mflr r0 bcl 20,31,\$+4 mflr $Tbl0 ; vvvvv "distance" between . and 1st data entry addi $Tbl0,$Tbl0,`128-8` mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `64-9*4` LAES_Td: mflr r0 bcl 20,31,\$+4 mflr $Tbl0 ; vvvvvvvv "distance" between . and 1st data entry addi $Tbl0,$Tbl0,`128-64-8+2048+256` mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `128-64-9*4` ___ &_data_word( 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d, 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b, 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a, 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f, 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d, 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb, 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c, 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a, 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81, 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504, 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f, 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395, 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c, 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4, 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7, 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818, 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21, 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12, 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133, 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a, 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11, 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a); $code.=<<___; .byte 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 .byte 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 .byte 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 .byte 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 .byte 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc .byte 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 .byte 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a .byte 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 .byte 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 .byte 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 .byte 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b .byte 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf .byte 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 .byte 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 .byte 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 .byte 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 .byte 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 .byte 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 .byte 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 .byte 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb .byte 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c .byte 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 .byte 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 .byte 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 .byte 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 .byte 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a .byte 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e .byte 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e .byte 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 .byte 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf .byte 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 .byte 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ___ &_data_word( 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393, 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25, 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1, 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6, 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844, 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd, 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45, 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94, 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a, 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5, 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c, 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1, 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a, 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051, 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46, 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77, 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb, 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e, 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927, 0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a, 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e, 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16, 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8, 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd, 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163, 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120, 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0, 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422, 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36, 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4, 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e, 0x82c3aff5, 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3, 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8, 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6, 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0, 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815, 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df, 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f, 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713, 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89, 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf, 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86, 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541, 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190, 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742); $code.=<<___; .byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 .byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb .byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 .byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb .byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d .byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e .byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 .byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 .byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 .byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 .byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda .byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 .byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a .byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 .byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 .byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b .byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea .byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 .byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 .byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e .byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 .byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b .byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 .byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 .byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 .byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f .byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d .byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef .byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 .byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 .byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 .byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d .globl .AES_encrypt .align 7 .AES_encrypt: $STU $sp,-$FRAME($sp) mflr r0 $PUSH $out,`$FRAME-$SIZE_T*19`($sp) $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) andi. $t0,$inp,3 andi. $t1,$out,3 or. $t0,$t0,$t1 bne Lenc_unaligned Lenc_unaligned_ok: ___ $code.=<<___ if (!$LITTLE_ENDIAN); lwz $s0,0($inp) lwz $s1,4($inp) lwz $s2,8($inp) lwz $s3,12($inp) ___ $code.=<<___ if ($LITTLE_ENDIAN); lwz $t0,0($inp) lwz $t1,4($inp) lwz $t2,8($inp) lwz $t3,12($inp) rotlwi $s0,$t0,8 rotlwi $s1,$t1,8 rotlwi $s2,$t2,8 rotlwi $s3,$t3,8 rlwimi $s0,$t0,24,0,7 rlwimi $s1,$t1,24,0,7 rlwimi $s2,$t2,24,0,7 rlwimi $s3,$t3,24,0,7 rlwimi $s0,$t0,24,16,23 rlwimi $s1,$t1,24,16,23 rlwimi $s2,$t2,24,16,23 rlwimi $s3,$t3,24,16,23 ___ $code.=<<___; bl LAES_Te bl Lppc_AES_encrypt_compact $POP $out,`$FRAME-$SIZE_T*19`($sp) ___ $code.=<<___ if ($LITTLE_ENDIAN); rotlwi $t0,$s0,8 rotlwi $t1,$s1,8 rotlwi $t2,$s2,8 rotlwi $t3,$s3,8 rlwimi $t0,$s0,24,0,7 rlwimi $t1,$s1,24,0,7 rlwimi $t2,$s2,24,0,7 rlwimi $t3,$s3,24,0,7 rlwimi $t0,$s0,24,16,23 rlwimi $t1,$s1,24,16,23 rlwimi $t2,$s2,24,16,23 rlwimi $t3,$s3,24,16,23 stw $t0,0($out) stw $t1,4($out) stw $t2,8($out) stw $t3,12($out) ___ $code.=<<___ if (!$LITTLE_ENDIAN); stw $s0,0($out) stw $s1,4($out) stw $s2,8($out) stw $s3,12($out) ___ $code.=<<___; b Lenc_done Lenc_unaligned: subfic $t0,$inp,4096 subfic $t1,$out,4096 andi. $t0,$t0,4096-16 beq Lenc_xpage andi. $t1,$t1,4096-16 bne Lenc_unaligned_ok Lenc_xpage: lbz $acc00,0($inp) lbz $acc01,1($inp) lbz $acc02,2($inp) lbz $s0,3($inp) lbz $acc04,4($inp) lbz $acc05,5($inp) lbz $acc06,6($inp) lbz $s1,7($inp) lbz $acc08,8($inp) lbz $acc09,9($inp) lbz $acc10,10($inp) insrwi $s0,$acc00,8,0 lbz $s2,11($inp) insrwi $s1,$acc04,8,0 lbz $acc12,12($inp) insrwi $s0,$acc01,8,8 lbz $acc13,13($inp) insrwi $s1,$acc05,8,8 lbz $acc14,14($inp) insrwi $s0,$acc02,8,16 lbz $s3,15($inp) insrwi $s1,$acc06,8,16 insrwi $s2,$acc08,8,0 insrwi $s3,$acc12,8,0 insrwi $s2,$acc09,8,8 insrwi $s3,$acc13,8,8 insrwi $s2,$acc10,8,16 insrwi $s3,$acc14,8,16 bl LAES_Te bl Lppc_AES_encrypt_compact $POP $out,`$FRAME-$SIZE_T*19`($sp) extrwi $acc00,$s0,8,0 extrwi $acc01,$s0,8,8 stb $acc00,0($out) extrwi $acc02,$s0,8,16 stb $acc01,1($out) stb $acc02,2($out) extrwi $acc04,$s1,8,0 stb $s0,3($out) extrwi $acc05,$s1,8,8 stb $acc04,4($out) extrwi $acc06,$s1,8,16 stb $acc05,5($out) stb $acc06,6($out) extrwi $acc08,$s2,8,0 stb $s1,7($out) extrwi $acc09,$s2,8,8 stb $acc08,8($out) extrwi $acc10,$s2,8,16 stb $acc09,9($out) stb $acc10,10($out) extrwi $acc12,$s3,8,0 stb $s2,11($out) extrwi $acc13,$s3,8,8 stb $acc12,12($out) extrwi $acc14,$s3,8,16 stb $acc13,13($out) stb $acc14,14($out) stb $s3,15($out) Lenc_done: $POP r0,`$FRAME+$LRSAVE`($sp) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,18,3,0 .long 0 .align 5 Lppc_AES_encrypt: lwz $acc00,240($key) addi $Tbl1,$Tbl0,3 lwz $t0,0($key) addi $Tbl2,$Tbl0,2 lwz $t1,4($key) addi $Tbl3,$Tbl0,1 lwz $t2,8($key) addi $acc00,$acc00,-1 lwz $t3,12($key) addi $key,$key,16 xor $s0,$s0,$t0 xor $s1,$s1,$t1 xor $s2,$s2,$t2 xor $s3,$s3,$t3 mtctr $acc00 .align 4 Lenc_loop: rlwinm $acc00,$s0,`32-24+3`,21,28 rlwinm $acc01,$s1,`32-24+3`,21,28 rlwinm $acc02,$s2,`32-24+3`,21,28 rlwinm $acc03,$s3,`32-24+3`,21,28 lwz $t0,0($key) rlwinm $acc04,$s1,`32-16+3`,21,28 lwz $t1,4($key) rlwinm $acc05,$s2,`32-16+3`,21,28 lwz $t2,8($key) rlwinm $acc06,$s3,`32-16+3`,21,28 lwz $t3,12($key) rlwinm $acc07,$s0,`32-16+3`,21,28 lwzx $acc00,$Tbl0,$acc00 rlwinm $acc08,$s2,`32-8+3`,21,28 lwzx $acc01,$Tbl0,$acc01 rlwinm $acc09,$s3,`32-8+3`,21,28 lwzx $acc02,$Tbl0,$acc02 rlwinm $acc10,$s0,`32-8+3`,21,28 lwzx $acc03,$Tbl0,$acc03 rlwinm $acc11,$s1,`32-8+3`,21,28 lwzx $acc04,$Tbl1,$acc04 rlwinm $acc12,$s3,`0+3`,21,28 lwzx $acc05,$Tbl1,$acc05 rlwinm $acc13,$s0,`0+3`,21,28 lwzx $acc06,$Tbl1,$acc06 rlwinm $acc14,$s1,`0+3`,21,28 lwzx $acc07,$Tbl1,$acc07 rlwinm $acc15,$s2,`0+3`,21,28 lwzx $acc08,$Tbl2,$acc08 xor $t0,$t0,$acc00 lwzx $acc09,$Tbl2,$acc09 xor $t1,$t1,$acc01 lwzx $acc10,$Tbl2,$acc10 xor $t2,$t2,$acc02 lwzx $acc11,$Tbl2,$acc11 xor $t3,$t3,$acc03 lwzx $acc12,$Tbl3,$acc12 xor $t0,$t0,$acc04 lwzx $acc13,$Tbl3,$acc13 xor $t1,$t1,$acc05 lwzx $acc14,$Tbl3,$acc14 xor $t2,$t2,$acc06 lwzx $acc15,$Tbl3,$acc15 xor $t3,$t3,$acc07 xor $t0,$t0,$acc08 xor $t1,$t1,$acc09 xor $t2,$t2,$acc10 xor $t3,$t3,$acc11 xor $s0,$t0,$acc12 xor $s1,$t1,$acc13 xor $s2,$t2,$acc14 xor $s3,$t3,$acc15 addi $key,$key,16 bdnz Lenc_loop addi $Tbl2,$Tbl0,2048 nop lwz $t0,0($key) rlwinm $acc00,$s0,`32-24`,24,31 lwz $t1,4($key) rlwinm $acc01,$s1,`32-24`,24,31 lwz $t2,8($key) rlwinm $acc02,$s2,`32-24`,24,31 lwz $t3,12($key) rlwinm $acc03,$s3,`32-24`,24,31 lwz $acc08,`2048+0`($Tbl0) ! prefetch Te4 rlwinm $acc04,$s1,`32-16`,24,31 lwz $acc09,`2048+32`($Tbl0) rlwinm $acc05,$s2,`32-16`,24,31 lwz $acc10,`2048+64`($Tbl0) rlwinm $acc06,$s3,`32-16`,24,31 lwz $acc11,`2048+96`($Tbl0) rlwinm $acc07,$s0,`32-16`,24,31 lwz $acc12,`2048+128`($Tbl0) rlwinm $acc08,$s2,`32-8`,24,31 lwz $acc13,`2048+160`($Tbl0) rlwinm $acc09,$s3,`32-8`,24,31 lwz $acc14,`2048+192`($Tbl0) rlwinm $acc10,$s0,`32-8`,24,31 lwz $acc15,`2048+224`($Tbl0) rlwinm $acc11,$s1,`32-8`,24,31 lbzx $acc00,$Tbl2,$acc00 rlwinm $acc12,$s3,`0`,24,31 lbzx $acc01,$Tbl2,$acc01 rlwinm $acc13,$s0,`0`,24,31 lbzx $acc02,$Tbl2,$acc02 rlwinm $acc14,$s1,`0`,24,31 lbzx $acc03,$Tbl2,$acc03 rlwinm $acc15,$s2,`0`,24,31 lbzx $acc04,$Tbl2,$acc04 rlwinm $s0,$acc00,24,0,7 lbzx $acc05,$Tbl2,$acc05 rlwinm $s1,$acc01,24,0,7 lbzx $acc06,$Tbl2,$acc06 rlwinm $s2,$acc02,24,0,7 lbzx $acc07,$Tbl2,$acc07 rlwinm $s3,$acc03,24,0,7 lbzx $acc08,$Tbl2,$acc08 rlwimi $s0,$acc04,16,8,15 lbzx $acc09,$Tbl2,$acc09 rlwimi $s1,$acc05,16,8,15 lbzx $acc10,$Tbl2,$acc10 rlwimi $s2,$acc06,16,8,15 lbzx $acc11,$Tbl2,$acc11 rlwimi $s3,$acc07,16,8,15 lbzx $acc12,$Tbl2,$acc12 rlwimi $s0,$acc08,8,16,23 lbzx $acc13,$Tbl2,$acc13 rlwimi $s1,$acc09,8,16,23 lbzx $acc14,$Tbl2,$acc14 rlwimi $s2,$acc10,8,16,23 lbzx $acc15,$Tbl2,$acc15 rlwimi $s3,$acc11,8,16,23 or $s0,$s0,$acc12 or $s1,$s1,$acc13 or $s2,$s2,$acc14 or $s3,$s3,$acc15 xor $s0,$s0,$t0 xor $s1,$s1,$t1 xor $s2,$s2,$t2 xor $s3,$s3,$t3 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .align 4 Lppc_AES_encrypt_compact: lwz $acc00,240($key) addi $Tbl1,$Tbl0,2048 lwz $t0,0($key) lis $mask80,0x8080 lwz $t1,4($key) lis $mask1b,0x1b1b lwz $t2,8($key) ori $mask80,$mask80,0x8080 lwz $t3,12($key) ori $mask1b,$mask1b,0x1b1b addi $key,$key,16 mtctr $acc00 .align 4 Lenc_compact_loop: xor $s0,$s0,$t0 xor $s1,$s1,$t1 rlwinm $acc00,$s0,`32-24`,24,31 xor $s2,$s2,$t2 rlwinm $acc01,$s1,`32-24`,24,31 xor $s3,$s3,$t3 rlwinm $acc02,$s2,`32-24`,24,31 rlwinm $acc03,$s3,`32-24`,24,31 rlwinm $acc04,$s1,`32-16`,24,31 rlwinm $acc05,$s2,`32-16`,24,31 rlwinm $acc06,$s3,`32-16`,24,31 rlwinm $acc07,$s0,`32-16`,24,31 lbzx $acc00,$Tbl1,$acc00 rlwinm $acc08,$s2,`32-8`,24,31 lbzx $acc01,$Tbl1,$acc01 rlwinm $acc09,$s3,`32-8`,24,31 lbzx $acc02,$Tbl1,$acc02 rlwinm $acc10,$s0,`32-8`,24,31 lbzx $acc03,$Tbl1,$acc03 rlwinm $acc11,$s1,`32-8`,24,31 lbzx $acc04,$Tbl1,$acc04 rlwinm $acc12,$s3,`0`,24,31 lbzx $acc05,$Tbl1,$acc05 rlwinm $acc13,$s0,`0`,24,31 lbzx $acc06,$Tbl1,$acc06 rlwinm $acc14,$s1,`0`,24,31 lbzx $acc07,$Tbl1,$acc07 rlwinm $acc15,$s2,`0`,24,31 lbzx $acc08,$Tbl1,$acc08 rlwinm $s0,$acc00,24,0,7 lbzx $acc09,$Tbl1,$acc09 rlwinm $s1,$acc01,24,0,7 lbzx $acc10,$Tbl1,$acc10 rlwinm $s2,$acc02,24,0,7 lbzx $acc11,$Tbl1,$acc11 rlwinm $s3,$acc03,24,0,7 lbzx $acc12,$Tbl1,$acc12 rlwimi $s0,$acc04,16,8,15 lbzx $acc13,$Tbl1,$acc13 rlwimi $s1,$acc05,16,8,15 lbzx $acc14,$Tbl1,$acc14 rlwimi $s2,$acc06,16,8,15 lbzx $acc15,$Tbl1,$acc15 rlwimi $s3,$acc07,16,8,15 rlwimi $s0,$acc08,8,16,23 rlwimi $s1,$acc09,8,16,23 rlwimi $s2,$acc10,8,16,23 rlwimi $s3,$acc11,8,16,23 lwz $t0,0($key) or $s0,$s0,$acc12 lwz $t1,4($key) or $s1,$s1,$acc13 lwz $t2,8($key) or $s2,$s2,$acc14 lwz $t3,12($key) or $s3,$s3,$acc15 addi $key,$key,16 bdz Lenc_compact_done and $acc00,$s0,$mask80 # r1=r0&0x80808080 and $acc01,$s1,$mask80 and $acc02,$s2,$mask80 and $acc03,$s3,$mask80 srwi $acc04,$acc00,7 # r1>>7 andc $acc08,$s0,$mask80 # r0&0x7f7f7f7f srwi $acc05,$acc01,7 andc $acc09,$s1,$mask80 srwi $acc06,$acc02,7 andc $acc10,$s2,$mask80 srwi $acc07,$acc03,7 andc $acc11,$s3,$mask80 sub $acc00,$acc00,$acc04 # r1-(r1>>7) sub $acc01,$acc01,$acc05 sub $acc02,$acc02,$acc06 sub $acc03,$acc03,$acc07 add $acc08,$acc08,$acc08 # (r0&0x7f7f7f7f)<<1 add $acc09,$acc09,$acc09 add $acc10,$acc10,$acc10 add $acc11,$acc11,$acc11 and $acc00,$acc00,$mask1b # (r1-(r1>>7))&0x1b1b1b1b and $acc01,$acc01,$mask1b and $acc02,$acc02,$mask1b and $acc03,$acc03,$mask1b xor $acc00,$acc00,$acc08 # r2 xor $acc01,$acc01,$acc09 rotlwi $acc12,$s0,16 # ROTATE(r0,16) xor $acc02,$acc02,$acc10 rotlwi $acc13,$s1,16 xor $acc03,$acc03,$acc11 rotlwi $acc14,$s2,16 xor $s0,$s0,$acc00 # r0^r2 rotlwi $acc15,$s3,16 xor $s1,$s1,$acc01 rotrwi $s0,$s0,24 # ROTATE(r2^r0,24) xor $s2,$s2,$acc02 rotrwi $s1,$s1,24 xor $s3,$s3,$acc03 rotrwi $s2,$s2,24 xor $s0,$s0,$acc00 # ROTATE(r2^r0,24)^r2 rotrwi $s3,$s3,24 xor $s1,$s1,$acc01 xor $s2,$s2,$acc02 xor $s3,$s3,$acc03 rotlwi $acc08,$acc12,8 # ROTATE(r0,24) xor $s0,$s0,$acc12 # rotlwi $acc09,$acc13,8 xor $s1,$s1,$acc13 rotlwi $acc10,$acc14,8 xor $s2,$s2,$acc14 rotlwi $acc11,$acc15,8 xor $s3,$s3,$acc15 xor $s0,$s0,$acc08 # xor $s1,$s1,$acc09 xor $s2,$s2,$acc10 xor $s3,$s3,$acc11 b Lenc_compact_loop .align 4 Lenc_compact_done: xor $s0,$s0,$t0 xor $s1,$s1,$t1 xor $s2,$s2,$t2 xor $s3,$s3,$t3 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .size .AES_encrypt,.-.AES_encrypt .globl .AES_decrypt .align 7 .AES_decrypt: $STU $sp,-$FRAME($sp) mflr r0 $PUSH $out,`$FRAME-$SIZE_T*19`($sp) $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) andi. $t0,$inp,3 andi. $t1,$out,3 or. $t0,$t0,$t1 bne Ldec_unaligned Ldec_unaligned_ok: ___ $code.=<<___ if (!$LITTLE_ENDIAN); lwz $s0,0($inp) lwz $s1,4($inp) lwz $s2,8($inp) lwz $s3,12($inp) ___ $code.=<<___ if ($LITTLE_ENDIAN); lwz $t0,0($inp) lwz $t1,4($inp) lwz $t2,8($inp) lwz $t3,12($inp) rotlwi $s0,$t0,8 rotlwi $s1,$t1,8 rotlwi $s2,$t2,8 rotlwi $s3,$t3,8 rlwimi $s0,$t0,24,0,7 rlwimi $s1,$t1,24,0,7 rlwimi $s2,$t2,24,0,7 rlwimi $s3,$t3,24,0,7 rlwimi $s0,$t0,24,16,23 rlwimi $s1,$t1,24,16,23 rlwimi $s2,$t2,24,16,23 rlwimi $s3,$t3,24,16,23 ___ $code.=<<___; bl LAES_Td bl Lppc_AES_decrypt_compact $POP $out,`$FRAME-$SIZE_T*19`($sp) ___ $code.=<<___ if ($LITTLE_ENDIAN); rotlwi $t0,$s0,8 rotlwi $t1,$s1,8 rotlwi $t2,$s2,8 rotlwi $t3,$s3,8 rlwimi $t0,$s0,24,0,7 rlwimi $t1,$s1,24,0,7 rlwimi $t2,$s2,24,0,7 rlwimi $t3,$s3,24,0,7 rlwimi $t0,$s0,24,16,23 rlwimi $t1,$s1,24,16,23 rlwimi $t2,$s2,24,16,23 rlwimi $t3,$s3,24,16,23 stw $t0,0($out) stw $t1,4($out) stw $t2,8($out) stw $t3,12($out) ___ $code.=<<___ if (!$LITTLE_ENDIAN); stw $s0,0($out) stw $s1,4($out) stw $s2,8($out) stw $s3,12($out) ___ $code.=<<___; b Ldec_done Ldec_unaligned: subfic $t0,$inp,4096 subfic $t1,$out,4096 andi. $t0,$t0,4096-16 beq Ldec_xpage andi. $t1,$t1,4096-16 bne Ldec_unaligned_ok Ldec_xpage: lbz $acc00,0($inp) lbz $acc01,1($inp) lbz $acc02,2($inp) lbz $s0,3($inp) lbz $acc04,4($inp) lbz $acc05,5($inp) lbz $acc06,6($inp) lbz $s1,7($inp) lbz $acc08,8($inp) lbz $acc09,9($inp) lbz $acc10,10($inp) insrwi $s0,$acc00,8,0 lbz $s2,11($inp) insrwi $s1,$acc04,8,0 lbz $acc12,12($inp) insrwi $s0,$acc01,8,8 lbz $acc13,13($inp) insrwi $s1,$acc05,8,8 lbz $acc14,14($inp) insrwi $s0,$acc02,8,16 lbz $s3,15($inp) insrwi $s1,$acc06,8,16 insrwi $s2,$acc08,8,0 insrwi $s3,$acc12,8,0 insrwi $s2,$acc09,8,8 insrwi $s3,$acc13,8,8 insrwi $s2,$acc10,8,16 insrwi $s3,$acc14,8,16 bl LAES_Td bl Lppc_AES_decrypt_compact $POP $out,`$FRAME-$SIZE_T*19`($sp) extrwi $acc00,$s0,8,0 extrwi $acc01,$s0,8,8 stb $acc00,0($out) extrwi $acc02,$s0,8,16 stb $acc01,1($out) stb $acc02,2($out) extrwi $acc04,$s1,8,0 stb $s0,3($out) extrwi $acc05,$s1,8,8 stb $acc04,4($out) extrwi $acc06,$s1,8,16 stb $acc05,5($out) stb $acc06,6($out) extrwi $acc08,$s2,8,0 stb $s1,7($out) extrwi $acc09,$s2,8,8 stb $acc08,8($out) extrwi $acc10,$s2,8,16 stb $acc09,9($out) stb $acc10,10($out) extrwi $acc12,$s3,8,0 stb $s2,11($out) extrwi $acc13,$s3,8,8 stb $acc12,12($out) extrwi $acc14,$s3,8,16 stb $acc13,13($out) stb $acc14,14($out) stb $s3,15($out) Ldec_done: $POP r0,`$FRAME+$LRSAVE`($sp) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,18,3,0 .long 0 .align 5 Lppc_AES_decrypt: lwz $acc00,240($key) addi $Tbl1,$Tbl0,3 lwz $t0,0($key) addi $Tbl2,$Tbl0,2 lwz $t1,4($key) addi $Tbl3,$Tbl0,1 lwz $t2,8($key) addi $acc00,$acc00,-1 lwz $t3,12($key) addi $key,$key,16 xor $s0,$s0,$t0 xor $s1,$s1,$t1 xor $s2,$s2,$t2 xor $s3,$s3,$t3 mtctr $acc00 .align 4 Ldec_loop: rlwinm $acc00,$s0,`32-24+3`,21,28 rlwinm $acc01,$s1,`32-24+3`,21,28 rlwinm $acc02,$s2,`32-24+3`,21,28 rlwinm $acc03,$s3,`32-24+3`,21,28 lwz $t0,0($key) rlwinm $acc04,$s3,`32-16+3`,21,28 lwz $t1,4($key) rlwinm $acc05,$s0,`32-16+3`,21,28 lwz $t2,8($key) rlwinm $acc06,$s1,`32-16+3`,21,28 lwz $t3,12($key) rlwinm $acc07,$s2,`32-16+3`,21,28 lwzx $acc00,$Tbl0,$acc00 rlwinm $acc08,$s2,`32-8+3`,21,28 lwzx $acc01,$Tbl0,$acc01 rlwinm $acc09,$s3,`32-8+3`,21,28 lwzx $acc02,$Tbl0,$acc02 rlwinm $acc10,$s0,`32-8+3`,21,28 lwzx $acc03,$Tbl0,$acc03 rlwinm $acc11,$s1,`32-8+3`,21,28 lwzx $acc04,$Tbl1,$acc04 rlwinm $acc12,$s1,`0+3`,21,28 lwzx $acc05,$Tbl1,$acc05 rlwinm $acc13,$s2,`0+3`,21,28 lwzx $acc06,$Tbl1,$acc06 rlwinm $acc14,$s3,`0+3`,21,28 lwzx $acc07,$Tbl1,$acc07 rlwinm $acc15,$s0,`0+3`,21,28 lwzx $acc08,$Tbl2,$acc08 xor $t0,$t0,$acc00 lwzx $acc09,$Tbl2,$acc09 xor $t1,$t1,$acc01 lwzx $acc10,$Tbl2,$acc10 xor $t2,$t2,$acc02 lwzx $acc11,$Tbl2,$acc11 xor $t3,$t3,$acc03 lwzx $acc12,$Tbl3,$acc12 xor $t0,$t0,$acc04 lwzx $acc13,$Tbl3,$acc13 xor $t1,$t1,$acc05 lwzx $acc14,$Tbl3,$acc14 xor $t2,$t2,$acc06 lwzx $acc15,$Tbl3,$acc15 xor $t3,$t3,$acc07 xor $t0,$t0,$acc08 xor $t1,$t1,$acc09 xor $t2,$t2,$acc10 xor $t3,$t3,$acc11 xor $s0,$t0,$acc12 xor $s1,$t1,$acc13 xor $s2,$t2,$acc14 xor $s3,$t3,$acc15 addi $key,$key,16 bdnz Ldec_loop addi $Tbl2,$Tbl0,2048 nop lwz $t0,0($key) rlwinm $acc00,$s0,`32-24`,24,31 lwz $t1,4($key) rlwinm $acc01,$s1,`32-24`,24,31 lwz $t2,8($key) rlwinm $acc02,$s2,`32-24`,24,31 lwz $t3,12($key) rlwinm $acc03,$s3,`32-24`,24,31 lwz $acc08,`2048+0`($Tbl0) ! prefetch Td4 rlwinm $acc04,$s3,`32-16`,24,31 lwz $acc09,`2048+32`($Tbl0) rlwinm $acc05,$s0,`32-16`,24,31 lwz $acc10,`2048+64`($Tbl0) lbzx $acc00,$Tbl2,$acc00 lwz $acc11,`2048+96`($Tbl0) lbzx $acc01,$Tbl2,$acc01 lwz $acc12,`2048+128`($Tbl0) rlwinm $acc06,$s1,`32-16`,24,31 lwz $acc13,`2048+160`($Tbl0) rlwinm $acc07,$s2,`32-16`,24,31 lwz $acc14,`2048+192`($Tbl0) rlwinm $acc08,$s2,`32-8`,24,31 lwz $acc15,`2048+224`($Tbl0) rlwinm $acc09,$s3,`32-8`,24,31 lbzx $acc02,$Tbl2,$acc02 rlwinm $acc10,$s0,`32-8`,24,31 lbzx $acc03,$Tbl2,$acc03 rlwinm $acc11,$s1,`32-8`,24,31 lbzx $acc04,$Tbl2,$acc04 rlwinm $acc12,$s1,`0`,24,31 lbzx $acc05,$Tbl2,$acc05 rlwinm $acc13,$s2,`0`,24,31 lbzx $acc06,$Tbl2,$acc06 rlwinm $acc14,$s3,`0`,24,31 lbzx $acc07,$Tbl2,$acc07 rlwinm $acc15,$s0,`0`,24,31 lbzx $acc08,$Tbl2,$acc08 rlwinm $s0,$acc00,24,0,7 lbzx $acc09,$Tbl2,$acc09 rlwinm $s1,$acc01,24,0,7 lbzx $acc10,$Tbl2,$acc10 rlwinm $s2,$acc02,24,0,7 lbzx $acc11,$Tbl2,$acc11 rlwinm $s3,$acc03,24,0,7 lbzx $acc12,$Tbl2,$acc12 rlwimi $s0,$acc04,16,8,15 lbzx $acc13,$Tbl2,$acc13 rlwimi $s1,$acc05,16,8,15 lbzx $acc14,$Tbl2,$acc14 rlwimi $s2,$acc06,16,8,15 lbzx $acc15,$Tbl2,$acc15 rlwimi $s3,$acc07,16,8,15 rlwimi $s0,$acc08,8,16,23 rlwimi $s1,$acc09,8,16,23 rlwimi $s2,$acc10,8,16,23 rlwimi $s3,$acc11,8,16,23 or $s0,$s0,$acc12 or $s1,$s1,$acc13 or $s2,$s2,$acc14 or $s3,$s3,$acc15 xor $s0,$s0,$t0 xor $s1,$s1,$t1 xor $s2,$s2,$t2 xor $s3,$s3,$t3 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .align 4 Lppc_AES_decrypt_compact: lwz $acc00,240($key) addi $Tbl1,$Tbl0,2048 lwz $t0,0($key) lis $mask80,0x8080 lwz $t1,4($key) lis $mask1b,0x1b1b lwz $t2,8($key) ori $mask80,$mask80,0x8080 lwz $t3,12($key) ori $mask1b,$mask1b,0x1b1b addi $key,$key,16 ___ $code.=<<___ if ($SIZE_T==8); insrdi $mask80,$mask80,32,0 insrdi $mask1b,$mask1b,32,0 ___ $code.=<<___; mtctr $acc00 .align 4 Ldec_compact_loop: xor $s0,$s0,$t0 xor $s1,$s1,$t1 rlwinm $acc00,$s0,`32-24`,24,31 xor $s2,$s2,$t2 rlwinm $acc01,$s1,`32-24`,24,31 xor $s3,$s3,$t3 rlwinm $acc02,$s2,`32-24`,24,31 rlwinm $acc03,$s3,`32-24`,24,31 rlwinm $acc04,$s3,`32-16`,24,31 rlwinm $acc05,$s0,`32-16`,24,31 rlwinm $acc06,$s1,`32-16`,24,31 rlwinm $acc07,$s2,`32-16`,24,31 lbzx $acc00,$Tbl1,$acc00 rlwinm $acc08,$s2,`32-8`,24,31 lbzx $acc01,$Tbl1,$acc01 rlwinm $acc09,$s3,`32-8`,24,31 lbzx $acc02,$Tbl1,$acc02 rlwinm $acc10,$s0,`32-8`,24,31 lbzx $acc03,$Tbl1,$acc03 rlwinm $acc11,$s1,`32-8`,24,31 lbzx $acc04,$Tbl1,$acc04 rlwinm $acc12,$s1,`0`,24,31 lbzx $acc05,$Tbl1,$acc05 rlwinm $acc13,$s2,`0`,24,31 lbzx $acc06,$Tbl1,$acc06 rlwinm $acc14,$s3,`0`,24,31 lbzx $acc07,$Tbl1,$acc07 rlwinm $acc15,$s0,`0`,24,31 lbzx $acc08,$Tbl1,$acc08 rlwinm $s0,$acc00,24,0,7 lbzx $acc09,$Tbl1,$acc09 rlwinm $s1,$acc01,24,0,7 lbzx $acc10,$Tbl1,$acc10 rlwinm $s2,$acc02,24,0,7 lbzx $acc11,$Tbl1,$acc11 rlwinm $s3,$acc03,24,0,7 lbzx $acc12,$Tbl1,$acc12 rlwimi $s0,$acc04,16,8,15 lbzx $acc13,$Tbl1,$acc13 rlwimi $s1,$acc05,16,8,15 lbzx $acc14,$Tbl1,$acc14 rlwimi $s2,$acc06,16,8,15 lbzx $acc15,$Tbl1,$acc15 rlwimi $s3,$acc07,16,8,15 rlwimi $s0,$acc08,8,16,23 rlwimi $s1,$acc09,8,16,23 rlwimi $s2,$acc10,8,16,23 rlwimi $s3,$acc11,8,16,23 lwz $t0,0($key) or $s0,$s0,$acc12 lwz $t1,4($key) or $s1,$s1,$acc13 lwz $t2,8($key) or $s2,$s2,$acc14 lwz $t3,12($key) or $s3,$s3,$acc15 addi $key,$key,16 bdz Ldec_compact_done ___ $code.=<<___ if ($SIZE_T==8); # vectorized permutation improves decrypt performance by 10% insrdi $s0,$s1,32,0 insrdi $s2,$s3,32,0 and $acc00,$s0,$mask80 # r1=r0&0x80808080 and $acc02,$s2,$mask80 srdi $acc04,$acc00,7 # r1>>7 srdi $acc06,$acc02,7 andc $acc08,$s0,$mask80 # r0&0x7f7f7f7f andc $acc10,$s2,$mask80 sub $acc00,$acc00,$acc04 # r1-(r1>>7) sub $acc02,$acc02,$acc06 add $acc08,$acc08,$acc08 # (r0&0x7f7f7f7f)<<1 add $acc10,$acc10,$acc10 and $acc00,$acc00,$mask1b # (r1-(r1>>7))&0x1b1b1b1b and $acc02,$acc02,$mask1b xor $acc00,$acc00,$acc08 # r2 xor $acc02,$acc02,$acc10 and $acc04,$acc00,$mask80 # r1=r2&0x80808080 and $acc06,$acc02,$mask80 srdi $acc08,$acc04,7 # r1>>7 srdi $acc10,$acc06,7 andc $acc12,$acc00,$mask80 # r2&0x7f7f7f7f andc $acc14,$acc02,$mask80 sub $acc04,$acc04,$acc08 # r1-(r1>>7) sub $acc06,$acc06,$acc10 add $acc12,$acc12,$acc12 # (r2&0x7f7f7f7f)<<1 add $acc14,$acc14,$acc14 and $acc04,$acc04,$mask1b # (r1-(r1>>7))&0x1b1b1b1b and $acc06,$acc06,$mask1b xor $acc04,$acc04,$acc12 # r4 xor $acc06,$acc06,$acc14 and $acc08,$acc04,$mask80 # r1=r4&0x80808080 and $acc10,$acc06,$mask80 srdi $acc12,$acc08,7 # r1>>7 srdi $acc14,$acc10,7 sub $acc08,$acc08,$acc12 # r1-(r1>>7) sub $acc10,$acc10,$acc14 andc $acc12,$acc04,$mask80 # r4&0x7f7f7f7f andc $acc14,$acc06,$mask80 add $acc12,$acc12,$acc12 # (r4&0x7f7f7f7f)<<1 add $acc14,$acc14,$acc14 and $acc08,$acc08,$mask1b # (r1-(r1>>7))&0x1b1b1b1b and $acc10,$acc10,$mask1b xor $acc08,$acc08,$acc12 # r8 xor $acc10,$acc10,$acc14 xor $acc00,$acc00,$s0 # r2^r0 xor $acc02,$acc02,$s2 xor $acc04,$acc04,$s0 # r4^r0 xor $acc06,$acc06,$s2 extrdi $acc01,$acc00,32,0 extrdi $acc03,$acc02,32,0 extrdi $acc05,$acc04,32,0 extrdi $acc07,$acc06,32,0 extrdi $acc09,$acc08,32,0 extrdi $acc11,$acc10,32,0 ___ $code.=<<___ if ($SIZE_T==4); and $acc00,$s0,$mask80 # r1=r0&0x80808080 and $acc01,$s1,$mask80 and $acc02,$s2,$mask80 and $acc03,$s3,$mask80 srwi $acc04,$acc00,7 # r1>>7 andc $acc08,$s0,$mask80 # r0&0x7f7f7f7f srwi $acc05,$acc01,7 andc $acc09,$s1,$mask80 srwi $acc06,$acc02,7 andc $acc10,$s2,$mask80 srwi $acc07,$acc03,7 andc $acc11,$s3,$mask80 sub $acc00,$acc00,$acc04 # r1-(r1>>7) sub $acc01,$acc01,$acc05 sub $acc02,$acc02,$acc06 sub $acc03,$acc03,$acc07 add $acc08,$acc08,$acc08 # (r0&0x7f7f7f7f)<<1 add $acc09,$acc09,$acc09 add $acc10,$acc10,$acc10 add $acc11,$acc11,$acc11 and $acc00,$acc00,$mask1b # (r1-(r1>>7))&0x1b1b1b1b and $acc01,$acc01,$mask1b and $acc02,$acc02,$mask1b and $acc03,$acc03,$mask1b xor $acc00,$acc00,$acc08 # r2 xor $acc01,$acc01,$acc09 xor $acc02,$acc02,$acc10 xor $acc03,$acc03,$acc11 and $acc04,$acc00,$mask80 # r1=r2&0x80808080 and $acc05,$acc01,$mask80 and $acc06,$acc02,$mask80 and $acc07,$acc03,$mask80 srwi $acc08,$acc04,7 # r1>>7 andc $acc12,$acc00,$mask80 # r2&0x7f7f7f7f srwi $acc09,$acc05,7 andc $acc13,$acc01,$mask80 srwi $acc10,$acc06,7 andc $acc14,$acc02,$mask80 srwi $acc11,$acc07,7 andc $acc15,$acc03,$mask80 sub $acc04,$acc04,$acc08 # r1-(r1>>7) sub $acc05,$acc05,$acc09 sub $acc06,$acc06,$acc10 sub $acc07,$acc07,$acc11 add $acc12,$acc12,$acc12 # (r2&0x7f7f7f7f)<<1 add $acc13,$acc13,$acc13 add $acc14,$acc14,$acc14 add $acc15,$acc15,$acc15 and $acc04,$acc04,$mask1b # (r1-(r1>>7))&0x1b1b1b1b and $acc05,$acc05,$mask1b and $acc06,$acc06,$mask1b and $acc07,$acc07,$mask1b xor $acc04,$acc04,$acc12 # r4 xor $acc05,$acc05,$acc13 xor $acc06,$acc06,$acc14 xor $acc07,$acc07,$acc15 and $acc08,$acc04,$mask80 # r1=r4&0x80808080 and $acc09,$acc05,$mask80 srwi $acc12,$acc08,7 # r1>>7 and $acc10,$acc06,$mask80 srwi $acc13,$acc09,7 and $acc11,$acc07,$mask80 srwi $acc14,$acc10,7 sub $acc08,$acc08,$acc12 # r1-(r1>>7) srwi $acc15,$acc11,7 sub $acc09,$acc09,$acc13 sub $acc10,$acc10,$acc14 sub $acc11,$acc11,$acc15 andc $acc12,$acc04,$mask80 # r4&0x7f7f7f7f andc $acc13,$acc05,$mask80 andc $acc14,$acc06,$mask80 andc $acc15,$acc07,$mask80 add $acc12,$acc12,$acc12 # (r4&0x7f7f7f7f)<<1 add $acc13,$acc13,$acc13 add $acc14,$acc14,$acc14 add $acc15,$acc15,$acc15 and $acc08,$acc08,$mask1b # (r1-(r1>>7))&0x1b1b1b1b and $acc09,$acc09,$mask1b and $acc10,$acc10,$mask1b and $acc11,$acc11,$mask1b xor $acc08,$acc08,$acc12 # r8 xor $acc09,$acc09,$acc13 xor $acc10,$acc10,$acc14 xor $acc11,$acc11,$acc15 xor $acc00,$acc00,$s0 # r2^r0 xor $acc01,$acc01,$s1 xor $acc02,$acc02,$s2 xor $acc03,$acc03,$s3 xor $acc04,$acc04,$s0 # r4^r0 xor $acc05,$acc05,$s1 xor $acc06,$acc06,$s2 xor $acc07,$acc07,$s3 ___ $code.=<<___; rotrwi $s0,$s0,8 # = ROTATE(r0,8) rotrwi $s1,$s1,8 xor $s0,$s0,$acc00 # ^= r2^r0 rotrwi $s2,$s2,8 xor $s1,$s1,$acc01 rotrwi $s3,$s3,8 xor $s2,$s2,$acc02 xor $s3,$s3,$acc03 xor $acc00,$acc00,$acc08 xor $acc01,$acc01,$acc09 xor $acc02,$acc02,$acc10 xor $acc03,$acc03,$acc11 xor $s0,$s0,$acc04 # ^= r4^r0 rotrwi $acc00,$acc00,24 xor $s1,$s1,$acc05 rotrwi $acc01,$acc01,24 xor $s2,$s2,$acc06 rotrwi $acc02,$acc02,24 xor $s3,$s3,$acc07 rotrwi $acc03,$acc03,24 xor $acc04,$acc04,$acc08 xor $acc05,$acc05,$acc09 xor $acc06,$acc06,$acc10 xor $acc07,$acc07,$acc11 xor $s0,$s0,$acc08 # ^= r8 [^((r4^r0)^(r2^r0)=r4^r2)] rotrwi $acc04,$acc04,16 xor $s1,$s1,$acc09 rotrwi $acc05,$acc05,16 xor $s2,$s2,$acc10 rotrwi $acc06,$acc06,16 xor $s3,$s3,$acc11 rotrwi $acc07,$acc07,16 xor $s0,$s0,$acc00 # ^= ROTATE(r8^r2^r0,24) rotrwi $acc08,$acc08,8 xor $s1,$s1,$acc01 rotrwi $acc09,$acc09,8 xor $s2,$s2,$acc02 rotrwi $acc10,$acc10,8 xor $s3,$s3,$acc03 rotrwi $acc11,$acc11,8 xor $s0,$s0,$acc04 # ^= ROTATE(r8^r4^r0,16) xor $s1,$s1,$acc05 xor $s2,$s2,$acc06 xor $s3,$s3,$acc07 xor $s0,$s0,$acc08 # ^= ROTATE(r8,8) xor $s1,$s1,$acc09 xor $s2,$s2,$acc10 xor $s3,$s3,$acc11 b Ldec_compact_loop .align 4 Ldec_compact_done: xor $s0,$s0,$t0 xor $s1,$s1,$t1 xor $s2,$s2,$t2 xor $s3,$s3,$t3 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .size .AES_decrypt,.-.AES_decrypt .asciz "AES for PPC, CRYPTOGAMS by " .align 7 ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aes-s390x.pl000066400000000000000000001523611364063235100202170ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # AES for s390x. # April 2007. # # Software performance improvement over gcc-generated code is ~70% and # in absolute terms is ~73 cycles per byte processed with 128-bit key. # You're likely to exclaim "why so slow?" Keep in mind that z-CPUs are # *strictly* in-order execution and issued instruction [in this case # load value from memory is critical] has to complete before execution # flow proceeds. S-boxes are compressed to 2KB[+256B]. # # As for hardware acceleration support. It's basically a "teaser," as # it can and should be improved in several ways. Most notably support # for CBC is not utilized, nor multiple blocks are ever processed. # Then software key schedule can be postponed till hardware support # detection... Performance improvement over assembler is reportedly # ~2.5x, but can reach >8x [naturally on larger chunks] if proper # support is implemented. # May 2007. # # Implement AES_set_[en|de]crypt_key. Key schedule setup is avoided # for 128-bit keys, if hardware support is detected. # January 2009. # # Add support for hardware AES192/256 and reschedule instructions to # minimize/avoid Address Generation Interlock hazard and to favour # dual-issue z10 pipeline. This gave ~25% improvement on z10 and # almost 50% on z9. The gain is smaller on z10, because being dual- # issue z10 makes it impossible to eliminate the interlock condition: # critical path is not long enough. Yet it spends ~24 cycles per byte # processed with 128-bit key. # # Unlike previous version hardware support detection takes place only # at the moment of key schedule setup, which is denoted in key->rounds. # This is done, because deferred key setup can't be made MT-safe, not # for keys longer than 128 bits. # # Add AES_cbc_encrypt, which gives incredible performance improvement, # it was measured to be ~6.6x. It's less than previously mentioned 8x, # because software implementation was optimized. # May 2010. # # Add AES_ctr32_encrypt. If hardware-assisted, it provides up to 4.3x # performance improvement over "generic" counter mode routine relying # on single-block, also hardware-assisted, AES_encrypt. "Up to" refers # to the fact that exact throughput value depends on current stack # frame alignment within 4KB page. In worst case you get ~75% of the # maximum, but *on average* it would be as much as ~98%. Meaning that # worst case is unlike, it's like hitting ravine on plateau. # November 2010. # # Adapt for -m31 build. If kernel supports what's called "highgprs" # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit # instructions and achieve "64-bit" performance even in 31-bit legacy # application context. The feature is not specific to any particular # processor, as long as it's "z-CPU". Latter implies that the code # remains z/Architecture specific. On z990 it was measured to perform # 2x better than code generated by gcc 4.3. # December 2010. # # Add support for z196 "cipher message with counter" instruction. # Note however that it's disengaged, because it was measured to # perform ~12% worse than vanilla km-based code... # February 2011. # # Add AES_xts_[en|de]crypt. This includes support for z196 km-xts-aes # instructions, which deliver ~70% improvement at 8KB block size over # vanilla km-based code, 37% - at most like 512-bytes block size. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $softonly=0; # allow hardware support $t0="%r0"; $mask="%r0"; $t1="%r1"; $t2="%r2"; $inp="%r2"; $t3="%r3"; $out="%r3"; $bits="%r3"; $key="%r4"; $i1="%r5"; $i2="%r6"; $i3="%r7"; $s0="%r8"; $s1="%r9"; $s2="%r10"; $s3="%r11"; $tbl="%r12"; $rounds="%r13"; $ra="%r14"; $sp="%r15"; $stdframe=16*$SIZE_T+4*8; sub _data_word() { my $i; while(defined($i=shift)) { $code.=sprintf".long\t0x%08x,0x%08x\n",$i,$i; } } $code=<<___; #include "s390x_arch.h" .text .type AES_Te,\@object .align 256 AES_Te: ___ &_data_word( 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d, 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b, 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a, 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f, 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d, 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb, 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c, 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a, 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81, 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504, 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f, 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395, 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c, 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4, 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7, 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818, 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21, 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12, 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133, 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a, 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11, 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a); $code.=<<___; # Te4[256] .byte 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 .byte 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 .byte 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 .byte 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 .byte 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc .byte 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 .byte 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a .byte 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 .byte 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 .byte 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 .byte 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b .byte 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf .byte 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 .byte 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 .byte 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 .byte 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 .byte 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 .byte 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 .byte 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 .byte 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb .byte 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c .byte 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 .byte 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 .byte 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 .byte 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 .byte 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a .byte 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e .byte 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e .byte 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 .byte 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf .byte 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 .byte 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 # rcon[] .long 0x01000000, 0x02000000, 0x04000000, 0x08000000 .long 0x10000000, 0x20000000, 0x40000000, 0x80000000 .long 0x1B000000, 0x36000000, 0, 0, 0, 0, 0, 0 .align 256 .size AES_Te,.-AES_Te # void AES_encrypt(const unsigned char *inp, unsigned char *out, # const AES_KEY *key) { .globl AES_encrypt .type AES_encrypt,\@function AES_encrypt: ___ $code.=<<___ if (!$softonly); l %r0,240($key) lhi %r1,16 clr %r0,%r1 jl .Lesoft la %r1,0($key) #la %r2,0($inp) la %r4,0($out) lghi %r3,16 # single block length .long 0xb92e0042 # km %r4,%r2 brc 1,.-4 # can this happen? br %r14 .align 64 .Lesoft: ___ $code.=<<___; stm${g} %r3,$ra,3*$SIZE_T($sp) llgf $s0,0($inp) llgf $s1,4($inp) llgf $s2,8($inp) llgf $s3,12($inp) larl $tbl,AES_Te bras $ra,_s390x_AES_encrypt l${g} $out,3*$SIZE_T($sp) st $s0,0($out) st $s1,4($out) st $s2,8($out) st $s3,12($out) lm${g} %r6,$ra,6*$SIZE_T($sp) br $ra .size AES_encrypt,.-AES_encrypt .type _s390x_AES_encrypt,\@function .align 16 _s390x_AES_encrypt: st${g} $ra,15*$SIZE_T($sp) x $s0,0($key) x $s1,4($key) x $s2,8($key) x $s3,12($key) l $rounds,240($key) llill $mask,`0xff<<3` aghi $rounds,-1 j .Lenc_loop .align 16 .Lenc_loop: sllg $t1,$s0,`0+3` srlg $t2,$s0,`8-3` srlg $t3,$s0,`16-3` srl $s0,`24-3` nr $s0,$mask ngr $t1,$mask nr $t2,$mask nr $t3,$mask srlg $i1,$s1,`16-3` # i0 sllg $i2,$s1,`0+3` srlg $i3,$s1,`8-3` srl $s1,`24-3` nr $i1,$mask nr $s1,$mask ngr $i2,$mask nr $i3,$mask l $s0,0($s0,$tbl) # Te0[s0>>24] l $t1,1($t1,$tbl) # Te3[s0>>0] l $t2,2($t2,$tbl) # Te2[s0>>8] l $t3,3($t3,$tbl) # Te1[s0>>16] x $s0,3($i1,$tbl) # Te1[s1>>16] l $s1,0($s1,$tbl) # Te0[s1>>24] x $t2,1($i2,$tbl) # Te3[s1>>0] x $t3,2($i3,$tbl) # Te2[s1>>8] srlg $i1,$s2,`8-3` # i0 srlg $i2,$s2,`16-3` # i1 nr $i1,$mask nr $i2,$mask sllg $i3,$s2,`0+3` srl $s2,`24-3` nr $s2,$mask ngr $i3,$mask xr $s1,$t1 srlg $ra,$s3,`8-3` # i1 sllg $t1,$s3,`0+3` # i0 nr $ra,$mask la $key,16($key) ngr $t1,$mask x $s0,2($i1,$tbl) # Te2[s2>>8] x $s1,3($i2,$tbl) # Te1[s2>>16] l $s2,0($s2,$tbl) # Te0[s2>>24] x $t3,1($i3,$tbl) # Te3[s2>>0] srlg $i3,$s3,`16-3` # i2 xr $s2,$t2 srl $s3,`24-3` nr $i3,$mask nr $s3,$mask x $s0,0($key) x $s1,4($key) x $s2,8($key) x $t3,12($key) x $s0,1($t1,$tbl) # Te3[s3>>0] x $s1,2($ra,$tbl) # Te2[s3>>8] x $s2,3($i3,$tbl) # Te1[s3>>16] l $s3,0($s3,$tbl) # Te0[s3>>24] xr $s3,$t3 brct $rounds,.Lenc_loop .align 16 sllg $t1,$s0,`0+3` srlg $t2,$s0,`8-3` ngr $t1,$mask srlg $t3,$s0,`16-3` srl $s0,`24-3` nr $s0,$mask nr $t2,$mask nr $t3,$mask srlg $i1,$s1,`16-3` # i0 sllg $i2,$s1,`0+3` ngr $i2,$mask srlg $i3,$s1,`8-3` srl $s1,`24-3` nr $i1,$mask nr $s1,$mask nr $i3,$mask llgc $s0,2($s0,$tbl) # Te4[s0>>24] llgc $t1,2($t1,$tbl) # Te4[s0>>0] sll $s0,24 llgc $t2,2($t2,$tbl) # Te4[s0>>8] llgc $t3,2($t3,$tbl) # Te4[s0>>16] sll $t2,8 sll $t3,16 llgc $i1,2($i1,$tbl) # Te4[s1>>16] llgc $s1,2($s1,$tbl) # Te4[s1>>24] llgc $i2,2($i2,$tbl) # Te4[s1>>0] llgc $i3,2($i3,$tbl) # Te4[s1>>8] sll $i1,16 sll $s1,24 sll $i3,8 or $s0,$i1 or $s1,$t1 or $t2,$i2 or $t3,$i3 srlg $i1,$s2,`8-3` # i0 srlg $i2,$s2,`16-3` # i1 nr $i1,$mask nr $i2,$mask sllg $i3,$s2,`0+3` srl $s2,`24-3` ngr $i3,$mask nr $s2,$mask sllg $t1,$s3,`0+3` # i0 srlg $ra,$s3,`8-3` # i1 ngr $t1,$mask llgc $i1,2($i1,$tbl) # Te4[s2>>8] llgc $i2,2($i2,$tbl) # Te4[s2>>16] sll $i1,8 llgc $s2,2($s2,$tbl) # Te4[s2>>24] llgc $i3,2($i3,$tbl) # Te4[s2>>0] sll $i2,16 nr $ra,$mask sll $s2,24 or $s0,$i1 or $s1,$i2 or $s2,$t2 or $t3,$i3 srlg $i3,$s3,`16-3` # i2 srl $s3,`24-3` nr $i3,$mask nr $s3,$mask l $t0,16($key) l $t2,20($key) llgc $i1,2($t1,$tbl) # Te4[s3>>0] llgc $i2,2($ra,$tbl) # Te4[s3>>8] llgc $i3,2($i3,$tbl) # Te4[s3>>16] llgc $s3,2($s3,$tbl) # Te4[s3>>24] sll $i2,8 sll $i3,16 sll $s3,24 or $s0,$i1 or $s1,$i2 or $s2,$i3 or $s3,$t3 l${g} $ra,15*$SIZE_T($sp) xr $s0,$t0 xr $s1,$t2 x $s2,24($key) x $s3,28($key) br $ra .size _s390x_AES_encrypt,.-_s390x_AES_encrypt ___ $code.=<<___; .type AES_Td,\@object .align 256 AES_Td: ___ &_data_word( 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393, 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25, 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1, 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6, 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844, 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd, 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45, 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94, 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a, 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5, 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c, 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1, 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a, 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051, 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46, 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77, 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb, 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e, 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927, 0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a, 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e, 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16, 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8, 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd, 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163, 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120, 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0, 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422, 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36, 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4, 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e, 0x82c3aff5, 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3, 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8, 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6, 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0, 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815, 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df, 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f, 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713, 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89, 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf, 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86, 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541, 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190, 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742); $code.=<<___; # Td4[256] .byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 .byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb .byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 .byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb .byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d .byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e .byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 .byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 .byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 .byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 .byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda .byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 .byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a .byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 .byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 .byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b .byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea .byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 .byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 .byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e .byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 .byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b .byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 .byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 .byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 .byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f .byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d .byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef .byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 .byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 .byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 .byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d .size AES_Td,.-AES_Td # void AES_decrypt(const unsigned char *inp, unsigned char *out, # const AES_KEY *key) { .globl AES_decrypt .type AES_decrypt,\@function AES_decrypt: ___ $code.=<<___ if (!$softonly); l %r0,240($key) lhi %r1,16 clr %r0,%r1 jl .Ldsoft la %r1,0($key) #la %r2,0($inp) la %r4,0($out) lghi %r3,16 # single block length .long 0xb92e0042 # km %r4,%r2 brc 1,.-4 # can this happen? br %r14 .align 64 .Ldsoft: ___ $code.=<<___; stm${g} %r3,$ra,3*$SIZE_T($sp) llgf $s0,0($inp) llgf $s1,4($inp) llgf $s2,8($inp) llgf $s3,12($inp) larl $tbl,AES_Td bras $ra,_s390x_AES_decrypt l${g} $out,3*$SIZE_T($sp) st $s0,0($out) st $s1,4($out) st $s2,8($out) st $s3,12($out) lm${g} %r6,$ra,6*$SIZE_T($sp) br $ra .size AES_decrypt,.-AES_decrypt .type _s390x_AES_decrypt,\@function .align 16 _s390x_AES_decrypt: st${g} $ra,15*$SIZE_T($sp) x $s0,0($key) x $s1,4($key) x $s2,8($key) x $s3,12($key) l $rounds,240($key) llill $mask,`0xff<<3` aghi $rounds,-1 j .Ldec_loop .align 16 .Ldec_loop: srlg $t1,$s0,`16-3` srlg $t2,$s0,`8-3` sllg $t3,$s0,`0+3` srl $s0,`24-3` nr $s0,$mask nr $t1,$mask nr $t2,$mask ngr $t3,$mask sllg $i1,$s1,`0+3` # i0 srlg $i2,$s1,`16-3` srlg $i3,$s1,`8-3` srl $s1,`24-3` ngr $i1,$mask nr $s1,$mask nr $i2,$mask nr $i3,$mask l $s0,0($s0,$tbl) # Td0[s0>>24] l $t1,3($t1,$tbl) # Td1[s0>>16] l $t2,2($t2,$tbl) # Td2[s0>>8] l $t3,1($t3,$tbl) # Td3[s0>>0] x $s0,1($i1,$tbl) # Td3[s1>>0] l $s1,0($s1,$tbl) # Td0[s1>>24] x $t2,3($i2,$tbl) # Td1[s1>>16] x $t3,2($i3,$tbl) # Td2[s1>>8] srlg $i1,$s2,`8-3` # i0 sllg $i2,$s2,`0+3` # i1 srlg $i3,$s2,`16-3` srl $s2,`24-3` nr $i1,$mask ngr $i2,$mask nr $s2,$mask nr $i3,$mask xr $s1,$t1 srlg $ra,$s3,`8-3` # i1 srlg $t1,$s3,`16-3` # i0 nr $ra,$mask la $key,16($key) nr $t1,$mask x $s0,2($i1,$tbl) # Td2[s2>>8] x $s1,1($i2,$tbl) # Td3[s2>>0] l $s2,0($s2,$tbl) # Td0[s2>>24] x $t3,3($i3,$tbl) # Td1[s2>>16] sllg $i3,$s3,`0+3` # i2 srl $s3,`24-3` ngr $i3,$mask nr $s3,$mask xr $s2,$t2 x $s0,0($key) x $s1,4($key) x $s2,8($key) x $t3,12($key) x $s0,3($t1,$tbl) # Td1[s3>>16] x $s1,2($ra,$tbl) # Td2[s3>>8] x $s2,1($i3,$tbl) # Td3[s3>>0] l $s3,0($s3,$tbl) # Td0[s3>>24] xr $s3,$t3 brct $rounds,.Ldec_loop .align 16 l $t1,`2048+0`($tbl) # prefetch Td4 l $t2,`2048+64`($tbl) l $t3,`2048+128`($tbl) l $i1,`2048+192`($tbl) llill $mask,0xff srlg $i3,$s0,24 # i0 srlg $t1,$s0,16 srlg $t2,$s0,8 nr $s0,$mask # i3 nr $t1,$mask srlg $i1,$s1,24 nr $t2,$mask srlg $i2,$s1,16 srlg $ra,$s1,8 nr $s1,$mask # i0 nr $i2,$mask nr $ra,$mask llgc $i3,2048($i3,$tbl) # Td4[s0>>24] llgc $t1,2048($t1,$tbl) # Td4[s0>>16] llgc $t2,2048($t2,$tbl) # Td4[s0>>8] sll $t1,16 llgc $t3,2048($s0,$tbl) # Td4[s0>>0] sllg $s0,$i3,24 sll $t2,8 llgc $s1,2048($s1,$tbl) # Td4[s1>>0] llgc $i1,2048($i1,$tbl) # Td4[s1>>24] llgc $i2,2048($i2,$tbl) # Td4[s1>>16] sll $i1,24 llgc $i3,2048($ra,$tbl) # Td4[s1>>8] sll $i2,16 sll $i3,8 or $s0,$s1 or $t1,$i1 or $t2,$i2 or $t3,$i3 srlg $i1,$s2,8 # i0 srlg $i2,$s2,24 srlg $i3,$s2,16 nr $s2,$mask # i1 nr $i1,$mask nr $i3,$mask llgc $i1,2048($i1,$tbl) # Td4[s2>>8] llgc $s1,2048($s2,$tbl) # Td4[s2>>0] llgc $i2,2048($i2,$tbl) # Td4[s2>>24] llgc $i3,2048($i3,$tbl) # Td4[s2>>16] sll $i1,8 sll $i2,24 or $s0,$i1 sll $i3,16 or $t2,$i2 or $t3,$i3 srlg $i1,$s3,16 # i0 srlg $i2,$s3,8 # i1 srlg $i3,$s3,24 nr $s3,$mask # i2 nr $i1,$mask nr $i2,$mask l${g} $ra,15*$SIZE_T($sp) or $s1,$t1 l $t0,16($key) l $t1,20($key) llgc $i1,2048($i1,$tbl) # Td4[s3>>16] llgc $i2,2048($i2,$tbl) # Td4[s3>>8] sll $i1,16 llgc $s2,2048($s3,$tbl) # Td4[s3>>0] llgc $s3,2048($i3,$tbl) # Td4[s3>>24] sll $i2,8 sll $s3,24 or $s0,$i1 or $s1,$i2 or $s2,$t2 or $s3,$t3 xr $s0,$t0 xr $s1,$t1 x $s2,24($key) x $s3,28($key) br $ra .size _s390x_AES_decrypt,.-_s390x_AES_decrypt ___ $code.=<<___; # void AES_set_encrypt_key(const unsigned char *in, int bits, # AES_KEY *key) { .globl AES_set_encrypt_key .type AES_set_encrypt_key,\@function .align 16 AES_set_encrypt_key: _s390x_AES_set_encrypt_key: lghi $t0,0 cl${g}r $inp,$t0 je .Lminus1 cl${g}r $key,$t0 je .Lminus1 lghi $t0,128 clr $bits,$t0 je .Lproceed lghi $t0,192 clr $bits,$t0 je .Lproceed lghi $t0,256 clr $bits,$t0 je .Lproceed lghi %r2,-2 br %r14 .align 16 .Lproceed: ___ $code.=<<___ if (!$softonly); # convert bits to km(c) code, [128,192,256]->[18,19,20] lhi %r5,-128 lhi %r0,18 ar %r5,$bits srl %r5,6 ar %r5,%r0 larl %r1,OPENSSL_s390xcap_P llihh %r0,0x8000 srlg %r0,%r0,0(%r5) ng %r0,S390X_KM(%r1) # check availability of both km... ng %r0,S390X_KMC(%r1) # ...and kmc support for given key length jz .Lekey_internal lmg %r0,%r1,0($inp) # just copy 128 bits... stmg %r0,%r1,0($key) lhi %r0,192 cr $bits,%r0 jl 1f lg %r1,16($inp) stg %r1,16($key) je 1f lg %r1,24($inp) stg %r1,24($key) 1: st $bits,236($key) # save bits [for debugging purposes] lgr $t0,%r5 st %r5,240($key) # save km(c) code lghi %r2,0 br %r14 ___ $code.=<<___; .align 16 .Lekey_internal: stm${g} %r4,%r13,4*$SIZE_T($sp) # all non-volatile regs and $key larl $tbl,AES_Te+2048 llgf $s0,0($inp) llgf $s1,4($inp) llgf $s2,8($inp) llgf $s3,12($inp) st $s0,0($key) st $s1,4($key) st $s2,8($key) st $s3,12($key) lghi $t0,128 cr $bits,$t0 jne .Lnot128 llill $mask,0xff lghi $t3,0 # i=0 lghi $rounds,10 st $rounds,240($key) llgfr $t2,$s3 # temp=rk[3] srlg $i1,$s3,8 srlg $i2,$s3,16 srlg $i3,$s3,24 nr $t2,$mask nr $i1,$mask nr $i2,$mask .align 16 .L128_loop: la $t2,0($t2,$tbl) la $i1,0($i1,$tbl) la $i2,0($i2,$tbl) la $i3,0($i3,$tbl) icm $t2,2,0($t2) # Te4[rk[3]>>0]<<8 icm $t2,4,0($i1) # Te4[rk[3]>>8]<<16 icm $t2,8,0($i2) # Te4[rk[3]>>16]<<24 icm $t2,1,0($i3) # Te4[rk[3]>>24] x $t2,256($t3,$tbl) # rcon[i] xr $s0,$t2 # rk[4]=rk[0]^... xr $s1,$s0 # rk[5]=rk[1]^rk[4] xr $s2,$s1 # rk[6]=rk[2]^rk[5] xr $s3,$s2 # rk[7]=rk[3]^rk[6] llgfr $t2,$s3 # temp=rk[3] srlg $i1,$s3,8 srlg $i2,$s3,16 nr $t2,$mask nr $i1,$mask srlg $i3,$s3,24 nr $i2,$mask st $s0,16($key) st $s1,20($key) st $s2,24($key) st $s3,28($key) la $key,16($key) # key+=4 la $t3,4($t3) # i++ brct $rounds,.L128_loop lghi $t0,10 lghi %r2,0 lm${g} %r4,%r13,4*$SIZE_T($sp) br $ra .align 16 .Lnot128: llgf $t0,16($inp) llgf $t1,20($inp) st $t0,16($key) st $t1,20($key) lghi $t0,192 cr $bits,$t0 jne .Lnot192 llill $mask,0xff lghi $t3,0 # i=0 lghi $rounds,12 st $rounds,240($key) lghi $rounds,8 srlg $i1,$t1,8 srlg $i2,$t1,16 srlg $i3,$t1,24 nr $t1,$mask nr $i1,$mask nr $i2,$mask .align 16 .L192_loop: la $t1,0($t1,$tbl) la $i1,0($i1,$tbl) la $i2,0($i2,$tbl) la $i3,0($i3,$tbl) icm $t1,2,0($t1) # Te4[rk[5]>>0]<<8 icm $t1,4,0($i1) # Te4[rk[5]>>8]<<16 icm $t1,8,0($i2) # Te4[rk[5]>>16]<<24 icm $t1,1,0($i3) # Te4[rk[5]>>24] x $t1,256($t3,$tbl) # rcon[i] xr $s0,$t1 # rk[6]=rk[0]^... xr $s1,$s0 # rk[7]=rk[1]^rk[6] xr $s2,$s1 # rk[8]=rk[2]^rk[7] xr $s3,$s2 # rk[9]=rk[3]^rk[8] st $s0,24($key) st $s1,28($key) st $s2,32($key) st $s3,36($key) brct $rounds,.L192_continue lghi $t0,12 lghi %r2,0 lm${g} %r4,%r13,4*$SIZE_T($sp) br $ra .align 16 .L192_continue: lgr $t1,$s3 x $t1,16($key) # rk[10]=rk[4]^rk[9] st $t1,40($key) x $t1,20($key) # rk[11]=rk[5]^rk[10] st $t1,44($key) srlg $i1,$t1,8 srlg $i2,$t1,16 srlg $i3,$t1,24 nr $t1,$mask nr $i1,$mask nr $i2,$mask la $key,24($key) # key+=6 la $t3,4($t3) # i++ j .L192_loop .align 16 .Lnot192: llgf $t0,24($inp) llgf $t1,28($inp) st $t0,24($key) st $t1,28($key) llill $mask,0xff lghi $t3,0 # i=0 lghi $rounds,14 st $rounds,240($key) lghi $rounds,7 srlg $i1,$t1,8 srlg $i2,$t1,16 srlg $i3,$t1,24 nr $t1,$mask nr $i1,$mask nr $i2,$mask .align 16 .L256_loop: la $t1,0($t1,$tbl) la $i1,0($i1,$tbl) la $i2,0($i2,$tbl) la $i3,0($i3,$tbl) icm $t1,2,0($t1) # Te4[rk[7]>>0]<<8 icm $t1,4,0($i1) # Te4[rk[7]>>8]<<16 icm $t1,8,0($i2) # Te4[rk[7]>>16]<<24 icm $t1,1,0($i3) # Te4[rk[7]>>24] x $t1,256($t3,$tbl) # rcon[i] xr $s0,$t1 # rk[8]=rk[0]^... xr $s1,$s0 # rk[9]=rk[1]^rk[8] xr $s2,$s1 # rk[10]=rk[2]^rk[9] xr $s3,$s2 # rk[11]=rk[3]^rk[10] st $s0,32($key) st $s1,36($key) st $s2,40($key) st $s3,44($key) brct $rounds,.L256_continue lghi $t0,14 lghi %r2,0 lm${g} %r4,%r13,4*$SIZE_T($sp) br $ra .align 16 .L256_continue: lgr $t1,$s3 # temp=rk[11] srlg $i1,$s3,8 srlg $i2,$s3,16 srlg $i3,$s3,24 nr $t1,$mask nr $i1,$mask nr $i2,$mask la $t1,0($t1,$tbl) la $i1,0($i1,$tbl) la $i2,0($i2,$tbl) la $i3,0($i3,$tbl) llgc $t1,0($t1) # Te4[rk[11]>>0] icm $t1,2,0($i1) # Te4[rk[11]>>8]<<8 icm $t1,4,0($i2) # Te4[rk[11]>>16]<<16 icm $t1,8,0($i3) # Te4[rk[11]>>24]<<24 x $t1,16($key) # rk[12]=rk[4]^... st $t1,48($key) x $t1,20($key) # rk[13]=rk[5]^rk[12] st $t1,52($key) x $t1,24($key) # rk[14]=rk[6]^rk[13] st $t1,56($key) x $t1,28($key) # rk[15]=rk[7]^rk[14] st $t1,60($key) srlg $i1,$t1,8 srlg $i2,$t1,16 srlg $i3,$t1,24 nr $t1,$mask nr $i1,$mask nr $i2,$mask la $key,32($key) # key+=8 la $t3,4($t3) # i++ j .L256_loop .Lminus1: lghi %r2,-1 br $ra .size AES_set_encrypt_key,.-AES_set_encrypt_key # void AES_set_decrypt_key(const unsigned char *in, int bits, # AES_KEY *key) { .globl AES_set_decrypt_key .type AES_set_decrypt_key,\@function .align 16 AES_set_decrypt_key: #st${g} $key,4*$SIZE_T($sp) # I rely on AES_set_encrypt_key to st${g} $ra,14*$SIZE_T($sp) # save non-volatile registers and $key! bras $ra,_s390x_AES_set_encrypt_key #l${g} $key,4*$SIZE_T($sp) l${g} $ra,14*$SIZE_T($sp) ltgr %r2,%r2 bnzr $ra ___ $code.=<<___ if (!$softonly); #l $t0,240($key) lhi $t1,16 cr $t0,$t1 jl .Lgo oill $t0,S390X_DECRYPT # set "decrypt" bit st $t0,240($key) br $ra ___ $code.=<<___; .align 16 .Lgo: lgr $rounds,$t0 #llgf $rounds,240($key) la $i1,0($key) sllg $i2,$rounds,4 la $i2,0($i2,$key) srl $rounds,1 lghi $t1,-16 .align 16 .Linv: lmg $s0,$s1,0($i1) lmg $s2,$s3,0($i2) stmg $s0,$s1,0($i2) stmg $s2,$s3,0($i1) la $i1,16($i1) la $i2,0($t1,$i2) brct $rounds,.Linv ___ $mask80=$i1; $mask1b=$i2; $maskfe=$i3; $code.=<<___; llgf $rounds,240($key) aghi $rounds,-1 sll $rounds,2 # (rounds-1)*4 llilh $mask80,0x8080 llilh $mask1b,0x1b1b llilh $maskfe,0xfefe oill $mask80,0x8080 oill $mask1b,0x1b1b oill $maskfe,0xfefe .align 16 .Lmix: l $s0,16($key) # tp1 lr $s1,$s0 ngr $s1,$mask80 srlg $t1,$s1,7 slr $s1,$t1 nr $s1,$mask1b sllg $t1,$s0,1 nr $t1,$maskfe xr $s1,$t1 # tp2 lr $s2,$s1 ngr $s2,$mask80 srlg $t1,$s2,7 slr $s2,$t1 nr $s2,$mask1b sllg $t1,$s1,1 nr $t1,$maskfe xr $s2,$t1 # tp4 lr $s3,$s2 ngr $s3,$mask80 srlg $t1,$s3,7 slr $s3,$t1 nr $s3,$mask1b sllg $t1,$s2,1 nr $t1,$maskfe xr $s3,$t1 # tp8 xr $s1,$s0 # tp2^tp1 xr $s2,$s0 # tp4^tp1 rll $s0,$s0,24 # = ROTATE(tp1,8) xr $s2,$s3 # ^=tp8 xr $s0,$s1 # ^=tp2^tp1 xr $s1,$s3 # tp2^tp1^tp8 xr $s0,$s2 # ^=tp4^tp1^tp8 rll $s1,$s1,8 rll $s2,$s2,16 xr $s0,$s1 # ^= ROTATE(tp8^tp2^tp1,24) rll $s3,$s3,24 xr $s0,$s2 # ^= ROTATE(tp8^tp4^tp1,16) xr $s0,$s3 # ^= ROTATE(tp8,8) st $s0,16($key) la $key,4($key) brct $rounds,.Lmix lm${g} %r6,%r13,6*$SIZE_T($sp)# as was saved by AES_set_encrypt_key! lghi %r2,0 br $ra .size AES_set_decrypt_key,.-AES_set_decrypt_key ___ ######################################################################## # void AES_cbc_encrypt(const unsigned char *in, unsigned char *out, # size_t length, const AES_KEY *key, # unsigned char *ivec, const int enc) { my $inp="%r2"; my $out="%r4"; # length and out are swapped my $len="%r3"; my $key="%r5"; my $ivp="%r6"; $code.=<<___; .globl AES_cbc_encrypt .type AES_cbc_encrypt,\@function .align 16 AES_cbc_encrypt: xgr %r3,%r4 # flip %r3 and %r4, out and len xgr %r4,%r3 xgr %r3,%r4 ___ $code.=<<___ if (!$softonly); lhi %r0,16 cl %r0,240($key) jh .Lcbc_software lg %r0,0($ivp) # copy ivec lg %r1,8($ivp) stmg %r0,%r1,16($sp) lmg %r0,%r1,0($key) # copy key, cover 256 bit stmg %r0,%r1,32($sp) lmg %r0,%r1,16($key) stmg %r0,%r1,48($sp) l %r0,240($key) # load kmc code lghi $key,15 # res=len%16, len-=res; ngr $key,$len sl${g}r $len,$key la %r1,16($sp) # parameter block - ivec || key jz .Lkmc_truncated .long 0xb92f0042 # kmc %r4,%r2 brc 1,.-4 # pay attention to "partial completion" ltr $key,$key jnz .Lkmc_truncated .Lkmc_done: lmg %r0,%r1,16($sp) # copy ivec to caller stg %r0,0($ivp) stg %r1,8($ivp) br $ra .align 16 .Lkmc_truncated: ahi $key,-1 # it's the way it's encoded in mvc tmll %r0,S390X_DECRYPT jnz .Lkmc_truncated_dec lghi %r1,0 stg %r1,16*$SIZE_T($sp) stg %r1,16*$SIZE_T+8($sp) bras %r1,1f mvc 16*$SIZE_T(1,$sp),0($inp) 1: ex $key,0(%r1) la %r1,16($sp) # restore parameter block la $inp,16*$SIZE_T($sp) lghi $len,16 .long 0xb92f0042 # kmc %r4,%r2 j .Lkmc_done .align 16 .Lkmc_truncated_dec: st${g} $out,4*$SIZE_T($sp) la $out,16*$SIZE_T($sp) lghi $len,16 .long 0xb92f0042 # kmc %r4,%r2 l${g} $out,4*$SIZE_T($sp) bras %r1,2f mvc 0(1,$out),16*$SIZE_T($sp) 2: ex $key,0(%r1) j .Lkmc_done .align 16 .Lcbc_software: ___ $code.=<<___; stm${g} $key,$ra,5*$SIZE_T($sp) lhi %r0,0 cl %r0,`$stdframe+$SIZE_T-4`($sp) je .Lcbc_decrypt larl $tbl,AES_Te llgf $s0,0($ivp) llgf $s1,4($ivp) llgf $s2,8($ivp) llgf $s3,12($ivp) lghi $t0,16 sl${g}r $len,$t0 brc 4,.Lcbc_enc_tail # if borrow .Lcbc_enc_loop: stm${g} $inp,$out,2*$SIZE_T($sp) x $s0,0($inp) x $s1,4($inp) x $s2,8($inp) x $s3,12($inp) lgr %r4,$key bras $ra,_s390x_AES_encrypt lm${g} $inp,$key,2*$SIZE_T($sp) st $s0,0($out) st $s1,4($out) st $s2,8($out) st $s3,12($out) la $inp,16($inp) la $out,16($out) lghi $t0,16 lt${g}r $len,$len jz .Lcbc_enc_done sl${g}r $len,$t0 brc 4,.Lcbc_enc_tail # if borrow j .Lcbc_enc_loop .align 16 .Lcbc_enc_done: l${g} $ivp,6*$SIZE_T($sp) st $s0,0($ivp) st $s1,4($ivp) st $s2,8($ivp) st $s3,12($ivp) lm${g} %r7,$ra,7*$SIZE_T($sp) br $ra .align 16 .Lcbc_enc_tail: aghi $len,15 lghi $t0,0 stg $t0,16*$SIZE_T($sp) stg $t0,16*$SIZE_T+8($sp) bras $t1,3f mvc 16*$SIZE_T(1,$sp),0($inp) 3: ex $len,0($t1) lghi $len,0 la $inp,16*$SIZE_T($sp) j .Lcbc_enc_loop .align 16 .Lcbc_decrypt: larl $tbl,AES_Td lg $t0,0($ivp) lg $t1,8($ivp) stmg $t0,$t1,16*$SIZE_T($sp) .Lcbc_dec_loop: stm${g} $inp,$out,2*$SIZE_T($sp) llgf $s0,0($inp) llgf $s1,4($inp) llgf $s2,8($inp) llgf $s3,12($inp) lgr %r4,$key bras $ra,_s390x_AES_decrypt lm${g} $inp,$key,2*$SIZE_T($sp) sllg $s0,$s0,32 sllg $s2,$s2,32 lr $s0,$s1 lr $s2,$s3 lg $t0,0($inp) lg $t1,8($inp) xg $s0,16*$SIZE_T($sp) xg $s2,16*$SIZE_T+8($sp) lghi $s1,16 sl${g}r $len,$s1 brc 4,.Lcbc_dec_tail # if borrow brc 2,.Lcbc_dec_done # if zero stg $s0,0($out) stg $s2,8($out) stmg $t0,$t1,16*$SIZE_T($sp) la $inp,16($inp) la $out,16($out) j .Lcbc_dec_loop .Lcbc_dec_done: stg $s0,0($out) stg $s2,8($out) .Lcbc_dec_exit: lm${g} %r6,$ra,6*$SIZE_T($sp) stmg $t0,$t1,0($ivp) br $ra .align 16 .Lcbc_dec_tail: aghi $len,15 stg $s0,16*$SIZE_T($sp) stg $s2,16*$SIZE_T+8($sp) bras $s1,4f mvc 0(1,$out),16*$SIZE_T($sp) 4: ex $len,0($s1) j .Lcbc_dec_exit .size AES_cbc_encrypt,.-AES_cbc_encrypt ___ } ######################################################################## # void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, # size_t blocks, const AES_KEY *key, # const unsigned char *ivec) { my $inp="%r2"; my $out="%r4"; # blocks and out are swapped my $len="%r3"; my $key="%r5"; my $iv0="%r5"; my $ivp="%r6"; my $fp ="%r7"; $code.=<<___; .globl AES_ctr32_encrypt .type AES_ctr32_encrypt,\@function .align 16 AES_ctr32_encrypt: xgr %r3,%r4 # flip %r3 and %r4, $out and $len xgr %r4,%r3 xgr %r3,%r4 llgfr $len,$len # safe in ctr32 subroutine even in 64-bit case ___ $code.=<<___ if (!$softonly); l %r0,240($key) lhi %r1,16 clr %r0,%r1 jl .Lctr32_software st${g} $s2,10*$SIZE_T($sp) st${g} $s3,11*$SIZE_T($sp) clr $len,%r1 # does work even in 64-bit mode jle .Lctr32_nokma # kma is slower for <= 16 blocks larl %r1,OPENSSL_s390xcap_P lr $s2,%r0 llihh $s3,0x8000 srlg $s3,$s3,0($s2) ng $s3,S390X_KMA(%r1) # check kma capability vector jz .Lctr32_nokma l${g}hi %r1,-$stdframe-112 l${g}r $s3,$sp la $sp,0(%r1,$sp) # prepare parameter block lhi %r1,0x0600 sllg $len,$len,4 or %r0,%r1 # set HS and LAAD flags st${g} $s3,0($sp) # backchain la %r1,$stdframe($sp) lmg $s2,$s3,0($key) # copy key stg $s2,$stdframe+80($sp) stg $s3,$stdframe+88($sp) lmg $s2,$s3,16($key) stg $s2,$stdframe+96($sp) stg $s3,$stdframe+104($sp) lmg $s2,$s3,0($ivp) # copy iv stg $s2,$stdframe+64($sp) ahi $s3,-1 # kma requires counter-1 stg $s3,$stdframe+72($sp) st $s3,$stdframe+12($sp) # copy counter lghi $s2,0 # no AAD lghi $s3,0 .long 0xb929a042 # kma $out,$s2,$inp brc 1,.-4 # pay attention to "partial completion" stg %r0,$stdframe+80($sp) # wipe key stg %r0,$stdframe+88($sp) stg %r0,$stdframe+96($sp) stg %r0,$stdframe+104($sp) la $sp,$stdframe+112($sp) lm${g} $s2,$s3,10*$SIZE_T($sp) br $ra .align 16 .Lctr32_nokma: stm${g} %r6,$s1,6*$SIZE_T($sp) slgr $out,$inp la %r1,0($key) # %r1 is permanent copy of $key lg $iv0,0($ivp) # load ivec lg $ivp,8($ivp) # prepare and allocate stack frame at the top of 4K page # with 1K reserved for eventual signal handling lghi $s0,-1024-256-16# guarantee at least 256-bytes buffer lghi $s1,-4096 algr $s0,$sp lgr $fp,$sp ngr $s0,$s1 # align at page boundary slgr $fp,$s0 # total buffer size lgr $s2,$sp lghi $s1,1024+16 # sl[g]fi is extended-immediate facility slgr $fp,$s1 # deduct reservation to get usable buffer size # buffer size is at lest 256 and at most 3072+256-16 la $sp,1024($s0) # alloca srlg $fp,$fp,4 # convert bytes to blocks, minimum 16 st${g} $s2,0($sp) # back-chain st${g} $fp,$SIZE_T($sp) slgr $len,$fp brc 1,.Lctr32_hw_switch # not zero, no borrow algr $fp,$len # input is shorter than allocated buffer lghi $len,0 st${g} $fp,$SIZE_T($sp) .Lctr32_hw_switch: ___ $code.=<<___ if (!$softonly && 0);# kmctr code was measured to be ~12% slower llgfr $s0,%r0 lgr $s1,%r1 larl %r1,OPENSSL_s390xcap_P llihh %r0,0x8000 # check if kmctr supports the function code srlg %r0,%r0,0($s0) ng %r0,S390X_KMCTR(%r1) # check kmctr capability vector lgr %r0,$s0 lgr %r1,$s1 jz .Lctr32_km_loop ####### kmctr code algr $out,$inp # restore $out lgr $s1,$len # $s1 undertakes $len j .Lctr32_kmctr_loop .align 16 .Lctr32_kmctr_loop: la $s2,16($sp) lgr $s3,$fp .Lctr32_kmctr_prepare: stg $iv0,0($s2) stg $ivp,8($s2) la $s2,16($s2) ahi $ivp,1 # 32-bit increment, preserves upper half brct $s3,.Lctr32_kmctr_prepare #la $inp,0($inp) # inp sllg $len,$fp,4 # len #la $out,0($out) # out la $s2,16($sp) # iv .long 0xb92da042 # kmctr $out,$s2,$inp brc 1,.-4 # pay attention to "partial completion" slgr $s1,$fp brc 1,.Lctr32_kmctr_loop # not zero, no borrow algr $fp,$s1 lghi $s1,0 brc 4+1,.Lctr32_kmctr_loop # not zero l${g} $sp,0($sp) lm${g} %r6,$s3,6*$SIZE_T($sp) br $ra .align 16 ___ $code.=<<___ if (!$softonly); .Lctr32_km_loop: la $s2,16($sp) lgr $s3,$fp .Lctr32_km_prepare: stg $iv0,0($s2) stg $ivp,8($s2) la $s2,16($s2) ahi $ivp,1 # 32-bit increment, preserves upper half brct $s3,.Lctr32_km_prepare la $s0,16($sp) # inp sllg $s1,$fp,4 # len la $s2,16($sp) # out .long 0xb92e00a8 # km %r10,%r8 brc 1,.-4 # pay attention to "partial completion" la $s2,16($sp) lgr $s3,$fp slgr $s2,$inp .Lctr32_km_xor: lg $s0,0($inp) lg $s1,8($inp) xg $s0,0($s2,$inp) xg $s1,8($s2,$inp) stg $s0,0($out,$inp) stg $s1,8($out,$inp) la $inp,16($inp) brct $s3,.Lctr32_km_xor slgr $len,$fp brc 1,.Lctr32_km_loop # not zero, no borrow algr $fp,$len lghi $len,0 brc 4+1,.Lctr32_km_loop # not zero l${g} $s0,0($sp) l${g} $s1,$SIZE_T($sp) la $s2,16($sp) .Lctr32_km_zap: stg $s0,0($s2) stg $s0,8($s2) la $s2,16($s2) brct $s1,.Lctr32_km_zap la $sp,0($s0) lm${g} %r6,$s3,6*$SIZE_T($sp) br $ra .align 16 .Lctr32_software: ___ $code.=<<___; stm${g} $key,$ra,5*$SIZE_T($sp) sl${g}r $inp,$out larl $tbl,AES_Te llgf $t1,12($ivp) .Lctr32_loop: stm${g} $inp,$out,2*$SIZE_T($sp) llgf $s0,0($ivp) llgf $s1,4($ivp) llgf $s2,8($ivp) lgr $s3,$t1 st $t1,16*$SIZE_T($sp) lgr %r4,$key bras $ra,_s390x_AES_encrypt lm${g} $inp,$ivp,2*$SIZE_T($sp) llgf $t1,16*$SIZE_T($sp) x $s0,0($inp,$out) x $s1,4($inp,$out) x $s2,8($inp,$out) x $s3,12($inp,$out) stm $s0,$s3,0($out) la $out,16($out) ahi $t1,1 # 32-bit increment brct $len,.Lctr32_loop lm${g} %r6,$ra,6*$SIZE_T($sp) br $ra .size AES_ctr32_encrypt,.-AES_ctr32_encrypt ___ } ######################################################################## # void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, # size_t len, const AES_KEY *key1, const AES_KEY *key2, # const unsigned char iv[16]); # { my $inp="%r2"; my $out="%r4"; # len and out are swapped my $len="%r3"; my $key1="%r5"; # $i1 my $key2="%r6"; # $i2 my $fp="%r7"; # $i3 my $tweak=16*$SIZE_T+16; # or $stdframe-16, bottom of the frame... $code.=<<___; .type _s390x_xts_km,\@function .align 16 _s390x_xts_km: ___ $code.=<<___ if(1); llgfr $s0,%r0 # put aside the function code lghi $s1,0x7f nr $s1,%r0 larl %r1,OPENSSL_s390xcap_P llihh %r0,0x8000 srlg %r0,%r0,32($s1) # check for 32+function code ng %r0,S390X_KM(%r1) # check km capability vector lgr %r0,$s0 # restore the function code la %r1,0($key1) # restore $key1 jz .Lxts_km_vanilla lmg $i2,$i3,$tweak($sp) # put aside the tweak value algr $out,$inp oill %r0,32 # switch to xts function code aghi $s1,-18 # sllg $s1,$s1,3 # (function code - 18)*8, 0 or 16 la %r1,$tweak-16($sp) slgr %r1,$s1 # parameter block position lmg $s0,$s3,0($key1) # load 256 bits of key material, stmg $s0,$s3,0(%r1) # and copy it to parameter block. # yes, it contains junk and overlaps # with the tweak in 128-bit case. # it's done to avoid conditional # branch. stmg $i2,$i3,$tweak($sp) # "re-seat" the tweak value .long 0xb92e0042 # km %r4,%r2 brc 1,.-4 # pay attention to "partial completion" lrvg $s0,$tweak+0($sp) # load the last tweak lrvg $s1,$tweak+8($sp) stmg %r0,%r3,$tweak-32($sp) # wipe copy of the key nill %r0,0xffdf # switch back to original function code la %r1,0($key1) # restore pointer to $key1 slgr $out,$inp llgc $len,2*$SIZE_T-1($sp) nill $len,0x0f # $len%=16 br $ra .align 16 .Lxts_km_vanilla: ___ $code.=<<___; # prepare and allocate stack frame at the top of 4K page # with 1K reserved for eventual signal handling lghi $s0,-1024-256-16# guarantee at least 256-bytes buffer lghi $s1,-4096 algr $s0,$sp lgr $fp,$sp ngr $s0,$s1 # align at page boundary slgr $fp,$s0 # total buffer size lgr $s2,$sp lghi $s1,1024+16 # sl[g]fi is extended-immediate facility slgr $fp,$s1 # deduct reservation to get usable buffer size # buffer size is at lest 256 and at most 3072+256-16 la $sp,1024($s0) # alloca nill $fp,0xfff0 # round to 16*n st${g} $s2,0($sp) # back-chain nill $len,0xfff0 # redundant st${g} $fp,$SIZE_T($sp) slgr $len,$fp brc 1,.Lxts_km_go # not zero, no borrow algr $fp,$len # input is shorter than allocated buffer lghi $len,0 st${g} $fp,$SIZE_T($sp) .Lxts_km_go: lrvg $s0,$tweak+0($s2) # load the tweak value in little-endian lrvg $s1,$tweak+8($s2) la $s2,16($sp) # vector of ascending tweak values slgr $s2,$inp srlg $s3,$fp,4 j .Lxts_km_start .Lxts_km_loop: la $s2,16($sp) slgr $s2,$inp srlg $s3,$fp,4 .Lxts_km_prepare: lghi $i1,0x87 srag $i2,$s1,63 # broadcast upper bit ngr $i1,$i2 # rem algr $s0,$s0 alcgr $s1,$s1 xgr $s0,$i1 .Lxts_km_start: lrvgr $i1,$s0 # flip byte order lrvgr $i2,$s1 stg $i1,0($s2,$inp) stg $i2,8($s2,$inp) xg $i1,0($inp) xg $i2,8($inp) stg $i1,0($out,$inp) stg $i2,8($out,$inp) la $inp,16($inp) brct $s3,.Lxts_km_prepare slgr $inp,$fp # rewind $inp la $s2,0($out,$inp) lgr $s3,$fp .long 0xb92e00aa # km $s2,$s2 brc 1,.-4 # pay attention to "partial completion" la $s2,16($sp) slgr $s2,$inp srlg $s3,$fp,4 .Lxts_km_xor: lg $i1,0($out,$inp) lg $i2,8($out,$inp) xg $i1,0($s2,$inp) xg $i2,8($s2,$inp) stg $i1,0($out,$inp) stg $i2,8($out,$inp) la $inp,16($inp) brct $s3,.Lxts_km_xor slgr $len,$fp brc 1,.Lxts_km_loop # not zero, no borrow algr $fp,$len lghi $len,0 brc 4+1,.Lxts_km_loop # not zero l${g} $i1,0($sp) # back-chain llgf $fp,`2*$SIZE_T-4`($sp) # bytes used la $i2,16($sp) srlg $fp,$fp,4 .Lxts_km_zap: stg $i1,0($i2) stg $i1,8($i2) la $i2,16($i2) brct $fp,.Lxts_km_zap la $sp,0($i1) llgc $len,2*$SIZE_T-1($i1) nill $len,0x0f # $len%=16 bzr $ra # generate one more tweak... lghi $i1,0x87 srag $i2,$s1,63 # broadcast upper bit ngr $i1,$i2 # rem algr $s0,$s0 alcgr $s1,$s1 xgr $s0,$i1 ltr $len,$len # clear zero flag br $ra .size _s390x_xts_km,.-_s390x_xts_km .globl AES_xts_encrypt .type AES_xts_encrypt,\@function .align 16 AES_xts_encrypt: xgr %r3,%r4 # flip %r3 and %r4, $out and $len xgr %r4,%r3 xgr %r3,%r4 ___ $code.=<<___ if ($SIZE_T==4); llgfr $len,$len ___ $code.=<<___; st${g} $len,1*$SIZE_T($sp) # save copy of $len srag $len,$len,4 # formally wrong, because it expands # sign byte, but who can afford asking # to process more than 2^63-1 bytes? # I use it, because it sets condition # code... bcr 8,$ra # abort if zero (i.e. less than 16) ___ $code.=<<___ if (!$softonly); llgf %r0,240($key2) lhi %r1,16 clr %r0,%r1 jl .Lxts_enc_software st${g} $ra,5*$SIZE_T($sp) stm${g} %r6,$s3,6*$SIZE_T($sp) sllg $len,$len,4 # $len&=~15 slgr $out,$inp # generate the tweak value l${g} $s3,$stdframe($sp) # pointer to iv la $s2,$tweak($sp) lmg $s0,$s1,0($s3) lghi $s3,16 stmg $s0,$s1,0($s2) la %r1,0($key2) # $key2 is not needed anymore .long 0xb92e00aa # km $s2,$s2, generate the tweak brc 1,.-4 # can this happen? l %r0,240($key1) la %r1,0($key1) # $key1 is not needed anymore bras $ra,_s390x_xts_km jz .Lxts_enc_km_done aghi $inp,-16 # take one step back la $i3,0($out,$inp) # put aside real $out .Lxts_enc_km_steal: llgc $i1,16($inp) llgc $i2,0($out,$inp) stc $i1,0($out,$inp) stc $i2,16($out,$inp) la $inp,1($inp) brct $len,.Lxts_enc_km_steal la $s2,0($i3) lghi $s3,16 lrvgr $i1,$s0 # flip byte order lrvgr $i2,$s1 xg $i1,0($s2) xg $i2,8($s2) stg $i1,0($s2) stg $i2,8($s2) .long 0xb92e00aa # km $s2,$s2 brc 1,.-4 # can this happen? lrvgr $i1,$s0 # flip byte order lrvgr $i2,$s1 xg $i1,0($i3) xg $i2,8($i3) stg $i1,0($i3) stg $i2,8($i3) .Lxts_enc_km_done: stg $sp,$tweak+0($sp) # wipe tweak stg $sp,$tweak+8($sp) l${g} $ra,5*$SIZE_T($sp) lm${g} %r6,$s3,6*$SIZE_T($sp) br $ra .align 16 .Lxts_enc_software: ___ $code.=<<___; stm${g} %r6,$ra,6*$SIZE_T($sp) slgr $out,$inp l${g} $s3,$stdframe($sp) # ivp llgf $s0,0($s3) # load iv llgf $s1,4($s3) llgf $s2,8($s3) llgf $s3,12($s3) stm${g} %r2,%r5,2*$SIZE_T($sp) la $key,0($key2) larl $tbl,AES_Te bras $ra,_s390x_AES_encrypt # generate the tweak lm${g} %r2,%r5,2*$SIZE_T($sp) stm $s0,$s3,$tweak($sp) # save the tweak j .Lxts_enc_enter .align 16 .Lxts_enc_loop: lrvg $s1,$tweak+0($sp) # load the tweak in little-endian lrvg $s3,$tweak+8($sp) lghi %r1,0x87 srag %r0,$s3,63 # broadcast upper bit ngr %r1,%r0 # rem algr $s1,$s1 alcgr $s3,$s3 xgr $s1,%r1 lrvgr $s1,$s1 # flip byte order lrvgr $s3,$s3 srlg $s0,$s1,32 # smash the tweak to 4x32-bits stg $s1,$tweak+0($sp) # save the tweak llgfr $s1,$s1 srlg $s2,$s3,32 stg $s3,$tweak+8($sp) llgfr $s3,$s3 la $inp,16($inp) # $inp+=16 .Lxts_enc_enter: x $s0,0($inp) # ^=*($inp) x $s1,4($inp) x $s2,8($inp) x $s3,12($inp) stm${g} %r2,%r3,2*$SIZE_T($sp) # only two registers are changing la $key,0($key1) bras $ra,_s390x_AES_encrypt lm${g} %r2,%r5,2*$SIZE_T($sp) x $s0,$tweak+0($sp) # ^=tweak x $s1,$tweak+4($sp) x $s2,$tweak+8($sp) x $s3,$tweak+12($sp) st $s0,0($out,$inp) st $s1,4($out,$inp) st $s2,8($out,$inp) st $s3,12($out,$inp) brct${g} $len,.Lxts_enc_loop llgc $len,`2*$SIZE_T-1`($sp) nill $len,0x0f # $len%16 jz .Lxts_enc_done la $i3,0($inp,$out) # put aside real $out .Lxts_enc_steal: llgc %r0,16($inp) llgc %r1,0($out,$inp) stc %r0,0($out,$inp) stc %r1,16($out,$inp) la $inp,1($inp) brct $len,.Lxts_enc_steal la $out,0($i3) # restore real $out # generate last tweak... lrvg $s1,$tweak+0($sp) # load the tweak in little-endian lrvg $s3,$tweak+8($sp) lghi %r1,0x87 srag %r0,$s3,63 # broadcast upper bit ngr %r1,%r0 # rem algr $s1,$s1 alcgr $s3,$s3 xgr $s1,%r1 lrvgr $s1,$s1 # flip byte order lrvgr $s3,$s3 srlg $s0,$s1,32 # smash the tweak to 4x32-bits stg $s1,$tweak+0($sp) # save the tweak llgfr $s1,$s1 srlg $s2,$s3,32 stg $s3,$tweak+8($sp) llgfr $s3,$s3 x $s0,0($out) # ^=*(inp)|stolen cipther-text x $s1,4($out) x $s2,8($out) x $s3,12($out) st${g} $out,4*$SIZE_T($sp) la $key,0($key1) bras $ra,_s390x_AES_encrypt l${g} $out,4*$SIZE_T($sp) x $s0,`$tweak+0`($sp) # ^=tweak x $s1,`$tweak+4`($sp) x $s2,`$tweak+8`($sp) x $s3,`$tweak+12`($sp) st $s0,0($out) st $s1,4($out) st $s2,8($out) st $s3,12($out) .Lxts_enc_done: stg $sp,$tweak+0($sp) # wipe tweak stg $sp,$tweak+8($sp) lm${g} %r6,$ra,6*$SIZE_T($sp) br $ra .size AES_xts_encrypt,.-AES_xts_encrypt ___ # void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, # size_t len, const AES_KEY *key1, const AES_KEY *key2, # const unsigned char iv[16]); # $code.=<<___; .globl AES_xts_decrypt .type AES_xts_decrypt,\@function .align 16 AES_xts_decrypt: xgr %r3,%r4 # flip %r3 and %r4, $out and $len xgr %r4,%r3 xgr %r3,%r4 ___ $code.=<<___ if ($SIZE_T==4); llgfr $len,$len ___ $code.=<<___; st${g} $len,1*$SIZE_T($sp) # save copy of $len aghi $len,-16 bcr 4,$ra # abort if less than zero. formally # wrong, because $len is unsigned, # but who can afford asking to # process more than 2^63-1 bytes? tmll $len,0x0f jnz .Lxts_dec_proceed aghi $len,16 .Lxts_dec_proceed: ___ $code.=<<___ if (!$softonly); llgf %r0,240($key2) lhi %r1,16 clr %r0,%r1 jl .Lxts_dec_software st${g} $ra,5*$SIZE_T($sp) stm${g} %r6,$s3,6*$SIZE_T($sp) nill $len,0xfff0 # $len&=~15 slgr $out,$inp # generate the tweak value l${g} $s3,$stdframe($sp) # pointer to iv la $s2,$tweak($sp) lmg $s0,$s1,0($s3) lghi $s3,16 stmg $s0,$s1,0($s2) la %r1,0($key2) # $key2 is not needed past this point .long 0xb92e00aa # km $s2,$s2, generate the tweak brc 1,.-4 # can this happen? l %r0,240($key1) la %r1,0($key1) # $key1 is not needed anymore ltgr $len,$len jz .Lxts_dec_km_short bras $ra,_s390x_xts_km jz .Lxts_dec_km_done lrvgr $s2,$s0 # make copy in reverse byte order lrvgr $s3,$s1 j .Lxts_dec_km_2ndtweak .Lxts_dec_km_short: llgc $len,`2*$SIZE_T-1`($sp) nill $len,0x0f # $len%=16 lrvg $s0,$tweak+0($sp) # load the tweak lrvg $s1,$tweak+8($sp) lrvgr $s2,$s0 # make copy in reverse byte order lrvgr $s3,$s1 .Lxts_dec_km_2ndtweak: lghi $i1,0x87 srag $i2,$s1,63 # broadcast upper bit ngr $i1,$i2 # rem algr $s0,$s0 alcgr $s1,$s1 xgr $s0,$i1 lrvgr $i1,$s0 # flip byte order lrvgr $i2,$s1 xg $i1,0($inp) xg $i2,8($inp) stg $i1,0($out,$inp) stg $i2,8($out,$inp) la $i2,0($out,$inp) lghi $i3,16 .long 0xb92e0066 # km $i2,$i2 brc 1,.-4 # can this happen? lrvgr $i1,$s0 lrvgr $i2,$s1 xg $i1,0($out,$inp) xg $i2,8($out,$inp) stg $i1,0($out,$inp) stg $i2,8($out,$inp) la $i3,0($out,$inp) # put aside real $out .Lxts_dec_km_steal: llgc $i1,16($inp) llgc $i2,0($out,$inp) stc $i1,0($out,$inp) stc $i2,16($out,$inp) la $inp,1($inp) brct $len,.Lxts_dec_km_steal lgr $s0,$s2 lgr $s1,$s3 xg $s0,0($i3) xg $s1,8($i3) stg $s0,0($i3) stg $s1,8($i3) la $s0,0($i3) lghi $s1,16 .long 0xb92e0088 # km $s0,$s0 brc 1,.-4 # can this happen? xg $s2,0($i3) xg $s3,8($i3) stg $s2,0($i3) stg $s3,8($i3) .Lxts_dec_km_done: stg $sp,$tweak+0($sp) # wipe tweak stg $sp,$tweak+8($sp) l${g} $ra,5*$SIZE_T($sp) lm${g} %r6,$s3,6*$SIZE_T($sp) br $ra .align 16 .Lxts_dec_software: ___ $code.=<<___; stm${g} %r6,$ra,6*$SIZE_T($sp) srlg $len,$len,4 slgr $out,$inp l${g} $s3,$stdframe($sp) # ivp llgf $s0,0($s3) # load iv llgf $s1,4($s3) llgf $s2,8($s3) llgf $s3,12($s3) stm${g} %r2,%r5,2*$SIZE_T($sp) la $key,0($key2) larl $tbl,AES_Te bras $ra,_s390x_AES_encrypt # generate the tweak lm${g} %r2,%r5,2*$SIZE_T($sp) larl $tbl,AES_Td lt${g}r $len,$len stm $s0,$s3,$tweak($sp) # save the tweak jz .Lxts_dec_short j .Lxts_dec_enter .align 16 .Lxts_dec_loop: lrvg $s1,$tweak+0($sp) # load the tweak in little-endian lrvg $s3,$tweak+8($sp) lghi %r1,0x87 srag %r0,$s3,63 # broadcast upper bit ngr %r1,%r0 # rem algr $s1,$s1 alcgr $s3,$s3 xgr $s1,%r1 lrvgr $s1,$s1 # flip byte order lrvgr $s3,$s3 srlg $s0,$s1,32 # smash the tweak to 4x32-bits stg $s1,$tweak+0($sp) # save the tweak llgfr $s1,$s1 srlg $s2,$s3,32 stg $s3,$tweak+8($sp) llgfr $s3,$s3 .Lxts_dec_enter: x $s0,0($inp) # tweak^=*(inp) x $s1,4($inp) x $s2,8($inp) x $s3,12($inp) stm${g} %r2,%r3,2*$SIZE_T($sp) # only two registers are changing la $key,0($key1) bras $ra,_s390x_AES_decrypt lm${g} %r2,%r5,2*$SIZE_T($sp) x $s0,$tweak+0($sp) # ^=tweak x $s1,$tweak+4($sp) x $s2,$tweak+8($sp) x $s3,$tweak+12($sp) st $s0,0($out,$inp) st $s1,4($out,$inp) st $s2,8($out,$inp) st $s3,12($out,$inp) la $inp,16($inp) brct${g} $len,.Lxts_dec_loop llgc $len,`2*$SIZE_T-1`($sp) nill $len,0x0f # $len%16 jz .Lxts_dec_done # generate pair of tweaks... lrvg $s1,$tweak+0($sp) # load the tweak in little-endian lrvg $s3,$tweak+8($sp) lghi %r1,0x87 srag %r0,$s3,63 # broadcast upper bit ngr %r1,%r0 # rem algr $s1,$s1 alcgr $s3,$s3 xgr $s1,%r1 lrvgr $i2,$s1 # flip byte order lrvgr $i3,$s3 stmg $i2,$i3,$tweak($sp) # save the 1st tweak j .Lxts_dec_2ndtweak .align 16 .Lxts_dec_short: llgc $len,`2*$SIZE_T-1`($sp) nill $len,0x0f # $len%16 lrvg $s1,$tweak+0($sp) # load the tweak in little-endian lrvg $s3,$tweak+8($sp) .Lxts_dec_2ndtweak: lghi %r1,0x87 srag %r0,$s3,63 # broadcast upper bit ngr %r1,%r0 # rem algr $s1,$s1 alcgr $s3,$s3 xgr $s1,%r1 lrvgr $s1,$s1 # flip byte order lrvgr $s3,$s3 srlg $s0,$s1,32 # smash the tweak to 4x32-bits stg $s1,$tweak-16+0($sp) # save the 2nd tweak llgfr $s1,$s1 srlg $s2,$s3,32 stg $s3,$tweak-16+8($sp) llgfr $s3,$s3 x $s0,0($inp) # tweak_the_2nd^=*(inp) x $s1,4($inp) x $s2,8($inp) x $s3,12($inp) stm${g} %r2,%r3,2*$SIZE_T($sp) la $key,0($key1) bras $ra,_s390x_AES_decrypt lm${g} %r2,%r5,2*$SIZE_T($sp) x $s0,$tweak-16+0($sp) # ^=tweak_the_2nd x $s1,$tweak-16+4($sp) x $s2,$tweak-16+8($sp) x $s3,$tweak-16+12($sp) st $s0,0($out,$inp) st $s1,4($out,$inp) st $s2,8($out,$inp) st $s3,12($out,$inp) la $i3,0($out,$inp) # put aside real $out .Lxts_dec_steal: llgc %r0,16($inp) llgc %r1,0($out,$inp) stc %r0,0($out,$inp) stc %r1,16($out,$inp) la $inp,1($inp) brct $len,.Lxts_dec_steal la $out,0($i3) # restore real $out lm $s0,$s3,$tweak($sp) # load the 1st tweak x $s0,0($out) # tweak^=*(inp)|stolen cipher-text x $s1,4($out) x $s2,8($out) x $s3,12($out) st${g} $out,4*$SIZE_T($sp) la $key,0($key1) bras $ra,_s390x_AES_decrypt l${g} $out,4*$SIZE_T($sp) x $s0,$tweak+0($sp) # ^=tweak x $s1,$tweak+4($sp) x $s2,$tweak+8($sp) x $s3,$tweak+12($sp) st $s0,0($out) st $s1,4($out) st $s2,8($out) st $s3,12($out) stg $sp,$tweak-16+0($sp) # wipe 2nd tweak stg $sp,$tweak-16+8($sp) .Lxts_dec_done: stg $sp,$tweak+0($sp) # wipe tweak stg $sp,$tweak+8($sp) lm${g} %r6,$ra,6*$SIZE_T($sp) br $ra .size AES_xts_decrypt,.-AES_xts_decrypt ___ } $code.=<<___; .string "AES for s390x, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; # force flush openssl-1.1.1f/crypto/aes/asm/aes-sparcv9.pl000077500000000000000000000731731364063235100207260ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. Rights for redistribution and usage in source and binary # forms are granted according to the OpenSSL license. # ==================================================================== # # Version 1.1 # # The major reason for undertaken effort was to mitigate the hazard of # cache-timing attack. This is [currently and initially!] addressed in # two ways. 1. S-boxes are compressed from 5KB to 2KB+256B size each. # 2. References to them are scheduled for L2 cache latency, meaning # that the tables don't have to reside in L1 cache. Once again, this # is an initial draft and one should expect more countermeasures to # be implemented... # # Version 1.1 prefetches T[ed]4 in order to mitigate attack on last # round. # # Even though performance was not the primary goal [on the contrary, # extra shifts "induced" by compressed S-box and longer loop epilogue # "induced" by scheduling for L2 have negative effect on performance], # the code turned out to run in ~23 cycles per processed byte en-/ # decrypted with 128-bit key. This is pretty good result for code # with mentioned qualities and UltraSPARC core. Compared to Sun C # generated code my encrypt procedure runs just few percents faster, # while decrypt one - whole 50% faster [yes, Sun C failed to generate # optimal decrypt procedure]. Compared to GNU C generated code both # procedures are more than 60% faster:-) $output = pop; open STDOUT,">$output"; $frame="STACK_FRAME"; $bias="STACK_BIAS"; $locals=16; $acc0="%l0"; $acc1="%o0"; $acc2="%o1"; $acc3="%o2"; $acc4="%l1"; $acc5="%o3"; $acc6="%o4"; $acc7="%o5"; $acc8="%l2"; $acc9="%o7"; $acc10="%g1"; $acc11="%g2"; $acc12="%l3"; $acc13="%g3"; $acc14="%g4"; $acc15="%g5"; $t0="%l4"; $t1="%l5"; $t2="%l6"; $t3="%l7"; $s0="%i0"; $s1="%i1"; $s2="%i2"; $s3="%i3"; $tbl="%i4"; $key="%i5"; $rounds="%i7"; # aliases with return address, which is off-loaded to stack sub _data_word() { my $i; while(defined($i=shift)) { $code.=sprintf"\t.long\t0x%08x,0x%08x\n",$i,$i; } } $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr .align 256 AES_Te: ___ &_data_word( 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d, 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b, 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a, 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f, 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d, 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb, 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c, 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a, 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81, 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504, 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f, 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395, 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c, 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4, 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7, 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818, 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21, 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12, 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133, 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a, 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11, 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a); $code.=<<___; .byte 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 .byte 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 .byte 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0 .byte 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 .byte 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc .byte 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 .byte 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a .byte 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 .byte 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0 .byte 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 .byte 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b .byte 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf .byte 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85 .byte 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 .byte 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5 .byte 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 .byte 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17 .byte 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 .byte 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88 .byte 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb .byte 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c .byte 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 .byte 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9 .byte 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 .byte 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6 .byte 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a .byte 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e .byte 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e .byte 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94 .byte 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf .byte 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68 .byte 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 .type AES_Te,#object .size AES_Te,(.-AES_Te) .align 64 .skip 16 _sparcv9_AES_encrypt: save %sp,-$frame-$locals,%sp stx %i7,[%sp+$bias+$frame+0] ! off-load return address ld [$key+240],$rounds ld [$key+0],$t0 ld [$key+4],$t1 ! ld [$key+8],$t2 srl $rounds,1,$rounds xor $t0,$s0,$s0 ld [$key+12],$t3 srl $s0,21,$acc0 xor $t1,$s1,$s1 ld [$key+16],$t0 srl $s1,13,$acc1 ! xor $t2,$s2,$s2 ld [$key+20],$t1 xor $t3,$s3,$s3 ld [$key+24],$t2 and $acc0,2040,$acc0 ld [$key+28],$t3 nop .Lenc_loop: srl $s2,5,$acc2 ! and $acc1,2040,$acc1 ldx [$tbl+$acc0],$acc0 sll $s3,3,$acc3 and $acc2,2040,$acc2 ldx [$tbl+$acc1],$acc1 srl $s1,21,$acc4 and $acc3,2040,$acc3 ldx [$tbl+$acc2],$acc2 ! srl $s2,13,$acc5 and $acc4,2040,$acc4 ldx [$tbl+$acc3],$acc3 srl $s3,5,$acc6 and $acc5,2040,$acc5 ldx [$tbl+$acc4],$acc4 fmovs %f0,%f0 sll $s0,3,$acc7 ! and $acc6,2040,$acc6 ldx [$tbl+$acc5],$acc5 srl $s2,21,$acc8 and $acc7,2040,$acc7 ldx [$tbl+$acc6],$acc6 srl $s3,13,$acc9 and $acc8,2040,$acc8 ldx [$tbl+$acc7],$acc7 ! srl $s0,5,$acc10 and $acc9,2040,$acc9 ldx [$tbl+$acc8],$acc8 sll $s1,3,$acc11 and $acc10,2040,$acc10 ldx [$tbl+$acc9],$acc9 fmovs %f0,%f0 srl $s3,21,$acc12 ! and $acc11,2040,$acc11 ldx [$tbl+$acc10],$acc10 srl $s0,13,$acc13 and $acc12,2040,$acc12 ldx [$tbl+$acc11],$acc11 srl $s1,5,$acc14 and $acc13,2040,$acc13 ldx [$tbl+$acc12],$acc12 ! sll $s2,3,$acc15 and $acc14,2040,$acc14 ldx [$tbl+$acc13],$acc13 and $acc15,2040,$acc15 add $key,32,$key ldx [$tbl+$acc14],$acc14 fmovs %f0,%f0 subcc $rounds,1,$rounds ! ldx [$tbl+$acc15],$acc15 bz,a,pn %icc,.Lenc_last add $tbl,2048,$rounds srlx $acc1,8,$acc1 xor $acc0,$t0,$t0 ld [$key+0],$s0 fmovs %f0,%f0 srlx $acc2,16,$acc2 ! xor $acc1,$t0,$t0 ld [$key+4],$s1 srlx $acc3,24,$acc3 xor $acc2,$t0,$t0 ld [$key+8],$s2 srlx $acc5,8,$acc5 xor $acc3,$t0,$t0 ld [$key+12],$s3 ! srlx $acc6,16,$acc6 xor $acc4,$t1,$t1 fmovs %f0,%f0 srlx $acc7,24,$acc7 xor $acc5,$t1,$t1 srlx $acc9,8,$acc9 xor $acc6,$t1,$t1 srlx $acc10,16,$acc10 ! xor $acc7,$t1,$t1 srlx $acc11,24,$acc11 xor $acc8,$t2,$t2 srlx $acc13,8,$acc13 xor $acc9,$t2,$t2 srlx $acc14,16,$acc14 xor $acc10,$t2,$t2 srlx $acc15,24,$acc15 ! xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 srl $t0,21,$acc0 xor $acc14,$t3,$t3 srl $t1,13,$acc1 xor $acc15,$t3,$t3 and $acc0,2040,$acc0 ! srl $t2,5,$acc2 and $acc1,2040,$acc1 ldx [$tbl+$acc0],$acc0 sll $t3,3,$acc3 and $acc2,2040,$acc2 ldx [$tbl+$acc1],$acc1 fmovs %f0,%f0 srl $t1,21,$acc4 ! and $acc3,2040,$acc3 ldx [$tbl+$acc2],$acc2 srl $t2,13,$acc5 and $acc4,2040,$acc4 ldx [$tbl+$acc3],$acc3 srl $t3,5,$acc6 and $acc5,2040,$acc5 ldx [$tbl+$acc4],$acc4 ! sll $t0,3,$acc7 and $acc6,2040,$acc6 ldx [$tbl+$acc5],$acc5 srl $t2,21,$acc8 and $acc7,2040,$acc7 ldx [$tbl+$acc6],$acc6 fmovs %f0,%f0 srl $t3,13,$acc9 ! and $acc8,2040,$acc8 ldx [$tbl+$acc7],$acc7 srl $t0,5,$acc10 and $acc9,2040,$acc9 ldx [$tbl+$acc8],$acc8 sll $t1,3,$acc11 and $acc10,2040,$acc10 ldx [$tbl+$acc9],$acc9 ! srl $t3,21,$acc12 and $acc11,2040,$acc11 ldx [$tbl+$acc10],$acc10 srl $t0,13,$acc13 and $acc12,2040,$acc12 ldx [$tbl+$acc11],$acc11 fmovs %f0,%f0 srl $t1,5,$acc14 ! and $acc13,2040,$acc13 ldx [$tbl+$acc12],$acc12 sll $t2,3,$acc15 and $acc14,2040,$acc14 ldx [$tbl+$acc13],$acc13 srlx $acc1,8,$acc1 and $acc15,2040,$acc15 ldx [$tbl+$acc14],$acc14 ! srlx $acc2,16,$acc2 xor $acc0,$s0,$s0 ldx [$tbl+$acc15],$acc15 srlx $acc3,24,$acc3 xor $acc1,$s0,$s0 ld [$key+16],$t0 fmovs %f0,%f0 srlx $acc5,8,$acc5 ! xor $acc2,$s0,$s0 ld [$key+20],$t1 srlx $acc6,16,$acc6 xor $acc3,$s0,$s0 ld [$key+24],$t2 srlx $acc7,24,$acc7 xor $acc4,$s1,$s1 ld [$key+28],$t3 ! srlx $acc9,8,$acc9 xor $acc5,$s1,$s1 ldx [$tbl+2048+0],%g0 ! prefetch te4 srlx $acc10,16,$acc10 xor $acc6,$s1,$s1 ldx [$tbl+2048+32],%g0 ! prefetch te4 srlx $acc11,24,$acc11 xor $acc7,$s1,$s1 ldx [$tbl+2048+64],%g0 ! prefetch te4 srlx $acc13,8,$acc13 xor $acc8,$s2,$s2 ldx [$tbl+2048+96],%g0 ! prefetch te4 srlx $acc14,16,$acc14 ! xor $acc9,$s2,$s2 ldx [$tbl+2048+128],%g0 ! prefetch te4 srlx $acc15,24,$acc15 xor $acc10,$s2,$s2 ldx [$tbl+2048+160],%g0 ! prefetch te4 srl $s0,21,$acc0 xor $acc11,$s2,$s2 ldx [$tbl+2048+192],%g0 ! prefetch te4 xor $acc12,$acc14,$acc14 xor $acc13,$s3,$s3 ldx [$tbl+2048+224],%g0 ! prefetch te4 srl $s1,13,$acc1 ! xor $acc14,$s3,$s3 xor $acc15,$s3,$s3 ba .Lenc_loop and $acc0,2040,$acc0 .align 32 .Lenc_last: srlx $acc1,8,$acc1 ! xor $acc0,$t0,$t0 ld [$key+0],$s0 srlx $acc2,16,$acc2 xor $acc1,$t0,$t0 ld [$key+4],$s1 srlx $acc3,24,$acc3 xor $acc2,$t0,$t0 ld [$key+8],$s2 ! srlx $acc5,8,$acc5 xor $acc3,$t0,$t0 ld [$key+12],$s3 srlx $acc6,16,$acc6 xor $acc4,$t1,$t1 srlx $acc7,24,$acc7 xor $acc5,$t1,$t1 srlx $acc9,8,$acc9 ! xor $acc6,$t1,$t1 srlx $acc10,16,$acc10 xor $acc7,$t1,$t1 srlx $acc11,24,$acc11 xor $acc8,$t2,$t2 srlx $acc13,8,$acc13 xor $acc9,$t2,$t2 srlx $acc14,16,$acc14 ! xor $acc10,$t2,$t2 srlx $acc15,24,$acc15 xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 srl $t0,24,$acc0 xor $acc14,$t3,$t3 srl $t1,16,$acc1 ! xor $acc15,$t3,$t3 srl $t2,8,$acc2 and $acc1,255,$acc1 ldub [$rounds+$acc0],$acc0 srl $t1,24,$acc4 and $acc2,255,$acc2 ldub [$rounds+$acc1],$acc1 srl $t2,16,$acc5 ! and $t3,255,$acc3 ldub [$rounds+$acc2],$acc2 ldub [$rounds+$acc3],$acc3 srl $t3,8,$acc6 and $acc5,255,$acc5 ldub [$rounds+$acc4],$acc4 fmovs %f0,%f0 srl $t2,24,$acc8 ! and $acc6,255,$acc6 ldub [$rounds+$acc5],$acc5 srl $t3,16,$acc9 and $t0,255,$acc7 ldub [$rounds+$acc6],$acc6 ldub [$rounds+$acc7],$acc7 fmovs %f0,%f0 srl $t0,8,$acc10 ! and $acc9,255,$acc9 ldub [$rounds+$acc8],$acc8 srl $t3,24,$acc12 and $acc10,255,$acc10 ldub [$rounds+$acc9],$acc9 srl $t0,16,$acc13 and $t1,255,$acc11 ldub [$rounds+$acc10],$acc10 ! srl $t1,8,$acc14 and $acc13,255,$acc13 ldub [$rounds+$acc11],$acc11 ldub [$rounds+$acc12],$acc12 and $acc14,255,$acc14 ldub [$rounds+$acc13],$acc13 and $t2,255,$acc15 ldub [$rounds+$acc14],$acc14 ! sll $acc0,24,$acc0 xor $acc3,$s0,$s0 ldub [$rounds+$acc15],$acc15 sll $acc1,16,$acc1 xor $acc0,$s0,$s0 ldx [%sp+$bias+$frame+0],%i7 ! restore return address fmovs %f0,%f0 sll $acc2,8,$acc2 ! xor $acc1,$s0,$s0 sll $acc4,24,$acc4 xor $acc2,$s0,$s0 sll $acc5,16,$acc5 xor $acc7,$s1,$s1 sll $acc6,8,$acc6 xor $acc4,$s1,$s1 sll $acc8,24,$acc8 ! xor $acc5,$s1,$s1 sll $acc9,16,$acc9 xor $acc11,$s2,$s2 sll $acc10,8,$acc10 xor $acc6,$s1,$s1 sll $acc12,24,$acc12 xor $acc8,$s2,$s2 sll $acc13,16,$acc13 ! xor $acc9,$s2,$s2 sll $acc14,8,$acc14 xor $acc10,$s2,$s2 xor $acc12,$acc14,$acc14 xor $acc13,$s3,$s3 xor $acc14,$s3,$s3 xor $acc15,$s3,$s3 ret restore .type _sparcv9_AES_encrypt,#function .size _sparcv9_AES_encrypt,(.-_sparcv9_AES_encrypt) .align 32 .globl AES_encrypt AES_encrypt: or %o0,%o1,%g1 andcc %g1,3,%g0 bnz,pn %xcc,.Lunaligned_enc save %sp,-$frame,%sp ld [%i0+0],%o0 ld [%i0+4],%o1 ld [%i0+8],%o2 ld [%i0+12],%o3 1: call .+8 add %o7,AES_Te-1b,%o4 call _sparcv9_AES_encrypt mov %i2,%o5 st %o0,[%i1+0] st %o1,[%i1+4] st %o2,[%i1+8] st %o3,[%i1+12] ret restore .align 32 .Lunaligned_enc: ldub [%i0+0],%l0 ldub [%i0+1],%l1 ldub [%i0+2],%l2 sll %l0,24,%l0 ldub [%i0+3],%l3 sll %l1,16,%l1 ldub [%i0+4],%l4 sll %l2,8,%l2 or %l1,%l0,%l0 ldub [%i0+5],%l5 sll %l4,24,%l4 or %l3,%l2,%l2 ldub [%i0+6],%l6 sll %l5,16,%l5 or %l0,%l2,%o0 ldub [%i0+7],%l7 sll %l6,8,%l6 or %l5,%l4,%l4 ldub [%i0+8],%l0 or %l7,%l6,%l6 ldub [%i0+9],%l1 or %l4,%l6,%o1 ldub [%i0+10],%l2 sll %l0,24,%l0 ldub [%i0+11],%l3 sll %l1,16,%l1 ldub [%i0+12],%l4 sll %l2,8,%l2 or %l1,%l0,%l0 ldub [%i0+13],%l5 sll %l4,24,%l4 or %l3,%l2,%l2 ldub [%i0+14],%l6 sll %l5,16,%l5 or %l0,%l2,%o2 ldub [%i0+15],%l7 sll %l6,8,%l6 or %l5,%l4,%l4 or %l7,%l6,%l6 or %l4,%l6,%o3 1: call .+8 add %o7,AES_Te-1b,%o4 call _sparcv9_AES_encrypt mov %i2,%o5 srl %o0,24,%l0 srl %o0,16,%l1 stb %l0,[%i1+0] srl %o0,8,%l2 stb %l1,[%i1+1] stb %l2,[%i1+2] srl %o1,24,%l4 stb %o0,[%i1+3] srl %o1,16,%l5 stb %l4,[%i1+4] srl %o1,8,%l6 stb %l5,[%i1+5] stb %l6,[%i1+6] srl %o2,24,%l0 stb %o1,[%i1+7] srl %o2,16,%l1 stb %l0,[%i1+8] srl %o2,8,%l2 stb %l1,[%i1+9] stb %l2,[%i1+10] srl %o3,24,%l4 stb %o2,[%i1+11] srl %o3,16,%l5 stb %l4,[%i1+12] srl %o3,8,%l6 stb %l5,[%i1+13] stb %l6,[%i1+14] stb %o3,[%i1+15] ret restore .type AES_encrypt,#function .size AES_encrypt,(.-AES_encrypt) ___ $code.=<<___; .align 256 AES_Td: ___ &_data_word( 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393, 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25, 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1, 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6, 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844, 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd, 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45, 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94, 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a, 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5, 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c, 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1, 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a, 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051, 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46, 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77, 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb, 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e, 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927, 0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a, 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e, 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16, 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8, 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd, 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163, 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120, 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0, 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422, 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36, 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4, 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e, 0x82c3aff5, 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3, 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8, 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6, 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0, 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815, 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df, 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f, 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713, 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89, 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf, 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86, 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541, 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190, 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742); $code.=<<___; .byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38 .byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb .byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87 .byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb .byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d .byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e .byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2 .byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 .byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16 .byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 .byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda .byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 .byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a .byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 .byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02 .byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b .byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea .byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 .byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85 .byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e .byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89 .byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b .byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20 .byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 .byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31 .byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f .byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d .byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef .byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0 .byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 .byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26 .byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d .type AES_Td,#object .size AES_Td,(.-AES_Td) .align 64 .skip 16 _sparcv9_AES_decrypt: save %sp,-$frame-$locals,%sp stx %i7,[%sp+$bias+$frame+0] ! off-load return address ld [$key+240],$rounds ld [$key+0],$t0 ld [$key+4],$t1 ! ld [$key+8],$t2 ld [$key+12],$t3 srl $rounds,1,$rounds xor $t0,$s0,$s0 ld [$key+16],$t0 xor $t1,$s1,$s1 ld [$key+20],$t1 srl $s0,21,$acc0 ! xor $t2,$s2,$s2 ld [$key+24],$t2 xor $t3,$s3,$s3 and $acc0,2040,$acc0 ld [$key+28],$t3 srl $s3,13,$acc1 nop .Ldec_loop: srl $s2,5,$acc2 ! and $acc1,2040,$acc1 ldx [$tbl+$acc0],$acc0 sll $s1,3,$acc3 and $acc2,2040,$acc2 ldx [$tbl+$acc1],$acc1 srl $s1,21,$acc4 and $acc3,2040,$acc3 ldx [$tbl+$acc2],$acc2 ! srl $s0,13,$acc5 and $acc4,2040,$acc4 ldx [$tbl+$acc3],$acc3 srl $s3,5,$acc6 and $acc5,2040,$acc5 ldx [$tbl+$acc4],$acc4 fmovs %f0,%f0 sll $s2,3,$acc7 ! and $acc6,2040,$acc6 ldx [$tbl+$acc5],$acc5 srl $s2,21,$acc8 and $acc7,2040,$acc7 ldx [$tbl+$acc6],$acc6 srl $s1,13,$acc9 and $acc8,2040,$acc8 ldx [$tbl+$acc7],$acc7 ! srl $s0,5,$acc10 and $acc9,2040,$acc9 ldx [$tbl+$acc8],$acc8 sll $s3,3,$acc11 and $acc10,2040,$acc10 ldx [$tbl+$acc9],$acc9 fmovs %f0,%f0 srl $s3,21,$acc12 ! and $acc11,2040,$acc11 ldx [$tbl+$acc10],$acc10 srl $s2,13,$acc13 and $acc12,2040,$acc12 ldx [$tbl+$acc11],$acc11 srl $s1,5,$acc14 and $acc13,2040,$acc13 ldx [$tbl+$acc12],$acc12 ! sll $s0,3,$acc15 and $acc14,2040,$acc14 ldx [$tbl+$acc13],$acc13 and $acc15,2040,$acc15 add $key,32,$key ldx [$tbl+$acc14],$acc14 fmovs %f0,%f0 subcc $rounds,1,$rounds ! ldx [$tbl+$acc15],$acc15 bz,a,pn %icc,.Ldec_last add $tbl,2048,$rounds srlx $acc1,8,$acc1 xor $acc0,$t0,$t0 ld [$key+0],$s0 fmovs %f0,%f0 srlx $acc2,16,$acc2 ! xor $acc1,$t0,$t0 ld [$key+4],$s1 srlx $acc3,24,$acc3 xor $acc2,$t0,$t0 ld [$key+8],$s2 srlx $acc5,8,$acc5 xor $acc3,$t0,$t0 ld [$key+12],$s3 ! srlx $acc6,16,$acc6 xor $acc4,$t1,$t1 fmovs %f0,%f0 srlx $acc7,24,$acc7 xor $acc5,$t1,$t1 srlx $acc9,8,$acc9 xor $acc6,$t1,$t1 srlx $acc10,16,$acc10 ! xor $acc7,$t1,$t1 srlx $acc11,24,$acc11 xor $acc8,$t2,$t2 srlx $acc13,8,$acc13 xor $acc9,$t2,$t2 srlx $acc14,16,$acc14 xor $acc10,$t2,$t2 srlx $acc15,24,$acc15 ! xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 srl $t0,21,$acc0 xor $acc14,$t3,$t3 xor $acc15,$t3,$t3 srl $t3,13,$acc1 and $acc0,2040,$acc0 ! srl $t2,5,$acc2 and $acc1,2040,$acc1 ldx [$tbl+$acc0],$acc0 sll $t1,3,$acc3 and $acc2,2040,$acc2 ldx [$tbl+$acc1],$acc1 fmovs %f0,%f0 srl $t1,21,$acc4 ! and $acc3,2040,$acc3 ldx [$tbl+$acc2],$acc2 srl $t0,13,$acc5 and $acc4,2040,$acc4 ldx [$tbl+$acc3],$acc3 srl $t3,5,$acc6 and $acc5,2040,$acc5 ldx [$tbl+$acc4],$acc4 ! sll $t2,3,$acc7 and $acc6,2040,$acc6 ldx [$tbl+$acc5],$acc5 srl $t2,21,$acc8 and $acc7,2040,$acc7 ldx [$tbl+$acc6],$acc6 fmovs %f0,%f0 srl $t1,13,$acc9 ! and $acc8,2040,$acc8 ldx [$tbl+$acc7],$acc7 srl $t0,5,$acc10 and $acc9,2040,$acc9 ldx [$tbl+$acc8],$acc8 sll $t3,3,$acc11 and $acc10,2040,$acc10 ldx [$tbl+$acc9],$acc9 ! srl $t3,21,$acc12 and $acc11,2040,$acc11 ldx [$tbl+$acc10],$acc10 srl $t2,13,$acc13 and $acc12,2040,$acc12 ldx [$tbl+$acc11],$acc11 fmovs %f0,%f0 srl $t1,5,$acc14 ! and $acc13,2040,$acc13 ldx [$tbl+$acc12],$acc12 sll $t0,3,$acc15 and $acc14,2040,$acc14 ldx [$tbl+$acc13],$acc13 srlx $acc1,8,$acc1 and $acc15,2040,$acc15 ldx [$tbl+$acc14],$acc14 ! srlx $acc2,16,$acc2 xor $acc0,$s0,$s0 ldx [$tbl+$acc15],$acc15 srlx $acc3,24,$acc3 xor $acc1,$s0,$s0 ld [$key+16],$t0 fmovs %f0,%f0 srlx $acc5,8,$acc5 ! xor $acc2,$s0,$s0 ld [$key+20],$t1 srlx $acc6,16,$acc6 xor $acc3,$s0,$s0 ld [$key+24],$t2 srlx $acc7,24,$acc7 xor $acc4,$s1,$s1 ld [$key+28],$t3 ! srlx $acc9,8,$acc9 xor $acc5,$s1,$s1 ldx [$tbl+2048+0],%g0 ! prefetch td4 srlx $acc10,16,$acc10 xor $acc6,$s1,$s1 ldx [$tbl+2048+32],%g0 ! prefetch td4 srlx $acc11,24,$acc11 xor $acc7,$s1,$s1 ldx [$tbl+2048+64],%g0 ! prefetch td4 srlx $acc13,8,$acc13 xor $acc8,$s2,$s2 ldx [$tbl+2048+96],%g0 ! prefetch td4 srlx $acc14,16,$acc14 ! xor $acc9,$s2,$s2 ldx [$tbl+2048+128],%g0 ! prefetch td4 srlx $acc15,24,$acc15 xor $acc10,$s2,$s2 ldx [$tbl+2048+160],%g0 ! prefetch td4 srl $s0,21,$acc0 xor $acc11,$s2,$s2 ldx [$tbl+2048+192],%g0 ! prefetch td4 xor $acc12,$acc14,$acc14 xor $acc13,$s3,$s3 ldx [$tbl+2048+224],%g0 ! prefetch td4 and $acc0,2040,$acc0 ! xor $acc14,$s3,$s3 xor $acc15,$s3,$s3 ba .Ldec_loop srl $s3,13,$acc1 .align 32 .Ldec_last: srlx $acc1,8,$acc1 ! xor $acc0,$t0,$t0 ld [$key+0],$s0 srlx $acc2,16,$acc2 xor $acc1,$t0,$t0 ld [$key+4],$s1 srlx $acc3,24,$acc3 xor $acc2,$t0,$t0 ld [$key+8],$s2 ! srlx $acc5,8,$acc5 xor $acc3,$t0,$t0 ld [$key+12],$s3 srlx $acc6,16,$acc6 xor $acc4,$t1,$t1 srlx $acc7,24,$acc7 xor $acc5,$t1,$t1 srlx $acc9,8,$acc9 ! xor $acc6,$t1,$t1 srlx $acc10,16,$acc10 xor $acc7,$t1,$t1 srlx $acc11,24,$acc11 xor $acc8,$t2,$t2 srlx $acc13,8,$acc13 xor $acc9,$t2,$t2 srlx $acc14,16,$acc14 ! xor $acc10,$t2,$t2 srlx $acc15,24,$acc15 xor $acc11,$t2,$t2 xor $acc12,$acc14,$acc14 xor $acc13,$t3,$t3 srl $t0,24,$acc0 xor $acc14,$t3,$t3 xor $acc15,$t3,$t3 ! srl $t3,16,$acc1 srl $t2,8,$acc2 and $acc1,255,$acc1 ldub [$rounds+$acc0],$acc0 srl $t1,24,$acc4 and $acc2,255,$acc2 ldub [$rounds+$acc1],$acc1 srl $t0,16,$acc5 ! and $t1,255,$acc3 ldub [$rounds+$acc2],$acc2 ldub [$rounds+$acc3],$acc3 srl $t3,8,$acc6 and $acc5,255,$acc5 ldub [$rounds+$acc4],$acc4 fmovs %f0,%f0 srl $t2,24,$acc8 ! and $acc6,255,$acc6 ldub [$rounds+$acc5],$acc5 srl $t1,16,$acc9 and $t2,255,$acc7 ldub [$rounds+$acc6],$acc6 ldub [$rounds+$acc7],$acc7 fmovs %f0,%f0 srl $t0,8,$acc10 ! and $acc9,255,$acc9 ldub [$rounds+$acc8],$acc8 srl $t3,24,$acc12 and $acc10,255,$acc10 ldub [$rounds+$acc9],$acc9 srl $t2,16,$acc13 and $t3,255,$acc11 ldub [$rounds+$acc10],$acc10 ! srl $t1,8,$acc14 and $acc13,255,$acc13 ldub [$rounds+$acc11],$acc11 ldub [$rounds+$acc12],$acc12 and $acc14,255,$acc14 ldub [$rounds+$acc13],$acc13 and $t0,255,$acc15 ldub [$rounds+$acc14],$acc14 ! sll $acc0,24,$acc0 xor $acc3,$s0,$s0 ldub [$rounds+$acc15],$acc15 sll $acc1,16,$acc1 xor $acc0,$s0,$s0 ldx [%sp+$bias+$frame+0],%i7 ! restore return address fmovs %f0,%f0 sll $acc2,8,$acc2 ! xor $acc1,$s0,$s0 sll $acc4,24,$acc4 xor $acc2,$s0,$s0 sll $acc5,16,$acc5 xor $acc7,$s1,$s1 sll $acc6,8,$acc6 xor $acc4,$s1,$s1 sll $acc8,24,$acc8 ! xor $acc5,$s1,$s1 sll $acc9,16,$acc9 xor $acc11,$s2,$s2 sll $acc10,8,$acc10 xor $acc6,$s1,$s1 sll $acc12,24,$acc12 xor $acc8,$s2,$s2 sll $acc13,16,$acc13 ! xor $acc9,$s2,$s2 sll $acc14,8,$acc14 xor $acc10,$s2,$s2 xor $acc12,$acc14,$acc14 xor $acc13,$s3,$s3 xor $acc14,$s3,$s3 xor $acc15,$s3,$s3 ret restore .type _sparcv9_AES_decrypt,#function .size _sparcv9_AES_decrypt,(.-_sparcv9_AES_decrypt) .align 32 .globl AES_decrypt AES_decrypt: or %o0,%o1,%g1 andcc %g1,3,%g0 bnz,pn %xcc,.Lunaligned_dec save %sp,-$frame,%sp ld [%i0+0],%o0 ld [%i0+4],%o1 ld [%i0+8],%o2 ld [%i0+12],%o3 1: call .+8 add %o7,AES_Td-1b,%o4 call _sparcv9_AES_decrypt mov %i2,%o5 st %o0,[%i1+0] st %o1,[%i1+4] st %o2,[%i1+8] st %o3,[%i1+12] ret restore .align 32 .Lunaligned_dec: ldub [%i0+0],%l0 ldub [%i0+1],%l1 ldub [%i0+2],%l2 sll %l0,24,%l0 ldub [%i0+3],%l3 sll %l1,16,%l1 ldub [%i0+4],%l4 sll %l2,8,%l2 or %l1,%l0,%l0 ldub [%i0+5],%l5 sll %l4,24,%l4 or %l3,%l2,%l2 ldub [%i0+6],%l6 sll %l5,16,%l5 or %l0,%l2,%o0 ldub [%i0+7],%l7 sll %l6,8,%l6 or %l5,%l4,%l4 ldub [%i0+8],%l0 or %l7,%l6,%l6 ldub [%i0+9],%l1 or %l4,%l6,%o1 ldub [%i0+10],%l2 sll %l0,24,%l0 ldub [%i0+11],%l3 sll %l1,16,%l1 ldub [%i0+12],%l4 sll %l2,8,%l2 or %l1,%l0,%l0 ldub [%i0+13],%l5 sll %l4,24,%l4 or %l3,%l2,%l2 ldub [%i0+14],%l6 sll %l5,16,%l5 or %l0,%l2,%o2 ldub [%i0+15],%l7 sll %l6,8,%l6 or %l5,%l4,%l4 or %l7,%l6,%l6 or %l4,%l6,%o3 1: call .+8 add %o7,AES_Td-1b,%o4 call _sparcv9_AES_decrypt mov %i2,%o5 srl %o0,24,%l0 srl %o0,16,%l1 stb %l0,[%i1+0] srl %o0,8,%l2 stb %l1,[%i1+1] stb %l2,[%i1+2] srl %o1,24,%l4 stb %o0,[%i1+3] srl %o1,16,%l5 stb %l4,[%i1+4] srl %o1,8,%l6 stb %l5,[%i1+5] stb %l6,[%i1+6] srl %o2,24,%l0 stb %o1,[%i1+7] srl %o2,16,%l1 stb %l0,[%i1+8] srl %o2,8,%l2 stb %l1,[%i1+9] stb %l2,[%i1+10] srl %o3,24,%l4 stb %o2,[%i1+11] srl %o3,16,%l5 stb %l4,[%i1+12] srl %o3,8,%l6 stb %l5,[%i1+13] stb %l6,[%i1+14] stb %o3,[%i1+15] ret restore .type AES_decrypt,#function .size AES_decrypt,(.-AES_decrypt) ___ # fmovs instructions substituting for FP nops were originally added # to meet specific instruction alignment requirements to maximize ILP. # As UltraSPARC T1, a.k.a. Niagara, has shared FPU, FP nops can have # undesired effect, so just omit them and sacrifice some portion of # percent in performance... $code =~ s/fmovs.*$//gm; print $code; close STDOUT or die "error closing STDOUT: $!"; # ensure flush openssl-1.1.1f/crypto/aes/asm/aesfx-sparcv9.pl000066400000000000000000000670441364063235100212610ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # March 2016 # # Initial support for Fujitsu SPARC64 X/X+ comprises minimally # required key setup and single-block procedures. # # April 2016 # # Add "teaser" CBC and CTR mode-specific subroutines. "Teaser" means # that parallelizable nature of CBC decrypt and CTR is not utilized # yet. CBC encrypt on the other hand is as good as it can possibly # get processing one byte in 4.1 cycles with 128-bit key on SPARC64 X. # This is ~6x faster than pure software implementation... # # July 2016 # # Switch from faligndata to fshiftorx, which allows to omit alignaddr # instructions and improve single-block and short-input performance # with misaligned data. $output = pop; open STDOUT,">$output"; { my ($inp,$out,$key,$rounds,$tmp,$mask) = map("%o$_",(0..5)); $code.=<<___; #include "sparc_arch.h" #define LOCALS (STACK_BIAS+STACK_FRAME) .text .globl aes_fx_encrypt .align 32 aes_fx_encrypt: and $inp, 7, $tmp ! is input aligned? andn $inp, 7, $inp ldd [$key + 0], %f6 ! round[0] ldd [$key + 8], %f8 mov %o7, %g1 ld [$key + 240], $rounds 1: call .+8 add %o7, .Linp_align-1b, %o7 sll $tmp, 3, $tmp ldd [$inp + 0], %f0 ! load input brz,pt $tmp, .Lenc_inp_aligned ldd [$inp + 8], %f2 ldd [%o7 + $tmp], %f14 ! shift left params ldd [$inp + 16], %f4 fshiftorx %f0, %f2, %f14, %f0 fshiftorx %f2, %f4, %f14, %f2 .Lenc_inp_aligned: ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fxor %f0, %f6, %f0 ! ^=round[0] fxor %f2, %f8, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 add $key, 32, $key sub $rounds, 4, $rounds .Loop_enc: fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 16], %f10 ldd [$key + 24], %f12 add $key, 32, $key fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$key + 0], %f6 ldd [$key + 8], %f8 brnz,a $rounds, .Loop_enc sub $rounds, 2, $rounds andcc $out, 7, $tmp ! is output aligned? andn $out, 7, $out mov 0xff, $mask srl $mask, $tmp, $mask add %o7, 64, %o7 sll $tmp, 3, $tmp fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [%o7 + $tmp], %f14 ! shift right params fmovd %f0, %f4 faesenclx %f2, %f6, %f0 faesenclx %f4, %f8, %f2 bnz,pn %icc, .Lenc_out_unaligned mov %g1, %o7 std %f0, [$out + 0] retl std %f2, [$out + 8] .align 16 .Lenc_out_unaligned: add $out, 16, $inp orn %g0, $mask, $tmp fshiftorx %f0, %f0, %f14, %f4 fshiftorx %f0, %f2, %f14, %f6 fshiftorx %f2, %f2, %f14, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] stda %f8, [$inp + $tmp]0xc0 ! partial store retl nop .type aes_fx_encrypt,#function .size aes_fx_encrypt,.-aes_fx_encrypt .globl aes_fx_decrypt .align 32 aes_fx_decrypt: and $inp, 7, $tmp ! is input aligned? andn $inp, 7, $inp ldd [$key + 0], %f6 ! round[0] ldd [$key + 8], %f8 mov %o7, %g1 ld [$key + 240], $rounds 1: call .+8 add %o7, .Linp_align-1b, %o7 sll $tmp, 3, $tmp ldd [$inp + 0], %f0 ! load input brz,pt $tmp, .Ldec_inp_aligned ldd [$inp + 8], %f2 ldd [%o7 + $tmp], %f14 ! shift left params ldd [$inp + 16], %f4 fshiftorx %f0, %f2, %f14, %f0 fshiftorx %f2, %f4, %f14, %f2 .Ldec_inp_aligned: ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fxor %f0, %f6, %f0 ! ^=round[0] fxor %f2, %f8, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 add $key, 32, $key sub $rounds, 4, $rounds .Loop_dec: fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$key + 16], %f10 ldd [$key + 24], %f12 add $key, 32, $key fmovd %f0, %f4 faesdecx %f2, %f6, %f0 faesdecx %f4, %f8, %f2 ldd [$key + 0], %f6 ldd [$key + 8], %f8 brnz,a $rounds, .Loop_dec sub $rounds, 2, $rounds andcc $out, 7, $tmp ! is output aligned? andn $out, 7, $out mov 0xff, $mask srl $mask, $tmp, $mask add %o7, 64, %o7 sll $tmp, 3, $tmp fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [%o7 + $tmp], %f14 ! shift right params fmovd %f0, %f4 faesdeclx %f2, %f6, %f0 faesdeclx %f4, %f8, %f2 bnz,pn %icc, .Ldec_out_unaligned mov %g1, %o7 std %f0, [$out + 0] retl std %f2, [$out + 8] .align 16 .Ldec_out_unaligned: add $out, 16, $inp orn %g0, $mask, $tmp fshiftorx %f0, %f0, %f14, %f4 fshiftorx %f0, %f2, %f14, %f6 fshiftorx %f2, %f2, %f14, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] stda %f8, [$inp + $tmp]0xc0 ! partial store retl nop .type aes_fx_decrypt,#function .size aes_fx_decrypt,.-aes_fx_decrypt ___ } { my ($inp,$bits,$out,$tmp,$inc) = map("%o$_",(0..5)); $code.=<<___; .globl aes_fx_set_decrypt_key .align 32 aes_fx_set_decrypt_key: b .Lset_encrypt_key mov -1, $inc retl nop .type aes_fx_set_decrypt_key,#function .size aes_fx_set_decrypt_key,.-aes_fx_set_decrypt_key .globl aes_fx_set_encrypt_key .align 32 aes_fx_set_encrypt_key: mov 1, $inc nop .Lset_encrypt_key: and $inp, 7, $tmp andn $inp, 7, $inp sll $tmp, 3, $tmp mov %o7, %g1 1: call .+8 add %o7, .Linp_align-1b, %o7 ldd [%o7 + $tmp], %f10 ! shift left params mov %g1, %o7 cmp $bits, 192 ldd [$inp + 0], %f0 bl,pt %icc, .L128 ldd [$inp + 8], %f2 be,pt %icc, .L192 ldd [$inp + 16], %f4 brz,pt $tmp, .L256aligned ldd [$inp + 24], %f6 ldd [$inp + 32], %f8 fshiftorx %f0, %f2, %f10, %f0 fshiftorx %f2, %f4, %f10, %f2 fshiftorx %f4, %f6, %f10, %f4 fshiftorx %f6, %f8, %f10, %f6 .L256aligned: mov 14, $bits and $inc, `14*16`, $tmp st $bits, [$out + 240] ! store rounds add $out, $tmp, $out ! start or end of key schedule sllx $inc, 4, $inc ! 16 or -16 ___ for ($i=0; $i<6; $i++) { $code.=<<___; std %f0, [$out + 0] faeskeyx %f6, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 std %f4, [$out + 0] faeskeyx %f2, 0x01, %f4 std %f6, [$out + 8] add $out, $inc, $out faeskeyx %f4, 0x00, %f6 ___ } $code.=<<___; std %f0, [$out + 0] faeskeyx %f6, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 std %f4,[$out + 0] std %f6,[$out + 8] add $out, $inc, $out std %f0,[$out + 0] std %f2,[$out + 8] retl xor %o0, %o0, %o0 ! return 0 .align 16 .L192: brz,pt $tmp, .L192aligned nop ldd [$inp + 24], %f6 fshiftorx %f0, %f2, %f10, %f0 fshiftorx %f2, %f4, %f10, %f2 fshiftorx %f4, %f6, %f10, %f4 .L192aligned: mov 12, $bits and $inc, `12*16`, $tmp st $bits, [$out + 240] ! store rounds add $out, $tmp, $out ! start or end of key schedule sllx $inc, 4, $inc ! 16 or -16 ___ for ($i=0; $i<8; $i+=2) { $code.=<<___; std %f0, [$out + 0] faeskeyx %f4, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 std %f4, [$out + 0] faeskeyx %f2, 0x00, %f4 std %f0, [$out + 8] add $out, $inc, $out faeskeyx %f4, `0x10+$i+1`, %f0 std %f2, [$out + 0] faeskeyx %f0, 0x00, %f2 std %f4, [$out + 8] add $out, $inc, $out ___ $code.=<<___ if ($i<6); faeskeyx %f2, 0x00, %f4 ___ } $code.=<<___; std %f0, [$out + 0] std %f2, [$out + 8] retl xor %o0, %o0, %o0 ! return 0 .align 16 .L128: brz,pt $tmp, .L128aligned nop ldd [$inp + 16], %f4 fshiftorx %f0, %f2, %f10, %f0 fshiftorx %f2, %f4, %f10, %f2 .L128aligned: mov 10, $bits and $inc, `10*16`, $tmp st $bits, [$out + 240] ! store rounds add $out, $tmp, $out ! start or end of key schedule sllx $inc, 4, $inc ! 16 or -16 ___ for ($i=0; $i<10; $i++) { $code.=<<___; std %f0, [$out + 0] faeskeyx %f2, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 ___ } $code.=<<___; std %f0, [$out + 0] std %f2, [$out + 8] retl xor %o0, %o0, %o0 ! return 0 .type aes_fx_set_encrypt_key,#function .size aes_fx_set_encrypt_key,.-aes_fx_set_encrypt_key ___ } { my ($inp,$out,$len,$key,$ivp,$dir) = map("%i$_",(0..5)); my ($rounds,$inner,$end,$inc,$ialign,$oalign,$mask) = map("%l$_",(0..7)); my ($iv0,$iv1,$r0hi,$r0lo,$rlhi,$rllo,$in0,$in1,$intail,$outhead,$fshift) = map("%f$_",grep { !($_ & 1) } (16 .. 62)); my ($ileft,$iright) = ($ialign,$oalign); $code.=<<___; .globl aes_fx_cbc_encrypt .align 32 aes_fx_cbc_encrypt: save %sp, -STACK_FRAME-16, %sp srln $len, 4, $len and $inp, 7, $ialign andn $inp, 7, $inp brz,pn $len, .Lcbc_no_data sll $ialign, 3, $ileft 1: call .+8 add %o7, .Linp_align-1b, %o7 ld [$key + 240], $rounds and $out, 7, $oalign ld [$ivp + 0], %f0 ! load ivec andn $out, 7, $out ld [$ivp + 4], %f1 sll $oalign, 3, $mask ld [$ivp + 8], %f2 ld [$ivp + 12], %f3 sll $rounds, 4, $rounds add $rounds, $key, $end ldd [$key + 0], $r0hi ! round[0] ldd [$key + 8], $r0lo add $inp, 16, $inp sub $len, 1, $len ldd [$end + 0], $rlhi ! round[last] ldd [$end + 8], $rllo mov 16, $inc movrz $len, 0, $inc ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 ldd [%o7 + $ileft], $fshift ! shift left params add %o7, 64, %o7 ldd [$inp - 16], $in0 ! load input ldd [$inp - 8], $in1 ldda [$inp]0x82, $intail ! non-faulting load brz $dir, .Lcbc_decrypt add $inp, $inc, $inp ! inp+=16 fxor $r0hi, %f0, %f0 ! ivec^=round[0] fxor $r0lo, %f2, %f2 fshiftorx $in0, $in1, $fshift, $in0 fshiftorx $in1, $intail, $fshift, $in1 nop .Loop_cbc_enc: fxor $in0, %f0, %f0 ! inp^ivec^round[0] fxor $in1, %f2, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 add $key, 32, $end sub $rounds, 16*6, $inner .Lcbc_enc: fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ldd [$end + 24], %f12 add $end, 32, $end fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$end + 0], %f6 ldd [$end + 8], %f8 brnz,a $inner, .Lcbc_enc sub $inner, 16*2, $inner fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ! round[last-1] ldd [$end + 24], %f12 movrz $len, 0, $inc fmovd $intail, $in0 ldd [$inp - 8], $in1 ! load next input block ldda [$inp]0x82, $intail ! non-faulting load add $inp, $inc, $inp ! inp+=16 fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 fshiftorx $in0, $in1, $fshift, $in0 fshiftorx $in1, $intail, $fshift, $in1 fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fxor $r0hi, $in0, $in0 ! inp^=round[0] fxor $r0lo, $in1, $in1 fmovd %f0, %f4 faesenclx %f2, $rlhi, %f0 faesenclx %f4, $rllo, %f2 brnz,pn $oalign, .Lcbc_enc_unaligned_out nop std %f0, [$out + 0] std %f2, [$out + 8] add $out, 16, $out brnz,a $len, .Loop_cbc_enc sub $len, 1, $len st %f0, [$ivp + 0] ! output ivec st %f1, [$ivp + 4] st %f2, [$ivp + 8] st %f3, [$ivp + 12] .Lcbc_no_data: ret restore .align 32 .Lcbc_enc_unaligned_out: ldd [%o7 + $mask], $fshift ! shift right params mov 0xff, $mask srl $mask, $oalign, $mask sub %g0, $ileft, $iright fshiftorx %f0, %f0, $fshift, %f6 fshiftorx %f0, %f2, $fshift, %f8 stda %f6, [$out + $mask]0xc0 ! partial store orn %g0, $mask, $mask std %f8, [$out + 8] add $out, 16, $out brz $len, .Lcbc_enc_unaligned_out_done sub $len, 1, $len b .Loop_cbc_enc_unaligned_out nop .align 32 .Loop_cbc_enc_unaligned_out: fmovd %f2, $outhead fxor $in0, %f0, %f0 ! inp^ivec^round[0] fxor $in1, %f2, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 48], %f10 ! round[3] ldd [$key + 56], %f12 ldx [$inp - 16], %o0 ldx [$inp - 8], %o1 brz $ileft, .Lcbc_enc_aligned_inp movrz $len, 0, $inc ldx [$inp], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 .Lcbc_enc_aligned_inp: fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$key + 64], %f6 ! round[4] ldd [$key + 72], %f8 add $key, 64, $end sub $rounds, 16*8, $inner stx %o0, [%sp + LOCALS + 0] stx %o1, [%sp + LOCALS + 8] add $inp, $inc, $inp ! inp+=16 nop .Lcbc_enc_unaligned: fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ldd [$end + 24], %f12 add $end, 32, $end fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$end + 0], %f6 ldd [$end + 8], %f8 brnz,a $inner, .Lcbc_enc_unaligned sub $inner, 16*2, $inner fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ! round[last-1] ldd [$end + 24], %f12 fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [%sp + LOCALS + 0], $in0 ldd [%sp + LOCALS + 8], $in1 fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fxor $r0hi, $in0, $in0 ! inp^=round[0] fxor $r0lo, $in1, $in1 fmovd %f0, %f4 faesenclx %f2, $rlhi, %f0 faesenclx %f4, $rllo, %f2 fshiftorx $outhead, %f0, $fshift, %f6 fshiftorx %f0, %f2, $fshift, %f8 std %f6, [$out + 0] std %f8, [$out + 8] add $out, 16, $out brnz,a $len, .Loop_cbc_enc_unaligned_out sub $len, 1, $len .Lcbc_enc_unaligned_out_done: fshiftorx %f2, %f2, $fshift, %f8 stda %f8, [$out + $mask]0xc0 ! partial store st %f0, [$ivp + 0] ! output ivec st %f1, [$ivp + 4] st %f2, [$ivp + 8] st %f3, [$ivp + 12] ret restore .align 32 .Lcbc_decrypt: fshiftorx $in0, $in1, $fshift, $in0 fshiftorx $in1, $intail, $fshift, $in1 fmovd %f0, $iv0 fmovd %f2, $iv1 .Loop_cbc_dec: fxor $in0, $r0hi, %f0 ! inp^round[0] fxor $in1, $r0lo, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 add $key, 32, $end sub $rounds, 16*6, $inner .Lcbc_dec: fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$end + 16], %f10 ldd [$end + 24], %f12 add $end, 32, $end fmovd %f0, %f4 faesdecx %f2, %f6, %f0 faesdecx %f4, %f8, %f2 ldd [$end + 0], %f6 ldd [$end + 8], %f8 brnz,a $inner, .Lcbc_dec sub $inner, 16*2, $inner fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$end + 16], %f10 ! round[last-1] ldd [$end + 24], %f12 fmovd %f0, %f4 faesdecx %f2, %f6, %f0 faesdecx %f4, %f8, %f2 fxor $iv0, $rlhi, %f6 ! ivec^round[last] fxor $iv1, $rllo, %f8 fmovd $in0, $iv0 fmovd $in1, $iv1 movrz $len, 0, $inc fmovd $intail, $in0 ldd [$inp - 8], $in1 ! load next input block ldda [$inp]0x82, $intail ! non-faulting load add $inp, $inc, $inp ! inp+=16 fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fshiftorx $in0, $in1, $fshift, $in0 fshiftorx $in1, $intail, $fshift, $in1 fmovd %f0, %f4 faesdeclx %f2, %f6, %f0 faesdeclx %f4, %f8, %f2 brnz,pn $oalign, .Lcbc_dec_unaligned_out nop std %f0, [$out + 0] std %f2, [$out + 8] add $out, 16, $out brnz,a $len, .Loop_cbc_dec sub $len, 1, $len st $iv0, [$ivp + 0] ! output ivec st $iv0#lo, [$ivp + 4] st $iv1, [$ivp + 8] st $iv1#lo, [$ivp + 12] ret restore .align 32 .Lcbc_dec_unaligned_out: ldd [%o7 + $mask], $fshift ! shift right params mov 0xff, $mask srl $mask, $oalign, $mask sub %g0, $ileft, $iright fshiftorx %f0, %f0, $fshift, %f6 fshiftorx %f0, %f2, $fshift, %f8 stda %f6, [$out + $mask]0xc0 ! partial store orn %g0, $mask, $mask std %f8, [$out + 8] add $out, 16, $out brz $len, .Lcbc_dec_unaligned_out_done sub $len, 1, $len b .Loop_cbc_dec_unaligned_out nop .align 32 .Loop_cbc_dec_unaligned_out: fmovd %f2, $outhead fxor $in0, $r0hi, %f0 ! inp^round[0] fxor $in1, $r0lo, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$key + 48], %f10 ! round[3] ldd [$key + 56], %f12 ldx [$inp - 16], %o0 ldx [$inp - 8], %o1 brz $ileft, .Lcbc_dec_aligned_inp movrz $len, 0, $inc ldx [$inp], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 .Lcbc_dec_aligned_inp: fmovd %f0, %f4 faesdecx %f2, %f6, %f0 faesdecx %f4, %f8, %f2 ldd [$key + 64], %f6 ! round[4] ldd [$key + 72], %f8 add $key, 64, $end sub $rounds, 16*8, $inner stx %o0, [%sp + LOCALS + 0] stx %o1, [%sp + LOCALS + 8] add $inp, $inc, $inp ! inp+=16 nop .Lcbc_dec_unaligned: fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$end + 16], %f10 ldd [$end + 24], %f12 add $end, 32, $end fmovd %f0, %f4 faesdecx %f2, %f6, %f0 faesdecx %f4, %f8, %f2 ldd [$end + 0], %f6 ldd [$end + 8], %f8 brnz,a $inner, .Lcbc_dec_unaligned sub $inner, 16*2, $inner fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$end + 16], %f10 ! round[last-1] ldd [$end + 24], %f12 fmovd %f0, %f4 faesdecx %f2, %f6, %f0 faesdecx %f4, %f8, %f2 fxor $iv0, $rlhi, %f6 ! ivec^round[last] fxor $iv1, $rllo, %f8 fmovd $in0, $iv0 fmovd $in1, $iv1 ldd [%sp + LOCALS + 0], $in0 ldd [%sp + LOCALS + 8], $in1 fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fmovd %f0, %f4 faesdeclx %f2, %f6, %f0 faesdeclx %f4, %f8, %f2 fshiftorx $outhead, %f0, $fshift, %f6 fshiftorx %f0, %f2, $fshift, %f8 std %f6, [$out + 0] std %f8, [$out + 8] add $out, 16, $out brnz,a $len, .Loop_cbc_dec_unaligned_out sub $len, 1, $len .Lcbc_dec_unaligned_out_done: fshiftorx %f2, %f2, $fshift, %f8 stda %f8, [$out + $mask]0xc0 ! partial store st $iv0, [$ivp + 0] ! output ivec st $iv0#lo, [$ivp + 4] st $iv1, [$ivp + 8] st $iv1#lo, [$ivp + 12] ret restore .type aes_fx_cbc_encrypt,#function .size aes_fx_cbc_encrypt,.-aes_fx_cbc_encrypt ___ } { my ($inp,$out,$len,$key,$ivp) = map("%i$_",(0..5)); my ($rounds,$inner,$end,$inc,$ialign,$oalign,$mask) = map("%l$_",(0..7)); my ($ctr0,$ctr1,$r0hi,$r0lo,$rlhi,$rllo,$in0,$in1,$intail,$outhead,$fshift) = map("%f$_",grep { !($_ & 1) } (16 .. 62)); my ($ileft,$iright) = ($ialign, $oalign); my $one = "%f14"; $code.=<<___; .globl aes_fx_ctr32_encrypt_blocks .align 32 aes_fx_ctr32_encrypt_blocks: save %sp, -STACK_FRAME-16, %sp srln $len, 0, $len and $inp, 7, $ialign andn $inp, 7, $inp brz,pn $len, .Lctr32_no_data sll $ialign, 3, $ileft .Lpic: call .+8 add %o7, .Linp_align - .Lpic, %o7 ld [$key + 240], $rounds and $out, 7, $oalign ld [$ivp + 0], $ctr0 ! load counter andn $out, 7, $out ld [$ivp + 4], $ctr0#lo sll $oalign, 3, $mask ld [$ivp + 8], $ctr1 ld [$ivp + 12], $ctr1#lo ldd [%o7 + 128], $one sll $rounds, 4, $rounds add $rounds, $key, $end ldd [$key + 0], $r0hi ! round[0] ldd [$key + 8], $r0lo add $inp, 16, $inp sub $len, 1, $len ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 mov 16, $inc movrz $len, 0, $inc ldd [$end + 0], $rlhi ! round[last] ldd [$end + 8], $rllo ldd [%o7 + $ileft], $fshift ! shiftleft params add %o7, 64, %o7 ldd [$inp - 16], $in0 ! load input ldd [$inp - 8], $in1 ldda [$inp]0x82, $intail ! non-faulting load add $inp, $inc, $inp ! inp+=16 fshiftorx $in0, $in1, $fshift, $in0 fshiftorx $in1, $intail, $fshift, $in1 .Loop_ctr32: fxor $ctr0, $r0hi, %f0 ! counter^round[0] fxor $ctr1, $r0lo, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 add $key, 32, $end sub $rounds, 16*6, $inner .Lctr32_enc: fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ldd [$end + 24], %f12 add $end, 32, $end fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$end + 0], %f6 ldd [$end + 8], %f8 brnz,a $inner, .Lctr32_enc sub $inner, 16*2, $inner fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ! round[last-1] ldd [$end + 24], %f12 fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 fxor $in0, $rlhi, %f6 ! inp^round[last] fxor $in1, $rllo, %f8 movrz $len, 0, $inc fmovd $intail, $in0 ldd [$inp - 8], $in1 ! load next input block ldda [$inp]0x82, $intail ! non-faulting load add $inp, $inc, $inp ! inp+=16 fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fshiftorx $in0, $in1, $fshift, $in0 fshiftorx $in1, $intail, $fshift, $in1 fpadd32 $ctr1, $one, $ctr1 ! increment counter fmovd %f0, %f4 faesenclx %f2, %f6, %f0 faesenclx %f4, %f8, %f2 brnz,pn $oalign, .Lctr32_unaligned_out nop std %f0, [$out + 0] std %f2, [$out + 8] add $out, 16, $out brnz,a $len, .Loop_ctr32 sub $len, 1, $len .Lctr32_no_data: ret restore .align 32 .Lctr32_unaligned_out: ldd [%o7 + $mask], $fshift ! shift right params mov 0xff, $mask srl $mask, $oalign, $mask sub %g0, $ileft, $iright fshiftorx %f0, %f0, $fshift, %f6 fshiftorx %f0, %f2, $fshift, %f8 stda %f6, [$out + $mask]0xc0 ! partial store orn %g0, $mask, $mask std %f8, [$out + 8] add $out, 16, $out brz $len, .Lctr32_unaligned_out_done sub $len, 1, $len b .Loop_ctr32_unaligned_out nop .align 32 .Loop_ctr32_unaligned_out: fmovd %f2, $outhead fxor $ctr0, $r0hi, %f0 ! counter^round[0] fxor $ctr1, $r0lo, %f2 ldd [$key + 32], %f6 ! round[2] ldd [$key + 40], %f8 fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 48], %f10 ! round[3] ldd [$key + 56], %f12 ldx [$inp - 16], %o0 ldx [$inp - 8], %o1 brz $ileft, .Lctr32_aligned_inp movrz $len, 0, $inc ldx [$inp], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 .Lctr32_aligned_inp: fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$key + 64], %f6 ! round[4] ldd [$key + 72], %f8 add $key, 64, $end sub $rounds, 16*8, $inner stx %o0, [%sp + LOCALS + 0] stx %o1, [%sp + LOCALS + 8] add $inp, $inc, $inp ! inp+=16 nop .Lctr32_enc_unaligned: fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ldd [$end + 24], %f12 add $end, 32, $end fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$end + 0], %f6 ldd [$end + 8], %f8 brnz,a $inner, .Lctr32_enc_unaligned sub $inner, 16*2, $inner fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$end + 16], %f10 ! round[last-1] ldd [$end + 24], %f12 fpadd32 $ctr1, $one, $ctr1 ! increment counter fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 fxor $in0, $rlhi, %f6 ! inp^round[last] fxor $in1, $rllo, %f8 ldd [%sp + LOCALS + 0], $in0 ldd [%sp + LOCALS + 8], $in1 fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 16], %f10 ! round[1] ldd [$key + 24], %f12 fmovd %f0, %f4 faesenclx %f2, %f6, %f0 faesenclx %f4, %f8, %f2 fshiftorx $outhead, %f0, $fshift, %f6 fshiftorx %f0, %f2, $fshift, %f8 std %f6, [$out + 0] std %f8, [$out + 8] add $out, 16, $out brnz,a $len, .Loop_ctr32_unaligned_out sub $len, 1, $len .Lctr32_unaligned_out_done: fshiftorx %f2, %f2, $fshift, %f8 stda %f8, [$out + $mask]0xc0 ! partial store ret restore .type aes_fx_ctr32_encrypt_blocks,#function .size aes_fx_ctr32_encrypt_blocks,.-aes_fx_ctr32_encrypt_blocks .align 32 .Linp_align: ! fshiftorx parameters for left shift toward %rs1 .byte 0, 0, 64, 0, 0, 64, 0, -64 .byte 0, 0, 56, 8, 0, 56, 8, -56 .byte 0, 0, 48, 16, 0, 48, 16, -48 .byte 0, 0, 40, 24, 0, 40, 24, -40 .byte 0, 0, 32, 32, 0, 32, 32, -32 .byte 0, 0, 24, 40, 0, 24, 40, -24 .byte 0, 0, 16, 48, 0, 16, 48, -16 .byte 0, 0, 8, 56, 0, 8, 56, -8 .Lout_align: ! fshiftorx parameters for right shift toward %rs2 .byte 0, 0, 0, 64, 0, 0, 64, 0 .byte 0, 0, 8, 56, 0, 8, 56, -8 .byte 0, 0, 16, 48, 0, 16, 48, -16 .byte 0, 0, 24, 40, 0, 24, 40, -24 .byte 0, 0, 32, 32, 0, 32, 32, -32 .byte 0, 0, 40, 24, 0, 40, 24, -40 .byte 0, 0, 48, 16, 0, 48, 16, -48 .byte 0, 0, 56, 8, 0, 56, 8, -56 .Lone: .word 0, 1 .asciz "AES for Fujitsu SPARC64 X, CRYPTOGAMS by " .align 4 ___ } # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %visopf = ( "faligndata" => 0x048, "bshuffle" => 0x04c, "fpadd32" => 0x052, "fxor" => 0x06c, "fsrc2" => 0x078 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "alignaddr" => 0x018, "bmask" => 0x019, "alignaddrl" => 0x01a ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unfx { my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %aesopf = ( "faesencx" => 0x90, "faesdecx" => 0x91, "faesenclx" => 0x92, "faesdeclx" => 0x93, "faeskeyx" => 0x94 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if (defined($opf=$aesopf{$mnemonic})) { $rs2 = ($rs2 =~ /%f([0-6]*[02468])/) ? (($1|$1>>5)&31) : $rs2; $rs2 = oct($rs2) if ($rs2 =~ /^0/); foreach ($rs1,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unfx3src { my ($mnemonic,$rs1,$rs2,$rs3,$rd)=@_; my ($ref,$opf); my %aesopf = ( "fshiftorx" => 0x0b ); $ref = "$mnemonic\t$rs1,$rs2,$rs3,$rd"; if (defined($opf=$aesopf{$mnemonic})) { foreach ($rs1,$rs2,$rs3,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x37<<19|$rs1<<14|$rs3<<9|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/%f([0-9]+)#lo/sprintf "%%f%d",$1+1/ge; s/\b(faes[^x]{3,4}x)\s+(%f[0-9]{1,2}),\s*([%fx0-9]+),\s*(%f[0-9]{1,2})/ &unfx($1,$2,$3,$4) /ge or s/\b([f][^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unfx3src($1,$2,$3,$4,$5) /ge or s/\b([fb][^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /ge or s/\b(alignaddr[l]*)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aesni-mb-x86_64.pl000066400000000000000000001114461364063235100212110ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # Multi-buffer AES-NI procedures process several independent buffers # in parallel by interleaving independent instructions. # # Cycles per byte for interleave factor 4: # # asymptotic measured # --------------------------- # Westmere 5.00/4=1.25 5.13/4=1.28 # Atom 15.0/4=3.75 ?15.7/4=3.93 # Sandy Bridge 5.06/4=1.27 5.18/4=1.29 # Ivy Bridge 5.06/4=1.27 5.14/4=1.29 # Haswell 4.44/4=1.11 4.44/4=1.11 # Bulldozer 5.75/4=1.44 5.76/4=1.44 # # Cycles per byte for interleave factor 8 (not implemented for # pre-AVX processors, where higher interleave factor incidentally # doesn't result in improvement): # # asymptotic measured # --------------------------- # Sandy Bridge 5.06/8=0.64 7.10/8=0.89(*) # Ivy Bridge 5.06/8=0.64 7.14/8=0.89(*) # Haswell 5.00/8=0.63 5.00/8=0.63 # Bulldozer 5.75/8=0.72 5.77/8=0.72 # # (*) Sandy/Ivy Bridge are known to handle high interleave factors # suboptimally; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; $avx=0; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; # void aesni_multi_cbc_encrypt ( # struct { void *inp,*out; int blocks; double iv[2]; } inp[8]; # const AES_KEY *key, # int num); /* 1 or 2 */ # $inp="%rdi"; # 1st arg $key="%rsi"; # 2nd arg $num="%edx"; @inptr=map("%r$_",(8..11)); @outptr=map("%r$_",(12..15)); ($rndkey0,$rndkey1)=("%xmm0","%xmm1"); @out=map("%xmm$_",(2..5)); @inp=map("%xmm$_",(6..9)); ($counters,$mask,$zero)=map("%xmm$_",(10..12)); ($rounds,$one,$sink,$offset)=("%eax","%ecx","%rbp","%rbx"); $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl aesni_multi_cbc_encrypt .type aesni_multi_cbc_encrypt,\@function,3 .align 32 aesni_multi_cbc_encrypt: .cfi_startproc ___ $code.=<<___ if ($avx); cmp \$2,$num jb .Lenc_non_avx mov OPENSSL_ia32cap_P+4(%rip),%ecx test \$`1<<28`,%ecx # AVX bit jnz _avx_cbc_enc_shortcut jmp .Lenc_non_avx .align 16 .Lenc_non_avx: ___ $code.=<<___; mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,0x60(%rsp) movaps %xmm13,-0x68(%rax) # not used, saved to share se_handler movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) ___ $code.=<<___; # stack layout # # +0 output sink # +16 input sink [original %rsp and $num] # +32 counters sub \$48,%rsp and \$-64,%rsp mov %rax,16(%rsp) # original %rsp .cfi_cfa_expression %rsp+16,deref,+8 .Lenc4x_body: movdqu ($key),$zero # 0-round key lea 0x78($key),$key # size optimization lea 40*2($inp),$inp .Lenc4x_loop_grande: mov $num,24(%rsp) # original $num xor $num,$num ___ for($i=0;$i<4;$i++) { $code.=<<___; mov `40*$i+16-40*2`($inp),$one # borrow $one for number of blocks mov `40*$i+0-40*2`($inp),@inptr[$i] cmp $num,$one mov `40*$i+8-40*2`($inp),@outptr[$i] cmovg $one,$num # find maximum test $one,$one movdqu `40*$i+24-40*2`($inp),@out[$i] # load IV mov $one,`32+4*$i`(%rsp) # initialize counters cmovle %rsp,@inptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Lenc4x_done movups 0x10-0x78($key),$rndkey1 pxor $zero,@out[0] movups 0x20-0x78($key),$rndkey0 pxor $zero,@out[1] mov 0xf0-0x78($key),$rounds pxor $zero,@out[2] movdqu (@inptr[0]),@inp[0] # load inputs pxor $zero,@out[3] movdqu (@inptr[1]),@inp[1] pxor @inp[0],@out[0] movdqu (@inptr[2]),@inp[2] pxor @inp[1],@out[1] movdqu (@inptr[3]),@inp[3] pxor @inp[2],@out[2] pxor @inp[3],@out[3] movdqa 32(%rsp),$counters # load counters xor $offset,$offset jmp .Loop_enc4x .align 32 .Loop_enc4x: add \$16,$offset lea 16(%rsp),$sink # sink pointer mov \$1,$one # constant of 1 sub $offset,$sink aesenc $rndkey1,@out[0] prefetcht0 31(@inptr[0],$offset) # prefetch input prefetcht0 31(@inptr[1],$offset) aesenc $rndkey1,@out[1] prefetcht0 31(@inptr[2],$offset) prefetcht0 31(@inptr[2],$offset) aesenc $rndkey1,@out[2] aesenc $rndkey1,@out[3] movups 0x30-0x78($key),$rndkey1 ___ for($i=0;$i<4;$i++) { my $rndkey = ($i&1) ? $rndkey1 : $rndkey0; $code.=<<___; cmp `32+4*$i`(%rsp),$one aesenc $rndkey,@out[0] aesenc $rndkey,@out[1] aesenc $rndkey,@out[2] cmovge $sink,@inptr[$i] # cancel input cmovg $sink,@outptr[$i] # sink output aesenc $rndkey,@out[3] movups `0x40+16*$i-0x78`($key),$rndkey ___ } $code.=<<___; movdqa $counters,$mask aesenc $rndkey0,@out[0] prefetcht0 15(@outptr[0],$offset) # prefetch output prefetcht0 15(@outptr[1],$offset) aesenc $rndkey0,@out[1] prefetcht0 15(@outptr[2],$offset) prefetcht0 15(@outptr[3],$offset) aesenc $rndkey0,@out[2] aesenc $rndkey0,@out[3] movups 0x80-0x78($key),$rndkey0 pxor $zero,$zero aesenc $rndkey1,@out[0] pcmpgtd $zero,$mask movdqu -0x78($key),$zero # reload 0-round key aesenc $rndkey1,@out[1] paddd $mask,$counters # decrement counters movdqa $counters,32(%rsp) # update counters aesenc $rndkey1,@out[2] aesenc $rndkey1,@out[3] movups 0x90-0x78($key),$rndkey1 cmp \$11,$rounds aesenc $rndkey0,@out[0] aesenc $rndkey0,@out[1] aesenc $rndkey0,@out[2] aesenc $rndkey0,@out[3] movups 0xa0-0x78($key),$rndkey0 jb .Lenc4x_tail aesenc $rndkey1,@out[0] aesenc $rndkey1,@out[1] aesenc $rndkey1,@out[2] aesenc $rndkey1,@out[3] movups 0xb0-0x78($key),$rndkey1 aesenc $rndkey0,@out[0] aesenc $rndkey0,@out[1] aesenc $rndkey0,@out[2] aesenc $rndkey0,@out[3] movups 0xc0-0x78($key),$rndkey0 je .Lenc4x_tail aesenc $rndkey1,@out[0] aesenc $rndkey1,@out[1] aesenc $rndkey1,@out[2] aesenc $rndkey1,@out[3] movups 0xd0-0x78($key),$rndkey1 aesenc $rndkey0,@out[0] aesenc $rndkey0,@out[1] aesenc $rndkey0,@out[2] aesenc $rndkey0,@out[3] movups 0xe0-0x78($key),$rndkey0 jmp .Lenc4x_tail .align 32 .Lenc4x_tail: aesenc $rndkey1,@out[0] aesenc $rndkey1,@out[1] aesenc $rndkey1,@out[2] aesenc $rndkey1,@out[3] movdqu (@inptr[0],$offset),@inp[0] movdqu 0x10-0x78($key),$rndkey1 aesenclast $rndkey0,@out[0] movdqu (@inptr[1],$offset),@inp[1] pxor $zero,@inp[0] aesenclast $rndkey0,@out[1] movdqu (@inptr[2],$offset),@inp[2] pxor $zero,@inp[1] aesenclast $rndkey0,@out[2] movdqu (@inptr[3],$offset),@inp[3] pxor $zero,@inp[2] aesenclast $rndkey0,@out[3] movdqu 0x20-0x78($key),$rndkey0 pxor $zero,@inp[3] movups @out[0],-16(@outptr[0],$offset) pxor @inp[0],@out[0] movups @out[1],-16(@outptr[1],$offset) pxor @inp[1],@out[1] movups @out[2],-16(@outptr[2],$offset) pxor @inp[2],@out[2] movups @out[3],-16(@outptr[3],$offset) pxor @inp[3],@out[3] dec $num jnz .Loop_enc4x mov 16(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 mov 24(%rsp),$num #pxor @inp[0],@out[0] #pxor @inp[1],@out[1] #movdqu @out[0],`40*0+24-40*2`($inp) # output iv FIX ME! #pxor @inp[2],@out[2] #movdqu @out[1],`40*1+24-40*2`($inp) #pxor @inp[3],@out[3] #movdqu @out[2],`40*2+24-40*2`($inp) # won't fix, let caller #movdqu @out[3],`40*3+24-40*2`($inp) # figure this out... lea `40*4`($inp),$inp dec $num jnz .Lenc4x_loop_grande .Lenc4x_done: ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 #movaps -0x68(%rax),%xmm13 #movaps -0x58(%rax),%xmm14 #movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lenc4x_epilogue: ret .cfi_endproc .size aesni_multi_cbc_encrypt,.-aesni_multi_cbc_encrypt .globl aesni_multi_cbc_decrypt .type aesni_multi_cbc_decrypt,\@function,3 .align 32 aesni_multi_cbc_decrypt: .cfi_startproc ___ $code.=<<___ if ($avx); cmp \$2,$num jb .Ldec_non_avx mov OPENSSL_ia32cap_P+4(%rip),%ecx test \$`1<<28`,%ecx # AVX bit jnz _avx_cbc_dec_shortcut jmp .Ldec_non_avx .align 16 .Ldec_non_avx: ___ $code.=<<___; mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,0x60(%rsp) movaps %xmm13,-0x68(%rax) # not used, saved to share se_handler movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) ___ $code.=<<___; # stack layout # # +0 output sink # +16 input sink [original %rsp and $num] # +32 counters sub \$48,%rsp and \$-64,%rsp mov %rax,16(%rsp) # original %rsp .cfi_cfa_expression %rsp+16,deref,+8 .Ldec4x_body: movdqu ($key),$zero # 0-round key lea 0x78($key),$key # size optimization lea 40*2($inp),$inp .Ldec4x_loop_grande: mov $num,24(%rsp) # original $num xor $num,$num ___ for($i=0;$i<4;$i++) { $code.=<<___; mov `40*$i+16-40*2`($inp),$one # borrow $one for number of blocks mov `40*$i+0-40*2`($inp),@inptr[$i] cmp $num,$one mov `40*$i+8-40*2`($inp),@outptr[$i] cmovg $one,$num # find maximum test $one,$one movdqu `40*$i+24-40*2`($inp),@inp[$i] # load IV mov $one,`32+4*$i`(%rsp) # initialize counters cmovle %rsp,@inptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Ldec4x_done movups 0x10-0x78($key),$rndkey1 movups 0x20-0x78($key),$rndkey0 mov 0xf0-0x78($key),$rounds movdqu (@inptr[0]),@out[0] # load inputs movdqu (@inptr[1]),@out[1] pxor $zero,@out[0] movdqu (@inptr[2]),@out[2] pxor $zero,@out[1] movdqu (@inptr[3]),@out[3] pxor $zero,@out[2] pxor $zero,@out[3] movdqa 32(%rsp),$counters # load counters xor $offset,$offset jmp .Loop_dec4x .align 32 .Loop_dec4x: add \$16,$offset lea 16(%rsp),$sink # sink pointer mov \$1,$one # constant of 1 sub $offset,$sink aesdec $rndkey1,@out[0] prefetcht0 31(@inptr[0],$offset) # prefetch input prefetcht0 31(@inptr[1],$offset) aesdec $rndkey1,@out[1] prefetcht0 31(@inptr[2],$offset) prefetcht0 31(@inptr[3],$offset) aesdec $rndkey1,@out[2] aesdec $rndkey1,@out[3] movups 0x30-0x78($key),$rndkey1 ___ for($i=0;$i<4;$i++) { my $rndkey = ($i&1) ? $rndkey1 : $rndkey0; $code.=<<___; cmp `32+4*$i`(%rsp),$one aesdec $rndkey,@out[0] aesdec $rndkey,@out[1] aesdec $rndkey,@out[2] cmovge $sink,@inptr[$i] # cancel input cmovg $sink,@outptr[$i] # sink output aesdec $rndkey,@out[3] movups `0x40+16*$i-0x78`($key),$rndkey ___ } $code.=<<___; movdqa $counters,$mask aesdec $rndkey0,@out[0] prefetcht0 15(@outptr[0],$offset) # prefetch output prefetcht0 15(@outptr[1],$offset) aesdec $rndkey0,@out[1] prefetcht0 15(@outptr[2],$offset) prefetcht0 15(@outptr[3],$offset) aesdec $rndkey0,@out[2] aesdec $rndkey0,@out[3] movups 0x80-0x78($key),$rndkey0 pxor $zero,$zero aesdec $rndkey1,@out[0] pcmpgtd $zero,$mask movdqu -0x78($key),$zero # reload 0-round key aesdec $rndkey1,@out[1] paddd $mask,$counters # decrement counters movdqa $counters,32(%rsp) # update counters aesdec $rndkey1,@out[2] aesdec $rndkey1,@out[3] movups 0x90-0x78($key),$rndkey1 cmp \$11,$rounds aesdec $rndkey0,@out[0] aesdec $rndkey0,@out[1] aesdec $rndkey0,@out[2] aesdec $rndkey0,@out[3] movups 0xa0-0x78($key),$rndkey0 jb .Ldec4x_tail aesdec $rndkey1,@out[0] aesdec $rndkey1,@out[1] aesdec $rndkey1,@out[2] aesdec $rndkey1,@out[3] movups 0xb0-0x78($key),$rndkey1 aesdec $rndkey0,@out[0] aesdec $rndkey0,@out[1] aesdec $rndkey0,@out[2] aesdec $rndkey0,@out[3] movups 0xc0-0x78($key),$rndkey0 je .Ldec4x_tail aesdec $rndkey1,@out[0] aesdec $rndkey1,@out[1] aesdec $rndkey1,@out[2] aesdec $rndkey1,@out[3] movups 0xd0-0x78($key),$rndkey1 aesdec $rndkey0,@out[0] aesdec $rndkey0,@out[1] aesdec $rndkey0,@out[2] aesdec $rndkey0,@out[3] movups 0xe0-0x78($key),$rndkey0 jmp .Ldec4x_tail .align 32 .Ldec4x_tail: aesdec $rndkey1,@out[0] aesdec $rndkey1,@out[1] aesdec $rndkey1,@out[2] pxor $rndkey0,@inp[0] pxor $rndkey0,@inp[1] aesdec $rndkey1,@out[3] movdqu 0x10-0x78($key),$rndkey1 pxor $rndkey0,@inp[2] pxor $rndkey0,@inp[3] movdqu 0x20-0x78($key),$rndkey0 aesdeclast @inp[0],@out[0] aesdeclast @inp[1],@out[1] movdqu -16(@inptr[0],$offset),@inp[0] # load next IV movdqu -16(@inptr[1],$offset),@inp[1] aesdeclast @inp[2],@out[2] aesdeclast @inp[3],@out[3] movdqu -16(@inptr[2],$offset),@inp[2] movdqu -16(@inptr[3],$offset),@inp[3] movups @out[0],-16(@outptr[0],$offset) movdqu (@inptr[0],$offset),@out[0] movups @out[1],-16(@outptr[1],$offset) movdqu (@inptr[1],$offset),@out[1] pxor $zero,@out[0] movups @out[2],-16(@outptr[2],$offset) movdqu (@inptr[2],$offset),@out[2] pxor $zero,@out[1] movups @out[3],-16(@outptr[3],$offset) movdqu (@inptr[3],$offset),@out[3] pxor $zero,@out[2] pxor $zero,@out[3] dec $num jnz .Loop_dec4x mov 16(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 mov 24(%rsp),$num lea `40*4`($inp),$inp dec $num jnz .Ldec4x_loop_grande .Ldec4x_done: ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 #movaps -0x68(%rax),%xmm13 #movaps -0x58(%rax),%xmm14 #movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Ldec4x_epilogue: ret .cfi_endproc .size aesni_multi_cbc_decrypt,.-aesni_multi_cbc_decrypt ___ if ($avx) {{{ my @ptr=map("%r$_",(8..15)); my $offload=$sink; my @out=map("%xmm$_",(2..9)); my @inp=map("%xmm$_",(10..13)); my ($counters,$zero)=("%xmm14","%xmm15"); $code.=<<___; .type aesni_multi_cbc_encrypt_avx,\@function,3 .align 32 aesni_multi_cbc_encrypt_avx: .cfi_startproc _avx_cbc_enc_shortcut: mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,-0x78(%rax) movaps %xmm13,-0x68(%rax) movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) ___ $code.=<<___; # stack layout # # +0 output sink # +16 input sink [original %rsp and $num] # +32 counters # +64 distances between inputs and outputs # +128 off-load area for @inp[0..3] sub \$192,%rsp and \$-128,%rsp mov %rax,16(%rsp) # original %rsp .cfi_cfa_expression %rsp+16,deref,+8 .Lenc8x_body: vzeroupper vmovdqu ($key),$zero # 0-round key lea 0x78($key),$key # size optimization lea 40*4($inp),$inp shr \$1,$num .Lenc8x_loop_grande: #mov $num,24(%rsp) # original $num xor $num,$num ___ for($i=0;$i<8;$i++) { my $temp = $i ? $offload : $offset; $code.=<<___; mov `40*$i+16-40*4`($inp),$one # borrow $one for number of blocks mov `40*$i+0-40*4`($inp),@ptr[$i] # input pointer cmp $num,$one mov `40*$i+8-40*4`($inp),$temp # output pointer cmovg $one,$num # find maximum test $one,$one vmovdqu `40*$i+24-40*4`($inp),@out[$i] # load IV mov $one,`32+4*$i`(%rsp) # initialize counters cmovle %rsp,@ptr[$i] # cancel input sub @ptr[$i],$temp # distance between input and output mov $temp,`64+8*$i`(%rsp) # initialize distances ___ } $code.=<<___; test $num,$num jz .Lenc8x_done vmovups 0x10-0x78($key),$rndkey1 vmovups 0x20-0x78($key),$rndkey0 mov 0xf0-0x78($key),$rounds vpxor (@ptr[0]),$zero,@inp[0] # load inputs and xor with 0-round lea 128(%rsp),$offload # offload area vpxor (@ptr[1]),$zero,@inp[1] vpxor (@ptr[2]),$zero,@inp[2] vpxor (@ptr[3]),$zero,@inp[3] vpxor @inp[0],@out[0],@out[0] vpxor (@ptr[4]),$zero,@inp[0] vpxor @inp[1],@out[1],@out[1] vpxor (@ptr[5]),$zero,@inp[1] vpxor @inp[2],@out[2],@out[2] vpxor (@ptr[6]),$zero,@inp[2] vpxor @inp[3],@out[3],@out[3] vpxor (@ptr[7]),$zero,@inp[3] vpxor @inp[0],@out[4],@out[4] mov \$1,$one # constant of 1 vpxor @inp[1],@out[5],@out[5] vpxor @inp[2],@out[6],@out[6] vpxor @inp[3],@out[7],@out[7] jmp .Loop_enc8x .align 32 .Loop_enc8x: ___ for($i=0;$i<8;$i++) { my $rndkey=($i&1)?$rndkey0:$rndkey1; $code.=<<___; vaesenc $rndkey,@out[0],@out[0] cmp 32+4*$i(%rsp),$one ___ $code.=<<___ if ($i); mov 64+8*$i(%rsp),$offset ___ $code.=<<___; vaesenc $rndkey,@out[1],@out[1] prefetcht0 31(@ptr[$i]) # prefetch input vaesenc $rndkey,@out[2],@out[2] ___ $code.=<<___ if ($i>1); prefetcht0 15(@ptr[$i-2]) # prefetch output ___ $code.=<<___; vaesenc $rndkey,@out[3],@out[3] lea (@ptr[$i],$offset),$offset cmovge %rsp,@ptr[$i] # cancel input vaesenc $rndkey,@out[4],@out[4] cmovg %rsp,$offset # sink output vaesenc $rndkey,@out[5],@out[5] sub @ptr[$i],$offset vaesenc $rndkey,@out[6],@out[6] vpxor 16(@ptr[$i]),$zero,@inp[$i%4] # load input and xor with 0-round mov $offset,64+8*$i(%rsp) vaesenc $rndkey,@out[7],@out[7] vmovups `16*(3+$i)-0x78`($key),$rndkey lea 16(@ptr[$i],$offset),@ptr[$i] # switch to output ___ $code.=<<___ if ($i<4) vmovdqu @inp[$i%4],`16*$i`($offload) # off-load ___ } $code.=<<___; vmovdqu 32(%rsp),$counters prefetcht0 15(@ptr[$i-2]) # prefetch output prefetcht0 15(@ptr[$i-1]) cmp \$11,$rounds jb .Lenc8x_tail vaesenc $rndkey1,@out[0],@out[0] vaesenc $rndkey1,@out[1],@out[1] vaesenc $rndkey1,@out[2],@out[2] vaesenc $rndkey1,@out[3],@out[3] vaesenc $rndkey1,@out[4],@out[4] vaesenc $rndkey1,@out[5],@out[5] vaesenc $rndkey1,@out[6],@out[6] vaesenc $rndkey1,@out[7],@out[7] vmovups 0xb0-0x78($key),$rndkey1 vaesenc $rndkey0,@out[0],@out[0] vaesenc $rndkey0,@out[1],@out[1] vaesenc $rndkey0,@out[2],@out[2] vaesenc $rndkey0,@out[3],@out[3] vaesenc $rndkey0,@out[4],@out[4] vaesenc $rndkey0,@out[5],@out[5] vaesenc $rndkey0,@out[6],@out[6] vaesenc $rndkey0,@out[7],@out[7] vmovups 0xc0-0x78($key),$rndkey0 je .Lenc8x_tail vaesenc $rndkey1,@out[0],@out[0] vaesenc $rndkey1,@out[1],@out[1] vaesenc $rndkey1,@out[2],@out[2] vaesenc $rndkey1,@out[3],@out[3] vaesenc $rndkey1,@out[4],@out[4] vaesenc $rndkey1,@out[5],@out[5] vaesenc $rndkey1,@out[6],@out[6] vaesenc $rndkey1,@out[7],@out[7] vmovups 0xd0-0x78($key),$rndkey1 vaesenc $rndkey0,@out[0],@out[0] vaesenc $rndkey0,@out[1],@out[1] vaesenc $rndkey0,@out[2],@out[2] vaesenc $rndkey0,@out[3],@out[3] vaesenc $rndkey0,@out[4],@out[4] vaesenc $rndkey0,@out[5],@out[5] vaesenc $rndkey0,@out[6],@out[6] vaesenc $rndkey0,@out[7],@out[7] vmovups 0xe0-0x78($key),$rndkey0 .Lenc8x_tail: vaesenc $rndkey1,@out[0],@out[0] vpxor $zero,$zero,$zero vaesenc $rndkey1,@out[1],@out[1] vaesenc $rndkey1,@out[2],@out[2] vpcmpgtd $zero,$counters,$zero vaesenc $rndkey1,@out[3],@out[3] vaesenc $rndkey1,@out[4],@out[4] vpaddd $counters,$zero,$zero # decrement counters vmovdqu 48(%rsp),$counters vaesenc $rndkey1,@out[5],@out[5] mov 64(%rsp),$offset # pre-load 1st offset vaesenc $rndkey1,@out[6],@out[6] vaesenc $rndkey1,@out[7],@out[7] vmovups 0x10-0x78($key),$rndkey1 vaesenclast $rndkey0,@out[0],@out[0] vmovdqa $zero,32(%rsp) # update counters vpxor $zero,$zero,$zero vaesenclast $rndkey0,@out[1],@out[1] vaesenclast $rndkey0,@out[2],@out[2] vpcmpgtd $zero,$counters,$zero vaesenclast $rndkey0,@out[3],@out[3] vaesenclast $rndkey0,@out[4],@out[4] vpaddd $zero,$counters,$counters # decrement counters vmovdqu -0x78($key),$zero # 0-round vaesenclast $rndkey0,@out[5],@out[5] vaesenclast $rndkey0,@out[6],@out[6] vmovdqa $counters,48(%rsp) # update counters vaesenclast $rndkey0,@out[7],@out[7] vmovups 0x20-0x78($key),$rndkey0 vmovups @out[0],-16(@ptr[0]) # write output sub $offset,@ptr[0] # switch to input vpxor 0x00($offload),@out[0],@out[0] vmovups @out[1],-16(@ptr[1]) sub `64+1*8`(%rsp),@ptr[1] vpxor 0x10($offload),@out[1],@out[1] vmovups @out[2],-16(@ptr[2]) sub `64+2*8`(%rsp),@ptr[2] vpxor 0x20($offload),@out[2],@out[2] vmovups @out[3],-16(@ptr[3]) sub `64+3*8`(%rsp),@ptr[3] vpxor 0x30($offload),@out[3],@out[3] vmovups @out[4],-16(@ptr[4]) sub `64+4*8`(%rsp),@ptr[4] vpxor @inp[0],@out[4],@out[4] vmovups @out[5],-16(@ptr[5]) sub `64+5*8`(%rsp),@ptr[5] vpxor @inp[1],@out[5],@out[5] vmovups @out[6],-16(@ptr[6]) sub `64+6*8`(%rsp),@ptr[6] vpxor @inp[2],@out[6],@out[6] vmovups @out[7],-16(@ptr[7]) sub `64+7*8`(%rsp),@ptr[7] vpxor @inp[3],@out[7],@out[7] dec $num jnz .Loop_enc8x mov 16(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 #mov 24(%rsp),$num #lea `40*8`($inp),$inp #dec $num #jnz .Lenc8x_loop_grande .Lenc8x_done: vzeroupper ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lenc8x_epilogue: ret .cfi_endproc .size aesni_multi_cbc_encrypt_avx,.-aesni_multi_cbc_encrypt_avx .type aesni_multi_cbc_decrypt_avx,\@function,3 .align 32 aesni_multi_cbc_decrypt_avx: .cfi_startproc _avx_cbc_dec_shortcut: mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,-0x78(%rax) movaps %xmm13,-0x68(%rax) movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) ___ $code.=<<___; # stack layout # # +0 output sink # +16 input sink [original %rsp and $num] # +32 counters # +64 distances between inputs and outputs # +128 off-load area for @inp[0..3] # +192 IV/input offload sub \$256,%rsp and \$-256,%rsp sub \$192,%rsp mov %rax,16(%rsp) # original %rsp .cfi_cfa_expression %rsp+16,deref,+8 .Ldec8x_body: vzeroupper vmovdqu ($key),$zero # 0-round key lea 0x78($key),$key # size optimization lea 40*4($inp),$inp shr \$1,$num .Ldec8x_loop_grande: #mov $num,24(%rsp) # original $num xor $num,$num ___ for($i=0;$i<8;$i++) { my $temp = $i ? $offload : $offset; $code.=<<___; mov `40*$i+16-40*4`($inp),$one # borrow $one for number of blocks mov `40*$i+0-40*4`($inp),@ptr[$i] # input pointer cmp $num,$one mov `40*$i+8-40*4`($inp),$temp # output pointer cmovg $one,$num # find maximum test $one,$one vmovdqu `40*$i+24-40*4`($inp),@out[$i] # load IV mov $one,`32+4*$i`(%rsp) # initialize counters cmovle %rsp,@ptr[$i] # cancel input sub @ptr[$i],$temp # distance between input and output mov $temp,`64+8*$i`(%rsp) # initialize distances vmovdqu @out[$i],`192+16*$i`(%rsp) # offload IV ___ } $code.=<<___; test $num,$num jz .Ldec8x_done vmovups 0x10-0x78($key),$rndkey1 vmovups 0x20-0x78($key),$rndkey0 mov 0xf0-0x78($key),$rounds lea 192+128(%rsp),$offload # offload area vmovdqu (@ptr[0]),@out[0] # load inputs vmovdqu (@ptr[1]),@out[1] vmovdqu (@ptr[2]),@out[2] vmovdqu (@ptr[3]),@out[3] vmovdqu (@ptr[4]),@out[4] vmovdqu (@ptr[5]),@out[5] vmovdqu (@ptr[6]),@out[6] vmovdqu (@ptr[7]),@out[7] vmovdqu @out[0],0x00($offload) # offload inputs vpxor $zero,@out[0],@out[0] # xor inputs with 0-round vmovdqu @out[1],0x10($offload) vpxor $zero,@out[1],@out[1] vmovdqu @out[2],0x20($offload) vpxor $zero,@out[2],@out[2] vmovdqu @out[3],0x30($offload) vpxor $zero,@out[3],@out[3] vmovdqu @out[4],0x40($offload) vpxor $zero,@out[4],@out[4] vmovdqu @out[5],0x50($offload) vpxor $zero,@out[5],@out[5] vmovdqu @out[6],0x60($offload) vpxor $zero,@out[6],@out[6] vmovdqu @out[7],0x70($offload) vpxor $zero,@out[7],@out[7] xor \$0x80,$offload mov \$1,$one # constant of 1 jmp .Loop_dec8x .align 32 .Loop_dec8x: ___ for($i=0;$i<8;$i++) { my $rndkey=($i&1)?$rndkey0:$rndkey1; $code.=<<___; vaesdec $rndkey,@out[0],@out[0] cmp 32+4*$i(%rsp),$one ___ $code.=<<___ if ($i); mov 64+8*$i(%rsp),$offset ___ $code.=<<___; vaesdec $rndkey,@out[1],@out[1] prefetcht0 31(@ptr[$i]) # prefetch input vaesdec $rndkey,@out[2],@out[2] ___ $code.=<<___ if ($i>1); prefetcht0 15(@ptr[$i-2]) # prefetch output ___ $code.=<<___; vaesdec $rndkey,@out[3],@out[3] lea (@ptr[$i],$offset),$offset cmovge %rsp,@ptr[$i] # cancel input vaesdec $rndkey,@out[4],@out[4] cmovg %rsp,$offset # sink output vaesdec $rndkey,@out[5],@out[5] sub @ptr[$i],$offset vaesdec $rndkey,@out[6],@out[6] vmovdqu 16(@ptr[$i]),@inp[$i%4] # load input mov $offset,64+8*$i(%rsp) vaesdec $rndkey,@out[7],@out[7] vmovups `16*(3+$i)-0x78`($key),$rndkey lea 16(@ptr[$i],$offset),@ptr[$i] # switch to output ___ $code.=<<___ if ($i<4); vmovdqu @inp[$i%4],`128+16*$i`(%rsp) # off-load ___ } $code.=<<___; vmovdqu 32(%rsp),$counters prefetcht0 15(@ptr[$i-2]) # prefetch output prefetcht0 15(@ptr[$i-1]) cmp \$11,$rounds jb .Ldec8x_tail vaesdec $rndkey1,@out[0],@out[0] vaesdec $rndkey1,@out[1],@out[1] vaesdec $rndkey1,@out[2],@out[2] vaesdec $rndkey1,@out[3],@out[3] vaesdec $rndkey1,@out[4],@out[4] vaesdec $rndkey1,@out[5],@out[5] vaesdec $rndkey1,@out[6],@out[6] vaesdec $rndkey1,@out[7],@out[7] vmovups 0xb0-0x78($key),$rndkey1 vaesdec $rndkey0,@out[0],@out[0] vaesdec $rndkey0,@out[1],@out[1] vaesdec $rndkey0,@out[2],@out[2] vaesdec $rndkey0,@out[3],@out[3] vaesdec $rndkey0,@out[4],@out[4] vaesdec $rndkey0,@out[5],@out[5] vaesdec $rndkey0,@out[6],@out[6] vaesdec $rndkey0,@out[7],@out[7] vmovups 0xc0-0x78($key),$rndkey0 je .Ldec8x_tail vaesdec $rndkey1,@out[0],@out[0] vaesdec $rndkey1,@out[1],@out[1] vaesdec $rndkey1,@out[2],@out[2] vaesdec $rndkey1,@out[3],@out[3] vaesdec $rndkey1,@out[4],@out[4] vaesdec $rndkey1,@out[5],@out[5] vaesdec $rndkey1,@out[6],@out[6] vaesdec $rndkey1,@out[7],@out[7] vmovups 0xd0-0x78($key),$rndkey1 vaesdec $rndkey0,@out[0],@out[0] vaesdec $rndkey0,@out[1],@out[1] vaesdec $rndkey0,@out[2],@out[2] vaesdec $rndkey0,@out[3],@out[3] vaesdec $rndkey0,@out[4],@out[4] vaesdec $rndkey0,@out[5],@out[5] vaesdec $rndkey0,@out[6],@out[6] vaesdec $rndkey0,@out[7],@out[7] vmovups 0xe0-0x78($key),$rndkey0 .Ldec8x_tail: vaesdec $rndkey1,@out[0],@out[0] vpxor $zero,$zero,$zero vaesdec $rndkey1,@out[1],@out[1] vaesdec $rndkey1,@out[2],@out[2] vpcmpgtd $zero,$counters,$zero vaesdec $rndkey1,@out[3],@out[3] vaesdec $rndkey1,@out[4],@out[4] vpaddd $counters,$zero,$zero # decrement counters vmovdqu 48(%rsp),$counters vaesdec $rndkey1,@out[5],@out[5] mov 64(%rsp),$offset # pre-load 1st offset vaesdec $rndkey1,@out[6],@out[6] vaesdec $rndkey1,@out[7],@out[7] vmovups 0x10-0x78($key),$rndkey1 vaesdeclast $rndkey0,@out[0],@out[0] vmovdqa $zero,32(%rsp) # update counters vpxor $zero,$zero,$zero vaesdeclast $rndkey0,@out[1],@out[1] vpxor 0x00($offload),@out[0],@out[0] # xor with IV vaesdeclast $rndkey0,@out[2],@out[2] vpxor 0x10($offload),@out[1],@out[1] vpcmpgtd $zero,$counters,$zero vaesdeclast $rndkey0,@out[3],@out[3] vpxor 0x20($offload),@out[2],@out[2] vaesdeclast $rndkey0,@out[4],@out[4] vpxor 0x30($offload),@out[3],@out[3] vpaddd $zero,$counters,$counters # decrement counters vmovdqu -0x78($key),$zero # 0-round vaesdeclast $rndkey0,@out[5],@out[5] vpxor 0x40($offload),@out[4],@out[4] vaesdeclast $rndkey0,@out[6],@out[6] vpxor 0x50($offload),@out[5],@out[5] vmovdqa $counters,48(%rsp) # update counters vaesdeclast $rndkey0,@out[7],@out[7] vpxor 0x60($offload),@out[6],@out[6] vmovups 0x20-0x78($key),$rndkey0 vmovups @out[0],-16(@ptr[0]) # write output sub $offset,@ptr[0] # switch to input vmovdqu 128+0(%rsp),@out[0] vpxor 0x70($offload),@out[7],@out[7] vmovups @out[1],-16(@ptr[1]) sub `64+1*8`(%rsp),@ptr[1] vmovdqu @out[0],0x00($offload) vpxor $zero,@out[0],@out[0] vmovdqu 128+16(%rsp),@out[1] vmovups @out[2],-16(@ptr[2]) sub `64+2*8`(%rsp),@ptr[2] vmovdqu @out[1],0x10($offload) vpxor $zero,@out[1],@out[1] vmovdqu 128+32(%rsp),@out[2] vmovups @out[3],-16(@ptr[3]) sub `64+3*8`(%rsp),@ptr[3] vmovdqu @out[2],0x20($offload) vpxor $zero,@out[2],@out[2] vmovdqu 128+48(%rsp),@out[3] vmovups @out[4],-16(@ptr[4]) sub `64+4*8`(%rsp),@ptr[4] vmovdqu @out[3],0x30($offload) vpxor $zero,@out[3],@out[3] vmovdqu @inp[0],0x40($offload) vpxor @inp[0],$zero,@out[4] vmovups @out[5],-16(@ptr[5]) sub `64+5*8`(%rsp),@ptr[5] vmovdqu @inp[1],0x50($offload) vpxor @inp[1],$zero,@out[5] vmovups @out[6],-16(@ptr[6]) sub `64+6*8`(%rsp),@ptr[6] vmovdqu @inp[2],0x60($offload) vpxor @inp[2],$zero,@out[6] vmovups @out[7],-16(@ptr[7]) sub `64+7*8`(%rsp),@ptr[7] vmovdqu @inp[3],0x70($offload) vpxor @inp[3],$zero,@out[7] xor \$128,$offload dec $num jnz .Loop_dec8x mov 16(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 #mov 24(%rsp),$num #lea `40*8`($inp),$inp #dec $num #jnz .Ldec8x_loop_grande .Ldec8x_done: vzeroupper ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Ldec8x_epilogue: ret .cfi_endproc .size aesni_multi_cbc_decrypt_avx,.-aesni_multi_cbc_decrypt_avx ___ }}} if ($win64) { # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->Rip<.Lprologue jb .Lin_prologue mov 152($context),%rax # pull context->Rsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lin_prologue mov 16(%rax),%rax # pull saved stack pointer mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 lea -56-10*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_aesni_multi_cbc_encrypt .rva .LSEH_end_aesni_multi_cbc_encrypt .rva .LSEH_info_aesni_multi_cbc_encrypt .rva .LSEH_begin_aesni_multi_cbc_decrypt .rva .LSEH_end_aesni_multi_cbc_decrypt .rva .LSEH_info_aesni_multi_cbc_decrypt ___ $code.=<<___ if ($avx); .rva .LSEH_begin_aesni_multi_cbc_encrypt_avx .rva .LSEH_end_aesni_multi_cbc_encrypt_avx .rva .LSEH_info_aesni_multi_cbc_encrypt_avx .rva .LSEH_begin_aesni_multi_cbc_decrypt_avx .rva .LSEH_end_aesni_multi_cbc_decrypt_avx .rva .LSEH_info_aesni_multi_cbc_decrypt_avx ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_aesni_multi_cbc_encrypt: .byte 9,0,0,0 .rva se_handler .rva .Lenc4x_body,.Lenc4x_epilogue # HandlerData[] .LSEH_info_aesni_multi_cbc_decrypt: .byte 9,0,0,0 .rva se_handler .rva .Ldec4x_body,.Ldec4x_epilogue # HandlerData[] ___ $code.=<<___ if ($avx); .LSEH_info_aesni_multi_cbc_encrypt_avx: .byte 9,0,0,0 .rva se_handler .rva .Lenc8x_body,.Lenc8x_epilogue # HandlerData[] .LSEH_info_aesni_multi_cbc_decrypt_avx: .byte 9,0,0,0 .rva se_handler .rva .Ldec8x_body,.Ldec8x_epilogue # HandlerData[] ___ } #################################################################### sub rex { local *opcode=shift; my ($dst,$src)=@_; my $rex=0; $rex|=0x04 if($dst>=8); $rex|=0x01 if($src>=8); push @opcode,$rex|0x40 if($rex); } sub aesni { my $line=shift; my @opcode=(0x66); if ($line=~/(aeskeygenassist)\s+\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { rex(\@opcode,$4,$3); push @opcode,0x0f,0x3a,0xdf; push @opcode,0xc0|($3&7)|(($4&7)<<3); # ModR/M my $c=$2; push @opcode,$c=~/^0/?oct($c):$c; return ".byte\t".join(',',@opcode); } elsif ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) { my %opcodelet = ( "aesimc" => 0xdb, "aesenc" => 0xdc, "aesenclast" => 0xdd, "aesdec" => 0xde, "aesdeclast" => 0xdf ); return undef if (!defined($opcodelet{$1})); rex(\@opcode,$3,$2); push @opcode,0x0f,0x38,$opcodelet{$1}; push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } elsif ($line=~/(aes[a-z]+)\s+([0x1-9a-fA-F]*)\(%rsp\),\s*%xmm([0-9]+)/) { my %opcodelet = ( "aesenc" => 0xdc, "aesenclast" => 0xdd, "aesdec" => 0xde, "aesdeclast" => 0xdf ); return undef if (!defined($opcodelet{$1})); my $off = $2; push @opcode,0x44 if ($3>=8); push @opcode,0x0f,0x38,$opcodelet{$1}; push @opcode,0x44|(($3&7)<<3),0x24; # ModR/M push @opcode,($off=~/^0/?oct($off):$off)&0xff; return ".byte\t".join(',',@opcode); } return $line; } $code =~ s/\`([^\`]*)\`/eval($1)/gem; $code =~ s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aesni-sha1-x86_64.pl000066400000000000000000001525561364063235100214560ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # June 2011 # # This is AESNI-CBC+SHA1 "stitch" implementation. The idea, as spelled # in http://download.intel.com/design/intarch/papers/323686.pdf, is # that since AESNI-CBC encrypt exhibit *very* low instruction-level # parallelism, interleaving it with another algorithm would allow to # utilize processor resources better and achieve better performance. # SHA1 instruction sequences(*) are taken from sha1-x86_64.pl and # AESNI code is weaved into it. Below are performance numbers in # cycles per processed byte, less is better, for standalone AESNI-CBC # encrypt, sum of the latter and standalone SHA1, and "stitched" # subroutine: # # AES-128-CBC +SHA1 stitch gain # Westmere 3.77[+5.3] 9.07 6.55 +38% # Sandy Bridge 5.05[+5.0(6.1)] 10.06(11.15) 5.98(7.05) +68%(+58%) # Ivy Bridge 5.05[+4.6] 9.65 5.54 +74% # Haswell 4.43[+3.6(4.2)] 8.00(8.58) 4.55(5.21) +75%(+65%) # Skylake 2.63[+3.5(4.1)] 6.17(6.69) 4.23(4.44) +46%(+51%) # Bulldozer 5.77[+6.0] 11.72 6.37 +84% # Ryzen(**) 2.71[+1.93] 4.64 2.74 +69% # Goldmont(**) 3.82[+1.70] 5.52 4.20 +31% # # AES-192-CBC # Westmere 4.51 9.81 6.80 +44% # Sandy Bridge 6.05 11.06(12.15) 6.11(7.19) +81%(+69%) # Ivy Bridge 6.05 10.65 6.07 +75% # Haswell 5.29 8.86(9.44) 5.32(5.32) +67%(+77%) # Bulldozer 6.89 12.84 6.96 +84% # # AES-256-CBC # Westmere 5.25 10.55 7.21 +46% # Sandy Bridge 7.05 12.06(13.15) 7.12(7.72) +69%(+70%) # Ivy Bridge 7.05 11.65 7.12 +64% # Haswell 6.19 9.76(10.34) 6.21(6.25) +57%(+65%) # Skylake 3.62 7.16(7.68) 4.56(4.76) +57%(+61%) # Bulldozer 8.00 13.95 8.25 +69% # Ryzen(**) 3.71 5.64 3.72 +52% # Goldmont(**) 5.35 7.05 5.76 +22% # # (*) There are two code paths: SSSE3 and AVX. See sha1-568.pl for # background information. Above numbers in parentheses are SSSE3 # results collected on AVX-capable CPU, i.e. apply on OSes that # don't support AVX. # (**) SHAEXT results. # # Needless to mention that it makes no sense to implement "stitched" # *decrypt* subroutine. Because *both* AESNI-CBC decrypt and SHA1 # fully utilize parallelism, so stitching would not give any gain # anyway. Well, there might be some, e.g. because of better cache # locality... For reference, here are performance results for # standalone AESNI-CBC decrypt: # # AES-128-CBC AES-192-CBC AES-256-CBC # Westmere 1.25 1.50 1.75 # Sandy Bridge 0.74 0.91 1.09 # Ivy Bridge 0.74 0.90 1.11 # Haswell 0.63 0.76 0.88 # Bulldozer 0.70 0.85 0.99 # And indeed: # # AES-256-CBC +SHA1 stitch gain # Westmere 1.75 7.20 6.68 +7.8% # Sandy Bridge 1.09 6.09(7.22) 5.82(6.95) +4.6%(+3.9%) # Ivy Bridge 1.11 5.70 5.45 +4.6% # Haswell 0.88 4.45(5.00) 4.39(4.69) +1.4%(*)(+6.6%) # Bulldozer 0.99 6.95 5.95 +17%(**) # # (*) Tiny improvement coefficient on Haswell is because we compare # AVX1 stitch to sum with AVX2 SHA1. # (**) Execution is fully dominated by integer code sequence and # SIMD still hardly shows [in single-process benchmark;-] $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; $avx=1 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/ && $1>=2.19); $avx=1 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ && $1>=2.09); $avx=1 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./ && $1>=10); $avx=1 if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/ && $2>=3.0); $shaext=1; ### set to zero if compiling for 1.0.1 $stitched_decrypt=0; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; # void aesni_cbc_sha1_enc(const void *inp, # void *out, # size_t length, # const AES_KEY *key, # unsigned char *iv, # SHA_CTX *ctx, # const void *in0); $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl aesni_cbc_sha1_enc .type aesni_cbc_sha1_enc,\@abi-omnipotent .align 32 aesni_cbc_sha1_enc: .cfi_startproc # caller should check for SSSE3 and AES-NI bits mov OPENSSL_ia32cap_P+0(%rip),%r10d mov OPENSSL_ia32cap_P+4(%rip),%r11 ___ $code.=<<___ if ($shaext); bt \$61,%r11 # check SHA bit jc aesni_cbc_sha1_enc_shaext ___ $code.=<<___ if ($avx); and \$`1<<28`,%r11d # mask AVX bit and \$`1<<30`,%r10d # mask "Intel CPU" bit or %r11d,%r10d cmp \$`1<<28|1<<30`,%r10d je aesni_cbc_sha1_enc_avx ___ $code.=<<___; jmp aesni_cbc_sha1_enc_ssse3 ret .cfi_endproc .size aesni_cbc_sha1_enc,.-aesni_cbc_sha1_enc ___ my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); my $Xi=4; my @X=map("%xmm$_",(4..7,0..3)); my @Tx=map("%xmm$_",(8..10)); my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization my @T=("%esi","%edi"); my $j=0; my $jj=0; my $r=0; my $sn=0; my $rx=0; my $K_XX_XX="%r11"; my ($rndkey0,$iv,$in)=map("%xmm$_",(11..13)); # for enc my @rndkey=("%xmm14","%xmm15"); # for enc my ($inout0,$inout1,$inout2,$inout3)=map("%xmm$_",(12..15)); # for dec if (1) { # reassign for Atom Silvermont # The goal is to minimize amount of instructions with more than # 3 prefix bytes. Or in more practical terms to keep AES-NI *and* # SSSE3 instructions to upper half of the register bank. @X=map("%xmm$_",(8..11,4..7)); @Tx=map("%xmm$_",(12,13,3)); ($iv,$in,$rndkey0)=map("%xmm$_",(2,14,15)); @rndkey=("%xmm0","%xmm1"); } sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; my $arg = pop; $arg = "\$$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; } my $_rol=sub { &rol(@_) }; my $_ror=sub { &ror(@_) }; $code.=<<___; .type aesni_cbc_sha1_enc_ssse3,\@function,6 .align 32 aesni_cbc_sha1_enc_ssse3: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument #shr \$6,$len # debugging artefact #jz .Lepilogue_ssse3 # debugging artefact push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` #mov $in0,$inp # debugging artefact #lea 64(%rsp),$ctx # debugging artefact ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_ssse3: ___ $code.=<<___; mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization movdqu ($ivp),$iv # load IV mov $ivp,88(%rsp) # save $ivp ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments my $rounds="${ivp}d"; $code.=<<___; shl \$6,$len sub $in0,$out mov 240-112($key),$rounds add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] movdqa 64($K_XX_XX),@Tx[2] # pbswap mask movdqa 0($K_XX_XX),@Tx[1] # K_00_19 movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] movdqu 16($inp),@X[-3&7] movdqu 32($inp),@X[-2&7] movdqu 48($inp),@X[-1&7] pshufb @Tx[2],@X[-4&7] # byte swap pshufb @Tx[2],@X[-3&7] pshufb @Tx[2],@X[-2&7] add \$64,$inp paddd @Tx[1],@X[-4&7] # add K_00_19 pshufb @Tx[2],@X[-1&7] paddd @Tx[1],@X[-3&7] paddd @Tx[1],@X[-2&7] movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU psubd @Tx[1],@X[-4&7] # restore X[] movdqa @X[-3&7],16(%rsp) psubd @Tx[1],@X[-3&7] movdqa @X[-2&7],32(%rsp) psubd @Tx[1],@X[-2&7] movups -112($key),$rndkey0 # $key[0] movups 16-112($key),$rndkey[0] # forward reference jmp .Loop_ssse3 ___ my $aesenc=sub { use integer; my ($n,$k)=($r/10,$r%10); if ($k==0) { $code.=<<___; movups `16*$n`($in0),$in # load input xorps $rndkey0,$in ___ $code.=<<___ if ($n); movups $iv,`16*($n-1)`($out,$in0) # write output ___ $code.=<<___; xorps $in,$iv movups `32+16*$k-112`($key),$rndkey[1] aesenc $rndkey[0],$iv ___ } elsif ($k==9) { $sn++; $code.=<<___; cmp \$11,$rounds jb .Laesenclast$sn movups `32+16*($k+0)-112`($key),$rndkey[1] aesenc $rndkey[0],$iv movups `32+16*($k+1)-112`($key),$rndkey[0] aesenc $rndkey[1],$iv je .Laesenclast$sn movups `32+16*($k+2)-112`($key),$rndkey[1] aesenc $rndkey[0],$iv movups `32+16*($k+3)-112`($key),$rndkey[0] aesenc $rndkey[1],$iv .Laesenclast$sn: aesenclast $rndkey[0],$iv movups 16-112($key),$rndkey[1] # forward reference ___ } else { $code.=<<___; movups `32+16*$k-112`($key),$rndkey[1] aesenc $rndkey[0],$iv ___ } $r++; unshift(@rndkey,pop(@rndkey)); }; sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); # ror &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); eval(shift(@insns)); &movdqa (@Tx[0],@X[-1&7]); &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); &psrldq (@Tx[0],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); # ror &pxor (@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &movdqa (@Tx[2],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &movdqa (@Tx[0],@X[0]); eval(shift(@insns)); &pslldq (@Tx[2],12); # "X[0]"<<96, extract one dword &paddd (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[0],31); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); &movdqa (@Tx[1],@Tx[2]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[2],30); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@Tx[0]); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pslld (@Tx[1],2); &pxor (@X[0],@Tx[2]); eval(shift(@insns)); &movdqa (@Tx[2],eval(16*(($Xi)/5))."($K_XX_XX)"); # K_XX_XX eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 &pshufd (@Tx[1],@X[-1&7],0xee) if ($Xi==7); # was &movdqa (@Tx[0],@X[-1&7]) in Xupdate_ssse3_32_79 foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] push(@Tx,shift(@Tx)); } sub Xupdate_ssse3_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)) if ($Xi==8); &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)) if ($Xi==8); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)) if (@insns[1] =~ /_ror/); eval(shift(@insns)) if (@insns[0] =~ /_ror/); &punpcklqdq(@Tx[0],@X[-1&7]); # compose "X[-6]", was &palignr(@Tx[0],@X[-2&7],8); eval(shift(@insns)); eval(shift(@insns)); # rol &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)); if ($Xi%5) { &movdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX... } else { # ... or load next one &movdqa (@Tx[2],eval(16*($Xi/5))."($K_XX_XX)"); } eval(shift(@insns)); # ror &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)) if (@insns[0] =~ /_ror/); &movdqa (@Tx[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)); # body_20_39 &pslld (@X[0],2); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[0],30); eval(shift(@insns)) if (@insns[0] =~ /_rol/);# rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@Tx[0]); # "X[0]"<<<=2 eval(shift(@insns)); eval(shift(@insns)); # body_20_39 eval(shift(@insns)) if (@insns[1] =~ /_rol/); eval(shift(@insns)) if (@insns[0] =~ /_rol/); &pshufd(@Tx[1],@X[-1&7],0xee) if ($Xi<19); # was &movdqa (@Tx[1],@X[0]) eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] push(@Tx,shift(@Tx)); } sub Xuplast_ssse3_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &cmp ($inp,$len); &je (shift); unshift(@Tx,pop(@Tx)); &movdqa (@Tx[2],"64($K_XX_XX)"); # pbswap mask &movdqa (@Tx[1],"0($K_XX_XX)"); # K_00_19 &movdqu (@X[-4&7],"0($inp)"); # load input &movdqu (@X[-3&7],"16($inp)"); &movdqu (@X[-2&7],"32($inp)"); &movdqu (@X[-1&7],"48($inp)"); &pshufb (@X[-4&7],@Tx[2]); # byte swap &add ($inp,64); $Xi=0; } sub Xloop_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pshufb (@X[($Xi-3)&7],@Tx[2]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[($Xi-4)&7],@Tx[1]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*$Xi)."(%rsp)",@X[($Xi-4)&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psubd (@X[($Xi-4)&7],@Tx[1]); foreach (@insns) { eval; } $Xi++; } sub Xtail_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } my @body_00_19 = ( '($a,$b,$c,$d,$e)=@V;'. '&$_ror ($b,$j?7:2);', # $b>>>2 '&xor (@T[0],$d);', '&mov (@T[1],$a);', # $b for next round '&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer '&xor ($b,$c);', # $c^$d for next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&and (@T[1],$b);', # ($b&($c^$d)) for next round '&xor ($b,$c);', # restore $b '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); sub body_00_19 () { # ((c^d)&b)^d # on start @T[0]=(c^d)&b return &body_20_39() if ($rx==19); $rx++; use integer; my ($k,$n); my @r=@body_00_19; $n = scalar(@r); $k = (($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds @r[$k%$n].='&$aesenc();' if ($jj==$k/$n); $jj++; return @r; } my @body_20_39 = ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer '&xor (@T[0],$d) if($j==19);'. '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c) '&mov (@T[1],$a);', # $b for next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round '&$_ror ($b,7);', # $b>>>2 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); sub body_20_39 () { # b^d^c # on entry @T[0]=b^d return &body_40_59() if ($rx==39); $rx++; use integer; my ($k,$n); my @r=@body_20_39; $n = scalar(@r); $k = (($jj+1)*8/20)*20*$n/8; # 8 aesencs per these 20 rounds @r[$k%$n].='&$aesenc();' if ($jj==$k/$n && $rx!=20); $jj++; return @r; } my @body_40_59 = ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d) '&xor ($c,$d) if ($j>=40);', # restore $c '&$_ror ($b,7);', # $b>>>2 '&mov (@T[1],$a);', # $b for next round '&xor (@T[0],$c);', '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j==59);'. '&xor (@T[1],$b) if ($j< 59);', # b^c for next round '&xor ($b,$c) if ($j< 59);', # c^d for next round '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); sub body_40_59 () { # ((b^c)&(c^d))^c # on entry @T[0]=(b^c), (c^=d) $rx++; use integer; my ($k,$n); my @r=@body_40_59; $n = scalar(@r); $k=(($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds @r[$k%$n].='&$aesenc();' if ($jj==$k/$n && $rx!=40); $jj++; return @r; } $code.=<<___; .align 32 .Loop_ssse3: ___ &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_32_79(\&body_00_19); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_20_39); &Xuplast_ssse3_80(\&body_20_39,".Ldone_ssse3"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_r=$r; @saved_rndkey=@rndkey; &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); $code.=<<___; movups $iv,48($out,$in0) # write output lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_ssse3 .Ldone_ssse3: ___ $jj=$j=$saved_j; @V=@saved_V; $r=$saved_r; @rndkey=@saved_rndkey; &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); $code.=<<___; movups $iv,48($out,$in0) # write output mov 88(%rsp),$ivp # restore $ivp add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) movups $iv,($ivp) # write IV ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_def_cfa %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_def_cfa %rsp,8 .Lepilogue_ssse3: ret .cfi_endproc .size aesni_cbc_sha1_enc_ssse3,.-aesni_cbc_sha1_enc_ssse3 ___ if ($stitched_decrypt) {{{ # reset ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); $j=$jj=$r=$rx=0; $Xi=4; # reassign for Atom Silvermont (see above) ($inout0,$inout1,$inout2,$inout3,$rndkey0)=map("%xmm$_",(0..4)); @X=map("%xmm$_",(8..13,6,7)); @Tx=map("%xmm$_",(14,15,5)); my @aes256_dec = ( '&movdqu($inout0,"0x00($in0)");', '&movdqu($inout1,"0x10($in0)"); &pxor ($inout0,$rndkey0);', '&movdqu($inout2,"0x20($in0)"); &pxor ($inout1,$rndkey0);', '&movdqu($inout3,"0x30($in0)"); &pxor ($inout2,$rndkey0);', '&pxor ($inout3,$rndkey0); &movups ($rndkey0,"16-112($key)");', '&movaps("64(%rsp)",@X[2]);', # save IV, originally @X[3] undef,undef ); for ($i=0;$i<13;$i++) { push (@aes256_dec,( '&aesdec ($inout0,$rndkey0);', '&aesdec ($inout1,$rndkey0);', '&aesdec ($inout2,$rndkey0);', '&aesdec ($inout3,$rndkey0); &movups($rndkey0,"'.(16*($i+2)-112).'($key)");' )); push (@aes256_dec,(undef,undef)) if (($i>=3 && $i<=5) || $i>=11); push (@aes256_dec,(undef,undef)) if ($i==5); } push(@aes256_dec,( '&aesdeclast ($inout0,$rndkey0); &movups (@X[0],"0x00($in0)");', '&aesdeclast ($inout1,$rndkey0); &movups (@X[1],"0x10($in0)");', '&aesdeclast ($inout2,$rndkey0); &movups (@X[2],"0x20($in0)");', '&aesdeclast ($inout3,$rndkey0); &movups (@X[3],"0x30($in0)");', '&xorps ($inout0,"64(%rsp)"); &movdqu ($rndkey0,"-112($key)");', '&xorps ($inout1,@X[0]); &movups ("0x00($out,$in0)",$inout0);', '&xorps ($inout2,@X[1]); &movups ("0x10($out,$in0)",$inout1);', '&xorps ($inout3,@X[2]); &movups ("0x20($out,$in0)",$inout2);', '&movups ("0x30($out,$in0)",$inout3);' )); sub body_00_19_dec () { # ((c^d)&b)^d # on start @T[0]=(c^d)&b return &body_20_39_dec() if ($rx==19); my @r=@body_00_19; unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]); $rx++; return @r; } sub body_20_39_dec () { # b^d^c # on entry @T[0]=b^d return &body_40_59_dec() if ($rx==39); my @r=@body_20_39; unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]); $rx++; return @r; } sub body_40_59_dec () { # ((b^c)&(c^d))^c # on entry @T[0]=(b^c), (c^=d) my @r=@body_40_59; unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]); $rx++; return @r; } $code.=<<___; .globl aesni256_cbc_sha1_dec .type aesni256_cbc_sha1_dec,\@abi-omnipotent .align 32 aesni256_cbc_sha1_dec: .cfi_startproc # caller should check for SSSE3 and AES-NI bits mov OPENSSL_ia32cap_P+0(%rip),%r10d mov OPENSSL_ia32cap_P+4(%rip),%r11d ___ $code.=<<___ if ($avx); and \$`1<<28`,%r11d # mask AVX bit and \$`1<<30`,%r10d # mask "Intel CPU" bit or %r11d,%r10d cmp \$`1<<28|1<<30`,%r10d je aesni256_cbc_sha1_dec_avx ___ $code.=<<___; jmp aesni256_cbc_sha1_dec_ssse3 ret .cfi_endproc .size aesni256_cbc_sha1_dec,.-aesni256_cbc_sha1_dec .type aesni256_cbc_sha1_dec_ssse3,\@function,6 .align 32 aesni256_cbc_sha1_dec_ssse3: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_dec_ssse3: ___ $code.=<<___; mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization movdqu ($ivp),@X[3] # load IV #mov $ivp,88(%rsp) # save $ivp ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments $code.=<<___; shl \$6,$len sub $in0,$out add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] movdqa 64($K_XX_XX),@Tx[2] # pbswap mask movdqa 0($K_XX_XX),@Tx[1] # K_00_19 movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] movdqu 16($inp),@X[-3&7] movdqu 32($inp),@X[-2&7] movdqu 48($inp),@X[-1&7] pshufb @Tx[2],@X[-4&7] # byte swap add \$64,$inp pshufb @Tx[2],@X[-3&7] pshufb @Tx[2],@X[-2&7] pshufb @Tx[2],@X[-1&7] paddd @Tx[1],@X[-4&7] # add K_00_19 paddd @Tx[1],@X[-3&7] paddd @Tx[1],@X[-2&7] movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU psubd @Tx[1],@X[-4&7] # restore X[] movdqa @X[-3&7],16(%rsp) psubd @Tx[1],@X[-3&7] movdqa @X[-2&7],32(%rsp) psubd @Tx[1],@X[-2&7] movdqu -112($key),$rndkey0 # $key[0] jmp .Loop_dec_ssse3 .align 32 .Loop_dec_ssse3: ___ &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_32_79(\&body_00_19_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xuplast_ssse3_80(\&body_20_39_dec,".Ldone_dec_ssse3"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_rx=$rx; &Xloop_ssse3(\&body_20_39_dec); &Xloop_ssse3(\&body_20_39_dec); &Xloop_ssse3(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_dec_ssse3 .Ldone_dec_ssse3: ___ $jj=$j=$saved_j; @V=@saved_V; $rx=$saved_rx; &Xtail_ssse3(\&body_20_39_dec); &Xtail_ssse3(\&body_20_39_dec); &Xtail_ssse3(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) movups @X[3],($ivp) # write IV ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_cfa_def %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_cfa_def %rsp,8 .Lepilogue_dec_ssse3: ret .cfi_endproc .size aesni256_cbc_sha1_dec_ssse3,.-aesni256_cbc_sha1_dec_ssse3 ___ }}} $j=$jj=$r=$rx=0; if ($avx) { my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); my $Xi=4; my @X=map("%xmm$_",(4..7,0..3)); my @Tx=map("%xmm$_",(8..10)); my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization my @T=("%esi","%edi"); my ($rndkey0,$iv,$in)=map("%xmm$_",(11..13)); my @rndkey=("%xmm14","%xmm15"); my ($inout0,$inout1,$inout2,$inout3)=map("%xmm$_",(12..15)); # for dec my $Kx=@Tx[2]; my $_rol=sub { &shld(@_[0],@_) }; my $_ror=sub { &shrd(@_[0],@_) }; $code.=<<___; .type aesni_cbc_sha1_enc_avx,\@function,6 .align 32 aesni_cbc_sha1_enc_avx: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument #shr \$6,$len # debugging artefact #jz .Lepilogue_avx # debugging artefact push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` #mov $in0,$inp # debugging artefact #lea 64(%rsp),$ctx # debugging artefact ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_avx: ___ $code.=<<___; vzeroall mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization vmovdqu ($ivp),$iv # load IV mov $ivp,88(%rsp) # save $ivp ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments my $rounds="${ivp}d"; $code.=<<___; shl \$6,$len sub $in0,$out mov 240-112($key),$rounds add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] vmovdqa 64($K_XX_XX),@X[2] # pbswap mask vmovdqa 0($K_XX_XX),$Kx # K_00_19 vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] vmovdqu 16($inp),@X[-3&7] vmovdqu 32($inp),@X[-2&7] vmovdqu 48($inp),@X[-1&7] vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap add \$64,$inp vpshufb @X[2],@X[-3&7],@X[-3&7] vpshufb @X[2],@X[-2&7],@X[-2&7] vpshufb @X[2],@X[-1&7],@X[-1&7] vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19 vpaddd $Kx,@X[-3&7],@X[1] vpaddd $Kx,@X[-2&7],@X[2] vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU vmovdqa @X[1],16(%rsp) vmovdqa @X[2],32(%rsp) vmovups -112($key),$rndkey[1] # $key[0] vmovups 16-112($key),$rndkey[0] # forward reference jmp .Loop_avx ___ my $aesenc=sub { use integer; my ($n,$k)=($r/10,$r%10); if ($k==0) { $code.=<<___; vmovdqu `16*$n`($in0),$in # load input vpxor $rndkey[1],$in,$in ___ $code.=<<___ if ($n); vmovups $iv,`16*($n-1)`($out,$in0) # write output ___ $code.=<<___; vpxor $in,$iv,$iv vaesenc $rndkey[0],$iv,$iv vmovups `32+16*$k-112`($key),$rndkey[1] ___ } elsif ($k==9) { $sn++; $code.=<<___; cmp \$11,$rounds jb .Lvaesenclast$sn vaesenc $rndkey[0],$iv,$iv vmovups `32+16*($k+0)-112`($key),$rndkey[1] vaesenc $rndkey[1],$iv,$iv vmovups `32+16*($k+1)-112`($key),$rndkey[0] je .Lvaesenclast$sn vaesenc $rndkey[0],$iv,$iv vmovups `32+16*($k+2)-112`($key),$rndkey[1] vaesenc $rndkey[1],$iv,$iv vmovups `32+16*($k+3)-112`($key),$rndkey[0] .Lvaesenclast$sn: vaesenclast $rndkey[0],$iv,$iv vmovups -112($key),$rndkey[0] vmovups 16-112($key),$rndkey[1] # forward reference ___ } else { $code.=<<___; vaesenc $rndkey[0],$iv,$iv vmovups `32+16*$k-112`($key),$rndkey[1] ___ } $r++; unshift(@rndkey,pop(@rndkey)); }; sub Xupdate_avx_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@Tx[1],$Kx,@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); &vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@Tx[0],@X[0],31); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq(@Tx[1],@X[0],12); # "X[0]"<<96, extract one dword &vpaddd (@X[0],@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1 &vpsrld (@Tx[0],@Tx[1],30); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslld (@Tx[1],@Tx[1],2); &vpxor (@X[0],@X[0],@Tx[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 eval(shift(@insns)); eval(shift(@insns)); &vmovdqa ($Kx,eval(16*(($Xi)/5))."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_avx_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions my ($a,$b,$c,$d,$e); &vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]" &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/); &vpaddd (@Tx[1],$Kx,@X[-1&7]); &vmovdqa ($Kx,eval(16*($Xi/5))."($K_XX_XX)") if ($Xi%5==0); eval(shift(@insns)); # ror eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpsrld (@Tx[0],@X[0],30); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpslld (@X[0],@X[0],2); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2 eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_avx_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); &vpaddd (@Tx[1],$Kx,@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &cmp ($inp,$len); &je (shift); &vmovdqa(@Tx[1],"64($K_XX_XX)"); # pbswap mask &vmovdqa($Kx,"0($K_XX_XX)"); # K_00_19 &vmovdqu(@X[-4&7],"0($inp)"); # load input &vmovdqu(@X[-3&7],"16($inp)"); &vmovdqu(@X[-2&7],"32($inp)"); &vmovdqu(@X[-1&7],"48($inp)"); &vpshufb(@X[-4&7],@X[-4&7],@Tx[1]); # byte swap &add ($inp,64); $Xi=0; } sub Xloop_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpshufb(@X[($Xi-3)&7],@X[($Xi-3)&7],@Tx[1]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@Tx[0],@X[($Xi-4)&7],$Kx); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa(eval(16*$Xi)."(%rsp)",@Tx[0]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } $Xi++; } sub Xtail_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } $code.=<<___; .align 32 .Loop_avx: ___ &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_32_79(\&body_00_19); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_20_39); &Xuplast_avx_80(\&body_20_39,".Ldone_avx"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_r=$r; @saved_rndkey=@rndkey; &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); $code.=<<___; vmovups $iv,48($out,$in0) # write output lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_avx .Ldone_avx: ___ $jj=$j=$saved_j; @V=@saved_V; $r=$saved_r; @rndkey=@saved_rndkey; &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); $code.=<<___; vmovups $iv,48($out,$in0) # write output mov 88(%rsp),$ivp # restore $ivp add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) vmovups $iv,($ivp) # write IV vzeroall ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_def_cfa %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_def_cfa %rsp,8 .Lepilogue_avx: ret .cfi_endproc .size aesni_cbc_sha1_enc_avx,.-aesni_cbc_sha1_enc_avx ___ if ($stitched_decrypt) {{{ # reset ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); $j=$jj=$r=$rx=0; $Xi=4; @aes256_dec = ( '&vpxor ($inout0,$rndkey0,"0x00($in0)");', '&vpxor ($inout1,$rndkey0,"0x10($in0)");', '&vpxor ($inout2,$rndkey0,"0x20($in0)");', '&vpxor ($inout3,$rndkey0,"0x30($in0)");', '&vmovups($rndkey0,"16-112($key)");', '&vmovups("64(%rsp)",@X[2]);', # save IV, originally @X[3] undef,undef ); for ($i=0;$i<13;$i++) { push (@aes256_dec,( '&vaesdec ($inout0,$inout0,$rndkey0);', '&vaesdec ($inout1,$inout1,$rndkey0);', '&vaesdec ($inout2,$inout2,$rndkey0);', '&vaesdec ($inout3,$inout3,$rndkey0); &vmovups($rndkey0,"'.(16*($i+2)-112).'($key)");' )); push (@aes256_dec,(undef,undef)) if (($i>=3 && $i<=5) || $i>=11); push (@aes256_dec,(undef,undef)) if ($i==5); } push(@aes256_dec,( '&vaesdeclast ($inout0,$inout0,$rndkey0); &vmovups(@X[0],"0x00($in0)");', '&vaesdeclast ($inout1,$inout1,$rndkey0); &vmovups(@X[1],"0x10($in0)");', '&vaesdeclast ($inout2,$inout2,$rndkey0); &vmovups(@X[2],"0x20($in0)");', '&vaesdeclast ($inout3,$inout3,$rndkey0); &vmovups(@X[3],"0x30($in0)");', '&vxorps ($inout0,$inout0,"64(%rsp)"); &vmovdqu($rndkey0,"-112($key)");', '&vxorps ($inout1,$inout1,@X[0]); &vmovups("0x00($out,$in0)",$inout0);', '&vxorps ($inout2,$inout2,@X[1]); &vmovups("0x10($out,$in0)",$inout1);', '&vxorps ($inout3,$inout3,@X[2]); &vmovups("0x20($out,$in0)",$inout2);', '&vmovups ("0x30($out,$in0)",$inout3);' )); $code.=<<___; .type aesni256_cbc_sha1_dec_avx,\@function,6 .align 32 aesni256_cbc_sha1_dec_avx: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_dec_avx: ___ $code.=<<___; vzeroall mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization vmovdqu ($ivp),@X[3] # load IV ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments $code.=<<___; shl \$6,$len sub $in0,$out add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] vmovdqa 64($K_XX_XX),@X[2] # pbswap mask vmovdqa 0($K_XX_XX),$Kx # K_00_19 vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] vmovdqu 16($inp),@X[-3&7] vmovdqu 32($inp),@X[-2&7] vmovdqu 48($inp),@X[-1&7] vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap add \$64,$inp vpshufb @X[2],@X[-3&7],@X[-3&7] vpshufb @X[2],@X[-2&7],@X[-2&7] vpshufb @X[2],@X[-1&7],@X[-1&7] vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19 vpaddd $Kx,@X[-3&7],@X[1] vpaddd $Kx,@X[-2&7],@X[2] vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU vmovdqa @X[1],16(%rsp) vmovdqa @X[2],32(%rsp) vmovups -112($key),$rndkey0 # $key[0] jmp .Loop_dec_avx .align 32 .Loop_dec_avx: ___ &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_32_79(\&body_00_19_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xuplast_avx_80(\&body_20_39_dec,".Ldone_dec_avx"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_rx=$rx; &Xloop_avx(\&body_20_39_dec); &Xloop_avx(\&body_20_39_dec); &Xloop_avx(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_dec_avx .Ldone_dec_avx: ___ $jj=$j=$saved_j; @V=@saved_V; $rx=$saved_rx; &Xtail_avx(\&body_20_39_dec); &Xtail_avx(\&body_20_39_dec); &Xtail_avx(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) vmovups @X[3],($ivp) # write IV vzeroall ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_def_cfa %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_def_cfa %rsp,8 .Lepilogue_dec_avx: ret .cfi_endproc .size aesni256_cbc_sha1_dec_avx,.-aesni256_cbc_sha1_dec_avx ___ }}} } $code.=<<___; .align 64 K_XX_XX: .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask .byte 0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0 .asciz "AESNI-CBC+SHA1 stitch for x86_64, CRYPTOGAMS by " .align 64 ___ if ($shaext) {{{ ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); $rounds="%r11d"; ($iv,$in,$rndkey0)=map("%xmm$_",(2,14,15)); @rndkey=("%xmm0","%xmm1"); $r=0; my ($BSWAP,$ABCD,$E,$E_,$ABCD_SAVE,$E_SAVE)=map("%xmm$_",(7..12)); my @MSG=map("%xmm$_",(3..6)); $code.=<<___; .type aesni_cbc_sha1_enc_shaext,\@function,6 .align 32 aesni_cbc_sha1_enc_shaext: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument ___ $code.=<<___ if ($win64); lea `-8-10*16`(%rsp),%rsp movaps %xmm6,-8-10*16(%rax) movaps %xmm7,-8-9*16(%rax) movaps %xmm8,-8-8*16(%rax) movaps %xmm9,-8-7*16(%rax) movaps %xmm10,-8-6*16(%rax) movaps %xmm11,-8-5*16(%rax) movaps %xmm12,-8-4*16(%rax) movaps %xmm13,-8-3*16(%rax) movaps %xmm14,-8-2*16(%rax) movaps %xmm15,-8-1*16(%rax) .Lprologue_shaext: ___ $code.=<<___; movdqu ($ctx),$ABCD movd 16($ctx),$E movdqa K_XX_XX+0x50(%rip),$BSWAP # byte-n-word swap mov 240($key),$rounds sub $in0,$out movups ($key),$rndkey0 # $key[0] movups ($ivp),$iv # load IV movups 16($key),$rndkey[0] # forward reference lea 112($key),$key # size optimization pshufd \$0b00011011,$ABCD,$ABCD # flip word order pshufd \$0b00011011,$E,$E # flip word order jmp .Loop_shaext .align 16 .Loop_shaext: ___ &$aesenc(); $code.=<<___; movdqu ($inp),@MSG[0] movdqa $E,$E_SAVE # offload $E pshufb $BSWAP,@MSG[0] movdqu 0x10($inp),@MSG[1] movdqa $ABCD,$ABCD_SAVE # offload $ABCD ___ &$aesenc(); $code.=<<___; pshufb $BSWAP,@MSG[1] paddd @MSG[0],$E movdqu 0x20($inp),@MSG[2] lea 0x40($inp),$inp pxor $E_SAVE,@MSG[0] # black magic ___ &$aesenc(); $code.=<<___; pxor $E_SAVE,@MSG[0] # black magic movdqa $ABCD,$E_ pshufb $BSWAP,@MSG[2] sha1rnds4 \$0,$E,$ABCD # 0-3 sha1nexte @MSG[1],$E_ ___ &$aesenc(); $code.=<<___; sha1msg1 @MSG[1],@MSG[0] movdqu -0x10($inp),@MSG[3] movdqa $ABCD,$E pshufb $BSWAP,@MSG[3] ___ &$aesenc(); $code.=<<___; sha1rnds4 \$0,$E_,$ABCD # 4-7 sha1nexte @MSG[2],$E pxor @MSG[2],@MSG[0] sha1msg1 @MSG[2],@MSG[1] ___ &$aesenc(); for($i=2;$i<20-4;$i++) { $code.=<<___; movdqa $ABCD,$E_ sha1rnds4 \$`int($i/5)`,$E,$ABCD # 8-11 sha1nexte @MSG[3],$E_ ___ &$aesenc(); $code.=<<___; sha1msg2 @MSG[3],@MSG[0] pxor @MSG[3],@MSG[1] sha1msg1 @MSG[3],@MSG[2] ___ ($E,$E_)=($E_,$E); push(@MSG,shift(@MSG)); &$aesenc(); } $code.=<<___; movdqa $ABCD,$E_ sha1rnds4 \$3,$E,$ABCD # 64-67 sha1nexte @MSG[3],$E_ sha1msg2 @MSG[3],@MSG[0] pxor @MSG[3],@MSG[1] ___ &$aesenc(); $code.=<<___; movdqa $ABCD,$E sha1rnds4 \$3,$E_,$ABCD # 68-71 sha1nexte @MSG[0],$E sha1msg2 @MSG[0],@MSG[1] ___ &$aesenc(); $code.=<<___; movdqa $E_SAVE,@MSG[0] movdqa $ABCD,$E_ sha1rnds4 \$3,$E,$ABCD # 72-75 sha1nexte @MSG[1],$E_ ___ &$aesenc(); $code.=<<___; movdqa $ABCD,$E sha1rnds4 \$3,$E_,$ABCD # 76-79 sha1nexte $MSG[0],$E ___ while($r<40) { &$aesenc(); } # remaining aesenc's $code.=<<___; dec $len paddd $ABCD_SAVE,$ABCD movups $iv,48($out,$in0) # write output lea 64($in0),$in0 jnz .Loop_shaext pshufd \$0b00011011,$ABCD,$ABCD pshufd \$0b00011011,$E,$E movups $iv,($ivp) # write IV movdqu $ABCD,($ctx) movd $E,16($ctx) ___ $code.=<<___ if ($win64); movaps -8-10*16(%rax),%xmm6 movaps -8-9*16(%rax),%xmm7 movaps -8-8*16(%rax),%xmm8 movaps -8-7*16(%rax),%xmm9 movaps -8-6*16(%rax),%xmm10 movaps -8-5*16(%rax),%xmm11 movaps -8-4*16(%rax),%xmm12 movaps -8-3*16(%rax),%xmm13 movaps -8-2*16(%rax),%xmm14 movaps -8-1*16(%rax),%xmm15 mov %rax,%rsp .Lepilogue_shaext: ___ $code.=<<___; ret .cfi_endproc .size aesni_cbc_sha1_enc_shaext,.-aesni_cbc_sha1_enc_shaext ___ }}} # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type ssse3_handler,\@abi-omnipotent .align 16 ssse3_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail ___ $code.=<<___ if ($shaext); lea aesni_cbc_sha1_enc_shaext(%rip),%r10 cmp %r10,%rbx jb .Lseh_no_shaext lea (%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq lea 168(%rax),%rax # adjust stack pointer jmp .Lcommon_seh_tail .Lseh_no_shaext: ___ $code.=<<___; lea 96(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq lea `104+10*16`(%rax),%rax # adjust stack pointer mov 0(%rax),%r15 mov 8(%rax),%r14 mov 16(%rax),%r13 mov 24(%rax),%r12 mov 32(%rax),%rbp mov 40(%rax),%rbx lea 48(%rax),%rax mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size ssse3_handler,.-ssse3_handler .section .pdata .align 4 .rva .LSEH_begin_aesni_cbc_sha1_enc_ssse3 .rva .LSEH_end_aesni_cbc_sha1_enc_ssse3 .rva .LSEH_info_aesni_cbc_sha1_enc_ssse3 ___ $code.=<<___ if ($avx); .rva .LSEH_begin_aesni_cbc_sha1_enc_avx .rva .LSEH_end_aesni_cbc_sha1_enc_avx .rva .LSEH_info_aesni_cbc_sha1_enc_avx ___ $code.=<<___ if ($shaext); .rva .LSEH_begin_aesni_cbc_sha1_enc_shaext .rva .LSEH_end_aesni_cbc_sha1_enc_shaext .rva .LSEH_info_aesni_cbc_sha1_enc_shaext ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_aesni_cbc_sha1_enc_ssse3: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[] ___ $code.=<<___ if ($avx); .LSEH_info_aesni_cbc_sha1_enc_avx: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_avx,.Lepilogue_avx # HandlerData[] ___ $code.=<<___ if ($shaext); .LSEH_info_aesni_cbc_sha1_enc_shaext: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_shaext,.Lepilogue_shaext # HandlerData[] ___ } #################################################################### sub rex { local *opcode=shift; my ($dst,$src)=@_; my $rex=0; $rex|=0x04 if($dst>=8); $rex|=0x01 if($src>=8); unshift @opcode,$rex|0x40 if($rex); } sub sha1rnds4 { if (@_[0] =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x3a,0xcc); rex(\@opcode,$3,$2); push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M my $c=$1; push @opcode,$c=~/^0/?oct($c):$c; return ".byte\t".join(',',@opcode); } else { return "sha1rnds4\t".@_[0]; } } sub sha1op38 { my $instr = shift; my %opcodelet = ( "sha1nexte" => 0xc8, "sha1msg1" => 0xc9, "sha1msg2" => 0xca ); if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x38); rex(\@opcode,$2,$1); push @opcode,$opcodelet{$instr}; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } else { return $instr."\t".@_[0]; } } sub aesni { my $line=shift; my @opcode=(0x0f,0x38); if ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) { my %opcodelet = ( "aesenc" => 0xdc, "aesenclast" => 0xdd, "aesdec" => 0xde, "aesdeclast" => 0xdf ); return undef if (!defined($opcodelet{$1})); rex(\@opcode,$3,$2); push @opcode,$opcodelet{$1},0xc0|($2&7)|(($3&7)<<3); # ModR/M unshift @opcode,0x66; return ".byte\t".join(',',@opcode); } return $line; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\b(sha1rnds4)\s+(.*)/sha1rnds4($2)/geo or s/\b(sha1[^\s]*)\s+(.*)/sha1op38($1,$2)/geo or s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aesni-sha256-x86_64.pl000066400000000000000000001264631364063235100216300ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # January 2013 # # This is AESNI-CBC+SHA256 stitch implementation. The idea, as spelled # in http://download.intel.com/design/intarch/papers/323686.pdf, is # that since AESNI-CBC encrypt exhibit *very* low instruction-level # parallelism, interleaving it with another algorithm would allow to # utilize processor resources better and achieve better performance. # SHA256 instruction sequences(*) are taken from sha512-x86_64.pl and # AESNI code is weaved into it. As SHA256 dominates execution time, # stitch performance does not depend on AES key length. Below are # performance numbers in cycles per processed byte, less is better, # for standalone AESNI-CBC encrypt, standalone SHA256, and stitched # subroutine: # # AES-128/-192/-256+SHA256 this(**) gain # Sandy Bridge 5.05/6.05/7.05+11.6 13.0 +28%/36%/43% # Ivy Bridge 5.05/6.05/7.05+10.3 11.6 +32%/41%/50% # Haswell 4.43/5.29/6.19+7.80 8.79 +39%/49%/59% # Skylake 2.62/3.14/3.62+7.70 8.10 +27%/34%/40% # Bulldozer 5.77/6.89/8.00+13.7 13.7 +42%/50%/58% # Ryzen(***) 2.71/-/3.71+2.05 2.74/-/3.73 +74%/-/54% # Goldmont(***) 3.82/-/5.35+4.16 4.73/-/5.94 +69%/-/60% # # (*) there are XOP, AVX1 and AVX2 code paths, meaning that # Westmere is omitted from loop, this is because gain was not # estimated high enough to justify the effort; # (**) these are EVP-free results, results obtained with 'speed # -evp aes-256-cbc-hmac-sha256' will vary by percent or two; # (***) these are SHAEXT results; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=12); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } $shaext=$avx; ### set to zero if compiling for 1.0.1 $avx=1 if (!$shaext && $avx); open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $func="aesni_cbc_sha256_enc"; $TABLE="K256"; $SZ=4; @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx", "%r8d","%r9d","%r10d","%r11d"); ($T1,$a0,$a1,$a2,$a3)=("%r12d","%r13d","%r14d","%r15d","%esi"); @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; ######################################################################## # void aesni_cbc_sha256_enc(const void *inp, # void *out, # size_t length, # const AES_KEY *key, # unsigned char *iv, # SHA256_CTX *ctx, # const void *in0); ($inp, $out, $len, $key, $ivp, $ctx, $in0) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); $Tbl="%rbp"; $_inp="16*$SZ+0*8(%rsp)"; $_out="16*$SZ+1*8(%rsp)"; $_end="16*$SZ+2*8(%rsp)"; $_key="16*$SZ+3*8(%rsp)"; $_ivp="16*$SZ+4*8(%rsp)"; $_ctx="16*$SZ+5*8(%rsp)"; $_in0="16*$SZ+6*8(%rsp)"; $_rsp="`16*$SZ+7*8`(%rsp)"; $framesz=16*$SZ+8*8; $code=<<___; .text .extern OPENSSL_ia32cap_P .globl $func .type $func,\@abi-omnipotent .align 16 $func: .cfi_startproc ___ if ($avx) { $code.=<<___; lea OPENSSL_ia32cap_P(%rip),%r11 mov \$1,%eax cmp \$0,`$win64?"%rcx":"%rdi"` je .Lprobe mov 0(%r11),%eax mov 4(%r11),%r10 ___ $code.=<<___ if ($shaext); bt \$61,%r10 # check for SHA jc ${func}_shaext ___ $code.=<<___; mov %r10,%r11 shr \$32,%r11 test \$`1<<11`,%r10d # check for XOP jnz ${func}_xop ___ $code.=<<___ if ($avx>1); and \$`1<<8|1<<5|1<<3`,%r11d # check for BMI2+AVX2+BMI1 cmp \$`1<<8|1<<5|1<<3`,%r11d je ${func}_avx2 ___ $code.=<<___; and \$`1<<28`,%r10d # check for AVX jnz ${func}_avx ud2 ___ } $code.=<<___; xor %eax,%eax cmp \$0,`$win64?"%rcx":"%rdi"` je .Lprobe ud2 .Lprobe: ret .cfi_endproc .size $func,.-$func .align 64 .type $TABLE,\@object $TABLE: .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f .long 0,0,0,0, 0,0,0,0, -1,-1,-1,-1 .long 0,0,0,0, 0,0,0,0 .asciz "AESNI-CBC+SHA256 stitch for x86_64, CRYPTOGAMS by " .align 64 ___ ###################################################################### # SIMD code paths # {{{ ($iv,$inout,$roundkey,$temp, $mask10,$mask12,$mask14,$offload)=map("%xmm$_",(8..15)); $aesni_cbc_idx=0; @aesni_cbc_block = ( ## &vmovdqu ($roundkey,"0x00-0x80($inp)");' ## &vmovdqu ($inout,($inp)); ## &mov ($_inp,$inp); '&vpxor ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x10-0x80($inp)");', '&vpxor ($inout,$inout,$iv);', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x20-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x30-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x40-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x50-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x60-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x70-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x80-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x90-0x80($inp)");', '&vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0xa0-0x80($inp)");', '&vaesenclast ($temp,$inout,$roundkey);'. ' &vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0xb0-0x80($inp)");', '&vpand ($iv,$temp,$mask10);'. ' &vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0xc0-0x80($inp)");', '&vaesenclast ($temp,$inout,$roundkey);'. ' &vaesenc ($inout,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0xd0-0x80($inp)");', '&vpand ($temp,$temp,$mask12);'. ' &vaesenc ($inout,$inout,$roundkey);'. '&vmovdqu ($roundkey,"0xe0-0x80($inp)");', '&vpor ($iv,$iv,$temp);'. ' &vaesenclast ($temp,$inout,$roundkey);'. ' &vmovdqu ($roundkey,"0x00-0x80($inp)");' ## &mov ($inp,$_inp); ## &mov ($out,$_out); ## &vpand ($temp,$temp,$mask14); ## &vpor ($iv,$iv,$temp); ## &vmovdqu ($iv,($out,$inp); ## &lea (inp,16($inp)); ); my $a4=$T1; my ($a,$b,$c,$d,$e,$f,$g,$h); sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; my $arg = pop; $arg = "\$$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; } sub body_00_15 () { ( '($a,$b,$c,$d,$e,$f,$g,$h)=@ROT;'. '&ror ($a0,$Sigma1[2]-$Sigma1[1])', '&mov ($a,$a1)', '&mov ($a4,$f)', '&xor ($a0,$e)', '&ror ($a1,$Sigma0[2]-$Sigma0[1])', '&xor ($a4,$g)', # f^g '&ror ($a0,$Sigma1[1]-$Sigma1[0])', '&xor ($a1,$a)', '&and ($a4,$e)', # (f^g)&e @aesni_cbc_block[$aesni_cbc_idx++]. '&xor ($a0,$e)', '&add ($h,$SZ*($i&15)."(%rsp)")', # h+=X[i]+K[i] '&mov ($a2,$a)', '&ror ($a1,$Sigma0[1]-$Sigma0[0])', '&xor ($a4,$g)', # Ch(e,f,g)=((f^g)&e)^g '&xor ($a2,$b)', # a^b, b^c in next round '&ror ($a0,$Sigma1[0])', # Sigma1(e) '&add ($h,$a4)', # h+=Ch(e,f,g) '&and ($a3,$a2)', # (b^c)&(a^b) '&xor ($a1,$a)', '&add ($h,$a0)', # h+=Sigma1(e) '&xor ($a3,$b)', # Maj(a,b,c)=Ch(a^b,c,b) '&add ($d,$h)', # d+=h '&ror ($a1,$Sigma0[0])', # Sigma0(a) '&add ($h,$a3)', # h+=Maj(a,b,c) '&mov ($a0,$d)', '&add ($a1,$h);'. # h+=Sigma0(a) '($a2,$a3) = ($a3,$a2); unshift(@ROT,pop(@ROT)); $i++;' ); } if ($avx) {{ ###################################################################### # XOP code path # $code.=<<___; .type ${func}_xop,\@function,6 .align 64 ${func}_xop: .cfi_startproc .Lxop_shortcut: mov `($win64?56:8)`(%rsp),$in0 # load 7th parameter mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$`$framesz+$win64*16*10`,%rsp and \$-64,%rsp # align stack frame shl \$6,$len sub $inp,$out # re-bias sub $inp,$in0 add $inp,$len # end of input #mov $inp,$_inp # saved later mov $out,$_out mov $len,$_end #mov $key,$_key # remains resident in $inp register mov $ivp,$_ivp mov $ctx,$_ctx mov $in0,$_in0 mov %rax,$_rsp .cfi_cfa_expression $_rsp,deref,+8 ___ $code.=<<___ if ($win64); movaps %xmm6,`$framesz+16*0`(%rsp) movaps %xmm7,`$framesz+16*1`(%rsp) movaps %xmm8,`$framesz+16*2`(%rsp) movaps %xmm9,`$framesz+16*3`(%rsp) movaps %xmm10,`$framesz+16*4`(%rsp) movaps %xmm11,`$framesz+16*5`(%rsp) movaps %xmm12,`$framesz+16*6`(%rsp) movaps %xmm13,`$framesz+16*7`(%rsp) movaps %xmm14,`$framesz+16*8`(%rsp) movaps %xmm15,`$framesz+16*9`(%rsp) ___ $code.=<<___; .Lprologue_xop: vzeroall mov $inp,%r12 # borrow $a4 lea 0x80($key),$inp # size optimization, reassign lea $TABLE+`$SZ*2*$rounds+32`(%rip),%r13 # borrow $a0 mov 0xf0-0x80($inp),%r14d # rounds, borrow $a1 mov $ctx,%r15 # borrow $a2 mov $in0,%rsi # borrow $a3 vmovdqu ($ivp),$iv # load IV sub \$9,%r14 mov $SZ*0(%r15),$A mov $SZ*1(%r15),$B mov $SZ*2(%r15),$C mov $SZ*3(%r15),$D mov $SZ*4(%r15),$E mov $SZ*5(%r15),$F mov $SZ*6(%r15),$G mov $SZ*7(%r15),$H vmovdqa 0x00(%r13,%r14,8),$mask14 vmovdqa 0x10(%r13,%r14,8),$mask12 vmovdqa 0x20(%r13,%r14,8),$mask10 vmovdqu 0x00-0x80($inp),$roundkey jmp .Lloop_xop ___ if ($SZ==4) { # SHA256 my @X = map("%xmm$_",(0..3)); my ($t0,$t1,$t2,$t3) = map("%xmm$_",(4..7)); $code.=<<___; .align 16 .Lloop_xop: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu 0x00(%rsi,%r12),@X[0] vmovdqu 0x10(%rsi,%r12),@X[1] vmovdqu 0x20(%rsi,%r12),@X[2] vmovdqu 0x30(%rsi,%r12),@X[3] vpshufb $t3,@X[0],@X[0] lea $TABLE(%rip),$Tbl vpshufb $t3,@X[1],@X[1] vpshufb $t3,@X[2],@X[2] vpaddd 0x00($Tbl),@X[0],$t0 vpshufb $t3,@X[3],@X[3] vpaddd 0x20($Tbl),@X[1],$t1 vpaddd 0x40($Tbl),@X[2],$t2 vpaddd 0x60($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) mov $A,$a1 vmovdqa $t1,0x10(%rsp) mov $B,$a3 vmovdqa $t2,0x20(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x30(%rsp) mov $E,$a0 jmp .Lxop_00_47 .align 16 .Lxop_00_47: sub \$-16*2*$SZ,$Tbl # size optimization vmovdqu (%r12),$inout # $a4 mov %r12,$_inp # $a4 ___ sub XOP_256_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 104 instructions &vpalignr ($t0,@X[1],@X[0],$SZ); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); &vpalignr ($t3,@X[3],@X[2],$SZ); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t1,$t0,8*$SZ-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &vpsrld ($t0,$t0,$sigma0[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t3); # X[0..3] += X[9..12] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t2,$t1,$sigma0[1]-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t0,$t0,$t1); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t3,@X[3],8*$SZ-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t0,$t0,$t2); # sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &vpsrld ($t2,@X[3],$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t0); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t1,$t3,$sigma1[1]-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t1); # sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrldq ($t3,$t3,8); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t3); # X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t3,@X[0],8*$SZ-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vpsrld ($t2,@X[0],$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t1,$t3,$sigma1[1]-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t1); # sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq ($t3,$t3,8); # 22 instructions eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t3); # X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd ($t2,@X[0],16*2*$j."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa (16*$j."(%rsp)",$t2); } $aesni_cbc_idx=0; for ($i=0,$j=0; $j<4; $j++) { &XOP_256_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &mov ("%r12",$_inp); # borrow $a4 &vpand ($temp,$temp,$mask14); &mov ("%r15",$_out); # borrow $a2 &vpor ($iv,$iv,$temp); &vmovdqu ("(%r15,%r12)",$iv); # write output &lea ("%r12","16(%r12)"); # inp++ &cmpb ($SZ-1+16*2*$SZ."($Tbl)",0); &jne (".Lxop_00_47"); &vmovdqu ($inout,"(%r12)"); &mov ($_inp,"%r12"); $aesni_cbc_idx=0; for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } } $code.=<<___; mov $_inp,%r12 # borrow $a4 mov $_out,%r13 # borrow $a0 mov $_ctx,%r15 # borrow $a2 mov $_in0,%rsi # borrow $a3 vpand $mask14,$temp,$temp mov $a1,$A vpor $temp,$iv,$iv vmovdqu $iv,(%r13,%r12) # write output lea 16(%r12),%r12 # inp++ add $SZ*0(%r15),$A add $SZ*1(%r15),$B add $SZ*2(%r15),$C add $SZ*3(%r15),$D add $SZ*4(%r15),$E add $SZ*5(%r15),$F add $SZ*6(%r15),$G add $SZ*7(%r15),$H cmp $_end,%r12 mov $A,$SZ*0(%r15) mov $B,$SZ*1(%r15) mov $C,$SZ*2(%r15) mov $D,$SZ*3(%r15) mov $E,$SZ*4(%r15) mov $F,$SZ*5(%r15) mov $G,$SZ*6(%r15) mov $H,$SZ*7(%r15) jb .Lloop_xop mov $_ivp,$ivp mov $_rsp,%rsi .cfi_def_cfa %rsi,8 vmovdqu $iv,($ivp) # output IV vzeroall ___ $code.=<<___ if ($win64); movaps `$framesz+16*0`(%rsp),%xmm6 movaps `$framesz+16*1`(%rsp),%xmm7 movaps `$framesz+16*2`(%rsp),%xmm8 movaps `$framesz+16*3`(%rsp),%xmm9 movaps `$framesz+16*4`(%rsp),%xmm10 movaps `$framesz+16*5`(%rsp),%xmm11 movaps `$framesz+16*6`(%rsp),%xmm12 movaps `$framesz+16*7`(%rsp),%xmm13 movaps `$framesz+16*8`(%rsp),%xmm14 movaps `$framesz+16*9`(%rsp),%xmm15 ___ $code.=<<___; mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue_xop: ret .cfi_endproc .size ${func}_xop,.-${func}_xop ___ ###################################################################### # AVX+shrd code path # local *ror = sub { &shrd(@_[0],@_) }; $code.=<<___; .type ${func}_avx,\@function,6 .align 64 ${func}_avx: .cfi_startproc .Lavx_shortcut: mov `($win64?56:8)`(%rsp),$in0 # load 7th parameter mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$`$framesz+$win64*16*10`,%rsp and \$-64,%rsp # align stack frame shl \$6,$len sub $inp,$out # re-bias sub $inp,$in0 add $inp,$len # end of input #mov $inp,$_inp # saved later mov $out,$_out mov $len,$_end #mov $key,$_key # remains resident in $inp register mov $ivp,$_ivp mov $ctx,$_ctx mov $in0,$_in0 mov %rax,$_rsp .cfi_cfa_expression $_rsp,deref,+8 ___ $code.=<<___ if ($win64); movaps %xmm6,`$framesz+16*0`(%rsp) movaps %xmm7,`$framesz+16*1`(%rsp) movaps %xmm8,`$framesz+16*2`(%rsp) movaps %xmm9,`$framesz+16*3`(%rsp) movaps %xmm10,`$framesz+16*4`(%rsp) movaps %xmm11,`$framesz+16*5`(%rsp) movaps %xmm12,`$framesz+16*6`(%rsp) movaps %xmm13,`$framesz+16*7`(%rsp) movaps %xmm14,`$framesz+16*8`(%rsp) movaps %xmm15,`$framesz+16*9`(%rsp) ___ $code.=<<___; .Lprologue_avx: vzeroall mov $inp,%r12 # borrow $a4 lea 0x80($key),$inp # size optimization, reassign lea $TABLE+`$SZ*2*$rounds+32`(%rip),%r13 # borrow $a0 mov 0xf0-0x80($inp),%r14d # rounds, borrow $a1 mov $ctx,%r15 # borrow $a2 mov $in0,%rsi # borrow $a3 vmovdqu ($ivp),$iv # load IV sub \$9,%r14 mov $SZ*0(%r15),$A mov $SZ*1(%r15),$B mov $SZ*2(%r15),$C mov $SZ*3(%r15),$D mov $SZ*4(%r15),$E mov $SZ*5(%r15),$F mov $SZ*6(%r15),$G mov $SZ*7(%r15),$H vmovdqa 0x00(%r13,%r14,8),$mask14 vmovdqa 0x10(%r13,%r14,8),$mask12 vmovdqa 0x20(%r13,%r14,8),$mask10 vmovdqu 0x00-0x80($inp),$roundkey ___ if ($SZ==4) { # SHA256 my @X = map("%xmm$_",(0..3)); my ($t0,$t1,$t2,$t3) = map("%xmm$_",(4..7)); $code.=<<___; jmp .Lloop_avx .align 16 .Lloop_avx: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu 0x00(%rsi,%r12),@X[0] vmovdqu 0x10(%rsi,%r12),@X[1] vmovdqu 0x20(%rsi,%r12),@X[2] vmovdqu 0x30(%rsi,%r12),@X[3] vpshufb $t3,@X[0],@X[0] lea $TABLE(%rip),$Tbl vpshufb $t3,@X[1],@X[1] vpshufb $t3,@X[2],@X[2] vpaddd 0x00($Tbl),@X[0],$t0 vpshufb $t3,@X[3],@X[3] vpaddd 0x20($Tbl),@X[1],$t1 vpaddd 0x40($Tbl),@X[2],$t2 vpaddd 0x60($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) mov $A,$a1 vmovdqa $t1,0x10(%rsp) mov $B,$a3 vmovdqa $t2,0x20(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x30(%rsp) mov $E,$a0 jmp .Lavx_00_47 .align 16 .Lavx_00_47: sub \$-16*2*$SZ,$Tbl # size optimization vmovdqu (%r12),$inout # $a4 mov %r12,$_inp # $a4 ___ sub Xupdate_256_AVX () { ( '&vpalignr ($t0,@X[1],@X[0],$SZ)', # X[1..4] '&vpalignr ($t3,@X[3],@X[2],$SZ)', # X[9..12] '&vpsrld ($t2,$t0,$sigma0[0]);', '&vpaddd (@X[0],@X[0],$t3)', # X[0..3] += X[9..12] '&vpsrld ($t3,$t0,$sigma0[2])', '&vpslld ($t1,$t0,8*$SZ-$sigma0[1]);', '&vpxor ($t0,$t3,$t2)', '&vpshufd ($t3,@X[3],0b11111010)',# X[14..15] '&vpsrld ($t2,$t2,$sigma0[1]-$sigma0[0]);', '&vpxor ($t0,$t0,$t1)', '&vpslld ($t1,$t1,$sigma0[1]-$sigma0[0]);', '&vpxor ($t0,$t0,$t2)', '&vpsrld ($t2,$t3,$sigma1[2]);', '&vpxor ($t0,$t0,$t1)', # sigma0(X[1..4]) '&vpsrlq ($t3,$t3,$sigma1[0]);', '&vpaddd (@X[0],@X[0],$t0)', # X[0..3] += sigma0(X[1..4]) '&vpxor ($t2,$t2,$t3);', '&vpsrlq ($t3,$t3,$sigma1[1]-$sigma1[0])', '&vpxor ($t2,$t2,$t3)', # sigma1(X[14..15]) '&vpshufd ($t2,$t2,0b10000100)', '&vpsrldq ($t2,$t2,8)', '&vpaddd (@X[0],@X[0],$t2)', # X[0..1] += sigma1(X[14..15]) '&vpshufd ($t3,@X[0],0b01010000)',# X[16..17] '&vpsrld ($t2,$t3,$sigma1[2])', '&vpsrlq ($t3,$t3,$sigma1[0])', '&vpxor ($t2,$t2,$t3);', '&vpsrlq ($t3,$t3,$sigma1[1]-$sigma1[0])', '&vpxor ($t2,$t2,$t3)', '&vpshufd ($t2,$t2,0b11101000)', '&vpslldq ($t2,$t2,8)', '&vpaddd (@X[0],@X[0],$t2)' # X[2..3] += sigma1(X[16..17]) ); } sub AVX_256_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 104 instructions foreach (Xupdate_256_AVX()) { # 29 instructions eval; eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); } &vpaddd ($t2,@X[0],16*2*$j."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa (16*$j."(%rsp)",$t2); } $aesni_cbc_idx=0; for ($i=0,$j=0; $j<4; $j++) { &AVX_256_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &mov ("%r12",$_inp); # borrow $a4 &vpand ($temp,$temp,$mask14); &mov ("%r15",$_out); # borrow $a2 &vpor ($iv,$iv,$temp); &vmovdqu ("(%r15,%r12)",$iv); # write output &lea ("%r12","16(%r12)"); # inp++ &cmpb ($SZ-1+16*2*$SZ."($Tbl)",0); &jne (".Lavx_00_47"); &vmovdqu ($inout,"(%r12)"); &mov ($_inp,"%r12"); $aesni_cbc_idx=0; for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } } $code.=<<___; mov $_inp,%r12 # borrow $a4 mov $_out,%r13 # borrow $a0 mov $_ctx,%r15 # borrow $a2 mov $_in0,%rsi # borrow $a3 vpand $mask14,$temp,$temp mov $a1,$A vpor $temp,$iv,$iv vmovdqu $iv,(%r13,%r12) # write output lea 16(%r12),%r12 # inp++ add $SZ*0(%r15),$A add $SZ*1(%r15),$B add $SZ*2(%r15),$C add $SZ*3(%r15),$D add $SZ*4(%r15),$E add $SZ*5(%r15),$F add $SZ*6(%r15),$G add $SZ*7(%r15),$H cmp $_end,%r12 mov $A,$SZ*0(%r15) mov $B,$SZ*1(%r15) mov $C,$SZ*2(%r15) mov $D,$SZ*3(%r15) mov $E,$SZ*4(%r15) mov $F,$SZ*5(%r15) mov $G,$SZ*6(%r15) mov $H,$SZ*7(%r15) jb .Lloop_avx mov $_ivp,$ivp mov $_rsp,%rsi .cfi_def_cfa %rsi,8 vmovdqu $iv,($ivp) # output IV vzeroall ___ $code.=<<___ if ($win64); movaps `$framesz+16*0`(%rsp),%xmm6 movaps `$framesz+16*1`(%rsp),%xmm7 movaps `$framesz+16*2`(%rsp),%xmm8 movaps `$framesz+16*3`(%rsp),%xmm9 movaps `$framesz+16*4`(%rsp),%xmm10 movaps `$framesz+16*5`(%rsp),%xmm11 movaps `$framesz+16*6`(%rsp),%xmm12 movaps `$framesz+16*7`(%rsp),%xmm13 movaps `$framesz+16*8`(%rsp),%xmm14 movaps `$framesz+16*9`(%rsp),%xmm15 ___ $code.=<<___; mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx: ret .cfi_endproc .size ${func}_avx,.-${func}_avx ___ if ($avx>1) {{ ###################################################################### # AVX2+BMI code path # my $a5=$SZ==4?"%esi":"%rsi"; # zap $inp my $PUSH8=8*2*$SZ; use integer; sub bodyx_00_15 () { # at start $a1 should be zero, $a3 - $b^$c and $a4 copy of $f ( '($a,$b,$c,$d,$e,$f,$g,$h)=@ROT;'. '&add ($h,(32*($i/(16/$SZ))+$SZ*($i%(16/$SZ)))%$PUSH8.$base)', # h+=X[i]+K[i] '&and ($a4,$e)', # f&e '&rorx ($a0,$e,$Sigma1[2])', '&rorx ($a2,$e,$Sigma1[1])', '&lea ($a,"($a,$a1)")', # h+=Sigma0(a) from the past '&lea ($h,"($h,$a4)")', '&andn ($a4,$e,$g)', # ~e&g '&xor ($a0,$a2)', '&rorx ($a1,$e,$Sigma1[0])', '&lea ($h,"($h,$a4)")', # h+=Ch(e,f,g)=(e&f)+(~e&g) '&xor ($a0,$a1)', # Sigma1(e) '&mov ($a2,$a)', '&rorx ($a4,$a,$Sigma0[2])', '&lea ($h,"($h,$a0)")', # h+=Sigma1(e) '&xor ($a2,$b)', # a^b, b^c in next round '&rorx ($a1,$a,$Sigma0[1])', '&rorx ($a0,$a,$Sigma0[0])', '&lea ($d,"($d,$h)")', # d+=h '&and ($a3,$a2)', # (b^c)&(a^b) @aesni_cbc_block[$aesni_cbc_idx++]. '&xor ($a1,$a4)', '&xor ($a3,$b)', # Maj(a,b,c)=Ch(a^b,c,b) '&xor ($a1,$a0)', # Sigma0(a) '&lea ($h,"($h,$a3)");'. # h+=Maj(a,b,c) '&mov ($a4,$e)', # copy of f in future '($a2,$a3) = ($a3,$a2); unshift(@ROT,pop(@ROT)); $i++;' ); # and at the finish one has to $a+=$a1 } $code.=<<___; .type ${func}_avx2,\@function,6 .align 64 ${func}_avx2: .cfi_startproc .Lavx2_shortcut: mov `($win64?56:8)`(%rsp),$in0 # load 7th parameter mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$`2*$SZ*$rounds+8*8+$win64*16*10`,%rsp and \$-256*$SZ,%rsp # align stack frame add \$`2*$SZ*($rounds-8)`,%rsp shl \$6,$len sub $inp,$out # re-bias sub $inp,$in0 add $inp,$len # end of input #mov $inp,$_inp # saved later #mov $out,$_out # kept in $offload mov $len,$_end #mov $key,$_key # remains resident in $inp register mov $ivp,$_ivp mov $ctx,$_ctx mov $in0,$_in0 mov %rax,$_rsp .cfi_cfa_expression $_rsp,deref,+8 ___ $code.=<<___ if ($win64); movaps %xmm6,`$framesz+16*0`(%rsp) movaps %xmm7,`$framesz+16*1`(%rsp) movaps %xmm8,`$framesz+16*2`(%rsp) movaps %xmm9,`$framesz+16*3`(%rsp) movaps %xmm10,`$framesz+16*4`(%rsp) movaps %xmm11,`$framesz+16*5`(%rsp) movaps %xmm12,`$framesz+16*6`(%rsp) movaps %xmm13,`$framesz+16*7`(%rsp) movaps %xmm14,`$framesz+16*8`(%rsp) movaps %xmm15,`$framesz+16*9`(%rsp) ___ $code.=<<___; .Lprologue_avx2: vzeroall mov $inp,%r13 # borrow $a0 vpinsrq \$1,$out,$offload,$offload lea 0x80($key),$inp # size optimization, reassign lea $TABLE+`$SZ*2*$rounds+32`(%rip),%r12 # borrow $a4 mov 0xf0-0x80($inp),%r14d # rounds, borrow $a1 mov $ctx,%r15 # borrow $a2 mov $in0,%rsi # borrow $a3 vmovdqu ($ivp),$iv # load IV lea -9(%r14),%r14 vmovdqa 0x00(%r12,%r14,8),$mask14 vmovdqa 0x10(%r12,%r14,8),$mask12 vmovdqa 0x20(%r12,%r14,8),$mask10 sub \$-16*$SZ,%r13 # inp++, size optimization mov $SZ*0(%r15),$A lea (%rsi,%r13),%r12 # borrow $a0 mov $SZ*1(%r15),$B cmp $len,%r13 # $_end mov $SZ*2(%r15),$C cmove %rsp,%r12 # next block or random data mov $SZ*3(%r15),$D mov $SZ*4(%r15),$E mov $SZ*5(%r15),$F mov $SZ*6(%r15),$G mov $SZ*7(%r15),$H vmovdqu 0x00-0x80($inp),$roundkey ___ if ($SZ==4) { # SHA256 my @X = map("%ymm$_",(0..3)); my ($t0,$t1,$t2,$t3) = map("%ymm$_",(4..7)); $code.=<<___; jmp .Loop_avx2 .align 16 .Loop_avx2: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu -16*$SZ+0(%rsi,%r13),%xmm0 vmovdqu -16*$SZ+16(%rsi,%r13),%xmm1 vmovdqu -16*$SZ+32(%rsi,%r13),%xmm2 vmovdqu -16*$SZ+48(%rsi,%r13),%xmm3 vinserti128 \$1,(%r12),@X[0],@X[0] vinserti128 \$1,16(%r12),@X[1],@X[1] vpshufb $t3,@X[0],@X[0] vinserti128 \$1,32(%r12),@X[2],@X[2] vpshufb $t3,@X[1],@X[1] vinserti128 \$1,48(%r12),@X[3],@X[3] lea $TABLE(%rip),$Tbl vpshufb $t3,@X[2],@X[2] lea -16*$SZ(%r13),%r13 vpaddd 0x00($Tbl),@X[0],$t0 vpshufb $t3,@X[3],@X[3] vpaddd 0x20($Tbl),@X[1],$t1 vpaddd 0x40($Tbl),@X[2],$t2 vpaddd 0x60($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) xor $a1,$a1 vmovdqa $t1,0x20(%rsp) ___ $code.=<<___ if (!$win64); # temporarily use %rsi as frame pointer mov $_rsp,%rsi .cfi_def_cfa %rsi,8 ___ $code.=<<___; lea -$PUSH8(%rsp),%rsp ___ $code.=<<___ if (!$win64); # the frame info is at $_rsp, but the stack is moving... # so a second frame pointer is saved at -8(%rsp) # that is in the red zone mov %rsi,-8(%rsp) .cfi_cfa_expression %rsp-8,deref,+8 ___ $code.=<<___; mov $B,$a3 vmovdqa $t2,0x00(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x20(%rsp) mov $F,$a4 sub \$-16*2*$SZ,$Tbl # size optimization jmp .Lavx2_00_47 .align 16 .Lavx2_00_47: vmovdqu (%r13),$inout vpinsrq \$0,%r13,$offload,$offload ___ sub AVX2_256_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 96 instructions my $base = "+2*$PUSH8(%rsp)"; if (($j%2)==0) { &lea ("%rsp","-$PUSH8(%rsp)"); $code.=<<___ if (!$win64); .cfi_cfa_expression %rsp+`$PUSH8-8`,deref,+8 # copy secondary frame pointer to new location again at -8(%rsp) pushq $PUSH8-8(%rsp) .cfi_cfa_expression %rsp,deref,+8 lea 8(%rsp),%rsp .cfi_cfa_expression %rsp-8,deref,+8 ___ } foreach (Xupdate_256_AVX()) { # 29 instructions eval; eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); } &vpaddd ($t2,@X[0],16*2*$j."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa ((32*$j)%$PUSH8."(%rsp)",$t2); } $aesni_cbc_idx=0; for ($i=0,$j=0; $j<4; $j++) { &AVX2_256_00_47($j,\&bodyx_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &vmovq ("%r13",$offload); # borrow $a0 &vpextrq ("%r15",$offload,1); # borrow $a2 &vpand ($temp,$temp,$mask14); &vpor ($iv,$iv,$temp); &vmovdqu ("(%r15,%r13)",$iv); # write output &lea ("%r13","16(%r13)"); # inp++ &lea ($Tbl,16*2*$SZ."($Tbl)"); &cmpb (($SZ-1)."($Tbl)",0); &jne (".Lavx2_00_47"); &vmovdqu ($inout,"(%r13)"); &vpinsrq ($offload,$offload,"%r13",0); $aesni_cbc_idx=0; for ($i=0; $i<16; ) { my $base=$i<8?"+$PUSH8(%rsp)":"(%rsp)"; foreach(bodyx_00_15()) { eval; } } } $code.=<<___; vpextrq \$1,$offload,%r12 # $_out, borrow $a4 vmovq $offload,%r13 # $_inp, borrow $a0 mov `2*$SZ*$rounds+5*8`(%rsp),%r15 # $_ctx, borrow $a2 add $a1,$A lea `2*$SZ*($rounds-8)`(%rsp),$Tbl vpand $mask14,$temp,$temp vpor $temp,$iv,$iv vmovdqu $iv,(%r12,%r13) # write output lea 16(%r13),%r13 add $SZ*0(%r15),$A add $SZ*1(%r15),$B add $SZ*2(%r15),$C add $SZ*3(%r15),$D add $SZ*4(%r15),$E add $SZ*5(%r15),$F add $SZ*6(%r15),$G add $SZ*7(%r15),$H mov $A,$SZ*0(%r15) mov $B,$SZ*1(%r15) mov $C,$SZ*2(%r15) mov $D,$SZ*3(%r15) mov $E,$SZ*4(%r15) mov $F,$SZ*5(%r15) mov $G,$SZ*6(%r15) mov $H,$SZ*7(%r15) cmp `$PUSH8+2*8`($Tbl),%r13 # $_end je .Ldone_avx2 xor $a1,$a1 mov $B,$a3 mov $F,$a4 xor $C,$a3 # magic jmp .Lower_avx2 .align 16 .Lower_avx2: vmovdqu (%r13),$inout vpinsrq \$0,%r13,$offload,$offload ___ $aesni_cbc_idx=0; for ($i=0; $i<16; ) { my $base="+16($Tbl)"; foreach(bodyx_00_15()) { eval; } &lea ($Tbl,"-$PUSH8($Tbl)") if ($i==8); } $code.=<<___; vmovq $offload,%r13 # borrow $a0 vpextrq \$1,$offload,%r15 # borrow $a2 vpand $mask14,$temp,$temp vpor $temp,$iv,$iv lea -$PUSH8($Tbl),$Tbl vmovdqu $iv,(%r15,%r13) # write output lea 16(%r13),%r13 # inp++ cmp %rsp,$Tbl jae .Lower_avx2 mov `2*$SZ*$rounds+5*8`(%rsp),%r15 # $_ctx, borrow $a2 lea 16*$SZ(%r13),%r13 mov `2*$SZ*$rounds+6*8`(%rsp),%rsi # $_in0, borrow $a3 add $a1,$A lea `2*$SZ*($rounds-8)`(%rsp),%rsp add $SZ*0(%r15),$A add $SZ*1(%r15),$B add $SZ*2(%r15),$C add $SZ*3(%r15),$D add $SZ*4(%r15),$E add $SZ*5(%r15),$F add $SZ*6(%r15),$G lea (%rsi,%r13),%r12 add $SZ*7(%r15),$H cmp $_end,%r13 mov $A,$SZ*0(%r15) cmove %rsp,%r12 # next block or stale data mov $B,$SZ*1(%r15) mov $C,$SZ*2(%r15) mov $D,$SZ*3(%r15) mov $E,$SZ*4(%r15) mov $F,$SZ*5(%r15) mov $G,$SZ*6(%r15) mov $H,$SZ*7(%r15) jbe .Loop_avx2 lea (%rsp),$Tbl # temporarily use $Tbl as index to $_rsp # this avoids the need to save a secondary frame pointer at -8(%rsp) .cfi_cfa_expression $Tbl+`16*$SZ+7*8`,deref,+8 .Ldone_avx2: mov 16*$SZ+4*8($Tbl),$ivp mov 16*$SZ+7*8($Tbl),%rsi .cfi_def_cfa %rsi,8 vmovdqu $iv,($ivp) # output IV vzeroall ___ $code.=<<___ if ($win64); movaps `$framesz+16*0`($Tbl),%xmm6 movaps `$framesz+16*1`($Tbl),%xmm7 movaps `$framesz+16*2`($Tbl),%xmm8 movaps `$framesz+16*3`($Tbl),%xmm9 movaps `$framesz+16*4`($Tbl),%xmm10 movaps `$framesz+16*5`($Tbl),%xmm11 movaps `$framesz+16*6`($Tbl),%xmm12 movaps `$framesz+16*7`($Tbl),%xmm13 movaps `$framesz+16*8`($Tbl),%xmm14 movaps `$framesz+16*9`($Tbl),%xmm15 ___ $code.=<<___; mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx2: ret .cfi_endproc .size ${func}_avx2,.-${func}_avx2 ___ }} }} {{ my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); my ($rounds,$Tbl)=("%r11d","%rbx"); my ($iv,$in,$rndkey0)=map("%xmm$_",(6,14,15)); my @rndkey=("%xmm4","%xmm5"); my $r=0; my $sn=0; my ($Wi,$ABEF,$CDGH,$TMP,$BSWAP,$ABEF_SAVE,$CDGH_SAVE)=map("%xmm$_",(0..3,7..9)); my @MSG=map("%xmm$_",(10..13)); my $aesenc=sub { use integer; my ($n,$k)=($r/10,$r%10); if ($k==0) { $code.=<<___; movups `16*$n`($in0),$in # load input xorps $rndkey0,$in ___ $code.=<<___ if ($n); movups $iv,`16*($n-1)`($out,$in0) # write output ___ $code.=<<___; xorps $in,$iv movups `32+16*$k-112`($key),$rndkey[1] aesenc $rndkey[0],$iv ___ } elsif ($k==9) { $sn++; $code.=<<___; cmp \$11,$rounds jb .Laesenclast$sn movups `32+16*($k+0)-112`($key),$rndkey[1] aesenc $rndkey[0],$iv movups `32+16*($k+1)-112`($key),$rndkey[0] aesenc $rndkey[1],$iv je .Laesenclast$sn movups `32+16*($k+2)-112`($key),$rndkey[1] aesenc $rndkey[0],$iv movups `32+16*($k+3)-112`($key),$rndkey[0] aesenc $rndkey[1],$iv .Laesenclast$sn: aesenclast $rndkey[0],$iv movups 16-112($key),$rndkey[1] # forward reference nop ___ } else { $code.=<<___; movups `32+16*$k-112`($key),$rndkey[1] aesenc $rndkey[0],$iv ___ } $r++; unshift(@rndkey,pop(@rndkey)); }; if ($shaext) { my $Tbl="%rax"; $code.=<<___; .type ${func}_shaext,\@function,6 .align 32 ${func}_shaext: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument ___ $code.=<<___ if ($win64); lea `-8-10*16`(%rsp),%rsp movaps %xmm6,-8-10*16(%rax) movaps %xmm7,-8-9*16(%rax) movaps %xmm8,-8-8*16(%rax) movaps %xmm9,-8-7*16(%rax) movaps %xmm10,-8-6*16(%rax) movaps %xmm11,-8-5*16(%rax) movaps %xmm12,-8-4*16(%rax) movaps %xmm13,-8-3*16(%rax) movaps %xmm14,-8-2*16(%rax) movaps %xmm15,-8-1*16(%rax) .Lprologue_shaext: ___ $code.=<<___; lea K256+0x80(%rip),$Tbl movdqu ($ctx),$ABEF # DCBA movdqu 16($ctx),$CDGH # HGFE movdqa 0x200-0x80($Tbl),$TMP # byte swap mask mov 240($key),$rounds sub $in0,$out movups ($key),$rndkey0 # $key[0] movups ($ivp),$iv # load IV movups 16($key),$rndkey[0] # forward reference lea 112($key),$key # size optimization pshufd \$0x1b,$ABEF,$Wi # ABCD pshufd \$0xb1,$ABEF,$ABEF # CDAB pshufd \$0x1b,$CDGH,$CDGH # EFGH movdqa $TMP,$BSWAP # offload palignr \$8,$CDGH,$ABEF # ABEF punpcklqdq $Wi,$CDGH # CDGH jmp .Loop_shaext .align 16 .Loop_shaext: movdqu ($inp),@MSG[0] movdqu 0x10($inp),@MSG[1] movdqu 0x20($inp),@MSG[2] pshufb $TMP,@MSG[0] movdqu 0x30($inp),@MSG[3] movdqa 0*32-0x80($Tbl),$Wi paddd @MSG[0],$Wi pshufb $TMP,@MSG[1] movdqa $CDGH,$CDGH_SAVE # offload movdqa $ABEF,$ABEF_SAVE # offload ___ &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 0-3 pshufd \$0x0e,$Wi,$Wi ___ &$aesenc(); $code.=<<___; sha256rnds2 $CDGH,$ABEF movdqa 1*32-0x80($Tbl),$Wi paddd @MSG[1],$Wi pshufb $TMP,@MSG[2] lea 0x40($inp),$inp ___ &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 4-7 pshufd \$0x0e,$Wi,$Wi ___ &$aesenc(); $code.=<<___; sha256rnds2 $CDGH,$ABEF movdqa 2*32-0x80($Tbl),$Wi paddd @MSG[2],$Wi pshufb $TMP,@MSG[3] sha256msg1 @MSG[1],@MSG[0] ___ &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 8-11 pshufd \$0x0e,$Wi,$Wi movdqa @MSG[3],$TMP palignr \$4,@MSG[2],$TMP paddd $TMP,@MSG[0] ___ &$aesenc(); $code.=<<___; sha256rnds2 $CDGH,$ABEF movdqa 3*32-0x80($Tbl),$Wi paddd @MSG[3],$Wi sha256msg2 @MSG[3],@MSG[0] sha256msg1 @MSG[2],@MSG[1] ___ &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 12-15 pshufd \$0x0e,$Wi,$Wi ___ &$aesenc(); $code.=<<___; movdqa @MSG[0],$TMP palignr \$4,@MSG[3],$TMP paddd $TMP,@MSG[1] sha256rnds2 $CDGH,$ABEF ___ for($i=4;$i<16-3;$i++) { &$aesenc() if (($r%10)==0); $code.=<<___; movdqa $i*32-0x80($Tbl),$Wi paddd @MSG[0],$Wi sha256msg2 @MSG[0],@MSG[1] sha256msg1 @MSG[3],@MSG[2] ___ &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 16-19... pshufd \$0x0e,$Wi,$Wi movdqa @MSG[1],$TMP palignr \$4,@MSG[0],$TMP paddd $TMP,@MSG[2] ___ &$aesenc(); &$aesenc() if ($r==19); $code.=<<___; sha256rnds2 $CDGH,$ABEF ___ push(@MSG,shift(@MSG)); } $code.=<<___; movdqa 13*32-0x80($Tbl),$Wi paddd @MSG[0],$Wi sha256msg2 @MSG[0],@MSG[1] sha256msg1 @MSG[3],@MSG[2] ___ &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 52-55 pshufd \$0x0e,$Wi,$Wi movdqa @MSG[1],$TMP palignr \$4,@MSG[0],$TMP paddd $TMP,@MSG[2] ___ &$aesenc(); &$aesenc(); $code.=<<___; sha256rnds2 $CDGH,$ABEF movdqa 14*32-0x80($Tbl),$Wi paddd @MSG[1],$Wi sha256msg2 @MSG[1],@MSG[2] movdqa $BSWAP,$TMP ___ &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 56-59 pshufd \$0x0e,$Wi,$Wi ___ &$aesenc(); $code.=<<___; sha256rnds2 $CDGH,$ABEF movdqa 15*32-0x80($Tbl),$Wi paddd @MSG[2],$Wi ___ &$aesenc(); &$aesenc(); $code.=<<___; sha256rnds2 $ABEF,$CDGH # 60-63 pshufd \$0x0e,$Wi,$Wi ___ &$aesenc(); $code.=<<___; sha256rnds2 $CDGH,$ABEF #pxor $CDGH,$rndkey0 # black magic ___ while ($r<40) { &$aesenc(); } # remaining aesenc's $code.=<<___; #xorps $CDGH,$rndkey0 # black magic paddd $CDGH_SAVE,$CDGH paddd $ABEF_SAVE,$ABEF dec $len movups $iv,48($out,$in0) # write output lea 64($in0),$in0 jnz .Loop_shaext pshufd \$0xb1,$CDGH,$CDGH # DCHG pshufd \$0x1b,$ABEF,$TMP # FEBA pshufd \$0xb1,$ABEF,$ABEF # BAFE punpckhqdq $CDGH,$ABEF # DCBA palignr \$8,$TMP,$CDGH # HGFE movups $iv,($ivp) # write IV movdqu $ABEF,($ctx) movdqu $CDGH,16($ctx) ___ $code.=<<___ if ($win64); movaps 0*16(%rsp),%xmm6 movaps 1*16(%rsp),%xmm7 movaps 2*16(%rsp),%xmm8 movaps 3*16(%rsp),%xmm9 movaps 4*16(%rsp),%xmm10 movaps 5*16(%rsp),%xmm11 movaps 6*16(%rsp),%xmm12 movaps 7*16(%rsp),%xmm13 movaps 8*16(%rsp),%xmm14 movaps 9*16(%rsp),%xmm15 lea 8+10*16(%rsp),%rsp .Lepilogue_shaext: ___ $code.=<<___; ret .cfi_endproc .size ${func}_shaext,.-${func}_shaext ___ } }}}}} # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64 && $avx) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HanderlData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue ___ $code.=<<___ if ($shaext); lea aesni_cbc_sha256_enc_shaext(%rip),%r10 cmp %r10,%rbx jb .Lnot_in_shaext lea (%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq lea 168(%rax),%rax # adjust stack pointer jmp .Lin_prologue .Lnot_in_shaext: ___ $code.=<<___ if ($avx>1); lea .Lavx2_shortcut(%rip),%r10 cmp %r10,%rbx # context->RipRbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 lea 16*$SZ+8*8(%rsi),%rsi # Xmm6- save area lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .rva .LSEH_begin_${func}_xop .rva .LSEH_end_${func}_xop .rva .LSEH_info_${func}_xop .rva .LSEH_begin_${func}_avx .rva .LSEH_end_${func}_avx .rva .LSEH_info_${func}_avx ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_${func}_avx2 .rva .LSEH_end_${func}_avx2 .rva .LSEH_info_${func}_avx2 ___ $code.=<<___ if ($shaext); .rva .LSEH_begin_${func}_shaext .rva .LSEH_end_${func}_shaext .rva .LSEH_info_${func}_shaext ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_${func}_xop: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_xop,.Lepilogue_xop # HandlerData[] .LSEH_info_${func}_avx: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_avx,.Lepilogue_avx # HandlerData[] ___ $code.=<<___ if ($avx>1); .LSEH_info_${func}_avx2: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_avx2,.Lepilogue_avx2 # HandlerData[] ___ $code.=<<___ if ($shaext); .LSEH_info_${func}_shaext: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_shaext,.Lepilogue_shaext # HandlerData[] ___ } #################################################################### sub rex { local *opcode=shift; my ($dst,$src)=@_; my $rex=0; $rex|=0x04 if($dst>=8); $rex|=0x01 if($src>=8); unshift @opcode,$rex|0x40 if($rex); } { my %opcodelet = ( "sha256rnds2" => 0xcb, "sha256msg1" => 0xcc, "sha256msg2" => 0xcd ); sub sha256op38 { my $instr = shift; if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x38); rex(\@opcode,$2,$1); push @opcode,$opcodelet{$instr}; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } else { return $instr."\t".@_[0]; } } } $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/\b(sha256[^\s]*)\s+(.*)/sha256op38($1,$2)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aesni-x86.pl000066400000000000000000003074171364063235100203110ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements support for Intel AES-NI extension. In # OpenSSL context it's used with Intel engine, but can also be used as # drop-in replacement for crypto/aes/asm/aes-586.pl [see below for # details]. # # Performance. # # To start with see corresponding paragraph in aesni-x86_64.pl... # Instead of filling table similar to one found there I've chosen to # summarize *comparison* results for raw ECB, CTR and CBC benchmarks. # The simplified table below represents 32-bit performance relative # to 64-bit one in every given point. Ratios vary for different # encryption modes, therefore interval values. # # 16-byte 64-byte 256-byte 1-KB 8-KB # 53-67% 67-84% 91-94% 95-98% 97-99.5% # # Lower ratios for smaller block sizes are perfectly understandable, # because function call overhead is higher in 32-bit mode. Largest # 8-KB block performance is virtually same: 32-bit code is less than # 1% slower for ECB, CBC and CCM, and ~3% slower otherwise. # January 2011 # # See aesni-x86_64.pl for details. Unlike x86_64 version this module # interleaves at most 6 aes[enc|dec] instructions, because there are # not enough registers for 8x interleave [which should be optimal for # Sandy Bridge]. Actually, performance results for 6x interleave # factor presented in aesni-x86_64.pl (except for CTR) are for this # module. # April 2011 # # Add aesni_xts_[en|de]crypt. Westmere spends 1.50 cycles processing # one byte out of 8KB with 128-bit key, Sandy Bridge - 1.09. # November 2015 # # Add aesni_ocb_[en|de]crypt. ###################################################################### # Current large-block performance in cycles per byte processed with # 128-bit key (less is better). # # CBC en-/decrypt CTR XTS ECB OCB # Westmere 3.77/1.37 1.37 1.52 1.27 # * Bridge 5.07/0.98 0.99 1.09 0.91 1.10 # Haswell 4.44/0.80 0.97 1.03 0.72 0.76 # Skylake 2.68/0.65 0.65 0.66 0.64 0.66 # Silvermont 5.77/3.56 3.67 4.03 3.46 4.03 # Goldmont 3.84/1.39 1.39 1.63 1.31 1.70 # Bulldozer 5.80/0.98 1.05 1.24 0.93 1.23 $PREFIX="aesni"; # if $PREFIX is set to "AES", the script # generates drop-in replacement for # crypto/aes/asm/aes-586.pl:-) $inline=1; # inline _aesni_[en|de]crypt $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open OUT,">$output"; *STDOUT=*OUT; &asm_init($ARGV[0]); &external_label("OPENSSL_ia32cap_P"); &static_label("key_const"); if ($PREFIX eq "aesni") { $movekey=\&movups; } else { $movekey=\&movups; } $len="eax"; $rounds="ecx"; $key="edx"; $inp="esi"; $out="edi"; $rounds_="ebx"; # backup copy for $rounds $key_="ebp"; # backup copy for $key $rndkey0="xmm0"; $rndkey1="xmm1"; $inout0="xmm2"; $inout1="xmm3"; $inout2="xmm4"; $inout3="xmm5"; $in1="xmm5"; $inout4="xmm6"; $in0="xmm6"; $inout5="xmm7"; $ivec="xmm7"; # AESNI extension sub aeskeygenassist { my($dst,$src,$imm)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x66,0x0f,0x3a,0xdf,0xc0|($1<<3)|$2,$imm); } } sub aescommon { my($opcodelet,$dst,$src)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x66,0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);} } sub aesimc { aescommon(0xdb,@_); } sub aesenc { aescommon(0xdc,@_); } sub aesenclast { aescommon(0xdd,@_); } sub aesdec { aescommon(0xde,@_); } sub aesdeclast { aescommon(0xdf,@_); } # Inline version of internal aesni_[en|de]crypt1 { my $sn; sub aesni_inline_generate1 { my ($p,$inout,$ivec)=@_; $inout=$inout0 if (!defined($inout)); $sn++; &$movekey ($rndkey0,&QWP(0,$key)); &$movekey ($rndkey1,&QWP(16,$key)); &xorps ($ivec,$rndkey0) if (defined($ivec)); &lea ($key,&DWP(32,$key)); &xorps ($inout,$ivec) if (defined($ivec)); &xorps ($inout,$rndkey0) if (!defined($ivec)); &set_label("${p}1_loop_$sn"); eval"&aes${p} ($inout,$rndkey1)"; &dec ($rounds); &$movekey ($rndkey1,&QWP(0,$key)); &lea ($key,&DWP(16,$key)); &jnz (&label("${p}1_loop_$sn")); eval"&aes${p}last ($inout,$rndkey1)"; }} sub aesni_generate1 # fully unrolled loop { my ($p,$inout)=@_; $inout=$inout0 if (!defined($inout)); &function_begin_B("_aesni_${p}rypt1"); &movups ($rndkey0,&QWP(0,$key)); &$movekey ($rndkey1,&QWP(0x10,$key)); &xorps ($inout,$rndkey0); &$movekey ($rndkey0,&QWP(0x20,$key)); &lea ($key,&DWP(0x30,$key)); &cmp ($rounds,11); &jb (&label("${p}128")); &lea ($key,&DWP(0x20,$key)); &je (&label("${p}192")); &lea ($key,&DWP(0x20,$key)); eval"&aes${p} ($inout,$rndkey1)"; &$movekey ($rndkey1,&QWP(-0x40,$key)); eval"&aes${p} ($inout,$rndkey0)"; &$movekey ($rndkey0,&QWP(-0x30,$key)); &set_label("${p}192"); eval"&aes${p} ($inout,$rndkey1)"; &$movekey ($rndkey1,&QWP(-0x20,$key)); eval"&aes${p} ($inout,$rndkey0)"; &$movekey ($rndkey0,&QWP(-0x10,$key)); &set_label("${p}128"); eval"&aes${p} ($inout,$rndkey1)"; &$movekey ($rndkey1,&QWP(0,$key)); eval"&aes${p} ($inout,$rndkey0)"; &$movekey ($rndkey0,&QWP(0x10,$key)); eval"&aes${p} ($inout,$rndkey1)"; &$movekey ($rndkey1,&QWP(0x20,$key)); eval"&aes${p} ($inout,$rndkey0)"; &$movekey ($rndkey0,&QWP(0x30,$key)); eval"&aes${p} ($inout,$rndkey1)"; &$movekey ($rndkey1,&QWP(0x40,$key)); eval"&aes${p} ($inout,$rndkey0)"; &$movekey ($rndkey0,&QWP(0x50,$key)); eval"&aes${p} ($inout,$rndkey1)"; &$movekey ($rndkey1,&QWP(0x60,$key)); eval"&aes${p} ($inout,$rndkey0)"; &$movekey ($rndkey0,&QWP(0x70,$key)); eval"&aes${p} ($inout,$rndkey1)"; eval"&aes${p}last ($inout,$rndkey0)"; &ret(); &function_end_B("_aesni_${p}rypt1"); } # void $PREFIX_encrypt (const void *inp,void *out,const AES_KEY *key); &aesni_generate1("enc") if (!$inline); &function_begin_B("${PREFIX}_encrypt"); &mov ("eax",&wparam(0)); &mov ($key,&wparam(2)); &movups ($inout0,&QWP(0,"eax")); &mov ($rounds,&DWP(240,$key)); &mov ("eax",&wparam(1)); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &pxor ($rndkey0,$rndkey0); # clear register bank &pxor ($rndkey1,$rndkey1); &movups (&QWP(0,"eax"),$inout0); &pxor ($inout0,$inout0); &ret (); &function_end_B("${PREFIX}_encrypt"); # void $PREFIX_decrypt (const void *inp,void *out,const AES_KEY *key); &aesni_generate1("dec") if(!$inline); &function_begin_B("${PREFIX}_decrypt"); &mov ("eax",&wparam(0)); &mov ($key,&wparam(2)); &movups ($inout0,&QWP(0,"eax")); &mov ($rounds,&DWP(240,$key)); &mov ("eax",&wparam(1)); if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &pxor ($rndkey0,$rndkey0); # clear register bank &pxor ($rndkey1,$rndkey1); &movups (&QWP(0,"eax"),$inout0); &pxor ($inout0,$inout0); &ret (); &function_end_B("${PREFIX}_decrypt"); # _aesni_[en|de]cryptN are private interfaces, N denotes interleave # factor. Why 3x subroutine were originally used in loops? Even though # aes[enc|dec] latency was originally 6, it could be scheduled only # every *2nd* cycle. Thus 3x interleave was the one providing optimal # utilization, i.e. when subroutine's throughput is virtually same as # of non-interleaved subroutine [for number of input blocks up to 3]. # This is why it originally made no sense to implement 2x subroutine. # But times change and it became appropriate to spend extra 192 bytes # on 2x subroutine on Atom Silvermont account. For processors that # can schedule aes[enc|dec] every cycle optimal interleave factor # equals to corresponding instructions latency. 8x is optimal for # * Bridge, but it's unfeasible to accommodate such implementation # in XMM registers addressable in 32-bit mode and therefore maximum # of 6x is used instead... sub aesni_generate2 { my $p=shift; &function_begin_B("_aesni_${p}rypt2"); &$movekey ($rndkey0,&QWP(0,$key)); &shl ($rounds,4); &$movekey ($rndkey1,&QWP(16,$key)); &xorps ($inout0,$rndkey0); &pxor ($inout1,$rndkey0); &$movekey ($rndkey0,&QWP(32,$key)); &lea ($key,&DWP(32,$key,$rounds)); &neg ($rounds); &add ($rounds,16); &set_label("${p}2_loop"); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; &$movekey ($rndkey1,&QWP(0,$key,$rounds)); &add ($rounds,32); eval"&aes${p} ($inout0,$rndkey0)"; eval"&aes${p} ($inout1,$rndkey0)"; &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &jnz (&label("${p}2_loop")); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; eval"&aes${p}last ($inout0,$rndkey0)"; eval"&aes${p}last ($inout1,$rndkey0)"; &ret(); &function_end_B("_aesni_${p}rypt2"); } sub aesni_generate3 { my $p=shift; &function_begin_B("_aesni_${p}rypt3"); &$movekey ($rndkey0,&QWP(0,$key)); &shl ($rounds,4); &$movekey ($rndkey1,&QWP(16,$key)); &xorps ($inout0,$rndkey0); &pxor ($inout1,$rndkey0); &pxor ($inout2,$rndkey0); &$movekey ($rndkey0,&QWP(32,$key)); &lea ($key,&DWP(32,$key,$rounds)); &neg ($rounds); &add ($rounds,16); &set_label("${p}3_loop"); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; eval"&aes${p} ($inout2,$rndkey1)"; &$movekey ($rndkey1,&QWP(0,$key,$rounds)); &add ($rounds,32); eval"&aes${p} ($inout0,$rndkey0)"; eval"&aes${p} ($inout1,$rndkey0)"; eval"&aes${p} ($inout2,$rndkey0)"; &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &jnz (&label("${p}3_loop")); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; eval"&aes${p} ($inout2,$rndkey1)"; eval"&aes${p}last ($inout0,$rndkey0)"; eval"&aes${p}last ($inout1,$rndkey0)"; eval"&aes${p}last ($inout2,$rndkey0)"; &ret(); &function_end_B("_aesni_${p}rypt3"); } # 4x interleave is implemented to improve small block performance, # most notably [and naturally] 4 block by ~30%. One can argue that one # should have implemented 5x as well, but improvement would be <20%, # so it's not worth it... sub aesni_generate4 { my $p=shift; &function_begin_B("_aesni_${p}rypt4"); &$movekey ($rndkey0,&QWP(0,$key)); &$movekey ($rndkey1,&QWP(16,$key)); &shl ($rounds,4); &xorps ($inout0,$rndkey0); &pxor ($inout1,$rndkey0); &pxor ($inout2,$rndkey0); &pxor ($inout3,$rndkey0); &$movekey ($rndkey0,&QWP(32,$key)); &lea ($key,&DWP(32,$key,$rounds)); &neg ($rounds); &data_byte (0x0f,0x1f,0x40,0x00); &add ($rounds,16); &set_label("${p}4_loop"); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; eval"&aes${p} ($inout2,$rndkey1)"; eval"&aes${p} ($inout3,$rndkey1)"; &$movekey ($rndkey1,&QWP(0,$key,$rounds)); &add ($rounds,32); eval"&aes${p} ($inout0,$rndkey0)"; eval"&aes${p} ($inout1,$rndkey0)"; eval"&aes${p} ($inout2,$rndkey0)"; eval"&aes${p} ($inout3,$rndkey0)"; &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &jnz (&label("${p}4_loop")); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; eval"&aes${p} ($inout2,$rndkey1)"; eval"&aes${p} ($inout3,$rndkey1)"; eval"&aes${p}last ($inout0,$rndkey0)"; eval"&aes${p}last ($inout1,$rndkey0)"; eval"&aes${p}last ($inout2,$rndkey0)"; eval"&aes${p}last ($inout3,$rndkey0)"; &ret(); &function_end_B("_aesni_${p}rypt4"); } sub aesni_generate6 { my $p=shift; &function_begin_B("_aesni_${p}rypt6"); &static_label("_aesni_${p}rypt6_enter"); &$movekey ($rndkey0,&QWP(0,$key)); &shl ($rounds,4); &$movekey ($rndkey1,&QWP(16,$key)); &xorps ($inout0,$rndkey0); &pxor ($inout1,$rndkey0); # pxor does better here &pxor ($inout2,$rndkey0); eval"&aes${p} ($inout0,$rndkey1)"; &pxor ($inout3,$rndkey0); &pxor ($inout4,$rndkey0); eval"&aes${p} ($inout1,$rndkey1)"; &lea ($key,&DWP(32,$key,$rounds)); &neg ($rounds); eval"&aes${p} ($inout2,$rndkey1)"; &pxor ($inout5,$rndkey0); &$movekey ($rndkey0,&QWP(0,$key,$rounds)); &add ($rounds,16); &jmp (&label("_aesni_${p}rypt6_inner")); &set_label("${p}6_loop",16); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; eval"&aes${p} ($inout2,$rndkey1)"; &set_label("_aesni_${p}rypt6_inner"); eval"&aes${p} ($inout3,$rndkey1)"; eval"&aes${p} ($inout4,$rndkey1)"; eval"&aes${p} ($inout5,$rndkey1)"; &set_label("_aesni_${p}rypt6_enter"); &$movekey ($rndkey1,&QWP(0,$key,$rounds)); &add ($rounds,32); eval"&aes${p} ($inout0,$rndkey0)"; eval"&aes${p} ($inout1,$rndkey0)"; eval"&aes${p} ($inout2,$rndkey0)"; eval"&aes${p} ($inout3,$rndkey0)"; eval"&aes${p} ($inout4,$rndkey0)"; eval"&aes${p} ($inout5,$rndkey0)"; &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &jnz (&label("${p}6_loop")); eval"&aes${p} ($inout0,$rndkey1)"; eval"&aes${p} ($inout1,$rndkey1)"; eval"&aes${p} ($inout2,$rndkey1)"; eval"&aes${p} ($inout3,$rndkey1)"; eval"&aes${p} ($inout4,$rndkey1)"; eval"&aes${p} ($inout5,$rndkey1)"; eval"&aes${p}last ($inout0,$rndkey0)"; eval"&aes${p}last ($inout1,$rndkey0)"; eval"&aes${p}last ($inout2,$rndkey0)"; eval"&aes${p}last ($inout3,$rndkey0)"; eval"&aes${p}last ($inout4,$rndkey0)"; eval"&aes${p}last ($inout5,$rndkey0)"; &ret(); &function_end_B("_aesni_${p}rypt6"); } &aesni_generate2("enc") if ($PREFIX eq "aesni"); &aesni_generate2("dec"); &aesni_generate3("enc") if ($PREFIX eq "aesni"); &aesni_generate3("dec"); &aesni_generate4("enc") if ($PREFIX eq "aesni"); &aesni_generate4("dec"); &aesni_generate6("enc") if ($PREFIX eq "aesni"); &aesni_generate6("dec"); if ($PREFIX eq "aesni") { ###################################################################### # void aesni_ecb_encrypt (const void *in, void *out, # size_t length, const AES_KEY *key, # int enc); &function_begin("aesni_ecb_encrypt"); &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); &mov ($rounds_,&wparam(4)); &and ($len,-16); &jz (&label("ecb_ret")); &mov ($rounds,&DWP(240,$key)); &test ($rounds_,$rounds_); &jz (&label("ecb_decrypt")); &mov ($key_,$key); # backup $key &mov ($rounds_,$rounds); # backup $rounds &cmp ($len,0x60); &jb (&label("ecb_enc_tail")); &movdqu ($inout0,&QWP(0,$inp)); &movdqu ($inout1,&QWP(0x10,$inp)); &movdqu ($inout2,&QWP(0x20,$inp)); &movdqu ($inout3,&QWP(0x30,$inp)); &movdqu ($inout4,&QWP(0x40,$inp)); &movdqu ($inout5,&QWP(0x50,$inp)); &lea ($inp,&DWP(0x60,$inp)); &sub ($len,0x60); &jmp (&label("ecb_enc_loop6_enter")); &set_label("ecb_enc_loop6",16); &movups (&QWP(0,$out),$inout0); &movdqu ($inout0,&QWP(0,$inp)); &movups (&QWP(0x10,$out),$inout1); &movdqu ($inout1,&QWP(0x10,$inp)); &movups (&QWP(0x20,$out),$inout2); &movdqu ($inout2,&QWP(0x20,$inp)); &movups (&QWP(0x30,$out),$inout3); &movdqu ($inout3,&QWP(0x30,$inp)); &movups (&QWP(0x40,$out),$inout4); &movdqu ($inout4,&QWP(0x40,$inp)); &movups (&QWP(0x50,$out),$inout5); &lea ($out,&DWP(0x60,$out)); &movdqu ($inout5,&QWP(0x50,$inp)); &lea ($inp,&DWP(0x60,$inp)); &set_label("ecb_enc_loop6_enter"); &call ("_aesni_encrypt6"); &mov ($key,$key_); # restore $key &mov ($rounds,$rounds_); # restore $rounds &sub ($len,0x60); &jnc (&label("ecb_enc_loop6")); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &movups (&QWP(0x40,$out),$inout4); &movups (&QWP(0x50,$out),$inout5); &lea ($out,&DWP(0x60,$out)); &add ($len,0x60); &jz (&label("ecb_ret")); &set_label("ecb_enc_tail"); &movups ($inout0,&QWP(0,$inp)); &cmp ($len,0x20); &jb (&label("ecb_enc_one")); &movups ($inout1,&QWP(0x10,$inp)); &je (&label("ecb_enc_two")); &movups ($inout2,&QWP(0x20,$inp)); &cmp ($len,0x40); &jb (&label("ecb_enc_three")); &movups ($inout3,&QWP(0x30,$inp)); &je (&label("ecb_enc_four")); &movups ($inout4,&QWP(0x40,$inp)); &xorps ($inout5,$inout5); &call ("_aesni_encrypt6"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &movups (&QWP(0x40,$out),$inout4); jmp (&label("ecb_ret")); &set_label("ecb_enc_one",16); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &movups (&QWP(0,$out),$inout0); &jmp (&label("ecb_ret")); &set_label("ecb_enc_two",16); &call ("_aesni_encrypt2"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &jmp (&label("ecb_ret")); &set_label("ecb_enc_three",16); &call ("_aesni_encrypt3"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &jmp (&label("ecb_ret")); &set_label("ecb_enc_four",16); &call ("_aesni_encrypt4"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &jmp (&label("ecb_ret")); ###################################################################### &set_label("ecb_decrypt",16); &mov ($key_,$key); # backup $key &mov ($rounds_,$rounds); # backup $rounds &cmp ($len,0x60); &jb (&label("ecb_dec_tail")); &movdqu ($inout0,&QWP(0,$inp)); &movdqu ($inout1,&QWP(0x10,$inp)); &movdqu ($inout2,&QWP(0x20,$inp)); &movdqu ($inout3,&QWP(0x30,$inp)); &movdqu ($inout4,&QWP(0x40,$inp)); &movdqu ($inout5,&QWP(0x50,$inp)); &lea ($inp,&DWP(0x60,$inp)); &sub ($len,0x60); &jmp (&label("ecb_dec_loop6_enter")); &set_label("ecb_dec_loop6",16); &movups (&QWP(0,$out),$inout0); &movdqu ($inout0,&QWP(0,$inp)); &movups (&QWP(0x10,$out),$inout1); &movdqu ($inout1,&QWP(0x10,$inp)); &movups (&QWP(0x20,$out),$inout2); &movdqu ($inout2,&QWP(0x20,$inp)); &movups (&QWP(0x30,$out),$inout3); &movdqu ($inout3,&QWP(0x30,$inp)); &movups (&QWP(0x40,$out),$inout4); &movdqu ($inout4,&QWP(0x40,$inp)); &movups (&QWP(0x50,$out),$inout5); &lea ($out,&DWP(0x60,$out)); &movdqu ($inout5,&QWP(0x50,$inp)); &lea ($inp,&DWP(0x60,$inp)); &set_label("ecb_dec_loop6_enter"); &call ("_aesni_decrypt6"); &mov ($key,$key_); # restore $key &mov ($rounds,$rounds_); # restore $rounds &sub ($len,0x60); &jnc (&label("ecb_dec_loop6")); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &movups (&QWP(0x40,$out),$inout4); &movups (&QWP(0x50,$out),$inout5); &lea ($out,&DWP(0x60,$out)); &add ($len,0x60); &jz (&label("ecb_ret")); &set_label("ecb_dec_tail"); &movups ($inout0,&QWP(0,$inp)); &cmp ($len,0x20); &jb (&label("ecb_dec_one")); &movups ($inout1,&QWP(0x10,$inp)); &je (&label("ecb_dec_two")); &movups ($inout2,&QWP(0x20,$inp)); &cmp ($len,0x40); &jb (&label("ecb_dec_three")); &movups ($inout3,&QWP(0x30,$inp)); &je (&label("ecb_dec_four")); &movups ($inout4,&QWP(0x40,$inp)); &xorps ($inout5,$inout5); &call ("_aesni_decrypt6"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &movups (&QWP(0x40,$out),$inout4); &jmp (&label("ecb_ret")); &set_label("ecb_dec_one",16); if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &movups (&QWP(0,$out),$inout0); &jmp (&label("ecb_ret")); &set_label("ecb_dec_two",16); &call ("_aesni_decrypt2"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &jmp (&label("ecb_ret")); &set_label("ecb_dec_three",16); &call ("_aesni_decrypt3"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &jmp (&label("ecb_ret")); &set_label("ecb_dec_four",16); &call ("_aesni_decrypt4"); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &set_label("ecb_ret"); &pxor ("xmm0","xmm0"); # clear register bank &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &pxor ("xmm3","xmm3"); &pxor ("xmm4","xmm4"); &pxor ("xmm5","xmm5"); &pxor ("xmm6","xmm6"); &pxor ("xmm7","xmm7"); &function_end("aesni_ecb_encrypt"); ###################################################################### # void aesni_ccm64_[en|de]crypt_blocks (const void *in, void *out, # size_t blocks, const AES_KEY *key, # const char *ivec,char *cmac); # # Handles only complete blocks, operates on 64-bit counter and # does not update *ivec! Nor does it finalize CMAC value # (see engine/eng_aesni.c for details) # { my $cmac=$inout1; &function_begin("aesni_ccm64_encrypt_blocks"); &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); &mov ($rounds_,&wparam(4)); &mov ($rounds,&wparam(5)); &mov ($key_,"esp"); &sub ("esp",60); &and ("esp",-16); # align stack &mov (&DWP(48,"esp"),$key_); &movdqu ($ivec,&QWP(0,$rounds_)); # load ivec &movdqu ($cmac,&QWP(0,$rounds)); # load cmac &mov ($rounds,&DWP(240,$key)); # compose byte-swap control mask for pshufb on stack &mov (&DWP(0,"esp"),0x0c0d0e0f); &mov (&DWP(4,"esp"),0x08090a0b); &mov (&DWP(8,"esp"),0x04050607); &mov (&DWP(12,"esp"),0x00010203); # compose counter increment vector on stack &mov ($rounds_,1); &xor ($key_,$key_); &mov (&DWP(16,"esp"),$rounds_); &mov (&DWP(20,"esp"),$key_); &mov (&DWP(24,"esp"),$key_); &mov (&DWP(28,"esp"),$key_); &shl ($rounds,4); &mov ($rounds_,16); &lea ($key_,&DWP(0,$key)); &movdqa ($inout3,&QWP(0,"esp")); &movdqa ($inout0,$ivec); &lea ($key,&DWP(32,$key,$rounds)); &sub ($rounds_,$rounds); &pshufb ($ivec,$inout3); &set_label("ccm64_enc_outer"); &$movekey ($rndkey0,&QWP(0,$key_)); &mov ($rounds,$rounds_); &movups ($in0,&QWP(0,$inp)); &xorps ($inout0,$rndkey0); &$movekey ($rndkey1,&QWP(16,$key_)); &xorps ($rndkey0,$in0); &xorps ($cmac,$rndkey0); # cmac^=inp &$movekey ($rndkey0,&QWP(32,$key_)); &set_label("ccm64_enc2_loop"); &aesenc ($inout0,$rndkey1); &aesenc ($cmac,$rndkey1); &$movekey ($rndkey1,&QWP(0,$key,$rounds)); &add ($rounds,32); &aesenc ($inout0,$rndkey0); &aesenc ($cmac,$rndkey0); &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &jnz (&label("ccm64_enc2_loop")); &aesenc ($inout0,$rndkey1); &aesenc ($cmac,$rndkey1); &paddq ($ivec,&QWP(16,"esp")); &dec ($len); &aesenclast ($inout0,$rndkey0); &aesenclast ($cmac,$rndkey0); &lea ($inp,&DWP(16,$inp)); &xorps ($in0,$inout0); # inp^=E(ivec) &movdqa ($inout0,$ivec); &movups (&QWP(0,$out),$in0); # save output &pshufb ($inout0,$inout3); &lea ($out,&DWP(16,$out)); &jnz (&label("ccm64_enc_outer")); &mov ("esp",&DWP(48,"esp")); &mov ($out,&wparam(5)); &movups (&QWP(0,$out),$cmac); &pxor ("xmm0","xmm0"); # clear register bank &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &pxor ("xmm3","xmm3"); &pxor ("xmm4","xmm4"); &pxor ("xmm5","xmm5"); &pxor ("xmm6","xmm6"); &pxor ("xmm7","xmm7"); &function_end("aesni_ccm64_encrypt_blocks"); &function_begin("aesni_ccm64_decrypt_blocks"); &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); &mov ($rounds_,&wparam(4)); &mov ($rounds,&wparam(5)); &mov ($key_,"esp"); &sub ("esp",60); &and ("esp",-16); # align stack &mov (&DWP(48,"esp"),$key_); &movdqu ($ivec,&QWP(0,$rounds_)); # load ivec &movdqu ($cmac,&QWP(0,$rounds)); # load cmac &mov ($rounds,&DWP(240,$key)); # compose byte-swap control mask for pshufb on stack &mov (&DWP(0,"esp"),0x0c0d0e0f); &mov (&DWP(4,"esp"),0x08090a0b); &mov (&DWP(8,"esp"),0x04050607); &mov (&DWP(12,"esp"),0x00010203); # compose counter increment vector on stack &mov ($rounds_,1); &xor ($key_,$key_); &mov (&DWP(16,"esp"),$rounds_); &mov (&DWP(20,"esp"),$key_); &mov (&DWP(24,"esp"),$key_); &mov (&DWP(28,"esp"),$key_); &movdqa ($inout3,&QWP(0,"esp")); # bswap mask &movdqa ($inout0,$ivec); &mov ($key_,$key); &mov ($rounds_,$rounds); &pshufb ($ivec,$inout3); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &shl ($rounds_,4); &mov ($rounds,16); &movups ($in0,&QWP(0,$inp)); # load inp &paddq ($ivec,&QWP(16,"esp")); &lea ($inp,&QWP(16,$inp)); &sub ($rounds,$rounds_); &lea ($key,&DWP(32,$key_,$rounds_)); &mov ($rounds_,$rounds); &jmp (&label("ccm64_dec_outer")); &set_label("ccm64_dec_outer",16); &xorps ($in0,$inout0); # inp ^= E(ivec) &movdqa ($inout0,$ivec); &movups (&QWP(0,$out),$in0); # save output &lea ($out,&DWP(16,$out)); &pshufb ($inout0,$inout3); &sub ($len,1); &jz (&label("ccm64_dec_break")); &$movekey ($rndkey0,&QWP(0,$key_)); &mov ($rounds,$rounds_); &$movekey ($rndkey1,&QWP(16,$key_)); &xorps ($in0,$rndkey0); &xorps ($inout0,$rndkey0); &xorps ($cmac,$in0); # cmac^=out &$movekey ($rndkey0,&QWP(32,$key_)); &set_label("ccm64_dec2_loop"); &aesenc ($inout0,$rndkey1); &aesenc ($cmac,$rndkey1); &$movekey ($rndkey1,&QWP(0,$key,$rounds)); &add ($rounds,32); &aesenc ($inout0,$rndkey0); &aesenc ($cmac,$rndkey0); &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &jnz (&label("ccm64_dec2_loop")); &movups ($in0,&QWP(0,$inp)); # load inp &paddq ($ivec,&QWP(16,"esp")); &aesenc ($inout0,$rndkey1); &aesenc ($cmac,$rndkey1); &aesenclast ($inout0,$rndkey0); &aesenclast ($cmac,$rndkey0); &lea ($inp,&QWP(16,$inp)); &jmp (&label("ccm64_dec_outer")); &set_label("ccm64_dec_break",16); &mov ($rounds,&DWP(240,$key_)); &mov ($key,$key_); if ($inline) { &aesni_inline_generate1("enc",$cmac,$in0); } else { &call ("_aesni_encrypt1",$cmac); } &mov ("esp",&DWP(48,"esp")); &mov ($out,&wparam(5)); &movups (&QWP(0,$out),$cmac); &pxor ("xmm0","xmm0"); # clear register bank &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &pxor ("xmm3","xmm3"); &pxor ("xmm4","xmm4"); &pxor ("xmm5","xmm5"); &pxor ("xmm6","xmm6"); &pxor ("xmm7","xmm7"); &function_end("aesni_ccm64_decrypt_blocks"); } ###################################################################### # void aesni_ctr32_encrypt_blocks (const void *in, void *out, # size_t blocks, const AES_KEY *key, # const char *ivec); # # Handles only complete blocks, operates on 32-bit counter and # does not update *ivec! (see crypto/modes/ctr128.c for details) # # stack layout: # 0 pshufb mask # 16 vector addend: 0,6,6,6 # 32 counter-less ivec # 48 1st triplet of counter vector # 64 2nd triplet of counter vector # 80 saved %esp &function_begin("aesni_ctr32_encrypt_blocks"); &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); &mov ($rounds_,&wparam(4)); &mov ($key_,"esp"); &sub ("esp",88); &and ("esp",-16); # align stack &mov (&DWP(80,"esp"),$key_); &cmp ($len,1); &je (&label("ctr32_one_shortcut")); &movdqu ($inout5,&QWP(0,$rounds_)); # load ivec # compose byte-swap control mask for pshufb on stack &mov (&DWP(0,"esp"),0x0c0d0e0f); &mov (&DWP(4,"esp"),0x08090a0b); &mov (&DWP(8,"esp"),0x04050607); &mov (&DWP(12,"esp"),0x00010203); # compose counter increment vector on stack &mov ($rounds,6); &xor ($key_,$key_); &mov (&DWP(16,"esp"),$rounds); &mov (&DWP(20,"esp"),$rounds); &mov (&DWP(24,"esp"),$rounds); &mov (&DWP(28,"esp"),$key_); &pextrd ($rounds_,$inout5,3); # pull 32-bit counter &pinsrd ($inout5,$key_,3); # wipe 32-bit counter &mov ($rounds,&DWP(240,$key)); # key->rounds # compose 2 vectors of 3x32-bit counters &bswap ($rounds_); &pxor ($rndkey0,$rndkey0); &pxor ($rndkey1,$rndkey1); &movdqa ($inout0,&QWP(0,"esp")); # load byte-swap mask &pinsrd ($rndkey0,$rounds_,0); &lea ($key_,&DWP(3,$rounds_)); &pinsrd ($rndkey1,$key_,0); &inc ($rounds_); &pinsrd ($rndkey0,$rounds_,1); &inc ($key_); &pinsrd ($rndkey1,$key_,1); &inc ($rounds_); &pinsrd ($rndkey0,$rounds_,2); &inc ($key_); &pinsrd ($rndkey1,$key_,2); &movdqa (&QWP(48,"esp"),$rndkey0); # save 1st triplet &pshufb ($rndkey0,$inout0); # byte swap &movdqu ($inout4,&QWP(0,$key)); # key[0] &movdqa (&QWP(64,"esp"),$rndkey1); # save 2nd triplet &pshufb ($rndkey1,$inout0); # byte swap &pshufd ($inout0,$rndkey0,3<<6); # place counter to upper dword &pshufd ($inout1,$rndkey0,2<<6); &cmp ($len,6); &jb (&label("ctr32_tail")); &pxor ($inout5,$inout4); # counter-less ivec^key[0] &shl ($rounds,4); &mov ($rounds_,16); &movdqa (&QWP(32,"esp"),$inout5); # save counter-less ivec^key[0] &mov ($key_,$key); # backup $key &sub ($rounds_,$rounds); # backup twisted $rounds &lea ($key,&DWP(32,$key,$rounds)); &sub ($len,6); &jmp (&label("ctr32_loop6")); &set_label("ctr32_loop6",16); # inlining _aesni_encrypt6's prologue gives ~6% improvement... &pshufd ($inout2,$rndkey0,1<<6); &movdqa ($rndkey0,&QWP(32,"esp")); # pull counter-less ivec &pshufd ($inout3,$rndkey1,3<<6); &pxor ($inout0,$rndkey0); # merge counter-less ivec &pshufd ($inout4,$rndkey1,2<<6); &pxor ($inout1,$rndkey0); &pshufd ($inout5,$rndkey1,1<<6); &$movekey ($rndkey1,&QWP(16,$key_)); &pxor ($inout2,$rndkey0); &pxor ($inout3,$rndkey0); &aesenc ($inout0,$rndkey1); &pxor ($inout4,$rndkey0); &pxor ($inout5,$rndkey0); &aesenc ($inout1,$rndkey1); &$movekey ($rndkey0,&QWP(32,$key_)); &mov ($rounds,$rounds_); &aesenc ($inout2,$rndkey1); &aesenc ($inout3,$rndkey1); &aesenc ($inout4,$rndkey1); &aesenc ($inout5,$rndkey1); &call (&label("_aesni_encrypt6_enter")); &movups ($rndkey1,&QWP(0,$inp)); &movups ($rndkey0,&QWP(0x10,$inp)); &xorps ($inout0,$rndkey1); &movups ($rndkey1,&QWP(0x20,$inp)); &xorps ($inout1,$rndkey0); &movups (&QWP(0,$out),$inout0); &movdqa ($rndkey0,&QWP(16,"esp")); # load increment &xorps ($inout2,$rndkey1); &movdqa ($rndkey1,&QWP(64,"esp")); # load 2nd triplet &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &paddd ($rndkey1,$rndkey0); # 2nd triplet increment &paddd ($rndkey0,&QWP(48,"esp")); # 1st triplet increment &movdqa ($inout0,&QWP(0,"esp")); # load byte swap mask &movups ($inout1,&QWP(0x30,$inp)); &movups ($inout2,&QWP(0x40,$inp)); &xorps ($inout3,$inout1); &movups ($inout1,&QWP(0x50,$inp)); &lea ($inp,&DWP(0x60,$inp)); &movdqa (&QWP(48,"esp"),$rndkey0); # save 1st triplet &pshufb ($rndkey0,$inout0); # byte swap &xorps ($inout4,$inout2); &movups (&QWP(0x30,$out),$inout3); &xorps ($inout5,$inout1); &movdqa (&QWP(64,"esp"),$rndkey1); # save 2nd triplet &pshufb ($rndkey1,$inout0); # byte swap &movups (&QWP(0x40,$out),$inout4); &pshufd ($inout0,$rndkey0,3<<6); &movups (&QWP(0x50,$out),$inout5); &lea ($out,&DWP(0x60,$out)); &pshufd ($inout1,$rndkey0,2<<6); &sub ($len,6); &jnc (&label("ctr32_loop6")); &add ($len,6); &jz (&label("ctr32_ret")); &movdqu ($inout5,&QWP(0,$key_)); &mov ($key,$key_); &pxor ($inout5,&QWP(32,"esp")); # restore count-less ivec &mov ($rounds,&DWP(240,$key_)); # restore $rounds &set_label("ctr32_tail"); &por ($inout0,$inout5); &cmp ($len,2); &jb (&label("ctr32_one")); &pshufd ($inout2,$rndkey0,1<<6); &por ($inout1,$inout5); &je (&label("ctr32_two")); &pshufd ($inout3,$rndkey1,3<<6); &por ($inout2,$inout5); &cmp ($len,4); &jb (&label("ctr32_three")); &pshufd ($inout4,$rndkey1,2<<6); &por ($inout3,$inout5); &je (&label("ctr32_four")); &por ($inout4,$inout5); &call ("_aesni_encrypt6"); &movups ($rndkey1,&QWP(0,$inp)); &movups ($rndkey0,&QWP(0x10,$inp)); &xorps ($inout0,$rndkey1); &movups ($rndkey1,&QWP(0x20,$inp)); &xorps ($inout1,$rndkey0); &movups ($rndkey0,&QWP(0x30,$inp)); &xorps ($inout2,$rndkey1); &movups ($rndkey1,&QWP(0x40,$inp)); &xorps ($inout3,$rndkey0); &movups (&QWP(0,$out),$inout0); &xorps ($inout4,$rndkey1); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &movups (&QWP(0x40,$out),$inout4); &jmp (&label("ctr32_ret")); &set_label("ctr32_one_shortcut",16); &movups ($inout0,&QWP(0,$rounds_)); # load ivec &mov ($rounds,&DWP(240,$key)); &set_label("ctr32_one"); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &movups ($in0,&QWP(0,$inp)); &xorps ($in0,$inout0); &movups (&QWP(0,$out),$in0); &jmp (&label("ctr32_ret")); &set_label("ctr32_two",16); &call ("_aesni_encrypt2"); &movups ($inout3,&QWP(0,$inp)); &movups ($inout4,&QWP(0x10,$inp)); &xorps ($inout0,$inout3); &xorps ($inout1,$inout4); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &jmp (&label("ctr32_ret")); &set_label("ctr32_three",16); &call ("_aesni_encrypt3"); &movups ($inout3,&QWP(0,$inp)); &movups ($inout4,&QWP(0x10,$inp)); &xorps ($inout0,$inout3); &movups ($inout5,&QWP(0x20,$inp)); &xorps ($inout1,$inout4); &movups (&QWP(0,$out),$inout0); &xorps ($inout2,$inout5); &movups (&QWP(0x10,$out),$inout1); &movups (&QWP(0x20,$out),$inout2); &jmp (&label("ctr32_ret")); &set_label("ctr32_four",16); &call ("_aesni_encrypt4"); &movups ($inout4,&QWP(0,$inp)); &movups ($inout5,&QWP(0x10,$inp)); &movups ($rndkey1,&QWP(0x20,$inp)); &xorps ($inout0,$inout4); &movups ($rndkey0,&QWP(0x30,$inp)); &xorps ($inout1,$inout5); &movups (&QWP(0,$out),$inout0); &xorps ($inout2,$rndkey1); &movups (&QWP(0x10,$out),$inout1); &xorps ($inout3,$rndkey0); &movups (&QWP(0x20,$out),$inout2); &movups (&QWP(0x30,$out),$inout3); &set_label("ctr32_ret"); &pxor ("xmm0","xmm0"); # clear register bank &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &pxor ("xmm3","xmm3"); &pxor ("xmm4","xmm4"); &movdqa (&QWP(32,"esp"),"xmm0"); # clear stack &pxor ("xmm5","xmm5"); &movdqa (&QWP(48,"esp"),"xmm0"); &pxor ("xmm6","xmm6"); &movdqa (&QWP(64,"esp"),"xmm0"); &pxor ("xmm7","xmm7"); &mov ("esp",&DWP(80,"esp")); &function_end("aesni_ctr32_encrypt_blocks"); ###################################################################### # void aesni_xts_[en|de]crypt(const char *inp,char *out,size_t len, # const AES_KEY *key1, const AES_KEY *key2 # const unsigned char iv[16]); # { my ($tweak,$twtmp,$twres,$twmask)=($rndkey1,$rndkey0,$inout0,$inout1); &function_begin("aesni_xts_encrypt"); &mov ($key,&wparam(4)); # key2 &mov ($inp,&wparam(5)); # clear-text tweak &mov ($rounds,&DWP(240,$key)); # key2->rounds &movups ($inout0,&QWP(0,$inp)); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); # key1 &mov ($key_,"esp"); &sub ("esp",16*7+8); &mov ($rounds,&DWP(240,$key)); # key1->rounds &and ("esp",-16); # align stack &mov (&DWP(16*6+0,"esp"),0x87); # compose the magic constant &mov (&DWP(16*6+4,"esp"),0); &mov (&DWP(16*6+8,"esp"),1); &mov (&DWP(16*6+12,"esp"),0); &mov (&DWP(16*7+0,"esp"),$len); # save original $len &mov (&DWP(16*7+4,"esp"),$key_); # save original %esp &movdqa ($tweak,$inout0); &pxor ($twtmp,$twtmp); &movdqa ($twmask,&QWP(6*16,"esp")); # 0x0...010...87 &pcmpgtd($twtmp,$tweak); # broadcast upper bits &and ($len,-16); &mov ($key_,$key); # backup $key &mov ($rounds_,$rounds); # backup $rounds &sub ($len,16*6); &jc (&label("xts_enc_short")); &shl ($rounds,4); &mov ($rounds_,16); &sub ($rounds_,$rounds); &lea ($key,&DWP(32,$key,$rounds)); &jmp (&label("xts_enc_loop6")); &set_label("xts_enc_loop6",16); for ($i=0;$i<4;$i++) { &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &movdqa (&QWP(16*$i,"esp"),$tweak); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd ($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); } &pshufd ($inout5,$twtmp,0x13); &movdqa (&QWP(16*$i++,"esp"),$tweak); &paddq ($tweak,$tweak); # &psllq($tweak,1); &$movekey ($rndkey0,&QWP(0,$key_)); &pand ($inout5,$twmask); # isolate carry and residue &movups ($inout0,&QWP(0,$inp)); # load input &pxor ($inout5,$tweak); # inline _aesni_encrypt6 prologue and flip xor with tweak and key[0] &mov ($rounds,$rounds_); # restore $rounds &movdqu ($inout1,&QWP(16*1,$inp)); &xorps ($inout0,$rndkey0); # input^=rndkey[0] &movdqu ($inout2,&QWP(16*2,$inp)); &pxor ($inout1,$rndkey0); &movdqu ($inout3,&QWP(16*3,$inp)); &pxor ($inout2,$rndkey0); &movdqu ($inout4,&QWP(16*4,$inp)); &pxor ($inout3,$rndkey0); &movdqu ($rndkey1,&QWP(16*5,$inp)); &pxor ($inout4,$rndkey0); &lea ($inp,&DWP(16*6,$inp)); &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak &movdqa (&QWP(16*$i,"esp"),$inout5); # save last tweak &pxor ($inout5,$rndkey1); &$movekey ($rndkey1,&QWP(16,$key_)); &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &aesenc ($inout0,$rndkey1); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &aesenc ($inout1,$rndkey1); &pxor ($inout5,$rndkey0); &$movekey ($rndkey0,&QWP(32,$key_)); &aesenc ($inout2,$rndkey1); &aesenc ($inout3,$rndkey1); &aesenc ($inout4,$rndkey1); &aesenc ($inout5,$rndkey1); &call (&label("_aesni_encrypt6_enter")); &movdqa ($tweak,&QWP(16*5,"esp")); # last tweak &pxor ($twtmp,$twtmp); &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak &pcmpgtd ($twtmp,$tweak); # broadcast upper bits &xorps ($inout1,&QWP(16*1,"esp")); &movups (&QWP(16*0,$out),$inout0); # write output &xorps ($inout2,&QWP(16*2,"esp")); &movups (&QWP(16*1,$out),$inout1); &xorps ($inout3,&QWP(16*3,"esp")); &movups (&QWP(16*2,$out),$inout2); &xorps ($inout4,&QWP(16*4,"esp")); &movups (&QWP(16*3,$out),$inout3); &xorps ($inout5,$tweak); &movups (&QWP(16*4,$out),$inout4); &pshufd ($twres,$twtmp,0x13); &movups (&QWP(16*5,$out),$inout5); &lea ($out,&DWP(16*6,$out)); &movdqa ($twmask,&QWP(16*6,"esp")); # 0x0...010...87 &pxor ($twtmp,$twtmp); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &sub ($len,16*6); &jnc (&label("xts_enc_loop6")); &mov ($rounds,&DWP(240,$key_)); # restore $rounds &mov ($key,$key_); # restore $key &mov ($rounds_,$rounds); &set_label("xts_enc_short"); &add ($len,16*6); &jz (&label("xts_enc_done6x")); &movdqa ($inout3,$tweak); # put aside previous tweak &cmp ($len,0x20); &jb (&label("xts_enc_one")); &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &je (&label("xts_enc_two")); &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &movdqa ($inout4,$tweak); # put aside previous tweak &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &cmp ($len,0x40); &jb (&label("xts_enc_three")); &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &movdqa ($inout5,$tweak); # put aside previous tweak &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &movdqa (&QWP(16*0,"esp"),$inout3); &movdqa (&QWP(16*1,"esp"),$inout4); &je (&label("xts_enc_four")); &movdqa (&QWP(16*2,"esp"),$inout5); &pshufd ($inout5,$twtmp,0x13); &movdqa (&QWP(16*3,"esp"),$tweak); &paddq ($tweak,$tweak); # &psllq($inout0,1); &pand ($inout5,$twmask); # isolate carry and residue &pxor ($inout5,$tweak); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak &movdqu ($inout3,&QWP(16*3,$inp)); &pxor ($inout1,&QWP(16*1,"esp")); &movdqu ($inout4,&QWP(16*4,$inp)); &pxor ($inout2,&QWP(16*2,"esp")); &lea ($inp,&DWP(16*5,$inp)); &pxor ($inout3,&QWP(16*3,"esp")); &movdqa (&QWP(16*4,"esp"),$inout5); # save last tweak &pxor ($inout4,$inout5); &call ("_aesni_encrypt6"); &movaps ($tweak,&QWP(16*4,"esp")); # last tweak &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,&QWP(16*2,"esp")); &movups (&QWP(16*0,$out),$inout0); # write output &xorps ($inout3,&QWP(16*3,"esp")); &movups (&QWP(16*1,$out),$inout1); &xorps ($inout4,$tweak); &movups (&QWP(16*2,$out),$inout2); &movups (&QWP(16*3,$out),$inout3); &movups (&QWP(16*4,$out),$inout4); &lea ($out,&DWP(16*5,$out)); &jmp (&label("xts_enc_done")); &set_label("xts_enc_one",16); &movups ($inout0,&QWP(16*0,$inp)); # load input &lea ($inp,&DWP(16*1,$inp)); &xorps ($inout0,$inout3); # input^=tweak if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &xorps ($inout0,$inout3); # output^=tweak &movups (&QWP(16*0,$out),$inout0); # write output &lea ($out,&DWP(16*1,$out)); &movdqa ($tweak,$inout3); # last tweak &jmp (&label("xts_enc_done")); &set_label("xts_enc_two",16); &movaps ($inout4,$tweak); # put aside last tweak &movups ($inout0,&QWP(16*0,$inp)); # load input &movups ($inout1,&QWP(16*1,$inp)); &lea ($inp,&DWP(16*2,$inp)); &xorps ($inout0,$inout3); # input^=tweak &xorps ($inout1,$inout4); &call ("_aesni_encrypt2"); &xorps ($inout0,$inout3); # output^=tweak &xorps ($inout1,$inout4); &movups (&QWP(16*0,$out),$inout0); # write output &movups (&QWP(16*1,$out),$inout1); &lea ($out,&DWP(16*2,$out)); &movdqa ($tweak,$inout4); # last tweak &jmp (&label("xts_enc_done")); &set_label("xts_enc_three",16); &movaps ($inout5,$tweak); # put aside last tweak &movups ($inout0,&QWP(16*0,$inp)); # load input &movups ($inout1,&QWP(16*1,$inp)); &movups ($inout2,&QWP(16*2,$inp)); &lea ($inp,&DWP(16*3,$inp)); &xorps ($inout0,$inout3); # input^=tweak &xorps ($inout1,$inout4); &xorps ($inout2,$inout5); &call ("_aesni_encrypt3"); &xorps ($inout0,$inout3); # output^=tweak &xorps ($inout1,$inout4); &xorps ($inout2,$inout5); &movups (&QWP(16*0,$out),$inout0); # write output &movups (&QWP(16*1,$out),$inout1); &movups (&QWP(16*2,$out),$inout2); &lea ($out,&DWP(16*3,$out)); &movdqa ($tweak,$inout5); # last tweak &jmp (&label("xts_enc_done")); &set_label("xts_enc_four",16); &movaps ($inout4,$tweak); # put aside last tweak &movups ($inout0,&QWP(16*0,$inp)); # load input &movups ($inout1,&QWP(16*1,$inp)); &movups ($inout2,&QWP(16*2,$inp)); &xorps ($inout0,&QWP(16*0,"esp")); # input^=tweak &movups ($inout3,&QWP(16*3,$inp)); &lea ($inp,&DWP(16*4,$inp)); &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,$inout5); &xorps ($inout3,$inout4); &call ("_aesni_encrypt4"); &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,$inout5); &movups (&QWP(16*0,$out),$inout0); # write output &xorps ($inout3,$inout4); &movups (&QWP(16*1,$out),$inout1); &movups (&QWP(16*2,$out),$inout2); &movups (&QWP(16*3,$out),$inout3); &lea ($out,&DWP(16*4,$out)); &movdqa ($tweak,$inout4); # last tweak &jmp (&label("xts_enc_done")); &set_label("xts_enc_done6x",16); # $tweak is pre-calculated &mov ($len,&DWP(16*7+0,"esp")); # restore original $len &and ($len,15); &jz (&label("xts_enc_ret")); &movdqa ($inout3,$tweak); &mov (&DWP(16*7+0,"esp"),$len); # save $len%16 &jmp (&label("xts_enc_steal")); &set_label("xts_enc_done",16); &mov ($len,&DWP(16*7+0,"esp")); # restore original $len &pxor ($twtmp,$twtmp); &and ($len,15); &jz (&label("xts_enc_ret")); &pcmpgtd($twtmp,$tweak); # broadcast upper bits &mov (&DWP(16*7+0,"esp"),$len); # save $len%16 &pshufd ($inout3,$twtmp,0x13); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($inout3,&QWP(16*6,"esp")); # isolate carry and residue &pxor ($inout3,$tweak); &set_label("xts_enc_steal"); &movz ($rounds,&BP(0,$inp)); &movz ($key,&BP(-16,$out)); &lea ($inp,&DWP(1,$inp)); &mov (&BP(-16,$out),&LB($rounds)); &mov (&BP(0,$out),&LB($key)); &lea ($out,&DWP(1,$out)); &sub ($len,1); &jnz (&label("xts_enc_steal")); &sub ($out,&DWP(16*7+0,"esp")); # rewind $out &mov ($key,$key_); # restore $key &mov ($rounds,$rounds_); # restore $rounds &movups ($inout0,&QWP(-16,$out)); # load input &xorps ($inout0,$inout3); # input^=tweak if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &xorps ($inout0,$inout3); # output^=tweak &movups (&QWP(-16,$out),$inout0); # write output &set_label("xts_enc_ret"); &pxor ("xmm0","xmm0"); # clear register bank &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &movdqa (&QWP(16*0,"esp"),"xmm0"); # clear stack &pxor ("xmm3","xmm3"); &movdqa (&QWP(16*1,"esp"),"xmm0"); &pxor ("xmm4","xmm4"); &movdqa (&QWP(16*2,"esp"),"xmm0"); &pxor ("xmm5","xmm5"); &movdqa (&QWP(16*3,"esp"),"xmm0"); &pxor ("xmm6","xmm6"); &movdqa (&QWP(16*4,"esp"),"xmm0"); &pxor ("xmm7","xmm7"); &movdqa (&QWP(16*5,"esp"),"xmm0"); &mov ("esp",&DWP(16*7+4,"esp")); # restore %esp &function_end("aesni_xts_encrypt"); &function_begin("aesni_xts_decrypt"); &mov ($key,&wparam(4)); # key2 &mov ($inp,&wparam(5)); # clear-text tweak &mov ($rounds,&DWP(240,$key)); # key2->rounds &movups ($inout0,&QWP(0,$inp)); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); # key1 &mov ($key_,"esp"); &sub ("esp",16*7+8); &and ("esp",-16); # align stack &xor ($rounds_,$rounds_); # if(len%16) len-=16; &test ($len,15); &setnz (&LB($rounds_)); &shl ($rounds_,4); &sub ($len,$rounds_); &mov (&DWP(16*6+0,"esp"),0x87); # compose the magic constant &mov (&DWP(16*6+4,"esp"),0); &mov (&DWP(16*6+8,"esp"),1); &mov (&DWP(16*6+12,"esp"),0); &mov (&DWP(16*7+0,"esp"),$len); # save original $len &mov (&DWP(16*7+4,"esp"),$key_); # save original %esp &mov ($rounds,&DWP(240,$key)); # key1->rounds &mov ($key_,$key); # backup $key &mov ($rounds_,$rounds); # backup $rounds &movdqa ($tweak,$inout0); &pxor ($twtmp,$twtmp); &movdqa ($twmask,&QWP(6*16,"esp")); # 0x0...010...87 &pcmpgtd($twtmp,$tweak); # broadcast upper bits &and ($len,-16); &sub ($len,16*6); &jc (&label("xts_dec_short")); &shl ($rounds,4); &mov ($rounds_,16); &sub ($rounds_,$rounds); &lea ($key,&DWP(32,$key,$rounds)); &jmp (&label("xts_dec_loop6")); &set_label("xts_dec_loop6",16); for ($i=0;$i<4;$i++) { &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &movdqa (&QWP(16*$i,"esp"),$tweak); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd ($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); } &pshufd ($inout5,$twtmp,0x13); &movdqa (&QWP(16*$i++,"esp"),$tweak); &paddq ($tweak,$tweak); # &psllq($tweak,1); &$movekey ($rndkey0,&QWP(0,$key_)); &pand ($inout5,$twmask); # isolate carry and residue &movups ($inout0,&QWP(0,$inp)); # load input &pxor ($inout5,$tweak); # inline _aesni_encrypt6 prologue and flip xor with tweak and key[0] &mov ($rounds,$rounds_); &movdqu ($inout1,&QWP(16*1,$inp)); &xorps ($inout0,$rndkey0); # input^=rndkey[0] &movdqu ($inout2,&QWP(16*2,$inp)); &pxor ($inout1,$rndkey0); &movdqu ($inout3,&QWP(16*3,$inp)); &pxor ($inout2,$rndkey0); &movdqu ($inout4,&QWP(16*4,$inp)); &pxor ($inout3,$rndkey0); &movdqu ($rndkey1,&QWP(16*5,$inp)); &pxor ($inout4,$rndkey0); &lea ($inp,&DWP(16*6,$inp)); &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak &movdqa (&QWP(16*$i,"esp"),$inout5); # save last tweak &pxor ($inout5,$rndkey1); &$movekey ($rndkey1,&QWP(16,$key_)); &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &aesdec ($inout0,$rndkey1); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &aesdec ($inout1,$rndkey1); &pxor ($inout5,$rndkey0); &$movekey ($rndkey0,&QWP(32,$key_)); &aesdec ($inout2,$rndkey1); &aesdec ($inout3,$rndkey1); &aesdec ($inout4,$rndkey1); &aesdec ($inout5,$rndkey1); &call (&label("_aesni_decrypt6_enter")); &movdqa ($tweak,&QWP(16*5,"esp")); # last tweak &pxor ($twtmp,$twtmp); &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak &pcmpgtd ($twtmp,$tweak); # broadcast upper bits &xorps ($inout1,&QWP(16*1,"esp")); &movups (&QWP(16*0,$out),$inout0); # write output &xorps ($inout2,&QWP(16*2,"esp")); &movups (&QWP(16*1,$out),$inout1); &xorps ($inout3,&QWP(16*3,"esp")); &movups (&QWP(16*2,$out),$inout2); &xorps ($inout4,&QWP(16*4,"esp")); &movups (&QWP(16*3,$out),$inout3); &xorps ($inout5,$tweak); &movups (&QWP(16*4,$out),$inout4); &pshufd ($twres,$twtmp,0x13); &movups (&QWP(16*5,$out),$inout5); &lea ($out,&DWP(16*6,$out)); &movdqa ($twmask,&QWP(16*6,"esp")); # 0x0...010...87 &pxor ($twtmp,$twtmp); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &sub ($len,16*6); &jnc (&label("xts_dec_loop6")); &mov ($rounds,&DWP(240,$key_)); # restore $rounds &mov ($key,$key_); # restore $key &mov ($rounds_,$rounds); &set_label("xts_dec_short"); &add ($len,16*6); &jz (&label("xts_dec_done6x")); &movdqa ($inout3,$tweak); # put aside previous tweak &cmp ($len,0x20); &jb (&label("xts_dec_one")); &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &je (&label("xts_dec_two")); &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &movdqa ($inout4,$tweak); # put aside previous tweak &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &cmp ($len,0x40); &jb (&label("xts_dec_three")); &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &movdqa ($inout5,$tweak); # put aside previous tweak &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &movdqa (&QWP(16*0,"esp"),$inout3); &movdqa (&QWP(16*1,"esp"),$inout4); &je (&label("xts_dec_four")); &movdqa (&QWP(16*2,"esp"),$inout5); &pshufd ($inout5,$twtmp,0x13); &movdqa (&QWP(16*3,"esp"),$tweak); &paddq ($tweak,$tweak); # &psllq($inout0,1); &pand ($inout5,$twmask); # isolate carry and residue &pxor ($inout5,$tweak); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak &movdqu ($inout3,&QWP(16*3,$inp)); &pxor ($inout1,&QWP(16*1,"esp")); &movdqu ($inout4,&QWP(16*4,$inp)); &pxor ($inout2,&QWP(16*2,"esp")); &lea ($inp,&DWP(16*5,$inp)); &pxor ($inout3,&QWP(16*3,"esp")); &movdqa (&QWP(16*4,"esp"),$inout5); # save last tweak &pxor ($inout4,$inout5); &call ("_aesni_decrypt6"); &movaps ($tweak,&QWP(16*4,"esp")); # last tweak &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,&QWP(16*2,"esp")); &movups (&QWP(16*0,$out),$inout0); # write output &xorps ($inout3,&QWP(16*3,"esp")); &movups (&QWP(16*1,$out),$inout1); &xorps ($inout4,$tweak); &movups (&QWP(16*2,$out),$inout2); &movups (&QWP(16*3,$out),$inout3); &movups (&QWP(16*4,$out),$inout4); &lea ($out,&DWP(16*5,$out)); &jmp (&label("xts_dec_done")); &set_label("xts_dec_one",16); &movups ($inout0,&QWP(16*0,$inp)); # load input &lea ($inp,&DWP(16*1,$inp)); &xorps ($inout0,$inout3); # input^=tweak if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &xorps ($inout0,$inout3); # output^=tweak &movups (&QWP(16*0,$out),$inout0); # write output &lea ($out,&DWP(16*1,$out)); &movdqa ($tweak,$inout3); # last tweak &jmp (&label("xts_dec_done")); &set_label("xts_dec_two",16); &movaps ($inout4,$tweak); # put aside last tweak &movups ($inout0,&QWP(16*0,$inp)); # load input &movups ($inout1,&QWP(16*1,$inp)); &lea ($inp,&DWP(16*2,$inp)); &xorps ($inout0,$inout3); # input^=tweak &xorps ($inout1,$inout4); &call ("_aesni_decrypt2"); &xorps ($inout0,$inout3); # output^=tweak &xorps ($inout1,$inout4); &movups (&QWP(16*0,$out),$inout0); # write output &movups (&QWP(16*1,$out),$inout1); &lea ($out,&DWP(16*2,$out)); &movdqa ($tweak,$inout4); # last tweak &jmp (&label("xts_dec_done")); &set_label("xts_dec_three",16); &movaps ($inout5,$tweak); # put aside last tweak &movups ($inout0,&QWP(16*0,$inp)); # load input &movups ($inout1,&QWP(16*1,$inp)); &movups ($inout2,&QWP(16*2,$inp)); &lea ($inp,&DWP(16*3,$inp)); &xorps ($inout0,$inout3); # input^=tweak &xorps ($inout1,$inout4); &xorps ($inout2,$inout5); &call ("_aesni_decrypt3"); &xorps ($inout0,$inout3); # output^=tweak &xorps ($inout1,$inout4); &xorps ($inout2,$inout5); &movups (&QWP(16*0,$out),$inout0); # write output &movups (&QWP(16*1,$out),$inout1); &movups (&QWP(16*2,$out),$inout2); &lea ($out,&DWP(16*3,$out)); &movdqa ($tweak,$inout5); # last tweak &jmp (&label("xts_dec_done")); &set_label("xts_dec_four",16); &movaps ($inout4,$tweak); # put aside last tweak &movups ($inout0,&QWP(16*0,$inp)); # load input &movups ($inout1,&QWP(16*1,$inp)); &movups ($inout2,&QWP(16*2,$inp)); &xorps ($inout0,&QWP(16*0,"esp")); # input^=tweak &movups ($inout3,&QWP(16*3,$inp)); &lea ($inp,&DWP(16*4,$inp)); &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,$inout5); &xorps ($inout3,$inout4); &call ("_aesni_decrypt4"); &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,$inout5); &movups (&QWP(16*0,$out),$inout0); # write output &xorps ($inout3,$inout4); &movups (&QWP(16*1,$out),$inout1); &movups (&QWP(16*2,$out),$inout2); &movups (&QWP(16*3,$out),$inout3); &lea ($out,&DWP(16*4,$out)); &movdqa ($tweak,$inout4); # last tweak &jmp (&label("xts_dec_done")); &set_label("xts_dec_done6x",16); # $tweak is pre-calculated &mov ($len,&DWP(16*7+0,"esp")); # restore original $len &and ($len,15); &jz (&label("xts_dec_ret")); &mov (&DWP(16*7+0,"esp"),$len); # save $len%16 &jmp (&label("xts_dec_only_one_more")); &set_label("xts_dec_done",16); &mov ($len,&DWP(16*7+0,"esp")); # restore original $len &pxor ($twtmp,$twtmp); &and ($len,15); &jz (&label("xts_dec_ret")); &pcmpgtd($twtmp,$tweak); # broadcast upper bits &mov (&DWP(16*7+0,"esp"),$len); # save $len%16 &pshufd ($twres,$twtmp,0x13); &pxor ($twtmp,$twtmp); &movdqa ($twmask,&QWP(16*6,"esp")); &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($twres,$twmask); # isolate carry and residue &pcmpgtd($twtmp,$tweak); # broadcast upper bits &pxor ($tweak,$twres); &set_label("xts_dec_only_one_more"); &pshufd ($inout3,$twtmp,0x13); &movdqa ($inout4,$tweak); # put aside previous tweak &paddq ($tweak,$tweak); # &psllq($tweak,1); &pand ($inout3,$twmask); # isolate carry and residue &pxor ($inout3,$tweak); &mov ($key,$key_); # restore $key &mov ($rounds,$rounds_); # restore $rounds &movups ($inout0,&QWP(0,$inp)); # load input &xorps ($inout0,$inout3); # input^=tweak if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &xorps ($inout0,$inout3); # output^=tweak &movups (&QWP(0,$out),$inout0); # write output &set_label("xts_dec_steal"); &movz ($rounds,&BP(16,$inp)); &movz ($key,&BP(0,$out)); &lea ($inp,&DWP(1,$inp)); &mov (&BP(0,$out),&LB($rounds)); &mov (&BP(16,$out),&LB($key)); &lea ($out,&DWP(1,$out)); &sub ($len,1); &jnz (&label("xts_dec_steal")); &sub ($out,&DWP(16*7+0,"esp")); # rewind $out &mov ($key,$key_); # restore $key &mov ($rounds,$rounds_); # restore $rounds &movups ($inout0,&QWP(0,$out)); # load input &xorps ($inout0,$inout4); # input^=tweak if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &xorps ($inout0,$inout4); # output^=tweak &movups (&QWP(0,$out),$inout0); # write output &set_label("xts_dec_ret"); &pxor ("xmm0","xmm0"); # clear register bank &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &movdqa (&QWP(16*0,"esp"),"xmm0"); # clear stack &pxor ("xmm3","xmm3"); &movdqa (&QWP(16*1,"esp"),"xmm0"); &pxor ("xmm4","xmm4"); &movdqa (&QWP(16*2,"esp"),"xmm0"); &pxor ("xmm5","xmm5"); &movdqa (&QWP(16*3,"esp"),"xmm0"); &pxor ("xmm6","xmm6"); &movdqa (&QWP(16*4,"esp"),"xmm0"); &pxor ("xmm7","xmm7"); &movdqa (&QWP(16*5,"esp"),"xmm0"); &mov ("esp",&DWP(16*7+4,"esp")); # restore %esp &function_end("aesni_xts_decrypt"); } ###################################################################### # void aesni_ocb_[en|de]crypt(const char *inp, char *out, size_t blocks, # const AES_KEY *key, unsigned int start_block_num, # unsigned char offset_i[16], const unsigned char L_[][16], # unsigned char checksum[16]); # { # offsets within stack frame my $checksum = 16*6; my ($key_off,$rounds_off,$out_off,$end_off,$esp_off)=map(16*7+4*$_,(0..4)); # reassigned registers my ($l_,$block,$i1,$i3,$i5) = ($rounds_,$key_,$rounds,$len,$out); # $l_, $blocks, $inp, $key are permanently allocated in registers; # remaining non-volatile ones are offloaded to stack, which even # stay invariant after written to stack. &function_begin("aesni_ocb_encrypt"); &mov ($rounds,&wparam(5)); # &offset_i &mov ($rounds_,&wparam(7)); # &checksum &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); &movdqu ($rndkey0,&QWP(0,$rounds)); # load offset_i &mov ($block,&wparam(4)); # start_block_num &movdqu ($rndkey1,&QWP(0,$rounds_)); # load checksum &mov ($l_,&wparam(6)); # L_ &mov ($rounds,"esp"); &sub ("esp",$esp_off+4); # alloca &and ("esp",-16); # align stack &sub ($out,$inp); &shl ($len,4); &lea ($len,&DWP(-16*6,$inp,$len)); # end of input - 16*6 &mov (&DWP($out_off,"esp"),$out); &mov (&DWP($end_off,"esp"),$len); &mov (&DWP($esp_off,"esp"),$rounds); &mov ($rounds,&DWP(240,$key)); &test ($block,1); &jnz (&label("odd")); &bsf ($i3,$block); &add ($block,1); &shl ($i3,4); &movdqu ($inout5,&QWP(0,$l_,$i3)); &mov ($i3,$key); # put aside key &movdqu ($inout0,&QWP(16*0,$inp)); # load input &lea ($inp,&DWP(16,$inp)); &pxor ($inout5,$rndkey0); # ^ last offset_i &pxor ($rndkey1,$inout0); # checksum &pxor ($inout0,$inout5); # ^ offset_i &movdqa ($inout4,$rndkey1); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &xorps ($inout0,$inout5); # ^ offset_i &movdqa ($rndkey0,$inout5); # pass last offset_i &movdqa ($rndkey1,$inout4); # pass the checksum &movups (&QWP(-16,$out,$inp),$inout0); # store output &mov ($rounds,&DWP(240,$i3)); &mov ($key,$i3); # restore key &mov ($len,&DWP($end_off,"esp")); &set_label("odd"); &shl ($rounds,4); &mov ($out,16); &sub ($out,$rounds); # twisted rounds &mov (&DWP($key_off,"esp"),$key); &lea ($key,&DWP(32,$key,$rounds)); # end of key schedule &mov (&DWP($rounds_off,"esp"),$out); &cmp ($inp,$len); &ja (&label("short")); &jmp (&label("grandloop")); &set_label("grandloop",32); &lea ($i1,&DWP(1,$block)); &lea ($i3,&DWP(3,$block)); &lea ($i5,&DWP(5,$block)); &add ($block,6); &bsf ($i1,$i1); &bsf ($i3,$i3); &bsf ($i5,$i5); &shl ($i1,4); &shl ($i3,4); &shl ($i5,4); &movdqu ($inout0,&QWP(0,$l_)); &movdqu ($inout1,&QWP(0,$l_,$i1)); &mov ($rounds,&DWP($rounds_off,"esp")); &movdqa ($inout2,$inout0); &movdqu ($inout3,&QWP(0,$l_,$i3)); &movdqa ($inout4,$inout0); &movdqu ($inout5,&QWP(0,$l_,$i5)); &pxor ($inout0,$rndkey0); # ^ last offset_i &pxor ($inout1,$inout0); &movdqa (&QWP(16*0,"esp"),$inout0); &pxor ($inout2,$inout1); &movdqa (&QWP(16*1,"esp"),$inout1); &pxor ($inout3,$inout2); &movdqa (&QWP(16*2,"esp"),$inout2); &pxor ($inout4,$inout3); &movdqa (&QWP(16*3,"esp"),$inout3); &pxor ($inout5,$inout4); &movdqa (&QWP(16*4,"esp"),$inout4); &movdqa (&QWP(16*5,"esp"),$inout5); &$movekey ($rndkey0,&QWP(-48,$key,$rounds)); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &movdqu ($inout3,&QWP(16*3,$inp)); &movdqu ($inout4,&QWP(16*4,$inp)); &movdqu ($inout5,&QWP(16*5,$inp)); &lea ($inp,&DWP(16*6,$inp)); &pxor ($rndkey1,$inout0); # checksum &pxor ($inout0,$rndkey0); # ^ roundkey[0] &pxor ($rndkey1,$inout1); &pxor ($inout1,$rndkey0); &pxor ($rndkey1,$inout2); &pxor ($inout2,$rndkey0); &pxor ($rndkey1,$inout3); &pxor ($inout3,$rndkey0); &pxor ($rndkey1,$inout4); &pxor ($inout4,$rndkey0); &pxor ($rndkey1,$inout5); &pxor ($inout5,$rndkey0); &movdqa (&QWP($checksum,"esp"),$rndkey1); &$movekey ($rndkey1,&QWP(-32,$key,$rounds)); &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &pxor ($inout5,&QWP(16*5,"esp")); &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &aesenc ($inout0,$rndkey1); &aesenc ($inout1,$rndkey1); &aesenc ($inout2,$rndkey1); &aesenc ($inout3,$rndkey1); &aesenc ($inout4,$rndkey1); &aesenc ($inout5,$rndkey1); &mov ($out,&DWP($out_off,"esp")); &mov ($len,&DWP($end_off,"esp")); &call ("_aesni_encrypt6_enter"); &movdqa ($rndkey0,&QWP(16*5,"esp")); # pass last offset_i &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &pxor ($inout5,$rndkey0); &movdqa ($rndkey1,&QWP($checksum,"esp"));# pass the checksum &movdqu (&QWP(-16*6,$out,$inp),$inout0);# store output &movdqu (&QWP(-16*5,$out,$inp),$inout1); &movdqu (&QWP(-16*4,$out,$inp),$inout2); &movdqu (&QWP(-16*3,$out,$inp),$inout3); &movdqu (&QWP(-16*2,$out,$inp),$inout4); &movdqu (&QWP(-16*1,$out,$inp),$inout5); &cmp ($inp,$len); # done yet? &jb (&label("grandloop")); &set_label("short"); &add ($len,16*6); &sub ($len,$inp); &jz (&label("done")); &cmp ($len,16*2); &jb (&label("one")); &je (&label("two")); &cmp ($len,16*4); &jb (&label("three")); &je (&label("four")); &lea ($i1,&DWP(1,$block)); &lea ($i3,&DWP(3,$block)); &bsf ($i1,$i1); &bsf ($i3,$i3); &shl ($i1,4); &shl ($i3,4); &movdqu ($inout0,&QWP(0,$l_)); &movdqu ($inout1,&QWP(0,$l_,$i1)); &mov ($rounds,&DWP($rounds_off,"esp")); &movdqa ($inout2,$inout0); &movdqu ($inout3,&QWP(0,$l_,$i3)); &movdqa ($inout4,$inout0); &pxor ($inout0,$rndkey0); # ^ last offset_i &pxor ($inout1,$inout0); &movdqa (&QWP(16*0,"esp"),$inout0); &pxor ($inout2,$inout1); &movdqa (&QWP(16*1,"esp"),$inout1); &pxor ($inout3,$inout2); &movdqa (&QWP(16*2,"esp"),$inout2); &pxor ($inout4,$inout3); &movdqa (&QWP(16*3,"esp"),$inout3); &pxor ($inout5,$inout4); &movdqa (&QWP(16*4,"esp"),$inout4); &$movekey ($rndkey0,&QWP(-48,$key,$rounds)); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &movdqu ($inout3,&QWP(16*3,$inp)); &movdqu ($inout4,&QWP(16*4,$inp)); &pxor ($inout5,$inout5); &pxor ($rndkey1,$inout0); # checksum &pxor ($inout0,$rndkey0); # ^ roundkey[0] &pxor ($rndkey1,$inout1); &pxor ($inout1,$rndkey0); &pxor ($rndkey1,$inout2); &pxor ($inout2,$rndkey0); &pxor ($rndkey1,$inout3); &pxor ($inout3,$rndkey0); &pxor ($rndkey1,$inout4); &pxor ($inout4,$rndkey0); &movdqa (&QWP($checksum,"esp"),$rndkey1); &$movekey ($rndkey1,&QWP(-32,$key,$rounds)); &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &aesenc ($inout0,$rndkey1); &aesenc ($inout1,$rndkey1); &aesenc ($inout2,$rndkey1); &aesenc ($inout3,$rndkey1); &aesenc ($inout4,$rndkey1); &aesenc ($inout5,$rndkey1); &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_encrypt6_enter"); &movdqa ($rndkey0,&QWP(16*4,"esp")); # pass last offset_i &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,$rndkey0); &movdqa ($rndkey1,&QWP($checksum,"esp"));# pass the checksum &movdqu (&QWP(16*0,$out,$inp),$inout0); # store output &movdqu (&QWP(16*1,$out,$inp),$inout1); &movdqu (&QWP(16*2,$out,$inp),$inout2); &movdqu (&QWP(16*3,$out,$inp),$inout3); &movdqu (&QWP(16*4,$out,$inp),$inout4); &jmp (&label("done")); &set_label("one",16); &movdqu ($inout5,&QWP(0,$l_)); &mov ($key,&DWP($key_off,"esp")); # restore key &movdqu ($inout0,&QWP(16*0,$inp)); # load input &mov ($rounds,&DWP(240,$key)); &pxor ($inout5,$rndkey0); # ^ last offset_i &pxor ($rndkey1,$inout0); # checksum &pxor ($inout0,$inout5); # ^ offset_i &movdqa ($inout4,$rndkey1); &mov ($out,&DWP($out_off,"esp")); if ($inline) { &aesni_inline_generate1("enc"); } else { &call ("_aesni_encrypt1"); } &xorps ($inout0,$inout5); # ^ offset_i &movdqa ($rndkey0,$inout5); # pass last offset_i &movdqa ($rndkey1,$inout4); # pass the checksum &movups (&QWP(0,$out,$inp),$inout0); &jmp (&label("done")); &set_label("two",16); &lea ($i1,&DWP(1,$block)); &mov ($key,&DWP($key_off,"esp")); # restore key &bsf ($i1,$i1); &shl ($i1,4); &movdqu ($inout4,&QWP(0,$l_)); &movdqu ($inout5,&QWP(0,$l_,$i1)); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &mov ($rounds,&DWP(240,$key)); &pxor ($inout4,$rndkey0); # ^ last offset_i &pxor ($inout5,$inout4); &pxor ($rndkey1,$inout0); # checksum &pxor ($inout0,$inout4); # ^ offset_i &pxor ($rndkey1,$inout1); &pxor ($inout1,$inout5); &movdqa ($inout3,$rndkey1) &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_encrypt2"); &xorps ($inout0,$inout4); # ^ offset_i &xorps ($inout1,$inout5); &movdqa ($rndkey0,$inout5); # pass last offset_i &movdqa ($rndkey1,$inout3); # pass the checksum &movups (&QWP(16*0,$out,$inp),$inout0); # store output &movups (&QWP(16*1,$out,$inp),$inout1); &jmp (&label("done")); &set_label("three",16); &lea ($i1,&DWP(1,$block)); &mov ($key,&DWP($key_off,"esp")); # restore key &bsf ($i1,$i1); &shl ($i1,4); &movdqu ($inout3,&QWP(0,$l_)); &movdqu ($inout4,&QWP(0,$l_,$i1)); &movdqa ($inout5,$inout3); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &mov ($rounds,&DWP(240,$key)); &pxor ($inout3,$rndkey0); # ^ last offset_i &pxor ($inout4,$inout3); &pxor ($inout5,$inout4); &pxor ($rndkey1,$inout0); # checksum &pxor ($inout0,$inout3); # ^ offset_i &pxor ($rndkey1,$inout1); &pxor ($inout1,$inout4); &pxor ($rndkey1,$inout2); &pxor ($inout2,$inout5); &movdqa (&QWP($checksum,"esp"),$rndkey1); &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_encrypt3"); &xorps ($inout0,$inout3); # ^ offset_i &xorps ($inout1,$inout4); &xorps ($inout2,$inout5); &movdqa ($rndkey0,$inout5); # pass last offset_i &movdqa ($rndkey1,&QWP($checksum,"esp"));# pass the checksum &movups (&QWP(16*0,$out,$inp),$inout0); # store output &movups (&QWP(16*1,$out,$inp),$inout1); &movups (&QWP(16*2,$out,$inp),$inout2); &jmp (&label("done")); &set_label("four",16); &lea ($i1,&DWP(1,$block)); &lea ($i3,&DWP(3,$block)); &bsf ($i1,$i1); &bsf ($i3,$i3); &mov ($key,&DWP($key_off,"esp")); # restore key &shl ($i1,4); &shl ($i3,4); &movdqu ($inout2,&QWP(0,$l_)); &movdqu ($inout3,&QWP(0,$l_,$i1)); &movdqa ($inout4,$inout2); &movdqu ($inout5,&QWP(0,$l_,$i3)); &pxor ($inout2,$rndkey0); # ^ last offset_i &movdqu ($inout0,&QWP(16*0,$inp)); # load input &pxor ($inout3,$inout2); &movdqu ($inout1,&QWP(16*1,$inp)); &pxor ($inout4,$inout3); &movdqa (&QWP(16*0,"esp"),$inout2); &pxor ($inout5,$inout4); &movdqa (&QWP(16*1,"esp"),$inout3); &movdqu ($inout2,&QWP(16*2,$inp)); &movdqu ($inout3,&QWP(16*3,$inp)); &mov ($rounds,&DWP(240,$key)); &pxor ($rndkey1,$inout0); # checksum &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($rndkey1,$inout1); &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($rndkey1,$inout2); &pxor ($inout2,$inout4); &pxor ($rndkey1,$inout3); &pxor ($inout3,$inout5); &movdqa (&QWP($checksum,"esp"),$rndkey1) &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_encrypt4"); &xorps ($inout0,&QWP(16*0,"esp")); # ^ offset_i &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,$inout4); &movups (&QWP(16*0,$out,$inp),$inout0); # store output &xorps ($inout3,$inout5); &movups (&QWP(16*1,$out,$inp),$inout1); &movdqa ($rndkey0,$inout5); # pass last offset_i &movups (&QWP(16*2,$out,$inp),$inout2); &movdqa ($rndkey1,&QWP($checksum,"esp"));# pass the checksum &movups (&QWP(16*3,$out,$inp),$inout3); &set_label("done"); &mov ($key,&DWP($esp_off,"esp")); &pxor ($inout0,$inout0); # clear register bank &pxor ($inout1,$inout1); &movdqa (&QWP(16*0,"esp"),$inout0); # clear stack &pxor ($inout2,$inout2); &movdqa (&QWP(16*1,"esp"),$inout0); &pxor ($inout3,$inout3); &movdqa (&QWP(16*2,"esp"),$inout0); &pxor ($inout4,$inout4); &movdqa (&QWP(16*3,"esp"),$inout0); &pxor ($inout5,$inout5); &movdqa (&QWP(16*4,"esp"),$inout0); &movdqa (&QWP(16*5,"esp"),$inout0); &movdqa (&QWP(16*6,"esp"),$inout0); &lea ("esp",&DWP(0,$key)); &mov ($rounds,&wparam(5)); # &offset_i &mov ($rounds_,&wparam(7)); # &checksum &movdqu (&QWP(0,$rounds),$rndkey0); &pxor ($rndkey0,$rndkey0); &movdqu (&QWP(0,$rounds_),$rndkey1); &pxor ($rndkey1,$rndkey1); &function_end("aesni_ocb_encrypt"); &function_begin("aesni_ocb_decrypt"); &mov ($rounds,&wparam(5)); # &offset_i &mov ($rounds_,&wparam(7)); # &checksum &mov ($inp,&wparam(0)); &mov ($out,&wparam(1)); &mov ($len,&wparam(2)); &mov ($key,&wparam(3)); &movdqu ($rndkey0,&QWP(0,$rounds)); # load offset_i &mov ($block,&wparam(4)); # start_block_num &movdqu ($rndkey1,&QWP(0,$rounds_)); # load checksum &mov ($l_,&wparam(6)); # L_ &mov ($rounds,"esp"); &sub ("esp",$esp_off+4); # alloca &and ("esp",-16); # align stack &sub ($out,$inp); &shl ($len,4); &lea ($len,&DWP(-16*6,$inp,$len)); # end of input - 16*6 &mov (&DWP($out_off,"esp"),$out); &mov (&DWP($end_off,"esp"),$len); &mov (&DWP($esp_off,"esp"),$rounds); &mov ($rounds,&DWP(240,$key)); &test ($block,1); &jnz (&label("odd")); &bsf ($i3,$block); &add ($block,1); &shl ($i3,4); &movdqu ($inout5,&QWP(0,$l_,$i3)); &mov ($i3,$key); # put aside key &movdqu ($inout0,&QWP(16*0,$inp)); # load input &lea ($inp,&DWP(16,$inp)); &pxor ($inout5,$rndkey0); # ^ last offset_i &pxor ($inout0,$inout5); # ^ offset_i &movdqa ($inout4,$rndkey1); if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &xorps ($inout0,$inout5); # ^ offset_i &movaps ($rndkey1,$inout4); # pass the checksum &movdqa ($rndkey0,$inout5); # pass last offset_i &xorps ($rndkey1,$inout0); # checksum &movups (&QWP(-16,$out,$inp),$inout0); # store output &mov ($rounds,&DWP(240,$i3)); &mov ($key,$i3); # restore key &mov ($len,&DWP($end_off,"esp")); &set_label("odd"); &shl ($rounds,4); &mov ($out,16); &sub ($out,$rounds); # twisted rounds &mov (&DWP($key_off,"esp"),$key); &lea ($key,&DWP(32,$key,$rounds)); # end of key schedule &mov (&DWP($rounds_off,"esp"),$out); &cmp ($inp,$len); &ja (&label("short")); &jmp (&label("grandloop")); &set_label("grandloop",32); &lea ($i1,&DWP(1,$block)); &lea ($i3,&DWP(3,$block)); &lea ($i5,&DWP(5,$block)); &add ($block,6); &bsf ($i1,$i1); &bsf ($i3,$i3); &bsf ($i5,$i5); &shl ($i1,4); &shl ($i3,4); &shl ($i5,4); &movdqu ($inout0,&QWP(0,$l_)); &movdqu ($inout1,&QWP(0,$l_,$i1)); &mov ($rounds,&DWP($rounds_off,"esp")); &movdqa ($inout2,$inout0); &movdqu ($inout3,&QWP(0,$l_,$i3)); &movdqa ($inout4,$inout0); &movdqu ($inout5,&QWP(0,$l_,$i5)); &pxor ($inout0,$rndkey0); # ^ last offset_i &pxor ($inout1,$inout0); &movdqa (&QWP(16*0,"esp"),$inout0); &pxor ($inout2,$inout1); &movdqa (&QWP(16*1,"esp"),$inout1); &pxor ($inout3,$inout2); &movdqa (&QWP(16*2,"esp"),$inout2); &pxor ($inout4,$inout3); &movdqa (&QWP(16*3,"esp"),$inout3); &pxor ($inout5,$inout4); &movdqa (&QWP(16*4,"esp"),$inout4); &movdqa (&QWP(16*5,"esp"),$inout5); &$movekey ($rndkey0,&QWP(-48,$key,$rounds)); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &movdqu ($inout3,&QWP(16*3,$inp)); &movdqu ($inout4,&QWP(16*4,$inp)); &movdqu ($inout5,&QWP(16*5,$inp)); &lea ($inp,&DWP(16*6,$inp)); &movdqa (&QWP($checksum,"esp"),$rndkey1); &pxor ($inout0,$rndkey0); # ^ roundkey[0] &pxor ($inout1,$rndkey0); &pxor ($inout2,$rndkey0); &pxor ($inout3,$rndkey0); &pxor ($inout4,$rndkey0); &pxor ($inout5,$rndkey0); &$movekey ($rndkey1,&QWP(-32,$key,$rounds)); &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &pxor ($inout5,&QWP(16*5,"esp")); &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &aesdec ($inout0,$rndkey1); &aesdec ($inout1,$rndkey1); &aesdec ($inout2,$rndkey1); &aesdec ($inout3,$rndkey1); &aesdec ($inout4,$rndkey1); &aesdec ($inout5,$rndkey1); &mov ($out,&DWP($out_off,"esp")); &mov ($len,&DWP($end_off,"esp")); &call ("_aesni_decrypt6_enter"); &movdqa ($rndkey0,&QWP(16*5,"esp")); # pass last offset_i &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &movdqa ($rndkey1,&QWP($checksum,"esp")); &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &pxor ($inout5,$rndkey0); &pxor ($rndkey1,$inout0); # checksum &movdqu (&QWP(-16*6,$out,$inp),$inout0);# store output &pxor ($rndkey1,$inout1); &movdqu (&QWP(-16*5,$out,$inp),$inout1); &pxor ($rndkey1,$inout2); &movdqu (&QWP(-16*4,$out,$inp),$inout2); &pxor ($rndkey1,$inout3); &movdqu (&QWP(-16*3,$out,$inp),$inout3); &pxor ($rndkey1,$inout4); &movdqu (&QWP(-16*2,$out,$inp),$inout4); &pxor ($rndkey1,$inout5); &movdqu (&QWP(-16*1,$out,$inp),$inout5); &cmp ($inp,$len); # done yet? &jb (&label("grandloop")); &set_label("short"); &add ($len,16*6); &sub ($len,$inp); &jz (&label("done")); &cmp ($len,16*2); &jb (&label("one")); &je (&label("two")); &cmp ($len,16*4); &jb (&label("three")); &je (&label("four")); &lea ($i1,&DWP(1,$block)); &lea ($i3,&DWP(3,$block)); &bsf ($i1,$i1); &bsf ($i3,$i3); &shl ($i1,4); &shl ($i3,4); &movdqu ($inout0,&QWP(0,$l_)); &movdqu ($inout1,&QWP(0,$l_,$i1)); &mov ($rounds,&DWP($rounds_off,"esp")); &movdqa ($inout2,$inout0); &movdqu ($inout3,&QWP(0,$l_,$i3)); &movdqa ($inout4,$inout0); &pxor ($inout0,$rndkey0); # ^ last offset_i &pxor ($inout1,$inout0); &movdqa (&QWP(16*0,"esp"),$inout0); &pxor ($inout2,$inout1); &movdqa (&QWP(16*1,"esp"),$inout1); &pxor ($inout3,$inout2); &movdqa (&QWP(16*2,"esp"),$inout2); &pxor ($inout4,$inout3); &movdqa (&QWP(16*3,"esp"),$inout3); &pxor ($inout5,$inout4); &movdqa (&QWP(16*4,"esp"),$inout4); &$movekey ($rndkey0,&QWP(-48,$key,$rounds)); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &movdqu ($inout3,&QWP(16*3,$inp)); &movdqu ($inout4,&QWP(16*4,$inp)); &pxor ($inout5,$inout5); &movdqa (&QWP($checksum,"esp"),$rndkey1); &pxor ($inout0,$rndkey0); # ^ roundkey[0] &pxor ($inout1,$rndkey0); &pxor ($inout2,$rndkey0); &pxor ($inout3,$rndkey0); &pxor ($inout4,$rndkey0); &$movekey ($rndkey1,&QWP(-32,$key,$rounds)); &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,&QWP(16*4,"esp")); &$movekey ($rndkey0,&QWP(-16,$key,$rounds)); &aesdec ($inout0,$rndkey1); &aesdec ($inout1,$rndkey1); &aesdec ($inout2,$rndkey1); &aesdec ($inout3,$rndkey1); &aesdec ($inout4,$rndkey1); &aesdec ($inout5,$rndkey1); &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_decrypt6_enter"); &movdqa ($rndkey0,&QWP(16*4,"esp")); # pass last offset_i &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &movdqa ($rndkey1,&QWP($checksum,"esp")); &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,&QWP(16*2,"esp")); &pxor ($inout3,&QWP(16*3,"esp")); &pxor ($inout4,$rndkey0); &pxor ($rndkey1,$inout0); # checksum &movdqu (&QWP(16*0,$out,$inp),$inout0); # store output &pxor ($rndkey1,$inout1); &movdqu (&QWP(16*1,$out,$inp),$inout1); &pxor ($rndkey1,$inout2); &movdqu (&QWP(16*2,$out,$inp),$inout2); &pxor ($rndkey1,$inout3); &movdqu (&QWP(16*3,$out,$inp),$inout3); &pxor ($rndkey1,$inout4); &movdqu (&QWP(16*4,$out,$inp),$inout4); &jmp (&label("done")); &set_label("one",16); &movdqu ($inout5,&QWP(0,$l_)); &mov ($key,&DWP($key_off,"esp")); # restore key &movdqu ($inout0,&QWP(16*0,$inp)); # load input &mov ($rounds,&DWP(240,$key)); &pxor ($inout5,$rndkey0); # ^ last offset_i &pxor ($inout0,$inout5); # ^ offset_i &movdqa ($inout4,$rndkey1); &mov ($out,&DWP($out_off,"esp")); if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &xorps ($inout0,$inout5); # ^ offset_i &movaps ($rndkey1,$inout4); # pass the checksum &movdqa ($rndkey0,$inout5); # pass last offset_i &xorps ($rndkey1,$inout0); # checksum &movups (&QWP(0,$out,$inp),$inout0); &jmp (&label("done")); &set_label("two",16); &lea ($i1,&DWP(1,$block)); &mov ($key,&DWP($key_off,"esp")); # restore key &bsf ($i1,$i1); &shl ($i1,4); &movdqu ($inout4,&QWP(0,$l_)); &movdqu ($inout5,&QWP(0,$l_,$i1)); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &mov ($rounds,&DWP(240,$key)); &movdqa ($inout3,$rndkey1); &pxor ($inout4,$rndkey0); # ^ last offset_i &pxor ($inout5,$inout4); &pxor ($inout0,$inout4); # ^ offset_i &pxor ($inout1,$inout5); &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_decrypt2"); &xorps ($inout0,$inout4); # ^ offset_i &xorps ($inout1,$inout5); &movdqa ($rndkey0,$inout5); # pass last offset_i &xorps ($inout3,$inout0); # checksum &movups (&QWP(16*0,$out,$inp),$inout0); # store output &xorps ($inout3,$inout1); &movups (&QWP(16*1,$out,$inp),$inout1); &movaps ($rndkey1,$inout3); # pass the checksum &jmp (&label("done")); &set_label("three",16); &lea ($i1,&DWP(1,$block)); &mov ($key,&DWP($key_off,"esp")); # restore key &bsf ($i1,$i1); &shl ($i1,4); &movdqu ($inout3,&QWP(0,$l_)); &movdqu ($inout4,&QWP(0,$l_,$i1)); &movdqa ($inout5,$inout3); &movdqu ($inout0,&QWP(16*0,$inp)); # load input &movdqu ($inout1,&QWP(16*1,$inp)); &movdqu ($inout2,&QWP(16*2,$inp)); &mov ($rounds,&DWP(240,$key)); &movdqa (&QWP($checksum,"esp"),$rndkey1); &pxor ($inout3,$rndkey0); # ^ last offset_i &pxor ($inout4,$inout3); &pxor ($inout5,$inout4); &pxor ($inout0,$inout3); # ^ offset_i &pxor ($inout1,$inout4); &pxor ($inout2,$inout5); &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_decrypt3"); &movdqa ($rndkey1,&QWP($checksum,"esp"));# pass the checksum &xorps ($inout0,$inout3); # ^ offset_i &xorps ($inout1,$inout4); &xorps ($inout2,$inout5); &movups (&QWP(16*0,$out,$inp),$inout0); # store output &pxor ($rndkey1,$inout0); # checksum &movdqa ($rndkey0,$inout5); # pass last offset_i &movups (&QWP(16*1,$out,$inp),$inout1); &pxor ($rndkey1,$inout1); &movups (&QWP(16*2,$out,$inp),$inout2); &pxor ($rndkey1,$inout2); &jmp (&label("done")); &set_label("four",16); &lea ($i1,&DWP(1,$block)); &lea ($i3,&DWP(3,$block)); &bsf ($i1,$i1); &bsf ($i3,$i3); &mov ($key,&DWP($key_off,"esp")); # restore key &shl ($i1,4); &shl ($i3,4); &movdqu ($inout2,&QWP(0,$l_)); &movdqu ($inout3,&QWP(0,$l_,$i1)); &movdqa ($inout4,$inout2); &movdqu ($inout5,&QWP(0,$l_,$i3)); &pxor ($inout2,$rndkey0); # ^ last offset_i &movdqu ($inout0,&QWP(16*0,$inp)); # load input &pxor ($inout3,$inout2); &movdqu ($inout1,&QWP(16*1,$inp)); &pxor ($inout4,$inout3); &movdqa (&QWP(16*0,"esp"),$inout2); &pxor ($inout5,$inout4); &movdqa (&QWP(16*1,"esp"),$inout3); &movdqu ($inout2,&QWP(16*2,$inp)); &movdqu ($inout3,&QWP(16*3,$inp)); &mov ($rounds,&DWP(240,$key)); &movdqa (&QWP($checksum,"esp"),$rndkey1); &pxor ($inout0,&QWP(16*0,"esp")); # ^ offset_i &pxor ($inout1,&QWP(16*1,"esp")); &pxor ($inout2,$inout4); &pxor ($inout3,$inout5); &mov ($out,&DWP($out_off,"esp")); &call ("_aesni_decrypt4"); &movdqa ($rndkey1,&QWP($checksum,"esp"));# pass the checksum &xorps ($inout0,&QWP(16*0,"esp")); # ^ offset_i &xorps ($inout1,&QWP(16*1,"esp")); &xorps ($inout2,$inout4); &movups (&QWP(16*0,$out,$inp),$inout0); # store output &pxor ($rndkey1,$inout0); # checksum &xorps ($inout3,$inout5); &movups (&QWP(16*1,$out,$inp),$inout1); &pxor ($rndkey1,$inout1); &movdqa ($rndkey0,$inout5); # pass last offset_i &movups (&QWP(16*2,$out,$inp),$inout2); &pxor ($rndkey1,$inout2); &movups (&QWP(16*3,$out,$inp),$inout3); &pxor ($rndkey1,$inout3); &set_label("done"); &mov ($key,&DWP($esp_off,"esp")); &pxor ($inout0,$inout0); # clear register bank &pxor ($inout1,$inout1); &movdqa (&QWP(16*0,"esp"),$inout0); # clear stack &pxor ($inout2,$inout2); &movdqa (&QWP(16*1,"esp"),$inout0); &pxor ($inout3,$inout3); &movdqa (&QWP(16*2,"esp"),$inout0); &pxor ($inout4,$inout4); &movdqa (&QWP(16*3,"esp"),$inout0); &pxor ($inout5,$inout5); &movdqa (&QWP(16*4,"esp"),$inout0); &movdqa (&QWP(16*5,"esp"),$inout0); &movdqa (&QWP(16*6,"esp"),$inout0); &lea ("esp",&DWP(0,$key)); &mov ($rounds,&wparam(5)); # &offset_i &mov ($rounds_,&wparam(7)); # &checksum &movdqu (&QWP(0,$rounds),$rndkey0); &pxor ($rndkey0,$rndkey0); &movdqu (&QWP(0,$rounds_),$rndkey1); &pxor ($rndkey1,$rndkey1); &function_end("aesni_ocb_decrypt"); } } ###################################################################### # void $PREFIX_cbc_encrypt (const void *inp, void *out, # size_t length, const AES_KEY *key, # unsigned char *ivp,const int enc); &function_begin("${PREFIX}_cbc_encrypt"); &mov ($inp,&wparam(0)); &mov ($rounds_,"esp"); &mov ($out,&wparam(1)); &sub ($rounds_,24); &mov ($len,&wparam(2)); &and ($rounds_,-16); &mov ($key,&wparam(3)); &mov ($key_,&wparam(4)); &test ($len,$len); &jz (&label("cbc_abort")); &cmp (&wparam(5),0); &xchg ($rounds_,"esp"); # alloca &movups ($ivec,&QWP(0,$key_)); # load IV &mov ($rounds,&DWP(240,$key)); &mov ($key_,$key); # backup $key &mov (&DWP(16,"esp"),$rounds_); # save original %esp &mov ($rounds_,$rounds); # backup $rounds &je (&label("cbc_decrypt")); &movaps ($inout0,$ivec); &cmp ($len,16); &jb (&label("cbc_enc_tail")); &sub ($len,16); &jmp (&label("cbc_enc_loop")); &set_label("cbc_enc_loop",16); &movups ($ivec,&QWP(0,$inp)); # input actually &lea ($inp,&DWP(16,$inp)); if ($inline) { &aesni_inline_generate1("enc",$inout0,$ivec); } else { &xorps($inout0,$ivec); &call("_aesni_encrypt1"); } &mov ($rounds,$rounds_); # restore $rounds &mov ($key,$key_); # restore $key &movups (&QWP(0,$out),$inout0); # store output &lea ($out,&DWP(16,$out)); &sub ($len,16); &jnc (&label("cbc_enc_loop")); &add ($len,16); &jnz (&label("cbc_enc_tail")); &movaps ($ivec,$inout0); &pxor ($inout0,$inout0); &jmp (&label("cbc_ret")); &set_label("cbc_enc_tail"); &mov ("ecx",$len); # zaps $rounds &data_word(0xA4F3F689); # rep movsb &mov ("ecx",16); # zero tail &sub ("ecx",$len); &xor ("eax","eax"); # zaps $len &data_word(0xAAF3F689); # rep stosb &lea ($out,&DWP(-16,$out)); # rewind $out by 1 block &mov ($rounds,$rounds_); # restore $rounds &mov ($inp,$out); # $inp and $out are the same &mov ($key,$key_); # restore $key &jmp (&label("cbc_enc_loop")); ###################################################################### &set_label("cbc_decrypt",16); &cmp ($len,0x50); &jbe (&label("cbc_dec_tail")); &movaps (&QWP(0,"esp"),$ivec); # save IV &sub ($len,0x50); &jmp (&label("cbc_dec_loop6_enter")); &set_label("cbc_dec_loop6",16); &movaps (&QWP(0,"esp"),$rndkey0); # save IV &movups (&QWP(0,$out),$inout5); &lea ($out,&DWP(0x10,$out)); &set_label("cbc_dec_loop6_enter"); &movdqu ($inout0,&QWP(0,$inp)); &movdqu ($inout1,&QWP(0x10,$inp)); &movdqu ($inout2,&QWP(0x20,$inp)); &movdqu ($inout3,&QWP(0x30,$inp)); &movdqu ($inout4,&QWP(0x40,$inp)); &movdqu ($inout5,&QWP(0x50,$inp)); &call ("_aesni_decrypt6"); &movups ($rndkey1,&QWP(0,$inp)); &movups ($rndkey0,&QWP(0x10,$inp)); &xorps ($inout0,&QWP(0,"esp")); # ^=IV &xorps ($inout1,$rndkey1); &movups ($rndkey1,&QWP(0x20,$inp)); &xorps ($inout2,$rndkey0); &movups ($rndkey0,&QWP(0x30,$inp)); &xorps ($inout3,$rndkey1); &movups ($rndkey1,&QWP(0x40,$inp)); &xorps ($inout4,$rndkey0); &movups ($rndkey0,&QWP(0x50,$inp)); # IV &xorps ($inout5,$rndkey1); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &lea ($inp,&DWP(0x60,$inp)); &movups (&QWP(0x20,$out),$inout2); &mov ($rounds,$rounds_); # restore $rounds &movups (&QWP(0x30,$out),$inout3); &mov ($key,$key_); # restore $key &movups (&QWP(0x40,$out),$inout4); &lea ($out,&DWP(0x50,$out)); &sub ($len,0x60); &ja (&label("cbc_dec_loop6")); &movaps ($inout0,$inout5); &movaps ($ivec,$rndkey0); &add ($len,0x50); &jle (&label("cbc_dec_clear_tail_collected")); &movups (&QWP(0,$out),$inout0); &lea ($out,&DWP(0x10,$out)); &set_label("cbc_dec_tail"); &movups ($inout0,&QWP(0,$inp)); &movaps ($in0,$inout0); &cmp ($len,0x10); &jbe (&label("cbc_dec_one")); &movups ($inout1,&QWP(0x10,$inp)); &movaps ($in1,$inout1); &cmp ($len,0x20); &jbe (&label("cbc_dec_two")); &movups ($inout2,&QWP(0x20,$inp)); &cmp ($len,0x30); &jbe (&label("cbc_dec_three")); &movups ($inout3,&QWP(0x30,$inp)); &cmp ($len,0x40); &jbe (&label("cbc_dec_four")); &movups ($inout4,&QWP(0x40,$inp)); &movaps (&QWP(0,"esp"),$ivec); # save IV &movups ($inout0,&QWP(0,$inp)); &xorps ($inout5,$inout5); &call ("_aesni_decrypt6"); &movups ($rndkey1,&QWP(0,$inp)); &movups ($rndkey0,&QWP(0x10,$inp)); &xorps ($inout0,&QWP(0,"esp")); # ^= IV &xorps ($inout1,$rndkey1); &movups ($rndkey1,&QWP(0x20,$inp)); &xorps ($inout2,$rndkey0); &movups ($rndkey0,&QWP(0x30,$inp)); &xorps ($inout3,$rndkey1); &movups ($ivec,&QWP(0x40,$inp)); # IV &xorps ($inout4,$rndkey0); &movups (&QWP(0,$out),$inout0); &movups (&QWP(0x10,$out),$inout1); &pxor ($inout1,$inout1); &movups (&QWP(0x20,$out),$inout2); &pxor ($inout2,$inout2); &movups (&QWP(0x30,$out),$inout3); &pxor ($inout3,$inout3); &lea ($out,&DWP(0x40,$out)); &movaps ($inout0,$inout4); &pxor ($inout4,$inout4); &sub ($len,0x50); &jmp (&label("cbc_dec_tail_collected")); &set_label("cbc_dec_one",16); if ($inline) { &aesni_inline_generate1("dec"); } else { &call ("_aesni_decrypt1"); } &xorps ($inout0,$ivec); &movaps ($ivec,$in0); &sub ($len,0x10); &jmp (&label("cbc_dec_tail_collected")); &set_label("cbc_dec_two",16); &call ("_aesni_decrypt2"); &xorps ($inout0,$ivec); &xorps ($inout1,$in0); &movups (&QWP(0,$out),$inout0); &movaps ($inout0,$inout1); &pxor ($inout1,$inout1); &lea ($out,&DWP(0x10,$out)); &movaps ($ivec,$in1); &sub ($len,0x20); &jmp (&label("cbc_dec_tail_collected")); &set_label("cbc_dec_three",16); &call ("_aesni_decrypt3"); &xorps ($inout0,$ivec); &xorps ($inout1,$in0); &xorps ($inout2,$in1); &movups (&QWP(0,$out),$inout0); &movaps ($inout0,$inout2); &pxor ($inout2,$inout2); &movups (&QWP(0x10,$out),$inout1); &pxor ($inout1,$inout1); &lea ($out,&DWP(0x20,$out)); &movups ($ivec,&QWP(0x20,$inp)); &sub ($len,0x30); &jmp (&label("cbc_dec_tail_collected")); &set_label("cbc_dec_four",16); &call ("_aesni_decrypt4"); &movups ($rndkey1,&QWP(0x10,$inp)); &movups ($rndkey0,&QWP(0x20,$inp)); &xorps ($inout0,$ivec); &movups ($ivec,&QWP(0x30,$inp)); &xorps ($inout1,$in0); &movups (&QWP(0,$out),$inout0); &xorps ($inout2,$rndkey1); &movups (&QWP(0x10,$out),$inout1); &pxor ($inout1,$inout1); &xorps ($inout3,$rndkey0); &movups (&QWP(0x20,$out),$inout2); &pxor ($inout2,$inout2); &lea ($out,&DWP(0x30,$out)); &movaps ($inout0,$inout3); &pxor ($inout3,$inout3); &sub ($len,0x40); &jmp (&label("cbc_dec_tail_collected")); &set_label("cbc_dec_clear_tail_collected",16); &pxor ($inout1,$inout1); &pxor ($inout2,$inout2); &pxor ($inout3,$inout3); &pxor ($inout4,$inout4); &set_label("cbc_dec_tail_collected"); &and ($len,15); &jnz (&label("cbc_dec_tail_partial")); &movups (&QWP(0,$out),$inout0); &pxor ($rndkey0,$rndkey0); &jmp (&label("cbc_ret")); &set_label("cbc_dec_tail_partial",16); &movaps (&QWP(0,"esp"),$inout0); &pxor ($rndkey0,$rndkey0); &mov ("ecx",16); &mov ($inp,"esp"); &sub ("ecx",$len); &data_word(0xA4F3F689); # rep movsb &movdqa (&QWP(0,"esp"),$inout0); &set_label("cbc_ret"); &mov ("esp",&DWP(16,"esp")); # pull original %esp &mov ($key_,&wparam(4)); &pxor ($inout0,$inout0); &pxor ($rndkey1,$rndkey1); &movups (&QWP(0,$key_),$ivec); # output IV &pxor ($ivec,$ivec); &set_label("cbc_abort"); &function_end("${PREFIX}_cbc_encrypt"); ###################################################################### # Mechanical port from aesni-x86_64.pl. # # _aesni_set_encrypt_key is private interface, # input: # "eax" const unsigned char *userKey # $rounds int bits # $key AES_KEY *key # output: # "eax" return code # $round rounds &function_begin_B("_aesni_set_encrypt_key"); &push ("ebp"); &push ("ebx"); &test ("eax","eax"); &jz (&label("bad_pointer")); &test ($key,$key); &jz (&label("bad_pointer")); &call (&label("pic")); &set_label("pic"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("key_const")."-".&label("pic"),"ebx")); &picmeup("ebp","OPENSSL_ia32cap_P","ebx",&label("key_const")); &movups ("xmm0",&QWP(0,"eax")); # pull first 128 bits of *userKey &xorps ("xmm4","xmm4"); # low dword of xmm4 is assumed 0 &mov ("ebp",&DWP(4,"ebp")); &lea ($key,&DWP(16,$key)); &and ("ebp",1<<28|1<<11); # AVX and XOP bits &cmp ($rounds,256); &je (&label("14rounds")); &cmp ($rounds,192); &je (&label("12rounds")); &cmp ($rounds,128); &jne (&label("bad_keybits")); &set_label("10rounds",16); &cmp ("ebp",1<<28); &je (&label("10rounds_alt")); &mov ($rounds,9); &$movekey (&QWP(-16,$key),"xmm0"); # round 0 &aeskeygenassist("xmm1","xmm0",0x01); # round 1 &call (&label("key_128_cold")); &aeskeygenassist("xmm1","xmm0",0x2); # round 2 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x04); # round 3 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x08); # round 4 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x10); # round 5 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x20); # round 6 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x40); # round 7 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x80); # round 8 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x1b); # round 9 &call (&label("key_128")); &aeskeygenassist("xmm1","xmm0",0x36); # round 10 &call (&label("key_128")); &$movekey (&QWP(0,$key),"xmm0"); &mov (&DWP(80,$key),$rounds); &jmp (&label("good_key")); &set_label("key_128",16); &$movekey (&QWP(0,$key),"xmm0"); &lea ($key,&DWP(16,$key)); &set_label("key_128_cold"); &shufps ("xmm4","xmm0",0b00010000); &xorps ("xmm0","xmm4"); &shufps ("xmm4","xmm0",0b10001100); &xorps ("xmm0","xmm4"); &shufps ("xmm1","xmm1",0b11111111); # critical path &xorps ("xmm0","xmm1"); &ret(); &set_label("10rounds_alt",16); &movdqa ("xmm5",&QWP(0x00,"ebx")); &mov ($rounds,8); &movdqa ("xmm4",&QWP(0x20,"ebx")); &movdqa ("xmm2","xmm0"); &movdqu (&QWP(-16,$key),"xmm0"); &set_label("loop_key128"); &pshufb ("xmm0","xmm5"); &aesenclast ("xmm0","xmm4"); &pslld ("xmm4",1); &lea ($key,&DWP(16,$key)); &movdqa ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm2","xmm3"); &pxor ("xmm0","xmm2"); &movdqu (&QWP(-16,$key),"xmm0"); &movdqa ("xmm2","xmm0"); &dec ($rounds); &jnz (&label("loop_key128")); &movdqa ("xmm4",&QWP(0x30,"ebx")); &pshufb ("xmm0","xmm5"); &aesenclast ("xmm0","xmm4"); &pslld ("xmm4",1); &movdqa ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm2","xmm3"); &pxor ("xmm0","xmm2"); &movdqu (&QWP(0,$key),"xmm0"); &movdqa ("xmm2","xmm0"); &pshufb ("xmm0","xmm5"); &aesenclast ("xmm0","xmm4"); &movdqa ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm3","xmm2"); &pslldq ("xmm2",4); &pxor ("xmm2","xmm3"); &pxor ("xmm0","xmm2"); &movdqu (&QWP(16,$key),"xmm0"); &mov ($rounds,9); &mov (&DWP(96,$key),$rounds); &jmp (&label("good_key")); &set_label("12rounds",16); &movq ("xmm2",&QWP(16,"eax")); # remaining 1/3 of *userKey &cmp ("ebp",1<<28); &je (&label("12rounds_alt")); &mov ($rounds,11); &$movekey (&QWP(-16,$key),"xmm0"); # round 0 &aeskeygenassist("xmm1","xmm2",0x01); # round 1,2 &call (&label("key_192a_cold")); &aeskeygenassist("xmm1","xmm2",0x02); # round 2,3 &call (&label("key_192b")); &aeskeygenassist("xmm1","xmm2",0x04); # round 4,5 &call (&label("key_192a")); &aeskeygenassist("xmm1","xmm2",0x08); # round 5,6 &call (&label("key_192b")); &aeskeygenassist("xmm1","xmm2",0x10); # round 7,8 &call (&label("key_192a")); &aeskeygenassist("xmm1","xmm2",0x20); # round 8,9 &call (&label("key_192b")); &aeskeygenassist("xmm1","xmm2",0x40); # round 10,11 &call (&label("key_192a")); &aeskeygenassist("xmm1","xmm2",0x80); # round 11,12 &call (&label("key_192b")); &$movekey (&QWP(0,$key),"xmm0"); &mov (&DWP(48,$key),$rounds); &jmp (&label("good_key")); &set_label("key_192a",16); &$movekey (&QWP(0,$key),"xmm0"); &lea ($key,&DWP(16,$key)); &set_label("key_192a_cold",16); &movaps ("xmm5","xmm2"); &set_label("key_192b_warm"); &shufps ("xmm4","xmm0",0b00010000); &movdqa ("xmm3","xmm2"); &xorps ("xmm0","xmm4"); &shufps ("xmm4","xmm0",0b10001100); &pslldq ("xmm3",4); &xorps ("xmm0","xmm4"); &pshufd ("xmm1","xmm1",0b01010101); # critical path &pxor ("xmm2","xmm3"); &pxor ("xmm0","xmm1"); &pshufd ("xmm3","xmm0",0b11111111); &pxor ("xmm2","xmm3"); &ret(); &set_label("key_192b",16); &movaps ("xmm3","xmm0"); &shufps ("xmm5","xmm0",0b01000100); &$movekey (&QWP(0,$key),"xmm5"); &shufps ("xmm3","xmm2",0b01001110); &$movekey (&QWP(16,$key),"xmm3"); &lea ($key,&DWP(32,$key)); &jmp (&label("key_192b_warm")); &set_label("12rounds_alt",16); &movdqa ("xmm5",&QWP(0x10,"ebx")); &movdqa ("xmm4",&QWP(0x20,"ebx")); &mov ($rounds,8); &movdqu (&QWP(-16,$key),"xmm0"); &set_label("loop_key192"); &movq (&QWP(0,$key),"xmm2"); &movdqa ("xmm1","xmm2"); &pshufb ("xmm2","xmm5"); &aesenclast ("xmm2","xmm4"); &pslld ("xmm4",1); &lea ($key,&DWP(24,$key)); &movdqa ("xmm3","xmm0"); &pslldq ("xmm0",4); &pxor ("xmm3","xmm0"); &pslldq ("xmm0",4); &pxor ("xmm3","xmm0"); &pslldq ("xmm0",4); &pxor ("xmm0","xmm3"); &pshufd ("xmm3","xmm0",0xff); &pxor ("xmm3","xmm1"); &pslldq ("xmm1",4); &pxor ("xmm3","xmm1"); &pxor ("xmm0","xmm2"); &pxor ("xmm2","xmm3"); &movdqu (&QWP(-16,$key),"xmm0"); &dec ($rounds); &jnz (&label("loop_key192")); &mov ($rounds,11); &mov (&DWP(32,$key),$rounds); &jmp (&label("good_key")); &set_label("14rounds",16); &movups ("xmm2",&QWP(16,"eax")); # remaining half of *userKey &lea ($key,&DWP(16,$key)); &cmp ("ebp",1<<28); &je (&label("14rounds_alt")); &mov ($rounds,13); &$movekey (&QWP(-32,$key),"xmm0"); # round 0 &$movekey (&QWP(-16,$key),"xmm2"); # round 1 &aeskeygenassist("xmm1","xmm2",0x01); # round 2 &call (&label("key_256a_cold")); &aeskeygenassist("xmm1","xmm0",0x01); # round 3 &call (&label("key_256b")); &aeskeygenassist("xmm1","xmm2",0x02); # round 4 &call (&label("key_256a")); &aeskeygenassist("xmm1","xmm0",0x02); # round 5 &call (&label("key_256b")); &aeskeygenassist("xmm1","xmm2",0x04); # round 6 &call (&label("key_256a")); &aeskeygenassist("xmm1","xmm0",0x04); # round 7 &call (&label("key_256b")); &aeskeygenassist("xmm1","xmm2",0x08); # round 8 &call (&label("key_256a")); &aeskeygenassist("xmm1","xmm0",0x08); # round 9 &call (&label("key_256b")); &aeskeygenassist("xmm1","xmm2",0x10); # round 10 &call (&label("key_256a")); &aeskeygenassist("xmm1","xmm0",0x10); # round 11 &call (&label("key_256b")); &aeskeygenassist("xmm1","xmm2",0x20); # round 12 &call (&label("key_256a")); &aeskeygenassist("xmm1","xmm0",0x20); # round 13 &call (&label("key_256b")); &aeskeygenassist("xmm1","xmm2",0x40); # round 14 &call (&label("key_256a")); &$movekey (&QWP(0,$key),"xmm0"); &mov (&DWP(16,$key),$rounds); &xor ("eax","eax"); &jmp (&label("good_key")); &set_label("key_256a",16); &$movekey (&QWP(0,$key),"xmm2"); &lea ($key,&DWP(16,$key)); &set_label("key_256a_cold"); &shufps ("xmm4","xmm0",0b00010000); &xorps ("xmm0","xmm4"); &shufps ("xmm4","xmm0",0b10001100); &xorps ("xmm0","xmm4"); &shufps ("xmm1","xmm1",0b11111111); # critical path &xorps ("xmm0","xmm1"); &ret(); &set_label("key_256b",16); &$movekey (&QWP(0,$key),"xmm0"); &lea ($key,&DWP(16,$key)); &shufps ("xmm4","xmm2",0b00010000); &xorps ("xmm2","xmm4"); &shufps ("xmm4","xmm2",0b10001100); &xorps ("xmm2","xmm4"); &shufps ("xmm1","xmm1",0b10101010); # critical path &xorps ("xmm2","xmm1"); &ret(); &set_label("14rounds_alt",16); &movdqa ("xmm5",&QWP(0x00,"ebx")); &movdqa ("xmm4",&QWP(0x20,"ebx")); &mov ($rounds,7); &movdqu (&QWP(-32,$key),"xmm0"); &movdqa ("xmm1","xmm2"); &movdqu (&QWP(-16,$key),"xmm2"); &set_label("loop_key256"); &pshufb ("xmm2","xmm5"); &aesenclast ("xmm2","xmm4"); &movdqa ("xmm3","xmm0"); &pslldq ("xmm0",4); &pxor ("xmm3","xmm0"); &pslldq ("xmm0",4); &pxor ("xmm3","xmm0"); &pslldq ("xmm0",4); &pxor ("xmm0","xmm3"); &pslld ("xmm4",1); &pxor ("xmm0","xmm2"); &movdqu (&QWP(0,$key),"xmm0"); &dec ($rounds); &jz (&label("done_key256")); &pshufd ("xmm2","xmm0",0xff); &pxor ("xmm3","xmm3"); &aesenclast ("xmm2","xmm3"); &movdqa ("xmm3","xmm1"); &pslldq ("xmm1",4); &pxor ("xmm3","xmm1"); &pslldq ("xmm1",4); &pxor ("xmm3","xmm1"); &pslldq ("xmm1",4); &pxor ("xmm1","xmm3"); &pxor ("xmm2","xmm1"); &movdqu (&QWP(16,$key),"xmm2"); &lea ($key,&DWP(32,$key)); &movdqa ("xmm1","xmm2"); &jmp (&label("loop_key256")); &set_label("done_key256"); &mov ($rounds,13); &mov (&DWP(16,$key),$rounds); &set_label("good_key"); &pxor ("xmm0","xmm0"); &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &pxor ("xmm3","xmm3"); &pxor ("xmm4","xmm4"); &pxor ("xmm5","xmm5"); &xor ("eax","eax"); &pop ("ebx"); &pop ("ebp"); &ret (); &set_label("bad_pointer",4); &mov ("eax",-1); &pop ("ebx"); &pop ("ebp"); &ret (); &set_label("bad_keybits",4); &pxor ("xmm0","xmm0"); &mov ("eax",-2); &pop ("ebx"); &pop ("ebp"); &ret (); &function_end_B("_aesni_set_encrypt_key"); # int $PREFIX_set_encrypt_key (const unsigned char *userKey, int bits, # AES_KEY *key) &function_begin_B("${PREFIX}_set_encrypt_key"); &mov ("eax",&wparam(0)); &mov ($rounds,&wparam(1)); &mov ($key,&wparam(2)); &call ("_aesni_set_encrypt_key"); &ret (); &function_end_B("${PREFIX}_set_encrypt_key"); # int $PREFIX_set_decrypt_key (const unsigned char *userKey, int bits, # AES_KEY *key) &function_begin_B("${PREFIX}_set_decrypt_key"); &mov ("eax",&wparam(0)); &mov ($rounds,&wparam(1)); &mov ($key,&wparam(2)); &call ("_aesni_set_encrypt_key"); &mov ($key,&wparam(2)); &shl ($rounds,4); # rounds-1 after _aesni_set_encrypt_key &test ("eax","eax"); &jnz (&label("dec_key_ret")); &lea ("eax",&DWP(16,$key,$rounds)); # end of key schedule &$movekey ("xmm0",&QWP(0,$key)); # just swap &$movekey ("xmm1",&QWP(0,"eax")); &$movekey (&QWP(0,"eax"),"xmm0"); &$movekey (&QWP(0,$key),"xmm1"); &lea ($key,&DWP(16,$key)); &lea ("eax",&DWP(-16,"eax")); &set_label("dec_key_inverse"); &$movekey ("xmm0",&QWP(0,$key)); # swap and inverse &$movekey ("xmm1",&QWP(0,"eax")); &aesimc ("xmm0","xmm0"); &aesimc ("xmm1","xmm1"); &lea ($key,&DWP(16,$key)); &lea ("eax",&DWP(-16,"eax")); &$movekey (&QWP(16,"eax"),"xmm0"); &$movekey (&QWP(-16,$key),"xmm1"); &cmp ("eax",$key); &ja (&label("dec_key_inverse")); &$movekey ("xmm0",&QWP(0,$key)); # inverse middle &aesimc ("xmm0","xmm0"); &$movekey (&QWP(0,$key),"xmm0"); &pxor ("xmm0","xmm0"); &pxor ("xmm1","xmm1"); &xor ("eax","eax"); # return success &set_label("dec_key_ret"); &ret (); &function_end_B("${PREFIX}_set_decrypt_key"); &set_label("key_const",64); &data_word(0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d); &data_word(0x04070605,0x04070605,0x04070605,0x04070605); &data_word(1,1,1,1); &data_word(0x1b,0x1b,0x1b,0x1b); &asciz("AES for Intel AES-NI, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aesni-x86_64.pl000066400000000000000000003755061364063235100206260ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements support for Intel AES-NI extension. In # OpenSSL context it's used with Intel engine, but can also be used as # drop-in replacement for crypto/aes/asm/aes-x86_64.pl [see below for # details]. # # Performance. # # Given aes(enc|dec) instructions' latency asymptotic performance for # non-parallelizable modes such as CBC encrypt is 3.75 cycles per byte # processed with 128-bit key. And given their throughput asymptotic # performance for parallelizable modes is 1.25 cycles per byte. Being # asymptotic limit it's not something you commonly achieve in reality, # but how close does one get? Below are results collected for # different modes and block sized. Pairs of numbers are for en-/ # decryption. # # 16-byte 64-byte 256-byte 1-KB 8-KB # ECB 4.25/4.25 1.38/1.38 1.28/1.28 1.26/1.26 1.26/1.26 # CTR 5.42/5.42 1.92/1.92 1.44/1.44 1.28/1.28 1.26/1.26 # CBC 4.38/4.43 4.15/1.43 4.07/1.32 4.07/1.29 4.06/1.28 # CCM 5.66/9.42 4.42/5.41 4.16/4.40 4.09/4.15 4.06/4.07 # OFB 5.42/5.42 4.64/4.64 4.44/4.44 4.39/4.39 4.38/4.38 # CFB 5.73/5.85 5.56/5.62 5.48/5.56 5.47/5.55 5.47/5.55 # # ECB, CTR, CBC and CCM results are free from EVP overhead. This means # that otherwise used 'openssl speed -evp aes-128-??? -engine aesni # [-decrypt]' will exhibit 10-15% worse results for smaller blocks. # The results were collected with specially crafted speed.c benchmark # in order to compare them with results reported in "Intel Advanced # Encryption Standard (AES) New Instruction Set" White Paper Revision # 3.0 dated May 2010. All above results are consistently better. This # module also provides better performance for block sizes smaller than # 128 bytes in points *not* represented in the above table. # # Looking at the results for 8-KB buffer. # # CFB and OFB results are far from the limit, because implementation # uses "generic" CRYPTO_[c|o]fb128_encrypt interfaces relying on # single-block aesni_encrypt, which is not the most optimal way to go. # CBC encrypt result is unexpectedly high and there is no documented # explanation for it. Seemingly there is a small penalty for feeding # the result back to AES unit the way it's done in CBC mode. There is # nothing one can do and the result appears optimal. CCM result is # identical to CBC, because CBC-MAC is essentially CBC encrypt without # saving output. CCM CTR "stays invisible," because it's neatly # interleaved with CBC-MAC. This provides ~30% improvement over # "straightforward" CCM implementation with CTR and CBC-MAC performed # disjointly. Parallelizable modes practically achieve the theoretical # limit. # # Looking at how results vary with buffer size. # # Curves are practically saturated at 1-KB buffer size. In most cases # "256-byte" performance is >95%, and "64-byte" is ~90% of "8-KB" one. # CTR curve doesn't follow this pattern and is "slowest" changing one # with "256-byte" result being 87% of "8-KB." This is because overhead # in CTR mode is most computationally intensive. Small-block CCM # decrypt is slower than encrypt, because first CTR and last CBC-MAC # iterations can't be interleaved. # # Results for 192- and 256-bit keys. # # EVP-free results were observed to scale perfectly with number of # rounds for larger block sizes, i.e. 192-bit result being 10/12 times # lower and 256-bit one - 10/14. Well, in CBC encrypt case differences # are a tad smaller, because the above mentioned penalty biases all # results by same constant value. In similar way function call # overhead affects small-block performance, as well as OFB and CFB # results. Differences are not large, most common coefficients are # 10/11.7 and 10/13.4 (as opposite to 10/12.0 and 10/14.0), but one # observe even 10/11.2 and 10/12.4 (CTR, OFB, CFB)... # January 2011 # # While Westmere processor features 6 cycles latency for aes[enc|dec] # instructions, which can be scheduled every second cycle, Sandy # Bridge spends 8 cycles per instruction, but it can schedule them # every cycle. This means that code targeting Westmere would perform # suboptimally on Sandy Bridge. Therefore this update. # # In addition, non-parallelizable CBC encrypt (as well as CCM) is # optimized. Relative improvement might appear modest, 8% on Westmere, # but in absolute terms it's 3.77 cycles per byte encrypted with # 128-bit key on Westmere, and 5.07 - on Sandy Bridge. These numbers # should be compared to asymptotic limits of 3.75 for Westmere and # 5.00 for Sandy Bridge. Actually, the fact that they get this close # to asymptotic limits is quite amazing. Indeed, the limit is # calculated as latency times number of rounds, 10 for 128-bit key, # and divided by 16, the number of bytes in block, or in other words # it accounts *solely* for aesenc instructions. But there are extra # instructions, and numbers so close to the asymptotic limits mean # that it's as if it takes as little as *one* additional cycle to # execute all of them. How is it possible? It is possible thanks to # out-of-order execution logic, which manages to overlap post- # processing of previous block, things like saving the output, with # actual encryption of current block, as well as pre-processing of # current block, things like fetching input and xor-ing it with # 0-round element of the key schedule, with actual encryption of # previous block. Keep this in mind... # # For parallelizable modes, such as ECB, CBC decrypt, CTR, higher # performance is achieved by interleaving instructions working on # independent blocks. In which case asymptotic limit for such modes # can be obtained by dividing above mentioned numbers by AES # instructions' interleave factor. Westmere can execute at most 3 # instructions at a time, meaning that optimal interleave factor is 3, # and that's where the "magic" number of 1.25 come from. "Optimal # interleave factor" means that increase of interleave factor does # not improve performance. The formula has proven to reflect reality # pretty well on Westmere... Sandy Bridge on the other hand can # execute up to 8 AES instructions at a time, so how does varying # interleave factor affect the performance? Here is table for ECB # (numbers are cycles per byte processed with 128-bit key): # # instruction interleave factor 3x 6x 8x # theoretical asymptotic limit 1.67 0.83 0.625 # measured performance for 8KB block 1.05 0.86 0.84 # # "as if" interleave factor 4.7x 5.8x 6.0x # # Further data for other parallelizable modes: # # CBC decrypt 1.16 0.93 0.74 # CTR 1.14 0.91 0.74 # # Well, given 3x column it's probably inappropriate to call the limit # asymptotic, if it can be surpassed, isn't it? What happens there? # Rewind to CBC paragraph for the answer. Yes, out-of-order execution # magic is responsible for this. Processor overlaps not only the # additional instructions with AES ones, but even AES instructions # processing adjacent triplets of independent blocks. In the 6x case # additional instructions still claim disproportionally small amount # of additional cycles, but in 8x case number of instructions must be # a tad too high for out-of-order logic to cope with, and AES unit # remains underutilized... As you can see 8x interleave is hardly # justifiable, so there no need to feel bad that 32-bit aesni-x86.pl # utilizes 6x interleave because of limited register bank capacity. # # Higher interleave factors do have negative impact on Westmere # performance. While for ECB mode it's negligible ~1.5%, other # parallelizables perform ~5% worse, which is outweighed by ~25% # improvement on Sandy Bridge. To balance regression on Westmere # CTR mode was implemented with 6x aesenc interleave factor. # April 2011 # # Add aesni_xts_[en|de]crypt. Westmere spends 1.25 cycles processing # one byte out of 8KB with 128-bit key, Sandy Bridge - 0.90. Just like # in CTR mode AES instruction interleave factor was chosen to be 6x. # November 2015 # # Add aesni_ocb_[en|de]crypt. AES instruction interleave factor was # chosen to be 6x. ###################################################################### # Current large-block performance in cycles per byte processed with # 128-bit key (less is better). # # CBC en-/decrypt CTR XTS ECB OCB # Westmere 3.77/1.25 1.25 1.25 1.26 # * Bridge 5.07/0.74 0.75 0.90 0.85 0.98 # Haswell 4.44/0.63 0.63 0.73 0.63 0.70 # Skylake 2.62/0.63 0.63 0.63 0.63 # Silvermont 5.75/3.54 3.56 4.12 3.87(*) 4.11 # Knights L 2.54/0.77 0.78 0.85 - 1.50 # Goldmont 3.82/1.26 1.26 1.29 1.29 1.50 # Bulldozer 5.77/0.70 0.72 0.90 0.70 0.95 # Ryzen 2.71/0.35 0.35 0.44 0.38 0.49 # # (*) Atom Silvermont ECB result is suboptimal because of penalties # incurred by operations on %xmm8-15. As ECB is not considered # critical, nothing was done to mitigate the problem. $PREFIX="aesni"; # if $PREFIX is set to "AES", the script # generates drop-in replacement for # crypto/aes/asm/aes-x86_64.pl:-) $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $movkey = $PREFIX eq "aesni" ? "movups" : "movups"; @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order ("%rdi","%rsi","%rdx","%rcx"); # Unix order $code=".text\n"; $code.=".extern OPENSSL_ia32cap_P\n"; $rounds="%eax"; # input to and changed by aesni_[en|de]cryptN !!! # this is natural Unix argument order for public $PREFIX_[ecb|cbc]_encrypt ... $inp="%rdi"; $out="%rsi"; $len="%rdx"; $key="%rcx"; # input to and changed by aesni_[en|de]cryptN !!! $ivp="%r8"; # cbc, ctr, ... $rnds_="%r10d"; # backup copy for $rounds $key_="%r11"; # backup copy for $key # %xmm register layout $rndkey0="%xmm0"; $rndkey1="%xmm1"; $inout0="%xmm2"; $inout1="%xmm3"; $inout2="%xmm4"; $inout3="%xmm5"; $inout4="%xmm6"; $inout5="%xmm7"; $inout6="%xmm8"; $inout7="%xmm9"; $in2="%xmm6"; $in1="%xmm7"; # used in CBC decrypt, CTR, ... $in0="%xmm8"; $iv="%xmm9"; # Inline version of internal aesni_[en|de]crypt1. # # Why folded loop? Because aes[enc|dec] is slow enough to accommodate # cycles which take care of loop variables... { my $sn; sub aesni_generate1 { my ($p,$key,$rounds,$inout,$ivec)=@_; $inout=$inout0 if (!defined($inout)); ++$sn; $code.=<<___; $movkey ($key),$rndkey0 $movkey 16($key),$rndkey1 ___ $code.=<<___ if (defined($ivec)); xorps $rndkey0,$ivec lea 32($key),$key xorps $ivec,$inout ___ $code.=<<___ if (!defined($ivec)); lea 32($key),$key xorps $rndkey0,$inout ___ $code.=<<___; .Loop_${p}1_$sn: aes${p} $rndkey1,$inout dec $rounds $movkey ($key),$rndkey1 lea 16($key),$key jnz .Loop_${p}1_$sn # loop body is 16 bytes aes${p}last $rndkey1,$inout ___ }} # void $PREFIX_[en|de]crypt (const void *inp,void *out,const AES_KEY *key); # { my ($inp,$out,$key) = @_4args; $code.=<<___; .globl ${PREFIX}_encrypt .type ${PREFIX}_encrypt,\@abi-omnipotent .align 16 ${PREFIX}_encrypt: .cfi_startproc movups ($inp),$inout0 # load input mov 240($key),$rounds # key->rounds ___ &aesni_generate1("enc",$key,$rounds); $code.=<<___; pxor $rndkey0,$rndkey0 # clear register bank pxor $rndkey1,$rndkey1 movups $inout0,($out) # output pxor $inout0,$inout0 ret .cfi_endproc .size ${PREFIX}_encrypt,.-${PREFIX}_encrypt .globl ${PREFIX}_decrypt .type ${PREFIX}_decrypt,\@abi-omnipotent .align 16 ${PREFIX}_decrypt: .cfi_startproc movups ($inp),$inout0 # load input mov 240($key),$rounds # key->rounds ___ &aesni_generate1("dec",$key,$rounds); $code.=<<___; pxor $rndkey0,$rndkey0 # clear register bank pxor $rndkey1,$rndkey1 movups $inout0,($out) # output pxor $inout0,$inout0 ret .cfi_endproc .size ${PREFIX}_decrypt, .-${PREFIX}_decrypt ___ } # _aesni_[en|de]cryptN are private interfaces, N denotes interleave # factor. Why 3x subroutine were originally used in loops? Even though # aes[enc|dec] latency was originally 6, it could be scheduled only # every *2nd* cycle. Thus 3x interleave was the one providing optimal # utilization, i.e. when subroutine's throughput is virtually same as # of non-interleaved subroutine [for number of input blocks up to 3]. # This is why it originally made no sense to implement 2x subroutine. # But times change and it became appropriate to spend extra 192 bytes # on 2x subroutine on Atom Silvermont account. For processors that # can schedule aes[enc|dec] every cycle optimal interleave factor # equals to corresponding instructions latency. 8x is optimal for # * Bridge and "super-optimal" for other Intel CPUs... sub aesni_generate2 { my $dir=shift; # As already mentioned it takes in $key and $rounds, which are *not* # preserved. $inout[0-1] is cipher/clear text... $code.=<<___; .type _aesni_${dir}rypt2,\@abi-omnipotent .align 16 _aesni_${dir}rypt2: .cfi_startproc $movkey ($key),$rndkey0 shl \$4,$rounds $movkey 16($key),$rndkey1 xorps $rndkey0,$inout0 xorps $rndkey0,$inout1 $movkey 32($key),$rndkey0 lea 32($key,$rounds),$key neg %rax # $rounds add \$16,%rax .L${dir}_loop2: aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 $movkey ($key,%rax),$rndkey1 add \$32,%rax aes${dir} $rndkey0,$inout0 aes${dir} $rndkey0,$inout1 $movkey -16($key,%rax),$rndkey0 jnz .L${dir}_loop2 aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir}last $rndkey0,$inout0 aes${dir}last $rndkey0,$inout1 ret .cfi_endproc .size _aesni_${dir}rypt2,.-_aesni_${dir}rypt2 ___ } sub aesni_generate3 { my $dir=shift; # As already mentioned it takes in $key and $rounds, which are *not* # preserved. $inout[0-2] is cipher/clear text... $code.=<<___; .type _aesni_${dir}rypt3,\@abi-omnipotent .align 16 _aesni_${dir}rypt3: .cfi_startproc $movkey ($key),$rndkey0 shl \$4,$rounds $movkey 16($key),$rndkey1 xorps $rndkey0,$inout0 xorps $rndkey0,$inout1 xorps $rndkey0,$inout2 $movkey 32($key),$rndkey0 lea 32($key,$rounds),$key neg %rax # $rounds add \$16,%rax .L${dir}_loop3: aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir} $rndkey1,$inout2 $movkey ($key,%rax),$rndkey1 add \$32,%rax aes${dir} $rndkey0,$inout0 aes${dir} $rndkey0,$inout1 aes${dir} $rndkey0,$inout2 $movkey -16($key,%rax),$rndkey0 jnz .L${dir}_loop3 aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir} $rndkey1,$inout2 aes${dir}last $rndkey0,$inout0 aes${dir}last $rndkey0,$inout1 aes${dir}last $rndkey0,$inout2 ret .cfi_endproc .size _aesni_${dir}rypt3,.-_aesni_${dir}rypt3 ___ } # 4x interleave is implemented to improve small block performance, # most notably [and naturally] 4 block by ~30%. One can argue that one # should have implemented 5x as well, but improvement would be <20%, # so it's not worth it... sub aesni_generate4 { my $dir=shift; # As already mentioned it takes in $key and $rounds, which are *not* # preserved. $inout[0-3] is cipher/clear text... $code.=<<___; .type _aesni_${dir}rypt4,\@abi-omnipotent .align 16 _aesni_${dir}rypt4: .cfi_startproc $movkey ($key),$rndkey0 shl \$4,$rounds $movkey 16($key),$rndkey1 xorps $rndkey0,$inout0 xorps $rndkey0,$inout1 xorps $rndkey0,$inout2 xorps $rndkey0,$inout3 $movkey 32($key),$rndkey0 lea 32($key,$rounds),$key neg %rax # $rounds .byte 0x0f,0x1f,0x00 add \$16,%rax .L${dir}_loop4: aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir} $rndkey1,$inout2 aes${dir} $rndkey1,$inout3 $movkey ($key,%rax),$rndkey1 add \$32,%rax aes${dir} $rndkey0,$inout0 aes${dir} $rndkey0,$inout1 aes${dir} $rndkey0,$inout2 aes${dir} $rndkey0,$inout3 $movkey -16($key,%rax),$rndkey0 jnz .L${dir}_loop4 aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir} $rndkey1,$inout2 aes${dir} $rndkey1,$inout3 aes${dir}last $rndkey0,$inout0 aes${dir}last $rndkey0,$inout1 aes${dir}last $rndkey0,$inout2 aes${dir}last $rndkey0,$inout3 ret .cfi_endproc .size _aesni_${dir}rypt4,.-_aesni_${dir}rypt4 ___ } sub aesni_generate6 { my $dir=shift; # As already mentioned it takes in $key and $rounds, which are *not* # preserved. $inout[0-5] is cipher/clear text... $code.=<<___; .type _aesni_${dir}rypt6,\@abi-omnipotent .align 16 _aesni_${dir}rypt6: .cfi_startproc $movkey ($key),$rndkey0 shl \$4,$rounds $movkey 16($key),$rndkey1 xorps $rndkey0,$inout0 pxor $rndkey0,$inout1 pxor $rndkey0,$inout2 aes${dir} $rndkey1,$inout0 lea 32($key,$rounds),$key neg %rax # $rounds aes${dir} $rndkey1,$inout1 pxor $rndkey0,$inout3 pxor $rndkey0,$inout4 aes${dir} $rndkey1,$inout2 pxor $rndkey0,$inout5 $movkey ($key,%rax),$rndkey0 add \$16,%rax jmp .L${dir}_loop6_enter .align 16 .L${dir}_loop6: aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir} $rndkey1,$inout2 .L${dir}_loop6_enter: aes${dir} $rndkey1,$inout3 aes${dir} $rndkey1,$inout4 aes${dir} $rndkey1,$inout5 $movkey ($key,%rax),$rndkey1 add \$32,%rax aes${dir} $rndkey0,$inout0 aes${dir} $rndkey0,$inout1 aes${dir} $rndkey0,$inout2 aes${dir} $rndkey0,$inout3 aes${dir} $rndkey0,$inout4 aes${dir} $rndkey0,$inout5 $movkey -16($key,%rax),$rndkey0 jnz .L${dir}_loop6 aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir} $rndkey1,$inout2 aes${dir} $rndkey1,$inout3 aes${dir} $rndkey1,$inout4 aes${dir} $rndkey1,$inout5 aes${dir}last $rndkey0,$inout0 aes${dir}last $rndkey0,$inout1 aes${dir}last $rndkey0,$inout2 aes${dir}last $rndkey0,$inout3 aes${dir}last $rndkey0,$inout4 aes${dir}last $rndkey0,$inout5 ret .cfi_endproc .size _aesni_${dir}rypt6,.-_aesni_${dir}rypt6 ___ } sub aesni_generate8 { my $dir=shift; # As already mentioned it takes in $key and $rounds, which are *not* # preserved. $inout[0-7] is cipher/clear text... $code.=<<___; .type _aesni_${dir}rypt8,\@abi-omnipotent .align 16 _aesni_${dir}rypt8: .cfi_startproc $movkey ($key),$rndkey0 shl \$4,$rounds $movkey 16($key),$rndkey1 xorps $rndkey0,$inout0 xorps $rndkey0,$inout1 pxor $rndkey0,$inout2 pxor $rndkey0,$inout3 pxor $rndkey0,$inout4 lea 32($key,$rounds),$key neg %rax # $rounds aes${dir} $rndkey1,$inout0 pxor $rndkey0,$inout5 pxor $rndkey0,$inout6 aes${dir} $rndkey1,$inout1 pxor $rndkey0,$inout7 $movkey ($key,%rax),$rndkey0 add \$16,%rax jmp .L${dir}_loop8_inner .align 16 .L${dir}_loop8: aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 .L${dir}_loop8_inner: aes${dir} $rndkey1,$inout2 aes${dir} $rndkey1,$inout3 aes${dir} $rndkey1,$inout4 aes${dir} $rndkey1,$inout5 aes${dir} $rndkey1,$inout6 aes${dir} $rndkey1,$inout7 .L${dir}_loop8_enter: $movkey ($key,%rax),$rndkey1 add \$32,%rax aes${dir} $rndkey0,$inout0 aes${dir} $rndkey0,$inout1 aes${dir} $rndkey0,$inout2 aes${dir} $rndkey0,$inout3 aes${dir} $rndkey0,$inout4 aes${dir} $rndkey0,$inout5 aes${dir} $rndkey0,$inout6 aes${dir} $rndkey0,$inout7 $movkey -16($key,%rax),$rndkey0 jnz .L${dir}_loop8 aes${dir} $rndkey1,$inout0 aes${dir} $rndkey1,$inout1 aes${dir} $rndkey1,$inout2 aes${dir} $rndkey1,$inout3 aes${dir} $rndkey1,$inout4 aes${dir} $rndkey1,$inout5 aes${dir} $rndkey1,$inout6 aes${dir} $rndkey1,$inout7 aes${dir}last $rndkey0,$inout0 aes${dir}last $rndkey0,$inout1 aes${dir}last $rndkey0,$inout2 aes${dir}last $rndkey0,$inout3 aes${dir}last $rndkey0,$inout4 aes${dir}last $rndkey0,$inout5 aes${dir}last $rndkey0,$inout6 aes${dir}last $rndkey0,$inout7 ret .cfi_endproc .size _aesni_${dir}rypt8,.-_aesni_${dir}rypt8 ___ } &aesni_generate2("enc") if ($PREFIX eq "aesni"); &aesni_generate2("dec"); &aesni_generate3("enc") if ($PREFIX eq "aesni"); &aesni_generate3("dec"); &aesni_generate4("enc") if ($PREFIX eq "aesni"); &aesni_generate4("dec"); &aesni_generate6("enc") if ($PREFIX eq "aesni"); &aesni_generate6("dec"); &aesni_generate8("enc") if ($PREFIX eq "aesni"); &aesni_generate8("dec"); if ($PREFIX eq "aesni") { ######################################################################## # void aesni_ecb_encrypt (const void *in, void *out, # size_t length, const AES_KEY *key, # int enc); $code.=<<___; .globl aesni_ecb_encrypt .type aesni_ecb_encrypt,\@function,5 .align 16 aesni_ecb_encrypt: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0x58(%rsp),%rsp movaps %xmm6,(%rsp) # offload $inout4..7 movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) .Lecb_enc_body: ___ $code.=<<___; and \$-16,$len # if ($len<16) jz .Lecb_ret # return mov 240($key),$rounds # key->rounds $movkey ($key),$rndkey0 mov $key,$key_ # backup $key mov $rounds,$rnds_ # backup $rounds test %r8d,%r8d # 5th argument jz .Lecb_decrypt #--------------------------- ECB ENCRYPT ------------------------------# cmp \$0x80,$len # if ($len<8*16) jb .Lecb_enc_tail # short input movdqu ($inp),$inout0 # load 8 input blocks movdqu 0x10($inp),$inout1 movdqu 0x20($inp),$inout2 movdqu 0x30($inp),$inout3 movdqu 0x40($inp),$inout4 movdqu 0x50($inp),$inout5 movdqu 0x60($inp),$inout6 movdqu 0x70($inp),$inout7 lea 0x80($inp),$inp # $inp+=8*16 sub \$0x80,$len # $len-=8*16 (can be zero) jmp .Lecb_enc_loop8_enter .align 16 .Lecb_enc_loop8: movups $inout0,($out) # store 8 output blocks mov $key_,$key # restore $key movdqu ($inp),$inout0 # load 8 input blocks mov $rnds_,$rounds # restore $rounds movups $inout1,0x10($out) movdqu 0x10($inp),$inout1 movups $inout2,0x20($out) movdqu 0x20($inp),$inout2 movups $inout3,0x30($out) movdqu 0x30($inp),$inout3 movups $inout4,0x40($out) movdqu 0x40($inp),$inout4 movups $inout5,0x50($out) movdqu 0x50($inp),$inout5 movups $inout6,0x60($out) movdqu 0x60($inp),$inout6 movups $inout7,0x70($out) lea 0x80($out),$out # $out+=8*16 movdqu 0x70($inp),$inout7 lea 0x80($inp),$inp # $inp+=8*16 .Lecb_enc_loop8_enter: call _aesni_encrypt8 sub \$0x80,$len jnc .Lecb_enc_loop8 # loop if $len-=8*16 didn't borrow movups $inout0,($out) # store 8 output blocks mov $key_,$key # restore $key movups $inout1,0x10($out) mov $rnds_,$rounds # restore $rounds movups $inout2,0x20($out) movups $inout3,0x30($out) movups $inout4,0x40($out) movups $inout5,0x50($out) movups $inout6,0x60($out) movups $inout7,0x70($out) lea 0x80($out),$out # $out+=8*16 add \$0x80,$len # restore real remaining $len jz .Lecb_ret # done if ($len==0) .Lecb_enc_tail: # $len is less than 8*16 movups ($inp),$inout0 cmp \$0x20,$len jb .Lecb_enc_one movups 0x10($inp),$inout1 je .Lecb_enc_two movups 0x20($inp),$inout2 cmp \$0x40,$len jb .Lecb_enc_three movups 0x30($inp),$inout3 je .Lecb_enc_four movups 0x40($inp),$inout4 cmp \$0x60,$len jb .Lecb_enc_five movups 0x50($inp),$inout5 je .Lecb_enc_six movdqu 0x60($inp),$inout6 xorps $inout7,$inout7 call _aesni_encrypt8 movups $inout0,($out) # store 7 output blocks movups $inout1,0x10($out) movups $inout2,0x20($out) movups $inout3,0x30($out) movups $inout4,0x40($out) movups $inout5,0x50($out) movups $inout6,0x60($out) jmp .Lecb_ret .align 16 .Lecb_enc_one: ___ &aesni_generate1("enc",$key,$rounds); $code.=<<___; movups $inout0,($out) # store one output block jmp .Lecb_ret .align 16 .Lecb_enc_two: call _aesni_encrypt2 movups $inout0,($out) # store 2 output blocks movups $inout1,0x10($out) jmp .Lecb_ret .align 16 .Lecb_enc_three: call _aesni_encrypt3 movups $inout0,($out) # store 3 output blocks movups $inout1,0x10($out) movups $inout2,0x20($out) jmp .Lecb_ret .align 16 .Lecb_enc_four: call _aesni_encrypt4 movups $inout0,($out) # store 4 output blocks movups $inout1,0x10($out) movups $inout2,0x20($out) movups $inout3,0x30($out) jmp .Lecb_ret .align 16 .Lecb_enc_five: xorps $inout5,$inout5 call _aesni_encrypt6 movups $inout0,($out) # store 5 output blocks movups $inout1,0x10($out) movups $inout2,0x20($out) movups $inout3,0x30($out) movups $inout4,0x40($out) jmp .Lecb_ret .align 16 .Lecb_enc_six: call _aesni_encrypt6 movups $inout0,($out) # store 6 output blocks movups $inout1,0x10($out) movups $inout2,0x20($out) movups $inout3,0x30($out) movups $inout4,0x40($out) movups $inout5,0x50($out) jmp .Lecb_ret #--------------------------- ECB DECRYPT ------------------------------# .align 16 .Lecb_decrypt: cmp \$0x80,$len # if ($len<8*16) jb .Lecb_dec_tail # short input movdqu ($inp),$inout0 # load 8 input blocks movdqu 0x10($inp),$inout1 movdqu 0x20($inp),$inout2 movdqu 0x30($inp),$inout3 movdqu 0x40($inp),$inout4 movdqu 0x50($inp),$inout5 movdqu 0x60($inp),$inout6 movdqu 0x70($inp),$inout7 lea 0x80($inp),$inp # $inp+=8*16 sub \$0x80,$len # $len-=8*16 (can be zero) jmp .Lecb_dec_loop8_enter .align 16 .Lecb_dec_loop8: movups $inout0,($out) # store 8 output blocks mov $key_,$key # restore $key movdqu ($inp),$inout0 # load 8 input blocks mov $rnds_,$rounds # restore $rounds movups $inout1,0x10($out) movdqu 0x10($inp),$inout1 movups $inout2,0x20($out) movdqu 0x20($inp),$inout2 movups $inout3,0x30($out) movdqu 0x30($inp),$inout3 movups $inout4,0x40($out) movdqu 0x40($inp),$inout4 movups $inout5,0x50($out) movdqu 0x50($inp),$inout5 movups $inout6,0x60($out) movdqu 0x60($inp),$inout6 movups $inout7,0x70($out) lea 0x80($out),$out # $out+=8*16 movdqu 0x70($inp),$inout7 lea 0x80($inp),$inp # $inp+=8*16 .Lecb_dec_loop8_enter: call _aesni_decrypt8 $movkey ($key_),$rndkey0 sub \$0x80,$len jnc .Lecb_dec_loop8 # loop if $len-=8*16 didn't borrow movups $inout0,($out) # store 8 output blocks pxor $inout0,$inout0 # clear register bank mov $key_,$key # restore $key movups $inout1,0x10($out) pxor $inout1,$inout1 mov $rnds_,$rounds # restore $rounds movups $inout2,0x20($out) pxor $inout2,$inout2 movups $inout3,0x30($out) pxor $inout3,$inout3 movups $inout4,0x40($out) pxor $inout4,$inout4 movups $inout5,0x50($out) pxor $inout5,$inout5 movups $inout6,0x60($out) pxor $inout6,$inout6 movups $inout7,0x70($out) pxor $inout7,$inout7 lea 0x80($out),$out # $out+=8*16 add \$0x80,$len # restore real remaining $len jz .Lecb_ret # done if ($len==0) .Lecb_dec_tail: movups ($inp),$inout0 cmp \$0x20,$len jb .Lecb_dec_one movups 0x10($inp),$inout1 je .Lecb_dec_two movups 0x20($inp),$inout2 cmp \$0x40,$len jb .Lecb_dec_three movups 0x30($inp),$inout3 je .Lecb_dec_four movups 0x40($inp),$inout4 cmp \$0x60,$len jb .Lecb_dec_five movups 0x50($inp),$inout5 je .Lecb_dec_six movups 0x60($inp),$inout6 $movkey ($key),$rndkey0 xorps $inout7,$inout7 call _aesni_decrypt8 movups $inout0,($out) # store 7 output blocks pxor $inout0,$inout0 # clear register bank movups $inout1,0x10($out) pxor $inout1,$inout1 movups $inout2,0x20($out) pxor $inout2,$inout2 movups $inout3,0x30($out) pxor $inout3,$inout3 movups $inout4,0x40($out) pxor $inout4,$inout4 movups $inout5,0x50($out) pxor $inout5,$inout5 movups $inout6,0x60($out) pxor $inout6,$inout6 pxor $inout7,$inout7 jmp .Lecb_ret .align 16 .Lecb_dec_one: ___ &aesni_generate1("dec",$key,$rounds); $code.=<<___; movups $inout0,($out) # store one output block pxor $inout0,$inout0 # clear register bank jmp .Lecb_ret .align 16 .Lecb_dec_two: call _aesni_decrypt2 movups $inout0,($out) # store 2 output blocks pxor $inout0,$inout0 # clear register bank movups $inout1,0x10($out) pxor $inout1,$inout1 jmp .Lecb_ret .align 16 .Lecb_dec_three: call _aesni_decrypt3 movups $inout0,($out) # store 3 output blocks pxor $inout0,$inout0 # clear register bank movups $inout1,0x10($out) pxor $inout1,$inout1 movups $inout2,0x20($out) pxor $inout2,$inout2 jmp .Lecb_ret .align 16 .Lecb_dec_four: call _aesni_decrypt4 movups $inout0,($out) # store 4 output blocks pxor $inout0,$inout0 # clear register bank movups $inout1,0x10($out) pxor $inout1,$inout1 movups $inout2,0x20($out) pxor $inout2,$inout2 movups $inout3,0x30($out) pxor $inout3,$inout3 jmp .Lecb_ret .align 16 .Lecb_dec_five: xorps $inout5,$inout5 call _aesni_decrypt6 movups $inout0,($out) # store 5 output blocks pxor $inout0,$inout0 # clear register bank movups $inout1,0x10($out) pxor $inout1,$inout1 movups $inout2,0x20($out) pxor $inout2,$inout2 movups $inout3,0x30($out) pxor $inout3,$inout3 movups $inout4,0x40($out) pxor $inout4,$inout4 pxor $inout5,$inout5 jmp .Lecb_ret .align 16 .Lecb_dec_six: call _aesni_decrypt6 movups $inout0,($out) # store 6 output blocks pxor $inout0,$inout0 # clear register bank movups $inout1,0x10($out) pxor $inout1,$inout1 movups $inout2,0x20($out) pxor $inout2,$inout2 movups $inout3,0x30($out) pxor $inout3,$inout3 movups $inout4,0x40($out) pxor $inout4,$inout4 movups $inout5,0x50($out) pxor $inout5,$inout5 .Lecb_ret: xorps $rndkey0,$rndkey0 # %xmm0 pxor $rndkey1,$rndkey1 ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps %xmm0,(%rsp) # clear stack movaps 0x10(%rsp),%xmm7 movaps %xmm0,0x10(%rsp) movaps 0x20(%rsp),%xmm8 movaps %xmm0,0x20(%rsp) movaps 0x30(%rsp),%xmm9 movaps %xmm0,0x30(%rsp) lea 0x58(%rsp),%rsp .Lecb_enc_ret: ___ $code.=<<___; ret .cfi_endproc .size aesni_ecb_encrypt,.-aesni_ecb_encrypt ___ { ###################################################################### # void aesni_ccm64_[en|de]crypt_blocks (const void *in, void *out, # size_t blocks, const AES_KEY *key, # const char *ivec,char *cmac); # # Handles only complete blocks, operates on 64-bit counter and # does not update *ivec! Nor does it finalize CMAC value # (see engine/eng_aesni.c for details) # { my $cmac="%r9"; # 6th argument my $increment="%xmm9"; my $iv="%xmm6"; my $bswap_mask="%xmm7"; $code.=<<___; .globl aesni_ccm64_encrypt_blocks .type aesni_ccm64_encrypt_blocks,\@function,6 .align 16 aesni_ccm64_encrypt_blocks: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0x58(%rsp),%rsp movaps %xmm6,(%rsp) # $iv movaps %xmm7,0x10(%rsp) # $bswap_mask movaps %xmm8,0x20(%rsp) # $in0 movaps %xmm9,0x30(%rsp) # $increment .Lccm64_enc_body: ___ $code.=<<___; mov 240($key),$rounds # key->rounds movdqu ($ivp),$iv movdqa .Lincrement64(%rip),$increment movdqa .Lbswap_mask(%rip),$bswap_mask shl \$4,$rounds mov \$16,$rnds_ lea 0($key),$key_ movdqu ($cmac),$inout1 movdqa $iv,$inout0 lea 32($key,$rounds),$key # end of key schedule pshufb $bswap_mask,$iv sub %rax,%r10 # twisted $rounds jmp .Lccm64_enc_outer .align 16 .Lccm64_enc_outer: $movkey ($key_),$rndkey0 mov %r10,%rax movups ($inp),$in0 # load inp xorps $rndkey0,$inout0 # counter $movkey 16($key_),$rndkey1 xorps $in0,$rndkey0 xorps $rndkey0,$inout1 # cmac^=inp $movkey 32($key_),$rndkey0 .Lccm64_enc2_loop: aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 $movkey -16($key,%rax),$rndkey0 jnz .Lccm64_enc2_loop aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 paddq $increment,$iv dec $len # $len-- ($len is in blocks) aesenclast $rndkey0,$inout0 aesenclast $rndkey0,$inout1 lea 16($inp),$inp xorps $inout0,$in0 # inp ^= E(iv) movdqa $iv,$inout0 movups $in0,($out) # save output pshufb $bswap_mask,$inout0 lea 16($out),$out # $out+=16 jnz .Lccm64_enc_outer # loop if ($len!=0) pxor $rndkey0,$rndkey0 # clear register bank pxor $rndkey1,$rndkey1 pxor $inout0,$inout0 movups $inout1,($cmac) # store resulting mac pxor $inout1,$inout1 pxor $in0,$in0 pxor $iv,$iv ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps %xmm0,(%rsp) # clear stack movaps 0x10(%rsp),%xmm7 movaps %xmm0,0x10(%rsp) movaps 0x20(%rsp),%xmm8 movaps %xmm0,0x20(%rsp) movaps 0x30(%rsp),%xmm9 movaps %xmm0,0x30(%rsp) lea 0x58(%rsp),%rsp .Lccm64_enc_ret: ___ $code.=<<___; ret .cfi_endproc .size aesni_ccm64_encrypt_blocks,.-aesni_ccm64_encrypt_blocks ___ ###################################################################### $code.=<<___; .globl aesni_ccm64_decrypt_blocks .type aesni_ccm64_decrypt_blocks,\@function,6 .align 16 aesni_ccm64_decrypt_blocks: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0x58(%rsp),%rsp movaps %xmm6,(%rsp) # $iv movaps %xmm7,0x10(%rsp) # $bswap_mask movaps %xmm8,0x20(%rsp) # $in8 movaps %xmm9,0x30(%rsp) # $increment .Lccm64_dec_body: ___ $code.=<<___; mov 240($key),$rounds # key->rounds movups ($ivp),$iv movdqu ($cmac),$inout1 movdqa .Lincrement64(%rip),$increment movdqa .Lbswap_mask(%rip),$bswap_mask movaps $iv,$inout0 mov $rounds,$rnds_ mov $key,$key_ pshufb $bswap_mask,$iv ___ &aesni_generate1("enc",$key,$rounds); $code.=<<___; shl \$4,$rnds_ mov \$16,$rounds movups ($inp),$in0 # load inp paddq $increment,$iv lea 16($inp),$inp # $inp+=16 sub %r10,%rax # twisted $rounds lea 32($key_,$rnds_),$key # end of key schedule mov %rax,%r10 jmp .Lccm64_dec_outer .align 16 .Lccm64_dec_outer: xorps $inout0,$in0 # inp ^= E(iv) movdqa $iv,$inout0 movups $in0,($out) # save output lea 16($out),$out # $out+=16 pshufb $bswap_mask,$inout0 sub \$1,$len # $len-- ($len is in blocks) jz .Lccm64_dec_break # if ($len==0) break $movkey ($key_),$rndkey0 mov %r10,%rax $movkey 16($key_),$rndkey1 xorps $rndkey0,$in0 xorps $rndkey0,$inout0 xorps $in0,$inout1 # cmac^=out $movkey 32($key_),$rndkey0 jmp .Lccm64_dec2_loop .align 16 .Lccm64_dec2_loop: aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 $movkey -16($key,%rax),$rndkey0 jnz .Lccm64_dec2_loop movups ($inp),$in0 # load input paddq $increment,$iv aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenclast $rndkey0,$inout0 aesenclast $rndkey0,$inout1 lea 16($inp),$inp # $inp+=16 jmp .Lccm64_dec_outer .align 16 .Lccm64_dec_break: #xorps $in0,$inout1 # cmac^=out mov 240($key_),$rounds ___ &aesni_generate1("enc",$key_,$rounds,$inout1,$in0); $code.=<<___; pxor $rndkey0,$rndkey0 # clear register bank pxor $rndkey1,$rndkey1 pxor $inout0,$inout0 movups $inout1,($cmac) # store resulting mac pxor $inout1,$inout1 pxor $in0,$in0 pxor $iv,$iv ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps %xmm0,(%rsp) # clear stack movaps 0x10(%rsp),%xmm7 movaps %xmm0,0x10(%rsp) movaps 0x20(%rsp),%xmm8 movaps %xmm0,0x20(%rsp) movaps 0x30(%rsp),%xmm9 movaps %xmm0,0x30(%rsp) lea 0x58(%rsp),%rsp .Lccm64_dec_ret: ___ $code.=<<___; ret .cfi_endproc .size aesni_ccm64_decrypt_blocks,.-aesni_ccm64_decrypt_blocks ___ } ###################################################################### # void aesni_ctr32_encrypt_blocks (const void *in, void *out, # size_t blocks, const AES_KEY *key, # const char *ivec); # # Handles only complete blocks, operates on 32-bit counter and # does not update *ivec! (see crypto/modes/ctr128.c for details) # # Overhaul based on suggestions from Shay Gueron and Vlad Krasnov, # http://rt.openssl.org/Ticket/Display.html?id=3021&user=guest&pass=guest. # Keywords are full unroll and modulo-schedule counter calculations # with zero-round key xor. { my ($in0,$in1,$in2,$in3,$in4,$in5)=map("%xmm$_",(10..15)); my ($key0,$ctr)=("%ebp","${ivp}d"); my $frame_size = 0x80 + ($win64?160:0); $code.=<<___; .globl aesni_ctr32_encrypt_blocks .type aesni_ctr32_encrypt_blocks,\@function,5 .align 16 aesni_ctr32_encrypt_blocks: .cfi_startproc cmp \$1,$len jne .Lctr32_bulk # handle single block without allocating stack frame, # useful when handling edges movups ($ivp),$inout0 movups ($inp),$inout1 mov 240($key),%edx # key->rounds ___ &aesni_generate1("enc",$key,"%edx"); $code.=<<___; pxor $rndkey0,$rndkey0 # clear register bank pxor $rndkey1,$rndkey1 xorps $inout1,$inout0 pxor $inout1,$inout1 movups $inout0,($out) xorps $inout0,$inout0 jmp .Lctr32_epilogue .align 16 .Lctr32_bulk: lea (%rsp),$key_ # use $key_ as frame pointer .cfi_def_cfa_register $key_ push %rbp .cfi_push %rbp sub \$$frame_size,%rsp and \$-16,%rsp # Linux kernel stack can be incorrectly seeded ___ $code.=<<___ if ($win64); movaps %xmm6,-0xa8($key_) # offload everything movaps %xmm7,-0x98($key_) movaps %xmm8,-0x88($key_) movaps %xmm9,-0x78($key_) movaps %xmm10,-0x68($key_) movaps %xmm11,-0x58($key_) movaps %xmm12,-0x48($key_) movaps %xmm13,-0x38($key_) movaps %xmm14,-0x28($key_) movaps %xmm15,-0x18($key_) .Lctr32_body: ___ $code.=<<___; # 8 16-byte words on top of stack are counter values # xor-ed with zero-round key movdqu ($ivp),$inout0 movdqu ($key),$rndkey0 mov 12($ivp),$ctr # counter LSB pxor $rndkey0,$inout0 mov 12($key),$key0 # 0-round key LSB movdqa $inout0,0x00(%rsp) # populate counter block bswap $ctr movdqa $inout0,$inout1 movdqa $inout0,$inout2 movdqa $inout0,$inout3 movdqa $inout0,0x40(%rsp) movdqa $inout0,0x50(%rsp) movdqa $inout0,0x60(%rsp) mov %rdx,%r10 # about to borrow %rdx movdqa $inout0,0x70(%rsp) lea 1($ctr),%rax lea 2($ctr),%rdx bswap %eax bswap %edx xor $key0,%eax xor $key0,%edx pinsrd \$3,%eax,$inout1 lea 3($ctr),%rax movdqa $inout1,0x10(%rsp) pinsrd \$3,%edx,$inout2 bswap %eax mov %r10,%rdx # restore %rdx lea 4($ctr),%r10 movdqa $inout2,0x20(%rsp) xor $key0,%eax bswap %r10d pinsrd \$3,%eax,$inout3 xor $key0,%r10d movdqa $inout3,0x30(%rsp) lea 5($ctr),%r9 mov %r10d,0x40+12(%rsp) bswap %r9d lea 6($ctr),%r10 mov 240($key),$rounds # key->rounds xor $key0,%r9d bswap %r10d mov %r9d,0x50+12(%rsp) xor $key0,%r10d lea 7($ctr),%r9 mov %r10d,0x60+12(%rsp) bswap %r9d mov OPENSSL_ia32cap_P+4(%rip),%r10d xor $key0,%r9d and \$`1<<26|1<<22`,%r10d # isolate XSAVE+MOVBE mov %r9d,0x70+12(%rsp) $movkey 0x10($key),$rndkey1 movdqa 0x40(%rsp),$inout4 movdqa 0x50(%rsp),$inout5 cmp \$8,$len # $len is in blocks jb .Lctr32_tail # short input if ($len<8) sub \$6,$len # $len is biased by -6 cmp \$`1<<22`,%r10d # check for MOVBE without XSAVE je .Lctr32_6x # [which denotes Atom Silvermont] lea 0x80($key),$key # size optimization sub \$2,$len # $len is biased by -8 jmp .Lctr32_loop8 .align 16 .Lctr32_6x: shl \$4,$rounds mov \$48,$rnds_ bswap $key0 lea 32($key,$rounds),$key # end of key schedule sub %rax,%r10 # twisted $rounds jmp .Lctr32_loop6 .align 16 .Lctr32_loop6: add \$6,$ctr # next counter value $movkey -48($key,$rnds_),$rndkey0 aesenc $rndkey1,$inout0 mov $ctr,%eax xor $key0,%eax aesenc $rndkey1,$inout1 movbe %eax,`0x00+12`(%rsp) # store next counter value lea 1($ctr),%eax aesenc $rndkey1,$inout2 xor $key0,%eax movbe %eax,`0x10+12`(%rsp) aesenc $rndkey1,$inout3 lea 2($ctr),%eax xor $key0,%eax aesenc $rndkey1,$inout4 movbe %eax,`0x20+12`(%rsp) lea 3($ctr),%eax aesenc $rndkey1,$inout5 $movkey -32($key,$rnds_),$rndkey1 xor $key0,%eax aesenc $rndkey0,$inout0 movbe %eax,`0x30+12`(%rsp) lea 4($ctr),%eax aesenc $rndkey0,$inout1 xor $key0,%eax movbe %eax,`0x40+12`(%rsp) aesenc $rndkey0,$inout2 lea 5($ctr),%eax xor $key0,%eax aesenc $rndkey0,$inout3 movbe %eax,`0x50+12`(%rsp) mov %r10,%rax # mov $rnds_,$rounds aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 $movkey -16($key,$rnds_),$rndkey0 call .Lenc_loop6 movdqu ($inp),$inout6 # load 6 input blocks movdqu 0x10($inp),$inout7 movdqu 0x20($inp),$in0 movdqu 0x30($inp),$in1 movdqu 0x40($inp),$in2 movdqu 0x50($inp),$in3 lea 0x60($inp),$inp # $inp+=6*16 $movkey -64($key,$rnds_),$rndkey1 pxor $inout0,$inout6 # inp^=E(ctr) movaps 0x00(%rsp),$inout0 # load next counter [xor-ed with 0 round] pxor $inout1,$inout7 movaps 0x10(%rsp),$inout1 pxor $inout2,$in0 movaps 0x20(%rsp),$inout2 pxor $inout3,$in1 movaps 0x30(%rsp),$inout3 pxor $inout4,$in2 movaps 0x40(%rsp),$inout4 pxor $inout5,$in3 movaps 0x50(%rsp),$inout5 movdqu $inout6,($out) # store 6 output blocks movdqu $inout7,0x10($out) movdqu $in0,0x20($out) movdqu $in1,0x30($out) movdqu $in2,0x40($out) movdqu $in3,0x50($out) lea 0x60($out),$out # $out+=6*16 sub \$6,$len jnc .Lctr32_loop6 # loop if $len-=6 didn't borrow add \$6,$len # restore real remaining $len jz .Lctr32_done # done if ($len==0) lea -48($rnds_),$rounds lea -80($key,$rnds_),$key # restore $key neg $rounds shr \$4,$rounds # restore $rounds jmp .Lctr32_tail .align 32 .Lctr32_loop8: add \$8,$ctr # next counter value movdqa 0x60(%rsp),$inout6 aesenc $rndkey1,$inout0 mov $ctr,%r9d movdqa 0x70(%rsp),$inout7 aesenc $rndkey1,$inout1 bswap %r9d $movkey 0x20-0x80($key),$rndkey0 aesenc $rndkey1,$inout2 xor $key0,%r9d nop aesenc $rndkey1,$inout3 mov %r9d,0x00+12(%rsp) # store next counter value lea 1($ctr),%r9 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 aesenc $rndkey1,$inout6 aesenc $rndkey1,$inout7 $movkey 0x30-0x80($key),$rndkey1 ___ for($i=2;$i<8;$i++) { my $rndkeyx = ($i&1)?$rndkey1:$rndkey0; $code.=<<___; bswap %r9d aesenc $rndkeyx,$inout0 aesenc $rndkeyx,$inout1 xor $key0,%r9d .byte 0x66,0x90 aesenc $rndkeyx,$inout2 aesenc $rndkeyx,$inout3 mov %r9d,`0x10*($i-1)`+12(%rsp) lea $i($ctr),%r9 aesenc $rndkeyx,$inout4 aesenc $rndkeyx,$inout5 aesenc $rndkeyx,$inout6 aesenc $rndkeyx,$inout7 $movkey `0x20+0x10*$i`-0x80($key),$rndkeyx ___ } $code.=<<___; bswap %r9d aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 xor $key0,%r9d movdqu 0x00($inp),$in0 # start loading input aesenc $rndkey0,$inout3 mov %r9d,0x70+12(%rsp) cmp \$11,$rounds aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 aesenc $rndkey0,$inout6 aesenc $rndkey0,$inout7 $movkey 0xa0-0x80($key),$rndkey0 jb .Lctr32_enc_done aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 aesenc $rndkey1,$inout6 aesenc $rndkey1,$inout7 $movkey 0xb0-0x80($key),$rndkey1 aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 aesenc $rndkey0,$inout6 aesenc $rndkey0,$inout7 $movkey 0xc0-0x80($key),$rndkey0 je .Lctr32_enc_done aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 aesenc $rndkey1,$inout6 aesenc $rndkey1,$inout7 $movkey 0xd0-0x80($key),$rndkey1 aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 aesenc $rndkey0,$inout6 aesenc $rndkey0,$inout7 $movkey 0xe0-0x80($key),$rndkey0 jmp .Lctr32_enc_done .align 16 .Lctr32_enc_done: movdqu 0x10($inp),$in1 pxor $rndkey0,$in0 # input^=round[last] movdqu 0x20($inp),$in2 pxor $rndkey0,$in1 movdqu 0x30($inp),$in3 pxor $rndkey0,$in2 movdqu 0x40($inp),$in4 pxor $rndkey0,$in3 movdqu 0x50($inp),$in5 pxor $rndkey0,$in4 pxor $rndkey0,$in5 aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 aesenc $rndkey1,$inout6 aesenc $rndkey1,$inout7 movdqu 0x60($inp),$rndkey1 # borrow $rndkey1 for inp[6] lea 0x80($inp),$inp # $inp+=8*16 aesenclast $in0,$inout0 # $inN is inp[N]^round[last] pxor $rndkey0,$rndkey1 # borrowed $rndkey movdqu 0x70-0x80($inp),$in0 aesenclast $in1,$inout1 pxor $rndkey0,$in0 movdqa 0x00(%rsp),$in1 # load next counter block aesenclast $in2,$inout2 aesenclast $in3,$inout3 movdqa 0x10(%rsp),$in2 movdqa 0x20(%rsp),$in3 aesenclast $in4,$inout4 aesenclast $in5,$inout5 movdqa 0x30(%rsp),$in4 movdqa 0x40(%rsp),$in5 aesenclast $rndkey1,$inout6 movdqa 0x50(%rsp),$rndkey0 $movkey 0x10-0x80($key),$rndkey1#real 1st-round key aesenclast $in0,$inout7 movups $inout0,($out) # store 8 output blocks movdqa $in1,$inout0 movups $inout1,0x10($out) movdqa $in2,$inout1 movups $inout2,0x20($out) movdqa $in3,$inout2 movups $inout3,0x30($out) movdqa $in4,$inout3 movups $inout4,0x40($out) movdqa $in5,$inout4 movups $inout5,0x50($out) movdqa $rndkey0,$inout5 movups $inout6,0x60($out) movups $inout7,0x70($out) lea 0x80($out),$out # $out+=8*16 sub \$8,$len jnc .Lctr32_loop8 # loop if $len-=8 didn't borrow add \$8,$len # restore real remaining $len jz .Lctr32_done # done if ($len==0) lea -0x80($key),$key .Lctr32_tail: # note that at this point $inout0..5 are populated with # counter values xor-ed with 0-round key lea 16($key),$key cmp \$4,$len jb .Lctr32_loop3 je .Lctr32_loop4 # if ($len>4) compute 7 E(counter) shl \$4,$rounds movdqa 0x60(%rsp),$inout6 pxor $inout7,$inout7 $movkey 16($key),$rndkey0 aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 lea 32-16($key,$rounds),$key# prepare for .Lenc_loop8_enter neg %rax aesenc $rndkey1,$inout2 add \$16,%rax # prepare for .Lenc_loop8_enter movups ($inp),$in0 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 movups 0x10($inp),$in1 # pre-load input movups 0x20($inp),$in2 aesenc $rndkey1,$inout5 aesenc $rndkey1,$inout6 call .Lenc_loop8_enter movdqu 0x30($inp),$in3 pxor $in0,$inout0 movdqu 0x40($inp),$in0 pxor $in1,$inout1 movdqu $inout0,($out) # store output pxor $in2,$inout2 movdqu $inout1,0x10($out) pxor $in3,$inout3 movdqu $inout2,0x20($out) pxor $in0,$inout4 movdqu $inout3,0x30($out) movdqu $inout4,0x40($out) cmp \$6,$len jb .Lctr32_done # $len was 5, stop store movups 0x50($inp),$in1 xorps $in1,$inout5 movups $inout5,0x50($out) je .Lctr32_done # $len was 6, stop store movups 0x60($inp),$in2 xorps $in2,$inout6 movups $inout6,0x60($out) jmp .Lctr32_done # $len was 7, stop store .align 32 .Lctr32_loop4: aesenc $rndkey1,$inout0 lea 16($key),$key dec $rounds aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 $movkey ($key),$rndkey1 jnz .Lctr32_loop4 aesenclast $rndkey1,$inout0 aesenclast $rndkey1,$inout1 movups ($inp),$in0 # load input movups 0x10($inp),$in1 aesenclast $rndkey1,$inout2 aesenclast $rndkey1,$inout3 movups 0x20($inp),$in2 movups 0x30($inp),$in3 xorps $in0,$inout0 movups $inout0,($out) # store output xorps $in1,$inout1 movups $inout1,0x10($out) pxor $in2,$inout2 movdqu $inout2,0x20($out) pxor $in3,$inout3 movdqu $inout3,0x30($out) jmp .Lctr32_done # $len was 4, stop store .align 32 .Lctr32_loop3: aesenc $rndkey1,$inout0 lea 16($key),$key dec $rounds aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 $movkey ($key),$rndkey1 jnz .Lctr32_loop3 aesenclast $rndkey1,$inout0 aesenclast $rndkey1,$inout1 aesenclast $rndkey1,$inout2 movups ($inp),$in0 # load input xorps $in0,$inout0 movups $inout0,($out) # store output cmp \$2,$len jb .Lctr32_done # $len was 1, stop store movups 0x10($inp),$in1 xorps $in1,$inout1 movups $inout1,0x10($out) je .Lctr32_done # $len was 2, stop store movups 0x20($inp),$in2 xorps $in2,$inout2 movups $inout2,0x20($out) # $len was 3, stop store .Lctr32_done: xorps %xmm0,%xmm0 # clear register bank xor $key0,$key0 pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ $code.=<<___ if (!$win64); pxor %xmm6,%xmm6 pxor %xmm7,%xmm7 movaps %xmm0,0x00(%rsp) # clear stack pxor %xmm8,%xmm8 movaps %xmm0,0x10(%rsp) pxor %xmm9,%xmm9 movaps %xmm0,0x20(%rsp) pxor %xmm10,%xmm10 movaps %xmm0,0x30(%rsp) pxor %xmm11,%xmm11 movaps %xmm0,0x40(%rsp) pxor %xmm12,%xmm12 movaps %xmm0,0x50(%rsp) pxor %xmm13,%xmm13 movaps %xmm0,0x60(%rsp) pxor %xmm14,%xmm14 movaps %xmm0,0x70(%rsp) pxor %xmm15,%xmm15 ___ $code.=<<___ if ($win64); movaps -0xa8($key_),%xmm6 movaps %xmm0,-0xa8($key_) # clear stack movaps -0x98($key_),%xmm7 movaps %xmm0,-0x98($key_) movaps -0x88($key_),%xmm8 movaps %xmm0,-0x88($key_) movaps -0x78($key_),%xmm9 movaps %xmm0,-0x78($key_) movaps -0x68($key_),%xmm10 movaps %xmm0,-0x68($key_) movaps -0x58($key_),%xmm11 movaps %xmm0,-0x58($key_) movaps -0x48($key_),%xmm12 movaps %xmm0,-0x48($key_) movaps -0x38($key_),%xmm13 movaps %xmm0,-0x38($key_) movaps -0x28($key_),%xmm14 movaps %xmm0,-0x28($key_) movaps -0x18($key_),%xmm15 movaps %xmm0,-0x18($key_) movaps %xmm0,0x00(%rsp) movaps %xmm0,0x10(%rsp) movaps %xmm0,0x20(%rsp) movaps %xmm0,0x30(%rsp) movaps %xmm0,0x40(%rsp) movaps %xmm0,0x50(%rsp) movaps %xmm0,0x60(%rsp) movaps %xmm0,0x70(%rsp) ___ $code.=<<___; mov -8($key_),%rbp .cfi_restore %rbp lea ($key_),%rsp .cfi_def_cfa_register %rsp .Lctr32_epilogue: ret .cfi_endproc .size aesni_ctr32_encrypt_blocks,.-aesni_ctr32_encrypt_blocks ___ } ###################################################################### # void aesni_xts_[en|de]crypt(const char *inp,char *out,size_t len, # const AES_KEY *key1, const AES_KEY *key2 # const unsigned char iv[16]); # { my @tweak=map("%xmm$_",(10..15)); my ($twmask,$twres,$twtmp)=("%xmm8","%xmm9",@tweak[4]); my ($key2,$ivp,$len_)=("%r8","%r9","%r9"); my $frame_size = 0x70 + ($win64?160:0); my $key_ = "%rbp"; # override so that we can use %r11 as FP $code.=<<___; .globl aesni_xts_encrypt .type aesni_xts_encrypt,\@function,6 .align 16 aesni_xts_encrypt: .cfi_startproc lea (%rsp),%r11 # frame pointer .cfi_def_cfa_register %r11 push %rbp .cfi_push %rbp sub \$$frame_size,%rsp and \$-16,%rsp # Linux kernel stack can be incorrectly seeded ___ $code.=<<___ if ($win64); movaps %xmm6,-0xa8(%r11) # offload everything movaps %xmm7,-0x98(%r11) movaps %xmm8,-0x88(%r11) movaps %xmm9,-0x78(%r11) movaps %xmm10,-0x68(%r11) movaps %xmm11,-0x58(%r11) movaps %xmm12,-0x48(%r11) movaps %xmm13,-0x38(%r11) movaps %xmm14,-0x28(%r11) movaps %xmm15,-0x18(%r11) .Lxts_enc_body: ___ $code.=<<___; movups ($ivp),$inout0 # load clear-text tweak mov 240(%r8),$rounds # key2->rounds mov 240($key),$rnds_ # key1->rounds ___ # generate the tweak &aesni_generate1("enc",$key2,$rounds,$inout0); $code.=<<___; $movkey ($key),$rndkey0 # zero round key mov $key,$key_ # backup $key mov $rnds_,$rounds # backup $rounds shl \$4,$rnds_ mov $len,$len_ # backup $len and \$-16,$len $movkey 16($key,$rnds_),$rndkey1 # last round key movdqa .Lxts_magic(%rip),$twmask movdqa $inout0,@tweak[5] pshufd \$0x5f,$inout0,$twres pxor $rndkey0,$rndkey1 ___ # alternative tweak calculation algorithm is based on suggestions # by Shay Gueron. psrad doesn't conflict with AES-NI instructions # and should help in the future... for ($i=0;$i<4;$i++) { $code.=<<___; movdqa $twres,$twtmp paddd $twres,$twres movdqa @tweak[5],@tweak[$i] psrad \$31,$twtmp # broadcast upper bits paddq @tweak[5],@tweak[5] pand $twmask,$twtmp pxor $rndkey0,@tweak[$i] pxor $twtmp,@tweak[5] ___ } $code.=<<___; movdqa @tweak[5],@tweak[4] psrad \$31,$twres paddq @tweak[5],@tweak[5] pand $twmask,$twres pxor $rndkey0,@tweak[4] pxor $twres,@tweak[5] movaps $rndkey1,0x60(%rsp) # save round[0]^round[last] sub \$16*6,$len jc .Lxts_enc_short # if $len-=6*16 borrowed mov \$16+96,$rounds lea 32($key_,$rnds_),$key # end of key schedule sub %r10,%rax # twisted $rounds $movkey 16($key_),$rndkey1 mov %rax,%r10 # backup twisted $rounds lea .Lxts_magic(%rip),%r8 jmp .Lxts_enc_grandloop .align 32 .Lxts_enc_grandloop: movdqu `16*0`($inp),$inout0 # load input movdqa $rndkey0,$twmask movdqu `16*1`($inp),$inout1 pxor @tweak[0],$inout0 # input^=tweak^round[0] movdqu `16*2`($inp),$inout2 pxor @tweak[1],$inout1 aesenc $rndkey1,$inout0 movdqu `16*3`($inp),$inout3 pxor @tweak[2],$inout2 aesenc $rndkey1,$inout1 movdqu `16*4`($inp),$inout4 pxor @tweak[3],$inout3 aesenc $rndkey1,$inout2 movdqu `16*5`($inp),$inout5 pxor @tweak[5],$twmask # round[0]^=tweak[5] movdqa 0x60(%rsp),$twres # load round[0]^round[last] pxor @tweak[4],$inout4 aesenc $rndkey1,$inout3 $movkey 32($key_),$rndkey0 lea `16*6`($inp),$inp pxor $twmask,$inout5 pxor $twres,@tweak[0] # calculate tweaks^round[last] aesenc $rndkey1,$inout4 pxor $twres,@tweak[1] movdqa @tweak[0],`16*0`(%rsp) # put aside tweaks^round[last] aesenc $rndkey1,$inout5 $movkey 48($key_),$rndkey1 pxor $twres,@tweak[2] aesenc $rndkey0,$inout0 pxor $twres,@tweak[3] movdqa @tweak[1],`16*1`(%rsp) aesenc $rndkey0,$inout1 pxor $twres,@tweak[4] movdqa @tweak[2],`16*2`(%rsp) aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 pxor $twres,$twmask movdqa @tweak[4],`16*4`(%rsp) aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 $movkey 64($key_),$rndkey0 movdqa $twmask,`16*5`(%rsp) pshufd \$0x5f,@tweak[5],$twres jmp .Lxts_enc_loop6 .align 32 .Lxts_enc_loop6: aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 $movkey -64($key,%rax),$rndkey1 add \$32,%rax aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 $movkey -80($key,%rax),$rndkey0 jnz .Lxts_enc_loop6 movdqa (%r8),$twmask # start calculating next tweak movdqa $twres,$twtmp paddd $twres,$twres aesenc $rndkey1,$inout0 paddq @tweak[5],@tweak[5] psrad \$31,$twtmp aesenc $rndkey1,$inout1 pand $twmask,$twtmp $movkey ($key_),@tweak[0] # load round[0] aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 pxor $twtmp,@tweak[5] movaps @tweak[0],@tweak[1] # copy round[0] aesenc $rndkey1,$inout5 $movkey -64($key),$rndkey1 movdqa $twres,$twtmp aesenc $rndkey0,$inout0 paddd $twres,$twres pxor @tweak[5],@tweak[0] aesenc $rndkey0,$inout1 psrad \$31,$twtmp paddq @tweak[5],@tweak[5] aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 pand $twmask,$twtmp movaps @tweak[1],@tweak[2] aesenc $rndkey0,$inout4 pxor $twtmp,@tweak[5] movdqa $twres,$twtmp aesenc $rndkey0,$inout5 $movkey -48($key),$rndkey0 paddd $twres,$twres aesenc $rndkey1,$inout0 pxor @tweak[5],@tweak[1] psrad \$31,$twtmp aesenc $rndkey1,$inout1 paddq @tweak[5],@tweak[5] pand $twmask,$twtmp aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 movdqa @tweak[3],`16*3`(%rsp) pxor $twtmp,@tweak[5] aesenc $rndkey1,$inout4 movaps @tweak[2],@tweak[3] movdqa $twres,$twtmp aesenc $rndkey1,$inout5 $movkey -32($key),$rndkey1 paddd $twres,$twres aesenc $rndkey0,$inout0 pxor @tweak[5],@tweak[2] psrad \$31,$twtmp aesenc $rndkey0,$inout1 paddq @tweak[5],@tweak[5] pand $twmask,$twtmp aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 aesenc $rndkey0,$inout4 pxor $twtmp,@tweak[5] movaps @tweak[3],@tweak[4] aesenc $rndkey0,$inout5 movdqa $twres,$rndkey0 paddd $twres,$twres aesenc $rndkey1,$inout0 pxor @tweak[5],@tweak[3] psrad \$31,$rndkey0 aesenc $rndkey1,$inout1 paddq @tweak[5],@tweak[5] pand $twmask,$rndkey0 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 pxor $rndkey0,@tweak[5] $movkey ($key_),$rndkey0 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 $movkey 16($key_),$rndkey1 pxor @tweak[5],@tweak[4] aesenclast `16*0`(%rsp),$inout0 psrad \$31,$twres paddq @tweak[5],@tweak[5] aesenclast `16*1`(%rsp),$inout1 aesenclast `16*2`(%rsp),$inout2 pand $twmask,$twres mov %r10,%rax # restore $rounds aesenclast `16*3`(%rsp),$inout3 aesenclast `16*4`(%rsp),$inout4 aesenclast `16*5`(%rsp),$inout5 pxor $twres,@tweak[5] lea `16*6`($out),$out # $out+=6*16 movups $inout0,`-16*6`($out) # store 6 output blocks movups $inout1,`-16*5`($out) movups $inout2,`-16*4`($out) movups $inout3,`-16*3`($out) movups $inout4,`-16*2`($out) movups $inout5,`-16*1`($out) sub \$16*6,$len jnc .Lxts_enc_grandloop # loop if $len-=6*16 didn't borrow mov \$16+96,$rounds sub $rnds_,$rounds mov $key_,$key # restore $key shr \$4,$rounds # restore original value .Lxts_enc_short: # at the point @tweak[0..5] are populated with tweak values mov $rounds,$rnds_ # backup $rounds pxor $rndkey0,@tweak[0] add \$16*6,$len # restore real remaining $len jz .Lxts_enc_done # done if ($len==0) pxor $rndkey0,@tweak[1] cmp \$0x20,$len jb .Lxts_enc_one # $len is 1*16 pxor $rndkey0,@tweak[2] je .Lxts_enc_two # $len is 2*16 pxor $rndkey0,@tweak[3] cmp \$0x40,$len jb .Lxts_enc_three # $len is 3*16 pxor $rndkey0,@tweak[4] je .Lxts_enc_four # $len is 4*16 movdqu ($inp),$inout0 # $len is 5*16 movdqu 16*1($inp),$inout1 movdqu 16*2($inp),$inout2 pxor @tweak[0],$inout0 movdqu 16*3($inp),$inout3 pxor @tweak[1],$inout1 movdqu 16*4($inp),$inout4 lea 16*5($inp),$inp # $inp+=5*16 pxor @tweak[2],$inout2 pxor @tweak[3],$inout3 pxor @tweak[4],$inout4 pxor $inout5,$inout5 call _aesni_encrypt6 xorps @tweak[0],$inout0 movdqa @tweak[5],@tweak[0] xorps @tweak[1],$inout1 xorps @tweak[2],$inout2 movdqu $inout0,($out) # store 5 output blocks xorps @tweak[3],$inout3 movdqu $inout1,16*1($out) xorps @tweak[4],$inout4 movdqu $inout2,16*2($out) movdqu $inout3,16*3($out) movdqu $inout4,16*4($out) lea 16*5($out),$out # $out+=5*16 jmp .Lxts_enc_done .align 16 .Lxts_enc_one: movups ($inp),$inout0 lea 16*1($inp),$inp # inp+=1*16 xorps @tweak[0],$inout0 ___ &aesni_generate1("enc",$key,$rounds); $code.=<<___; xorps @tweak[0],$inout0 movdqa @tweak[1],@tweak[0] movups $inout0,($out) # store one output block lea 16*1($out),$out # $out+=1*16 jmp .Lxts_enc_done .align 16 .Lxts_enc_two: movups ($inp),$inout0 movups 16($inp),$inout1 lea 32($inp),$inp # $inp+=2*16 xorps @tweak[0],$inout0 xorps @tweak[1],$inout1 call _aesni_encrypt2 xorps @tweak[0],$inout0 movdqa @tweak[2],@tweak[0] xorps @tweak[1],$inout1 movups $inout0,($out) # store 2 output blocks movups $inout1,16*1($out) lea 16*2($out),$out # $out+=2*16 jmp .Lxts_enc_done .align 16 .Lxts_enc_three: movups ($inp),$inout0 movups 16*1($inp),$inout1 movups 16*2($inp),$inout2 lea 16*3($inp),$inp # $inp+=3*16 xorps @tweak[0],$inout0 xorps @tweak[1],$inout1 xorps @tweak[2],$inout2 call _aesni_encrypt3 xorps @tweak[0],$inout0 movdqa @tweak[3],@tweak[0] xorps @tweak[1],$inout1 xorps @tweak[2],$inout2 movups $inout0,($out) # store 3 output blocks movups $inout1,16*1($out) movups $inout2,16*2($out) lea 16*3($out),$out # $out+=3*16 jmp .Lxts_enc_done .align 16 .Lxts_enc_four: movups ($inp),$inout0 movups 16*1($inp),$inout1 movups 16*2($inp),$inout2 xorps @tweak[0],$inout0 movups 16*3($inp),$inout3 lea 16*4($inp),$inp # $inp+=4*16 xorps @tweak[1],$inout1 xorps @tweak[2],$inout2 xorps @tweak[3],$inout3 call _aesni_encrypt4 pxor @tweak[0],$inout0 movdqa @tweak[4],@tweak[0] pxor @tweak[1],$inout1 pxor @tweak[2],$inout2 movdqu $inout0,($out) # store 4 output blocks pxor @tweak[3],$inout3 movdqu $inout1,16*1($out) movdqu $inout2,16*2($out) movdqu $inout3,16*3($out) lea 16*4($out),$out # $out+=4*16 jmp .Lxts_enc_done .align 16 .Lxts_enc_done: and \$15,$len_ # see if $len%16 is 0 jz .Lxts_enc_ret mov $len_,$len .Lxts_enc_steal: movzb ($inp),%eax # borrow $rounds ... movzb -16($out),%ecx # ... and $key lea 1($inp),$inp mov %al,-16($out) mov %cl,0($out) lea 1($out),$out sub \$1,$len jnz .Lxts_enc_steal sub $len_,$out # rewind $out mov $key_,$key # restore $key mov $rnds_,$rounds # restore $rounds movups -16($out),$inout0 xorps @tweak[0],$inout0 ___ &aesni_generate1("enc",$key,$rounds); $code.=<<___; xorps @tweak[0],$inout0 movups $inout0,-16($out) .Lxts_enc_ret: xorps %xmm0,%xmm0 # clear register bank pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ $code.=<<___ if (!$win64); pxor %xmm6,%xmm6 pxor %xmm7,%xmm7 movaps %xmm0,0x00(%rsp) # clear stack pxor %xmm8,%xmm8 movaps %xmm0,0x10(%rsp) pxor %xmm9,%xmm9 movaps %xmm0,0x20(%rsp) pxor %xmm10,%xmm10 movaps %xmm0,0x30(%rsp) pxor %xmm11,%xmm11 movaps %xmm0,0x40(%rsp) pxor %xmm12,%xmm12 movaps %xmm0,0x50(%rsp) pxor %xmm13,%xmm13 movaps %xmm0,0x60(%rsp) pxor %xmm14,%xmm14 pxor %xmm15,%xmm15 ___ $code.=<<___ if ($win64); movaps -0xa8(%r11),%xmm6 movaps %xmm0,-0xa8(%r11) # clear stack movaps -0x98(%r11),%xmm7 movaps %xmm0,-0x98(%r11) movaps -0x88(%r11),%xmm8 movaps %xmm0,-0x88(%r11) movaps -0x78(%r11),%xmm9 movaps %xmm0,-0x78(%r11) movaps -0x68(%r11),%xmm10 movaps %xmm0,-0x68(%r11) movaps -0x58(%r11),%xmm11 movaps %xmm0,-0x58(%r11) movaps -0x48(%r11),%xmm12 movaps %xmm0,-0x48(%r11) movaps -0x38(%r11),%xmm13 movaps %xmm0,-0x38(%r11) movaps -0x28(%r11),%xmm14 movaps %xmm0,-0x28(%r11) movaps -0x18(%r11),%xmm15 movaps %xmm0,-0x18(%r11) movaps %xmm0,0x00(%rsp) movaps %xmm0,0x10(%rsp) movaps %xmm0,0x20(%rsp) movaps %xmm0,0x30(%rsp) movaps %xmm0,0x40(%rsp) movaps %xmm0,0x50(%rsp) movaps %xmm0,0x60(%rsp) ___ $code.=<<___; mov -8(%r11),%rbp .cfi_restore %rbp lea (%r11),%rsp .cfi_def_cfa_register %rsp .Lxts_enc_epilogue: ret .cfi_endproc .size aesni_xts_encrypt,.-aesni_xts_encrypt ___ $code.=<<___; .globl aesni_xts_decrypt .type aesni_xts_decrypt,\@function,6 .align 16 aesni_xts_decrypt: .cfi_startproc lea (%rsp),%r11 # frame pointer .cfi_def_cfa_register %r11 push %rbp .cfi_push %rbp sub \$$frame_size,%rsp and \$-16,%rsp # Linux kernel stack can be incorrectly seeded ___ $code.=<<___ if ($win64); movaps %xmm6,-0xa8(%r11) # offload everything movaps %xmm7,-0x98(%r11) movaps %xmm8,-0x88(%r11) movaps %xmm9,-0x78(%r11) movaps %xmm10,-0x68(%r11) movaps %xmm11,-0x58(%r11) movaps %xmm12,-0x48(%r11) movaps %xmm13,-0x38(%r11) movaps %xmm14,-0x28(%r11) movaps %xmm15,-0x18(%r11) .Lxts_dec_body: ___ $code.=<<___; movups ($ivp),$inout0 # load clear-text tweak mov 240($key2),$rounds # key2->rounds mov 240($key),$rnds_ # key1->rounds ___ # generate the tweak &aesni_generate1("enc",$key2,$rounds,$inout0); $code.=<<___; xor %eax,%eax # if ($len%16) len-=16; test \$15,$len setnz %al shl \$4,%rax sub %rax,$len $movkey ($key),$rndkey0 # zero round key mov $key,$key_ # backup $key mov $rnds_,$rounds # backup $rounds shl \$4,$rnds_ mov $len,$len_ # backup $len and \$-16,$len $movkey 16($key,$rnds_),$rndkey1 # last round key movdqa .Lxts_magic(%rip),$twmask movdqa $inout0,@tweak[5] pshufd \$0x5f,$inout0,$twres pxor $rndkey0,$rndkey1 ___ for ($i=0;$i<4;$i++) { $code.=<<___; movdqa $twres,$twtmp paddd $twres,$twres movdqa @tweak[5],@tweak[$i] psrad \$31,$twtmp # broadcast upper bits paddq @tweak[5],@tweak[5] pand $twmask,$twtmp pxor $rndkey0,@tweak[$i] pxor $twtmp,@tweak[5] ___ } $code.=<<___; movdqa @tweak[5],@tweak[4] psrad \$31,$twres paddq @tweak[5],@tweak[5] pand $twmask,$twres pxor $rndkey0,@tweak[4] pxor $twres,@tweak[5] movaps $rndkey1,0x60(%rsp) # save round[0]^round[last] sub \$16*6,$len jc .Lxts_dec_short # if $len-=6*16 borrowed mov \$16+96,$rounds lea 32($key_,$rnds_),$key # end of key schedule sub %r10,%rax # twisted $rounds $movkey 16($key_),$rndkey1 mov %rax,%r10 # backup twisted $rounds lea .Lxts_magic(%rip),%r8 jmp .Lxts_dec_grandloop .align 32 .Lxts_dec_grandloop: movdqu `16*0`($inp),$inout0 # load input movdqa $rndkey0,$twmask movdqu `16*1`($inp),$inout1 pxor @tweak[0],$inout0 # input^=tweak^round[0] movdqu `16*2`($inp),$inout2 pxor @tweak[1],$inout1 aesdec $rndkey1,$inout0 movdqu `16*3`($inp),$inout3 pxor @tweak[2],$inout2 aesdec $rndkey1,$inout1 movdqu `16*4`($inp),$inout4 pxor @tweak[3],$inout3 aesdec $rndkey1,$inout2 movdqu `16*5`($inp),$inout5 pxor @tweak[5],$twmask # round[0]^=tweak[5] movdqa 0x60(%rsp),$twres # load round[0]^round[last] pxor @tweak[4],$inout4 aesdec $rndkey1,$inout3 $movkey 32($key_),$rndkey0 lea `16*6`($inp),$inp pxor $twmask,$inout5 pxor $twres,@tweak[0] # calculate tweaks^round[last] aesdec $rndkey1,$inout4 pxor $twres,@tweak[1] movdqa @tweak[0],`16*0`(%rsp) # put aside tweaks^last round key aesdec $rndkey1,$inout5 $movkey 48($key_),$rndkey1 pxor $twres,@tweak[2] aesdec $rndkey0,$inout0 pxor $twres,@tweak[3] movdqa @tweak[1],`16*1`(%rsp) aesdec $rndkey0,$inout1 pxor $twres,@tweak[4] movdqa @tweak[2],`16*2`(%rsp) aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 pxor $twres,$twmask movdqa @tweak[4],`16*4`(%rsp) aesdec $rndkey0,$inout4 aesdec $rndkey0,$inout5 $movkey 64($key_),$rndkey0 movdqa $twmask,`16*5`(%rsp) pshufd \$0x5f,@tweak[5],$twres jmp .Lxts_dec_loop6 .align 32 .Lxts_dec_loop6: aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 aesdec $rndkey1,$inout4 aesdec $rndkey1,$inout5 $movkey -64($key,%rax),$rndkey1 add \$32,%rax aesdec $rndkey0,$inout0 aesdec $rndkey0,$inout1 aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 aesdec $rndkey0,$inout4 aesdec $rndkey0,$inout5 $movkey -80($key,%rax),$rndkey0 jnz .Lxts_dec_loop6 movdqa (%r8),$twmask # start calculating next tweak movdqa $twres,$twtmp paddd $twres,$twres aesdec $rndkey1,$inout0 paddq @tweak[5],@tweak[5] psrad \$31,$twtmp aesdec $rndkey1,$inout1 pand $twmask,$twtmp $movkey ($key_),@tweak[0] # load round[0] aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 aesdec $rndkey1,$inout4 pxor $twtmp,@tweak[5] movaps @tweak[0],@tweak[1] # copy round[0] aesdec $rndkey1,$inout5 $movkey -64($key),$rndkey1 movdqa $twres,$twtmp aesdec $rndkey0,$inout0 paddd $twres,$twres pxor @tweak[5],@tweak[0] aesdec $rndkey0,$inout1 psrad \$31,$twtmp paddq @tweak[5],@tweak[5] aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 pand $twmask,$twtmp movaps @tweak[1],@tweak[2] aesdec $rndkey0,$inout4 pxor $twtmp,@tweak[5] movdqa $twres,$twtmp aesdec $rndkey0,$inout5 $movkey -48($key),$rndkey0 paddd $twres,$twres aesdec $rndkey1,$inout0 pxor @tweak[5],@tweak[1] psrad \$31,$twtmp aesdec $rndkey1,$inout1 paddq @tweak[5],@tweak[5] pand $twmask,$twtmp aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 movdqa @tweak[3],`16*3`(%rsp) pxor $twtmp,@tweak[5] aesdec $rndkey1,$inout4 movaps @tweak[2],@tweak[3] movdqa $twres,$twtmp aesdec $rndkey1,$inout5 $movkey -32($key),$rndkey1 paddd $twres,$twres aesdec $rndkey0,$inout0 pxor @tweak[5],@tweak[2] psrad \$31,$twtmp aesdec $rndkey0,$inout1 paddq @tweak[5],@tweak[5] pand $twmask,$twtmp aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 aesdec $rndkey0,$inout4 pxor $twtmp,@tweak[5] movaps @tweak[3],@tweak[4] aesdec $rndkey0,$inout5 movdqa $twres,$rndkey0 paddd $twres,$twres aesdec $rndkey1,$inout0 pxor @tweak[5],@tweak[3] psrad \$31,$rndkey0 aesdec $rndkey1,$inout1 paddq @tweak[5],@tweak[5] pand $twmask,$rndkey0 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 pxor $rndkey0,@tweak[5] $movkey ($key_),$rndkey0 aesdec $rndkey1,$inout4 aesdec $rndkey1,$inout5 $movkey 16($key_),$rndkey1 pxor @tweak[5],@tweak[4] aesdeclast `16*0`(%rsp),$inout0 psrad \$31,$twres paddq @tweak[5],@tweak[5] aesdeclast `16*1`(%rsp),$inout1 aesdeclast `16*2`(%rsp),$inout2 pand $twmask,$twres mov %r10,%rax # restore $rounds aesdeclast `16*3`(%rsp),$inout3 aesdeclast `16*4`(%rsp),$inout4 aesdeclast `16*5`(%rsp),$inout5 pxor $twres,@tweak[5] lea `16*6`($out),$out # $out+=6*16 movups $inout0,`-16*6`($out) # store 6 output blocks movups $inout1,`-16*5`($out) movups $inout2,`-16*4`($out) movups $inout3,`-16*3`($out) movups $inout4,`-16*2`($out) movups $inout5,`-16*1`($out) sub \$16*6,$len jnc .Lxts_dec_grandloop # loop if $len-=6*16 didn't borrow mov \$16+96,$rounds sub $rnds_,$rounds mov $key_,$key # restore $key shr \$4,$rounds # restore original value .Lxts_dec_short: # at the point @tweak[0..5] are populated with tweak values mov $rounds,$rnds_ # backup $rounds pxor $rndkey0,@tweak[0] pxor $rndkey0,@tweak[1] add \$16*6,$len # restore real remaining $len jz .Lxts_dec_done # done if ($len==0) pxor $rndkey0,@tweak[2] cmp \$0x20,$len jb .Lxts_dec_one # $len is 1*16 pxor $rndkey0,@tweak[3] je .Lxts_dec_two # $len is 2*16 pxor $rndkey0,@tweak[4] cmp \$0x40,$len jb .Lxts_dec_three # $len is 3*16 je .Lxts_dec_four # $len is 4*16 movdqu ($inp),$inout0 # $len is 5*16 movdqu 16*1($inp),$inout1 movdqu 16*2($inp),$inout2 pxor @tweak[0],$inout0 movdqu 16*3($inp),$inout3 pxor @tweak[1],$inout1 movdqu 16*4($inp),$inout4 lea 16*5($inp),$inp # $inp+=5*16 pxor @tweak[2],$inout2 pxor @tweak[3],$inout3 pxor @tweak[4],$inout4 call _aesni_decrypt6 xorps @tweak[0],$inout0 xorps @tweak[1],$inout1 xorps @tweak[2],$inout2 movdqu $inout0,($out) # store 5 output blocks xorps @tweak[3],$inout3 movdqu $inout1,16*1($out) xorps @tweak[4],$inout4 movdqu $inout2,16*2($out) pxor $twtmp,$twtmp movdqu $inout3,16*3($out) pcmpgtd @tweak[5],$twtmp movdqu $inout4,16*4($out) lea 16*5($out),$out # $out+=5*16 pshufd \$0x13,$twtmp,@tweak[1] # $twres and \$15,$len_ jz .Lxts_dec_ret movdqa @tweak[5],@tweak[0] paddq @tweak[5],@tweak[5] # psllq 1,$tweak pand $twmask,@tweak[1] # isolate carry and residue pxor @tweak[5],@tweak[1] jmp .Lxts_dec_done2 .align 16 .Lxts_dec_one: movups ($inp),$inout0 lea 16*1($inp),$inp # $inp+=1*16 xorps @tweak[0],$inout0 ___ &aesni_generate1("dec",$key,$rounds); $code.=<<___; xorps @tweak[0],$inout0 movdqa @tweak[1],@tweak[0] movups $inout0,($out) # store one output block movdqa @tweak[2],@tweak[1] lea 16*1($out),$out # $out+=1*16 jmp .Lxts_dec_done .align 16 .Lxts_dec_two: movups ($inp),$inout0 movups 16($inp),$inout1 lea 32($inp),$inp # $inp+=2*16 xorps @tweak[0],$inout0 xorps @tweak[1],$inout1 call _aesni_decrypt2 xorps @tweak[0],$inout0 movdqa @tweak[2],@tweak[0] xorps @tweak[1],$inout1 movdqa @tweak[3],@tweak[1] movups $inout0,($out) # store 2 output blocks movups $inout1,16*1($out) lea 16*2($out),$out # $out+=2*16 jmp .Lxts_dec_done .align 16 .Lxts_dec_three: movups ($inp),$inout0 movups 16*1($inp),$inout1 movups 16*2($inp),$inout2 lea 16*3($inp),$inp # $inp+=3*16 xorps @tweak[0],$inout0 xorps @tweak[1],$inout1 xorps @tweak[2],$inout2 call _aesni_decrypt3 xorps @tweak[0],$inout0 movdqa @tweak[3],@tweak[0] xorps @tweak[1],$inout1 movdqa @tweak[4],@tweak[1] xorps @tweak[2],$inout2 movups $inout0,($out) # store 3 output blocks movups $inout1,16*1($out) movups $inout2,16*2($out) lea 16*3($out),$out # $out+=3*16 jmp .Lxts_dec_done .align 16 .Lxts_dec_four: movups ($inp),$inout0 movups 16*1($inp),$inout1 movups 16*2($inp),$inout2 xorps @tweak[0],$inout0 movups 16*3($inp),$inout3 lea 16*4($inp),$inp # $inp+=4*16 xorps @tweak[1],$inout1 xorps @tweak[2],$inout2 xorps @tweak[3],$inout3 call _aesni_decrypt4 pxor @tweak[0],$inout0 movdqa @tweak[4],@tweak[0] pxor @tweak[1],$inout1 movdqa @tweak[5],@tweak[1] pxor @tweak[2],$inout2 movdqu $inout0,($out) # store 4 output blocks pxor @tweak[3],$inout3 movdqu $inout1,16*1($out) movdqu $inout2,16*2($out) movdqu $inout3,16*3($out) lea 16*4($out),$out # $out+=4*16 jmp .Lxts_dec_done .align 16 .Lxts_dec_done: and \$15,$len_ # see if $len%16 is 0 jz .Lxts_dec_ret .Lxts_dec_done2: mov $len_,$len mov $key_,$key # restore $key mov $rnds_,$rounds # restore $rounds movups ($inp),$inout0 xorps @tweak[1],$inout0 ___ &aesni_generate1("dec",$key,$rounds); $code.=<<___; xorps @tweak[1],$inout0 movups $inout0,($out) .Lxts_dec_steal: movzb 16($inp),%eax # borrow $rounds ... movzb ($out),%ecx # ... and $key lea 1($inp),$inp mov %al,($out) mov %cl,16($out) lea 1($out),$out sub \$1,$len jnz .Lxts_dec_steal sub $len_,$out # rewind $out mov $key_,$key # restore $key mov $rnds_,$rounds # restore $rounds movups ($out),$inout0 xorps @tweak[0],$inout0 ___ &aesni_generate1("dec",$key,$rounds); $code.=<<___; xorps @tweak[0],$inout0 movups $inout0,($out) .Lxts_dec_ret: xorps %xmm0,%xmm0 # clear register bank pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ $code.=<<___ if (!$win64); pxor %xmm6,%xmm6 pxor %xmm7,%xmm7 movaps %xmm0,0x00(%rsp) # clear stack pxor %xmm8,%xmm8 movaps %xmm0,0x10(%rsp) pxor %xmm9,%xmm9 movaps %xmm0,0x20(%rsp) pxor %xmm10,%xmm10 movaps %xmm0,0x30(%rsp) pxor %xmm11,%xmm11 movaps %xmm0,0x40(%rsp) pxor %xmm12,%xmm12 movaps %xmm0,0x50(%rsp) pxor %xmm13,%xmm13 movaps %xmm0,0x60(%rsp) pxor %xmm14,%xmm14 pxor %xmm15,%xmm15 ___ $code.=<<___ if ($win64); movaps -0xa8(%r11),%xmm6 movaps %xmm0,-0xa8(%r11) # clear stack movaps -0x98(%r11),%xmm7 movaps %xmm0,-0x98(%r11) movaps -0x88(%r11),%xmm8 movaps %xmm0,-0x88(%r11) movaps -0x78(%r11),%xmm9 movaps %xmm0,-0x78(%r11) movaps -0x68(%r11),%xmm10 movaps %xmm0,-0x68(%r11) movaps -0x58(%r11),%xmm11 movaps %xmm0,-0x58(%r11) movaps -0x48(%r11),%xmm12 movaps %xmm0,-0x48(%r11) movaps -0x38(%r11),%xmm13 movaps %xmm0,-0x38(%r11) movaps -0x28(%r11),%xmm14 movaps %xmm0,-0x28(%r11) movaps -0x18(%r11),%xmm15 movaps %xmm0,-0x18(%r11) movaps %xmm0,0x00(%rsp) movaps %xmm0,0x10(%rsp) movaps %xmm0,0x20(%rsp) movaps %xmm0,0x30(%rsp) movaps %xmm0,0x40(%rsp) movaps %xmm0,0x50(%rsp) movaps %xmm0,0x60(%rsp) ___ $code.=<<___; mov -8(%r11),%rbp .cfi_restore %rbp lea (%r11),%rsp .cfi_def_cfa_register %rsp .Lxts_dec_epilogue: ret .cfi_endproc .size aesni_xts_decrypt,.-aesni_xts_decrypt ___ } ###################################################################### # void aesni_ocb_[en|de]crypt(const char *inp, char *out, size_t blocks, # const AES_KEY *key, unsigned int start_block_num, # unsigned char offset_i[16], const unsigned char L_[][16], # unsigned char checksum[16]); # { my @offset=map("%xmm$_",(10..15)); my ($checksum,$rndkey0l)=("%xmm8","%xmm9"); my ($block_num,$offset_p)=("%r8","%r9"); # 5th and 6th arguments my ($L_p,$checksum_p) = ("%rbx","%rbp"); my ($i1,$i3,$i5) = ("%r12","%r13","%r14"); my $seventh_arg = $win64 ? 56 : 8; my $blocks = $len; $code.=<<___; .globl aesni_ocb_encrypt .type aesni_ocb_encrypt,\@function,6 .align 32 aesni_ocb_encrypt: .cfi_startproc lea (%rsp),%rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 ___ $code.=<<___ if ($win64); lea -0xa0(%rsp),%rsp movaps %xmm6,0x00(%rsp) # offload everything movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,0x60(%rsp) movaps %xmm13,0x70(%rsp) movaps %xmm14,0x80(%rsp) movaps %xmm15,0x90(%rsp) .Locb_enc_body: ___ $code.=<<___; mov $seventh_arg(%rax),$L_p # 7th argument mov $seventh_arg+8(%rax),$checksum_p# 8th argument mov 240($key),$rnds_ mov $key,$key_ shl \$4,$rnds_ $movkey ($key),$rndkey0l # round[0] $movkey 16($key,$rnds_),$rndkey1 # round[last] movdqu ($offset_p),@offset[5] # load last offset_i pxor $rndkey1,$rndkey0l # round[0] ^ round[last] pxor $rndkey1,@offset[5] # offset_i ^ round[last] mov \$16+32,$rounds lea 32($key_,$rnds_),$key $movkey 16($key_),$rndkey1 # round[1] sub %r10,%rax # twisted $rounds mov %rax,%r10 # backup twisted $rounds movdqu ($L_p),@offset[0] # L_0 for all odd-numbered blocks movdqu ($checksum_p),$checksum # load checksum test \$1,$block_num # is first block number odd? jnz .Locb_enc_odd bsf $block_num,$i1 add \$1,$block_num shl \$4,$i1 movdqu ($L_p,$i1),$inout5 # borrow movdqu ($inp),$inout0 lea 16($inp),$inp call __ocb_encrypt1 movdqa $inout5,@offset[5] movups $inout0,($out) lea 16($out),$out sub \$1,$blocks jz .Locb_enc_done .Locb_enc_odd: lea 1($block_num),$i1 # even-numbered blocks lea 3($block_num),$i3 lea 5($block_num),$i5 lea 6($block_num),$block_num bsf $i1,$i1 # ntz(block) bsf $i3,$i3 bsf $i5,$i5 shl \$4,$i1 # ntz(block) -> table offset shl \$4,$i3 shl \$4,$i5 sub \$6,$blocks jc .Locb_enc_short jmp .Locb_enc_grandloop .align 32 .Locb_enc_grandloop: movdqu `16*0`($inp),$inout0 # load input movdqu `16*1`($inp),$inout1 movdqu `16*2`($inp),$inout2 movdqu `16*3`($inp),$inout3 movdqu `16*4`($inp),$inout4 movdqu `16*5`($inp),$inout5 lea `16*6`($inp),$inp call __ocb_encrypt6 movups $inout0,`16*0`($out) # store output movups $inout1,`16*1`($out) movups $inout2,`16*2`($out) movups $inout3,`16*3`($out) movups $inout4,`16*4`($out) movups $inout5,`16*5`($out) lea `16*6`($out),$out sub \$6,$blocks jnc .Locb_enc_grandloop .Locb_enc_short: add \$6,$blocks jz .Locb_enc_done movdqu `16*0`($inp),$inout0 cmp \$2,$blocks jb .Locb_enc_one movdqu `16*1`($inp),$inout1 je .Locb_enc_two movdqu `16*2`($inp),$inout2 cmp \$4,$blocks jb .Locb_enc_three movdqu `16*3`($inp),$inout3 je .Locb_enc_four movdqu `16*4`($inp),$inout4 pxor $inout5,$inout5 call __ocb_encrypt6 movdqa @offset[4],@offset[5] movups $inout0,`16*0`($out) movups $inout1,`16*1`($out) movups $inout2,`16*2`($out) movups $inout3,`16*3`($out) movups $inout4,`16*4`($out) jmp .Locb_enc_done .align 16 .Locb_enc_one: movdqa @offset[0],$inout5 # borrow call __ocb_encrypt1 movdqa $inout5,@offset[5] movups $inout0,`16*0`($out) jmp .Locb_enc_done .align 16 .Locb_enc_two: pxor $inout2,$inout2 pxor $inout3,$inout3 call __ocb_encrypt4 movdqa @offset[1],@offset[5] movups $inout0,`16*0`($out) movups $inout1,`16*1`($out) jmp .Locb_enc_done .align 16 .Locb_enc_three: pxor $inout3,$inout3 call __ocb_encrypt4 movdqa @offset[2],@offset[5] movups $inout0,`16*0`($out) movups $inout1,`16*1`($out) movups $inout2,`16*2`($out) jmp .Locb_enc_done .align 16 .Locb_enc_four: call __ocb_encrypt4 movdqa @offset[3],@offset[5] movups $inout0,`16*0`($out) movups $inout1,`16*1`($out) movups $inout2,`16*2`($out) movups $inout3,`16*3`($out) .Locb_enc_done: pxor $rndkey0,@offset[5] # "remove" round[last] movdqu $checksum,($checksum_p) # store checksum movdqu @offset[5],($offset_p) # store last offset_i xorps %xmm0,%xmm0 # clear register bank pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ $code.=<<___ if (!$win64); pxor %xmm6,%xmm6 pxor %xmm7,%xmm7 pxor %xmm8,%xmm8 pxor %xmm9,%xmm9 pxor %xmm10,%xmm10 pxor %xmm11,%xmm11 pxor %xmm12,%xmm12 pxor %xmm13,%xmm13 pxor %xmm14,%xmm14 pxor %xmm15,%xmm15 lea 0x28(%rsp),%rax .cfi_def_cfa %rax,8 ___ $code.=<<___ if ($win64); movaps 0x00(%rsp),%xmm6 movaps %xmm0,0x00(%rsp) # clear stack movaps 0x10(%rsp),%xmm7 movaps %xmm0,0x10(%rsp) movaps 0x20(%rsp),%xmm8 movaps %xmm0,0x20(%rsp) movaps 0x30(%rsp),%xmm9 movaps %xmm0,0x30(%rsp) movaps 0x40(%rsp),%xmm10 movaps %xmm0,0x40(%rsp) movaps 0x50(%rsp),%xmm11 movaps %xmm0,0x50(%rsp) movaps 0x60(%rsp),%xmm12 movaps %xmm0,0x60(%rsp) movaps 0x70(%rsp),%xmm13 movaps %xmm0,0x70(%rsp) movaps 0x80(%rsp),%xmm14 movaps %xmm0,0x80(%rsp) movaps 0x90(%rsp),%xmm15 movaps %xmm0,0x90(%rsp) lea 0xa0+0x28(%rsp),%rax .Locb_enc_pop: ___ $code.=<<___; mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Locb_enc_epilogue: ret .cfi_endproc .size aesni_ocb_encrypt,.-aesni_ocb_encrypt .type __ocb_encrypt6,\@abi-omnipotent .align 32 __ocb_encrypt6: .cfi_startproc pxor $rndkey0l,@offset[5] # offset_i ^ round[0] movdqu ($L_p,$i1),@offset[1] movdqa @offset[0],@offset[2] movdqu ($L_p,$i3),@offset[3] movdqa @offset[0],@offset[4] pxor @offset[5],@offset[0] movdqu ($L_p,$i5),@offset[5] pxor @offset[0],@offset[1] pxor $inout0,$checksum # accumulate checksum pxor @offset[0],$inout0 # input ^ round[0] ^ offset_i pxor @offset[1],@offset[2] pxor $inout1,$checksum pxor @offset[1],$inout1 pxor @offset[2],@offset[3] pxor $inout2,$checksum pxor @offset[2],$inout2 pxor @offset[3],@offset[4] pxor $inout3,$checksum pxor @offset[3],$inout3 pxor @offset[4],@offset[5] pxor $inout4,$checksum pxor @offset[4],$inout4 pxor $inout5,$checksum pxor @offset[5],$inout5 $movkey 32($key_),$rndkey0 lea 1($block_num),$i1 # even-numbered blocks lea 3($block_num),$i3 lea 5($block_num),$i5 add \$6,$block_num pxor $rndkey0l,@offset[0] # offset_i ^ round[last] bsf $i1,$i1 # ntz(block) bsf $i3,$i3 bsf $i5,$i5 aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 pxor $rndkey0l,@offset[1] pxor $rndkey0l,@offset[2] aesenc $rndkey1,$inout4 pxor $rndkey0l,@offset[3] pxor $rndkey0l,@offset[4] aesenc $rndkey1,$inout5 $movkey 48($key_),$rndkey1 pxor $rndkey0l,@offset[5] aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 $movkey 64($key_),$rndkey0 shl \$4,$i1 # ntz(block) -> table offset shl \$4,$i3 jmp .Locb_enc_loop6 .align 32 .Locb_enc_loop6: aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 aesenc $rndkey0,$inout4 aesenc $rndkey0,$inout5 $movkey -16($key,%rax),$rndkey0 jnz .Locb_enc_loop6 aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 aesenc $rndkey1,$inout4 aesenc $rndkey1,$inout5 $movkey 16($key_),$rndkey1 shl \$4,$i5 aesenclast @offset[0],$inout0 movdqu ($L_p),@offset[0] # L_0 for all odd-numbered blocks mov %r10,%rax # restore twisted rounds aesenclast @offset[1],$inout1 aesenclast @offset[2],$inout2 aesenclast @offset[3],$inout3 aesenclast @offset[4],$inout4 aesenclast @offset[5],$inout5 ret .cfi_endproc .size __ocb_encrypt6,.-__ocb_encrypt6 .type __ocb_encrypt4,\@abi-omnipotent .align 32 __ocb_encrypt4: .cfi_startproc pxor $rndkey0l,@offset[5] # offset_i ^ round[0] movdqu ($L_p,$i1),@offset[1] movdqa @offset[0],@offset[2] movdqu ($L_p,$i3),@offset[3] pxor @offset[5],@offset[0] pxor @offset[0],@offset[1] pxor $inout0,$checksum # accumulate checksum pxor @offset[0],$inout0 # input ^ round[0] ^ offset_i pxor @offset[1],@offset[2] pxor $inout1,$checksum pxor @offset[1],$inout1 pxor @offset[2],@offset[3] pxor $inout2,$checksum pxor @offset[2],$inout2 pxor $inout3,$checksum pxor @offset[3],$inout3 $movkey 32($key_),$rndkey0 pxor $rndkey0l,@offset[0] # offset_i ^ round[last] pxor $rndkey0l,@offset[1] pxor $rndkey0l,@offset[2] pxor $rndkey0l,@offset[3] aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 $movkey 48($key_),$rndkey1 aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 $movkey 64($key_),$rndkey0 jmp .Locb_enc_loop4 .align 32 .Locb_enc_loop4: aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesenc $rndkey0,$inout0 aesenc $rndkey0,$inout1 aesenc $rndkey0,$inout2 aesenc $rndkey0,$inout3 $movkey -16($key,%rax),$rndkey0 jnz .Locb_enc_loop4 aesenc $rndkey1,$inout0 aesenc $rndkey1,$inout1 aesenc $rndkey1,$inout2 aesenc $rndkey1,$inout3 $movkey 16($key_),$rndkey1 mov %r10,%rax # restore twisted rounds aesenclast @offset[0],$inout0 aesenclast @offset[1],$inout1 aesenclast @offset[2],$inout2 aesenclast @offset[3],$inout3 ret .cfi_endproc .size __ocb_encrypt4,.-__ocb_encrypt4 .type __ocb_encrypt1,\@abi-omnipotent .align 32 __ocb_encrypt1: .cfi_startproc pxor @offset[5],$inout5 # offset_i pxor $rndkey0l,$inout5 # offset_i ^ round[0] pxor $inout0,$checksum # accumulate checksum pxor $inout5,$inout0 # input ^ round[0] ^ offset_i $movkey 32($key_),$rndkey0 aesenc $rndkey1,$inout0 $movkey 48($key_),$rndkey1 pxor $rndkey0l,$inout5 # offset_i ^ round[last] aesenc $rndkey0,$inout0 $movkey 64($key_),$rndkey0 jmp .Locb_enc_loop1 .align 32 .Locb_enc_loop1: aesenc $rndkey1,$inout0 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesenc $rndkey0,$inout0 $movkey -16($key,%rax),$rndkey0 jnz .Locb_enc_loop1 aesenc $rndkey1,$inout0 $movkey 16($key_),$rndkey1 # redundant in tail mov %r10,%rax # restore twisted rounds aesenclast $inout5,$inout0 ret .cfi_endproc .size __ocb_encrypt1,.-__ocb_encrypt1 .globl aesni_ocb_decrypt .type aesni_ocb_decrypt,\@function,6 .align 32 aesni_ocb_decrypt: .cfi_startproc lea (%rsp),%rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 ___ $code.=<<___ if ($win64); lea -0xa0(%rsp),%rsp movaps %xmm6,0x00(%rsp) # offload everything movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,0x60(%rsp) movaps %xmm13,0x70(%rsp) movaps %xmm14,0x80(%rsp) movaps %xmm15,0x90(%rsp) .Locb_dec_body: ___ $code.=<<___; mov $seventh_arg(%rax),$L_p # 7th argument mov $seventh_arg+8(%rax),$checksum_p# 8th argument mov 240($key),$rnds_ mov $key,$key_ shl \$4,$rnds_ $movkey ($key),$rndkey0l # round[0] $movkey 16($key,$rnds_),$rndkey1 # round[last] movdqu ($offset_p),@offset[5] # load last offset_i pxor $rndkey1,$rndkey0l # round[0] ^ round[last] pxor $rndkey1,@offset[5] # offset_i ^ round[last] mov \$16+32,$rounds lea 32($key_,$rnds_),$key $movkey 16($key_),$rndkey1 # round[1] sub %r10,%rax # twisted $rounds mov %rax,%r10 # backup twisted $rounds movdqu ($L_p),@offset[0] # L_0 for all odd-numbered blocks movdqu ($checksum_p),$checksum # load checksum test \$1,$block_num # is first block number odd? jnz .Locb_dec_odd bsf $block_num,$i1 add \$1,$block_num shl \$4,$i1 movdqu ($L_p,$i1),$inout5 # borrow movdqu ($inp),$inout0 lea 16($inp),$inp call __ocb_decrypt1 movdqa $inout5,@offset[5] movups $inout0,($out) xorps $inout0,$checksum # accumulate checksum lea 16($out),$out sub \$1,$blocks jz .Locb_dec_done .Locb_dec_odd: lea 1($block_num),$i1 # even-numbered blocks lea 3($block_num),$i3 lea 5($block_num),$i5 lea 6($block_num),$block_num bsf $i1,$i1 # ntz(block) bsf $i3,$i3 bsf $i5,$i5 shl \$4,$i1 # ntz(block) -> table offset shl \$4,$i3 shl \$4,$i5 sub \$6,$blocks jc .Locb_dec_short jmp .Locb_dec_grandloop .align 32 .Locb_dec_grandloop: movdqu `16*0`($inp),$inout0 # load input movdqu `16*1`($inp),$inout1 movdqu `16*2`($inp),$inout2 movdqu `16*3`($inp),$inout3 movdqu `16*4`($inp),$inout4 movdqu `16*5`($inp),$inout5 lea `16*6`($inp),$inp call __ocb_decrypt6 movups $inout0,`16*0`($out) # store output pxor $inout0,$checksum # accumulate checksum movups $inout1,`16*1`($out) pxor $inout1,$checksum movups $inout2,`16*2`($out) pxor $inout2,$checksum movups $inout3,`16*3`($out) pxor $inout3,$checksum movups $inout4,`16*4`($out) pxor $inout4,$checksum movups $inout5,`16*5`($out) pxor $inout5,$checksum lea `16*6`($out),$out sub \$6,$blocks jnc .Locb_dec_grandloop .Locb_dec_short: add \$6,$blocks jz .Locb_dec_done movdqu `16*0`($inp),$inout0 cmp \$2,$blocks jb .Locb_dec_one movdqu `16*1`($inp),$inout1 je .Locb_dec_two movdqu `16*2`($inp),$inout2 cmp \$4,$blocks jb .Locb_dec_three movdqu `16*3`($inp),$inout3 je .Locb_dec_four movdqu `16*4`($inp),$inout4 pxor $inout5,$inout5 call __ocb_decrypt6 movdqa @offset[4],@offset[5] movups $inout0,`16*0`($out) # store output pxor $inout0,$checksum # accumulate checksum movups $inout1,`16*1`($out) pxor $inout1,$checksum movups $inout2,`16*2`($out) pxor $inout2,$checksum movups $inout3,`16*3`($out) pxor $inout3,$checksum movups $inout4,`16*4`($out) pxor $inout4,$checksum jmp .Locb_dec_done .align 16 .Locb_dec_one: movdqa @offset[0],$inout5 # borrow call __ocb_decrypt1 movdqa $inout5,@offset[5] movups $inout0,`16*0`($out) # store output xorps $inout0,$checksum # accumulate checksum jmp .Locb_dec_done .align 16 .Locb_dec_two: pxor $inout2,$inout2 pxor $inout3,$inout3 call __ocb_decrypt4 movdqa @offset[1],@offset[5] movups $inout0,`16*0`($out) # store output xorps $inout0,$checksum # accumulate checksum movups $inout1,`16*1`($out) xorps $inout1,$checksum jmp .Locb_dec_done .align 16 .Locb_dec_three: pxor $inout3,$inout3 call __ocb_decrypt4 movdqa @offset[2],@offset[5] movups $inout0,`16*0`($out) # store output xorps $inout0,$checksum # accumulate checksum movups $inout1,`16*1`($out) xorps $inout1,$checksum movups $inout2,`16*2`($out) xorps $inout2,$checksum jmp .Locb_dec_done .align 16 .Locb_dec_four: call __ocb_decrypt4 movdqa @offset[3],@offset[5] movups $inout0,`16*0`($out) # store output pxor $inout0,$checksum # accumulate checksum movups $inout1,`16*1`($out) pxor $inout1,$checksum movups $inout2,`16*2`($out) pxor $inout2,$checksum movups $inout3,`16*3`($out) pxor $inout3,$checksum .Locb_dec_done: pxor $rndkey0,@offset[5] # "remove" round[last] movdqu $checksum,($checksum_p) # store checksum movdqu @offset[5],($offset_p) # store last offset_i xorps %xmm0,%xmm0 # clear register bank pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ $code.=<<___ if (!$win64); pxor %xmm6,%xmm6 pxor %xmm7,%xmm7 pxor %xmm8,%xmm8 pxor %xmm9,%xmm9 pxor %xmm10,%xmm10 pxor %xmm11,%xmm11 pxor %xmm12,%xmm12 pxor %xmm13,%xmm13 pxor %xmm14,%xmm14 pxor %xmm15,%xmm15 lea 0x28(%rsp),%rax .cfi_def_cfa %rax,8 ___ $code.=<<___ if ($win64); movaps 0x00(%rsp),%xmm6 movaps %xmm0,0x00(%rsp) # clear stack movaps 0x10(%rsp),%xmm7 movaps %xmm0,0x10(%rsp) movaps 0x20(%rsp),%xmm8 movaps %xmm0,0x20(%rsp) movaps 0x30(%rsp),%xmm9 movaps %xmm0,0x30(%rsp) movaps 0x40(%rsp),%xmm10 movaps %xmm0,0x40(%rsp) movaps 0x50(%rsp),%xmm11 movaps %xmm0,0x50(%rsp) movaps 0x60(%rsp),%xmm12 movaps %xmm0,0x60(%rsp) movaps 0x70(%rsp),%xmm13 movaps %xmm0,0x70(%rsp) movaps 0x80(%rsp),%xmm14 movaps %xmm0,0x80(%rsp) movaps 0x90(%rsp),%xmm15 movaps %xmm0,0x90(%rsp) lea 0xa0+0x28(%rsp),%rax .Locb_dec_pop: ___ $code.=<<___; mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Locb_dec_epilogue: ret .cfi_endproc .size aesni_ocb_decrypt,.-aesni_ocb_decrypt .type __ocb_decrypt6,\@abi-omnipotent .align 32 __ocb_decrypt6: .cfi_startproc pxor $rndkey0l,@offset[5] # offset_i ^ round[0] movdqu ($L_p,$i1),@offset[1] movdqa @offset[0],@offset[2] movdqu ($L_p,$i3),@offset[3] movdqa @offset[0],@offset[4] pxor @offset[5],@offset[0] movdqu ($L_p,$i5),@offset[5] pxor @offset[0],@offset[1] pxor @offset[0],$inout0 # input ^ round[0] ^ offset_i pxor @offset[1],@offset[2] pxor @offset[1],$inout1 pxor @offset[2],@offset[3] pxor @offset[2],$inout2 pxor @offset[3],@offset[4] pxor @offset[3],$inout3 pxor @offset[4],@offset[5] pxor @offset[4],$inout4 pxor @offset[5],$inout5 $movkey 32($key_),$rndkey0 lea 1($block_num),$i1 # even-numbered blocks lea 3($block_num),$i3 lea 5($block_num),$i5 add \$6,$block_num pxor $rndkey0l,@offset[0] # offset_i ^ round[last] bsf $i1,$i1 # ntz(block) bsf $i3,$i3 bsf $i5,$i5 aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 pxor $rndkey0l,@offset[1] pxor $rndkey0l,@offset[2] aesdec $rndkey1,$inout4 pxor $rndkey0l,@offset[3] pxor $rndkey0l,@offset[4] aesdec $rndkey1,$inout5 $movkey 48($key_),$rndkey1 pxor $rndkey0l,@offset[5] aesdec $rndkey0,$inout0 aesdec $rndkey0,$inout1 aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 aesdec $rndkey0,$inout4 aesdec $rndkey0,$inout5 $movkey 64($key_),$rndkey0 shl \$4,$i1 # ntz(block) -> table offset shl \$4,$i3 jmp .Locb_dec_loop6 .align 32 .Locb_dec_loop6: aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 aesdec $rndkey1,$inout4 aesdec $rndkey1,$inout5 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesdec $rndkey0,$inout0 aesdec $rndkey0,$inout1 aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 aesdec $rndkey0,$inout4 aesdec $rndkey0,$inout5 $movkey -16($key,%rax),$rndkey0 jnz .Locb_dec_loop6 aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 aesdec $rndkey1,$inout4 aesdec $rndkey1,$inout5 $movkey 16($key_),$rndkey1 shl \$4,$i5 aesdeclast @offset[0],$inout0 movdqu ($L_p),@offset[0] # L_0 for all odd-numbered blocks mov %r10,%rax # restore twisted rounds aesdeclast @offset[1],$inout1 aesdeclast @offset[2],$inout2 aesdeclast @offset[3],$inout3 aesdeclast @offset[4],$inout4 aesdeclast @offset[5],$inout5 ret .cfi_endproc .size __ocb_decrypt6,.-__ocb_decrypt6 .type __ocb_decrypt4,\@abi-omnipotent .align 32 __ocb_decrypt4: .cfi_startproc pxor $rndkey0l,@offset[5] # offset_i ^ round[0] movdqu ($L_p,$i1),@offset[1] movdqa @offset[0],@offset[2] movdqu ($L_p,$i3),@offset[3] pxor @offset[5],@offset[0] pxor @offset[0],@offset[1] pxor @offset[0],$inout0 # input ^ round[0] ^ offset_i pxor @offset[1],@offset[2] pxor @offset[1],$inout1 pxor @offset[2],@offset[3] pxor @offset[2],$inout2 pxor @offset[3],$inout3 $movkey 32($key_),$rndkey0 pxor $rndkey0l,@offset[0] # offset_i ^ round[last] pxor $rndkey0l,@offset[1] pxor $rndkey0l,@offset[2] pxor $rndkey0l,@offset[3] aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 $movkey 48($key_),$rndkey1 aesdec $rndkey0,$inout0 aesdec $rndkey0,$inout1 aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 $movkey 64($key_),$rndkey0 jmp .Locb_dec_loop4 .align 32 .Locb_dec_loop4: aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesdec $rndkey0,$inout0 aesdec $rndkey0,$inout1 aesdec $rndkey0,$inout2 aesdec $rndkey0,$inout3 $movkey -16($key,%rax),$rndkey0 jnz .Locb_dec_loop4 aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 $movkey 16($key_),$rndkey1 mov %r10,%rax # restore twisted rounds aesdeclast @offset[0],$inout0 aesdeclast @offset[1],$inout1 aesdeclast @offset[2],$inout2 aesdeclast @offset[3],$inout3 ret .cfi_endproc .size __ocb_decrypt4,.-__ocb_decrypt4 .type __ocb_decrypt1,\@abi-omnipotent .align 32 __ocb_decrypt1: .cfi_startproc pxor @offset[5],$inout5 # offset_i pxor $rndkey0l,$inout5 # offset_i ^ round[0] pxor $inout5,$inout0 # input ^ round[0] ^ offset_i $movkey 32($key_),$rndkey0 aesdec $rndkey1,$inout0 $movkey 48($key_),$rndkey1 pxor $rndkey0l,$inout5 # offset_i ^ round[last] aesdec $rndkey0,$inout0 $movkey 64($key_),$rndkey0 jmp .Locb_dec_loop1 .align 32 .Locb_dec_loop1: aesdec $rndkey1,$inout0 $movkey ($key,%rax),$rndkey1 add \$32,%rax aesdec $rndkey0,$inout0 $movkey -16($key,%rax),$rndkey0 jnz .Locb_dec_loop1 aesdec $rndkey1,$inout0 $movkey 16($key_),$rndkey1 # redundant in tail mov %r10,%rax # restore twisted rounds aesdeclast $inout5,$inout0 ret .cfi_endproc .size __ocb_decrypt1,.-__ocb_decrypt1 ___ } }} ######################################################################## # void $PREFIX_cbc_encrypt (const void *inp, void *out, # size_t length, const AES_KEY *key, # unsigned char *ivp,const int enc); { my $frame_size = 0x10 + ($win64?0xa0:0); # used in decrypt my ($iv,$in0,$in1,$in2,$in3,$in4)=map("%xmm$_",(10..15)); $code.=<<___; .globl ${PREFIX}_cbc_encrypt .type ${PREFIX}_cbc_encrypt,\@function,6 .align 16 ${PREFIX}_cbc_encrypt: .cfi_startproc test $len,$len # check length jz .Lcbc_ret mov 240($key),$rnds_ # key->rounds mov $key,$key_ # backup $key test %r9d,%r9d # 6th argument jz .Lcbc_decrypt #--------------------------- CBC ENCRYPT ------------------------------# movups ($ivp),$inout0 # load iv as initial state mov $rnds_,$rounds cmp \$16,$len jb .Lcbc_enc_tail sub \$16,$len jmp .Lcbc_enc_loop .align 16 .Lcbc_enc_loop: movups ($inp),$inout1 # load input lea 16($inp),$inp #xorps $inout1,$inout0 ___ &aesni_generate1("enc",$key,$rounds,$inout0,$inout1); $code.=<<___; mov $rnds_,$rounds # restore $rounds mov $key_,$key # restore $key movups $inout0,0($out) # store output lea 16($out),$out sub \$16,$len jnc .Lcbc_enc_loop add \$16,$len jnz .Lcbc_enc_tail pxor $rndkey0,$rndkey0 # clear register bank pxor $rndkey1,$rndkey1 movups $inout0,($ivp) pxor $inout0,$inout0 pxor $inout1,$inout1 jmp .Lcbc_ret .Lcbc_enc_tail: mov $len,%rcx # zaps $key xchg $inp,$out # $inp is %rsi and $out is %rdi now .long 0x9066A4F3 # rep movsb mov \$16,%ecx # zero tail sub $len,%rcx xor %eax,%eax .long 0x9066AAF3 # rep stosb lea -16(%rdi),%rdi # rewind $out by 1 block mov $rnds_,$rounds # restore $rounds mov %rdi,%rsi # $inp and $out are the same mov $key_,$key # restore $key xor $len,$len # len=16 jmp .Lcbc_enc_loop # one more spin #--------------------------- CBC DECRYPT ------------------------------# .align 16 .Lcbc_decrypt: cmp \$16,$len jne .Lcbc_decrypt_bulk # handle single block without allocating stack frame, # useful in ciphertext stealing mode movdqu ($inp),$inout0 # load input movdqu ($ivp),$inout1 # load iv movdqa $inout0,$inout2 # future iv ___ &aesni_generate1("dec",$key,$rnds_); $code.=<<___; pxor $rndkey0,$rndkey0 # clear register bank pxor $rndkey1,$rndkey1 movdqu $inout2,($ivp) # store iv xorps $inout1,$inout0 # ^=iv pxor $inout1,$inout1 movups $inout0,($out) # store output pxor $inout0,$inout0 jmp .Lcbc_ret .align 16 .Lcbc_decrypt_bulk: lea (%rsp),%r11 # frame pointer .cfi_def_cfa_register %r11 push %rbp .cfi_push %rbp sub \$$frame_size,%rsp and \$-16,%rsp # Linux kernel stack can be incorrectly seeded ___ $code.=<<___ if ($win64); movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Lcbc_decrypt_body: ___ my $inp_=$key_="%rbp"; # reassign $key_ $code.=<<___; mov $key,$key_ # [re-]backup $key [after reassignment] movups ($ivp),$iv mov $rnds_,$rounds cmp \$0x50,$len jbe .Lcbc_dec_tail $movkey ($key),$rndkey0 movdqu 0x00($inp),$inout0 # load input movdqu 0x10($inp),$inout1 movdqa $inout0,$in0 movdqu 0x20($inp),$inout2 movdqa $inout1,$in1 movdqu 0x30($inp),$inout3 movdqa $inout2,$in2 movdqu 0x40($inp),$inout4 movdqa $inout3,$in3 movdqu 0x50($inp),$inout5 movdqa $inout4,$in4 mov OPENSSL_ia32cap_P+4(%rip),%r9d cmp \$0x70,$len jbe .Lcbc_dec_six_or_seven and \$`1<<26|1<<22`,%r9d # isolate XSAVE+MOVBE sub \$0x50,$len # $len is biased by -5*16 cmp \$`1<<22`,%r9d # check for MOVBE without XSAVE je .Lcbc_dec_loop6_enter # [which denotes Atom Silvermont] sub \$0x20,$len # $len is biased by -7*16 lea 0x70($key),$key # size optimization jmp .Lcbc_dec_loop8_enter .align 16 .Lcbc_dec_loop8: movups $inout7,($out) lea 0x10($out),$out .Lcbc_dec_loop8_enter: movdqu 0x60($inp),$inout6 pxor $rndkey0,$inout0 movdqu 0x70($inp),$inout7 pxor $rndkey0,$inout1 $movkey 0x10-0x70($key),$rndkey1 pxor $rndkey0,$inout2 mov \$-1,$inp_ cmp \$0x70,$len # is there at least 0x60 bytes ahead? pxor $rndkey0,$inout3 pxor $rndkey0,$inout4 pxor $rndkey0,$inout5 pxor $rndkey0,$inout6 aesdec $rndkey1,$inout0 pxor $rndkey0,$inout7 $movkey 0x20-0x70($key),$rndkey0 aesdec $rndkey1,$inout1 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 aesdec $rndkey1,$inout4 aesdec $rndkey1,$inout5 aesdec $rndkey1,$inout6 adc \$0,$inp_ and \$128,$inp_ aesdec $rndkey1,$inout7 add $inp,$inp_ $movkey 0x30-0x70($key),$rndkey1 ___ for($i=1;$i<12;$i++) { my $rndkeyx = ($i&1)?$rndkey0:$rndkey1; $code.=<<___ if ($i==7); cmp \$11,$rounds ___ $code.=<<___; aesdec $rndkeyx,$inout0 aesdec $rndkeyx,$inout1 aesdec $rndkeyx,$inout2 aesdec $rndkeyx,$inout3 aesdec $rndkeyx,$inout4 aesdec $rndkeyx,$inout5 aesdec $rndkeyx,$inout6 aesdec $rndkeyx,$inout7 $movkey `0x30+0x10*$i`-0x70($key),$rndkeyx ___ $code.=<<___ if ($i<6 || (!($i&1) && $i>7)); nop ___ $code.=<<___ if ($i==7); jb .Lcbc_dec_done ___ $code.=<<___ if ($i==9); je .Lcbc_dec_done ___ $code.=<<___ if ($i==11); jmp .Lcbc_dec_done ___ } $code.=<<___; .align 16 .Lcbc_dec_done: aesdec $rndkey1,$inout0 aesdec $rndkey1,$inout1 pxor $rndkey0,$iv pxor $rndkey0,$in0 aesdec $rndkey1,$inout2 aesdec $rndkey1,$inout3 pxor $rndkey0,$in1 pxor $rndkey0,$in2 aesdec $rndkey1,$inout4 aesdec $rndkey1,$inout5 pxor $rndkey0,$in3 pxor $rndkey0,$in4 aesdec $rndkey1,$inout6 aesdec $rndkey1,$inout7 movdqu 0x50($inp),$rndkey1 aesdeclast $iv,$inout0 movdqu 0x60($inp),$iv # borrow $iv pxor $rndkey0,$rndkey1 aesdeclast $in0,$inout1 pxor $rndkey0,$iv movdqu 0x70($inp),$rndkey0 # next IV aesdeclast $in1,$inout2 lea 0x80($inp),$inp movdqu 0x00($inp_),$in0 aesdeclast $in2,$inout3 aesdeclast $in3,$inout4 movdqu 0x10($inp_),$in1 movdqu 0x20($inp_),$in2 aesdeclast $in4,$inout5 aesdeclast $rndkey1,$inout6 movdqu 0x30($inp_),$in3 movdqu 0x40($inp_),$in4 aesdeclast $iv,$inout7 movdqa $rndkey0,$iv # return $iv movdqu 0x50($inp_),$rndkey1 $movkey -0x70($key),$rndkey0 movups $inout0,($out) # store output movdqa $in0,$inout0 movups $inout1,0x10($out) movdqa $in1,$inout1 movups $inout2,0x20($out) movdqa $in2,$inout2 movups $inout3,0x30($out) movdqa $in3,$inout3 movups $inout4,0x40($out) movdqa $in4,$inout4 movups $inout5,0x50($out) movdqa $rndkey1,$inout5 movups $inout6,0x60($out) lea 0x70($out),$out sub \$0x80,$len ja .Lcbc_dec_loop8 movaps $inout7,$inout0 lea -0x70($key),$key add \$0x70,$len jle .Lcbc_dec_clear_tail_collected movups $inout7,($out) lea 0x10($out),$out cmp \$0x50,$len jbe .Lcbc_dec_tail movaps $in0,$inout0 .Lcbc_dec_six_or_seven: cmp \$0x60,$len ja .Lcbc_dec_seven movaps $inout5,$inout6 call _aesni_decrypt6 pxor $iv,$inout0 # ^= IV movaps $inout6,$iv pxor $in0,$inout1 movdqu $inout0,($out) pxor $in1,$inout2 movdqu $inout1,0x10($out) pxor $inout1,$inout1 # clear register bank pxor $in2,$inout3 movdqu $inout2,0x20($out) pxor $inout2,$inout2 pxor $in3,$inout4 movdqu $inout3,0x30($out) pxor $inout3,$inout3 pxor $in4,$inout5 movdqu $inout4,0x40($out) pxor $inout4,$inout4 lea 0x50($out),$out movdqa $inout5,$inout0 pxor $inout5,$inout5 jmp .Lcbc_dec_tail_collected .align 16 .Lcbc_dec_seven: movups 0x60($inp),$inout6 xorps $inout7,$inout7 call _aesni_decrypt8 movups 0x50($inp),$inout7 pxor $iv,$inout0 # ^= IV movups 0x60($inp),$iv pxor $in0,$inout1 movdqu $inout0,($out) pxor $in1,$inout2 movdqu $inout1,0x10($out) pxor $inout1,$inout1 # clear register bank pxor $in2,$inout3 movdqu $inout2,0x20($out) pxor $inout2,$inout2 pxor $in3,$inout4 movdqu $inout3,0x30($out) pxor $inout3,$inout3 pxor $in4,$inout5 movdqu $inout4,0x40($out) pxor $inout4,$inout4 pxor $inout7,$inout6 movdqu $inout5,0x50($out) pxor $inout5,$inout5 lea 0x60($out),$out movdqa $inout6,$inout0 pxor $inout6,$inout6 pxor $inout7,$inout7 jmp .Lcbc_dec_tail_collected .align 16 .Lcbc_dec_loop6: movups $inout5,($out) lea 0x10($out),$out movdqu 0x00($inp),$inout0 # load input movdqu 0x10($inp),$inout1 movdqa $inout0,$in0 movdqu 0x20($inp),$inout2 movdqa $inout1,$in1 movdqu 0x30($inp),$inout3 movdqa $inout2,$in2 movdqu 0x40($inp),$inout4 movdqa $inout3,$in3 movdqu 0x50($inp),$inout5 movdqa $inout4,$in4 .Lcbc_dec_loop6_enter: lea 0x60($inp),$inp movdqa $inout5,$inout6 call _aesni_decrypt6 pxor $iv,$inout0 # ^= IV movdqa $inout6,$iv pxor $in0,$inout1 movdqu $inout0,($out) pxor $in1,$inout2 movdqu $inout1,0x10($out) pxor $in2,$inout3 movdqu $inout2,0x20($out) pxor $in3,$inout4 mov $key_,$key movdqu $inout3,0x30($out) pxor $in4,$inout5 mov $rnds_,$rounds movdqu $inout4,0x40($out) lea 0x50($out),$out sub \$0x60,$len ja .Lcbc_dec_loop6 movdqa $inout5,$inout0 add \$0x50,$len jle .Lcbc_dec_clear_tail_collected movups $inout5,($out) lea 0x10($out),$out .Lcbc_dec_tail: movups ($inp),$inout0 sub \$0x10,$len jbe .Lcbc_dec_one # $len is 1*16 or less movups 0x10($inp),$inout1 movaps $inout0,$in0 sub \$0x10,$len jbe .Lcbc_dec_two # $len is 2*16 or less movups 0x20($inp),$inout2 movaps $inout1,$in1 sub \$0x10,$len jbe .Lcbc_dec_three # $len is 3*16 or less movups 0x30($inp),$inout3 movaps $inout2,$in2 sub \$0x10,$len jbe .Lcbc_dec_four # $len is 4*16 or less movups 0x40($inp),$inout4 # $len is 5*16 or less movaps $inout3,$in3 movaps $inout4,$in4 xorps $inout5,$inout5 call _aesni_decrypt6 pxor $iv,$inout0 movaps $in4,$iv pxor $in0,$inout1 movdqu $inout0,($out) pxor $in1,$inout2 movdqu $inout1,0x10($out) pxor $inout1,$inout1 # clear register bank pxor $in2,$inout3 movdqu $inout2,0x20($out) pxor $inout2,$inout2 pxor $in3,$inout4 movdqu $inout3,0x30($out) pxor $inout3,$inout3 lea 0x40($out),$out movdqa $inout4,$inout0 pxor $inout4,$inout4 pxor $inout5,$inout5 sub \$0x10,$len jmp .Lcbc_dec_tail_collected .align 16 .Lcbc_dec_one: movaps $inout0,$in0 ___ &aesni_generate1("dec",$key,$rounds); $code.=<<___; xorps $iv,$inout0 movaps $in0,$iv jmp .Lcbc_dec_tail_collected .align 16 .Lcbc_dec_two: movaps $inout1,$in1 call _aesni_decrypt2 pxor $iv,$inout0 movaps $in1,$iv pxor $in0,$inout1 movdqu $inout0,($out) movdqa $inout1,$inout0 pxor $inout1,$inout1 # clear register bank lea 0x10($out),$out jmp .Lcbc_dec_tail_collected .align 16 .Lcbc_dec_three: movaps $inout2,$in2 call _aesni_decrypt3 pxor $iv,$inout0 movaps $in2,$iv pxor $in0,$inout1 movdqu $inout0,($out) pxor $in1,$inout2 movdqu $inout1,0x10($out) pxor $inout1,$inout1 # clear register bank movdqa $inout2,$inout0 pxor $inout2,$inout2 lea 0x20($out),$out jmp .Lcbc_dec_tail_collected .align 16 .Lcbc_dec_four: movaps $inout3,$in3 call _aesni_decrypt4 pxor $iv,$inout0 movaps $in3,$iv pxor $in0,$inout1 movdqu $inout0,($out) pxor $in1,$inout2 movdqu $inout1,0x10($out) pxor $inout1,$inout1 # clear register bank pxor $in2,$inout3 movdqu $inout2,0x20($out) pxor $inout2,$inout2 movdqa $inout3,$inout0 pxor $inout3,$inout3 lea 0x30($out),$out jmp .Lcbc_dec_tail_collected .align 16 .Lcbc_dec_clear_tail_collected: pxor $inout1,$inout1 # clear register bank pxor $inout2,$inout2 pxor $inout3,$inout3 ___ $code.=<<___ if (!$win64); pxor $inout4,$inout4 # %xmm6..9 pxor $inout5,$inout5 pxor $inout6,$inout6 pxor $inout7,$inout7 ___ $code.=<<___; .Lcbc_dec_tail_collected: movups $iv,($ivp) and \$15,$len jnz .Lcbc_dec_tail_partial movups $inout0,($out) pxor $inout0,$inout0 jmp .Lcbc_dec_ret .align 16 .Lcbc_dec_tail_partial: movaps $inout0,(%rsp) pxor $inout0,$inout0 mov \$16,%rcx mov $out,%rdi sub $len,%rcx lea (%rsp),%rsi .long 0x9066A4F3 # rep movsb movdqa $inout0,(%rsp) .Lcbc_dec_ret: xorps $rndkey0,$rndkey0 # %xmm0 pxor $rndkey1,$rndkey1 ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps %xmm0,0x10(%rsp) # clear stack movaps 0x20(%rsp),%xmm7 movaps %xmm0,0x20(%rsp) movaps 0x30(%rsp),%xmm8 movaps %xmm0,0x30(%rsp) movaps 0x40(%rsp),%xmm9 movaps %xmm0,0x40(%rsp) movaps 0x50(%rsp),%xmm10 movaps %xmm0,0x50(%rsp) movaps 0x60(%rsp),%xmm11 movaps %xmm0,0x60(%rsp) movaps 0x70(%rsp),%xmm12 movaps %xmm0,0x70(%rsp) movaps 0x80(%rsp),%xmm13 movaps %xmm0,0x80(%rsp) movaps 0x90(%rsp),%xmm14 movaps %xmm0,0x90(%rsp) movaps 0xa0(%rsp),%xmm15 movaps %xmm0,0xa0(%rsp) ___ $code.=<<___; mov -8(%r11),%rbp .cfi_restore %rbp lea (%r11),%rsp .cfi_def_cfa_register %rsp .Lcbc_ret: ret .cfi_endproc .size ${PREFIX}_cbc_encrypt,.-${PREFIX}_cbc_encrypt ___ } # int ${PREFIX}_set_decrypt_key(const unsigned char *inp, # int bits, AES_KEY *key) # # input: $inp user-supplied key # $bits $inp length in bits # $key pointer to key schedule # output: %eax 0 denoting success, -1 or -2 - failure (see C) # *$key key schedule # { my ($inp,$bits,$key) = @_4args; $bits =~ s/%r/%e/; $code.=<<___; .globl ${PREFIX}_set_decrypt_key .type ${PREFIX}_set_decrypt_key,\@abi-omnipotent .align 16 ${PREFIX}_set_decrypt_key: .cfi_startproc .byte 0x48,0x83,0xEC,0x08 # sub rsp,8 .cfi_adjust_cfa_offset 8 call __aesni_set_encrypt_key shl \$4,$bits # rounds-1 after _aesni_set_encrypt_key test %eax,%eax jnz .Ldec_key_ret lea 16($key,$bits),$inp # points at the end of key schedule $movkey ($key),%xmm0 # just swap $movkey ($inp),%xmm1 $movkey %xmm0,($inp) $movkey %xmm1,($key) lea 16($key),$key lea -16($inp),$inp .Ldec_key_inverse: $movkey ($key),%xmm0 # swap and inverse $movkey ($inp),%xmm1 aesimc %xmm0,%xmm0 aesimc %xmm1,%xmm1 lea 16($key),$key lea -16($inp),$inp $movkey %xmm0,16($inp) $movkey %xmm1,-16($key) cmp $key,$inp ja .Ldec_key_inverse $movkey ($key),%xmm0 # inverse middle aesimc %xmm0,%xmm0 pxor %xmm1,%xmm1 $movkey %xmm0,($inp) pxor %xmm0,%xmm0 .Ldec_key_ret: add \$8,%rsp .cfi_adjust_cfa_offset -8 ret .cfi_endproc .LSEH_end_set_decrypt_key: .size ${PREFIX}_set_decrypt_key,.-${PREFIX}_set_decrypt_key ___ # This is based on submission from Intel by # Huang Ying # Vinodh Gopal # Kahraman Akdemir # # Aggressively optimized in respect to aeskeygenassist's critical path # and is contained in %xmm0-5 to meet Win64 ABI requirement. # # int ${PREFIX}_set_encrypt_key(const unsigned char *inp, # int bits, AES_KEY * const key); # # input: $inp user-supplied key # $bits $inp length in bits # $key pointer to key schedule # output: %eax 0 denoting success, -1 or -2 - failure (see C) # $bits rounds-1 (used in aesni_set_decrypt_key) # *$key key schedule # $key pointer to key schedule (used in # aesni_set_decrypt_key) # # Subroutine is frame-less, which means that only volatile registers # are used. Note that it's declared "abi-omnipotent", which means that # amount of volatile registers is smaller on Windows. # $code.=<<___; .globl ${PREFIX}_set_encrypt_key .type ${PREFIX}_set_encrypt_key,\@abi-omnipotent .align 16 ${PREFIX}_set_encrypt_key: __aesni_set_encrypt_key: .cfi_startproc .byte 0x48,0x83,0xEC,0x08 # sub rsp,8 .cfi_adjust_cfa_offset 8 mov \$-1,%rax test $inp,$inp jz .Lenc_key_ret test $key,$key jz .Lenc_key_ret mov \$`1<<28|1<<11`,%r10d # AVX and XOP bits movups ($inp),%xmm0 # pull first 128 bits of *userKey xorps %xmm4,%xmm4 # low dword of xmm4 is assumed 0 and OPENSSL_ia32cap_P+4(%rip),%r10d lea 16($key),%rax # %rax is used as modifiable copy of $key cmp \$256,$bits je .L14rounds cmp \$192,$bits je .L12rounds cmp \$128,$bits jne .Lbad_keybits .L10rounds: mov \$9,$bits # 10 rounds for 128-bit key cmp \$`1<<28`,%r10d # AVX, bit no XOP je .L10rounds_alt $movkey %xmm0,($key) # round 0 aeskeygenassist \$0x1,%xmm0,%xmm1 # round 1 call .Lkey_expansion_128_cold aeskeygenassist \$0x2,%xmm0,%xmm1 # round 2 call .Lkey_expansion_128 aeskeygenassist \$0x4,%xmm0,%xmm1 # round 3 call .Lkey_expansion_128 aeskeygenassist \$0x8,%xmm0,%xmm1 # round 4 call .Lkey_expansion_128 aeskeygenassist \$0x10,%xmm0,%xmm1 # round 5 call .Lkey_expansion_128 aeskeygenassist \$0x20,%xmm0,%xmm1 # round 6 call .Lkey_expansion_128 aeskeygenassist \$0x40,%xmm0,%xmm1 # round 7 call .Lkey_expansion_128 aeskeygenassist \$0x80,%xmm0,%xmm1 # round 8 call .Lkey_expansion_128 aeskeygenassist \$0x1b,%xmm0,%xmm1 # round 9 call .Lkey_expansion_128 aeskeygenassist \$0x36,%xmm0,%xmm1 # round 10 call .Lkey_expansion_128 $movkey %xmm0,(%rax) mov $bits,80(%rax) # 240(%rdx) xor %eax,%eax jmp .Lenc_key_ret .align 16 .L10rounds_alt: movdqa .Lkey_rotate(%rip),%xmm5 mov \$8,%r10d movdqa .Lkey_rcon1(%rip),%xmm4 movdqa %xmm0,%xmm2 movdqu %xmm0,($key) jmp .Loop_key128 .align 16 .Loop_key128: pshufb %xmm5,%xmm0 aesenclast %xmm4,%xmm0 pslld \$1,%xmm4 lea 16(%rax),%rax movdqa %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm3,%xmm2 pxor %xmm2,%xmm0 movdqu %xmm0,-16(%rax) movdqa %xmm0,%xmm2 dec %r10d jnz .Loop_key128 movdqa .Lkey_rcon1b(%rip),%xmm4 pshufb %xmm5,%xmm0 aesenclast %xmm4,%xmm0 pslld \$1,%xmm4 movdqa %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm3,%xmm2 pxor %xmm2,%xmm0 movdqu %xmm0,(%rax) movdqa %xmm0,%xmm2 pshufb %xmm5,%xmm0 aesenclast %xmm4,%xmm0 movdqa %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm2,%xmm3 pslldq \$4,%xmm2 pxor %xmm3,%xmm2 pxor %xmm2,%xmm0 movdqu %xmm0,16(%rax) mov $bits,96(%rax) # 240($key) xor %eax,%eax jmp .Lenc_key_ret .align 16 .L12rounds: movq 16($inp),%xmm2 # remaining 1/3 of *userKey mov \$11,$bits # 12 rounds for 192 cmp \$`1<<28`,%r10d # AVX, but no XOP je .L12rounds_alt $movkey %xmm0,($key) # round 0 aeskeygenassist \$0x1,%xmm2,%xmm1 # round 1,2 call .Lkey_expansion_192a_cold aeskeygenassist \$0x2,%xmm2,%xmm1 # round 2,3 call .Lkey_expansion_192b aeskeygenassist \$0x4,%xmm2,%xmm1 # round 4,5 call .Lkey_expansion_192a aeskeygenassist \$0x8,%xmm2,%xmm1 # round 5,6 call .Lkey_expansion_192b aeskeygenassist \$0x10,%xmm2,%xmm1 # round 7,8 call .Lkey_expansion_192a aeskeygenassist \$0x20,%xmm2,%xmm1 # round 8,9 call .Lkey_expansion_192b aeskeygenassist \$0x40,%xmm2,%xmm1 # round 10,11 call .Lkey_expansion_192a aeskeygenassist \$0x80,%xmm2,%xmm1 # round 11,12 call .Lkey_expansion_192b $movkey %xmm0,(%rax) mov $bits,48(%rax) # 240(%rdx) xor %rax, %rax jmp .Lenc_key_ret .align 16 .L12rounds_alt: movdqa .Lkey_rotate192(%rip),%xmm5 movdqa .Lkey_rcon1(%rip),%xmm4 mov \$8,%r10d movdqu %xmm0,($key) jmp .Loop_key192 .align 16 .Loop_key192: movq %xmm2,0(%rax) movdqa %xmm2,%xmm1 pshufb %xmm5,%xmm2 aesenclast %xmm4,%xmm2 pslld \$1, %xmm4 lea 24(%rax),%rax movdqa %xmm0,%xmm3 pslldq \$4,%xmm0 pxor %xmm0,%xmm3 pslldq \$4,%xmm0 pxor %xmm0,%xmm3 pslldq \$4,%xmm0 pxor %xmm3,%xmm0 pshufd \$0xff,%xmm0,%xmm3 pxor %xmm1,%xmm3 pslldq \$4,%xmm1 pxor %xmm1,%xmm3 pxor %xmm2,%xmm0 pxor %xmm3,%xmm2 movdqu %xmm0,-16(%rax) dec %r10d jnz .Loop_key192 mov $bits,32(%rax) # 240($key) xor %eax,%eax jmp .Lenc_key_ret .align 16 .L14rounds: movups 16($inp),%xmm2 # remaining half of *userKey mov \$13,$bits # 14 rounds for 256 lea 16(%rax),%rax cmp \$`1<<28`,%r10d # AVX, but no XOP je .L14rounds_alt $movkey %xmm0,($key) # round 0 $movkey %xmm2,16($key) # round 1 aeskeygenassist \$0x1,%xmm2,%xmm1 # round 2 call .Lkey_expansion_256a_cold aeskeygenassist \$0x1,%xmm0,%xmm1 # round 3 call .Lkey_expansion_256b aeskeygenassist \$0x2,%xmm2,%xmm1 # round 4 call .Lkey_expansion_256a aeskeygenassist \$0x2,%xmm0,%xmm1 # round 5 call .Lkey_expansion_256b aeskeygenassist \$0x4,%xmm2,%xmm1 # round 6 call .Lkey_expansion_256a aeskeygenassist \$0x4,%xmm0,%xmm1 # round 7 call .Lkey_expansion_256b aeskeygenassist \$0x8,%xmm2,%xmm1 # round 8 call .Lkey_expansion_256a aeskeygenassist \$0x8,%xmm0,%xmm1 # round 9 call .Lkey_expansion_256b aeskeygenassist \$0x10,%xmm2,%xmm1 # round 10 call .Lkey_expansion_256a aeskeygenassist \$0x10,%xmm0,%xmm1 # round 11 call .Lkey_expansion_256b aeskeygenassist \$0x20,%xmm2,%xmm1 # round 12 call .Lkey_expansion_256a aeskeygenassist \$0x20,%xmm0,%xmm1 # round 13 call .Lkey_expansion_256b aeskeygenassist \$0x40,%xmm2,%xmm1 # round 14 call .Lkey_expansion_256a $movkey %xmm0,(%rax) mov $bits,16(%rax) # 240(%rdx) xor %rax,%rax jmp .Lenc_key_ret .align 16 .L14rounds_alt: movdqa .Lkey_rotate(%rip),%xmm5 movdqa .Lkey_rcon1(%rip),%xmm4 mov \$7,%r10d movdqu %xmm0,0($key) movdqa %xmm2,%xmm1 movdqu %xmm2,16($key) jmp .Loop_key256 .align 16 .Loop_key256: pshufb %xmm5,%xmm2 aesenclast %xmm4,%xmm2 movdqa %xmm0,%xmm3 pslldq \$4,%xmm0 pxor %xmm0,%xmm3 pslldq \$4,%xmm0 pxor %xmm0,%xmm3 pslldq \$4,%xmm0 pxor %xmm3,%xmm0 pslld \$1,%xmm4 pxor %xmm2,%xmm0 movdqu %xmm0,(%rax) dec %r10d jz .Ldone_key256 pshufd \$0xff,%xmm0,%xmm2 pxor %xmm3,%xmm3 aesenclast %xmm3,%xmm2 movdqa %xmm1,%xmm3 pslldq \$4,%xmm1 pxor %xmm1,%xmm3 pslldq \$4,%xmm1 pxor %xmm1,%xmm3 pslldq \$4,%xmm1 pxor %xmm3,%xmm1 pxor %xmm1,%xmm2 movdqu %xmm2,16(%rax) lea 32(%rax),%rax movdqa %xmm2,%xmm1 jmp .Loop_key256 .Ldone_key256: mov $bits,16(%rax) # 240($key) xor %eax,%eax jmp .Lenc_key_ret .align 16 .Lbad_keybits: mov \$-2,%rax .Lenc_key_ret: pxor %xmm0,%xmm0 pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 add \$8,%rsp .cfi_adjust_cfa_offset -8 ret .LSEH_end_set_encrypt_key: .align 16 .Lkey_expansion_128: $movkey %xmm0,(%rax) lea 16(%rax),%rax .Lkey_expansion_128_cold: shufps \$0b00010000,%xmm0,%xmm4 xorps %xmm4, %xmm0 shufps \$0b10001100,%xmm0,%xmm4 xorps %xmm4, %xmm0 shufps \$0b11111111,%xmm1,%xmm1 # critical path xorps %xmm1,%xmm0 ret .align 16 .Lkey_expansion_192a: $movkey %xmm0,(%rax) lea 16(%rax),%rax .Lkey_expansion_192a_cold: movaps %xmm2, %xmm5 .Lkey_expansion_192b_warm: shufps \$0b00010000,%xmm0,%xmm4 movdqa %xmm2,%xmm3 xorps %xmm4,%xmm0 shufps \$0b10001100,%xmm0,%xmm4 pslldq \$4,%xmm3 xorps %xmm4,%xmm0 pshufd \$0b01010101,%xmm1,%xmm1 # critical path pxor %xmm3,%xmm2 pxor %xmm1,%xmm0 pshufd \$0b11111111,%xmm0,%xmm3 pxor %xmm3,%xmm2 ret .align 16 .Lkey_expansion_192b: movaps %xmm0,%xmm3 shufps \$0b01000100,%xmm0,%xmm5 $movkey %xmm5,(%rax) shufps \$0b01001110,%xmm2,%xmm3 $movkey %xmm3,16(%rax) lea 32(%rax),%rax jmp .Lkey_expansion_192b_warm .align 16 .Lkey_expansion_256a: $movkey %xmm2,(%rax) lea 16(%rax),%rax .Lkey_expansion_256a_cold: shufps \$0b00010000,%xmm0,%xmm4 xorps %xmm4,%xmm0 shufps \$0b10001100,%xmm0,%xmm4 xorps %xmm4,%xmm0 shufps \$0b11111111,%xmm1,%xmm1 # critical path xorps %xmm1,%xmm0 ret .align 16 .Lkey_expansion_256b: $movkey %xmm0,(%rax) lea 16(%rax),%rax shufps \$0b00010000,%xmm2,%xmm4 xorps %xmm4,%xmm2 shufps \$0b10001100,%xmm2,%xmm4 xorps %xmm4,%xmm2 shufps \$0b10101010,%xmm1,%xmm1 # critical path xorps %xmm1,%xmm2 ret .cfi_endproc .size ${PREFIX}_set_encrypt_key,.-${PREFIX}_set_encrypt_key .size __aesni_set_encrypt_key,.-__aesni_set_encrypt_key ___ } $code.=<<___; .align 64 .Lbswap_mask: .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 .Lincrement32: .long 6,6,6,0 .Lincrement64: .long 1,0,0,0 .Lxts_magic: .long 0x87,0,1,0 .Lincrement1: .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 .Lkey_rotate: .long 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d .Lkey_rotate192: .long 0x04070605,0x04070605,0x04070605,0x04070605 .Lkey_rcon1: .long 1,1,1,1 .Lkey_rcon1b: .long 0x1b,0x1b,0x1b,0x1b .asciz "AES for Intel AES-NI, CRYPTOGAMS by " .align 64 ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind ___ $code.=<<___ if ($PREFIX eq "aesni"); .type ecb_ccm64_se_handler,\@abi-omnipotent .align 16 ecb_ccm64_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail lea 0(%rax),%rsi # %xmm save area lea 512($context),%rdi # &context.Xmm6 mov \$8,%ecx # 4*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq lea 0x58(%rax),%rax # adjust stack pointer jmp .Lcommon_seh_tail .size ecb_ccm64_se_handler,.-ecb_ccm64_se_handler .type ctr_xts_se_handler,\@abi-omnipotent .align 16 ctr_xts_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 208($context),%rax # pull context->R11 lea -0xa8(%rax),%rsi # %xmm save area lea 512($context),%rdi # & context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq mov -8(%rax),%rbp # restore saved %rbp mov %rbp,160($context) # restore context->Rbp jmp .Lcommon_seh_tail .size ctr_xts_se_handler,.-ctr_xts_se_handler .type ocb_se_handler,\@abi-omnipotent .align 16 ocb_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRip>=epilogue label jae .Lcommon_seh_tail mov 8(%r11),%r10d # HandlerData[2] lea (%rsi,%r10),%r10 cmp %r10,%rbx # context->Rip>=pop label jae .Locb_no_xmm mov 152($context),%rax # pull context->Rsp lea (%rax),%rsi # %xmm save area lea 512($context),%rdi # & context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq lea 0xa0+0x28(%rax),%rax .Locb_no_xmm: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 jmp .Lcommon_seh_tail .size ocb_se_handler,.-ocb_se_handler ___ $code.=<<___; .type cbc_se_handler,\@abi-omnipotent .align 16 cbc_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 152($context),%rax # pull context->Rsp mov 248($context),%rbx # pull context->Rip lea .Lcbc_decrypt_bulk(%rip),%r10 cmp %r10,%rbx # context->Rip<"prologue" label jb .Lcommon_seh_tail mov 120($context),%rax # pull context->Rax lea .Lcbc_decrypt_body(%rip),%r10 cmp %r10,%rbx # context->RipRsp lea .Lcbc_ret(%rip),%r10 cmp %r10,%rbx # context->Rip>="epilogue" label jae .Lcommon_seh_tail lea 16(%rax),%rsi # %xmm save area lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq mov 208($context),%rax # pull context->R11 mov -8(%rax),%rbp # restore saved %rbp mov %rbp,160($context) # restore context->Rbp .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size cbc_se_handler,.-cbc_se_handler .section .pdata .align 4 ___ $code.=<<___ if ($PREFIX eq "aesni"); .rva .LSEH_begin_aesni_ecb_encrypt .rva .LSEH_end_aesni_ecb_encrypt .rva .LSEH_info_ecb .rva .LSEH_begin_aesni_ccm64_encrypt_blocks .rva .LSEH_end_aesni_ccm64_encrypt_blocks .rva .LSEH_info_ccm64_enc .rva .LSEH_begin_aesni_ccm64_decrypt_blocks .rva .LSEH_end_aesni_ccm64_decrypt_blocks .rva .LSEH_info_ccm64_dec .rva .LSEH_begin_aesni_ctr32_encrypt_blocks .rva .LSEH_end_aesni_ctr32_encrypt_blocks .rva .LSEH_info_ctr32 .rva .LSEH_begin_aesni_xts_encrypt .rva .LSEH_end_aesni_xts_encrypt .rva .LSEH_info_xts_enc .rva .LSEH_begin_aesni_xts_decrypt .rva .LSEH_end_aesni_xts_decrypt .rva .LSEH_info_xts_dec .rva .LSEH_begin_aesni_ocb_encrypt .rva .LSEH_end_aesni_ocb_encrypt .rva .LSEH_info_ocb_enc .rva .LSEH_begin_aesni_ocb_decrypt .rva .LSEH_end_aesni_ocb_decrypt .rva .LSEH_info_ocb_dec ___ $code.=<<___; .rva .LSEH_begin_${PREFIX}_cbc_encrypt .rva .LSEH_end_${PREFIX}_cbc_encrypt .rva .LSEH_info_cbc .rva ${PREFIX}_set_decrypt_key .rva .LSEH_end_set_decrypt_key .rva .LSEH_info_key .rva ${PREFIX}_set_encrypt_key .rva .LSEH_end_set_encrypt_key .rva .LSEH_info_key .section .xdata .align 8 ___ $code.=<<___ if ($PREFIX eq "aesni"); .LSEH_info_ecb: .byte 9,0,0,0 .rva ecb_ccm64_se_handler .rva .Lecb_enc_body,.Lecb_enc_ret # HandlerData[] .LSEH_info_ccm64_enc: .byte 9,0,0,0 .rva ecb_ccm64_se_handler .rva .Lccm64_enc_body,.Lccm64_enc_ret # HandlerData[] .LSEH_info_ccm64_dec: .byte 9,0,0,0 .rva ecb_ccm64_se_handler .rva .Lccm64_dec_body,.Lccm64_dec_ret # HandlerData[] .LSEH_info_ctr32: .byte 9,0,0,0 .rva ctr_xts_se_handler .rva .Lctr32_body,.Lctr32_epilogue # HandlerData[] .LSEH_info_xts_enc: .byte 9,0,0,0 .rva ctr_xts_se_handler .rva .Lxts_enc_body,.Lxts_enc_epilogue # HandlerData[] .LSEH_info_xts_dec: .byte 9,0,0,0 .rva ctr_xts_se_handler .rva .Lxts_dec_body,.Lxts_dec_epilogue # HandlerData[] .LSEH_info_ocb_enc: .byte 9,0,0,0 .rva ocb_se_handler .rva .Locb_enc_body,.Locb_enc_epilogue # HandlerData[] .rva .Locb_enc_pop .long 0 .LSEH_info_ocb_dec: .byte 9,0,0,0 .rva ocb_se_handler .rva .Locb_dec_body,.Locb_dec_epilogue # HandlerData[] .rva .Locb_dec_pop .long 0 ___ $code.=<<___; .LSEH_info_cbc: .byte 9,0,0,0 .rva cbc_se_handler .LSEH_info_key: .byte 0x01,0x04,0x01,0x00 .byte 0x04,0x02,0x00,0x00 # sub rsp,8 ___ } sub rex { local *opcode=shift; my ($dst,$src)=@_; my $rex=0; $rex|=0x04 if($dst>=8); $rex|=0x01 if($src>=8); push @opcode,$rex|0x40 if($rex); } sub aesni { my $line=shift; my @opcode=(0x66); if ($line=~/(aeskeygenassist)\s+\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { rex(\@opcode,$4,$3); push @opcode,0x0f,0x3a,0xdf; push @opcode,0xc0|($3&7)|(($4&7)<<3); # ModR/M my $c=$2; push @opcode,$c=~/^0/?oct($c):$c; return ".byte\t".join(',',@opcode); } elsif ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) { my %opcodelet = ( "aesimc" => 0xdb, "aesenc" => 0xdc, "aesenclast" => 0xdd, "aesdec" => 0xde, "aesdeclast" => 0xdf ); return undef if (!defined($opcodelet{$1})); rex(\@opcode,$3,$2); push @opcode,0x0f,0x38,$opcodelet{$1}; push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } elsif ($line=~/(aes[a-z]+)\s+([0x1-9a-fA-F]*)\(%rsp\),\s*%xmm([0-9]+)/) { my %opcodelet = ( "aesenc" => 0xdc, "aesenclast" => 0xdd, "aesdec" => 0xde, "aesdeclast" => 0xdf ); return undef if (!defined($opcodelet{$1})); my $off = $2; push @opcode,0x44 if ($3>=8); push @opcode,0x0f,0x38,$opcodelet{$1}; push @opcode,0x44|(($3&7)<<3),0x24; # ModR/M push @opcode,($off=~/^0/?oct($off):$off)&0xff; return ".byte\t".join(',',@opcode); } return $line; } sub movbe { ".byte 0x0f,0x38,0xf1,0x44,0x24,".shift; } $code =~ s/\`([^\`]*)\`/eval($1)/gem; $code =~ s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/gem; #$code =~ s/\bmovbe\s+%eax/bswap %eax; mov %eax/gm; # debugging artefact $code =~ s/\bmovbe\s+%eax,\s*([0-9]+)\(%rsp\)/movbe($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aesp8-ppc.pl000077500000000000000000002662761364063235100204010ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements support for AES instructions as per PowerISA # specification version 2.07, first implemented by POWER8 processor. # The module is endian-agnostic in sense that it supports both big- # and little-endian cases. Data alignment in parallelizable modes is # handled with VSX loads and stores, which implies MSR.VSX flag being # set. It should also be noted that ISA specification doesn't prohibit # alignment exceptions for these instructions on page boundaries. # Initially alignment was handled in pure AltiVec/VMX way [when data # is aligned programmatically, which in turn guarantees exception- # free execution], but it turned to hamper performance when vcipher # instructions are interleaved. It's reckoned that eventual # misalignment penalties at page boundaries are in average lower # than additional overhead in pure AltiVec approach. # # May 2016 # # Add XTS subroutine, 9x on little- and 12x improvement on big-endian # systems were measured. # ###################################################################### # Current large-block performance in cycles per byte processed with # 128-bit key (less is better). # # CBC en-/decrypt CTR XTS # POWER8[le] 3.96/0.72 0.74 1.1 # POWER8[be] 3.75/0.65 0.66 1.0 # POWER9[le] 4.02/0.86 0.84 1.05 # POWER9[be] 3.99/0.78 0.79 0.97 $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; $UCMP ="cmpld"; $SHL ="sldi"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; $UCMP ="cmplw"; $SHL ="slwi"; } else { die "nonsense $flavour"; } $LITTLE_ENDIAN = ($flavour=~/le$/) ? $SIZE_T : 0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=8*$SIZE_T; $prefix="aes_p8"; $sp="r1"; $vrsave="r12"; ######################################################################### {{{ # Key setup procedures # my ($inp,$bits,$out,$ptr,$cnt,$rounds)=map("r$_",(3..8)); my ($zero,$in0,$in1,$key,$rcon,$mask,$tmp)=map("v$_",(0..6)); my ($stage,$outperm,$outmask,$outhead,$outtail)=map("v$_",(7..11)); $code.=<<___; .machine "any" .text .align 7 rcon: .long 0x01000000, 0x01000000, 0x01000000, 0x01000000 ?rev .long 0x1b000000, 0x1b000000, 0x1b000000, 0x1b000000 ?rev .long 0x0d0e0f0c, 0x0d0e0f0c, 0x0d0e0f0c, 0x0d0e0f0c ?rev .long 0,0,0,0 ?asis Lconsts: mflr r0 bcl 20,31,\$+4 mflr $ptr #vvvvv "distance between . and rcon addi $ptr,$ptr,-0x48 mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .asciz "AES for PowerISA 2.07, CRYPTOGAMS by " .globl .${prefix}_set_encrypt_key .align 5 .${prefix}_set_encrypt_key: Lset_encrypt_key: mflr r11 $PUSH r11,$LRSAVE($sp) li $ptr,-1 ${UCMP}i $inp,0 beq- Lenc_key_abort # if ($inp==0) return -1; ${UCMP}i $out,0 beq- Lenc_key_abort # if ($out==0) return -1; li $ptr,-2 cmpwi $bits,128 blt- Lenc_key_abort cmpwi $bits,256 bgt- Lenc_key_abort andi. r0,$bits,0x3f bne- Lenc_key_abort lis r0,0xfff0 mfspr $vrsave,256 mtspr 256,r0 bl Lconsts mtlr r11 neg r9,$inp lvx $in0,0,$inp addi $inp,$inp,15 # 15 is not typo lvsr $key,0,r9 # borrow $key li r8,0x20 cmpwi $bits,192 lvx $in1,0,$inp le?vspltisb $mask,0x0f # borrow $mask lvx $rcon,0,$ptr le?vxor $key,$key,$mask # adjust for byte swap lvx $mask,r8,$ptr addi $ptr,$ptr,0x10 vperm $in0,$in0,$in1,$key # align [and byte swap in LE] li $cnt,8 vxor $zero,$zero,$zero mtctr $cnt ?lvsr $outperm,0,$out vspltisb $outmask,-1 lvx $outhead,0,$out ?vperm $outmask,$zero,$outmask,$outperm blt Loop128 addi $inp,$inp,8 beq L192 addi $inp,$inp,8 b L256 .align 4 Loop128: vperm $key,$in0,$in0,$mask # rotate-n-splat vsldoi $tmp,$zero,$in0,12 # >>32 vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail vcipherlast $key,$key,$rcon stvx $stage,0,$out addi $out,$out,16 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vadduwm $rcon,$rcon,$rcon vxor $in0,$in0,$key bdnz Loop128 lvx $rcon,0,$ptr # last two round keys vperm $key,$in0,$in0,$mask # rotate-n-splat vsldoi $tmp,$zero,$in0,12 # >>32 vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail vcipherlast $key,$key,$rcon stvx $stage,0,$out addi $out,$out,16 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vadduwm $rcon,$rcon,$rcon vxor $in0,$in0,$key vperm $key,$in0,$in0,$mask # rotate-n-splat vsldoi $tmp,$zero,$in0,12 # >>32 vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail vcipherlast $key,$key,$rcon stvx $stage,0,$out addi $out,$out,16 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vxor $in0,$in0,$key vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail stvx $stage,0,$out addi $inp,$out,15 # 15 is not typo addi $out,$out,0x50 li $rounds,10 b Ldone .align 4 L192: lvx $tmp,0,$inp li $cnt,4 vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail stvx $stage,0,$out addi $out,$out,16 vperm $in1,$in1,$tmp,$key # align [and byte swap in LE] vspltisb $key,8 # borrow $key mtctr $cnt vsububm $mask,$mask,$key # adjust the mask Loop192: vperm $key,$in1,$in1,$mask # roate-n-splat vsldoi $tmp,$zero,$in0,12 # >>32 vcipherlast $key,$key,$rcon vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vsldoi $stage,$zero,$in1,8 vspltw $tmp,$in0,3 vxor $tmp,$tmp,$in1 vsldoi $in1,$zero,$in1,12 # >>32 vadduwm $rcon,$rcon,$rcon vxor $in1,$in1,$tmp vxor $in0,$in0,$key vxor $in1,$in1,$key vsldoi $stage,$stage,$in0,8 vperm $key,$in1,$in1,$mask # rotate-n-splat vsldoi $tmp,$zero,$in0,12 # >>32 vperm $outtail,$stage,$stage,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail vcipherlast $key,$key,$rcon stvx $stage,0,$out addi $out,$out,16 vsldoi $stage,$in0,$in1,8 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vperm $outtail,$stage,$stage,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp stvx $stage,0,$out addi $out,$out,16 vspltw $tmp,$in0,3 vxor $tmp,$tmp,$in1 vsldoi $in1,$zero,$in1,12 # >>32 vadduwm $rcon,$rcon,$rcon vxor $in1,$in1,$tmp vxor $in0,$in0,$key vxor $in1,$in1,$key vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail stvx $stage,0,$out addi $inp,$out,15 # 15 is not typo addi $out,$out,16 bdnz Loop192 li $rounds,12 addi $out,$out,0x20 b Ldone .align 4 L256: lvx $tmp,0,$inp li $cnt,7 li $rounds,14 vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail stvx $stage,0,$out addi $out,$out,16 vperm $in1,$in1,$tmp,$key # align [and byte swap in LE] mtctr $cnt Loop256: vperm $key,$in1,$in1,$mask # rotate-n-splat vsldoi $tmp,$zero,$in0,12 # >>32 vperm $outtail,$in1,$in1,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail vcipherlast $key,$key,$rcon stvx $stage,0,$out addi $out,$out,16 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in0,$in0,$tmp vadduwm $rcon,$rcon,$rcon vxor $in0,$in0,$key vperm $outtail,$in0,$in0,$outperm # rotate vsel $stage,$outhead,$outtail,$outmask vmr $outhead,$outtail stvx $stage,0,$out addi $inp,$out,15 # 15 is not typo addi $out,$out,16 bdz Ldone vspltw $key,$in0,3 # just splat vsldoi $tmp,$zero,$in1,12 # >>32 vsbox $key,$key vxor $in1,$in1,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in1,$in1,$tmp vsldoi $tmp,$zero,$tmp,12 # >>32 vxor $in1,$in1,$tmp vxor $in1,$in1,$key b Loop256 .align 4 Ldone: lvx $in1,0,$inp # redundant in aligned case vsel $in1,$outhead,$in1,$outmask stvx $in1,0,$inp li $ptr,0 mtspr 256,$vrsave stw $rounds,0($out) Lenc_key_abort: mr r3,$ptr blr .long 0 .byte 0,12,0x14,1,0,0,3,0 .long 0 .size .${prefix}_set_encrypt_key,.-.${prefix}_set_encrypt_key .globl .${prefix}_set_decrypt_key .align 5 .${prefix}_set_decrypt_key: $STU $sp,-$FRAME($sp) mflr r10 $PUSH r10,$FRAME+$LRSAVE($sp) bl Lset_encrypt_key mtlr r10 cmpwi r3,0 bne- Ldec_key_abort slwi $cnt,$rounds,4 subi $inp,$out,240 # first round key srwi $rounds,$rounds,1 add $out,$inp,$cnt # last round key mtctr $rounds Ldeckey: lwz r0, 0($inp) lwz r6, 4($inp) lwz r7, 8($inp) lwz r8, 12($inp) addi $inp,$inp,16 lwz r9, 0($out) lwz r10,4($out) lwz r11,8($out) lwz r12,12($out) stw r0, 0($out) stw r6, 4($out) stw r7, 8($out) stw r8, 12($out) subi $out,$out,16 stw r9, -16($inp) stw r10,-12($inp) stw r11,-8($inp) stw r12,-4($inp) bdnz Ldeckey xor r3,r3,r3 # return value Ldec_key_abort: addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,0,3,0 .long 0 .size .${prefix}_set_decrypt_key,.-.${prefix}_set_decrypt_key ___ }}} ######################################################################### {{{ # Single block en- and decrypt procedures # sub gen_block () { my $dir = shift; my $n = $dir eq "de" ? "n" : ""; my ($inp,$out,$key,$rounds,$idx)=map("r$_",(3..7)); $code.=<<___; .globl .${prefix}_${dir}crypt .align 5 .${prefix}_${dir}crypt: lwz $rounds,240($key) lis r0,0xfc00 mfspr $vrsave,256 li $idx,15 # 15 is not typo mtspr 256,r0 lvx v0,0,$inp neg r11,$out lvx v1,$idx,$inp lvsl v2,0,$inp # inpperm le?vspltisb v4,0x0f ?lvsl v3,0,r11 # outperm le?vxor v2,v2,v4 li $idx,16 vperm v0,v0,v1,v2 # align [and byte swap in LE] lvx v1,0,$key ?lvsl v5,0,$key # keyperm srwi $rounds,$rounds,1 lvx v2,$idx,$key addi $idx,$idx,16 subi $rounds,$rounds,1 ?vperm v1,v1,v2,v5 # align round key vxor v0,v0,v1 lvx v1,$idx,$key addi $idx,$idx,16 mtctr $rounds Loop_${dir}c: ?vperm v2,v2,v1,v5 v${n}cipher v0,v0,v2 lvx v2,$idx,$key addi $idx,$idx,16 ?vperm v1,v1,v2,v5 v${n}cipher v0,v0,v1 lvx v1,$idx,$key addi $idx,$idx,16 bdnz Loop_${dir}c ?vperm v2,v2,v1,v5 v${n}cipher v0,v0,v2 lvx v2,$idx,$key ?vperm v1,v1,v2,v5 v${n}cipherlast v0,v0,v1 vspltisb v2,-1 vxor v1,v1,v1 li $idx,15 # 15 is not typo ?vperm v2,v1,v2,v3 # outmask le?vxor v3,v3,v4 lvx v1,0,$out # outhead vperm v0,v0,v0,v3 # rotate [and byte swap in LE] vsel v1,v1,v0,v2 lvx v4,$idx,$out stvx v1,0,$out vsel v0,v0,v4,v2 stvx v0,$idx,$out mtspr 256,$vrsave blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size .${prefix}_${dir}crypt,.-.${prefix}_${dir}crypt ___ } &gen_block("en"); &gen_block("de"); }}} ######################################################################### {{{ # CBC en- and decrypt procedures # my ($inp,$out,$len,$key,$ivp,$enc,$rounds,$idx)=map("r$_",(3..10)); my ($rndkey0,$rndkey1,$inout,$tmp)= map("v$_",(0..3)); my ($ivec,$inptail,$inpperm,$outhead,$outperm,$outmask,$keyperm)= map("v$_",(4..10)); $code.=<<___; .globl .${prefix}_cbc_encrypt .align 5 .${prefix}_cbc_encrypt: ${UCMP}i $len,16 bltlr- cmpwi $enc,0 # test direction lis r0,0xffe0 mfspr $vrsave,256 mtspr 256,r0 li $idx,15 vxor $rndkey0,$rndkey0,$rndkey0 le?vspltisb $tmp,0x0f lvx $ivec,0,$ivp # load [unaligned] iv lvsl $inpperm,0,$ivp lvx $inptail,$idx,$ivp le?vxor $inpperm,$inpperm,$tmp vperm $ivec,$ivec,$inptail,$inpperm neg r11,$inp ?lvsl $keyperm,0,$key # prepare for unaligned key lwz $rounds,240($key) lvsr $inpperm,0,r11 # prepare for unaligned load lvx $inptail,0,$inp addi $inp,$inp,15 # 15 is not typo le?vxor $inpperm,$inpperm,$tmp ?lvsr $outperm,0,$out # prepare for unaligned store vspltisb $outmask,-1 lvx $outhead,0,$out ?vperm $outmask,$rndkey0,$outmask,$outperm le?vxor $outperm,$outperm,$tmp srwi $rounds,$rounds,1 li $idx,16 subi $rounds,$rounds,1 beq Lcbc_dec Lcbc_enc: vmr $inout,$inptail lvx $inptail,0,$inp addi $inp,$inp,16 mtctr $rounds subi $len,$len,16 # len-=16 lvx $rndkey0,0,$key vperm $inout,$inout,$inptail,$inpperm lvx $rndkey1,$idx,$key addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key addi $idx,$idx,16 vxor $inout,$inout,$ivec Loop_cbc_enc: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipher $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key addi $idx,$idx,16 bdnz Loop_cbc_enc ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key li $idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipherlast $ivec,$inout,$rndkey0 ${UCMP}i $len,16 vperm $tmp,$ivec,$ivec,$outperm vsel $inout,$outhead,$tmp,$outmask vmr $outhead,$tmp stvx $inout,0,$out addi $out,$out,16 bge Lcbc_enc b Lcbc_done .align 4 Lcbc_dec: ${UCMP}i $len,128 bge _aesp8_cbc_decrypt8x vmr $tmp,$inptail lvx $inptail,0,$inp addi $inp,$inp,16 mtctr $rounds subi $len,$len,16 # len-=16 lvx $rndkey0,0,$key vperm $tmp,$tmp,$inptail,$inpperm lvx $rndkey1,$idx,$key addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $inout,$tmp,$rndkey0 lvx $rndkey0,$idx,$key addi $idx,$idx,16 Loop_cbc_dec: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vncipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vncipher $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key addi $idx,$idx,16 bdnz Loop_cbc_dec ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vncipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key li $idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vncipherlast $inout,$inout,$rndkey0 ${UCMP}i $len,16 vxor $inout,$inout,$ivec vmr $ivec,$tmp vperm $tmp,$inout,$inout,$outperm vsel $inout,$outhead,$tmp,$outmask vmr $outhead,$tmp stvx $inout,0,$out addi $out,$out,16 bge Lcbc_dec Lcbc_done: addi $out,$out,-1 lvx $inout,0,$out # redundant in aligned case vsel $inout,$outhead,$inout,$outmask stvx $inout,0,$out neg $enc,$ivp # write [unaligned] iv li $idx,15 # 15 is not typo vxor $rndkey0,$rndkey0,$rndkey0 vspltisb $outmask,-1 le?vspltisb $tmp,0x0f ?lvsl $outperm,0,$enc ?vperm $outmask,$rndkey0,$outmask,$outperm le?vxor $outperm,$outperm,$tmp lvx $outhead,0,$ivp vperm $ivec,$ivec,$ivec,$outperm vsel $inout,$outhead,$ivec,$outmask lvx $inptail,$idx,$ivp stvx $inout,0,$ivp vsel $inout,$ivec,$inptail,$outmask stvx $inout,$idx,$ivp mtspr 256,$vrsave blr .long 0 .byte 0,12,0x14,0,0,0,6,0 .long 0 ___ ######################################################################### {{ # Optimized CBC decrypt procedure # my $key_="r11"; my ($x00,$x10,$x20,$x30,$x40,$x50,$x60,$x70)=map("r$_",(0,8,26..31)); $x00=0 if ($flavour =~ /osx/); my ($in0, $in1, $in2, $in3, $in4, $in5, $in6, $in7 )=map("v$_",(0..3,10..13)); my ($out0,$out1,$out2,$out3,$out4,$out5,$out6,$out7)=map("v$_",(14..21)); my $rndkey0="v23"; # v24-v25 rotating buffer for first found keys # v26-v31 last 6 round keys my ($tmp,$keyperm)=($in3,$in4); # aliases with "caller", redundant assignment $code.=<<___; .align 5 _aesp8_cbc_decrypt8x: $STU $sp,-`($FRAME+21*16+6*$SIZE_T)`($sp) li r10,`$FRAME+8*16+15` li r11,`$FRAME+8*16+31` stvx v20,r10,$sp # ABI says so addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp li r0,-1 stw $vrsave,`$FRAME+21*16-4`($sp) # save vrsave li $x10,0x10 $PUSH r26,`$FRAME+21*16+0*$SIZE_T`($sp) li $x20,0x20 $PUSH r27,`$FRAME+21*16+1*$SIZE_T`($sp) li $x30,0x30 $PUSH r28,`$FRAME+21*16+2*$SIZE_T`($sp) li $x40,0x40 $PUSH r29,`$FRAME+21*16+3*$SIZE_T`($sp) li $x50,0x50 $PUSH r30,`$FRAME+21*16+4*$SIZE_T`($sp) li $x60,0x60 $PUSH r31,`$FRAME+21*16+5*$SIZE_T`($sp) li $x70,0x70 mtspr 256,r0 subi $rounds,$rounds,3 # -4 in total subi $len,$len,128 # bias lvx $rndkey0,$x00,$key # load key schedule lvx v30,$x10,$key addi $key,$key,0x20 lvx v31,$x00,$key ?vperm $rndkey0,$rndkey0,v30,$keyperm addi $key_,$sp,$FRAME+15 mtctr $rounds Load_cbc_dec_key: ?vperm v24,v30,v31,$keyperm lvx v30,$x10,$key addi $key,$key,0x20 stvx v24,$x00,$key_ # off-load round[1] ?vperm v25,v31,v30,$keyperm lvx v31,$x00,$key stvx v25,$x10,$key_ # off-load round[2] addi $key_,$key_,0x20 bdnz Load_cbc_dec_key lvx v26,$x10,$key ?vperm v24,v30,v31,$keyperm lvx v27,$x20,$key stvx v24,$x00,$key_ # off-load round[3] ?vperm v25,v31,v26,$keyperm lvx v28,$x30,$key stvx v25,$x10,$key_ # off-load round[4] addi $key_,$sp,$FRAME+15 # rewind $key_ ?vperm v26,v26,v27,$keyperm lvx v29,$x40,$key ?vperm v27,v27,v28,$keyperm lvx v30,$x50,$key ?vperm v28,v28,v29,$keyperm lvx v31,$x60,$key ?vperm v29,v29,v30,$keyperm lvx $out0,$x70,$key # borrow $out0 ?vperm v30,v30,v31,$keyperm lvx v24,$x00,$key_ # pre-load round[1] ?vperm v31,v31,$out0,$keyperm lvx v25,$x10,$key_ # pre-load round[2] #lvx $inptail,0,$inp # "caller" already did this #addi $inp,$inp,15 # 15 is not typo subi $inp,$inp,15 # undo "caller" le?li $idx,8 lvx_u $in0,$x00,$inp # load first 8 "words" le?lvsl $inpperm,0,$idx le?vspltisb $tmp,0x0f lvx_u $in1,$x10,$inp le?vxor $inpperm,$inpperm,$tmp # transform for lvx_u/stvx_u lvx_u $in2,$x20,$inp le?vperm $in0,$in0,$in0,$inpperm lvx_u $in3,$x30,$inp le?vperm $in1,$in1,$in1,$inpperm lvx_u $in4,$x40,$inp le?vperm $in2,$in2,$in2,$inpperm vxor $out0,$in0,$rndkey0 lvx_u $in5,$x50,$inp le?vperm $in3,$in3,$in3,$inpperm vxor $out1,$in1,$rndkey0 lvx_u $in6,$x60,$inp le?vperm $in4,$in4,$in4,$inpperm vxor $out2,$in2,$rndkey0 lvx_u $in7,$x70,$inp addi $inp,$inp,0x80 le?vperm $in5,$in5,$in5,$inpperm vxor $out3,$in3,$rndkey0 le?vperm $in6,$in6,$in6,$inpperm vxor $out4,$in4,$rndkey0 le?vperm $in7,$in7,$in7,$inpperm vxor $out5,$in5,$rndkey0 vxor $out6,$in6,$rndkey0 vxor $out7,$in7,$rndkey0 mtctr $rounds b Loop_cbc_dec8x .align 5 Loop_cbc_dec8x: vncipher $out0,$out0,v24 vncipher $out1,$out1,v24 vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vncipher $out4,$out4,v24 vncipher $out5,$out5,v24 vncipher $out6,$out6,v24 vncipher $out7,$out7,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vncipher $out0,$out0,v25 vncipher $out1,$out1,v25 vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vncipher $out4,$out4,v25 vncipher $out5,$out5,v25 vncipher $out6,$out6,v25 vncipher $out7,$out7,v25 lvx v25,$x10,$key_ # round[4] bdnz Loop_cbc_dec8x subic $len,$len,128 # $len-=128 vncipher $out0,$out0,v24 vncipher $out1,$out1,v24 vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vncipher $out4,$out4,v24 vncipher $out5,$out5,v24 vncipher $out6,$out6,v24 vncipher $out7,$out7,v24 subfe. r0,r0,r0 # borrow?-1:0 vncipher $out0,$out0,v25 vncipher $out1,$out1,v25 vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vncipher $out4,$out4,v25 vncipher $out5,$out5,v25 vncipher $out6,$out6,v25 vncipher $out7,$out7,v25 and r0,r0,$len vncipher $out0,$out0,v26 vncipher $out1,$out1,v26 vncipher $out2,$out2,v26 vncipher $out3,$out3,v26 vncipher $out4,$out4,v26 vncipher $out5,$out5,v26 vncipher $out6,$out6,v26 vncipher $out7,$out7,v26 add $inp,$inp,r0 # $inp is adjusted in such # way that at exit from the # loop inX-in7 are loaded # with last "words" vncipher $out0,$out0,v27 vncipher $out1,$out1,v27 vncipher $out2,$out2,v27 vncipher $out3,$out3,v27 vncipher $out4,$out4,v27 vncipher $out5,$out5,v27 vncipher $out6,$out6,v27 vncipher $out7,$out7,v27 addi $key_,$sp,$FRAME+15 # rewind $key_ vncipher $out0,$out0,v28 vncipher $out1,$out1,v28 vncipher $out2,$out2,v28 vncipher $out3,$out3,v28 vncipher $out4,$out4,v28 vncipher $out5,$out5,v28 vncipher $out6,$out6,v28 vncipher $out7,$out7,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vncipher $out0,$out0,v29 vncipher $out1,$out1,v29 vncipher $out2,$out2,v29 vncipher $out3,$out3,v29 vncipher $out4,$out4,v29 vncipher $out5,$out5,v29 vncipher $out6,$out6,v29 vncipher $out7,$out7,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vncipher $out0,$out0,v30 vxor $ivec,$ivec,v31 # xor with last round key vncipher $out1,$out1,v30 vxor $in0,$in0,v31 vncipher $out2,$out2,v30 vxor $in1,$in1,v31 vncipher $out3,$out3,v30 vxor $in2,$in2,v31 vncipher $out4,$out4,v30 vxor $in3,$in3,v31 vncipher $out5,$out5,v30 vxor $in4,$in4,v31 vncipher $out6,$out6,v30 vxor $in5,$in5,v31 vncipher $out7,$out7,v30 vxor $in6,$in6,v31 vncipherlast $out0,$out0,$ivec vncipherlast $out1,$out1,$in0 lvx_u $in0,$x00,$inp # load next input block vncipherlast $out2,$out2,$in1 lvx_u $in1,$x10,$inp vncipherlast $out3,$out3,$in2 le?vperm $in0,$in0,$in0,$inpperm lvx_u $in2,$x20,$inp vncipherlast $out4,$out4,$in3 le?vperm $in1,$in1,$in1,$inpperm lvx_u $in3,$x30,$inp vncipherlast $out5,$out5,$in4 le?vperm $in2,$in2,$in2,$inpperm lvx_u $in4,$x40,$inp vncipherlast $out6,$out6,$in5 le?vperm $in3,$in3,$in3,$inpperm lvx_u $in5,$x50,$inp vncipherlast $out7,$out7,$in6 le?vperm $in4,$in4,$in4,$inpperm lvx_u $in6,$x60,$inp vmr $ivec,$in7 le?vperm $in5,$in5,$in5,$inpperm lvx_u $in7,$x70,$inp addi $inp,$inp,0x80 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out le?vperm $in6,$in6,$in6,$inpperm vxor $out0,$in0,$rndkey0 le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x10,$out le?vperm $in7,$in7,$in7,$inpperm vxor $out1,$in1,$rndkey0 le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x20,$out vxor $out2,$in2,$rndkey0 le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x30,$out vxor $out3,$in3,$rndkey0 le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x40,$out vxor $out4,$in4,$rndkey0 le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x50,$out vxor $out5,$in5,$rndkey0 le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x60,$out vxor $out6,$in6,$rndkey0 stvx_u $out7,$x70,$out addi $out,$out,0x80 vxor $out7,$in7,$rndkey0 mtctr $rounds beq Loop_cbc_dec8x # did $len-=128 borrow? addic. $len,$len,128 beq Lcbc_dec8x_done nop nop Loop_cbc_dec8x_tail: # up to 7 "words" tail... vncipher $out1,$out1,v24 vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vncipher $out4,$out4,v24 vncipher $out5,$out5,v24 vncipher $out6,$out6,v24 vncipher $out7,$out7,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vncipher $out1,$out1,v25 vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vncipher $out4,$out4,v25 vncipher $out5,$out5,v25 vncipher $out6,$out6,v25 vncipher $out7,$out7,v25 lvx v25,$x10,$key_ # round[4] bdnz Loop_cbc_dec8x_tail vncipher $out1,$out1,v24 vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vncipher $out4,$out4,v24 vncipher $out5,$out5,v24 vncipher $out6,$out6,v24 vncipher $out7,$out7,v24 vncipher $out1,$out1,v25 vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vncipher $out4,$out4,v25 vncipher $out5,$out5,v25 vncipher $out6,$out6,v25 vncipher $out7,$out7,v25 vncipher $out1,$out1,v26 vncipher $out2,$out2,v26 vncipher $out3,$out3,v26 vncipher $out4,$out4,v26 vncipher $out5,$out5,v26 vncipher $out6,$out6,v26 vncipher $out7,$out7,v26 vncipher $out1,$out1,v27 vncipher $out2,$out2,v27 vncipher $out3,$out3,v27 vncipher $out4,$out4,v27 vncipher $out5,$out5,v27 vncipher $out6,$out6,v27 vncipher $out7,$out7,v27 vncipher $out1,$out1,v28 vncipher $out2,$out2,v28 vncipher $out3,$out3,v28 vncipher $out4,$out4,v28 vncipher $out5,$out5,v28 vncipher $out6,$out6,v28 vncipher $out7,$out7,v28 vncipher $out1,$out1,v29 vncipher $out2,$out2,v29 vncipher $out3,$out3,v29 vncipher $out4,$out4,v29 vncipher $out5,$out5,v29 vncipher $out6,$out6,v29 vncipher $out7,$out7,v29 vncipher $out1,$out1,v30 vxor $ivec,$ivec,v31 # last round key vncipher $out2,$out2,v30 vxor $in1,$in1,v31 vncipher $out3,$out3,v30 vxor $in2,$in2,v31 vncipher $out4,$out4,v30 vxor $in3,$in3,v31 vncipher $out5,$out5,v30 vxor $in4,$in4,v31 vncipher $out6,$out6,v30 vxor $in5,$in5,v31 vncipher $out7,$out7,v30 vxor $in6,$in6,v31 cmplwi $len,32 # switch($len) blt Lcbc_dec8x_one nop beq Lcbc_dec8x_two cmplwi $len,64 blt Lcbc_dec8x_three nop beq Lcbc_dec8x_four cmplwi $len,96 blt Lcbc_dec8x_five nop beq Lcbc_dec8x_six Lcbc_dec8x_seven: vncipherlast $out1,$out1,$ivec vncipherlast $out2,$out2,$in1 vncipherlast $out3,$out3,$in2 vncipherlast $out4,$out4,$in3 vncipherlast $out5,$out5,$in4 vncipherlast $out6,$out6,$in5 vncipherlast $out7,$out7,$in6 vmr $ivec,$in7 le?vperm $out1,$out1,$out1,$inpperm le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x00,$out le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x10,$out le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x20,$out le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x30,$out le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x40,$out le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x50,$out stvx_u $out7,$x60,$out addi $out,$out,0x70 b Lcbc_dec8x_done .align 5 Lcbc_dec8x_six: vncipherlast $out2,$out2,$ivec vncipherlast $out3,$out3,$in2 vncipherlast $out4,$out4,$in3 vncipherlast $out5,$out5,$in4 vncipherlast $out6,$out6,$in5 vncipherlast $out7,$out7,$in6 vmr $ivec,$in7 le?vperm $out2,$out2,$out2,$inpperm le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x00,$out le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x10,$out le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x20,$out le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x30,$out le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x40,$out stvx_u $out7,$x50,$out addi $out,$out,0x60 b Lcbc_dec8x_done .align 5 Lcbc_dec8x_five: vncipherlast $out3,$out3,$ivec vncipherlast $out4,$out4,$in3 vncipherlast $out5,$out5,$in4 vncipherlast $out6,$out6,$in5 vncipherlast $out7,$out7,$in6 vmr $ivec,$in7 le?vperm $out3,$out3,$out3,$inpperm le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x00,$out le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x10,$out le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x20,$out le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x30,$out stvx_u $out7,$x40,$out addi $out,$out,0x50 b Lcbc_dec8x_done .align 5 Lcbc_dec8x_four: vncipherlast $out4,$out4,$ivec vncipherlast $out5,$out5,$in4 vncipherlast $out6,$out6,$in5 vncipherlast $out7,$out7,$in6 vmr $ivec,$in7 le?vperm $out4,$out4,$out4,$inpperm le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x00,$out le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x10,$out le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x20,$out stvx_u $out7,$x30,$out addi $out,$out,0x40 b Lcbc_dec8x_done .align 5 Lcbc_dec8x_three: vncipherlast $out5,$out5,$ivec vncipherlast $out6,$out6,$in5 vncipherlast $out7,$out7,$in6 vmr $ivec,$in7 le?vperm $out5,$out5,$out5,$inpperm le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x00,$out le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x10,$out stvx_u $out7,$x20,$out addi $out,$out,0x30 b Lcbc_dec8x_done .align 5 Lcbc_dec8x_two: vncipherlast $out6,$out6,$ivec vncipherlast $out7,$out7,$in6 vmr $ivec,$in7 le?vperm $out6,$out6,$out6,$inpperm le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x00,$out stvx_u $out7,$x10,$out addi $out,$out,0x20 b Lcbc_dec8x_done .align 5 Lcbc_dec8x_one: vncipherlast $out7,$out7,$ivec vmr $ivec,$in7 le?vperm $out7,$out7,$out7,$inpperm stvx_u $out7,0,$out addi $out,$out,0x10 Lcbc_dec8x_done: le?vperm $ivec,$ivec,$ivec,$inpperm stvx_u $ivec,0,$ivp # write [unaligned] iv li r10,`$FRAME+15` li r11,`$FRAME+31` stvx $inpperm,r10,$sp # wipe copies of round keys addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 stvx $inpperm,r10,$sp addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 stvx $inpperm,r10,$sp addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 stvx $inpperm,r10,$sp addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 mtspr 256,$vrsave lvx v20,r10,$sp # ABI says so addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp $POP r26,`$FRAME+21*16+0*$SIZE_T`($sp) $POP r27,`$FRAME+21*16+1*$SIZE_T`($sp) $POP r28,`$FRAME+21*16+2*$SIZE_T`($sp) $POP r29,`$FRAME+21*16+3*$SIZE_T`($sp) $POP r30,`$FRAME+21*16+4*$SIZE_T`($sp) $POP r31,`$FRAME+21*16+5*$SIZE_T`($sp) addi $sp,$sp,`$FRAME+21*16+6*$SIZE_T` blr .long 0 .byte 0,12,0x04,0,0x80,6,6,0 .long 0 .size .${prefix}_cbc_encrypt,.-.${prefix}_cbc_encrypt ___ }} }}} ######################################################################### {{{ # CTR procedure[s] # my ($inp,$out,$len,$key,$ivp,$x10,$rounds,$idx)=map("r$_",(3..10)); my ($rndkey0,$rndkey1,$inout,$tmp)= map("v$_",(0..3)); my ($ivec,$inptail,$inpperm,$outhead,$outperm,$outmask,$keyperm,$one)= map("v$_",(4..11)); my $dat=$tmp; $code.=<<___; .globl .${prefix}_ctr32_encrypt_blocks .align 5 .${prefix}_ctr32_encrypt_blocks: ${UCMP}i $len,1 bltlr- lis r0,0xfff0 mfspr $vrsave,256 mtspr 256,r0 li $idx,15 vxor $rndkey0,$rndkey0,$rndkey0 le?vspltisb $tmp,0x0f lvx $ivec,0,$ivp # load [unaligned] iv lvsl $inpperm,0,$ivp lvx $inptail,$idx,$ivp vspltisb $one,1 le?vxor $inpperm,$inpperm,$tmp vperm $ivec,$ivec,$inptail,$inpperm vsldoi $one,$rndkey0,$one,1 neg r11,$inp ?lvsl $keyperm,0,$key # prepare for unaligned key lwz $rounds,240($key) lvsr $inpperm,0,r11 # prepare for unaligned load lvx $inptail,0,$inp addi $inp,$inp,15 # 15 is not typo le?vxor $inpperm,$inpperm,$tmp srwi $rounds,$rounds,1 li $idx,16 subi $rounds,$rounds,1 ${UCMP}i $len,8 bge _aesp8_ctr32_encrypt8x ?lvsr $outperm,0,$out # prepare for unaligned store vspltisb $outmask,-1 lvx $outhead,0,$out ?vperm $outmask,$rndkey0,$outmask,$outperm le?vxor $outperm,$outperm,$tmp lvx $rndkey0,0,$key mtctr $rounds lvx $rndkey1,$idx,$key addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $inout,$ivec,$rndkey0 lvx $rndkey0,$idx,$key addi $idx,$idx,16 b Loop_ctr32_enc .align 5 Loop_ctr32_enc: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipher $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key addi $idx,$idx,16 bdnz Loop_ctr32_enc vadduwm $ivec,$ivec,$one vmr $dat,$inptail lvx $inptail,0,$inp addi $inp,$inp,16 subic. $len,$len,1 # blocks-- ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key vperm $dat,$dat,$inptail,$inpperm li $idx,16 ?vperm $rndkey1,$rndkey0,$rndkey1,$keyperm lvx $rndkey0,0,$key vxor $dat,$dat,$rndkey1 # last round key vcipherlast $inout,$inout,$dat lvx $rndkey1,$idx,$key addi $idx,$idx,16 vperm $inout,$inout,$inout,$outperm vsel $dat,$outhead,$inout,$outmask mtctr $rounds ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vmr $outhead,$inout vxor $inout,$ivec,$rndkey0 lvx $rndkey0,$idx,$key addi $idx,$idx,16 stvx $dat,0,$out addi $out,$out,16 bne Loop_ctr32_enc addi $out,$out,-1 lvx $inout,0,$out # redundant in aligned case vsel $inout,$outhead,$inout,$outmask stvx $inout,0,$out mtspr 256,$vrsave blr .long 0 .byte 0,12,0x14,0,0,0,6,0 .long 0 ___ ######################################################################### {{ # Optimized CTR procedure # my $key_="r11"; my ($x00,$x10,$x20,$x30,$x40,$x50,$x60,$x70)=map("r$_",(0,8,26..31)); $x00=0 if ($flavour =~ /osx/); my ($in0, $in1, $in2, $in3, $in4, $in5, $in6, $in7 )=map("v$_",(0..3,10,12..14)); my ($out0,$out1,$out2,$out3,$out4,$out5,$out6,$out7)=map("v$_",(15..22)); my $rndkey0="v23"; # v24-v25 rotating buffer for first found keys # v26-v31 last 6 round keys my ($tmp,$keyperm)=($in3,$in4); # aliases with "caller", redundant assignment my ($two,$three,$four)=($outhead,$outperm,$outmask); $code.=<<___; .align 5 _aesp8_ctr32_encrypt8x: $STU $sp,-`($FRAME+21*16+6*$SIZE_T)`($sp) li r10,`$FRAME+8*16+15` li r11,`$FRAME+8*16+31` stvx v20,r10,$sp # ABI says so addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp li r0,-1 stw $vrsave,`$FRAME+21*16-4`($sp) # save vrsave li $x10,0x10 $PUSH r26,`$FRAME+21*16+0*$SIZE_T`($sp) li $x20,0x20 $PUSH r27,`$FRAME+21*16+1*$SIZE_T`($sp) li $x30,0x30 $PUSH r28,`$FRAME+21*16+2*$SIZE_T`($sp) li $x40,0x40 $PUSH r29,`$FRAME+21*16+3*$SIZE_T`($sp) li $x50,0x50 $PUSH r30,`$FRAME+21*16+4*$SIZE_T`($sp) li $x60,0x60 $PUSH r31,`$FRAME+21*16+5*$SIZE_T`($sp) li $x70,0x70 mtspr 256,r0 subi $rounds,$rounds,3 # -4 in total lvx $rndkey0,$x00,$key # load key schedule lvx v30,$x10,$key addi $key,$key,0x20 lvx v31,$x00,$key ?vperm $rndkey0,$rndkey0,v30,$keyperm addi $key_,$sp,$FRAME+15 mtctr $rounds Load_ctr32_enc_key: ?vperm v24,v30,v31,$keyperm lvx v30,$x10,$key addi $key,$key,0x20 stvx v24,$x00,$key_ # off-load round[1] ?vperm v25,v31,v30,$keyperm lvx v31,$x00,$key stvx v25,$x10,$key_ # off-load round[2] addi $key_,$key_,0x20 bdnz Load_ctr32_enc_key lvx v26,$x10,$key ?vperm v24,v30,v31,$keyperm lvx v27,$x20,$key stvx v24,$x00,$key_ # off-load round[3] ?vperm v25,v31,v26,$keyperm lvx v28,$x30,$key stvx v25,$x10,$key_ # off-load round[4] addi $key_,$sp,$FRAME+15 # rewind $key_ ?vperm v26,v26,v27,$keyperm lvx v29,$x40,$key ?vperm v27,v27,v28,$keyperm lvx v30,$x50,$key ?vperm v28,v28,v29,$keyperm lvx v31,$x60,$key ?vperm v29,v29,v30,$keyperm lvx $out0,$x70,$key # borrow $out0 ?vperm v30,v30,v31,$keyperm lvx v24,$x00,$key_ # pre-load round[1] ?vperm v31,v31,$out0,$keyperm lvx v25,$x10,$key_ # pre-load round[2] vadduwm $two,$one,$one subi $inp,$inp,15 # undo "caller" $SHL $len,$len,4 vadduwm $out1,$ivec,$one # counter values ... vadduwm $out2,$ivec,$two vxor $out0,$ivec,$rndkey0 # ... xored with rndkey[0] le?li $idx,8 vadduwm $out3,$out1,$two vxor $out1,$out1,$rndkey0 le?lvsl $inpperm,0,$idx vadduwm $out4,$out2,$two vxor $out2,$out2,$rndkey0 le?vspltisb $tmp,0x0f vadduwm $out5,$out3,$two vxor $out3,$out3,$rndkey0 le?vxor $inpperm,$inpperm,$tmp # transform for lvx_u/stvx_u vadduwm $out6,$out4,$two vxor $out4,$out4,$rndkey0 vadduwm $out7,$out5,$two vxor $out5,$out5,$rndkey0 vadduwm $ivec,$out6,$two # next counter value vxor $out6,$out6,$rndkey0 vxor $out7,$out7,$rndkey0 mtctr $rounds b Loop_ctr32_enc8x .align 5 Loop_ctr32_enc8x: vcipher $out0,$out0,v24 vcipher $out1,$out1,v24 vcipher $out2,$out2,v24 vcipher $out3,$out3,v24 vcipher $out4,$out4,v24 vcipher $out5,$out5,v24 vcipher $out6,$out6,v24 vcipher $out7,$out7,v24 Loop_ctr32_enc8x_middle: lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vcipher $out0,$out0,v25 vcipher $out1,$out1,v25 vcipher $out2,$out2,v25 vcipher $out3,$out3,v25 vcipher $out4,$out4,v25 vcipher $out5,$out5,v25 vcipher $out6,$out6,v25 vcipher $out7,$out7,v25 lvx v25,$x10,$key_ # round[4] bdnz Loop_ctr32_enc8x subic r11,$len,256 # $len-256, borrow $key_ vcipher $out0,$out0,v24 vcipher $out1,$out1,v24 vcipher $out2,$out2,v24 vcipher $out3,$out3,v24 vcipher $out4,$out4,v24 vcipher $out5,$out5,v24 vcipher $out6,$out6,v24 vcipher $out7,$out7,v24 subfe r0,r0,r0 # borrow?-1:0 vcipher $out0,$out0,v25 vcipher $out1,$out1,v25 vcipher $out2,$out2,v25 vcipher $out3,$out3,v25 vcipher $out4,$out4,v25 vcipher $out5,$out5,v25 vcipher $out6,$out6,v25 vcipher $out7,$out7,v25 and r0,r0,r11 addi $key_,$sp,$FRAME+15 # rewind $key_ vcipher $out0,$out0,v26 vcipher $out1,$out1,v26 vcipher $out2,$out2,v26 vcipher $out3,$out3,v26 vcipher $out4,$out4,v26 vcipher $out5,$out5,v26 vcipher $out6,$out6,v26 vcipher $out7,$out7,v26 lvx v24,$x00,$key_ # re-pre-load round[1] subic $len,$len,129 # $len-=129 vcipher $out0,$out0,v27 addi $len,$len,1 # $len-=128 really vcipher $out1,$out1,v27 vcipher $out2,$out2,v27 vcipher $out3,$out3,v27 vcipher $out4,$out4,v27 vcipher $out5,$out5,v27 vcipher $out6,$out6,v27 vcipher $out7,$out7,v27 lvx v25,$x10,$key_ # re-pre-load round[2] vcipher $out0,$out0,v28 lvx_u $in0,$x00,$inp # load input vcipher $out1,$out1,v28 lvx_u $in1,$x10,$inp vcipher $out2,$out2,v28 lvx_u $in2,$x20,$inp vcipher $out3,$out3,v28 lvx_u $in3,$x30,$inp vcipher $out4,$out4,v28 lvx_u $in4,$x40,$inp vcipher $out5,$out5,v28 lvx_u $in5,$x50,$inp vcipher $out6,$out6,v28 lvx_u $in6,$x60,$inp vcipher $out7,$out7,v28 lvx_u $in7,$x70,$inp addi $inp,$inp,0x80 vcipher $out0,$out0,v29 le?vperm $in0,$in0,$in0,$inpperm vcipher $out1,$out1,v29 le?vperm $in1,$in1,$in1,$inpperm vcipher $out2,$out2,v29 le?vperm $in2,$in2,$in2,$inpperm vcipher $out3,$out3,v29 le?vperm $in3,$in3,$in3,$inpperm vcipher $out4,$out4,v29 le?vperm $in4,$in4,$in4,$inpperm vcipher $out5,$out5,v29 le?vperm $in5,$in5,$in5,$inpperm vcipher $out6,$out6,v29 le?vperm $in6,$in6,$in6,$inpperm vcipher $out7,$out7,v29 le?vperm $in7,$in7,$in7,$inpperm add $inp,$inp,r0 # $inp is adjusted in such # way that at exit from the # loop inX-in7 are loaded # with last "words" subfe. r0,r0,r0 # borrow?-1:0 vcipher $out0,$out0,v30 vxor $in0,$in0,v31 # xor with last round key vcipher $out1,$out1,v30 vxor $in1,$in1,v31 vcipher $out2,$out2,v30 vxor $in2,$in2,v31 vcipher $out3,$out3,v30 vxor $in3,$in3,v31 vcipher $out4,$out4,v30 vxor $in4,$in4,v31 vcipher $out5,$out5,v30 vxor $in5,$in5,v31 vcipher $out6,$out6,v30 vxor $in6,$in6,v31 vcipher $out7,$out7,v30 vxor $in7,$in7,v31 bne Lctr32_enc8x_break # did $len-129 borrow? vcipherlast $in0,$out0,$in0 vcipherlast $in1,$out1,$in1 vadduwm $out1,$ivec,$one # counter values ... vcipherlast $in2,$out2,$in2 vadduwm $out2,$ivec,$two vxor $out0,$ivec,$rndkey0 # ... xored with rndkey[0] vcipherlast $in3,$out3,$in3 vadduwm $out3,$out1,$two vxor $out1,$out1,$rndkey0 vcipherlast $in4,$out4,$in4 vadduwm $out4,$out2,$two vxor $out2,$out2,$rndkey0 vcipherlast $in5,$out5,$in5 vadduwm $out5,$out3,$two vxor $out3,$out3,$rndkey0 vcipherlast $in6,$out6,$in6 vadduwm $out6,$out4,$two vxor $out4,$out4,$rndkey0 vcipherlast $in7,$out7,$in7 vadduwm $out7,$out5,$two vxor $out5,$out5,$rndkey0 le?vperm $in0,$in0,$in0,$inpperm vadduwm $ivec,$out6,$two # next counter value vxor $out6,$out6,$rndkey0 le?vperm $in1,$in1,$in1,$inpperm vxor $out7,$out7,$rndkey0 mtctr $rounds vcipher $out0,$out0,v24 stvx_u $in0,$x00,$out le?vperm $in2,$in2,$in2,$inpperm vcipher $out1,$out1,v24 stvx_u $in1,$x10,$out le?vperm $in3,$in3,$in3,$inpperm vcipher $out2,$out2,v24 stvx_u $in2,$x20,$out le?vperm $in4,$in4,$in4,$inpperm vcipher $out3,$out3,v24 stvx_u $in3,$x30,$out le?vperm $in5,$in5,$in5,$inpperm vcipher $out4,$out4,v24 stvx_u $in4,$x40,$out le?vperm $in6,$in6,$in6,$inpperm vcipher $out5,$out5,v24 stvx_u $in5,$x50,$out le?vperm $in7,$in7,$in7,$inpperm vcipher $out6,$out6,v24 stvx_u $in6,$x60,$out vcipher $out7,$out7,v24 stvx_u $in7,$x70,$out addi $out,$out,0x80 b Loop_ctr32_enc8x_middle .align 5 Lctr32_enc8x_break: cmpwi $len,-0x60 blt Lctr32_enc8x_one nop beq Lctr32_enc8x_two cmpwi $len,-0x40 blt Lctr32_enc8x_three nop beq Lctr32_enc8x_four cmpwi $len,-0x20 blt Lctr32_enc8x_five nop beq Lctr32_enc8x_six cmpwi $len,0x00 blt Lctr32_enc8x_seven Lctr32_enc8x_eight: vcipherlast $out0,$out0,$in0 vcipherlast $out1,$out1,$in1 vcipherlast $out2,$out2,$in2 vcipherlast $out3,$out3,$in3 vcipherlast $out4,$out4,$in4 vcipherlast $out5,$out5,$in5 vcipherlast $out6,$out6,$in6 vcipherlast $out7,$out7,$in7 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x20,$out le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x30,$out le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x40,$out le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x50,$out le?vperm $out7,$out7,$out7,$inpperm stvx_u $out6,$x60,$out stvx_u $out7,$x70,$out addi $out,$out,0x80 b Lctr32_enc8x_done .align 5 Lctr32_enc8x_seven: vcipherlast $out0,$out0,$in1 vcipherlast $out1,$out1,$in2 vcipherlast $out2,$out2,$in3 vcipherlast $out3,$out3,$in4 vcipherlast $out4,$out4,$in5 vcipherlast $out5,$out5,$in6 vcipherlast $out6,$out6,$in7 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x20,$out le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x30,$out le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x40,$out le?vperm $out6,$out6,$out6,$inpperm stvx_u $out5,$x50,$out stvx_u $out6,$x60,$out addi $out,$out,0x70 b Lctr32_enc8x_done .align 5 Lctr32_enc8x_six: vcipherlast $out0,$out0,$in2 vcipherlast $out1,$out1,$in3 vcipherlast $out2,$out2,$in4 vcipherlast $out3,$out3,$in5 vcipherlast $out4,$out4,$in6 vcipherlast $out5,$out5,$in7 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x20,$out le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x30,$out le?vperm $out5,$out5,$out5,$inpperm stvx_u $out4,$x40,$out stvx_u $out5,$x50,$out addi $out,$out,0x60 b Lctr32_enc8x_done .align 5 Lctr32_enc8x_five: vcipherlast $out0,$out0,$in3 vcipherlast $out1,$out1,$in4 vcipherlast $out2,$out2,$in5 vcipherlast $out3,$out3,$in6 vcipherlast $out4,$out4,$in7 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x20,$out le?vperm $out4,$out4,$out4,$inpperm stvx_u $out3,$x30,$out stvx_u $out4,$x40,$out addi $out,$out,0x50 b Lctr32_enc8x_done .align 5 Lctr32_enc8x_four: vcipherlast $out0,$out0,$in4 vcipherlast $out1,$out1,$in5 vcipherlast $out2,$out2,$in6 vcipherlast $out3,$out3,$in7 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$inpperm stvx_u $out2,$x20,$out stvx_u $out3,$x30,$out addi $out,$out,0x40 b Lctr32_enc8x_done .align 5 Lctr32_enc8x_three: vcipherlast $out0,$out0,$in5 vcipherlast $out1,$out1,$in6 vcipherlast $out2,$out2,$in7 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out le?vperm $out2,$out2,$out2,$inpperm stvx_u $out1,$x10,$out stvx_u $out2,$x20,$out addi $out,$out,0x30 b Lctr32_enc8x_done .align 5 Lctr32_enc8x_two: vcipherlast $out0,$out0,$in6 vcipherlast $out1,$out1,$in7 le?vperm $out0,$out0,$out0,$inpperm le?vperm $out1,$out1,$out1,$inpperm stvx_u $out0,$x00,$out stvx_u $out1,$x10,$out addi $out,$out,0x20 b Lctr32_enc8x_done .align 5 Lctr32_enc8x_one: vcipherlast $out0,$out0,$in7 le?vperm $out0,$out0,$out0,$inpperm stvx_u $out0,0,$out addi $out,$out,0x10 Lctr32_enc8x_done: li r10,`$FRAME+15` li r11,`$FRAME+31` stvx $inpperm,r10,$sp # wipe copies of round keys addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 stvx $inpperm,r10,$sp addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 stvx $inpperm,r10,$sp addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 stvx $inpperm,r10,$sp addi r10,r10,32 stvx $inpperm,r11,$sp addi r11,r11,32 mtspr 256,$vrsave lvx v20,r10,$sp # ABI says so addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp $POP r26,`$FRAME+21*16+0*$SIZE_T`($sp) $POP r27,`$FRAME+21*16+1*$SIZE_T`($sp) $POP r28,`$FRAME+21*16+2*$SIZE_T`($sp) $POP r29,`$FRAME+21*16+3*$SIZE_T`($sp) $POP r30,`$FRAME+21*16+4*$SIZE_T`($sp) $POP r31,`$FRAME+21*16+5*$SIZE_T`($sp) addi $sp,$sp,`$FRAME+21*16+6*$SIZE_T` blr .long 0 .byte 0,12,0x04,0,0x80,6,6,0 .long 0 .size .${prefix}_ctr32_encrypt_blocks,.-.${prefix}_ctr32_encrypt_blocks ___ }} }}} ######################################################################### {{{ # XTS procedures # # int aes_p8_xts_[en|de]crypt(const char *inp, char *out, size_t len, # # const AES_KEY *key1, const AES_KEY *key2, # # [const] unsigned char iv[16]); # # If $key2 is NULL, then a "tweak chaining" mode is engaged, in which # # input tweak value is assumed to be encrypted already, and last tweak # # value, one suitable for consecutive call on same chunk of data, is # # written back to original buffer. In addition, in "tweak chaining" # # mode only complete input blocks are processed. # my ($inp,$out,$len,$key1,$key2,$ivp,$rounds,$idx) = map("r$_",(3..10)); my ($rndkey0,$rndkey1,$inout) = map("v$_",(0..2)); my ($output,$inptail,$inpperm,$leperm,$keyperm) = map("v$_",(3..7)); my ($tweak,$seven,$eighty7,$tmp,$tweak1) = map("v$_",(8..12)); my $taillen = $key2; ($inp,$idx) = ($idx,$inp); # reassign $code.=<<___; .globl .${prefix}_xts_encrypt .align 5 .${prefix}_xts_encrypt: mr $inp,r3 # reassign li r3,-1 ${UCMP}i $len,16 bltlr- lis r0,0xfff0 mfspr r12,256 # save vrsave li r11,0 mtspr 256,r0 vspltisb $seven,0x07 # 0x070707..07 le?lvsl $leperm,r11,r11 le?vspltisb $tmp,0x0f le?vxor $leperm,$leperm,$seven li $idx,15 lvx $tweak,0,$ivp # load [unaligned] iv lvsl $inpperm,0,$ivp lvx $inptail,$idx,$ivp le?vxor $inpperm,$inpperm,$tmp vperm $tweak,$tweak,$inptail,$inpperm neg r11,$inp lvsr $inpperm,0,r11 # prepare for unaligned load lvx $inout,0,$inp addi $inp,$inp,15 # 15 is not typo le?vxor $inpperm,$inpperm,$tmp ${UCMP}i $key2,0 # key2==NULL? beq Lxts_enc_no_key2 ?lvsl $keyperm,0,$key2 # prepare for unaligned key lwz $rounds,240($key2) srwi $rounds,$rounds,1 subi $rounds,$rounds,1 li $idx,16 lvx $rndkey0,0,$key2 lvx $rndkey1,$idx,$key2 addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $tweak,$tweak,$rndkey0 lvx $rndkey0,$idx,$key2 addi $idx,$idx,16 mtctr $rounds Ltweak_xts_enc: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $tweak,$tweak,$rndkey1 lvx $rndkey1,$idx,$key2 addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipher $tweak,$tweak,$rndkey0 lvx $rndkey0,$idx,$key2 addi $idx,$idx,16 bdnz Ltweak_xts_enc ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $tweak,$tweak,$rndkey1 lvx $rndkey1,$idx,$key2 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipherlast $tweak,$tweak,$rndkey0 li $ivp,0 # don't chain the tweak b Lxts_enc Lxts_enc_no_key2: li $idx,-16 and $len,$len,$idx # in "tweak chaining" # mode only complete # blocks are processed Lxts_enc: lvx $inptail,0,$inp addi $inp,$inp,16 ?lvsl $keyperm,0,$key1 # prepare for unaligned key lwz $rounds,240($key1) srwi $rounds,$rounds,1 subi $rounds,$rounds,1 li $idx,16 vslb $eighty7,$seven,$seven # 0x808080..80 vor $eighty7,$eighty7,$seven # 0x878787..87 vspltisb $tmp,1 # 0x010101..01 vsldoi $eighty7,$eighty7,$tmp,15 # 0x870101..01 ${UCMP}i $len,96 bge _aesp8_xts_encrypt6x andi. $taillen,$len,15 subic r0,$len,32 subi $taillen,$taillen,16 subfe r0,r0,r0 and r0,r0,$taillen add $inp,$inp,r0 lvx $rndkey0,0,$key1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 vperm $inout,$inout,$inptail,$inpperm ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $inout,$inout,$tweak vxor $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 mtctr $rounds b Loop_xts_enc .align 5 Loop_xts_enc: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipher $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 bdnz Loop_xts_enc ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key1 li $idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $rndkey0,$rndkey0,$tweak vcipherlast $output,$inout,$rndkey0 le?vperm $tmp,$output,$output,$leperm be?nop le?stvx_u $tmp,0,$out be?stvx_u $output,0,$out addi $out,$out,16 subic. $len,$len,16 beq Lxts_enc_done vmr $inout,$inptail lvx $inptail,0,$inp addi $inp,$inp,16 lvx $rndkey0,0,$key1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 subic r0,$len,32 subfe r0,r0,r0 and r0,r0,$taillen add $inp,$inp,r0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vand $tmp,$tmp,$eighty7 vxor $tweak,$tweak,$tmp vperm $inout,$inout,$inptail,$inpperm ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $inout,$inout,$tweak vxor $output,$output,$rndkey0 # just in case $len<16 vxor $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 mtctr $rounds ${UCMP}i $len,16 bge Loop_xts_enc vxor $output,$output,$tweak lvsr $inpperm,0,$len # $inpperm is no longer needed vxor $inptail,$inptail,$inptail # $inptail is no longer needed vspltisb $tmp,-1 vperm $inptail,$inptail,$tmp,$inpperm vsel $inout,$inout,$output,$inptail subi r11,$out,17 subi $out,$out,16 mtctr $len li $len,16 Loop_xts_enc_steal: lbzu r0,1(r11) stb r0,16(r11) bdnz Loop_xts_enc_steal mtctr $rounds b Loop_xts_enc # one more time... Lxts_enc_done: ${UCMP}i $ivp,0 beq Lxts_enc_ret vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vand $tmp,$tmp,$eighty7 vxor $tweak,$tweak,$tmp le?vperm $tweak,$tweak,$tweak,$leperm stvx_u $tweak,0,$ivp Lxts_enc_ret: mtspr 256,r12 # restore vrsave li r3,0 blr .long 0 .byte 0,12,0x04,0,0x80,6,6,0 .long 0 .size .${prefix}_xts_encrypt,.-.${prefix}_xts_encrypt .globl .${prefix}_xts_decrypt .align 5 .${prefix}_xts_decrypt: mr $inp,r3 # reassign li r3,-1 ${UCMP}i $len,16 bltlr- lis r0,0xfff8 mfspr r12,256 # save vrsave li r11,0 mtspr 256,r0 andi. r0,$len,15 neg r0,r0 andi. r0,r0,16 sub $len,$len,r0 vspltisb $seven,0x07 # 0x070707..07 le?lvsl $leperm,r11,r11 le?vspltisb $tmp,0x0f le?vxor $leperm,$leperm,$seven li $idx,15 lvx $tweak,0,$ivp # load [unaligned] iv lvsl $inpperm,0,$ivp lvx $inptail,$idx,$ivp le?vxor $inpperm,$inpperm,$tmp vperm $tweak,$tweak,$inptail,$inpperm neg r11,$inp lvsr $inpperm,0,r11 # prepare for unaligned load lvx $inout,0,$inp addi $inp,$inp,15 # 15 is not typo le?vxor $inpperm,$inpperm,$tmp ${UCMP}i $key2,0 # key2==NULL? beq Lxts_dec_no_key2 ?lvsl $keyperm,0,$key2 # prepare for unaligned key lwz $rounds,240($key2) srwi $rounds,$rounds,1 subi $rounds,$rounds,1 li $idx,16 lvx $rndkey0,0,$key2 lvx $rndkey1,$idx,$key2 addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $tweak,$tweak,$rndkey0 lvx $rndkey0,$idx,$key2 addi $idx,$idx,16 mtctr $rounds Ltweak_xts_dec: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $tweak,$tweak,$rndkey1 lvx $rndkey1,$idx,$key2 addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipher $tweak,$tweak,$rndkey0 lvx $rndkey0,$idx,$key2 addi $idx,$idx,16 bdnz Ltweak_xts_dec ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vcipher $tweak,$tweak,$rndkey1 lvx $rndkey1,$idx,$key2 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vcipherlast $tweak,$tweak,$rndkey0 li $ivp,0 # don't chain the tweak b Lxts_dec Lxts_dec_no_key2: neg $idx,$len andi. $idx,$idx,15 add $len,$len,$idx # in "tweak chaining" # mode only complete # blocks are processed Lxts_dec: lvx $inptail,0,$inp addi $inp,$inp,16 ?lvsl $keyperm,0,$key1 # prepare for unaligned key lwz $rounds,240($key1) srwi $rounds,$rounds,1 subi $rounds,$rounds,1 li $idx,16 vslb $eighty7,$seven,$seven # 0x808080..80 vor $eighty7,$eighty7,$seven # 0x878787..87 vspltisb $tmp,1 # 0x010101..01 vsldoi $eighty7,$eighty7,$tmp,15 # 0x870101..01 ${UCMP}i $len,96 bge _aesp8_xts_decrypt6x lvx $rndkey0,0,$key1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 vperm $inout,$inout,$inptail,$inpperm ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $inout,$inout,$tweak vxor $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 mtctr $rounds ${UCMP}i $len,16 blt Ltail_xts_dec be?b Loop_xts_dec .align 5 Loop_xts_dec: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vncipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vncipher $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 bdnz Loop_xts_dec ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vncipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key1 li $idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $rndkey0,$rndkey0,$tweak vncipherlast $output,$inout,$rndkey0 le?vperm $tmp,$output,$output,$leperm be?nop le?stvx_u $tmp,0,$out be?stvx_u $output,0,$out addi $out,$out,16 subic. $len,$len,16 beq Lxts_dec_done vmr $inout,$inptail lvx $inptail,0,$inp addi $inp,$inp,16 lvx $rndkey0,0,$key1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vand $tmp,$tmp,$eighty7 vxor $tweak,$tweak,$tmp vperm $inout,$inout,$inptail,$inpperm ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $inout,$inout,$tweak vxor $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 mtctr $rounds ${UCMP}i $len,16 bge Loop_xts_dec Ltail_xts_dec: vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak1,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vand $tmp,$tmp,$eighty7 vxor $tweak1,$tweak1,$tmp subi $inp,$inp,16 add $inp,$inp,$len vxor $inout,$inout,$tweak # :-( vxor $inout,$inout,$tweak1 # :-) Loop_xts_dec_short: ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vncipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vncipher $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 bdnz Loop_xts_dec_short ?vperm $rndkey1,$rndkey1,$rndkey0,$keyperm vncipher $inout,$inout,$rndkey1 lvx $rndkey1,$idx,$key1 li $idx,16 ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm vxor $rndkey0,$rndkey0,$tweak1 vncipherlast $output,$inout,$rndkey0 le?vperm $tmp,$output,$output,$leperm be?nop le?stvx_u $tmp,0,$out be?stvx_u $output,0,$out vmr $inout,$inptail lvx $inptail,0,$inp #addi $inp,$inp,16 lvx $rndkey0,0,$key1 lvx $rndkey1,$idx,$key1 addi $idx,$idx,16 vperm $inout,$inout,$inptail,$inpperm ?vperm $rndkey0,$rndkey0,$rndkey1,$keyperm lvsr $inpperm,0,$len # $inpperm is no longer needed vxor $inptail,$inptail,$inptail # $inptail is no longer needed vspltisb $tmp,-1 vperm $inptail,$inptail,$tmp,$inpperm vsel $inout,$inout,$output,$inptail vxor $rndkey0,$rndkey0,$tweak vxor $inout,$inout,$rndkey0 lvx $rndkey0,$idx,$key1 addi $idx,$idx,16 subi r11,$out,1 mtctr $len li $len,16 Loop_xts_dec_steal: lbzu r0,1(r11) stb r0,16(r11) bdnz Loop_xts_dec_steal mtctr $rounds b Loop_xts_dec # one more time... Lxts_dec_done: ${UCMP}i $ivp,0 beq Lxts_dec_ret vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vand $tmp,$tmp,$eighty7 vxor $tweak,$tweak,$tmp le?vperm $tweak,$tweak,$tweak,$leperm stvx_u $tweak,0,$ivp Lxts_dec_ret: mtspr 256,r12 # restore vrsave li r3,0 blr .long 0 .byte 0,12,0x04,0,0x80,6,6,0 .long 0 .size .${prefix}_xts_decrypt,.-.${prefix}_xts_decrypt ___ ######################################################################### {{ # Optimized XTS procedures # my $key_=$key2; my ($x00,$x10,$x20,$x30,$x40,$x50,$x60,$x70)=map("r$_",(0,3,26..31)); $x00=0 if ($flavour =~ /osx/); my ($in0, $in1, $in2, $in3, $in4, $in5 )=map("v$_",(0..5)); my ($out0, $out1, $out2, $out3, $out4, $out5)=map("v$_",(7,12..16)); my ($twk0, $twk1, $twk2, $twk3, $twk4, $twk5)=map("v$_",(17..22)); my $rndkey0="v23"; # v24-v25 rotating buffer for first found keys # v26-v31 last 6 round keys my ($keyperm)=($out0); # aliases with "caller", redundant assignment my $taillen=$x70; $code.=<<___; .align 5 _aesp8_xts_encrypt6x: $STU $sp,-`($FRAME+21*16+6*$SIZE_T)`($sp) mflr r11 li r7,`$FRAME+8*16+15` li r3,`$FRAME+8*16+31` $PUSH r11,`$FRAME+21*16+6*$SIZE_T+$LRSAVE`($sp) stvx v20,r7,$sp # ABI says so addi r7,r7,32 stvx v21,r3,$sp addi r3,r3,32 stvx v22,r7,$sp addi r7,r7,32 stvx v23,r3,$sp addi r3,r3,32 stvx v24,r7,$sp addi r7,r7,32 stvx v25,r3,$sp addi r3,r3,32 stvx v26,r7,$sp addi r7,r7,32 stvx v27,r3,$sp addi r3,r3,32 stvx v28,r7,$sp addi r7,r7,32 stvx v29,r3,$sp addi r3,r3,32 stvx v30,r7,$sp stvx v31,r3,$sp li r0,-1 stw $vrsave,`$FRAME+21*16-4`($sp) # save vrsave li $x10,0x10 $PUSH r26,`$FRAME+21*16+0*$SIZE_T`($sp) li $x20,0x20 $PUSH r27,`$FRAME+21*16+1*$SIZE_T`($sp) li $x30,0x30 $PUSH r28,`$FRAME+21*16+2*$SIZE_T`($sp) li $x40,0x40 $PUSH r29,`$FRAME+21*16+3*$SIZE_T`($sp) li $x50,0x50 $PUSH r30,`$FRAME+21*16+4*$SIZE_T`($sp) li $x60,0x60 $PUSH r31,`$FRAME+21*16+5*$SIZE_T`($sp) li $x70,0x70 mtspr 256,r0 subi $rounds,$rounds,3 # -4 in total lvx $rndkey0,$x00,$key1 # load key schedule lvx v30,$x10,$key1 addi $key1,$key1,0x20 lvx v31,$x00,$key1 ?vperm $rndkey0,$rndkey0,v30,$keyperm addi $key_,$sp,$FRAME+15 mtctr $rounds Load_xts_enc_key: ?vperm v24,v30,v31,$keyperm lvx v30,$x10,$key1 addi $key1,$key1,0x20 stvx v24,$x00,$key_ # off-load round[1] ?vperm v25,v31,v30,$keyperm lvx v31,$x00,$key1 stvx v25,$x10,$key_ # off-load round[2] addi $key_,$key_,0x20 bdnz Load_xts_enc_key lvx v26,$x10,$key1 ?vperm v24,v30,v31,$keyperm lvx v27,$x20,$key1 stvx v24,$x00,$key_ # off-load round[3] ?vperm v25,v31,v26,$keyperm lvx v28,$x30,$key1 stvx v25,$x10,$key_ # off-load round[4] addi $key_,$sp,$FRAME+15 # rewind $key_ ?vperm v26,v26,v27,$keyperm lvx v29,$x40,$key1 ?vperm v27,v27,v28,$keyperm lvx v30,$x50,$key1 ?vperm v28,v28,v29,$keyperm lvx v31,$x60,$key1 ?vperm v29,v29,v30,$keyperm lvx $twk5,$x70,$key1 # borrow $twk5 ?vperm v30,v30,v31,$keyperm lvx v24,$x00,$key_ # pre-load round[1] ?vperm v31,v31,$twk5,$keyperm lvx v25,$x10,$key_ # pre-load round[2] vperm $in0,$inout,$inptail,$inpperm subi $inp,$inp,31 # undo "caller" vxor $twk0,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vand $tmp,$tmp,$eighty7 vxor $out0,$in0,$twk0 vxor $tweak,$tweak,$tmp lvx_u $in1,$x10,$inp vxor $twk1,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in1,$in1,$in1,$leperm vand $tmp,$tmp,$eighty7 vxor $out1,$in1,$twk1 vxor $tweak,$tweak,$tmp lvx_u $in2,$x20,$inp andi. $taillen,$len,15 vxor $twk2,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in2,$in2,$in2,$leperm vand $tmp,$tmp,$eighty7 vxor $out2,$in2,$twk2 vxor $tweak,$tweak,$tmp lvx_u $in3,$x30,$inp sub $len,$len,$taillen vxor $twk3,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in3,$in3,$in3,$leperm vand $tmp,$tmp,$eighty7 vxor $out3,$in3,$twk3 vxor $tweak,$tweak,$tmp lvx_u $in4,$x40,$inp subi $len,$len,0x60 vxor $twk4,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in4,$in4,$in4,$leperm vand $tmp,$tmp,$eighty7 vxor $out4,$in4,$twk4 vxor $tweak,$tweak,$tmp lvx_u $in5,$x50,$inp addi $inp,$inp,0x60 vxor $twk5,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in5,$in5,$in5,$leperm vand $tmp,$tmp,$eighty7 vxor $out5,$in5,$twk5 vxor $tweak,$tweak,$tmp vxor v31,v31,$rndkey0 mtctr $rounds b Loop_xts_enc6x .align 5 Loop_xts_enc6x: vcipher $out0,$out0,v24 vcipher $out1,$out1,v24 vcipher $out2,$out2,v24 vcipher $out3,$out3,v24 vcipher $out4,$out4,v24 vcipher $out5,$out5,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vcipher $out0,$out0,v25 vcipher $out1,$out1,v25 vcipher $out2,$out2,v25 vcipher $out3,$out3,v25 vcipher $out4,$out4,v25 vcipher $out5,$out5,v25 lvx v25,$x10,$key_ # round[4] bdnz Loop_xts_enc6x subic $len,$len,96 # $len-=96 vxor $in0,$twk0,v31 # xor with last round key vcipher $out0,$out0,v24 vcipher $out1,$out1,v24 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk0,$tweak,$rndkey0 vaddubm $tweak,$tweak,$tweak vcipher $out2,$out2,v24 vcipher $out3,$out3,v24 vsldoi $tmp,$tmp,$tmp,15 vcipher $out4,$out4,v24 vcipher $out5,$out5,v24 subfe. r0,r0,r0 # borrow?-1:0 vand $tmp,$tmp,$eighty7 vcipher $out0,$out0,v25 vcipher $out1,$out1,v25 vxor $tweak,$tweak,$tmp vcipher $out2,$out2,v25 vcipher $out3,$out3,v25 vxor $in1,$twk1,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk1,$tweak,$rndkey0 vcipher $out4,$out4,v25 vcipher $out5,$out5,v25 and r0,r0,$len vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vcipher $out0,$out0,v26 vcipher $out1,$out1,v26 vand $tmp,$tmp,$eighty7 vcipher $out2,$out2,v26 vcipher $out3,$out3,v26 vxor $tweak,$tweak,$tmp vcipher $out4,$out4,v26 vcipher $out5,$out5,v26 add $inp,$inp,r0 # $inp is adjusted in such # way that at exit from the # loop inX-in5 are loaded # with last "words" vxor $in2,$twk2,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk2,$tweak,$rndkey0 vaddubm $tweak,$tweak,$tweak vcipher $out0,$out0,v27 vcipher $out1,$out1,v27 vsldoi $tmp,$tmp,$tmp,15 vcipher $out2,$out2,v27 vcipher $out3,$out3,v27 vand $tmp,$tmp,$eighty7 vcipher $out4,$out4,v27 vcipher $out5,$out5,v27 addi $key_,$sp,$FRAME+15 # rewind $key_ vxor $tweak,$tweak,$tmp vcipher $out0,$out0,v28 vcipher $out1,$out1,v28 vxor $in3,$twk3,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk3,$tweak,$rndkey0 vcipher $out2,$out2,v28 vcipher $out3,$out3,v28 vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vcipher $out4,$out4,v28 vcipher $out5,$out5,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vand $tmp,$tmp,$eighty7 vcipher $out0,$out0,v29 vcipher $out1,$out1,v29 vxor $tweak,$tweak,$tmp vcipher $out2,$out2,v29 vcipher $out3,$out3,v29 vxor $in4,$twk4,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk4,$tweak,$rndkey0 vcipher $out4,$out4,v29 vcipher $out5,$out5,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vcipher $out0,$out0,v30 vcipher $out1,$out1,v30 vand $tmp,$tmp,$eighty7 vcipher $out2,$out2,v30 vcipher $out3,$out3,v30 vxor $tweak,$tweak,$tmp vcipher $out4,$out4,v30 vcipher $out5,$out5,v30 vxor $in5,$twk5,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk5,$tweak,$rndkey0 vcipherlast $out0,$out0,$in0 lvx_u $in0,$x00,$inp # load next input block vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vcipherlast $out1,$out1,$in1 lvx_u $in1,$x10,$inp vcipherlast $out2,$out2,$in2 le?vperm $in0,$in0,$in0,$leperm lvx_u $in2,$x20,$inp vand $tmp,$tmp,$eighty7 vcipherlast $out3,$out3,$in3 le?vperm $in1,$in1,$in1,$leperm lvx_u $in3,$x30,$inp vcipherlast $out4,$out4,$in4 le?vperm $in2,$in2,$in2,$leperm lvx_u $in4,$x40,$inp vxor $tweak,$tweak,$tmp vcipherlast $tmp,$out5,$in5 # last block might be needed # in stealing mode le?vperm $in3,$in3,$in3,$leperm lvx_u $in5,$x50,$inp addi $inp,$inp,0x60 le?vperm $in4,$in4,$in4,$leperm le?vperm $in5,$in5,$in5,$leperm le?vperm $out0,$out0,$out0,$leperm le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output vxor $out0,$in0,$twk0 le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out vxor $out1,$in1,$twk1 le?vperm $out3,$out3,$out3,$leperm stvx_u $out2,$x20,$out vxor $out2,$in2,$twk2 le?vperm $out4,$out4,$out4,$leperm stvx_u $out3,$x30,$out vxor $out3,$in3,$twk3 le?vperm $out5,$tmp,$tmp,$leperm stvx_u $out4,$x40,$out vxor $out4,$in4,$twk4 le?stvx_u $out5,$x50,$out be?stvx_u $tmp, $x50,$out vxor $out5,$in5,$twk5 addi $out,$out,0x60 mtctr $rounds beq Loop_xts_enc6x # did $len-=96 borrow? addic. $len,$len,0x60 beq Lxts_enc6x_zero cmpwi $len,0x20 blt Lxts_enc6x_one nop beq Lxts_enc6x_two cmpwi $len,0x40 blt Lxts_enc6x_three nop beq Lxts_enc6x_four Lxts_enc6x_five: vxor $out0,$in1,$twk0 vxor $out1,$in2,$twk1 vxor $out2,$in3,$twk2 vxor $out3,$in4,$twk3 vxor $out4,$in5,$twk4 bl _aesp8_xts_enc5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk5 # unused tweak le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$leperm stvx_u $out2,$x20,$out vxor $tmp,$out4,$twk5 # last block prep for stealing le?vperm $out4,$out4,$out4,$leperm stvx_u $out3,$x30,$out stvx_u $out4,$x40,$out addi $out,$out,0x50 bne Lxts_enc6x_steal b Lxts_enc6x_done .align 4 Lxts_enc6x_four: vxor $out0,$in2,$twk0 vxor $out1,$in3,$twk1 vxor $out2,$in4,$twk2 vxor $out3,$in5,$twk3 vxor $out4,$out4,$out4 bl _aesp8_xts_enc5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk4 # unused tweak le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out vxor $tmp,$out3,$twk4 # last block prep for stealing le?vperm $out3,$out3,$out3,$leperm stvx_u $out2,$x20,$out stvx_u $out3,$x30,$out addi $out,$out,0x40 bne Lxts_enc6x_steal b Lxts_enc6x_done .align 4 Lxts_enc6x_three: vxor $out0,$in3,$twk0 vxor $out1,$in4,$twk1 vxor $out2,$in5,$twk2 vxor $out3,$out3,$out3 vxor $out4,$out4,$out4 bl _aesp8_xts_enc5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk3 # unused tweak le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output vxor $tmp,$out2,$twk3 # last block prep for stealing le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out stvx_u $out2,$x20,$out addi $out,$out,0x30 bne Lxts_enc6x_steal b Lxts_enc6x_done .align 4 Lxts_enc6x_two: vxor $out0,$in4,$twk0 vxor $out1,$in5,$twk1 vxor $out2,$out2,$out2 vxor $out3,$out3,$out3 vxor $out4,$out4,$out4 bl _aesp8_xts_enc5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk2 # unused tweak vxor $tmp,$out1,$twk2 # last block prep for stealing le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output stvx_u $out1,$x10,$out addi $out,$out,0x20 bne Lxts_enc6x_steal b Lxts_enc6x_done .align 4 Lxts_enc6x_one: vxor $out0,$in5,$twk0 nop Loop_xts_enc1x: vcipher $out0,$out0,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vcipher $out0,$out0,v25 lvx v25,$x10,$key_ # round[4] bdnz Loop_xts_enc1x add $inp,$inp,$taillen cmpwi $taillen,0 vcipher $out0,$out0,v24 subi $inp,$inp,16 vcipher $out0,$out0,v25 lvsr $inpperm,0,$taillen vcipher $out0,$out0,v26 lvx_u $in0,0,$inp vcipher $out0,$out0,v27 addi $key_,$sp,$FRAME+15 # rewind $key_ vcipher $out0,$out0,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vcipher $out0,$out0,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vxor $twk0,$twk0,v31 le?vperm $in0,$in0,$in0,$leperm vcipher $out0,$out0,v30 vperm $in0,$in0,$in0,$inpperm vcipherlast $out0,$out0,$twk0 vmr $twk0,$twk1 # unused tweak vxor $tmp,$out0,$twk1 # last block prep for stealing le?vperm $out0,$out0,$out0,$leperm stvx_u $out0,$x00,$out # store output addi $out,$out,0x10 bne Lxts_enc6x_steal b Lxts_enc6x_done .align 4 Lxts_enc6x_zero: cmpwi $taillen,0 beq Lxts_enc6x_done add $inp,$inp,$taillen subi $inp,$inp,16 lvx_u $in0,0,$inp lvsr $inpperm,0,$taillen # $in5 is no more le?vperm $in0,$in0,$in0,$leperm vperm $in0,$in0,$in0,$inpperm vxor $tmp,$tmp,$twk0 Lxts_enc6x_steal: vxor $in0,$in0,$twk0 vxor $out0,$out0,$out0 vspltisb $out1,-1 vperm $out0,$out0,$out1,$inpperm vsel $out0,$in0,$tmp,$out0 # $tmp is last block, remember? subi r30,$out,17 subi $out,$out,16 mtctr $taillen Loop_xts_enc6x_steal: lbzu r0,1(r30) stb r0,16(r30) bdnz Loop_xts_enc6x_steal li $taillen,0 mtctr $rounds b Loop_xts_enc1x # one more time... .align 4 Lxts_enc6x_done: ${UCMP}i $ivp,0 beq Lxts_enc6x_ret vxor $tweak,$twk0,$rndkey0 le?vperm $tweak,$tweak,$tweak,$leperm stvx_u $tweak,0,$ivp Lxts_enc6x_ret: mtlr r11 li r10,`$FRAME+15` li r11,`$FRAME+31` stvx $seven,r10,$sp # wipe copies of round keys addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 stvx $seven,r10,$sp addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 stvx $seven,r10,$sp addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 stvx $seven,r10,$sp addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 mtspr 256,$vrsave lvx v20,r10,$sp # ABI says so addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp $POP r26,`$FRAME+21*16+0*$SIZE_T`($sp) $POP r27,`$FRAME+21*16+1*$SIZE_T`($sp) $POP r28,`$FRAME+21*16+2*$SIZE_T`($sp) $POP r29,`$FRAME+21*16+3*$SIZE_T`($sp) $POP r30,`$FRAME+21*16+4*$SIZE_T`($sp) $POP r31,`$FRAME+21*16+5*$SIZE_T`($sp) addi $sp,$sp,`$FRAME+21*16+6*$SIZE_T` blr .long 0 .byte 0,12,0x04,1,0x80,6,6,0 .long 0 .align 5 _aesp8_xts_enc5x: vcipher $out0,$out0,v24 vcipher $out1,$out1,v24 vcipher $out2,$out2,v24 vcipher $out3,$out3,v24 vcipher $out4,$out4,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vcipher $out0,$out0,v25 vcipher $out1,$out1,v25 vcipher $out2,$out2,v25 vcipher $out3,$out3,v25 vcipher $out4,$out4,v25 lvx v25,$x10,$key_ # round[4] bdnz _aesp8_xts_enc5x add $inp,$inp,$taillen cmpwi $taillen,0 vcipher $out0,$out0,v24 vcipher $out1,$out1,v24 vcipher $out2,$out2,v24 vcipher $out3,$out3,v24 vcipher $out4,$out4,v24 subi $inp,$inp,16 vcipher $out0,$out0,v25 vcipher $out1,$out1,v25 vcipher $out2,$out2,v25 vcipher $out3,$out3,v25 vcipher $out4,$out4,v25 vxor $twk0,$twk0,v31 vcipher $out0,$out0,v26 lvsr $inpperm,0,$taillen # $in5 is no more vcipher $out1,$out1,v26 vcipher $out2,$out2,v26 vcipher $out3,$out3,v26 vcipher $out4,$out4,v26 vxor $in1,$twk1,v31 vcipher $out0,$out0,v27 lvx_u $in0,0,$inp vcipher $out1,$out1,v27 vcipher $out2,$out2,v27 vcipher $out3,$out3,v27 vcipher $out4,$out4,v27 vxor $in2,$twk2,v31 addi $key_,$sp,$FRAME+15 # rewind $key_ vcipher $out0,$out0,v28 vcipher $out1,$out1,v28 vcipher $out2,$out2,v28 vcipher $out3,$out3,v28 vcipher $out4,$out4,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vxor $in3,$twk3,v31 vcipher $out0,$out0,v29 le?vperm $in0,$in0,$in0,$leperm vcipher $out1,$out1,v29 vcipher $out2,$out2,v29 vcipher $out3,$out3,v29 vcipher $out4,$out4,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vxor $in4,$twk4,v31 vcipher $out0,$out0,v30 vperm $in0,$in0,$in0,$inpperm vcipher $out1,$out1,v30 vcipher $out2,$out2,v30 vcipher $out3,$out3,v30 vcipher $out4,$out4,v30 vcipherlast $out0,$out0,$twk0 vcipherlast $out1,$out1,$in1 vcipherlast $out2,$out2,$in2 vcipherlast $out3,$out3,$in3 vcipherlast $out4,$out4,$in4 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .align 5 _aesp8_xts_decrypt6x: $STU $sp,-`($FRAME+21*16+6*$SIZE_T)`($sp) mflr r11 li r7,`$FRAME+8*16+15` li r3,`$FRAME+8*16+31` $PUSH r11,`$FRAME+21*16+6*$SIZE_T+$LRSAVE`($sp) stvx v20,r7,$sp # ABI says so addi r7,r7,32 stvx v21,r3,$sp addi r3,r3,32 stvx v22,r7,$sp addi r7,r7,32 stvx v23,r3,$sp addi r3,r3,32 stvx v24,r7,$sp addi r7,r7,32 stvx v25,r3,$sp addi r3,r3,32 stvx v26,r7,$sp addi r7,r7,32 stvx v27,r3,$sp addi r3,r3,32 stvx v28,r7,$sp addi r7,r7,32 stvx v29,r3,$sp addi r3,r3,32 stvx v30,r7,$sp stvx v31,r3,$sp li r0,-1 stw $vrsave,`$FRAME+21*16-4`($sp) # save vrsave li $x10,0x10 $PUSH r26,`$FRAME+21*16+0*$SIZE_T`($sp) li $x20,0x20 $PUSH r27,`$FRAME+21*16+1*$SIZE_T`($sp) li $x30,0x30 $PUSH r28,`$FRAME+21*16+2*$SIZE_T`($sp) li $x40,0x40 $PUSH r29,`$FRAME+21*16+3*$SIZE_T`($sp) li $x50,0x50 $PUSH r30,`$FRAME+21*16+4*$SIZE_T`($sp) li $x60,0x60 $PUSH r31,`$FRAME+21*16+5*$SIZE_T`($sp) li $x70,0x70 mtspr 256,r0 subi $rounds,$rounds,3 # -4 in total lvx $rndkey0,$x00,$key1 # load key schedule lvx v30,$x10,$key1 addi $key1,$key1,0x20 lvx v31,$x00,$key1 ?vperm $rndkey0,$rndkey0,v30,$keyperm addi $key_,$sp,$FRAME+15 mtctr $rounds Load_xts_dec_key: ?vperm v24,v30,v31,$keyperm lvx v30,$x10,$key1 addi $key1,$key1,0x20 stvx v24,$x00,$key_ # off-load round[1] ?vperm v25,v31,v30,$keyperm lvx v31,$x00,$key1 stvx v25,$x10,$key_ # off-load round[2] addi $key_,$key_,0x20 bdnz Load_xts_dec_key lvx v26,$x10,$key1 ?vperm v24,v30,v31,$keyperm lvx v27,$x20,$key1 stvx v24,$x00,$key_ # off-load round[3] ?vperm v25,v31,v26,$keyperm lvx v28,$x30,$key1 stvx v25,$x10,$key_ # off-load round[4] addi $key_,$sp,$FRAME+15 # rewind $key_ ?vperm v26,v26,v27,$keyperm lvx v29,$x40,$key1 ?vperm v27,v27,v28,$keyperm lvx v30,$x50,$key1 ?vperm v28,v28,v29,$keyperm lvx v31,$x60,$key1 ?vperm v29,v29,v30,$keyperm lvx $twk5,$x70,$key1 # borrow $twk5 ?vperm v30,v30,v31,$keyperm lvx v24,$x00,$key_ # pre-load round[1] ?vperm v31,v31,$twk5,$keyperm lvx v25,$x10,$key_ # pre-load round[2] vperm $in0,$inout,$inptail,$inpperm subi $inp,$inp,31 # undo "caller" vxor $twk0,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vand $tmp,$tmp,$eighty7 vxor $out0,$in0,$twk0 vxor $tweak,$tweak,$tmp lvx_u $in1,$x10,$inp vxor $twk1,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in1,$in1,$in1,$leperm vand $tmp,$tmp,$eighty7 vxor $out1,$in1,$twk1 vxor $tweak,$tweak,$tmp lvx_u $in2,$x20,$inp andi. $taillen,$len,15 vxor $twk2,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in2,$in2,$in2,$leperm vand $tmp,$tmp,$eighty7 vxor $out2,$in2,$twk2 vxor $tweak,$tweak,$tmp lvx_u $in3,$x30,$inp sub $len,$len,$taillen vxor $twk3,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in3,$in3,$in3,$leperm vand $tmp,$tmp,$eighty7 vxor $out3,$in3,$twk3 vxor $tweak,$tweak,$tmp lvx_u $in4,$x40,$inp subi $len,$len,0x60 vxor $twk4,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in4,$in4,$in4,$leperm vand $tmp,$tmp,$eighty7 vxor $out4,$in4,$twk4 vxor $tweak,$tweak,$tmp lvx_u $in5,$x50,$inp addi $inp,$inp,0x60 vxor $twk5,$tweak,$rndkey0 vsrab $tmp,$tweak,$seven # next tweak value vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 le?vperm $in5,$in5,$in5,$leperm vand $tmp,$tmp,$eighty7 vxor $out5,$in5,$twk5 vxor $tweak,$tweak,$tmp vxor v31,v31,$rndkey0 mtctr $rounds b Loop_xts_dec6x .align 5 Loop_xts_dec6x: vncipher $out0,$out0,v24 vncipher $out1,$out1,v24 vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vncipher $out4,$out4,v24 vncipher $out5,$out5,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vncipher $out0,$out0,v25 vncipher $out1,$out1,v25 vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vncipher $out4,$out4,v25 vncipher $out5,$out5,v25 lvx v25,$x10,$key_ # round[4] bdnz Loop_xts_dec6x subic $len,$len,96 # $len-=96 vxor $in0,$twk0,v31 # xor with last round key vncipher $out0,$out0,v24 vncipher $out1,$out1,v24 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk0,$tweak,$rndkey0 vaddubm $tweak,$tweak,$tweak vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vsldoi $tmp,$tmp,$tmp,15 vncipher $out4,$out4,v24 vncipher $out5,$out5,v24 subfe. r0,r0,r0 # borrow?-1:0 vand $tmp,$tmp,$eighty7 vncipher $out0,$out0,v25 vncipher $out1,$out1,v25 vxor $tweak,$tweak,$tmp vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vxor $in1,$twk1,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk1,$tweak,$rndkey0 vncipher $out4,$out4,v25 vncipher $out5,$out5,v25 and r0,r0,$len vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vncipher $out0,$out0,v26 vncipher $out1,$out1,v26 vand $tmp,$tmp,$eighty7 vncipher $out2,$out2,v26 vncipher $out3,$out3,v26 vxor $tweak,$tweak,$tmp vncipher $out4,$out4,v26 vncipher $out5,$out5,v26 add $inp,$inp,r0 # $inp is adjusted in such # way that at exit from the # loop inX-in5 are loaded # with last "words" vxor $in2,$twk2,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk2,$tweak,$rndkey0 vaddubm $tweak,$tweak,$tweak vncipher $out0,$out0,v27 vncipher $out1,$out1,v27 vsldoi $tmp,$tmp,$tmp,15 vncipher $out2,$out2,v27 vncipher $out3,$out3,v27 vand $tmp,$tmp,$eighty7 vncipher $out4,$out4,v27 vncipher $out5,$out5,v27 addi $key_,$sp,$FRAME+15 # rewind $key_ vxor $tweak,$tweak,$tmp vncipher $out0,$out0,v28 vncipher $out1,$out1,v28 vxor $in3,$twk3,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk3,$tweak,$rndkey0 vncipher $out2,$out2,v28 vncipher $out3,$out3,v28 vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vncipher $out4,$out4,v28 vncipher $out5,$out5,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vand $tmp,$tmp,$eighty7 vncipher $out0,$out0,v29 vncipher $out1,$out1,v29 vxor $tweak,$tweak,$tmp vncipher $out2,$out2,v29 vncipher $out3,$out3,v29 vxor $in4,$twk4,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk4,$tweak,$rndkey0 vncipher $out4,$out4,v29 vncipher $out5,$out5,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vncipher $out0,$out0,v30 vncipher $out1,$out1,v30 vand $tmp,$tmp,$eighty7 vncipher $out2,$out2,v30 vncipher $out3,$out3,v30 vxor $tweak,$tweak,$tmp vncipher $out4,$out4,v30 vncipher $out5,$out5,v30 vxor $in5,$twk5,v31 vsrab $tmp,$tweak,$seven # next tweak value vxor $twk5,$tweak,$rndkey0 vncipherlast $out0,$out0,$in0 lvx_u $in0,$x00,$inp # load next input block vaddubm $tweak,$tweak,$tweak vsldoi $tmp,$tmp,$tmp,15 vncipherlast $out1,$out1,$in1 lvx_u $in1,$x10,$inp vncipherlast $out2,$out2,$in2 le?vperm $in0,$in0,$in0,$leperm lvx_u $in2,$x20,$inp vand $tmp,$tmp,$eighty7 vncipherlast $out3,$out3,$in3 le?vperm $in1,$in1,$in1,$leperm lvx_u $in3,$x30,$inp vncipherlast $out4,$out4,$in4 le?vperm $in2,$in2,$in2,$leperm lvx_u $in4,$x40,$inp vxor $tweak,$tweak,$tmp vncipherlast $out5,$out5,$in5 le?vperm $in3,$in3,$in3,$leperm lvx_u $in5,$x50,$inp addi $inp,$inp,0x60 le?vperm $in4,$in4,$in4,$leperm le?vperm $in5,$in5,$in5,$leperm le?vperm $out0,$out0,$out0,$leperm le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output vxor $out0,$in0,$twk0 le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out vxor $out1,$in1,$twk1 le?vperm $out3,$out3,$out3,$leperm stvx_u $out2,$x20,$out vxor $out2,$in2,$twk2 le?vperm $out4,$out4,$out4,$leperm stvx_u $out3,$x30,$out vxor $out3,$in3,$twk3 le?vperm $out5,$out5,$out5,$leperm stvx_u $out4,$x40,$out vxor $out4,$in4,$twk4 stvx_u $out5,$x50,$out vxor $out5,$in5,$twk5 addi $out,$out,0x60 mtctr $rounds beq Loop_xts_dec6x # did $len-=96 borrow? addic. $len,$len,0x60 beq Lxts_dec6x_zero cmpwi $len,0x20 blt Lxts_dec6x_one nop beq Lxts_dec6x_two cmpwi $len,0x40 blt Lxts_dec6x_three nop beq Lxts_dec6x_four Lxts_dec6x_five: vxor $out0,$in1,$twk0 vxor $out1,$in2,$twk1 vxor $out2,$in3,$twk2 vxor $out3,$in4,$twk3 vxor $out4,$in5,$twk4 bl _aesp8_xts_dec5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk5 # unused tweak vxor $twk1,$tweak,$rndkey0 le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output vxor $out0,$in0,$twk1 le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$leperm stvx_u $out2,$x20,$out le?vperm $out4,$out4,$out4,$leperm stvx_u $out3,$x30,$out stvx_u $out4,$x40,$out addi $out,$out,0x50 bne Lxts_dec6x_steal b Lxts_dec6x_done .align 4 Lxts_dec6x_four: vxor $out0,$in2,$twk0 vxor $out1,$in3,$twk1 vxor $out2,$in4,$twk2 vxor $out3,$in5,$twk3 vxor $out4,$out4,$out4 bl _aesp8_xts_dec5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk4 # unused tweak vmr $twk1,$twk5 le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output vxor $out0,$in0,$twk5 le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out le?vperm $out3,$out3,$out3,$leperm stvx_u $out2,$x20,$out stvx_u $out3,$x30,$out addi $out,$out,0x40 bne Lxts_dec6x_steal b Lxts_dec6x_done .align 4 Lxts_dec6x_three: vxor $out0,$in3,$twk0 vxor $out1,$in4,$twk1 vxor $out2,$in5,$twk2 vxor $out3,$out3,$out3 vxor $out4,$out4,$out4 bl _aesp8_xts_dec5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk3 # unused tweak vmr $twk1,$twk4 le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output vxor $out0,$in0,$twk4 le?vperm $out2,$out2,$out2,$leperm stvx_u $out1,$x10,$out stvx_u $out2,$x20,$out addi $out,$out,0x30 bne Lxts_dec6x_steal b Lxts_dec6x_done .align 4 Lxts_dec6x_two: vxor $out0,$in4,$twk0 vxor $out1,$in5,$twk1 vxor $out2,$out2,$out2 vxor $out3,$out3,$out3 vxor $out4,$out4,$out4 bl _aesp8_xts_dec5x le?vperm $out0,$out0,$out0,$leperm vmr $twk0,$twk2 # unused tweak vmr $twk1,$twk3 le?vperm $out1,$out1,$out1,$leperm stvx_u $out0,$x00,$out # store output vxor $out0,$in0,$twk3 stvx_u $out1,$x10,$out addi $out,$out,0x20 bne Lxts_dec6x_steal b Lxts_dec6x_done .align 4 Lxts_dec6x_one: vxor $out0,$in5,$twk0 nop Loop_xts_dec1x: vncipher $out0,$out0,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vncipher $out0,$out0,v25 lvx v25,$x10,$key_ # round[4] bdnz Loop_xts_dec1x subi r0,$taillen,1 vncipher $out0,$out0,v24 andi. r0,r0,16 cmpwi $taillen,0 vncipher $out0,$out0,v25 sub $inp,$inp,r0 vncipher $out0,$out0,v26 lvx_u $in0,0,$inp vncipher $out0,$out0,v27 addi $key_,$sp,$FRAME+15 # rewind $key_ vncipher $out0,$out0,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vncipher $out0,$out0,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vxor $twk0,$twk0,v31 le?vperm $in0,$in0,$in0,$leperm vncipher $out0,$out0,v30 mtctr $rounds vncipherlast $out0,$out0,$twk0 vmr $twk0,$twk1 # unused tweak vmr $twk1,$twk2 le?vperm $out0,$out0,$out0,$leperm stvx_u $out0,$x00,$out # store output addi $out,$out,0x10 vxor $out0,$in0,$twk2 bne Lxts_dec6x_steal b Lxts_dec6x_done .align 4 Lxts_dec6x_zero: cmpwi $taillen,0 beq Lxts_dec6x_done lvx_u $in0,0,$inp le?vperm $in0,$in0,$in0,$leperm vxor $out0,$in0,$twk1 Lxts_dec6x_steal: vncipher $out0,$out0,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vncipher $out0,$out0,v25 lvx v25,$x10,$key_ # round[4] bdnz Lxts_dec6x_steal add $inp,$inp,$taillen vncipher $out0,$out0,v24 cmpwi $taillen,0 vncipher $out0,$out0,v25 lvx_u $in0,0,$inp vncipher $out0,$out0,v26 lvsr $inpperm,0,$taillen # $in5 is no more vncipher $out0,$out0,v27 addi $key_,$sp,$FRAME+15 # rewind $key_ vncipher $out0,$out0,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vncipher $out0,$out0,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vxor $twk1,$twk1,v31 le?vperm $in0,$in0,$in0,$leperm vncipher $out0,$out0,v30 vperm $in0,$in0,$in0,$inpperm vncipherlast $tmp,$out0,$twk1 le?vperm $out0,$tmp,$tmp,$leperm le?stvx_u $out0,0,$out be?stvx_u $tmp,0,$out vxor $out0,$out0,$out0 vspltisb $out1,-1 vperm $out0,$out0,$out1,$inpperm vsel $out0,$in0,$tmp,$out0 vxor $out0,$out0,$twk0 subi r30,$out,1 mtctr $taillen Loop_xts_dec6x_steal: lbzu r0,1(r30) stb r0,16(r30) bdnz Loop_xts_dec6x_steal li $taillen,0 mtctr $rounds b Loop_xts_dec1x # one more time... .align 4 Lxts_dec6x_done: ${UCMP}i $ivp,0 beq Lxts_dec6x_ret vxor $tweak,$twk0,$rndkey0 le?vperm $tweak,$tweak,$tweak,$leperm stvx_u $tweak,0,$ivp Lxts_dec6x_ret: mtlr r11 li r10,`$FRAME+15` li r11,`$FRAME+31` stvx $seven,r10,$sp # wipe copies of round keys addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 stvx $seven,r10,$sp addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 stvx $seven,r10,$sp addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 stvx $seven,r10,$sp addi r10,r10,32 stvx $seven,r11,$sp addi r11,r11,32 mtspr 256,$vrsave lvx v20,r10,$sp # ABI says so addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp $POP r26,`$FRAME+21*16+0*$SIZE_T`($sp) $POP r27,`$FRAME+21*16+1*$SIZE_T`($sp) $POP r28,`$FRAME+21*16+2*$SIZE_T`($sp) $POP r29,`$FRAME+21*16+3*$SIZE_T`($sp) $POP r30,`$FRAME+21*16+4*$SIZE_T`($sp) $POP r31,`$FRAME+21*16+5*$SIZE_T`($sp) addi $sp,$sp,`$FRAME+21*16+6*$SIZE_T` blr .long 0 .byte 0,12,0x04,1,0x80,6,6,0 .long 0 .align 5 _aesp8_xts_dec5x: vncipher $out0,$out0,v24 vncipher $out1,$out1,v24 vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vncipher $out4,$out4,v24 lvx v24,$x20,$key_ # round[3] addi $key_,$key_,0x20 vncipher $out0,$out0,v25 vncipher $out1,$out1,v25 vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vncipher $out4,$out4,v25 lvx v25,$x10,$key_ # round[4] bdnz _aesp8_xts_dec5x subi r0,$taillen,1 vncipher $out0,$out0,v24 vncipher $out1,$out1,v24 vncipher $out2,$out2,v24 vncipher $out3,$out3,v24 vncipher $out4,$out4,v24 andi. r0,r0,16 cmpwi $taillen,0 vncipher $out0,$out0,v25 vncipher $out1,$out1,v25 vncipher $out2,$out2,v25 vncipher $out3,$out3,v25 vncipher $out4,$out4,v25 vxor $twk0,$twk0,v31 sub $inp,$inp,r0 vncipher $out0,$out0,v26 vncipher $out1,$out1,v26 vncipher $out2,$out2,v26 vncipher $out3,$out3,v26 vncipher $out4,$out4,v26 vxor $in1,$twk1,v31 vncipher $out0,$out0,v27 lvx_u $in0,0,$inp vncipher $out1,$out1,v27 vncipher $out2,$out2,v27 vncipher $out3,$out3,v27 vncipher $out4,$out4,v27 vxor $in2,$twk2,v31 addi $key_,$sp,$FRAME+15 # rewind $key_ vncipher $out0,$out0,v28 vncipher $out1,$out1,v28 vncipher $out2,$out2,v28 vncipher $out3,$out3,v28 vncipher $out4,$out4,v28 lvx v24,$x00,$key_ # re-pre-load round[1] vxor $in3,$twk3,v31 vncipher $out0,$out0,v29 le?vperm $in0,$in0,$in0,$leperm vncipher $out1,$out1,v29 vncipher $out2,$out2,v29 vncipher $out3,$out3,v29 vncipher $out4,$out4,v29 lvx v25,$x10,$key_ # re-pre-load round[2] vxor $in4,$twk4,v31 vncipher $out0,$out0,v30 vncipher $out1,$out1,v30 vncipher $out2,$out2,v30 vncipher $out3,$out3,v30 vncipher $out4,$out4,v30 vncipherlast $out0,$out0,$twk0 vncipherlast $out1,$out1,$in1 vncipherlast $out2,$out2,$in2 vncipherlast $out3,$out3,$in3 vncipherlast $out4,$out4,$in4 mtctr $rounds blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ___ }} }}} my $consts=1; foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/geo; # constants table endian-specific conversion if ($consts && m/\.(long|byte)\s+(.+)\s+(\?[a-z]*)$/o) { my $conv=$3; my @bytes=(); # convert to endian-agnostic format if ($1 eq "long") { foreach (split(/,\s*/,$2)) { my $l = /^0/?oct:int; push @bytes,($l>>24)&0xff,($l>>16)&0xff,($l>>8)&0xff,$l&0xff; } } else { @bytes = map(/^0/?oct:int,split(/,\s*/,$2)); } # little-endian conversion if ($flavour =~ /le$/o) { SWITCH: for($conv) { /\?inv/ && do { @bytes=map($_^0xf,@bytes); last; }; /\?rev/ && do { @bytes=reverse(@bytes); last; }; } } #emit print ".byte\t",join(',',map (sprintf("0x%02x",$_),@bytes)),"\n"; next; } $consts=0 if (m/Lconsts:/o); # end of table # instructions prefixed with '?' are endian-specific and need # to be adjusted accordingly... if ($flavour =~ /le$/o) { # little-endian s/le\?//o or s/be\?/#be#/o or s/\?lvsr/lvsl/o or s/\?lvsl/lvsr/o or s/\?(vperm\s+v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+)/$1$3$2$4/o or s/\?(vsldoi\s+v[0-9]+,\s*)(v[0-9]+,)\s*(v[0-9]+,\s*)([0-9]+)/$1$3$2 16-$4/o or s/\?(vspltw\s+v[0-9]+,\s*)(v[0-9]+,)\s*([0-9])/$1$2 3-$3/o; } else { # big-endian s/le\?/#le#/o or s/be\?//o or s/\?([a-z]+)/$1/o; } print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aest4-sparcv9.pl000066400000000000000000000553051364063235100211700ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by David S. Miller and Andy Polyakov. # The module is licensed under 2-clause BSD license. October 2012. # All rights reserved. # ==================================================================== ###################################################################### # AES for SPARC T4. # # AES round instructions complete in 3 cycles and can be issued every # cycle. It means that round calculations should take 4*rounds cycles, # because any given round instruction depends on result of *both* # previous instructions: # # |0 |1 |2 |3 |4 # |01|01|01| # |23|23|23| # |01|01|... # |23|... # # Provided that fxor [with IV] takes 3 cycles to complete, critical # path length for CBC encrypt would be 3+4*rounds, or in other words # it should process one byte in at least (3+4*rounds)/16 cycles. This # estimate doesn't account for "collateral" instructions, such as # fetching input from memory, xor-ing it with zero-round key and # storing the result. Yet, *measured* performance [for data aligned # at 64-bit boundary!] deviates from this equation by less than 0.5%: # # 128-bit key 192- 256- # CBC encrypt 2.70/2.90(*) 3.20/3.40 3.70/3.90 # (*) numbers after slash are for # misaligned data. # # Out-of-order execution logic managed to fully overlap "collateral" # instructions with those on critical path. Amazing! # # As with Intel AES-NI, question is if it's possible to improve # performance of parallelizable modes by interleaving round # instructions. Provided round instruction latency and throughput # optimal interleave factor is 2. But can we expect 2x performance # improvement? Well, as round instructions can be issued one per # cycle, they don't saturate the 2-way issue pipeline and therefore # there is room for "collateral" calculations... Yet, 2x speed-up # over CBC encrypt remains unattaintable: # # 128-bit key 192- 256- # CBC decrypt 1.64/2.11 1.89/2.37 2.23/2.61 # CTR 1.64/2.08(*) 1.89/2.33 2.23/2.61 # (*) numbers after slash are for # misaligned data. # # Estimates based on amount of instructions under assumption that # round instructions are not pairable with any other instruction # suggest that latter is the actual case and pipeline runs # underutilized. It should be noted that T4 out-of-order execution # logic is so capable that performance gain from 2x interleave is # not even impressive, ~7-13% over non-interleaved code, largest # for 256-bit keys. # To anchor to something else, software implementation processes # one byte in 29 cycles with 128-bit key on same processor. Intel # Sandy Bridge encrypts byte in 5.07 cycles in CBC mode and decrypts # in 0.93, naturally with AES-NI. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "sparcv9_modes.pl"; $output = pop; open STDOUT,">$output"; $::evp=1; # if $evp is set to 0, script generates module with # AES_[en|de]crypt, AES_set_[en|de]crypt_key and AES_cbc_encrypt entry # points. These however are not fully compatible with openssl/aes.h, # because they expect AES_KEY to be aligned at 64-bit boundary. When # used through EVP, alignment is arranged at EVP layer. Second thing # that is arranged by EVP is at least 32-bit alignment of IV. ###################################################################### # single-round subroutines # { my ($inp,$out,$key,$rounds,$tmp,$mask)=map("%o$_",(0..5)); $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .text .globl aes_t4_encrypt .align 32 aes_t4_encrypt: andcc $inp, 7, %g1 ! is input aligned? andn $inp, 7, $inp ldx [$key + 0], %g4 ldx [$key + 8], %g5 ldx [$inp + 0], %o4 bz,pt %icc, 1f ldx [$inp + 8], %o5 ldx [$inp + 16], $inp sll %g1, 3, %g1 sub %g0, %g1, %o3 sllx %o4, %g1, %o4 sllx %o5, %g1, %g1 srlx %o5, %o3, %o5 srlx $inp, %o3, %o3 or %o5, %o4, %o4 or %o3, %g1, %o5 1: ld [$key + 240], $rounds ldd [$key + 16], %f12 ldd [$key + 24], %f14 xor %g4, %o4, %o4 xor %g5, %o5, %o5 movxtod %o4, %f0 movxtod %o5, %f2 srl $rounds, 1, $rounds ldd [$key + 32], %f16 sub $rounds, 1, $rounds ldd [$key + 40], %f18 add $key, 48, $key .Lenc: aes_eround01 %f12, %f0, %f2, %f4 aes_eround23 %f14, %f0, %f2, %f2 ldd [$key + 0], %f12 ldd [$key + 8], %f14 sub $rounds,1,$rounds aes_eround01 %f16, %f4, %f2, %f0 aes_eround23 %f18, %f4, %f2, %f2 ldd [$key + 16], %f16 ldd [$key + 24], %f18 brnz,pt $rounds, .Lenc add $key, 32, $key andcc $out, 7, $tmp ! is output aligned? aes_eround01 %f12, %f0, %f2, %f4 aes_eround23 %f14, %f0, %f2, %f2 aes_eround01_l %f16, %f4, %f2, %f0 aes_eround23_l %f18, %f4, %f2, %f2 bnz,pn %icc, 2f nop std %f0, [$out + 0] retl std %f2, [$out + 8] 2: alignaddrl $out, %g0, $out mov 0xff, $mask srl $mask, $tmp, $mask faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $mask, $mask retl stda %f8, [$out + $mask]0xc0 ! partial store .type aes_t4_encrypt,#function .size aes_t4_encrypt,.-aes_t4_encrypt .globl aes_t4_decrypt .align 32 aes_t4_decrypt: andcc $inp, 7, %g1 ! is input aligned? andn $inp, 7, $inp ldx [$key + 0], %g4 ldx [$key + 8], %g5 ldx [$inp + 0], %o4 bz,pt %icc, 1f ldx [$inp + 8], %o5 ldx [$inp + 16], $inp sll %g1, 3, %g1 sub %g0, %g1, %o3 sllx %o4, %g1, %o4 sllx %o5, %g1, %g1 srlx %o5, %o3, %o5 srlx $inp, %o3, %o3 or %o5, %o4, %o4 or %o3, %g1, %o5 1: ld [$key + 240], $rounds ldd [$key + 16], %f12 ldd [$key + 24], %f14 xor %g4, %o4, %o4 xor %g5, %o5, %o5 movxtod %o4, %f0 movxtod %o5, %f2 srl $rounds, 1, $rounds ldd [$key + 32], %f16 sub $rounds, 1, $rounds ldd [$key + 40], %f18 add $key, 48, $key .Ldec: aes_dround01 %f12, %f0, %f2, %f4 aes_dround23 %f14, %f0, %f2, %f2 ldd [$key + 0], %f12 ldd [$key + 8], %f14 sub $rounds,1,$rounds aes_dround01 %f16, %f4, %f2, %f0 aes_dround23 %f18, %f4, %f2, %f2 ldd [$key + 16], %f16 ldd [$key + 24], %f18 brnz,pt $rounds, .Ldec add $key, 32, $key andcc $out, 7, $tmp ! is output aligned? aes_dround01 %f12, %f0, %f2, %f4 aes_dround23 %f14, %f0, %f2, %f2 aes_dround01_l %f16, %f4, %f2, %f0 aes_dround23_l %f18, %f4, %f2, %f2 bnz,pn %icc, 2f nop std %f0, [$out + 0] retl std %f2, [$out + 8] 2: alignaddrl $out, %g0, $out mov 0xff, $mask srl $mask, $tmp, $mask faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $mask, $mask retl stda %f8, [$out + $mask]0xc0 ! partial store .type aes_t4_decrypt,#function .size aes_t4_decrypt,.-aes_t4_decrypt ___ } ###################################################################### # key setup subroutines # { my ($inp,$bits,$out,$tmp)=map("%o$_",(0..5)); $code.=<<___; .globl aes_t4_set_encrypt_key .align 32 aes_t4_set_encrypt_key: .Lset_encrypt_key: and $inp, 7, $tmp alignaddr $inp, %g0, $inp cmp $bits, 192 ldd [$inp + 0], %f0 bl,pt %icc,.L128 ldd [$inp + 8], %f2 be,pt %icc,.L192 ldd [$inp + 16], %f4 brz,pt $tmp, .L256aligned ldd [$inp + 24], %f6 ldd [$inp + 32], %f8 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 faligndata %f6, %f8, %f6 .L256aligned: ___ for ($i=0; $i<6; $i++) { $code.=<<___; std %f0, [$out + `32*$i+0`] aes_kexpand1 %f0, %f6, $i, %f0 std %f2, [$out + `32*$i+8`] aes_kexpand2 %f2, %f0, %f2 std %f4, [$out + `32*$i+16`] aes_kexpand0 %f4, %f2, %f4 std %f6, [$out + `32*$i+24`] aes_kexpand2 %f6, %f4, %f6 ___ } $code.=<<___; std %f0, [$out + `32*$i+0`] aes_kexpand1 %f0, %f6, $i, %f0 std %f2, [$out + `32*$i+8`] aes_kexpand2 %f2, %f0, %f2 std %f4, [$out + `32*$i+16`] std %f6, [$out + `32*$i+24`] std %f0, [$out + `32*$i+32`] std %f2, [$out + `32*$i+40`] mov 14, $tmp st $tmp, [$out + 240] retl xor %o0, %o0, %o0 .align 16 .L192: brz,pt $tmp, .L192aligned nop ldd [$inp + 24], %f6 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 .L192aligned: ___ for ($i=0; $i<7; $i++) { $code.=<<___; std %f0, [$out + `24*$i+0`] aes_kexpand1 %f0, %f4, $i, %f0 std %f2, [$out + `24*$i+8`] aes_kexpand2 %f2, %f0, %f2 std %f4, [$out + `24*$i+16`] aes_kexpand2 %f4, %f2, %f4 ___ } $code.=<<___; std %f0, [$out + `24*$i+0`] aes_kexpand1 %f0, %f4, $i, %f0 std %f2, [$out + `24*$i+8`] aes_kexpand2 %f2, %f0, %f2 std %f4, [$out + `24*$i+16`] std %f0, [$out + `24*$i+24`] std %f2, [$out + `24*$i+32`] mov 12, $tmp st $tmp, [$out + 240] retl xor %o0, %o0, %o0 .align 16 .L128: brz,pt $tmp, .L128aligned nop ldd [$inp + 16], %f4 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 .L128aligned: ___ for ($i=0; $i<10; $i++) { $code.=<<___; std %f0, [$out + `16*$i+0`] aes_kexpand1 %f0, %f2, $i, %f0 std %f2, [$out + `16*$i+8`] aes_kexpand2 %f2, %f0, %f2 ___ } $code.=<<___; std %f0, [$out + `16*$i+0`] std %f2, [$out + `16*$i+8`] mov 10, $tmp st $tmp, [$out + 240] retl xor %o0, %o0, %o0 .type aes_t4_set_encrypt_key,#function .size aes_t4_set_encrypt_key,.-aes_t4_set_encrypt_key .globl aes_t4_set_decrypt_key .align 32 aes_t4_set_decrypt_key: mov %o7, %o5 call .Lset_encrypt_key nop mov %o5, %o7 sll $tmp, 4, $inp ! $tmp is number of rounds add $tmp, 2, $tmp add $out, $inp, $inp ! $inp=$out+16*rounds srl $tmp, 2, $tmp ! $tmp=(rounds+2)/4 .Lkey_flip: ldd [$out + 0], %f0 ldd [$out + 8], %f2 ldd [$out + 16], %f4 ldd [$out + 24], %f6 ldd [$inp + 0], %f8 ldd [$inp + 8], %f10 ldd [$inp - 16], %f12 ldd [$inp - 8], %f14 sub $tmp, 1, $tmp std %f0, [$inp + 0] std %f2, [$inp + 8] std %f4, [$inp - 16] std %f6, [$inp - 8] std %f8, [$out + 0] std %f10, [$out + 8] std %f12, [$out + 16] std %f14, [$out + 24] add $out, 32, $out brnz $tmp, .Lkey_flip sub $inp, 32, $inp retl xor %o0, %o0, %o0 .type aes_t4_set_decrypt_key,#function .size aes_t4_set_decrypt_key,.-aes_t4_set_decrypt_key ___ } {{{ my ($inp,$out,$len,$key,$ivec,$enc)=map("%i$_",(0..5)); my ($ileft,$iright,$ooff,$omask,$ivoff)=map("%l$_",(1..7)); $code.=<<___; .align 32 _aes128_encrypt_1x: ___ for ($i=0; $i<4; $i++) { $code.=<<___; aes_eround01 %f`16+8*$i+0`, %f0, %f2, %f4 aes_eround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_eround01 %f`16+8*$i+4`, %f4, %f2, %f0 aes_eround23 %f`16+8*$i+6`, %f4, %f2, %f2 ___ } $code.=<<___; aes_eround01 %f48, %f0, %f2, %f4 aes_eround23 %f50, %f0, %f2, %f2 aes_eround01_l %f52, %f4, %f2, %f0 retl aes_eround23_l %f54, %f4, %f2, %f2 .type _aes128_encrypt_1x,#function .size _aes128_encrypt_1x,.-_aes128_encrypt_1x .align 32 _aes128_encrypt_2x: ___ for ($i=0; $i<4; $i++) { $code.=<<___; aes_eround01 %f`16+8*$i+0`, %f0, %f2, %f8 aes_eround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_eround01 %f`16+8*$i+0`, %f4, %f6, %f10 aes_eround23 %f`16+8*$i+2`, %f4, %f6, %f6 aes_eround01 %f`16+8*$i+4`, %f8, %f2, %f0 aes_eround23 %f`16+8*$i+6`, %f8, %f2, %f2 aes_eround01 %f`16+8*$i+4`, %f10, %f6, %f4 aes_eround23 %f`16+8*$i+6`, %f10, %f6, %f6 ___ } $code.=<<___; aes_eround01 %f48, %f0, %f2, %f8 aes_eround23 %f50, %f0, %f2, %f2 aes_eround01 %f48, %f4, %f6, %f10 aes_eround23 %f50, %f4, %f6, %f6 aes_eround01_l %f52, %f8, %f2, %f0 aes_eround23_l %f54, %f8, %f2, %f2 aes_eround01_l %f52, %f10, %f6, %f4 retl aes_eround23_l %f54, %f10, %f6, %f6 .type _aes128_encrypt_2x,#function .size _aes128_encrypt_2x,.-_aes128_encrypt_2x .align 32 _aes128_loadkey: ldx [$key + 0], %g4 ldx [$key + 8], %g5 ___ for ($i=2; $i<22;$i++) { # load key schedule $code.=<<___; ldd [$key + `8*$i`], %f`12+2*$i` ___ } $code.=<<___; retl nop .type _aes128_loadkey,#function .size _aes128_loadkey,.-_aes128_loadkey _aes128_load_enckey=_aes128_loadkey _aes128_load_deckey=_aes128_loadkey ___ &alg_cbc_encrypt_implement("aes",128); if ($::evp) { &alg_ctr32_implement("aes",128); &alg_xts_implement("aes",128,"en"); &alg_xts_implement("aes",128,"de"); } &alg_cbc_decrypt_implement("aes",128); $code.=<<___; .align 32 _aes128_decrypt_1x: ___ for ($i=0; $i<4; $i++) { $code.=<<___; aes_dround01 %f`16+8*$i+0`, %f0, %f2, %f4 aes_dround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_dround01 %f`16+8*$i+4`, %f4, %f2, %f0 aes_dround23 %f`16+8*$i+6`, %f4, %f2, %f2 ___ } $code.=<<___; aes_dround01 %f48, %f0, %f2, %f4 aes_dround23 %f50, %f0, %f2, %f2 aes_dround01_l %f52, %f4, %f2, %f0 retl aes_dround23_l %f54, %f4, %f2, %f2 .type _aes128_decrypt_1x,#function .size _aes128_decrypt_1x,.-_aes128_decrypt_1x .align 32 _aes128_decrypt_2x: ___ for ($i=0; $i<4; $i++) { $code.=<<___; aes_dround01 %f`16+8*$i+0`, %f0, %f2, %f8 aes_dround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_dround01 %f`16+8*$i+0`, %f4, %f6, %f10 aes_dround23 %f`16+8*$i+2`, %f4, %f6, %f6 aes_dround01 %f`16+8*$i+4`, %f8, %f2, %f0 aes_dround23 %f`16+8*$i+6`, %f8, %f2, %f2 aes_dround01 %f`16+8*$i+4`, %f10, %f6, %f4 aes_dround23 %f`16+8*$i+6`, %f10, %f6, %f6 ___ } $code.=<<___; aes_dround01 %f48, %f0, %f2, %f8 aes_dround23 %f50, %f0, %f2, %f2 aes_dround01 %f48, %f4, %f6, %f10 aes_dround23 %f50, %f4, %f6, %f6 aes_dround01_l %f52, %f8, %f2, %f0 aes_dround23_l %f54, %f8, %f2, %f2 aes_dround01_l %f52, %f10, %f6, %f4 retl aes_dround23_l %f54, %f10, %f6, %f6 .type _aes128_decrypt_2x,#function .size _aes128_decrypt_2x,.-_aes128_decrypt_2x ___ $code.=<<___; .align 32 _aes192_encrypt_1x: ___ for ($i=0; $i<5; $i++) { $code.=<<___; aes_eround01 %f`16+8*$i+0`, %f0, %f2, %f4 aes_eround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_eround01 %f`16+8*$i+4`, %f4, %f2, %f0 aes_eround23 %f`16+8*$i+6`, %f4, %f2, %f2 ___ } $code.=<<___; aes_eround01 %f56, %f0, %f2, %f4 aes_eround23 %f58, %f0, %f2, %f2 aes_eround01_l %f60, %f4, %f2, %f0 retl aes_eround23_l %f62, %f4, %f2, %f2 .type _aes192_encrypt_1x,#function .size _aes192_encrypt_1x,.-_aes192_encrypt_1x .align 32 _aes192_encrypt_2x: ___ for ($i=0; $i<5; $i++) { $code.=<<___; aes_eround01 %f`16+8*$i+0`, %f0, %f2, %f8 aes_eround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_eround01 %f`16+8*$i+0`, %f4, %f6, %f10 aes_eround23 %f`16+8*$i+2`, %f4, %f6, %f6 aes_eround01 %f`16+8*$i+4`, %f8, %f2, %f0 aes_eround23 %f`16+8*$i+6`, %f8, %f2, %f2 aes_eround01 %f`16+8*$i+4`, %f10, %f6, %f4 aes_eround23 %f`16+8*$i+6`, %f10, %f6, %f6 ___ } $code.=<<___; aes_eround01 %f56, %f0, %f2, %f8 aes_eround23 %f58, %f0, %f2, %f2 aes_eround01 %f56, %f4, %f6, %f10 aes_eround23 %f58, %f4, %f6, %f6 aes_eround01_l %f60, %f8, %f2, %f0 aes_eround23_l %f62, %f8, %f2, %f2 aes_eround01_l %f60, %f10, %f6, %f4 retl aes_eround23_l %f62, %f10, %f6, %f6 .type _aes192_encrypt_2x,#function .size _aes192_encrypt_2x,.-_aes192_encrypt_2x .align 32 _aes256_encrypt_1x: aes_eround01 %f16, %f0, %f2, %f4 aes_eround23 %f18, %f0, %f2, %f2 ldd [$key + 208], %f16 ldd [$key + 216], %f18 aes_eround01 %f20, %f4, %f2, %f0 aes_eround23 %f22, %f4, %f2, %f2 ldd [$key + 224], %f20 ldd [$key + 232], %f22 ___ for ($i=1; $i<6; $i++) { $code.=<<___; aes_eround01 %f`16+8*$i+0`, %f0, %f2, %f4 aes_eround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_eround01 %f`16+8*$i+4`, %f4, %f2, %f0 aes_eround23 %f`16+8*$i+6`, %f4, %f2, %f2 ___ } $code.=<<___; aes_eround01 %f16, %f0, %f2, %f4 aes_eround23 %f18, %f0, %f2, %f2 ldd [$key + 16], %f16 ldd [$key + 24], %f18 aes_eround01_l %f20, %f4, %f2, %f0 aes_eround23_l %f22, %f4, %f2, %f2 ldd [$key + 32], %f20 retl ldd [$key + 40], %f22 .type _aes256_encrypt_1x,#function .size _aes256_encrypt_1x,.-_aes256_encrypt_1x .align 32 _aes256_encrypt_2x: aes_eround01 %f16, %f0, %f2, %f8 aes_eround23 %f18, %f0, %f2, %f2 aes_eround01 %f16, %f4, %f6, %f10 aes_eround23 %f18, %f4, %f6, %f6 ldd [$key + 208], %f16 ldd [$key + 216], %f18 aes_eround01 %f20, %f8, %f2, %f0 aes_eround23 %f22, %f8, %f2, %f2 aes_eround01 %f20, %f10, %f6, %f4 aes_eround23 %f22, %f10, %f6, %f6 ldd [$key + 224], %f20 ldd [$key + 232], %f22 ___ for ($i=1; $i<6; $i++) { $code.=<<___; aes_eround01 %f`16+8*$i+0`, %f0, %f2, %f8 aes_eround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_eround01 %f`16+8*$i+0`, %f4, %f6, %f10 aes_eround23 %f`16+8*$i+2`, %f4, %f6, %f6 aes_eround01 %f`16+8*$i+4`, %f8, %f2, %f0 aes_eround23 %f`16+8*$i+6`, %f8, %f2, %f2 aes_eround01 %f`16+8*$i+4`, %f10, %f6, %f4 aes_eround23 %f`16+8*$i+6`, %f10, %f6, %f6 ___ } $code.=<<___; aes_eround01 %f16, %f0, %f2, %f8 aes_eround23 %f18, %f0, %f2, %f2 aes_eround01 %f16, %f4, %f6, %f10 aes_eround23 %f18, %f4, %f6, %f6 ldd [$key + 16], %f16 ldd [$key + 24], %f18 aes_eround01_l %f20, %f8, %f2, %f0 aes_eround23_l %f22, %f8, %f2, %f2 aes_eround01_l %f20, %f10, %f6, %f4 aes_eround23_l %f22, %f10, %f6, %f6 ldd [$key + 32], %f20 retl ldd [$key + 40], %f22 .type _aes256_encrypt_2x,#function .size _aes256_encrypt_2x,.-_aes256_encrypt_2x .align 32 _aes192_loadkey: ldx [$key + 0], %g4 ldx [$key + 8], %g5 ___ for ($i=2; $i<26;$i++) { # load key schedule $code.=<<___; ldd [$key + `8*$i`], %f`12+2*$i` ___ } $code.=<<___; retl nop .type _aes192_loadkey,#function .size _aes192_loadkey,.-_aes192_loadkey _aes256_loadkey=_aes192_loadkey _aes192_load_enckey=_aes192_loadkey _aes192_load_deckey=_aes192_loadkey _aes256_load_enckey=_aes192_loadkey _aes256_load_deckey=_aes192_loadkey ___ &alg_cbc_encrypt_implement("aes",256); &alg_cbc_encrypt_implement("aes",192); if ($::evp) { &alg_ctr32_implement("aes",256); &alg_xts_implement("aes",256,"en"); &alg_xts_implement("aes",256,"de"); &alg_ctr32_implement("aes",192); } &alg_cbc_decrypt_implement("aes",192); &alg_cbc_decrypt_implement("aes",256); $code.=<<___; .align 32 _aes256_decrypt_1x: aes_dround01 %f16, %f0, %f2, %f4 aes_dround23 %f18, %f0, %f2, %f2 ldd [$key + 208], %f16 ldd [$key + 216], %f18 aes_dround01 %f20, %f4, %f2, %f0 aes_dround23 %f22, %f4, %f2, %f2 ldd [$key + 224], %f20 ldd [$key + 232], %f22 ___ for ($i=1; $i<6; $i++) { $code.=<<___; aes_dround01 %f`16+8*$i+0`, %f0, %f2, %f4 aes_dround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_dround01 %f`16+8*$i+4`, %f4, %f2, %f0 aes_dround23 %f`16+8*$i+6`, %f4, %f2, %f2 ___ } $code.=<<___; aes_dround01 %f16, %f0, %f2, %f4 aes_dround23 %f18, %f0, %f2, %f2 ldd [$key + 16], %f16 ldd [$key + 24], %f18 aes_dround01_l %f20, %f4, %f2, %f0 aes_dround23_l %f22, %f4, %f2, %f2 ldd [$key + 32], %f20 retl ldd [$key + 40], %f22 .type _aes256_decrypt_1x,#function .size _aes256_decrypt_1x,.-_aes256_decrypt_1x .align 32 _aes256_decrypt_2x: aes_dround01 %f16, %f0, %f2, %f8 aes_dround23 %f18, %f0, %f2, %f2 aes_dround01 %f16, %f4, %f6, %f10 aes_dround23 %f18, %f4, %f6, %f6 ldd [$key + 208], %f16 ldd [$key + 216], %f18 aes_dround01 %f20, %f8, %f2, %f0 aes_dround23 %f22, %f8, %f2, %f2 aes_dround01 %f20, %f10, %f6, %f4 aes_dround23 %f22, %f10, %f6, %f6 ldd [$key + 224], %f20 ldd [$key + 232], %f22 ___ for ($i=1; $i<6; $i++) { $code.=<<___; aes_dround01 %f`16+8*$i+0`, %f0, %f2, %f8 aes_dround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_dround01 %f`16+8*$i+0`, %f4, %f6, %f10 aes_dround23 %f`16+8*$i+2`, %f4, %f6, %f6 aes_dround01 %f`16+8*$i+4`, %f8, %f2, %f0 aes_dround23 %f`16+8*$i+6`, %f8, %f2, %f2 aes_dround01 %f`16+8*$i+4`, %f10, %f6, %f4 aes_dround23 %f`16+8*$i+6`, %f10, %f6, %f6 ___ } $code.=<<___; aes_dround01 %f16, %f0, %f2, %f8 aes_dround23 %f18, %f0, %f2, %f2 aes_dround01 %f16, %f4, %f6, %f10 aes_dround23 %f18, %f4, %f6, %f6 ldd [$key + 16], %f16 ldd [$key + 24], %f18 aes_dround01_l %f20, %f8, %f2, %f0 aes_dround23_l %f22, %f8, %f2, %f2 aes_dround01_l %f20, %f10, %f6, %f4 aes_dround23_l %f22, %f10, %f6, %f6 ldd [$key + 32], %f20 retl ldd [$key + 40], %f22 .type _aes256_decrypt_2x,#function .size _aes256_decrypt_2x,.-_aes256_decrypt_2x .align 32 _aes192_decrypt_1x: ___ for ($i=0; $i<5; $i++) { $code.=<<___; aes_dround01 %f`16+8*$i+0`, %f0, %f2, %f4 aes_dround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_dround01 %f`16+8*$i+4`, %f4, %f2, %f0 aes_dround23 %f`16+8*$i+6`, %f4, %f2, %f2 ___ } $code.=<<___; aes_dround01 %f56, %f0, %f2, %f4 aes_dround23 %f58, %f0, %f2, %f2 aes_dround01_l %f60, %f4, %f2, %f0 retl aes_dround23_l %f62, %f4, %f2, %f2 .type _aes192_decrypt_1x,#function .size _aes192_decrypt_1x,.-_aes192_decrypt_1x .align 32 _aes192_decrypt_2x: ___ for ($i=0; $i<5; $i++) { $code.=<<___; aes_dround01 %f`16+8*$i+0`, %f0, %f2, %f8 aes_dround23 %f`16+8*$i+2`, %f0, %f2, %f2 aes_dround01 %f`16+8*$i+0`, %f4, %f6, %f10 aes_dround23 %f`16+8*$i+2`, %f4, %f6, %f6 aes_dround01 %f`16+8*$i+4`, %f8, %f2, %f0 aes_dround23 %f`16+8*$i+6`, %f8, %f2, %f2 aes_dround01 %f`16+8*$i+4`, %f10, %f6, %f4 aes_dround23 %f`16+8*$i+6`, %f10, %f6, %f6 ___ } $code.=<<___; aes_dround01 %f56, %f0, %f2, %f8 aes_dround23 %f58, %f0, %f2, %f2 aes_dround01 %f56, %f4, %f6, %f10 aes_dround23 %f58, %f4, %f6, %f6 aes_dround01_l %f60, %f8, %f2, %f0 aes_dround23_l %f62, %f8, %f2, %f2 aes_dround01_l %f60, %f10, %f6, %f4 retl aes_dround23_l %f62, %f10, %f6, %f6 .type _aes192_decrypt_2x,#function .size _aes192_decrypt_2x,.-_aes192_decrypt_2x ___ }}} if (!$::evp) { $code.=<<___; .global AES_encrypt AES_encrypt=aes_t4_encrypt .global AES_decrypt AES_decrypt=aes_t4_decrypt .global AES_set_encrypt_key .align 32 AES_set_encrypt_key: andcc %o2, 7, %g0 ! check alignment bnz,a,pn %icc, 1f mov -1, %o0 brz,a,pn %o0, 1f mov -1, %o0 brz,a,pn %o2, 1f mov -1, %o0 andncc %o1, 0x1c0, %g0 bnz,a,pn %icc, 1f mov -2, %o0 cmp %o1, 128 bl,a,pn %icc, 1f mov -2, %o0 b aes_t4_set_encrypt_key nop 1: retl nop .type AES_set_encrypt_key,#function .size AES_set_encrypt_key,.-AES_set_encrypt_key .global AES_set_decrypt_key .align 32 AES_set_decrypt_key: andcc %o2, 7, %g0 ! check alignment bnz,a,pn %icc, 1f mov -1, %o0 brz,a,pn %o0, 1f mov -1, %o0 brz,a,pn %o2, 1f mov -1, %o0 andncc %o1, 0x1c0, %g0 bnz,a,pn %icc, 1f mov -2, %o0 cmp %o1, 128 bl,a,pn %icc, 1f mov -2, %o0 b aes_t4_set_decrypt_key nop 1: retl nop .type AES_set_decrypt_key,#function .size AES_set_decrypt_key,.-AES_set_decrypt_key ___ my ($inp,$out,$len,$key,$ivec,$enc)=map("%o$_",(0..5)); $code.=<<___; .globl AES_cbc_encrypt .align 32 AES_cbc_encrypt: ld [$key + 240], %g1 nop brz $enc, .Lcbc_decrypt cmp %g1, 12 bl,pt %icc, aes128_t4_cbc_encrypt nop be,pn %icc, aes192_t4_cbc_encrypt nop ba aes256_t4_cbc_encrypt nop .Lcbc_decrypt: bl,pt %icc, aes128_t4_cbc_decrypt nop be,pn %icc, aes192_t4_cbc_decrypt nop ba aes256_t4_cbc_decrypt nop .type AES_cbc_encrypt,#function .size AES_cbc_encrypt,.-AES_cbc_encrypt ___ } $code.=<<___; .asciz "AES for SPARC T4, David S. Miller, Andy Polyakov" .align 4 ___ &emit_assembler(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/aesv8-armx.pl000077500000000000000000000533421364063235100205600ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements support for ARMv8 AES instructions. The # module is endian-agnostic in sense that it supports both big- and # little-endian cases. As does it support both 32- and 64-bit modes # of operation. Latter is achieved by limiting amount of utilized # registers to 16, which implies additional NEON load and integer # instructions. This has no effect on mighty Apple A7, where results # are literally equal to the theoretical estimates based on AES # instruction latencies and issue rates. On Cortex-A53, an in-order # execution core, this costs up to 10-15%, which is partially # compensated by implementing dedicated code path for 128-bit # CBC encrypt case. On Cortex-A57 parallelizable mode performance # seems to be limited by sheer amount of NEON instructions... # # Performance in cycles per byte processed with 128-bit key: # # CBC enc CBC dec CTR # Apple A7 2.39 1.20 1.20 # Cortex-A53 1.32 1.29 1.46 # Cortex-A57(*) 1.95 0.85 0.93 # Denver 1.96 0.86 0.80 # Mongoose 1.33 1.20 1.20 # Kryo 1.26 0.94 1.00 # # (*) original 3.64/1.34/1.32 results were for r0p0 revision # and are still same even for updated module; $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; $prefix="aes_v8"; $code=<<___; #include "arm_arch.h" #if __ARM_MAX_ARCH__>=7 .text ___ $code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/); $code.=<<___ if ($flavour !~ /64/); .arch armv7-a // don't confuse not-so-latest binutils with argv8 :-) .fpu neon .code 32 #undef __thumb2__ ___ # Assembler mnemonics are an eclectic mix of 32- and 64-bit syntax, # NEON is mostly 32-bit mnemonics, integer - mostly 64. Goal is to # maintain both 32- and 64-bit codes within single module and # transliterate common code to either flavour with regex vodoo. # {{{ my ($inp,$bits,$out,$ptr,$rounds)=("x0","w1","x2","x3","w12"); my ($zero,$rcon,$mask,$in0,$in1,$tmp,$key)= $flavour=~/64/? map("q$_",(0..6)) : map("q$_",(0..3,8..10)); $code.=<<___; .align 5 .Lrcon: .long 0x01,0x01,0x01,0x01 .long 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d // rotate-n-splat .long 0x1b,0x1b,0x1b,0x1b .globl ${prefix}_set_encrypt_key .type ${prefix}_set_encrypt_key,%function .align 5 ${prefix}_set_encrypt_key: .Lenc_key: ___ $code.=<<___ if ($flavour =~ /64/); stp x29,x30,[sp,#-16]! add x29,sp,#0 ___ $code.=<<___; mov $ptr,#-1 cmp $inp,#0 b.eq .Lenc_key_abort cmp $out,#0 b.eq .Lenc_key_abort mov $ptr,#-2 cmp $bits,#128 b.lt .Lenc_key_abort cmp $bits,#256 b.gt .Lenc_key_abort tst $bits,#0x3f b.ne .Lenc_key_abort adr $ptr,.Lrcon cmp $bits,#192 veor $zero,$zero,$zero vld1.8 {$in0},[$inp],#16 mov $bits,#8 // reuse $bits vld1.32 {$rcon,$mask},[$ptr],#32 b.lt .Loop128 b.eq .L192 b .L256 .align 4 .Loop128: vtbl.8 $key,{$in0},$mask vext.8 $tmp,$zero,$in0,#12 vst1.32 {$in0},[$out],#16 aese $key,$zero subs $bits,$bits,#1 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $key,$key,$rcon veor $in0,$in0,$tmp vshl.u8 $rcon,$rcon,#1 veor $in0,$in0,$key b.ne .Loop128 vld1.32 {$rcon},[$ptr] vtbl.8 $key,{$in0},$mask vext.8 $tmp,$zero,$in0,#12 vst1.32 {$in0},[$out],#16 aese $key,$zero veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $key,$key,$rcon veor $in0,$in0,$tmp vshl.u8 $rcon,$rcon,#1 veor $in0,$in0,$key vtbl.8 $key,{$in0},$mask vext.8 $tmp,$zero,$in0,#12 vst1.32 {$in0},[$out],#16 aese $key,$zero veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $key,$key,$rcon veor $in0,$in0,$tmp veor $in0,$in0,$key vst1.32 {$in0},[$out] add $out,$out,#0x50 mov $rounds,#10 b .Ldone .align 4 .L192: vld1.8 {$in1},[$inp],#8 vmov.i8 $key,#8 // borrow $key vst1.32 {$in0},[$out],#16 vsub.i8 $mask,$mask,$key // adjust the mask .Loop192: vtbl.8 $key,{$in1},$mask vext.8 $tmp,$zero,$in0,#12 vst1.32 {$in1},[$out],#8 aese $key,$zero subs $bits,$bits,#1 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in0,$in0,$tmp vdup.32 $tmp,${in0}[3] veor $tmp,$tmp,$in1 veor $key,$key,$rcon vext.8 $in1,$zero,$in1,#12 vshl.u8 $rcon,$rcon,#1 veor $in1,$in1,$tmp veor $in0,$in0,$key veor $in1,$in1,$key vst1.32 {$in0},[$out],#16 b.ne .Loop192 mov $rounds,#12 add $out,$out,#0x20 b .Ldone .align 4 .L256: vld1.8 {$in1},[$inp] mov $bits,#7 mov $rounds,#14 vst1.32 {$in0},[$out],#16 .Loop256: vtbl.8 $key,{$in1},$mask vext.8 $tmp,$zero,$in0,#12 vst1.32 {$in1},[$out],#16 aese $key,$zero subs $bits,$bits,#1 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in0,$in0,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $key,$key,$rcon veor $in0,$in0,$tmp vshl.u8 $rcon,$rcon,#1 veor $in0,$in0,$key vst1.32 {$in0},[$out],#16 b.eq .Ldone vdup.32 $key,${in0}[3] // just splat vext.8 $tmp,$zero,$in1,#12 aese $key,$zero veor $in1,$in1,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in1,$in1,$tmp vext.8 $tmp,$zero,$tmp,#12 veor $in1,$in1,$tmp veor $in1,$in1,$key b .Loop256 .Ldone: str $rounds,[$out] mov $ptr,#0 .Lenc_key_abort: mov x0,$ptr // return value `"ldr x29,[sp],#16" if ($flavour =~ /64/)` ret .size ${prefix}_set_encrypt_key,.-${prefix}_set_encrypt_key .globl ${prefix}_set_decrypt_key .type ${prefix}_set_decrypt_key,%function .align 5 ${prefix}_set_decrypt_key: ___ $code.=<<___ if ($flavour =~ /64/); .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ___ $code.=<<___ if ($flavour !~ /64/); stmdb sp!,{r4,lr} ___ $code.=<<___; bl .Lenc_key cmp x0,#0 b.ne .Ldec_key_abort sub $out,$out,#240 // restore original $out mov x4,#-16 add $inp,$out,x12,lsl#4 // end of key schedule vld1.32 {v0.16b},[$out] vld1.32 {v1.16b},[$inp] vst1.32 {v0.16b},[$inp],x4 vst1.32 {v1.16b},[$out],#16 .Loop_imc: vld1.32 {v0.16b},[$out] vld1.32 {v1.16b},[$inp] aesimc v0.16b,v0.16b aesimc v1.16b,v1.16b vst1.32 {v0.16b},[$inp],x4 vst1.32 {v1.16b},[$out],#16 cmp $inp,$out b.hi .Loop_imc vld1.32 {v0.16b},[$out] aesimc v0.16b,v0.16b vst1.32 {v0.16b},[$inp] eor x0,x0,x0 // return value .Ldec_key_abort: ___ $code.=<<___ if ($flavour !~ /64/); ldmia sp!,{r4,pc} ___ $code.=<<___ if ($flavour =~ /64/); ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret ___ $code.=<<___; .size ${prefix}_set_decrypt_key,.-${prefix}_set_decrypt_key ___ }}} {{{ sub gen_block () { my $dir = shift; my ($e,$mc) = $dir eq "en" ? ("e","mc") : ("d","imc"); my ($inp,$out,$key)=map("x$_",(0..2)); my $rounds="w3"; my ($rndkey0,$rndkey1,$inout)=map("q$_",(0..3)); $code.=<<___; .globl ${prefix}_${dir}crypt .type ${prefix}_${dir}crypt,%function .align 5 ${prefix}_${dir}crypt: ldr $rounds,[$key,#240] vld1.32 {$rndkey0},[$key],#16 vld1.8 {$inout},[$inp] sub $rounds,$rounds,#2 vld1.32 {$rndkey1},[$key],#16 .Loop_${dir}c: aes$e $inout,$rndkey0 aes$mc $inout,$inout vld1.32 {$rndkey0},[$key],#16 subs $rounds,$rounds,#2 aes$e $inout,$rndkey1 aes$mc $inout,$inout vld1.32 {$rndkey1},[$key],#16 b.gt .Loop_${dir}c aes$e $inout,$rndkey0 aes$mc $inout,$inout vld1.32 {$rndkey0},[$key] aes$e $inout,$rndkey1 veor $inout,$inout,$rndkey0 vst1.8 {$inout},[$out] ret .size ${prefix}_${dir}crypt,.-${prefix}_${dir}crypt ___ } &gen_block("en"); &gen_block("de"); }}} {{{ my ($inp,$out,$len,$key,$ivp)=map("x$_",(0..4)); my $enc="w5"; my ($rounds,$cnt,$key_,$step,$step1)=($enc,"w6","x7","x8","x12"); my ($dat0,$dat1,$in0,$in1,$tmp0,$tmp1,$ivec,$rndlast)=map("q$_",(0..7)); my ($dat,$tmp,$rndzero_n_last)=($dat0,$tmp0,$tmp1); my ($key4,$key5,$key6,$key7)=("x6","x12","x14",$key); ### q8-q15 preloaded key schedule $code.=<<___; .globl ${prefix}_cbc_encrypt .type ${prefix}_cbc_encrypt,%function .align 5 ${prefix}_cbc_encrypt: ___ $code.=<<___ if ($flavour =~ /64/); stp x29,x30,[sp,#-16]! add x29,sp,#0 ___ $code.=<<___ if ($flavour !~ /64/); mov ip,sp stmdb sp!,{r4-r8,lr} vstmdb sp!,{d8-d15} @ ABI specification says so ldmia ip,{r4-r5} @ load remaining args ___ $code.=<<___; subs $len,$len,#16 mov $step,#16 b.lo .Lcbc_abort cclr $step,eq cmp $enc,#0 // en- or decrypting? ldr $rounds,[$key,#240] and $len,$len,#-16 vld1.8 {$ivec},[$ivp] vld1.8 {$dat},[$inp],$step vld1.32 {q8-q9},[$key] // load key schedule... sub $rounds,$rounds,#6 add $key_,$key,x5,lsl#4 // pointer to last 7 round keys sub $rounds,$rounds,#2 vld1.32 {q10-q11},[$key_],#32 vld1.32 {q12-q13},[$key_],#32 vld1.32 {q14-q15},[$key_],#32 vld1.32 {$rndlast},[$key_] add $key_,$key,#32 mov $cnt,$rounds b.eq .Lcbc_dec cmp $rounds,#2 veor $dat,$dat,$ivec veor $rndzero_n_last,q8,$rndlast b.eq .Lcbc_enc128 vld1.32 {$in0-$in1},[$key_] add $key_,$key,#16 add $key4,$key,#16*4 add $key5,$key,#16*5 aese $dat,q8 aesmc $dat,$dat add $key6,$key,#16*6 add $key7,$key,#16*7 b .Lenter_cbc_enc .align 4 .Loop_cbc_enc: aese $dat,q8 aesmc $dat,$dat vst1.8 {$ivec},[$out],#16 .Lenter_cbc_enc: aese $dat,q9 aesmc $dat,$dat aese $dat,$in0 aesmc $dat,$dat vld1.32 {q8},[$key4] cmp $rounds,#4 aese $dat,$in1 aesmc $dat,$dat vld1.32 {q9},[$key5] b.eq .Lcbc_enc192 aese $dat,q8 aesmc $dat,$dat vld1.32 {q8},[$key6] aese $dat,q9 aesmc $dat,$dat vld1.32 {q9},[$key7] nop .Lcbc_enc192: aese $dat,q8 aesmc $dat,$dat subs $len,$len,#16 aese $dat,q9 aesmc $dat,$dat cclr $step,eq aese $dat,q10 aesmc $dat,$dat aese $dat,q11 aesmc $dat,$dat vld1.8 {q8},[$inp],$step aese $dat,q12 aesmc $dat,$dat veor q8,q8,$rndzero_n_last aese $dat,q13 aesmc $dat,$dat vld1.32 {q9},[$key_] // re-pre-load rndkey[1] aese $dat,q14 aesmc $dat,$dat aese $dat,q15 veor $ivec,$dat,$rndlast b.hs .Loop_cbc_enc vst1.8 {$ivec},[$out],#16 b .Lcbc_done .align 5 .Lcbc_enc128: vld1.32 {$in0-$in1},[$key_] aese $dat,q8 aesmc $dat,$dat b .Lenter_cbc_enc128 .Loop_cbc_enc128: aese $dat,q8 aesmc $dat,$dat vst1.8 {$ivec},[$out],#16 .Lenter_cbc_enc128: aese $dat,q9 aesmc $dat,$dat subs $len,$len,#16 aese $dat,$in0 aesmc $dat,$dat cclr $step,eq aese $dat,$in1 aesmc $dat,$dat aese $dat,q10 aesmc $dat,$dat aese $dat,q11 aesmc $dat,$dat vld1.8 {q8},[$inp],$step aese $dat,q12 aesmc $dat,$dat aese $dat,q13 aesmc $dat,$dat aese $dat,q14 aesmc $dat,$dat veor q8,q8,$rndzero_n_last aese $dat,q15 veor $ivec,$dat,$rndlast b.hs .Loop_cbc_enc128 vst1.8 {$ivec},[$out],#16 b .Lcbc_done ___ { my ($dat2,$in2,$tmp2)=map("q$_",(10,11,9)); $code.=<<___; .align 5 .Lcbc_dec: vld1.8 {$dat2},[$inp],#16 subs $len,$len,#32 // bias add $cnt,$rounds,#2 vorr $in1,$dat,$dat vorr $dat1,$dat,$dat vorr $in2,$dat2,$dat2 b.lo .Lcbc_dec_tail vorr $dat1,$dat2,$dat2 vld1.8 {$dat2},[$inp],#16 vorr $in0,$dat,$dat vorr $in1,$dat1,$dat1 vorr $in2,$dat2,$dat2 .Loop3x_cbc_dec: aesd $dat0,q8 aesimc $dat0,$dat0 aesd $dat1,q8 aesimc $dat1,$dat1 aesd $dat2,q8 aesimc $dat2,$dat2 vld1.32 {q8},[$key_],#16 subs $cnt,$cnt,#2 aesd $dat0,q9 aesimc $dat0,$dat0 aesd $dat1,q9 aesimc $dat1,$dat1 aesd $dat2,q9 aesimc $dat2,$dat2 vld1.32 {q9},[$key_],#16 b.gt .Loop3x_cbc_dec aesd $dat0,q8 aesimc $dat0,$dat0 aesd $dat1,q8 aesimc $dat1,$dat1 aesd $dat2,q8 aesimc $dat2,$dat2 veor $tmp0,$ivec,$rndlast subs $len,$len,#0x30 veor $tmp1,$in0,$rndlast mov.lo x6,$len // x6, $cnt, is zero at this point aesd $dat0,q9 aesimc $dat0,$dat0 aesd $dat1,q9 aesimc $dat1,$dat1 aesd $dat2,q9 aesimc $dat2,$dat2 veor $tmp2,$in1,$rndlast add $inp,$inp,x6 // $inp is adjusted in such way that // at exit from the loop $dat1-$dat2 // are loaded with last "words" vorr $ivec,$in2,$in2 mov $key_,$key aesd $dat0,q12 aesimc $dat0,$dat0 aesd $dat1,q12 aesimc $dat1,$dat1 aesd $dat2,q12 aesimc $dat2,$dat2 vld1.8 {$in0},[$inp],#16 aesd $dat0,q13 aesimc $dat0,$dat0 aesd $dat1,q13 aesimc $dat1,$dat1 aesd $dat2,q13 aesimc $dat2,$dat2 vld1.8 {$in1},[$inp],#16 aesd $dat0,q14 aesimc $dat0,$dat0 aesd $dat1,q14 aesimc $dat1,$dat1 aesd $dat2,q14 aesimc $dat2,$dat2 vld1.8 {$in2},[$inp],#16 aesd $dat0,q15 aesd $dat1,q15 aesd $dat2,q15 vld1.32 {q8},[$key_],#16 // re-pre-load rndkey[0] add $cnt,$rounds,#2 veor $tmp0,$tmp0,$dat0 veor $tmp1,$tmp1,$dat1 veor $dat2,$dat2,$tmp2 vld1.32 {q9},[$key_],#16 // re-pre-load rndkey[1] vst1.8 {$tmp0},[$out],#16 vorr $dat0,$in0,$in0 vst1.8 {$tmp1},[$out],#16 vorr $dat1,$in1,$in1 vst1.8 {$dat2},[$out],#16 vorr $dat2,$in2,$in2 b.hs .Loop3x_cbc_dec cmn $len,#0x30 b.eq .Lcbc_done nop .Lcbc_dec_tail: aesd $dat1,q8 aesimc $dat1,$dat1 aesd $dat2,q8 aesimc $dat2,$dat2 vld1.32 {q8},[$key_],#16 subs $cnt,$cnt,#2 aesd $dat1,q9 aesimc $dat1,$dat1 aesd $dat2,q9 aesimc $dat2,$dat2 vld1.32 {q9},[$key_],#16 b.gt .Lcbc_dec_tail aesd $dat1,q8 aesimc $dat1,$dat1 aesd $dat2,q8 aesimc $dat2,$dat2 aesd $dat1,q9 aesimc $dat1,$dat1 aesd $dat2,q9 aesimc $dat2,$dat2 aesd $dat1,q12 aesimc $dat1,$dat1 aesd $dat2,q12 aesimc $dat2,$dat2 cmn $len,#0x20 aesd $dat1,q13 aesimc $dat1,$dat1 aesd $dat2,q13 aesimc $dat2,$dat2 veor $tmp1,$ivec,$rndlast aesd $dat1,q14 aesimc $dat1,$dat1 aesd $dat2,q14 aesimc $dat2,$dat2 veor $tmp2,$in1,$rndlast aesd $dat1,q15 aesd $dat2,q15 b.eq .Lcbc_dec_one veor $tmp1,$tmp1,$dat1 veor $tmp2,$tmp2,$dat2 vorr $ivec,$in2,$in2 vst1.8 {$tmp1},[$out],#16 vst1.8 {$tmp2},[$out],#16 b .Lcbc_done .Lcbc_dec_one: veor $tmp1,$tmp1,$dat2 vorr $ivec,$in2,$in2 vst1.8 {$tmp1},[$out],#16 .Lcbc_done: vst1.8 {$ivec},[$ivp] .Lcbc_abort: ___ } $code.=<<___ if ($flavour !~ /64/); vldmia sp!,{d8-d15} ldmia sp!,{r4-r8,pc} ___ $code.=<<___ if ($flavour =~ /64/); ldr x29,[sp],#16 ret ___ $code.=<<___; .size ${prefix}_cbc_encrypt,.-${prefix}_cbc_encrypt ___ }}} {{{ my ($inp,$out,$len,$key,$ivp)=map("x$_",(0..4)); my ($rounds,$cnt,$key_)=("w5","w6","x7"); my ($ctr,$tctr0,$tctr1,$tctr2)=map("w$_",(8..10,12)); my $step="x12"; # aliases with $tctr2 my ($dat0,$dat1,$in0,$in1,$tmp0,$tmp1,$ivec,$rndlast)=map("q$_",(0..7)); my ($dat2,$in2,$tmp2)=map("q$_",(10,11,9)); my ($dat,$tmp)=($dat0,$tmp0); ### q8-q15 preloaded key schedule $code.=<<___; .globl ${prefix}_ctr32_encrypt_blocks .type ${prefix}_ctr32_encrypt_blocks,%function .align 5 ${prefix}_ctr32_encrypt_blocks: ___ $code.=<<___ if ($flavour =~ /64/); stp x29,x30,[sp,#-16]! add x29,sp,#0 ___ $code.=<<___ if ($flavour !~ /64/); mov ip,sp stmdb sp!,{r4-r10,lr} vstmdb sp!,{d8-d15} @ ABI specification says so ldr r4, [ip] @ load remaining arg ___ $code.=<<___; ldr $rounds,[$key,#240] ldr $ctr, [$ivp, #12] vld1.32 {$dat0},[$ivp] vld1.32 {q8-q9},[$key] // load key schedule... sub $rounds,$rounds,#4 mov $step,#16 cmp $len,#2 add $key_,$key,x5,lsl#4 // pointer to last 5 round keys sub $rounds,$rounds,#2 vld1.32 {q12-q13},[$key_],#32 vld1.32 {q14-q15},[$key_],#32 vld1.32 {$rndlast},[$key_] add $key_,$key,#32 mov $cnt,$rounds cclr $step,lo #ifndef __ARMEB__ rev $ctr, $ctr #endif vorr $dat1,$dat0,$dat0 add $tctr1, $ctr, #1 vorr $dat2,$dat0,$dat0 add $ctr, $ctr, #2 vorr $ivec,$dat0,$dat0 rev $tctr1, $tctr1 vmov.32 ${dat1}[3],$tctr1 b.ls .Lctr32_tail rev $tctr2, $ctr sub $len,$len,#3 // bias vmov.32 ${dat2}[3],$tctr2 b .Loop3x_ctr32 .align 4 .Loop3x_ctr32: aese $dat0,q8 aesmc $dat0,$dat0 aese $dat1,q8 aesmc $dat1,$dat1 aese $dat2,q8 aesmc $dat2,$dat2 vld1.32 {q8},[$key_],#16 subs $cnt,$cnt,#2 aese $dat0,q9 aesmc $dat0,$dat0 aese $dat1,q9 aesmc $dat1,$dat1 aese $dat2,q9 aesmc $dat2,$dat2 vld1.32 {q9},[$key_],#16 b.gt .Loop3x_ctr32 aese $dat0,q8 aesmc $tmp0,$dat0 aese $dat1,q8 aesmc $tmp1,$dat1 vld1.8 {$in0},[$inp],#16 vorr $dat0,$ivec,$ivec aese $dat2,q8 aesmc $dat2,$dat2 vld1.8 {$in1},[$inp],#16 vorr $dat1,$ivec,$ivec aese $tmp0,q9 aesmc $tmp0,$tmp0 aese $tmp1,q9 aesmc $tmp1,$tmp1 vld1.8 {$in2},[$inp],#16 mov $key_,$key aese $dat2,q9 aesmc $tmp2,$dat2 vorr $dat2,$ivec,$ivec add $tctr0,$ctr,#1 aese $tmp0,q12 aesmc $tmp0,$tmp0 aese $tmp1,q12 aesmc $tmp1,$tmp1 veor $in0,$in0,$rndlast add $tctr1,$ctr,#2 aese $tmp2,q12 aesmc $tmp2,$tmp2 veor $in1,$in1,$rndlast add $ctr,$ctr,#3 aese $tmp0,q13 aesmc $tmp0,$tmp0 aese $tmp1,q13 aesmc $tmp1,$tmp1 veor $in2,$in2,$rndlast rev $tctr0,$tctr0 aese $tmp2,q13 aesmc $tmp2,$tmp2 vmov.32 ${dat0}[3], $tctr0 rev $tctr1,$tctr1 aese $tmp0,q14 aesmc $tmp0,$tmp0 aese $tmp1,q14 aesmc $tmp1,$tmp1 vmov.32 ${dat1}[3], $tctr1 rev $tctr2,$ctr aese $tmp2,q14 aesmc $tmp2,$tmp2 vmov.32 ${dat2}[3], $tctr2 subs $len,$len,#3 aese $tmp0,q15 aese $tmp1,q15 aese $tmp2,q15 veor $in0,$in0,$tmp0 vld1.32 {q8},[$key_],#16 // re-pre-load rndkey[0] vst1.8 {$in0},[$out],#16 veor $in1,$in1,$tmp1 mov $cnt,$rounds vst1.8 {$in1},[$out],#16 veor $in2,$in2,$tmp2 vld1.32 {q9},[$key_],#16 // re-pre-load rndkey[1] vst1.8 {$in2},[$out],#16 b.hs .Loop3x_ctr32 adds $len,$len,#3 b.eq .Lctr32_done cmp $len,#1 mov $step,#16 cclr $step,eq .Lctr32_tail: aese $dat0,q8 aesmc $dat0,$dat0 aese $dat1,q8 aesmc $dat1,$dat1 vld1.32 {q8},[$key_],#16 subs $cnt,$cnt,#2 aese $dat0,q9 aesmc $dat0,$dat0 aese $dat1,q9 aesmc $dat1,$dat1 vld1.32 {q9},[$key_],#16 b.gt .Lctr32_tail aese $dat0,q8 aesmc $dat0,$dat0 aese $dat1,q8 aesmc $dat1,$dat1 aese $dat0,q9 aesmc $dat0,$dat0 aese $dat1,q9 aesmc $dat1,$dat1 vld1.8 {$in0},[$inp],$step aese $dat0,q12 aesmc $dat0,$dat0 aese $dat1,q12 aesmc $dat1,$dat1 vld1.8 {$in1},[$inp] aese $dat0,q13 aesmc $dat0,$dat0 aese $dat1,q13 aesmc $dat1,$dat1 veor $in0,$in0,$rndlast aese $dat0,q14 aesmc $dat0,$dat0 aese $dat1,q14 aesmc $dat1,$dat1 veor $in1,$in1,$rndlast aese $dat0,q15 aese $dat1,q15 cmp $len,#1 veor $in0,$in0,$dat0 veor $in1,$in1,$dat1 vst1.8 {$in0},[$out],#16 b.eq .Lctr32_done vst1.8 {$in1},[$out] .Lctr32_done: ___ $code.=<<___ if ($flavour !~ /64/); vldmia sp!,{d8-d15} ldmia sp!,{r4-r10,pc} ___ $code.=<<___ if ($flavour =~ /64/); ldr x29,[sp],#16 ret ___ $code.=<<___; .size ${prefix}_ctr32_encrypt_blocks,.-${prefix}_ctr32_encrypt_blocks ___ }}} $code.=<<___; #endif ___ ######################################## if ($flavour =~ /64/) { ######## 64-bit code my %opcode = ( "aesd" => 0x4e285800, "aese" => 0x4e284800, "aesimc"=> 0x4e287800, "aesmc" => 0x4e286800 ); local *unaes = sub { my ($mnemonic,$arg)=@_; $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)/o && sprintf ".inst\t0x%08x\t//%s %s", $opcode{$mnemonic}|$1|($2<<5), $mnemonic,$arg; }; foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/geo; s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers s/@\s/\/\//o; # old->new style commentary #s/[v]?(aes\w+)\s+([qv].*)/unaes($1,$2)/geo or s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or s/mov\.([a-z]+)\s+([wx][0-9]+),\s*([wx][0-9]+)/csel $2,$3,$2,$1/o or s/vmov\.i8/movi/o or # fix up legacy mnemonics s/vext\.8/ext/o or s/vrev32\.8/rev32/o or s/vtst\.8/cmtst/o or s/vshr/ushr/o or s/^(\s+)v/$1/o or # strip off v prefix s/\bbx\s+lr\b/ret/o; # fix up remaining legacy suffixes s/\.[ui]?8//o; m/\],#8/o and s/\.16b/\.8b/go; s/\.[ui]?32//o and s/\.16b/\.4s/go; s/\.[ui]?64//o and s/\.16b/\.2d/go; s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o; print $_,"\n"; } } else { ######## 32-bit code my %opcode = ( "aesd" => 0xf3b00340, "aese" => 0xf3b00300, "aesimc"=> 0xf3b003c0, "aesmc" => 0xf3b00380 ); local *unaes = sub { my ($mnemonic,$arg)=@_; if ($arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)/o) { my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19) |(($2&7)<<1) |(($2&8)<<2); # since ARMv7 instructions are always encoded little-endian. # correct solution is to use .inst directive, but older # assemblers don't implement it:-( sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s", $word&0xff,($word>>8)&0xff, ($word>>16)&0xff,($word>>24)&0xff, $mnemonic,$arg; } }; sub unvtbl { my $arg=shift; $arg =~ m/q([0-9]+),\s*\{q([0-9]+)\},\s*q([0-9]+)/o && sprintf "vtbl.8 d%d,{q%d},d%d\n\t". "vtbl.8 d%d,{q%d},d%d", 2*$1,$2,2*$3, 2*$1+1,$2,2*$3+1; } sub unvdup32 { my $arg=shift; $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o && sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1; } sub unvmov32 { my $arg=shift; $arg =~ m/q([0-9]+)\[([0-3])\],(.*)/o && sprintf "vmov.32 d%d[%d],%s",2*$1+($2>>1),$2&1,$3; } foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/geo; s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers s/\/\/\s?/@ /o; # new->old style commentary # fix up remaining new-style suffixes s/\{q([0-9]+)\},\s*\[(.+)\],#8/sprintf "{d%d},[$2]!",2*$1/eo or s/\],#[0-9]+/]!/o; s/[v]?(aes\w+)\s+([qv].*)/unaes($1,$2)/geo or s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or s/vtbl\.8\s+(.*)/unvtbl($1)/geo or s/vdup\.32\s+(.*)/unvdup32($1)/geo or s/vmov\.32\s+(.*)/unvmov32($1)/geo or s/^(\s+)b\./$1b/o or s/^(\s+)mov\./$1mov/o or s/^(\s+)ret/$1bx\tlr/o; print $_,"\n"; } } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/bsaes-armv7.pl000066400000000000000000001745041364063235100207150ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Specific modes and adaptation for Linux kernel by Ard Biesheuvel # of Linaro. Permission to use under GPL terms is granted. # ==================================================================== # Bit-sliced AES for ARM NEON # # February 2012. # # This implementation is direct adaptation of bsaes-x86_64 module for # ARM NEON. Except that this module is endian-neutral [in sense that # it can be compiled for either endianness] by courtesy of vld1.8's # neutrality. Initial version doesn't implement interface to OpenSSL, # only low-level primitives and unsupported entry points, just enough # to collect performance results, which for Cortex-A8 core are: # # encrypt 19.5 cycles per byte processed with 128-bit key # decrypt 22.1 cycles per byte processed with 128-bit key # key conv. 440 cycles per 128-bit key/0.18 of 8x block # # Snapdragon S4 encrypts byte in 17.6 cycles and decrypts in 19.7, # which is [much] worse than anticipated (for further details see # http://www.openssl.org/~appro/Snapdragon-S4.html). # # Cortex-A15 manages in 14.2/16.1 cycles [when integer-only code # manages in 20.0 cycles]. # # When comparing to x86_64 results keep in mind that NEON unit is # [mostly] single-issue and thus can't [fully] benefit from # instruction-level parallelism. And when comparing to aes-armv4 # results keep in mind key schedule conversion overhead (see # bsaes-x86_64.pl for further details)... # # # April-August 2013 # Add CBC, CTR and XTS subroutines and adapt for kernel use; courtesy of Ard. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } my ($inp,$out,$len,$key)=("r0","r1","r2","r3"); my @XMM=map("q$_",(0..15)); { my ($key,$rounds,$const)=("r4","r5","r6"); sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; } sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; } sub Sbox { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb my @b=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; &InBasisChange (@b); &Inv_GF256 (@b[6,5,0,3,7,1,4,2],@t,@s); &OutBasisChange (@b[7,1,4,2,6,5,0,3]); } sub InBasisChange { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb my @b=@_[0..7]; $code.=<<___; veor @b[2], @b[2], @b[1] veor @b[5], @b[5], @b[6] veor @b[3], @b[3], @b[0] veor @b[6], @b[6], @b[2] veor @b[5], @b[5], @b[0] veor @b[6], @b[6], @b[3] veor @b[3], @b[3], @b[7] veor @b[7], @b[7], @b[5] veor @b[3], @b[3], @b[4] veor @b[4], @b[4], @b[5] veor @b[2], @b[2], @b[7] veor @b[3], @b[3], @b[1] veor @b[1], @b[1], @b[5] ___ } sub OutBasisChange { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb my @b=@_[0..7]; $code.=<<___; veor @b[0], @b[0], @b[6] veor @b[1], @b[1], @b[4] veor @b[4], @b[4], @b[6] veor @b[2], @b[2], @b[0] veor @b[6], @b[6], @b[1] veor @b[1], @b[1], @b[5] veor @b[5], @b[5], @b[3] veor @b[3], @b[3], @b[7] veor @b[7], @b[7], @b[5] veor @b[2], @b[2], @b[5] veor @b[4], @b[4], @b[7] ___ } sub InvSbox { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b0, b1, b6, b4, b2, b7, b3, b5] < msb my @b=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; &InvInBasisChange (@b); &Inv_GF256 (@b[5,1,2,6,3,7,0,4],@t,@s); &InvOutBasisChange (@b[3,7,0,4,5,1,2,6]); } sub InvInBasisChange { # OutBasisChange in reverse (with twist) my @b=@_[5,1,2,6,3,7,0,4]; $code.=<<___ veor @b[1], @b[1], @b[7] veor @b[4], @b[4], @b[7] veor @b[7], @b[7], @b[5] veor @b[1], @b[1], @b[3] veor @b[2], @b[2], @b[5] veor @b[3], @b[3], @b[7] veor @b[6], @b[6], @b[1] veor @b[2], @b[2], @b[0] veor @b[5], @b[5], @b[3] veor @b[4], @b[4], @b[6] veor @b[0], @b[0], @b[6] veor @b[1], @b[1], @b[4] ___ } sub InvOutBasisChange { # InBasisChange in reverse my @b=@_[2,5,7,3,6,1,0,4]; $code.=<<___; veor @b[1], @b[1], @b[5] veor @b[2], @b[2], @b[7] veor @b[3], @b[3], @b[1] veor @b[4], @b[4], @b[5] veor @b[7], @b[7], @b[5] veor @b[3], @b[3], @b[4] veor @b[5], @b[5], @b[0] veor @b[3], @b[3], @b[7] veor @b[6], @b[6], @b[2] veor @b[2], @b[2], @b[1] veor @b[6], @b[6], @b[3] veor @b[3], @b[3], @b[0] veor @b[5], @b[5], @b[6] ___ } sub Mul_GF4 { #;************************************************************* #;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) * #;************************************************************* my ($x0,$x1,$y0,$y1,$t0,$t1)=@_; $code.=<<___; veor $t0, $y0, $y1 vand $t0, $t0, $x0 veor $x0, $x0, $x1 vand $t1, $x1, $y0 vand $x0, $x0, $y1 veor $x1, $t1, $t0 veor $x0, $x0, $t1 ___ } sub Mul_GF4_N { # not used, see next subroutine # multiply and scale by N my ($x0,$x1,$y0,$y1,$t0)=@_; $code.=<<___; veor $t0, $y0, $y1 vand $t0, $t0, $x0 veor $x0, $x0, $x1 vand $x1, $x1, $y0 vand $x0, $x0, $y1 veor $x1, $x1, $x0 veor $x0, $x0, $t0 ___ } sub Mul_GF4_N_GF4 { # interleaved Mul_GF4_N and Mul_GF4 my ($x0,$x1,$y0,$y1,$t0, $x2,$x3,$y2,$y3,$t1)=@_; $code.=<<___; veor $t0, $y0, $y1 veor $t1, $y2, $y3 vand $t0, $t0, $x0 vand $t1, $t1, $x2 veor $x0, $x0, $x1 veor $x2, $x2, $x3 vand $x1, $x1, $y0 vand $x3, $x3, $y2 vand $x0, $x0, $y1 vand $x2, $x2, $y3 veor $x1, $x1, $x0 veor $x2, $x2, $x3 veor $x0, $x0, $t0 veor $x3, $x3, $t1 ___ } sub Mul_GF16_2 { my @x=@_[0..7]; my @y=@_[8..11]; my @t=@_[12..15]; $code.=<<___; veor @t[0], @x[0], @x[2] veor @t[1], @x[1], @x[3] ___ &Mul_GF4 (@x[0], @x[1], @y[0], @y[1], @t[2..3]); $code.=<<___; veor @y[0], @y[0], @y[2] veor @y[1], @y[1], @y[3] ___ Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3], @x[2], @x[3], @y[2], @y[3], @t[2]); $code.=<<___; veor @x[0], @x[0], @t[0] veor @x[2], @x[2], @t[0] veor @x[1], @x[1], @t[1] veor @x[3], @x[3], @t[1] veor @t[0], @x[4], @x[6] veor @t[1], @x[5], @x[7] ___ &Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3], @x[6], @x[7], @y[2], @y[3], @t[2]); $code.=<<___; veor @y[0], @y[0], @y[2] veor @y[1], @y[1], @y[3] ___ &Mul_GF4 (@x[4], @x[5], @y[0], @y[1], @t[2..3]); $code.=<<___; veor @x[4], @x[4], @t[0] veor @x[6], @x[6], @t[0] veor @x[5], @x[5], @t[1] veor @x[7], @x[7], @t[1] ___ } sub Inv_GF256 { #;******************************************************************** #;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144) * #;******************************************************************** my @x=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; # direct optimizations from hardware $code.=<<___; veor @t[3], @x[4], @x[6] veor @t[2], @x[5], @x[7] veor @t[1], @x[1], @x[3] veor @s[1], @x[7], @x[6] vmov @t[0], @t[2] veor @s[0], @x[0], @x[2] vorr @t[2], @t[2], @t[1] veor @s[3], @t[3], @t[0] vand @s[2], @t[3], @s[0] vorr @t[3], @t[3], @s[0] veor @s[0], @s[0], @t[1] vand @t[0], @t[0], @t[1] veor @t[1], @x[3], @x[2] vand @s[3], @s[3], @s[0] vand @s[1], @s[1], @t[1] veor @t[1], @x[4], @x[5] veor @s[0], @x[1], @x[0] veor @t[3], @t[3], @s[1] veor @t[2], @t[2], @s[1] vand @s[1], @t[1], @s[0] vorr @t[1], @t[1], @s[0] veor @t[3], @t[3], @s[3] veor @t[0], @t[0], @s[1] veor @t[2], @t[2], @s[2] veor @t[1], @t[1], @s[3] veor @t[0], @t[0], @s[2] vand @s[0], @x[7], @x[3] veor @t[1], @t[1], @s[2] vand @s[1], @x[6], @x[2] vand @s[2], @x[5], @x[1] vorr @s[3], @x[4], @x[0] veor @t[3], @t[3], @s[0] veor @t[1], @t[1], @s[2] veor @t[0], @t[0], @s[3] veor @t[2], @t[2], @s[1] @ Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3 @ new smaller inversion vand @s[2], @t[3], @t[1] vmov @s[0], @t[0] veor @s[1], @t[2], @s[2] veor @s[3], @t[0], @s[2] veor @s[2], @t[0], @s[2] @ @s[2]=@s[3] vbsl @s[1], @t[1], @t[0] vbsl @s[3], @t[3], @t[2] veor @t[3], @t[3], @t[2] vbsl @s[0], @s[1], @s[2] vbsl @t[0], @s[2], @s[1] vand @s[2], @s[0], @s[3] veor @t[1], @t[1], @t[0] veor @s[2], @s[2], @t[3] ___ # output in s3, s2, s1, t1 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s1, \s2, \s3 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t0, \t2, \t3 &Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]); ### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb } # AES linear components sub ShiftRows { my @x=@_[0..7]; my @t=@_[8..11]; my $mask=pop; $code.=<<___; vldmia $key!, {@t[0]-@t[3]} veor @t[0], @t[0], @x[0] veor @t[1], @t[1], @x[1] vtbl.8 `&Dlo(@x[0])`, {@t[0]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[0])`, {@t[0]}, `&Dhi($mask)` vldmia $key!, {@t[0]} veor @t[2], @t[2], @x[2] vtbl.8 `&Dlo(@x[1])`, {@t[1]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[1])`, {@t[1]}, `&Dhi($mask)` vldmia $key!, {@t[1]} veor @t[3], @t[3], @x[3] vtbl.8 `&Dlo(@x[2])`, {@t[2]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[2])`, {@t[2]}, `&Dhi($mask)` vldmia $key!, {@t[2]} vtbl.8 `&Dlo(@x[3])`, {@t[3]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[3])`, {@t[3]}, `&Dhi($mask)` vldmia $key!, {@t[3]} veor @t[0], @t[0], @x[4] veor @t[1], @t[1], @x[5] vtbl.8 `&Dlo(@x[4])`, {@t[0]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[4])`, {@t[0]}, `&Dhi($mask)` veor @t[2], @t[2], @x[6] vtbl.8 `&Dlo(@x[5])`, {@t[1]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[5])`, {@t[1]}, `&Dhi($mask)` veor @t[3], @t[3], @x[7] vtbl.8 `&Dlo(@x[6])`, {@t[2]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[6])`, {@t[2]}, `&Dhi($mask)` vtbl.8 `&Dlo(@x[7])`, {@t[3]}, `&Dlo($mask)` vtbl.8 `&Dhi(@x[7])`, {@t[3]}, `&Dhi($mask)` ___ } sub MixColumns { # modified to emit output in order suitable for feeding back to aesenc[last] my @x=@_[0..7]; my @t=@_[8..15]; my $inv=@_[16]; # optional $code.=<<___; vext.8 @t[0], @x[0], @x[0], #12 @ x0 <<< 32 vext.8 @t[1], @x[1], @x[1], #12 veor @x[0], @x[0], @t[0] @ x0 ^ (x0 <<< 32) vext.8 @t[2], @x[2], @x[2], #12 veor @x[1], @x[1], @t[1] vext.8 @t[3], @x[3], @x[3], #12 veor @x[2], @x[2], @t[2] vext.8 @t[4], @x[4], @x[4], #12 veor @x[3], @x[3], @t[3] vext.8 @t[5], @x[5], @x[5], #12 veor @x[4], @x[4], @t[4] vext.8 @t[6], @x[6], @x[6], #12 veor @x[5], @x[5], @t[5] vext.8 @t[7], @x[7], @x[7], #12 veor @x[6], @x[6], @t[6] veor @t[1], @t[1], @x[0] veor @x[7], @x[7], @t[7] vext.8 @x[0], @x[0], @x[0], #8 @ (x0 ^ (x0 <<< 32)) <<< 64) veor @t[2], @t[2], @x[1] veor @t[0], @t[0], @x[7] veor @t[1], @t[1], @x[7] vext.8 @x[1], @x[1], @x[1], #8 veor @t[5], @t[5], @x[4] veor @x[0], @x[0], @t[0] veor @t[6], @t[6], @x[5] veor @x[1], @x[1], @t[1] vext.8 @t[0], @x[4], @x[4], #8 veor @t[4], @t[4], @x[3] vext.8 @t[1], @x[5], @x[5], #8 veor @t[7], @t[7], @x[6] vext.8 @x[4], @x[3], @x[3], #8 veor @t[3], @t[3], @x[2] vext.8 @x[5], @x[7], @x[7], #8 veor @t[4], @t[4], @x[7] vext.8 @x[3], @x[6], @x[6], #8 veor @t[3], @t[3], @x[7] vext.8 @x[6], @x[2], @x[2], #8 veor @x[7], @t[1], @t[5] ___ $code.=<<___ if (!$inv); veor @x[2], @t[0], @t[4] veor @x[4], @x[4], @t[3] veor @x[5], @x[5], @t[7] veor @x[3], @x[3], @t[6] @ vmov @x[2], @t[0] veor @x[6], @x[6], @t[2] @ vmov @x[7], @t[1] ___ $code.=<<___ if ($inv); veor @t[3], @t[3], @x[4] veor @x[5], @x[5], @t[7] veor @x[2], @x[3], @t[6] veor @x[3], @t[0], @t[4] veor @x[4], @x[6], @t[2] vmov @x[6], @t[3] @ vmov @x[7], @t[1] ___ } sub InvMixColumns_orig { my @x=@_[0..7]; my @t=@_[8..15]; $code.=<<___; @ multiplication by 0x0e vext.8 @t[7], @x[7], @x[7], #12 vmov @t[2], @x[2] veor @x[2], @x[2], @x[5] @ 2 5 veor @x[7], @x[7], @x[5] @ 7 5 vext.8 @t[0], @x[0], @x[0], #12 vmov @t[5], @x[5] veor @x[5], @x[5], @x[0] @ 5 0 [1] veor @x[0], @x[0], @x[1] @ 0 1 vext.8 @t[1], @x[1], @x[1], #12 veor @x[1], @x[1], @x[2] @ 1 25 veor @x[0], @x[0], @x[6] @ 01 6 [2] vext.8 @t[3], @x[3], @x[3], #12 veor @x[1], @x[1], @x[3] @ 125 3 [4] veor @x[2], @x[2], @x[0] @ 25 016 [3] veor @x[3], @x[3], @x[7] @ 3 75 veor @x[7], @x[7], @x[6] @ 75 6 [0] vext.8 @t[6], @x[6], @x[6], #12 vmov @t[4], @x[4] veor @x[6], @x[6], @x[4] @ 6 4 veor @x[4], @x[4], @x[3] @ 4 375 [6] veor @x[3], @x[3], @x[7] @ 375 756=36 veor @x[6], @x[6], @t[5] @ 64 5 [7] veor @x[3], @x[3], @t[2] @ 36 2 vext.8 @t[5], @t[5], @t[5], #12 veor @x[3], @x[3], @t[4] @ 362 4 [5] ___ my @y = @x[7,5,0,2,1,3,4,6]; $code.=<<___; @ multiplication by 0x0b veor @y[1], @y[1], @y[0] veor @y[0], @y[0], @t[0] vext.8 @t[2], @t[2], @t[2], #12 veor @y[1], @y[1], @t[1] veor @y[0], @y[0], @t[5] vext.8 @t[4], @t[4], @t[4], #12 veor @y[1], @y[1], @t[6] veor @y[0], @y[0], @t[7] veor @t[7], @t[7], @t[6] @ clobber t[7] veor @y[3], @y[3], @t[0] veor @y[1], @y[1], @y[0] vext.8 @t[0], @t[0], @t[0], #12 veor @y[2], @y[2], @t[1] veor @y[4], @y[4], @t[1] vext.8 @t[1], @t[1], @t[1], #12 veor @y[2], @y[2], @t[2] veor @y[3], @y[3], @t[2] veor @y[5], @y[5], @t[2] veor @y[2], @y[2], @t[7] vext.8 @t[2], @t[2], @t[2], #12 veor @y[3], @y[3], @t[3] veor @y[6], @y[6], @t[3] veor @y[4], @y[4], @t[3] veor @y[7], @y[7], @t[4] vext.8 @t[3], @t[3], @t[3], #12 veor @y[5], @y[5], @t[4] veor @y[7], @y[7], @t[7] veor @t[7], @t[7], @t[5] @ clobber t[7] even more veor @y[3], @y[3], @t[5] veor @y[4], @y[4], @t[4] veor @y[5], @y[5], @t[7] vext.8 @t[4], @t[4], @t[4], #12 veor @y[6], @y[6], @t[7] veor @y[4], @y[4], @t[7] veor @t[7], @t[7], @t[5] vext.8 @t[5], @t[5], @t[5], #12 @ multiplication by 0x0d veor @y[4], @y[4], @y[7] veor @t[7], @t[7], @t[6] @ restore t[7] veor @y[7], @y[7], @t[4] vext.8 @t[6], @t[6], @t[6], #12 veor @y[2], @y[2], @t[0] veor @y[7], @y[7], @t[5] vext.8 @t[7], @t[7], @t[7], #12 veor @y[2], @y[2], @t[2] veor @y[3], @y[3], @y[1] veor @y[1], @y[1], @t[1] veor @y[0], @y[0], @t[0] veor @y[3], @y[3], @t[0] veor @y[1], @y[1], @t[5] veor @y[0], @y[0], @t[5] vext.8 @t[0], @t[0], @t[0], #12 veor @y[1], @y[1], @t[7] veor @y[0], @y[0], @t[6] veor @y[3], @y[3], @y[1] veor @y[4], @y[4], @t[1] vext.8 @t[1], @t[1], @t[1], #12 veor @y[7], @y[7], @t[7] veor @y[4], @y[4], @t[2] veor @y[5], @y[5], @t[2] veor @y[2], @y[2], @t[6] veor @t[6], @t[6], @t[3] @ clobber t[6] vext.8 @t[2], @t[2], @t[2], #12 veor @y[4], @y[4], @y[7] veor @y[3], @y[3], @t[6] veor @y[6], @y[6], @t[6] veor @y[5], @y[5], @t[5] vext.8 @t[5], @t[5], @t[5], #12 veor @y[6], @y[6], @t[4] vext.8 @t[4], @t[4], @t[4], #12 veor @y[5], @y[5], @t[6] veor @y[6], @y[6], @t[7] vext.8 @t[7], @t[7], @t[7], #12 veor @t[6], @t[6], @t[3] @ restore t[6] vext.8 @t[3], @t[3], @t[3], #12 @ multiplication by 0x09 veor @y[4], @y[4], @y[1] veor @t[1], @t[1], @y[1] @ t[1]=y[1] veor @t[0], @t[0], @t[5] @ clobber t[0] vext.8 @t[6], @t[6], @t[6], #12 veor @t[1], @t[1], @t[5] veor @y[3], @y[3], @t[0] veor @t[0], @t[0], @y[0] @ t[0]=y[0] veor @t[1], @t[1], @t[6] veor @t[6], @t[6], @t[7] @ clobber t[6] veor @y[4], @y[4], @t[1] veor @y[7], @y[7], @t[4] veor @y[6], @y[6], @t[3] veor @y[5], @y[5], @t[2] veor @t[4], @t[4], @y[4] @ t[4]=y[4] veor @t[3], @t[3], @y[3] @ t[3]=y[3] veor @t[5], @t[5], @y[5] @ t[5]=y[5] veor @t[2], @t[2], @y[2] @ t[2]=y[2] veor @t[3], @t[3], @t[7] veor @XMM[5], @t[5], @t[6] veor @XMM[6], @t[6], @y[6] @ t[6]=y[6] veor @XMM[2], @t[2], @t[6] veor @XMM[7], @t[7], @y[7] @ t[7]=y[7] vmov @XMM[0], @t[0] vmov @XMM[1], @t[1] @ vmov @XMM[2], @t[2] vmov @XMM[3], @t[3] vmov @XMM[4], @t[4] @ vmov @XMM[5], @t[5] @ vmov @XMM[6], @t[6] @ vmov @XMM[7], @t[7] ___ } sub InvMixColumns { my @x=@_[0..7]; my @t=@_[8..15]; # Thanks to Jussi Kivilinna for providing pointer to # # | 0e 0b 0d 09 | | 02 03 01 01 | | 05 00 04 00 | # | 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 | # | 0d 09 0e 0b | | 01 01 02 03 | | 04 00 05 00 | # | 0b 0d 09 0e | | 03 01 01 02 | | 00 04 00 05 | $code.=<<___; @ multiplication by 0x05-0x00-0x04-0x00 vext.8 @t[0], @x[0], @x[0], #8 vext.8 @t[6], @x[6], @x[6], #8 vext.8 @t[7], @x[7], @x[7], #8 veor @t[0], @t[0], @x[0] vext.8 @t[1], @x[1], @x[1], #8 veor @t[6], @t[6], @x[6] vext.8 @t[2], @x[2], @x[2], #8 veor @t[7], @t[7], @x[7] vext.8 @t[3], @x[3], @x[3], #8 veor @t[1], @t[1], @x[1] vext.8 @t[4], @x[4], @x[4], #8 veor @t[2], @t[2], @x[2] vext.8 @t[5], @x[5], @x[5], #8 veor @t[3], @t[3], @x[3] veor @t[4], @t[4], @x[4] veor @t[5], @t[5], @x[5] veor @x[0], @x[0], @t[6] veor @x[1], @x[1], @t[6] veor @x[2], @x[2], @t[0] veor @x[4], @x[4], @t[2] veor @x[3], @x[3], @t[1] veor @x[1], @x[1], @t[7] veor @x[2], @x[2], @t[7] veor @x[4], @x[4], @t[6] veor @x[5], @x[5], @t[3] veor @x[3], @x[3], @t[6] veor @x[6], @x[6], @t[4] veor @x[4], @x[4], @t[7] veor @x[5], @x[5], @t[7] veor @x[7], @x[7], @t[5] ___ &MixColumns (@x,@t,1); # flipped 2<->3 and 4<->6 } sub swapmove { my ($a,$b,$n,$mask,$t)=@_; $code.=<<___; vshr.u64 $t, $b, #$n veor $t, $t, $a vand $t, $t, $mask veor $a, $a, $t vshl.u64 $t, $t, #$n veor $b, $b, $t ___ } sub swapmove2x { my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_; $code.=<<___; vshr.u64 $t0, $b0, #$n vshr.u64 $t1, $b1, #$n veor $t0, $t0, $a0 veor $t1, $t1, $a1 vand $t0, $t0, $mask vand $t1, $t1, $mask veor $a0, $a0, $t0 vshl.u64 $t0, $t0, #$n veor $a1, $a1, $t1 vshl.u64 $t1, $t1, #$n veor $b0, $b0, $t0 veor $b1, $b1, $t1 ___ } sub bitslice { my @x=reverse(@_[0..7]); my ($t0,$t1,$t2,$t3)=@_[8..11]; $code.=<<___; vmov.i8 $t0,#0x55 @ compose .LBS0 vmov.i8 $t1,#0x33 @ compose .LBS1 ___ &swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3); &swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3); $code.=<<___; vmov.i8 $t0,#0x0f @ compose .LBS2 ___ &swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3); &swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3); &swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3); &swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3); } $code.=<<___; #ifndef __KERNEL__ # include "arm_arch.h" # define VFP_ABI_PUSH vstmdb sp!,{d8-d15} # define VFP_ABI_POP vldmia sp!,{d8-d15} # define VFP_ABI_FRAME 0x40 #else # define VFP_ABI_PUSH # define VFP_ABI_POP # define VFP_ABI_FRAME 0 # define BSAES_ASM_EXTENDED_KEY # define XTS_CHAIN_TWEAK # define __ARM_ARCH__ __LINUX_ARM_ARCH__ # define __ARM_MAX_ARCH__ 7 #endif #ifdef __thumb__ # define adrl adr #endif #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .text .syntax unified @ ARMv7-capable assembler is expected to handle this #if defined(__thumb2__) && !defined(__APPLE__) .thumb #else .code 32 # undef __thumb2__ #endif .type _bsaes_decrypt8,%function .align 4 _bsaes_decrypt8: adr $const,. vldmia $key!, {@XMM[9]} @ round 0 key #if defined(__thumb2__) || defined(__APPLE__) adr $const,.LM0ISR #else add $const,$const,#.LM0ISR-_bsaes_decrypt8 #endif vldmia $const!, {@XMM[8]} @ .LM0ISR veor @XMM[10], @XMM[0], @XMM[9] @ xor with round0 key veor @XMM[11], @XMM[1], @XMM[9] vtbl.8 `&Dlo(@XMM[0])`, {@XMM[10]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[0])`, {@XMM[10]}, `&Dhi(@XMM[8])` veor @XMM[12], @XMM[2], @XMM[9] vtbl.8 `&Dlo(@XMM[1])`, {@XMM[11]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[1])`, {@XMM[11]}, `&Dhi(@XMM[8])` veor @XMM[13], @XMM[3], @XMM[9] vtbl.8 `&Dlo(@XMM[2])`, {@XMM[12]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[2])`, {@XMM[12]}, `&Dhi(@XMM[8])` veor @XMM[14], @XMM[4], @XMM[9] vtbl.8 `&Dlo(@XMM[3])`, {@XMM[13]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[3])`, {@XMM[13]}, `&Dhi(@XMM[8])` veor @XMM[15], @XMM[5], @XMM[9] vtbl.8 `&Dlo(@XMM[4])`, {@XMM[14]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[4])`, {@XMM[14]}, `&Dhi(@XMM[8])` veor @XMM[10], @XMM[6], @XMM[9] vtbl.8 `&Dlo(@XMM[5])`, {@XMM[15]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[5])`, {@XMM[15]}, `&Dhi(@XMM[8])` veor @XMM[11], @XMM[7], @XMM[9] vtbl.8 `&Dlo(@XMM[6])`, {@XMM[10]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[6])`, {@XMM[10]}, `&Dhi(@XMM[8])` vtbl.8 `&Dlo(@XMM[7])`, {@XMM[11]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[7])`, {@XMM[11]}, `&Dhi(@XMM[8])` ___ &bitslice (@XMM[0..7, 8..11]); $code.=<<___; sub $rounds,$rounds,#1 b .Ldec_sbox .align 4 .Ldec_loop: ___ &ShiftRows (@XMM[0..7, 8..12]); $code.=".Ldec_sbox:\n"; &InvSbox (@XMM[0..7, 8..15]); $code.=<<___; subs $rounds,$rounds,#1 bcc .Ldec_done ___ &InvMixColumns (@XMM[0,1,6,4,2,7,3,5, 8..15]); $code.=<<___; vldmia $const, {@XMM[12]} @ .LISR ite eq @ Thumb2 thing, sanity check in ARM addeq $const,$const,#0x10 bne .Ldec_loop vldmia $const, {@XMM[12]} @ .LISRM0 b .Ldec_loop .align 4 .Ldec_done: ___ &bitslice (@XMM[0,1,6,4,2,7,3,5, 8..11]); $code.=<<___; vldmia $key, {@XMM[8]} @ last round key veor @XMM[6], @XMM[6], @XMM[8] veor @XMM[4], @XMM[4], @XMM[8] veor @XMM[2], @XMM[2], @XMM[8] veor @XMM[7], @XMM[7], @XMM[8] veor @XMM[3], @XMM[3], @XMM[8] veor @XMM[5], @XMM[5], @XMM[8] veor @XMM[0], @XMM[0], @XMM[8] veor @XMM[1], @XMM[1], @XMM[8] bx lr .size _bsaes_decrypt8,.-_bsaes_decrypt8 .type _bsaes_const,%object .align 6 _bsaes_const: .LM0ISR: @ InvShiftRows constants .quad 0x0a0e0206070b0f03, 0x0004080c0d010509 .LISR: .quad 0x0504070602010003, 0x0f0e0d0c080b0a09 .LISRM0: .quad 0x01040b0e0205080f, 0x0306090c00070a0d .LM0SR: @ ShiftRows constants .quad 0x0a0e02060f03070b, 0x0004080c05090d01 .LSR: .quad 0x0504070600030201, 0x0f0e0d0c0a09080b .LSRM0: .quad 0x0304090e00050a0f, 0x01060b0c0207080d .LM0: .quad 0x02060a0e03070b0f, 0x0004080c0105090d .LREVM0SR: .quad 0x090d01050c000408, 0x03070b0f060a0e02 .asciz "Bit-sliced AES for NEON, CRYPTOGAMS by " .align 6 .size _bsaes_const,.-_bsaes_const .type _bsaes_encrypt8,%function .align 4 _bsaes_encrypt8: adr $const,. vldmia $key!, {@XMM[9]} @ round 0 key #if defined(__thumb2__) || defined(__APPLE__) adr $const,.LM0SR #else sub $const,$const,#_bsaes_encrypt8-.LM0SR #endif vldmia $const!, {@XMM[8]} @ .LM0SR _bsaes_encrypt8_alt: veor @XMM[10], @XMM[0], @XMM[9] @ xor with round0 key veor @XMM[11], @XMM[1], @XMM[9] vtbl.8 `&Dlo(@XMM[0])`, {@XMM[10]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[0])`, {@XMM[10]}, `&Dhi(@XMM[8])` veor @XMM[12], @XMM[2], @XMM[9] vtbl.8 `&Dlo(@XMM[1])`, {@XMM[11]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[1])`, {@XMM[11]}, `&Dhi(@XMM[8])` veor @XMM[13], @XMM[3], @XMM[9] vtbl.8 `&Dlo(@XMM[2])`, {@XMM[12]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[2])`, {@XMM[12]}, `&Dhi(@XMM[8])` veor @XMM[14], @XMM[4], @XMM[9] vtbl.8 `&Dlo(@XMM[3])`, {@XMM[13]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[3])`, {@XMM[13]}, `&Dhi(@XMM[8])` veor @XMM[15], @XMM[5], @XMM[9] vtbl.8 `&Dlo(@XMM[4])`, {@XMM[14]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[4])`, {@XMM[14]}, `&Dhi(@XMM[8])` veor @XMM[10], @XMM[6], @XMM[9] vtbl.8 `&Dlo(@XMM[5])`, {@XMM[15]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[5])`, {@XMM[15]}, `&Dhi(@XMM[8])` veor @XMM[11], @XMM[7], @XMM[9] vtbl.8 `&Dlo(@XMM[6])`, {@XMM[10]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[6])`, {@XMM[10]}, `&Dhi(@XMM[8])` vtbl.8 `&Dlo(@XMM[7])`, {@XMM[11]}, `&Dlo(@XMM[8])` vtbl.8 `&Dhi(@XMM[7])`, {@XMM[11]}, `&Dhi(@XMM[8])` _bsaes_encrypt8_bitslice: ___ &bitslice (@XMM[0..7, 8..11]); $code.=<<___; sub $rounds,$rounds,#1 b .Lenc_sbox .align 4 .Lenc_loop: ___ &ShiftRows (@XMM[0..7, 8..12]); $code.=".Lenc_sbox:\n"; &Sbox (@XMM[0..7, 8..15]); $code.=<<___; subs $rounds,$rounds,#1 bcc .Lenc_done ___ &MixColumns (@XMM[0,1,4,6,3,7,2,5, 8..15]); $code.=<<___; vldmia $const, {@XMM[12]} @ .LSR ite eq @ Thumb2 thing, samity check in ARM addeq $const,$const,#0x10 bne .Lenc_loop vldmia $const, {@XMM[12]} @ .LSRM0 b .Lenc_loop .align 4 .Lenc_done: ___ # output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb &bitslice (@XMM[0,1,4,6,3,7,2,5, 8..11]); $code.=<<___; vldmia $key, {@XMM[8]} @ last round key veor @XMM[4], @XMM[4], @XMM[8] veor @XMM[6], @XMM[6], @XMM[8] veor @XMM[3], @XMM[3], @XMM[8] veor @XMM[7], @XMM[7], @XMM[8] veor @XMM[2], @XMM[2], @XMM[8] veor @XMM[5], @XMM[5], @XMM[8] veor @XMM[0], @XMM[0], @XMM[8] veor @XMM[1], @XMM[1], @XMM[8] bx lr .size _bsaes_encrypt8,.-_bsaes_encrypt8 ___ } { my ($out,$inp,$rounds,$const)=("r12","r4","r5","r6"); sub bitslice_key { my @x=reverse(@_[0..7]); my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12]; &swapmove (@x[0,1],1,$bs0,$t2,$t3); $code.=<<___; @ &swapmove(@x[2,3],1,$t0,$t2,$t3); vmov @x[2], @x[0] vmov @x[3], @x[1] ___ #&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3); &swapmove2x (@x[0,2,1,3],2,$bs1,$t2,$t3); $code.=<<___; @ &swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3); vmov @x[4], @x[0] vmov @x[6], @x[2] vmov @x[5], @x[1] vmov @x[7], @x[3] ___ &swapmove2x (@x[0,4,1,5],4,$bs2,$t2,$t3); &swapmove2x (@x[2,6,3,7],4,$bs2,$t2,$t3); } $code.=<<___; .type _bsaes_key_convert,%function .align 4 _bsaes_key_convert: adr $const,. vld1.8 {@XMM[7]}, [$inp]! @ load round 0 key #if defined(__thumb2__) || defined(__APPLE__) adr $const,.LM0 #else sub $const,$const,#_bsaes_key_convert-.LM0 #endif vld1.8 {@XMM[15]}, [$inp]! @ load round 1 key vmov.i8 @XMM[8], #0x01 @ bit masks vmov.i8 @XMM[9], #0x02 vmov.i8 @XMM[10], #0x04 vmov.i8 @XMM[11], #0x08 vmov.i8 @XMM[12], #0x10 vmov.i8 @XMM[13], #0x20 vldmia $const, {@XMM[14]} @ .LM0 #ifdef __ARMEL__ vrev32.8 @XMM[7], @XMM[7] vrev32.8 @XMM[15], @XMM[15] #endif sub $rounds,$rounds,#1 vstmia $out!, {@XMM[7]} @ save round 0 key b .Lkey_loop .align 4 .Lkey_loop: vtbl.8 `&Dlo(@XMM[7])`,{@XMM[15]},`&Dlo(@XMM[14])` vtbl.8 `&Dhi(@XMM[7])`,{@XMM[15]},`&Dhi(@XMM[14])` vmov.i8 @XMM[6], #0x40 vmov.i8 @XMM[15], #0x80 vtst.8 @XMM[0], @XMM[7], @XMM[8] vtst.8 @XMM[1], @XMM[7], @XMM[9] vtst.8 @XMM[2], @XMM[7], @XMM[10] vtst.8 @XMM[3], @XMM[7], @XMM[11] vtst.8 @XMM[4], @XMM[7], @XMM[12] vtst.8 @XMM[5], @XMM[7], @XMM[13] vtst.8 @XMM[6], @XMM[7], @XMM[6] vtst.8 @XMM[7], @XMM[7], @XMM[15] vld1.8 {@XMM[15]}, [$inp]! @ load next round key vmvn @XMM[0], @XMM[0] @ "pnot" vmvn @XMM[1], @XMM[1] vmvn @XMM[5], @XMM[5] vmvn @XMM[6], @XMM[6] #ifdef __ARMEL__ vrev32.8 @XMM[15], @XMM[15] #endif subs $rounds,$rounds,#1 vstmia $out!,{@XMM[0]-@XMM[7]} @ write bit-sliced round key bne .Lkey_loop vmov.i8 @XMM[7],#0x63 @ compose .L63 @ don't save last round key bx lr .size _bsaes_key_convert,.-_bsaes_key_convert ___ } if (0) { # following four functions are unsupported interface # used for benchmarking... $code.=<<___; .globl bsaes_enc_key_convert .type bsaes_enc_key_convert,%function .align 4 bsaes_enc_key_convert: stmdb sp!,{r4-r6,lr} vstmdb sp!,{d8-d15} @ ABI specification says so ldr r5,[$inp,#240] @ pass rounds mov r4,$inp @ pass key mov r12,$out @ pass key schedule bl _bsaes_key_convert veor @XMM[7],@XMM[7],@XMM[15] @ fix up last round key vstmia r12, {@XMM[7]} @ save last round key vldmia sp!,{d8-d15} ldmia sp!,{r4-r6,pc} .size bsaes_enc_key_convert,.-bsaes_enc_key_convert .globl bsaes_encrypt_128 .type bsaes_encrypt_128,%function .align 4 bsaes_encrypt_128: stmdb sp!,{r4-r6,lr} vstmdb sp!,{d8-d15} @ ABI specification says so .Lenc128_loop: vld1.8 {@XMM[0]-@XMM[1]}, [$inp]! @ load input vld1.8 {@XMM[2]-@XMM[3]}, [$inp]! mov r4,$key @ pass the key vld1.8 {@XMM[4]-@XMM[5]}, [$inp]! mov r5,#10 @ pass rounds vld1.8 {@XMM[6]-@XMM[7]}, [$inp]! bl _bsaes_encrypt8 vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output vst1.8 {@XMM[4]}, [$out]! vst1.8 {@XMM[6]}, [$out]! vst1.8 {@XMM[3]}, [$out]! vst1.8 {@XMM[7]}, [$out]! vst1.8 {@XMM[2]}, [$out]! subs $len,$len,#0x80 vst1.8 {@XMM[5]}, [$out]! bhi .Lenc128_loop vldmia sp!,{d8-d15} ldmia sp!,{r4-r6,pc} .size bsaes_encrypt_128,.-bsaes_encrypt_128 .globl bsaes_dec_key_convert .type bsaes_dec_key_convert,%function .align 4 bsaes_dec_key_convert: stmdb sp!,{r4-r6,lr} vstmdb sp!,{d8-d15} @ ABI specification says so ldr r5,[$inp,#240] @ pass rounds mov r4,$inp @ pass key mov r12,$out @ pass key schedule bl _bsaes_key_convert vldmia $out, {@XMM[6]} vstmia r12, {@XMM[15]} @ save last round key veor @XMM[7], @XMM[7], @XMM[6] @ fix up round 0 key vstmia $out, {@XMM[7]} vldmia sp!,{d8-d15} ldmia sp!,{r4-r6,pc} .size bsaes_dec_key_convert,.-bsaes_dec_key_convert .globl bsaes_decrypt_128 .type bsaes_decrypt_128,%function .align 4 bsaes_decrypt_128: stmdb sp!,{r4-r6,lr} vstmdb sp!,{d8-d15} @ ABI specification says so .Ldec128_loop: vld1.8 {@XMM[0]-@XMM[1]}, [$inp]! @ load input vld1.8 {@XMM[2]-@XMM[3]}, [$inp]! mov r4,$key @ pass the key vld1.8 {@XMM[4]-@XMM[5]}, [$inp]! mov r5,#10 @ pass rounds vld1.8 {@XMM[6]-@XMM[7]}, [$inp]! bl _bsaes_decrypt8 vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output vst1.8 {@XMM[6]}, [$out]! vst1.8 {@XMM[4]}, [$out]! vst1.8 {@XMM[2]}, [$out]! vst1.8 {@XMM[7]}, [$out]! vst1.8 {@XMM[3]}, [$out]! subs $len,$len,#0x80 vst1.8 {@XMM[5]}, [$out]! bhi .Ldec128_loop vldmia sp!,{d8-d15} ldmia sp!,{r4-r6,pc} .size bsaes_decrypt_128,.-bsaes_decrypt_128 ___ } { my ($inp,$out,$len,$key, $ivp,$fp,$rounds)=map("r$_",(0..3,8..10)); my ($keysched)=("sp"); $code.=<<___; .extern AES_cbc_encrypt .extern AES_decrypt .global bsaes_cbc_encrypt .type bsaes_cbc_encrypt,%function .align 5 bsaes_cbc_encrypt: #ifndef __KERNEL__ cmp $len, #128 #ifndef __thumb__ blo AES_cbc_encrypt #else bhs 1f b AES_cbc_encrypt 1: #endif #endif @ it is up to the caller to make sure we are called with enc == 0 mov ip, sp stmdb sp!, {r4-r10, lr} VFP_ABI_PUSH ldr $ivp, [ip] @ IV is 1st arg on the stack mov $len, $len, lsr#4 @ len in 16 byte blocks sub sp, #0x10 @ scratch space to carry over the IV mov $fp, sp @ save sp ldr $rounds, [$key, #240] @ get # of rounds #ifndef BSAES_ASM_EXTENDED_KEY @ allocate the key schedule on the stack sub r12, sp, $rounds, lsl#7 @ 128 bytes per inner round key add r12, #`128-32` @ sifze of bit-slices key schedule @ populate the key schedule mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds mov sp, r12 @ sp is $keysched bl _bsaes_key_convert vldmia $keysched, {@XMM[6]} vstmia r12, {@XMM[15]} @ save last round key veor @XMM[7], @XMM[7], @XMM[6] @ fix up round 0 key vstmia $keysched, {@XMM[7]} #else ldr r12, [$key, #244] eors r12, #1 beq 0f @ populate the key schedule str r12, [$key, #244] mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds add r12, $key, #248 @ pass key schedule bl _bsaes_key_convert add r4, $key, #248 vldmia r4, {@XMM[6]} vstmia r12, {@XMM[15]} @ save last round key veor @XMM[7], @XMM[7], @XMM[6] @ fix up round 0 key vstmia r4, {@XMM[7]} .align 2 0: #endif vld1.8 {@XMM[15]}, [$ivp] @ load IV b .Lcbc_dec_loop .align 4 .Lcbc_dec_loop: subs $len, $len, #0x8 bmi .Lcbc_dec_loop_finish vld1.8 {@XMM[0]-@XMM[1]}, [$inp]! @ load input vld1.8 {@XMM[2]-@XMM[3]}, [$inp]! #ifndef BSAES_ASM_EXTENDED_KEY mov r4, $keysched @ pass the key #else add r4, $key, #248 #endif vld1.8 {@XMM[4]-@XMM[5]}, [$inp]! mov r5, $rounds vld1.8 {@XMM[6]-@XMM[7]}, [$inp] sub $inp, $inp, #0x60 vstmia $fp, {@XMM[15]} @ put aside IV bl _bsaes_decrypt8 vldmia $fp, {@XMM[14]} @ reload IV vld1.8 {@XMM[8]-@XMM[9]}, [$inp]! @ reload input veor @XMM[0], @XMM[0], @XMM[14] @ ^= IV vld1.8 {@XMM[10]-@XMM[11]}, [$inp]! veor @XMM[1], @XMM[1], @XMM[8] veor @XMM[6], @XMM[6], @XMM[9] vld1.8 {@XMM[12]-@XMM[13]}, [$inp]! veor @XMM[4], @XMM[4], @XMM[10] veor @XMM[2], @XMM[2], @XMM[11] vld1.8 {@XMM[14]-@XMM[15]}, [$inp]! veor @XMM[7], @XMM[7], @XMM[12] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output veor @XMM[3], @XMM[3], @XMM[13] vst1.8 {@XMM[6]}, [$out]! veor @XMM[5], @XMM[5], @XMM[14] vst1.8 {@XMM[4]}, [$out]! vst1.8 {@XMM[2]}, [$out]! vst1.8 {@XMM[7]}, [$out]! vst1.8 {@XMM[3]}, [$out]! vst1.8 {@XMM[5]}, [$out]! b .Lcbc_dec_loop .Lcbc_dec_loop_finish: adds $len, $len, #8 beq .Lcbc_dec_done vld1.8 {@XMM[0]}, [$inp]! @ load input cmp $len, #2 blo .Lcbc_dec_one vld1.8 {@XMM[1]}, [$inp]! #ifndef BSAES_ASM_EXTENDED_KEY mov r4, $keysched @ pass the key #else add r4, $key, #248 #endif mov r5, $rounds vstmia $fp, {@XMM[15]} @ put aside IV beq .Lcbc_dec_two vld1.8 {@XMM[2]}, [$inp]! cmp $len, #4 blo .Lcbc_dec_three vld1.8 {@XMM[3]}, [$inp]! beq .Lcbc_dec_four vld1.8 {@XMM[4]}, [$inp]! cmp $len, #6 blo .Lcbc_dec_five vld1.8 {@XMM[5]}, [$inp]! beq .Lcbc_dec_six vld1.8 {@XMM[6]}, [$inp]! sub $inp, $inp, #0x70 bl _bsaes_decrypt8 vldmia $fp, {@XMM[14]} @ reload IV vld1.8 {@XMM[8]-@XMM[9]}, [$inp]! @ reload input veor @XMM[0], @XMM[0], @XMM[14] @ ^= IV vld1.8 {@XMM[10]-@XMM[11]}, [$inp]! veor @XMM[1], @XMM[1], @XMM[8] veor @XMM[6], @XMM[6], @XMM[9] vld1.8 {@XMM[12]-@XMM[13]}, [$inp]! veor @XMM[4], @XMM[4], @XMM[10] veor @XMM[2], @XMM[2], @XMM[11] vld1.8 {@XMM[15]}, [$inp]! veor @XMM[7], @XMM[7], @XMM[12] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output veor @XMM[3], @XMM[3], @XMM[13] vst1.8 {@XMM[6]}, [$out]! vst1.8 {@XMM[4]}, [$out]! vst1.8 {@XMM[2]}, [$out]! vst1.8 {@XMM[7]}, [$out]! vst1.8 {@XMM[3]}, [$out]! b .Lcbc_dec_done .align 4 .Lcbc_dec_six: sub $inp, $inp, #0x60 bl _bsaes_decrypt8 vldmia $fp,{@XMM[14]} @ reload IV vld1.8 {@XMM[8]-@XMM[9]}, [$inp]! @ reload input veor @XMM[0], @XMM[0], @XMM[14] @ ^= IV vld1.8 {@XMM[10]-@XMM[11]}, [$inp]! veor @XMM[1], @XMM[1], @XMM[8] veor @XMM[6], @XMM[6], @XMM[9] vld1.8 {@XMM[12]}, [$inp]! veor @XMM[4], @XMM[4], @XMM[10] veor @XMM[2], @XMM[2], @XMM[11] vld1.8 {@XMM[15]}, [$inp]! veor @XMM[7], @XMM[7], @XMM[12] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output vst1.8 {@XMM[6]}, [$out]! vst1.8 {@XMM[4]}, [$out]! vst1.8 {@XMM[2]}, [$out]! vst1.8 {@XMM[7]}, [$out]! b .Lcbc_dec_done .align 4 .Lcbc_dec_five: sub $inp, $inp, #0x50 bl _bsaes_decrypt8 vldmia $fp, {@XMM[14]} @ reload IV vld1.8 {@XMM[8]-@XMM[9]}, [$inp]! @ reload input veor @XMM[0], @XMM[0], @XMM[14] @ ^= IV vld1.8 {@XMM[10]-@XMM[11]}, [$inp]! veor @XMM[1], @XMM[1], @XMM[8] veor @XMM[6], @XMM[6], @XMM[9] vld1.8 {@XMM[15]}, [$inp]! veor @XMM[4], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output veor @XMM[2], @XMM[2], @XMM[11] vst1.8 {@XMM[6]}, [$out]! vst1.8 {@XMM[4]}, [$out]! vst1.8 {@XMM[2]}, [$out]! b .Lcbc_dec_done .align 4 .Lcbc_dec_four: sub $inp, $inp, #0x40 bl _bsaes_decrypt8 vldmia $fp, {@XMM[14]} @ reload IV vld1.8 {@XMM[8]-@XMM[9]}, [$inp]! @ reload input veor @XMM[0], @XMM[0], @XMM[14] @ ^= IV vld1.8 {@XMM[10]}, [$inp]! veor @XMM[1], @XMM[1], @XMM[8] veor @XMM[6], @XMM[6], @XMM[9] vld1.8 {@XMM[15]}, [$inp]! veor @XMM[4], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output vst1.8 {@XMM[6]}, [$out]! vst1.8 {@XMM[4]}, [$out]! b .Lcbc_dec_done .align 4 .Lcbc_dec_three: sub $inp, $inp, #0x30 bl _bsaes_decrypt8 vldmia $fp, {@XMM[14]} @ reload IV vld1.8 {@XMM[8]-@XMM[9]}, [$inp]! @ reload input veor @XMM[0], @XMM[0], @XMM[14] @ ^= IV vld1.8 {@XMM[15]}, [$inp]! veor @XMM[1], @XMM[1], @XMM[8] veor @XMM[6], @XMM[6], @XMM[9] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output vst1.8 {@XMM[6]}, [$out]! b .Lcbc_dec_done .align 4 .Lcbc_dec_two: sub $inp, $inp, #0x20 bl _bsaes_decrypt8 vldmia $fp, {@XMM[14]} @ reload IV vld1.8 {@XMM[8]}, [$inp]! @ reload input veor @XMM[0], @XMM[0], @XMM[14] @ ^= IV vld1.8 {@XMM[15]}, [$inp]! @ reload input veor @XMM[1], @XMM[1], @XMM[8] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output b .Lcbc_dec_done .align 4 .Lcbc_dec_one: sub $inp, $inp, #0x10 mov $rounds, $out @ save original out pointer mov $out, $fp @ use the iv scratch space as out buffer mov r2, $key vmov @XMM[4],@XMM[15] @ just in case ensure that IV vmov @XMM[5],@XMM[0] @ and input are preserved bl AES_decrypt vld1.8 {@XMM[0]}, [$fp] @ load result veor @XMM[0], @XMM[0], @XMM[4] @ ^= IV vmov @XMM[15], @XMM[5] @ @XMM[5] holds input vst1.8 {@XMM[0]}, [$rounds] @ write output .Lcbc_dec_done: #ifndef BSAES_ASM_EXTENDED_KEY vmov.i32 q0, #0 vmov.i32 q1, #0 .Lcbc_dec_bzero: @ wipe key schedule [if any] vstmia $keysched!, {q0-q1} cmp $keysched, $fp bne .Lcbc_dec_bzero #endif mov sp, $fp add sp, #0x10 @ add sp,$fp,#0x10 is no good for thumb vst1.8 {@XMM[15]}, [$ivp] @ return IV VFP_ABI_POP ldmia sp!, {r4-r10, pc} .size bsaes_cbc_encrypt,.-bsaes_cbc_encrypt ___ } { my ($inp,$out,$len,$key, $ctr,$fp,$rounds)=(map("r$_",(0..3,8..10))); my $const = "r6"; # shared with _bsaes_encrypt8_alt my $keysched = "sp"; $code.=<<___; .extern AES_encrypt .global bsaes_ctr32_encrypt_blocks .type bsaes_ctr32_encrypt_blocks,%function .align 5 bsaes_ctr32_encrypt_blocks: cmp $len, #8 @ use plain AES for blo .Lctr_enc_short @ small sizes mov ip, sp stmdb sp!, {r4-r10, lr} VFP_ABI_PUSH ldr $ctr, [ip] @ ctr is 1st arg on the stack sub sp, sp, #0x10 @ scratch space to carry over the ctr mov $fp, sp @ save sp ldr $rounds, [$key, #240] @ get # of rounds #ifndef BSAES_ASM_EXTENDED_KEY @ allocate the key schedule on the stack sub r12, sp, $rounds, lsl#7 @ 128 bytes per inner round key add r12, #`128-32` @ size of bit-sliced key schedule @ populate the key schedule mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds mov sp, r12 @ sp is $keysched bl _bsaes_key_convert veor @XMM[7],@XMM[7],@XMM[15] @ fix up last round key vstmia r12, {@XMM[7]} @ save last round key vld1.8 {@XMM[0]}, [$ctr] @ load counter #ifdef __APPLE__ mov $ctr, #:lower16:(.LREVM0SR-.LM0) add $ctr, $const, $ctr #else add $ctr, $const, #.LREVM0SR-.LM0 @ borrow $ctr #endif vldmia $keysched, {@XMM[4]} @ load round0 key #else ldr r12, [$key, #244] eors r12, #1 beq 0f @ populate the key schedule str r12, [$key, #244] mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds add r12, $key, #248 @ pass key schedule bl _bsaes_key_convert veor @XMM[7],@XMM[7],@XMM[15] @ fix up last round key vstmia r12, {@XMM[7]} @ save last round key .align 2 0: add r12, $key, #248 vld1.8 {@XMM[0]}, [$ctr] @ load counter adrl $ctr, .LREVM0SR @ borrow $ctr vldmia r12, {@XMM[4]} @ load round0 key sub sp, #0x10 @ place for adjusted round0 key #endif vmov.i32 @XMM[8],#1 @ compose 1<<96 veor @XMM[9],@XMM[9],@XMM[9] vrev32.8 @XMM[0],@XMM[0] vext.8 @XMM[8],@XMM[9],@XMM[8],#4 vrev32.8 @XMM[4],@XMM[4] vadd.u32 @XMM[9],@XMM[8],@XMM[8] @ compose 2<<96 vstmia $keysched, {@XMM[4]} @ save adjusted round0 key b .Lctr_enc_loop .align 4 .Lctr_enc_loop: vadd.u32 @XMM[10], @XMM[8], @XMM[9] @ compose 3<<96 vadd.u32 @XMM[1], @XMM[0], @XMM[8] @ +1 vadd.u32 @XMM[2], @XMM[0], @XMM[9] @ +2 vadd.u32 @XMM[3], @XMM[0], @XMM[10] @ +3 vadd.u32 @XMM[4], @XMM[1], @XMM[10] vadd.u32 @XMM[5], @XMM[2], @XMM[10] vadd.u32 @XMM[6], @XMM[3], @XMM[10] vadd.u32 @XMM[7], @XMM[4], @XMM[10] vadd.u32 @XMM[10], @XMM[5], @XMM[10] @ next counter @ Borrow prologue from _bsaes_encrypt8 to use the opportunity @ to flip byte order in 32-bit counter vldmia $keysched, {@XMM[9]} @ load round0 key #ifndef BSAES_ASM_EXTENDED_KEY add r4, $keysched, #0x10 @ pass next round key #else add r4, $key, #`248+16` #endif vldmia $ctr, {@XMM[8]} @ .LREVM0SR mov r5, $rounds @ pass rounds vstmia $fp, {@XMM[10]} @ save next counter #ifdef __APPLE__ mov $const, #:lower16:(.LREVM0SR-.LSR) sub $const, $ctr, $const #else sub $const, $ctr, #.LREVM0SR-.LSR @ pass constants #endif bl _bsaes_encrypt8_alt subs $len, $len, #8 blo .Lctr_enc_loop_done vld1.8 {@XMM[8]-@XMM[9]}, [$inp]! @ load input vld1.8 {@XMM[10]-@XMM[11]}, [$inp]! veor @XMM[0], @XMM[8] veor @XMM[1], @XMM[9] vld1.8 {@XMM[12]-@XMM[13]}, [$inp]! veor @XMM[4], @XMM[10] veor @XMM[6], @XMM[11] vld1.8 {@XMM[14]-@XMM[15]}, [$inp]! veor @XMM[3], @XMM[12] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! @ write output veor @XMM[7], @XMM[13] veor @XMM[2], @XMM[14] vst1.8 {@XMM[4]}, [$out]! veor @XMM[5], @XMM[15] vst1.8 {@XMM[6]}, [$out]! vmov.i32 @XMM[8], #1 @ compose 1<<96 vst1.8 {@XMM[3]}, [$out]! veor @XMM[9], @XMM[9], @XMM[9] vst1.8 {@XMM[7]}, [$out]! vext.8 @XMM[8], @XMM[9], @XMM[8], #4 vst1.8 {@XMM[2]}, [$out]! vadd.u32 @XMM[9],@XMM[8],@XMM[8] @ compose 2<<96 vst1.8 {@XMM[5]}, [$out]! vldmia $fp, {@XMM[0]} @ load counter bne .Lctr_enc_loop b .Lctr_enc_done .align 4 .Lctr_enc_loop_done: add $len, $len, #8 vld1.8 {@XMM[8]}, [$inp]! @ load input veor @XMM[0], @XMM[8] vst1.8 {@XMM[0]}, [$out]! @ write output cmp $len, #2 blo .Lctr_enc_done vld1.8 {@XMM[9]}, [$inp]! veor @XMM[1], @XMM[9] vst1.8 {@XMM[1]}, [$out]! beq .Lctr_enc_done vld1.8 {@XMM[10]}, [$inp]! veor @XMM[4], @XMM[10] vst1.8 {@XMM[4]}, [$out]! cmp $len, #4 blo .Lctr_enc_done vld1.8 {@XMM[11]}, [$inp]! veor @XMM[6], @XMM[11] vst1.8 {@XMM[6]}, [$out]! beq .Lctr_enc_done vld1.8 {@XMM[12]}, [$inp]! veor @XMM[3], @XMM[12] vst1.8 {@XMM[3]}, [$out]! cmp $len, #6 blo .Lctr_enc_done vld1.8 {@XMM[13]}, [$inp]! veor @XMM[7], @XMM[13] vst1.8 {@XMM[7]}, [$out]! beq .Lctr_enc_done vld1.8 {@XMM[14]}, [$inp] veor @XMM[2], @XMM[14] vst1.8 {@XMM[2]}, [$out]! .Lctr_enc_done: vmov.i32 q0, #0 vmov.i32 q1, #0 #ifndef BSAES_ASM_EXTENDED_KEY .Lctr_enc_bzero: @ wipe key schedule [if any] vstmia $keysched!, {q0-q1} cmp $keysched, $fp bne .Lctr_enc_bzero #else vstmia $keysched, {q0-q1} #endif mov sp, $fp add sp, #0x10 @ add sp,$fp,#0x10 is no good for thumb VFP_ABI_POP ldmia sp!, {r4-r10, pc} @ return .align 4 .Lctr_enc_short: ldr ip, [sp] @ ctr pointer is passed on stack stmdb sp!, {r4-r8, lr} mov r4, $inp @ copy arguments mov r5, $out mov r6, $len mov r7, $key ldr r8, [ip, #12] @ load counter LSW vld1.8 {@XMM[1]}, [ip] @ load whole counter value #ifdef __ARMEL__ rev r8, r8 #endif sub sp, sp, #0x10 vst1.8 {@XMM[1]}, [sp] @ copy counter value sub sp, sp, #0x10 .Lctr_enc_short_loop: add r0, sp, #0x10 @ input counter value mov r1, sp @ output on the stack mov r2, r7 @ key bl AES_encrypt vld1.8 {@XMM[0]}, [r4]! @ load input vld1.8 {@XMM[1]}, [sp] @ load encrypted counter add r8, r8, #1 #ifdef __ARMEL__ rev r0, r8 str r0, [sp, #0x1c] @ next counter value #else str r8, [sp, #0x1c] @ next counter value #endif veor @XMM[0],@XMM[0],@XMM[1] vst1.8 {@XMM[0]}, [r5]! @ store output subs r6, r6, #1 bne .Lctr_enc_short_loop vmov.i32 q0, #0 vmov.i32 q1, #0 vstmia sp!, {q0-q1} ldmia sp!, {r4-r8, pc} .size bsaes_ctr32_encrypt_blocks,.-bsaes_ctr32_encrypt_blocks ___ } { ###################################################################### # void bsaes_xts_[en|de]crypt(const char *inp,char *out,size_t len, # const AES_KEY *key1, const AES_KEY *key2, # const unsigned char iv[16]); # my ($inp,$out,$len,$key,$rounds,$magic,$fp)=(map("r$_",(7..10,1..3))); my $const="r6"; # returned by _bsaes_key_convert my $twmask=@XMM[5]; my @T=@XMM[6..7]; $code.=<<___; .globl bsaes_xts_encrypt .type bsaes_xts_encrypt,%function .align 4 bsaes_xts_encrypt: mov ip, sp stmdb sp!, {r4-r10, lr} @ 0x20 VFP_ABI_PUSH mov r6, sp @ future $fp mov $inp, r0 mov $out, r1 mov $len, r2 mov $key, r3 sub r0, sp, #0x10 @ 0x10 bic r0, #0xf @ align at 16 bytes mov sp, r0 #ifdef XTS_CHAIN_TWEAK ldr r0, [ip] @ pointer to input tweak #else @ generate initial tweak ldr r0, [ip, #4] @ iv[] mov r1, sp ldr r2, [ip, #0] @ key2 bl AES_encrypt mov r0,sp @ pointer to initial tweak #endif ldr $rounds, [$key, #240] @ get # of rounds mov $fp, r6 #ifndef BSAES_ASM_EXTENDED_KEY @ allocate the key schedule on the stack sub r12, sp, $rounds, lsl#7 @ 128 bytes per inner round key @ add r12, #`128-32` @ size of bit-sliced key schedule sub r12, #`32+16` @ place for tweak[9] @ populate the key schedule mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds mov sp, r12 add r12, #0x90 @ pass key schedule bl _bsaes_key_convert veor @XMM[7], @XMM[7], @XMM[15] @ fix up last round key vstmia r12, {@XMM[7]} @ save last round key #else ldr r12, [$key, #244] eors r12, #1 beq 0f str r12, [$key, #244] mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds add r12, $key, #248 @ pass key schedule bl _bsaes_key_convert veor @XMM[7], @XMM[7], @XMM[15] @ fix up last round key vstmia r12, {@XMM[7]} .align 2 0: sub sp, #0x90 @ place for tweak[9] #endif vld1.8 {@XMM[8]}, [r0] @ initial tweak adr $magic, .Lxts_magic subs $len, #0x80 blo .Lxts_enc_short b .Lxts_enc_loop .align 4 .Lxts_enc_loop: vldmia $magic, {$twmask} @ load XTS magic vshr.s64 @T[0], @XMM[8], #63 mov r0, sp vand @T[0], @T[0], $twmask ___ for($i=9;$i<16;$i++) { $code.=<<___; vadd.u64 @XMM[$i], @XMM[$i-1], @XMM[$i-1] vst1.64 {@XMM[$i-1]}, [r0,:128]! vswp `&Dhi("@T[0]")`,`&Dlo("@T[0]")` vshr.s64 @T[1], @XMM[$i], #63 veor @XMM[$i], @XMM[$i], @T[0] vand @T[1], @T[1], $twmask ___ @T=reverse(@T); $code.=<<___ if ($i>=10); vld1.8 {@XMM[$i-10]}, [$inp]! ___ $code.=<<___ if ($i>=11); veor @XMM[$i-11], @XMM[$i-11], @XMM[$i-3] ___ } $code.=<<___; vadd.u64 @XMM[8], @XMM[15], @XMM[15] vst1.64 {@XMM[15]}, [r0,:128]! vswp `&Dhi("@T[0]")`,`&Dlo("@T[0]")` veor @XMM[8], @XMM[8], @T[0] vst1.64 {@XMM[8]}, [r0,:128] @ next round tweak vld1.8 {@XMM[6]-@XMM[7]}, [$inp]! veor @XMM[5], @XMM[5], @XMM[13] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[6], @XMM[6], @XMM[14] mov r5, $rounds @ pass rounds veor @XMM[7], @XMM[7], @XMM[15] mov r0, sp bl _bsaes_encrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]-@XMM[13]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[6], @XMM[11] vld1.64 {@XMM[14]-@XMM[15]}, [r0,:128]! veor @XMM[10], @XMM[3], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! veor @XMM[11], @XMM[7], @XMM[13] veor @XMM[12], @XMM[2], @XMM[14] vst1.8 {@XMM[10]-@XMM[11]}, [$out]! veor @XMM[13], @XMM[5], @XMM[15] vst1.8 {@XMM[12]-@XMM[13]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak subs $len, #0x80 bpl .Lxts_enc_loop .Lxts_enc_short: adds $len, #0x70 bmi .Lxts_enc_done vldmia $magic, {$twmask} @ load XTS magic vshr.s64 @T[0], @XMM[8], #63 mov r0, sp vand @T[0], @T[0], $twmask ___ for($i=9;$i<16;$i++) { $code.=<<___; vadd.u64 @XMM[$i], @XMM[$i-1], @XMM[$i-1] vst1.64 {@XMM[$i-1]}, [r0,:128]! vswp `&Dhi("@T[0]")`,`&Dlo("@T[0]")` vshr.s64 @T[1], @XMM[$i], #63 veor @XMM[$i], @XMM[$i], @T[0] vand @T[1], @T[1], $twmask ___ @T=reverse(@T); $code.=<<___ if ($i>=10); vld1.8 {@XMM[$i-10]}, [$inp]! subs $len, #0x10 bmi .Lxts_enc_`$i-9` ___ $code.=<<___ if ($i>=11); veor @XMM[$i-11], @XMM[$i-11], @XMM[$i-3] ___ } $code.=<<___; sub $len, #0x10 vst1.64 {@XMM[15]}, [r0,:128] @ next round tweak vld1.8 {@XMM[6]}, [$inp]! veor @XMM[5], @XMM[5], @XMM[13] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[6], @XMM[6], @XMM[14] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_encrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]-@XMM[13]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[6], @XMM[11] vld1.64 {@XMM[14]}, [r0,:128]! veor @XMM[10], @XMM[3], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! veor @XMM[11], @XMM[7], @XMM[13] veor @XMM[12], @XMM[2], @XMM[14] vst1.8 {@XMM[10]-@XMM[11]}, [$out]! vst1.8 {@XMM[12]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_enc_done .align 4 .Lxts_enc_6: veor @XMM[4], @XMM[4], @XMM[12] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[5], @XMM[5], @XMM[13] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_encrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]-@XMM[13]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[6], @XMM[11] veor @XMM[10], @XMM[3], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! veor @XMM[11], @XMM[7], @XMM[13] vst1.8 {@XMM[10]-@XMM[11]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_enc_done @ put this in range for both ARM and Thumb mode adr instructions .align 5 .Lxts_magic: .quad 1, 0x87 .align 5 .Lxts_enc_5: veor @XMM[3], @XMM[3], @XMM[11] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[4], @XMM[4], @XMM[12] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_encrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[6], @XMM[11] veor @XMM[10], @XMM[3], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! vst1.8 {@XMM[10]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_enc_done .align 4 .Lxts_enc_4: veor @XMM[2], @XMM[2], @XMM[10] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[3], @XMM[3], @XMM[11] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_encrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[6], @XMM[11] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_enc_done .align 4 .Lxts_enc_3: veor @XMM[1], @XMM[1], @XMM[9] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[2], @XMM[2], @XMM[10] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_encrypt8 vld1.64 {@XMM[8]-@XMM[9]}, [r0,:128]! vld1.64 {@XMM[10]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[4], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! vst1.8 {@XMM[8]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_enc_done .align 4 .Lxts_enc_2: veor @XMM[0], @XMM[0], @XMM[8] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[1], @XMM[1], @XMM[9] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_encrypt8 vld1.64 {@XMM[8]-@XMM[9]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] veor @XMM[1], @XMM[1], @XMM[ 9] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_enc_done .align 4 .Lxts_enc_1: mov r0, sp veor @XMM[0], @XMM[0], @XMM[8] mov r1, sp vst1.8 {@XMM[0]}, [sp,:128] mov r2, $key mov r4, $fp @ preserve fp bl AES_encrypt vld1.8 {@XMM[0]}, [sp,:128] veor @XMM[0], @XMM[0], @XMM[8] vst1.8 {@XMM[0]}, [$out]! mov $fp, r4 vmov @XMM[8], @XMM[9] @ next round tweak .Lxts_enc_done: #ifndef XTS_CHAIN_TWEAK adds $len, #0x10 beq .Lxts_enc_ret sub r6, $out, #0x10 .Lxts_enc_steal: ldrb r0, [$inp], #1 ldrb r1, [$out, #-0x10] strb r0, [$out, #-0x10] strb r1, [$out], #1 subs $len, #1 bhi .Lxts_enc_steal vld1.8 {@XMM[0]}, [r6] mov r0, sp veor @XMM[0], @XMM[0], @XMM[8] mov r1, sp vst1.8 {@XMM[0]}, [sp,:128] mov r2, $key mov r4, $fp @ preserve fp bl AES_encrypt vld1.8 {@XMM[0]}, [sp,:128] veor @XMM[0], @XMM[0], @XMM[8] vst1.8 {@XMM[0]}, [r6] mov $fp, r4 #endif .Lxts_enc_ret: bic r0, $fp, #0xf vmov.i32 q0, #0 vmov.i32 q1, #0 #ifdef XTS_CHAIN_TWEAK ldr r1, [$fp, #0x20+VFP_ABI_FRAME] @ chain tweak #endif .Lxts_enc_bzero: @ wipe key schedule [if any] vstmia sp!, {q0-q1} cmp sp, r0 bne .Lxts_enc_bzero mov sp, $fp #ifdef XTS_CHAIN_TWEAK vst1.8 {@XMM[8]}, [r1] #endif VFP_ABI_POP ldmia sp!, {r4-r10, pc} @ return .size bsaes_xts_encrypt,.-bsaes_xts_encrypt .globl bsaes_xts_decrypt .type bsaes_xts_decrypt,%function .align 4 bsaes_xts_decrypt: mov ip, sp stmdb sp!, {r4-r10, lr} @ 0x20 VFP_ABI_PUSH mov r6, sp @ future $fp mov $inp, r0 mov $out, r1 mov $len, r2 mov $key, r3 sub r0, sp, #0x10 @ 0x10 bic r0, #0xf @ align at 16 bytes mov sp, r0 #ifdef XTS_CHAIN_TWEAK ldr r0, [ip] @ pointer to input tweak #else @ generate initial tweak ldr r0, [ip, #4] @ iv[] mov r1, sp ldr r2, [ip, #0] @ key2 bl AES_encrypt mov r0, sp @ pointer to initial tweak #endif ldr $rounds, [$key, #240] @ get # of rounds mov $fp, r6 #ifndef BSAES_ASM_EXTENDED_KEY @ allocate the key schedule on the stack sub r12, sp, $rounds, lsl#7 @ 128 bytes per inner round key @ add r12, #`128-32` @ size of bit-sliced key schedule sub r12, #`32+16` @ place for tweak[9] @ populate the key schedule mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds mov sp, r12 add r12, #0x90 @ pass key schedule bl _bsaes_key_convert add r4, sp, #0x90 vldmia r4, {@XMM[6]} vstmia r12, {@XMM[15]} @ save last round key veor @XMM[7], @XMM[7], @XMM[6] @ fix up round 0 key vstmia r4, {@XMM[7]} #else ldr r12, [$key, #244] eors r12, #1 beq 0f str r12, [$key, #244] mov r4, $key @ pass key mov r5, $rounds @ pass # of rounds add r12, $key, #248 @ pass key schedule bl _bsaes_key_convert add r4, $key, #248 vldmia r4, {@XMM[6]} vstmia r12, {@XMM[15]} @ save last round key veor @XMM[7], @XMM[7], @XMM[6] @ fix up round 0 key vstmia r4, {@XMM[7]} .align 2 0: sub sp, #0x90 @ place for tweak[9] #endif vld1.8 {@XMM[8]}, [r0] @ initial tweak adr $magic, .Lxts_magic #ifndef XTS_CHAIN_TWEAK tst $len, #0xf @ if not multiple of 16 it ne @ Thumb2 thing, sanity check in ARM subne $len, #0x10 @ subtract another 16 bytes #endif subs $len, #0x80 blo .Lxts_dec_short b .Lxts_dec_loop .align 4 .Lxts_dec_loop: vldmia $magic, {$twmask} @ load XTS magic vshr.s64 @T[0], @XMM[8], #63 mov r0, sp vand @T[0], @T[0], $twmask ___ for($i=9;$i<16;$i++) { $code.=<<___; vadd.u64 @XMM[$i], @XMM[$i-1], @XMM[$i-1] vst1.64 {@XMM[$i-1]}, [r0,:128]! vswp `&Dhi("@T[0]")`,`&Dlo("@T[0]")` vshr.s64 @T[1], @XMM[$i], #63 veor @XMM[$i], @XMM[$i], @T[0] vand @T[1], @T[1], $twmask ___ @T=reverse(@T); $code.=<<___ if ($i>=10); vld1.8 {@XMM[$i-10]}, [$inp]! ___ $code.=<<___ if ($i>=11); veor @XMM[$i-11], @XMM[$i-11], @XMM[$i-3] ___ } $code.=<<___; vadd.u64 @XMM[8], @XMM[15], @XMM[15] vst1.64 {@XMM[15]}, [r0,:128]! vswp `&Dhi("@T[0]")`,`&Dlo("@T[0]")` veor @XMM[8], @XMM[8], @T[0] vst1.64 {@XMM[8]}, [r0,:128] @ next round tweak vld1.8 {@XMM[6]-@XMM[7]}, [$inp]! veor @XMM[5], @XMM[5], @XMM[13] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[6], @XMM[6], @XMM[14] mov r5, $rounds @ pass rounds veor @XMM[7], @XMM[7], @XMM[15] mov r0, sp bl _bsaes_decrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]-@XMM[13]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[6], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[4], @XMM[11] vld1.64 {@XMM[14]-@XMM[15]}, [r0,:128]! veor @XMM[10], @XMM[2], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! veor @XMM[11], @XMM[7], @XMM[13] veor @XMM[12], @XMM[3], @XMM[14] vst1.8 {@XMM[10]-@XMM[11]}, [$out]! veor @XMM[13], @XMM[5], @XMM[15] vst1.8 {@XMM[12]-@XMM[13]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak subs $len, #0x80 bpl .Lxts_dec_loop .Lxts_dec_short: adds $len, #0x70 bmi .Lxts_dec_done vldmia $magic, {$twmask} @ load XTS magic vshr.s64 @T[0], @XMM[8], #63 mov r0, sp vand @T[0], @T[0], $twmask ___ for($i=9;$i<16;$i++) { $code.=<<___; vadd.u64 @XMM[$i], @XMM[$i-1], @XMM[$i-1] vst1.64 {@XMM[$i-1]}, [r0,:128]! vswp `&Dhi("@T[0]")`,`&Dlo("@T[0]")` vshr.s64 @T[1], @XMM[$i], #63 veor @XMM[$i], @XMM[$i], @T[0] vand @T[1], @T[1], $twmask ___ @T=reverse(@T); $code.=<<___ if ($i>=10); vld1.8 {@XMM[$i-10]}, [$inp]! subs $len, #0x10 bmi .Lxts_dec_`$i-9` ___ $code.=<<___ if ($i>=11); veor @XMM[$i-11], @XMM[$i-11], @XMM[$i-3] ___ } $code.=<<___; sub $len, #0x10 vst1.64 {@XMM[15]}, [r0,:128] @ next round tweak vld1.8 {@XMM[6]}, [$inp]! veor @XMM[5], @XMM[5], @XMM[13] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[6], @XMM[6], @XMM[14] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_decrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]-@XMM[13]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[6], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[4], @XMM[11] vld1.64 {@XMM[14]}, [r0,:128]! veor @XMM[10], @XMM[2], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! veor @XMM[11], @XMM[7], @XMM[13] veor @XMM[12], @XMM[3], @XMM[14] vst1.8 {@XMM[10]-@XMM[11]}, [$out]! vst1.8 {@XMM[12]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_dec_done .align 4 .Lxts_dec_6: vst1.64 {@XMM[14]}, [r0,:128] @ next round tweak veor @XMM[4], @XMM[4], @XMM[12] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[5], @XMM[5], @XMM[13] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_decrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]-@XMM[13]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[6], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[4], @XMM[11] veor @XMM[10], @XMM[2], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! veor @XMM[11], @XMM[7], @XMM[13] vst1.8 {@XMM[10]-@XMM[11]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_dec_done .align 4 .Lxts_dec_5: veor @XMM[3], @XMM[3], @XMM[11] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[4], @XMM[4], @XMM[12] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_decrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] vld1.64 {@XMM[12]}, [r0,:128]! veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[6], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[4], @XMM[11] veor @XMM[10], @XMM[2], @XMM[12] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! vst1.8 {@XMM[10]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_dec_done .align 4 .Lxts_dec_4: veor @XMM[2], @XMM[2], @XMM[10] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[3], @XMM[3], @XMM[11] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_decrypt8 vld1.64 {@XMM[ 8]-@XMM[ 9]}, [r0,:128]! vld1.64 {@XMM[10]-@XMM[11]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[6], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! veor @XMM[9], @XMM[4], @XMM[11] vst1.8 {@XMM[8]-@XMM[9]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_dec_done .align 4 .Lxts_dec_3: veor @XMM[1], @XMM[1], @XMM[9] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[2], @XMM[2], @XMM[10] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_decrypt8 vld1.64 {@XMM[8]-@XMM[9]}, [r0,:128]! vld1.64 {@XMM[10]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] veor @XMM[1], @XMM[1], @XMM[ 9] veor @XMM[8], @XMM[6], @XMM[10] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! vst1.8 {@XMM[8]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_dec_done .align 4 .Lxts_dec_2: veor @XMM[0], @XMM[0], @XMM[8] #ifndef BSAES_ASM_EXTENDED_KEY add r4, sp, #0x90 @ pass key schedule #else add r4, $key, #248 @ pass key schedule #endif veor @XMM[1], @XMM[1], @XMM[9] mov r5, $rounds @ pass rounds mov r0, sp bl _bsaes_decrypt8 vld1.64 {@XMM[8]-@XMM[9]}, [r0,:128]! veor @XMM[0], @XMM[0], @XMM[ 8] veor @XMM[1], @XMM[1], @XMM[ 9] vst1.8 {@XMM[0]-@XMM[1]}, [$out]! vld1.64 {@XMM[8]}, [r0,:128] @ next round tweak b .Lxts_dec_done .align 4 .Lxts_dec_1: mov r0, sp veor @XMM[0], @XMM[0], @XMM[8] mov r1, sp vst1.8 {@XMM[0]}, [sp,:128] mov r5, $magic @ preserve magic mov r2, $key mov r4, $fp @ preserve fp bl AES_decrypt vld1.8 {@XMM[0]}, [sp,:128] veor @XMM[0], @XMM[0], @XMM[8] vst1.8 {@XMM[0]}, [$out]! mov $fp, r4 mov $magic, r5 vmov @XMM[8], @XMM[9] @ next round tweak .Lxts_dec_done: #ifndef XTS_CHAIN_TWEAK adds $len, #0x10 beq .Lxts_dec_ret @ calculate one round of extra tweak for the stolen ciphertext vldmia $magic, {$twmask} vshr.s64 @XMM[6], @XMM[8], #63 vand @XMM[6], @XMM[6], $twmask vadd.u64 @XMM[9], @XMM[8], @XMM[8] vswp `&Dhi("@XMM[6]")`,`&Dlo("@XMM[6]")` veor @XMM[9], @XMM[9], @XMM[6] @ perform the final decryption with the last tweak value vld1.8 {@XMM[0]}, [$inp]! mov r0, sp veor @XMM[0], @XMM[0], @XMM[9] mov r1, sp vst1.8 {@XMM[0]}, [sp,:128] mov r2, $key mov r4, $fp @ preserve fp bl AES_decrypt vld1.8 {@XMM[0]}, [sp,:128] veor @XMM[0], @XMM[0], @XMM[9] vst1.8 {@XMM[0]}, [$out] mov r6, $out .Lxts_dec_steal: ldrb r1, [$out] ldrb r0, [$inp], #1 strb r1, [$out, #0x10] strb r0, [$out], #1 subs $len, #1 bhi .Lxts_dec_steal vld1.8 {@XMM[0]}, [r6] mov r0, sp veor @XMM[0], @XMM[8] mov r1, sp vst1.8 {@XMM[0]}, [sp,:128] mov r2, $key bl AES_decrypt vld1.8 {@XMM[0]}, [sp,:128] veor @XMM[0], @XMM[0], @XMM[8] vst1.8 {@XMM[0]}, [r6] mov $fp, r4 #endif .Lxts_dec_ret: bic r0, $fp, #0xf vmov.i32 q0, #0 vmov.i32 q1, #0 #ifdef XTS_CHAIN_TWEAK ldr r1, [$fp, #0x20+VFP_ABI_FRAME] @ chain tweak #endif .Lxts_dec_bzero: @ wipe key schedule [if any] vstmia sp!, {q0-q1} cmp sp, r0 bne .Lxts_dec_bzero mov sp, $fp #ifdef XTS_CHAIN_TWEAK vst1.8 {@XMM[8]}, [r1] #endif VFP_ABI_POP ldmia sp!, {r4-r10, pc} @ return .size bsaes_xts_decrypt,.-bsaes_xts_decrypt ___ } $code.=<<___; #endif ___ $code =~ s/\`([^\`]*)\`/eval($1)/gem; open SELF,$0; while() { next if (/^#!/); last if (!s/^#/@/ and !/^$/); print; } close SELF; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/vpaes-armv8.pl000077500000000000000000001272001364063235100207310ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ###################################################################### ## Constant-time SSSE3 AES core implementation. ## version 0.1 ## ## By Mike Hamburg (Stanford University), 2009 ## Public domain. ## ## For details see http://shiftleft.org/papers/vector_aes/ and ## http://crypto.stanford.edu/vpaes/. ## ###################################################################### # ARMv8 NEON adaptation by # # Reason for undertaken effort is that there is at least one popular # SoC based on Cortex-A53 that doesn't have crypto extensions. # # CBC enc ECB enc/dec(*) [bit-sliced enc/dec] # Cortex-A53 21.5 18.1/20.6 [17.5/19.8 ] # Cortex-A57 36.0(**) 20.4/24.9(**) [14.4/16.6 ] # X-Gene 45.9(**) 45.8/57.7(**) [33.1/37.6(**) ] # Denver(***) 16.6(**) 15.1/17.8(**) [8.80/9.93 ] # Apple A7(***) 22.7(**) 10.9/14.3 [8.45/10.0 ] # Mongoose(***) 26.3(**) 21.0/25.0(**) [13.3/16.8 ] # # (*) ECB denotes approximate result for parallelizable modes # such as CBC decrypt, CTR, etc.; # (**) these results are worse than scalar compiler-generated # code, but it's constant-time and therefore preferred; # (***) presented for reference/comparison purposes; $flavour = shift; while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; $code.=<<___; .text .type _vpaes_consts,%object .align 7 // totally strategic alignment _vpaes_consts: .Lk_mc_forward: // mc_forward .quad 0x0407060500030201, 0x0C0F0E0D080B0A09 .quad 0x080B0A0904070605, 0x000302010C0F0E0D .quad 0x0C0F0E0D080B0A09, 0x0407060500030201 .quad 0x000302010C0F0E0D, 0x080B0A0904070605 .Lk_mc_backward:// mc_backward .quad 0x0605040702010003, 0x0E0D0C0F0A09080B .quad 0x020100030E0D0C0F, 0x0A09080B06050407 .quad 0x0E0D0C0F0A09080B, 0x0605040702010003 .quad 0x0A09080B06050407, 0x020100030E0D0C0F .Lk_sr: // sr .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908 .quad 0x030E09040F0A0500, 0x0B06010C07020D08 .quad 0x0F060D040B020900, 0x070E050C030A0108 .quad 0x0B0E0104070A0D00, 0x0306090C0F020508 // // "Hot" constants // .Lk_inv: // inv, inva .quad 0x0E05060F0D080180, 0x040703090A0B0C02 .quad 0x01040A060F0B0780, 0x030D0E0C02050809 .Lk_ipt: // input transform (lo, hi) .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808 .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81 .Lk_sbo: // sbou, sbot .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878 .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA .Lk_sb1: // sb1u, sb1t .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544 .Lk_sb2: // sb2u, sb2t .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD // // Decryption stuff // .Lk_dipt: // decryption input transform .quad 0x0F505B040B545F00, 0x154A411E114E451A .quad 0x86E383E660056500, 0x12771772F491F194 .Lk_dsbo: // decryption sbox final output .quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D .quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C .Lk_dsb9: // decryption sbox output *9*u, *9*t .quad 0x851C03539A86D600, 0xCAD51F504F994CC9 .quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565 .Lk_dsbd: // decryption sbox output *D*u, *D*t .quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439 .quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3 .Lk_dsbb: // decryption sbox output *B*u, *B*t .quad 0xD022649296B44200, 0x602646F6B0F2D404 .quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B .Lk_dsbe: // decryption sbox output *E*u, *E*t .quad 0x46F2929626D4D000, 0x2242600464B4F6B0 .quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32 // // Key schedule constants // .Lk_dksd: // decryption key schedule: invskew x*D .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9 .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E .Lk_dksb: // decryption key schedule: invskew x*B .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99 .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8 .Lk_dkse: // decryption key schedule: invskew x*E + 0x63 .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086 .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487 .Lk_dks9: // decryption key schedule: invskew x*9 .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE .Lk_rcon: // rcon .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81 .Lk_opt: // output transform .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808 .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0 .Lk_deskew: // deskew tables: inverts the sbox's "skew" .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77 .asciz "Vector Permutation AES for ARMv8, Mike Hamburg (Stanford University)" .size _vpaes_consts,.-_vpaes_consts .align 6 ___ { my ($inp,$out,$key) = map("x$_",(0..2)); my ($invlo,$invhi,$iptlo,$ipthi,$sbou,$sbot) = map("v$_.16b",(18..23)); my ($sb1u,$sb1t,$sb2u,$sb2t) = map("v$_.16b",(24..27)); my ($sb9u,$sb9t,$sbdu,$sbdt,$sbbu,$sbbt,$sbeu,$sbet)=map("v$_.16b",(24..31)); $code.=<<___; ## ## _aes_preheat ## ## Fills register %r10 -> .aes_consts (so you can -fPIC) ## and %xmm9-%xmm15 as specified below. ## .type _vpaes_encrypt_preheat,%function .align 4 _vpaes_encrypt_preheat: adr x10, .Lk_inv movi v17.16b, #0x0f ld1 {v18.2d-v19.2d}, [x10],#32 // .Lk_inv ld1 {v20.2d-v23.2d}, [x10],#64 // .Lk_ipt, .Lk_sbo ld1 {v24.2d-v27.2d}, [x10] // .Lk_sb1, .Lk_sb2 ret .size _vpaes_encrypt_preheat,.-_vpaes_encrypt_preheat ## ## _aes_encrypt_core ## ## AES-encrypt %xmm0. ## ## Inputs: ## %xmm0 = input ## %xmm9-%xmm15 as in _vpaes_preheat ## (%rdx) = scheduled keys ## ## Output in %xmm0 ## Clobbers %xmm1-%xmm5, %r9, %r10, %r11, %rax ## Preserves %xmm6 - %xmm8 so you get some local vectors ## ## .type _vpaes_encrypt_core,%function .align 4 _vpaes_encrypt_core: mov x9, $key ldr w8, [$key,#240] // pull rounds adr x11, .Lk_mc_forward+16 // vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo ld1 {v16.2d}, [x9], #16 // vmovdqu (%r9), %xmm5 # round0 key and v1.16b, v7.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v7.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 tbl v1.16b, {$iptlo}, v1.16b // vpshufb %xmm1, %xmm2, %xmm1 // vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi tbl v2.16b, {$ipthi}, v0.16b // vpshufb %xmm0, %xmm3, %xmm2 eor v0.16b, v1.16b, v16.16b // vpxor %xmm5, %xmm1, %xmm0 eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 b .Lenc_entry .align 4 .Lenc_loop: // middle of middle round add x10, x11, #0x40 tbl v4.16b, {$sb1t}, v2.16b // vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u ld1 {v1.2d}, [x11], #16 // vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] tbl v0.16b, {$sb1u}, v3.16b // vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k tbl v5.16b, {$sb2t}, v2.16b // vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A tbl v2.16b, {$sb2u}, v3.16b // vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t ld1 {v4.2d}, [x10] // vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] tbl v3.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm3 # 0 = B eor v2.16b, v2.16b, v5.16b // vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A tbl v0.16b, {v0.16b}, v4.16b // vpshufb %xmm4, %xmm0, %xmm0 # 3 = D eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B tbl v4.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C eor v0.16b, v0.16b, v3.16b // vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D and x11, x11, #~(1<<6) // and \$0x30, %r11 # ... mod 4 eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D sub w8, w8, #1 // nr-- .Lenc_entry: // top of round and v1.16b, v0.16b, v17.16b // vpand %xmm0, %xmm9, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i tbl v5.16b, {$invhi}, v1.16b // vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j tbl v3.16b, {$invlo}, v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i tbl v4.16b, {$invlo}, v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j eor v3.16b, v3.16b, v5.16b // vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k eor v4.16b, v4.16b, v5.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k tbl v2.16b, {$invlo}, v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak tbl v3.16b, {$invlo}, v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm5 cbnz w8, .Lenc_loop // middle of last round add x10, x11, #0x80 // vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo // vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 tbl v4.16b, {$sbou}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou ld1 {v1.2d}, [x10] // vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] tbl v0.16b, {$sbot}, v3.16b // vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A tbl v0.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm0 ret .size _vpaes_encrypt_core,.-_vpaes_encrypt_core .globl vpaes_encrypt .type vpaes_encrypt,%function .align 4 vpaes_encrypt: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ld1 {v7.16b}, [$inp] bl _vpaes_encrypt_preheat bl _vpaes_encrypt_core st1 {v0.16b}, [$out] ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size vpaes_encrypt,.-vpaes_encrypt .type _vpaes_encrypt_2x,%function .align 4 _vpaes_encrypt_2x: mov x9, $key ldr w8, [$key,#240] // pull rounds adr x11, .Lk_mc_forward+16 // vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo ld1 {v16.2d}, [x9], #16 // vmovdqu (%r9), %xmm5 # round0 key and v1.16b, v14.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v14.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 and v9.16b, v15.16b, v17.16b ushr v8.16b, v15.16b, #4 tbl v1.16b, {$iptlo}, v1.16b // vpshufb %xmm1, %xmm2, %xmm1 tbl v9.16b, {$iptlo}, v9.16b // vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi tbl v2.16b, {$ipthi}, v0.16b // vpshufb %xmm0, %xmm3, %xmm2 tbl v10.16b, {$ipthi}, v8.16b eor v0.16b, v1.16b, v16.16b // vpxor %xmm5, %xmm1, %xmm0 eor v8.16b, v9.16b, v16.16b eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 eor v8.16b, v8.16b, v10.16b b .Lenc_2x_entry .align 4 .Lenc_2x_loop: // middle of middle round add x10, x11, #0x40 tbl v4.16b, {$sb1t}, v2.16b // vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u tbl v12.16b, {$sb1t}, v10.16b ld1 {v1.2d}, [x11], #16 // vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] tbl v0.16b, {$sb1u}, v3.16b // vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t tbl v8.16b, {$sb1u}, v11.16b eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k eor v12.16b, v12.16b, v16.16b tbl v5.16b, {$sb2t}, v2.16b // vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u tbl v13.16b, {$sb2t}, v10.16b eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A eor v8.16b, v8.16b, v12.16b tbl v2.16b, {$sb2u}, v3.16b // vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t tbl v10.16b, {$sb2u}, v11.16b ld1 {v4.2d}, [x10] // vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] tbl v3.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm3 # 0 = B tbl v11.16b, {v8.16b}, v1.16b eor v2.16b, v2.16b, v5.16b // vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A eor v10.16b, v10.16b, v13.16b tbl v0.16b, {v0.16b}, v4.16b // vpshufb %xmm4, %xmm0, %xmm0 # 3 = D tbl v8.16b, {v8.16b}, v4.16b eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B eor v11.16b, v11.16b, v10.16b tbl v4.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C tbl v12.16b, {v11.16b},v1.16b eor v0.16b, v0.16b, v3.16b // vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D eor v8.16b, v8.16b, v11.16b and x11, x11, #~(1<<6) // and \$0x30, %r11 # ... mod 4 eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D eor v8.16b, v8.16b, v12.16b sub w8, w8, #1 // nr-- .Lenc_2x_entry: // top of round and v1.16b, v0.16b, v17.16b // vpand %xmm0, %xmm9, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i and v9.16b, v8.16b, v17.16b ushr v8.16b, v8.16b, #4 tbl v5.16b, {$invhi},v1.16b // vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k tbl v13.16b, {$invhi},v9.16b eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j eor v9.16b, v9.16b, v8.16b tbl v3.16b, {$invlo},v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i tbl v11.16b, {$invlo},v8.16b tbl v4.16b, {$invlo},v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j tbl v12.16b, {$invlo},v9.16b eor v3.16b, v3.16b, v5.16b // vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k eor v11.16b, v11.16b, v13.16b eor v4.16b, v4.16b, v5.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k eor v12.16b, v12.16b, v13.16b tbl v2.16b, {$invlo},v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak tbl v10.16b, {$invlo},v11.16b tbl v3.16b, {$invlo},v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak tbl v11.16b, {$invlo},v12.16b eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io eor v10.16b, v10.16b, v9.16b eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo eor v11.16b, v11.16b, v8.16b ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm5 cbnz w8, .Lenc_2x_loop // middle of last round add x10, x11, #0x80 // vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo // vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 tbl v4.16b, {$sbou}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou tbl v12.16b, {$sbou}, v10.16b ld1 {v1.2d}, [x10] // vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] tbl v0.16b, {$sbot}, v3.16b // vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t tbl v8.16b, {$sbot}, v11.16b eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k eor v12.16b, v12.16b, v16.16b eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A eor v8.16b, v8.16b, v12.16b tbl v0.16b, {v0.16b},v1.16b // vpshufb %xmm1, %xmm0, %xmm0 tbl v1.16b, {v8.16b},v1.16b ret .size _vpaes_encrypt_2x,.-_vpaes_encrypt_2x .type _vpaes_decrypt_preheat,%function .align 4 _vpaes_decrypt_preheat: adr x10, .Lk_inv movi v17.16b, #0x0f adr x11, .Lk_dipt ld1 {v18.2d-v19.2d}, [x10],#32 // .Lk_inv ld1 {v20.2d-v23.2d}, [x11],#64 // .Lk_dipt, .Lk_dsbo ld1 {v24.2d-v27.2d}, [x11],#64 // .Lk_dsb9, .Lk_dsbd ld1 {v28.2d-v31.2d}, [x11] // .Lk_dsbb, .Lk_dsbe ret .size _vpaes_decrypt_preheat,.-_vpaes_decrypt_preheat ## ## Decryption core ## ## Same API as encryption core. ## .type _vpaes_decrypt_core,%function .align 4 _vpaes_decrypt_core: mov x9, $key ldr w8, [$key,#240] // pull rounds // vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo lsl x11, x8, #4 // mov %rax, %r11; shl \$4, %r11 eor x11, x11, #0x30 // xor \$0x30, %r11 adr x10, .Lk_sr and x11, x11, #0x30 // and \$0x30, %r11 add x11, x11, x10 adr x10, .Lk_mc_forward+48 ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm4 # round0 key and v1.16b, v7.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v7.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 tbl v2.16b, {$iptlo}, v1.16b // vpshufb %xmm1, %xmm2, %xmm2 ld1 {v5.2d}, [x10] // vmovdqa .Lk_mc_forward+48(%rip), %xmm5 // vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi tbl v0.16b, {$ipthi}, v0.16b // vpshufb %xmm0, %xmm1, %xmm0 eor v2.16b, v2.16b, v16.16b // vpxor %xmm4, %xmm2, %xmm2 eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 b .Ldec_entry .align 4 .Ldec_loop: // // Inverse mix columns // // vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u // vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t tbl v4.16b, {$sb9u}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u tbl v1.16b, {$sb9t}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t eor v0.16b, v4.16b, v16.16b // vpxor %xmm4, %xmm0, %xmm0 // vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch // vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt tbl v4.16b, {$sbdu}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu tbl v0.16b, {v0.16b}, v5.16b // vpshufb %xmm5, %xmm0, %xmm0 # MC ch tbl v1.16b, {$sbdt}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 4 = ch // vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch // vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt tbl v4.16b, {$sbbu}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu tbl v0.16b, {v0.16b}, v5.16b // vpshufb %xmm5, %xmm0, %xmm0 # MC ch tbl v1.16b, {$sbbt}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 4 = ch // vmovdqa 0x40(%r10), %xmm4 # 4 : sbeu eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch // vmovdqa 0x50(%r10), %xmm1 # 0 : sbet tbl v4.16b, {$sbeu}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu tbl v0.16b, {v0.16b}, v5.16b // vpshufb %xmm5, %xmm0, %xmm0 # MC ch tbl v1.16b, {$sbet}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 4 = ch ext v5.16b, v5.16b, v5.16b, #12 // vpalignr \$12, %xmm5, %xmm5, %xmm5 eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch sub w8, w8, #1 // sub \$1,%rax # nr-- .Ldec_entry: // top of round and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i tbl v2.16b, {$invhi}, v1.16b // vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j tbl v3.16b, {$invlo}, v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i tbl v4.16b, {$invlo}, v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k eor v4.16b, v4.16b, v2.16b // vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k tbl v2.16b, {$invlo}, v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak tbl v3.16b, {$invlo}, v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm0 cbnz w8, .Ldec_loop // middle of last round // vmovdqa 0x60(%r10), %xmm4 # 3 : sbou tbl v4.16b, {$sbou}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou // vmovdqa 0x70(%r10), %xmm1 # 0 : sbot ld1 {v2.2d}, [x11] // vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 tbl v1.16b, {$sbot}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t eor v4.16b, v4.16b, v16.16b // vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k eor v0.16b, v1.16b, v4.16b // vpxor %xmm4, %xmm1, %xmm0 # 0 = A tbl v0.16b, {v0.16b}, v2.16b // vpshufb %xmm2, %xmm0, %xmm0 ret .size _vpaes_decrypt_core,.-_vpaes_decrypt_core .globl vpaes_decrypt .type vpaes_decrypt,%function .align 4 vpaes_decrypt: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ld1 {v7.16b}, [$inp] bl _vpaes_decrypt_preheat bl _vpaes_decrypt_core st1 {v0.16b}, [$out] ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size vpaes_decrypt,.-vpaes_decrypt // v14-v15 input, v0-v1 output .type _vpaes_decrypt_2x,%function .align 4 _vpaes_decrypt_2x: mov x9, $key ldr w8, [$key,#240] // pull rounds // vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo lsl x11, x8, #4 // mov %rax, %r11; shl \$4, %r11 eor x11, x11, #0x30 // xor \$0x30, %r11 adr x10, .Lk_sr and x11, x11, #0x30 // and \$0x30, %r11 add x11, x11, x10 adr x10, .Lk_mc_forward+48 ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm4 # round0 key and v1.16b, v14.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v14.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 and v9.16b, v15.16b, v17.16b ushr v8.16b, v15.16b, #4 tbl v2.16b, {$iptlo},v1.16b // vpshufb %xmm1, %xmm2, %xmm2 tbl v10.16b, {$iptlo},v9.16b ld1 {v5.2d}, [x10] // vmovdqa .Lk_mc_forward+48(%rip), %xmm5 // vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi tbl v0.16b, {$ipthi},v0.16b // vpshufb %xmm0, %xmm1, %xmm0 tbl v8.16b, {$ipthi},v8.16b eor v2.16b, v2.16b, v16.16b // vpxor %xmm4, %xmm2, %xmm2 eor v10.16b, v10.16b, v16.16b eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 eor v8.16b, v8.16b, v10.16b b .Ldec_2x_entry .align 4 .Ldec_2x_loop: // // Inverse mix columns // // vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u // vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t tbl v4.16b, {$sb9u}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u tbl v12.16b, {$sb9u}, v10.16b tbl v1.16b, {$sb9t}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t tbl v9.16b, {$sb9t}, v11.16b eor v0.16b, v4.16b, v16.16b // vpxor %xmm4, %xmm0, %xmm0 eor v8.16b, v12.16b, v16.16b // vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch eor v8.16b, v8.16b, v9.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch // vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt tbl v4.16b, {$sbdu}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu tbl v12.16b, {$sbdu}, v10.16b tbl v0.16b, {v0.16b},v5.16b // vpshufb %xmm5, %xmm0, %xmm0 # MC ch tbl v8.16b, {v8.16b},v5.16b tbl v1.16b, {$sbdt}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt tbl v9.16b, {$sbdt}, v11.16b eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 4 = ch eor v8.16b, v8.16b, v12.16b // vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch eor v8.16b, v8.16b, v9.16b // vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt tbl v4.16b, {$sbbu}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu tbl v12.16b, {$sbbu}, v10.16b tbl v0.16b, {v0.16b},v5.16b // vpshufb %xmm5, %xmm0, %xmm0 # MC ch tbl v8.16b, {v8.16b},v5.16b tbl v1.16b, {$sbbt}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt tbl v9.16b, {$sbbt}, v11.16b eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 4 = ch eor v8.16b, v8.16b, v12.16b // vmovdqa 0x40(%r10), %xmm4 # 4 : sbeu eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch eor v8.16b, v8.16b, v9.16b // vmovdqa 0x50(%r10), %xmm1 # 0 : sbet tbl v4.16b, {$sbeu}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu tbl v12.16b, {$sbeu}, v10.16b tbl v0.16b, {v0.16b},v5.16b // vpshufb %xmm5, %xmm0, %xmm0 # MC ch tbl v8.16b, {v8.16b},v5.16b tbl v1.16b, {$sbet}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet tbl v9.16b, {$sbet}, v11.16b eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 4 = ch eor v8.16b, v8.16b, v12.16b ext v5.16b, v5.16b, v5.16b, #12 // vpalignr \$12, %xmm5, %xmm5, %xmm5 eor v0.16b, v0.16b, v1.16b // vpxor %xmm1, %xmm0, %xmm0 # 0 = ch eor v8.16b, v8.16b, v9.16b sub w8, w8, #1 // sub \$1,%rax # nr-- .Ldec_2x_entry: // top of round and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i and v9.16b, v8.16b, v17.16b ushr v8.16b, v8.16b, #4 tbl v2.16b, {$invhi},v1.16b // vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k tbl v10.16b, {$invhi},v9.16b eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j eor v9.16b, v9.16b, v8.16b tbl v3.16b, {$invlo},v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i tbl v11.16b, {$invlo},v8.16b tbl v4.16b, {$invlo},v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j tbl v12.16b, {$invlo},v9.16b eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k eor v11.16b, v11.16b, v10.16b eor v4.16b, v4.16b, v2.16b // vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k eor v12.16b, v12.16b, v10.16b tbl v2.16b, {$invlo},v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak tbl v10.16b, {$invlo},v11.16b tbl v3.16b, {$invlo},v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak tbl v11.16b, {$invlo},v12.16b eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io eor v10.16b, v10.16b, v9.16b eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo eor v11.16b, v11.16b, v8.16b ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm0 cbnz w8, .Ldec_2x_loop // middle of last round // vmovdqa 0x60(%r10), %xmm4 # 3 : sbou tbl v4.16b, {$sbou}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou tbl v12.16b, {$sbou}, v10.16b // vmovdqa 0x70(%r10), %xmm1 # 0 : sbot tbl v1.16b, {$sbot}, v3.16b // vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t tbl v9.16b, {$sbot}, v11.16b ld1 {v2.2d}, [x11] // vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 eor v4.16b, v4.16b, v16.16b // vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k eor v12.16b, v12.16b, v16.16b eor v0.16b, v1.16b, v4.16b // vpxor %xmm4, %xmm1, %xmm0 # 0 = A eor v8.16b, v9.16b, v12.16b tbl v0.16b, {v0.16b},v2.16b // vpshufb %xmm2, %xmm0, %xmm0 tbl v1.16b, {v8.16b},v2.16b ret .size _vpaes_decrypt_2x,.-_vpaes_decrypt_2x ___ } { my ($inp,$bits,$out,$dir)=("x0","w1","x2","w3"); my ($invlo,$invhi,$iptlo,$ipthi,$rcon) = map("v$_.16b",(18..21,8)); $code.=<<___; ######################################################## ## ## ## AES key schedule ## ## ## ######################################################## .type _vpaes_key_preheat,%function .align 4 _vpaes_key_preheat: adr x10, .Lk_inv movi v16.16b, #0x5b // .Lk_s63 adr x11, .Lk_sb1 movi v17.16b, #0x0f // .Lk_s0F ld1 {v18.2d-v21.2d}, [x10] // .Lk_inv, .Lk_ipt adr x10, .Lk_dksd ld1 {v22.2d-v23.2d}, [x11] // .Lk_sb1 adr x11, .Lk_mc_forward ld1 {v24.2d-v27.2d}, [x10],#64 // .Lk_dksd, .Lk_dksb ld1 {v28.2d-v31.2d}, [x10],#64 // .Lk_dkse, .Lk_dks9 ld1 {v8.2d}, [x10] // .Lk_rcon ld1 {v9.2d}, [x11] // .Lk_mc_forward[0] ret .size _vpaes_key_preheat,.-_vpaes_key_preheat .type _vpaes_schedule_core,%function .align 4 _vpaes_schedule_core: .inst 0xd503233f // paciasp stp x29, x30, [sp,#-16]! add x29,sp,#0 bl _vpaes_key_preheat // load the tables ld1 {v0.16b}, [$inp],#16 // vmovdqu (%rdi), %xmm0 # load key (unaligned) // input transform mov v3.16b, v0.16b // vmovdqa %xmm0, %xmm3 bl _vpaes_schedule_transform mov v7.16b, v0.16b // vmovdqa %xmm0, %xmm7 adr x10, .Lk_sr // lea .Lk_sr(%rip),%r10 add x8, x8, x10 cbnz $dir, .Lschedule_am_decrypting // encrypting, output zeroth round key after transform st1 {v0.2d}, [$out] // vmovdqu %xmm0, (%rdx) b .Lschedule_go .Lschedule_am_decrypting: // decrypting, output zeroth round key after shiftrows ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10), %xmm1 tbl v3.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm3 st1 {v3.2d}, [$out] // vmovdqu %xmm3, (%rdx) eor x8, x8, #0x30 // xor \$0x30, %r8 .Lschedule_go: cmp $bits, #192 // cmp \$192, %esi b.hi .Lschedule_256 b.eq .Lschedule_192 // 128: fall though ## ## .schedule_128 ## ## 128-bit specific part of key schedule. ## ## This schedule is really simple, because all its parts ## are accomplished by the subroutines. ## .Lschedule_128: mov $inp, #10 // mov \$10, %esi .Loop_schedule_128: sub $inp, $inp, #1 // dec %esi bl _vpaes_schedule_round cbz $inp, .Lschedule_mangle_last bl _vpaes_schedule_mangle // write output b .Loop_schedule_128 ## ## .aes_schedule_192 ## ## 192-bit specific part of key schedule. ## ## The main body of this schedule is the same as the 128-bit ## schedule, but with more smearing. The long, high side is ## stored in %xmm7 as before, and the short, low side is in ## the high bits of %xmm6. ## ## This schedule is somewhat nastier, however, because each ## round produces 192 bits of key material, or 1.5 round keys. ## Therefore, on each cycle we do 2 rounds and produce 3 round ## keys. ## .align 4 .Lschedule_192: sub $inp, $inp, #8 ld1 {v0.16b}, [$inp] // vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) bl _vpaes_schedule_transform // input transform mov v6.16b, v0.16b // vmovdqa %xmm0, %xmm6 # save short part eor v4.16b, v4.16b, v4.16b // vpxor %xmm4, %xmm4, %xmm4 # clear 4 ins v6.d[0], v4.d[0] // vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros mov $inp, #4 // mov \$4, %esi .Loop_schedule_192: sub $inp, $inp, #1 // dec %esi bl _vpaes_schedule_round ext v0.16b, v6.16b, v0.16b, #8 // vpalignr \$8,%xmm6,%xmm0,%xmm0 bl _vpaes_schedule_mangle // save key n bl _vpaes_schedule_192_smear bl _vpaes_schedule_mangle // save key n+1 bl _vpaes_schedule_round cbz $inp, .Lschedule_mangle_last bl _vpaes_schedule_mangle // save key n+2 bl _vpaes_schedule_192_smear b .Loop_schedule_192 ## ## .aes_schedule_256 ## ## 256-bit specific part of key schedule. ## ## The structure here is very similar to the 128-bit ## schedule, but with an additional "low side" in ## %xmm6. The low side's rounds are the same as the ## high side's, except no rcon and no rotation. ## .align 4 .Lschedule_256: ld1 {v0.16b}, [$inp] // vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) bl _vpaes_schedule_transform // input transform mov $inp, #7 // mov \$7, %esi .Loop_schedule_256: sub $inp, $inp, #1 // dec %esi bl _vpaes_schedule_mangle // output low result mov v6.16b, v0.16b // vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6 // high round bl _vpaes_schedule_round cbz $inp, .Lschedule_mangle_last bl _vpaes_schedule_mangle // low round. swap xmm7 and xmm6 dup v0.4s, v0.s[3] // vpshufd \$0xFF, %xmm0, %xmm0 movi v4.16b, #0 mov v5.16b, v7.16b // vmovdqa %xmm7, %xmm5 mov v7.16b, v6.16b // vmovdqa %xmm6, %xmm7 bl _vpaes_schedule_low_round mov v7.16b, v5.16b // vmovdqa %xmm5, %xmm7 b .Loop_schedule_256 ## ## .aes_schedule_mangle_last ## ## Mangler for last round of key schedule ## Mangles %xmm0 ## when encrypting, outputs out(%xmm0) ^ 63 ## when decrypting, outputs unskew(%xmm0) ## ## Always called right before return... jumps to cleanup and exits ## .align 4 .Lschedule_mangle_last: // schedule last round key from xmm0 adr x11, .Lk_deskew // lea .Lk_deskew(%rip),%r11 # prepare to deskew cbnz $dir, .Lschedule_mangle_last_dec // encrypting ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10),%xmm1 adr x11, .Lk_opt // lea .Lk_opt(%rip), %r11 # prepare to output transform add $out, $out, #32 // add \$32, %rdx tbl v0.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm0 # output permute .Lschedule_mangle_last_dec: ld1 {v20.2d-v21.2d}, [x11] // reload constants sub $out, $out, #16 // add \$-16, %rdx eor v0.16b, v0.16b, v16.16b // vpxor .Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform // output transform st1 {v0.2d}, [$out] // vmovdqu %xmm0, (%rdx) # save last key // cleanup eor v0.16b, v0.16b, v0.16b // vpxor %xmm0, %xmm0, %xmm0 eor v1.16b, v1.16b, v1.16b // vpxor %xmm1, %xmm1, %xmm1 eor v2.16b, v2.16b, v2.16b // vpxor %xmm2, %xmm2, %xmm2 eor v3.16b, v3.16b, v3.16b // vpxor %xmm3, %xmm3, %xmm3 eor v4.16b, v4.16b, v4.16b // vpxor %xmm4, %xmm4, %xmm4 eor v5.16b, v5.16b, v5.16b // vpxor %xmm5, %xmm5, %xmm5 eor v6.16b, v6.16b, v6.16b // vpxor %xmm6, %xmm6, %xmm6 eor v7.16b, v7.16b, v7.16b // vpxor %xmm7, %xmm7, %xmm7 ldp x29, x30, [sp],#16 .inst 0xd50323bf // autiasp ret .size _vpaes_schedule_core,.-_vpaes_schedule_core ## ## .aes_schedule_192_smear ## ## Smear the short, low side in the 192-bit key schedule. ## ## Inputs: ## %xmm7: high side, b a x y ## %xmm6: low side, d c 0 0 ## %xmm13: 0 ## ## Outputs: ## %xmm6: b+c+d b+c 0 0 ## %xmm0: b+c+d b+c b a ## .type _vpaes_schedule_192_smear,%function .align 4 _vpaes_schedule_192_smear: movi v1.16b, #0 dup v0.4s, v7.s[3] ins v1.s[3], v6.s[2] // vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 ins v0.s[0], v7.s[2] // vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a eor v6.16b, v6.16b, v1.16b // vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0 eor v1.16b, v1.16b, v1.16b // vpxor %xmm1, %xmm1, %xmm1 eor v6.16b, v6.16b, v0.16b // vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a mov v0.16b, v6.16b // vmovdqa %xmm6, %xmm0 ins v6.d[0], v1.d[0] // vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros ret .size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear ## ## .aes_schedule_round ## ## Runs one main round of the key schedule on %xmm0, %xmm7 ## ## Specifically, runs subbytes on the high dword of %xmm0 ## then rotates it by one byte and xors into the low dword of ## %xmm7. ## ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for ## next rcon. ## ## Smears the dwords of %xmm7 by xoring the low into the ## second low, result into third, result into highest. ## ## Returns results in %xmm7 = %xmm0. ## Clobbers %xmm1-%xmm4, %r11. ## .type _vpaes_schedule_round,%function .align 4 _vpaes_schedule_round: // extract rcon from xmm8 movi v4.16b, #0 // vpxor %xmm4, %xmm4, %xmm4 ext v1.16b, $rcon, v4.16b, #15 // vpalignr \$15, %xmm8, %xmm4, %xmm1 ext $rcon, $rcon, $rcon, #15 // vpalignr \$15, %xmm8, %xmm8, %xmm8 eor v7.16b, v7.16b, v1.16b // vpxor %xmm1, %xmm7, %xmm7 // rotate dup v0.4s, v0.s[3] // vpshufd \$0xFF, %xmm0, %xmm0 ext v0.16b, v0.16b, v0.16b, #1 // vpalignr \$1, %xmm0, %xmm0, %xmm0 // fall through... // low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: // smear xmm7 ext v1.16b, v4.16b, v7.16b, #12 // vpslldq \$4, %xmm7, %xmm1 eor v7.16b, v7.16b, v1.16b // vpxor %xmm1, %xmm7, %xmm7 ext v4.16b, v4.16b, v7.16b, #8 // vpslldq \$8, %xmm7, %xmm4 // subbytes and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 # 0 = k ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i eor v7.16b, v7.16b, v4.16b // vpxor %xmm4, %xmm7, %xmm7 tbl v2.16b, {$invhi}, v1.16b // vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j tbl v3.16b, {$invlo}, v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k tbl v4.16b, {$invlo}, v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j eor v7.16b, v7.16b, v16.16b // vpxor .Lk_s63(%rip), %xmm7, %xmm7 tbl v3.16b, {$invlo}, v3.16b // vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak eor v4.16b, v4.16b, v2.16b // vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k tbl v2.16b, {$invlo}, v4.16b // vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak eor v3.16b, v3.16b, v1.16b // vpxor %xmm1, %xmm3, %xmm3 # 2 = io eor v2.16b, v2.16b, v0.16b // vpxor %xmm0, %xmm2, %xmm2 # 3 = jo tbl v4.16b, {v23.16b}, v3.16b // vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou tbl v1.16b, {v22.16b}, v2.16b // vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t eor v1.16b, v1.16b, v4.16b // vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output // add in smeared stuff eor v0.16b, v1.16b, v7.16b // vpxor %xmm7, %xmm1, %xmm0 eor v7.16b, v1.16b, v7.16b // vmovdqa %xmm0, %xmm7 ret .size _vpaes_schedule_round,.-_vpaes_schedule_round ## ## .aes_schedule_transform ## ## Linear-transform %xmm0 according to tables at (%r11) ## ## Requires that %xmm9 = 0x0F0F... as in preheat ## Output in %xmm0 ## Clobbers %xmm1, %xmm2 ## .type _vpaes_schedule_transform,%function .align 4 _vpaes_schedule_transform: and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 // vmovdqa (%r11), %xmm2 # lo tbl v2.16b, {$iptlo}, v1.16b // vpshufb %xmm1, %xmm2, %xmm2 // vmovdqa 16(%r11), %xmm1 # hi tbl v0.16b, {$ipthi}, v0.16b // vpshufb %xmm0, %xmm1, %xmm0 eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0 ret .size _vpaes_schedule_transform,.-_vpaes_schedule_transform ## ## .aes_schedule_mangle ## ## Mangle xmm0 from (basis-transformed) standard version ## to our version. ## ## On encrypt, ## xor with 0x63 ## multiply by circulant 0,1,1,1 ## apply shiftrows transform ## ## On decrypt, ## xor with 0x63 ## multiply by "inverse mixcolumns" circulant E,B,D,9 ## deskew ## apply shiftrows transform ## ## ## Writes out to (%rdx), and increments or decrements it ## Keeps track of round number mod 4 in %r8 ## Preserves xmm0 ## Clobbers xmm1-xmm5 ## .type _vpaes_schedule_mangle,%function .align 4 _vpaes_schedule_mangle: mov v4.16b, v0.16b // vmovdqa %xmm0, %xmm4 # save xmm0 for later // vmovdqa .Lk_mc_forward(%rip),%xmm5 cbnz $dir, .Lschedule_mangle_dec // encrypting eor v4.16b, v0.16b, v16.16b // vpxor .Lk_s63(%rip), %xmm0, %xmm4 add $out, $out, #16 // add \$16, %rdx tbl v4.16b, {v4.16b}, v9.16b // vpshufb %xmm5, %xmm4, %xmm4 tbl v1.16b, {v4.16b}, v9.16b // vpshufb %xmm5, %xmm4, %xmm1 tbl v3.16b, {v1.16b}, v9.16b // vpshufb %xmm5, %xmm1, %xmm3 eor v4.16b, v4.16b, v1.16b // vpxor %xmm1, %xmm4, %xmm4 ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10), %xmm1 eor v3.16b, v3.16b, v4.16b // vpxor %xmm4, %xmm3, %xmm3 b .Lschedule_mangle_both .align 4 .Lschedule_mangle_dec: // inverse mix columns // lea .Lk_dksd(%rip),%r11 ushr v1.16b, v4.16b, #4 // vpsrlb \$4, %xmm4, %xmm1 # 1 = hi and v4.16b, v4.16b, v17.16b // vpand %xmm9, %xmm4, %xmm4 # 4 = lo // vmovdqa 0x00(%r11), %xmm2 tbl v2.16b, {v24.16b}, v4.16b // vpshufb %xmm4, %xmm2, %xmm2 // vmovdqa 0x10(%r11), %xmm3 tbl v3.16b, {v25.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm3 eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 tbl v3.16b, {v3.16b}, v9.16b // vpshufb %xmm5, %xmm3, %xmm3 // vmovdqa 0x20(%r11), %xmm2 tbl v2.16b, {v26.16b}, v4.16b // vpshufb %xmm4, %xmm2, %xmm2 eor v2.16b, v2.16b, v3.16b // vpxor %xmm3, %xmm2, %xmm2 // vmovdqa 0x30(%r11), %xmm3 tbl v3.16b, {v27.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm3 eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 tbl v3.16b, {v3.16b}, v9.16b // vpshufb %xmm5, %xmm3, %xmm3 // vmovdqa 0x40(%r11), %xmm2 tbl v2.16b, {v28.16b}, v4.16b // vpshufb %xmm4, %xmm2, %xmm2 eor v2.16b, v2.16b, v3.16b // vpxor %xmm3, %xmm2, %xmm2 // vmovdqa 0x50(%r11), %xmm3 tbl v3.16b, {v29.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm3 eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 // vmovdqa 0x60(%r11), %xmm2 tbl v2.16b, {v30.16b}, v4.16b // vpshufb %xmm4, %xmm2, %xmm2 tbl v3.16b, {v3.16b}, v9.16b // vpshufb %xmm5, %xmm3, %xmm3 // vmovdqa 0x70(%r11), %xmm4 tbl v4.16b, {v31.16b}, v1.16b // vpshufb %xmm1, %xmm4, %xmm4 ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10), %xmm1 eor v2.16b, v2.16b, v3.16b // vpxor %xmm3, %xmm2, %xmm2 eor v3.16b, v4.16b, v2.16b // vpxor %xmm2, %xmm4, %xmm3 sub $out, $out, #16 // add \$-16, %rdx .Lschedule_mangle_both: tbl v3.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm3 add x8, x8, #64-16 // add \$-16, %r8 and x8, x8, #~(1<<6) // and \$0x30, %r8 st1 {v3.2d}, [$out] // vmovdqu %xmm3, (%rdx) ret .size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle .globl vpaes_set_encrypt_key .type vpaes_set_encrypt_key,%function .align 4 vpaes_set_encrypt_key: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 stp d8,d9,[sp,#-16]! // ABI spec says so lsr w9, $bits, #5 // shr \$5,%eax add w9, w9, #5 // \$5,%eax str w9, [$out,#240] // mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; mov $dir, #0 // mov \$0,%ecx mov x8, #0x30 // mov \$0x30,%r8d bl _vpaes_schedule_core eor x0, x0, x0 ldp d8,d9,[sp],#16 ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size vpaes_set_encrypt_key,.-vpaes_set_encrypt_key .globl vpaes_set_decrypt_key .type vpaes_set_decrypt_key,%function .align 4 vpaes_set_decrypt_key: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 stp d8,d9,[sp,#-16]! // ABI spec says so lsr w9, $bits, #5 // shr \$5,%eax add w9, w9, #5 // \$5,%eax str w9, [$out,#240] // mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; lsl w9, w9, #4 // shl \$4,%eax add $out, $out, #16 // lea 16(%rdx,%rax),%rdx add $out, $out, x9 mov $dir, #1 // mov \$1,%ecx lsr w8, $bits, #1 // shr \$1,%r8d and x8, x8, #32 // and \$32,%r8d eor x8, x8, #32 // xor \$32,%r8d # nbits==192?0:32 bl _vpaes_schedule_core ldp d8,d9,[sp],#16 ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size vpaes_set_decrypt_key,.-vpaes_set_decrypt_key ___ } { my ($inp,$out,$len,$key,$ivec,$dir) = map("x$_",(0..5)); $code.=<<___; .globl vpaes_cbc_encrypt .type vpaes_cbc_encrypt,%function .align 4 vpaes_cbc_encrypt: cbz $len, .Lcbc_abort cmp w5, #0 // check direction b.eq vpaes_cbc_decrypt .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 mov x17, $len // reassign mov x2, $key // reassign ld1 {v0.16b}, [$ivec] // load ivec bl _vpaes_encrypt_preheat b .Lcbc_enc_loop .align 4 .Lcbc_enc_loop: ld1 {v7.16b}, [$inp],#16 // load input eor v7.16b, v7.16b, v0.16b // xor with ivec bl _vpaes_encrypt_core st1 {v0.16b}, [$out],#16 // save output subs x17, x17, #16 b.hi .Lcbc_enc_loop st1 {v0.16b}, [$ivec] // write ivec ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp .Lcbc_abort: ret .size vpaes_cbc_encrypt,.-vpaes_cbc_encrypt .type vpaes_cbc_decrypt,%function .align 4 vpaes_cbc_decrypt: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 stp d8,d9,[sp,#-16]! // ABI spec says so stp d10,d11,[sp,#-16]! stp d12,d13,[sp,#-16]! stp d14,d15,[sp,#-16]! mov x17, $len // reassign mov x2, $key // reassign ld1 {v6.16b}, [$ivec] // load ivec bl _vpaes_decrypt_preheat tst x17, #16 b.eq .Lcbc_dec_loop2x ld1 {v7.16b}, [$inp], #16 // load input bl _vpaes_decrypt_core eor v0.16b, v0.16b, v6.16b // xor with ivec orr v6.16b, v7.16b, v7.16b // next ivec value st1 {v0.16b}, [$out], #16 subs x17, x17, #16 b.ls .Lcbc_dec_done .align 4 .Lcbc_dec_loop2x: ld1 {v14.16b,v15.16b}, [$inp], #32 bl _vpaes_decrypt_2x eor v0.16b, v0.16b, v6.16b // xor with ivec eor v1.16b, v1.16b, v14.16b orr v6.16b, v15.16b, v15.16b st1 {v0.16b,v1.16b}, [$out], #32 subs x17, x17, #32 b.hi .Lcbc_dec_loop2x .Lcbc_dec_done: st1 {v6.16b}, [$ivec] ldp d14,d15,[sp],#16 ldp d12,d13,[sp],#16 ldp d10,d11,[sp],#16 ldp d8,d9,[sp],#16 ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size vpaes_cbc_decrypt,.-vpaes_cbc_decrypt ___ if (1) { $code.=<<___; .globl vpaes_ecb_encrypt .type vpaes_ecb_encrypt,%function .align 4 vpaes_ecb_encrypt: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 stp d8,d9,[sp,#-16]! // ABI spec says so stp d10,d11,[sp,#-16]! stp d12,d13,[sp,#-16]! stp d14,d15,[sp,#-16]! mov x17, $len mov x2, $key bl _vpaes_encrypt_preheat tst x17, #16 b.eq .Lecb_enc_loop ld1 {v7.16b}, [$inp],#16 bl _vpaes_encrypt_core st1 {v0.16b}, [$out],#16 subs x17, x17, #16 b.ls .Lecb_enc_done .align 4 .Lecb_enc_loop: ld1 {v14.16b,v15.16b}, [$inp], #32 bl _vpaes_encrypt_2x st1 {v0.16b,v1.16b}, [$out], #32 subs x17, x17, #32 b.hi .Lecb_enc_loop .Lecb_enc_done: ldp d14,d15,[sp],#16 ldp d12,d13,[sp],#16 ldp d10,d11,[sp],#16 ldp d8,d9,[sp],#16 ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size vpaes_ecb_encrypt,.-vpaes_ecb_encrypt .globl vpaes_ecb_decrypt .type vpaes_ecb_decrypt,%function .align 4 vpaes_ecb_decrypt: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 stp d8,d9,[sp,#-16]! // ABI spec says so stp d10,d11,[sp,#-16]! stp d12,d13,[sp,#-16]! stp d14,d15,[sp,#-16]! mov x17, $len mov x2, $key bl _vpaes_decrypt_preheat tst x17, #16 b.eq .Lecb_dec_loop ld1 {v7.16b}, [$inp],#16 bl _vpaes_encrypt_core st1 {v0.16b}, [$out],#16 subs x17, x17, #16 b.ls .Lecb_dec_done .align 4 .Lecb_dec_loop: ld1 {v14.16b,v15.16b}, [$inp], #32 bl _vpaes_decrypt_2x st1 {v0.16b,v1.16b}, [$out], #32 subs x17, x17, #32 b.hi .Lecb_dec_loop .Lecb_dec_done: ldp d14,d15,[sp],#16 ldp d12,d13,[sp],#16 ldp d10,d11,[sp],#16 ldp d8,d9,[sp],#16 ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size vpaes_ecb_decrypt,.-vpaes_ecb_decrypt ___ } } print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/vpaes-ppc.pl000066400000000000000000001234451364063235100204620ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ###################################################################### ## Constant-time SSSE3 AES core implementation. ## version 0.1 ## ## By Mike Hamburg (Stanford University), 2009 ## Public domain. ## ## For details see http://shiftleft.org/papers/vector_aes/ and ## http://crypto.stanford.edu/vpaes/. # CBC encrypt/decrypt performance in cycles per byte processed with # 128-bit key. # # aes-ppc.pl this # PPC74x0/G4e 35.5/52.1/(23.8) 11.9(*)/15.4 # PPC970/G5 37.9/55.0/(28.5) 22.2/28.5 # POWER6 42.7/54.3/(28.2) 63.0/92.8(**) # POWER7 32.3/42.9/(18.4) 18.5/23.3 # # (*) This is ~10% worse than reported in paper. The reason is # twofold. This module doesn't make any assumption about # key schedule (or data for that matter) alignment and handles # it in-line. Secondly it, being transliterated from # vpaes-x86_64.pl, relies on "nested inversion" better suited # for Intel CPUs. # (**) Inadequate POWER6 performance is due to astronomic AltiVec # latency, 9 cycles per simple logical operation. $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; $UCMP ="cmpld"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; $UCMP ="cmplw"; } else { die "nonsense $flavour"; } $sp="r1"; $FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $code.=<<___; .machine "any" .text .align 7 # totally strategic alignment _vpaes_consts: Lk_mc_forward: # mc_forward .long 0x01020300, 0x05060704, 0x090a0b08, 0x0d0e0f0c ?inv .long 0x05060704, 0x090a0b08, 0x0d0e0f0c, 0x01020300 ?inv .long 0x090a0b08, 0x0d0e0f0c, 0x01020300, 0x05060704 ?inv .long 0x0d0e0f0c, 0x01020300, 0x05060704, 0x090a0b08 ?inv Lk_mc_backward: # mc_backward .long 0x03000102, 0x07040506, 0x0b08090a, 0x0f0c0d0e ?inv .long 0x0f0c0d0e, 0x03000102, 0x07040506, 0x0b08090a ?inv .long 0x0b08090a, 0x0f0c0d0e, 0x03000102, 0x07040506 ?inv .long 0x07040506, 0x0b08090a, 0x0f0c0d0e, 0x03000102 ?inv Lk_sr: # sr .long 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f ?inv .long 0x00050a0f, 0x04090e03, 0x080d0207, 0x0c01060b ?inv .long 0x0009020b, 0x040d060f, 0x08010a03, 0x0c050e07 ?inv .long 0x000d0a07, 0x04010e0b, 0x0805020f, 0x0c090603 ?inv ## ## "Hot" constants ## Lk_inv: # inv, inva .long 0xf001080d, 0x0f06050e, 0x020c0b0a, 0x09030704 ?rev .long 0xf0070b0f, 0x060a0401, 0x09080502, 0x0c0e0d03 ?rev Lk_ipt: # input transform (lo, hi) .long 0x00702a5a, 0x98e8b2c2, 0x08782252, 0x90e0baca ?rev .long 0x004d7c31, 0x7d30014c, 0x81ccfdb0, 0xfcb180cd ?rev Lk_sbo: # sbou, sbot .long 0x00c7bd6f, 0x176dd2d0, 0x78a802c5, 0x7abfaa15 ?rev .long 0x006abb5f, 0xa574e4cf, 0xfa352b41, 0xd1901e8e ?rev Lk_sb1: # sb1u, sb1t .long 0x0023e2fa, 0x15d41836, 0xefd92e0d, 0xc1ccf73b ?rev .long 0x003e50cb, 0x8fe19bb1, 0x44f52a14, 0x6e7adfa5 ?rev Lk_sb2: # sb2u, sb2t .long 0x0029e10a, 0x4088eb69, 0x4a2382ab, 0xc863a1c2 ?rev .long 0x0024710b, 0xc6937ae2, 0xcd2f98bc, 0x55e9b75e ?rev ## ## Decryption stuff ## Lk_dipt: # decryption input transform .long 0x005f540b, 0x045b500f, 0x1a454e11, 0x1e414a15 ?rev .long 0x00650560, 0xe683e386, 0x94f191f4, 0x72177712 ?rev Lk_dsbo: # decryption sbox final output .long 0x0040f97e, 0x53ea8713, 0x2d3e94d4, 0xb96daac7 ?rev .long 0x001d4493, 0x0f56d712, 0x9c8ec5d8, 0x59814bca ?rev Lk_dsb9: # decryption sbox output *9*u, *9*t .long 0x00d6869a, 0x53031c85, 0xc94c994f, 0x501fd5ca ?rev .long 0x0049d7ec, 0x89173bc0, 0x65a5fbb2, 0x9e2c5e72 ?rev Lk_dsbd: # decryption sbox output *D*u, *D*t .long 0x00a2b1e6, 0xdfcc577d, 0x39442a88, 0x139b6ef5 ?rev .long 0x00cbc624, 0xf7fae23c, 0xd3efde15, 0x0d183129 ?rev Lk_dsbb: # decryption sbox output *B*u, *B*t .long 0x0042b496, 0x926422d0, 0x04d4f2b0, 0xf6462660 ?rev .long 0x006759cd, 0xa69894c1, 0x6baa5532, 0x3e0cfff3 ?rev Lk_dsbe: # decryption sbox output *E*u, *E*t .long 0x00d0d426, 0x9692f246, 0xb0f6b464, 0x04604222 ?rev .long 0x00c1aaff, 0xcda6550c, 0x323e5998, 0x6bf36794 ?rev ## ## Key schedule constants ## Lk_dksd: # decryption key schedule: invskew x*D .long 0x0047e4a3, 0x5d1ab9fe, 0xf9be1d5a, 0xa4e34007 ?rev .long 0x008336b5, 0xf477c241, 0x1e9d28ab, 0xea69dc5f ?rev Lk_dksb: # decryption key schedule: invskew x*B .long 0x00d55085, 0x1fca4f9a, 0x994cc91c, 0x8653d603 ?rev .long 0x004afcb6, 0xa7ed5b11, 0xc882347e, 0x6f2593d9 ?rev Lk_dkse: # decryption key schedule: invskew x*E + 0x63 .long 0x00d6c91f, 0xca1c03d5, 0x86504f99, 0x4c9a8553 ?rev .long 0xe87bdc4f, 0x059631a2, 0x8714b320, 0x6af95ecd ?rev Lk_dks9: # decryption key schedule: invskew x*9 .long 0x00a7d97e, 0xc86f11b6, 0xfc5b2582, 0x3493ed4a ?rev .long 0x00331427, 0x62517645, 0xcefddae9, 0xac9fb88b ?rev Lk_rcon: # rcon .long 0xb6ee9daf, 0xb991831f, 0x817d7c4d, 0x08982a70 ?asis Lk_s63: .long 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b ?asis Lk_opt: # output transform .long 0x0060b6d6, 0x29499fff, 0x0868bede, 0x214197f7 ?rev .long 0x00ecbc50, 0x51bded01, 0xe00c5cb0, 0xb15d0de1 ?rev Lk_deskew: # deskew tables: inverts the sbox's "skew" .long 0x00e3a447, 0x40a3e407, 0x1af9be5d, 0x5ab9fe1d ?rev .long 0x0069ea83, 0xdcb5365f, 0x771e9df4, 0xabc24128 ?rev .align 5 Lconsts: mflr r0 bcl 20,31,\$+4 mflr r12 #vvvvv "distance between . and _vpaes_consts addi r12,r12,-0x308 mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .asciz "Vector Permutation AES for AltiVec, Mike Hamburg (Stanford University)" .align 6 ___ my ($inptail,$inpperm,$outhead,$outperm,$outmask,$keyperm) = map("v$_",(26..31)); { my ($inp,$out,$key) = map("r$_",(3..5)); my ($invlo,$invhi,$iptlo,$ipthi,$sbou,$sbot) = map("v$_",(10..15)); my ($sb1u,$sb1t,$sb2u,$sb2t) = map("v$_",(16..19)); my ($sb9u,$sb9t,$sbdu,$sbdt,$sbbu,$sbbt,$sbeu,$sbet)=map("v$_",(16..23)); $code.=<<___; ## ## _aes_preheat ## ## Fills register %r10 -> .aes_consts (so you can -fPIC) ## and %xmm9-%xmm15 as specified below. ## .align 4 _vpaes_encrypt_preheat: mflr r8 bl Lconsts mtlr r8 li r11, 0xc0 # Lk_inv li r10, 0xd0 li r9, 0xe0 # Lk_ipt li r8, 0xf0 vxor v7, v7, v7 # 0x00..00 vspltisb v8,4 # 0x04..04 vspltisb v9,0x0f # 0x0f..0f lvx $invlo, r12, r11 li r11, 0x100 lvx $invhi, r12, r10 li r10, 0x110 lvx $iptlo, r12, r9 li r9, 0x120 lvx $ipthi, r12, r8 li r8, 0x130 lvx $sbou, r12, r11 li r11, 0x140 lvx $sbot, r12, r10 li r10, 0x150 lvx $sb1u, r12, r9 lvx $sb1t, r12, r8 lvx $sb2u, r12, r11 lvx $sb2t, r12, r10 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## _aes_encrypt_core ## ## AES-encrypt %xmm0. ## ## Inputs: ## %xmm0 = input ## %xmm9-%xmm15 as in _vpaes_preheat ## (%rdx) = scheduled keys ## ## Output in %xmm0 ## Clobbers %xmm1-%xmm6, %r9, %r10, %r11, %rax ## ## .align 5 _vpaes_encrypt_core: lwz r8, 240($key) # pull rounds li r9, 16 lvx v5, 0, $key # vmovdqu (%r9), %xmm5 # round0 key li r11, 0x10 lvx v6, r9, $key addi r9, r9, 16 ?vperm v5, v5, v6, $keyperm # align round key addi r10, r11, 0x40 vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm1 vperm v1, $ipthi, $ipthi, v1 # vpshufb %xmm0, %xmm3, %xmm2 vxor v0, v0, v5 # vpxor %xmm5, %xmm1, %xmm0 vxor v0, v0, v1 # vpxor %xmm2, %xmm0, %xmm0 mtctr r8 b Lenc_entry .align 4 Lenc_loop: # middle of middle round vperm v4, $sb1t, v7, v2 # vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u lvx v1, r12, r11 # vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] addi r11, r11, 16 vperm v0, $sb1u, v7, v3 # vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k andi. r11, r11, 0x30 # and \$0x30, %r11 # ... mod 4 vperm v5, $sb2t, v7, v2 # vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = A vperm v2, $sb2u, v7, v3 # vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t lvx v4, r12, r10 # vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] addi r10, r11, 0x40 vperm v3, v0, v7, v1 # vpshufb %xmm1, %xmm0, %xmm3 # 0 = B vxor v2, v2, v5 # vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A vperm v0, v0, v7, v4 # vpshufb %xmm4, %xmm0, %xmm0 # 3 = D vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B vperm v4, v3, v7, v1 # vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C vxor v0, v0, v3 # vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D Lenc_entry: # top of round vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i vperm v5, $invhi, $invhi, v0 # vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k vxor v0, v0, v1 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j vperm v3, $invlo, $invlo, v1 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vperm v4, $invlo, $invlo, v0 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vand v0, v0, v9 vxor v3, v3, v5 # vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vperm v2, $invlo, v7, v3 # vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vmr v5, v6 lvx v6, r9, $key # vmovdqu (%r9), %xmm5 vperm v3, $invlo, v7, v4 # vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak addi r9, r9, 16 vxor v2, v2, v0 # vpxor %xmm1, %xmm2, %xmm2 # 2 = io ?vperm v5, v5, v6, $keyperm # align round key vxor v3, v3, v1 # vpxor %xmm0, %xmm3, %xmm3 # 3 = jo bdnz Lenc_loop # middle of last round addi r10, r11, 0x80 # vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo # vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 vperm v4, $sbou, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou lvx v1, r12, r10 # vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] vperm v0, $sbot, v7, v3 # vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = A vperm v0, v0, v7, v1 # vpshufb %xmm1, %xmm0, %xmm0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .globl .vpaes_encrypt .align 5 .vpaes_encrypt: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r6 mfspr r7, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r7,`$FRAME-4`($sp) # save vrsave li r0, -1 $PUSH r6,`$FRAME+$LRSAVE`($sp) mtspr 256, r0 # preserve all AltiVec registers bl _vpaes_encrypt_preheat ?lvsl $inpperm, 0, $inp # prepare for unaligned access lvx v0, 0, $inp addi $inp, $inp, 15 # 15 is not a typo ?lvsr $outperm, 0, $out ?lvsl $keyperm, 0, $key # prepare for unaligned access lvx $inptail, 0, $inp # redundant in aligned case ?vperm v0, v0, $inptail, $inpperm bl _vpaes_encrypt_core andi. r8, $out, 15 li r9, 16 beq Lenc_out_aligned vperm v0, v0, v0, $outperm # rotate right/left mtctr r9 Lenc_out_unaligned: stvebx v0, 0, $out addi $out, $out, 1 bdnz Lenc_out_unaligned b Lenc_done .align 4 Lenc_out_aligned: stvx v0, 0, $out Lenc_done: li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtlr r6 mtspr 256, r7 # restore vrsave lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_encrypt,.-.vpaes_encrypt .align 4 _vpaes_decrypt_preheat: mflr r8 bl Lconsts mtlr r8 li r11, 0xc0 # Lk_inv li r10, 0xd0 li r9, 0x160 # Ldipt li r8, 0x170 vxor v7, v7, v7 # 0x00..00 vspltisb v8,4 # 0x04..04 vspltisb v9,0x0f # 0x0f..0f lvx $invlo, r12, r11 li r11, 0x180 lvx $invhi, r12, r10 li r10, 0x190 lvx $iptlo, r12, r9 li r9, 0x1a0 lvx $ipthi, r12, r8 li r8, 0x1b0 lvx $sbou, r12, r11 li r11, 0x1c0 lvx $sbot, r12, r10 li r10, 0x1d0 lvx $sb9u, r12, r9 li r9, 0x1e0 lvx $sb9t, r12, r8 li r8, 0x1f0 lvx $sbdu, r12, r11 li r11, 0x200 lvx $sbdt, r12, r10 li r10, 0x210 lvx $sbbu, r12, r9 lvx $sbbt, r12, r8 lvx $sbeu, r12, r11 lvx $sbet, r12, r10 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## Decryption core ## ## Same API as encryption core. ## .align 4 _vpaes_decrypt_core: lwz r8, 240($key) # pull rounds li r9, 16 lvx v5, 0, $key # vmovdqu (%r9), %xmm4 # round0 key li r11, 0x30 lvx v6, r9, $key addi r9, r9, 16 ?vperm v5, v5, v6, $keyperm # align round key vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm2 vperm v1, $ipthi, $ipthi, v1 # vpshufb %xmm0, %xmm1, %xmm0 vxor v0, v0, v5 # vpxor %xmm4, %xmm2, %xmm2 vxor v0, v0, v1 # vpxor %xmm2, %xmm0, %xmm0 mtctr r8 b Ldec_entry .align 4 Ldec_loop: # # Inverse mix columns # lvx v0, r12, r11 # v5 and v0 are flipped # vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u # vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t vperm v4, $sb9u, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u subi r11, r11, 16 vperm v1, $sb9t, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t andi. r11, r11, 0x30 vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch # vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt vperm v4, $sbdu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch vperm v1, $sbdt, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch # vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch # vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt vperm v4, $sbbu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch vperm v1, $sbbt, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch # vmovdqa 0x40(%r10), %xmm4 # 4 : sbeu vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch # vmovdqa 0x50(%r10), %xmm1 # 0 : sbet vperm v4, $sbeu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch vperm v1, $sbet, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet vxor v0, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vxor v0, v0, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch Ldec_entry: # top of round vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i vperm v2, $invhi, $invhi, v0 # vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vxor v0, v0, v1 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j vperm v3, $invlo, $invlo, v1 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vperm v4, $invlo, $invlo, v0 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vand v0, v0, v9 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vxor v4, v4, v2 # vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vperm v2, $invlo, v7, v3 # vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vmr v5, v6 lvx v6, r9, $key # vmovdqu (%r9), %xmm0 vperm v3, $invlo, v7, v4 # vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak addi r9, r9, 16 vxor v2, v2, v0 # vpxor %xmm1, %xmm2, %xmm2 # 2 = io ?vperm v5, v5, v6, $keyperm # align round key vxor v3, v3, v1 # vpxor %xmm0, %xmm3, %xmm3 # 3 = jo bdnz Ldec_loop # middle of last round addi r10, r11, 0x80 # vmovdqa 0x60(%r10), %xmm4 # 3 : sbou vperm v4, $sbou, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou # vmovdqa 0x70(%r10), %xmm1 # 0 : sbot lvx v2, r12, r10 # vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 vperm v1, $sbot, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t vxor v4, v4, v5 # vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k vxor v0, v1, v4 # vpxor %xmm4, %xmm1, %xmm0 # 0 = A vperm v0, v0, v7, v2 # vpshufb %xmm2, %xmm0, %xmm0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .globl .vpaes_decrypt .align 5 .vpaes_decrypt: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r6 mfspr r7, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r7,`$FRAME-4`($sp) # save vrsave li r0, -1 $PUSH r6,`$FRAME+$LRSAVE`($sp) mtspr 256, r0 # preserve all AltiVec registers bl _vpaes_decrypt_preheat ?lvsl $inpperm, 0, $inp # prepare for unaligned access lvx v0, 0, $inp addi $inp, $inp, 15 # 15 is not a typo ?lvsr $outperm, 0, $out ?lvsl $keyperm, 0, $key lvx $inptail, 0, $inp # redundant in aligned case ?vperm v0, v0, $inptail, $inpperm bl _vpaes_decrypt_core andi. r8, $out, 15 li r9, 16 beq Ldec_out_aligned vperm v0, v0, v0, $outperm # rotate right/left mtctr r9 Ldec_out_unaligned: stvebx v0, 0, $out addi $out, $out, 1 bdnz Ldec_out_unaligned b Ldec_done .align 4 Ldec_out_aligned: stvx v0, 0, $out Ldec_done: li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtlr r6 mtspr 256, r7 # restore vrsave lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_decrypt,.-.vpaes_decrypt .globl .vpaes_cbc_encrypt .align 5 .vpaes_cbc_encrypt: ${UCMP}i r5,16 bltlr- $STU $sp,-`($FRAME+2*$SIZE_T)`($sp) mflr r0 li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mfspr r12, 256 stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r12,`$FRAME-4`($sp) # save vrsave $PUSH r30,`$FRAME+$SIZE_T*0`($sp) $PUSH r31,`$FRAME+$SIZE_T*1`($sp) li r9, -16 $PUSH r0, `$FRAME+$SIZE_T*2+$LRSAVE`($sp) and r30, r5, r9 # copy length&-16 andi. r9, $out, 15 # is $out aligned? mr r5, r6 # copy pointer to key mr r31, r7 # copy pointer to iv li r6, -1 mcrf cr1, cr0 # put aside $out alignment flag mr r7, r12 # copy vrsave mtspr 256, r6 # preserve all AltiVec registers lvx v24, 0, r31 # load [potentially unaligned] iv li r9, 15 ?lvsl $inpperm, 0, r31 lvx v25, r9, r31 ?vperm v24, v24, v25, $inpperm cmpwi r8, 0 # test direction neg r8, $inp # prepare for unaligned access vxor v7, v7, v7 ?lvsl $keyperm, 0, $key ?lvsr $outperm, 0, $out ?lvsr $inpperm, 0, r8 # -$inp vnor $outmask, v7, v7 # 0xff..ff lvx $inptail, 0, $inp ?vperm $outmask, v7, $outmask, $outperm addi $inp, $inp, 15 # 15 is not a typo beq Lcbc_decrypt bl _vpaes_encrypt_preheat li r0, 16 beq cr1, Lcbc_enc_loop # $out is aligned vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vxor v0, v0, v24 # ^= iv bl _vpaes_encrypt_core andi. r8, $out, 15 vmr v24, v0 # put aside iv sub r9, $out, r8 vperm $outhead, v0, v0, $outperm # rotate right/left Lcbc_enc_head: stvebx $outhead, r8, r9 cmpwi r8, 15 addi r8, r8, 1 bne Lcbc_enc_head sub. r30, r30, r0 # len -= 16 addi $out, $out, 16 beq Lcbc_unaligned_done Lcbc_enc_loop: vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vxor v0, v0, v24 # ^= iv bl _vpaes_encrypt_core vmr v24, v0 # put aside iv sub. r30, r30, r0 # len -= 16 vperm v0, v0, v0, $outperm # rotate right/left vsel v1, $outhead, v0, $outmask vmr $outhead, v0 stvx v1, 0, $out addi $out, $out, 16 bne Lcbc_enc_loop b Lcbc_done .align 5 Lcbc_decrypt: bl _vpaes_decrypt_preheat li r0, 16 beq cr1, Lcbc_dec_loop # $out is aligned vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vmr v25, v0 # put aside input bl _vpaes_decrypt_core andi. r8, $out, 15 vxor v0, v0, v24 # ^= iv vmr v24, v25 sub r9, $out, r8 vperm $outhead, v0, v0, $outperm # rotate right/left Lcbc_dec_head: stvebx $outhead, r8, r9 cmpwi r8, 15 addi r8, r8, 1 bne Lcbc_dec_head sub. r30, r30, r0 # len -= 16 addi $out, $out, 16 beq Lcbc_unaligned_done Lcbc_dec_loop: vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vmr v25, v0 # put aside input bl _vpaes_decrypt_core vxor v0, v0, v24 # ^= iv vmr v24, v25 sub. r30, r30, r0 # len -= 16 vperm v0, v0, v0, $outperm # rotate right/left vsel v1, $outhead, v0, $outmask vmr $outhead, v0 stvx v1, 0, $out addi $out, $out, 16 bne Lcbc_dec_loop Lcbc_done: beq cr1, Lcbc_write_iv # $out is aligned Lcbc_unaligned_done: andi. r8, $out, 15 sub $out, $out, r8 li r9, 0 Lcbc_tail: stvebx $outhead, r9, $out addi r9, r9, 1 cmpw r9, r8 bne Lcbc_tail Lcbc_write_iv: neg r8, r31 # write [potentially unaligned] iv li r10, 4 ?lvsl $outperm, 0, r8 li r11, 8 li r12, 12 vperm v24, v24, v24, $outperm # rotate right/left stvewx v24, 0, r31 # ivp is at least 32-bit aligned stvewx v24, r10, r31 stvewx v24, r11, r31 stvewx v24, r12, r31 mtspr 256, r7 # restore vrsave li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp Lcbc_abort: $POP r0, `$FRAME+$SIZE_T*2+$LRSAVE`($sp) $POP r30,`$FRAME+$SIZE_T*0`($sp) $POP r31,`$FRAME+$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,`$FRAME+$SIZE_T*2` blr .long 0 .byte 0,12,0x04,1,0x80,2,6,0 .long 0 .size .vpaes_cbc_encrypt,.-.vpaes_cbc_encrypt ___ } { my ($inp,$bits,$out)=map("r$_",(3..5)); my $dir="cr1"; my ($invlo,$invhi,$iptlo,$ipthi,$rcon) = map("v$_",(10..13,24)); $code.=<<___; ######################################################## ## ## ## AES key schedule ## ## ## ######################################################## .align 4 _vpaes_key_preheat: mflr r8 bl Lconsts mtlr r8 li r11, 0xc0 # Lk_inv li r10, 0xd0 li r9, 0xe0 # L_ipt li r8, 0xf0 vspltisb v8,4 # 0x04..04 vxor v9,v9,v9 # 0x00..00 lvx $invlo, r12, r11 # Lk_inv li r11, 0x120 lvx $invhi, r12, r10 li r10, 0x130 lvx $iptlo, r12, r9 # Lk_ipt li r9, 0x220 lvx $ipthi, r12, r8 li r8, 0x230 lvx v14, r12, r11 # Lk_sb1 li r11, 0x240 lvx v15, r12, r10 li r10, 0x250 lvx v16, r12, r9 # Lk_dksd li r9, 0x260 lvx v17, r12, r8 li r8, 0x270 lvx v18, r12, r11 # Lk_dksb li r11, 0x280 lvx v19, r12, r10 li r10, 0x290 lvx v20, r12, r9 # Lk_dkse li r9, 0x2a0 lvx v21, r12, r8 li r8, 0x2b0 lvx v22, r12, r11 # Lk_dks9 lvx v23, r12, r10 lvx v24, r12, r9 # Lk_rcon lvx v25, 0, r12 # Lk_mc_forward[0] lvx v26, r12, r8 # Lks63 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .align 4 _vpaes_schedule_core: mflr r7 bl _vpaes_key_preheat # load the tables #lvx v0, 0, $inp # vmovdqu (%rdi), %xmm0 # load key (unaligned) neg r8, $inp # prepare for unaligned access lvx v0, 0, $inp addi $inp, $inp, 15 # 15 is not typo ?lvsr $inpperm, 0, r8 # -$inp lvx v6, 0, $inp # v6 serves as inptail addi $inp, $inp, 8 ?vperm v0, v0, v6, $inpperm # input transform vmr v3, v0 # vmovdqa %xmm0, %xmm3 bl _vpaes_schedule_transform vmr v7, v0 # vmovdqa %xmm0, %xmm7 bne $dir, Lschedule_am_decrypting # encrypting, output zeroth round key after transform li r8, 0x30 # mov \$0x30,%r8d li r9, 4 li r10, 8 li r11, 12 ?lvsr $outperm, 0, $out # prepare for unaligned access vnor $outmask, v9, v9 # 0xff..ff ?vperm $outmask, v9, $outmask, $outperm #stvx v0, 0, $out # vmovdqu %xmm0, (%rdx) vperm $outhead, v0, v0, $outperm # rotate right/left stvewx $outhead, 0, $out # some are superfluous stvewx $outhead, r9, $out stvewx $outhead, r10, $out addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10 stvewx $outhead, r11, $out b Lschedule_go Lschedule_am_decrypting: srwi r8, $bits, 1 # shr \$1,%r8d andi. r8, r8, 32 # and \$32,%r8d xori r8, r8, 32 # xor \$32,%r8d # nbits==192?0:32 addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10 # decrypting, output zeroth round key after shiftrows lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1 li r9, 4 li r10, 8 li r11, 12 vperm v4, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3 neg r0, $out # prepare for unaligned access ?lvsl $outperm, 0, r0 vnor $outmask, v9, v9 # 0xff..ff ?vperm $outmask, $outmask, v9, $outperm #stvx v4, 0, $out # vmovdqu %xmm3, (%rdx) vperm $outhead, v4, v4, $outperm # rotate right/left stvewx $outhead, 0, $out # some are superfluous stvewx $outhead, r9, $out stvewx $outhead, r10, $out addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10 stvewx $outhead, r11, $out addi $out, $out, 15 # 15 is not typo xori r8, r8, 0x30 # xor \$0x30, %r8 Lschedule_go: cmplwi $bits, 192 # cmp \$192, %esi bgt Lschedule_256 beq Lschedule_192 # 128: fall though ## ## .schedule_128 ## ## 128-bit specific part of key schedule. ## ## This schedule is really simple, because all its parts ## are accomplished by the subroutines. ## Lschedule_128: li r0, 10 # mov \$10, %esi mtctr r0 Loop_schedule_128: bl _vpaes_schedule_round bdz Lschedule_mangle_last # dec %esi bl _vpaes_schedule_mangle # write output b Loop_schedule_128 ## ## .aes_schedule_192 ## ## 192-bit specific part of key schedule. ## ## The main body of this schedule is the same as the 128-bit ## schedule, but with more smearing. The long, high side is ## stored in %xmm7 as before, and the short, low side is in ## the high bits of %xmm6. ## ## This schedule is somewhat nastier, however, because each ## round produces 192 bits of key material, or 1.5 round keys. ## Therefore, on each cycle we do 2 rounds and produce 3 round ## keys. ## .align 4 Lschedule_192: li r0, 4 # mov \$4, %esi lvx v0, 0, $inp ?vperm v0, v6, v0, $inpperm ?vsldoi v0, v3, v0, 8 # vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) bl _vpaes_schedule_transform # input transform ?vsldoi v6, v0, v9, 8 ?vsldoi v6, v9, v6, 8 # clobber "low" side with zeros mtctr r0 Loop_schedule_192: bl _vpaes_schedule_round ?vsldoi v0, v6, v0, 8 # vpalignr \$8,%xmm6,%xmm0,%xmm0 bl _vpaes_schedule_mangle # save key n bl _vpaes_schedule_192_smear bl _vpaes_schedule_mangle # save key n+1 bl _vpaes_schedule_round bdz Lschedule_mangle_last # dec %esi bl _vpaes_schedule_mangle # save key n+2 bl _vpaes_schedule_192_smear b Loop_schedule_192 ## ## .aes_schedule_256 ## ## 256-bit specific part of key schedule. ## ## The structure here is very similar to the 128-bit ## schedule, but with an additional "low side" in ## %xmm6. The low side's rounds are the same as the ## high side's, except no rcon and no rotation. ## .align 4 Lschedule_256: li r0, 7 # mov \$7, %esi addi $inp, $inp, 8 lvx v0, 0, $inp # vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) ?vperm v0, v6, v0, $inpperm bl _vpaes_schedule_transform # input transform mtctr r0 Loop_schedule_256: bl _vpaes_schedule_mangle # output low result vmr v6, v0 # vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6 # high round bl _vpaes_schedule_round bdz Lschedule_mangle_last # dec %esi bl _vpaes_schedule_mangle # low round. swap xmm7 and xmm6 ?vspltw v0, v0, 3 # vpshufd \$0xFF, %xmm0, %xmm0 vmr v5, v7 # vmovdqa %xmm7, %xmm5 vmr v7, v6 # vmovdqa %xmm6, %xmm7 bl _vpaes_schedule_low_round vmr v7, v5 # vmovdqa %xmm5, %xmm7 b Loop_schedule_256 ## ## .aes_schedule_mangle_last ## ## Mangler for last round of key schedule ## Mangles %xmm0 ## when encrypting, outputs out(%xmm0) ^ 63 ## when decrypting, outputs unskew(%xmm0) ## ## Always called right before return... jumps to cleanup and exits ## .align 4 Lschedule_mangle_last: # schedule last round key from xmm0 li r11, 0x2e0 # lea .Lk_deskew(%rip),%r11 li r9, 0x2f0 bne $dir, Lschedule_mangle_last_dec # encrypting lvx v1, r8, r10 # vmovdqa (%r8,%r10),%xmm1 li r11, 0x2c0 # lea .Lk_opt(%rip), %r11 # prepare to output transform li r9, 0x2d0 # prepare to output transform vperm v0, v0, v0, v1 # vpshufb %xmm1, %xmm0, %xmm0 # output permute lvx $iptlo, r11, r12 # reload $ipt lvx $ipthi, r9, r12 addi $out, $out, 16 # add \$16, %rdx vxor v0, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform # output transform #stvx v0, r0, $out # vmovdqu %xmm0, (%rdx) # save last key vperm v0, v0, v0, $outperm # rotate right/left li r10, 4 vsel v2, $outhead, v0, $outmask li r11, 8 stvx v2, 0, $out li r12, 12 stvewx v0, 0, $out # some (or all) are redundant stvewx v0, r10, $out stvewx v0, r11, $out stvewx v0, r12, $out b Lschedule_mangle_done .align 4 Lschedule_mangle_last_dec: lvx $iptlo, r11, r12 # reload $ipt lvx $ipthi, r9, r12 addi $out, $out, -16 # add \$-16, %rdx vxor v0, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform # output transform #stvx v0, r0, $out # vmovdqu %xmm0, (%rdx) # save last key addi r9, $out, -15 # -15 is not typo vperm v0, v0, v0, $outperm # rotate right/left li r10, 4 vsel v2, $outhead, v0, $outmask li r11, 8 stvx v2, 0, $out li r12, 12 stvewx v0, 0, r9 # some (or all) are redundant stvewx v0, r10, r9 stvewx v0, r11, r9 stvewx v0, r12, r9 Lschedule_mangle_done: mtlr r7 # cleanup vxor v0, v0, v0 # vpxor %xmm0, %xmm0, %xmm0 vxor v1, v1, v1 # vpxor %xmm1, %xmm1, %xmm1 vxor v2, v2, v2 # vpxor %xmm2, %xmm2, %xmm2 vxor v3, v3, v3 # vpxor %xmm3, %xmm3, %xmm3 vxor v4, v4, v4 # vpxor %xmm4, %xmm4, %xmm4 vxor v5, v5, v5 # vpxor %xmm5, %xmm5, %xmm5 vxor v6, v6, v6 # vpxor %xmm6, %xmm6, %xmm6 vxor v7, v7, v7 # vpxor %xmm7, %xmm7, %xmm7 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_192_smear ## ## Smear the short, low side in the 192-bit key schedule. ## ## Inputs: ## %xmm7: high side, b a x y ## %xmm6: low side, d c 0 0 ## %xmm13: 0 ## ## Outputs: ## %xmm6: b+c+d b+c 0 0 ## %xmm0: b+c+d b+c b a ## .align 4 _vpaes_schedule_192_smear: ?vspltw v0, v7, 3 ?vsldoi v1, v9, v6, 12 # vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 ?vsldoi v0, v7, v0, 8 # vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a vxor v6, v6, v1 # vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0 vxor v6, v6, v0 # vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a vmr v0, v6 ?vsldoi v6, v6, v9, 8 ?vsldoi v6, v9, v6, 8 # clobber low side with zeros blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_round ## ## Runs one main round of the key schedule on %xmm0, %xmm7 ## ## Specifically, runs subbytes on the high dword of %xmm0 ## then rotates it by one byte and xors into the low dword of ## %xmm7. ## ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for ## next rcon. ## ## Smears the dwords of %xmm7 by xoring the low into the ## second low, result into third, result into highest. ## ## Returns results in %xmm7 = %xmm0. ## Clobbers %xmm1-%xmm4, %r11. ## .align 4 _vpaes_schedule_round: # extract rcon from xmm8 #vxor v4, v4, v4 # vpxor %xmm4, %xmm4, %xmm4 ?vsldoi v1, $rcon, v9, 15 # vpalignr \$15, %xmm8, %xmm4, %xmm1 ?vsldoi $rcon, $rcon, $rcon, 15 # vpalignr \$15, %xmm8, %xmm8, %xmm8 vxor v7, v7, v1 # vpxor %xmm1, %xmm7, %xmm7 # rotate ?vspltw v0, v0, 3 # vpshufd \$0xFF, %xmm0, %xmm0 ?vsldoi v0, v0, v0, 1 # vpalignr \$1, %xmm0, %xmm0, %xmm0 # fall through... # low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: # smear xmm7 ?vsldoi v1, v9, v7, 12 # vpslldq \$4, %xmm7, %xmm1 vxor v7, v7, v1 # vpxor %xmm1, %xmm7, %xmm7 vspltisb v1, 0x0f # 0x0f..0f ?vsldoi v4, v9, v7, 8 # vpslldq \$8, %xmm7, %xmm4 # subbytes vand v1, v1, v0 # vpand %xmm9, %xmm0, %xmm1 # 0 = k vsrb v0, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i vxor v7, v7, v4 # vpxor %xmm4, %xmm7, %xmm7 vperm v2, $invhi, v9, v1 # vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vxor v1, v1, v0 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j vperm v3, $invlo, v9, v0 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vperm v4, $invlo, v9, v1 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vxor v7, v7, v26 # vpxor .Lk_s63(%rip), %xmm7, %xmm7 vperm v3, $invlo, v9, v3 # vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak vxor v4, v4, v2 # vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vperm v2, $invlo, v9, v4 # vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak vxor v3, v3, v1 # vpxor %xmm1, %xmm3, %xmm3 # 2 = io vxor v2, v2, v0 # vpxor %xmm0, %xmm2, %xmm2 # 3 = jo vperm v4, v15, v9, v3 # vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou vperm v1, v14, v9, v2 # vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t vxor v1, v1, v4 # vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output # add in smeared stuff vxor v0, v1, v7 # vpxor %xmm7, %xmm1, %xmm0 vxor v7, v1, v7 # vmovdqa %xmm0, %xmm7 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_transform ## ## Linear-transform %xmm0 according to tables at (%r11) ## ## Requires that %xmm9 = 0x0F0F... as in preheat ## Output in %xmm0 ## Clobbers %xmm2 ## .align 4 _vpaes_schedule_transform: #vand v1, v0, v9 # vpand %xmm9, %xmm0, %xmm1 vsrb v2, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # vmovdqa (%r11), %xmm2 # lo vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm2 # vmovdqa 16(%r11), %xmm1 # hi vperm v2, $ipthi, $ipthi, v2 # vpshufb %xmm0, %xmm1, %xmm0 vxor v0, v0, v2 # vpxor %xmm2, %xmm0, %xmm0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_mangle ## ## Mangle xmm0 from (basis-transformed) standard version ## to our version. ## ## On encrypt, ## xor with 0x63 ## multiply by circulant 0,1,1,1 ## apply shiftrows transform ## ## On decrypt, ## xor with 0x63 ## multiply by "inverse mixcolumns" circulant E,B,D,9 ## deskew ## apply shiftrows transform ## ## ## Writes out to (%rdx), and increments or decrements it ## Keeps track of round number mod 4 in %r8 ## Preserves xmm0 ## Clobbers xmm1-xmm5 ## .align 4 _vpaes_schedule_mangle: #vmr v4, v0 # vmovdqa %xmm0, %xmm4 # save xmm0 for later # vmovdqa .Lk_mc_forward(%rip),%xmm5 bne $dir, Lschedule_mangle_dec # encrypting vxor v4, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm4 addi $out, $out, 16 # add \$16, %rdx vperm v4, v4, v4, v25 # vpshufb %xmm5, %xmm4, %xmm4 vperm v1, v4, v4, v25 # vpshufb %xmm5, %xmm4, %xmm1 vperm v3, v1, v1, v25 # vpshufb %xmm5, %xmm1, %xmm3 vxor v4, v4, v1 # vpxor %xmm1, %xmm4, %xmm4 lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1 vxor v3, v3, v4 # vpxor %xmm4, %xmm3, %xmm3 vperm v3, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3 addi r8, r8, -16 # add \$-16, %r8 andi. r8, r8, 0x30 # and \$0x30, %r8 #stvx v3, 0, $out # vmovdqu %xmm3, (%rdx) vperm v1, v3, v3, $outperm # rotate right/left vsel v2, $outhead, v1, $outmask vmr $outhead, v1 stvx v2, 0, $out blr .align 4 Lschedule_mangle_dec: # inverse mix columns # lea .Lk_dksd(%rip),%r11 vsrb v1, v0, v8 # vpsrlb \$4, %xmm4, %xmm1 # 1 = hi #and v4, v0, v9 # vpand %xmm9, %xmm4, %xmm4 # 4 = lo # vmovdqa 0x00(%r11), %xmm2 vperm v2, v16, v16, v0 # vpshufb %xmm4, %xmm2, %xmm2 # vmovdqa 0x10(%r11), %xmm3 vperm v3, v17, v17, v1 # vpshufb %xmm1, %xmm3, %xmm3 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3 # vmovdqa 0x20(%r11), %xmm2 vperm v2, v18, v18, v0 # vpshufb %xmm4, %xmm2, %xmm2 vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2 # vmovdqa 0x30(%r11), %xmm3 vperm v3, v19, v19, v1 # vpshufb %xmm1, %xmm3, %xmm3 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3 # vmovdqa 0x40(%r11), %xmm2 vperm v2, v20, v20, v0 # vpshufb %xmm4, %xmm2, %xmm2 vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2 # vmovdqa 0x50(%r11), %xmm3 vperm v3, v21, v21, v1 # vpshufb %xmm1, %xmm3, %xmm3 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # vmovdqa 0x60(%r11), %xmm2 vperm v2, v22, v22, v0 # vpshufb %xmm4, %xmm2, %xmm2 vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3 # vmovdqa 0x70(%r11), %xmm4 vperm v4, v23, v23, v1 # vpshufb %xmm1, %xmm4, %xmm4 lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1 vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2 vxor v3, v4, v2 # vpxor %xmm2, %xmm4, %xmm3 addi $out, $out, -16 # add \$-16, %rdx vperm v3, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3 addi r8, r8, -16 # add \$-16, %r8 andi. r8, r8, 0x30 # and \$0x30, %r8 #stvx v3, 0, $out # vmovdqu %xmm3, (%rdx) vperm v1, v3, v3, $outperm # rotate right/left vsel v2, $outhead, v1, $outmask vmr $outhead, v1 stvx v2, 0, $out blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .globl .vpaes_set_encrypt_key .align 5 .vpaes_set_encrypt_key: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r0 mfspr r6, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r6,`$FRAME-4`($sp) # save vrsave li r7, -1 $PUSH r0, `$FRAME+$LRSAVE`($sp) mtspr 256, r7 # preserve all AltiVec registers srwi r9, $bits, 5 # shr \$5,%eax addi r9, r9, 6 # add \$5,%eax stw r9, 240($out) # mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; cmplw $dir, $bits, $bits # set encrypt direction li r8, 0x30 # mov \$0x30,%r8d bl _vpaes_schedule_core $POP r0, `$FRAME+$LRSAVE`($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtspr 256, r6 # restore vrsave mtlr r0 xor r3, r3, r3 lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_set_encrypt_key,.-.vpaes_set_encrypt_key .globl .vpaes_set_decrypt_key .align 4 .vpaes_set_decrypt_key: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r0 mfspr r6, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r6,`$FRAME-4`($sp) # save vrsave li r7, -1 $PUSH r0, `$FRAME+$LRSAVE`($sp) mtspr 256, r7 # preserve all AltiVec registers srwi r9, $bits, 5 # shr \$5,%eax addi r9, r9, 6 # add \$5,%eax stw r9, 240($out) # mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; slwi r9, r9, 4 # shl \$4,%eax add $out, $out, r9 # lea (%rdx,%rax),%rdx cmplwi $dir, $bits, 0 # set decrypt direction srwi r8, $bits, 1 # shr \$1,%r8d andi. r8, r8, 32 # and \$32,%r8d xori r8, r8, 32 # xor \$32,%r8d # nbits==192?0:32 bl _vpaes_schedule_core $POP r0, `$FRAME+$LRSAVE`($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtspr 256, r6 # restore vrsave mtlr r0 xor r3, r3, r3 lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_set_decrypt_key,.-.vpaes_set_decrypt_key ___ } my $consts=1; foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; # constants table endian-specific conversion if ($consts && m/\.long\s+(.+)\s+(\?[a-z]*)$/o) { my $conv=$2; my @bytes=(); # convert to endian-agnostic format foreach (split(/,\s+/,$1)) { my $l = /^0/?oct:int; push @bytes,($l>>24)&0xff,($l>>16)&0xff,($l>>8)&0xff,$l&0xff; } # little-endian conversion if ($flavour =~ /le$/o) { SWITCH: for($conv) { /\?inv/ && do { @bytes=map($_^0xf,@bytes); last; }; /\?rev/ && do { @bytes=reverse(@bytes); last; }; } } #emit print ".byte\t",join(',',map (sprintf("0x%02x",$_),@bytes)),"\n"; next; } $consts=0 if (m/Lconsts:/o); # end of table # instructions prefixed with '?' are endian-specific and need # to be adjusted accordingly... if ($flavour =~ /le$/o) { # little-endian s/\?lvsr/lvsl/o or s/\?lvsl/lvsr/o or s/\?(vperm\s+v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+)/$1$3$2$4/o or s/\?(vsldoi\s+v[0-9]+,\s*)(v[0-9]+,)\s*(v[0-9]+,\s*)([0-9]+)/$1$3$2 16-$4/o or s/\?(vspltw\s+v[0-9]+,\s*)(v[0-9]+,)\s*([0-9])/$1$2 3-$3/o; } else { # big-endian s/\?([a-z]+)/$1/o; } print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/vpaes-x86.pl000066400000000000000000000667151364063235100203330ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ###################################################################### ## Constant-time SSSE3 AES core implementation. ## version 0.1 ## ## By Mike Hamburg (Stanford University), 2009 ## Public domain. ## ## For details see http://shiftleft.org/papers/vector_aes/ and ## http://crypto.stanford.edu/vpaes/. ###################################################################### # September 2011. # # Port vpaes-x86_64.pl as 32-bit "almost" drop-in replacement for # aes-586.pl. "Almost" refers to the fact that AES_cbc_encrypt # doesn't handle partial vectors (doesn't have to if called from # EVP only). "Drop-in" implies that this module doesn't share key # schedule structure with the original nor does it make assumption # about its alignment... # # Performance summary. aes-586.pl column lists large-block CBC # encrypt/decrypt/with-hyper-threading-off(*) results in cycles per # byte processed with 128-bit key, and vpaes-x86.pl column - [also # large-block CBC] encrypt/decrypt. # # aes-586.pl vpaes-x86.pl # # Core 2(**) 28.1/41.4/18.3 21.9/25.2(***) # Nehalem 27.9/40.4/18.1 10.2/11.9 # Atom 70.7/92.1/60.1 61.1/75.4(***) # Silvermont 45.4/62.9/24.1 49.2/61.1(***) # # (*) "Hyper-threading" in the context refers rather to cache shared # among multiple cores, than to specifically Intel HTT. As vast # majority of contemporary cores share cache, slower code path # is common place. In other words "with-hyper-threading-off" # results are presented mostly for reference purposes. # # (**) "Core 2" refers to initial 65nm design, a.k.a. Conroe. # # (***) Less impressive improvement on Core 2 and Atom is due to slow # pshufb, yet it's respectable +28%/64% improvement on Core 2 # and +15% on Atom (as implied, over "hyper-threading-safe" # code path). # # $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open OUT,">$output"; *STDOUT=*OUT; &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); $PREFIX="vpaes"; my ($round, $base, $magic, $key, $const, $inp, $out)= ("eax", "ebx", "ecx", "edx","ebp", "esi","edi"); &static_label("_vpaes_consts"); &static_label("_vpaes_schedule_low_round"); &set_label("_vpaes_consts",64); $k_inv=-0x30; # inv, inva &data_word(0x0D080180,0x0E05060F,0x0A0B0C02,0x04070309); &data_word(0x0F0B0780,0x01040A06,0x02050809,0x030D0E0C); $k_s0F=-0x10; # s0F &data_word(0x0F0F0F0F,0x0F0F0F0F,0x0F0F0F0F,0x0F0F0F0F); $k_ipt=0x00; # input transform (lo, hi) &data_word(0x5A2A7000,0xC2B2E898,0x52227808,0xCABAE090); &data_word(0x317C4D00,0x4C01307D,0xB0FDCC81,0xCD80B1FC); $k_sb1=0x20; # sb1u, sb1t &data_word(0xCB503E00,0xB19BE18F,0x142AF544,0xA5DF7A6E); &data_word(0xFAE22300,0x3618D415,0x0D2ED9EF,0x3BF7CCC1); $k_sb2=0x40; # sb2u, sb2t &data_word(0x0B712400,0xE27A93C6,0xBC982FCD,0x5EB7E955); &data_word(0x0AE12900,0x69EB8840,0xAB82234A,0xC2A163C8); $k_sbo=0x60; # sbou, sbot &data_word(0x6FBDC700,0xD0D26D17,0xC502A878,0x15AABF7A); &data_word(0x5FBB6A00,0xCFE474A5,0x412B35FA,0x8E1E90D1); $k_mc_forward=0x80; # mc_forward &data_word(0x00030201,0x04070605,0x080B0A09,0x0C0F0E0D); &data_word(0x04070605,0x080B0A09,0x0C0F0E0D,0x00030201); &data_word(0x080B0A09,0x0C0F0E0D,0x00030201,0x04070605); &data_word(0x0C0F0E0D,0x00030201,0x04070605,0x080B0A09); $k_mc_backward=0xc0; # mc_backward &data_word(0x02010003,0x06050407,0x0A09080B,0x0E0D0C0F); &data_word(0x0E0D0C0F,0x02010003,0x06050407,0x0A09080B); &data_word(0x0A09080B,0x0E0D0C0F,0x02010003,0x06050407); &data_word(0x06050407,0x0A09080B,0x0E0D0C0F,0x02010003); $k_sr=0x100; # sr &data_word(0x03020100,0x07060504,0x0B0A0908,0x0F0E0D0C); &data_word(0x0F0A0500,0x030E0904,0x07020D08,0x0B06010C); &data_word(0x0B020900,0x0F060D04,0x030A0108,0x070E050C); &data_word(0x070A0D00,0x0B0E0104,0x0F020508,0x0306090C); $k_rcon=0x140; # rcon &data_word(0xAF9DEEB6,0x1F8391B9,0x4D7C7D81,0x702A9808); $k_s63=0x150; # s63: all equal to 0x63 transformed &data_word(0x5B5B5B5B,0x5B5B5B5B,0x5B5B5B5B,0x5B5B5B5B); $k_opt=0x160; # output transform &data_word(0xD6B66000,0xFF9F4929,0xDEBE6808,0xF7974121); &data_word(0x50BCEC00,0x01EDBD51,0xB05C0CE0,0xE10D5DB1); $k_deskew=0x180; # deskew tables: inverts the sbox's "skew" &data_word(0x47A4E300,0x07E4A340,0x5DBEF91A,0x1DFEB95A); &data_word(0x83EA6900,0x5F36B5DC,0xF49D1E77,0x2841C2AB); ## ## Decryption stuff ## Key schedule constants ## $k_dksd=0x1a0; # decryption key schedule: invskew x*D &data_word(0xA3E44700,0xFEB91A5D,0x5A1DBEF9,0x0740E3A4); &data_word(0xB5368300,0x41C277F4,0xAB289D1E,0x5FDC69EA); $k_dksb=0x1c0; # decryption key schedule: invskew x*B &data_word(0x8550D500,0x9A4FCA1F,0x1CC94C99,0x03D65386); &data_word(0xB6FC4A00,0x115BEDA7,0x7E3482C8,0xD993256F); $k_dkse=0x1e0; # decryption key schedule: invskew x*E + 0x63 &data_word(0x1FC9D600,0xD5031CCA,0x994F5086,0x53859A4C); &data_word(0x4FDC7BE8,0xA2319605,0x20B31487,0xCD5EF96A); $k_dks9=0x200; # decryption key schedule: invskew x*9 &data_word(0x7ED9A700,0xB6116FC8,0x82255BFC,0x4AED9334); &data_word(0x27143300,0x45765162,0xE9DAFDCE,0x8BB89FAC); ## ## Decryption stuff ## Round function constants ## $k_dipt=0x220; # decryption input transform &data_word(0x0B545F00,0x0F505B04,0x114E451A,0x154A411E); &data_word(0x60056500,0x86E383E6,0xF491F194,0x12771772); $k_dsb9=0x240; # decryption sbox output *9*u, *9*t &data_word(0x9A86D600,0x851C0353,0x4F994CC9,0xCAD51F50); &data_word(0xECD74900,0xC03B1789,0xB2FBA565,0x725E2C9E); $k_dsbd=0x260; # decryption sbox output *D*u, *D*t &data_word(0xE6B1A200,0x7D57CCDF,0x882A4439,0xF56E9B13); &data_word(0x24C6CB00,0x3CE2FAF7,0x15DEEFD3,0x2931180D); $k_dsbb=0x280; # decryption sbox output *B*u, *B*t &data_word(0x96B44200,0xD0226492,0xB0F2D404,0x602646F6); &data_word(0xCD596700,0xC19498A6,0x3255AA6B,0xF3FF0C3E); $k_dsbe=0x2a0; # decryption sbox output *E*u, *E*t &data_word(0x26D4D000,0x46F29296,0x64B4F6B0,0x22426004); &data_word(0xFFAAC100,0x0C55A6CD,0x98593E32,0x9467F36B); $k_dsbo=0x2c0; # decryption sbox final output &data_word(0x7EF94000,0x1387EA53,0xD4943E2D,0xC7AA6DB9); &data_word(0x93441D00,0x12D7560F,0xD8C58E9C,0xCA4B8159); &asciz ("Vector Permutation AES for x86/SSSE3, Mike Hamburg (Stanford University)"); &align (64); &function_begin_B("_vpaes_preheat"); &add ($const,&DWP(0,"esp")); &movdqa ("xmm7",&QWP($k_inv,$const)); &movdqa ("xmm6",&QWP($k_s0F,$const)); &ret (); &function_end_B("_vpaes_preheat"); ## ## _aes_encrypt_core ## ## AES-encrypt %xmm0. ## ## Inputs: ## %xmm0 = input ## %xmm6-%xmm7 as in _vpaes_preheat ## (%edx) = scheduled keys ## ## Output in %xmm0 ## Clobbers %xmm1-%xmm5, %eax, %ebx, %ecx, %edx ## ## &function_begin_B("_vpaes_encrypt_core"); &mov ($magic,16); &mov ($round,&DWP(240,$key)); &movdqa ("xmm1","xmm6") &movdqa ("xmm2",&QWP($k_ipt,$const)); &pandn ("xmm1","xmm0"); &pand ("xmm0","xmm6"); &movdqu ("xmm5",&QWP(0,$key)); &pshufb ("xmm2","xmm0"); &movdqa ("xmm0",&QWP($k_ipt+16,$const)); &pxor ("xmm2","xmm5"); &psrld ("xmm1",4); &add ($key,16); &pshufb ("xmm0","xmm1"); &lea ($base,&DWP($k_mc_backward,$const)); &pxor ("xmm0","xmm2"); &jmp (&label("enc_entry")); &set_label("enc_loop",16); # middle of middle round &movdqa ("xmm4",&QWP($k_sb1,$const)); # 4 : sb1u &movdqa ("xmm0",&QWP($k_sb1+16,$const));# 0 : sb1t &pshufb ("xmm4","xmm2"); # 4 = sb1u &pshufb ("xmm0","xmm3"); # 0 = sb1t &pxor ("xmm4","xmm5"); # 4 = sb1u + k &movdqa ("xmm5",&QWP($k_sb2,$const)); # 4 : sb2u &pxor ("xmm0","xmm4"); # 0 = A &movdqa ("xmm1",&QWP(-0x40,$base,$magic));# .Lk_mc_forward[] &pshufb ("xmm5","xmm2"); # 4 = sb2u &movdqa ("xmm2",&QWP($k_sb2+16,$const));# 2 : sb2t &movdqa ("xmm4",&QWP(0,$base,$magic)); # .Lk_mc_backward[] &pshufb ("xmm2","xmm3"); # 2 = sb2t &movdqa ("xmm3","xmm0"); # 3 = A &pxor ("xmm2","xmm5"); # 2 = 2A &pshufb ("xmm0","xmm1"); # 0 = B &add ($key,16); # next key &pxor ("xmm0","xmm2"); # 0 = 2A+B &pshufb ("xmm3","xmm4"); # 3 = D &add ($magic,16); # next mc &pxor ("xmm3","xmm0"); # 3 = 2A+B+D &pshufb ("xmm0","xmm1"); # 0 = 2B+C &and ($magic,0x30); # ... mod 4 &sub ($round,1); # nr-- &pxor ("xmm0","xmm3"); # 0 = 2A+3B+C+D &set_label("enc_entry"); # top of round &movdqa ("xmm1","xmm6"); # 1 : i &movdqa ("xmm5",&QWP($k_inv+16,$const));# 2 : a/k &pandn ("xmm1","xmm0"); # 1 = i<<4 &psrld ("xmm1",4); # 1 = i &pand ("xmm0","xmm6"); # 0 = k &pshufb ("xmm5","xmm0"); # 2 = a/k &movdqa ("xmm3","xmm7"); # 3 : 1/i &pxor ("xmm0","xmm1"); # 0 = j &pshufb ("xmm3","xmm1"); # 3 = 1/i &movdqa ("xmm4","xmm7"); # 4 : 1/j &pxor ("xmm3","xmm5"); # 3 = iak = 1/i + a/k &pshufb ("xmm4","xmm0"); # 4 = 1/j &movdqa ("xmm2","xmm7"); # 2 : 1/iak &pxor ("xmm4","xmm5"); # 4 = jak = 1/j + a/k &pshufb ("xmm2","xmm3"); # 2 = 1/iak &movdqa ("xmm3","xmm7"); # 3 : 1/jak &pxor ("xmm2","xmm0"); # 2 = io &pshufb ("xmm3","xmm4"); # 3 = 1/jak &movdqu ("xmm5",&QWP(0,$key)); &pxor ("xmm3","xmm1"); # 3 = jo &jnz (&label("enc_loop")); # middle of last round &movdqa ("xmm4",&QWP($k_sbo,$const)); # 3 : sbou .Lk_sbo &movdqa ("xmm0",&QWP($k_sbo+16,$const));# 3 : sbot .Lk_sbo+16 &pshufb ("xmm4","xmm2"); # 4 = sbou &pxor ("xmm4","xmm5"); # 4 = sb1u + k &pshufb ("xmm0","xmm3"); # 0 = sb1t &movdqa ("xmm1",&QWP(0x40,$base,$magic));# .Lk_sr[] &pxor ("xmm0","xmm4"); # 0 = A &pshufb ("xmm0","xmm1"); &ret (); &function_end_B("_vpaes_encrypt_core"); ## ## Decryption core ## ## Same API as encryption core. ## &function_begin_B("_vpaes_decrypt_core"); &lea ($base,&DWP($k_dsbd,$const)); &mov ($round,&DWP(240,$key)); &movdqa ("xmm1","xmm6"); &movdqa ("xmm2",&QWP($k_dipt-$k_dsbd,$base)); &pandn ("xmm1","xmm0"); &mov ($magic,$round); &psrld ("xmm1",4) &movdqu ("xmm5",&QWP(0,$key)); &shl ($magic,4); &pand ("xmm0","xmm6"); &pshufb ("xmm2","xmm0"); &movdqa ("xmm0",&QWP($k_dipt-$k_dsbd+16,$base)); &xor ($magic,0x30); &pshufb ("xmm0","xmm1"); &and ($magic,0x30); &pxor ("xmm2","xmm5"); &movdqa ("xmm5",&QWP($k_mc_forward+48,$const)); &pxor ("xmm0","xmm2"); &add ($key,16); &lea ($magic,&DWP($k_sr-$k_dsbd,$base,$magic)); &jmp (&label("dec_entry")); &set_label("dec_loop",16); ## ## Inverse mix columns ## &movdqa ("xmm4",&QWP(-0x20,$base)); # 4 : sb9u &movdqa ("xmm1",&QWP(-0x10,$base)); # 0 : sb9t &pshufb ("xmm4","xmm2"); # 4 = sb9u &pshufb ("xmm1","xmm3"); # 0 = sb9t &pxor ("xmm0","xmm4"); &movdqa ("xmm4",&QWP(0,$base)); # 4 : sbdu &pxor ("xmm0","xmm1"); # 0 = ch &movdqa ("xmm1",&QWP(0x10,$base)); # 0 : sbdt &pshufb ("xmm4","xmm2"); # 4 = sbdu &pshufb ("xmm0","xmm5"); # MC ch &pshufb ("xmm1","xmm3"); # 0 = sbdt &pxor ("xmm0","xmm4"); # 4 = ch &movdqa ("xmm4",&QWP(0x20,$base)); # 4 : sbbu &pxor ("xmm0","xmm1"); # 0 = ch &movdqa ("xmm1",&QWP(0x30,$base)); # 0 : sbbt &pshufb ("xmm4","xmm2"); # 4 = sbbu &pshufb ("xmm0","xmm5"); # MC ch &pshufb ("xmm1","xmm3"); # 0 = sbbt &pxor ("xmm0","xmm4"); # 4 = ch &movdqa ("xmm4",&QWP(0x40,$base)); # 4 : sbeu &pxor ("xmm0","xmm1"); # 0 = ch &movdqa ("xmm1",&QWP(0x50,$base)); # 0 : sbet &pshufb ("xmm4","xmm2"); # 4 = sbeu &pshufb ("xmm0","xmm5"); # MC ch &pshufb ("xmm1","xmm3"); # 0 = sbet &pxor ("xmm0","xmm4"); # 4 = ch &add ($key,16); # next round key &palignr("xmm5","xmm5",12); &pxor ("xmm0","xmm1"); # 0 = ch &sub ($round,1); # nr-- &set_label("dec_entry"); # top of round &movdqa ("xmm1","xmm6"); # 1 : i &movdqa ("xmm2",&QWP($k_inv+16,$const));# 2 : a/k &pandn ("xmm1","xmm0"); # 1 = i<<4 &pand ("xmm0","xmm6"); # 0 = k &psrld ("xmm1",4); # 1 = i &pshufb ("xmm2","xmm0"); # 2 = a/k &movdqa ("xmm3","xmm7"); # 3 : 1/i &pxor ("xmm0","xmm1"); # 0 = j &pshufb ("xmm3","xmm1"); # 3 = 1/i &movdqa ("xmm4","xmm7"); # 4 : 1/j &pxor ("xmm3","xmm2"); # 3 = iak = 1/i + a/k &pshufb ("xmm4","xmm0"); # 4 = 1/j &pxor ("xmm4","xmm2"); # 4 = jak = 1/j + a/k &movdqa ("xmm2","xmm7"); # 2 : 1/iak &pshufb ("xmm2","xmm3"); # 2 = 1/iak &movdqa ("xmm3","xmm7"); # 3 : 1/jak &pxor ("xmm2","xmm0"); # 2 = io &pshufb ("xmm3","xmm4"); # 3 = 1/jak &movdqu ("xmm0",&QWP(0,$key)); &pxor ("xmm3","xmm1"); # 3 = jo &jnz (&label("dec_loop")); # middle of last round &movdqa ("xmm4",&QWP(0x60,$base)); # 3 : sbou &pshufb ("xmm4","xmm2"); # 4 = sbou &pxor ("xmm4","xmm0"); # 4 = sb1u + k &movdqa ("xmm0",&QWP(0x70,$base)); # 0 : sbot &movdqa ("xmm2",&QWP(0,$magic)); &pshufb ("xmm0","xmm3"); # 0 = sb1t &pxor ("xmm0","xmm4"); # 0 = A &pshufb ("xmm0","xmm2"); &ret (); &function_end_B("_vpaes_decrypt_core"); ######################################################## ## ## ## AES key schedule ## ## ## ######################################################## &function_begin_B("_vpaes_schedule_core"); &add ($const,&DWP(0,"esp")); &movdqu ("xmm0",&QWP(0,$inp)); # load key (unaligned) &movdqa ("xmm2",&QWP($k_rcon,$const)); # load rcon # input transform &movdqa ("xmm3","xmm0"); &lea ($base,&DWP($k_ipt,$const)); &movdqa (&QWP(4,"esp"),"xmm2"); # xmm8 &call ("_vpaes_schedule_transform"); &movdqa ("xmm7","xmm0"); &test ($out,$out); &jnz (&label("schedule_am_decrypting")); # encrypting, output zeroth round key after transform &movdqu (&QWP(0,$key),"xmm0"); &jmp (&label("schedule_go")); &set_label("schedule_am_decrypting"); # decrypting, output zeroth round key after shiftrows &movdqa ("xmm1",&QWP($k_sr,$const,$magic)); &pshufb ("xmm3","xmm1"); &movdqu (&QWP(0,$key),"xmm3"); &xor ($magic,0x30); &set_label("schedule_go"); &cmp ($round,192); &ja (&label("schedule_256")); &je (&label("schedule_192")); # 128: fall though ## ## .schedule_128 ## ## 128-bit specific part of key schedule. ## ## This schedule is really simple, because all its parts ## are accomplished by the subroutines. ## &set_label("schedule_128"); &mov ($round,10); &set_label("loop_schedule_128"); &call ("_vpaes_schedule_round"); &dec ($round); &jz (&label("schedule_mangle_last")); &call ("_vpaes_schedule_mangle"); # write output &jmp (&label("loop_schedule_128")); ## ## .aes_schedule_192 ## ## 192-bit specific part of key schedule. ## ## The main body of this schedule is the same as the 128-bit ## schedule, but with more smearing. The long, high side is ## stored in %xmm7 as before, and the short, low side is in ## the high bits of %xmm6. ## ## This schedule is somewhat nastier, however, because each ## round produces 192 bits of key material, or 1.5 round keys. ## Therefore, on each cycle we do 2 rounds and produce 3 round ## keys. ## &set_label("schedule_192",16); &movdqu ("xmm0",&QWP(8,$inp)); # load key part 2 (very unaligned) &call ("_vpaes_schedule_transform"); # input transform &movdqa ("xmm6","xmm0"); # save short part &pxor ("xmm4","xmm4"); # clear 4 &movhlps("xmm6","xmm4"); # clobber low side with zeros &mov ($round,4); &set_label("loop_schedule_192"); &call ("_vpaes_schedule_round"); &palignr("xmm0","xmm6",8); &call ("_vpaes_schedule_mangle"); # save key n &call ("_vpaes_schedule_192_smear"); &call ("_vpaes_schedule_mangle"); # save key n+1 &call ("_vpaes_schedule_round"); &dec ($round); &jz (&label("schedule_mangle_last")); &call ("_vpaes_schedule_mangle"); # save key n+2 &call ("_vpaes_schedule_192_smear"); &jmp (&label("loop_schedule_192")); ## ## .aes_schedule_256 ## ## 256-bit specific part of key schedule. ## ## The structure here is very similar to the 128-bit ## schedule, but with an additional "low side" in ## %xmm6. The low side's rounds are the same as the ## high side's, except no rcon and no rotation. ## &set_label("schedule_256",16); &movdqu ("xmm0",&QWP(16,$inp)); # load key part 2 (unaligned) &call ("_vpaes_schedule_transform"); # input transform &mov ($round,7); &set_label("loop_schedule_256"); &call ("_vpaes_schedule_mangle"); # output low result &movdqa ("xmm6","xmm0"); # save cur_lo in xmm6 # high round &call ("_vpaes_schedule_round"); &dec ($round); &jz (&label("schedule_mangle_last")); &call ("_vpaes_schedule_mangle"); # low round. swap xmm7 and xmm6 &pshufd ("xmm0","xmm0",0xFF); &movdqa (&QWP(20,"esp"),"xmm7"); &movdqa ("xmm7","xmm6"); &call ("_vpaes_schedule_low_round"); &movdqa ("xmm7",&QWP(20,"esp")); &jmp (&label("loop_schedule_256")); ## ## .aes_schedule_mangle_last ## ## Mangler for last round of key schedule ## Mangles %xmm0 ## when encrypting, outputs out(%xmm0) ^ 63 ## when decrypting, outputs unskew(%xmm0) ## ## Always called right before return... jumps to cleanup and exits ## &set_label("schedule_mangle_last",16); # schedule last round key from xmm0 &lea ($base,&DWP($k_deskew,$const)); &test ($out,$out); &jnz (&label("schedule_mangle_last_dec")); # encrypting &movdqa ("xmm1",&QWP($k_sr,$const,$magic)); &pshufb ("xmm0","xmm1"); # output permute &lea ($base,&DWP($k_opt,$const)); # prepare to output transform &add ($key,32); &set_label("schedule_mangle_last_dec"); &add ($key,-16); &pxor ("xmm0",&QWP($k_s63,$const)); &call ("_vpaes_schedule_transform"); # output transform &movdqu (&QWP(0,$key),"xmm0"); # save last key # cleanup &pxor ("xmm0","xmm0"); &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &pxor ("xmm3","xmm3"); &pxor ("xmm4","xmm4"); &pxor ("xmm5","xmm5"); &pxor ("xmm6","xmm6"); &pxor ("xmm7","xmm7"); &ret (); &function_end_B("_vpaes_schedule_core"); ## ## .aes_schedule_192_smear ## ## Smear the short, low side in the 192-bit key schedule. ## ## Inputs: ## %xmm7: high side, b a x y ## %xmm6: low side, d c 0 0 ## %xmm13: 0 ## ## Outputs: ## %xmm6: b+c+d b+c 0 0 ## %xmm0: b+c+d b+c b a ## &function_begin_B("_vpaes_schedule_192_smear"); &pshufd ("xmm1","xmm6",0x80); # d c 0 0 -> c 0 0 0 &pshufd ("xmm0","xmm7",0xFE); # b a _ _ -> b b b a &pxor ("xmm6","xmm1"); # -> c+d c 0 0 &pxor ("xmm1","xmm1"); &pxor ("xmm6","xmm0"); # -> b+c+d b+c b a &movdqa ("xmm0","xmm6"); &movhlps("xmm6","xmm1"); # clobber low side with zeros &ret (); &function_end_B("_vpaes_schedule_192_smear"); ## ## .aes_schedule_round ## ## Runs one main round of the key schedule on %xmm0, %xmm7 ## ## Specifically, runs subbytes on the high dword of %xmm0 ## then rotates it by one byte and xors into the low dword of ## %xmm7. ## ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for ## next rcon. ## ## Smears the dwords of %xmm7 by xoring the low into the ## second low, result into third, result into highest. ## ## Returns results in %xmm7 = %xmm0. ## Clobbers %xmm1-%xmm5. ## &function_begin_B("_vpaes_schedule_round"); # extract rcon from xmm8 &movdqa ("xmm2",&QWP(8,"esp")); # xmm8 &pxor ("xmm1","xmm1"); &palignr("xmm1","xmm2",15); &palignr("xmm2","xmm2",15); &pxor ("xmm7","xmm1"); # rotate &pshufd ("xmm0","xmm0",0xFF); &palignr("xmm0","xmm0",1); # fall through... &movdqa (&QWP(8,"esp"),"xmm2"); # xmm8 # low round: same as high round, but no rotation and no rcon. &set_label("_vpaes_schedule_low_round"); # smear xmm7 &movdqa ("xmm1","xmm7"); &pslldq ("xmm7",4); &pxor ("xmm7","xmm1"); &movdqa ("xmm1","xmm7"); &pslldq ("xmm7",8); &pxor ("xmm7","xmm1"); &pxor ("xmm7",&QWP($k_s63,$const)); # subbyte &movdqa ("xmm4",&QWP($k_s0F,$const)); &movdqa ("xmm5",&QWP($k_inv,$const)); # 4 : 1/j &movdqa ("xmm1","xmm4"); &pandn ("xmm1","xmm0"); &psrld ("xmm1",4); # 1 = i &pand ("xmm0","xmm4"); # 0 = k &movdqa ("xmm2",&QWP($k_inv+16,$const));# 2 : a/k &pshufb ("xmm2","xmm0"); # 2 = a/k &pxor ("xmm0","xmm1"); # 0 = j &movdqa ("xmm3","xmm5"); # 3 : 1/i &pshufb ("xmm3","xmm1"); # 3 = 1/i &pxor ("xmm3","xmm2"); # 3 = iak = 1/i + a/k &movdqa ("xmm4","xmm5"); # 4 : 1/j &pshufb ("xmm4","xmm0"); # 4 = 1/j &pxor ("xmm4","xmm2"); # 4 = jak = 1/j + a/k &movdqa ("xmm2","xmm5"); # 2 : 1/iak &pshufb ("xmm2","xmm3"); # 2 = 1/iak &pxor ("xmm2","xmm0"); # 2 = io &movdqa ("xmm3","xmm5"); # 3 : 1/jak &pshufb ("xmm3","xmm4"); # 3 = 1/jak &pxor ("xmm3","xmm1"); # 3 = jo &movdqa ("xmm4",&QWP($k_sb1,$const)); # 4 : sbou &pshufb ("xmm4","xmm2"); # 4 = sbou &movdqa ("xmm0",&QWP($k_sb1+16,$const));# 0 : sbot &pshufb ("xmm0","xmm3"); # 0 = sb1t &pxor ("xmm0","xmm4"); # 0 = sbox output # add in smeared stuff &pxor ("xmm0","xmm7"); &movdqa ("xmm7","xmm0"); &ret (); &function_end_B("_vpaes_schedule_round"); ## ## .aes_schedule_transform ## ## Linear-transform %xmm0 according to tables at (%ebx) ## ## Output in %xmm0 ## Clobbers %xmm1, %xmm2 ## &function_begin_B("_vpaes_schedule_transform"); &movdqa ("xmm2",&QWP($k_s0F,$const)); &movdqa ("xmm1","xmm2"); &pandn ("xmm1","xmm0"); &psrld ("xmm1",4); &pand ("xmm0","xmm2"); &movdqa ("xmm2",&QWP(0,$base)); &pshufb ("xmm2","xmm0"); &movdqa ("xmm0",&QWP(16,$base)); &pshufb ("xmm0","xmm1"); &pxor ("xmm0","xmm2"); &ret (); &function_end_B("_vpaes_schedule_transform"); ## ## .aes_schedule_mangle ## ## Mangle xmm0 from (basis-transformed) standard version ## to our version. ## ## On encrypt, ## xor with 0x63 ## multiply by circulant 0,1,1,1 ## apply shiftrows transform ## ## On decrypt, ## xor with 0x63 ## multiply by "inverse mixcolumns" circulant E,B,D,9 ## deskew ## apply shiftrows transform ## ## ## Writes out to (%edx), and increments or decrements it ## Keeps track of round number mod 4 in %ecx ## Preserves xmm0 ## Clobbers xmm1-xmm5 ## &function_begin_B("_vpaes_schedule_mangle"); &movdqa ("xmm4","xmm0"); # save xmm0 for later &movdqa ("xmm5",&QWP($k_mc_forward,$const)); &test ($out,$out); &jnz (&label("schedule_mangle_dec")); # encrypting &add ($key,16); &pxor ("xmm4",&QWP($k_s63,$const)); &pshufb ("xmm4","xmm5"); &movdqa ("xmm3","xmm4"); &pshufb ("xmm4","xmm5"); &pxor ("xmm3","xmm4"); &pshufb ("xmm4","xmm5"); &pxor ("xmm3","xmm4"); &jmp (&label("schedule_mangle_both")); &set_label("schedule_mangle_dec",16); # inverse mix columns &movdqa ("xmm2",&QWP($k_s0F,$const)); &lea ($inp,&DWP($k_dksd,$const)); &movdqa ("xmm1","xmm2"); &pandn ("xmm1","xmm4"); &psrld ("xmm1",4); # 1 = hi &pand ("xmm4","xmm2"); # 4 = lo &movdqa ("xmm2",&QWP(0,$inp)); &pshufb ("xmm2","xmm4"); &movdqa ("xmm3",&QWP(0x10,$inp)); &pshufb ("xmm3","xmm1"); &pxor ("xmm3","xmm2"); &pshufb ("xmm3","xmm5"); &movdqa ("xmm2",&QWP(0x20,$inp)); &pshufb ("xmm2","xmm4"); &pxor ("xmm2","xmm3"); &movdqa ("xmm3",&QWP(0x30,$inp)); &pshufb ("xmm3","xmm1"); &pxor ("xmm3","xmm2"); &pshufb ("xmm3","xmm5"); &movdqa ("xmm2",&QWP(0x40,$inp)); &pshufb ("xmm2","xmm4"); &pxor ("xmm2","xmm3"); &movdqa ("xmm3",&QWP(0x50,$inp)); &pshufb ("xmm3","xmm1"); &pxor ("xmm3","xmm2"); &pshufb ("xmm3","xmm5"); &movdqa ("xmm2",&QWP(0x60,$inp)); &pshufb ("xmm2","xmm4"); &pxor ("xmm2","xmm3"); &movdqa ("xmm3",&QWP(0x70,$inp)); &pshufb ("xmm3","xmm1"); &pxor ("xmm3","xmm2"); &add ($key,-16); &set_label("schedule_mangle_both"); &movdqa ("xmm1",&QWP($k_sr,$const,$magic)); &pshufb ("xmm3","xmm1"); &add ($magic,-16); &and ($magic,0x30); &movdqu (&QWP(0,$key),"xmm3"); &ret (); &function_end_B("_vpaes_schedule_mangle"); # # Interface to OpenSSL # &function_begin("${PREFIX}_set_encrypt_key"); &mov ($inp,&wparam(0)); # inp &lea ($base,&DWP(-56,"esp")); &mov ($round,&wparam(1)); # bits &and ($base,-16); &mov ($key,&wparam(2)); # key &xchg ($base,"esp"); # alloca &mov (&DWP(48,"esp"),$base); &mov ($base,$round); &shr ($base,5); &add ($base,5); &mov (&DWP(240,$key),$base); # AES_KEY->rounds = nbits/32+5; &mov ($magic,0x30); &mov ($out,0); &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"))); &call ("_vpaes_schedule_core"); &set_label("pic_point"); &mov ("esp",&DWP(48,"esp")); &xor ("eax","eax"); &function_end("${PREFIX}_set_encrypt_key"); &function_begin("${PREFIX}_set_decrypt_key"); &mov ($inp,&wparam(0)); # inp &lea ($base,&DWP(-56,"esp")); &mov ($round,&wparam(1)); # bits &and ($base,-16); &mov ($key,&wparam(2)); # key &xchg ($base,"esp"); # alloca &mov (&DWP(48,"esp"),$base); &mov ($base,$round); &shr ($base,5); &add ($base,5); &mov (&DWP(240,$key),$base); # AES_KEY->rounds = nbits/32+5; &shl ($base,4); &lea ($key,&DWP(16,$key,$base)); &mov ($out,1); &mov ($magic,$round); &shr ($magic,1); &and ($magic,32); &xor ($magic,32); # nbist==192?0:32; &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"))); &call ("_vpaes_schedule_core"); &set_label("pic_point"); &mov ("esp",&DWP(48,"esp")); &xor ("eax","eax"); &function_end("${PREFIX}_set_decrypt_key"); &function_begin("${PREFIX}_encrypt"); &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"))); &call ("_vpaes_preheat"); &set_label("pic_point"); &mov ($inp,&wparam(0)); # inp &lea ($base,&DWP(-56,"esp")); &mov ($out,&wparam(1)); # out &and ($base,-16); &mov ($key,&wparam(2)); # key &xchg ($base,"esp"); # alloca &mov (&DWP(48,"esp"),$base); &movdqu ("xmm0",&QWP(0,$inp)); &call ("_vpaes_encrypt_core"); &movdqu (&QWP(0,$out),"xmm0"); &mov ("esp",&DWP(48,"esp")); &function_end("${PREFIX}_encrypt"); &function_begin("${PREFIX}_decrypt"); &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"))); &call ("_vpaes_preheat"); &set_label("pic_point"); &mov ($inp,&wparam(0)); # inp &lea ($base,&DWP(-56,"esp")); &mov ($out,&wparam(1)); # out &and ($base,-16); &mov ($key,&wparam(2)); # key &xchg ($base,"esp"); # alloca &mov (&DWP(48,"esp"),$base); &movdqu ("xmm0",&QWP(0,$inp)); &call ("_vpaes_decrypt_core"); &movdqu (&QWP(0,$out),"xmm0"); &mov ("esp",&DWP(48,"esp")); &function_end("${PREFIX}_decrypt"); &function_begin("${PREFIX}_cbc_encrypt"); &mov ($inp,&wparam(0)); # inp &mov ($out,&wparam(1)); # out &mov ($round,&wparam(2)); # len &mov ($key,&wparam(3)); # key &sub ($round,16); &jc (&label("cbc_abort")); &lea ($base,&DWP(-56,"esp")); &mov ($const,&wparam(4)); # ivp &and ($base,-16); &mov ($magic,&wparam(5)); # enc &xchg ($base,"esp"); # alloca &movdqu ("xmm1",&QWP(0,$const)); # load IV &sub ($out,$inp); &mov (&DWP(48,"esp"),$base); &mov (&DWP(0,"esp"),$out); # save out &mov (&DWP(4,"esp"),$key) # save key &mov (&DWP(8,"esp"),$const); # save ivp &mov ($out,$round); # $out works as $len &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"))); &call ("_vpaes_preheat"); &set_label("pic_point"); &cmp ($magic,0); &je (&label("cbc_dec_loop")); &jmp (&label("cbc_enc_loop")); &set_label("cbc_enc_loop",16); &movdqu ("xmm0",&QWP(0,$inp)); # load input &pxor ("xmm0","xmm1"); # inp^=iv &call ("_vpaes_encrypt_core"); &mov ($base,&DWP(0,"esp")); # restore out &mov ($key,&DWP(4,"esp")); # restore key &movdqa ("xmm1","xmm0"); &movdqu (&QWP(0,$base,$inp),"xmm0"); # write output &lea ($inp,&DWP(16,$inp)); &sub ($out,16); &jnc (&label("cbc_enc_loop")); &jmp (&label("cbc_done")); &set_label("cbc_dec_loop",16); &movdqu ("xmm0",&QWP(0,$inp)); # load input &movdqa (&QWP(16,"esp"),"xmm1"); # save IV &movdqa (&QWP(32,"esp"),"xmm0"); # save future IV &call ("_vpaes_decrypt_core"); &mov ($base,&DWP(0,"esp")); # restore out &mov ($key,&DWP(4,"esp")); # restore key &pxor ("xmm0",&QWP(16,"esp")); # out^=iv &movdqa ("xmm1",&QWP(32,"esp")); # load next IV &movdqu (&QWP(0,$base,$inp),"xmm0"); # write output &lea ($inp,&DWP(16,$inp)); &sub ($out,16); &jnc (&label("cbc_dec_loop")); &set_label("cbc_done"); &mov ($base,&DWP(8,"esp")); # restore ivp &mov ("esp",&DWP(48,"esp")); &movdqu (&QWP(0,$base),"xmm1"); # write IV &set_label("cbc_abort"); &function_end("${PREFIX}_cbc_encrypt"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/asm/vpaes-x86_64.pl000066400000000000000000000751641364063235100206420ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ###################################################################### ## Constant-time SSSE3 AES core implementation. ## version 0.1 ## ## By Mike Hamburg (Stanford University), 2009 ## Public domain. ## ## For details see http://shiftleft.org/papers/vector_aes/ and ## http://crypto.stanford.edu/vpaes/. ###################################################################### # September 2011. # # Interface to OpenSSL as "almost" drop-in replacement for # aes-x86_64.pl. "Almost" refers to the fact that AES_cbc_encrypt # doesn't handle partial vectors (doesn't have to if called from # EVP only). "Drop-in" implies that this module doesn't share key # schedule structure with the original nor does it make assumption # about its alignment... # # Performance summary. aes-x86_64.pl column lists large-block CBC # encrypt/decrypt/with-hyper-threading-off(*) results in cycles per # byte processed with 128-bit key, and vpaes-x86_64.pl column - # [also large-block CBC] encrypt/decrypt. # # aes-x86_64.pl vpaes-x86_64.pl # # Core 2(**) 29.6/41.1/14.3 21.9/25.2(***) # Nehalem 29.6/40.3/14.6 10.0/11.8 # Atom 57.3/74.2/32.1 60.9/77.2(***) # Silvermont 52.7/64.0/19.5 48.8/60.8(***) # Goldmont 38.9/49.0/17.8 10.6/12.6 # # (*) "Hyper-threading" in the context refers rather to cache shared # among multiple cores, than to specifically Intel HTT. As vast # majority of contemporary cores share cache, slower code path # is common place. In other words "with-hyper-threading-off" # results are presented mostly for reference purposes. # # (**) "Core 2" refers to initial 65nm design, a.k.a. Conroe. # # (***) Less impressive improvement on Core 2 and Atom is due to slow # pshufb, yet it's respectable +36%/62% improvement on Core 2 # (as implied, over "hyper-threading-safe" code path). # # $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $PREFIX="vpaes"; $code.=<<___; .text ## ## _aes_encrypt_core ## ## AES-encrypt %xmm0. ## ## Inputs: ## %xmm0 = input ## %xmm9-%xmm15 as in _vpaes_preheat ## (%rdx) = scheduled keys ## ## Output in %xmm0 ## Clobbers %xmm1-%xmm5, %r9, %r10, %r11, %rax ## Preserves %xmm6 - %xmm8 so you get some local vectors ## ## .type _vpaes_encrypt_core,\@abi-omnipotent .align 16 _vpaes_encrypt_core: .cfi_startproc mov %rdx, %r9 mov \$16, %r11 mov 240(%rdx),%eax movdqa %xmm9, %xmm1 movdqa .Lk_ipt(%rip), %xmm2 # iptlo pandn %xmm0, %xmm1 movdqu (%r9), %xmm5 # round0 key psrld \$4, %xmm1 pand %xmm9, %xmm0 pshufb %xmm0, %xmm2 movdqa .Lk_ipt+16(%rip), %xmm0 # ipthi pshufb %xmm1, %xmm0 pxor %xmm5, %xmm2 add \$16, %r9 pxor %xmm2, %xmm0 lea .Lk_mc_backward(%rip),%r10 jmp .Lenc_entry .align 16 .Lenc_loop: # middle of middle round movdqa %xmm13, %xmm4 # 4 : sb1u movdqa %xmm12, %xmm0 # 0 : sb1t pshufb %xmm2, %xmm4 # 4 = sb1u pshufb %xmm3, %xmm0 # 0 = sb1t pxor %xmm5, %xmm4 # 4 = sb1u + k movdqa %xmm15, %xmm5 # 4 : sb2u pxor %xmm4, %xmm0 # 0 = A movdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] pshufb %xmm2, %xmm5 # 4 = sb2u movdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] movdqa %xmm14, %xmm2 # 2 : sb2t pshufb %xmm3, %xmm2 # 2 = sb2t movdqa %xmm0, %xmm3 # 3 = A pxor %xmm5, %xmm2 # 2 = 2A pshufb %xmm1, %xmm0 # 0 = B add \$16, %r9 # next key pxor %xmm2, %xmm0 # 0 = 2A+B pshufb %xmm4, %xmm3 # 3 = D add \$16, %r11 # next mc pxor %xmm0, %xmm3 # 3 = 2A+B+D pshufb %xmm1, %xmm0 # 0 = 2B+C and \$0x30, %r11 # ... mod 4 sub \$1,%rax # nr-- pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D .Lenc_entry: # top of round movdqa %xmm9, %xmm1 # 1 : i movdqa %xmm11, %xmm5 # 2 : a/k pandn %xmm0, %xmm1 # 1 = i<<4 psrld \$4, %xmm1 # 1 = i pand %xmm9, %xmm0 # 0 = k pshufb %xmm0, %xmm5 # 2 = a/k movdqa %xmm10, %xmm3 # 3 : 1/i pxor %xmm1, %xmm0 # 0 = j pshufb %xmm1, %xmm3 # 3 = 1/i movdqa %xmm10, %xmm4 # 4 : 1/j pxor %xmm5, %xmm3 # 3 = iak = 1/i + a/k pshufb %xmm0, %xmm4 # 4 = 1/j movdqa %xmm10, %xmm2 # 2 : 1/iak pxor %xmm5, %xmm4 # 4 = jak = 1/j + a/k pshufb %xmm3, %xmm2 # 2 = 1/iak movdqa %xmm10, %xmm3 # 3 : 1/jak pxor %xmm0, %xmm2 # 2 = io pshufb %xmm4, %xmm3 # 3 = 1/jak movdqu (%r9), %xmm5 pxor %xmm1, %xmm3 # 3 = jo jnz .Lenc_loop # middle of last round movdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo movdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 pshufb %xmm2, %xmm4 # 4 = sbou pxor %xmm5, %xmm4 # 4 = sb1u + k pshufb %xmm3, %xmm0 # 0 = sb1t movdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] pxor %xmm4, %xmm0 # 0 = A pshufb %xmm1, %xmm0 ret .cfi_endproc .size _vpaes_encrypt_core,.-_vpaes_encrypt_core ## ## Decryption core ## ## Same API as encryption core. ## .type _vpaes_decrypt_core,\@abi-omnipotent .align 16 _vpaes_decrypt_core: .cfi_startproc mov %rdx, %r9 # load key mov 240(%rdx),%eax movdqa %xmm9, %xmm1 movdqa .Lk_dipt(%rip), %xmm2 # iptlo pandn %xmm0, %xmm1 mov %rax, %r11 psrld \$4, %xmm1 movdqu (%r9), %xmm5 # round0 key shl \$4, %r11 pand %xmm9, %xmm0 pshufb %xmm0, %xmm2 movdqa .Lk_dipt+16(%rip), %xmm0 # ipthi xor \$0x30, %r11 lea .Lk_dsbd(%rip),%r10 pshufb %xmm1, %xmm0 and \$0x30, %r11 pxor %xmm5, %xmm2 movdqa .Lk_mc_forward+48(%rip), %xmm5 pxor %xmm2, %xmm0 add \$16, %r9 add %r10, %r11 jmp .Ldec_entry .align 16 .Ldec_loop: ## ## Inverse mix columns ## movdqa -0x20(%r10),%xmm4 # 4 : sb9u movdqa -0x10(%r10),%xmm1 # 0 : sb9t pshufb %xmm2, %xmm4 # 4 = sb9u pshufb %xmm3, %xmm1 # 0 = sb9t pxor %xmm4, %xmm0 movdqa 0x00(%r10),%xmm4 # 4 : sbdu pxor %xmm1, %xmm0 # 0 = ch movdqa 0x10(%r10),%xmm1 # 0 : sbdt pshufb %xmm2, %xmm4 # 4 = sbdu pshufb %xmm5, %xmm0 # MC ch pshufb %xmm3, %xmm1 # 0 = sbdt pxor %xmm4, %xmm0 # 4 = ch movdqa 0x20(%r10),%xmm4 # 4 : sbbu pxor %xmm1, %xmm0 # 0 = ch movdqa 0x30(%r10),%xmm1 # 0 : sbbt pshufb %xmm2, %xmm4 # 4 = sbbu pshufb %xmm5, %xmm0 # MC ch pshufb %xmm3, %xmm1 # 0 = sbbt pxor %xmm4, %xmm0 # 4 = ch movdqa 0x40(%r10),%xmm4 # 4 : sbeu pxor %xmm1, %xmm0 # 0 = ch movdqa 0x50(%r10),%xmm1 # 0 : sbet pshufb %xmm2, %xmm4 # 4 = sbeu pshufb %xmm5, %xmm0 # MC ch pshufb %xmm3, %xmm1 # 0 = sbet pxor %xmm4, %xmm0 # 4 = ch add \$16, %r9 # next round key palignr \$12, %xmm5, %xmm5 pxor %xmm1, %xmm0 # 0 = ch sub \$1,%rax # nr-- .Ldec_entry: # top of round movdqa %xmm9, %xmm1 # 1 : i pandn %xmm0, %xmm1 # 1 = i<<4 movdqa %xmm11, %xmm2 # 2 : a/k psrld \$4, %xmm1 # 1 = i pand %xmm9, %xmm0 # 0 = k pshufb %xmm0, %xmm2 # 2 = a/k movdqa %xmm10, %xmm3 # 3 : 1/i pxor %xmm1, %xmm0 # 0 = j pshufb %xmm1, %xmm3 # 3 = 1/i movdqa %xmm10, %xmm4 # 4 : 1/j pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k pshufb %xmm0, %xmm4 # 4 = 1/j pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k movdqa %xmm10, %xmm2 # 2 : 1/iak pshufb %xmm3, %xmm2 # 2 = 1/iak movdqa %xmm10, %xmm3 # 3 : 1/jak pxor %xmm0, %xmm2 # 2 = io pshufb %xmm4, %xmm3 # 3 = 1/jak movdqu (%r9), %xmm0 pxor %xmm1, %xmm3 # 3 = jo jnz .Ldec_loop # middle of last round movdqa 0x60(%r10), %xmm4 # 3 : sbou pshufb %xmm2, %xmm4 # 4 = sbou pxor %xmm0, %xmm4 # 4 = sb1u + k movdqa 0x70(%r10), %xmm0 # 0 : sbot movdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 pshufb %xmm3, %xmm0 # 0 = sb1t pxor %xmm4, %xmm0 # 0 = A pshufb %xmm2, %xmm0 ret .cfi_endproc .size _vpaes_decrypt_core,.-_vpaes_decrypt_core ######################################################## ## ## ## AES key schedule ## ## ## ######################################################## .type _vpaes_schedule_core,\@abi-omnipotent .align 16 _vpaes_schedule_core: .cfi_startproc # rdi = key # rsi = size in bits # rdx = buffer # rcx = direction. 0=encrypt, 1=decrypt call _vpaes_preheat # load the tables movdqa .Lk_rcon(%rip), %xmm8 # load rcon movdqu (%rdi), %xmm0 # load key (unaligned) # input transform movdqa %xmm0, %xmm3 lea .Lk_ipt(%rip), %r11 call _vpaes_schedule_transform movdqa %xmm0, %xmm7 lea .Lk_sr(%rip),%r10 test %rcx, %rcx jnz .Lschedule_am_decrypting # encrypting, output zeroth round key after transform movdqu %xmm0, (%rdx) jmp .Lschedule_go .Lschedule_am_decrypting: # decrypting, output zeroth round key after shiftrows movdqa (%r8,%r10),%xmm1 pshufb %xmm1, %xmm3 movdqu %xmm3, (%rdx) xor \$0x30, %r8 .Lschedule_go: cmp \$192, %esi ja .Lschedule_256 je .Lschedule_192 # 128: fall though ## ## .schedule_128 ## ## 128-bit specific part of key schedule. ## ## This schedule is really simple, because all its parts ## are accomplished by the subroutines. ## .Lschedule_128: mov \$10, %esi .Loop_schedule_128: call _vpaes_schedule_round dec %rsi jz .Lschedule_mangle_last call _vpaes_schedule_mangle # write output jmp .Loop_schedule_128 ## ## .aes_schedule_192 ## ## 192-bit specific part of key schedule. ## ## The main body of this schedule is the same as the 128-bit ## schedule, but with more smearing. The long, high side is ## stored in %xmm7 as before, and the short, low side is in ## the high bits of %xmm6. ## ## This schedule is somewhat nastier, however, because each ## round produces 192 bits of key material, or 1.5 round keys. ## Therefore, on each cycle we do 2 rounds and produce 3 round ## keys. ## .align 16 .Lschedule_192: movdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) call _vpaes_schedule_transform # input transform movdqa %xmm0, %xmm6 # save short part pxor %xmm4, %xmm4 # clear 4 movhlps %xmm4, %xmm6 # clobber low side with zeros mov \$4, %esi .Loop_schedule_192: call _vpaes_schedule_round palignr \$8,%xmm6,%xmm0 call _vpaes_schedule_mangle # save key n call _vpaes_schedule_192_smear call _vpaes_schedule_mangle # save key n+1 call _vpaes_schedule_round dec %rsi jz .Lschedule_mangle_last call _vpaes_schedule_mangle # save key n+2 call _vpaes_schedule_192_smear jmp .Loop_schedule_192 ## ## .aes_schedule_256 ## ## 256-bit specific part of key schedule. ## ## The structure here is very similar to the 128-bit ## schedule, but with an additional "low side" in ## %xmm6. The low side's rounds are the same as the ## high side's, except no rcon and no rotation. ## .align 16 .Lschedule_256: movdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) call _vpaes_schedule_transform # input transform mov \$7, %esi .Loop_schedule_256: call _vpaes_schedule_mangle # output low result movdqa %xmm0, %xmm6 # save cur_lo in xmm6 # high round call _vpaes_schedule_round dec %rsi jz .Lschedule_mangle_last call _vpaes_schedule_mangle # low round. swap xmm7 and xmm6 pshufd \$0xFF, %xmm0, %xmm0 movdqa %xmm7, %xmm5 movdqa %xmm6, %xmm7 call _vpaes_schedule_low_round movdqa %xmm5, %xmm7 jmp .Loop_schedule_256 ## ## .aes_schedule_mangle_last ## ## Mangler for last round of key schedule ## Mangles %xmm0 ## when encrypting, outputs out(%xmm0) ^ 63 ## when decrypting, outputs unskew(%xmm0) ## ## Always called right before return... jumps to cleanup and exits ## .align 16 .Lschedule_mangle_last: # schedule last round key from xmm0 lea .Lk_deskew(%rip),%r11 # prepare to deskew test %rcx, %rcx jnz .Lschedule_mangle_last_dec # encrypting movdqa (%r8,%r10),%xmm1 pshufb %xmm1, %xmm0 # output permute lea .Lk_opt(%rip), %r11 # prepare to output transform add \$32, %rdx .Lschedule_mangle_last_dec: add \$-16, %rdx pxor .Lk_s63(%rip), %xmm0 call _vpaes_schedule_transform # output transform movdqu %xmm0, (%rdx) # save last key # cleanup pxor %xmm0, %xmm0 pxor %xmm1, %xmm1 pxor %xmm2, %xmm2 pxor %xmm3, %xmm3 pxor %xmm4, %xmm4 pxor %xmm5, %xmm5 pxor %xmm6, %xmm6 pxor %xmm7, %xmm7 ret .cfi_endproc .size _vpaes_schedule_core,.-_vpaes_schedule_core ## ## .aes_schedule_192_smear ## ## Smear the short, low side in the 192-bit key schedule. ## ## Inputs: ## %xmm7: high side, b a x y ## %xmm6: low side, d c 0 0 ## %xmm13: 0 ## ## Outputs: ## %xmm6: b+c+d b+c 0 0 ## %xmm0: b+c+d b+c b a ## .type _vpaes_schedule_192_smear,\@abi-omnipotent .align 16 _vpaes_schedule_192_smear: .cfi_startproc pshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 pshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a pxor %xmm1, %xmm6 # -> c+d c 0 0 pxor %xmm1, %xmm1 pxor %xmm0, %xmm6 # -> b+c+d b+c b a movdqa %xmm6, %xmm0 movhlps %xmm1, %xmm6 # clobber low side with zeros ret .cfi_endproc .size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear ## ## .aes_schedule_round ## ## Runs one main round of the key schedule on %xmm0, %xmm7 ## ## Specifically, runs subbytes on the high dword of %xmm0 ## then rotates it by one byte and xors into the low dword of ## %xmm7. ## ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for ## next rcon. ## ## Smears the dwords of %xmm7 by xoring the low into the ## second low, result into third, result into highest. ## ## Returns results in %xmm7 = %xmm0. ## Clobbers %xmm1-%xmm4, %r11. ## .type _vpaes_schedule_round,\@abi-omnipotent .align 16 _vpaes_schedule_round: .cfi_startproc # extract rcon from xmm8 pxor %xmm1, %xmm1 palignr \$15, %xmm8, %xmm1 palignr \$15, %xmm8, %xmm8 pxor %xmm1, %xmm7 # rotate pshufd \$0xFF, %xmm0, %xmm0 palignr \$1, %xmm0, %xmm0 # fall through... # low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: # smear xmm7 movdqa %xmm7, %xmm1 pslldq \$4, %xmm7 pxor %xmm1, %xmm7 movdqa %xmm7, %xmm1 pslldq \$8, %xmm7 pxor %xmm1, %xmm7 pxor .Lk_s63(%rip), %xmm7 # subbytes movdqa %xmm9, %xmm1 pandn %xmm0, %xmm1 psrld \$4, %xmm1 # 1 = i pand %xmm9, %xmm0 # 0 = k movdqa %xmm11, %xmm2 # 2 : a/k pshufb %xmm0, %xmm2 # 2 = a/k pxor %xmm1, %xmm0 # 0 = j movdqa %xmm10, %xmm3 # 3 : 1/i pshufb %xmm1, %xmm3 # 3 = 1/i pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k movdqa %xmm10, %xmm4 # 4 : 1/j pshufb %xmm0, %xmm4 # 4 = 1/j pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k movdqa %xmm10, %xmm2 # 2 : 1/iak pshufb %xmm3, %xmm2 # 2 = 1/iak pxor %xmm0, %xmm2 # 2 = io movdqa %xmm10, %xmm3 # 3 : 1/jak pshufb %xmm4, %xmm3 # 3 = 1/jak pxor %xmm1, %xmm3 # 3 = jo movdqa %xmm13, %xmm4 # 4 : sbou pshufb %xmm2, %xmm4 # 4 = sbou movdqa %xmm12, %xmm0 # 0 : sbot pshufb %xmm3, %xmm0 # 0 = sb1t pxor %xmm4, %xmm0 # 0 = sbox output # add in smeared stuff pxor %xmm7, %xmm0 movdqa %xmm0, %xmm7 ret .cfi_endproc .size _vpaes_schedule_round,.-_vpaes_schedule_round ## ## .aes_schedule_transform ## ## Linear-transform %xmm0 according to tables at (%r11) ## ## Requires that %xmm9 = 0x0F0F... as in preheat ## Output in %xmm0 ## Clobbers %xmm1, %xmm2 ## .type _vpaes_schedule_transform,\@abi-omnipotent .align 16 _vpaes_schedule_transform: .cfi_startproc movdqa %xmm9, %xmm1 pandn %xmm0, %xmm1 psrld \$4, %xmm1 pand %xmm9, %xmm0 movdqa (%r11), %xmm2 # lo pshufb %xmm0, %xmm2 movdqa 16(%r11), %xmm0 # hi pshufb %xmm1, %xmm0 pxor %xmm2, %xmm0 ret .cfi_endproc .size _vpaes_schedule_transform,.-_vpaes_schedule_transform ## ## .aes_schedule_mangle ## ## Mangle xmm0 from (basis-transformed) standard version ## to our version. ## ## On encrypt, ## xor with 0x63 ## multiply by circulant 0,1,1,1 ## apply shiftrows transform ## ## On decrypt, ## xor with 0x63 ## multiply by "inverse mixcolumns" circulant E,B,D,9 ## deskew ## apply shiftrows transform ## ## ## Writes out to (%rdx), and increments or decrements it ## Keeps track of round number mod 4 in %r8 ## Preserves xmm0 ## Clobbers xmm1-xmm5 ## .type _vpaes_schedule_mangle,\@abi-omnipotent .align 16 _vpaes_schedule_mangle: .cfi_startproc movdqa %xmm0, %xmm4 # save xmm0 for later movdqa .Lk_mc_forward(%rip),%xmm5 test %rcx, %rcx jnz .Lschedule_mangle_dec # encrypting add \$16, %rdx pxor .Lk_s63(%rip),%xmm4 pshufb %xmm5, %xmm4 movdqa %xmm4, %xmm3 pshufb %xmm5, %xmm4 pxor %xmm4, %xmm3 pshufb %xmm5, %xmm4 pxor %xmm4, %xmm3 jmp .Lschedule_mangle_both .align 16 .Lschedule_mangle_dec: # inverse mix columns lea .Lk_dksd(%rip),%r11 movdqa %xmm9, %xmm1 pandn %xmm4, %xmm1 psrld \$4, %xmm1 # 1 = hi pand %xmm9, %xmm4 # 4 = lo movdqa 0x00(%r11), %xmm2 pshufb %xmm4, %xmm2 movdqa 0x10(%r11), %xmm3 pshufb %xmm1, %xmm3 pxor %xmm2, %xmm3 pshufb %xmm5, %xmm3 movdqa 0x20(%r11), %xmm2 pshufb %xmm4, %xmm2 pxor %xmm3, %xmm2 movdqa 0x30(%r11), %xmm3 pshufb %xmm1, %xmm3 pxor %xmm2, %xmm3 pshufb %xmm5, %xmm3 movdqa 0x40(%r11), %xmm2 pshufb %xmm4, %xmm2 pxor %xmm3, %xmm2 movdqa 0x50(%r11), %xmm3 pshufb %xmm1, %xmm3 pxor %xmm2, %xmm3 pshufb %xmm5, %xmm3 movdqa 0x60(%r11), %xmm2 pshufb %xmm4, %xmm2 pxor %xmm3, %xmm2 movdqa 0x70(%r11), %xmm3 pshufb %xmm1, %xmm3 pxor %xmm2, %xmm3 add \$-16, %rdx .Lschedule_mangle_both: movdqa (%r8,%r10),%xmm1 pshufb %xmm1,%xmm3 add \$-16, %r8 and \$0x30, %r8 movdqu %xmm3, (%rdx) ret .cfi_endproc .size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle # # Interface to OpenSSL # .globl ${PREFIX}_set_encrypt_key .type ${PREFIX}_set_encrypt_key,\@function,3 .align 16 ${PREFIX}_set_encrypt_key: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Lenc_key_body: ___ $code.=<<___; mov %esi,%eax shr \$5,%eax add \$5,%eax mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; mov \$0,%ecx mov \$0x30,%r8d call _vpaes_schedule_core ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Lenc_key_epilogue: ___ $code.=<<___; xor %eax,%eax ret .cfi_endproc .size ${PREFIX}_set_encrypt_key,.-${PREFIX}_set_encrypt_key .globl ${PREFIX}_set_decrypt_key .type ${PREFIX}_set_decrypt_key,\@function,3 .align 16 ${PREFIX}_set_decrypt_key: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Ldec_key_body: ___ $code.=<<___; mov %esi,%eax shr \$5,%eax add \$5,%eax mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; shl \$4,%eax lea 16(%rdx,%rax),%rdx mov \$1,%ecx mov %esi,%r8d shr \$1,%r8d and \$32,%r8d xor \$32,%r8d # nbits==192?0:32 call _vpaes_schedule_core ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Ldec_key_epilogue: ___ $code.=<<___; xor %eax,%eax ret .cfi_endproc .size ${PREFIX}_set_decrypt_key,.-${PREFIX}_set_decrypt_key .globl ${PREFIX}_encrypt .type ${PREFIX}_encrypt,\@function,3 .align 16 ${PREFIX}_encrypt: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Lenc_body: ___ $code.=<<___; movdqu (%rdi),%xmm0 call _vpaes_preheat call _vpaes_encrypt_core movdqu %xmm0,(%rsi) ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Lenc_epilogue: ___ $code.=<<___; ret .cfi_endproc .size ${PREFIX}_encrypt,.-${PREFIX}_encrypt .globl ${PREFIX}_decrypt .type ${PREFIX}_decrypt,\@function,3 .align 16 ${PREFIX}_decrypt: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Ldec_body: ___ $code.=<<___; movdqu (%rdi),%xmm0 call _vpaes_preheat call _vpaes_decrypt_core movdqu %xmm0,(%rsi) ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Ldec_epilogue: ___ $code.=<<___; ret .cfi_endproc .size ${PREFIX}_decrypt,.-${PREFIX}_decrypt ___ { my ($inp,$out,$len,$key,$ivp,$enc)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9"); # void AES_cbc_encrypt (const void char *inp, unsigned char *out, # size_t length, const AES_KEY *key, # unsigned char *ivp,const int enc); $code.=<<___; .globl ${PREFIX}_cbc_encrypt .type ${PREFIX}_cbc_encrypt,\@function,6 .align 16 ${PREFIX}_cbc_encrypt: .cfi_startproc xchg $key,$len ___ ($len,$key)=($key,$len); $code.=<<___; sub \$16,$len jc .Lcbc_abort ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Lcbc_body: ___ $code.=<<___; movdqu ($ivp),%xmm6 # load IV sub $inp,$out call _vpaes_preheat cmp \$0,${enc}d je .Lcbc_dec_loop jmp .Lcbc_enc_loop .align 16 .Lcbc_enc_loop: movdqu ($inp),%xmm0 pxor %xmm6,%xmm0 call _vpaes_encrypt_core movdqa %xmm0,%xmm6 movdqu %xmm0,($out,$inp) lea 16($inp),$inp sub \$16,$len jnc .Lcbc_enc_loop jmp .Lcbc_done .align 16 .Lcbc_dec_loop: movdqu ($inp),%xmm0 movdqa %xmm0,%xmm7 call _vpaes_decrypt_core pxor %xmm6,%xmm0 movdqa %xmm7,%xmm6 movdqu %xmm0,($out,$inp) lea 16($inp),$inp sub \$16,$len jnc .Lcbc_dec_loop .Lcbc_done: movdqu %xmm6,($ivp) # save IV ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Lcbc_epilogue: ___ $code.=<<___; .Lcbc_abort: ret .cfi_endproc .size ${PREFIX}_cbc_encrypt,.-${PREFIX}_cbc_encrypt ___ } $code.=<<___; ## ## _aes_preheat ## ## Fills register %r10 -> .aes_consts (so you can -fPIC) ## and %xmm9-%xmm15 as specified below. ## .type _vpaes_preheat,\@abi-omnipotent .align 16 _vpaes_preheat: .cfi_startproc lea .Lk_s0F(%rip), %r10 movdqa -0x20(%r10), %xmm10 # .Lk_inv movdqa -0x10(%r10), %xmm11 # .Lk_inv+16 movdqa 0x00(%r10), %xmm9 # .Lk_s0F movdqa 0x30(%r10), %xmm13 # .Lk_sb1 movdqa 0x40(%r10), %xmm12 # .Lk_sb1+16 movdqa 0x50(%r10), %xmm15 # .Lk_sb2 movdqa 0x60(%r10), %xmm14 # .Lk_sb2+16 ret .cfi_endproc .size _vpaes_preheat,.-_vpaes_preheat ######################################################## ## ## ## Constants ## ## ## ######################################################## .type _vpaes_consts,\@object .align 64 _vpaes_consts: .Lk_inv: # inv, inva .quad 0x0E05060F0D080180, 0x040703090A0B0C02 .quad 0x01040A060F0B0780, 0x030D0E0C02050809 .Lk_s0F: # s0F .quad 0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F0F0F0F0F .Lk_ipt: # input transform (lo, hi) .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808 .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81 .Lk_sb1: # sb1u, sb1t .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544 .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF .Lk_sb2: # sb2u, sb2t .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A .Lk_sbo: # sbou, sbot .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878 .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA .Lk_mc_forward: # mc_forward .quad 0x0407060500030201, 0x0C0F0E0D080B0A09 .quad 0x080B0A0904070605, 0x000302010C0F0E0D .quad 0x0C0F0E0D080B0A09, 0x0407060500030201 .quad 0x000302010C0F0E0D, 0x080B0A0904070605 .Lk_mc_backward:# mc_backward .quad 0x0605040702010003, 0x0E0D0C0F0A09080B .quad 0x020100030E0D0C0F, 0x0A09080B06050407 .quad 0x0E0D0C0F0A09080B, 0x0605040702010003 .quad 0x0A09080B06050407, 0x020100030E0D0C0F .Lk_sr: # sr .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908 .quad 0x030E09040F0A0500, 0x0B06010C07020D08 .quad 0x0F060D040B020900, 0x070E050C030A0108 .quad 0x0B0E0104070A0D00, 0x0306090C0F020508 .Lk_rcon: # rcon .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81 .Lk_s63: # s63: all equal to 0x63 transformed .quad 0x5B5B5B5B5B5B5B5B, 0x5B5B5B5B5B5B5B5B .Lk_opt: # output transform .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808 .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0 .Lk_deskew: # deskew tables: inverts the sbox's "skew" .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77 ## ## Decryption stuff ## Key schedule constants ## .Lk_dksd: # decryption key schedule: invskew x*D .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9 .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E .Lk_dksb: # decryption key schedule: invskew x*B .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99 .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8 .Lk_dkse: # decryption key schedule: invskew x*E + 0x63 .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086 .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487 .Lk_dks9: # decryption key schedule: invskew x*9 .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE ## ## Decryption stuff ## Round function constants ## .Lk_dipt: # decryption input transform .quad 0x0F505B040B545F00, 0x154A411E114E451A .quad 0x86E383E660056500, 0x12771772F491F194 .Lk_dsb9: # decryption sbox output *9*u, *9*t .quad 0x851C03539A86D600, 0xCAD51F504F994CC9 .quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565 .Lk_dsbd: # decryption sbox output *D*u, *D*t .quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439 .quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3 .Lk_dsbb: # decryption sbox output *B*u, *B*t .quad 0xD022649296B44200, 0x602646F6B0F2D404 .quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B .Lk_dsbe: # decryption sbox output *E*u, *E*t .quad 0x46F2929626D4D000, 0x2242600464B4F6B0 .quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32 .Lk_dsbo: # decryption sbox final output .quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D .quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C .asciz "Vector Permutation AES for x86_64/SSSE3, Mike Hamburg (Stanford University)" .align 64 .size _vpaes_consts,.-_vpaes_consts ___ if ($win64) { # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue lea 16(%rax),%rsi # %xmm save area lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq lea 0xb8(%rax),%rax # adjust stack pointer .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$`1232/8`,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_${PREFIX}_set_encrypt_key .rva .LSEH_end_${PREFIX}_set_encrypt_key .rva .LSEH_info_${PREFIX}_set_encrypt_key .rva .LSEH_begin_${PREFIX}_set_decrypt_key .rva .LSEH_end_${PREFIX}_set_decrypt_key .rva .LSEH_info_${PREFIX}_set_decrypt_key .rva .LSEH_begin_${PREFIX}_encrypt .rva .LSEH_end_${PREFIX}_encrypt .rva .LSEH_info_${PREFIX}_encrypt .rva .LSEH_begin_${PREFIX}_decrypt .rva .LSEH_end_${PREFIX}_decrypt .rva .LSEH_info_${PREFIX}_decrypt .rva .LSEH_begin_${PREFIX}_cbc_encrypt .rva .LSEH_end_${PREFIX}_cbc_encrypt .rva .LSEH_info_${PREFIX}_cbc_encrypt .section .xdata .align 8 .LSEH_info_${PREFIX}_set_encrypt_key: .byte 9,0,0,0 .rva se_handler .rva .Lenc_key_body,.Lenc_key_epilogue # HandlerData[] .LSEH_info_${PREFIX}_set_decrypt_key: .byte 9,0,0,0 .rva se_handler .rva .Ldec_key_body,.Ldec_key_epilogue # HandlerData[] .LSEH_info_${PREFIX}_encrypt: .byte 9,0,0,0 .rva se_handler .rva .Lenc_body,.Lenc_epilogue # HandlerData[] .LSEH_info_${PREFIX}_decrypt: .byte 9,0,0,0 .rva se_handler .rva .Ldec_body,.Ldec_epilogue # HandlerData[] .LSEH_info_${PREFIX}_cbc_encrypt: .byte 9,0,0,0 .rva se_handler .rva .Lcbc_body,.Lcbc_epilogue # HandlerData[] ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aes/build.info000066400000000000000000000046051364063235100174170ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ aes_misc.c aes_ecb.c aes_cfb.c aes_ofb.c \ aes_ige.c aes_wrap.c {- $target{aes_asm_src} -} GENERATE[aes-ia64.s]=asm/aes-ia64.S GENERATE[aes-586.s]=asm/aes-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[aes-586.s]=../perlasm/x86asm.pl GENERATE[vpaes-x86.s]=asm/vpaes-x86.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[vpaes-586.s]=../perlasm/x86asm.pl GENERATE[aesni-x86.s]=asm/aesni-x86.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[aesni-586.s]=../perlasm/x86asm.pl GENERATE[aes-x86_64.s]=asm/aes-x86_64.pl $(PERLASM_SCHEME) GENERATE[vpaes-x86_64.s]=asm/vpaes-x86_64.pl $(PERLASM_SCHEME) GENERATE[bsaes-x86_64.s]=asm/bsaes-x86_64.pl $(PERLASM_SCHEME) GENERATE[aesni-x86_64.s]=asm/aesni-x86_64.pl $(PERLASM_SCHEME) GENERATE[aesni-sha1-x86_64.s]=asm/aesni-sha1-x86_64.pl $(PERLASM_SCHEME) GENERATE[aesni-sha256-x86_64.s]=asm/aesni-sha256-x86_64.pl $(PERLASM_SCHEME) GENERATE[aesni-mb-x86_64.s]=asm/aesni-mb-x86_64.pl $(PERLASM_SCHEME) GENERATE[aes-sparcv9.S]=asm/aes-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[aes-sparcv9.o]=.. GENERATE[aest4-sparcv9.S]=asm/aest4-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[aest4-sparcv9.o]=.. DEPEND[aest4-sparcv9.S]=../perlasm/sparcv9_modes.pl GENERATE[aesfx-sparcv9.S]=asm/aesfx-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[aesfx-sparcv9.o]=.. GENERATE[aes-ppc.s]=asm/aes-ppc.pl $(PERLASM_SCHEME) GENERATE[vpaes-ppc.s]=asm/vpaes-ppc.pl $(PERLASM_SCHEME) GENERATE[aesp8-ppc.s]=asm/aesp8-ppc.pl $(PERLASM_SCHEME) GENERATE[aes-parisc.s]=asm/aes-parisc.pl $(PERLASM_SCHEME) GENERATE[aes-mips.S]=asm/aes-mips.pl $(PERLASM_SCHEME) INCLUDE[aes-mips.o]=.. GENERATE[aesv8-armx.S]=asm/aesv8-armx.pl $(PERLASM_SCHEME) INCLUDE[aesv8-armx.o]=.. GENERATE[vpaes-armv8.S]=asm/vpaes-armv8.pl $(PERLASM_SCHEME) GENERATE[aes-armv4.S]=asm/aes-armv4.pl $(PERLASM_SCHEME) INCLUDE[aes-armv4.o]=.. GENERATE[bsaes-armv7.S]=asm/bsaes-armv7.pl $(PERLASM_SCHEME) INCLUDE[bsaes-armv7.o]=.. GENERATE[aes-s390x.S]=asm/aes-s390x.pl $(PERLASM_SCHEME) INCLUDE[aes-s390x.o]=.. BEGINRAW[Makefile] ##### AES assembler implementations # GNU make "catch all" {- $builddir -}/aes-%.S: {- $sourcedir -}/asm/aes-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ {- $builddir -}/bsaes-%.S: {- $sourcedir -}/asm/bsaes-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ ENDRAW[Makefile] openssl-1.1.1f/crypto/alphacpuid.pl000066400000000000000000000076201364063235100173420ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $output = pop; open STDOUT,">$output"; print <<'___'; .text .set noat .globl OPENSSL_cpuid_setup .ent OPENSSL_cpuid_setup OPENSSL_cpuid_setup: .frame $30,0,$26 .prologue 0 ret ($26) .end OPENSSL_cpuid_setup .globl OPENSSL_wipe_cpu .ent OPENSSL_wipe_cpu OPENSSL_wipe_cpu: .frame $30,0,$26 .prologue 0 clr $1 clr $2 clr $3 clr $4 clr $5 clr $6 clr $7 clr $8 clr $16 clr $17 clr $18 clr $19 clr $20 clr $21 clr $22 clr $23 clr $24 clr $25 clr $27 clr $at clr $29 fclr $f0 fclr $f1 fclr $f10 fclr $f11 fclr $f12 fclr $f13 fclr $f14 fclr $f15 fclr $f16 fclr $f17 fclr $f18 fclr $f19 fclr $f20 fclr $f21 fclr $f22 fclr $f23 fclr $f24 fclr $f25 fclr $f26 fclr $f27 fclr $f28 fclr $f29 fclr $f30 mov $sp,$0 ret ($26) .end OPENSSL_wipe_cpu .globl OPENSSL_atomic_add .ent OPENSSL_atomic_add OPENSSL_atomic_add: .frame $30,0,$26 .prologue 0 1: ldl_l $0,0($16) addl $0,$17,$1 stl_c $1,0($16) beq $1,1b addl $0,$17,$0 ret ($26) .end OPENSSL_atomic_add .globl OPENSSL_rdtsc .ent OPENSSL_rdtsc OPENSSL_rdtsc: .frame $30,0,$26 .prologue 0 rpcc $0 ret ($26) .end OPENSSL_rdtsc .globl OPENSSL_cleanse .ent OPENSSL_cleanse OPENSSL_cleanse: .frame $30,0,$26 .prologue 0 beq $17,.Ldone and $16,7,$0 bic $17,7,$at beq $at,.Little beq $0,.Laligned .Little: subq $0,8,$0 ldq_u $1,0($16) mov $16,$2 .Lalign: mskbl $1,$16,$1 lda $16,1($16) subq $17,1,$17 addq $0,1,$0 beq $17,.Lout bne $0,.Lalign .Lout: stq_u $1,0($2) beq $17,.Ldone bic $17,7,$at beq $at,.Little .Laligned: stq $31,0($16) subq $17,8,$17 lda $16,8($16) bic $17,7,$at bne $at,.Laligned bne $17,.Little .Ldone: ret ($26) .end OPENSSL_cleanse .globl CRYPTO_memcmp .ent CRYPTO_memcmp CRYPTO_memcmp: .frame $30,0,$26 .prologue 0 xor $0,$0,$0 beq $18,.Lno_data xor $1,$1,$1 nop .Loop_cmp: ldq_u $2,0($16) subq $18,1,$18 ldq_u $3,0($17) extbl $2,$16,$2 lda $16,1($16) extbl $3,$17,$3 lda $17,1($17) xor $3,$2,$2 or $2,$0,$0 bne $18,.Loop_cmp subq $31,$0,$0 srl $0,63,$0 .Lno_data: ret ($26) .end CRYPTO_memcmp ___ { my ($out,$cnt,$max)=("\$16","\$17","\$18"); my ($tick,$lasttick)=("\$19","\$20"); my ($diff,$lastdiff)=("\$21","\$22"); my ($v0,$ra,$sp,$zero)=("\$0","\$26","\$30","\$31"); print <<___; .globl OPENSSL_instrument_bus .ent OPENSSL_instrument_bus OPENSSL_instrument_bus: .frame $sp,0,$ra .prologue 0 mov $cnt,$v0 rpcc $lasttick mov 0,$diff ecb ($out) ldl_l $tick,0($out) addl $diff,$tick,$tick mov $tick,$diff stl_c $tick,0($out) stl $diff,0($out) .Loop: rpcc $tick subq $tick,$lasttick,$diff mov $tick,$lasttick ecb ($out) ldl_l $tick,0($out) addl $diff,$tick,$tick mov $tick,$diff stl_c $tick,0($out) stl $diff,0($out) subl $cnt,1,$cnt lda $out,4($out) bne $cnt,.Loop ret ($ra) .end OPENSSL_instrument_bus .globl OPENSSL_instrument_bus2 .ent OPENSSL_instrument_bus2 OPENSSL_instrument_bus2: .frame $sp,0,$ra .prologue 0 mov $cnt,$v0 rpcc $lasttick mov 0,$diff ecb ($out) ldl_l $tick,0($out) addl $diff,$tick,$tick mov $tick,$diff stl_c $tick,0($out) stl $diff,0($out) rpcc $tick subq $tick,$lasttick,$diff mov $tick,$lasttick mov $diff,$lastdiff .Loop2: ecb ($out) ldl_l $tick,0($out) addl $diff,$tick,$tick mov $tick,$diff stl_c $tick,0($out) stl $diff,0($out) subl $max,1,$max beq $max,.Ldone2 rpcc $tick subq $tick,$lasttick,$diff mov $tick,$lasttick subq $lastdiff,$diff,$tick mov $diff,$lastdiff cmovne $tick,1,$tick subl $cnt,$tick,$cnt s4addq $tick,$out,$out bne $cnt,.Loop2 .Ldone2: subl $v0,$cnt,$v0 ret ($ra) .end OPENSSL_instrument_bus2 ___ } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/aria/000077500000000000000000000000001364063235100156025ustar00rootroot00000000000000openssl-1.1.1f/crypto/aria/aria.c000066400000000000000000001277361364063235100167020ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Copyright (C) 2017 National Security Research Institute. All Rights Reserved. * * Information for ARIA * http://210.104.33.10/ARIA/index-e.html (English) * http://seed.kisa.or.kr/ (Korean) * * Public domain version is distributed above. */ #include #include "crypto/aria.h" #include #include #ifndef OPENSSL_SMALL_FOOTPRINT /* Begin macro */ /* rotation */ #define rotl32(v, r) (((uint32_t)(v) << (r)) | ((uint32_t)(v) >> (32 - r))) #define rotr32(v, r) (((uint32_t)(v) >> (r)) | ((uint32_t)(v) << (32 - r))) #define bswap32(v) \ (((v) << 24) ^ ((v) >> 24) ^ \ (((v) & 0x0000ff00) << 8) ^ (((v) & 0x00ff0000) >> 8)) #define GET_U8_BE(X, Y) ((uint8_t)((X) >> ((3 - Y) * 8))) #define GET_U32_BE(X, Y) ( \ ((uint32_t)((const uint8_t *)(X))[Y * 4 ] << 24) ^ \ ((uint32_t)((const uint8_t *)(X))[Y * 4 + 1] << 16) ^ \ ((uint32_t)((const uint8_t *)(X))[Y * 4 + 2] << 8) ^ \ ((uint32_t)((const uint8_t *)(X))[Y * 4 + 3] ) ) #define PUT_U32_BE(DEST, IDX, VAL) \ do { \ ((uint8_t *)(DEST))[IDX * 4 ] = GET_U8_BE(VAL, 0); \ ((uint8_t *)(DEST))[IDX * 4 + 1] = GET_U8_BE(VAL, 1); \ ((uint8_t *)(DEST))[IDX * 4 + 2] = GET_U8_BE(VAL, 2); \ ((uint8_t *)(DEST))[IDX * 4 + 3] = GET_U8_BE(VAL, 3); \ } while(0) #define MAKE_U32(V0, V1, V2, V3) ( \ ((uint32_t)((uint8_t)(V0)) << 24) | \ ((uint32_t)((uint8_t)(V1)) << 16) | \ ((uint32_t)((uint8_t)(V2)) << 8) | \ ((uint32_t)((uint8_t)(V3)) ) ) /* End Macro*/ /* Key Constant * 128bit : 0, 1, 2 * 192bit : 1, 2, 3(0) * 256bit : 2, 3(0), 4(1) */ static const uint32_t Key_RC[5][4] = { { 0x517cc1b7, 0x27220a94, 0xfe13abe8, 0xfa9a6ee0 }, { 0x6db14acc, 0x9e21c820, 0xff28b1d5, 0xef5de2b0 }, { 0xdb92371d, 0x2126e970, 0x03249775, 0x04e8c90e }, { 0x517cc1b7, 0x27220a94, 0xfe13abe8, 0xfa9a6ee0 }, { 0x6db14acc, 0x9e21c820, 0xff28b1d5, 0xef5de2b0 } }; /* 32bit expanded s-box */ static const uint32_t S1[256] = { 0x00636363, 0x007c7c7c, 0x00777777, 0x007b7b7b, 0x00f2f2f2, 0x006b6b6b, 0x006f6f6f, 0x00c5c5c5, 0x00303030, 0x00010101, 0x00676767, 0x002b2b2b, 0x00fefefe, 0x00d7d7d7, 0x00ababab, 0x00767676, 0x00cacaca, 0x00828282, 0x00c9c9c9, 0x007d7d7d, 0x00fafafa, 0x00595959, 0x00474747, 0x00f0f0f0, 0x00adadad, 0x00d4d4d4, 0x00a2a2a2, 0x00afafaf, 0x009c9c9c, 0x00a4a4a4, 0x00727272, 0x00c0c0c0, 0x00b7b7b7, 0x00fdfdfd, 0x00939393, 0x00262626, 0x00363636, 0x003f3f3f, 0x00f7f7f7, 0x00cccccc, 0x00343434, 0x00a5a5a5, 0x00e5e5e5, 0x00f1f1f1, 0x00717171, 0x00d8d8d8, 0x00313131, 0x00151515, 0x00040404, 0x00c7c7c7, 0x00232323, 0x00c3c3c3, 0x00181818, 0x00969696, 0x00050505, 0x009a9a9a, 0x00070707, 0x00121212, 0x00808080, 0x00e2e2e2, 0x00ebebeb, 0x00272727, 0x00b2b2b2, 0x00757575, 0x00090909, 0x00838383, 0x002c2c2c, 0x001a1a1a, 0x001b1b1b, 0x006e6e6e, 0x005a5a5a, 0x00a0a0a0, 0x00525252, 0x003b3b3b, 0x00d6d6d6, 0x00b3b3b3, 0x00292929, 0x00e3e3e3, 0x002f2f2f, 0x00848484, 0x00535353, 0x00d1d1d1, 0x00000000, 0x00ededed, 0x00202020, 0x00fcfcfc, 0x00b1b1b1, 0x005b5b5b, 0x006a6a6a, 0x00cbcbcb, 0x00bebebe, 0x00393939, 0x004a4a4a, 0x004c4c4c, 0x00585858, 0x00cfcfcf, 0x00d0d0d0, 0x00efefef, 0x00aaaaaa, 0x00fbfbfb, 0x00434343, 0x004d4d4d, 0x00333333, 0x00858585, 0x00454545, 0x00f9f9f9, 0x00020202, 0x007f7f7f, 0x00505050, 0x003c3c3c, 0x009f9f9f, 0x00a8a8a8, 0x00515151, 0x00a3a3a3, 0x00404040, 0x008f8f8f, 0x00929292, 0x009d9d9d, 0x00383838, 0x00f5f5f5, 0x00bcbcbc, 0x00b6b6b6, 0x00dadada, 0x00212121, 0x00101010, 0x00ffffff, 0x00f3f3f3, 0x00d2d2d2, 0x00cdcdcd, 0x000c0c0c, 0x00131313, 0x00ececec, 0x005f5f5f, 0x00979797, 0x00444444, 0x00171717, 0x00c4c4c4, 0x00a7a7a7, 0x007e7e7e, 0x003d3d3d, 0x00646464, 0x005d5d5d, 0x00191919, 0x00737373, 0x00606060, 0x00818181, 0x004f4f4f, 0x00dcdcdc, 0x00222222, 0x002a2a2a, 0x00909090, 0x00888888, 0x00464646, 0x00eeeeee, 0x00b8b8b8, 0x00141414, 0x00dedede, 0x005e5e5e, 0x000b0b0b, 0x00dbdbdb, 0x00e0e0e0, 0x00323232, 0x003a3a3a, 0x000a0a0a, 0x00494949, 0x00060606, 0x00242424, 0x005c5c5c, 0x00c2c2c2, 0x00d3d3d3, 0x00acacac, 0x00626262, 0x00919191, 0x00959595, 0x00e4e4e4, 0x00797979, 0x00e7e7e7, 0x00c8c8c8, 0x00373737, 0x006d6d6d, 0x008d8d8d, 0x00d5d5d5, 0x004e4e4e, 0x00a9a9a9, 0x006c6c6c, 0x00565656, 0x00f4f4f4, 0x00eaeaea, 0x00656565, 0x007a7a7a, 0x00aeaeae, 0x00080808, 0x00bababa, 0x00787878, 0x00252525, 0x002e2e2e, 0x001c1c1c, 0x00a6a6a6, 0x00b4b4b4, 0x00c6c6c6, 0x00e8e8e8, 0x00dddddd, 0x00747474, 0x001f1f1f, 0x004b4b4b, 0x00bdbdbd, 0x008b8b8b, 0x008a8a8a, 0x00707070, 0x003e3e3e, 0x00b5b5b5, 0x00666666, 0x00484848, 0x00030303, 0x00f6f6f6, 0x000e0e0e, 0x00616161, 0x00353535, 0x00575757, 0x00b9b9b9, 0x00868686, 0x00c1c1c1, 0x001d1d1d, 0x009e9e9e, 0x00e1e1e1, 0x00f8f8f8, 0x00989898, 0x00111111, 0x00696969, 0x00d9d9d9, 0x008e8e8e, 0x00949494, 0x009b9b9b, 0x001e1e1e, 0x00878787, 0x00e9e9e9, 0x00cecece, 0x00555555, 0x00282828, 0x00dfdfdf, 0x008c8c8c, 0x00a1a1a1, 0x00898989, 0x000d0d0d, 0x00bfbfbf, 0x00e6e6e6, 0x00424242, 0x00686868, 0x00414141, 0x00999999, 0x002d2d2d, 0x000f0f0f, 0x00b0b0b0, 0x00545454, 0x00bbbbbb, 0x00161616 }; static const uint32_t S2[256] = { 0xe200e2e2, 0x4e004e4e, 0x54005454, 0xfc00fcfc, 0x94009494, 0xc200c2c2, 0x4a004a4a, 0xcc00cccc, 0x62006262, 0x0d000d0d, 0x6a006a6a, 0x46004646, 0x3c003c3c, 0x4d004d4d, 0x8b008b8b, 0xd100d1d1, 0x5e005e5e, 0xfa00fafa, 0x64006464, 0xcb00cbcb, 0xb400b4b4, 0x97009797, 0xbe00bebe, 0x2b002b2b, 0xbc00bcbc, 0x77007777, 0x2e002e2e, 0x03000303, 0xd300d3d3, 0x19001919, 0x59005959, 0xc100c1c1, 0x1d001d1d, 0x06000606, 0x41004141, 0x6b006b6b, 0x55005555, 0xf000f0f0, 0x99009999, 0x69006969, 0xea00eaea, 0x9c009c9c, 0x18001818, 0xae00aeae, 0x63006363, 0xdf00dfdf, 0xe700e7e7, 0xbb00bbbb, 0x00000000, 0x73007373, 0x66006666, 0xfb00fbfb, 0x96009696, 0x4c004c4c, 0x85008585, 0xe400e4e4, 0x3a003a3a, 0x09000909, 0x45004545, 0xaa00aaaa, 0x0f000f0f, 0xee00eeee, 0x10001010, 0xeb00ebeb, 0x2d002d2d, 0x7f007f7f, 0xf400f4f4, 0x29002929, 0xac00acac, 0xcf00cfcf, 0xad00adad, 0x91009191, 0x8d008d8d, 0x78007878, 0xc800c8c8, 0x95009595, 0xf900f9f9, 0x2f002f2f, 0xce00cece, 0xcd00cdcd, 0x08000808, 0x7a007a7a, 0x88008888, 0x38003838, 0x5c005c5c, 0x83008383, 0x2a002a2a, 0x28002828, 0x47004747, 0xdb00dbdb, 0xb800b8b8, 0xc700c7c7, 0x93009393, 0xa400a4a4, 0x12001212, 0x53005353, 0xff00ffff, 0x87008787, 0x0e000e0e, 0x31003131, 0x36003636, 0x21002121, 0x58005858, 0x48004848, 0x01000101, 0x8e008e8e, 0x37003737, 0x74007474, 0x32003232, 0xca00caca, 0xe900e9e9, 0xb100b1b1, 0xb700b7b7, 0xab00abab, 0x0c000c0c, 0xd700d7d7, 0xc400c4c4, 0x56005656, 0x42004242, 0x26002626, 0x07000707, 0x98009898, 0x60006060, 0xd900d9d9, 0xb600b6b6, 0xb900b9b9, 0x11001111, 0x40004040, 0xec00ecec, 0x20002020, 0x8c008c8c, 0xbd00bdbd, 0xa000a0a0, 0xc900c9c9, 0x84008484, 0x04000404, 0x49004949, 0x23002323, 0xf100f1f1, 0x4f004f4f, 0x50005050, 0x1f001f1f, 0x13001313, 0xdc00dcdc, 0xd800d8d8, 0xc000c0c0, 0x9e009e9e, 0x57005757, 0xe300e3e3, 0xc300c3c3, 0x7b007b7b, 0x65006565, 0x3b003b3b, 0x02000202, 0x8f008f8f, 0x3e003e3e, 0xe800e8e8, 0x25002525, 0x92009292, 0xe500e5e5, 0x15001515, 0xdd00dddd, 0xfd00fdfd, 0x17001717, 0xa900a9a9, 0xbf00bfbf, 0xd400d4d4, 0x9a009a9a, 0x7e007e7e, 0xc500c5c5, 0x39003939, 0x67006767, 0xfe00fefe, 0x76007676, 0x9d009d9d, 0x43004343, 0xa700a7a7, 0xe100e1e1, 0xd000d0d0, 0xf500f5f5, 0x68006868, 0xf200f2f2, 0x1b001b1b, 0x34003434, 0x70007070, 0x05000505, 0xa300a3a3, 0x8a008a8a, 0xd500d5d5, 0x79007979, 0x86008686, 0xa800a8a8, 0x30003030, 0xc600c6c6, 0x51005151, 0x4b004b4b, 0x1e001e1e, 0xa600a6a6, 0x27002727, 0xf600f6f6, 0x35003535, 0xd200d2d2, 0x6e006e6e, 0x24002424, 0x16001616, 0x82008282, 0x5f005f5f, 0xda00dada, 0xe600e6e6, 0x75007575, 0xa200a2a2, 0xef00efef, 0x2c002c2c, 0xb200b2b2, 0x1c001c1c, 0x9f009f9f, 0x5d005d5d, 0x6f006f6f, 0x80008080, 0x0a000a0a, 0x72007272, 0x44004444, 0x9b009b9b, 0x6c006c6c, 0x90009090, 0x0b000b0b, 0x5b005b5b, 0x33003333, 0x7d007d7d, 0x5a005a5a, 0x52005252, 0xf300f3f3, 0x61006161, 0xa100a1a1, 0xf700f7f7, 0xb000b0b0, 0xd600d6d6, 0x3f003f3f, 0x7c007c7c, 0x6d006d6d, 0xed00eded, 0x14001414, 0xe000e0e0, 0xa500a5a5, 0x3d003d3d, 0x22002222, 0xb300b3b3, 0xf800f8f8, 0x89008989, 0xde00dede, 0x71007171, 0x1a001a1a, 0xaf00afaf, 0xba00baba, 0xb500b5b5, 0x81008181 }; static const uint32_t X1[256] = { 0x52520052, 0x09090009, 0x6a6a006a, 0xd5d500d5, 0x30300030, 0x36360036, 0xa5a500a5, 0x38380038, 0xbfbf00bf, 0x40400040, 0xa3a300a3, 0x9e9e009e, 0x81810081, 0xf3f300f3, 0xd7d700d7, 0xfbfb00fb, 0x7c7c007c, 0xe3e300e3, 0x39390039, 0x82820082, 0x9b9b009b, 0x2f2f002f, 0xffff00ff, 0x87870087, 0x34340034, 0x8e8e008e, 0x43430043, 0x44440044, 0xc4c400c4, 0xdede00de, 0xe9e900e9, 0xcbcb00cb, 0x54540054, 0x7b7b007b, 0x94940094, 0x32320032, 0xa6a600a6, 0xc2c200c2, 0x23230023, 0x3d3d003d, 0xeeee00ee, 0x4c4c004c, 0x95950095, 0x0b0b000b, 0x42420042, 0xfafa00fa, 0xc3c300c3, 0x4e4e004e, 0x08080008, 0x2e2e002e, 0xa1a100a1, 0x66660066, 0x28280028, 0xd9d900d9, 0x24240024, 0xb2b200b2, 0x76760076, 0x5b5b005b, 0xa2a200a2, 0x49490049, 0x6d6d006d, 0x8b8b008b, 0xd1d100d1, 0x25250025, 0x72720072, 0xf8f800f8, 0xf6f600f6, 0x64640064, 0x86860086, 0x68680068, 0x98980098, 0x16160016, 0xd4d400d4, 0xa4a400a4, 0x5c5c005c, 0xcccc00cc, 0x5d5d005d, 0x65650065, 0xb6b600b6, 0x92920092, 0x6c6c006c, 0x70700070, 0x48480048, 0x50500050, 0xfdfd00fd, 0xeded00ed, 0xb9b900b9, 0xdada00da, 0x5e5e005e, 0x15150015, 0x46460046, 0x57570057, 0xa7a700a7, 0x8d8d008d, 0x9d9d009d, 0x84840084, 0x90900090, 0xd8d800d8, 0xabab00ab, 0x00000000, 0x8c8c008c, 0xbcbc00bc, 0xd3d300d3, 0x0a0a000a, 0xf7f700f7, 0xe4e400e4, 0x58580058, 0x05050005, 0xb8b800b8, 0xb3b300b3, 0x45450045, 0x06060006, 0xd0d000d0, 0x2c2c002c, 0x1e1e001e, 0x8f8f008f, 0xcaca00ca, 0x3f3f003f, 0x0f0f000f, 0x02020002, 0xc1c100c1, 0xafaf00af, 0xbdbd00bd, 0x03030003, 0x01010001, 0x13130013, 0x8a8a008a, 0x6b6b006b, 0x3a3a003a, 0x91910091, 0x11110011, 0x41410041, 0x4f4f004f, 0x67670067, 0xdcdc00dc, 0xeaea00ea, 0x97970097, 0xf2f200f2, 0xcfcf00cf, 0xcece00ce, 0xf0f000f0, 0xb4b400b4, 0xe6e600e6, 0x73730073, 0x96960096, 0xacac00ac, 0x74740074, 0x22220022, 0xe7e700e7, 0xadad00ad, 0x35350035, 0x85850085, 0xe2e200e2, 0xf9f900f9, 0x37370037, 0xe8e800e8, 0x1c1c001c, 0x75750075, 0xdfdf00df, 0x6e6e006e, 0x47470047, 0xf1f100f1, 0x1a1a001a, 0x71710071, 0x1d1d001d, 0x29290029, 0xc5c500c5, 0x89890089, 0x6f6f006f, 0xb7b700b7, 0x62620062, 0x0e0e000e, 0xaaaa00aa, 0x18180018, 0xbebe00be, 0x1b1b001b, 0xfcfc00fc, 0x56560056, 0x3e3e003e, 0x4b4b004b, 0xc6c600c6, 0xd2d200d2, 0x79790079, 0x20200020, 0x9a9a009a, 0xdbdb00db, 0xc0c000c0, 0xfefe00fe, 0x78780078, 0xcdcd00cd, 0x5a5a005a, 0xf4f400f4, 0x1f1f001f, 0xdddd00dd, 0xa8a800a8, 0x33330033, 0x88880088, 0x07070007, 0xc7c700c7, 0x31310031, 0xb1b100b1, 0x12120012, 0x10100010, 0x59590059, 0x27270027, 0x80800080, 0xecec00ec, 0x5f5f005f, 0x60600060, 0x51510051, 0x7f7f007f, 0xa9a900a9, 0x19190019, 0xb5b500b5, 0x4a4a004a, 0x0d0d000d, 0x2d2d002d, 0xe5e500e5, 0x7a7a007a, 0x9f9f009f, 0x93930093, 0xc9c900c9, 0x9c9c009c, 0xefef00ef, 0xa0a000a0, 0xe0e000e0, 0x3b3b003b, 0x4d4d004d, 0xaeae00ae, 0x2a2a002a, 0xf5f500f5, 0xb0b000b0, 0xc8c800c8, 0xebeb00eb, 0xbbbb00bb, 0x3c3c003c, 0x83830083, 0x53530053, 0x99990099, 0x61610061, 0x17170017, 0x2b2b002b, 0x04040004, 0x7e7e007e, 0xbaba00ba, 0x77770077, 0xd6d600d6, 0x26260026, 0xe1e100e1, 0x69690069, 0x14140014, 0x63630063, 0x55550055, 0x21210021, 0x0c0c000c, 0x7d7d007d }; static const uint32_t X2[256] = { 0x30303000, 0x68686800, 0x99999900, 0x1b1b1b00, 0x87878700, 0xb9b9b900, 0x21212100, 0x78787800, 0x50505000, 0x39393900, 0xdbdbdb00, 0xe1e1e100, 0x72727200, 0x09090900, 0x62626200, 0x3c3c3c00, 0x3e3e3e00, 0x7e7e7e00, 0x5e5e5e00, 0x8e8e8e00, 0xf1f1f100, 0xa0a0a000, 0xcccccc00, 0xa3a3a300, 0x2a2a2a00, 0x1d1d1d00, 0xfbfbfb00, 0xb6b6b600, 0xd6d6d600, 0x20202000, 0xc4c4c400, 0x8d8d8d00, 0x81818100, 0x65656500, 0xf5f5f500, 0x89898900, 0xcbcbcb00, 0x9d9d9d00, 0x77777700, 0xc6c6c600, 0x57575700, 0x43434300, 0x56565600, 0x17171700, 0xd4d4d400, 0x40404000, 0x1a1a1a00, 0x4d4d4d00, 0xc0c0c000, 0x63636300, 0x6c6c6c00, 0xe3e3e300, 0xb7b7b700, 0xc8c8c800, 0x64646400, 0x6a6a6a00, 0x53535300, 0xaaaaaa00, 0x38383800, 0x98989800, 0x0c0c0c00, 0xf4f4f400, 0x9b9b9b00, 0xededed00, 0x7f7f7f00, 0x22222200, 0x76767600, 0xafafaf00, 0xdddddd00, 0x3a3a3a00, 0x0b0b0b00, 0x58585800, 0x67676700, 0x88888800, 0x06060600, 0xc3c3c300, 0x35353500, 0x0d0d0d00, 0x01010100, 0x8b8b8b00, 0x8c8c8c00, 0xc2c2c200, 0xe6e6e600, 0x5f5f5f00, 0x02020200, 0x24242400, 0x75757500, 0x93939300, 0x66666600, 0x1e1e1e00, 0xe5e5e500, 0xe2e2e200, 0x54545400, 0xd8d8d800, 0x10101000, 0xcecece00, 0x7a7a7a00, 0xe8e8e800, 0x08080800, 0x2c2c2c00, 0x12121200, 0x97979700, 0x32323200, 0xababab00, 0xb4b4b400, 0x27272700, 0x0a0a0a00, 0x23232300, 0xdfdfdf00, 0xefefef00, 0xcacaca00, 0xd9d9d900, 0xb8b8b800, 0xfafafa00, 0xdcdcdc00, 0x31313100, 0x6b6b6b00, 0xd1d1d100, 0xadadad00, 0x19191900, 0x49494900, 0xbdbdbd00, 0x51515100, 0x96969600, 0xeeeeee00, 0xe4e4e400, 0xa8a8a800, 0x41414100, 0xdadada00, 0xffffff00, 0xcdcdcd00, 0x55555500, 0x86868600, 0x36363600, 0xbebebe00, 0x61616100, 0x52525200, 0xf8f8f800, 0xbbbbbb00, 0x0e0e0e00, 0x82828200, 0x48484800, 0x69696900, 0x9a9a9a00, 0xe0e0e000, 0x47474700, 0x9e9e9e00, 0x5c5c5c00, 0x04040400, 0x4b4b4b00, 0x34343400, 0x15151500, 0x79797900, 0x26262600, 0xa7a7a700, 0xdedede00, 0x29292900, 0xaeaeae00, 0x92929200, 0xd7d7d700, 0x84848400, 0xe9e9e900, 0xd2d2d200, 0xbababa00, 0x5d5d5d00, 0xf3f3f300, 0xc5c5c500, 0xb0b0b000, 0xbfbfbf00, 0xa4a4a400, 0x3b3b3b00, 0x71717100, 0x44444400, 0x46464600, 0x2b2b2b00, 0xfcfcfc00, 0xebebeb00, 0x6f6f6f00, 0xd5d5d500, 0xf6f6f600, 0x14141400, 0xfefefe00, 0x7c7c7c00, 0x70707000, 0x5a5a5a00, 0x7d7d7d00, 0xfdfdfd00, 0x2f2f2f00, 0x18181800, 0x83838300, 0x16161600, 0xa5a5a500, 0x91919100, 0x1f1f1f00, 0x05050500, 0x95959500, 0x74747400, 0xa9a9a900, 0xc1c1c100, 0x5b5b5b00, 0x4a4a4a00, 0x85858500, 0x6d6d6d00, 0x13131300, 0x07070700, 0x4f4f4f00, 0x4e4e4e00, 0x45454500, 0xb2b2b200, 0x0f0f0f00, 0xc9c9c900, 0x1c1c1c00, 0xa6a6a600, 0xbcbcbc00, 0xececec00, 0x73737300, 0x90909000, 0x7b7b7b00, 0xcfcfcf00, 0x59595900, 0x8f8f8f00, 0xa1a1a100, 0xf9f9f900, 0x2d2d2d00, 0xf2f2f200, 0xb1b1b100, 0x00000000, 0x94949400, 0x37373700, 0x9f9f9f00, 0xd0d0d000, 0x2e2e2e00, 0x9c9c9c00, 0x6e6e6e00, 0x28282800, 0x3f3f3f00, 0x80808000, 0xf0f0f000, 0x3d3d3d00, 0xd3d3d300, 0x25252500, 0x8a8a8a00, 0xb5b5b500, 0xe7e7e700, 0x42424200, 0xb3b3b300, 0xc7c7c700, 0xeaeaea00, 0xf7f7f700, 0x4c4c4c00, 0x11111100, 0x33333300, 0x03030300, 0xa2a2a200, 0xacacac00, 0x60606000 }; /* Key XOR Layer */ #define ARIA_ADD_ROUND_KEY(RK, T0, T1, T2, T3) \ do { \ (T0) ^= (RK)->u[0]; \ (T1) ^= (RK)->u[1]; \ (T2) ^= (RK)->u[2]; \ (T3) ^= (RK)->u[3]; \ } while(0) /* S-Box Layer 1 + M */ #define ARIA_SBOX_LAYER1_WITH_PRE_DIFF(T0, T1, T2, T3) \ do { \ (T0) = \ S1[GET_U8_BE(T0, 0)] ^ \ S2[GET_U8_BE(T0, 1)] ^ \ X1[GET_U8_BE(T0, 2)] ^ \ X2[GET_U8_BE(T0, 3)]; \ (T1) = \ S1[GET_U8_BE(T1, 0)] ^ \ S2[GET_U8_BE(T1, 1)] ^ \ X1[GET_U8_BE(T1, 2)] ^ \ X2[GET_U8_BE(T1, 3)]; \ (T2) = \ S1[GET_U8_BE(T2, 0)] ^ \ S2[GET_U8_BE(T2, 1)] ^ \ X1[GET_U8_BE(T2, 2)] ^ \ X2[GET_U8_BE(T2, 3)]; \ (T3) = \ S1[GET_U8_BE(T3, 0)] ^ \ S2[GET_U8_BE(T3, 1)] ^ \ X1[GET_U8_BE(T3, 2)] ^ \ X2[GET_U8_BE(T3, 3)]; \ } while(0) /* S-Box Layer 2 + M */ #define ARIA_SBOX_LAYER2_WITH_PRE_DIFF(T0, T1, T2, T3) \ do { \ (T0) = \ X1[GET_U8_BE(T0, 0)] ^ \ X2[GET_U8_BE(T0, 1)] ^ \ S1[GET_U8_BE(T0, 2)] ^ \ S2[GET_U8_BE(T0, 3)]; \ (T1) = \ X1[GET_U8_BE(T1, 0)] ^ \ X2[GET_U8_BE(T1, 1)] ^ \ S1[GET_U8_BE(T1, 2)] ^ \ S2[GET_U8_BE(T1, 3)]; \ (T2) = \ X1[GET_U8_BE(T2, 0)] ^ \ X2[GET_U8_BE(T2, 1)] ^ \ S1[GET_U8_BE(T2, 2)] ^ \ S2[GET_U8_BE(T2, 3)]; \ (T3) = \ X1[GET_U8_BE(T3, 0)] ^ \ X2[GET_U8_BE(T3, 1)] ^ \ S1[GET_U8_BE(T3, 2)] ^ \ S2[GET_U8_BE(T3, 3)]; \ } while(0) /* Word-level diffusion */ #define ARIA_DIFF_WORD(T0,T1,T2,T3) \ do { \ (T1) ^= (T2); \ (T2) ^= (T3); \ (T0) ^= (T1); \ \ (T3) ^= (T1); \ (T2) ^= (T0); \ (T1) ^= (T2); \ } while(0) /* Byte-level diffusion */ #define ARIA_DIFF_BYTE(T0, T1, T2, T3) \ do { \ (T1) = (((T1) << 8) & 0xff00ff00) ^ (((T1) >> 8) & 0x00ff00ff); \ (T2) = rotr32(T2, 16); \ (T3) = bswap32(T3); \ } while(0) /* Odd round Substitution & Diffusion */ #define ARIA_SUBST_DIFF_ODD(T0, T1, T2, T3) \ do { \ ARIA_SBOX_LAYER1_WITH_PRE_DIFF(T0, T1, T2, T3); \ ARIA_DIFF_WORD(T0, T1, T2, T3); \ ARIA_DIFF_BYTE(T0, T1, T2, T3); \ ARIA_DIFF_WORD(T0, T1, T2, T3); \ } while(0) /* Even round Substitution & Diffusion */ #define ARIA_SUBST_DIFF_EVEN(T0, T1, T2, T3) \ do { \ ARIA_SBOX_LAYER2_WITH_PRE_DIFF(T0, T1, T2, T3); \ ARIA_DIFF_WORD(T0, T1, T2, T3); \ ARIA_DIFF_BYTE(T2, T3, T0, T1); \ ARIA_DIFF_WORD(T0, T1, T2, T3); \ } while(0) /* Q, R Macro expanded ARIA GSRK */ #define _ARIA_GSRK(RK, X, Y, Q, R) \ do { \ (RK)->u[0] = \ ((X)[0]) ^ \ (((Y)[((Q) ) % 4]) >> (R)) ^ \ (((Y)[((Q) + 3) % 4]) << (32 - (R))); \ (RK)->u[1] = \ ((X)[1]) ^ \ (((Y)[((Q) + 1) % 4]) >> (R)) ^ \ (((Y)[((Q) ) % 4]) << (32 - (R))); \ (RK)->u[2] = \ ((X)[2]) ^ \ (((Y)[((Q) + 2) % 4]) >> (R)) ^ \ (((Y)[((Q) + 1) % 4]) << (32 - (R))); \ (RK)->u[3] = \ ((X)[3]) ^ \ (((Y)[((Q) + 3) % 4]) >> (R)) ^ \ (((Y)[((Q) + 2) % 4]) << (32 - (R))); \ } while(0) #define ARIA_GSRK(RK, X, Y, N) _ARIA_GSRK(RK, X, Y, 4 - ((N) / 32), (N) % 32) #define ARIA_DEC_DIFF_BYTE(X, Y, TMP, TMP2) \ do { \ (TMP) = (X); \ (TMP2) = rotr32((TMP), 8); \ (Y) = (TMP2) ^ rotr32((TMP) ^ (TMP2), 16); \ } while(0) void aria_encrypt(const unsigned char *in, unsigned char *out, const ARIA_KEY *key) { register uint32_t reg0, reg1, reg2, reg3; int Nr; const ARIA_u128 *rk; if (in == NULL || out == NULL || key == NULL) { return; } rk = key->rd_key; Nr = key->rounds; if (Nr != 12 && Nr != 14 && Nr != 16) { return; } reg0 = GET_U32_BE(in, 0); reg1 = GET_U32_BE(in, 1); reg2 = GET_U32_BE(in, 2); reg3 = GET_U32_BE(in, 3); ARIA_ADD_ROUND_KEY(rk, reg0, reg1, reg2, reg3); rk++; ARIA_SUBST_DIFF_ODD(reg0, reg1, reg2, reg3); ARIA_ADD_ROUND_KEY(rk, reg0, reg1, reg2, reg3); rk++; while(Nr -= 2){ ARIA_SUBST_DIFF_EVEN(reg0, reg1, reg2, reg3); ARIA_ADD_ROUND_KEY(rk, reg0, reg1, reg2, reg3); rk++; ARIA_SUBST_DIFF_ODD(reg0, reg1, reg2, reg3); ARIA_ADD_ROUND_KEY(rk, reg0, reg1, reg2, reg3); rk++; } reg0 = rk->u[0] ^ MAKE_U32( (uint8_t)(X1[GET_U8_BE(reg0, 0)] ), (uint8_t)(X2[GET_U8_BE(reg0, 1)] >> 8), (uint8_t)(S1[GET_U8_BE(reg0, 2)] ), (uint8_t)(S2[GET_U8_BE(reg0, 3)] )); reg1 = rk->u[1] ^ MAKE_U32( (uint8_t)(X1[GET_U8_BE(reg1, 0)] ), (uint8_t)(X2[GET_U8_BE(reg1, 1)] >> 8), (uint8_t)(S1[GET_U8_BE(reg1, 2)] ), (uint8_t)(S2[GET_U8_BE(reg1, 3)] )); reg2 = rk->u[2] ^ MAKE_U32( (uint8_t)(X1[GET_U8_BE(reg2, 0)] ), (uint8_t)(X2[GET_U8_BE(reg2, 1)] >> 8), (uint8_t)(S1[GET_U8_BE(reg2, 2)] ), (uint8_t)(S2[GET_U8_BE(reg2, 3)] )); reg3 = rk->u[3] ^ MAKE_U32( (uint8_t)(X1[GET_U8_BE(reg3, 0)] ), (uint8_t)(X2[GET_U8_BE(reg3, 1)] >> 8), (uint8_t)(S1[GET_U8_BE(reg3, 2)] ), (uint8_t)(S2[GET_U8_BE(reg3, 3)] )); PUT_U32_BE(out, 0, reg0); PUT_U32_BE(out, 1, reg1); PUT_U32_BE(out, 2, reg2); PUT_U32_BE(out, 3, reg3); } int aria_set_encrypt_key(const unsigned char *userKey, const int bits, ARIA_KEY *key) { register uint32_t reg0, reg1, reg2, reg3; uint32_t w0[4], w1[4], w2[4], w3[4]; const uint32_t *ck; ARIA_u128 *rk; int Nr = (bits + 256) / 32; if (userKey == NULL || key == NULL) { return -1; } if (bits != 128 && bits != 192 && bits != 256) { return -2; } rk = key->rd_key; key->rounds = Nr; ck = &Key_RC[(bits - 128) / 64][0]; w0[0] = GET_U32_BE(userKey, 0); w0[1] = GET_U32_BE(userKey, 1); w0[2] = GET_U32_BE(userKey, 2); w0[3] = GET_U32_BE(userKey, 3); reg0 = w0[0] ^ ck[0]; reg1 = w0[1] ^ ck[1]; reg2 = w0[2] ^ ck[2]; reg3 = w0[3] ^ ck[3]; ARIA_SUBST_DIFF_ODD(reg0, reg1, reg2, reg3); if (bits > 128) { w1[0] = GET_U32_BE(userKey, 4); w1[1] = GET_U32_BE(userKey, 5); if (bits > 192) { w1[2] = GET_U32_BE(userKey, 6); w1[3] = GET_U32_BE(userKey, 7); } else { w1[2] = w1[3] = 0; } } else { w1[0] = w1[1] = w1[2] = w1[3] = 0; } w1[0] ^= reg0; w1[1] ^= reg1; w1[2] ^= reg2; w1[3] ^= reg3; reg0 = w1[0]; reg1 = w1[1]; reg2 = w1[2]; reg3 = w1[3]; reg0 ^= ck[4]; reg1 ^= ck[5]; reg2 ^= ck[6]; reg3 ^= ck[7]; ARIA_SUBST_DIFF_EVEN(reg0, reg1, reg2, reg3); reg0 ^= w0[0]; reg1 ^= w0[1]; reg2 ^= w0[2]; reg3 ^= w0[3]; w2[0] = reg0; w2[1] = reg1; w2[2] = reg2; w2[3] = reg3; reg0 ^= ck[8]; reg1 ^= ck[9]; reg2 ^= ck[10]; reg3 ^= ck[11]; ARIA_SUBST_DIFF_ODD(reg0, reg1, reg2, reg3); w3[0] = reg0 ^ w1[0]; w3[1] = reg1 ^ w1[1]; w3[2] = reg2 ^ w1[2]; w3[3] = reg3 ^ w1[3]; ARIA_GSRK(rk, w0, w1, 19); rk++; ARIA_GSRK(rk, w1, w2, 19); rk++; ARIA_GSRK(rk, w2, w3, 19); rk++; ARIA_GSRK(rk, w3, w0, 19); rk++; ARIA_GSRK(rk, w0, w1, 31); rk++; ARIA_GSRK(rk, w1, w2, 31); rk++; ARIA_GSRK(rk, w2, w3, 31); rk++; ARIA_GSRK(rk, w3, w0, 31); rk++; ARIA_GSRK(rk, w0, w1, 67); rk++; ARIA_GSRK(rk, w1, w2, 67); rk++; ARIA_GSRK(rk, w2, w3, 67); rk++; ARIA_GSRK(rk, w3, w0, 67); rk++; ARIA_GSRK(rk, w0, w1, 97); if (bits > 128) { rk++; ARIA_GSRK(rk, w1, w2, 97); rk++; ARIA_GSRK(rk, w2, w3, 97); } if (bits > 192) { rk++; ARIA_GSRK(rk, w3, w0, 97); rk++; ARIA_GSRK(rk, w0, w1, 109); } return 0; } int aria_set_decrypt_key(const unsigned char *userKey, const int bits, ARIA_KEY *key) { ARIA_u128 *rk_head; ARIA_u128 *rk_tail; register uint32_t w1, w2; register uint32_t reg0, reg1, reg2, reg3; uint32_t s0, s1, s2, s3; const int r = aria_set_encrypt_key(userKey, bits, key); if (r != 0) { return r; } rk_head = key->rd_key; rk_tail = rk_head + key->rounds; reg0 = rk_head->u[0]; reg1 = rk_head->u[1]; reg2 = rk_head->u[2]; reg3 = rk_head->u[3]; memcpy(rk_head, rk_tail, ARIA_BLOCK_SIZE); rk_tail->u[0] = reg0; rk_tail->u[1] = reg1; rk_tail->u[2] = reg2; rk_tail->u[3] = reg3; rk_head++; rk_tail--; for (; rk_head < rk_tail; rk_head++, rk_tail--) { ARIA_DEC_DIFF_BYTE(rk_head->u[0], reg0, w1, w2); ARIA_DEC_DIFF_BYTE(rk_head->u[1], reg1, w1, w2); ARIA_DEC_DIFF_BYTE(rk_head->u[2], reg2, w1, w2); ARIA_DEC_DIFF_BYTE(rk_head->u[3], reg3, w1, w2); ARIA_DIFF_WORD(reg0, reg1, reg2, reg3); ARIA_DIFF_BYTE(reg0, reg1, reg2, reg3); ARIA_DIFF_WORD(reg0, reg1, reg2, reg3); s0 = reg0; s1 = reg1; s2 = reg2; s3 = reg3; ARIA_DEC_DIFF_BYTE(rk_tail->u[0], reg0, w1, w2); ARIA_DEC_DIFF_BYTE(rk_tail->u[1], reg1, w1, w2); ARIA_DEC_DIFF_BYTE(rk_tail->u[2], reg2, w1, w2); ARIA_DEC_DIFF_BYTE(rk_tail->u[3], reg3, w1, w2); ARIA_DIFF_WORD(reg0, reg1, reg2, reg3); ARIA_DIFF_BYTE(reg0, reg1, reg2, reg3); ARIA_DIFF_WORD(reg0, reg1, reg2, reg3); rk_head->u[0] = reg0; rk_head->u[1] = reg1; rk_head->u[2] = reg2; rk_head->u[3] = reg3; rk_tail->u[0] = s0; rk_tail->u[1] = s1; rk_tail->u[2] = s2; rk_tail->u[3] = s3; } ARIA_DEC_DIFF_BYTE(rk_head->u[0], reg0, w1, w2); ARIA_DEC_DIFF_BYTE(rk_head->u[1], reg1, w1, w2); ARIA_DEC_DIFF_BYTE(rk_head->u[2], reg2, w1, w2); ARIA_DEC_DIFF_BYTE(rk_head->u[3], reg3, w1, w2); ARIA_DIFF_WORD(reg0, reg1, reg2, reg3); ARIA_DIFF_BYTE(reg0, reg1, reg2, reg3); ARIA_DIFF_WORD(reg0, reg1, reg2, reg3); rk_tail->u[0] = reg0; rk_tail->u[1] = reg1; rk_tail->u[2] = reg2; rk_tail->u[3] = reg3; return 0; } #else static const unsigned char sb1[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static const unsigned char sb2[256] = { 0xe2, 0x4e, 0x54, 0xfc, 0x94, 0xc2, 0x4a, 0xcc, 0x62, 0x0d, 0x6a, 0x46, 0x3c, 0x4d, 0x8b, 0xd1, 0x5e, 0xfa, 0x64, 0xcb, 0xb4, 0x97, 0xbe, 0x2b, 0xbc, 0x77, 0x2e, 0x03, 0xd3, 0x19, 0x59, 0xc1, 0x1d, 0x06, 0x41, 0x6b, 0x55, 0xf0, 0x99, 0x69, 0xea, 0x9c, 0x18, 0xae, 0x63, 0xdf, 0xe7, 0xbb, 0x00, 0x73, 0x66, 0xfb, 0x96, 0x4c, 0x85, 0xe4, 0x3a, 0x09, 0x45, 0xaa, 0x0f, 0xee, 0x10, 0xeb, 0x2d, 0x7f, 0xf4, 0x29, 0xac, 0xcf, 0xad, 0x91, 0x8d, 0x78, 0xc8, 0x95, 0xf9, 0x2f, 0xce, 0xcd, 0x08, 0x7a, 0x88, 0x38, 0x5c, 0x83, 0x2a, 0x28, 0x47, 0xdb, 0xb8, 0xc7, 0x93, 0xa4, 0x12, 0x53, 0xff, 0x87, 0x0e, 0x31, 0x36, 0x21, 0x58, 0x48, 0x01, 0x8e, 0x37, 0x74, 0x32, 0xca, 0xe9, 0xb1, 0xb7, 0xab, 0x0c, 0xd7, 0xc4, 0x56, 0x42, 0x26, 0x07, 0x98, 0x60, 0xd9, 0xb6, 0xb9, 0x11, 0x40, 0xec, 0x20, 0x8c, 0xbd, 0xa0, 0xc9, 0x84, 0x04, 0x49, 0x23, 0xf1, 0x4f, 0x50, 0x1f, 0x13, 0xdc, 0xd8, 0xc0, 0x9e, 0x57, 0xe3, 0xc3, 0x7b, 0x65, 0x3b, 0x02, 0x8f, 0x3e, 0xe8, 0x25, 0x92, 0xe5, 0x15, 0xdd, 0xfd, 0x17, 0xa9, 0xbf, 0xd4, 0x9a, 0x7e, 0xc5, 0x39, 0x67, 0xfe, 0x76, 0x9d, 0x43, 0xa7, 0xe1, 0xd0, 0xf5, 0x68, 0xf2, 0x1b, 0x34, 0x70, 0x05, 0xa3, 0x8a, 0xd5, 0x79, 0x86, 0xa8, 0x30, 0xc6, 0x51, 0x4b, 0x1e, 0xa6, 0x27, 0xf6, 0x35, 0xd2, 0x6e, 0x24, 0x16, 0x82, 0x5f, 0xda, 0xe6, 0x75, 0xa2, 0xef, 0x2c, 0xb2, 0x1c, 0x9f, 0x5d, 0x6f, 0x80, 0x0a, 0x72, 0x44, 0x9b, 0x6c, 0x90, 0x0b, 0x5b, 0x33, 0x7d, 0x5a, 0x52, 0xf3, 0x61, 0xa1, 0xf7, 0xb0, 0xd6, 0x3f, 0x7c, 0x6d, 0xed, 0x14, 0xe0, 0xa5, 0x3d, 0x22, 0xb3, 0xf8, 0x89, 0xde, 0x71, 0x1a, 0xaf, 0xba, 0xb5, 0x81 }; static const unsigned char sb3[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; static const unsigned char sb4[256] = { 0x30, 0x68, 0x99, 0x1b, 0x87, 0xb9, 0x21, 0x78, 0x50, 0x39, 0xdb, 0xe1, 0x72, 0x09, 0x62, 0x3c, 0x3e, 0x7e, 0x5e, 0x8e, 0xf1, 0xa0, 0xcc, 0xa3, 0x2a, 0x1d, 0xfb, 0xb6, 0xd6, 0x20, 0xc4, 0x8d, 0x81, 0x65, 0xf5, 0x89, 0xcb, 0x9d, 0x77, 0xc6, 0x57, 0x43, 0x56, 0x17, 0xd4, 0x40, 0x1a, 0x4d, 0xc0, 0x63, 0x6c, 0xe3, 0xb7, 0xc8, 0x64, 0x6a, 0x53, 0xaa, 0x38, 0x98, 0x0c, 0xf4, 0x9b, 0xed, 0x7f, 0x22, 0x76, 0xaf, 0xdd, 0x3a, 0x0b, 0x58, 0x67, 0x88, 0x06, 0xc3, 0x35, 0x0d, 0x01, 0x8b, 0x8c, 0xc2, 0xe6, 0x5f, 0x02, 0x24, 0x75, 0x93, 0x66, 0x1e, 0xe5, 0xe2, 0x54, 0xd8, 0x10, 0xce, 0x7a, 0xe8, 0x08, 0x2c, 0x12, 0x97, 0x32, 0xab, 0xb4, 0x27, 0x0a, 0x23, 0xdf, 0xef, 0xca, 0xd9, 0xb8, 0xfa, 0xdc, 0x31, 0x6b, 0xd1, 0xad, 0x19, 0x49, 0xbd, 0x51, 0x96, 0xee, 0xe4, 0xa8, 0x41, 0xda, 0xff, 0xcd, 0x55, 0x86, 0x36, 0xbe, 0x61, 0x52, 0xf8, 0xbb, 0x0e, 0x82, 0x48, 0x69, 0x9a, 0xe0, 0x47, 0x9e, 0x5c, 0x04, 0x4b, 0x34, 0x15, 0x79, 0x26, 0xa7, 0xde, 0x29, 0xae, 0x92, 0xd7, 0x84, 0xe9, 0xd2, 0xba, 0x5d, 0xf3, 0xc5, 0xb0, 0xbf, 0xa4, 0x3b, 0x71, 0x44, 0x46, 0x2b, 0xfc, 0xeb, 0x6f, 0xd5, 0xf6, 0x14, 0xfe, 0x7c, 0x70, 0x5a, 0x7d, 0xfd, 0x2f, 0x18, 0x83, 0x16, 0xa5, 0x91, 0x1f, 0x05, 0x95, 0x74, 0xa9, 0xc1, 0x5b, 0x4a, 0x85, 0x6d, 0x13, 0x07, 0x4f, 0x4e, 0x45, 0xb2, 0x0f, 0xc9, 0x1c, 0xa6, 0xbc, 0xec, 0x73, 0x90, 0x7b, 0xcf, 0x59, 0x8f, 0xa1, 0xf9, 0x2d, 0xf2, 0xb1, 0x00, 0x94, 0x37, 0x9f, 0xd0, 0x2e, 0x9c, 0x6e, 0x28, 0x3f, 0x80, 0xf0, 0x3d, 0xd3, 0x25, 0x8a, 0xb5, 0xe7, 0x42, 0xb3, 0xc7, 0xea, 0xf7, 0x4c, 0x11, 0x33, 0x03, 0xa2, 0xac, 0x60 }; static const ARIA_u128 c1 = {{ 0x51, 0x7c, 0xc1, 0xb7, 0x27, 0x22, 0x0a, 0x94, 0xfe, 0x13, 0xab, 0xe8, 0xfa, 0x9a, 0x6e, 0xe0 }}; static const ARIA_u128 c2 = {{ 0x6d, 0xb1, 0x4a, 0xcc, 0x9e, 0x21, 0xc8, 0x20, 0xff, 0x28, 0xb1, 0xd5, 0xef, 0x5d, 0xe2, 0xb0 }}; static const ARIA_u128 c3 = {{ 0xdb, 0x92, 0x37, 0x1d, 0x21, 0x26, 0xe9, 0x70, 0x03, 0x24, 0x97, 0x75, 0x04, 0xe8, 0xc9, 0x0e }}; /* * Exclusive or two 128 bit values into the result. * It is safe for the result to be the same as the either input. */ static void xor128(ARIA_c128 o, const ARIA_c128 x, const ARIA_u128 *y) { int i; for (i = 0; i < ARIA_BLOCK_SIZE; i++) o[i] = x[i] ^ y->c[i]; } /* * Generalised circular rotate right and exclusive or function. * It is safe for the output to overlap either input. */ static ossl_inline void rotnr(unsigned int n, ARIA_u128 *o, const ARIA_u128 *xor, const ARIA_u128 *z) { const unsigned int bytes = n / 8, bits = n % 8; unsigned int i; ARIA_u128 t; for (i = 0; i < ARIA_BLOCK_SIZE; i++) t.c[(i + bytes) % ARIA_BLOCK_SIZE] = z->c[i]; for (i = 0; i < ARIA_BLOCK_SIZE; i++) o->c[i] = ((t.c[i] >> bits) | (t.c[i ? i - 1 : ARIA_BLOCK_SIZE - 1] << (8 - bits))) ^ xor->c[i]; } /* * Circular rotate 19 bits right and xor. * It is safe for the output to overlap either input. */ static void rot19r(ARIA_u128 *o, const ARIA_u128 *xor, const ARIA_u128 *z) { rotnr(19, o, xor, z); } /* * Circular rotate 31 bits right and xor. * It is safe for the output to overlap either input. */ static void rot31r(ARIA_u128 *o, const ARIA_u128 *xor, const ARIA_u128 *z) { rotnr(31, o, xor, z); } /* * Circular rotate 61 bits left and xor. * It is safe for the output to overlap either input. */ static void rot61l(ARIA_u128 *o, const ARIA_u128 *xor, const ARIA_u128 *z) { rotnr(8 * ARIA_BLOCK_SIZE - 61, o, xor, z); } /* * Circular rotate 31 bits left and xor. * It is safe for the output to overlap either input. */ static void rot31l(ARIA_u128 *o, const ARIA_u128 *xor, const ARIA_u128 *z) { rotnr(8 * ARIA_BLOCK_SIZE - 31, o, xor, z); } /* * Circular rotate 19 bits left and xor. * It is safe for the output to overlap either input. */ static void rot19l(ARIA_u128 *o, const ARIA_u128 *xor, const ARIA_u128 *z) { rotnr(8 * ARIA_BLOCK_SIZE - 19, o, xor, z); } /* * First substitution and xor layer, used for odd steps. * It is safe for the input and output to be the same. */ static void sl1(ARIA_u128 *o, const ARIA_u128 *x, const ARIA_u128 *y) { unsigned int i; for (i = 0; i < ARIA_BLOCK_SIZE; i += 4) { o->c[i ] = sb1[x->c[i ] ^ y->c[i ]]; o->c[i + 1] = sb2[x->c[i + 1] ^ y->c[i + 1]]; o->c[i + 2] = sb3[x->c[i + 2] ^ y->c[i + 2]]; o->c[i + 3] = sb4[x->c[i + 3] ^ y->c[i + 3]]; } } /* * Second substitution and xor layer, used for even steps. * It is safe for the input and output to be the same. */ static void sl2(ARIA_c128 o, const ARIA_u128 *x, const ARIA_u128 *y) { unsigned int i; for (i = 0; i < ARIA_BLOCK_SIZE; i += 4) { o[i ] = sb3[x->c[i ] ^ y->c[i ]]; o[i + 1] = sb4[x->c[i + 1] ^ y->c[i + 1]]; o[i + 2] = sb1[x->c[i + 2] ^ y->c[i + 2]]; o[i + 3] = sb2[x->c[i + 3] ^ y->c[i + 3]]; } } /* * Diffusion layer step * It is NOT safe for the input and output to overlap. */ static void a(ARIA_u128 *y, const ARIA_u128 *x) { y->c[ 0] = x->c[ 3] ^ x->c[ 4] ^ x->c[ 6] ^ x->c[ 8] ^ x->c[ 9] ^ x->c[13] ^ x->c[14]; y->c[ 1] = x->c[ 2] ^ x->c[ 5] ^ x->c[ 7] ^ x->c[ 8] ^ x->c[ 9] ^ x->c[12] ^ x->c[15]; y->c[ 2] = x->c[ 1] ^ x->c[ 4] ^ x->c[ 6] ^ x->c[10] ^ x->c[11] ^ x->c[12] ^ x->c[15]; y->c[ 3] = x->c[ 0] ^ x->c[ 5] ^ x->c[ 7] ^ x->c[10] ^ x->c[11] ^ x->c[13] ^ x->c[14]; y->c[ 4] = x->c[ 0] ^ x->c[ 2] ^ x->c[ 5] ^ x->c[ 8] ^ x->c[11] ^ x->c[14] ^ x->c[15]; y->c[ 5] = x->c[ 1] ^ x->c[ 3] ^ x->c[ 4] ^ x->c[ 9] ^ x->c[10] ^ x->c[14] ^ x->c[15]; y->c[ 6] = x->c[ 0] ^ x->c[ 2] ^ x->c[ 7] ^ x->c[ 9] ^ x->c[10] ^ x->c[12] ^ x->c[13]; y->c[ 7] = x->c[ 1] ^ x->c[ 3] ^ x->c[ 6] ^ x->c[ 8] ^ x->c[11] ^ x->c[12] ^ x->c[13]; y->c[ 8] = x->c[ 0] ^ x->c[ 1] ^ x->c[ 4] ^ x->c[ 7] ^ x->c[10] ^ x->c[13] ^ x->c[15]; y->c[ 9] = x->c[ 0] ^ x->c[ 1] ^ x->c[ 5] ^ x->c[ 6] ^ x->c[11] ^ x->c[12] ^ x->c[14]; y->c[10] = x->c[ 2] ^ x->c[ 3] ^ x->c[ 5] ^ x->c[ 6] ^ x->c[ 8] ^ x->c[13] ^ x->c[15]; y->c[11] = x->c[ 2] ^ x->c[ 3] ^ x->c[ 4] ^ x->c[ 7] ^ x->c[ 9] ^ x->c[12] ^ x->c[14]; y->c[12] = x->c[ 1] ^ x->c[ 2] ^ x->c[ 6] ^ x->c[ 7] ^ x->c[ 9] ^ x->c[11] ^ x->c[12]; y->c[13] = x->c[ 0] ^ x->c[ 3] ^ x->c[ 6] ^ x->c[ 7] ^ x->c[ 8] ^ x->c[10] ^ x->c[13]; y->c[14] = x->c[ 0] ^ x->c[ 3] ^ x->c[ 4] ^ x->c[ 5] ^ x->c[ 9] ^ x->c[11] ^ x->c[14]; y->c[15] = x->c[ 1] ^ x->c[ 2] ^ x->c[ 4] ^ x->c[ 5] ^ x->c[ 8] ^ x->c[10] ^ x->c[15]; } /* * Odd round function * Apply the first substitution layer and then a diffusion step. * It is safe for the input and output to overlap. */ static ossl_inline void FO(ARIA_u128 *o, const ARIA_u128 *d, const ARIA_u128 *rk) { ARIA_u128 y; sl1(&y, d, rk); a(o, &y); } /* * Even round function * Apply the second substitution layer and then a diffusion step. * It is safe for the input and output to overlap. */ static ossl_inline void FE(ARIA_u128 *o, const ARIA_u128 *d, const ARIA_u128 *rk) { ARIA_u128 y; sl2(y.c, d, rk); a(o, &y); } /* * Encrypt or decrypt a single block * in and out can overlap */ static void do_encrypt(unsigned char *o, const unsigned char *pin, unsigned int rounds, const ARIA_u128 *keys) { ARIA_u128 p; unsigned int i; memcpy(&p, pin, sizeof(p)); for (i = 0; i < rounds - 2; i += 2) { FO(&p, &p, &keys[i]); FE(&p, &p, &keys[i + 1]); } FO(&p, &p, &keys[rounds - 2]); sl2(o, &p, &keys[rounds - 1]); xor128(o, o, &keys[rounds]); } /* * Encrypt a single block * in and out can overlap */ void aria_encrypt(const unsigned char *in, unsigned char *out, const ARIA_KEY *key) { assert(in != NULL && out != NULL && key != NULL); do_encrypt(out, in, key->rounds, key->rd_key); } /* * Expand the cipher key into the encryption key schedule. * We short circuit execution of the last two * or four rotations based on the key size. */ int aria_set_encrypt_key(const unsigned char *userKey, const int bits, ARIA_KEY *key) { const ARIA_u128 *ck1, *ck2, *ck3; ARIA_u128 kr, w0, w1, w2, w3; if (!userKey || !key) return -1; memcpy(w0.c, userKey, sizeof(w0)); switch (bits) { default: return -2; case 128: key->rounds = 12; ck1 = &c1; ck2 = &c2; ck3 = &c3; memset(kr.c, 0, sizeof(kr)); break; case 192: key->rounds = 14; ck1 = &c2; ck2 = &c3; ck3 = &c1; memcpy(kr.c, userKey + ARIA_BLOCK_SIZE, sizeof(kr) / 2); memset(kr.c + ARIA_BLOCK_SIZE / 2, 0, sizeof(kr) / 2); break; case 256: key->rounds = 16; ck1 = &c3; ck2 = &c1; ck3 = &c2; memcpy(kr.c, userKey + ARIA_BLOCK_SIZE, sizeof(kr)); break; } FO(&w3, &w0, ck1); xor128(w1.c, w3.c, &kr); FE(&w3, &w1, ck2); xor128(w2.c, w3.c, &w0); FO(&kr, &w2, ck3); xor128(w3.c, kr.c, &w1); rot19r(&key->rd_key[ 0], &w0, &w1); rot19r(&key->rd_key[ 1], &w1, &w2); rot19r(&key->rd_key[ 2], &w2, &w3); rot19r(&key->rd_key[ 3], &w3, &w0); rot31r(&key->rd_key[ 4], &w0, &w1); rot31r(&key->rd_key[ 5], &w1, &w2); rot31r(&key->rd_key[ 6], &w2, &w3); rot31r(&key->rd_key[ 7], &w3, &w0); rot61l(&key->rd_key[ 8], &w0, &w1); rot61l(&key->rd_key[ 9], &w1, &w2); rot61l(&key->rd_key[10], &w2, &w3); rot61l(&key->rd_key[11], &w3, &w0); rot31l(&key->rd_key[12], &w0, &w1); if (key->rounds > 12) { rot31l(&key->rd_key[13], &w1, &w2); rot31l(&key->rd_key[14], &w2, &w3); if (key->rounds > 14) { rot31l(&key->rd_key[15], &w3, &w0); rot19l(&key->rd_key[16], &w0, &w1); } } return 0; } /* * Expand the cipher key into the decryption key schedule. */ int aria_set_decrypt_key(const unsigned char *userKey, const int bits, ARIA_KEY *key) { ARIA_KEY ek; const int r = aria_set_encrypt_key(userKey, bits, &ek); unsigned int i, rounds = ek.rounds; if (r == 0) { key->rounds = rounds; memcpy(&key->rd_key[0], &ek.rd_key[rounds], sizeof(key->rd_key[0])); for (i = 1; i < rounds; i++) a(&key->rd_key[i], &ek.rd_key[rounds - i]); memcpy(&key->rd_key[rounds], &ek.rd_key[0], sizeof(key->rd_key[rounds])); } return r; } #endif openssl-1.1.1f/crypto/aria/build.info000066400000000000000000000000771364063235100175620ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ aria.c openssl-1.1.1f/crypto/arm64cpuid.pl000077500000000000000000000055001364063235100172040ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; $code.=<<___; #include "arm_arch.h" .text .arch armv8-a+crypto .align 5 .globl _armv7_neon_probe .type _armv7_neon_probe,%function _armv7_neon_probe: orr v15.16b, v15.16b, v15.16b ret .size _armv7_neon_probe,.-_armv7_neon_probe .globl _armv7_tick .type _armv7_tick,%function _armv7_tick: #ifdef __APPLE__ mrs x0, CNTPCT_EL0 #else mrs x0, CNTVCT_EL0 #endif ret .size _armv7_tick,.-_armv7_tick .globl _armv8_aes_probe .type _armv8_aes_probe,%function _armv8_aes_probe: aese v0.16b, v0.16b ret .size _armv8_aes_probe,.-_armv8_aes_probe .globl _armv8_sha1_probe .type _armv8_sha1_probe,%function _armv8_sha1_probe: sha1h s0, s0 ret .size _armv8_sha1_probe,.-_armv8_sha1_probe .globl _armv8_sha256_probe .type _armv8_sha256_probe,%function _armv8_sha256_probe: sha256su0 v0.4s, v0.4s ret .size _armv8_sha256_probe,.-_armv8_sha256_probe .globl _armv8_pmull_probe .type _armv8_pmull_probe,%function _armv8_pmull_probe: pmull v0.1q, v0.1d, v0.1d ret .size _armv8_pmull_probe,.-_armv8_pmull_probe .globl _armv8_sha512_probe .type _armv8_sha512_probe,%function _armv8_sha512_probe: .long 0xcec08000 // sha512su0 v0.2d,v0.2d ret .size _armv8_sha512_probe,.-_armv8_sha512_probe .globl OPENSSL_cleanse .type OPENSSL_cleanse,%function .align 5 OPENSSL_cleanse: cbz x1,.Lret // len==0? cmp x1,#15 b.hi .Lot // len>15 nop .Little: strb wzr,[x0],#1 // store byte-by-byte subs x1,x1,#1 b.ne .Little .Lret: ret .align 4 .Lot: tst x0,#7 b.eq .Laligned // inp is aligned strb wzr,[x0],#1 // store byte-by-byte sub x1,x1,#1 b .Lot .align 4 .Laligned: str xzr,[x0],#8 // store word-by-word sub x1,x1,#8 tst x1,#-8 b.ne .Laligned // len>=8 cbnz x1,.Little // len!=0? ret .size OPENSSL_cleanse,.-OPENSSL_cleanse .globl CRYPTO_memcmp .type CRYPTO_memcmp,%function .align 4 CRYPTO_memcmp: eor w3,w3,w3 cbz x2,.Lno_data // len==0? cmp x2,#16 b.ne .Loop_cmp ldp x8,x9,[x0] ldp x10,x11,[x1] eor x8,x8,x10 eor x9,x9,x11 orr x8,x8,x9 mov x0,#1 cmp x8,#0 csel x0,xzr,x0,eq ret .align 4 .Loop_cmp: ldrb w4,[x0],#1 ldrb w5,[x1],#1 eor w4,w4,w5 orr w3,w3,w4 subs x2,x2,#1 b.ne .Loop_cmp .Lno_data: neg w0,w3 lsr w0,w0,#31 ret .size CRYPTO_memcmp,.-CRYPTO_memcmp ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/arm_arch.h000066400000000000000000000051051364063235100166140ustar00rootroot00000000000000/* * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_ARM_ARCH_H # define OSSL_CRYPTO_ARM_ARCH_H # if !defined(__ARM_ARCH__) # if defined(__CC_ARM) # define __ARM_ARCH__ __TARGET_ARCH_ARM # if defined(__BIG_ENDIAN) # define __ARMEB__ # else # define __ARMEL__ # endif # elif defined(__GNUC__) # if defined(__aarch64__) # define __ARM_ARCH__ 8 # if __BYTE_ORDER__==__ORDER_BIG_ENDIAN__ # define __ARMEB__ # else # define __ARMEL__ # endif /* * Why doesn't gcc define __ARM_ARCH__? Instead it defines * bunch of below macros. See all_architectures[] table in * gcc/config/arm/arm.c. On a side note it defines * __ARMEL__/__ARMEB__ for little-/big-endian. */ # elif defined(__ARM_ARCH) # define __ARM_ARCH__ __ARM_ARCH # elif defined(__ARM_ARCH_8A__) # define __ARM_ARCH__ 8 # elif defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \ defined(__ARM_ARCH_7R__)|| defined(__ARM_ARCH_7M__) || \ defined(__ARM_ARCH_7EM__) # define __ARM_ARCH__ 7 # elif defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \ defined(__ARM_ARCH_6K__)|| defined(__ARM_ARCH_6M__) || \ defined(__ARM_ARCH_6Z__)|| defined(__ARM_ARCH_6ZK__) || \ defined(__ARM_ARCH_6T2__) # define __ARM_ARCH__ 6 # elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \ defined(__ARM_ARCH_5E__)|| defined(__ARM_ARCH_5TE__) || \ defined(__ARM_ARCH_5TEJ__) # define __ARM_ARCH__ 5 # elif defined(__ARM_ARCH_4__) || defined(__ARM_ARCH_4T__) # define __ARM_ARCH__ 4 # else # error "unsupported ARM architecture" # endif # endif # endif # if !defined(__ARM_MAX_ARCH__) # define __ARM_MAX_ARCH__ __ARM_ARCH__ # endif # if __ARM_MAX_ARCH__<__ARM_ARCH__ # error "__ARM_MAX_ARCH__ can't be less than __ARM_ARCH__" # elif __ARM_MAX_ARCH__!=__ARM_ARCH__ # if __ARM_ARCH__<7 && __ARM_MAX_ARCH__>=7 && defined(__ARMEB__) # error "can't build universal big-endian binary" # endif # endif # ifndef __ASSEMBLER__ extern unsigned int OPENSSL_armcap_P; # endif # define ARMV7_NEON (1<<0) # define ARMV7_TICK (1<<1) # define ARMV8_AES (1<<2) # define ARMV8_SHA1 (1<<3) # define ARMV8_SHA256 (1<<4) # define ARMV8_PMULL (1<<5) # define ARMV8_SHA512 (1<<6) #endif openssl-1.1.1f/crypto/armcap.c000066400000000000000000000130521364063235100162760ustar00rootroot00000000000000/* * Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "internal/cryptlib.h" #include "arm_arch.h" unsigned int OPENSSL_armcap_P = 0; #if __ARM_MAX_ARCH__<7 void OPENSSL_cpuid_setup(void) { } uint32_t OPENSSL_rdtsc(void) { return 0; } #else static sigset_t all_masked; static sigjmp_buf ill_jmp; static void ill_handler(int sig) { siglongjmp(ill_jmp, sig); } /* * Following subroutines could have been inlined, but it's not all * ARM compilers support inline assembler... */ void _armv7_neon_probe(void); void _armv8_aes_probe(void); void _armv8_sha1_probe(void); void _armv8_sha256_probe(void); void _armv8_pmull_probe(void); # ifdef __aarch64__ void _armv8_sha512_probe(void); # endif uint32_t _armv7_tick(void); uint32_t OPENSSL_rdtsc(void) { if (OPENSSL_armcap_P & ARMV7_TICK) return _armv7_tick(); else return 0; } # if defined(__GNUC__) && __GNUC__>=2 void OPENSSL_cpuid_setup(void) __attribute__ ((constructor)); # endif # if defined(__GLIBC__) && defined(__GLIBC_PREREQ) # if __GLIBC_PREREQ(2, 16) # include # define OSSL_IMPLEMENT_GETAUXVAL # endif # endif /* * ARM puts the feature bits for Crypto Extensions in AT_HWCAP2, whereas * AArch64 used AT_HWCAP. */ # if defined(__arm__) || defined (__arm) # define HWCAP 16 /* AT_HWCAP */ # define HWCAP_NEON (1 << 12) # define HWCAP_CE 26 /* AT_HWCAP2 */ # define HWCAP_CE_AES (1 << 0) # define HWCAP_CE_PMULL (1 << 1) # define HWCAP_CE_SHA1 (1 << 2) # define HWCAP_CE_SHA256 (1 << 3) # elif defined(__aarch64__) # define HWCAP 16 /* AT_HWCAP */ # define HWCAP_NEON (1 << 1) # define HWCAP_CE HWCAP # define HWCAP_CE_AES (1 << 3) # define HWCAP_CE_PMULL (1 << 4) # define HWCAP_CE_SHA1 (1 << 5) # define HWCAP_CE_SHA256 (1 << 6) # define HWCAP_CE_SHA512 (1 << 21) # endif void OPENSSL_cpuid_setup(void) { const char *e; struct sigaction ill_oact, ill_act; sigset_t oset; static int trigger = 0; if (trigger) return; trigger = 1; if ((e = getenv("OPENSSL_armcap"))) { OPENSSL_armcap_P = (unsigned int)strtoul(e, NULL, 0); return; } # if defined(__APPLE__) && !defined(__aarch64__) /* * Capability probing by catching SIGILL appears to be problematic * on iOS. But since Apple universe is "monocultural", it's actually * possible to simply set pre-defined processor capability mask. */ if (1) { OPENSSL_armcap_P = ARMV7_NEON; return; } /* * One could do same even for __aarch64__ iOS builds. It's not done * exclusively for reasons of keeping code unified across platforms. * Unified code works because it never triggers SIGILL on Apple * devices... */ # endif OPENSSL_armcap_P = 0; # ifdef OSSL_IMPLEMENT_GETAUXVAL if (getauxval(HWCAP) & HWCAP_NEON) { unsigned long hwcap = getauxval(HWCAP_CE); OPENSSL_armcap_P |= ARMV7_NEON; if (hwcap & HWCAP_CE_AES) OPENSSL_armcap_P |= ARMV8_AES; if (hwcap & HWCAP_CE_PMULL) OPENSSL_armcap_P |= ARMV8_PMULL; if (hwcap & HWCAP_CE_SHA1) OPENSSL_armcap_P |= ARMV8_SHA1; if (hwcap & HWCAP_CE_SHA256) OPENSSL_armcap_P |= ARMV8_SHA256; # ifdef __aarch64__ if (hwcap & HWCAP_CE_SHA512) OPENSSL_armcap_P |= ARMV8_SHA512; # endif } # endif sigfillset(&all_masked); sigdelset(&all_masked, SIGILL); sigdelset(&all_masked, SIGTRAP); sigdelset(&all_masked, SIGFPE); sigdelset(&all_masked, SIGBUS); sigdelset(&all_masked, SIGSEGV); memset(&ill_act, 0, sizeof(ill_act)); ill_act.sa_handler = ill_handler; ill_act.sa_mask = all_masked; sigprocmask(SIG_SETMASK, &ill_act.sa_mask, &oset); sigaction(SIGILL, &ill_act, &ill_oact); /* If we used getauxval, we already have all the values */ # ifndef OSSL_IMPLEMENT_GETAUXVAL if (sigsetjmp(ill_jmp, 1) == 0) { _armv7_neon_probe(); OPENSSL_armcap_P |= ARMV7_NEON; if (sigsetjmp(ill_jmp, 1) == 0) { _armv8_pmull_probe(); OPENSSL_armcap_P |= ARMV8_PMULL | ARMV8_AES; } else if (sigsetjmp(ill_jmp, 1) == 0) { _armv8_aes_probe(); OPENSSL_armcap_P |= ARMV8_AES; } if (sigsetjmp(ill_jmp, 1) == 0) { _armv8_sha1_probe(); OPENSSL_armcap_P |= ARMV8_SHA1; } if (sigsetjmp(ill_jmp, 1) == 0) { _armv8_sha256_probe(); OPENSSL_armcap_P |= ARMV8_SHA256; } # if defined(__aarch64__) && !defined(__APPLE__) if (sigsetjmp(ill_jmp, 1) == 0) { _armv8_sha512_probe(); OPENSSL_armcap_P |= ARMV8_SHA512; } # endif } # endif /* Things that getauxval didn't tell us */ if (sigsetjmp(ill_jmp, 1) == 0) { _armv7_tick(); OPENSSL_armcap_P |= ARMV7_TICK; } sigaction(SIGILL, &ill_oact, NULL); sigprocmask(SIG_SETMASK, &oset, NULL); } #endif openssl-1.1.1f/crypto/armv4cpuid.pl000066400000000000000000000125271364063235100173100ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; $code.=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) && !defined(__APPLE__) .syntax unified .thumb #else .code 32 #undef __thumb2__ #endif .align 5 .global OPENSSL_atomic_add .type OPENSSL_atomic_add,%function OPENSSL_atomic_add: #if __ARM_ARCH__>=6 .Ladd: ldrex r2,[r0] add r3,r2,r1 strex r2,r3,[r0] cmp r2,#0 bne .Ladd mov r0,r3 bx lr #else stmdb sp!,{r4-r6,lr} ldr r2,.Lspinlock adr r3,.Lspinlock mov r4,r0 mov r5,r1 add r6,r3,r2 @ &spinlock b .+8 .Lspin: bl sched_yield mov r0,#-1 swp r0,r0,[r6] cmp r0,#0 bne .Lspin ldr r2,[r4] add r2,r2,r5 str r2,[r4] str r0,[r6] @ release spinlock ldmia sp!,{r4-r6,lr} tst lr,#1 moveq pc,lr .word 0xe12fff1e @ bx lr #endif .size OPENSSL_atomic_add,.-OPENSSL_atomic_add .global OPENSSL_cleanse .type OPENSSL_cleanse,%function OPENSSL_cleanse: eor ip,ip,ip cmp r1,#7 #ifdef __thumb2__ itt hs #endif subhs r1,r1,#4 bhs .Lot cmp r1,#0 beq .Lcleanse_done .Little: strb ip,[r0],#1 subs r1,r1,#1 bhi .Little b .Lcleanse_done .Lot: tst r0,#3 beq .Laligned strb ip,[r0],#1 sub r1,r1,#1 b .Lot .Laligned: str ip,[r0],#4 subs r1,r1,#4 bhs .Laligned adds r1,r1,#4 bne .Little .Lcleanse_done: #if __ARM_ARCH__>=5 bx lr #else tst lr,#1 moveq pc,lr .word 0xe12fff1e @ bx lr #endif .size OPENSSL_cleanse,.-OPENSSL_cleanse .global CRYPTO_memcmp .type CRYPTO_memcmp,%function .align 4 CRYPTO_memcmp: eor ip,ip,ip cmp r2,#0 beq .Lno_data stmdb sp!,{r4,r5} .Loop_cmp: ldrb r4,[r0],#1 ldrb r5,[r1],#1 eor r4,r4,r5 orr ip,ip,r4 subs r2,r2,#1 bne .Loop_cmp ldmia sp!,{r4,r5} .Lno_data: rsb r0,ip,#0 mov r0,r0,lsr#31 #if __ARM_ARCH__>=5 bx lr #else tst lr,#1 moveq pc,lr .word 0xe12fff1e @ bx lr #endif .size CRYPTO_memcmp,.-CRYPTO_memcmp #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .align 5 .global _armv7_neon_probe .type _armv7_neon_probe,%function _armv7_neon_probe: vorr q0,q0,q0 bx lr .size _armv7_neon_probe,.-_armv7_neon_probe .global _armv7_tick .type _armv7_tick,%function _armv7_tick: #ifdef __APPLE__ mrrc p15,0,r0,r1,c14 @ CNTPCT #else mrrc p15,1,r0,r1,c14 @ CNTVCT #endif bx lr .size _armv7_tick,.-_armv7_tick .global _armv8_aes_probe .type _armv8_aes_probe,%function _armv8_aes_probe: #if defined(__thumb2__) && !defined(__APPLE__) .byte 0xb0,0xff,0x00,0x03 @ aese.8 q0,q0 #else .byte 0x00,0x03,0xb0,0xf3 @ aese.8 q0,q0 #endif bx lr .size _armv8_aes_probe,.-_armv8_aes_probe .global _armv8_sha1_probe .type _armv8_sha1_probe,%function _armv8_sha1_probe: #if defined(__thumb2__) && !defined(__APPLE__) .byte 0x00,0xef,0x40,0x0c @ sha1c.32 q0,q0,q0 #else .byte 0x40,0x0c,0x00,0xf2 @ sha1c.32 q0,q0,q0 #endif bx lr .size _armv8_sha1_probe,.-_armv8_sha1_probe .global _armv8_sha256_probe .type _armv8_sha256_probe,%function _armv8_sha256_probe: #if defined(__thumb2__) && !defined(__APPLE__) .byte 0x00,0xff,0x40,0x0c @ sha256h.32 q0,q0,q0 #else .byte 0x40,0x0c,0x00,0xf3 @ sha256h.32 q0,q0,q0 #endif bx lr .size _armv8_sha256_probe,.-_armv8_sha256_probe .global _armv8_pmull_probe .type _armv8_pmull_probe,%function _armv8_pmull_probe: #if defined(__thumb2__) && !defined(__APPLE__) .byte 0xa0,0xef,0x00,0x0e @ vmull.p64 q0,d0,d0 #else .byte 0x00,0x0e,0xa0,0xf2 @ vmull.p64 q0,d0,d0 #endif bx lr .size _armv8_pmull_probe,.-_armv8_pmull_probe #endif .global OPENSSL_wipe_cpu .type OPENSSL_wipe_cpu,%function OPENSSL_wipe_cpu: #if __ARM_MAX_ARCH__>=7 ldr r0,.LOPENSSL_armcap adr r1,.LOPENSSL_armcap ldr r0,[r1,r0] #ifdef __APPLE__ ldr r0,[r0] #endif #endif eor r2,r2,r2 eor r3,r3,r3 eor ip,ip,ip #if __ARM_MAX_ARCH__>=7 tst r0,#1 beq .Lwipe_done veor q0, q0, q0 veor q1, q1, q1 veor q2, q2, q2 veor q3, q3, q3 veor q8, q8, q8 veor q9, q9, q9 veor q10, q10, q10 veor q11, q11, q11 veor q12, q12, q12 veor q13, q13, q13 veor q14, q14, q14 veor q15, q15, q15 .Lwipe_done: #endif mov r0,sp #if __ARM_ARCH__>=5 bx lr #else tst lr,#1 moveq pc,lr .word 0xe12fff1e @ bx lr #endif .size OPENSSL_wipe_cpu,.-OPENSSL_wipe_cpu .global OPENSSL_instrument_bus .type OPENSSL_instrument_bus,%function OPENSSL_instrument_bus: eor r0,r0,r0 #if __ARM_ARCH__>=5 bx lr #else tst lr,#1 moveq pc,lr .word 0xe12fff1e @ bx lr #endif .size OPENSSL_instrument_bus,.-OPENSSL_instrument_bus .global OPENSSL_instrument_bus2 .type OPENSSL_instrument_bus2,%function OPENSSL_instrument_bus2: eor r0,r0,r0 #if __ARM_ARCH__>=5 bx lr #else tst lr,#1 moveq pc,lr .word 0xe12fff1e @ bx lr #endif .size OPENSSL_instrument_bus2,.-OPENSSL_instrument_bus2 .align 5 #if __ARM_MAX_ARCH__>=7 .LOPENSSL_armcap: .word OPENSSL_armcap_P-. #endif #if __ARM_ARCH__>=6 .align 5 #else .Lspinlock: .word atomic_add_spinlock-.Lspinlock .align 5 .data .align 2 atomic_add_spinlock: .word 0 #endif .comm OPENSSL_armcap_P,4,4 .hidden OPENSSL_armcap_P ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/asn1/000077500000000000000000000000001364063235100155305ustar00rootroot00000000000000openssl-1.1.1f/crypto/asn1/a_bitstr.c000066400000000000000000000125311364063235100175050ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include "asn1_local.h" int ASN1_BIT_STRING_set(ASN1_BIT_STRING *x, unsigned char *d, int len) { return ASN1_STRING_set(x, d, len); } int i2c_ASN1_BIT_STRING(ASN1_BIT_STRING *a, unsigned char **pp) { int ret, j, bits, len; unsigned char *p, *d; if (a == NULL) return 0; len = a->length; if (len > 0) { if (a->flags & ASN1_STRING_FLAG_BITS_LEFT) { bits = (int)a->flags & 0x07; } else { for (; len > 0; len--) { if (a->data[len - 1]) break; } j = a->data[len - 1]; if (j & 0x01) bits = 0; else if (j & 0x02) bits = 1; else if (j & 0x04) bits = 2; else if (j & 0x08) bits = 3; else if (j & 0x10) bits = 4; else if (j & 0x20) bits = 5; else if (j & 0x40) bits = 6; else if (j & 0x80) bits = 7; else bits = 0; /* should not happen */ } } else bits = 0; ret = 1 + len; if (pp == NULL) return ret; p = *pp; *(p++) = (unsigned char)bits; d = a->data; if (len > 0) { memcpy(p, d, len); p += len; p[-1] &= (0xff << bits); } *pp = p; return ret; } ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(ASN1_BIT_STRING **a, const unsigned char **pp, long len) { ASN1_BIT_STRING *ret = NULL; const unsigned char *p; unsigned char *s; int i; if (len < 1) { i = ASN1_R_STRING_TOO_SHORT; goto err; } if (len > INT_MAX) { i = ASN1_R_STRING_TOO_LONG; goto err; } if ((a == NULL) || ((*a) == NULL)) { if ((ret = ASN1_BIT_STRING_new()) == NULL) return NULL; } else ret = (*a); p = *pp; i = *(p++); if (i > 7) { i = ASN1_R_INVALID_BIT_STRING_BITS_LEFT; goto err; } /* * We do this to preserve the settings. If we modify the settings, via * the _set_bit function, we will recalculate on output */ ret->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); /* clear */ ret->flags |= (ASN1_STRING_FLAG_BITS_LEFT | i); /* set */ if (len-- > 1) { /* using one because of the bits left byte */ s = OPENSSL_malloc((int)len); if (s == NULL) { i = ERR_R_MALLOC_FAILURE; goto err; } memcpy(s, p, (int)len); s[len - 1] &= (0xff << i); p += len; } else s = NULL; ret->length = (int)len; OPENSSL_free(ret->data); ret->data = s; ret->type = V_ASN1_BIT_STRING; if (a != NULL) (*a) = ret; *pp = p; return ret; err: ASN1err(ASN1_F_C2I_ASN1_BIT_STRING, i); if ((a == NULL) || (*a != ret)) ASN1_BIT_STRING_free(ret); return NULL; } /* * These next 2 functions from Goetz Babin-Ebell. */ int ASN1_BIT_STRING_set_bit(ASN1_BIT_STRING *a, int n, int value) { int w, v, iv; unsigned char *c; w = n / 8; v = 1 << (7 - (n & 0x07)); iv = ~v; if (!value) v = 0; if (a == NULL) return 0; a->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); /* clear, set on write */ if ((a->length < (w + 1)) || (a->data == NULL)) { if (!value) return 1; /* Don't need to set */ c = OPENSSL_clear_realloc(a->data, a->length, w + 1); if (c == NULL) { ASN1err(ASN1_F_ASN1_BIT_STRING_SET_BIT, ERR_R_MALLOC_FAILURE); return 0; } if (w + 1 - a->length > 0) memset(c + a->length, 0, w + 1 - a->length); a->data = c; a->length = w + 1; } a->data[w] = ((a->data[w]) & iv) | v; while ((a->length > 0) && (a->data[a->length - 1] == 0)) a->length--; return 1; } int ASN1_BIT_STRING_get_bit(const ASN1_BIT_STRING *a, int n) { int w, v; w = n / 8; v = 1 << (7 - (n & 0x07)); if ((a == NULL) || (a->length < (w + 1)) || (a->data == NULL)) return 0; return ((a->data[w] & v) != 0); } /* * Checks if the given bit string contains only bits specified by * the flags vector. Returns 0 if there is at least one bit set in 'a' * which is not specified in 'flags', 1 otherwise. * 'len' is the length of 'flags'. */ int ASN1_BIT_STRING_check(const ASN1_BIT_STRING *a, const unsigned char *flags, int flags_len) { int i, ok; /* Check if there is one bit set at all. */ if (!a || !a->data) return 1; /* * Check each byte of the internal representation of the bit string. */ ok = 1; for (i = 0; i < a->length && ok; ++i) { unsigned char mask = i < flags_len ? ~flags[i] : 0xff; /* We are done if there is an unneeded bit set. */ ok = (a->data[i] & mask) == 0; } return ok; } openssl-1.1.1f/crypto/asn1/a_d2i_fp.c000066400000000000000000000145251364063235100173460ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include #include "crypto/asn1.h" #ifndef NO_OLD_ASN1 # ifndef OPENSSL_NO_STDIO void *ASN1_d2i_fp(void *(*xnew) (void), d2i_of_void *d2i, FILE *in, void **x) { BIO *b; void *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ASN1err(ASN1_F_ASN1_D2I_FP, ERR_R_BUF_LIB); return NULL; } BIO_set_fp(b, in, BIO_NOCLOSE); ret = ASN1_d2i_bio(xnew, d2i, b, x); BIO_free(b); return ret; } # endif void *ASN1_d2i_bio(void *(*xnew) (void), d2i_of_void *d2i, BIO *in, void **x) { BUF_MEM *b = NULL; const unsigned char *p; void *ret = NULL; int len; len = asn1_d2i_read_bio(in, &b); if (len < 0) goto err; p = (unsigned char *)b->data; ret = d2i(x, &p, len); err: BUF_MEM_free(b); return ret; } #endif void *ASN1_item_d2i_bio(const ASN1_ITEM *it, BIO *in, void *x) { BUF_MEM *b = NULL; const unsigned char *p; void *ret = NULL; int len; len = asn1_d2i_read_bio(in, &b); if (len < 0) goto err; p = (const unsigned char *)b->data; ret = ASN1_item_d2i(x, &p, len, it); err: BUF_MEM_free(b); return ret; } #ifndef OPENSSL_NO_STDIO void *ASN1_item_d2i_fp(const ASN1_ITEM *it, FILE *in, void *x) { BIO *b; char *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ASN1err(ASN1_F_ASN1_ITEM_D2I_FP, ERR_R_BUF_LIB); return NULL; } BIO_set_fp(b, in, BIO_NOCLOSE); ret = ASN1_item_d2i_bio(it, b, x); BIO_free(b); return ret; } #endif #define HEADER_SIZE 8 #define ASN1_CHUNK_INITIAL_SIZE (16 * 1024) int asn1_d2i_read_bio(BIO *in, BUF_MEM **pb) { BUF_MEM *b; unsigned char *p; int i; size_t want = HEADER_SIZE; uint32_t eos = 0; size_t off = 0; size_t len = 0; const unsigned char *q; long slen; int inf, tag, xclass; b = BUF_MEM_new(); if (b == NULL) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ERR_R_MALLOC_FAILURE); return -1; } ERR_clear_error(); for (;;) { if (want >= (len - off)) { want -= (len - off); if (len + want < len || !BUF_MEM_grow_clean(b, len + want)) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } i = BIO_read(in, &(b->data[len]), want); if ((i < 0) && ((len - off) == 0)) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ASN1_R_NOT_ENOUGH_DATA); goto err; } if (i > 0) { if (len + i < len) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ASN1_R_TOO_LONG); goto err; } len += i; } } /* else data already loaded */ p = (unsigned char *)&(b->data[off]); q = p; inf = ASN1_get_object(&q, &slen, &tag, &xclass, len - off); if (inf & 0x80) { unsigned long e; e = ERR_GET_REASON(ERR_peek_error()); if (e != ASN1_R_TOO_LONG) goto err; else ERR_clear_error(); /* clear error */ } i = q - p; /* header length */ off += i; /* end of data */ if (inf & 1) { /* no data body so go round again */ if (eos == UINT32_MAX) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ASN1_R_HEADER_TOO_LONG); goto err; } eos++; want = HEADER_SIZE; } else if (eos && (slen == 0) && (tag == V_ASN1_EOC)) { /* eos value, so go back and read another header */ eos--; if (eos == 0) break; else want = HEADER_SIZE; } else { /* suck in slen bytes of data */ want = slen; if (want > (len - off)) { size_t chunk_max = ASN1_CHUNK_INITIAL_SIZE; want -= (len - off); if (want > INT_MAX /* BIO_read takes an int length */ || len + want < len) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ASN1_R_TOO_LONG); goto err; } while (want > 0) { /* * Read content in chunks of increasing size * so we can return an error for EOF without * having to allocate the entire content length * in one go. */ size_t chunk = want > chunk_max ? chunk_max : want; if (!BUF_MEM_grow_clean(b, len + chunk)) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } want -= chunk; while (chunk > 0) { i = BIO_read(in, &(b->data[len]), chunk); if (i <= 0) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ASN1_R_NOT_ENOUGH_DATA); goto err; } /* * This can't overflow because |len+want| didn't * overflow. */ len += i; chunk -= i; } if (chunk_max < INT_MAX/2) chunk_max *= 2; } } if (off + slen < off) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ASN1_R_TOO_LONG); goto err; } off += slen; if (eos == 0) { break; } else want = HEADER_SIZE; } } if (off > INT_MAX) { ASN1err(ASN1_F_ASN1_D2I_READ_BIO, ASN1_R_TOO_LONG); goto err; } *pb = b; return off; err: BUF_MEM_free(b); return -1; } openssl-1.1.1f/crypto/asn1/a_digest.c000066400000000000000000000030211364063235100174470ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include #ifndef NO_ASN1_OLD int ASN1_digest(i2d_of_void *i2d, const EVP_MD *type, char *data, unsigned char *md, unsigned int *len) { int inl; unsigned char *str, *p; inl = i2d(data, NULL); if (inl <= 0) { ASN1err(ASN1_F_ASN1_DIGEST, ERR_R_INTERNAL_ERROR); return 0; } if ((str = OPENSSL_malloc(inl)) == NULL) { ASN1err(ASN1_F_ASN1_DIGEST, ERR_R_MALLOC_FAILURE); return 0; } p = str; i2d(data, &p); if (!EVP_Digest(str, inl, md, len, type, NULL)) { OPENSSL_free(str); return 0; } OPENSSL_free(str); return 1; } #endif int ASN1_item_digest(const ASN1_ITEM *it, const EVP_MD *type, void *asn, unsigned char *md, unsigned int *len) { int i; unsigned char *str = NULL; i = ASN1_item_i2d(asn, &str, it); if (!str) return 0; if (!EVP_Digest(str, i, md, len, type, NULL)) { OPENSSL_free(str); return 0; } OPENSSL_free(str); return 1; } openssl-1.1.1f/crypto/asn1/a_dup.c000066400000000000000000000030131364063235100167610ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #ifndef NO_OLD_ASN1 void *ASN1_dup(i2d_of_void *i2d, d2i_of_void *d2i, void *x) { unsigned char *b, *p; const unsigned char *p2; int i; char *ret; if (x == NULL) return NULL; i = i2d(x, NULL); b = OPENSSL_malloc(i + 10); if (b == NULL) { ASN1err(ASN1_F_ASN1_DUP, ERR_R_MALLOC_FAILURE); return NULL; } p = b; i = i2d(x, &p); p2 = b; ret = d2i(NULL, &p2, i); OPENSSL_free(b); return ret; } #endif /* * ASN1_ITEM version of dup: this follows the model above except we don't * need to allocate the buffer. At some point this could be rewritten to * directly dup the underlying structure instead of doing and encode and * decode. */ void *ASN1_item_dup(const ASN1_ITEM *it, void *x) { unsigned char *b = NULL; const unsigned char *p; long i; void *ret; if (x == NULL) return NULL; i = ASN1_item_i2d(x, &b, it); if (b == NULL) { ASN1err(ASN1_F_ASN1_ITEM_DUP, ERR_R_MALLOC_FAILURE); return NULL; } p = b; ret = ASN1_item_d2i(NULL, &p, i, it); OPENSSL_free(b); return ret; } openssl-1.1.1f/crypto/asn1/a_gentm.c000066400000000000000000000041661364063235100173150ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * GENERALIZEDTIME implementation. Based on UTCTIME */ #include #include #include "internal/cryptlib.h" #include #include "asn1_local.h" /* This is the primary function used to parse ASN1_GENERALIZEDTIME */ int asn1_generalizedtime_to_tm(struct tm *tm, const ASN1_GENERALIZEDTIME *d) { /* wrapper around asn1_time_to_tm */ if (d->type != V_ASN1_GENERALIZEDTIME) return 0; return asn1_time_to_tm(tm, d); } int ASN1_GENERALIZEDTIME_check(const ASN1_GENERALIZEDTIME *d) { return asn1_generalizedtime_to_tm(NULL, d); } int ASN1_GENERALIZEDTIME_set_string(ASN1_GENERALIZEDTIME *s, const char *str) { ASN1_GENERALIZEDTIME t; t.type = V_ASN1_GENERALIZEDTIME; t.length = strlen(str); t.data = (unsigned char *)str; t.flags = 0; if (!ASN1_GENERALIZEDTIME_check(&t)) return 0; if (s != NULL && !ASN1_STRING_copy(s, &t)) return 0; return 1; } ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_set(ASN1_GENERALIZEDTIME *s, time_t t) { return ASN1_GENERALIZEDTIME_adj(s, t, 0, 0); } ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_adj(ASN1_GENERALIZEDTIME *s, time_t t, int offset_day, long offset_sec) { struct tm *ts; struct tm data; ts = OPENSSL_gmtime(&t, &data); if (ts == NULL) return NULL; if (offset_day || offset_sec) { if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec)) return NULL; } return asn1_time_from_tm(s, ts, V_ASN1_GENERALIZEDTIME); } int ASN1_GENERALIZEDTIME_print(BIO *bp, const ASN1_GENERALIZEDTIME *tm) { if (tm->type != V_ASN1_GENERALIZEDTIME) return 0; return ASN1_TIME_print(bp, tm); } openssl-1.1.1f/crypto/asn1/a_i2d_fp.c000066400000000000000000000043731364063235100173460ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #ifndef NO_OLD_ASN1 # ifndef OPENSSL_NO_STDIO int ASN1_i2d_fp(i2d_of_void *i2d, FILE *out, void *x) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ASN1err(ASN1_F_ASN1_I2D_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, out, BIO_NOCLOSE); ret = ASN1_i2d_bio(i2d, b, x); BIO_free(b); return ret; } # endif int ASN1_i2d_bio(i2d_of_void *i2d, BIO *out, unsigned char *x) { char *b; unsigned char *p; int i, j = 0, n, ret = 1; n = i2d(x, NULL); if (n <= 0) return 0; b = OPENSSL_malloc(n); if (b == NULL) { ASN1err(ASN1_F_ASN1_I2D_BIO, ERR_R_MALLOC_FAILURE); return 0; } p = (unsigned char *)b; i2d(x, &p); for (;;) { i = BIO_write(out, &(b[j]), n); if (i == n) break; if (i <= 0) { ret = 0; break; } j += i; n -= i; } OPENSSL_free(b); return ret; } #endif #ifndef OPENSSL_NO_STDIO int ASN1_item_i2d_fp(const ASN1_ITEM *it, FILE *out, void *x) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ASN1err(ASN1_F_ASN1_ITEM_I2D_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, out, BIO_NOCLOSE); ret = ASN1_item_i2d_bio(it, b, x); BIO_free(b); return ret; } #endif int ASN1_item_i2d_bio(const ASN1_ITEM *it, BIO *out, void *x) { unsigned char *b = NULL; int i, j = 0, n, ret = 1; n = ASN1_item_i2d(x, &b, it); if (b == NULL) { ASN1err(ASN1_F_ASN1_ITEM_I2D_BIO, ERR_R_MALLOC_FAILURE); return 0; } for (;;) { i = BIO_write(out, &(b[j]), n); if (i == n) break; if (i <= 0) { ret = 0; break; } j += i; n -= i; } OPENSSL_free(b); return ret; } openssl-1.1.1f/crypto/asn1/a_int.c000066400000000000000000000410701364063235100167700ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include #include #include "asn1_local.h" ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) { return ASN1_STRING_dup(x); } int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) { int neg, ret; /* Compare signs */ neg = x->type & V_ASN1_NEG; if (neg != (y->type & V_ASN1_NEG)) { if (neg) return -1; else return 1; } ret = ASN1_STRING_cmp(x, y); if (neg) return -ret; else return ret; } /*- * This converts a big endian buffer and sign into its content encoding. * This is used for INTEGER and ENUMERATED types. * The internal representation is an ASN1_STRING whose data is a big endian * representation of the value, ignoring the sign. The sign is determined by * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive. * * Positive integers are no problem: they are almost the same as the DER * encoding, except if the first byte is >= 0x80 we need to add a zero pad. * * Negative integers are a bit trickier... * The DER representation of negative integers is in 2s complement form. * The internal form is converted by complementing each octet and finally * adding one to the result. This can be done less messily with a little trick. * If the internal form has trailing zeroes then they will become FF by the * complement and 0 by the add one (due to carry) so just copy as many trailing * zeros to the destination as there are in the source. The carry will add one * to the last none zero octet: so complement this octet and add one and finally * complement any left over until you get to the start of the string. * * Padding is a little trickier too. If the first bytes is > 0x80 then we pad * with 0xff. However if the first byte is 0x80 and one of the following bytes * is non-zero we pad with 0xff. The reason for this distinction is that 0x80 * followed by optional zeros isn't padded. */ /* * If |pad| is zero, the operation is effectively reduced to memcpy, * and if |pad| is 0xff, then it performs two's complement, ~dst + 1. * Note that in latter case sequence of zeros yields itself, and so * does 0x80 followed by any number of zeros. These properties are * used elsewhere below... */ static void twos_complement(unsigned char *dst, const unsigned char *src, size_t len, unsigned char pad) { unsigned int carry = pad & 1; /* Begin at the end of the encoding */ dst += len; src += len; /* two's complement value: ~value + 1 */ while (len-- != 0) { *(--dst) = (unsigned char)(carry += *(--src) ^ pad); carry >>= 8; } } static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg, unsigned char **pp) { unsigned int pad = 0; size_t ret, i; unsigned char *p, pb = 0; if (b != NULL && blen) { ret = blen; i = b[0]; if (!neg && (i > 127)) { pad = 1; pb = 0; } else if (neg) { pb = 0xFF; if (i > 128) { pad = 1; } else if (i == 128) { /* * Special case [of minimal negative for given length]: * if any other bytes non zero we pad, otherwise we don't. */ for (pad = 0, i = 1; i < blen; i++) pad |= b[i]; pb = pad != 0 ? 0xffU : 0; pad = pb & 1; } } ret += pad; } else { ret = 1; blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */ } if (pp == NULL || (p = *pp) == NULL) return ret; /* * This magically handles all corner cases, such as '(b == NULL || * blen == 0)', non-negative value, "negative" zero, 0x80 followed * by any number of zeros... */ *p = pb; p += pad; /* yes, p[0] can be written twice, but it's little * price to pay for eliminated branches */ twos_complement(p, b, blen, pb); *pp += ret; return ret; } /* * convert content octets into a big endian buffer. Returns the length * of buffer or 0 on error: for malformed INTEGER. If output buffer is * NULL just return length. */ static size_t c2i_ibuf(unsigned char *b, int *pneg, const unsigned char *p, size_t plen) { int neg, pad; /* Zero content length is illegal */ if (plen == 0) { ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT); return 0; } neg = p[0] & 0x80; if (pneg) *pneg = neg; /* Handle common case where length is 1 octet separately */ if (plen == 1) { if (b != NULL) { if (neg) b[0] = (p[0] ^ 0xFF) + 1; else b[0] = p[0]; } return 1; } pad = 0; if (p[0] == 0) { pad = 1; } else if (p[0] == 0xFF) { size_t i; /* * Special case [of "one less minimal negative" for given length]: * if any other bytes non zero it was padded, otherwise not. */ for (pad = 0, i = 1; i < plen; i++) pad |= p[i]; pad = pad != 0 ? 1 : 0; } /* reject illegal padding: first two octets MSB can't match */ if (pad && (neg == (p[1] & 0x80))) { ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING); return 0; } /* skip over pad */ p += pad; plen -= pad; if (b != NULL) twos_complement(b, p, plen, neg ? 0xffU : 0); return plen; } int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) { return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp); } /* Convert big endian buffer into uint64_t, return 0 on error */ static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen) { size_t i; uint64_t r; if (blen > sizeof(*pr)) { ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE); return 0; } if (b == NULL) return 0; for (r = 0, i = 0; i < blen; i++) { r <<= 8; r |= b[i]; } *pr = r; return 1; } /* * Write uint64_t to big endian buffer and return offset to first * written octet. In other words it returns offset in range from 0 * to 7, with 0 denoting 8 written octets and 7 - one. */ static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r) { size_t off = sizeof(uint64_t); do { b[--off] = (unsigned char)r; } while (r >>= 8); return off; } /* * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces * overflow warnings. */ #define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX))) /* signed version of asn1_get_uint64 */ static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen, int neg) { uint64_t r; if (asn1_get_uint64(&r, b, blen) == 0) return 0; if (neg) { if (r <= INT64_MAX) { /* Most significant bit is guaranteed to be clear, negation * is guaranteed to be meaningful in platform-neutral sense. */ *pr = -(int64_t)r; } else if (r == ABS_INT64_MIN) { /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g. * on ones'-complement system. */ *pr = (int64_t)(0 - r); } else { ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL); return 0; } } else { if (r <= INT64_MAX) { *pr = (int64_t)r; } else { ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE); return 0; } } return 1; } /* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */ ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, long len) { ASN1_INTEGER *ret = NULL; size_t r; int neg; r = c2i_ibuf(NULL, NULL, *pp, len); if (r == 0) return NULL; if ((a == NULL) || ((*a) == NULL)) { ret = ASN1_INTEGER_new(); if (ret == NULL) return NULL; ret->type = V_ASN1_INTEGER; } else ret = *a; if (ASN1_STRING_set(ret, NULL, r) == 0) goto err; c2i_ibuf(ret->data, &neg, *pp, len); if (neg) ret->type |= V_ASN1_NEG; *pp += len; if (a != NULL) (*a) = ret; return ret; err: ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); if ((a == NULL) || (*a != ret)) ASN1_INTEGER_free(ret); return NULL; } static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype) { if (a == NULL) { ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((a->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE); return 0; } return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG); } static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype) { unsigned char tbuf[sizeof(r)]; size_t off; a->type = itype; if (r < 0) { /* Most obvious '-r' triggers undefined behaviour for most * common INT64_MIN. Even though below '0 - (uint64_t)r' can * appear two's-complement centric, it does produce correct/ * expected result even on one's-complement. This is because * cast to unsigned has to change bit pattern... */ off = asn1_put_uint64(tbuf, 0 - (uint64_t)r); a->type |= V_ASN1_NEG; } else { off = asn1_put_uint64(tbuf, r); a->type &= ~V_ASN1_NEG; } return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); } static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a, int itype) { if (a == NULL) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((a->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE); return 0; } if (a->type & V_ASN1_NEG) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE); return 0; } return asn1_get_uint64(pr, a->data, a->length); } static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype) { unsigned char tbuf[sizeof(r)]; size_t off; a->type = itype; off = asn1_put_uint64(tbuf, r); return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); } /* * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1 * integers: some broken software can encode a positive INTEGER with its MSB * set as negative (it doesn't add a padding zero). */ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp, long length) { ASN1_INTEGER *ret = NULL; const unsigned char *p; unsigned char *s; long len; int inf, tag, xclass; int i; if ((a == NULL) || ((*a) == NULL)) { if ((ret = ASN1_INTEGER_new()) == NULL) return NULL; ret->type = V_ASN1_INTEGER; } else ret = (*a); p = *pp; inf = ASN1_get_object(&p, &len, &tag, &xclass, length); if (inf & 0x80) { i = ASN1_R_BAD_OBJECT_HEADER; goto err; } if (tag != V_ASN1_INTEGER) { i = ASN1_R_EXPECTING_AN_INTEGER; goto err; } /* * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies * a missing NULL parameter. */ s = OPENSSL_malloc((int)len + 1); if (s == NULL) { i = ERR_R_MALLOC_FAILURE; goto err; } ret->type = V_ASN1_INTEGER; if (len) { if ((*p == 0) && (len != 1)) { p++; len--; } memcpy(s, p, (int)len); p += len; } OPENSSL_free(ret->data); ret->data = s; ret->length = (int)len; if (a != NULL) (*a) = ret; *pp = p; return ret; err: ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i); if ((a == NULL) || (*a != ret)) ASN1_INTEGER_free(ret); return NULL; } static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, int atype) { ASN1_INTEGER *ret; int len; if (ai == NULL) { ret = ASN1_STRING_type_new(atype); } else { ret = ai; ret->type = atype; } if (ret == NULL) { ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR); goto err; } if (BN_is_negative(bn) && !BN_is_zero(bn)) ret->type |= V_ASN1_NEG_INTEGER; len = BN_num_bytes(bn); if (len == 0) len = 1; if (ASN1_STRING_set(ret, NULL, len) == 0) { ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE); goto err; } /* Correct zero case */ if (BN_is_zero(bn)) ret->data[0] = 0; else len = BN_bn2bin(bn, ret->data); ret->length = len; return ret; err: if (ret != ai) ASN1_INTEGER_free(ret); return NULL; } static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn, int itype) { BIGNUM *ret; if ((ai->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE); return NULL; } ret = BN_bin2bn(ai->data, ai->length, bn); if (ret == NULL) { ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB); return NULL; } if (ai->type & V_ASN1_NEG) BN_set_negative(ret, 1); return ret; } int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a) { return asn1_string_get_int64(pr, a, V_ASN1_INTEGER); } int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r) { return asn1_string_set_int64(a, r, V_ASN1_INTEGER); } int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a) { return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER); } int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r) { return asn1_string_set_uint64(a, r, V_ASN1_INTEGER); } int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) { return ASN1_INTEGER_set_int64(a, v); } long ASN1_INTEGER_get(const ASN1_INTEGER *a) { int i; int64_t r; if (a == NULL) return 0; i = ASN1_INTEGER_get_int64(&r, a); if (i == 0) return -1; if (r > LONG_MAX || r < LONG_MIN) return -1; return (long)r; } ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); } BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); } int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a) { return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED); } int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r) { return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED); } int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) { return ASN1_ENUMERATED_set_int64(a, v); } long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) { int i; int64_t r; if (a == NULL) return 0; if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED) return -1; if (a->length > (int)sizeof(long)) return 0xffffffffL; i = ASN1_ENUMERATED_get_int64(&r, a); if (i == 0) return -1; if (r > LONG_MAX || r < LONG_MIN) return -1; return (long)r; } ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); } BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); } /* Internal functions used by x_int64.c */ int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len) { unsigned char buf[sizeof(uint64_t)]; size_t buflen; buflen = c2i_ibuf(NULL, NULL, *pp, len); if (buflen == 0) return 0; if (buflen > sizeof(uint64_t)) { ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE); return 0; } (void)c2i_ibuf(buf, neg, *pp, len); return asn1_get_uint64(ret, buf, buflen); } int i2c_uint64_int(unsigned char *p, uint64_t r, int neg) { unsigned char buf[sizeof(uint64_t)]; size_t off; off = asn1_put_uint64(buf, r); return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p); } openssl-1.1.1f/crypto/asn1/a_mbstr.c000066400000000000000000000230571364063235100173320ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include static int traverse_string(const unsigned char *p, int len, int inform, int (*rfunc) (unsigned long value, void *in), void *arg); static int in_utf8(unsigned long value, void *arg); static int out_utf8(unsigned long value, void *arg); static int type_str(unsigned long value, void *arg); static int cpy_asc(unsigned long value, void *arg); static int cpy_bmp(unsigned long value, void *arg); static int cpy_univ(unsigned long value, void *arg); static int cpy_utf8(unsigned long value, void *arg); /* * These functions take a string in UTF8, ASCII or multibyte form and a mask * of permissible ASN1 string types. It then works out the minimal type * (using the order Numeric < Printable < IA5 < T61 < BMP < Universal < UTF8) * and creates a string of the correct type with the supplied data. Yes this is * horrible: it has to be :-( The 'ncopy' form checks minimum and maximum * size limits too. */ int ASN1_mbstring_copy(ASN1_STRING **out, const unsigned char *in, int len, int inform, unsigned long mask) { return ASN1_mbstring_ncopy(out, in, len, inform, mask, 0, 0); } int ASN1_mbstring_ncopy(ASN1_STRING **out, const unsigned char *in, int len, int inform, unsigned long mask, long minsize, long maxsize) { int str_type; int ret; char free_out; int outform, outlen = 0; ASN1_STRING *dest; unsigned char *p; int nchar; char strbuf[32]; int (*cpyfunc) (unsigned long, void *) = NULL; if (len == -1) len = strlen((const char *)in); if (!mask) mask = DIRSTRING_TYPE; /* First do a string check and work out the number of characters */ switch (inform) { case MBSTRING_BMP: if (len & 1) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_INVALID_BMPSTRING_LENGTH); return -1; } nchar = len >> 1; break; case MBSTRING_UNIV: if (len & 3) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_INVALID_UNIVERSALSTRING_LENGTH); return -1; } nchar = len >> 2; break; case MBSTRING_UTF8: nchar = 0; /* This counts the characters and does utf8 syntax checking */ ret = traverse_string(in, len, MBSTRING_UTF8, in_utf8, &nchar); if (ret < 0) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_INVALID_UTF8STRING); return -1; } break; case MBSTRING_ASC: nchar = len; break; default: ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_UNKNOWN_FORMAT); return -1; } if ((minsize > 0) && (nchar < minsize)) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_STRING_TOO_SHORT); BIO_snprintf(strbuf, sizeof(strbuf), "%ld", minsize); ERR_add_error_data(2, "minsize=", strbuf); return -1; } if ((maxsize > 0) && (nchar > maxsize)) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_STRING_TOO_LONG); BIO_snprintf(strbuf, sizeof(strbuf), "%ld", maxsize); ERR_add_error_data(2, "maxsize=", strbuf); return -1; } /* Now work out minimal type (if any) */ if (traverse_string(in, len, inform, type_str, &mask) < 0) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_ILLEGAL_CHARACTERS); return -1; } /* Now work out output format and string type */ outform = MBSTRING_ASC; if (mask & B_ASN1_NUMERICSTRING) str_type = V_ASN1_NUMERICSTRING; else if (mask & B_ASN1_PRINTABLESTRING) str_type = V_ASN1_PRINTABLESTRING; else if (mask & B_ASN1_IA5STRING) str_type = V_ASN1_IA5STRING; else if (mask & B_ASN1_T61STRING) str_type = V_ASN1_T61STRING; else if (mask & B_ASN1_BMPSTRING) { str_type = V_ASN1_BMPSTRING; outform = MBSTRING_BMP; } else if (mask & B_ASN1_UNIVERSALSTRING) { str_type = V_ASN1_UNIVERSALSTRING; outform = MBSTRING_UNIV; } else { str_type = V_ASN1_UTF8STRING; outform = MBSTRING_UTF8; } if (!out) return str_type; if (*out) { free_out = 0; dest = *out; OPENSSL_free(dest->data); dest->data = NULL; dest->length = 0; dest->type = str_type; } else { free_out = 1; dest = ASN1_STRING_type_new(str_type); if (dest == NULL) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ERR_R_MALLOC_FAILURE); return -1; } *out = dest; } /* If both the same type just copy across */ if (inform == outform) { if (!ASN1_STRING_set(dest, in, len)) { ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ERR_R_MALLOC_FAILURE); return -1; } return str_type; } /* Work out how much space the destination will need */ switch (outform) { case MBSTRING_ASC: outlen = nchar; cpyfunc = cpy_asc; break; case MBSTRING_BMP: outlen = nchar << 1; cpyfunc = cpy_bmp; break; case MBSTRING_UNIV: outlen = nchar << 2; cpyfunc = cpy_univ; break; case MBSTRING_UTF8: outlen = 0; traverse_string(in, len, inform, out_utf8, &outlen); cpyfunc = cpy_utf8; break; } if ((p = OPENSSL_malloc(outlen + 1)) == NULL) { if (free_out) ASN1_STRING_free(dest); ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ERR_R_MALLOC_FAILURE); return -1; } dest->length = outlen; dest->data = p; p[outlen] = 0; traverse_string(in, len, inform, cpyfunc, &p); return str_type; } /* * This function traverses a string and passes the value of each character to * an optional function along with a void * argument. */ static int traverse_string(const unsigned char *p, int len, int inform, int (*rfunc) (unsigned long value, void *in), void *arg) { unsigned long value; int ret; while (len) { if (inform == MBSTRING_ASC) { value = *p++; len--; } else if (inform == MBSTRING_BMP) { value = *p++ << 8; value |= *p++; len -= 2; } else if (inform == MBSTRING_UNIV) { value = ((unsigned long)*p++) << 24; value |= ((unsigned long)*p++) << 16; value |= *p++ << 8; value |= *p++; len -= 4; } else { ret = UTF8_getc(p, len, &value); if (ret < 0) return -1; len -= ret; p += ret; } if (rfunc) { ret = rfunc(value, arg); if (ret <= 0) return ret; } } return 1; } /* Various utility functions for traverse_string */ /* Just count number of characters */ static int in_utf8(unsigned long value, void *arg) { int *nchar; nchar = arg; (*nchar)++; return 1; } /* Determine size of output as a UTF8 String */ static int out_utf8(unsigned long value, void *arg) { int *outlen; outlen = arg; *outlen += UTF8_putc(NULL, -1, value); return 1; } /* * Determine the "type" of a string: check each character against a supplied * "mask". */ static int type_str(unsigned long value, void *arg) { unsigned long types = *((unsigned long *)arg); const int native = value > INT_MAX ? INT_MAX : ossl_fromascii(value); if ((types & B_ASN1_NUMERICSTRING) && !(ossl_isdigit(native) || native == ' ')) types &= ~B_ASN1_NUMERICSTRING; if ((types & B_ASN1_PRINTABLESTRING) && !ossl_isasn1print(native)) types &= ~B_ASN1_PRINTABLESTRING; if ((types & B_ASN1_IA5STRING) && !ossl_isascii(native)) types &= ~B_ASN1_IA5STRING; if ((types & B_ASN1_T61STRING) && (value > 0xff)) types &= ~B_ASN1_T61STRING; if ((types & B_ASN1_BMPSTRING) && (value > 0xffff)) types &= ~B_ASN1_BMPSTRING; if (!types) return -1; *((unsigned long *)arg) = types; return 1; } /* Copy one byte per character ASCII like strings */ static int cpy_asc(unsigned long value, void *arg) { unsigned char **p, *q; p = arg; q = *p; *q = (unsigned char)value; (*p)++; return 1; } /* Copy two byte per character BMPStrings */ static int cpy_bmp(unsigned long value, void *arg) { unsigned char **p, *q; p = arg; q = *p; *q++ = (unsigned char)((value >> 8) & 0xff); *q = (unsigned char)(value & 0xff); *p += 2; return 1; } /* Copy four byte per character UniversalStrings */ static int cpy_univ(unsigned long value, void *arg) { unsigned char **p, *q; p = arg; q = *p; *q++ = (unsigned char)((value >> 24) & 0xff); *q++ = (unsigned char)((value >> 16) & 0xff); *q++ = (unsigned char)((value >> 8) & 0xff); *q = (unsigned char)(value & 0xff); *p += 4; return 1; } /* Copy to a UTF8String */ static int cpy_utf8(unsigned long value, void *arg) { unsigned char **p; int ret; p = arg; /* We already know there is enough room so pass 0xff as the length */ ret = UTF8_putc(*p, 0xff, value); *p += ret; return 1; } openssl-1.1.1f/crypto/asn1/a_object.c000066400000000000000000000242411364063235100174450ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include #include #include #include "crypto/asn1.h" #include "asn1_local.h" int i2d_ASN1_OBJECT(const ASN1_OBJECT *a, unsigned char **pp) { unsigned char *p, *allocated = NULL; int objsize; if ((a == NULL) || (a->data == NULL)) return 0; objsize = ASN1_object_size(0, a->length, V_ASN1_OBJECT); if (pp == NULL || objsize == -1) return objsize; if (*pp == NULL) { if ((p = allocated = OPENSSL_malloc(objsize)) == NULL) { ASN1err(ASN1_F_I2D_ASN1_OBJECT, ERR_R_MALLOC_FAILURE); return 0; } } else { p = *pp; } ASN1_put_object(&p, 0, a->length, V_ASN1_OBJECT, V_ASN1_UNIVERSAL); memcpy(p, a->data, a->length); /* * If a new buffer was allocated, just return it back. * If not, return the incremented buffer pointer. */ *pp = allocated != NULL ? allocated : p + a->length; return objsize; } int a2d_ASN1_OBJECT(unsigned char *out, int olen, const char *buf, int num) { int i, first, len = 0, c, use_bn; char ftmp[24], *tmp = ftmp; int tmpsize = sizeof(ftmp); const char *p; unsigned long l; BIGNUM *bl = NULL; if (num == 0) return 0; else if (num == -1) num = strlen(buf); p = buf; c = *(p++); num--; if ((c >= '0') && (c <= '2')) { first = c - '0'; } else { ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_FIRST_NUM_TOO_LARGE); goto err; } if (num <= 0) { ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_MISSING_SECOND_NUMBER); goto err; } c = *(p++); num--; for (;;) { if (num <= 0) break; if ((c != '.') && (c != ' ')) { ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_INVALID_SEPARATOR); goto err; } l = 0; use_bn = 0; for (;;) { if (num <= 0) break; num--; c = *(p++); if ((c == ' ') || (c == '.')) break; if (!ossl_isdigit(c)) { ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_INVALID_DIGIT); goto err; } if (!use_bn && l >= ((ULONG_MAX - 80) / 10L)) { use_bn = 1; if (bl == NULL) bl = BN_new(); if (bl == NULL || !BN_set_word(bl, l)) goto err; } if (use_bn) { if (!BN_mul_word(bl, 10L) || !BN_add_word(bl, c - '0')) goto err; } else l = l * 10L + (long)(c - '0'); } if (len == 0) { if ((first < 2) && (l >= 40)) { ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_SECOND_NUMBER_TOO_LARGE); goto err; } if (use_bn) { if (!BN_add_word(bl, first * 40)) goto err; } else l += (long)first *40; } i = 0; if (use_bn) { int blsize; blsize = BN_num_bits(bl); blsize = (blsize + 6) / 7; if (blsize > tmpsize) { if (tmp != ftmp) OPENSSL_free(tmp); tmpsize = blsize + 32; tmp = OPENSSL_malloc(tmpsize); if (tmp == NULL) goto err; } while (blsize--) { BN_ULONG t = BN_div_word(bl, 0x80L); if (t == (BN_ULONG)-1) goto err; tmp[i++] = (unsigned char)t; } } else { for (;;) { tmp[i++] = (unsigned char)l & 0x7f; l >>= 7L; if (l == 0L) break; } } if (out != NULL) { if (len + i > olen) { ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_BUFFER_TOO_SMALL); goto err; } while (--i > 0) out[len++] = tmp[i] | 0x80; out[len++] = tmp[0]; } else len += i; } if (tmp != ftmp) OPENSSL_free(tmp); BN_free(bl); return len; err: if (tmp != ftmp) OPENSSL_free(tmp); BN_free(bl); return 0; } int i2t_ASN1_OBJECT(char *buf, int buf_len, const ASN1_OBJECT *a) { return OBJ_obj2txt(buf, buf_len, a, 0); } int i2a_ASN1_OBJECT(BIO *bp, const ASN1_OBJECT *a) { char buf[80], *p = buf; int i; if ((a == NULL) || (a->data == NULL)) return BIO_write(bp, "NULL", 4); i = i2t_ASN1_OBJECT(buf, sizeof(buf), a); if (i > (int)(sizeof(buf) - 1)) { if ((p = OPENSSL_malloc(i + 1)) == NULL) { ASN1err(ASN1_F_I2A_ASN1_OBJECT, ERR_R_MALLOC_FAILURE); return -1; } i2t_ASN1_OBJECT(p, i + 1, a); } if (i <= 0) { i = BIO_write(bp, "", 9); i += BIO_dump(bp, (const char *)a->data, a->length); return i; } BIO_write(bp, p, i); if (p != buf) OPENSSL_free(p); return i; } ASN1_OBJECT *d2i_ASN1_OBJECT(ASN1_OBJECT **a, const unsigned char **pp, long length) { const unsigned char *p; long len; int tag, xclass; int inf, i; ASN1_OBJECT *ret = NULL; p = *pp; inf = ASN1_get_object(&p, &len, &tag, &xclass, length); if (inf & 0x80) { i = ASN1_R_BAD_OBJECT_HEADER; goto err; } if (tag != V_ASN1_OBJECT) { i = ASN1_R_EXPECTING_AN_OBJECT; goto err; } ret = c2i_ASN1_OBJECT(a, &p, len); if (ret) *pp = p; return ret; err: ASN1err(ASN1_F_D2I_ASN1_OBJECT, i); return NULL; } ASN1_OBJECT *c2i_ASN1_OBJECT(ASN1_OBJECT **a, const unsigned char **pp, long len) { ASN1_OBJECT *ret = NULL, tobj; const unsigned char *p; unsigned char *data; int i, length; /* * Sanity check OID encoding. Need at least one content octet. MSB must * be clear in the last octet. can't have leading 0x80 in subidentifiers, * see: X.690 8.19.2 */ if (len <= 0 || len > INT_MAX || pp == NULL || (p = *pp) == NULL || p[len - 1] & 0x80) { ASN1err(ASN1_F_C2I_ASN1_OBJECT, ASN1_R_INVALID_OBJECT_ENCODING); return NULL; } /* Now 0 < len <= INT_MAX, so the cast is safe. */ length = (int)len; /* * Try to lookup OID in table: these are all valid encodings so if we get * a match we know the OID is valid. */ tobj.nid = NID_undef; tobj.data = p; tobj.length = length; tobj.flags = 0; i = OBJ_obj2nid(&tobj); if (i != NID_undef) { /* * Return shared registered OID object: this improves efficiency * because we don't have to return a dynamically allocated OID * and NID lookups can use the cached value. */ ret = OBJ_nid2obj(i); if (a) { ASN1_OBJECT_free(*a); *a = ret; } *pp += len; return ret; } for (i = 0; i < length; i++, p++) { if (*p == 0x80 && (!i || !(p[-1] & 0x80))) { ASN1err(ASN1_F_C2I_ASN1_OBJECT, ASN1_R_INVALID_OBJECT_ENCODING); return NULL; } } /* * only the ASN1_OBJECTs from the 'table' will have values for ->sn or * ->ln */ if ((a == NULL) || ((*a) == NULL) || !((*a)->flags & ASN1_OBJECT_FLAG_DYNAMIC)) { if ((ret = ASN1_OBJECT_new()) == NULL) return NULL; } else ret = (*a); p = *pp; /* detach data from object */ data = (unsigned char *)ret->data; ret->data = NULL; /* once detached we can change it */ if ((data == NULL) || (ret->length < length)) { ret->length = 0; OPENSSL_free(data); data = OPENSSL_malloc(length); if (data == NULL) { i = ERR_R_MALLOC_FAILURE; goto err; } ret->flags |= ASN1_OBJECT_FLAG_DYNAMIC_DATA; } memcpy(data, p, length); /* reattach data to object, after which it remains const */ ret->data = data; ret->length = length; ret->sn = NULL; ret->ln = NULL; /* ret->flags=ASN1_OBJECT_FLAG_DYNAMIC; we know it is dynamic */ p += length; if (a != NULL) (*a) = ret; *pp = p; return ret; err: ASN1err(ASN1_F_C2I_ASN1_OBJECT, i); if ((a == NULL) || (*a != ret)) ASN1_OBJECT_free(ret); return NULL; } ASN1_OBJECT *ASN1_OBJECT_new(void) { ASN1_OBJECT *ret; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ASN1err(ASN1_F_ASN1_OBJECT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->flags = ASN1_OBJECT_FLAG_DYNAMIC; return ret; } void ASN1_OBJECT_free(ASN1_OBJECT *a) { if (a == NULL) return; if (a->flags & ASN1_OBJECT_FLAG_DYNAMIC_STRINGS) { #ifndef CONST_STRICT /* disable purely for compile-time strict * const checking. Doing this on a "real" * compile will cause memory leaks */ OPENSSL_free((void*)a->sn); OPENSSL_free((void*)a->ln); #endif a->sn = a->ln = NULL; } if (a->flags & ASN1_OBJECT_FLAG_DYNAMIC_DATA) { OPENSSL_free((void*)a->data); a->data = NULL; a->length = 0; } if (a->flags & ASN1_OBJECT_FLAG_DYNAMIC) OPENSSL_free(a); } ASN1_OBJECT *ASN1_OBJECT_create(int nid, unsigned char *data, int len, const char *sn, const char *ln) { ASN1_OBJECT o; o.sn = sn; o.ln = ln; o.data = data; o.nid = nid; o.length = len; o.flags = ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | ASN1_OBJECT_FLAG_DYNAMIC_DATA; return OBJ_dup(&o); } openssl-1.1.1f/crypto/asn1/a_octet.c000066400000000000000000000014551364063235100173170ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include ASN1_OCTET_STRING *ASN1_OCTET_STRING_dup(const ASN1_OCTET_STRING *x) { return ASN1_STRING_dup(x); } int ASN1_OCTET_STRING_cmp(const ASN1_OCTET_STRING *a, const ASN1_OCTET_STRING *b) { return ASN1_STRING_cmp(a, b); } int ASN1_OCTET_STRING_set(ASN1_OCTET_STRING *x, const unsigned char *d, int len) { return ASN1_STRING_set(x, d, len); } openssl-1.1.1f/crypto/asn1/a_print.c000066400000000000000000000042231364063235100173310ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include int ASN1_PRINTABLE_type(const unsigned char *s, int len) { int c; int ia5 = 0; int t61 = 0; if (len <= 0) len = -1; if (s == NULL) return V_ASN1_PRINTABLESTRING; while ((*s) && (len-- != 0)) { c = *(s++); if (!ossl_isasn1print(c)) ia5 = 1; if (!ossl_isascii(c)) t61 = 1; } if (t61) return V_ASN1_T61STRING; if (ia5) return V_ASN1_IA5STRING; return V_ASN1_PRINTABLESTRING; } int ASN1_UNIVERSALSTRING_to_string(ASN1_UNIVERSALSTRING *s) { int i; unsigned char *p; if (s->type != V_ASN1_UNIVERSALSTRING) return 0; if ((s->length % 4) != 0) return 0; p = s->data; for (i = 0; i < s->length; i += 4) { if ((p[0] != '\0') || (p[1] != '\0') || (p[2] != '\0')) break; else p += 4; } if (i < s->length) return 0; p = s->data; for (i = 3; i < s->length; i += 4) { *(p++) = s->data[i]; } *(p) = '\0'; s->length /= 4; s->type = ASN1_PRINTABLE_type(s->data, s->length); return 1; } int ASN1_STRING_print(BIO *bp, const ASN1_STRING *v) { int i, n; char buf[80]; const char *p; if (v == NULL) return 0; n = 0; p = (const char *)v->data; for (i = 0; i < v->length; i++) { if ((p[i] > '~') || ((p[i] < ' ') && (p[i] != '\n') && (p[i] != '\r'))) buf[n] = '.'; else buf[n] = p[i]; n++; if (n >= 80) { if (BIO_write(bp, buf, n) <= 0) return 0; n = 0; } } if (n > 0) if (BIO_write(bp, buf, n) <= 0) return 0; return 1; } openssl-1.1.1f/crypto/asn1/a_sign.c000066400000000000000000000161251364063235100171410ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #ifndef NO_ASN1_OLD int ASN1_sign(i2d_of_void *i2d, X509_ALGOR *algor1, X509_ALGOR *algor2, ASN1_BIT_STRING *signature, char *data, EVP_PKEY *pkey, const EVP_MD *type) { EVP_MD_CTX *ctx = EVP_MD_CTX_new(); unsigned char *p, *buf_in = NULL, *buf_out = NULL; int i, inl = 0, outl = 0; size_t inll = 0, outll = 0; X509_ALGOR *a; if (ctx == NULL) { ASN1err(ASN1_F_ASN1_SIGN, ERR_R_MALLOC_FAILURE); goto err; } for (i = 0; i < 2; i++) { if (i == 0) a = algor1; else a = algor2; if (a == NULL) continue; if (type->pkey_type == NID_dsaWithSHA1) { /* * special case: RFC 2459 tells us to omit 'parameters' with * id-dsa-with-sha1 */ ASN1_TYPE_free(a->parameter); a->parameter = NULL; } else if ((a->parameter == NULL) || (a->parameter->type != V_ASN1_NULL)) { ASN1_TYPE_free(a->parameter); if ((a->parameter = ASN1_TYPE_new()) == NULL) goto err; a->parameter->type = V_ASN1_NULL; } ASN1_OBJECT_free(a->algorithm); a->algorithm = OBJ_nid2obj(type->pkey_type); if (a->algorithm == NULL) { ASN1err(ASN1_F_ASN1_SIGN, ASN1_R_UNKNOWN_OBJECT_TYPE); goto err; } if (a->algorithm->length == 0) { ASN1err(ASN1_F_ASN1_SIGN, ASN1_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD); goto err; } } inl = i2d(data, NULL); if (inl <= 0) { ASN1err(ASN1_F_ASN1_SIGN, ERR_R_INTERNAL_ERROR); goto err; } inll = (size_t)inl; buf_in = OPENSSL_malloc(inll); outll = outl = EVP_PKEY_size(pkey); buf_out = OPENSSL_malloc(outll); if (buf_in == NULL || buf_out == NULL) { outl = 0; ASN1err(ASN1_F_ASN1_SIGN, ERR_R_MALLOC_FAILURE); goto err; } p = buf_in; i2d(data, &p); if (!EVP_SignInit_ex(ctx, type, NULL) || !EVP_SignUpdate(ctx, (unsigned char *)buf_in, inl) || !EVP_SignFinal(ctx, (unsigned char *)buf_out, (unsigned int *)&outl, pkey)) { outl = 0; ASN1err(ASN1_F_ASN1_SIGN, ERR_R_EVP_LIB); goto err; } OPENSSL_free(signature->data); signature->data = buf_out; buf_out = NULL; signature->length = outl; /* * In the interests of compatibility, I'll make sure that the bit string * has a 'not-used bits' value of 0 */ signature->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); signature->flags |= ASN1_STRING_FLAG_BITS_LEFT; err: EVP_MD_CTX_free(ctx); OPENSSL_clear_free((char *)buf_in, inll); OPENSSL_clear_free((char *)buf_out, outll); return outl; } #endif int ASN1_item_sign(const ASN1_ITEM *it, X509_ALGOR *algor1, X509_ALGOR *algor2, ASN1_BIT_STRING *signature, void *asn, EVP_PKEY *pkey, const EVP_MD *type) { int rv; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); if (ctx == NULL) { ASN1err(ASN1_F_ASN1_ITEM_SIGN, ERR_R_MALLOC_FAILURE); return 0; } if (!EVP_DigestSignInit(ctx, NULL, type, NULL, pkey)) { EVP_MD_CTX_free(ctx); return 0; } rv = ASN1_item_sign_ctx(it, algor1, algor2, signature, asn, ctx); EVP_MD_CTX_free(ctx); return rv; } int ASN1_item_sign_ctx(const ASN1_ITEM *it, X509_ALGOR *algor1, X509_ALGOR *algor2, ASN1_BIT_STRING *signature, void *asn, EVP_MD_CTX *ctx) { const EVP_MD *type; EVP_PKEY *pkey; unsigned char *buf_in = NULL, *buf_out = NULL; size_t inl = 0, outl = 0, outll = 0; int signid, paramtype, buf_len = 0; int rv; type = EVP_MD_CTX_md(ctx); pkey = EVP_PKEY_CTX_get0_pkey(EVP_MD_CTX_pkey_ctx(ctx)); if (pkey == NULL) { ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ASN1_R_CONTEXT_NOT_INITIALISED); goto err; } if (pkey->ameth == NULL) { ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ASN1_R_DIGEST_AND_KEY_TYPE_NOT_SUPPORTED); goto err; } if (pkey->ameth->item_sign) { rv = pkey->ameth->item_sign(ctx, it, asn, algor1, algor2, signature); if (rv == 1) outl = signature->length; /*- * Return value meanings: * <=0: error. * 1: method does everything. * 2: carry on as normal. * 3: ASN1 method sets algorithm identifiers: just sign. */ if (rv <= 0) ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ERR_R_EVP_LIB); if (rv <= 1) goto err; } else { rv = 2; } if (rv == 2) { if (type == NULL) { ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ASN1_R_CONTEXT_NOT_INITIALISED); goto err; } if (!OBJ_find_sigid_by_algs(&signid, EVP_MD_nid(type), pkey->ameth->pkey_id)) { ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ASN1_R_DIGEST_AND_KEY_TYPE_NOT_SUPPORTED); goto err; } if (pkey->ameth->pkey_flags & ASN1_PKEY_SIGPARAM_NULL) paramtype = V_ASN1_NULL; else paramtype = V_ASN1_UNDEF; if (algor1) X509_ALGOR_set0(algor1, OBJ_nid2obj(signid), paramtype, NULL); if (algor2) X509_ALGOR_set0(algor2, OBJ_nid2obj(signid), paramtype, NULL); } buf_len = ASN1_item_i2d(asn, &buf_in, it); if (buf_len <= 0) { outl = 0; ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ERR_R_INTERNAL_ERROR); goto err; } inl = buf_len; outll = outl = EVP_PKEY_size(pkey); buf_out = OPENSSL_malloc(outll); if (buf_in == NULL || buf_out == NULL) { outl = 0; ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ERR_R_MALLOC_FAILURE); goto err; } if (!EVP_DigestSign(ctx, buf_out, &outl, buf_in, inl)) { outl = 0; ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ERR_R_EVP_LIB); goto err; } OPENSSL_free(signature->data); signature->data = buf_out; buf_out = NULL; signature->length = outl; /* * In the interests of compatibility, I'll make sure that the bit string * has a 'not-used bits' value of 0 */ signature->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); signature->flags |= ASN1_STRING_FLAG_BITS_LEFT; err: OPENSSL_clear_free((char *)buf_in, inl); OPENSSL_clear_free((char *)buf_out, outll); return outl; } openssl-1.1.1f/crypto/asn1/a_strex.c000066400000000000000000000425761364063235100173570ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "crypto/asn1.h" #include #include #include #include "charmap.h" /* * ASN1_STRING_print_ex() and X509_NAME_print_ex(). Enhanced string and name * printing routines handling multibyte characters, RFC2253 and a host of * other options. */ #define CHARTYPE_BS_ESC (ASN1_STRFLGS_ESC_2253 | CHARTYPE_FIRST_ESC_2253 | CHARTYPE_LAST_ESC_2253) #define ESC_FLAGS (ASN1_STRFLGS_ESC_2253 | \ ASN1_STRFLGS_ESC_2254 | \ ASN1_STRFLGS_ESC_QUOTE | \ ASN1_STRFLGS_ESC_CTRL | \ ASN1_STRFLGS_ESC_MSB) /* * Three IO functions for sending data to memory, a BIO and and a FILE * pointer. */ static int send_bio_chars(void *arg, const void *buf, int len) { if (!arg) return 1; if (BIO_write(arg, buf, len) != len) return 0; return 1; } #ifndef OPENSSL_NO_STDIO static int send_fp_chars(void *arg, const void *buf, int len) { if (!arg) return 1; if (fwrite(buf, 1, len, arg) != (unsigned int)len) return 0; return 1; } #endif typedef int char_io (void *arg, const void *buf, int len); /* * This function handles display of strings, one character at a time. It is * passed an unsigned long for each character because it could come from 2 or * even 4 byte forms. */ static int do_esc_char(unsigned long c, unsigned short flags, char *do_quotes, char_io *io_ch, void *arg) { unsigned short chflgs; unsigned char chtmp; char tmphex[HEX_SIZE(long) + 3]; if (c > 0xffffffffL) return -1; if (c > 0xffff) { BIO_snprintf(tmphex, sizeof(tmphex), "\\W%08lX", c); if (!io_ch(arg, tmphex, 10)) return -1; return 10; } if (c > 0xff) { BIO_snprintf(tmphex, sizeof(tmphex), "\\U%04lX", c); if (!io_ch(arg, tmphex, 6)) return -1; return 6; } chtmp = (unsigned char)c; if (chtmp > 0x7f) chflgs = flags & ASN1_STRFLGS_ESC_MSB; else chflgs = char_type[chtmp] & flags; if (chflgs & CHARTYPE_BS_ESC) { /* If we don't escape with quotes, signal we need quotes */ if (chflgs & ASN1_STRFLGS_ESC_QUOTE) { if (do_quotes) *do_quotes = 1; if (!io_ch(arg, &chtmp, 1)) return -1; return 1; } if (!io_ch(arg, "\\", 1)) return -1; if (!io_ch(arg, &chtmp, 1)) return -1; return 2; } if (chflgs & (ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_ESC_2254)) { BIO_snprintf(tmphex, 11, "\\%02X", chtmp); if (!io_ch(arg, tmphex, 3)) return -1; return 3; } /* * If we get this far and do any escaping at all must escape the escape * character itself: backslash. */ if (chtmp == '\\' && (flags & ESC_FLAGS)) { if (!io_ch(arg, "\\\\", 2)) return -1; return 2; } if (!io_ch(arg, &chtmp, 1)) return -1; return 1; } #define BUF_TYPE_WIDTH_MASK 0x7 #define BUF_TYPE_CONVUTF8 0x8 /* * This function sends each character in a buffer to do_esc_char(). It * interprets the content formats and converts to or from UTF8 as * appropriate. */ static int do_buf(unsigned char *buf, int buflen, int type, unsigned short flags, char *quotes, char_io *io_ch, void *arg) { int i, outlen, len, charwidth; unsigned short orflags; unsigned char *p, *q; unsigned long c; p = buf; q = buf + buflen; outlen = 0; charwidth = type & BUF_TYPE_WIDTH_MASK; switch (charwidth) { case 4: if (buflen & 3) { ASN1err(ASN1_F_DO_BUF, ASN1_R_INVALID_UNIVERSALSTRING_LENGTH); return -1; } break; case 2: if (buflen & 1) { ASN1err(ASN1_F_DO_BUF, ASN1_R_INVALID_BMPSTRING_LENGTH); return -1; } break; default: break; } while (p != q) { if (p == buf && flags & ASN1_STRFLGS_ESC_2253) orflags = CHARTYPE_FIRST_ESC_2253; else orflags = 0; switch (charwidth) { case 4: c = ((unsigned long)*p++) << 24; c |= ((unsigned long)*p++) << 16; c |= ((unsigned long)*p++) << 8; c |= *p++; break; case 2: c = ((unsigned long)*p++) << 8; c |= *p++; break; case 1: c = *p++; break; case 0: i = UTF8_getc(p, buflen, &c); if (i < 0) return -1; /* Invalid UTF8String */ buflen -= i; p += i; break; default: return -1; /* invalid width */ } if (p == q && flags & ASN1_STRFLGS_ESC_2253) orflags = CHARTYPE_LAST_ESC_2253; if (type & BUF_TYPE_CONVUTF8) { unsigned char utfbuf[6]; int utflen; utflen = UTF8_putc(utfbuf, sizeof(utfbuf), c); for (i = 0; i < utflen; i++) { /* * We don't need to worry about setting orflags correctly * because if utflen==1 its value will be correct anyway * otherwise each character will be > 0x7f and so the * character will never be escaped on first and last. */ len = do_esc_char(utfbuf[i], flags | orflags, quotes, io_ch, arg); if (len < 0) return -1; outlen += len; } } else { len = do_esc_char(c, flags | orflags, quotes, io_ch, arg); if (len < 0) return -1; outlen += len; } } return outlen; } /* This function hex dumps a buffer of characters */ static int do_hex_dump(char_io *io_ch, void *arg, unsigned char *buf, int buflen) { static const char hexdig[] = "0123456789ABCDEF"; unsigned char *p, *q; char hextmp[2]; if (arg) { p = buf; q = buf + buflen; while (p != q) { hextmp[0] = hexdig[*p >> 4]; hextmp[1] = hexdig[*p & 0xf]; if (!io_ch(arg, hextmp, 2)) return -1; p++; } } return buflen << 1; } /* * "dump" a string. This is done when the type is unknown, or the flags * request it. We can either dump the content octets or the entire DER * encoding. This uses the RFC2253 #01234 format. */ static int do_dump(unsigned long lflags, char_io *io_ch, void *arg, const ASN1_STRING *str) { /* * Placing the ASN1_STRING in a temp ASN1_TYPE allows the DER encoding to * readily obtained */ ASN1_TYPE t; unsigned char *der_buf, *p; int outlen, der_len; if (!io_ch(arg, "#", 1)) return -1; /* If we don't dump DER encoding just dump content octets */ if (!(lflags & ASN1_STRFLGS_DUMP_DER)) { outlen = do_hex_dump(io_ch, arg, str->data, str->length); if (outlen < 0) return -1; return outlen + 1; } t.type = str->type; t.value.ptr = (char *)str; der_len = i2d_ASN1_TYPE(&t, NULL); if ((der_buf = OPENSSL_malloc(der_len)) == NULL) { ASN1err(ASN1_F_DO_DUMP, ERR_R_MALLOC_FAILURE); return -1; } p = der_buf; i2d_ASN1_TYPE(&t, &p); outlen = do_hex_dump(io_ch, arg, der_buf, der_len); OPENSSL_free(der_buf); if (outlen < 0) return -1; return outlen + 1; } /* * Lookup table to convert tags to character widths, 0 = UTF8 encoded, -1 is * used for non string types otherwise it is the number of bytes per * character */ static const signed char tag2nbyte[] = { -1, -1, -1, -1, -1, /* 0-4 */ -1, -1, -1, -1, -1, /* 5-9 */ -1, -1, /* 10-11 */ 0, /* 12 V_ASN1_UTF8STRING */ -1, -1, -1, -1, -1, /* 13-17 */ 1, /* 18 V_ASN1_NUMERICSTRING */ 1, /* 19 V_ASN1_PRINTABLESTRING */ 1, /* 20 V_ASN1_T61STRING */ -1, /* 21 */ 1, /* 22 V_ASN1_IA5STRING */ 1, /* 23 V_ASN1_UTCTIME */ 1, /* 24 V_ASN1_GENERALIZEDTIME */ -1, /* 25 */ 1, /* 26 V_ASN1_ISO64STRING */ -1, /* 27 */ 4, /* 28 V_ASN1_UNIVERSALSTRING */ -1, /* 29 */ 2 /* 30 V_ASN1_BMPSTRING */ }; /* * This is the main function, print out an ASN1_STRING taking note of various * escape and display options. Returns number of characters written or -1 if * an error occurred. */ static int do_print_ex(char_io *io_ch, void *arg, unsigned long lflags, const ASN1_STRING *str) { int outlen, len; int type; char quotes; unsigned short flags; quotes = 0; /* Keep a copy of escape flags */ flags = (unsigned short)(lflags & ESC_FLAGS); type = str->type; outlen = 0; if (lflags & ASN1_STRFLGS_SHOW_TYPE) { const char *tagname; tagname = ASN1_tag2str(type); outlen += strlen(tagname); if (!io_ch(arg, tagname, outlen) || !io_ch(arg, ":", 1)) return -1; outlen++; } /* Decide what to do with type, either dump content or display it */ /* Dump everything */ if (lflags & ASN1_STRFLGS_DUMP_ALL) type = -1; /* Ignore the string type */ else if (lflags & ASN1_STRFLGS_IGNORE_TYPE) type = 1; else { /* Else determine width based on type */ if ((type > 0) && (type < 31)) type = tag2nbyte[type]; else type = -1; if ((type == -1) && !(lflags & ASN1_STRFLGS_DUMP_UNKNOWN)) type = 1; } if (type == -1) { len = do_dump(lflags, io_ch, arg, str); if (len < 0) return -1; outlen += len; return outlen; } if (lflags & ASN1_STRFLGS_UTF8_CONVERT) { /* * Note: if string is UTF8 and we want to convert to UTF8 then we * just interpret it as 1 byte per character to avoid converting * twice. */ if (!type) type = 1; else type |= BUF_TYPE_CONVUTF8; } len = do_buf(str->data, str->length, type, flags, "es, io_ch, NULL); if (len < 0) return -1; outlen += len; if (quotes) outlen += 2; if (!arg) return outlen; if (quotes && !io_ch(arg, "\"", 1)) return -1; if (do_buf(str->data, str->length, type, flags, NULL, io_ch, arg) < 0) return -1; if (quotes && !io_ch(arg, "\"", 1)) return -1; return outlen; } /* Used for line indenting: print 'indent' spaces */ static int do_indent(char_io *io_ch, void *arg, int indent) { int i; for (i = 0; i < indent; i++) if (!io_ch(arg, " ", 1)) return 0; return 1; } #define FN_WIDTH_LN 25 #define FN_WIDTH_SN 10 static int do_name_ex(char_io *io_ch, void *arg, const X509_NAME *n, int indent, unsigned long flags) { int i, prev = -1, orflags, cnt; int fn_opt, fn_nid; ASN1_OBJECT *fn; const ASN1_STRING *val; const X509_NAME_ENTRY *ent; char objtmp[80]; const char *objbuf; int outlen, len; char *sep_dn, *sep_mv, *sep_eq; int sep_dn_len, sep_mv_len, sep_eq_len; if (indent < 0) indent = 0; outlen = indent; if (!do_indent(io_ch, arg, indent)) return -1; switch (flags & XN_FLAG_SEP_MASK) { case XN_FLAG_SEP_MULTILINE: sep_dn = "\n"; sep_dn_len = 1; sep_mv = " + "; sep_mv_len = 3; break; case XN_FLAG_SEP_COMMA_PLUS: sep_dn = ","; sep_dn_len = 1; sep_mv = "+"; sep_mv_len = 1; indent = 0; break; case XN_FLAG_SEP_CPLUS_SPC: sep_dn = ", "; sep_dn_len = 2; sep_mv = " + "; sep_mv_len = 3; indent = 0; break; case XN_FLAG_SEP_SPLUS_SPC: sep_dn = "; "; sep_dn_len = 2; sep_mv = " + "; sep_mv_len = 3; indent = 0; break; default: return -1; } if (flags & XN_FLAG_SPC_EQ) { sep_eq = " = "; sep_eq_len = 3; } else { sep_eq = "="; sep_eq_len = 1; } fn_opt = flags & XN_FLAG_FN_MASK; cnt = X509_NAME_entry_count(n); for (i = 0; i < cnt; i++) { if (flags & XN_FLAG_DN_REV) ent = X509_NAME_get_entry(n, cnt - i - 1); else ent = X509_NAME_get_entry(n, i); if (prev != -1) { if (prev == X509_NAME_ENTRY_set(ent)) { if (!io_ch(arg, sep_mv, sep_mv_len)) return -1; outlen += sep_mv_len; } else { if (!io_ch(arg, sep_dn, sep_dn_len)) return -1; outlen += sep_dn_len; if (!do_indent(io_ch, arg, indent)) return -1; outlen += indent; } } prev = X509_NAME_ENTRY_set(ent); fn = X509_NAME_ENTRY_get_object(ent); val = X509_NAME_ENTRY_get_data(ent); fn_nid = OBJ_obj2nid(fn); if (fn_opt != XN_FLAG_FN_NONE) { int objlen, fld_len; if ((fn_opt == XN_FLAG_FN_OID) || (fn_nid == NID_undef)) { OBJ_obj2txt(objtmp, sizeof(objtmp), fn, 1); fld_len = 0; /* XXX: what should this be? */ objbuf = objtmp; } else { if (fn_opt == XN_FLAG_FN_SN) { fld_len = FN_WIDTH_SN; objbuf = OBJ_nid2sn(fn_nid); } else if (fn_opt == XN_FLAG_FN_LN) { fld_len = FN_WIDTH_LN; objbuf = OBJ_nid2ln(fn_nid); } else { fld_len = 0; /* XXX: what should this be? */ objbuf = ""; } } objlen = strlen(objbuf); if (!io_ch(arg, objbuf, objlen)) return -1; if ((objlen < fld_len) && (flags & XN_FLAG_FN_ALIGN)) { if (!do_indent(io_ch, arg, fld_len - objlen)) return -1; outlen += fld_len - objlen; } if (!io_ch(arg, sep_eq, sep_eq_len)) return -1; outlen += objlen + sep_eq_len; } /* * If the field name is unknown then fix up the DER dump flag. We * might want to limit this further so it will DER dump on anything * other than a few 'standard' fields. */ if ((fn_nid == NID_undef) && (flags & XN_FLAG_DUMP_UNKNOWN_FIELDS)) orflags = ASN1_STRFLGS_DUMP_ALL; else orflags = 0; len = do_print_ex(io_ch, arg, flags | orflags, val); if (len < 0) return -1; outlen += len; } return outlen; } /* Wrappers round the main functions */ int X509_NAME_print_ex(BIO *out, const X509_NAME *nm, int indent, unsigned long flags) { if (flags == XN_FLAG_COMPAT) return X509_NAME_print(out, nm, indent); return do_name_ex(send_bio_chars, out, nm, indent, flags); } #ifndef OPENSSL_NO_STDIO int X509_NAME_print_ex_fp(FILE *fp, const X509_NAME *nm, int indent, unsigned long flags) { if (flags == XN_FLAG_COMPAT) { BIO *btmp; int ret; btmp = BIO_new_fp(fp, BIO_NOCLOSE); if (!btmp) return -1; ret = X509_NAME_print(btmp, nm, indent); BIO_free(btmp); return ret; } return do_name_ex(send_fp_chars, fp, nm, indent, flags); } #endif int ASN1_STRING_print_ex(BIO *out, const ASN1_STRING *str, unsigned long flags) { return do_print_ex(send_bio_chars, out, flags, str); } #ifndef OPENSSL_NO_STDIO int ASN1_STRING_print_ex_fp(FILE *fp, const ASN1_STRING *str, unsigned long flags) { return do_print_ex(send_fp_chars, fp, flags, str); } #endif /* * Utility function: convert any string type to UTF8, returns number of bytes * in output string or a negative error code */ int ASN1_STRING_to_UTF8(unsigned char **out, const ASN1_STRING *in) { ASN1_STRING stmp, *str = &stmp; int mbflag, type, ret; if (!in) return -1; type = in->type; if ((type < 0) || (type > 30)) return -1; mbflag = tag2nbyte[type]; if (mbflag == -1) return -1; mbflag |= MBSTRING_FLAG; stmp.data = NULL; stmp.length = 0; stmp.flags = 0; ret = ASN1_mbstring_copy(&str, in->data, in->length, mbflag, B_ASN1_UTF8STRING); if (ret < 0) return ret; *out = stmp.data; return stmp.length; } openssl-1.1.1f/crypto/asn1/a_strnid.c000066400000000000000000000137141364063235100175050ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include static STACK_OF(ASN1_STRING_TABLE) *stable = NULL; static void st_free(ASN1_STRING_TABLE *tbl); static int sk_table_cmp(const ASN1_STRING_TABLE *const *a, const ASN1_STRING_TABLE *const *b); /* * This is the global mask for the mbstring functions: this is use to mask * out certain types (such as BMPString and UTF8String) because certain * software (e.g. Netscape) has problems with them. */ static unsigned long global_mask = B_ASN1_UTF8STRING; void ASN1_STRING_set_default_mask(unsigned long mask) { global_mask = mask; } unsigned long ASN1_STRING_get_default_mask(void) { return global_mask; } /*- * This function sets the default to various "flavours" of configuration. * based on an ASCII string. Currently this is: * MASK:XXXX : a numerical mask value. * nobmp : Don't use BMPStrings (just Printable, T61). * pkix : PKIX recommendation in RFC2459. * utf8only : only use UTF8Strings (RFC2459 recommendation for 2004). * default: the default value, Printable, T61, BMP. */ int ASN1_STRING_set_default_mask_asc(const char *p) { unsigned long mask; char *end; if (strncmp(p, "MASK:", 5) == 0) { if (!p[5]) return 0; mask = strtoul(p + 5, &end, 0); if (*end) return 0; } else if (strcmp(p, "nombstr") == 0) mask = ~((unsigned long)(B_ASN1_BMPSTRING | B_ASN1_UTF8STRING)); else if (strcmp(p, "pkix") == 0) mask = ~((unsigned long)B_ASN1_T61STRING); else if (strcmp(p, "utf8only") == 0) mask = B_ASN1_UTF8STRING; else if (strcmp(p, "default") == 0) mask = 0xFFFFFFFFL; else return 0; ASN1_STRING_set_default_mask(mask); return 1; } /* * The following function generates an ASN1_STRING based on limits in a * table. Frequently the types and length of an ASN1_STRING are restricted by * a corresponding OID. For example certificates and certificate requests. */ ASN1_STRING *ASN1_STRING_set_by_NID(ASN1_STRING **out, const unsigned char *in, int inlen, int inform, int nid) { ASN1_STRING_TABLE *tbl; ASN1_STRING *str = NULL; unsigned long mask; int ret; if (out == NULL) out = &str; tbl = ASN1_STRING_TABLE_get(nid); if (tbl != NULL) { mask = tbl->mask; if (!(tbl->flags & STABLE_NO_MASK)) mask &= global_mask; ret = ASN1_mbstring_ncopy(out, in, inlen, inform, mask, tbl->minsize, tbl->maxsize); } else { ret = ASN1_mbstring_copy(out, in, inlen, inform, DIRSTRING_TYPE & global_mask); } if (ret <= 0) return NULL; return *out; } /* * Now the tables and helper functions for the string table: */ #include "tbl_standard.h" static int sk_table_cmp(const ASN1_STRING_TABLE *const *a, const ASN1_STRING_TABLE *const *b) { return (*a)->nid - (*b)->nid; } DECLARE_OBJ_BSEARCH_CMP_FN(ASN1_STRING_TABLE, ASN1_STRING_TABLE, table); static int table_cmp(const ASN1_STRING_TABLE *a, const ASN1_STRING_TABLE *b) { return a->nid - b->nid; } IMPLEMENT_OBJ_BSEARCH_CMP_FN(ASN1_STRING_TABLE, ASN1_STRING_TABLE, table); ASN1_STRING_TABLE *ASN1_STRING_TABLE_get(int nid) { int idx; ASN1_STRING_TABLE fnd; fnd.nid = nid; if (stable) { idx = sk_ASN1_STRING_TABLE_find(stable, &fnd); if (idx >= 0) return sk_ASN1_STRING_TABLE_value(stable, idx); } return OBJ_bsearch_table(&fnd, tbl_standard, OSSL_NELEM(tbl_standard)); } /* * Return a string table pointer which can be modified: either directly from * table or a copy of an internal value added to the table. */ static ASN1_STRING_TABLE *stable_get(int nid) { ASN1_STRING_TABLE *tmp, *rv; /* Always need a string table so allocate one if NULL */ if (stable == NULL) { stable = sk_ASN1_STRING_TABLE_new(sk_table_cmp); if (stable == NULL) return NULL; } tmp = ASN1_STRING_TABLE_get(nid); if (tmp != NULL && tmp->flags & STABLE_FLAGS_MALLOC) return tmp; if ((rv = OPENSSL_zalloc(sizeof(*rv))) == NULL) { ASN1err(ASN1_F_STABLE_GET, ERR_R_MALLOC_FAILURE); return NULL; } if (!sk_ASN1_STRING_TABLE_push(stable, rv)) { OPENSSL_free(rv); return NULL; } if (tmp != NULL) { rv->nid = tmp->nid; rv->minsize = tmp->minsize; rv->maxsize = tmp->maxsize; rv->mask = tmp->mask; rv->flags = tmp->flags | STABLE_FLAGS_MALLOC; } else { rv->nid = nid; rv->minsize = -1; rv->maxsize = -1; rv->flags = STABLE_FLAGS_MALLOC; } return rv; } int ASN1_STRING_TABLE_add(int nid, long minsize, long maxsize, unsigned long mask, unsigned long flags) { ASN1_STRING_TABLE *tmp; tmp = stable_get(nid); if (tmp == NULL) { ASN1err(ASN1_F_ASN1_STRING_TABLE_ADD, ERR_R_MALLOC_FAILURE); return 0; } if (minsize >= 0) tmp->minsize = minsize; if (maxsize >= 0) tmp->maxsize = maxsize; if (mask) tmp->mask = mask; if (flags) tmp->flags = STABLE_FLAGS_MALLOC | flags; return 1; } void ASN1_STRING_TABLE_cleanup(void) { STACK_OF(ASN1_STRING_TABLE) *tmp; tmp = stable; if (tmp == NULL) return; stable = NULL; sk_ASN1_STRING_TABLE_pop_free(tmp, st_free); } static void st_free(ASN1_STRING_TABLE *tbl) { if (tbl->flags & STABLE_FLAGS_MALLOC) OPENSSL_free(tbl); } openssl-1.1.1f/crypto/asn1/a_time.c000066400000000000000000000356421364063235100171440ustar00rootroot00000000000000/* * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- * This is an implementation of the ASN1 Time structure which is: * Time ::= CHOICE { * utcTime UTCTime, * generalTime GeneralizedTime } */ #include #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include "asn1_local.h" IMPLEMENT_ASN1_MSTRING(ASN1_TIME, B_ASN1_TIME) IMPLEMENT_ASN1_FUNCTIONS(ASN1_TIME) static int is_utc(const int year) { if (50 <= year && year <= 149) return 1; return 0; } static int leap_year(const int year) { if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0)) return 1; return 0; } /* * Compute the day of the week and the day of the year from the year, month * and day. The day of the year is straightforward, the day of the week uses * a form of Zeller's congruence. For this months start with March and are * numbered 4 through 15. */ static void determine_days(struct tm *tm) { static const int ydays[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; int y = tm->tm_year + 1900; int m = tm->tm_mon; int d = tm->tm_mday; int c; tm->tm_yday = ydays[m] + d - 1; if (m >= 2) { /* March and onwards can be one day further into the year */ tm->tm_yday += leap_year(y); m += 2; } else { /* Treat January and February as part of the previous year */ m += 14; y--; } c = y / 100; y %= 100; /* Zeller's congruence */ tm->tm_wday = (d + (13 * m) / 5 + y + y / 4 + c / 4 + 5 * c + 6) % 7; } int asn1_time_to_tm(struct tm *tm, const ASN1_TIME *d) { static const int min[9] = { 0, 0, 1, 1, 0, 0, 0, 0, 0 }; static const int max[9] = { 99, 99, 12, 31, 23, 59, 59, 12, 59 }; static const int mdays[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; char *a; int n, i, i2, l, o, min_l = 11, strict = 0, end = 6, btz = 5, md; struct tm tmp; #if defined(CHARSET_EBCDIC) const char upper_z = 0x5A, num_zero = 0x30, period = 0x2E, minus = 0x2D, plus = 0x2B; #else const char upper_z = 'Z', num_zero = '0', period = '.', minus = '-', plus = '+'; #endif /* * ASN1_STRING_FLAG_X509_TIME is used to enforce RFC 5280 * time string format, in which: * * 1. "seconds" is a 'MUST' * 2. "Zulu" timezone is a 'MUST' * 3. "+|-" is not allowed to indicate a time zone */ if (d->type == V_ASN1_UTCTIME) { if (d->flags & ASN1_STRING_FLAG_X509_TIME) { min_l = 13; strict = 1; } } else if (d->type == V_ASN1_GENERALIZEDTIME) { end = 7; btz = 6; if (d->flags & ASN1_STRING_FLAG_X509_TIME) { min_l = 15; strict = 1; } else { min_l = 13; } } else { return 0; } l = d->length; a = (char *)d->data; o = 0; memset(&tmp, 0, sizeof(tmp)); /* * GENERALIZEDTIME is similar to UTCTIME except the year is represented * as YYYY. This stuff treats everything as a two digit field so make * first two fields 00 to 99 */ if (l < min_l) goto err; for (i = 0; i < end; i++) { if (!strict && (i == btz) && ((a[o] == upper_z) || (a[o] == plus) || (a[o] == minus))) { i++; break; } if (!ascii_isdigit(a[o])) goto err; n = a[o] - num_zero; /* incomplete 2-digital number */ if (++o == l) goto err; if (!ascii_isdigit(a[o])) goto err; n = (n * 10) + a[o] - num_zero; /* no more bytes to read, but we haven't seen time-zone yet */ if (++o == l) goto err; i2 = (d->type == V_ASN1_UTCTIME) ? i + 1 : i; if ((n < min[i2]) || (n > max[i2])) goto err; switch (i2) { case 0: /* UTC will never be here */ tmp.tm_year = n * 100 - 1900; break; case 1: if (d->type == V_ASN1_UTCTIME) tmp.tm_year = n < 50 ? n + 100 : n; else tmp.tm_year += n; break; case 2: tmp.tm_mon = n - 1; break; case 3: /* check if tm_mday is valid in tm_mon */ if (tmp.tm_mon == 1) { /* it's February */ md = mdays[1] + leap_year(tmp.tm_year + 1900); } else { md = mdays[tmp.tm_mon]; } if (n > md) goto err; tmp.tm_mday = n; determine_days(&tmp); break; case 4: tmp.tm_hour = n; break; case 5: tmp.tm_min = n; break; case 6: tmp.tm_sec = n; break; } } /* * Optional fractional seconds: decimal point followed by one or more * digits. */ if (d->type == V_ASN1_GENERALIZEDTIME && a[o] == period) { if (strict) /* RFC 5280 forbids fractional seconds */ goto err; if (++o == l) goto err; i = o; while ((o < l) && ascii_isdigit(a[o])) o++; /* Must have at least one digit after decimal point */ if (i == o) goto err; /* no more bytes to read, but we haven't seen time-zone yet */ if (o == l) goto err; } /* * 'o' will never point to '\0' at this point, the only chance * 'o' can point to '\0' is either the subsequent if or the first * else if is true. */ if (a[o] == upper_z) { o++; } else if (!strict && ((a[o] == plus) || (a[o] == minus))) { int offsign = a[o] == minus ? 1 : -1; int offset = 0; o++; /* * if not equal, no need to do subsequent checks * since the following for-loop will add 'o' by 4 * and the final return statement will check if 'l' * and 'o' are equal. */ if (o + 4 != l) goto err; for (i = end; i < end + 2; i++) { if (!ascii_isdigit(a[o])) goto err; n = a[o] - num_zero; o++; if (!ascii_isdigit(a[o])) goto err; n = (n * 10) + a[o] - num_zero; i2 = (d->type == V_ASN1_UTCTIME) ? i + 1 : i; if ((n < min[i2]) || (n > max[i2])) goto err; /* if tm is NULL, no need to adjust */ if (tm != NULL) { if (i == end) offset = n * 3600; else if (i == end + 1) offset += n * 60; } o++; } if (offset && !OPENSSL_gmtime_adj(&tmp, 0, offset * offsign)) goto err; } else { /* not Z, or not +/- in non-strict mode */ goto err; } if (o == l) { /* success, check if tm should be filled */ if (tm != NULL) *tm = tmp; return 1; } err: return 0; } ASN1_TIME *asn1_time_from_tm(ASN1_TIME *s, struct tm *ts, int type) { char* p; ASN1_TIME *tmps = NULL; const size_t len = 20; if (type == V_ASN1_UNDEF) { if (is_utc(ts->tm_year)) type = V_ASN1_UTCTIME; else type = V_ASN1_GENERALIZEDTIME; } else if (type == V_ASN1_UTCTIME) { if (!is_utc(ts->tm_year)) goto err; } else if (type != V_ASN1_GENERALIZEDTIME) { goto err; } if (s == NULL) tmps = ASN1_STRING_new(); else tmps = s; if (tmps == NULL) return NULL; if (!ASN1_STRING_set(tmps, NULL, len)) goto err; tmps->type = type; p = (char*)tmps->data; if (type == V_ASN1_GENERALIZEDTIME) tmps->length = BIO_snprintf(p, len, "%04d%02d%02d%02d%02d%02dZ", ts->tm_year + 1900, ts->tm_mon + 1, ts->tm_mday, ts->tm_hour, ts->tm_min, ts->tm_sec); else tmps->length = BIO_snprintf(p, len, "%02d%02d%02d%02d%02d%02dZ", ts->tm_year % 100, ts->tm_mon + 1, ts->tm_mday, ts->tm_hour, ts->tm_min, ts->tm_sec); #ifdef CHARSET_EBCDIC ebcdic2ascii(tmps->data, tmps->data, tmps->length); #endif return tmps; err: if (tmps != s) ASN1_STRING_free(tmps); return NULL; } ASN1_TIME *ASN1_TIME_set(ASN1_TIME *s, time_t t) { return ASN1_TIME_adj(s, t, 0, 0); } ASN1_TIME *ASN1_TIME_adj(ASN1_TIME *s, time_t t, int offset_day, long offset_sec) { struct tm *ts; struct tm data; ts = OPENSSL_gmtime(&t, &data); if (ts == NULL) { ASN1err(ASN1_F_ASN1_TIME_ADJ, ASN1_R_ERROR_GETTING_TIME); return NULL; } if (offset_day || offset_sec) { if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec)) return NULL; } return asn1_time_from_tm(s, ts, V_ASN1_UNDEF); } int ASN1_TIME_check(const ASN1_TIME *t) { if (t->type == V_ASN1_GENERALIZEDTIME) return ASN1_GENERALIZEDTIME_check(t); else if (t->type == V_ASN1_UTCTIME) return ASN1_UTCTIME_check(t); return 0; } /* Convert an ASN1_TIME structure to GeneralizedTime */ ASN1_GENERALIZEDTIME *ASN1_TIME_to_generalizedtime(const ASN1_TIME *t, ASN1_GENERALIZEDTIME **out) { ASN1_GENERALIZEDTIME *ret = NULL; struct tm tm; if (!ASN1_TIME_to_tm(t, &tm)) return NULL; if (out != NULL) ret = *out; ret = asn1_time_from_tm(ret, &tm, V_ASN1_GENERALIZEDTIME); if (out != NULL && ret != NULL) *out = ret; return ret; } int ASN1_TIME_set_string(ASN1_TIME *s, const char *str) { /* Try UTC, if that fails, try GENERALIZED */ if (ASN1_UTCTIME_set_string(s, str)) return 1; return ASN1_GENERALIZEDTIME_set_string(s, str); } int ASN1_TIME_set_string_X509(ASN1_TIME *s, const char *str) { ASN1_TIME t; struct tm tm; int rv = 0; t.length = strlen(str); t.data = (unsigned char *)str; t.flags = ASN1_STRING_FLAG_X509_TIME; t.type = V_ASN1_UTCTIME; if (!ASN1_TIME_check(&t)) { t.type = V_ASN1_GENERALIZEDTIME; if (!ASN1_TIME_check(&t)) goto out; } /* * Per RFC 5280 (section 4.1.2.5.), the valid input time * strings should be encoded with the following rules: * * 1. UTC: YYMMDDHHMMSSZ, if YY < 50 (20YY) --> UTC: YYMMDDHHMMSSZ * 2. UTC: YYMMDDHHMMSSZ, if YY >= 50 (19YY) --> UTC: YYMMDDHHMMSSZ * 3. G'd: YYYYMMDDHHMMSSZ, if YYYY >= 2050 --> G'd: YYYYMMDDHHMMSSZ * 4. G'd: YYYYMMDDHHMMSSZ, if YYYY < 2050 --> UTC: YYMMDDHHMMSSZ * * Only strings of the 4th rule should be reformatted, but since a * UTC can only present [1950, 2050), so if the given time string * is less than 1950 (e.g. 19230419000000Z), we do nothing... */ if (s != NULL && t.type == V_ASN1_GENERALIZEDTIME) { if (!asn1_time_to_tm(&tm, &t)) goto out; if (is_utc(tm.tm_year)) { t.length -= 2; /* * it's OK to let original t.data go since that's assigned * to a piece of memory allocated outside of this function. * new t.data would be freed after ASN1_STRING_copy is done. */ t.data = OPENSSL_zalloc(t.length + 1); if (t.data == NULL) goto out; memcpy(t.data, str + 2, t.length); t.type = V_ASN1_UTCTIME; } } if (s == NULL || ASN1_STRING_copy((ASN1_STRING *)s, (ASN1_STRING *)&t)) rv = 1; if (t.data != (unsigned char *)str) OPENSSL_free(t.data); out: return rv; } int ASN1_TIME_to_tm(const ASN1_TIME *s, struct tm *tm) { if (s == NULL) { time_t now_t; time(&now_t); memset(tm, 0, sizeof(*tm)); if (OPENSSL_gmtime(&now_t, tm) != NULL) return 1; return 0; } return asn1_time_to_tm(tm, s); } int ASN1_TIME_diff(int *pday, int *psec, const ASN1_TIME *from, const ASN1_TIME *to) { struct tm tm_from, tm_to; if (!ASN1_TIME_to_tm(from, &tm_from)) return 0; if (!ASN1_TIME_to_tm(to, &tm_to)) return 0; return OPENSSL_gmtime_diff(pday, psec, &tm_from, &tm_to); } static const char _asn1_mon[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; int ASN1_TIME_print(BIO *bp, const ASN1_TIME *tm) { char *v; int gmt = 0, l; struct tm stm; const char upper_z = 0x5A, period = 0x2E; if (!asn1_time_to_tm(&stm, tm)) { /* asn1_time_to_tm will check the time type */ goto err; } l = tm->length; v = (char *)tm->data; if (v[l - 1] == upper_z) gmt = 1; if (tm->type == V_ASN1_GENERALIZEDTIME) { char *f = NULL; int f_len = 0; /* * Try to parse fractional seconds. '14' is the place of * 'fraction point' in a GeneralizedTime string. */ if (tm->length > 15 && v[14] == period) { f = &v[14]; f_len = 1; while (14 + f_len < l && ascii_isdigit(f[f_len])) ++f_len; } return BIO_printf(bp, "%s %2d %02d:%02d:%02d%.*s %d%s", _asn1_mon[stm.tm_mon], stm.tm_mday, stm.tm_hour, stm.tm_min, stm.tm_sec, f_len, f, stm.tm_year + 1900, (gmt ? " GMT" : "")) > 0; } else { return BIO_printf(bp, "%s %2d %02d:%02d:%02d %d%s", _asn1_mon[stm.tm_mon], stm.tm_mday, stm.tm_hour, stm.tm_min, stm.tm_sec, stm.tm_year + 1900, (gmt ? " GMT" : "")) > 0; } err: BIO_write(bp, "Bad time value", 14); return 0; } int ASN1_TIME_cmp_time_t(const ASN1_TIME *s, time_t t) { struct tm stm, ttm; int day, sec; if (!ASN1_TIME_to_tm(s, &stm)) return -2; if (!OPENSSL_gmtime(&t, &ttm)) return -2; if (!OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) return -2; if (day > 0 || sec > 0) return 1; if (day < 0 || sec < 0) return -1; return 0; } int ASN1_TIME_normalize(ASN1_TIME *t) { struct tm tm; if (!ASN1_TIME_to_tm(t, &tm)) return 0; return asn1_time_from_tm(t, &tm, V_ASN1_UNDEF) != NULL; } int ASN1_TIME_compare(const ASN1_TIME *a, const ASN1_TIME *b) { int day, sec; if (!ASN1_TIME_diff(&day, &sec, b, a)) return -2; if (day > 0 || sec > 0) return 1; if (day < 0 || sec < 0) return -1; return 0; } openssl-1.1.1f/crypto/asn1/a_type.c000066400000000000000000000070161364063235100171610ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "asn1_local.h" int ASN1_TYPE_get(const ASN1_TYPE *a) { if (a->type == V_ASN1_BOOLEAN || a->type == V_ASN1_NULL || a->value.ptr != NULL) return a->type; else return 0; } void ASN1_TYPE_set(ASN1_TYPE *a, int type, void *value) { if (a->type != V_ASN1_BOOLEAN && a->type != V_ASN1_NULL && a->value.ptr != NULL) { ASN1_TYPE **tmp_a = &a; asn1_primitive_free((ASN1_VALUE **)tmp_a, NULL, 0); } a->type = type; if (type == V_ASN1_BOOLEAN) a->value.boolean = value ? 0xff : 0; else a->value.ptr = value; } int ASN1_TYPE_set1(ASN1_TYPE *a, int type, const void *value) { if (!value || (type == V_ASN1_BOOLEAN)) { void *p = (void *)value; ASN1_TYPE_set(a, type, p); } else if (type == V_ASN1_OBJECT) { ASN1_OBJECT *odup; odup = OBJ_dup(value); if (!odup) return 0; ASN1_TYPE_set(a, type, odup); } else { ASN1_STRING *sdup; sdup = ASN1_STRING_dup(value); if (!sdup) return 0; ASN1_TYPE_set(a, type, sdup); } return 1; } /* Returns 0 if they are equal, != 0 otherwise. */ int ASN1_TYPE_cmp(const ASN1_TYPE *a, const ASN1_TYPE *b) { int result = -1; if (!a || !b || a->type != b->type) return -1; switch (a->type) { case V_ASN1_OBJECT: result = OBJ_cmp(a->value.object, b->value.object); break; case V_ASN1_BOOLEAN: result = a->value.boolean - b->value.boolean; break; case V_ASN1_NULL: result = 0; /* They do not have content. */ break; case V_ASN1_INTEGER: case V_ASN1_ENUMERATED: case V_ASN1_BIT_STRING: case V_ASN1_OCTET_STRING: case V_ASN1_SEQUENCE: case V_ASN1_SET: case V_ASN1_NUMERICSTRING: case V_ASN1_PRINTABLESTRING: case V_ASN1_T61STRING: case V_ASN1_VIDEOTEXSTRING: case V_ASN1_IA5STRING: case V_ASN1_UTCTIME: case V_ASN1_GENERALIZEDTIME: case V_ASN1_GRAPHICSTRING: case V_ASN1_VISIBLESTRING: case V_ASN1_GENERALSTRING: case V_ASN1_UNIVERSALSTRING: case V_ASN1_BMPSTRING: case V_ASN1_UTF8STRING: case V_ASN1_OTHER: default: result = ASN1_STRING_cmp((ASN1_STRING *)a->value.ptr, (ASN1_STRING *)b->value.ptr); break; } return result; } ASN1_TYPE *ASN1_TYPE_pack_sequence(const ASN1_ITEM *it, void *s, ASN1_TYPE **t) { ASN1_OCTET_STRING *oct; ASN1_TYPE *rt; oct = ASN1_item_pack(s, it, NULL); if (oct == NULL) return NULL; if (t && *t) { rt = *t; } else { rt = ASN1_TYPE_new(); if (rt == NULL) { ASN1_OCTET_STRING_free(oct); return NULL; } if (t) *t = rt; } ASN1_TYPE_set(rt, V_ASN1_SEQUENCE, oct); return rt; } void *ASN1_TYPE_unpack_sequence(const ASN1_ITEM *it, const ASN1_TYPE *t) { if (t == NULL || t->type != V_ASN1_SEQUENCE || t->value.sequence == NULL) return NULL; return ASN1_item_unpack(t->value.sequence, it); } openssl-1.1.1f/crypto/asn1/a_utctm.c000066400000000000000000000043531364063235100173350ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include "asn1_local.h" /* This is the primary function used to parse ASN1_UTCTIME */ int asn1_utctime_to_tm(struct tm *tm, const ASN1_UTCTIME *d) { /* wrapper around ans1_time_to_tm */ if (d->type != V_ASN1_UTCTIME) return 0; return asn1_time_to_tm(tm, d); } int ASN1_UTCTIME_check(const ASN1_UTCTIME *d) { return asn1_utctime_to_tm(NULL, d); } /* Sets the string via simple copy without cleaning it up */ int ASN1_UTCTIME_set_string(ASN1_UTCTIME *s, const char *str) { ASN1_UTCTIME t; t.type = V_ASN1_UTCTIME; t.length = strlen(str); t.data = (unsigned char *)str; t.flags = 0; if (!ASN1_UTCTIME_check(&t)) return 0; if (s != NULL && !ASN1_STRING_copy(s, &t)) return 0; return 1; } ASN1_UTCTIME *ASN1_UTCTIME_set(ASN1_UTCTIME *s, time_t t) { return ASN1_UTCTIME_adj(s, t, 0, 0); } ASN1_UTCTIME *ASN1_UTCTIME_adj(ASN1_UTCTIME *s, time_t t, int offset_day, long offset_sec) { struct tm *ts; struct tm data; ts = OPENSSL_gmtime(&t, &data); if (ts == NULL) return NULL; if (offset_day || offset_sec) { if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec)) return NULL; } return asn1_time_from_tm(s, ts, V_ASN1_UTCTIME); } int ASN1_UTCTIME_cmp_time_t(const ASN1_UTCTIME *s, time_t t) { struct tm stm, ttm; int day, sec; if (!asn1_utctime_to_tm(&stm, s)) return -2; if (OPENSSL_gmtime(&t, &ttm) == NULL) return -2; if (!OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) return -2; if (day > 0 || sec > 0) return 1; if (day < 0 || sec < 0) return -1; return 0; } int ASN1_UTCTIME_print(BIO *bp, const ASN1_UTCTIME *tm) { if (tm->type != V_ASN1_UTCTIME) return 0; return ASN1_TIME_print(bp, tm); } openssl-1.1.1f/crypto/asn1/a_utf8.c000066400000000000000000000136141364063235100170670ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* UTF8 utilities */ /*- * This parses a UTF8 string one character at a time. It is passed a pointer * to the string and the length of the string. It sets 'value' to the value of * the current character. It returns the number of characters read or a * negative error code: * -1 = string too short * -2 = illegal character * -3 = subsequent characters not of the form 10xxxxxx * -4 = character encoded incorrectly (not minimal length). */ int UTF8_getc(const unsigned char *str, int len, unsigned long *val) { const unsigned char *p; unsigned long value; int ret; if (len <= 0) return 0; p = str; /* Check syntax and work out the encoded value (if correct) */ if ((*p & 0x80) == 0) { value = *p++ & 0x7f; ret = 1; } else if ((*p & 0xe0) == 0xc0) { if (len < 2) return -1; if ((p[1] & 0xc0) != 0x80) return -3; value = (*p++ & 0x1f) << 6; value |= *p++ & 0x3f; if (value < 0x80) return -4; ret = 2; } else if ((*p & 0xf0) == 0xe0) { if (len < 3) return -1; if (((p[1] & 0xc0) != 0x80) || ((p[2] & 0xc0) != 0x80)) return -3; value = (*p++ & 0xf) << 12; value |= (*p++ & 0x3f) << 6; value |= *p++ & 0x3f; if (value < 0x800) return -4; ret = 3; } else if ((*p & 0xf8) == 0xf0) { if (len < 4) return -1; if (((p[1] & 0xc0) != 0x80) || ((p[2] & 0xc0) != 0x80) || ((p[3] & 0xc0) != 0x80)) return -3; value = ((unsigned long)(*p++ & 0x7)) << 18; value |= (*p++ & 0x3f) << 12; value |= (*p++ & 0x3f) << 6; value |= *p++ & 0x3f; if (value < 0x10000) return -4; ret = 4; } else if ((*p & 0xfc) == 0xf8) { if (len < 5) return -1; if (((p[1] & 0xc0) != 0x80) || ((p[2] & 0xc0) != 0x80) || ((p[3] & 0xc0) != 0x80) || ((p[4] & 0xc0) != 0x80)) return -3; value = ((unsigned long)(*p++ & 0x3)) << 24; value |= ((unsigned long)(*p++ & 0x3f)) << 18; value |= ((unsigned long)(*p++ & 0x3f)) << 12; value |= (*p++ & 0x3f) << 6; value |= *p++ & 0x3f; if (value < 0x200000) return -4; ret = 5; } else if ((*p & 0xfe) == 0xfc) { if (len < 6) return -1; if (((p[1] & 0xc0) != 0x80) || ((p[2] & 0xc0) != 0x80) || ((p[3] & 0xc0) != 0x80) || ((p[4] & 0xc0) != 0x80) || ((p[5] & 0xc0) != 0x80)) return -3; value = ((unsigned long)(*p++ & 0x1)) << 30; value |= ((unsigned long)(*p++ & 0x3f)) << 24; value |= ((unsigned long)(*p++ & 0x3f)) << 18; value |= ((unsigned long)(*p++ & 0x3f)) << 12; value |= (*p++ & 0x3f) << 6; value |= *p++ & 0x3f; if (value < 0x4000000) return -4; ret = 6; } else return -2; *val = value; return ret; } /* * This takes a character 'value' and writes the UTF8 encoded value in 'str' * where 'str' is a buffer containing 'len' characters. Returns the number of * characters written or -1 if 'len' is too small. 'str' can be set to NULL * in which case it just returns the number of characters. It will need at * most 6 characters. */ int UTF8_putc(unsigned char *str, int len, unsigned long value) { if (!str) len = 6; /* Maximum we will need */ else if (len <= 0) return -1; if (value < 0x80) { if (str) *str = (unsigned char)value; return 1; } if (value < 0x800) { if (len < 2) return -1; if (str) { *str++ = (unsigned char)(((value >> 6) & 0x1f) | 0xc0); *str = (unsigned char)((value & 0x3f) | 0x80); } return 2; } if (value < 0x10000) { if (len < 3) return -1; if (str) { *str++ = (unsigned char)(((value >> 12) & 0xf) | 0xe0); *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80); *str = (unsigned char)((value & 0x3f) | 0x80); } return 3; } if (value < 0x200000) { if (len < 4) return -1; if (str) { *str++ = (unsigned char)(((value >> 18) & 0x7) | 0xf0); *str++ = (unsigned char)(((value >> 12) & 0x3f) | 0x80); *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80); *str = (unsigned char)((value & 0x3f) | 0x80); } return 4; } if (value < 0x4000000) { if (len < 5) return -1; if (str) { *str++ = (unsigned char)(((value >> 24) & 0x3) | 0xf8); *str++ = (unsigned char)(((value >> 18) & 0x3f) | 0x80); *str++ = (unsigned char)(((value >> 12) & 0x3f) | 0x80); *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80); *str = (unsigned char)((value & 0x3f) | 0x80); } return 5; } if (len < 6) return -1; if (str) { *str++ = (unsigned char)(((value >> 30) & 0x1) | 0xfc); *str++ = (unsigned char)(((value >> 24) & 0x3f) | 0x80); *str++ = (unsigned char)(((value >> 18) & 0x3f) | 0x80); *str++ = (unsigned char)(((value >> 12) & 0x3f) | 0x80); *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80); *str = (unsigned char)((value & 0x3f) | 0x80); } return 6; } openssl-1.1.1f/crypto/asn1/a_verify.c000066400000000000000000000116541364063235100175070ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #ifndef NO_ASN1_OLD int ASN1_verify(i2d_of_void *i2d, X509_ALGOR *a, ASN1_BIT_STRING *signature, char *data, EVP_PKEY *pkey) { EVP_MD_CTX *ctx = EVP_MD_CTX_new(); const EVP_MD *type; unsigned char *p, *buf_in = NULL; int ret = -1, i, inl; if (ctx == NULL) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } i = OBJ_obj2nid(a->algorithm); type = EVP_get_digestbyname(OBJ_nid2sn(i)); if (type == NULL) { ASN1err(ASN1_F_ASN1_VERIFY, ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM); goto err; } if (signature->type == V_ASN1_BIT_STRING && signature->flags & 0x7) { ASN1err(ASN1_F_ASN1_VERIFY, ASN1_R_INVALID_BIT_STRING_BITS_LEFT); goto err; } inl = i2d(data, NULL); if (inl <= 0) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_INTERNAL_ERROR); goto err; } buf_in = OPENSSL_malloc((unsigned int)inl); if (buf_in == NULL) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } p = buf_in; i2d(data, &p); ret = EVP_VerifyInit_ex(ctx, type, NULL) && EVP_VerifyUpdate(ctx, (unsigned char *)buf_in, inl); OPENSSL_clear_free(buf_in, (unsigned int)inl); if (!ret) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_EVP_LIB); goto err; } ret = -1; if (EVP_VerifyFinal(ctx, (unsigned char *)signature->data, (unsigned int)signature->length, pkey) <= 0) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_EVP_LIB); ret = 0; goto err; } ret = 1; err: EVP_MD_CTX_free(ctx); return ret; } #endif int ASN1_item_verify(const ASN1_ITEM *it, X509_ALGOR *a, ASN1_BIT_STRING *signature, void *asn, EVP_PKEY *pkey) { EVP_MD_CTX *ctx = NULL; unsigned char *buf_in = NULL; int ret = -1, inl = 0; int mdnid, pknid; size_t inll = 0; if (!pkey) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_PASSED_NULL_PARAMETER); return -1; } if (signature->type == V_ASN1_BIT_STRING && signature->flags & 0x7) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ASN1_R_INVALID_BIT_STRING_BITS_LEFT); return -1; } ctx = EVP_MD_CTX_new(); if (ctx == NULL) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } /* Convert signature OID into digest and public key OIDs */ if (!OBJ_find_sigid_algs(OBJ_obj2nid(a->algorithm), &mdnid, &pknid)) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM); goto err; } if (mdnid == NID_undef) { if (!pkey->ameth || !pkey->ameth->item_verify) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM); goto err; } ret = pkey->ameth->item_verify(ctx, it, asn, a, signature, pkey); /* * Return value of 2 means carry on, anything else means we exit * straight away: either a fatal error of the underlying verification * routine handles all verification. */ if (ret != 2) goto err; ret = -1; } else { const EVP_MD *type = EVP_get_digestbynid(mdnid); if (type == NULL) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM); goto err; } /* Check public key OID matches public key type */ if (EVP_PKEY_type(pknid) != pkey->ameth->pkey_id) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ASN1_R_WRONG_PUBLIC_KEY_TYPE); goto err; } if (!EVP_DigestVerifyInit(ctx, NULL, type, NULL, pkey)) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_EVP_LIB); ret = 0; goto err; } } inl = ASN1_item_i2d(asn, &buf_in, it); if (inl <= 0) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_INTERNAL_ERROR); goto err; } if (buf_in == NULL) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } inll = inl; ret = EVP_DigestVerify(ctx, signature->data, (size_t)signature->length, buf_in, inl); if (ret <= 0) { ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_EVP_LIB); goto err; } ret = 1; err: OPENSSL_clear_free(buf_in, inll); EVP_MD_CTX_free(ctx); return ret; } openssl-1.1.1f/crypto/asn1/ameth_lib.c000066400000000000000000000350101364063235100176170ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" /* for strncasecmp */ #include "internal/cryptlib.h" #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "standard_methods.h" typedef int sk_cmp_fn_type(const char *const *a, const char *const *b); static STACK_OF(EVP_PKEY_ASN1_METHOD) *app_methods = NULL; DECLARE_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_ASN1_METHOD *, const EVP_PKEY_ASN1_METHOD *, ameth); static int ameth_cmp(const EVP_PKEY_ASN1_METHOD *const *a, const EVP_PKEY_ASN1_METHOD *const *b) { return ((*a)->pkey_id - (*b)->pkey_id); } IMPLEMENT_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_ASN1_METHOD *, const EVP_PKEY_ASN1_METHOD *, ameth); int EVP_PKEY_asn1_get_count(void) { int num = OSSL_NELEM(standard_methods); if (app_methods) num += sk_EVP_PKEY_ASN1_METHOD_num(app_methods); return num; } const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_get0(int idx) { int num = OSSL_NELEM(standard_methods); if (idx < 0) return NULL; if (idx < num) return standard_methods[idx]; idx -= num; return sk_EVP_PKEY_ASN1_METHOD_value(app_methods, idx); } static const EVP_PKEY_ASN1_METHOD *pkey_asn1_find(int type) { EVP_PKEY_ASN1_METHOD tmp; const EVP_PKEY_ASN1_METHOD *t = &tmp, **ret; tmp.pkey_id = type; if (app_methods) { int idx; idx = sk_EVP_PKEY_ASN1_METHOD_find(app_methods, &tmp); if (idx >= 0) return sk_EVP_PKEY_ASN1_METHOD_value(app_methods, idx); } ret = OBJ_bsearch_ameth(&t, standard_methods, OSSL_NELEM(standard_methods)); if (!ret || !*ret) return NULL; return *ret; } /* * Find an implementation of an ASN1 algorithm. If 'pe' is not NULL also * search through engines and set *pe to a functional reference to the engine * implementing 'type' or NULL if no engine implements it. */ const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find(ENGINE **pe, int type) { const EVP_PKEY_ASN1_METHOD *t; for (;;) { t = pkey_asn1_find(type); if (!t || !(t->pkey_flags & ASN1_PKEY_ALIAS)) break; type = t->pkey_base_id; } if (pe) { #ifndef OPENSSL_NO_ENGINE ENGINE *e; /* type will contain the final unaliased type */ e = ENGINE_get_pkey_asn1_meth_engine(type); if (e) { *pe = e; return ENGINE_get_pkey_asn1_meth(e, type); } #endif *pe = NULL; } return t; } const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find_str(ENGINE **pe, const char *str, int len) { int i; const EVP_PKEY_ASN1_METHOD *ameth = NULL; if (len == -1) len = strlen(str); if (pe) { #ifndef OPENSSL_NO_ENGINE ENGINE *e; ameth = ENGINE_pkey_asn1_find_str(&e, str, len); if (ameth) { /* * Convert structural into functional reference */ if (!ENGINE_init(e)) ameth = NULL; ENGINE_free(e); *pe = e; return ameth; } #endif *pe = NULL; } for (i = EVP_PKEY_asn1_get_count(); i-- > 0; ) { ameth = EVP_PKEY_asn1_get0(i); if (ameth->pkey_flags & ASN1_PKEY_ALIAS) continue; if ((int)strlen(ameth->pem_str) == len && strncasecmp(ameth->pem_str, str, len) == 0) return ameth; } return NULL; } int EVP_PKEY_asn1_add0(const EVP_PKEY_ASN1_METHOD *ameth) { EVP_PKEY_ASN1_METHOD tmp = { 0, }; /* * One of the following must be true: * * pem_str == NULL AND ASN1_PKEY_ALIAS is set * pem_str != NULL AND ASN1_PKEY_ALIAS is clear * * Anything else is an error and may lead to a corrupt ASN1 method table */ if (!((ameth->pem_str == NULL && (ameth->pkey_flags & ASN1_PKEY_ALIAS) != 0) || (ameth->pem_str != NULL && (ameth->pkey_flags & ASN1_PKEY_ALIAS) == 0))) { EVPerr(EVP_F_EVP_PKEY_ASN1_ADD0, ERR_R_PASSED_INVALID_ARGUMENT); return 0; } if (app_methods == NULL) { app_methods = sk_EVP_PKEY_ASN1_METHOD_new(ameth_cmp); if (app_methods == NULL) return 0; } tmp.pkey_id = ameth->pkey_id; if (sk_EVP_PKEY_ASN1_METHOD_find(app_methods, &tmp) >= 0) { EVPerr(EVP_F_EVP_PKEY_ASN1_ADD0, EVP_R_PKEY_APPLICATION_ASN1_METHOD_ALREADY_REGISTERED); return 0; } if (!sk_EVP_PKEY_ASN1_METHOD_push(app_methods, ameth)) return 0; sk_EVP_PKEY_ASN1_METHOD_sort(app_methods); return 1; } int EVP_PKEY_asn1_add_alias(int to, int from) { EVP_PKEY_ASN1_METHOD *ameth; ameth = EVP_PKEY_asn1_new(from, ASN1_PKEY_ALIAS, NULL, NULL); if (ameth == NULL) return 0; ameth->pkey_base_id = to; if (!EVP_PKEY_asn1_add0(ameth)) { EVP_PKEY_asn1_free(ameth); return 0; } return 1; } int EVP_PKEY_asn1_get0_info(int *ppkey_id, int *ppkey_base_id, int *ppkey_flags, const char **pinfo, const char **ppem_str, const EVP_PKEY_ASN1_METHOD *ameth) { if (!ameth) return 0; if (ppkey_id) *ppkey_id = ameth->pkey_id; if (ppkey_base_id) *ppkey_base_id = ameth->pkey_base_id; if (ppkey_flags) *ppkey_flags = ameth->pkey_flags; if (pinfo) *pinfo = ameth->info; if (ppem_str) *ppem_str = ameth->pem_str; return 1; } const EVP_PKEY_ASN1_METHOD *EVP_PKEY_get0_asn1(const EVP_PKEY *pkey) { return pkey->ameth; } EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_new(int id, int flags, const char *pem_str, const char *info) { EVP_PKEY_ASN1_METHOD *ameth = OPENSSL_zalloc(sizeof(*ameth)); if (ameth == NULL) return NULL; ameth->pkey_id = id; ameth->pkey_base_id = id; ameth->pkey_flags = flags | ASN1_PKEY_DYNAMIC; if (info) { ameth->info = OPENSSL_strdup(info); if (!ameth->info) goto err; } if (pem_str) { ameth->pem_str = OPENSSL_strdup(pem_str); if (!ameth->pem_str) goto err; } return ameth; err: EVP_PKEY_asn1_free(ameth); return NULL; } void EVP_PKEY_asn1_copy(EVP_PKEY_ASN1_METHOD *dst, const EVP_PKEY_ASN1_METHOD *src) { dst->pub_decode = src->pub_decode; dst->pub_encode = src->pub_encode; dst->pub_cmp = src->pub_cmp; dst->pub_print = src->pub_print; dst->priv_decode = src->priv_decode; dst->priv_encode = src->priv_encode; dst->priv_print = src->priv_print; dst->old_priv_encode = src->old_priv_encode; dst->old_priv_decode = src->old_priv_decode; dst->pkey_size = src->pkey_size; dst->pkey_bits = src->pkey_bits; dst->param_decode = src->param_decode; dst->param_encode = src->param_encode; dst->param_missing = src->param_missing; dst->param_copy = src->param_copy; dst->param_cmp = src->param_cmp; dst->param_print = src->param_print; dst->pkey_free = src->pkey_free; dst->pkey_ctrl = src->pkey_ctrl; dst->item_sign = src->item_sign; dst->item_verify = src->item_verify; dst->siginf_set = src->siginf_set; dst->pkey_check = src->pkey_check; } void EVP_PKEY_asn1_free(EVP_PKEY_ASN1_METHOD *ameth) { if (ameth && (ameth->pkey_flags & ASN1_PKEY_DYNAMIC)) { OPENSSL_free(ameth->pem_str); OPENSSL_free(ameth->info); OPENSSL_free(ameth); } } void EVP_PKEY_asn1_set_public(EVP_PKEY_ASN1_METHOD *ameth, int (*pub_decode) (EVP_PKEY *pk, X509_PUBKEY *pub), int (*pub_encode) (X509_PUBKEY *pub, const EVP_PKEY *pk), int (*pub_cmp) (const EVP_PKEY *a, const EVP_PKEY *b), int (*pub_print) (BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx), int (*pkey_size) (const EVP_PKEY *pk), int (*pkey_bits) (const EVP_PKEY *pk)) { ameth->pub_decode = pub_decode; ameth->pub_encode = pub_encode; ameth->pub_cmp = pub_cmp; ameth->pub_print = pub_print; ameth->pkey_size = pkey_size; ameth->pkey_bits = pkey_bits; } void EVP_PKEY_asn1_set_private(EVP_PKEY_ASN1_METHOD *ameth, int (*priv_decode) (EVP_PKEY *pk, const PKCS8_PRIV_KEY_INFO *p8inf), int (*priv_encode) (PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pk), int (*priv_print) (BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx)) { ameth->priv_decode = priv_decode; ameth->priv_encode = priv_encode; ameth->priv_print = priv_print; } void EVP_PKEY_asn1_set_param(EVP_PKEY_ASN1_METHOD *ameth, int (*param_decode) (EVP_PKEY *pkey, const unsigned char **pder, int derlen), int (*param_encode) (const EVP_PKEY *pkey, unsigned char **pder), int (*param_missing) (const EVP_PKEY *pk), int (*param_copy) (EVP_PKEY *to, const EVP_PKEY *from), int (*param_cmp) (const EVP_PKEY *a, const EVP_PKEY *b), int (*param_print) (BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx)) { ameth->param_decode = param_decode; ameth->param_encode = param_encode; ameth->param_missing = param_missing; ameth->param_copy = param_copy; ameth->param_cmp = param_cmp; ameth->param_print = param_print; } void EVP_PKEY_asn1_set_free(EVP_PKEY_ASN1_METHOD *ameth, void (*pkey_free) (EVP_PKEY *pkey)) { ameth->pkey_free = pkey_free; } void EVP_PKEY_asn1_set_ctrl(EVP_PKEY_ASN1_METHOD *ameth, int (*pkey_ctrl) (EVP_PKEY *pkey, int op, long arg1, void *arg2)) { ameth->pkey_ctrl = pkey_ctrl; } void EVP_PKEY_asn1_set_security_bits(EVP_PKEY_ASN1_METHOD *ameth, int (*pkey_security_bits) (const EVP_PKEY *pk)) { ameth->pkey_security_bits = pkey_security_bits; } void EVP_PKEY_asn1_set_item(EVP_PKEY_ASN1_METHOD *ameth, int (*item_verify) (EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, X509_ALGOR *a, ASN1_BIT_STRING *sig, EVP_PKEY *pkey), int (*item_sign) (EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, X509_ALGOR *alg1, X509_ALGOR *alg2, ASN1_BIT_STRING *sig)) { ameth->item_sign = item_sign; ameth->item_verify = item_verify; } void EVP_PKEY_asn1_set_siginf(EVP_PKEY_ASN1_METHOD *ameth, int (*siginf_set) (X509_SIG_INFO *siginf, const X509_ALGOR *alg, const ASN1_STRING *sig)) { ameth->siginf_set = siginf_set; } void EVP_PKEY_asn1_set_check(EVP_PKEY_ASN1_METHOD *ameth, int (*pkey_check) (const EVP_PKEY *pk)) { ameth->pkey_check = pkey_check; } void EVP_PKEY_asn1_set_public_check(EVP_PKEY_ASN1_METHOD *ameth, int (*pkey_pub_check) (const EVP_PKEY *pk)) { ameth->pkey_public_check = pkey_pub_check; } void EVP_PKEY_asn1_set_param_check(EVP_PKEY_ASN1_METHOD *ameth, int (*pkey_param_check) (const EVP_PKEY *pk)) { ameth->pkey_param_check = pkey_param_check; } void EVP_PKEY_asn1_set_set_priv_key(EVP_PKEY_ASN1_METHOD *ameth, int (*set_priv_key) (EVP_PKEY *pk, const unsigned char *priv, size_t len)) { ameth->set_priv_key = set_priv_key; } void EVP_PKEY_asn1_set_set_pub_key(EVP_PKEY_ASN1_METHOD *ameth, int (*set_pub_key) (EVP_PKEY *pk, const unsigned char *pub, size_t len)) { ameth->set_pub_key = set_pub_key; } void EVP_PKEY_asn1_set_get_priv_key(EVP_PKEY_ASN1_METHOD *ameth, int (*get_priv_key) (const EVP_PKEY *pk, unsigned char *priv, size_t *len)) { ameth->get_priv_key = get_priv_key; } void EVP_PKEY_asn1_set_get_pub_key(EVP_PKEY_ASN1_METHOD *ameth, int (*get_pub_key) (const EVP_PKEY *pk, unsigned char *pub, size_t *len)) { ameth->get_pub_key = get_pub_key; } openssl-1.1.1f/crypto/asn1/asn1_err.c000066400000000000000000000454371364063235100174230ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA ASN1_str_functs[] = { {ERR_PACK(ERR_LIB_ASN1, ASN1_F_A2D_ASN1_OBJECT, 0), "a2d_ASN1_OBJECT"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_A2I_ASN1_INTEGER, 0), "a2i_ASN1_INTEGER"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_A2I_ASN1_STRING, 0), "a2i_ASN1_STRING"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_APPEND_EXP, 0), "append_exp"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_BIO_INIT, 0), "asn1_bio_init"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_BIT_STRING_SET_BIT, 0), "ASN1_BIT_STRING_set_bit"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_CB, 0), "asn1_cb"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_CHECK_TLEN, 0), "asn1_check_tlen"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_COLLECT, 0), "asn1_collect"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_D2I_EX_PRIMITIVE, 0), "asn1_d2i_ex_primitive"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_D2I_FP, 0), "ASN1_d2i_fp"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_D2I_READ_BIO, 0), "asn1_d2i_read_bio"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_DIGEST, 0), "ASN1_digest"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_DO_ADB, 0), "asn1_do_adb"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_DO_LOCK, 0), "asn1_do_lock"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_DUP, 0), "ASN1_dup"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ENC_SAVE, 0), "asn1_enc_save"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_EX_C2I, 0), "asn1_ex_c2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_FIND_END, 0), "asn1_find_end"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_GENERALIZEDTIME_ADJ, 0), "ASN1_GENERALIZEDTIME_adj"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_GENERATE_V3, 0), "ASN1_generate_v3"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_GET_INT64, 0), "asn1_get_int64"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_GET_OBJECT, 0), "ASN1_get_object"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_GET_UINT64, 0), "asn1_get_uint64"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_I2D_BIO, 0), "ASN1_i2d_bio"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_I2D_FP, 0), "ASN1_i2d_fp"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_D2I_FP, 0), "ASN1_item_d2i_fp"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_DUP, 0), "ASN1_item_dup"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_EMBED_D2I, 0), "asn1_item_embed_d2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_EMBED_NEW, 0), "asn1_item_embed_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_FLAGS_I2D, 0), "asn1_item_flags_i2d"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_I2D_BIO, 0), "ASN1_item_i2d_bio"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_I2D_FP, 0), "ASN1_item_i2d_fp"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_PACK, 0), "ASN1_item_pack"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_SIGN, 0), "ASN1_item_sign"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_SIGN_CTX, 0), "ASN1_item_sign_ctx"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_UNPACK, 0), "ASN1_item_unpack"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_ITEM_VERIFY, 0), "ASN1_item_verify"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_MBSTRING_NCOPY, 0), "ASN1_mbstring_ncopy"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_OBJECT_NEW, 0), "ASN1_OBJECT_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_OUTPUT_DATA, 0), "asn1_output_data"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_PCTX_NEW, 0), "ASN1_PCTX_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_PRIMITIVE_NEW, 0), "asn1_primitive_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_SCTX_NEW, 0), "ASN1_SCTX_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_SIGN, 0), "ASN1_sign"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_STR2TYPE, 0), "asn1_str2type"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_STRING_GET_INT64, 0), "asn1_string_get_int64"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_STRING_GET_UINT64, 0), "asn1_string_get_uint64"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_STRING_SET, 0), "ASN1_STRING_set"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_STRING_TABLE_ADD, 0), "ASN1_STRING_TABLE_add"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_STRING_TO_BN, 0), "asn1_string_to_bn"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_STRING_TYPE_NEW, 0), "ASN1_STRING_type_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_TEMPLATE_EX_D2I, 0), "asn1_template_ex_d2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_TEMPLATE_NEW, 0), "asn1_template_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, 0), "asn1_template_noexp_d2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_TIME_ADJ, 0), "ASN1_TIME_adj"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_TYPE_GET_INT_OCTETSTRING, 0), "ASN1_TYPE_get_int_octetstring"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_TYPE_GET_OCTETSTRING, 0), "ASN1_TYPE_get_octetstring"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_UTCTIME_ADJ, 0), "ASN1_UTCTIME_adj"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_ASN1_VERIFY, 0), "ASN1_verify"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_B64_READ_ASN1, 0), "b64_read_asn1"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_B64_WRITE_ASN1, 0), "B64_write_ASN1"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_BIO_NEW_NDEF, 0), "BIO_new_NDEF"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_BITSTR_CB, 0), "bitstr_cb"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_BN_TO_ASN1_STRING, 0), "bn_to_asn1_string"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_C2I_ASN1_BIT_STRING, 0), "c2i_ASN1_BIT_STRING"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_C2I_ASN1_INTEGER, 0), "c2i_ASN1_INTEGER"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_C2I_ASN1_OBJECT, 0), "c2i_ASN1_OBJECT"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_C2I_IBUF, 0), "c2i_ibuf"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_C2I_UINT64_INT, 0), "c2i_uint64_int"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_COLLECT_DATA, 0), "collect_data"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_D2I_ASN1_OBJECT, 0), "d2i_ASN1_OBJECT"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_D2I_ASN1_UINTEGER, 0), "d2i_ASN1_UINTEGER"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_D2I_AUTOPRIVATEKEY, 0), "d2i_AutoPrivateKey"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_D2I_PRIVATEKEY, 0), "d2i_PrivateKey"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_D2I_PUBLICKEY, 0), "d2i_PublicKey"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_DO_BUF, 0), "do_buf"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_DO_CREATE, 0), "do_create"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_DO_DUMP, 0), "do_dump"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_DO_TCREATE, 0), "do_tcreate"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2A_ASN1_OBJECT, 0), "i2a_ASN1_OBJECT"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2D_ASN1_BIO_STREAM, 0), "i2d_ASN1_bio_stream"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2D_ASN1_OBJECT, 0), "i2d_ASN1_OBJECT"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2D_DSA_PUBKEY, 0), "i2d_DSA_PUBKEY"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2D_EC_PUBKEY, 0), "i2d_EC_PUBKEY"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2D_PRIVATEKEY, 0), "i2d_PrivateKey"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2D_PUBLICKEY, 0), "i2d_PublicKey"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_I2D_RSA_PUBKEY, 0), "i2d_RSA_PUBKEY"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_LONG_C2I, 0), "long_c2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_NDEF_PREFIX, 0), "ndef_prefix"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_NDEF_SUFFIX, 0), "ndef_suffix"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_OID_MODULE_INIT, 0), "oid_module_init"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_PARSE_TAGGING, 0), "parse_tagging"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_PKCS5_PBE2_SET_IV, 0), "PKCS5_pbe2_set_iv"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_PKCS5_PBE2_SET_SCRYPT, 0), "PKCS5_pbe2_set_scrypt"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_PKCS5_PBE_SET, 0), "PKCS5_pbe_set"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_PKCS5_PBE_SET0_ALGOR, 0), "PKCS5_pbe_set0_algor"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_PKCS5_PBKDF2_SET, 0), "PKCS5_pbkdf2_set"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_PKCS5_SCRYPT_SET, 0), "pkcs5_scrypt_set"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_SMIME_READ_ASN1, 0), "SMIME_read_ASN1"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_SMIME_TEXT, 0), "SMIME_text"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_STABLE_GET, 0), "stable_get"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_STBL_MODULE_INIT, 0), "stbl_module_init"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_UINT32_C2I, 0), "uint32_c2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_UINT32_NEW, 0), "uint32_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_UINT64_C2I, 0), "uint64_c2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_UINT64_NEW, 0), "uint64_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_X509_CRL_ADD0_REVOKED, 0), "X509_CRL_add0_revoked"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_X509_INFO_NEW, 0), "X509_INFO_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_X509_NAME_ENCODE, 0), "x509_name_encode"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_X509_NAME_EX_D2I, 0), "x509_name_ex_d2i"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_X509_NAME_EX_NEW, 0), "x509_name_ex_new"}, {ERR_PACK(ERR_LIB_ASN1, ASN1_F_X509_PKEY_NEW, 0), "X509_PKEY_new"}, {0, NULL} }; static const ERR_STRING_DATA ASN1_str_reasons[] = { {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ADDING_OBJECT), "adding object"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ASN1_PARSE_ERROR), "asn1 parse error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ASN1_SIG_PARSE_ERROR), "asn1 sig parse error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_AUX_ERROR), "aux error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_BAD_OBJECT_HEADER), "bad object header"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_BMPSTRING_IS_WRONG_LENGTH), "bmpstring is wrong length"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_BN_LIB), "bn lib"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_BOOLEAN_IS_WRONG_LENGTH), "boolean is wrong length"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_BUFFER_TOO_SMALL), "buffer too small"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER), "cipher has no object identifier"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_CONTEXT_NOT_INITIALISED), "context not initialised"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_DATA_IS_WRONG), "data is wrong"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_DECODE_ERROR), "decode error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_DEPTH_EXCEEDED), "depth exceeded"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_DIGEST_AND_KEY_TYPE_NOT_SUPPORTED), "digest and key type not supported"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ENCODE_ERROR), "encode error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ERROR_GETTING_TIME), "error getting time"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ERROR_LOADING_SECTION), "error loading section"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ERROR_SETTING_CIPHER_PARAMS), "error setting cipher params"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_EXPECTING_AN_INTEGER), "expecting an integer"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_EXPECTING_AN_OBJECT), "expecting an object"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_EXPLICIT_LENGTH_MISMATCH), "explicit length mismatch"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED), "explicit tag not constructed"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_FIELD_MISSING), "field missing"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_FIRST_NUM_TOO_LARGE), "first num too large"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_HEADER_TOO_LONG), "header too long"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_BITSTRING_FORMAT), "illegal bitstring format"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_BOOLEAN), "illegal boolean"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_CHARACTERS), "illegal characters"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_FORMAT), "illegal format"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_HEX), "illegal hex"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_IMPLICIT_TAG), "illegal implicit tag"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_INTEGER), "illegal integer"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_NEGATIVE_VALUE), "illegal negative value"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_NESTED_TAGGING), "illegal nested tagging"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_NULL), "illegal null"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_NULL_VALUE), "illegal null value"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_OBJECT), "illegal object"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_OPTIONAL_ANY), "illegal optional any"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE), "illegal options on item template"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_PADDING), "illegal padding"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_TAGGED_ANY), "illegal tagged any"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_TIME_VALUE), "illegal time value"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ILLEGAL_ZERO_CONTENT), "illegal zero content"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INTEGER_NOT_ASCII_FORMAT), "integer not ascii format"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INTEGER_TOO_LARGE_FOR_LONG), "integer too large for long"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_BIT_STRING_BITS_LEFT), "invalid bit string bits left"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_BMPSTRING_LENGTH), "invalid bmpstring length"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_DIGIT), "invalid digit"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_MIME_TYPE), "invalid mime type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_MODIFIER), "invalid modifier"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_NUMBER), "invalid number"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_OBJECT_ENCODING), "invalid object encoding"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_SCRYPT_PARAMETERS), "invalid scrypt parameters"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_SEPARATOR), "invalid separator"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_STRING_TABLE_VALUE), "invalid string table value"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_UNIVERSALSTRING_LENGTH), "invalid universalstring length"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_UTF8STRING), "invalid utf8string"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_INVALID_VALUE), "invalid value"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_LIST_ERROR), "list error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MIME_NO_CONTENT_TYPE), "mime no content type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MIME_PARSE_ERROR), "mime parse error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MIME_SIG_PARSE_ERROR), "mime sig parse error"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MISSING_EOC), "missing eoc"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MISSING_SECOND_NUMBER), "missing second number"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MISSING_VALUE), "missing value"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MSTRING_NOT_UNIVERSAL), "mstring not universal"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_MSTRING_WRONG_TAG), "mstring wrong tag"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NESTED_ASN1_STRING), "nested asn1 string"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NESTED_TOO_DEEP), "nested too deep"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NON_HEX_CHARACTERS), "non hex characters"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NOT_ASCII_FORMAT), "not ascii format"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NOT_ENOUGH_DATA), "not enough data"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NO_CONTENT_TYPE), "no content type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NO_MATCHING_CHOICE_TYPE), "no matching choice type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NO_MULTIPART_BODY_FAILURE), "no multipart body failure"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NO_MULTIPART_BOUNDARY), "no multipart boundary"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NO_SIG_CONTENT_TYPE), "no sig content type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_NULL_IS_WRONG_LENGTH), "null is wrong length"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_OBJECT_NOT_ASCII_FORMAT), "object not ascii format"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_ODD_NUMBER_OF_CHARS), "odd number of chars"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_SECOND_NUMBER_TOO_LARGE), "second number too large"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_SEQUENCE_LENGTH_MISMATCH), "sequence length mismatch"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_SEQUENCE_NOT_CONSTRUCTED), "sequence not constructed"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_SEQUENCE_OR_SET_NEEDS_CONFIG), "sequence or set needs config"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_SHORT_LINE), "short line"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_SIG_INVALID_MIME_TYPE), "sig invalid mime type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_STREAMING_NOT_SUPPORTED), "streaming not supported"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_STRING_TOO_LONG), "string too long"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_STRING_TOO_SHORT), "string too short"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD), "the asn1 object identifier is not known for this md"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_TIME_NOT_ASCII_FORMAT), "time not ascii format"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_TOO_LARGE), "too large"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_TOO_LONG), "too long"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_TOO_SMALL), "too small"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_TYPE_NOT_CONSTRUCTED), "type not constructed"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_TYPE_NOT_PRIMITIVE), "type not primitive"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNEXPECTED_EOC), "unexpected eoc"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH), "universalstring is wrong length"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNKNOWN_FORMAT), "unknown format"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM), "unknown message digest algorithm"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNKNOWN_OBJECT_TYPE), "unknown object type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE), "unknown public key type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM), "unknown signature algorithm"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNKNOWN_TAG), "unknown tag"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNSUPPORTED_ANY_DEFINED_BY_TYPE), "unsupported any defined by type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNSUPPORTED_CIPHER), "unsupported cipher"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE), "unsupported public key type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_UNSUPPORTED_TYPE), "unsupported type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_WRONG_INTEGER_TYPE), "wrong integer type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_WRONG_PUBLIC_KEY_TYPE), "wrong public key type"}, {ERR_PACK(ERR_LIB_ASN1, 0, ASN1_R_WRONG_TAG), "wrong tag"}, {0, NULL} }; #endif int ERR_load_ASN1_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(ASN1_str_functs[0].error) == NULL) { ERR_load_strings_const(ASN1_str_functs); ERR_load_strings_const(ASN1_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/asn1/asn1_gen.c000066400000000000000000000552041364063235100173750ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #define ASN1_GEN_FLAG 0x10000 #define ASN1_GEN_FLAG_IMP (ASN1_GEN_FLAG|1) #define ASN1_GEN_FLAG_EXP (ASN1_GEN_FLAG|2) #define ASN1_GEN_FLAG_TAG (ASN1_GEN_FLAG|3) #define ASN1_GEN_FLAG_BITWRAP (ASN1_GEN_FLAG|4) #define ASN1_GEN_FLAG_OCTWRAP (ASN1_GEN_FLAG|5) #define ASN1_GEN_FLAG_SEQWRAP (ASN1_GEN_FLAG|6) #define ASN1_GEN_FLAG_SETWRAP (ASN1_GEN_FLAG|7) #define ASN1_GEN_FLAG_FORMAT (ASN1_GEN_FLAG|8) #define ASN1_GEN_STR(str,val) {str, sizeof(str) - 1, val} #define ASN1_FLAG_EXP_MAX 20 /* Maximum number of nested sequences */ #define ASN1_GEN_SEQ_MAX_DEPTH 50 /* Input formats */ /* ASCII: default */ #define ASN1_GEN_FORMAT_ASCII 1 /* UTF8 */ #define ASN1_GEN_FORMAT_UTF8 2 /* Hex */ #define ASN1_GEN_FORMAT_HEX 3 /* List of bits */ #define ASN1_GEN_FORMAT_BITLIST 4 struct tag_name_st { const char *strnam; int len; int tag; }; typedef struct { int exp_tag; int exp_class; int exp_constructed; int exp_pad; long exp_len; } tag_exp_type; typedef struct { int imp_tag; int imp_class; int utype; int format; const char *str; tag_exp_type exp_list[ASN1_FLAG_EXP_MAX]; int exp_count; } tag_exp_arg; static ASN1_TYPE *generate_v3(const char *str, X509V3_CTX *cnf, int depth, int *perr); static int bitstr_cb(const char *elem, int len, void *bitstr); static int asn1_cb(const char *elem, int len, void *bitstr); static int append_exp(tag_exp_arg *arg, int exp_tag, int exp_class, int exp_constructed, int exp_pad, int imp_ok); static int parse_tagging(const char *vstart, int vlen, int *ptag, int *pclass); static ASN1_TYPE *asn1_multi(int utype, const char *section, X509V3_CTX *cnf, int depth, int *perr); static ASN1_TYPE *asn1_str2type(const char *str, int format, int utype); static int asn1_str2tag(const char *tagstr, int len); ASN1_TYPE *ASN1_generate_nconf(const char *str, CONF *nconf) { X509V3_CTX cnf; if (!nconf) return ASN1_generate_v3(str, NULL); X509V3_set_nconf(&cnf, nconf); return ASN1_generate_v3(str, &cnf); } ASN1_TYPE *ASN1_generate_v3(const char *str, X509V3_CTX *cnf) { int err = 0; ASN1_TYPE *ret = generate_v3(str, cnf, 0, &err); if (err) ASN1err(ASN1_F_ASN1_GENERATE_V3, err); return ret; } static ASN1_TYPE *generate_v3(const char *str, X509V3_CTX *cnf, int depth, int *perr) { ASN1_TYPE *ret; tag_exp_arg asn1_tags; tag_exp_type *etmp; int i, len; unsigned char *orig_der = NULL, *new_der = NULL; const unsigned char *cpy_start; unsigned char *p; const unsigned char *cp; int cpy_len; long hdr_len = 0; int hdr_constructed = 0, hdr_tag, hdr_class; int r; asn1_tags.imp_tag = -1; asn1_tags.imp_class = -1; asn1_tags.format = ASN1_GEN_FORMAT_ASCII; asn1_tags.exp_count = 0; if (CONF_parse_list(str, ',', 1, asn1_cb, &asn1_tags) != 0) { *perr = ASN1_R_UNKNOWN_TAG; return NULL; } if ((asn1_tags.utype == V_ASN1_SEQUENCE) || (asn1_tags.utype == V_ASN1_SET)) { if (!cnf) { *perr = ASN1_R_SEQUENCE_OR_SET_NEEDS_CONFIG; return NULL; } if (depth >= ASN1_GEN_SEQ_MAX_DEPTH) { *perr = ASN1_R_ILLEGAL_NESTED_TAGGING; return NULL; } ret = asn1_multi(asn1_tags.utype, asn1_tags.str, cnf, depth, perr); } else ret = asn1_str2type(asn1_tags.str, asn1_tags.format, asn1_tags.utype); if (!ret) return NULL; /* If no tagging return base type */ if ((asn1_tags.imp_tag == -1) && (asn1_tags.exp_count == 0)) return ret; /* Generate the encoding */ cpy_len = i2d_ASN1_TYPE(ret, &orig_der); ASN1_TYPE_free(ret); ret = NULL; /* Set point to start copying for modified encoding */ cpy_start = orig_der; /* Do we need IMPLICIT tagging? */ if (asn1_tags.imp_tag != -1) { /* If IMPLICIT we will replace the underlying tag */ /* Skip existing tag+len */ r = ASN1_get_object(&cpy_start, &hdr_len, &hdr_tag, &hdr_class, cpy_len); if (r & 0x80) goto err; /* Update copy length */ cpy_len -= cpy_start - orig_der; /* * For IMPLICIT tagging the length should match the original length * and constructed flag should be consistent. */ if (r & 0x1) { /* Indefinite length constructed */ hdr_constructed = 2; hdr_len = 0; } else /* Just retain constructed flag */ hdr_constructed = r & V_ASN1_CONSTRUCTED; /* * Work out new length with IMPLICIT tag: ignore constructed because * it will mess up if indefinite length */ len = ASN1_object_size(0, hdr_len, asn1_tags.imp_tag); } else len = cpy_len; /* Work out length in any EXPLICIT, starting from end */ for (i = 0, etmp = asn1_tags.exp_list + asn1_tags.exp_count - 1; i < asn1_tags.exp_count; i++, etmp--) { /* Content length: number of content octets + any padding */ len += etmp->exp_pad; etmp->exp_len = len; /* Total object length: length including new header */ len = ASN1_object_size(0, len, etmp->exp_tag); } /* Allocate buffer for new encoding */ new_der = OPENSSL_malloc(len); if (new_der == NULL) goto err; /* Generate tagged encoding */ p = new_der; /* Output explicit tags first */ for (i = 0, etmp = asn1_tags.exp_list; i < asn1_tags.exp_count; i++, etmp++) { ASN1_put_object(&p, etmp->exp_constructed, etmp->exp_len, etmp->exp_tag, etmp->exp_class); if (etmp->exp_pad) *p++ = 0; } /* If IMPLICIT, output tag */ if (asn1_tags.imp_tag != -1) { if (asn1_tags.imp_class == V_ASN1_UNIVERSAL && (asn1_tags.imp_tag == V_ASN1_SEQUENCE || asn1_tags.imp_tag == V_ASN1_SET)) hdr_constructed = V_ASN1_CONSTRUCTED; ASN1_put_object(&p, hdr_constructed, hdr_len, asn1_tags.imp_tag, asn1_tags.imp_class); } /* Copy across original encoding */ memcpy(p, cpy_start, cpy_len); cp = new_der; /* Obtain new ASN1_TYPE structure */ ret = d2i_ASN1_TYPE(NULL, &cp, len); err: OPENSSL_free(orig_der); OPENSSL_free(new_der); return ret; } static int asn1_cb(const char *elem, int len, void *bitstr) { tag_exp_arg *arg = bitstr; int i; int utype; int vlen = 0; const char *p, *vstart = NULL; int tmp_tag, tmp_class; if (elem == NULL) return -1; for (i = 0, p = elem; i < len; p++, i++) { /* Look for the ':' in name value pairs */ if (*p == ':') { vstart = p + 1; vlen = len - (vstart - elem); len = p - elem; break; } } utype = asn1_str2tag(elem, len); if (utype == -1) { ASN1err(ASN1_F_ASN1_CB, ASN1_R_UNKNOWN_TAG); ERR_add_error_data(2, "tag=", elem); return -1; } /* If this is not a modifier mark end of string and exit */ if (!(utype & ASN1_GEN_FLAG)) { arg->utype = utype; arg->str = vstart; /* If no value and not end of string, error */ if (!vstart && elem[len]) { ASN1err(ASN1_F_ASN1_CB, ASN1_R_MISSING_VALUE); return -1; } return 0; } switch (utype) { case ASN1_GEN_FLAG_IMP: /* Check for illegal multiple IMPLICIT tagging */ if (arg->imp_tag != -1) { ASN1err(ASN1_F_ASN1_CB, ASN1_R_ILLEGAL_NESTED_TAGGING); return -1; } if (!parse_tagging(vstart, vlen, &arg->imp_tag, &arg->imp_class)) return -1; break; case ASN1_GEN_FLAG_EXP: if (!parse_tagging(vstart, vlen, &tmp_tag, &tmp_class)) return -1; if (!append_exp(arg, tmp_tag, tmp_class, 1, 0, 0)) return -1; break; case ASN1_GEN_FLAG_SEQWRAP: if (!append_exp(arg, V_ASN1_SEQUENCE, V_ASN1_UNIVERSAL, 1, 0, 1)) return -1; break; case ASN1_GEN_FLAG_SETWRAP: if (!append_exp(arg, V_ASN1_SET, V_ASN1_UNIVERSAL, 1, 0, 1)) return -1; break; case ASN1_GEN_FLAG_BITWRAP: if (!append_exp(arg, V_ASN1_BIT_STRING, V_ASN1_UNIVERSAL, 0, 1, 1)) return -1; break; case ASN1_GEN_FLAG_OCTWRAP: if (!append_exp(arg, V_ASN1_OCTET_STRING, V_ASN1_UNIVERSAL, 0, 0, 1)) return -1; break; case ASN1_GEN_FLAG_FORMAT: if (!vstart) { ASN1err(ASN1_F_ASN1_CB, ASN1_R_UNKNOWN_FORMAT); return -1; } if (strncmp(vstart, "ASCII", 5) == 0) arg->format = ASN1_GEN_FORMAT_ASCII; else if (strncmp(vstart, "UTF8", 4) == 0) arg->format = ASN1_GEN_FORMAT_UTF8; else if (strncmp(vstart, "HEX", 3) == 0) arg->format = ASN1_GEN_FORMAT_HEX; else if (strncmp(vstart, "BITLIST", 7) == 0) arg->format = ASN1_GEN_FORMAT_BITLIST; else { ASN1err(ASN1_F_ASN1_CB, ASN1_R_UNKNOWN_FORMAT); return -1; } break; } return 1; } static int parse_tagging(const char *vstart, int vlen, int *ptag, int *pclass) { char erch[2]; long tag_num; char *eptr; if (!vstart) return 0; tag_num = strtoul(vstart, &eptr, 10); /* Check we haven't gone past max length: should be impossible */ if (eptr && *eptr && (eptr > vstart + vlen)) return 0; if (tag_num < 0) { ASN1err(ASN1_F_PARSE_TAGGING, ASN1_R_INVALID_NUMBER); return 0; } *ptag = tag_num; /* If we have non numeric characters, parse them */ if (eptr) vlen -= eptr - vstart; else vlen = 0; if (vlen) { switch (*eptr) { case 'U': *pclass = V_ASN1_UNIVERSAL; break; case 'A': *pclass = V_ASN1_APPLICATION; break; case 'P': *pclass = V_ASN1_PRIVATE; break; case 'C': *pclass = V_ASN1_CONTEXT_SPECIFIC; break; default: erch[0] = *eptr; erch[1] = 0; ASN1err(ASN1_F_PARSE_TAGGING, ASN1_R_INVALID_MODIFIER); ERR_add_error_data(2, "Char=", erch); return 0; } } else *pclass = V_ASN1_CONTEXT_SPECIFIC; return 1; } /* Handle multiple types: SET and SEQUENCE */ static ASN1_TYPE *asn1_multi(int utype, const char *section, X509V3_CTX *cnf, int depth, int *perr) { ASN1_TYPE *ret = NULL; STACK_OF(ASN1_TYPE) *sk = NULL; STACK_OF(CONF_VALUE) *sect = NULL; unsigned char *der = NULL; int derlen; int i; sk = sk_ASN1_TYPE_new_null(); if (!sk) goto bad; if (section) { if (!cnf) goto bad; sect = X509V3_get_section(cnf, (char *)section); if (!sect) goto bad; for (i = 0; i < sk_CONF_VALUE_num(sect); i++) { ASN1_TYPE *typ = generate_v3(sk_CONF_VALUE_value(sect, i)->value, cnf, depth + 1, perr); if (!typ) goto bad; if (!sk_ASN1_TYPE_push(sk, typ)) goto bad; } } /* * Now we has a STACK of the components, convert to the correct form */ if (utype == V_ASN1_SET) derlen = i2d_ASN1_SET_ANY(sk, &der); else derlen = i2d_ASN1_SEQUENCE_ANY(sk, &der); if (derlen < 0) goto bad; if ((ret = ASN1_TYPE_new()) == NULL) goto bad; if ((ret->value.asn1_string = ASN1_STRING_type_new(utype)) == NULL) goto bad; ret->type = utype; ret->value.asn1_string->data = der; ret->value.asn1_string->length = derlen; der = NULL; bad: OPENSSL_free(der); sk_ASN1_TYPE_pop_free(sk, ASN1_TYPE_free); X509V3_section_free(cnf, sect); return ret; } static int append_exp(tag_exp_arg *arg, int exp_tag, int exp_class, int exp_constructed, int exp_pad, int imp_ok) { tag_exp_type *exp_tmp; /* Can only have IMPLICIT if permitted */ if ((arg->imp_tag != -1) && !imp_ok) { ASN1err(ASN1_F_APPEND_EXP, ASN1_R_ILLEGAL_IMPLICIT_TAG); return 0; } if (arg->exp_count == ASN1_FLAG_EXP_MAX) { ASN1err(ASN1_F_APPEND_EXP, ASN1_R_DEPTH_EXCEEDED); return 0; } exp_tmp = &arg->exp_list[arg->exp_count++]; /* * If IMPLICIT set tag to implicit value then reset implicit tag since it * has been used. */ if (arg->imp_tag != -1) { exp_tmp->exp_tag = arg->imp_tag; exp_tmp->exp_class = arg->imp_class; arg->imp_tag = -1; arg->imp_class = -1; } else { exp_tmp->exp_tag = exp_tag; exp_tmp->exp_class = exp_class; } exp_tmp->exp_constructed = exp_constructed; exp_tmp->exp_pad = exp_pad; return 1; } static int asn1_str2tag(const char *tagstr, int len) { unsigned int i; static const struct tag_name_st *tntmp, tnst[] = { ASN1_GEN_STR("BOOL", V_ASN1_BOOLEAN), ASN1_GEN_STR("BOOLEAN", V_ASN1_BOOLEAN), ASN1_GEN_STR("NULL", V_ASN1_NULL), ASN1_GEN_STR("INT", V_ASN1_INTEGER), ASN1_GEN_STR("INTEGER", V_ASN1_INTEGER), ASN1_GEN_STR("ENUM", V_ASN1_ENUMERATED), ASN1_GEN_STR("ENUMERATED", V_ASN1_ENUMERATED), ASN1_GEN_STR("OID", V_ASN1_OBJECT), ASN1_GEN_STR("OBJECT", V_ASN1_OBJECT), ASN1_GEN_STR("UTCTIME", V_ASN1_UTCTIME), ASN1_GEN_STR("UTC", V_ASN1_UTCTIME), ASN1_GEN_STR("GENERALIZEDTIME", V_ASN1_GENERALIZEDTIME), ASN1_GEN_STR("GENTIME", V_ASN1_GENERALIZEDTIME), ASN1_GEN_STR("OCT", V_ASN1_OCTET_STRING), ASN1_GEN_STR("OCTETSTRING", V_ASN1_OCTET_STRING), ASN1_GEN_STR("BITSTR", V_ASN1_BIT_STRING), ASN1_GEN_STR("BITSTRING", V_ASN1_BIT_STRING), ASN1_GEN_STR("UNIVERSALSTRING", V_ASN1_UNIVERSALSTRING), ASN1_GEN_STR("UNIV", V_ASN1_UNIVERSALSTRING), ASN1_GEN_STR("IA5", V_ASN1_IA5STRING), ASN1_GEN_STR("IA5STRING", V_ASN1_IA5STRING), ASN1_GEN_STR("UTF8", V_ASN1_UTF8STRING), ASN1_GEN_STR("UTF8String", V_ASN1_UTF8STRING), ASN1_GEN_STR("BMP", V_ASN1_BMPSTRING), ASN1_GEN_STR("BMPSTRING", V_ASN1_BMPSTRING), ASN1_GEN_STR("VISIBLESTRING", V_ASN1_VISIBLESTRING), ASN1_GEN_STR("VISIBLE", V_ASN1_VISIBLESTRING), ASN1_GEN_STR("PRINTABLESTRING", V_ASN1_PRINTABLESTRING), ASN1_GEN_STR("PRINTABLE", V_ASN1_PRINTABLESTRING), ASN1_GEN_STR("T61", V_ASN1_T61STRING), ASN1_GEN_STR("T61STRING", V_ASN1_T61STRING), ASN1_GEN_STR("TELETEXSTRING", V_ASN1_T61STRING), ASN1_GEN_STR("GeneralString", V_ASN1_GENERALSTRING), ASN1_GEN_STR("GENSTR", V_ASN1_GENERALSTRING), ASN1_GEN_STR("NUMERIC", V_ASN1_NUMERICSTRING), ASN1_GEN_STR("NUMERICSTRING", V_ASN1_NUMERICSTRING), /* Special cases */ ASN1_GEN_STR("SEQUENCE", V_ASN1_SEQUENCE), ASN1_GEN_STR("SEQ", V_ASN1_SEQUENCE), ASN1_GEN_STR("SET", V_ASN1_SET), /* type modifiers */ /* Explicit tag */ ASN1_GEN_STR("EXP", ASN1_GEN_FLAG_EXP), ASN1_GEN_STR("EXPLICIT", ASN1_GEN_FLAG_EXP), /* Implicit tag */ ASN1_GEN_STR("IMP", ASN1_GEN_FLAG_IMP), ASN1_GEN_STR("IMPLICIT", ASN1_GEN_FLAG_IMP), /* OCTET STRING wrapper */ ASN1_GEN_STR("OCTWRAP", ASN1_GEN_FLAG_OCTWRAP), /* SEQUENCE wrapper */ ASN1_GEN_STR("SEQWRAP", ASN1_GEN_FLAG_SEQWRAP), /* SET wrapper */ ASN1_GEN_STR("SETWRAP", ASN1_GEN_FLAG_SETWRAP), /* BIT STRING wrapper */ ASN1_GEN_STR("BITWRAP", ASN1_GEN_FLAG_BITWRAP), ASN1_GEN_STR("FORM", ASN1_GEN_FLAG_FORMAT), ASN1_GEN_STR("FORMAT", ASN1_GEN_FLAG_FORMAT), }; if (len == -1) len = strlen(tagstr); tntmp = tnst; for (i = 0; i < OSSL_NELEM(tnst); i++, tntmp++) { if ((len == tntmp->len) && (strncmp(tntmp->strnam, tagstr, len) == 0)) return tntmp->tag; } return -1; } static ASN1_TYPE *asn1_str2type(const char *str, int format, int utype) { ASN1_TYPE *atmp = NULL; CONF_VALUE vtmp; unsigned char *rdata; long rdlen; int no_unused = 1; if ((atmp = ASN1_TYPE_new()) == NULL) { ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE); return NULL; } if (!str) str = ""; switch (utype) { case V_ASN1_NULL: if (str && *str) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_NULL_VALUE); goto bad_form; } break; case V_ASN1_BOOLEAN: if (format != ASN1_GEN_FORMAT_ASCII) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_NOT_ASCII_FORMAT); goto bad_form; } vtmp.name = NULL; vtmp.section = NULL; vtmp.value = (char *)str; if (!X509V3_get_value_bool(&vtmp, &atmp->value.boolean)) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_BOOLEAN); goto bad_str; } break; case V_ASN1_INTEGER: case V_ASN1_ENUMERATED: if (format != ASN1_GEN_FORMAT_ASCII) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_INTEGER_NOT_ASCII_FORMAT); goto bad_form; } if ((atmp->value.integer = s2i_ASN1_INTEGER(NULL, str)) == NULL) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_INTEGER); goto bad_str; } break; case V_ASN1_OBJECT: if (format != ASN1_GEN_FORMAT_ASCII) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_OBJECT_NOT_ASCII_FORMAT); goto bad_form; } if ((atmp->value.object = OBJ_txt2obj(str, 0)) == NULL) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_OBJECT); goto bad_str; } break; case V_ASN1_UTCTIME: case V_ASN1_GENERALIZEDTIME: if (format != ASN1_GEN_FORMAT_ASCII) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_TIME_NOT_ASCII_FORMAT); goto bad_form; } if ((atmp->value.asn1_string = ASN1_STRING_new()) == NULL) { ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE); goto bad_str; } if (!ASN1_STRING_set(atmp->value.asn1_string, str, -1)) { ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE); goto bad_str; } atmp->value.asn1_string->type = utype; if (!ASN1_TIME_check(atmp->value.asn1_string)) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_TIME_VALUE); goto bad_str; } break; case V_ASN1_BMPSTRING: case V_ASN1_PRINTABLESTRING: case V_ASN1_IA5STRING: case V_ASN1_T61STRING: case V_ASN1_UTF8STRING: case V_ASN1_VISIBLESTRING: case V_ASN1_UNIVERSALSTRING: case V_ASN1_GENERALSTRING: case V_ASN1_NUMERICSTRING: if (format == ASN1_GEN_FORMAT_ASCII) format = MBSTRING_ASC; else if (format == ASN1_GEN_FORMAT_UTF8) format = MBSTRING_UTF8; else { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_FORMAT); goto bad_form; } if (ASN1_mbstring_copy(&atmp->value.asn1_string, (unsigned char *)str, -1, format, ASN1_tag2bit(utype)) <= 0) { ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE); goto bad_str; } break; case V_ASN1_BIT_STRING: case V_ASN1_OCTET_STRING: if ((atmp->value.asn1_string = ASN1_STRING_new()) == NULL) { ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE); goto bad_form; } if (format == ASN1_GEN_FORMAT_HEX) { if ((rdata = OPENSSL_hexstr2buf(str, &rdlen)) == NULL) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_HEX); goto bad_str; } atmp->value.asn1_string->data = rdata; atmp->value.asn1_string->length = rdlen; atmp->value.asn1_string->type = utype; } else if (format == ASN1_GEN_FORMAT_ASCII) ASN1_STRING_set(atmp->value.asn1_string, str, -1); else if ((format == ASN1_GEN_FORMAT_BITLIST) && (utype == V_ASN1_BIT_STRING)) { if (!CONF_parse_list (str, ',', 1, bitstr_cb, atmp->value.bit_string)) { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_LIST_ERROR); goto bad_str; } no_unused = 0; } else { ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_BITSTRING_FORMAT); goto bad_form; } if ((utype == V_ASN1_BIT_STRING) && no_unused) { atmp->value.asn1_string->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); atmp->value.asn1_string->flags |= ASN1_STRING_FLAG_BITS_LEFT; } break; default: ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_UNSUPPORTED_TYPE); goto bad_str; } atmp->type = utype; return atmp; bad_str: ERR_add_error_data(2, "string=", str); bad_form: ASN1_TYPE_free(atmp); return NULL; } static int bitstr_cb(const char *elem, int len, void *bitstr) { long bitnum; char *eptr; if (!elem) return 0; bitnum = strtoul(elem, &eptr, 10); if (eptr && *eptr && (eptr != elem + len)) return 0; if (bitnum < 0) { ASN1err(ASN1_F_BITSTR_CB, ASN1_R_INVALID_NUMBER); return 0; } if (!ASN1_BIT_STRING_set_bit(bitstr, bitnum, 1)) { ASN1err(ASN1_F_BITSTR_CB, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static int mask_cb(const char *elem, int len, void *arg) { unsigned long *pmask = arg, tmpmask; int tag; if (elem == NULL) return 0; if ((len == 3) && (strncmp(elem, "DIR", 3) == 0)) { *pmask |= B_ASN1_DIRECTORYSTRING; return 1; } tag = asn1_str2tag(elem, len); if (!tag || (tag & ASN1_GEN_FLAG)) return 0; tmpmask = ASN1_tag2bit(tag); if (!tmpmask) return 0; *pmask |= tmpmask; return 1; } int ASN1_str2mask(const char *str, unsigned long *pmask) { *pmask = 0; return CONF_parse_list(str, '|', 1, mask_cb, pmask); } openssl-1.1.1f/crypto/asn1/asn1_item_list.c000066400000000000000000000020721364063235100206100ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include #include #include "asn1_item_list.h" const ASN1_ITEM *ASN1_ITEM_lookup(const char *name) { size_t i; for (i = 0; i < OSSL_NELEM(asn1_item_list); i++) { const ASN1_ITEM *it = ASN1_ITEM_ptr(asn1_item_list[i]); if (strcmp(it->sname, name) == 0) return it; } return NULL; } const ASN1_ITEM *ASN1_ITEM_get(size_t i) { if (i >= OSSL_NELEM(asn1_item_list)) return NULL; return ASN1_ITEM_ptr(asn1_item_list[i]); } openssl-1.1.1f/crypto/asn1/asn1_item_list.h000066400000000000000000000130041364063235100206120ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ static ASN1_ITEM_EXP *asn1_item_list[] = { ASN1_ITEM_ref(ACCESS_DESCRIPTION), #ifndef OPENSSL_NO_RFC3779 ASN1_ITEM_ref(ASIdOrRange), ASN1_ITEM_ref(ASIdentifierChoice), ASN1_ITEM_ref(ASIdentifiers), #endif ASN1_ITEM_ref(ASN1_ANY), ASN1_ITEM_ref(ASN1_BIT_STRING), ASN1_ITEM_ref(ASN1_BMPSTRING), ASN1_ITEM_ref(ASN1_BOOLEAN), ASN1_ITEM_ref(ASN1_ENUMERATED), ASN1_ITEM_ref(ASN1_FBOOLEAN), ASN1_ITEM_ref(ASN1_GENERALIZEDTIME), ASN1_ITEM_ref(ASN1_GENERALSTRING), ASN1_ITEM_ref(ASN1_IA5STRING), ASN1_ITEM_ref(ASN1_INTEGER), ASN1_ITEM_ref(ASN1_NULL), ASN1_ITEM_ref(ASN1_OBJECT), ASN1_ITEM_ref(ASN1_OCTET_STRING_NDEF), ASN1_ITEM_ref(ASN1_OCTET_STRING), ASN1_ITEM_ref(ASN1_PRINTABLESTRING), ASN1_ITEM_ref(ASN1_PRINTABLE), ASN1_ITEM_ref(ASN1_SEQUENCE_ANY), ASN1_ITEM_ref(ASN1_SEQUENCE), ASN1_ITEM_ref(ASN1_SET_ANY), ASN1_ITEM_ref(ASN1_T61STRING), ASN1_ITEM_ref(ASN1_TBOOLEAN), ASN1_ITEM_ref(ASN1_TIME), ASN1_ITEM_ref(ASN1_UNIVERSALSTRING), ASN1_ITEM_ref(ASN1_UTCTIME), ASN1_ITEM_ref(ASN1_UTF8STRING), ASN1_ITEM_ref(ASN1_VISIBLESTRING), #ifndef OPENSSL_NO_RFC3779 ASN1_ITEM_ref(ASRange), #endif ASN1_ITEM_ref(AUTHORITY_INFO_ACCESS), ASN1_ITEM_ref(AUTHORITY_KEYID), ASN1_ITEM_ref(BASIC_CONSTRAINTS), ASN1_ITEM_ref(BIGNUM), ASN1_ITEM_ref(CBIGNUM), ASN1_ITEM_ref(CERTIFICATEPOLICIES), #ifndef OPENSSL_NO_CMS ASN1_ITEM_ref(CMS_ContentInfo), ASN1_ITEM_ref(CMS_ReceiptRequest), #endif ASN1_ITEM_ref(CRL_DIST_POINTS), #ifndef OPENSSL_NO_DH ASN1_ITEM_ref(DHparams), #endif ASN1_ITEM_ref(DIRECTORYSTRING), ASN1_ITEM_ref(DISPLAYTEXT), ASN1_ITEM_ref(DIST_POINT_NAME), ASN1_ITEM_ref(DIST_POINT), #ifndef OPENSSL_NO_EC ASN1_ITEM_ref(ECPARAMETERS), ASN1_ITEM_ref(ECPKPARAMETERS), #endif ASN1_ITEM_ref(EDIPARTYNAME), ASN1_ITEM_ref(EXTENDED_KEY_USAGE), ASN1_ITEM_ref(GENERAL_NAMES), ASN1_ITEM_ref(GENERAL_NAME), ASN1_ITEM_ref(GENERAL_SUBTREE), #ifndef OPENSSL_NO_RFC3779 ASN1_ITEM_ref(IPAddressChoice), ASN1_ITEM_ref(IPAddressFamily), ASN1_ITEM_ref(IPAddressOrRange), ASN1_ITEM_ref(IPAddressRange), #endif ASN1_ITEM_ref(ISSUING_DIST_POINT), #if OPENSSL_API_COMPAT < 0x10200000L ASN1_ITEM_ref(LONG), #endif ASN1_ITEM_ref(NAME_CONSTRAINTS), ASN1_ITEM_ref(NETSCAPE_CERT_SEQUENCE), ASN1_ITEM_ref(NETSCAPE_SPKAC), ASN1_ITEM_ref(NETSCAPE_SPKI), ASN1_ITEM_ref(NOTICEREF), #ifndef OPENSSL_NO_OCSP ASN1_ITEM_ref(OCSP_BASICRESP), ASN1_ITEM_ref(OCSP_CERTID), ASN1_ITEM_ref(OCSP_CERTSTATUS), ASN1_ITEM_ref(OCSP_CRLID), ASN1_ITEM_ref(OCSP_ONEREQ), ASN1_ITEM_ref(OCSP_REQINFO), ASN1_ITEM_ref(OCSP_REQUEST), ASN1_ITEM_ref(OCSP_RESPBYTES), ASN1_ITEM_ref(OCSP_RESPDATA), ASN1_ITEM_ref(OCSP_RESPID), ASN1_ITEM_ref(OCSP_RESPONSE), ASN1_ITEM_ref(OCSP_REVOKEDINFO), ASN1_ITEM_ref(OCSP_SERVICELOC), ASN1_ITEM_ref(OCSP_SIGNATURE), ASN1_ITEM_ref(OCSP_SINGLERESP), #endif ASN1_ITEM_ref(OTHERNAME), ASN1_ITEM_ref(PBE2PARAM), ASN1_ITEM_ref(PBEPARAM), ASN1_ITEM_ref(PBKDF2PARAM), ASN1_ITEM_ref(PKCS12_AUTHSAFES), ASN1_ITEM_ref(PKCS12_BAGS), ASN1_ITEM_ref(PKCS12_MAC_DATA), ASN1_ITEM_ref(PKCS12_SAFEBAGS), ASN1_ITEM_ref(PKCS12_SAFEBAG), ASN1_ITEM_ref(PKCS12), ASN1_ITEM_ref(PKCS7_ATTR_SIGN), ASN1_ITEM_ref(PKCS7_ATTR_VERIFY), ASN1_ITEM_ref(PKCS7_DIGEST), ASN1_ITEM_ref(PKCS7_ENCRYPT), ASN1_ITEM_ref(PKCS7_ENC_CONTENT), ASN1_ITEM_ref(PKCS7_ENVELOPE), ASN1_ITEM_ref(PKCS7_ISSUER_AND_SERIAL), ASN1_ITEM_ref(PKCS7_RECIP_INFO), ASN1_ITEM_ref(PKCS7_SIGNED), ASN1_ITEM_ref(PKCS7_SIGNER_INFO), ASN1_ITEM_ref(PKCS7_SIGN_ENVELOPE), ASN1_ITEM_ref(PKCS7), ASN1_ITEM_ref(PKCS8_PRIV_KEY_INFO), ASN1_ITEM_ref(PKEY_USAGE_PERIOD), ASN1_ITEM_ref(POLICYINFO), ASN1_ITEM_ref(POLICYQUALINFO), ASN1_ITEM_ref(POLICY_CONSTRAINTS), ASN1_ITEM_ref(POLICY_MAPPINGS), ASN1_ITEM_ref(POLICY_MAPPING), ASN1_ITEM_ref(PROXY_CERT_INFO_EXTENSION), ASN1_ITEM_ref(PROXY_POLICY), #ifndef OPENSSL_NO_RSA ASN1_ITEM_ref(RSAPrivateKey), ASN1_ITEM_ref(RSAPublicKey), ASN1_ITEM_ref(RSA_OAEP_PARAMS), ASN1_ITEM_ref(RSA_PSS_PARAMS), #endif #ifndef OPENSSL_NO_SCRYPT ASN1_ITEM_ref(SCRYPT_PARAMS), #endif ASN1_ITEM_ref(SXNETID), ASN1_ITEM_ref(SXNET), ASN1_ITEM_ref(USERNOTICE), ASN1_ITEM_ref(X509_ALGORS), ASN1_ITEM_ref(X509_ALGOR), ASN1_ITEM_ref(X509_ATTRIBUTE), ASN1_ITEM_ref(X509_CERT_AUX), ASN1_ITEM_ref(X509_CINF), ASN1_ITEM_ref(X509_CRL_INFO), ASN1_ITEM_ref(X509_CRL), ASN1_ITEM_ref(X509_EXTENSIONS), ASN1_ITEM_ref(X509_EXTENSION), ASN1_ITEM_ref(X509_NAME_ENTRY), ASN1_ITEM_ref(X509_NAME), ASN1_ITEM_ref(X509_PUBKEY), ASN1_ITEM_ref(X509_REQ_INFO), ASN1_ITEM_ref(X509_REQ), ASN1_ITEM_ref(X509_REVOKED), ASN1_ITEM_ref(X509_SIG), ASN1_ITEM_ref(X509_VAL), ASN1_ITEM_ref(X509), #if OPENSSL_API_COMPAT < 0x10200000L ASN1_ITEM_ref(ZLONG), #endif ASN1_ITEM_ref(INT32), ASN1_ITEM_ref(UINT32), ASN1_ITEM_ref(ZINT32), ASN1_ITEM_ref(ZUINT32), ASN1_ITEM_ref(INT64), ASN1_ITEM_ref(UINT64), ASN1_ITEM_ref(ZINT64), ASN1_ITEM_ref(ZUINT64), }; openssl-1.1.1f/crypto/asn1/asn1_lib.c000066400000000000000000000213501364063235100173650ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include "asn1_local.h" static int asn1_get_length(const unsigned char **pp, int *inf, long *rl, long max); static void asn1_put_length(unsigned char **pp, int length); static int _asn1_check_infinite_end(const unsigned char **p, long len) { /* * If there is 0 or 1 byte left, the length check should pick things up */ if (len <= 0) return 1; else if ((len >= 2) && ((*p)[0] == 0) && ((*p)[1] == 0)) { (*p) += 2; return 1; } return 0; } int ASN1_check_infinite_end(unsigned char **p, long len) { return _asn1_check_infinite_end((const unsigned char **)p, len); } int ASN1_const_check_infinite_end(const unsigned char **p, long len) { return _asn1_check_infinite_end(p, len); } int ASN1_get_object(const unsigned char **pp, long *plength, int *ptag, int *pclass, long omax) { int i, ret; long l; const unsigned char *p = *pp; int tag, xclass, inf; long max = omax; if (!max) goto err; ret = (*p & V_ASN1_CONSTRUCTED); xclass = (*p & V_ASN1_PRIVATE); i = *p & V_ASN1_PRIMITIVE_TAG; if (i == V_ASN1_PRIMITIVE_TAG) { /* high-tag */ p++; if (--max == 0) goto err; l = 0; while (*p & 0x80) { l <<= 7L; l |= *(p++) & 0x7f; if (--max == 0) goto err; if (l > (INT_MAX >> 7L)) goto err; } l <<= 7L; l |= *(p++) & 0x7f; tag = (int)l; if (--max == 0) goto err; } else { tag = i; p++; if (--max == 0) goto err; } *ptag = tag; *pclass = xclass; if (!asn1_get_length(&p, &inf, plength, max)) goto err; if (inf && !(ret & V_ASN1_CONSTRUCTED)) goto err; if (*plength > (omax - (p - *pp))) { ASN1err(ASN1_F_ASN1_GET_OBJECT, ASN1_R_TOO_LONG); /* * Set this so that even if things are not long enough the values are * set correctly */ ret |= 0x80; } *pp = p; return ret | inf; err: ASN1err(ASN1_F_ASN1_GET_OBJECT, ASN1_R_HEADER_TOO_LONG); return 0x80; } /* * Decode a length field. * The short form is a single byte defining a length 0 - 127. * The long form is a byte 0 - 127 with the top bit set and this indicates * the number of following octets that contain the length. These octets * are stored most significant digit first. */ static int asn1_get_length(const unsigned char **pp, int *inf, long *rl, long max) { const unsigned char *p = *pp; unsigned long ret = 0; int i; if (max-- < 1) return 0; if (*p == 0x80) { *inf = 1; p++; } else { *inf = 0; i = *p & 0x7f; if (*p++ & 0x80) { if (max < i + 1) return 0; /* Skip leading zeroes */ while (i > 0 && *p == 0) { p++; i--; } if (i > (int)sizeof(long)) return 0; while (i > 0) { ret <<= 8; ret |= *p++; i--; } if (ret > LONG_MAX) return 0; } else ret = i; } *pp = p; *rl = (long)ret; return 1; } /* * class 0 is constructed constructed == 2 for indefinite length constructed */ void ASN1_put_object(unsigned char **pp, int constructed, int length, int tag, int xclass) { unsigned char *p = *pp; int i, ttag; i = (constructed) ? V_ASN1_CONSTRUCTED : 0; i |= (xclass & V_ASN1_PRIVATE); if (tag < 31) *(p++) = i | (tag & V_ASN1_PRIMITIVE_TAG); else { *(p++) = i | V_ASN1_PRIMITIVE_TAG; for (i = 0, ttag = tag; ttag > 0; i++) ttag >>= 7; ttag = i; while (i-- > 0) { p[i] = tag & 0x7f; if (i != (ttag - 1)) p[i] |= 0x80; tag >>= 7; } p += ttag; } if (constructed == 2) *(p++) = 0x80; else asn1_put_length(&p, length); *pp = p; } int ASN1_put_eoc(unsigned char **pp) { unsigned char *p = *pp; *p++ = 0; *p++ = 0; *pp = p; return 2; } static void asn1_put_length(unsigned char **pp, int length) { unsigned char *p = *pp; int i, l; if (length <= 127) *(p++) = (unsigned char)length; else { l = length; for (i = 0; l > 0; i++) l >>= 8; *(p++) = i | 0x80; l = i; while (i-- > 0) { p[i] = length & 0xff; length >>= 8; } p += l; } *pp = p; } int ASN1_object_size(int constructed, int length, int tag) { int ret = 1; if (length < 0) return -1; if (tag >= 31) { while (tag > 0) { tag >>= 7; ret++; } } if (constructed == 2) { ret += 3; } else { ret++; if (length > 127) { int tmplen = length; while (tmplen > 0) { tmplen >>= 8; ret++; } } } if (ret >= INT_MAX - length) return -1; return ret + length; } int ASN1_STRING_copy(ASN1_STRING *dst, const ASN1_STRING *str) { if (str == NULL) return 0; dst->type = str->type; if (!ASN1_STRING_set(dst, str->data, str->length)) return 0; /* Copy flags but preserve embed value */ dst->flags &= ASN1_STRING_FLAG_EMBED; dst->flags |= str->flags & ~ASN1_STRING_FLAG_EMBED; return 1; } ASN1_STRING *ASN1_STRING_dup(const ASN1_STRING *str) { ASN1_STRING *ret; if (!str) return NULL; ret = ASN1_STRING_new(); if (ret == NULL) return NULL; if (!ASN1_STRING_copy(ret, str)) { ASN1_STRING_free(ret); return NULL; } return ret; } int ASN1_STRING_set(ASN1_STRING *str, const void *_data, int len) { unsigned char *c; const char *data = _data; if (len < 0) { if (data == NULL) return 0; else len = strlen(data); } if ((str->length <= len) || (str->data == NULL)) { c = str->data; str->data = OPENSSL_realloc(c, len + 1); if (str->data == NULL) { ASN1err(ASN1_F_ASN1_STRING_SET, ERR_R_MALLOC_FAILURE); str->data = c; return 0; } } str->length = len; if (data != NULL) { memcpy(str->data, data, len); /* an allowance for strings :-) */ str->data[len] = '\0'; } return 1; } void ASN1_STRING_set0(ASN1_STRING *str, void *data, int len) { OPENSSL_free(str->data); str->data = data; str->length = len; } ASN1_STRING *ASN1_STRING_new(void) { return ASN1_STRING_type_new(V_ASN1_OCTET_STRING); } ASN1_STRING *ASN1_STRING_type_new(int type) { ASN1_STRING *ret; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ASN1err(ASN1_F_ASN1_STRING_TYPE_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->type = type; return ret; } void asn1_string_embed_free(ASN1_STRING *a, int embed) { if (a == NULL) return; if (!(a->flags & ASN1_STRING_FLAG_NDEF)) OPENSSL_free(a->data); if (embed == 0) OPENSSL_free(a); } void ASN1_STRING_free(ASN1_STRING *a) { if (a == NULL) return; asn1_string_embed_free(a, a->flags & ASN1_STRING_FLAG_EMBED); } void ASN1_STRING_clear_free(ASN1_STRING *a) { if (a == NULL) return; if (a->data && !(a->flags & ASN1_STRING_FLAG_NDEF)) OPENSSL_cleanse(a->data, a->length); ASN1_STRING_free(a); } int ASN1_STRING_cmp(const ASN1_STRING *a, const ASN1_STRING *b) { int i; i = (a->length - b->length); if (i == 0) { i = memcmp(a->data, b->data, a->length); if (i == 0) return a->type - b->type; else return i; } else return i; } int ASN1_STRING_length(const ASN1_STRING *x) { return x->length; } void ASN1_STRING_length_set(ASN1_STRING *x, int len) { x->length = len; } int ASN1_STRING_type(const ASN1_STRING *x) { return x->type; } const unsigned char *ASN1_STRING_get0_data(const ASN1_STRING *x) { return x->data; } # if OPENSSL_API_COMPAT < 0x10100000L unsigned char *ASN1_STRING_data(ASN1_STRING *x) { return x->data; } #endif openssl-1.1.1f/crypto/asn1/asn1_local.h000066400000000000000000000064211364063235100177200ustar00rootroot00000000000000/* * Copyright 2005-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Internal ASN1 structures and functions: not for application use */ int asn1_time_to_tm(struct tm *tm, const ASN1_TIME *d); int asn1_utctime_to_tm(struct tm *tm, const ASN1_UTCTIME *d); int asn1_generalizedtime_to_tm(struct tm *tm, const ASN1_GENERALIZEDTIME *d); /* ASN1 scan context structure */ struct asn1_sctx_st { /* The ASN1_ITEM associated with this field */ const ASN1_ITEM *it; /* If ASN1_TEMPLATE associated with this field */ const ASN1_TEMPLATE *tt; /* Various flags associated with field and context */ unsigned long flags; /* If SEQUENCE OF or SET OF, field index */ int skidx; /* ASN1 depth of field */ int depth; /* Structure and field name */ const char *sname, *fname; /* If a primitive type the type of underlying field */ int prim_type; /* The field value itself */ ASN1_VALUE **field; /* Callback to pass information to */ int (*scan_cb) (ASN1_SCTX *ctx); /* Context specific application data */ void *app_data; } /* ASN1_SCTX */ ; typedef struct mime_param_st MIME_PARAM; DEFINE_STACK_OF(MIME_PARAM) typedef struct mime_header_st MIME_HEADER; DEFINE_STACK_OF(MIME_HEADER) void asn1_string_embed_free(ASN1_STRING *a, int embed); int asn1_get_choice_selector(ASN1_VALUE **pval, const ASN1_ITEM *it); int asn1_set_choice_selector(ASN1_VALUE **pval, int value, const ASN1_ITEM *it); ASN1_VALUE **asn1_get_field_ptr(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt); const ASN1_TEMPLATE *asn1_do_adb(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt, int nullerr); int asn1_do_lock(ASN1_VALUE **pval, int op, const ASN1_ITEM *it); void asn1_enc_init(ASN1_VALUE **pval, const ASN1_ITEM *it); void asn1_enc_free(ASN1_VALUE **pval, const ASN1_ITEM *it); int asn1_enc_restore(int *len, unsigned char **out, ASN1_VALUE **pval, const ASN1_ITEM *it); int asn1_enc_save(ASN1_VALUE **pval, const unsigned char *in, int inlen, const ASN1_ITEM *it); void asn1_item_embed_free(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed); void asn1_primitive_free(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed); void asn1_template_free(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt); ASN1_OBJECT *c2i_ASN1_OBJECT(ASN1_OBJECT **a, const unsigned char **pp, long length); int i2c_ASN1_BIT_STRING(ASN1_BIT_STRING *a, unsigned char **pp); ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(ASN1_BIT_STRING **a, const unsigned char **pp, long length); int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp); ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, long length); /* Internal functions used by x_int64.c */ int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len); int i2c_uint64_int(unsigned char *p, uint64_t r, int neg); ASN1_TIME *asn1_time_from_tm(ASN1_TIME *s, struct tm *ts, int type); openssl-1.1.1f/crypto/asn1/asn1_par.c000066400000000000000000000317431364063235100174100ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #ifndef ASN1_PARSE_MAXDEPTH #define ASN1_PARSE_MAXDEPTH 128 #endif static int asn1_print_info(BIO *bp, int tag, int xclass, int constructed, int indent); static int asn1_parse2(BIO *bp, const unsigned char **pp, long length, int offset, int depth, int indent, int dump); static int asn1_print_info(BIO *bp, int tag, int xclass, int constructed, int indent) { static const char fmt[] = "%-18s"; char str[128]; const char *p; if (constructed & V_ASN1_CONSTRUCTED) p = "cons: "; else p = "prim: "; if (BIO_write(bp, p, 6) < 6) goto err; BIO_indent(bp, indent, 128); p = str; if ((xclass & V_ASN1_PRIVATE) == V_ASN1_PRIVATE) BIO_snprintf(str, sizeof(str), "priv [ %d ] ", tag); else if ((xclass & V_ASN1_CONTEXT_SPECIFIC) == V_ASN1_CONTEXT_SPECIFIC) BIO_snprintf(str, sizeof(str), "cont [ %d ]", tag); else if ((xclass & V_ASN1_APPLICATION) == V_ASN1_APPLICATION) BIO_snprintf(str, sizeof(str), "appl [ %d ]", tag); else if (tag > 30) BIO_snprintf(str, sizeof(str), "", tag); else p = ASN1_tag2str(tag); if (BIO_printf(bp, fmt, p) <= 0) goto err; return 1; err: return 0; } int ASN1_parse(BIO *bp, const unsigned char *pp, long len, int indent) { return asn1_parse2(bp, &pp, len, 0, 0, indent, 0); } int ASN1_parse_dump(BIO *bp, const unsigned char *pp, long len, int indent, int dump) { return asn1_parse2(bp, &pp, len, 0, 0, indent, dump); } static int asn1_parse2(BIO *bp, const unsigned char **pp, long length, int offset, int depth, int indent, int dump) { const unsigned char *p, *ep, *tot, *op, *opp; long len; int tag, xclass, ret = 0; int nl, hl, j, r; ASN1_OBJECT *o = NULL; ASN1_OCTET_STRING *os = NULL; ASN1_INTEGER *ai = NULL; ASN1_ENUMERATED *ae = NULL; /* ASN1_BMPSTRING *bmp=NULL; */ int dump_indent, dump_cont = 0; if (depth > ASN1_PARSE_MAXDEPTH) { BIO_puts(bp, "BAD RECURSION DEPTH\n"); return 0; } dump_indent = 6; /* Because we know BIO_dump_indent() */ p = *pp; tot = p + length; while (length > 0) { op = p; j = ASN1_get_object(&p, &len, &tag, &xclass, length); if (j & 0x80) { if (BIO_write(bp, "Error in encoding\n", 18) <= 0) goto end; ret = 0; goto end; } hl = (p - op); length -= hl; /* * if j == 0x21 it is a constructed indefinite length object */ if (BIO_printf(bp, "%5ld:", (long)offset + (long)(op - *pp)) <= 0) goto end; if (j != (V_ASN1_CONSTRUCTED | 1)) { if (BIO_printf(bp, "d=%-2d hl=%ld l=%4ld ", depth, (long)hl, len) <= 0) goto end; } else { if (BIO_printf(bp, "d=%-2d hl=%ld l=inf ", depth, (long)hl) <= 0) goto end; } if (!asn1_print_info(bp, tag, xclass, j, (indent) ? depth : 0)) goto end; if (j & V_ASN1_CONSTRUCTED) { const unsigned char *sp = p; ep = p + len; if (BIO_write(bp, "\n", 1) <= 0) goto end; if (len > length) { BIO_printf(bp, "length is greater than %ld\n", length); ret = 0; goto end; } if ((j == 0x21) && (len == 0)) { for (;;) { r = asn1_parse2(bp, &p, (long)(tot - p), offset + (p - *pp), depth + 1, indent, dump); if (r == 0) { ret = 0; goto end; } if ((r == 2) || (p >= tot)) { len = p - sp; break; } } } else { long tmp = len; while (p < ep) { sp = p; r = asn1_parse2(bp, &p, tmp, offset + (p - *pp), depth + 1, indent, dump); if (r == 0) { ret = 0; goto end; } tmp -= p - sp; } } } else if (xclass != 0) { p += len; if (BIO_write(bp, "\n", 1) <= 0) goto end; } else { nl = 0; if ((tag == V_ASN1_PRINTABLESTRING) || (tag == V_ASN1_T61STRING) || (tag == V_ASN1_IA5STRING) || (tag == V_ASN1_VISIBLESTRING) || (tag == V_ASN1_NUMERICSTRING) || (tag == V_ASN1_UTF8STRING) || (tag == V_ASN1_UTCTIME) || (tag == V_ASN1_GENERALIZEDTIME)) { if (BIO_write(bp, ":", 1) <= 0) goto end; if ((len > 0) && BIO_write(bp, (const char *)p, (int)len) != (int)len) goto end; } else if (tag == V_ASN1_OBJECT) { opp = op; if (d2i_ASN1_OBJECT(&o, &opp, len + hl) != NULL) { if (BIO_write(bp, ":", 1) <= 0) goto end; i2a_ASN1_OBJECT(bp, o); } else { if (BIO_puts(bp, ":BAD OBJECT") <= 0) goto end; dump_cont = 1; } } else if (tag == V_ASN1_BOOLEAN) { if (len != 1) { if (BIO_puts(bp, ":BAD BOOLEAN") <= 0) goto end; dump_cont = 1; } if (len > 0) BIO_printf(bp, ":%u", p[0]); } else if (tag == V_ASN1_BMPSTRING) { /* do the BMP thang */ } else if (tag == V_ASN1_OCTET_STRING) { int i, printable = 1; opp = op; os = d2i_ASN1_OCTET_STRING(NULL, &opp, len + hl); if (os != NULL && os->length > 0) { opp = os->data; /* * testing whether the octet string is printable */ for (i = 0; i < os->length; i++) { if (((opp[i] < ' ') && (opp[i] != '\n') && (opp[i] != '\r') && (opp[i] != '\t')) || (opp[i] > '~')) { printable = 0; break; } } if (printable) /* printable string */ { if (BIO_write(bp, ":", 1) <= 0) goto end; if (BIO_write(bp, (const char *)opp, os->length) <= 0) goto end; } else if (!dump) /* * not printable => print octet string as hex dump */ { if (BIO_write(bp, "[HEX DUMP]:", 11) <= 0) goto end; for (i = 0; i < os->length; i++) { if (BIO_printf(bp, "%02X", opp[i]) <= 0) goto end; } } else /* print the normal dump */ { if (!nl) { if (BIO_write(bp, "\n", 1) <= 0) goto end; } if (BIO_dump_indent(bp, (const char *)opp, ((dump == -1 || dump > os-> length) ? os->length : dump), dump_indent) <= 0) goto end; nl = 1; } } ASN1_OCTET_STRING_free(os); os = NULL; } else if (tag == V_ASN1_INTEGER) { int i; opp = op; ai = d2i_ASN1_INTEGER(NULL, &opp, len + hl); if (ai != NULL) { if (BIO_write(bp, ":", 1) <= 0) goto end; if (ai->type == V_ASN1_NEG_INTEGER) if (BIO_write(bp, "-", 1) <= 0) goto end; for (i = 0; i < ai->length; i++) { if (BIO_printf(bp, "%02X", ai->data[i]) <= 0) goto end; } if (ai->length == 0) { if (BIO_write(bp, "00", 2) <= 0) goto end; } } else { if (BIO_puts(bp, ":BAD INTEGER") <= 0) goto end; dump_cont = 1; } ASN1_INTEGER_free(ai); ai = NULL; } else if (tag == V_ASN1_ENUMERATED) { int i; opp = op; ae = d2i_ASN1_ENUMERATED(NULL, &opp, len + hl); if (ae != NULL) { if (BIO_write(bp, ":", 1) <= 0) goto end; if (ae->type == V_ASN1_NEG_ENUMERATED) if (BIO_write(bp, "-", 1) <= 0) goto end; for (i = 0; i < ae->length; i++) { if (BIO_printf(bp, "%02X", ae->data[i]) <= 0) goto end; } if (ae->length == 0) { if (BIO_write(bp, "00", 2) <= 0) goto end; } } else { if (BIO_puts(bp, ":BAD ENUMERATED") <= 0) goto end; dump_cont = 1; } ASN1_ENUMERATED_free(ae); ae = NULL; } else if (len > 0 && dump) { if (!nl) { if (BIO_write(bp, "\n", 1) <= 0) goto end; } if (BIO_dump_indent(bp, (const char *)p, ((dump == -1 || dump > len) ? len : dump), dump_indent) <= 0) goto end; nl = 1; } if (dump_cont) { int i; const unsigned char *tmp = op + hl; if (BIO_puts(bp, ":[") <= 0) goto end; for (i = 0; i < len; i++) { if (BIO_printf(bp, "%02X", tmp[i]) <= 0) goto end; } if (BIO_puts(bp, "]") <= 0) goto end; } if (!nl) { if (BIO_write(bp, "\n", 1) <= 0) goto end; } p += len; if ((tag == V_ASN1_EOC) && (xclass == 0)) { ret = 2; /* End of sequence */ goto end; } } length -= len; } ret = 1; end: ASN1_OBJECT_free(o); ASN1_OCTET_STRING_free(os); ASN1_INTEGER_free(ai); ASN1_ENUMERATED_free(ae); *pp = p; return ret; } const char *ASN1_tag2str(int tag) { static const char *const tag2str[] = { /* 0-4 */ "EOC", "BOOLEAN", "INTEGER", "BIT STRING", "OCTET STRING", /* 5-9 */ "NULL", "OBJECT", "OBJECT DESCRIPTOR", "EXTERNAL", "REAL", /* 10-13 */ "ENUMERATED", "", "UTF8STRING", "", /* 15-17 */ "", "", "SEQUENCE", "SET", /* 18-20 */ "NUMERICSTRING", "PRINTABLESTRING", "T61STRING", /* 21-24 */ "VIDEOTEXSTRING", "IA5STRING", "UTCTIME", "GENERALIZEDTIME", /* 25-27 */ "GRAPHICSTRING", "VISIBLESTRING", "GENERALSTRING", /* 28-30 */ "UNIVERSALSTRING", "", "BMPSTRING" }; if ((tag == V_ASN1_NEG_INTEGER) || (tag == V_ASN1_NEG_ENUMERATED)) tag &= ~0x100; if (tag < 0 || tag > 30) return "(unknown)"; return tag2str[tag]; } openssl-1.1.1f/crypto/asn1/asn_mime.c000066400000000000000000000676621364063235100175050ustar00rootroot00000000000000/* * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include #include #include #include "crypto/evp.h" #include "internal/bio.h" #include "asn1_local.h" /* * Generalised MIME like utilities for streaming ASN1. Although many have a * PKCS7/CMS like flavour others are more general purpose. */ /* * MIME format structures Note that all are translated to lower case apart * from parameter values. Quotes are stripped off */ struct mime_param_st { char *param_name; /* Param name e.g. "micalg" */ char *param_value; /* Param value e.g. "sha1" */ }; struct mime_header_st { char *name; /* Name of line e.g. "content-type" */ char *value; /* Value of line e.g. "text/plain" */ STACK_OF(MIME_PARAM) *params; /* Zero or more parameters */ }; static int asn1_output_data(BIO *out, BIO *data, ASN1_VALUE *val, int flags, const ASN1_ITEM *it); static char *strip_ends(char *name); static char *strip_start(char *name); static char *strip_end(char *name); static MIME_HEADER *mime_hdr_new(const char *name, const char *value); static int mime_hdr_addparam(MIME_HEADER *mhdr, const char *name, const char *value); static STACK_OF(MIME_HEADER) *mime_parse_hdr(BIO *bio); static int mime_hdr_cmp(const MIME_HEADER *const *a, const MIME_HEADER *const *b); static int mime_param_cmp(const MIME_PARAM *const *a, const MIME_PARAM *const *b); static void mime_param_free(MIME_PARAM *param); static int mime_bound_check(char *line, int linelen, const char *bound, int blen); static int multi_split(BIO *bio, const char *bound, STACK_OF(BIO) **ret); static int strip_eol(char *linebuf, int *plen, int flags); static MIME_HEADER *mime_hdr_find(STACK_OF(MIME_HEADER) *hdrs, const char *name); static MIME_PARAM *mime_param_find(MIME_HEADER *hdr, const char *name); static void mime_hdr_free(MIME_HEADER *hdr); #define MAX_SMLEN 1024 #define mime_debug(x) /* x */ /* Output an ASN1 structure in BER format streaming if necessary */ int i2d_ASN1_bio_stream(BIO *out, ASN1_VALUE *val, BIO *in, int flags, const ASN1_ITEM *it) { /* If streaming create stream BIO and copy all content through it */ if (flags & SMIME_STREAM) { BIO *bio, *tbio; bio = BIO_new_NDEF(out, val, it); if (!bio) { ASN1err(ASN1_F_I2D_ASN1_BIO_STREAM, ERR_R_MALLOC_FAILURE); return 0; } SMIME_crlf_copy(in, bio, flags); (void)BIO_flush(bio); /* Free up successive BIOs until we hit the old output BIO */ do { tbio = BIO_pop(bio); BIO_free(bio); bio = tbio; } while (bio != out); } /* * else just write out ASN1 structure which will have all content stored * internally */ else ASN1_item_i2d_bio(it, out, val); return 1; } /* Base 64 read and write of ASN1 structure */ static int B64_write_ASN1(BIO *out, ASN1_VALUE *val, BIO *in, int flags, const ASN1_ITEM *it) { BIO *b64; int r; b64 = BIO_new(BIO_f_base64()); if (b64 == NULL) { ASN1err(ASN1_F_B64_WRITE_ASN1, ERR_R_MALLOC_FAILURE); return 0; } /* * prepend the b64 BIO so all data is base64 encoded. */ out = BIO_push(b64, out); r = i2d_ASN1_bio_stream(out, val, in, flags, it); (void)BIO_flush(out); BIO_pop(out); BIO_free(b64); return r; } /* Streaming ASN1 PEM write */ int PEM_write_bio_ASN1_stream(BIO *out, ASN1_VALUE *val, BIO *in, int flags, const char *hdr, const ASN1_ITEM *it) { int r; BIO_printf(out, "-----BEGIN %s-----\n", hdr); r = B64_write_ASN1(out, val, in, flags, it); BIO_printf(out, "-----END %s-----\n", hdr); return r; } static ASN1_VALUE *b64_read_asn1(BIO *bio, const ASN1_ITEM *it) { BIO *b64; ASN1_VALUE *val; if ((b64 = BIO_new(BIO_f_base64())) == NULL) { ASN1err(ASN1_F_B64_READ_ASN1, ERR_R_MALLOC_FAILURE); return 0; } bio = BIO_push(b64, bio); val = ASN1_item_d2i_bio(it, bio, NULL); if (!val) ASN1err(ASN1_F_B64_READ_ASN1, ASN1_R_DECODE_ERROR); (void)BIO_flush(bio); BIO_pop(bio); BIO_free(b64); return val; } /* Generate the MIME "micalg" parameter from RFC3851, RFC4490 */ static int asn1_write_micalg(BIO *out, STACK_OF(X509_ALGOR) *mdalgs) { const EVP_MD *md; int i, have_unknown = 0, write_comma, ret = 0, md_nid; have_unknown = 0; write_comma = 0; for (i = 0; i < sk_X509_ALGOR_num(mdalgs); i++) { if (write_comma) BIO_write(out, ",", 1); write_comma = 1; md_nid = OBJ_obj2nid(sk_X509_ALGOR_value(mdalgs, i)->algorithm); md = EVP_get_digestbynid(md_nid); if (md && md->md_ctrl) { int rv; char *micstr; rv = md->md_ctrl(NULL, EVP_MD_CTRL_MICALG, 0, &micstr); if (rv > 0) { BIO_puts(out, micstr); OPENSSL_free(micstr); continue; } if (rv != -2) goto err; } switch (md_nid) { case NID_sha1: BIO_puts(out, "sha1"); break; case NID_md5: BIO_puts(out, "md5"); break; case NID_sha256: BIO_puts(out, "sha-256"); break; case NID_sha384: BIO_puts(out, "sha-384"); break; case NID_sha512: BIO_puts(out, "sha-512"); break; case NID_id_GostR3411_94: BIO_puts(out, "gostr3411-94"); goto err; case NID_id_GostR3411_2012_256: BIO_puts(out, "gostr3411-2012-256"); goto err; case NID_id_GostR3411_2012_512: BIO_puts(out, "gostr3411-2012-512"); goto err; default: if (have_unknown) write_comma = 0; else { BIO_puts(out, "unknown"); have_unknown = 1; } break; } } ret = 1; err: return ret; } /* SMIME sender */ int SMIME_write_ASN1(BIO *bio, ASN1_VALUE *val, BIO *data, int flags, int ctype_nid, int econt_nid, STACK_OF(X509_ALGOR) *mdalgs, const ASN1_ITEM *it) { char bound[33], c; int i; const char *mime_prefix, *mime_eol, *cname = "smime.p7m"; const char *msg_type = NULL; if (flags & SMIME_OLDMIME) mime_prefix = "application/x-pkcs7-"; else mime_prefix = "application/pkcs7-"; if (flags & SMIME_CRLFEOL) mime_eol = "\r\n"; else mime_eol = "\n"; if ((flags & SMIME_DETACHED) && data) { /* We want multipart/signed */ /* Generate a random boundary */ if (RAND_bytes((unsigned char *)bound, 32) <= 0) return 0; for (i = 0; i < 32; i++) { c = bound[i] & 0xf; if (c < 10) c += '0'; else c += 'A' - 10; bound[i] = c; } bound[32] = 0; BIO_printf(bio, "MIME-Version: 1.0%s", mime_eol); BIO_printf(bio, "Content-Type: multipart/signed;"); BIO_printf(bio, " protocol=\"%ssignature\";", mime_prefix); BIO_puts(bio, " micalg=\""); asn1_write_micalg(bio, mdalgs); BIO_printf(bio, "\"; boundary=\"----%s\"%s%s", bound, mime_eol, mime_eol); BIO_printf(bio, "This is an S/MIME signed message%s%s", mime_eol, mime_eol); /* Now write out the first part */ BIO_printf(bio, "------%s%s", bound, mime_eol); if (!asn1_output_data(bio, data, val, flags, it)) return 0; BIO_printf(bio, "%s------%s%s", mime_eol, bound, mime_eol); /* Headers for signature */ BIO_printf(bio, "Content-Type: %ssignature;", mime_prefix); BIO_printf(bio, " name=\"smime.p7s\"%s", mime_eol); BIO_printf(bio, "Content-Transfer-Encoding: base64%s", mime_eol); BIO_printf(bio, "Content-Disposition: attachment;"); BIO_printf(bio, " filename=\"smime.p7s\"%s%s", mime_eol, mime_eol); B64_write_ASN1(bio, val, NULL, 0, it); BIO_printf(bio, "%s------%s--%s%s", mime_eol, bound, mime_eol, mime_eol); return 1; } /* Determine smime-type header */ if (ctype_nid == NID_pkcs7_enveloped) msg_type = "enveloped-data"; else if (ctype_nid == NID_pkcs7_signed) { if (econt_nid == NID_id_smime_ct_receipt) msg_type = "signed-receipt"; else if (sk_X509_ALGOR_num(mdalgs) >= 0) msg_type = "signed-data"; else msg_type = "certs-only"; } else if (ctype_nid == NID_id_smime_ct_compressedData) { msg_type = "compressed-data"; cname = "smime.p7z"; } /* MIME headers */ BIO_printf(bio, "MIME-Version: 1.0%s", mime_eol); BIO_printf(bio, "Content-Disposition: attachment;"); BIO_printf(bio, " filename=\"%s\"%s", cname, mime_eol); BIO_printf(bio, "Content-Type: %smime;", mime_prefix); if (msg_type) BIO_printf(bio, " smime-type=%s;", msg_type); BIO_printf(bio, " name=\"%s\"%s", cname, mime_eol); BIO_printf(bio, "Content-Transfer-Encoding: base64%s%s", mime_eol, mime_eol); if (!B64_write_ASN1(bio, val, data, flags, it)) return 0; BIO_printf(bio, "%s", mime_eol); return 1; } /* Handle output of ASN1 data */ static int asn1_output_data(BIO *out, BIO *data, ASN1_VALUE *val, int flags, const ASN1_ITEM *it) { BIO *tmpbio; const ASN1_AUX *aux = it->funcs; ASN1_STREAM_ARG sarg; int rv = 1; /* * If data is not detached or resigning then the output BIO is already * set up to finalise when it is written through. */ if (!(flags & SMIME_DETACHED) || (flags & PKCS7_REUSE_DIGEST)) { SMIME_crlf_copy(data, out, flags); return 1; } if (!aux || !aux->asn1_cb) { ASN1err(ASN1_F_ASN1_OUTPUT_DATA, ASN1_R_STREAMING_NOT_SUPPORTED); return 0; } sarg.out = out; sarg.ndef_bio = NULL; sarg.boundary = NULL; /* Let ASN1 code prepend any needed BIOs */ if (aux->asn1_cb(ASN1_OP_DETACHED_PRE, &val, it, &sarg) <= 0) return 0; /* Copy data across, passing through filter BIOs for processing */ SMIME_crlf_copy(data, sarg.ndef_bio, flags); /* Finalize structure */ if (aux->asn1_cb(ASN1_OP_DETACHED_POST, &val, it, &sarg) <= 0) rv = 0; /* Now remove any digests prepended to the BIO */ while (sarg.ndef_bio != out) { tmpbio = BIO_pop(sarg.ndef_bio); BIO_free(sarg.ndef_bio); sarg.ndef_bio = tmpbio; } return rv; } /* * SMIME reader: handle multipart/signed and opaque signing. in multipart * case the content is placed in a memory BIO pointed to by "bcont". In * opaque this is set to NULL */ ASN1_VALUE *SMIME_read_ASN1(BIO *bio, BIO **bcont, const ASN1_ITEM *it) { BIO *asnin; STACK_OF(MIME_HEADER) *headers = NULL; STACK_OF(BIO) *parts = NULL; MIME_HEADER *hdr; MIME_PARAM *prm; ASN1_VALUE *val; int ret; if (bcont) *bcont = NULL; if ((headers = mime_parse_hdr(bio)) == NULL) { ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_MIME_PARSE_ERROR); return NULL; } if ((hdr = mime_hdr_find(headers, "content-type")) == NULL || hdr->value == NULL) { sk_MIME_HEADER_pop_free(headers, mime_hdr_free); ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_CONTENT_TYPE); return NULL; } /* Handle multipart/signed */ if (strcmp(hdr->value, "multipart/signed") == 0) { /* Split into two parts */ prm = mime_param_find(hdr, "boundary"); if (!prm || !prm->param_value) { sk_MIME_HEADER_pop_free(headers, mime_hdr_free); ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_MULTIPART_BOUNDARY); return NULL; } ret = multi_split(bio, prm->param_value, &parts); sk_MIME_HEADER_pop_free(headers, mime_hdr_free); if (!ret || (sk_BIO_num(parts) != 2)) { ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_MULTIPART_BODY_FAILURE); sk_BIO_pop_free(parts, BIO_vfree); return NULL; } /* Parse the signature piece */ asnin = sk_BIO_value(parts, 1); if ((headers = mime_parse_hdr(asnin)) == NULL) { ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_MIME_SIG_PARSE_ERROR); sk_BIO_pop_free(parts, BIO_vfree); return NULL; } /* Get content type */ if ((hdr = mime_hdr_find(headers, "content-type")) == NULL || hdr->value == NULL) { sk_MIME_HEADER_pop_free(headers, mime_hdr_free); ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_SIG_CONTENT_TYPE); sk_BIO_pop_free(parts, BIO_vfree); return NULL; } if (strcmp(hdr->value, "application/x-pkcs7-signature") && strcmp(hdr->value, "application/pkcs7-signature")) { ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_SIG_INVALID_MIME_TYPE); ERR_add_error_data(2, "type: ", hdr->value); sk_MIME_HEADER_pop_free(headers, mime_hdr_free); sk_BIO_pop_free(parts, BIO_vfree); return NULL; } sk_MIME_HEADER_pop_free(headers, mime_hdr_free); /* Read in ASN1 */ if ((val = b64_read_asn1(asnin, it)) == NULL) { ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_ASN1_SIG_PARSE_ERROR); sk_BIO_pop_free(parts, BIO_vfree); return NULL; } if (bcont) { *bcont = sk_BIO_value(parts, 0); BIO_free(asnin); sk_BIO_free(parts); } else sk_BIO_pop_free(parts, BIO_vfree); return val; } /* OK, if not multipart/signed try opaque signature */ if (strcmp(hdr->value, "application/x-pkcs7-mime") && strcmp(hdr->value, "application/pkcs7-mime")) { ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_INVALID_MIME_TYPE); ERR_add_error_data(2, "type: ", hdr->value); sk_MIME_HEADER_pop_free(headers, mime_hdr_free); return NULL; } sk_MIME_HEADER_pop_free(headers, mime_hdr_free); if ((val = b64_read_asn1(bio, it)) == NULL) { ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_ASN1_PARSE_ERROR); return NULL; } return val; } /* Copy text from one BIO to another making the output CRLF at EOL */ int SMIME_crlf_copy(BIO *in, BIO *out, int flags) { BIO *bf; char eol; int len; char linebuf[MAX_SMLEN]; /* * Buffer output so we don't write one line at a time. This is useful * when streaming as we don't end up with one OCTET STRING per line. */ bf = BIO_new(BIO_f_buffer()); if (bf == NULL) return 0; out = BIO_push(bf, out); if (flags & SMIME_BINARY) { while ((len = BIO_read(in, linebuf, MAX_SMLEN)) > 0) BIO_write(out, linebuf, len); } else { int eolcnt = 0; if (flags & SMIME_TEXT) BIO_printf(out, "Content-Type: text/plain\r\n\r\n"); while ((len = BIO_gets(in, linebuf, MAX_SMLEN)) > 0) { eol = strip_eol(linebuf, &len, flags); if (len) { /* Not EOF: write out all CRLF */ if (flags & SMIME_ASCIICRLF) { int i; for (i = 0; i < eolcnt; i++) BIO_write(out, "\r\n", 2); eolcnt = 0; } BIO_write(out, linebuf, len); if (eol) BIO_write(out, "\r\n", 2); } else if (flags & SMIME_ASCIICRLF) eolcnt++; else if (eol) BIO_write(out, "\r\n", 2); } } (void)BIO_flush(out); BIO_pop(out); BIO_free(bf); return 1; } /* Strip off headers if they are text/plain */ int SMIME_text(BIO *in, BIO *out) { char iobuf[4096]; int len; STACK_OF(MIME_HEADER) *headers; MIME_HEADER *hdr; if ((headers = mime_parse_hdr(in)) == NULL) { ASN1err(ASN1_F_SMIME_TEXT, ASN1_R_MIME_PARSE_ERROR); return 0; } if ((hdr = mime_hdr_find(headers, "content-type")) == NULL || hdr->value == NULL) { ASN1err(ASN1_F_SMIME_TEXT, ASN1_R_MIME_NO_CONTENT_TYPE); sk_MIME_HEADER_pop_free(headers, mime_hdr_free); return 0; } if (strcmp(hdr->value, "text/plain")) { ASN1err(ASN1_F_SMIME_TEXT, ASN1_R_INVALID_MIME_TYPE); ERR_add_error_data(2, "type: ", hdr->value); sk_MIME_HEADER_pop_free(headers, mime_hdr_free); return 0; } sk_MIME_HEADER_pop_free(headers, mime_hdr_free); while ((len = BIO_read(in, iobuf, sizeof(iobuf))) > 0) BIO_write(out, iobuf, len); if (len < 0) return 0; return 1; } /* * Split a multipart/XXX message body into component parts: result is * canonical parts in a STACK of bios */ static int multi_split(BIO *bio, const char *bound, STACK_OF(BIO) **ret) { char linebuf[MAX_SMLEN]; int len, blen; int eol = 0, next_eol = 0; BIO *bpart = NULL; STACK_OF(BIO) *parts; char state, part, first; blen = strlen(bound); part = 0; state = 0; first = 1; parts = sk_BIO_new_null(); *ret = parts; if (*ret == NULL) return 0; while ((len = BIO_gets(bio, linebuf, MAX_SMLEN)) > 0) { state = mime_bound_check(linebuf, len, bound, blen); if (state == 1) { first = 1; part++; } else if (state == 2) { if (!sk_BIO_push(parts, bpart)) { BIO_free(bpart); return 0; } return 1; } else if (part) { /* Strip CR+LF from linebuf */ next_eol = strip_eol(linebuf, &len, 0); if (first) { first = 0; if (bpart) if (!sk_BIO_push(parts, bpart)) { BIO_free(bpart); return 0; } bpart = BIO_new(BIO_s_mem()); if (bpart == NULL) return 0; BIO_set_mem_eof_return(bpart, 0); } else if (eol) BIO_write(bpart, "\r\n", 2); eol = next_eol; if (len) BIO_write(bpart, linebuf, len); } } BIO_free(bpart); return 0; } /* This is the big one: parse MIME header lines up to message body */ #define MIME_INVALID 0 #define MIME_START 1 #define MIME_TYPE 2 #define MIME_NAME 3 #define MIME_VALUE 4 #define MIME_QUOTE 5 #define MIME_COMMENT 6 static STACK_OF(MIME_HEADER) *mime_parse_hdr(BIO *bio) { char *p, *q, c; char *ntmp; char linebuf[MAX_SMLEN]; MIME_HEADER *mhdr = NULL, *new_hdr = NULL; STACK_OF(MIME_HEADER) *headers; int len, state, save_state = 0; headers = sk_MIME_HEADER_new(mime_hdr_cmp); if (headers == NULL) return NULL; while ((len = BIO_gets(bio, linebuf, MAX_SMLEN)) > 0) { /* If whitespace at line start then continuation line */ if (mhdr && ossl_isspace(linebuf[0])) state = MIME_NAME; else state = MIME_START; ntmp = NULL; /* Go through all characters */ for (p = linebuf, q = linebuf; (c = *p) && (c != '\r') && (c != '\n'); p++) { /* * State machine to handle MIME headers if this looks horrible * that's because it *is* */ switch (state) { case MIME_START: if (c == ':') { state = MIME_TYPE; *p = 0; ntmp = strip_ends(q); q = p + 1; } break; case MIME_TYPE: if (c == ';') { mime_debug("Found End Value\n"); *p = 0; new_hdr = mime_hdr_new(ntmp, strip_ends(q)); if (new_hdr == NULL) goto err; if (!sk_MIME_HEADER_push(headers, new_hdr)) goto err; mhdr = new_hdr; new_hdr = NULL; ntmp = NULL; q = p + 1; state = MIME_NAME; } else if (c == '(') { save_state = state; state = MIME_COMMENT; } break; case MIME_COMMENT: if (c == ')') { state = save_state; } break; case MIME_NAME: if (c == '=') { state = MIME_VALUE; *p = 0; ntmp = strip_ends(q); q = p + 1; } break; case MIME_VALUE: if (c == ';') { state = MIME_NAME; *p = 0; mime_hdr_addparam(mhdr, ntmp, strip_ends(q)); ntmp = NULL; q = p + 1; } else if (c == '"') { mime_debug("Found Quote\n"); state = MIME_QUOTE; } else if (c == '(') { save_state = state; state = MIME_COMMENT; } break; case MIME_QUOTE: if (c == '"') { mime_debug("Found Match Quote\n"); state = MIME_VALUE; } break; } } if (state == MIME_TYPE) { new_hdr = mime_hdr_new(ntmp, strip_ends(q)); if (new_hdr == NULL) goto err; if (!sk_MIME_HEADER_push(headers, new_hdr)) goto err; mhdr = new_hdr; new_hdr = NULL; } else if (state == MIME_VALUE) mime_hdr_addparam(mhdr, ntmp, strip_ends(q)); if (p == linebuf) break; /* Blank line means end of headers */ } return headers; err: mime_hdr_free(new_hdr); sk_MIME_HEADER_pop_free(headers, mime_hdr_free); return NULL; } static char *strip_ends(char *name) { return strip_end(strip_start(name)); } /* Strip a parameter of whitespace from start of param */ static char *strip_start(char *name) { char *p, c; /* Look for first non white space or quote */ for (p = name; (c = *p); p++) { if (c == '"') { /* Next char is start of string if non null */ if (p[1]) return p + 1; /* Else null string */ return NULL; } if (!ossl_isspace(c)) return p; } return NULL; } /* As above but strip from end of string : maybe should handle brackets? */ static char *strip_end(char *name) { char *p, c; if (!name) return NULL; /* Look for first non white space or quote */ for (p = name + strlen(name) - 1; p >= name; p--) { c = *p; if (c == '"') { if (p - 1 == name) return NULL; *p = 0; return name; } if (ossl_isspace(c)) *p = 0; else return name; } return NULL; } static MIME_HEADER *mime_hdr_new(const char *name, const char *value) { MIME_HEADER *mhdr = NULL; char *tmpname = NULL, *tmpval = NULL, *p; if (name) { if ((tmpname = OPENSSL_strdup(name)) == NULL) return NULL; for (p = tmpname; *p; p++) *p = ossl_tolower(*p); } if (value) { if ((tmpval = OPENSSL_strdup(value)) == NULL) goto err; for (p = tmpval; *p; p++) *p = ossl_tolower(*p); } mhdr = OPENSSL_malloc(sizeof(*mhdr)); if (mhdr == NULL) goto err; mhdr->name = tmpname; mhdr->value = tmpval; if ((mhdr->params = sk_MIME_PARAM_new(mime_param_cmp)) == NULL) goto err; return mhdr; err: OPENSSL_free(tmpname); OPENSSL_free(tmpval); OPENSSL_free(mhdr); return NULL; } static int mime_hdr_addparam(MIME_HEADER *mhdr, const char *name, const char *value) { char *tmpname = NULL, *tmpval = NULL, *p; MIME_PARAM *mparam = NULL; if (name) { tmpname = OPENSSL_strdup(name); if (!tmpname) goto err; for (p = tmpname; *p; p++) *p = ossl_tolower(*p); } if (value) { tmpval = OPENSSL_strdup(value); if (!tmpval) goto err; } /* Parameter values are case sensitive so leave as is */ mparam = OPENSSL_malloc(sizeof(*mparam)); if (mparam == NULL) goto err; mparam->param_name = tmpname; mparam->param_value = tmpval; if (!sk_MIME_PARAM_push(mhdr->params, mparam)) goto err; return 1; err: OPENSSL_free(tmpname); OPENSSL_free(tmpval); OPENSSL_free(mparam); return 0; } static int mime_hdr_cmp(const MIME_HEADER *const *a, const MIME_HEADER *const *b) { if (!(*a)->name || !(*b)->name) return ! !(*a)->name - ! !(*b)->name; return strcmp((*a)->name, (*b)->name); } static int mime_param_cmp(const MIME_PARAM *const *a, const MIME_PARAM *const *b) { if (!(*a)->param_name || !(*b)->param_name) return ! !(*a)->param_name - ! !(*b)->param_name; return strcmp((*a)->param_name, (*b)->param_name); } /* Find a header with a given name (if possible) */ static MIME_HEADER *mime_hdr_find(STACK_OF(MIME_HEADER) *hdrs, const char *name) { MIME_HEADER htmp; int idx; htmp.name = (char *)name; htmp.value = NULL; htmp.params = NULL; idx = sk_MIME_HEADER_find(hdrs, &htmp); return sk_MIME_HEADER_value(hdrs, idx); } static MIME_PARAM *mime_param_find(MIME_HEADER *hdr, const char *name) { MIME_PARAM param; int idx; param.param_name = (char *)name; param.param_value = NULL; idx = sk_MIME_PARAM_find(hdr->params, ¶m); return sk_MIME_PARAM_value(hdr->params, idx); } static void mime_hdr_free(MIME_HEADER *hdr) { if (hdr == NULL) return; OPENSSL_free(hdr->name); OPENSSL_free(hdr->value); if (hdr->params) sk_MIME_PARAM_pop_free(hdr->params, mime_param_free); OPENSSL_free(hdr); } static void mime_param_free(MIME_PARAM *param) { OPENSSL_free(param->param_name); OPENSSL_free(param->param_value); OPENSSL_free(param); } /*- * Check for a multipart boundary. Returns: * 0 : no boundary * 1 : part boundary * 2 : final boundary */ static int mime_bound_check(char *line, int linelen, const char *bound, int blen) { if (linelen == -1) linelen = strlen(line); if (blen == -1) blen = strlen(bound); /* Quickly eliminate if line length too short */ if (blen + 2 > linelen) return 0; /* Check for part boundary */ if ((strncmp(line, "--", 2) == 0) && strncmp(line + 2, bound, blen) == 0) { if (strncmp(line + blen + 2, "--", 2) == 0) return 2; else return 1; } return 0; } static int strip_eol(char *linebuf, int *plen, int flags) { int len = *plen; char *p, c; int is_eol = 0; for (p = linebuf + len - 1; len > 0; len--, p--) { c = *p; if (c == '\n') { is_eol = 1; } else if (is_eol && flags & SMIME_ASCIICRLF && c == 32) { /* Strip trailing space on a line; 32 == ASCII for ' ' */ continue; } else if (c != '\r') { break; } } *plen = len; return is_eol; } openssl-1.1.1f/crypto/asn1/asn_moid.c000066400000000000000000000047271364063235100174770ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" #include "crypto/objects.h" /* Simple ASN1 OID module: add all objects in a given section */ static int do_create(const char *value, const char *name); static int oid_module_init(CONF_IMODULE *md, const CONF *cnf) { int i; const char *oid_section; STACK_OF(CONF_VALUE) *sktmp; CONF_VALUE *oval; oid_section = CONF_imodule_get_value(md); if ((sktmp = NCONF_get_section(cnf, oid_section)) == NULL) { ASN1err(ASN1_F_OID_MODULE_INIT, ASN1_R_ERROR_LOADING_SECTION); return 0; } for (i = 0; i < sk_CONF_VALUE_num(sktmp); i++) { oval = sk_CONF_VALUE_value(sktmp, i); if (!do_create(oval->value, oval->name)) { ASN1err(ASN1_F_OID_MODULE_INIT, ASN1_R_ADDING_OBJECT); return 0; } } return 1; } static void oid_module_finish(CONF_IMODULE *md) { } void ASN1_add_oid_module(void) { CONF_module_add("oid_section", oid_module_init, oid_module_finish); } /*- * Create an OID based on a name value pair. Accept two formats. * shortname = 1.2.3.4 * shortname = some long name, 1.2.3.4 */ static int do_create(const char *value, const char *name) { int nid; const char *ln, *ostr, *p; char *lntmp = NULL; p = strrchr(value, ','); if (p == NULL) { ln = name; ostr = value; } else { ln = value; ostr = p + 1; if (*ostr == '\0') return 0; while (ossl_isspace(*ostr)) ostr++; while (ossl_isspace(*ln)) ln++; p--; while (ossl_isspace(*p)) { if (p == ln) return 0; p--; } p++; if ((lntmp = OPENSSL_malloc((p - ln) + 1)) == NULL) { ASN1err(ASN1_F_DO_CREATE, ERR_R_MALLOC_FAILURE); return 0; } memcpy(lntmp, ln, p - ln); lntmp[p - ln] = '\0'; ln = lntmp; } nid = OBJ_create(ostr, name, ln); OPENSSL_free(lntmp); return nid != NID_undef; } openssl-1.1.1f/crypto/asn1/asn_mstbl.c000066400000000000000000000066751364063235100176740ustar00rootroot00000000000000/* * Copyright 2012-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include /* Multi string module: add table entries from a given section */ static int do_tcreate(const char *value, const char *name); static int stbl_module_init(CONF_IMODULE *md, const CONF *cnf) { int i; const char *stbl_section; STACK_OF(CONF_VALUE) *sktmp; CONF_VALUE *mval; stbl_section = CONF_imodule_get_value(md); if ((sktmp = NCONF_get_section(cnf, stbl_section)) == NULL) { ASN1err(ASN1_F_STBL_MODULE_INIT, ASN1_R_ERROR_LOADING_SECTION); return 0; } for (i = 0; i < sk_CONF_VALUE_num(sktmp); i++) { mval = sk_CONF_VALUE_value(sktmp, i); if (!do_tcreate(mval->value, mval->name)) { ASN1err(ASN1_F_STBL_MODULE_INIT, ASN1_R_INVALID_VALUE); return 0; } } return 1; } static void stbl_module_finish(CONF_IMODULE *md) { ASN1_STRING_TABLE_cleanup(); } void ASN1_add_stable_module(void) { CONF_module_add("stbl_section", stbl_module_init, stbl_module_finish); } /* * Create an table entry based on a name value pair. format is oid_name = * n1:v1, n2:v2,... where name is "min", "max", "mask" or "flags". */ static int do_tcreate(const char *value, const char *name) { char *eptr; int nid, i, rv = 0; long tbl_min = -1, tbl_max = -1; unsigned long tbl_mask = 0, tbl_flags = 0; STACK_OF(CONF_VALUE) *lst = NULL; CONF_VALUE *cnf = NULL; nid = OBJ_sn2nid(name); if (nid == NID_undef) nid = OBJ_ln2nid(name); if (nid == NID_undef) goto err; lst = X509V3_parse_list(value); if (!lst) goto err; for (i = 0; i < sk_CONF_VALUE_num(lst); i++) { cnf = sk_CONF_VALUE_value(lst, i); if (strcmp(cnf->name, "min") == 0) { tbl_min = strtoul(cnf->value, &eptr, 0); if (*eptr) goto err; } else if (strcmp(cnf->name, "max") == 0) { tbl_max = strtoul(cnf->value, &eptr, 0); if (*eptr) goto err; } else if (strcmp(cnf->name, "mask") == 0) { if (!ASN1_str2mask(cnf->value, &tbl_mask) || !tbl_mask) goto err; } else if (strcmp(cnf->name, "flags") == 0) { if (strcmp(cnf->value, "nomask") == 0) tbl_flags = STABLE_NO_MASK; else if (strcmp(cnf->value, "none") == 0) tbl_flags = STABLE_FLAGS_CLEAR; else goto err; } else goto err; } rv = 1; err: if (rv == 0) { ASN1err(ASN1_F_DO_TCREATE, ASN1_R_INVALID_STRING_TABLE_VALUE); if (cnf) ERR_add_error_data(4, "field=", cnf->name, ", value=", cnf->value); else ERR_add_error_data(4, "name=", name, ", value=", value); } else { rv = ASN1_STRING_TABLE_add(nid, tbl_min, tbl_max, tbl_mask, tbl_flags); if (!rv) ASN1err(ASN1_F_DO_TCREATE, ERR_R_MALLOC_FAILURE); } sk_CONF_VALUE_pop_free(lst, X509V3_conf_free); return rv; } openssl-1.1.1f/crypto/asn1/asn_pack.c000066400000000000000000000031351364063235100174550ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* ASN1 packing and unpacking functions */ ASN1_STRING *ASN1_item_pack(void *obj, const ASN1_ITEM *it, ASN1_STRING **oct) { ASN1_STRING *octmp; if (oct == NULL || *oct == NULL) { if ((octmp = ASN1_STRING_new()) == NULL) { ASN1err(ASN1_F_ASN1_ITEM_PACK, ERR_R_MALLOC_FAILURE); return NULL; } } else { octmp = *oct; } OPENSSL_free(octmp->data); octmp->data = NULL; if ((octmp->length = ASN1_item_i2d(obj, &octmp->data, it)) == 0) { ASN1err(ASN1_F_ASN1_ITEM_PACK, ASN1_R_ENCODE_ERROR); goto err; } if (octmp->data == NULL) { ASN1err(ASN1_F_ASN1_ITEM_PACK, ERR_R_MALLOC_FAILURE); goto err; } if (oct != NULL && *oct == NULL) *oct = octmp; return octmp; err: if (oct == NULL || *oct == NULL) ASN1_STRING_free(octmp); return NULL; } /* Extract an ASN1 object from an ASN1_STRING */ void *ASN1_item_unpack(const ASN1_STRING *oct, const ASN1_ITEM *it) { const unsigned char *p; void *ret; p = oct->data; if ((ret = ASN1_item_d2i(NULL, &p, oct->length, it)) == NULL) ASN1err(ASN1_F_ASN1_ITEM_UNPACK, ASN1_R_DECODE_ERROR); return ret; } openssl-1.1.1f/crypto/asn1/bio_asn1.c000066400000000000000000000261321364063235100173730ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Experimental ASN1 BIO. When written through the data is converted to an * ASN1 string type: default is OCTET STRING. Additional functions can be * provided to add prefix and suffix data. */ #include #include "internal/bio.h" #include #include "internal/cryptlib.h" /* Must be large enough for biggest tag+length */ #define DEFAULT_ASN1_BUF_SIZE 20 typedef enum { ASN1_STATE_START, ASN1_STATE_PRE_COPY, ASN1_STATE_HEADER, ASN1_STATE_HEADER_COPY, ASN1_STATE_DATA_COPY, ASN1_STATE_POST_COPY, ASN1_STATE_DONE } asn1_bio_state_t; typedef struct BIO_ASN1_EX_FUNCS_st { asn1_ps_func *ex_func; asn1_ps_func *ex_free_func; } BIO_ASN1_EX_FUNCS; typedef struct BIO_ASN1_BUF_CTX_t { /* Internal state */ asn1_bio_state_t state; /* Internal buffer */ unsigned char *buf; /* Size of buffer */ int bufsize; /* Current position in buffer */ int bufpos; /* Current buffer length */ int buflen; /* Amount of data to copy */ int copylen; /* Class and tag to use */ int asn1_class, asn1_tag; asn1_ps_func *prefix, *prefix_free, *suffix, *suffix_free; /* Extra buffer for prefix and suffix data */ unsigned char *ex_buf; int ex_len; int ex_pos; void *ex_arg; } BIO_ASN1_BUF_CTX; static int asn1_bio_write(BIO *h, const char *buf, int num); static int asn1_bio_read(BIO *h, char *buf, int size); static int asn1_bio_puts(BIO *h, const char *str); static int asn1_bio_gets(BIO *h, char *str, int size); static long asn1_bio_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int asn1_bio_new(BIO *h); static int asn1_bio_free(BIO *data); static long asn1_bio_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); static int asn1_bio_init(BIO_ASN1_BUF_CTX *ctx, int size); static int asn1_bio_flush_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx, asn1_ps_func *cleanup, asn1_bio_state_t next); static int asn1_bio_setup_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx, asn1_ps_func *setup, asn1_bio_state_t ex_state, asn1_bio_state_t other_state); static const BIO_METHOD methods_asn1 = { BIO_TYPE_ASN1, "asn1", /* TODO: Convert to new style write function */ bwrite_conv, asn1_bio_write, /* TODO: Convert to new style read function */ bread_conv, asn1_bio_read, asn1_bio_puts, asn1_bio_gets, asn1_bio_ctrl, asn1_bio_new, asn1_bio_free, asn1_bio_callback_ctrl, }; const BIO_METHOD *BIO_f_asn1(void) { return &methods_asn1; } static int asn1_bio_new(BIO *b) { BIO_ASN1_BUF_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) return 0; if (!asn1_bio_init(ctx, DEFAULT_ASN1_BUF_SIZE)) { OPENSSL_free(ctx); return 0; } BIO_set_data(b, ctx); BIO_set_init(b, 1); return 1; } static int asn1_bio_init(BIO_ASN1_BUF_CTX *ctx, int size) { if ((ctx->buf = OPENSSL_malloc(size)) == NULL) { ASN1err(ASN1_F_ASN1_BIO_INIT, ERR_R_MALLOC_FAILURE); return 0; } ctx->bufsize = size; ctx->asn1_class = V_ASN1_UNIVERSAL; ctx->asn1_tag = V_ASN1_OCTET_STRING; ctx->state = ASN1_STATE_START; return 1; } static int asn1_bio_free(BIO *b) { BIO_ASN1_BUF_CTX *ctx; if (b == NULL) return 0; ctx = BIO_get_data(b); if (ctx == NULL) return 0; OPENSSL_free(ctx->buf); OPENSSL_free(ctx); BIO_set_data(b, NULL); BIO_set_init(b, 0); return 1; } static int asn1_bio_write(BIO *b, const char *in, int inl) { BIO_ASN1_BUF_CTX *ctx; int wrmax, wrlen, ret; unsigned char *p; BIO *next; ctx = BIO_get_data(b); next = BIO_next(b); if (in == NULL || inl < 0 || ctx == NULL || next == NULL) return 0; wrlen = 0; ret = -1; for (;;) { switch (ctx->state) { /* Setup prefix data, call it */ case ASN1_STATE_START: if (!asn1_bio_setup_ex(b, ctx, ctx->prefix, ASN1_STATE_PRE_COPY, ASN1_STATE_HEADER)) return 0; break; /* Copy any pre data first */ case ASN1_STATE_PRE_COPY: ret = asn1_bio_flush_ex(b, ctx, ctx->prefix_free, ASN1_STATE_HEADER); if (ret <= 0) goto done; break; case ASN1_STATE_HEADER: ctx->buflen = ASN1_object_size(0, inl, ctx->asn1_tag) - inl; if (!ossl_assert(ctx->buflen <= ctx->bufsize)) return 0; p = ctx->buf; ASN1_put_object(&p, 0, inl, ctx->asn1_tag, ctx->asn1_class); ctx->copylen = inl; ctx->state = ASN1_STATE_HEADER_COPY; break; case ASN1_STATE_HEADER_COPY: ret = BIO_write(next, ctx->buf + ctx->bufpos, ctx->buflen); if (ret <= 0) goto done; ctx->buflen -= ret; if (ctx->buflen) ctx->bufpos += ret; else { ctx->bufpos = 0; ctx->state = ASN1_STATE_DATA_COPY; } break; case ASN1_STATE_DATA_COPY: if (inl > ctx->copylen) wrmax = ctx->copylen; else wrmax = inl; ret = BIO_write(next, in, wrmax); if (ret <= 0) goto done; wrlen += ret; ctx->copylen -= ret; in += ret; inl -= ret; if (ctx->copylen == 0) ctx->state = ASN1_STATE_HEADER; if (inl == 0) goto done; break; case ASN1_STATE_POST_COPY: case ASN1_STATE_DONE: BIO_clear_retry_flags(b); return 0; } } done: BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return (wrlen > 0) ? wrlen : ret; } static int asn1_bio_flush_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx, asn1_ps_func *cleanup, asn1_bio_state_t next) { int ret; if (ctx->ex_len <= 0) return 1; for (;;) { ret = BIO_write(BIO_next(b), ctx->ex_buf + ctx->ex_pos, ctx->ex_len); if (ret <= 0) break; ctx->ex_len -= ret; if (ctx->ex_len > 0) ctx->ex_pos += ret; else { if (cleanup) cleanup(b, &ctx->ex_buf, &ctx->ex_len, &ctx->ex_arg); ctx->state = next; ctx->ex_pos = 0; break; } } return ret; } static int asn1_bio_setup_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx, asn1_ps_func *setup, asn1_bio_state_t ex_state, asn1_bio_state_t other_state) { if (setup && !setup(b, &ctx->ex_buf, &ctx->ex_len, &ctx->ex_arg)) { BIO_clear_retry_flags(b); return 0; } if (ctx->ex_len > 0) ctx->state = ex_state; else ctx->state = other_state; return 1; } static int asn1_bio_read(BIO *b, char *in, int inl) { BIO *next = BIO_next(b); if (next == NULL) return 0; return BIO_read(next, in, inl); } static int asn1_bio_puts(BIO *b, const char *str) { return asn1_bio_write(b, str, strlen(str)); } static int asn1_bio_gets(BIO *b, char *str, int size) { BIO *next = BIO_next(b); if (next == NULL) return 0; return BIO_gets(next, str, size); } static long asn1_bio_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { BIO *next = BIO_next(b); if (next == NULL) return 0; return BIO_callback_ctrl(next, cmd, fp); } static long asn1_bio_ctrl(BIO *b, int cmd, long arg1, void *arg2) { BIO_ASN1_BUF_CTX *ctx; BIO_ASN1_EX_FUNCS *ex_func; long ret = 1; BIO *next; ctx = BIO_get_data(b); if (ctx == NULL) return 0; next = BIO_next(b); switch (cmd) { case BIO_C_SET_PREFIX: ex_func = arg2; ctx->prefix = ex_func->ex_func; ctx->prefix_free = ex_func->ex_free_func; break; case BIO_C_GET_PREFIX: ex_func = arg2; ex_func->ex_func = ctx->prefix; ex_func->ex_free_func = ctx->prefix_free; break; case BIO_C_SET_SUFFIX: ex_func = arg2; ctx->suffix = ex_func->ex_func; ctx->suffix_free = ex_func->ex_free_func; break; case BIO_C_GET_SUFFIX: ex_func = arg2; ex_func->ex_func = ctx->suffix; ex_func->ex_free_func = ctx->suffix_free; break; case BIO_C_SET_EX_ARG: ctx->ex_arg = arg2; break; case BIO_C_GET_EX_ARG: *(void **)arg2 = ctx->ex_arg; break; case BIO_CTRL_FLUSH: if (next == NULL) return 0; /* Call post function if possible */ if (ctx->state == ASN1_STATE_HEADER) { if (!asn1_bio_setup_ex(b, ctx, ctx->suffix, ASN1_STATE_POST_COPY, ASN1_STATE_DONE)) return 0; } if (ctx->state == ASN1_STATE_POST_COPY) { ret = asn1_bio_flush_ex(b, ctx, ctx->suffix_free, ASN1_STATE_DONE); if (ret <= 0) return ret; } if (ctx->state == ASN1_STATE_DONE) return BIO_ctrl(next, cmd, arg1, arg2); else { BIO_clear_retry_flags(b); return 0; } default: if (next == NULL) return 0; return BIO_ctrl(next, cmd, arg1, arg2); } return ret; } static int asn1_bio_set_ex(BIO *b, int cmd, asn1_ps_func *ex_func, asn1_ps_func *ex_free_func) { BIO_ASN1_EX_FUNCS extmp; extmp.ex_func = ex_func; extmp.ex_free_func = ex_free_func; return BIO_ctrl(b, cmd, 0, &extmp); } static int asn1_bio_get_ex(BIO *b, int cmd, asn1_ps_func **ex_func, asn1_ps_func **ex_free_func) { BIO_ASN1_EX_FUNCS extmp; int ret; ret = BIO_ctrl(b, cmd, 0, &extmp); if (ret > 0) { *ex_func = extmp.ex_func; *ex_free_func = extmp.ex_free_func; } return ret; } int BIO_asn1_set_prefix(BIO *b, asn1_ps_func *prefix, asn1_ps_func *prefix_free) { return asn1_bio_set_ex(b, BIO_C_SET_PREFIX, prefix, prefix_free); } int BIO_asn1_get_prefix(BIO *b, asn1_ps_func **pprefix, asn1_ps_func **pprefix_free) { return asn1_bio_get_ex(b, BIO_C_GET_PREFIX, pprefix, pprefix_free); } int BIO_asn1_set_suffix(BIO *b, asn1_ps_func *suffix, asn1_ps_func *suffix_free) { return asn1_bio_set_ex(b, BIO_C_SET_SUFFIX, suffix, suffix_free); } int BIO_asn1_get_suffix(BIO *b, asn1_ps_func **psuffix, asn1_ps_func **psuffix_free) { return asn1_bio_get_ex(b, BIO_C_GET_SUFFIX, psuffix, psuffix_free); } openssl-1.1.1f/crypto/asn1/bio_ndef.c000066400000000000000000000124001364063235100174360ustar00rootroot00000000000000/* * Copyright 2008-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include /* Experimental NDEF ASN1 BIO support routines */ /* * The usage is quite simple, initialize an ASN1 structure, get a BIO from it * then any data written through the BIO will end up translated to * appropriate format on the fly. The data is streamed out and does *not* * need to be all held in memory at once. When the BIO is flushed the output * is finalized and any signatures etc written out. The BIO is a 'proper' * BIO and can handle non blocking I/O correctly. The usage is simple. The * implementation is *not*... */ /* BIO support data stored in the ASN1 BIO ex_arg */ typedef struct ndef_aux_st { /* ASN1 structure this BIO refers to */ ASN1_VALUE *val; const ASN1_ITEM *it; /* Top of the BIO chain */ BIO *ndef_bio; /* Output BIO */ BIO *out; /* Boundary where content is inserted */ unsigned char **boundary; /* DER buffer start */ unsigned char *derbuf; } NDEF_SUPPORT; static int ndef_prefix(BIO *b, unsigned char **pbuf, int *plen, void *parg); static int ndef_prefix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg); static int ndef_suffix(BIO *b, unsigned char **pbuf, int *plen, void *parg); static int ndef_suffix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg); BIO *BIO_new_NDEF(BIO *out, ASN1_VALUE *val, const ASN1_ITEM *it) { NDEF_SUPPORT *ndef_aux = NULL; BIO *asn_bio = NULL; const ASN1_AUX *aux = it->funcs; ASN1_STREAM_ARG sarg; if (!aux || !aux->asn1_cb) { ASN1err(ASN1_F_BIO_NEW_NDEF, ASN1_R_STREAMING_NOT_SUPPORTED); return NULL; } ndef_aux = OPENSSL_zalloc(sizeof(*ndef_aux)); asn_bio = BIO_new(BIO_f_asn1()); if (ndef_aux == NULL || asn_bio == NULL) goto err; /* ASN1 bio needs to be next to output BIO */ out = BIO_push(asn_bio, out); if (out == NULL) goto err; BIO_asn1_set_prefix(asn_bio, ndef_prefix, ndef_prefix_free); BIO_asn1_set_suffix(asn_bio, ndef_suffix, ndef_suffix_free); /* * Now let callback prepends any digest, cipher etc BIOs ASN1 structure * needs. */ sarg.out = out; sarg.ndef_bio = NULL; sarg.boundary = NULL; if (aux->asn1_cb(ASN1_OP_STREAM_PRE, &val, it, &sarg) <= 0) goto err; ndef_aux->val = val; ndef_aux->it = it; ndef_aux->ndef_bio = sarg.ndef_bio; ndef_aux->boundary = sarg.boundary; ndef_aux->out = out; BIO_ctrl(asn_bio, BIO_C_SET_EX_ARG, 0, ndef_aux); return sarg.ndef_bio; err: BIO_free(asn_bio); OPENSSL_free(ndef_aux); return NULL; } static int ndef_prefix(BIO *b, unsigned char **pbuf, int *plen, void *parg) { NDEF_SUPPORT *ndef_aux; unsigned char *p; int derlen; if (!parg) return 0; ndef_aux = *(NDEF_SUPPORT **)parg; derlen = ASN1_item_ndef_i2d(ndef_aux->val, NULL, ndef_aux->it); if ((p = OPENSSL_malloc(derlen)) == NULL) { ASN1err(ASN1_F_NDEF_PREFIX, ERR_R_MALLOC_FAILURE); return 0; } ndef_aux->derbuf = p; *pbuf = p; derlen = ASN1_item_ndef_i2d(ndef_aux->val, &p, ndef_aux->it); if (!*ndef_aux->boundary) return 0; *plen = *ndef_aux->boundary - *pbuf; return 1; } static int ndef_prefix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg) { NDEF_SUPPORT *ndef_aux; if (!parg) return 0; ndef_aux = *(NDEF_SUPPORT **)parg; OPENSSL_free(ndef_aux->derbuf); ndef_aux->derbuf = NULL; *pbuf = NULL; *plen = 0; return 1; } static int ndef_suffix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg) { NDEF_SUPPORT **pndef_aux = (NDEF_SUPPORT **)parg; if (!ndef_prefix_free(b, pbuf, plen, parg)) return 0; OPENSSL_free(*pndef_aux); *pndef_aux = NULL; return 1; } static int ndef_suffix(BIO *b, unsigned char **pbuf, int *plen, void *parg) { NDEF_SUPPORT *ndef_aux; unsigned char *p; int derlen; const ASN1_AUX *aux; ASN1_STREAM_ARG sarg; if (!parg) return 0; ndef_aux = *(NDEF_SUPPORT **)parg; aux = ndef_aux->it->funcs; /* Finalize structures */ sarg.ndef_bio = ndef_aux->ndef_bio; sarg.out = ndef_aux->out; sarg.boundary = ndef_aux->boundary; if (aux->asn1_cb(ASN1_OP_STREAM_POST, &ndef_aux->val, ndef_aux->it, &sarg) <= 0) return 0; derlen = ASN1_item_ndef_i2d(ndef_aux->val, NULL, ndef_aux->it); if ((p = OPENSSL_malloc(derlen)) == NULL) { ASN1err(ASN1_F_NDEF_SUFFIX, ERR_R_MALLOC_FAILURE); return 0; } ndef_aux->derbuf = p; *pbuf = p; derlen = ASN1_item_ndef_i2d(ndef_aux->val, &p, ndef_aux->it); if (!*ndef_aux->boundary) return 0; *pbuf = *ndef_aux->boundary; *plen = derlen - (*ndef_aux->boundary - ndef_aux->derbuf); return 1; } openssl-1.1.1f/crypto/asn1/build.info000066400000000000000000000015051364063235100175050ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ a_object.c a_bitstr.c a_utctm.c a_gentm.c a_time.c a_int.c a_octet.c \ a_print.c a_type.c a_dup.c a_d2i_fp.c a_i2d_fp.c \ a_utf8.c a_sign.c a_digest.c a_verify.c a_mbstr.c a_strex.c \ x_algor.c x_val.c x_sig.c x_bignum.c \ x_long.c x_int64.c x_info.c x_spki.c nsseq.c \ d2i_pu.c d2i_pr.c i2d_pu.c i2d_pr.c\ t_pkey.c t_spki.c t_bitst.c \ tasn_new.c tasn_fre.c tasn_enc.c tasn_dec.c tasn_utl.c tasn_typ.c \ tasn_prn.c tasn_scn.c ameth_lib.c \ f_int.c f_string.c n_pkey.c \ x_pkey.c bio_asn1.c bio_ndef.c asn_mime.c \ asn1_gen.c asn1_par.c asn1_lib.c asn1_err.c a_strnid.c \ evp_asn1.c asn_pack.c p5_pbe.c p5_pbev2.c p5_scrypt.c p8_pkey.c \ asn_moid.c asn_mstbl.c asn1_item_list.c openssl-1.1.1f/crypto/asn1/charmap.h000066400000000000000000000026401364063235100173160ustar00rootroot00000000000000/* * WARNING: do not edit! * Generated by crypto/asn1/charmap.pl * * Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define CHARTYPE_HOST_ANY 4096 #define CHARTYPE_HOST_DOT 8192 #define CHARTYPE_HOST_HYPHEN 16384 #define CHARTYPE_HOST_WILD 32768 /* * Mask of various character properties */ static const unsigned short char_type[] = { 1026, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 120, 0, 1, 40, 0, 0, 0, 16, 1040, 1040, 33792, 25, 25, 16400, 8208, 16, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 16, 9, 9, 16, 9, 16, 0, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 0, 1025, 0, 0, 0, 0, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 4112, 0, 0, 0, 0, 2 }; openssl-1.1.1f/crypto/asn1/charmap.pl000066400000000000000000000071231364063235100175030ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html use strict; my ($i, @arr); # Set up an array with the type of ASCII characters # Each set bit represents a character property. # RFC2253 character properties my $RFC2253_ESC = 1; # Character escaped with \ my $ESC_CTRL = 2; # Escaped control character # These are used with RFC1779 quoting using " my $NOESC_QUOTE = 8; # Not escaped if quoted my $PSTRING_CHAR = 0x10; # Valid PrintableString character my $RFC2253_FIRST_ESC = 0x20; # Escaped with \ if first character my $RFC2253_LAST_ESC = 0x40; # Escaped with \ if last character my $RFC2254_ESC = 0x400; # Character escaped \XX my $HOST_ANY = 0x1000; # Valid hostname character anywhere in label my $HOST_DOT = 0x2000; # Dot: hostname label separator my $HOST_HYPHEN = 0x4000; # Hyphen: not valid at start or end. my $HOST_WILD = 0x8000; # Wildcard character for($i = 0; $i < 128; $i++) { # Set the RFC2253 escape characters (control) $arr[$i] = 0; if(($i < 32) || ($i > 126)) { $arr[$i] |= $ESC_CTRL; } # Some PrintableString characters if( ( ( $i >= ord("a")) && ( $i <= ord("z")) ) || ( ( $i >= ord("A")) && ( $i <= ord("Z")) ) || ( ( $i >= ord("0")) && ( $i <= ord("9")) ) ) { $arr[$i] |= $PSTRING_CHAR | $HOST_ANY; } } # Now setup the rest # Remaining RFC2253 escaped characters $arr[ord(" ")] |= $NOESC_QUOTE | $RFC2253_FIRST_ESC | $RFC2253_LAST_ESC; $arr[ord("#")] |= $NOESC_QUOTE | $RFC2253_FIRST_ESC; $arr[ord(",")] |= $NOESC_QUOTE | $RFC2253_ESC; $arr[ord("+")] |= $NOESC_QUOTE | $RFC2253_ESC; $arr[ord("\"")] |= $RFC2253_ESC; $arr[ord("\\")] |= $RFC2253_ESC; $arr[ord("<")] |= $NOESC_QUOTE | $RFC2253_ESC; $arr[ord(">")] |= $NOESC_QUOTE | $RFC2253_ESC; $arr[ord(";")] |= $NOESC_QUOTE | $RFC2253_ESC; # Remaining RFC2254 characters $arr[0] |= $RFC2254_ESC; $arr[ord("(")] |= $RFC2254_ESC; $arr[ord(")")] |= $RFC2254_ESC; $arr[ord("*")] |= $RFC2254_ESC | $HOST_WILD; $arr[ord("\\")] |= $RFC2254_ESC; # Remaining PrintableString characters $arr[ord(" ")] |= $PSTRING_CHAR; $arr[ord("'")] |= $PSTRING_CHAR; $arr[ord("(")] |= $PSTRING_CHAR; $arr[ord(")")] |= $PSTRING_CHAR; $arr[ord("+")] |= $PSTRING_CHAR; $arr[ord(",")] |= $PSTRING_CHAR; $arr[ord("-")] |= $PSTRING_CHAR | $HOST_HYPHEN; $arr[ord(".")] |= $PSTRING_CHAR | $HOST_DOT; $arr[ord("/")] |= $PSTRING_CHAR; $arr[ord(":")] |= $PSTRING_CHAR; $arr[ord("=")] |= $PSTRING_CHAR; $arr[ord("?")] |= $PSTRING_CHAR; # Now generate the C code # Output year depends on the year of the script. my $YEAR = [localtime([stat($0)]->[9])]->[5] + 1900; print < #include "internal/cryptlib.h" #include #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **a, const unsigned char **pp, long length) { EVP_PKEY *ret; const unsigned char *p = *pp; if ((a == NULL) || (*a == NULL)) { if ((ret = EVP_PKEY_new()) == NULL) { ASN1err(ASN1_F_D2I_PRIVATEKEY, ERR_R_EVP_LIB); return NULL; } } else { ret = *a; #ifndef OPENSSL_NO_ENGINE ENGINE_finish(ret->engine); ret->engine = NULL; #endif } if (!EVP_PKEY_set_type(ret, type)) { ASN1err(ASN1_F_D2I_PRIVATEKEY, ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE); goto err; } if (!ret->ameth->old_priv_decode || !ret->ameth->old_priv_decode(ret, &p, length)) { if (ret->ameth->priv_decode) { EVP_PKEY *tmp; PKCS8_PRIV_KEY_INFO *p8 = NULL; p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length); if (!p8) goto err; tmp = EVP_PKCS82PKEY(p8); PKCS8_PRIV_KEY_INFO_free(p8); if (tmp == NULL) goto err; EVP_PKEY_free(ret); ret = tmp; } else { ASN1err(ASN1_F_D2I_PRIVATEKEY, ERR_R_ASN1_LIB); goto err; } } *pp = p; if (a != NULL) (*a) = ret; return ret; err: if (a == NULL || *a != ret) EVP_PKEY_free(ret); return NULL; } /* * This works like d2i_PrivateKey() except it automatically works out the * type */ EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **a, const unsigned char **pp, long length) { STACK_OF(ASN1_TYPE) *inkey; const unsigned char *p; int keytype; p = *pp; /* * Dirty trick: read in the ASN1 data into a STACK_OF(ASN1_TYPE): by * analyzing it we can determine the passed structure: this assumes the * input is surrounded by an ASN1 SEQUENCE. */ inkey = d2i_ASN1_SEQUENCE_ANY(NULL, &p, length); p = *pp; /* * Since we only need to discern "traditional format" RSA and DSA keys we * can just count the elements. */ if (sk_ASN1_TYPE_num(inkey) == 6) keytype = EVP_PKEY_DSA; else if (sk_ASN1_TYPE_num(inkey) == 4) keytype = EVP_PKEY_EC; else if (sk_ASN1_TYPE_num(inkey) == 3) { /* This seems to be PKCS8, not * traditional format */ PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length); EVP_PKEY *ret; sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free); if (!p8) { ASN1err(ASN1_F_D2I_AUTOPRIVATEKEY, ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE); return NULL; } ret = EVP_PKCS82PKEY(p8); PKCS8_PRIV_KEY_INFO_free(p8); if (ret == NULL) return NULL; *pp = p; if (a) { *a = ret; } return ret; } else keytype = EVP_PKEY_RSA; sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free); return d2i_PrivateKey(keytype, a, pp, length); } openssl-1.1.1f/crypto/asn1/d2i_pu.c000066400000000000000000000040101364063235100170510ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "crypto/evp.h" EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **a, const unsigned char **pp, long length) { EVP_PKEY *ret; if ((a == NULL) || (*a == NULL)) { if ((ret = EVP_PKEY_new()) == NULL) { ASN1err(ASN1_F_D2I_PUBLICKEY, ERR_R_EVP_LIB); return NULL; } } else ret = *a; if (type != EVP_PKEY_id(ret) && !EVP_PKEY_set_type(ret, type)) { ASN1err(ASN1_F_D2I_PUBLICKEY, ERR_R_EVP_LIB); goto err; } switch (EVP_PKEY_id(ret)) { #ifndef OPENSSL_NO_RSA case EVP_PKEY_RSA: if ((ret->pkey.rsa = d2i_RSAPublicKey(NULL, pp, length)) == NULL) { ASN1err(ASN1_F_D2I_PUBLICKEY, ERR_R_ASN1_LIB); goto err; } break; #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: /* TMP UGLY CAST */ if (!d2i_DSAPublicKey(&ret->pkey.dsa, pp, length)) { ASN1err(ASN1_F_D2I_PUBLICKEY, ERR_R_ASN1_LIB); goto err; } break; #endif #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: if (!o2i_ECPublicKey(&ret->pkey.ec, pp, length)) { ASN1err(ASN1_F_D2I_PUBLICKEY, ERR_R_ASN1_LIB); goto err; } break; #endif default: ASN1err(ASN1_F_D2I_PUBLICKEY, ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE); goto err; } if (a != NULL) (*a) = ret; return ret; err: if (a == NULL || *a != ret) EVP_PKEY_free(ret); return NULL; } openssl-1.1.1f/crypto/asn1/evp_asn1.c000066400000000000000000000056141364063235100174160ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include int ASN1_TYPE_set_octetstring(ASN1_TYPE *a, unsigned char *data, int len) { ASN1_STRING *os; if ((os = ASN1_OCTET_STRING_new()) == NULL) return 0; if (!ASN1_OCTET_STRING_set(os, data, len)) { ASN1_OCTET_STRING_free(os); return 0; } ASN1_TYPE_set(a, V_ASN1_OCTET_STRING, os); return 1; } /* int max_len: for returned value */ int ASN1_TYPE_get_octetstring(const ASN1_TYPE *a, unsigned char *data, int max_len) { int ret, num; const unsigned char *p; if ((a->type != V_ASN1_OCTET_STRING) || (a->value.octet_string == NULL)) { ASN1err(ASN1_F_ASN1_TYPE_GET_OCTETSTRING, ASN1_R_DATA_IS_WRONG); return -1; } p = ASN1_STRING_get0_data(a->value.octet_string); ret = ASN1_STRING_length(a->value.octet_string); if (ret < max_len) num = ret; else num = max_len; memcpy(data, p, num); return ret; } typedef struct { int32_t num; ASN1_OCTET_STRING *oct; } asn1_int_oct; ASN1_SEQUENCE(asn1_int_oct) = { ASN1_EMBED(asn1_int_oct, num, INT32), ASN1_SIMPLE(asn1_int_oct, oct, ASN1_OCTET_STRING) } static_ASN1_SEQUENCE_END(asn1_int_oct) DECLARE_ASN1_ITEM(asn1_int_oct) int ASN1_TYPE_set_int_octetstring(ASN1_TYPE *a, long num, unsigned char *data, int len) { asn1_int_oct atmp; ASN1_OCTET_STRING oct; atmp.num = num; atmp.oct = &oct; oct.data = data; oct.type = V_ASN1_OCTET_STRING; oct.length = len; oct.flags = 0; if (ASN1_TYPE_pack_sequence(ASN1_ITEM_rptr(asn1_int_oct), &atmp, &a)) return 1; return 0; } /* * we return the actual length... */ /* int max_len: for returned value */ int ASN1_TYPE_get_int_octetstring(const ASN1_TYPE *a, long *num, unsigned char *data, int max_len) { asn1_int_oct *atmp = NULL; int ret = -1, n; if ((a->type != V_ASN1_SEQUENCE) || (a->value.sequence == NULL)) { goto err; } atmp = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(asn1_int_oct), a); if (atmp == NULL) goto err; if (num != NULL) *num = atmp->num; ret = ASN1_STRING_length(atmp->oct); if (max_len > ret) n = ret; else n = max_len; if (data != NULL) memcpy(data, ASN1_STRING_get0_data(atmp->oct), n); if (ret == -1) { err: ASN1err(ASN1_F_ASN1_TYPE_GET_INT_OCTETSTRING, ASN1_R_DATA_IS_WRONG); } M_ASN1_free_of(atmp, asn1_int_oct); return ret; } openssl-1.1.1f/crypto/asn1/f_int.c000066400000000000000000000077021364063235100170010ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include int i2a_ASN1_INTEGER(BIO *bp, const ASN1_INTEGER *a) { int i, n = 0; static const char *h = "0123456789ABCDEF"; char buf[2]; if (a == NULL) return 0; if (a->type & V_ASN1_NEG) { if (BIO_write(bp, "-", 1) != 1) goto err; n = 1; } if (a->length == 0) { if (BIO_write(bp, "00", 2) != 2) goto err; n += 2; } else { for (i = 0; i < a->length; i++) { if ((i != 0) && (i % 35 == 0)) { if (BIO_write(bp, "\\\n", 2) != 2) goto err; n += 2; } buf[0] = h[((unsigned char)a->data[i] >> 4) & 0x0f]; buf[1] = h[((unsigned char)a->data[i]) & 0x0f]; if (BIO_write(bp, buf, 2) != 2) goto err; n += 2; } } return n; err: return -1; } int a2i_ASN1_INTEGER(BIO *bp, ASN1_INTEGER *bs, char *buf, int size) { int i, j, k, m, n, again, bufsize; unsigned char *s = NULL, *sp; unsigned char *bufp; int num = 0, slen = 0, first = 1; bs->type = V_ASN1_INTEGER; bufsize = BIO_gets(bp, buf, size); for (;;) { if (bufsize < 1) goto err; i = bufsize; if (buf[i - 1] == '\n') buf[--i] = '\0'; if (i == 0) goto err; if (buf[i - 1] == '\r') buf[--i] = '\0'; if (i == 0) goto err; again = (buf[i - 1] == '\\'); for (j = 0; j < i; j++) { if (!ossl_isxdigit(buf[j])) { i = j; break; } } buf[i] = '\0'; /* * We have now cleared all the crap off the end of the line */ if (i < 2) goto err; bufp = (unsigned char *)buf; if (first) { first = 0; if ((bufp[0] == '0') && (bufp[1] == '0')) { bufp += 2; i -= 2; } } k = 0; i -= again; if (i % 2 != 0) { ASN1err(ASN1_F_A2I_ASN1_INTEGER, ASN1_R_ODD_NUMBER_OF_CHARS); OPENSSL_free(s); return 0; } i /= 2; if (num + i > slen) { sp = OPENSSL_clear_realloc(s, slen, num + i * 2); if (sp == NULL) { ASN1err(ASN1_F_A2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); OPENSSL_free(s); return 0; } s = sp; slen = num + i * 2; } for (j = 0; j < i; j++, k += 2) { for (n = 0; n < 2; n++) { m = OPENSSL_hexchar2int(bufp[k + n]); if (m < 0) { ASN1err(ASN1_F_A2I_ASN1_INTEGER, ASN1_R_NON_HEX_CHARACTERS); goto err; } s[num + j] <<= 4; s[num + j] |= m; } } num += i; if (again) bufsize = BIO_gets(bp, buf, size); else break; } bs->length = num; bs->data = s; return 1; err: ASN1err(ASN1_F_A2I_ASN1_INTEGER, ASN1_R_SHORT_LINE); OPENSSL_free(s); return 0; } int i2a_ASN1_ENUMERATED(BIO *bp, const ASN1_ENUMERATED *a) { return i2a_ASN1_INTEGER(bp, a); } int a2i_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *bs, char *buf, int size) { int rv = a2i_ASN1_INTEGER(bp, bs, buf, size); if (rv == 1) bs->type = V_ASN1_INTEGER | (bs->type & V_ASN1_NEG); return rv; } openssl-1.1.1f/crypto/asn1/f_string.c000066400000000000000000000067001364063235100175120ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include int i2a_ASN1_STRING(BIO *bp, const ASN1_STRING *a, int type) { int i, n = 0; static const char *h = "0123456789ABCDEF"; char buf[2]; if (a == NULL) return 0; if (a->length == 0) { if (BIO_write(bp, "0", 1) != 1) goto err; n = 1; } else { for (i = 0; i < a->length; i++) { if ((i != 0) && (i % 35 == 0)) { if (BIO_write(bp, "\\\n", 2) != 2) goto err; n += 2; } buf[0] = h[((unsigned char)a->data[i] >> 4) & 0x0f]; buf[1] = h[((unsigned char)a->data[i]) & 0x0f]; if (BIO_write(bp, buf, 2) != 2) goto err; n += 2; } } return n; err: return -1; } int a2i_ASN1_STRING(BIO *bp, ASN1_STRING *bs, char *buf, int size) { int i, j, k, m, n, again, bufsize; unsigned char *s = NULL, *sp; unsigned char *bufp; int num = 0, slen = 0, first = 1; bufsize = BIO_gets(bp, buf, size); for (;;) { if (bufsize < 1) { if (first) break; else goto err; } first = 0; i = bufsize; if (buf[i - 1] == '\n') buf[--i] = '\0'; if (i == 0) goto err; if (buf[i - 1] == '\r') buf[--i] = '\0'; if (i == 0) goto err; again = (buf[i - 1] == '\\'); for (j = i - 1; j > 0; j--) { if (!ossl_isxdigit(buf[j])) { i = j; break; } } buf[i] = '\0'; /* * We have now cleared all the crap off the end of the line */ if (i < 2) goto err; bufp = (unsigned char *)buf; k = 0; i -= again; if (i % 2 != 0) { ASN1err(ASN1_F_A2I_ASN1_STRING, ASN1_R_ODD_NUMBER_OF_CHARS); OPENSSL_free(s); return 0; } i /= 2; if (num + i > slen) { sp = OPENSSL_realloc(s, (unsigned int)num + i * 2); if (sp == NULL) { ASN1err(ASN1_F_A2I_ASN1_STRING, ERR_R_MALLOC_FAILURE); OPENSSL_free(s); return 0; } s = sp; slen = num + i * 2; } for (j = 0; j < i; j++, k += 2) { for (n = 0; n < 2; n++) { m = OPENSSL_hexchar2int(bufp[k + n]); if (m < 0) { ASN1err(ASN1_F_A2I_ASN1_STRING, ASN1_R_NON_HEX_CHARACTERS); OPENSSL_free(s); return 0; } s[num + j] <<= 4; s[num + j] |= m; } } num += i; if (again) bufsize = BIO_gets(bp, buf, size); else break; } bs->length = num; bs->data = s; return 1; err: ASN1err(ASN1_F_A2I_ASN1_STRING, ASN1_R_SHORT_LINE); OPENSSL_free(s); return 0; } openssl-1.1.1f/crypto/asn1/i2d_pr.c000066400000000000000000000017561364063235100170640ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" #include "crypto/evp.h" int i2d_PrivateKey(EVP_PKEY *a, unsigned char **pp) { if (a->ameth && a->ameth->old_priv_encode) { return a->ameth->old_priv_encode(a, pp); } if (a->ameth && a->ameth->priv_encode) { PKCS8_PRIV_KEY_INFO *p8 = EVP_PKEY2PKCS8(a); int ret = 0; if (p8 != NULL) { ret = i2d_PKCS8_PRIV_KEY_INFO(p8, pp); PKCS8_PRIV_KEY_INFO_free(p8); } return ret; } ASN1err(ASN1_F_I2D_PRIVATEKEY, ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE); return -1; } openssl-1.1.1f/crypto/asn1/i2d_pu.c000066400000000000000000000020571364063235100170620ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include int i2d_PublicKey(EVP_PKEY *a, unsigned char **pp) { switch (EVP_PKEY_id(a)) { #ifndef OPENSSL_NO_RSA case EVP_PKEY_RSA: return i2d_RSAPublicKey(EVP_PKEY_get0_RSA(a), pp); #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: return i2d_DSAPublicKey(EVP_PKEY_get0_DSA(a), pp); #endif #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: return i2o_ECPublicKey(EVP_PKEY_get0_EC_KEY(a), pp); #endif default: ASN1err(ASN1_F_I2D_PUBLICKEY, ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE); return -1; } } openssl-1.1.1f/crypto/asn1/n_pkey.c000066400000000000000000000036151364063235100171660ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "openssl/opensslconf.h" #ifdef OPENSSL_NO_RSA NON_EMPTY_TRANSLATION_UNIT #else # include "internal/cryptlib.h" # include # include # include # include # include # include # ifndef OPENSSL_NO_RC4 typedef struct netscape_pkey_st { int32_t version; X509_ALGOR *algor; ASN1_OCTET_STRING *private_key; } NETSCAPE_PKEY; typedef struct netscape_encrypted_pkey_st { ASN1_OCTET_STRING *os; /* * This is the same structure as DigestInfo so use it: although this * isn't really anything to do with digests. */ X509_SIG *enckey; } NETSCAPE_ENCRYPTED_PKEY; ASN1_BROKEN_SEQUENCE(NETSCAPE_ENCRYPTED_PKEY) = { ASN1_SIMPLE(NETSCAPE_ENCRYPTED_PKEY, os, ASN1_OCTET_STRING), ASN1_SIMPLE(NETSCAPE_ENCRYPTED_PKEY, enckey, X509_SIG) } static_ASN1_BROKEN_SEQUENCE_END(NETSCAPE_ENCRYPTED_PKEY) DECLARE_ASN1_FUNCTIONS_const(NETSCAPE_ENCRYPTED_PKEY) DECLARE_ASN1_ENCODE_FUNCTIONS_const(NETSCAPE_ENCRYPTED_PKEY,NETSCAPE_ENCRYPTED_PKEY) IMPLEMENT_ASN1_FUNCTIONS_const(NETSCAPE_ENCRYPTED_PKEY) ASN1_SEQUENCE(NETSCAPE_PKEY) = { ASN1_EMBED(NETSCAPE_PKEY, version, INT32), ASN1_SIMPLE(NETSCAPE_PKEY, algor, X509_ALGOR), ASN1_SIMPLE(NETSCAPE_PKEY, private_key, ASN1_OCTET_STRING) } static_ASN1_SEQUENCE_END(NETSCAPE_PKEY) DECLARE_ASN1_FUNCTIONS_const(NETSCAPE_PKEY) DECLARE_ASN1_ENCODE_FUNCTIONS_const(NETSCAPE_PKEY,NETSCAPE_PKEY) IMPLEMENT_ASN1_FUNCTIONS_const(NETSCAPE_PKEY) # endif /* OPENSSL_NO_RC4 */ #endif openssl-1.1.1f/crypto/asn1/nsseq.c000066400000000000000000000021651364063235100170310ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include static int nsseq_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_NEW_POST) { NETSCAPE_CERT_SEQUENCE *nsseq; nsseq = (NETSCAPE_CERT_SEQUENCE *)*pval; nsseq->type = OBJ_nid2obj(NID_netscape_cert_sequence); } return 1; } /* Netscape certificate sequence structure */ ASN1_SEQUENCE_cb(NETSCAPE_CERT_SEQUENCE, nsseq_cb) = { ASN1_SIMPLE(NETSCAPE_CERT_SEQUENCE, type, ASN1_OBJECT), ASN1_EXP_SEQUENCE_OF_OPT(NETSCAPE_CERT_SEQUENCE, certs, X509, 0) } ASN1_SEQUENCE_END_cb(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE) IMPLEMENT_ASN1_FUNCTIONS(NETSCAPE_CERT_SEQUENCE) openssl-1.1.1f/crypto/asn1/p5_pbe.c000066400000000000000000000050271364063235100170520ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include /* PKCS#5 password based encryption structure */ ASN1_SEQUENCE(PBEPARAM) = { ASN1_SIMPLE(PBEPARAM, salt, ASN1_OCTET_STRING), ASN1_SIMPLE(PBEPARAM, iter, ASN1_INTEGER) } ASN1_SEQUENCE_END(PBEPARAM) IMPLEMENT_ASN1_FUNCTIONS(PBEPARAM) /* Set an algorithm identifier for a PKCS#5 PBE algorithm */ int PKCS5_pbe_set0_algor(X509_ALGOR *algor, int alg, int iter, const unsigned char *salt, int saltlen) { PBEPARAM *pbe = NULL; ASN1_STRING *pbe_str = NULL; unsigned char *sstr = NULL; pbe = PBEPARAM_new(); if (pbe == NULL) { ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR, ERR_R_MALLOC_FAILURE); goto err; } if (iter <= 0) iter = PKCS5_DEFAULT_ITER; if (!ASN1_INTEGER_set(pbe->iter, iter)) { ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR, ERR_R_MALLOC_FAILURE); goto err; } if (!saltlen) saltlen = PKCS5_SALT_LEN; sstr = OPENSSL_malloc(saltlen); if (sstr == NULL) { ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR, ERR_R_MALLOC_FAILURE); goto err; } if (salt) memcpy(sstr, salt, saltlen); else if (RAND_bytes(sstr, saltlen) <= 0) goto err; ASN1_STRING_set0(pbe->salt, sstr, saltlen); sstr = NULL; if (!ASN1_item_pack(pbe, ASN1_ITEM_rptr(PBEPARAM), &pbe_str)) { ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR, ERR_R_MALLOC_FAILURE); goto err; } PBEPARAM_free(pbe); pbe = NULL; if (X509_ALGOR_set0(algor, OBJ_nid2obj(alg), V_ASN1_SEQUENCE, pbe_str)) return 1; err: OPENSSL_free(sstr); PBEPARAM_free(pbe); ASN1_STRING_free(pbe_str); return 0; } /* Return an algorithm identifier for a PKCS#5 PBE algorithm */ X509_ALGOR *PKCS5_pbe_set(int alg, int iter, const unsigned char *salt, int saltlen) { X509_ALGOR *ret; ret = X509_ALGOR_new(); if (ret == NULL) { ASN1err(ASN1_F_PKCS5_PBE_SET, ERR_R_MALLOC_FAILURE); return NULL; } if (PKCS5_pbe_set0_algor(ret, alg, iter, salt, saltlen)) return ret; X509_ALGOR_free(ret); return NULL; } openssl-1.1.1f/crypto/asn1/p5_pbev2.c000066400000000000000000000137731364063235100173310ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include /* PKCS#5 v2.0 password based encryption structures */ ASN1_SEQUENCE(PBE2PARAM) = { ASN1_SIMPLE(PBE2PARAM, keyfunc, X509_ALGOR), ASN1_SIMPLE(PBE2PARAM, encryption, X509_ALGOR) } ASN1_SEQUENCE_END(PBE2PARAM) IMPLEMENT_ASN1_FUNCTIONS(PBE2PARAM) ASN1_SEQUENCE(PBKDF2PARAM) = { ASN1_SIMPLE(PBKDF2PARAM, salt, ASN1_ANY), ASN1_SIMPLE(PBKDF2PARAM, iter, ASN1_INTEGER), ASN1_OPT(PBKDF2PARAM, keylength, ASN1_INTEGER), ASN1_OPT(PBKDF2PARAM, prf, X509_ALGOR) } ASN1_SEQUENCE_END(PBKDF2PARAM) IMPLEMENT_ASN1_FUNCTIONS(PBKDF2PARAM) /* * Return an algorithm identifier for a PKCS#5 v2.0 PBE algorithm: yes I know * this is horrible! Extended version to allow application supplied PRF NID * and IV. */ X509_ALGOR *PKCS5_pbe2_set_iv(const EVP_CIPHER *cipher, int iter, unsigned char *salt, int saltlen, unsigned char *aiv, int prf_nid) { X509_ALGOR *scheme = NULL, *ret = NULL; int alg_nid, keylen; EVP_CIPHER_CTX *ctx = NULL; unsigned char iv[EVP_MAX_IV_LENGTH]; PBE2PARAM *pbe2 = NULL; alg_nid = EVP_CIPHER_type(cipher); if (alg_nid == NID_undef) { ASN1err(ASN1_F_PKCS5_PBE2_SET_IV, ASN1_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); goto err; } if ((pbe2 = PBE2PARAM_new()) == NULL) goto merr; /* Setup the AlgorithmIdentifier for the encryption scheme */ scheme = pbe2->encryption; scheme->algorithm = OBJ_nid2obj(alg_nid); if ((scheme->parameter = ASN1_TYPE_new()) == NULL) goto merr; /* Create random IV */ if (EVP_CIPHER_iv_length(cipher)) { if (aiv) memcpy(iv, aiv, EVP_CIPHER_iv_length(cipher)); else if (RAND_bytes(iv, EVP_CIPHER_iv_length(cipher)) <= 0) goto err; } ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) goto merr; /* Dummy cipherinit to just setup the IV, and PRF */ if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, iv, 0)) goto err; if (EVP_CIPHER_param_to_asn1(ctx, scheme->parameter) <= 0) { ASN1err(ASN1_F_PKCS5_PBE2_SET_IV, ASN1_R_ERROR_SETTING_CIPHER_PARAMS); goto err; } /* * If prf NID unspecified see if cipher has a preference. An error is OK * here: just means use default PRF. */ if ((prf_nid == -1) && EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_PBE_PRF_NID, 0, &prf_nid) <= 0) { ERR_clear_error(); prf_nid = NID_hmacWithSHA256; } EVP_CIPHER_CTX_free(ctx); ctx = NULL; /* If its RC2 then we'd better setup the key length */ if (alg_nid == NID_rc2_cbc) keylen = EVP_CIPHER_key_length(cipher); else keylen = -1; /* Setup keyfunc */ X509_ALGOR_free(pbe2->keyfunc); pbe2->keyfunc = PKCS5_pbkdf2_set(iter, salt, saltlen, prf_nid, keylen); if (!pbe2->keyfunc) goto merr; /* Now set up top level AlgorithmIdentifier */ if ((ret = X509_ALGOR_new()) == NULL) goto merr; ret->algorithm = OBJ_nid2obj(NID_pbes2); /* Encode PBE2PARAM into parameter */ if (!ASN1_TYPE_pack_sequence(ASN1_ITEM_rptr(PBE2PARAM), pbe2, &ret->parameter)) goto merr; PBE2PARAM_free(pbe2); pbe2 = NULL; return ret; merr: ASN1err(ASN1_F_PKCS5_PBE2_SET_IV, ERR_R_MALLOC_FAILURE); err: EVP_CIPHER_CTX_free(ctx); PBE2PARAM_free(pbe2); /* Note 'scheme' is freed as part of pbe2 */ X509_ALGOR_free(ret); return NULL; } X509_ALGOR *PKCS5_pbe2_set(const EVP_CIPHER *cipher, int iter, unsigned char *salt, int saltlen) { return PKCS5_pbe2_set_iv(cipher, iter, salt, saltlen, NULL, -1); } X509_ALGOR *PKCS5_pbkdf2_set(int iter, unsigned char *salt, int saltlen, int prf_nid, int keylen) { X509_ALGOR *keyfunc = NULL; PBKDF2PARAM *kdf = NULL; ASN1_OCTET_STRING *osalt = NULL; if ((kdf = PBKDF2PARAM_new()) == NULL) goto merr; if ((osalt = ASN1_OCTET_STRING_new()) == NULL) goto merr; kdf->salt->value.octet_string = osalt; kdf->salt->type = V_ASN1_OCTET_STRING; if (saltlen == 0) saltlen = PKCS5_SALT_LEN; if ((osalt->data = OPENSSL_malloc(saltlen)) == NULL) goto merr; osalt->length = saltlen; if (salt) memcpy(osalt->data, salt, saltlen); else if (RAND_bytes(osalt->data, saltlen) <= 0) goto merr; if (iter <= 0) iter = PKCS5_DEFAULT_ITER; if (!ASN1_INTEGER_set(kdf->iter, iter)) goto merr; /* If have a key len set it up */ if (keylen > 0) { if ((kdf->keylength = ASN1_INTEGER_new()) == NULL) goto merr; if (!ASN1_INTEGER_set(kdf->keylength, keylen)) goto merr; } /* prf can stay NULL if we are using hmacWithSHA1 */ if (prf_nid > 0 && prf_nid != NID_hmacWithSHA1) { kdf->prf = X509_ALGOR_new(); if (kdf->prf == NULL) goto merr; X509_ALGOR_set0(kdf->prf, OBJ_nid2obj(prf_nid), V_ASN1_NULL, NULL); } /* Finally setup the keyfunc structure */ keyfunc = X509_ALGOR_new(); if (keyfunc == NULL) goto merr; keyfunc->algorithm = OBJ_nid2obj(NID_id_pbkdf2); /* Encode PBKDF2PARAM into parameter of pbe2 */ if (!ASN1_TYPE_pack_sequence(ASN1_ITEM_rptr(PBKDF2PARAM), kdf, &keyfunc->parameter)) goto merr; PBKDF2PARAM_free(kdf); return keyfunc; merr: ASN1err(ASN1_F_PKCS5_PBKDF2_SET, ERR_R_MALLOC_FAILURE); PBKDF2PARAM_free(kdf); X509_ALGOR_free(keyfunc); return NULL; } openssl-1.1.1f/crypto/asn1/p5_scrypt.c000066400000000000000000000174111364063235100176300ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #ifndef OPENSSL_NO_SCRYPT /* PKCS#5 scrypt password based encryption structures */ ASN1_SEQUENCE(SCRYPT_PARAMS) = { ASN1_SIMPLE(SCRYPT_PARAMS, salt, ASN1_OCTET_STRING), ASN1_SIMPLE(SCRYPT_PARAMS, costParameter, ASN1_INTEGER), ASN1_SIMPLE(SCRYPT_PARAMS, blockSize, ASN1_INTEGER), ASN1_SIMPLE(SCRYPT_PARAMS, parallelizationParameter, ASN1_INTEGER), ASN1_OPT(SCRYPT_PARAMS, keyLength, ASN1_INTEGER), } ASN1_SEQUENCE_END(SCRYPT_PARAMS) IMPLEMENT_ASN1_FUNCTIONS(SCRYPT_PARAMS) static X509_ALGOR *pkcs5_scrypt_set(const unsigned char *salt, size_t saltlen, size_t keylen, uint64_t N, uint64_t r, uint64_t p); /* * Return an algorithm identifier for a PKCS#5 v2.0 PBE algorithm using scrypt */ X509_ALGOR *PKCS5_pbe2_set_scrypt(const EVP_CIPHER *cipher, const unsigned char *salt, int saltlen, unsigned char *aiv, uint64_t N, uint64_t r, uint64_t p) { X509_ALGOR *scheme = NULL, *ret = NULL; int alg_nid; size_t keylen = 0; EVP_CIPHER_CTX *ctx = NULL; unsigned char iv[EVP_MAX_IV_LENGTH]; PBE2PARAM *pbe2 = NULL; if (!cipher) { ASN1err(ASN1_F_PKCS5_PBE2_SET_SCRYPT, ERR_R_PASSED_NULL_PARAMETER); goto err; } if (EVP_PBE_scrypt(NULL, 0, NULL, 0, N, r, p, 0, NULL, 0) == 0) { ASN1err(ASN1_F_PKCS5_PBE2_SET_SCRYPT, ASN1_R_INVALID_SCRYPT_PARAMETERS); goto err; } alg_nid = EVP_CIPHER_type(cipher); if (alg_nid == NID_undef) { ASN1err(ASN1_F_PKCS5_PBE2_SET_SCRYPT, ASN1_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); goto err; } pbe2 = PBE2PARAM_new(); if (pbe2 == NULL) goto merr; /* Setup the AlgorithmIdentifier for the encryption scheme */ scheme = pbe2->encryption; scheme->algorithm = OBJ_nid2obj(alg_nid); scheme->parameter = ASN1_TYPE_new(); if (scheme->parameter == NULL) goto merr; /* Create random IV */ if (EVP_CIPHER_iv_length(cipher)) { if (aiv) memcpy(iv, aiv, EVP_CIPHER_iv_length(cipher)); else if (RAND_bytes(iv, EVP_CIPHER_iv_length(cipher)) <= 0) goto err; } ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) goto merr; /* Dummy cipherinit to just setup the IV */ if (EVP_CipherInit_ex(ctx, cipher, NULL, NULL, iv, 0) == 0) goto err; if (EVP_CIPHER_param_to_asn1(ctx, scheme->parameter) <= 0) { ASN1err(ASN1_F_PKCS5_PBE2_SET_SCRYPT, ASN1_R_ERROR_SETTING_CIPHER_PARAMS); goto err; } EVP_CIPHER_CTX_free(ctx); ctx = NULL; /* If its RC2 then we'd better setup the key length */ if (alg_nid == NID_rc2_cbc) keylen = EVP_CIPHER_key_length(cipher); /* Setup keyfunc */ X509_ALGOR_free(pbe2->keyfunc); pbe2->keyfunc = pkcs5_scrypt_set(salt, saltlen, keylen, N, r, p); if (pbe2->keyfunc == NULL) goto merr; /* Now set up top level AlgorithmIdentifier */ ret = X509_ALGOR_new(); if (ret == NULL) goto merr; ret->algorithm = OBJ_nid2obj(NID_pbes2); /* Encode PBE2PARAM into parameter */ if (ASN1_TYPE_pack_sequence(ASN1_ITEM_rptr(PBE2PARAM), pbe2, &ret->parameter) == NULL) goto merr; PBE2PARAM_free(pbe2); pbe2 = NULL; return ret; merr: ASN1err(ASN1_F_PKCS5_PBE2_SET_SCRYPT, ERR_R_MALLOC_FAILURE); err: PBE2PARAM_free(pbe2); X509_ALGOR_free(ret); EVP_CIPHER_CTX_free(ctx); return NULL; } static X509_ALGOR *pkcs5_scrypt_set(const unsigned char *salt, size_t saltlen, size_t keylen, uint64_t N, uint64_t r, uint64_t p) { X509_ALGOR *keyfunc = NULL; SCRYPT_PARAMS *sparam = SCRYPT_PARAMS_new(); if (sparam == NULL) goto merr; if (!saltlen) saltlen = PKCS5_SALT_LEN; /* This will either copy salt or grow the buffer */ if (ASN1_STRING_set(sparam->salt, salt, saltlen) == 0) goto merr; if (salt == NULL && RAND_bytes(sparam->salt->data, saltlen) <= 0) goto err; if (ASN1_INTEGER_set_uint64(sparam->costParameter, N) == 0) goto merr; if (ASN1_INTEGER_set_uint64(sparam->blockSize, r) == 0) goto merr; if (ASN1_INTEGER_set_uint64(sparam->parallelizationParameter, p) == 0) goto merr; /* If have a key len set it up */ if (keylen > 0) { sparam->keyLength = ASN1_INTEGER_new(); if (sparam->keyLength == NULL) goto merr; if (ASN1_INTEGER_set_int64(sparam->keyLength, keylen) == 0) goto merr; } /* Finally setup the keyfunc structure */ keyfunc = X509_ALGOR_new(); if (keyfunc == NULL) goto merr; keyfunc->algorithm = OBJ_nid2obj(NID_id_scrypt); /* Encode SCRYPT_PARAMS into parameter of pbe2 */ if (ASN1_TYPE_pack_sequence(ASN1_ITEM_rptr(SCRYPT_PARAMS), sparam, &keyfunc->parameter) == NULL) goto merr; SCRYPT_PARAMS_free(sparam); return keyfunc; merr: ASN1err(ASN1_F_PKCS5_SCRYPT_SET, ERR_R_MALLOC_FAILURE); err: SCRYPT_PARAMS_free(sparam); X509_ALGOR_free(keyfunc); return NULL; } int PKCS5_v2_scrypt_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de) { unsigned char *salt, key[EVP_MAX_KEY_LENGTH]; uint64_t p, r, N; size_t saltlen; size_t keylen = 0; int rv = 0; SCRYPT_PARAMS *sparam = NULL; if (EVP_CIPHER_CTX_cipher(ctx) == NULL) { EVPerr(EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN, EVP_R_NO_CIPHER_SET); goto err; } /* Decode parameter */ sparam = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(SCRYPT_PARAMS), param); if (sparam == NULL) { EVPerr(EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN, EVP_R_DECODE_ERROR); goto err; } keylen = EVP_CIPHER_CTX_key_length(ctx); /* Now check the parameters of sparam */ if (sparam->keyLength) { uint64_t spkeylen; if ((ASN1_INTEGER_get_uint64(&spkeylen, sparam->keyLength) == 0) || (spkeylen != keylen)) { EVPerr(EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN, EVP_R_UNSUPPORTED_KEYLENGTH); goto err; } } /* Check all parameters fit in uint64_t and are acceptable to scrypt */ if (ASN1_INTEGER_get_uint64(&N, sparam->costParameter) == 0 || ASN1_INTEGER_get_uint64(&r, sparam->blockSize) == 0 || ASN1_INTEGER_get_uint64(&p, sparam->parallelizationParameter) == 0 || EVP_PBE_scrypt(NULL, 0, NULL, 0, N, r, p, 0, NULL, 0) == 0) { EVPerr(EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN, EVP_R_ILLEGAL_SCRYPT_PARAMETERS); goto err; } /* it seems that its all OK */ salt = sparam->salt->data; saltlen = sparam->salt->length; if (EVP_PBE_scrypt(pass, passlen, salt, saltlen, N, r, p, 0, key, keylen) == 0) goto err; rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de); err: if (keylen) OPENSSL_cleanse(key, keylen); SCRYPT_PARAMS_free(sparam); return rv; } #endif /* OPENSSL_NO_SCRYPT */ openssl-1.1.1f/crypto/asn1/p8_pkey.c000066400000000000000000000050371364063235100172600ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" /* Minor tweak to operation: zero private key data */ static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { /* Since the structure must still be valid use ASN1_OP_FREE_PRE */ if (operation == ASN1_OP_FREE_PRE) { PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval; if (key->pkey) OPENSSL_cleanse(key->pkey->data, key->pkey->length); } return 1; } ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = { ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING), ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0) } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO) int PKCS8_pkey_set0(PKCS8_PRIV_KEY_INFO *priv, ASN1_OBJECT *aobj, int version, int ptype, void *pval, unsigned char *penc, int penclen) { if (version >= 0) { if (!ASN1_INTEGER_set(priv->version, version)) return 0; } if (!X509_ALGOR_set0(priv->pkeyalg, aobj, ptype, pval)) return 0; if (penc) ASN1_STRING_set0(priv->pkey, penc, penclen); return 1; } int PKCS8_pkey_get0(const ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, const X509_ALGOR **pa, const PKCS8_PRIV_KEY_INFO *p8) { if (ppkalg) *ppkalg = p8->pkeyalg->algorithm; if (pk) { *pk = ASN1_STRING_get0_data(p8->pkey); *ppklen = ASN1_STRING_length(p8->pkey); } if (pa) *pa = p8->pkeyalg; return 1; } const STACK_OF(X509_ATTRIBUTE) * PKCS8_pkey_get0_attrs(const PKCS8_PRIV_KEY_INFO *p8) { return p8->attributes; } int PKCS8_pkey_add1_attr_by_NID(PKCS8_PRIV_KEY_INFO *p8, int nid, int type, const unsigned char *bytes, int len) { if (X509at_add1_attr_by_NID(&p8->attributes, nid, type, bytes, len) != NULL) return 1; return 0; } openssl-1.1.1f/crypto/asn1/standard_methods.h000066400000000000000000000025521364063235100212300ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This table MUST be kept in ascending order of the NID each method * represents (corresponding to the pkey_id field) as OBJ_bsearch * is used to search it. */ static const EVP_PKEY_ASN1_METHOD *standard_methods[] = { #ifndef OPENSSL_NO_RSA &rsa_asn1_meths[0], &rsa_asn1_meths[1], #endif #ifndef OPENSSL_NO_DH &dh_asn1_meth, #endif #ifndef OPENSSL_NO_DSA &dsa_asn1_meths[0], &dsa_asn1_meths[1], &dsa_asn1_meths[2], &dsa_asn1_meths[3], &dsa_asn1_meths[4], #endif #ifndef OPENSSL_NO_EC &eckey_asn1_meth, #endif &hmac_asn1_meth, #ifndef OPENSSL_NO_CMAC &cmac_asn1_meth, #endif #ifndef OPENSSL_NO_RSA &rsa_pss_asn1_meth, #endif #ifndef OPENSSL_NO_DH &dhx_asn1_meth, #endif #ifndef OPENSSL_NO_EC &ecx25519_asn1_meth, &ecx448_asn1_meth, #endif #ifndef OPENSSL_NO_POLY1305 &poly1305_asn1_meth, #endif #ifndef OPENSSL_NO_SIPHASH &siphash_asn1_meth, #endif #ifndef OPENSSL_NO_EC &ed25519_asn1_meth, &ed448_asn1_meth, #endif #ifndef OPENSSL_NO_SM2 &sm2_asn1_meth, #endif }; openssl-1.1.1f/crypto/asn1/t_bitst.c000066400000000000000000000030711364063235100173450ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include int ASN1_BIT_STRING_name_print(BIO *out, ASN1_BIT_STRING *bs, BIT_STRING_BITNAME *tbl, int indent) { BIT_STRING_BITNAME *bnam; char first = 1; BIO_printf(out, "%*s", indent, ""); for (bnam = tbl; bnam->lname; bnam++) { if (ASN1_BIT_STRING_get_bit(bs, bnam->bitnum)) { if (!first) BIO_puts(out, ", "); BIO_puts(out, bnam->lname); first = 0; } } BIO_puts(out, "\n"); return 1; } int ASN1_BIT_STRING_set_asc(ASN1_BIT_STRING *bs, const char *name, int value, BIT_STRING_BITNAME *tbl) { int bitnum; bitnum = ASN1_BIT_STRING_num_asc(name, tbl); if (bitnum < 0) return 0; if (bs) { if (!ASN1_BIT_STRING_set_bit(bs, bitnum, value)) return 0; } return 1; } int ASN1_BIT_STRING_num_asc(const char *name, BIT_STRING_BITNAME *tbl) { BIT_STRING_BITNAME *bnam; for (bnam = tbl; bnam->lname; bnam++) { if ((strcmp(bnam->sname, name) == 0) || (strcmp(bnam->lname, name) == 0)) return bnam->bitnum; } return -1; } openssl-1.1.1f/crypto/asn1/t_pkey.c000066400000000000000000000050251364063235100171710ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/bn.h" /* Number of octets per line */ #define ASN1_BUF_PRINT_WIDTH 15 /* Maximum indent */ #define ASN1_PRINT_MAX_INDENT 128 int ASN1_buf_print(BIO *bp, const unsigned char *buf, size_t buflen, int indent) { size_t i; for (i = 0; i < buflen; i++) { if ((i % ASN1_BUF_PRINT_WIDTH) == 0) { if (i > 0 && BIO_puts(bp, "\n") <= 0) return 0; if (!BIO_indent(bp, indent, ASN1_PRINT_MAX_INDENT)) return 0; } /* * Use colon separators for each octet for compatibility as * this function is used to print out key components. */ if (BIO_printf(bp, "%02x%s", buf[i], (i == buflen - 1) ? "" : ":") <= 0) return 0; } if (BIO_write(bp, "\n", 1) <= 0) return 0; return 1; } int ASN1_bn_print(BIO *bp, const char *number, const BIGNUM *num, unsigned char *ign, int indent) { int n, rv = 0; const char *neg; unsigned char *buf = NULL, *tmp = NULL; int buflen; if (num == NULL) return 1; neg = BN_is_negative(num) ? "-" : ""; if (!BIO_indent(bp, indent, ASN1_PRINT_MAX_INDENT)) return 0; if (BN_is_zero(num)) { if (BIO_printf(bp, "%s 0\n", number) <= 0) return 0; return 1; } if (BN_num_bytes(num) <= BN_BYTES) { if (BIO_printf(bp, "%s %s%lu (%s0x%lx)\n", number, neg, (unsigned long)bn_get_words(num)[0], neg, (unsigned long)bn_get_words(num)[0]) <= 0) return 0; return 1; } buflen = BN_num_bytes(num) + 1; buf = tmp = OPENSSL_malloc(buflen); if (buf == NULL) goto err; buf[0] = 0; if (BIO_printf(bp, "%s%s\n", number, (neg[0] == '-') ? " (Negative)" : "") <= 0) goto err; n = BN_bn2bin(num, buf + 1); if (buf[1] & 0x80) n++; else tmp++; if (ASN1_buf_print(bp, tmp, n, indent + 4) == 0) goto err; rv = 1; err: OPENSSL_clear_free(buf, buflen); return rv; } openssl-1.1.1f/crypto/asn1/t_spki.c000066400000000000000000000033641364063235100171730ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include /* Print out an SPKI */ int NETSCAPE_SPKI_print(BIO *out, NETSCAPE_SPKI *spki) { EVP_PKEY *pkey; ASN1_IA5STRING *chal; ASN1_OBJECT *spkioid; int i, n; char *s; BIO_printf(out, "Netscape SPKI:\n"); X509_PUBKEY_get0_param(&spkioid, NULL, NULL, NULL, spki->spkac->pubkey); i = OBJ_obj2nid(spkioid); BIO_printf(out, " Public Key Algorithm: %s\n", (i == NID_undef) ? "UNKNOWN" : OBJ_nid2ln(i)); pkey = X509_PUBKEY_get(spki->spkac->pubkey); if (!pkey) BIO_printf(out, " Unable to load public key\n"); else { EVP_PKEY_print_public(out, pkey, 4, NULL); EVP_PKEY_free(pkey); } chal = spki->spkac->challenge; if (chal->length) BIO_printf(out, " Challenge String: %s\n", chal->data); i = OBJ_obj2nid(spki->sig_algor.algorithm); BIO_printf(out, " Signature Algorithm: %s", (i == NID_undef) ? "UNKNOWN" : OBJ_nid2ln(i)); n = spki->signature->length; s = (char *)spki->signature->data; for (i = 0; i < n; i++) { if ((i % 18) == 0) BIO_write(out, "\n ", 7); BIO_printf(out, "%02x%s", (unsigned char)s[i], ((i + 1) == n) ? "" : ":"); } BIO_write(out, "\n", 1); return 1; } openssl-1.1.1f/crypto/asn1/tasn_dec.c000066400000000000000000001106311364063235100174560ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "internal/numbers.h" #include "asn1_local.h" /* * Constructed types with a recursive definition (such as can be found in PKCS7) * could eventually exceed the stack given malicious input with excessive * recursion. Therefore we limit the stack depth. This is the maximum number of * recursive invocations of asn1_item_embed_d2i(). */ #define ASN1_MAX_CONSTRUCTED_NEST 30 static int asn1_item_embed_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx, int depth); static int asn1_check_eoc(const unsigned char **in, long len); static int asn1_find_end(const unsigned char **in, long len, char inf); static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len, char inf, int tag, int aclass, int depth); static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen); static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass, char *inf, char *cst, const unsigned char **in, long len, int exptag, int expclass, char opt, ASN1_TLC *ctx); static int asn1_template_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_TEMPLATE *tt, char opt, ASN1_TLC *ctx, int depth); static int asn1_template_noexp_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_TEMPLATE *tt, char opt, ASN1_TLC *ctx, int depth); static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx); static int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it); /* Table to convert tags to bit values, used for MSTRING type */ static const unsigned long tag2bit[32] = { /* tags 0 - 3 */ 0, 0, 0, B_ASN1_BIT_STRING, /* tags 4- 7 */ B_ASN1_OCTET_STRING, 0, 0, B_ASN1_UNKNOWN, /* tags 8-11 */ B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, /* tags 12-15 */ B_ASN1_UTF8STRING, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, /* tags 16-19 */ B_ASN1_SEQUENCE, 0, B_ASN1_NUMERICSTRING, B_ASN1_PRINTABLESTRING, /* tags 20-22 */ B_ASN1_T61STRING, B_ASN1_VIDEOTEXSTRING, B_ASN1_IA5STRING, /* tags 23-24 */ B_ASN1_UTCTIME, B_ASN1_GENERALIZEDTIME, /* tags 25-27 */ B_ASN1_GRAPHICSTRING, B_ASN1_ISO64STRING, B_ASN1_GENERALSTRING, /* tags 28-31 */ B_ASN1_UNIVERSALSTRING, B_ASN1_UNKNOWN, B_ASN1_BMPSTRING, B_ASN1_UNKNOWN, }; unsigned long ASN1_tag2bit(int tag) { if ((tag < 0) || (tag > 30)) return 0; return tag2bit[tag]; } /* Macro to initialize and invalidate the cache */ #define asn1_tlc_clear(c) if (c) (c)->valid = 0 /* Version to avoid compiler warning about 'c' always non-NULL */ #define asn1_tlc_clear_nc(c) (c)->valid = 0 /* * Decode an ASN1 item, this currently behaves just like a standard 'd2i' * function. 'in' points to a buffer to read the data from, in future we * will have more advanced versions that can input data a piece at a time and * this will simply be a special case. */ ASN1_VALUE *ASN1_item_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it) { ASN1_TLC c; ASN1_VALUE *ptmpval = NULL; if (!pval) pval = &ptmpval; asn1_tlc_clear_nc(&c); if (ASN1_item_ex_d2i(pval, in, len, it, -1, 0, 0, &c) > 0) return *pval; return NULL; } int ASN1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx) { int rv; rv = asn1_item_embed_d2i(pval, in, len, it, tag, aclass, opt, ctx, 0); if (rv <= 0) ASN1_item_ex_free(pval, it); return rv; } /* * Decode an item, taking care of IMPLICIT tagging, if any. If 'opt' set and * tag mismatch return -1 to handle OPTIONAL */ static int asn1_item_embed_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx, int depth) { const ASN1_TEMPLATE *tt, *errtt = NULL; const ASN1_EXTERN_FUNCS *ef; const ASN1_AUX *aux = it->funcs; ASN1_aux_cb *asn1_cb; const unsigned char *p = NULL, *q; unsigned char oclass; char seq_eoc, seq_nolen, cst, isopt; long tmplen; int i; int otag; int ret = 0; ASN1_VALUE **pchptr; if (!pval) return 0; if (aux && aux->asn1_cb) asn1_cb = aux->asn1_cb; else asn1_cb = 0; if (++depth > ASN1_MAX_CONSTRUCTED_NEST) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_NESTED_TOO_DEEP); goto err; } switch (it->itype) { case ASN1_ITYPE_PRIMITIVE: if (it->templates) { /* * tagging or OPTIONAL is currently illegal on an item template * because the flags can't get passed down. In practice this * isn't a problem: we include the relevant flags from the item * template in the template itself. */ if ((tag != -1) || opt) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE); goto err; } return asn1_template_ex_d2i(pval, in, len, it->templates, opt, ctx, depth); } return asn1_d2i_ex_primitive(pval, in, len, it, tag, aclass, opt, ctx); case ASN1_ITYPE_MSTRING: p = *in; /* Just read in tag and class */ ret = asn1_check_tlen(NULL, &otag, &oclass, NULL, NULL, &p, len, -1, 0, 1, ctx); if (!ret) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ERR_R_NESTED_ASN1_ERROR); goto err; } /* Must be UNIVERSAL class */ if (oclass != V_ASN1_UNIVERSAL) { /* If OPTIONAL, assume this is OK */ if (opt) return -1; ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_MSTRING_NOT_UNIVERSAL); goto err; } /* Check tag matches bit map */ if (!(ASN1_tag2bit(otag) & it->utype)) { /* If OPTIONAL, assume this is OK */ if (opt) return -1; ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_MSTRING_WRONG_TAG); goto err; } return asn1_d2i_ex_primitive(pval, in, len, it, otag, 0, 0, ctx); case ASN1_ITYPE_EXTERN: /* Use new style d2i */ ef = it->funcs; return ef->asn1_ex_d2i(pval, in, len, it, tag, aclass, opt, ctx); case ASN1_ITYPE_CHOICE: if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) goto auxerr; if (*pval) { /* Free up and zero CHOICE value if initialised */ i = asn1_get_choice_selector(pval, it); if ((i >= 0) && (i < it->tcount)) { tt = it->templates + i; pchptr = asn1_get_field_ptr(pval, tt); asn1_template_free(pchptr, tt); asn1_set_choice_selector(pval, -1, it); } } else if (!ASN1_item_ex_new(pval, it)) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ERR_R_NESTED_ASN1_ERROR); goto err; } /* CHOICE type, try each possibility in turn */ p = *in; for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { pchptr = asn1_get_field_ptr(pval, tt); /* * We mark field as OPTIONAL so its absence can be recognised. */ ret = asn1_template_ex_d2i(pchptr, &p, len, tt, 1, ctx, depth); /* If field not present, try the next one */ if (ret == -1) continue; /* If positive return, read OK, break loop */ if (ret > 0) break; /* * Must be an ASN1 parsing error. * Free up any partial choice value */ asn1_template_free(pchptr, tt); errtt = tt; ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ERR_R_NESTED_ASN1_ERROR); goto err; } /* Did we fall off the end without reading anything? */ if (i == it->tcount) { /* If OPTIONAL, this is OK */ if (opt) { /* Free and zero it */ ASN1_item_ex_free(pval, it); return -1; } ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_NO_MATCHING_CHOICE_TYPE); goto err; } asn1_set_choice_selector(pval, i, it); if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) goto auxerr; *in = p; return 1; case ASN1_ITYPE_NDEF_SEQUENCE: case ASN1_ITYPE_SEQUENCE: p = *in; tmplen = len; /* If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL */ if (tag == -1) { tag = V_ASN1_SEQUENCE; aclass = V_ASN1_UNIVERSAL; } /* Get SEQUENCE length and update len, p */ ret = asn1_check_tlen(&len, NULL, NULL, &seq_eoc, &cst, &p, len, tag, aclass, opt, ctx); if (!ret) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ERR_R_NESTED_ASN1_ERROR); goto err; } else if (ret == -1) return -1; if (aux && (aux->flags & ASN1_AFLG_BROKEN)) { len = tmplen - (p - *in); seq_nolen = 1; } /* If indefinite we don't do a length check */ else seq_nolen = seq_eoc; if (!cst) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_SEQUENCE_NOT_CONSTRUCTED); goto err; } if (!*pval && !ASN1_item_ex_new(pval, it)) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ERR_R_NESTED_ASN1_ERROR); goto err; } if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) goto auxerr; /* Free up and zero any ADB found */ for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { if (tt->flags & ASN1_TFLG_ADB_MASK) { const ASN1_TEMPLATE *seqtt; ASN1_VALUE **pseqval; seqtt = asn1_do_adb(pval, tt, 0); if (seqtt == NULL) continue; pseqval = asn1_get_field_ptr(pval, seqtt); asn1_template_free(pseqval, seqtt); } } /* Get each field entry */ for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { const ASN1_TEMPLATE *seqtt; ASN1_VALUE **pseqval; seqtt = asn1_do_adb(pval, tt, 1); if (seqtt == NULL) goto err; pseqval = asn1_get_field_ptr(pval, seqtt); /* Have we ran out of data? */ if (!len) break; q = p; if (asn1_check_eoc(&p, len)) { if (!seq_eoc) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_UNEXPECTED_EOC); goto err; } len -= p - q; seq_eoc = 0; q = p; break; } /* * This determines the OPTIONAL flag value. The field cannot be * omitted if it is the last of a SEQUENCE and there is still * data to be read. This isn't strictly necessary but it * increases efficiency in some cases. */ if (i == (it->tcount - 1)) isopt = 0; else isopt = (char)(seqtt->flags & ASN1_TFLG_OPTIONAL); /* * attempt to read in field, allowing each to be OPTIONAL */ ret = asn1_template_ex_d2i(pseqval, &p, len, seqtt, isopt, ctx, depth); if (!ret) { errtt = seqtt; goto err; } else if (ret == -1) { /* * OPTIONAL component absent. Free and zero the field. */ asn1_template_free(pseqval, seqtt); continue; } /* Update length */ len -= p - q; } /* Check for EOC if expecting one */ if (seq_eoc && !asn1_check_eoc(&p, len)) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_MISSING_EOC); goto err; } /* Check all data read */ if (!seq_nolen && len) { ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_SEQUENCE_LENGTH_MISMATCH); goto err; } /* * If we get here we've got no more data in the SEQUENCE, however we * may not have read all fields so check all remaining are OPTIONAL * and clear any that are. */ for (; i < it->tcount; tt++, i++) { const ASN1_TEMPLATE *seqtt; seqtt = asn1_do_adb(pval, tt, 1); if (seqtt == NULL) goto err; if (seqtt->flags & ASN1_TFLG_OPTIONAL) { ASN1_VALUE **pseqval; pseqval = asn1_get_field_ptr(pval, seqtt); asn1_template_free(pseqval, seqtt); } else { errtt = seqtt; ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_FIELD_MISSING); goto err; } } /* Save encoding */ if (!asn1_enc_save(pval, *in, p - *in, it)) goto auxerr; if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) goto auxerr; *in = p; return 1; default: return 0; } auxerr: ASN1err(ASN1_F_ASN1_ITEM_EMBED_D2I, ASN1_R_AUX_ERROR); err: if (errtt) ERR_add_error_data(4, "Field=", errtt->field_name, ", Type=", it->sname); else ERR_add_error_data(2, "Type=", it->sname); return 0; } /* * Templates are handled with two separate functions. One handles any * EXPLICIT tag and the other handles the rest. */ static int asn1_template_ex_d2i(ASN1_VALUE **val, const unsigned char **in, long inlen, const ASN1_TEMPLATE *tt, char opt, ASN1_TLC *ctx, int depth) { int flags, aclass; int ret; long len; const unsigned char *p, *q; char exp_eoc; if (!val) return 0; flags = tt->flags; aclass = flags & ASN1_TFLG_TAG_CLASS; p = *in; /* Check if EXPLICIT tag expected */ if (flags & ASN1_TFLG_EXPTAG) { char cst; /* * Need to work out amount of data available to the inner content and * where it starts: so read in EXPLICIT header to get the info. */ ret = asn1_check_tlen(&len, NULL, NULL, &exp_eoc, &cst, &p, inlen, tt->tag, aclass, opt, ctx); q = p; if (!ret) { ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I, ERR_R_NESTED_ASN1_ERROR); return 0; } else if (ret == -1) return -1; if (!cst) { ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I, ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED); return 0; } /* We've found the field so it can't be OPTIONAL now */ ret = asn1_template_noexp_d2i(val, &p, len, tt, 0, ctx, depth); if (!ret) { ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I, ERR_R_NESTED_ASN1_ERROR); return 0; } /* We read the field in OK so update length */ len -= p - q; if (exp_eoc) { /* If NDEF we must have an EOC here */ if (!asn1_check_eoc(&p, len)) { ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I, ASN1_R_MISSING_EOC); goto err; } } else { /* * Otherwise we must hit the EXPLICIT tag end or its an error */ if (len) { ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I, ASN1_R_EXPLICIT_LENGTH_MISMATCH); goto err; } } } else return asn1_template_noexp_d2i(val, in, inlen, tt, opt, ctx, depth); *in = p; return 1; err: return 0; } static int asn1_template_noexp_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_TEMPLATE *tt, char opt, ASN1_TLC *ctx, int depth) { int flags, aclass; int ret; ASN1_VALUE *tval; const unsigned char *p, *q; if (!val) return 0; flags = tt->flags; aclass = flags & ASN1_TFLG_TAG_CLASS; p = *in; q = p; /* * If field is embedded then val needs fixing so it is a pointer to * a pointer to a field. */ if (tt->flags & ASN1_TFLG_EMBED) { tval = (ASN1_VALUE *)val; val = &tval; } if (flags & ASN1_TFLG_SK_MASK) { /* SET OF, SEQUENCE OF */ int sktag, skaclass; char sk_eoc; /* First work out expected inner tag value */ if (flags & ASN1_TFLG_IMPTAG) { sktag = tt->tag; skaclass = aclass; } else { skaclass = V_ASN1_UNIVERSAL; if (flags & ASN1_TFLG_SET_OF) sktag = V_ASN1_SET; else sktag = V_ASN1_SEQUENCE; } /* Get the tag */ ret = asn1_check_tlen(&len, NULL, NULL, &sk_eoc, NULL, &p, len, sktag, skaclass, opt, ctx); if (!ret) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ERR_R_NESTED_ASN1_ERROR); return 0; } else if (ret == -1) return -1; if (!*val) *val = (ASN1_VALUE *)sk_ASN1_VALUE_new_null(); else { /* * We've got a valid STACK: free up any items present */ STACK_OF(ASN1_VALUE) *sktmp = (STACK_OF(ASN1_VALUE) *)*val; ASN1_VALUE *vtmp; while (sk_ASN1_VALUE_num(sktmp) > 0) { vtmp = sk_ASN1_VALUE_pop(sktmp); ASN1_item_ex_free(&vtmp, ASN1_ITEM_ptr(tt->item)); } } if (!*val) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ERR_R_MALLOC_FAILURE); goto err; } /* Read as many items as we can */ while (len > 0) { ASN1_VALUE *skfield; q = p; /* See if EOC found */ if (asn1_check_eoc(&p, len)) { if (!sk_eoc) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ASN1_R_UNEXPECTED_EOC); goto err; } len -= p - q; sk_eoc = 0; break; } skfield = NULL; if (!asn1_item_embed_d2i(&skfield, &p, len, ASN1_ITEM_ptr(tt->item), -1, 0, 0, ctx, depth)) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ERR_R_NESTED_ASN1_ERROR); /* |skfield| may be partially allocated despite failure. */ ASN1_item_free(skfield, ASN1_ITEM_ptr(tt->item)); goto err; } len -= p - q; if (!sk_ASN1_VALUE_push((STACK_OF(ASN1_VALUE) *)*val, skfield)) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ERR_R_MALLOC_FAILURE); ASN1_item_free(skfield, ASN1_ITEM_ptr(tt->item)); goto err; } } if (sk_eoc) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ASN1_R_MISSING_EOC); goto err; } } else if (flags & ASN1_TFLG_IMPTAG) { /* IMPLICIT tagging */ ret = asn1_item_embed_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item), tt->tag, aclass, opt, ctx, depth); if (!ret) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ERR_R_NESTED_ASN1_ERROR); goto err; } else if (ret == -1) return -1; } else { /* Nothing special */ ret = asn1_item_embed_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item), -1, 0, opt, ctx, depth); if (!ret) { ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ERR_R_NESTED_ASN1_ERROR); goto err; } else if (ret == -1) return -1; } *in = p; return 1; err: return 0; } static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, const unsigned char **in, long inlen, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx) { int ret = 0, utype; long plen; char cst, inf, free_cont = 0; const unsigned char *p; BUF_MEM buf = { 0, NULL, 0, 0 }; const unsigned char *cont = NULL; long len; if (!pval) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ASN1_R_ILLEGAL_NULL); return 0; /* Should never happen */ } if (it->itype == ASN1_ITYPE_MSTRING) { utype = tag; tag = -1; } else utype = it->utype; if (utype == V_ASN1_ANY) { /* If type is ANY need to figure out type from tag */ unsigned char oclass; if (tag >= 0) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ASN1_R_ILLEGAL_TAGGED_ANY); return 0; } if (opt) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ASN1_R_ILLEGAL_OPTIONAL_ANY); return 0; } p = *in; ret = asn1_check_tlen(NULL, &utype, &oclass, NULL, NULL, &p, inlen, -1, 0, 0, ctx); if (!ret) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ERR_R_NESTED_ASN1_ERROR); return 0; } if (oclass != V_ASN1_UNIVERSAL) utype = V_ASN1_OTHER; } if (tag == -1) { tag = utype; aclass = V_ASN1_UNIVERSAL; } p = *in; /* Check header */ ret = asn1_check_tlen(&plen, NULL, NULL, &inf, &cst, &p, inlen, tag, aclass, opt, ctx); if (!ret) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ERR_R_NESTED_ASN1_ERROR); return 0; } else if (ret == -1) return -1; ret = 0; /* SEQUENCE, SET and "OTHER" are left in encoded form */ if ((utype == V_ASN1_SEQUENCE) || (utype == V_ASN1_SET) || (utype == V_ASN1_OTHER)) { /* * Clear context cache for type OTHER because the auto clear when we * have a exact match won't work */ if (utype == V_ASN1_OTHER) { asn1_tlc_clear(ctx); } /* SEQUENCE and SET must be constructed */ else if (!cst) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ASN1_R_TYPE_NOT_CONSTRUCTED); return 0; } cont = *in; /* If indefinite length constructed find the real end */ if (inf) { if (!asn1_find_end(&p, plen, inf)) goto err; len = p - cont; } else { len = p - cont + plen; p += plen; } } else if (cst) { if (utype == V_ASN1_NULL || utype == V_ASN1_BOOLEAN || utype == V_ASN1_OBJECT || utype == V_ASN1_INTEGER || utype == V_ASN1_ENUMERATED) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ASN1_R_TYPE_NOT_PRIMITIVE); return 0; } /* Free any returned 'buf' content */ free_cont = 1; /* * Should really check the internal tags are correct but some things * may get this wrong. The relevant specs say that constructed string * types should be OCTET STRINGs internally irrespective of the type. * So instead just check for UNIVERSAL class and ignore the tag. */ if (!asn1_collect(&buf, &p, plen, inf, -1, V_ASN1_UNIVERSAL, 0)) { goto err; } len = buf.length; /* Append a final null to string */ if (!BUF_MEM_grow_clean(&buf, len + 1)) { ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ERR_R_MALLOC_FAILURE); goto err; } buf.data[len] = 0; cont = (const unsigned char *)buf.data; } else { cont = p; len = plen; p += plen; } /* We now have content length and type: translate into a structure */ /* asn1_ex_c2i may reuse allocated buffer, and so sets free_cont to 0 */ if (!asn1_ex_c2i(pval, cont, len, utype, &free_cont, it)) goto err; *in = p; ret = 1; err: if (free_cont) OPENSSL_free(buf.data); return ret; } /* Translate ASN1 content octets into a structure */ static int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it) { ASN1_VALUE **opval = NULL; ASN1_STRING *stmp; ASN1_TYPE *typ = NULL; int ret = 0; const ASN1_PRIMITIVE_FUNCS *pf; ASN1_INTEGER **tint; pf = it->funcs; if (pf && pf->prim_c2i) return pf->prim_c2i(pval, cont, len, utype, free_cont, it); /* If ANY type clear type and set pointer to internal value */ if (it->utype == V_ASN1_ANY) { if (!*pval) { typ = ASN1_TYPE_new(); if (typ == NULL) goto err; *pval = (ASN1_VALUE *)typ; } else typ = (ASN1_TYPE *)*pval; if (utype != typ->type) ASN1_TYPE_set(typ, utype, NULL); opval = pval; pval = &typ->value.asn1_value; } switch (utype) { case V_ASN1_OBJECT: if (!c2i_ASN1_OBJECT((ASN1_OBJECT **)pval, &cont, len)) goto err; break; case V_ASN1_NULL: if (len) { ASN1err(ASN1_F_ASN1_EX_C2I, ASN1_R_NULL_IS_WRONG_LENGTH); goto err; } *pval = (ASN1_VALUE *)1; break; case V_ASN1_BOOLEAN: if (len != 1) { ASN1err(ASN1_F_ASN1_EX_C2I, ASN1_R_BOOLEAN_IS_WRONG_LENGTH); goto err; } else { ASN1_BOOLEAN *tbool; tbool = (ASN1_BOOLEAN *)pval; *tbool = *cont; } break; case V_ASN1_BIT_STRING: if (!c2i_ASN1_BIT_STRING((ASN1_BIT_STRING **)pval, &cont, len)) goto err; break; case V_ASN1_INTEGER: case V_ASN1_ENUMERATED: tint = (ASN1_INTEGER **)pval; if (!c2i_ASN1_INTEGER(tint, &cont, len)) goto err; /* Fixup type to match the expected form */ (*tint)->type = utype | ((*tint)->type & V_ASN1_NEG); break; case V_ASN1_OCTET_STRING: case V_ASN1_NUMERICSTRING: case V_ASN1_PRINTABLESTRING: case V_ASN1_T61STRING: case V_ASN1_VIDEOTEXSTRING: case V_ASN1_IA5STRING: case V_ASN1_UTCTIME: case V_ASN1_GENERALIZEDTIME: case V_ASN1_GRAPHICSTRING: case V_ASN1_VISIBLESTRING: case V_ASN1_GENERALSTRING: case V_ASN1_UNIVERSALSTRING: case V_ASN1_BMPSTRING: case V_ASN1_UTF8STRING: case V_ASN1_OTHER: case V_ASN1_SET: case V_ASN1_SEQUENCE: default: if (utype == V_ASN1_BMPSTRING && (len & 1)) { ASN1err(ASN1_F_ASN1_EX_C2I, ASN1_R_BMPSTRING_IS_WRONG_LENGTH); goto err; } if (utype == V_ASN1_UNIVERSALSTRING && (len & 3)) { ASN1err(ASN1_F_ASN1_EX_C2I, ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH); goto err; } /* All based on ASN1_STRING and handled the same */ if (!*pval) { stmp = ASN1_STRING_type_new(utype); if (stmp == NULL) { ASN1err(ASN1_F_ASN1_EX_C2I, ERR_R_MALLOC_FAILURE); goto err; } *pval = (ASN1_VALUE *)stmp; } else { stmp = (ASN1_STRING *)*pval; stmp->type = utype; } /* If we've already allocated a buffer use it */ if (*free_cont) { OPENSSL_free(stmp->data); stmp->data = (unsigned char *)cont; /* UGLY CAST! RL */ stmp->length = len; *free_cont = 0; } else { if (!ASN1_STRING_set(stmp, cont, len)) { ASN1err(ASN1_F_ASN1_EX_C2I, ERR_R_MALLOC_FAILURE); ASN1_STRING_free(stmp); *pval = NULL; goto err; } } break; } /* If ASN1_ANY and NULL type fix up value */ if (typ && (utype == V_ASN1_NULL)) typ->value.ptr = NULL; ret = 1; err: if (!ret) { ASN1_TYPE_free(typ); if (opval) *opval = NULL; } return ret; } /* * This function finds the end of an ASN1 structure when passed its maximum * length, whether it is indefinite length and a pointer to the content. This * is more efficient than calling asn1_collect because it does not recurse on * each indefinite length header. */ static int asn1_find_end(const unsigned char **in, long len, char inf) { uint32_t expected_eoc; long plen; const unsigned char *p = *in, *q; /* If not indefinite length constructed just add length */ if (inf == 0) { *in += len; return 1; } expected_eoc = 1; /* * Indefinite length constructed form. Find the end when enough EOCs are * found. If more indefinite length constructed headers are encountered * increment the expected eoc count otherwise just skip to the end of the * data. */ while (len > 0) { if (asn1_check_eoc(&p, len)) { expected_eoc--; if (expected_eoc == 0) break; len -= 2; continue; } q = p; /* Just read in a header: only care about the length */ if (!asn1_check_tlen(&plen, NULL, NULL, &inf, NULL, &p, len, -1, 0, 0, NULL)) { ASN1err(ASN1_F_ASN1_FIND_END, ERR_R_NESTED_ASN1_ERROR); return 0; } if (inf) { if (expected_eoc == UINT32_MAX) { ASN1err(ASN1_F_ASN1_FIND_END, ERR_R_NESTED_ASN1_ERROR); return 0; } expected_eoc++; } else { p += plen; } len -= p - q; } if (expected_eoc) { ASN1err(ASN1_F_ASN1_FIND_END, ASN1_R_MISSING_EOC); return 0; } *in = p; return 1; } /* * This function collects the asn1 data from a constructed string type into * a buffer. The values of 'in' and 'len' should refer to the contents of the * constructed type and 'inf' should be set if it is indefinite length. */ #ifndef ASN1_MAX_STRING_NEST /* * This determines how many levels of recursion are permitted in ASN1 string * types. If it is not limited stack overflows can occur. If set to zero no * recursion is allowed at all. Although zero should be adequate examples * exist that require a value of 1. So 5 should be more than enough. */ # define ASN1_MAX_STRING_NEST 5 #endif static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len, char inf, int tag, int aclass, int depth) { const unsigned char *p, *q; long plen; char cst, ininf; p = *in; inf &= 1; /* * If no buffer and not indefinite length constructed just pass over the * encoded data */ if (!buf && !inf) { *in += len; return 1; } while (len > 0) { q = p; /* Check for EOC */ if (asn1_check_eoc(&p, len)) { /* * EOC is illegal outside indefinite length constructed form */ if (!inf) { ASN1err(ASN1_F_ASN1_COLLECT, ASN1_R_UNEXPECTED_EOC); return 0; } inf = 0; break; } if (!asn1_check_tlen(&plen, NULL, NULL, &ininf, &cst, &p, len, tag, aclass, 0, NULL)) { ASN1err(ASN1_F_ASN1_COLLECT, ERR_R_NESTED_ASN1_ERROR); return 0; } /* If indefinite length constructed update max length */ if (cst) { if (depth >= ASN1_MAX_STRING_NEST) { ASN1err(ASN1_F_ASN1_COLLECT, ASN1_R_NESTED_ASN1_STRING); return 0; } if (!asn1_collect(buf, &p, plen, ininf, tag, aclass, depth + 1)) return 0; } else if (plen && !collect_data(buf, &p, plen)) return 0; len -= p - q; } if (inf) { ASN1err(ASN1_F_ASN1_COLLECT, ASN1_R_MISSING_EOC); return 0; } *in = p; return 1; } static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen) { int len; if (buf) { len = buf->length; if (!BUF_MEM_grow_clean(buf, len + plen)) { ASN1err(ASN1_F_COLLECT_DATA, ERR_R_MALLOC_FAILURE); return 0; } memcpy(buf->data + len, *p, plen); } *p += plen; return 1; } /* Check for ASN1 EOC and swallow it if found */ static int asn1_check_eoc(const unsigned char **in, long len) { const unsigned char *p; if (len < 2) return 0; p = *in; if (!p[0] && !p[1]) { *in += 2; return 1; } return 0; } /* * Check an ASN1 tag and length: a bit like ASN1_get_object but it sets the * length for indefinite length constructed form, we don't know the exact * length but we can set an upper bound to the amount of data available minus * the header length just read. */ static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass, char *inf, char *cst, const unsigned char **in, long len, int exptag, int expclass, char opt, ASN1_TLC *ctx) { int i; int ptag, pclass; long plen; const unsigned char *p, *q; p = *in; q = p; if (ctx && ctx->valid) { i = ctx->ret; plen = ctx->plen; pclass = ctx->pclass; ptag = ctx->ptag; p += ctx->hdrlen; } else { i = ASN1_get_object(&p, &plen, &ptag, &pclass, len); if (ctx) { ctx->ret = i; ctx->plen = plen; ctx->pclass = pclass; ctx->ptag = ptag; ctx->hdrlen = p - q; ctx->valid = 1; /* * If definite length, and no error, length + header can't exceed * total amount of data available. */ if (!(i & 0x81) && ((plen + ctx->hdrlen) > len)) { ASN1err(ASN1_F_ASN1_CHECK_TLEN, ASN1_R_TOO_LONG); asn1_tlc_clear(ctx); return 0; } } } if (i & 0x80) { ASN1err(ASN1_F_ASN1_CHECK_TLEN, ASN1_R_BAD_OBJECT_HEADER); asn1_tlc_clear(ctx); return 0; } if (exptag >= 0) { if ((exptag != ptag) || (expclass != pclass)) { /* * If type is OPTIONAL, not an error: indicate missing type. */ if (opt) return -1; asn1_tlc_clear(ctx); ASN1err(ASN1_F_ASN1_CHECK_TLEN, ASN1_R_WRONG_TAG); return 0; } /* * We have a tag and class match: assume we are going to do something * with it */ asn1_tlc_clear(ctx); } if (i & 1) plen = len - (p - q); if (inf) *inf = i & 1; if (cst) *cst = i & V_ASN1_CONSTRUCTED; if (olen) *olen = plen; if (oclass) *oclass = pclass; if (otag) *otag = ptag; *in = p; return 1; } openssl-1.1.1f/crypto/asn1/tasn_enc.c000066400000000000000000000444311364063235100174740ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include #include "crypto/asn1.h" #include "asn1_local.h" static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass); static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out, int skcontlen, const ASN1_ITEM *item, int do_sort, int iclass); static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out, const ASN1_TEMPLATE *tt, int tag, int aclass); static int asn1_item_flags_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it, int flags); static int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cout, int *putype, const ASN1_ITEM *it); /* * Top level i2d equivalents: the 'ndef' variant instructs the encoder to use * indefinite length constructed encoding, where appropriate */ int ASN1_item_ndef_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it) { return asn1_item_flags_i2d(val, out, it, ASN1_TFLG_NDEF); } int ASN1_item_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it) { return asn1_item_flags_i2d(val, out, it, 0); } /* * Encode an ASN1 item, this is use by the standard 'i2d' function. 'out' * points to a buffer to output the data to. The new i2d has one additional * feature. If the output buffer is NULL (i.e. *out == NULL) then a buffer is * allocated and populated with the encoding. */ static int asn1_item_flags_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it, int flags) { if (out && !*out) { unsigned char *p, *buf; int len; len = ASN1_item_ex_i2d(&val, NULL, it, -1, flags); if (len <= 0) return len; if ((buf = OPENSSL_malloc(len)) == NULL) { ASN1err(ASN1_F_ASN1_ITEM_FLAGS_I2D, ERR_R_MALLOC_FAILURE); return -1; } p = buf; ASN1_item_ex_i2d(&val, &p, it, -1, flags); *out = buf; return len; } return ASN1_item_ex_i2d(&val, out, it, -1, flags); } /* * Encode an item, taking care of IMPLICIT tagging (if any). This function * performs the normal item handling: it can be used in external types. */ int ASN1_item_ex_i2d(ASN1_VALUE **pval, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass) { const ASN1_TEMPLATE *tt = NULL; int i, seqcontlen, seqlen, ndef = 1; const ASN1_EXTERN_FUNCS *ef; const ASN1_AUX *aux = it->funcs; ASN1_aux_cb *asn1_cb = 0; if ((it->itype != ASN1_ITYPE_PRIMITIVE) && !*pval) return 0; if (aux && aux->asn1_cb) asn1_cb = aux->asn1_cb; switch (it->itype) { case ASN1_ITYPE_PRIMITIVE: if (it->templates) return asn1_template_ex_i2d(pval, out, it->templates, tag, aclass); return asn1_i2d_ex_primitive(pval, out, it, tag, aclass); case ASN1_ITYPE_MSTRING: return asn1_i2d_ex_primitive(pval, out, it, -1, aclass); case ASN1_ITYPE_CHOICE: if (asn1_cb && !asn1_cb(ASN1_OP_I2D_PRE, pval, it, NULL)) return 0; i = asn1_get_choice_selector(pval, it); if ((i >= 0) && (i < it->tcount)) { ASN1_VALUE **pchval; const ASN1_TEMPLATE *chtt; chtt = it->templates + i; pchval = asn1_get_field_ptr(pval, chtt); return asn1_template_ex_i2d(pchval, out, chtt, -1, aclass); } /* Fixme: error condition if selector out of range */ if (asn1_cb && !asn1_cb(ASN1_OP_I2D_POST, pval, it, NULL)) return 0; break; case ASN1_ITYPE_EXTERN: /* If new style i2d it does all the work */ ef = it->funcs; return ef->asn1_ex_i2d(pval, out, it, tag, aclass); case ASN1_ITYPE_NDEF_SEQUENCE: /* Use indefinite length constructed if requested */ if (aclass & ASN1_TFLG_NDEF) ndef = 2; /* fall through */ case ASN1_ITYPE_SEQUENCE: i = asn1_enc_restore(&seqcontlen, out, pval, it); /* An error occurred */ if (i < 0) return 0; /* We have a valid cached encoding... */ if (i > 0) return seqcontlen; /* Otherwise carry on */ seqcontlen = 0; /* If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL */ if (tag == -1) { tag = V_ASN1_SEQUENCE; /* Retain any other flags in aclass */ aclass = (aclass & ~ASN1_TFLG_TAG_CLASS) | V_ASN1_UNIVERSAL; } if (asn1_cb && !asn1_cb(ASN1_OP_I2D_PRE, pval, it, NULL)) return 0; /* First work out sequence content length */ for (i = 0, tt = it->templates; i < it->tcount; tt++, i++) { const ASN1_TEMPLATE *seqtt; ASN1_VALUE **pseqval; int tmplen; seqtt = asn1_do_adb(pval, tt, 1); if (!seqtt) return 0; pseqval = asn1_get_field_ptr(pval, seqtt); tmplen = asn1_template_ex_i2d(pseqval, NULL, seqtt, -1, aclass); if (tmplen == -1 || (tmplen > INT_MAX - seqcontlen)) return -1; seqcontlen += tmplen; } seqlen = ASN1_object_size(ndef, seqcontlen, tag); if (!out || seqlen == -1) return seqlen; /* Output SEQUENCE header */ ASN1_put_object(out, ndef, seqcontlen, tag, aclass); for (i = 0, tt = it->templates; i < it->tcount; tt++, i++) { const ASN1_TEMPLATE *seqtt; ASN1_VALUE **pseqval; seqtt = asn1_do_adb(pval, tt, 1); if (!seqtt) return 0; pseqval = asn1_get_field_ptr(pval, seqtt); /* FIXME: check for errors in enhanced version */ asn1_template_ex_i2d(pseqval, out, seqtt, -1, aclass); } if (ndef == 2) ASN1_put_eoc(out); if (asn1_cb && !asn1_cb(ASN1_OP_I2D_POST, pval, it, NULL)) return 0; return seqlen; default: return 0; } return 0; } static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out, const ASN1_TEMPLATE *tt, int tag, int iclass) { int i, ret, flags, ttag, tclass, ndef; ASN1_VALUE *tval; flags = tt->flags; /* * If field is embedded then val needs fixing so it is a pointer to * a pointer to a field. */ if (flags & ASN1_TFLG_EMBED) { tval = (ASN1_VALUE *)pval; pval = &tval; } /* * Work out tag and class to use: tagging may come either from the * template or the arguments, not both because this would create * ambiguity. Additionally the iclass argument may contain some * additional flags which should be noted and passed down to other * levels. */ if (flags & ASN1_TFLG_TAG_MASK) { /* Error if argument and template tagging */ if (tag != -1) /* FIXME: error code here */ return -1; /* Get tagging from template */ ttag = tt->tag; tclass = flags & ASN1_TFLG_TAG_CLASS; } else if (tag != -1) { /* No template tagging, get from arguments */ ttag = tag; tclass = iclass & ASN1_TFLG_TAG_CLASS; } else { ttag = -1; tclass = 0; } /* * Remove any class mask from iflag. */ iclass &= ~ASN1_TFLG_TAG_CLASS; /* * At this point 'ttag' contains the outer tag to use, 'tclass' is the * class and iclass is any flags passed to this function. */ /* if template and arguments require ndef, use it */ if ((flags & ASN1_TFLG_NDEF) && (iclass & ASN1_TFLG_NDEF)) ndef = 2; else ndef = 1; if (flags & ASN1_TFLG_SK_MASK) { /* SET OF, SEQUENCE OF */ STACK_OF(ASN1_VALUE) *sk = (STACK_OF(ASN1_VALUE) *)*pval; int isset, sktag, skaclass; int skcontlen, sklen; ASN1_VALUE *skitem; if (!*pval) return 0; if (flags & ASN1_TFLG_SET_OF) { isset = 1; /* 2 means we reorder */ if (flags & ASN1_TFLG_SEQUENCE_OF) isset = 2; } else isset = 0; /* * Work out inner tag value: if EXPLICIT or no tagging use underlying * type. */ if ((ttag != -1) && !(flags & ASN1_TFLG_EXPTAG)) { sktag = ttag; skaclass = tclass; } else { skaclass = V_ASN1_UNIVERSAL; if (isset) sktag = V_ASN1_SET; else sktag = V_ASN1_SEQUENCE; } /* Determine total length of items */ skcontlen = 0; for (i = 0; i < sk_ASN1_VALUE_num(sk); i++) { int tmplen; skitem = sk_ASN1_VALUE_value(sk, i); tmplen = ASN1_item_ex_i2d(&skitem, NULL, ASN1_ITEM_ptr(tt->item), -1, iclass); if (tmplen == -1 || (skcontlen > INT_MAX - tmplen)) return -1; skcontlen += tmplen; } sklen = ASN1_object_size(ndef, skcontlen, sktag); if (sklen == -1) return -1; /* If EXPLICIT need length of surrounding tag */ if (flags & ASN1_TFLG_EXPTAG) ret = ASN1_object_size(ndef, sklen, ttag); else ret = sklen; if (!out || ret == -1) return ret; /* Now encode this lot... */ /* EXPLICIT tag */ if (flags & ASN1_TFLG_EXPTAG) ASN1_put_object(out, ndef, sklen, ttag, tclass); /* SET or SEQUENCE and IMPLICIT tag */ ASN1_put_object(out, ndef, skcontlen, sktag, skaclass); /* And the stuff itself */ asn1_set_seq_out(sk, out, skcontlen, ASN1_ITEM_ptr(tt->item), isset, iclass); if (ndef == 2) { ASN1_put_eoc(out); if (flags & ASN1_TFLG_EXPTAG) ASN1_put_eoc(out); } return ret; } if (flags & ASN1_TFLG_EXPTAG) { /* EXPLICIT tagging */ /* Find length of tagged item */ i = ASN1_item_ex_i2d(pval, NULL, ASN1_ITEM_ptr(tt->item), -1, iclass); if (!i) return 0; /* Find length of EXPLICIT tag */ ret = ASN1_object_size(ndef, i, ttag); if (out && ret != -1) { /* Output tag and item */ ASN1_put_object(out, ndef, i, ttag, tclass); ASN1_item_ex_i2d(pval, out, ASN1_ITEM_ptr(tt->item), -1, iclass); if (ndef == 2) ASN1_put_eoc(out); } return ret; } /* Either normal or IMPLICIT tagging: combine class and flags */ return ASN1_item_ex_i2d(pval, out, ASN1_ITEM_ptr(tt->item), ttag, tclass | iclass); } /* Temporary structure used to hold DER encoding of items for SET OF */ typedef struct { unsigned char *data; int length; ASN1_VALUE *field; } DER_ENC; static int der_cmp(const void *a, const void *b) { const DER_ENC *d1 = a, *d2 = b; int cmplen, i; cmplen = (d1->length < d2->length) ? d1->length : d2->length; i = memcmp(d1->data, d2->data, cmplen); if (i) return i; return d1->length - d2->length; } /* Output the content octets of SET OF or SEQUENCE OF */ static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out, int skcontlen, const ASN1_ITEM *item, int do_sort, int iclass) { int i; ASN1_VALUE *skitem; unsigned char *tmpdat = NULL, *p = NULL; DER_ENC *derlst = NULL, *tder; if (do_sort) { /* Don't need to sort less than 2 items */ if (sk_ASN1_VALUE_num(sk) < 2) do_sort = 0; else { derlst = OPENSSL_malloc(sk_ASN1_VALUE_num(sk) * sizeof(*derlst)); if (derlst == NULL) return 0; tmpdat = OPENSSL_malloc(skcontlen); if (tmpdat == NULL) { OPENSSL_free(derlst); return 0; } } } /* If not sorting just output each item */ if (!do_sort) { for (i = 0; i < sk_ASN1_VALUE_num(sk); i++) { skitem = sk_ASN1_VALUE_value(sk, i); ASN1_item_ex_i2d(&skitem, out, item, -1, iclass); } return 1; } p = tmpdat; /* Doing sort: build up a list of each member's DER encoding */ for (i = 0, tder = derlst; i < sk_ASN1_VALUE_num(sk); i++, tder++) { skitem = sk_ASN1_VALUE_value(sk, i); tder->data = p; tder->length = ASN1_item_ex_i2d(&skitem, &p, item, -1, iclass); tder->field = skitem; } /* Now sort them */ qsort(derlst, sk_ASN1_VALUE_num(sk), sizeof(*derlst), der_cmp); /* Output sorted DER encoding */ p = *out; for (i = 0, tder = derlst; i < sk_ASN1_VALUE_num(sk); i++, tder++) { memcpy(p, tder->data, tder->length); p += tder->length; } *out = p; /* If do_sort is 2 then reorder the STACK */ if (do_sort == 2) { for (i = 0, tder = derlst; i < sk_ASN1_VALUE_num(sk); i++, tder++) (void)sk_ASN1_VALUE_set(sk, i, tder->field); } OPENSSL_free(derlst); OPENSSL_free(tmpdat); return 1; } static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass) { int len; int utype; int usetag; int ndef = 0; utype = it->utype; /* * Get length of content octets and maybe find out the underlying type. */ len = asn1_ex_i2c(pval, NULL, &utype, it); /* * If SEQUENCE, SET or OTHER then header is included in pseudo content * octets so don't include tag+length. We need to check here because the * call to asn1_ex_i2c() could change utype. */ if ((utype == V_ASN1_SEQUENCE) || (utype == V_ASN1_SET) || (utype == V_ASN1_OTHER)) usetag = 0; else usetag = 1; /* -1 means omit type */ if (len == -1) return 0; /* -2 return is special meaning use ndef */ if (len == -2) { ndef = 2; len = 0; } /* If not implicitly tagged get tag from underlying type */ if (tag == -1) tag = utype; /* Output tag+length followed by content octets */ if (out) { if (usetag) ASN1_put_object(out, ndef, len, tag, aclass); asn1_ex_i2c(pval, *out, &utype, it); if (ndef) ASN1_put_eoc(out); else *out += len; } if (usetag) return ASN1_object_size(ndef, len, tag); return len; } /* Produce content octets from a structure */ static int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cout, int *putype, const ASN1_ITEM *it) { ASN1_BOOLEAN *tbool = NULL; ASN1_STRING *strtmp; ASN1_OBJECT *otmp; int utype; const unsigned char *cont; unsigned char c; int len; const ASN1_PRIMITIVE_FUNCS *pf; pf = it->funcs; if (pf && pf->prim_i2c) return pf->prim_i2c(pval, cout, putype, it); /* Should type be omitted? */ if ((it->itype != ASN1_ITYPE_PRIMITIVE) || (it->utype != V_ASN1_BOOLEAN)) { if (!*pval) return -1; } if (it->itype == ASN1_ITYPE_MSTRING) { /* If MSTRING type set the underlying type */ strtmp = (ASN1_STRING *)*pval; utype = strtmp->type; *putype = utype; } else if (it->utype == V_ASN1_ANY) { /* If ANY set type and pointer to value */ ASN1_TYPE *typ; typ = (ASN1_TYPE *)*pval; utype = typ->type; *putype = utype; pval = &typ->value.asn1_value; } else utype = *putype; switch (utype) { case V_ASN1_OBJECT: otmp = (ASN1_OBJECT *)*pval; cont = otmp->data; len = otmp->length; if (cont == NULL || len == 0) return -1; break; case V_ASN1_NULL: cont = NULL; len = 0; break; case V_ASN1_BOOLEAN: tbool = (ASN1_BOOLEAN *)pval; if (*tbool == -1) return -1; if (it->utype != V_ASN1_ANY) { /* * Default handling if value == size field then omit */ if (*tbool && (it->size > 0)) return -1; if (!*tbool && !it->size) return -1; } c = (unsigned char)*tbool; cont = &c; len = 1; break; case V_ASN1_BIT_STRING: return i2c_ASN1_BIT_STRING((ASN1_BIT_STRING *)*pval, cout ? &cout : NULL); case V_ASN1_INTEGER: case V_ASN1_ENUMERATED: /* * These are all have the same content format as ASN1_INTEGER */ return i2c_ASN1_INTEGER((ASN1_INTEGER *)*pval, cout ? &cout : NULL); case V_ASN1_OCTET_STRING: case V_ASN1_NUMERICSTRING: case V_ASN1_PRINTABLESTRING: case V_ASN1_T61STRING: case V_ASN1_VIDEOTEXSTRING: case V_ASN1_IA5STRING: case V_ASN1_UTCTIME: case V_ASN1_GENERALIZEDTIME: case V_ASN1_GRAPHICSTRING: case V_ASN1_VISIBLESTRING: case V_ASN1_GENERALSTRING: case V_ASN1_UNIVERSALSTRING: case V_ASN1_BMPSTRING: case V_ASN1_UTF8STRING: case V_ASN1_SEQUENCE: case V_ASN1_SET: default: /* All based on ASN1_STRING and handled the same */ strtmp = (ASN1_STRING *)*pval; /* Special handling for NDEF */ if ((it->size == ASN1_TFLG_NDEF) && (strtmp->flags & ASN1_STRING_FLAG_NDEF)) { if (cout) { strtmp->data = cout; strtmp->length = 0; } /* Special return code */ return -2; } cont = strtmp->data; len = strtmp->length; break; } if (cout && len) memcpy(cout, cont, len); return len; } openssl-1.1.1f/crypto/asn1/tasn_fre.c000066400000000000000000000125321364063235100175000ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "asn1_local.h" /* Free up an ASN1 structure */ void ASN1_item_free(ASN1_VALUE *val, const ASN1_ITEM *it) { asn1_item_embed_free(&val, it, 0); } void ASN1_item_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { asn1_item_embed_free(pval, it, 0); } void asn1_item_embed_free(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed) { const ASN1_TEMPLATE *tt = NULL, *seqtt; const ASN1_EXTERN_FUNCS *ef; const ASN1_AUX *aux = it->funcs; ASN1_aux_cb *asn1_cb; int i; if (!pval) return; if ((it->itype != ASN1_ITYPE_PRIMITIVE) && !*pval) return; if (aux && aux->asn1_cb) asn1_cb = aux->asn1_cb; else asn1_cb = 0; switch (it->itype) { case ASN1_ITYPE_PRIMITIVE: if (it->templates) asn1_template_free(pval, it->templates); else asn1_primitive_free(pval, it, embed); break; case ASN1_ITYPE_MSTRING: asn1_primitive_free(pval, it, embed); break; case ASN1_ITYPE_CHOICE: if (asn1_cb) { i = asn1_cb(ASN1_OP_FREE_PRE, pval, it, NULL); if (i == 2) return; } i = asn1_get_choice_selector(pval, it); if ((i >= 0) && (i < it->tcount)) { ASN1_VALUE **pchval; tt = it->templates + i; pchval = asn1_get_field_ptr(pval, tt); asn1_template_free(pchval, tt); } if (asn1_cb) asn1_cb(ASN1_OP_FREE_POST, pval, it, NULL); if (embed == 0) { OPENSSL_free(*pval); *pval = NULL; } break; case ASN1_ITYPE_EXTERN: ef = it->funcs; if (ef && ef->asn1_ex_free) ef->asn1_ex_free(pval, it); break; case ASN1_ITYPE_NDEF_SEQUENCE: case ASN1_ITYPE_SEQUENCE: if (asn1_do_lock(pval, -1, it) != 0) /* if error or ref-counter > 0 */ return; if (asn1_cb) { i = asn1_cb(ASN1_OP_FREE_PRE, pval, it, NULL); if (i == 2) return; } asn1_enc_free(pval, it); /* * If we free up as normal we will invalidate any ANY DEFINED BY * field and we won't be able to determine the type of the field it * defines. So free up in reverse order. */ tt = it->templates + it->tcount; for (i = 0; i < it->tcount; i++) { ASN1_VALUE **pseqval; tt--; seqtt = asn1_do_adb(pval, tt, 0); if (!seqtt) continue; pseqval = asn1_get_field_ptr(pval, seqtt); asn1_template_free(pseqval, seqtt); } if (asn1_cb) asn1_cb(ASN1_OP_FREE_POST, pval, it, NULL); if (embed == 0) { OPENSSL_free(*pval); *pval = NULL; } break; } } void asn1_template_free(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt) { int embed = tt->flags & ASN1_TFLG_EMBED; ASN1_VALUE *tval; if (embed) { tval = (ASN1_VALUE *)pval; pval = &tval; } if (tt->flags & ASN1_TFLG_SK_MASK) { STACK_OF(ASN1_VALUE) *sk = (STACK_OF(ASN1_VALUE) *)*pval; int i; for (i = 0; i < sk_ASN1_VALUE_num(sk); i++) { ASN1_VALUE *vtmp = sk_ASN1_VALUE_value(sk, i); asn1_item_embed_free(&vtmp, ASN1_ITEM_ptr(tt->item), embed); } sk_ASN1_VALUE_free(sk); *pval = NULL; } else { asn1_item_embed_free(pval, ASN1_ITEM_ptr(tt->item), embed); } } void asn1_primitive_free(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed) { int utype; /* Special case: if 'it' is a primitive with a free_func, use that. */ if (it) { const ASN1_PRIMITIVE_FUNCS *pf = it->funcs; if (embed) { if (pf && pf->prim_clear) { pf->prim_clear(pval, it); return; } } else if (pf && pf->prim_free) { pf->prim_free(pval, it); return; } } /* Special case: if 'it' is NULL, free contents of ASN1_TYPE */ if (!it) { ASN1_TYPE *typ = (ASN1_TYPE *)*pval; utype = typ->type; pval = &typ->value.asn1_value; if (!*pval) return; } else if (it->itype == ASN1_ITYPE_MSTRING) { utype = -1; if (!*pval) return; } else { utype = it->utype; if ((utype != V_ASN1_BOOLEAN) && !*pval) return; } switch (utype) { case V_ASN1_OBJECT: ASN1_OBJECT_free((ASN1_OBJECT *)*pval); break; case V_ASN1_BOOLEAN: if (it) *(ASN1_BOOLEAN *)pval = it->size; else *(ASN1_BOOLEAN *)pval = -1; return; case V_ASN1_NULL: break; case V_ASN1_ANY: asn1_primitive_free(pval, NULL, 0); OPENSSL_free(*pval); break; default: asn1_string_embed_free((ASN1_STRING *)*pval, embed); break; } *pval = NULL; } openssl-1.1.1f/crypto/asn1/tasn_new.c000066400000000000000000000217211364063235100175150ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "asn1_local.h" static int asn1_item_embed_new(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed); static int asn1_primitive_new(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed); static void asn1_item_clear(ASN1_VALUE **pval, const ASN1_ITEM *it); static int asn1_template_new(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt); static void asn1_template_clear(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt); static void asn1_primitive_clear(ASN1_VALUE **pval, const ASN1_ITEM *it); ASN1_VALUE *ASN1_item_new(const ASN1_ITEM *it) { ASN1_VALUE *ret = NULL; if (ASN1_item_ex_new(&ret, it) > 0) return ret; return NULL; } /* Allocate an ASN1 structure */ int ASN1_item_ex_new(ASN1_VALUE **pval, const ASN1_ITEM *it) { return asn1_item_embed_new(pval, it, 0); } int asn1_item_embed_new(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed) { const ASN1_TEMPLATE *tt = NULL; const ASN1_EXTERN_FUNCS *ef; const ASN1_AUX *aux = it->funcs; ASN1_aux_cb *asn1_cb; ASN1_VALUE **pseqval; int i; if (aux && aux->asn1_cb) asn1_cb = aux->asn1_cb; else asn1_cb = 0; #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_push(it->sname ? it->sname : "asn1_item_embed_new"); #endif switch (it->itype) { case ASN1_ITYPE_EXTERN: ef = it->funcs; if (ef && ef->asn1_ex_new) { if (!ef->asn1_ex_new(pval, it)) goto memerr; } break; case ASN1_ITYPE_PRIMITIVE: if (it->templates) { if (!asn1_template_new(pval, it->templates)) goto memerr; } else if (!asn1_primitive_new(pval, it, embed)) goto memerr; break; case ASN1_ITYPE_MSTRING: if (!asn1_primitive_new(pval, it, embed)) goto memerr; break; case ASN1_ITYPE_CHOICE: if (asn1_cb) { i = asn1_cb(ASN1_OP_NEW_PRE, pval, it, NULL); if (!i) goto auxerr; if (i == 2) { #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_pop(); #endif return 1; } } if (embed) { memset(*pval, 0, it->size); } else { *pval = OPENSSL_zalloc(it->size); if (*pval == NULL) goto memerr; } asn1_set_choice_selector(pval, -1, it); if (asn1_cb && !asn1_cb(ASN1_OP_NEW_POST, pval, it, NULL)) goto auxerr2; break; case ASN1_ITYPE_NDEF_SEQUENCE: case ASN1_ITYPE_SEQUENCE: if (asn1_cb) { i = asn1_cb(ASN1_OP_NEW_PRE, pval, it, NULL); if (!i) goto auxerr; if (i == 2) { #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_pop(); #endif return 1; } } if (embed) { memset(*pval, 0, it->size); } else { *pval = OPENSSL_zalloc(it->size); if (*pval == NULL) goto memerr; } /* 0 : init. lock */ if (asn1_do_lock(pval, 0, it) < 0) { if (!embed) { OPENSSL_free(*pval); *pval = NULL; } goto memerr; } asn1_enc_init(pval, it); for (i = 0, tt = it->templates; i < it->tcount; tt++, i++) { pseqval = asn1_get_field_ptr(pval, tt); if (!asn1_template_new(pseqval, tt)) goto memerr2; } if (asn1_cb && !asn1_cb(ASN1_OP_NEW_POST, pval, it, NULL)) goto auxerr2; break; } #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_pop(); #endif return 1; memerr2: asn1_item_embed_free(pval, it, embed); memerr: ASN1err(ASN1_F_ASN1_ITEM_EMBED_NEW, ERR_R_MALLOC_FAILURE); #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_pop(); #endif return 0; auxerr2: asn1_item_embed_free(pval, it, embed); auxerr: ASN1err(ASN1_F_ASN1_ITEM_EMBED_NEW, ASN1_R_AUX_ERROR); #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_pop(); #endif return 0; } static void asn1_item_clear(ASN1_VALUE **pval, const ASN1_ITEM *it) { const ASN1_EXTERN_FUNCS *ef; switch (it->itype) { case ASN1_ITYPE_EXTERN: ef = it->funcs; if (ef && ef->asn1_ex_clear) ef->asn1_ex_clear(pval, it); else *pval = NULL; break; case ASN1_ITYPE_PRIMITIVE: if (it->templates) asn1_template_clear(pval, it->templates); else asn1_primitive_clear(pval, it); break; case ASN1_ITYPE_MSTRING: asn1_primitive_clear(pval, it); break; case ASN1_ITYPE_CHOICE: case ASN1_ITYPE_SEQUENCE: case ASN1_ITYPE_NDEF_SEQUENCE: *pval = NULL; break; } } static int asn1_template_new(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt) { const ASN1_ITEM *it = ASN1_ITEM_ptr(tt->item); int embed = tt->flags & ASN1_TFLG_EMBED; ASN1_VALUE *tval; int ret; if (embed) { tval = (ASN1_VALUE *)pval; pval = &tval; } if (tt->flags & ASN1_TFLG_OPTIONAL) { asn1_template_clear(pval, tt); return 1; } /* If ANY DEFINED BY nothing to do */ if (tt->flags & ASN1_TFLG_ADB_MASK) { *pval = NULL; return 1; } #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_push(tt->field_name ? tt->field_name : "asn1_template_new"); #endif /* If SET OF or SEQUENCE OF, its a STACK */ if (tt->flags & ASN1_TFLG_SK_MASK) { STACK_OF(ASN1_VALUE) *skval; skval = sk_ASN1_VALUE_new_null(); if (!skval) { ASN1err(ASN1_F_ASN1_TEMPLATE_NEW, ERR_R_MALLOC_FAILURE); ret = 0; goto done; } *pval = (ASN1_VALUE *)skval; ret = 1; goto done; } /* Otherwise pass it back to the item routine */ ret = asn1_item_embed_new(pval, it, embed); done: #ifndef OPENSSL_NO_CRYPTO_MDEBUG OPENSSL_mem_debug_pop(); #endif return ret; } static void asn1_template_clear(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt) { /* If ADB or STACK just NULL the field */ if (tt->flags & (ASN1_TFLG_ADB_MASK | ASN1_TFLG_SK_MASK)) *pval = NULL; else asn1_item_clear(pval, ASN1_ITEM_ptr(tt->item)); } /* * NB: could probably combine most of the real XXX_new() behaviour and junk * all the old functions. */ static int asn1_primitive_new(ASN1_VALUE **pval, const ASN1_ITEM *it, int embed) { ASN1_TYPE *typ; ASN1_STRING *str; int utype; if (!it) return 0; if (it->funcs) { const ASN1_PRIMITIVE_FUNCS *pf = it->funcs; if (embed) { if (pf->prim_clear) { pf->prim_clear(pval, it); return 1; } } else if (pf->prim_new) { return pf->prim_new(pval, it); } } if (it->itype == ASN1_ITYPE_MSTRING) utype = -1; else utype = it->utype; switch (utype) { case V_ASN1_OBJECT: *pval = (ASN1_VALUE *)OBJ_nid2obj(NID_undef); return 1; case V_ASN1_BOOLEAN: *(ASN1_BOOLEAN *)pval = it->size; return 1; case V_ASN1_NULL: *pval = (ASN1_VALUE *)1; return 1; case V_ASN1_ANY: if ((typ = OPENSSL_malloc(sizeof(*typ))) == NULL) { ASN1err(ASN1_F_ASN1_PRIMITIVE_NEW, ERR_R_MALLOC_FAILURE); return 0; } typ->value.ptr = NULL; typ->type = -1; *pval = (ASN1_VALUE *)typ; break; default: if (embed) { str = *(ASN1_STRING **)pval; memset(str, 0, sizeof(*str)); str->type = utype; str->flags = ASN1_STRING_FLAG_EMBED; } else { str = ASN1_STRING_type_new(utype); *pval = (ASN1_VALUE *)str; } if (it->itype == ASN1_ITYPE_MSTRING && str) str->flags |= ASN1_STRING_FLAG_MSTRING; break; } if (*pval) return 1; return 0; } static void asn1_primitive_clear(ASN1_VALUE **pval, const ASN1_ITEM *it) { int utype; if (it && it->funcs) { const ASN1_PRIMITIVE_FUNCS *pf = it->funcs; if (pf->prim_clear) pf->prim_clear(pval, it); else *pval = NULL; return; } if (!it || (it->itype == ASN1_ITYPE_MSTRING)) utype = -1; else utype = it->utype; if (utype == V_ASN1_BOOLEAN) *(ASN1_BOOLEAN *)pval = it->size; else *pval = NULL; } openssl-1.1.1f/crypto/asn1/tasn_prn.c000066400000000000000000000352021364063235100175220ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include "crypto/asn1.h" #include "asn1_local.h" /* * Print routines. */ /* ASN1_PCTX routines */ static ASN1_PCTX default_pctx = { ASN1_PCTX_FLAGS_SHOW_ABSENT, /* flags */ 0, /* nm_flags */ 0, /* cert_flags */ 0, /* oid_flags */ 0 /* str_flags */ }; ASN1_PCTX *ASN1_PCTX_new(void) { ASN1_PCTX *ret; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ASN1err(ASN1_F_ASN1_PCTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } return ret; } void ASN1_PCTX_free(ASN1_PCTX *p) { OPENSSL_free(p); } unsigned long ASN1_PCTX_get_flags(const ASN1_PCTX *p) { return p->flags; } void ASN1_PCTX_set_flags(ASN1_PCTX *p, unsigned long flags) { p->flags = flags; } unsigned long ASN1_PCTX_get_nm_flags(const ASN1_PCTX *p) { return p->nm_flags; } void ASN1_PCTX_set_nm_flags(ASN1_PCTX *p, unsigned long flags) { p->nm_flags = flags; } unsigned long ASN1_PCTX_get_cert_flags(const ASN1_PCTX *p) { return p->cert_flags; } void ASN1_PCTX_set_cert_flags(ASN1_PCTX *p, unsigned long flags) { p->cert_flags = flags; } unsigned long ASN1_PCTX_get_oid_flags(const ASN1_PCTX *p) { return p->oid_flags; } void ASN1_PCTX_set_oid_flags(ASN1_PCTX *p, unsigned long flags) { p->oid_flags = flags; } unsigned long ASN1_PCTX_get_str_flags(const ASN1_PCTX *p) { return p->str_flags; } void ASN1_PCTX_set_str_flags(ASN1_PCTX *p, unsigned long flags) { p->str_flags = flags; } /* Main print routines */ static int asn1_item_print_ctx(BIO *out, ASN1_VALUE **fld, int indent, const ASN1_ITEM *it, const char *fname, const char *sname, int nohdr, const ASN1_PCTX *pctx); static int asn1_template_print_ctx(BIO *out, ASN1_VALUE **fld, int indent, const ASN1_TEMPLATE *tt, const ASN1_PCTX *pctx); static int asn1_primitive_print(BIO *out, ASN1_VALUE **fld, const ASN1_ITEM *it, int indent, const char *fname, const char *sname, const ASN1_PCTX *pctx); static int asn1_print_fsname(BIO *out, int indent, const char *fname, const char *sname, const ASN1_PCTX *pctx); int ASN1_item_print(BIO *out, ASN1_VALUE *ifld, int indent, const ASN1_ITEM *it, const ASN1_PCTX *pctx) { const char *sname; if (pctx == NULL) pctx = &default_pctx; if (pctx->flags & ASN1_PCTX_FLAGS_NO_STRUCT_NAME) sname = NULL; else sname = it->sname; return asn1_item_print_ctx(out, &ifld, indent, it, NULL, sname, 0, pctx); } static int asn1_item_print_ctx(BIO *out, ASN1_VALUE **fld, int indent, const ASN1_ITEM *it, const char *fname, const char *sname, int nohdr, const ASN1_PCTX *pctx) { const ASN1_TEMPLATE *tt; const ASN1_EXTERN_FUNCS *ef; ASN1_VALUE **tmpfld; const ASN1_AUX *aux = it->funcs; ASN1_aux_cb *asn1_cb; ASN1_PRINT_ARG parg; int i; if (aux && aux->asn1_cb) { parg.out = out; parg.indent = indent; parg.pctx = pctx; asn1_cb = aux->asn1_cb; } else asn1_cb = 0; if (((it->itype != ASN1_ITYPE_PRIMITIVE) || (it->utype != V_ASN1_BOOLEAN)) && *fld == NULL) { if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_ABSENT) { if (!nohdr && !asn1_print_fsname(out, indent, fname, sname, pctx)) return 0; if (BIO_puts(out, "\n") <= 0) return 0; } return 1; } switch (it->itype) { case ASN1_ITYPE_PRIMITIVE: if (it->templates) { if (!asn1_template_print_ctx(out, fld, indent, it->templates, pctx)) return 0; break; } /* fall through */ case ASN1_ITYPE_MSTRING: if (!asn1_primitive_print(out, fld, it, indent, fname, sname, pctx)) return 0; break; case ASN1_ITYPE_EXTERN: if (!nohdr && !asn1_print_fsname(out, indent, fname, sname, pctx)) return 0; /* Use new style print routine if possible */ ef = it->funcs; if (ef && ef->asn1_ex_print) { i = ef->asn1_ex_print(out, fld, indent, "", pctx); if (!i) return 0; if ((i == 2) && (BIO_puts(out, "\n") <= 0)) return 0; return 1; } else if (sname && BIO_printf(out, ":EXTERNAL TYPE %s\n", sname) <= 0) return 0; break; case ASN1_ITYPE_CHOICE: /* CHOICE type, get selector */ i = asn1_get_choice_selector(fld, it); /* This should never happen... */ if ((i < 0) || (i >= it->tcount)) { if (BIO_printf(out, "ERROR: selector [%d] invalid\n", i) <= 0) return 0; return 1; } tt = it->templates + i; tmpfld = asn1_get_field_ptr(fld, tt); if (!asn1_template_print_ctx(out, tmpfld, indent, tt, pctx)) return 0; break; case ASN1_ITYPE_SEQUENCE: case ASN1_ITYPE_NDEF_SEQUENCE: if (!nohdr && !asn1_print_fsname(out, indent, fname, sname, pctx)) return 0; if (fname || sname) { if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_SEQUENCE) { if (BIO_puts(out, " {\n") <= 0) return 0; } else { if (BIO_puts(out, "\n") <= 0) return 0; } } if (asn1_cb) { i = asn1_cb(ASN1_OP_PRINT_PRE, fld, it, &parg); if (i == 0) return 0; if (i == 2) return 1; } /* Print each field entry */ for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { const ASN1_TEMPLATE *seqtt; seqtt = asn1_do_adb(fld, tt, 1); if (!seqtt) return 0; tmpfld = asn1_get_field_ptr(fld, seqtt); if (!asn1_template_print_ctx(out, tmpfld, indent + 2, seqtt, pctx)) return 0; } if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_SEQUENCE) { if (BIO_printf(out, "%*s}\n", indent, "") < 0) return 0; } if (asn1_cb) { i = asn1_cb(ASN1_OP_PRINT_POST, fld, it, &parg); if (i == 0) return 0; } break; default: BIO_printf(out, "Unprocessed type %d\n", it->itype); return 0; } return 1; } static int asn1_template_print_ctx(BIO *out, ASN1_VALUE **fld, int indent, const ASN1_TEMPLATE *tt, const ASN1_PCTX *pctx) { int i, flags; const char *sname, *fname; ASN1_VALUE *tfld; flags = tt->flags; if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_FIELD_STRUCT_NAME) sname = ASN1_ITEM_ptr(tt->item)->sname; else sname = NULL; if (pctx->flags & ASN1_PCTX_FLAGS_NO_FIELD_NAME) fname = NULL; else fname = tt->field_name; /* * If field is embedded then fld needs fixing so it is a pointer to * a pointer to a field. */ if (flags & ASN1_TFLG_EMBED) { tfld = (ASN1_VALUE *)fld; fld = &tfld; } if (flags & ASN1_TFLG_SK_MASK) { char *tname; ASN1_VALUE *skitem; STACK_OF(ASN1_VALUE) *stack; /* SET OF, SEQUENCE OF */ if (fname) { if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_SSOF) { if (flags & ASN1_TFLG_SET_OF) tname = "SET"; else tname = "SEQUENCE"; if (BIO_printf(out, "%*s%s OF %s {\n", indent, "", tname, tt->field_name) <= 0) return 0; } else if (BIO_printf(out, "%*s%s:\n", indent, "", fname) <= 0) return 0; } stack = (STACK_OF(ASN1_VALUE) *)*fld; for (i = 0; i < sk_ASN1_VALUE_num(stack); i++) { if ((i > 0) && (BIO_puts(out, "\n") <= 0)) return 0; skitem = sk_ASN1_VALUE_value(stack, i); if (!asn1_item_print_ctx(out, &skitem, indent + 2, ASN1_ITEM_ptr(tt->item), NULL, NULL, 1, pctx)) return 0; } if (i == 0 && BIO_printf(out, "%*s<%s>\n", indent + 2, "", stack == NULL ? "ABSENT" : "EMPTY") <= 0) return 0; if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_SEQUENCE) { if (BIO_printf(out, "%*s}\n", indent, "") <= 0) return 0; } return 1; } return asn1_item_print_ctx(out, fld, indent, ASN1_ITEM_ptr(tt->item), fname, sname, 0, pctx); } static int asn1_print_fsname(BIO *out, int indent, const char *fname, const char *sname, const ASN1_PCTX *pctx) { static const char spaces[] = " "; static const int nspaces = sizeof(spaces) - 1; while (indent > nspaces) { if (BIO_write(out, spaces, nspaces) != nspaces) return 0; indent -= nspaces; } if (BIO_write(out, spaces, indent) != indent) return 0; if (pctx->flags & ASN1_PCTX_FLAGS_NO_STRUCT_NAME) sname = NULL; if (pctx->flags & ASN1_PCTX_FLAGS_NO_FIELD_NAME) fname = NULL; if (!sname && !fname) return 1; if (fname) { if (BIO_puts(out, fname) <= 0) return 0; } if (sname) { if (fname) { if (BIO_printf(out, " (%s)", sname) <= 0) return 0; } else { if (BIO_puts(out, sname) <= 0) return 0; } } if (BIO_write(out, ": ", 2) != 2) return 0; return 1; } static int asn1_print_boolean(BIO *out, int boolval) { const char *str; switch (boolval) { case -1: str = "BOOL ABSENT"; break; case 0: str = "FALSE"; break; default: str = "TRUE"; break; } if (BIO_puts(out, str) <= 0) return 0; return 1; } static int asn1_print_integer(BIO *out, const ASN1_INTEGER *str) { char *s; int ret = 1; s = i2s_ASN1_INTEGER(NULL, str); if (s == NULL) return 0; if (BIO_puts(out, s) <= 0) ret = 0; OPENSSL_free(s); return ret; } static int asn1_print_oid(BIO *out, const ASN1_OBJECT *oid) { char objbuf[80]; const char *ln; ln = OBJ_nid2ln(OBJ_obj2nid(oid)); if (!ln) ln = ""; OBJ_obj2txt(objbuf, sizeof(objbuf), oid, 1); if (BIO_printf(out, "%s (%s)", ln, objbuf) <= 0) return 0; return 1; } static int asn1_print_obstring(BIO *out, const ASN1_STRING *str, int indent) { if (str->type == V_ASN1_BIT_STRING) { if (BIO_printf(out, " (%ld unused bits)\n", str->flags & 0x7) <= 0) return 0; } else if (BIO_puts(out, "\n") <= 0) return 0; if ((str->length > 0) && BIO_dump_indent(out, (const char *)str->data, str->length, indent + 2) <= 0) return 0; return 1; } static int asn1_primitive_print(BIO *out, ASN1_VALUE **fld, const ASN1_ITEM *it, int indent, const char *fname, const char *sname, const ASN1_PCTX *pctx) { long utype; ASN1_STRING *str; int ret = 1, needlf = 1; const char *pname; const ASN1_PRIMITIVE_FUNCS *pf; pf = it->funcs; if (!asn1_print_fsname(out, indent, fname, sname, pctx)) return 0; if (pf && pf->prim_print) return pf->prim_print(out, fld, it, indent, pctx); if (it->itype == ASN1_ITYPE_MSTRING) { str = (ASN1_STRING *)*fld; utype = str->type & ~V_ASN1_NEG; } else { utype = it->utype; if (utype == V_ASN1_BOOLEAN) str = NULL; else str = (ASN1_STRING *)*fld; } if (utype == V_ASN1_ANY) { ASN1_TYPE *atype = (ASN1_TYPE *)*fld; utype = atype->type; fld = &atype->value.asn1_value; str = (ASN1_STRING *)*fld; if (pctx->flags & ASN1_PCTX_FLAGS_NO_ANY_TYPE) pname = NULL; else pname = ASN1_tag2str(utype); } else { if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_TYPE) pname = ASN1_tag2str(utype); else pname = NULL; } if (utype == V_ASN1_NULL) { if (BIO_puts(out, "NULL\n") <= 0) return 0; return 1; } if (pname) { if (BIO_puts(out, pname) <= 0) return 0; if (BIO_puts(out, ":") <= 0) return 0; } switch (utype) { case V_ASN1_BOOLEAN: { int boolval = *(int *)fld; if (boolval == -1) boolval = it->size; ret = asn1_print_boolean(out, boolval); } break; case V_ASN1_INTEGER: case V_ASN1_ENUMERATED: ret = asn1_print_integer(out, str); break; case V_ASN1_UTCTIME: ret = ASN1_UTCTIME_print(out, str); break; case V_ASN1_GENERALIZEDTIME: ret = ASN1_GENERALIZEDTIME_print(out, str); break; case V_ASN1_OBJECT: ret = asn1_print_oid(out, (const ASN1_OBJECT *)*fld); break; case V_ASN1_OCTET_STRING: case V_ASN1_BIT_STRING: ret = asn1_print_obstring(out, str, indent); needlf = 0; break; case V_ASN1_SEQUENCE: case V_ASN1_SET: case V_ASN1_OTHER: if (BIO_puts(out, "\n") <= 0) return 0; if (ASN1_parse_dump(out, str->data, str->length, indent, 0) <= 0) ret = 0; needlf = 0; break; default: ret = ASN1_STRING_print_ex(out, str, pctx->str_flags); } if (!ret) return 0; if (needlf && BIO_puts(out, "\n") <= 0) return 0; return 1; } openssl-1.1.1f/crypto/asn1/tasn_scn.c000066400000000000000000000025671364063235100175160ustar00rootroot00000000000000/* * Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include "asn1_local.h" /* * General ASN1 structure recursive scanner: iterate through all fields * passing details to a callback. */ ASN1_SCTX *ASN1_SCTX_new(int (*scan_cb) (ASN1_SCTX *ctx)) { ASN1_SCTX *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ASN1err(ASN1_F_ASN1_SCTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->scan_cb = scan_cb; return ret; } void ASN1_SCTX_free(ASN1_SCTX *p) { OPENSSL_free(p); } const ASN1_ITEM *ASN1_SCTX_get_item(ASN1_SCTX *p) { return p->it; } const ASN1_TEMPLATE *ASN1_SCTX_get_template(ASN1_SCTX *p) { return p->tt; } unsigned long ASN1_SCTX_get_flags(ASN1_SCTX *p) { return p->flags; } void ASN1_SCTX_set_app_data(ASN1_SCTX *p, void *data) { p->app_data = data; } void *ASN1_SCTX_get_app_data(ASN1_SCTX *p) { return p->app_data; } openssl-1.1.1f/crypto/asn1/tasn_typ.c000066400000000000000000000056771364063235100175540ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include /* Declarations for string types */ #define IMPLEMENT_ASN1_STRING_FUNCTIONS(sname) \ IMPLEMENT_ASN1_TYPE(sname) \ IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(sname, sname, sname) \ sname *sname##_new(void) \ { \ return ASN1_STRING_type_new(V_##sname); \ } \ void sname##_free(sname *x) \ { \ ASN1_STRING_free(x); \ } IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_OCTET_STRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_INTEGER) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_ENUMERATED) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_BIT_STRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_UTF8STRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_PRINTABLESTRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_T61STRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_IA5STRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_GENERALSTRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_UTCTIME) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_GENERALIZEDTIME) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_VISIBLESTRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_UNIVERSALSTRING) IMPLEMENT_ASN1_STRING_FUNCTIONS(ASN1_BMPSTRING) IMPLEMENT_ASN1_TYPE(ASN1_NULL) IMPLEMENT_ASN1_FUNCTIONS(ASN1_NULL) IMPLEMENT_ASN1_TYPE(ASN1_OBJECT) IMPLEMENT_ASN1_TYPE(ASN1_ANY) /* Just swallow an ASN1_SEQUENCE in an ASN1_STRING */ IMPLEMENT_ASN1_TYPE(ASN1_SEQUENCE) IMPLEMENT_ASN1_FUNCTIONS_fname(ASN1_TYPE, ASN1_ANY, ASN1_TYPE) /* Multistring types */ IMPLEMENT_ASN1_MSTRING(ASN1_PRINTABLE, B_ASN1_PRINTABLE) IMPLEMENT_ASN1_FUNCTIONS_name(ASN1_STRING, ASN1_PRINTABLE) IMPLEMENT_ASN1_MSTRING(DISPLAYTEXT, B_ASN1_DISPLAYTEXT) IMPLEMENT_ASN1_FUNCTIONS_name(ASN1_STRING, DISPLAYTEXT) IMPLEMENT_ASN1_MSTRING(DIRECTORYSTRING, B_ASN1_DIRECTORYSTRING) IMPLEMENT_ASN1_FUNCTIONS_name(ASN1_STRING, DIRECTORYSTRING) /* Three separate BOOLEAN type: normal, DEFAULT TRUE and DEFAULT FALSE */ IMPLEMENT_ASN1_TYPE_ex(ASN1_BOOLEAN, ASN1_BOOLEAN, -1) IMPLEMENT_ASN1_TYPE_ex(ASN1_TBOOLEAN, ASN1_BOOLEAN, 1) IMPLEMENT_ASN1_TYPE_ex(ASN1_FBOOLEAN, ASN1_BOOLEAN, 0) /* Special, OCTET STRING with indefinite length constructed support */ IMPLEMENT_ASN1_TYPE_ex(ASN1_OCTET_STRING_NDEF, ASN1_OCTET_STRING, ASN1_TFLG_NDEF) ASN1_ITEM_TEMPLATE(ASN1_SEQUENCE_ANY) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, ASN1_SEQUENCE_ANY, ASN1_ANY) ASN1_ITEM_TEMPLATE_END(ASN1_SEQUENCE_ANY) ASN1_ITEM_TEMPLATE(ASN1_SET_ANY) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF, 0, ASN1_SET_ANY, ASN1_ANY) ASN1_ITEM_TEMPLATE_END(ASN1_SET_ANY) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(ASN1_SEQUENCE_ANY, ASN1_SEQUENCE_ANY, ASN1_SEQUENCE_ANY) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(ASN1_SEQUENCE_ANY, ASN1_SET_ANY, ASN1_SET_ANY) openssl-1.1.1f/crypto/asn1/tasn_utl.c000066400000000000000000000152211364063235100175260ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include #include #include #include #include "asn1_local.h" /* Utility functions for manipulating fields and offsets */ /* Add 'offset' to 'addr' */ #define offset2ptr(addr, offset) (void *)(((char *) addr) + offset) /* * Given an ASN1_ITEM CHOICE type return the selector value */ int asn1_get_choice_selector(ASN1_VALUE **pval, const ASN1_ITEM *it) { int *sel = offset2ptr(*pval, it->utype); return *sel; } /* * Given an ASN1_ITEM CHOICE type set the selector value, return old value. */ int asn1_set_choice_selector(ASN1_VALUE **pval, int value, const ASN1_ITEM *it) { int *sel, ret; sel = offset2ptr(*pval, it->utype); ret = *sel; *sel = value; return ret; } /* * Do atomic reference counting. The value 'op' decides what to do. * If it is +1 then the count is incremented. * If |op| is 0, lock is initialised and count is set to 1. * If |op| is -1, count is decremented and the return value is the current * reference count or 0 if no reference count is active. * It returns -1 on initialisation error. * Used by ASN1_SEQUENCE construct of X509, X509_REQ, X509_CRL objects */ int asn1_do_lock(ASN1_VALUE **pval, int op, const ASN1_ITEM *it) { const ASN1_AUX *aux; CRYPTO_REF_COUNT *lck; CRYPTO_RWLOCK **lock; int ret = -1; if ((it->itype != ASN1_ITYPE_SEQUENCE) && (it->itype != ASN1_ITYPE_NDEF_SEQUENCE)) return 0; aux = it->funcs; if (!aux || !(aux->flags & ASN1_AFLG_REFCOUNT)) return 0; lck = offset2ptr(*pval, aux->ref_offset); lock = offset2ptr(*pval, aux->ref_lock); switch (op) { case 0: *lck = ret = 1; *lock = CRYPTO_THREAD_lock_new(); if (*lock == NULL) { ASN1err(ASN1_F_ASN1_DO_LOCK, ERR_R_MALLOC_FAILURE); return -1; } break; case 1: if (!CRYPTO_UP_REF(lck, &ret, *lock)) return -1; break; case -1: if (!CRYPTO_DOWN_REF(lck, &ret, *lock)) return -1; /* failed */ #ifdef REF_PRINT fprintf(stderr, "%p:%4d:%s\n", it, ret, it->sname); #endif REF_ASSERT_ISNT(ret < 0); if (ret == 0) { CRYPTO_THREAD_lock_free(*lock); *lock = NULL; } break; } return ret; } static ASN1_ENCODING *asn1_get_enc_ptr(ASN1_VALUE **pval, const ASN1_ITEM *it) { const ASN1_AUX *aux; if (!pval || !*pval) return NULL; aux = it->funcs; if (!aux || !(aux->flags & ASN1_AFLG_ENCODING)) return NULL; return offset2ptr(*pval, aux->enc_offset); } void asn1_enc_init(ASN1_VALUE **pval, const ASN1_ITEM *it) { ASN1_ENCODING *enc; enc = asn1_get_enc_ptr(pval, it); if (enc) { enc->enc = NULL; enc->len = 0; enc->modified = 1; } } void asn1_enc_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { ASN1_ENCODING *enc; enc = asn1_get_enc_ptr(pval, it); if (enc) { OPENSSL_free(enc->enc); enc->enc = NULL; enc->len = 0; enc->modified = 1; } } int asn1_enc_save(ASN1_VALUE **pval, const unsigned char *in, int inlen, const ASN1_ITEM *it) { ASN1_ENCODING *enc; enc = asn1_get_enc_ptr(pval, it); if (!enc) return 1; OPENSSL_free(enc->enc); if ((enc->enc = OPENSSL_malloc(inlen)) == NULL) { ASN1err(ASN1_F_ASN1_ENC_SAVE, ERR_R_MALLOC_FAILURE); return 0; } memcpy(enc->enc, in, inlen); enc->len = inlen; enc->modified = 0; return 1; } int asn1_enc_restore(int *len, unsigned char **out, ASN1_VALUE **pval, const ASN1_ITEM *it) { ASN1_ENCODING *enc; enc = asn1_get_enc_ptr(pval, it); if (!enc || enc->modified) return 0; if (out) { memcpy(*out, enc->enc, enc->len); *out += enc->len; } if (len) *len = enc->len; return 1; } /* Given an ASN1_TEMPLATE get a pointer to a field */ ASN1_VALUE **asn1_get_field_ptr(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt) { ASN1_VALUE **pvaltmp; pvaltmp = offset2ptr(*pval, tt->offset); /* * NOTE for BOOLEAN types the field is just a plain int so we can't * return int **, so settle for (int *). */ return pvaltmp; } /* * Handle ANY DEFINED BY template, find the selector, look up the relevant * ASN1_TEMPLATE in the table and return it. */ const ASN1_TEMPLATE *asn1_do_adb(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt, int nullerr) { const ASN1_ADB *adb; const ASN1_ADB_TABLE *atbl; long selector; ASN1_VALUE **sfld; int i; if (!(tt->flags & ASN1_TFLG_ADB_MASK)) return tt; /* Else ANY DEFINED BY ... get the table */ adb = ASN1_ADB_ptr(tt->item); /* Get the selector field */ sfld = offset2ptr(*pval, adb->offset); /* Check if NULL */ if (*sfld == NULL) { if (!adb->null_tt) goto err; return adb->null_tt; } /* * Convert type to a long: NB: don't check for NID_undef here because it * might be a legitimate value in the table */ if (tt->flags & ASN1_TFLG_ADB_OID) selector = OBJ_obj2nid((ASN1_OBJECT *)*sfld); else selector = ASN1_INTEGER_get((ASN1_INTEGER *)*sfld); /* Let application callback translate value */ if (adb->adb_cb != NULL && adb->adb_cb(&selector) == 0) { ASN1err(ASN1_F_ASN1_DO_ADB, ASN1_R_UNSUPPORTED_ANY_DEFINED_BY_TYPE); return NULL; } /* * Try to find matching entry in table Maybe should check application * types first to allow application override? Might also be useful to * have a flag which indicates table is sorted and we can do a binary * search. For now stick to a linear search. */ for (atbl = adb->tbl, i = 0; i < adb->tblcount; i++, atbl++) if (atbl->value == selector) return &atbl->tt; /* FIXME: need to search application table too */ /* No match, return default type */ if (!adb->default_tt) goto err; return adb->default_tt; err: /* FIXME: should log the value or OID of unsupported type */ if (nullerr) ASN1err(ASN1_F_ASN1_DO_ADB, ASN1_R_UNSUPPORTED_ANY_DEFINED_BY_TYPE); return NULL; } openssl-1.1.1f/crypto/asn1/tbl_standard.h000066400000000000000000000053121364063235100203430ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* size limits: this stuff is taken straight from RFC3280 */ #define ub_name 32768 #define ub_common_name 64 #define ub_locality_name 128 #define ub_state_name 128 #define ub_organization_name 64 #define ub_organization_unit_name 64 #define ub_title 64 #define ub_email_address 128 #define ub_serial_number 64 /* From RFC4524 */ #define ub_rfc822_mailbox 256 /* This table must be kept in NID order */ static const ASN1_STRING_TABLE tbl_standard[] = { {NID_commonName, 1, ub_common_name, DIRSTRING_TYPE, 0}, {NID_countryName, 2, 2, B_ASN1_PRINTABLESTRING, STABLE_NO_MASK}, {NID_localityName, 1, ub_locality_name, DIRSTRING_TYPE, 0}, {NID_stateOrProvinceName, 1, ub_state_name, DIRSTRING_TYPE, 0}, {NID_organizationName, 1, ub_organization_name, DIRSTRING_TYPE, 0}, {NID_organizationalUnitName, 1, ub_organization_unit_name, DIRSTRING_TYPE, 0}, {NID_pkcs9_emailAddress, 1, ub_email_address, B_ASN1_IA5STRING, STABLE_NO_MASK}, {NID_pkcs9_unstructuredName, 1, -1, PKCS9STRING_TYPE, 0}, {NID_pkcs9_challengePassword, 1, -1, PKCS9STRING_TYPE, 0}, {NID_pkcs9_unstructuredAddress, 1, -1, DIRSTRING_TYPE, 0}, {NID_givenName, 1, ub_name, DIRSTRING_TYPE, 0}, {NID_surname, 1, ub_name, DIRSTRING_TYPE, 0}, {NID_initials, 1, ub_name, DIRSTRING_TYPE, 0}, {NID_serialNumber, 1, ub_serial_number, B_ASN1_PRINTABLESTRING, STABLE_NO_MASK}, {NID_friendlyName, -1, -1, B_ASN1_BMPSTRING, STABLE_NO_MASK}, {NID_name, 1, ub_name, DIRSTRING_TYPE, 0}, {NID_dnQualifier, -1, -1, B_ASN1_PRINTABLESTRING, STABLE_NO_MASK}, {NID_domainComponent, 1, -1, B_ASN1_IA5STRING, STABLE_NO_MASK}, {NID_ms_csp_name, -1, -1, B_ASN1_BMPSTRING, STABLE_NO_MASK}, {NID_rfc822Mailbox, 1, ub_rfc822_mailbox, B_ASN1_IA5STRING, STABLE_NO_MASK}, {NID_jurisdictionCountryName, 2, 2, B_ASN1_PRINTABLESTRING, STABLE_NO_MASK}, {NID_INN, 1, 12, B_ASN1_NUMERICSTRING, STABLE_NO_MASK}, {NID_OGRN, 1, 13, B_ASN1_NUMERICSTRING, STABLE_NO_MASK}, {NID_SNILS, 1, 11, B_ASN1_NUMERICSTRING, STABLE_NO_MASK}, {NID_countryCode3c, 3, 3, B_ASN1_PRINTABLESTRING, STABLE_NO_MASK}, {NID_countryCode3n, 3, 3, B_ASN1_NUMERICSTRING, STABLE_NO_MASK}, {NID_dnsName, 0, -1, B_ASN1_UTF8STRING, STABLE_NO_MASK} }; openssl-1.1.1f/crypto/asn1/x_algor.c000066400000000000000000000050211364063235100173250ustar00rootroot00000000000000/* * Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "crypto/evp.h" ASN1_SEQUENCE(X509_ALGOR) = { ASN1_SIMPLE(X509_ALGOR, algorithm, ASN1_OBJECT), ASN1_OPT(X509_ALGOR, parameter, ASN1_ANY) } ASN1_SEQUENCE_END(X509_ALGOR) ASN1_ITEM_TEMPLATE(X509_ALGORS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, algorithms, X509_ALGOR) ASN1_ITEM_TEMPLATE_END(X509_ALGORS) IMPLEMENT_ASN1_FUNCTIONS(X509_ALGOR) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(X509_ALGORS, X509_ALGORS, X509_ALGORS) IMPLEMENT_ASN1_DUP_FUNCTION(X509_ALGOR) int X509_ALGOR_set0(X509_ALGOR *alg, ASN1_OBJECT *aobj, int ptype, void *pval) { if (alg == NULL) return 0; if (ptype != V_ASN1_UNDEF) { if (alg->parameter == NULL) alg->parameter = ASN1_TYPE_new(); if (alg->parameter == NULL) return 0; } ASN1_OBJECT_free(alg->algorithm); alg->algorithm = aobj; if (ptype == 0) return 1; if (ptype == V_ASN1_UNDEF) { ASN1_TYPE_free(alg->parameter); alg->parameter = NULL; } else ASN1_TYPE_set(alg->parameter, ptype, pval); return 1; } void X509_ALGOR_get0(const ASN1_OBJECT **paobj, int *pptype, const void **ppval, const X509_ALGOR *algor) { if (paobj) *paobj = algor->algorithm; if (pptype) { if (algor->parameter == NULL) { *pptype = V_ASN1_UNDEF; return; } else *pptype = algor->parameter->type; if (ppval) *ppval = algor->parameter->value.ptr; } } /* Set up an X509_ALGOR DigestAlgorithmIdentifier from an EVP_MD */ void X509_ALGOR_set_md(X509_ALGOR *alg, const EVP_MD *md) { int param_type; if (md->flags & EVP_MD_FLAG_DIGALGID_ABSENT) param_type = V_ASN1_UNDEF; else param_type = V_ASN1_NULL; X509_ALGOR_set0(alg, OBJ_nid2obj(EVP_MD_type(md)), param_type, NULL); } int X509_ALGOR_cmp(const X509_ALGOR *a, const X509_ALGOR *b) { int rv; rv = OBJ_cmp(a->algorithm, b->algorithm); if (rv) return rv; if (!a->parameter && !b->parameter) return 0; return ASN1_TYPE_cmp(a->parameter, b->parameter); } openssl-1.1.1f/crypto/asn1/x_bignum.c000066400000000000000000000100661364063235100175070ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include /* * Custom primitive type for BIGNUM handling. This reads in an ASN1_INTEGER * as a BIGNUM directly. Currently it ignores the sign which isn't a problem * since all BIGNUMs used are non negative and anything that looks negative * is normally due to an encoding error. */ #define BN_SENSITIVE 1 static int bn_new(ASN1_VALUE **pval, const ASN1_ITEM *it); static int bn_secure_new(ASN1_VALUE **pval, const ASN1_ITEM *it); static void bn_free(ASN1_VALUE **pval, const ASN1_ITEM *it); static int bn_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_ITEM *it); static int bn_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it); static int bn_secure_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it); static int bn_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it, int indent, const ASN1_PCTX *pctx); static ASN1_PRIMITIVE_FUNCS bignum_pf = { NULL, 0, bn_new, bn_free, 0, bn_c2i, bn_i2c, bn_print }; static ASN1_PRIMITIVE_FUNCS cbignum_pf = { NULL, 0, bn_secure_new, bn_free, 0, bn_secure_c2i, bn_i2c, bn_print }; ASN1_ITEM_start(BIGNUM) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &bignum_pf, 0, "BIGNUM" ASN1_ITEM_end(BIGNUM) ASN1_ITEM_start(CBIGNUM) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &cbignum_pf, BN_SENSITIVE, "CBIGNUM" ASN1_ITEM_end(CBIGNUM) static int bn_new(ASN1_VALUE **pval, const ASN1_ITEM *it) { *pval = (ASN1_VALUE *)BN_new(); if (*pval != NULL) return 1; else return 0; } static int bn_secure_new(ASN1_VALUE **pval, const ASN1_ITEM *it) { *pval = (ASN1_VALUE *)BN_secure_new(); if (*pval != NULL) return 1; else return 0; } static void bn_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { if (*pval == NULL) return; if (it->size & BN_SENSITIVE) BN_clear_free((BIGNUM *)*pval); else BN_free((BIGNUM *)*pval); *pval = NULL; } static int bn_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_ITEM *it) { BIGNUM *bn; int pad; if (*pval == NULL) return -1; bn = (BIGNUM *)*pval; /* If MSB set in an octet we need a padding byte */ if (BN_num_bits(bn) & 0x7) pad = 0; else pad = 1; if (cont) { if (pad) *cont++ = 0; BN_bn2bin(bn, cont); } return pad + BN_num_bytes(bn); } static int bn_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it) { BIGNUM *bn; if (*pval == NULL && !bn_new(pval, it)) return 0; bn = (BIGNUM *)*pval; if (!BN_bin2bn(cont, len, bn)) { bn_free(pval, it); return 0; } return 1; } static int bn_secure_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it) { int ret; BIGNUM *bn; if (*pval == NULL && !bn_secure_new(pval, it)) return 0; ret = bn_c2i(pval, cont, len, utype, free_cont, it); if (!ret) return 0; /* Set constant-time flag for all secure BIGNUMS */ bn = (BIGNUM *)*pval; BN_set_flags(bn, BN_FLG_CONSTTIME); return ret; } static int bn_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it, int indent, const ASN1_PCTX *pctx) { if (!BN_print(out, *(BIGNUM **)pval)) return 0; if (BIO_puts(out, "\n") <= 0) return 0; return 1; } openssl-1.1.1f/crypto/asn1/x_info.c000066400000000000000000000015771364063235100171700ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include X509_INFO *X509_INFO_new(void) { X509_INFO *ret; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ASN1err(ASN1_F_X509_INFO_NEW, ERR_R_MALLOC_FAILURE); return NULL; } return ret; } void X509_INFO_free(X509_INFO *x) { if (x == NULL) return; X509_free(x->x509); X509_CRL_free(x->crl); X509_PKEY_free(x->x_pkey); OPENSSL_free(x->enc_data); OPENSSL_free(x); } openssl-1.1.1f/crypto/asn1/x_int64.c000066400000000000000000000175211364063235100171750ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include #include "asn1_local.h" /* * Custom primitive types for handling int32_t, int64_t, uint32_t, uint64_t. * This converts between an ASN1_INTEGER and those types directly. * This is preferred to using the LONG / ZLONG primitives. */ /* * We abuse the ASN1_ITEM fields |size| as a flags field */ #define INTxx_FLAG_ZERO_DEFAULT (1<<0) #define INTxx_FLAG_SIGNED (1<<1) static int uint64_new(ASN1_VALUE **pval, const ASN1_ITEM *it) { if ((*pval = (ASN1_VALUE *)OPENSSL_zalloc(sizeof(uint64_t))) == NULL) { ASN1err(ASN1_F_UINT64_NEW, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static void uint64_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { OPENSSL_free(*pval); *pval = NULL; } static void uint64_clear(ASN1_VALUE **pval, const ASN1_ITEM *it) { **(uint64_t **)pval = 0; } static int uint64_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_ITEM *it) { uint64_t utmp; int neg = 0; /* this exists to bypass broken gcc optimization */ char *cp = (char *)*pval; /* use memcpy, because we may not be uint64_t aligned */ memcpy(&utmp, cp, sizeof(utmp)); if ((it->size & INTxx_FLAG_ZERO_DEFAULT) == INTxx_FLAG_ZERO_DEFAULT && utmp == 0) return -1; if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED && (int64_t)utmp < 0) { /* i2c_uint64_int() assumes positive values */ utmp = 0 - utmp; neg = 1; } return i2c_uint64_int(cont, utmp, neg); } static int uint64_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it) { uint64_t utmp = 0; char *cp; int neg = 0; if (*pval == NULL && !uint64_new(pval, it)) return 0; cp = (char *)*pval; /* * Strictly speaking, zero length is malformed. However, long_c2i * (x_long.c) encodes 0 as a zero length INTEGER (wrongly, of course), * so for the sake of backward compatibility, we still decode zero * length INTEGERs as the number zero. */ if (len == 0) goto long_compat; if (!c2i_uint64_int(&utmp, &neg, &cont, len)) return 0; if ((it->size & INTxx_FLAG_SIGNED) == 0 && neg) { ASN1err(ASN1_F_UINT64_C2I, ASN1_R_ILLEGAL_NEGATIVE_VALUE); return 0; } if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED && !neg && utmp > INT64_MAX) { ASN1err(ASN1_F_UINT64_C2I, ASN1_R_TOO_LARGE); return 0; } if (neg) /* c2i_uint64_int() returns positive values */ utmp = 0 - utmp; long_compat: memcpy(cp, &utmp, sizeof(utmp)); return 1; } static int uint64_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it, int indent, const ASN1_PCTX *pctx) { if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED) return BIO_printf(out, "%jd\n", **(int64_t **)pval); return BIO_printf(out, "%ju\n", **(uint64_t **)pval); } /* 32-bit variants */ static int uint32_new(ASN1_VALUE **pval, const ASN1_ITEM *it) { if ((*pval = (ASN1_VALUE *)OPENSSL_zalloc(sizeof(uint32_t))) == NULL) { ASN1err(ASN1_F_UINT32_NEW, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static void uint32_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { OPENSSL_free(*pval); *pval = NULL; } static void uint32_clear(ASN1_VALUE **pval, const ASN1_ITEM *it) { **(uint32_t **)pval = 0; } static int uint32_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_ITEM *it) { uint32_t utmp; int neg = 0; /* this exists to bypass broken gcc optimization */ char *cp = (char *)*pval; /* use memcpy, because we may not be uint32_t aligned */ memcpy(&utmp, cp, sizeof(utmp)); if ((it->size & INTxx_FLAG_ZERO_DEFAULT) == INTxx_FLAG_ZERO_DEFAULT && utmp == 0) return -1; if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED && (int32_t)utmp < 0) { /* i2c_uint64_int() assumes positive values */ utmp = 0 - utmp; neg = 1; } return i2c_uint64_int(cont, (uint64_t)utmp, neg); } /* * Absolute value of INT32_MIN: we can't just use -INT32_MIN as it produces * overflow warnings. */ #define ABS_INT32_MIN ((uint32_t)INT32_MAX + 1) static int uint32_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it) { uint64_t utmp = 0; uint32_t utmp2 = 0; char *cp; int neg = 0; if (*pval == NULL && !uint64_new(pval, it)) return 0; cp = (char *)*pval; /* * Strictly speaking, zero length is malformed. However, long_c2i * (x_long.c) encodes 0 as a zero length INTEGER (wrongly, of course), * so for the sake of backward compatibility, we still decode zero * length INTEGERs as the number zero. */ if (len == 0) goto long_compat; if (!c2i_uint64_int(&utmp, &neg, &cont, len)) return 0; if ((it->size & INTxx_FLAG_SIGNED) == 0 && neg) { ASN1err(ASN1_F_UINT32_C2I, ASN1_R_ILLEGAL_NEGATIVE_VALUE); return 0; } if (neg) { if (utmp > ABS_INT32_MIN) { ASN1err(ASN1_F_UINT32_C2I, ASN1_R_TOO_SMALL); return 0; } utmp = 0 - utmp; } else { if (((it->size & INTxx_FLAG_SIGNED) != 0 && utmp > INT32_MAX) || ((it->size & INTxx_FLAG_SIGNED) == 0 && utmp > UINT32_MAX)) { ASN1err(ASN1_F_UINT32_C2I, ASN1_R_TOO_LARGE); return 0; } } long_compat: utmp2 = (uint32_t)utmp; memcpy(cp, &utmp2, sizeof(utmp2)); return 1; } static int uint32_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it, int indent, const ASN1_PCTX *pctx) { if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED) return BIO_printf(out, "%d\n", **(int32_t **)pval); return BIO_printf(out, "%u\n", **(uint32_t **)pval); } /* Define the primitives themselves */ static ASN1_PRIMITIVE_FUNCS uint32_pf = { NULL, 0, uint32_new, uint32_free, uint32_clear, uint32_c2i, uint32_i2c, uint32_print }; static ASN1_PRIMITIVE_FUNCS uint64_pf = { NULL, 0, uint64_new, uint64_free, uint64_clear, uint64_c2i, uint64_i2c, uint64_print }; ASN1_ITEM_start(INT32) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf, INTxx_FLAG_SIGNED, "INT32" ASN1_ITEM_end(INT32) ASN1_ITEM_start(UINT32) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf, 0, "UINT32" ASN1_ITEM_end(UINT32) ASN1_ITEM_start(INT64) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf, INTxx_FLAG_SIGNED, "INT64" ASN1_ITEM_end(INT64) ASN1_ITEM_start(UINT64) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf, 0, "UINT64" ASN1_ITEM_end(UINT64) ASN1_ITEM_start(ZINT32) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf, INTxx_FLAG_ZERO_DEFAULT|INTxx_FLAG_SIGNED, "ZINT32" ASN1_ITEM_end(ZINT32) ASN1_ITEM_start(ZUINT32) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf, INTxx_FLAG_ZERO_DEFAULT, "ZUINT32" ASN1_ITEM_end(ZUINT32) ASN1_ITEM_start(ZINT64) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf, INTxx_FLAG_ZERO_DEFAULT|INTxx_FLAG_SIGNED, "ZINT64" ASN1_ITEM_end(ZINT64) ASN1_ITEM_start(ZUINT64) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf, INTxx_FLAG_ZERO_DEFAULT, "ZUINT64" ASN1_ITEM_end(ZUINT64) openssl-1.1.1f/crypto/asn1/x_long.c000066400000000000000000000126561364063235100171740ustar00rootroot00000000000000/* * Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #if !(OPENSSL_API_COMPAT < 0x10200000L) NON_EMPTY_TRANSLATION_UNIT #else #define COPY_SIZE(a, b) (sizeof(a) < sizeof(b) ? sizeof(a) : sizeof(b)) /* * Custom primitive type for long handling. This converts between an * ASN1_INTEGER and a long directly. */ static int long_new(ASN1_VALUE **pval, const ASN1_ITEM *it); static void long_free(ASN1_VALUE **pval, const ASN1_ITEM *it); static int long_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_ITEM *it); static int long_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it); static int long_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it, int indent, const ASN1_PCTX *pctx); static ASN1_PRIMITIVE_FUNCS long_pf = { NULL, 0, long_new, long_free, long_free, /* Clear should set to initial value */ long_c2i, long_i2c, long_print }; ASN1_ITEM_start(LONG) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &long_pf, ASN1_LONG_UNDEF, "LONG" ASN1_ITEM_end(LONG) ASN1_ITEM_start(ZLONG) ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &long_pf, 0, "ZLONG" ASN1_ITEM_end(ZLONG) static int long_new(ASN1_VALUE **pval, const ASN1_ITEM *it) { memcpy(pval, &it->size, COPY_SIZE(*pval, it->size)); return 1; } static void long_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { memcpy(pval, &it->size, COPY_SIZE(*pval, it->size)); } /* * Originally BN_num_bits_word was called to perform this operation, but * trouble is that there is no guarantee that sizeof(long) equals to * sizeof(BN_ULONG). BN_ULONG is a configurable type that can be as wide * as long, but also double or half... */ static int num_bits_ulong(unsigned long value) { size_t i; unsigned long ret = 0; /* * It is argued that *on average* constant counter loop performs * not worse [if not better] than one with conditional break or * mask-n-table-lookup-style, because of branch misprediction * penalties. */ for (i = 0; i < sizeof(value) * 8; i++) { ret += (value != 0); value >>= 1; } return (int)ret; } static int long_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_ITEM *it) { long ltmp; unsigned long utmp, sign; int clen, pad, i; memcpy(<mp, pval, COPY_SIZE(*pval, ltmp)); if (ltmp == it->size) return -1; /* * Convert the long to positive: we subtract one if negative so we can * cleanly handle the padding if only the MSB of the leading octet is * set. */ if (ltmp < 0) { sign = 0xff; utmp = 0 - (unsigned long)ltmp - 1; } else { sign = 0; utmp = ltmp; } clen = num_bits_ulong(utmp); /* If MSB of leading octet set we need to pad */ if (!(clen & 0x7)) pad = 1; else pad = 0; /* Convert number of bits to number of octets */ clen = (clen + 7) >> 3; if (cont != NULL) { if (pad) *cont++ = (unsigned char)sign; for (i = clen - 1; i >= 0; i--) { cont[i] = (unsigned char)(utmp ^ sign); utmp >>= 8; } } return clen + pad; } static int long_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it) { int i; long ltmp; unsigned long utmp = 0, sign = 0x100; if (len > 1) { /* * Check possible pad byte. Worst case, we're skipping past actual * content, but since that's only with 0x00 and 0xff and we set neg * accordingly, the result will be correct in the end anyway. */ switch (cont[0]) { case 0xff: cont++; len--; sign = 0xff; break; case 0: cont++; len--; sign = 0; break; } } if (len > (int)sizeof(long)) { ASN1err(ASN1_F_LONG_C2I, ASN1_R_INTEGER_TOO_LARGE_FOR_LONG); return 0; } if (sign == 0x100) { /* Is it negative? */ if (len && (cont[0] & 0x80)) sign = 0xff; else sign = 0; } else if (((sign ^ cont[0]) & 0x80) == 0) { /* same sign bit? */ ASN1err(ASN1_F_LONG_C2I, ASN1_R_ILLEGAL_PADDING); return 0; } utmp = 0; for (i = 0; i < len; i++) { utmp <<= 8; utmp |= cont[i] ^ sign; } ltmp = (long)utmp; if (ltmp < 0) { ASN1err(ASN1_F_LONG_C2I, ASN1_R_INTEGER_TOO_LARGE_FOR_LONG); return 0; } if (sign) ltmp = -ltmp - 1; if (ltmp == it->size) { ASN1err(ASN1_F_LONG_C2I, ASN1_R_INTEGER_TOO_LARGE_FOR_LONG); return 0; } memcpy(pval, <mp, COPY_SIZE(*pval, ltmp)); return 1; } static int long_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it, int indent, const ASN1_PCTX *pctx) { long l; memcpy(&l, pval, COPY_SIZE(*pval, l)); return BIO_printf(out, "%ld\n", l); } #endif openssl-1.1.1f/crypto/asn1/x_pkey.c000066400000000000000000000021741364063235100171770ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include X509_PKEY *X509_PKEY_new(void) { X509_PKEY *ret = NULL; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) goto err; ret->enc_algor = X509_ALGOR_new(); ret->enc_pkey = ASN1_OCTET_STRING_new(); if (ret->enc_algor == NULL || ret->enc_pkey == NULL) goto err; return ret; err: X509_PKEY_free(ret); ASN1err(ASN1_F_X509_PKEY_NEW, ERR_R_MALLOC_FAILURE); return NULL; } void X509_PKEY_free(X509_PKEY *x) { if (x == NULL) return; X509_ALGOR_free(x->enc_algor); ASN1_OCTET_STRING_free(x->enc_pkey); EVP_PKEY_free(x->dec_pkey); if (x->key_free) OPENSSL_free(x->key_data); OPENSSL_free(x); } openssl-1.1.1f/crypto/asn1/x_sig.c000066400000000000000000000020641364063235100170070ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" ASN1_SEQUENCE(X509_SIG) = { ASN1_SIMPLE(X509_SIG, algor, X509_ALGOR), ASN1_SIMPLE(X509_SIG, digest, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(X509_SIG) IMPLEMENT_ASN1_FUNCTIONS(X509_SIG) void X509_SIG_get0(const X509_SIG *sig, const X509_ALGOR **palg, const ASN1_OCTET_STRING **pdigest) { if (palg) *palg = sig->algor; if (pdigest) *pdigest = sig->digest; } void X509_SIG_getm(X509_SIG *sig, X509_ALGOR **palg, ASN1_OCTET_STRING **pdigest) { if (palg) *palg = sig->algor; if (pdigest) *pdigest = sig->digest; } openssl-1.1.1f/crypto/asn1/x_spki.c000066400000000000000000000017011364063235100171700ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include ASN1_SEQUENCE(NETSCAPE_SPKAC) = { ASN1_SIMPLE(NETSCAPE_SPKAC, pubkey, X509_PUBKEY), ASN1_SIMPLE(NETSCAPE_SPKAC, challenge, ASN1_IA5STRING) } ASN1_SEQUENCE_END(NETSCAPE_SPKAC) IMPLEMENT_ASN1_FUNCTIONS(NETSCAPE_SPKAC) ASN1_SEQUENCE(NETSCAPE_SPKI) = { ASN1_SIMPLE(NETSCAPE_SPKI, spkac, NETSCAPE_SPKAC), ASN1_EMBED(NETSCAPE_SPKI, sig_algor, X509_ALGOR), ASN1_SIMPLE(NETSCAPE_SPKI, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END(NETSCAPE_SPKI) IMPLEMENT_ASN1_FUNCTIONS(NETSCAPE_SPKI) openssl-1.1.1f/crypto/asn1/x_val.c000066400000000000000000000011741364063235100170100ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include ASN1_SEQUENCE(X509_VAL) = { ASN1_SIMPLE(X509_VAL, notBefore, ASN1_TIME), ASN1_SIMPLE(X509_VAL, notAfter, ASN1_TIME) } ASN1_SEQUENCE_END(X509_VAL) IMPLEMENT_ASN1_FUNCTIONS(X509_VAL) openssl-1.1.1f/crypto/async/000077500000000000000000000000001364063235100160035ustar00rootroot00000000000000openssl-1.1.1f/crypto/async/arch/000077500000000000000000000000001364063235100167205ustar00rootroot00000000000000openssl-1.1.1f/crypto/async/arch/async_null.c000066400000000000000000000010011364063235100212230ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "../async_local.h" #ifdef ASYNC_NULL int ASYNC_is_capable(void) { return 0; } void async_local_cleanup(void) { } #endif openssl-1.1.1f/crypto/async/arch/async_null.h000066400000000000000000000013721364063235100212430ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include /* * If we haven't managed to detect any other async architecture then we default * to NULL. */ #ifndef ASYNC_ARCH # define ASYNC_NULL # define ASYNC_ARCH typedef struct async_fibre_st { int dummy; } async_fibre; # define async_fibre_swapcontext(o,n,r) 0 # define async_fibre_makecontext(c) 0 # define async_fibre_free(f) # define async_fibre_init_dispatcher(f) #endif openssl-1.1.1f/crypto/async/arch/async_posix.c000066400000000000000000000026021364063235100214230ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "../async_local.h" #ifdef ASYNC_POSIX # include # include #define STACKSIZE 32768 int ASYNC_is_capable(void) { ucontext_t ctx; /* * Some platforms provide getcontext() but it does not work (notably * MacOSX PPC64). Check for a working getcontext(); */ return getcontext(&ctx) == 0; } void async_local_cleanup(void) { } int async_fibre_makecontext(async_fibre *fibre) { fibre->env_init = 0; if (getcontext(&fibre->fibre) == 0) { fibre->fibre.uc_stack.ss_sp = OPENSSL_malloc(STACKSIZE); if (fibre->fibre.uc_stack.ss_sp != NULL) { fibre->fibre.uc_stack.ss_size = STACKSIZE; fibre->fibre.uc_link = NULL; makecontext(&fibre->fibre, async_start_func, 0); return 1; } } else { fibre->fibre.uc_stack.ss_sp = NULL; } return 0; } void async_fibre_free(async_fibre *fibre) { OPENSSL_free(fibre->fibre.uc_stack.ss_sp); fibre->fibre.uc_stack.ss_sp = NULL; } #endif openssl-1.1.1f/crypto/async/arch/async_posix.h000066400000000000000000000025401364063235100214310ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_ASYNC_POSIX_H #define OSSL_CRYPTO_ASYNC_POSIX_H #include #if defined(OPENSSL_SYS_UNIX) \ && defined(OPENSSL_THREADS) && !defined(OPENSSL_NO_ASYNC) \ && !defined(__ANDROID__) && !defined(__OpenBSD__) # include # if _POSIX_VERSION >= 200112L \ && (_POSIX_VERSION < 200809L || defined(__GLIBC__)) # include # define ASYNC_POSIX # define ASYNC_ARCH # include # include typedef struct async_fibre_st { ucontext_t fibre; jmp_buf env; int env_init; } async_fibre; static ossl_inline int async_fibre_swapcontext(async_fibre *o, async_fibre *n, int r) { o->env_init = 1; if (!r || !_setjmp(o->env)) { if (n->env_init) _longjmp(n->env, 1); else setcontext(&n->fibre); } return 1; } # define async_fibre_init_dispatcher(d) int async_fibre_makecontext(async_fibre *fibre); void async_fibre_free(async_fibre *fibre); # endif #endif #endif /* OSSL_CRYPTO_ASYNC_POSIX_H */ openssl-1.1.1f/crypto/async/arch/async_win.c000066400000000000000000000023301364063235100210540ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "../async_local.h" #ifdef ASYNC_WIN # include # include "internal/cryptlib.h" int ASYNC_is_capable(void) { return 1; } void async_local_cleanup(void) { async_ctx *ctx = async_get_ctx(); if (ctx != NULL) { async_fibre *fibre = &ctx->dispatcher; if (fibre != NULL && fibre->fibre != NULL && fibre->converted) { ConvertFiberToThread(); fibre->fibre = NULL; } } } int async_fibre_init_dispatcher(async_fibre *fibre) { fibre->fibre = ConvertThreadToFiber(NULL); if (fibre->fibre == NULL) { fibre->converted = 0; fibre->fibre = GetCurrentFiber(); if (fibre->fibre == NULL) return 0; } else { fibre->converted = 1; } return 1; } VOID CALLBACK async_start_func_win(PVOID unused) { async_start_func(); } #endif openssl-1.1.1f/crypto/async/arch/async_win.h000066400000000000000000000020711364063235100210630ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This is the same detection used in cryptlib to set up the thread local * storage that we depend on, so just copy that */ #if defined(_WIN32) && !defined(OPENSSL_NO_ASYNC) #include # define ASYNC_WIN # define ASYNC_ARCH # include # include "internal/cryptlib.h" typedef struct async_fibre_st { LPVOID fibre; int converted; } async_fibre; # define async_fibre_swapcontext(o,n,r) \ (SwitchToFiber((n)->fibre), 1) # define async_fibre_makecontext(c) \ ((c)->fibre = CreateFiber(0, async_start_func_win, 0)) # define async_fibre_free(f) (DeleteFiber((f)->fibre)) int async_fibre_init_dispatcher(async_fibre *fibre); VOID CALLBACK async_start_func_win(PVOID unused); #endif openssl-1.1.1f/crypto/async/async.c000066400000000000000000000256011364063235100172700ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Without this we start getting longjmp crashes because it thinks we're jumping * up the stack when in fact we are jumping to an entirely different stack. The * cost of this is not having certain buffer overrun/underrun checks etc for * this source file :-( */ #undef _FORTIFY_SOURCE /* This must be the first #include file */ #include "async_local.h" #include #include "crypto/cryptlib.h" #include #define ASYNC_JOB_RUNNING 0 #define ASYNC_JOB_PAUSING 1 #define ASYNC_JOB_PAUSED 2 #define ASYNC_JOB_STOPPING 3 static CRYPTO_THREAD_LOCAL ctxkey; static CRYPTO_THREAD_LOCAL poolkey; static async_ctx *async_ctx_new(void) { async_ctx *nctx; if (!ossl_init_thread_start(OPENSSL_INIT_THREAD_ASYNC)) return NULL; nctx = OPENSSL_malloc(sizeof(*nctx)); if (nctx == NULL) { ASYNCerr(ASYNC_F_ASYNC_CTX_NEW, ERR_R_MALLOC_FAILURE); goto err; } async_fibre_init_dispatcher(&nctx->dispatcher); nctx->currjob = NULL; nctx->blocked = 0; if (!CRYPTO_THREAD_set_local(&ctxkey, nctx)) goto err; return nctx; err: OPENSSL_free(nctx); return NULL; } async_ctx *async_get_ctx(void) { return (async_ctx *)CRYPTO_THREAD_get_local(&ctxkey); } static int async_ctx_free(void) { async_ctx *ctx; ctx = async_get_ctx(); if (!CRYPTO_THREAD_set_local(&ctxkey, NULL)) return 0; OPENSSL_free(ctx); return 1; } static ASYNC_JOB *async_job_new(void) { ASYNC_JOB *job = NULL; job = OPENSSL_zalloc(sizeof(*job)); if (job == NULL) { ASYNCerr(ASYNC_F_ASYNC_JOB_NEW, ERR_R_MALLOC_FAILURE); return NULL; } job->status = ASYNC_JOB_RUNNING; return job; } static void async_job_free(ASYNC_JOB *job) { if (job != NULL) { OPENSSL_free(job->funcargs); async_fibre_free(&job->fibrectx); OPENSSL_free(job); } } static ASYNC_JOB *async_get_pool_job(void) { ASYNC_JOB *job; async_pool *pool; pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); if (pool == NULL) { /* * Pool has not been initialised, so init with the defaults, i.e. * no max size and no pre-created jobs */ if (ASYNC_init_thread(0, 0) == 0) return NULL; pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); } job = sk_ASYNC_JOB_pop(pool->jobs); if (job == NULL) { /* Pool is empty */ if ((pool->max_size != 0) && (pool->curr_size >= pool->max_size)) return NULL; job = async_job_new(); if (job != NULL) { if (! async_fibre_makecontext(&job->fibrectx)) { async_job_free(job); return NULL; } pool->curr_size++; } } return job; } static void async_release_job(ASYNC_JOB *job) { async_pool *pool; pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); OPENSSL_free(job->funcargs); job->funcargs = NULL; sk_ASYNC_JOB_push(pool->jobs, job); } void async_start_func(void) { ASYNC_JOB *job; async_ctx *ctx = async_get_ctx(); while (1) { /* Run the job */ job = ctx->currjob; job->ret = job->func(job->funcargs); /* Stop the job */ job->status = ASYNC_JOB_STOPPING; if (!async_fibre_swapcontext(&job->fibrectx, &ctx->dispatcher, 1)) { /* * Should not happen. Getting here will close the thread...can't do * much about it */ ASYNCerr(ASYNC_F_ASYNC_START_FUNC, ASYNC_R_FAILED_TO_SWAP_CONTEXT); } } } int ASYNC_start_job(ASYNC_JOB **job, ASYNC_WAIT_CTX *wctx, int *ret, int (*func)(void *), void *args, size_t size) { async_ctx *ctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return ASYNC_ERR; ctx = async_get_ctx(); if (ctx == NULL) ctx = async_ctx_new(); if (ctx == NULL) return ASYNC_ERR; if (*job) ctx->currjob = *job; for (;;) { if (ctx->currjob != NULL) { if (ctx->currjob->status == ASYNC_JOB_STOPPING) { *ret = ctx->currjob->ret; ctx->currjob->waitctx = NULL; async_release_job(ctx->currjob); ctx->currjob = NULL; *job = NULL; return ASYNC_FINISH; } if (ctx->currjob->status == ASYNC_JOB_PAUSING) { *job = ctx->currjob; ctx->currjob->status = ASYNC_JOB_PAUSED; ctx->currjob = NULL; return ASYNC_PAUSE; } if (ctx->currjob->status == ASYNC_JOB_PAUSED) { ctx->currjob = *job; /* Resume previous job */ if (!async_fibre_swapcontext(&ctx->dispatcher, &ctx->currjob->fibrectx, 1)) { ASYNCerr(ASYNC_F_ASYNC_START_JOB, ASYNC_R_FAILED_TO_SWAP_CONTEXT); goto err; } continue; } /* Should not happen */ ASYNCerr(ASYNC_F_ASYNC_START_JOB, ERR_R_INTERNAL_ERROR); async_release_job(ctx->currjob); ctx->currjob = NULL; *job = NULL; return ASYNC_ERR; } /* Start a new job */ if ((ctx->currjob = async_get_pool_job()) == NULL) return ASYNC_NO_JOBS; if (args != NULL) { ctx->currjob->funcargs = OPENSSL_malloc(size); if (ctx->currjob->funcargs == NULL) { ASYNCerr(ASYNC_F_ASYNC_START_JOB, ERR_R_MALLOC_FAILURE); async_release_job(ctx->currjob); ctx->currjob = NULL; return ASYNC_ERR; } memcpy(ctx->currjob->funcargs, args, size); } else { ctx->currjob->funcargs = NULL; } ctx->currjob->func = func; ctx->currjob->waitctx = wctx; if (!async_fibre_swapcontext(&ctx->dispatcher, &ctx->currjob->fibrectx, 1)) { ASYNCerr(ASYNC_F_ASYNC_START_JOB, ASYNC_R_FAILED_TO_SWAP_CONTEXT); goto err; } } err: async_release_job(ctx->currjob); ctx->currjob = NULL; *job = NULL; return ASYNC_ERR; } int ASYNC_pause_job(void) { ASYNC_JOB *job; async_ctx *ctx = async_get_ctx(); if (ctx == NULL || ctx->currjob == NULL || ctx->blocked) { /* * Could be we've deliberately not been started within a job so this is * counted as success. */ return 1; } job = ctx->currjob; job->status = ASYNC_JOB_PAUSING; if (!async_fibre_swapcontext(&job->fibrectx, &ctx->dispatcher, 1)) { ASYNCerr(ASYNC_F_ASYNC_PAUSE_JOB, ASYNC_R_FAILED_TO_SWAP_CONTEXT); return 0; } /* Reset counts of added and deleted fds */ async_wait_ctx_reset_counts(job->waitctx); return 1; } static void async_empty_pool(async_pool *pool) { ASYNC_JOB *job; if (!pool || !pool->jobs) return; do { job = sk_ASYNC_JOB_pop(pool->jobs); async_job_free(job); } while (job); } int async_init(void) { if (!CRYPTO_THREAD_init_local(&ctxkey, NULL)) return 0; if (!CRYPTO_THREAD_init_local(&poolkey, NULL)) { CRYPTO_THREAD_cleanup_local(&ctxkey); return 0; } return 1; } void async_deinit(void) { CRYPTO_THREAD_cleanup_local(&ctxkey); CRYPTO_THREAD_cleanup_local(&poolkey); } int ASYNC_init_thread(size_t max_size, size_t init_size) { async_pool *pool; size_t curr_size = 0; if (init_size > max_size) { ASYNCerr(ASYNC_F_ASYNC_INIT_THREAD, ASYNC_R_INVALID_POOL_SIZE); return 0; } if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return 0; if (!ossl_init_thread_start(OPENSSL_INIT_THREAD_ASYNC)) return 0; pool = OPENSSL_zalloc(sizeof(*pool)); if (pool == NULL) { ASYNCerr(ASYNC_F_ASYNC_INIT_THREAD, ERR_R_MALLOC_FAILURE); return 0; } pool->jobs = sk_ASYNC_JOB_new_reserve(NULL, init_size); if (pool->jobs == NULL) { ASYNCerr(ASYNC_F_ASYNC_INIT_THREAD, ERR_R_MALLOC_FAILURE); OPENSSL_free(pool); return 0; } pool->max_size = max_size; /* Pre-create jobs as required */ while (init_size--) { ASYNC_JOB *job; job = async_job_new(); if (job == NULL || !async_fibre_makecontext(&job->fibrectx)) { /* * Not actually fatal because we already created the pool, just * skip creation of any more jobs */ async_job_free(job); break; } job->funcargs = NULL; sk_ASYNC_JOB_push(pool->jobs, job); /* Cannot fail due to reserve */ curr_size++; } pool->curr_size = curr_size; if (!CRYPTO_THREAD_set_local(&poolkey, pool)) { ASYNCerr(ASYNC_F_ASYNC_INIT_THREAD, ASYNC_R_FAILED_TO_SET_POOL); goto err; } return 1; err: async_empty_pool(pool); sk_ASYNC_JOB_free(pool->jobs); OPENSSL_free(pool); return 0; } void async_delete_thread_state(void) { async_pool *pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); if (pool != NULL) { async_empty_pool(pool); sk_ASYNC_JOB_free(pool->jobs); OPENSSL_free(pool); CRYPTO_THREAD_set_local(&poolkey, NULL); } async_local_cleanup(); async_ctx_free(); } void ASYNC_cleanup_thread(void) { if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return; async_delete_thread_state(); } ASYNC_JOB *ASYNC_get_current_job(void) { async_ctx *ctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return NULL; ctx = async_get_ctx(); if (ctx == NULL) return NULL; return ctx->currjob; } ASYNC_WAIT_CTX *ASYNC_get_wait_ctx(ASYNC_JOB *job) { return job->waitctx; } void ASYNC_block_pause(void) { async_ctx *ctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return; ctx = async_get_ctx(); if (ctx == NULL || ctx->currjob == NULL) { /* * We're not in a job anyway so ignore this */ return; } ctx->blocked++; } void ASYNC_unblock_pause(void) { async_ctx *ctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return; ctx = async_get_ctx(); if (ctx == NULL || ctx->currjob == NULL) { /* * We're not in a job anyway so ignore this */ return; } if (ctx->blocked > 0) ctx->blocked--; } openssl-1.1.1f/crypto/async/async_err.c000066400000000000000000000033611364063235100201370ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA ASYNC_str_functs[] = { {ERR_PACK(ERR_LIB_ASYNC, ASYNC_F_ASYNC_CTX_NEW, 0), "async_ctx_new"}, {ERR_PACK(ERR_LIB_ASYNC, ASYNC_F_ASYNC_INIT_THREAD, 0), "ASYNC_init_thread"}, {ERR_PACK(ERR_LIB_ASYNC, ASYNC_F_ASYNC_JOB_NEW, 0), "async_job_new"}, {ERR_PACK(ERR_LIB_ASYNC, ASYNC_F_ASYNC_PAUSE_JOB, 0), "ASYNC_pause_job"}, {ERR_PACK(ERR_LIB_ASYNC, ASYNC_F_ASYNC_START_FUNC, 0), "async_start_func"}, {ERR_PACK(ERR_LIB_ASYNC, ASYNC_F_ASYNC_START_JOB, 0), "ASYNC_start_job"}, {ERR_PACK(ERR_LIB_ASYNC, ASYNC_F_ASYNC_WAIT_CTX_SET_WAIT_FD, 0), "ASYNC_WAIT_CTX_set_wait_fd"}, {0, NULL} }; static const ERR_STRING_DATA ASYNC_str_reasons[] = { {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_FAILED_TO_SET_POOL), "failed to set pool"}, {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_FAILED_TO_SWAP_CONTEXT), "failed to swap context"}, {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_INIT_FAILED), "init failed"}, {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_INVALID_POOL_SIZE), "invalid pool size"}, {0, NULL} }; #endif int ERR_load_ASYNC_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(ASYNC_str_functs[0].error) == NULL) { ERR_load_strings_const(ASYNC_str_functs); ERR_load_strings_const(ASYNC_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/async/async_local.h000066400000000000000000000034441364063235100204500ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Must do this before including any header files, because on MacOS/X * includes which includes */ #if defined(__APPLE__) && defined(__MACH__) && !defined(_XOPEN_SOURCE) # define _XOPEN_SOURCE /* Otherwise incomplete ucontext_t structure */ # pragma GCC diagnostic ignored "-Wdeprecated-declarations" #endif #if defined(_WIN32) # include #endif #include "crypto/async.h" #include typedef struct async_ctx_st async_ctx; typedef struct async_pool_st async_pool; #include "arch/async_win.h" #include "arch/async_posix.h" #include "arch/async_null.h" struct async_ctx_st { async_fibre dispatcher; ASYNC_JOB *currjob; unsigned int blocked; }; struct async_job_st { async_fibre fibrectx; int (*func) (void *); void *funcargs; int ret; int status; ASYNC_WAIT_CTX *waitctx; }; struct fd_lookup_st { const void *key; OSSL_ASYNC_FD fd; void *custom_data; void (*cleanup)(ASYNC_WAIT_CTX *, const void *, OSSL_ASYNC_FD, void *); int add; int del; struct fd_lookup_st *next; }; struct async_wait_ctx_st { struct fd_lookup_st *fds; size_t numadd; size_t numdel; }; DEFINE_STACK_OF(ASYNC_JOB) struct async_pool_st { STACK_OF(ASYNC_JOB) *jobs; size_t curr_size; size_t max_size; }; void async_local_cleanup(void); void async_start_func(void); async_ctx *async_get_ctx(void); void async_wait_ctx_reset_counts(ASYNC_WAIT_CTX *ctx); openssl-1.1.1f/crypto/async/async_wait.c000066400000000000000000000127541364063235100203210ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "async_local.h" #include ASYNC_WAIT_CTX *ASYNC_WAIT_CTX_new(void) { return OPENSSL_zalloc(sizeof(ASYNC_WAIT_CTX)); } void ASYNC_WAIT_CTX_free(ASYNC_WAIT_CTX *ctx) { struct fd_lookup_st *curr; struct fd_lookup_st *next; if (ctx == NULL) return; curr = ctx->fds; while (curr != NULL) { if (!curr->del) { /* Only try and cleanup if it hasn't been marked deleted */ if (curr->cleanup != NULL) curr->cleanup(ctx, curr->key, curr->fd, curr->custom_data); } /* Always free the fd_lookup_st */ next = curr->next; OPENSSL_free(curr); curr = next; } OPENSSL_free(ctx); } int ASYNC_WAIT_CTX_set_wait_fd(ASYNC_WAIT_CTX *ctx, const void *key, OSSL_ASYNC_FD fd, void *custom_data, void (*cleanup)(ASYNC_WAIT_CTX *, const void *, OSSL_ASYNC_FD, void *)) { struct fd_lookup_st *fdlookup; if ((fdlookup = OPENSSL_zalloc(sizeof(*fdlookup))) == NULL) { ASYNCerr(ASYNC_F_ASYNC_WAIT_CTX_SET_WAIT_FD, ERR_R_MALLOC_FAILURE); return 0; } fdlookup->key = key; fdlookup->fd = fd; fdlookup->custom_data = custom_data; fdlookup->cleanup = cleanup; fdlookup->add = 1; fdlookup->next = ctx->fds; ctx->fds = fdlookup; ctx->numadd++; return 1; } int ASYNC_WAIT_CTX_get_fd(ASYNC_WAIT_CTX *ctx, const void *key, OSSL_ASYNC_FD *fd, void **custom_data) { struct fd_lookup_st *curr; curr = ctx->fds; while (curr != NULL) { if (curr->del) { /* This one has been marked deleted so do nothing */ curr = curr->next; continue; } if (curr->key == key) { *fd = curr->fd; *custom_data = curr->custom_data; return 1; } curr = curr->next; } return 0; } int ASYNC_WAIT_CTX_get_all_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *fd, size_t *numfds) { struct fd_lookup_st *curr; curr = ctx->fds; *numfds = 0; while (curr != NULL) { if (curr->del) { /* This one has been marked deleted so do nothing */ curr = curr->next; continue; } if (fd != NULL) { *fd = curr->fd; fd++; } (*numfds)++; curr = curr->next; } return 1; } int ASYNC_WAIT_CTX_get_changed_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *addfd, size_t *numaddfds, OSSL_ASYNC_FD *delfd, size_t *numdelfds) { struct fd_lookup_st *curr; *numaddfds = ctx->numadd; *numdelfds = ctx->numdel; if (addfd == NULL && delfd == NULL) return 1; curr = ctx->fds; while (curr != NULL) { /* We ignore fds that have been marked as both added and deleted */ if (curr->del && !curr->add && (delfd != NULL)) { *delfd = curr->fd; delfd++; } if (curr->add && !curr->del && (addfd != NULL)) { *addfd = curr->fd; addfd++; } curr = curr->next; } return 1; } int ASYNC_WAIT_CTX_clear_fd(ASYNC_WAIT_CTX *ctx, const void *key) { struct fd_lookup_st *curr, *prev; curr = ctx->fds; prev = NULL; while (curr != NULL) { if (curr->del == 1) { /* This one has been marked deleted already so do nothing */ prev = curr; curr = curr->next; continue; } if (curr->key == key) { /* If fd has just been added, remove it from the list */ if (curr->add == 1) { if (ctx->fds == curr) { ctx->fds = curr->next; } else { prev->next = curr->next; } /* It is responsibility of the caller to cleanup before calling * ASYNC_WAIT_CTX_clear_fd */ OPENSSL_free(curr); ctx->numadd--; return 1; } /* * Mark it as deleted. We don't call cleanup if explicitly asked * to clear an fd. We assume the caller is going to do that (if * appropriate). */ curr->del = 1; ctx->numdel++; return 1; } prev = curr; curr = curr->next; } return 0; } void async_wait_ctx_reset_counts(ASYNC_WAIT_CTX *ctx) { struct fd_lookup_st *curr, *prev = NULL; ctx->numadd = 0; ctx->numdel = 0; curr = ctx->fds; while (curr != NULL) { if (curr->del) { if (prev == NULL) ctx->fds = curr->next; else prev->next = curr->next; OPENSSL_free(curr); if (prev == NULL) curr = ctx->fds; else curr = prev->next; continue; } if (curr->add) { curr->add = 0; } prev = curr; curr = curr->next; } } openssl-1.1.1f/crypto/async/build.info000066400000000000000000000002301364063235100177520ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ async.c async_wait.c async_err.c arch/async_posix.c arch/async_win.c \ arch/async_null.c openssl-1.1.1f/crypto/bf/000077500000000000000000000000001364063235100152555ustar00rootroot00000000000000openssl-1.1.1f/crypto/bf/asm/000077500000000000000000000000001364063235100160355ustar00rootroot00000000000000openssl-1.1.1f/crypto/bf/asm/bf-586.pl000066400000000000000000000057661364063235100173170ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; require "cbc.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $BF_ROUNDS=16; $BF_OFF=($BF_ROUNDS+2)*4; $L="edi"; $R="esi"; $P="ebp"; $tmp1="eax"; $tmp2="ebx"; $tmp3="ecx"; $tmp4="edx"; &BF_encrypt("BF_encrypt",1); &BF_encrypt("BF_decrypt",0); &cbc("BF_cbc_encrypt","BF_encrypt","BF_decrypt",1,4,5,3,-1,-1); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub BF_encrypt { local($name,$enc)=@_; &function_begin_B($name,""); &comment(""); &push("ebp"); &push("ebx"); &mov($tmp2,&wparam(0)); &mov($P,&wparam(1)); &push("esi"); &push("edi"); &comment("Load the 2 words"); &mov($L,&DWP(0,$tmp2,"",0)); &mov($R,&DWP(4,$tmp2,"",0)); &xor( $tmp1, $tmp1); # encrypting part if ($enc) { &mov($tmp2,&DWP(0,$P,"",0)); &xor( $tmp3, $tmp3); &xor($L,$tmp2); for ($i=0; $i<$BF_ROUNDS; $i+=2) { &comment(""); &comment("Round $i"); &BF_ENCRYPT($i+1,$R,$L,$P,$tmp1,$tmp2,$tmp3,$tmp4,1); &comment(""); &comment("Round ".sprintf("%d",$i+1)); &BF_ENCRYPT($i+2,$L,$R,$P,$tmp1,$tmp2,$tmp3,$tmp4,1); } # &mov($tmp1,&wparam(0)); In last loop &mov($tmp4,&DWP(($BF_ROUNDS+1)*4,$P,"",0)); } else { &mov($tmp2,&DWP(($BF_ROUNDS+1)*4,$P,"",0)); &xor( $tmp3, $tmp3); &xor($L,$tmp2); for ($i=$BF_ROUNDS; $i>0; $i-=2) { &comment(""); &comment("Round $i"); &BF_ENCRYPT($i,$R,$L,$P,$tmp1,$tmp2,$tmp3,$tmp4,0); &comment(""); &comment("Round ".sprintf("%d",$i-1)); &BF_ENCRYPT($i-1,$L,$R,$P,$tmp1,$tmp2,$tmp3,$tmp4,0); } # &mov($tmp1,&wparam(0)); In last loop &mov($tmp4,&DWP(0,$P,"",0)); } &xor($R,$tmp4); &mov(&DWP(4,$tmp1,"",0),$L); &mov(&DWP(0,$tmp1,"",0),$R); &function_end($name); } sub BF_ENCRYPT { local($i,$L,$R,$P,$tmp1,$tmp2,$tmp3,$tmp4,$enc)=@_; &mov( $tmp4, &DWP(&n2a($i*4),$P,"",0)); # for next round &mov( $tmp2, $R); &xor( $L, $tmp4); &shr( $tmp2, 16); &mov( $tmp4, $R); &movb( &LB($tmp1), &HB($tmp2)); # A &and( $tmp2, 0xff); # B &movb( &LB($tmp3), &HB($tmp4)); # C &and( $tmp4, 0xff); # D &mov( $tmp1, &DWP(&n2a($BF_OFF+0x0000),$P,$tmp1,4)); &mov( $tmp2, &DWP(&n2a($BF_OFF+0x0400),$P,$tmp2,4)); &add( $tmp2, $tmp1); &mov( $tmp1, &DWP(&n2a($BF_OFF+0x0800),$P,$tmp3,4)); &xor( $tmp2, $tmp1); &mov( $tmp4, &DWP(&n2a($BF_OFF+0x0C00),$P,$tmp4,4)); &add( $tmp2, $tmp4); if (($enc && ($i != 16)) || ((!$enc) && ($i != 1))) { &xor( $tmp1, $tmp1); } else { &comment("Load parameter 0 ($i) enc=$enc"); &mov($tmp1,&wparam(0)); } # In last loop &xor( $L, $tmp2); # delay } sub n2a { sprintf("%d",$_[0]); } openssl-1.1.1f/crypto/bf/bf_cfb64.c000066400000000000000000000041651364063235100170020ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "bf_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, const BF_KEY *schedule, unsigned char *ivec, int *num, int encrypt) { register BF_LONG v0, v1, t; register int n = *num; register long l = length; BF_LONG ti[2]; unsigned char *iv, c, cc; iv = (unsigned char *)ivec; if (encrypt) { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; BF_encrypt((BF_LONG *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = (unsigned char *)ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; BF_encrypt((BF_LONG *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = (unsigned char *)ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; } openssl-1.1.1f/crypto/bf/bf_ecb.c000066400000000000000000000020551364063235100166230ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "bf_local.h" #include /* * Blowfish as implemented from 'Blowfish: Springer-Verlag paper' (From * LECTURE NOTES IN COMPUTER SCIENCE 809, FAST SOFTWARE ENCRYPTION, CAMBRIDGE * SECURITY WORKSHOP, CAMBRIDGE, U.K., DECEMBER 9-11, 1993) */ const char *BF_options(void) { return "blowfish(ptr)"; } void BF_ecb_encrypt(const unsigned char *in, unsigned char *out, const BF_KEY *key, int encrypt) { BF_LONG l, d[2]; n2l(in, l); d[0] = l; n2l(in, l); d[1] = l; if (encrypt) BF_encrypt(d, key); else BF_decrypt(d, key); l = d[0]; l2n(l, out); l = d[1]; l2n(l, out); l = d[0] = d[1] = 0; } openssl-1.1.1f/crypto/bf/bf_enc.c000066400000000000000000000107361364063235100166440ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "bf_local.h" /* * Blowfish as implemented from 'Blowfish: Springer-Verlag paper' (From * LECTURE NOTES IN COMPUTER SCIENCE 809, FAST SOFTWARE ENCRYPTION, CAMBRIDGE * SECURITY WORKSHOP, CAMBRIDGE, U.K., DECEMBER 9-11, 1993) */ #if (BF_ROUNDS != 16) && (BF_ROUNDS != 20) # error If you set BF_ROUNDS to some value other than 16 or 20, you will have \ to modify the code. #endif void BF_encrypt(BF_LONG *data, const BF_KEY *key) { register BF_LONG l, r; register const BF_LONG *p, *s; p = key->P; s = &(key->S[0]); l = data[0]; r = data[1]; l ^= p[0]; BF_ENC(r, l, s, p[1]); BF_ENC(l, r, s, p[2]); BF_ENC(r, l, s, p[3]); BF_ENC(l, r, s, p[4]); BF_ENC(r, l, s, p[5]); BF_ENC(l, r, s, p[6]); BF_ENC(r, l, s, p[7]); BF_ENC(l, r, s, p[8]); BF_ENC(r, l, s, p[9]); BF_ENC(l, r, s, p[10]); BF_ENC(r, l, s, p[11]); BF_ENC(l, r, s, p[12]); BF_ENC(r, l, s, p[13]); BF_ENC(l, r, s, p[14]); BF_ENC(r, l, s, p[15]); BF_ENC(l, r, s, p[16]); # if BF_ROUNDS == 20 BF_ENC(r, l, s, p[17]); BF_ENC(l, r, s, p[18]); BF_ENC(r, l, s, p[19]); BF_ENC(l, r, s, p[20]); # endif r ^= p[BF_ROUNDS + 1]; data[1] = l & 0xffffffffU; data[0] = r & 0xffffffffU; } void BF_decrypt(BF_LONG *data, const BF_KEY *key) { register BF_LONG l, r; register const BF_LONG *p, *s; p = key->P; s = &(key->S[0]); l = data[0]; r = data[1]; l ^= p[BF_ROUNDS + 1]; # if BF_ROUNDS == 20 BF_ENC(r, l, s, p[20]); BF_ENC(l, r, s, p[19]); BF_ENC(r, l, s, p[18]); BF_ENC(l, r, s, p[17]); # endif BF_ENC(r, l, s, p[16]); BF_ENC(l, r, s, p[15]); BF_ENC(r, l, s, p[14]); BF_ENC(l, r, s, p[13]); BF_ENC(r, l, s, p[12]); BF_ENC(l, r, s, p[11]); BF_ENC(r, l, s, p[10]); BF_ENC(l, r, s, p[9]); BF_ENC(r, l, s, p[8]); BF_ENC(l, r, s, p[7]); BF_ENC(r, l, s, p[6]); BF_ENC(l, r, s, p[5]); BF_ENC(r, l, s, p[4]); BF_ENC(l, r, s, p[3]); BF_ENC(r, l, s, p[2]); BF_ENC(l, r, s, p[1]); r ^= p[0]; data[1] = l & 0xffffffffU; data[0] = r & 0xffffffffU; } void BF_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, const BF_KEY *schedule, unsigned char *ivec, int encrypt) { register BF_LONG tin0, tin1; register BF_LONG tout0, tout1, xor0, xor1; register long l = length; BF_LONG tin[2]; if (encrypt) { n2l(ivec, tout0); n2l(ivec, tout1); ivec -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); n2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; BF_encrypt(tin, schedule); tout0 = tin[0]; tout1 = tin[1]; l2n(tout0, out); l2n(tout1, out); } if (l != -8) { n2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; BF_encrypt(tin, schedule); tout0 = tin[0]; tout1 = tin[1]; l2n(tout0, out); l2n(tout1, out); } l2n(tout0, ivec); l2n(tout1, ivec); } else { n2l(ivec, xor0); n2l(ivec, xor1); ivec -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); n2l(in, tin1); tin[0] = tin0; tin[1] = tin1; BF_decrypt(tin, schedule); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2n(tout0, out); l2n(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { n2l(in, tin0); n2l(in, tin1); tin[0] = tin0; tin[1] = tin1; BF_decrypt(tin, schedule); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2nn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2n(xor0, ivec); l2n(xor1, ivec); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } openssl-1.1.1f/crypto/bf/bf_local.h000066400000000000000000000076651364063235100172050ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_BF_LOCAL_H # define OSSL_CRYPTO_BF_LOCAL_H # include /* NOTE - c is not incremented as per n2l */ # define n2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 7: l2|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 6: l2|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 5: l2|=((unsigned long)(*(--(c))))<<24; \ /* fall thru */ \ case 4: l1 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 3: l1|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 2: l1|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 1: l1|=((unsigned long)(*(--(c))))<<24; \ } \ } /* NOTE - c is not incremented as per l2n */ # define l2nn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1) )&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \ } \ } # undef n2l # define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))) # undef l2n # define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) /* * This is actually a big endian algorithm, the most significant byte is used * to lookup array 0 */ # define BF_ENC(LL,R,S,P) ( \ LL^=P, \ LL^=((( S[ ((R>>24)&0xff)] + \ S[0x0100+((R>>16)&0xff)])^ \ S[0x0200+((R>> 8)&0xff)])+ \ S[0x0300+((R )&0xff)])&0xffffffffU \ ) #endif openssl-1.1.1f/crypto/bf/bf_ofb64.c000066400000000000000000000031101364063235100170030ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "bf_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, const BF_KEY *schedule, unsigned char *ivec, int *num) { register BF_LONG v0, v1, t; register int n = *num; register long l = length; unsigned char d[8]; register char *dp; BF_LONG ti[2]; unsigned char *iv; int save = 0; iv = (unsigned char *)ivec; n2l(iv, v0); n2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2n(v0, dp); l2n(v1, dp); while (l--) { if (n == 0) { BF_encrypt((BF_LONG *)ti, schedule); dp = (char *)d; t = ti[0]; l2n(t, dp); t = ti[1]; l2n(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = (unsigned char *)ivec; l2n(v0, iv); l2n(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; } openssl-1.1.1f/crypto/bf/bf_pi.h000066400000000000000000000732361364063235100165200ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ static const BF_KEY bf_init = { { 0x243f6a88L, 0x85a308d3L, 0x13198a2eL, 0x03707344L, 0xa4093822L, 0x299f31d0L, 0x082efa98L, 0xec4e6c89L, 0x452821e6L, 0x38d01377L, 0xbe5466cfL, 0x34e90c6cL, 0xc0ac29b7L, 0xc97c50ddL, 0x3f84d5b5L, 0xb5470917L, 0x9216d5d9L, 0x8979fb1b}, { 0xd1310ba6L, 0x98dfb5acL, 0x2ffd72dbL, 0xd01adfb7L, 0xb8e1afedL, 0x6a267e96L, 0xba7c9045L, 0xf12c7f99L, 0x24a19947L, 0xb3916cf7L, 0x0801f2e2L, 0x858efc16L, 0x636920d8L, 0x71574e69L, 0xa458fea3L, 0xf4933d7eL, 0x0d95748fL, 0x728eb658L, 0x718bcd58L, 0x82154aeeL, 0x7b54a41dL, 0xc25a59b5L, 0x9c30d539L, 0x2af26013L, 0xc5d1b023L, 0x286085f0L, 0xca417918L, 0xb8db38efL, 0x8e79dcb0L, 0x603a180eL, 0x6c9e0e8bL, 0xb01e8a3eL, 0xd71577c1L, 0xbd314b27L, 0x78af2fdaL, 0x55605c60L, 0xe65525f3L, 0xaa55ab94L, 0x57489862L, 0x63e81440L, 0x55ca396aL, 0x2aab10b6L, 0xb4cc5c34L, 0x1141e8ceL, 0xa15486afL, 0x7c72e993L, 0xb3ee1411L, 0x636fbc2aL, 0x2ba9c55dL, 0x741831f6L, 0xce5c3e16L, 0x9b87931eL, 0xafd6ba33L, 0x6c24cf5cL, 0x7a325381L, 0x28958677L, 0x3b8f4898L, 0x6b4bb9afL, 0xc4bfe81bL, 0x66282193L, 0x61d809ccL, 0xfb21a991L, 0x487cac60L, 0x5dec8032L, 0xef845d5dL, 0xe98575b1L, 0xdc262302L, 0xeb651b88L, 0x23893e81L, 0xd396acc5L, 0x0f6d6ff3L, 0x83f44239L, 0x2e0b4482L, 0xa4842004L, 0x69c8f04aL, 0x9e1f9b5eL, 0x21c66842L, 0xf6e96c9aL, 0x670c9c61L, 0xabd388f0L, 0x6a51a0d2L, 0xd8542f68L, 0x960fa728L, 0xab5133a3L, 0x6eef0b6cL, 0x137a3be4L, 0xba3bf050L, 0x7efb2a98L, 0xa1f1651dL, 0x39af0176L, 0x66ca593eL, 0x82430e88L, 0x8cee8619L, 0x456f9fb4L, 0x7d84a5c3L, 0x3b8b5ebeL, 0xe06f75d8L, 0x85c12073L, 0x401a449fL, 0x56c16aa6L, 0x4ed3aa62L, 0x363f7706L, 0x1bfedf72L, 0x429b023dL, 0x37d0d724L, 0xd00a1248L, 0xdb0fead3L, 0x49f1c09bL, 0x075372c9L, 0x80991b7bL, 0x25d479d8L, 0xf6e8def7L, 0xe3fe501aL, 0xb6794c3bL, 0x976ce0bdL, 0x04c006baL, 0xc1a94fb6L, 0x409f60c4L, 0x5e5c9ec2L, 0x196a2463L, 0x68fb6fafL, 0x3e6c53b5L, 0x1339b2ebL, 0x3b52ec6fL, 0x6dfc511fL, 0x9b30952cL, 0xcc814544L, 0xaf5ebd09L, 0xbee3d004L, 0xde334afdL, 0x660f2807L, 0x192e4bb3L, 0xc0cba857L, 0x45c8740fL, 0xd20b5f39L, 0xb9d3fbdbL, 0x5579c0bdL, 0x1a60320aL, 0xd6a100c6L, 0x402c7279L, 0x679f25feL, 0xfb1fa3ccL, 0x8ea5e9f8L, 0xdb3222f8L, 0x3c7516dfL, 0xfd616b15L, 0x2f501ec8L, 0xad0552abL, 0x323db5faL, 0xfd238760L, 0x53317b48L, 0x3e00df82L, 0x9e5c57bbL, 0xca6f8ca0L, 0x1a87562eL, 0xdf1769dbL, 0xd542a8f6L, 0x287effc3L, 0xac6732c6L, 0x8c4f5573L, 0x695b27b0L, 0xbbca58c8L, 0xe1ffa35dL, 0xb8f011a0L, 0x10fa3d98L, 0xfd2183b8L, 0x4afcb56cL, 0x2dd1d35bL, 0x9a53e479L, 0xb6f84565L, 0xd28e49bcL, 0x4bfb9790L, 0xe1ddf2daL, 0xa4cb7e33L, 0x62fb1341L, 0xcee4c6e8L, 0xef20cadaL, 0x36774c01L, 0xd07e9efeL, 0x2bf11fb4L, 0x95dbda4dL, 0xae909198L, 0xeaad8e71L, 0x6b93d5a0L, 0xd08ed1d0L, 0xafc725e0L, 0x8e3c5b2fL, 0x8e7594b7L, 0x8ff6e2fbL, 0xf2122b64L, 0x8888b812L, 0x900df01cL, 0x4fad5ea0L, 0x688fc31cL, 0xd1cff191L, 0xb3a8c1adL, 0x2f2f2218L, 0xbe0e1777L, 0xea752dfeL, 0x8b021fa1L, 0xe5a0cc0fL, 0xb56f74e8L, 0x18acf3d6L, 0xce89e299L, 0xb4a84fe0L, 0xfd13e0b7L, 0x7cc43b81L, 0xd2ada8d9L, 0x165fa266L, 0x80957705L, 0x93cc7314L, 0x211a1477L, 0xe6ad2065L, 0x77b5fa86L, 0xc75442f5L, 0xfb9d35cfL, 0xebcdaf0cL, 0x7b3e89a0L, 0xd6411bd3L, 0xae1e7e49L, 0x00250e2dL, 0x2071b35eL, 0x226800bbL, 0x57b8e0afL, 0x2464369bL, 0xf009b91eL, 0x5563911dL, 0x59dfa6aaL, 0x78c14389L, 0xd95a537fL, 0x207d5ba2L, 0x02e5b9c5L, 0x83260376L, 0x6295cfa9L, 0x11c81968L, 0x4e734a41L, 0xb3472dcaL, 0x7b14a94aL, 0x1b510052L, 0x9a532915L, 0xd60f573fL, 0xbc9bc6e4L, 0x2b60a476L, 0x81e67400L, 0x08ba6fb5L, 0x571be91fL, 0xf296ec6bL, 0x2a0dd915L, 0xb6636521L, 0xe7b9f9b6L, 0xff34052eL, 0xc5855664L, 0x53b02d5dL, 0xa99f8fa1L, 0x08ba4799L, 0x6e85076aL, 0x4b7a70e9L, 0xb5b32944L, 0xdb75092eL, 0xc4192623L, 0xad6ea6b0L, 0x49a7df7dL, 0x9cee60b8L, 0x8fedb266L, 0xecaa8c71L, 0x699a17ffL, 0x5664526cL, 0xc2b19ee1L, 0x193602a5L, 0x75094c29L, 0xa0591340L, 0xe4183a3eL, 0x3f54989aL, 0x5b429d65L, 0x6b8fe4d6L, 0x99f73fd6L, 0xa1d29c07L, 0xefe830f5L, 0x4d2d38e6L, 0xf0255dc1L, 0x4cdd2086L, 0x8470eb26L, 0x6382e9c6L, 0x021ecc5eL, 0x09686b3fL, 0x3ebaefc9L, 0x3c971814L, 0x6b6a70a1L, 0x687f3584L, 0x52a0e286L, 0xb79c5305L, 0xaa500737L, 0x3e07841cL, 0x7fdeae5cL, 0x8e7d44ecL, 0x5716f2b8L, 0xb03ada37L, 0xf0500c0dL, 0xf01c1f04L, 0x0200b3ffL, 0xae0cf51aL, 0x3cb574b2L, 0x25837a58L, 0xdc0921bdL, 0xd19113f9L, 0x7ca92ff6L, 0x94324773L, 0x22f54701L, 0x3ae5e581L, 0x37c2dadcL, 0xc8b57634L, 0x9af3dda7L, 0xa9446146L, 0x0fd0030eL, 0xecc8c73eL, 0xa4751e41L, 0xe238cd99L, 0x3bea0e2fL, 0x3280bba1L, 0x183eb331L, 0x4e548b38L, 0x4f6db908L, 0x6f420d03L, 0xf60a04bfL, 0x2cb81290L, 0x24977c79L, 0x5679b072L, 0xbcaf89afL, 0xde9a771fL, 0xd9930810L, 0xb38bae12L, 0xdccf3f2eL, 0x5512721fL, 0x2e6b7124L, 0x501adde6L, 0x9f84cd87L, 0x7a584718L, 0x7408da17L, 0xbc9f9abcL, 0xe94b7d8cL, 0xec7aec3aL, 0xdb851dfaL, 0x63094366L, 0xc464c3d2L, 0xef1c1847L, 0x3215d908L, 0xdd433b37L, 0x24c2ba16L, 0x12a14d43L, 0x2a65c451L, 0x50940002L, 0x133ae4ddL, 0x71dff89eL, 0x10314e55L, 0x81ac77d6L, 0x5f11199bL, 0x043556f1L, 0xd7a3c76bL, 0x3c11183bL, 0x5924a509L, 0xf28fe6edL, 0x97f1fbfaL, 0x9ebabf2cL, 0x1e153c6eL, 0x86e34570L, 0xeae96fb1L, 0x860e5e0aL, 0x5a3e2ab3L, 0x771fe71cL, 0x4e3d06faL, 0x2965dcb9L, 0x99e71d0fL, 0x803e89d6L, 0x5266c825L, 0x2e4cc978L, 0x9c10b36aL, 0xc6150ebaL, 0x94e2ea78L, 0xa5fc3c53L, 0x1e0a2df4L, 0xf2f74ea7L, 0x361d2b3dL, 0x1939260fL, 0x19c27960L, 0x5223a708L, 0xf71312b6L, 0xebadfe6eL, 0xeac31f66L, 0xe3bc4595L, 0xa67bc883L, 0xb17f37d1L, 0x018cff28L, 0xc332ddefL, 0xbe6c5aa5L, 0x65582185L, 0x68ab9802L, 0xeecea50fL, 0xdb2f953bL, 0x2aef7dadL, 0x5b6e2f84L, 0x1521b628L, 0x29076170L, 0xecdd4775L, 0x619f1510L, 0x13cca830L, 0xeb61bd96L, 0x0334fe1eL, 0xaa0363cfL, 0xb5735c90L, 0x4c70a239L, 0xd59e9e0bL, 0xcbaade14L, 0xeecc86bcL, 0x60622ca7L, 0x9cab5cabL, 0xb2f3846eL, 0x648b1eafL, 0x19bdf0caL, 0xa02369b9L, 0x655abb50L, 0x40685a32L, 0x3c2ab4b3L, 0x319ee9d5L, 0xc021b8f7L, 0x9b540b19L, 0x875fa099L, 0x95f7997eL, 0x623d7da8L, 0xf837889aL, 0x97e32d77L, 0x11ed935fL, 0x16681281L, 0x0e358829L, 0xc7e61fd6L, 0x96dedfa1L, 0x7858ba99L, 0x57f584a5L, 0x1b227263L, 0x9b83c3ffL, 0x1ac24696L, 0xcdb30aebL, 0x532e3054L, 0x8fd948e4L, 0x6dbc3128L, 0x58ebf2efL, 0x34c6ffeaL, 0xfe28ed61L, 0xee7c3c73L, 0x5d4a14d9L, 0xe864b7e3L, 0x42105d14L, 0x203e13e0L, 0x45eee2b6L, 0xa3aaabeaL, 0xdb6c4f15L, 0xfacb4fd0L, 0xc742f442L, 0xef6abbb5L, 0x654f3b1dL, 0x41cd2105L, 0xd81e799eL, 0x86854dc7L, 0xe44b476aL, 0x3d816250L, 0xcf62a1f2L, 0x5b8d2646L, 0xfc8883a0L, 0xc1c7b6a3L, 0x7f1524c3L, 0x69cb7492L, 0x47848a0bL, 0x5692b285L, 0x095bbf00L, 0xad19489dL, 0x1462b174L, 0x23820e00L, 0x58428d2aL, 0x0c55f5eaL, 0x1dadf43eL, 0x233f7061L, 0x3372f092L, 0x8d937e41L, 0xd65fecf1L, 0x6c223bdbL, 0x7cde3759L, 0xcbee7460L, 0x4085f2a7L, 0xce77326eL, 0xa6078084L, 0x19f8509eL, 0xe8efd855L, 0x61d99735L, 0xa969a7aaL, 0xc50c06c2L, 0x5a04abfcL, 0x800bcadcL, 0x9e447a2eL, 0xc3453484L, 0xfdd56705L, 0x0e1e9ec9L, 0xdb73dbd3L, 0x105588cdL, 0x675fda79L, 0xe3674340L, 0xc5c43465L, 0x713e38d8L, 0x3d28f89eL, 0xf16dff20L, 0x153e21e7L, 0x8fb03d4aL, 0xe6e39f2bL, 0xdb83adf7L, 0xe93d5a68L, 0x948140f7L, 0xf64c261cL, 0x94692934L, 0x411520f7L, 0x7602d4f7L, 0xbcf46b2eL, 0xd4a20068L, 0xd4082471L, 0x3320f46aL, 0x43b7d4b7L, 0x500061afL, 0x1e39f62eL, 0x97244546L, 0x14214f74L, 0xbf8b8840L, 0x4d95fc1dL, 0x96b591afL, 0x70f4ddd3L, 0x66a02f45L, 0xbfbc09ecL, 0x03bd9785L, 0x7fac6dd0L, 0x31cb8504L, 0x96eb27b3L, 0x55fd3941L, 0xda2547e6L, 0xabca0a9aL, 0x28507825L, 0x530429f4L, 0x0a2c86daL, 0xe9b66dfbL, 0x68dc1462L, 0xd7486900L, 0x680ec0a4L, 0x27a18deeL, 0x4f3ffea2L, 0xe887ad8cL, 0xb58ce006L, 0x7af4d6b6L, 0xaace1e7cL, 0xd3375fecL, 0xce78a399L, 0x406b2a42L, 0x20fe9e35L, 0xd9f385b9L, 0xee39d7abL, 0x3b124e8bL, 0x1dc9faf7L, 0x4b6d1856L, 0x26a36631L, 0xeae397b2L, 0x3a6efa74L, 0xdd5b4332L, 0x6841e7f7L, 0xca7820fbL, 0xfb0af54eL, 0xd8feb397L, 0x454056acL, 0xba489527L, 0x55533a3aL, 0x20838d87L, 0xfe6ba9b7L, 0xd096954bL, 0x55a867bcL, 0xa1159a58L, 0xcca92963L, 0x99e1db33L, 0xa62a4a56L, 0x3f3125f9L, 0x5ef47e1cL, 0x9029317cL, 0xfdf8e802L, 0x04272f70L, 0x80bb155cL, 0x05282ce3L, 0x95c11548L, 0xe4c66d22L, 0x48c1133fL, 0xc70f86dcL, 0x07f9c9eeL, 0x41041f0fL, 0x404779a4L, 0x5d886e17L, 0x325f51ebL, 0xd59bc0d1L, 0xf2bcc18fL, 0x41113564L, 0x257b7834L, 0x602a9c60L, 0xdff8e8a3L, 0x1f636c1bL, 0x0e12b4c2L, 0x02e1329eL, 0xaf664fd1L, 0xcad18115L, 0x6b2395e0L, 0x333e92e1L, 0x3b240b62L, 0xeebeb922L, 0x85b2a20eL, 0xe6ba0d99L, 0xde720c8cL, 0x2da2f728L, 0xd0127845L, 0x95b794fdL, 0x647d0862L, 0xe7ccf5f0L, 0x5449a36fL, 0x877d48faL, 0xc39dfd27L, 0xf33e8d1eL, 0x0a476341L, 0x992eff74L, 0x3a6f6eabL, 0xf4f8fd37L, 0xa812dc60L, 0xa1ebddf8L, 0x991be14cL, 0xdb6e6b0dL, 0xc67b5510L, 0x6d672c37L, 0x2765d43bL, 0xdcd0e804L, 0xf1290dc7L, 0xcc00ffa3L, 0xb5390f92L, 0x690fed0bL, 0x667b9ffbL, 0xcedb7d9cL, 0xa091cf0bL, 0xd9155ea3L, 0xbb132f88L, 0x515bad24L, 0x7b9479bfL, 0x763bd6ebL, 0x37392eb3L, 0xcc115979L, 0x8026e297L, 0xf42e312dL, 0x6842ada7L, 0xc66a2b3bL, 0x12754cccL, 0x782ef11cL, 0x6a124237L, 0xb79251e7L, 0x06a1bbe6L, 0x4bfb6350L, 0x1a6b1018L, 0x11caedfaL, 0x3d25bdd8L, 0xe2e1c3c9L, 0x44421659L, 0x0a121386L, 0xd90cec6eL, 0xd5abea2aL, 0x64af674eL, 0xda86a85fL, 0xbebfe988L, 0x64e4c3feL, 0x9dbc8057L, 0xf0f7c086L, 0x60787bf8L, 0x6003604dL, 0xd1fd8346L, 0xf6381fb0L, 0x7745ae04L, 0xd736fcccL, 0x83426b33L, 0xf01eab71L, 0xb0804187L, 0x3c005e5fL, 0x77a057beL, 0xbde8ae24L, 0x55464299L, 0xbf582e61L, 0x4e58f48fL, 0xf2ddfda2L, 0xf474ef38L, 0x8789bdc2L, 0x5366f9c3L, 0xc8b38e74L, 0xb475f255L, 0x46fcd9b9L, 0x7aeb2661L, 0x8b1ddf84L, 0x846a0e79L, 0x915f95e2L, 0x466e598eL, 0x20b45770L, 0x8cd55591L, 0xc902de4cL, 0xb90bace1L, 0xbb8205d0L, 0x11a86248L, 0x7574a99eL, 0xb77f19b6L, 0xe0a9dc09L, 0x662d09a1L, 0xc4324633L, 0xe85a1f02L, 0x09f0be8cL, 0x4a99a025L, 0x1d6efe10L, 0x1ab93d1dL, 0x0ba5a4dfL, 0xa186f20fL, 0x2868f169L, 0xdcb7da83L, 0x573906feL, 0xa1e2ce9bL, 0x4fcd7f52L, 0x50115e01L, 0xa70683faL, 0xa002b5c4L, 0x0de6d027L, 0x9af88c27L, 0x773f8641L, 0xc3604c06L, 0x61a806b5L, 0xf0177a28L, 0xc0f586e0L, 0x006058aaL, 0x30dc7d62L, 0x11e69ed7L, 0x2338ea63L, 0x53c2dd94L, 0xc2c21634L, 0xbbcbee56L, 0x90bcb6deL, 0xebfc7da1L, 0xce591d76L, 0x6f05e409L, 0x4b7c0188L, 0x39720a3dL, 0x7c927c24L, 0x86e3725fL, 0x724d9db9L, 0x1ac15bb4L, 0xd39eb8fcL, 0xed545578L, 0x08fca5b5L, 0xd83d7cd3L, 0x4dad0fc4L, 0x1e50ef5eL, 0xb161e6f8L, 0xa28514d9L, 0x6c51133cL, 0x6fd5c7e7L, 0x56e14ec4L, 0x362abfceL, 0xddc6c837L, 0xd79a3234L, 0x92638212L, 0x670efa8eL, 0x406000e0L, 0x3a39ce37L, 0xd3faf5cfL, 0xabc27737L, 0x5ac52d1bL, 0x5cb0679eL, 0x4fa33742L, 0xd3822740L, 0x99bc9bbeL, 0xd5118e9dL, 0xbf0f7315L, 0xd62d1c7eL, 0xc700c47bL, 0xb78c1b6bL, 0x21a19045L, 0xb26eb1beL, 0x6a366eb4L, 0x5748ab2fL, 0xbc946e79L, 0xc6a376d2L, 0x6549c2c8L, 0x530ff8eeL, 0x468dde7dL, 0xd5730a1dL, 0x4cd04dc6L, 0x2939bbdbL, 0xa9ba4650L, 0xac9526e8L, 0xbe5ee304L, 0xa1fad5f0L, 0x6a2d519aL, 0x63ef8ce2L, 0x9a86ee22L, 0xc089c2b8L, 0x43242ef6L, 0xa51e03aaL, 0x9cf2d0a4L, 0x83c061baL, 0x9be96a4dL, 0x8fe51550L, 0xba645bd6L, 0x2826a2f9L, 0xa73a3ae1L, 0x4ba99586L, 0xef5562e9L, 0xc72fefd3L, 0xf752f7daL, 0x3f046f69L, 0x77fa0a59L, 0x80e4a915L, 0x87b08601L, 0x9b09e6adL, 0x3b3ee593L, 0xe990fd5aL, 0x9e34d797L, 0x2cf0b7d9L, 0x022b8b51L, 0x96d5ac3aL, 0x017da67dL, 0xd1cf3ed6L, 0x7c7d2d28L, 0x1f9f25cfL, 0xadf2b89bL, 0x5ad6b472L, 0x5a88f54cL, 0xe029ac71L, 0xe019a5e6L, 0x47b0acfdL, 0xed93fa9bL, 0xe8d3c48dL, 0x283b57ccL, 0xf8d56629L, 0x79132e28L, 0x785f0191L, 0xed756055L, 0xf7960e44L, 0xe3d35e8cL, 0x15056dd4L, 0x88f46dbaL, 0x03a16125L, 0x0564f0bdL, 0xc3eb9e15L, 0x3c9057a2L, 0x97271aecL, 0xa93a072aL, 0x1b3f6d9bL, 0x1e6321f5L, 0xf59c66fbL, 0x26dcf319L, 0x7533d928L, 0xb155fdf5L, 0x03563482L, 0x8aba3cbbL, 0x28517711L, 0xc20ad9f8L, 0xabcc5167L, 0xccad925fL, 0x4de81751L, 0x3830dc8eL, 0x379d5862L, 0x9320f991L, 0xea7a90c2L, 0xfb3e7bceL, 0x5121ce64L, 0x774fbe32L, 0xa8b6e37eL, 0xc3293d46L, 0x48de5369L, 0x6413e680L, 0xa2ae0810L, 0xdd6db224L, 0x69852dfdL, 0x09072166L, 0xb39a460aL, 0x6445c0ddL, 0x586cdecfL, 0x1c20c8aeL, 0x5bbef7ddL, 0x1b588d40L, 0xccd2017fL, 0x6bb4e3bbL, 0xdda26a7eL, 0x3a59ff45L, 0x3e350a44L, 0xbcb4cdd5L, 0x72eacea8L, 0xfa6484bbL, 0x8d6612aeL, 0xbf3c6f47L, 0xd29be463L, 0x542f5d9eL, 0xaec2771bL, 0xf64e6370L, 0x740e0d8dL, 0xe75b1357L, 0xf8721671L, 0xaf537d5dL, 0x4040cb08L, 0x4eb4e2ccL, 0x34d2466aL, 0x0115af84L, 0xe1b00428L, 0x95983a1dL, 0x06b89fb4L, 0xce6ea048L, 0x6f3f3b82L, 0x3520ab82L, 0x011a1d4bL, 0x277227f8L, 0x611560b1L, 0xe7933fdcL, 0xbb3a792bL, 0x344525bdL, 0xa08839e1L, 0x51ce794bL, 0x2f32c9b7L, 0xa01fbac9L, 0xe01cc87eL, 0xbcc7d1f6L, 0xcf0111c3L, 0xa1e8aac7L, 0x1a908749L, 0xd44fbd9aL, 0xd0dadecbL, 0xd50ada38L, 0x0339c32aL, 0xc6913667L, 0x8df9317cL, 0xe0b12b4fL, 0xf79e59b7L, 0x43f5bb3aL, 0xf2d519ffL, 0x27d9459cL, 0xbf97222cL, 0x15e6fc2aL, 0x0f91fc71L, 0x9b941525L, 0xfae59361L, 0xceb69cebL, 0xc2a86459L, 0x12baa8d1L, 0xb6c1075eL, 0xe3056a0cL, 0x10d25065L, 0xcb03a442L, 0xe0ec6e0eL, 0x1698db3bL, 0x4c98a0beL, 0x3278e964L, 0x9f1f9532L, 0xe0d392dfL, 0xd3a0342bL, 0x8971f21eL, 0x1b0a7441L, 0x4ba3348cL, 0xc5be7120L, 0xc37632d8L, 0xdf359f8dL, 0x9b992f2eL, 0xe60b6f47L, 0x0fe3f11dL, 0xe54cda54L, 0x1edad891L, 0xce6279cfL, 0xcd3e7e6fL, 0x1618b166L, 0xfd2c1d05L, 0x848fd2c5L, 0xf6fb2299L, 0xf523f357L, 0xa6327623L, 0x93a83531L, 0x56cccd02L, 0xacf08162L, 0x5a75ebb5L, 0x6e163697L, 0x88d273ccL, 0xde966292L, 0x81b949d0L, 0x4c50901bL, 0x71c65614L, 0xe6c6c7bdL, 0x327a140aL, 0x45e1d006L, 0xc3f27b9aL, 0xc9aa53fdL, 0x62a80f00L, 0xbb25bfe2L, 0x35bdd2f6L, 0x71126905L, 0xb2040222L, 0xb6cbcf7cL, 0xcd769c2bL, 0x53113ec0L, 0x1640e3d3L, 0x38abbd60L, 0x2547adf0L, 0xba38209cL, 0xf746ce76L, 0x77afa1c5L, 0x20756060L, 0x85cbfe4eL, 0x8ae88dd8L, 0x7aaaf9b0L, 0x4cf9aa7eL, 0x1948c25cL, 0x02fb8a8cL, 0x01c36ae4L, 0xd6ebe1f9L, 0x90d4f869L, 0xa65cdea0L, 0x3f09252dL, 0xc208e69fL, 0xb74e6132L, 0xce77e25bL, 0x578fdfe3L, 0x3ac372e6L, } }; openssl-1.1.1f/crypto/bf/bf_skey.c000066400000000000000000000026531364063235100170510ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "bf_local.h" #include "bf_pi.h" void BF_set_key(BF_KEY *key, int len, const unsigned char *data) { int i; BF_LONG *p, ri, in[2]; const unsigned char *d, *end; memcpy(key, &bf_init, sizeof(BF_KEY)); p = key->P; if (len > ((BF_ROUNDS + 2) * 4)) len = (BF_ROUNDS + 2) * 4; d = data; end = &(data[len]); for (i = 0; i < (BF_ROUNDS + 2); i++) { ri = *(d++); if (d >= end) d = data; ri <<= 8; ri |= *(d++); if (d >= end) d = data; ri <<= 8; ri |= *(d++); if (d >= end) d = data; ri <<= 8; ri |= *(d++); if (d >= end) d = data; p[i] ^= ri; } in[0] = 0L; in[1] = 0L; for (i = 0; i < (BF_ROUNDS + 2); i += 2) { BF_encrypt(in, key); p[i] = in[0]; p[i + 1] = in[1]; } p = key->S; for (i = 0; i < 4 * 256; i += 2) { BF_encrypt(in, key); p[i] = in[0]; p[i + 1] = in[1]; } } openssl-1.1.1f/crypto/bf/build.info000066400000000000000000000004331364063235100172310ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=bf_skey.c bf_ecb.c bf_cfb64.c bf_ofb64.c \ {- $target{bf_asm_src} -} GENERATE[bf-586.s]=asm/bf-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[bf-586.s]=../perlasm/x86asm.pl ../perlasm/cbc.pl openssl-1.1.1f/crypto/bio/000077500000000000000000000000001364063235100154375ustar00rootroot00000000000000openssl-1.1.1f/crypto/bio/b_addr.c000066400000000000000000000634351364063235100170310ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include #ifndef OPENSSL_NO_SOCK #include #include #include "internal/thread_once.h" CRYPTO_RWLOCK *bio_lookup_lock; static CRYPTO_ONCE bio_lookup_init = CRYPTO_ONCE_STATIC_INIT; /* * Throughout this file and bio_local.h, the existence of the macro * AI_PASSIVE is used to detect the availability of struct addrinfo, * getnameinfo() and getaddrinfo(). If that macro doesn't exist, * we use our own implementation instead, using gethostbyname, * getservbyname and a few other. */ /********************************************************************** * * Address structure * */ BIO_ADDR *BIO_ADDR_new(void) { BIO_ADDR *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { BIOerr(BIO_F_BIO_ADDR_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->sa.sa_family = AF_UNSPEC; return ret; } void BIO_ADDR_free(BIO_ADDR *ap) { OPENSSL_free(ap); } void BIO_ADDR_clear(BIO_ADDR *ap) { memset(ap, 0, sizeof(*ap)); ap->sa.sa_family = AF_UNSPEC; } /* * BIO_ADDR_make - non-public routine to fill a BIO_ADDR with the contents * of a struct sockaddr. */ int BIO_ADDR_make(BIO_ADDR *ap, const struct sockaddr *sa) { if (sa->sa_family == AF_INET) { memcpy(&(ap->s_in), sa, sizeof(struct sockaddr_in)); return 1; } #ifdef AF_INET6 if (sa->sa_family == AF_INET6) { memcpy(&(ap->s_in6), sa, sizeof(struct sockaddr_in6)); return 1; } #endif #ifdef AF_UNIX if (sa->sa_family == AF_UNIX) { memcpy(&(ap->s_un), sa, sizeof(struct sockaddr_un)); return 1; } #endif return 0; } int BIO_ADDR_rawmake(BIO_ADDR *ap, int family, const void *where, size_t wherelen, unsigned short port) { #ifdef AF_UNIX if (family == AF_UNIX) { if (wherelen + 1 > sizeof(ap->s_un.sun_path)) return 0; memset(&ap->s_un, 0, sizeof(ap->s_un)); ap->s_un.sun_family = family; strncpy(ap->s_un.sun_path, where, sizeof(ap->s_un.sun_path) - 1); return 1; } #endif if (family == AF_INET) { if (wherelen != sizeof(struct in_addr)) return 0; memset(&ap->s_in, 0, sizeof(ap->s_in)); ap->s_in.sin_family = family; ap->s_in.sin_port = port; ap->s_in.sin_addr = *(struct in_addr *)where; return 1; } #ifdef AF_INET6 if (family == AF_INET6) { if (wherelen != sizeof(struct in6_addr)) return 0; memset(&ap->s_in6, 0, sizeof(ap->s_in6)); ap->s_in6.sin6_family = family; ap->s_in6.sin6_port = port; ap->s_in6.sin6_addr = *(struct in6_addr *)where; return 1; } #endif return 0; } int BIO_ADDR_family(const BIO_ADDR *ap) { return ap->sa.sa_family; } int BIO_ADDR_rawaddress(const BIO_ADDR *ap, void *p, size_t *l) { size_t len = 0; const void *addrptr = NULL; if (ap->sa.sa_family == AF_INET) { len = sizeof(ap->s_in.sin_addr); addrptr = &ap->s_in.sin_addr; } #ifdef AF_INET6 else if (ap->sa.sa_family == AF_INET6) { len = sizeof(ap->s_in6.sin6_addr); addrptr = &ap->s_in6.sin6_addr; } #endif #ifdef AF_UNIX else if (ap->sa.sa_family == AF_UNIX) { len = strlen(ap->s_un.sun_path); addrptr = &ap->s_un.sun_path; } #endif if (addrptr == NULL) return 0; if (p != NULL) { memcpy(p, addrptr, len); } if (l != NULL) *l = len; return 1; } unsigned short BIO_ADDR_rawport(const BIO_ADDR *ap) { if (ap->sa.sa_family == AF_INET) return ap->s_in.sin_port; #ifdef AF_INET6 if (ap->sa.sa_family == AF_INET6) return ap->s_in6.sin6_port; #endif return 0; } /*- * addr_strings - helper function to get host and service names * @ap: the BIO_ADDR that has the input info * @numeric: 0 if actual names should be returned, 1 if the numeric * representation should be returned. * @hostname: a pointer to a pointer to a memory area to store the * host name or numeric representation. Unused if NULL. * @service: a pointer to a pointer to a memory area to store the * service name or numeric representation. Unused if NULL. * * The return value is 0 on failure, with the error code in the error * stack, and 1 on success. */ static int addr_strings(const BIO_ADDR *ap, int numeric, char **hostname, char **service) { if (BIO_sock_init() != 1) return 0; if (1) { #ifdef AI_PASSIVE int ret = 0; char host[NI_MAXHOST] = "", serv[NI_MAXSERV] = ""; int flags = 0; if (numeric) flags |= NI_NUMERICHOST | NI_NUMERICSERV; if ((ret = getnameinfo(BIO_ADDR_sockaddr(ap), BIO_ADDR_sockaddr_size(ap), host, sizeof(host), serv, sizeof(serv), flags)) != 0) { # ifdef EAI_SYSTEM if (ret == EAI_SYSTEM) { SYSerr(SYS_F_GETNAMEINFO, get_last_socket_error()); BIOerr(BIO_F_ADDR_STRINGS, ERR_R_SYS_LIB); } else # endif { BIOerr(BIO_F_ADDR_STRINGS, ERR_R_SYS_LIB); ERR_add_error_data(1, gai_strerror(ret)); } return 0; } /* VMS getnameinfo() has a bug, it doesn't fill in serv, which * leaves it with whatever garbage that happens to be there. * However, we initialise serv with the empty string (serv[0] * is therefore NUL), so it gets real easy to detect when things * didn't go the way one might expect. */ if (serv[0] == '\0') { BIO_snprintf(serv, sizeof(serv), "%d", ntohs(BIO_ADDR_rawport(ap))); } if (hostname != NULL) *hostname = OPENSSL_strdup(host); if (service != NULL) *service = OPENSSL_strdup(serv); } else { #endif if (hostname != NULL) *hostname = OPENSSL_strdup(inet_ntoa(ap->s_in.sin_addr)); if (service != NULL) { char serv[6]; /* port is 16 bits => max 5 decimal digits */ BIO_snprintf(serv, sizeof(serv), "%d", ntohs(ap->s_in.sin_port)); *service = OPENSSL_strdup(serv); } } if ((hostname != NULL && *hostname == NULL) || (service != NULL && *service == NULL)) { if (hostname != NULL) { OPENSSL_free(*hostname); *hostname = NULL; } if (service != NULL) { OPENSSL_free(*service); *service = NULL; } BIOerr(BIO_F_ADDR_STRINGS, ERR_R_MALLOC_FAILURE); return 0; } return 1; } char *BIO_ADDR_hostname_string(const BIO_ADDR *ap, int numeric) { char *hostname = NULL; if (addr_strings(ap, numeric, &hostname, NULL)) return hostname; return NULL; } char *BIO_ADDR_service_string(const BIO_ADDR *ap, int numeric) { char *service = NULL; if (addr_strings(ap, numeric, NULL, &service)) return service; return NULL; } char *BIO_ADDR_path_string(const BIO_ADDR *ap) { #ifdef AF_UNIX if (ap->sa.sa_family == AF_UNIX) return OPENSSL_strdup(ap->s_un.sun_path); #endif return NULL; } /* * BIO_ADDR_sockaddr - non-public routine to return the struct sockaddr * for a given BIO_ADDR. In reality, this is simply a type safe cast. * The returned struct sockaddr is const, so it can't be tampered with. */ const struct sockaddr *BIO_ADDR_sockaddr(const BIO_ADDR *ap) { return &(ap->sa); } /* * BIO_ADDR_sockaddr_noconst - non-public function that does the same * as BIO_ADDR_sockaddr, but returns a non-const. USE WITH CARE, as * it allows you to tamper with the data (and thereby the contents * of the input BIO_ADDR). */ struct sockaddr *BIO_ADDR_sockaddr_noconst(BIO_ADDR *ap) { return &(ap->sa); } /* * BIO_ADDR_sockaddr_size - non-public function that returns the size * of the struct sockaddr the BIO_ADDR is using. If the protocol family * isn't set or is something other than AF_INET, AF_INET6 or AF_UNIX, * the size of the BIO_ADDR type is returned. */ socklen_t BIO_ADDR_sockaddr_size(const BIO_ADDR *ap) { if (ap->sa.sa_family == AF_INET) return sizeof(ap->s_in); #ifdef AF_INET6 if (ap->sa.sa_family == AF_INET6) return sizeof(ap->s_in6); #endif #ifdef AF_UNIX if (ap->sa.sa_family == AF_UNIX) return sizeof(ap->s_un); #endif return sizeof(*ap); } /********************************************************************** * * Address info database * */ const BIO_ADDRINFO *BIO_ADDRINFO_next(const BIO_ADDRINFO *bai) { if (bai != NULL) return bai->bai_next; return NULL; } int BIO_ADDRINFO_family(const BIO_ADDRINFO *bai) { if (bai != NULL) return bai->bai_family; return 0; } int BIO_ADDRINFO_socktype(const BIO_ADDRINFO *bai) { if (bai != NULL) return bai->bai_socktype; return 0; } int BIO_ADDRINFO_protocol(const BIO_ADDRINFO *bai) { if (bai != NULL) { if (bai->bai_protocol != 0) return bai->bai_protocol; #ifdef AF_UNIX if (bai->bai_family == AF_UNIX) return 0; #endif switch (bai->bai_socktype) { case SOCK_STREAM: return IPPROTO_TCP; case SOCK_DGRAM: return IPPROTO_UDP; default: break; } } return 0; } /* * BIO_ADDRINFO_sockaddr_size - non-public function that returns the size * of the struct sockaddr inside the BIO_ADDRINFO. */ socklen_t BIO_ADDRINFO_sockaddr_size(const BIO_ADDRINFO *bai) { if (bai != NULL) return bai->bai_addrlen; return 0; } /* * BIO_ADDRINFO_sockaddr - non-public function that returns bai_addr * as the struct sockaddr it is. */ const struct sockaddr *BIO_ADDRINFO_sockaddr(const BIO_ADDRINFO *bai) { if (bai != NULL) return bai->bai_addr; return NULL; } const BIO_ADDR *BIO_ADDRINFO_address(const BIO_ADDRINFO *bai) { if (bai != NULL) return (BIO_ADDR *)bai->bai_addr; return NULL; } void BIO_ADDRINFO_free(BIO_ADDRINFO *bai) { if (bai == NULL) return; #ifdef AI_PASSIVE # ifdef AF_UNIX # define _cond bai->bai_family != AF_UNIX # else # define _cond 1 # endif if (_cond) { freeaddrinfo(bai); return; } #endif /* Free manually when we know that addrinfo_wrap() was used. * See further comment above addrinfo_wrap() */ while (bai != NULL) { BIO_ADDRINFO *next = bai->bai_next; OPENSSL_free(bai->bai_addr); OPENSSL_free(bai); bai = next; } } /********************************************************************** * * Service functions * */ /*- * The specs in hostserv can take these forms: * * host:service => *host = "host", *service = "service" * host:* => *host = "host", *service = NULL * host: => *host = "host", *service = NULL * :service => *host = NULL, *service = "service" * *:service => *host = NULL, *service = "service" * * in case no : is present in the string, the result depends on * hostserv_prio, as follows: * * when hostserv_prio == BIO_PARSE_PRIO_HOST * host => *host = "host", *service untouched * * when hostserv_prio == BIO_PARSE_PRIO_SERV * service => *host untouched, *service = "service" * */ int BIO_parse_hostserv(const char *hostserv, char **host, char **service, enum BIO_hostserv_priorities hostserv_prio) { const char *h = NULL; size_t hl = 0; const char *p = NULL; size_t pl = 0; if (*hostserv == '[') { if ((p = strchr(hostserv, ']')) == NULL) goto spec_err; h = hostserv + 1; hl = p - h; p++; if (*p == '\0') p = NULL; else if (*p != ':') goto spec_err; else { p++; pl = strlen(p); } } else { const char *p2 = strrchr(hostserv, ':'); p = strchr(hostserv, ':'); /*- * Check for more than one colon. There are three possible * interpretations: * 1. IPv6 address with port number, last colon being separator. * 2. IPv6 address only. * 3. IPv6 address only if hostserv_prio == BIO_PARSE_PRIO_HOST, * IPv6 address and port number if hostserv_prio == BIO_PARSE_PRIO_SERV * Because of this ambiguity, we currently choose to make it an * error. */ if (p != p2) goto amb_err; if (p != NULL) { h = hostserv; hl = p - h; p++; pl = strlen(p); } else if (hostserv_prio == BIO_PARSE_PRIO_HOST) { h = hostserv; hl = strlen(h); } else { p = hostserv; pl = strlen(p); } } if (p != NULL && strchr(p, ':')) goto spec_err; if (h != NULL && host != NULL) { if (hl == 0 || (hl == 1 && h[0] == '*')) { *host = NULL; } else { *host = OPENSSL_strndup(h, hl); if (*host == NULL) goto memerr; } } if (p != NULL && service != NULL) { if (pl == 0 || (pl == 1 && p[0] == '*')) { *service = NULL; } else { *service = OPENSSL_strndup(p, pl); if (*service == NULL) goto memerr; } } return 1; amb_err: BIOerr(BIO_F_BIO_PARSE_HOSTSERV, BIO_R_AMBIGUOUS_HOST_OR_SERVICE); return 0; spec_err: BIOerr(BIO_F_BIO_PARSE_HOSTSERV, BIO_R_MALFORMED_HOST_OR_SERVICE); return 0; memerr: BIOerr(BIO_F_BIO_PARSE_HOSTSERV, ERR_R_MALLOC_FAILURE); return 0; } /* addrinfo_wrap is used to build our own addrinfo "chain". * (it has only one entry, so calling it a chain may be a stretch) * It should ONLY be called when getaddrinfo() and friends * aren't available, OR when dealing with a non IP protocol * family, such as AF_UNIX * * the return value is 1 on success, or 0 on failure, which * only happens if a memory allocation error occurred. */ static int addrinfo_wrap(int family, int socktype, const void *where, size_t wherelen, unsigned short port, BIO_ADDRINFO **bai) { if ((*bai = OPENSSL_zalloc(sizeof(**bai))) == NULL) { BIOerr(BIO_F_ADDRINFO_WRAP, ERR_R_MALLOC_FAILURE); return 0; } (*bai)->bai_family = family; (*bai)->bai_socktype = socktype; if (socktype == SOCK_STREAM) (*bai)->bai_protocol = IPPROTO_TCP; if (socktype == SOCK_DGRAM) (*bai)->bai_protocol = IPPROTO_UDP; #ifdef AF_UNIX if (family == AF_UNIX) (*bai)->bai_protocol = 0; #endif { /* Magic: We know that BIO_ADDR_sockaddr_noconst is really just an advanced cast of BIO_ADDR* to struct sockaddr * by the power of union, so while it may seem that we're creating a memory leak here, we are not. It will be all right. */ BIO_ADDR *addr = BIO_ADDR_new(); if (addr != NULL) { BIO_ADDR_rawmake(addr, family, where, wherelen, port); (*bai)->bai_addr = BIO_ADDR_sockaddr_noconst(addr); } } (*bai)->bai_next = NULL; if ((*bai)->bai_addr == NULL) { BIO_ADDRINFO_free(*bai); *bai = NULL; return 0; } return 1; } DEFINE_RUN_ONCE_STATIC(do_bio_lookup_init) { if (!OPENSSL_init_crypto(0, NULL)) return 0; bio_lookup_lock = CRYPTO_THREAD_lock_new(); return bio_lookup_lock != NULL; } int BIO_lookup(const char *host, const char *service, enum BIO_lookup_type lookup_type, int family, int socktype, BIO_ADDRINFO **res) { return BIO_lookup_ex(host, service, lookup_type, family, socktype, 0, res); } /*- * BIO_lookup_ex - look up the node and service you want to connect to. * @node: the node you want to connect to. * @service: the service you want to connect to. * @lookup_type: declare intent with the result, client or server. * @family: the address family you want to use. Use AF_UNSPEC for any, or * AF_INET, AF_INET6 or AF_UNIX. * @socktype: The socket type you want to use. Can be SOCK_STREAM, SOCK_DGRAM * or 0 for all. * @protocol: The protocol to use, e.g. IPPROTO_TCP or IPPROTO_UDP or 0 for all. * Note that some platforms may not return IPPROTO_SCTP without * explicitly requesting it (i.e. IPPROTO_SCTP may not be returned * with 0 for the protocol) * @res: Storage place for the resulting list of returned addresses * * This will do a lookup of the node and service that you want to connect to. * It returns a linked list of different addresses you can try to connect to. * * When no longer needed you should call BIO_ADDRINFO_free() to free the result. * * The return value is 1 on success or 0 in case of error. */ int BIO_lookup_ex(const char *host, const char *service, int lookup_type, int family, int socktype, int protocol, BIO_ADDRINFO **res) { int ret = 0; /* Assume failure */ switch(family) { case AF_INET: #ifdef AF_INET6 case AF_INET6: #endif #ifdef AF_UNIX case AF_UNIX: #endif #ifdef AF_UNSPEC case AF_UNSPEC: #endif break; default: BIOerr(BIO_F_BIO_LOOKUP_EX, BIO_R_UNSUPPORTED_PROTOCOL_FAMILY); return 0; } #ifdef AF_UNIX if (family == AF_UNIX) { if (addrinfo_wrap(family, socktype, host, strlen(host), 0, res)) return 1; else BIOerr(BIO_F_BIO_LOOKUP_EX, ERR_R_MALLOC_FAILURE); return 0; } #endif if (BIO_sock_init() != 1) return 0; if (1) { #ifdef AI_PASSIVE int gai_ret = 0, old_ret = 0; struct addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = socktype; hints.ai_protocol = protocol; # ifdef AI_ADDRCONFIG # ifdef AF_UNSPEC if (family == AF_UNSPEC) # endif hints.ai_flags |= AI_ADDRCONFIG; # endif if (lookup_type == BIO_LOOKUP_SERVER) hints.ai_flags |= AI_PASSIVE; /* Note that |res| SHOULD be a 'struct addrinfo **' thanks to * macro magic in bio_local.h */ # if defined(AI_ADDRCONFIG) && defined(AI_NUMERICHOST) retry: # endif switch ((gai_ret = getaddrinfo(host, service, &hints, res))) { # ifdef EAI_SYSTEM case EAI_SYSTEM: SYSerr(SYS_F_GETADDRINFO, get_last_socket_error()); BIOerr(BIO_F_BIO_LOOKUP_EX, ERR_R_SYS_LIB); break; # endif # ifdef EAI_MEMORY case EAI_MEMORY: BIOerr(BIO_F_BIO_LOOKUP_EX, ERR_R_MALLOC_FAILURE); break; # endif case 0: ret = 1; /* Success */ break; default: # if defined(AI_ADDRCONFIG) && defined(AI_NUMERICHOST) if (hints.ai_flags & AI_ADDRCONFIG) { hints.ai_flags &= ~AI_ADDRCONFIG; hints.ai_flags |= AI_NUMERICHOST; old_ret = gai_ret; goto retry; } # endif BIOerr(BIO_F_BIO_LOOKUP_EX, ERR_R_SYS_LIB); ERR_add_error_data(1, gai_strerror(old_ret ? old_ret : gai_ret)); break; } } else { #endif const struct hostent *he; /* * Because struct hostent is defined for 32-bit pointers only with * VMS C, we need to make sure that '&he_fallback_address' and * '&he_fallback_addresses' are 32-bit pointers */ #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma pointer_size save # pragma pointer_size 32 #endif /* Windows doesn't seem to have in_addr_t */ #ifdef OPENSSL_SYS_WINDOWS static uint32_t he_fallback_address; static const char *he_fallback_addresses[] = { (char *)&he_fallback_address, NULL }; #else static in_addr_t he_fallback_address; static const char *he_fallback_addresses[] = { (char *)&he_fallback_address, NULL }; #endif static const struct hostent he_fallback = { NULL, NULL, AF_INET, sizeof(he_fallback_address), (char **)&he_fallback_addresses }; #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma pointer_size restore #endif struct servent *se; /* Apparently, on WIN64, s_proto and s_port have traded places... */ #ifdef _WIN64 struct servent se_fallback = { NULL, NULL, NULL, 0 }; #else struct servent se_fallback = { NULL, NULL, 0, NULL }; #endif if (!RUN_ONCE(&bio_lookup_init, do_bio_lookup_init)) { BIOerr(BIO_F_BIO_LOOKUP_EX, ERR_R_MALLOC_FAILURE); ret = 0; goto err; } CRYPTO_THREAD_write_lock(bio_lookup_lock); he_fallback_address = INADDR_ANY; if (host == NULL) { he = &he_fallback; switch(lookup_type) { case BIO_LOOKUP_CLIENT: he_fallback_address = INADDR_LOOPBACK; break; case BIO_LOOKUP_SERVER: he_fallback_address = INADDR_ANY; break; default: /* We forgot to handle a lookup type! */ assert("We forgot to handle a lookup type!" == NULL); BIOerr(BIO_F_BIO_LOOKUP_EX, ERR_R_INTERNAL_ERROR); ret = 0; goto err; } } else { he = gethostbyname(host); if (he == NULL) { #ifndef OPENSSL_SYS_WINDOWS /* * This might be misleading, because h_errno is used as if * it was errno. To minimize mixup add 1000. Underlying * reason for this is that hstrerror is declared obsolete, * not to mention that a) h_errno is not always guaranteed * to be meaningless; b) hstrerror can reside in yet another * library, linking for sake of hstrerror is an overkill; * c) this path is not executed on contemporary systems * anyway [above getaddrinfo/gai_strerror is]. We just let * system administrator figure this out... */ # if defined(OPENSSL_SYS_VXWORKS) /* h_errno doesn't exist on VxWorks */ SYSerr(SYS_F_GETHOSTBYNAME, 1000 ); # else SYSerr(SYS_F_GETHOSTBYNAME, 1000 + h_errno); # endif #else SYSerr(SYS_F_GETHOSTBYNAME, WSAGetLastError()); #endif ret = 0; goto err; } } if (service == NULL) { se_fallback.s_port = 0; se_fallback.s_proto = NULL; se = &se_fallback; } else { char *endp = NULL; long portnum = strtol(service, &endp, 10); /* * Because struct servent is defined for 32-bit pointers only with * VMS C, we need to make sure that 'proto' is a 32-bit pointer. */ #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma pointer_size save # pragma pointer_size 32 #endif char *proto = NULL; #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma pointer_size restore #endif switch (socktype) { case SOCK_STREAM: proto = "tcp"; break; case SOCK_DGRAM: proto = "udp"; break; } if (endp != service && *endp == '\0' && portnum > 0 && portnum < 65536) { se_fallback.s_port = htons((unsigned short)portnum); se_fallback.s_proto = proto; se = &se_fallback; } else if (endp == service) { se = getservbyname(service, proto); if (se == NULL) { #ifndef OPENSSL_SYS_WINDOWS SYSerr(SYS_F_GETSERVBYNAME, errno); #else SYSerr(SYS_F_GETSERVBYNAME, WSAGetLastError()); #endif goto err; } } else { BIOerr(BIO_F_BIO_LOOKUP_EX, BIO_R_MALFORMED_HOST_OR_SERVICE); goto err; } } *res = NULL; { /* * Because hostent::h_addr_list is an array of 32-bit pointers with VMS C, * we must make sure our iterator designates the same element type, hence * the pointer size dance. */ #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma pointer_size save # pragma pointer_size 32 #endif char **addrlistp; #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma pointer_size restore #endif size_t addresses; BIO_ADDRINFO *tmp_bai = NULL; /* The easiest way to create a linked list from an array is to start from the back */ for(addrlistp = he->h_addr_list; *addrlistp != NULL; addrlistp++) ; for(addresses = addrlistp - he->h_addr_list; addrlistp--, addresses-- > 0; ) { if (!addrinfo_wrap(he->h_addrtype, socktype, *addrlistp, he->h_length, se->s_port, &tmp_bai)) goto addrinfo_malloc_err; tmp_bai->bai_next = *res; *res = tmp_bai; continue; addrinfo_malloc_err: BIO_ADDRINFO_free(*res); *res = NULL; BIOerr(BIO_F_BIO_LOOKUP_EX, ERR_R_MALLOC_FAILURE); ret = 0; goto err; } ret = 1; } err: CRYPTO_THREAD_unlock(bio_lookup_lock); } return ret; } #endif /* OPENSSL_NO_SOCK */ openssl-1.1.1f/crypto/bio/b_dump.c000066400000000000000000000077211364063235100170600ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Stolen from tjh's ssl/ssl_trc.c stuff. */ #include #include "bio_local.h" #define DUMP_WIDTH 16 #define DUMP_WIDTH_LESS_INDENT(i) (DUMP_WIDTH - ((i - (i > 6 ? 6 : i) + 3) / 4)) #define SPACE(buf, pos, n) (sizeof(buf) - (pos) > (n)) int BIO_dump_cb(int (*cb) (const void *data, size_t len, void *u), void *u, const char *s, int len) { return BIO_dump_indent_cb(cb, u, s, len, 0); } int BIO_dump_indent_cb(int (*cb) (const void *data, size_t len, void *u), void *u, const char *s, int len, int indent) { int ret = 0; char buf[288 + 1]; int i, j, rows, n; unsigned char ch; int dump_width; if (indent < 0) indent = 0; else if (indent > 64) indent = 64; dump_width = DUMP_WIDTH_LESS_INDENT(indent); rows = len / dump_width; if ((rows * dump_width) < len) rows++; for (i = 0; i < rows; i++) { n = BIO_snprintf(buf, sizeof(buf), "%*s%04x - ", indent, "", i * dump_width); for (j = 0; j < dump_width; j++) { if (SPACE(buf, n, 3)) { if (((i * dump_width) + j) >= len) { strcpy(buf + n, " "); } else { ch = ((unsigned char)*(s + i * dump_width + j)) & 0xff; BIO_snprintf(buf + n, 4, "%02x%c", ch, j == 7 ? '-' : ' '); } n += 3; } } if (SPACE(buf, n, 2)) { strcpy(buf + n, " "); n += 2; } for (j = 0; j < dump_width; j++) { if (((i * dump_width) + j) >= len) break; if (SPACE(buf, n, 1)) { ch = ((unsigned char)*(s + i * dump_width + j)) & 0xff; #ifndef CHARSET_EBCDIC buf[n++] = ((ch >= ' ') && (ch <= '~')) ? ch : '.'; #else buf[n++] = ((ch >= os_toascii[' ']) && (ch <= os_toascii['~'])) ? os_toebcdic[ch] : '.'; #endif buf[n] = '\0'; } } if (SPACE(buf, n, 1)) { buf[n++] = '\n'; buf[n] = '\0'; } /* * if this is the last call then update the ddt_dump thing so that we * will move the selection point in the debug window */ ret += cb((void *)buf, n, u); } return ret; } #ifndef OPENSSL_NO_STDIO static int write_fp(const void *data, size_t len, void *fp) { return UP_fwrite(data, len, 1, fp); } int BIO_dump_fp(FILE *fp, const char *s, int len) { return BIO_dump_cb(write_fp, fp, s, len); } int BIO_dump_indent_fp(FILE *fp, const char *s, int len, int indent) { return BIO_dump_indent_cb(write_fp, fp, s, len, indent); } #endif static int write_bio(const void *data, size_t len, void *bp) { return BIO_write((BIO *)bp, (const char *)data, len); } int BIO_dump(BIO *bp, const char *s, int len) { return BIO_dump_cb(write_bio, bp, s, len); } int BIO_dump_indent(BIO *bp, const char *s, int len, int indent) { return BIO_dump_indent_cb(write_bio, bp, s, len, indent); } int BIO_hex_string(BIO *out, int indent, int width, unsigned char *data, int datalen) { int i, j = 0; if (datalen < 1) return 1; for (i = 0; i < datalen - 1; i++) { if (i && !j) BIO_printf(out, "%*s", indent, ""); BIO_printf(out, "%02X:", data[i]); j = (j + 1) % width; if (!j) BIO_printf(out, "\n"); } if (i && !j) BIO_printf(out, "%*s", indent, ""); BIO_printf(out, "%02X", data[datalen - 1]); return 1; } openssl-1.1.1f/crypto/bio/b_print.c000066400000000000000000000627251364063235100172540ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "crypto/ctype.h" #include "internal/numbers.h" #include /* * Copyright Patrick Powell 1995 * This code is based on code written by Patrick Powell * It may be used for any purpose as long as this notice remains intact * on all source code distributions. */ #ifdef HAVE_LONG_DOUBLE # define LDOUBLE long double #else # define LDOUBLE double #endif static int fmtstr(char **, char **, size_t *, size_t *, const char *, int, int, int); static int fmtint(char **, char **, size_t *, size_t *, int64_t, int, int, int, int); static int fmtfp(char **, char **, size_t *, size_t *, LDOUBLE, int, int, int, int); static int doapr_outch(char **, char **, size_t *, size_t *, int); static int _dopr(char **sbuffer, char **buffer, size_t *maxlen, size_t *retlen, int *truncated, const char *format, va_list args); /* format read states */ #define DP_S_DEFAULT 0 #define DP_S_FLAGS 1 #define DP_S_MIN 2 #define DP_S_DOT 3 #define DP_S_MAX 4 #define DP_S_MOD 5 #define DP_S_CONV 6 #define DP_S_DONE 7 /* format flags - Bits */ /* left-aligned padding */ #define DP_F_MINUS (1 << 0) /* print an explicit '+' for a value with positive sign */ #define DP_F_PLUS (1 << 1) /* print an explicit ' ' for a value with positive sign */ #define DP_F_SPACE (1 << 2) /* print 0/0x prefix for octal/hex and decimal point for floating point */ #define DP_F_NUM (1 << 3) /* print leading zeroes */ #define DP_F_ZERO (1 << 4) /* print HEX in UPPPERcase */ #define DP_F_UP (1 << 5) /* treat value as unsigned */ #define DP_F_UNSIGNED (1 << 6) /* conversion flags */ #define DP_C_SHORT 1 #define DP_C_LONG 2 #define DP_C_LDOUBLE 3 #define DP_C_LLONG 4 #define DP_C_SIZE 5 /* Floating point formats */ #define F_FORMAT 0 #define E_FORMAT 1 #define G_FORMAT 2 /* some handy macros */ #define char_to_int(p) (p - '0') #define OSSL_MAX(p,q) ((p >= q) ? p : q) static int _dopr(char **sbuffer, char **buffer, size_t *maxlen, size_t *retlen, int *truncated, const char *format, va_list args) { char ch; int64_t value; LDOUBLE fvalue; char *strvalue; int min; int max; int state; int flags; int cflags; size_t currlen; state = DP_S_DEFAULT; flags = currlen = cflags = min = 0; max = -1; ch = *format++; while (state != DP_S_DONE) { if (ch == '\0' || (buffer == NULL && currlen >= *maxlen)) state = DP_S_DONE; switch (state) { case DP_S_DEFAULT: if (ch == '%') state = DP_S_FLAGS; else if (!doapr_outch(sbuffer, buffer, &currlen, maxlen, ch)) return 0; ch = *format++; break; case DP_S_FLAGS: switch (ch) { case '-': flags |= DP_F_MINUS; ch = *format++; break; case '+': flags |= DP_F_PLUS; ch = *format++; break; case ' ': flags |= DP_F_SPACE; ch = *format++; break; case '#': flags |= DP_F_NUM; ch = *format++; break; case '0': flags |= DP_F_ZERO; ch = *format++; break; default: state = DP_S_MIN; break; } break; case DP_S_MIN: if (ossl_isdigit(ch)) { min = 10 * min + char_to_int(ch); ch = *format++; } else if (ch == '*') { min = va_arg(args, int); ch = *format++; state = DP_S_DOT; } else state = DP_S_DOT; break; case DP_S_DOT: if (ch == '.') { state = DP_S_MAX; ch = *format++; } else state = DP_S_MOD; break; case DP_S_MAX: if (ossl_isdigit(ch)) { if (max < 0) max = 0; max = 10 * max + char_to_int(ch); ch = *format++; } else if (ch == '*') { max = va_arg(args, int); ch = *format++; state = DP_S_MOD; } else state = DP_S_MOD; break; case DP_S_MOD: switch (ch) { case 'h': cflags = DP_C_SHORT; ch = *format++; break; case 'l': if (*format == 'l') { cflags = DP_C_LLONG; format++; } else cflags = DP_C_LONG; ch = *format++; break; case 'q': case 'j': cflags = DP_C_LLONG; ch = *format++; break; case 'L': cflags = DP_C_LDOUBLE; ch = *format++; break; case 'z': cflags = DP_C_SIZE; ch = *format++; break; default: break; } state = DP_S_CONV; break; case DP_S_CONV: switch (ch) { case 'd': case 'i': switch (cflags) { case DP_C_SHORT: value = (short int)va_arg(args, int); break; case DP_C_LONG: value = va_arg(args, long int); break; case DP_C_LLONG: value = va_arg(args, int64_t); break; case DP_C_SIZE: value = va_arg(args, ossl_ssize_t); break; default: value = va_arg(args, int); break; } if (!fmtint(sbuffer, buffer, &currlen, maxlen, value, 10, min, max, flags)) return 0; break; case 'X': flags |= DP_F_UP; /* FALLTHROUGH */ case 'x': case 'o': case 'u': flags |= DP_F_UNSIGNED; switch (cflags) { case DP_C_SHORT: value = (unsigned short int)va_arg(args, unsigned int); break; case DP_C_LONG: value = va_arg(args, unsigned long int); break; case DP_C_LLONG: value = va_arg(args, uint64_t); break; case DP_C_SIZE: value = va_arg(args, size_t); break; default: value = va_arg(args, unsigned int); break; } if (!fmtint(sbuffer, buffer, &currlen, maxlen, value, ch == 'o' ? 8 : (ch == 'u' ? 10 : 16), min, max, flags)) return 0; break; case 'f': if (cflags == DP_C_LDOUBLE) fvalue = va_arg(args, LDOUBLE); else fvalue = va_arg(args, double); if (!fmtfp(sbuffer, buffer, &currlen, maxlen, fvalue, min, max, flags, F_FORMAT)) return 0; break; case 'E': flags |= DP_F_UP; /* fall thru */ case 'e': if (cflags == DP_C_LDOUBLE) fvalue = va_arg(args, LDOUBLE); else fvalue = va_arg(args, double); if (!fmtfp(sbuffer, buffer, &currlen, maxlen, fvalue, min, max, flags, E_FORMAT)) return 0; break; case 'G': flags |= DP_F_UP; /* fall thru */ case 'g': if (cflags == DP_C_LDOUBLE) fvalue = va_arg(args, LDOUBLE); else fvalue = va_arg(args, double); if (!fmtfp(sbuffer, buffer, &currlen, maxlen, fvalue, min, max, flags, G_FORMAT)) return 0; break; case 'c': if (!doapr_outch(sbuffer, buffer, &currlen, maxlen, va_arg(args, int))) return 0; break; case 's': strvalue = va_arg(args, char *); if (max < 0) { if (buffer) max = INT_MAX; else max = *maxlen; } if (!fmtstr(sbuffer, buffer, &currlen, maxlen, strvalue, flags, min, max)) return 0; break; case 'p': value = (size_t)va_arg(args, void *); if (!fmtint(sbuffer, buffer, &currlen, maxlen, value, 16, min, max, flags | DP_F_NUM)) return 0; break; case 'n': { int *num; num = va_arg(args, int *); *num = currlen; } break; case '%': if (!doapr_outch(sbuffer, buffer, &currlen, maxlen, ch)) return 0; break; case 'w': /* not supported yet, treat as next char */ ch = *format++; break; default: /* unknown, skip */ break; } ch = *format++; state = DP_S_DEFAULT; flags = cflags = min = 0; max = -1; break; case DP_S_DONE: break; default: break; } } /* * We have to truncate if there is no dynamic buffer and we have filled the * static buffer. */ if (buffer == NULL) { *truncated = (currlen > *maxlen - 1); if (*truncated) currlen = *maxlen - 1; } if (!doapr_outch(sbuffer, buffer, &currlen, maxlen, '\0')) return 0; *retlen = currlen - 1; return 1; } static int fmtstr(char **sbuffer, char **buffer, size_t *currlen, size_t *maxlen, const char *value, int flags, int min, int max) { int padlen; size_t strln; int cnt = 0; if (value == 0) value = ""; strln = OPENSSL_strnlen(value, max < 0 ? SIZE_MAX : (size_t)max); padlen = min - strln; if (min < 0 || padlen < 0) padlen = 0; if (max >= 0) { /* * Calculate the maximum output including padding. * Make sure max doesn't overflow into negativity */ if (max < INT_MAX - padlen) max += padlen; else max = INT_MAX; } if (flags & DP_F_MINUS) padlen = -padlen; while ((padlen > 0) && (max < 0 || cnt < max)) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, ' ')) return 0; --padlen; ++cnt; } while (strln > 0 && (max < 0 || cnt < max)) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, *value++)) return 0; --strln; ++cnt; } while ((padlen < 0) && (max < 0 || cnt < max)) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, ' ')) return 0; ++padlen; ++cnt; } return 1; } static int fmtint(char **sbuffer, char **buffer, size_t *currlen, size_t *maxlen, int64_t value, int base, int min, int max, int flags) { int signvalue = 0; const char *prefix = ""; uint64_t uvalue; char convert[DECIMAL_SIZE(value) + 3]; int place = 0; int spadlen = 0; int zpadlen = 0; int caps = 0; if (max < 0) max = 0; uvalue = value; if (!(flags & DP_F_UNSIGNED)) { if (value < 0) { signvalue = '-'; uvalue = 0 - (uint64_t)value; } else if (flags & DP_F_PLUS) signvalue = '+'; else if (flags & DP_F_SPACE) signvalue = ' '; } if (flags & DP_F_NUM) { if (base == 8) prefix = "0"; if (base == 16) prefix = "0x"; } if (flags & DP_F_UP) caps = 1; do { convert[place++] = (caps ? "0123456789ABCDEF" : "0123456789abcdef") [uvalue % (unsigned)base]; uvalue = (uvalue / (unsigned)base); } while (uvalue && (place < (int)sizeof(convert))); if (place == sizeof(convert)) place--; convert[place] = 0; zpadlen = max - place; spadlen = min - OSSL_MAX(max, place) - (signvalue ? 1 : 0) - strlen(prefix); if (zpadlen < 0) zpadlen = 0; if (spadlen < 0) spadlen = 0; if (flags & DP_F_ZERO) { zpadlen = OSSL_MAX(zpadlen, spadlen); spadlen = 0; } if (flags & DP_F_MINUS) spadlen = -spadlen; /* spaces */ while (spadlen > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, ' ')) return 0; --spadlen; } /* sign */ if (signvalue) if (!doapr_outch(sbuffer, buffer, currlen, maxlen, signvalue)) return 0; /* prefix */ while (*prefix) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, *prefix)) return 0; prefix++; } /* zeros */ if (zpadlen > 0) { while (zpadlen > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, '0')) return 0; --zpadlen; } } /* digits */ while (place > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, convert[--place])) return 0; } /* left justified spaces */ while (spadlen < 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, ' ')) return 0; ++spadlen; } return 1; } static LDOUBLE abs_val(LDOUBLE value) { LDOUBLE result = value; if (value < 0) result = -value; return result; } static LDOUBLE pow_10(int in_exp) { LDOUBLE result = 1; while (in_exp) { result *= 10; in_exp--; } return result; } static long roundv(LDOUBLE value) { long intpart; intpart = (long)value; value = value - intpart; if (value >= 0.5) intpart++; return intpart; } static int fmtfp(char **sbuffer, char **buffer, size_t *currlen, size_t *maxlen, LDOUBLE fvalue, int min, int max, int flags, int style) { int signvalue = 0; LDOUBLE ufvalue; LDOUBLE tmpvalue; char iconvert[20]; char fconvert[20]; char econvert[20]; int iplace = 0; int fplace = 0; int eplace = 0; int padlen = 0; int zpadlen = 0; long exp = 0; unsigned long intpart; unsigned long fracpart; unsigned long max10; int realstyle; if (max < 0) max = 6; if (fvalue < 0) signvalue = '-'; else if (flags & DP_F_PLUS) signvalue = '+'; else if (flags & DP_F_SPACE) signvalue = ' '; /* * G_FORMAT sometimes prints like E_FORMAT and sometimes like F_FORMAT * depending on the number to be printed. Work out which one it is and use * that from here on. */ if (style == G_FORMAT) { if (fvalue == 0.0) { realstyle = F_FORMAT; } else if (fvalue < 0.0001) { realstyle = E_FORMAT; } else if ((max == 0 && fvalue >= 10) || (max > 0 && fvalue >= pow_10(max))) { realstyle = E_FORMAT; } else { realstyle = F_FORMAT; } } else { realstyle = style; } if (style != F_FORMAT) { tmpvalue = fvalue; /* Calculate the exponent */ if (fvalue != 0.0) { while (tmpvalue < 1) { tmpvalue *= 10; exp--; } while (tmpvalue > 10) { tmpvalue /= 10; exp++; } } if (style == G_FORMAT) { /* * In G_FORMAT the "precision" represents significant digits. We * always have at least 1 significant digit. */ if (max == 0) max = 1; /* Now convert significant digits to decimal places */ if (realstyle == F_FORMAT) { max -= (exp + 1); if (max < 0) { /* * Should not happen. If we're in F_FORMAT then exp < max? */ return 0; } } else { /* * In E_FORMAT there is always one significant digit in front * of the decimal point, so: * significant digits == 1 + decimal places */ max--; } } if (realstyle == E_FORMAT) fvalue = tmpvalue; } ufvalue = abs_val(fvalue); if (ufvalue > ULONG_MAX) { /* Number too big */ return 0; } intpart = (unsigned long)ufvalue; /* * sorry, we only support 9 digits past the decimal because of our * conversion method */ if (max > 9) max = 9; /* * we "cheat" by converting the fractional part to integer by multiplying * by a factor of 10 */ max10 = roundv(pow_10(max)); fracpart = roundv(pow_10(max) * (ufvalue - intpart)); if (fracpart >= max10) { intpart++; fracpart -= max10; } /* convert integer part */ do { iconvert[iplace++] = "0123456789"[intpart % 10]; intpart = (intpart / 10); } while (intpart && (iplace < (int)sizeof(iconvert))); if (iplace == sizeof(iconvert)) iplace--; iconvert[iplace] = 0; /* convert fractional part */ while (fplace < max) { if (style == G_FORMAT && fplace == 0 && (fracpart % 10) == 0) { /* We strip trailing zeros in G_FORMAT */ max--; fracpart = fracpart / 10; if (fplace < max) continue; break; } fconvert[fplace++] = "0123456789"[fracpart % 10]; fracpart = (fracpart / 10); } if (fplace == sizeof(fconvert)) fplace--; fconvert[fplace] = 0; /* convert exponent part */ if (realstyle == E_FORMAT) { int tmpexp; if (exp < 0) tmpexp = -exp; else tmpexp = exp; do { econvert[eplace++] = "0123456789"[tmpexp % 10]; tmpexp = (tmpexp / 10); } while (tmpexp > 0 && eplace < (int)sizeof(econvert)); /* Exponent is huge!! Too big to print */ if (tmpexp > 0) return 0; /* Add a leading 0 for single digit exponents */ if (eplace == 1) econvert[eplace++] = '0'; } /* * -1 for decimal point (if we have one, i.e. max > 0), * another -1 if we are printing a sign */ padlen = min - iplace - max - (max > 0 ? 1 : 0) - ((signvalue) ? 1 : 0); /* Take some off for exponent prefix "+e" and exponent */ if (realstyle == E_FORMAT) padlen -= 2 + eplace; zpadlen = max - fplace; if (zpadlen < 0) zpadlen = 0; if (padlen < 0) padlen = 0; if (flags & DP_F_MINUS) padlen = -padlen; if ((flags & DP_F_ZERO) && (padlen > 0)) { if (signvalue) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, signvalue)) return 0; --padlen; signvalue = 0; } while (padlen > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, '0')) return 0; --padlen; } } while (padlen > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, ' ')) return 0; --padlen; } if (signvalue && !doapr_outch(sbuffer, buffer, currlen, maxlen, signvalue)) return 0; while (iplace > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, iconvert[--iplace])) return 0; } /* * Decimal point. This should probably use locale to find the correct * char to print out. */ if (max > 0 || (flags & DP_F_NUM)) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, '.')) return 0; while (fplace > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, fconvert[--fplace])) return 0; } } while (zpadlen > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, '0')) return 0; --zpadlen; } if (realstyle == E_FORMAT) { char ech; if ((flags & DP_F_UP) == 0) ech = 'e'; else ech = 'E'; if (!doapr_outch(sbuffer, buffer, currlen, maxlen, ech)) return 0; if (exp < 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, '-')) return 0; } else { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, '+')) return 0; } while (eplace > 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, econvert[--eplace])) return 0; } } while (padlen < 0) { if (!doapr_outch(sbuffer, buffer, currlen, maxlen, ' ')) return 0; ++padlen; } return 1; } #define BUFFER_INC 1024 static int doapr_outch(char **sbuffer, char **buffer, size_t *currlen, size_t *maxlen, int c) { /* If we haven't at least one buffer, someone has done a big booboo */ if (!ossl_assert(*sbuffer != NULL || buffer != NULL)) return 0; /* |currlen| must always be <= |*maxlen| */ if (!ossl_assert(*currlen <= *maxlen)) return 0; if (buffer && *currlen == *maxlen) { if (*maxlen > INT_MAX - BUFFER_INC) return 0; *maxlen += BUFFER_INC; if (*buffer == NULL) { if ((*buffer = OPENSSL_malloc(*maxlen)) == NULL) { BIOerr(BIO_F_DOAPR_OUTCH, ERR_R_MALLOC_FAILURE); return 0; } if (*currlen > 0) { if (!ossl_assert(*sbuffer != NULL)) return 0; memcpy(*buffer, *sbuffer, *currlen); } *sbuffer = NULL; } else { char *tmpbuf; tmpbuf = OPENSSL_realloc(*buffer, *maxlen); if (tmpbuf == NULL) return 0; *buffer = tmpbuf; } } if (*currlen < *maxlen) { if (*sbuffer) (*sbuffer)[(*currlen)++] = (char)c; else (*buffer)[(*currlen)++] = (char)c; } return 1; } /***************************************************************************/ int BIO_printf(BIO *bio, const char *format, ...) { va_list args; int ret; va_start(args, format); ret = BIO_vprintf(bio, format, args); va_end(args); return ret; } int BIO_vprintf(BIO *bio, const char *format, va_list args) { int ret; size_t retlen; char hugebuf[1024 * 2]; /* Was previously 10k, which is unreasonable * in small-stack environments, like threads * or DOS programs. */ char *hugebufp = hugebuf; size_t hugebufsize = sizeof(hugebuf); char *dynbuf = NULL; int ignored; dynbuf = NULL; if (!_dopr(&hugebufp, &dynbuf, &hugebufsize, &retlen, &ignored, format, args)) { OPENSSL_free(dynbuf); return -1; } if (dynbuf) { ret = BIO_write(bio, dynbuf, (int)retlen); OPENSSL_free(dynbuf); } else { ret = BIO_write(bio, hugebuf, (int)retlen); } return ret; } /* * As snprintf is not available everywhere, we provide our own * implementation. This function has nothing to do with BIOs, but it's * closely related to BIO_printf, and we need *some* name prefix ... (XXX the * function should be renamed, but to what?) */ int BIO_snprintf(char *buf, size_t n, const char *format, ...) { va_list args; int ret; va_start(args, format); ret = BIO_vsnprintf(buf, n, format, args); va_end(args); return ret; } int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) { size_t retlen; int truncated; if (!_dopr(&buf, NULL, &n, &retlen, &truncated, format, args)) return -1; if (truncated) /* * In case of truncation, return -1 like traditional snprintf. * (Current drafts for ISO/IEC 9899 say snprintf should return the * number of characters that would have been written, had the buffer * been large enough.) */ return -1; else return (retlen <= INT_MAX) ? (int)retlen : -1; } openssl-1.1.1f/crypto/bio/b_sock.c000066400000000000000000000232701364063235100170470ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "bio_local.h" #ifndef OPENSSL_NO_SOCK # define SOCKET_PROTOCOL IPPROTO_TCP # ifdef SO_MAXCONN # define MAX_LISTEN SO_MAXCONN # elif defined(SOMAXCONN) # define MAX_LISTEN SOMAXCONN # else # define MAX_LISTEN 32 # endif # if defined(OPENSSL_SYS_WINDOWS) static int wsa_init_done = 0; # endif # if OPENSSL_API_COMPAT < 0x10100000L int BIO_get_host_ip(const char *str, unsigned char *ip) { BIO_ADDRINFO *res = NULL; int ret = 0; if (BIO_sock_init() != 1) return 0; /* don't generate another error code here */ if (BIO_lookup(str, NULL, BIO_LOOKUP_CLIENT, AF_INET, SOCK_STREAM, &res)) { size_t l; if (BIO_ADDRINFO_family(res) != AF_INET) { BIOerr(BIO_F_BIO_GET_HOST_IP, BIO_R_GETHOSTBYNAME_ADDR_IS_NOT_AF_INET); } else if (BIO_ADDR_rawaddress(BIO_ADDRINFO_address(res), NULL, &l)) { /* * Because only AF_INET addresses will reach this far, we can assert * that l should be 4 */ if (ossl_assert(l == 4)) ret = BIO_ADDR_rawaddress(BIO_ADDRINFO_address(res), ip, &l); } BIO_ADDRINFO_free(res); } else { ERR_add_error_data(2, "host=", str); } return ret; } int BIO_get_port(const char *str, unsigned short *port_ptr) { BIO_ADDRINFO *res = NULL; int ret = 0; if (str == NULL) { BIOerr(BIO_F_BIO_GET_PORT, BIO_R_NO_PORT_DEFINED); return 0; } if (BIO_sock_init() != 1) return 0; /* don't generate another error code here */ if (BIO_lookup(NULL, str, BIO_LOOKUP_CLIENT, AF_INET, SOCK_STREAM, &res)) { if (BIO_ADDRINFO_family(res) != AF_INET) { BIOerr(BIO_F_BIO_GET_PORT, BIO_R_ADDRINFO_ADDR_IS_NOT_AF_INET); } else { *port_ptr = ntohs(BIO_ADDR_rawport(BIO_ADDRINFO_address(res))); ret = 1; } BIO_ADDRINFO_free(res); } else { ERR_add_error_data(2, "host=", str); } return ret; } # endif int BIO_sock_error(int sock) { int j = 0, i; socklen_t size = sizeof(j); /* * Note: under Windows the third parameter is of type (char *) whereas * under other systems it is (void *) if you don't have a cast it will * choke the compiler: if you do have a cast then you can either go for * (char *) or (void *). */ i = getsockopt(sock, SOL_SOCKET, SO_ERROR, (void *)&j, &size); if (i < 0) return get_last_socket_error(); else return j; } # if OPENSSL_API_COMPAT < 0x10100000L struct hostent *BIO_gethostbyname(const char *name) { /* * Caching gethostbyname() results forever is wrong, so we have to let * the true gethostbyname() worry about this */ return gethostbyname(name); } # endif int BIO_sock_init(void) { # ifdef OPENSSL_SYS_WINDOWS static struct WSAData wsa_state; if (!wsa_init_done) { int err; wsa_init_done = 1; memset(&wsa_state, 0, sizeof(wsa_state)); /* * Not making wsa_state available to the rest of the code is formally * wrong. But the structures we use are [believed to be] invariable * among Winsock DLLs, while API availability is [expected to be] * probed at run-time with DSO_global_lookup. */ if (WSAStartup(0x0202, &wsa_state) != 0) { err = WSAGetLastError(); SYSerr(SYS_F_WSASTARTUP, err); BIOerr(BIO_F_BIO_SOCK_INIT, BIO_R_WSASTARTUP); return -1; } } # endif /* OPENSSL_SYS_WINDOWS */ # ifdef WATT32 extern int _watt_do_exit; _watt_do_exit = 0; /* don't make sock_init() call exit() */ if (sock_init()) return -1; # endif return 1; } void bio_sock_cleanup_int(void) { # ifdef OPENSSL_SYS_WINDOWS if (wsa_init_done) { wsa_init_done = 0; WSACleanup(); } # endif } int BIO_socket_ioctl(int fd, long type, void *arg) { int i; # ifdef __DJGPP__ i = ioctlsocket(fd, type, (char *)arg); # else # if defined(OPENSSL_SYS_VMS) /*- * 2011-02-18 SMS. * VMS ioctl() can't tolerate a 64-bit "void *arg", but we * observe that all the consumers pass in an "unsigned long *", * so we arrange a local copy with a short pointer, and use * that, instead. */ # if __INITIAL_POINTER_SIZE == 64 # define ARG arg_32p # pragma pointer_size save # pragma pointer_size 32 unsigned long arg_32; unsigned long *arg_32p; # pragma pointer_size restore arg_32p = &arg_32; arg_32 = *((unsigned long *)arg); # else /* __INITIAL_POINTER_SIZE == 64 */ # define ARG arg # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ # else /* defined(OPENSSL_SYS_VMS) */ # define ARG arg # endif /* defined(OPENSSL_SYS_VMS) [else] */ i = ioctlsocket(fd, type, ARG); # endif /* __DJGPP__ */ if (i < 0) SYSerr(SYS_F_IOCTLSOCKET, get_last_socket_error()); return i; } # if OPENSSL_API_COMPAT < 0x10100000L int BIO_get_accept_socket(char *host, int bind_mode) { int s = INVALID_SOCKET; char *h = NULL, *p = NULL; BIO_ADDRINFO *res = NULL; if (!BIO_parse_hostserv(host, &h, &p, BIO_PARSE_PRIO_SERV)) return INVALID_SOCKET; if (BIO_sock_init() != 1) return INVALID_SOCKET; if (BIO_lookup(h, p, BIO_LOOKUP_SERVER, AF_UNSPEC, SOCK_STREAM, &res) != 0) goto err; if ((s = BIO_socket(BIO_ADDRINFO_family(res), BIO_ADDRINFO_socktype(res), BIO_ADDRINFO_protocol(res), 0)) == INVALID_SOCKET) { s = INVALID_SOCKET; goto err; } if (!BIO_listen(s, BIO_ADDRINFO_address(res), bind_mode ? BIO_SOCK_REUSEADDR : 0)) { BIO_closesocket(s); s = INVALID_SOCKET; } err: BIO_ADDRINFO_free(res); OPENSSL_free(h); OPENSSL_free(p); return s; } int BIO_accept(int sock, char **ip_port) { BIO_ADDR res; int ret = -1; ret = BIO_accept_ex(sock, &res, 0); if (ret == (int)INVALID_SOCKET) { if (BIO_sock_should_retry(ret)) { ret = -2; goto end; } SYSerr(SYS_F_ACCEPT, get_last_socket_error()); BIOerr(BIO_F_BIO_ACCEPT, BIO_R_ACCEPT_ERROR); goto end; } if (ip_port != NULL) { char *host = BIO_ADDR_hostname_string(&res, 1); char *port = BIO_ADDR_service_string(&res, 1); if (host != NULL && port != NULL) *ip_port = OPENSSL_zalloc(strlen(host) + strlen(port) + 2); else *ip_port = NULL; if (*ip_port == NULL) { BIOerr(BIO_F_BIO_ACCEPT, ERR_R_MALLOC_FAILURE); BIO_closesocket(ret); ret = (int)INVALID_SOCKET; } else { strcpy(*ip_port, host); strcat(*ip_port, ":"); strcat(*ip_port, port); } OPENSSL_free(host); OPENSSL_free(port); } end: return ret; } # endif int BIO_set_tcp_ndelay(int s, int on) { int ret = 0; # if defined(TCP_NODELAY) && (defined(IPPROTO_TCP) || defined(SOL_TCP)) int opt; # ifdef SOL_TCP opt = SOL_TCP; # else # ifdef IPPROTO_TCP opt = IPPROTO_TCP; # endif # endif ret = setsockopt(s, opt, TCP_NODELAY, (char *)&on, sizeof(on)); # endif return (ret == 0); } int BIO_socket_nbio(int s, int mode) { int ret = -1; int l; l = mode; # ifdef FIONBIO l = mode; ret = BIO_socket_ioctl(s, FIONBIO, &l); # elif defined(F_GETFL) && defined(F_SETFL) && (defined(O_NONBLOCK) || defined(FNDELAY)) /* make sure this call always pushes an error level; BIO_socket_ioctl() does so, so we do too. */ l = fcntl(s, F_GETFL, 0); if (l == -1) { SYSerr(SYS_F_FCNTL, get_last_sys_error()); ret = -1; } else { # if defined(O_NONBLOCK) l &= ~O_NONBLOCK; # else l &= ~FNDELAY; /* BSD4.x */ # endif if (mode) { # if defined(O_NONBLOCK) l |= O_NONBLOCK; # else l |= FNDELAY; /* BSD4.x */ # endif } ret = fcntl(s, F_SETFL, l); if (ret < 0) { SYSerr(SYS_F_FCNTL, get_last_sys_error()); } } # else /* make sure this call always pushes an error level; BIO_socket_ioctl() does so, so we do too. */ BIOerr(BIO_F_BIO_SOCKET_NBIO, ERR_R_PASSED_INVALID_ARGUMENT); # endif return (ret == 0); } int BIO_sock_info(int sock, enum BIO_sock_info_type type, union BIO_sock_info_u *info) { switch (type) { case BIO_SOCK_INFO_ADDRESS: { socklen_t addr_len; int ret = 0; addr_len = sizeof(*info->addr); ret = getsockname(sock, BIO_ADDR_sockaddr_noconst(info->addr), &addr_len); if (ret == -1) { SYSerr(SYS_F_GETSOCKNAME, get_last_socket_error()); BIOerr(BIO_F_BIO_SOCK_INFO, BIO_R_GETSOCKNAME_ERROR); return 0; } if ((size_t)addr_len > sizeof(*info->addr)) { BIOerr(BIO_F_BIO_SOCK_INFO, BIO_R_GETSOCKNAME_TRUNCATED_ADDRESS); return 0; } } break; default: BIOerr(BIO_F_BIO_SOCK_INFO, BIO_R_UNKNOWN_INFO_TYPE); return 0; } return 1; } #endif openssl-1.1.1f/crypto/bio/b_sock2.c000066400000000000000000000235061364063235100171330ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "bio_local.h" #include #ifndef OPENSSL_NO_SOCK # ifdef SO_MAXCONN # define MAX_LISTEN SO_MAXCONN # elif defined(SOMAXCONN) # define MAX_LISTEN SOMAXCONN # else # define MAX_LISTEN 32 # endif /*- * BIO_socket - create a socket * @domain: the socket domain (AF_INET, AF_INET6, AF_UNIX, ...) * @socktype: the socket type (SOCK_STEAM, SOCK_DGRAM) * @protocol: the protocol to use (IPPROTO_TCP, IPPROTO_UDP) * @options: BIO socket options (currently unused) * * Creates a socket. This should be called before calling any * of BIO_connect and BIO_listen. * * Returns the file descriptor on success or INVALID_SOCKET on failure. On * failure errno is set, and a status is added to the OpenSSL error stack. */ int BIO_socket(int domain, int socktype, int protocol, int options) { int sock = -1; if (BIO_sock_init() != 1) return INVALID_SOCKET; sock = socket(domain, socktype, protocol); if (sock == -1) { SYSerr(SYS_F_SOCKET, get_last_socket_error()); BIOerr(BIO_F_BIO_SOCKET, BIO_R_UNABLE_TO_CREATE_SOCKET); return INVALID_SOCKET; } return sock; } /*- * BIO_connect - connect to an address * @sock: the socket to connect with * @addr: the address to connect to * @options: BIO socket options * * Connects to the address using the given socket and options. * * Options can be a combination of the following: * - BIO_SOCK_KEEPALIVE: enable regularly sending keep-alive messages. * - BIO_SOCK_NONBLOCK: Make the socket non-blocking. * - BIO_SOCK_NODELAY: don't delay small messages. * * options holds BIO socket options that can be used * You should call this for every address returned by BIO_lookup * until the connection is successful. * * Returns 1 on success or 0 on failure. On failure errno is set * and an error status is added to the OpenSSL error stack. */ int BIO_connect(int sock, const BIO_ADDR *addr, int options) { const int on = 1; if (sock == -1) { BIOerr(BIO_F_BIO_CONNECT, BIO_R_INVALID_SOCKET); return 0; } if (!BIO_socket_nbio(sock, (options & BIO_SOCK_NONBLOCK) != 0)) return 0; if (options & BIO_SOCK_KEEPALIVE) { if (setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, (const void *)&on, sizeof(on)) != 0) { SYSerr(SYS_F_SETSOCKOPT, get_last_socket_error()); BIOerr(BIO_F_BIO_CONNECT, BIO_R_UNABLE_TO_KEEPALIVE); return 0; } } if (options & BIO_SOCK_NODELAY) { if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (const void *)&on, sizeof(on)) != 0) { SYSerr(SYS_F_SETSOCKOPT, get_last_socket_error()); BIOerr(BIO_F_BIO_CONNECT, BIO_R_UNABLE_TO_NODELAY); return 0; } } if (connect(sock, BIO_ADDR_sockaddr(addr), BIO_ADDR_sockaddr_size(addr)) == -1) { if (!BIO_sock_should_retry(-1)) { SYSerr(SYS_F_CONNECT, get_last_socket_error()); BIOerr(BIO_F_BIO_CONNECT, BIO_R_CONNECT_ERROR); } return 0; } return 1; } /*- * BIO_bind - bind socket to address * @sock: the socket to set * @addr: local address to bind to * @options: BIO socket options * * Binds to the address using the given socket and options. * * Options can be a combination of the following: * - BIO_SOCK_REUSEADDR: Try to reuse the address and port combination * for a recently closed port. * * When restarting the program it could be that the port is still in use. If * you set to BIO_SOCK_REUSEADDR option it will try to reuse the port anyway. * It's recommended that you use this. */ int BIO_bind(int sock, const BIO_ADDR *addr, int options) { # ifndef OPENSSL_SYS_WINDOWS int on = 1; # endif if (sock == -1) { BIOerr(BIO_F_BIO_BIND, BIO_R_INVALID_SOCKET); return 0; } # ifndef OPENSSL_SYS_WINDOWS /* * SO_REUSEADDR has different behavior on Windows than on * other operating systems, don't set it there. */ if (options & BIO_SOCK_REUSEADDR) { if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (const void *)&on, sizeof(on)) != 0) { SYSerr(SYS_F_SETSOCKOPT, get_last_socket_error()); BIOerr(BIO_F_BIO_BIND, BIO_R_UNABLE_TO_REUSEADDR); return 0; } } # endif if (bind(sock, BIO_ADDR_sockaddr(addr), BIO_ADDR_sockaddr_size(addr)) != 0) { SYSerr(SYS_F_BIND, get_last_socket_error()); BIOerr(BIO_F_BIO_BIND, BIO_R_UNABLE_TO_BIND_SOCKET); return 0; } return 1; } /*- * BIO_listen - Creates a listen socket * @sock: the socket to listen with * @addr: local address to bind to * @options: BIO socket options * * Binds to the address using the given socket and options, then * starts listening for incoming connections. * * Options can be a combination of the following: * - BIO_SOCK_KEEPALIVE: enable regularly sending keep-alive messages. * - BIO_SOCK_NONBLOCK: Make the socket non-blocking. * - BIO_SOCK_NODELAY: don't delay small messages. * - BIO_SOCK_REUSEADDR: Try to reuse the address and port combination * for a recently closed port. * - BIO_SOCK_V6_ONLY: When creating an IPv6 socket, make it listen only * for IPv6 addresses and not IPv4 addresses mapped to IPv6. * * It's recommended that you set up both an IPv6 and IPv4 listen socket, and * then check both for new clients that connect to it. You want to set up * the socket as non-blocking in that case since else it could hang. * * Not all operating systems support IPv4 addresses on an IPv6 socket, and for * others it's an option. If you pass the BIO_LISTEN_V6_ONLY it will try to * create the IPv6 sockets to only listen for IPv6 connection. * * It could be that the first BIO_listen() call will listen to all the IPv6 * and IPv4 addresses and that then trying to bind to the IPv4 address will * fail. We can't tell the difference between already listening ourself to * it and someone else listening to it when failing and errno is EADDRINUSE, so * it's recommended to not give an error in that case if the first call was * successful. * * When restarting the program it could be that the port is still in use. If * you set to BIO_SOCK_REUSEADDR option it will try to reuse the port anyway. * It's recommended that you use this. */ int BIO_listen(int sock, const BIO_ADDR *addr, int options) { int on = 1; int socktype; socklen_t socktype_len = sizeof(socktype); if (sock == -1) { BIOerr(BIO_F_BIO_LISTEN, BIO_R_INVALID_SOCKET); return 0; } if (getsockopt(sock, SOL_SOCKET, SO_TYPE, (void *)&socktype, &socktype_len) != 0 || socktype_len != sizeof(socktype)) { SYSerr(SYS_F_GETSOCKOPT, get_last_socket_error()); BIOerr(BIO_F_BIO_LISTEN, BIO_R_GETTING_SOCKTYPE); return 0; } if (!BIO_socket_nbio(sock, (options & BIO_SOCK_NONBLOCK) != 0)) return 0; if (options & BIO_SOCK_KEEPALIVE) { if (setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, (const void *)&on, sizeof(on)) != 0) { SYSerr(SYS_F_SETSOCKOPT, get_last_socket_error()); BIOerr(BIO_F_BIO_LISTEN, BIO_R_UNABLE_TO_KEEPALIVE); return 0; } } if (options & BIO_SOCK_NODELAY) { if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (const void *)&on, sizeof(on)) != 0) { SYSerr(SYS_F_SETSOCKOPT, get_last_socket_error()); BIOerr(BIO_F_BIO_LISTEN, BIO_R_UNABLE_TO_NODELAY); return 0; } } # ifdef IPV6_V6ONLY if (BIO_ADDR_family(addr) == AF_INET6) { /* * Note: Windows default of IPV6_V6ONLY is ON, and Linux is OFF. * Therefore we always have to use setsockopt here. */ on = options & BIO_SOCK_V6_ONLY ? 1 : 0; if (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (const void *)&on, sizeof(on)) != 0) { SYSerr(SYS_F_SETSOCKOPT, get_last_socket_error()); BIOerr(BIO_F_BIO_LISTEN, BIO_R_LISTEN_V6_ONLY); return 0; } } # endif if (!BIO_bind(sock, addr, options)) return 0; if (socktype != SOCK_DGRAM && listen(sock, MAX_LISTEN) == -1) { SYSerr(SYS_F_LISTEN, get_last_socket_error()); BIOerr(BIO_F_BIO_LISTEN, BIO_R_UNABLE_TO_LISTEN_SOCKET); return 0; } return 1; } /*- * BIO_accept_ex - Accept new incoming connections * @sock: the listening socket * @addr: the BIO_ADDR to store the peer address in * @options: BIO socket options, applied on the accepted socket. * */ int BIO_accept_ex(int accept_sock, BIO_ADDR *addr_, int options) { socklen_t len; int accepted_sock; BIO_ADDR locaddr; BIO_ADDR *addr = addr_ == NULL ? &locaddr : addr_; len = sizeof(*addr); accepted_sock = accept(accept_sock, BIO_ADDR_sockaddr_noconst(addr), &len); if (accepted_sock == -1) { if (!BIO_sock_should_retry(accepted_sock)) { SYSerr(SYS_F_ACCEPT, get_last_socket_error()); BIOerr(BIO_F_BIO_ACCEPT_EX, BIO_R_ACCEPT_ERROR); } return INVALID_SOCKET; } if (!BIO_socket_nbio(accepted_sock, (options & BIO_SOCK_NONBLOCK) != 0)) { closesocket(accepted_sock); return INVALID_SOCKET; } return accepted_sock; } /*- * BIO_closesocket - Close a socket * @sock: the socket to close */ int BIO_closesocket(int sock) { if (closesocket(sock) < 0) return 0; return 1; } #endif openssl-1.1.1f/crypto/bio/bf_buff.c000066400000000000000000000305051364063235100171770ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" static int buffer_write(BIO *h, const char *buf, int num); static int buffer_read(BIO *h, char *buf, int size); static int buffer_puts(BIO *h, const char *str); static int buffer_gets(BIO *h, char *str, int size); static long buffer_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int buffer_new(BIO *h); static int buffer_free(BIO *data); static long buffer_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); #define DEFAULT_BUFFER_SIZE 4096 static const BIO_METHOD methods_buffer = { BIO_TYPE_BUFFER, "buffer", /* TODO: Convert to new style write function */ bwrite_conv, buffer_write, /* TODO: Convert to new style read function */ bread_conv, buffer_read, buffer_puts, buffer_gets, buffer_ctrl, buffer_new, buffer_free, buffer_callback_ctrl, }; const BIO_METHOD *BIO_f_buffer(void) { return &methods_buffer; } static int buffer_new(BIO *bi) { BIO_F_BUFFER_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) return 0; ctx->ibuf_size = DEFAULT_BUFFER_SIZE; ctx->ibuf = OPENSSL_malloc(DEFAULT_BUFFER_SIZE); if (ctx->ibuf == NULL) { OPENSSL_free(ctx); return 0; } ctx->obuf_size = DEFAULT_BUFFER_SIZE; ctx->obuf = OPENSSL_malloc(DEFAULT_BUFFER_SIZE); if (ctx->obuf == NULL) { OPENSSL_free(ctx->ibuf); OPENSSL_free(ctx); return 0; } bi->init = 1; bi->ptr = (char *)ctx; bi->flags = 0; return 1; } static int buffer_free(BIO *a) { BIO_F_BUFFER_CTX *b; if (a == NULL) return 0; b = (BIO_F_BUFFER_CTX *)a->ptr; OPENSSL_free(b->ibuf); OPENSSL_free(b->obuf); OPENSSL_free(a->ptr); a->ptr = NULL; a->init = 0; a->flags = 0; return 1; } static int buffer_read(BIO *b, char *out, int outl) { int i, num = 0; BIO_F_BUFFER_CTX *ctx; if (out == NULL) return 0; ctx = (BIO_F_BUFFER_CTX *)b->ptr; if ((ctx == NULL) || (b->next_bio == NULL)) return 0; num = 0; BIO_clear_retry_flags(b); start: i = ctx->ibuf_len; /* If there is stuff left over, grab it */ if (i != 0) { if (i > outl) i = outl; memcpy(out, &(ctx->ibuf[ctx->ibuf_off]), i); ctx->ibuf_off += i; ctx->ibuf_len -= i; num += i; if (outl == i) return num; outl -= i; out += i; } /* * We may have done a partial read. try to do more. We have nothing in * the buffer. If we get an error and have read some data, just return it * and let them retry to get the error again. copy direct to parent * address space */ if (outl > ctx->ibuf_size) { for (;;) { i = BIO_read(b->next_bio, out, outl); if (i <= 0) { BIO_copy_next_retry(b); if (i < 0) return ((num > 0) ? num : i); if (i == 0) return num; } num += i; if (outl == i) return num; out += i; outl -= i; } } /* else */ /* we are going to be doing some buffering */ i = BIO_read(b->next_bio, ctx->ibuf, ctx->ibuf_size); if (i <= 0) { BIO_copy_next_retry(b); if (i < 0) return ((num > 0) ? num : i); if (i == 0) return num; } ctx->ibuf_off = 0; ctx->ibuf_len = i; /* Lets re-read using ourselves :-) */ goto start; } static int buffer_write(BIO *b, const char *in, int inl) { int i, num = 0; BIO_F_BUFFER_CTX *ctx; if ((in == NULL) || (inl <= 0)) return 0; ctx = (BIO_F_BUFFER_CTX *)b->ptr; if ((ctx == NULL) || (b->next_bio == NULL)) return 0; BIO_clear_retry_flags(b); start: i = ctx->obuf_size - (ctx->obuf_len + ctx->obuf_off); /* add to buffer and return */ if (i >= inl) { memcpy(&(ctx->obuf[ctx->obuf_off + ctx->obuf_len]), in, inl); ctx->obuf_len += inl; return (num + inl); } /* else */ /* stuff already in buffer, so add to it first, then flush */ if (ctx->obuf_len != 0) { if (i > 0) { /* lets fill it up if we can */ memcpy(&(ctx->obuf[ctx->obuf_off + ctx->obuf_len]), in, i); in += i; inl -= i; num += i; ctx->obuf_len += i; } /* we now have a full buffer needing flushing */ for (;;) { i = BIO_write(b->next_bio, &(ctx->obuf[ctx->obuf_off]), ctx->obuf_len); if (i <= 0) { BIO_copy_next_retry(b); if (i < 0) return ((num > 0) ? num : i); if (i == 0) return num; } ctx->obuf_off += i; ctx->obuf_len -= i; if (ctx->obuf_len == 0) break; } } /* * we only get here if the buffer has been flushed and we still have * stuff to write */ ctx->obuf_off = 0; /* we now have inl bytes to write */ while (inl >= ctx->obuf_size) { i = BIO_write(b->next_bio, in, inl); if (i <= 0) { BIO_copy_next_retry(b); if (i < 0) return ((num > 0) ? num : i); if (i == 0) return num; } num += i; in += i; inl -= i; if (inl == 0) return num; } /* * copy the rest into the buffer since we have only a small amount left */ goto start; } static long buffer_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO *dbio; BIO_F_BUFFER_CTX *ctx; long ret = 1; char *p1, *p2; int r, i, *ip; int ibs, obs; ctx = (BIO_F_BUFFER_CTX *)b->ptr; switch (cmd) { case BIO_CTRL_RESET: ctx->ibuf_off = 0; ctx->ibuf_len = 0; ctx->obuf_off = 0; ctx->obuf_len = 0; if (b->next_bio == NULL) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; case BIO_CTRL_EOF: if (ctx->ibuf_len > 0) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; case BIO_CTRL_INFO: ret = (long)ctx->obuf_len; break; case BIO_C_GET_BUFF_NUM_LINES: ret = 0; p1 = ctx->ibuf; for (i = 0; i < ctx->ibuf_len; i++) { if (p1[ctx->ibuf_off + i] == '\n') ret++; } break; case BIO_CTRL_WPENDING: ret = (long)ctx->obuf_len; if (ret == 0) { if (b->next_bio == NULL) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); } break; case BIO_CTRL_PENDING: ret = (long)ctx->ibuf_len; if (ret == 0) { if (b->next_bio == NULL) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); } break; case BIO_C_SET_BUFF_READ_DATA: if (num > ctx->ibuf_size) { p1 = OPENSSL_malloc((int)num); if (p1 == NULL) goto malloc_error; OPENSSL_free(ctx->ibuf); ctx->ibuf = p1; } ctx->ibuf_off = 0; ctx->ibuf_len = (int)num; memcpy(ctx->ibuf, ptr, (int)num); ret = 1; break; case BIO_C_SET_BUFF_SIZE: if (ptr != NULL) { ip = (int *)ptr; if (*ip == 0) { ibs = (int)num; obs = ctx->obuf_size; } else { /* if (*ip == 1) */ ibs = ctx->ibuf_size; obs = (int)num; } } else { ibs = (int)num; obs = (int)num; } p1 = ctx->ibuf; p2 = ctx->obuf; if ((ibs > DEFAULT_BUFFER_SIZE) && (ibs != ctx->ibuf_size)) { p1 = OPENSSL_malloc((int)num); if (p1 == NULL) goto malloc_error; } if ((obs > DEFAULT_BUFFER_SIZE) && (obs != ctx->obuf_size)) { p2 = OPENSSL_malloc((int)num); if (p2 == NULL) { if (p1 != ctx->ibuf) OPENSSL_free(p1); goto malloc_error; } } if (ctx->ibuf != p1) { OPENSSL_free(ctx->ibuf); ctx->ibuf = p1; ctx->ibuf_off = 0; ctx->ibuf_len = 0; ctx->ibuf_size = ibs; } if (ctx->obuf != p2) { OPENSSL_free(ctx->obuf); ctx->obuf = p2; ctx->obuf_off = 0; ctx->obuf_len = 0; ctx->obuf_size = obs; } break; case BIO_C_DO_STATE_MACHINE: if (b->next_bio == NULL) return 0; BIO_clear_retry_flags(b); ret = BIO_ctrl(b->next_bio, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_FLUSH: if (b->next_bio == NULL) return 0; if (ctx->obuf_len <= 0) { ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; } for (;;) { BIO_clear_retry_flags(b); if (ctx->obuf_len > 0) { r = BIO_write(b->next_bio, &(ctx->obuf[ctx->obuf_off]), ctx->obuf_len); BIO_copy_next_retry(b); if (r <= 0) return (long)r; ctx->obuf_off += r; ctx->obuf_len -= r; } else { ctx->obuf_len = 0; ctx->obuf_off = 0; break; } } ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; case BIO_CTRL_DUP: dbio = (BIO *)ptr; if (!BIO_set_read_buffer_size(dbio, ctx->ibuf_size) || !BIO_set_write_buffer_size(dbio, ctx->obuf_size)) ret = 0; break; case BIO_CTRL_PEEK: /* Ensure there's stuff in the input buffer */ { char fake_buf[1]; (void)buffer_read(b, fake_buf, 0); } if (num > ctx->ibuf_len) num = ctx->ibuf_len; memcpy(ptr, &(ctx->ibuf[ctx->ibuf_off]), num); ret = num; break; default: if (b->next_bio == NULL) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; } return ret; malloc_error: BIOerr(BIO_F_BUFFER_CTRL, ERR_R_MALLOC_FAILURE); return 0; } static long buffer_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; if (b->next_bio == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(b->next_bio, cmd, fp); break; } return ret; } static int buffer_gets(BIO *b, char *buf, int size) { BIO_F_BUFFER_CTX *ctx; int num = 0, i, flag; char *p; ctx = (BIO_F_BUFFER_CTX *)b->ptr; size--; /* reserve space for a '\0' */ BIO_clear_retry_flags(b); for (;;) { if (ctx->ibuf_len > 0) { p = &(ctx->ibuf[ctx->ibuf_off]); flag = 0; for (i = 0; (i < ctx->ibuf_len) && (i < size); i++) { *(buf++) = p[i]; if (p[i] == '\n') { flag = 1; i++; break; } } num += i; size -= i; ctx->ibuf_len -= i; ctx->ibuf_off += i; if (flag || size == 0) { *buf = '\0'; return num; } } else { /* read another chunk */ i = BIO_read(b->next_bio, ctx->ibuf, ctx->ibuf_size); if (i <= 0) { BIO_copy_next_retry(b); *buf = '\0'; if (i < 0) return ((num > 0) ? num : i); if (i == 0) return num; } ctx->ibuf_len = i; ctx->ibuf_off = 0; } } } static int buffer_puts(BIO *b, const char *str) { return buffer_write(b, str, strlen(str)); } openssl-1.1.1f/crypto/bio/bf_lbuf.c000066400000000000000000000212601364063235100172030ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" #include static int linebuffer_write(BIO *h, const char *buf, int num); static int linebuffer_read(BIO *h, char *buf, int size); static int linebuffer_puts(BIO *h, const char *str); static int linebuffer_gets(BIO *h, char *str, int size); static long linebuffer_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int linebuffer_new(BIO *h); static int linebuffer_free(BIO *data); static long linebuffer_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); /* A 10k maximum should be enough for most purposes */ #define DEFAULT_LINEBUFFER_SIZE 1024*10 /* #define DEBUG */ static const BIO_METHOD methods_linebuffer = { BIO_TYPE_LINEBUFFER, "linebuffer", /* TODO: Convert to new style write function */ bwrite_conv, linebuffer_write, /* TODO: Convert to new style read function */ bread_conv, linebuffer_read, linebuffer_puts, linebuffer_gets, linebuffer_ctrl, linebuffer_new, linebuffer_free, linebuffer_callback_ctrl, }; const BIO_METHOD *BIO_f_linebuffer(void) { return &methods_linebuffer; } typedef struct bio_linebuffer_ctx_struct { char *obuf; /* the output char array */ int obuf_size; /* how big is the output buffer */ int obuf_len; /* how many bytes are in it */ } BIO_LINEBUFFER_CTX; static int linebuffer_new(BIO *bi) { BIO_LINEBUFFER_CTX *ctx; if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL) { BIOerr(BIO_F_LINEBUFFER_NEW, ERR_R_MALLOC_FAILURE); return 0; } ctx->obuf = OPENSSL_malloc(DEFAULT_LINEBUFFER_SIZE); if (ctx->obuf == NULL) { BIOerr(BIO_F_LINEBUFFER_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ctx); return 0; } ctx->obuf_size = DEFAULT_LINEBUFFER_SIZE; ctx->obuf_len = 0; bi->init = 1; bi->ptr = (char *)ctx; bi->flags = 0; return 1; } static int linebuffer_free(BIO *a) { BIO_LINEBUFFER_CTX *b; if (a == NULL) return 0; b = (BIO_LINEBUFFER_CTX *)a->ptr; OPENSSL_free(b->obuf); OPENSSL_free(a->ptr); a->ptr = NULL; a->init = 0; a->flags = 0; return 1; } static int linebuffer_read(BIO *b, char *out, int outl) { int ret = 0; if (out == NULL) return 0; if (b->next_bio == NULL) return 0; ret = BIO_read(b->next_bio, out, outl); BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return ret; } static int linebuffer_write(BIO *b, const char *in, int inl) { int i, num = 0, foundnl; BIO_LINEBUFFER_CTX *ctx; if ((in == NULL) || (inl <= 0)) return 0; ctx = (BIO_LINEBUFFER_CTX *)b->ptr; if ((ctx == NULL) || (b->next_bio == NULL)) return 0; BIO_clear_retry_flags(b); do { const char *p; char c; for (p = in, c = '\0'; p < in + inl && (c = *p) != '\n'; p++) ; if (c == '\n') { p++; foundnl = 1; } else foundnl = 0; /* * If a NL was found and we already have text in the save buffer, * concatenate them and write */ while ((foundnl || p - in > ctx->obuf_size - ctx->obuf_len) && ctx->obuf_len > 0) { int orig_olen = ctx->obuf_len; i = ctx->obuf_size - ctx->obuf_len; if (p - in > 0) { if (i >= p - in) { memcpy(&(ctx->obuf[ctx->obuf_len]), in, p - in); ctx->obuf_len += p - in; inl -= p - in; num += p - in; in = p; } else { memcpy(&(ctx->obuf[ctx->obuf_len]), in, i); ctx->obuf_len += i; inl -= i; in += i; num += i; } } i = BIO_write(b->next_bio, ctx->obuf, ctx->obuf_len); if (i <= 0) { ctx->obuf_len = orig_olen; BIO_copy_next_retry(b); if (i < 0) return ((num > 0) ? num : i); if (i == 0) return num; } if (i < ctx->obuf_len) memmove(ctx->obuf, ctx->obuf + i, ctx->obuf_len - i); ctx->obuf_len -= i; } /* * Now that the save buffer is emptied, let's write the input buffer * if a NL was found and there is anything to write. */ if ((foundnl || p - in > ctx->obuf_size) && p - in > 0) { i = BIO_write(b->next_bio, in, p - in); if (i <= 0) { BIO_copy_next_retry(b); if (i < 0) return ((num > 0) ? num : i); if (i == 0) return num; } num += i; in += i; inl -= i; } } while (foundnl && inl > 0); /* * We've written as much as we can. The rest of the input buffer, if * any, is text that doesn't and with a NL and therefore needs to be * saved for the next trip. */ if (inl > 0) { memcpy(&(ctx->obuf[ctx->obuf_len]), in, inl); ctx->obuf_len += inl; num += inl; } return num; } static long linebuffer_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO *dbio; BIO_LINEBUFFER_CTX *ctx; long ret = 1; char *p; int r; int obs; ctx = (BIO_LINEBUFFER_CTX *)b->ptr; switch (cmd) { case BIO_CTRL_RESET: ctx->obuf_len = 0; if (b->next_bio == NULL) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; case BIO_CTRL_INFO: ret = (long)ctx->obuf_len; break; case BIO_CTRL_WPENDING: ret = (long)ctx->obuf_len; if (ret == 0) { if (b->next_bio == NULL) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); } break; case BIO_C_SET_BUFF_SIZE: obs = (int)num; p = ctx->obuf; if ((obs > DEFAULT_LINEBUFFER_SIZE) && (obs != ctx->obuf_size)) { p = OPENSSL_malloc((int)num); if (p == NULL) goto malloc_error; } if (ctx->obuf != p) { if (ctx->obuf_len > obs) { ctx->obuf_len = obs; } memcpy(p, ctx->obuf, ctx->obuf_len); OPENSSL_free(ctx->obuf); ctx->obuf = p; ctx->obuf_size = obs; } break; case BIO_C_DO_STATE_MACHINE: if (b->next_bio == NULL) return 0; BIO_clear_retry_flags(b); ret = BIO_ctrl(b->next_bio, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_FLUSH: if (b->next_bio == NULL) return 0; if (ctx->obuf_len <= 0) { ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; } for (;;) { BIO_clear_retry_flags(b); if (ctx->obuf_len > 0) { r = BIO_write(b->next_bio, ctx->obuf, ctx->obuf_len); BIO_copy_next_retry(b); if (r <= 0) return (long)r; if (r < ctx->obuf_len) memmove(ctx->obuf, ctx->obuf + r, ctx->obuf_len - r); ctx->obuf_len -= r; } else { ctx->obuf_len = 0; break; } } ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; case BIO_CTRL_DUP: dbio = (BIO *)ptr; if (!BIO_set_write_buffer_size(dbio, ctx->obuf_size)) ret = 0; break; default: if (b->next_bio == NULL) return 0; ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; } return ret; malloc_error: BIOerr(BIO_F_LINEBUFFER_CTRL, ERR_R_MALLOC_FAILURE); return 0; } static long linebuffer_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; if (b->next_bio == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(b->next_bio, cmd, fp); break; } return ret; } static int linebuffer_gets(BIO *b, char *buf, int size) { if (b->next_bio == NULL) return 0; return BIO_gets(b->next_bio, buf, size); } static int linebuffer_puts(BIO *b, const char *str) { return linebuffer_write(b, str, strlen(str)); } openssl-1.1.1f/crypto/bio/bf_nbio.c000066400000000000000000000103071364063235100172020ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" #include /* * BIO_put and BIO_get both add to the digest, BIO_gets returns the digest */ static int nbiof_write(BIO *h, const char *buf, int num); static int nbiof_read(BIO *h, char *buf, int size); static int nbiof_puts(BIO *h, const char *str); static int nbiof_gets(BIO *h, char *str, int size); static long nbiof_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int nbiof_new(BIO *h); static int nbiof_free(BIO *data); static long nbiof_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); typedef struct nbio_test_st { /* only set if we sent a 'should retry' error */ int lrn; int lwn; } NBIO_TEST; static const BIO_METHOD methods_nbiof = { BIO_TYPE_NBIO_TEST, "non-blocking IO test filter", /* TODO: Convert to new style write function */ bwrite_conv, nbiof_write, /* TODO: Convert to new style read function */ bread_conv, nbiof_read, nbiof_puts, nbiof_gets, nbiof_ctrl, nbiof_new, nbiof_free, nbiof_callback_ctrl, }; const BIO_METHOD *BIO_f_nbio_test(void) { return &methods_nbiof; } static int nbiof_new(BIO *bi) { NBIO_TEST *nt; if ((nt = OPENSSL_zalloc(sizeof(*nt))) == NULL) { BIOerr(BIO_F_NBIOF_NEW, ERR_R_MALLOC_FAILURE); return 0; } nt->lrn = -1; nt->lwn = -1; bi->ptr = (char *)nt; bi->init = 1; return 1; } static int nbiof_free(BIO *a) { if (a == NULL) return 0; OPENSSL_free(a->ptr); a->ptr = NULL; a->init = 0; a->flags = 0; return 1; } static int nbiof_read(BIO *b, char *out, int outl) { int ret = 0; int num; unsigned char n; if (out == NULL) return 0; if (b->next_bio == NULL) return 0; BIO_clear_retry_flags(b); if (RAND_priv_bytes(&n, 1) <= 0) return -1; num = (n & 0x07); if (outl > num) outl = num; if (num == 0) { ret = -1; BIO_set_retry_read(b); } else { ret = BIO_read(b->next_bio, out, outl); if (ret < 0) BIO_copy_next_retry(b); } return ret; } static int nbiof_write(BIO *b, const char *in, int inl) { NBIO_TEST *nt; int ret = 0; int num; unsigned char n; if ((in == NULL) || (inl <= 0)) return 0; if (b->next_bio == NULL) return 0; nt = (NBIO_TEST *)b->ptr; BIO_clear_retry_flags(b); if (nt->lwn > 0) { num = nt->lwn; nt->lwn = 0; } else { if (RAND_priv_bytes(&n, 1) <= 0) return -1; num = (n & 7); } if (inl > num) inl = num; if (num == 0) { ret = -1; BIO_set_retry_write(b); } else { ret = BIO_write(b->next_bio, in, inl); if (ret < 0) { BIO_copy_next_retry(b); nt->lwn = inl; } } return ret; } static long nbiof_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret; if (b->next_bio == NULL) return 0; switch (cmd) { case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(b->next_bio, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_DUP: ret = 0L; break; default: ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; } return ret; } static long nbiof_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; if (b->next_bio == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(b->next_bio, cmd, fp); break; } return ret; } static int nbiof_gets(BIO *bp, char *buf, int size) { if (bp->next_bio == NULL) return 0; return BIO_gets(bp->next_bio, buf, size); } static int nbiof_puts(BIO *bp, const char *str) { if (bp->next_bio == NULL) return 0; return BIO_puts(bp->next_bio, str); } openssl-1.1.1f/crypto/bio/bf_null.c000066400000000000000000000054461364063235100172350ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" /* * BIO_put and BIO_get both add to the digest, BIO_gets returns the digest */ static int nullf_write(BIO *h, const char *buf, int num); static int nullf_read(BIO *h, char *buf, int size); static int nullf_puts(BIO *h, const char *str); static int nullf_gets(BIO *h, char *str, int size); static long nullf_ctrl(BIO *h, int cmd, long arg1, void *arg2); static long nullf_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); static const BIO_METHOD methods_nullf = { BIO_TYPE_NULL_FILTER, "NULL filter", /* TODO: Convert to new style write function */ bwrite_conv, nullf_write, /* TODO: Convert to new style read function */ bread_conv, nullf_read, nullf_puts, nullf_gets, nullf_ctrl, NULL, NULL, nullf_callback_ctrl, }; const BIO_METHOD *BIO_f_null(void) { return &methods_nullf; } static int nullf_read(BIO *b, char *out, int outl) { int ret = 0; if (out == NULL) return 0; if (b->next_bio == NULL) return 0; ret = BIO_read(b->next_bio, out, outl); BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return ret; } static int nullf_write(BIO *b, const char *in, int inl) { int ret = 0; if ((in == NULL) || (inl <= 0)) return 0; if (b->next_bio == NULL) return 0; ret = BIO_write(b->next_bio, in, inl); BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return ret; } static long nullf_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret; if (b->next_bio == NULL) return 0; switch (cmd) { case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(b->next_bio, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_DUP: ret = 0L; break; default: ret = BIO_ctrl(b->next_bio, cmd, num, ptr); } return ret; } static long nullf_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; if (b->next_bio == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(b->next_bio, cmd, fp); break; } return ret; } static int nullf_gets(BIO *bp, char *buf, int size) { if (bp->next_bio == NULL) return 0; return BIO_gets(bp->next_bio, buf, size); } static int nullf_puts(BIO *bp, const char *str) { if (bp->next_bio == NULL) return 0; return BIO_puts(bp->next_bio, str); } openssl-1.1.1f/crypto/bio/bio_cb.c000066400000000000000000000060601364063235100170220ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "bio_local.h" #include "internal/cryptlib.h" #include long BIO_debug_callback(BIO *bio, int cmd, const char *argp, int argi, long argl, long ret) { BIO *b; char buf[256]; char *p; long r = 1; int len, left; if (BIO_CB_RETURN & cmd) r = ret; len = BIO_snprintf(buf, sizeof(buf), "BIO[%p]: ", (void *)bio); /* Ignore errors and continue printing the other information. */ if (len < 0) len = 0; p = buf + len; left = sizeof(buf) - len; switch (cmd) { case BIO_CB_FREE: BIO_snprintf(p, left, "Free - %s\n", bio->method->name); break; case BIO_CB_READ: if (bio->method->type & BIO_TYPE_DESCRIPTOR) BIO_snprintf(p, left, "read(%d,%lu) - %s fd=%d\n", bio->num, (unsigned long)argi, bio->method->name, bio->num); else BIO_snprintf(p, left, "read(%d,%lu) - %s\n", bio->num, (unsigned long)argi, bio->method->name); break; case BIO_CB_WRITE: if (bio->method->type & BIO_TYPE_DESCRIPTOR) BIO_snprintf(p, left, "write(%d,%lu) - %s fd=%d\n", bio->num, (unsigned long)argi, bio->method->name, bio->num); else BIO_snprintf(p, left, "write(%d,%lu) - %s\n", bio->num, (unsigned long)argi, bio->method->name); break; case BIO_CB_PUTS: BIO_snprintf(p, left, "puts() - %s\n", bio->method->name); break; case BIO_CB_GETS: BIO_snprintf(p, left, "gets(%lu) - %s\n", (unsigned long)argi, bio->method->name); break; case BIO_CB_CTRL: BIO_snprintf(p, left, "ctrl(%lu) - %s\n", (unsigned long)argi, bio->method->name); break; case BIO_CB_RETURN | BIO_CB_READ: BIO_snprintf(p, left, "read return %ld\n", ret); break; case BIO_CB_RETURN | BIO_CB_WRITE: BIO_snprintf(p, left, "write return %ld\n", ret); break; case BIO_CB_RETURN | BIO_CB_GETS: BIO_snprintf(p, left, "gets return %ld\n", ret); break; case BIO_CB_RETURN | BIO_CB_PUTS: BIO_snprintf(p, left, "puts return %ld\n", ret); break; case BIO_CB_RETURN | BIO_CB_CTRL: BIO_snprintf(p, left, "ctrl return %ld\n", ret); break; default: BIO_snprintf(p, left, "bio callback - unknown type (%d)\n", cmd); break; } b = (BIO *)bio->cb_arg; if (b != NULL) BIO_write(b, buf, strlen(buf)); #if !defined(OPENSSL_NO_STDIO) else fputs(buf, stderr); #endif return r; } openssl-1.1.1f/crypto/bio/bio_err.c000066400000000000000000000170771364063235100172400ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA BIO_str_functs[] = { {ERR_PACK(ERR_LIB_BIO, BIO_F_ACPT_STATE, 0), "acpt_state"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_ADDRINFO_WRAP, 0), "addrinfo_wrap"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_ADDR_STRINGS, 0), "addr_strings"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_ACCEPT, 0), "BIO_accept"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_ACCEPT_EX, 0), "BIO_accept_ex"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_ACCEPT_NEW, 0), "BIO_ACCEPT_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_ADDR_NEW, 0), "BIO_ADDR_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_BIND, 0), "BIO_bind"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_CALLBACK_CTRL, 0), "BIO_callback_ctrl"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_CONNECT, 0), "BIO_connect"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_CONNECT_NEW, 0), "BIO_CONNECT_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_CTRL, 0), "BIO_ctrl"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_GETS, 0), "BIO_gets"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_GET_HOST_IP, 0), "BIO_get_host_ip"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_GET_NEW_INDEX, 0), "BIO_get_new_index"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_GET_PORT, 0), "BIO_get_port"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_LISTEN, 0), "BIO_listen"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_LOOKUP, 0), "BIO_lookup"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_LOOKUP_EX, 0), "BIO_lookup_ex"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_MAKE_PAIR, 0), "bio_make_pair"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_METH_NEW, 0), "BIO_meth_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NEW, 0), "BIO_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NEW_DGRAM_SCTP, 0), "BIO_new_dgram_sctp"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NEW_FILE, 0), "BIO_new_file"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NEW_MEM_BUF, 0), "BIO_new_mem_buf"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NREAD, 0), "BIO_nread"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NREAD0, 0), "BIO_nread0"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NWRITE, 0), "BIO_nwrite"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_NWRITE0, 0), "BIO_nwrite0"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_PARSE_HOSTSERV, 0), "BIO_parse_hostserv"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_PUTS, 0), "BIO_puts"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_READ, 0), "BIO_read"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_READ_EX, 0), "BIO_read_ex"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_READ_INTERN, 0), "bio_read_intern"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_SOCKET, 0), "BIO_socket"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_SOCKET_NBIO, 0), "BIO_socket_nbio"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_SOCK_INFO, 0), "BIO_sock_info"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_SOCK_INIT, 0), "BIO_sock_init"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_WRITE, 0), "BIO_write"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_WRITE_EX, 0), "BIO_write_ex"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BIO_WRITE_INTERN, 0), "bio_write_intern"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_BUFFER_CTRL, 0), "buffer_ctrl"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_CONN_CTRL, 0), "conn_ctrl"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_CONN_STATE, 0), "conn_state"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_DGRAM_SCTP_NEW, 0), "dgram_sctp_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_DGRAM_SCTP_READ, 0), "dgram_sctp_read"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_DGRAM_SCTP_WRITE, 0), "dgram_sctp_write"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_DOAPR_OUTCH, 0), "doapr_outch"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_FILE_CTRL, 0), "file_ctrl"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_FILE_READ, 0), "file_read"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_LINEBUFFER_CTRL, 0), "linebuffer_ctrl"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_LINEBUFFER_NEW, 0), "linebuffer_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_MEM_WRITE, 0), "mem_write"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_NBIOF_NEW, 0), "nbiof_new"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_SLG_WRITE, 0), "slg_write"}, {ERR_PACK(ERR_LIB_BIO, BIO_F_SSL_NEW, 0), "SSL_new"}, {0, NULL} }; static const ERR_STRING_DATA BIO_str_reasons[] = { {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_ACCEPT_ERROR), "accept error"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_ADDRINFO_ADDR_IS_NOT_AF_INET), "addrinfo addr is not af inet"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_AMBIGUOUS_HOST_OR_SERVICE), "ambiguous host or service"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_BAD_FOPEN_MODE), "bad fopen mode"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_BROKEN_PIPE), "broken pipe"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_CONNECT_ERROR), "connect error"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_GETHOSTBYNAME_ADDR_IS_NOT_AF_INET), "gethostbyname addr is not af inet"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_GETSOCKNAME_ERROR), "getsockname error"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_GETSOCKNAME_TRUNCATED_ADDRESS), "getsockname truncated address"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_GETTING_SOCKTYPE), "getting socktype"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_INVALID_ARGUMENT), "invalid argument"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_INVALID_SOCKET), "invalid socket"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_IN_USE), "in use"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_LENGTH_TOO_LONG), "length too long"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_LISTEN_V6_ONLY), "listen v6 only"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_LOOKUP_RETURNED_NOTHING), "lookup returned nothing"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_MALFORMED_HOST_OR_SERVICE), "malformed host or service"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_NBIO_CONNECT_ERROR), "nbio connect error"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_NO_ACCEPT_ADDR_OR_SERVICE_SPECIFIED), "no accept addr or service specified"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_NO_HOSTNAME_OR_SERVICE_SPECIFIED), "no hostname or service specified"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_NO_PORT_DEFINED), "no port defined"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_NO_SUCH_FILE), "no such file"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_NULL_PARAMETER), "null parameter"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNABLE_TO_BIND_SOCKET), "unable to bind socket"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNABLE_TO_CREATE_SOCKET), "unable to create socket"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNABLE_TO_KEEPALIVE), "unable to keepalive"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNABLE_TO_LISTEN_SOCKET), "unable to listen socket"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNABLE_TO_NODELAY), "unable to nodelay"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNABLE_TO_REUSEADDR), "unable to reuseaddr"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNAVAILABLE_IP_FAMILY), "unavailable ip family"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNINITIALIZED), "uninitialized"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNKNOWN_INFO_TYPE), "unknown info type"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNSUPPORTED_IP_FAMILY), "unsupported ip family"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNSUPPORTED_METHOD), "unsupported method"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_UNSUPPORTED_PROTOCOL_FAMILY), "unsupported protocol family"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_WRITE_TO_READ_ONLY_BIO), "write to read only BIO"}, {ERR_PACK(ERR_LIB_BIO, 0, BIO_R_WSASTARTUP), "WSAStartup"}, {0, NULL} }; #endif int ERR_load_BIO_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(BIO_str_functs[0].error) == NULL) { ERR_load_strings_const(BIO_str_functs); ERR_load_strings_const(BIO_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/bio/bio_lib.c000066400000000000000000000415651364063235100172150ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "bio_local.h" #include "internal/cryptlib.h" /* * Helper macro for the callback to determine whether an operator expects a * len parameter or not */ #define HAS_LEN_OPER(o) ((o) == BIO_CB_READ || (o) == BIO_CB_WRITE || \ (o) == BIO_CB_GETS) /* * Helper function to work out whether to call the new style callback or the old * one, and translate between the two. * * This has a long return type for consistency with the old callback. Similarly * for the "long" used for "inret" */ static long bio_call_callback(BIO *b, int oper, const char *argp, size_t len, int argi, long argl, long inret, size_t *processed) { long ret; int bareoper; if (b->callback_ex != NULL) return b->callback_ex(b, oper, argp, len, argi, argl, inret, processed); /* Strip off any BIO_CB_RETURN flag */ bareoper = oper & ~BIO_CB_RETURN; /* * We have an old style callback, so we will have to do nasty casts and * check for overflows. */ if (HAS_LEN_OPER(bareoper)) { /* In this case |len| is set, and should be used instead of |argi| */ if (len > INT_MAX) return -1; argi = (int)len; } if (inret > 0 && (oper & BIO_CB_RETURN) && bareoper != BIO_CB_CTRL) { if (*processed > INT_MAX) return -1; inret = *processed; } ret = b->callback(b, oper, argp, argi, argl, inret); if (ret > 0 && (oper & BIO_CB_RETURN) && bareoper != BIO_CB_CTRL) { *processed = (size_t)ret; ret = 1; } return ret; } BIO *BIO_new(const BIO_METHOD *method) { BIO *bio = OPENSSL_zalloc(sizeof(*bio)); if (bio == NULL) { BIOerr(BIO_F_BIO_NEW, ERR_R_MALLOC_FAILURE); return NULL; } bio->method = method; bio->shutdown = 1; bio->references = 1; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_BIO, bio, &bio->ex_data)) goto err; bio->lock = CRYPTO_THREAD_lock_new(); if (bio->lock == NULL) { BIOerr(BIO_F_BIO_NEW, ERR_R_MALLOC_FAILURE); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_BIO, bio, &bio->ex_data); goto err; } if (method->create != NULL && !method->create(bio)) { BIOerr(BIO_F_BIO_NEW, ERR_R_INIT_FAIL); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_BIO, bio, &bio->ex_data); CRYPTO_THREAD_lock_free(bio->lock); goto err; } if (method->create == NULL) bio->init = 1; return bio; err: OPENSSL_free(bio); return NULL; } int BIO_free(BIO *a) { int ret; if (a == NULL) return 0; if (CRYPTO_DOWN_REF(&a->references, &ret, a->lock) <= 0) return 0; REF_PRINT_COUNT("BIO", a); if (ret > 0) return 1; REF_ASSERT_ISNT(ret < 0); if (a->callback != NULL || a->callback_ex != NULL) { ret = (int)bio_call_callback(a, BIO_CB_FREE, NULL, 0, 0, 0L, 1L, NULL); if (ret <= 0) return ret; } if ((a->method != NULL) && (a->method->destroy != NULL)) a->method->destroy(a); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_BIO, a, &a->ex_data); CRYPTO_THREAD_lock_free(a->lock); OPENSSL_free(a); return 1; } void BIO_set_data(BIO *a, void *ptr) { a->ptr = ptr; } void *BIO_get_data(BIO *a) { return a->ptr; } void BIO_set_init(BIO *a, int init) { a->init = init; } int BIO_get_init(BIO *a) { return a->init; } void BIO_set_shutdown(BIO *a, int shut) { a->shutdown = shut; } int BIO_get_shutdown(BIO *a) { return a->shutdown; } void BIO_vfree(BIO *a) { BIO_free(a); } int BIO_up_ref(BIO *a) { int i; if (CRYPTO_UP_REF(&a->references, &i, a->lock) <= 0) return 0; REF_PRINT_COUNT("BIO", a); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } void BIO_clear_flags(BIO *b, int flags) { b->flags &= ~flags; } int BIO_test_flags(const BIO *b, int flags) { return (b->flags & flags); } void BIO_set_flags(BIO *b, int flags) { b->flags |= flags; } BIO_callback_fn BIO_get_callback(const BIO *b) { return b->callback; } void BIO_set_callback(BIO *b, BIO_callback_fn cb) { b->callback = cb; } BIO_callback_fn_ex BIO_get_callback_ex(const BIO *b) { return b->callback_ex; } void BIO_set_callback_ex(BIO *b, BIO_callback_fn_ex cb) { b->callback_ex = cb; } void BIO_set_callback_arg(BIO *b, char *arg) { b->cb_arg = arg; } char *BIO_get_callback_arg(const BIO *b) { return b->cb_arg; } const char *BIO_method_name(const BIO *b) { return b->method->name; } int BIO_method_type(const BIO *b) { return b->method->type; } /* * This is essentially the same as BIO_read_ex() except that it allows * 0 or a negative value to indicate failure (retryable or not) in the return. * This is for compatibility with the old style BIO_read(), where existing code * may make assumptions about the return value that it might get. */ static int bio_read_intern(BIO *b, void *data, size_t dlen, size_t *readbytes) { int ret; if ((b == NULL) || (b->method == NULL) || (b->method->bread == NULL)) { BIOerr(BIO_F_BIO_READ_INTERN, BIO_R_UNSUPPORTED_METHOD); return -2; } if ((b->callback != NULL || b->callback_ex != NULL) && ((ret = (int)bio_call_callback(b, BIO_CB_READ, data, dlen, 0, 0L, 1L, NULL)) <= 0)) return ret; if (!b->init) { BIOerr(BIO_F_BIO_READ_INTERN, BIO_R_UNINITIALIZED); return -2; } ret = b->method->bread(b, data, dlen, readbytes); if (ret > 0) b->num_read += (uint64_t)*readbytes; if (b->callback != NULL || b->callback_ex != NULL) ret = (int)bio_call_callback(b, BIO_CB_READ | BIO_CB_RETURN, data, dlen, 0, 0L, ret, readbytes); /* Shouldn't happen */ if (ret > 0 && *readbytes > dlen) { BIOerr(BIO_F_BIO_READ_INTERN, ERR_R_INTERNAL_ERROR); return -1; } return ret; } int BIO_read(BIO *b, void *data, int dlen) { size_t readbytes; int ret; if (dlen < 0) return 0; ret = bio_read_intern(b, data, (size_t)dlen, &readbytes); if (ret > 0) { /* *readbytes should always be <= dlen */ ret = (int)readbytes; } return ret; } int BIO_read_ex(BIO *b, void *data, size_t dlen, size_t *readbytes) { int ret; ret = bio_read_intern(b, data, dlen, readbytes); if (ret > 0) ret = 1; else ret = 0; return ret; } static int bio_write_intern(BIO *b, const void *data, size_t dlen, size_t *written) { int ret; if (b == NULL) return 0; if ((b->method == NULL) || (b->method->bwrite == NULL)) { BIOerr(BIO_F_BIO_WRITE_INTERN, BIO_R_UNSUPPORTED_METHOD); return -2; } if ((b->callback != NULL || b->callback_ex != NULL) && ((ret = (int)bio_call_callback(b, BIO_CB_WRITE, data, dlen, 0, 0L, 1L, NULL)) <= 0)) return ret; if (!b->init) { BIOerr(BIO_F_BIO_WRITE_INTERN, BIO_R_UNINITIALIZED); return -2; } ret = b->method->bwrite(b, data, dlen, written); if (ret > 0) b->num_write += (uint64_t)*written; if (b->callback != NULL || b->callback_ex != NULL) ret = (int)bio_call_callback(b, BIO_CB_WRITE | BIO_CB_RETURN, data, dlen, 0, 0L, ret, written); return ret; } int BIO_write(BIO *b, const void *data, int dlen) { size_t written; int ret; if (dlen < 0) return 0; ret = bio_write_intern(b, data, (size_t)dlen, &written); if (ret > 0) { /* *written should always be <= dlen */ ret = (int)written; } return ret; } int BIO_write_ex(BIO *b, const void *data, size_t dlen, size_t *written) { int ret; ret = bio_write_intern(b, data, dlen, written); if (ret > 0) ret = 1; else ret = 0; return ret; } int BIO_puts(BIO *b, const char *buf) { int ret; size_t written = 0; if ((b == NULL) || (b->method == NULL) || (b->method->bputs == NULL)) { BIOerr(BIO_F_BIO_PUTS, BIO_R_UNSUPPORTED_METHOD); return -2; } if (b->callback != NULL || b->callback_ex != NULL) { ret = (int)bio_call_callback(b, BIO_CB_PUTS, buf, 0, 0, 0L, 1L, NULL); if (ret <= 0) return ret; } if (!b->init) { BIOerr(BIO_F_BIO_PUTS, BIO_R_UNINITIALIZED); return -2; } ret = b->method->bputs(b, buf); if (ret > 0) { b->num_write += (uint64_t)ret; written = ret; ret = 1; } if (b->callback != NULL || b->callback_ex != NULL) ret = (int)bio_call_callback(b, BIO_CB_PUTS | BIO_CB_RETURN, buf, 0, 0, 0L, ret, &written); if (ret > 0) { if (written > INT_MAX) { BIOerr(BIO_F_BIO_PUTS, BIO_R_LENGTH_TOO_LONG); ret = -1; } else { ret = (int)written; } } return ret; } int BIO_gets(BIO *b, char *buf, int size) { int ret; size_t readbytes = 0; if ((b == NULL) || (b->method == NULL) || (b->method->bgets == NULL)) { BIOerr(BIO_F_BIO_GETS, BIO_R_UNSUPPORTED_METHOD); return -2; } if (size < 0) { BIOerr(BIO_F_BIO_GETS, BIO_R_INVALID_ARGUMENT); return 0; } if (b->callback != NULL || b->callback_ex != NULL) { ret = (int)bio_call_callback(b, BIO_CB_GETS, buf, size, 0, 0L, 1, NULL); if (ret <= 0) return ret; } if (!b->init) { BIOerr(BIO_F_BIO_GETS, BIO_R_UNINITIALIZED); return -2; } ret = b->method->bgets(b, buf, size); if (ret > 0) { readbytes = ret; ret = 1; } if (b->callback != NULL || b->callback_ex != NULL) ret = (int)bio_call_callback(b, BIO_CB_GETS | BIO_CB_RETURN, buf, size, 0, 0L, ret, &readbytes); if (ret > 0) { /* Shouldn't happen */ if (readbytes > (size_t)size) ret = -1; else ret = (int)readbytes; } return ret; } int BIO_indent(BIO *b, int indent, int max) { if (indent < 0) indent = 0; if (indent > max) indent = max; while (indent--) if (BIO_puts(b, " ") != 1) return 0; return 1; } long BIO_int_ctrl(BIO *b, int cmd, long larg, int iarg) { int i; i = iarg; return BIO_ctrl(b, cmd, larg, (char *)&i); } void *BIO_ptr_ctrl(BIO *b, int cmd, long larg) { void *p = NULL; if (BIO_ctrl(b, cmd, larg, (char *)&p) <= 0) return NULL; else return p; } long BIO_ctrl(BIO *b, int cmd, long larg, void *parg) { long ret; if (b == NULL) return 0; if ((b->method == NULL) || (b->method->ctrl == NULL)) { BIOerr(BIO_F_BIO_CTRL, BIO_R_UNSUPPORTED_METHOD); return -2; } if (b->callback != NULL || b->callback_ex != NULL) { ret = bio_call_callback(b, BIO_CB_CTRL, parg, 0, cmd, larg, 1L, NULL); if (ret <= 0) return ret; } ret = b->method->ctrl(b, cmd, larg, parg); if (b->callback != NULL || b->callback_ex != NULL) ret = bio_call_callback(b, BIO_CB_CTRL | BIO_CB_RETURN, parg, 0, cmd, larg, ret, NULL); return ret; } long BIO_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret; if (b == NULL) return 0; if ((b->method == NULL) || (b->method->callback_ctrl == NULL) || (cmd != BIO_CTRL_SET_CALLBACK)) { BIOerr(BIO_F_BIO_CALLBACK_CTRL, BIO_R_UNSUPPORTED_METHOD); return -2; } if (b->callback != NULL || b->callback_ex != NULL) { ret = bio_call_callback(b, BIO_CB_CTRL, (void *)&fp, 0, cmd, 0, 1L, NULL); if (ret <= 0) return ret; } ret = b->method->callback_ctrl(b, cmd, fp); if (b->callback != NULL || b->callback_ex != NULL) ret = bio_call_callback(b, BIO_CB_CTRL | BIO_CB_RETURN, (void *)&fp, 0, cmd, 0, ret, NULL); return ret; } /* * It is unfortunate to duplicate in functions what the BIO_(w)pending macros * do; but those macros have inappropriate return type, and for interfacing * from other programming languages, C macros aren't much of a help anyway. */ size_t BIO_ctrl_pending(BIO *bio) { return BIO_ctrl(bio, BIO_CTRL_PENDING, 0, NULL); } size_t BIO_ctrl_wpending(BIO *bio) { return BIO_ctrl(bio, BIO_CTRL_WPENDING, 0, NULL); } /* put the 'bio' on the end of b's list of operators */ BIO *BIO_push(BIO *b, BIO *bio) { BIO *lb; if (b == NULL) return bio; lb = b; while (lb->next_bio != NULL) lb = lb->next_bio; lb->next_bio = bio; if (bio != NULL) bio->prev_bio = lb; /* called to do internal processing */ BIO_ctrl(b, BIO_CTRL_PUSH, 0, lb); return b; } /* Remove the first and return the rest */ BIO *BIO_pop(BIO *b) { BIO *ret; if (b == NULL) return NULL; ret = b->next_bio; BIO_ctrl(b, BIO_CTRL_POP, 0, b); if (b->prev_bio != NULL) b->prev_bio->next_bio = b->next_bio; if (b->next_bio != NULL) b->next_bio->prev_bio = b->prev_bio; b->next_bio = NULL; b->prev_bio = NULL; return ret; } BIO *BIO_get_retry_BIO(BIO *bio, int *reason) { BIO *b, *last; b = last = bio; for (;;) { if (!BIO_should_retry(b)) break; last = b; b = b->next_bio; if (b == NULL) break; } if (reason != NULL) *reason = last->retry_reason; return last; } int BIO_get_retry_reason(BIO *bio) { return bio->retry_reason; } void BIO_set_retry_reason(BIO *bio, int reason) { bio->retry_reason = reason; } BIO *BIO_find_type(BIO *bio, int type) { int mt, mask; if (bio == NULL) return NULL; mask = type & 0xff; do { if (bio->method != NULL) { mt = bio->method->type; if (!mask) { if (mt & type) return bio; } else if (mt == type) return bio; } bio = bio->next_bio; } while (bio != NULL); return NULL; } BIO *BIO_next(BIO *b) { if (b == NULL) return NULL; return b->next_bio; } void BIO_set_next(BIO *b, BIO *next) { b->next_bio = next; } void BIO_free_all(BIO *bio) { BIO *b; int ref; while (bio != NULL) { b = bio; ref = b->references; bio = bio->next_bio; BIO_free(b); /* Since ref count > 1, don't free anyone else. */ if (ref > 1) break; } } BIO *BIO_dup_chain(BIO *in) { BIO *ret = NULL, *eoc = NULL, *bio, *new_bio; for (bio = in; bio != NULL; bio = bio->next_bio) { if ((new_bio = BIO_new(bio->method)) == NULL) goto err; new_bio->callback = bio->callback; new_bio->callback_ex = bio->callback_ex; new_bio->cb_arg = bio->cb_arg; new_bio->init = bio->init; new_bio->shutdown = bio->shutdown; new_bio->flags = bio->flags; /* This will let SSL_s_sock() work with stdin/stdout */ new_bio->num = bio->num; if (!BIO_dup_state(bio, (char *)new_bio)) { BIO_free(new_bio); goto err; } /* copy app data */ if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_BIO, &new_bio->ex_data, &bio->ex_data)) { BIO_free(new_bio); goto err; } if (ret == NULL) { eoc = new_bio; ret = eoc; } else { BIO_push(eoc, new_bio); eoc = new_bio; } } return ret; err: BIO_free_all(ret); return NULL; } void BIO_copy_next_retry(BIO *b) { BIO_set_flags(b, BIO_get_retry_flags(b->next_bio)); b->retry_reason = b->next_bio->retry_reason; } int BIO_set_ex_data(BIO *bio, int idx, void *data) { return CRYPTO_set_ex_data(&(bio->ex_data), idx, data); } void *BIO_get_ex_data(BIO *bio, int idx) { return CRYPTO_get_ex_data(&(bio->ex_data), idx); } uint64_t BIO_number_read(BIO *bio) { if (bio) return bio->num_read; return 0; } uint64_t BIO_number_written(BIO *bio) { if (bio) return bio->num_write; return 0; } void bio_free_ex_data(BIO *bio) { CRYPTO_free_ex_data(CRYPTO_EX_INDEX_BIO, bio, &bio->ex_data); } void bio_cleanup(void) { #ifndef OPENSSL_NO_SOCK bio_sock_cleanup_int(); CRYPTO_THREAD_lock_free(bio_lookup_lock); bio_lookup_lock = NULL; #endif CRYPTO_THREAD_lock_free(bio_type_lock); bio_type_lock = NULL; } openssl-1.1.1f/crypto/bio/bio_local.h000066400000000000000000000130111364063235100175270ustar00rootroot00000000000000/* * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "internal/sockets.h" #include "internal/refcount.h" /* BEGIN BIO_ADDRINFO/BIO_ADDR stuff. */ #ifndef OPENSSL_NO_SOCK /* * Throughout this file and b_addr.c, the existence of the macro * AI_PASSIVE is used to detect the availability of struct addrinfo, * getnameinfo() and getaddrinfo(). If that macro doesn't exist, * we use our own implementation instead. */ /* * It's imperative that these macros get defined before openssl/bio.h gets * included. Otherwise, the AI_PASSIVE hack will not work properly. * For clarity, we check for internal/cryptlib.h since it's a common header * that also includes bio.h. */ # ifdef OSSL_INTERNAL_CRYPTLIB_H # error internal/cryptlib.h included before bio_local.h # endif # ifdef HEADER_BIO_H # error openssl/bio.h included before bio_local.h # endif /* * Undefine AF_UNIX on systems that define it but don't support it. */ # if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VMS) # undef AF_UNIX # endif # ifdef AI_PASSIVE /* * There's a bug in VMS C header file netdb.h, where struct addrinfo * always is the P32 variant, but the functions that handle that structure, * such as getaddrinfo() and freeaddrinfo() adapt to the initial pointer * size. The easiest workaround is to force struct addrinfo to be the * 64-bit variant when compiling in P64 mode. */ # if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE == 64 # define addrinfo __addrinfo64 # endif # define bio_addrinfo_st addrinfo # define bai_family ai_family # define bai_socktype ai_socktype # define bai_protocol ai_protocol # define bai_addrlen ai_addrlen # define bai_addr ai_addr # define bai_next ai_next # else struct bio_addrinfo_st { int bai_family; int bai_socktype; int bai_protocol; size_t bai_addrlen; struct sockaddr *bai_addr; struct bio_addrinfo_st *bai_next; }; # endif union bio_addr_st { struct sockaddr sa; # ifdef AF_INET6 struct sockaddr_in6 s_in6; # endif struct sockaddr_in s_in; # ifdef AF_UNIX struct sockaddr_un s_un; # endif }; #endif /* END BIO_ADDRINFO/BIO_ADDR stuff. */ #include "internal/cryptlib.h" #include "internal/bio.h" typedef struct bio_f_buffer_ctx_struct { /*- * Buffers are setup like this: * * <---------------------- size -----------------------> * +---------------------------------------------------+ * | consumed | remaining | free space | * +---------------------------------------------------+ * <-- off --><------- len -------> */ /*- BIO *bio; *//* * this is now in the BIO struct */ int ibuf_size; /* how big is the input buffer */ int obuf_size; /* how big is the output buffer */ char *ibuf; /* the char array */ int ibuf_len; /* how many bytes are in it */ int ibuf_off; /* write/read offset */ char *obuf; /* the char array */ int obuf_len; /* how many bytes are in it */ int obuf_off; /* write/read offset */ } BIO_F_BUFFER_CTX; struct bio_st { const BIO_METHOD *method; /* bio, mode, argp, argi, argl, ret */ BIO_callback_fn callback; BIO_callback_fn_ex callback_ex; char *cb_arg; /* first argument for the callback */ int init; int shutdown; int flags; /* extra storage */ int retry_reason; int num; void *ptr; struct bio_st *next_bio; /* used by filter BIOs */ struct bio_st *prev_bio; /* used by filter BIOs */ CRYPTO_REF_COUNT references; uint64_t num_read; uint64_t num_write; CRYPTO_EX_DATA ex_data; CRYPTO_RWLOCK *lock; }; #ifndef OPENSSL_NO_SOCK # ifdef OPENSSL_SYS_VMS typedef unsigned int socklen_t; # endif extern CRYPTO_RWLOCK *bio_lookup_lock; int BIO_ADDR_make(BIO_ADDR *ap, const struct sockaddr *sa); const struct sockaddr *BIO_ADDR_sockaddr(const BIO_ADDR *ap); struct sockaddr *BIO_ADDR_sockaddr_noconst(BIO_ADDR *ap); socklen_t BIO_ADDR_sockaddr_size(const BIO_ADDR *ap); socklen_t BIO_ADDRINFO_sockaddr_size(const BIO_ADDRINFO *bai); const struct sockaddr *BIO_ADDRINFO_sockaddr(const BIO_ADDRINFO *bai); #endif extern CRYPTO_RWLOCK *bio_type_lock; void bio_sock_cleanup_int(void); #if BIO_FLAGS_UPLINK==0 /* Shortcut UPLINK calls on most platforms... */ # define UP_stdin stdin # define UP_stdout stdout # define UP_stderr stderr # define UP_fprintf fprintf # define UP_fgets fgets # define UP_fread fread # define UP_fwrite fwrite # undef UP_fsetmod # define UP_feof feof # define UP_fclose fclose # define UP_fopen fopen # define UP_fseek fseek # define UP_ftell ftell # define UP_fflush fflush # define UP_ferror ferror # ifdef _WIN32 # define UP_fileno _fileno # define UP_open _open # define UP_read _read # define UP_write _write # define UP_lseek _lseek # define UP_close _close # else # define UP_fileno fileno # define UP_open open # define UP_read read # define UP_write write # define UP_lseek lseek # define UP_close close # endif #endif openssl-1.1.1f/crypto/bio/bio_meth.c000066400000000000000000000115101364063235100173670ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "bio_local.h" #include "internal/thread_once.h" CRYPTO_RWLOCK *bio_type_lock = NULL; static CRYPTO_ONCE bio_type_init = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(do_bio_type_init) { bio_type_lock = CRYPTO_THREAD_lock_new(); return bio_type_lock != NULL; } int BIO_get_new_index(void) { static CRYPTO_REF_COUNT bio_count = BIO_TYPE_START; int newval; if (!RUN_ONCE(&bio_type_init, do_bio_type_init)) { BIOerr(BIO_F_BIO_GET_NEW_INDEX, ERR_R_MALLOC_FAILURE); return -1; } if (!CRYPTO_UP_REF(&bio_count, &newval, bio_type_lock)) return -1; return newval; } BIO_METHOD *BIO_meth_new(int type, const char *name) { BIO_METHOD *biom = OPENSSL_zalloc(sizeof(BIO_METHOD)); if (biom == NULL || (biom->name = OPENSSL_strdup(name)) == NULL) { OPENSSL_free(biom); BIOerr(BIO_F_BIO_METH_NEW, ERR_R_MALLOC_FAILURE); return NULL; } biom->type = type; return biom; } void BIO_meth_free(BIO_METHOD *biom) { if (biom != NULL) { OPENSSL_free(biom->name); OPENSSL_free(biom); } } int (*BIO_meth_get_write(const BIO_METHOD *biom)) (BIO *, const char *, int) { return biom->bwrite_old; } int (*BIO_meth_get_write_ex(const BIO_METHOD *biom)) (BIO *, const char *, size_t, size_t *) { return biom->bwrite; } /* Conversion for old style bwrite to new style */ int bwrite_conv(BIO *bio, const char *data, size_t datal, size_t *written) { int ret; if (datal > INT_MAX) datal = INT_MAX; ret = bio->method->bwrite_old(bio, data, (int)datal); if (ret <= 0) { *written = 0; return ret; } *written = (size_t)ret; return 1; } int BIO_meth_set_write(BIO_METHOD *biom, int (*bwrite) (BIO *, const char *, int)) { biom->bwrite_old = bwrite; biom->bwrite = bwrite_conv; return 1; } int BIO_meth_set_write_ex(BIO_METHOD *biom, int (*bwrite) (BIO *, const char *, size_t, size_t *)) { biom->bwrite_old = NULL; biom->bwrite = bwrite; return 1; } int (*BIO_meth_get_read(const BIO_METHOD *biom)) (BIO *, char *, int) { return biom->bread_old; } int (*BIO_meth_get_read_ex(const BIO_METHOD *biom)) (BIO *, char *, size_t, size_t *) { return biom->bread; } /* Conversion for old style bread to new style */ int bread_conv(BIO *bio, char *data, size_t datal, size_t *readbytes) { int ret; if (datal > INT_MAX) datal = INT_MAX; ret = bio->method->bread_old(bio, data, (int)datal); if (ret <= 0) { *readbytes = 0; return ret; } *readbytes = (size_t)ret; return 1; } int BIO_meth_set_read(BIO_METHOD *biom, int (*bread) (BIO *, char *, int)) { biom->bread_old = bread; biom->bread = bread_conv; return 1; } int BIO_meth_set_read_ex(BIO_METHOD *biom, int (*bread) (BIO *, char *, size_t, size_t *)) { biom->bread_old = NULL; biom->bread = bread; return 1; } int (*BIO_meth_get_puts(const BIO_METHOD *biom)) (BIO *, const char *) { return biom->bputs; } int BIO_meth_set_puts(BIO_METHOD *biom, int (*bputs) (BIO *, const char *)) { biom->bputs = bputs; return 1; } int (*BIO_meth_get_gets(const BIO_METHOD *biom)) (BIO *, char *, int) { return biom->bgets; } int BIO_meth_set_gets(BIO_METHOD *biom, int (*bgets) (BIO *, char *, int)) { biom->bgets = bgets; return 1; } long (*BIO_meth_get_ctrl(const BIO_METHOD *biom)) (BIO *, int, long, void *) { return biom->ctrl; } int BIO_meth_set_ctrl(BIO_METHOD *biom, long (*ctrl) (BIO *, int, long, void *)) { biom->ctrl = ctrl; return 1; } int (*BIO_meth_get_create(const BIO_METHOD *biom)) (BIO *) { return biom->create; } int BIO_meth_set_create(BIO_METHOD *biom, int (*create) (BIO *)) { biom->create = create; return 1; } int (*BIO_meth_get_destroy(const BIO_METHOD *biom)) (BIO *) { return biom->destroy; } int BIO_meth_set_destroy(BIO_METHOD *biom, int (*destroy) (BIO *)) { biom->destroy = destroy; return 1; } long (*BIO_meth_get_callback_ctrl(const BIO_METHOD *biom)) (BIO *, int, BIO_info_cb *) { return biom->callback_ctrl; } int BIO_meth_set_callback_ctrl(BIO_METHOD *biom, long (*callback_ctrl) (BIO *, int, BIO_info_cb *)) { biom->callback_ctrl = callback_ctrl; return 1; } openssl-1.1.1f/crypto/bio/bss_acpt.c000066400000000000000000000400031364063235100173760ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #ifndef OPENSSL_NO_SOCK typedef struct bio_accept_st { int state; int accept_family; int bind_mode; /* Socket mode for BIO_listen */ int accepted_mode; /* Socket mode for BIO_accept (set on accepted sock) */ char *param_addr; char *param_serv; int accept_sock; BIO_ADDRINFO *addr_first; const BIO_ADDRINFO *addr_iter; BIO_ADDR cache_accepting_addr; /* Useful if we asked for port 0 */ char *cache_accepting_name, *cache_accepting_serv; BIO_ADDR cache_peer_addr; char *cache_peer_name, *cache_peer_serv; BIO *bio_chain; } BIO_ACCEPT; static int acpt_write(BIO *h, const char *buf, int num); static int acpt_read(BIO *h, char *buf, int size); static int acpt_puts(BIO *h, const char *str); static long acpt_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int acpt_new(BIO *h); static int acpt_free(BIO *data); static int acpt_state(BIO *b, BIO_ACCEPT *c); static void acpt_close_socket(BIO *data); static BIO_ACCEPT *BIO_ACCEPT_new(void); static void BIO_ACCEPT_free(BIO_ACCEPT *a); # define ACPT_S_BEFORE 1 # define ACPT_S_GET_ADDR 2 # define ACPT_S_CREATE_SOCKET 3 # define ACPT_S_LISTEN 4 # define ACPT_S_ACCEPT 5 # define ACPT_S_OK 6 static const BIO_METHOD methods_acceptp = { BIO_TYPE_ACCEPT, "socket accept", /* TODO: Convert to new style write function */ bwrite_conv, acpt_write, /* TODO: Convert to new style read function */ bread_conv, acpt_read, acpt_puts, NULL, /* connect_gets, */ acpt_ctrl, acpt_new, acpt_free, NULL, /* connect_callback_ctrl */ }; const BIO_METHOD *BIO_s_accept(void) { return &methods_acceptp; } static int acpt_new(BIO *bi) { BIO_ACCEPT *ba; bi->init = 0; bi->num = (int)INVALID_SOCKET; bi->flags = 0; if ((ba = BIO_ACCEPT_new()) == NULL) return 0; bi->ptr = (char *)ba; ba->state = ACPT_S_BEFORE; bi->shutdown = 1; return 1; } static BIO_ACCEPT *BIO_ACCEPT_new(void) { BIO_ACCEPT *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { BIOerr(BIO_F_BIO_ACCEPT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->accept_family = BIO_FAMILY_IPANY; ret->accept_sock = (int)INVALID_SOCKET; return ret; } static void BIO_ACCEPT_free(BIO_ACCEPT *a) { if (a == NULL) return; OPENSSL_free(a->param_addr); OPENSSL_free(a->param_serv); BIO_ADDRINFO_free(a->addr_first); OPENSSL_free(a->cache_accepting_name); OPENSSL_free(a->cache_accepting_serv); OPENSSL_free(a->cache_peer_name); OPENSSL_free(a->cache_peer_serv); BIO_free(a->bio_chain); OPENSSL_free(a); } static void acpt_close_socket(BIO *bio) { BIO_ACCEPT *c; c = (BIO_ACCEPT *)bio->ptr; if (c->accept_sock != (int)INVALID_SOCKET) { shutdown(c->accept_sock, 2); closesocket(c->accept_sock); c->accept_sock = (int)INVALID_SOCKET; bio->num = (int)INVALID_SOCKET; } } static int acpt_free(BIO *a) { BIO_ACCEPT *data; if (a == NULL) return 0; data = (BIO_ACCEPT *)a->ptr; if (a->shutdown) { acpt_close_socket(a); BIO_ACCEPT_free(data); a->ptr = NULL; a->flags = 0; a->init = 0; } return 1; } static int acpt_state(BIO *b, BIO_ACCEPT *c) { BIO *bio = NULL, *dbio; int s = -1, ret = -1; for (;;) { switch (c->state) { case ACPT_S_BEFORE: if (c->param_addr == NULL && c->param_serv == NULL) { BIOerr(BIO_F_ACPT_STATE, BIO_R_NO_ACCEPT_ADDR_OR_SERVICE_SPECIFIED); ERR_add_error_data(4, "hostname=", c->param_addr, " service=", c->param_serv); goto exit_loop; } /* Because we're starting a new bind, any cached name and serv * are now obsolete and need to be cleaned out. * QUESTION: should this be done in acpt_close_socket() instead? */ OPENSSL_free(c->cache_accepting_name); c->cache_accepting_name = NULL; OPENSSL_free(c->cache_accepting_serv); c->cache_accepting_serv = NULL; OPENSSL_free(c->cache_peer_name); c->cache_peer_name = NULL; OPENSSL_free(c->cache_peer_serv); c->cache_peer_serv = NULL; c->state = ACPT_S_GET_ADDR; break; case ACPT_S_GET_ADDR: { int family = AF_UNSPEC; switch (c->accept_family) { case BIO_FAMILY_IPV6: if (1) { /* This is a trick we use to avoid bit rot. * at least the "else" part will always be * compiled. */ #ifdef AF_INET6 family = AF_INET6; } else { #endif BIOerr(BIO_F_ACPT_STATE, BIO_R_UNAVAILABLE_IP_FAMILY); goto exit_loop; } break; case BIO_FAMILY_IPV4: family = AF_INET; break; case BIO_FAMILY_IPANY: family = AF_UNSPEC; break; default: BIOerr(BIO_F_ACPT_STATE, BIO_R_UNSUPPORTED_IP_FAMILY); goto exit_loop; } if (BIO_lookup(c->param_addr, c->param_serv, BIO_LOOKUP_SERVER, family, SOCK_STREAM, &c->addr_first) == 0) goto exit_loop; } if (c->addr_first == NULL) { BIOerr(BIO_F_ACPT_STATE, BIO_R_LOOKUP_RETURNED_NOTHING); goto exit_loop; } /* We're currently not iterating, but set this as preparation * for possible future development in that regard */ c->addr_iter = c->addr_first; c->state = ACPT_S_CREATE_SOCKET; break; case ACPT_S_CREATE_SOCKET: ret = BIO_socket(BIO_ADDRINFO_family(c->addr_iter), BIO_ADDRINFO_socktype(c->addr_iter), BIO_ADDRINFO_protocol(c->addr_iter), 0); if (ret == (int)INVALID_SOCKET) { SYSerr(SYS_F_SOCKET, get_last_socket_error()); ERR_add_error_data(4, "hostname=", c->param_addr, " service=", c->param_serv); BIOerr(BIO_F_ACPT_STATE, BIO_R_UNABLE_TO_CREATE_SOCKET); goto exit_loop; } c->accept_sock = ret; b->num = ret; c->state = ACPT_S_LISTEN; break; case ACPT_S_LISTEN: { if (!BIO_listen(c->accept_sock, BIO_ADDRINFO_address(c->addr_iter), c->bind_mode)) { BIO_closesocket(c->accept_sock); goto exit_loop; } } { union BIO_sock_info_u info; info.addr = &c->cache_accepting_addr; if (!BIO_sock_info(c->accept_sock, BIO_SOCK_INFO_ADDRESS, &info)) { BIO_closesocket(c->accept_sock); goto exit_loop; } } c->cache_accepting_name = BIO_ADDR_hostname_string(&c->cache_accepting_addr, 1); c->cache_accepting_serv = BIO_ADDR_service_string(&c->cache_accepting_addr, 1); c->state = ACPT_S_ACCEPT; s = -1; ret = 1; goto end; case ACPT_S_ACCEPT: if (b->next_bio != NULL) { c->state = ACPT_S_OK; break; } BIO_clear_retry_flags(b); b->retry_reason = 0; OPENSSL_free(c->cache_peer_name); c->cache_peer_name = NULL; OPENSSL_free(c->cache_peer_serv); c->cache_peer_serv = NULL; s = BIO_accept_ex(c->accept_sock, &c->cache_peer_addr, c->accepted_mode); /* If the returned socket is invalid, this might still be * retryable */ if (s < 0) { if (BIO_sock_should_retry(s)) { BIO_set_retry_special(b); b->retry_reason = BIO_RR_ACCEPT; goto end; } } /* If it wasn't retryable, we fail */ if (s < 0) { ret = s; goto exit_loop; } bio = BIO_new_socket(s, BIO_CLOSE); if (bio == NULL) goto exit_loop; BIO_set_callback(bio, BIO_get_callback(b)); BIO_set_callback_arg(bio, BIO_get_callback_arg(b)); /* * If the accept BIO has an bio_chain, we dup it and put the new * socket at the end. */ if (c->bio_chain != NULL) { if ((dbio = BIO_dup_chain(c->bio_chain)) == NULL) goto exit_loop; if (!BIO_push(dbio, bio)) goto exit_loop; bio = dbio; } if (BIO_push(b, bio) == NULL) goto exit_loop; c->cache_peer_name = BIO_ADDR_hostname_string(&c->cache_peer_addr, 1); c->cache_peer_serv = BIO_ADDR_service_string(&c->cache_peer_addr, 1); c->state = ACPT_S_OK; bio = NULL; ret = 1; goto end; case ACPT_S_OK: if (b->next_bio == NULL) { c->state = ACPT_S_ACCEPT; break; } ret = 1; goto end; default: ret = 0; goto end; } } exit_loop: if (bio != NULL) BIO_free(bio); else if (s >= 0) BIO_closesocket(s); end: return ret; } static int acpt_read(BIO *b, char *out, int outl) { int ret = 0; BIO_ACCEPT *data; BIO_clear_retry_flags(b); data = (BIO_ACCEPT *)b->ptr; while (b->next_bio == NULL) { ret = acpt_state(b, data); if (ret <= 0) return ret; } ret = BIO_read(b->next_bio, out, outl); BIO_copy_next_retry(b); return ret; } static int acpt_write(BIO *b, const char *in, int inl) { int ret; BIO_ACCEPT *data; BIO_clear_retry_flags(b); data = (BIO_ACCEPT *)b->ptr; while (b->next_bio == NULL) { ret = acpt_state(b, data); if (ret <= 0) return ret; } ret = BIO_write(b->next_bio, in, inl); BIO_copy_next_retry(b); return ret; } static long acpt_ctrl(BIO *b, int cmd, long num, void *ptr) { int *ip; long ret = 1; BIO_ACCEPT *data; char **pp; data = (BIO_ACCEPT *)b->ptr; switch (cmd) { case BIO_CTRL_RESET: ret = 0; data->state = ACPT_S_BEFORE; acpt_close_socket(b); BIO_ADDRINFO_free(data->addr_first); data->addr_first = NULL; b->flags = 0; break; case BIO_C_DO_STATE_MACHINE: /* use this one to start the connection */ ret = (long)acpt_state(b, data); break; case BIO_C_SET_ACCEPT: if (ptr != NULL) { if (num == 0) { char *hold_serv = data->param_serv; /* We affect the hostname regardless. However, the input * string might contain a host:service spec, so we must * parse it, which might or might not affect the service */ OPENSSL_free(data->param_addr); data->param_addr = NULL; ret = BIO_parse_hostserv(ptr, &data->param_addr, &data->param_serv, BIO_PARSE_PRIO_SERV); if (hold_serv != data->param_serv) OPENSSL_free(hold_serv); b->init = 1; } else if (num == 1) { OPENSSL_free(data->param_serv); data->param_serv = BUF_strdup(ptr); b->init = 1; } else if (num == 2) { data->bind_mode |= BIO_SOCK_NONBLOCK; } else if (num == 3) { BIO_free(data->bio_chain); data->bio_chain = (BIO *)ptr; } else if (num == 4) { data->accept_family = *(int *)ptr; } } else { if (num == 2) { data->bind_mode &= ~BIO_SOCK_NONBLOCK; } } break; case BIO_C_SET_NBIO: if (num != 0) data->accepted_mode |= BIO_SOCK_NONBLOCK; else data->accepted_mode &= ~BIO_SOCK_NONBLOCK; break; case BIO_C_SET_FD: b->num = *((int *)ptr); data->accept_sock = b->num; data->state = ACPT_S_ACCEPT; b->shutdown = (int)num; b->init = 1; break; case BIO_C_GET_FD: if (b->init) { ip = (int *)ptr; if (ip != NULL) *ip = data->accept_sock; ret = data->accept_sock; } else ret = -1; break; case BIO_C_GET_ACCEPT: if (b->init) { if (num == 0 && ptr != NULL) { pp = (char **)ptr; *pp = data->cache_accepting_name; } else if (num == 1 && ptr != NULL) { pp = (char **)ptr; *pp = data->cache_accepting_serv; } else if (num == 2 && ptr != NULL) { pp = (char **)ptr; *pp = data->cache_peer_name; } else if (num == 3 && ptr != NULL) { pp = (char **)ptr; *pp = data->cache_peer_serv; } else if (num == 4) { switch (BIO_ADDRINFO_family(data->addr_iter)) { #ifdef AF_INET6 case AF_INET6: ret = BIO_FAMILY_IPV6; break; #endif case AF_INET: ret = BIO_FAMILY_IPV4; break; case 0: ret = data->accept_family; break; default: ret = -1; break; } } else ret = -1; } else ret = -1; break; case BIO_CTRL_GET_CLOSE: ret = b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_PENDING: case BIO_CTRL_WPENDING: ret = 0; break; case BIO_CTRL_FLUSH: break; case BIO_C_SET_BIND_MODE: data->bind_mode = (int)num; break; case BIO_C_GET_BIND_MODE: ret = (long)data->bind_mode; break; case BIO_CTRL_DUP: break; case BIO_CTRL_EOF: if (b->next_bio == NULL) ret = 0; else ret = BIO_ctrl(b->next_bio, cmd, num, ptr); break; default: ret = 0; break; } return ret; } static int acpt_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = acpt_write(bp, str, n); return ret; } BIO *BIO_new_accept(const char *str) { BIO *ret; ret = BIO_new(BIO_s_accept()); if (ret == NULL) return NULL; if (BIO_set_accept_name(ret, str)) return ret; BIO_free(ret); return NULL; } #endif openssl-1.1.1f/crypto/bio/bss_bio.c000066400000000000000000000451031364063235100172260ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Special method for a BIO where the other endpoint is also a BIO of this * kind, handled by the same thread (i.e. the "peer" is actually ourselves, * wearing a different hat). Such "BIO pairs" are mainly for using the SSL * library with I/O interfaces for which no specific BIO method is available. * See ssl/ssltest.c for some hints on how this can be used. */ #include "e_os.h" #include #include #include #include #include "bio_local.h" #include #include static int bio_new(BIO *bio); static int bio_free(BIO *bio); static int bio_read(BIO *bio, char *buf, int size); static int bio_write(BIO *bio, const char *buf, int num); static long bio_ctrl(BIO *bio, int cmd, long num, void *ptr); static int bio_puts(BIO *bio, const char *str); static int bio_make_pair(BIO *bio1, BIO *bio2); static void bio_destroy_pair(BIO *bio); static const BIO_METHOD methods_biop = { BIO_TYPE_BIO, "BIO pair", /* TODO: Convert to new style write function */ bwrite_conv, bio_write, /* TODO: Convert to new style read function */ bread_conv, bio_read, bio_puts, NULL /* no bio_gets */ , bio_ctrl, bio_new, bio_free, NULL /* no bio_callback_ctrl */ }; const BIO_METHOD *BIO_s_bio(void) { return &methods_biop; } struct bio_bio_st { BIO *peer; /* NULL if buf == NULL. If peer != NULL, then * peer->ptr is also a bio_bio_st, and its * "peer" member points back to us. peer != * NULL iff init != 0 in the BIO. */ /* This is for what we write (i.e. reading uses peer's struct): */ int closed; /* valid iff peer != NULL */ size_t len; /* valid iff buf != NULL; 0 if peer == NULL */ size_t offset; /* valid iff buf != NULL; 0 if len == 0 */ size_t size; char *buf; /* "size" elements (if != NULL) */ size_t request; /* valid iff peer != NULL; 0 if len != 0, * otherwise set by peer to number of bytes * it (unsuccessfully) tried to read, never * more than buffer space (size-len) * warrants. */ }; static int bio_new(BIO *bio) { struct bio_bio_st *b = OPENSSL_zalloc(sizeof(*b)); if (b == NULL) return 0; /* enough for one TLS record (just a default) */ b->size = 17 * 1024; bio->ptr = b; return 1; } static int bio_free(BIO *bio) { struct bio_bio_st *b; if (bio == NULL) return 0; b = bio->ptr; assert(b != NULL); if (b->peer) bio_destroy_pair(bio); OPENSSL_free(b->buf); OPENSSL_free(b); return 1; } static int bio_read(BIO *bio, char *buf, int size_) { size_t size = size_; size_t rest; struct bio_bio_st *b, *peer_b; BIO_clear_retry_flags(bio); if (!bio->init) return 0; b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); peer_b = b->peer->ptr; assert(peer_b != NULL); assert(peer_b->buf != NULL); peer_b->request = 0; /* will be set in "retry_read" situation */ if (buf == NULL || size == 0) return 0; if (peer_b->len == 0) { if (peer_b->closed) return 0; /* writer has closed, and no data is left */ else { BIO_set_retry_read(bio); /* buffer is empty */ if (size <= peer_b->size) peer_b->request = size; else /* * don't ask for more than the peer can deliver in one write */ peer_b->request = peer_b->size; return -1; } } /* we can read */ if (peer_b->len < size) size = peer_b->len; /* now read "size" bytes */ rest = size; assert(rest > 0); do { /* one or two iterations */ size_t chunk; assert(rest <= peer_b->len); if (peer_b->offset + rest <= peer_b->size) chunk = rest; else /* wrap around ring buffer */ chunk = peer_b->size - peer_b->offset; assert(peer_b->offset + chunk <= peer_b->size); memcpy(buf, peer_b->buf + peer_b->offset, chunk); peer_b->len -= chunk; if (peer_b->len) { peer_b->offset += chunk; assert(peer_b->offset <= peer_b->size); if (peer_b->offset == peer_b->size) peer_b->offset = 0; buf += chunk; } else { /* buffer now empty, no need to advance "buf" */ assert(chunk == rest); peer_b->offset = 0; } rest -= chunk; } while (rest); return size; } /*- * non-copying interface: provide pointer to available data in buffer * bio_nread0: return number of available bytes * bio_nread: also advance index * (example usage: bio_nread0(), read from buffer, bio_nread() * or just bio_nread(), read from buffer) */ /* * WARNING: The non-copying interface is largely untested as of yet and may * contain bugs. */ static ossl_ssize_t bio_nread0(BIO *bio, char **buf) { struct bio_bio_st *b, *peer_b; ossl_ssize_t num; BIO_clear_retry_flags(bio); if (!bio->init) return 0; b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); peer_b = b->peer->ptr; assert(peer_b != NULL); assert(peer_b->buf != NULL); peer_b->request = 0; if (peer_b->len == 0) { char dummy; /* avoid code duplication -- nothing available for reading */ return bio_read(bio, &dummy, 1); /* returns 0 or -1 */ } num = peer_b->len; if (peer_b->size < peer_b->offset + num) /* no ring buffer wrap-around for non-copying interface */ num = peer_b->size - peer_b->offset; assert(num > 0); if (buf != NULL) *buf = peer_b->buf + peer_b->offset; return num; } static ossl_ssize_t bio_nread(BIO *bio, char **buf, size_t num_) { struct bio_bio_st *b, *peer_b; ossl_ssize_t num, available; if (num_ > OSSL_SSIZE_MAX) num = OSSL_SSIZE_MAX; else num = (ossl_ssize_t) num_; available = bio_nread0(bio, buf); if (num > available) num = available; if (num <= 0) return num; b = bio->ptr; peer_b = b->peer->ptr; peer_b->len -= num; if (peer_b->len) { peer_b->offset += num; assert(peer_b->offset <= peer_b->size); if (peer_b->offset == peer_b->size) peer_b->offset = 0; } else peer_b->offset = 0; return num; } static int bio_write(BIO *bio, const char *buf, int num_) { size_t num = num_; size_t rest; struct bio_bio_st *b; BIO_clear_retry_flags(bio); if (!bio->init || buf == NULL || num == 0) return 0; b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); assert(b->buf != NULL); b->request = 0; if (b->closed) { /* we already closed */ BIOerr(BIO_F_BIO_WRITE, BIO_R_BROKEN_PIPE); return -1; } assert(b->len <= b->size); if (b->len == b->size) { BIO_set_retry_write(bio); /* buffer is full */ return -1; } /* we can write */ if (num > b->size - b->len) num = b->size - b->len; /* now write "num" bytes */ rest = num; assert(rest > 0); do { /* one or two iterations */ size_t write_offset; size_t chunk; assert(b->len + rest <= b->size); write_offset = b->offset + b->len; if (write_offset >= b->size) write_offset -= b->size; /* b->buf[write_offset] is the first byte we can write to. */ if (write_offset + rest <= b->size) chunk = rest; else /* wrap around ring buffer */ chunk = b->size - write_offset; memcpy(b->buf + write_offset, buf, chunk); b->len += chunk; assert(b->len <= b->size); rest -= chunk; buf += chunk; } while (rest); return num; } /*- * non-copying interface: provide pointer to region to write to * bio_nwrite0: check how much space is available * bio_nwrite: also increase length * (example usage: bio_nwrite0(), write to buffer, bio_nwrite() * or just bio_nwrite(), write to buffer) */ static ossl_ssize_t bio_nwrite0(BIO *bio, char **buf) { struct bio_bio_st *b; size_t num; size_t write_offset; BIO_clear_retry_flags(bio); if (!bio->init) return 0; b = bio->ptr; assert(b != NULL); assert(b->peer != NULL); assert(b->buf != NULL); b->request = 0; if (b->closed) { BIOerr(BIO_F_BIO_NWRITE0, BIO_R_BROKEN_PIPE); return -1; } assert(b->len <= b->size); if (b->len == b->size) { BIO_set_retry_write(bio); return -1; } num = b->size - b->len; write_offset = b->offset + b->len; if (write_offset >= b->size) write_offset -= b->size; if (write_offset + num > b->size) /* * no ring buffer wrap-around for non-copying interface (to fulfil * the promise by BIO_ctrl_get_write_guarantee, BIO_nwrite may have * to be called twice) */ num = b->size - write_offset; if (buf != NULL) *buf = b->buf + write_offset; assert(write_offset + num <= b->size); return num; } static ossl_ssize_t bio_nwrite(BIO *bio, char **buf, size_t num_) { struct bio_bio_st *b; ossl_ssize_t num, space; if (num_ > OSSL_SSIZE_MAX) num = OSSL_SSIZE_MAX; else num = (ossl_ssize_t) num_; space = bio_nwrite0(bio, buf); if (num > space) num = space; if (num <= 0) return num; b = bio->ptr; assert(b != NULL); b->len += num; assert(b->len <= b->size); return num; } static long bio_ctrl(BIO *bio, int cmd, long num, void *ptr) { long ret; struct bio_bio_st *b = bio->ptr; assert(b != NULL); switch (cmd) { /* specific CTRL codes */ case BIO_C_SET_WRITE_BUF_SIZE: if (b->peer) { BIOerr(BIO_F_BIO_CTRL, BIO_R_IN_USE); ret = 0; } else if (num == 0) { BIOerr(BIO_F_BIO_CTRL, BIO_R_INVALID_ARGUMENT); ret = 0; } else { size_t new_size = num; if (b->size != new_size) { OPENSSL_free(b->buf); b->buf = NULL; b->size = new_size; } ret = 1; } break; case BIO_C_GET_WRITE_BUF_SIZE: ret = (long)b->size; break; case BIO_C_MAKE_BIO_PAIR: { BIO *other_bio = ptr; if (bio_make_pair(bio, other_bio)) ret = 1; else ret = 0; } break; case BIO_C_DESTROY_BIO_PAIR: /* * Affects both BIOs in the pair -- call just once! Or let * BIO_free(bio1); BIO_free(bio2); do the job. */ bio_destroy_pair(bio); ret = 1; break; case BIO_C_GET_WRITE_GUARANTEE: /* * How many bytes can the caller feed to the next write without * having to keep any? */ if (b->peer == NULL || b->closed) ret = 0; else ret = (long)b->size - b->len; break; case BIO_C_GET_READ_REQUEST: /* * If the peer unsuccessfully tried to read, how many bytes were * requested? (As with BIO_CTRL_PENDING, that number can usually be * treated as boolean.) */ ret = (long)b->request; break; case BIO_C_RESET_READ_REQUEST: /* * Reset request. (Can be useful after read attempts at the other * side that are meant to be non-blocking, e.g. when probing SSL_read * to see if any data is available.) */ b->request = 0; ret = 1; break; case BIO_C_SHUTDOWN_WR: /* similar to shutdown(..., SHUT_WR) */ b->closed = 1; ret = 1; break; case BIO_C_NREAD0: /* prepare for non-copying read */ ret = (long)bio_nread0(bio, ptr); break; case BIO_C_NREAD: /* non-copying read */ ret = (long)bio_nread(bio, ptr, (size_t)num); break; case BIO_C_NWRITE0: /* prepare for non-copying write */ ret = (long)bio_nwrite0(bio, ptr); break; case BIO_C_NWRITE: /* non-copying write */ ret = (long)bio_nwrite(bio, ptr, (size_t)num); break; /* standard CTRL codes follow */ case BIO_CTRL_RESET: if (b->buf != NULL) { b->len = 0; b->offset = 0; } ret = 0; break; case BIO_CTRL_GET_CLOSE: ret = bio->shutdown; break; case BIO_CTRL_SET_CLOSE: bio->shutdown = (int)num; ret = 1; break; case BIO_CTRL_PENDING: if (b->peer != NULL) { struct bio_bio_st *peer_b = b->peer->ptr; ret = (long)peer_b->len; } else ret = 0; break; case BIO_CTRL_WPENDING: if (b->buf != NULL) ret = (long)b->len; else ret = 0; break; case BIO_CTRL_DUP: /* See BIO_dup_chain for circumstances we have to expect. */ { BIO *other_bio = ptr; struct bio_bio_st *other_b; assert(other_bio != NULL); other_b = other_bio->ptr; assert(other_b != NULL); assert(other_b->buf == NULL); /* other_bio is always fresh */ other_b->size = b->size; } ret = 1; break; case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_EOF: if (b->peer != NULL) { struct bio_bio_st *peer_b = b->peer->ptr; if (peer_b->len == 0 && peer_b->closed) ret = 1; else ret = 0; } else { ret = 1; } break; default: ret = 0; } return ret; } static int bio_puts(BIO *bio, const char *str) { return bio_write(bio, str, strlen(str)); } static int bio_make_pair(BIO *bio1, BIO *bio2) { struct bio_bio_st *b1, *b2; assert(bio1 != NULL); assert(bio2 != NULL); b1 = bio1->ptr; b2 = bio2->ptr; if (b1->peer != NULL || b2->peer != NULL) { BIOerr(BIO_F_BIO_MAKE_PAIR, BIO_R_IN_USE); return 0; } if (b1->buf == NULL) { b1->buf = OPENSSL_malloc(b1->size); if (b1->buf == NULL) { BIOerr(BIO_F_BIO_MAKE_PAIR, ERR_R_MALLOC_FAILURE); return 0; } b1->len = 0; b1->offset = 0; } if (b2->buf == NULL) { b2->buf = OPENSSL_malloc(b2->size); if (b2->buf == NULL) { BIOerr(BIO_F_BIO_MAKE_PAIR, ERR_R_MALLOC_FAILURE); return 0; } b2->len = 0; b2->offset = 0; } b1->peer = bio2; b1->closed = 0; b1->request = 0; b2->peer = bio1; b2->closed = 0; b2->request = 0; bio1->init = 1; bio2->init = 1; return 1; } static void bio_destroy_pair(BIO *bio) { struct bio_bio_st *b = bio->ptr; if (b != NULL) { BIO *peer_bio = b->peer; if (peer_bio != NULL) { struct bio_bio_st *peer_b = peer_bio->ptr; assert(peer_b != NULL); assert(peer_b->peer == bio); peer_b->peer = NULL; peer_bio->init = 0; assert(peer_b->buf != NULL); peer_b->len = 0; peer_b->offset = 0; b->peer = NULL; bio->init = 0; assert(b->buf != NULL); b->len = 0; b->offset = 0; } } } /* Exported convenience functions */ int BIO_new_bio_pair(BIO **bio1_p, size_t writebuf1, BIO **bio2_p, size_t writebuf2) { BIO *bio1 = NULL, *bio2 = NULL; long r; int ret = 0; bio1 = BIO_new(BIO_s_bio()); if (bio1 == NULL) goto err; bio2 = BIO_new(BIO_s_bio()); if (bio2 == NULL) goto err; if (writebuf1) { r = BIO_set_write_buf_size(bio1, writebuf1); if (!r) goto err; } if (writebuf2) { r = BIO_set_write_buf_size(bio2, writebuf2); if (!r) goto err; } r = BIO_make_bio_pair(bio1, bio2); if (!r) goto err; ret = 1; err: if (ret == 0) { BIO_free(bio1); bio1 = NULL; BIO_free(bio2); bio2 = NULL; } *bio1_p = bio1; *bio2_p = bio2; return ret; } size_t BIO_ctrl_get_write_guarantee(BIO *bio) { return BIO_ctrl(bio, BIO_C_GET_WRITE_GUARANTEE, 0, NULL); } size_t BIO_ctrl_get_read_request(BIO *bio) { return BIO_ctrl(bio, BIO_C_GET_READ_REQUEST, 0, NULL); } int BIO_ctrl_reset_read_request(BIO *bio) { return (BIO_ctrl(bio, BIO_C_RESET_READ_REQUEST, 0, NULL) != 0); } /* * BIO_nread0/nread/nwrite0/nwrite are available only for BIO pairs for now * (conceivably some other BIOs could allow non-copying reads and writes * too.) */ int BIO_nread0(BIO *bio, char **buf) { long ret; if (!bio->init) { BIOerr(BIO_F_BIO_NREAD0, BIO_R_UNINITIALIZED); return -2; } ret = BIO_ctrl(bio, BIO_C_NREAD0, 0, buf); if (ret > INT_MAX) return INT_MAX; else return (int)ret; } int BIO_nread(BIO *bio, char **buf, int num) { int ret; if (!bio->init) { BIOerr(BIO_F_BIO_NREAD, BIO_R_UNINITIALIZED); return -2; } ret = (int)BIO_ctrl(bio, BIO_C_NREAD, num, buf); if (ret > 0) bio->num_read += ret; return ret; } int BIO_nwrite0(BIO *bio, char **buf) { long ret; if (!bio->init) { BIOerr(BIO_F_BIO_NWRITE0, BIO_R_UNINITIALIZED); return -2; } ret = BIO_ctrl(bio, BIO_C_NWRITE0, 0, buf); if (ret > INT_MAX) return INT_MAX; else return (int)ret; } int BIO_nwrite(BIO *bio, char **buf, int num) { int ret; if (!bio->init) { BIOerr(BIO_F_BIO_NWRITE, BIO_R_UNINITIALIZED); return -2; } ret = BIO_ctrl(bio, BIO_C_NWRITE, num, buf); if (ret > 0) bio->num_write += ret; return ret; } openssl-1.1.1f/crypto/bio/bss_conn.c000066400000000000000000000372051364063235100174160ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #ifndef OPENSSL_NO_SOCK typedef struct bio_connect_st { int state; int connect_family; char *param_hostname; char *param_service; int connect_mode; BIO_ADDRINFO *addr_first; const BIO_ADDRINFO *addr_iter; /* * int socket; this will be kept in bio->num so that it is compatible * with the bss_sock bio */ /* * called when the connection is initially made callback(BIO,state,ret); * The callback should return 'ret'. state is for compatibility with the * ssl info_callback */ BIO_info_cb *info_callback; } BIO_CONNECT; static int conn_write(BIO *h, const char *buf, int num); static int conn_read(BIO *h, char *buf, int size); static int conn_puts(BIO *h, const char *str); static long conn_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int conn_new(BIO *h); static int conn_free(BIO *data); static long conn_callback_ctrl(BIO *h, int cmd, BIO_info_cb *); static int conn_state(BIO *b, BIO_CONNECT *c); static void conn_close_socket(BIO *data); BIO_CONNECT *BIO_CONNECT_new(void); void BIO_CONNECT_free(BIO_CONNECT *a); #define BIO_CONN_S_BEFORE 1 #define BIO_CONN_S_GET_ADDR 2 #define BIO_CONN_S_CREATE_SOCKET 3 #define BIO_CONN_S_CONNECT 4 #define BIO_CONN_S_OK 5 #define BIO_CONN_S_BLOCKED_CONNECT 6 #define BIO_CONN_S_CONNECT_ERROR 7 static const BIO_METHOD methods_connectp = { BIO_TYPE_CONNECT, "socket connect", /* TODO: Convert to new style write function */ bwrite_conv, conn_write, /* TODO: Convert to new style read function */ bread_conv, conn_read, conn_puts, NULL, /* conn_gets, */ conn_ctrl, conn_new, conn_free, conn_callback_ctrl, }; static int conn_state(BIO *b, BIO_CONNECT *c) { int ret = -1, i; BIO_info_cb *cb = NULL; if (c->info_callback != NULL) cb = c->info_callback; for (;;) { switch (c->state) { case BIO_CONN_S_BEFORE: if (c->param_hostname == NULL && c->param_service == NULL) { BIOerr(BIO_F_CONN_STATE, BIO_R_NO_HOSTNAME_OR_SERVICE_SPECIFIED); ERR_add_error_data(4, "hostname=", c->param_hostname, " service=", c->param_service); goto exit_loop; } c->state = BIO_CONN_S_GET_ADDR; break; case BIO_CONN_S_GET_ADDR: { int family = AF_UNSPEC; switch (c->connect_family) { case BIO_FAMILY_IPV6: if (1) { /* This is a trick we use to avoid bit rot. * at least the "else" part will always be * compiled. */ #ifdef AF_INET6 family = AF_INET6; } else { #endif BIOerr(BIO_F_CONN_STATE, BIO_R_UNAVAILABLE_IP_FAMILY); goto exit_loop; } break; case BIO_FAMILY_IPV4: family = AF_INET; break; case BIO_FAMILY_IPANY: family = AF_UNSPEC; break; default: BIOerr(BIO_F_CONN_STATE, BIO_R_UNSUPPORTED_IP_FAMILY); goto exit_loop; } if (BIO_lookup(c->param_hostname, c->param_service, BIO_LOOKUP_CLIENT, family, SOCK_STREAM, &c->addr_first) == 0) goto exit_loop; } if (c->addr_first == NULL) { BIOerr(BIO_F_CONN_STATE, BIO_R_LOOKUP_RETURNED_NOTHING); goto exit_loop; } c->addr_iter = c->addr_first; c->state = BIO_CONN_S_CREATE_SOCKET; break; case BIO_CONN_S_CREATE_SOCKET: ret = BIO_socket(BIO_ADDRINFO_family(c->addr_iter), BIO_ADDRINFO_socktype(c->addr_iter), BIO_ADDRINFO_protocol(c->addr_iter), 0); if (ret == (int)INVALID_SOCKET) { SYSerr(SYS_F_SOCKET, get_last_socket_error()); ERR_add_error_data(4, "hostname=", c->param_hostname, " service=", c->param_service); BIOerr(BIO_F_CONN_STATE, BIO_R_UNABLE_TO_CREATE_SOCKET); goto exit_loop; } b->num = ret; c->state = BIO_CONN_S_CONNECT; break; case BIO_CONN_S_CONNECT: BIO_clear_retry_flags(b); ret = BIO_connect(b->num, BIO_ADDRINFO_address(c->addr_iter), BIO_SOCK_KEEPALIVE | c->connect_mode); b->retry_reason = 0; if (ret == 0) { if (BIO_sock_should_retry(ret)) { BIO_set_retry_special(b); c->state = BIO_CONN_S_BLOCKED_CONNECT; b->retry_reason = BIO_RR_CONNECT; ERR_clear_error(); } else if ((c->addr_iter = BIO_ADDRINFO_next(c->addr_iter)) != NULL) { /* * if there are more addresses to try, do that first */ BIO_closesocket(b->num); c->state = BIO_CONN_S_CREATE_SOCKET; ERR_clear_error(); break; } else { SYSerr(SYS_F_CONNECT, get_last_socket_error()); ERR_add_error_data(4, "hostname=", c->param_hostname, " service=", c->param_service); c->state = BIO_CONN_S_CONNECT_ERROR; break; } goto exit_loop; } else { c->state = BIO_CONN_S_OK; } break; case BIO_CONN_S_BLOCKED_CONNECT: i = BIO_sock_error(b->num); if (i) { BIO_clear_retry_flags(b); SYSerr(SYS_F_CONNECT, i); ERR_add_error_data(4, "hostname=", c->param_hostname, " service=", c->param_service); BIOerr(BIO_F_CONN_STATE, BIO_R_NBIO_CONNECT_ERROR); ret = 0; goto exit_loop; } else c->state = BIO_CONN_S_OK; break; case BIO_CONN_S_CONNECT_ERROR: BIOerr(BIO_F_CONN_STATE, BIO_R_CONNECT_ERROR); ret = 0; goto exit_loop; case BIO_CONN_S_OK: ret = 1; goto exit_loop; default: /* abort(); */ goto exit_loop; } if (cb != NULL) { if ((ret = cb((BIO *)b, c->state, ret)) == 0) goto end; } } /* Loop does not exit */ exit_loop: if (cb != NULL) ret = cb((BIO *)b, c->state, ret); end: return ret; } BIO_CONNECT *BIO_CONNECT_new(void) { BIO_CONNECT *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { BIOerr(BIO_F_BIO_CONNECT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->state = BIO_CONN_S_BEFORE; ret->connect_family = BIO_FAMILY_IPANY; return ret; } void BIO_CONNECT_free(BIO_CONNECT *a) { if (a == NULL) return; OPENSSL_free(a->param_hostname); OPENSSL_free(a->param_service); BIO_ADDRINFO_free(a->addr_first); OPENSSL_free(a); } const BIO_METHOD *BIO_s_connect(void) { return &methods_connectp; } static int conn_new(BIO *bi) { bi->init = 0; bi->num = (int)INVALID_SOCKET; bi->flags = 0; if ((bi->ptr = (char *)BIO_CONNECT_new()) == NULL) return 0; else return 1; } static void conn_close_socket(BIO *bio) { BIO_CONNECT *c; c = (BIO_CONNECT *)bio->ptr; if (bio->num != (int)INVALID_SOCKET) { /* Only do a shutdown if things were established */ if (c->state == BIO_CONN_S_OK) shutdown(bio->num, 2); BIO_closesocket(bio->num); bio->num = (int)INVALID_SOCKET; } } static int conn_free(BIO *a) { BIO_CONNECT *data; if (a == NULL) return 0; data = (BIO_CONNECT *)a->ptr; if (a->shutdown) { conn_close_socket(a); BIO_CONNECT_free(data); a->ptr = NULL; a->flags = 0; a->init = 0; } return 1; } static int conn_read(BIO *b, char *out, int outl) { int ret = 0; BIO_CONNECT *data; data = (BIO_CONNECT *)b->ptr; if (data->state != BIO_CONN_S_OK) { ret = conn_state(b, data); if (ret <= 0) return ret; } if (out != NULL) { clear_socket_error(); ret = readsocket(b->num, out, outl); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_sock_should_retry(ret)) BIO_set_retry_read(b); else if (ret == 0) b->flags |= BIO_FLAGS_IN_EOF; } } return ret; } static int conn_write(BIO *b, const char *in, int inl) { int ret; BIO_CONNECT *data; data = (BIO_CONNECT *)b->ptr; if (data->state != BIO_CONN_S_OK) { ret = conn_state(b, data); if (ret <= 0) return ret; } clear_socket_error(); ret = writesocket(b->num, in, inl); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_sock_should_retry(ret)) BIO_set_retry_write(b); } return ret; } static long conn_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO *dbio; int *ip; const char **pptr = NULL; long ret = 1; BIO_CONNECT *data; data = (BIO_CONNECT *)b->ptr; switch (cmd) { case BIO_CTRL_RESET: ret = 0; data->state = BIO_CONN_S_BEFORE; conn_close_socket(b); BIO_ADDRINFO_free(data->addr_first); data->addr_first = NULL; b->flags = 0; break; case BIO_C_DO_STATE_MACHINE: /* use this one to start the connection */ if (data->state != BIO_CONN_S_OK) ret = (long)conn_state(b, data); else ret = 1; break; case BIO_C_GET_CONNECT: if (ptr != NULL) { pptr = (const char **)ptr; if (num == 0) { *pptr = data->param_hostname; } else if (num == 1) { *pptr = data->param_service; } else if (num == 2) { *pptr = (const char *)BIO_ADDRINFO_address(data->addr_iter); } else if (num == 3) { switch (BIO_ADDRINFO_family(data->addr_iter)) { # ifdef AF_INET6 case AF_INET6: ret = BIO_FAMILY_IPV6; break; # endif case AF_INET: ret = BIO_FAMILY_IPV4; break; case 0: ret = data->connect_family; break; default: ret = -1; break; } } else { ret = 0; } } else { ret = 0; } break; case BIO_C_SET_CONNECT: if (ptr != NULL) { b->init = 1; if (num == 0) { char *hold_service = data->param_service; /* We affect the hostname regardless. However, the input * string might contain a host:service spec, so we must * parse it, which might or might not affect the service */ OPENSSL_free(data->param_hostname); data->param_hostname = NULL; ret = BIO_parse_hostserv(ptr, &data->param_hostname, &data->param_service, BIO_PARSE_PRIO_HOST); if (hold_service != data->param_service) OPENSSL_free(hold_service); } else if (num == 1) { OPENSSL_free(data->param_service); data->param_service = BUF_strdup(ptr); } else if (num == 2) { const BIO_ADDR *addr = (const BIO_ADDR *)ptr; if (ret) { data->param_hostname = BIO_ADDR_hostname_string(addr, 1); data->param_service = BIO_ADDR_service_string(addr, 1); BIO_ADDRINFO_free(data->addr_first); data->addr_first = NULL; data->addr_iter = NULL; } } else if (num == 3) { data->connect_family = *(int *)ptr; } else { ret = 0; } } break; case BIO_C_SET_NBIO: if (num != 0) data->connect_mode |= BIO_SOCK_NONBLOCK; else data->connect_mode &= ~BIO_SOCK_NONBLOCK; break; case BIO_C_SET_CONNECT_MODE: data->connect_mode = (int)num; break; case BIO_C_GET_FD: if (b->init) { ip = (int *)ptr; if (ip != NULL) *ip = b->num; ret = b->num; } else ret = -1; break; case BIO_CTRL_GET_CLOSE: ret = b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_PENDING: case BIO_CTRL_WPENDING: ret = 0; break; case BIO_CTRL_FLUSH: break; case BIO_CTRL_DUP: { dbio = (BIO *)ptr; if (data->param_hostname) BIO_set_conn_hostname(dbio, data->param_hostname); if (data->param_service) BIO_set_conn_port(dbio, data->param_service); BIO_set_conn_ip_family(dbio, data->connect_family); BIO_set_conn_mode(dbio, data->connect_mode); /* * FIXME: the cast of the function seems unlikely to be a good * idea */ (void)BIO_set_info_callback(dbio, data->info_callback); } break; case BIO_CTRL_SET_CALLBACK: ret = 0; /* use callback ctrl */ break; case BIO_CTRL_GET_CALLBACK: { BIO_info_cb **fptr; fptr = (BIO_info_cb **)ptr; *fptr = data->info_callback; } break; case BIO_CTRL_EOF: ret = (b->flags & BIO_FLAGS_IN_EOF) != 0 ? 1 : 0; break; default: ret = 0; break; } return ret; } static long conn_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; BIO_CONNECT *data; data = (BIO_CONNECT *)b->ptr; switch (cmd) { case BIO_CTRL_SET_CALLBACK: { data->info_callback = fp; } break; default: ret = 0; break; } return ret; } static int conn_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = conn_write(bp, str, n); return ret; } BIO *BIO_new_connect(const char *str) { BIO *ret; ret = BIO_new(BIO_s_connect()); if (ret == NULL) return NULL; if (BIO_set_conn_hostname(ret, str)) return ret; BIO_free(ret); return NULL; } #endif openssl-1.1.1f/crypto/bio/bss_dgram.c000066400000000000000000001611111364063235100175450ustar00rootroot00000000000000/* * Copyright 2005-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #ifndef OPENSSL_NO_DGRAM # ifndef OPENSSL_NO_SCTP # include # include # define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00 # define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0 # endif # if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU) # define IP_MTU 14 /* linux is lame */ # endif # if OPENSSL_USE_IPV6 && !defined(IPPROTO_IPV6) # define IPPROTO_IPV6 41 /* windows is lame */ # endif # if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED) /* Standard definition causes type-punning problems. */ # undef IN6_IS_ADDR_V4MAPPED # define s6_addr32 __u6_addr.__u6_addr32 # define IN6_IS_ADDR_V4MAPPED(a) \ (((a)->s6_addr32[0] == 0) && \ ((a)->s6_addr32[1] == 0) && \ ((a)->s6_addr32[2] == htonl(0x0000ffff))) # endif static int dgram_write(BIO *h, const char *buf, int num); static int dgram_read(BIO *h, char *buf, int size); static int dgram_puts(BIO *h, const char *str); static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int dgram_new(BIO *h); static int dgram_free(BIO *data); static int dgram_clear(BIO *bio); # ifndef OPENSSL_NO_SCTP static int dgram_sctp_write(BIO *h, const char *buf, int num); static int dgram_sctp_read(BIO *h, char *buf, int size); static int dgram_sctp_puts(BIO *h, const char *str); static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int dgram_sctp_new(BIO *h); static int dgram_sctp_free(BIO *data); # ifdef SCTP_AUTHENTICATION_EVENT static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification *snp); # endif # endif static int BIO_dgram_should_retry(int s); static void get_current_time(struct timeval *t); static const BIO_METHOD methods_dgramp = { BIO_TYPE_DGRAM, "datagram socket", /* TODO: Convert to new style write function */ bwrite_conv, dgram_write, /* TODO: Convert to new style read function */ bread_conv, dgram_read, dgram_puts, NULL, /* dgram_gets, */ dgram_ctrl, dgram_new, dgram_free, NULL, /* dgram_callback_ctrl */ }; # ifndef OPENSSL_NO_SCTP static const BIO_METHOD methods_dgramp_sctp = { BIO_TYPE_DGRAM_SCTP, "datagram sctp socket", /* TODO: Convert to new style write function */ bwrite_conv, dgram_sctp_write, /* TODO: Convert to new style write function */ bread_conv, dgram_sctp_read, dgram_sctp_puts, NULL, /* dgram_gets, */ dgram_sctp_ctrl, dgram_sctp_new, dgram_sctp_free, NULL, /* dgram_callback_ctrl */ }; # endif typedef struct bio_dgram_data_st { BIO_ADDR peer; unsigned int connected; unsigned int _errno; unsigned int mtu; struct timeval next_timeout; struct timeval socket_timeout; unsigned int peekmode; } bio_dgram_data; # ifndef OPENSSL_NO_SCTP typedef struct bio_dgram_sctp_save_message_st { BIO *bio; char *data; int length; } bio_dgram_sctp_save_message; typedef struct bio_dgram_sctp_data_st { BIO_ADDR peer; unsigned int connected; unsigned int _errno; unsigned int mtu; struct bio_dgram_sctp_sndinfo sndinfo; struct bio_dgram_sctp_rcvinfo rcvinfo; struct bio_dgram_sctp_prinfo prinfo; void (*handle_notifications) (BIO *bio, void *context, void *buf); void *notification_context; int in_handshake; int ccs_rcvd; int ccs_sent; int save_shutdown; int peer_auth_tested; } bio_dgram_sctp_data; # endif const BIO_METHOD *BIO_s_datagram(void) { return &methods_dgramp; } BIO *BIO_new_dgram(int fd, int close_flag) { BIO *ret; ret = BIO_new(BIO_s_datagram()); if (ret == NULL) return NULL; BIO_set_fd(ret, fd, close_flag); return ret; } static int dgram_new(BIO *bi) { bio_dgram_data *data = OPENSSL_zalloc(sizeof(*data)); if (data == NULL) return 0; bi->ptr = data; return 1; } static int dgram_free(BIO *a) { bio_dgram_data *data; if (a == NULL) return 0; if (!dgram_clear(a)) return 0; data = (bio_dgram_data *)a->ptr; OPENSSL_free(data); return 1; } static int dgram_clear(BIO *a) { if (a == NULL) return 0; if (a->shutdown) { if (a->init) { BIO_closesocket(a->num); } a->init = 0; a->flags = 0; } return 1; } static void dgram_adjust_rcv_timeout(BIO *b) { # if defined(SO_RCVTIMEO) bio_dgram_data *data = (bio_dgram_data *)b->ptr; union { size_t s; int i; } sz = { 0 }; /* Is a timer active? */ if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) { struct timeval timenow, timeleft; /* Read current socket timeout */ # ifdef OPENSSL_SYS_WINDOWS int timeout; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); } else { data->socket_timeout.tv_sec = timeout / 1000; data->socket_timeout.tv_usec = (timeout % 1000) * 1000; } # else sz.i = sizeof(data->socket_timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout), (void *)&sz) < 0) { perror("getsockopt"); } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) OPENSSL_assert(sz.s <= sizeof(data->socket_timeout)); # endif /* Get current time */ get_current_time(&timenow); /* Calculate time left until timer expires */ memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval)); if (timeleft.tv_usec < timenow.tv_usec) { timeleft.tv_usec = 1000000 - timenow.tv_usec + timeleft.tv_usec; timeleft.tv_sec--; } else { timeleft.tv_usec -= timenow.tv_usec; } if (timeleft.tv_sec < timenow.tv_sec) { timeleft.tv_sec = 0; timeleft.tv_usec = 1; } else { timeleft.tv_sec -= timenow.tv_sec; } /* * Adjust socket timeout if next handshake message timer will expire * earlier. */ if ((data->socket_timeout.tv_sec == 0 && data->socket_timeout.tv_usec == 0) || (data->socket_timeout.tv_sec > timeleft.tv_sec) || (data->socket_timeout.tv_sec == timeleft.tv_sec && data->socket_timeout.tv_usec >= timeleft.tv_usec)) { # ifdef OPENSSL_SYS_WINDOWS timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); } # else if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft, sizeof(struct timeval)) < 0) { perror("setsockopt"); } # endif } } # endif } static void dgram_reset_rcv_timeout(BIO *b) { # if defined(SO_RCVTIMEO) bio_dgram_data *data = (bio_dgram_data *)b->ptr; /* Is a timer active? */ if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) { # ifdef OPENSSL_SYS_WINDOWS int timeout = data->socket_timeout.tv_sec * 1000 + data->socket_timeout.tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); } # else if (setsockopt (b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout), sizeof(struct timeval)) < 0) { perror("setsockopt"); } # endif } # endif } static int dgram_read(BIO *b, char *out, int outl) { int ret = 0; bio_dgram_data *data = (bio_dgram_data *)b->ptr; int flags = 0; BIO_ADDR peer; socklen_t len = sizeof(peer); if (out != NULL) { clear_socket_error(); memset(&peer, 0, sizeof(peer)); dgram_adjust_rcv_timeout(b); if (data->peekmode) flags = MSG_PEEK; ret = recvfrom(b->num, out, outl, flags, BIO_ADDR_sockaddr_noconst(&peer), &len); if (!data->connected && ret >= 0) BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &peer); BIO_clear_retry_flags(b); if (ret < 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_read(b); data->_errno = get_last_socket_error(); } } dgram_reset_rcv_timeout(b); } return ret; } static int dgram_write(BIO *b, const char *in, int inl) { int ret; bio_dgram_data *data = (bio_dgram_data *)b->ptr; clear_socket_error(); if (data->connected) ret = writesocket(b->num, in, inl); else { int peerlen = BIO_ADDR_sockaddr_size(&data->peer); ret = sendto(b->num, in, inl, 0, BIO_ADDR_sockaddr(&data->peer), peerlen); } BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_write(b); data->_errno = get_last_socket_error(); } } return ret; } static long dgram_get_mtu_overhead(bio_dgram_data *data) { long ret; switch (BIO_ADDR_family(&data->peer)) { case AF_INET: /* * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP */ ret = 28; break; # if OPENSSL_USE_IPV6 case AF_INET6: { # ifdef IN6_IS_ADDR_V4MAPPED struct in6_addr tmp_addr; if (BIO_ADDR_rawaddress(&data->peer, &tmp_addr, NULL) && IN6_IS_ADDR_V4MAPPED(&tmp_addr)) /* * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP */ ret = 28; else # endif /* * Assume this is UDP - 40 bytes for IP, 8 bytes for UDP */ ret = 48; } break; # endif default: /* We don't know. Go with the historical default */ ret = 28; break; } return ret; } static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; int *ip; bio_dgram_data *data = NULL; int sockopt_val = 0; int d_errno; # if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU)) socklen_t sockopt_len; /* assume that system supporting IP_MTU is * modern enough to define socklen_t */ socklen_t addr_len; BIO_ADDR addr; # endif data = (bio_dgram_data *)b->ptr; switch (cmd) { case BIO_CTRL_RESET: num = 0; ret = 0; break; case BIO_CTRL_INFO: ret = 0; break; case BIO_C_SET_FD: dgram_clear(b); b->num = *((int *)ptr); b->shutdown = (int)num; b->init = 1; break; case BIO_C_GET_FD: if (b->init) { ip = (int *)ptr; if (ip != NULL) *ip = b->num; ret = b->num; } else ret = -1; break; case BIO_CTRL_GET_CLOSE: ret = b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_PENDING: case BIO_CTRL_WPENDING: ret = 0; break; case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_DGRAM_CONNECT: BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr)); break; /* (Linux)kernel sets DF bit on outgoing IP packets */ case BIO_CTRL_DGRAM_MTU_DISCOVER: # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO) addr_len = (socklen_t) sizeof(addr); memset(&addr, 0, sizeof(addr)); if (getsockname(b->num, &addr.sa, &addr_len) < 0) { ret = 0; break; } switch (addr.sa.sa_family) { case AF_INET: sockopt_val = IP_PMTUDISC_DO; if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) perror("setsockopt"); break; # if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO) case AF_INET6: sockopt_val = IPV6_PMTUDISC_DO; if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) perror("setsockopt"); break; # endif default: ret = -1; break; } # else ret = -1; # endif break; case BIO_CTRL_DGRAM_QUERY_MTU: # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU) addr_len = (socklen_t) sizeof(addr); memset(&addr, 0, sizeof(addr)); if (getsockname(b->num, &addr.sa, &addr_len) < 0) { ret = 0; break; } sockopt_len = sizeof(sockopt_val); switch (addr.sa.sa_family) { case AF_INET: if ((ret = getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val, &sockopt_len)) < 0 || sockopt_val < 0) { ret = 0; } else { /* * we assume that the transport protocol is UDP and no IP * options are used. */ data->mtu = sockopt_val - 8 - 20; ret = data->mtu; } break; # if OPENSSL_USE_IPV6 && defined(IPV6_MTU) case AF_INET6: if ((ret = getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU, (void *)&sockopt_val, &sockopt_len)) < 0 || sockopt_val < 0) { ret = 0; } else { /* * we assume that the transport protocol is UDP and no IPV6 * options are used. */ data->mtu = sockopt_val - 8 - 40; ret = data->mtu; } break; # endif default: ret = 0; break; } # else ret = 0; # endif break; case BIO_CTRL_DGRAM_GET_FALLBACK_MTU: ret = -dgram_get_mtu_overhead(data); switch (BIO_ADDR_family(&data->peer)) { case AF_INET: ret += 576; break; # if OPENSSL_USE_IPV6 case AF_INET6: { # ifdef IN6_IS_ADDR_V4MAPPED struct in6_addr tmp_addr; if (BIO_ADDR_rawaddress(&data->peer, &tmp_addr, NULL) && IN6_IS_ADDR_V4MAPPED(&tmp_addr)) ret += 576; else # endif ret += 1280; } break; # endif default: ret += 576; break; } break; case BIO_CTRL_DGRAM_GET_MTU: return data->mtu; case BIO_CTRL_DGRAM_SET_MTU: data->mtu = num; ret = num; break; case BIO_CTRL_DGRAM_SET_CONNECTED: if (ptr != NULL) { data->connected = 1; BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr)); } else { data->connected = 0; memset(&data->peer, 0, sizeof(data->peer)); } break; case BIO_CTRL_DGRAM_GET_PEER: ret = BIO_ADDR_sockaddr_size(&data->peer); /* FIXME: if num < ret, we will only return part of an address. That should bee an error, no? */ if (num == 0 || num > ret) num = ret; memcpy(ptr, &data->peer, (ret = num)); break; case BIO_CTRL_DGRAM_SET_PEER: BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr)); break; case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT: memcpy(&(data->next_timeout), ptr, sizeof(struct timeval)); break; # if defined(SO_RCVTIMEO) case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT: # ifdef OPENSSL_SYS_WINDOWS { struct timeval *tv = (struct timeval *)ptr; int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); ret = -1; } } # else if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr, sizeof(struct timeval)) < 0) { perror("setsockopt"); ret = -1; } # endif break; case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT: { union { size_t s; int i; } sz = { 0 }; # ifdef OPENSSL_SYS_WINDOWS int timeout; struct timeval *tv = (struct timeval *)ptr; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); ret = -1; } else { tv->tv_sec = timeout / 1000; tv->tv_usec = (timeout % 1000) * 1000; ret = sizeof(*tv); } # else sz.i = sizeof(struct timeval); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr, (void *)&sz) < 0) { perror("getsockopt"); ret = -1; } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) { OPENSSL_assert(sz.s <= sizeof(struct timeval)); ret = (int)sz.s; } else ret = sz.i; # endif } break; # endif # if defined(SO_SNDTIMEO) case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT: # ifdef OPENSSL_SYS_WINDOWS { struct timeval *tv = (struct timeval *)ptr; int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); ret = -1; } } # else if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr, sizeof(struct timeval)) < 0) { perror("setsockopt"); ret = -1; } # endif break; case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT: { union { size_t s; int i; } sz = { 0 }; # ifdef OPENSSL_SYS_WINDOWS int timeout; struct timeval *tv = (struct timeval *)ptr; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); ret = -1; } else { tv->tv_sec = timeout / 1000; tv->tv_usec = (timeout % 1000) * 1000; ret = sizeof(*tv); } # else sz.i = sizeof(struct timeval); if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr, (void *)&sz) < 0) { perror("getsockopt"); ret = -1; } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) { OPENSSL_assert(sz.s <= sizeof(struct timeval)); ret = (int)sz.s; } else ret = sz.i; # endif } break; # endif case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP: /* fall-through */ case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP: # ifdef OPENSSL_SYS_WINDOWS d_errno = (data->_errno == WSAETIMEDOUT); # else d_errno = (data->_errno == EAGAIN); # endif if (d_errno) { ret = 1; data->_errno = 0; } else ret = 0; break; # ifdef EMSGSIZE case BIO_CTRL_DGRAM_MTU_EXCEEDED: if (data->_errno == EMSGSIZE) { ret = 1; data->_errno = 0; } else ret = 0; break; # endif case BIO_CTRL_DGRAM_SET_DONT_FRAG: sockopt_val = num ? 1 : 0; switch (data->peer.sa.sa_family) { case AF_INET: # if defined(IP_DONTFRAG) if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAG, &sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # elif defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined (IP_PMTUDISC_PROBE) if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT), (ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # elif defined(OPENSSL_SYS_WINDOWS) && defined(IP_DONTFRAGMENT) if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAGMENT, (const char *)&sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # else ret = -1; # endif break; # if OPENSSL_USE_IPV6 case AF_INET6: # if defined(IPV6_DONTFRAG) if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_DONTFRAG, (const void *)&sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # elif defined(OPENSSL_SYS_LINUX) && defined(IPV6_MTUDISCOVER) if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT), (ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # else ret = -1; # endif break; # endif default: ret = -1; break; } break; case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD: ret = dgram_get_mtu_overhead(data); break; /* * BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE is used here for compatibility * reasons. When BIO_CTRL_DGRAM_SET_PEEK_MODE was first defined its value * was incorrectly clashing with BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE. The * value has been updated to a non-clashing value. However to preserve * binary compatibility we now respond to both the old value and the new one */ case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE: case BIO_CTRL_DGRAM_SET_PEEK_MODE: data->peekmode = (unsigned int)num; break; default: ret = 0; break; } return ret; } static int dgram_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = dgram_write(bp, str, n); return ret; } # ifndef OPENSSL_NO_SCTP const BIO_METHOD *BIO_s_datagram_sctp(void) { return &methods_dgramp_sctp; } BIO *BIO_new_dgram_sctp(int fd, int close_flag) { BIO *bio; int ret, optval = 20000; int auth_data = 0, auth_forward = 0; unsigned char *p; struct sctp_authchunk auth; struct sctp_authchunks *authchunks; socklen_t sockopt_len; # ifdef SCTP_AUTHENTICATION_EVENT # ifdef SCTP_EVENT struct sctp_event event; # else struct sctp_event_subscribe event; # endif # endif bio = BIO_new(BIO_s_datagram_sctp()); if (bio == NULL) return NULL; BIO_set_fd(bio, fd, close_flag); /* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */ auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct sctp_authchunk)); if (ret < 0) { BIO_vfree(bio); BIOerr(BIO_F_BIO_NEW_DGRAM_SCTP, ERR_R_SYS_LIB); ERR_add_error_data(1, "Ensure SCTP AUTH chunks are enabled in kernel"); return NULL; } auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct sctp_authchunk)); if (ret < 0) { BIO_vfree(bio); BIOerr(BIO_F_BIO_NEW_DGRAM_SCTP, ERR_R_SYS_LIB); ERR_add_error_data(1, "Ensure SCTP AUTH chunks are enabled in kernel"); return NULL; } /* * Test if activation was successful. When using accept(), SCTP-AUTH has * to be activated for the listening socket already, otherwise the * connected socket won't use it. Similarly with connect(): the socket * prior to connection must be activated for SCTP-AUTH */ sockopt_len = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t)); authchunks = OPENSSL_zalloc(sockopt_len); if (authchunks == NULL) { BIO_vfree(bio); return NULL; } ret = getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks, &sockopt_len); if (ret < 0) { OPENSSL_free(authchunks); BIO_vfree(bio); return NULL; } for (p = (unsigned char *)authchunks->gauth_chunks; p < (unsigned char *)authchunks + sockopt_len; p += sizeof(uint8_t)) { if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_data = 1; if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE) auth_forward = 1; } OPENSSL_free(authchunks); if (!auth_data || !auth_forward) { BIO_vfree(bio); BIOerr(BIO_F_BIO_NEW_DGRAM_SCTP, ERR_R_SYS_LIB); ERR_add_error_data(1, "Ensure SCTP AUTH chunks are enabled on the " "underlying socket"); return NULL; } # ifdef SCTP_AUTHENTICATION_EVENT # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_AUTHENTICATION_EVENT; event.se_on = 1; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); if (ret < 0) { BIO_vfree(bio); return NULL; } # else sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe); ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len); if (ret < 0) { BIO_vfree(bio); return NULL; } event.sctp_authentication_event = 1; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); if (ret < 0) { BIO_vfree(bio); return NULL; } # endif # endif /* * Disable partial delivery by setting the min size larger than the max * record size of 2^14 + 2048 + 13 */ ret = setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval, sizeof(optval)); if (ret < 0) { BIO_vfree(bio); return NULL; } return bio; } int BIO_dgram_is_sctp(BIO *bio) { return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP); } static int dgram_sctp_new(BIO *bi) { bio_dgram_sctp_data *data = NULL; bi->init = 0; bi->num = 0; if ((data = OPENSSL_zalloc(sizeof(*data))) == NULL) { BIOerr(BIO_F_DGRAM_SCTP_NEW, ERR_R_MALLOC_FAILURE); return 0; } # ifdef SCTP_PR_SCTP_NONE data->prinfo.pr_policy = SCTP_PR_SCTP_NONE; # endif bi->ptr = data; bi->flags = 0; return 1; } static int dgram_sctp_free(BIO *a) { bio_dgram_sctp_data *data; if (a == NULL) return 0; if (!dgram_clear(a)) return 0; data = (bio_dgram_sctp_data *) a->ptr; if (data != NULL) OPENSSL_free(data); return 1; } # ifdef SCTP_AUTHENTICATION_EVENT void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification *snp) { int ret; struct sctp_authkey_event *authkeyevent = &snp->sn_auth_event; if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY) { struct sctp_authkeyid authkeyid; /* delete key */ authkeyid.scact_keynumber = authkeyevent->auth_keynumber; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); } } # endif static int dgram_sctp_read(BIO *b, char *out, int outl) { int ret = 0, n = 0, i, optval; socklen_t optlen; bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; union sctp_notification *snp; struct msghdr msg; struct iovec iov; struct cmsghdr *cmsg; char cmsgbuf[512]; if (out != NULL) { clear_socket_error(); do { memset(&data->rcvinfo, 0, sizeof(data->rcvinfo)); iov.iov_base = out; iov.iov_len = outl; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = cmsgbuf; msg.msg_controllen = 512; msg.msg_flags = 0; n = recvmsg(b->num, &msg, 0); if (n <= 0) { if (n < 0) ret = n; break; } if (msg.msg_controllen > 0) { for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level != IPPROTO_SCTP) continue; # ifdef SCTP_RCVINFO if (cmsg->cmsg_type == SCTP_RCVINFO) { struct sctp_rcvinfo *rcvinfo; rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg); data->rcvinfo.rcv_sid = rcvinfo->rcv_sid; data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn; data->rcvinfo.rcv_flags = rcvinfo->rcv_flags; data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid; data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn; data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn; data->rcvinfo.rcv_context = rcvinfo->rcv_context; } # endif # ifdef SCTP_SNDRCV if (cmsg->cmsg_type == SCTP_SNDRCV) { struct sctp_sndrcvinfo *sndrcvinfo; sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream; data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn; data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags; data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid; data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn; data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn; data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context; } # endif } } if (msg.msg_flags & MSG_NOTIFICATION) { snp = (union sctp_notification *)out; if (snp->sn_header.sn_type == SCTP_SENDER_DRY_EVENT) { # ifdef SCTP_EVENT struct sctp_event event; # else struct sctp_event_subscribe event; socklen_t eventsize; # endif /* disable sender dry event */ # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_SENDER_DRY_EVENT; event.se_on = 0; i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); if (i < 0) { ret = i; break; } # else eventsize = sizeof(struct sctp_event_subscribe); i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize); if (i < 0) { ret = i; break; } event.sctp_sender_dry_event = 0; i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); if (i < 0) { ret = i; break; } # endif } # ifdef SCTP_AUTHENTICATION_EVENT if (snp->sn_header.sn_type == SCTP_AUTHENTICATION_EVENT) dgram_sctp_handle_auth_free_key_event(b, snp); # endif if (data->handle_notifications != NULL) data->handle_notifications(b, data->notification_context, (void *)out); memset(out, 0, outl); } else ret += n; } while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR) && (ret < outl)); if (ret > 0 && !(msg.msg_flags & MSG_EOR)) { /* Partial message read, this should never happen! */ /* * The buffer was too small, this means the peer sent a message * that was larger than allowed. */ if (ret == outl) return -1; /* * Test if socket buffer can handle max record size (2^14 + 2048 * + 13) */ optlen = (socklen_t) sizeof(int); ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen); if (ret >= 0) OPENSSL_assert(optval >= 18445); /* * Test if SCTP doesn't partially deliver below max record size * (2^14 + 2048 + 13) */ optlen = (socklen_t) sizeof(int); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval, &optlen); if (ret >= 0) OPENSSL_assert(optval >= 18445); /* * Partially delivered notification??? Probably a bug.... */ OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION)); /* * Everything seems ok till now, so it's most likely a message * dropped by PR-SCTP. */ memset(out, 0, outl); BIO_set_retry_read(b); return -1; } BIO_clear_retry_flags(b); if (ret < 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_read(b); data->_errno = get_last_socket_error(); } } /* Test if peer uses SCTP-AUTH before continuing */ if (!data->peer_auth_tested) { int ii, auth_data = 0, auth_forward = 0; unsigned char *p; struct sctp_authchunks *authchunks; optlen = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t)); authchunks = OPENSSL_malloc(optlen); if (authchunks == NULL) { BIOerr(BIO_F_DGRAM_SCTP_READ, ERR_R_MALLOC_FAILURE); return -1; } memset(authchunks, 0, optlen); ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS, authchunks, &optlen); if (ii >= 0) for (p = (unsigned char *)authchunks->gauth_chunks; p < (unsigned char *)authchunks + optlen; p += sizeof(uint8_t)) { if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_data = 1; if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE) auth_forward = 1; } OPENSSL_free(authchunks); if (!auth_data || !auth_forward) { BIOerr(BIO_F_DGRAM_SCTP_READ, BIO_R_CONNECT_ERROR); return -1; } data->peer_auth_tested = 1; } } return ret; } /* * dgram_sctp_write - send message on SCTP socket * @b: BIO to write to * @in: data to send * @inl: amount of bytes in @in to send * * Returns -1 on error or the sent amount of bytes on success */ static int dgram_sctp_write(BIO *b, const char *in, int inl) { int ret; bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo); struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo); struct bio_dgram_sctp_sndinfo handshake_sinfo; struct iovec iov[1]; struct msghdr msg; struct cmsghdr *cmsg; # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO) char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) + CMSG_SPACE(sizeof(struct sctp_prinfo))]; struct sctp_sndinfo *sndinfo; struct sctp_prinfo *prinfo; # else char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; struct sctp_sndrcvinfo *sndrcvinfo; # endif clear_socket_error(); /* * If we're send anything else than application data, disable all user * parameters and flags. */ if (in[0] != 23) { memset(&handshake_sinfo, 0, sizeof(handshake_sinfo)); # ifdef SCTP_SACK_IMMEDIATELY handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY; # endif sinfo = &handshake_sinfo; } /* We can only send a shutdown alert if the socket is dry */ if (data->save_shutdown) { ret = BIO_dgram_sctp_wait_for_dry(b); if (ret < 0) return -1; if (ret == 0) { BIO_clear_retry_flags(b); BIO_set_retry_write(b); return -1; } } iov[0].iov_base = (char *)in; iov[0].iov_len = inl; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_control = (caddr_t) cmsgbuf; msg.msg_controllen = 0; msg.msg_flags = 0; # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO) cmsg = (struct cmsghdr *)cmsgbuf; cmsg->cmsg_level = IPPROTO_SCTP; cmsg->cmsg_type = SCTP_SNDINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo)); sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg); memset(sndinfo, 0, sizeof(*sndinfo)); sndinfo->snd_sid = sinfo->snd_sid; sndinfo->snd_flags = sinfo->snd_flags; sndinfo->snd_ppid = sinfo->snd_ppid; sndinfo->snd_context = sinfo->snd_context; msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo)); cmsg = (struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))]; cmsg->cmsg_level = IPPROTO_SCTP; cmsg->cmsg_type = SCTP_PRINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo)); prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg); memset(prinfo, 0, sizeof(*prinfo)); prinfo->pr_policy = pinfo->pr_policy; prinfo->pr_value = pinfo->pr_value; msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo)); # else cmsg = (struct cmsghdr *)cmsgbuf; cmsg->cmsg_level = IPPROTO_SCTP; cmsg->cmsg_type = SCTP_SNDRCV; cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo)); sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); memset(sndrcvinfo, 0, sizeof(*sndrcvinfo)); sndrcvinfo->sinfo_stream = sinfo->snd_sid; sndrcvinfo->sinfo_flags = sinfo->snd_flags; # ifdef __FreeBSD__ sndrcvinfo->sinfo_flags |= pinfo->pr_policy; # endif sndrcvinfo->sinfo_ppid = sinfo->snd_ppid; sndrcvinfo->sinfo_context = sinfo->snd_context; sndrcvinfo->sinfo_timetolive = pinfo->pr_value; msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo)); # endif ret = sendmsg(b->num, &msg, 0); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_write(b); data->_errno = get_last_socket_error(); } } return ret; } static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; bio_dgram_sctp_data *data = NULL; socklen_t sockopt_len = 0; struct sctp_authkeyid authkeyid; struct sctp_authkey *authkey = NULL; data = (bio_dgram_sctp_data *) b->ptr; switch (cmd) { case BIO_CTRL_DGRAM_QUERY_MTU: /* * Set to maximum (2^14) and ignore user input to enable transport * protocol fragmentation. Returns always 2^14. */ data->mtu = 16384; ret = data->mtu; break; case BIO_CTRL_DGRAM_SET_MTU: /* * Set to maximum (2^14) and ignore input to enable transport * protocol fragmentation. Returns always 2^14. */ data->mtu = 16384; ret = data->mtu; break; case BIO_CTRL_DGRAM_SET_CONNECTED: case BIO_CTRL_DGRAM_CONNECT: /* Returns always -1. */ ret = -1; break; case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT: /* * SCTP doesn't need the DTLS timer Returns always 1. */ break; case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD: /* * We allow transport protocol fragmentation so this is irrelevant */ ret = 0; break; case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE: if (num > 0) data->in_handshake = 1; else data->in_handshake = 0; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY, &data->in_handshake, sizeof(int)); break; case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY: /* * New shared key for SCTP AUTH. Returns 0 on success, -1 otherwise. */ /* Get active key */ sockopt_len = sizeof(struct sctp_authkeyid); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len); if (ret < 0) break; /* Add new key */ sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t); authkey = OPENSSL_malloc(sockopt_len); if (authkey == NULL) { ret = -1; break; } memset(authkey, 0, sockopt_len); authkey->sca_keynumber = authkeyid.scact_keynumber + 1; # ifndef __FreeBSD__ /* * This field is missing in FreeBSD 8.2 and earlier, and FreeBSD 8.3 * and higher work without it. */ authkey->sca_keylength = 64; # endif memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t)); ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey, sockopt_len); OPENSSL_free(authkey); authkey = NULL; if (ret < 0) break; /* Reset active key */ ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); if (ret < 0) break; break; case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY: /* Returns 0 on success, -1 otherwise. */ /* Get active key */ sockopt_len = sizeof(struct sctp_authkeyid); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len); if (ret < 0) break; /* Set active key */ authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); if (ret < 0) break; /* * CCS has been sent, so remember that and fall through to check if * we need to deactivate an old key */ data->ccs_sent = 1; /* fall-through */ case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD: /* Returns 0 on success, -1 otherwise. */ /* * Has this command really been called or is this just a * fall-through? */ if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD) data->ccs_rcvd = 1; /* * CSS has been both, received and sent, so deactivate an old key */ if (data->ccs_rcvd == 1 && data->ccs_sent == 1) { /* Get active key */ sockopt_len = sizeof(struct sctp_authkeyid); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len); if (ret < 0) break; /* * Deactivate key or delete second last key if * SCTP_AUTHENTICATION_EVENT is not available. */ authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1; # ifdef SCTP_AUTH_DEACTIVATE_KEY sockopt_len = sizeof(struct sctp_authkeyid); ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY, &authkeyid, sockopt_len); if (ret < 0) break; # endif # ifndef SCTP_AUTHENTICATION_EVENT if (authkeyid.scact_keynumber > 0) { authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); if (ret < 0) break; } # endif data->ccs_rcvd = 0; data->ccs_sent = 0; } break; case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo)) num = sizeof(struct bio_dgram_sctp_sndinfo); memcpy(ptr, &(data->sndinfo), num); ret = num; break; case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo)) num = sizeof(struct bio_dgram_sctp_sndinfo); memcpy(&(data->sndinfo), ptr, num); break; case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo)) num = sizeof(struct bio_dgram_sctp_rcvinfo); memcpy(ptr, &data->rcvinfo, num); ret = num; break; case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo)) num = sizeof(struct bio_dgram_sctp_rcvinfo); memcpy(&(data->rcvinfo), ptr, num); break; case BIO_CTRL_DGRAM_SCTP_GET_PRINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_prinfo)) num = sizeof(struct bio_dgram_sctp_prinfo); memcpy(ptr, &(data->prinfo), num); ret = num; break; case BIO_CTRL_DGRAM_SCTP_SET_PRINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_prinfo)) num = sizeof(struct bio_dgram_sctp_prinfo); memcpy(&(data->prinfo), ptr, num); break; case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN: /* Returns always 1. */ if (num > 0) data->save_shutdown = 1; else data->save_shutdown = 0; break; default: /* * Pass to default ctrl function to process SCTP unspecific commands */ ret = dgram_ctrl(b, cmd, num, ptr); break; } return ret; } int BIO_dgram_sctp_notification_cb(BIO *b, void (*handle_notifications) (BIO *bio, void *context, void *buf), void *context) { bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; if (handle_notifications != NULL) { data->handle_notifications = handle_notifications; data->notification_context = context; } else return -1; return 0; } /* * BIO_dgram_sctp_wait_for_dry - Wait for SCTP SENDER_DRY event * @b: The BIO to check for the dry event * * Wait until the peer confirms all packets have been received, and so that * our kernel doesn't have anything to send anymore. This is only received by * the peer's kernel, not the application. * * Returns: * -1 on error * 0 when not dry yet * 1 when dry */ int BIO_dgram_sctp_wait_for_dry(BIO *b) { int is_dry = 0; int sockflags = 0; int n, ret; union sctp_notification snp; struct msghdr msg; struct iovec iov; # ifdef SCTP_EVENT struct sctp_event event; # else struct sctp_event_subscribe event; socklen_t eventsize; # endif bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; /* set sender dry event */ # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_SENDER_DRY_EVENT; event.se_on = 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); # else eventsize = sizeof(struct sctp_event_subscribe); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize); if (ret < 0) return -1; event.sctp_sender_dry_event = 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); # endif if (ret < 0) return -1; /* peek for notification */ memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; n = recvmsg(b->num, &msg, MSG_PEEK); if (n <= 0) { if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK)) return -1; else return 0; } /* if we find a notification, process it and try again if necessary */ while (msg.msg_flags & MSG_NOTIFICATION) { memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; n = recvmsg(b->num, &msg, 0); if (n <= 0) { if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK)) return -1; else return is_dry; } if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) { is_dry = 1; /* disable sender dry event */ # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_SENDER_DRY_EVENT; event.se_on = 0; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); # else eventsize = (socklen_t) sizeof(struct sctp_event_subscribe); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize); if (ret < 0) return -1; event.sctp_sender_dry_event = 0; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); # endif if (ret < 0) return -1; } # ifdef SCTP_AUTHENTICATION_EVENT if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT) dgram_sctp_handle_auth_free_key_event(b, &snp); # endif if (data->handle_notifications != NULL) data->handle_notifications(b, data->notification_context, (void *)&snp); /* found notification, peek again */ memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; /* if we have seen the dry already, don't wait */ if (is_dry) { sockflags = fcntl(b->num, F_GETFL, 0); fcntl(b->num, F_SETFL, O_NONBLOCK); } n = recvmsg(b->num, &msg, MSG_PEEK); if (is_dry) { fcntl(b->num, F_SETFL, sockflags); } if (n <= 0) { if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK)) return -1; else return is_dry; } } /* read anything else */ return is_dry; } int BIO_dgram_sctp_msg_waiting(BIO *b) { int n, sockflags; union sctp_notification snp; struct msghdr msg; struct iovec iov; bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; /* Check if there are any messages waiting to be read */ do { memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; sockflags = fcntl(b->num, F_GETFL, 0); fcntl(b->num, F_SETFL, O_NONBLOCK); n = recvmsg(b->num, &msg, MSG_PEEK); fcntl(b->num, F_SETFL, sockflags); /* if notification, process and try again */ if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)) { # ifdef SCTP_AUTHENTICATION_EVENT if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT) dgram_sctp_handle_auth_free_key_event(b, &snp); # endif memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; n = recvmsg(b->num, &msg, 0); if (data->handle_notifications != NULL) data->handle_notifications(b, data->notification_context, (void *)&snp); } } while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)); /* Return 1 if there is a message to be read, return 0 otherwise. */ if (n > 0) return 1; else return 0; } static int dgram_sctp_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = dgram_sctp_write(bp, str, n); return ret; } # endif static int BIO_dgram_should_retry(int i) { int err; if ((i == 0) || (i == -1)) { err = get_last_socket_error(); # if defined(OPENSSL_SYS_WINDOWS) /* * If the socket return value (i) is -1 and err is unexpectedly 0 at * this point, the error code was overwritten by another system call * before this error handling is called. */ # endif return BIO_dgram_non_fatal_error(err); } return 0; } int BIO_dgram_non_fatal_error(int err) { switch (err) { # if defined(OPENSSL_SYS_WINDOWS) # if defined(WSAEWOULDBLOCK) case WSAEWOULDBLOCK: # endif # endif # ifdef EWOULDBLOCK # ifdef WSAEWOULDBLOCK # if WSAEWOULDBLOCK != EWOULDBLOCK case EWOULDBLOCK: # endif # else case EWOULDBLOCK: # endif # endif # ifdef EINTR case EINTR: # endif # ifdef EAGAIN # if EWOULDBLOCK != EAGAIN case EAGAIN: # endif # endif # ifdef EPROTO case EPROTO: # endif # ifdef EINPROGRESS case EINPROGRESS: # endif # ifdef EALREADY case EALREADY: # endif return 1; default: break; } return 0; } static void get_current_time(struct timeval *t) { # if defined(_WIN32) SYSTEMTIME st; union { unsigned __int64 ul; FILETIME ft; } now; GetSystemTime(&st); SystemTimeToFileTime(&st, &now.ft); # ifdef __MINGW32__ now.ul -= 116444736000000000ULL; # else now.ul -= 116444736000000000UI64; /* re-bias to 1/1/1970 */ # endif t->tv_sec = (long)(now.ul / 10000000); t->tv_usec = ((int)(now.ul % 10000000)) / 10; # else gettimeofday(t, NULL); # endif } #endif openssl-1.1.1f/crypto/bio/bss_fd.c000066400000000000000000000133061364063235100170460ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #if defined(OPENSSL_NO_POSIX_IO) /* * Dummy placeholder for BIO_s_fd... */ BIO *BIO_new_fd(int fd, int close_flag) { return NULL; } int BIO_fd_non_fatal_error(int err) { return 0; } int BIO_fd_should_retry(int i) { return 0; } const BIO_METHOD *BIO_s_fd(void) { return NULL; } #else /* * As for unconditional usage of "UPLINK" interface in this module. * Trouble is that unlike Unix file descriptors [which are indexes * in kernel-side per-process table], corresponding descriptors on * platforms which require "UPLINK" interface seem to be indexes * in a user-land, non-global table. Well, in fact they are indexes * in stdio _iob[], and recall that _iob[] was the very reason why * "UPLINK" interface was introduced in first place. But one way on * another. Neither libcrypto or libssl use this BIO meaning that * file descriptors can only be provided by application. Therefore * "UPLINK" calls are due... */ static int fd_write(BIO *h, const char *buf, int num); static int fd_read(BIO *h, char *buf, int size); static int fd_puts(BIO *h, const char *str); static int fd_gets(BIO *h, char *buf, int size); static long fd_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int fd_new(BIO *h); static int fd_free(BIO *data); int BIO_fd_should_retry(int s); static const BIO_METHOD methods_fdp = { BIO_TYPE_FD, "file descriptor", /* TODO: Convert to new style write function */ bwrite_conv, fd_write, /* TODO: Convert to new style read function */ bread_conv, fd_read, fd_puts, fd_gets, fd_ctrl, fd_new, fd_free, NULL, /* fd_callback_ctrl */ }; const BIO_METHOD *BIO_s_fd(void) { return &methods_fdp; } BIO *BIO_new_fd(int fd, int close_flag) { BIO *ret; ret = BIO_new(BIO_s_fd()); if (ret == NULL) return NULL; BIO_set_fd(ret, fd, close_flag); return ret; } static int fd_new(BIO *bi) { bi->init = 0; bi->num = -1; bi->ptr = NULL; bi->flags = BIO_FLAGS_UPLINK; /* essentially redundant */ return 1; } static int fd_free(BIO *a) { if (a == NULL) return 0; if (a->shutdown) { if (a->init) { UP_close(a->num); } a->init = 0; a->flags = BIO_FLAGS_UPLINK; } return 1; } static int fd_read(BIO *b, char *out, int outl) { int ret = 0; if (out != NULL) { clear_sys_error(); ret = UP_read(b->num, out, outl); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_fd_should_retry(ret)) BIO_set_retry_read(b); else if (ret == 0) b->flags |= BIO_FLAGS_IN_EOF; } } return ret; } static int fd_write(BIO *b, const char *in, int inl) { int ret; clear_sys_error(); ret = UP_write(b->num, in, inl); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_fd_should_retry(ret)) BIO_set_retry_write(b); } return ret; } static long fd_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; int *ip; switch (cmd) { case BIO_CTRL_RESET: num = 0; /* fall thru */ case BIO_C_FILE_SEEK: ret = (long)UP_lseek(b->num, num, 0); break; case BIO_C_FILE_TELL: case BIO_CTRL_INFO: ret = (long)UP_lseek(b->num, 0, 1); break; case BIO_C_SET_FD: fd_free(b); b->num = *((int *)ptr); b->shutdown = (int)num; b->init = 1; break; case BIO_C_GET_FD: if (b->init) { ip = (int *)ptr; if (ip != NULL) *ip = b->num; ret = b->num; } else ret = -1; break; case BIO_CTRL_GET_CLOSE: ret = b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_PENDING: case BIO_CTRL_WPENDING: ret = 0; break; case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_EOF: ret = (b->flags & BIO_FLAGS_IN_EOF) != 0 ? 1 : 0; break; default: ret = 0; break; } return ret; } static int fd_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = fd_write(bp, str, n); return ret; } static int fd_gets(BIO *bp, char *buf, int size) { int ret = 0; char *ptr = buf; char *end = buf + size - 1; while (ptr < end && fd_read(bp, ptr, 1) > 0) { if (*ptr++ == '\n') break; } ptr[0] = '\0'; if (buf[0] != '\0') ret = strlen(buf); return ret; } int BIO_fd_should_retry(int i) { int err; if ((i == 0) || (i == -1)) { err = get_last_sys_error(); return BIO_fd_non_fatal_error(err); } return 0; } int BIO_fd_non_fatal_error(int err) { switch (err) { # ifdef EWOULDBLOCK # ifdef WSAEWOULDBLOCK # if WSAEWOULDBLOCK != EWOULDBLOCK case EWOULDBLOCK: # endif # else case EWOULDBLOCK: # endif # endif # if defined(ENOTCONN) case ENOTCONN: # endif # ifdef EINTR case EINTR: # endif # ifdef EAGAIN # if EWOULDBLOCK != EAGAIN case EAGAIN: # endif # endif # ifdef EPROTO case EPROTO: # endif # ifdef EINPROGRESS case EINPROGRESS: # endif # ifdef EALREADY case EALREADY: # endif return 1; default: break; } return 0; } #endif openssl-1.1.1f/crypto/bio/bss_file.c000066400000000000000000000264621364063235100174030ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #if defined(__linux) || defined(__sun) || defined(__hpux) /* * Following definition aliases fopen to fopen64 on above mentioned * platforms. This makes it possible to open and sequentially access files * larger than 2GB from 32-bit application. It does not allow to traverse * them beyond 2GB with fseek/ftell, but on the other hand *no* 32-bit * platform permits that, not with fseek/ftell. Not to mention that breaking * 2GB limit for seeking would require surgery to *our* API. But sequential * access suffices for practical cases when you can run into large files, * such as fingerprinting, so we can let API alone. For reference, the list * of 32-bit platforms which allow for sequential access of large files * without extra "magic" comprise *BSD, Darwin, IRIX... */ # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif #endif #include #include #include "bio_local.h" #include #if !defined(OPENSSL_NO_STDIO) static int file_write(BIO *h, const char *buf, int num); static int file_read(BIO *h, char *buf, int size); static int file_puts(BIO *h, const char *str); static int file_gets(BIO *h, char *str, int size); static long file_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int file_new(BIO *h); static int file_free(BIO *data); static const BIO_METHOD methods_filep = { BIO_TYPE_FILE, "FILE pointer", /* TODO: Convert to new style write function */ bwrite_conv, file_write, /* TODO: Convert to new style read function */ bread_conv, file_read, file_puts, file_gets, file_ctrl, file_new, file_free, NULL, /* file_callback_ctrl */ }; BIO *BIO_new_file(const char *filename, const char *mode) { BIO *ret; FILE *file = openssl_fopen(filename, mode); int fp_flags = BIO_CLOSE; if (strchr(mode, 'b') == NULL) fp_flags |= BIO_FP_TEXT; if (file == NULL) { SYSerr(SYS_F_FOPEN, get_last_sys_error()); ERR_add_error_data(5, "fopen('", filename, "','", mode, "')"); if (errno == ENOENT #ifdef ENXIO || errno == ENXIO #endif ) BIOerr(BIO_F_BIO_NEW_FILE, BIO_R_NO_SUCH_FILE); else BIOerr(BIO_F_BIO_NEW_FILE, ERR_R_SYS_LIB); return NULL; } if ((ret = BIO_new(BIO_s_file())) == NULL) { fclose(file); return NULL; } BIO_clear_flags(ret, BIO_FLAGS_UPLINK); /* we did fopen -> we disengage * UPLINK */ BIO_set_fp(ret, file, fp_flags); return ret; } BIO *BIO_new_fp(FILE *stream, int close_flag) { BIO *ret; if ((ret = BIO_new(BIO_s_file())) == NULL) return NULL; /* redundant flag, left for documentation purposes */ BIO_set_flags(ret, BIO_FLAGS_UPLINK); BIO_set_fp(ret, stream, close_flag); return ret; } const BIO_METHOD *BIO_s_file(void) { return &methods_filep; } static int file_new(BIO *bi) { bi->init = 0; bi->num = 0; bi->ptr = NULL; bi->flags = BIO_FLAGS_UPLINK; /* default to UPLINK */ return 1; } static int file_free(BIO *a) { if (a == NULL) return 0; if (a->shutdown) { if ((a->init) && (a->ptr != NULL)) { if (a->flags & BIO_FLAGS_UPLINK) UP_fclose(a->ptr); else fclose(a->ptr); a->ptr = NULL; a->flags = BIO_FLAGS_UPLINK; } a->init = 0; } return 1; } static int file_read(BIO *b, char *out, int outl) { int ret = 0; if (b->init && (out != NULL)) { if (b->flags & BIO_FLAGS_UPLINK) ret = UP_fread(out, 1, (int)outl, b->ptr); else ret = fread(out, 1, (int)outl, (FILE *)b->ptr); if (ret == 0 && (b->flags & BIO_FLAGS_UPLINK) ? UP_ferror((FILE *)b->ptr) : ferror((FILE *)b->ptr)) { SYSerr(SYS_F_FREAD, get_last_sys_error()); BIOerr(BIO_F_FILE_READ, ERR_R_SYS_LIB); ret = -1; } } return ret; } static int file_write(BIO *b, const char *in, int inl) { int ret = 0; if (b->init && (in != NULL)) { if (b->flags & BIO_FLAGS_UPLINK) ret = UP_fwrite(in, (int)inl, 1, b->ptr); else ret = fwrite(in, (int)inl, 1, (FILE *)b->ptr); if (ret) ret = inl; /* ret=fwrite(in,1,(int)inl,(FILE *)b->ptr); */ /* * according to Tim Hudson , the commented out * version above can cause 'inl' write calls under some stupid stdio * implementations (VMS) */ } return ret; } static long file_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; FILE *fp = (FILE *)b->ptr; FILE **fpp; char p[4]; int st; switch (cmd) { case BIO_C_FILE_SEEK: case BIO_CTRL_RESET: if (b->flags & BIO_FLAGS_UPLINK) ret = (long)UP_fseek(b->ptr, num, 0); else ret = (long)fseek(fp, num, 0); break; case BIO_CTRL_EOF: if (b->flags & BIO_FLAGS_UPLINK) ret = (long)UP_feof(fp); else ret = (long)feof(fp); break; case BIO_C_FILE_TELL: case BIO_CTRL_INFO: if (b->flags & BIO_FLAGS_UPLINK) ret = UP_ftell(b->ptr); else ret = ftell(fp); break; case BIO_C_SET_FILE_PTR: file_free(b); b->shutdown = (int)num & BIO_CLOSE; b->ptr = ptr; b->init = 1; # if BIO_FLAGS_UPLINK!=0 # if defined(__MINGW32__) && defined(__MSVCRT__) && !defined(_IOB_ENTRIES) # define _IOB_ENTRIES 20 # endif /* Safety net to catch purely internal BIO_set_fp calls */ # if defined(_MSC_VER) && _MSC_VER>=1900 if (ptr == stdin || ptr == stdout || ptr == stderr) BIO_clear_flags(b, BIO_FLAGS_UPLINK); # elif defined(_IOB_ENTRIES) if ((size_t)ptr >= (size_t)stdin && (size_t)ptr < (size_t)(stdin + _IOB_ENTRIES)) BIO_clear_flags(b, BIO_FLAGS_UPLINK); # endif # endif # ifdef UP_fsetmod if (b->flags & BIO_FLAGS_UPLINK) UP_fsetmod(b->ptr, (char)((num & BIO_FP_TEXT) ? 't' : 'b')); else # endif { # if defined(OPENSSL_SYS_WINDOWS) int fd = _fileno((FILE *)ptr); if (num & BIO_FP_TEXT) _setmode(fd, _O_TEXT); else _setmode(fd, _O_BINARY); # elif defined(OPENSSL_SYS_MSDOS) int fd = fileno((FILE *)ptr); /* Set correct text/binary mode */ if (num & BIO_FP_TEXT) _setmode(fd, _O_TEXT); /* Dangerous to set stdin/stdout to raw (unless redirected) */ else { if (fd == STDIN_FILENO || fd == STDOUT_FILENO) { if (isatty(fd) <= 0) _setmode(fd, _O_BINARY); } else _setmode(fd, _O_BINARY); } # elif defined(OPENSSL_SYS_WIN32_CYGWIN) int fd = fileno((FILE *)ptr); if (!(num & BIO_FP_TEXT)) setmode(fd, O_BINARY); # endif } break; case BIO_C_SET_FILENAME: file_free(b); b->shutdown = (int)num & BIO_CLOSE; if (num & BIO_FP_APPEND) { if (num & BIO_FP_READ) OPENSSL_strlcpy(p, "a+", sizeof(p)); else OPENSSL_strlcpy(p, "a", sizeof(p)); } else if ((num & BIO_FP_READ) && (num & BIO_FP_WRITE)) OPENSSL_strlcpy(p, "r+", sizeof(p)); else if (num & BIO_FP_WRITE) OPENSSL_strlcpy(p, "w", sizeof(p)); else if (num & BIO_FP_READ) OPENSSL_strlcpy(p, "r", sizeof(p)); else { BIOerr(BIO_F_FILE_CTRL, BIO_R_BAD_FOPEN_MODE); ret = 0; break; } # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) if (!(num & BIO_FP_TEXT)) OPENSSL_strlcat(p, "b", sizeof(p)); else OPENSSL_strlcat(p, "t", sizeof(p)); # elif defined(OPENSSL_SYS_WIN32_CYGWIN) if (!(num & BIO_FP_TEXT)) OPENSSL_strlcat(p, "b", sizeof(p)); # endif fp = openssl_fopen(ptr, p); if (fp == NULL) { SYSerr(SYS_F_FOPEN, get_last_sys_error()); ERR_add_error_data(5, "fopen('", ptr, "','", p, "')"); BIOerr(BIO_F_FILE_CTRL, ERR_R_SYS_LIB); ret = 0; break; } b->ptr = fp; b->init = 1; BIO_clear_flags(b, BIO_FLAGS_UPLINK); /* we did fopen -> we disengage * UPLINK */ break; case BIO_C_GET_FILE_PTR: /* the ptr parameter is actually a FILE ** in this case. */ if (ptr != NULL) { fpp = (FILE **)ptr; *fpp = (FILE *)b->ptr; } break; case BIO_CTRL_GET_CLOSE: ret = (long)b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_FLUSH: st = b->flags & BIO_FLAGS_UPLINK ? UP_fflush(b->ptr) : fflush((FILE *)b->ptr); if (st == EOF) { SYSerr(SYS_F_FFLUSH, get_last_sys_error()); ERR_add_error_data(1, "fflush()"); BIOerr(BIO_F_FILE_CTRL, ERR_R_SYS_LIB); ret = 0; } break; case BIO_CTRL_DUP: ret = 1; break; case BIO_CTRL_WPENDING: case BIO_CTRL_PENDING: case BIO_CTRL_PUSH: case BIO_CTRL_POP: default: ret = 0; break; } return ret; } static int file_gets(BIO *bp, char *buf, int size) { int ret = 0; buf[0] = '\0'; if (bp->flags & BIO_FLAGS_UPLINK) { if (!UP_fgets(buf, size, bp->ptr)) goto err; } else { if (!fgets(buf, size, (FILE *)bp->ptr)) goto err; } if (buf[0] != '\0') ret = strlen(buf); err: return ret; } static int file_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = file_write(bp, str, n); return ret; } #else static int file_write(BIO *b, const char *in, int inl) { return -1; } static int file_read(BIO *b, char *out, int outl) { return -1; } static int file_puts(BIO *bp, const char *str) { return -1; } static int file_gets(BIO *bp, char *buf, int size) { return 0; } static long file_ctrl(BIO *b, int cmd, long num, void *ptr) { return 0; } static int file_new(BIO *bi) { return 0; } static int file_free(BIO *a) { return 0; } static const BIO_METHOD methods_filep = { BIO_TYPE_FILE, "FILE pointer", /* TODO: Convert to new style write function */ bwrite_conv, file_write, /* TODO: Convert to new style read function */ bread_conv, file_read, file_puts, file_gets, file_ctrl, file_new, file_free, NULL, /* file_callback_ctrl */ }; const BIO_METHOD *BIO_s_file(void) { return &methods_filep; } BIO *BIO_new_file(const char *filename, const char *mode) { return NULL; } #endif /* OPENSSL_NO_STDIO */ openssl-1.1.1f/crypto/bio/bss_log.c000066400000000000000000000227761364063235100172510ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Why BIO_s_log? * * BIO_s_log is useful for system daemons (or services under NT). It is * one-way BIO, it sends all stuff to syslogd (on system that commonly use * that), or event log (on NT), or OPCOM (on OpenVMS). * */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" #if defined(OPENSSL_SYS_WINCE) #elif defined(OPENSSL_SYS_WIN32) #elif defined(OPENSSL_SYS_VMS) # include # include # include # include /* Some compiler options may mask the declaration of "_malloc32". */ # if __INITIAL_POINTER_SIZE && defined _ANSI_C_SOURCE # if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size save # pragma pointer_size 32 void *_malloc32(__size_t); # pragma pointer_size restore # endif /* __INITIAL_POINTER_SIZE == 64 */ # endif /* __INITIAL_POINTER_SIZE && defined * _ANSI_C_SOURCE */ #elif defined(__DJGPP__) && defined(OPENSSL_NO_SOCK) # define NO_SYSLOG #elif (!defined(MSDOS) || defined(WATT32)) && !defined(OPENSSL_SYS_VXWORKS) && !defined(NO_SYSLOG) # include #endif #include #include #ifndef NO_SYSLOG # if defined(OPENSSL_SYS_WIN32) # define LOG_EMERG 0 # define LOG_ALERT 1 # define LOG_CRIT 2 # define LOG_ERR 3 # define LOG_WARNING 4 # define LOG_NOTICE 5 # define LOG_INFO 6 # define LOG_DEBUG 7 # define LOG_DAEMON (3<<3) # elif defined(OPENSSL_SYS_VMS) /* On VMS, we don't really care about these, but we need them to compile */ # define LOG_EMERG 0 # define LOG_ALERT 1 # define LOG_CRIT 2 # define LOG_ERR 3 # define LOG_WARNING 4 # define LOG_NOTICE 5 # define LOG_INFO 6 # define LOG_DEBUG 7 # define LOG_DAEMON OPC$M_NM_NTWORK # endif static int slg_write(BIO *h, const char *buf, int num); static int slg_puts(BIO *h, const char *str); static long slg_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int slg_new(BIO *h); static int slg_free(BIO *data); static void xopenlog(BIO *bp, char *name, int level); static void xsyslog(BIO *bp, int priority, const char *string); static void xcloselog(BIO *bp); static const BIO_METHOD methods_slg = { BIO_TYPE_MEM, "syslog", /* TODO: Convert to new style write function */ bwrite_conv, slg_write, NULL, /* slg_write_old, */ NULL, /* slg_read, */ slg_puts, NULL, slg_ctrl, slg_new, slg_free, NULL, /* slg_callback_ctrl */ }; const BIO_METHOD *BIO_s_log(void) { return &methods_slg; } static int slg_new(BIO *bi) { bi->init = 1; bi->num = 0; bi->ptr = NULL; xopenlog(bi, "application", LOG_DAEMON); return 1; } static int slg_free(BIO *a) { if (a == NULL) return 0; xcloselog(a); return 1; } static int slg_write(BIO *b, const char *in, int inl) { int ret = inl; char *buf; char *pp; int priority, i; static const struct { int strl; char str[10]; int log_level; } mapping[] = { { 6, "PANIC ", LOG_EMERG }, { 6, "EMERG ", LOG_EMERG }, { 4, "EMR ", LOG_EMERG }, { 6, "ALERT ", LOG_ALERT }, { 4, "ALR ", LOG_ALERT }, { 5, "CRIT ", LOG_CRIT }, { 4, "CRI ", LOG_CRIT }, { 6, "ERROR ", LOG_ERR }, { 4, "ERR ", LOG_ERR }, { 8, "WARNING ", LOG_WARNING }, { 5, "WARN ", LOG_WARNING }, { 4, "WAR ", LOG_WARNING }, { 7, "NOTICE ", LOG_NOTICE }, { 5, "NOTE ", LOG_NOTICE }, { 4, "NOT ", LOG_NOTICE }, { 5, "INFO ", LOG_INFO }, { 4, "INF ", LOG_INFO }, { 6, "DEBUG ", LOG_DEBUG }, { 4, "DBG ", LOG_DEBUG }, { 0, "", LOG_ERR } /* The default */ }; if ((buf = OPENSSL_malloc(inl + 1)) == NULL) { BIOerr(BIO_F_SLG_WRITE, ERR_R_MALLOC_FAILURE); return 0; } memcpy(buf, in, inl); buf[inl] = '\0'; i = 0; while (strncmp(buf, mapping[i].str, mapping[i].strl) != 0) i++; priority = mapping[i].log_level; pp = buf + mapping[i].strl; xsyslog(b, priority, pp); OPENSSL_free(buf); return ret; } static long slg_ctrl(BIO *b, int cmd, long num, void *ptr) { switch (cmd) { case BIO_CTRL_SET: xcloselog(b); xopenlog(b, ptr, num); break; default: break; } return 0; } static int slg_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = slg_write(bp, str, n); return ret; } # if defined(OPENSSL_SYS_WIN32) static void xopenlog(BIO *bp, char *name, int level) { if (check_winnt()) bp->ptr = RegisterEventSourceA(NULL, name); else bp->ptr = NULL; } static void xsyslog(BIO *bp, int priority, const char *string) { LPCSTR lpszStrings[2]; WORD evtype = EVENTLOG_ERROR_TYPE; char pidbuf[DECIMAL_SIZE(DWORD) + 4]; if (bp->ptr == NULL) return; switch (priority) { case LOG_EMERG: case LOG_ALERT: case LOG_CRIT: case LOG_ERR: evtype = EVENTLOG_ERROR_TYPE; break; case LOG_WARNING: evtype = EVENTLOG_WARNING_TYPE; break; case LOG_NOTICE: case LOG_INFO: case LOG_DEBUG: evtype = EVENTLOG_INFORMATION_TYPE; break; default: /* * Should never happen, but set it * as error anyway. */ evtype = EVENTLOG_ERROR_TYPE; break; } sprintf(pidbuf, "[%lu] ", GetCurrentProcessId()); lpszStrings[0] = pidbuf; lpszStrings[1] = string; ReportEventA(bp->ptr, evtype, 0, 1024, NULL, 2, 0, lpszStrings, NULL); } static void xcloselog(BIO *bp) { if (bp->ptr) DeregisterEventSource((HANDLE) (bp->ptr)); bp->ptr = NULL; } # elif defined(OPENSSL_SYS_VMS) static int VMS_OPC_target = LOG_DAEMON; static void xopenlog(BIO *bp, char *name, int level) { VMS_OPC_target = level; } static void xsyslog(BIO *bp, int priority, const char *string) { struct dsc$descriptor_s opc_dsc; /* Arrange 32-bit pointer to opcdef buffer and malloc(), if needed. */ # if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size save # pragma pointer_size 32 # define OPCDEF_TYPE __char_ptr32 # define OPCDEF_MALLOC _malloc32 # else /* __INITIAL_POINTER_SIZE == 64 */ # define OPCDEF_TYPE char * # define OPCDEF_MALLOC OPENSSL_malloc # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ struct opcdef *opcdef_p; # if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size restore # endif /* __INITIAL_POINTER_SIZE == 64 */ char buf[10240]; unsigned int len; struct dsc$descriptor_s buf_dsc; $DESCRIPTOR(fao_cmd, "!AZ: !AZ"); char *priority_tag; switch (priority) { case LOG_EMERG: priority_tag = "Emergency"; break; case LOG_ALERT: priority_tag = "Alert"; break; case LOG_CRIT: priority_tag = "Critical"; break; case LOG_ERR: priority_tag = "Error"; break; case LOG_WARNING: priority_tag = "Warning"; break; case LOG_NOTICE: priority_tag = "Notice"; break; case LOG_INFO: priority_tag = "Info"; break; case LOG_DEBUG: priority_tag = "DEBUG"; break; } buf_dsc.dsc$b_dtype = DSC$K_DTYPE_T; buf_dsc.dsc$b_class = DSC$K_CLASS_S; buf_dsc.dsc$a_pointer = buf; buf_dsc.dsc$w_length = sizeof(buf) - 1; lib$sys_fao(&fao_cmd, &len, &buf_dsc, priority_tag, string); /* We know there's an 8-byte header. That's documented. */ opcdef_p = OPCDEF_MALLOC(8 + len); opcdef_p->opc$b_ms_type = OPC$_RQ_RQST; memcpy(opcdef_p->opc$z_ms_target_classes, &VMS_OPC_target, 3); opcdef_p->opc$l_ms_rqstid = 0; memcpy(&opcdef_p->opc$l_ms_text, buf, len); opc_dsc.dsc$b_dtype = DSC$K_DTYPE_T; opc_dsc.dsc$b_class = DSC$K_CLASS_S; opc_dsc.dsc$a_pointer = (OPCDEF_TYPE) opcdef_p; opc_dsc.dsc$w_length = len + 8; sys$sndopr(opc_dsc, 0); OPENSSL_free(opcdef_p); } static void xcloselog(BIO *bp) { } # else /* Unix/Watt32 */ static void xopenlog(BIO *bp, char *name, int level) { # ifdef WATT32 /* djgpp/DOS */ openlog(name, LOG_PID | LOG_CONS | LOG_NDELAY, level); # else openlog(name, LOG_PID | LOG_CONS, level); # endif } static void xsyslog(BIO *bp, int priority, const char *string) { syslog(priority, "%s", string); } static void xcloselog(BIO *bp) { closelog(); } # endif /* Unix */ #else /* NO_SYSLOG */ const BIO_METHOD *BIO_s_log(void) { return NULL; } #endif /* NO_SYSLOG */ openssl-1.1.1f/crypto/bio/bss_mem.c000066400000000000000000000211311364063235100172260ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" static int mem_write(BIO *h, const char *buf, int num); static int mem_read(BIO *h, char *buf, int size); static int mem_puts(BIO *h, const char *str); static int mem_gets(BIO *h, char *str, int size); static long mem_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int mem_new(BIO *h); static int secmem_new(BIO *h); static int mem_free(BIO *data); static int mem_buf_free(BIO *data); static int mem_buf_sync(BIO *h); static const BIO_METHOD mem_method = { BIO_TYPE_MEM, "memory buffer", /* TODO: Convert to new style write function */ bwrite_conv, mem_write, /* TODO: Convert to new style read function */ bread_conv, mem_read, mem_puts, mem_gets, mem_ctrl, mem_new, mem_free, NULL, /* mem_callback_ctrl */ }; static const BIO_METHOD secmem_method = { BIO_TYPE_MEM, "secure memory buffer", /* TODO: Convert to new style write function */ bwrite_conv, mem_write, /* TODO: Convert to new style read function */ bread_conv, mem_read, mem_puts, mem_gets, mem_ctrl, secmem_new, mem_free, NULL, /* mem_callback_ctrl */ }; /* * BIO memory stores buffer and read pointer * however the roles are different for read only BIOs. * In that case the readp just stores the original state * to be used for reset. */ typedef struct bio_buf_mem_st { struct buf_mem_st *buf; /* allocated buffer */ struct buf_mem_st *readp; /* read pointer */ } BIO_BUF_MEM; /* * bio->num is used to hold the value to return on 'empty', if it is 0, * should_retry is not set */ const BIO_METHOD *BIO_s_mem(void) { return &mem_method; } const BIO_METHOD *BIO_s_secmem(void) { return(&secmem_method); } BIO *BIO_new_mem_buf(const void *buf, int len) { BIO *ret; BUF_MEM *b; BIO_BUF_MEM *bb; size_t sz; if (buf == NULL) { BIOerr(BIO_F_BIO_NEW_MEM_BUF, BIO_R_NULL_PARAMETER); return NULL; } sz = (len < 0) ? strlen(buf) : (size_t)len; if ((ret = BIO_new(BIO_s_mem())) == NULL) return NULL; bb = (BIO_BUF_MEM *)ret->ptr; b = bb->buf; /* Cast away const and trust in the MEM_RDONLY flag. */ b->data = (void *)buf; b->length = sz; b->max = sz; *bb->readp = *bb->buf; ret->flags |= BIO_FLAGS_MEM_RDONLY; /* Since this is static data retrying won't help */ ret->num = 0; return ret; } static int mem_init(BIO *bi, unsigned long flags) { BIO_BUF_MEM *bb = OPENSSL_zalloc(sizeof(*bb)); if (bb == NULL) return 0; if ((bb->buf = BUF_MEM_new_ex(flags)) == NULL) { OPENSSL_free(bb); return 0; } if ((bb->readp = OPENSSL_zalloc(sizeof(*bb->readp))) == NULL) { BUF_MEM_free(bb->buf); OPENSSL_free(bb); return 0; } *bb->readp = *bb->buf; bi->shutdown = 1; bi->init = 1; bi->num = -1; bi->ptr = (char *)bb; return 1; } static int mem_new(BIO *bi) { return mem_init(bi, 0L); } static int secmem_new(BIO *bi) { return mem_init(bi, BUF_MEM_FLAG_SECURE); } static int mem_free(BIO *a) { BIO_BUF_MEM *bb; if (a == NULL) return 0; bb = (BIO_BUF_MEM *)a->ptr; if (!mem_buf_free(a)) return 0; OPENSSL_free(bb->readp); OPENSSL_free(bb); return 1; } static int mem_buf_free(BIO *a) { if (a == NULL) return 0; if (a->shutdown && a->init && a->ptr != NULL) { BIO_BUF_MEM *bb = (BIO_BUF_MEM *)a->ptr; BUF_MEM *b = bb->buf; if (a->flags & BIO_FLAGS_MEM_RDONLY) b->data = NULL; BUF_MEM_free(b); } return 1; } /* * Reallocate memory buffer if read pointer differs */ static int mem_buf_sync(BIO *b) { if (b != NULL && b->init != 0 && b->ptr != NULL) { BIO_BUF_MEM *bbm = (BIO_BUF_MEM *)b->ptr; if (bbm->readp->data != bbm->buf->data) { memmove(bbm->buf->data, bbm->readp->data, bbm->readp->length); bbm->buf->length = bbm->readp->length; bbm->readp->data = bbm->buf->data; } } return 0; } static int mem_read(BIO *b, char *out, int outl) { int ret = -1; BIO_BUF_MEM *bbm = (BIO_BUF_MEM *)b->ptr; BUF_MEM *bm = bbm->readp; if (b->flags & BIO_FLAGS_MEM_RDONLY) bm = bbm->buf; BIO_clear_retry_flags(b); ret = (outl >= 0 && (size_t)outl > bm->length) ? (int)bm->length : outl; if ((out != NULL) && (ret > 0)) { memcpy(out, bm->data, ret); bm->length -= ret; bm->max -= ret; bm->data += ret; } else if (bm->length == 0) { ret = b->num; if (ret != 0) BIO_set_retry_read(b); } return ret; } static int mem_write(BIO *b, const char *in, int inl) { int ret = -1; int blen; BIO_BUF_MEM *bbm = (BIO_BUF_MEM *)b->ptr; if (in == NULL) { BIOerr(BIO_F_MEM_WRITE, BIO_R_NULL_PARAMETER); goto end; } if (b->flags & BIO_FLAGS_MEM_RDONLY) { BIOerr(BIO_F_MEM_WRITE, BIO_R_WRITE_TO_READ_ONLY_BIO); goto end; } BIO_clear_retry_flags(b); if (inl == 0) return 0; blen = bbm->readp->length; mem_buf_sync(b); if (BUF_MEM_grow_clean(bbm->buf, blen + inl) == 0) goto end; memcpy(bbm->buf->data + blen, in, inl); *bbm->readp = *bbm->buf; ret = inl; end: return ret; } static long mem_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; char **pptr; BIO_BUF_MEM *bbm = (BIO_BUF_MEM *)b->ptr; BUF_MEM *bm; if (b->flags & BIO_FLAGS_MEM_RDONLY) bm = bbm->buf; else bm = bbm->readp; switch (cmd) { case BIO_CTRL_RESET: bm = bbm->buf; if (bm->data != NULL) { if (!(b->flags & BIO_FLAGS_MEM_RDONLY)) { if (!(b->flags & BIO_FLAGS_NONCLEAR_RST)) { memset(bm->data, 0, bm->max); bm->length = 0; } *bbm->readp = *bbm->buf; } else { /* For read only case just reset to the start again */ *bbm->buf = *bbm->readp; } } break; case BIO_CTRL_EOF: ret = (long)(bm->length == 0); break; case BIO_C_SET_BUF_MEM_EOF_RETURN: b->num = (int)num; break; case BIO_CTRL_INFO: ret = (long)bm->length; if (ptr != NULL) { pptr = (char **)ptr; *pptr = (char *)&(bm->data[0]); } break; case BIO_C_SET_BUF_MEM: mem_buf_free(b); b->shutdown = (int)num; bbm->buf = ptr; *bbm->readp = *bbm->buf; break; case BIO_C_GET_BUF_MEM_PTR: if (ptr != NULL) { if (!(b->flags & BIO_FLAGS_MEM_RDONLY)) mem_buf_sync(b); bm = bbm->buf; pptr = (char **)ptr; *pptr = (char *)bm; } break; case BIO_CTRL_GET_CLOSE: ret = (long)b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_WPENDING: ret = 0L; break; case BIO_CTRL_PENDING: ret = (long)bm->length; break; case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_PUSH: case BIO_CTRL_POP: default: ret = 0; break; } return ret; } static int mem_gets(BIO *bp, char *buf, int size) { int i, j; int ret = -1; char *p; BIO_BUF_MEM *bbm = (BIO_BUF_MEM *)bp->ptr; BUF_MEM *bm = bbm->readp; if (bp->flags & BIO_FLAGS_MEM_RDONLY) bm = bbm->buf; BIO_clear_retry_flags(bp); j = bm->length; if ((size - 1) < j) j = size - 1; if (j <= 0) { *buf = '\0'; return 0; } p = bm->data; for (i = 0; i < j; i++) { if (p[i] == '\n') { i++; break; } } /* * i is now the max num of bytes to copy, either j or up to * and including the first newline */ i = mem_read(bp, buf, i); if (i > 0) buf[i] = '\0'; ret = i; return ret; } static int mem_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = mem_write(bp, str, n); /* memory semantics is that it will always work */ return ret; } openssl-1.1.1f/crypto/bio/bss_null.c000066400000000000000000000036151364063235100174310ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" static int null_write(BIO *h, const char *buf, int num); static int null_read(BIO *h, char *buf, int size); static int null_puts(BIO *h, const char *str); static int null_gets(BIO *h, char *str, int size); static long null_ctrl(BIO *h, int cmd, long arg1, void *arg2); static const BIO_METHOD null_method = { BIO_TYPE_NULL, "NULL", /* TODO: Convert to new style write function */ bwrite_conv, null_write, /* TODO: Convert to new style read function */ bread_conv, null_read, null_puts, null_gets, null_ctrl, NULL, NULL, NULL, /* null_callback_ctrl */ }; const BIO_METHOD *BIO_s_null(void) { return &null_method; } static int null_read(BIO *b, char *out, int outl) { return 0; } static int null_write(BIO *b, const char *in, int inl) { return inl; } static long null_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; switch (cmd) { case BIO_CTRL_RESET: case BIO_CTRL_EOF: case BIO_CTRL_SET: case BIO_CTRL_SET_CLOSE: case BIO_CTRL_FLUSH: case BIO_CTRL_DUP: ret = 1; break; case BIO_CTRL_GET_CLOSE: case BIO_CTRL_INFO: case BIO_CTRL_GET: case BIO_CTRL_PENDING: case BIO_CTRL_WPENDING: default: ret = 0; break; } return ret; } static int null_gets(BIO *bp, char *buf, int size) { return 0; } static int null_puts(BIO *bp, const char *str) { if (str == NULL) return 0; return strlen(str); } openssl-1.1.1f/crypto/bio/bss_sock.c000066400000000000000000000111261364063235100174120ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bio_local.h" #include "internal/cryptlib.h" #ifndef OPENSSL_NO_SOCK # include # ifdef WATT32 /* Watt-32 uses same names */ # undef sock_write # undef sock_read # undef sock_puts # define sock_write SockWrite # define sock_read SockRead # define sock_puts SockPuts # endif static int sock_write(BIO *h, const char *buf, int num); static int sock_read(BIO *h, char *buf, int size); static int sock_puts(BIO *h, const char *str); static long sock_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int sock_new(BIO *h); static int sock_free(BIO *data); int BIO_sock_should_retry(int s); static const BIO_METHOD methods_sockp = { BIO_TYPE_SOCKET, "socket", /* TODO: Convert to new style write function */ bwrite_conv, sock_write, /* TODO: Convert to new style read function */ bread_conv, sock_read, sock_puts, NULL, /* sock_gets, */ sock_ctrl, sock_new, sock_free, NULL, /* sock_callback_ctrl */ }; const BIO_METHOD *BIO_s_socket(void) { return &methods_sockp; } BIO *BIO_new_socket(int fd, int close_flag) { BIO *ret; ret = BIO_new(BIO_s_socket()); if (ret == NULL) return NULL; BIO_set_fd(ret, fd, close_flag); return ret; } static int sock_new(BIO *bi) { bi->init = 0; bi->num = 0; bi->ptr = NULL; bi->flags = 0; return 1; } static int sock_free(BIO *a) { if (a == NULL) return 0; if (a->shutdown) { if (a->init) { BIO_closesocket(a->num); } a->init = 0; a->flags = 0; } return 1; } static int sock_read(BIO *b, char *out, int outl) { int ret = 0; if (out != NULL) { clear_socket_error(); ret = readsocket(b->num, out, outl); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_sock_should_retry(ret)) BIO_set_retry_read(b); else if (ret == 0) b->flags |= BIO_FLAGS_IN_EOF; } } return ret; } static int sock_write(BIO *b, const char *in, int inl) { int ret; clear_socket_error(); ret = writesocket(b->num, in, inl); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_sock_should_retry(ret)) BIO_set_retry_write(b); } return ret; } static long sock_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; int *ip; switch (cmd) { case BIO_C_SET_FD: sock_free(b); b->num = *((int *)ptr); b->shutdown = (int)num; b->init = 1; break; case BIO_C_GET_FD: if (b->init) { ip = (int *)ptr; if (ip != NULL) *ip = b->num; ret = b->num; } else ret = -1; break; case BIO_CTRL_GET_CLOSE: ret = b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_EOF: ret = (b->flags & BIO_FLAGS_IN_EOF) != 0 ? 1 : 0; break; default: ret = 0; break; } return ret; } static int sock_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = sock_write(bp, str, n); return ret; } int BIO_sock_should_retry(int i) { int err; if ((i == 0) || (i == -1)) { err = get_last_socket_error(); return BIO_sock_non_fatal_error(err); } return 0; } int BIO_sock_non_fatal_error(int err) { switch (err) { # if defined(OPENSSL_SYS_WINDOWS) # if defined(WSAEWOULDBLOCK) case WSAEWOULDBLOCK: # endif # endif # ifdef EWOULDBLOCK # ifdef WSAEWOULDBLOCK # if WSAEWOULDBLOCK != EWOULDBLOCK case EWOULDBLOCK: # endif # else case EWOULDBLOCK: # endif # endif # if defined(ENOTCONN) case ENOTCONN: # endif # ifdef EINTR case EINTR: # endif # ifdef EAGAIN # if EWOULDBLOCK != EAGAIN case EAGAIN: # endif # endif # ifdef EPROTO case EPROTO: # endif # ifdef EINPROGRESS case EINPROGRESS: # endif # ifdef EALREADY case EALREADY: # endif return 1; default: break; } return 0; } #endif /* #ifndef OPENSSL_NO_SOCK */ openssl-1.1.1f/crypto/bio/build.info000066400000000000000000000005221364063235100174120ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ bio_lib.c bio_cb.c bio_err.c \ bss_mem.c bss_null.c bss_fd.c \ bss_file.c bss_sock.c bss_conn.c \ bf_null.c bf_buff.c b_print.c b_dump.c b_addr.c \ b_sock.c b_sock2.c bss_acpt.c bf_nbio.c bss_log.c bss_bio.c \ bss_dgram.c bio_meth.c bf_lbuf.c openssl-1.1.1f/crypto/blake2/000077500000000000000000000000001364063235100160265ustar00rootroot00000000000000openssl-1.1.1f/crypto/blake2/blake2_impl.h000066400000000000000000000062601364063235100203640ustar00rootroot00000000000000/* * Copyright 2016-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Derived from the BLAKE2 reference implementation written by Samuel Neves. * Copyright 2012, Samuel Neves * More information about the BLAKE2 hash function and its implementations * can be found at https://blake2.net. */ #include static ossl_inline uint32_t load32(const uint8_t *src) { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) { uint32_t w; memcpy(&w, src, sizeof(w)); return w; } else { uint32_t w = ((uint32_t)src[0]) | ((uint32_t)src[1] << 8) | ((uint32_t)src[2] << 16) | ((uint32_t)src[3] << 24); return w; } } static ossl_inline uint64_t load64(const uint8_t *src) { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) { uint64_t w; memcpy(&w, src, sizeof(w)); return w; } else { uint64_t w = ((uint64_t)src[0]) | ((uint64_t)src[1] << 8) | ((uint64_t)src[2] << 16) | ((uint64_t)src[3] << 24) | ((uint64_t)src[4] << 32) | ((uint64_t)src[5] << 40) | ((uint64_t)src[6] << 48) | ((uint64_t)src[7] << 56); return w; } } static ossl_inline void store32(uint8_t *dst, uint32_t w) { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) { memcpy(dst, &w, sizeof(w)); } else { uint8_t *p = (uint8_t *)dst; int i; for (i = 0; i < 4; i++) p[i] = (uint8_t)(w >> (8 * i)); } } static ossl_inline void store64(uint8_t *dst, uint64_t w) { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) { memcpy(dst, &w, sizeof(w)); } else { uint8_t *p = (uint8_t *)dst; int i; for (i = 0; i < 8; i++) p[i] = (uint8_t)(w >> (8 * i)); } } static ossl_inline uint64_t load48(const uint8_t *src) { uint64_t w = ((uint64_t)src[0]) | ((uint64_t)src[1] << 8) | ((uint64_t)src[2] << 16) | ((uint64_t)src[3] << 24) | ((uint64_t)src[4] << 32) | ((uint64_t)src[5] << 40); return w; } static ossl_inline void store48(uint8_t *dst, uint64_t w) { uint8_t *p = (uint8_t *)dst; p[0] = (uint8_t)w; p[1] = (uint8_t)(w>>8); p[2] = (uint8_t)(w>>16); p[3] = (uint8_t)(w>>24); p[4] = (uint8_t)(w>>32); p[5] = (uint8_t)(w>>40); } static ossl_inline uint32_t rotr32(const uint32_t w, const unsigned int c) { return (w >> c) | (w << (32 - c)); } static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c) { return (w >> c) | (w << (64 - c)); } openssl-1.1.1f/crypto/blake2/blake2_local.h000066400000000000000000000051641364063235100205170ustar00rootroot00000000000000/* * Copyright 2016-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Derived from the BLAKE2 reference implementation written by Samuel Neves. * Copyright 2012, Samuel Neves * More information about the BLAKE2 hash function and its implementations * can be found at https://blake2.net. */ #include #define BLAKE2S_BLOCKBYTES 64 #define BLAKE2S_OUTBYTES 32 #define BLAKE2S_KEYBYTES 32 #define BLAKE2S_SALTBYTES 8 #define BLAKE2S_PERSONALBYTES 8 #define BLAKE2B_BLOCKBYTES 128 #define BLAKE2B_OUTBYTES 64 #define BLAKE2B_KEYBYTES 64 #define BLAKE2B_SALTBYTES 16 #define BLAKE2B_PERSONALBYTES 16 struct blake2s_param_st { uint8_t digest_length; /* 1 */ uint8_t key_length; /* 2 */ uint8_t fanout; /* 3 */ uint8_t depth; /* 4 */ uint8_t leaf_length[4];/* 8 */ uint8_t node_offset[6];/* 14 */ uint8_t node_depth; /* 15 */ uint8_t inner_length; /* 16 */ uint8_t salt[BLAKE2S_SALTBYTES]; /* 24 */ uint8_t personal[BLAKE2S_PERSONALBYTES]; /* 32 */ }; typedef struct blake2s_param_st BLAKE2S_PARAM; struct blake2s_ctx_st { uint32_t h[8]; uint32_t t[2]; uint32_t f[2]; uint8_t buf[BLAKE2S_BLOCKBYTES]; size_t buflen; }; struct blake2b_param_st { uint8_t digest_length; /* 1 */ uint8_t key_length; /* 2 */ uint8_t fanout; /* 3 */ uint8_t depth; /* 4 */ uint8_t leaf_length[4];/* 8 */ uint8_t node_offset[8];/* 16 */ uint8_t node_depth; /* 17 */ uint8_t inner_length; /* 18 */ uint8_t reserved[14]; /* 32 */ uint8_t salt[BLAKE2B_SALTBYTES]; /* 48 */ uint8_t personal[BLAKE2B_PERSONALBYTES]; /* 64 */ }; typedef struct blake2b_param_st BLAKE2B_PARAM; struct blake2b_ctx_st { uint64_t h[8]; uint64_t t[2]; uint64_t f[2]; uint8_t buf[BLAKE2B_BLOCKBYTES]; size_t buflen; }; #define BLAKE2B_DIGEST_LENGTH 64 #define BLAKE2S_DIGEST_LENGTH 32 typedef struct blake2s_ctx_st BLAKE2S_CTX; typedef struct blake2b_ctx_st BLAKE2B_CTX; int BLAKE2b_Init(BLAKE2B_CTX *c); int BLAKE2b_Update(BLAKE2B_CTX *c, const void *data, size_t datalen); int BLAKE2b_Final(unsigned char *md, BLAKE2B_CTX *c); int BLAKE2s_Init(BLAKE2S_CTX *c); int BLAKE2s_Update(BLAKE2S_CTX *c, const void *data, size_t datalen); int BLAKE2s_Final(unsigned char *md, BLAKE2S_CTX *c); openssl-1.1.1f/crypto/blake2/blake2b.c000066400000000000000000000202531364063235100174760ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Derived from the BLAKE2 reference implementation written by Samuel Neves. * Copyright 2012, Samuel Neves * More information about the BLAKE2 hash function and its implementations * can be found at https://blake2.net. */ #include #include #include #include "blake2_local.h" #include "blake2_impl.h" static const uint64_t blake2b_IV[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; static const uint8_t blake2b_sigma[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } , { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } , { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } , { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } , { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } , { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } , { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } , { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } , { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } }; /* Set that it's the last block we'll compress */ static ossl_inline void blake2b_set_lastblock(BLAKE2B_CTX *S) { S->f[0] = -1; } /* Initialize the hashing state. */ static ossl_inline void blake2b_init0(BLAKE2B_CTX *S) { int i; memset(S, 0, sizeof(BLAKE2B_CTX)); for (i = 0; i < 8; ++i) { S->h[i] = blake2b_IV[i]; } } /* init xors IV with input parameter block */ static void blake2b_init_param(BLAKE2B_CTX *S, const BLAKE2B_PARAM *P) { size_t i; const uint8_t *p = (const uint8_t *)(P); blake2b_init0(S); /* The param struct is carefully hand packed, and should be 64 bytes on * every platform. */ assert(sizeof(BLAKE2B_PARAM) == 64); /* IV XOR ParamBlock */ for (i = 0; i < 8; ++i) { S->h[i] ^= load64(p + sizeof(S->h[i]) * i); } } /* Initialize the hashing context. Always returns 1. */ int BLAKE2b_Init(BLAKE2B_CTX *c) { BLAKE2B_PARAM P[1]; P->digest_length = BLAKE2B_DIGEST_LENGTH; P->key_length = 0; P->fanout = 1; P->depth = 1; store32(P->leaf_length, 0); store64(P->node_offset, 0); P->node_depth = 0; P->inner_length = 0; memset(P->reserved, 0, sizeof(P->reserved)); memset(P->salt, 0, sizeof(P->salt)); memset(P->personal, 0, sizeof(P->personal)); blake2b_init_param(c, P); return 1; } /* Permute the state while xoring in the block of data. */ static void blake2b_compress(BLAKE2B_CTX *S, const uint8_t *blocks, size_t len) { uint64_t m[16]; uint64_t v[16]; int i; size_t increment; /* * There are two distinct usage vectors for this function: * * a) BLAKE2b_Update uses it to process complete blocks, * possibly more than one at a time; * * b) BLAK2b_Final uses it to process last block, always * single but possibly incomplete, in which case caller * pads input with zeros. */ assert(len < BLAKE2B_BLOCKBYTES || len % BLAKE2B_BLOCKBYTES == 0); /* * Since last block is always processed with separate call, * |len| not being multiple of complete blocks can be observed * only with |len| being less than BLAKE2B_BLOCKBYTES ("less" * including even zero), which is why following assignment doesn't * have to reside inside the main loop below. */ increment = len < BLAKE2B_BLOCKBYTES ? len : BLAKE2B_BLOCKBYTES; for (i = 0; i < 8; ++i) { v[i] = S->h[i]; } do { for (i = 0; i < 16; ++i) { m[i] = load64(blocks + i * sizeof(m[i])); } /* blake2b_increment_counter */ S->t[0] += increment; S->t[1] += (S->t[0] < increment); v[8] = blake2b_IV[0]; v[9] = blake2b_IV[1]; v[10] = blake2b_IV[2]; v[11] = blake2b_IV[3]; v[12] = S->t[0] ^ blake2b_IV[4]; v[13] = S->t[1] ^ blake2b_IV[5]; v[14] = S->f[0] ^ blake2b_IV[6]; v[15] = S->f[1] ^ blake2b_IV[7]; #define G(r,i,a,b,c,d) \ do { \ a = a + b + m[blake2b_sigma[r][2*i+0]]; \ d = rotr64(d ^ a, 32); \ c = c + d; \ b = rotr64(b ^ c, 24); \ a = a + b + m[blake2b_sigma[r][2*i+1]]; \ d = rotr64(d ^ a, 16); \ c = c + d; \ b = rotr64(b ^ c, 63); \ } while (0) #define ROUND(r) \ do { \ G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \ G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \ G(r,2,v[ 2],v[ 6],v[10],v[14]); \ G(r,3,v[ 3],v[ 7],v[11],v[15]); \ G(r,4,v[ 0],v[ 5],v[10],v[15]); \ G(r,5,v[ 1],v[ 6],v[11],v[12]); \ G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \ G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \ } while (0) #if defined(OPENSSL_SMALL_FOOTPRINT) /* 3x size reduction on x86_64, almost 7x on ARMv8, 9x on ARMv4 */ for (i = 0; i < 12; i++) { ROUND(i); } #else ROUND(0); ROUND(1); ROUND(2); ROUND(3); ROUND(4); ROUND(5); ROUND(6); ROUND(7); ROUND(8); ROUND(9); ROUND(10); ROUND(11); #endif for (i = 0; i < 8; ++i) { S->h[i] = v[i] ^= v[i + 8] ^ S->h[i]; } #undef G #undef ROUND blocks += increment; len -= increment; } while (len); } /* Absorb the input data into the hash state. Always returns 1. */ int BLAKE2b_Update(BLAKE2B_CTX *c, const void *data, size_t datalen) { const uint8_t *in = data; size_t fill; /* * Intuitively one would expect intermediate buffer, c->buf, to * store incomplete blocks. But in this case we are interested to * temporarily stash even complete blocks, because last one in the * stream has to be treated in special way, and at this point we * don't know if last block in *this* call is last one "ever". This * is the reason for why |datalen| is compared as >, and not >=. */ fill = sizeof(c->buf) - c->buflen; if (datalen > fill) { if (c->buflen) { memcpy(c->buf + c->buflen, in, fill); /* Fill buffer */ blake2b_compress(c, c->buf, BLAKE2B_BLOCKBYTES); c->buflen = 0; in += fill; datalen -= fill; } if (datalen > BLAKE2B_BLOCKBYTES) { size_t stashlen = datalen % BLAKE2B_BLOCKBYTES; /* * If |datalen| is a multiple of the blocksize, stash * last complete block, it can be final one... */ stashlen = stashlen ? stashlen : BLAKE2B_BLOCKBYTES; datalen -= stashlen; blake2b_compress(c, in, datalen); in += datalen; datalen = stashlen; } } assert(datalen <= BLAKE2B_BLOCKBYTES); memcpy(c->buf + c->buflen, in, datalen); c->buflen += datalen; /* Be lazy, do not compress */ return 1; } /* * Calculate the final hash and save it in md. * Always returns 1. */ int BLAKE2b_Final(unsigned char *md, BLAKE2B_CTX *c) { int i; blake2b_set_lastblock(c); /* Padding */ memset(c->buf + c->buflen, 0, sizeof(c->buf) - c->buflen); blake2b_compress(c, c->buf, c->buflen); /* Output full hash to message digest */ for (i = 0; i < 8; ++i) { store64(md + sizeof(c->h[i]) * i, c->h[i]); } OPENSSL_cleanse(c, sizeof(BLAKE2B_CTX)); return 1; } openssl-1.1.1f/crypto/blake2/blake2s.c000066400000000000000000000175311364063235100175240ustar00rootroot00000000000000/* * Copyright 2016-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Derived from the BLAKE2 reference implementation written by Samuel Neves. * Copyright 2012, Samuel Neves * More information about the BLAKE2 hash function and its implementations * can be found at https://blake2.net. */ #include #include #include #include "blake2_local.h" #include "blake2_impl.h" static const uint32_t blake2s_IV[8] = { 0x6A09E667U, 0xBB67AE85U, 0x3C6EF372U, 0xA54FF53AU, 0x510E527FU, 0x9B05688CU, 0x1F83D9ABU, 0x5BE0CD19U }; static const uint8_t blake2s_sigma[10][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } , { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } , { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } , { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } , { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } , { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } , { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } , { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } , }; /* Set that it's the last block we'll compress */ static ossl_inline void blake2s_set_lastblock(BLAKE2S_CTX *S) { S->f[0] = -1; } /* Initialize the hashing state. */ static ossl_inline void blake2s_init0(BLAKE2S_CTX *S) { int i; memset(S, 0, sizeof(BLAKE2S_CTX)); for (i = 0; i < 8; ++i) { S->h[i] = blake2s_IV[i]; } } /* init2 xors IV with input parameter block */ static void blake2s_init_param(BLAKE2S_CTX *S, const BLAKE2S_PARAM *P) { const uint8_t *p = (const uint8_t *)(P); size_t i; /* The param struct is carefully hand packed, and should be 32 bytes on * every platform. */ assert(sizeof(BLAKE2S_PARAM) == 32); blake2s_init0(S); /* IV XOR ParamBlock */ for (i = 0; i < 8; ++i) { S->h[i] ^= load32(&p[i*4]); } } /* Initialize the hashing context. Always returns 1. */ int BLAKE2s_Init(BLAKE2S_CTX *c) { BLAKE2S_PARAM P[1]; P->digest_length = BLAKE2S_DIGEST_LENGTH; P->key_length = 0; P->fanout = 1; P->depth = 1; store32(P->leaf_length, 0); store48(P->node_offset, 0); P->node_depth = 0; P->inner_length = 0; memset(P->salt, 0, sizeof(P->salt)); memset(P->personal, 0, sizeof(P->personal)); blake2s_init_param(c, P); return 1; } /* Permute the state while xoring in the block of data. */ static void blake2s_compress(BLAKE2S_CTX *S, const uint8_t *blocks, size_t len) { uint32_t m[16]; uint32_t v[16]; size_t i; size_t increment; /* * There are two distinct usage vectors for this function: * * a) BLAKE2s_Update uses it to process complete blocks, * possibly more than one at a time; * * b) BLAK2s_Final uses it to process last block, always * single but possibly incomplete, in which case caller * pads input with zeros. */ assert(len < BLAKE2S_BLOCKBYTES || len % BLAKE2S_BLOCKBYTES == 0); /* * Since last block is always processed with separate call, * |len| not being multiple of complete blocks can be observed * only with |len| being less than BLAKE2S_BLOCKBYTES ("less" * including even zero), which is why following assignment doesn't * have to reside inside the main loop below. */ increment = len < BLAKE2S_BLOCKBYTES ? len : BLAKE2S_BLOCKBYTES; for (i = 0; i < 8; ++i) { v[i] = S->h[i]; } do { for (i = 0; i < 16; ++i) { m[i] = load32(blocks + i * sizeof(m[i])); } /* blake2s_increment_counter */ S->t[0] += increment; S->t[1] += (S->t[0] < increment); v[ 8] = blake2s_IV[0]; v[ 9] = blake2s_IV[1]; v[10] = blake2s_IV[2]; v[11] = blake2s_IV[3]; v[12] = S->t[0] ^ blake2s_IV[4]; v[13] = S->t[1] ^ blake2s_IV[5]; v[14] = S->f[0] ^ blake2s_IV[6]; v[15] = S->f[1] ^ blake2s_IV[7]; #define G(r,i,a,b,c,d) \ do { \ a = a + b + m[blake2s_sigma[r][2*i+0]]; \ d = rotr32(d ^ a, 16); \ c = c + d; \ b = rotr32(b ^ c, 12); \ a = a + b + m[blake2s_sigma[r][2*i+1]]; \ d = rotr32(d ^ a, 8); \ c = c + d; \ b = rotr32(b ^ c, 7); \ } while (0) #define ROUND(r) \ do { \ G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \ G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \ G(r,2,v[ 2],v[ 6],v[10],v[14]); \ G(r,3,v[ 3],v[ 7],v[11],v[15]); \ G(r,4,v[ 0],v[ 5],v[10],v[15]); \ G(r,5,v[ 1],v[ 6],v[11],v[12]); \ G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \ G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \ } while (0) #if defined(OPENSSL_SMALL_FOOTPRINT) /* almost 3x reduction on x86_64, 4.5x on ARMv8, 4x on ARMv4 */ for (i = 0; i < 10; i++) { ROUND(i); } #else ROUND(0); ROUND(1); ROUND(2); ROUND(3); ROUND(4); ROUND(5); ROUND(6); ROUND(7); ROUND(8); ROUND(9); #endif for (i = 0; i < 8; ++i) { S->h[i] = v[i] ^= v[i + 8] ^ S->h[i]; } #undef G #undef ROUND blocks += increment; len -= increment; } while (len); } /* Absorb the input data into the hash state. Always returns 1. */ int BLAKE2s_Update(BLAKE2S_CTX *c, const void *data, size_t datalen) { const uint8_t *in = data; size_t fill; /* * Intuitively one would expect intermediate buffer, c->buf, to * store incomplete blocks. But in this case we are interested to * temporarily stash even complete blocks, because last one in the * stream has to be treated in special way, and at this point we * don't know if last block in *this* call is last one "ever". This * is the reason for why |datalen| is compared as >, and not >=. */ fill = sizeof(c->buf) - c->buflen; if (datalen > fill) { if (c->buflen) { memcpy(c->buf + c->buflen, in, fill); /* Fill buffer */ blake2s_compress(c, c->buf, BLAKE2S_BLOCKBYTES); c->buflen = 0; in += fill; datalen -= fill; } if (datalen > BLAKE2S_BLOCKBYTES) { size_t stashlen = datalen % BLAKE2S_BLOCKBYTES; /* * If |datalen| is a multiple of the blocksize, stash * last complete block, it can be final one... */ stashlen = stashlen ? stashlen : BLAKE2S_BLOCKBYTES; datalen -= stashlen; blake2s_compress(c, in, datalen); in += datalen; datalen = stashlen; } } assert(datalen <= BLAKE2S_BLOCKBYTES); memcpy(c->buf + c->buflen, in, datalen); c->buflen += datalen; /* Be lazy, do not compress */ return 1; } /* * Calculate the final hash and save it in md. * Always returns 1. */ int BLAKE2s_Final(unsigned char *md, BLAKE2S_CTX *c) { int i; blake2s_set_lastblock(c); /* Padding */ memset(c->buf + c->buflen, 0, sizeof(c->buf) - c->buflen); blake2s_compress(c, c->buf, c->buflen); /* Output full hash to temp buffer */ for (i = 0; i < 8; ++i) { store32(md + sizeof(c->h[i]) * i, c->h[i]); } OPENSSL_cleanse(c, sizeof(BLAKE2S_CTX)); return 1; } openssl-1.1.1f/crypto/blake2/build.info000066400000000000000000000001431364063235100200000ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ blake2b.c blake2s.c m_blake2b.c m_blake2s.c openssl-1.1.1f/crypto/blake2/m_blake2b.c000066400000000000000000000025401364063235100200110ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Derived from the BLAKE2 reference implementation written by Samuel Neves. * Copyright 2012, Samuel Neves * More information about the BLAKE2 hash function and its implementations * can be found at https://blake2.net. */ #include "internal/cryptlib.h" #ifndef OPENSSL_NO_BLAKE2 # include # include # include "blake2_local.h" # include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return BLAKE2b_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return BLAKE2b_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return BLAKE2b_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD blake2b_md = { NID_blake2b512, 0, BLAKE2B_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, BLAKE2B_BLOCKBYTES, sizeof(EVP_MD *) + sizeof(BLAKE2B_CTX), }; const EVP_MD *EVP_blake2b512(void) { return &blake2b_md; } #endif openssl-1.1.1f/crypto/blake2/m_blake2s.c000066400000000000000000000025401364063235100200320ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Derived from the BLAKE2 reference implementation written by Samuel Neves. * Copyright 2012, Samuel Neves * More information about the BLAKE2 hash function and its implementations * can be found at https://blake2.net. */ #include "internal/cryptlib.h" #ifndef OPENSSL_NO_BLAKE2 # include # include # include "blake2_local.h" # include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return BLAKE2s_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return BLAKE2s_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return BLAKE2s_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD blake2s_md = { NID_blake2s256, 0, BLAKE2S_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, BLAKE2S_BLOCKBYTES, sizeof(EVP_MD *) + sizeof(BLAKE2S_CTX), }; const EVP_MD *EVP_blake2s256(void) { return &blake2s_md; } #endif openssl-1.1.1f/crypto/bn/000077500000000000000000000000001364063235100152655ustar00rootroot00000000000000openssl-1.1.1f/crypto/bn/README.pod000066400000000000000000000225431364063235100167340ustar00rootroot00000000000000=pod =head1 NAME bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, bn_mul_low_recursive, bn_sqr_normal, bn_sqr_recursive, bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM library internal functions =head1 SYNOPSIS #include BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num); BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, int num); BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, int num); void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a); void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a); int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n); void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *tmp); void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *tmp); void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *tmp); void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp); void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp); void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a); BIGNUM *bn_expand(BIGNUM *a, int bits); BIGNUM *bn_wexpand(BIGNUM *a, int n); BIGNUM *bn_expand2(BIGNUM *a, int n); void bn_fix_top(BIGNUM *a); void bn_check_top(BIGNUM *a); void bn_print(BIGNUM *a); void bn_dump(BN_ULONG *d, int n); void bn_set_max(BIGNUM *a); void bn_set_high(BIGNUM *r, BIGNUM *a, int n); void bn_set_low(BIGNUM *r, BIGNUM *a, int n); =head1 DESCRIPTION This page documents the internal functions used by the OpenSSL B implementation. They are described here to facilitate debugging and extending the library. They are I to be used by applications. =head2 The BIGNUM structure typedef struct bignum_st BIGNUM; struct bignum_st { BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ int top; /* Index of last used d +1. */ /* The next are internal book keeping for bn_expand. */ int dmax; /* Size of the d array. */ int neg; /* one if the number is negative */ int flags; }; The integer value is stored in B, a malloc()ed array of words (B), least significant word first. A B can be either 16, 32 or 64 bits in size, depending on the 'number of bits' (B) specified in C. B is the size of the B array that has been allocated. B is the number of words being used, so for a value of 4, bn.d[0]=4 and bn.top=1. B is 1 if the number is negative. When a B is B<0>, the B field can be B and B == B<0>. B is a bit field of flags which are defined in C. The flags begin with B. The macros BN_set_flags(b, n) and BN_get_flags(b, n) exist to enable or fetch flag(s) B from B structure B. Various routines in this library require the use of temporary B variables during their execution. Since dynamic memory allocation to create Bs is rather expensive when used in conjunction with repeated subroutine calls, the B structure is used. This structure contains B Bs, see L. =head2 Low-level arithmetic operations These functions are implemented in C and for several platforms in assembly language: bn_mul_words(B, B, B, B) operates on the B word arrays B and B. It computes B * B, places the result in B, and returns the high word (carry). bn_mul_add_words(B, B, B, B) operates on the B word arrays B and B. It computes B * B + B, places the result in B, and returns the high word (carry). bn_sqr_words(B, B, B) operates on the B word array B and the 2*B word array B. It computes B * B word-wise, and places the low and high bytes of the result in B. bn_div_words(B, B, B) divides the two word number (B, B) by B and returns the result. bn_add_words(B, B, B, B) operates on the B word arrays B, B and B. It computes B + B, places the result in B, and returns the high word (carry). bn_sub_words(B, B, B, B) operates on the B word arrays B, B and B. It computes B - B, places the result in B, and returns the carry (1 if B E B, 0 otherwise). bn_mul_comba4(B, B, B) operates on the 4 word arrays B and B and the 8 word array B. It computes B*B and places the result in B. bn_mul_comba8(B, B, B) operates on the 8 word arrays B and B and the 16 word array B. It computes B*B and places the result in B. bn_sqr_comba4(B, B, B) operates on the 4 word arrays B and B and the 8 word array B. bn_sqr_comba8(B, B, B) operates on the 8 word arrays B and B and the 16 word array B. The following functions are implemented in C: bn_cmp_words(B, B, B) operates on the B word arrays B and B. It returns 1, 0 and -1 if B is greater than, equal and less than B. bn_mul_normal(B, B, B, B, B) operates on the B word array B, the B word array B and the B+B word array B. It computes B*B and places the result in B. bn_mul_low_normal(B, B, B, B) operates on the B word arrays B, B and B. It computes the B low words of B*B and places the result in B. bn_mul_recursive(B, B, B, B, B, B, B) operates on the word arrays B and B of length B+B and B+B (B and B are currently allowed to be 0 or negative) and the 2*B word arrays B and B. B must be a power of 2. It computes B*B and places the result in B. bn_mul_part_recursive(B, B, B, B, B, B, B) operates on the word arrays B and B of length B+B and B+B and the 4*B word arrays B and B. bn_mul_low_recursive(B, B, B, B, B) operates on the B word arrays B and B and the B/2 word arrays B and B. BN_mul() calls bn_mul_normal(), or an optimized implementation if the factors have the same size: bn_mul_comba8() is used if they are 8 words long, bn_mul_recursive() if they are larger than B and the size is an exact multiple of the word size, and bn_mul_part_recursive() for others that are larger than B. bn_sqr_normal(B, B, B, B) operates on the B word array B and the 2*B word arrays B and B. The implementations use the following macros which, depending on the architecture, may use "long long" C operations or inline assembler. They are defined in C. mul(B, B, B, B) computes B*B+B and places the low word of the result in B and the high word in B. mul_add(B, B, B, B) computes B*B+B+B and places the low word of the result in B and the high word in B. sqr(B, B, B) computes B*B and places the low word of the result in B and the high word in B. =head2 Size changes bn_expand() ensures that B has enough space for a B bit number. bn_wexpand() ensures that B has enough space for an B word number. If the number has to be expanded, both macros call bn_expand2(), which allocates a new B array and copies the data. They return B on error, B otherwise. The bn_fix_top() macro reduces Btop> to point to the most significant non-zero word plus one when B has shrunk. =head2 Debugging bn_check_top() verifies that C<((a)-Etop E= 0 && (a)-Etop E= (a)-Edmax)>. A violation will cause the program to abort. bn_print() prints B to stderr. bn_dump() prints B words at B (in reverse order, i.e. most significant word first) to stderr. bn_set_max() makes B a static number with a B of its current size. This is used by bn_set_low() and bn_set_high() to make B a read-only B that contains the B low or high words of B. If B is not defined, bn_check_top(), bn_print(), bn_dump() and bn_set_max() are defined as empty macros. =head1 SEE ALSO L =head1 COPYRIGHT Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at L. =cut openssl-1.1.1f/crypto/bn/asm/000077500000000000000000000000001364063235100160455ustar00rootroot00000000000000openssl-1.1.1f/crypto/bn/asm/alpha-mont.pl000066400000000000000000000134411364063235100204450ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # On 21264 RSA sign performance improves by 70/35/20/15 percent for # 512/1024/2048/4096 bit key lengths. This is against vendor compiler # instructed to '-tune host' code with in-line assembler. Other # benchmarks improve by 15-20%. To anchor it to something else, the # code provides approximately the same performance per GHz as AMD64. # I.e. if you compare 1GHz 21264 and 2GHz Opteron, you'll observe ~2x # difference. $output=pop; open STDOUT,">$output"; # int bn_mul_mont( $rp="a0"; # BN_ULONG *rp, $ap="a1"; # const BN_ULONG *ap, $bp="a2"; # const BN_ULONG *bp, $np="a3"; # const BN_ULONG *np, $n0="a4"; # const BN_ULONG *n0, $num="a5"; # int num); $lo0="t0"; $hi0="t1"; $lo1="t2"; $hi1="t3"; $aj="t4"; $bi="t5"; $nj="t6"; $tp="t7"; $alo="t8"; $ahi="t9"; $nlo="t10"; $nhi="t11"; $tj="t12"; $i="s3"; $j="s4"; $m1="s5"; $code=<<___; #ifdef __linux__ #include #else #include #include #endif .text .set noat .set noreorder .globl bn_mul_mont .align 5 .ent bn_mul_mont bn_mul_mont: lda sp,-48(sp) stq ra,0(sp) stq s3,8(sp) stq s4,16(sp) stq s5,24(sp) stq fp,32(sp) mov sp,fp .mask 0x0400f000,-48 .frame fp,48,ra .prologue 0 .align 4 .set reorder sextl $num,$num mov 0,v0 cmplt $num,4,AT bne AT,.Lexit ldq $hi0,0($ap) # ap[0] s8addq $num,16,AT ldq $aj,8($ap) subq sp,AT,sp ldq $bi,0($bp) # bp[0] lda AT,-4096(zero) # mov -4096,AT ldq $n0,0($n0) and sp,AT,sp mulq $hi0,$bi,$lo0 ldq $hi1,0($np) # np[0] umulh $hi0,$bi,$hi0 ldq $nj,8($np) mulq $lo0,$n0,$m1 mulq $hi1,$m1,$lo1 umulh $hi1,$m1,$hi1 addq $lo1,$lo0,$lo1 cmpult $lo1,$lo0,AT addq $hi1,AT,$hi1 mulq $aj,$bi,$alo mov 2,$j umulh $aj,$bi,$ahi mov sp,$tp mulq $nj,$m1,$nlo s8addq $j,$ap,$aj umulh $nj,$m1,$nhi s8addq $j,$np,$nj .align 4 .L1st: .set noreorder ldq $aj,0($aj) addl $j,1,$j ldq $nj,0($nj) lda $tp,8($tp) addq $alo,$hi0,$lo0 mulq $aj,$bi,$alo cmpult $lo0,$hi0,AT addq $nlo,$hi1,$lo1 mulq $nj,$m1,$nlo addq $ahi,AT,$hi0 cmpult $lo1,$hi1,v0 cmplt $j,$num,$tj umulh $aj,$bi,$ahi addq $nhi,v0,$hi1 addq $lo1,$lo0,$lo1 s8addq $j,$ap,$aj umulh $nj,$m1,$nhi cmpult $lo1,$lo0,v0 addq $hi1,v0,$hi1 s8addq $j,$np,$nj stq $lo1,-8($tp) nop unop bne $tj,.L1st .set reorder addq $alo,$hi0,$lo0 addq $nlo,$hi1,$lo1 cmpult $lo0,$hi0,AT cmpult $lo1,$hi1,v0 addq $ahi,AT,$hi0 addq $nhi,v0,$hi1 addq $lo1,$lo0,$lo1 cmpult $lo1,$lo0,v0 addq $hi1,v0,$hi1 stq $lo1,0($tp) addq $hi1,$hi0,$hi1 cmpult $hi1,$hi0,AT stq $hi1,8($tp) stq AT,16($tp) mov 1,$i .align 4 .Louter: s8addq $i,$bp,$bi ldq $hi0,0($ap) ldq $aj,8($ap) ldq $bi,0($bi) ldq $hi1,0($np) ldq $nj,8($np) ldq $tj,0(sp) mulq $hi0,$bi,$lo0 umulh $hi0,$bi,$hi0 addq $lo0,$tj,$lo0 cmpult $lo0,$tj,AT addq $hi0,AT,$hi0 mulq $lo0,$n0,$m1 mulq $hi1,$m1,$lo1 umulh $hi1,$m1,$hi1 addq $lo1,$lo0,$lo1 cmpult $lo1,$lo0,AT mov 2,$j addq $hi1,AT,$hi1 mulq $aj,$bi,$alo mov sp,$tp umulh $aj,$bi,$ahi mulq $nj,$m1,$nlo s8addq $j,$ap,$aj umulh $nj,$m1,$nhi .align 4 .Linner: .set noreorder ldq $tj,8($tp) #L0 nop #U1 ldq $aj,0($aj) #L1 s8addq $j,$np,$nj #U0 ldq $nj,0($nj) #L0 nop #U1 addq $alo,$hi0,$lo0 #L1 lda $tp,8($tp) mulq $aj,$bi,$alo #U1 cmpult $lo0,$hi0,AT #L0 addq $nlo,$hi1,$lo1 #L1 addl $j,1,$j mulq $nj,$m1,$nlo #U1 addq $ahi,AT,$hi0 #L0 addq $lo0,$tj,$lo0 #L1 cmpult $lo1,$hi1,v0 #U0 umulh $aj,$bi,$ahi #U1 cmpult $lo0,$tj,AT #L0 addq $lo1,$lo0,$lo1 #L1 addq $nhi,v0,$hi1 #U0 umulh $nj,$m1,$nhi #U1 s8addq $j,$ap,$aj #L0 cmpult $lo1,$lo0,v0 #L1 cmplt $j,$num,$tj #U0 # borrow $tj addq $hi0,AT,$hi0 #L0 addq $hi1,v0,$hi1 #U1 stq $lo1,-8($tp) #L1 bne $tj,.Linner #U0 .set reorder ldq $tj,8($tp) addq $alo,$hi0,$lo0 addq $nlo,$hi1,$lo1 cmpult $lo0,$hi0,AT cmpult $lo1,$hi1,v0 addq $ahi,AT,$hi0 addq $nhi,v0,$hi1 addq $lo0,$tj,$lo0 cmpult $lo0,$tj,AT addq $hi0,AT,$hi0 ldq $tj,16($tp) addq $lo1,$lo0,$j cmpult $j,$lo0,v0 addq $hi1,v0,$hi1 addq $hi1,$hi0,$lo1 stq $j,0($tp) cmpult $lo1,$hi0,$hi1 addq $lo1,$tj,$lo1 cmpult $lo1,$tj,AT addl $i,1,$i addq $hi1,AT,$hi1 stq $lo1,8($tp) cmplt $i,$num,$tj # borrow $tj stq $hi1,16($tp) bne $tj,.Louter s8addq $num,sp,$tj # &tp[num] mov $rp,$bp # put rp aside mov sp,$tp mov sp,$ap mov 0,$hi0 # clear borrow bit .align 4 .Lsub: ldq $lo0,0($tp) ldq $lo1,0($np) lda $tp,8($tp) lda $np,8($np) subq $lo0,$lo1,$lo1 # tp[i]-np[i] cmpult $lo0,$lo1,AT subq $lo1,$hi0,$lo0 cmpult $lo1,$lo0,$hi0 or $hi0,AT,$hi0 stq $lo0,0($rp) cmpult $tp,$tj,v0 lda $rp,8($rp) bne v0,.Lsub subq $hi1,$hi0,$hi0 # handle upmost overflow bit mov sp,$tp mov $bp,$rp # restore rp .align 4 .Lcopy: ldq $aj,0($tp) # conditional copy ldq $nj,0($rp) lda $tp,8($tp) lda $rp,8($rp) cmoveq $hi0,$nj,$aj stq zero,-8($tp) # zap tp cmpult $tp,$tj,AT stq $aj,-8($rp) bne AT,.Lcopy mov 1,v0 .Lexit: .set noreorder mov fp,sp /*ldq ra,0(sp)*/ ldq s3,8(sp) ldq s4,16(sp) ldq s5,24(sp) ldq fp,32(sp) lda sp,48(sp) ret (ra) .end bn_mul_mont .ascii "Montgomery Multiplication for Alpha, CRYPTOGAMS by " .align 2 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/armv4-gf2m.pl000066400000000000000000000203421364063235100202650ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # May 2011 # # The module implements bn_GF2m_mul_2x2 polynomial multiplication # used in bn_gf2m.c. It's kind of low-hanging mechanical port from # C for the time being... Except that it has two code paths: pure # integer code suitable for any ARMv4 and later CPU and NEON code # suitable for ARMv7. Pure integer 1x1 multiplication subroutine runs # in ~45 cycles on dual-issue core such as Cortex A8, which is ~50% # faster than compiler-generated code. For ECDH and ECDSA verify (but # not for ECDSA sign) it means 25%-45% improvement depending on key # length, more for longer keys. Even though NEON 1x1 multiplication # runs in even less cycles, ~30, improvement is measurable only on # longer keys. One has to optimize code elsewhere to get NEON glow... # # April 2014 # # Double bn_GF2m_mul_2x2 performance by using algorithm from paper # referred below, which improves ECDH and ECDSA verify benchmarks # by 18-40%. # # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software # Polynomial Multiplication on ARM Processors using the NEON Engine. # # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $code=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif ___ ################ # private interface to mul_1x1_ialu # $a="r1"; $b="r0"; ($a0,$a1,$a2,$a12,$a4,$a14)= ($hi,$lo,$t0,$t1, $i0,$i1 )=map("r$_",(4..9),12); $mask="r12"; $code.=<<___; .type mul_1x1_ialu,%function .align 5 mul_1x1_ialu: mov $a0,#0 bic $a1,$a,#3<<30 @ a1=a&0x3fffffff str $a0,[sp,#0] @ tab[0]=0 add $a2,$a1,$a1 @ a2=a1<<1 str $a1,[sp,#4] @ tab[1]=a1 eor $a12,$a1,$a2 @ a1^a2 str $a2,[sp,#8] @ tab[2]=a2 mov $a4,$a1,lsl#2 @ a4=a1<<2 str $a12,[sp,#12] @ tab[3]=a1^a2 eor $a14,$a1,$a4 @ a1^a4 str $a4,[sp,#16] @ tab[4]=a4 eor $a0,$a2,$a4 @ a2^a4 str $a14,[sp,#20] @ tab[5]=a1^a4 eor $a12,$a12,$a4 @ a1^a2^a4 str $a0,[sp,#24] @ tab[6]=a2^a4 and $i0,$mask,$b,lsl#2 str $a12,[sp,#28] @ tab[7]=a1^a2^a4 and $i1,$mask,$b,lsr#1 ldr $lo,[sp,$i0] @ tab[b & 0x7] and $i0,$mask,$b,lsr#4 ldr $t1,[sp,$i1] @ tab[b >> 3 & 0x7] and $i1,$mask,$b,lsr#7 ldr $t0,[sp,$i0] @ tab[b >> 6 & 0x7] eor $lo,$lo,$t1,lsl#3 @ stall mov $hi,$t1,lsr#29 ldr $t1,[sp,$i1] @ tab[b >> 9 & 0x7] and $i0,$mask,$b,lsr#10 eor $lo,$lo,$t0,lsl#6 eor $hi,$hi,$t0,lsr#26 ldr $t0,[sp,$i0] @ tab[b >> 12 & 0x7] and $i1,$mask,$b,lsr#13 eor $lo,$lo,$t1,lsl#9 eor $hi,$hi,$t1,lsr#23 ldr $t1,[sp,$i1] @ tab[b >> 15 & 0x7] and $i0,$mask,$b,lsr#16 eor $lo,$lo,$t0,lsl#12 eor $hi,$hi,$t0,lsr#20 ldr $t0,[sp,$i0] @ tab[b >> 18 & 0x7] and $i1,$mask,$b,lsr#19 eor $lo,$lo,$t1,lsl#15 eor $hi,$hi,$t1,lsr#17 ldr $t1,[sp,$i1] @ tab[b >> 21 & 0x7] and $i0,$mask,$b,lsr#22 eor $lo,$lo,$t0,lsl#18 eor $hi,$hi,$t0,lsr#14 ldr $t0,[sp,$i0] @ tab[b >> 24 & 0x7] and $i1,$mask,$b,lsr#25 eor $lo,$lo,$t1,lsl#21 eor $hi,$hi,$t1,lsr#11 ldr $t1,[sp,$i1] @ tab[b >> 27 & 0x7] tst $a,#1<<30 and $i0,$mask,$b,lsr#28 eor $lo,$lo,$t0,lsl#24 eor $hi,$hi,$t0,lsr#8 ldr $t0,[sp,$i0] @ tab[b >> 30 ] #ifdef __thumb2__ itt ne #endif eorne $lo,$lo,$b,lsl#30 eorne $hi,$hi,$b,lsr#2 tst $a,#1<<31 eor $lo,$lo,$t1,lsl#27 eor $hi,$hi,$t1,lsr#5 #ifdef __thumb2__ itt ne #endif eorne $lo,$lo,$b,lsl#31 eorne $hi,$hi,$b,lsr#1 eor $lo,$lo,$t0,lsl#30 eor $hi,$hi,$t0,lsr#2 mov pc,lr .size mul_1x1_ialu,.-mul_1x1_ialu ___ ################ # void bn_GF2m_mul_2x2(BN_ULONG *r, # BN_ULONG a1,BN_ULONG a0, # BN_ULONG b1,BN_ULONG b0); # r[3..0]=a1a0·b1b0 { $code.=<<___; .global bn_GF2m_mul_2x2 .type bn_GF2m_mul_2x2,%function .align 5 bn_GF2m_mul_2x2: #if __ARM_MAX_ARCH__>=7 stmdb sp!,{r10,lr} ldr r12,.LOPENSSL_armcap adr r10,.LOPENSSL_armcap ldr r12,[r12,r10] #ifdef __APPLE__ ldr r12,[r12] #endif tst r12,#ARMV7_NEON itt ne ldrne r10,[sp],#8 bne .LNEON stmdb sp!,{r4-r9} #else stmdb sp!,{r4-r10,lr} #endif ___ $ret="r10"; # reassigned 1st argument $code.=<<___; mov $ret,r0 @ reassign 1st argument mov $b,r3 @ $b=b1 sub r7,sp,#36 mov r8,sp and r7,r7,#-32 ldr r3,[sp,#32] @ load b0 mov $mask,#7<<2 mov sp,r7 @ allocate tab[8] str r8,[r7,#32] bl mul_1x1_ialu @ a1·b1 str $lo,[$ret,#8] str $hi,[$ret,#12] eor $b,$b,r3 @ flip b0 and b1 eor $a,$a,r2 @ flip a0 and a1 eor r3,r3,$b eor r2,r2,$a eor $b,$b,r3 eor $a,$a,r2 bl mul_1x1_ialu @ a0·b0 str $lo,[$ret] str $hi,[$ret,#4] eor $a,$a,r2 eor $b,$b,r3 bl mul_1x1_ialu @ (a1+a0)·(b1+b0) ___ @r=map("r$_",(6..9)); $code.=<<___; ldmia $ret,{@r[0]-@r[3]} eor $lo,$lo,$hi ldr sp,[sp,#32] @ destroy tab[8] eor $hi,$hi,@r[1] eor $lo,$lo,@r[0] eor $hi,$hi,@r[2] eor $lo,$lo,@r[3] eor $hi,$hi,@r[3] str $hi,[$ret,#8] eor $lo,$lo,$hi str $lo,[$ret,#4] #if __ARM_ARCH__>=5 ldmia sp!,{r4-r10,pc} #else ldmia sp!,{r4-r10,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif ___ } { my ($r,$t0,$t1,$t2,$t3)=map("q$_",(0..3,8..12)); my ($a,$b,$k48,$k32,$k16)=map("d$_",(26..31)); $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .align 5 .LNEON: ldr r12, [sp] @ 5th argument vmov $a, r2, r1 vmov $b, r12, r3 vmov.i64 $k48, #0x0000ffffffffffff vmov.i64 $k32, #0x00000000ffffffff vmov.i64 $k16, #0x000000000000ffff vext.8 $t0#lo, $a, $a, #1 @ A1 vmull.p8 $t0, $t0#lo, $b @ F = A1*B vext.8 $r#lo, $b, $b, #1 @ B1 vmull.p8 $r, $a, $r#lo @ E = A*B1 vext.8 $t1#lo, $a, $a, #2 @ A2 vmull.p8 $t1, $t1#lo, $b @ H = A2*B vext.8 $t3#lo, $b, $b, #2 @ B2 vmull.p8 $t3, $a, $t3#lo @ G = A*B2 vext.8 $t2#lo, $a, $a, #3 @ A3 veor $t0, $t0, $r @ L = E + F vmull.p8 $t2, $t2#lo, $b @ J = A3*B vext.8 $r#lo, $b, $b, #3 @ B3 veor $t1, $t1, $t3 @ M = G + H vmull.p8 $r, $a, $r#lo @ I = A*B3 veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8 vand $t0#hi, $t0#hi, $k48 vext.8 $t3#lo, $b, $b, #4 @ B4 veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16 vand $t1#hi, $t1#hi, $k32 vmull.p8 $t3, $a, $t3#lo @ K = A*B4 veor $t2, $t2, $r @ N = I + J veor $t0#lo, $t0#lo, $t0#hi veor $t1#lo, $t1#lo, $t1#hi veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24 vand $t2#hi, $t2#hi, $k16 vext.8 $t0, $t0, $t0, #15 veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32 vmov.i64 $t3#hi, #0 vext.8 $t1, $t1, $t1, #14 veor $t2#lo, $t2#lo, $t2#hi vmull.p8 $r, $a, $b @ D = A*B vext.8 $t3, $t3, $t3, #12 vext.8 $t2, $t2, $t2, #13 veor $t0, $t0, $t1 veor $t2, $t2, $t3 veor $r, $r, $t0 veor $r, $r, $t2 vst1.32 {$r}, [r0] ret @ bx lr #endif ___ } $code.=<<___; .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 #if __ARM_MAX_ARCH__>=7 .align 5 .LOPENSSL_armcap: .word OPENSSL_armcap_P-. #endif .asciz "GF(2^m) Multiplication for ARMv4/NEON, CRYPTOGAMS by " .align 5 #if __ARM_MAX_ARCH__>=7 .comm OPENSSL_armcap_P,4,4 #endif ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or s/\bret\b/bx lr/go or s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/bn/asm/armv4-mont.pl000066400000000000000000000464071364063235100204210ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # January 2007. # Montgomery multiplication for ARMv4. # # Performance improvement naturally varies among CPU implementations # and compilers. The code was observed to provide +65-35% improvement # [depending on key length, less for longer keys] on ARM920T, and # +115-80% on Intel IXP425. This is compared to pre-bn_mul_mont code # base and compiler generated code with in-lined umull and even umlal # instructions. The latter means that this code didn't really have an # "advantage" of utilizing some "secret" instruction. # # The code is interoperable with Thumb ISA and is rather compact, less # than 1/2KB. Windows CE port would be trivial, as it's exclusively # about decorations, ABI and instruction syntax are identical. # November 2013 # # Add NEON code path, which handles lengths divisible by 8. RSA/DSA # performance improvement on Cortex-A8 is ~45-100% depending on key # length, more for longer keys. On Cortex-A15 the span is ~10-105%. # On Snapdragon S4 improvement was measured to vary from ~70% to # incredible ~380%, yes, 4.8x faster, for RSA4096 sign. But this is # rather because original integer-only code seems to perform # suboptimally on S4. Situation on Cortex-A9 is unfortunately # different. It's being looked into, but the trouble is that # performance for vectors longer than 256 bits is actually couple # of percent worse than for integer-only code. The code is chosen # for execution on all NEON-capable processors, because gain on # others outweighs the marginal loss on Cortex-A9. # September 2015 # # Align Cortex-A9 performance with November 2013 improvements, i.e. # NEON code is now ~20-105% faster than integer-only one on this # processor. But this optimization further improved performance even # on other processors: NEON code path is ~45-180% faster than original # integer-only on Cortex-A8, ~10-210% on Cortex-A15, ~70-450% on # Snapdragon S4. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $num="r0"; # starts as num argument, but holds &tp[num-1] $ap="r1"; $bp="r2"; $bi="r2"; $rp="r2"; $np="r3"; $tp="r4"; $aj="r5"; $nj="r6"; $tj="r7"; $n0="r8"; ########### # r9 is reserved by ELF as platform specific, e.g. TLS pointer $alo="r10"; # sl, gcc uses it to keep @GOT $ahi="r11"; # fp $nlo="r12"; # ip ########### # r13 is stack pointer $nhi="r14"; # lr ########### # r15 is program counter #### argument block layout relative to &tp[num-1], a.k.a. $num $_rp="$num,#12*4"; # ap permanently resides in r1 $_bp="$num,#13*4"; # np permanently resides in r3 $_n0="$num,#14*4"; $_num="$num,#15*4"; $_bpend=$_num; $code=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif #if __ARM_MAX_ARCH__>=7 .align 5 .LOPENSSL_armcap: .word OPENSSL_armcap_P-.Lbn_mul_mont #endif .global bn_mul_mont .type bn_mul_mont,%function .align 5 bn_mul_mont: .Lbn_mul_mont: ldr ip,[sp,#4] @ load num stmdb sp!,{r0,r2} @ sp points at argument block #if __ARM_MAX_ARCH__>=7 tst ip,#7 bne .Lialu adr r0,.Lbn_mul_mont ldr r2,.LOPENSSL_armcap ldr r0,[r0,r2] #ifdef __APPLE__ ldr r0,[r0] #endif tst r0,#ARMV7_NEON @ NEON available? ldmia sp, {r0,r2} beq .Lialu add sp,sp,#8 b bn_mul8x_mont_neon .align 4 .Lialu: #endif cmp ip,#2 mov $num,ip @ load num #ifdef __thumb2__ ittt lt #endif movlt r0,#0 addlt sp,sp,#2*4 blt .Labrt stmdb sp!,{r4-r12,lr} @ save 10 registers mov $num,$num,lsl#2 @ rescale $num for byte count sub sp,sp,$num @ alloca(4*num) sub sp,sp,#4 @ +extra dword sub $num,$num,#4 @ "num=num-1" add $tp,$bp,$num @ &bp[num-1] add $num,sp,$num @ $num to point at &tp[num-1] ldr $n0,[$_n0] @ &n0 ldr $bi,[$bp] @ bp[0] ldr $aj,[$ap],#4 @ ap[0],ap++ ldr $nj,[$np],#4 @ np[0],np++ ldr $n0,[$n0] @ *n0 str $tp,[$_bpend] @ save &bp[num] umull $alo,$ahi,$aj,$bi @ ap[0]*bp[0] str $n0,[$_n0] @ save n0 value mul $n0,$alo,$n0 @ "tp[0]"*n0 mov $nlo,#0 umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"t[0]" mov $tp,sp .L1st: ldr $aj,[$ap],#4 @ ap[j],ap++ mov $alo,$ahi ldr $nj,[$np],#4 @ np[j],np++ mov $ahi,#0 umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[0] mov $nhi,#0 umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 adds $nlo,$nlo,$alo str $nlo,[$tp],#4 @ tp[j-1]=,tp++ adc $nlo,$nhi,#0 cmp $tp,$num bne .L1st adds $nlo,$nlo,$ahi ldr $tp,[$_bp] @ restore bp mov $nhi,#0 ldr $n0,[$_n0] @ restore n0 adc $nhi,$nhi,#0 str $nlo,[$num] @ tp[num-1]= mov $tj,sp str $nhi,[$num,#4] @ tp[num]= .Louter: sub $tj,$num,$tj @ "original" $num-1 value sub $ap,$ap,$tj @ "rewind" ap to &ap[1] ldr $bi,[$tp,#4]! @ *(++bp) sub $np,$np,$tj @ "rewind" np to &np[1] ldr $aj,[$ap,#-4] @ ap[0] ldr $alo,[sp] @ tp[0] ldr $nj,[$np,#-4] @ np[0] ldr $tj,[sp,#4] @ tp[1] mov $ahi,#0 umlal $alo,$ahi,$aj,$bi @ ap[0]*bp[i]+tp[0] str $tp,[$_bp] @ save bp mul $n0,$alo,$n0 mov $nlo,#0 umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"tp[0]" mov $tp,sp .Linner: ldr $aj,[$ap],#4 @ ap[j],ap++ adds $alo,$ahi,$tj @ +=tp[j] ldr $nj,[$np],#4 @ np[j],np++ mov $ahi,#0 umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[i] mov $nhi,#0 umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 adc $ahi,$ahi,#0 ldr $tj,[$tp,#8] @ tp[j+1] adds $nlo,$nlo,$alo str $nlo,[$tp],#4 @ tp[j-1]=,tp++ adc $nlo,$nhi,#0 cmp $tp,$num bne .Linner adds $nlo,$nlo,$ahi mov $nhi,#0 ldr $tp,[$_bp] @ restore bp adc $nhi,$nhi,#0 ldr $n0,[$_n0] @ restore n0 adds $nlo,$nlo,$tj ldr $tj,[$_bpend] @ restore &bp[num] adc $nhi,$nhi,#0 str $nlo,[$num] @ tp[num-1]= str $nhi,[$num,#4] @ tp[num]= cmp $tp,$tj #ifdef __thumb2__ itt ne #endif movne $tj,sp bne .Louter ldr $rp,[$_rp] @ pull rp mov $aj,sp add $num,$num,#4 @ $num to point at &tp[num] sub $aj,$num,$aj @ "original" num value mov $tp,sp @ "rewind" $tp mov $ap,$tp @ "borrow" $ap sub $np,$np,$aj @ "rewind" $np to &np[0] subs $tj,$tj,$tj @ "clear" carry flag .Lsub: ldr $tj,[$tp],#4 ldr $nj,[$np],#4 sbcs $tj,$tj,$nj @ tp[j]-np[j] str $tj,[$rp],#4 @ rp[j]= teq $tp,$num @ preserve carry bne .Lsub sbcs $nhi,$nhi,#0 @ upmost carry mov $tp,sp @ "rewind" $tp sub $rp,$rp,$aj @ "rewind" $rp .Lcopy: ldr $tj,[$tp] @ conditional copy ldr $aj,[$rp] str sp,[$tp],#4 @ zap tp #ifdef __thumb2__ it cc #endif movcc $aj,$tj str $aj,[$rp],#4 teq $tp,$num @ preserve carry bne .Lcopy mov sp,$num add sp,sp,#4 @ skip over tp[num+1] ldmia sp!,{r4-r12,lr} @ restore registers add sp,sp,#2*4 @ skip over {r0,r2} mov r0,#1 .Labrt: #if __ARM_ARCH__>=5 ret @ bx lr #else tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size bn_mul_mont,.-bn_mul_mont ___ { my ($A0,$A1,$A2,$A3)=map("d$_",(0..3)); my ($N0,$N1,$N2,$N3)=map("d$_",(4..7)); my ($Z,$Temp)=("q4","q5"); my @ACC=map("q$_",(6..13)); my ($Bi,$Ni,$M0)=map("d$_",(28..31)); my $zero="$Z#lo"; my $temp="$Temp#lo"; my ($rptr,$aptr,$bptr,$nptr,$n0,$num)=map("r$_",(0..5)); my ($tinptr,$toutptr,$inner,$outer,$bnptr)=map("r$_",(6..11)); $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .type bn_mul8x_mont_neon,%function .align 5 bn_mul8x_mont_neon: mov ip,sp stmdb sp!,{r4-r11} vstmdb sp!,{d8-d15} @ ABI specification says so ldmia ip,{r4-r5} @ load rest of parameter block mov ip,sp cmp $num,#8 bhi .LNEON_8n @ special case for $num==8, everything is in register bank... vld1.32 {${Bi}[0]}, [$bptr,:32]! veor $zero,$zero,$zero sub $toutptr,sp,$num,lsl#4 vld1.32 {$A0-$A3}, [$aptr]! @ can't specify :32 :-( and $toutptr,$toutptr,#-64 vld1.32 {${M0}[0]}, [$n0,:32] mov sp,$toutptr @ alloca vzip.16 $Bi,$zero vmull.u32 @ACC[0],$Bi,${A0}[0] vmull.u32 @ACC[1],$Bi,${A0}[1] vmull.u32 @ACC[2],$Bi,${A1}[0] vshl.i64 $Ni,@ACC[0]#hi,#16 vmull.u32 @ACC[3],$Bi,${A1}[1] vadd.u64 $Ni,$Ni,@ACC[0]#lo veor $zero,$zero,$zero vmul.u32 $Ni,$Ni,$M0 vmull.u32 @ACC[4],$Bi,${A2}[0] vld1.32 {$N0-$N3}, [$nptr]! vmull.u32 @ACC[5],$Bi,${A2}[1] vmull.u32 @ACC[6],$Bi,${A3}[0] vzip.16 $Ni,$zero vmull.u32 @ACC[7],$Bi,${A3}[1] vmlal.u32 @ACC[0],$Ni,${N0}[0] sub $outer,$num,#1 vmlal.u32 @ACC[1],$Ni,${N0}[1] vmlal.u32 @ACC[2],$Ni,${N1}[0] vmlal.u32 @ACC[3],$Ni,${N1}[1] vmlal.u32 @ACC[4],$Ni,${N2}[0] vmov $Temp,@ACC[0] vmlal.u32 @ACC[5],$Ni,${N2}[1] vmov @ACC[0],@ACC[1] vmlal.u32 @ACC[6],$Ni,${N3}[0] vmov @ACC[1],@ACC[2] vmlal.u32 @ACC[7],$Ni,${N3}[1] vmov @ACC[2],@ACC[3] vmov @ACC[3],@ACC[4] vshr.u64 $temp,$temp,#16 vmov @ACC[4],@ACC[5] vmov @ACC[5],@ACC[6] vadd.u64 $temp,$temp,$Temp#hi vmov @ACC[6],@ACC[7] veor @ACC[7],@ACC[7] vshr.u64 $temp,$temp,#16 b .LNEON_outer8 .align 4 .LNEON_outer8: vld1.32 {${Bi}[0]}, [$bptr,:32]! veor $zero,$zero,$zero vzip.16 $Bi,$zero vadd.u64 @ACC[0]#lo,@ACC[0]#lo,$temp vmlal.u32 @ACC[0],$Bi,${A0}[0] vmlal.u32 @ACC[1],$Bi,${A0}[1] vmlal.u32 @ACC[2],$Bi,${A1}[0] vshl.i64 $Ni,@ACC[0]#hi,#16 vmlal.u32 @ACC[3],$Bi,${A1}[1] vadd.u64 $Ni,$Ni,@ACC[0]#lo veor $zero,$zero,$zero subs $outer,$outer,#1 vmul.u32 $Ni,$Ni,$M0 vmlal.u32 @ACC[4],$Bi,${A2}[0] vmlal.u32 @ACC[5],$Bi,${A2}[1] vmlal.u32 @ACC[6],$Bi,${A3}[0] vzip.16 $Ni,$zero vmlal.u32 @ACC[7],$Bi,${A3}[1] vmlal.u32 @ACC[0],$Ni,${N0}[0] vmlal.u32 @ACC[1],$Ni,${N0}[1] vmlal.u32 @ACC[2],$Ni,${N1}[0] vmlal.u32 @ACC[3],$Ni,${N1}[1] vmlal.u32 @ACC[4],$Ni,${N2}[0] vmov $Temp,@ACC[0] vmlal.u32 @ACC[5],$Ni,${N2}[1] vmov @ACC[0],@ACC[1] vmlal.u32 @ACC[6],$Ni,${N3}[0] vmov @ACC[1],@ACC[2] vmlal.u32 @ACC[7],$Ni,${N3}[1] vmov @ACC[2],@ACC[3] vmov @ACC[3],@ACC[4] vshr.u64 $temp,$temp,#16 vmov @ACC[4],@ACC[5] vmov @ACC[5],@ACC[6] vadd.u64 $temp,$temp,$Temp#hi vmov @ACC[6],@ACC[7] veor @ACC[7],@ACC[7] vshr.u64 $temp,$temp,#16 bne .LNEON_outer8 vadd.u64 @ACC[0]#lo,@ACC[0]#lo,$temp mov $toutptr,sp vshr.u64 $temp,@ACC[0]#lo,#16 mov $inner,$num vadd.u64 @ACC[0]#hi,@ACC[0]#hi,$temp add $tinptr,sp,#96 vshr.u64 $temp,@ACC[0]#hi,#16 vzip.16 @ACC[0]#lo,@ACC[0]#hi b .LNEON_tail_entry .align 4 .LNEON_8n: veor @ACC[0],@ACC[0],@ACC[0] sub $toutptr,sp,#128 veor @ACC[1],@ACC[1],@ACC[1] sub $toutptr,$toutptr,$num,lsl#4 veor @ACC[2],@ACC[2],@ACC[2] and $toutptr,$toutptr,#-64 veor @ACC[3],@ACC[3],@ACC[3] mov sp,$toutptr @ alloca veor @ACC[4],@ACC[4],@ACC[4] add $toutptr,$toutptr,#256 veor @ACC[5],@ACC[5],@ACC[5] sub $inner,$num,#8 veor @ACC[6],@ACC[6],@ACC[6] veor @ACC[7],@ACC[7],@ACC[7] .LNEON_8n_init: vst1.64 {@ACC[0]-@ACC[1]},[$toutptr,:256]! subs $inner,$inner,#8 vst1.64 {@ACC[2]-@ACC[3]},[$toutptr,:256]! vst1.64 {@ACC[4]-@ACC[5]},[$toutptr,:256]! vst1.64 {@ACC[6]-@ACC[7]},[$toutptr,:256]! bne .LNEON_8n_init add $tinptr,sp,#256 vld1.32 {$A0-$A3},[$aptr]! add $bnptr,sp,#8 vld1.32 {${M0}[0]},[$n0,:32] mov $outer,$num b .LNEON_8n_outer .align 4 .LNEON_8n_outer: vld1.32 {${Bi}[0]},[$bptr,:32]! @ *b++ veor $zero,$zero,$zero vzip.16 $Bi,$zero add $toutptr,sp,#128 vld1.32 {$N0-$N3},[$nptr]! vmlal.u32 @ACC[0],$Bi,${A0}[0] vmlal.u32 @ACC[1],$Bi,${A0}[1] veor $zero,$zero,$zero vmlal.u32 @ACC[2],$Bi,${A1}[0] vshl.i64 $Ni,@ACC[0]#hi,#16 vmlal.u32 @ACC[3],$Bi,${A1}[1] vadd.u64 $Ni,$Ni,@ACC[0]#lo vmlal.u32 @ACC[4],$Bi,${A2}[0] vmul.u32 $Ni,$Ni,$M0 vmlal.u32 @ACC[5],$Bi,${A2}[1] vst1.32 {$Bi},[sp,:64] @ put aside smashed b[8*i+0] vmlal.u32 @ACC[6],$Bi,${A3}[0] vzip.16 $Ni,$zero vmlal.u32 @ACC[7],$Bi,${A3}[1] ___ for ($i=0; $i<7;) { $code.=<<___; vld1.32 {${Bi}[0]},[$bptr,:32]! @ *b++ vmlal.u32 @ACC[0],$Ni,${N0}[0] veor $temp,$temp,$temp vmlal.u32 @ACC[1],$Ni,${N0}[1] vzip.16 $Bi,$temp vmlal.u32 @ACC[2],$Ni,${N1}[0] vshr.u64 @ACC[0]#lo,@ACC[0]#lo,#16 vmlal.u32 @ACC[3],$Ni,${N1}[1] vmlal.u32 @ACC[4],$Ni,${N2}[0] vadd.u64 @ACC[0]#lo,@ACC[0]#lo,@ACC[0]#hi vmlal.u32 @ACC[5],$Ni,${N2}[1] vshr.u64 @ACC[0]#lo,@ACC[0]#lo,#16 vmlal.u32 @ACC[6],$Ni,${N3}[0] vmlal.u32 @ACC[7],$Ni,${N3}[1] vadd.u64 @ACC[1]#lo,@ACC[1]#lo,@ACC[0]#lo vst1.32 {$Ni},[$bnptr,:64]! @ put aside smashed m[8*i+$i] ___ push(@ACC,shift(@ACC)); $i++; $code.=<<___; vmlal.u32 @ACC[0],$Bi,${A0}[0] vld1.64 {@ACC[7]},[$tinptr,:128]! vmlal.u32 @ACC[1],$Bi,${A0}[1] veor $zero,$zero,$zero vmlal.u32 @ACC[2],$Bi,${A1}[0] vshl.i64 $Ni,@ACC[0]#hi,#16 vmlal.u32 @ACC[3],$Bi,${A1}[1] vadd.u64 $Ni,$Ni,@ACC[0]#lo vmlal.u32 @ACC[4],$Bi,${A2}[0] vmul.u32 $Ni,$Ni,$M0 vmlal.u32 @ACC[5],$Bi,${A2}[1] vst1.32 {$Bi},[$bnptr,:64]! @ put aside smashed b[8*i+$i] vmlal.u32 @ACC[6],$Bi,${A3}[0] vzip.16 $Ni,$zero vmlal.u32 @ACC[7],$Bi,${A3}[1] ___ } $code.=<<___; vld1.32 {$Bi},[sp,:64] @ pull smashed b[8*i+0] vmlal.u32 @ACC[0],$Ni,${N0}[0] vld1.32 {$A0-$A3},[$aptr]! vmlal.u32 @ACC[1],$Ni,${N0}[1] vmlal.u32 @ACC[2],$Ni,${N1}[0] vshr.u64 @ACC[0]#lo,@ACC[0]#lo,#16 vmlal.u32 @ACC[3],$Ni,${N1}[1] vmlal.u32 @ACC[4],$Ni,${N2}[0] vadd.u64 @ACC[0]#lo,@ACC[0]#lo,@ACC[0]#hi vmlal.u32 @ACC[5],$Ni,${N2}[1] vshr.u64 @ACC[0]#lo,@ACC[0]#lo,#16 vmlal.u32 @ACC[6],$Ni,${N3}[0] vmlal.u32 @ACC[7],$Ni,${N3}[1] vadd.u64 @ACC[1]#lo,@ACC[1]#lo,@ACC[0]#lo vst1.32 {$Ni},[$bnptr,:64] @ put aside smashed m[8*i+$i] add $bnptr,sp,#8 @ rewind ___ push(@ACC,shift(@ACC)); $code.=<<___; sub $inner,$num,#8 b .LNEON_8n_inner .align 4 .LNEON_8n_inner: subs $inner,$inner,#8 vmlal.u32 @ACC[0],$Bi,${A0}[0] vld1.64 {@ACC[7]},[$tinptr,:128] vmlal.u32 @ACC[1],$Bi,${A0}[1] vld1.32 {$Ni},[$bnptr,:64]! @ pull smashed m[8*i+0] vmlal.u32 @ACC[2],$Bi,${A1}[0] vld1.32 {$N0-$N3},[$nptr]! vmlal.u32 @ACC[3],$Bi,${A1}[1] it ne addne $tinptr,$tinptr,#16 @ don't advance in last iteration vmlal.u32 @ACC[4],$Bi,${A2}[0] vmlal.u32 @ACC[5],$Bi,${A2}[1] vmlal.u32 @ACC[6],$Bi,${A3}[0] vmlal.u32 @ACC[7],$Bi,${A3}[1] ___ for ($i=1; $i<8; $i++) { $code.=<<___; vld1.32 {$Bi},[$bnptr,:64]! @ pull smashed b[8*i+$i] vmlal.u32 @ACC[0],$Ni,${N0}[0] vmlal.u32 @ACC[1],$Ni,${N0}[1] vmlal.u32 @ACC[2],$Ni,${N1}[0] vmlal.u32 @ACC[3],$Ni,${N1}[1] vmlal.u32 @ACC[4],$Ni,${N2}[0] vmlal.u32 @ACC[5],$Ni,${N2}[1] vmlal.u32 @ACC[6],$Ni,${N3}[0] vmlal.u32 @ACC[7],$Ni,${N3}[1] vst1.64 {@ACC[0]},[$toutptr,:128]! ___ push(@ACC,shift(@ACC)); $code.=<<___; vmlal.u32 @ACC[0],$Bi,${A0}[0] vld1.64 {@ACC[7]},[$tinptr,:128] vmlal.u32 @ACC[1],$Bi,${A0}[1] vld1.32 {$Ni},[$bnptr,:64]! @ pull smashed m[8*i+$i] vmlal.u32 @ACC[2],$Bi,${A1}[0] it ne addne $tinptr,$tinptr,#16 @ don't advance in last iteration vmlal.u32 @ACC[3],$Bi,${A1}[1] vmlal.u32 @ACC[4],$Bi,${A2}[0] vmlal.u32 @ACC[5],$Bi,${A2}[1] vmlal.u32 @ACC[6],$Bi,${A3}[0] vmlal.u32 @ACC[7],$Bi,${A3}[1] ___ } $code.=<<___; it eq subeq $aptr,$aptr,$num,lsl#2 @ rewind vmlal.u32 @ACC[0],$Ni,${N0}[0] vld1.32 {$Bi},[sp,:64] @ pull smashed b[8*i+0] vmlal.u32 @ACC[1],$Ni,${N0}[1] vld1.32 {$A0-$A3},[$aptr]! vmlal.u32 @ACC[2],$Ni,${N1}[0] add $bnptr,sp,#8 @ rewind vmlal.u32 @ACC[3],$Ni,${N1}[1] vmlal.u32 @ACC[4],$Ni,${N2}[0] vmlal.u32 @ACC[5],$Ni,${N2}[1] vmlal.u32 @ACC[6],$Ni,${N3}[0] vst1.64 {@ACC[0]},[$toutptr,:128]! vmlal.u32 @ACC[7],$Ni,${N3}[1] bne .LNEON_8n_inner ___ push(@ACC,shift(@ACC)); $code.=<<___; add $tinptr,sp,#128 vst1.64 {@ACC[0]-@ACC[1]},[$toutptr,:256]! veor q2,q2,q2 @ $N0-$N1 vst1.64 {@ACC[2]-@ACC[3]},[$toutptr,:256]! veor q3,q3,q3 @ $N2-$N3 vst1.64 {@ACC[4]-@ACC[5]},[$toutptr,:256]! vst1.64 {@ACC[6]},[$toutptr,:128] subs $outer,$outer,#8 vld1.64 {@ACC[0]-@ACC[1]},[$tinptr,:256]! vld1.64 {@ACC[2]-@ACC[3]},[$tinptr,:256]! vld1.64 {@ACC[4]-@ACC[5]},[$tinptr,:256]! vld1.64 {@ACC[6]-@ACC[7]},[$tinptr,:256]! itt ne subne $nptr,$nptr,$num,lsl#2 @ rewind bne .LNEON_8n_outer add $toutptr,sp,#128 vst1.64 {q2-q3}, [sp,:256]! @ start wiping stack frame vshr.u64 $temp,@ACC[0]#lo,#16 vst1.64 {q2-q3},[sp,:256]! vadd.u64 @ACC[0]#hi,@ACC[0]#hi,$temp vst1.64 {q2-q3}, [sp,:256]! vshr.u64 $temp,@ACC[0]#hi,#16 vst1.64 {q2-q3}, [sp,:256]! vzip.16 @ACC[0]#lo,@ACC[0]#hi mov $inner,$num b .LNEON_tail_entry .align 4 .LNEON_tail: vadd.u64 @ACC[0]#lo,@ACC[0]#lo,$temp vshr.u64 $temp,@ACC[0]#lo,#16 vld1.64 {@ACC[2]-@ACC[3]}, [$tinptr, :256]! vadd.u64 @ACC[0]#hi,@ACC[0]#hi,$temp vld1.64 {@ACC[4]-@ACC[5]}, [$tinptr, :256]! vshr.u64 $temp,@ACC[0]#hi,#16 vld1.64 {@ACC[6]-@ACC[7]}, [$tinptr, :256]! vzip.16 @ACC[0]#lo,@ACC[0]#hi .LNEON_tail_entry: ___ for ($i=1; $i<8; $i++) { $code.=<<___; vadd.u64 @ACC[1]#lo,@ACC[1]#lo,$temp vst1.32 {@ACC[0]#lo[0]}, [$toutptr, :32]! vshr.u64 $temp,@ACC[1]#lo,#16 vadd.u64 @ACC[1]#hi,@ACC[1]#hi,$temp vshr.u64 $temp,@ACC[1]#hi,#16 vzip.16 @ACC[1]#lo,@ACC[1]#hi ___ push(@ACC,shift(@ACC)); } push(@ACC,shift(@ACC)); $code.=<<___; vld1.64 {@ACC[0]-@ACC[1]}, [$tinptr, :256]! subs $inner,$inner,#8 vst1.32 {@ACC[7]#lo[0]}, [$toutptr, :32]! bne .LNEON_tail vst1.32 {${temp}[0]}, [$toutptr, :32] @ top-most bit sub $nptr,$nptr,$num,lsl#2 @ rewind $nptr subs $aptr,sp,#0 @ clear carry flag add $bptr,sp,$num,lsl#2 .LNEON_sub: ldmia $aptr!, {r4-r7} ldmia $nptr!, {r8-r11} sbcs r8, r4,r8 sbcs r9, r5,r9 sbcs r10,r6,r10 sbcs r11,r7,r11 teq $aptr,$bptr @ preserves carry stmia $rptr!, {r8-r11} bne .LNEON_sub ldr r10, [$aptr] @ load top-most bit mov r11,sp veor q0,q0,q0 sub r11,$bptr,r11 @ this is num*4 veor q1,q1,q1 mov $aptr,sp sub $rptr,$rptr,r11 @ rewind $rptr mov $nptr,$bptr @ second 3/4th of frame sbcs r10,r10,#0 @ result is carry flag .LNEON_copy_n_zap: ldmia $aptr!, {r4-r7} ldmia $rptr, {r8-r11} it cc movcc r8, r4 vst1.64 {q0-q1}, [$nptr,:256]! @ wipe itt cc movcc r9, r5 movcc r10,r6 vst1.64 {q0-q1}, [$nptr,:256]! @ wipe it cc movcc r11,r7 ldmia $aptr, {r4-r7} stmia $rptr!, {r8-r11} sub $aptr,$aptr,#16 ldmia $rptr, {r8-r11} it cc movcc r8, r4 vst1.64 {q0-q1}, [$aptr,:256]! @ wipe itt cc movcc r9, r5 movcc r10,r6 vst1.64 {q0-q1}, [$nptr,:256]! @ wipe it cc movcc r11,r7 teq $aptr,$bptr @ preserves carry stmia $rptr!, {r8-r11} bne .LNEON_copy_n_zap mov sp,ip vldmia sp!,{d8-d15} ldmia sp!,{r4-r11} ret @ bx lr .size bn_mul8x_mont_neon,.-bn_mul8x_mont_neon #endif ___ } $code.=<<___; .asciz "Montgomery multiplication for ARMv4/NEON, CRYPTOGAMS by " .align 2 #if __ARM_MAX_ARCH__>=7 .comm OPENSSL_armcap_P,4,4 #endif ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/ge or s/\bret\b/bx lr/g or s/\bbx\s+lr\b/.word\t0xe12fff1e/g; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/armv8-mont.pl000077500000000000000000001100631364063235100204160ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # March 2015 # # "Teaser" Montgomery multiplication module for ARMv8. Needs more # work. While it does improve RSA sign performance by 20-30% (less for # longer keys) on most processors, for some reason RSA2048 is not # faster and RSA4096 goes 15-20% slower on Cortex-A57. Multiplication # instruction issue rate is limited on processor in question, meaning # that dedicated squaring procedure is a must. Well, actually all # contemporary AArch64 processors seem to have limited multiplication # issue rate, i.e. they can't issue multiplication every cycle, which # explains moderate improvement coefficients in comparison to # compiler-generated code. Recall that compiler is instructed to use # umulh and therefore uses same amount of multiplication instructions # to do the job. Assembly's edge is to minimize number of "collateral" # instructions and of course instruction scheduling. # # April 2015 # # Squaring procedure that handles lengths divisible by 8 improves # RSA/DSA performance by 25-40-60% depending on processor and key # length. Overall improvement coefficients are always positive in # comparison to compiler-generated code. On Cortex-A57 improvement # is still modest on longest key lengths, while others exhibit e.g. # 50-70% improvement for RSA4096 sign. RSA2048 sign is ~25% faster # on Cortex-A57 and ~60-100% faster on others. $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; ($lo0,$hi0,$aj,$m0,$alo,$ahi, $lo1,$hi1,$nj,$m1,$nlo,$nhi, $ovf, $i,$j,$tp,$tj) = map("x$_",6..17,19..24); # int bn_mul_mont( $rp="x0"; # BN_ULONG *rp, $ap="x1"; # const BN_ULONG *ap, $bp="x2"; # const BN_ULONG *bp, $np="x3"; # const BN_ULONG *np, $n0="x4"; # const BN_ULONG *n0, $num="x5"; # int num); $code.=<<___; .text .globl bn_mul_mont .type bn_mul_mont,%function .align 5 bn_mul_mont: tst $num,#7 b.eq __bn_sqr8x_mont tst $num,#3 b.eq __bn_mul4x_mont .Lmul_mont: stp x29,x30,[sp,#-64]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] ldr $m0,[$bp],#8 // bp[0] sub $tp,sp,$num,lsl#3 ldp $hi0,$aj,[$ap],#16 // ap[0..1] lsl $num,$num,#3 ldr $n0,[$n0] // *n0 and $tp,$tp,#-16 // ABI says so ldp $hi1,$nj,[$np],#16 // np[0..1] mul $lo0,$hi0,$m0 // ap[0]*bp[0] sub $j,$num,#16 // j=num-2 umulh $hi0,$hi0,$m0 mul $alo,$aj,$m0 // ap[1]*bp[0] umulh $ahi,$aj,$m0 mul $m1,$lo0,$n0 // "tp[0]"*n0 mov sp,$tp // alloca // (*) mul $lo1,$hi1,$m1 // np[0]*m1 umulh $hi1,$hi1,$m1 mul $nlo,$nj,$m1 // np[1]*m1 // (*) adds $lo1,$lo1,$lo0 // discarded // (*) As for removal of first multiplication and addition // instructions. The outcome of first addition is // guaranteed to be zero, which leaves two computationally // significant outcomes: it either carries or not. Then // question is when does it carry? Is there alternative // way to deduce it? If you follow operations, you can // observe that condition for carry is quite simple: // $lo0 being non-zero. So that carry can be calculated // by adding -1 to $lo0. That's what next instruction does. subs xzr,$lo0,#1 // (*) umulh $nhi,$nj,$m1 adc $hi1,$hi1,xzr cbz $j,.L1st_skip .L1st: ldr $aj,[$ap],#8 adds $lo0,$alo,$hi0 sub $j,$j,#8 // j-- adc $hi0,$ahi,xzr ldr $nj,[$np],#8 adds $lo1,$nlo,$hi1 mul $alo,$aj,$m0 // ap[j]*bp[0] adc $hi1,$nhi,xzr umulh $ahi,$aj,$m0 adds $lo1,$lo1,$lo0 mul $nlo,$nj,$m1 // np[j]*m1 adc $hi1,$hi1,xzr umulh $nhi,$nj,$m1 str $lo1,[$tp],#8 // tp[j-1] cbnz $j,.L1st .L1st_skip: adds $lo0,$alo,$hi0 sub $ap,$ap,$num // rewind $ap adc $hi0,$ahi,xzr adds $lo1,$nlo,$hi1 sub $np,$np,$num // rewind $np adc $hi1,$nhi,xzr adds $lo1,$lo1,$lo0 sub $i,$num,#8 // i=num-1 adcs $hi1,$hi1,$hi0 adc $ovf,xzr,xzr // upmost overflow bit stp $lo1,$hi1,[$tp] .Louter: ldr $m0,[$bp],#8 // bp[i] ldp $hi0,$aj,[$ap],#16 ldr $tj,[sp] // tp[0] add $tp,sp,#8 mul $lo0,$hi0,$m0 // ap[0]*bp[i] sub $j,$num,#16 // j=num-2 umulh $hi0,$hi0,$m0 ldp $hi1,$nj,[$np],#16 mul $alo,$aj,$m0 // ap[1]*bp[i] adds $lo0,$lo0,$tj umulh $ahi,$aj,$m0 adc $hi0,$hi0,xzr mul $m1,$lo0,$n0 sub $i,$i,#8 // i-- // (*) mul $lo1,$hi1,$m1 // np[0]*m1 umulh $hi1,$hi1,$m1 mul $nlo,$nj,$m1 // np[1]*m1 // (*) adds $lo1,$lo1,$lo0 subs xzr,$lo0,#1 // (*) umulh $nhi,$nj,$m1 cbz $j,.Linner_skip .Linner: ldr $aj,[$ap],#8 adc $hi1,$hi1,xzr ldr $tj,[$tp],#8 // tp[j] adds $lo0,$alo,$hi0 sub $j,$j,#8 // j-- adc $hi0,$ahi,xzr adds $lo1,$nlo,$hi1 ldr $nj,[$np],#8 adc $hi1,$nhi,xzr mul $alo,$aj,$m0 // ap[j]*bp[i] adds $lo0,$lo0,$tj umulh $ahi,$aj,$m0 adc $hi0,$hi0,xzr mul $nlo,$nj,$m1 // np[j]*m1 adds $lo1,$lo1,$lo0 umulh $nhi,$nj,$m1 str $lo1,[$tp,#-16] // tp[j-1] cbnz $j,.Linner .Linner_skip: ldr $tj,[$tp],#8 // tp[j] adc $hi1,$hi1,xzr adds $lo0,$alo,$hi0 sub $ap,$ap,$num // rewind $ap adc $hi0,$ahi,xzr adds $lo1,$nlo,$hi1 sub $np,$np,$num // rewind $np adcs $hi1,$nhi,$ovf adc $ovf,xzr,xzr adds $lo0,$lo0,$tj adc $hi0,$hi0,xzr adds $lo1,$lo1,$lo0 adcs $hi1,$hi1,$hi0 adc $ovf,$ovf,xzr // upmost overflow bit stp $lo1,$hi1,[$tp,#-16] cbnz $i,.Louter // Final step. We see if result is larger than modulus, and // if it is, subtract the modulus. But comparison implies // subtraction. So we subtract modulus, see if it borrowed, // and conditionally copy original value. ldr $tj,[sp] // tp[0] add $tp,sp,#8 ldr $nj,[$np],#8 // np[0] subs $j,$num,#8 // j=num-1 and clear borrow mov $ap,$rp .Lsub: sbcs $aj,$tj,$nj // tp[j]-np[j] ldr $tj,[$tp],#8 sub $j,$j,#8 // j-- ldr $nj,[$np],#8 str $aj,[$ap],#8 // rp[j]=tp[j]-np[j] cbnz $j,.Lsub sbcs $aj,$tj,$nj sbcs $ovf,$ovf,xzr // did it borrow? str $aj,[$ap],#8 // rp[num-1] ldr $tj,[sp] // tp[0] add $tp,sp,#8 ldr $aj,[$rp],#8 // rp[0] sub $num,$num,#8 // num-- nop .Lcond_copy: sub $num,$num,#8 // num-- csel $nj,$tj,$aj,lo // did it borrow? ldr $tj,[$tp],#8 ldr $aj,[$rp],#8 str xzr,[$tp,#-16] // wipe tp str $nj,[$rp,#-16] cbnz $num,.Lcond_copy csel $nj,$tj,$aj,lo str xzr,[$tp,#-8] // wipe tp str $nj,[$rp,#-8] ldp x19,x20,[x29,#16] mov sp,x29 ldp x21,x22,[x29,#32] mov x0,#1 ldp x23,x24,[x29,#48] ldr x29,[sp],#64 ret .size bn_mul_mont,.-bn_mul_mont ___ { ######################################################################## # Following is ARMv8 adaptation of sqrx8x_mont from x86_64-mont5 module. my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("x$_",(6..13)); my ($t0,$t1,$t2,$t3)=map("x$_",(14..17)); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("x$_",(19..26)); my ($cnt,$carry,$topmost)=("x27","x28","x30"); my ($tp,$ap_end,$na0)=($bp,$np,$carry); $code.=<<___; .type __bn_sqr8x_mont,%function .align 5 __bn_sqr8x_mont: cmp $ap,$bp b.ne __bn_mul4x_mont .Lsqr8x_mont: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] stp $rp,$np,[sp,#96] // offload rp and np ldp $a0,$a1,[$ap,#8*0] ldp $a2,$a3,[$ap,#8*2] ldp $a4,$a5,[$ap,#8*4] ldp $a6,$a7,[$ap,#8*6] sub $tp,sp,$num,lsl#4 lsl $num,$num,#3 ldr $n0,[$n0] // *n0 mov sp,$tp // alloca sub $cnt,$num,#8*8 b .Lsqr8x_zero_start .Lsqr8x_zero: sub $cnt,$cnt,#8*8 stp xzr,xzr,[$tp,#8*0] stp xzr,xzr,[$tp,#8*2] stp xzr,xzr,[$tp,#8*4] stp xzr,xzr,[$tp,#8*6] .Lsqr8x_zero_start: stp xzr,xzr,[$tp,#8*8] stp xzr,xzr,[$tp,#8*10] stp xzr,xzr,[$tp,#8*12] stp xzr,xzr,[$tp,#8*14] add $tp,$tp,#8*16 cbnz $cnt,.Lsqr8x_zero add $ap_end,$ap,$num add $ap,$ap,#8*8 mov $acc0,xzr mov $acc1,xzr mov $acc2,xzr mov $acc3,xzr mov $acc4,xzr mov $acc5,xzr mov $acc6,xzr mov $acc7,xzr mov $tp,sp str $n0,[x29,#112] // offload n0 // Multiply everything but a[i]*a[i] .align 4 .Lsqr8x_outer_loop: // a[1]a[0] (i) // a[2]a[0] // a[3]a[0] // a[4]a[0] // a[5]a[0] // a[6]a[0] // a[7]a[0] // a[2]a[1] (ii) // a[3]a[1] // a[4]a[1] // a[5]a[1] // a[6]a[1] // a[7]a[1] // a[3]a[2] (iii) // a[4]a[2] // a[5]a[2] // a[6]a[2] // a[7]a[2] // a[4]a[3] (iv) // a[5]a[3] // a[6]a[3] // a[7]a[3] // a[5]a[4] (v) // a[6]a[4] // a[7]a[4] // a[6]a[5] (vi) // a[7]a[5] // a[7]a[6] (vii) mul $t0,$a1,$a0 // lo(a[1..7]*a[0]) (i) mul $t1,$a2,$a0 mul $t2,$a3,$a0 mul $t3,$a4,$a0 adds $acc1,$acc1,$t0 // t[1]+lo(a[1]*a[0]) mul $t0,$a5,$a0 adcs $acc2,$acc2,$t1 mul $t1,$a6,$a0 adcs $acc3,$acc3,$t2 mul $t2,$a7,$a0 adcs $acc4,$acc4,$t3 umulh $t3,$a1,$a0 // hi(a[1..7]*a[0]) adcs $acc5,$acc5,$t0 umulh $t0,$a2,$a0 adcs $acc6,$acc6,$t1 umulh $t1,$a3,$a0 adcs $acc7,$acc7,$t2 umulh $t2,$a4,$a0 stp $acc0,$acc1,[$tp],#8*2 // t[0..1] adc $acc0,xzr,xzr // t[8] adds $acc2,$acc2,$t3 // t[2]+lo(a[1]*a[0]) umulh $t3,$a5,$a0 adcs $acc3,$acc3,$t0 umulh $t0,$a6,$a0 adcs $acc4,$acc4,$t1 umulh $t1,$a7,$a0 adcs $acc5,$acc5,$t2 mul $t2,$a2,$a1 // lo(a[2..7]*a[1]) (ii) adcs $acc6,$acc6,$t3 mul $t3,$a3,$a1 adcs $acc7,$acc7,$t0 mul $t0,$a4,$a1 adc $acc0,$acc0,$t1 mul $t1,$a5,$a1 adds $acc3,$acc3,$t2 mul $t2,$a6,$a1 adcs $acc4,$acc4,$t3 mul $t3,$a7,$a1 adcs $acc5,$acc5,$t0 umulh $t0,$a2,$a1 // hi(a[2..7]*a[1]) adcs $acc6,$acc6,$t1 umulh $t1,$a3,$a1 adcs $acc7,$acc7,$t2 umulh $t2,$a4,$a1 adcs $acc0,$acc0,$t3 umulh $t3,$a5,$a1 stp $acc2,$acc3,[$tp],#8*2 // t[2..3] adc $acc1,xzr,xzr // t[9] adds $acc4,$acc4,$t0 umulh $t0,$a6,$a1 adcs $acc5,$acc5,$t1 umulh $t1,$a7,$a1 adcs $acc6,$acc6,$t2 mul $t2,$a3,$a2 // lo(a[3..7]*a[2]) (iii) adcs $acc7,$acc7,$t3 mul $t3,$a4,$a2 adcs $acc0,$acc0,$t0 mul $t0,$a5,$a2 adc $acc1,$acc1,$t1 mul $t1,$a6,$a2 adds $acc5,$acc5,$t2 mul $t2,$a7,$a2 adcs $acc6,$acc6,$t3 umulh $t3,$a3,$a2 // hi(a[3..7]*a[2]) adcs $acc7,$acc7,$t0 umulh $t0,$a4,$a2 adcs $acc0,$acc0,$t1 umulh $t1,$a5,$a2 adcs $acc1,$acc1,$t2 umulh $t2,$a6,$a2 stp $acc4,$acc5,[$tp],#8*2 // t[4..5] adc $acc2,xzr,xzr // t[10] adds $acc6,$acc6,$t3 umulh $t3,$a7,$a2 adcs $acc7,$acc7,$t0 mul $t0,$a4,$a3 // lo(a[4..7]*a[3]) (iv) adcs $acc0,$acc0,$t1 mul $t1,$a5,$a3 adcs $acc1,$acc1,$t2 mul $t2,$a6,$a3 adc $acc2,$acc2,$t3 mul $t3,$a7,$a3 adds $acc7,$acc7,$t0 umulh $t0,$a4,$a3 // hi(a[4..7]*a[3]) adcs $acc0,$acc0,$t1 umulh $t1,$a5,$a3 adcs $acc1,$acc1,$t2 umulh $t2,$a6,$a3 adcs $acc2,$acc2,$t3 umulh $t3,$a7,$a3 stp $acc6,$acc7,[$tp],#8*2 // t[6..7] adc $acc3,xzr,xzr // t[11] adds $acc0,$acc0,$t0 mul $t0,$a5,$a4 // lo(a[5..7]*a[4]) (v) adcs $acc1,$acc1,$t1 mul $t1,$a6,$a4 adcs $acc2,$acc2,$t2 mul $t2,$a7,$a4 adc $acc3,$acc3,$t3 umulh $t3,$a5,$a4 // hi(a[5..7]*a[4]) adds $acc1,$acc1,$t0 umulh $t0,$a6,$a4 adcs $acc2,$acc2,$t1 umulh $t1,$a7,$a4 adcs $acc3,$acc3,$t2 mul $t2,$a6,$a5 // lo(a[6..7]*a[5]) (vi) adc $acc4,xzr,xzr // t[12] adds $acc2,$acc2,$t3 mul $t3,$a7,$a5 adcs $acc3,$acc3,$t0 umulh $t0,$a6,$a5 // hi(a[6..7]*a[5]) adc $acc4,$acc4,$t1 umulh $t1,$a7,$a5 adds $acc3,$acc3,$t2 mul $t2,$a7,$a6 // lo(a[7]*a[6]) (vii) adcs $acc4,$acc4,$t3 umulh $t3,$a7,$a6 // hi(a[7]*a[6]) adc $acc5,xzr,xzr // t[13] adds $acc4,$acc4,$t0 sub $cnt,$ap_end,$ap // done yet? adc $acc5,$acc5,$t1 adds $acc5,$acc5,$t2 sub $t0,$ap_end,$num // rewinded ap adc $acc6,xzr,xzr // t[14] add $acc6,$acc6,$t3 cbz $cnt,.Lsqr8x_outer_break mov $n0,$a0 ldp $a0,$a1,[$tp,#8*0] ldp $a2,$a3,[$tp,#8*2] ldp $a4,$a5,[$tp,#8*4] ldp $a6,$a7,[$tp,#8*6] adds $acc0,$acc0,$a0 adcs $acc1,$acc1,$a1 ldp $a0,$a1,[$ap,#8*0] adcs $acc2,$acc2,$a2 adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$ap,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$ap,#8*4] adcs $acc6,$acc6,$a6 mov $rp,$ap adcs $acc7,xzr,$a7 ldp $a6,$a7,[$ap,#8*6] add $ap,$ap,#8*8 //adc $carry,xzr,xzr // moved below mov $cnt,#-8*8 // a[8]a[0] // a[9]a[0] // a[a]a[0] // a[b]a[0] // a[c]a[0] // a[d]a[0] // a[e]a[0] // a[f]a[0] // a[8]a[1] // a[f]a[1]........................ // a[8]a[2] // a[f]a[2]........................ // a[8]a[3] // a[f]a[3]........................ // a[8]a[4] // a[f]a[4]........................ // a[8]a[5] // a[f]a[5]........................ // a[8]a[6] // a[f]a[6]........................ // a[8]a[7] // a[f]a[7]........................ .Lsqr8x_mul: mul $t0,$a0,$n0 adc $carry,xzr,xzr // carry bit, modulo-scheduled mul $t1,$a1,$n0 add $cnt,$cnt,#8 mul $t2,$a2,$n0 mul $t3,$a3,$n0 adds $acc0,$acc0,$t0 mul $t0,$a4,$n0 adcs $acc1,$acc1,$t1 mul $t1,$a5,$n0 adcs $acc2,$acc2,$t2 mul $t2,$a6,$n0 adcs $acc3,$acc3,$t3 mul $t3,$a7,$n0 adcs $acc4,$acc4,$t0 umulh $t0,$a0,$n0 adcs $acc5,$acc5,$t1 umulh $t1,$a1,$n0 adcs $acc6,$acc6,$t2 umulh $t2,$a2,$n0 adcs $acc7,$acc7,$t3 umulh $t3,$a3,$n0 adc $carry,$carry,xzr str $acc0,[$tp],#8 adds $acc0,$acc1,$t0 umulh $t0,$a4,$n0 adcs $acc1,$acc2,$t1 umulh $t1,$a5,$n0 adcs $acc2,$acc3,$t2 umulh $t2,$a6,$n0 adcs $acc3,$acc4,$t3 umulh $t3,$a7,$n0 ldr $n0,[$rp,$cnt] adcs $acc4,$acc5,$t0 adcs $acc5,$acc6,$t1 adcs $acc6,$acc7,$t2 adcs $acc7,$carry,$t3 //adc $carry,xzr,xzr // moved above cbnz $cnt,.Lsqr8x_mul // note that carry flag is guaranteed // to be zero at this point cmp $ap,$ap_end // done yet? b.eq .Lsqr8x_break ldp $a0,$a1,[$tp,#8*0] ldp $a2,$a3,[$tp,#8*2] ldp $a4,$a5,[$tp,#8*4] ldp $a6,$a7,[$tp,#8*6] adds $acc0,$acc0,$a0 ldr $n0,[$rp,#-8*8] adcs $acc1,$acc1,$a1 ldp $a0,$a1,[$ap,#8*0] adcs $acc2,$acc2,$a2 adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$ap,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$ap,#8*4] adcs $acc6,$acc6,$a6 mov $cnt,#-8*8 adcs $acc7,$acc7,$a7 ldp $a6,$a7,[$ap,#8*6] add $ap,$ap,#8*8 //adc $carry,xzr,xzr // moved above b .Lsqr8x_mul .align 4 .Lsqr8x_break: ldp $a0,$a1,[$rp,#8*0] add $ap,$rp,#8*8 ldp $a2,$a3,[$rp,#8*2] sub $t0,$ap_end,$ap // is it last iteration? ldp $a4,$a5,[$rp,#8*4] sub $t1,$tp,$t0 ldp $a6,$a7,[$rp,#8*6] cbz $t0,.Lsqr8x_outer_loop stp $acc0,$acc1,[$tp,#8*0] ldp $acc0,$acc1,[$t1,#8*0] stp $acc2,$acc3,[$tp,#8*2] ldp $acc2,$acc3,[$t1,#8*2] stp $acc4,$acc5,[$tp,#8*4] ldp $acc4,$acc5,[$t1,#8*4] stp $acc6,$acc7,[$tp,#8*6] mov $tp,$t1 ldp $acc6,$acc7,[$t1,#8*6] b .Lsqr8x_outer_loop .align 4 .Lsqr8x_outer_break: // Now multiply above result by 2 and add a[n-1]*a[n-1]|...|a[0]*a[0] ldp $a1,$a3,[$t0,#8*0] // recall that $t0 is &a[0] ldp $t1,$t2,[sp,#8*1] ldp $a5,$a7,[$t0,#8*2] add $ap,$t0,#8*4 ldp $t3,$t0,[sp,#8*3] stp $acc0,$acc1,[$tp,#8*0] mul $acc0,$a1,$a1 stp $acc2,$acc3,[$tp,#8*2] umulh $a1,$a1,$a1 stp $acc4,$acc5,[$tp,#8*4] mul $a2,$a3,$a3 stp $acc6,$acc7,[$tp,#8*6] mov $tp,sp umulh $a3,$a3,$a3 adds $acc1,$a1,$t1,lsl#1 extr $t1,$t2,$t1,#63 sub $cnt,$num,#8*4 .Lsqr4x_shift_n_add: adcs $acc2,$a2,$t1 extr $t2,$t3,$t2,#63 sub $cnt,$cnt,#8*4 adcs $acc3,$a3,$t2 ldp $t1,$t2,[$tp,#8*5] mul $a4,$a5,$a5 ldp $a1,$a3,[$ap],#8*2 umulh $a5,$a5,$a5 mul $a6,$a7,$a7 umulh $a7,$a7,$a7 extr $t3,$t0,$t3,#63 stp $acc0,$acc1,[$tp,#8*0] adcs $acc4,$a4,$t3 extr $t0,$t1,$t0,#63 stp $acc2,$acc3,[$tp,#8*2] adcs $acc5,$a5,$t0 ldp $t3,$t0,[$tp,#8*7] extr $t1,$t2,$t1,#63 adcs $acc6,$a6,$t1 extr $t2,$t3,$t2,#63 adcs $acc7,$a7,$t2 ldp $t1,$t2,[$tp,#8*9] mul $a0,$a1,$a1 ldp $a5,$a7,[$ap],#8*2 umulh $a1,$a1,$a1 mul $a2,$a3,$a3 umulh $a3,$a3,$a3 stp $acc4,$acc5,[$tp,#8*4] extr $t3,$t0,$t3,#63 stp $acc6,$acc7,[$tp,#8*6] add $tp,$tp,#8*8 adcs $acc0,$a0,$t3 extr $t0,$t1,$t0,#63 adcs $acc1,$a1,$t0 ldp $t3,$t0,[$tp,#8*3] extr $t1,$t2,$t1,#63 cbnz $cnt,.Lsqr4x_shift_n_add ___ my ($np,$np_end)=($ap,$ap_end); $code.=<<___; ldp $np,$n0,[x29,#104] // pull np and n0 adcs $acc2,$a2,$t1 extr $t2,$t3,$t2,#63 adcs $acc3,$a3,$t2 ldp $t1,$t2,[$tp,#8*5] mul $a4,$a5,$a5 umulh $a5,$a5,$a5 stp $acc0,$acc1,[$tp,#8*0] mul $a6,$a7,$a7 umulh $a7,$a7,$a7 stp $acc2,$acc3,[$tp,#8*2] extr $t3,$t0,$t3,#63 adcs $acc4,$a4,$t3 extr $t0,$t1,$t0,#63 ldp $acc0,$acc1,[sp,#8*0] adcs $acc5,$a5,$t0 extr $t1,$t2,$t1,#63 ldp $a0,$a1,[$np,#8*0] adcs $acc6,$a6,$t1 extr $t2,xzr,$t2,#63 ldp $a2,$a3,[$np,#8*2] adc $acc7,$a7,$t2 ldp $a4,$a5,[$np,#8*4] // Reduce by 512 bits per iteration mul $na0,$n0,$acc0 // t[0]*n0 ldp $a6,$a7,[$np,#8*6] add $np_end,$np,$num ldp $acc2,$acc3,[sp,#8*2] stp $acc4,$acc5,[$tp,#8*4] ldp $acc4,$acc5,[sp,#8*4] stp $acc6,$acc7,[$tp,#8*6] ldp $acc6,$acc7,[sp,#8*6] add $np,$np,#8*8 mov $topmost,xzr // initial top-most carry mov $tp,sp mov $cnt,#8 .Lsqr8x_reduction: // (*) mul $t0,$a0,$na0 // lo(n[0-7])*lo(t[0]*n0) mul $t1,$a1,$na0 sub $cnt,$cnt,#1 mul $t2,$a2,$na0 str $na0,[$tp],#8 // put aside t[0]*n0 for tail processing mul $t3,$a3,$na0 // (*) adds xzr,$acc0,$t0 subs xzr,$acc0,#1 // (*) mul $t0,$a4,$na0 adcs $acc0,$acc1,$t1 mul $t1,$a5,$na0 adcs $acc1,$acc2,$t2 mul $t2,$a6,$na0 adcs $acc2,$acc3,$t3 mul $t3,$a7,$na0 adcs $acc3,$acc4,$t0 umulh $t0,$a0,$na0 // hi(n[0-7])*lo(t[0]*n0) adcs $acc4,$acc5,$t1 umulh $t1,$a1,$na0 adcs $acc5,$acc6,$t2 umulh $t2,$a2,$na0 adcs $acc6,$acc7,$t3 umulh $t3,$a3,$na0 adc $acc7,xzr,xzr adds $acc0,$acc0,$t0 umulh $t0,$a4,$na0 adcs $acc1,$acc1,$t1 umulh $t1,$a5,$na0 adcs $acc2,$acc2,$t2 umulh $t2,$a6,$na0 adcs $acc3,$acc3,$t3 umulh $t3,$a7,$na0 mul $na0,$n0,$acc0 // next t[0]*n0 adcs $acc4,$acc4,$t0 adcs $acc5,$acc5,$t1 adcs $acc6,$acc6,$t2 adc $acc7,$acc7,$t3 cbnz $cnt,.Lsqr8x_reduction ldp $t0,$t1,[$tp,#8*0] ldp $t2,$t3,[$tp,#8*2] mov $rp,$tp sub $cnt,$np_end,$np // done yet? adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 ldp $t0,$t1,[$tp,#8*4] adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 ldp $t2,$t3,[$tp,#8*6] adcs $acc4,$acc4,$t0 adcs $acc5,$acc5,$t1 adcs $acc6,$acc6,$t2 adcs $acc7,$acc7,$t3 //adc $carry,xzr,xzr // moved below cbz $cnt,.Lsqr8x8_post_condition ldr $n0,[$tp,#-8*8] ldp $a0,$a1,[$np,#8*0] ldp $a2,$a3,[$np,#8*2] ldp $a4,$a5,[$np,#8*4] mov $cnt,#-8*8 ldp $a6,$a7,[$np,#8*6] add $np,$np,#8*8 .Lsqr8x_tail: mul $t0,$a0,$n0 adc $carry,xzr,xzr // carry bit, modulo-scheduled mul $t1,$a1,$n0 add $cnt,$cnt,#8 mul $t2,$a2,$n0 mul $t3,$a3,$n0 adds $acc0,$acc0,$t0 mul $t0,$a4,$n0 adcs $acc1,$acc1,$t1 mul $t1,$a5,$n0 adcs $acc2,$acc2,$t2 mul $t2,$a6,$n0 adcs $acc3,$acc3,$t3 mul $t3,$a7,$n0 adcs $acc4,$acc4,$t0 umulh $t0,$a0,$n0 adcs $acc5,$acc5,$t1 umulh $t1,$a1,$n0 adcs $acc6,$acc6,$t2 umulh $t2,$a2,$n0 adcs $acc7,$acc7,$t3 umulh $t3,$a3,$n0 adc $carry,$carry,xzr str $acc0,[$tp],#8 adds $acc0,$acc1,$t0 umulh $t0,$a4,$n0 adcs $acc1,$acc2,$t1 umulh $t1,$a5,$n0 adcs $acc2,$acc3,$t2 umulh $t2,$a6,$n0 adcs $acc3,$acc4,$t3 umulh $t3,$a7,$n0 ldr $n0,[$rp,$cnt] adcs $acc4,$acc5,$t0 adcs $acc5,$acc6,$t1 adcs $acc6,$acc7,$t2 adcs $acc7,$carry,$t3 //adc $carry,xzr,xzr // moved above cbnz $cnt,.Lsqr8x_tail // note that carry flag is guaranteed // to be zero at this point ldp $a0,$a1,[$tp,#8*0] sub $cnt,$np_end,$np // done yet? sub $t2,$np_end,$num // rewinded np ldp $a2,$a3,[$tp,#8*2] ldp $a4,$a5,[$tp,#8*4] ldp $a6,$a7,[$tp,#8*6] cbz $cnt,.Lsqr8x_tail_break ldr $n0,[$rp,#-8*8] adds $acc0,$acc0,$a0 adcs $acc1,$acc1,$a1 ldp $a0,$a1,[$np,#8*0] adcs $acc2,$acc2,$a2 adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$np,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$np,#8*4] adcs $acc6,$acc6,$a6 mov $cnt,#-8*8 adcs $acc7,$acc7,$a7 ldp $a6,$a7,[$np,#8*6] add $np,$np,#8*8 //adc $carry,xzr,xzr // moved above b .Lsqr8x_tail .align 4 .Lsqr8x_tail_break: ldr $n0,[x29,#112] // pull n0 add $cnt,$tp,#8*8 // end of current t[num] window subs xzr,$topmost,#1 // "move" top-most carry to carry bit adcs $t0,$acc0,$a0 adcs $t1,$acc1,$a1 ldp $acc0,$acc1,[$rp,#8*0] adcs $acc2,$acc2,$a2 ldp $a0,$a1,[$t2,#8*0] // recall that $t2 is &n[0] adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$t2,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$t2,#8*4] adcs $acc6,$acc6,$a6 adcs $acc7,$acc7,$a7 ldp $a6,$a7,[$t2,#8*6] add $np,$t2,#8*8 adc $topmost,xzr,xzr // top-most carry mul $na0,$n0,$acc0 stp $t0,$t1,[$tp,#8*0] stp $acc2,$acc3,[$tp,#8*2] ldp $acc2,$acc3,[$rp,#8*2] stp $acc4,$acc5,[$tp,#8*4] ldp $acc4,$acc5,[$rp,#8*4] cmp $cnt,x29 // did we hit the bottom? stp $acc6,$acc7,[$tp,#8*6] mov $tp,$rp // slide the window ldp $acc6,$acc7,[$rp,#8*6] mov $cnt,#8 b.ne .Lsqr8x_reduction // Final step. We see if result is larger than modulus, and // if it is, subtract the modulus. But comparison implies // subtraction. So we subtract modulus, see if it borrowed, // and conditionally copy original value. ldr $rp,[x29,#96] // pull rp add $tp,$tp,#8*8 subs $t0,$acc0,$a0 sbcs $t1,$acc1,$a1 sub $cnt,$num,#8*8 mov $ap_end,$rp // $rp copy .Lsqr8x_sub: sbcs $t2,$acc2,$a2 ldp $a0,$a1,[$np,#8*0] sbcs $t3,$acc3,$a3 stp $t0,$t1,[$rp,#8*0] sbcs $t0,$acc4,$a4 ldp $a2,$a3,[$np,#8*2] sbcs $t1,$acc5,$a5 stp $t2,$t3,[$rp,#8*2] sbcs $t2,$acc6,$a6 ldp $a4,$a5,[$np,#8*4] sbcs $t3,$acc7,$a7 ldp $a6,$a7,[$np,#8*6] add $np,$np,#8*8 ldp $acc0,$acc1,[$tp,#8*0] sub $cnt,$cnt,#8*8 ldp $acc2,$acc3,[$tp,#8*2] ldp $acc4,$acc5,[$tp,#8*4] ldp $acc6,$acc7,[$tp,#8*6] add $tp,$tp,#8*8 stp $t0,$t1,[$rp,#8*4] sbcs $t0,$acc0,$a0 stp $t2,$t3,[$rp,#8*6] add $rp,$rp,#8*8 sbcs $t1,$acc1,$a1 cbnz $cnt,.Lsqr8x_sub sbcs $t2,$acc2,$a2 mov $tp,sp add $ap,sp,$num ldp $a0,$a1,[$ap_end,#8*0] sbcs $t3,$acc3,$a3 stp $t0,$t1,[$rp,#8*0] sbcs $t0,$acc4,$a4 ldp $a2,$a3,[$ap_end,#8*2] sbcs $t1,$acc5,$a5 stp $t2,$t3,[$rp,#8*2] sbcs $t2,$acc6,$a6 ldp $acc0,$acc1,[$ap,#8*0] sbcs $t3,$acc7,$a7 ldp $acc2,$acc3,[$ap,#8*2] sbcs xzr,$topmost,xzr // did it borrow? ldr x30,[x29,#8] // pull return address stp $t0,$t1,[$rp,#8*4] stp $t2,$t3,[$rp,#8*6] sub $cnt,$num,#8*4 .Lsqr4x_cond_copy: sub $cnt,$cnt,#8*4 csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo ldp $a0,$a1,[$ap_end,#8*4] ldp $acc0,$acc1,[$ap,#8*4] csel $t2,$acc2,$a2,lo stp xzr,xzr,[$tp,#8*2] add $tp,$tp,#8*4 csel $t3,$acc3,$a3,lo ldp $a2,$a3,[$ap_end,#8*6] ldp $acc2,$acc3,[$ap,#8*6] add $ap,$ap,#8*4 stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] add $ap_end,$ap_end,#8*4 stp xzr,xzr,[$ap,#8*0] stp xzr,xzr,[$ap,#8*2] cbnz $cnt,.Lsqr4x_cond_copy csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo stp xzr,xzr,[$tp,#8*2] csel $t2,$acc2,$a2,lo csel $t3,$acc3,$a3,lo stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] b .Lsqr8x_done .align 4 .Lsqr8x8_post_condition: adc $carry,xzr,xzr ldr x30,[x29,#8] // pull return address // $acc0-7,$carry hold result, $a0-7 hold modulus subs $a0,$acc0,$a0 ldr $ap,[x29,#96] // pull rp sbcs $a1,$acc1,$a1 stp xzr,xzr,[sp,#8*0] sbcs $a2,$acc2,$a2 stp xzr,xzr,[sp,#8*2] sbcs $a3,$acc3,$a3 stp xzr,xzr,[sp,#8*4] sbcs $a4,$acc4,$a4 stp xzr,xzr,[sp,#8*6] sbcs $a5,$acc5,$a5 stp xzr,xzr,[sp,#8*8] sbcs $a6,$acc6,$a6 stp xzr,xzr,[sp,#8*10] sbcs $a7,$acc7,$a7 stp xzr,xzr,[sp,#8*12] sbcs $carry,$carry,xzr // did it borrow? stp xzr,xzr,[sp,#8*14] // $a0-7 hold result-modulus csel $a0,$acc0,$a0,lo csel $a1,$acc1,$a1,lo csel $a2,$acc2,$a2,lo csel $a3,$acc3,$a3,lo stp $a0,$a1,[$ap,#8*0] csel $a4,$acc4,$a4,lo csel $a5,$acc5,$a5,lo stp $a2,$a3,[$ap,#8*2] csel $a6,$acc6,$a6,lo csel $a7,$acc7,$a7,lo stp $a4,$a5,[$ap,#8*4] stp $a6,$a7,[$ap,#8*6] .Lsqr8x_done: ldp x19,x20,[x29,#16] mov sp,x29 ldp x21,x22,[x29,#32] mov x0,#1 ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldr x29,[sp],#128 .inst 0xd50323bf // autiasp ret .size __bn_sqr8x_mont,.-__bn_sqr8x_mont ___ } { ######################################################################## # Even though this might look as ARMv8 adaptation of mulx4x_mont from # x86_64-mont5 module, it's different in sense that it performs # reduction 256 bits at a time. my ($a0,$a1,$a2,$a3, $t0,$t1,$t2,$t3, $m0,$m1,$m2,$m3, $acc0,$acc1,$acc2,$acc3,$acc4, $bi,$mi,$tp,$ap_end,$cnt) = map("x$_",(6..17,19..28)); my $bp_end=$rp; my ($carry,$topmost) = ($rp,"x30"); $code.=<<___; .type __bn_mul4x_mont,%function .align 5 __bn_mul4x_mont: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub $tp,sp,$num,lsl#3 lsl $num,$num,#3 ldr $n0,[$n0] // *n0 sub sp,$tp,#8*4 // alloca add $t0,$bp,$num add $ap_end,$ap,$num stp $rp,$t0,[x29,#96] // offload rp and &b[num] ldr $bi,[$bp,#8*0] // b[0] ldp $a0,$a1,[$ap,#8*0] // a[0..3] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 mov $acc0,xzr mov $acc1,xzr mov $acc2,xzr mov $acc3,xzr ldp $m0,$m1,[$np,#8*0] // n[0..3] ldp $m2,$m3,[$np,#8*2] adds $np,$np,#8*4 // clear carry bit mov $carry,xzr mov $cnt,#0 mov $tp,sp .Loop_mul4x_1st_reduction: mul $t0,$a0,$bi // lo(a[0..3]*b[0]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[0..3]*b[0]) adcs $acc1,$acc1,$t1 mul $mi,$acc0,$n0 // t[0]*n0 adcs $acc2,$acc2,$t2 umulh $t1,$a1,$bi adcs $acc3,$acc3,$t3 umulh $t2,$a2,$bi adc $acc4,xzr,xzr umulh $t3,$a3,$bi ldr $bi,[$bp,$cnt] // next b[i] (or b[0]) adds $acc1,$acc1,$t0 // (*) mul $t0,$m0,$mi // lo(n[0..3]*t[0]*n0) str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi // (*) adds xzr,$acc0,$t0 subs xzr,$acc0,#1 // (*) umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0) adcs $acc0,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc1,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc2,$acc3,$t3 umulh $t3,$m3,$mi adcs $acc3,$acc4,$carry adc $carry,xzr,xzr adds $acc0,$acc0,$t0 sub $t0,$ap_end,$ap adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_1st_reduction cbz $t0,.Lmul4x4_post_condition ldp $a0,$a1,[$ap,#8*0] // a[4..7] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 ldr $mi,[sp] // a[0]*n0 ldp $m0,$m1,[$np,#8*0] // n[4..7] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 .Loop_mul4x_1st_tail: mul $t0,$a0,$bi // lo(a[4..7]*b[i]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[4..7]*b[i]) adcs $acc1,$acc1,$t1 umulh $t1,$a1,$bi adcs $acc2,$acc2,$t2 umulh $t2,$a2,$bi adcs $acc3,$acc3,$t3 umulh $t3,$a3,$bi adc $acc4,xzr,xzr ldr $bi,[$bp,$cnt] // next b[i] (or b[0]) adds $acc1,$acc1,$t0 mul $t0,$m0,$mi // lo(n[4..7]*a[0]*n0) adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi adds $acc0,$acc0,$t0 umulh $t0,$m0,$mi // hi(n[4..7]*a[0]*n0) adcs $acc1,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc2,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc3,$acc3,$t3 adcs $acc4,$acc4,$carry umulh $t3,$m3,$mi adc $carry,xzr,xzr ldr $mi,[sp,$cnt] // next t[0]*n0 str $acc0,[$tp],#8 // result!!! adds $acc0,$acc1,$t0 sub $t0,$ap_end,$ap // done yet? adcs $acc1,$acc2,$t1 adcs $acc2,$acc3,$t2 adcs $acc3,$acc4,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_1st_tail sub $t1,$ap_end,$num // rewinded $ap cbz $t0,.Lmul4x_proceed ldp $a0,$a1,[$ap,#8*0] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 ldp $m0,$m1,[$np,#8*0] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 b .Loop_mul4x_1st_tail .align 5 .Lmul4x_proceed: ldr $bi,[$bp,#8*4]! // *++b adc $topmost,$carry,xzr ldp $a0,$a1,[$t1,#8*0] // a[0..3] sub $np,$np,$num // rewind np ldp $a2,$a3,[$t1,#8*2] add $ap,$t1,#8*4 stp $acc0,$acc1,[$tp,#8*0] // result!!! ldp $acc0,$acc1,[sp,#8*4] // t[0..3] stp $acc2,$acc3,[$tp,#8*2] // result!!! ldp $acc2,$acc3,[sp,#8*6] ldp $m0,$m1,[$np,#8*0] // n[0..3] mov $tp,sp ldp $m2,$m3,[$np,#8*2] adds $np,$np,#8*4 // clear carry bit mov $carry,xzr .align 4 .Loop_mul4x_reduction: mul $t0,$a0,$bi // lo(a[0..3]*b[4]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[0..3]*b[4]) adcs $acc1,$acc1,$t1 mul $mi,$acc0,$n0 // t[0]*n0 adcs $acc2,$acc2,$t2 umulh $t1,$a1,$bi adcs $acc3,$acc3,$t3 umulh $t2,$a2,$bi adc $acc4,xzr,xzr umulh $t3,$a3,$bi ldr $bi,[$bp,$cnt] // next b[i] adds $acc1,$acc1,$t0 // (*) mul $t0,$m0,$mi str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi // lo(n[0..3]*t[0]*n0 adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi // (*) adds xzr,$acc0,$t0 subs xzr,$acc0,#1 // (*) umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0 adcs $acc0,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc1,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc2,$acc3,$t3 umulh $t3,$m3,$mi adcs $acc3,$acc4,$carry adc $carry,xzr,xzr adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_reduction adc $carry,$carry,xzr ldp $t0,$t1,[$tp,#8*4] // t[4..7] ldp $t2,$t3,[$tp,#8*6] ldp $a0,$a1,[$ap,#8*0] // a[4..7] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr ldr $mi,[sp] // t[0]*n0 ldp $m0,$m1,[$np,#8*0] // n[4..7] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 .align 4 .Loop_mul4x_tail: mul $t0,$a0,$bi // lo(a[4..7]*b[4]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[4..7]*b[4]) adcs $acc1,$acc1,$t1 umulh $t1,$a1,$bi adcs $acc2,$acc2,$t2 umulh $t2,$a2,$bi adcs $acc3,$acc3,$t3 umulh $t3,$a3,$bi adc $acc4,xzr,xzr ldr $bi,[$bp,$cnt] // next b[i] adds $acc1,$acc1,$t0 mul $t0,$m0,$mi // lo(n[4..7]*t[0]*n0) adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi adds $acc0,$acc0,$t0 umulh $t0,$m0,$mi // hi(n[4..7]*t[0]*n0) adcs $acc1,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc2,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc3,$acc3,$t3 umulh $t3,$m3,$mi adcs $acc4,$acc4,$carry ldr $mi,[sp,$cnt] // next a[0]*n0 adc $carry,xzr,xzr str $acc0,[$tp],#8 // result!!! adds $acc0,$acc1,$t0 sub $t0,$ap_end,$ap // done yet? adcs $acc1,$acc2,$t1 adcs $acc2,$acc3,$t2 adcs $acc3,$acc4,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_tail sub $t1,$np,$num // rewinded np? adc $carry,$carry,xzr cbz $t0,.Loop_mul4x_break ldp $t0,$t1,[$tp,#8*4] ldp $t2,$t3,[$tp,#8*6] ldp $a0,$a1,[$ap,#8*0] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr ldp $m0,$m1,[$np,#8*0] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 b .Loop_mul4x_tail .align 4 .Loop_mul4x_break: ldp $t2,$t3,[x29,#96] // pull rp and &b[num] adds $acc0,$acc0,$topmost add $bp,$bp,#8*4 // bp++ adcs $acc1,$acc1,xzr sub $ap,$ap,$num // rewind ap adcs $acc2,$acc2,xzr stp $acc0,$acc1,[$tp,#8*0] // result!!! adcs $acc3,$acc3,xzr ldp $acc0,$acc1,[sp,#8*4] // t[0..3] adc $topmost,$carry,xzr stp $acc2,$acc3,[$tp,#8*2] // result!!! cmp $bp,$t3 // done yet? ldp $acc2,$acc3,[sp,#8*6] ldp $m0,$m1,[$t1,#8*0] // n[0..3] ldp $m2,$m3,[$t1,#8*2] add $np,$t1,#8*4 b.eq .Lmul4x_post ldr $bi,[$bp] ldp $a0,$a1,[$ap,#8*0] // a[0..3] ldp $a2,$a3,[$ap,#8*2] adds $ap,$ap,#8*4 // clear carry bit mov $carry,xzr mov $tp,sp b .Loop_mul4x_reduction .align 4 .Lmul4x_post: // Final step. We see if result is larger than modulus, and // if it is, subtract the modulus. But comparison implies // subtraction. So we subtract modulus, see if it borrowed, // and conditionally copy original value. mov $rp,$t2 mov $ap_end,$t2 // $rp copy subs $t0,$acc0,$m0 add $tp,sp,#8*8 sbcs $t1,$acc1,$m1 sub $cnt,$num,#8*4 .Lmul4x_sub: sbcs $t2,$acc2,$m2 ldp $m0,$m1,[$np,#8*0] sub $cnt,$cnt,#8*4 ldp $acc0,$acc1,[$tp,#8*0] sbcs $t3,$acc3,$m3 ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 ldp $acc2,$acc3,[$tp,#8*2] add $tp,$tp,#8*4 stp $t0,$t1,[$rp,#8*0] sbcs $t0,$acc0,$m0 stp $t2,$t3,[$rp,#8*2] add $rp,$rp,#8*4 sbcs $t1,$acc1,$m1 cbnz $cnt,.Lmul4x_sub sbcs $t2,$acc2,$m2 mov $tp,sp add $ap,sp,#8*4 ldp $a0,$a1,[$ap_end,#8*0] sbcs $t3,$acc3,$m3 stp $t0,$t1,[$rp,#8*0] ldp $a2,$a3,[$ap_end,#8*2] stp $t2,$t3,[$rp,#8*2] ldp $acc0,$acc1,[$ap,#8*0] ldp $acc2,$acc3,[$ap,#8*2] sbcs xzr,$topmost,xzr // did it borrow? ldr x30,[x29,#8] // pull return address sub $cnt,$num,#8*4 .Lmul4x_cond_copy: sub $cnt,$cnt,#8*4 csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo ldp $a0,$a1,[$ap_end,#8*4] ldp $acc0,$acc1,[$ap,#8*4] csel $t2,$acc2,$a2,lo stp xzr,xzr,[$tp,#8*2] add $tp,$tp,#8*4 csel $t3,$acc3,$a3,lo ldp $a2,$a3,[$ap_end,#8*6] ldp $acc2,$acc3,[$ap,#8*6] add $ap,$ap,#8*4 stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] add $ap_end,$ap_end,#8*4 cbnz $cnt,.Lmul4x_cond_copy csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo stp xzr,xzr,[$tp,#8*2] csel $t2,$acc2,$a2,lo stp xzr,xzr,[$tp,#8*3] csel $t3,$acc3,$a3,lo stp xzr,xzr,[$tp,#8*4] stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] b .Lmul4x_done .align 4 .Lmul4x4_post_condition: adc $carry,$carry,xzr ldr $ap,[x29,#96] // pull rp // $acc0-3,$carry hold result, $m0-7 hold modulus subs $a0,$acc0,$m0 ldr x30,[x29,#8] // pull return address sbcs $a1,$acc1,$m1 stp xzr,xzr,[sp,#8*0] sbcs $a2,$acc2,$m2 stp xzr,xzr,[sp,#8*2] sbcs $a3,$acc3,$m3 stp xzr,xzr,[sp,#8*4] sbcs xzr,$carry,xzr // did it borrow? stp xzr,xzr,[sp,#8*6] // $a0-3 hold result-modulus csel $a0,$acc0,$a0,lo csel $a1,$acc1,$a1,lo csel $a2,$acc2,$a2,lo csel $a3,$acc3,$a3,lo stp $a0,$a1,[$ap,#8*0] stp $a2,$a3,[$ap,#8*2] .Lmul4x_done: ldp x19,x20,[x29,#16] mov sp,x29 ldp x21,x22,[x29,#32] mov x0,#1 ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldr x29,[sp],#128 .inst 0xd50323bf // autiasp ret .size __bn_mul4x_mont,.-__bn_mul4x_mont ___ } $code.=<<___; .asciz "Montgomery Multiplication for ARMv8, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/bn-586.pl000066400000000000000000000406101364063235100173220ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); &bn_mul_add_words("bn_mul_add_words"); &bn_mul_words("bn_mul_words"); &bn_sqr_words("bn_sqr_words"); &bn_div_words("bn_div_words"); &bn_add_words("bn_add_words"); &bn_sub_words("bn_sub_words"); &bn_sub_part_words("bn_sub_part_words"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub bn_mul_add_words { local($name)=@_; &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); $r="eax"; $a="edx"; $c="ecx"; if ($sse2) { &picmeup("eax","OPENSSL_ia32cap_P"); &bt(&DWP(0,"eax"),26); &jnc(&label("maw_non_sse2")); &mov($r,&wparam(0)); &mov($a,&wparam(1)); &mov($c,&wparam(2)); &movd("mm0",&wparam(3)); # mm0 = w &pxor("mm1","mm1"); # mm1 = carry_in &jmp(&label("maw_sse2_entry")); &set_label("maw_sse2_unrolled",16); &movd("mm3",&DWP(0,$r,"",0)); # mm3 = r[0] &paddq("mm1","mm3"); # mm1 = carry_in + r[0] &movd("mm2",&DWP(0,$a,"",0)); # mm2 = a[0] &pmuludq("mm2","mm0"); # mm2 = w*a[0] &movd("mm4",&DWP(4,$a,"",0)); # mm4 = a[1] &pmuludq("mm4","mm0"); # mm4 = w*a[1] &movd("mm6",&DWP(8,$a,"",0)); # mm6 = a[2] &pmuludq("mm6","mm0"); # mm6 = w*a[2] &movd("mm7",&DWP(12,$a,"",0)); # mm7 = a[3] &pmuludq("mm7","mm0"); # mm7 = w*a[3] &paddq("mm1","mm2"); # mm1 = carry_in + r[0] + w*a[0] &movd("mm3",&DWP(4,$r,"",0)); # mm3 = r[1] &paddq("mm3","mm4"); # mm3 = r[1] + w*a[1] &movd("mm5",&DWP(8,$r,"",0)); # mm5 = r[2] &paddq("mm5","mm6"); # mm5 = r[2] + w*a[2] &movd("mm4",&DWP(12,$r,"",0)); # mm4 = r[3] &paddq("mm7","mm4"); # mm7 = r[3] + w*a[3] &movd(&DWP(0,$r,"",0),"mm1"); &movd("mm2",&DWP(16,$a,"",0)); # mm2 = a[4] &pmuludq("mm2","mm0"); # mm2 = w*a[4] &psrlq("mm1",32); # mm1 = carry0 &movd("mm4",&DWP(20,$a,"",0)); # mm4 = a[5] &pmuludq("mm4","mm0"); # mm4 = w*a[5] &paddq("mm1","mm3"); # mm1 = carry0 + r[1] + w*a[1] &movd("mm6",&DWP(24,$a,"",0)); # mm6 = a[6] &pmuludq("mm6","mm0"); # mm6 = w*a[6] &movd(&DWP(4,$r,"",0),"mm1"); &psrlq("mm1",32); # mm1 = carry1 &movd("mm3",&DWP(28,$a,"",0)); # mm3 = a[7] &add($a,32); &pmuludq("mm3","mm0"); # mm3 = w*a[7] &paddq("mm1","mm5"); # mm1 = carry1 + r[2] + w*a[2] &movd("mm5",&DWP(16,$r,"",0)); # mm5 = r[4] &paddq("mm2","mm5"); # mm2 = r[4] + w*a[4] &movd(&DWP(8,$r,"",0),"mm1"); &psrlq("mm1",32); # mm1 = carry2 &paddq("mm1","mm7"); # mm1 = carry2 + r[3] + w*a[3] &movd("mm5",&DWP(20,$r,"",0)); # mm5 = r[5] &paddq("mm4","mm5"); # mm4 = r[5] + w*a[5] &movd(&DWP(12,$r,"",0),"mm1"); &psrlq("mm1",32); # mm1 = carry3 &paddq("mm1","mm2"); # mm1 = carry3 + r[4] + w*a[4] &movd("mm5",&DWP(24,$r,"",0)); # mm5 = r[6] &paddq("mm6","mm5"); # mm6 = r[6] + w*a[6] &movd(&DWP(16,$r,"",0),"mm1"); &psrlq("mm1",32); # mm1 = carry4 &paddq("mm1","mm4"); # mm1 = carry4 + r[5] + w*a[5] &movd("mm5",&DWP(28,$r,"",0)); # mm5 = r[7] &paddq("mm3","mm5"); # mm3 = r[7] + w*a[7] &movd(&DWP(20,$r,"",0),"mm1"); &psrlq("mm1",32); # mm1 = carry5 &paddq("mm1","mm6"); # mm1 = carry5 + r[6] + w*a[6] &movd(&DWP(24,$r,"",0),"mm1"); &psrlq("mm1",32); # mm1 = carry6 &paddq("mm1","mm3"); # mm1 = carry6 + r[7] + w*a[7] &movd(&DWP(28,$r,"",0),"mm1"); &lea($r,&DWP(32,$r)); &psrlq("mm1",32); # mm1 = carry_out &sub($c,8); &jz(&label("maw_sse2_exit")); &set_label("maw_sse2_entry"); &test($c,0xfffffff8); &jnz(&label("maw_sse2_unrolled")); &set_label("maw_sse2_loop",4); &movd("mm2",&DWP(0,$a)); # mm2 = a[i] &movd("mm3",&DWP(0,$r)); # mm3 = r[i] &pmuludq("mm2","mm0"); # a[i] *= w &lea($a,&DWP(4,$a)); &paddq("mm1","mm3"); # carry += r[i] &paddq("mm1","mm2"); # carry += a[i]*w &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low &sub($c,1); &psrlq("mm1",32); # carry = carry_high &lea($r,&DWP(4,$r)); &jnz(&label("maw_sse2_loop")); &set_label("maw_sse2_exit"); &movd("eax","mm1"); # c = carry_out &emms(); &ret(); &set_label("maw_non_sse2",16); } # function_begin prologue &push("ebp"); &push("ebx"); &push("esi"); &push("edi"); &comment(""); $Low="eax"; $High="edx"; $a="ebx"; $w="ebp"; $r="edi"; $c="esi"; &xor($c,$c); # clear carry &mov($r,&wparam(0)); # &mov("ecx",&wparam(2)); # &mov($a,&wparam(1)); # &and("ecx",0xfffffff8); # num / 8 &mov($w,&wparam(3)); # &push("ecx"); # Up the stack for a tmp variable &jz(&label("maw_finish")); &set_label("maw_loop",16); for ($i=0; $i<32; $i+=4) { &comment("Round $i"); &mov("eax",&DWP($i,$a)); # *a &mul($w); # *a * w &add("eax",$c); # L(t)+= c &adc("edx",0); # H(t)+=carry &add("eax",&DWP($i,$r)); # L(t)+= *r &adc("edx",0); # H(t)+=carry &mov(&DWP($i,$r),"eax"); # *r= L(t); &mov($c,"edx"); # c= H(t); } &comment(""); &sub("ecx",8); &lea($a,&DWP(32,$a)); &lea($r,&DWP(32,$r)); &jnz(&label("maw_loop")); &set_label("maw_finish",0); &mov("ecx",&wparam(2)); # get num &and("ecx",7); &jnz(&label("maw_finish2")); # helps branch prediction &jmp(&label("maw_end")); &set_label("maw_finish2",1); for ($i=0; $i<7; $i++) { &comment("Tail Round $i"); &mov("eax",&DWP($i*4,$a)); # *a &mul($w); # *a * w &add("eax",$c); # L(t)+=c &adc("edx",0); # H(t)+=carry &add("eax",&DWP($i*4,$r)); # L(t)+= *r &adc("edx",0); # H(t)+=carry &dec("ecx") if ($i != 7-1); &mov(&DWP($i*4,$r),"eax"); # *r= L(t); &mov($c,"edx"); # c= H(t); &jz(&label("maw_end")) if ($i != 7-1); } &set_label("maw_end",0); &mov("eax",$c); &pop("ecx"); # clear variable from &function_end($name); } sub bn_mul_words { local($name)=@_; &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); $r="eax"; $a="edx"; $c="ecx"; if ($sse2) { &picmeup("eax","OPENSSL_ia32cap_P"); &bt(&DWP(0,"eax"),26); &jnc(&label("mw_non_sse2")); &mov($r,&wparam(0)); &mov($a,&wparam(1)); &mov($c,&wparam(2)); &movd("mm0",&wparam(3)); # mm0 = w &pxor("mm1","mm1"); # mm1 = carry = 0 &set_label("mw_sse2_loop",16); &movd("mm2",&DWP(0,$a)); # mm2 = a[i] &pmuludq("mm2","mm0"); # a[i] *= w &lea($a,&DWP(4,$a)); &paddq("mm1","mm2"); # carry += a[i]*w &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low &sub($c,1); &psrlq("mm1",32); # carry = carry_high &lea($r,&DWP(4,$r)); &jnz(&label("mw_sse2_loop")); &movd("eax","mm1"); # return carry &emms(); &ret(); &set_label("mw_non_sse2",16); } # function_begin prologue &push("ebp"); &push("ebx"); &push("esi"); &push("edi"); &comment(""); $Low="eax"; $High="edx"; $a="ebx"; $w="ecx"; $r="edi"; $c="esi"; $num="ebp"; &xor($c,$c); # clear carry &mov($r,&wparam(0)); # &mov($a,&wparam(1)); # &mov($num,&wparam(2)); # &mov($w,&wparam(3)); # &and($num,0xfffffff8); # num / 8 &jz(&label("mw_finish")); &set_label("mw_loop",0); for ($i=0; $i<32; $i+=4) { &comment("Round $i"); &mov("eax",&DWP($i,$a,"",0)); # *a &mul($w); # *a * w &add("eax",$c); # L(t)+=c # XXX &adc("edx",0); # H(t)+=carry &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); &mov($c,"edx"); # c= H(t); } &comment(""); &add($a,32); &add($r,32); &sub($num,8); &jz(&label("mw_finish")); &jmp(&label("mw_loop")); &set_label("mw_finish",0); &mov($num,&wparam(2)); # get num &and($num,7); &jnz(&label("mw_finish2")); &jmp(&label("mw_end")); &set_label("mw_finish2",1); for ($i=0; $i<7; $i++) { &comment("Tail Round $i"); &mov("eax",&DWP($i*4,$a,"",0));# *a &mul($w); # *a * w &add("eax",$c); # L(t)+=c # XXX &adc("edx",0); # H(t)+=carry &mov(&DWP($i*4,$r,"",0),"eax");# *r= L(t); &mov($c,"edx"); # c= H(t); &dec($num) if ($i != 7-1); &jz(&label("mw_end")) if ($i != 7-1); } &set_label("mw_end",0); &mov("eax",$c); &function_end($name); } sub bn_sqr_words { local($name)=@_; &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); $r="eax"; $a="edx"; $c="ecx"; if ($sse2) { &picmeup("eax","OPENSSL_ia32cap_P"); &bt(&DWP(0,"eax"),26); &jnc(&label("sqr_non_sse2")); &mov($r,&wparam(0)); &mov($a,&wparam(1)); &mov($c,&wparam(2)); &set_label("sqr_sse2_loop",16); &movd("mm0",&DWP(0,$a)); # mm0 = a[i] &pmuludq("mm0","mm0"); # a[i] *= a[i] &lea($a,&DWP(4,$a)); # a++ &movq(&QWP(0,$r),"mm0"); # r[i] = a[i]*a[i] &sub($c,1); &lea($r,&DWP(8,$r)); # r += 2 &jnz(&label("sqr_sse2_loop")); &emms(); &ret(); &set_label("sqr_non_sse2",16); } # function_begin prologue &push("ebp"); &push("ebx"); &push("esi"); &push("edi"); &comment(""); $r="esi"; $a="edi"; $num="ebx"; &mov($r,&wparam(0)); # &mov($a,&wparam(1)); # &mov($num,&wparam(2)); # &and($num,0xfffffff8); # num / 8 &jz(&label("sw_finish")); &set_label("sw_loop",0); for ($i=0; $i<32; $i+=4) { &comment("Round $i"); &mov("eax",&DWP($i,$a,"",0)); # *a # XXX &mul("eax"); # *a * *a &mov(&DWP($i*2,$r,"",0),"eax"); # &mov(&DWP($i*2+4,$r,"",0),"edx");# } &comment(""); &add($a,32); &add($r,64); &sub($num,8); &jnz(&label("sw_loop")); &set_label("sw_finish",0); &mov($num,&wparam(2)); # get num &and($num,7); &jz(&label("sw_end")); for ($i=0; $i<7; $i++) { &comment("Tail Round $i"); &mov("eax",&DWP($i*4,$a,"",0)); # *a # XXX &mul("eax"); # *a * *a &mov(&DWP($i*8,$r,"",0),"eax"); # &dec($num) if ($i != 7-1); &mov(&DWP($i*8+4,$r,"",0),"edx"); &jz(&label("sw_end")) if ($i != 7-1); } &set_label("sw_end",0); &function_end($name); } sub bn_div_words { local($name)=@_; &function_begin_B($name,""); &mov("edx",&wparam(0)); # &mov("eax",&wparam(1)); # &mov("ecx",&wparam(2)); # &div("ecx"); &ret(); &function_end_B($name); } sub bn_add_words { local($name)=@_; &function_begin($name,""); &comment(""); $a="esi"; $b="edi"; $c="eax"; $r="ebx"; $tmp1="ecx"; $tmp2="edx"; $num="ebp"; &mov($r,&wparam(0)); # get r &mov($a,&wparam(1)); # get a &mov($b,&wparam(2)); # get b &mov($num,&wparam(3)); # get num &xor($c,$c); # clear carry &and($num,0xfffffff8); # num / 8 &jz(&label("aw_finish")); &set_label("aw_loop",0); for ($i=0; $i<8; $i++) { &comment("Round $i"); &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &mov($tmp2,&DWP($i*4,$b,"",0)); # *b &add($tmp1,$c); &mov($c,0); &adc($c,$c); &add($tmp1,$tmp2); &adc($c,0); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r } &comment(""); &add($a,32); &add($b,32); &add($r,32); &sub($num,8); &jnz(&label("aw_loop")); &set_label("aw_finish",0); &mov($num,&wparam(3)); # get num &and($num,7); &jz(&label("aw_end")); for ($i=0; $i<7; $i++) { &comment("Tail Round $i"); &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &mov($tmp2,&DWP($i*4,$b,"",0));# *b &add($tmp1,$c); &mov($c,0); &adc($c,$c); &add($tmp1,$tmp2); &adc($c,0); &dec($num) if ($i != 6); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r &jz(&label("aw_end")) if ($i != 6); } &set_label("aw_end",0); # &mov("eax",$c); # $c is "eax" &function_end($name); } sub bn_sub_words { local($name)=@_; &function_begin($name,""); &comment(""); $a="esi"; $b="edi"; $c="eax"; $r="ebx"; $tmp1="ecx"; $tmp2="edx"; $num="ebp"; &mov($r,&wparam(0)); # get r &mov($a,&wparam(1)); # get a &mov($b,&wparam(2)); # get b &mov($num,&wparam(3)); # get num &xor($c,$c); # clear carry &and($num,0xfffffff8); # num / 8 &jz(&label("aw_finish")); &set_label("aw_loop",0); for ($i=0; $i<8; $i++) { &comment("Round $i"); &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &mov($tmp2,&DWP($i*4,$b,"",0)); # *b &sub($tmp1,$c); &mov($c,0); &adc($c,$c); &sub($tmp1,$tmp2); &adc($c,0); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r } &comment(""); &add($a,32); &add($b,32); &add($r,32); &sub($num,8); &jnz(&label("aw_loop")); &set_label("aw_finish",0); &mov($num,&wparam(3)); # get num &and($num,7); &jz(&label("aw_end")); for ($i=0; $i<7; $i++) { &comment("Tail Round $i"); &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &mov($tmp2,&DWP($i*4,$b,"",0));# *b &sub($tmp1,$c); &mov($c,0); &adc($c,$c); &sub($tmp1,$tmp2); &adc($c,0); &dec($num) if ($i != 6); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r &jz(&label("aw_end")) if ($i != 6); } &set_label("aw_end",0); # &mov("eax",$c); # $c is "eax" &function_end($name); } sub bn_sub_part_words { local($name)=@_; &function_begin($name,""); &comment(""); $a="esi"; $b="edi"; $c="eax"; $r="ebx"; $tmp1="ecx"; $tmp2="edx"; $num="ebp"; &mov($r,&wparam(0)); # get r &mov($a,&wparam(1)); # get a &mov($b,&wparam(2)); # get b &mov($num,&wparam(3)); # get num &xor($c,$c); # clear carry &and($num,0xfffffff8); # num / 8 &jz(&label("aw_finish")); &set_label("aw_loop",0); for ($i=0; $i<8; $i++) { &comment("Round $i"); &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &mov($tmp2,&DWP($i*4,$b,"",0)); # *b &sub($tmp1,$c); &mov($c,0); &adc($c,$c); &sub($tmp1,$tmp2); &adc($c,0); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r } &comment(""); &add($a,32); &add($b,32); &add($r,32); &sub($num,8); &jnz(&label("aw_loop")); &set_label("aw_finish",0); &mov($num,&wparam(3)); # get num &and($num,7); &jz(&label("aw_end")); for ($i=0; $i<7; $i++) { &comment("Tail Round $i"); &mov($tmp1,&DWP(0,$a,"",0)); # *a &mov($tmp2,&DWP(0,$b,"",0));# *b &sub($tmp1,$c); &mov($c,0); &adc($c,$c); &sub($tmp1,$tmp2); &adc($c,0); &mov(&DWP(0,$r,"",0),$tmp1); # *r &add($a, 4); &add($b, 4); &add($r, 4); &dec($num) if ($i != 6); &jz(&label("aw_end")) if ($i != 6); } &set_label("aw_end",0); &cmp(&wparam(4),0); &je(&label("pw_end")); &mov($num,&wparam(4)); # get dl &cmp($num,0); &je(&label("pw_end")); &jge(&label("pw_pos")); &comment("pw_neg"); &mov($tmp2,0); &sub($tmp2,$num); &mov($num,$tmp2); &and($num,0xfffffff8); # num / 8 &jz(&label("pw_neg_finish")); &set_label("pw_neg_loop",0); for ($i=0; $i<8; $i++) { &comment("dl<0 Round $i"); &mov($tmp1,0); &mov($tmp2,&DWP($i*4,$b,"",0)); # *b &sub($tmp1,$c); &mov($c,0); &adc($c,$c); &sub($tmp1,$tmp2); &adc($c,0); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r } &comment(""); &add($b,32); &add($r,32); &sub($num,8); &jnz(&label("pw_neg_loop")); &set_label("pw_neg_finish",0); &mov($tmp2,&wparam(4)); # get dl &mov($num,0); &sub($num,$tmp2); &and($num,7); &jz(&label("pw_end")); for ($i=0; $i<7; $i++) { &comment("dl<0 Tail Round $i"); &mov($tmp1,0); &mov($tmp2,&DWP($i*4,$b,"",0));# *b &sub($tmp1,$c); &mov($c,0); &adc($c,$c); &sub($tmp1,$tmp2); &adc($c,0); &dec($num) if ($i != 6); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r &jz(&label("pw_end")) if ($i != 6); } &jmp(&label("pw_end")); &set_label("pw_pos",0); &and($num,0xfffffff8); # num / 8 &jz(&label("pw_pos_finish")); &set_label("pw_pos_loop",0); for ($i=0; $i<8; $i++) { &comment("dl>0 Round $i"); &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &sub($tmp1,$c); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r &jnc(&label("pw_nc".$i)); } &comment(""); &add($a,32); &add($r,32); &sub($num,8); &jnz(&label("pw_pos_loop")); &set_label("pw_pos_finish",0); &mov($num,&wparam(4)); # get dl &and($num,7); &jz(&label("pw_end")); for ($i=0; $i<7; $i++) { &comment("dl>0 Tail Round $i"); &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &sub($tmp1,$c); &mov(&DWP($i*4,$r,"",0),$tmp1); # *r &jnc(&label("pw_tail_nc".$i)); &dec($num) if ($i != 6); &jz(&label("pw_end")) if ($i != 6); } &mov($c,1); &jmp(&label("pw_end")); &set_label("pw_nc_loop",0); for ($i=0; $i<8; $i++) { &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &mov(&DWP($i*4,$r,"",0),$tmp1); # *r &set_label("pw_nc".$i,0); } &comment(""); &add($a,32); &add($r,32); &sub($num,8); &jnz(&label("pw_nc_loop")); &mov($num,&wparam(4)); # get dl &and($num,7); &jz(&label("pw_nc_end")); for ($i=0; $i<7; $i++) { &mov($tmp1,&DWP($i*4,$a,"",0)); # *a &mov(&DWP($i*4,$r,"",0),$tmp1); # *r &set_label("pw_tail_nc".$i,0); &dec($num) if ($i != 6); &jz(&label("pw_nc_end")) if ($i != 6); } &set_label("pw_nc_end",0); &mov($c,0); &set_label("pw_end",0); # &mov("eax",$c); # $c is "eax" &function_end($name); } openssl-1.1.1f/crypto/bn/asm/bn-c64xplus.asm000066400000000000000000000236211364063235100206400ustar00rootroot00000000000000;; Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved. ;; ;; Licensed under the OpenSSL license (the "License"). You may not use ;; this file except in compliance with the License. You can obtain a copy ;; in the file LICENSE in the source distribution or at ;; https://www.openssl.org/source/license.html ;; ;;==================================================================== ;; Written by Andy Polyakov for the OpenSSL ;; project. ;; ;; Rights for redistribution and usage in source and binary forms are ;; granted according to the OpenSSL license. Warranty of any kind is ;; disclaimed. ;;==================================================================== ;; Compiler-generated multiply-n-add SPLOOP runs at 12*n cycles, n ;; being the number of 32-bit words, addition - 8*n. Corresponding 4x ;; unrolled SPLOOP-free loops - at ~8*n and ~5*n. Below assembler ;; SPLOOPs spin at ... 2*n cycles [plus epilogue]. ;;==================================================================== .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .asg bn_mul_add_words,_bn_mul_add_words .asg bn_mul_words,_bn_mul_words .asg bn_sqr_words,_bn_sqr_words .asg bn_add_words,_bn_add_words .asg bn_sub_words,_bn_sub_words .asg bn_div_words,_bn_div_words .asg bn_sqr_comba8,_bn_sqr_comba8 .asg bn_mul_comba8,_bn_mul_comba8 .asg bn_sqr_comba4,_bn_sqr_comba4 .asg bn_mul_comba4,_bn_mul_comba4 .endif .asg B3,RA .asg A4,ARG0 .asg B4,ARG1 .asg A6,ARG2 .asg B6,ARG3 .asg A8,ARG4 .asg B8,ARG5 .asg A4,RET .asg A15,FP .asg B14,DP .asg B15,SP .global _bn_mul_add_words _bn_mul_add_words: .asmfunc MV ARG2,B0 [!B0] BNOP RA ||[!B0] MVK 0,RET [B0] MVC B0,ILC [B0] ZERO A19 ; high part of accumulator || [B0] MV ARG0,A2 || [B0] MV ARG3,A3 NOP 3 SPLOOP 2 ; 2*n+10 ;;==================================================================== LDW *ARG1++,B7 ; ap[i] NOP 3 LDW *ARG0++,A7 ; rp[i] MPY32U B7,A3,A17:A16 NOP 3 ; [2,0] in epilogue ADDU A16,A7,A21:A20 ADDU A19,A21:A20,A19:A18 || MV.S A17,A23 SPKERNEL 2,1 ; leave slot for "return value" || STW A18,*A2++ ; rp[i] || ADD A19,A23,A19 ;;==================================================================== BNOP RA,4 MV A19,RET ; return value .endasmfunc .global _bn_mul_words _bn_mul_words: .asmfunc MV ARG2,B0 [!B0] BNOP RA ||[!B0] MVK 0,RET [B0] MVC B0,ILC [B0] ZERO A19 ; high part of accumulator NOP 3 SPLOOP 2 ; 2*n+10 ;;==================================================================== LDW *ARG1++,A7 ; ap[i] NOP 4 MPY32U A7,ARG3,A17:A16 NOP 4 ; [2,0] in epiloque ADDU A19,A16,A19:A18 || MV.S A17,A21 SPKERNEL 2,1 ; leave slot for "return value" || STW A18,*ARG0++ ; rp[i] || ADD.L A19,A21,A19 ;;==================================================================== BNOP RA,4 MV A19,RET ; return value .endasmfunc .global _bn_sqr_words _bn_sqr_words: .asmfunc MV ARG2,B0 [!B0] BNOP RA ||[!B0] MVK 0,RET [B0] MVC B0,ILC [B0] MV ARG0,B2 || [B0] ADD 4,ARG0,ARG0 NOP 3 SPLOOP 2 ; 2*n+10 ;;==================================================================== LDW *ARG1++,B7 ; ap[i] NOP 4 MPY32U B7,B7,B1:B0 NOP 3 ; [2,0] in epilogue STW B0,*B2++(8) ; rp[2*i] MV B1,A1 SPKERNEL 2,0 ; fully overlap BNOP RA,5 || STW A1,*ARG0++(8) ; rp[2*i+1] ;;==================================================================== BNOP RA,5 .endasmfunc .global _bn_add_words _bn_add_words: .asmfunc MV ARG3,B0 [!B0] BNOP RA ||[!B0] MVK 0,RET [B0] MVC B0,ILC [B0] ZERO A1 ; carry flag || [B0] MV ARG0,A3 NOP 3 SPLOOP 2 ; 2*n+6 ;;==================================================================== LDW *ARG2++,A7 ; bp[i] || LDW *ARG1++,B7 ; ap[i] NOP 4 ADDU A7,B7,A9:A8 ADDU A1,A9:A8,A1:A0 SPKERNEL 0,0 ; fully overlap BNOP RA,5 || STW A0,*A3++ ; write result || MV A1,RET ; keep carry flag in RET ;;==================================================================== BNOP RA,5 .endasmfunc .global _bn_sub_words _bn_sub_words: .asmfunc MV ARG3,B0 [!B0] BNOP RA ||[!B0] MVK 0,RET [B0] MVC B0,ILC [B0] ZERO A2 ; borrow flag || [B0] MV ARG0,A3 NOP 3 SPLOOP 2 ; 2*n+6 ;;==================================================================== LDW *ARG2++,A7 ; bp[i] || LDW *ARG1++,B7 ; ap[i] NOP 4 SUBU B7,A7,A1:A0 [A2] SUB A1:A0,1,A1:A0 SPKERNEL 0,1 ; leave slot for "return borrow flag" || STW A0,*A3++ ; write result || AND 1,A1,A2 ; pass on borrow flag ;;==================================================================== BNOP RA,4 AND 1,A1,RET ; return borrow flag .endasmfunc .global _bn_div_words _bn_div_words: .asmfunc LMBD 1,A6,A0 ; leading zero bits in dv LMBD 1,A4,A1 ; leading zero bits in hi || MVK 32,B0 CMPLTU A1,A0,A2 || ADD A0,B0,B0 [ A2] BNOP RA ||[ A2] MVK -1,A4 ; return overflow ||[!A2] MV A4,A3 ; reassign hi [!A2] MV B4,A4 ; reassign lo, will be quotient ||[!A2] MVC B0,ILC [!A2] SHL A6,A0,A6 ; normalize dv || MVK 1,A1 [!A2] CMPLTU A3,A6,A1 ; hi>31 SPLOOP 3 [!A1] CMPLTU A3,A6,A1 ; hi>31 SPKERNEL BNOP RA,5 .endasmfunc ;;==================================================================== ;; Not really Comba algorithm, just straightforward NxM... Dedicated ;; fully unrolled real Comba implementations are asymptotically 2x ;; faster, but naturally larger undertaking. Purpose of this exercise ;; was rather to learn to master nested SPLOOPs... ;;==================================================================== .global _bn_sqr_comba8 .global _bn_mul_comba8 _bn_sqr_comba8: MV ARG1,ARG2 _bn_mul_comba8: .asmfunc MVK 8,B0 ; N, RILC || MVK 8,A0 ; M, outer loop counter || MV ARG1,A5 ; copy ap || MV ARG0,B4 ; copy rp || ZERO B19 ; high part of accumulator MVC B0,RILC || SUB B0,2,B1 ; N-2, initial ILC || SUB B0,1,B2 ; const B2=N-1 || LDW *A5++,B6 ; ap[0] || MV A0,A3 ; const A3=M sploopNxM?: ; for best performance arrange M<=N [A0] SPLOOPD 2 ; 2*n+10 || MVC B1,ILC || ADDAW B4,B0,B5 || ZERO B7 || LDW *A5++,A9 ; pre-fetch ap[1] || ZERO A1 || SUB A0,1,A0 ;;==================================================================== ;; SPLOOP from bn_mul_add_words, but with flipped A<>B register files. ;; This is because of Advisory 15 from TI publication SPRZ247I. LDW *ARG2++,A7 ; bp[i] NOP 3 [A1] LDW *B5++,B7 ; rp[i] MPY32U A7,B6,B17:B16 NOP 3 ADDU B16,B7,B21:B20 ADDU B19,B21:B20,B19:B18 || MV.S B17,B23 SPKERNEL || STW B18,*B4++ ; rp[i] || ADD.S B19,B23,B19 ;;==================================================================== outer?: ; m*2*(n+1)+10 SUBAW ARG2,A3,ARG2 ; rewind bp to bp[0] SPMASKR || CMPGT A0,1,A2 ; done pre-fetching ap[i+1]? MVD A9,B6 ; move through .M unit(*) [A2] LDW *A5++,A9 ; pre-fetch ap[i+1] SUBAW B5,B2,B5 ; rewind rp to rp[1] MVK 1,A1 [A0] BNOP.S1 outer?,4 || [A0] SUB.L A0,1,A0 STW B19,*B4--[B2] ; rewind rp tp rp[1] || ZERO.S B19 ; high part of accumulator ;; end of outer? BNOP RA,5 ; return .endasmfunc ;; (*) It should be noted that B6 is used as input to MPY32U in ;; chronologically next cycle in *preceding* SPLOOP iteration. ;; Normally such arrangement would require DINT, but at this ;; point SPLOOP is draining and interrupts are disabled ;; implicitly. .global _bn_sqr_comba4 .global _bn_mul_comba4 _bn_sqr_comba4: MV ARG1,ARG2 _bn_mul_comba4: .asmfunc .if 0 BNOP sploopNxM?,3 ;; Above mentioned m*2*(n+1)+10 does not apply in n=m=4 case, ;; because of low-counter effect, when prologue phase finishes ;; before SPKERNEL instruction is reached. As result it's 25% ;; slower than expected... MVK 4,B0 ; N, RILC || MVK 4,A0 ; M, outer loop counter || MV ARG1,A5 ; copy ap || MV ARG0,B4 ; copy rp || ZERO B19 ; high part of accumulator MVC B0,RILC || SUB B0,2,B1 ; first ILC || SUB B0,1,B2 ; const B2=N-1 || LDW *A5++,B6 ; ap[0] || MV A0,A3 ; const A3=M .else ;; This alternative is an exercise in fully unrolled Comba ;; algorithm implementation that operates at n*(n+1)+12, or ;; as little as 32 cycles... LDW *ARG1[0],B16 ; a[0] || LDW *ARG2[0],A16 ; b[0] LDW *ARG1[1],B17 ; a[1] || LDW *ARG2[1],A17 ; b[1] LDW *ARG1[2],B18 ; a[2] || LDW *ARG2[2],A18 ; b[2] LDW *ARG1[3],B19 ; a[3] || LDW *ARG2[3],A19 ; b[3] NOP MPY32U A16,B16,A1:A0 ; a[0]*b[0] MPY32U A17,B16,A23:A22 ; a[0]*b[1] MPY32U A16,B17,A25:A24 ; a[1]*b[0] MPY32U A16,B18,A27:A26 ; a[2]*b[0] STW A0,*ARG0[0] || MPY32U A17,B17,A29:A28 ; a[1]*b[1] MPY32U A18,B16,A31:A30 ; a[0]*b[2] || ADDU A22,A1,A1:A0 MV A23,B0 || MPY32U A19,B16,A21:A20 ; a[3]*b[0] || ADDU A24,A1:A0,A1:A0 ADDU A25,B0,B1:B0 || STW A0,*ARG0[1] || MPY32U A18,B17,A23:A22 ; a[2]*b[1] || ADDU A26,A1,A9:A8 ADDU A27,B1,B9:B8 || MPY32U A17,B18,A25:A24 ; a[1]*b[2] || ADDU A28,A9:A8,A9:A8 ADDU A29,B9:B8,B9:B8 || MPY32U A16,B19,A27:A26 ; a[0]*b[3] || ADDU A30,A9:A8,A9:A8 ADDU A31,B9:B8,B9:B8 || ADDU B0,A9:A8,A9:A8 STW A8,*ARG0[2] || ADDU A20,A9,A1:A0 ADDU A21,B9,B1:B0 || MPY32U A19,B17,A21:A20 ; a[3]*b[1] || ADDU A22,A1:A0,A1:A0 ADDU A23,B1:B0,B1:B0 || MPY32U A18,B18,A23:A22 ; a[2]*b[2] || ADDU A24,A1:A0,A1:A0 ADDU A25,B1:B0,B1:B0 || MPY32U A17,B19,A25:A24 ; a[1]*b[3] || ADDU A26,A1:A0,A1:A0 ADDU A27,B1:B0,B1:B0 || ADDU B8,A1:A0,A1:A0 STW A0,*ARG0[3] || MPY32U A19,B18,A27:A26 ; a[3]*b[2] || ADDU A20,A1,A9:A8 ADDU A21,B1,B9:B8 || MPY32U A18,B19,A29:A28 ; a[2]*b[3] || ADDU A22,A9:A8,A9:A8 ADDU A23,B9:B8,B9:B8 || MPY32U A19,B19,A31:A30 ; a[3]*b[3] || ADDU A24,A9:A8,A9:A8 ADDU A25,B9:B8,B9:B8 || ADDU B0,A9:A8,A9:A8 STW A8,*ARG0[4] || ADDU A26,A9,A1:A0 ADDU A27,B9,B1:B0 || ADDU A28,A1:A0,A1:A0 ADDU A29,B1:B0,B1:B0 || BNOP RA || ADDU B8,A1:A0,A1:A0 STW A0,*ARG0[5] || ADDU A30,A1,A9:A8 ADD A31,B1,B8 ADDU B0,A9:A8,A9:A8 ; removed || to avoid cross-path stall below ADD B8,A9,A9 || STW A8,*ARG0[6] STW A9,*ARG0[7] .endif .endasmfunc openssl-1.1.1f/crypto/bn/asm/c64xplus-gf2m.pl000066400000000000000000000100361364063235100207230ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # February 2012 # # The module implements bn_GF2m_mul_2x2 polynomial multiplication # used in bn_gf2m.c. It's kind of low-hanging mechanical port from # C for the time being... The subroutine runs in 37 cycles, which is # 4.5x faster than compiler-generated code. Though comparison is # totally unfair, because this module utilizes Galois Field Multiply # instruction. while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; ($rp,$a1,$a0,$b1,$b0)=("A4","B4","A6","B6","A8"); # argument vector ($Alo,$Alox0,$Alox1,$Alox2,$Alox3)=map("A$_",(16..20)); ($Ahi,$Ahix0,$Ahix1,$Ahix2,$Ahix3)=map("B$_",(16..20)); ($B_0,$B_1,$B_2,$B_3)=("B5","A5","A7","B7"); ($A,$B)=($Alo,$B_1); $xFF="B1"; sub mul_1x1_upper { my ($A,$B)=@_; $code.=<<___; EXTU $B,8,24,$B_2 ; smash $B to 4 bytes || AND $B,$xFF,$B_0 || SHRU $B,24,$B_3 SHRU $A,16, $Ahi ; smash $A to two halfwords || EXTU $A,16,16,$Alo XORMPY $Alo,$B_2,$Alox2 ; 16x8 bits multiplication || XORMPY $Ahi,$B_2,$Ahix2 || EXTU $B,16,24,$B_1 XORMPY $Alo,$B_0,$Alox0 || XORMPY $Ahi,$B_0,$Ahix0 XORMPY $Alo,$B_3,$Alox3 || XORMPY $Ahi,$B_3,$Ahix3 XORMPY $Alo,$B_1,$Alox1 || XORMPY $Ahi,$B_1,$Ahix1 ___ } sub mul_1x1_merged { my ($OUTlo,$OUThi,$A,$B)=@_; $code.=<<___; EXTU $B,8,24,$B_2 ; smash $B to 4 bytes || AND $B,$xFF,$B_0 || SHRU $B,24,$B_3 SHRU $A,16, $Ahi ; smash $A to two halfwords || EXTU $A,16,16,$Alo XOR $Ahix0,$Alox2,$Ahix0 || MV $Ahix2,$OUThi || XORMPY $Alo,$B_2,$Alox2 XORMPY $Ahi,$B_2,$Ahix2 || EXTU $B,16,24,$B_1 || XORMPY $Alo,$B_0,A1 ; $Alox0 XOR $Ahix1,$Alox3,$Ahix1 || SHL $Ahix0,16,$OUTlo || SHRU $Ahix0,16,$Ahix0 XOR $Alox0,$OUTlo,$OUTlo || XOR $Ahix0,$OUThi,$OUThi || XORMPY $Ahi,$B_0,$Ahix0 || XORMPY $Alo,$B_3,$Alox3 || SHL $Alox1,8,$Alox1 || SHL $Ahix3,8,$Ahix3 XOR $Alox1,$OUTlo,$OUTlo || XOR $Ahix3,$OUThi,$OUThi || XORMPY $Ahi,$B_3,$Ahix3 || SHL $Ahix1,24,$Alox1 || SHRU $Ahix1,8, $Ahix1 XOR $Alox1,$OUTlo,$OUTlo || XOR $Ahix1,$OUThi,$OUThi || XORMPY $Alo,$B_1,$Alox1 || XORMPY $Ahi,$B_1,$Ahix1 || MV A1,$Alox0 ___ } sub mul_1x1_lower { my ($OUTlo,$OUThi)=@_; $code.=<<___; ;NOP XOR $Ahix0,$Alox2,$Ahix0 || MV $Ahix2,$OUThi NOP XOR $Ahix1,$Alox3,$Ahix1 || SHL $Ahix0,16,$OUTlo || SHRU $Ahix0,16,$Ahix0 XOR $Alox0,$OUTlo,$OUTlo || XOR $Ahix0,$OUThi,$OUThi || SHL $Alox1,8,$Alox1 || SHL $Ahix3,8,$Ahix3 XOR $Alox1,$OUTlo,$OUTlo || XOR $Ahix3,$OUThi,$OUThi || SHL $Ahix1,24,$Alox1 || SHRU $Ahix1,8, $Ahix1 XOR $Alox1,$OUTlo,$OUTlo || XOR $Ahix1,$OUThi,$OUThi ___ } $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .asg bn_GF2m_mul_2x2,_bn_GF2m_mul_2x2 .endif .global _bn_GF2m_mul_2x2 _bn_GF2m_mul_2x2: .asmfunc MVK 0xFF,$xFF ___ &mul_1x1_upper($a0,$b0); # a0·b0 $code.=<<___; || MV $b1,$B MV $a1,$A ___ &mul_1x1_merged("A28","B28",$A,$B); # a0·b0/a1·b1 $code.=<<___; || XOR $b0,$b1,$B XOR $a0,$a1,$A ___ &mul_1x1_merged("A31","B31",$A,$B); # a1·b1/(a0+a1)·(b0+b1) $code.=<<___; XOR A28,A31,A29 || XOR B28,B31,B29 ; a0·b0+a1·b1 ___ &mul_1x1_lower("A30","B30"); # (a0+a1)·(b0+b1) $code.=<<___; || BNOP B3 XOR A29,A30,A30 || XOR B29,B30,B30 ; (a0+a1)·(b0+b1)-a0·b0-a1·b1 XOR B28,A30,A30 || STW A28,*${rp}[0] XOR B30,A31,A31 || STW A30,*${rp}[1] STW A31,*${rp}[2] STW B31,*${rp}[3] .endasmfunc ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/co-586.pl000066400000000000000000000136271364063235100173340ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0]); &bn_mul_comba("bn_mul_comba8",8); &bn_mul_comba("bn_mul_comba4",4); &bn_sqr_comba("bn_sqr_comba8",8); &bn_sqr_comba("bn_sqr_comba4",4); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub mul_add_c { local($a,$ai,$b,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; # pos == -1 if eax and edx are pre-loaded, 0 to load from next # words, and 1 if load return value &comment("mul a[$ai]*b[$bi]"); # "eax" and "edx" will always be pre-loaded. # &mov("eax",&DWP($ai*4,$a,"",0)) ; # &mov("edx",&DWP($bi*4,$b,"",0)); &mul("edx"); &add($c0,"eax"); &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a &mov("eax",&wparam(0)) if $pos > 0; # load r[] ### &adc($c1,"edx"); &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 0; # load next b &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 1; # load next b ### &adc($c2,0); # is pos > 1, it means it is the last loop &mov(&DWP($i*4,"eax","",0),$c0) if $pos > 0; # save r[]; &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next a } sub sqr_add_c { local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; # pos == -1 if eax and edx are pre-loaded, 0 to load from next # words, and 1 if load return value &comment("sqr a[$ai]*a[$bi]"); # "eax" and "edx" will always be pre-loaded. # &mov("eax",&DWP($ai*4,$a,"",0)) ; # &mov("edx",&DWP($bi*4,$b,"",0)); if ($ai == $bi) { &mul("eax");} else { &mul("edx");} &add($c0,"eax"); &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a ### &adc($c1,"edx"); &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos == 1) && ($na != $nb); ### &adc($c2,0); # is pos > 1, it means it is the last loop &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b } sub sqr_add_c2 { local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; # pos == -1 if eax and edx are pre-loaded, 0 to load from next # words, and 1 if load return value &comment("sqr a[$ai]*a[$bi]"); # "eax" and "edx" will always be pre-loaded. # &mov("eax",&DWP($ai*4,$a,"",0)) ; # &mov("edx",&DWP($bi*4,$a,"",0)); if ($ai == $bi) { &mul("eax");} else { &mul("edx");} &add("eax","eax"); ### &adc("edx","edx"); ### &adc($c2,0); &add($c0,"eax"); &adc($c1,"edx"); &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b &adc($c2,0); &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos <= 1) && ($na != $nb); ### } sub bn_mul_comba { local($name,$num)=@_; local($a,$b,$c0,$c1,$c2); local($i,$as,$ae,$bs,$be,$ai,$bi); local($tot,$end); &function_begin_B($name,""); $c0="ebx"; $c1="ecx"; $c2="ebp"; $a="esi"; $b="edi"; $as=0; $ae=0; $bs=0; $be=0; $tot=$num+$num-1; &push("esi"); &mov($a,&wparam(1)); &push("edi"); &mov($b,&wparam(2)); &push("ebp"); &push("ebx"); &xor($c0,$c0); &mov("eax",&DWP(0,$a,"",0)); # load the first word &xor($c1,$c1); &mov("edx",&DWP(0,$b,"",0)); # load the first second for ($i=0; $i<$tot; $i++) { $ai=$as; $bi=$bs; $end=$be+1; &comment("################## Calculate word $i"); for ($j=$bs; $j<$end; $j++) { &xor($c2,$c2) if ($j == $bs); if (($j+1) == $end) { $v=1; $v=2 if (($i+1) == $tot); } else { $v=0; } if (($j+1) != $end) { $na=($ai-1); $nb=($bi+1); } else { $na=$as+($i < ($num-1)); $nb=$bs+($i >= ($num-1)); } #printf STDERR "[$ai,$bi] -> [$na,$nb]\n"; &mul_add_c($a,$ai,$b,$bi,$c0,$c1,$c2,$v,$i,$na,$nb); if ($v) { &comment("saved r[$i]"); # &mov("eax",&wparam(0)); # &mov(&DWP($i*4,"eax","",0),$c0); ($c0,$c1,$c2)=($c1,$c2,$c0); } $ai--; $bi++; } $as++ if ($i < ($num-1)); $ae++ if ($i >= ($num-1)); $bs++ if ($i >= ($num-1)); $be++ if ($i < ($num-1)); } &comment("save r[$i]"); # &mov("eax",&wparam(0)); &mov(&DWP($i*4,"eax","",0),$c0); &pop("ebx"); &pop("ebp"); &pop("edi"); &pop("esi"); &ret(); &function_end_B($name); } sub bn_sqr_comba { local($name,$num)=@_; local($r,$a,$c0,$c1,$c2)=@_; local($i,$as,$ae,$bs,$be,$ai,$bi); local($b,$tot,$end,$half); &function_begin_B($name,""); $c0="ebx"; $c1="ecx"; $c2="ebp"; $a="esi"; $r="edi"; &push("esi"); &push("edi"); &push("ebp"); &push("ebx"); &mov($r,&wparam(0)); &mov($a,&wparam(1)); &xor($c0,$c0); &xor($c1,$c1); &mov("eax",&DWP(0,$a,"",0)); # load the first word $as=0; $ae=0; $bs=0; $be=0; $tot=$num+$num-1; for ($i=0; $i<$tot; $i++) { $ai=$as; $bi=$bs; $end=$be+1; &comment("############### Calculate word $i"); for ($j=$bs; $j<$end; $j++) { &xor($c2,$c2) if ($j == $bs); if (($ai-1) < ($bi+1)) { $v=1; $v=2 if ($i+1) == $tot; } else { $v=0; } if (!$v) { $na=$ai-1; $nb=$bi+1; } else { $na=$as+($i < ($num-1)); $nb=$bs+($i >= ($num-1)); } if ($ai == $bi) { &sqr_add_c($r,$a,$ai,$bi, $c0,$c1,$c2,$v,$i,$na,$nb); } else { &sqr_add_c2($r,$a,$ai,$bi, $c0,$c1,$c2,$v,$i,$na,$nb); } if ($v) { &comment("saved r[$i]"); #&mov(&DWP($i*4,$r,"",0),$c0); ($c0,$c1,$c2)=($c1,$c2,$c0); last; } $ai--; $bi++; } $as++ if ($i < ($num-1)); $ae++ if ($i >= ($num-1)); $bs++ if ($i >= ($num-1)); $be++ if ($i < ($num-1)); } &mov(&DWP($i*4,$r,"",0),$c0); &pop("ebx"); &pop("ebp"); &pop("edi"); &pop("esi"); &ret(); &function_end_B($name); } openssl-1.1.1f/crypto/bn/asm/ia64-mont.pl000066400000000000000000000634271364063235100201340ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # January 2010 # # "Teaser" Montgomery multiplication module for IA-64. There are # several possibilities for improvement: # # - modulo-scheduling outer loop would eliminate quite a number of # stalls after ldf8, xma and getf.sig outside inner loop and # improve shorter key performance; # - shorter vector support [with input vectors being fetched only # once] should be added; # - 2x unroll with help of n0[1] would make the code scalable on # "wider" IA-64, "wider" than Itanium 2 that is, which is not of # acute interest, because upcoming Tukwila's individual cores are # reportedly based on Itanium 2 design; # - dedicated squaring procedure(?); # # January 2010 # # Shorter vector support is implemented by zero-padding ap and np # vectors up to 8 elements, or 512 bits. This means that 256-bit # inputs will be processed only 2 times faster than 512-bit inputs, # not 4 [as one would expect, because algorithm complexity is n^2]. # The reason for padding is that inputs shorter than 512 bits won't # be processed faster anyway, because minimal critical path of the # core loop happens to match 512-bit timing. Either way, it resulted # in >100% improvement of 512-bit RSA sign benchmark and 50% - of # 1024-bit one [in comparison to original version of *this* module]. # # So far 'openssl speed rsa dsa' output on 900MHz Itanium 2 *with* # this module is: # sign verify sign/s verify/s # rsa 512 bits 0.000290s 0.000024s 3452.8 42031.4 # rsa 1024 bits 0.000793s 0.000058s 1261.7 17172.0 # rsa 2048 bits 0.005908s 0.000148s 169.3 6754.0 # rsa 4096 bits 0.033456s 0.000469s 29.9 2133.6 # dsa 512 bits 0.000253s 0.000198s 3949.9 5057.0 # dsa 1024 bits 0.000585s 0.000607s 1708.4 1647.4 # dsa 2048 bits 0.001453s 0.001703s 688.1 587.4 # # ... and *without* (but still with ia64.S): # # rsa 512 bits 0.000670s 0.000041s 1491.8 24145.5 # rsa 1024 bits 0.001988s 0.000080s 502.9 12499.3 # rsa 2048 bits 0.008702s 0.000189s 114.9 5293.9 # rsa 4096 bits 0.043860s 0.000533s 22.8 1875.9 # dsa 512 bits 0.000441s 0.000427s 2265.3 2340.6 # dsa 1024 bits 0.000823s 0.000867s 1215.6 1153.2 # dsa 2048 bits 0.001894s 0.002179s 528.1 458.9 # # As it can be seen, RSA sign performance improves by 130-30%, # hereafter less for longer keys, while verify - by 74-13%. # DSA performance improves by 115-30%. $output=pop; if ($^O eq "hpux") { $ADDP="addp4"; for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); } } else { $ADDP="add"; } $code=<<___; .explicit .text // int bn_mul_mont (BN_ULONG *rp,const BN_ULONG *ap, // const BN_ULONG *bp,const BN_ULONG *np, // const BN_ULONG *n0p,int num); .align 64 .global bn_mul_mont# .proc bn_mul_mont# bn_mul_mont: .prologue .body { .mmi; cmp4.le p6,p7=2,r37;; (p6) cmp4.lt.unc p8,p9=8,r37 mov ret0=r0 };; { .bbb; (p9) br.cond.dptk.many bn_mul_mont_8 (p8) br.cond.dpnt.many bn_mul_mont_general (p7) br.ret.spnt.many b0 };; .endp bn_mul_mont# prevfs=r2; prevpr=r3; prevlc=r10; prevsp=r11; rptr=r8; aptr=r9; bptr=r14; nptr=r15; tptr=r16; // &tp[0] tp_1=r17; // &tp[-1] num=r18; len=r19; lc=r20; topbit=r21; // carry bit from tmp[num] n0=f6; m0=f7; bi=f8; .align 64 .local bn_mul_mont_general# .proc bn_mul_mont_general# bn_mul_mont_general: .prologue { .mmi; .save ar.pfs,prevfs alloc prevfs=ar.pfs,6,2,0,8 $ADDP aptr=0,in1 .save ar.lc,prevlc mov prevlc=ar.lc } { .mmi; .vframe prevsp mov prevsp=sp $ADDP bptr=0,in2 .save pr,prevpr mov prevpr=pr };; .body .rotf alo[6],nlo[4],ahi[8],nhi[6] .rotr a[3],n[3],t[2] { .mmi; ldf8 bi=[bptr],8 // (*bp++) ldf8 alo[4]=[aptr],16 // ap[0] $ADDP r30=8,in1 };; { .mmi; ldf8 alo[3]=[r30],16 // ap[1] ldf8 alo[2]=[aptr],16 // ap[2] $ADDP in4=0,in4 };; { .mmi; ldf8 alo[1]=[r30] // ap[3] ldf8 n0=[in4] // n0 $ADDP rptr=0,in0 } { .mmi; $ADDP nptr=0,in3 mov r31=16 zxt4 num=in5 };; { .mmi; ldf8 nlo[2]=[nptr],8 // np[0] shladd len=num,3,r0 shladd r31=num,3,r31 };; { .mmi; ldf8 nlo[1]=[nptr],8 // np[1] add lc=-5,num sub r31=sp,r31 };; { .mfb; and sp=-16,r31 // alloca xmpy.hu ahi[2]=alo[4],bi // ap[0]*bp[0] nop.b 0 } { .mfb; nop.m 0 xmpy.lu alo[4]=alo[4],bi brp.loop.imp .L1st_ctop,.L1st_cend-16 };; { .mfi; nop.m 0 xma.hu ahi[1]=alo[3],bi,ahi[2] // ap[1]*bp[0] add tp_1=8,sp } { .mfi; nop.m 0 xma.lu alo[3]=alo[3],bi,ahi[2] mov pr.rot=0x20001f<<16 // ------^----- (p40) at first (p23) // ----------^^ p[16:20]=1 };; { .mfi; nop.m 0 xmpy.lu m0=alo[4],n0 // (ap[0]*bp[0])*n0 mov ar.lc=lc } { .mfi; nop.m 0 fcvt.fxu.s1 nhi[1]=f0 mov ar.ec=8 };; .align 32 .L1st_ctop: .pred.rel "mutex",p40,p42 { .mfi; (p16) ldf8 alo[0]=[aptr],8 // *(aptr++) (p18) xma.hu ahi[0]=alo[2],bi,ahi[1] (p40) add n[2]=n[2],a[2] } // (p23) } { .mfi; (p18) ldf8 nlo[0]=[nptr],8 // *(nptr++)(p16) (p18) xma.lu alo[2]=alo[2],bi,ahi[1] (p42) add n[2]=n[2],a[2],1 };; // (p23) { .mfi; (p21) getf.sig a[0]=alo[5] (p20) xma.hu nhi[0]=nlo[2],m0,nhi[1] (p42) cmp.leu p41,p39=n[2],a[2] } // (p23) { .mfi; (p23) st8 [tp_1]=n[2],8 (p20) xma.lu nlo[2]=nlo[2],m0,nhi[1] (p40) cmp.ltu p41,p39=n[2],a[2] } // (p23) { .mmb; (p21) getf.sig n[0]=nlo[3] (p16) nop.m 0 br.ctop.sptk .L1st_ctop };; .L1st_cend: { .mmi; getf.sig a[0]=ahi[6] // (p24) getf.sig n[0]=nhi[4] add num=-1,num };; // num-- { .mmi; .pred.rel "mutex",p40,p42 (p40) add n[0]=n[0],a[0] (p42) add n[0]=n[0],a[0],1 sub aptr=aptr,len };; // rewind { .mmi; .pred.rel "mutex",p40,p42 (p40) cmp.ltu p41,p39=n[0],a[0] (p42) cmp.leu p41,p39=n[0],a[0] sub nptr=nptr,len };; { .mmi; .pred.rel "mutex",p39,p41 (p39) add topbit=r0,r0 (p41) add topbit=r0,r0,1 nop.i 0 } { .mmi; st8 [tp_1]=n[0] add tptr=16,sp add tp_1=8,sp };; .Louter: { .mmi; ldf8 bi=[bptr],8 // (*bp++) ldf8 ahi[3]=[tptr] // tp[0] add r30=8,aptr };; { .mmi; ldf8 alo[4]=[aptr],16 // ap[0] ldf8 alo[3]=[r30],16 // ap[1] add r31=8,nptr };; { .mfb; ldf8 alo[2]=[aptr],16 // ap[2] xma.hu ahi[2]=alo[4],bi,ahi[3] // ap[0]*bp[i]+tp[0] brp.loop.imp .Linner_ctop,.Linner_cend-16 } { .mfb; ldf8 alo[1]=[r30] // ap[3] xma.lu alo[4]=alo[4],bi,ahi[3] clrrrb.pr };; { .mfi; ldf8 nlo[2]=[nptr],16 // np[0] xma.hu ahi[1]=alo[3],bi,ahi[2] // ap[1]*bp[i] nop.i 0 } { .mfi; ldf8 nlo[1]=[r31] // np[1] xma.lu alo[3]=alo[3],bi,ahi[2] mov pr.rot=0x20101f<<16 // ------^----- (p40) at first (p23) // --------^--- (p30) at first (p22) // ----------^^ p[16:20]=1 };; { .mfi; st8 [tptr]=r0 // tp[0] is already accounted xmpy.lu m0=alo[4],n0 // (ap[0]*bp[i]+tp[0])*n0 mov ar.lc=lc } { .mfi; fcvt.fxu.s1 nhi[1]=f0 mov ar.ec=8 };; // This loop spins in 4*(n+7) ticks on Itanium 2 and should spin in // 7*(n+7) ticks on Itanium (the one codenamed Merced). Factor of 7 // in latter case accounts for two-tick pipeline stall, which means // that its performance would be ~20% lower than optimal one. No // attempt was made to address this, because original Itanium is // hardly represented out in the wild... .align 32 .Linner_ctop: .pred.rel "mutex",p40,p42 .pred.rel "mutex",p30,p32 { .mfi; (p16) ldf8 alo[0]=[aptr],8 // *(aptr++) (p18) xma.hu ahi[0]=alo[2],bi,ahi[1] (p40) add n[2]=n[2],a[2] } // (p23) { .mfi; (p16) nop.m 0 (p18) xma.lu alo[2]=alo[2],bi,ahi[1] (p42) add n[2]=n[2],a[2],1 };; // (p23) { .mfi; (p21) getf.sig a[0]=alo[5] (p16) nop.f 0 (p40) cmp.ltu p41,p39=n[2],a[2] } // (p23) { .mfi; (p21) ld8 t[0]=[tptr],8 (p16) nop.f 0 (p42) cmp.leu p41,p39=n[2],a[2] };; // (p23) { .mfi; (p18) ldf8 nlo[0]=[nptr],8 // *(nptr++) (p20) xma.hu nhi[0]=nlo[2],m0,nhi[1] (p30) add a[1]=a[1],t[1] } // (p22) { .mfi; (p16) nop.m 0 (p20) xma.lu nlo[2]=nlo[2],m0,nhi[1] (p32) add a[1]=a[1],t[1],1 };; // (p22) { .mmi; (p21) getf.sig n[0]=nlo[3] (p16) nop.m 0 (p30) cmp.ltu p31,p29=a[1],t[1] } // (p22) { .mmb; (p23) st8 [tp_1]=n[2],8 (p32) cmp.leu p31,p29=a[1],t[1] // (p22) br.ctop.sptk .Linner_ctop };; .Linner_cend: { .mmi; getf.sig a[0]=ahi[6] // (p24) getf.sig n[0]=nhi[4] nop.i 0 };; { .mmi; .pred.rel "mutex",p31,p33 (p31) add a[0]=a[0],topbit (p33) add a[0]=a[0],topbit,1 mov topbit=r0 };; { .mfi; .pred.rel "mutex",p31,p33 (p31) cmp.ltu p32,p30=a[0],topbit (p33) cmp.leu p32,p30=a[0],topbit } { .mfi; .pred.rel "mutex",p40,p42 (p40) add n[0]=n[0],a[0] (p42) add n[0]=n[0],a[0],1 };; { .mmi; .pred.rel "mutex",p44,p46 (p40) cmp.ltu p41,p39=n[0],a[0] (p42) cmp.leu p41,p39=n[0],a[0] (p32) add topbit=r0,r0,1 } { .mmi; st8 [tp_1]=n[0],8 cmp4.ne p6,p0=1,num sub aptr=aptr,len };; // rewind { .mmi; sub nptr=nptr,len (p41) add topbit=r0,r0,1 add tptr=16,sp } { .mmb; add tp_1=8,sp add num=-1,num // num-- (p6) br.cond.sptk.many .Louter };; { .mbb; add lc=4,lc brp.loop.imp .Lsub_ctop,.Lsub_cend-16 clrrrb.pr };; { .mii; nop.m 0 mov pr.rot=0x10001<<16 // ------^---- (p33) at first (p17) mov ar.lc=lc } { .mii; nop.m 0 mov ar.ec=3 nop.i 0 };; .Lsub_ctop: .pred.rel "mutex",p33,p35 { .mfi; (p16) ld8 t[0]=[tptr],8 // t=*(tp++) (p16) nop.f 0 (p33) sub n[1]=t[1],n[1] } // (p17) { .mfi; (p16) ld8 n[0]=[nptr],8 // n=*(np++) (p16) nop.f 0 (p35) sub n[1]=t[1],n[1],1 };; // (p17) { .mib; (p18) st8 [rptr]=n[2],8 // *(rp++)=r (p33) cmp.gtu p34,p32=n[1],t[1] // (p17) (p18) nop.b 0 } { .mib; (p18) nop.m 0 (p35) cmp.geu p34,p32=n[1],t[1] // (p17) br.ctop.sptk .Lsub_ctop };; .Lsub_cend: { .mmb; .pred.rel "mutex",p34,p36 (p34) sub topbit=topbit,r0 // (p19) (p36) sub topbit=topbit,r0,1 brp.loop.imp .Lcopy_ctop,.Lcopy_cend-16 } { .mmb; sub rptr=rptr,len // rewind sub tptr=tptr,len clrrrb.pr };; { .mmi; mov aptr=rptr mov bptr=tptr mov pr.rot=1<<16 };; { .mii; cmp.eq p0,p6=topbit,r0 mov ar.lc=lc mov ar.ec=2 };; .Lcopy_ctop: { .mmi; (p16) ld8 a[0]=[aptr],8 (p16) ld8 t[0]=[bptr],8 (p6) mov a[1]=t[1] };; // (p17) { .mmb; (p17) st8 [rptr]=a[1],8 (p17) st8 [tptr]=r0,8 br.ctop.sptk .Lcopy_ctop };; .Lcopy_cend: { .mmi; mov ret0=1 // signal "handled" rum 1<<5 // clear um.mfh mov ar.lc=prevlc } { .mib; .restore sp mov sp=prevsp mov pr=prevpr,0x1ffff br.ret.sptk.many b0 };; .endp bn_mul_mont_general# a1=r16; a2=r17; a3=r18; a4=r19; a5=r20; a6=r21; a7=r22; a8=r23; n1=r24; n2=r25; n3=r26; n4=r27; n5=r28; n6=r29; n7=r30; n8=r31; t0=r15; ai0=f8; ai1=f9; ai2=f10; ai3=f11; ai4=f12; ai5=f13; ai6=f14; ai7=f15; ni0=f16; ni1=f17; ni2=f18; ni3=f19; ni4=f20; ni5=f21; ni6=f22; ni7=f23; .align 64 .skip 48 // aligns loop body .local bn_mul_mont_8# .proc bn_mul_mont_8# bn_mul_mont_8: .prologue { .mmi; .save ar.pfs,prevfs alloc prevfs=ar.pfs,6,2,0,8 .vframe prevsp mov prevsp=sp .save ar.lc,prevlc mov prevlc=ar.lc } { .mmi; add r17=-6*16,sp add sp=-7*16,sp .save pr,prevpr mov prevpr=pr };; { .mmi; .save.gf 0,0x10 stf.spill [sp]=f16,-16 .save.gf 0,0x20 stf.spill [r17]=f17,32 add r16=-5*16,prevsp};; { .mmi; .save.gf 0,0x40 stf.spill [r16]=f18,32 .save.gf 0,0x80 stf.spill [r17]=f19,32 $ADDP aptr=0,in1 };; { .mmi; .save.gf 0,0x100 stf.spill [r16]=f20,32 .save.gf 0,0x200 stf.spill [r17]=f21,32 $ADDP r29=8,in1 };; { .mmi; .save.gf 0,0x400 stf.spill [r16]=f22 .save.gf 0,0x800 stf.spill [r17]=f23 $ADDP rptr=0,in0 };; .body .rotf bj[8],mj[2],tf[2],alo[10],ahi[10],nlo[10],nhi[10] .rotr t[8] // load input vectors padding them to 8 elements { .mmi; ldf8 ai0=[aptr],16 // ap[0] ldf8 ai1=[r29],16 // ap[1] $ADDP bptr=0,in2 } { .mmi; $ADDP r30=8,in2 $ADDP nptr=0,in3 $ADDP r31=8,in3 };; { .mmi; ldf8 bj[7]=[bptr],16 // bp[0] ldf8 bj[6]=[r30],16 // bp[1] cmp4.le p4,p5=3,in5 } { .mmi; ldf8 ni0=[nptr],16 // np[0] ldf8 ni1=[r31],16 // np[1] cmp4.le p6,p7=4,in5 };; { .mfi; (p4)ldf8 ai2=[aptr],16 // ap[2] (p5)fcvt.fxu ai2=f0 cmp4.le p8,p9=5,in5 } { .mfi; (p6)ldf8 ai3=[r29],16 // ap[3] (p7)fcvt.fxu ai3=f0 cmp4.le p10,p11=6,in5 } { .mfi; (p4)ldf8 bj[5]=[bptr],16 // bp[2] (p5)fcvt.fxu bj[5]=f0 cmp4.le p12,p13=7,in5 } { .mfi; (p6)ldf8 bj[4]=[r30],16 // bp[3] (p7)fcvt.fxu bj[4]=f0 cmp4.le p14,p15=8,in5 } { .mfi; (p4)ldf8 ni2=[nptr],16 // np[2] (p5)fcvt.fxu ni2=f0 addp4 r28=-1,in5 } { .mfi; (p6)ldf8 ni3=[r31],16 // np[3] (p7)fcvt.fxu ni3=f0 $ADDP in4=0,in4 };; { .mfi; ldf8 n0=[in4] fcvt.fxu tf[1]=f0 nop.i 0 } { .mfi; (p8)ldf8 ai4=[aptr],16 // ap[4] (p9)fcvt.fxu ai4=f0 mov t[0]=r0 } { .mfi; (p10)ldf8 ai5=[r29],16 // ap[5] (p11)fcvt.fxu ai5=f0 mov t[1]=r0 } { .mfi; (p8)ldf8 bj[3]=[bptr],16 // bp[4] (p9)fcvt.fxu bj[3]=f0 mov t[2]=r0 } { .mfi; (p10)ldf8 bj[2]=[r30],16 // bp[5] (p11)fcvt.fxu bj[2]=f0 mov t[3]=r0 } { .mfi; (p8)ldf8 ni4=[nptr],16 // np[4] (p9)fcvt.fxu ni4=f0 mov t[4]=r0 } { .mfi; (p10)ldf8 ni5=[r31],16 // np[5] (p11)fcvt.fxu ni5=f0 mov t[5]=r0 };; { .mfi; (p12)ldf8 ai6=[aptr],16 // ap[6] (p13)fcvt.fxu ai6=f0 mov t[6]=r0 } { .mfi; (p14)ldf8 ai7=[r29],16 // ap[7] (p15)fcvt.fxu ai7=f0 mov t[7]=r0 } { .mfi; (p12)ldf8 bj[1]=[bptr],16 // bp[6] (p13)fcvt.fxu bj[1]=f0 mov ar.lc=r28 } { .mfi; (p14)ldf8 bj[0]=[r30],16 // bp[7] (p15)fcvt.fxu bj[0]=f0 mov ar.ec=1 } { .mfi; (p12)ldf8 ni6=[nptr],16 // np[6] (p13)fcvt.fxu ni6=f0 mov pr.rot=1<<16 } { .mfb; (p14)ldf8 ni7=[r31],16 // np[7] (p15)fcvt.fxu ni7=f0 brp.loop.imp .Louter_8_ctop,.Louter_8_cend-16 };; // The loop is scheduled for 32*n ticks on Itanium 2. Actual attempt // to measure with help of Interval Time Counter indicated that the // factor is a tad higher: 33 or 34, if not 35. Exact measurement and // addressing the issue is problematic, because I don't have access // to platform-specific instruction-level profiler. On Itanium it // should run in 56*n ticks, because of higher xma latency... .Louter_8_ctop: .pred.rel "mutex",p40,p42 .pred.rel "mutex",p48,p50 { .mfi; (p16) nop.m 0 // 0: (p16) xma.hu ahi[0]=ai0,bj[7],tf[1] // ap[0]*b[i]+t[0] (p40) add a3=a3,n3 } // (p17) a3+=n3 { .mfi; (p42) add a3=a3,n3,1 (p16) xma.lu alo[0]=ai0,bj[7],tf[1] (p16) nop.i 0 };; { .mii; (p17) getf.sig a7=alo[8] // 1: (p48) add t[6]=t[6],a3 // (p17) t[6]+=a3 (p50) add t[6]=t[6],a3,1 };; { .mfi; (p17) getf.sig a8=ahi[8] // 2: (p17) xma.hu nhi[7]=ni6,mj[1],nhi[6] // np[6]*m0 (p40) cmp.ltu p43,p41=a3,n3 } { .mfi; (p42) cmp.leu p43,p41=a3,n3 (p17) xma.lu nlo[7]=ni6,mj[1],nhi[6] (p16) nop.i 0 };; { .mii; (p17) getf.sig n5=nlo[6] // 3: (p48) cmp.ltu p51,p49=t[6],a3 (p50) cmp.leu p51,p49=t[6],a3 };; .pred.rel "mutex",p41,p43 .pred.rel "mutex",p49,p51 { .mfi; (p16) nop.m 0 // 4: (p16) xma.hu ahi[1]=ai1,bj[7],ahi[0] // ap[1]*b[i] (p41) add a4=a4,n4 } // (p17) a4+=n4 { .mfi; (p43) add a4=a4,n4,1 (p16) xma.lu alo[1]=ai1,bj[7],ahi[0] (p16) nop.i 0 };; { .mfi; (p49) add t[5]=t[5],a4 // 5: (p17) t[5]+=a4 (p16) xmpy.lu mj[0]=alo[0],n0 // (ap[0]*b[i]+t[0])*n0 (p51) add t[5]=t[5],a4,1 };; { .mfi; (p16) nop.m 0 // 6: (p17) xma.hu nhi[8]=ni7,mj[1],nhi[7] // np[7]*m0 (p41) cmp.ltu p42,p40=a4,n4 } { .mfi; (p43) cmp.leu p42,p40=a4,n4 (p17) xma.lu nlo[8]=ni7,mj[1],nhi[7] (p16) nop.i 0 };; { .mii; (p17) getf.sig n6=nlo[7] // 7: (p49) cmp.ltu p50,p48=t[5],a4 (p51) cmp.leu p50,p48=t[5],a4 };; .pred.rel "mutex",p40,p42 .pred.rel "mutex",p48,p50 { .mfi; (p16) nop.m 0 // 8: (p16) xma.hu ahi[2]=ai2,bj[7],ahi[1] // ap[2]*b[i] (p40) add a5=a5,n5 } // (p17) a5+=n5 { .mfi; (p42) add a5=a5,n5,1 (p16) xma.lu alo[2]=ai2,bj[7],ahi[1] (p16) nop.i 0 };; { .mii; (p16) getf.sig a1=alo[1] // 9: (p48) add t[4]=t[4],a5 // p(17) t[4]+=a5 (p50) add t[4]=t[4],a5,1 };; { .mfi; (p16) nop.m 0 // 10: (p16) xma.hu nhi[0]=ni0,mj[0],alo[0] // np[0]*m0 (p40) cmp.ltu p43,p41=a5,n5 } { .mfi; (p42) cmp.leu p43,p41=a5,n5 (p16) xma.lu nlo[0]=ni0,mj[0],alo[0] (p16) nop.i 0 };; { .mii; (p17) getf.sig n7=nlo[8] // 11: (p48) cmp.ltu p51,p49=t[4],a5 (p50) cmp.leu p51,p49=t[4],a5 };; .pred.rel "mutex",p41,p43 .pred.rel "mutex",p49,p51 { .mfi; (p17) getf.sig n8=nhi[8] // 12: (p16) xma.hu ahi[3]=ai3,bj[7],ahi[2] // ap[3]*b[i] (p41) add a6=a6,n6 } // (p17) a6+=n6 { .mfi; (p43) add a6=a6,n6,1 (p16) xma.lu alo[3]=ai3,bj[7],ahi[2] (p16) nop.i 0 };; { .mii; (p16) getf.sig a2=alo[2] // 13: (p49) add t[3]=t[3],a6 // (p17) t[3]+=a6 (p51) add t[3]=t[3],a6,1 };; { .mfi; (p16) nop.m 0 // 14: (p16) xma.hu nhi[1]=ni1,mj[0],nhi[0] // np[1]*m0 (p41) cmp.ltu p42,p40=a6,n6 } { .mfi; (p43) cmp.leu p42,p40=a6,n6 (p16) xma.lu nlo[1]=ni1,mj[0],nhi[0] (p16) nop.i 0 };; { .mii; (p16) nop.m 0 // 15: (p49) cmp.ltu p50,p48=t[3],a6 (p51) cmp.leu p50,p48=t[3],a6 };; .pred.rel "mutex",p40,p42 .pred.rel "mutex",p48,p50 { .mfi; (p16) nop.m 0 // 16: (p16) xma.hu ahi[4]=ai4,bj[7],ahi[3] // ap[4]*b[i] (p40) add a7=a7,n7 } // (p17) a7+=n7 { .mfi; (p42) add a7=a7,n7,1 (p16) xma.lu alo[4]=ai4,bj[7],ahi[3] (p16) nop.i 0 };; { .mii; (p16) getf.sig a3=alo[3] // 17: (p48) add t[2]=t[2],a7 // (p17) t[2]+=a7 (p50) add t[2]=t[2],a7,1 };; { .mfi; (p16) nop.m 0 // 18: (p16) xma.hu nhi[2]=ni2,mj[0],nhi[1] // np[2]*m0 (p40) cmp.ltu p43,p41=a7,n7 } { .mfi; (p42) cmp.leu p43,p41=a7,n7 (p16) xma.lu nlo[2]=ni2,mj[0],nhi[1] (p16) nop.i 0 };; { .mii; (p16) getf.sig n1=nlo[1] // 19: (p48) cmp.ltu p51,p49=t[2],a7 (p50) cmp.leu p51,p49=t[2],a7 };; .pred.rel "mutex",p41,p43 .pred.rel "mutex",p49,p51 { .mfi; (p16) nop.m 0 // 20: (p16) xma.hu ahi[5]=ai5,bj[7],ahi[4] // ap[5]*b[i] (p41) add a8=a8,n8 } // (p17) a8+=n8 { .mfi; (p43) add a8=a8,n8,1 (p16) xma.lu alo[5]=ai5,bj[7],ahi[4] (p16) nop.i 0 };; { .mii; (p16) getf.sig a4=alo[4] // 21: (p49) add t[1]=t[1],a8 // (p17) t[1]+=a8 (p51) add t[1]=t[1],a8,1 };; { .mfi; (p16) nop.m 0 // 22: (p16) xma.hu nhi[3]=ni3,mj[0],nhi[2] // np[3]*m0 (p41) cmp.ltu p42,p40=a8,n8 } { .mfi; (p43) cmp.leu p42,p40=a8,n8 (p16) xma.lu nlo[3]=ni3,mj[0],nhi[2] (p16) nop.i 0 };; { .mii; (p16) getf.sig n2=nlo[2] // 23: (p49) cmp.ltu p50,p48=t[1],a8 (p51) cmp.leu p50,p48=t[1],a8 };; { .mfi; (p16) nop.m 0 // 24: (p16) xma.hu ahi[6]=ai6,bj[7],ahi[5] // ap[6]*b[i] (p16) add a1=a1,n1 } // (p16) a1+=n1 { .mfi; (p16) nop.m 0 (p16) xma.lu alo[6]=ai6,bj[7],ahi[5] (p17) mov t[0]=r0 };; { .mii; (p16) getf.sig a5=alo[5] // 25: (p16) add t0=t[7],a1 // (p16) t[7]+=a1 (p42) add t[0]=t[0],r0,1 };; { .mfi; (p16) setf.sig tf[0]=t0 // 26: (p16) xma.hu nhi[4]=ni4,mj[0],nhi[3] // np[4]*m0 (p50) add t[0]=t[0],r0,1 } { .mfi; (p16) cmp.ltu.unc p42,p40=a1,n1 (p16) xma.lu nlo[4]=ni4,mj[0],nhi[3] (p16) nop.i 0 };; { .mii; (p16) getf.sig n3=nlo[3] // 27: (p16) cmp.ltu.unc p50,p48=t0,a1 (p16) nop.i 0 };; .pred.rel "mutex",p40,p42 .pred.rel "mutex",p48,p50 { .mfi; (p16) nop.m 0 // 28: (p16) xma.hu ahi[7]=ai7,bj[7],ahi[6] // ap[7]*b[i] (p40) add a2=a2,n2 } // (p16) a2+=n2 { .mfi; (p42) add a2=a2,n2,1 (p16) xma.lu alo[7]=ai7,bj[7],ahi[6] (p16) nop.i 0 };; { .mii; (p16) getf.sig a6=alo[6] // 29: (p48) add t[6]=t[6],a2 // (p16) t[6]+=a2 (p50) add t[6]=t[6],a2,1 };; { .mfi; (p16) nop.m 0 // 30: (p16) xma.hu nhi[5]=ni5,mj[0],nhi[4] // np[5]*m0 (p40) cmp.ltu p41,p39=a2,n2 } { .mfi; (p42) cmp.leu p41,p39=a2,n2 (p16) xma.lu nlo[5]=ni5,mj[0],nhi[4] (p16) nop.i 0 };; { .mfi; (p16) getf.sig n4=nlo[4] // 31: (p16) nop.f 0 (p48) cmp.ltu p49,p47=t[6],a2 } { .mfb; (p50) cmp.leu p49,p47=t[6],a2 (p16) nop.f 0 br.ctop.sptk.many .Louter_8_ctop };; .Louter_8_cend: // above loop has to execute one more time, without (p16), which is // replaced with merged move of np[8] to GPR bank .pred.rel "mutex",p40,p42 .pred.rel "mutex",p48,p50 { .mmi; (p0) getf.sig n1=ni0 // 0: (p40) add a3=a3,n3 // (p17) a3+=n3 (p42) add a3=a3,n3,1 };; { .mii; (p17) getf.sig a7=alo[8] // 1: (p48) add t[6]=t[6],a3 // (p17) t[6]+=a3 (p50) add t[6]=t[6],a3,1 };; { .mfi; (p17) getf.sig a8=ahi[8] // 2: (p17) xma.hu nhi[7]=ni6,mj[1],nhi[6] // np[6]*m0 (p40) cmp.ltu p43,p41=a3,n3 } { .mfi; (p42) cmp.leu p43,p41=a3,n3 (p17) xma.lu nlo[7]=ni6,mj[1],nhi[6] (p0) nop.i 0 };; { .mii; (p17) getf.sig n5=nlo[6] // 3: (p48) cmp.ltu p51,p49=t[6],a3 (p50) cmp.leu p51,p49=t[6],a3 };; .pred.rel "mutex",p41,p43 .pred.rel "mutex",p49,p51 { .mmi; (p0) getf.sig n2=ni1 // 4: (p41) add a4=a4,n4 // (p17) a4+=n4 (p43) add a4=a4,n4,1 };; { .mfi; (p49) add t[5]=t[5],a4 // 5: (p17) t[5]+=a4 (p0) nop.f 0 (p51) add t[5]=t[5],a4,1 };; { .mfi; (p0) getf.sig n3=ni2 // 6: (p17) xma.hu nhi[8]=ni7,mj[1],nhi[7] // np[7]*m0 (p41) cmp.ltu p42,p40=a4,n4 } { .mfi; (p43) cmp.leu p42,p40=a4,n4 (p17) xma.lu nlo[8]=ni7,mj[1],nhi[7] (p0) nop.i 0 };; { .mii; (p17) getf.sig n6=nlo[7] // 7: (p49) cmp.ltu p50,p48=t[5],a4 (p51) cmp.leu p50,p48=t[5],a4 };; .pred.rel "mutex",p40,p42 .pred.rel "mutex",p48,p50 { .mii; (p0) getf.sig n4=ni3 // 8: (p40) add a5=a5,n5 // (p17) a5+=n5 (p42) add a5=a5,n5,1 };; { .mii; (p0) nop.m 0 // 9: (p48) add t[4]=t[4],a5 // p(17) t[4]+=a5 (p50) add t[4]=t[4],a5,1 };; { .mii; (p0) nop.m 0 // 10: (p40) cmp.ltu p43,p41=a5,n5 (p42) cmp.leu p43,p41=a5,n5 };; { .mii; (p17) getf.sig n7=nlo[8] // 11: (p48) cmp.ltu p51,p49=t[4],a5 (p50) cmp.leu p51,p49=t[4],a5 };; .pred.rel "mutex",p41,p43 .pred.rel "mutex",p49,p51 { .mii; (p17) getf.sig n8=nhi[8] // 12: (p41) add a6=a6,n6 // (p17) a6+=n6 (p43) add a6=a6,n6,1 };; { .mii; (p0) getf.sig n5=ni4 // 13: (p49) add t[3]=t[3],a6 // (p17) t[3]+=a6 (p51) add t[3]=t[3],a6,1 };; { .mii; (p0) nop.m 0 // 14: (p41) cmp.ltu p42,p40=a6,n6 (p43) cmp.leu p42,p40=a6,n6 };; { .mii; (p0) getf.sig n6=ni5 // 15: (p49) cmp.ltu p50,p48=t[3],a6 (p51) cmp.leu p50,p48=t[3],a6 };; .pred.rel "mutex",p40,p42 .pred.rel "mutex",p48,p50 { .mii; (p0) nop.m 0 // 16: (p40) add a7=a7,n7 // (p17) a7+=n7 (p42) add a7=a7,n7,1 };; { .mii; (p0) nop.m 0 // 17: (p48) add t[2]=t[2],a7 // (p17) t[2]+=a7 (p50) add t[2]=t[2],a7,1 };; { .mii; (p0) nop.m 0 // 18: (p40) cmp.ltu p43,p41=a7,n7 (p42) cmp.leu p43,p41=a7,n7 };; { .mii; (p0) getf.sig n7=ni6 // 19: (p48) cmp.ltu p51,p49=t[2],a7 (p50) cmp.leu p51,p49=t[2],a7 };; .pred.rel "mutex",p41,p43 .pred.rel "mutex",p49,p51 { .mii; (p0) nop.m 0 // 20: (p41) add a8=a8,n8 // (p17) a8+=n8 (p43) add a8=a8,n8,1 };; { .mmi; (p0) nop.m 0 // 21: (p49) add t[1]=t[1],a8 // (p17) t[1]+=a8 (p51) add t[1]=t[1],a8,1 } { .mmi; (p17) mov t[0]=r0 (p41) cmp.ltu p42,p40=a8,n8 (p43) cmp.leu p42,p40=a8,n8 };; { .mmi; (p0) getf.sig n8=ni7 // 22: (p49) cmp.ltu p50,p48=t[1],a8 (p51) cmp.leu p50,p48=t[1],a8 } { .mmi; (p42) add t[0]=t[0],r0,1 (p0) add r16=-7*16,prevsp (p0) add r17=-6*16,prevsp };; // subtract np[8] from carrybit|tmp[8] // carrybit|tmp[8] layout upon exit from above loop is: // t[0]|t[1]|t[2]|t[3]|t[4]|t[5]|t[6]|t[7]|t0 (least significant) { .mmi; (p50)add t[0]=t[0],r0,1 add r18=-5*16,prevsp sub n1=t0,n1 };; { .mmi; cmp.gtu p34,p32=n1,t0;; .pred.rel "mutex",p32,p34 (p32)sub n2=t[7],n2 (p34)sub n2=t[7],n2,1 };; { .mii; (p32)cmp.gtu p35,p33=n2,t[7] (p34)cmp.geu p35,p33=n2,t[7];; .pred.rel "mutex",p33,p35 (p33)sub n3=t[6],n3 } { .mmi; (p35)sub n3=t[6],n3,1;; (p33)cmp.gtu p34,p32=n3,t[6] (p35)cmp.geu p34,p32=n3,t[6] };; .pred.rel "mutex",p32,p34 { .mii; (p32)sub n4=t[5],n4 (p34)sub n4=t[5],n4,1;; (p32)cmp.gtu p35,p33=n4,t[5] } { .mmi; (p34)cmp.geu p35,p33=n4,t[5];; .pred.rel "mutex",p33,p35 (p33)sub n5=t[4],n5 (p35)sub n5=t[4],n5,1 };; { .mii; (p33)cmp.gtu p34,p32=n5,t[4] (p35)cmp.geu p34,p32=n5,t[4];; .pred.rel "mutex",p32,p34 (p32)sub n6=t[3],n6 } { .mmi; (p34)sub n6=t[3],n6,1;; (p32)cmp.gtu p35,p33=n6,t[3] (p34)cmp.geu p35,p33=n6,t[3] };; .pred.rel "mutex",p33,p35 { .mii; (p33)sub n7=t[2],n7 (p35)sub n7=t[2],n7,1;; (p33)cmp.gtu p34,p32=n7,t[2] } { .mmi; (p35)cmp.geu p34,p32=n7,t[2];; .pred.rel "mutex",p32,p34 (p32)sub n8=t[1],n8 (p34)sub n8=t[1],n8,1 };; { .mii; (p32)cmp.gtu p35,p33=n8,t[1] (p34)cmp.geu p35,p33=n8,t[1];; .pred.rel "mutex",p33,p35 (p33)sub a8=t[0],r0 } { .mmi; (p35)sub a8=t[0],r0,1;; (p33)cmp.gtu p34,p32=a8,t[0] (p35)cmp.geu p34,p32=a8,t[0] };; // save the result, either tmp[num] or tmp[num]-np[num] .pred.rel "mutex",p32,p34 { .mmi; (p32)st8 [rptr]=n1,8 (p34)st8 [rptr]=t0,8 add r19=-4*16,prevsp};; { .mmb; (p32)st8 [rptr]=n2,8 (p34)st8 [rptr]=t[7],8 (p5)br.cond.dpnt.few .Ldone };; { .mmb; (p32)st8 [rptr]=n3,8 (p34)st8 [rptr]=t[6],8 (p7)br.cond.dpnt.few .Ldone };; { .mmb; (p32)st8 [rptr]=n4,8 (p34)st8 [rptr]=t[5],8 (p9)br.cond.dpnt.few .Ldone };; { .mmb; (p32)st8 [rptr]=n5,8 (p34)st8 [rptr]=t[4],8 (p11)br.cond.dpnt.few .Ldone };; { .mmb; (p32)st8 [rptr]=n6,8 (p34)st8 [rptr]=t[3],8 (p13)br.cond.dpnt.few .Ldone };; { .mmb; (p32)st8 [rptr]=n7,8 (p34)st8 [rptr]=t[2],8 (p15)br.cond.dpnt.few .Ldone };; { .mmb; (p32)st8 [rptr]=n8,8 (p34)st8 [rptr]=t[1],8 nop.b 0 };; .Ldone: // epilogue { .mmi; ldf.fill f16=[r16],64 ldf.fill f17=[r17],64 nop.i 0 } { .mmi; ldf.fill f18=[r18],64 ldf.fill f19=[r19],64 mov pr=prevpr,0x1ffff };; { .mmi; ldf.fill f20=[r16] ldf.fill f21=[r17] mov ar.lc=prevlc } { .mmi; ldf.fill f22=[r18] ldf.fill f23=[r19] mov ret0=1 } // signal "handled" { .mib; rum 1<<5 .restore sp mov sp=prevsp br.ret.sptk.many b0 };; .endp bn_mul_mont_8# .type copyright#,\@object copyright: stringz "Montgomery multiplication for IA-64, CRYPTOGAMS by " ___ open STDOUT,">$output" if $output; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/ia64.S000066400000000000000000001311221364063235100167340ustar00rootroot00000000000000.explicit .text .ident "ia64.S, Version 2.1" .ident "IA-64 ISA artwork by Andy Polyakov " // Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. // // Licensed under the OpenSSL license (the "License"). You may not use // this file except in compliance with the License. You can obtain a copy // in the file LICENSE in the source distribution or at // https://www.openssl.org/source/license.html // // ==================================================================== // Written by Andy Polyakov for the OpenSSL // project. // // Rights for redistribution and usage in source and binary forms are // granted according to the OpenSSL license. Warranty of any kind is // disclaimed. // ==================================================================== // // Version 2.x is Itanium2 re-tune. Few words about how Itanium2 is // different from Itanium to this module viewpoint. Most notably, is it // "wider" than Itanium? Can you experience loop scalability as // discussed in commentary sections? Not really:-( Itanium2 has 6 // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to // spin twice as fast, as I need 8 IALU ports. Amount of floating point // ports is the same, i.e. 2, while I need 4. In other words, to this // module Itanium2 remains effectively as "wide" as Itanium. Yet it's // essentially different in respect to this module, and a re-tune was // required. Well, because some instruction latencies has changed. Most // noticeably those intensively used: // // Itanium Itanium2 // ldf8 9 6 L2 hit // ld8 2 1 L1 hit // getf 2 5 // xma[->getf] 7[+1] 4[+0] // add[->st8] 1[+1] 1[+0] // // What does it mean? You might ratiocinate that the original code // should run just faster... Because sum of latencies is smaller... // Wrong! Note that getf latency increased. This means that if a loop is // scheduled for lower latency (as they were), then it will suffer from // stall condition and the code will therefore turn anti-scalable, e.g. // original bn_mul_words spun at 5*n or 2.5 times slower than expected // on Itanium2! What to do? Reschedule loops for Itanium2? But then // Itanium would exhibit anti-scalability. So I've chosen to reschedule // for worst latency for every instruction aiming for best *all-round* // performance. // Q. How much faster does it get? // A. Here is the output from 'openssl speed rsa dsa' for vanilla // 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat // Linux 7.1 2.96-81): // // sign verify sign/s verify/s // rsa 512 bits 0.0036s 0.0003s 275.3 2999.2 // rsa 1024 bits 0.0203s 0.0011s 49.3 894.1 // rsa 2048 bits 0.1331s 0.0040s 7.5 250.9 // rsa 4096 bits 0.9270s 0.0147s 1.1 68.1 // sign verify sign/s verify/s // dsa 512 bits 0.0035s 0.0043s 288.3 234.8 // dsa 1024 bits 0.0111s 0.0135s 90.0 74.2 // // And here is similar output but for this assembler // implementation:-) // // sign verify sign/s verify/s // rsa 512 bits 0.0021s 0.0001s 549.4 9638.5 // rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1 // rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3 // rsa 4096 bits 0.1295s 0.0018s 7.7 561.5 // sign verify sign/s verify/s // dsa 512 bits 0.0012s 0.0013s 891.9 756.6 // dsa 1024 bits 0.0023s 0.0028s 440.4 376.2 // // Yes, you may argue that it's not fair comparison as it's // possible to craft the C implementation with BN_UMULT_HIGH // inline assembler macro. But of course! Here is the output // with the macro: // // sign verify sign/s verify/s // rsa 512 bits 0.0020s 0.0002s 495.0 6561.0 // rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7 // rsa 2048 bits 0.0519s 0.0015s 19.3 667.3 // rsa 4096 bits 0.3464s 0.0053s 2.9 187.7 // sign verify sign/s verify/s // dsa 512 bits 0.0016s 0.0020s 613.1 510.5 // dsa 1024 bits 0.0045s 0.0054s 221.0 183.9 // // My code is still way faster, huh:-) And I believe that even // higher performance can be achieved. Note that as keys get // longer, performance gain is larger. Why? According to the // profiler there is another player in the field, namely // BN_from_montgomery consuming larger and larger portion of CPU // time as keysize decreases. I therefore consider putting effort // to assembler implementation of the following routine: // // void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0) // { // int i,j; // BN_ULONG v; // // for (i=0; i for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # This module doesn't present direct interest for OpenSSL, because it # doesn't provide better performance for longer keys, at least not on # in-order-execution cores. While 512-bit RSA sign operations can be # 65% faster in 64-bit mode, 1024-bit ones are only 15% faster, and # 4096-bit ones are up to 15% slower. In 32-bit mode it varies from # 16% improvement for 512-bit RSA sign to -33% for 4096-bit RSA # verify:-( All comparisons are against bn_mul_mont-free assembler. # The module might be of interest to embedded system developers, as # the code is smaller than 1KB, yet offers >3x improvement on MIPS64 # and 75-30% [less for longer keys] on MIPS32 over compiler-generated # code. ###################################################################### # There is a number of MIPS ABI in use, O32 and N32/64 are most # widely used. Then there is a new contender: NUBI. It appears that if # one picks the latter, it's possible to arrange code in ABI neutral # manner. Therefore let's stick to NUBI register layout: # ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); # # The return value is placed in $a0. Following coding rules facilitate # interoperability: # # - never ever touch $tp, "thread pointer", former $gp; # - copy return value to $t0, former $v0 [or to $a0 if you're adapting # old code]; # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; # # For reference here is register layout for N32/64 MIPS ABIs: # # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); # $flavour = shift || "o32"; # supported flavours are o32,n32,64,nubi32,nubi64 if ($flavour =~ /64|n32/i) { $PTR_ADD="daddu"; # incidentally works even on n32 $PTR_SUB="dsubu"; # incidentally works even on n32 $REG_S="sd"; $REG_L="ld"; $SZREG=8; } else { $PTR_ADD="addu"; $PTR_SUB="subu"; $REG_S="sw"; $REG_L="lw"; $SZREG=4; } $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? 0x00fff000 : 0x00ff0000; # # # ###################################################################### while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; if ($flavour =~ /64|n32/i) { $LD="ld"; $ST="sd"; $MULTU="dmultu"; $ADDU="daddu"; $SUBU="dsubu"; $BNSZ=8; } else { $LD="lw"; $ST="sw"; $MULTU="multu"; $ADDU="addu"; $SUBU="subu"; $BNSZ=4; } # int bn_mul_mont( $rp=$a0; # BN_ULONG *rp, $ap=$a1; # const BN_ULONG *ap, $bp=$a2; # const BN_ULONG *bp, $np=$a3; # const BN_ULONG *np, $n0=$a4; # const BN_ULONG *n0, $num=$a5; # int num); $lo0=$a6; $hi0=$a7; $lo1=$t1; $hi1=$t2; $aj=$s0; $bi=$s1; $nj=$s2; $tp=$s3; $alo=$s4; $ahi=$s5; $nlo=$s6; $nhi=$s7; $tj=$s8; $i=$s9; $j=$s10; $m1=$s11; $FRAMESIZE=14; $code=<<___; #include "mips_arch.h" .text .set noat .set noreorder .align 5 .globl bn_mul_mont .ent bn_mul_mont bn_mul_mont: ___ $code.=<<___ if ($flavour =~ /o32/i); lw $n0,16($sp) lw $num,20($sp) ___ $code.=<<___; slt $at,$num,4 bnez $at,1f li $t0,0 slt $at,$num,17 # on in-order CPU bnez $at,bn_mul_mont_internal nop 1: jr $ra li $a0,0 .end bn_mul_mont .align 5 .ent bn_mul_mont_internal bn_mul_mont_internal: .frame $fp,$FRAMESIZE*$SZREG,$ra .mask 0x40000000|$SAVED_REGS_MASK,-$SZREG $PTR_SUB $sp,$FRAMESIZE*$SZREG $REG_S $fp,($FRAMESIZE-1)*$SZREG($sp) $REG_S $s11,($FRAMESIZE-2)*$SZREG($sp) $REG_S $s10,($FRAMESIZE-3)*$SZREG($sp) $REG_S $s9,($FRAMESIZE-4)*$SZREG($sp) $REG_S $s8,($FRAMESIZE-5)*$SZREG($sp) $REG_S $s7,($FRAMESIZE-6)*$SZREG($sp) $REG_S $s6,($FRAMESIZE-7)*$SZREG($sp) $REG_S $s5,($FRAMESIZE-8)*$SZREG($sp) $REG_S $s4,($FRAMESIZE-9)*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_S $s3,($FRAMESIZE-10)*$SZREG($sp) $REG_S $s2,($FRAMESIZE-11)*$SZREG($sp) $REG_S $s1,($FRAMESIZE-12)*$SZREG($sp) $REG_S $s0,($FRAMESIZE-13)*$SZREG($sp) ___ $code.=<<___; move $fp,$sp .set reorder $LD $n0,0($n0) $LD $bi,0($bp) # bp[0] $LD $aj,0($ap) # ap[0] $LD $nj,0($np) # np[0] $PTR_SUB $sp,2*$BNSZ # place for two extra words sll $num,`log($BNSZ)/log(2)` li $at,-4096 $PTR_SUB $sp,$num and $sp,$at $MULTU ($aj,$bi) $LD $ahi,$BNSZ($ap) $LD $nhi,$BNSZ($np) mflo ($lo0,$aj,$bi) mfhi ($hi0,$aj,$bi) $MULTU ($lo0,$n0) mflo ($m1,$lo0,$n0) $MULTU ($ahi,$bi) mflo ($alo,$ahi,$bi) mfhi ($ahi,$ahi,$bi) $MULTU ($nj,$m1) mflo ($lo1,$nj,$m1) mfhi ($hi1,$nj,$m1) $MULTU ($nhi,$m1) $ADDU $lo1,$lo0 sltu $at,$lo1,$lo0 $ADDU $hi1,$at mflo ($nlo,$nhi,$m1) mfhi ($nhi,$nhi,$m1) move $tp,$sp li $j,2*$BNSZ .align 4 .L1st: .set noreorder $PTR_ADD $aj,$ap,$j $PTR_ADD $nj,$np,$j $LD $aj,($aj) $LD $nj,($nj) $MULTU ($aj,$bi) $ADDU $lo0,$alo,$hi0 $ADDU $lo1,$nlo,$hi1 sltu $at,$lo0,$hi0 sltu $t0,$lo1,$hi1 $ADDU $hi0,$ahi,$at $ADDU $hi1,$nhi,$t0 mflo ($alo,$aj,$bi) mfhi ($ahi,$aj,$bi) $ADDU $lo1,$lo0 sltu $at,$lo1,$lo0 $MULTU ($nj,$m1) $ADDU $hi1,$at addu $j,$BNSZ $ST $lo1,($tp) sltu $t0,$j,$num mflo ($nlo,$nj,$m1) mfhi ($nhi,$nj,$m1) bnez $t0,.L1st $PTR_ADD $tp,$BNSZ .set reorder $ADDU $lo0,$alo,$hi0 sltu $at,$lo0,$hi0 $ADDU $hi0,$ahi,$at $ADDU $lo1,$nlo,$hi1 sltu $t0,$lo1,$hi1 $ADDU $hi1,$nhi,$t0 $ADDU $lo1,$lo0 sltu $at,$lo1,$lo0 $ADDU $hi1,$at $ST $lo1,($tp) $ADDU $hi1,$hi0 sltu $at,$hi1,$hi0 $ST $hi1,$BNSZ($tp) $ST $at,2*$BNSZ($tp) li $i,$BNSZ .align 4 .Louter: $PTR_ADD $bi,$bp,$i $LD $bi,($bi) $LD $aj,($ap) $LD $ahi,$BNSZ($ap) $LD $tj,($sp) $MULTU ($aj,$bi) $LD $nj,($np) $LD $nhi,$BNSZ($np) mflo ($lo0,$aj,$bi) mfhi ($hi0,$aj,$bi) $ADDU $lo0,$tj $MULTU ($lo0,$n0) sltu $at,$lo0,$tj $ADDU $hi0,$at mflo ($m1,$lo0,$n0) $MULTU ($ahi,$bi) mflo ($alo,$ahi,$bi) mfhi ($ahi,$ahi,$bi) $MULTU ($nj,$m1) mflo ($lo1,$nj,$m1) mfhi ($hi1,$nj,$m1) $MULTU ($nhi,$m1) $ADDU $lo1,$lo0 sltu $at,$lo1,$lo0 $ADDU $hi1,$at mflo ($nlo,$nhi,$m1) mfhi ($nhi,$nhi,$m1) move $tp,$sp li $j,2*$BNSZ $LD $tj,$BNSZ($tp) .align 4 .Linner: .set noreorder $PTR_ADD $aj,$ap,$j $PTR_ADD $nj,$np,$j $LD $aj,($aj) $LD $nj,($nj) $MULTU ($aj,$bi) $ADDU $lo0,$alo,$hi0 $ADDU $lo1,$nlo,$hi1 sltu $at,$lo0,$hi0 sltu $t0,$lo1,$hi1 $ADDU $hi0,$ahi,$at $ADDU $hi1,$nhi,$t0 mflo ($alo,$aj,$bi) mfhi ($ahi,$aj,$bi) $ADDU $lo0,$tj addu $j,$BNSZ $MULTU ($nj,$m1) sltu $at,$lo0,$tj $ADDU $lo1,$lo0 $ADDU $hi0,$at sltu $t0,$lo1,$lo0 $LD $tj,2*$BNSZ($tp) $ADDU $hi1,$t0 sltu $at,$j,$num mflo ($nlo,$nj,$m1) mfhi ($nhi,$nj,$m1) $ST $lo1,($tp) bnez $at,.Linner $PTR_ADD $tp,$BNSZ .set reorder $ADDU $lo0,$alo,$hi0 sltu $at,$lo0,$hi0 $ADDU $hi0,$ahi,$at $ADDU $lo0,$tj sltu $t0,$lo0,$tj $ADDU $hi0,$t0 $LD $tj,2*$BNSZ($tp) $ADDU $lo1,$nlo,$hi1 sltu $at,$lo1,$hi1 $ADDU $hi1,$nhi,$at $ADDU $lo1,$lo0 sltu $t0,$lo1,$lo0 $ADDU $hi1,$t0 $ST $lo1,($tp) $ADDU $lo1,$hi1,$hi0 sltu $hi1,$lo1,$hi0 $ADDU $lo1,$tj sltu $at,$lo1,$tj $ADDU $hi1,$at $ST $lo1,$BNSZ($tp) $ST $hi1,2*$BNSZ($tp) addu $i,$BNSZ sltu $t0,$i,$num bnez $t0,.Louter .set noreorder $PTR_ADD $tj,$sp,$num # &tp[num] move $tp,$sp move $ap,$sp li $hi0,0 # clear borrow bit .align 4 .Lsub: $LD $lo0,($tp) $LD $lo1,($np) $PTR_ADD $tp,$BNSZ $PTR_ADD $np,$BNSZ $SUBU $lo1,$lo0,$lo1 # tp[i]-np[i] sgtu $at,$lo1,$lo0 $SUBU $lo0,$lo1,$hi0 sgtu $hi0,$lo0,$lo1 $ST $lo0,($rp) or $hi0,$at sltu $at,$tp,$tj bnez $at,.Lsub $PTR_ADD $rp,$BNSZ $SUBU $hi0,$hi1,$hi0 # handle upmost overflow bit move $tp,$sp $PTR_SUB $rp,$num # restore rp not $hi1,$hi0 .Lcopy: $LD $nj,($tp) # conditional move $LD $aj,($rp) $ST $zero,($tp) $PTR_ADD $tp,$BNSZ and $nj,$hi0 and $aj,$hi1 or $aj,$nj sltu $at,$tp,$tj $ST $aj,($rp) bnez $at,.Lcopy $PTR_ADD $rp,$BNSZ li $a0,1 li $t0,1 .set noreorder move $sp,$fp $REG_L $fp,($FRAMESIZE-1)*$SZREG($sp) $REG_L $s11,($FRAMESIZE-2)*$SZREG($sp) $REG_L $s10,($FRAMESIZE-3)*$SZREG($sp) $REG_L $s9,($FRAMESIZE-4)*$SZREG($sp) $REG_L $s8,($FRAMESIZE-5)*$SZREG($sp) $REG_L $s7,($FRAMESIZE-6)*$SZREG($sp) $REG_L $s6,($FRAMESIZE-7)*$SZREG($sp) $REG_L $s5,($FRAMESIZE-8)*$SZREG($sp) $REG_L $s4,($FRAMESIZE-9)*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $s3,($FRAMESIZE-10)*$SZREG($sp) $REG_L $s2,($FRAMESIZE-11)*$SZREG($sp) $REG_L $s1,($FRAMESIZE-12)*$SZREG($sp) $REG_L $s0,($FRAMESIZE-13)*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE*$SZREG .end bn_mul_mont_internal .rdata .asciiz "Montgomery Multiplication for MIPS, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/mips.pl000066400000000000000000001403521364063235100173570ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. # # Rights for redistribution and usage in source and binary forms are # granted according to the OpenSSL license. Warranty of any kind is # disclaimed. # ==================================================================== # July 1999 # # This is drop-in MIPS III/IV ISA replacement for crypto/bn/bn_asm.c. # # The module is designed to work with either of the "new" MIPS ABI(5), # namely N32 or N64, offered by IRIX 6.x. It's not meant to work under # IRIX 5.x not only because it doesn't support new ABIs but also # because 5.x kernels put R4x00 CPU into 32-bit mode and all those # 64-bit instructions (daddu, dmultu, etc.) found below gonna only # cause illegal instruction exception:-( # # In addition the code depends on preprocessor flags set up by MIPSpro # compiler driver (either as or cc) and therefore (probably?) can't be # compiled by the GNU assembler. GNU C driver manages fine though... # I mean as long as -mmips-as is specified or is the default option, # because then it simply invokes /usr/bin/as which in turn takes # perfect care of the preprocessor definitions. Another neat feature # offered by the MIPSpro assembler is an optimization pass. This gave # me the opportunity to have the code looking more regular as all those # architecture dependent instruction rescheduling details were left to # the assembler. Cool, huh? # # Performance improvement is astonishing! 'apps/openssl speed rsa dsa' # goes way over 3 times faster! # # # October 2010 # # Adapt the module even for 32-bit ABIs and other OSes. The former was # achieved by mechanical replacement of 64-bit arithmetic instructions # such as dmultu, daddu, etc. with their 32-bit counterparts and # adjusting offsets denoting multiples of BN_ULONG. Above mentioned # >3x performance improvement naturally does not apply to 32-bit code # [because there is no instruction 32-bit compiler can't use], one # has to content with 40-85% improvement depending on benchmark and # key length, more for longer keys. $flavour = shift || "o32"; while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; if ($flavour =~ /64|n32/i) { $LD="ld"; $ST="sd"; $MULTU="dmultu"; $DIVU="ddivu"; $ADDU="daddu"; $SUBU="dsubu"; $SRL="dsrl"; $SLL="dsll"; $BNSZ=8; $PTR_ADD="daddu"; $PTR_SUB="dsubu"; $SZREG=8; $REG_S="sd"; $REG_L="ld"; } else { $LD="lw"; $ST="sw"; $MULTU="multu"; $DIVU="divu"; $ADDU="addu"; $SUBU="subu"; $SRL="srl"; $SLL="sll"; $BNSZ=4; $PTR_ADD="addu"; $PTR_SUB="subu"; $SZREG=4; $REG_S="sw"; $REG_L="lw"; $code="#if !(defined (__mips_isa_rev) && (__mips_isa_rev >= 6))\n.set mips2\n#endif\n"; } # Below is N32/64 register layout used in the original module. # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); ($ta0,$ta1,$ta2,$ta3)=($a4,$a5,$a6,$a7); # # No special adaptation is required for O32. NUBI on the other hand # is treated by saving/restoring ($v1,$t0..$t3). $gp=$v1 if ($flavour =~ /nubi/i); $minus4=$v1; $code.=<<___; #include "mips_arch.h" #if defined(_MIPS_ARCH_MIPS64R6) # define ddivu(rs,rt) # define mfqt(rd,rs,rt) ddivu rd,rs,rt # define mfrm(rd,rs,rt) dmodu rd,rs,rt #elif defined(_MIPS_ARCH_MIPS32R6) # define divu(rs,rt) # define mfqt(rd,rs,rt) divu rd,rs,rt # define mfrm(rd,rs,rt) modu rd,rs,rt #else # define $DIVU(rs,rt) $DIVU $zero,rs,rt # define mfqt(rd,rs,rt) mflo rd # define mfrm(rd,rs,rt) mfhi rd #endif .rdata .asciiz "mips3.s, Version 1.2" .asciiz "MIPS II/III/IV ISA artwork by Andy Polyakov " .text .set noat .align 5 .globl bn_mul_add_words .ent bn_mul_add_words bn_mul_add_words: .set noreorder bgtz $a2,bn_mul_add_words_internal move $v0,$zero jr $ra move $a0,$v0 .end bn_mul_add_words .align 5 .ent bn_mul_add_words_internal bn_mul_add_words_internal: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder li $minus4,-4 and $ta0,$a2,$minus4 beqz $ta0,.L_bn_mul_add_words_tail .L_bn_mul_add_words_loop: $LD $t0,0($a1) $MULTU ($t0,$a3) $LD $t1,0($a0) $LD $t2,$BNSZ($a1) $LD $t3,$BNSZ($a0) $LD $ta0,2*$BNSZ($a1) $LD $ta1,2*$BNSZ($a0) $ADDU $t1,$v0 sltu $v0,$t1,$v0 # All manuals say it "compares 32-bit # values", but it seems to work fine # even on 64-bit registers. mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $t1,$at $ADDU $v0,$t0 $MULTU ($t2,$a3) sltu $at,$t1,$at $ST $t1,0($a0) $ADDU $v0,$at $LD $ta2,3*$BNSZ($a1) $LD $ta3,3*$BNSZ($a0) $ADDU $t3,$v0 sltu $v0,$t3,$v0 mflo ($at,$t2,$a3) mfhi ($t2,$t2,$a3) $ADDU $t3,$at $ADDU $v0,$t2 $MULTU ($ta0,$a3) sltu $at,$t3,$at $ST $t3,$BNSZ($a0) $ADDU $v0,$at subu $a2,4 $PTR_ADD $a0,4*$BNSZ $PTR_ADD $a1,4*$BNSZ $ADDU $ta1,$v0 sltu $v0,$ta1,$v0 mflo ($at,$ta0,$a3) mfhi ($ta0,$ta0,$a3) $ADDU $ta1,$at $ADDU $v0,$ta0 $MULTU ($ta2,$a3) sltu $at,$ta1,$at $ST $ta1,-2*$BNSZ($a0) $ADDU $v0,$at and $ta0,$a2,$minus4 $ADDU $ta3,$v0 sltu $v0,$ta3,$v0 mflo ($at,$ta2,$a3) mfhi ($ta2,$ta2,$a3) $ADDU $ta3,$at $ADDU $v0,$ta2 sltu $at,$ta3,$at $ST $ta3,-$BNSZ($a0) .set noreorder bgtz $ta0,.L_bn_mul_add_words_loop $ADDU $v0,$at beqz $a2,.L_bn_mul_add_words_return nop .L_bn_mul_add_words_tail: .set reorder $LD $t0,0($a1) $MULTU ($t0,$a3) $LD $t1,0($a0) subu $a2,1 $ADDU $t1,$v0 sltu $v0,$t1,$v0 mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $t1,$at $ADDU $v0,$t0 sltu $at,$t1,$at $ST $t1,0($a0) $ADDU $v0,$at beqz $a2,.L_bn_mul_add_words_return $LD $t0,$BNSZ($a1) $MULTU ($t0,$a3) $LD $t1,$BNSZ($a0) subu $a2,1 $ADDU $t1,$v0 sltu $v0,$t1,$v0 mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $t1,$at $ADDU $v0,$t0 sltu $at,$t1,$at $ST $t1,$BNSZ($a0) $ADDU $v0,$at beqz $a2,.L_bn_mul_add_words_return $LD $t0,2*$BNSZ($a1) $MULTU ($t0,$a3) $LD $t1,2*$BNSZ($a0) $ADDU $t1,$v0 sltu $v0,$t1,$v0 mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $t1,$at $ADDU $v0,$t0 sltu $at,$t1,$at $ST $t1,2*$BNSZ($a0) $ADDU $v0,$at .L_bn_mul_add_words_return: .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra move $a0,$v0 .end bn_mul_add_words_internal .align 5 .globl bn_mul_words .ent bn_mul_words bn_mul_words: .set noreorder bgtz $a2,bn_mul_words_internal move $v0,$zero jr $ra move $a0,$v0 .end bn_mul_words .align 5 .ent bn_mul_words_internal bn_mul_words_internal: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder li $minus4,-4 and $ta0,$a2,$minus4 beqz $ta0,.L_bn_mul_words_tail .L_bn_mul_words_loop: $LD $t0,0($a1) $MULTU ($t0,$a3) $LD $t2,$BNSZ($a1) $LD $ta0,2*$BNSZ($a1) $LD $ta2,3*$BNSZ($a1) mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $v0,$at sltu $t1,$v0,$at $MULTU ($t2,$a3) $ST $v0,0($a0) $ADDU $v0,$t1,$t0 subu $a2,4 $PTR_ADD $a0,4*$BNSZ $PTR_ADD $a1,4*$BNSZ mflo ($at,$t2,$a3) mfhi ($t2,$t2,$a3) $ADDU $v0,$at sltu $t3,$v0,$at $MULTU ($ta0,$a3) $ST $v0,-3*$BNSZ($a0) $ADDU $v0,$t3,$t2 mflo ($at,$ta0,$a3) mfhi ($ta0,$ta0,$a3) $ADDU $v0,$at sltu $ta1,$v0,$at $MULTU ($ta2,$a3) $ST $v0,-2*$BNSZ($a0) $ADDU $v0,$ta1,$ta0 and $ta0,$a2,$minus4 mflo ($at,$ta2,$a3) mfhi ($ta2,$ta2,$a3) $ADDU $v0,$at sltu $ta3,$v0,$at $ST $v0,-$BNSZ($a0) .set noreorder bgtz $ta0,.L_bn_mul_words_loop $ADDU $v0,$ta3,$ta2 beqz $a2,.L_bn_mul_words_return nop .L_bn_mul_words_tail: .set reorder $LD $t0,0($a1) $MULTU ($t0,$a3) subu $a2,1 mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $v0,$at sltu $t1,$v0,$at $ST $v0,0($a0) $ADDU $v0,$t1,$t0 beqz $a2,.L_bn_mul_words_return $LD $t0,$BNSZ($a1) $MULTU ($t0,$a3) subu $a2,1 mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $v0,$at sltu $t1,$v0,$at $ST $v0,$BNSZ($a0) $ADDU $v0,$t1,$t0 beqz $a2,.L_bn_mul_words_return $LD $t0,2*$BNSZ($a1) $MULTU ($t0,$a3) mflo ($at,$t0,$a3) mfhi ($t0,$t0,$a3) $ADDU $v0,$at sltu $t1,$v0,$at $ST $v0,2*$BNSZ($a0) $ADDU $v0,$t1,$t0 .L_bn_mul_words_return: .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra move $a0,$v0 .end bn_mul_words_internal .align 5 .globl bn_sqr_words .ent bn_sqr_words bn_sqr_words: .set noreorder bgtz $a2,bn_sqr_words_internal move $v0,$zero jr $ra move $a0,$v0 .end bn_sqr_words .align 5 .ent bn_sqr_words_internal bn_sqr_words_internal: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder li $minus4,-4 and $ta0,$a2,$minus4 beqz $ta0,.L_bn_sqr_words_tail .L_bn_sqr_words_loop: $LD $t0,0($a1) $MULTU ($t0,$t0) $LD $t2,$BNSZ($a1) $LD $ta0,2*$BNSZ($a1) $LD $ta2,3*$BNSZ($a1) mflo ($t1,$t0,$t0) mfhi ($t0,$t0,$t0) $ST $t1,0($a0) $ST $t0,$BNSZ($a0) $MULTU ($t2,$t2) subu $a2,4 $PTR_ADD $a0,8*$BNSZ $PTR_ADD $a1,4*$BNSZ mflo ($t3,$t2,$t2) mfhi ($t2,$t2,$t2) $ST $t3,-6*$BNSZ($a0) $ST $t2,-5*$BNSZ($a0) $MULTU ($ta0,$ta0) mflo ($ta1,$ta0,$ta0) mfhi ($ta0,$ta0,$ta0) $ST $ta1,-4*$BNSZ($a0) $ST $ta0,-3*$BNSZ($a0) $MULTU ($ta2,$ta2) and $ta0,$a2,$minus4 mflo ($ta3,$ta2,$ta2) mfhi ($ta2,$ta2,$ta2) $ST $ta3,-2*$BNSZ($a0) .set noreorder bgtz $ta0,.L_bn_sqr_words_loop $ST $ta2,-$BNSZ($a0) beqz $a2,.L_bn_sqr_words_return nop .L_bn_sqr_words_tail: .set reorder $LD $t0,0($a1) $MULTU ($t0,$t0) subu $a2,1 mflo ($t1,$t0,$t0) mfhi ($t0,$t0,$t0) $ST $t1,0($a0) $ST $t0,$BNSZ($a0) beqz $a2,.L_bn_sqr_words_return $LD $t0,$BNSZ($a1) $MULTU ($t0,$t0) subu $a2,1 mflo ($t1,$t0,$t0) mfhi ($t0,$t0,$t0) $ST $t1,2*$BNSZ($a0) $ST $t0,3*$BNSZ($a0) beqz $a2,.L_bn_sqr_words_return $LD $t0,2*$BNSZ($a1) $MULTU ($t0,$t0) mflo ($t1,$t0,$t0) mfhi ($t0,$t0,$t0) $ST $t1,4*$BNSZ($a0) $ST $t0,5*$BNSZ($a0) .L_bn_sqr_words_return: .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra move $a0,$v0 .end bn_sqr_words_internal .align 5 .globl bn_add_words .ent bn_add_words bn_add_words: .set noreorder bgtz $a3,bn_add_words_internal move $v0,$zero jr $ra move $a0,$v0 .end bn_add_words .align 5 .ent bn_add_words_internal bn_add_words_internal: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder li $minus4,-4 and $at,$a3,$minus4 beqz $at,.L_bn_add_words_tail .L_bn_add_words_loop: $LD $t0,0($a1) $LD $ta0,0($a2) subu $a3,4 $LD $t1,$BNSZ($a1) and $at,$a3,$minus4 $LD $t2,2*$BNSZ($a1) $PTR_ADD $a2,4*$BNSZ $LD $t3,3*$BNSZ($a1) $PTR_ADD $a0,4*$BNSZ $LD $ta1,-3*$BNSZ($a2) $PTR_ADD $a1,4*$BNSZ $LD $ta2,-2*$BNSZ($a2) $LD $ta3,-$BNSZ($a2) $ADDU $ta0,$t0 sltu $t8,$ta0,$t0 $ADDU $t0,$ta0,$v0 sltu $v0,$t0,$ta0 $ST $t0,-4*$BNSZ($a0) $ADDU $v0,$t8 $ADDU $ta1,$t1 sltu $t9,$ta1,$t1 $ADDU $t1,$ta1,$v0 sltu $v0,$t1,$ta1 $ST $t1,-3*$BNSZ($a0) $ADDU $v0,$t9 $ADDU $ta2,$t2 sltu $t8,$ta2,$t2 $ADDU $t2,$ta2,$v0 sltu $v0,$t2,$ta2 $ST $t2,-2*$BNSZ($a0) $ADDU $v0,$t8 $ADDU $ta3,$t3 sltu $t9,$ta3,$t3 $ADDU $t3,$ta3,$v0 sltu $v0,$t3,$ta3 $ST $t3,-$BNSZ($a0) .set noreorder bgtz $at,.L_bn_add_words_loop $ADDU $v0,$t9 beqz $a3,.L_bn_add_words_return nop .L_bn_add_words_tail: .set reorder $LD $t0,0($a1) $LD $ta0,0($a2) $ADDU $ta0,$t0 subu $a3,1 sltu $t8,$ta0,$t0 $ADDU $t0,$ta0,$v0 sltu $v0,$t0,$ta0 $ST $t0,0($a0) $ADDU $v0,$t8 beqz $a3,.L_bn_add_words_return $LD $t1,$BNSZ($a1) $LD $ta1,$BNSZ($a2) $ADDU $ta1,$t1 subu $a3,1 sltu $t9,$ta1,$t1 $ADDU $t1,$ta1,$v0 sltu $v0,$t1,$ta1 $ST $t1,$BNSZ($a0) $ADDU $v0,$t9 beqz $a3,.L_bn_add_words_return $LD $t2,2*$BNSZ($a1) $LD $ta2,2*$BNSZ($a2) $ADDU $ta2,$t2 sltu $t8,$ta2,$t2 $ADDU $t2,$ta2,$v0 sltu $v0,$t2,$ta2 $ST $t2,2*$BNSZ($a0) $ADDU $v0,$t8 .L_bn_add_words_return: .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra move $a0,$v0 .end bn_add_words_internal .align 5 .globl bn_sub_words .ent bn_sub_words bn_sub_words: .set noreorder bgtz $a3,bn_sub_words_internal move $v0,$zero jr $ra move $a0,$zero .end bn_sub_words .align 5 .ent bn_sub_words_internal bn_sub_words_internal: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder li $minus4,-4 and $at,$a3,$minus4 beqz $at,.L_bn_sub_words_tail .L_bn_sub_words_loop: $LD $t0,0($a1) $LD $ta0,0($a2) subu $a3,4 $LD $t1,$BNSZ($a1) and $at,$a3,$minus4 $LD $t2,2*$BNSZ($a1) $PTR_ADD $a2,4*$BNSZ $LD $t3,3*$BNSZ($a1) $PTR_ADD $a0,4*$BNSZ $LD $ta1,-3*$BNSZ($a2) $PTR_ADD $a1,4*$BNSZ $LD $ta2,-2*$BNSZ($a2) $LD $ta3,-$BNSZ($a2) sltu $t8,$t0,$ta0 $SUBU $ta0,$t0,$ta0 $SUBU $t0,$ta0,$v0 sgtu $v0,$t0,$ta0 $ST $t0,-4*$BNSZ($a0) $ADDU $v0,$t8 sltu $t9,$t1,$ta1 $SUBU $ta1,$t1,$ta1 $SUBU $t1,$ta1,$v0 sgtu $v0,$t1,$ta1 $ST $t1,-3*$BNSZ($a0) $ADDU $v0,$t9 sltu $t8,$t2,$ta2 $SUBU $ta2,$t2,$ta2 $SUBU $t2,$ta2,$v0 sgtu $v0,$t2,$ta2 $ST $t2,-2*$BNSZ($a0) $ADDU $v0,$t8 sltu $t9,$t3,$ta3 $SUBU $ta3,$t3,$ta3 $SUBU $t3,$ta3,$v0 sgtu $v0,$t3,$ta3 $ST $t3,-$BNSZ($a0) .set noreorder bgtz $at,.L_bn_sub_words_loop $ADDU $v0,$t9 beqz $a3,.L_bn_sub_words_return nop .L_bn_sub_words_tail: .set reorder $LD $t0,0($a1) $LD $ta0,0($a2) subu $a3,1 sltu $t8,$t0,$ta0 $SUBU $ta0,$t0,$ta0 $SUBU $t0,$ta0,$v0 sgtu $v0,$t0,$ta0 $ST $t0,0($a0) $ADDU $v0,$t8 beqz $a3,.L_bn_sub_words_return $LD $t1,$BNSZ($a1) subu $a3,1 $LD $ta1,$BNSZ($a2) sltu $t9,$t1,$ta1 $SUBU $ta1,$t1,$ta1 $SUBU $t1,$ta1,$v0 sgtu $v0,$t1,$ta1 $ST $t1,$BNSZ($a0) $ADDU $v0,$t9 beqz $a3,.L_bn_sub_words_return $LD $t2,2*$BNSZ($a1) $LD $ta2,2*$BNSZ($a2) sltu $t8,$t2,$ta2 $SUBU $ta2,$t2,$ta2 $SUBU $t2,$ta2,$v0 sgtu $v0,$t2,$ta2 $ST $t2,2*$BNSZ($a0) $ADDU $v0,$t8 .L_bn_sub_words_return: .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra move $a0,$v0 .end bn_sub_words_internal #if 0 /* * The bn_div_3_words entry point is re-used for constant-time interface. * Implementation is retained as historical reference. */ .align 5 .globl bn_div_3_words .ent bn_div_3_words bn_div_3_words: .set noreorder move $a3,$a0 # we know that bn_div_words does not # touch $a3, $ta2, $ta3 and preserves $a2 # so that we can save two arguments # and return address in registers # instead of stack:-) $LD $a0,($a3) move $ta2,$a1 bne $a0,$a2,bn_div_3_words_internal $LD $a1,-$BNSZ($a3) li $v0,-1 jr $ra move $a0,$v0 .end bn_div_3_words .align 5 .ent bn_div_3_words_internal bn_div_3_words_internal: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder move $ta3,$ra bal bn_div_words_internal move $ra,$ta3 $MULTU ($ta2,$v0) $LD $t2,-2*$BNSZ($a3) move $ta0,$zero mfhi ($t1,$ta2,$v0) mflo ($t0,$ta2,$v0) sltu $t8,$t1,$a1 .L_bn_div_3_words_inner_loop: bnez $t8,.L_bn_div_3_words_inner_loop_done sgeu $at,$t2,$t0 seq $t9,$t1,$a1 and $at,$t9 sltu $t3,$t0,$ta2 $ADDU $a1,$a2 $SUBU $t1,$t3 $SUBU $t0,$ta2 sltu $t8,$t1,$a1 sltu $ta0,$a1,$a2 or $t8,$ta0 .set noreorder beqz $at,.L_bn_div_3_words_inner_loop $SUBU $v0,1 $ADDU $v0,1 .set reorder .L_bn_div_3_words_inner_loop_done: .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra move $a0,$v0 .end bn_div_3_words_internal #endif .align 5 .globl bn_div_words .ent bn_div_words bn_div_words: .set noreorder bnez $a2,bn_div_words_internal li $v0,-1 # I would rather signal div-by-zero # which can be done with 'break 7' jr $ra move $a0,$v0 .end bn_div_words .align 5 .ent bn_div_words_internal bn_div_words_internal: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; move $v1,$zero bltz $a2,.L_bn_div_words_body move $t9,$v1 $SLL $a2,1 bgtz $a2,.-4 addu $t9,1 .set reorder negu $t1,$t9 li $t2,-1 $SLL $t2,$t1 and $t2,$a0 $SRL $at,$a1,$t1 .set noreorder beqz $t2,.+12 nop break 6 # signal overflow .set reorder $SLL $a0,$t9 $SLL $a1,$t9 or $a0,$at ___ $QT=$ta0; $HH=$ta1; $DH=$v1; $code.=<<___; .L_bn_div_words_body: $SRL $DH,$a2,4*$BNSZ # bits sgeu $at,$a0,$a2 .set noreorder beqz $at,.+12 nop $SUBU $a0,$a2 .set reorder li $QT,-1 $SRL $HH,$a0,4*$BNSZ # bits $SRL $QT,4*$BNSZ # q=0xffffffff beq $DH,$HH,.L_bn_div_words_skip_div1 $DIVU ($a0,$DH) mfqt ($QT,$a0,$DH) .L_bn_div_words_skip_div1: $MULTU ($a2,$QT) $SLL $t3,$a0,4*$BNSZ # bits $SRL $at,$a1,4*$BNSZ # bits or $t3,$at mflo ($t0,$a2,$QT) mfhi ($t1,$a2,$QT) .L_bn_div_words_inner_loop1: sltu $t2,$t3,$t0 seq $t8,$HH,$t1 sltu $at,$HH,$t1 and $t2,$t8 sltu $v0,$t0,$a2 or $at,$t2 .set noreorder beqz $at,.L_bn_div_words_inner_loop1_done $SUBU $t1,$v0 $SUBU $t0,$a2 b .L_bn_div_words_inner_loop1 $SUBU $QT,1 .set reorder .L_bn_div_words_inner_loop1_done: $SLL $a1,4*$BNSZ # bits $SUBU $a0,$t3,$t0 $SLL $v0,$QT,4*$BNSZ # bits li $QT,-1 $SRL $HH,$a0,4*$BNSZ # bits $SRL $QT,4*$BNSZ # q=0xffffffff beq $DH,$HH,.L_bn_div_words_skip_div2 $DIVU ($a0,$DH) mfqt ($QT,$a0,$DH) .L_bn_div_words_skip_div2: $MULTU ($a2,$QT) $SLL $t3,$a0,4*$BNSZ # bits $SRL $at,$a1,4*$BNSZ # bits or $t3,$at mflo ($t0,$a2,$QT) mfhi ($t1,$a2,$QT) .L_bn_div_words_inner_loop2: sltu $t2,$t3,$t0 seq $t8,$HH,$t1 sltu $at,$HH,$t1 and $t2,$t8 sltu $v1,$t0,$a2 or $at,$t2 .set noreorder beqz $at,.L_bn_div_words_inner_loop2_done $SUBU $t1,$v1 $SUBU $t0,$a2 b .L_bn_div_words_inner_loop2 $SUBU $QT,1 .set reorder .L_bn_div_words_inner_loop2_done: $SUBU $a0,$t3,$t0 or $v0,$QT $SRL $v1,$a0,$t9 # $v1 contains remainder if anybody wants it $SRL $a2,$t9 # restore $a2 .set noreorder move $a1,$v1 ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra move $a0,$v0 .end bn_div_words_internal ___ undef $HH; undef $QT; undef $DH; ($a_0,$a_1,$a_2,$a_3)=($t0,$t1,$t2,$t3); ($b_0,$b_1,$b_2,$b_3)=($ta0,$ta1,$ta2,$ta3); ($a_4,$a_5,$a_6,$a_7)=($s0,$s2,$s4,$a1); # once we load a[7], no use for $a1 ($b_4,$b_5,$b_6,$b_7)=($s1,$s3,$s5,$a2); # once we load b[7], no use for $a2 ($t_1,$t_2,$c_1,$c_2,$c_3)=($t8,$t9,$v0,$v1,$a3); $code.=<<___; .align 5 .globl bn_mul_comba8 .ent bn_mul_comba8 bn_mul_comba8: .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,12*$SZREG,$ra .mask 0x803ff008,-$SZREG $PTR_SUB $sp,12*$SZREG $REG_S $ra,11*$SZREG($sp) $REG_S $s5,10*$SZREG($sp) $REG_S $s4,9*$SZREG($sp) $REG_S $s3,8*$SZREG($sp) $REG_S $s2,7*$SZREG($sp) $REG_S $s1,6*$SZREG($sp) $REG_S $s0,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___ if ($flavour !~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x003f0000,-$SZREG $PTR_SUB $sp,6*$SZREG $REG_S $s5,5*$SZREG($sp) $REG_S $s4,4*$SZREG($sp) $REG_S $s3,3*$SZREG($sp) $REG_S $s2,2*$SZREG($sp) $REG_S $s1,1*$SZREG($sp) $REG_S $s0,0*$SZREG($sp) ___ $code.=<<___; .set reorder $LD $a_0,0($a1) # If compiled with -mips3 option on # R5000 box assembler barks on this # 1ine with "should not have mult/div # as last instruction in bb (R10K # bug)" warning. If anybody out there # has a clue about how to circumvent # this do send me a note. # $LD $b_0,0($a2) $LD $a_1,$BNSZ($a1) $LD $a_2,2*$BNSZ($a1) $MULTU ($a_0,$b_0) # mul_add_c(a[0],b[0],c1,c2,c3); $LD $a_3,3*$BNSZ($a1) $LD $b_1,$BNSZ($a2) $LD $b_2,2*$BNSZ($a2) $LD $b_3,3*$BNSZ($a2) mflo ($c_1,$a_0,$b_0) mfhi ($c_2,$a_0,$b_0) $LD $a_4,4*$BNSZ($a1) $LD $a_5,5*$BNSZ($a1) $MULTU ($a_0,$b_1) # mul_add_c(a[0],b[1],c2,c3,c1); $LD $a_6,6*$BNSZ($a1) $LD $a_7,7*$BNSZ($a1) $LD $b_4,4*$BNSZ($a2) $LD $b_5,5*$BNSZ($a2) mflo ($t_1,$a_0,$b_1) mfhi ($t_2,$a_0,$b_1) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_1,$b_0) # mul_add_c(a[1],b[0],c2,c3,c1); $ADDU $c_3,$t_2,$at $LD $b_6,6*$BNSZ($a2) $LD $b_7,7*$BNSZ($a2) $ST $c_1,0($a0) # r[0]=c1; mflo ($t_1,$a_1,$b_0) mfhi ($t_2,$a_1,$b_0) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_2,$b_0) # mul_add_c(a[2],b[0],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $c_1,$c_3,$t_2 $ST $c_2,$BNSZ($a0) # r[1]=c2; mflo ($t_1,$a_2,$b_0) mfhi ($t_2,$a_2,$b_0) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_1,$b_1) # mul_add_c(a[1],b[1],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 mflo ($t_1,$a_1,$b_1) mfhi ($t_2,$a_1,$b_1) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_0,$b_2) # mul_add_c(a[0],b[2],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $c_2,$c_1,$t_2 mflo ($t_1,$a_0,$b_2) mfhi ($t_2,$a_0,$b_2) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_0,$b_3) # mul_add_c(a[0],b[3],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,2*$BNSZ($a0) # r[2]=c3; mflo ($t_1,$a_0,$b_3) mfhi ($t_2,$a_0,$b_3) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_1,$b_2) # mul_add_c(a[1],b[2],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $c_3,$c_2,$t_2 mflo ($t_1,$a_1,$b_2) mfhi ($t_2,$a_1,$b_2) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_2,$b_1) # mul_add_c(a[2],b[1],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_2,$b_1) mfhi ($t_2,$a_2,$b_1) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_3,$b_0) # mul_add_c(a[3],b[0],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_3,$b_0) mfhi ($t_2,$a_3,$b_0) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_4,$b_0) # mul_add_c(a[4],b[0],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at $ST $c_1,3*$BNSZ($a0) # r[3]=c1; mflo ($t_1,$a_4,$b_0) mfhi ($t_2,$a_4,$b_0) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_3,$b_1) # mul_add_c(a[3],b[1],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $c_1,$c_3,$t_2 mflo ($t_1,$a_3,$b_1) mfhi ($t_2,$a_3,$b_1) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_2,$b_2) # mul_add_c(a[2],b[2],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_2,$b_2) mfhi ($t_2,$a_2,$b_2) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_1,$b_3) # mul_add_c(a[1],b[3],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_1,$b_3) mfhi ($t_2,$a_1,$b_3) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_0,$b_4) # mul_add_c(a[0],b[4],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_0,$b_4) mfhi ($t_2,$a_0,$b_4) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_0,$b_5) # mul_add_c(a[0],b[5],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,4*$BNSZ($a0) # r[4]=c2; mflo ($t_1,$a_0,$b_5) mfhi ($t_2,$a_0,$b_5) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_1,$b_4) # mul_add_c(a[1],b[4],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $c_2,$c_1,$t_2 mflo ($t_1,$a_1,$b_4) mfhi ($t_2,$a_1,$b_4) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_2,$b_3) # mul_add_c(a[2],b[3],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_2,$b_3) mfhi ($t_2,$a_2,$b_3) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_3,$b_2) # mul_add_c(a[3],b[2],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_3,$b_2) mfhi ($t_2,$a_3,$b_2) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_4,$b_1) # mul_add_c(a[4],b[1],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_4,$b_1) mfhi ($t_2,$a_4,$b_1) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_5,$b_0) # mul_add_c(a[5],b[0],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_5,$b_0) mfhi ($t_2,$a_5,$b_0) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_6,$b_0) # mul_add_c(a[6],b[0],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,5*$BNSZ($a0) # r[5]=c3; mflo ($t_1,$a_6,$b_0) mfhi ($t_2,$a_6,$b_0) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_5,$b_1) # mul_add_c(a[5],b[1],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $c_3,$c_2,$t_2 mflo ($t_1,$a_5,$b_1) mfhi ($t_2,$a_5,$b_1) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_4,$b_2) # mul_add_c(a[4],b[2],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_4,$b_2) mfhi ($t_2,$a_4,$b_2) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_3,$b_3) # mul_add_c(a[3],b[3],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_3,$b_3) mfhi ($t_2,$a_3,$b_3) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_2,$b_4) # mul_add_c(a[2],b[4],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_2,$b_4) mfhi ($t_2,$a_2,$b_4) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_1,$b_5) # mul_add_c(a[1],b[5],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_1,$b_5) mfhi ($t_2,$a_1,$b_5) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_0,$b_6) # mul_add_c(a[0],b[6],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_0,$b_6) mfhi ($t_2,$a_0,$b_6) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_0,$b_7) # mul_add_c(a[0],b[7],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at $ST $c_1,6*$BNSZ($a0) # r[6]=c1; mflo ($t_1,$a_0,$b_7) mfhi ($t_2,$a_0,$b_7) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_1,$b_6) # mul_add_c(a[1],b[6],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $c_1,$c_3,$t_2 mflo ($t_1,$a_1,$b_6) mfhi ($t_2,$a_1,$b_6) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_2,$b_5) # mul_add_c(a[2],b[5],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_2,$b_5) mfhi ($t_2,$a_2,$b_5) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_3,$b_4) # mul_add_c(a[3],b[4],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_3,$b_4) mfhi ($t_2,$a_3,$b_4) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_4,$b_3) # mul_add_c(a[4],b[3],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_4,$b_3) mfhi ($t_2,$a_4,$b_3) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_5,$b_2) # mul_add_c(a[5],b[2],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_5,$b_2) mfhi ($t_2,$a_5,$b_2) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_6,$b_1) # mul_add_c(a[6],b[1],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_6,$b_1) mfhi ($t_2,$a_6,$b_1) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_7,$b_0) # mul_add_c(a[7],b[0],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_7,$b_0) mfhi ($t_2,$a_7,$b_0) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_7,$b_1) # mul_add_c(a[7],b[1],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,7*$BNSZ($a0) # r[7]=c2; mflo ($t_1,$a_7,$b_1) mfhi ($t_2,$a_7,$b_1) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_6,$b_2) # mul_add_c(a[6],b[2],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $c_2,$c_1,$t_2 mflo ($t_1,$a_6,$b_2) mfhi ($t_2,$a_6,$b_2) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_5,$b_3) # mul_add_c(a[5],b[3],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_5,$b_3) mfhi ($t_2,$a_5,$b_3) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_4,$b_4) # mul_add_c(a[4],b[4],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_4,$b_4) mfhi ($t_2,$a_4,$b_4) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_3,$b_5) # mul_add_c(a[3],b[5],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_3,$b_5) mfhi ($t_2,$a_3,$b_5) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_2,$b_6) # mul_add_c(a[2],b[6],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_2,$b_6) mfhi ($t_2,$a_2,$b_6) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_1,$b_7) # mul_add_c(a[1],b[7],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_1,$b_7) mfhi ($t_2,$a_1,$b_7) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_2,$b_7) # mul_add_c(a[2],b[7],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,8*$BNSZ($a0) # r[8]=c3; mflo ($t_1,$a_2,$b_7) mfhi ($t_2,$a_2,$b_7) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_3,$b_6) # mul_add_c(a[3],b[6],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $c_3,$c_2,$t_2 mflo ($t_1,$a_3,$b_6) mfhi ($t_2,$a_3,$b_6) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_4,$b_5) # mul_add_c(a[4],b[5],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_4,$b_5) mfhi ($t_2,$a_4,$b_5) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_5,$b_4) # mul_add_c(a[5],b[4],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_5,$b_4) mfhi ($t_2,$a_5,$b_4) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_6,$b_3) # mul_add_c(a[6],b[3],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_6,$b_3) mfhi ($t_2,$a_6,$b_3) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_7,$b_2) # mul_add_c(a[7],b[2],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_7,$b_2) mfhi ($t_2,$a_7,$b_2) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_7,$b_3) # mul_add_c(a[7],b[3],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at $ST $c_1,9*$BNSZ($a0) # r[9]=c1; mflo ($t_1,$a_7,$b_3) mfhi ($t_2,$a_7,$b_3) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_6,$b_4) # mul_add_c(a[6],b[4],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $c_1,$c_3,$t_2 mflo ($t_1,$a_6,$b_4) mfhi ($t_2,$a_6,$b_4) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_5,$b_5) # mul_add_c(a[5],b[5],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_5,$b_5) mfhi ($t_2,$a_5,$b_5) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_4,$b_6) # mul_add_c(a[4],b[6],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_4,$b_6) mfhi ($t_2,$a_4,$b_6) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_3,$b_7) # mul_add_c(a[3],b[7],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_3,$b_7) mfhi ($t_2,$a_3,$b_7) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_4,$b_7) # mul_add_c(a[4],b[7],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,10*$BNSZ($a0) # r[10]=c2; mflo ($t_1,$a_4,$b_7) mfhi ($t_2,$a_4,$b_7) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_5,$b_6) # mul_add_c(a[5],b[6],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $c_2,$c_1,$t_2 mflo ($t_1,$a_5,$b_6) mfhi ($t_2,$a_5,$b_6) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_6,$b_5) # mul_add_c(a[6],b[5],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_6,$b_5) mfhi ($t_2,$a_6,$b_5) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_7,$b_4) # mul_add_c(a[7],b[4],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at mflo ($t_1,$a_7,$b_4) mfhi ($t_2,$a_7,$b_4) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_7,$b_5) # mul_add_c(a[7],b[5],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,11*$BNSZ($a0) # r[11]=c3; mflo ($t_1,$a_7,$b_5) mfhi ($t_2,$a_7,$b_5) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_6,$b_6) # mul_add_c(a[6],b[6],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $c_3,$c_2,$t_2 mflo ($t_1,$a_6,$b_6) mfhi ($t_2,$a_6,$b_6) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_5,$b_7) # mul_add_c(a[5],b[7],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_5,$b_7) mfhi ($t_2,$a_5,$b_7) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_6,$b_7) # mul_add_c(a[6],b[7],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at $ST $c_1,12*$BNSZ($a0) # r[12]=c1; mflo ($t_1,$a_6,$b_7) mfhi ($t_2,$a_6,$b_7) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_7,$b_6) # mul_add_c(a[7],b[6],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $c_1,$c_3,$t_2 mflo ($t_1,$a_7,$b_6) mfhi ($t_2,$a_7,$b_6) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_7,$b_7) # mul_add_c(a[7],b[7],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,13*$BNSZ($a0) # r[13]=c2; mflo ($t_1,$a_7,$b_7) mfhi ($t_2,$a_7,$b_7) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $ADDU $t_2,$at $ADDU $c_1,$t_2 $ST $c_3,14*$BNSZ($a0) # r[14]=c3; $ST $c_1,15*$BNSZ($a0) # r[15]=c1; .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $s5,10*$SZREG($sp) $REG_L $s4,9*$SZREG($sp) $REG_L $s3,8*$SZREG($sp) $REG_L $s2,7*$SZREG($sp) $REG_L $s1,6*$SZREG($sp) $REG_L $s0,5*$SZREG($sp) $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) jr $ra $PTR_ADD $sp,12*$SZREG ___ $code.=<<___ if ($flavour !~ /nubi/i); $REG_L $s5,5*$SZREG($sp) $REG_L $s4,4*$SZREG($sp) $REG_L $s3,3*$SZREG($sp) $REG_L $s2,2*$SZREG($sp) $REG_L $s1,1*$SZREG($sp) $REG_L $s0,0*$SZREG($sp) jr $ra $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; .end bn_mul_comba8 .align 5 .globl bn_mul_comba4 .ent bn_mul_comba4 bn_mul_comba4: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder $LD $a_0,0($a1) $LD $b_0,0($a2) $LD $a_1,$BNSZ($a1) $LD $a_2,2*$BNSZ($a1) $MULTU ($a_0,$b_0) # mul_add_c(a[0],b[0],c1,c2,c3); $LD $a_3,3*$BNSZ($a1) $LD $b_1,$BNSZ($a2) $LD $b_2,2*$BNSZ($a2) $LD $b_3,3*$BNSZ($a2) mflo ($c_1,$a_0,$b_0) mfhi ($c_2,$a_0,$b_0) $ST $c_1,0($a0) $MULTU ($a_0,$b_1) # mul_add_c(a[0],b[1],c2,c3,c1); mflo ($t_1,$a_0,$b_1) mfhi ($t_2,$a_0,$b_1) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_1,$b_0) # mul_add_c(a[1],b[0],c2,c3,c1); $ADDU $c_3,$t_2,$at mflo ($t_1,$a_1,$b_0) mfhi ($t_2,$a_1,$b_0) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_2,$b_0) # mul_add_c(a[2],b[0],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $c_1,$c_3,$t_2 $ST $c_2,$BNSZ($a0) mflo ($t_1,$a_2,$b_0) mfhi ($t_2,$a_2,$b_0) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_1,$b_1) # mul_add_c(a[1],b[1],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 mflo ($t_1,$a_1,$b_1) mfhi ($t_2,$a_1,$b_1) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_0,$b_2) # mul_add_c(a[0],b[2],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $c_2,$c_1,$t_2 mflo ($t_1,$a_0,$b_2) mfhi ($t_2,$a_0,$b_2) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_0,$b_3) # mul_add_c(a[0],b[3],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,2*$BNSZ($a0) mflo ($t_1,$a_0,$b_3) mfhi ($t_2,$a_0,$b_3) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_1,$b_2) # mul_add_c(a[1],b[2],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $c_3,$c_2,$t_2 mflo ($t_1,$a_1,$b_2) mfhi ($t_2,$a_1,$b_2) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_2,$b_1) # mul_add_c(a[2],b[1],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_2,$b_1) mfhi ($t_2,$a_2,$b_1) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_3,$b_0) # mul_add_c(a[3],b[0],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at mflo ($t_1,$a_3,$b_0) mfhi ($t_2,$a_3,$b_0) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_3,$b_1) # mul_add_c(a[3],b[1],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at $ST $c_1,3*$BNSZ($a0) mflo ($t_1,$a_3,$b_1) mfhi ($t_2,$a_3,$b_1) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_2,$b_2) # mul_add_c(a[2],b[2],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $c_1,$c_3,$t_2 mflo ($t_1,$a_2,$b_2) mfhi ($t_2,$a_2,$b_2) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_1,$b_3) # mul_add_c(a[1],b[3],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at mflo ($t_1,$a_1,$b_3) mfhi ($t_2,$a_1,$b_3) $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_2,$b_3) # mul_add_c(a[2],b[3],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,4*$BNSZ($a0) mflo ($t_1,$a_2,$b_3) mfhi ($t_2,$a_2,$b_3) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_3,$b_2) # mul_add_c(a[3],b[2],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $c_2,$c_1,$t_2 mflo ($t_1,$a_3,$b_2) mfhi ($t_2,$a_3,$b_2) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_3,$b_3) # mul_add_c(a[3],b[3],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,5*$BNSZ($a0) mflo ($t_1,$a_3,$b_3) mfhi ($t_2,$a_3,$b_3) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $ADDU $t_2,$at $ADDU $c_2,$t_2 $ST $c_1,6*$BNSZ($a0) $ST $c_2,7*$BNSZ($a0) .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra nop .end bn_mul_comba4 ___ ($a_4,$a_5,$a_6,$a_7)=($b_0,$b_1,$b_2,$b_3); sub add_c2 () { my ($hi,$lo,$c0,$c1,$c2, $warm, # !$warm denotes first call with specific sequence of # $c_[XYZ] when there is no Z-carry to accumulate yet; $an,$bn # these two are arguments for multiplication which # result is used in *next* step [which is why it's # commented as "forward multiplication" below]; )=@_; $code.=<<___; $ADDU $c0,$lo sltu $at,$c0,$lo $MULTU ($an,$bn) # forward multiplication $ADDU $c0,$lo $ADDU $at,$hi sltu $lo,$c0,$lo $ADDU $c1,$at $ADDU $hi,$lo ___ $code.=<<___ if (!$warm); sltu $c2,$c1,$at $ADDU $c1,$hi ___ $code.=<<___ if ($warm); sltu $at,$c1,$at $ADDU $c1,$hi $ADDU $c2,$at ___ $code.=<<___; sltu $hi,$c1,$hi $ADDU $c2,$hi mflo ($lo,$an,$bn) mfhi ($hi,$an,$bn) ___ } $code.=<<___; .align 5 .globl bn_sqr_comba8 .ent bn_sqr_comba8 bn_sqr_comba8: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder $LD $a_0,0($a1) $LD $a_1,$BNSZ($a1) $LD $a_2,2*$BNSZ($a1) $LD $a_3,3*$BNSZ($a1) $MULTU ($a_0,$a_0) # mul_add_c(a[0],b[0],c1,c2,c3); $LD $a_4,4*$BNSZ($a1) $LD $a_5,5*$BNSZ($a1) $LD $a_6,6*$BNSZ($a1) $LD $a_7,7*$BNSZ($a1) mflo ($c_1,$a_0,$a_0) mfhi ($c_2,$a_0,$a_0) $ST $c_1,0($a0) $MULTU ($a_0,$a_1) # mul_add_c2(a[0],b[1],c2,c3,c1); mflo ($t_1,$a_0,$a_1) mfhi ($t_2,$a_0,$a_1) slt $c_1,$t_2,$zero $SLL $t_2,1 $MULTU ($a_2,$a_0) # mul_add_c2(a[2],b[0],c3,c1,c2); slt $a2,$t_1,$zero $ADDU $t_2,$a2 $SLL $t_1,1 $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $ADDU $c_3,$t_2,$at $ST $c_2,$BNSZ($a0) mflo ($t_1,$a_2,$a_0) mfhi ($t_2,$a_2,$a_0) ___ &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, $a_1,$a_1); # mul_add_c(a[1],b[1],c3,c1,c2); $code.=<<___; $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_0,$a_3) # mul_add_c2(a[0],b[3],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,2*$BNSZ($a0) mflo ($t_1,$a_0,$a_3) mfhi ($t_2,$a_0,$a_3) ___ &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, $a_1,$a_2); # mul_add_c2(a[1],b[2],c1,c2,c3); &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, $a_4,$a_0); # mul_add_c2(a[4],b[0],c2,c3,c1); $code.=<<___; $ST $c_1,3*$BNSZ($a0) ___ &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, $a_3,$a_1); # mul_add_c2(a[3],b[1],c2,c3,c1); &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, $a_2,$a_2); # mul_add_c(a[2],b[2],c2,c3,c1); $code.=<<___; $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_0,$a_5) # mul_add_c2(a[0],b[5],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,4*$BNSZ($a0) mflo ($t_1,$a_0,$a_5) mfhi ($t_2,$a_0,$a_5) ___ &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, $a_1,$a_4); # mul_add_c2(a[1],b[4],c3,c1,c2); &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, $a_2,$a_3); # mul_add_c2(a[2],b[3],c3,c1,c2); &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, $a_6,$a_0); # mul_add_c2(a[6],b[0],c1,c2,c3); $code.=<<___; $ST $c_3,5*$BNSZ($a0) ___ &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, $a_5,$a_1); # mul_add_c2(a[5],b[1],c1,c2,c3); &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, $a_4,$a_2); # mul_add_c2(a[4],b[2],c1,c2,c3); &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, $a_3,$a_3); # mul_add_c(a[3],b[3],c1,c2,c3); $code.=<<___; $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_0,$a_7) # mul_add_c2(a[0],b[7],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at $ST $c_1,6*$BNSZ($a0) mflo ($t_1,$a_0,$a_7) mfhi ($t_2,$a_0,$a_7) ___ &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, $a_1,$a_6); # mul_add_c2(a[1],b[6],c2,c3,c1); &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, $a_2,$a_5); # mul_add_c2(a[2],b[5],c2,c3,c1); &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, $a_3,$a_4); # mul_add_c2(a[3],b[4],c2,c3,c1); &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, $a_7,$a_1); # mul_add_c2(a[7],b[1],c3,c1,c2); $code.=<<___; $ST $c_2,7*$BNSZ($a0) ___ &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, $a_6,$a_2); # mul_add_c2(a[6],b[2],c3,c1,c2); &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, $a_5,$a_3); # mul_add_c2(a[5],b[3],c3,c1,c2); &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, $a_4,$a_4); # mul_add_c(a[4],b[4],c3,c1,c2); $code.=<<___; $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_2,$a_7) # mul_add_c2(a[2],b[7],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,8*$BNSZ($a0) mflo ($t_1,$a_2,$a_7) mfhi ($t_2,$a_2,$a_7) ___ &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, $a_3,$a_6); # mul_add_c2(a[3],b[6],c1,c2,c3); &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, $a_4,$a_5); # mul_add_c2(a[4],b[5],c1,c2,c3); &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, $a_7,$a_3); # mul_add_c2(a[7],b[3],c2,c3,c1); $code.=<<___; $ST $c_1,9*$BNSZ($a0) ___ &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, $a_6,$a_4); # mul_add_c2(a[6],b[4],c2,c3,c1); &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, $a_5,$a_5); # mul_add_c(a[5],b[5],c2,c3,c1); $code.=<<___; $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_4,$a_7) # mul_add_c2(a[4],b[7],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,10*$BNSZ($a0) mflo ($t_1,$a_4,$a_7) mfhi ($t_2,$a_4,$a_7) ___ &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, $a_5,$a_6); # mul_add_c2(a[5],b[6],c3,c1,c2); &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, $a_7,$a_5); # mul_add_c2(a[7],b[5],c1,c2,c3); $code.=<<___; $ST $c_3,11*$BNSZ($a0) ___ &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, $a_6,$a_6); # mul_add_c(a[6],b[6],c1,c2,c3); $code.=<<___; $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $MULTU ($a_6,$a_7) # mul_add_c2(a[6],b[7],c2,c3,c1); $ADDU $t_2,$at $ADDU $c_2,$t_2 sltu $at,$c_2,$t_2 $ADDU $c_3,$at $ST $c_1,12*$BNSZ($a0) mflo ($t_1,$a_6,$a_7) mfhi ($t_2,$a_6,$a_7) ___ &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, $a_7,$a_7); # mul_add_c(a[7],b[7],c3,c1,c2); $code.=<<___; $ST $c_2,13*$BNSZ($a0) $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $ADDU $t_2,$at $ADDU $c_1,$t_2 $ST $c_3,14*$BNSZ($a0) $ST $c_1,15*$BNSZ($a0) .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra nop .end bn_sqr_comba8 .align 5 .globl bn_sqr_comba4 .ent bn_sqr_comba4 bn_sqr_comba4: ___ $code.=<<___ if ($flavour =~ /nubi/i); .frame $sp,6*$SZREG,$ra .mask 0x8000f008,-$SZREG .set noreorder $PTR_SUB $sp,6*$SZREG $REG_S $ra,5*$SZREG($sp) $REG_S $t3,4*$SZREG($sp) $REG_S $t2,3*$SZREG($sp) $REG_S $t1,2*$SZREG($sp) $REG_S $t0,1*$SZREG($sp) $REG_S $gp,0*$SZREG($sp) ___ $code.=<<___; .set reorder $LD $a_0,0($a1) $LD $a_1,$BNSZ($a1) $MULTU ($a_0,$a_0) # mul_add_c(a[0],b[0],c1,c2,c3); $LD $a_2,2*$BNSZ($a1) $LD $a_3,3*$BNSZ($a1) mflo ($c_1,$a_0,$a_0) mfhi ($c_2,$a_0,$a_0) $ST $c_1,0($a0) $MULTU ($a_0,$a_1) # mul_add_c2(a[0],b[1],c2,c3,c1); mflo ($t_1,$a_0,$a_1) mfhi ($t_2,$a_0,$a_1) slt $c_1,$t_2,$zero $SLL $t_2,1 $MULTU ($a_2,$a_0) # mul_add_c2(a[2],b[0],c3,c1,c2); slt $a2,$t_1,$zero $ADDU $t_2,$a2 $SLL $t_1,1 $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $ADDU $c_3,$t_2,$at $ST $c_2,$BNSZ($a0) mflo ($t_1,$a_2,$a_0) mfhi ($t_2,$a_2,$a_0) ___ &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, $a_1,$a_1); # mul_add_c(a[1],b[1],c3,c1,c2); $code.=<<___; $ADDU $c_3,$t_1 sltu $at,$c_3,$t_1 $MULTU ($a_0,$a_3) # mul_add_c2(a[0],b[3],c1,c2,c3); $ADDU $t_2,$at $ADDU $c_1,$t_2 sltu $at,$c_1,$t_2 $ADDU $c_2,$at $ST $c_3,2*$BNSZ($a0) mflo ($t_1,$a_0,$a_3) mfhi ($t_2,$a_0,$a_3) ___ &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, $a_1,$a_2); # mul_add_c2(a2[1],b[2],c1,c2,c3); &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, $a_3,$a_1); # mul_add_c2(a[3],b[1],c2,c3,c1); $code.=<<___; $ST $c_1,3*$BNSZ($a0) ___ &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, $a_2,$a_2); # mul_add_c(a[2],b[2],c2,c3,c1); $code.=<<___; $ADDU $c_2,$t_1 sltu $at,$c_2,$t_1 $MULTU ($a_2,$a_3) # mul_add_c2(a[2],b[3],c3,c1,c2); $ADDU $t_2,$at $ADDU $c_3,$t_2 sltu $at,$c_3,$t_2 $ADDU $c_1,$at $ST $c_2,4*$BNSZ($a0) mflo ($t_1,$a_2,$a_3) mfhi ($t_2,$a_2,$a_3) ___ &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, $a_3,$a_3); # mul_add_c(a[3],b[3],c1,c2,c3); $code.=<<___; $ST $c_3,5*$BNSZ($a0) $ADDU $c_1,$t_1 sltu $at,$c_1,$t_1 $ADDU $t_2,$at $ADDU $c_2,$t_2 $ST $c_1,6*$BNSZ($a0) $ST $c_2,7*$BNSZ($a0) .set noreorder ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $t3,4*$SZREG($sp) $REG_L $t2,3*$SZREG($sp) $REG_L $t1,2*$SZREG($sp) $REG_L $t0,1*$SZREG($sp) $REG_L $gp,0*$SZREG($sp) $PTR_ADD $sp,6*$SZREG ___ $code.=<<___; jr $ra nop .end bn_sqr_comba4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/parisc-mont.pl000066400000000000000000000656631364063235100206560ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # On PA-7100LC this module performs ~90-50% better, less for longer # keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means # that compiler utilized xmpyu instruction to perform 32x32=64-bit # multiplication, which in turn means that "baseline" performance was # optimal in respect to instruction set capabilities. Fair comparison # with vendor compiler is problematic, because OpenSSL doesn't define # BN_LLONG [presumably] for historical reasons, which drives compiler # toward 4 times 16x16=32-bit multiplications [plus complementary # shifts and additions] instead. This means that you should observe # several times improvement over code generated by vendor compiler # for PA-RISC 1.1, but the "baseline" is far from optimal. The actual # improvement coefficient was never collected on PA-7100LC, or any # other 1.1 CPU, because I don't have access to such machine with # vendor compiler. But to give you a taste, PA-RISC 1.1 code path # reportedly outperformed code generated by cc +DA1.1 +O3 by factor # of ~5x on PA-8600. # # On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is # reportedly ~2x faster than vendor compiler generated code [according # to comment in pa-risc2[W].s]. Here comes a catch. Execution core of # this implementation is actually 32-bit one, in the sense that it # operates on 32-bit values. But pa-risc2[W].s operates on arrays of # 64-bit BN_LONGs... How do they interoperate then? No problem. This # module picks halves of 64-bit values in reverse order and pretends # they were 32-bit BN_LONGs. But can 32-bit core compete with "pure" # 64-bit code such as pa-risc2[W].s then? Well, the thing is that # 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do, # i.e. there is no "wider" multiplication like on most other 64-bit # platforms. This means that even being effectively 32-bit, this # implementation performs "64-bit" computational task in same amount # of arithmetic operations, most notably multiplications. It requires # more memory references, most notably to tp[num], but this doesn't # seem to exhaust memory port capacity. And indeed, dedicated PA-RISC # 2.0 code path provides virtually same performance as pa-risc2[W].s: # it's ~10% better for shortest key length and ~10% worse for longest # one. # # In case it wasn't clear. The module has two distinct code paths: # PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit # additions and 64-bit integer loads, not to mention specific # instruction scheduling. In 64-bit build naturally only 2.0 code path # is assembled. In 32-bit application context both code paths are # assembled, PA-RISC 2.0 CPU is detected at run-time and proper path # is taken automatically. Also, in 32-bit build the module imposes # couple of limitations: vector lengths has to be even and vector # addresses has to be 64-bit aligned. Normally neither is a problem: # most common key lengths are even and vectors are commonly malloc-ed, # which ensures alignment. # # Special thanks to polarhome.com for providing HP-UX account on # PA-RISC 1.1 machine, and to correspondent who chose to remain # anonymous for testing the code on PA-RISC 2.0 machine. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $FRAME_MARKER =80; $SAVED_RP =16; $PUSH ="std"; $PUSHMA ="std,ma"; $POP ="ldd"; $POPMB ="ldd,mb"; $BN_SZ =$SIZE_T; } else { $LEVEL ="1.1"; #$LEVEL.="\n\t.ALLOW\t2.0"; $SIZE_T =4; $FRAME_MARKER =48; $SAVED_RP =20; $PUSH ="stw"; $PUSHMA ="stwm"; $POP ="ldw"; $POPMB ="ldwm"; $BN_SZ =$SIZE_T; if (open CONF,"<${dir}../../opensslconf.h") { while() { if (m/#\s*define\s+SIXTY_FOUR_BIT/) { $BN_SZ=8; $LEVEL="2.0"; last; } } close CONF; } } $FRAME=8*$SIZE_T+$FRAME_MARKER; # 8 saved regs + frame marker # [+ argument transfer] $LOCALS=$FRAME-$FRAME_MARKER; $FRAME+=32; # local variables $tp="%r31"; $ti1="%r29"; $ti0="%r28"; $rp="%r26"; $ap="%r25"; $bp="%r24"; $np="%r23"; $n0="%r22"; # passed through stack in 32-bit $num="%r21"; # passed through stack in 32-bit $idx="%r20"; $arrsz="%r19"; $nm1="%r7"; $nm0="%r6"; $ab1="%r5"; $ab0="%r4"; $fp="%r3"; $hi1="%r2"; $hi0="%r1"; $xfer=$n0; # accommodates [-16..15] offset in fld[dw]s $fm0="%fr4"; $fti=$fm0; $fbi="%fr5L"; $fn0="%fr5R"; $fai="%fr6"; $fab0="%fr7"; $fab1="%fr8"; $fni="%fr9"; $fnm0="%fr10"; $fnm1="%fr11"; $code=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR .ALIGN 64 bn_mul_mont .PROC .CALLINFO FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) ldo -$FRAME(%sp),$fp ___ $code.=<<___ if ($SIZE_T==4); ldw `-$FRAME_MARKER-4`($fp),$n0 ldw `-$FRAME_MARKER-8`($fp),$num nop nop ; alignment ___ $code.=<<___ if ($BN_SZ==4); comiclr,<= 6,$num,%r0 ; are vectors long enough? b L\$abort ldi 0,%r28 ; signal "unhandled" add,ev %r0,$num,$num ; is $num even? b L\$abort nop or $ap,$np,$ti1 extru,= $ti1,31,3,%r0 ; are ap and np 64-bit aligned? b L\$abort nop nop ; alignment nop fldws 0($n0),${fn0} fldws,ma 4($bp),${fbi} ; bp[0] ___ $code.=<<___ if ($BN_SZ==8); comib,> 3,$num,L\$abort ; are vectors long enough? ldi 0,%r28 ; signal "unhandled" addl $num,$num,$num ; I operate on 32-bit values fldws 4($n0),${fn0} ; only low part of n0 fldws 4($bp),${fbi} ; bp[0] in flipped word order ___ $code.=<<___; fldds 0($ap),${fai} ; ap[0,1] fldds 0($np),${fni} ; np[0,1] sh2addl $num,%r0,$arrsz ldi 31,$hi0 ldo 36($arrsz),$hi1 ; space for tp[num+1] andcm $hi1,$hi0,$hi1 ; align addl $hi1,%sp,%sp $PUSH $fp,-$SIZE_T(%sp) ldo `$LOCALS+16`($fp),$xfer ldo `$LOCALS+32+4`($fp),$tp xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[0] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[0] xmpyu ${fn0},${fab0}R,${fm0} addl $arrsz,$ap,$ap ; point at the end addl $arrsz,$np,$np subi 0,$arrsz,$idx ; j=0 ldo 8($idx),$idx ; j++++ xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) fstds ${fab1},0($xfer) fstds ${fnm1},8($xfer) flddx $idx($ap),${fai} ; ap[2,3] flddx $idx($np),${fni} ; np[2,3] ___ $code.=<<___ if ($BN_SZ==4); mtctl $hi0,%cr11 ; $hi0 still holds 31 extrd,u,*= $hi0,%sar,1,$hi0 ; executes on PA-RISC 1.0 b L\$parisc11 nop ___ $code.=<<___; # PA-RISC 2.0 code-path xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldd -16($xfer),$ab0 fstds ${fab0},-16($xfer) extrd,u $ab0,31,32,$hi0 extrd,u $ab0,63,32,$ab0 ldd -8($xfer),$nm0 fstds ${fnm0},-8($xfer) ldo 8($idx),$idx ; j++++ addl $ab0,$nm0,$nm0 ; low part is discarded extrd,u $nm0,31,32,$hi1 L\$1st xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,63,32,$ab1 addl $hi1,$nm1,$nm1 flddx $idx($ap),${fai} ; ap[j,j+1] flddx $idx($np),${fni} ; np[j,j+1] addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldd -16($xfer),$ab0 fstds ${fab0},-16($xfer) addl $hi0,$ab0,$ab0 extrd,u $ab0,31,32,$hi0 ldd -8($xfer),$nm0 fstds ${fnm0},-8($xfer) extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 stw $nm1,-4($tp) ; tp[j-1] addl $ab0,$nm0,$nm0 stw,ma $nm0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$1st ; j++++ extrd,u $nm0,31,32,$hi1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,63,32,$ab1 addl $hi1,$nm1,$nm1 ldd -16($xfer),$ab0 addl $ab1,$nm1,$nm1 ldd -8($xfer),$nm0 extrd,u $nm1,31,32,$hi1 addl $hi0,$ab0,$ab0 extrd,u $ab0,31,32,$hi0 stw $nm1,-4($tp) ; tp[j-1] extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 ldd 0($xfer),$ab1 addl $ab0,$nm0,$nm0 ldd,mb 8($xfer),$nm1 extrd,u $nm0,31,32,$hi1 stw,ma $nm0,8($tp) ; tp[j-1] ldo -1($num),$num ; i-- subi 0,$arrsz,$idx ; j=0 ___ $code.=<<___ if ($BN_SZ==4); fldws,ma 4($bp),${fbi} ; bp[1] ___ $code.=<<___ if ($BN_SZ==8); fldws 0($bp),${fbi} ; bp[1] in flipped word order ___ $code.=<<___; flddx $idx($ap),${fai} ; ap[0,1] flddx $idx($np),${fni} ; np[0,1] fldws 8($xfer),${fti}R ; tp[0] addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 fstws,mb ${fab0}L,-8($xfer) ; save high part stw $nm1,-4($tp) ; tp[j-1] fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L addl $hi1,$hi0,$hi0 extrd,u $hi0,31,32,$hi1 fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} stw $hi0,0($tp) stw $hi1,4($tp) fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int xmpyu ${fn0},${fab0}R,${fm0} ldo `$LOCALS+32+4`($fp),$tp L\$outer xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m fstds ${fab0},-16($xfer) ; 33-bit value fstds ${fnm0},-8($xfer) flddx $idx($ap),${fai} ; ap[2] flddx $idx($np),${fni} ; np[2] ldo 8($idx),$idx ; j++++ ldd -16($xfer),$ab0 ; 33-bit value ldd -8($xfer),$nm0 ldw 0($xfer),$hi0 ; high part xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m extrd,u $ab0,31,32,$ti0 ; carry bit extrd,u $ab0,63,32,$ab0 fstds ${fab1},0($xfer) addl $ti0,$hi0,$hi0 ; account carry bit fstds ${fnm1},8($xfer) addl $ab0,$nm0,$nm0 ; low part is discarded ldw 0($tp),$ti1 ; tp[1] extrd,u $nm0,31,32,$hi1 fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) L\$inner xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ti1,$ti1 addl $ti1,$ab1,$ab1 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 flddx $idx($ap),${fai} ; ap[j,j+1] flddx $idx($np),${fni} ; np[j,j+1] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 ldw 4($tp),$ti0 ; tp[j] stw $nm1,-4($tp) ; tp[j-1] xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldd -16($xfer),$ab0 fstds ${fab0},-16($xfer) addl $hi0,$ti0,$ti0 addl $ti0,$ab0,$ab0 ldd -8($xfer),$nm0 fstds ${fnm0},-8($xfer) extrd,u $ab0,31,32,$hi0 extrd,u $nm1,31,32,$hi1 ldw 8($tp),$ti1 ; tp[j] extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 addl $ab0,$nm0,$nm0 stw,ma $nm0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$inner ; j++++ extrd,u $nm0,31,32,$hi1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ti1,$ti1 addl $ti1,$ab1,$ab1 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldw 4($tp),$ti0 ; tp[j] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 ldd -16($xfer),$ab0 ldd -8($xfer),$nm0 extrd,u $nm1,31,32,$hi1 addl $hi0,$ab0,$ab0 addl $ti0,$ab0,$ab0 stw $nm1,-4($tp) ; tp[j-1] extrd,u $ab0,31,32,$hi0 ldw 8($tp),$ti1 ; tp[j] extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 ldd 0($xfer),$ab1 addl $ab0,$nm0,$nm0 ldd,mb 8($xfer),$nm1 extrd,u $nm0,31,32,$hi1 stw,ma $nm0,8($tp) ; tp[j-1] addib,= -1,$num,L\$outerdone ; i-- subi 0,$arrsz,$idx ; j=0 ___ $code.=<<___ if ($BN_SZ==4); fldws,ma 4($bp),${fbi} ; bp[i] ___ $code.=<<___ if ($BN_SZ==8); ldi 12,$ti0 ; bp[i] in flipped word order addl,ev %r0,$num,$num ldi -4,$ti0 addl $ti0,$bp,$bp fldws 0($bp),${fbi} ___ $code.=<<___; flddx $idx($ap),${fai} ; ap[0] addl $hi0,$ab1,$ab1 flddx $idx($np),${fni} ; np[0] fldws 8($xfer),${fti}R ; tp[0] addl $ti1,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] ldw 4($tp),$ti0 ; tp[j] addl $hi1,$nm1,$nm1 fstws,mb ${fab0}L,-8($xfer) ; save high part addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L stw $nm1,-4($tp) ; tp[j-1] fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} addl $hi1,$hi0,$hi0 fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] addl $ti0,$hi0,$hi0 extrd,u $hi0,31,32,$hi1 fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int stw $hi0,0($tp) stw $hi1,4($tp) xmpyu ${fn0},${fab0}R,${fm0} b L\$outer ldo `$LOCALS+32+4`($fp),$tp L\$outerdone addl $hi0,$ab1,$ab1 addl $ti1,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldw 4($tp),$ti0 ; tp[j] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 stw $nm1,-4($tp) ; tp[j-1] addl $hi1,$hi0,$hi0 addl $ti0,$hi0,$hi0 extrd,u $hi0,31,32,$hi1 stw $hi0,0($tp) stw $hi1,4($tp) ldo `$LOCALS+32`($fp),$tp sub %r0,%r0,%r0 ; clear borrow ___ $code.=<<___ if ($BN_SZ==4); ldws,ma 4($tp),$ti0 extru,= $rp,31,3,%r0 ; is rp 64-bit aligned? b L\$sub_pa11 addl $tp,$arrsz,$tp L\$sub ldwx $idx($np),$hi0 subb $ti0,$hi0,$hi1 ldwx $idx($tp),$ti0 addib,<> 4,$idx,L\$sub stws,ma $hi1,4($rp) subb $ti0,%r0,$hi1 ___ $code.=<<___ if ($BN_SZ==8); ldd,ma 8($tp),$ti0 L\$sub ldd $idx($np),$hi0 shrpd $ti0,$ti0,32,$ti0 ; flip word order std $ti0,-8($tp) ; save flipped value sub,db $ti0,$hi0,$hi1 ldd,ma 8($tp),$ti0 addib,<> 8,$idx,L\$sub std,ma $hi1,8($rp) extrd,u $ti0,31,32,$ti0 ; carry in flipped word order sub,db $ti0,%r0,$hi1 ___ $code.=<<___; ldo `$LOCALS+32`($fp),$tp sub $rp,$arrsz,$rp ; rewind rp subi 0,$arrsz,$idx L\$copy ldd 0($tp),$ti0 ldd 0($rp),$hi0 std,ma %r0,8($tp) comiclr,= 0,$hi1,%r0 copy $ti0,$hi0 addib,<> 8,$idx,L\$copy std,ma $hi0,8($rp) ___ if ($BN_SZ==4) { # PA-RISC 1.1 code-path $ablo=$ab0; $abhi=$ab1; $nmlo0=$nm0; $nmhi0=$nm1; $nmlo1="%r9"; $nmhi1="%r8"; $code.=<<___; b L\$done nop .ALIGN 8 L\$parisc11 xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw -12($xfer),$ablo ldw -16($xfer),$hi0 ldw -4($xfer),$nmlo0 ldw -8($xfer),$nmhi0 fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) ldo 8($idx),$idx ; j++++ add $ablo,$nmlo0,$nmlo0 ; discarded addc %r0,$nmhi0,$hi1 ldw 4($xfer),$ablo ldw 0($xfer),$abhi nop L\$1st_pa11 xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] flddx $idx($ap),${fai} ; ap[j,j+1] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m flddx $idx($np),${fni} ; np[j,j+1] add $hi0,$ablo,$ablo ldw 12($xfer),$nmlo1 addc %r0,$abhi,$hi0 ldw 8($xfer),$nmhi1 add $ablo,$nmlo1,$nmlo1 fstds ${fab1},0($xfer) addc %r0,$nmhi1,$nmhi1 fstds ${fnm1},8($xfer) add $hi1,$nmlo1,$nmlo1 ldw -12($xfer),$ablo addc %r0,$nmhi1,$hi1 ldw -16($xfer),$abhi xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] ldw -4($xfer),$nmlo0 xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw -8($xfer),$nmhi0 add $hi0,$ablo,$ablo stw $nmlo1,-4($tp) ; tp[j-1] addc %r0,$abhi,$hi0 fstds ${fab0},-16($xfer) add $ablo,$nmlo0,$nmlo0 fstds ${fnm0},-8($xfer) addc %r0,$nmhi0,$nmhi0 ldw 0($xfer),$abhi add $hi1,$nmlo0,$nmlo0 ldw 4($xfer),$ablo stws,ma $nmlo0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$1st_pa11 ; j++++ addc %r0,$nmhi0,$hi1 ldw 8($xfer),$nmhi1 ldw 12($xfer),$nmlo1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m add $hi0,$ablo,$ablo fstds ${fab1},0($xfer) addc %r0,$abhi,$hi0 fstds ${fnm1},8($xfer) add $ablo,$nmlo1,$nmlo1 ldw -16($xfer),$abhi addc %r0,$nmhi1,$nmhi1 ldw -12($xfer),$ablo add $hi1,$nmlo1,$nmlo1 ldw -8($xfer),$nmhi0 addc %r0,$nmhi1,$hi1 ldw -4($xfer),$nmlo0 add $hi0,$ablo,$ablo stw $nmlo1,-4($tp) ; tp[j-1] addc %r0,$abhi,$hi0 ldw 0($xfer),$abhi add $ablo,$nmlo0,$nmlo0 ldw 4($xfer),$ablo addc %r0,$nmhi0,$nmhi0 ldws,mb 8($xfer),$nmhi1 add $hi1,$nmlo0,$nmlo0 ldw 4($xfer),$nmlo1 addc %r0,$nmhi0,$hi1 stws,ma $nmlo0,8($tp) ; tp[j-1] ldo -1($num),$num ; i-- subi 0,$arrsz,$idx ; j=0 fldws,ma 4($bp),${fbi} ; bp[1] flddx $idx($ap),${fai} ; ap[0,1] flddx $idx($np),${fni} ; np[0,1] fldws 8($xfer),${fti}R ; tp[0] add $hi0,$ablo,$ablo addc %r0,$abhi,$hi0 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] add $hi1,$nmlo1,$nmlo1 addc %r0,$nmhi1,$nmhi1 add $ablo,$nmlo1,$nmlo1 addc %r0,$nmhi1,$hi1 fstws,mb ${fab0}L,-8($xfer) ; save high part stw $nmlo1,-4($tp) ; tp[j-1] fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L add $hi1,$hi0,$hi0 addc %r0,%r0,$hi1 fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} stw $hi0,0($tp) stw $hi1,4($tp) fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int xmpyu ${fn0},${fab0}R,${fm0} ldo `$LOCALS+32+4`($fp),$tp L\$outer_pa11 xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m fstds ${fab0},-16($xfer) ; 33-bit value fstds ${fnm0},-8($xfer) flddx $idx($ap),${fai} ; ap[2,3] flddx $idx($np),${fni} ; np[2,3] ldw -16($xfer),$abhi ; carry bit actually ldo 8($idx),$idx ; j++++ ldw -12($xfer),$ablo ldw -8($xfer),$nmhi0 ldw -4($xfer),$nmlo0 ldw 0($xfer),$hi0 ; high part xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m fstds ${fab1},0($xfer) addl $abhi,$hi0,$hi0 ; account carry bit fstds ${fnm1},8($xfer) add $ablo,$nmlo0,$nmlo0 ; discarded ldw 0($tp),$ti1 ; tp[1] addc %r0,$nmhi0,$hi1 fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) ldw 4($xfer),$ablo ldw 0($xfer),$abhi L\$inner_pa11 xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] flddx $idx($ap),${fai} ; ap[j,j+1] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m flddx $idx($np),${fni} ; np[j,j+1] add $hi0,$ablo,$ablo ldw 4($tp),$ti0 ; tp[j] addc %r0,$abhi,$abhi ldw 12($xfer),$nmlo1 add $ti1,$ablo,$ablo ldw 8($xfer),$nmhi1 addc %r0,$abhi,$hi0 fstds ${fab1},0($xfer) add $ablo,$nmlo1,$nmlo1 fstds ${fnm1},8($xfer) addc %r0,$nmhi1,$nmhi1 ldw -12($xfer),$ablo add $hi1,$nmlo1,$nmlo1 ldw -16($xfer),$abhi addc %r0,$nmhi1,$hi1 xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] ldw 8($tp),$ti1 ; tp[j] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw -4($xfer),$nmlo0 add $hi0,$ablo,$ablo ldw -8($xfer),$nmhi0 addc %r0,$abhi,$abhi stw $nmlo1,-4($tp) ; tp[j-1] add $ti0,$ablo,$ablo fstds ${fab0},-16($xfer) addc %r0,$abhi,$hi0 fstds ${fnm0},-8($xfer) add $ablo,$nmlo0,$nmlo0 ldw 4($xfer),$ablo addc %r0,$nmhi0,$nmhi0 ldw 0($xfer),$abhi add $hi1,$nmlo0,$nmlo0 stws,ma $nmlo0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$inner_pa11 ; j++++ addc %r0,$nmhi0,$hi1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] ldw 12($xfer),$nmlo1 xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m ldw 8($xfer),$nmhi1 add $hi0,$ablo,$ablo ldw 4($tp),$ti0 ; tp[j] addc %r0,$abhi,$abhi fstds ${fab1},0($xfer) add $ti1,$ablo,$ablo fstds ${fnm1},8($xfer) addc %r0,$abhi,$hi0 ldw -16($xfer),$abhi add $ablo,$nmlo1,$nmlo1 ldw -12($xfer),$ablo addc %r0,$nmhi1,$nmhi1 ldw -8($xfer),$nmhi0 add $hi1,$nmlo1,$nmlo1 ldw -4($xfer),$nmlo0 addc %r0,$nmhi1,$hi1 add $hi0,$ablo,$ablo stw $nmlo1,-4($tp) ; tp[j-1] addc %r0,$abhi,$abhi add $ti0,$ablo,$ablo ldw 8($tp),$ti1 ; tp[j] addc %r0,$abhi,$hi0 ldw 0($xfer),$abhi add $ablo,$nmlo0,$nmlo0 ldw 4($xfer),$ablo addc %r0,$nmhi0,$nmhi0 ldws,mb 8($xfer),$nmhi1 add $hi1,$nmlo0,$nmlo0 ldw 4($xfer),$nmlo1 addc %r0,$nmhi0,$hi1 stws,ma $nmlo0,8($tp) ; tp[j-1] addib,= -1,$num,L\$outerdone_pa11; i-- subi 0,$arrsz,$idx ; j=0 fldws,ma 4($bp),${fbi} ; bp[i] flddx $idx($ap),${fai} ; ap[0] add $hi0,$ablo,$ablo addc %r0,$abhi,$abhi flddx $idx($np),${fni} ; np[0] fldws 8($xfer),${fti}R ; tp[0] add $ti1,$ablo,$ablo addc %r0,$abhi,$hi0 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] ldw 4($tp),$ti0 ; tp[j] add $hi1,$nmlo1,$nmlo1 addc %r0,$nmhi1,$nmhi1 fstws,mb ${fab0}L,-8($xfer) ; save high part add $ablo,$nmlo1,$nmlo1 addc %r0,$nmhi1,$hi1 fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L stw $nmlo1,-4($tp) ; tp[j-1] fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} add $hi1,$hi0,$hi0 addc %r0,%r0,$hi1 fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] add $ti0,$hi0,$hi0 addc %r0,$hi1,$hi1 fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int stw $hi0,0($tp) stw $hi1,4($tp) xmpyu ${fn0},${fab0}R,${fm0} b L\$outer_pa11 ldo `$LOCALS+32+4`($fp),$tp L\$outerdone_pa11 add $hi0,$ablo,$ablo addc %r0,$abhi,$abhi add $ti1,$ablo,$ablo addc %r0,$abhi,$hi0 ldw 4($tp),$ti0 ; tp[j] add $hi1,$nmlo1,$nmlo1 addc %r0,$nmhi1,$nmhi1 add $ablo,$nmlo1,$nmlo1 addc %r0,$nmhi1,$hi1 stw $nmlo1,-4($tp) ; tp[j-1] add $hi1,$hi0,$hi0 addc %r0,%r0,$hi1 add $ti0,$hi0,$hi0 addc %r0,$hi1,$hi1 stw $hi0,0($tp) stw $hi1,4($tp) ldo `$LOCALS+32+4`($fp),$tp sub %r0,%r0,%r0 ; clear borrow ldw -4($tp),$ti0 addl $tp,$arrsz,$tp L\$sub_pa11 ldwx $idx($np),$hi0 subb $ti0,$hi0,$hi1 ldwx $idx($tp),$ti0 addib,<> 4,$idx,L\$sub_pa11 stws,ma $hi1,4($rp) subb $ti0,%r0,$hi1 ldo `$LOCALS+32`($fp),$tp sub $rp,$arrsz,$rp ; rewind rp subi 0,$arrsz,$idx L\$copy_pa11 ldw 0($tp),$ti0 ldw 0($rp),$hi0 stws,ma %r0,4($tp) comiclr,= 0,$hi1,%r0 copy $ti0,$hi0 addib,<> 4,$idx,L\$copy_pa11 stws,ma $hi0,4($rp) nop ; alignment L\$done ___ } $code.=<<___; ldi 1,%r28 ; signal "handled" ldo $FRAME($fp),%sp ; destroy tp[num+1] $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 L\$abort bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .STRINGZ "Montgomery Multiplication for PA-RISC, CRYPTOGAMS by " ___ # Explicitly encode PA-RISC 2.0 instructions used in this module, so # that it can be compiled with .LEVEL 1.0. It should be noted that I # wouldn't have to do this, if GNU assembler understood .ALLOW 2.0 # directive... my $ldd = sub { my ($mod,$args) = @_; my $orig = "ldd$mod\t$args"; if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4 { my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3; sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5 { my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3; $opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset $opcode|=(1<<5) if ($mod =~ /^,m/); $opcode|=(1<<13) if ($mod =~ /^,mb/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $std = sub { my ($mod,$args) = @_; my $orig = "std$mod\t$args"; if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 6 { my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6); $opcode|=(($2&0xF)<<1)|(($2&0x10)>>4); # encode offset $opcode|=(1<<5) if ($mod =~ /^,m/); $opcode|=(1<<13) if ($mod =~ /^,mb/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $extrd = sub { my ($mod,$args) = @_; my $orig = "extrd$mod\t$args"; # I only have ",u" completer, it's implicitly encoded... if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15 { my $opcode=(0x36<<26)|($1<<21)|($4<<16); my $len=32-$3; $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12 { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9); my $len=32-$2; $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len $opcode |= (1<<13) if ($mod =~ /,\**=/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $shrpd = sub { my ($mod,$args) = @_; my $orig = "shrpd$mod\t$args"; if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14 { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4; my $cpos=63-$3; $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $sub = sub { my ($mod,$args) = @_; my $orig = "sub$mod\t$args"; if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) { my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3; $opcode|=(1<<10); # e1 $opcode|=(1<<8); # e2 $opcode|=(1<<5); # d sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig } else { "\t".$orig; } }; sub assemble { my ($mnemonic,$mod,$args)=@_; my $opcode = eval("\$$mnemonic"); ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args"; } if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler/) { $gnuas = 1; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; # flip word order in 64-bit mode... s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8); # assemble 2.0 instructions in 32-bit mode... s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4); s/(\.LEVEL\s+2\.0)W/$1w/ if ($gnuas && $SIZE_T==8); s/\.SPACE\s+\$TEXT\$/.text/ if ($gnuas && $SIZE_T==8); s/\.SUBSPA.*// if ($gnuas && $SIZE_T==8); s/\bbv\b/bve/ if ($SIZE_T==8); print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/ppc-mont.pl000066400000000000000000001371431364063235100201500ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # April 2006 # "Teaser" Montgomery multiplication module for PowerPC. It's possible # to gain a bit more by modulo-scheduling outer loop, then dedicated # squaring procedure should give further 20% and code can be adapted # for 32-bit application running on 64-bit CPU. As for the latter. # It won't be able to achieve "native" 64-bit performance, because in # 32-bit application context every addc instruction will have to be # expanded as addc, twice right shift by 32 and finally adde, etc. # So far RSA *sign* performance improvement over pre-bn_mul_mont asm # for 64-bit application running on PPC970/G5 is: # # 512-bit +65% # 1024-bit +35% # 2048-bit +18% # 4096-bit +4% # September 2016 # # Add multiplication procedure operating on lengths divisible by 4 # and squaring procedure operating on lengths divisible by 8. Length # is expressed in number of limbs. RSA private key operations are # ~35-50% faster (more for longer keys) on contemporary high-end POWER # processors in 64-bit builds, [mysteriously enough] more in 32-bit # builds. On low-end 32-bit processors performance improvement turned # to be marginal... $flavour = shift; if ($flavour =~ /32/) { $BITS= 32; $BNSZ= $BITS/8; $SIZE_T=4; $RZONE= 224; $LD= "lwz"; # load $LDU= "lwzu"; # load and update $LDX= "lwzx"; # load indexed $ST= "stw"; # store $STU= "stwu"; # store and update $STX= "stwx"; # store indexed $STUX= "stwux"; # store indexed and update $UMULL= "mullw"; # unsigned multiply low $UMULH= "mulhwu"; # unsigned multiply high $UCMP= "cmplw"; # unsigned compare $SHRI= "srwi"; # unsigned shift right by immediate $SHLI= "slwi"; # unsigned shift left by immediate $PUSH= $ST; $POP= $LD; } elsif ($flavour =~ /64/) { $BITS= 64; $BNSZ= $BITS/8; $SIZE_T=8; $RZONE= 288; # same as above, but 64-bit mnemonics... $LD= "ld"; # load $LDU= "ldu"; # load and update $LDX= "ldx"; # load indexed $ST= "std"; # store $STU= "stdu"; # store and update $STX= "stdx"; # store indexed $STUX= "stdux"; # store indexed and update $UMULL= "mulld"; # unsigned multiply low $UMULH= "mulhdu"; # unsigned multiply high $UCMP= "cmpld"; # unsigned compare $SHRI= "srdi"; # unsigned shift right by immediate $SHLI= "sldi"; # unsigned shift left by immediate $PUSH= $ST; $POP= $LD; } else { die "nonsense $flavour"; } $FRAME=8*$SIZE_T+$RZONE; $LOCALS=8*$SIZE_T; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $sp="r1"; $toc="r2"; $rp="r3"; $ap="r4"; $bp="r5"; $np="r6"; $n0="r7"; $num="r8"; { my $ovf=$rp; my $rp="r9"; # $rp is reassigned my $aj="r10"; my $nj="r11"; my $tj="r12"; # non-volatile registers my $i="r20"; my $j="r21"; my $tp="r22"; my $m0="r23"; my $m1="r24"; my $lo0="r25"; my $hi0="r26"; my $lo1="r27"; my $hi1="r28"; my $alo="r29"; my $ahi="r30"; my $nlo="r31"; # my $nhi="r0"; $code=<<___; .machine "any" .text .globl .bn_mul_mont_int .align 5 .bn_mul_mont_int: mr $rp,r3 ; $rp is reassigned li r3,0 ___ $code.=<<___ if ($BNSZ==4); cmpwi $num,32 ; longer key performance is not better bgelr ___ $code.=<<___; slwi $num,$num,`log($BNSZ)/log(2)` li $tj,-4096 addi $ovf,$num,$FRAME subf $ovf,$ovf,$sp ; $sp-$ovf and $ovf,$ovf,$tj ; minimize TLB usage subf $ovf,$sp,$ovf ; $ovf-$sp mr $tj,$sp srwi $num,$num,`log($BNSZ)/log(2)` $STUX $sp,$sp,$ovf $PUSH r20,`-12*$SIZE_T`($tj) $PUSH r21,`-11*$SIZE_T`($tj) $PUSH r22,`-10*$SIZE_T`($tj) $PUSH r23,`-9*$SIZE_T`($tj) $PUSH r24,`-8*$SIZE_T`($tj) $PUSH r25,`-7*$SIZE_T`($tj) $PUSH r26,`-6*$SIZE_T`($tj) $PUSH r27,`-5*$SIZE_T`($tj) $PUSH r28,`-4*$SIZE_T`($tj) $PUSH r29,`-3*$SIZE_T`($tj) $PUSH r30,`-2*$SIZE_T`($tj) $PUSH r31,`-1*$SIZE_T`($tj) $LD $n0,0($n0) ; pull n0[0] value addi $num,$num,-2 ; adjust $num for counter register $LD $m0,0($bp) ; m0=bp[0] $LD $aj,0($ap) ; ap[0] addi $tp,$sp,$LOCALS $UMULL $lo0,$aj,$m0 ; ap[0]*bp[0] $UMULH $hi0,$aj,$m0 $LD $aj,$BNSZ($ap) ; ap[1] $LD $nj,0($np) ; np[0] $UMULL $m1,$lo0,$n0 ; "tp[0]"*n0 $UMULL $alo,$aj,$m0 ; ap[1]*bp[0] $UMULH $ahi,$aj,$m0 $UMULL $lo1,$nj,$m1 ; np[0]*m1 $UMULH $hi1,$nj,$m1 $LD $nj,$BNSZ($np) ; np[1] addc $lo1,$lo1,$lo0 addze $hi1,$hi1 $UMULL $nlo,$nj,$m1 ; np[1]*m1 $UMULH $nhi,$nj,$m1 mtctr $num li $j,`2*$BNSZ` .align 4 L1st: $LDX $aj,$ap,$j ; ap[j] addc $lo0,$alo,$hi0 $LDX $nj,$np,$j ; np[j] addze $hi0,$ahi $UMULL $alo,$aj,$m0 ; ap[j]*bp[0] addc $lo1,$nlo,$hi1 $UMULH $ahi,$aj,$m0 addze $hi1,$nhi $UMULL $nlo,$nj,$m1 ; np[j]*m1 addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] $UMULH $nhi,$nj,$m1 addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] addi $j,$j,$BNSZ ; j++ addi $tp,$tp,$BNSZ ; tp++ bdnz L1st ;L1st addc $lo0,$alo,$hi0 addze $hi0,$ahi addc $lo1,$nlo,$hi1 addze $hi1,$nhi addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] li $ovf,0 addc $hi1,$hi1,$hi0 addze $ovf,$ovf ; upmost overflow bit $ST $hi1,$BNSZ($tp) li $i,$BNSZ .align 4 Louter: $LDX $m0,$bp,$i ; m0=bp[i] $LD $aj,0($ap) ; ap[0] addi $tp,$sp,$LOCALS $LD $tj,$LOCALS($sp); tp[0] $UMULL $lo0,$aj,$m0 ; ap[0]*bp[i] $UMULH $hi0,$aj,$m0 $LD $aj,$BNSZ($ap) ; ap[1] $LD $nj,0($np) ; np[0] addc $lo0,$lo0,$tj ; ap[0]*bp[i]+tp[0] $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] addze $hi0,$hi0 $UMULL $m1,$lo0,$n0 ; tp[0]*n0 $UMULH $ahi,$aj,$m0 $UMULL $lo1,$nj,$m1 ; np[0]*m1 $UMULH $hi1,$nj,$m1 $LD $nj,$BNSZ($np) ; np[1] addc $lo1,$lo1,$lo0 $UMULL $nlo,$nj,$m1 ; np[1]*m1 addze $hi1,$hi1 $UMULH $nhi,$nj,$m1 mtctr $num li $j,`2*$BNSZ` .align 4 Linner: $LDX $aj,$ap,$j ; ap[j] addc $lo0,$alo,$hi0 $LD $tj,$BNSZ($tp) ; tp[j] addze $hi0,$ahi $LDX $nj,$np,$j ; np[j] addc $lo1,$nlo,$hi1 $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] addze $hi1,$nhi $UMULH $ahi,$aj,$m0 addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] $UMULL $nlo,$nj,$m1 ; np[j]*m1 addze $hi0,$hi0 $UMULH $nhi,$nj,$m1 addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] addi $j,$j,$BNSZ ; j++ addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] addi $tp,$tp,$BNSZ ; tp++ bdnz Linner ;Linner $LD $tj,$BNSZ($tp) ; tp[j] addc $lo0,$alo,$hi0 addze $hi0,$ahi addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] addze $hi0,$hi0 addc $lo1,$nlo,$hi1 addze $hi1,$nhi addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] addic $ovf,$ovf,-1 ; move upmost overflow to XER[CA] li $ovf,0 adde $hi1,$hi1,$hi0 addze $ovf,$ovf $ST $hi1,$BNSZ($tp) ; slwi $tj,$num,`log($BNSZ)/log(2)` $UCMP $i,$tj addi $i,$i,$BNSZ ble Louter addi $num,$num,2 ; restore $num subfc $j,$j,$j ; j=0 and "clear" XER[CA] addi $tp,$sp,$LOCALS mtctr $num .align 4 Lsub: $LDX $tj,$tp,$j $LDX $nj,$np,$j subfe $aj,$nj,$tj ; tp[j]-np[j] $STX $aj,$rp,$j addi $j,$j,$BNSZ bdnz Lsub li $j,0 mtctr $num subfe $ovf,$j,$ovf ; handle upmost overflow bit .align 4 Lcopy: ; conditional copy $LDX $tj,$tp,$j $LDX $aj,$rp,$j and $tj,$tj,$ovf andc $aj,$aj,$ovf $STX $j,$tp,$j ; zap at once or $aj,$aj,$tj $STX $aj,$rp,$j addi $j,$j,$BNSZ bdnz Lcopy $POP $tj,0($sp) li r3,1 $POP r20,`-12*$SIZE_T`($tj) $POP r21,`-11*$SIZE_T`($tj) $POP r22,`-10*$SIZE_T`($tj) $POP r23,`-9*$SIZE_T`($tj) $POP r24,`-8*$SIZE_T`($tj) $POP r25,`-7*$SIZE_T`($tj) $POP r26,`-6*$SIZE_T`($tj) $POP r27,`-5*$SIZE_T`($tj) $POP r28,`-4*$SIZE_T`($tj) $POP r29,`-3*$SIZE_T`($tj) $POP r30,`-2*$SIZE_T`($tj) $POP r31,`-1*$SIZE_T`($tj) mr $sp,$tj blr .long 0 .byte 0,12,4,0,0x80,12,6,0 .long 0 .size .bn_mul_mont_int,.-.bn_mul_mont_int ___ } if (1) { my ($a0,$a1,$a2,$a3, $t0,$t1,$t2,$t3, $m0,$m1,$m2,$m3, $acc0,$acc1,$acc2,$acc3,$acc4, $bi,$mi,$tp,$ap_end,$cnt) = map("r$_",(9..12,14..31)); my ($carry,$zero) = ($rp,"r0"); # sp----------->+-------------------------------+ # | saved sp | # +-------------------------------+ # . . # +8*size_t +-------------------------------+ # | 4 "n0*t0" | # . . # . . # +12*size_t +-------------------------------+ # | size_t tmp[num] | # . . # . . # . . # +-------------------------------+ # | topmost carry | # . . # -18*size_t +-------------------------------+ # | 18 saved gpr, r14-r31 | # . . # . . # +-------------------------------+ $code.=<<___; .globl .bn_mul4x_mont_int .align 5 .bn_mul4x_mont_int: andi. r0,$num,7 bne .Lmul4x_do $UCMP $ap,$bp bne .Lmul4x_do b .Lsqr8x_do .Lmul4x_do: slwi $num,$num,`log($SIZE_T)/log(2)` mr $a0,$sp li $a1,-32*$SIZE_T sub $a1,$a1,$num $STUX $sp,$sp,$a1 # alloca $PUSH r14,-$SIZE_T*18($a0) $PUSH r15,-$SIZE_T*17($a0) $PUSH r16,-$SIZE_T*16($a0) $PUSH r17,-$SIZE_T*15($a0) $PUSH r18,-$SIZE_T*14($a0) $PUSH r19,-$SIZE_T*13($a0) $PUSH r20,-$SIZE_T*12($a0) $PUSH r21,-$SIZE_T*11($a0) $PUSH r22,-$SIZE_T*10($a0) $PUSH r23,-$SIZE_T*9($a0) $PUSH r24,-$SIZE_T*8($a0) $PUSH r25,-$SIZE_T*7($a0) $PUSH r26,-$SIZE_T*6($a0) $PUSH r27,-$SIZE_T*5($a0) $PUSH r28,-$SIZE_T*4($a0) $PUSH r29,-$SIZE_T*3($a0) $PUSH r30,-$SIZE_T*2($a0) $PUSH r31,-$SIZE_T*1($a0) subi $ap,$ap,$SIZE_T # bias by -1 subi $np,$np,$SIZE_T # bias by -1 subi $rp,$rp,$SIZE_T # bias by -1 $LD $n0,0($n0) # *n0 add $t0,$bp,$num add $ap_end,$ap,$num subi $t0,$t0,$SIZE_T*4 # &b[num-4] $LD $bi,$SIZE_T*0($bp) # b[0] li $acc0,0 $LD $a0,$SIZE_T*1($ap) # a[0..3] li $acc1,0 $LD $a1,$SIZE_T*2($ap) li $acc2,0 $LD $a2,$SIZE_T*3($ap) li $acc3,0 $LDU $a3,$SIZE_T*4($ap) $LD $m0,$SIZE_T*1($np) # n[0..3] $LD $m1,$SIZE_T*2($np) $LD $m2,$SIZE_T*3($np) $LDU $m3,$SIZE_T*4($np) $PUSH $rp,$SIZE_T*6($sp) # offload rp and &b[num-4] $PUSH $t0,$SIZE_T*7($sp) li $carry,0 addic $tp,$sp,$SIZE_T*7 # &t[-1], clear carry bit li $cnt,0 li $zero,0 b .Loop_mul4x_1st_reduction .align 5 .Loop_mul4x_1st_reduction: $UMULL $t0,$a0,$bi # lo(a[0..3]*b[0]) addze $carry,$carry # modulo-scheduled $UMULL $t1,$a1,$bi addi $cnt,$cnt,$SIZE_T $UMULL $t2,$a2,$bi andi. $cnt,$cnt,$SIZE_T*4-1 $UMULL $t3,$a3,$bi addc $acc0,$acc0,$t0 $UMULH $t0,$a0,$bi # hi(a[0..3]*b[0]) adde $acc1,$acc1,$t1 $UMULH $t1,$a1,$bi adde $acc2,$acc2,$t2 $UMULL $mi,$acc0,$n0 # t[0]*n0 adde $acc3,$acc3,$t3 $UMULH $t2,$a2,$bi addze $acc4,$zero $UMULH $t3,$a3,$bi $LDX $bi,$bp,$cnt # next b[i] (or b[0]) addc $acc1,$acc1,$t0 # (*) mul $t0,$m0,$mi # lo(n[0..3]*t[0]*n0) $STU $mi,$SIZE_T($tp) # put aside t[0]*n0 for tail processing adde $acc2,$acc2,$t1 $UMULL $t1,$m1,$mi adde $acc3,$acc3,$t2 $UMULL $t2,$m2,$mi adde $acc4,$acc4,$t3 # can't overflow $UMULL $t3,$m3,$mi # (*) addc $acc0,$acc0,$t0 # (*) As for removal of first multiplication and addition # instructions. The outcome of first addition is # guaranteed to be zero, which leaves two computationally # significant outcomes: it either carries or not. Then # question is when does it carry? Is there alternative # way to deduce it? If you follow operations, you can # observe that condition for carry is quite simple: # $acc0 being non-zero. So that carry can be calculated # by adding -1 to $acc0. That's what next instruction does. addic $acc0,$acc0,-1 # (*), discarded $UMULH $t0,$m0,$mi # hi(n[0..3]*t[0]*n0) adde $acc0,$acc1,$t1 $UMULH $t1,$m1,$mi adde $acc1,$acc2,$t2 $UMULH $t2,$m2,$mi adde $acc2,$acc3,$t3 $UMULH $t3,$m3,$mi adde $acc3,$acc4,$carry addze $carry,$zero addc $acc0,$acc0,$t0 adde $acc1,$acc1,$t1 adde $acc2,$acc2,$t2 adde $acc3,$acc3,$t3 #addze $carry,$carry bne .Loop_mul4x_1st_reduction $UCMP $ap_end,$ap beq .Lmul4x4_post_condition $LD $a0,$SIZE_T*1($ap) # a[4..7] $LD $a1,$SIZE_T*2($ap) $LD $a2,$SIZE_T*3($ap) $LDU $a3,$SIZE_T*4($ap) $LD $mi,$SIZE_T*8($sp) # a[0]*n0 $LD $m0,$SIZE_T*1($np) # n[4..7] $LD $m1,$SIZE_T*2($np) $LD $m2,$SIZE_T*3($np) $LDU $m3,$SIZE_T*4($np) b .Loop_mul4x_1st_tail .align 5 .Loop_mul4x_1st_tail: $UMULL $t0,$a0,$bi # lo(a[4..7]*b[i]) addze $carry,$carry # modulo-scheduled $UMULL $t1,$a1,$bi addi $cnt,$cnt,$SIZE_T $UMULL $t2,$a2,$bi andi. $cnt,$cnt,$SIZE_T*4-1 $UMULL $t3,$a3,$bi addc $acc0,$acc0,$t0 $UMULH $t0,$a0,$bi # hi(a[4..7]*b[i]) adde $acc1,$acc1,$t1 $UMULH $t1,$a1,$bi adde $acc2,$acc2,$t2 $UMULH $t2,$a2,$bi adde $acc3,$acc3,$t3 $UMULH $t3,$a3,$bi addze $acc4,$zero $LDX $bi,$bp,$cnt # next b[i] (or b[0]) addc $acc1,$acc1,$t0 $UMULL $t0,$m0,$mi # lo(n[4..7]*a[0]*n0) adde $acc2,$acc2,$t1 $UMULL $t1,$m1,$mi adde $acc3,$acc3,$t2 $UMULL $t2,$m2,$mi adde $acc4,$acc4,$t3 # can't overflow $UMULL $t3,$m3,$mi addc $acc0,$acc0,$t0 $UMULH $t0,$m0,$mi # hi(n[4..7]*a[0]*n0) adde $acc1,$acc1,$t1 $UMULH $t1,$m1,$mi adde $acc2,$acc2,$t2 $UMULH $t2,$m2,$mi adde $acc3,$acc3,$t3 adde $acc4,$acc4,$carry $UMULH $t3,$m3,$mi addze $carry,$zero addi $mi,$sp,$SIZE_T*8 $LDX $mi,$mi,$cnt # next t[0]*n0 $STU $acc0,$SIZE_T($tp) # word of result addc $acc0,$acc1,$t0 adde $acc1,$acc2,$t1 adde $acc2,$acc3,$t2 adde $acc3,$acc4,$t3 #addze $carry,$carry bne .Loop_mul4x_1st_tail sub $t1,$ap_end,$num # rewinded $ap $UCMP $ap_end,$ap # done yet? beq .Lmul4x_proceed $LD $a0,$SIZE_T*1($ap) $LD $a1,$SIZE_T*2($ap) $LD $a2,$SIZE_T*3($ap) $LDU $a3,$SIZE_T*4($ap) $LD $m0,$SIZE_T*1($np) $LD $m1,$SIZE_T*2($np) $LD $m2,$SIZE_T*3($np) $LDU $m3,$SIZE_T*4($np) b .Loop_mul4x_1st_tail .align 5 .Lmul4x_proceed: $LDU $bi,$SIZE_T*4($bp) # *++b addze $carry,$carry # topmost carry $LD $a0,$SIZE_T*1($t1) $LD $a1,$SIZE_T*2($t1) $LD $a2,$SIZE_T*3($t1) $LD $a3,$SIZE_T*4($t1) addi $ap,$t1,$SIZE_T*4 sub $np,$np,$num # rewind np $ST $acc0,$SIZE_T*1($tp) # result $ST $acc1,$SIZE_T*2($tp) $ST $acc2,$SIZE_T*3($tp) $ST $acc3,$SIZE_T*4($tp) $ST $carry,$SIZE_T*5($tp) # save topmost carry $LD $acc0,$SIZE_T*12($sp) # t[0..3] $LD $acc1,$SIZE_T*13($sp) $LD $acc2,$SIZE_T*14($sp) $LD $acc3,$SIZE_T*15($sp) $LD $m0,$SIZE_T*1($np) # n[0..3] $LD $m1,$SIZE_T*2($np) $LD $m2,$SIZE_T*3($np) $LDU $m3,$SIZE_T*4($np) addic $tp,$sp,$SIZE_T*7 # &t[-1], clear carry bit li $carry,0 b .Loop_mul4x_reduction .align 5 .Loop_mul4x_reduction: $UMULL $t0,$a0,$bi # lo(a[0..3]*b[4]) addze $carry,$carry # modulo-scheduled $UMULL $t1,$a1,$bi addi $cnt,$cnt,$SIZE_T $UMULL $t2,$a2,$bi andi. $cnt,$cnt,$SIZE_T*4-1 $UMULL $t3,$a3,$bi addc $acc0,$acc0,$t0 $UMULH $t0,$a0,$bi # hi(a[0..3]*b[4]) adde $acc1,$acc1,$t1 $UMULH $t1,$a1,$bi adde $acc2,$acc2,$t2 $UMULL $mi,$acc0,$n0 # t[0]*n0 adde $acc3,$acc3,$t3 $UMULH $t2,$a2,$bi addze $acc4,$zero $UMULH $t3,$a3,$bi $LDX $bi,$bp,$cnt # next b[i] addc $acc1,$acc1,$t0 # (*) mul $t0,$m0,$mi $STU $mi,$SIZE_T($tp) # put aside t[0]*n0 for tail processing adde $acc2,$acc2,$t1 $UMULL $t1,$m1,$mi # lo(n[0..3]*t[0]*n0 adde $acc3,$acc3,$t2 $UMULL $t2,$m2,$mi adde $acc4,$acc4,$t3 # can't overflow $UMULL $t3,$m3,$mi # (*) addc $acc0,$acc0,$t0 addic $acc0,$acc0,-1 # (*), discarded $UMULH $t0,$m0,$mi # hi(n[0..3]*t[0]*n0 adde $acc0,$acc1,$t1 $UMULH $t1,$m1,$mi adde $acc1,$acc2,$t2 $UMULH $t2,$m2,$mi adde $acc2,$acc3,$t3 $UMULH $t3,$m3,$mi adde $acc3,$acc4,$carry addze $carry,$zero addc $acc0,$acc0,$t0 adde $acc1,$acc1,$t1 adde $acc2,$acc2,$t2 adde $acc3,$acc3,$t3 #addze $carry,$carry bne .Loop_mul4x_reduction $LD $t0,$SIZE_T*5($tp) # t[4..7] addze $carry,$carry $LD $t1,$SIZE_T*6($tp) $LD $t2,$SIZE_T*7($tp) $LD $t3,$SIZE_T*8($tp) $LD $a0,$SIZE_T*1($ap) # a[4..7] $LD $a1,$SIZE_T*2($ap) $LD $a2,$SIZE_T*3($ap) $LDU $a3,$SIZE_T*4($ap) addc $acc0,$acc0,$t0 adde $acc1,$acc1,$t1 adde $acc2,$acc2,$t2 adde $acc3,$acc3,$t3 #addze $carry,$carry $LD $mi,$SIZE_T*8($sp) # t[0]*n0 $LD $m0,$SIZE_T*1($np) # n[4..7] $LD $m1,$SIZE_T*2($np) $LD $m2,$SIZE_T*3($np) $LDU $m3,$SIZE_T*4($np) b .Loop_mul4x_tail .align 5 .Loop_mul4x_tail: $UMULL $t0,$a0,$bi # lo(a[4..7]*b[4]) addze $carry,$carry # modulo-scheduled $UMULL $t1,$a1,$bi addi $cnt,$cnt,$SIZE_T $UMULL $t2,$a2,$bi andi. $cnt,$cnt,$SIZE_T*4-1 $UMULL $t3,$a3,$bi addc $acc0,$acc0,$t0 $UMULH $t0,$a0,$bi # hi(a[4..7]*b[4]) adde $acc1,$acc1,$t1 $UMULH $t1,$a1,$bi adde $acc2,$acc2,$t2 $UMULH $t2,$a2,$bi adde $acc3,$acc3,$t3 $UMULH $t3,$a3,$bi addze $acc4,$zero $LDX $bi,$bp,$cnt # next b[i] addc $acc1,$acc1,$t0 $UMULL $t0,$m0,$mi # lo(n[4..7]*t[0]*n0) adde $acc2,$acc2,$t1 $UMULL $t1,$m1,$mi adde $acc3,$acc3,$t2 $UMULL $t2,$m2,$mi adde $acc4,$acc4,$t3 # can't overflow $UMULL $t3,$m3,$mi addc $acc0,$acc0,$t0 $UMULH $t0,$m0,$mi # hi(n[4..7]*t[0]*n0) adde $acc1,$acc1,$t1 $UMULH $t1,$m1,$mi adde $acc2,$acc2,$t2 $UMULH $t2,$m2,$mi adde $acc3,$acc3,$t3 $UMULH $t3,$m3,$mi adde $acc4,$acc4,$carry addi $mi,$sp,$SIZE_T*8 $LDX $mi,$mi,$cnt # next a[0]*n0 addze $carry,$zero $STU $acc0,$SIZE_T($tp) # word of result addc $acc0,$acc1,$t0 adde $acc1,$acc2,$t1 adde $acc2,$acc3,$t2 adde $acc3,$acc4,$t3 #addze $carry,$carry bne .Loop_mul4x_tail $LD $t0,$SIZE_T*5($tp) # next t[i] or topmost carry sub $t1,$np,$num # rewinded np? addze $carry,$carry $UCMP $ap_end,$ap # done yet? beq .Loop_mul4x_break $LD $t1,$SIZE_T*6($tp) $LD $t2,$SIZE_T*7($tp) $LD $t3,$SIZE_T*8($tp) $LD $a0,$SIZE_T*1($ap) $LD $a1,$SIZE_T*2($ap) $LD $a2,$SIZE_T*3($ap) $LDU $a3,$SIZE_T*4($ap) addc $acc0,$acc0,$t0 adde $acc1,$acc1,$t1 adde $acc2,$acc2,$t2 adde $acc3,$acc3,$t3 #addze $carry,$carry $LD $m0,$SIZE_T*1($np) # n[4..7] $LD $m1,$SIZE_T*2($np) $LD $m2,$SIZE_T*3($np) $LDU $m3,$SIZE_T*4($np) b .Loop_mul4x_tail .align 5 .Loop_mul4x_break: $POP $t2,$SIZE_T*6($sp) # pull rp and &b[num-4] $POP $t3,$SIZE_T*7($sp) addc $a0,$acc0,$t0 # accumulate topmost carry $LD $acc0,$SIZE_T*12($sp) # t[0..3] addze $a1,$acc1 $LD $acc1,$SIZE_T*13($sp) addze $a2,$acc2 $LD $acc2,$SIZE_T*14($sp) addze $a3,$acc3 $LD $acc3,$SIZE_T*15($sp) addze $carry,$carry # topmost carry $ST $a0,$SIZE_T*1($tp) # result sub $ap,$ap_end,$num # rewind ap $ST $a1,$SIZE_T*2($tp) $ST $a2,$SIZE_T*3($tp) $ST $a3,$SIZE_T*4($tp) $ST $carry,$SIZE_T*5($tp) # store topmost carry $LD $m0,$SIZE_T*1($t1) # n[0..3] $LD $m1,$SIZE_T*2($t1) $LD $m2,$SIZE_T*3($t1) $LD $m3,$SIZE_T*4($t1) addi $np,$t1,$SIZE_T*4 $UCMP $bp,$t3 # done yet? beq .Lmul4x_post $LDU $bi,$SIZE_T*4($bp) $LD $a0,$SIZE_T*1($ap) # a[0..3] $LD $a1,$SIZE_T*2($ap) $LD $a2,$SIZE_T*3($ap) $LDU $a3,$SIZE_T*4($ap) li $carry,0 addic $tp,$sp,$SIZE_T*7 # &t[-1], clear carry bit b .Loop_mul4x_reduction .align 5 .Lmul4x_post: # Final step. We see if result is larger than modulus, and # if it is, subtract the modulus. But comparison implies # subtraction. So we subtract modulus, see if it borrowed, # and conditionally copy original value. srwi $cnt,$num,`log($SIZE_T)/log(2)+2` mr $bp,$t2 # &rp[-1] subi $cnt,$cnt,1 mr $ap_end,$t2 # &rp[-1] copy subfc $t0,$m0,$acc0 addi $tp,$sp,$SIZE_T*15 subfe $t1,$m1,$acc1 mtctr $cnt .Lmul4x_sub: $LD $m0,$SIZE_T*1($np) $LD $acc0,$SIZE_T*1($tp) subfe $t2,$m2,$acc2 $LD $m1,$SIZE_T*2($np) $LD $acc1,$SIZE_T*2($tp) subfe $t3,$m3,$acc3 $LD $m2,$SIZE_T*3($np) $LD $acc2,$SIZE_T*3($tp) $LDU $m3,$SIZE_T*4($np) $LDU $acc3,$SIZE_T*4($tp) $ST $t0,$SIZE_T*1($bp) $ST $t1,$SIZE_T*2($bp) subfe $t0,$m0,$acc0 $ST $t2,$SIZE_T*3($bp) $STU $t3,$SIZE_T*4($bp) subfe $t1,$m1,$acc1 bdnz .Lmul4x_sub $LD $a0,$SIZE_T*1($ap_end) $ST $t0,$SIZE_T*1($bp) $LD $t0,$SIZE_T*12($sp) subfe $t2,$m2,$acc2 $LD $a1,$SIZE_T*2($ap_end) $ST $t1,$SIZE_T*2($bp) $LD $t1,$SIZE_T*13($sp) subfe $t3,$m3,$acc3 subfe $carry,$zero,$carry # did it borrow? addi $tp,$sp,$SIZE_T*12 $LD $a2,$SIZE_T*3($ap_end) $ST $t2,$SIZE_T*3($bp) $LD $t2,$SIZE_T*14($sp) $LD $a3,$SIZE_T*4($ap_end) $ST $t3,$SIZE_T*4($bp) $LD $t3,$SIZE_T*15($sp) mtctr $cnt .Lmul4x_cond_copy: and $t0,$t0,$carry andc $a0,$a0,$carry $ST $zero,$SIZE_T*0($tp) # wipe stack clean and $t1,$t1,$carry andc $a1,$a1,$carry $ST $zero,$SIZE_T*1($tp) and $t2,$t2,$carry andc $a2,$a2,$carry $ST $zero,$SIZE_T*2($tp) and $t3,$t3,$carry andc $a3,$a3,$carry $ST $zero,$SIZE_T*3($tp) or $acc0,$t0,$a0 $LD $a0,$SIZE_T*5($ap_end) $LD $t0,$SIZE_T*4($tp) or $acc1,$t1,$a1 $LD $a1,$SIZE_T*6($ap_end) $LD $t1,$SIZE_T*5($tp) or $acc2,$t2,$a2 $LD $a2,$SIZE_T*7($ap_end) $LD $t2,$SIZE_T*6($tp) or $acc3,$t3,$a3 $LD $a3,$SIZE_T*8($ap_end) $LD $t3,$SIZE_T*7($tp) addi $tp,$tp,$SIZE_T*4 $ST $acc0,$SIZE_T*1($ap_end) $ST $acc1,$SIZE_T*2($ap_end) $ST $acc2,$SIZE_T*3($ap_end) $STU $acc3,$SIZE_T*4($ap_end) bdnz .Lmul4x_cond_copy $POP $bp,0($sp) # pull saved sp and $t0,$t0,$carry andc $a0,$a0,$carry $ST $zero,$SIZE_T*0($tp) and $t1,$t1,$carry andc $a1,$a1,$carry $ST $zero,$SIZE_T*1($tp) and $t2,$t2,$carry andc $a2,$a2,$carry $ST $zero,$SIZE_T*2($tp) and $t3,$t3,$carry andc $a3,$a3,$carry $ST $zero,$SIZE_T*3($tp) or $acc0,$t0,$a0 or $acc1,$t1,$a1 $ST $zero,$SIZE_T*4($tp) or $acc2,$t2,$a2 or $acc3,$t3,$a3 $ST $acc0,$SIZE_T*1($ap_end) $ST $acc1,$SIZE_T*2($ap_end) $ST $acc2,$SIZE_T*3($ap_end) $ST $acc3,$SIZE_T*4($ap_end) b .Lmul4x_done .align 4 .Lmul4x4_post_condition: $POP $ap,$SIZE_T*6($sp) # pull &rp[-1] $POP $bp,0($sp) # pull saved sp addze $carry,$carry # modulo-scheduled # $acc0-3,$carry hold result, $m0-3 hold modulus subfc $a0,$m0,$acc0 subfe $a1,$m1,$acc1 subfe $a2,$m2,$acc2 subfe $a3,$m3,$acc3 subfe $carry,$zero,$carry # did it borrow? and $m0,$m0,$carry and $m1,$m1,$carry addc $a0,$a0,$m0 and $m2,$m2,$carry adde $a1,$a1,$m1 and $m3,$m3,$carry adde $a2,$a2,$m2 adde $a3,$a3,$m3 $ST $a0,$SIZE_T*1($ap) # write result $ST $a1,$SIZE_T*2($ap) $ST $a2,$SIZE_T*3($ap) $ST $a3,$SIZE_T*4($ap) .Lmul4x_done: $ST $zero,$SIZE_T*8($sp) # wipe stack clean $ST $zero,$SIZE_T*9($sp) $ST $zero,$SIZE_T*10($sp) $ST $zero,$SIZE_T*11($sp) li r3,1 # signal "done" $POP r14,-$SIZE_T*18($bp) $POP r15,-$SIZE_T*17($bp) $POP r16,-$SIZE_T*16($bp) $POP r17,-$SIZE_T*15($bp) $POP r18,-$SIZE_T*14($bp) $POP r19,-$SIZE_T*13($bp) $POP r20,-$SIZE_T*12($bp) $POP r21,-$SIZE_T*11($bp) $POP r22,-$SIZE_T*10($bp) $POP r23,-$SIZE_T*9($bp) $POP r24,-$SIZE_T*8($bp) $POP r25,-$SIZE_T*7($bp) $POP r26,-$SIZE_T*6($bp) $POP r27,-$SIZE_T*5($bp) $POP r28,-$SIZE_T*4($bp) $POP r29,-$SIZE_T*3($bp) $POP r30,-$SIZE_T*2($bp) $POP r31,-$SIZE_T*1($bp) mr $sp,$bp blr .long 0 .byte 0,12,4,0x20,0x80,18,6,0 .long 0 .size .bn_mul4x_mont_int,.-.bn_mul4x_mont_int ___ } if (1) { ######################################################################## # Following is PPC adaptation of sqrx8x_mont from x86_64-mont5 module. my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("r$_",(9..12,14..17)); my ($t0,$t1,$t2,$t3)=map("r$_",(18..21)); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("r$_",(22..29)); my ($cnt,$carry,$zero)=("r30","r31","r0"); my ($tp,$ap_end,$na0)=($bp,$np,$carry); # sp----------->+-------------------------------+ # | saved sp | # +-------------------------------+ # . . # +12*size_t +-------------------------------+ # | size_t tmp[2*num] | # . . # . . # . . # +-------------------------------+ # . . # -18*size_t +-------------------------------+ # | 18 saved gpr, r14-r31 | # . . # . . # +-------------------------------+ $code.=<<___; .align 5 __bn_sqr8x_mont: .Lsqr8x_do: mr $a0,$sp slwi $a1,$num,`log($SIZE_T)/log(2)+1` li $a2,-32*$SIZE_T sub $a1,$a2,$a1 slwi $num,$num,`log($SIZE_T)/log(2)` $STUX $sp,$sp,$a1 # alloca $PUSH r14,-$SIZE_T*18($a0) $PUSH r15,-$SIZE_T*17($a0) $PUSH r16,-$SIZE_T*16($a0) $PUSH r17,-$SIZE_T*15($a0) $PUSH r18,-$SIZE_T*14($a0) $PUSH r19,-$SIZE_T*13($a0) $PUSH r20,-$SIZE_T*12($a0) $PUSH r21,-$SIZE_T*11($a0) $PUSH r22,-$SIZE_T*10($a0) $PUSH r23,-$SIZE_T*9($a0) $PUSH r24,-$SIZE_T*8($a0) $PUSH r25,-$SIZE_T*7($a0) $PUSH r26,-$SIZE_T*6($a0) $PUSH r27,-$SIZE_T*5($a0) $PUSH r28,-$SIZE_T*4($a0) $PUSH r29,-$SIZE_T*3($a0) $PUSH r30,-$SIZE_T*2($a0) $PUSH r31,-$SIZE_T*1($a0) subi $ap,$ap,$SIZE_T # bias by -1 subi $t0,$np,$SIZE_T # bias by -1 subi $rp,$rp,$SIZE_T # bias by -1 $LD $n0,0($n0) # *n0 li $zero,0 add $ap_end,$ap,$num $LD $a0,$SIZE_T*1($ap) #li $acc0,0 $LD $a1,$SIZE_T*2($ap) li $acc1,0 $LD $a2,$SIZE_T*3($ap) li $acc2,0 $LD $a3,$SIZE_T*4($ap) li $acc3,0 $LD $a4,$SIZE_T*5($ap) li $acc4,0 $LD $a5,$SIZE_T*6($ap) li $acc5,0 $LD $a6,$SIZE_T*7($ap) li $acc6,0 $LDU $a7,$SIZE_T*8($ap) li $acc7,0 addi $tp,$sp,$SIZE_T*11 # &tp[-1] subic. $cnt,$num,$SIZE_T*8 b .Lsqr8x_zero_start .align 5 .Lsqr8x_zero: subic. $cnt,$cnt,$SIZE_T*8 $ST $zero,$SIZE_T*1($tp) $ST $zero,$SIZE_T*2($tp) $ST $zero,$SIZE_T*3($tp) $ST $zero,$SIZE_T*4($tp) $ST $zero,$SIZE_T*5($tp) $ST $zero,$SIZE_T*6($tp) $ST $zero,$SIZE_T*7($tp) $ST $zero,$SIZE_T*8($tp) .Lsqr8x_zero_start: $ST $zero,$SIZE_T*9($tp) $ST $zero,$SIZE_T*10($tp) $ST $zero,$SIZE_T*11($tp) $ST $zero,$SIZE_T*12($tp) $ST $zero,$SIZE_T*13($tp) $ST $zero,$SIZE_T*14($tp) $ST $zero,$SIZE_T*15($tp) $STU $zero,$SIZE_T*16($tp) bne .Lsqr8x_zero $PUSH $rp,$SIZE_T*6($sp) # offload &rp[-1] $PUSH $t0,$SIZE_T*7($sp) # offload &np[-1] $PUSH $n0,$SIZE_T*8($sp) # offload n0 $PUSH $tp,$SIZE_T*9($sp) # &tp[2*num-1] $PUSH $zero,$SIZE_T*10($sp) # initial top-most carry addi $tp,$sp,$SIZE_T*11 # &tp[-1] # Multiply everything but a[i]*a[i] .align 5 .Lsqr8x_outer_loop: # a[1]a[0] (i) # a[2]a[0] # a[3]a[0] # a[4]a[0] # a[5]a[0] # a[6]a[0] # a[7]a[0] # a[2]a[1] (ii) # a[3]a[1] # a[4]a[1] # a[5]a[1] # a[6]a[1] # a[7]a[1] # a[3]a[2] (iii) # a[4]a[2] # a[5]a[2] # a[6]a[2] # a[7]a[2] # a[4]a[3] (iv) # a[5]a[3] # a[6]a[3] # a[7]a[3] # a[5]a[4] (v) # a[6]a[4] # a[7]a[4] # a[6]a[5] (vi) # a[7]a[5] # a[7]a[6] (vii) $UMULL $t0,$a1,$a0 # lo(a[1..7]*a[0]) (i) $UMULL $t1,$a2,$a0 $UMULL $t2,$a3,$a0 $UMULL $t3,$a4,$a0 addc $acc1,$acc1,$t0 # t[1]+lo(a[1]*a[0]) $UMULL $t0,$a5,$a0 adde $acc2,$acc2,$t1 $UMULL $t1,$a6,$a0 adde $acc3,$acc3,$t2 $UMULL $t2,$a7,$a0 adde $acc4,$acc4,$t3 $UMULH $t3,$a1,$a0 # hi(a[1..7]*a[0]) adde $acc5,$acc5,$t0 $UMULH $t0,$a2,$a0 adde $acc6,$acc6,$t1 $UMULH $t1,$a3,$a0 adde $acc7,$acc7,$t2 $UMULH $t2,$a4,$a0 $ST $acc0,$SIZE_T*1($tp) # t[0] addze $acc0,$zero # t[8] $ST $acc1,$SIZE_T*2($tp) # t[1] addc $acc2,$acc2,$t3 # t[2]+lo(a[1]*a[0]) $UMULH $t3,$a5,$a0 adde $acc3,$acc3,$t0 $UMULH $t0,$a6,$a0 adde $acc4,$acc4,$t1 $UMULH $t1,$a7,$a0 adde $acc5,$acc5,$t2 $UMULL $t2,$a2,$a1 # lo(a[2..7]*a[1]) (ii) adde $acc6,$acc6,$t3 $UMULL $t3,$a3,$a1 adde $acc7,$acc7,$t0 $UMULL $t0,$a4,$a1 adde $acc0,$acc0,$t1 $UMULL $t1,$a5,$a1 addc $acc3,$acc3,$t2 $UMULL $t2,$a6,$a1 adde $acc4,$acc4,$t3 $UMULL $t3,$a7,$a1 adde $acc5,$acc5,$t0 $UMULH $t0,$a2,$a1 # hi(a[2..7]*a[1]) adde $acc6,$acc6,$t1 $UMULH $t1,$a3,$a1 adde $acc7,$acc7,$t2 $UMULH $t2,$a4,$a1 adde $acc0,$acc0,$t3 $UMULH $t3,$a5,$a1 $ST $acc2,$SIZE_T*3($tp) # t[2] addze $acc1,$zero # t[9] $ST $acc3,$SIZE_T*4($tp) # t[3] addc $acc4,$acc4,$t0 $UMULH $t0,$a6,$a1 adde $acc5,$acc5,$t1 $UMULH $t1,$a7,$a1 adde $acc6,$acc6,$t2 $UMULL $t2,$a3,$a2 # lo(a[3..7]*a[2]) (iii) adde $acc7,$acc7,$t3 $UMULL $t3,$a4,$a2 adde $acc0,$acc0,$t0 $UMULL $t0,$a5,$a2 adde $acc1,$acc1,$t1 $UMULL $t1,$a6,$a2 addc $acc5,$acc5,$t2 $UMULL $t2,$a7,$a2 adde $acc6,$acc6,$t3 $UMULH $t3,$a3,$a2 # hi(a[3..7]*a[2]) adde $acc7,$acc7,$t0 $UMULH $t0,$a4,$a2 adde $acc0,$acc0,$t1 $UMULH $t1,$a5,$a2 adde $acc1,$acc1,$t2 $UMULH $t2,$a6,$a2 $ST $acc4,$SIZE_T*5($tp) # t[4] addze $acc2,$zero # t[10] $ST $acc5,$SIZE_T*6($tp) # t[5] addc $acc6,$acc6,$t3 $UMULH $t3,$a7,$a2 adde $acc7,$acc7,$t0 $UMULL $t0,$a4,$a3 # lo(a[4..7]*a[3]) (iv) adde $acc0,$acc0,$t1 $UMULL $t1,$a5,$a3 adde $acc1,$acc1,$t2 $UMULL $t2,$a6,$a3 adde $acc2,$acc2,$t3 $UMULL $t3,$a7,$a3 addc $acc7,$acc7,$t0 $UMULH $t0,$a4,$a3 # hi(a[4..7]*a[3]) adde $acc0,$acc0,$t1 $UMULH $t1,$a5,$a3 adde $acc1,$acc1,$t2 $UMULH $t2,$a6,$a3 adde $acc2,$acc2,$t3 $UMULH $t3,$a7,$a3 $ST $acc6,$SIZE_T*7($tp) # t[6] addze $acc3,$zero # t[11] $STU $acc7,$SIZE_T*8($tp) # t[7] addc $acc0,$acc0,$t0 $UMULL $t0,$a5,$a4 # lo(a[5..7]*a[4]) (v) adde $acc1,$acc1,$t1 $UMULL $t1,$a6,$a4 adde $acc2,$acc2,$t2 $UMULL $t2,$a7,$a4 adde $acc3,$acc3,$t3 $UMULH $t3,$a5,$a4 # hi(a[5..7]*a[4]) addc $acc1,$acc1,$t0 $UMULH $t0,$a6,$a4 adde $acc2,$acc2,$t1 $UMULH $t1,$a7,$a4 adde $acc3,$acc3,$t2 $UMULL $t2,$a6,$a5 # lo(a[6..7]*a[5]) (vi) addze $acc4,$zero # t[12] addc $acc2,$acc2,$t3 $UMULL $t3,$a7,$a5 adde $acc3,$acc3,$t0 $UMULH $t0,$a6,$a5 # hi(a[6..7]*a[5]) adde $acc4,$acc4,$t1 $UMULH $t1,$a7,$a5 addc $acc3,$acc3,$t2 $UMULL $t2,$a7,$a6 # lo(a[7]*a[6]) (vii) adde $acc4,$acc4,$t3 $UMULH $t3,$a7,$a6 # hi(a[7]*a[6]) addze $acc5,$zero # t[13] addc $acc4,$acc4,$t0 $UCMP $ap_end,$ap # done yet? adde $acc5,$acc5,$t1 addc $acc5,$acc5,$t2 sub $t0,$ap_end,$num # rewinded ap addze $acc6,$zero # t[14] add $acc6,$acc6,$t3 beq .Lsqr8x_outer_break mr $n0,$a0 $LD $a0,$SIZE_T*1($tp) $LD $a1,$SIZE_T*2($tp) $LD $a2,$SIZE_T*3($tp) $LD $a3,$SIZE_T*4($tp) $LD $a4,$SIZE_T*5($tp) $LD $a5,$SIZE_T*6($tp) $LD $a6,$SIZE_T*7($tp) $LD $a7,$SIZE_T*8($tp) addc $acc0,$acc0,$a0 $LD $a0,$SIZE_T*1($ap) adde $acc1,$acc1,$a1 $LD $a1,$SIZE_T*2($ap) adde $acc2,$acc2,$a2 $LD $a2,$SIZE_T*3($ap) adde $acc3,$acc3,$a3 $LD $a3,$SIZE_T*4($ap) adde $acc4,$acc4,$a4 $LD $a4,$SIZE_T*5($ap) adde $acc5,$acc5,$a5 $LD $a5,$SIZE_T*6($ap) adde $acc6,$acc6,$a6 $LD $a6,$SIZE_T*7($ap) subi $rp,$ap,$SIZE_T*7 addze $acc7,$a7 $LDU $a7,$SIZE_T*8($ap) #addze $carry,$zero # moved below li $cnt,0 b .Lsqr8x_mul # a[8]a[0] # a[9]a[0] # a[a]a[0] # a[b]a[0] # a[c]a[0] # a[d]a[0] # a[e]a[0] # a[f]a[0] # a[8]a[1] # a[f]a[1]........................ # a[8]a[2] # a[f]a[2]........................ # a[8]a[3] # a[f]a[3]........................ # a[8]a[4] # a[f]a[4]........................ # a[8]a[5] # a[f]a[5]........................ # a[8]a[6] # a[f]a[6]........................ # a[8]a[7] # a[f]a[7]........................ .align 5 .Lsqr8x_mul: $UMULL $t0,$a0,$n0 addze $carry,$zero # carry bit, modulo-scheduled $UMULL $t1,$a1,$n0 addi $cnt,$cnt,$SIZE_T $UMULL $t2,$a2,$n0 andi. $cnt,$cnt,$SIZE_T*8-1 $UMULL $t3,$a3,$n0 addc $acc0,$acc0,$t0 $UMULL $t0,$a4,$n0 adde $acc1,$acc1,$t1 $UMULL $t1,$a5,$n0 adde $acc2,$acc2,$t2 $UMULL $t2,$a6,$n0 adde $acc3,$acc3,$t3 $UMULL $t3,$a7,$n0 adde $acc4,$acc4,$t0 $UMULH $t0,$a0,$n0 adde $acc5,$acc5,$t1 $UMULH $t1,$a1,$n0 adde $acc6,$acc6,$t2 $UMULH $t2,$a2,$n0 adde $acc7,$acc7,$t3 $UMULH $t3,$a3,$n0 addze $carry,$carry $STU $acc0,$SIZE_T($tp) addc $acc0,$acc1,$t0 $UMULH $t0,$a4,$n0 adde $acc1,$acc2,$t1 $UMULH $t1,$a5,$n0 adde $acc2,$acc3,$t2 $UMULH $t2,$a6,$n0 adde $acc3,$acc4,$t3 $UMULH $t3,$a7,$n0 $LDX $n0,$rp,$cnt adde $acc4,$acc5,$t0 adde $acc5,$acc6,$t1 adde $acc6,$acc7,$t2 adde $acc7,$carry,$t3 #addze $carry,$zero # moved above bne .Lsqr8x_mul # note that carry flag is guaranteed # to be zero at this point $UCMP $ap,$ap_end # done yet? beq .Lsqr8x_break $LD $a0,$SIZE_T*1($tp) $LD $a1,$SIZE_T*2($tp) $LD $a2,$SIZE_T*3($tp) $LD $a3,$SIZE_T*4($tp) $LD $a4,$SIZE_T*5($tp) $LD $a5,$SIZE_T*6($tp) $LD $a6,$SIZE_T*7($tp) $LD $a7,$SIZE_T*8($tp) addc $acc0,$acc0,$a0 $LD $a0,$SIZE_T*1($ap) adde $acc1,$acc1,$a1 $LD $a1,$SIZE_T*2($ap) adde $acc2,$acc2,$a2 $LD $a2,$SIZE_T*3($ap) adde $acc3,$acc3,$a3 $LD $a3,$SIZE_T*4($ap) adde $acc4,$acc4,$a4 $LD $a4,$SIZE_T*5($ap) adde $acc5,$acc5,$a5 $LD $a5,$SIZE_T*6($ap) adde $acc6,$acc6,$a6 $LD $a6,$SIZE_T*7($ap) adde $acc7,$acc7,$a7 $LDU $a7,$SIZE_T*8($ap) #addze $carry,$zero # moved above b .Lsqr8x_mul .align 5 .Lsqr8x_break: $LD $a0,$SIZE_T*8($rp) addi $ap,$rp,$SIZE_T*15 $LD $a1,$SIZE_T*9($rp) sub. $t0,$ap_end,$ap # is it last iteration? $LD $a2,$SIZE_T*10($rp) sub $t1,$tp,$t0 $LD $a3,$SIZE_T*11($rp) $LD $a4,$SIZE_T*12($rp) $LD $a5,$SIZE_T*13($rp) $LD $a6,$SIZE_T*14($rp) $LD $a7,$SIZE_T*15($rp) beq .Lsqr8x_outer_loop $ST $acc0,$SIZE_T*1($tp) $LD $acc0,$SIZE_T*1($t1) $ST $acc1,$SIZE_T*2($tp) $LD $acc1,$SIZE_T*2($t1) $ST $acc2,$SIZE_T*3($tp) $LD $acc2,$SIZE_T*3($t1) $ST $acc3,$SIZE_T*4($tp) $LD $acc3,$SIZE_T*4($t1) $ST $acc4,$SIZE_T*5($tp) $LD $acc4,$SIZE_T*5($t1) $ST $acc5,$SIZE_T*6($tp) $LD $acc5,$SIZE_T*6($t1) $ST $acc6,$SIZE_T*7($tp) $LD $acc6,$SIZE_T*7($t1) $ST $acc7,$SIZE_T*8($tp) $LD $acc7,$SIZE_T*8($t1) mr $tp,$t1 b .Lsqr8x_outer_loop .align 5 .Lsqr8x_outer_break: #################################################################### # Now multiply above result by 2 and add a[n-1]*a[n-1]|...|a[0]*a[0] $LD $a1,$SIZE_T*1($t0) # recall that $t0 is &a[-1] $LD $a3,$SIZE_T*2($t0) $LD $a5,$SIZE_T*3($t0) $LD $a7,$SIZE_T*4($t0) addi $ap,$t0,$SIZE_T*4 # "tp[x]" comments are for num==8 case $LD $t1,$SIZE_T*13($sp) # =tp[1], t[0] is not interesting $LD $t2,$SIZE_T*14($sp) $LD $t3,$SIZE_T*15($sp) $LD $t0,$SIZE_T*16($sp) $ST $acc0,$SIZE_T*1($tp) # tp[8]= srwi $cnt,$num,`log($SIZE_T)/log(2)+2` $ST $acc1,$SIZE_T*2($tp) subi $cnt,$cnt,1 $ST $acc2,$SIZE_T*3($tp) $ST $acc3,$SIZE_T*4($tp) $ST $acc4,$SIZE_T*5($tp) $ST $acc5,$SIZE_T*6($tp) $ST $acc6,$SIZE_T*7($tp) #$ST $acc7,$SIZE_T*8($tp) # tp[15] is not interesting addi $tp,$sp,$SIZE_T*11 # &tp[-1] $UMULL $acc0,$a1,$a1 $UMULH $a1,$a1,$a1 add $acc1,$t1,$t1 # <<1 $SHRI $t1,$t1,$BITS-1 $UMULL $a2,$a3,$a3 $UMULH $a3,$a3,$a3 addc $acc1,$acc1,$a1 add $acc2,$t2,$t2 $SHRI $t2,$t2,$BITS-1 add $acc3,$t3,$t3 $SHRI $t3,$t3,$BITS-1 or $acc2,$acc2,$t1 mtctr $cnt .Lsqr4x_shift_n_add: $UMULL $a4,$a5,$a5 $UMULH $a5,$a5,$a5 $LD $t1,$SIZE_T*6($tp) # =tp[5] $LD $a1,$SIZE_T*1($ap) adde $acc2,$acc2,$a2 add $acc4,$t0,$t0 $SHRI $t0,$t0,$BITS-1 or $acc3,$acc3,$t2 $LD $t2,$SIZE_T*7($tp) # =tp[6] adde $acc3,$acc3,$a3 $LD $a3,$SIZE_T*2($ap) add $acc5,$t1,$t1 $SHRI $t1,$t1,$BITS-1 or $acc4,$acc4,$t3 $LD $t3,$SIZE_T*8($tp) # =tp[7] $UMULL $a6,$a7,$a7 $UMULH $a7,$a7,$a7 adde $acc4,$acc4,$a4 add $acc6,$t2,$t2 $SHRI $t2,$t2,$BITS-1 or $acc5,$acc5,$t0 $LD $t0,$SIZE_T*9($tp) # =tp[8] adde $acc5,$acc5,$a5 $LD $a5,$SIZE_T*3($ap) add $acc7,$t3,$t3 $SHRI $t3,$t3,$BITS-1 or $acc6,$acc6,$t1 $LD $t1,$SIZE_T*10($tp) # =tp[9] $UMULL $a0,$a1,$a1 $UMULH $a1,$a1,$a1 adde $acc6,$acc6,$a6 $ST $acc0,$SIZE_T*1($tp) # tp[0]= add $acc0,$t0,$t0 $SHRI $t0,$t0,$BITS-1 or $acc7,$acc7,$t2 $LD $t2,$SIZE_T*11($tp) # =tp[10] adde $acc7,$acc7,$a7 $LDU $a7,$SIZE_T*4($ap) $ST $acc1,$SIZE_T*2($tp) # tp[1]= add $acc1,$t1,$t1 $SHRI $t1,$t1,$BITS-1 or $acc0,$acc0,$t3 $LD $t3,$SIZE_T*12($tp) # =tp[11] $UMULL $a2,$a3,$a3 $UMULH $a3,$a3,$a3 adde $acc0,$acc0,$a0 $ST $acc2,$SIZE_T*3($tp) # tp[2]= add $acc2,$t2,$t2 $SHRI $t2,$t2,$BITS-1 or $acc1,$acc1,$t0 $LD $t0,$SIZE_T*13($tp) # =tp[12] adde $acc1,$acc1,$a1 $ST $acc3,$SIZE_T*4($tp) # tp[3]= $ST $acc4,$SIZE_T*5($tp) # tp[4]= $ST $acc5,$SIZE_T*6($tp) # tp[5]= $ST $acc6,$SIZE_T*7($tp) # tp[6]= $STU $acc7,$SIZE_T*8($tp) # tp[7]= add $acc3,$t3,$t3 $SHRI $t3,$t3,$BITS-1 or $acc2,$acc2,$t1 bdnz .Lsqr4x_shift_n_add ___ my ($np,$np_end)=($ap,$ap_end); $code.=<<___; $POP $np,$SIZE_T*7($sp) # pull &np[-1] and n0 $POP $n0,$SIZE_T*8($sp) $UMULL $a4,$a5,$a5 $UMULH $a5,$a5,$a5 $ST $acc0,$SIZE_T*1($tp) # tp[8]= $LD $acc0,$SIZE_T*12($sp) # =tp[0] $LD $t1,$SIZE_T*6($tp) # =tp[13] adde $acc2,$acc2,$a2 add $acc4,$t0,$t0 $SHRI $t0,$t0,$BITS-1 or $acc3,$acc3,$t2 $LD $t2,$SIZE_T*7($tp) # =tp[14] adde $acc3,$acc3,$a3 add $acc5,$t1,$t1 $SHRI $t1,$t1,$BITS-1 or $acc4,$acc4,$t3 $UMULL $a6,$a7,$a7 $UMULH $a7,$a7,$a7 adde $acc4,$acc4,$a4 add $acc6,$t2,$t2 $SHRI $t2,$t2,$BITS-1 or $acc5,$acc5,$t0 $ST $acc1,$SIZE_T*2($tp) # tp[9]= $LD $acc1,$SIZE_T*13($sp) # =tp[1] adde $acc5,$acc5,$a5 or $acc6,$acc6,$t1 $LD $a0,$SIZE_T*1($np) $LD $a1,$SIZE_T*2($np) adde $acc6,$acc6,$a6 $LD $a2,$SIZE_T*3($np) $LD $a3,$SIZE_T*4($np) adde $acc7,$a7,$t2 $LD $a4,$SIZE_T*5($np) $LD $a5,$SIZE_T*6($np) ################################################################ # Reduce by 8 limbs per iteration $UMULL $na0,$n0,$acc0 # t[0]*n0 li $cnt,8 $LD $a6,$SIZE_T*7($np) add $np_end,$np,$num $LDU $a7,$SIZE_T*8($np) $ST $acc2,$SIZE_T*3($tp) # tp[10]= $LD $acc2,$SIZE_T*14($sp) $ST $acc3,$SIZE_T*4($tp) # tp[11]= $LD $acc3,$SIZE_T*15($sp) $ST $acc4,$SIZE_T*5($tp) # tp[12]= $LD $acc4,$SIZE_T*16($sp) $ST $acc5,$SIZE_T*6($tp) # tp[13]= $LD $acc5,$SIZE_T*17($sp) $ST $acc6,$SIZE_T*7($tp) # tp[14]= $LD $acc6,$SIZE_T*18($sp) $ST $acc7,$SIZE_T*8($tp) # tp[15]= $LD $acc7,$SIZE_T*19($sp) addi $tp,$sp,$SIZE_T*11 # &tp[-1] mtctr $cnt b .Lsqr8x_reduction .align 5 .Lsqr8x_reduction: # (*) $UMULL $t0,$a0,$na0 # lo(n[0-7])*lo(t[0]*n0) $UMULL $t1,$a1,$na0 $UMULL $t2,$a2,$na0 $STU $na0,$SIZE_T($tp) # put aside t[0]*n0 for tail processing $UMULL $t3,$a3,$na0 # (*) addc $acc0,$acc0,$t0 addic $acc0,$acc0,-1 # (*) $UMULL $t0,$a4,$na0 adde $acc0,$acc1,$t1 $UMULL $t1,$a5,$na0 adde $acc1,$acc2,$t2 $UMULL $t2,$a6,$na0 adde $acc2,$acc3,$t3 $UMULL $t3,$a7,$na0 adde $acc3,$acc4,$t0 $UMULH $t0,$a0,$na0 # hi(n[0-7])*lo(t[0]*n0) adde $acc4,$acc5,$t1 $UMULH $t1,$a1,$na0 adde $acc5,$acc6,$t2 $UMULH $t2,$a2,$na0 adde $acc6,$acc7,$t3 $UMULH $t3,$a3,$na0 addze $acc7,$zero addc $acc0,$acc0,$t0 $UMULH $t0,$a4,$na0 adde $acc1,$acc1,$t1 $UMULH $t1,$a5,$na0 adde $acc2,$acc2,$t2 $UMULH $t2,$a6,$na0 adde $acc3,$acc3,$t3 $UMULH $t3,$a7,$na0 $UMULL $na0,$n0,$acc0 # next t[0]*n0 adde $acc4,$acc4,$t0 adde $acc5,$acc5,$t1 adde $acc6,$acc6,$t2 adde $acc7,$acc7,$t3 bdnz .Lsqr8x_reduction $LD $t0,$SIZE_T*1($tp) $LD $t1,$SIZE_T*2($tp) $LD $t2,$SIZE_T*3($tp) $LD $t3,$SIZE_T*4($tp) subi $rp,$tp,$SIZE_T*7 $UCMP $np_end,$np # done yet? addc $acc0,$acc0,$t0 $LD $t0,$SIZE_T*5($tp) adde $acc1,$acc1,$t1 $LD $t1,$SIZE_T*6($tp) adde $acc2,$acc2,$t2 $LD $t2,$SIZE_T*7($tp) adde $acc3,$acc3,$t3 $LD $t3,$SIZE_T*8($tp) adde $acc4,$acc4,$t0 adde $acc5,$acc5,$t1 adde $acc6,$acc6,$t2 adde $acc7,$acc7,$t3 #addze $carry,$zero # moved below beq .Lsqr8x8_post_condition $LD $n0,$SIZE_T*0($rp) $LD $a0,$SIZE_T*1($np) $LD $a1,$SIZE_T*2($np) $LD $a2,$SIZE_T*3($np) $LD $a3,$SIZE_T*4($np) $LD $a4,$SIZE_T*5($np) $LD $a5,$SIZE_T*6($np) $LD $a6,$SIZE_T*7($np) $LDU $a7,$SIZE_T*8($np) li $cnt,0 .align 5 .Lsqr8x_tail: $UMULL $t0,$a0,$n0 addze $carry,$zero # carry bit, modulo-scheduled $UMULL $t1,$a1,$n0 addi $cnt,$cnt,$SIZE_T $UMULL $t2,$a2,$n0 andi. $cnt,$cnt,$SIZE_T*8-1 $UMULL $t3,$a3,$n0 addc $acc0,$acc0,$t0 $UMULL $t0,$a4,$n0 adde $acc1,$acc1,$t1 $UMULL $t1,$a5,$n0 adde $acc2,$acc2,$t2 $UMULL $t2,$a6,$n0 adde $acc3,$acc3,$t3 $UMULL $t3,$a7,$n0 adde $acc4,$acc4,$t0 $UMULH $t0,$a0,$n0 adde $acc5,$acc5,$t1 $UMULH $t1,$a1,$n0 adde $acc6,$acc6,$t2 $UMULH $t2,$a2,$n0 adde $acc7,$acc7,$t3 $UMULH $t3,$a3,$n0 addze $carry,$carry $STU $acc0,$SIZE_T($tp) addc $acc0,$acc1,$t0 $UMULH $t0,$a4,$n0 adde $acc1,$acc2,$t1 $UMULH $t1,$a5,$n0 adde $acc2,$acc3,$t2 $UMULH $t2,$a6,$n0 adde $acc3,$acc4,$t3 $UMULH $t3,$a7,$n0 $LDX $n0,$rp,$cnt adde $acc4,$acc5,$t0 adde $acc5,$acc6,$t1 adde $acc6,$acc7,$t2 adde $acc7,$carry,$t3 #addze $carry,$zero # moved above bne .Lsqr8x_tail # note that carry flag is guaranteed # to be zero at this point $LD $a0,$SIZE_T*1($tp) $POP $carry,$SIZE_T*10($sp) # pull top-most carry in case we break $UCMP $np_end,$np # done yet? $LD $a1,$SIZE_T*2($tp) sub $t2,$np_end,$num # rewinded np $LD $a2,$SIZE_T*3($tp) $LD $a3,$SIZE_T*4($tp) $LD $a4,$SIZE_T*5($tp) $LD $a5,$SIZE_T*6($tp) $LD $a6,$SIZE_T*7($tp) $LD $a7,$SIZE_T*8($tp) beq .Lsqr8x_tail_break addc $acc0,$acc0,$a0 $LD $a0,$SIZE_T*1($np) adde $acc1,$acc1,$a1 $LD $a1,$SIZE_T*2($np) adde $acc2,$acc2,$a2 $LD $a2,$SIZE_T*3($np) adde $acc3,$acc3,$a3 $LD $a3,$SIZE_T*4($np) adde $acc4,$acc4,$a4 $LD $a4,$SIZE_T*5($np) adde $acc5,$acc5,$a5 $LD $a5,$SIZE_T*6($np) adde $acc6,$acc6,$a6 $LD $a6,$SIZE_T*7($np) adde $acc7,$acc7,$a7 $LDU $a7,$SIZE_T*8($np) #addze $carry,$zero # moved above b .Lsqr8x_tail .align 5 .Lsqr8x_tail_break: $POP $n0,$SIZE_T*8($sp) # pull n0 $POP $t3,$SIZE_T*9($sp) # &tp[2*num-1] addi $cnt,$tp,$SIZE_T*8 # end of current t[num] window addic $carry,$carry,-1 # "move" top-most carry to carry bit adde $t0,$acc0,$a0 $LD $acc0,$SIZE_T*8($rp) $LD $a0,$SIZE_T*1($t2) # recall that $t2 is &n[-1] adde $t1,$acc1,$a1 $LD $acc1,$SIZE_T*9($rp) $LD $a1,$SIZE_T*2($t2) adde $acc2,$acc2,$a2 $LD $a2,$SIZE_T*3($t2) adde $acc3,$acc3,$a3 $LD $a3,$SIZE_T*4($t2) adde $acc4,$acc4,$a4 $LD $a4,$SIZE_T*5($t2) adde $acc5,$acc5,$a5 $LD $a5,$SIZE_T*6($t2) adde $acc6,$acc6,$a6 $LD $a6,$SIZE_T*7($t2) adde $acc7,$acc7,$a7 $LD $a7,$SIZE_T*8($t2) addi $np,$t2,$SIZE_T*8 addze $t2,$zero # top-most carry $UMULL $na0,$n0,$acc0 $ST $t0,$SIZE_T*1($tp) $UCMP $cnt,$t3 # did we hit the bottom? $ST $t1,$SIZE_T*2($tp) li $cnt,8 $ST $acc2,$SIZE_T*3($tp) $LD $acc2,$SIZE_T*10($rp) $ST $acc3,$SIZE_T*4($tp) $LD $acc3,$SIZE_T*11($rp) $ST $acc4,$SIZE_T*5($tp) $LD $acc4,$SIZE_T*12($rp) $ST $acc5,$SIZE_T*6($tp) $LD $acc5,$SIZE_T*13($rp) $ST $acc6,$SIZE_T*7($tp) $LD $acc6,$SIZE_T*14($rp) $ST $acc7,$SIZE_T*8($tp) $LD $acc7,$SIZE_T*15($rp) $PUSH $t2,$SIZE_T*10($sp) # off-load top-most carry addi $tp,$rp,$SIZE_T*7 # slide the window mtctr $cnt bne .Lsqr8x_reduction ################################################################ # Final step. We see if result is larger than modulus, and # if it is, subtract the modulus. But comparison implies # subtraction. So we subtract modulus, see if it borrowed, # and conditionally copy original value. $POP $rp,$SIZE_T*6($sp) # pull &rp[-1] srwi $cnt,$num,`log($SIZE_T)/log(2)+3` mr $n0,$tp # put tp aside addi $tp,$tp,$SIZE_T*8 subi $cnt,$cnt,1 subfc $t0,$a0,$acc0 subfe $t1,$a1,$acc1 mr $carry,$t2 mr $ap_end,$rp # $rp copy mtctr $cnt b .Lsqr8x_sub .align 5 .Lsqr8x_sub: $LD $a0,$SIZE_T*1($np) $LD $acc0,$SIZE_T*1($tp) $LD $a1,$SIZE_T*2($np) $LD $acc1,$SIZE_T*2($tp) subfe $t2,$a2,$acc2 $LD $a2,$SIZE_T*3($np) $LD $acc2,$SIZE_T*3($tp) subfe $t3,$a3,$acc3 $LD $a3,$SIZE_T*4($np) $LD $acc3,$SIZE_T*4($tp) $ST $t0,$SIZE_T*1($rp) subfe $t0,$a4,$acc4 $LD $a4,$SIZE_T*5($np) $LD $acc4,$SIZE_T*5($tp) $ST $t1,$SIZE_T*2($rp) subfe $t1,$a5,$acc5 $LD $a5,$SIZE_T*6($np) $LD $acc5,$SIZE_T*6($tp) $ST $t2,$SIZE_T*3($rp) subfe $t2,$a6,$acc6 $LD $a6,$SIZE_T*7($np) $LD $acc6,$SIZE_T*7($tp) $ST $t3,$SIZE_T*4($rp) subfe $t3,$a7,$acc7 $LDU $a7,$SIZE_T*8($np) $LDU $acc7,$SIZE_T*8($tp) $ST $t0,$SIZE_T*5($rp) subfe $t0,$a0,$acc0 $ST $t1,$SIZE_T*6($rp) subfe $t1,$a1,$acc1 $ST $t2,$SIZE_T*7($rp) $STU $t3,$SIZE_T*8($rp) bdnz .Lsqr8x_sub srwi $cnt,$num,`log($SIZE_T)/log(2)+2` $LD $a0,$SIZE_T*1($ap_end) # original $rp $LD $acc0,$SIZE_T*1($n0) # original $tp subi $cnt,$cnt,1 $LD $a1,$SIZE_T*2($ap_end) $LD $acc1,$SIZE_T*2($n0) subfe $t2,$a2,$acc2 $LD $a2,$SIZE_T*3($ap_end) $LD $acc2,$SIZE_T*3($n0) subfe $t3,$a3,$acc3 $LD $a3,$SIZE_T*4($ap_end) $LDU $acc3,$SIZE_T*4($n0) $ST $t0,$SIZE_T*1($rp) subfe $t0,$a4,$acc4 $ST $t1,$SIZE_T*2($rp) subfe $t1,$a5,$acc5 $ST $t2,$SIZE_T*3($rp) subfe $t2,$a6,$acc6 $ST $t3,$SIZE_T*4($rp) subfe $t3,$a7,$acc7 $ST $t0,$SIZE_T*5($rp) subfe $carry,$zero,$carry # did it borrow? $ST $t1,$SIZE_T*6($rp) $ST $t2,$SIZE_T*7($rp) $ST $t3,$SIZE_T*8($rp) addi $tp,$sp,$SIZE_T*11 mtctr $cnt .Lsqr4x_cond_copy: andc $a0,$a0,$carry $ST $zero,-$SIZE_T*3($n0) # wipe stack clean and $acc0,$acc0,$carry $ST $zero,-$SIZE_T*2($n0) andc $a1,$a1,$carry $ST $zero,-$SIZE_T*1($n0) and $acc1,$acc1,$carry $ST $zero,-$SIZE_T*0($n0) andc $a2,$a2,$carry $ST $zero,$SIZE_T*1($tp) and $acc2,$acc2,$carry $ST $zero,$SIZE_T*2($tp) andc $a3,$a3,$carry $ST $zero,$SIZE_T*3($tp) and $acc3,$acc3,$carry $STU $zero,$SIZE_T*4($tp) or $t0,$a0,$acc0 $LD $a0,$SIZE_T*5($ap_end) $LD $acc0,$SIZE_T*1($n0) or $t1,$a1,$acc1 $LD $a1,$SIZE_T*6($ap_end) $LD $acc1,$SIZE_T*2($n0) or $t2,$a2,$acc2 $LD $a2,$SIZE_T*7($ap_end) $LD $acc2,$SIZE_T*3($n0) or $t3,$a3,$acc3 $LD $a3,$SIZE_T*8($ap_end) $LDU $acc3,$SIZE_T*4($n0) $ST $t0,$SIZE_T*1($ap_end) $ST $t1,$SIZE_T*2($ap_end) $ST $t2,$SIZE_T*3($ap_end) $STU $t3,$SIZE_T*4($ap_end) bdnz .Lsqr4x_cond_copy $POP $ap,0($sp) # pull saved sp andc $a0,$a0,$carry and $acc0,$acc0,$carry andc $a1,$a1,$carry and $acc1,$acc1,$carry andc $a2,$a2,$carry and $acc2,$acc2,$carry andc $a3,$a3,$carry and $acc3,$acc3,$carry or $t0,$a0,$acc0 or $t1,$a1,$acc1 or $t2,$a2,$acc2 or $t3,$a3,$acc3 $ST $t0,$SIZE_T*1($ap_end) $ST $t1,$SIZE_T*2($ap_end) $ST $t2,$SIZE_T*3($ap_end) $ST $t3,$SIZE_T*4($ap_end) b .Lsqr8x_done .align 5 .Lsqr8x8_post_condition: $POP $rp,$SIZE_T*6($sp) # pull rp $POP $ap,0($sp) # pull saved sp addze $carry,$zero # $acc0-7,$carry hold result, $a0-7 hold modulus subfc $acc0,$a0,$acc0 subfe $acc1,$a1,$acc1 $ST $zero,$SIZE_T*12($sp) # wipe stack clean $ST $zero,$SIZE_T*13($sp) subfe $acc2,$a2,$acc2 $ST $zero,$SIZE_T*14($sp) $ST $zero,$SIZE_T*15($sp) subfe $acc3,$a3,$acc3 $ST $zero,$SIZE_T*16($sp) $ST $zero,$SIZE_T*17($sp) subfe $acc4,$a4,$acc4 $ST $zero,$SIZE_T*18($sp) $ST $zero,$SIZE_T*19($sp) subfe $acc5,$a5,$acc5 $ST $zero,$SIZE_T*20($sp) $ST $zero,$SIZE_T*21($sp) subfe $acc6,$a6,$acc6 $ST $zero,$SIZE_T*22($sp) $ST $zero,$SIZE_T*23($sp) subfe $acc7,$a7,$acc7 $ST $zero,$SIZE_T*24($sp) $ST $zero,$SIZE_T*25($sp) subfe $carry,$zero,$carry # did it borrow? $ST $zero,$SIZE_T*26($sp) $ST $zero,$SIZE_T*27($sp) and $a0,$a0,$carry and $a1,$a1,$carry addc $acc0,$acc0,$a0 # add modulus back if borrowed and $a2,$a2,$carry adde $acc1,$acc1,$a1 and $a3,$a3,$carry adde $acc2,$acc2,$a2 and $a4,$a4,$carry adde $acc3,$acc3,$a3 and $a5,$a5,$carry adde $acc4,$acc4,$a4 and $a6,$a6,$carry adde $acc5,$acc5,$a5 and $a7,$a7,$carry adde $acc6,$acc6,$a6 adde $acc7,$acc7,$a7 $ST $acc0,$SIZE_T*1($rp) $ST $acc1,$SIZE_T*2($rp) $ST $acc2,$SIZE_T*3($rp) $ST $acc3,$SIZE_T*4($rp) $ST $acc4,$SIZE_T*5($rp) $ST $acc5,$SIZE_T*6($rp) $ST $acc6,$SIZE_T*7($rp) $ST $acc7,$SIZE_T*8($rp) .Lsqr8x_done: $PUSH $zero,$SIZE_T*8($sp) $PUSH $zero,$SIZE_T*10($sp) $POP r14,-$SIZE_T*18($ap) li r3,1 # signal "done" $POP r15,-$SIZE_T*17($ap) $POP r16,-$SIZE_T*16($ap) $POP r17,-$SIZE_T*15($ap) $POP r18,-$SIZE_T*14($ap) $POP r19,-$SIZE_T*13($ap) $POP r20,-$SIZE_T*12($ap) $POP r21,-$SIZE_T*11($ap) $POP r22,-$SIZE_T*10($ap) $POP r23,-$SIZE_T*9($ap) $POP r24,-$SIZE_T*8($ap) $POP r25,-$SIZE_T*7($ap) $POP r26,-$SIZE_T*6($ap) $POP r27,-$SIZE_T*5($ap) $POP r28,-$SIZE_T*4($ap) $POP r29,-$SIZE_T*3($ap) $POP r30,-$SIZE_T*2($ap) $POP r31,-$SIZE_T*1($ap) mr $sp,$ap blr .long 0 .byte 0,12,4,0x20,0x80,18,6,0 .long 0 .size __bn_sqr8x_mont,.-__bn_sqr8x_mont ___ } $code.=<<___; .asciz "Montgomery Multiplication for PPC, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/ppc.pl000066400000000000000000001306711364063235100171740ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2004-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Implemented as a Perl wrapper as we want to support several different # architectures with single file. We pick up the target based on the # file name we are asked to generate. # # It should be noted though that this perl code is nothing like # /crypto/perlasm/x86*. In this case perl is used pretty much # as pre-processor to cover for platform differences in name decoration, # linker tables, 32-/64-bit instruction sets... # # As you might know there're several PowerPC ABI in use. Most notably # Linux and AIX use different 32-bit ABIs. Good news are that these ABIs # are similar enough to implement leaf(!) functions, which would be ABI # neutral. And that's what you find here: ABI neutral leaf functions. # In case you wonder what that is... # # AIX performance # # MEASUREMENTS WITH cc ON a 200 MhZ PowerPC 604e. # # The following is the performance of 32-bit compiler # generated code: # # OpenSSL 0.9.6c 21 dec 2001 # built on: Tue Jun 11 11:06:51 EDT 2002 # options:bn(64,32) ... #compiler: cc -DTHREADS -DAIX -DB_ENDIAN -DBN_LLONG -O3 # sign verify sign/s verify/s #rsa 512 bits 0.0098s 0.0009s 102.0 1170.6 #rsa 1024 bits 0.0507s 0.0026s 19.7 387.5 #rsa 2048 bits 0.3036s 0.0085s 3.3 117.1 #rsa 4096 bits 2.0040s 0.0299s 0.5 33.4 #dsa 512 bits 0.0087s 0.0106s 114.3 94.5 #dsa 1024 bits 0.0256s 0.0313s 39.0 32.0 # # Same benchmark with this assembler code: # #rsa 512 bits 0.0056s 0.0005s 178.6 2049.2 #rsa 1024 bits 0.0283s 0.0015s 35.3 674.1 #rsa 2048 bits 0.1744s 0.0050s 5.7 201.2 #rsa 4096 bits 1.1644s 0.0179s 0.9 55.7 #dsa 512 bits 0.0052s 0.0062s 191.6 162.0 #dsa 1024 bits 0.0149s 0.0180s 67.0 55.5 # # Number of operations increases by at almost 75% # # Here are performance numbers for 64-bit compiler # generated code: # # OpenSSL 0.9.6g [engine] 9 Aug 2002 # built on: Fri Apr 18 16:59:20 EDT 2003 # options:bn(64,64) ... # compiler: cc -DTHREADS -D_REENTRANT -q64 -DB_ENDIAN -O3 # sign verify sign/s verify/s #rsa 512 bits 0.0028s 0.0003s 357.1 3844.4 #rsa 1024 bits 0.0148s 0.0008s 67.5 1239.7 #rsa 2048 bits 0.0963s 0.0028s 10.4 353.0 #rsa 4096 bits 0.6538s 0.0102s 1.5 98.1 #dsa 512 bits 0.0026s 0.0032s 382.5 313.7 #dsa 1024 bits 0.0081s 0.0099s 122.8 100.6 # # Same benchmark with this assembler code: # #rsa 512 bits 0.0020s 0.0002s 510.4 6273.7 #rsa 1024 bits 0.0088s 0.0005s 114.1 2128.3 #rsa 2048 bits 0.0540s 0.0016s 18.5 622.5 #rsa 4096 bits 0.3700s 0.0058s 2.7 171.0 #dsa 512 bits 0.0016s 0.0020s 610.7 507.1 #dsa 1024 bits 0.0047s 0.0058s 212.5 173.2 # # Again, performance increases by at about 75% # # Mac OS X, Apple G5 1.8GHz (Note this is 32 bit code) # OpenSSL 0.9.7c 30 Sep 2003 # # Original code. # #rsa 512 bits 0.0011s 0.0001s 906.1 11012.5 #rsa 1024 bits 0.0060s 0.0003s 166.6 3363.1 #rsa 2048 bits 0.0370s 0.0010s 27.1 982.4 #rsa 4096 bits 0.2426s 0.0036s 4.1 280.4 #dsa 512 bits 0.0010s 0.0012s 1038.1 841.5 #dsa 1024 bits 0.0030s 0.0037s 329.6 269.7 #dsa 2048 bits 0.0101s 0.0127s 98.9 78.6 # # Same benchmark with this assembler code: # #rsa 512 bits 0.0007s 0.0001s 1416.2 16645.9 #rsa 1024 bits 0.0036s 0.0002s 274.4 5380.6 #rsa 2048 bits 0.0222s 0.0006s 45.1 1589.5 #rsa 4096 bits 0.1469s 0.0022s 6.8 449.6 #dsa 512 bits 0.0006s 0.0007s 1664.2 1376.2 #dsa 1024 bits 0.0018s 0.0023s 545.0 442.2 #dsa 2048 bits 0.0061s 0.0075s 163.5 132.8 # # Performance increase of ~60% # Based on submission from Suresh N. Chari of IBM $flavour = shift; if ($flavour =~ /32/) { $BITS= 32; $BNSZ= $BITS/8; $ISA= "\"ppc\""; $LD= "lwz"; # load $LDU= "lwzu"; # load and update $ST= "stw"; # store $STU= "stwu"; # store and update $UMULL= "mullw"; # unsigned multiply low $UMULH= "mulhwu"; # unsigned multiply high $UDIV= "divwu"; # unsigned divide $UCMPI= "cmplwi"; # unsigned compare with immediate $UCMP= "cmplw"; # unsigned compare $CNTLZ= "cntlzw"; # count leading zeros $SHL= "slw"; # shift left $SHR= "srw"; # unsigned shift right $SHRI= "srwi"; # unsigned shift right by immediate $SHLI= "slwi"; # shift left by immediate $CLRU= "clrlwi"; # clear upper bits $INSR= "insrwi"; # insert right $ROTL= "rotlwi"; # rotate left by immediate $TR= "tw"; # conditional trap } elsif ($flavour =~ /64/) { $BITS= 64; $BNSZ= $BITS/8; $ISA= "\"ppc64\""; # same as above, but 64-bit mnemonics... $LD= "ld"; # load $LDU= "ldu"; # load and update $ST= "std"; # store $STU= "stdu"; # store and update $UMULL= "mulld"; # unsigned multiply low $UMULH= "mulhdu"; # unsigned multiply high $UDIV= "divdu"; # unsigned divide $UCMPI= "cmpldi"; # unsigned compare with immediate $UCMP= "cmpld"; # unsigned compare $CNTLZ= "cntlzd"; # count leading zeros $SHL= "sld"; # shift left $SHR= "srd"; # unsigned shift right $SHRI= "srdi"; # unsigned shift right by immediate $SHLI= "sldi"; # shift left by immediate $CLRU= "clrldi"; # clear upper bits $INSR= "insrdi"; # insert right $ROTL= "rotldi"; # rotate left by immediate $TR= "td"; # conditional trap } else { die "nonsense $flavour"; } $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $data=< 0 then result !=0 # In either case carry bit is set. beq Lppcasm_sub_adios addi r4,r4,-$BNSZ addi r3,r3,-$BNSZ addi r5,r5,-$BNSZ mtctr r6 Lppcasm_sub_mainloop: $LDU r7,$BNSZ(r4) $LDU r8,$BNSZ(r5) subfe r6,r8,r7 # r6 = r7+carry bit + onescomplement(r8) # if carry = 1 this is r7-r8. Else it # is r7-r8 -1 as we need. $STU r6,$BNSZ(r3) bdnz Lppcasm_sub_mainloop Lppcasm_sub_adios: subfze r3,r0 # if carry bit is set then r3 = 0 else -1 andi. r3,r3,1 # keep only last bit. blr .long 0 .byte 0,12,0x14,0,0,0,4,0 .long 0 .size .bn_sub_words,.-.bn_sub_words # # NOTE: The following label name should be changed to # "bn_add_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_add_words: # # Handcoded version of bn_add_words # #BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) # # r3 = r # r4 = a # r5 = b # r6 = n # # Note: No loop unrolling done since this is not a performance # critical loop. xor r0,r0,r0 # # check for r6 = 0. Is this needed? # addic. r6,r6,0 #test r6 and clear carry bit. beq Lppcasm_add_adios addi r4,r4,-$BNSZ addi r3,r3,-$BNSZ addi r5,r5,-$BNSZ mtctr r6 Lppcasm_add_mainloop: $LDU r7,$BNSZ(r4) $LDU r8,$BNSZ(r5) adde r8,r7,r8 $STU r8,$BNSZ(r3) bdnz Lppcasm_add_mainloop Lppcasm_add_adios: addze r3,r0 #return carry bit. blr .long 0 .byte 0,12,0x14,0,0,0,4,0 .long 0 .size .bn_add_words,.-.bn_add_words # # NOTE: The following label name should be changed to # "bn_div_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_div_words: # # This is a cleaned up version of code generated by # the AIX compiler. The only optimization is to use # the PPC instruction to count leading zeros instead # of call to num_bits_word. Since this was compiled # only at level -O2 we can possibly squeeze it more? # # r3 = h # r4 = l # r5 = d $UCMPI 0,r5,0 # compare r5 and 0 bne Lppcasm_div1 # proceed if d!=0 li r3,-1 # d=0 return -1 blr Lppcasm_div1: xor r0,r0,r0 #r0=0 li r8,$BITS $CNTLZ. r7,r5 #r7 = num leading 0s in d. beq Lppcasm_div2 #proceed if no leading zeros subf r8,r7,r8 #r8 = BN_num_bits_word(d) $SHR. r9,r3,r8 #are there any bits above r8'th? $TR 16,r9,r0 #if there're, signal to dump core... Lppcasm_div2: $UCMP 0,r3,r5 #h>=d? blt Lppcasm_div3 #goto Lppcasm_div3 if not subf r3,r5,r3 #h-=d ; Lppcasm_div3: #r7 = BN_BITS2-i. so r7=i cmpi 0,0,r7,0 # is (i == 0)? beq Lppcasm_div4 $SHL r3,r3,r7 # h = (h<< i) $SHR r8,r4,r8 # r8 = (l >> BN_BITS2 -i) $SHL r5,r5,r7 # d<<=i or r3,r3,r8 # h = (h<>(BN_BITS2-i)) $SHL r4,r4,r7 # l <<=i Lppcasm_div4: $SHRI r9,r5,`$BITS/2` # r9 = dh # dl will be computed when needed # as it saves registers. li r6,2 #r6=2 mtctr r6 #counter will be in count. Lppcasm_divouterloop: $SHRI r8,r3,`$BITS/2` #r8 = (h>>BN_BITS4) $SHRI r11,r4,`$BITS/2` #r11= (l&BN_MASK2h)>>BN_BITS4 # compute here for innerloop. $UCMP 0,r8,r9 # is (h>>BN_BITS4)==dh bne Lppcasm_div5 # goto Lppcasm_div5 if not li r8,-1 $CLRU r8,r8,`$BITS/2` #q = BN_MASK2l b Lppcasm_div6 Lppcasm_div5: $UDIV r8,r3,r9 #q = h/dh Lppcasm_div6: $UMULL r12,r9,r8 #th = q*dh $CLRU r10,r5,`$BITS/2` #r10=dl $UMULL r6,r8,r10 #tl = q*dl Lppcasm_divinnerloop: subf r10,r12,r3 #t = h -th $SHRI r7,r10,`$BITS/2` #r7= (t &BN_MASK2H), sort of... addic. r7,r7,0 #test if r7 == 0. used below. # now want to compute # r7 = (t<>BN_BITS4) # the following 2 instructions do that $SHLI r7,r10,`$BITS/2` # r7 = (t<>BN_BITS4) $UCMP cr1,r6,r7 # compare (tl <= r7) bne Lppcasm_divinnerexit ble cr1,Lppcasm_divinnerexit addi r8,r8,-1 #q-- subf r12,r9,r12 #th -=dh $CLRU r10,r5,`$BITS/2` #r10=dl. t is no longer needed in loop. subf r6,r10,r6 #tl -=dl b Lppcasm_divinnerloop Lppcasm_divinnerexit: $SHRI r10,r6,`$BITS/2` #t=(tl>>BN_BITS4) $SHLI r11,r6,`$BITS/2` #tl=(tl<=tl) goto Lppcasm_div7 addi r12,r12,1 # th++ Lppcasm_div7: subf r11,r11,r4 #r11=l-tl $UCMP cr1,r3,r12 #compare h and th bge cr1,Lppcasm_div8 #if (h>=th) goto Lppcasm_div8 addi r8,r8,-1 # q-- add r3,r5,r3 # h+=d Lppcasm_div8: subf r12,r12,r3 #r12 = h-th $SHLI r4,r11,`$BITS/2` #l=(l&BN_MASK2l)<>BN_BITS4))&BN_MASK2 # the following 2 instructions will do this. $INSR r11,r12,`$BITS/2`,`$BITS/2` # r11 is the value we want rotated $BITS/2. $ROTL r3,r11,`$BITS/2` # rotate by $BITS/2 and store in r3 bdz Lppcasm_div9 #if (count==0) break ; $SHLI r0,r8,`$BITS/2` #ret =q<> 2 beq Lppcasm_mw_REM mtctr r7 Lppcasm_mw_LOOP: #mul(rp[0],ap[0],w,c1); $LD r8,`0*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 #addze r10,r10 #carry is NOT ignored. #will be taken care of #in second spin below #using adde. $ST r9,`0*$BNSZ`(r3) #mul(rp[1],ap[1],w,c1); $LD r8,`1*$BNSZ`(r4) $UMULL r11,r6,r8 $UMULH r12,r6,r8 adde r11,r11,r10 #addze r12,r12 $ST r11,`1*$BNSZ`(r3) #mul(rp[2],ap[2],w,c1); $LD r8,`2*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 adde r9,r9,r12 #addze r10,r10 $ST r9,`2*$BNSZ`(r3) #mul_add(rp[3],ap[3],w,c1); $LD r8,`3*$BNSZ`(r4) $UMULL r11,r6,r8 $UMULH r12,r6,r8 adde r11,r11,r10 addze r12,r12 #this spin we collect carry into #r12 $ST r11,`3*$BNSZ`(r3) addi r3,r3,`4*$BNSZ` addi r4,r4,`4*$BNSZ` bdnz Lppcasm_mw_LOOP Lppcasm_mw_REM: andi. r5,r5,0x3 beq Lppcasm_mw_OVER #mul(rp[0],ap[0],w,c1); $LD r8,`0*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 addze r10,r10 $ST r9,`0*$BNSZ`(r3) addi r12,r10,0 addi r5,r5,-1 cmpli 0,0,r5,0 beq Lppcasm_mw_OVER #mul(rp[1],ap[1],w,c1); $LD r8,`1*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 addze r10,r10 $ST r9,`1*$BNSZ`(r3) addi r12,r10,0 addi r5,r5,-1 cmpli 0,0,r5,0 beq Lppcasm_mw_OVER #mul_add(rp[2],ap[2],w,c1); $LD r8,`2*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 addze r10,r10 $ST r9,`2*$BNSZ`(r3) addi r12,r10,0 Lppcasm_mw_OVER: addi r3,r12,0 blr .long 0 .byte 0,12,0x14,0,0,0,4,0 .long 0 .size .bn_mul_words,.-.bn_mul_words # # NOTE: The following label name should be changed to # "bn_mul_add_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_mul_add_words: # # BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) # # r3 = rp # r4 = ap # r5 = num # r6 = w # # empirical evidence suggests that unrolled version performs best!! # xor r0,r0,r0 #r0 = 0 xor r12,r12,r12 #r12 = 0 . used for carry rlwinm. r7,r5,30,2,31 # num >> 2 beq Lppcasm_maw_leftover # if (num < 4) go LPPCASM_maw_leftover mtctr r7 Lppcasm_maw_mainloop: #mul_add(rp[0],ap[0],w,c1); $LD r8,`0*$BNSZ`(r4) $LD r11,`0*$BNSZ`(r3) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 #r12 is carry. addze r10,r10 addc r9,r9,r11 #addze r10,r10 #the above instruction addze #is NOT needed. Carry will NOT #be ignored. It's not affected #by multiply and will be collected #in the next spin $ST r9,`0*$BNSZ`(r3) #mul_add(rp[1],ap[1],w,c1); $LD r8,`1*$BNSZ`(r4) $LD r9,`1*$BNSZ`(r3) $UMULL r11,r6,r8 $UMULH r12,r6,r8 adde r11,r11,r10 #r10 is carry. addze r12,r12 addc r11,r11,r9 #addze r12,r12 $ST r11,`1*$BNSZ`(r3) #mul_add(rp[2],ap[2],w,c1); $LD r8,`2*$BNSZ`(r4) $UMULL r9,r6,r8 $LD r11,`2*$BNSZ`(r3) $UMULH r10,r6,r8 adde r9,r9,r12 addze r10,r10 addc r9,r9,r11 #addze r10,r10 $ST r9,`2*$BNSZ`(r3) #mul_add(rp[3],ap[3],w,c1); $LD r8,`3*$BNSZ`(r4) $UMULL r11,r6,r8 $LD r9,`3*$BNSZ`(r3) $UMULH r12,r6,r8 adde r11,r11,r10 addze r12,r12 addc r11,r11,r9 addze r12,r12 $ST r11,`3*$BNSZ`(r3) addi r3,r3,`4*$BNSZ` addi r4,r4,`4*$BNSZ` bdnz Lppcasm_maw_mainloop Lppcasm_maw_leftover: andi. r5,r5,0x3 beq Lppcasm_maw_adios addi r3,r3,-$BNSZ addi r4,r4,-$BNSZ #mul_add(rp[0],ap[0],w,c1); mtctr r5 $LDU r8,$BNSZ(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 $LDU r11,$BNSZ(r3) addc r9,r9,r11 addze r10,r10 addc r9,r9,r12 addze r12,r10 $ST r9,0(r3) bdz Lppcasm_maw_adios #mul_add(rp[1],ap[1],w,c1); $LDU r8,$BNSZ(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 $LDU r11,$BNSZ(r3) addc r9,r9,r11 addze r10,r10 addc r9,r9,r12 addze r12,r10 $ST r9,0(r3) bdz Lppcasm_maw_adios #mul_add(rp[2],ap[2],w,c1); $LDU r8,$BNSZ(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 $LDU r11,$BNSZ(r3) addc r9,r9,r11 addze r10,r10 addc r9,r9,r12 addze r12,r10 $ST r9,0(r3) Lppcasm_maw_adios: addi r3,r12,0 blr .long 0 .byte 0,12,0x14,0,0,0,4,0 .long 0 .size .bn_mul_add_words,.-.bn_mul_add_words .align 4 EOF $data =~ s/\`([^\`]*)\`/eval $1/gem; print $data; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/ppc64-mont.pl000066400000000000000000001175021364063235100203170ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # December 2007 # The reason for undertaken effort is basically following. Even though # Power 6 CPU operates at incredible 4.7GHz clock frequency, its PKI # performance was observed to be less than impressive, essentially as # fast as 1.8GHz PPC970, or 2.6 times(!) slower than one would hope. # Well, it's not surprising that IBM had to make some sacrifices to # boost the clock frequency that much, but no overall improvement? # Having observed how much difference did switching to FPU make on # UltraSPARC, playing same stunt on Power 6 appeared appropriate... # Unfortunately the resulting performance improvement is not as # impressive, ~30%, and in absolute terms is still very far from what # one would expect from 4.7GHz CPU. There is a chance that I'm doing # something wrong, but in the lack of assembler level micro-profiling # data or at least decent platform guide I can't tell... Or better # results might be achieved with VMX... Anyway, this module provides # *worse* performance on other PowerPC implementations, ~40-15% slower # on PPC970 depending on key length and ~40% slower on Power 5 for all # key lengths. As it's obviously inappropriate as "best all-round" # alternative, it has to be complemented with run-time CPU family # detection. Oh! It should also be noted that unlike other PowerPC # implementation IALU ppc-mont.pl module performs *suboptimally* on # >=1024-bit key lengths on Power 6. It should also be noted that # *everything* said so far applies to 64-bit builds! As far as 32-bit # application executed on 64-bit CPU goes, this module is likely to # become preferred choice, because it's easy to adapt it for such # case and *is* faster than 32-bit ppc-mont.pl on *all* processors. # February 2008 # Micro-profiling assisted optimization results in ~15% improvement # over original ppc64-mont.pl version, or overall ~50% improvement # over ppc.pl module on Power 6. If compared to ppc-mont.pl on same # Power 6 CPU, this module is 5-150% faster depending on key length, # [hereafter] more for longer keys. But if compared to ppc-mont.pl # on 1.8GHz PPC970, it's only 5-55% faster. Still far from impressive # in absolute terms, but it's apparently the way Power 6 is... # December 2009 # Adapted for 32-bit build this module delivers 25-120%, yes, more # than *twice* for longer keys, performance improvement over 32-bit # ppc-mont.pl on 1.8GHz PPC970. However! This implementation utilizes # even 64-bit integer operations and the trouble is that most PPC # operating systems don't preserve upper halves of general purpose # registers upon 32-bit signal delivery. They do preserve them upon # context switch, but not signalling:-( This means that asynchronous # signals have to be blocked upon entry to this subroutine. Signal # masking (and of course complementary unmasking) has quite an impact # on performance, naturally larger for shorter keys. It's so severe # that 512-bit key performance can be as low as 1/3 of expected one. # This is why this routine can be engaged for longer key operations # only on these OSes, see crypto/ppccap.c for further details. MacOS X # is an exception from this and doesn't require signal masking, and # that's where above improvement coefficients were collected. For # others alternative would be to break dependence on upper halves of # GPRs by sticking to 32-bit integer operations... # December 2012 # Remove above mentioned dependence on GPRs' upper halves in 32-bit # build. No signal masking overhead, but integer instructions are # *more* numerous... It's still "universally" faster than 32-bit # ppc-mont.pl, but improvement coefficient is not as impressive # for longer keys... $flavour = shift; if ($flavour =~ /32/) { $SIZE_T=4; $RZONE= 224; $fname= "bn_mul_mont_fpu64"; $STUX= "stwux"; # store indexed and update $PUSH= "stw"; $POP= "lwz"; } elsif ($flavour =~ /64/) { $SIZE_T=8; $RZONE= 288; $fname= "bn_mul_mont_fpu64"; # same as above, but 64-bit mnemonics... $STUX= "stdux"; # store indexed and update $PUSH= "std"; $POP= "ld"; } else { die "nonsense $flavour"; } $LITTLE_ENDIAN = ($flavour=~/le$/) ? 4 : 0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=64; # padded frame header $TRANSFER=16*8; $carry="r0"; $sp="r1"; $toc="r2"; $rp="r3"; $ovf="r3"; $ap="r4"; $bp="r5"; $np="r6"; $n0="r7"; $num="r8"; $rp="r9"; # $rp is reassigned $tp="r10"; $j="r11"; $i="r12"; # non-volatile registers $c1="r19"; $n1="r20"; $a1="r21"; $nap_d="r22"; # interleaved ap and np in double format $a0="r23"; # ap[0] $t0="r24"; # temporary registers $t1="r25"; $t2="r26"; $t3="r27"; $t4="r28"; $t5="r29"; $t6="r30"; $t7="r31"; # PPC offers enough register bank capacity to unroll inner loops twice # # ..A3A2A1A0 # dcba # ----------- # A0a # A0b # A0c # A0d # A1a # A1b # A1c # A1d # A2a # A2b # A2c # A2d # A3a # A3b # A3c # A3d # ..a # ..b # $ba="f0"; $bb="f1"; $bc="f2"; $bd="f3"; $na="f4"; $nb="f5"; $nc="f6"; $nd="f7"; $dota="f8"; $dotb="f9"; $A0="f10"; $A1="f11"; $A2="f12"; $A3="f13"; $N0="f20"; $N1="f21"; $N2="f22"; $N3="f23"; $T0a="f24"; $T0b="f25"; $T1a="f26"; $T1b="f27"; $T2a="f28"; $T2b="f29"; $T3a="f30"; $T3b="f31"; # sp----------->+-------------------------------+ # | saved sp | # +-------------------------------+ # . . # +64 +-------------------------------+ # | 16 gpr<->fpr transfer zone | # . . # . . # +16*8 +-------------------------------+ # | __int64 tmp[-1] | # +-------------------------------+ # | __int64 tmp[num] | # . . # . . # . . # +(num+1)*8 +-------------------------------+ # | padding to 64 byte boundary | # . . # +X +-------------------------------+ # | double nap_d[4*num] | # . . # . . # . . # +-------------------------------+ # . . # -13*size_t +-------------------------------+ # | 13 saved gpr, r19-r31 | # . . # . . # -12*8 +-------------------------------+ # | 12 saved fpr, f20-f31 | # . . # . . # +-------------------------------+ $code=<<___; .machine "any" .text .globl .$fname .align 5 .$fname: cmpwi $num,`3*8/$SIZE_T` mr $rp,r3 ; $rp is reassigned li r3,0 ; possible "not handled" return code bltlr- andi. r0,$num,`16/$SIZE_T-1` ; $num has to be "even" bnelr- slwi $num,$num,`log($SIZE_T)/log(2)` ; num*=sizeof(BN_LONG) li $i,-4096 slwi $tp,$num,2 ; place for {an}p_{lh}[num], i.e. 4*num add $tp,$tp,$num ; place for tp[num+1] addi $tp,$tp,`$FRAME+$TRANSFER+8+64+$RZONE` subf $tp,$tp,$sp ; $sp-$tp and $tp,$tp,$i ; minimize TLB usage subf $tp,$sp,$tp ; $tp-$sp mr $i,$sp $STUX $sp,$sp,$tp ; alloca $PUSH r19,`-12*8-13*$SIZE_T`($i) $PUSH r20,`-12*8-12*$SIZE_T`($i) $PUSH r21,`-12*8-11*$SIZE_T`($i) $PUSH r22,`-12*8-10*$SIZE_T`($i) $PUSH r23,`-12*8-9*$SIZE_T`($i) $PUSH r24,`-12*8-8*$SIZE_T`($i) $PUSH r25,`-12*8-7*$SIZE_T`($i) $PUSH r26,`-12*8-6*$SIZE_T`($i) $PUSH r27,`-12*8-5*$SIZE_T`($i) $PUSH r28,`-12*8-4*$SIZE_T`($i) $PUSH r29,`-12*8-3*$SIZE_T`($i) $PUSH r30,`-12*8-2*$SIZE_T`($i) $PUSH r31,`-12*8-1*$SIZE_T`($i) stfd f20,`-12*8`($i) stfd f21,`-11*8`($i) stfd f22,`-10*8`($i) stfd f23,`-9*8`($i) stfd f24,`-8*8`($i) stfd f25,`-7*8`($i) stfd f26,`-6*8`($i) stfd f27,`-5*8`($i) stfd f28,`-4*8`($i) stfd f29,`-3*8`($i) stfd f30,`-2*8`($i) stfd f31,`-1*8`($i) addi $tp,$sp,`$FRAME+$TRANSFER+8+64` li $i,-64 add $nap_d,$tp,$num and $nap_d,$nap_d,$i ; align to 64 bytes ; nap_d is off by 1, because it's used with stfdu/lfdu addi $nap_d,$nap_d,-8 srwi $j,$num,`3+1` ; counter register, num/2 addi $j,$j,-1 addi $tp,$sp,`$FRAME+$TRANSFER-8` li $carry,0 mtctr $j ___ $code.=<<___ if ($SIZE_T==8); ld $a0,0($ap) ; pull ap[0] value ld $t3,0($bp) ; bp[0] ld $n0,0($n0) ; pull n0[0] value mulld $t7,$a0,$t3 ; ap[0]*bp[0] ; transfer bp[0] to FPU as 4x16-bit values extrdi $t0,$t3,16,48 extrdi $t1,$t3,16,32 extrdi $t2,$t3,16,16 extrdi $t3,$t3,16,0 std $t0,`$FRAME+0`($sp) std $t1,`$FRAME+8`($sp) std $t2,`$FRAME+16`($sp) std $t3,`$FRAME+24`($sp) mulld $t7,$t7,$n0 ; tp[0]*n0 ; transfer (ap[0]*bp[0])*n0 to FPU as 4x16-bit values extrdi $t4,$t7,16,48 extrdi $t5,$t7,16,32 extrdi $t6,$t7,16,16 extrdi $t7,$t7,16,0 std $t4,`$FRAME+32`($sp) std $t5,`$FRAME+40`($sp) std $t6,`$FRAME+48`($sp) std $t7,`$FRAME+56`($sp) extrdi $t0,$a0,32,32 ; lwz $t0,4($ap) extrdi $t1,$a0,32,0 ; lwz $t1,0($ap) lwz $t2,`12^$LITTLE_ENDIAN`($ap) ; load a[1] as 32-bit word pair lwz $t3,`8^$LITTLE_ENDIAN`($ap) lwz $t4,`4^$LITTLE_ENDIAN`($np) ; load n[0] as 32-bit word pair lwz $t5,`0^$LITTLE_ENDIAN`($np) lwz $t6,`12^$LITTLE_ENDIAN`($np) ; load n[1] as 32-bit word pair lwz $t7,`8^$LITTLE_ENDIAN`($np) ___ $code.=<<___ if ($SIZE_T==4); lwz $a0,0($ap) ; pull ap[0,1] value mr $n1,$n0 lwz $a1,4($ap) li $c1,0 lwz $t1,0($bp) ; bp[0,1] lwz $t3,4($bp) lwz $n0,0($n1) ; pull n0[0,1] value lwz $n1,4($n1) mullw $t4,$a0,$t1 ; mulld ap[0]*bp[0] mulhwu $t5,$a0,$t1 mullw $t6,$a1,$t1 mullw $t7,$a0,$t3 add $t5,$t5,$t6 add $t5,$t5,$t7 ; transfer bp[0] to FPU as 4x16-bit values extrwi $t0,$t1,16,16 extrwi $t1,$t1,16,0 extrwi $t2,$t3,16,16 extrwi $t3,$t3,16,0 std $t0,`$FRAME+0`($sp) ; yes, std in 32-bit build std $t1,`$FRAME+8`($sp) std $t2,`$FRAME+16`($sp) std $t3,`$FRAME+24`($sp) mullw $t0,$t4,$n0 ; mulld tp[0]*n0 mulhwu $t1,$t4,$n0 mullw $t2,$t5,$n0 mullw $t3,$t4,$n1 add $t1,$t1,$t2 add $t1,$t1,$t3 ; transfer (ap[0]*bp[0])*n0 to FPU as 4x16-bit values extrwi $t4,$t0,16,16 extrwi $t5,$t0,16,0 extrwi $t6,$t1,16,16 extrwi $t7,$t1,16,0 std $t4,`$FRAME+32`($sp) ; yes, std in 32-bit build std $t5,`$FRAME+40`($sp) std $t6,`$FRAME+48`($sp) std $t7,`$FRAME+56`($sp) mr $t0,$a0 ; lwz $t0,0($ap) mr $t1,$a1 ; lwz $t1,4($ap) lwz $t2,8($ap) ; load a[j..j+3] as 32-bit word pairs lwz $t3,12($ap) lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs lwz $t5,4($np) lwz $t6,8($np) lwz $t7,12($np) ___ $code.=<<___; lfd $ba,`$FRAME+0`($sp) lfd $bb,`$FRAME+8`($sp) lfd $bc,`$FRAME+16`($sp) lfd $bd,`$FRAME+24`($sp) lfd $na,`$FRAME+32`($sp) lfd $nb,`$FRAME+40`($sp) lfd $nc,`$FRAME+48`($sp) lfd $nd,`$FRAME+56`($sp) std $t0,`$FRAME+64`($sp) ; yes, std even in 32-bit build std $t1,`$FRAME+72`($sp) std $t2,`$FRAME+80`($sp) std $t3,`$FRAME+88`($sp) std $t4,`$FRAME+96`($sp) std $t5,`$FRAME+104`($sp) std $t6,`$FRAME+112`($sp) std $t7,`$FRAME+120`($sp) fcfid $ba,$ba fcfid $bb,$bb fcfid $bc,$bc fcfid $bd,$bd fcfid $na,$na fcfid $nb,$nb fcfid $nc,$nc fcfid $nd,$nd lfd $A0,`$FRAME+64`($sp) lfd $A1,`$FRAME+72`($sp) lfd $A2,`$FRAME+80`($sp) lfd $A3,`$FRAME+88`($sp) lfd $N0,`$FRAME+96`($sp) lfd $N1,`$FRAME+104`($sp) lfd $N2,`$FRAME+112`($sp) lfd $N3,`$FRAME+120`($sp) fcfid $A0,$A0 fcfid $A1,$A1 fcfid $A2,$A2 fcfid $A3,$A3 fcfid $N0,$N0 fcfid $N1,$N1 fcfid $N2,$N2 fcfid $N3,$N3 addi $ap,$ap,16 addi $np,$np,16 fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb stfd $A0,8($nap_d) ; save a[j] in double format stfd $A1,16($nap_d) fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb stfd $A2,24($nap_d) ; save a[j+1] in double format stfd $A3,32($nap_d) fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb stfd $N0,40($nap_d) ; save n[j] in double format stfd $N1,48($nap_d) fmul $T0a,$A0,$ba fmul $T0b,$A0,$bb stfd $N2,56($nap_d) ; save n[j+1] in double format stfdu $N3,64($nap_d) fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b fmul $dota,$A3,$bc fmul $dotb,$A3,$bd fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb fctid $T0a,$T0a fctid $T0b,$T0b fctid $T1a,$T1a fctid $T1b,$T1b fctid $T2a,$T2a fctid $T2b,$T2b fctid $T3a,$T3a fctid $T3b,$T3b stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) .align 5 L1st: ___ $code.=<<___ if ($SIZE_T==8); lwz $t0,`4^$LITTLE_ENDIAN`($ap) ; load a[j] as 32-bit word pair lwz $t1,`0^$LITTLE_ENDIAN`($ap) lwz $t2,`12^$LITTLE_ENDIAN`($ap) ; load a[j+1] as 32-bit word pair lwz $t3,`8^$LITTLE_ENDIAN`($ap) lwz $t4,`4^$LITTLE_ENDIAN`($np) ; load n[j] as 32-bit word pair lwz $t5,`0^$LITTLE_ENDIAN`($np) lwz $t6,`12^$LITTLE_ENDIAN`($np) ; load n[j+1] as 32-bit word pair lwz $t7,`8^$LITTLE_ENDIAN`($np) ___ $code.=<<___ if ($SIZE_T==4); lwz $t0,0($ap) ; load a[j..j+3] as 32-bit word pairs lwz $t1,4($ap) lwz $t2,8($ap) lwz $t3,12($ap) lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs lwz $t5,4($np) lwz $t6,8($np) lwz $t7,12($np) ___ $code.=<<___; std $t0,`$FRAME+64`($sp) ; yes, std even in 32-bit build std $t1,`$FRAME+72`($sp) std $t2,`$FRAME+80`($sp) std $t3,`$FRAME+88`($sp) std $t4,`$FRAME+96`($sp) std $t5,`$FRAME+104`($sp) std $t6,`$FRAME+112`($sp) std $t7,`$FRAME+120`($sp) ___ if ($SIZE_T==8 or $flavour =~ /osx/) { $code.=<<___; ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) ___ } else { $code.=<<___; lwz $t1,`$FRAME+0^$LITTLE_ENDIAN`($sp) lwz $t0,`$FRAME+4^$LITTLE_ENDIAN`($sp) lwz $t3,`$FRAME+8^$LITTLE_ENDIAN`($sp) lwz $t2,`$FRAME+12^$LITTLE_ENDIAN`($sp) lwz $t5,`$FRAME+16^$LITTLE_ENDIAN`($sp) lwz $t4,`$FRAME+20^$LITTLE_ENDIAN`($sp) lwz $t7,`$FRAME+24^$LITTLE_ENDIAN`($sp) lwz $t6,`$FRAME+28^$LITTLE_ENDIAN`($sp) ___ } $code.=<<___; lfd $A0,`$FRAME+64`($sp) lfd $A1,`$FRAME+72`($sp) lfd $A2,`$FRAME+80`($sp) lfd $A3,`$FRAME+88`($sp) lfd $N0,`$FRAME+96`($sp) lfd $N1,`$FRAME+104`($sp) lfd $N2,`$FRAME+112`($sp) lfd $N3,`$FRAME+120`($sp) fcfid $A0,$A0 fcfid $A1,$A1 fcfid $A2,$A2 fcfid $A3,$A3 fcfid $N0,$N0 fcfid $N1,$N1 fcfid $N2,$N2 fcfid $N3,$N3 addi $ap,$ap,16 addi $np,$np,16 fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb stfd $A0,8($nap_d) ; save a[j] in double format stfd $A1,16($nap_d) fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb fmadd $T0a,$A0,$ba,$dota fmadd $T0b,$A0,$bb,$dotb stfd $A2,24($nap_d) ; save a[j+1] in double format stfd $A3,32($nap_d) ___ if ($SIZE_T==8 or $flavour =~ /osx/) { $code.=<<___; fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b stfd $N0,40($nap_d) ; save n[j] in double format stfd $N1,48($nap_d) fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b add $t0,$t0,$carry ; can not overflow fmul $dota,$A3,$bc fmul $dotb,$A3,$bd stfd $N2,56($nap_d) ; save n[j+1] in double format stfdu $N3,64($nap_d) srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b insrdi $t0,$t1,16,32 fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b add $t2,$t2,$carry fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b srdi $carry,$t2,16 fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b insrdi $t0,$t2,16,16 add $t3,$t3,$carry srdi $carry,$t3,16 fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b insrdi $t0,$t3,16,0 ; 0..63 bits fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b add $t4,$t4,$carry fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b srdi $carry,$t4,16 fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb add $t5,$t5,$carry srdi $carry,$t5,16 insrdi $t4,$t5,16,32 fctid $T0a,$T0a fctid $T0b,$T0b add $t6,$t6,$carry fctid $T1a,$T1a fctid $T1b,$T1b srdi $carry,$t6,16 fctid $T2a,$T2a fctid $T2b,$T2b insrdi $t4,$t6,16,16 fctid $T3a,$T3a fctid $T3b,$T3b add $t7,$t7,$carry insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) std $t0,8($tp) ; tp[j-1] stdu $t4,16($tp) ; tp[j] ___ } else { $code.=<<___; fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b addc $t0,$t0,$carry adde $t1,$t1,$c1 srwi $carry,$t0,16 fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b stfd $N0,40($nap_d) ; save n[j] in double format stfd $N1,48($nap_d) srwi $c1,$t1,16 insrwi $carry,$t1,16,0 fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 fmul $dota,$A3,$bc fmul $dotb,$A3,$bd stfd $N2,56($nap_d) ; save n[j+1] in double format stfdu $N3,64($nap_d) insrwi $t0,$t2,16,0 ; 0..31 bits srwi $c1,$t3,16 insrwi $carry,$t3,16,0 fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b lwz $t3,`$FRAME+32^$LITTLE_ENDIAN`($sp) ; permuted $t1 lwz $t2,`$FRAME+36^$LITTLE_ENDIAN`($sp) ; permuted $t0 addc $t4,$t4,$carry adde $t5,$t5,$c1 srwi $carry,$t4,16 fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b srwi $c1,$t5,16 insrwi $carry,$t5,16,0 fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b insrwi $t4,$t6,16,0 ; 32..63 bits srwi $c1,$t7,16 insrwi $carry,$t7,16,0 fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b lwz $t7,`$FRAME+40^$LITTLE_ENDIAN`($sp) ; permuted $t3 lwz $t6,`$FRAME+44^$LITTLE_ENDIAN`($sp) ; permuted $t2 addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b stw $t0,12($tp) ; tp[j-1] stw $t4,8($tp) srwi $c1,$t3,16 insrwi $carry,$t3,16,0 fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b lwz $t1,`$FRAME+48^$LITTLE_ENDIAN`($sp) ; permuted $t5 lwz $t0,`$FRAME+52^$LITTLE_ENDIAN`($sp) ; permuted $t4 addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb insrwi $t2,$t6,16,0 ; 64..95 bits srwi $c1,$t7,16 insrwi $carry,$t7,16,0 fctid $T0a,$T0a fctid $T0b,$T0b lwz $t5,`$FRAME+56^$LITTLE_ENDIAN`($sp) ; permuted $t7 lwz $t4,`$FRAME+60^$LITTLE_ENDIAN`($sp) ; permuted $t6 addc $t0,$t0,$carry adde $t1,$t1,$c1 srwi $carry,$t0,16 fctid $T1a,$T1a fctid $T1b,$T1b srwi $c1,$t1,16 insrwi $carry,$t1,16,0 fctid $T2a,$T2a fctid $T2b,$T2b addc $t4,$t4,$carry adde $t5,$t5,$c1 srwi $carry,$t4,16 fctid $T3a,$T3a fctid $T3b,$T3b insrwi $t0,$t4,16,0 ; 96..127 bits srwi $c1,$t5,16 insrwi $carry,$t5,16,0 stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) stw $t2,20($tp) ; tp[j] stwu $t0,16($tp) ___ } $code.=<<___; bdnz L1st fctid $dota,$dota fctid $dotb,$dotb ___ if ($SIZE_T==8 or $flavour =~ /osx/) { $code.=<<___; ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) stfd $dota,`$FRAME+64`($sp) stfd $dotb,`$FRAME+72`($sp) add $t0,$t0,$carry ; can not overflow srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 insrdi $t0,$t1,16,32 add $t2,$t2,$carry srdi $carry,$t2,16 insrdi $t0,$t2,16,16 add $t3,$t3,$carry srdi $carry,$t3,16 insrdi $t0,$t3,16,0 ; 0..63 bits add $t4,$t4,$carry srdi $carry,$t4,16 add $t5,$t5,$carry srdi $carry,$t5,16 insrdi $t4,$t5,16,32 add $t6,$t6,$carry srdi $carry,$t6,16 insrdi $t4,$t6,16,16 add $t7,$t7,$carry insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits ld $t6,`$FRAME+64`($sp) ld $t7,`$FRAME+72`($sp) std $t0,8($tp) ; tp[j-1] stdu $t4,16($tp) ; tp[j] add $t6,$t6,$carry ; can not overflow srdi $carry,$t6,16 add $t7,$t7,$carry insrdi $t6,$t7,48,0 srdi $ovf,$t7,48 std $t6,8($tp) ; tp[num-1] ___ } else { $code.=<<___; lwz $t1,`$FRAME+0^$LITTLE_ENDIAN`($sp) lwz $t0,`$FRAME+4^$LITTLE_ENDIAN`($sp) lwz $t3,`$FRAME+8^$LITTLE_ENDIAN`($sp) lwz $t2,`$FRAME+12^$LITTLE_ENDIAN`($sp) lwz $t5,`$FRAME+16^$LITTLE_ENDIAN`($sp) lwz $t4,`$FRAME+20^$LITTLE_ENDIAN`($sp) lwz $t7,`$FRAME+24^$LITTLE_ENDIAN`($sp) lwz $t6,`$FRAME+28^$LITTLE_ENDIAN`($sp) stfd $dota,`$FRAME+64`($sp) stfd $dotb,`$FRAME+72`($sp) addc $t0,$t0,$carry adde $t1,$t1,$c1 srwi $carry,$t0,16 insrwi $carry,$t1,16,0 srwi $c1,$t1,16 addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 insrwi $t0,$t2,16,0 ; 0..31 bits insrwi $carry,$t3,16,0 srwi $c1,$t3,16 addc $t4,$t4,$carry adde $t5,$t5,$c1 srwi $carry,$t4,16 insrwi $carry,$t5,16,0 srwi $c1,$t5,16 addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 insrwi $t4,$t6,16,0 ; 32..63 bits insrwi $carry,$t7,16,0 srwi $c1,$t7,16 stw $t0,12($tp) ; tp[j-1] stw $t4,8($tp) lwz $t3,`$FRAME+32^$LITTLE_ENDIAN`($sp) ; permuted $t1 lwz $t2,`$FRAME+36^$LITTLE_ENDIAN`($sp) ; permuted $t0 lwz $t7,`$FRAME+40^$LITTLE_ENDIAN`($sp) ; permuted $t3 lwz $t6,`$FRAME+44^$LITTLE_ENDIAN`($sp) ; permuted $t2 lwz $t1,`$FRAME+48^$LITTLE_ENDIAN`($sp) ; permuted $t5 lwz $t0,`$FRAME+52^$LITTLE_ENDIAN`($sp) ; permuted $t4 lwz $t5,`$FRAME+56^$LITTLE_ENDIAN`($sp) ; permuted $t7 lwz $t4,`$FRAME+60^$LITTLE_ENDIAN`($sp) ; permuted $t6 addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 insrwi $carry,$t3,16,0 srwi $c1,$t3,16 addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 insrwi $t2,$t6,16,0 ; 64..95 bits insrwi $carry,$t7,16,0 srwi $c1,$t7,16 addc $t0,$t0,$carry adde $t1,$t1,$c1 srwi $carry,$t0,16 insrwi $carry,$t1,16,0 srwi $c1,$t1,16 addc $t4,$t4,$carry adde $t5,$t5,$c1 srwi $carry,$t4,16 insrwi $t0,$t4,16,0 ; 96..127 bits insrwi $carry,$t5,16,0 srwi $c1,$t5,16 stw $t2,20($tp) ; tp[j] stwu $t0,16($tp) lwz $t7,`$FRAME+64^$LITTLE_ENDIAN`($sp) lwz $t6,`$FRAME+68^$LITTLE_ENDIAN`($sp) lwz $t5,`$FRAME+72^$LITTLE_ENDIAN`($sp) lwz $t4,`$FRAME+76^$LITTLE_ENDIAN`($sp) addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 insrwi $carry,$t7,16,0 srwi $c1,$t7,16 addc $t4,$t4,$carry adde $t5,$t5,$c1 insrwi $t6,$t4,16,0 srwi $t4,$t4,16 insrwi $t4,$t5,16,0 srwi $ovf,$t5,16 stw $t6,12($tp) ; tp[num-1] stw $t4,8($tp) ___ } $code.=<<___; slwi $t7,$num,2 subf $nap_d,$t7,$nap_d ; rewind pointer li $i,8 ; i=1 .align 5 Louter: addi $tp,$sp,`$FRAME+$TRANSFER` li $carry,0 mtctr $j ___ $code.=<<___ if ($SIZE_T==8); ldx $t3,$bp,$i ; bp[i] ld $t6,`$FRAME+$TRANSFER+8`($sp) ; tp[0] mulld $t7,$a0,$t3 ; ap[0]*bp[i] add $t7,$t7,$t6 ; ap[0]*bp[i]+tp[0] ; transfer bp[i] to FPU as 4x16-bit values extrdi $t0,$t3,16,48 extrdi $t1,$t3,16,32 extrdi $t2,$t3,16,16 extrdi $t3,$t3,16,0 std $t0,`$FRAME+0`($sp) std $t1,`$FRAME+8`($sp) std $t2,`$FRAME+16`($sp) std $t3,`$FRAME+24`($sp) mulld $t7,$t7,$n0 ; tp[0]*n0 ; transfer (ap[0]*bp[i]+tp[0])*n0 to FPU as 4x16-bit values extrdi $t4,$t7,16,48 extrdi $t5,$t7,16,32 extrdi $t6,$t7,16,16 extrdi $t7,$t7,16,0 std $t4,`$FRAME+32`($sp) std $t5,`$FRAME+40`($sp) std $t6,`$FRAME+48`($sp) std $t7,`$FRAME+56`($sp) ___ $code.=<<___ if ($SIZE_T==4); add $t0,$bp,$i li $c1,0 lwz $t1,0($t0) ; bp[i,i+1] lwz $t3,4($t0) mullw $t4,$a0,$t1 ; ap[0]*bp[i] lwz $t0,`$FRAME+$TRANSFER+8+4`($sp) ; tp[0] mulhwu $t5,$a0,$t1 lwz $t2,`$FRAME+$TRANSFER+8`($sp) ; tp[0] mullw $t6,$a1,$t1 mullw $t7,$a0,$t3 add $t5,$t5,$t6 add $t5,$t5,$t7 addc $t4,$t4,$t0 ; ap[0]*bp[i]+tp[0] adde $t5,$t5,$t2 ; transfer bp[i] to FPU as 4x16-bit values extrwi $t0,$t1,16,16 extrwi $t1,$t1,16,0 extrwi $t2,$t3,16,16 extrwi $t3,$t3,16,0 std $t0,`$FRAME+0`($sp) ; yes, std in 32-bit build std $t1,`$FRAME+8`($sp) std $t2,`$FRAME+16`($sp) std $t3,`$FRAME+24`($sp) mullw $t0,$t4,$n0 ; mulld tp[0]*n0 mulhwu $t1,$t4,$n0 mullw $t2,$t5,$n0 mullw $t3,$t4,$n1 add $t1,$t1,$t2 add $t1,$t1,$t3 ; transfer (ap[0]*bp[i]+tp[0])*n0 to FPU as 4x16-bit values extrwi $t4,$t0,16,16 extrwi $t5,$t0,16,0 extrwi $t6,$t1,16,16 extrwi $t7,$t1,16,0 std $t4,`$FRAME+32`($sp) ; yes, std in 32-bit build std $t5,`$FRAME+40`($sp) std $t6,`$FRAME+48`($sp) std $t7,`$FRAME+56`($sp) ___ $code.=<<___; lfd $A0,8($nap_d) ; load a[j] in double format lfd $A1,16($nap_d) lfd $A2,24($nap_d) ; load a[j+1] in double format lfd $A3,32($nap_d) lfd $N0,40($nap_d) ; load n[j] in double format lfd $N1,48($nap_d) lfd $N2,56($nap_d) ; load n[j+1] in double format lfdu $N3,64($nap_d) lfd $ba,`$FRAME+0`($sp) lfd $bb,`$FRAME+8`($sp) lfd $bc,`$FRAME+16`($sp) lfd $bd,`$FRAME+24`($sp) lfd $na,`$FRAME+32`($sp) lfd $nb,`$FRAME+40`($sp) lfd $nc,`$FRAME+48`($sp) lfd $nd,`$FRAME+56`($sp) fcfid $ba,$ba fcfid $bb,$bb fcfid $bc,$bc fcfid $bd,$bd fcfid $na,$na fcfid $nb,$nb fcfid $nc,$nc fcfid $nd,$nd fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb fmul $T0a,$A0,$ba fmul $T0b,$A0,$bb fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b fmul $dota,$A3,$bc fmul $dotb,$A3,$bd fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b lfd $A0,8($nap_d) ; load a[j] in double format lfd $A1,16($nap_d) fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b lfd $A2,24($nap_d) ; load a[j+1] in double format lfd $A3,32($nap_d) fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb fctid $T0a,$T0a fctid $T0b,$T0b fctid $T1a,$T1a fctid $T1b,$T1b fctid $T2a,$T2a fctid $T2b,$T2b fctid $T3a,$T3a fctid $T3b,$T3b stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) .align 5 Linner: fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb lfd $N0,40($nap_d) ; load n[j] in double format lfd $N1,48($nap_d) fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb fmadd $T0a,$A0,$ba,$dota fmadd $T0b,$A0,$bb,$dotb lfd $N2,56($nap_d) ; load n[j+1] in double format lfdu $N3,64($nap_d) fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b lfd $A0,8($nap_d) ; load a[j] in double format lfd $A1,16($nap_d) fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b fmul $dota,$A3,$bc fmul $dotb,$A3,$bd lfd $A2,24($nap_d) ; load a[j+1] in double format lfd $A3,32($nap_d) ___ if ($SIZE_T==8 or $flavour =~ /osx/) { $code.=<<___; fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b add $t0,$t0,$carry ; can not overflow ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b insrdi $t0,$t1,16,32 ld $t1,8($tp) ; tp[j] fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b add $t2,$t2,$carry fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b srdi $carry,$t2,16 insrdi $t0,$t2,16,16 fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb add $t3,$t3,$carry ldu $t2,16($tp) ; tp[j+1] srdi $carry,$t3,16 insrdi $t0,$t3,16,0 ; 0..63 bits add $t4,$t4,$carry fctid $T0a,$T0a fctid $T0b,$T0b srdi $carry,$t4,16 fctid $T1a,$T1a fctid $T1b,$T1b add $t5,$t5,$carry fctid $T2a,$T2a fctid $T2b,$T2b srdi $carry,$t5,16 insrdi $t4,$t5,16,32 fctid $T3a,$T3a fctid $T3b,$T3b add $t6,$t6,$carry srdi $carry,$t6,16 insrdi $t4,$t6,16,16 stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) add $t7,$t7,$carry addc $t3,$t0,$t1 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t0,$t0,32,0 extrdi $t1,$t1,32,0 adde $t0,$t0,$t1 ___ $code.=<<___; stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) adde $t5,$t4,$t2 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t4,$t4,32,0 extrdi $t2,$t2,32,0 adde $t4,$t4,$t2 ___ $code.=<<___; stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) addze $carry,$carry std $t3,-16($tp) ; tp[j-1] std $t5,-8($tp) ; tp[j] ___ } else { $code.=<<___; fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b lwz $t1,`$FRAME+0^$LITTLE_ENDIAN`($sp) lwz $t0,`$FRAME+4^$LITTLE_ENDIAN`($sp) fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b lwz $t3,`$FRAME+8^$LITTLE_ENDIAN`($sp) lwz $t2,`$FRAME+12^$LITTLE_ENDIAN`($sp) fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b lwz $t5,`$FRAME+16^$LITTLE_ENDIAN`($sp) lwz $t4,`$FRAME+20^$LITTLE_ENDIAN`($sp) addc $t0,$t0,$carry adde $t1,$t1,$c1 srwi $carry,$t0,16 fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b lwz $t7,`$FRAME+24^$LITTLE_ENDIAN`($sp) lwz $t6,`$FRAME+28^$LITTLE_ENDIAN`($sp) srwi $c1,$t1,16 insrwi $carry,$t1,16,0 fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b insrwi $t0,$t2,16,0 ; 0..31 bits srwi $c1,$t3,16 insrwi $carry,$t3,16,0 fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b lwz $t2,12($tp) ; tp[j] lwz $t3,8($tp) addc $t4,$t4,$carry adde $t5,$t5,$c1 srwi $carry,$t4,16 fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb srwi $c1,$t5,16 insrwi $carry,$t5,16,0 fctid $T0a,$T0a addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 fctid $T0b,$T0b insrwi $t4,$t6,16,0 ; 32..63 bits srwi $c1,$t7,16 insrwi $carry,$t7,16,0 fctid $T1a,$T1a addc $t0,$t0,$t2 adde $t4,$t4,$t3 lwz $t3,`$FRAME+32^$LITTLE_ENDIAN`($sp) ; permuted $t1 lwz $t2,`$FRAME+36^$LITTLE_ENDIAN`($sp) ; permuted $t0 fctid $T1b,$T1b addze $carry,$carry addze $c1,$c1 stw $t0,4($tp) ; tp[j-1] stw $t4,0($tp) fctid $T2a,$T2a addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 lwz $t7,`$FRAME+40^$LITTLE_ENDIAN`($sp) ; permuted $t3 lwz $t6,`$FRAME+44^$LITTLE_ENDIAN`($sp) ; permuted $t2 fctid $T2b,$T2b srwi $c1,$t3,16 insrwi $carry,$t3,16,0 lwz $t1,`$FRAME+48^$LITTLE_ENDIAN`($sp) ; permuted $t5 lwz $t0,`$FRAME+52^$LITTLE_ENDIAN`($sp) ; permuted $t4 fctid $T3a,$T3a addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 lwz $t5,`$FRAME+56^$LITTLE_ENDIAN`($sp) ; permuted $t7 lwz $t4,`$FRAME+60^$LITTLE_ENDIAN`($sp) ; permuted $t6 fctid $T3b,$T3b insrwi $t2,$t6,16,0 ; 64..95 bits insrwi $carry,$t7,16,0 srwi $c1,$t7,16 lwz $t6,20($tp) lwzu $t7,16($tp) addc $t0,$t0,$carry stfd $T0a,`$FRAME+0`($sp) adde $t1,$t1,$c1 srwi $carry,$t0,16 stfd $T0b,`$FRAME+8`($sp) insrwi $carry,$t1,16,0 srwi $c1,$t1,16 addc $t4,$t4,$carry stfd $T1a,`$FRAME+16`($sp) adde $t5,$t5,$c1 srwi $carry,$t4,16 insrwi $t0,$t4,16,0 ; 96..127 bits stfd $T1b,`$FRAME+24`($sp) insrwi $carry,$t5,16,0 srwi $c1,$t5,16 addc $t2,$t2,$t6 stfd $T2a,`$FRAME+32`($sp) adde $t0,$t0,$t7 stfd $T2b,`$FRAME+40`($sp) addze $carry,$carry stfd $T3a,`$FRAME+48`($sp) addze $c1,$c1 stfd $T3b,`$FRAME+56`($sp) stw $t2,-4($tp) ; tp[j] stw $t0,-8($tp) ___ } $code.=<<___; bdnz Linner fctid $dota,$dota fctid $dotb,$dotb ___ if ($SIZE_T==8 or $flavour =~ /osx/) { $code.=<<___; ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) stfd $dota,`$FRAME+64`($sp) stfd $dotb,`$FRAME+72`($sp) add $t0,$t0,$carry ; can not overflow srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 insrdi $t0,$t1,16,32 add $t2,$t2,$carry ld $t1,8($tp) ; tp[j] srdi $carry,$t2,16 insrdi $t0,$t2,16,16 add $t3,$t3,$carry ldu $t2,16($tp) ; tp[j+1] srdi $carry,$t3,16 insrdi $t0,$t3,16,0 ; 0..63 bits add $t4,$t4,$carry srdi $carry,$t4,16 add $t5,$t5,$carry srdi $carry,$t5,16 insrdi $t4,$t5,16,32 add $t6,$t6,$carry srdi $carry,$t6,16 insrdi $t4,$t6,16,16 add $t7,$t7,$carry insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits ld $t6,`$FRAME+64`($sp) ld $t7,`$FRAME+72`($sp) addc $t3,$t0,$t1 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t0,$t0,32,0 extrdi $t1,$t1,32,0 adde $t0,$t0,$t1 ___ $code.=<<___; adde $t5,$t4,$t2 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t4,$t4,32,0 extrdi $t2,$t2,32,0 adde $t4,$t4,$t2 ___ $code.=<<___; addze $carry,$carry std $t3,-16($tp) ; tp[j-1] std $t5,-8($tp) ; tp[j] add $carry,$carry,$ovf ; consume upmost overflow add $t6,$t6,$carry ; can not overflow srdi $carry,$t6,16 add $t7,$t7,$carry insrdi $t6,$t7,48,0 srdi $ovf,$t7,48 std $t6,0($tp) ; tp[num-1] ___ } else { $code.=<<___; lwz $t1,`$FRAME+0^$LITTLE_ENDIAN`($sp) lwz $t0,`$FRAME+4^$LITTLE_ENDIAN`($sp) lwz $t3,`$FRAME+8^$LITTLE_ENDIAN`($sp) lwz $t2,`$FRAME+12^$LITTLE_ENDIAN`($sp) lwz $t5,`$FRAME+16^$LITTLE_ENDIAN`($sp) lwz $t4,`$FRAME+20^$LITTLE_ENDIAN`($sp) lwz $t7,`$FRAME+24^$LITTLE_ENDIAN`($sp) lwz $t6,`$FRAME+28^$LITTLE_ENDIAN`($sp) stfd $dota,`$FRAME+64`($sp) stfd $dotb,`$FRAME+72`($sp) addc $t0,$t0,$carry adde $t1,$t1,$c1 srwi $carry,$t0,16 insrwi $carry,$t1,16,0 srwi $c1,$t1,16 addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 insrwi $t0,$t2,16,0 ; 0..31 bits lwz $t2,12($tp) ; tp[j] insrwi $carry,$t3,16,0 srwi $c1,$t3,16 lwz $t3,8($tp) addc $t4,$t4,$carry adde $t5,$t5,$c1 srwi $carry,$t4,16 insrwi $carry,$t5,16,0 srwi $c1,$t5,16 addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 insrwi $t4,$t6,16,0 ; 32..63 bits insrwi $carry,$t7,16,0 srwi $c1,$t7,16 addc $t0,$t0,$t2 adde $t4,$t4,$t3 addze $carry,$carry addze $c1,$c1 stw $t0,4($tp) ; tp[j-1] stw $t4,0($tp) lwz $t3,`$FRAME+32^$LITTLE_ENDIAN`($sp) ; permuted $t1 lwz $t2,`$FRAME+36^$LITTLE_ENDIAN`($sp) ; permuted $t0 lwz $t7,`$FRAME+40^$LITTLE_ENDIAN`($sp) ; permuted $t3 lwz $t6,`$FRAME+44^$LITTLE_ENDIAN`($sp) ; permuted $t2 lwz $t1,`$FRAME+48^$LITTLE_ENDIAN`($sp) ; permuted $t5 lwz $t0,`$FRAME+52^$LITTLE_ENDIAN`($sp) ; permuted $t4 lwz $t5,`$FRAME+56^$LITTLE_ENDIAN`($sp) ; permuted $t7 lwz $t4,`$FRAME+60^$LITTLE_ENDIAN`($sp) ; permuted $t6 addc $t2,$t2,$carry adde $t3,$t3,$c1 srwi $carry,$t2,16 insrwi $carry,$t3,16,0 srwi $c1,$t3,16 addc $t6,$t6,$carry adde $t7,$t7,$c1 srwi $carry,$t6,16 insrwi $t2,$t6,16,0 ; 64..95 bits lwz $t6,20($tp) insrwi $carry,$t7,16,0 srwi $c1,$t7,16 lwzu $t7,16($tp) addc $t0,$t0,$carry adde $t1,$t1,$c1 srwi $carry,$t0,16 insrwi $carry,$t1,16,0 srwi $c1,$t1,16 addc $t4,$t4,$carry adde $t5,$t5,$c1 srwi $carry,$t4,16 insrwi $t0,$t4,16,0 ; 96..127 bits insrwi $carry,$t5,16,0 srwi $c1,$t5,16 addc $t2,$t2,$t6 adde $t0,$t0,$t7 lwz $t7,`$FRAME+64^$LITTLE_ENDIAN`($sp) lwz $t6,`$FRAME+68^$LITTLE_ENDIAN`($sp) addze $carry,$carry addze $c1,$c1 lwz $t5,`$FRAME+72^$LITTLE_ENDIAN`($sp) lwz $t4,`$FRAME+76^$LITTLE_ENDIAN`($sp) addc $t6,$t6,$carry adde $t7,$t7,$c1 stw $t2,-4($tp) ; tp[j] stw $t0,-8($tp) addc $t6,$t6,$ovf addze $t7,$t7 srwi $carry,$t6,16 insrwi $carry,$t7,16,0 srwi $c1,$t7,16 addc $t4,$t4,$carry adde $t5,$t5,$c1 insrwi $t6,$t4,16,0 srwi $t4,$t4,16 insrwi $t4,$t5,16,0 srwi $ovf,$t5,16 stw $t6,4($tp) ; tp[num-1] stw $t4,0($tp) ___ } $code.=<<___; slwi $t7,$num,2 addi $i,$i,8 subf $nap_d,$t7,$nap_d ; rewind pointer cmpw $i,$num blt- Louter ___ $code.=<<___ if ($SIZE_T==8); subf $np,$num,$np ; rewind np addi $j,$j,1 ; restore counter subfc $i,$i,$i ; j=0 and "clear" XER[CA] addi $tp,$sp,`$FRAME+$TRANSFER+8` addi $t4,$sp,`$FRAME+$TRANSFER+16` addi $t5,$np,8 addi $t6,$rp,8 mtctr $j .align 4 Lsub: ldx $t0,$tp,$i ldx $t1,$np,$i ldx $t2,$t4,$i ldx $t3,$t5,$i subfe $t0,$t1,$t0 ; tp[j]-np[j] subfe $t2,$t3,$t2 ; tp[j+1]-np[j+1] stdx $t0,$rp,$i stdx $t2,$t6,$i addi $i,$i,16 bdnz Lsub li $i,0 subfe $ovf,$i,$ovf ; handle upmost overflow bit mtctr $j .align 4 Lcopy: ; conditional copy ldx $t0,$tp,$i ldx $t1,$t4,$i ldx $t2,$rp,$i ldx $t3,$t6,$i std $i,8($nap_d) ; zap nap_d std $i,16($nap_d) std $i,24($nap_d) std $i,32($nap_d) std $i,40($nap_d) std $i,48($nap_d) std $i,56($nap_d) stdu $i,64($nap_d) and $t0,$t0,$ovf and $t1,$t1,$ovf andc $t2,$t2,$ovf andc $t3,$t3,$ovf or $t0,$t0,$t2 or $t1,$t1,$t3 stdx $t0,$rp,$i stdx $t1,$t6,$i stdx $i,$tp,$i ; zap tp at once stdx $i,$t4,$i addi $i,$i,16 bdnz Lcopy ___ $code.=<<___ if ($SIZE_T==4); subf $np,$num,$np ; rewind np addi $j,$j,1 ; restore counter subfc $i,$i,$i ; j=0 and "clear" XER[CA] addi $tp,$sp,`$FRAME+$TRANSFER` addi $np,$np,-4 addi $rp,$rp,-4 addi $ap,$sp,`$FRAME+$TRANSFER+4` mtctr $j .align 4 Lsub: lwz $t0,12($tp) ; load tp[j..j+3] in 64-bit word order lwz $t1,8($tp) lwz $t2,20($tp) lwzu $t3,16($tp) lwz $t4,4($np) ; load np[j..j+3] in 32-bit word order lwz $t5,8($np) lwz $t6,12($np) lwzu $t7,16($np) subfe $t4,$t4,$t0 ; tp[j]-np[j] stw $t0,4($ap) ; save tp[j..j+3] in 32-bit word order subfe $t5,$t5,$t1 ; tp[j+1]-np[j+1] stw $t1,8($ap) subfe $t6,$t6,$t2 ; tp[j+2]-np[j+2] stw $t2,12($ap) subfe $t7,$t7,$t3 ; tp[j+3]-np[j+3] stwu $t3,16($ap) stw $t4,4($rp) stw $t5,8($rp) stw $t6,12($rp) stwu $t7,16($rp) bdnz Lsub li $i,0 subfe $ovf,$i,$ovf ; handle upmost overflow bit addi $ap,$sp,`$FRAME+$TRANSFER+4` subf $rp,$num,$rp ; rewind rp addi $tp,$sp,`$FRAME+$TRANSFER` mtctr $j .align 4 Lcopy: ; conditional copy lwz $t0,4($ap) lwz $t1,8($ap) lwz $t2,12($ap) lwzu $t3,16($ap) lwz $t4,4($rp) lwz $t5,8($rp) lwz $t6,12($rp) lwz $t7,16($rp) std $i,8($nap_d) ; zap nap_d std $i,16($nap_d) std $i,24($nap_d) std $i,32($nap_d) std $i,40($nap_d) std $i,48($nap_d) std $i,56($nap_d) stdu $i,64($nap_d) and $t0,$t0,$ovf and $t1,$t1,$ovf and $t2,$t2,$ovf and $t3,$t3,$ovf andc $t4,$t4,$ovf andc $t5,$t5,$ovf andc $t6,$t6,$ovf andc $t7,$t7,$ovf or $t0,$t0,$t4 or $t1,$t1,$t5 or $t2,$t2,$t6 or $t3,$t3,$t7 stw $t0,4($rp) stw $t1,8($rp) stw $t2,12($rp) stwu $t3,16($rp) std $i,8($tp) ; zap tp at once stdu $i,16($tp) bdnz Lcopy ___ $code.=<<___; $POP $i,0($sp) li r3,1 ; signal "handled" $POP r19,`-12*8-13*$SIZE_T`($i) $POP r20,`-12*8-12*$SIZE_T`($i) $POP r21,`-12*8-11*$SIZE_T`($i) $POP r22,`-12*8-10*$SIZE_T`($i) $POP r23,`-12*8-9*$SIZE_T`($i) $POP r24,`-12*8-8*$SIZE_T`($i) $POP r25,`-12*8-7*$SIZE_T`($i) $POP r26,`-12*8-6*$SIZE_T`($i) $POP r27,`-12*8-5*$SIZE_T`($i) $POP r28,`-12*8-4*$SIZE_T`($i) $POP r29,`-12*8-3*$SIZE_T`($i) $POP r30,`-12*8-2*$SIZE_T`($i) $POP r31,`-12*8-1*$SIZE_T`($i) lfd f20,`-12*8`($i) lfd f21,`-11*8`($i) lfd f22,`-10*8`($i) lfd f23,`-9*8`($i) lfd f24,`-8*8`($i) lfd f25,`-7*8`($i) lfd f26,`-6*8`($i) lfd f27,`-5*8`($i) lfd f28,`-4*8`($i) lfd f29,`-3*8`($i) lfd f30,`-2*8`($i) lfd f31,`-1*8`($i) mr $sp,$i blr .long 0 .byte 0,12,4,0,0x8c,13,6,0 .long 0 .size .$fname,.-.$fname .asciz "Montgomery Multiplication for PPC64, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/rsaz-avx2.pl000077500000000000000000001456621364063235100202600ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # Copyright (c) 2012, Intel Corporation. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) # (1) Intel Corporation, Israel Development Center, Haifa, Israel # (2) University of Haifa, Israel # # References: # [1] S. Gueron, V. Krasnov: "Software Implementation of Modular # Exponentiation, Using Advanced Vector Instructions Architectures", # F. Ozbudak and F. Rodriguez-Henriquez (Eds.): WAIFI 2012, LNCS 7369, # pp. 119?135, 2012. Springer-Verlag Berlin Heidelberg 2012 # [2] S. Gueron: "Efficient Software Implementations of Modular # Exponentiation", Journal of Cryptographic Engineering 2:31-43 (2012). # [3] S. Gueron, V. Krasnov: "Speeding up Big-numbers Squaring",IEEE # Proceedings of 9th International Conference on Information Technology: # New Generations (ITNG 2012), pp.821-823 (2012) # [4] S. Gueron, V. Krasnov: "[PATCH] Efficient and side channel analysis # resistant 1024-bit modular exponentiation, for optimizing RSA2048 # on AVX2 capable x86_64 platforms", # http://rt.openssl.org/Ticket/Display.html?id=2850&user=guest&pass=guest # # +13% improvement over original submission by # # rsa2048 sign/sec OpenSSL 1.0.1 scalar(*) this # 2.3GHz Haswell 621 765/+23% 1113/+79% # 2.3GHz Broadwell(**) 688 1200(***)/+74% 1120/+63% # # (*) if system doesn't support AVX2, for reference purposes; # (**) scaled to 2.3GHz to simplify comparison; # (***) scalar AD*X code is faster than AVX2 and is preferred code # path for Broadwell; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); $addx = ($1>=2.23); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); $addx = ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); $addx = ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $avx = ($ver>=3.0) + ($ver>=3.01); $addx = ($ver>=3.03); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT = *OUT; if ($avx>1) {{{ { # void AMS_WW( my $rp="%rdi"; # BN_ULONG *rp, my $ap="%rsi"; # const BN_ULONG *ap, my $np="%rdx"; # const BN_ULONG *np, my $n0="%ecx"; # const BN_ULONG n0, my $rep="%r8d"; # int repeat); # The registers that hold the accumulated redundant result # The AMM works on 1024 bit operands, and redundant word size is 29 # Therefore: ceil(1024/29)/4 = 9 my $ACC0="%ymm0"; my $ACC1="%ymm1"; my $ACC2="%ymm2"; my $ACC3="%ymm3"; my $ACC4="%ymm4"; my $ACC5="%ymm5"; my $ACC6="%ymm6"; my $ACC7="%ymm7"; my $ACC8="%ymm8"; my $ACC9="%ymm9"; # Registers that hold the broadcasted words of bp, currently used my $B1="%ymm10"; my $B2="%ymm11"; # Registers that hold the broadcasted words of Y, currently used my $Y1="%ymm12"; my $Y2="%ymm13"; # Helper registers my $TEMP1="%ymm14"; my $AND_MASK="%ymm15"; # alu registers that hold the first words of the ACC my $r0="%r9"; my $r1="%r10"; my $r2="%r11"; my $r3="%r12"; my $i="%r14d"; # loop counter my $tmp = "%r15"; my $FrameSize=32*18+32*8; # place for A^2 and 2*A my $aap=$r0; my $tp0="%rbx"; my $tp1=$r3; my $tpa=$tmp; $np="%r13"; # reassigned argument $code.=<<___; .text .globl rsaz_1024_sqr_avx2 .type rsaz_1024_sqr_avx2,\@function,5 .align 64 rsaz_1024_sqr_avx2: # 702 cycles, 14% faster than rsaz_1024_mul_avx2 .cfi_startproc lea (%rsp), %rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 vzeroupper ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp vmovaps %xmm6,-0xd8(%rax) vmovaps %xmm7,-0xc8(%rax) vmovaps %xmm8,-0xb8(%rax) vmovaps %xmm9,-0xa8(%rax) vmovaps %xmm10,-0x98(%rax) vmovaps %xmm11,-0x88(%rax) vmovaps %xmm12,-0x78(%rax) vmovaps %xmm13,-0x68(%rax) vmovaps %xmm14,-0x58(%rax) vmovaps %xmm15,-0x48(%rax) .Lsqr_1024_body: ___ $code.=<<___; mov %rax,%rbp .cfi_def_cfa_register %rbp mov %rdx, $np # reassigned argument sub \$$FrameSize, %rsp mov $np, $tmp sub \$-128, $rp # size optimization sub \$-128, $ap sub \$-128, $np and \$4095, $tmp # see if $np crosses page add \$32*10, $tmp shr \$12, $tmp vpxor $ACC9,$ACC9,$ACC9 jz .Lsqr_1024_no_n_copy # unaligned 256-bit load that crosses page boundary can # cause >2x performance degradation here, so if $np does # cross page boundary, copy it to stack and make sure stack # frame doesn't... sub \$32*10,%rsp vmovdqu 32*0-128($np), $ACC0 and \$-2048, %rsp vmovdqu 32*1-128($np), $ACC1 vmovdqu 32*2-128($np), $ACC2 vmovdqu 32*3-128($np), $ACC3 vmovdqu 32*4-128($np), $ACC4 vmovdqu 32*5-128($np), $ACC5 vmovdqu 32*6-128($np), $ACC6 vmovdqu 32*7-128($np), $ACC7 vmovdqu 32*8-128($np), $ACC8 lea $FrameSize+128(%rsp),$np vmovdqu $ACC0, 32*0-128($np) vmovdqu $ACC1, 32*1-128($np) vmovdqu $ACC2, 32*2-128($np) vmovdqu $ACC3, 32*3-128($np) vmovdqu $ACC4, 32*4-128($np) vmovdqu $ACC5, 32*5-128($np) vmovdqu $ACC6, 32*6-128($np) vmovdqu $ACC7, 32*7-128($np) vmovdqu $ACC8, 32*8-128($np) vmovdqu $ACC9, 32*9-128($np) # $ACC9 is zero .Lsqr_1024_no_n_copy: and \$-1024, %rsp vmovdqu 32*1-128($ap), $ACC1 vmovdqu 32*2-128($ap), $ACC2 vmovdqu 32*3-128($ap), $ACC3 vmovdqu 32*4-128($ap), $ACC4 vmovdqu 32*5-128($ap), $ACC5 vmovdqu 32*6-128($ap), $ACC6 vmovdqu 32*7-128($ap), $ACC7 vmovdqu 32*8-128($ap), $ACC8 lea 192(%rsp), $tp0 # 64+128=192 vmovdqu .Land_mask(%rip), $AND_MASK jmp .LOOP_GRANDE_SQR_1024 .align 32 .LOOP_GRANDE_SQR_1024: lea 32*18+128(%rsp), $aap # size optimization lea 448(%rsp), $tp1 # 64+128+256=448 # the squaring is performed as described in Variant B of # "Speeding up Big-Number Squaring", so start by calculating # the A*2=A+A vector vpaddq $ACC1, $ACC1, $ACC1 vpbroadcastq 32*0-128($ap), $B1 vpaddq $ACC2, $ACC2, $ACC2 vmovdqa $ACC1, 32*0-128($aap) vpaddq $ACC3, $ACC3, $ACC3 vmovdqa $ACC2, 32*1-128($aap) vpaddq $ACC4, $ACC4, $ACC4 vmovdqa $ACC3, 32*2-128($aap) vpaddq $ACC5, $ACC5, $ACC5 vmovdqa $ACC4, 32*3-128($aap) vpaddq $ACC6, $ACC6, $ACC6 vmovdqa $ACC5, 32*4-128($aap) vpaddq $ACC7, $ACC7, $ACC7 vmovdqa $ACC6, 32*5-128($aap) vpaddq $ACC8, $ACC8, $ACC8 vmovdqa $ACC7, 32*6-128($aap) vpxor $ACC9, $ACC9, $ACC9 vmovdqa $ACC8, 32*7-128($aap) vpmuludq 32*0-128($ap), $B1, $ACC0 vpbroadcastq 32*1-128($ap), $B2 vmovdqu $ACC9, 32*9-192($tp0) # zero upper half vpmuludq $B1, $ACC1, $ACC1 vmovdqu $ACC9, 32*10-448($tp1) vpmuludq $B1, $ACC2, $ACC2 vmovdqu $ACC9, 32*11-448($tp1) vpmuludq $B1, $ACC3, $ACC3 vmovdqu $ACC9, 32*12-448($tp1) vpmuludq $B1, $ACC4, $ACC4 vmovdqu $ACC9, 32*13-448($tp1) vpmuludq $B1, $ACC5, $ACC5 vmovdqu $ACC9, 32*14-448($tp1) vpmuludq $B1, $ACC6, $ACC6 vmovdqu $ACC9, 32*15-448($tp1) vpmuludq $B1, $ACC7, $ACC7 vmovdqu $ACC9, 32*16-448($tp1) vpmuludq $B1, $ACC8, $ACC8 vpbroadcastq 32*2-128($ap), $B1 vmovdqu $ACC9, 32*17-448($tp1) mov $ap, $tpa mov \$4, $i jmp .Lsqr_entry_1024 ___ $TEMP0=$Y1; $TEMP2=$Y2; $code.=<<___; .align 32 .LOOP_SQR_1024: vpbroadcastq 32*1-128($tpa), $B2 vpmuludq 32*0-128($ap), $B1, $ACC0 vpaddq 32*0-192($tp0), $ACC0, $ACC0 vpmuludq 32*0-128($aap), $B1, $ACC1 vpaddq 32*1-192($tp0), $ACC1, $ACC1 vpmuludq 32*1-128($aap), $B1, $ACC2 vpaddq 32*2-192($tp0), $ACC2, $ACC2 vpmuludq 32*2-128($aap), $B1, $ACC3 vpaddq 32*3-192($tp0), $ACC3, $ACC3 vpmuludq 32*3-128($aap), $B1, $ACC4 vpaddq 32*4-192($tp0), $ACC4, $ACC4 vpmuludq 32*4-128($aap), $B1, $ACC5 vpaddq 32*5-192($tp0), $ACC5, $ACC5 vpmuludq 32*5-128($aap), $B1, $ACC6 vpaddq 32*6-192($tp0), $ACC6, $ACC6 vpmuludq 32*6-128($aap), $B1, $ACC7 vpaddq 32*7-192($tp0), $ACC7, $ACC7 vpmuludq 32*7-128($aap), $B1, $ACC8 vpbroadcastq 32*2-128($tpa), $B1 vpaddq 32*8-192($tp0), $ACC8, $ACC8 .Lsqr_entry_1024: vmovdqu $ACC0, 32*0-192($tp0) vmovdqu $ACC1, 32*1-192($tp0) vpmuludq 32*1-128($ap), $B2, $TEMP0 vpaddq $TEMP0, $ACC2, $ACC2 vpmuludq 32*1-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC3, $ACC3 vpmuludq 32*2-128($aap), $B2, $TEMP2 vpaddq $TEMP2, $ACC4, $ACC4 vpmuludq 32*3-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq 32*4-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC6, $ACC6 vpmuludq 32*5-128($aap), $B2, $TEMP2 vpaddq $TEMP2, $ACC7, $ACC7 vpmuludq 32*6-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq 32*7-128($aap), $B2, $ACC0 vpbroadcastq 32*3-128($tpa), $B2 vpaddq 32*9-192($tp0), $ACC0, $ACC0 vmovdqu $ACC2, 32*2-192($tp0) vmovdqu $ACC3, 32*3-192($tp0) vpmuludq 32*2-128($ap), $B1, $TEMP2 vpaddq $TEMP2, $ACC4, $ACC4 vpmuludq 32*2-128($aap), $B1, $TEMP0 vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq 32*3-128($aap), $B1, $TEMP1 vpaddq $TEMP1, $ACC6, $ACC6 vpmuludq 32*4-128($aap), $B1, $TEMP2 vpaddq $TEMP2, $ACC7, $ACC7 vpmuludq 32*5-128($aap), $B1, $TEMP0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq 32*6-128($aap), $B1, $TEMP1 vpaddq $TEMP1, $ACC0, $ACC0 vpmuludq 32*7-128($aap), $B1, $ACC1 vpbroadcastq 32*4-128($tpa), $B1 vpaddq 32*10-448($tp1), $ACC1, $ACC1 vmovdqu $ACC4, 32*4-192($tp0) vmovdqu $ACC5, 32*5-192($tp0) vpmuludq 32*3-128($ap), $B2, $TEMP0 vpaddq $TEMP0, $ACC6, $ACC6 vpmuludq 32*3-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC7, $ACC7 vpmuludq 32*4-128($aap), $B2, $TEMP2 vpaddq $TEMP2, $ACC8, $ACC8 vpmuludq 32*5-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC0, $ACC0 vpmuludq 32*6-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC1, $ACC1 vpmuludq 32*7-128($aap), $B2, $ACC2 vpbroadcastq 32*5-128($tpa), $B2 vpaddq 32*11-448($tp1), $ACC2, $ACC2 vmovdqu $ACC6, 32*6-192($tp0) vmovdqu $ACC7, 32*7-192($tp0) vpmuludq 32*4-128($ap), $B1, $TEMP0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq 32*4-128($aap), $B1, $TEMP1 vpaddq $TEMP1, $ACC0, $ACC0 vpmuludq 32*5-128($aap), $B1, $TEMP2 vpaddq $TEMP2, $ACC1, $ACC1 vpmuludq 32*6-128($aap), $B1, $TEMP0 vpaddq $TEMP0, $ACC2, $ACC2 vpmuludq 32*7-128($aap), $B1, $ACC3 vpbroadcastq 32*6-128($tpa), $B1 vpaddq 32*12-448($tp1), $ACC3, $ACC3 vmovdqu $ACC8, 32*8-192($tp0) vmovdqu $ACC0, 32*9-192($tp0) lea 8($tp0), $tp0 vpmuludq 32*5-128($ap), $B2, $TEMP2 vpaddq $TEMP2, $ACC1, $ACC1 vpmuludq 32*5-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC2, $ACC2 vpmuludq 32*6-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC3, $ACC3 vpmuludq 32*7-128($aap), $B2, $ACC4 vpbroadcastq 32*7-128($tpa), $B2 vpaddq 32*13-448($tp1), $ACC4, $ACC4 vmovdqu $ACC1, 32*10-448($tp1) vmovdqu $ACC2, 32*11-448($tp1) vpmuludq 32*6-128($ap), $B1, $TEMP0 vpaddq $TEMP0, $ACC3, $ACC3 vpmuludq 32*6-128($aap), $B1, $TEMP1 vpbroadcastq 32*8-128($tpa), $ACC0 # borrow $ACC0 for $B1 vpaddq $TEMP1, $ACC4, $ACC4 vpmuludq 32*7-128($aap), $B1, $ACC5 vpbroadcastq 32*0+8-128($tpa), $B1 # for next iteration vpaddq 32*14-448($tp1), $ACC5, $ACC5 vmovdqu $ACC3, 32*12-448($tp1) vmovdqu $ACC4, 32*13-448($tp1) lea 8($tpa), $tpa vpmuludq 32*7-128($ap), $B2, $TEMP0 vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq 32*7-128($aap), $B2, $ACC6 vpaddq 32*15-448($tp1), $ACC6, $ACC6 vpmuludq 32*8-128($ap), $ACC0, $ACC7 vmovdqu $ACC5, 32*14-448($tp1) vpaddq 32*16-448($tp1), $ACC7, $ACC7 vmovdqu $ACC6, 32*15-448($tp1) vmovdqu $ACC7, 32*16-448($tp1) lea 8($tp1), $tp1 dec $i jnz .LOOP_SQR_1024 ___ $ZERO = $ACC9; $TEMP0 = $B1; $TEMP2 = $B2; $TEMP3 = $Y1; $TEMP4 = $Y2; $code.=<<___; # we need to fix indices 32-39 to avoid overflow vmovdqu 32*8(%rsp), $ACC8 # 32*8-192($tp0), vmovdqu 32*9(%rsp), $ACC1 # 32*9-192($tp0) vmovdqu 32*10(%rsp), $ACC2 # 32*10-192($tp0) lea 192(%rsp), $tp0 # 64+128=192 vpsrlq \$29, $ACC8, $TEMP1 vpand $AND_MASK, $ACC8, $ACC8 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpermq \$0x93, $TEMP1, $TEMP1 vpxor $ZERO, $ZERO, $ZERO vpermq \$0x93, $TEMP2, $TEMP2 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC8, $ACC8 vpblendd \$3, $TEMP2, $ZERO, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpaddq $TEMP2, $ACC2, $ACC2 vmovdqu $ACC1, 32*9-192($tp0) vmovdqu $ACC2, 32*10-192($tp0) mov (%rsp), %rax mov 8(%rsp), $r1 mov 16(%rsp), $r2 mov 24(%rsp), $r3 vmovdqu 32*1(%rsp), $ACC1 vmovdqu 32*2-192($tp0), $ACC2 vmovdqu 32*3-192($tp0), $ACC3 vmovdqu 32*4-192($tp0), $ACC4 vmovdqu 32*5-192($tp0), $ACC5 vmovdqu 32*6-192($tp0), $ACC6 vmovdqu 32*7-192($tp0), $ACC7 mov %rax, $r0 imull $n0, %eax and \$0x1fffffff, %eax vmovd %eax, $Y1 mov %rax, %rdx imulq -128($np), %rax vpbroadcastq $Y1, $Y1 add %rax, $r0 mov %rdx, %rax imulq 8-128($np), %rax shr \$29, $r0 add %rax, $r1 mov %rdx, %rax imulq 16-128($np), %rax add $r0, $r1 add %rax, $r2 imulq 24-128($np), %rdx add %rdx, $r3 mov $r1, %rax imull $n0, %eax and \$0x1fffffff, %eax mov \$9, $i jmp .LOOP_REDUCE_1024 .align 32 .LOOP_REDUCE_1024: vmovd %eax, $Y2 vpbroadcastq $Y2, $Y2 vpmuludq 32*1-128($np), $Y1, $TEMP0 mov %rax, %rdx imulq -128($np), %rax vpaddq $TEMP0, $ACC1, $ACC1 add %rax, $r1 vpmuludq 32*2-128($np), $Y1, $TEMP1 mov %rdx, %rax imulq 8-128($np), %rax vpaddq $TEMP1, $ACC2, $ACC2 vpmuludq 32*3-128($np), $Y1, $TEMP2 .byte 0x67 add %rax, $r2 .byte 0x67 mov %rdx, %rax imulq 16-128($np), %rax shr \$29, $r1 vpaddq $TEMP2, $ACC3, $ACC3 vpmuludq 32*4-128($np), $Y1, $TEMP0 add %rax, $r3 add $r1, $r2 vpaddq $TEMP0, $ACC4, $ACC4 vpmuludq 32*5-128($np), $Y1, $TEMP1 mov $r2, %rax imull $n0, %eax vpaddq $TEMP1, $ACC5, $ACC5 vpmuludq 32*6-128($np), $Y1, $TEMP2 and \$0x1fffffff, %eax vpaddq $TEMP2, $ACC6, $ACC6 vpmuludq 32*7-128($np), $Y1, $TEMP0 vpaddq $TEMP0, $ACC7, $ACC7 vpmuludq 32*8-128($np), $Y1, $TEMP1 vmovd %eax, $Y1 #vmovdqu 32*1-8-128($np), $TEMP2 # moved below vpaddq $TEMP1, $ACC8, $ACC8 #vmovdqu 32*2-8-128($np), $TEMP0 # moved below vpbroadcastq $Y1, $Y1 vpmuludq 32*1-8-128($np), $Y2, $TEMP2 # see above vmovdqu 32*3-8-128($np), $TEMP1 mov %rax, %rdx imulq -128($np), %rax vpaddq $TEMP2, $ACC1, $ACC1 vpmuludq 32*2-8-128($np), $Y2, $TEMP0 # see above vmovdqu 32*4-8-128($np), $TEMP2 add %rax, $r2 mov %rdx, %rax imulq 8-128($np), %rax vpaddq $TEMP0, $ACC2, $ACC2 add $r3, %rax shr \$29, $r2 vpmuludq $Y2, $TEMP1, $TEMP1 vmovdqu 32*5-8-128($np), $TEMP0 add $r2, %rax vpaddq $TEMP1, $ACC3, $ACC3 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*6-8-128($np), $TEMP1 .byte 0x67 mov %rax, $r3 imull $n0, %eax vpaddq $TEMP2, $ACC4, $ACC4 vpmuludq $Y2, $TEMP0, $TEMP0 .byte 0xc4,0x41,0x7e,0x6f,0x9d,0x58,0x00,0x00,0x00 # vmovdqu 32*7-8-128($np), $TEMP2 and \$0x1fffffff, %eax vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq $Y2, $TEMP1, $TEMP1 vmovdqu 32*8-8-128($np), $TEMP0 vpaddq $TEMP1, $ACC6, $ACC6 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*9-8-128($np), $ACC9 vmovd %eax, $ACC0 # borrow ACC0 for Y2 imulq -128($np), %rax vpaddq $TEMP2, $ACC7, $ACC7 vpmuludq $Y2, $TEMP0, $TEMP0 vmovdqu 32*1-16-128($np), $TEMP1 vpbroadcastq $ACC0, $ACC0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq $Y2, $ACC9, $ACC9 vmovdqu 32*2-16-128($np), $TEMP2 add %rax, $r3 ___ ($ACC0,$Y2)=($Y2,$ACC0); $code.=<<___; vmovdqu 32*1-24-128($np), $ACC0 vpmuludq $Y1, $TEMP1, $TEMP1 vmovdqu 32*3-16-128($np), $TEMP0 vpaddq $TEMP1, $ACC1, $ACC1 vpmuludq $Y2, $ACC0, $ACC0 vpmuludq $Y1, $TEMP2, $TEMP2 .byte 0xc4,0x41,0x7e,0x6f,0xb5,0xf0,0xff,0xff,0xff # vmovdqu 32*4-16-128($np), $TEMP1 vpaddq $ACC1, $ACC0, $ACC0 vpaddq $TEMP2, $ACC2, $ACC2 vpmuludq $Y1, $TEMP0, $TEMP0 vmovdqu 32*5-16-128($np), $TEMP2 .byte 0x67 vmovq $ACC0, %rax vmovdqu $ACC0, (%rsp) # transfer $r0-$r3 vpaddq $TEMP0, $ACC3, $ACC3 vpmuludq $Y1, $TEMP1, $TEMP1 vmovdqu 32*6-16-128($np), $TEMP0 vpaddq $TEMP1, $ACC4, $ACC4 vpmuludq $Y1, $TEMP2, $TEMP2 vmovdqu 32*7-16-128($np), $TEMP1 vpaddq $TEMP2, $ACC5, $ACC5 vpmuludq $Y1, $TEMP0, $TEMP0 vmovdqu 32*8-16-128($np), $TEMP2 vpaddq $TEMP0, $ACC6, $ACC6 vpmuludq $Y1, $TEMP1, $TEMP1 shr \$29, $r3 vmovdqu 32*9-16-128($np), $TEMP0 add $r3, %rax vpaddq $TEMP1, $ACC7, $ACC7 vpmuludq $Y1, $TEMP2, $TEMP2 #vmovdqu 32*2-24-128($np), $TEMP1 # moved below mov %rax, $r0 imull $n0, %eax vpaddq $TEMP2, $ACC8, $ACC8 vpmuludq $Y1, $TEMP0, $TEMP0 and \$0x1fffffff, %eax vmovd %eax, $Y1 vmovdqu 32*3-24-128($np), $TEMP2 .byte 0x67 vpaddq $TEMP0, $ACC9, $ACC9 vpbroadcastq $Y1, $Y1 vpmuludq 32*2-24-128($np), $Y2, $TEMP1 # see above vmovdqu 32*4-24-128($np), $TEMP0 mov %rax, %rdx imulq -128($np), %rax mov 8(%rsp), $r1 vpaddq $TEMP1, $ACC2, $ACC1 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*5-24-128($np), $TEMP1 add %rax, $r0 mov %rdx, %rax imulq 8-128($np), %rax .byte 0x67 shr \$29, $r0 mov 16(%rsp), $r2 vpaddq $TEMP2, $ACC3, $ACC2 vpmuludq $Y2, $TEMP0, $TEMP0 vmovdqu 32*6-24-128($np), $TEMP2 add %rax, $r1 mov %rdx, %rax imulq 16-128($np), %rax vpaddq $TEMP0, $ACC4, $ACC3 vpmuludq $Y2, $TEMP1, $TEMP1 vmovdqu 32*7-24-128($np), $TEMP0 imulq 24-128($np), %rdx # future $r3 add %rax, $r2 lea ($r0,$r1), %rax vpaddq $TEMP1, $ACC5, $ACC4 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*8-24-128($np), $TEMP1 mov %rax, $r1 imull $n0, %eax vpmuludq $Y2, $TEMP0, $TEMP0 vpaddq $TEMP2, $ACC6, $ACC5 vmovdqu 32*9-24-128($np), $TEMP2 and \$0x1fffffff, %eax vpaddq $TEMP0, $ACC7, $ACC6 vpmuludq $Y2, $TEMP1, $TEMP1 add 24(%rsp), %rdx vpaddq $TEMP1, $ACC8, $ACC7 vpmuludq $Y2, $TEMP2, $TEMP2 vpaddq $TEMP2, $ACC9, $ACC8 vmovq $r3, $ACC9 mov %rdx, $r3 dec $i jnz .LOOP_REDUCE_1024 ___ ($ACC0,$Y2)=($Y2,$ACC0); $code.=<<___; lea 448(%rsp), $tp1 # size optimization vpaddq $ACC9, $Y2, $ACC0 vpxor $ZERO, $ZERO, $ZERO vpaddq 32*9-192($tp0), $ACC0, $ACC0 vpaddq 32*10-448($tp1), $ACC1, $ACC1 vpaddq 32*11-448($tp1), $ACC2, $ACC2 vpaddq 32*12-448($tp1), $ACC3, $ACC3 vpaddq 32*13-448($tp1), $ACC4, $ACC4 vpaddq 32*14-448($tp1), $ACC5, $ACC5 vpaddq 32*15-448($tp1), $ACC6, $ACC6 vpaddq 32*16-448($tp1), $ACC7, $ACC7 vpaddq 32*17-448($tp1), $ACC8, $ACC8 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vpaddq $TEMP4, $ACC4, $ACC4 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vmovdqu $ACC0, 32*0-128($rp) vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vmovdqu $ACC1, 32*1-128($rp) vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vmovdqu $ACC2, 32*2-128($rp) vpaddq $TEMP4, $ACC4, $ACC4 vmovdqu $ACC3, 32*3-128($rp) ___ $TEMP5=$ACC0; $code.=<<___; vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vpaddq $TEMP4, $ACC8, $ACC8 vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vmovdqu $ACC4, 32*4-128($rp) vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vmovdqu $ACC5, 32*5-128($rp) vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vmovdqu $ACC6, 32*6-128($rp) vpaddq $TEMP4, $ACC8, $ACC8 vmovdqu $ACC7, 32*7-128($rp) vmovdqu $ACC8, 32*8-128($rp) mov $rp, $ap dec $rep jne .LOOP_GRANDE_SQR_1024 vzeroall mov %rbp, %rax .cfi_def_cfa_register %rax ___ $code.=<<___ if ($win64); .Lsqr_1024_in_tail: movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp # restore %rsp .cfi_def_cfa_register %rsp .Lsqr_1024_epilogue: ret .cfi_endproc .size rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2 ___ } { # void AMM_WW( my $rp="%rdi"; # BN_ULONG *rp, my $ap="%rsi"; # const BN_ULONG *ap, my $bp="%rdx"; # const BN_ULONG *bp, my $np="%rcx"; # const BN_ULONG *np, my $n0="%r8d"; # unsigned int n0); # The registers that hold the accumulated redundant result # The AMM works on 1024 bit operands, and redundant word size is 29 # Therefore: ceil(1024/29)/4 = 9 my $ACC0="%ymm0"; my $ACC1="%ymm1"; my $ACC2="%ymm2"; my $ACC3="%ymm3"; my $ACC4="%ymm4"; my $ACC5="%ymm5"; my $ACC6="%ymm6"; my $ACC7="%ymm7"; my $ACC8="%ymm8"; my $ACC9="%ymm9"; # Registers that hold the broadcasted words of multiplier, currently used my $Bi="%ymm10"; my $Yi="%ymm11"; # Helper registers my $TEMP0=$ACC0; my $TEMP1="%ymm12"; my $TEMP2="%ymm13"; my $ZERO="%ymm14"; my $AND_MASK="%ymm15"; # alu registers that hold the first words of the ACC my $r0="%r9"; my $r1="%r10"; my $r2="%r11"; my $r3="%r12"; my $i="%r14d"; my $tmp="%r15"; $bp="%r13"; # reassigned argument $code.=<<___; .globl rsaz_1024_mul_avx2 .type rsaz_1024_mul_avx2,\@function,5 .align 64 rsaz_1024_mul_avx2: .cfi_startproc lea (%rsp), %rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); vzeroupper lea -0xa8(%rsp),%rsp vmovaps %xmm6,-0xd8(%rax) vmovaps %xmm7,-0xc8(%rax) vmovaps %xmm8,-0xb8(%rax) vmovaps %xmm9,-0xa8(%rax) vmovaps %xmm10,-0x98(%rax) vmovaps %xmm11,-0x88(%rax) vmovaps %xmm12,-0x78(%rax) vmovaps %xmm13,-0x68(%rax) vmovaps %xmm14,-0x58(%rax) vmovaps %xmm15,-0x48(%rax) .Lmul_1024_body: ___ $code.=<<___; mov %rax,%rbp .cfi_def_cfa_register %rbp vzeroall mov %rdx, $bp # reassigned argument sub \$64,%rsp # unaligned 256-bit load that crosses page boundary can # cause severe performance degradation here, so if $ap does # cross page boundary, swap it with $bp [meaning that caller # is advised to lay down $ap and $bp next to each other, so # that only one can cross page boundary]. .byte 0x67,0x67 mov $ap, $tmp and \$4095, $tmp add \$32*10, $tmp shr \$12, $tmp mov $ap, $tmp cmovnz $bp, $ap cmovnz $tmp, $bp mov $np, $tmp sub \$-128,$ap # size optimization sub \$-128,$np sub \$-128,$rp and \$4095, $tmp # see if $np crosses page add \$32*10, $tmp .byte 0x67,0x67 shr \$12, $tmp jz .Lmul_1024_no_n_copy # unaligned 256-bit load that crosses page boundary can # cause severe performance degradation here, so if $np does # cross page boundary, copy it to stack and make sure stack # frame doesn't... sub \$32*10,%rsp vmovdqu 32*0-128($np), $ACC0 and \$-512, %rsp vmovdqu 32*1-128($np), $ACC1 vmovdqu 32*2-128($np), $ACC2 vmovdqu 32*3-128($np), $ACC3 vmovdqu 32*4-128($np), $ACC4 vmovdqu 32*5-128($np), $ACC5 vmovdqu 32*6-128($np), $ACC6 vmovdqu 32*7-128($np), $ACC7 vmovdqu 32*8-128($np), $ACC8 lea 64+128(%rsp),$np vmovdqu $ACC0, 32*0-128($np) vpxor $ACC0, $ACC0, $ACC0 vmovdqu $ACC1, 32*1-128($np) vpxor $ACC1, $ACC1, $ACC1 vmovdqu $ACC2, 32*2-128($np) vpxor $ACC2, $ACC2, $ACC2 vmovdqu $ACC3, 32*3-128($np) vpxor $ACC3, $ACC3, $ACC3 vmovdqu $ACC4, 32*4-128($np) vpxor $ACC4, $ACC4, $ACC4 vmovdqu $ACC5, 32*5-128($np) vpxor $ACC5, $ACC5, $ACC5 vmovdqu $ACC6, 32*6-128($np) vpxor $ACC6, $ACC6, $ACC6 vmovdqu $ACC7, 32*7-128($np) vpxor $ACC7, $ACC7, $ACC7 vmovdqu $ACC8, 32*8-128($np) vmovdqa $ACC0, $ACC8 vmovdqu $ACC9, 32*9-128($np) # $ACC9 is zero after vzeroall .Lmul_1024_no_n_copy: and \$-64,%rsp mov ($bp), %rbx vpbroadcastq ($bp), $Bi vmovdqu $ACC0, (%rsp) # clear top of stack xor $r0, $r0 .byte 0x67 xor $r1, $r1 xor $r2, $r2 xor $r3, $r3 vmovdqu .Land_mask(%rip), $AND_MASK mov \$9, $i vmovdqu $ACC9, 32*9-128($rp) # $ACC9 is zero after vzeroall jmp .Loop_mul_1024 .align 32 .Loop_mul_1024: vpsrlq \$29, $ACC3, $ACC9 # correct $ACC3(*) mov %rbx, %rax imulq -128($ap), %rax add $r0, %rax mov %rbx, $r1 imulq 8-128($ap), $r1 add 8(%rsp), $r1 mov %rax, $r0 imull $n0, %eax and \$0x1fffffff, %eax mov %rbx, $r2 imulq 16-128($ap), $r2 add 16(%rsp), $r2 mov %rbx, $r3 imulq 24-128($ap), $r3 add 24(%rsp), $r3 vpmuludq 32*1-128($ap),$Bi,$TEMP0 vmovd %eax, $Yi vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq 32*2-128($ap),$Bi,$TEMP1 vpbroadcastq $Yi, $Yi vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq 32*3-128($ap),$Bi,$TEMP2 vpand $AND_MASK, $ACC3, $ACC3 # correct $ACC3 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq 32*4-128($ap),$Bi,$TEMP0 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq 32*5-128($ap),$Bi,$TEMP1 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq 32*6-128($ap),$Bi,$TEMP2 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq 32*7-128($ap),$Bi,$TEMP0 vpermq \$0x93, $ACC9, $ACC9 # correct $ACC3 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq 32*8-128($ap),$Bi,$TEMP1 vpbroadcastq 8($bp), $Bi vpaddq $TEMP1,$ACC8,$ACC8 mov %rax,%rdx imulq -128($np),%rax add %rax,$r0 mov %rdx,%rax imulq 8-128($np),%rax add %rax,$r1 mov %rdx,%rax imulq 16-128($np),%rax add %rax,$r2 shr \$29, $r0 imulq 24-128($np),%rdx add %rdx,$r3 add $r0, $r1 vpmuludq 32*1-128($np),$Yi,$TEMP2 vmovq $Bi, %rbx vpaddq $TEMP2,$ACC1,$ACC1 vpmuludq 32*2-128($np),$Yi,$TEMP0 vpaddq $TEMP0,$ACC2,$ACC2 vpmuludq 32*3-128($np),$Yi,$TEMP1 vpaddq $TEMP1,$ACC3,$ACC3 vpmuludq 32*4-128($np),$Yi,$TEMP2 vpaddq $TEMP2,$ACC4,$ACC4 vpmuludq 32*5-128($np),$Yi,$TEMP0 vpaddq $TEMP0,$ACC5,$ACC5 vpmuludq 32*6-128($np),$Yi,$TEMP1 vpaddq $TEMP1,$ACC6,$ACC6 vpmuludq 32*7-128($np),$Yi,$TEMP2 vpblendd \$3, $ZERO, $ACC9, $TEMP1 # correct $ACC3 vpaddq $TEMP2,$ACC7,$ACC7 vpmuludq 32*8-128($np),$Yi,$TEMP0 vpaddq $TEMP1, $ACC3, $ACC3 # correct $ACC3 vpaddq $TEMP0,$ACC8,$ACC8 mov %rbx, %rax imulq -128($ap),%rax add %rax,$r1 vmovdqu -8+32*1-128($ap),$TEMP1 mov %rbx, %rax imulq 8-128($ap),%rax add %rax,$r2 vmovdqu -8+32*2-128($ap),$TEMP2 mov $r1, %rax vpblendd \$0xfc, $ZERO, $ACC9, $ACC9 # correct $ACC3 imull $n0, %eax vpaddq $ACC9,$ACC4,$ACC4 # correct $ACC3 and \$0x1fffffff, %eax imulq 16-128($ap),%rbx add %rbx,$r3 vpmuludq $Bi,$TEMP1,$TEMP1 vmovd %eax, $Yi vmovdqu -8+32*3-128($ap),$TEMP0 vpaddq $TEMP1,$ACC1,$ACC1 vpmuludq $Bi,$TEMP2,$TEMP2 vpbroadcastq $Yi, $Yi vmovdqu -8+32*4-128($ap),$TEMP1 vpaddq $TEMP2,$ACC2,$ACC2 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -8+32*5-128($ap),$TEMP2 vpaddq $TEMP0,$ACC3,$ACC3 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -8+32*6-128($ap),$TEMP0 vpaddq $TEMP1,$ACC4,$ACC4 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -8+32*7-128($ap),$TEMP1 vpaddq $TEMP2,$ACC5,$ACC5 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -8+32*8-128($ap),$TEMP2 vpaddq $TEMP0,$ACC6,$ACC6 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -8+32*9-128($ap),$ACC9 vpaddq $TEMP1,$ACC7,$ACC7 vpmuludq $Bi,$TEMP2,$TEMP2 vpaddq $TEMP2,$ACC8,$ACC8 vpmuludq $Bi,$ACC9,$ACC9 vpbroadcastq 16($bp), $Bi mov %rax,%rdx imulq -128($np),%rax add %rax,$r1 vmovdqu -8+32*1-128($np),$TEMP0 mov %rdx,%rax imulq 8-128($np),%rax add %rax,$r2 vmovdqu -8+32*2-128($np),$TEMP1 shr \$29, $r1 imulq 16-128($np),%rdx add %rdx,$r3 add $r1, $r2 vpmuludq $Yi,$TEMP0,$TEMP0 vmovq $Bi, %rbx vmovdqu -8+32*3-128($np),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -8+32*4-128($np),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -8+32*5-128($np),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -8+32*6-128($np),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -8+32*7-128($np),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -8+32*8-128($np),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -8+32*9-128($np),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Yi,$TEMP1,$TEMP1 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Yi,$TEMP2,$TEMP2 vpaddq $TEMP2,$ACC9,$ACC9 vmovdqu -16+32*1-128($ap),$TEMP0 mov %rbx,%rax imulq -128($ap),%rax add $r2,%rax vmovdqu -16+32*2-128($ap),$TEMP1 mov %rax,$r2 imull $n0, %eax and \$0x1fffffff, %eax imulq 8-128($ap),%rbx add %rbx,$r3 vpmuludq $Bi,$TEMP0,$TEMP0 vmovd %eax, $Yi vmovdqu -16+32*3-128($ap),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Bi,$TEMP1,$TEMP1 vpbroadcastq $Yi, $Yi vmovdqu -16+32*4-128($ap),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -16+32*5-128($ap),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -16+32*6-128($ap),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -16+32*7-128($ap),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -16+32*8-128($ap),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -16+32*9-128($ap),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Bi,$TEMP1,$TEMP1 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Bi,$TEMP2,$TEMP2 vpbroadcastq 24($bp), $Bi vpaddq $TEMP2,$ACC9,$ACC9 vmovdqu -16+32*1-128($np),$TEMP0 mov %rax,%rdx imulq -128($np),%rax add %rax,$r2 vmovdqu -16+32*2-128($np),$TEMP1 imulq 8-128($np),%rdx add %rdx,$r3 shr \$29, $r2 vpmuludq $Yi,$TEMP0,$TEMP0 vmovq $Bi, %rbx vmovdqu -16+32*3-128($np),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -16+32*4-128($np),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -16+32*5-128($np),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -16+32*6-128($np),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -16+32*7-128($np),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -16+32*8-128($np),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -16+32*9-128($np),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -24+32*1-128($ap),$TEMP0 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -24+32*2-128($ap),$TEMP1 vpaddq $TEMP2,$ACC9,$ACC9 add $r2, $r3 imulq -128($ap),%rbx add %rbx,$r3 mov $r3, %rax imull $n0, %eax and \$0x1fffffff, %eax vpmuludq $Bi,$TEMP0,$TEMP0 vmovd %eax, $Yi vmovdqu -24+32*3-128($ap),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Bi,$TEMP1,$TEMP1 vpbroadcastq $Yi, $Yi vmovdqu -24+32*4-128($ap),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -24+32*5-128($ap),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -24+32*6-128($ap),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -24+32*7-128($ap),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -24+32*8-128($ap),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -24+32*9-128($ap),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Bi,$TEMP1,$TEMP1 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Bi,$TEMP2,$TEMP2 vpbroadcastq 32($bp), $Bi vpaddq $TEMP2,$ACC9,$ACC9 add \$32, $bp # $bp++ vmovdqu -24+32*1-128($np),$TEMP0 imulq -128($np),%rax add %rax,$r3 shr \$29, $r3 vmovdqu -24+32*2-128($np),$TEMP1 vpmuludq $Yi,$TEMP0,$TEMP0 vmovq $Bi, %rbx vmovdqu -24+32*3-128($np),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC0 # $ACC0==$TEMP0 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu $ACC0, (%rsp) # transfer $r0-$r3 vpaddq $TEMP1,$ACC2,$ACC1 vmovdqu -24+32*4-128($np),$TEMP0 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -24+32*5-128($np),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC2 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -24+32*6-128($np),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC3 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -24+32*7-128($np),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC4 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -24+32*8-128($np),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC5 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -24+32*9-128($np),$TEMP2 mov $r3, $r0 vpaddq $TEMP0,$ACC7,$ACC6 vpmuludq $Yi,$TEMP1,$TEMP1 add (%rsp), $r0 vpaddq $TEMP1,$ACC8,$ACC7 vpmuludq $Yi,$TEMP2,$TEMP2 vmovq $r3, $TEMP1 vpaddq $TEMP2,$ACC9,$ACC8 dec $i jnz .Loop_mul_1024 ___ # (*) Original implementation was correcting ACC1-ACC3 for overflow # after 7 loop runs, or after 28 iterations, or 56 additions. # But as we underutilize resources, it's possible to correct in # each iteration with marginal performance loss. But then, as # we do it in each iteration, we can correct less digits, and # avoid performance penalties completely. $TEMP0 = $ACC9; $TEMP3 = $Bi; $TEMP4 = $Yi; $code.=<<___; vpaddq (%rsp), $TEMP1, $ACC0 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpermq \$0x93, $TEMP4, $TEMP4 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vpaddq $TEMP4, $ACC4, $ACC4 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vpaddq $TEMP4, $ACC4, $ACC4 vmovdqu $ACC0, 0-128($rp) vmovdqu $ACC1, 32-128($rp) vmovdqu $ACC2, 64-128($rp) vmovdqu $ACC3, 96-128($rp) ___ $TEMP5=$ACC0; $code.=<<___; vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vpaddq $TEMP4, $ACC8, $ACC8 vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vpaddq $TEMP4, $ACC8, $ACC8 vmovdqu $ACC4, 128-128($rp) vmovdqu $ACC5, 160-128($rp) vmovdqu $ACC6, 192-128($rp) vmovdqu $ACC7, 224-128($rp) vmovdqu $ACC8, 256-128($rp) vzeroupper mov %rbp, %rax .cfi_def_cfa_register %rax ___ $code.=<<___ if ($win64); .Lmul_1024_in_tail: movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp # restore %rsp .cfi_def_cfa_register %rsp .Lmul_1024_epilogue: ret .cfi_endproc .size rsaz_1024_mul_avx2,.-rsaz_1024_mul_avx2 ___ } { my ($out,$inp) = $win64 ? ("%rcx","%rdx") : ("%rdi","%rsi"); my @T = map("%r$_",(8..11)); $code.=<<___; .globl rsaz_1024_red2norm_avx2 .type rsaz_1024_red2norm_avx2,\@abi-omnipotent .align 32 rsaz_1024_red2norm_avx2: .cfi_startproc sub \$-128,$inp # size optimization xor %rax,%rax ___ for ($j=0,$i=0; $i<16; $i++) { my $k=0; while (29*$j<64*($i+1)) { # load data till boundary $code.=" mov `8*$j-128`($inp), @T[0]\n"; $j++; $k++; push(@T,shift(@T)); } $l=$k; while ($k>1) { # shift loaded data but last value $code.=" shl \$`29*($j-$k)`,@T[-$k]\n"; $k--; } $code.=<<___; # shift last value mov @T[-1], @T[0] shl \$`29*($j-1)`, @T[-1] shr \$`-29*($j-1)`, @T[0] ___ while ($l) { # accumulate all values $code.=" add @T[-$l], %rax\n"; $l--; } $code.=<<___; adc \$0, @T[0] # consume eventual carry mov %rax, 8*$i($out) mov @T[0], %rax ___ push(@T,shift(@T)); } $code.=<<___; ret .cfi_endproc .size rsaz_1024_red2norm_avx2,.-rsaz_1024_red2norm_avx2 .globl rsaz_1024_norm2red_avx2 .type rsaz_1024_norm2red_avx2,\@abi-omnipotent .align 32 rsaz_1024_norm2red_avx2: .cfi_startproc sub \$-128,$out # size optimization mov ($inp),@T[0] mov \$0x1fffffff,%eax ___ for ($j=0,$i=0; $i<16; $i++) { $code.=" mov `8*($i+1)`($inp),@T[1]\n" if ($i<15); $code.=" xor @T[1],@T[1]\n" if ($i==15); my $k=1; while (29*($j+1)<64*($i+1)) { $code.=<<___; mov @T[0],@T[-$k] shr \$`29*$j`,@T[-$k] and %rax,@T[-$k] # &0x1fffffff mov @T[-$k],`8*$j-128`($out) ___ $j++; $k++; } $code.=<<___; shrd \$`29*$j`,@T[1],@T[0] and %rax,@T[0] mov @T[0],`8*$j-128`($out) ___ $j++; push(@T,shift(@T)); } $code.=<<___; mov @T[0],`8*$j-128`($out) # zero mov @T[0],`8*($j+1)-128`($out) mov @T[0],`8*($j+2)-128`($out) mov @T[0],`8*($j+3)-128`($out) ret .cfi_endproc .size rsaz_1024_norm2red_avx2,.-rsaz_1024_norm2red_avx2 ___ } { my ($out,$inp,$power) = $win64 ? ("%rcx","%rdx","%r8d") : ("%rdi","%rsi","%edx"); $code.=<<___; .globl rsaz_1024_scatter5_avx2 .type rsaz_1024_scatter5_avx2,\@abi-omnipotent .align 32 rsaz_1024_scatter5_avx2: .cfi_startproc vzeroupper vmovdqu .Lscatter_permd(%rip),%ymm5 shl \$4,$power lea ($out,$power),$out mov \$9,%eax jmp .Loop_scatter_1024 .align 32 .Loop_scatter_1024: vmovdqu ($inp),%ymm0 lea 32($inp),$inp vpermd %ymm0,%ymm5,%ymm0 vmovdqu %xmm0,($out) lea 16*32($out),$out dec %eax jnz .Loop_scatter_1024 vzeroupper ret .cfi_endproc .size rsaz_1024_scatter5_avx2,.-rsaz_1024_scatter5_avx2 .globl rsaz_1024_gather5_avx2 .type rsaz_1024_gather5_avx2,\@abi-omnipotent .align 32 rsaz_1024_gather5_avx2: .cfi_startproc vzeroupper mov %rsp,%r11 .cfi_def_cfa_register %r11 ___ $code.=<<___ if ($win64); lea -0x88(%rsp),%rax .LSEH_begin_rsaz_1024_gather5: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x8d,0x60,0xe0 # lea -0x20(%rax),%rsp .byte 0xc5,0xf8,0x29,0x70,0xe0 # vmovaps %xmm6,-0x20(%rax) .byte 0xc5,0xf8,0x29,0x78,0xf0 # vmovaps %xmm7,-0x10(%rax) .byte 0xc5,0x78,0x29,0x40,0x00 # vmovaps %xmm8,0(%rax) .byte 0xc5,0x78,0x29,0x48,0x10 # vmovaps %xmm9,0x10(%rax) .byte 0xc5,0x78,0x29,0x50,0x20 # vmovaps %xmm10,0x20(%rax) .byte 0xc5,0x78,0x29,0x58,0x30 # vmovaps %xmm11,0x30(%rax) .byte 0xc5,0x78,0x29,0x60,0x40 # vmovaps %xmm12,0x40(%rax) .byte 0xc5,0x78,0x29,0x68,0x50 # vmovaps %xmm13,0x50(%rax) .byte 0xc5,0x78,0x29,0x70,0x60 # vmovaps %xmm14,0x60(%rax) .byte 0xc5,0x78,0x29,0x78,0x70 # vmovaps %xmm15,0x70(%rax) ___ $code.=<<___; lea -0x100(%rsp),%rsp and \$-32, %rsp lea .Linc(%rip), %r10 lea -128(%rsp),%rax # control u-op density vmovd $power, %xmm4 vmovdqa (%r10),%ymm0 vmovdqa 32(%r10),%ymm1 vmovdqa 64(%r10),%ymm5 vpbroadcastd %xmm4,%ymm4 vpaddd %ymm5, %ymm0, %ymm2 vpcmpeqd %ymm4, %ymm0, %ymm0 vpaddd %ymm5, %ymm1, %ymm3 vpcmpeqd %ymm4, %ymm1, %ymm1 vmovdqa %ymm0, 32*0+128(%rax) vpaddd %ymm5, %ymm2, %ymm0 vpcmpeqd %ymm4, %ymm2, %ymm2 vmovdqa %ymm1, 32*1+128(%rax) vpaddd %ymm5, %ymm3, %ymm1 vpcmpeqd %ymm4, %ymm3, %ymm3 vmovdqa %ymm2, 32*2+128(%rax) vpaddd %ymm5, %ymm0, %ymm2 vpcmpeqd %ymm4, %ymm0, %ymm0 vmovdqa %ymm3, 32*3+128(%rax) vpaddd %ymm5, %ymm1, %ymm3 vpcmpeqd %ymm4, %ymm1, %ymm1 vmovdqa %ymm0, 32*4+128(%rax) vpaddd %ymm5, %ymm2, %ymm8 vpcmpeqd %ymm4, %ymm2, %ymm2 vmovdqa %ymm1, 32*5+128(%rax) vpaddd %ymm5, %ymm3, %ymm9 vpcmpeqd %ymm4, %ymm3, %ymm3 vmovdqa %ymm2, 32*6+128(%rax) vpaddd %ymm5, %ymm8, %ymm10 vpcmpeqd %ymm4, %ymm8, %ymm8 vmovdqa %ymm3, 32*7+128(%rax) vpaddd %ymm5, %ymm9, %ymm11 vpcmpeqd %ymm4, %ymm9, %ymm9 vpaddd %ymm5, %ymm10, %ymm12 vpcmpeqd %ymm4, %ymm10, %ymm10 vpaddd %ymm5, %ymm11, %ymm13 vpcmpeqd %ymm4, %ymm11, %ymm11 vpaddd %ymm5, %ymm12, %ymm14 vpcmpeqd %ymm4, %ymm12, %ymm12 vpaddd %ymm5, %ymm13, %ymm15 vpcmpeqd %ymm4, %ymm13, %ymm13 vpcmpeqd %ymm4, %ymm14, %ymm14 vpcmpeqd %ymm4, %ymm15, %ymm15 vmovdqa -32(%r10),%ymm7 # .Lgather_permd lea 128($inp), $inp mov \$9,$power .Loop_gather_1024: vmovdqa 32*0-128($inp), %ymm0 vmovdqa 32*1-128($inp), %ymm1 vmovdqa 32*2-128($inp), %ymm2 vmovdqa 32*3-128($inp), %ymm3 vpand 32*0+128(%rax), %ymm0, %ymm0 vpand 32*1+128(%rax), %ymm1, %ymm1 vpand 32*2+128(%rax), %ymm2, %ymm2 vpor %ymm0, %ymm1, %ymm4 vpand 32*3+128(%rax), %ymm3, %ymm3 vmovdqa 32*4-128($inp), %ymm0 vmovdqa 32*5-128($inp), %ymm1 vpor %ymm2, %ymm3, %ymm5 vmovdqa 32*6-128($inp), %ymm2 vmovdqa 32*7-128($inp), %ymm3 vpand 32*4+128(%rax), %ymm0, %ymm0 vpand 32*5+128(%rax), %ymm1, %ymm1 vpand 32*6+128(%rax), %ymm2, %ymm2 vpor %ymm0, %ymm4, %ymm4 vpand 32*7+128(%rax), %ymm3, %ymm3 vpand 32*8-128($inp), %ymm8, %ymm0 vpor %ymm1, %ymm5, %ymm5 vpand 32*9-128($inp), %ymm9, %ymm1 vpor %ymm2, %ymm4, %ymm4 vpand 32*10-128($inp),%ymm10, %ymm2 vpor %ymm3, %ymm5, %ymm5 vpand 32*11-128($inp),%ymm11, %ymm3 vpor %ymm0, %ymm4, %ymm4 vpand 32*12-128($inp),%ymm12, %ymm0 vpor %ymm1, %ymm5, %ymm5 vpand 32*13-128($inp),%ymm13, %ymm1 vpor %ymm2, %ymm4, %ymm4 vpand 32*14-128($inp),%ymm14, %ymm2 vpor %ymm3, %ymm5, %ymm5 vpand 32*15-128($inp),%ymm15, %ymm3 lea 32*16($inp), $inp vpor %ymm0, %ymm4, %ymm4 vpor %ymm1, %ymm5, %ymm5 vpor %ymm2, %ymm4, %ymm4 vpor %ymm3, %ymm5, %ymm5 vpor %ymm5, %ymm4, %ymm4 vextracti128 \$1, %ymm4, %xmm5 # upper half is cleared vpor %xmm4, %xmm5, %xmm5 vpermd %ymm5,%ymm7,%ymm5 vmovdqu %ymm5,($out) lea 32($out),$out dec $power jnz .Loop_gather_1024 vpxor %ymm0,%ymm0,%ymm0 vmovdqu %ymm0,($out) vzeroupper ___ $code.=<<___ if ($win64); movaps -0xa8(%r11),%xmm6 movaps -0x98(%r11),%xmm7 movaps -0x88(%r11),%xmm8 movaps -0x78(%r11),%xmm9 movaps -0x68(%r11),%xmm10 movaps -0x58(%r11),%xmm11 movaps -0x48(%r11),%xmm12 movaps -0x38(%r11),%xmm13 movaps -0x28(%r11),%xmm14 movaps -0x18(%r11),%xmm15 ___ $code.=<<___; lea (%r11),%rsp .cfi_def_cfa_register %rsp ret .cfi_endproc .LSEH_end_rsaz_1024_gather5: .size rsaz_1024_gather5_avx2,.-rsaz_1024_gather5_avx2 ___ } $code.=<<___; .extern OPENSSL_ia32cap_P .globl rsaz_avx2_eligible .type rsaz_avx2_eligible,\@abi-omnipotent .align 32 rsaz_avx2_eligible: mov OPENSSL_ia32cap_P+8(%rip),%eax ___ $code.=<<___ if ($addx); mov \$`1<<8|1<<19`,%ecx mov \$0,%edx and %eax,%ecx cmp \$`1<<8|1<<19`,%ecx # check for BMI2+AD*X cmove %edx,%eax ___ $code.=<<___; and \$`1<<5`,%eax shr \$5,%eax ret .size rsaz_avx2_eligible,.-rsaz_avx2_eligible .align 64 .Land_mask: .quad 0x1fffffff,0x1fffffff,0x1fffffff,0x1fffffff .Lscatter_permd: .long 0,2,4,6,7,7,7,7 .Lgather_permd: .long 0,7,1,7,2,7,3,7 .Linc: .long 0,0,0,0, 1,1,1,1 .long 2,2,2,2, 3,3,3,3 .long 4,4,4,4, 4,4,4,4 .align 64 ___ if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___ .extern __imp_RtlVirtualUnwind .type rsaz_se_handler,\@abi-omnipotent .align 16 rsaz_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRip>=epilogue label jae .Lcommon_seh_tail mov 160($context),%rbp # pull context->Rbp mov 8(%r11),%r10d # HandlerData[2] lea (%rsi,%r10),%r10 # "in tail" label cmp %r10,%rbx # context->Rip>="in tail" label cmovc %rbp,%rax mov -48(%rax),%r15 mov -40(%rax),%r14 mov -32(%rax),%r13 mov -24(%rax),%r12 mov -16(%rax),%rbp mov -8(%rax),%rbx mov %r15,240($context) mov %r14,232($context) mov %r13,224($context) mov %r12,216($context) mov %rbp,160($context) mov %rbx,144($context) lea -0xd8(%rax),%rsi # %xmm save area lea 512($context),%rdi # & context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size rsaz_se_handler,.-rsaz_se_handler .section .pdata .align 4 .rva .LSEH_begin_rsaz_1024_sqr_avx2 .rva .LSEH_end_rsaz_1024_sqr_avx2 .rva .LSEH_info_rsaz_1024_sqr_avx2 .rva .LSEH_begin_rsaz_1024_mul_avx2 .rva .LSEH_end_rsaz_1024_mul_avx2 .rva .LSEH_info_rsaz_1024_mul_avx2 .rva .LSEH_begin_rsaz_1024_gather5 .rva .LSEH_end_rsaz_1024_gather5 .rva .LSEH_info_rsaz_1024_gather5 .section .xdata .align 8 .LSEH_info_rsaz_1024_sqr_avx2: .byte 9,0,0,0 .rva rsaz_se_handler .rva .Lsqr_1024_body,.Lsqr_1024_epilogue,.Lsqr_1024_in_tail .long 0 .LSEH_info_rsaz_1024_mul_avx2: .byte 9,0,0,0 .rva rsaz_se_handler .rva .Lmul_1024_body,.Lmul_1024_epilogue,.Lmul_1024_in_tail .long 0 .LSEH_info_rsaz_1024_gather5: .byte 0x01,0x36,0x17,0x0b .byte 0x36,0xf8,0x09,0x00 # vmovaps 0x90(rsp),xmm15 .byte 0x31,0xe8,0x08,0x00 # vmovaps 0x80(rsp),xmm14 .byte 0x2c,0xd8,0x07,0x00 # vmovaps 0x70(rsp),xmm13 .byte 0x27,0xc8,0x06,0x00 # vmovaps 0x60(rsp),xmm12 .byte 0x22,0xb8,0x05,0x00 # vmovaps 0x50(rsp),xmm11 .byte 0x1d,0xa8,0x04,0x00 # vmovaps 0x40(rsp),xmm10 .byte 0x18,0x98,0x03,0x00 # vmovaps 0x30(rsp),xmm9 .byte 0x13,0x88,0x02,0x00 # vmovaps 0x20(rsp),xmm8 .byte 0x0e,0x78,0x01,0x00 # vmovaps 0x10(rsp),xmm7 .byte 0x09,0x68,0x00,0x00 # vmovaps 0x00(rsp),xmm6 .byte 0x04,0x01,0x15,0x00 # sub rsp,0xa8 .byte 0x00,0xb3,0x00,0x00 # set_frame r11 ___ } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/\b(sh[rl]d?\s+\$)(-?[0-9]+)/$1.$2%64/ge or s/\b(vmov[dq])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vmovdqu)\b(.+)%x%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpinsr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpextr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpbroadcast[qd]\s+)%ymm([0-9]+)/$1%xmm$2/go; print $_,"\n"; } }}} else {{{ print <<___; # assembler is too old .text .globl rsaz_avx2_eligible .type rsaz_avx2_eligible,\@abi-omnipotent rsaz_avx2_eligible: xor %eax,%eax ret .size rsaz_avx2_eligible,.-rsaz_avx2_eligible .globl rsaz_1024_sqr_avx2 .globl rsaz_1024_mul_avx2 .globl rsaz_1024_norm2red_avx2 .globl rsaz_1024_red2norm_avx2 .globl rsaz_1024_scatter5_avx2 .globl rsaz_1024_gather5_avx2 .type rsaz_1024_sqr_avx2,\@abi-omnipotent rsaz_1024_sqr_avx2: rsaz_1024_mul_avx2: rsaz_1024_norm2red_avx2: rsaz_1024_red2norm_avx2: rsaz_1024_scatter5_avx2: rsaz_1024_gather5_avx2: .byte 0x0f,0x0b # ud2 ret .size rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2 ___ }}} close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/rsaz-x86_64.pl000077500000000000000000001336171364063235100203330ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # Copyright (c) 2012, Intel Corporation. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) # (1) Intel Corporation, Israel Development Center, Haifa, Israel # (2) University of Haifa, Israel # # References: # [1] S. Gueron, "Efficient Software Implementations of Modular # Exponentiation", http://eprint.iacr.org/2011/239 # [2] S. Gueron, V. Krasnov. "Speeding up Big-Numbers Squaring". # IEEE Proceedings of 9th International Conference on Information # Technology: New Generations (ITNG 2012), 821-823 (2012). # [3] S. Gueron, Efficient Software Implementations of Modular Exponentiation # Journal of Cryptographic Engineering 2:31-43 (2012). # [4] S. Gueron, V. Krasnov: "[PATCH] Efficient and side channel analysis # resistant 512-bit and 1024-bit modular exponentiation for optimizing # RSA1024 and RSA2048 on x86_64 platforms", # http://rt.openssl.org/Ticket/Display.html?id=2582&user=guest&pass=guest # # While original submission covers 512- and 1024-bit exponentiation, # this module is limited to 512-bit version only (and as such # accelerates RSA1024 sign). This is because improvement for longer # keys is not high enough to justify the effort, highest measured # was ~5% on Westmere. [This is relative to OpenSSL 1.0.2, upcoming # for the moment of this writing!] Nor does this module implement # "monolithic" complete exponentiation jumbo-subroutine, but adheres # to more modular mixture of C and assembly. And it's optimized even # for processors other than Intel Core family (see table below for # improvement coefficients). # # # RSA1024 sign/sec this/original |this/rsax(*) this/fips(*) # ----------------+--------------------------- # Opteron +13% |+5% +20% # Bulldozer -0% |-1% +10% # P4 +11% |+7% +8% # Westmere +5% |+14% +17% # Sandy Bridge +2% |+12% +29% # Ivy Bridge +1% |+11% +35% # Haswell(**) -0% |+12% +39% # Atom +13% |+11% +4% # VIA Nano +70% |+9% +25% # # (*) rsax engine and fips numbers are presented for reference # purposes; # (**) MULX was attempted, but found to give only marginal improvement; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $addx = ($ver>=3.03); } ($out, $inp, $mod) = ("%rdi", "%rsi", "%rbp"); # common internal API { my ($out,$inp,$mod,$n0,$times) = ("%rdi","%rsi","%rdx","%rcx","%r8d"); $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl rsaz_512_sqr .type rsaz_512_sqr,\@function,5 .align 32 rsaz_512_sqr: # 25-29% faster than rsaz_512_mul .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 subq \$128+24, %rsp .cfi_adjust_cfa_offset 128+24 .Lsqr_body: movq $mod, %xmm1 # common off-load movq ($inp), %rdx movq 8($inp), %rax movq $n0, 128(%rsp) ___ $code.=<<___ if ($addx); movl \$0x80100,%r11d andl OPENSSL_ia32cap_P+8(%rip),%r11d cmpl \$0x80100,%r11d # check for MULX and ADO/CX je .Loop_sqrx ___ $code.=<<___; jmp .Loop_sqr .align 32 .Loop_sqr: movl $times,128+8(%rsp) #first iteration movq %rdx, %rbx # 0($inp) mov %rax, %rbp # 8($inp) mulq %rdx movq %rax, %r8 movq 16($inp), %rax movq %rdx, %r9 mulq %rbx addq %rax, %r9 movq 24($inp), %rax movq %rdx, %r10 adcq \$0, %r10 mulq %rbx addq %rax, %r10 movq 32($inp), %rax movq %rdx, %r11 adcq \$0, %r11 mulq %rbx addq %rax, %r11 movq 40($inp), %rax movq %rdx, %r12 adcq \$0, %r12 mulq %rbx addq %rax, %r12 movq 48($inp), %rax movq %rdx, %r13 adcq \$0, %r13 mulq %rbx addq %rax, %r13 movq 56($inp), %rax movq %rdx, %r14 adcq \$0, %r14 mulq %rbx addq %rax, %r14 movq %rbx, %rax adcq \$0, %rdx xorq %rcx,%rcx # rcx:r8 = r8 << 1 addq %r8, %r8 movq %rdx, %r15 adcq \$0, %rcx mulq %rax addq %r8, %rdx adcq \$0, %rcx movq %rax, (%rsp) movq %rdx, 8(%rsp) #second iteration movq 16($inp), %rax mulq %rbp addq %rax, %r10 movq 24($inp), %rax movq %rdx, %rbx adcq \$0, %rbx mulq %rbp addq %rax, %r11 movq 32($inp), %rax adcq \$0, %rdx addq %rbx, %r11 movq %rdx, %rbx adcq \$0, %rbx mulq %rbp addq %rax, %r12 movq 40($inp), %rax adcq \$0, %rdx addq %rbx, %r12 movq %rdx, %rbx adcq \$0, %rbx mulq %rbp addq %rax, %r13 movq 48($inp), %rax adcq \$0, %rdx addq %rbx, %r13 movq %rdx, %rbx adcq \$0, %rbx mulq %rbp addq %rax, %r14 movq 56($inp), %rax adcq \$0, %rdx addq %rbx, %r14 movq %rdx, %rbx adcq \$0, %rbx mulq %rbp addq %rax, %r15 movq %rbp, %rax adcq \$0, %rdx addq %rbx, %r15 adcq \$0, %rdx xorq %rbx, %rbx # rbx:r10:r9 = r10:r9 << 1 addq %r9, %r9 movq %rdx, %r8 adcq %r10, %r10 adcq \$0, %rbx mulq %rax # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here addq %rcx, %rax movq 16($inp), %rbp addq %rax, %r9 movq 24($inp), %rax adcq %rdx, %r10 adcq \$0, %rbx movq %r9, 16(%rsp) movq %r10, 24(%rsp) #third iteration mulq %rbp addq %rax, %r12 movq 32($inp), %rax movq %rdx, %rcx adcq \$0, %rcx mulq %rbp addq %rax, %r13 movq 40($inp), %rax adcq \$0, %rdx addq %rcx, %r13 movq %rdx, %rcx adcq \$0, %rcx mulq %rbp addq %rax, %r14 movq 48($inp), %rax adcq \$0, %rdx addq %rcx, %r14 movq %rdx, %rcx adcq \$0, %rcx mulq %rbp addq %rax, %r15 movq 56($inp), %rax adcq \$0, %rdx addq %rcx, %r15 movq %rdx, %rcx adcq \$0, %rcx mulq %rbp addq %rax, %r8 movq %rbp, %rax adcq \$0, %rdx addq %rcx, %r8 adcq \$0, %rdx xorq %rcx, %rcx # rcx:r12:r11 = r12:r11 << 1 addq %r11, %r11 movq %rdx, %r9 adcq %r12, %r12 adcq \$0, %rcx mulq %rax # rbx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here addq %rbx, %rax movq 24($inp), %r10 addq %rax, %r11 movq 32($inp), %rax adcq %rdx, %r12 adcq \$0, %rcx movq %r11, 32(%rsp) movq %r12, 40(%rsp) #fourth iteration mov %rax, %r11 # 32($inp) mulq %r10 addq %rax, %r14 movq 40($inp), %rax movq %rdx, %rbx adcq \$0, %rbx mov %rax, %r12 # 40($inp) mulq %r10 addq %rax, %r15 movq 48($inp), %rax adcq \$0, %rdx addq %rbx, %r15 movq %rdx, %rbx adcq \$0, %rbx mov %rax, %rbp # 48($inp) mulq %r10 addq %rax, %r8 movq 56($inp), %rax adcq \$0, %rdx addq %rbx, %r8 movq %rdx, %rbx adcq \$0, %rbx mulq %r10 addq %rax, %r9 movq %r10, %rax adcq \$0, %rdx addq %rbx, %r9 adcq \$0, %rdx xorq %rbx, %rbx # rbx:r13:r14 = r13:r14 << 1 addq %r13, %r13 movq %rdx, %r10 adcq %r14, %r14 adcq \$0, %rbx mulq %rax # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here addq %rcx, %rax addq %rax, %r13 movq %r12, %rax # 40($inp) adcq %rdx, %r14 adcq \$0, %rbx movq %r13, 48(%rsp) movq %r14, 56(%rsp) #fifth iteration mulq %r11 addq %rax, %r8 movq %rbp, %rax # 48($inp) movq %rdx, %rcx adcq \$0, %rcx mulq %r11 addq %rax, %r9 movq 56($inp), %rax adcq \$0, %rdx addq %rcx, %r9 movq %rdx, %rcx adcq \$0, %rcx mov %rax, %r14 # 56($inp) mulq %r11 addq %rax, %r10 movq %r11, %rax adcq \$0, %rdx addq %rcx, %r10 adcq \$0, %rdx xorq %rcx, %rcx # rcx:r8:r15 = r8:r15 << 1 addq %r15, %r15 movq %rdx, %r11 adcq %r8, %r8 adcq \$0, %rcx mulq %rax # rbx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here addq %rbx, %rax addq %rax, %r15 movq %rbp, %rax # 48($inp) adcq %rdx, %r8 adcq \$0, %rcx movq %r15, 64(%rsp) movq %r8, 72(%rsp) #sixth iteration mulq %r12 addq %rax, %r10 movq %r14, %rax # 56($inp) movq %rdx, %rbx adcq \$0, %rbx mulq %r12 addq %rax, %r11 movq %r12, %rax adcq \$0, %rdx addq %rbx, %r11 adcq \$0, %rdx xorq %rbx, %rbx # rbx:r10:r9 = r10:r9 << 1 addq %r9, %r9 movq %rdx, %r12 adcq %r10, %r10 adcq \$0, %rbx mulq %rax # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here addq %rcx, %rax addq %rax, %r9 movq %r14, %rax # 56($inp) adcq %rdx, %r10 adcq \$0, %rbx movq %r9, 80(%rsp) movq %r10, 88(%rsp) #seventh iteration mulq %rbp addq %rax, %r12 movq %rbp, %rax adcq \$0, %rdx xorq %rcx, %rcx # rcx:r12:r11 = r12:r11 << 1 addq %r11, %r11 movq %rdx, %r13 adcq %r12, %r12 adcq \$0, %rcx mulq %rax # rbx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here addq %rbx, %rax addq %rax, %r11 movq %r14, %rax # 56($inp) adcq %rdx, %r12 adcq \$0, %rcx movq %r11, 96(%rsp) movq %r12, 104(%rsp) #eighth iteration xorq %rbx, %rbx # rbx:r13 = r13 << 1 addq %r13, %r13 adcq \$0, %rbx mulq %rax # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here addq %rcx, %rax addq %r13, %rax adcq %rbx, %rdx movq (%rsp), %r8 movq 8(%rsp), %r9 movq 16(%rsp), %r10 movq 24(%rsp), %r11 movq 32(%rsp), %r12 movq 40(%rsp), %r13 movq 48(%rsp), %r14 movq 56(%rsp), %r15 movq %xmm1, %rbp movq %rax, 112(%rsp) movq %rdx, 120(%rsp) call __rsaz_512_reduce addq 64(%rsp), %r8 adcq 72(%rsp), %r9 adcq 80(%rsp), %r10 adcq 88(%rsp), %r11 adcq 96(%rsp), %r12 adcq 104(%rsp), %r13 adcq 112(%rsp), %r14 adcq 120(%rsp), %r15 sbbq %rcx, %rcx call __rsaz_512_subtract movq %r8, %rdx movq %r9, %rax movl 128+8(%rsp), $times movq $out, $inp decl $times jnz .Loop_sqr ___ if ($addx) { $code.=<<___; jmp .Lsqr_tail .align 32 .Loop_sqrx: movl $times,128+8(%rsp) movq $out, %xmm0 # off-load #first iteration mulx %rax, %r8, %r9 mov %rax, %rbx mulx 16($inp), %rcx, %r10 xor %rbp, %rbp # cf=0, of=0 mulx 24($inp), %rax, %r11 adcx %rcx, %r9 .byte 0xc4,0x62,0xf3,0xf6,0xa6,0x20,0x00,0x00,0x00 # mulx 32($inp), %rcx, %r12 adcx %rax, %r10 .byte 0xc4,0x62,0xfb,0xf6,0xae,0x28,0x00,0x00,0x00 # mulx 40($inp), %rax, %r13 adcx %rcx, %r11 mulx 48($inp), %rcx, %r14 adcx %rax, %r12 adcx %rcx, %r13 mulx 56($inp), %rax, %r15 adcx %rax, %r14 adcx %rbp, %r15 # %rbp is 0 mulx %rdx, %rax, $out mov %rbx, %rdx # 8($inp) xor %rcx, %rcx adox %r8, %r8 adcx $out, %r8 adox %rbp, %rcx adcx %rbp, %rcx mov %rax, (%rsp) mov %r8, 8(%rsp) #second iteration .byte 0xc4,0xe2,0xfb,0xf6,0x9e,0x10,0x00,0x00,0x00 # mulx 16($inp), %rax, %rbx adox %rax, %r10 adcx %rbx, %r11 mulx 24($inp), $out, %r8 adox $out, %r11 .byte 0x66 adcx %r8, %r12 mulx 32($inp), %rax, %rbx adox %rax, %r12 adcx %rbx, %r13 mulx 40($inp), $out, %r8 adox $out, %r13 adcx %r8, %r14 .byte 0xc4,0xe2,0xfb,0xf6,0x9e,0x30,0x00,0x00,0x00 # mulx 48($inp), %rax, %rbx adox %rax, %r14 adcx %rbx, %r15 .byte 0xc4,0x62,0xc3,0xf6,0x86,0x38,0x00,0x00,0x00 # mulx 56($inp), $out, %r8 adox $out, %r15 adcx %rbp, %r8 mulx %rdx, %rax, $out adox %rbp, %r8 .byte 0x48,0x8b,0x96,0x10,0x00,0x00,0x00 # mov 16($inp), %rdx xor %rbx, %rbx adox %r9, %r9 # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here adcx %rcx, %rax adox %r10, %r10 adcx %rax, %r9 adox %rbp, %rbx adcx $out, %r10 adcx %rbp, %rbx mov %r9, 16(%rsp) .byte 0x4c,0x89,0x94,0x24,0x18,0x00,0x00,0x00 # mov %r10, 24(%rsp) #third iteration mulx 24($inp), $out, %r9 adox $out, %r12 adcx %r9, %r13 mulx 32($inp), %rax, %rcx adox %rax, %r13 adcx %rcx, %r14 .byte 0xc4,0x62,0xc3,0xf6,0x8e,0x28,0x00,0x00,0x00 # mulx 40($inp), $out, %r9 adox $out, %r14 adcx %r9, %r15 .byte 0xc4,0xe2,0xfb,0xf6,0x8e,0x30,0x00,0x00,0x00 # mulx 48($inp), %rax, %rcx adox %rax, %r15 adcx %rcx, %r8 mulx 56($inp), $out, %r9 adox $out, %r8 adcx %rbp, %r9 mulx %rdx, %rax, $out adox %rbp, %r9 mov 24($inp), %rdx xor %rcx, %rcx adox %r11, %r11 # rbx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here adcx %rbx, %rax adox %r12, %r12 adcx %rax, %r11 adox %rbp, %rcx adcx $out, %r12 adcx %rbp, %rcx mov %r11, 32(%rsp) mov %r12, 40(%rsp) #fourth iteration mulx 32($inp), %rax, %rbx adox %rax, %r14 adcx %rbx, %r15 mulx 40($inp), $out, %r10 adox $out, %r15 adcx %r10, %r8 mulx 48($inp), %rax, %rbx adox %rax, %r8 adcx %rbx, %r9 mulx 56($inp), $out, %r10 adox $out, %r9 adcx %rbp, %r10 mulx %rdx, %rax, $out adox %rbp, %r10 mov 32($inp), %rdx xor %rbx, %rbx adox %r13, %r13 # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here adcx %rcx, %rax adox %r14, %r14 adcx %rax, %r13 adox %rbp, %rbx adcx $out, %r14 adcx %rbp, %rbx mov %r13, 48(%rsp) mov %r14, 56(%rsp) #fifth iteration mulx 40($inp), $out, %r11 adox $out, %r8 adcx %r11, %r9 mulx 48($inp), %rax, %rcx adox %rax, %r9 adcx %rcx, %r10 mulx 56($inp), $out, %r11 adox $out, %r10 adcx %rbp, %r11 mulx %rdx, %rax, $out mov 40($inp), %rdx adox %rbp, %r11 xor %rcx, %rcx adox %r15, %r15 # rbx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here adcx %rbx, %rax adox %r8, %r8 adcx %rax, %r15 adox %rbp, %rcx adcx $out, %r8 adcx %rbp, %rcx mov %r15, 64(%rsp) mov %r8, 72(%rsp) #sixth iteration .byte 0xc4,0xe2,0xfb,0xf6,0x9e,0x30,0x00,0x00,0x00 # mulx 48($inp), %rax, %rbx adox %rax, %r10 adcx %rbx, %r11 .byte 0xc4,0x62,0xc3,0xf6,0xa6,0x38,0x00,0x00,0x00 # mulx 56($inp), $out, %r12 adox $out, %r11 adcx %rbp, %r12 mulx %rdx, %rax, $out adox %rbp, %r12 mov 48($inp), %rdx xor %rbx, %rbx adox %r9, %r9 # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here adcx %rcx, %rax adox %r10, %r10 adcx %rax, %r9 adcx $out, %r10 adox %rbp, %rbx adcx %rbp, %rbx mov %r9, 80(%rsp) mov %r10, 88(%rsp) #seventh iteration .byte 0xc4,0x62,0xfb,0xf6,0xae,0x38,0x00,0x00,0x00 # mulx 56($inp), %rax, %r13 adox %rax, %r12 adox %rbp, %r13 mulx %rdx, %rax, $out xor %rcx, %rcx mov 56($inp), %rdx adox %r11, %r11 # rbx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here adcx %rbx, %rax adox %r12, %r12 adcx %rax, %r11 adox %rbp, %rcx adcx $out, %r12 adcx %rbp, %rcx .byte 0x4c,0x89,0x9c,0x24,0x60,0x00,0x00,0x00 # mov %r11, 96(%rsp) .byte 0x4c,0x89,0xa4,0x24,0x68,0x00,0x00,0x00 # mov %r12, 104(%rsp) #eighth iteration mulx %rdx, %rax, %rdx xor %rbx, %rbx adox %r13, %r13 # rcx <= 2 and rax <= 0xFFFF..F9, so carry must be zero here adcx %rcx, %rax adox %rbp, %rbx adcx %r13, %rax adcx %rdx, %rbx movq %xmm0, $out movq %xmm1, %rbp movq 128(%rsp), %rdx # pull $n0 movq (%rsp), %r8 movq 8(%rsp), %r9 movq 16(%rsp), %r10 movq 24(%rsp), %r11 movq 32(%rsp), %r12 movq 40(%rsp), %r13 movq 48(%rsp), %r14 movq 56(%rsp), %r15 movq %rax, 112(%rsp) movq %rbx, 120(%rsp) call __rsaz_512_reducex addq 64(%rsp), %r8 adcq 72(%rsp), %r9 adcq 80(%rsp), %r10 adcq 88(%rsp), %r11 adcq 96(%rsp), %r12 adcq 104(%rsp), %r13 adcq 112(%rsp), %r14 adcq 120(%rsp), %r15 sbbq %rcx, %rcx call __rsaz_512_subtract movq %r8, %rdx movq %r9, %rax movl 128+8(%rsp), $times movq $out, $inp decl $times jnz .Loop_sqrx .Lsqr_tail: ___ } $code.=<<___; leaq 128+24+48(%rsp), %rax .cfi_def_cfa %rax,8 movq -48(%rax), %r15 .cfi_restore %r15 movq -40(%rax), %r14 .cfi_restore %r14 movq -32(%rax), %r13 .cfi_restore %r13 movq -24(%rax), %r12 .cfi_restore %r12 movq -16(%rax), %rbp .cfi_restore %rbp movq -8(%rax), %rbx .cfi_restore %rbx leaq (%rax), %rsp .cfi_def_cfa_register %rsp .Lsqr_epilogue: ret .cfi_endproc .size rsaz_512_sqr,.-rsaz_512_sqr ___ } { my ($out,$ap,$bp,$mod,$n0) = ("%rdi","%rsi","%rdx","%rcx","%r8"); $code.=<<___; .globl rsaz_512_mul .type rsaz_512_mul,\@function,5 .align 32 rsaz_512_mul: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 subq \$128+24, %rsp .cfi_adjust_cfa_offset 128+24 .Lmul_body: movq $out, %xmm0 # off-load arguments movq $mod, %xmm1 movq $n0, 128(%rsp) ___ $code.=<<___ if ($addx); movl \$0x80100,%r11d andl OPENSSL_ia32cap_P+8(%rip),%r11d cmpl \$0x80100,%r11d # check for MULX and ADO/CX je .Lmulx ___ $code.=<<___; movq ($bp), %rbx # pass b[0] movq $bp, %rbp # pass argument call __rsaz_512_mul movq %xmm0, $out movq %xmm1, %rbp movq (%rsp), %r8 movq 8(%rsp), %r9 movq 16(%rsp), %r10 movq 24(%rsp), %r11 movq 32(%rsp), %r12 movq 40(%rsp), %r13 movq 48(%rsp), %r14 movq 56(%rsp), %r15 call __rsaz_512_reduce ___ $code.=<<___ if ($addx); jmp .Lmul_tail .align 32 .Lmulx: movq $bp, %rbp # pass argument movq ($bp), %rdx # pass b[0] call __rsaz_512_mulx movq %xmm0, $out movq %xmm1, %rbp movq 128(%rsp), %rdx # pull $n0 movq (%rsp), %r8 movq 8(%rsp), %r9 movq 16(%rsp), %r10 movq 24(%rsp), %r11 movq 32(%rsp), %r12 movq 40(%rsp), %r13 movq 48(%rsp), %r14 movq 56(%rsp), %r15 call __rsaz_512_reducex .Lmul_tail: ___ $code.=<<___; addq 64(%rsp), %r8 adcq 72(%rsp), %r9 adcq 80(%rsp), %r10 adcq 88(%rsp), %r11 adcq 96(%rsp), %r12 adcq 104(%rsp), %r13 adcq 112(%rsp), %r14 adcq 120(%rsp), %r15 sbbq %rcx, %rcx call __rsaz_512_subtract leaq 128+24+48(%rsp), %rax .cfi_def_cfa %rax,8 movq -48(%rax), %r15 .cfi_restore %r15 movq -40(%rax), %r14 .cfi_restore %r14 movq -32(%rax), %r13 .cfi_restore %r13 movq -24(%rax), %r12 .cfi_restore %r12 movq -16(%rax), %rbp .cfi_restore %rbp movq -8(%rax), %rbx .cfi_restore %rbx leaq (%rax), %rsp .cfi_def_cfa_register %rsp .Lmul_epilogue: ret .cfi_endproc .size rsaz_512_mul,.-rsaz_512_mul ___ } { my ($out,$ap,$bp,$mod,$n0,$pwr) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9d"); $code.=<<___; .globl rsaz_512_mul_gather4 .type rsaz_512_mul_gather4,\@function,6 .align 32 rsaz_512_mul_gather4: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 subq \$`128+24+($win64?0xb0:0)`, %rsp .cfi_adjust_cfa_offset `128+24+($win64?0xb0:0)` ___ $code.=<<___ if ($win64); movaps %xmm6,0xa0(%rsp) movaps %xmm7,0xb0(%rsp) movaps %xmm8,0xc0(%rsp) movaps %xmm9,0xd0(%rsp) movaps %xmm10,0xe0(%rsp) movaps %xmm11,0xf0(%rsp) movaps %xmm12,0x100(%rsp) movaps %xmm13,0x110(%rsp) movaps %xmm14,0x120(%rsp) movaps %xmm15,0x130(%rsp) ___ $code.=<<___; .Lmul_gather4_body: movd $pwr,%xmm8 movdqa .Linc+16(%rip),%xmm1 # 00000002000000020000000200000002 movdqa .Linc(%rip),%xmm0 # 00000001000000010000000000000000 pshufd \$0,%xmm8,%xmm8 # broadcast $power movdqa %xmm1,%xmm7 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..15 to $power # for($i=0;$i<4;$i++) { $code.=<<___; paddd %xmm`$i`,%xmm`$i+1` pcmpeqd %xmm8,%xmm`$i` movdqa %xmm7,%xmm`$i+3` ___ } for(;$i<7;$i++) { $code.=<<___; paddd %xmm`$i`,%xmm`$i+1` pcmpeqd %xmm8,%xmm`$i` ___ } $code.=<<___; pcmpeqd %xmm8,%xmm7 movdqa 16*0($bp),%xmm8 movdqa 16*1($bp),%xmm9 movdqa 16*2($bp),%xmm10 movdqa 16*3($bp),%xmm11 pand %xmm0,%xmm8 movdqa 16*4($bp),%xmm12 pand %xmm1,%xmm9 movdqa 16*5($bp),%xmm13 pand %xmm2,%xmm10 movdqa 16*6($bp),%xmm14 pand %xmm3,%xmm11 movdqa 16*7($bp),%xmm15 leaq 128($bp), %rbp pand %xmm4,%xmm12 pand %xmm5,%xmm13 pand %xmm6,%xmm14 pand %xmm7,%xmm15 por %xmm10,%xmm8 por %xmm11,%xmm9 por %xmm12,%xmm8 por %xmm13,%xmm9 por %xmm14,%xmm8 por %xmm15,%xmm9 por %xmm9,%xmm8 pshufd \$0x4e,%xmm8,%xmm9 por %xmm9,%xmm8 ___ $code.=<<___ if ($addx); movl \$0x80100,%r11d andl OPENSSL_ia32cap_P+8(%rip),%r11d cmpl \$0x80100,%r11d # check for MULX and ADO/CX je .Lmulx_gather ___ $code.=<<___; movq %xmm8,%rbx movq $n0, 128(%rsp) # off-load arguments movq $out, 128+8(%rsp) movq $mod, 128+16(%rsp) movq ($ap), %rax movq 8($ap), %rcx mulq %rbx # 0 iteration movq %rax, (%rsp) movq %rcx, %rax movq %rdx, %r8 mulq %rbx addq %rax, %r8 movq 16($ap), %rax movq %rdx, %r9 adcq \$0, %r9 mulq %rbx addq %rax, %r9 movq 24($ap), %rax movq %rdx, %r10 adcq \$0, %r10 mulq %rbx addq %rax, %r10 movq 32($ap), %rax movq %rdx, %r11 adcq \$0, %r11 mulq %rbx addq %rax, %r11 movq 40($ap), %rax movq %rdx, %r12 adcq \$0, %r12 mulq %rbx addq %rax, %r12 movq 48($ap), %rax movq %rdx, %r13 adcq \$0, %r13 mulq %rbx addq %rax, %r13 movq 56($ap), %rax movq %rdx, %r14 adcq \$0, %r14 mulq %rbx addq %rax, %r14 movq ($ap), %rax movq %rdx, %r15 adcq \$0, %r15 leaq 8(%rsp), %rdi movl \$7, %ecx jmp .Loop_mul_gather .align 32 .Loop_mul_gather: movdqa 16*0(%rbp),%xmm8 movdqa 16*1(%rbp),%xmm9 movdqa 16*2(%rbp),%xmm10 movdqa 16*3(%rbp),%xmm11 pand %xmm0,%xmm8 movdqa 16*4(%rbp),%xmm12 pand %xmm1,%xmm9 movdqa 16*5(%rbp),%xmm13 pand %xmm2,%xmm10 movdqa 16*6(%rbp),%xmm14 pand %xmm3,%xmm11 movdqa 16*7(%rbp),%xmm15 leaq 128(%rbp), %rbp pand %xmm4,%xmm12 pand %xmm5,%xmm13 pand %xmm6,%xmm14 pand %xmm7,%xmm15 por %xmm10,%xmm8 por %xmm11,%xmm9 por %xmm12,%xmm8 por %xmm13,%xmm9 por %xmm14,%xmm8 por %xmm15,%xmm9 por %xmm9,%xmm8 pshufd \$0x4e,%xmm8,%xmm9 por %xmm9,%xmm8 movq %xmm8,%rbx mulq %rbx addq %rax, %r8 movq 8($ap), %rax movq %r8, (%rdi) movq %rdx, %r8 adcq \$0, %r8 mulq %rbx addq %rax, %r9 movq 16($ap), %rax adcq \$0, %rdx addq %r9, %r8 movq %rdx, %r9 adcq \$0, %r9 mulq %rbx addq %rax, %r10 movq 24($ap), %rax adcq \$0, %rdx addq %r10, %r9 movq %rdx, %r10 adcq \$0, %r10 mulq %rbx addq %rax, %r11 movq 32($ap), %rax adcq \$0, %rdx addq %r11, %r10 movq %rdx, %r11 adcq \$0, %r11 mulq %rbx addq %rax, %r12 movq 40($ap), %rax adcq \$0, %rdx addq %r12, %r11 movq %rdx, %r12 adcq \$0, %r12 mulq %rbx addq %rax, %r13 movq 48($ap), %rax adcq \$0, %rdx addq %r13, %r12 movq %rdx, %r13 adcq \$0, %r13 mulq %rbx addq %rax, %r14 movq 56($ap), %rax adcq \$0, %rdx addq %r14, %r13 movq %rdx, %r14 adcq \$0, %r14 mulq %rbx addq %rax, %r15 movq ($ap), %rax adcq \$0, %rdx addq %r15, %r14 movq %rdx, %r15 adcq \$0, %r15 leaq 8(%rdi), %rdi decl %ecx jnz .Loop_mul_gather movq %r8, (%rdi) movq %r9, 8(%rdi) movq %r10, 16(%rdi) movq %r11, 24(%rdi) movq %r12, 32(%rdi) movq %r13, 40(%rdi) movq %r14, 48(%rdi) movq %r15, 56(%rdi) movq 128+8(%rsp), $out movq 128+16(%rsp), %rbp movq (%rsp), %r8 movq 8(%rsp), %r9 movq 16(%rsp), %r10 movq 24(%rsp), %r11 movq 32(%rsp), %r12 movq 40(%rsp), %r13 movq 48(%rsp), %r14 movq 56(%rsp), %r15 call __rsaz_512_reduce ___ $code.=<<___ if ($addx); jmp .Lmul_gather_tail .align 32 .Lmulx_gather: movq %xmm8,%rdx mov $n0, 128(%rsp) # off-load arguments mov $out, 128+8(%rsp) mov $mod, 128+16(%rsp) mulx ($ap), %rbx, %r8 # 0 iteration mov %rbx, (%rsp) xor %edi, %edi # cf=0, of=0 mulx 8($ap), %rax, %r9 mulx 16($ap), %rbx, %r10 adcx %rax, %r8 mulx 24($ap), %rax, %r11 adcx %rbx, %r9 mulx 32($ap), %rbx, %r12 adcx %rax, %r10 mulx 40($ap), %rax, %r13 adcx %rbx, %r11 mulx 48($ap), %rbx, %r14 adcx %rax, %r12 mulx 56($ap), %rax, %r15 adcx %rbx, %r13 adcx %rax, %r14 .byte 0x67 mov %r8, %rbx adcx %rdi, %r15 # %rdi is 0 mov \$-7, %rcx jmp .Loop_mulx_gather .align 32 .Loop_mulx_gather: movdqa 16*0(%rbp),%xmm8 movdqa 16*1(%rbp),%xmm9 movdqa 16*2(%rbp),%xmm10 movdqa 16*3(%rbp),%xmm11 pand %xmm0,%xmm8 movdqa 16*4(%rbp),%xmm12 pand %xmm1,%xmm9 movdqa 16*5(%rbp),%xmm13 pand %xmm2,%xmm10 movdqa 16*6(%rbp),%xmm14 pand %xmm3,%xmm11 movdqa 16*7(%rbp),%xmm15 leaq 128(%rbp), %rbp pand %xmm4,%xmm12 pand %xmm5,%xmm13 pand %xmm6,%xmm14 pand %xmm7,%xmm15 por %xmm10,%xmm8 por %xmm11,%xmm9 por %xmm12,%xmm8 por %xmm13,%xmm9 por %xmm14,%xmm8 por %xmm15,%xmm9 por %xmm9,%xmm8 pshufd \$0x4e,%xmm8,%xmm9 por %xmm9,%xmm8 movq %xmm8,%rdx .byte 0xc4,0x62,0xfb,0xf6,0x86,0x00,0x00,0x00,0x00 # mulx ($ap), %rax, %r8 adcx %rax, %rbx adox %r9, %r8 mulx 8($ap), %rax, %r9 adcx %rax, %r8 adox %r10, %r9 mulx 16($ap), %rax, %r10 adcx %rax, %r9 adox %r11, %r10 .byte 0xc4,0x62,0xfb,0xf6,0x9e,0x18,0x00,0x00,0x00 # mulx 24($ap), %rax, %r11 adcx %rax, %r10 adox %r12, %r11 mulx 32($ap), %rax, %r12 adcx %rax, %r11 adox %r13, %r12 mulx 40($ap), %rax, %r13 adcx %rax, %r12 adox %r14, %r13 .byte 0xc4,0x62,0xfb,0xf6,0xb6,0x30,0x00,0x00,0x00 # mulx 48($ap), %rax, %r14 adcx %rax, %r13 .byte 0x67 adox %r15, %r14 mulx 56($ap), %rax, %r15 mov %rbx, 64(%rsp,%rcx,8) adcx %rax, %r14 adox %rdi, %r15 mov %r8, %rbx adcx %rdi, %r15 # cf=0 inc %rcx # of=0 jnz .Loop_mulx_gather mov %r8, 64(%rsp) mov %r9, 64+8(%rsp) mov %r10, 64+16(%rsp) mov %r11, 64+24(%rsp) mov %r12, 64+32(%rsp) mov %r13, 64+40(%rsp) mov %r14, 64+48(%rsp) mov %r15, 64+56(%rsp) mov 128(%rsp), %rdx # pull arguments mov 128+8(%rsp), $out mov 128+16(%rsp), %rbp mov (%rsp), %r8 mov 8(%rsp), %r9 mov 16(%rsp), %r10 mov 24(%rsp), %r11 mov 32(%rsp), %r12 mov 40(%rsp), %r13 mov 48(%rsp), %r14 mov 56(%rsp), %r15 call __rsaz_512_reducex .Lmul_gather_tail: ___ $code.=<<___; addq 64(%rsp), %r8 adcq 72(%rsp), %r9 adcq 80(%rsp), %r10 adcq 88(%rsp), %r11 adcq 96(%rsp), %r12 adcq 104(%rsp), %r13 adcq 112(%rsp), %r14 adcq 120(%rsp), %r15 sbbq %rcx, %rcx call __rsaz_512_subtract leaq 128+24+48(%rsp), %rax ___ $code.=<<___ if ($win64); movaps 0xa0-0xc8(%rax),%xmm6 movaps 0xb0-0xc8(%rax),%xmm7 movaps 0xc0-0xc8(%rax),%xmm8 movaps 0xd0-0xc8(%rax),%xmm9 movaps 0xe0-0xc8(%rax),%xmm10 movaps 0xf0-0xc8(%rax),%xmm11 movaps 0x100-0xc8(%rax),%xmm12 movaps 0x110-0xc8(%rax),%xmm13 movaps 0x120-0xc8(%rax),%xmm14 movaps 0x130-0xc8(%rax),%xmm15 lea 0xb0(%rax),%rax ___ $code.=<<___; .cfi_def_cfa %rax,8 movq -48(%rax), %r15 .cfi_restore %r15 movq -40(%rax), %r14 .cfi_restore %r14 movq -32(%rax), %r13 .cfi_restore %r13 movq -24(%rax), %r12 .cfi_restore %r12 movq -16(%rax), %rbp .cfi_restore %rbp movq -8(%rax), %rbx .cfi_restore %rbx leaq (%rax), %rsp .cfi_def_cfa_register %rsp .Lmul_gather4_epilogue: ret .cfi_endproc .size rsaz_512_mul_gather4,.-rsaz_512_mul_gather4 ___ } { my ($out,$ap,$mod,$n0,$tbl,$pwr) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9d"); $code.=<<___; .globl rsaz_512_mul_scatter4 .type rsaz_512_mul_scatter4,\@function,6 .align 32 rsaz_512_mul_scatter4: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 mov $pwr, $pwr subq \$128+24, %rsp .cfi_adjust_cfa_offset 128+24 .Lmul_scatter4_body: leaq ($tbl,$pwr,8), $tbl movq $out, %xmm0 # off-load arguments movq $mod, %xmm1 movq $tbl, %xmm2 movq $n0, 128(%rsp) movq $out, %rbp ___ $code.=<<___ if ($addx); movl \$0x80100,%r11d andl OPENSSL_ia32cap_P+8(%rip),%r11d cmpl \$0x80100,%r11d # check for MULX and ADO/CX je .Lmulx_scatter ___ $code.=<<___; movq ($out),%rbx # pass b[0] call __rsaz_512_mul movq %xmm0, $out movq %xmm1, %rbp movq (%rsp), %r8 movq 8(%rsp), %r9 movq 16(%rsp), %r10 movq 24(%rsp), %r11 movq 32(%rsp), %r12 movq 40(%rsp), %r13 movq 48(%rsp), %r14 movq 56(%rsp), %r15 call __rsaz_512_reduce ___ $code.=<<___ if ($addx); jmp .Lmul_scatter_tail .align 32 .Lmulx_scatter: movq ($out), %rdx # pass b[0] call __rsaz_512_mulx movq %xmm0, $out movq %xmm1, %rbp movq 128(%rsp), %rdx # pull $n0 movq (%rsp), %r8 movq 8(%rsp), %r9 movq 16(%rsp), %r10 movq 24(%rsp), %r11 movq 32(%rsp), %r12 movq 40(%rsp), %r13 movq 48(%rsp), %r14 movq 56(%rsp), %r15 call __rsaz_512_reducex .Lmul_scatter_tail: ___ $code.=<<___; addq 64(%rsp), %r8 adcq 72(%rsp), %r9 adcq 80(%rsp), %r10 adcq 88(%rsp), %r11 adcq 96(%rsp), %r12 adcq 104(%rsp), %r13 adcq 112(%rsp), %r14 adcq 120(%rsp), %r15 movq %xmm2, $inp sbbq %rcx, %rcx call __rsaz_512_subtract movq %r8, 128*0($inp) # scatter movq %r9, 128*1($inp) movq %r10, 128*2($inp) movq %r11, 128*3($inp) movq %r12, 128*4($inp) movq %r13, 128*5($inp) movq %r14, 128*6($inp) movq %r15, 128*7($inp) leaq 128+24+48(%rsp), %rax .cfi_def_cfa %rax,8 movq -48(%rax), %r15 .cfi_restore %r15 movq -40(%rax), %r14 .cfi_restore %r14 movq -32(%rax), %r13 .cfi_restore %r13 movq -24(%rax), %r12 .cfi_restore %r12 movq -16(%rax), %rbp .cfi_restore %rbp movq -8(%rax), %rbx .cfi_restore %rbx leaq (%rax), %rsp .cfi_def_cfa_register %rsp .Lmul_scatter4_epilogue: ret .cfi_endproc .size rsaz_512_mul_scatter4,.-rsaz_512_mul_scatter4 ___ } { my ($out,$inp,$mod,$n0) = ("%rdi","%rsi","%rdx","%rcx"); $code.=<<___; .globl rsaz_512_mul_by_one .type rsaz_512_mul_by_one,\@function,4 .align 32 rsaz_512_mul_by_one: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 subq \$128+24, %rsp .cfi_adjust_cfa_offset 128+24 .Lmul_by_one_body: ___ $code.=<<___ if ($addx); movl OPENSSL_ia32cap_P+8(%rip),%eax ___ $code.=<<___; movq $mod, %rbp # reassign argument movq $n0, 128(%rsp) movq ($inp), %r8 pxor %xmm0, %xmm0 movq 8($inp), %r9 movq 16($inp), %r10 movq 24($inp), %r11 movq 32($inp), %r12 movq 40($inp), %r13 movq 48($inp), %r14 movq 56($inp), %r15 movdqa %xmm0, (%rsp) movdqa %xmm0, 16(%rsp) movdqa %xmm0, 32(%rsp) movdqa %xmm0, 48(%rsp) movdqa %xmm0, 64(%rsp) movdqa %xmm0, 80(%rsp) movdqa %xmm0, 96(%rsp) ___ $code.=<<___ if ($addx); andl \$0x80100,%eax cmpl \$0x80100,%eax # check for MULX and ADO/CX je .Lby_one_callx ___ $code.=<<___; call __rsaz_512_reduce ___ $code.=<<___ if ($addx); jmp .Lby_one_tail .align 32 .Lby_one_callx: movq 128(%rsp), %rdx # pull $n0 call __rsaz_512_reducex .Lby_one_tail: ___ $code.=<<___; movq %r8, ($out) movq %r9, 8($out) movq %r10, 16($out) movq %r11, 24($out) movq %r12, 32($out) movq %r13, 40($out) movq %r14, 48($out) movq %r15, 56($out) leaq 128+24+48(%rsp), %rax .cfi_def_cfa %rax,8 movq -48(%rax), %r15 .cfi_restore %r15 movq -40(%rax), %r14 .cfi_restore %r14 movq -32(%rax), %r13 .cfi_restore %r13 movq -24(%rax), %r12 .cfi_restore %r12 movq -16(%rax), %rbp .cfi_restore %rbp movq -8(%rax), %rbx .cfi_restore %rbx leaq (%rax), %rsp .cfi_def_cfa_register %rsp .Lmul_by_one_epilogue: ret .cfi_endproc .size rsaz_512_mul_by_one,.-rsaz_512_mul_by_one ___ } { # __rsaz_512_reduce # # input: %r8-%r15, %rbp - mod, 128(%rsp) - n0 # output: %r8-%r15 # clobbers: everything except %rbp and %rdi $code.=<<___; .type __rsaz_512_reduce,\@abi-omnipotent .align 32 __rsaz_512_reduce: .cfi_startproc movq %r8, %rbx imulq 128+8(%rsp), %rbx movq 0(%rbp), %rax movl \$8, %ecx jmp .Lreduction_loop .align 32 .Lreduction_loop: mulq %rbx movq 8(%rbp), %rax negq %r8 movq %rdx, %r8 adcq \$0, %r8 mulq %rbx addq %rax, %r9 movq 16(%rbp), %rax adcq \$0, %rdx addq %r9, %r8 movq %rdx, %r9 adcq \$0, %r9 mulq %rbx addq %rax, %r10 movq 24(%rbp), %rax adcq \$0, %rdx addq %r10, %r9 movq %rdx, %r10 adcq \$0, %r10 mulq %rbx addq %rax, %r11 movq 32(%rbp), %rax adcq \$0, %rdx addq %r11, %r10 movq 128+8(%rsp), %rsi #movq %rdx, %r11 #adcq \$0, %r11 adcq \$0, %rdx movq %rdx, %r11 mulq %rbx addq %rax, %r12 movq 40(%rbp), %rax adcq \$0, %rdx imulq %r8, %rsi addq %r12, %r11 movq %rdx, %r12 adcq \$0, %r12 mulq %rbx addq %rax, %r13 movq 48(%rbp), %rax adcq \$0, %rdx addq %r13, %r12 movq %rdx, %r13 adcq \$0, %r13 mulq %rbx addq %rax, %r14 movq 56(%rbp), %rax adcq \$0, %rdx addq %r14, %r13 movq %rdx, %r14 adcq \$0, %r14 mulq %rbx movq %rsi, %rbx addq %rax, %r15 movq 0(%rbp), %rax adcq \$0, %rdx addq %r15, %r14 movq %rdx, %r15 adcq \$0, %r15 decl %ecx jne .Lreduction_loop ret .cfi_endproc .size __rsaz_512_reduce,.-__rsaz_512_reduce ___ } if ($addx) { # __rsaz_512_reducex # # input: %r8-%r15, %rbp - mod, 128(%rsp) - n0 # output: %r8-%r15 # clobbers: everything except %rbp and %rdi $code.=<<___; .type __rsaz_512_reducex,\@abi-omnipotent .align 32 __rsaz_512_reducex: .cfi_startproc #movq 128+8(%rsp), %rdx # pull $n0 imulq %r8, %rdx xorq %rsi, %rsi # cf=0,of=0 movl \$8, %ecx jmp .Lreduction_loopx .align 32 .Lreduction_loopx: mov %r8, %rbx mulx 0(%rbp), %rax, %r8 adcx %rbx, %rax adox %r9, %r8 mulx 8(%rbp), %rax, %r9 adcx %rax, %r8 adox %r10, %r9 mulx 16(%rbp), %rbx, %r10 adcx %rbx, %r9 adox %r11, %r10 mulx 24(%rbp), %rbx, %r11 adcx %rbx, %r10 adox %r12, %r11 .byte 0xc4,0x62,0xe3,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 32(%rbp), %rbx, %r12 mov %rdx, %rax mov %r8, %rdx adcx %rbx, %r11 adox %r13, %r12 mulx 128+8(%rsp), %rbx, %rdx mov %rax, %rdx mulx 40(%rbp), %rax, %r13 adcx %rax, %r12 adox %r14, %r13 .byte 0xc4,0x62,0xfb,0xf6,0xb5,0x30,0x00,0x00,0x00 # mulx 48(%rbp), %rax, %r14 adcx %rax, %r13 adox %r15, %r14 mulx 56(%rbp), %rax, %r15 mov %rbx, %rdx adcx %rax, %r14 adox %rsi, %r15 # %rsi is 0 adcx %rsi, %r15 # cf=0 decl %ecx # of=0 jne .Lreduction_loopx ret .cfi_endproc .size __rsaz_512_reducex,.-__rsaz_512_reducex ___ } { # __rsaz_512_subtract # input: %r8-%r15, %rdi - $out, %rbp - $mod, %rcx - mask # output: # clobbers: everything but %rdi, %rsi and %rbp $code.=<<___; .type __rsaz_512_subtract,\@abi-omnipotent .align 32 __rsaz_512_subtract: .cfi_startproc movq %r8, ($out) movq %r9, 8($out) movq %r10, 16($out) movq %r11, 24($out) movq %r12, 32($out) movq %r13, 40($out) movq %r14, 48($out) movq %r15, 56($out) movq 0($mod), %r8 movq 8($mod), %r9 negq %r8 notq %r9 andq %rcx, %r8 movq 16($mod), %r10 andq %rcx, %r9 notq %r10 movq 24($mod), %r11 andq %rcx, %r10 notq %r11 movq 32($mod), %r12 andq %rcx, %r11 notq %r12 movq 40($mod), %r13 andq %rcx, %r12 notq %r13 movq 48($mod), %r14 andq %rcx, %r13 notq %r14 movq 56($mod), %r15 andq %rcx, %r14 notq %r15 andq %rcx, %r15 addq ($out), %r8 adcq 8($out), %r9 adcq 16($out), %r10 adcq 24($out), %r11 adcq 32($out), %r12 adcq 40($out), %r13 adcq 48($out), %r14 adcq 56($out), %r15 movq %r8, ($out) movq %r9, 8($out) movq %r10, 16($out) movq %r11, 24($out) movq %r12, 32($out) movq %r13, 40($out) movq %r14, 48($out) movq %r15, 56($out) ret .cfi_endproc .size __rsaz_512_subtract,.-__rsaz_512_subtract ___ } { # __rsaz_512_mul # # input: %rsi - ap, %rbp - bp # output: # clobbers: everything my ($ap,$bp) = ("%rsi","%rbp"); $code.=<<___; .type __rsaz_512_mul,\@abi-omnipotent .align 32 __rsaz_512_mul: .cfi_startproc leaq 8(%rsp), %rdi movq ($ap), %rax mulq %rbx movq %rax, (%rdi) movq 8($ap), %rax movq %rdx, %r8 mulq %rbx addq %rax, %r8 movq 16($ap), %rax movq %rdx, %r9 adcq \$0, %r9 mulq %rbx addq %rax, %r9 movq 24($ap), %rax movq %rdx, %r10 adcq \$0, %r10 mulq %rbx addq %rax, %r10 movq 32($ap), %rax movq %rdx, %r11 adcq \$0, %r11 mulq %rbx addq %rax, %r11 movq 40($ap), %rax movq %rdx, %r12 adcq \$0, %r12 mulq %rbx addq %rax, %r12 movq 48($ap), %rax movq %rdx, %r13 adcq \$0, %r13 mulq %rbx addq %rax, %r13 movq 56($ap), %rax movq %rdx, %r14 adcq \$0, %r14 mulq %rbx addq %rax, %r14 movq ($ap), %rax movq %rdx, %r15 adcq \$0, %r15 leaq 8($bp), $bp leaq 8(%rdi), %rdi movl \$7, %ecx jmp .Loop_mul .align 32 .Loop_mul: movq ($bp), %rbx mulq %rbx addq %rax, %r8 movq 8($ap), %rax movq %r8, (%rdi) movq %rdx, %r8 adcq \$0, %r8 mulq %rbx addq %rax, %r9 movq 16($ap), %rax adcq \$0, %rdx addq %r9, %r8 movq %rdx, %r9 adcq \$0, %r9 mulq %rbx addq %rax, %r10 movq 24($ap), %rax adcq \$0, %rdx addq %r10, %r9 movq %rdx, %r10 adcq \$0, %r10 mulq %rbx addq %rax, %r11 movq 32($ap), %rax adcq \$0, %rdx addq %r11, %r10 movq %rdx, %r11 adcq \$0, %r11 mulq %rbx addq %rax, %r12 movq 40($ap), %rax adcq \$0, %rdx addq %r12, %r11 movq %rdx, %r12 adcq \$0, %r12 mulq %rbx addq %rax, %r13 movq 48($ap), %rax adcq \$0, %rdx addq %r13, %r12 movq %rdx, %r13 adcq \$0, %r13 mulq %rbx addq %rax, %r14 movq 56($ap), %rax adcq \$0, %rdx addq %r14, %r13 movq %rdx, %r14 leaq 8($bp), $bp adcq \$0, %r14 mulq %rbx addq %rax, %r15 movq ($ap), %rax adcq \$0, %rdx addq %r15, %r14 movq %rdx, %r15 adcq \$0, %r15 leaq 8(%rdi), %rdi decl %ecx jnz .Loop_mul movq %r8, (%rdi) movq %r9, 8(%rdi) movq %r10, 16(%rdi) movq %r11, 24(%rdi) movq %r12, 32(%rdi) movq %r13, 40(%rdi) movq %r14, 48(%rdi) movq %r15, 56(%rdi) ret .cfi_endproc .size __rsaz_512_mul,.-__rsaz_512_mul ___ } if ($addx) { # __rsaz_512_mulx # # input: %rsi - ap, %rbp - bp # output: # clobbers: everything my ($ap,$bp,$zero) = ("%rsi","%rbp","%rdi"); $code.=<<___; .type __rsaz_512_mulx,\@abi-omnipotent .align 32 __rsaz_512_mulx: .cfi_startproc mulx ($ap), %rbx, %r8 # initial %rdx preloaded by caller mov \$-6, %rcx mulx 8($ap), %rax, %r9 movq %rbx, 8(%rsp) mulx 16($ap), %rbx, %r10 adc %rax, %r8 mulx 24($ap), %rax, %r11 adc %rbx, %r9 mulx 32($ap), %rbx, %r12 adc %rax, %r10 mulx 40($ap), %rax, %r13 adc %rbx, %r11 mulx 48($ap), %rbx, %r14 adc %rax, %r12 mulx 56($ap), %rax, %r15 mov 8($bp), %rdx adc %rbx, %r13 adc %rax, %r14 adc \$0, %r15 xor $zero, $zero # cf=0,of=0 jmp .Loop_mulx .align 32 .Loop_mulx: movq %r8, %rbx mulx ($ap), %rax, %r8 adcx %rax, %rbx adox %r9, %r8 mulx 8($ap), %rax, %r9 adcx %rax, %r8 adox %r10, %r9 mulx 16($ap), %rax, %r10 adcx %rax, %r9 adox %r11, %r10 mulx 24($ap), %rax, %r11 adcx %rax, %r10 adox %r12, %r11 .byte 0x3e,0xc4,0x62,0xfb,0xf6,0xa6,0x20,0x00,0x00,0x00 # mulx 32($ap), %rax, %r12 adcx %rax, %r11 adox %r13, %r12 mulx 40($ap), %rax, %r13 adcx %rax, %r12 adox %r14, %r13 mulx 48($ap), %rax, %r14 adcx %rax, %r13 adox %r15, %r14 mulx 56($ap), %rax, %r15 movq 64($bp,%rcx,8), %rdx movq %rbx, 8+64-8(%rsp,%rcx,8) adcx %rax, %r14 adox $zero, %r15 adcx $zero, %r15 # cf=0 inc %rcx # of=0 jnz .Loop_mulx movq %r8, %rbx mulx ($ap), %rax, %r8 adcx %rax, %rbx adox %r9, %r8 .byte 0xc4,0x62,0xfb,0xf6,0x8e,0x08,0x00,0x00,0x00 # mulx 8($ap), %rax, %r9 adcx %rax, %r8 adox %r10, %r9 .byte 0xc4,0x62,0xfb,0xf6,0x96,0x10,0x00,0x00,0x00 # mulx 16($ap), %rax, %r10 adcx %rax, %r9 adox %r11, %r10 mulx 24($ap), %rax, %r11 adcx %rax, %r10 adox %r12, %r11 mulx 32($ap), %rax, %r12 adcx %rax, %r11 adox %r13, %r12 mulx 40($ap), %rax, %r13 adcx %rax, %r12 adox %r14, %r13 .byte 0xc4,0x62,0xfb,0xf6,0xb6,0x30,0x00,0x00,0x00 # mulx 48($ap), %rax, %r14 adcx %rax, %r13 adox %r15, %r14 .byte 0xc4,0x62,0xfb,0xf6,0xbe,0x38,0x00,0x00,0x00 # mulx 56($ap), %rax, %r15 adcx %rax, %r14 adox $zero, %r15 adcx $zero, %r15 mov %rbx, 8+64-8(%rsp) mov %r8, 8+64(%rsp) mov %r9, 8+64+8(%rsp) mov %r10, 8+64+16(%rsp) mov %r11, 8+64+24(%rsp) mov %r12, 8+64+32(%rsp) mov %r13, 8+64+40(%rsp) mov %r14, 8+64+48(%rsp) mov %r15, 8+64+56(%rsp) ret .cfi_endproc .size __rsaz_512_mulx,.-__rsaz_512_mulx ___ } { my ($out,$inp,$power)= $win64 ? ("%rcx","%rdx","%r8d") : ("%rdi","%rsi","%edx"); $code.=<<___; .globl rsaz_512_scatter4 .type rsaz_512_scatter4,\@abi-omnipotent .align 16 rsaz_512_scatter4: .cfi_startproc leaq ($out,$power,8), $out movl \$8, %r9d jmp .Loop_scatter .align 16 .Loop_scatter: movq ($inp), %rax leaq 8($inp), $inp movq %rax, ($out) leaq 128($out), $out decl %r9d jnz .Loop_scatter ret .cfi_endproc .size rsaz_512_scatter4,.-rsaz_512_scatter4 .globl rsaz_512_gather4 .type rsaz_512_gather4,\@abi-omnipotent .align 16 rsaz_512_gather4: .cfi_startproc ___ $code.=<<___ if ($win64); .LSEH_begin_rsaz_512_gather4: .byte 0x48,0x81,0xec,0xa8,0x00,0x00,0x00 # sub $0xa8,%rsp .byte 0x0f,0x29,0x34,0x24 # movaps %xmm6,(%rsp) .byte 0x0f,0x29,0x7c,0x24,0x10 # movaps %xmm7,0x10(%rsp) .byte 0x44,0x0f,0x29,0x44,0x24,0x20 # movaps %xmm8,0x20(%rsp) .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 # movaps %xmm9,0x30(%rsp) .byte 0x44,0x0f,0x29,0x54,0x24,0x40 # movaps %xmm10,0x40(%rsp) .byte 0x44,0x0f,0x29,0x5c,0x24,0x50 # movaps %xmm11,0x50(%rsp) .byte 0x44,0x0f,0x29,0x64,0x24,0x60 # movaps %xmm12,0x60(%rsp) .byte 0x44,0x0f,0x29,0x6c,0x24,0x70 # movaps %xmm13,0x70(%rsp) .byte 0x44,0x0f,0x29,0xb4,0x24,0x80,0,0,0 # movaps %xmm14,0x80(%rsp) .byte 0x44,0x0f,0x29,0xbc,0x24,0x90,0,0,0 # movaps %xmm15,0x90(%rsp) ___ $code.=<<___; movd $power,%xmm8 movdqa .Linc+16(%rip),%xmm1 # 00000002000000020000000200000002 movdqa .Linc(%rip),%xmm0 # 00000001000000010000000000000000 pshufd \$0,%xmm8,%xmm8 # broadcast $power movdqa %xmm1,%xmm7 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..15 to $power # for($i=0;$i<4;$i++) { $code.=<<___; paddd %xmm`$i`,%xmm`$i+1` pcmpeqd %xmm8,%xmm`$i` movdqa %xmm7,%xmm`$i+3` ___ } for(;$i<7;$i++) { $code.=<<___; paddd %xmm`$i`,%xmm`$i+1` pcmpeqd %xmm8,%xmm`$i` ___ } $code.=<<___; pcmpeqd %xmm8,%xmm7 movl \$8, %r9d jmp .Loop_gather .align 16 .Loop_gather: movdqa 16*0($inp),%xmm8 movdqa 16*1($inp),%xmm9 movdqa 16*2($inp),%xmm10 movdqa 16*3($inp),%xmm11 pand %xmm0,%xmm8 movdqa 16*4($inp),%xmm12 pand %xmm1,%xmm9 movdqa 16*5($inp),%xmm13 pand %xmm2,%xmm10 movdqa 16*6($inp),%xmm14 pand %xmm3,%xmm11 movdqa 16*7($inp),%xmm15 leaq 128($inp), $inp pand %xmm4,%xmm12 pand %xmm5,%xmm13 pand %xmm6,%xmm14 pand %xmm7,%xmm15 por %xmm10,%xmm8 por %xmm11,%xmm9 por %xmm12,%xmm8 por %xmm13,%xmm9 por %xmm14,%xmm8 por %xmm15,%xmm9 por %xmm9,%xmm8 pshufd \$0x4e,%xmm8,%xmm9 por %xmm9,%xmm8 movq %xmm8,($out) leaq 8($out), $out decl %r9d jnz .Loop_gather ___ $code.=<<___ if ($win64); movaps 0x00(%rsp),%xmm6 movaps 0x10(%rsp),%xmm7 movaps 0x20(%rsp),%xmm8 movaps 0x30(%rsp),%xmm9 movaps 0x40(%rsp),%xmm10 movaps 0x50(%rsp),%xmm11 movaps 0x60(%rsp),%xmm12 movaps 0x70(%rsp),%xmm13 movaps 0x80(%rsp),%xmm14 movaps 0x90(%rsp),%xmm15 add \$0xa8,%rsp ___ $code.=<<___; ret .LSEH_end_rsaz_512_gather4: .cfi_endproc .size rsaz_512_gather4,.-rsaz_512_gather4 .align 64 .Linc: .long 0,0, 1,1 .long 2,2, 2,2 ___ } # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail lea 128+24+48(%rax),%rax lea .Lmul_gather4_epilogue(%rip),%rbx cmp %r10,%rbx jne .Lse_not_in_mul_gather4 lea 0xb0(%rax),%rax lea -48-0xa8(%rax),%rsi lea 512($context),%rdi mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq .Lse_not_in_mul_gather4: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_rsaz_512_sqr .rva .LSEH_end_rsaz_512_sqr .rva .LSEH_info_rsaz_512_sqr .rva .LSEH_begin_rsaz_512_mul .rva .LSEH_end_rsaz_512_mul .rva .LSEH_info_rsaz_512_mul .rva .LSEH_begin_rsaz_512_mul_gather4 .rva .LSEH_end_rsaz_512_mul_gather4 .rva .LSEH_info_rsaz_512_mul_gather4 .rva .LSEH_begin_rsaz_512_mul_scatter4 .rva .LSEH_end_rsaz_512_mul_scatter4 .rva .LSEH_info_rsaz_512_mul_scatter4 .rva .LSEH_begin_rsaz_512_mul_by_one .rva .LSEH_end_rsaz_512_mul_by_one .rva .LSEH_info_rsaz_512_mul_by_one .rva .LSEH_begin_rsaz_512_gather4 .rva .LSEH_end_rsaz_512_gather4 .rva .LSEH_info_rsaz_512_gather4 .section .xdata .align 8 .LSEH_info_rsaz_512_sqr: .byte 9,0,0,0 .rva se_handler .rva .Lsqr_body,.Lsqr_epilogue # HandlerData[] .LSEH_info_rsaz_512_mul: .byte 9,0,0,0 .rva se_handler .rva .Lmul_body,.Lmul_epilogue # HandlerData[] .LSEH_info_rsaz_512_mul_gather4: .byte 9,0,0,0 .rva se_handler .rva .Lmul_gather4_body,.Lmul_gather4_epilogue # HandlerData[] .LSEH_info_rsaz_512_mul_scatter4: .byte 9,0,0,0 .rva se_handler .rva .Lmul_scatter4_body,.Lmul_scatter4_epilogue # HandlerData[] .LSEH_info_rsaz_512_mul_by_one: .byte 9,0,0,0 .rva se_handler .rva .Lmul_by_one_body,.Lmul_by_one_epilogue # HandlerData[] .LSEH_info_rsaz_512_gather4: .byte 0x01,0x46,0x16,0x00 .byte 0x46,0xf8,0x09,0x00 # vmovaps 0x90(rsp),xmm15 .byte 0x3d,0xe8,0x08,0x00 # vmovaps 0x80(rsp),xmm14 .byte 0x34,0xd8,0x07,0x00 # vmovaps 0x70(rsp),xmm13 .byte 0x2e,0xc8,0x06,0x00 # vmovaps 0x60(rsp),xmm12 .byte 0x28,0xb8,0x05,0x00 # vmovaps 0x50(rsp),xmm11 .byte 0x22,0xa8,0x04,0x00 # vmovaps 0x40(rsp),xmm10 .byte 0x1c,0x98,0x03,0x00 # vmovaps 0x30(rsp),xmm9 .byte 0x16,0x88,0x02,0x00 # vmovaps 0x20(rsp),xmm8 .byte 0x10,0x78,0x01,0x00 # vmovaps 0x10(rsp),xmm7 .byte 0x0b,0x68,0x00,0x00 # vmovaps 0x00(rsp),xmm6 .byte 0x07,0x01,0x15,0x00 # sub rsp,0xa8 ___ } $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/s390x-gf2m.pl000066400000000000000000000125711364063235100201270ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # May 2011 # # The module implements bn_GF2m_mul_2x2 polynomial multiplication used # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for # the time being... gcc 4.3 appeared to generate poor code, therefore # the effort. And indeed, the module delivers 55%-90%(*) improvement # on heaviest ECDSA verify and ECDH benchmarks for 163- and 571-bit # key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196. # This is for 64-bit build. In 32-bit "highgprs" case improvement is # even higher, for example on z990 it was measured 80%-150%. ECDSA # sign is modest 9%-12% faster. Keep in mind that these coefficients # are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is # burnt in it... # # (*) gcc 4.1 was observed to deliver better results than gcc 4.3, # so that improvement coefficients can vary from one specific # setup to another. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $stdframe=16*$SIZE_T+4*8; $rp="%r2"; $a1="%r3"; $a0="%r4"; $b1="%r5"; $b0="%r6"; $ra="%r14"; $sp="%r15"; @T=("%r0","%r1"); @i=("%r12","%r13"); ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11)); ($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8; $code.=<<___; .text .type _mul_1x1,\@function .align 16 _mul_1x1: lgr $a1,$a sllg $a2,$a,1 sllg $a4,$a,2 sllg $a8,$a,3 srag $lo,$a1,63 # broadcast 63rd bit nihh $a1,0x1fff srag @i[0],$a2,63 # broadcast 62nd bit nihh $a2,0x3fff srag @i[1],$a4,63 # broadcast 61st bit nihh $a4,0x7fff ngr $lo,$b ngr @i[0],$b ngr @i[1],$b lghi @T[0],0 lgr $a12,$a1 stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0 xgr $a12,$a2 stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1 lgr $a48,$a4 stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2 xgr $a48,$a8 stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2 xgr $a1,$a4 stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4 xgr $a2,$a4 stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4 xgr $a12,$a4 stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4 xgr $a1,$a48 stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4 xgr $a2,$a48 stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8 xgr $a12,$a48 stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8 xgr $a1,$a4 stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8 xgr $a2,$a4 stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8 xgr $a12,$a4 stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8 srlg $hi,$lo,1 stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8 sllg $lo,$lo,63 stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8 srlg @T[0],@i[0],2 stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8 lghi $mask,`0xf<<3` sllg $a1,@i[0],62 sllg @i[0],$b,3 srlg @T[1],@i[1],3 ngr @i[0],$mask sllg $a2,@i[1],61 srlg @i[1],$b,4-3 xgr $hi,@T[0] ngr @i[1],$mask xgr $lo,$a1 xgr $hi,@T[1] xgr $lo,$a2 xg $lo,$stdframe(@i[0],$sp) srlg @i[0],$b,8-3 ngr @i[0],$mask ___ for($n=1;$n<14;$n++) { $code.=<<___; lg @T[1],$stdframe(@i[1],$sp) srlg @i[1],$b,`($n+2)*4`-3 sllg @T[0],@T[1],`$n*4` ngr @i[1],$mask srlg @T[1],@T[1],`64-$n*4` xgr $lo,@T[0] xgr $hi,@T[1] ___ push(@i,shift(@i)); push(@T,shift(@T)); } $code.=<<___; lg @T[1],$stdframe(@i[1],$sp) sllg @T[0],@T[1],`$n*4` srlg @T[1],@T[1],`64-$n*4` xgr $lo,@T[0] xgr $hi,@T[1] lg @T[0],$stdframe(@i[0],$sp) sllg @T[1],@T[0],`($n+1)*4` srlg @T[0],@T[0],`64-($n+1)*4` xgr $lo,@T[1] xgr $hi,@T[0] br $ra .size _mul_1x1,.-_mul_1x1 .globl bn_GF2m_mul_2x2 .type bn_GF2m_mul_2x2,\@function .align 16 bn_GF2m_mul_2x2: stm${g} %r3,%r15,3*$SIZE_T($sp) lghi %r1,-$stdframe-128 la %r0,0($sp) la $sp,0(%r1,$sp) # alloca st${g} %r0,0($sp) # back chain ___ if ($SIZE_T==8) { my @r=map("%r$_",(6..9)); $code.=<<___; bras $ra,_mul_1x1 # a1·b1 stmg $lo,$hi,16($rp) lg $a,`$stdframe+128+4*$SIZE_T`($sp) lg $b,`$stdframe+128+6*$SIZE_T`($sp) bras $ra,_mul_1x1 # a0·b0 stmg $lo,$hi,0($rp) lg $a,`$stdframe+128+3*$SIZE_T`($sp) lg $b,`$stdframe+128+5*$SIZE_T`($sp) xg $a,`$stdframe+128+4*$SIZE_T`($sp) xg $b,`$stdframe+128+6*$SIZE_T`($sp) bras $ra,_mul_1x1 # (a0+a1)·(b0+b1) lmg @r[0],@r[3],0($rp) xgr $lo,$hi xgr $hi,@r[1] xgr $lo,@r[0] xgr $hi,@r[2] xgr $lo,@r[3] xgr $hi,@r[3] xgr $lo,$hi stg $hi,16($rp) stg $lo,8($rp) ___ } else { $code.=<<___; sllg %r3,%r3,32 sllg %r5,%r5,32 or %r3,%r4 or %r5,%r6 bras $ra,_mul_1x1 rllg $lo,$lo,32 rllg $hi,$hi,32 stmg $lo,$hi,0($rp) ___ } $code.=<<___; lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp) br $ra .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 .string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/s390x-mont.pl000066400000000000000000000155521364063235100202530ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # April 2007. # # Performance improvement over vanilla C code varies from 85% to 45% # depending on key length and benchmark. Unfortunately in this context # these are not very impressive results [for code that utilizes "wide" # 64x64=128-bit multiplication, which is not commonly available to C # programmers], at least hand-coded bn_asm.c replacement is known to # provide 30-40% better results for longest keys. Well, on a second # thought it's not very surprising, because z-CPUs are single-issue # and _strictly_ in-order execution, while bn_mul_mont is more or less # dependent on CPU ability to pipe-line instructions and have several # of them "in-flight" at the same time. I mean while other methods, # for example Karatsuba, aim to minimize amount of multiplications at # the cost of other operations increase, bn_mul_mont aim to neatly # "overlap" multiplications and the other operations [and on most # platforms even minimize the amount of the other operations, in # particular references to memory]. But it's possible to improve this # module performance by implementing dedicated squaring code-path and # possibly by unrolling loops... # January 2009. # # Reschedule to minimize/avoid Address Generation Interlock hazard, # make inner loops counter-based. # November 2010. # # Adapt for -m31 build. If kernel supports what's called "highgprs" # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit # instructions and achieve "64-bit" performance even in 31-bit legacy # application context. The feature is not specific to any particular # processor, as long as it's "z-CPU". Latter implies that the code # remains z/Architecture specific. Compatibility with 32-bit BN_ULONG # is achieved by swapping words after 64-bit loads, follow _dswap-s. # On z990 it was measured to perform 2.6-2.2 times better than # compiler-generated code, less for longer keys... $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $stdframe=16*$SIZE_T+4*8; $mn0="%r0"; $num="%r1"; # int bn_mul_mont( $rp="%r2"; # BN_ULONG *rp, $ap="%r3"; # const BN_ULONG *ap, $bp="%r4"; # const BN_ULONG *bp, $np="%r5"; # const BN_ULONG *np, $n0="%r6"; # const BN_ULONG *n0, #$num="160(%r15)" # int num); $bi="%r2"; # zaps rp $j="%r7"; $ahi="%r8"; $alo="%r9"; $nhi="%r10"; $nlo="%r11"; $AHI="%r12"; $NHI="%r13"; $count="%r14"; $sp="%r15"; $code.=<<___; .text .globl bn_mul_mont .type bn_mul_mont,\@function bn_mul_mont: lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes la $bp,0($num,$bp) st${g} %r2,2*$SIZE_T($sp) cghi $num,16 # lghi %r2,0 # blr %r14 # if($num<16) return 0; ___ $code.=<<___ if ($flavour =~ /3[12]/); tmll $num,4 bnzr %r14 # if ($num&1) return 0; ___ $code.=<<___ if ($flavour !~ /3[12]/); cghi $num,96 # bhr %r14 # if($num>96) return 0; ___ $code.=<<___; stm${g} %r3,%r15,3*$SIZE_T($sp) lghi $rp,-$stdframe-8 # leave room for carry bit lcgr $j,$num # -$num lgr %r0,$sp la $rp,0($rp,$sp) la $sp,0($j,$rp) # alloca st${g} %r0,0($sp) # back chain sra $num,3 # restore $num la $bp,0($j,$bp) # restore $bp ahi $num,-1 # adjust $num for inner loop lg $n0,0($n0) # pull n0 _dswap $n0 lg $bi,0($bp) _dswap $bi lg $alo,0($ap) _dswap $alo mlgr $ahi,$bi # ap[0]*bp[0] lgr $AHI,$ahi lgr $mn0,$alo # "tp[0]"*n0 msgr $mn0,$n0 lg $nlo,0($np) # _dswap $nlo mlgr $nhi,$mn0 # np[0]*m1 algr $nlo,$alo # +="tp[0]" lghi $NHI,0 alcgr $NHI,$nhi la $j,8 # j=1 lr $count,$num .align 16 .L1st: lg $alo,0($j,$ap) _dswap $alo mlgr $ahi,$bi # ap[j]*bp[0] algr $alo,$AHI lghi $AHI,0 alcgr $AHI,$ahi lg $nlo,0($j,$np) _dswap $nlo mlgr $nhi,$mn0 # np[j]*m1 algr $nlo,$NHI lghi $NHI,0 alcgr $nhi,$NHI # +="tp[j]" algr $nlo,$alo alcgr $NHI,$nhi stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= la $j,8($j) # j++ brct $count,.L1st algr $NHI,$AHI lghi $AHI,0 alcgr $AHI,$AHI # upmost overflow bit stg $NHI,$stdframe-8($j,$sp) stg $AHI,$stdframe($j,$sp) la $bp,8($bp) # bp++ .Louter: lg $bi,0($bp) # bp[i] _dswap $bi lg $alo,0($ap) _dswap $alo mlgr $ahi,$bi # ap[0]*bp[i] alg $alo,$stdframe($sp) # +=tp[0] lghi $AHI,0 alcgr $AHI,$ahi lgr $mn0,$alo msgr $mn0,$n0 # tp[0]*n0 lg $nlo,0($np) # np[0] _dswap $nlo mlgr $nhi,$mn0 # np[0]*m1 algr $nlo,$alo # +="tp[0]" lghi $NHI,0 alcgr $NHI,$nhi la $j,8 # j=1 lr $count,$num .align 16 .Linner: lg $alo,0($j,$ap) _dswap $alo mlgr $ahi,$bi # ap[j]*bp[i] algr $alo,$AHI lghi $AHI,0 alcgr $ahi,$AHI alg $alo,$stdframe($j,$sp)# +=tp[j] alcgr $AHI,$ahi lg $nlo,0($j,$np) _dswap $nlo mlgr $nhi,$mn0 # np[j]*m1 algr $nlo,$NHI lghi $NHI,0 alcgr $nhi,$NHI algr $nlo,$alo # +="tp[j]" alcgr $NHI,$nhi stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= la $j,8($j) # j++ brct $count,.Linner algr $NHI,$AHI lghi $AHI,0 alcgr $AHI,$AHI alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit lghi $ahi,0 alcgr $AHI,$ahi # new upmost overflow bit stg $NHI,$stdframe-8($j,$sp) stg $AHI,$stdframe($j,$sp) la $bp,8($bp) # bp++ cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num] jne .Louter l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp la $ap,$stdframe($sp) ahi $num,1 # restore $num, incidentally clears "borrow" la $j,0 lr $count,$num .Lsub: lg $alo,0($j,$ap) lg $nlo,0($j,$np) _dswap $nlo slbgr $alo,$nlo stg $alo,0($j,$rp) la $j,8($j) brct $count,.Lsub lghi $ahi,0 slbgr $AHI,$ahi # handle upmost carry lghi $NHI,-1 xgr $NHI,$AHI la $j,0 lgr $count,$num .Lcopy: lg $ahi,$stdframe($j,$sp) # conditional copy lg $alo,0($j,$rp) ngr $ahi,$AHI ngr $alo,$NHI ogr $alo,$ahi _dswap $alo stg $j,$stdframe($j,$sp) # zap tp stg $alo,0($j,$rp) la $j,8($j) brct $count,.Lcopy la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp) lm${g} %r6,%r15,0(%r1) lghi %r2,1 # signal "processed" br %r14 .size bn_mul_mont,.-bn_mul_mont .string "Montgomery Multiplication for s390x, CRYPTOGAMS by " ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/s390x.S000066400000000000000000000320471364063235100170650ustar00rootroot00000000000000.ident "s390x.S, version 1.1" // ==================================================================== // Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. // // Licensed under the OpenSSL license (the "License"). You may not use // this file except in compliance with the License. You can obtain a copy // in the file LICENSE in the source distribution or at // https://www.openssl.org/source/license.html // ==================================================================== .text #define zero %r0 // BN_ULONG bn_mul_add_words(BN_ULONG *r2,BN_ULONG *r3,int r4,BN_ULONG r5); .globl bn_mul_add_words .type bn_mul_add_words,@function .align 4 bn_mul_add_words: lghi zero,0 // zero = 0 la %r1,0(%r2) // put rp aside [to give way to] lghi %r2,0 // return value ltgfr %r4,%r4 bler %r14 // if (len<=0) return 0; stmg %r6,%r13,48(%r15) lghi %r2,3 lghi %r12,0 // carry = 0 slgr %r1,%r3 // rp-=ap nr %r2,%r4 // len%4 sra %r4,2 // cnt=len/4 jz .Loop1_madd // carry is incidentally cleared if branch taken algr zero,zero // clear carry lg %r7,0(%r3) // ap[0] lg %r9,8(%r3) // ap[1] mlgr %r6,%r5 // *=w brct %r4,.Loop4_madd j .Loop4_madd_tail .Loop4_madd: mlgr %r8,%r5 lg %r11,16(%r3) // ap[i+2] alcgr %r7,%r12 // +=carry alcgr %r6,zero alg %r7,0(%r3,%r1) // +=rp[i] stg %r7,0(%r3,%r1) // rp[i]= mlgr %r10,%r5 lg %r13,24(%r3) alcgr %r9,%r6 alcgr %r8,zero alg %r9,8(%r3,%r1) stg %r9,8(%r3,%r1) mlgr %r12,%r5 lg %r7,32(%r3) alcgr %r11,%r8 alcgr %r10,zero alg %r11,16(%r3,%r1) stg %r11,16(%r3,%r1) mlgr %r6,%r5 lg %r9,40(%r3) alcgr %r13,%r10 alcgr %r12,zero alg %r13,24(%r3,%r1) stg %r13,24(%r3,%r1) la %r3,32(%r3) // i+=4 brct %r4,.Loop4_madd .Loop4_madd_tail: mlgr %r8,%r5 lg %r11,16(%r3) alcgr %r7,%r12 // +=carry alcgr %r6,zero alg %r7,0(%r3,%r1) // +=rp[i] stg %r7,0(%r3,%r1) // rp[i]= mlgr %r10,%r5 lg %r13,24(%r3) alcgr %r9,%r6 alcgr %r8,zero alg %r9,8(%r3,%r1) stg %r9,8(%r3,%r1) mlgr %r12,%r5 alcgr %r11,%r8 alcgr %r10,zero alg %r11,16(%r3,%r1) stg %r11,16(%r3,%r1) alcgr %r13,%r10 alcgr %r12,zero alg %r13,24(%r3,%r1) stg %r13,24(%r3,%r1) la %r3,32(%r3) // i+=4 la %r2,1(%r2) // see if len%4 is zero ... brct %r2,.Loop1_madd // without touching condition code:-) .Lend_madd: lgr %r2,zero // return value alcgr %r2,%r12 // collect even carry bit lmg %r6,%r13,48(%r15) br %r14 .Loop1_madd: lg %r7,0(%r3) // ap[i] mlgr %r6,%r5 // *=w alcgr %r7,%r12 // +=carry alcgr %r6,zero alg %r7,0(%r3,%r1) // +=rp[i] stg %r7,0(%r3,%r1) // rp[i]= lgr %r12,%r6 la %r3,8(%r3) // i++ brct %r2,.Loop1_madd j .Lend_madd .size bn_mul_add_words,.-bn_mul_add_words // BN_ULONG bn_mul_words(BN_ULONG *r2,BN_ULONG *r3,int r4,BN_ULONG r5); .globl bn_mul_words .type bn_mul_words,@function .align 4 bn_mul_words: lghi zero,0 // zero = 0 la %r1,0(%r2) // put rp aside lghi %r2,0 // i=0; ltgfr %r4,%r4 bler %r14 // if (len<=0) return 0; stmg %r6,%r10,48(%r15) lghi %r10,3 lghi %r8,0 // carry = 0 nr %r10,%r4 // len%4 sra %r4,2 // cnt=len/4 jz .Loop1_mul // carry is incidentally cleared if branch taken algr zero,zero // clear carry .Loop4_mul: lg %r7,0(%r2,%r3) // ap[i] mlgr %r6,%r5 // *=w alcgr %r7,%r8 // +=carry stg %r7,0(%r2,%r1) // rp[i]= lg %r9,8(%r2,%r3) mlgr %r8,%r5 alcgr %r9,%r6 stg %r9,8(%r2,%r1) lg %r7,16(%r2,%r3) mlgr %r6,%r5 alcgr %r7,%r8 stg %r7,16(%r2,%r1) lg %r9,24(%r2,%r3) mlgr %r8,%r5 alcgr %r9,%r6 stg %r9,24(%r2,%r1) la %r2,32(%r2) // i+=4 brct %r4,.Loop4_mul la %r10,1(%r10) // see if len%4 is zero ... brct %r10,.Loop1_mul // without touching condition code:-) .Lend_mul: alcgr %r8,zero // collect carry bit lgr %r2,%r8 lmg %r6,%r10,48(%r15) br %r14 .Loop1_mul: lg %r7,0(%r2,%r3) // ap[i] mlgr %r6,%r5 // *=w alcgr %r7,%r8 // +=carry stg %r7,0(%r2,%r1) // rp[i]= lgr %r8,%r6 la %r2,8(%r2) // i++ brct %r10,.Loop1_mul j .Lend_mul .size bn_mul_words,.-bn_mul_words // void bn_sqr_words(BN_ULONG *r2,BN_ULONG *r2,int r4) .globl bn_sqr_words .type bn_sqr_words,@function .align 4 bn_sqr_words: ltgfr %r4,%r4 bler %r14 stmg %r6,%r7,48(%r15) srag %r1,%r4,2 // cnt=len/4 jz .Loop1_sqr .Loop4_sqr: lg %r7,0(%r3) mlgr %r6,%r7 stg %r7,0(%r2) stg %r6,8(%r2) lg %r7,8(%r3) mlgr %r6,%r7 stg %r7,16(%r2) stg %r6,24(%r2) lg %r7,16(%r3) mlgr %r6,%r7 stg %r7,32(%r2) stg %r6,40(%r2) lg %r7,24(%r3) mlgr %r6,%r7 stg %r7,48(%r2) stg %r6,56(%r2) la %r3,32(%r3) la %r2,64(%r2) brct %r1,.Loop4_sqr lghi %r1,3 nr %r4,%r1 // cnt=len%4 jz .Lend_sqr .Loop1_sqr: lg %r7,0(%r3) mlgr %r6,%r7 stg %r7,0(%r2) stg %r6,8(%r2) la %r3,8(%r3) la %r2,16(%r2) brct %r4,.Loop1_sqr .Lend_sqr: lmg %r6,%r7,48(%r15) br %r14 .size bn_sqr_words,.-bn_sqr_words // BN_ULONG bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d); .globl bn_div_words .type bn_div_words,@function .align 4 bn_div_words: dlgr %r2,%r4 lgr %r2,%r3 br %r14 .size bn_div_words,.-bn_div_words // BN_ULONG bn_add_words(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4,int r5); .globl bn_add_words .type bn_add_words,@function .align 4 bn_add_words: la %r1,0(%r2) // put rp aside lghi %r2,0 // i=0 ltgfr %r5,%r5 bler %r14 // if (len<=0) return 0; stg %r6,48(%r15) lghi %r6,3 nr %r6,%r5 // len%4 sra %r5,2 // len/4, use sra because it sets condition code jz .Loop1_add // carry is incidentally cleared if branch taken algr %r2,%r2 // clear carry .Loop4_add: lg %r0,0(%r2,%r3) alcg %r0,0(%r2,%r4) stg %r0,0(%r2,%r1) lg %r0,8(%r2,%r3) alcg %r0,8(%r2,%r4) stg %r0,8(%r2,%r1) lg %r0,16(%r2,%r3) alcg %r0,16(%r2,%r4) stg %r0,16(%r2,%r1) lg %r0,24(%r2,%r3) alcg %r0,24(%r2,%r4) stg %r0,24(%r2,%r1) la %r2,32(%r2) // i+=4 brct %r5,.Loop4_add la %r6,1(%r6) // see if len%4 is zero ... brct %r6,.Loop1_add // without touching condition code:-) .Lexit_add: lghi %r2,0 alcgr %r2,%r2 lg %r6,48(%r15) br %r14 .Loop1_add: lg %r0,0(%r2,%r3) alcg %r0,0(%r2,%r4) stg %r0,0(%r2,%r1) la %r2,8(%r2) // i++ brct %r6,.Loop1_add j .Lexit_add .size bn_add_words,.-bn_add_words // BN_ULONG bn_sub_words(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4,int r5); .globl bn_sub_words .type bn_sub_words,@function .align 4 bn_sub_words: la %r1,0(%r2) // put rp aside lghi %r2,0 // i=0 ltgfr %r5,%r5 bler %r14 // if (len<=0) return 0; stg %r6,48(%r15) lghi %r6,3 nr %r6,%r5 // len%4 sra %r5,2 // len/4, use sra because it sets condition code jnz .Loop4_sub // borrow is incidentally cleared if branch taken slgr %r2,%r2 // clear borrow .Loop1_sub: lg %r0,0(%r2,%r3) slbg %r0,0(%r2,%r4) stg %r0,0(%r2,%r1) la %r2,8(%r2) // i++ brct %r6,.Loop1_sub j .Lexit_sub .Loop4_sub: lg %r0,0(%r2,%r3) slbg %r0,0(%r2,%r4) stg %r0,0(%r2,%r1) lg %r0,8(%r2,%r3) slbg %r0,8(%r2,%r4) stg %r0,8(%r2,%r1) lg %r0,16(%r2,%r3) slbg %r0,16(%r2,%r4) stg %r0,16(%r2,%r1) lg %r0,24(%r2,%r3) slbg %r0,24(%r2,%r4) stg %r0,24(%r2,%r1) la %r2,32(%r2) // i+=4 brct %r5,.Loop4_sub la %r6,1(%r6) // see if len%4 is zero ... brct %r6,.Loop1_sub // without touching condition code:-) .Lexit_sub: lghi %r2,0 slbgr %r2,%r2 lcgr %r2,%r2 lg %r6,48(%r15) br %r14 .size bn_sub_words,.-bn_sub_words #define c1 %r1 #define c2 %r5 #define c3 %r8 #define mul_add_c(ai,bi,c1,c2,c3) \ lg %r7,ai*8(%r3); \ mlg %r6,bi*8(%r4); \ algr c1,%r7; \ alcgr c2,%r6; \ alcgr c3,zero // void bn_mul_comba8(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4); .globl bn_mul_comba8 .type bn_mul_comba8,@function .align 4 bn_mul_comba8: stmg %r6,%r8,48(%r15) lghi c1,0 lghi c2,0 lghi c3,0 lghi zero,0 mul_add_c(0,0,c1,c2,c3); stg c1,0*8(%r2) lghi c1,0 mul_add_c(0,1,c2,c3,c1); mul_add_c(1,0,c2,c3,c1); stg c2,1*8(%r2) lghi c2,0 mul_add_c(2,0,c3,c1,c2); mul_add_c(1,1,c3,c1,c2); mul_add_c(0,2,c3,c1,c2); stg c3,2*8(%r2) lghi c3,0 mul_add_c(0,3,c1,c2,c3); mul_add_c(1,2,c1,c2,c3); mul_add_c(2,1,c1,c2,c3); mul_add_c(3,0,c1,c2,c3); stg c1,3*8(%r2) lghi c1,0 mul_add_c(4,0,c2,c3,c1); mul_add_c(3,1,c2,c3,c1); mul_add_c(2,2,c2,c3,c1); mul_add_c(1,3,c2,c3,c1); mul_add_c(0,4,c2,c3,c1); stg c2,4*8(%r2) lghi c2,0 mul_add_c(0,5,c3,c1,c2); mul_add_c(1,4,c3,c1,c2); mul_add_c(2,3,c3,c1,c2); mul_add_c(3,2,c3,c1,c2); mul_add_c(4,1,c3,c1,c2); mul_add_c(5,0,c3,c1,c2); stg c3,5*8(%r2) lghi c3,0 mul_add_c(6,0,c1,c2,c3); mul_add_c(5,1,c1,c2,c3); mul_add_c(4,2,c1,c2,c3); mul_add_c(3,3,c1,c2,c3); mul_add_c(2,4,c1,c2,c3); mul_add_c(1,5,c1,c2,c3); mul_add_c(0,6,c1,c2,c3); stg c1,6*8(%r2) lghi c1,0 mul_add_c(0,7,c2,c3,c1); mul_add_c(1,6,c2,c3,c1); mul_add_c(2,5,c2,c3,c1); mul_add_c(3,4,c2,c3,c1); mul_add_c(4,3,c2,c3,c1); mul_add_c(5,2,c2,c3,c1); mul_add_c(6,1,c2,c3,c1); mul_add_c(7,0,c2,c3,c1); stg c2,7*8(%r2) lghi c2,0 mul_add_c(7,1,c3,c1,c2); mul_add_c(6,2,c3,c1,c2); mul_add_c(5,3,c3,c1,c2); mul_add_c(4,4,c3,c1,c2); mul_add_c(3,5,c3,c1,c2); mul_add_c(2,6,c3,c1,c2); mul_add_c(1,7,c3,c1,c2); stg c3,8*8(%r2) lghi c3,0 mul_add_c(2,7,c1,c2,c3); mul_add_c(3,6,c1,c2,c3); mul_add_c(4,5,c1,c2,c3); mul_add_c(5,4,c1,c2,c3); mul_add_c(6,3,c1,c2,c3); mul_add_c(7,2,c1,c2,c3); stg c1,9*8(%r2) lghi c1,0 mul_add_c(7,3,c2,c3,c1); mul_add_c(6,4,c2,c3,c1); mul_add_c(5,5,c2,c3,c1); mul_add_c(4,6,c2,c3,c1); mul_add_c(3,7,c2,c3,c1); stg c2,10*8(%r2) lghi c2,0 mul_add_c(4,7,c3,c1,c2); mul_add_c(5,6,c3,c1,c2); mul_add_c(6,5,c3,c1,c2); mul_add_c(7,4,c3,c1,c2); stg c3,11*8(%r2) lghi c3,0 mul_add_c(7,5,c1,c2,c3); mul_add_c(6,6,c1,c2,c3); mul_add_c(5,7,c1,c2,c3); stg c1,12*8(%r2) lghi c1,0 mul_add_c(6,7,c2,c3,c1); mul_add_c(7,6,c2,c3,c1); stg c2,13*8(%r2) lghi c2,0 mul_add_c(7,7,c3,c1,c2); stg c3,14*8(%r2) stg c1,15*8(%r2) lmg %r6,%r8,48(%r15) br %r14 .size bn_mul_comba8,.-bn_mul_comba8 // void bn_mul_comba4(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4); .globl bn_mul_comba4 .type bn_mul_comba4,@function .align 4 bn_mul_comba4: stmg %r6,%r8,48(%r15) lghi c1,0 lghi c2,0 lghi c3,0 lghi zero,0 mul_add_c(0,0,c1,c2,c3); stg c1,0*8(%r2) lghi c1,0 mul_add_c(0,1,c2,c3,c1); mul_add_c(1,0,c2,c3,c1); stg c2,1*8(%r2) lghi c2,0 mul_add_c(2,0,c3,c1,c2); mul_add_c(1,1,c3,c1,c2); mul_add_c(0,2,c3,c1,c2); stg c3,2*8(%r2) lghi c3,0 mul_add_c(0,3,c1,c2,c3); mul_add_c(1,2,c1,c2,c3); mul_add_c(2,1,c1,c2,c3); mul_add_c(3,0,c1,c2,c3); stg c1,3*8(%r2) lghi c1,0 mul_add_c(3,1,c2,c3,c1); mul_add_c(2,2,c2,c3,c1); mul_add_c(1,3,c2,c3,c1); stg c2,4*8(%r2) lghi c2,0 mul_add_c(2,3,c3,c1,c2); mul_add_c(3,2,c3,c1,c2); stg c3,5*8(%r2) lghi c3,0 mul_add_c(3,3,c1,c2,c3); stg c1,6*8(%r2) stg c2,7*8(%r2) stmg %r6,%r8,48(%r15) br %r14 .size bn_mul_comba4,.-bn_mul_comba4 #define sqr_add_c(ai,c1,c2,c3) \ lg %r7,ai*8(%r3); \ mlgr %r6,%r7; \ algr c1,%r7; \ alcgr c2,%r6; \ alcgr c3,zero #define sqr_add_c2(ai,aj,c1,c2,c3) \ lg %r7,ai*8(%r3); \ mlg %r6,aj*8(%r3); \ algr c1,%r7; \ alcgr c2,%r6; \ alcgr c3,zero; \ algr c1,%r7; \ alcgr c2,%r6; \ alcgr c3,zero // void bn_sqr_comba8(BN_ULONG *r2,BN_ULONG *r3); .globl bn_sqr_comba8 .type bn_sqr_comba8,@function .align 4 bn_sqr_comba8: stmg %r6,%r8,48(%r15) lghi c1,0 lghi c2,0 lghi c3,0 lghi zero,0 sqr_add_c(0,c1,c2,c3); stg c1,0*8(%r2) lghi c1,0 sqr_add_c2(1,0,c2,c3,c1); stg c2,1*8(%r2) lghi c2,0 sqr_add_c(1,c3,c1,c2); sqr_add_c2(2,0,c3,c1,c2); stg c3,2*8(%r2) lghi c3,0 sqr_add_c2(3,0,c1,c2,c3); sqr_add_c2(2,1,c1,c2,c3); stg c1,3*8(%r2) lghi c1,0 sqr_add_c(2,c2,c3,c1); sqr_add_c2(3,1,c2,c3,c1); sqr_add_c2(4,0,c2,c3,c1); stg c2,4*8(%r2) lghi c2,0 sqr_add_c2(5,0,c3,c1,c2); sqr_add_c2(4,1,c3,c1,c2); sqr_add_c2(3,2,c3,c1,c2); stg c3,5*8(%r2) lghi c3,0 sqr_add_c(3,c1,c2,c3); sqr_add_c2(4,2,c1,c2,c3); sqr_add_c2(5,1,c1,c2,c3); sqr_add_c2(6,0,c1,c2,c3); stg c1,6*8(%r2) lghi c1,0 sqr_add_c2(7,0,c2,c3,c1); sqr_add_c2(6,1,c2,c3,c1); sqr_add_c2(5,2,c2,c3,c1); sqr_add_c2(4,3,c2,c3,c1); stg c2,7*8(%r2) lghi c2,0 sqr_add_c(4,c3,c1,c2); sqr_add_c2(5,3,c3,c1,c2); sqr_add_c2(6,2,c3,c1,c2); sqr_add_c2(7,1,c3,c1,c2); stg c3,8*8(%r2) lghi c3,0 sqr_add_c2(7,2,c1,c2,c3); sqr_add_c2(6,3,c1,c2,c3); sqr_add_c2(5,4,c1,c2,c3); stg c1,9*8(%r2) lghi c1,0 sqr_add_c(5,c2,c3,c1); sqr_add_c2(6,4,c2,c3,c1); sqr_add_c2(7,3,c2,c3,c1); stg c2,10*8(%r2) lghi c2,0 sqr_add_c2(7,4,c3,c1,c2); sqr_add_c2(6,5,c3,c1,c2); stg c3,11*8(%r2) lghi c3,0 sqr_add_c(6,c1,c2,c3); sqr_add_c2(7,5,c1,c2,c3); stg c1,12*8(%r2) lghi c1,0 sqr_add_c2(7,6,c2,c3,c1); stg c2,13*8(%r2) lghi c2,0 sqr_add_c(7,c3,c1,c2); stg c3,14*8(%r2) stg c1,15*8(%r2) lmg %r6,%r8,48(%r15) br %r14 .size bn_sqr_comba8,.-bn_sqr_comba8 // void bn_sqr_comba4(BN_ULONG *r2,BN_ULONG *r3); .globl bn_sqr_comba4 .type bn_sqr_comba4,@function .align 4 bn_sqr_comba4: stmg %r6,%r8,48(%r15) lghi c1,0 lghi c2,0 lghi c3,0 lghi zero,0 sqr_add_c(0,c1,c2,c3); stg c1,0*8(%r2) lghi c1,0 sqr_add_c2(1,0,c2,c3,c1); stg c2,1*8(%r2) lghi c2,0 sqr_add_c(1,c3,c1,c2); sqr_add_c2(2,0,c3,c1,c2); stg c3,2*8(%r2) lghi c3,0 sqr_add_c2(3,0,c1,c2,c3); sqr_add_c2(2,1,c1,c2,c3); stg c1,3*8(%r2) lghi c1,0 sqr_add_c(2,c2,c3,c1); sqr_add_c2(3,1,c2,c3,c1); stg c2,4*8(%r2) lghi c2,0 sqr_add_c2(3,2,c3,c1,c2); stg c3,5*8(%r2) lghi c3,0 sqr_add_c(3,c1,c2,c3); stg c1,6*8(%r2) stg c2,7*8(%r2) lmg %r6,%r8,48(%r15) br %r14 .size bn_sqr_comba4,.-bn_sqr_comba4 openssl-1.1.1f/crypto/bn/asm/sparct4-mont.pl000077500000000000000000000662261364063235100207540ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by David S. Miller and Andy Polyakov # The module is licensed under 2-clause BSD license. # November 2012. All rights reserved. # ==================================================================== ###################################################################### # Montgomery squaring-n-multiplication module for SPARC T4. # # The module consists of three parts: # # 1) collection of "single-op" subroutines that perform single # operation, Montgomery squaring or multiplication, on 512-, # 1024-, 1536- and 2048-bit operands; # 2) collection of "multi-op" subroutines that perform 5 squaring and # 1 multiplication operations on operands of above lengths; # 3) fall-back and helper VIS3 subroutines. # # RSA sign is dominated by multi-op subroutine, while RSA verify and # DSA - by single-op. Special note about 4096-bit RSA verify result. # Operands are too long for dedicated hardware and it's handled by # VIS3 code, which is why you don't see any improvement. It's surely # possible to improve it [by deploying 'mpmul' instruction], maybe in # the future... # # Performance improvement. # # 64-bit process, VIS3: # sign verify sign/s verify/s # rsa 1024 bits 0.000628s 0.000028s 1592.4 35434.4 # rsa 2048 bits 0.003282s 0.000106s 304.7 9438.3 # rsa 4096 bits 0.025866s 0.000340s 38.7 2940.9 # dsa 1024 bits 0.000301s 0.000332s 3323.7 3013.9 # dsa 2048 bits 0.001056s 0.001233s 946.9 810.8 # # 64-bit process, this module: # sign verify sign/s verify/s # rsa 1024 bits 0.000256s 0.000016s 3904.4 61411.9 # rsa 2048 bits 0.000946s 0.000029s 1056.8 34292.7 # rsa 4096 bits 0.005061s 0.000340s 197.6 2940.5 # dsa 1024 bits 0.000176s 0.000195s 5674.7 5130.5 # dsa 2048 bits 0.000296s 0.000354s 3383.2 2827.6 # ###################################################################### # 32-bit process, VIS3: # sign verify sign/s verify/s # rsa 1024 bits 0.000665s 0.000028s 1504.8 35233.3 # rsa 2048 bits 0.003349s 0.000106s 298.6 9433.4 # rsa 4096 bits 0.025959s 0.000341s 38.5 2934.8 # dsa 1024 bits 0.000320s 0.000341s 3123.3 2929.6 # dsa 2048 bits 0.001101s 0.001260s 908.2 793.4 # # 32-bit process, this module: # sign verify sign/s verify/s # rsa 1024 bits 0.000301s 0.000017s 3317.1 60240.0 # rsa 2048 bits 0.001034s 0.000030s 966.9 33812.7 # rsa 4096 bits 0.005244s 0.000341s 190.7 2935.4 # dsa 1024 bits 0.000201s 0.000205s 4976.1 4879.2 # dsa 2048 bits 0.000328s 0.000360s 3051.1 2774.2 # # 32-bit code is prone to performance degradation as interrupt rate # dispatched to CPU executing the code grows. This is because in # standard process of handling interrupt in 32-bit process context # upper halves of most integer registers used as input or output are # zeroed. This renders result invalid, and operation has to be re-run. # If CPU is "bothered" with timer interrupts only, the penalty is # hardly measurable. But in order to mitigate this problem for higher # interrupt rates contemporary Linux kernel recognizes biased stack # even in 32-bit process context and preserves full register contents. # See http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=517ffce4e1a03aea979fe3a18a3dd1761a24fafb # for details. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "sparcv9_modes.pl"; $output = pop; open STDOUT,">$output"; $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif ___ ######################################################################## # Register layout for mont[mul|sqr] instructions. # For details see "Oracle SPARC Architecture 2011" manual at # http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/. # my @R=map("%f".2*$_,(0..11,30,31,12..29)); my @N=(map("%l$_",(0..7)),map("%o$_",(0..5))); @N=(@N,@N,@N[0..3]); my @A=(@N[0..13],@R[14..31]); my @B=(map("%i$_",(0..5)),map("%l$_",(0..7))); @B=(@B,@B,map("%o$_",(0..3))); ######################################################################## # int bn_mul_mont_t4_$NUM(u64 *rp,const u64 *ap,const u64 *bp, # const u64 *np,const BN_ULONG *n0); # sub generate_bn_mul_mont_t4() { my $NUM=shift; my ($rp,$ap,$bp,$np,$sentinel)=map("%g$_",(1..5)); $code.=<<___; .globl bn_mul_mont_t4_$NUM .align 32 bn_mul_mont_t4_$NUM: #ifdef __arch64__ mov 0,$sentinel mov -128,%g4 #elif defined(SPARCV9_64BIT_STACK) SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1+0],%g1 ! OPENSSL_sparcv9_P[0] mov -2047,%g4 and %g1,SPARCV9_64BIT_STACK,%g1 movrz %g1,0,%g4 mov -1,$sentinel add %g4,-128,%g4 #else mov -1,$sentinel mov -128,%g4 #endif sllx $sentinel,32,$sentinel save %sp,%g4,%sp #ifndef __arch64__ save %sp,-128,%sp ! warm it up save %sp,-128,%sp save %sp,-128,%sp save %sp,-128,%sp save %sp,-128,%sp save %sp,-128,%sp restore restore restore restore restore restore #endif and %sp,1,%g4 or $sentinel,%fp,%fp or %g4,$sentinel,$sentinel ! copy arguments to global registers mov %i0,$rp mov %i1,$ap mov %i2,$bp mov %i3,$np ld [%i4+0],%f1 ! load *n0 ld [%i4+4],%f0 fsrc2 %f0,%f60 ___ # load ap[$NUM] ######################################################## $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for($i=0; $i<14 && $i<$NUM; $i++) { my $lo=$i<13?@A[$i+1]:"%o7"; $code.=<<___; ld [$ap+$i*8+0],$lo ld [$ap+$i*8+4],@A[$i] sllx @A[$i],32,@A[$i] or $lo,@A[$i],@A[$i] ___ } for(; $i<$NUM; $i++) { my ($hi,$lo)=("%f".2*($i%4),"%f".(2*($i%4)+1)); $code.=<<___; ld [$ap+$i*8+0],$lo ld [$ap+$i*8+4],$hi fsrc2 $hi,@A[$i] ___ } # load np[$NUM] ######################################################## $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for($i=0; $i<14 && $i<$NUM; $i++) { my $lo=$i<13?@N[$i+1]:"%o7"; $code.=<<___; ld [$np+$i*8+0],$lo ld [$np+$i*8+4],@N[$i] sllx @N[$i],32,@N[$i] or $lo,@N[$i],@N[$i] ___ } $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for(; $i<28 && $i<$NUM; $i++) { my $lo=$i<27?@N[$i+1]:"%o7"; $code.=<<___; ld [$np+$i*8+0],$lo ld [$np+$i*8+4],@N[$i] sllx @N[$i],32,@N[$i] or $lo,@N[$i],@N[$i] ___ } $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for(; $i<$NUM; $i++) { my $lo=($i<$NUM-1)?@N[$i+1]:"%o7"; $code.=<<___; ld [$np+$i*8+0],$lo ld [$np+$i*8+4],@N[$i] sllx @N[$i],32,@N[$i] or $lo,@N[$i],@N[$i] ___ } $code.=<<___; cmp $ap,$bp be SIZE_T_CC,.Lmsquare_$NUM nop ___ # load bp[$NUM] ######################################################## $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for($i=0; $i<14 && $i<$NUM; $i++) { my $lo=$i<13?@B[$i+1]:"%o7"; $code.=<<___; ld [$bp+$i*8+0],$lo ld [$bp+$i*8+4],@B[$i] sllx @B[$i],32,@B[$i] or $lo,@B[$i],@B[$i] ___ } $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for(; $i<$NUM; $i++) { my $lo=($i<$NUM-1)?@B[$i+1]:"%o7"; $code.=<<___; ld [$bp+$i*8+0],$lo ld [$bp+$i*8+4],@B[$i] sllx @B[$i],32,@B[$i] or $lo,@B[$i],@B[$i] ___ } # magic ################################################################ $code.=<<___; .word 0x81b02920+$NUM-1 ! montmul $NUM-1 .Lmresume_$NUM: fbu,pn %fcc3,.Lmabort_$NUM #ifndef __arch64__ and %fp,$sentinel,$sentinel brz,pn $sentinel,.Lmabort_$NUM #endif nop #ifdef __arch64__ restore restore restore restore restore #else restore; and %fp,$sentinel,$sentinel restore; and %fp,$sentinel,$sentinel restore; and %fp,$sentinel,$sentinel restore; and %fp,$sentinel,$sentinel brz,pn $sentinel,.Lmabort1_$NUM restore #endif ___ # save tp[$NUM] ######################################################## for($i=0; $i<14 && $i<$NUM; $i++) { $code.=<<___; movxtod @A[$i],@R[$i] ___ } $code.=<<___; #ifdef __arch64__ restore #else and %fp,$sentinel,$sentinel restore and $sentinel,1,%o7 and %fp,$sentinel,$sentinel srl %fp,0,%fp ! just in case? or %o7,$sentinel,$sentinel brz,a,pn $sentinel,.Lmdone_$NUM mov 0,%i0 ! return failure #endif ___ for($i=0; $i<12 && $i<$NUM; $i++) { @R[$i] =~ /%f([0-9]+)/; my $lo = "%f".($1+1); $code.=<<___; st $lo,[$rp+$i*8+0] st @R[$i],[$rp+$i*8+4] ___ } for(; $i<$NUM; $i++) { my ($hi,$lo)=("%f".2*($i%4),"%f".(2*($i%4)+1)); $code.=<<___; fsrc2 @R[$i],$hi st $lo,[$rp+$i*8+0] st $hi,[$rp+$i*8+4] ___ } $code.=<<___; mov 1,%i0 ! return success .Lmdone_$NUM: ret restore .Lmabort_$NUM: restore restore restore restore restore .Lmabort1_$NUM: restore mov 0,%i0 ! return failure ret restore .align 32 .Lmsquare_$NUM: save %sp,-128,%sp; or $sentinel,%fp,%fp save %sp,-128,%sp; or $sentinel,%fp,%fp .word 0x81b02940+$NUM-1 ! montsqr $NUM-1 ba .Lmresume_$NUM nop .type bn_mul_mont_t4_$NUM, #function .size bn_mul_mont_t4_$NUM, .-bn_mul_mont_t4_$NUM ___ } for ($i=8;$i<=32;$i+=8) { &generate_bn_mul_mont_t4($i); } ######################################################################## # sub load_ccr { my ($ptbl,$pwr,$ccr,$skip_wr)=@_; $code.=<<___; srl $pwr, 2, %o4 and $pwr, 3, %o5 and %o4, 7, %o4 sll %o5, 3, %o5 ! offset within first cache line add %o5, $ptbl, $ptbl ! of the pwrtbl or %g0, 1, %o5 sll %o5, %o4, $ccr ___ $code.=<<___ if (!$skip_wr); wr $ccr, %g0, %ccr ___ } sub load_b_pair { my ($pwrtbl,$B0,$B1)=@_; $code.=<<___; ldx [$pwrtbl+0*32], $B0 ldx [$pwrtbl+8*32], $B1 ldx [$pwrtbl+1*32], %o4 ldx [$pwrtbl+9*32], %o5 movvs %icc, %o4, $B0 ldx [$pwrtbl+2*32], %o4 movvs %icc, %o5, $B1 ldx [$pwrtbl+10*32],%o5 move %icc, %o4, $B0 ldx [$pwrtbl+3*32], %o4 move %icc, %o5, $B1 ldx [$pwrtbl+11*32],%o5 movneg %icc, %o4, $B0 ldx [$pwrtbl+4*32], %o4 movneg %icc, %o5, $B1 ldx [$pwrtbl+12*32],%o5 movcs %xcc, %o4, $B0 ldx [$pwrtbl+5*32],%o4 movcs %xcc, %o5, $B1 ldx [$pwrtbl+13*32],%o5 movvs %xcc, %o4, $B0 ldx [$pwrtbl+6*32], %o4 movvs %xcc, %o5, $B1 ldx [$pwrtbl+14*32],%o5 move %xcc, %o4, $B0 ldx [$pwrtbl+7*32], %o4 move %xcc, %o5, $B1 ldx [$pwrtbl+15*32],%o5 movneg %xcc, %o4, $B0 add $pwrtbl,16*32, $pwrtbl movneg %xcc, %o5, $B1 ___ } sub load_b { my ($pwrtbl,$Bi)=@_; $code.=<<___; ldx [$pwrtbl+0*32], $Bi ldx [$pwrtbl+1*32], %o4 ldx [$pwrtbl+2*32], %o5 movvs %icc, %o4, $Bi ldx [$pwrtbl+3*32], %o4 move %icc, %o5, $Bi ldx [$pwrtbl+4*32], %o5 movneg %icc, %o4, $Bi ldx [$pwrtbl+5*32], %o4 movcs %xcc, %o5, $Bi ldx [$pwrtbl+6*32], %o5 movvs %xcc, %o4, $Bi ldx [$pwrtbl+7*32], %o4 move %xcc, %o5, $Bi add $pwrtbl,8*32, $pwrtbl movneg %xcc, %o4, $Bi ___ } ######################################################################## # int bn_pwr5_mont_t4_$NUM(u64 *tp,const u64 *np,const BN_ULONG *n0, # const u64 *pwrtbl,int pwr,int stride); # sub generate_bn_pwr5_mont_t4() { my $NUM=shift; my ($tp,$np,$pwrtbl,$pwr,$sentinel)=map("%g$_",(1..5)); $code.=<<___; .globl bn_pwr5_mont_t4_$NUM .align 32 bn_pwr5_mont_t4_$NUM: #ifdef __arch64__ mov 0,$sentinel mov -128,%g4 #elif defined(SPARCV9_64BIT_STACK) SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1+0],%g1 ! OPENSSL_sparcv9_P[0] mov -2047,%g4 and %g1,SPARCV9_64BIT_STACK,%g1 movrz %g1,0,%g4 mov -1,$sentinel add %g4,-128,%g4 #else mov -1,$sentinel mov -128,%g4 #endif sllx $sentinel,32,$sentinel save %sp,%g4,%sp #ifndef __arch64__ save %sp,-128,%sp ! warm it up save %sp,-128,%sp save %sp,-128,%sp save %sp,-128,%sp save %sp,-128,%sp save %sp,-128,%sp restore restore restore restore restore restore #endif and %sp,1,%g4 or $sentinel,%fp,%fp or %g4,$sentinel,$sentinel ! copy arguments to global registers mov %i0,$tp mov %i1,$np ld [%i2+0],%f1 ! load *n0 ld [%i2+4],%f0 mov %i3,$pwrtbl srl %i4,%g0,%i4 ! pack last arguments sllx %i5,32,$pwr or %i4,$pwr,$pwr fsrc2 %f0,%f60 ___ # load tp[$NUM] ######################################################## $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for($i=0; $i<14 && $i<$NUM; $i++) { $code.=<<___; ldx [$tp+$i*8],@A[$i] ___ } for(; $i<$NUM; $i++) { $code.=<<___; ldd [$tp+$i*8],@A[$i] ___ } # load np[$NUM] ######################################################## $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for($i=0; $i<14 && $i<$NUM; $i++) { $code.=<<___; ldx [$np+$i*8],@N[$i] ___ } $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for(; $i<28 && $i<$NUM; $i++) { $code.=<<___; ldx [$np+$i*8],@N[$i] ___ } $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for(; $i<$NUM; $i++) { $code.=<<___; ldx [$np+$i*8],@N[$i] ___ } # load pwrtbl[pwr] ######################################################## $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp srlx $pwr, 32, %o4 ! unpack $pwr srl $pwr, %g0, %o5 sub %o4, 5, %o4 mov $pwrtbl, %o7 sllx %o4, 32, $pwr ! re-pack $pwr or %o5, $pwr, $pwr srl %o5, %o4, %o5 ___ &load_ccr("%o7","%o5","%o4"); $code.=<<___; b .Lstride_$NUM nop .align 16 .Lstride_$NUM: ___ for($i=0; $i<14 && $i<$NUM; $i+=2) { &load_b_pair("%o7",@B[$i],@B[$i+1]); } $code.=<<___; save %sp,-128,%sp; or $sentinel,%fp,%fp ___ for(; $i<$NUM; $i+=2) { &load_b_pair("%i7",@B[$i],@B[$i+1]); } $code.=<<___; srax $pwr, 32, %o4 ! unpack $pwr srl $pwr, %g0, %o5 sub %o4, 5, %o4 mov $pwrtbl, %i7 sllx %o4, 32, $pwr ! re-pack $pwr or %o5, $pwr, $pwr srl %o5, %o4, %o5 ___ &load_ccr("%i7","%o5","%o4",1); # magic ################################################################ for($i=0; $i<5; $i++) { $code.=<<___; .word 0x81b02940+$NUM-1 ! montsqr $NUM-1 fbu,pn %fcc3,.Labort_$NUM #ifndef __arch64__ and %fp,$sentinel,$sentinel brz,pn $sentinel,.Labort_$NUM #endif nop ___ } $code.=<<___; wr %o4, %g0, %ccr .word 0x81b02920+$NUM-1 ! montmul $NUM-1 fbu,pn %fcc3,.Labort_$NUM #ifndef __arch64__ and %fp,$sentinel,$sentinel brz,pn $sentinel,.Labort_$NUM #endif srax $pwr, 32, %o4 #ifdef __arch64__ brgez %o4,.Lstride_$NUM restore restore restore restore restore #else brgez %o4,.Lstride_$NUM restore; and %fp,$sentinel,$sentinel restore; and %fp,$sentinel,$sentinel restore; and %fp,$sentinel,$sentinel restore; and %fp,$sentinel,$sentinel brz,pn $sentinel,.Labort1_$NUM restore #endif ___ # save tp[$NUM] ######################################################## for($i=0; $i<14 && $i<$NUM; $i++) { $code.=<<___; movxtod @A[$i],@R[$i] ___ } $code.=<<___; #ifdef __arch64__ restore #else and %fp,$sentinel,$sentinel restore and $sentinel,1,%o7 and %fp,$sentinel,$sentinel srl %fp,0,%fp ! just in case? or %o7,$sentinel,$sentinel brz,a,pn $sentinel,.Ldone_$NUM mov 0,%i0 ! return failure #endif ___ for($i=0; $i<$NUM; $i++) { $code.=<<___; std @R[$i],[$tp+$i*8] ___ } $code.=<<___; mov 1,%i0 ! return success .Ldone_$NUM: ret restore .Labort_$NUM: restore restore restore restore restore .Labort1_$NUM: restore mov 0,%i0 ! return failure ret restore .type bn_pwr5_mont_t4_$NUM, #function .size bn_pwr5_mont_t4_$NUM, .-bn_pwr5_mont_t4_$NUM ___ } for ($i=8;$i<=32;$i+=8) { &generate_bn_pwr5_mont_t4($i); } { ######################################################################## # Fall-back subroutines # # copy of bn_mul_mont_vis3 adjusted for vectors of 64-bit values # ($n0,$m0,$m1,$lo0,$hi0, $lo1,$hi1,$aj,$alo,$nj,$nlo,$tj)= (map("%g$_",(1..5)),map("%o$_",(0..5,7))); # int bn_mul_mont( $rp="%o0"; # u64 *rp, $ap="%o1"; # const u64 *ap, $bp="%o2"; # const u64 *bp, $np="%o3"; # const u64 *np, $n0p="%o4"; # const BN_ULONG *n0, $num="%o5"; # int num); # caller ensures that num is >=3 $code.=<<___; .globl bn_mul_mont_t4 .align 32 bn_mul_mont_t4: add %sp, STACK_BIAS, %g4 ! real top of stack sll $num, 3, $num ! size in bytes add $num, 63, %g1 andn %g1, 63, %g1 ! buffer size rounded up to 64 bytes sub %g4, %g1, %g1 andn %g1, 63, %g1 ! align at 64 byte sub %g1, STACK_FRAME, %g1 ! new top of stack sub %g1, %g4, %g1 save %sp, %g1, %sp ___ # +-------------------------------+<----- %sp # . . # +-------------------------------+<----- aligned at 64 bytes # | __int64 tmp[0] | # +-------------------------------+ # . . # . . # +-------------------------------+<----- aligned at 64 bytes # . . ($rp,$ap,$bp,$np,$n0p,$num)=map("%i$_",(0..5)); ($t0,$t1,$t2,$t3,$cnt,$tp,$bufsz)=map("%l$_",(0..7)); ($ovf,$i)=($t0,$t1); $code.=<<___; ld [$n0p+0], $t0 ! pull n0[0..1] value ld [$n0p+4], $t1 add %sp, STACK_BIAS+STACK_FRAME, $tp ldx [$bp+0], $m0 ! m0=bp[0] sllx $t1, 32, $n0 add $bp, 8, $bp or $t0, $n0, $n0 ldx [$ap+0], $aj ! ap[0] mulx $aj, $m0, $lo0 ! ap[0]*bp[0] umulxhi $aj, $m0, $hi0 ldx [$ap+8], $aj ! ap[1] add $ap, 16, $ap ldx [$np+0], $nj ! np[0] mulx $lo0, $n0, $m1 ! "tp[0]"*n0 mulx $aj, $m0, $alo ! ap[1]*bp[0] umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $lo1 ! np[0]*m1 umulxhi $nj, $m1, $hi1 ldx [$np+8], $nj ! np[1] addcc $lo0, $lo1, $lo1 add $np, 16, $np addxc %g0, $hi1, $hi1 mulx $nj, $m1, $nlo ! np[1]*m1 umulxhi $nj, $m1, $nj ! nhi=nj ba .L1st sub $num, 24, $cnt ! cnt=num-3 .align 16 .L1st: addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ldx [$ap+0], $aj ! ap[j] addcc $nlo, $hi1, $lo1 add $ap, 8, $ap addxc $nj, %g0, $hi1 ! nhi=nj ldx [$np+0], $nj ! np[j] mulx $aj, $m0, $alo ! ap[j]*bp[0] add $np, 8, $np umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $nlo ! np[j]*m1 addcc $lo0, $lo1, $lo1 ! np[j]*m1+ap[j]*bp[0] umulxhi $nj, $m1, $nj ! nhi=nj addxc %g0, $hi1, $hi1 stxa $lo1, [$tp]0xe2 ! tp[j-1] add $tp, 8, $tp ! tp++ brnz,pt $cnt, .L1st sub $cnt, 8, $cnt ! j-- !.L1st addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ! ahi=aj addcc $nlo, $hi1, $lo1 addxc $nj, %g0, $hi1 addcc $lo0, $lo1, $lo1 ! np[j]*m1+ap[j]*bp[0] addxc %g0, $hi1, $hi1 stxa $lo1, [$tp]0xe2 ! tp[j-1] add $tp, 8, $tp addcc $hi0, $hi1, $hi1 addxc %g0, %g0, $ovf ! upmost overflow bit stxa $hi1, [$tp]0xe2 add $tp, 8, $tp ba .Louter sub $num, 16, $i ! i=num-2 .align 16 .Louter: ldx [$bp+0], $m0 ! m0=bp[i] add $bp, 8, $bp sub $ap, $num, $ap ! rewind sub $np, $num, $np sub $tp, $num, $tp ldx [$ap+0], $aj ! ap[0] ldx [$np+0], $nj ! np[0] mulx $aj, $m0, $lo0 ! ap[0]*bp[i] ldx [$tp], $tj ! tp[0] umulxhi $aj, $m0, $hi0 ldx [$ap+8], $aj ! ap[1] addcc $lo0, $tj, $lo0 ! ap[0]*bp[i]+tp[0] mulx $aj, $m0, $alo ! ap[1]*bp[i] addxc %g0, $hi0, $hi0 mulx $lo0, $n0, $m1 ! tp[0]*n0 umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $lo1 ! np[0]*m1 add $ap, 16, $ap umulxhi $nj, $m1, $hi1 ldx [$np+8], $nj ! np[1] add $np, 16, $np addcc $lo1, $lo0, $lo1 mulx $nj, $m1, $nlo ! np[1]*m1 addxc %g0, $hi1, $hi1 umulxhi $nj, $m1, $nj ! nhi=nj ba .Linner sub $num, 24, $cnt ! cnt=num-3 .align 16 .Linner: addcc $alo, $hi0, $lo0 ldx [$tp+8], $tj ! tp[j] addxc $aj, %g0, $hi0 ! ahi=aj ldx [$ap+0], $aj ! ap[j] add $ap, 8, $ap addcc $nlo, $hi1, $lo1 mulx $aj, $m0, $alo ! ap[j]*bp[i] addxc $nj, %g0, $hi1 ! nhi=nj ldx [$np+0], $nj ! np[j] add $np, 8, $np umulxhi $aj, $m0, $aj ! ahi=aj addcc $lo0, $tj, $lo0 ! ap[j]*bp[i]+tp[j] mulx $nj, $m1, $nlo ! np[j]*m1 addxc %g0, $hi0, $hi0 umulxhi $nj, $m1, $nj ! nhi=nj addcc $lo1, $lo0, $lo1 ! np[j]*m1+ap[j]*bp[i]+tp[j] addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] add $tp, 8, $tp brnz,pt $cnt, .Linner sub $cnt, 8, $cnt !.Linner ldx [$tp+8], $tj ! tp[j] addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ! ahi=aj addcc $lo0, $tj, $lo0 ! ap[j]*bp[i]+tp[j] addxc %g0, $hi0, $hi0 addcc $nlo, $hi1, $lo1 addxc $nj, %g0, $hi1 ! nhi=nj addcc $lo1, $lo0, $lo1 ! np[j]*m1+ap[j]*bp[i]+tp[j] addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] subcc %g0, $ovf, %g0 ! move upmost overflow to CCR.xcc addxccc $hi1, $hi0, $hi1 addxc %g0, %g0, $ovf stx $hi1, [$tp+8] add $tp, 16, $tp brnz,pt $i, .Louter sub $i, 8, $i sub $ap, $num, $ap ! rewind sub $np, $num, $np sub $tp, $num, $tp ba .Lsub subcc $num, 8, $cnt ! cnt=num-1 and clear CCR.xcc .align 16 .Lsub: ldx [$tp], $tj add $tp, 8, $tp ldx [$np+0], $nj add $np, 8, $np subccc $tj, $nj, $t2 ! tp[j]-np[j] srlx $tj, 32, $tj srlx $nj, 32, $nj subccc $tj, $nj, $t3 add $rp, 8, $rp st $t2, [$rp-4] ! reverse order st $t3, [$rp-8] brnz,pt $cnt, .Lsub sub $cnt, 8, $cnt sub $np, $num, $np ! rewind sub $tp, $num, $tp sub $rp, $num, $rp subccc $ovf, %g0, $ovf ! handle upmost overflow bit ba .Lcopy sub $num, 8, $cnt .align 16 .Lcopy: ! conditional copy ldx [$tp], $tj ldx [$rp+0], $t2 stx %g0, [$tp] ! zap add $tp, 8, $tp movcs %icc, $tj, $t2 stx $t2, [$rp+0] add $rp, 8, $rp brnz $cnt, .Lcopy sub $cnt, 8, $cnt mov 1, %o0 ret restore .type bn_mul_mont_t4, #function .size bn_mul_mont_t4, .-bn_mul_mont_t4 ___ # int bn_mul_mont_gather5( $rp="%o0"; # u64 *rp, $ap="%o1"; # const u64 *ap, $bp="%o2"; # const u64 *pwrtbl, $np="%o3"; # const u64 *np, $n0p="%o4"; # const BN_ULONG *n0, $num="%o5"; # int num, # caller ensures that num is >=3 # int power); $code.=<<___; .globl bn_mul_mont_gather5_t4 .align 32 bn_mul_mont_gather5_t4: add %sp, STACK_BIAS, %g4 ! real top of stack sll $num, 3, $num ! size in bytes add $num, 63, %g1 andn %g1, 63, %g1 ! buffer size rounded up to 64 bytes sub %g4, %g1, %g1 andn %g1, 63, %g1 ! align at 64 byte sub %g1, STACK_FRAME, %g1 ! new top of stack sub %g1, %g4, %g1 LDPTR [%sp+STACK_7thARG], %g4 ! load power, 7th argument save %sp, %g1, %sp ___ # +-------------------------------+<----- %sp # . . # +-------------------------------+<----- aligned at 64 bytes # | __int64 tmp[0] | # +-------------------------------+ # . . # . . # +-------------------------------+<----- aligned at 64 bytes # . . ($rp,$ap,$bp,$np,$n0p,$num)=map("%i$_",(0..5)); ($t0,$t1,$t2,$t3,$cnt,$tp,$bufsz,$ccr)=map("%l$_",(0..7)); ($ovf,$i)=($t0,$t1); &load_ccr($bp,"%g4",$ccr); &load_b($bp,$m0,"%o7"); # m0=bp[0] $code.=<<___; ld [$n0p+0], $t0 ! pull n0[0..1] value ld [$n0p+4], $t1 add %sp, STACK_BIAS+STACK_FRAME, $tp sllx $t1, 32, $n0 or $t0, $n0, $n0 ldx [$ap+0], $aj ! ap[0] mulx $aj, $m0, $lo0 ! ap[0]*bp[0] umulxhi $aj, $m0, $hi0 ldx [$ap+8], $aj ! ap[1] add $ap, 16, $ap ldx [$np+0], $nj ! np[0] mulx $lo0, $n0, $m1 ! "tp[0]"*n0 mulx $aj, $m0, $alo ! ap[1]*bp[0] umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $lo1 ! np[0]*m1 umulxhi $nj, $m1, $hi1 ldx [$np+8], $nj ! np[1] addcc $lo0, $lo1, $lo1 add $np, 16, $np addxc %g0, $hi1, $hi1 mulx $nj, $m1, $nlo ! np[1]*m1 umulxhi $nj, $m1, $nj ! nhi=nj ba .L1st_g5 sub $num, 24, $cnt ! cnt=num-3 .align 16 .L1st_g5: addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ldx [$ap+0], $aj ! ap[j] addcc $nlo, $hi1, $lo1 add $ap, 8, $ap addxc $nj, %g0, $hi1 ! nhi=nj ldx [$np+0], $nj ! np[j] mulx $aj, $m0, $alo ! ap[j]*bp[0] add $np, 8, $np umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $nlo ! np[j]*m1 addcc $lo0, $lo1, $lo1 ! np[j]*m1+ap[j]*bp[0] umulxhi $nj, $m1, $nj ! nhi=nj addxc %g0, $hi1, $hi1 stxa $lo1, [$tp]0xe2 ! tp[j-1] add $tp, 8, $tp ! tp++ brnz,pt $cnt, .L1st_g5 sub $cnt, 8, $cnt ! j-- !.L1st_g5 addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ! ahi=aj addcc $nlo, $hi1, $lo1 addxc $nj, %g0, $hi1 addcc $lo0, $lo1, $lo1 ! np[j]*m1+ap[j]*bp[0] addxc %g0, $hi1, $hi1 stxa $lo1, [$tp]0xe2 ! tp[j-1] add $tp, 8, $tp addcc $hi0, $hi1, $hi1 addxc %g0, %g0, $ovf ! upmost overflow bit stxa $hi1, [$tp]0xe2 add $tp, 8, $tp ba .Louter_g5 sub $num, 16, $i ! i=num-2 .align 16 .Louter_g5: wr $ccr, %g0, %ccr ___ &load_b($bp,$m0); # m0=bp[i] $code.=<<___; sub $ap, $num, $ap ! rewind sub $np, $num, $np sub $tp, $num, $tp ldx [$ap+0], $aj ! ap[0] ldx [$np+0], $nj ! np[0] mulx $aj, $m0, $lo0 ! ap[0]*bp[i] ldx [$tp], $tj ! tp[0] umulxhi $aj, $m0, $hi0 ldx [$ap+8], $aj ! ap[1] addcc $lo0, $tj, $lo0 ! ap[0]*bp[i]+tp[0] mulx $aj, $m0, $alo ! ap[1]*bp[i] addxc %g0, $hi0, $hi0 mulx $lo0, $n0, $m1 ! tp[0]*n0 umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $lo1 ! np[0]*m1 add $ap, 16, $ap umulxhi $nj, $m1, $hi1 ldx [$np+8], $nj ! np[1] add $np, 16, $np addcc $lo1, $lo0, $lo1 mulx $nj, $m1, $nlo ! np[1]*m1 addxc %g0, $hi1, $hi1 umulxhi $nj, $m1, $nj ! nhi=nj ba .Linner_g5 sub $num, 24, $cnt ! cnt=num-3 .align 16 .Linner_g5: addcc $alo, $hi0, $lo0 ldx [$tp+8], $tj ! tp[j] addxc $aj, %g0, $hi0 ! ahi=aj ldx [$ap+0], $aj ! ap[j] add $ap, 8, $ap addcc $nlo, $hi1, $lo1 mulx $aj, $m0, $alo ! ap[j]*bp[i] addxc $nj, %g0, $hi1 ! nhi=nj ldx [$np+0], $nj ! np[j] add $np, 8, $np umulxhi $aj, $m0, $aj ! ahi=aj addcc $lo0, $tj, $lo0 ! ap[j]*bp[i]+tp[j] mulx $nj, $m1, $nlo ! np[j]*m1 addxc %g0, $hi0, $hi0 umulxhi $nj, $m1, $nj ! nhi=nj addcc $lo1, $lo0, $lo1 ! np[j]*m1+ap[j]*bp[i]+tp[j] addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] add $tp, 8, $tp brnz,pt $cnt, .Linner_g5 sub $cnt, 8, $cnt !.Linner_g5 ldx [$tp+8], $tj ! tp[j] addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ! ahi=aj addcc $lo0, $tj, $lo0 ! ap[j]*bp[i]+tp[j] addxc %g0, $hi0, $hi0 addcc $nlo, $hi1, $lo1 addxc $nj, %g0, $hi1 ! nhi=nj addcc $lo1, $lo0, $lo1 ! np[j]*m1+ap[j]*bp[i]+tp[j] addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] subcc %g0, $ovf, %g0 ! move upmost overflow to CCR.xcc addxccc $hi1, $hi0, $hi1 addxc %g0, %g0, $ovf stx $hi1, [$tp+8] add $tp, 16, $tp brnz,pt $i, .Louter_g5 sub $i, 8, $i sub $ap, $num, $ap ! rewind sub $np, $num, $np sub $tp, $num, $tp ba .Lsub_g5 subcc $num, 8, $cnt ! cnt=num-1 and clear CCR.xcc .align 16 .Lsub_g5: ldx [$tp], $tj add $tp, 8, $tp ldx [$np+0], $nj add $np, 8, $np subccc $tj, $nj, $t2 ! tp[j]-np[j] srlx $tj, 32, $tj srlx $nj, 32, $nj subccc $tj, $nj, $t3 add $rp, 8, $rp st $t2, [$rp-4] ! reverse order st $t3, [$rp-8] brnz,pt $cnt, .Lsub_g5 sub $cnt, 8, $cnt sub $np, $num, $np ! rewind sub $tp, $num, $tp sub $rp, $num, $rp subccc $ovf, %g0, $ovf ! handle upmost overflow bit ba .Lcopy_g5 sub $num, 8, $cnt .align 16 .Lcopy_g5: ! conditional copy ldx [$tp], $tj ldx [$rp+0], $t2 stx %g0, [$tp] ! zap add $tp, 8, $tp movcs %icc, $tj, $t2 stx $t2, [$rp+0] add $rp, 8, $rp brnz $cnt, .Lcopy_g5 sub $cnt, 8, $cnt mov 1, %o0 ret restore .type bn_mul_mont_gather5_t4, #function .size bn_mul_mont_gather5_t4, .-bn_mul_mont_gather5_t4 ___ } $code.=<<___; .globl bn_flip_t4 .align 32 bn_flip_t4: .Loop_flip: ld [%o1+0], %o4 sub %o2, 1, %o2 ld [%o1+4], %o5 add %o1, 8, %o1 st %o5, [%o0+0] st %o4, [%o0+4] brnz %o2, .Loop_flip add %o0, 8, %o0 retl nop .type bn_flip_t4, #function .size bn_flip_t4, .-bn_flip_t4 .globl bn_flip_n_scatter5_t4 .align 32 bn_flip_n_scatter5_t4: sll %o3, 3, %o3 srl %o1, 1, %o1 add %o3, %o2, %o2 ! &pwrtbl[pwr] sub %o1, 1, %o1 .Loop_flip_n_scatter5: ld [%o0+0], %o4 ! inp[i] ld [%o0+4], %o5 add %o0, 8, %o0 sllx %o5, 32, %o5 or %o4, %o5, %o5 stx %o5, [%o2] add %o2, 32*8, %o2 brnz %o1, .Loop_flip_n_scatter5 sub %o1, 1, %o1 retl nop .type bn_flip_n_scatter5_t4, #function .size bn_flip_n_scatter5_t4, .-bn_flip_n_scatter5_t4 .globl bn_gather5_t4 .align 32 bn_gather5_t4: ___ &load_ccr("%o2","%o3","%g1"); $code.=<<___; sub %o1, 1, %o1 .Loop_gather5: ___ &load_b("%o2","%g1"); $code.=<<___; stx %g1, [%o0] add %o0, 8, %o0 brnz %o1, .Loop_gather5 sub %o1, 1, %o1 retl nop .type bn_gather5_t4, #function .size bn_gather5_t4, .-bn_gather5_t4 .asciz "Montgomery Multiplication for SPARC T4, David S. Miller, Andy Polyakov" .align 4 ___ &emit_assembler(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/sparcv8.S000066400000000000000000000672511364063235100175720ustar00rootroot00000000000000.ident "sparcv8.s, Version 1.4" .ident "SPARC v8 ISA artwork by Andy Polyakov " /* * ==================================================================== * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * ==================================================================== */ /* * This is my modest contribution to OpenSSL project (see * http://www.openssl.org/ for more information about it) and is * a drop-in SuperSPARC ISA replacement for crypto/bn/bn_asm.c * module. For updates see http://fy.chalmers.se/~appro/hpe/. * * See bn_asm.sparc.v8plus.S for more details. */ /* * Revision history. * * 1.1 - new loop unrolling model(*); * 1.2 - made gas friendly; * 1.3 - fixed problem with /usr/ccs/lib/cpp; * 1.4 - some retunes; * * (*) see bn_asm.sparc.v8plus.S for details */ .section ".text",#alloc,#execinstr .file "bn_asm.sparc.v8.S" .align 32 .global bn_mul_add_words /* * BN_ULONG bn_mul_add_words(rp,ap,num,w) * BN_ULONG *rp,*ap; * int num; * BN_ULONG w; */ bn_mul_add_words: cmp %o2,0 bg,a .L_bn_mul_add_words_proceed ld [%o1],%g2 retl clr %o0 .L_bn_mul_add_words_proceed: andcc %o2,-4,%g0 bz .L_bn_mul_add_words_tail clr %o5 .L_bn_mul_add_words_loop: ld [%o0],%o4 ld [%o1+4],%g3 umul %o3,%g2,%g2 rd %y,%g1 addcc %o4,%o5,%o4 addx %g1,0,%g1 addcc %o4,%g2,%o4 st %o4,[%o0] addx %g1,0,%o5 ld [%o0+4],%o4 ld [%o1+8],%g2 umul %o3,%g3,%g3 dec 4,%o2 rd %y,%g1 addcc %o4,%o5,%o4 addx %g1,0,%g1 addcc %o4,%g3,%o4 st %o4,[%o0+4] addx %g1,0,%o5 ld [%o0+8],%o4 ld [%o1+12],%g3 umul %o3,%g2,%g2 inc 16,%o1 rd %y,%g1 addcc %o4,%o5,%o4 addx %g1,0,%g1 addcc %o4,%g2,%o4 st %o4,[%o0+8] addx %g1,0,%o5 ld [%o0+12],%o4 umul %o3,%g3,%g3 inc 16,%o0 rd %y,%g1 addcc %o4,%o5,%o4 addx %g1,0,%g1 addcc %o4,%g3,%o4 st %o4,[%o0-4] addx %g1,0,%o5 andcc %o2,-4,%g0 bnz,a .L_bn_mul_add_words_loop ld [%o1],%g2 tst %o2 bnz,a .L_bn_mul_add_words_tail ld [%o1],%g2 .L_bn_mul_add_words_return: retl mov %o5,%o0 nop .L_bn_mul_add_words_tail: ld [%o0],%o4 umul %o3,%g2,%g2 addcc %o4,%o5,%o4 rd %y,%g1 addx %g1,0,%g1 addcc %o4,%g2,%o4 addx %g1,0,%o5 deccc %o2 bz .L_bn_mul_add_words_return st %o4,[%o0] ld [%o1+4],%g2 ld [%o0+4],%o4 umul %o3,%g2,%g2 rd %y,%g1 addcc %o4,%o5,%o4 addx %g1,0,%g1 addcc %o4,%g2,%o4 addx %g1,0,%o5 deccc %o2 bz .L_bn_mul_add_words_return st %o4,[%o0+4] ld [%o1+8],%g2 ld [%o0+8],%o4 umul %o3,%g2,%g2 rd %y,%g1 addcc %o4,%o5,%o4 addx %g1,0,%g1 addcc %o4,%g2,%o4 st %o4,[%o0+8] retl addx %g1,0,%o0 .type bn_mul_add_words,#function .size bn_mul_add_words,(.-bn_mul_add_words) .align 32 .global bn_mul_words /* * BN_ULONG bn_mul_words(rp,ap,num,w) * BN_ULONG *rp,*ap; * int num; * BN_ULONG w; */ bn_mul_words: cmp %o2,0 bg,a .L_bn_mul_words_proceed ld [%o1],%g2 retl clr %o0 .L_bn_mul_words_proceed: andcc %o2,-4,%g0 bz .L_bn_mul_words_tail clr %o5 .L_bn_mul_words_loop: ld [%o1+4],%g3 umul %o3,%g2,%g2 addcc %g2,%o5,%g2 rd %y,%g1 addx %g1,0,%o5 st %g2,[%o0] ld [%o1+8],%g2 umul %o3,%g3,%g3 addcc %g3,%o5,%g3 rd %y,%g1 dec 4,%o2 addx %g1,0,%o5 st %g3,[%o0+4] ld [%o1+12],%g3 umul %o3,%g2,%g2 addcc %g2,%o5,%g2 rd %y,%g1 inc 16,%o1 st %g2,[%o0+8] addx %g1,0,%o5 umul %o3,%g3,%g3 addcc %g3,%o5,%g3 rd %y,%g1 inc 16,%o0 addx %g1,0,%o5 st %g3,[%o0-4] andcc %o2,-4,%g0 nop bnz,a .L_bn_mul_words_loop ld [%o1],%g2 tst %o2 bnz,a .L_bn_mul_words_tail ld [%o1],%g2 .L_bn_mul_words_return: retl mov %o5,%o0 nop .L_bn_mul_words_tail: umul %o3,%g2,%g2 addcc %g2,%o5,%g2 rd %y,%g1 addx %g1,0,%o5 deccc %o2 bz .L_bn_mul_words_return st %g2,[%o0] nop ld [%o1+4],%g2 umul %o3,%g2,%g2 addcc %g2,%o5,%g2 rd %y,%g1 addx %g1,0,%o5 deccc %o2 bz .L_bn_mul_words_return st %g2,[%o0+4] ld [%o1+8],%g2 umul %o3,%g2,%g2 addcc %g2,%o5,%g2 rd %y,%g1 st %g2,[%o0+8] retl addx %g1,0,%o0 .type bn_mul_words,#function .size bn_mul_words,(.-bn_mul_words) .align 32 .global bn_sqr_words /* * void bn_sqr_words(r,a,n) * BN_ULONG *r,*a; * int n; */ bn_sqr_words: cmp %o2,0 bg,a .L_bn_sqr_words_proceed ld [%o1],%g2 retl clr %o0 .L_bn_sqr_words_proceed: andcc %o2,-4,%g0 bz .L_bn_sqr_words_tail clr %o5 .L_bn_sqr_words_loop: ld [%o1+4],%g3 umul %g2,%g2,%o4 st %o4,[%o0] rd %y,%o5 st %o5,[%o0+4] ld [%o1+8],%g2 umul %g3,%g3,%o4 dec 4,%o2 st %o4,[%o0+8] rd %y,%o5 st %o5,[%o0+12] nop ld [%o1+12],%g3 umul %g2,%g2,%o4 st %o4,[%o0+16] rd %y,%o5 inc 16,%o1 st %o5,[%o0+20] umul %g3,%g3,%o4 inc 32,%o0 st %o4,[%o0-8] rd %y,%o5 st %o5,[%o0-4] andcc %o2,-4,%g2 bnz,a .L_bn_sqr_words_loop ld [%o1],%g2 tst %o2 nop bnz,a .L_bn_sqr_words_tail ld [%o1],%g2 .L_bn_sqr_words_return: retl clr %o0 .L_bn_sqr_words_tail: umul %g2,%g2,%o4 st %o4,[%o0] deccc %o2 rd %y,%o5 bz .L_bn_sqr_words_return st %o5,[%o0+4] ld [%o1+4],%g2 umul %g2,%g2,%o4 st %o4,[%o0+8] deccc %o2 rd %y,%o5 nop bz .L_bn_sqr_words_return st %o5,[%o0+12] ld [%o1+8],%g2 umul %g2,%g2,%o4 st %o4,[%o0+16] rd %y,%o5 st %o5,[%o0+20] retl clr %o0 .type bn_sqr_words,#function .size bn_sqr_words,(.-bn_sqr_words) .align 32 .global bn_div_words /* * BN_ULONG bn_div_words(h,l,d) * BN_ULONG h,l,d; */ bn_div_words: wr %o0,%y udiv %o1,%o2,%o0 retl nop .type bn_div_words,#function .size bn_div_words,(.-bn_div_words) .align 32 .global bn_add_words /* * BN_ULONG bn_add_words(rp,ap,bp,n) * BN_ULONG *rp,*ap,*bp; * int n; */ bn_add_words: cmp %o3,0 bg,a .L_bn_add_words_proceed ld [%o1],%o4 retl clr %o0 .L_bn_add_words_proceed: andcc %o3,-4,%g0 bz .L_bn_add_words_tail clr %g1 ba .L_bn_add_words_warn_loop addcc %g0,0,%g0 ! clear carry flag .L_bn_add_words_loop: ld [%o1],%o4 .L_bn_add_words_warn_loop: ld [%o2],%o5 ld [%o1+4],%g3 ld [%o2+4],%g4 dec 4,%o3 addxcc %o5,%o4,%o5 st %o5,[%o0] ld [%o1+8],%o4 ld [%o2+8],%o5 inc 16,%o1 addxcc %g3,%g4,%g3 st %g3,[%o0+4] ld [%o1-4],%g3 ld [%o2+12],%g4 inc 16,%o2 addxcc %o5,%o4,%o5 st %o5,[%o0+8] inc 16,%o0 addxcc %g3,%g4,%g3 st %g3,[%o0-4] addx %g0,0,%g1 andcc %o3,-4,%g0 bnz,a .L_bn_add_words_loop addcc %g1,-1,%g0 tst %o3 bnz,a .L_bn_add_words_tail ld [%o1],%o4 .L_bn_add_words_return: retl mov %g1,%o0 .L_bn_add_words_tail: addcc %g1,-1,%g0 ld [%o2],%o5 addxcc %o5,%o4,%o5 addx %g0,0,%g1 deccc %o3 bz .L_bn_add_words_return st %o5,[%o0] ld [%o1+4],%o4 addcc %g1,-1,%g0 ld [%o2+4],%o5 addxcc %o5,%o4,%o5 addx %g0,0,%g1 deccc %o3 bz .L_bn_add_words_return st %o5,[%o0+4] ld [%o1+8],%o4 addcc %g1,-1,%g0 ld [%o2+8],%o5 addxcc %o5,%o4,%o5 st %o5,[%o0+8] retl addx %g0,0,%o0 .type bn_add_words,#function .size bn_add_words,(.-bn_add_words) .align 32 .global bn_sub_words /* * BN_ULONG bn_sub_words(rp,ap,bp,n) * BN_ULONG *rp,*ap,*bp; * int n; */ bn_sub_words: cmp %o3,0 bg,a .L_bn_sub_words_proceed ld [%o1],%o4 retl clr %o0 .L_bn_sub_words_proceed: andcc %o3,-4,%g0 bz .L_bn_sub_words_tail clr %g1 ba .L_bn_sub_words_warm_loop addcc %g0,0,%g0 ! clear carry flag .L_bn_sub_words_loop: ld [%o1],%o4 .L_bn_sub_words_warm_loop: ld [%o2],%o5 ld [%o1+4],%g3 ld [%o2+4],%g4 dec 4,%o3 subxcc %o4,%o5,%o5 st %o5,[%o0] ld [%o1+8],%o4 ld [%o2+8],%o5 inc 16,%o1 subxcc %g3,%g4,%g4 st %g4,[%o0+4] ld [%o1-4],%g3 ld [%o2+12],%g4 inc 16,%o2 subxcc %o4,%o5,%o5 st %o5,[%o0+8] inc 16,%o0 subxcc %g3,%g4,%g4 st %g4,[%o0-4] addx %g0,0,%g1 andcc %o3,-4,%g0 bnz,a .L_bn_sub_words_loop addcc %g1,-1,%g0 tst %o3 nop bnz,a .L_bn_sub_words_tail ld [%o1],%o4 .L_bn_sub_words_return: retl mov %g1,%o0 .L_bn_sub_words_tail: addcc %g1,-1,%g0 ld [%o2],%o5 subxcc %o4,%o5,%o5 addx %g0,0,%g1 deccc %o3 bz .L_bn_sub_words_return st %o5,[%o0] nop ld [%o1+4],%o4 addcc %g1,-1,%g0 ld [%o2+4],%o5 subxcc %o4,%o5,%o5 addx %g0,0,%g1 deccc %o3 bz .L_bn_sub_words_return st %o5,[%o0+4] ld [%o1+8],%o4 addcc %g1,-1,%g0 ld [%o2+8],%o5 subxcc %o4,%o5,%o5 st %o5,[%o0+8] retl addx %g0,0,%o0 .type bn_sub_words,#function .size bn_sub_words,(.-bn_sub_words) #define FRAME_SIZE -96 /* * Here is register usage map for *all* routines below. */ #define t_1 %o0 #define t_2 %o1 #define c_1 %o2 #define c_2 %o3 #define c_3 %o4 #define ap(I) [%i1+4*I] #define bp(I) [%i2+4*I] #define rp(I) [%i0+4*I] #define a_0 %l0 #define a_1 %l1 #define a_2 %l2 #define a_3 %l3 #define a_4 %l4 #define a_5 %l5 #define a_6 %l6 #define a_7 %l7 #define b_0 %i3 #define b_1 %i4 #define b_2 %i5 #define b_3 %o5 #define b_4 %g1 #define b_5 %g2 #define b_6 %g3 #define b_7 %g4 .align 32 .global bn_mul_comba8 /* * void bn_mul_comba8(r,a,b) * BN_ULONG *r,*a,*b; */ bn_mul_comba8: save %sp,FRAME_SIZE,%sp ld ap(0),a_0 ld bp(0),b_0 umul a_0,b_0,c_1 !=!mul_add_c(a[0],b[0],c1,c2,c3); ld bp(1),b_1 rd %y,c_2 st c_1,rp(0) !r[0]=c1; umul a_0,b_1,t_1 !=!mul_add_c(a[0],b[1],c2,c3,c1); ld ap(1),a_1 addcc c_2,t_1,c_2 rd %y,t_2 addxcc %g0,t_2,c_3 != addx %g0,%g0,c_1 ld ap(2),a_2 umul a_1,b_0,t_1 !mul_add_c(a[1],b[0],c2,c3,c1); addcc c_2,t_1,c_2 != rd %y,t_2 addxcc c_3,t_2,c_3 st c_2,rp(1) !r[1]=c2; addx c_1,%g0,c_1 != umul a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx %g0,%g0,c_2 ld bp(2),b_2 umul a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 ld bp(3),b_3 addx c_2,%g0,c_2 != umul a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 st c_3,rp(2) !r[2]=c3; umul a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx %g0,%g0,c_3 umul a_1,b_2,t_1 !=!mul_add_c(a[1],b[2],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != ld ap(3),a_3 umul a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 != addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 ld ap(4),a_4 umul a_3,b_0,t_1 !mul_add_c(a[3],b[0],c1,c2,c3);!= addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != st c_1,rp(3) !r[3]=c1; umul a_4,b_0,t_1 !mul_add_c(a[4],b[0],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 umul a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); addcc c_2,t_1,c_2 != rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 umul a_2,b_2,t_1 !=!mul_add_c(a[2],b[2],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != ld bp(4),b_4 umul a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 ld bp(5),b_5 umul a_0,b_4,t_1 !=!mul_add_c(a[0],b[4],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != st c_2,rp(4) !r[4]=c2; umul a_0,b_5,t_1 !mul_add_c(a[0],b[5],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 umul a_1,b_4,t_1 !mul_add_c(a[1],b[4],c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_2,b_3,t_1 !=!mul_add_c(a[2],b[3],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != umul a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 ld ap(5),a_5 umul a_4,b_1,t_1 !mul_add_c(a[4],b[1],c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 ld ap(6),a_6 addx c_2,%g0,c_2 != umul a_5,b_0,t_1 !mul_add_c(a[5],b[0],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 st c_3,rp(5) !r[5]=c3; umul a_6,b_0,t_1 !mul_add_c(a[6],b[0],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx %g0,%g0,c_3 umul a_5,b_1,t_1 !=!mul_add_c(a[5],b[1],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != umul a_4,b_2,t_1 !mul_add_c(a[4],b[2],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 umul a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 != addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 umul a_2,b_4,t_1 !mul_add_c(a[2],b[4],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 ld bp(6),b_6 addx c_3,%g0,c_3 != umul a_1,b_5,t_1 !mul_add_c(a[1],b[5],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 ld bp(7),b_7 umul a_0,b_6,t_1 !mul_add_c(a[0],b[6],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 st c_1,rp(6) !r[6]=c1; addx c_3,%g0,c_3 != umul a_0,b_7,t_1 !mul_add_c(a[0],b[7],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 != addx %g0,%g0,c_1 umul a_1,b_6,t_1 !mul_add_c(a[1],b[6],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 umul a_2,b_5,t_1 !mul_add_c(a[2],b[5],c2,c3,c1); addcc c_2,t_1,c_2 != rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 umul a_3,b_4,t_1 !=!mul_add_c(a[3],b[4],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != umul a_4,b_3,t_1 !mul_add_c(a[4],b[3],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_5,b_2,t_1 !mul_add_c(a[5],b[2],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 ld ap(7),a_7 umul a_6,b_1,t_1 !=!mul_add_c(a[6],b[1],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != umul a_7,b_0,t_1 !mul_add_c(a[7],b[0],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 st c_2,rp(7) !r[7]=c2; umul a_7,b_1,t_1 !mul_add_c(a[7],b[1],c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 umul a_6,b_2,t_1 !=!mul_add_c(a[6],b[2],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != umul a_5,b_3,t_1 !mul_add_c(a[5],b[3],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 umul a_4,b_4,t_1 !mul_add_c(a[4],b[4],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_3,b_5,t_1 !mul_add_c(a[3],b[5],c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_2,b_6,t_1 !=!mul_add_c(a[2],b[6],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != umul a_1,b_7,t_1 !mul_add_c(a[1],b[7],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 ! addx c_2,%g0,c_2 st c_3,rp(8) !r[8]=c3; umul a_2,b_7,t_1 !mul_add_c(a[2],b[7],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx %g0,%g0,c_3 umul a_3,b_6,t_1 !=!mul_add_c(a[3],b[6],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != umul a_4,b_5,t_1 !mul_add_c(a[4],b[5],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 umul a_5,b_4,t_1 !mul_add_c(a[5],b[4],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 != addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 umul a_6,b_3,t_1 !mul_add_c(a[6],b[3],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 umul a_7,b_2,t_1 !=!mul_add_c(a[7],b[2],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != st c_1,rp(9) !r[9]=c1; umul a_7,b_3,t_1 !mul_add_c(a[7],b[3],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 umul a_6,b_4,t_1 !mul_add_c(a[6],b[4],c2,c3,c1); addcc c_2,t_1,c_2 != rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 umul a_5,b_5,t_1 !=!mul_add_c(a[5],b[5],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != umul a_4,b_6,t_1 !mul_add_c(a[4],b[6],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_3,b_7,t_1 !mul_add_c(a[3],b[7],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 st c_2,rp(10) !r[10]=c2; umul a_4,b_7,t_1 !=!mul_add_c(a[4],b[7],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 != umul a_5,b_6,t_1 !mul_add_c(a[5],b[6],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 umul a_6,b_5,t_1 !mul_add_c(a[6],b[5],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_7,b_4,t_1 !mul_add_c(a[7],b[4],c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 st c_3,rp(11) !r[11]=c3; addx c_2,%g0,c_2 != umul a_7,b_5,t_1 !mul_add_c(a[7],b[5],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx %g0,%g0,c_3 umul a_6,b_6,t_1 !mul_add_c(a[6],b[6],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 != addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 umul a_5,b_7,t_1 !mul_add_c(a[5],b[7],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 st c_1,rp(12) !r[12]=c1; addx c_3,%g0,c_3 != umul a_6,b_7,t_1 !mul_add_c(a[6],b[7],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 != addx %g0,%g0,c_1 umul a_7,b_6,t_1 !mul_add_c(a[7],b[6],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 st c_2,rp(13) !r[13]=c2; umul a_7,b_7,t_1 !=!mul_add_c(a[7],b[7],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 nop != st c_3,rp(14) !r[14]=c3; st c_1,rp(15) !r[15]=c1; ret restore %g0,%g0,%o0 .type bn_mul_comba8,#function .size bn_mul_comba8,(.-bn_mul_comba8) .align 32 .global bn_mul_comba4 /* * void bn_mul_comba4(r,a,b) * BN_ULONG *r,*a,*b; */ bn_mul_comba4: save %sp,FRAME_SIZE,%sp ld ap(0),a_0 ld bp(0),b_0 umul a_0,b_0,c_1 !=!mul_add_c(a[0],b[0],c1,c2,c3); ld bp(1),b_1 rd %y,c_2 st c_1,rp(0) !r[0]=c1; umul a_0,b_1,t_1 !=!mul_add_c(a[0],b[1],c2,c3,c1); ld ap(1),a_1 addcc c_2,t_1,c_2 rd %y,t_2 != addxcc %g0,t_2,c_3 addx %g0,%g0,c_1 ld ap(2),a_2 umul a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != st c_2,rp(1) !r[1]=c2; umul a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 ld bp(2),b_2 umul a_1,b_1,t_1 !=!mul_add_c(a[1],b[1],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != ld bp(3),b_3 umul a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 st c_3,rp(2) !r[2]=c3; umul a_0,b_3,t_1 !=!mul_add_c(a[0],b[3],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx %g0,%g0,c_3 != umul a_1,b_2,t_1 !mul_add_c(a[1],b[2],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 ld ap(3),a_3 umul a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 umul a_3,b_0,t_1 !=!mul_add_c(a[3],b[0],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != st c_1,rp(3) !r[3]=c1; umul a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 umul a_2,b_2,t_1 !mul_add_c(a[2],b[2],c2,c3,c1); addcc c_2,t_1,c_2 != rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 umul a_1,b_3,t_1 !=!mul_add_c(a[1],b[3],c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != st c_2,rp(4) !r[4]=c2; umul a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 umul a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 st c_3,rp(5) !r[5]=c3; addx c_2,%g0,c_2 != umul a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != st c_1,rp(6) !r[6]=c1; st c_2,rp(7) !r[7]=c2; ret restore %g0,%g0,%o0 .type bn_mul_comba4,#function .size bn_mul_comba4,(.-bn_mul_comba4) .align 32 .global bn_sqr_comba8 bn_sqr_comba8: save %sp,FRAME_SIZE,%sp ld ap(0),a_0 ld ap(1),a_1 umul a_0,a_0,c_1 !=!sqr_add_c(a,0,c1,c2,c3); rd %y,c_2 st c_1,rp(0) !r[0]=c1; ld ap(2),a_2 umul a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc %g0,t_2,c_3 addx %g0,%g0,c_1 != addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 st c_2,rp(1) !r[1]=c2; addx c_1,%g0,c_1 != umul a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx %g0,%g0,c_2 addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != ld ap(3),a_3 umul a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 st c_3,rp(2) !r[2]=c3; umul a_0,a_3,t_1 !=!sqr_add_c2(a,3,0,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx %g0,%g0,c_3 != addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 ld ap(4),a_4 addx c_3,%g0,c_3 != umul a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != st c_1,rp(3) !r[3]=c1; umul a_4,a_0,t_1 !sqr_add_c2(a,4,0,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 ld ap(5),a_5 umul a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); addcc c_2,t_1,c_2 != rd %y,t_2 addxcc c_3,t_2,c_3 st c_2,rp(4) !r[4]=c2; addx c_1,%g0,c_1 != umul a_0,a_5,t_1 !sqr_add_c2(a,5,0,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx %g0,%g0,c_2 addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != umul a_1,a_4,t_1 !sqr_add_c2(a,4,1,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != ld ap(6),a_6 umul a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 st c_3,rp(5) !r[5]=c3; umul a_6,a_0,t_1 !sqr_add_c2(a,6,0,c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx %g0,%g0,c_3 addcc c_1,t_1,c_1 != addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 umul a_5,a_1,t_1 !sqr_add_c2(a,5,1,c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 addcc c_1,t_1,c_1 != addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 umul a_4,a_2,t_1 !sqr_add_c2(a,4,2,c1,c2,c3); addcc c_1,t_1,c_1 != rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 addcc c_1,t_1,c_1 != addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 ld ap(7),a_7 umul a_3,a_3,t_1 !=!sqr_add_c(a,3,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != st c_1,rp(6) !r[6]=c1; umul a_0,a_7,t_1 !sqr_add_c2(a,7,0,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_1,a_6,t_1 !sqr_add_c2(a,6,1,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_2,a_5,t_1 !sqr_add_c2(a,5,2,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_3,a_4,t_1 !sqr_add_c2(a,4,3,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 st c_2,rp(7) !r[7]=c2; umul a_7,a_1,t_1 !sqr_add_c2(a,7,1,c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 addcc c_3,t_1,c_3 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_6,a_2,t_1 !sqr_add_c2(a,6,2,c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 addcc c_3,t_1,c_3 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_5,a_3,t_1 !sqr_add_c2(a,5,3,c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 addcc c_3,t_1,c_3 != addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_4,a_4,t_1 !sqr_add_c(a,4,c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 st c_3,rp(8) !r[8]=c3; addx c_2,%g0,c_2 != umul a_2,a_7,t_1 !sqr_add_c2(a,7,2,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx %g0,%g0,c_3 addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != umul a_3,a_6,t_1 !sqr_add_c2(a,6,3,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != umul a_4,a_5,t_1 !sqr_add_c2(a,5,4,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != st c_1,rp(9) !r[9]=c1; umul a_7,a_3,t_1 !sqr_add_c2(a,7,3,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_6,a_4,t_1 !sqr_add_c2(a,6,4,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_5,a_5,t_1 !sqr_add_c(a,5,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 st c_2,rp(10) !r[10]=c2; umul a_4,a_7,t_1 !=!sqr_add_c2(a,7,4,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 != addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 umul a_5,a_6,t_1 !=!sqr_add_c2(a,6,5,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx c_2,%g0,c_2 != addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 st c_3,rp(11) !r[11]=c3; addx c_2,%g0,c_2 != umul a_7,a_5,t_1 !sqr_add_c2(a,7,5,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx %g0,%g0,c_3 addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != umul a_6,a_6,t_1 !sqr_add_c(a,6,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 st c_1,rp(12) !r[12]=c1; umul a_6,a_7,t_1 !sqr_add_c2(a,7,6,c2,c3,c1); addcc c_2,t_1,c_2 != rd %y,t_2 addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 addcc c_2,t_1,c_2 != addxcc c_3,t_2,c_3 st c_2,rp(13) !r[13]=c2; addx c_1,%g0,c_1 != umul a_7,a_7,t_1 !sqr_add_c(a,7,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 != st c_3,rp(14) !r[14]=c3; st c_1,rp(15) !r[15]=c1; ret restore %g0,%g0,%o0 .type bn_sqr_comba8,#function .size bn_sqr_comba8,(.-bn_sqr_comba8) .align 32 .global bn_sqr_comba4 /* * void bn_sqr_comba4(r,a) * BN_ULONG *r,*a; */ bn_sqr_comba4: save %sp,FRAME_SIZE,%sp ld ap(0),a_0 umul a_0,a_0,c_1 !sqr_add_c(a,0,c1,c2,c3); ld ap(1),a_1 != rd %y,c_2 st c_1,rp(0) !r[0]=c1; ld ap(2),a_2 umul a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 addxcc %g0,t_2,c_3 addx %g0,%g0,c_1 != addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 != st c_2,rp(1) !r[1]=c2; umul a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 != addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 != addx c_2,%g0,c_2 ld ap(3),a_3 umul a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); addcc c_3,t_1,c_3 != rd %y,t_2 addxcc c_1,t_2,c_1 st c_3,rp(2) !r[2]=c3; addx c_2,%g0,c_2 != umul a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx %g0,%g0,c_3 addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != umul a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != addx c_3,%g0,c_3 addcc c_1,t_1,c_1 addxcc c_2,t_2,c_2 addx c_3,%g0,c_3 != st c_1,rp(3) !r[3]=c1; umul a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx %g0,%g0,c_1 addcc c_2,t_1,c_2 addxcc c_3,t_2,c_3 != addx c_1,%g0,c_1 umul a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); addcc c_2,t_1,c_2 rd %y,t_2 != addxcc c_3,t_2,c_3 addx c_1,%g0,c_1 st c_2,rp(4) !r[4]=c2; umul a_2,a_3,t_1 !=!sqr_add_c2(a,3,2,c3,c1,c2); addcc c_3,t_1,c_3 rd %y,t_2 addxcc c_1,t_2,c_1 addx %g0,%g0,c_2 != addcc c_3,t_1,c_3 addxcc c_1,t_2,c_1 st c_3,rp(5) !r[5]=c3; addx c_2,%g0,c_2 != umul a_3,a_3,t_1 !sqr_add_c(a,3,c1,c2,c3); addcc c_1,t_1,c_1 rd %y,t_2 addxcc c_2,t_2,c_2 != st c_1,rp(6) !r[6]=c1; st c_2,rp(7) !r[7]=c2; ret restore %g0,%g0,%o0 .type bn_sqr_comba4,#function .size bn_sqr_comba4,(.-bn_sqr_comba4) .align 32 openssl-1.1.1f/crypto/bn/asm/sparcv8plus.S000066400000000000000000001006761364063235100204750ustar00rootroot00000000000000.ident "sparcv8plus.s, Version 1.4" .ident "SPARC v9 ISA artwork by Andy Polyakov " /* * ==================================================================== * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * ==================================================================== */ /* * This is my modest contribution to OpenSSL project (see * http://www.openssl.org/ for more information about it) and is * a drop-in UltraSPARC ISA replacement for crypto/bn/bn_asm.c * module. For updates see http://fy.chalmers.se/~appro/hpe/. * * Questions-n-answers. * * Q. How to compile? * A. With SC4.x/SC5.x: * * cc -xarch=v8plus -c bn_asm.sparc.v8plus.S -o bn_asm.o * * and with gcc: * * gcc -mcpu=ultrasparc -c bn_asm.sparc.v8plus.S -o bn_asm.o * * or if above fails (it does if you have gas installed): * * gcc -E bn_asm.sparc.v8plus.S | as -xarch=v8plus /dev/fd/0 -o bn_asm.o * * Quick-n-dirty way to fuse the module into the library. * Provided that the library is already configured and built * (in 0.9.2 case with no-asm option): * * # cd crypto/bn * # cp /some/place/bn_asm.sparc.v8plus.S . * # cc -xarch=v8plus -c bn_asm.sparc.v8plus.S -o bn_asm.o * # make * # cd ../.. * # make; make test * * Quick-n-dirty way to get rid of it: * * # cd crypto/bn * # touch bn_asm.c * # make * # cd ../.. * # make; make test * * Q. V8plus architecture? What kind of beast is that? * A. Well, it's rather a programming model than an architecture... * It's actually v9-compliant, i.e. *any* UltraSPARC, CPU under * special conditions, namely when kernel doesn't preserve upper * 32 bits of otherwise 64-bit registers during a context switch. * * Q. Why just UltraSPARC? What about SuperSPARC? * A. Original release did target UltraSPARC only. Now SuperSPARC * version is provided along. Both version share bn_*comba[48] * implementations (see comment later in code for explanation). * But what's so special about this UltraSPARC implementation? * Why didn't I let compiler do the job? Trouble is that most of * available compilers (well, SC5.0 is the only exception) don't * attempt to take advantage of UltraSPARC's 64-bitness under * 32-bit kernels even though it's perfectly possible (see next * question). * * Q. 64-bit registers under 32-bit kernels? Didn't you just say it * doesn't work? * A. You can't address *all* registers as 64-bit wide:-( The catch is * that you actually may rely upon %o0-%o5 and %g1-%g4 being fully * preserved if you're in a leaf function, i.e. such never calling * any other functions. All functions in this module are leaf and * 10 registers is a handful. And as a matter of fact none-"comba" * routines don't require even that much and I could even afford to * not allocate own stack frame for 'em:-) * * Q. What about 64-bit kernels? * A. What about 'em? Just kidding:-) Pure 64-bit version is currently * under evaluation and development... * * Q. What about shared libraries? * A. What about 'em? Kidding again:-) Code does *not* contain any * code position dependencies and it's safe to include it into * shared library as is. * * Q. How much faster does it go? * A. Do you have a good benchmark? In either case below is what I * experience with crypto/bn/expspeed.c test program: * * v8plus module on U10/300MHz against bn_asm.c compiled with: * * cc-5.0 -xarch=v8plus -xO5 -xdepend +7-12% * cc-4.2 -xarch=v8plus -xO5 -xdepend +25-35% * egcs-1.1.2 -mcpu=ultrasparc -O3 +35-45% * * v8 module on SS10/60MHz against bn_asm.c compiled with: * * cc-5.0 -xarch=v8 -xO5 -xdepend +7-10% * cc-4.2 -xarch=v8 -xO5 -xdepend +10% * egcs-1.1.2 -mv8 -O3 +35-45% * * As you can see it's damn hard to beat the new Sun C compiler * and it's in first place GNU C users who will appreciate this * assembler implementation:-) */ /* * Revision history. * * 1.0 - initial release; * 1.1 - new loop unrolling model(*); * - some more fine tuning; * 1.2 - made gas friendly; * - updates to documentation concerning v9; * - new performance comparison matrix; * 1.3 - fixed problem with /usr/ccs/lib/cpp; * 1.4 - native V9 bn_*_comba[48] implementation (15% more efficient) * resulting in slight overall performance kick; * - some retunes; * - support for GNU as added; * * (*) Originally unrolled loop looked like this: * for (;;) { * op(p+0); if (--n==0) break; * op(p+1); if (--n==0) break; * op(p+2); if (--n==0) break; * op(p+3); if (--n==0) break; * p+=4; * } * I unroll according to following: * while (n&~3) { * op(p+0); op(p+1); op(p+2); op(p+3); * p+=4; n=-4; * } * if (n) { * op(p+0); if (--n==0) return; * op(p+2); if (--n==0) return; * op(p+3); return; * } */ #if defined(__SUNPRO_C) && defined(__sparcv9) /* They've said -xarch=v9 at command line */ .register %g2,#scratch .register %g3,#scratch # define FRAME_SIZE -192 #elif defined(__GNUC__) && defined(__arch64__) /* They've said -m64 at command line */ .register %g2,#scratch .register %g3,#scratch # define FRAME_SIZE -192 #else # define FRAME_SIZE -96 #endif /* * GNU assembler can't stand stuw:-( */ #define stuw st .section ".text",#alloc,#execinstr .file "bn_asm.sparc.v8plus.S" .align 32 .global bn_mul_add_words /* * BN_ULONG bn_mul_add_words(rp,ap,num,w) * BN_ULONG *rp,*ap; * int num; * BN_ULONG w; */ bn_mul_add_words: sra %o2,%g0,%o2 ! signx %o2 brgz,a %o2,.L_bn_mul_add_words_proceed lduw [%o1],%g2 retl clr %o0 nop nop nop .L_bn_mul_add_words_proceed: srl %o3,%g0,%o3 ! clruw %o3 andcc %o2,-4,%g0 bz,pn %icc,.L_bn_mul_add_words_tail clr %o5 .L_bn_mul_add_words_loop: ! wow! 32 aligned! lduw [%o0],%g1 lduw [%o1+4],%g3 mulx %o3,%g2,%g2 add %g1,%o5,%o4 nop add %o4,%g2,%o4 stuw %o4,[%o0] srlx %o4,32,%o5 lduw [%o0+4],%g1 lduw [%o1+8],%g2 mulx %o3,%g3,%g3 add %g1,%o5,%o4 dec 4,%o2 add %o4,%g3,%o4 stuw %o4,[%o0+4] srlx %o4,32,%o5 lduw [%o0+8],%g1 lduw [%o1+12],%g3 mulx %o3,%g2,%g2 add %g1,%o5,%o4 inc 16,%o1 add %o4,%g2,%o4 stuw %o4,[%o0+8] srlx %o4,32,%o5 lduw [%o0+12],%g1 mulx %o3,%g3,%g3 add %g1,%o5,%o4 inc 16,%o0 add %o4,%g3,%o4 andcc %o2,-4,%g0 stuw %o4,[%o0-4] srlx %o4,32,%o5 bnz,a,pt %icc,.L_bn_mul_add_words_loop lduw [%o1],%g2 brnz,a,pn %o2,.L_bn_mul_add_words_tail lduw [%o1],%g2 .L_bn_mul_add_words_return: retl mov %o5,%o0 .L_bn_mul_add_words_tail: lduw [%o0],%g1 mulx %o3,%g2,%g2 add %g1,%o5,%o4 dec %o2 add %o4,%g2,%o4 srlx %o4,32,%o5 brz,pt %o2,.L_bn_mul_add_words_return stuw %o4,[%o0] lduw [%o1+4],%g2 lduw [%o0+4],%g1 mulx %o3,%g2,%g2 add %g1,%o5,%o4 dec %o2 add %o4,%g2,%o4 srlx %o4,32,%o5 brz,pt %o2,.L_bn_mul_add_words_return stuw %o4,[%o0+4] lduw [%o1+8],%g2 lduw [%o0+8],%g1 mulx %o3,%g2,%g2 add %g1,%o5,%o4 add %o4,%g2,%o4 stuw %o4,[%o0+8] retl srlx %o4,32,%o0 .type bn_mul_add_words,#function .size bn_mul_add_words,(.-bn_mul_add_words) .align 32 .global bn_mul_words /* * BN_ULONG bn_mul_words(rp,ap,num,w) * BN_ULONG *rp,*ap; * int num; * BN_ULONG w; */ bn_mul_words: sra %o2,%g0,%o2 ! signx %o2 brgz,a %o2,.L_bn_mul_words_proceed lduw [%o1],%g2 retl clr %o0 nop nop nop .L_bn_mul_words_proceed: srl %o3,%g0,%o3 ! clruw %o3 andcc %o2,-4,%g0 bz,pn %icc,.L_bn_mul_words_tail clr %o5 .L_bn_mul_words_loop: ! wow! 32 aligned! lduw [%o1+4],%g3 mulx %o3,%g2,%g2 add %g2,%o5,%o4 nop stuw %o4,[%o0] srlx %o4,32,%o5 lduw [%o1+8],%g2 mulx %o3,%g3,%g3 add %g3,%o5,%o4 dec 4,%o2 stuw %o4,[%o0+4] srlx %o4,32,%o5 lduw [%o1+12],%g3 mulx %o3,%g2,%g2 add %g2,%o5,%o4 inc 16,%o1 stuw %o4,[%o0+8] srlx %o4,32,%o5 mulx %o3,%g3,%g3 add %g3,%o5,%o4 inc 16,%o0 stuw %o4,[%o0-4] srlx %o4,32,%o5 andcc %o2,-4,%g0 bnz,a,pt %icc,.L_bn_mul_words_loop lduw [%o1],%g2 nop nop brnz,a,pn %o2,.L_bn_mul_words_tail lduw [%o1],%g2 .L_bn_mul_words_return: retl mov %o5,%o0 .L_bn_mul_words_tail: mulx %o3,%g2,%g2 add %g2,%o5,%o4 dec %o2 srlx %o4,32,%o5 brz,pt %o2,.L_bn_mul_words_return stuw %o4,[%o0] lduw [%o1+4],%g2 mulx %o3,%g2,%g2 add %g2,%o5,%o4 dec %o2 srlx %o4,32,%o5 brz,pt %o2,.L_bn_mul_words_return stuw %o4,[%o0+4] lduw [%o1+8],%g2 mulx %o3,%g2,%g2 add %g2,%o5,%o4 stuw %o4,[%o0+8] retl srlx %o4,32,%o0 .type bn_mul_words,#function .size bn_mul_words,(.-bn_mul_words) .align 32 .global bn_sqr_words /* * void bn_sqr_words(r,a,n) * BN_ULONG *r,*a; * int n; */ bn_sqr_words: sra %o2,%g0,%o2 ! signx %o2 brgz,a %o2,.L_bn_sqr_words_proceed lduw [%o1],%g2 retl clr %o0 nop nop nop .L_bn_sqr_words_proceed: andcc %o2,-4,%g0 nop bz,pn %icc,.L_bn_sqr_words_tail nop .L_bn_sqr_words_loop: ! wow! 32 aligned! lduw [%o1+4],%g3 mulx %g2,%g2,%o4 stuw %o4,[%o0] srlx %o4,32,%o5 stuw %o5,[%o0+4] nop lduw [%o1+8],%g2 mulx %g3,%g3,%o4 dec 4,%o2 stuw %o4,[%o0+8] srlx %o4,32,%o5 stuw %o5,[%o0+12] lduw [%o1+12],%g3 mulx %g2,%g2,%o4 srlx %o4,32,%o5 stuw %o4,[%o0+16] inc 16,%o1 stuw %o5,[%o0+20] mulx %g3,%g3,%o4 inc 32,%o0 stuw %o4,[%o0-8] srlx %o4,32,%o5 andcc %o2,-4,%g2 stuw %o5,[%o0-4] bnz,a,pt %icc,.L_bn_sqr_words_loop lduw [%o1],%g2 nop brnz,a,pn %o2,.L_bn_sqr_words_tail lduw [%o1],%g2 .L_bn_sqr_words_return: retl clr %o0 .L_bn_sqr_words_tail: mulx %g2,%g2,%o4 dec %o2 stuw %o4,[%o0] srlx %o4,32,%o5 brz,pt %o2,.L_bn_sqr_words_return stuw %o5,[%o0+4] lduw [%o1+4],%g2 mulx %g2,%g2,%o4 dec %o2 stuw %o4,[%o0+8] srlx %o4,32,%o5 brz,pt %o2,.L_bn_sqr_words_return stuw %o5,[%o0+12] lduw [%o1+8],%g2 mulx %g2,%g2,%o4 srlx %o4,32,%o5 stuw %o4,[%o0+16] stuw %o5,[%o0+20] retl clr %o0 .type bn_sqr_words,#function .size bn_sqr_words,(.-bn_sqr_words) .align 32 .global bn_div_words /* * BN_ULONG bn_div_words(h,l,d) * BN_ULONG h,l,d; */ bn_div_words: sllx %o0,32,%o0 or %o0,%o1,%o0 udivx %o0,%o2,%o0 retl srl %o0,%g0,%o0 ! clruw %o0 .type bn_div_words,#function .size bn_div_words,(.-bn_div_words) .align 32 .global bn_add_words /* * BN_ULONG bn_add_words(rp,ap,bp,n) * BN_ULONG *rp,*ap,*bp; * int n; */ bn_add_words: sra %o3,%g0,%o3 ! signx %o3 brgz,a %o3,.L_bn_add_words_proceed lduw [%o1],%o4 retl clr %o0 .L_bn_add_words_proceed: andcc %o3,-4,%g0 bz,pn %icc,.L_bn_add_words_tail addcc %g0,0,%g0 ! clear carry flag .L_bn_add_words_loop: ! wow! 32 aligned! dec 4,%o3 lduw [%o2],%o5 lduw [%o1+4],%g1 lduw [%o2+4],%g2 lduw [%o1+8],%g3 lduw [%o2+8],%g4 addccc %o5,%o4,%o5 stuw %o5,[%o0] lduw [%o1+12],%o4 lduw [%o2+12],%o5 inc 16,%o1 addccc %g1,%g2,%g1 stuw %g1,[%o0+4] inc 16,%o2 addccc %g3,%g4,%g3 stuw %g3,[%o0+8] inc 16,%o0 addccc %o5,%o4,%o5 stuw %o5,[%o0-4] and %o3,-4,%g1 brnz,a,pt %g1,.L_bn_add_words_loop lduw [%o1],%o4 brnz,a,pn %o3,.L_bn_add_words_tail lduw [%o1],%o4 .L_bn_add_words_return: clr %o0 retl movcs %icc,1,%o0 nop .L_bn_add_words_tail: lduw [%o2],%o5 dec %o3 addccc %o5,%o4,%o5 brz,pt %o3,.L_bn_add_words_return stuw %o5,[%o0] lduw [%o1+4],%o4 lduw [%o2+4],%o5 dec %o3 addccc %o5,%o4,%o5 brz,pt %o3,.L_bn_add_words_return stuw %o5,[%o0+4] lduw [%o1+8],%o4 lduw [%o2+8],%o5 addccc %o5,%o4,%o5 stuw %o5,[%o0+8] clr %o0 retl movcs %icc,1,%o0 .type bn_add_words,#function .size bn_add_words,(.-bn_add_words) .global bn_sub_words /* * BN_ULONG bn_sub_words(rp,ap,bp,n) * BN_ULONG *rp,*ap,*bp; * int n; */ bn_sub_words: sra %o3,%g0,%o3 ! signx %o3 brgz,a %o3,.L_bn_sub_words_proceed lduw [%o1],%o4 retl clr %o0 .L_bn_sub_words_proceed: andcc %o3,-4,%g0 bz,pn %icc,.L_bn_sub_words_tail addcc %g0,0,%g0 ! clear carry flag .L_bn_sub_words_loop: ! wow! 32 aligned! dec 4,%o3 lduw [%o2],%o5 lduw [%o1+4],%g1 lduw [%o2+4],%g2 lduw [%o1+8],%g3 lduw [%o2+8],%g4 subccc %o4,%o5,%o5 stuw %o5,[%o0] lduw [%o1+12],%o4 lduw [%o2+12],%o5 inc 16,%o1 subccc %g1,%g2,%g2 stuw %g2,[%o0+4] inc 16,%o2 subccc %g3,%g4,%g4 stuw %g4,[%o0+8] inc 16,%o0 subccc %o4,%o5,%o5 stuw %o5,[%o0-4] and %o3,-4,%g1 brnz,a,pt %g1,.L_bn_sub_words_loop lduw [%o1],%o4 brnz,a,pn %o3,.L_bn_sub_words_tail lduw [%o1],%o4 .L_bn_sub_words_return: clr %o0 retl movcs %icc,1,%o0 nop .L_bn_sub_words_tail: ! wow! 32 aligned! lduw [%o2],%o5 dec %o3 subccc %o4,%o5,%o5 brz,pt %o3,.L_bn_sub_words_return stuw %o5,[%o0] lduw [%o1+4],%o4 lduw [%o2+4],%o5 dec %o3 subccc %o4,%o5,%o5 brz,pt %o3,.L_bn_sub_words_return stuw %o5,[%o0+4] lduw [%o1+8],%o4 lduw [%o2+8],%o5 subccc %o4,%o5,%o5 stuw %o5,[%o0+8] clr %o0 retl movcs %icc,1,%o0 .type bn_sub_words,#function .size bn_sub_words,(.-bn_sub_words) /* * Code below depends on the fact that upper parts of the %l0-%l7 * and %i0-%i7 are zeroed by kernel after context switch. In * previous versions this comment stated that "the trouble is that * it's not feasible to implement the mumbo-jumbo in less V9 * instructions:-(" which apparently isn't true thanks to * 'bcs,a %xcc,.+8; inc %rd' pair. But the performance improvement * results not from the shorter code, but from elimination of * multicycle none-pairable 'rd %y,%rd' instructions. * * Andy. */ /* * Here is register usage map for *all* routines below. */ #define t_1 %o0 #define t_2 %o1 #define c_12 %o2 #define c_3 %o3 #define ap(I) [%i1+4*I] #define bp(I) [%i2+4*I] #define rp(I) [%i0+4*I] #define a_0 %l0 #define a_1 %l1 #define a_2 %l2 #define a_3 %l3 #define a_4 %l4 #define a_5 %l5 #define a_6 %l6 #define a_7 %l7 #define b_0 %i3 #define b_1 %i4 #define b_2 %i5 #define b_3 %o4 #define b_4 %o5 #define b_5 %o7 #define b_6 %g1 #define b_7 %g4 .align 32 .global bn_mul_comba8 /* * void bn_mul_comba8(r,a,b) * BN_ULONG *r,*a,*b; */ bn_mul_comba8: save %sp,FRAME_SIZE,%sp mov 1,t_2 lduw ap(0),a_0 sllx t_2,32,t_2 lduw bp(0),b_0 != lduw bp(1),b_1 mulx a_0,b_0,t_1 !mul_add_c(a[0],b[0],c1,c2,c3); srlx t_1,32,c_12 stuw t_1,rp(0) !=!r[0]=c1; lduw ap(1),a_1 mulx a_0,b_1,t_1 !mul_add_c(a[0],b[1],c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 != bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(2),a_2 mulx a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 != stuw t_1,rp(1) !r[1]=c2; or c_12,c_3,c_12 mulx a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); addcc c_12,t_1,c_12 != clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw bp(2),b_2 != mulx a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != lduw bp(3),b_3 mulx a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(2) !r[2]=c3; or c_12,c_3,c_12 != mulx a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_1,b_2,t_1 !=!mul_add_c(a[1],b[2],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 lduw ap(3),a_3 mulx a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); addcc c_12,t_1,c_12 != bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(4),a_4 mulx a_3,b_0,t_1 !=!mul_add_c(a[3],b[0],c1,c2,c3);!= addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 != stuw t_1,rp(3) !r[3]=c1; or c_12,c_3,c_12 mulx a_4,b_0,t_1 !mul_add_c(a[4],b[0],c2,c3,c1); addcc c_12,t_1,c_12 != clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_3,b_1,t_1 !=!mul_add_c(a[3],b[1],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_2,b_2,t_1 !=!mul_add_c(a[2],b[2],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw bp(4),b_4 != mulx a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != lduw bp(5),b_5 mulx a_0,b_4,t_1 !mul_add_c(a[0],b[4],c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(4) !r[4]=c2; or c_12,c_3,c_12 != mulx a_0,b_5,t_1 !mul_add_c(a[0],b[5],c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_1,b_4,t_1 !mul_add_c(a[1],b[4],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 lduw ap(5),a_5 mulx a_4,b_1,t_1 !mul_add_c(a[4],b[1],c3,c1,c2); addcc c_12,t_1,c_12 != bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(6),a_6 mulx a_5,b_0,t_1 !=!mul_add_c(a[5],b[0],c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 != stuw t_1,rp(5) !r[5]=c3; or c_12,c_3,c_12 mulx a_6,b_0,t_1 !mul_add_c(a[6],b[0],c1,c2,c3); addcc c_12,t_1,c_12 != clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_5,b_1,t_1 !=!mul_add_c(a[5],b[1],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_4,b_2,t_1 !=!mul_add_c(a[4],b[2],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_3,b_3,t_1 !=!mul_add_c(a[3],b[3],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_2,b_4,t_1 !=!mul_add_c(a[2],b[4],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw bp(6),b_6 != mulx a_1,b_5,t_1 !mul_add_c(a[1],b[5],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != lduw bp(7),b_7 mulx a_0,b_6,t_1 !mul_add_c(a[0],b[6],c1,c2,c3); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(6) !r[6]=c1; or c_12,c_3,c_12 != mulx a_0,b_7,t_1 !mul_add_c(a[0],b[7],c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_1,b_6,t_1 !mul_add_c(a[1],b[6],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_2,b_5,t_1 !mul_add_c(a[2],b[5],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_3,b_4,t_1 !mul_add_c(a[3],b[4],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_4,b_3,t_1 !mul_add_c(a[4],b[3],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_5,b_2,t_1 !mul_add_c(a[5],b[2],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 lduw ap(7),a_7 mulx a_6,b_1,t_1 !=!mul_add_c(a[6],b[1],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_7,b_0,t_1 !=!mul_add_c(a[7],b[0],c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 != stuw t_1,rp(7) !r[7]=c2; or c_12,c_3,c_12 mulx a_7,b_1,t_1 !=!mul_add_c(a[7],b[1],c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 != mulx a_6,b_2,t_1 !mul_add_c(a[6],b[2],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != mulx a_5,b_3,t_1 !mul_add_c(a[5],b[3],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != mulx a_4,b_4,t_1 !mul_add_c(a[4],b[4],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != mulx a_3,b_5,t_1 !mul_add_c(a[3],b[5],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != mulx a_2,b_6,t_1 !mul_add_c(a[2],b[6],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != mulx a_1,b_7,t_1 !mul_add_c(a[1],b[7],c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 != srlx t_1,32,c_12 stuw t_1,rp(8) !r[8]=c3; or c_12,c_3,c_12 mulx a_2,b_7,t_1 !=!mul_add_c(a[2],b[7],c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 != mulx a_3,b_6,t_1 !mul_add_c(a[3],b[6],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_4,b_5,t_1 !mul_add_c(a[4],b[5],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_5,b_4,t_1 !mul_add_c(a[5],b[4],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_6,b_3,t_1 !mul_add_c(a[6],b[3],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_7,b_2,t_1 !mul_add_c(a[7],b[2],c1,c2,c3); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(9) !r[9]=c1; or c_12,c_3,c_12 != mulx a_7,b_3,t_1 !mul_add_c(a[7],b[3],c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_6,b_4,t_1 !mul_add_c(a[6],b[4],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_5,b_5,t_1 !mul_add_c(a[5],b[5],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_4,b_6,t_1 !mul_add_c(a[4],b[6],c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_3,b_7,t_1 !mul_add_c(a[3],b[7],c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(10) !r[10]=c2; or c_12,c_3,c_12 != mulx a_4,b_7,t_1 !mul_add_c(a[4],b[7],c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_5,b_6,t_1 !mul_add_c(a[5],b[6],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_6,b_5,t_1 !mul_add_c(a[6],b[5],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_7,b_4,t_1 !mul_add_c(a[7],b[4],c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(11) !r[11]=c3; or c_12,c_3,c_12 != mulx a_7,b_5,t_1 !mul_add_c(a[7],b[5],c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_6,b_6,t_1 !mul_add_c(a[6],b[6],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_5,b_7,t_1 !mul_add_c(a[5],b[7],c1,c2,c3); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(12) !r[12]=c1; or c_12,c_3,c_12 != mulx a_6,b_7,t_1 !mul_add_c(a[6],b[7],c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_7,b_6,t_1 !mul_add_c(a[7],b[6],c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 st t_1,rp(13) !r[13]=c2; or c_12,c_3,c_12 != mulx a_7,b_7,t_1 !mul_add_c(a[7],b[7],c3,c1,c2); addcc c_12,t_1,t_1 srlx t_1,32,c_12 != stuw t_1,rp(14) !r[14]=c3; stuw c_12,rp(15) !r[15]=c1; ret restore %g0,%g0,%o0 != .type bn_mul_comba8,#function .size bn_mul_comba8,(.-bn_mul_comba8) .align 32 .global bn_mul_comba4 /* * void bn_mul_comba4(r,a,b) * BN_ULONG *r,*a,*b; */ bn_mul_comba4: save %sp,FRAME_SIZE,%sp lduw ap(0),a_0 mov 1,t_2 lduw bp(0),b_0 sllx t_2,32,t_2 != lduw bp(1),b_1 mulx a_0,b_0,t_1 !mul_add_c(a[0],b[0],c1,c2,c3); srlx t_1,32,c_12 stuw t_1,rp(0) !=!r[0]=c1; lduw ap(1),a_1 mulx a_0,b_1,t_1 !mul_add_c(a[0],b[1],c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 != bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(2),a_2 mulx a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 != stuw t_1,rp(1) !r[1]=c2; or c_12,c_3,c_12 mulx a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); addcc c_12,t_1,c_12 != clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw bp(2),b_2 != mulx a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 != lduw bp(3),b_3 mulx a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 != add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(2) !r[2]=c3; or c_12,c_3,c_12 != mulx a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 != add c_3,t_2,c_3 mulx a_1,b_2,t_1 !mul_add_c(a[1],b[2],c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 != add c_3,t_2,c_3 lduw ap(3),a_3 mulx a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); addcc c_12,t_1,c_12 != bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_3,b_0,t_1 !mul_add_c(a[3],b[0],c1,c2,c3);!= addcc c_12,t_1,t_1 != bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(3) !=!r[3]=c1; or c_12,c_3,c_12 mulx a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 != bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_2,b_2,t_1 !mul_add_c(a[2],b[2],c2,c3,c1); addcc c_12,t_1,c_12 != bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); addcc c_12,t_1,t_1 != bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(4) !=!r[4]=c2; or c_12,c_3,c_12 mulx a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 != bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); addcc c_12,t_1,t_1 != bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(5) !=!r[5]=c3; or c_12,c_3,c_12 mulx a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); addcc c_12,t_1,t_1 srlx t_1,32,c_12 != stuw t_1,rp(6) !r[6]=c1; stuw c_12,rp(7) !r[7]=c2; ret restore %g0,%g0,%o0 .type bn_mul_comba4,#function .size bn_mul_comba4,(.-bn_mul_comba4) .align 32 .global bn_sqr_comba8 bn_sqr_comba8: save %sp,FRAME_SIZE,%sp mov 1,t_2 lduw ap(0),a_0 sllx t_2,32,t_2 lduw ap(1),a_1 mulx a_0,a_0,t_1 !sqr_add_c(a,0,c1,c2,c3); srlx t_1,32,c_12 stuw t_1,rp(0) !r[0]=c1; lduw ap(2),a_2 mulx a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(1) !r[1]=c2; or c_12,c_3,c_12 mulx a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(3),a_3 mulx a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(2) !r[2]=c3; or c_12,c_3,c_12 mulx a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(4),a_4 mulx a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 st t_1,rp(3) !r[3]=c1; or c_12,c_3,c_12 mulx a_4,a_0,t_1 !sqr_add_c2(a,4,0,c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(5),a_5 mulx a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(4) !r[4]=c2; or c_12,c_3,c_12 mulx a_0,a_5,t_1 !sqr_add_c2(a,5,0,c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_1,a_4,t_1 !sqr_add_c2(a,4,1,c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(6),a_6 mulx a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(5) !r[5]=c3; or c_12,c_3,c_12 mulx a_6,a_0,t_1 !sqr_add_c2(a,6,0,c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_5,a_1,t_1 !sqr_add_c2(a,5,1,c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_4,a_2,t_1 !sqr_add_c2(a,4,2,c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(7),a_7 mulx a_3,a_3,t_1 !=!sqr_add_c(a,3,c1,c2,c3); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(6) !r[6]=c1; or c_12,c_3,c_12 mulx a_0,a_7,t_1 !sqr_add_c2(a,7,0,c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_1,a_6,t_1 !sqr_add_c2(a,6,1,c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_2,a_5,t_1 !sqr_add_c2(a,5,2,c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_3,a_4,t_1 !sqr_add_c2(a,4,3,c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(7) !r[7]=c2; or c_12,c_3,c_12 mulx a_7,a_1,t_1 !sqr_add_c2(a,7,1,c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_6,a_2,t_1 !sqr_add_c2(a,6,2,c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_5,a_3,t_1 !sqr_add_c2(a,5,3,c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_4,a_4,t_1 !sqr_add_c(a,4,c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(8) !r[8]=c3; or c_12,c_3,c_12 mulx a_2,a_7,t_1 !sqr_add_c2(a,7,2,c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_3,a_6,t_1 !sqr_add_c2(a,6,3,c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_4,a_5,t_1 !sqr_add_c2(a,5,4,c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(9) !r[9]=c1; or c_12,c_3,c_12 mulx a_7,a_3,t_1 !sqr_add_c2(a,7,3,c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_6,a_4,t_1 !sqr_add_c2(a,6,4,c2,c3,c1); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_5,a_5,t_1 !sqr_add_c(a,5,c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(10) !r[10]=c2; or c_12,c_3,c_12 mulx a_4,a_7,t_1 !sqr_add_c2(a,7,4,c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_5,a_6,t_1 !sqr_add_c2(a,6,5,c3,c1,c2); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(11) !r[11]=c3; or c_12,c_3,c_12 mulx a_7,a_5,t_1 !sqr_add_c2(a,7,5,c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_6,a_6,t_1 !sqr_add_c(a,6,c1,c2,c3); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(12) !r[12]=c1; or c_12,c_3,c_12 mulx a_6,a_7,t_1 !sqr_add_c2(a,7,6,c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(13) !r[13]=c2; or c_12,c_3,c_12 mulx a_7,a_7,t_1 !sqr_add_c(a,7,c3,c1,c2); addcc c_12,t_1,t_1 srlx t_1,32,c_12 stuw t_1,rp(14) !r[14]=c3; stuw c_12,rp(15) !r[15]=c1; ret restore %g0,%g0,%o0 .type bn_sqr_comba8,#function .size bn_sqr_comba8,(.-bn_sqr_comba8) .align 32 .global bn_sqr_comba4 /* * void bn_sqr_comba4(r,a) * BN_ULONG *r,*a; */ bn_sqr_comba4: save %sp,FRAME_SIZE,%sp mov 1,t_2 lduw ap(0),a_0 sllx t_2,32,t_2 lduw ap(1),a_1 mulx a_0,a_0,t_1 !sqr_add_c(a,0,c1,c2,c3); srlx t_1,32,c_12 stuw t_1,rp(0) !r[0]=c1; lduw ap(2),a_2 mulx a_0,a_1,t_1 !sqr_add_c2(a,1,0,c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(1) !r[1]=c2; or c_12,c_3,c_12 mulx a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 lduw ap(3),a_3 mulx a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(2) !r[2]=c3; or c_12,c_3,c_12 mulx a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(3) !r[3]=c1; or c_12,c_3,c_12 mulx a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,c_12 bcs,a %xcc,.+8 add c_3,t_2,c_3 mulx a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(4) !r[4]=c2; or c_12,c_3,c_12 mulx a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); addcc c_12,t_1,c_12 clr c_3 bcs,a %xcc,.+8 add c_3,t_2,c_3 addcc c_12,t_1,t_1 bcs,a %xcc,.+8 add c_3,t_2,c_3 srlx t_1,32,c_12 stuw t_1,rp(5) !r[5]=c3; or c_12,c_3,c_12 mulx a_3,a_3,t_1 !sqr_add_c(a,3,c1,c2,c3); addcc c_12,t_1,t_1 srlx t_1,32,c_12 stuw t_1,rp(6) !r[6]=c1; stuw c_12,rp(7) !r[7]=c2; ret restore %g0,%g0,%o0 .type bn_sqr_comba4,#function .size bn_sqr_comba4,(.-bn_sqr_comba4) .align 32 openssl-1.1.1f/crypto/bn/asm/sparcv9-gf2m.pl000066400000000000000000000113641364063235100206270ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # October 2012 # # The module implements bn_GF2m_mul_2x2 polynomial multiplication used # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for # the time being... Except that it has two code paths: one suitable # for all SPARCv9 processors and one for VIS3-capable ones. Former # delivers ~25-45% more, more for longer keys, heaviest DH and DSA # verify operations on venerable UltraSPARC II. On T4 VIS3 code is # ~100-230% faster than gcc-generated code and ~35-90% faster than # the pure SPARCv9 code path. $output = pop; open STDOUT,">$output"; $locals=16*8; $tab="%l0"; @T=("%g2","%g3"); @i=("%g4","%g5"); ($a1,$a2,$a4,$a8,$a12,$a48)=map("%o$_",(0..5)); ($lo,$hi,$b)=("%g1",$a8,"%o7"); $a=$lo; $code.=<<___; #include #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .globl bn_GF2m_mul_2x2 .align 16 bn_GF2m_mul_2x2: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1+0],%g1 ! OPENSSL_sparcv9cap_P[0] andcc %g1, SPARCV9_VIS3, %g0 bz,pn %icc,.Lsoftware nop sllx %o1, 32, %o1 sllx %o3, 32, %o3 or %o2, %o1, %o1 or %o4, %o3, %o3 .word 0x95b262ab ! xmulx %o1, %o3, %o2 .word 0x99b262cb ! xmulxhi %o1, %o3, %o4 srlx %o2, 32, %o1 ! 13 cycles later st %o2, [%o0+0] st %o1, [%o0+4] srlx %o4, 32, %o3 st %o4, [%o0+8] retl st %o3, [%o0+12] .align 16 .Lsoftware: save %sp,-STACK_FRAME-$locals,%sp sllx %i1,32,$a mov -1,$a12 sllx %i3,32,$b or %i2,$a,$a srlx $a12,1,$a48 ! 0x7fff... or %i4,$b,$b srlx $a12,2,$a12 ! 0x3fff... add %sp,STACK_BIAS+STACK_FRAME,$tab sllx $a,2,$a4 mov $a,$a1 sllx $a,1,$a2 srax $a4,63,@i[1] ! broadcast 61st bit and $a48,$a4,$a4 ! (a<<2)&0x7fff... srlx $a48,2,$a48 srax $a2,63,@i[0] ! broadcast 62nd bit and $a12,$a2,$a2 ! (a<<1)&0x3fff... srax $a1,63,$lo ! broadcast 63rd bit and $a48,$a1,$a1 ! (a<<0)&0x1fff... sllx $a1,3,$a8 and $b,$lo,$lo and $b,@i[0],@i[0] and $b,@i[1],@i[1] stx %g0,[$tab+0*8] ! tab[0]=0 xor $a1,$a2,$a12 stx $a1,[$tab+1*8] ! tab[1]=a1 stx $a2,[$tab+2*8] ! tab[2]=a2 xor $a4,$a8,$a48 stx $a12,[$tab+3*8] ! tab[3]=a1^a2 xor $a4,$a1,$a1 stx $a4,[$tab+4*8] ! tab[4]=a4 xor $a4,$a2,$a2 stx $a1,[$tab+5*8] ! tab[5]=a1^a4 xor $a4,$a12,$a12 stx $a2,[$tab+6*8] ! tab[6]=a2^a4 xor $a48,$a1,$a1 stx $a12,[$tab+7*8] ! tab[7]=a1^a2^a4 xor $a48,$a2,$a2 stx $a8,[$tab+8*8] ! tab[8]=a8 xor $a48,$a12,$a12 stx $a1,[$tab+9*8] ! tab[9]=a1^a8 xor $a4,$a1,$a1 stx $a2,[$tab+10*8] ! tab[10]=a2^a8 xor $a4,$a2,$a2 stx $a12,[$tab+11*8] ! tab[11]=a1^a2^a8 xor $a4,$a12,$a12 stx $a48,[$tab+12*8] ! tab[12]=a4^a8 srlx $lo,1,$hi stx $a1,[$tab+13*8] ! tab[13]=a1^a4^a8 sllx $lo,63,$lo stx $a2,[$tab+14*8] ! tab[14]=a2^a4^a8 srlx @i[0],2,@T[0] stx $a12,[$tab+15*8] ! tab[15]=a1^a2^a4^a8 sllx @i[0],62,$a1 sllx $b,3,@i[0] srlx @i[1],3,@T[1] and @i[0],`0xf<<3`,@i[0] sllx @i[1],61,$a2 ldx [$tab+@i[0]],@i[0] srlx $b,4-3,@i[1] xor @T[0],$hi,$hi and @i[1],`0xf<<3`,@i[1] xor $a1,$lo,$lo ldx [$tab+@i[1]],@i[1] xor @T[1],$hi,$hi xor @i[0],$lo,$lo srlx $b,8-3,@i[0] xor $a2,$lo,$lo and @i[0],`0xf<<3`,@i[0] ___ for($n=1;$n<14;$n++) { $code.=<<___; sllx @i[1],`$n*4`,@T[0] ldx [$tab+@i[0]],@i[0] srlx @i[1],`64-$n*4`,@T[1] xor @T[0],$lo,$lo srlx $b,`($n+2)*4`-3,@i[1] xor @T[1],$hi,$hi and @i[1],`0xf<<3`,@i[1] ___ push(@i,shift(@i)); push(@T,shift(@T)); } $code.=<<___; sllx @i[1],`$n*4`,@T[0] ldx [$tab+@i[0]],@i[0] srlx @i[1],`64-$n*4`,@T[1] xor @T[0],$lo,$lo sllx @i[0],`($n+1)*4`,@T[0] xor @T[1],$hi,$hi srlx @i[0],`64-($n+1)*4`,@T[1] xor @T[0],$lo,$lo xor @T[1],$hi,$hi srlx $lo,32,%i1 st $lo,[%i0+0] st %i1,[%i0+4] srlx $hi,32,%i2 st $hi,[%i0+8] st %i2,[%i0+12] ret restore .type bn_GF2m_mul_2x2,#function .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 .asciz "GF(2^m) Multiplication for SPARCv9, CRYPTOGAMS by " .align 4 ___ $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/sparcv9-mont.pl000066400000000000000000000334251364063235100207530ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # December 2005 # # Pure SPARCv9/8+ and IALU-only bn_mul_mont implementation. The reasons # for undertaken effort are multiple. First of all, UltraSPARC is not # the whole SPARCv9 universe and other VIS-free implementations deserve # optimized code as much. Secondly, newly introduced UltraSPARC T1, # a.k.a. Niagara, has shared FPU and concurrent FPU-intensive paths, # such as sparcv9a-mont, will simply sink it. Yes, T1 is equipped with # several integrated RSA/DSA accelerator circuits accessible through # kernel driver [only(*)], but having decent user-land software # implementation is important too. Finally, reasons like desire to # experiment with dedicated squaring procedure. Yes, this module # implements one, because it was easiest to draft it in SPARCv9 # instructions... # (*) Engine accessing the driver in question is on my TODO list. # For reference, accelerator is estimated to give 6 to 10 times # improvement on single-threaded RSA sign. It should be noted # that 6-10x improvement coefficient does not actually mean # something extraordinary in terms of absolute [single-threaded] # performance, as SPARCv9 instruction set is by all means least # suitable for high performance crypto among other 64 bit # platforms. 6-10x factor simply places T1 in same performance # domain as say AMD64 and IA-64. Improvement of RSA verify don't # appear impressive at all, but it's the sign operation which is # far more critical/interesting. # You might notice that inner loops are modulo-scheduled:-) This has # essentially negligible impact on UltraSPARC performance, it's # Fujitsu SPARC64 V users who should notice and hopefully appreciate # the advantage... Currently this module surpasses sparcv9a-mont.pl # by ~20% on UltraSPARC-III and later cores, but recall that sparcv9a # module still have hidden potential [see TODO list there], which is # estimated to be larger than 20%... $output = pop; open STDOUT,">$output"; # int bn_mul_mont( $rp="%i0"; # BN_ULONG *rp, $ap="%i1"; # const BN_ULONG *ap, $bp="%i2"; # const BN_ULONG *bp, $np="%i3"; # const BN_ULONG *np, $n0="%i4"; # const BN_ULONG *n0, $num="%i5"; # int num); $frame="STACK_FRAME"; $bias="STACK_BIAS"; $car0="%o0"; $car1="%o1"; $car2="%o2"; # 1 bit $acc0="%o3"; $acc1="%o4"; $mask="%g1"; # 32 bits, what a waste... $tmp0="%g4"; $tmp1="%g5"; $i="%l0"; $j="%l1"; $mul0="%l2"; $mul1="%l3"; $tp="%l4"; $apj="%l5"; $npj="%l6"; $tpj="%l7"; $fname="bn_mul_mont_int"; $code=<<___; #include "sparc_arch.h" .section ".text",#alloc,#execinstr .global $fname .align 32 $fname: cmp %o5,4 ! 128 bits minimum bge,pt %icc,.Lenter sethi %hi(0xffffffff),$mask retl clr %o0 .align 32 .Lenter: save %sp,-$frame,%sp sll $num,2,$num ! num*=4 or $mask,%lo(0xffffffff),$mask ld [$n0],$n0 cmp $ap,$bp and $num,$mask,$num ld [$bp],$mul0 ! bp[0] nop add %sp,$bias,%o7 ! real top of stack ld [$ap],$car0 ! ap[0] ! redundant in squaring context sub %o7,$num,%o7 ld [$ap+4],$apj ! ap[1] and %o7,-1024,%o7 ld [$np],$car1 ! np[0] sub %o7,$bias,%sp ! alloca ld [$np+4],$npj ! np[1] be,pt SIZE_T_CC,.Lbn_sqr_mont mov 12,$j mulx $car0,$mul0,$car0 ! ap[0]*bp[0] mulx $apj,$mul0,$tmp0 !prologue! ap[1]*bp[0] and $car0,$mask,$acc0 add %sp,$bias+$frame,$tp ld [$ap+8],$apj !prologue! mulx $n0,$acc0,$mul1 ! "t[0]"*n0 and $mul1,$mask,$mul1 mulx $car1,$mul1,$car1 ! np[0]*"t[0]"*n0 mulx $npj,$mul1,$acc1 !prologue! np[1]*"t[0]"*n0 srlx $car0,32,$car0 add $acc0,$car1,$car1 ld [$np+8],$npj !prologue! srlx $car1,32,$car1 mov $tmp0,$acc0 !prologue! .L1st: mulx $apj,$mul0,$tmp0 mulx $npj,$mul1,$tmp1 add $acc0,$car0,$car0 ld [$ap+$j],$apj ! ap[j] and $car0,$mask,$acc0 add $acc1,$car1,$car1 ld [$np+$j],$npj ! np[j] srlx $car0,32,$car0 add $acc0,$car1,$car1 add $j,4,$j ! j++ mov $tmp0,$acc0 st $car1,[$tp] cmp $j,$num mov $tmp1,$acc1 srlx $car1,32,$car1 bl %icc,.L1st add $tp,4,$tp ! tp++ !.L1st mulx $apj,$mul0,$tmp0 !epilogue! mulx $npj,$mul1,$tmp1 add $acc0,$car0,$car0 and $car0,$mask,$acc0 add $acc1,$car1,$car1 srlx $car0,32,$car0 add $acc0,$car1,$car1 st $car1,[$tp] srlx $car1,32,$car1 add $tmp0,$car0,$car0 and $car0,$mask,$acc0 add $tmp1,$car1,$car1 srlx $car0,32,$car0 add $acc0,$car1,$car1 st $car1,[$tp+4] srlx $car1,32,$car1 add $car0,$car1,$car1 st $car1,[$tp+8] srlx $car1,32,$car2 mov 4,$i ! i++ ld [$bp+4],$mul0 ! bp[1] .Louter: add %sp,$bias+$frame,$tp ld [$ap],$car0 ! ap[0] ld [$ap+4],$apj ! ap[1] ld [$np],$car1 ! np[0] ld [$np+4],$npj ! np[1] ld [$tp],$tmp1 ! tp[0] ld [$tp+4],$tpj ! tp[1] mov 12,$j mulx $car0,$mul0,$car0 mulx $apj,$mul0,$tmp0 !prologue! add $tmp1,$car0,$car0 ld [$ap+8],$apj !prologue! and $car0,$mask,$acc0 mulx $n0,$acc0,$mul1 and $mul1,$mask,$mul1 mulx $car1,$mul1,$car1 mulx $npj,$mul1,$acc1 !prologue! srlx $car0,32,$car0 add $acc0,$car1,$car1 ld [$np+8],$npj !prologue! srlx $car1,32,$car1 mov $tmp0,$acc0 !prologue! .Linner: mulx $apj,$mul0,$tmp0 mulx $npj,$mul1,$tmp1 add $tpj,$car0,$car0 ld [$ap+$j],$apj ! ap[j] add $acc0,$car0,$car0 add $acc1,$car1,$car1 ld [$np+$j],$npj ! np[j] and $car0,$mask,$acc0 ld [$tp+8],$tpj ! tp[j] srlx $car0,32,$car0 add $acc0,$car1,$car1 add $j,4,$j ! j++ mov $tmp0,$acc0 st $car1,[$tp] ! tp[j-1] srlx $car1,32,$car1 mov $tmp1,$acc1 cmp $j,$num bl %icc,.Linner add $tp,4,$tp ! tp++ !.Linner mulx $apj,$mul0,$tmp0 !epilogue! mulx $npj,$mul1,$tmp1 add $tpj,$car0,$car0 add $acc0,$car0,$car0 ld [$tp+8],$tpj ! tp[j] and $car0,$mask,$acc0 add $acc1,$car1,$car1 srlx $car0,32,$car0 add $acc0,$car1,$car1 st $car1,[$tp] ! tp[j-1] srlx $car1,32,$car1 add $tpj,$car0,$car0 add $tmp0,$car0,$car0 and $car0,$mask,$acc0 add $tmp1,$car1,$car1 add $acc0,$car1,$car1 st $car1,[$tp+4] ! tp[j-1] srlx $car0,32,$car0 add $i,4,$i ! i++ srlx $car1,32,$car1 add $car0,$car1,$car1 cmp $i,$num add $car2,$car1,$car1 st $car1,[$tp+8] srlx $car1,32,$car2 bl,a %icc,.Louter ld [$bp+$i],$mul0 ! bp[i] !.Louter add $tp,12,$tp .Ltail: add $np,$num,$np add $rp,$num,$rp sub %g0,$num,%o7 ! k=-num ba .Lsub subcc %g0,%g0,%g0 ! clear %icc.c .align 16 .Lsub: ld [$tp+%o7],%o0 ld [$np+%o7],%o1 subccc %o0,%o1,%o1 ! tp[j]-np[j] add $rp,%o7,$i add %o7,4,%o7 brnz %o7,.Lsub st %o1,[$i] subccc $car2,0,$car2 ! handle upmost overflow bit sub %g0,$num,%o7 .Lcopy: ld [$tp+%o7],%o1 ! conditional copy ld [$rp+%o7],%o0 st %g0,[$tp+%o7] ! zap tp movcs %icc,%o1,%o0 st %o0,[$rp+%o7] add %o7,4,%o7 brnz %o7,.Lcopy nop mov 1,%i0 ret restore ___ ######## ######## .Lbn_sqr_mont gives up to 20% *overall* improvement over ######## code without following dedicated squaring procedure. ######## $sbit="%o5"; $code.=<<___; .align 32 .Lbn_sqr_mont: mulx $mul0,$mul0,$car0 ! ap[0]*ap[0] mulx $apj,$mul0,$tmp0 !prologue! and $car0,$mask,$acc0 add %sp,$bias+$frame,$tp ld [$ap+8],$apj !prologue! mulx $n0,$acc0,$mul1 ! "t[0]"*n0 srlx $car0,32,$car0 and $mul1,$mask,$mul1 mulx $car1,$mul1,$car1 ! np[0]*"t[0]"*n0 mulx $npj,$mul1,$acc1 !prologue! and $car0,1,$sbit ld [$np+8],$npj !prologue! srlx $car0,1,$car0 add $acc0,$car1,$car1 srlx $car1,32,$car1 mov $tmp0,$acc0 !prologue! .Lsqr_1st: mulx $apj,$mul0,$tmp0 mulx $npj,$mul1,$tmp1 add $acc0,$car0,$car0 ! ap[j]*a0+c0 add $acc1,$car1,$car1 ld [$ap+$j],$apj ! ap[j] and $car0,$mask,$acc0 ld [$np+$j],$npj ! np[j] srlx $car0,32,$car0 add $acc0,$acc0,$acc0 or $sbit,$acc0,$acc0 mov $tmp1,$acc1 srlx $acc0,32,$sbit add $j,4,$j ! j++ and $acc0,$mask,$acc0 cmp $j,$num add $acc0,$car1,$car1 st $car1,[$tp] mov $tmp0,$acc0 srlx $car1,32,$car1 bl %icc,.Lsqr_1st add $tp,4,$tp ! tp++ !.Lsqr_1st mulx $apj,$mul0,$tmp0 ! epilogue mulx $npj,$mul1,$tmp1 add $acc0,$car0,$car0 ! ap[j]*a0+c0 add $acc1,$car1,$car1 and $car0,$mask,$acc0 srlx $car0,32,$car0 add $acc0,$acc0,$acc0 or $sbit,$acc0,$acc0 srlx $acc0,32,$sbit and $acc0,$mask,$acc0 add $acc0,$car1,$car1 st $car1,[$tp] srlx $car1,32,$car1 add $tmp0,$car0,$car0 ! ap[j]*a0+c0 add $tmp1,$car1,$car1 and $car0,$mask,$acc0 srlx $car0,32,$car0 add $acc0,$acc0,$acc0 or $sbit,$acc0,$acc0 srlx $acc0,32,$sbit and $acc0,$mask,$acc0 add $acc0,$car1,$car1 st $car1,[$tp+4] srlx $car1,32,$car1 add $car0,$car0,$car0 or $sbit,$car0,$car0 add $car0,$car1,$car1 st $car1,[$tp+8] srlx $car1,32,$car2 ld [%sp+$bias+$frame],$tmp0 ! tp[0] ld [%sp+$bias+$frame+4],$tmp1 ! tp[1] ld [%sp+$bias+$frame+8],$tpj ! tp[2] ld [$ap+4],$mul0 ! ap[1] ld [$ap+8],$apj ! ap[2] ld [$np],$car1 ! np[0] ld [$np+4],$npj ! np[1] mulx $n0,$tmp0,$mul1 mulx $mul0,$mul0,$car0 and $mul1,$mask,$mul1 mulx $car1,$mul1,$car1 mulx $npj,$mul1,$acc1 add $tmp0,$car1,$car1 and $car0,$mask,$acc0 ld [$np+8],$npj ! np[2] srlx $car1,32,$car1 add $tmp1,$car1,$car1 srlx $car0,32,$car0 add $acc0,$car1,$car1 and $car0,1,$sbit add $acc1,$car1,$car1 srlx $car0,1,$car0 mov 12,$j st $car1,[%sp+$bias+$frame] ! tp[0]= srlx $car1,32,$car1 add %sp,$bias+$frame+4,$tp .Lsqr_2nd: mulx $apj,$mul0,$acc0 mulx $npj,$mul1,$acc1 add $acc0,$car0,$car0 add $tpj,$sbit,$sbit ld [$ap+$j],$apj ! ap[j] and $car0,$mask,$acc0 ld [$np+$j],$npj ! np[j] srlx $car0,32,$car0 add $acc1,$car1,$car1 ld [$tp+8],$tpj ! tp[j] add $acc0,$acc0,$acc0 add $j,4,$j ! j++ add $sbit,$acc0,$acc0 srlx $acc0,32,$sbit and $acc0,$mask,$acc0 cmp $j,$num add $acc0,$car1,$car1 st $car1,[$tp] ! tp[j-1] srlx $car1,32,$car1 bl %icc,.Lsqr_2nd add $tp,4,$tp ! tp++ !.Lsqr_2nd mulx $apj,$mul0,$acc0 mulx $npj,$mul1,$acc1 add $acc0,$car0,$car0 add $tpj,$sbit,$sbit and $car0,$mask,$acc0 srlx $car0,32,$car0 add $acc1,$car1,$car1 add $acc0,$acc0,$acc0 add $sbit,$acc0,$acc0 srlx $acc0,32,$sbit and $acc0,$mask,$acc0 add $acc0,$car1,$car1 st $car1,[$tp] ! tp[j-1] srlx $car1,32,$car1 add $car0,$car0,$car0 add $sbit,$car0,$car0 add $car0,$car1,$car1 add $car2,$car1,$car1 st $car1,[$tp+4] srlx $car1,32,$car2 ld [%sp+$bias+$frame],$tmp1 ! tp[0] ld [%sp+$bias+$frame+4],$tpj ! tp[1] ld [$ap+8],$mul0 ! ap[2] ld [$np],$car1 ! np[0] ld [$np+4],$npj ! np[1] mulx $n0,$tmp1,$mul1 and $mul1,$mask,$mul1 mov 8,$i mulx $mul0,$mul0,$car0 mulx $car1,$mul1,$car1 and $car0,$mask,$acc0 add $tmp1,$car1,$car1 srlx $car0,32,$car0 add %sp,$bias+$frame,$tp srlx $car1,32,$car1 and $car0,1,$sbit srlx $car0,1,$car0 mov 4,$j .Lsqr_outer: .Lsqr_inner1: mulx $npj,$mul1,$acc1 add $tpj,$car1,$car1 add $j,4,$j ld [$tp+8],$tpj cmp $j,$i add $acc1,$car1,$car1 ld [$np+$j],$npj st $car1,[$tp] srlx $car1,32,$car1 bl %icc,.Lsqr_inner1 add $tp,4,$tp !.Lsqr_inner1 add $j,4,$j ld [$ap+$j],$apj ! ap[j] mulx $npj,$mul1,$acc1 add $tpj,$car1,$car1 ld [$np+$j],$npj ! np[j] srlx $car1,32,$tmp0 and $car1,$mask,$car1 add $tmp0,$sbit,$sbit add $acc0,$car1,$car1 ld [$tp+8],$tpj ! tp[j] add $acc1,$car1,$car1 st $car1,[$tp] srlx $car1,32,$car1 add $j,4,$j cmp $j,$num be,pn %icc,.Lsqr_no_inner2 add $tp,4,$tp .Lsqr_inner2: mulx $apj,$mul0,$acc0 mulx $npj,$mul1,$acc1 add $tpj,$sbit,$sbit add $acc0,$car0,$car0 ld [$ap+$j],$apj ! ap[j] and $car0,$mask,$acc0 ld [$np+$j],$npj ! np[j] srlx $car0,32,$car0 add $acc0,$acc0,$acc0 ld [$tp+8],$tpj ! tp[j] add $sbit,$acc0,$acc0 add $j,4,$j ! j++ srlx $acc0,32,$sbit and $acc0,$mask,$acc0 cmp $j,$num add $acc0,$car1,$car1 add $acc1,$car1,$car1 st $car1,[$tp] ! tp[j-1] srlx $car1,32,$car1 bl %icc,.Lsqr_inner2 add $tp,4,$tp ! tp++ .Lsqr_no_inner2: mulx $apj,$mul0,$acc0 mulx $npj,$mul1,$acc1 add $tpj,$sbit,$sbit add $acc0,$car0,$car0 and $car0,$mask,$acc0 srlx $car0,32,$car0 add $acc0,$acc0,$acc0 add $sbit,$acc0,$acc0 srlx $acc0,32,$sbit and $acc0,$mask,$acc0 add $acc0,$car1,$car1 add $acc1,$car1,$car1 st $car1,[$tp] ! tp[j-1] srlx $car1,32,$car1 add $car0,$car0,$car0 add $sbit,$car0,$car0 add $car0,$car1,$car1 add $car2,$car1,$car1 st $car1,[$tp+4] srlx $car1,32,$car2 add $i,4,$i ! i++ ld [%sp+$bias+$frame],$tmp1 ! tp[0] ld [%sp+$bias+$frame+4],$tpj ! tp[1] ld [$ap+$i],$mul0 ! ap[j] ld [$np],$car1 ! np[0] ld [$np+4],$npj ! np[1] mulx $n0,$tmp1,$mul1 and $mul1,$mask,$mul1 add $i,4,$tmp0 mulx $mul0,$mul0,$car0 mulx $car1,$mul1,$car1 and $car0,$mask,$acc0 add $tmp1,$car1,$car1 srlx $car0,32,$car0 add %sp,$bias+$frame,$tp srlx $car1,32,$car1 and $car0,1,$sbit srlx $car0,1,$car0 cmp $tmp0,$num ! i" .align 32 ___ $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/sparcv9a-mont.pl000077500000000000000000000510031364063235100211070ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # October 2005 # # "Teaser" Montgomery multiplication module for UltraSPARC. Why FPU? # Because unlike integer multiplier, which simply stalls whole CPU, # FPU is fully pipelined and can effectively emit 48 bit partial # product every cycle. Why not blended SPARC v9? One can argue that # making this module dependent on UltraSPARC VIS extension limits its # binary compatibility. Well yes, it does exclude SPARC64 prior-V(!) # implementations from compatibility matrix. But the rest, whole Sun # UltraSPARC family and brand new Fujitsu's SPARC64 V, all support # VIS extension instructions used in this module. This is considered # good enough to not care about HAL SPARC64 users [if any] who have # integer-only pure SPARCv9 module to "fall down" to. # USI&II cores currently exhibit uniform 2x improvement [over pre- # bn_mul_mont codebase] for all key lengths and benchmarks. On USIII # performance improves few percents for shorter keys and worsens few # percents for longer keys. This is because USIII integer multiplier # is >3x faster than USI&II one, which is harder to match [but see # TODO list below]. It should also be noted that SPARC64 V features # out-of-order execution, which *might* mean that integer multiplier # is pipelined, which in turn *might* be impossible to match... On # additional note, SPARC64 V implements FP Multiply-Add instruction, # which is perfectly usable in this context... In other words, as far # as Fujitsu SPARC64 V goes, talk to the author:-) # The implementation implies following "non-natural" limitations on # input arguments: # - num may not be less than 4; # - num has to be even; # Failure to meet either condition has no fatal effects, simply # doesn't give any performance gain. # TODO: # - modulo-schedule inner loop for better performance (on in-order # execution core such as UltraSPARC this shall result in further # noticeable(!) improvement); # - dedicated squaring procedure[?]; ###################################################################### # November 2006 # # Modulo-scheduled inner loops allow to interleave floating point and # integer instructions and minimize Read-After-Write penalties. This # results in *further* 20-50% performance improvement [depending on # key length, more for longer keys] on USI&II cores and 30-80% - on # USIII&IV. $output = pop; open STDOUT,">$output"; $fname="bn_mul_mont_fpu"; $frame="STACK_FRAME"; $bias="STACK_BIAS"; $locals=64; # In order to provide for 32-/64-bit ABI duality, I keep integers wider # than 32 bit in %g1-%g4 and %o0-%o5. %l0-%l7 and %i0-%i5 are used # exclusively for pointers, indexes and other small values... # int bn_mul_mont( $rp="%i0"; # BN_ULONG *rp, $ap="%i1"; # const BN_ULONG *ap, $bp="%i2"; # const BN_ULONG *bp, $np="%i3"; # const BN_ULONG *np, $n0="%i4"; # const BN_ULONG *n0, $num="%i5"; # int num); $tp="%l0"; # t[num] $ap_l="%l1"; # a[num],n[num] are smashed to 32-bit words and saved $ap_h="%l2"; # to these four vectors as double-precision FP values. $np_l="%l3"; # This way a bunch of fxtods are eliminated in second $np_h="%l4"; # loop and L1-cache aliasing is minimized... $i="%l5"; $j="%l6"; $mask="%l7"; # 16-bit mask, 0xffff $n0="%g4"; # reassigned(!) to "64-bit" register $carry="%i4"; # %i4 reused(!) for a carry bit # FP register naming chart # # ..HILO # dcba # -------- # LOa # LOb # LOc # LOd # HIa # HIb # HIc # HId # ..a # ..b $ba="%f0"; $bb="%f2"; $bc="%f4"; $bd="%f6"; $na="%f8"; $nb="%f10"; $nc="%f12"; $nd="%f14"; $alo="%f16"; $alo_="%f17"; $ahi="%f18"; $ahi_="%f19"; $nlo="%f20"; $nlo_="%f21"; $nhi="%f22"; $nhi_="%f23"; $dota="%f24"; $dotb="%f26"; $aloa="%f32"; $alob="%f34"; $aloc="%f36"; $alod="%f38"; $ahia="%f40"; $ahib="%f42"; $ahic="%f44"; $ahid="%f46"; $nloa="%f48"; $nlob="%f50"; $nloc="%f52"; $nlod="%f54"; $nhia="%f56"; $nhib="%f58"; $nhic="%f60"; $nhid="%f62"; $ASI_FL16_P=0xD2; # magic ASI value to engage 16-bit FP load $code=<<___; #include "sparc_arch.h" .section ".text",#alloc,#execinstr .global $fname .align 32 $fname: save %sp,-$frame-$locals,%sp cmp $num,4 bl,a,pn %icc,.Lret clr %i0 andcc $num,1,%g0 ! $num has to be even... bnz,a,pn %icc,.Lret clr %i0 ! signal "unsupported input value" srl $num,1,$num sethi %hi(0xffff),$mask ld [%i4+0],$n0 ! $n0 reassigned, remember? or $mask,%lo(0xffff),$mask ld [%i4+4],%o0 sllx %o0,32,%o0 or %o0,$n0,$n0 ! $n0=n0[1].n0[0] sll $num,3,$num ! num*=8 add %sp,$bias,%o0 ! real top of stack sll $num,2,%o1 add %o1,$num,%o1 ! %o1=num*5 sub %o0,%o1,%o0 and %o0,-2048,%o0 ! optimize TLB utilization sub %o0,$bias,%sp ! alloca(5*num*8) rd %asi,%o7 ! save %asi add %sp,$bias+$frame+$locals,$tp add $tp,$num,$ap_l add $ap_l,$num,$ap_l ! [an]p_[lh] point at the vectors' ends ! add $ap_l,$num,$ap_h add $ap_h,$num,$np_l add $np_l,$num,$np_h wr %g0,$ASI_FL16_P,%asi ! setup %asi for 16-bit FP loads add $rp,$num,$rp ! readjust input pointers to point add $ap,$num,$ap ! at the ends too... add $bp,$num,$bp add $np,$num,$np stx %o7,[%sp+$bias+$frame+48] ! save %asi sub %g0,$num,$i ! i=-num sub %g0,$num,$j ! j=-num add $ap,$j,%o3 add $bp,$i,%o4 ld [%o3+4],%g1 ! bp[0] ld [%o3+0],%o0 ld [%o4+4],%g5 ! ap[0] sllx %g1,32,%g1 ld [%o4+0],%o1 sllx %g5,32,%g5 or %g1,%o0,%o0 or %g5,%o1,%o1 add $np,$j,%o5 mulx %o1,%o0,%o0 ! ap[0]*bp[0] mulx $n0,%o0,%o0 ! ap[0]*bp[0]*n0 stx %o0,[%sp+$bias+$frame+0] ld [%o3+0],$alo_ ! load a[j] as pair of 32-bit words fzeros $alo ld [%o3+4],$ahi_ fzeros $ahi ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words fzeros $nlo ld [%o5+4],$nhi_ fzeros $nhi ! transfer b[i] to FPU as 4x16-bit values ldda [%o4+2]%asi,$ba fxtod $alo,$alo ldda [%o4+0]%asi,$bb fxtod $ahi,$ahi ldda [%o4+6]%asi,$bc fxtod $nlo,$nlo ldda [%o4+4]%asi,$bd fxtod $nhi,$nhi ! transfer ap[0]*b[0]*n0 to FPU as 4x16-bit values ldda [%sp+$bias+$frame+6]%asi,$na fxtod $ba,$ba ldda [%sp+$bias+$frame+4]%asi,$nb fxtod $bb,$bb ldda [%sp+$bias+$frame+2]%asi,$nc fxtod $bc,$bc ldda [%sp+$bias+$frame+0]%asi,$nd fxtod $bd,$bd std $alo,[$ap_l+$j] ! save smashed ap[j] in double format fxtod $na,$na std $ahi,[$ap_h+$j] fxtod $nb,$nb std $nlo,[$np_l+$j] ! save smashed np[j] in double format fxtod $nc,$nc std $nhi,[$np_h+$j] fxtod $nd,$nd fmuld $alo,$ba,$aloa fmuld $nlo,$na,$nloa fmuld $alo,$bb,$alob fmuld $nlo,$nb,$nlob fmuld $alo,$bc,$aloc faddd $aloa,$nloa,$nloa fmuld $nlo,$nc,$nloc fmuld $alo,$bd,$alod faddd $alob,$nlob,$nlob fmuld $nlo,$nd,$nlod fmuld $ahi,$ba,$ahia faddd $aloc,$nloc,$nloc fmuld $nhi,$na,$nhia fmuld $ahi,$bb,$ahib faddd $alod,$nlod,$nlod fmuld $nhi,$nb,$nhib fmuld $ahi,$bc,$ahic faddd $ahia,$nhia,$nhia fmuld $nhi,$nc,$nhic fmuld $ahi,$bd,$ahid faddd $ahib,$nhib,$nhib fmuld $nhi,$nd,$nhid faddd $ahic,$nhic,$dota ! $nhic faddd $ahid,$nhid,$dotb ! $nhid faddd $nloc,$nhia,$nloc faddd $nlod,$nhib,$nlod fdtox $nloa,$nloa fdtox $nlob,$nlob fdtox $nloc,$nloc fdtox $nlod,$nlod std $nloa,[%sp+$bias+$frame+0] add $j,8,$j std $nlob,[%sp+$bias+$frame+8] add $ap,$j,%o4 std $nloc,[%sp+$bias+$frame+16] add $np,$j,%o5 std $nlod,[%sp+$bias+$frame+24] ld [%o4+0],$alo_ ! load a[j] as pair of 32-bit words fzeros $alo ld [%o4+4],$ahi_ fzeros $ahi ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words fzeros $nlo ld [%o5+4],$nhi_ fzeros $nhi fxtod $alo,$alo fxtod $ahi,$ahi fxtod $nlo,$nlo fxtod $nhi,$nhi ldx [%sp+$bias+$frame+0],%o0 fmuld $alo,$ba,$aloa ldx [%sp+$bias+$frame+8],%o1 fmuld $nlo,$na,$nloa ldx [%sp+$bias+$frame+16],%o2 fmuld $alo,$bb,$alob ldx [%sp+$bias+$frame+24],%o3 fmuld $nlo,$nb,$nlob srlx %o0,16,%o7 std $alo,[$ap_l+$j] ! save smashed ap[j] in double format fmuld $alo,$bc,$aloc add %o7,%o1,%o1 std $ahi,[$ap_h+$j] faddd $aloa,$nloa,$nloa fmuld $nlo,$nc,$nloc srlx %o1,16,%o7 std $nlo,[$np_l+$j] ! save smashed np[j] in double format fmuld $alo,$bd,$alod add %o7,%o2,%o2 std $nhi,[$np_h+$j] faddd $alob,$nlob,$nlob fmuld $nlo,$nd,$nlod srlx %o2,16,%o7 fmuld $ahi,$ba,$ahia add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] faddd $aloc,$nloc,$nloc fmuld $nhi,$na,$nhia !and %o0,$mask,%o0 !and %o1,$mask,%o1 !and %o2,$mask,%o2 !sllx %o1,16,%o1 !sllx %o2,32,%o2 !sllx %o3,48,%o7 !or %o1,%o0,%o0 !or %o2,%o0,%o0 !or %o7,%o0,%o0 ! 64-bit result srlx %o3,16,%g1 ! 34-bit carry fmuld $ahi,$bb,$ahib faddd $alod,$nlod,$nlod fmuld $nhi,$nb,$nhib fmuld $ahi,$bc,$ahic faddd $ahia,$nhia,$nhia fmuld $nhi,$nc,$nhic fmuld $ahi,$bd,$ahid faddd $ahib,$nhib,$nhib fmuld $nhi,$nd,$nhid faddd $dota,$nloa,$nloa faddd $dotb,$nlob,$nlob faddd $ahic,$nhic,$dota ! $nhic faddd $ahid,$nhid,$dotb ! $nhid faddd $nloc,$nhia,$nloc faddd $nlod,$nhib,$nlod fdtox $nloa,$nloa fdtox $nlob,$nlob fdtox $nloc,$nloc fdtox $nlod,$nlod std $nloa,[%sp+$bias+$frame+0] std $nlob,[%sp+$bias+$frame+8] addcc $j,8,$j std $nloc,[%sp+$bias+$frame+16] bz,pn %icc,.L1stskip std $nlod,[%sp+$bias+$frame+24] .align 32 ! incidentally already aligned ! .L1st: add $ap,$j,%o4 add $np,$j,%o5 ld [%o4+0],$alo_ ! load a[j] as pair of 32-bit words fzeros $alo ld [%o4+4],$ahi_ fzeros $ahi ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words fzeros $nlo ld [%o5+4],$nhi_ fzeros $nhi fxtod $alo,$alo fxtod $ahi,$ahi fxtod $nlo,$nlo fxtod $nhi,$nhi ldx [%sp+$bias+$frame+0],%o0 fmuld $alo,$ba,$aloa ldx [%sp+$bias+$frame+8],%o1 fmuld $nlo,$na,$nloa ldx [%sp+$bias+$frame+16],%o2 fmuld $alo,$bb,$alob ldx [%sp+$bias+$frame+24],%o3 fmuld $nlo,$nb,$nlob srlx %o0,16,%o7 std $alo,[$ap_l+$j] ! save smashed ap[j] in double format fmuld $alo,$bc,$aloc add %o7,%o1,%o1 std $ahi,[$ap_h+$j] faddd $aloa,$nloa,$nloa fmuld $nlo,$nc,$nloc srlx %o1,16,%o7 std $nlo,[$np_l+$j] ! save smashed np[j] in double format fmuld $alo,$bd,$alod add %o7,%o2,%o2 std $nhi,[$np_h+$j] faddd $alob,$nlob,$nlob fmuld $nlo,$nd,$nlod srlx %o2,16,%o7 fmuld $ahi,$ba,$ahia add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] and %o0,$mask,%o0 faddd $aloc,$nloc,$nloc fmuld $nhi,$na,$nhia and %o1,$mask,%o1 and %o2,$mask,%o2 fmuld $ahi,$bb,$ahib sllx %o1,16,%o1 faddd $alod,$nlod,$nlod fmuld $nhi,$nb,$nhib sllx %o2,32,%o2 fmuld $ahi,$bc,$ahic sllx %o3,48,%o7 or %o1,%o0,%o0 faddd $ahia,$nhia,$nhia fmuld $nhi,$nc,$nhic or %o2,%o0,%o0 fmuld $ahi,$bd,$ahid or %o7,%o0,%o0 ! 64-bit result faddd $ahib,$nhib,$nhib fmuld $nhi,$nd,$nhid addcc %g1,%o0,%o0 faddd $dota,$nloa,$nloa srlx %o3,16,%g1 ! 34-bit carry faddd $dotb,$nlob,$nlob bcs,a %xcc,.+8 add %g1,1,%g1 stx %o0,[$tp] ! tp[j-1]= faddd $ahic,$nhic,$dota ! $nhic faddd $ahid,$nhid,$dotb ! $nhid faddd $nloc,$nhia,$nloc faddd $nlod,$nhib,$nlod fdtox $nloa,$nloa fdtox $nlob,$nlob fdtox $nloc,$nloc fdtox $nlod,$nlod std $nloa,[%sp+$bias+$frame+0] std $nlob,[%sp+$bias+$frame+8] std $nloc,[%sp+$bias+$frame+16] std $nlod,[%sp+$bias+$frame+24] addcc $j,8,$j bnz,pt %icc,.L1st add $tp,8,$tp .L1stskip: fdtox $dota,$dota fdtox $dotb,$dotb ldx [%sp+$bias+$frame+0],%o0 ldx [%sp+$bias+$frame+8],%o1 ldx [%sp+$bias+$frame+16],%o2 ldx [%sp+$bias+$frame+24],%o3 srlx %o0,16,%o7 std $dota,[%sp+$bias+$frame+32] add %o7,%o1,%o1 std $dotb,[%sp+$bias+$frame+40] srlx %o1,16,%o7 add %o7,%o2,%o2 srlx %o2,16,%o7 add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] and %o0,$mask,%o0 and %o1,$mask,%o1 and %o2,$mask,%o2 sllx %o1,16,%o1 sllx %o2,32,%o2 sllx %o3,48,%o7 or %o1,%o0,%o0 or %o2,%o0,%o0 or %o7,%o0,%o0 ! 64-bit result ldx [%sp+$bias+$frame+32],%o4 addcc %g1,%o0,%o0 ldx [%sp+$bias+$frame+40],%o5 srlx %o3,16,%g1 ! 34-bit carry bcs,a %xcc,.+8 add %g1,1,%g1 stx %o0,[$tp] ! tp[j-1]= add $tp,8,$tp srlx %o4,16,%o7 add %o7,%o5,%o5 and %o4,$mask,%o4 sllx %o5,16,%o7 or %o7,%o4,%o4 addcc %g1,%o4,%o4 srlx %o5,48,%g1 bcs,a %xcc,.+8 add %g1,1,%g1 mov %g1,$carry stx %o4,[$tp] ! tp[num-1]= ba .Louter add $i,8,$i .align 32 .Louter: sub %g0,$num,$j ! j=-num add %sp,$bias+$frame+$locals,$tp add $ap,$j,%o3 add $bp,$i,%o4 ld [%o3+4],%g1 ! bp[i] ld [%o3+0],%o0 ld [%o4+4],%g5 ! ap[0] sllx %g1,32,%g1 ld [%o4+0],%o1 sllx %g5,32,%g5 or %g1,%o0,%o0 or %g5,%o1,%o1 ldx [$tp],%o2 ! tp[0] mulx %o1,%o0,%o0 addcc %o2,%o0,%o0 mulx $n0,%o0,%o0 ! (ap[0]*bp[i]+t[0])*n0 stx %o0,[%sp+$bias+$frame+0] ! transfer b[i] to FPU as 4x16-bit values ldda [%o4+2]%asi,$ba ldda [%o4+0]%asi,$bb ldda [%o4+6]%asi,$bc ldda [%o4+4]%asi,$bd ! transfer (ap[0]*b[i]+t[0])*n0 to FPU as 4x16-bit values ldda [%sp+$bias+$frame+6]%asi,$na fxtod $ba,$ba ldda [%sp+$bias+$frame+4]%asi,$nb fxtod $bb,$bb ldda [%sp+$bias+$frame+2]%asi,$nc fxtod $bc,$bc ldda [%sp+$bias+$frame+0]%asi,$nd fxtod $bd,$bd ldd [$ap_l+$j],$alo ! load a[j] in double format fxtod $na,$na ldd [$ap_h+$j],$ahi fxtod $nb,$nb ldd [$np_l+$j],$nlo ! load n[j] in double format fxtod $nc,$nc ldd [$np_h+$j],$nhi fxtod $nd,$nd fmuld $alo,$ba,$aloa fmuld $nlo,$na,$nloa fmuld $alo,$bb,$alob fmuld $nlo,$nb,$nlob fmuld $alo,$bc,$aloc faddd $aloa,$nloa,$nloa fmuld $nlo,$nc,$nloc fmuld $alo,$bd,$alod faddd $alob,$nlob,$nlob fmuld $nlo,$nd,$nlod fmuld $ahi,$ba,$ahia faddd $aloc,$nloc,$nloc fmuld $nhi,$na,$nhia fmuld $ahi,$bb,$ahib faddd $alod,$nlod,$nlod fmuld $nhi,$nb,$nhib fmuld $ahi,$bc,$ahic faddd $ahia,$nhia,$nhia fmuld $nhi,$nc,$nhic fmuld $ahi,$bd,$ahid faddd $ahib,$nhib,$nhib fmuld $nhi,$nd,$nhid faddd $ahic,$nhic,$dota ! $nhic faddd $ahid,$nhid,$dotb ! $nhid faddd $nloc,$nhia,$nloc faddd $nlod,$nhib,$nlod fdtox $nloa,$nloa fdtox $nlob,$nlob fdtox $nloc,$nloc fdtox $nlod,$nlod std $nloa,[%sp+$bias+$frame+0] std $nlob,[%sp+$bias+$frame+8] std $nloc,[%sp+$bias+$frame+16] add $j,8,$j std $nlod,[%sp+$bias+$frame+24] ldd [$ap_l+$j],$alo ! load a[j] in double format ldd [$ap_h+$j],$ahi ldd [$np_l+$j],$nlo ! load n[j] in double format ldd [$np_h+$j],$nhi fmuld $alo,$ba,$aloa fmuld $nlo,$na,$nloa fmuld $alo,$bb,$alob fmuld $nlo,$nb,$nlob fmuld $alo,$bc,$aloc ldx [%sp+$bias+$frame+0],%o0 faddd $aloa,$nloa,$nloa fmuld $nlo,$nc,$nloc ldx [%sp+$bias+$frame+8],%o1 fmuld $alo,$bd,$alod ldx [%sp+$bias+$frame+16],%o2 faddd $alob,$nlob,$nlob fmuld $nlo,$nd,$nlod ldx [%sp+$bias+$frame+24],%o3 fmuld $ahi,$ba,$ahia srlx %o0,16,%o7 faddd $aloc,$nloc,$nloc fmuld $nhi,$na,$nhia add %o7,%o1,%o1 fmuld $ahi,$bb,$ahib srlx %o1,16,%o7 faddd $alod,$nlod,$nlod fmuld $nhi,$nb,$nhib add %o7,%o2,%o2 fmuld $ahi,$bc,$ahic srlx %o2,16,%o7 faddd $ahia,$nhia,$nhia fmuld $nhi,$nc,$nhic add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] ! why? and %o0,$mask,%o0 fmuld $ahi,$bd,$ahid and %o1,$mask,%o1 and %o2,$mask,%o2 faddd $ahib,$nhib,$nhib fmuld $nhi,$nd,$nhid sllx %o1,16,%o1 faddd $dota,$nloa,$nloa sllx %o2,32,%o2 faddd $dotb,$nlob,$nlob sllx %o3,48,%o7 or %o1,%o0,%o0 faddd $ahic,$nhic,$dota ! $nhic or %o2,%o0,%o0 faddd $ahid,$nhid,$dotb ! $nhid or %o7,%o0,%o0 ! 64-bit result ldx [$tp],%o7 faddd $nloc,$nhia,$nloc addcc %o7,%o0,%o0 ! end-of-why? faddd $nlod,$nhib,$nlod srlx %o3,16,%g1 ! 34-bit carry fdtox $nloa,$nloa bcs,a %xcc,.+8 add %g1,1,%g1 fdtox $nlob,$nlob fdtox $nloc,$nloc fdtox $nlod,$nlod std $nloa,[%sp+$bias+$frame+0] std $nlob,[%sp+$bias+$frame+8] addcc $j,8,$j std $nloc,[%sp+$bias+$frame+16] bz,pn %icc,.Linnerskip std $nlod,[%sp+$bias+$frame+24] ba .Linner nop .align 32 .Linner: ldd [$ap_l+$j],$alo ! load a[j] in double format ldd [$ap_h+$j],$ahi ldd [$np_l+$j],$nlo ! load n[j] in double format ldd [$np_h+$j],$nhi fmuld $alo,$ba,$aloa fmuld $nlo,$na,$nloa fmuld $alo,$bb,$alob fmuld $nlo,$nb,$nlob fmuld $alo,$bc,$aloc ldx [%sp+$bias+$frame+0],%o0 faddd $aloa,$nloa,$nloa fmuld $nlo,$nc,$nloc ldx [%sp+$bias+$frame+8],%o1 fmuld $alo,$bd,$alod ldx [%sp+$bias+$frame+16],%o2 faddd $alob,$nlob,$nlob fmuld $nlo,$nd,$nlod ldx [%sp+$bias+$frame+24],%o3 fmuld $ahi,$ba,$ahia srlx %o0,16,%o7 faddd $aloc,$nloc,$nloc fmuld $nhi,$na,$nhia add %o7,%o1,%o1 fmuld $ahi,$bb,$ahib srlx %o1,16,%o7 faddd $alod,$nlod,$nlod fmuld $nhi,$nb,$nhib add %o7,%o2,%o2 fmuld $ahi,$bc,$ahic srlx %o2,16,%o7 faddd $ahia,$nhia,$nhia fmuld $nhi,$nc,$nhic add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] and %o0,$mask,%o0 fmuld $ahi,$bd,$ahid and %o1,$mask,%o1 and %o2,$mask,%o2 faddd $ahib,$nhib,$nhib fmuld $nhi,$nd,$nhid sllx %o1,16,%o1 faddd $dota,$nloa,$nloa sllx %o2,32,%o2 faddd $dotb,$nlob,$nlob sllx %o3,48,%o7 or %o1,%o0,%o0 faddd $ahic,$nhic,$dota ! $nhic or %o2,%o0,%o0 faddd $ahid,$nhid,$dotb ! $nhid or %o7,%o0,%o0 ! 64-bit result faddd $nloc,$nhia,$nloc addcc %g1,%o0,%o0 ldx [$tp+8],%o7 ! tp[j] faddd $nlod,$nhib,$nlod srlx %o3,16,%g1 ! 34-bit carry fdtox $nloa,$nloa bcs,a %xcc,.+8 add %g1,1,%g1 fdtox $nlob,$nlob addcc %o7,%o0,%o0 fdtox $nloc,$nloc bcs,a %xcc,.+8 add %g1,1,%g1 stx %o0,[$tp] ! tp[j-1] fdtox $nlod,$nlod std $nloa,[%sp+$bias+$frame+0] std $nlob,[%sp+$bias+$frame+8] std $nloc,[%sp+$bias+$frame+16] addcc $j,8,$j std $nlod,[%sp+$bias+$frame+24] bnz,pt %icc,.Linner add $tp,8,$tp .Linnerskip: fdtox $dota,$dota fdtox $dotb,$dotb ldx [%sp+$bias+$frame+0],%o0 ldx [%sp+$bias+$frame+8],%o1 ldx [%sp+$bias+$frame+16],%o2 ldx [%sp+$bias+$frame+24],%o3 srlx %o0,16,%o7 std $dota,[%sp+$bias+$frame+32] add %o7,%o1,%o1 std $dotb,[%sp+$bias+$frame+40] srlx %o1,16,%o7 add %o7,%o2,%o2 srlx %o2,16,%o7 add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] and %o0,$mask,%o0 and %o1,$mask,%o1 and %o2,$mask,%o2 sllx %o1,16,%o1 sllx %o2,32,%o2 sllx %o3,48,%o7 or %o1,%o0,%o0 or %o2,%o0,%o0 ldx [%sp+$bias+$frame+32],%o4 or %o7,%o0,%o0 ! 64-bit result ldx [%sp+$bias+$frame+40],%o5 addcc %g1,%o0,%o0 ldx [$tp+8],%o7 ! tp[j] srlx %o3,16,%g1 ! 34-bit carry bcs,a %xcc,.+8 add %g1,1,%g1 addcc %o7,%o0,%o0 bcs,a %xcc,.+8 add %g1,1,%g1 stx %o0,[$tp] ! tp[j-1] add $tp,8,$tp srlx %o4,16,%o7 add %o7,%o5,%o5 and %o4,$mask,%o4 sllx %o5,16,%o7 or %o7,%o4,%o4 addcc %g1,%o4,%o4 srlx %o5,48,%g1 bcs,a %xcc,.+8 add %g1,1,%g1 addcc $carry,%o4,%o4 stx %o4,[$tp] ! tp[num-1] mov %g1,$carry bcs,a %xcc,.+8 add $carry,1,$carry addcc $i,8,$i bnz %icc,.Louter nop add $tp,8,$tp ! adjust tp to point at the end orn %g0,%g0,%g4 sub %g0,$num,%o7 ! n=-num ba .Lsub subcc %g0,%g0,%g0 ! clear %icc.c .align 32 .Lsub: ldx [$tp+%o7],%o0 add $np,%o7,%g1 ld [%g1+0],%o2 ld [%g1+4],%o3 srlx %o0,32,%o1 subccc %o0,%o2,%o2 add $rp,%o7,%g1 subccc %o1,%o3,%o3 st %o2,[%g1+0] add %o7,8,%o7 brnz,pt %o7,.Lsub st %o3,[%g1+4] subc $carry,0,%g4 sub %g0,$num,%o7 ! n=-num ba .Lcopy nop .align 32 .Lcopy: ldx [$tp+%o7],%o0 add $rp,%o7,%g1 ld [%g1+0],%o2 ld [%g1+4],%o3 stx %g0,[$tp+%o7] and %o0,%g4,%o0 srlx %o0,32,%o1 andn %o2,%g4,%o2 andn %o3,%g4,%o3 or %o2,%o0,%o0 or %o3,%o1,%o1 st %o0,[%g1+0] add %o7,8,%o7 brnz,pt %o7,.Lcopy st %o1,[%g1+4] sub %g0,$num,%o7 ! n=-num .Lzap: stx %g0,[$ap_l+%o7] stx %g0,[$ap_h+%o7] stx %g0,[$np_l+%o7] stx %g0,[$np_h+%o7] add %o7,8,%o7 brnz,pt %o7,.Lzap nop ldx [%sp+$bias+$frame+48],%o7 wr %g0,%o7,%asi ! restore %asi mov 1,%i0 .Lret: ret restore .type $fname,#function .size $fname,(.-$fname) .asciz "Montgomery Multiplication for UltraSPARC, CRYPTOGAMS by " .align 32 ___ $code =~ s/\`([^\`]*)\`/eval($1)/gem; # Below substitution makes it possible to compile without demanding # VIS extensions on command line, e.g. -xarch=v9 vs. -xarch=v9a. I # dare to do this, because VIS capability is detected at run-time now # and this routine is not called on CPU not capable to execute it. Do # note that fzeros is not the only VIS dependency! Another dependency # is implicit and is just _a_ numerical value loaded to %asi register, # which assembler can't recognize as VIS specific... $code =~ s/fzeros\s+%f([0-9]+)/ sprintf(".word\t0x%x\t! fzeros %%f%d",0x81b00c20|($1<<25),$1) /gem; print $code; # flush close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/via-mont.pl000066400000000000000000000221511364063235100201350ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Wrapper around 'rep montmul', VIA-specific instruction accessing # PadLock Montgomery Multiplier. The wrapper is designed as drop-in # replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9]. # # Below are interleaved outputs from 'openssl speed rsa dsa' for 4 # different software configurations on 1.5GHz VIA Esther processor. # Lines marked with "software integer" denote performance of hand- # coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2" # refers to hand-coded SSE2 Montgomery multiplication procedure found # OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from # Padlock SDK 2.0.1 available for download from VIA, which naturally # utilizes the magic 'repz montmul' instruction. And finally "hardware # this" refers to *this* implementation which also uses 'repz montmul' # # sign verify sign/s verify/s # rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer # rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2 # rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK # rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this # # rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer # rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2 # rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK # rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this # # rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer # rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2 # rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK # rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this # # rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer # rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2 # rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK # rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this # # dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer # dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2 # dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK # dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this # # dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer # dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2 # dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK # dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this # # dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer # dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2 # dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK # dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this # # To give you some other reference point here is output for 2.4GHz P4 # running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software # SSE2" in above terms. # # rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0 # rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0 # rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9 # rsa 4096 bits 0.109770s 0.002379s 9.1 420.3 # dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1 # dsa 1024 bits 0.001346s 0.001595s 742.7 627.0 # dsa 2048 bits 0.004745s 0.005582s 210.7 179.1 # # Conclusions: # - VIA SDK leaves a *lot* of room for improvement (which this # implementation successfully fills:-); # - 'rep montmul' gives up to >3x performance improvement depending on # key length; # - in terms of absolute performance it delivers approximately as much # as modern out-of-order 32-bit cores [again, for longer keys]. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0]); # int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); $func="bn_mul_mont_padlock"; $pad=16*1; # amount of reserved bytes on top of every vector # stack layout $mZeroPrime=&DWP(0,"esp"); # these are specified by VIA $A=&DWP(4,"esp"); $B=&DWP(8,"esp"); $T=&DWP(12,"esp"); $M=&DWP(16,"esp"); $scratch=&DWP(20,"esp"); $rp=&DWP(24,"esp"); # these are mine $sp=&DWP(28,"esp"); # &DWP(32,"esp") # 32 byte scratch area # &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num] # &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num] # &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num] # &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num] # Note that SDK suggests to unconditionally allocate 2K per vector. This # has quite an impact on performance. It naturally depends on key length, # but to give an example 1024 bit private RSA key operations suffer >30% # penalty. I allocate only as much as actually required... &function_begin($func); &xor ("eax","eax"); &mov ("ecx",&wparam(5)); # num # meet VIA's limitations for num [note that the specification # expresses them in bits, while we work with amount of 32-bit words] &test ("ecx",3); &jnz (&label("leave")); # num % 4 != 0 &cmp ("ecx",8); &jb (&label("leave")); # num < 8 &cmp ("ecx",1024); &ja (&label("leave")); # num > 1024 &pushf (); &cld (); &mov ("edi",&wparam(0)); # rp &mov ("eax",&wparam(1)); # ap &mov ("ebx",&wparam(2)); # bp &mov ("edx",&wparam(3)); # np &mov ("esi",&wparam(4)); # n0 &mov ("esi",&DWP(0,"esi")); # *n0 &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes &neg ("ebp"); &add ("ebp","esp"); &and ("ebp",-64); # align to cache-line &xchg ("ebp","esp"); # alloca &mov ($rp,"edi"); # save rp &mov ($sp,"ebp"); # save esp &mov ($mZeroPrime,"esi"); &lea ("esi",&DWP(64,"esp")); # tp &mov ($T,"esi"); &lea ("edi",&DWP(32,"esp")); # scratch area &mov ($scratch,"edi"); &mov ("esi","eax"); &lea ("ebp",&DWP(-$pad,"ecx")); &shr ("ebp",2); # restore original num value in ebp &xor ("eax","eax"); &mov ("ecx","ebp"); &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch &data_byte(0xf3,0xab); # rep stosl, bzero &mov ("ecx","ebp"); &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy &mov ($A,"edi"); &data_byte(0xf3,0xa5); # rep movsl, memcpy &mov ("ecx",$pad/4); &data_byte(0xf3,0xab); # rep stosl, bzero pad # edi points at the end of padded ap copy... &mov ("ecx","ebp"); &mov ("esi","ebx"); &mov ($B,"edi"); &data_byte(0xf3,0xa5); # rep movsl, memcpy &mov ("ecx",$pad/4); &data_byte(0xf3,0xab); # rep stosl, bzero pad # edi points at the end of padded bp copy... &mov ("ecx","ebp"); &mov ("esi","edx"); &mov ($M,"edi"); &data_byte(0xf3,0xa5); # rep movsl, memcpy &mov ("ecx",$pad/4); &data_byte(0xf3,0xab); # rep stosl, bzero pad # edi points at the end of padded np copy... # let magic happen... &mov ("ecx","ebp"); &mov ("esi","esp"); &shl ("ecx",5); # convert word counter to bit counter &align (4); &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul &mov ("ecx","ebp"); &lea ("esi",&DWP(64,"esp")); # tp # edi still points at the end of padded np copy... &neg ("ebp"); &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind" &mov ("edi",$rp); # restore rp &xor ("edx","edx"); # i=0 and clear CF &set_label("sub",8); &mov ("eax",&DWP(0,"esi","edx",4)); &sbb ("eax",&DWP(0,"ebp","edx",4)); &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i] &lea ("edx",&DWP(1,"edx")); # i++ &loop (&label("sub")); # doesn't affect CF! &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit &sbb ("eax",0); &mov ("ecx","edx"); # num &mov ("edx",0); # i=0 &set_label("copy",8); &mov ("ebx",&DWP(0,"esi","edx",4)); &mov ("eax",&DWP(0,"edi","edx",4)); &mov (&DWP(0,"esi","edx",4),"ecx"); # zap tp &cmovc ("eax","ebx"); &mov (&DWP(0,"edi","edx",4),"eax"); &lea ("edx",&DWP(1,"edx")); # i++ &loop (&label("copy")); &mov ("ebp",$sp); &xor ("eax","eax"); &mov ("ecx",64/4); &mov ("edi","esp"); # zap frame including scratch area &data_byte(0xf3,0xab); # rep stosl, bzero # zap copies of ap, bp and np &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2)); &data_byte(0xf3,0xab); # rep stosl, bzero &mov ("esp","ebp"); &inc ("eax"); # signal "done" &popf (); &set_label("leave"); &function_end($func); &asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/vis3-mont.pl000066400000000000000000000221141364063235100202410ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # October 2012. # # SPARCv9 VIS3 Montgomery multiplication procedure suitable for T3 and # onward. There are three new instructions used here: umulxhi, # addxc[cc] and initializing store. On T3 RSA private key operations # are 1.54/1.87/2.11/2.26 times faster for 512/1024/2048/4096-bit key # lengths. This is without dedicated squaring procedure. On T4 # corresponding coefficients are 1.47/2.10/2.80/2.90x, which is mostly # for reference purposes, because T4 has dedicated Montgomery # multiplication and squaring *instructions* that deliver even more. $output = pop; open STDOUT,">$output"; $frame = "STACK_FRAME"; $bias = "STACK_BIAS"; $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr ___ ($n0,$m0,$m1,$lo0,$hi0, $lo1,$hi1,$aj,$alo,$nj,$nlo,$tj)= (map("%g$_",(1..5)),map("%o$_",(0..5,7))); # int bn_mul_mont( $rp="%o0"; # BN_ULONG *rp, $ap="%o1"; # const BN_ULONG *ap, $bp="%o2"; # const BN_ULONG *bp, $np="%o3"; # const BN_ULONG *np, $n0p="%o4"; # const BN_ULONG *n0, $num="%o5"; # int num); # caller ensures that num is even # and >=6 $code.=<<___; .globl bn_mul_mont_vis3 .align 32 bn_mul_mont_vis3: add %sp, $bias, %g4 ! real top of stack sll $num, 2, $num ! size in bytes add $num, 63, %g5 andn %g5, 63, %g5 ! buffer size rounded up to 64 bytes add %g5, %g5, %g1 add %g5, %g1, %g1 ! 3*buffer size sub %g4, %g1, %g1 andn %g1, 63, %g1 ! align at 64 byte sub %g1, $frame, %g1 ! new top of stack sub %g1, %g4, %g1 save %sp, %g1, %sp ___ # +-------------------------------+<----- %sp # . . # +-------------------------------+<----- aligned at 64 bytes # | __int64 tmp[0] | # +-------------------------------+ # . . # . . # +-------------------------------+<----- aligned at 64 bytes # | __int64 ap[1..0] | converted ap[] # +-------------------------------+ # | __int64 np[1..0] | converted np[] # +-------------------------------+ # | __int64 ap[3..2] | # . . # . . # +-------------------------------+ ($rp,$ap,$bp,$np,$n0p,$num)=map("%i$_",(0..5)); ($t0,$t1,$t2,$t3,$cnt,$tp,$bufsz,$anp)=map("%l$_",(0..7)); ($ovf,$i)=($t0,$t1); $code.=<<___; ld [$n0p+0], $t0 ! pull n0[0..1] value add %sp, $bias+$frame, $tp ld [$n0p+4], $t1 add $tp, %g5, $anp ld [$bp+0], $t2 ! m0=bp[0] sllx $t1, 32, $n0 ld [$bp+4], $t3 or $t0, $n0, $n0 add $bp, 8, $bp ld [$ap+0], $t0 ! ap[0] sllx $t3, 32, $m0 ld [$ap+4], $t1 or $t2, $m0, $m0 ld [$ap+8], $t2 ! ap[1] sllx $t1, 32, $aj ld [$ap+12], $t3 or $t0, $aj, $aj add $ap, 16, $ap stx $aj, [$anp] ! converted ap[0] mulx $aj, $m0, $lo0 ! ap[0]*bp[0] umulxhi $aj, $m0, $hi0 ld [$np+0], $t0 ! np[0] sllx $t3, 32, $aj ld [$np+4], $t1 or $t2, $aj, $aj ld [$np+8], $t2 ! np[1] sllx $t1, 32, $nj ld [$np+12], $t3 or $t0, $nj, $nj add $np, 16, $np stx $nj, [$anp+8] ! converted np[0] mulx $lo0, $n0, $m1 ! "tp[0]"*n0 stx $aj, [$anp+16] ! converted ap[1] mulx $aj, $m0, $alo ! ap[1]*bp[0] umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $lo1 ! np[0]*m1 umulxhi $nj, $m1, $hi1 sllx $t3, 32, $nj or $t2, $nj, $nj stx $nj, [$anp+24] ! converted np[1] add $anp, 32, $anp addcc $lo0, $lo1, $lo1 addxc %g0, $hi1, $hi1 mulx $nj, $m1, $nlo ! np[1]*m1 umulxhi $nj, $m1, $nj ! nhi=nj ba .L1st sub $num, 24, $cnt ! cnt=num-3 .align 16 .L1st: ld [$ap+0], $t0 ! ap[j] addcc $alo, $hi0, $lo0 ld [$ap+4], $t1 addxc $aj, %g0, $hi0 sllx $t1, 32, $aj add $ap, 8, $ap or $t0, $aj, $aj stx $aj, [$anp] ! converted ap[j] ld [$np+0], $t2 ! np[j] addcc $nlo, $hi1, $lo1 ld [$np+4], $t3 addxc $nj, %g0, $hi1 ! nhi=nj sllx $t3, 32, $nj add $np, 8, $np mulx $aj, $m0, $alo ! ap[j]*bp[0] or $t2, $nj, $nj umulxhi $aj, $m0, $aj ! ahi=aj stx $nj, [$anp+8] ! converted np[j] add $anp, 16, $anp ! anp++ mulx $nj, $m1, $nlo ! np[j]*m1 addcc $lo0, $lo1, $lo1 ! np[j]*m1+ap[j]*bp[0] umulxhi $nj, $m1, $nj ! nhi=nj addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] add $tp, 8, $tp ! tp++ brnz,pt $cnt, .L1st sub $cnt, 8, $cnt ! j-- !.L1st addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ! ahi=aj addcc $nlo, $hi1, $lo1 addxc $nj, %g0, $hi1 addcc $lo0, $lo1, $lo1 ! np[j]*m1+ap[j]*bp[0] addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] add $tp, 8, $tp addcc $hi0, $hi1, $hi1 addxc %g0, %g0, $ovf ! upmost overflow bit stx $hi1, [$tp] add $tp, 8, $tp ba .Louter sub $num, 16, $i ! i=num-2 .align 16 .Louter: ld [$bp+0], $t2 ! m0=bp[i] ld [$bp+4], $t3 sub $anp, $num, $anp ! rewind sub $tp, $num, $tp sub $anp, $num, $anp add $bp, 8, $bp sllx $t3, 32, $m0 ldx [$anp+0], $aj ! ap[0] or $t2, $m0, $m0 ldx [$anp+8], $nj ! np[0] mulx $aj, $m0, $lo0 ! ap[0]*bp[i] ldx [$tp], $tj ! tp[0] umulxhi $aj, $m0, $hi0 ldx [$anp+16], $aj ! ap[1] addcc $lo0, $tj, $lo0 ! ap[0]*bp[i]+tp[0] mulx $aj, $m0, $alo ! ap[1]*bp[i] addxc %g0, $hi0, $hi0 mulx $lo0, $n0, $m1 ! tp[0]*n0 umulxhi $aj, $m0, $aj ! ahi=aj mulx $nj, $m1, $lo1 ! np[0]*m1 umulxhi $nj, $m1, $hi1 ldx [$anp+24], $nj ! np[1] add $anp, 32, $anp addcc $lo1, $lo0, $lo1 mulx $nj, $m1, $nlo ! np[1]*m1 addxc %g0, $hi1, $hi1 umulxhi $nj, $m1, $nj ! nhi=nj ba .Linner sub $num, 24, $cnt ! cnt=num-3 .align 16 .Linner: addcc $alo, $hi0, $lo0 ldx [$tp+8], $tj ! tp[j] addxc $aj, %g0, $hi0 ! ahi=aj ldx [$anp+0], $aj ! ap[j] addcc $nlo, $hi1, $lo1 mulx $aj, $m0, $alo ! ap[j]*bp[i] addxc $nj, %g0, $hi1 ! nhi=nj ldx [$anp+8], $nj ! np[j] add $anp, 16, $anp umulxhi $aj, $m0, $aj ! ahi=aj addcc $lo0, $tj, $lo0 ! ap[j]*bp[i]+tp[j] mulx $nj, $m1, $nlo ! np[j]*m1 addxc %g0, $hi0, $hi0 umulxhi $nj, $m1, $nj ! nhi=nj addcc $lo1, $lo0, $lo1 ! np[j]*m1+ap[j]*bp[i]+tp[j] addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] add $tp, 8, $tp brnz,pt $cnt, .Linner sub $cnt, 8, $cnt !.Linner ldx [$tp+8], $tj ! tp[j] addcc $alo, $hi0, $lo0 addxc $aj, %g0, $hi0 ! ahi=aj addcc $lo0, $tj, $lo0 ! ap[j]*bp[i]+tp[j] addxc %g0, $hi0, $hi0 addcc $nlo, $hi1, $lo1 addxc $nj, %g0, $hi1 ! nhi=nj addcc $lo1, $lo0, $lo1 ! np[j]*m1+ap[j]*bp[i]+tp[j] addxc %g0, $hi1, $hi1 stx $lo1, [$tp] ! tp[j-1] subcc %g0, $ovf, %g0 ! move upmost overflow to CCR.xcc addxccc $hi1, $hi0, $hi1 addxc %g0, %g0, $ovf stx $hi1, [$tp+8] add $tp, 16, $tp brnz,pt $i, .Louter sub $i, 8, $i sub $anp, $num, $anp ! rewind sub $tp, $num, $tp sub $anp, $num, $anp ba .Lsub subcc $num, 8, $cnt ! cnt=num-1 and clear CCR.xcc .align 16 .Lsub: ldx [$tp], $tj add $tp, 8, $tp ldx [$anp+8], $nj add $anp, 16, $anp subccc $tj, $nj, $t2 ! tp[j]-np[j] srlx $tj, 32, $tj srlx $nj, 32, $nj subccc $tj, $nj, $t3 add $rp, 8, $rp st $t2, [$rp-4] ! reverse order st $t3, [$rp-8] brnz,pt $cnt, .Lsub sub $cnt, 8, $cnt sub $anp, $num, $anp ! rewind sub $tp, $num, $tp sub $anp, $num, $anp sub $rp, $num, $rp subccc $ovf, %g0, $ovf ! handle upmost overflow bit ba .Lcopy sub $num, 8, $cnt .align 16 .Lcopy: ! conditional copy ld [$tp+0], $t0 ld [$tp+4], $t1 ld [$rp+0], $t2 ld [$rp+4], $t3 stx %g0, [$tp] ! zap add $tp, 8, $tp stx %g0, [$anp] ! zap stx %g0, [$anp+8] add $anp, 16, $anp movcs %icc, $t0, $t2 movcs %icc, $t1, $t3 st $t3, [$rp+0] ! flip order st $t2, [$rp+4] add $rp, 8, $rp brnz $cnt, .Lcopy sub $cnt, 8, $cnt mov 1, %o0 ret restore .type bn_mul_mont_vis3, #function .size bn_mul_mont_vis3, .-bn_mul_mont_vis3 .asciz "Montgomery Multiplication for SPARCv9 VIS3, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "addxc" => 0x011, "addxccc" => 0x013, "umulxhi" => 0x016 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(umulxhi|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/x86-gf2m.pl000066400000000000000000000177021364063235100176670ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # May 2011 # # The module implements bn_GF2m_mul_2x2 polynomial multiplication used # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for # the time being... Except that it has three code paths: pure integer # code suitable for any x86 CPU, MMX code suitable for PIII and later # and PCLMULQDQ suitable for Westmere and later. Improvement varies # from one benchmark and µ-arch to another. Below are interval values # for 163- and 571-bit ECDH benchmarks relative to compiler-generated # code: # # PIII 16%-30% # P4 12%-12% # Opteron 18%-40% # Core2 19%-44% # Atom 38%-64% # Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX) # Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX) # # Note that above improvement coefficients are not coefficients for # bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result # of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark # is more and more dominated by other subroutines, most notably by # BN_GF2m_mod[_mul]_arr... $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); $a="eax"; $b="ebx"; ($a1,$a2,$a4)=("ecx","edx","ebp"); $R="mm0"; @T=("mm1","mm2"); ($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5"); @i=("esi","edi"); if (!$x86only) { &function_begin_B("_mul_1x1_mmx"); &sub ("esp",32+4); &mov ($a1,$a); &lea ($a2,&DWP(0,$a,$a)); &and ($a1,0x3fffffff); &lea ($a4,&DWP(0,$a2,$a2)); &mov (&DWP(0*4,"esp"),0); &and ($a2,0x7fffffff); &movd ($A,$a); &movd ($B,$b); &mov (&DWP(1*4,"esp"),$a1); # a1 &xor ($a1,$a2); # a1^a2 &pxor ($B31,$B31); &pxor ($B30,$B30); &mov (&DWP(2*4,"esp"),$a2); # a2 &xor ($a2,$a4); # a2^a4 &mov (&DWP(3*4,"esp"),$a1); # a1^a2 &pcmpgtd($B31,$A); # broadcast 31st bit &paddd ($A,$A); # $A<<=1 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4 &mov (&DWP(4*4,"esp"),$a4); # a4 &xor ($a4,$a2); # a2=a4^a2^a4 &pand ($B31,$B); &pcmpgtd($B30,$A); # broadcast 30th bit &mov (&DWP(5*4,"esp"),$a1); # a1^a4 &xor ($a4,$a1); # a1^a2^a4 &psllq ($B31,31); &pand ($B30,$B); &mov (&DWP(6*4,"esp"),$a2); # a2^a4 &mov (@i[0],0x7); &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4 &mov ($a4,@i[0]); &and (@i[0],$b); &shr ($b,3); &mov (@i[1],$a4); &psllq ($B30,30); &and (@i[1],$b); &shr ($b,3); &movd ($R,&DWP(0,"esp",@i[0],4)); &mov (@i[0],$a4); &and (@i[0],$b); &shr ($b,3); for($n=1;$n<9;$n++) { &movd (@T[1],&DWP(0,"esp",@i[1],4)); &mov (@i[1],$a4); &psllq (@T[1],3*$n); &and (@i[1],$b); &shr ($b,3); &pxor ($R,@T[1]); push(@i,shift(@i)); push(@T,shift(@T)); } &movd (@T[1],&DWP(0,"esp",@i[1],4)); &pxor ($R,$B30); &psllq (@T[1],3*$n++); &pxor ($R,@T[1]); &movd (@T[0],&DWP(0,"esp",@i[0],4)); &pxor ($R,$B31); &psllq (@T[0],3*$n); &add ("esp",32+4); &pxor ($R,@T[0]); &ret (); &function_end_B("_mul_1x1_mmx"); } ($lo,$hi)=("eax","edx"); @T=("ecx","ebp"); &function_begin_B("_mul_1x1_ialu"); &sub ("esp",32+4); &mov ($a1,$a); &lea ($a2,&DWP(0,$a,$a)); &lea ($a4,&DWP(0,"",$a,4)); &and ($a1,0x3fffffff); &lea (@i[1],&DWP(0,$lo,$lo)); &sar ($lo,31); # broadcast 31st bit &mov (&DWP(0*4,"esp"),0); &and ($a2,0x7fffffff); &mov (&DWP(1*4,"esp"),$a1); # a1 &xor ($a1,$a2); # a1^a2 &mov (&DWP(2*4,"esp"),$a2); # a2 &xor ($a2,$a4); # a2^a4 &mov (&DWP(3*4,"esp"),$a1); # a1^a2 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4 &mov (&DWP(4*4,"esp"),$a4); # a4 &xor ($a4,$a2); # a2=a4^a2^a4 &mov (&DWP(5*4,"esp"),$a1); # a1^a4 &xor ($a4,$a1); # a1^a2^a4 &sar (@i[1],31); # broadcast 30th bit &and ($lo,$b); &mov (&DWP(6*4,"esp"),$a2); # a2^a4 &and (@i[1],$b); &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4 &mov ($hi,$lo); &shl ($lo,31); &mov (@T[0],@i[1]); &shr ($hi,1); &mov (@i[0],0x7); &shl (@i[1],30); &and (@i[0],$b); &shr (@T[0],2); &xor ($lo,@i[1]); &shr ($b,3); &mov (@i[1],0x7); # 5-byte instruction!? &and (@i[1],$b); &shr ($b,3); &xor ($hi,@T[0]); &xor ($lo,&DWP(0,"esp",@i[0],4)); &mov (@i[0],0x7); &and (@i[0],$b); &shr ($b,3); for($n=1;$n<9;$n++) { &mov (@T[1],&DWP(0,"esp",@i[1],4)); &mov (@i[1],0x7); &mov (@T[0],@T[1]); &shl (@T[1],3*$n); &and (@i[1],$b); &shr (@T[0],32-3*$n); &xor ($lo,@T[1]); &shr ($b,3); &xor ($hi,@T[0]); push(@i,shift(@i)); push(@T,shift(@T)); } &mov (@T[1],&DWP(0,"esp",@i[1],4)); &mov (@T[0],@T[1]); &shl (@T[1],3*$n); &mov (@i[1],&DWP(0,"esp",@i[0],4)); &shr (@T[0],32-3*$n); $n++; &mov (@i[0],@i[1]); &xor ($lo,@T[1]); &shl (@i[1],3*$n); &xor ($hi,@T[0]); &shr (@i[0],32-3*$n); &xor ($lo,@i[1]); &xor ($hi,@i[0]); &add ("esp",32+4); &ret (); &function_end_B("_mul_1x1_ialu"); # void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0); &function_begin_B("bn_GF2m_mul_2x2"); if (!$x86only) { &picmeup("edx","OPENSSL_ia32cap_P"); &mov ("eax",&DWP(0,"edx")); &mov ("edx",&DWP(4,"edx")); &test ("eax",1<<23); # check MMX bit &jz (&label("ialu")); if ($sse2) { &test ("eax",1<<24); # check FXSR bit &jz (&label("mmx")); &test ("edx",1<<1); # check PCLMULQDQ bit &jz (&label("mmx")); &movups ("xmm0",&QWP(8,"esp")); &shufps ("xmm0","xmm0",0b10110001); &pclmulqdq ("xmm0","xmm0",1); &mov ("eax",&DWP(4,"esp")); &movups (&QWP(0,"eax"),"xmm0"); &ret (); &set_label("mmx",16); } &push ("ebp"); &push ("ebx"); &push ("esi"); &push ("edi"); &mov ($a,&wparam(1)); &mov ($b,&wparam(3)); &call ("_mul_1x1_mmx"); # a1·b1 &movq ("mm7",$R); &mov ($a,&wparam(2)); &mov ($b,&wparam(4)); &call ("_mul_1x1_mmx"); # a0·b0 &movq ("mm6",$R); &mov ($a,&wparam(1)); &mov ($b,&wparam(3)); &xor ($a,&wparam(2)); &xor ($b,&wparam(4)); &call ("_mul_1x1_mmx"); # (a0+a1)·(b0+b1) &pxor ($R,"mm7"); &mov ($a,&wparam(0)); &pxor ($R,"mm6"); # (a0+a1)·(b0+b1)-a1·b1-a0·b0 &movq ($A,$R); &psllq ($R,32); &pop ("edi"); &psrlq ($A,32); &pop ("esi"); &pxor ($R,"mm6"); &pop ("ebx"); &pxor ($A,"mm7"); &movq (&QWP(0,$a),$R); &pop ("ebp"); &movq (&QWP(8,$a),$A); &emms (); &ret (); &set_label("ialu",16); } &push ("ebp"); &push ("ebx"); &push ("esi"); &push ("edi"); &stack_push(4+1); &mov ($a,&wparam(1)); &mov ($b,&wparam(3)); &call ("_mul_1x1_ialu"); # a1·b1 &mov (&DWP(8,"esp"),$lo); &mov (&DWP(12,"esp"),$hi); &mov ($a,&wparam(2)); &mov ($b,&wparam(4)); &call ("_mul_1x1_ialu"); # a0·b0 &mov (&DWP(0,"esp"),$lo); &mov (&DWP(4,"esp"),$hi); &mov ($a,&wparam(1)); &mov ($b,&wparam(3)); &xor ($a,&wparam(2)); &xor ($b,&wparam(4)); &call ("_mul_1x1_ialu"); # (a0+a1)·(b0+b1) &mov ("ebp",&wparam(0)); @r=("ebx","ecx","edi","esi"); &mov (@r[0],&DWP(0,"esp")); &mov (@r[1],&DWP(4,"esp")); &mov (@r[2],&DWP(8,"esp")); &mov (@r[3],&DWP(12,"esp")); &xor ($lo,$hi); &xor ($hi,@r[1]); &xor ($lo,@r[0]); &mov (&DWP(0,"ebp"),@r[0]); &xor ($hi,@r[2]); &mov (&DWP(12,"ebp"),@r[3]); &xor ($lo,@r[3]); &stack_pop(4+1); &xor ($hi,@r[3]); &pop ("edi"); &xor ($lo,$hi); &pop ("esi"); &mov (&DWP(8,"ebp"),$hi); &pop ("ebx"); &mov (&DWP(4,"ebp"),$lo); &pop ("ebp"); &ret (); &function_end_B("bn_GF2m_mul_2x2"); &asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/x86-mont.pl000077500000000000000000000424451364063235100200160ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # October 2005 # # This is a "teaser" code, as it can be improved in several ways... # First of all non-SSE2 path should be implemented (yes, for now it # performs Montgomery multiplication/convolution only on SSE2-capable # CPUs such as P4, others fall down to original code). Then inner loop # can be unrolled and modulo-scheduled to improve ILP and possibly # moved to 128-bit XMM register bank (though it would require input # rearrangement and/or increase bus bandwidth utilization). Dedicated # squaring procedure should give further performance improvement... # Yet, for being draft, the code improves rsa512 *sign* benchmark by # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-) # December 2006 # # Modulo-scheduling SSE2 loops results in further 15-20% improvement. # Integer-only code [being equipped with dedicated squaring procedure] # gives ~40% on rsa512 sign benchmark... $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); &function_begin("bn_mul_mont"); $i="edx"; $j="ecx"; $ap="esi"; $tp="esi"; # overlapping variables!!! $rp="edi"; $bp="edi"; # overlapping variables!!! $np="ebp"; $num="ebx"; $_num=&DWP(4*0,"esp"); # stack top layout $_rp=&DWP(4*1,"esp"); $_ap=&DWP(4*2,"esp"); $_bp=&DWP(4*3,"esp"); $_np=&DWP(4*4,"esp"); $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp"); $_sp=&DWP(4*6,"esp"); $_bpend=&DWP(4*7,"esp"); $frame=32; # size of above frame rounded up to 16n &xor ("eax","eax"); &mov ("edi",&wparam(5)); # int num &cmp ("edi",4); &jl (&label("just_leave")); &lea ("esi",&wparam(0)); # put aside pointer to argument block &lea ("edx",&wparam(1)); # load ap &add ("edi",2); # extra two words on top of tp &neg ("edi"); &lea ("ebp",&DWP(-$frame,"esp","edi",4)); # future alloca($frame+4*(num+2)) &neg ("edi"); # minimize cache contention by arranging 2K window between stack # pointer and ap argument [np is also position sensitive vector, # but it's assumed to be near ap, as it's allocated at ~same # time]. &mov ("eax","ebp"); &sub ("eax","edx"); &and ("eax",2047); &sub ("ebp","eax"); # this aligns sp and ap modulo 2048 &xor ("edx","ebp"); &and ("edx",2048); &xor ("edx",2048); &sub ("ebp","edx"); # this splits them apart modulo 4096 &and ("ebp",-64); # align to cache line # An OS-agnostic version of __chkstk. # # Some OSes (Windows) insist on stack being "wired" to # physical memory in strictly sequential manner, i.e. if stack # allocation spans two pages, then reference to farmost one can # be punishable by SEGV. But page walking can do good even on # other OSes, because it guarantees that villain thread hits # the guard page before it can make damage to innocent one... &mov ("eax","esp"); &sub ("eax","ebp"); &and ("eax",-4096); &mov ("edx","esp"); # saved stack pointer! &lea ("esp",&DWP(0,"ebp","eax")); &mov ("eax",&DWP(0,"esp")); &cmp ("esp","ebp"); &ja (&label("page_walk")); &jmp (&label("page_walk_done")); &set_label("page_walk",16); &lea ("esp",&DWP(-4096,"esp")); &mov ("eax",&DWP(0,"esp")); &cmp ("esp","ebp"); &ja (&label("page_walk")); &set_label("page_walk_done"); ################################# load argument block... &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp &mov ("ebp",&DWP(3*4,"esi"));# const BN_ULONG *np &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0 #&mov ("edi",&DWP(5*4,"esi"));# int num &mov ("esi",&DWP(0,"esi")); # pull n0[0] &mov ($_rp,"eax"); # ... save a copy of argument block &mov ($_ap,"ebx"); &mov ($_bp,"ecx"); &mov ($_np,"ebp"); &mov ($_n0,"esi"); &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling #&mov ($_num,$num); # redundant as $num is not reused &mov ($_sp,"edx"); # saved stack pointer! if($sse2) { $acc0="mm0"; # mmx register bank layout $acc1="mm1"; $car0="mm2"; $car1="mm3"; $mul0="mm4"; $mul1="mm5"; $temp="mm6"; $mask="mm7"; &picmeup("eax","OPENSSL_ia32cap_P"); &bt (&DWP(0,"eax"),26); &jnc (&label("non_sse2")); &mov ("eax",-1); &movd ($mask,"eax"); # mask 32 lower bits &mov ($ap,$_ap); # load input pointers &mov ($bp,$_bp); &mov ($np,$_np); &xor ($i,$i); # i=0 &xor ($j,$j); # j=0 &movd ($mul0,&DWP(0,$bp)); # bp[0] &movd ($mul1,&DWP(0,$ap)); # ap[0] &movd ($car1,&DWP(0,$np)); # np[0] &pmuludq($mul1,$mul0); # ap[0]*bp[0] &movq ($car0,$mul1); &movq ($acc0,$mul1); # I wish movd worked for &pand ($acc0,$mask); # inter-register transfers &pmuludq($mul1,$_n0q); # *=n0 &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0 &paddq ($car1,$acc0); &movd ($acc1,&DWP(4,$np)); # np[1] &movd ($acc0,&DWP(4,$ap)); # ap[1] &psrlq ($car0,32); &psrlq ($car1,32); &inc ($j); # j++ &set_label("1st",16); &pmuludq($acc0,$mul0); # ap[j]*bp[0] &pmuludq($acc1,$mul1); # np[j]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &pand ($acc0,$mask); &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] &paddq ($car1,$acc0); # +=ap[j]*bp[0]; &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] &psrlq ($car0,32); &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]= &psrlq ($car1,32); &lea ($j,&DWP(1,$j)); &cmp ($j,$num); &jl (&label("1st")); &pmuludq($acc0,$mul0); # ap[num-1]*bp[0] &pmuludq($acc1,$mul1); # np[num-1]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &pand ($acc0,$mask); &paddq ($car1,$acc0); # +=ap[num-1]*bp[0]; &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= &psrlq ($car0,32); &psrlq ($car1,32); &paddq ($car1,$car0); &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] &inc ($i); # i++ &set_label("outer"); &xor ($j,$j); # j=0 &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i] &movd ($mul1,&DWP(0,$ap)); # ap[0] &movd ($temp,&DWP($frame,"esp")); # tp[0] &movd ($car1,&DWP(0,$np)); # np[0] &pmuludq($mul1,$mul0); # ap[0]*bp[i] &paddq ($mul1,$temp); # +=tp[0] &movq ($acc0,$mul1); &movq ($car0,$mul1); &pand ($acc0,$mask); &pmuludq($mul1,$_n0q); # *=n0 &pmuludq($car1,$mul1); &paddq ($car1,$acc0); &movd ($temp,&DWP($frame+4,"esp")); # tp[1] &movd ($acc1,&DWP(4,$np)); # np[1] &movd ($acc0,&DWP(4,$ap)); # ap[1] &psrlq ($car0,32); &psrlq ($car1,32); &paddq ($car0,$temp); # +=tp[1] &inc ($j); # j++ &dec ($num); &set_label("inner"); &pmuludq($acc0,$mul0); # ap[j]*bp[i] &pmuludq($acc1,$mul1); # np[j]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1] &pand ($acc0,$mask); &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j] &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] &psrlq ($car0,32); &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]= &psrlq ($car1,32); &paddq ($car0,$temp); # +=tp[j+1] &dec ($num); &lea ($j,&DWP(1,$j)); # j++ &jnz (&label("inner")); &mov ($num,$j); &pmuludq($acc0,$mul0); # ap[num-1]*bp[i] &pmuludq($acc1,$mul1); # np[num-1]*m1 &paddq ($car0,$acc0); # +=c0 &paddq ($car1,$acc1); # +=c1 &movq ($acc0,$car0); &pand ($acc0,$mask); &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1] &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= &psrlq ($car0,32); &psrlq ($car1,32); &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num] &paddq ($car1,$car0); &paddq ($car1,$temp); &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] &lea ($i,&DWP(1,$i)); # i++ &cmp ($i,$num); &jle (&label("outer")); &emms (); # done with mmx bank &jmp (&label("common_tail")); &set_label("non_sse2",16); } if (0) { &mov ("esp",$_sp); &xor ("eax","eax"); # signal "not fast enough [yet]" &jmp (&label("just_leave")); # While the below code provides competitive performance for # all key lengths on modern Intel cores, it's still more # than 10% slower for 4096-bit key elsewhere:-( "Competitive" # means compared to the original integer-only assembler. # 512-bit RSA sign is better by ~40%, but that's about all # one can say about all CPUs... } else { $inp="esi"; # integer path uses these registers differently $word="edi"; $carry="ebp"; &mov ($inp,$_ap); &lea ($carry,&DWP(1,$num)); &mov ($word,$_bp); &xor ($j,$j); # j=0 &mov ("edx",$inp); &and ($carry,1); # see if num is even &sub ("edx",$word); # see if ap==bp &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num] &or ($carry,"edx"); &mov ($word,&DWP(0,$word)); # bp[0] &jz (&label("bn_sqr_mont")); &mov ($_bpend,"eax"); &mov ("eax",&DWP(0,$inp)); &xor ("edx","edx"); &set_label("mull",16); &mov ($carry,"edx"); &mul ($word); # ap[j]*bp[0] &add ($carry,"eax"); &lea ($j,&DWP(1,$j)); &adc ("edx",0); &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] &cmp ($j,$num); &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= &jl (&label("mull")); &mov ($carry,"edx"); &mul ($word); # ap[num-1]*bp[0] &mov ($word,$_n0); &add ("eax",$carry); &mov ($inp,$_np); &adc ("edx",0); &imul ($word,&DWP($frame,"esp")); # n0*tp[0] &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]= &xor ($j,$j); &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= &mov ("eax",&DWP(0,$inp)); # np[0] &mul ($word); # np[0]*m &add ("eax",&DWP($frame,"esp")); # +=tp[0] &mov ("eax",&DWP(4,$inp)); # np[1] &adc ("edx",0); &inc ($j); &jmp (&label("2ndmadd")); &set_label("1stmadd",16); &mov ($carry,"edx"); &mul ($word); # ap[j]*bp[i] &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] &lea ($j,&DWP(1,$j)); &adc ("edx",0); &add ($carry,"eax"); &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] &adc ("edx",0); &cmp ($j,$num); &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= &jl (&label("1stmadd")); &mov ($carry,"edx"); &mul ($word); # ap[num-1]*bp[i] &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1] &mov ($word,$_n0); &adc ("edx",0); &mov ($inp,$_np); &add ($carry,"eax"); &adc ("edx",0); &imul ($word,&DWP($frame,"esp")); # n0*tp[0] &xor ($j,$j); &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]= &adc ($j,0); &mov ("eax",&DWP(0,$inp)); # np[0] &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= &mul ($word); # np[0]*m &add ("eax",&DWP($frame,"esp")); # +=tp[0] &mov ("eax",&DWP(4,$inp)); # np[1] &adc ("edx",0); &mov ($j,1); &set_label("2ndmadd",16); &mov ($carry,"edx"); &mul ($word); # np[j]*m &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] &lea ($j,&DWP(1,$j)); &adc ("edx",0); &add ($carry,"eax"); &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1] &adc ("edx",0); &cmp ($j,$num); &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]= &jl (&label("2ndmadd")); &mov ($carry,"edx"); &mul ($word); # np[j]*m &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] &adc ("edx",0); &add ($carry,"eax"); &adc ("edx",0); &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= &xor ("eax","eax"); &mov ($j,$_bp); # &bp[i] &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] &lea ($j,&DWP(4,$j)); &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= &cmp ($j,$_bpend); &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= &je (&label("common_tail")); &mov ($word,&DWP(0,$j)); # bp[i+1] &mov ($inp,$_ap); &mov ($_bp,$j); # &bp[++i] &xor ($j,$j); &xor ("edx","edx"); &mov ("eax",&DWP(0,$inp)); &jmp (&label("1stmadd")); &set_label("bn_sqr_mont",16); $sbit=$num; &mov ($_num,$num); &mov ($_bp,$j); # i=0 &mov ("eax",$word); # ap[0] &mul ($word); # ap[0]*ap[0] &mov (&DWP($frame,"esp"),"eax"); # tp[0]= &mov ($sbit,"edx"); &shr ("edx",1); &and ($sbit,1); &inc ($j); &set_label("sqr",16); &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] &mov ($carry,"edx"); &mul ($word); # ap[j]*ap[0] &add ("eax",$carry); &lea ($j,&DWP(1,$j)); &adc ("edx",0); &lea ($carry,&DWP(0,$sbit,"eax",2)); &shr ("eax",31); &cmp ($j,$_num); &mov ($sbit,"eax"); &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= &jl (&label("sqr")); &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1] &mov ($carry,"edx"); &mul ($word); # ap[num-1]*ap[0] &add ("eax",$carry); &mov ($word,$_n0); &adc ("edx",0); &mov ($inp,$_np); &lea ($carry,&DWP(0,$sbit,"eax",2)); &imul ($word,&DWP($frame,"esp")); # n0*tp[0] &shr ("eax",31); &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]= &lea ($carry,&DWP(0,"eax","edx",2)); &mov ("eax",&DWP(0,$inp)); # np[0] &shr ("edx",31); &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]= &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]= &mul ($word); # np[0]*m &add ("eax",&DWP($frame,"esp")); # +=tp[0] &mov ($num,$j); &adc ("edx",0); &mov ("eax",&DWP(4,$inp)); # np[1] &mov ($j,1); &set_label("3rdmadd",16); &mov ($carry,"edx"); &mul ($word); # np[j]*m &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] &adc ("edx",0); &add ($carry,"eax"); &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1] &adc ("edx",0); &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]= &mov ($carry,"edx"); &mul ($word); # np[j+1]*m &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1] &lea ($j,&DWP(2,$j)); &adc ("edx",0); &add ($carry,"eax"); &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2] &adc ("edx",0); &cmp ($j,$num); &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]= &jl (&label("3rdmadd")); &mov ($carry,"edx"); &mul ($word); # np[j]*m &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] &adc ("edx",0); &add ($carry,"eax"); &adc ("edx",0); &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= &mov ($j,$_bp); # i &xor ("eax","eax"); &mov ($inp,$_ap); &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= &cmp ($j,$num); &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= &je (&label("common_tail")); &mov ($word,&DWP(4,$inp,$j,4)); # ap[i] &lea ($j,&DWP(1,$j)); &mov ("eax",$word); &mov ($_bp,$j); # ++i &mul ($word); # ap[i]*ap[i] &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i] &adc ("edx",0); &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]= &xor ($carry,$carry); &cmp ($j,$num); &lea ($j,&DWP(1,$j)); &je (&label("sqrlast")); &mov ($sbit,"edx"); # zaps $num &shr ("edx",1); &and ($sbit,1); &set_label("sqradd",16); &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] &mov ($carry,"edx"); &mul ($word); # ap[j]*ap[i] &add ("eax",$carry); &lea ($carry,&DWP(0,"eax","eax")); &adc ("edx",0); &shr ("eax",31); &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] &lea ($j,&DWP(1,$j)); &adc ("eax",0); &add ($carry,$sbit); &adc ("eax",0); &cmp ($j,$_num); &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= &mov ($sbit,"eax"); &jle (&label("sqradd")); &mov ($carry,"edx"); &add ("edx","edx"); &shr ($carry,31); &add ("edx",$sbit); &adc ($carry,0); &set_label("sqrlast"); &mov ($word,$_n0); &mov ($inp,$_np); &imul ($word,&DWP($frame,"esp")); # n0*tp[0] &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num] &mov ("eax",&DWP(0,$inp)); # np[0] &adc ($carry,0); &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]= &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]= &mul ($word); # np[0]*m &add ("eax",&DWP($frame,"esp")); # +=tp[0] &lea ($num,&DWP(-1,$j)); &adc ("edx",0); &mov ($j,1); &mov ("eax",&DWP(4,$inp)); # np[1] &jmp (&label("3rdmadd")); } &set_label("common_tail",16); &mov ($np,$_np); # load modulus pointer &mov ($rp,$_rp); # load result pointer &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped] &mov ("eax",&DWP(0,$tp)); # tp[0] &mov ($j,$num); # j=num-1 &xor ($i,$i); # i=0 and clear CF! &set_label("sub",16); &sbb ("eax",&DWP(0,$np,$i,4)); &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i] &dec ($j); # doesn't affect CF! &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1] &lea ($i,&DWP(1,$i)); # i++ &jge (&label("sub")); &sbb ("eax",0); # handle upmost overflow bit &mov ("edx",-1); &xor ("edx","eax"); &jmp (&label("copy")); &set_label("copy",16); # conditional copy &mov ($tp,&DWP($frame,"esp",$num,4)); &mov ($np,&DWP(0,$rp,$num,4)); &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector &and ($tp,"eax"); &and ($np,"edx"); &or ($np,$tp); &mov (&DWP(0,$rp,$num,4),$np); &dec ($num); &jge (&label("copy")); &mov ("esp",$_sp); # pull saved stack pointer &mov ("eax",1); &set_label("just_leave"); &function_end("bn_mul_mont"); &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/x86_64-gcc.c000066400000000000000000000451521364063235100177100ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "../bn_local.h" #if !(defined(__GNUC__) && __GNUC__>=2) # include "../bn_asm.c" /* kind of dirty hack for Sun Studio */ #else /*- * x86_64 BIGNUM accelerator version 0.1, December 2002. * * Implemented by Andy Polyakov for the OpenSSL * project. * * Rights for redistribution and usage in source and binary forms are * granted according to the OpenSSL license. Warranty of any kind is * disclaimed. * * Q. Version 0.1? It doesn't sound like Andy, he used to assign real * versions, like 1.0... * A. Well, that's because this code is basically a quick-n-dirty * proof-of-concept hack. As you can see it's implemented with * inline assembler, which means that you're bound to GCC and that * there might be enough room for further improvement. * * Q. Why inline assembler? * A. x86_64 features own ABI which I'm not familiar with. This is * why I decided to let the compiler take care of subroutine * prologue/epilogue as well as register allocation. For reference. * Win64 implements different ABI for AMD64, different from Linux. * * Q. How much faster does it get? * A. 'apps/openssl speed rsa dsa' output with no-asm: * * sign verify sign/s verify/s * rsa 512 bits 0.0006s 0.0001s 1683.8 18456.2 * rsa 1024 bits 0.0028s 0.0002s 356.0 6407.0 * rsa 2048 bits 0.0172s 0.0005s 58.0 1957.8 * rsa 4096 bits 0.1155s 0.0018s 8.7 555.6 * sign verify sign/s verify/s * dsa 512 bits 0.0005s 0.0006s 2100.8 1768.3 * dsa 1024 bits 0.0014s 0.0018s 692.3 559.2 * dsa 2048 bits 0.0049s 0.0061s 204.7 165.0 * * 'apps/openssl speed rsa dsa' output with this module: * * sign verify sign/s verify/s * rsa 512 bits 0.0004s 0.0000s 2767.1 33297.9 * rsa 1024 bits 0.0012s 0.0001s 867.4 14674.7 * rsa 2048 bits 0.0061s 0.0002s 164.0 5270.0 * rsa 4096 bits 0.0384s 0.0006s 26.1 1650.8 * sign verify sign/s verify/s * dsa 512 bits 0.0002s 0.0003s 4442.2 3786.3 * dsa 1024 bits 0.0005s 0.0007s 1835.1 1497.4 * dsa 2048 bits 0.0016s 0.0020s 620.4 504.6 * * For the reference. IA-32 assembler implementation performs * very much like 64-bit code compiled with no-asm on the same * machine. */ # undef mul # undef mul_add /*- * "m"(a), "+m"(r) is the way to favor DirectPath µ-code; * "g"(0) let the compiler to decide where does it * want to keep the value of zero; */ # define mul_add(r,a,word,carry) do { \ register BN_ULONG high,low; \ asm ("mulq %3" \ : "=a"(low),"=d"(high) \ : "a"(word),"m"(a) \ : "cc"); \ asm ("addq %2,%0; adcq %3,%1" \ : "+r"(carry),"+d"(high)\ : "a"(low),"g"(0) \ : "cc"); \ asm ("addq %2,%0; adcq %3,%1" \ : "+m"(r),"+d"(high) \ : "r"(carry),"g"(0) \ : "cc"); \ carry=high; \ } while (0) # define mul(r,a,word,carry) do { \ register BN_ULONG high,low; \ asm ("mulq %3" \ : "=a"(low),"=d"(high) \ : "a"(word),"g"(a) \ : "cc"); \ asm ("addq %2,%0; adcq %3,%1" \ : "+r"(carry),"+d"(high)\ : "a"(low),"g"(0) \ : "cc"); \ (r)=carry, carry=high; \ } while (0) # undef sqr # define sqr(r0,r1,a) \ asm ("mulq %2" \ : "=a"(r0),"=d"(r1) \ : "a"(a) \ : "cc"); BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; if (num <= 0) return c1; while (num & ~3) { mul_add(rp[0], ap[0], w, c1); mul_add(rp[1], ap[1], w, c1); mul_add(rp[2], ap[2], w, c1); mul_add(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } if (num) { mul_add(rp[0], ap[0], w, c1); if (--num == 0) return c1; mul_add(rp[1], ap[1], w, c1); if (--num == 0) return c1; mul_add(rp[2], ap[2], w, c1); return c1; } return c1; } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; if (num <= 0) return c1; while (num & ~3) { mul(rp[0], ap[0], w, c1); mul(rp[1], ap[1], w, c1); mul(rp[2], ap[2], w, c1); mul(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } if (num) { mul(rp[0], ap[0], w, c1); if (--num == 0) return c1; mul(rp[1], ap[1], w, c1); if (--num == 0) return c1; mul(rp[2], ap[2], w, c1); } return c1; } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { if (n <= 0) return; while (n & ~3) { sqr(r[0], r[1], a[0]); sqr(r[2], r[3], a[1]); sqr(r[4], r[5], a[2]); sqr(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } if (n) { sqr(r[0], r[1], a[0]); if (--n == 0) return; sqr(r[2], r[3], a[1]); if (--n == 0) return; sqr(r[4], r[5], a[2]); } } BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { BN_ULONG ret, waste; asm("divq %4":"=a"(ret), "=d"(waste) : "a"(l), "d"(h), "r"(d) : "cc"); return ret; } BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int n) { BN_ULONG ret; size_t i = 0; if (n <= 0) return 0; asm volatile (" subq %0,%0 \n" /* clear carry */ " jmp 1f \n" ".p2align 4 \n" "1: movq (%4,%2,8),%0 \n" " adcq (%5,%2,8),%0 \n" " movq %0,(%3,%2,8) \n" " lea 1(%2),%2 \n" " dec %1 \n" " jnz 1b \n" " sbbq %0,%0 \n" :"=&r" (ret), "+c"(n), "+r"(i) :"r"(rp), "r"(ap), "r"(bp) :"cc", "memory"); return ret & 1; } # ifndef SIMICS BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int n) { BN_ULONG ret; size_t i = 0; if (n <= 0) return 0; asm volatile (" subq %0,%0 \n" /* clear borrow */ " jmp 1f \n" ".p2align 4 \n" "1: movq (%4,%2,8),%0 \n" " sbbq (%5,%2,8),%0 \n" " movq %0,(%3,%2,8) \n" " lea 1(%2),%2 \n" " dec %1 \n" " jnz 1b \n" " sbbq %0,%0 \n" :"=&r" (ret), "+c"(n), "+r"(i) :"r"(rp), "r"(ap), "r"(bp) :"cc", "memory"); return ret & 1; } # else /* Simics 1.4<7 has buggy sbbq:-( */ # define BN_MASK2 0xffffffffffffffffL BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) { BN_ULONG t1, t2; int c = 0; if (n <= 0) return (BN_ULONG)0; for (;;) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; t1 = a[1]; t2 = b[1]; r[1] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; t1 = a[2]; t2 = b[2]; r[2] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; t1 = a[3]; t2 = b[3]; r[3] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); if (--n <= 0) break; a += 4; b += 4; r += 4; } return c; } # endif /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ /* * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number * c=(c2,c1,c0) */ /* * Keep in mind that carrying into high part of multiplication result * can not overflow, because it cannot be all-ones. */ # if 0 /* original macros are kept for reference purposes */ # define mul_add_c(a,b,c0,c1,c2) do { \ BN_ULONG ta = (a), tb = (b); \ BN_ULONG lo, hi; \ BN_UMULT_LOHI(lo,hi,ta,tb); \ c0 += lo; hi += (c0 for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # May 2011 # # The module implements bn_GF2m_mul_2x2 polynomial multiplication used # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for # the time being... Except that it has two code paths: code suitable # for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and # later. Improvement varies from one benchmark and µ-arch to another. # Vanilla code path is at most 20% faster than compiler-generated code # [not very impressive], while PCLMULQDQ - whole 85%-160% better on # 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that # these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not # all CPU time is burnt in it... $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; ($lo,$hi)=("%rax","%rdx"); $a=$lo; ($i0,$i1)=("%rsi","%rdi"); ($t0,$t1)=("%rbx","%rcx"); ($b,$mask)=("%rbp","%r8"); ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15)); ($R,$Tx)=("%xmm0","%xmm1"); $code.=<<___; .text .type _mul_1x1,\@abi-omnipotent .align 16 _mul_1x1: .cfi_startproc sub \$128+8,%rsp .cfi_adjust_cfa_offset 128+8 mov \$-1,$a1 lea ($a,$a),$i0 shr \$3,$a1 lea (,$a,4),$i1 and $a,$a1 # a1=a&0x1fffffffffffffff lea (,$a,8),$a8 sar \$63,$a # broadcast 63rd bit lea ($a1,$a1),$a2 sar \$63,$i0 # broadcast 62nd bit lea (,$a1,4),$a4 and $b,$a sar \$63,$i1 # broadcast 61st bit mov $a,$hi # $a is $lo shl \$63,$lo and $b,$i0 shr \$1,$hi mov $i0,$t1 shl \$62,$i0 and $b,$i1 shr \$2,$t1 xor $i0,$lo mov $i1,$t0 shl \$61,$i1 xor $t1,$hi shr \$3,$t0 xor $i1,$lo xor $t0,$hi mov $a1,$a12 movq \$0,0(%rsp) # tab[0]=0 xor $a2,$a12 # a1^a2 mov $a1,8(%rsp) # tab[1]=a1 mov $a4,$a48 mov $a2,16(%rsp) # tab[2]=a2 xor $a8,$a48 # a4^a8 mov $a12,24(%rsp) # tab[3]=a1^a2 xor $a4,$a1 mov $a4,32(%rsp) # tab[4]=a4 xor $a4,$a2 mov $a1,40(%rsp) # tab[5]=a1^a4 xor $a4,$a12 mov $a2,48(%rsp) # tab[6]=a2^a4 xor $a48,$a1 # a1^a4^a4^a8=a1^a8 mov $a12,56(%rsp) # tab[7]=a1^a2^a4 xor $a48,$a2 # a2^a4^a4^a8=a1^a8 mov $a8,64(%rsp) # tab[8]=a8 xor $a48,$a12 # a1^a2^a4^a4^a8=a1^a2^a8 mov $a1,72(%rsp) # tab[9]=a1^a8 xor $a4,$a1 # a1^a8^a4 mov $a2,80(%rsp) # tab[10]=a2^a8 xor $a4,$a2 # a2^a8^a4 mov $a12,88(%rsp) # tab[11]=a1^a2^a8 xor $a4,$a12 # a1^a2^a8^a4 mov $a48,96(%rsp) # tab[12]=a4^a8 mov $mask,$i0 mov $a1,104(%rsp) # tab[13]=a1^a4^a8 and $b,$i0 mov $a2,112(%rsp) # tab[14]=a2^a4^a8 shr \$4,$b mov $a12,120(%rsp) # tab[15]=a1^a2^a4^a8 mov $mask,$i1 and $b,$i1 shr \$4,$b movq (%rsp,$i0,8),$R # half of calculations is done in SSE2 mov $mask,$i0 and $b,$i0 shr \$4,$b ___ for ($n=1;$n<8;$n++) { $code.=<<___; mov (%rsp,$i1,8),$t1 mov $mask,$i1 mov $t1,$t0 shl \$`8*$n-4`,$t1 and $b,$i1 movq (%rsp,$i0,8),$Tx shr \$`64-(8*$n-4)`,$t0 xor $t1,$lo pslldq \$$n,$Tx mov $mask,$i0 shr \$4,$b xor $t0,$hi and $b,$i0 shr \$4,$b pxor $Tx,$R ___ } $code.=<<___; mov (%rsp,$i1,8),$t1 mov $t1,$t0 shl \$`8*$n-4`,$t1 movq $R,$i0 shr \$`64-(8*$n-4)`,$t0 xor $t1,$lo psrldq \$8,$R xor $t0,$hi movq $R,$i1 xor $i0,$lo xor $i1,$hi add \$128+8,%rsp .cfi_adjust_cfa_offset -128-8 ret .Lend_mul_1x1: .cfi_endproc .size _mul_1x1,.-_mul_1x1 ___ ($rp,$a1,$a0,$b1,$b0) = $win64? ("%rcx","%rdx","%r8", "%r9","%r10") : # Win64 order ("%rdi","%rsi","%rdx","%rcx","%r8"); # Unix order $code.=<<___; .extern OPENSSL_ia32cap_P .globl bn_GF2m_mul_2x2 .type bn_GF2m_mul_2x2,\@abi-omnipotent .align 16 bn_GF2m_mul_2x2: .cfi_startproc mov %rsp,%rax mov OPENSSL_ia32cap_P(%rip),%r10 bt \$33,%r10 jnc .Lvanilla_mul_2x2 movq $a1,%xmm0 movq $b1,%xmm1 movq $a0,%xmm2 ___ $code.=<<___ if ($win64); movq 40(%rsp),%xmm3 ___ $code.=<<___ if (!$win64); movq $b0,%xmm3 ___ $code.=<<___; movdqa %xmm0,%xmm4 movdqa %xmm1,%xmm5 pclmulqdq \$0,%xmm1,%xmm0 # a1·b1 pxor %xmm2,%xmm4 pxor %xmm3,%xmm5 pclmulqdq \$0,%xmm3,%xmm2 # a0·b0 pclmulqdq \$0,%xmm5,%xmm4 # (a0+a1)·(b0+b1) xorps %xmm0,%xmm4 xorps %xmm2,%xmm4 # (a0+a1)·(b0+b1)-a0·b0-a1·b1 movdqa %xmm4,%xmm5 pslldq \$8,%xmm4 psrldq \$8,%xmm5 pxor %xmm4,%xmm2 pxor %xmm5,%xmm0 movdqu %xmm2,0($rp) movdqu %xmm0,16($rp) ret .align 16 .Lvanilla_mul_2x2: lea -8*17(%rsp),%rsp .cfi_adjust_cfa_offset 8*17 ___ $code.=<<___ if ($win64); mov `8*17+40`(%rsp),$b0 mov %rdi,8*15(%rsp) mov %rsi,8*16(%rsp) ___ $code.=<<___; mov %r14,8*10(%rsp) .cfi_rel_offset %r14,8*10 mov %r13,8*11(%rsp) .cfi_rel_offset %r13,8*11 mov %r12,8*12(%rsp) .cfi_rel_offset %r12,8*12 mov %rbp,8*13(%rsp) .cfi_rel_offset %rbp,8*13 mov %rbx,8*14(%rsp) .cfi_rel_offset %rbx,8*14 .Lbody_mul_2x2: mov $rp,32(%rsp) # save the arguments mov $a1,40(%rsp) mov $a0,48(%rsp) mov $b1,56(%rsp) mov $b0,64(%rsp) mov \$0xf,$mask mov $a1,$a mov $b1,$b call _mul_1x1 # a1·b1 mov $lo,16(%rsp) mov $hi,24(%rsp) mov 48(%rsp),$a mov 64(%rsp),$b call _mul_1x1 # a0·b0 mov $lo,0(%rsp) mov $hi,8(%rsp) mov 40(%rsp),$a mov 56(%rsp),$b xor 48(%rsp),$a xor 64(%rsp),$b call _mul_1x1 # (a0+a1)·(b0+b1) ___ @r=("%rbx","%rcx","%rdi","%rsi"); $code.=<<___; mov 0(%rsp),@r[0] mov 8(%rsp),@r[1] mov 16(%rsp),@r[2] mov 24(%rsp),@r[3] mov 32(%rsp),%rbp xor $hi,$lo xor @r[1],$hi xor @r[0],$lo mov @r[0],0(%rbp) xor @r[2],$hi mov @r[3],24(%rbp) xor @r[3],$lo xor @r[3],$hi xor $hi,$lo mov $hi,16(%rbp) mov $lo,8(%rbp) mov 8*10(%rsp),%r14 .cfi_restore %r14 mov 8*11(%rsp),%r13 .cfi_restore %r13 mov 8*12(%rsp),%r12 .cfi_restore %r12 mov 8*13(%rsp),%rbp .cfi_restore %rbp mov 8*14(%rsp),%rbx .cfi_restore %rbx ___ $code.=<<___ if ($win64); mov 8*15(%rsp),%rdi mov 8*16(%rsp),%rsi ___ $code.=<<___; lea 8*17(%rsp),%rsp .cfi_adjust_cfa_offset -8*17 .Lepilogue_mul_2x2: ret .Lend_mul_2x2: .cfi_endproc .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 .asciz "GF(2^m) Multiplication for x86_64, CRYPTOGAMS by " .align 16 ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lbody_mul_2x2(%rip),%r10 cmp %r10,%rbx # context->Rip<"prologue" label jb .Lin_prologue mov 152($context),%rax # pull context->Rsp lea .Lepilogue_mul_2x2(%rip),%r10 cmp %r10,%rbx # context->Rip>="epilogue" label jae .Lin_prologue mov 8*10(%rax),%r14 # mimic epilogue mov 8*11(%rax),%r13 mov 8*12(%rax),%r12 mov 8*13(%rax),%rbp mov 8*14(%rax),%rbx mov 8*15(%rax),%rdi mov 8*16(%rax),%rsi mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 lea 8*17(%rax),%rax .Lin_prologue: mov %rax,152($context) # restore context->Rsp mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva _mul_1x1 .rva .Lend_mul_1x1 .rva .LSEH_info_1x1 .rva .Lvanilla_mul_2x2 .rva .Lend_mul_2x2 .rva .LSEH_info_2x2 .section .xdata .align 8 .LSEH_info_1x1: .byte 0x01,0x07,0x02,0x00 .byte 0x07,0x01,0x11,0x00 # sub rsp,128+8 .LSEH_info_2x2: .byte 9,0,0,0 .rva se_handler ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/x86_64-mont.pl000077500000000000000000001006531364063235100203230ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # October 2005. # # Montgomery multiplication routine for x86_64. While it gives modest # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more # than twice, >2x, as fast. Most common rsa1024 sign is improved by # respectful 50%. It remains to be seen if loop unrolling and # dedicated squaring routine can provide further improvement... # July 2011. # # Add dedicated squaring procedure. Performance improvement varies # from platform to platform, but in average it's ~5%/15%/25%/33% # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. # August 2011. # # Unroll and modulo-schedule inner loops in such manner that they # are "fallen through" for input lengths of 8, which is critical for # 1024-bit RSA *sign*. Average performance improvement in comparison # to *initial* version of this module from 2005 is ~0%/30%/40%/45% # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. # June 2013. # # Optimize reduction in squaring procedure and improve 1024+-bit RSA # sign performance by 10-16% on Intel Sandy Bridge and later # (virtually same on non-Intel processors). # August 2013. # # Add MULX/ADOX/ADCX code path. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $addx = ($ver>=3.03); } # int bn_mul_mont( $rp="%rdi"; # BN_ULONG *rp, $ap="%rsi"; # const BN_ULONG *ap, $bp="%rdx"; # const BN_ULONG *bp, $np="%rcx"; # const BN_ULONG *np, $n0="%r8"; # const BN_ULONG *n0, $num="%r9"; # int num); $lo0="%r10"; $hi0="%r11"; $hi1="%r13"; $i="%r14"; $j="%r15"; $m0="%rbx"; $m1="%rbp"; $code=<<___; .text .extern OPENSSL_ia32cap_P .globl bn_mul_mont .type bn_mul_mont,\@function,6 .align 16 bn_mul_mont: .cfi_startproc mov ${num}d,${num}d mov %rsp,%rax .cfi_def_cfa_register %rax test \$3,${num}d jnz .Lmul_enter cmp \$8,${num}d jb .Lmul_enter ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d ___ $code.=<<___; cmp $ap,$bp jne .Lmul4x_enter test \$7,${num}d jz .Lsqr8x_enter jmp .Lmul4x_enter .align 16 .Lmul_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 neg $num mov %rsp,%r11 lea -16(%rsp,$num,8),%r10 # future alloca(8*(num+2)) neg $num # restore $num and \$-1024,%r10 # minimize TLB usage # An OS-agnostic version of __chkstk. # # Some OSes (Windows) insist on stack being "wired" to # physical memory in strictly sequential manner, i.e. if stack # allocation spans two pages, then reference to farmost one can # be punishable by SEGV. But page walking can do good even on # other OSes, because it guarantees that villain thread hits # the guard page before it can make damage to innocent one... sub %r10,%r11 and \$-4096,%r11 lea (%r10,%r11),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk jmp .Lmul_page_walk_done .align 16 .Lmul_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk .Lmul_page_walk_done: mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp .cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8 .Lmul_body: mov $bp,%r12 # reassign $bp ___ $bp="%r12"; $code.=<<___; mov ($n0),$n0 # pull n0[0] value mov ($bp),$m0 # m0=bp[0] mov ($ap),%rax xor $i,$i # i=0 xor $j,$j # j=0 mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$lo0 mov ($np),%rax imulq $lo0,$m1 # "tp[0]"*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$hi1 lea 1($j),$j # j++ jmp .L1st_enter .align 16 .L1st: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] mov $lo0,$hi0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .L1st_enter: mulq $m0 # ap[j]*bp[0] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx lea 1($j),$j # j++ mov %rdx,$lo0 mulq $m1 # np[j]*m1 cmp $num,$j jne .L1st add %rax,$hi1 mov ($ap),%rax # ap[0] adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 mov $lo0,$hi0 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ jmp .Louter .align 16 .Louter: mov ($bp,$i,8),$m0 # m0=bp[i] xor $j,$j # j=0 mov $n0,$m1 mov (%rsp),$lo0 mulq $m0 # ap[0]*bp[i] add %rax,$lo0 # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $lo0,$m1 # tp[0]*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov 8(%rsp),$lo0 # tp[1] mov %rdx,$hi1 lea 1($j),$j # j++ jmp .Linner_enter .align 16 .Linner: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .Linner_enter: mulq $m0 # ap[j]*bp[i] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx add $hi0,$lo0 # ap[j]*bp[i]+tp[j] mov %rdx,$hi0 adc \$0,$hi0 lea 1($j),$j # j++ mulq $m1 # np[j]*m1 cmp $num,$j jne .Linner add %rax,$hi1 mov ($ap),%rax # ap[0] adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx add $lo0,$hi1 # pull upmost overflow bit adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ cmp $num,$i jb .Louter xor $i,$i # i=0 and clear CF! mov (%rsp),%rax # tp[0] mov $num,$j # j=num .align 16 .Lsub: sbb ($np,$i,8),%rax mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] mov 8(%rsp,$i,8),%rax # tp[i+1] lea 1($i),$i # i++ dec $j # doesn't affect CF! jnz .Lsub sbb \$0,%rax # handle upmost overflow bit mov \$-1,%rbx xor %rax,%rbx # not %rax xor $i,$i mov $num,$j # j=num .Lcopy: # conditional copy mov ($rp,$i,8),%rcx mov (%rsp,$i,8),%rdx and %rbx,%rcx and %rax,%rdx mov $num,(%rsp,$i,8) # zap temporary vector or %rcx,%rdx mov %rdx,($rp,$i,8) # rp[i]=tp[i] lea 1($i),$i sub \$1,$j jnz .Lcopy mov 8(%rsp,$num,8),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul_epilogue: ret .cfi_endproc .size bn_mul_mont,.-bn_mul_mont ___ {{{ my @A=("%r10","%r11"); my @N=("%r13","%rdi"); $code.=<<___; .type bn_mul4x_mont,\@function,6 .align 16 bn_mul4x_mont: .cfi_startproc mov ${num}d,${num}d mov %rsp,%rax .cfi_def_cfa_register %rax .Lmul4x_enter: ___ $code.=<<___ if ($addx); and \$0x80100,%r11d cmp \$0x80100,%r11d je .Lmulx4x_enter ___ $code.=<<___; push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 neg $num mov %rsp,%r11 lea -32(%rsp,$num,8),%r10 # future alloca(8*(num+4)) neg $num # restore and \$-1024,%r10 # minimize TLB usage sub %r10,%r11 and \$-4096,%r11 lea (%r10,%r11),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul4x_page_walk jmp .Lmul4x_page_walk_done .Lmul4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul4x_page_walk .Lmul4x_page_walk_done: mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp .cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8 .Lmul4x_body: mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp mov %rdx,%r12 # reassign $bp ___ $bp="%r12"; $code.=<<___; mov ($n0),$n0 # pull n0[0] value mov ($bp),$m0 # m0=bp[0] mov ($ap),%rax xor $i,$i # i=0 xor $j,$j # j=0 mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$A[0] mov ($np),%rax imulq $A[0],$m1 # "tp[0]"*n0 mov %rdx,$A[1] mulq $m1 # np[0]*m1 add %rax,$A[0] # discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 add %rax,$A[1] mov 8($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 add %rax,$N[1] mov 16($ap),%rax adc \$0,%rdx add $A[1],$N[1] lea 4($j),$j # j++ adc \$0,%rdx mov $N[1],(%rsp) mov %rdx,$N[0] jmp .L1st4x .align 16 .L1st4x: mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov ($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-8(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov 8($np,$j,8),%rax adc \$0,%rdx lea 4($j),$j # j++ mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov -16($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-32(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] cmp $num,$j jb .L1st4x mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] mov $N[0],-8(%rsp,$j,8) mov $N[1],(%rsp,$j,8) # store upmost overflow bit lea 1($i),$i # i++ .align 4 .Louter4x: mov ($bp,$i,8),$m0 # m0=bp[i] xor $j,$j # j=0 mov (%rsp),$A[0] mov $n0,$m1 mulq $m0 # ap[0]*bp[i] add %rax,$A[0] # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $A[0],$m1 # tp[0]*n0 mov %rdx,$A[1] mulq $m1 # np[0]*m1 add %rax,$A[0] # "$N[0]", discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8($np),%rax adc \$0,%rdx add 8(%rsp),$A[1] # +tp[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] lea 4($j),$j # j+=2 adc \$0,%rdx mov $N[1],(%rsp) # tp[j-1] mov %rdx,$N[0] jmp .Linner4x .align 16 .Linner4x: mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx add -8(%rsp,$j,8),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov ($np,$j,8),%rax adc \$0,%rdx add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[0],-8(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8($np,$j,8),%rax adc \$0,%rdx add 8(%rsp,$j,8),$A[1] adc \$0,%rdx lea 4($j),$j # j++ mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov -16($ap,$j,8),%rax adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[1],-32(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] cmp $num,$j jb .Linner4x mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -16($np,$j,8),%rax adc \$0,%rdx add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j,8),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[0],-24(%rsp,$j,8) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov -8($np,$j,8),%rax adc \$0,%rdx add -8(%rsp,$j,8),$A[1] adc \$0,%rdx lea 1($i),$i # i++ mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[1],-16(%rsp,$j,8) # tp[j-1] mov %rdx,$N[0] xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] add (%rsp,$num,8),$N[0] # pull upmost overflow bit adc \$0,$N[1] mov $N[0],-8(%rsp,$j,8) mov $N[1],(%rsp,$j,8) # store upmost overflow bit cmp $num,$i jb .Louter4x ___ { my @ri=("%rax","%rdx",$m0,$m1); $code.=<<___; mov 16(%rsp,$num,8),$rp # restore $rp lea -4($num),$j mov 0(%rsp),@ri[0] # tp[0] mov 8(%rsp),@ri[1] # tp[1] shr \$2,$j # j=num/4-1 lea (%rsp),$ap # borrow ap for tp xor $i,$i # i=0 and clear CF! sub 0($np),@ri[0] mov 16($ap),@ri[2] # tp[2] mov 24($ap),@ri[3] # tp[3] sbb 8($np),@ri[1] .Lsub4x: mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] sbb 16($np,$i,8),@ri[2] mov 32($ap,$i,8),@ri[0] # tp[i+1] mov 40($ap,$i,8),@ri[1] sbb 24($np,$i,8),@ri[3] mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] sbb 32($np,$i,8),@ri[0] mov 48($ap,$i,8),@ri[2] mov 56($ap,$i,8),@ri[3] sbb 40($np,$i,8),@ri[1] lea 4($i),$i # i++ dec $j # doesn't affect CF! jnz .Lsub4x mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] mov 32($ap,$i,8),@ri[0] # load overflow bit sbb 16($np,$i,8),@ri[2] mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] sbb 24($np,$i,8),@ri[3] mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] sbb \$0,@ri[0] # handle upmost overflow bit mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] pxor %xmm0,%xmm0 movq @ri[0],%xmm4 pcmpeqd %xmm5,%xmm5 pshufd \$0,%xmm4,%xmm4 mov $num,$j pxor %xmm4,%xmm5 shr \$2,$j # j=num/4 xor %eax,%eax # i=0 jmp .Lcopy4x .align 16 .Lcopy4x: # conditional copy movdqa (%rsp,%rax),%xmm1 movdqu ($rp,%rax),%xmm2 pand %xmm4,%xmm1 pand %xmm5,%xmm2 movdqa 16(%rsp,%rax),%xmm3 movdqa %xmm0,(%rsp,%rax) por %xmm2,%xmm1 movdqu 16($rp,%rax),%xmm2 movdqu %xmm1,($rp,%rax) pand %xmm4,%xmm3 pand %xmm5,%xmm2 movdqa %xmm0,16(%rsp,%rax) por %xmm2,%xmm3 movdqu %xmm3,16($rp,%rax) lea 32(%rax),%rax dec $j jnz .Lcopy4x ___ } $code.=<<___; mov 8(%rsp,$num,8),%rsi # restore %rsp .cfi_def_cfa %rsi, 8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul4x_epilogue: ret .cfi_endproc .size bn_mul4x_mont,.-bn_mul4x_mont ___ }}} {{{ ###################################################################### # void bn_sqr8x_mont( my $rptr="%rdi"; # const BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # not used my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___ if ($addx); .extern bn_sqrx8x_internal # see x86_64-mont5 module ___ $code.=<<___; .extern bn_sqr8x_internal # see x86_64-mont5 module .type bn_sqr8x_mont,\@function,6 .align 32 bn_sqr8x_mont: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lsqr8x_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lsqr8x_prologue: mov ${num}d,%r10d shl \$3,${num}d # convert $num to bytes shl \$3+2,%r10 # 4*$num neg $num ############################################################## # ensure that stack frame doesn't alias with $aptr modulo # 4096. this is done to allow memory disambiguation logic # do its job. # lea -64(%rsp,$num,2),%r11 mov %rsp,%rbp mov ($n0),$n0 # *n0 sub $aptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lsqr8x_sp_alt sub %r11,%rbp # align with $aptr lea -64(%rbp,$num,2),%rbp # future alloca(frame+2*$num) jmp .Lsqr8x_sp_done .align 32 .Lsqr8x_sp_alt: lea 4096-64(,$num,2),%r10 # 4096-frame-2*$num lea -64(%rbp,$num,2),%rbp # future alloca(frame+2*$num) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lsqr8x_sp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lsqr8x_page_walk jmp .Lsqr8x_page_walk_done .align 16 .Lsqr8x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lsqr8x_page_walk .Lsqr8x_page_walk_done: mov $num,%r10 neg $num mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lsqr8x_body: movq $nptr, %xmm2 # save pointer to modulus pxor %xmm0,%xmm0 movq $rptr,%xmm1 # save $rptr movq %r10, %xmm3 # -$num ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%eax and \$0x80100,%eax cmp \$0x80100,%eax jne .Lsqr8x_nox call bn_sqrx8x_internal # see x86_64-mont5 module # %rax top-most carry # %rbp nptr # %rcx -8*num # %r8 end of tp[2*num] lea (%r8,%rcx),%rbx mov %rcx,$num mov %rcx,%rdx movq %xmm1,$rptr sar \$3+2,%rcx # %cf=0 jmp .Lsqr8x_sub .align 32 .Lsqr8x_nox: ___ $code.=<<___; call bn_sqr8x_internal # see x86_64-mont5 module # %rax top-most carry # %rbp nptr # %r8 -8*num # %rdi end of tp[2*num] lea (%rdi,$num),%rbx mov $num,%rcx mov $num,%rdx movq %xmm1,$rptr sar \$3+2,%rcx # %cf=0 jmp .Lsqr8x_sub .align 32 .Lsqr8x_sub: mov 8*0(%rbx),%r12 mov 8*1(%rbx),%r13 mov 8*2(%rbx),%r14 mov 8*3(%rbx),%r15 lea 8*4(%rbx),%rbx sbb 8*0(%rbp),%r12 sbb 8*1(%rbp),%r13 sbb 8*2(%rbp),%r14 sbb 8*3(%rbp),%r15 lea 8*4(%rbp),%rbp mov %r12,8*0($rptr) mov %r13,8*1($rptr) mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx # preserves %cf jnz .Lsqr8x_sub sbb \$0,%rax # top-most carry lea (%rbx,$num),%rbx # rewind lea ($rptr,$num),$rptr # rewind movq %rax,%xmm1 pxor %xmm0,%xmm0 pshufd \$0,%xmm1,%xmm1 mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 jmp .Lsqr8x_cond_copy .align 32 .Lsqr8x_cond_copy: movdqa 16*0(%rbx),%xmm2 movdqa 16*1(%rbx),%xmm3 lea 16*2(%rbx),%rbx movdqu 16*0($rptr),%xmm4 movdqu 16*1($rptr),%xmm5 lea 16*2($rptr),$rptr movdqa %xmm0,-16*2(%rbx) # zero tp movdqa %xmm0,-16*1(%rbx) movdqa %xmm0,-16*2(%rbx,%rdx) movdqa %xmm0,-16*1(%rbx,%rdx) pcmpeqd %xmm1,%xmm0 pand %xmm1,%xmm2 pand %xmm1,%xmm3 pand %xmm0,%xmm4 pand %xmm0,%xmm5 pxor %xmm0,%xmm0 por %xmm2,%xmm4 por %xmm3,%xmm5 movdqu %xmm4,-16*2($rptr) movdqu %xmm5,-16*1($rptr) add \$32,$num jnz .Lsqr8x_cond_copy mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lsqr8x_epilogue: ret .cfi_endproc .size bn_sqr8x_mont,.-bn_sqr8x_mont ___ }}} if ($addx) {{{ my $bp="%rdx"; # original value $code.=<<___; .type bn_mulx4x_mont,\@function,6 .align 32 bn_mulx4x_mont: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lmulx4x_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lmulx4x_prologue: shl \$3,${num}d # convert $num to bytes xor %r10,%r10 sub $num,%r10 # -$num mov ($n0),$n0 # *n0 lea -72(%rsp,%r10),%rbp # future alloca(frame+$num+8) and \$-128,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk jmp .Lmulx4x_page_walk_done .align 16 .Lmulx4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk .Lmulx4x_page_walk_done: lea ($bp,$num),%r10 ############################################################## # Stack layout # +0 num # +8 off-loaded &b[i] # +16 end of b[num] # +24 saved n0 # +32 saved rp # +40 saved %rsp # +48 inner counter # +56 # +64 tmp[num+1] # mov $num,0(%rsp) # save $num shr \$5,$num mov %r10,16(%rsp) # end of b[num] sub \$1,$num mov $n0, 24(%rsp) # save *n0 mov $rp, 32(%rsp) # save $rp mov %rax,40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 mov $num,48(%rsp) # inner counter jmp .Lmulx4x_body .align 32 .Lmulx4x_body: ___ my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)= ("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax"); my $rptr=$bptr; $code.=<<___; lea 8($bp),$bptr mov ($bp),%rdx # b[0], $bp==%rdx actually lea 64+32(%rsp),$tptr mov %rdx,$bi mulx 0*8($aptr),$mi,%rax # a[0]*b[0] mulx 1*8($aptr),%r11,%r14 # a[1]*b[0] add %rax,%r11 mov $bptr,8(%rsp) # off-load &b[i] mulx 2*8($aptr),%r12,%r13 # ... adc %r14,%r12 adc \$0,%r13 mov $mi,$bptr # borrow $bptr imulq 24(%rsp),$mi # "t[0]"*n0 xor $zero,$zero # cf=0, of=0 mulx 3*8($aptr),%rax,%r14 mov $mi,%rdx lea 4*8($aptr),$aptr adcx %rax,%r13 adcx $zero,%r14 # cf=0 mulx 0*8($nptr),%rax,%r10 adcx %rax,$bptr # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa1,0x10,0x00,0x00,0x00 # mulx 2*8($nptr),%rax,%r12 mov 48(%rsp),$bptr # counter value mov %r10,-4*8($tptr) adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-3*8($tptr) adcx %rax,%r12 adox $zero,%r15 # of=0 lea 4*8($nptr),$nptr mov %r12,-2*8($tptr) jmp .Lmulx4x_1st .align 32 .Lmulx4x_1st: adcx $zero,%r15 # cf=0, modulo-scheduled mulx 0*8($aptr),%r10,%rax # a[4]*b[0] adcx %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[0] adcx %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx %r14,%r12 mulx 3*8($aptr),%r13,%r14 .byte 0x67,0x67 mov $mi,%rdx adcx %rax,%r13 adcx $zero,%r14 # cf=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 mov %r11,-4*8($tptr) adox %r15,%r13 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 lea 4*8($nptr),$nptr mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_1st mov 0(%rsp),$num # load num mov 8(%rsp),$bptr # re-load &b[i] adc $zero,%r15 # modulo-scheduled add %r15,%r14 sbb %r15,%r15 # top-most carry mov %r14,-1*8($tptr) jmp .Lmulx4x_outer .align 32 .Lmulx4x_outer: mov ($bptr),%rdx # b[i] lea 8($bptr),$bptr # b++ sub $num,$aptr # rewind $aptr mov %r15,($tptr) # save top-most carry lea 64+4*8(%rsp),$tptr sub $num,$nptr # rewind $nptr mulx 0*8($aptr),$mi,%r11 # a[0]*b[i] xor %ebp,%ebp # xor $zero,$zero # cf=0, of=0 mov %rdx,$bi mulx 1*8($aptr),%r14,%r12 # a[1]*b[i] adox -4*8($tptr),$mi adcx %r14,%r11 mulx 2*8($aptr),%r15,%r13 # ... adox -3*8($tptr),%r11 adcx %r15,%r12 adox -2*8($tptr),%r12 adcx $zero,%r13 adox $zero,%r13 mov $bptr,8(%rsp) # off-load &b[i] mov $mi,%r15 imulq 24(%rsp),$mi # "t[0]"*n0 xor %ebp,%ebp # xor $zero,$zero # cf=0, of=0 mulx 3*8($aptr),%rax,%r14 mov $mi,%rdx adcx %rax,%r13 adox -1*8($tptr),%r13 adcx $zero,%r14 lea 4*8($aptr),$aptr adox $zero,%r14 mulx 0*8($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*8($nptr),%rax,%r12 mov %r10,-4*8($tptr) adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-3*8($tptr) lea 4*8($nptr),$nptr adcx %rax,%r12 adox $zero,%r15 # of=0 mov 48(%rsp),$bptr # counter value mov %r12,-2*8($tptr) jmp .Lmulx4x_inner .align 32 .Lmulx4x_inner: mulx 0*8($aptr),%r10,%rax # a[4]*b[i] adcx $zero,%r15 # cf=0, modulo-scheduled adox %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[i] adcx 0*8($tptr),%r10 adox %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx 1*8($tptr),%r11 adox %r14,%r12 mulx 3*8($aptr),%r13,%r14 mov $mi,%rdx adcx 2*8($tptr),%r12 adox %rax,%r13 adcx 3*8($tptr),%r13 adox $zero,%r14 # of=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adcx $zero,%r14 # cf=0 adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 adox %r15,%r13 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-4*8($tptr) mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 lea 4*8($nptr),$nptr mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_inner mov 0(%rsp),$num # load num mov 8(%rsp),$bptr # re-load &b[i] adc $zero,%r15 # modulo-scheduled sub 0*8($tptr),$zero # pull top-most carry adc %r15,%r14 sbb %r15,%r15 # top-most carry mov %r14,-1*8($tptr) cmp 16(%rsp),$bptr jne .Lmulx4x_outer lea 64(%rsp),$tptr sub $num,$nptr # rewind $nptr neg %r15 mov $num,%rdx shr \$3+2,$num # %cf=0 mov 32(%rsp),$rptr # restore rp jmp .Lmulx4x_sub .align 32 .Lmulx4x_sub: mov 8*0($tptr),%r11 mov 8*1($tptr),%r12 mov 8*2($tptr),%r13 mov 8*3($tptr),%r14 lea 8*4($tptr),$tptr sbb 8*0($nptr),%r11 sbb 8*1($nptr),%r12 sbb 8*2($nptr),%r13 sbb 8*3($nptr),%r14 lea 8*4($nptr),$nptr mov %r11,8*0($rptr) mov %r12,8*1($rptr) mov %r13,8*2($rptr) mov %r14,8*3($rptr) lea 8*4($rptr),$rptr dec $num # preserves %cf jnz .Lmulx4x_sub sbb \$0,%r15 # top-most carry lea 64(%rsp),$tptr sub %rdx,$rptr # rewind movq %r15,%xmm1 pxor %xmm0,%xmm0 pshufd \$0,%xmm1,%xmm1 mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 jmp .Lmulx4x_cond_copy .align 32 .Lmulx4x_cond_copy: movdqa 16*0($tptr),%xmm2 movdqa 16*1($tptr),%xmm3 lea 16*2($tptr),$tptr movdqu 16*0($rptr),%xmm4 movdqu 16*1($rptr),%xmm5 lea 16*2($rptr),$rptr movdqa %xmm0,-16*2($tptr) # zero tp movdqa %xmm0,-16*1($tptr) pcmpeqd %xmm1,%xmm0 pand %xmm1,%xmm2 pand %xmm1,%xmm3 pand %xmm0,%xmm4 pand %xmm0,%xmm5 pxor %xmm0,%xmm0 por %xmm2,%xmm4 por %xmm3,%xmm5 movdqu %xmm4,-16*2($rptr) movdqu %xmm5,-16*1($rptr) sub \$32,%rdx jnz .Lmulx4x_cond_copy mov %rdx,($tptr) mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmulx4x_epilogue: ret .cfi_endproc .size bn_mulx4x_mont,.-bn_mulx4x_mont ___ }}} $code.=<<___; .asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by " .align 16 ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type mul_handler,\@abi-omnipotent .align 16 mul_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 192($context),%r10 # pull $num mov 8(%rax,%r10,8),%rax # pull saved stack pointer jmp .Lcommon_pop_regs .size mul_handler,.-mul_handler .type sqr_handler,\@abi-omnipotent .align 16 sqr_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->Rip<.Lsqr_prologue jb .Lcommon_seh_tail mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # body label cmp %r10,%rbx # context->Rip<.Lsqr_body jb .Lcommon_pop_regs mov 152($context),%rax # pull context->Rsp mov 8(%r11),%r10d # HandlerData[2] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lsqr_epilogue jae .Lcommon_seh_tail mov 40(%rax),%rax # pull saved stack pointer .Lcommon_pop_regs: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size sqr_handler,.-sqr_handler .section .pdata .align 4 .rva .LSEH_begin_bn_mul_mont .rva .LSEH_end_bn_mul_mont .rva .LSEH_info_bn_mul_mont .rva .LSEH_begin_bn_mul4x_mont .rva .LSEH_end_bn_mul4x_mont .rva .LSEH_info_bn_mul4x_mont .rva .LSEH_begin_bn_sqr8x_mont .rva .LSEH_end_bn_sqr8x_mont .rva .LSEH_info_bn_sqr8x_mont ___ $code.=<<___ if ($addx); .rva .LSEH_begin_bn_mulx4x_mont .rva .LSEH_end_bn_mulx4x_mont .rva .LSEH_info_bn_mulx4x_mont ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_bn_mul_mont: .byte 9,0,0,0 .rva mul_handler .rva .Lmul_body,.Lmul_epilogue # HandlerData[] .LSEH_info_bn_mul4x_mont: .byte 9,0,0,0 .rva mul_handler .rva .Lmul4x_body,.Lmul4x_epilogue # HandlerData[] .LSEH_info_bn_sqr8x_mont: .byte 9,0,0,0 .rva sqr_handler .rva .Lsqr8x_prologue,.Lsqr8x_body,.Lsqr8x_epilogue # HandlerData[] .align 8 ___ $code.=<<___ if ($addx); .LSEH_info_bn_mulx4x_mont: .byte 9,0,0,0 .rva sqr_handler .rva .Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[] .align 8 ___ } print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/asm/x86_64-mont5.pl000077500000000000000000002533311364063235100204120ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # August 2011. # # Companion to x86_64-mont.pl that optimizes cache-timing attack # countermeasures. The subroutines are produced by replacing bp[i] # references in their x86_64-mont.pl counterparts with cache-neutral # references to powers table computed in BN_mod_exp_mont_consttime. # In addition subroutine that scatters elements of the powers table # is implemented, so that scatter-/gathering can be tuned without # bn_exp.c modifications. # August 2013. # # Add MULX/AD*X code paths and additional interfaces to optimize for # branch prediction unit. For input lengths that are multiples of 8 # the np argument is not just modulus value, but one interleaved # with 0. This is to optimize post-condition... $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $addx = ($ver>=3.03); } # int bn_mul_mont_gather5( $rp="%rdi"; # BN_ULONG *rp, $ap="%rsi"; # const BN_ULONG *ap, $bp="%rdx"; # const BN_ULONG *bp, $np="%rcx"; # const BN_ULONG *np, $n0="%r8"; # const BN_ULONG *n0, $num="%r9"; # int num, # int idx); # 0 to 2^5-1, "index" in $bp holding # pre-computed powers of a', interlaced # in such manner that b[0] is $bp[idx], # b[1] is [2^5+idx], etc. $lo0="%r10"; $hi0="%r11"; $hi1="%r13"; $i="%r14"; $j="%r15"; $m0="%rbx"; $m1="%rbp"; $code=<<___; .text .extern OPENSSL_ia32cap_P .globl bn_mul_mont_gather5 .type bn_mul_mont_gather5,\@function,6 .align 64 bn_mul_mont_gather5: .cfi_startproc mov ${num}d,${num}d mov %rsp,%rax .cfi_def_cfa_register %rax test \$7,${num}d jnz .Lmul_enter ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d ___ $code.=<<___; jmp .Lmul4x_enter .align 16 .Lmul_enter: movd `($win64?56:8)`(%rsp),%xmm5 # load 7th argument push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 neg $num mov %rsp,%r11 lea -280(%rsp,$num,8),%r10 # future alloca(8*(num+2)+256+8) neg $num # restore $num and \$-1024,%r10 # minimize TLB usage # An OS-agnostic version of __chkstk. # # Some OSes (Windows) insist on stack being "wired" to # physical memory in strictly sequential manner, i.e. if stack # allocation spans two pages, then reference to farmost one can # be punishable by SEGV. But page walking can do good even on # other OSes, because it guarantees that villain thread hits # the guard page before it can make damage to innocent one... sub %r10,%r11 and \$-4096,%r11 lea (%r10,%r11),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk jmp .Lmul_page_walk_done .Lmul_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r11 cmp %r10,%rsp ja .Lmul_page_walk .Lmul_page_walk_done: lea .Linc(%rip),%r10 mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp .cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8 .Lmul_body: lea 128($bp),%r12 # reassign $bp (+size optimization) ___ $bp="%r12"; $STRIDE=2**5*8; # 5 is "window size" $N=$STRIDE/4; # should match cache line size $code.=<<___; movdqa 0(%r10),%xmm0 # 00000001000000010000000000000000 movdqa 16(%r10),%xmm1 # 00000002000000020000000200000002 lea 24-112(%rsp,$num,8),%r10# place the mask after tp[num+3] (+ICache optimization) and \$-16,%r10 pshufd \$0,%xmm5,%xmm5 # broadcast index movdqa %xmm1,%xmm4 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to index and save result to stack # $code.=<<___; paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 .byte 0x67 movdqa %xmm4,%xmm3 ___ for($k=0;$k<$STRIDE/16-4;$k+=4) { $code.=<<___; paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($k+0)+112`(%r10) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($k+1)+112`(%r10) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($k+2)+112`(%r10) movdqa %xmm4,%xmm2 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 movdqa %xmm3,`16*($k+3)+112`(%r10) movdqa %xmm4,%xmm3 ___ } $code.=<<___; # last iteration can be optimized paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 movdqa %xmm0,`16*($k+0)+112`(%r10) paddd %xmm2,%xmm3 .byte 0x67 pcmpeqd %xmm5,%xmm2 movdqa %xmm1,`16*($k+1)+112`(%r10) pcmpeqd %xmm5,%xmm3 movdqa %xmm2,`16*($k+2)+112`(%r10) pand `16*($k+0)-128`($bp),%xmm0 # while it's still in register pand `16*($k+1)-128`($bp),%xmm1 pand `16*($k+2)-128`($bp),%xmm2 movdqa %xmm3,`16*($k+3)+112`(%r10) pand `16*($k+3)-128`($bp),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ for($k=0;$k<$STRIDE/16-4;$k+=4) { $code.=<<___; movdqa `16*($k+0)-128`($bp),%xmm4 movdqa `16*($k+1)-128`($bp),%xmm5 movdqa `16*($k+2)-128`($bp),%xmm2 pand `16*($k+0)+112`(%r10),%xmm4 movdqa `16*($k+3)-128`($bp),%xmm3 pand `16*($k+1)+112`(%r10),%xmm5 por %xmm4,%xmm0 pand `16*($k+2)+112`(%r10),%xmm2 por %xmm5,%xmm1 pand `16*($k+3)+112`(%r10),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ } $code.=<<___; por %xmm1,%xmm0 pshufd \$0x4e,%xmm0,%xmm1 por %xmm1,%xmm0 lea $STRIDE($bp),$bp movq %xmm0,$m0 # m0=bp[0] mov ($n0),$n0 # pull n0[0] value mov ($ap),%rax xor $i,$i # i=0 xor $j,$j # j=0 mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$lo0 mov ($np),%rax imulq $lo0,$m1 # "tp[0]"*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov %rdx,$hi1 lea 1($j),$j # j++ jmp .L1st_enter .align 16 .L1st: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] mov $lo0,$hi0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .L1st_enter: mulq $m0 # ap[j]*bp[0] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx lea 1($j),$j # j++ mov %rdx,$lo0 mulq $m1 # np[j]*m1 cmp $num,$j jne .L1st # note that upon exit $j==$num, so # they can be used interchangeably add %rax,$hi1 adc \$0,%rdx add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $hi1,-16(%rsp,$num,8) # tp[num-1] mov %rdx,$hi1 mov $lo0,$hi0 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ jmp .Louter .align 16 .Louter: lea 24+128(%rsp,$num,8),%rdx # where 256-byte mask is (+size optimization) and \$-16,%rdx pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ for($k=0;$k<$STRIDE/16;$k+=4) { $code.=<<___; movdqa `16*($k+0)-128`($bp),%xmm0 movdqa `16*($k+1)-128`($bp),%xmm1 movdqa `16*($k+2)-128`($bp),%xmm2 movdqa `16*($k+3)-128`($bp),%xmm3 pand `16*($k+0)-128`(%rdx),%xmm0 pand `16*($k+1)-128`(%rdx),%xmm1 por %xmm0,%xmm4 pand `16*($k+2)-128`(%rdx),%xmm2 por %xmm1,%xmm5 pand `16*($k+3)-128`(%rdx),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 lea $STRIDE($bp),$bp mov ($ap),%rax # ap[0] movq %xmm0,$m0 # m0=bp[i] xor $j,$j # j=0 mov $n0,$m1 mov (%rsp),$lo0 mulq $m0 # ap[0]*bp[i] add %rax,$lo0 # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $lo0,$m1 # tp[0]*n0 mov %rdx,$hi0 mulq $m1 # np[0]*m1 add %rax,$lo0 # discarded mov 8($ap),%rax adc \$0,%rdx mov 8(%rsp),$lo0 # tp[1] mov %rdx,$hi1 lea 1($j),$j # j++ jmp .Linner_enter .align 16 .Linner: add %rax,$hi1 mov ($ap,$j,8),%rax adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$j,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$j,8) # tp[j-1] mov %rdx,$hi1 .Linner_enter: mulq $m0 # ap[j]*bp[i] add %rax,$hi0 mov ($np,$j,8),%rax adc \$0,%rdx add $hi0,$lo0 # ap[j]*bp[i]+tp[j] mov %rdx,$hi0 adc \$0,$hi0 lea 1($j),$j # j++ mulq $m1 # np[j]*m1 cmp $num,$j jne .Linner # note that upon exit $j==$num, so # they can be used interchangeably add %rax,$hi1 adc \$0,%rdx add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] mov (%rsp,$num,8),$lo0 adc \$0,%rdx mov $hi1,-16(%rsp,$num,8) # tp[num-1] mov %rdx,$hi1 xor %rdx,%rdx add $hi0,$hi1 adc \$0,%rdx add $lo0,$hi1 # pull upmost overflow bit adc \$0,%rdx mov $hi1,-8(%rsp,$num,8) mov %rdx,(%rsp,$num,8) # store upmost overflow bit lea 1($i),$i # i++ cmp $num,$i jb .Louter xor $i,$i # i=0 and clear CF! mov (%rsp),%rax # tp[0] lea (%rsp),$ap # borrow ap for tp mov $num,$j # j=num jmp .Lsub .align 16 .Lsub: sbb ($np,$i,8),%rax mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] mov 8($ap,$i,8),%rax # tp[i+1] lea 1($i),$i # i++ dec $j # doesn't affect CF! jnz .Lsub sbb \$0,%rax # handle upmost overflow bit mov \$-1,%rbx xor %rax,%rbx xor $i,$i mov $num,$j # j=num .Lcopy: # conditional copy mov ($rp,$i,8),%rcx mov (%rsp,$i,8),%rdx and %rbx,%rcx and %rax,%rdx mov $i,(%rsp,$i,8) # zap temporary vector or %rcx,%rdx mov %rdx,($rp,$i,8) # rp[i]=tp[i] lea 1($i),$i sub \$1,$j jnz .Lcopy mov 8(%rsp,$num,8),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul_epilogue: ret .cfi_endproc .size bn_mul_mont_gather5,.-bn_mul_mont_gather5 ___ {{{ my @A=("%r10","%r11"); my @N=("%r13","%rdi"); $code.=<<___; .type bn_mul4x_mont_gather5,\@function,6 .align 32 bn_mul4x_mont_gather5: .cfi_startproc .byte 0x67 mov %rsp,%rax .cfi_def_cfa_register %rax .Lmul4x_enter: ___ $code.=<<___ if ($addx); and \$0x80108,%r11d cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1 je .Lmulx4x_enter ___ $code.=<<___; push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lmul4x_prologue: .byte 0x67 shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10 # 3*$num in bytes neg $num # -$num ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra [num] is allocated in order # to align with bn_power5's frame, which is cleansed after # completing exponentiation. Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rp,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lmul4xsp_alt sub %r11,%rbp # align with $rp lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) jmp .Lmul4xsp_done .align 32 .Lmul4xsp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lmul4xsp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmul4x_page_walk jmp .Lmul4x_page_walk_done .Lmul4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmul4x_page_walk .Lmul4x_page_walk_done: neg $num mov %rax,40(%rsp) .cfi_cfa_expression %rsp+40,deref,+8 .Lmul4x_body: call mul4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmul4x_epilogue: ret .cfi_endproc .size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5 .type mul4x_internal,\@abi-omnipotent .align 32 mul4x_internal: .cfi_startproc shl \$5,$num # $num was in bytes movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument, index lea .Linc(%rip),%rax lea 128(%rdx,$num),%r13 # end of powers table (+size optimization) shr \$5,$num # restore $num ___ $bp="%r12"; $STRIDE=2**5*8; # 5 is "window size" $N=$STRIDE/4; # should match cache line size $tp=$i; $code.=<<___; movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 lea 88-112(%rsp,$num),%r10 # place the mask after tp[num+1] (+ICache optimization) lea 128(%rdx),$bp # size optimization pshufd \$0,%xmm5,%xmm5 # broadcast index movdqa %xmm1,%xmm4 .byte 0x67,0x67 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to index and save result to stack # $code.=<<___; paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 .byte 0x67 movdqa %xmm4,%xmm3 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($i+0)+112`(%r10) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($i+1)+112`(%r10) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($i+2)+112`(%r10) movdqa %xmm4,%xmm2 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 movdqa %xmm3,`16*($i+3)+112`(%r10) movdqa %xmm4,%xmm3 ___ } $code.=<<___; # last iteration can be optimized paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 movdqa %xmm0,`16*($i+0)+112`(%r10) paddd %xmm2,%xmm3 .byte 0x67 pcmpeqd %xmm5,%xmm2 movdqa %xmm1,`16*($i+1)+112`(%r10) pcmpeqd %xmm5,%xmm3 movdqa %xmm2,`16*($i+2)+112`(%r10) pand `16*($i+0)-128`($bp),%xmm0 # while it's still in register pand `16*($i+1)-128`($bp),%xmm1 pand `16*($i+2)-128`($bp),%xmm2 movdqa %xmm3,`16*($i+3)+112`(%r10) pand `16*($i+3)-128`($bp),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bp),%xmm4 movdqa `16*($i+1)-128`($bp),%xmm5 movdqa `16*($i+2)-128`($bp),%xmm2 pand `16*($i+0)+112`(%r10),%xmm4 movdqa `16*($i+3)-128`($bp),%xmm3 pand `16*($i+1)+112`(%r10),%xmm5 por %xmm4,%xmm0 pand `16*($i+2)+112`(%r10),%xmm2 por %xmm5,%xmm1 pand `16*($i+3)+112`(%r10),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ } $code.=<<___; por %xmm1,%xmm0 pshufd \$0x4e,%xmm0,%xmm1 por %xmm1,%xmm0 lea $STRIDE($bp),$bp movq %xmm0,$m0 # m0=bp[0] mov %r13,16+8(%rsp) # save end of b[num] mov $rp, 56+8(%rsp) # save $rp mov ($n0),$n0 # pull n0[0] value mov ($ap),%rax lea ($ap,$num),$ap # end of a[num] neg $num mov $n0,$m1 mulq $m0 # ap[0]*bp[0] mov %rax,$A[0] mov ($np),%rax imulq $A[0],$m1 # "tp[0]"*n0 lea 64+8(%rsp),$tp mov %rdx,$A[1] mulq $m1 # np[0]*m1 add %rax,$A[0] # discarded mov 8($ap,$num),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 add %rax,$N[1] mov 16($ap,$num),%rax adc \$0,%rdx add $A[1],$N[1] lea 4*8($num),$j # j=4 lea 8*4($np),$np adc \$0,%rdx mov $N[1],($tp) mov %rdx,$N[0] jmp .L1st4x .align 32 .L1st4x: mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -8*2($np),%rax lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov 8*0($np),%rax adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-8($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] lea 8*4($np),$np adc \$0,%rdx mov $N[1],($tp) # tp[j-1] mov %rdx,$N[0] add \$32,$j # j+=4 jnz .L1st4x mulq $m0 # ap[j]*bp[0] add %rax,$A[0] mov -8*2($np),%rax lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap),%rax adc \$0,%rdx add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[0] add %rax,$A[1] mov -8*1($np),%rax adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$num),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[0] lea ($np,$num),$np # rewind $np xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] mov $N[0],-8($tp) jmp .Louter4x .align 32 .Louter4x: lea 16+128($tp),%rdx # where 256-byte mask is (+size optimization) pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bp),%xmm0 movdqa `16*($i+1)-128`($bp),%xmm1 movdqa `16*($i+2)-128`($bp),%xmm2 movdqa `16*($i+3)-128`($bp),%xmm3 pand `16*($i+0)-128`(%rdx),%xmm0 pand `16*($i+1)-128`(%rdx),%xmm1 por %xmm0,%xmm4 pand `16*($i+2)-128`(%rdx),%xmm2 por %xmm1,%xmm5 pand `16*($i+3)-128`(%rdx),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 lea $STRIDE($bp),$bp movq %xmm0,$m0 # m0=bp[i] mov ($tp,$num),$A[0] mov $n0,$m1 mulq $m0 # ap[0]*bp[i] add %rax,$A[0] # ap[0]*bp[i]+tp[0] mov ($np),%rax adc \$0,%rdx imulq $A[0],$m1 # tp[0]*n0 mov %rdx,$A[1] mov $N[1],($tp) # store upmost overflow bit lea ($tp,$num),$tp # rewind $tp mulq $m1 # np[0]*m1 add %rax,$A[0] # "$N[0]", discarded mov 8($ap,$num),%rax adc \$0,%rdx mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx add 8($tp),$A[1] # +tp[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$num),%rax adc \$0,%rdx add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] lea 4*8($num),$j # j=4 lea 8*4($np),$np adc \$0,%rdx mov %rdx,$N[0] jmp .Linner4x .align 32 .Linner4x: mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -8*2($np),%rax adc \$0,%rdx add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-32($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov -8*1($np),%rax adc \$0,%rdx add -8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[0] mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov 8*0($np),%rax adc \$0,%rdx add ($tp),$A[0] # ap[j]*bp[i]+tp[j] adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov 8($ap,$j),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-16($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov 8*1($np),%rax adc \$0,%rdx add 8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov 16($ap,$j),%rax adc \$0,%rdx add $A[1],$N[1] lea 8*4($np),$np adc \$0,%rdx mov $N[0],-8($tp) # tp[j-1] mov %rdx,$N[0] add \$32,$j # j+=4 jnz .Linner4x mulq $m0 # ap[j]*bp[i] add %rax,$A[0] mov -8*2($np),%rax adc \$0,%rdx add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] lea 32($tp),$tp adc \$0,%rdx mov %rdx,$A[1] mulq $m1 # np[j]*m1 add %rax,$N[0] mov -8($ap),%rax adc \$0,%rdx add $A[0],$N[0] adc \$0,%rdx mov $N[1],-32($tp) # tp[j-1] mov %rdx,$N[1] mulq $m0 # ap[j]*bp[i] add %rax,$A[1] mov $m1,%rax mov -8*1($np),$m1 adc \$0,%rdx add -8($tp),$A[1] adc \$0,%rdx mov %rdx,$A[0] mulq $m1 # np[j]*m1 add %rax,$N[1] mov ($ap,$num),%rax # ap[0] adc \$0,%rdx add $A[1],$N[1] adc \$0,%rdx mov $N[0],-24($tp) # tp[j-1] mov %rdx,$N[0] mov $N[1],-16($tp) # tp[j-1] lea ($np,$num),$np # rewind $np xor $N[1],$N[1] add $A[0],$N[0] adc \$0,$N[1] add ($tp),$N[0] # pull upmost overflow bit adc \$0,$N[1] # upmost overflow bit mov $N[0],-8($tp) cmp 16+8(%rsp),$bp jb .Louter4x ___ if (1) { $code.=<<___; xor %rax,%rax sub $N[0],$m1 # compare top-most words adc $j,$j # $j is zero or $j,$N[1] sub $N[1],%rax # %rax=-$N[1] lea ($tp,$num),%rbx # tptr in .sqr4x_sub mov ($np),%r12 lea ($np),%rbp # nptr in .sqr4x_sub mov %r9,%rcx sar \$3+2,%rcx mov 56+8(%rsp),%rdi # rptr in .sqr4x_sub dec %r12 # so that after 'not' we get -n[0] xor %r10,%r10 mov 8*1(%rbp),%r13 mov 8*2(%rbp),%r14 mov 8*3(%rbp),%r15 jmp .Lsqr4x_sub_entry ___ } else { my @ri=("%rax",$bp,$m0,$m1); my $rp="%rdx"; $code.=<<___ xor \$1,$N[1] lea ($tp,$num),$tp # rewind $tp sar \$5,$num # cf=0 lea ($np,$N[1],8),$np mov 56+8(%rsp),$rp # restore $rp jmp .Lsub4x .align 32 .Lsub4x: .byte 0x66 mov 8*0($tp),@ri[0] mov 8*1($tp),@ri[1] .byte 0x66 sbb 16*0($np),@ri[0] mov 8*2($tp),@ri[2] sbb 16*1($np),@ri[1] mov 3*8($tp),@ri[3] lea 4*8($tp),$tp sbb 16*2($np),@ri[2] mov @ri[0],8*0($rp) sbb 16*3($np),@ri[3] lea 16*4($np),$np mov @ri[1],8*1($rp) mov @ri[2],8*2($rp) mov @ri[3],8*3($rp) lea 8*4($rp),$rp inc $num jnz .Lsub4x ret ___ } $code.=<<___; .cfi_endproc .size mul4x_internal,.-mul4x_internal ___ }}} {{{ ###################################################################### # void bn_power5( my $rptr="%rdi"; # BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # const void *table, my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 # int pwr my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___; .globl bn_power5 .type bn_power5,\@function,6 .align 32 bn_power5: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d and \$0x80108,%r11d cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1 je .Lpowerx5_enter ___ $code.=<<___; push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lpower5_prologue: shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10d # 3*$num neg $num mov ($n0),$n0 # *n0 ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lpwr_sp_alt sub %r11,%rbp # align with $aptr lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) jmp .Lpwr_sp_done .align 32 .Lpwr_sp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lpwr_sp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwr_page_walk jmp .Lpwr_page_walk_done .Lpwr_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwr_page_walk .Lpwr_page_walk_done: mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lpower5_body: movq $rptr,%xmm1 # save $rptr, used in sqr8x movq $nptr,%xmm2 # save $nptr movq %r10, %xmm3 # -$num, used in sqr8x movq $bptr,%xmm4 call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal call __bn_sqr8x_internal call __bn_post4x_internal movq %xmm2,$nptr movq %xmm4,$bptr mov $aptr,$rptr mov 40(%rsp),%rax lea 32(%rsp),$n0 call mul4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lpower5_epilogue: ret .cfi_endproc .size bn_power5,.-bn_power5 .globl bn_sqr8x_internal .hidden bn_sqr8x_internal .type bn_sqr8x_internal,\@abi-omnipotent .align 32 bn_sqr8x_internal: __bn_sqr8x_internal: .cfi_startproc ############################################################## # Squaring part: # # a) multiply-n-add everything but a[i]*a[i]; # b) shift result of a) by 1 to the left and accumulate # a[i]*a[i] products; # ############################################################## # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[2]a[1] # a[4]a[0] # a[3]a[1] # a[5]a[0] # a[4]a[1] # a[3]a[2] # a[6]a[0] # a[5]a[1] # a[4]a[2] # a[7]a[0] # a[6]a[1] # a[5]a[2] # a[4]a[3] # a[7]a[1] # a[6]a[2] # a[5]a[3] # a[7]a[2] # a[6]a[3] # a[5]a[4] # a[7]a[3] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[4]a[0] # a[5]a[0] # a[6]a[0] # a[7]a[0] # a[2]a[1] # a[3]a[1] # a[4]a[1] # a[5]a[1] # a[6]a[1] # a[7]a[1] # a[3]a[2] # a[4]a[2] # a[5]a[2] # a[6]a[2] # a[7]a[2] # a[4]a[3] # a[5]a[3] # a[6]a[3] # a[7]a[3] # a[5]a[4] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[0]a[0] # a[1]a[1] # a[2]a[2] # a[3]a[3] # a[4]a[4] # a[5]a[5] # a[6]a[6] # a[7]a[7] lea 32(%r10),$i # $i=-($num-32) lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2] mov $num,$j # $j=$num # comments apply to $num==8 case mov -32($aptr,$i),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr,$i),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr,$i),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] mov %rax,$A0[0] # a[1]*a[0] mov $ai,%rax # a[2] mov %rdx,$A0[1] mov $A0[0],-24($tptr,$i) # t[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax adc \$0,%rdx mov $A0[1],-16($tptr,$i) # t[2] mov %rdx,$A0[0] mov -8($aptr,$i),$ai # a[3] mul $a1 # a[2]*a[1] mov %rax,$A1[0] # a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A1[1] lea ($i),$j mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[3] jmp .Lsqr4x_1st .align 32 .Lsqr4x_1st: mov ($aptr,$j),$ai # a[4] mul $a1 # a[3]*a[1] add %rax,$A1[1] # a[3]*a[1]+t[4] mov $ai,%rax mov %rdx,$A1[0] adc \$0,$A1[0] mul $a0 # a[4]*a[0] add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] mov $ai,%rax # a[3] mov 8($aptr,$j),$ai # a[5] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[4]*a[3] add %rax,$A1[0] # a[4]*a[3]+t[5] mov $ai,%rax mov $A0[1],($tptr,$j) # t[4] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[5]*a[2] add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] mov $ai,%rax mov 16($aptr,$j),$ai # a[6] mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mul $a1 # a[5]*a[3] add %rax,$A1[1] # a[5]*a[3]+t[6] mov $ai,%rax mov $A0[0],8($tptr,$j) # t[5] mov %rdx,$A1[0] adc \$0,$A1[0] mul $a0 # a[6]*a[2] add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6] mov $ai,%rax # a[3] mov 24($aptr,$j),$ai # a[7] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[6]*a[5] add %rax,$A1[0] # a[6]*a[5]+t[7] mov $ai,%rax mov $A0[1],16($tptr,$j) # t[6] mov %rdx,$A1[1] adc \$0,$A1[1] lea 32($j),$j mul $a0 # a[7]*a[4] add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[7] cmp \$0,$j jne .Lsqr4x_1st mul $a1 # a[7]*a[5] add %rax,$A1[1] lea 16($i),$i adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[8] mov %rdx,$A1[0] mov %rdx,8($tptr) # t[9] jmp .Lsqr4x_outer .align 32 .Lsqr4x_outer: # comments apply to $num==6 case mov -32($aptr,$i),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr,$i),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr,$i),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] mov -24($tptr,$i),$A0[0] # t[1] add %rax,$A0[0] # a[1]*a[0]+t[1] mov $ai,%rax # a[2] adc \$0,%rdx mov $A0[0],-24($tptr,$i) # t[1] mov %rdx,$A0[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax adc \$0,%rdx add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2] mov %rdx,$A0[0] adc \$0,$A0[0] mov $A0[1],-16($tptr,$i) # t[2] xor $A1[0],$A1[0] mov -8($aptr,$i),$ai # a[3] mul $a1 # a[2]*a[1] add %rax,$A1[0] # a[2]*a[1]+t[3] mov $ai,%rax adc \$0,%rdx add -8($tptr,$i),$A1[0] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax adc \$0,%rdx add $A1[0],$A0[0] mov %rdx,$A0[1] adc \$0,$A0[1] mov $A0[0],-8($tptr,$i) # t[3] lea ($i),$j jmp .Lsqr4x_inner .align 32 .Lsqr4x_inner: mov ($aptr,$j),$ai # a[4] mul $a1 # a[3]*a[1] add %rax,$A1[1] # a[3]*a[1]+t[4] mov $ai,%rax mov %rdx,$A1[0] adc \$0,$A1[0] add ($tptr,$j),$A1[1] adc \$0,$A1[0] .byte 0x67 mul $a0 # a[4]*a[0] add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] mov $ai,%rax # a[3] mov 8($aptr,$j),$ai # a[5] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] adc \$0,$A0[0] mul $a1 # a[4]*a[3] add %rax,$A1[0] # a[4]*a[3]+t[5] mov $A0[1],($tptr,$j) # t[4] mov $ai,%rax mov %rdx,$A1[1] adc \$0,$A1[1] add 8($tptr,$j),$A1[0] lea 16($j),$j # j++ adc \$0,$A1[1] mul $a0 # a[5]*a[2] add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] mov $ai,%rax adc \$0,%rdx add $A1[0],$A0[0] mov %rdx,$A0[1] adc \$0,$A0[1] mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below cmp \$0,$j jne .Lsqr4x_inner .byte 0x67 mul $a1 # a[5]*a[3] add %rax,$A1[1] adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[6], "preloaded t[2]" below mov %rdx,$A1[0] mov %rdx,8($tptr) # t[7], "preloaded t[3]" below add \$16,$i jnz .Lsqr4x_outer # comments apply to $num==4 case mov -32($aptr),$a0 # a[0] lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] mov -24($aptr),%rax # a[1] lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] mov -16($aptr),$ai # a[2] mov %rax,$a1 mul $a0 # a[1]*a[0] add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1] mov $ai,%rax # a[2] mov %rdx,$A0[1] adc \$0,$A0[1] mul $a0 # a[2]*a[0] add %rax,$A0[1] mov $ai,%rax mov $A0[0],-24($tptr) # t[1] mov %rdx,$A0[0] adc \$0,$A0[0] add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2] mov -8($aptr),$ai # a[3] adc \$0,$A0[0] mul $a1 # a[2]*a[1] add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3] mov $ai,%rax mov $A0[1],-16($tptr) # t[2] mov %rdx,$A1[1] adc \$0,$A1[1] mul $a0 # a[3]*a[0] add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] mov $ai,%rax mov %rdx,$A0[1] adc \$0,$A0[1] add $A1[0],$A0[0] adc \$0,$A0[1] mov $A0[0],-8($tptr) # t[3] mul $a1 # a[3]*a[1] add %rax,$A1[1] mov -16($aptr),%rax # a[2] adc \$0,%rdx add $A0[1],$A1[1] adc \$0,%rdx mov $A1[1],($tptr) # t[4] mov %rdx,$A1[0] mov %rdx,8($tptr) # t[5] mul $ai # a[2]*a[3] ___ { my ($shift,$carry)=($a0,$a1); my @S=(@A1,$ai,$n0); $code.=<<___; add \$16,$i xor $shift,$shift sub $num,$i # $i=16-$num xor $carry,$carry add $A1[0],%rax # t[5] adc \$0,%rdx mov %rax,8($tptr) # t[5] mov %rdx,16($tptr) # t[6] mov $carry,24($tptr) # t[7] mov -16($aptr,$i),%rax # a[0] lea 48+8(%rsp),$tptr xor $A0[0],$A0[0] # t[0] mov 8($tptr),$A0[1] # t[1] lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 0($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],16($tptr) adc %rdx,$S[3] lea 16($i),$i mov $S[3],24($tptr) sbb $carry,$carry # mov cf,$carry lea 64($tptr),$tptr jmp .Lsqr4x_shift_n_add .align 32 .Lsqr4x_shift_n_add: lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],-32($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],-24($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 0($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 0($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],-16($tptr) adc %rdx,$S[3] lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift mov $S[3],-8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov 8($aptr,$i),%rax # a[i+1] # prefetch mov $S[0],0($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift mov $S[1],8($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[2] mov 16($aptr,$i),%rax # a[i+1] # prefetch mov $S[2],16($tptr) adc %rdx,$S[3] mov $S[3],24($tptr) sbb $carry,$carry # mov cf,$carry lea 64($tptr),$tptr add \$32,$i jnz .Lsqr4x_shift_n_add lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift .byte 0x67 shr \$63,$A0[0] lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[1] # | t[2*i]>>63 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch mov $A0[1],$shift # shift=t[2*i+1]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch adc %rax,$S[0] mov -8($aptr),%rax # a[i+1] # prefetch mov $S[0],-32($tptr) adc %rdx,$S[1] lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift mov $S[1],-24($tptr) sbb $carry,$carry # mov cf,$carry shr \$63,$A0[0] lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | shr \$63,$A0[1] or $A0[0],$S[3] # | t[2*i]>>63 mul %rax # a[i]*a[i] neg $carry # mov $carry,cf adc %rax,$S[2] adc %rdx,$S[3] mov $S[2],-16($tptr) mov $S[3],-8($tptr) ___ } ###################################################################### # Montgomery reduction part, "word-by-word" algorithm. # # This new path is inspired by multiple submissions from Intel, by # Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, # Vinodh Gopal... { my ($nptr,$tptr,$carry,$m0)=("%rbp","%rdi","%rsi","%rbx"); $code.=<<___; movq %xmm2,$nptr __bn_sqr8x_reduction: xor %rax,%rax lea ($nptr,$num),%rcx # end of n[] lea 48+8(%rsp,$num,2),%rdx # end of t[] buffer mov %rcx,0+8(%rsp) lea 48+8(%rsp,$num),$tptr # end of initial t[] window mov %rdx,8+8(%rsp) neg $num jmp .L8x_reduction_loop .align 32 .L8x_reduction_loop: lea ($tptr,$num),$tptr # start of current t[] window .byte 0x66 mov 8*0($tptr),$m0 mov 8*1($tptr),%r9 mov 8*2($tptr),%r10 mov 8*3($tptr),%r11 mov 8*4($tptr),%r12 mov 8*5($tptr),%r13 mov 8*6($tptr),%r14 mov 8*7($tptr),%r15 mov %rax,(%rdx) # store top-most carry bit lea 8*8($tptr),$tptr .byte 0x67 mov $m0,%r8 imulq 32+8(%rsp),$m0 # n0*a[0] mov 8*0($nptr),%rax # n[0] mov \$8,%ecx jmp .L8x_reduce .align 32 .L8x_reduce: mulq $m0 mov 8*1($nptr),%rax # n[1] neg %r8 mov %rdx,%r8 adc \$0,%r8 mulq $m0 add %rax,%r9 mov 8*2($nptr),%rax adc \$0,%rdx add %r9,%r8 mov $m0,48-8+8(%rsp,%rcx,8) # put aside n0*a[i] mov %rdx,%r9 adc \$0,%r9 mulq $m0 add %rax,%r10 mov 8*3($nptr),%rax adc \$0,%rdx add %r10,%r9 mov 32+8(%rsp),$carry # pull n0, borrow $carry mov %rdx,%r10 adc \$0,%r10 mulq $m0 add %rax,%r11 mov 8*4($nptr),%rax adc \$0,%rdx imulq %r8,$carry # modulo-scheduled add %r11,%r10 mov %rdx,%r11 adc \$0,%r11 mulq $m0 add %rax,%r12 mov 8*5($nptr),%rax adc \$0,%rdx add %r12,%r11 mov %rdx,%r12 adc \$0,%r12 mulq $m0 add %rax,%r13 mov 8*6($nptr),%rax adc \$0,%rdx add %r13,%r12 mov %rdx,%r13 adc \$0,%r13 mulq $m0 add %rax,%r14 mov 8*7($nptr),%rax adc \$0,%rdx add %r14,%r13 mov %rdx,%r14 adc \$0,%r14 mulq $m0 mov $carry,$m0 # n0*a[i] add %rax,%r15 mov 8*0($nptr),%rax # n[0] adc \$0,%rdx add %r15,%r14 mov %rdx,%r15 adc \$0,%r15 dec %ecx jnz .L8x_reduce lea 8*8($nptr),$nptr xor %rax,%rax mov 8+8(%rsp),%rdx # pull end of t[] cmp 0+8(%rsp),$nptr # end of n[]? jae .L8x_no_tail .byte 0x66 add 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 sbb $carry,$carry # top carry mov 48+56+8(%rsp),$m0 # pull n0*a[0] mov \$8,%ecx mov 8*0($nptr),%rax jmp .L8x_tail .align 32 .L8x_tail: mulq $m0 add %rax,%r8 mov 8*1($nptr),%rax mov %r8,($tptr) # save result mov %rdx,%r8 adc \$0,%r8 mulq $m0 add %rax,%r9 mov 8*2($nptr),%rax adc \$0,%rdx add %r9,%r8 lea 8($tptr),$tptr # $tptr++ mov %rdx,%r9 adc \$0,%r9 mulq $m0 add %rax,%r10 mov 8*3($nptr),%rax adc \$0,%rdx add %r10,%r9 mov %rdx,%r10 adc \$0,%r10 mulq $m0 add %rax,%r11 mov 8*4($nptr),%rax adc \$0,%rdx add %r11,%r10 mov %rdx,%r11 adc \$0,%r11 mulq $m0 add %rax,%r12 mov 8*5($nptr),%rax adc \$0,%rdx add %r12,%r11 mov %rdx,%r12 adc \$0,%r12 mulq $m0 add %rax,%r13 mov 8*6($nptr),%rax adc \$0,%rdx add %r13,%r12 mov %rdx,%r13 adc \$0,%r13 mulq $m0 add %rax,%r14 mov 8*7($nptr),%rax adc \$0,%rdx add %r14,%r13 mov %rdx,%r14 adc \$0,%r14 mulq $m0 mov 48-16+8(%rsp,%rcx,8),$m0# pull n0*a[i] add %rax,%r15 adc \$0,%rdx add %r15,%r14 mov 8*0($nptr),%rax # pull n[0] mov %rdx,%r15 adc \$0,%r15 dec %ecx jnz .L8x_tail lea 8*8($nptr),$nptr mov 8+8(%rsp),%rdx # pull end of t[] cmp 0+8(%rsp),$nptr # end of n[]? jae .L8x_tail_done # break out of loop mov 48+56+8(%rsp),$m0 # pull n0*a[0] neg $carry mov 8*0($nptr),%rax # pull n[0] adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 sbb $carry,$carry # top carry mov \$8,%ecx jmp .L8x_tail .align 32 .L8x_tail_done: xor %rax,%rax add (%rdx),%r8 # can this overflow? adc \$0,%r9 adc \$0,%r10 adc \$0,%r11 adc \$0,%r12 adc \$0,%r13 adc \$0,%r14 adc \$0,%r15 adc \$0,%rax neg $carry .L8x_no_tail: adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 adc \$0,%rax # top-most carry mov -8($nptr),%rcx # np[num-1] xor $carry,$carry movq %xmm2,$nptr # restore $nptr mov %r8,8*0($tptr) # store top 512 bits mov %r9,8*1($tptr) movq %xmm3,$num # $num is %r9, can't be moved upwards mov %r10,8*2($tptr) mov %r11,8*3($tptr) mov %r12,8*4($tptr) mov %r13,8*5($tptr) mov %r14,8*6($tptr) mov %r15,8*7($tptr) lea 8*8($tptr),$tptr cmp %rdx,$tptr # end of t[]? jb .L8x_reduction_loop ret .cfi_endproc .size bn_sqr8x_internal,.-bn_sqr8x_internal ___ } ############################################################## # Post-condition, 4x unrolled # { my ($tptr,$nptr)=("%rbx","%rbp"); $code.=<<___; .type __bn_post4x_internal,\@abi-omnipotent .align 32 __bn_post4x_internal: .cfi_startproc mov 8*0($nptr),%r12 lea (%rdi,$num),$tptr # %rdi was $tptr above mov $num,%rcx movq %xmm1,$rptr # restore $rptr neg %rax movq %xmm1,$aptr # prepare for back-to-back call sar \$3+2,%rcx dec %r12 # so that after 'not' we get -n[0] xor %r10,%r10 mov 8*1($nptr),%r13 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 jmp .Lsqr4x_sub_entry .align 16 .Lsqr4x_sub: mov 8*0($nptr),%r12 mov 8*1($nptr),%r13 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 .Lsqr4x_sub_entry: lea 8*4($nptr),$nptr not %r12 not %r13 not %r14 not %r15 and %rax,%r12 and %rax,%r13 and %rax,%r14 and %rax,%r15 neg %r10 # mov %r10,%cf adc 8*0($tptr),%r12 adc 8*1($tptr),%r13 adc 8*2($tptr),%r14 adc 8*3($tptr),%r15 mov %r12,8*0($rptr) lea 8*4($tptr),$tptr mov %r13,8*1($rptr) sbb %r10,%r10 # mov %cf,%r10 mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx # pass %cf jnz .Lsqr4x_sub mov $num,%r10 # prepare for back-to-back call neg $num # restore $num ret .cfi_endproc .size __bn_post4x_internal,.-__bn_post4x_internal ___ } { $code.=<<___; .globl bn_from_montgomery .type bn_from_montgomery,\@abi-omnipotent .align 32 bn_from_montgomery: .cfi_startproc testl \$7,`($win64?"48(%rsp)":"%r9d")` jz bn_from_mont8x xor %eax,%eax ret .cfi_endproc .size bn_from_montgomery,.-bn_from_montgomery .type bn_from_mont8x,\@function,6 .align 32 bn_from_mont8x: .cfi_startproc .byte 0x67 mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lfrom_prologue: shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10 # 3*$num in bytes neg $num mov ($n0),$n0 # *n0 ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). The stack is allocated to aligned with # bn_power5's frame, and as bn_from_montgomery happens to be # last operation, we use the opportunity to cleanse it. # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lfrom_sp_alt sub %r11,%rbp # align with $aptr lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) jmp .Lfrom_sp_done .align 32 .Lfrom_sp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lfrom_sp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lfrom_page_walk jmp .Lfrom_page_walk_done .Lfrom_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lfrom_page_walk .Lfrom_page_walk_done: mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lfrom_body: mov $num,%r11 lea 48(%rsp),%rax pxor %xmm0,%xmm0 jmp .Lmul_by_1 .align 32 .Lmul_by_1: movdqu ($aptr),%xmm1 movdqu 16($aptr),%xmm2 movdqu 32($aptr),%xmm3 movdqa %xmm0,(%rax,$num) movdqu 48($aptr),%xmm4 movdqa %xmm0,16(%rax,$num) .byte 0x48,0x8d,0xb6,0x40,0x00,0x00,0x00 # lea 64($aptr),$aptr movdqa %xmm1,(%rax) movdqa %xmm0,32(%rax,$num) movdqa %xmm2,16(%rax) movdqa %xmm0,48(%rax,$num) movdqa %xmm3,32(%rax) movdqa %xmm4,48(%rax) lea 64(%rax),%rax sub \$64,%r11 jnz .Lmul_by_1 movq $rptr,%xmm1 movq $nptr,%xmm2 .byte 0x67 mov $nptr,%rbp movq %r10, %xmm3 # -num ___ $code.=<<___ if ($addx); mov OPENSSL_ia32cap_P+8(%rip),%r11d and \$0x80108,%r11d cmp \$0x80108,%r11d # check for AD*X+BMI2+BMI1 jne .Lfrom_mont_nox lea (%rax,$num),$rptr call __bn_sqrx8x_reduction call __bn_postx4x_internal pxor %xmm0,%xmm0 lea 48(%rsp),%rax jmp .Lfrom_mont_zero .align 32 .Lfrom_mont_nox: ___ $code.=<<___; call __bn_sqr8x_reduction call __bn_post4x_internal pxor %xmm0,%xmm0 lea 48(%rsp),%rax jmp .Lfrom_mont_zero .align 32 .Lfrom_mont_zero: mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 movdqa %xmm0,16*0(%rax) movdqa %xmm0,16*1(%rax) movdqa %xmm0,16*2(%rax) movdqa %xmm0,16*3(%rax) lea 16*4(%rax),%rax sub \$32,$num jnz .Lfrom_mont_zero mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lfrom_epilogue: ret .cfi_endproc .size bn_from_mont8x,.-bn_from_mont8x ___ } }}} if ($addx) {{{ my $bp="%rdx"; # restore original value $code.=<<___; .type bn_mulx4x_mont_gather5,\@function,6 .align 32 bn_mulx4x_mont_gather5: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lmulx4x_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lmulx4x_prologue: shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10 # 3*$num in bytes neg $num # -$num mov ($n0),$n0 # *n0 ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra [num] is allocated in order # to align with bn_power5's frame, which is cleansed after # completing exponentiation. Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rp,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lmulx4xsp_alt sub %r11,%rbp # align with $aptr lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) jmp .Lmulx4xsp_done .Lmulx4xsp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lmulx4xsp_done: and \$-64,%rbp # ensure alignment mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk jmp .Lmulx4x_page_walk_done .Lmulx4x_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lmulx4x_page_walk .Lmulx4x_page_walk_done: ############################################################## # Stack layout # +0 -num # +8 off-loaded &b[i] # +16 end of b[num] # +24 inner counter # +32 saved n0 # +40 saved %rsp # +48 # +56 saved rp # +64 tmp[num+1] # mov $n0, 32(%rsp) # save *n0 mov %rax,40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lmulx4x_body: call mulx4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lmulx4x_epilogue: ret .cfi_endproc .size bn_mulx4x_mont_gather5,.-bn_mulx4x_mont_gather5 .type mulx4x_internal,\@abi-omnipotent .align 32 mulx4x_internal: .cfi_startproc mov $num,8(%rsp) # save -$num (it was in bytes) mov $num,%r10 neg $num # restore $num shl \$5,$num neg %r10 # restore $num lea 128($bp,$num),%r13 # end of powers table (+size optimization) shr \$5+5,$num movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument sub \$1,$num lea .Linc(%rip),%rax mov %r13,16+8(%rsp) # end of b[num] mov $num,24+8(%rsp) # inner counter mov $rp, 56+8(%rsp) # save $rp ___ my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)= ("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax"); my $rptr=$bptr; my $STRIDE=2**5*8; # 5 is "window size" my $N=$STRIDE/4; # should match cache line size $code.=<<___; movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 lea 88-112(%rsp,%r10),%r10 # place the mask after tp[num+1] (+ICache optimization) lea 128($bp),$bptr # size optimization pshufd \$0,%xmm5,%xmm5 # broadcast index movdqa %xmm1,%xmm4 .byte 0x67 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to index and save result to stack # $code.=<<___; .byte 0x67 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 movdqa %xmm4,%xmm3 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($i+0)+112`(%r10) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($i+1)+112`(%r10) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($i+2)+112`(%r10) movdqa %xmm4,%xmm2 paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 movdqa %xmm3,`16*($i+3)+112`(%r10) movdqa %xmm4,%xmm3 ___ } $code.=<<___; # last iteration can be optimized .byte 0x67 paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 movdqa %xmm0,`16*($i+0)+112`(%r10) paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 movdqa %xmm1,`16*($i+1)+112`(%r10) pcmpeqd %xmm5,%xmm3 movdqa %xmm2,`16*($i+2)+112`(%r10) pand `16*($i+0)-128`($bptr),%xmm0 # while it's still in register pand `16*($i+1)-128`($bptr),%xmm1 pand `16*($i+2)-128`($bptr),%xmm2 movdqa %xmm3,`16*($i+3)+112`(%r10) pand `16*($i+3)-128`($bptr),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ for($i=0;$i<$STRIDE/16-4;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bptr),%xmm4 movdqa `16*($i+1)-128`($bptr),%xmm5 movdqa `16*($i+2)-128`($bptr),%xmm2 pand `16*($i+0)+112`(%r10),%xmm4 movdqa `16*($i+3)-128`($bptr),%xmm3 pand `16*($i+1)+112`(%r10),%xmm5 por %xmm4,%xmm0 pand `16*($i+2)+112`(%r10),%xmm2 por %xmm5,%xmm1 pand `16*($i+3)+112`(%r10),%xmm3 por %xmm2,%xmm0 por %xmm3,%xmm1 ___ } $code.=<<___; pxor %xmm1,%xmm0 pshufd \$0x4e,%xmm0,%xmm1 por %xmm1,%xmm0 lea $STRIDE($bptr),$bptr movq %xmm0,%rdx # bp[0] lea 64+8*4+8(%rsp),$tptr mov %rdx,$bi mulx 0*8($aptr),$mi,%rax # a[0]*b[0] mulx 1*8($aptr),%r11,%r12 # a[1]*b[0] add %rax,%r11 mulx 2*8($aptr),%rax,%r13 # ... adc %rax,%r12 adc \$0,%r13 mulx 3*8($aptr),%rax,%r14 mov $mi,%r15 imulq 32+8(%rsp),$mi # "t[0]"*n0 xor $zero,$zero # cf=0, of=0 mov $mi,%rdx mov $bptr,8+8(%rsp) # off-load &b[i] lea 4*8($aptr),$aptr adcx %rax,%r13 adcx $zero,%r14 # cf=0 mulx 0*8($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*8($nptr),%rax,%r12 mov 24+8(%rsp),$bptr # counter value mov %r10,-8*4($tptr) adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r11,-8*3($tptr) adcx %rax,%r12 adox $zero,%r15 # of=0 lea 4*8($nptr),$nptr mov %r12,-8*2($tptr) jmp .Lmulx4x_1st .align 32 .Lmulx4x_1st: adcx $zero,%r15 # cf=0, modulo-scheduled mulx 0*8($aptr),%r10,%rax # a[4]*b[0] adcx %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[0] adcx %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx %r14,%r12 mulx 3*8($aptr),%r13,%r14 .byte 0x67,0x67 mov $mi,%rdx adcx %rax,%r13 adcx $zero,%r14 # cf=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 mov %r11,-4*8($tptr) adox %r15,%r13 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 lea 4*8($nptr),$nptr mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_1st mov 8(%rsp),$num # load -num adc $zero,%r15 # modulo-scheduled lea ($aptr,$num),$aptr # rewind $aptr add %r15,%r14 mov 8+8(%rsp),$bptr # re-load &b[i] adc $zero,$zero # top-most carry mov %r14,-1*8($tptr) jmp .Lmulx4x_outer .align 32 .Lmulx4x_outer: lea 16-256($tptr),%r10 # where 256-byte mask is (+density control) pxor %xmm4,%xmm4 .byte 0x67,0x67 pxor %xmm5,%xmm5 ___ for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`($bptr),%xmm0 movdqa `16*($i+1)-128`($bptr),%xmm1 movdqa `16*($i+2)-128`($bptr),%xmm2 pand `16*($i+0)+256`(%r10),%xmm0 movdqa `16*($i+3)-128`($bptr),%xmm3 pand `16*($i+1)+256`(%r10),%xmm1 por %xmm0,%xmm4 pand `16*($i+2)+256`(%r10),%xmm2 por %xmm1,%xmm5 pand `16*($i+3)+256`(%r10),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 lea $STRIDE($bptr),$bptr movq %xmm0,%rdx # m0=bp[i] mov $zero,($tptr) # save top-most carry lea 4*8($tptr,$num),$tptr # rewind $tptr mulx 0*8($aptr),$mi,%r11 # a[0]*b[i] xor $zero,$zero # cf=0, of=0 mov %rdx,$bi mulx 1*8($aptr),%r14,%r12 # a[1]*b[i] adox -4*8($tptr),$mi # +t[0] adcx %r14,%r11 mulx 2*8($aptr),%r15,%r13 # ... adox -3*8($tptr),%r11 adcx %r15,%r12 mulx 3*8($aptr),%rdx,%r14 adox -2*8($tptr),%r12 adcx %rdx,%r13 lea ($nptr,$num),$nptr # rewind $nptr lea 4*8($aptr),$aptr adox -1*8($tptr),%r13 adcx $zero,%r14 adox $zero,%r14 mov $mi,%r15 imulq 32+8(%rsp),$mi # "t[0]"*n0 mov $mi,%rdx xor $zero,$zero # cf=0, of=0 mov $bptr,8+8(%rsp) # off-load &b[i] mulx 0*8($nptr),%rax,%r10 adcx %rax,%r15 # discarded adox %r11,%r10 mulx 1*8($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 mulx 2*8($nptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx mov 24+8(%rsp),$bptr # counter value mov %r10,-8*4($tptr) adcx %rax,%r12 mov %r11,-8*3($tptr) adox $zero,%r15 # of=0 mov %r12,-8*2($tptr) lea 4*8($nptr),$nptr jmp .Lmulx4x_inner .align 32 .Lmulx4x_inner: mulx 0*8($aptr),%r10,%rax # a[4]*b[i] adcx $zero,%r15 # cf=0, modulo-scheduled adox %r14,%r10 mulx 1*8($aptr),%r11,%r14 # a[5]*b[i] adcx 0*8($tptr),%r10 adox %rax,%r11 mulx 2*8($aptr),%r12,%rax # ... adcx 1*8($tptr),%r11 adox %r14,%r12 mulx 3*8($aptr),%r13,%r14 mov $mi,%rdx adcx 2*8($tptr),%r12 adox %rax,%r13 adcx 3*8($tptr),%r13 adox $zero,%r14 # of=0 lea 4*8($aptr),$aptr lea 4*8($tptr),$tptr adcx $zero,%r14 # cf=0 adox %r15,%r10 mulx 0*8($nptr),%rax,%r15 adcx %rax,%r10 adox %r15,%r11 mulx 1*8($nptr),%rax,%r15 adcx %rax,%r11 adox %r15,%r12 mulx 2*8($nptr),%rax,%r15 mov %r10,-5*8($tptr) adcx %rax,%r12 adox %r15,%r13 mov %r11,-4*8($tptr) mulx 3*8($nptr),%rax,%r15 mov $bi,%rdx lea 4*8($nptr),$nptr mov %r12,-3*8($tptr) adcx %rax,%r13 adox $zero,%r15 mov %r13,-2*8($tptr) dec $bptr # of=0, pass cf jnz .Lmulx4x_inner mov 0+8(%rsp),$num # load -num adc $zero,%r15 # modulo-scheduled sub 0*8($tptr),$bptr # pull top-most carry to %cf mov 8+8(%rsp),$bptr # re-load &b[i] mov 16+8(%rsp),%r10 adc %r15,%r14 lea ($aptr,$num),$aptr # rewind $aptr adc $zero,$zero # top-most carry mov %r14,-1*8($tptr) cmp %r10,$bptr jb .Lmulx4x_outer mov -8($nptr),%r10 mov $zero,%r8 mov ($nptr,$num),%r12 lea ($nptr,$num),%rbp # rewind $nptr mov $num,%rcx lea ($tptr,$num),%rdi # rewind $tptr xor %eax,%eax xor %r15,%r15 sub %r14,%r10 # compare top-most words adc %r15,%r15 or %r15,%r8 sar \$3+2,%rcx sub %r8,%rax # %rax=-%r8 mov 56+8(%rsp),%rdx # restore rp dec %r12 # so that after 'not' we get -n[0] mov 8*1(%rbp),%r13 xor %r8,%r8 mov 8*2(%rbp),%r14 mov 8*3(%rbp),%r15 jmp .Lsqrx4x_sub_entry # common post-condition .cfi_endproc .size mulx4x_internal,.-mulx4x_internal ___ } { ###################################################################### # void bn_power5( my $rptr="%rdi"; # BN_ULONG *rptr, my $aptr="%rsi"; # const BN_ULONG *aptr, my $bptr="%rdx"; # const void *table, my $nptr="%rcx"; # const BN_ULONG *nptr, my $n0 ="%r8"; # const BN_ULONG *n0); my $num ="%r9"; # int num, has to be divisible by 8 # int pwr); my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); my @A0=("%r10","%r11"); my @A1=("%r12","%r13"); my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); $code.=<<___; .type bn_powerx5,\@function,6 .align 32 bn_powerx5: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax .Lpowerx5_enter: push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lpowerx5_prologue: shl \$3,${num}d # convert $num to bytes lea ($num,$num,2),%r10 # 3*$num in bytes neg $num mov ($n0),$n0 # *n0 ############################################################## # Ensure that stack frame doesn't alias with $rptr+3*$num # modulo 4096, which covers ret[num], am[num] and n[num] # (see bn_exp.c). This is done to allow memory disambiguation # logic do its magic. [Extra 256 bytes is for power mask # calculated from 7th argument, the index.] # lea -320(%rsp,$num,2),%r11 mov %rsp,%rbp sub $rptr,%r11 and \$4095,%r11 cmp %r11,%r10 jb .Lpwrx_sp_alt sub %r11,%rbp # align with $aptr lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) jmp .Lpwrx_sp_done .align 32 .Lpwrx_sp_alt: lea 4096-320(,$num,2),%r10 lea -320(%rbp,$num,2),%rbp # alloca(frame+2*$num*8+256) sub %r10,%r11 mov \$0,%r10 cmovc %r10,%r11 sub %r11,%rbp .Lpwrx_sp_done: and \$-64,%rbp mov %rsp,%r11 sub %rbp,%r11 and \$-4096,%r11 lea (%rbp,%r11),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwrx_page_walk jmp .Lpwrx_page_walk_done .Lpwrx_page_walk: lea -4096(%rsp),%rsp mov (%rsp),%r10 cmp %rbp,%rsp ja .Lpwrx_page_walk .Lpwrx_page_walk_done: mov $num,%r10 neg $num ############################################################## # Stack layout # # +0 saved $num, used in reduction section # +8 &t[2*$num], used in reduction section # +16 intermediate carry bit # +24 top-most carry bit, used in reduction section # +32 saved *n0 # +40 saved %rsp # +48 t[2*$num] # pxor %xmm0,%xmm0 movq $rptr,%xmm1 # save $rptr movq $nptr,%xmm2 # save $nptr movq %r10, %xmm3 # -$num movq $bptr,%xmm4 mov $n0, 32(%rsp) mov %rax, 40(%rsp) # save original %rsp .cfi_cfa_expression %rsp+40,deref,+8 .Lpowerx5_body: call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal call __bn_sqrx8x_internal call __bn_postx4x_internal mov %r10,$num # -num mov $aptr,$rptr movq %xmm2,$nptr movq %xmm4,$bptr mov 40(%rsp),%rax call mulx4x_internal mov 40(%rsp),%rsi # restore %rsp .cfi_def_cfa %rsi,8 mov \$1,%rax mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lpowerx5_epilogue: ret .cfi_endproc .size bn_powerx5,.-bn_powerx5 .globl bn_sqrx8x_internal .hidden bn_sqrx8x_internal .type bn_sqrx8x_internal,\@abi-omnipotent .align 32 bn_sqrx8x_internal: __bn_sqrx8x_internal: .cfi_startproc ################################################################## # Squaring part: # # a) multiply-n-add everything but a[i]*a[i]; # b) shift result of a) by 1 to the left and accumulate # a[i]*a[i] products; # ################################################################## # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] # a[1]a[0] # a[2]a[0] # a[3]a[0] # a[2]a[1] # a[3]a[1] # a[3]a[2] # # a[4]a[0] # a[5]a[0] # a[6]a[0] # a[7]a[0] # a[4]a[1] # a[5]a[1] # a[6]a[1] # a[7]a[1] # a[4]a[2] # a[5]a[2] # a[6]a[2] # a[7]a[2] # a[4]a[3] # a[5]a[3] # a[6]a[3] # a[7]a[3] # # a[5]a[4] # a[6]a[4] # a[7]a[4] # a[6]a[5] # a[7]a[5] # a[7]a[6] # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] ___ { my ($zero,$carry)=("%rbp","%rcx"); my $aaptr=$zero; $code.=<<___; lea 48+8(%rsp),$tptr lea ($aptr,$num),$aaptr mov $num,0+8(%rsp) # save $num mov $aaptr,8+8(%rsp) # save end of $aptr jmp .Lsqr8x_zero_start .align 32 .byte 0x66,0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00 .Lsqrx8x_zero: .byte 0x3e movdqa %xmm0,0*8($tptr) movdqa %xmm0,2*8($tptr) movdqa %xmm0,4*8($tptr) movdqa %xmm0,6*8($tptr) .Lsqr8x_zero_start: # aligned at 32 movdqa %xmm0,8*8($tptr) movdqa %xmm0,10*8($tptr) movdqa %xmm0,12*8($tptr) movdqa %xmm0,14*8($tptr) lea 16*8($tptr),$tptr sub \$64,$num jnz .Lsqrx8x_zero mov 0*8($aptr),%rdx # a[0], modulo-scheduled #xor %r9,%r9 # t[1], ex-$num, zero already xor %r10,%r10 xor %r11,%r11 xor %r12,%r12 xor %r13,%r13 xor %r14,%r14 xor %r15,%r15 lea 48+8(%rsp),$tptr xor $zero,$zero # cf=0, cf=0 jmp .Lsqrx8x_outer_loop .align 32 .Lsqrx8x_outer_loop: mulx 1*8($aptr),%r8,%rax # a[1]*a[0] adcx %r9,%r8 # a[1]*a[0]+=t[1] adox %rax,%r10 mulx 2*8($aptr),%r9,%rax # a[2]*a[0] adcx %r10,%r9 adox %rax,%r11 .byte 0xc4,0xe2,0xab,0xf6,0x86,0x18,0x00,0x00,0x00 # mulx 3*8($aptr),%r10,%rax # ... adcx %r11,%r10 adox %rax,%r12 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x20,0x00,0x00,0x00 # mulx 4*8($aptr),%r11,%rax adcx %r12,%r11 adox %rax,%r13 mulx 5*8($aptr),%r12,%rax adcx %r13,%r12 adox %rax,%r14 mulx 6*8($aptr),%r13,%rax adcx %r14,%r13 adox %r15,%rax mulx 7*8($aptr),%r14,%r15 mov 1*8($aptr),%rdx # a[1] adcx %rax,%r14 adox $zero,%r15 adc 8*8($tptr),%r15 mov %r8,1*8($tptr) # t[1] mov %r9,2*8($tptr) # t[2] sbb $carry,$carry # mov %cf,$carry xor $zero,$zero # cf=0, of=0 mulx 2*8($aptr),%r8,%rbx # a[2]*a[1] mulx 3*8($aptr),%r9,%rax # a[3]*a[1] adcx %r10,%r8 adox %rbx,%r9 mulx 4*8($aptr),%r10,%rbx # ... adcx %r11,%r9 adox %rax,%r10 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x28,0x00,0x00,0x00 # mulx 5*8($aptr),%r11,%rax adcx %r12,%r10 adox %rbx,%r11 .byte 0xc4,0xe2,0x9b,0xf6,0x9e,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r12,%rbx adcx %r13,%r11 adox %r14,%r12 .byte 0xc4,0x62,0x93,0xf6,0xb6,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r13,%r14 mov 2*8($aptr),%rdx # a[2] adcx %rax,%r12 adox %rbx,%r13 adcx %r15,%r13 adox $zero,%r14 # of=0 adcx $zero,%r14 # cf=0 mov %r8,3*8($tptr) # t[3] mov %r9,4*8($tptr) # t[4] mulx 3*8($aptr),%r8,%rbx # a[3]*a[2] mulx 4*8($aptr),%r9,%rax # a[4]*a[2] adcx %r10,%r8 adox %rbx,%r9 mulx 5*8($aptr),%r10,%rbx # ... adcx %r11,%r9 adox %rax,%r10 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r11,%rax adcx %r12,%r10 adox %r13,%r11 .byte 0xc4,0x62,0x9b,0xf6,0xae,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r12,%r13 .byte 0x3e mov 3*8($aptr),%rdx # a[3] adcx %rbx,%r11 adox %rax,%r12 adcx %r14,%r12 mov %r8,5*8($tptr) # t[5] mov %r9,6*8($tptr) # t[6] mulx 4*8($aptr),%r8,%rax # a[4]*a[3] adox $zero,%r13 # of=0 adcx $zero,%r13 # cf=0 mulx 5*8($aptr),%r9,%rbx # a[5]*a[3] adcx %r10,%r8 adox %rax,%r9 mulx 6*8($aptr),%r10,%rax # ... adcx %r11,%r9 adox %r12,%r10 mulx 7*8($aptr),%r11,%r12 mov 4*8($aptr),%rdx # a[4] mov 5*8($aptr),%r14 # a[5] adcx %rbx,%r10 adox %rax,%r11 mov 6*8($aptr),%r15 # a[6] adcx %r13,%r11 adox $zero,%r12 # of=0 adcx $zero,%r12 # cf=0 mov %r8,7*8($tptr) # t[7] mov %r9,8*8($tptr) # t[8] mulx %r14,%r9,%rax # a[5]*a[4] mov 7*8($aptr),%r8 # a[7] adcx %r10,%r9 mulx %r15,%r10,%rbx # a[6]*a[4] adox %rax,%r10 adcx %r11,%r10 mulx %r8,%r11,%rax # a[7]*a[4] mov %r14,%rdx # a[5] adox %rbx,%r11 adcx %r12,%r11 #adox $zero,%rax # of=0 adcx $zero,%rax # cf=0 mulx %r15,%r14,%rbx # a[6]*a[5] mulx %r8,%r12,%r13 # a[7]*a[5] mov %r15,%rdx # a[6] lea 8*8($aptr),$aptr adcx %r14,%r11 adox %rbx,%r12 adcx %rax,%r12 adox $zero,%r13 .byte 0x67,0x67 mulx %r8,%r8,%r14 # a[7]*a[6] adcx %r8,%r13 adcx $zero,%r14 cmp 8+8(%rsp),$aptr je .Lsqrx8x_outer_break neg $carry # mov $carry,%cf mov \$-8,%rcx mov $zero,%r15 mov 8*8($tptr),%r8 adcx 9*8($tptr),%r9 # +=t[9] adcx 10*8($tptr),%r10 # ... adcx 11*8($tptr),%r11 adc 12*8($tptr),%r12 adc 13*8($tptr),%r13 adc 14*8($tptr),%r14 adc 15*8($tptr),%r15 lea ($aptr),$aaptr lea 2*64($tptr),$tptr sbb %rax,%rax # mov %cf,$carry mov -64($aptr),%rdx # a[0] mov %rax,16+8(%rsp) # offload $carry mov $tptr,24+8(%rsp) #lea 8*8($tptr),$tptr # see 2*8*8($tptr) above xor %eax,%eax # cf=0, of=0 jmp .Lsqrx8x_loop .align 32 .Lsqrx8x_loop: mov %r8,%rbx mulx 0*8($aaptr),%rax,%r8 # a[8]*a[i] adcx %rax,%rbx # +=t[8] adox %r9,%r8 mulx 1*8($aaptr),%rax,%r9 # ... adcx %rax,%r8 adox %r10,%r9 mulx 2*8($aaptr),%rax,%r10 adcx %rax,%r9 adox %r11,%r10 mulx 3*8($aaptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 4*8($aaptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 5*8($aaptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 6*8($aaptr),%rax,%r14 mov %rbx,($tptr,%rcx,8) # store t[8+i] mov \$0,%ebx adcx %rax,%r13 adox %r15,%r14 .byte 0xc4,0x62,0xfb,0xf6,0xbd,0x38,0x00,0x00,0x00 # mulx 7*8($aaptr),%rax,%r15 mov 8($aptr,%rcx,8),%rdx # a[i] adcx %rax,%r14 adox %rbx,%r15 # %rbx is 0, of=0 adcx %rbx,%r15 # cf=0 .byte 0x67 inc %rcx # of=0 jnz .Lsqrx8x_loop lea 8*8($aaptr),$aaptr mov \$-8,%rcx cmp 8+8(%rsp),$aaptr # done? je .Lsqrx8x_break sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf .byte 0x66 mov -64($aptr),%rdx adcx 0*8($tptr),%r8 adcx 1*8($tptr),%r9 adc 2*8($tptr),%r10 adc 3*8($tptr),%r11 adc 4*8($tptr),%r12 adc 5*8($tptr),%r13 adc 6*8($tptr),%r14 adc 7*8($tptr),%r15 lea 8*8($tptr),$tptr .byte 0x67 sbb %rax,%rax # mov %cf,%rax xor %ebx,%ebx # cf=0, of=0 mov %rax,16+8(%rsp) # offload carry jmp .Lsqrx8x_loop .align 32 .Lsqrx8x_break: xor $zero,$zero sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf adcx $zero,%r8 mov 24+8(%rsp),$carry # initial $tptr, borrow $carry adcx $zero,%r9 mov 0*8($aptr),%rdx # a[8], modulo-scheduled adc \$0,%r10 mov %r8,0*8($tptr) adc \$0,%r11 adc \$0,%r12 adc \$0,%r13 adc \$0,%r14 adc \$0,%r15 cmp $carry,$tptr # cf=0, of=0 je .Lsqrx8x_outer_loop mov %r9,1*8($tptr) mov 1*8($carry),%r9 mov %r10,2*8($tptr) mov 2*8($carry),%r10 mov %r11,3*8($tptr) mov 3*8($carry),%r11 mov %r12,4*8($tptr) mov 4*8($carry),%r12 mov %r13,5*8($tptr) mov 5*8($carry),%r13 mov %r14,6*8($tptr) mov 6*8($carry),%r14 mov %r15,7*8($tptr) mov 7*8($carry),%r15 mov $carry,$tptr jmp .Lsqrx8x_outer_loop .align 32 .Lsqrx8x_outer_break: mov %r9,9*8($tptr) # t[9] movq %xmm3,%rcx # -$num mov %r10,10*8($tptr) # ... mov %r11,11*8($tptr) mov %r12,12*8($tptr) mov %r13,13*8($tptr) mov %r14,14*8($tptr) ___ } { my $i="%rcx"; $code.=<<___; lea 48+8(%rsp),$tptr mov ($aptr,$i),%rdx # a[0] mov 8($tptr),$A0[1] # t[1] xor $A0[0],$A0[0] # t[0], of=0, cf=0 mov 0+8(%rsp),$num # restore $num adox $A0[1],$A0[1] mov 16($tptr),$A1[0] # t[2] # prefetch mov 24($tptr),$A1[1] # t[3] # prefetch #jmp .Lsqrx4x_shift_n_add # happens to be aligned .align 32 .Lsqrx4x_shift_n_add: mulx %rdx,%rax,%rbx adox $A1[0],$A1[0] adcx $A0[0],%rax .byte 0x48,0x8b,0x94,0x0e,0x08,0x00,0x00,0x00 # mov 8($aptr,$i),%rdx # a[i+1] # prefetch .byte 0x4c,0x8b,0x97,0x20,0x00,0x00,0x00 # mov 32($tptr),$A0[0] # t[2*i+4] # prefetch adox $A1[1],$A1[1] adcx $A0[1],%rbx mov 40($tptr),$A0[1] # t[2*i+4+1] # prefetch mov %rax,0($tptr) mov %rbx,8($tptr) mulx %rdx,%rax,%rbx adox $A0[0],$A0[0] adcx $A1[0],%rax mov 16($aptr,$i),%rdx # a[i+2] # prefetch mov 48($tptr),$A1[0] # t[2*i+6] # prefetch adox $A0[1],$A0[1] adcx $A1[1],%rbx mov 56($tptr),$A1[1] # t[2*i+6+1] # prefetch mov %rax,16($tptr) mov %rbx,24($tptr) mulx %rdx,%rax,%rbx adox $A1[0],$A1[0] adcx $A0[0],%rax mov 24($aptr,$i),%rdx # a[i+3] # prefetch lea 32($i),$i mov 64($tptr),$A0[0] # t[2*i+8] # prefetch adox $A1[1],$A1[1] adcx $A0[1],%rbx mov 72($tptr),$A0[1] # t[2*i+8+1] # prefetch mov %rax,32($tptr) mov %rbx,40($tptr) mulx %rdx,%rax,%rbx adox $A0[0],$A0[0] adcx $A1[0],%rax jrcxz .Lsqrx4x_shift_n_add_break .byte 0x48,0x8b,0x94,0x0e,0x00,0x00,0x00,0x00 # mov 0($aptr,$i),%rdx # a[i+4] # prefetch adox $A0[1],$A0[1] adcx $A1[1],%rbx mov 80($tptr),$A1[0] # t[2*i+10] # prefetch mov 88($tptr),$A1[1] # t[2*i+10+1] # prefetch mov %rax,48($tptr) mov %rbx,56($tptr) lea 64($tptr),$tptr nop jmp .Lsqrx4x_shift_n_add .align 32 .Lsqrx4x_shift_n_add_break: adcx $A1[1],%rbx mov %rax,48($tptr) mov %rbx,56($tptr) lea 64($tptr),$tptr # end of t[] buffer ___ } ###################################################################### # Montgomery reduction part, "word-by-word" algorithm. # # This new path is inspired by multiple submissions from Intel, by # Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, # Vinodh Gopal... { my ($nptr,$carry,$m0)=("%rbp","%rsi","%rdx"); $code.=<<___; movq %xmm2,$nptr __bn_sqrx8x_reduction: xor %eax,%eax # initial top-most carry bit mov 32+8(%rsp),%rbx # n0 mov 48+8(%rsp),%rdx # "%r8", 8*0($tptr) lea -8*8($nptr,$num),%rcx # end of n[] #lea 48+8(%rsp,$num,2),$tptr # end of t[] buffer mov %rcx, 0+8(%rsp) # save end of n[] mov $tptr,8+8(%rsp) # save end of t[] lea 48+8(%rsp),$tptr # initial t[] window jmp .Lsqrx8x_reduction_loop .align 32 .Lsqrx8x_reduction_loop: mov 8*1($tptr),%r9 mov 8*2($tptr),%r10 mov 8*3($tptr),%r11 mov 8*4($tptr),%r12 mov %rdx,%r8 imulq %rbx,%rdx # n0*a[i] mov 8*5($tptr),%r13 mov 8*6($tptr),%r14 mov 8*7($tptr),%r15 mov %rax,24+8(%rsp) # store top-most carry bit lea 8*8($tptr),$tptr xor $carry,$carry # cf=0,of=0 mov \$-8,%rcx jmp .Lsqrx8x_reduce .align 32 .Lsqrx8x_reduce: mov %r8, %rbx mulx 8*0($nptr),%rax,%r8 # n[0] adcx %rbx,%rax # discarded adox %r9,%r8 mulx 8*1($nptr),%rbx,%r9 # n[1] adcx %rbx,%r8 adox %r10,%r9 mulx 8*2($nptr),%rbx,%r10 adcx %rbx,%r9 adox %r11,%r10 mulx 8*3($nptr),%rbx,%r11 adcx %rbx,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xe3,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rbx,%r12 mov %rdx,%rax mov %r8,%rdx adcx %rbx,%r11 adox %r13,%r12 mulx 32+8(%rsp),%rbx,%rdx # %rdx discarded mov %rax,%rdx mov %rax,64+48+8(%rsp,%rcx,8) # put aside n0*a[i] mulx 8*5($nptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 8*6($nptr),%rax,%r14 adcx %rax,%r13 adox %r15,%r14 mulx 8*7($nptr),%rax,%r15 mov %rbx,%rdx adcx %rax,%r14 adox $carry,%r15 # $carry is 0 adcx $carry,%r15 # cf=0 .byte 0x67,0x67,0x67 inc %rcx # of=0 jnz .Lsqrx8x_reduce mov $carry,%rax # xor %rax,%rax cmp 0+8(%rsp),$nptr # end of n[]? jae .Lsqrx8x_no_tail mov 48+8(%rsp),%rdx # pull n0*a[0] add 8*0($tptr),%r8 lea 8*8($nptr),$nptr mov \$-8,%rcx adcx 8*1($tptr),%r9 adcx 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 lea 8*8($tptr),$tptr sbb %rax,%rax # top carry xor $carry,$carry # of=0, cf=0 mov %rax,16+8(%rsp) jmp .Lsqrx8x_tail .align 32 .Lsqrx8x_tail: mov %r8,%rbx mulx 8*0($nptr),%rax,%r8 adcx %rax,%rbx adox %r9,%r8 mulx 8*1($nptr),%rax,%r9 adcx %rax,%r8 adox %r10,%r9 mulx 8*2($nptr),%rax,%r10 adcx %rax,%r9 adox %r11,%r10 mulx 8*3($nptr),%rax,%r11 adcx %rax,%r10 adox %r12,%r11 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rax,%r12 adcx %rax,%r11 adox %r13,%r12 mulx 8*5($nptr),%rax,%r13 adcx %rax,%r12 adox %r14,%r13 mulx 8*6($nptr),%rax,%r14 adcx %rax,%r13 adox %r15,%r14 mulx 8*7($nptr),%rax,%r15 mov 72+48+8(%rsp,%rcx,8),%rdx # pull n0*a[i] adcx %rax,%r14 adox $carry,%r15 mov %rbx,($tptr,%rcx,8) # save result mov %r8,%rbx adcx $carry,%r15 # cf=0 inc %rcx # of=0 jnz .Lsqrx8x_tail cmp 0+8(%rsp),$nptr # end of n[]? jae .Lsqrx8x_tail_done # break out of loop sub 16+8(%rsp),$carry # mov 16(%rsp),%cf mov 48+8(%rsp),%rdx # pull n0*a[0] lea 8*8($nptr),$nptr adc 8*0($tptr),%r8 adc 8*1($tptr),%r9 adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 lea 8*8($tptr),$tptr sbb %rax,%rax sub \$8,%rcx # mov \$-8,%rcx xor $carry,$carry # of=0, cf=0 mov %rax,16+8(%rsp) jmp .Lsqrx8x_tail .align 32 .Lsqrx8x_tail_done: xor %rax,%rax add 24+8(%rsp),%r8 # can this overflow? adc \$0,%r9 adc \$0,%r10 adc \$0,%r11 adc \$0,%r12 adc \$0,%r13 adc \$0,%r14 adc \$0,%r15 adc \$0,%rax sub 16+8(%rsp),$carry # mov 16(%rsp),%cf .Lsqrx8x_no_tail: # %cf is 0 if jumped here adc 8*0($tptr),%r8 movq %xmm3,%rcx adc 8*1($tptr),%r9 mov 8*7($nptr),$carry movq %xmm2,$nptr # restore $nptr adc 8*2($tptr),%r10 adc 8*3($tptr),%r11 adc 8*4($tptr),%r12 adc 8*5($tptr),%r13 adc 8*6($tptr),%r14 adc 8*7($tptr),%r15 adc \$0,%rax # top-most carry mov 32+8(%rsp),%rbx # n0 mov 8*8($tptr,%rcx),%rdx # modulo-scheduled "%r8" mov %r8,8*0($tptr) # store top 512 bits lea 8*8($tptr),%r8 # borrow %r8 mov %r9,8*1($tptr) mov %r10,8*2($tptr) mov %r11,8*3($tptr) mov %r12,8*4($tptr) mov %r13,8*5($tptr) mov %r14,8*6($tptr) mov %r15,8*7($tptr) lea 8*8($tptr,%rcx),$tptr # start of current t[] window cmp 8+8(%rsp),%r8 # end of t[]? jb .Lsqrx8x_reduction_loop ret .cfi_endproc .size bn_sqrx8x_internal,.-bn_sqrx8x_internal ___ } ############################################################## # Post-condition, 4x unrolled # { my ($rptr,$nptr)=("%rdx","%rbp"); $code.=<<___; .align 32 __bn_postx4x_internal: .cfi_startproc mov 8*0($nptr),%r12 mov %rcx,%r10 # -$num mov %rcx,%r9 # -$num neg %rax sar \$3+2,%rcx #lea 48+8(%rsp,%r9),$tptr movq %xmm1,$rptr # restore $rptr movq %xmm1,$aptr # prepare for back-to-back call dec %r12 # so that after 'not' we get -n[0] mov 8*1($nptr),%r13 xor %r8,%r8 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 jmp .Lsqrx4x_sub_entry .align 16 .Lsqrx4x_sub: mov 8*0($nptr),%r12 mov 8*1($nptr),%r13 mov 8*2($nptr),%r14 mov 8*3($nptr),%r15 .Lsqrx4x_sub_entry: andn %rax,%r12,%r12 lea 8*4($nptr),$nptr andn %rax,%r13,%r13 andn %rax,%r14,%r14 andn %rax,%r15,%r15 neg %r8 # mov %r8,%cf adc 8*0($tptr),%r12 adc 8*1($tptr),%r13 adc 8*2($tptr),%r14 adc 8*3($tptr),%r15 mov %r12,8*0($rptr) lea 8*4($tptr),$tptr mov %r13,8*1($rptr) sbb %r8,%r8 # mov %cf,%r8 mov %r14,8*2($rptr) mov %r15,8*3($rptr) lea 8*4($rptr),$rptr inc %rcx jnz .Lsqrx4x_sub neg %r9 # restore $num ret .cfi_endproc .size __bn_postx4x_internal,.-__bn_postx4x_internal ___ } }}} { my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%edx","%r8", "%r9d") : # Win64 order ("%rdi","%esi","%rdx","%ecx"); # Unix order my $out=$inp; my $STRIDE=2**5*8; my $N=$STRIDE/4; $code.=<<___; .globl bn_get_bits5 .type bn_get_bits5,\@abi-omnipotent .align 16 bn_get_bits5: .cfi_startproc lea 0($inp),%r10 lea 1($inp),%r11 mov $num,%ecx shr \$4,$num and \$15,%ecx lea -8(%ecx),%eax cmp \$11,%ecx cmova %r11,%r10 cmova %eax,%ecx movzw (%r10,$num,2),%eax shrl %cl,%eax and \$31,%eax ret .cfi_endproc .size bn_get_bits5,.-bn_get_bits5 .globl bn_scatter5 .type bn_scatter5,\@abi-omnipotent .align 16 bn_scatter5: .cfi_startproc cmp \$0, $num jz .Lscatter_epilogue lea ($tbl,$idx,8),$tbl .Lscatter: mov ($inp),%rax lea 8($inp),$inp mov %rax,($tbl) lea 32*8($tbl),$tbl sub \$1,$num jnz .Lscatter .Lscatter_epilogue: ret .cfi_endproc .size bn_scatter5,.-bn_scatter5 .globl bn_gather5 .type bn_gather5,\@abi-omnipotent .align 32 bn_gather5: .LSEH_begin_bn_gather5: # Win64 thing, but harmless in other cases .cfi_startproc # I can't trust assembler to use specific encoding:-( .byte 0x4c,0x8d,0x14,0x24 #lea (%rsp),%r10 .byte 0x48,0x81,0xec,0x08,0x01,0x00,0x00 #sub $0x108,%rsp lea .Linc(%rip),%rax and \$-16,%rsp # shouldn't be formally required movd $idx,%xmm5 movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 lea 128($tbl),%r11 # size optimization lea 128(%rsp),%rax # size optimization pshufd \$0,%xmm5,%xmm5 # broadcast $idx movdqa %xmm1,%xmm4 movdqa %xmm1,%xmm2 ___ ######################################################################## # calculate mask by comparing 0..31 to $idx and save result to stack # for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; paddd %xmm0,%xmm1 pcmpeqd %xmm5,%xmm0 # compare to 1,0 ___ $code.=<<___ if ($i); movdqa %xmm3,`16*($i-1)-128`(%rax) ___ $code.=<<___; movdqa %xmm4,%xmm3 paddd %xmm1,%xmm2 pcmpeqd %xmm5,%xmm1 # compare to 3,2 movdqa %xmm0,`16*($i+0)-128`(%rax) movdqa %xmm4,%xmm0 paddd %xmm2,%xmm3 pcmpeqd %xmm5,%xmm2 # compare to 5,4 movdqa %xmm1,`16*($i+1)-128`(%rax) movdqa %xmm4,%xmm1 paddd %xmm3,%xmm0 pcmpeqd %xmm5,%xmm3 # compare to 7,6 movdqa %xmm2,`16*($i+2)-128`(%rax) movdqa %xmm4,%xmm2 ___ } $code.=<<___; movdqa %xmm3,`16*($i-1)-128`(%rax) jmp .Lgather .align 32 .Lgather: pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 ___ for($i=0;$i<$STRIDE/16;$i+=4) { $code.=<<___; movdqa `16*($i+0)-128`(%r11),%xmm0 movdqa `16*($i+1)-128`(%r11),%xmm1 movdqa `16*($i+2)-128`(%r11),%xmm2 pand `16*($i+0)-128`(%rax),%xmm0 movdqa `16*($i+3)-128`(%r11),%xmm3 pand `16*($i+1)-128`(%rax),%xmm1 por %xmm0,%xmm4 pand `16*($i+2)-128`(%rax),%xmm2 por %xmm1,%xmm5 pand `16*($i+3)-128`(%rax),%xmm3 por %xmm2,%xmm4 por %xmm3,%xmm5 ___ } $code.=<<___; por %xmm5,%xmm4 lea $STRIDE(%r11),%r11 pshufd \$0x4e,%xmm4,%xmm0 por %xmm4,%xmm0 movq %xmm0,($out) # m0=bp[0] lea 8($out),$out sub \$1,$num jnz .Lgather lea (%r10),%rsp ret .LSEH_end_bn_gather5: .cfi_endproc .size bn_gather5,.-bn_gather5 ___ } $code.=<<___; .align 64 .Linc: .long 0,0, 1,1 .long 2,2, 2,2 .asciz "Montgomery Multiplication with scatter/gather for x86_64, CRYPTOGAMS by " ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type mul_handler,\@abi-omnipotent .align 16 mul_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRipRsp mov 8(%r11),%r10d # HandlerData[2] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail lea .Lmul_epilogue(%rip),%r10 cmp %r10,%rbx ja .Lbody_40 mov 192($context),%r10 # pull $num mov 8(%rax,%r10,8),%rax # pull saved stack pointer jmp .Lcommon_pop_regs .Lbody_40: mov 40(%rax),%rax # pull saved stack pointer .Lcommon_pop_regs: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size mul_handler,.-mul_handler .section .pdata .align 4 .rva .LSEH_begin_bn_mul_mont_gather5 .rva .LSEH_end_bn_mul_mont_gather5 .rva .LSEH_info_bn_mul_mont_gather5 .rva .LSEH_begin_bn_mul4x_mont_gather5 .rva .LSEH_end_bn_mul4x_mont_gather5 .rva .LSEH_info_bn_mul4x_mont_gather5 .rva .LSEH_begin_bn_power5 .rva .LSEH_end_bn_power5 .rva .LSEH_info_bn_power5 .rva .LSEH_begin_bn_from_mont8x .rva .LSEH_end_bn_from_mont8x .rva .LSEH_info_bn_from_mont8x ___ $code.=<<___ if ($addx); .rva .LSEH_begin_bn_mulx4x_mont_gather5 .rva .LSEH_end_bn_mulx4x_mont_gather5 .rva .LSEH_info_bn_mulx4x_mont_gather5 .rva .LSEH_begin_bn_powerx5 .rva .LSEH_end_bn_powerx5 .rva .LSEH_info_bn_powerx5 ___ $code.=<<___; .rva .LSEH_begin_bn_gather5 .rva .LSEH_end_bn_gather5 .rva .LSEH_info_bn_gather5 .section .xdata .align 8 .LSEH_info_bn_mul_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmul_body,.Lmul_body,.Lmul_epilogue # HandlerData[] .align 8 .LSEH_info_bn_mul4x_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmul4x_prologue,.Lmul4x_body,.Lmul4x_epilogue # HandlerData[] .align 8 .LSEH_info_bn_power5: .byte 9,0,0,0 .rva mul_handler .rva .Lpower5_prologue,.Lpower5_body,.Lpower5_epilogue # HandlerData[] .align 8 .LSEH_info_bn_from_mont8x: .byte 9,0,0,0 .rva mul_handler .rva .Lfrom_prologue,.Lfrom_body,.Lfrom_epilogue # HandlerData[] ___ $code.=<<___ if ($addx); .align 8 .LSEH_info_bn_mulx4x_mont_gather5: .byte 9,0,0,0 .rva mul_handler .rva .Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[] .align 8 .LSEH_info_bn_powerx5: .byte 9,0,0,0 .rva mul_handler .rva .Lpowerx5_prologue,.Lpowerx5_body,.Lpowerx5_epilogue # HandlerData[] ___ $code.=<<___; .align 8 .LSEH_info_bn_gather5: .byte 0x01,0x0b,0x03,0x0a .byte 0x0b,0x01,0x21,0x00 # sub rsp,0x108 .byte 0x04,0xa3,0x00,0x00 # lea r10,(rsp) .align 8 ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/bn/bn_add.c000066400000000000000000000065361364063235100166520ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" /* signed add of b to a. */ int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) { int ret, r_neg, cmp_res; bn_check_top(a); bn_check_top(b); if (a->neg == b->neg) { r_neg = a->neg; ret = BN_uadd(r, a, b); } else { cmp_res = BN_ucmp(a, b); if (cmp_res > 0) { r_neg = a->neg; ret = BN_usub(r, a, b); } else if (cmp_res < 0) { r_neg = b->neg; ret = BN_usub(r, b, a); } else { r_neg = 0; BN_zero(r); ret = 1; } } r->neg = r_neg; bn_check_top(r); return ret; } /* signed sub of b from a. */ int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) { int ret, r_neg, cmp_res; bn_check_top(a); bn_check_top(b); if (a->neg != b->neg) { r_neg = a->neg; ret = BN_uadd(r, a, b); } else { cmp_res = BN_ucmp(a, b); if (cmp_res > 0) { r_neg = a->neg; ret = BN_usub(r, a, b); } else if (cmp_res < 0) { r_neg = !b->neg; ret = BN_usub(r, b, a); } else { r_neg = 0; BN_zero(r); ret = 1; } } r->neg = r_neg; bn_check_top(r); return ret; } /* unsigned add of b to a, r can be equal to a or b. */ int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) { int max, min, dif; const BN_ULONG *ap, *bp; BN_ULONG *rp, carry, t1, t2; bn_check_top(a); bn_check_top(b); if (a->top < b->top) { const BIGNUM *tmp; tmp = a; a = b; b = tmp; } max = a->top; min = b->top; dif = max - min; if (bn_wexpand(r, max + 1) == NULL) return 0; r->top = max; ap = a->d; bp = b->d; rp = r->d; carry = bn_add_words(rp, ap, bp, min); rp += min; ap += min; while (dif) { dif--; t1 = *(ap++); t2 = (t1 + carry) & BN_MASK2; *(rp++) = t2; carry &= (t2 == 0); } *rp = carry; r->top += carry; r->neg = 0; bn_check_top(r); return 1; } /* unsigned subtraction of b from a, a must be larger than b. */ int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) { int max, min, dif; BN_ULONG t1, t2, borrow, *rp; const BN_ULONG *ap, *bp; bn_check_top(a); bn_check_top(b); max = a->top; min = b->top; dif = max - min; if (dif < 0) { /* hmm... should not be happening */ BNerr(BN_F_BN_USUB, BN_R_ARG2_LT_ARG3); return 0; } if (bn_wexpand(r, max) == NULL) return 0; ap = a->d; bp = b->d; rp = r->d; borrow = bn_sub_words(rp, ap, bp, min); ap += min; rp += min; while (dif) { dif--; t1 = *(ap++); t2 = (t1 - borrow) & BN_MASK2; *(rp++) = t2; borrow &= (t1 == 0); } while (max && *--rp == 0) max--; r->top = max; r->neg = 0; bn_pollute(r); return 1; } openssl-1.1.1f/crypto/bn/bn_asm.c000066400000000000000000000656311364063235100167030ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "bn_local.h" #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) return c1; # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul_add(rp[0], ap[0], w, c1); mul_add(rp[1], ap[1], w, c1); mul_add(rp[2], ap[2], w, c1); mul_add(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul_add(rp[0], ap[0], w, c1); ap++; rp++; num--; } return c1; } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) return c1; # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul(rp[0], ap[0], w, c1); mul(rp[1], ap[1], w, c1); mul(rp[2], ap[2], w, c1); mul(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul(rp[0], ap[0], w, c1); ap++; rp++; num--; } return c1; } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { sqr(r[0], r[1], a[0]); sqr(r[2], r[3], a[1]); sqr(r[4], r[5], a[2]); sqr(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } # endif while (n) { sqr(r[0], r[1], a[0]); a++; r += 2; n--; } } #else /* !(defined(BN_LLONG) || * defined(BN_UMULT_HIGH)) */ BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) return (BN_ULONG)0; bl = LBITS(w); bh = HBITS(w); # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul_add(rp[0], ap[0], bl, bh, c); mul_add(rp[1], ap[1], bl, bh, c); mul_add(rp[2], ap[2], bl, bh, c); mul_add(rp[3], ap[3], bl, bh, c); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul_add(rp[0], ap[0], bl, bh, c); ap++; rp++; num--; } return c; } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG carry = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) return (BN_ULONG)0; bl = LBITS(w); bh = HBITS(w); # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul(rp[0], ap[0], bl, bh, carry); mul(rp[1], ap[1], bl, bh, carry); mul(rp[2], ap[2], bl, bh, carry); mul(rp[3], ap[3], bl, bh, carry); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul(rp[0], ap[0], bl, bh, carry); ap++; rp++; num--; } return carry; } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { sqr64(r[0], r[1], a[0]); sqr64(r[2], r[3], a[1]); sqr64(r[4], r[5], a[2]); sqr64(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } # endif while (n) { sqr64(r[0], r[1], a[0]); a++; r += 2; n--; } } #endif /* !(defined(BN_LLONG) || * defined(BN_UMULT_HIGH)) */ #if defined(BN_LLONG) && defined(BN_DIV2W) BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d)); } #else /* Divide h,l by d and return the result. */ /* I need to test this some more :-( */ BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { BN_ULONG dh, dl, q, ret = 0, th, tl, t; int i, count = 2; if (d == 0) return BN_MASK2; i = BN_num_bits_word(d); assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); i = BN_BITS2 - i; if (h >= d) h -= d; if (i) { d <<= i; h = (h << i) | (l >> (BN_BITS2 - i)); l <<= i; } dh = (d & BN_MASK2h) >> BN_BITS4; dl = (d & BN_MASK2l); for (;;) { if ((h >> BN_BITS4) == dh) q = BN_MASK2l; else q = h / dh; th = q * dh; tl = dl * q; for (;;) { t = h - th; if ((t & BN_MASK2h) || ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) break; q--; th -= dh; tl -= dl; } t = (tl >> BN_BITS4); tl = (tl << BN_BITS4) & BN_MASK2h; th += t; if (l < tl) th++; l -= tl; if (h < th) { h += d; q--; } h -= th; if (--count == 0) break; ret = q << BN_BITS4; h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; l = (l & BN_MASK2l) << BN_BITS4; } ret |= q; return ret; } #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ #ifdef BN_LLONG BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULLONG ll = 0; assert(n >= 0); if (n <= 0) return (BN_ULONG)0; # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { ll += (BN_ULLONG) a[0] + b[0]; r[0] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG) a[1] + b[1]; r[1] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG) a[2] + b[2]; r[2] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG) a[3] + b[3]; r[3] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; a += 4; b += 4; r += 4; n -= 4; } # endif while (n) { ll += (BN_ULLONG) a[0] + b[0]; r[0] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; a++; b++; r++; n--; } return (BN_ULONG)ll; } #else /* !BN_LLONG */ BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG c, l, t; assert(n >= 0); if (n <= 0) return (BN_ULONG)0; c = 0; # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { t = a[0]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[0]) & BN_MASK2; c += (l < t); r[0] = l; t = a[1]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[1]) & BN_MASK2; c += (l < t); r[1] = l; t = a[2]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[2]) & BN_MASK2; c += (l < t); r[2] = l; t = a[3]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[3]) & BN_MASK2; c += (l < t); r[3] = l; a += 4; b += 4; r += 4; n -= 4; } # endif while (n) { t = a[0]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[0]) & BN_MASK2; c += (l < t); r[0] = l; a++; b++; r++; n--; } return (BN_ULONG)c; } #endif /* !BN_LLONG */ BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG t1, t2; int c = 0; assert(n >= 0); if (n <= 0) return (BN_ULONG)0; #ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); t1 = a[1]; t2 = b[1]; r[1] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); t1 = a[2]; t2 = b[2]; r[2] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); t1 = a[3]; t2 = b[3]; r[3] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); a += 4; b += 4; r += 4; n -= 4; } #endif while (n) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); a++; b++; r++; n--; } return c; } #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) # undef bn_mul_comba8 # undef bn_mul_comba4 # undef bn_sqr_comba8 # undef bn_sqr_comba4 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ /* * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number * c=(c2,c1,c0) */ # ifdef BN_LLONG /* * Keep in mind that additions to multiplication result can not * overflow, because its high half cannot be all-ones. */ # define mul_add_c(a,b,c0,c1,c2) do { \ BN_ULONG hi; \ BN_ULLONG t = (BN_ULLONG)(a)*(b); \ t += c0; /* no carry */ \ c0 = (BN_ULONG)Lw(t); \ hi = (BN_ULONG)Hw(t); \ c1 = (c1+hi)&BN_MASK2; if (c1 /* * This is essentially reference implementation, which may or may not * result in performance improvement. E.g. on IA-32 this routine was * observed to give 40% faster rsa1024 private key operations and 10% * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a * reference implementation, one to be used as starting point for * platform-specific assembler. Mentioned numbers apply to compiler * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and * can vary not only from platform to platform, but even for compiler * versions. Assembler vs. assembler improvement coefficients can * [and are known to] differ and are to be documented elsewhere. */ int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0p, int num) { BN_ULONG c0, c1, ml, *tp, n0; # ifdef mul64 BN_ULONG mh; # endif volatile BN_ULONG *vp; int i = 0, j; # if 0 /* template for platform-specific * implementation */ if (ap == bp) return bn_sqr_mont(rp, ap, np, n0p, num); # endif vp = tp = alloca((num + 2) * sizeof(BN_ULONG)); n0 = *n0p; c0 = 0; ml = bp[0]; # ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); for (j = 0; j < num; ++j) mul(tp[j], ap[j], ml, mh, c0); # else for (j = 0; j < num; ++j) mul(tp[j], ap[j], ml, c0); # endif tp[num] = c0; tp[num + 1] = 0; goto enter; for (i = 0; i < num; i++) { c0 = 0; ml = bp[i]; # ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); for (j = 0; j < num; ++j) mul_add(tp[j], ap[j], ml, mh, c0); # else for (j = 0; j < num; ++j) mul_add(tp[j], ap[j], ml, c0); # endif c1 = (tp[num] + c0) & BN_MASK2; tp[num] = c1; tp[num + 1] = (c1 < c0 ? 1 : 0); enter: c1 = tp[0]; ml = (c1 * n0) & BN_MASK2; c0 = 0; # ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); mul_add(c1, np[0], ml, mh, c0); # else mul_add(c1, ml, np[0], c0); # endif for (j = 1; j < num; j++) { c1 = tp[j]; # ifdef mul64 mul_add(c1, np[j], ml, mh, c0); # else mul_add(c1, ml, np[j], c0); # endif tp[j - 1] = c1 & BN_MASK2; } c1 = (tp[num] + c0) & BN_MASK2; tp[num - 1] = c1; tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0); } if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { c0 = bn_sub_words(rp, tp, np, num); if (tp[num] != 0 || c0 == 0) { for (i = 0; i < num + 2; i++) vp[i] = 0; return 1; } } for (i = 0; i < num; i++) rp[i] = tp[i], vp[i] = 0; vp[num] = 0; vp[num + 1] = 0; return 1; } # else /* * Return value of 0 indicates that multiplication/convolution was not * performed to signal the caller to fall down to alternative/original * code-path. */ int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) { return 0; } # endif /* OPENSSL_BN_ASM_MONT */ # endif #else /* !BN_MUL_COMBA */ /* hmm... is it faster just to do a multiply? */ # undef bn_sqr_comba4 # undef bn_sqr_comba8 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG t[8]; bn_sqr_normal(r, a, 4, t); } void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG t[16]; bn_sqr_normal(r, a, 8, t); } void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { r[4] = bn_mul_words(&(r[0]), a, 4, b[0]); r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]); r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]); r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]); } void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { r[8] = bn_mul_words(&(r[0]), a, 8, b[0]); r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]); r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]); r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]); r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]); r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]); r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]); r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]); } # ifdef OPENSSL_NO_ASM # ifdef OPENSSL_BN_ASM_MONT # include int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0p, int num) { BN_ULONG c0, c1, *tp, n0 = *n0p; volatile BN_ULONG *vp; int i = 0, j; vp = tp = alloca((num + 2) * sizeof(BN_ULONG)); for (i = 0; i <= num; i++) tp[i] = 0; for (i = 0; i < num; i++) { c0 = bn_mul_add_words(tp, ap, num, bp[i]); c1 = (tp[num] + c0) & BN_MASK2; tp[num] = c1; tp[num + 1] = (c1 < c0 ? 1 : 0); c0 = bn_mul_add_words(tp, np, num, tp[0] * n0); c1 = (tp[num] + c0) & BN_MASK2; tp[num] = c1; tp[num + 1] += (c1 < c0 ? 1 : 0); for (j = 0; j <= num; j++) tp[j] = tp[j + 1]; } if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { c0 = bn_sub_words(rp, tp, np, num); if (tp[num] != 0 || c0 == 0) { for (i = 0; i < num + 2; i++) vp[i] = 0; return 1; } } for (i = 0; i < num; i++) rp[i] = tp[i], vp[i] = 0; vp[num] = 0; vp[num + 1] = 0; return 1; } # else int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) { return 0; } # endif /* OPENSSL_BN_ASM_MONT */ # endif #endif /* !BN_MUL_COMBA */ openssl-1.1.1f/crypto/bn/bn_blind.c000066400000000000000000000177031364063235100172100ustar00rootroot00000000000000/* * Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "bn_local.h" #define BN_BLINDING_COUNTER 32 struct bn_blinding_st { BIGNUM *A; BIGNUM *Ai; BIGNUM *e; BIGNUM *mod; /* just a reference */ CRYPTO_THREAD_ID tid; int counter; unsigned long flags; BN_MONT_CTX *m_ctx; int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); CRYPTO_RWLOCK *lock; }; BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod) { BN_BLINDING *ret = NULL; bn_check_top(mod); if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { BNerr(BN_F_BN_BLINDING_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { BNerr(BN_F_BN_BLINDING_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } BN_BLINDING_set_current_thread(ret); if (A != NULL) { if ((ret->A = BN_dup(A)) == NULL) goto err; } if (Ai != NULL) { if ((ret->Ai = BN_dup(Ai)) == NULL) goto err; } /* save a copy of mod in the BN_BLINDING structure */ if ((ret->mod = BN_dup(mod)) == NULL) goto err; if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) BN_set_flags(ret->mod, BN_FLG_CONSTTIME); /* * Set the counter to the special value -1 to indicate that this is * never-used fresh blinding that does not need updating before first * use. */ ret->counter = -1; return ret; err: BN_BLINDING_free(ret); return NULL; } void BN_BLINDING_free(BN_BLINDING *r) { if (r == NULL) return; BN_free(r->A); BN_free(r->Ai); BN_free(r->e); BN_free(r->mod); CRYPTO_THREAD_lock_free(r->lock); OPENSSL_free(r); } int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx) { int ret = 0; if ((b->A == NULL) || (b->Ai == NULL)) { BNerr(BN_F_BN_BLINDING_UPDATE, BN_R_NOT_INITIALIZED); goto err; } if (b->counter == -1) b->counter = 0; if (++b->counter == BN_BLINDING_COUNTER && b->e != NULL && !(b->flags & BN_BLINDING_NO_RECREATE)) { /* re-create blinding parameters */ if (!BN_BLINDING_create_param(b, NULL, NULL, ctx, NULL, NULL)) goto err; } else if (!(b->flags & BN_BLINDING_NO_UPDATE)) { if (b->m_ctx != NULL) { if (!bn_mul_mont_fixed_top(b->Ai, b->Ai, b->Ai, b->m_ctx, ctx) || !bn_mul_mont_fixed_top(b->A, b->A, b->A, b->m_ctx, ctx)) goto err; } else { if (!BN_mod_mul(b->Ai, b->Ai, b->Ai, b->mod, ctx) || !BN_mod_mul(b->A, b->A, b->A, b->mod, ctx)) goto err; } } ret = 1; err: if (b->counter == BN_BLINDING_COUNTER) b->counter = 0; return ret; } int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx) { return BN_BLINDING_convert_ex(n, NULL, b, ctx); } int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *ctx) { int ret = 1; bn_check_top(n); if ((b->A == NULL) || (b->Ai == NULL)) { BNerr(BN_F_BN_BLINDING_CONVERT_EX, BN_R_NOT_INITIALIZED); return 0; } if (b->counter == -1) /* Fresh blinding, doesn't need updating. */ b->counter = 0; else if (!BN_BLINDING_update(b, ctx)) return 0; if (r != NULL && (BN_copy(r, b->Ai) == NULL)) return 0; if (b->m_ctx != NULL) ret = BN_mod_mul_montgomery(n, n, b->A, b->m_ctx, ctx); else ret = BN_mod_mul(n, n, b->A, b->mod, ctx); return ret; } int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx) { return BN_BLINDING_invert_ex(n, NULL, b, ctx); } int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *ctx) { int ret; bn_check_top(n); if (r == NULL && (r = b->Ai) == NULL) { BNerr(BN_F_BN_BLINDING_INVERT_EX, BN_R_NOT_INITIALIZED); return 0; } if (b->m_ctx != NULL) { /* ensure that BN_mod_mul_montgomery takes pre-defined path */ if (n->dmax >= r->top) { size_t i, rtop = r->top, ntop = n->top; BN_ULONG mask; for (i = 0; i < rtop; i++) { mask = (BN_ULONG)0 - ((i - ntop) >> (8 * sizeof(i) - 1)); n->d[i] &= mask; } mask = (BN_ULONG)0 - ((rtop - ntop) >> (8 * sizeof(ntop) - 1)); /* always true, if (rtop >= ntop) n->top = r->top; */ n->top = (int)(rtop & ~mask) | (ntop & mask); n->flags |= (BN_FLG_FIXED_TOP & ~mask); } ret = BN_mod_mul_montgomery(n, n, r, b->m_ctx, ctx); } else { ret = BN_mod_mul(n, n, r, b->mod, ctx); } bn_check_top(n); return ret; } int BN_BLINDING_is_current_thread(BN_BLINDING *b) { return CRYPTO_THREAD_compare_id(CRYPTO_THREAD_get_current_id(), b->tid); } void BN_BLINDING_set_current_thread(BN_BLINDING *b) { b->tid = CRYPTO_THREAD_get_current_id(); } int BN_BLINDING_lock(BN_BLINDING *b) { return CRYPTO_THREAD_write_lock(b->lock); } int BN_BLINDING_unlock(BN_BLINDING *b) { return CRYPTO_THREAD_unlock(b->lock); } unsigned long BN_BLINDING_get_flags(const BN_BLINDING *b) { return b->flags; } void BN_BLINDING_set_flags(BN_BLINDING *b, unsigned long flags) { b->flags = flags; } BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), BN_MONT_CTX *m_ctx) { int retry_counter = 32; BN_BLINDING *ret = NULL; if (b == NULL) ret = BN_BLINDING_new(NULL, NULL, m); else ret = b; if (ret == NULL) goto err; if (ret->A == NULL && (ret->A = BN_new()) == NULL) goto err; if (ret->Ai == NULL && (ret->Ai = BN_new()) == NULL) goto err; if (e != NULL) { BN_free(ret->e); ret->e = BN_dup(e); } if (ret->e == NULL) goto err; if (bn_mod_exp != NULL) ret->bn_mod_exp = bn_mod_exp; if (m_ctx != NULL) ret->m_ctx = m_ctx; do { int rv; if (!BN_priv_rand_range(ret->A, ret->mod)) goto err; if (int_bn_mod_inverse(ret->Ai, ret->A, ret->mod, ctx, &rv)) break; /* * this should almost never happen for good RSA keys */ if (!rv) goto err; if (retry_counter-- == 0) { BNerr(BN_F_BN_BLINDING_CREATE_PARAM, BN_R_TOO_MANY_ITERATIONS); goto err; } } while (1); if (ret->bn_mod_exp != NULL && ret->m_ctx != NULL) { if (!ret->bn_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx, ret->m_ctx)) goto err; } else { if (!BN_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx)) goto err; } if (ret->m_ctx != NULL) { if (!bn_to_mont_fixed_top(ret->Ai, ret->Ai, ret->m_ctx, ctx) || !bn_to_mont_fixed_top(ret->A, ret->A, ret->m_ctx, ctx)) goto err; } return ret; err: if (b == NULL) { BN_BLINDING_free(ret); ret = NULL; } return ret; } openssl-1.1.1f/crypto/bn/bn_const.c000066400000000000000000000644471364063235100172550ustar00rootroot00000000000000/* * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include /*- * "First Oakley Default Group" from RFC2409, section 6.1. * * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } * * RFC2409 specifies a generator of 2. * RFC2412 specifies a generator of of 22. */ BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn) { static const unsigned char RFC2409_PRIME_768[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x3A, 0x36, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC2409_PRIME_768, sizeof(RFC2409_PRIME_768), bn); } /*- * "Second Oakley Default Group" from RFC2409, section 6.2. * * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. * * RFC2409 specifies a generator of 2. * RFC2412 specifies a generator of 22. */ BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn) { static const unsigned char RFC2409_PRIME_1024[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC2409_PRIME_1024, sizeof(RFC2409_PRIME_1024), bn); } /*- * "1536-bit MODP Group" from RFC3526, Section 2. * * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } * * RFC3526 specifies a generator of 2. * RFC2312 specifies a generator of 22. */ BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn) { static const unsigned char RFC3526_PRIME_1536[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), bn); } /*- * "2048-bit MODP Group" from RFC3526, Section 3. * * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 } * * RFC3526 specifies a generator of 2. */ BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn) { static const unsigned char RFC3526_PRIME_2048[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC3526_PRIME_2048, sizeof(RFC3526_PRIME_2048), bn); } /*- * "3072-bit MODP Group" from RFC3526, Section 4. * * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 } * * RFC3526 specifies a generator of 2. */ BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn) { static const unsigned char RFC3526_PRIME_3072[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, 0xA9, 0x3A, 0xD2, 0xCA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC3526_PRIME_3072, sizeof(RFC3526_PRIME_3072), bn); } /*- * "4096-bit MODP Group" from RFC3526, Section 5. * * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 } * * RFC3526 specifies a generator of 2. */ BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn) { static const unsigned char RFC3526_PRIME_4096[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x06, 0x31, 0x99, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC3526_PRIME_4096, sizeof(RFC3526_PRIME_4096), bn); } /*- * "6144-bit MODP Group" from RFC3526, Section 6. * * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 } * * RFC3526 specifies a generator of 2. */ BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn) { static const unsigned char RFC3526_PRIME_6144[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x02, 0x84, 0x92, 0x36, 0xC3, 0xFA, 0xB4, 0xD2, 0x7C, 0x70, 0x26, 0xC1, 0xD4, 0xDC, 0xB2, 0x60, 0x26, 0x46, 0xDE, 0xC9, 0x75, 0x1E, 0x76, 0x3D, 0xBA, 0x37, 0xBD, 0xF8, 0xFF, 0x94, 0x06, 0xAD, 0x9E, 0x53, 0x0E, 0xE5, 0xDB, 0x38, 0x2F, 0x41, 0x30, 0x01, 0xAE, 0xB0, 0x6A, 0x53, 0xED, 0x90, 0x27, 0xD8, 0x31, 0x17, 0x97, 0x27, 0xB0, 0x86, 0x5A, 0x89, 0x18, 0xDA, 0x3E, 0xDB, 0xEB, 0xCF, 0x9B, 0x14, 0xED, 0x44, 0xCE, 0x6C, 0xBA, 0xCE, 0xD4, 0xBB, 0x1B, 0xDB, 0x7F, 0x14, 0x47, 0xE6, 0xCC, 0x25, 0x4B, 0x33, 0x20, 0x51, 0x51, 0x2B, 0xD7, 0xAF, 0x42, 0x6F, 0xB8, 0xF4, 0x01, 0x37, 0x8C, 0xD2, 0xBF, 0x59, 0x83, 0xCA, 0x01, 0xC6, 0x4B, 0x92, 0xEC, 0xF0, 0x32, 0xEA, 0x15, 0xD1, 0x72, 0x1D, 0x03, 0xF4, 0x82, 0xD7, 0xCE, 0x6E, 0x74, 0xFE, 0xF6, 0xD5, 0x5E, 0x70, 0x2F, 0x46, 0x98, 0x0C, 0x82, 0xB5, 0xA8, 0x40, 0x31, 0x90, 0x0B, 0x1C, 0x9E, 0x59, 0xE7, 0xC9, 0x7F, 0xBE, 0xC7, 0xE8, 0xF3, 0x23, 0xA9, 0x7A, 0x7E, 0x36, 0xCC, 0x88, 0xBE, 0x0F, 0x1D, 0x45, 0xB7, 0xFF, 0x58, 0x5A, 0xC5, 0x4B, 0xD4, 0x07, 0xB2, 0x2B, 0x41, 0x54, 0xAA, 0xCC, 0x8F, 0x6D, 0x7E, 0xBF, 0x48, 0xE1, 0xD8, 0x14, 0xCC, 0x5E, 0xD2, 0x0F, 0x80, 0x37, 0xE0, 0xA7, 0x97, 0x15, 0xEE, 0xF2, 0x9B, 0xE3, 0x28, 0x06, 0xA1, 0xD5, 0x8B, 0xB7, 0xC5, 0xDA, 0x76, 0xF5, 0x50, 0xAA, 0x3D, 0x8A, 0x1F, 0xBF, 0xF0, 0xEB, 0x19, 0xCC, 0xB1, 0xA3, 0x13, 0xD5, 0x5C, 0xDA, 0x56, 0xC9, 0xEC, 0x2E, 0xF2, 0x96, 0x32, 0x38, 0x7F, 0xE8, 0xD7, 0x6E, 0x3C, 0x04, 0x68, 0x04, 0x3E, 0x8F, 0x66, 0x3F, 0x48, 0x60, 0xEE, 0x12, 0xBF, 0x2D, 0x5B, 0x0B, 0x74, 0x74, 0xD6, 0xE6, 0x94, 0xF9, 0x1E, 0x6D, 0xCC, 0x40, 0x24, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC3526_PRIME_6144, sizeof(RFC3526_PRIME_6144), bn); } /*- * "8192-bit MODP Group" from RFC3526, Section 7. * * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 } * * RFC3526 specifies a generator of 2. */ BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn) { static const unsigned char RFC3526_PRIME_8192[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x02, 0x84, 0x92, 0x36, 0xC3, 0xFA, 0xB4, 0xD2, 0x7C, 0x70, 0x26, 0xC1, 0xD4, 0xDC, 0xB2, 0x60, 0x26, 0x46, 0xDE, 0xC9, 0x75, 0x1E, 0x76, 0x3D, 0xBA, 0x37, 0xBD, 0xF8, 0xFF, 0x94, 0x06, 0xAD, 0x9E, 0x53, 0x0E, 0xE5, 0xDB, 0x38, 0x2F, 0x41, 0x30, 0x01, 0xAE, 0xB0, 0x6A, 0x53, 0xED, 0x90, 0x27, 0xD8, 0x31, 0x17, 0x97, 0x27, 0xB0, 0x86, 0x5A, 0x89, 0x18, 0xDA, 0x3E, 0xDB, 0xEB, 0xCF, 0x9B, 0x14, 0xED, 0x44, 0xCE, 0x6C, 0xBA, 0xCE, 0xD4, 0xBB, 0x1B, 0xDB, 0x7F, 0x14, 0x47, 0xE6, 0xCC, 0x25, 0x4B, 0x33, 0x20, 0x51, 0x51, 0x2B, 0xD7, 0xAF, 0x42, 0x6F, 0xB8, 0xF4, 0x01, 0x37, 0x8C, 0xD2, 0xBF, 0x59, 0x83, 0xCA, 0x01, 0xC6, 0x4B, 0x92, 0xEC, 0xF0, 0x32, 0xEA, 0x15, 0xD1, 0x72, 0x1D, 0x03, 0xF4, 0x82, 0xD7, 0xCE, 0x6E, 0x74, 0xFE, 0xF6, 0xD5, 0x5E, 0x70, 0x2F, 0x46, 0x98, 0x0C, 0x82, 0xB5, 0xA8, 0x40, 0x31, 0x90, 0x0B, 0x1C, 0x9E, 0x59, 0xE7, 0xC9, 0x7F, 0xBE, 0xC7, 0xE8, 0xF3, 0x23, 0xA9, 0x7A, 0x7E, 0x36, 0xCC, 0x88, 0xBE, 0x0F, 0x1D, 0x45, 0xB7, 0xFF, 0x58, 0x5A, 0xC5, 0x4B, 0xD4, 0x07, 0xB2, 0x2B, 0x41, 0x54, 0xAA, 0xCC, 0x8F, 0x6D, 0x7E, 0xBF, 0x48, 0xE1, 0xD8, 0x14, 0xCC, 0x5E, 0xD2, 0x0F, 0x80, 0x37, 0xE0, 0xA7, 0x97, 0x15, 0xEE, 0xF2, 0x9B, 0xE3, 0x28, 0x06, 0xA1, 0xD5, 0x8B, 0xB7, 0xC5, 0xDA, 0x76, 0xF5, 0x50, 0xAA, 0x3D, 0x8A, 0x1F, 0xBF, 0xF0, 0xEB, 0x19, 0xCC, 0xB1, 0xA3, 0x13, 0xD5, 0x5C, 0xDA, 0x56, 0xC9, 0xEC, 0x2E, 0xF2, 0x96, 0x32, 0x38, 0x7F, 0xE8, 0xD7, 0x6E, 0x3C, 0x04, 0x68, 0x04, 0x3E, 0x8F, 0x66, 0x3F, 0x48, 0x60, 0xEE, 0x12, 0xBF, 0x2D, 0x5B, 0x0B, 0x74, 0x74, 0xD6, 0xE6, 0x94, 0xF9, 0x1E, 0x6D, 0xBE, 0x11, 0x59, 0x74, 0xA3, 0x92, 0x6F, 0x12, 0xFE, 0xE5, 0xE4, 0x38, 0x77, 0x7C, 0xB6, 0xA9, 0x32, 0xDF, 0x8C, 0xD8, 0xBE, 0xC4, 0xD0, 0x73, 0xB9, 0x31, 0xBA, 0x3B, 0xC8, 0x32, 0xB6, 0x8D, 0x9D, 0xD3, 0x00, 0x74, 0x1F, 0xA7, 0xBF, 0x8A, 0xFC, 0x47, 0xED, 0x25, 0x76, 0xF6, 0x93, 0x6B, 0xA4, 0x24, 0x66, 0x3A, 0xAB, 0x63, 0x9C, 0x5A, 0xE4, 0xF5, 0x68, 0x34, 0x23, 0xB4, 0x74, 0x2B, 0xF1, 0xC9, 0x78, 0x23, 0x8F, 0x16, 0xCB, 0xE3, 0x9D, 0x65, 0x2D, 0xE3, 0xFD, 0xB8, 0xBE, 0xFC, 0x84, 0x8A, 0xD9, 0x22, 0x22, 0x2E, 0x04, 0xA4, 0x03, 0x7C, 0x07, 0x13, 0xEB, 0x57, 0xA8, 0x1A, 0x23, 0xF0, 0xC7, 0x34, 0x73, 0xFC, 0x64, 0x6C, 0xEA, 0x30, 0x6B, 0x4B, 0xCB, 0xC8, 0x86, 0x2F, 0x83, 0x85, 0xDD, 0xFA, 0x9D, 0x4B, 0x7F, 0xA2, 0xC0, 0x87, 0xE8, 0x79, 0x68, 0x33, 0x03, 0xED, 0x5B, 0xDD, 0x3A, 0x06, 0x2B, 0x3C, 0xF5, 0xB3, 0xA2, 0x78, 0xA6, 0x6D, 0x2A, 0x13, 0xF8, 0x3F, 0x44, 0xF8, 0x2D, 0xDF, 0x31, 0x0E, 0xE0, 0x74, 0xAB, 0x6A, 0x36, 0x45, 0x97, 0xE8, 0x99, 0xA0, 0x25, 0x5D, 0xC1, 0x64, 0xF3, 0x1C, 0xC5, 0x08, 0x46, 0x85, 0x1D, 0xF9, 0xAB, 0x48, 0x19, 0x5D, 0xED, 0x7E, 0xA1, 0xB1, 0xD5, 0x10, 0xBD, 0x7E, 0xE7, 0x4D, 0x73, 0xFA, 0xF3, 0x6B, 0xC3, 0x1E, 0xCF, 0xA2, 0x68, 0x35, 0x90, 0x46, 0xF4, 0xEB, 0x87, 0x9F, 0x92, 0x40, 0x09, 0x43, 0x8B, 0x48, 0x1C, 0x6C, 0xD7, 0x88, 0x9A, 0x00, 0x2E, 0xD5, 0xEE, 0x38, 0x2B, 0xC9, 0x19, 0x0D, 0xA6, 0xFC, 0x02, 0x6E, 0x47, 0x95, 0x58, 0xE4, 0x47, 0x56, 0x77, 0xE9, 0xAA, 0x9E, 0x30, 0x50, 0xE2, 0x76, 0x56, 0x94, 0xDF, 0xC8, 0x1F, 0x56, 0xE8, 0x80, 0xB9, 0x6E, 0x71, 0x60, 0xC9, 0x80, 0xDD, 0x98, 0xED, 0xD3, 0xDF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; return BN_bin2bn(RFC3526_PRIME_8192, sizeof(RFC3526_PRIME_8192), bn); } openssl-1.1.1f/crypto/bn/bn_ctx.c000066400000000000000000000231121364063235100167050ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" /*- * TODO list * * 1. Check a bunch of "(words+1)" type hacks in various bignum functions and * check they can be safely removed. * - Check +1 and other ugliness in BN_from_montgomery() * * 2. Consider allowing a BN_new_ex() that, at least, lets you specify an * appropriate 'block' size that will be honoured by bn_expand_internal() to * prevent piddly little reallocations. OTOH, profiling bignum expansions in * BN_CTX doesn't show this to be a big issue. */ /* How many bignums are in each "pool item"; */ #define BN_CTX_POOL_SIZE 16 /* The stack frame info is resizing, set a first-time expansion size; */ #define BN_CTX_START_FRAMES 32 /***********/ /* BN_POOL */ /***********/ /* A bundle of bignums that can be linked with other bundles */ typedef struct bignum_pool_item { /* The bignum values */ BIGNUM vals[BN_CTX_POOL_SIZE]; /* Linked-list admin */ struct bignum_pool_item *prev, *next; } BN_POOL_ITEM; /* A linked-list of bignums grouped in bundles */ typedef struct bignum_pool { /* Linked-list admin */ BN_POOL_ITEM *head, *current, *tail; /* Stack depth and allocation size */ unsigned used, size; } BN_POOL; static void BN_POOL_init(BN_POOL *); static void BN_POOL_finish(BN_POOL *); static BIGNUM *BN_POOL_get(BN_POOL *, int); static void BN_POOL_release(BN_POOL *, unsigned int); /************/ /* BN_STACK */ /************/ /* A wrapper to manage the "stack frames" */ typedef struct bignum_ctx_stack { /* Array of indexes into the bignum stack */ unsigned int *indexes; /* Number of stack frames, and the size of the allocated array */ unsigned int depth, size; } BN_STACK; static void BN_STACK_init(BN_STACK *); static void BN_STACK_finish(BN_STACK *); static int BN_STACK_push(BN_STACK *, unsigned int); static unsigned int BN_STACK_pop(BN_STACK *); /**********/ /* BN_CTX */ /**********/ /* The opaque BN_CTX type */ struct bignum_ctx { /* The bignum bundles */ BN_POOL pool; /* The "stack frames", if you will */ BN_STACK stack; /* The number of bignums currently assigned */ unsigned int used; /* Depth of stack overflow */ int err_stack; /* Block "gets" until an "end" (compatibility behaviour) */ int too_many; /* Flags. */ int flags; }; /* Enable this to find BN_CTX bugs */ #ifdef BN_CTX_DEBUG static const char *ctxdbg_cur = NULL; static void ctxdbg(BN_CTX *ctx) { unsigned int bnidx = 0, fpidx = 0; BN_POOL_ITEM *item = ctx->pool.head; BN_STACK *stack = &ctx->stack; fprintf(stderr, "(%16p): ", ctx); while (bnidx < ctx->used) { fprintf(stderr, "%03x ", item->vals[bnidx++ % BN_CTX_POOL_SIZE].dmax); if (!(bnidx % BN_CTX_POOL_SIZE)) item = item->next; } fprintf(stderr, "\n"); bnidx = 0; fprintf(stderr, " : "); while (fpidx < stack->depth) { while (bnidx++ < stack->indexes[fpidx]) fprintf(stderr, " "); fprintf(stderr, "^^^ "); bnidx++; fpidx++; } fprintf(stderr, "\n"); } # define CTXDBG_ENTRY(str, ctx) do { \ ctxdbg_cur = (str); \ fprintf(stderr,"Starting %s\n", ctxdbg_cur); \ ctxdbg(ctx); \ } while(0) # define CTXDBG_EXIT(ctx) do { \ fprintf(stderr,"Ending %s\n", ctxdbg_cur); \ ctxdbg(ctx); \ } while(0) # define CTXDBG_RET(ctx,ret) #else # define CTXDBG_ENTRY(str, ctx) # define CTXDBG_EXIT(ctx) # define CTXDBG_RET(ctx,ret) #endif BN_CTX *BN_CTX_new(void) { BN_CTX *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { BNerr(BN_F_BN_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } /* Initialise the structure */ BN_POOL_init(&ret->pool); BN_STACK_init(&ret->stack); return ret; } BN_CTX *BN_CTX_secure_new(void) { BN_CTX *ret = BN_CTX_new(); if (ret != NULL) ret->flags = BN_FLG_SECURE; return ret; } void BN_CTX_free(BN_CTX *ctx) { if (ctx == NULL) return; #ifdef BN_CTX_DEBUG { BN_POOL_ITEM *pool = ctx->pool.head; fprintf(stderr, "BN_CTX_free, stack-size=%d, pool-bignums=%d\n", ctx->stack.size, ctx->pool.size); fprintf(stderr, "dmaxs: "); while (pool) { unsigned loop = 0; while (loop < BN_CTX_POOL_SIZE) fprintf(stderr, "%02x ", pool->vals[loop++].dmax); pool = pool->next; } fprintf(stderr, "\n"); } #endif BN_STACK_finish(&ctx->stack); BN_POOL_finish(&ctx->pool); OPENSSL_free(ctx); } void BN_CTX_start(BN_CTX *ctx) { CTXDBG_ENTRY("BN_CTX_start", ctx); /* If we're already overflowing ... */ if (ctx->err_stack || ctx->too_many) ctx->err_stack++; /* (Try to) get a new frame pointer */ else if (!BN_STACK_push(&ctx->stack, ctx->used)) { BNerr(BN_F_BN_CTX_START, BN_R_TOO_MANY_TEMPORARY_VARIABLES); ctx->err_stack++; } CTXDBG_EXIT(ctx); } void BN_CTX_end(BN_CTX *ctx) { if (ctx == NULL) return; CTXDBG_ENTRY("BN_CTX_end", ctx); if (ctx->err_stack) ctx->err_stack--; else { unsigned int fp = BN_STACK_pop(&ctx->stack); /* Does this stack frame have anything to release? */ if (fp < ctx->used) BN_POOL_release(&ctx->pool, ctx->used - fp); ctx->used = fp; /* Unjam "too_many" in case "get" had failed */ ctx->too_many = 0; } CTXDBG_EXIT(ctx); } BIGNUM *BN_CTX_get(BN_CTX *ctx) { BIGNUM *ret; CTXDBG_ENTRY("BN_CTX_get", ctx); if (ctx->err_stack || ctx->too_many) return NULL; if ((ret = BN_POOL_get(&ctx->pool, ctx->flags)) == NULL) { /* * Setting too_many prevents repeated "get" attempts from cluttering * the error stack. */ ctx->too_many = 1; BNerr(BN_F_BN_CTX_GET, BN_R_TOO_MANY_TEMPORARY_VARIABLES); return NULL; } /* OK, make sure the returned bignum is "zero" */ BN_zero(ret); /* clear BN_FLG_CONSTTIME if leaked from previous frames */ ret->flags &= (~BN_FLG_CONSTTIME); ctx->used++; CTXDBG_RET(ctx, ret); return ret; } /************/ /* BN_STACK */ /************/ static void BN_STACK_init(BN_STACK *st) { st->indexes = NULL; st->depth = st->size = 0; } static void BN_STACK_finish(BN_STACK *st) { OPENSSL_free(st->indexes); st->indexes = NULL; } static int BN_STACK_push(BN_STACK *st, unsigned int idx) { if (st->depth == st->size) { /* Need to expand */ unsigned int newsize = st->size ? (st->size * 3 / 2) : BN_CTX_START_FRAMES; unsigned int *newitems; if ((newitems = OPENSSL_malloc(sizeof(*newitems) * newsize)) == NULL) { BNerr(BN_F_BN_STACK_PUSH, ERR_R_MALLOC_FAILURE); return 0; } if (st->depth) memcpy(newitems, st->indexes, sizeof(*newitems) * st->depth); OPENSSL_free(st->indexes); st->indexes = newitems; st->size = newsize; } st->indexes[(st->depth)++] = idx; return 1; } static unsigned int BN_STACK_pop(BN_STACK *st) { return st->indexes[--(st->depth)]; } /***********/ /* BN_POOL */ /***********/ static void BN_POOL_init(BN_POOL *p) { p->head = p->current = p->tail = NULL; p->used = p->size = 0; } static void BN_POOL_finish(BN_POOL *p) { unsigned int loop; BIGNUM *bn; while (p->head) { for (loop = 0, bn = p->head->vals; loop++ < BN_CTX_POOL_SIZE; bn++) if (bn->d) BN_clear_free(bn); p->current = p->head->next; OPENSSL_free(p->head); p->head = p->current; } } static BIGNUM *BN_POOL_get(BN_POOL *p, int flag) { BIGNUM *bn; unsigned int loop; /* Full; allocate a new pool item and link it in. */ if (p->used == p->size) { BN_POOL_ITEM *item; if ((item = OPENSSL_malloc(sizeof(*item))) == NULL) { BNerr(BN_F_BN_POOL_GET, ERR_R_MALLOC_FAILURE); return NULL; } for (loop = 0, bn = item->vals; loop++ < BN_CTX_POOL_SIZE; bn++) { bn_init(bn); if ((flag & BN_FLG_SECURE) != 0) BN_set_flags(bn, BN_FLG_SECURE); } item->prev = p->tail; item->next = NULL; if (p->head == NULL) p->head = p->current = p->tail = item; else { p->tail->next = item; p->tail = item; p->current = item; } p->size += BN_CTX_POOL_SIZE; p->used++; /* Return the first bignum from the new pool */ return item->vals; } if (!p->used) p->current = p->head; else if ((p->used % BN_CTX_POOL_SIZE) == 0) p->current = p->current->next; return p->current->vals + ((p->used++) % BN_CTX_POOL_SIZE); } static void BN_POOL_release(BN_POOL *p, unsigned int num) { unsigned int offset = (p->used - 1) % BN_CTX_POOL_SIZE; p->used -= num; while (num--) { bn_check_top(p->current->vals + offset); if (offset == 0) { offset = BN_CTX_POOL_SIZE - 1; p->current = p->current->prev; } else offset--; } } openssl-1.1.1f/crypto/bn/bn_depr.c000066400000000000000000000036161364063235100170500ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Support for deprecated functions goes here - static linkage will only * slurp this code if applications are using them directly. */ #include #if OPENSSL_API_COMPAT >= 0x00908000L NON_EMPTY_TRANSLATION_UNIT #else # include # include # include "internal/cryptlib.h" # include "bn_local.h" BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, void (*callback) (int, int, void *), void *cb_arg) { BN_GENCB cb; BIGNUM *rnd = NULL; BN_GENCB_set_old(&cb, callback, cb_arg); if (ret == NULL) { if ((rnd = BN_new()) == NULL) goto err; } else rnd = ret; if (!BN_generate_prime_ex(rnd, bits, safe, add, rem, &cb)) goto err; /* we have a prime :-) */ return rnd; err: BN_free(rnd); return NULL; } int BN_is_prime(const BIGNUM *a, int checks, void (*callback) (int, int, void *), BN_CTX *ctx_passed, void *cb_arg) { BN_GENCB cb; BN_GENCB_set_old(&cb, callback, cb_arg); return BN_is_prime_ex(a, checks, ctx_passed, &cb); } int BN_is_prime_fasttest(const BIGNUM *a, int checks, void (*callback) (int, int, void *), BN_CTX *ctx_passed, void *cb_arg, int do_trial_division) { BN_GENCB cb; BN_GENCB_set_old(&cb, callback, cb_arg); return BN_is_prime_fasttest_ex(a, checks, ctx_passed, do_trial_division, &cb); } #endif openssl-1.1.1f/crypto/bn/bn_dh.c000066400000000000000000000713731364063235100165160ustar00rootroot00000000000000/* * Copyright 2014-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "bn_local.h" #include "internal/nelem.h" #ifndef OPENSSL_NO_DH #include #include "crypto/bn_dh.h" /* DH parameters from RFC5114 */ # if BN_BITS2 == 64 static const BN_ULONG dh1024_160_p[] = { 0xDF1FB2BC2E4A4371ULL, 0xE68CFDA76D4DA708ULL, 0x45BF37DF365C1A65ULL, 0xA151AF5F0DC8B4BDULL, 0xFAA31A4FF55BCCC0ULL, 0x4EFFD6FAE5644738ULL, 0x98488E9C219A7372ULL, 0xACCBDD7D90C4BD70ULL, 0x24975C3CD49B83BFULL, 0x13ECB4AEA9061123ULL, 0x9838EF1E2EE652C0ULL, 0x6073E28675A23D18ULL, 0x9A6A9DCA52D23B61ULL, 0x52C99FBCFB06A3C6ULL, 0xDE92DE5EAE5D54ECULL, 0xB10B8F96A080E01DULL }; static const BN_ULONG dh1024_160_g[] = { 0x855E6EEB22B3B2E5ULL, 0x858F4DCEF97C2A24ULL, 0x2D779D5918D08BC8ULL, 0xD662A4D18E73AFA3ULL, 0x1DBF0A0169B6A28AULL, 0xA6A24C087A091F53ULL, 0x909D0D2263F80A76ULL, 0xD7FBD7D3B9A92EE1ULL, 0x5E91547F9E2749F4ULL, 0x160217B4B01B886AULL, 0x777E690F5504F213ULL, 0x266FEA1E5C41564BULL, 0xD6406CFF14266D31ULL, 0xF8104DD258AC507FULL, 0x6765A442EFB99905ULL, 0xA4D1CBD5C3FD3412ULL }; static const BN_ULONG dh1024_160_q[] = { 0x64B7CB9D49462353ULL, 0x81A8DF278ABA4E7DULL, 0x00000000F518AA87ULL }; static const BN_ULONG dh2048_224_p[] = { 0x0AC4DFFE0C10E64FULL, 0xCF9DE5384E71B81CULL, 0x7EF363E2FFA31F71ULL, 0xE3FB73C16B8E75B9ULL, 0xC9B53DCF4BA80A29ULL, 0x23F10B0E16E79763ULL, 0xC52172E413042E9BULL, 0xBE60E69CC928B2B9ULL, 0x80CD86A1B9E587E8ULL, 0x315D75E198C641A4ULL, 0xCDF93ACC44328387ULL, 0x15987D9ADC0A486DULL, 0x7310F7121FD5A074ULL, 0x278273C7DE31EFDCULL, 0x1602E714415D9330ULL, 0x81286130BC8985DBULL, 0xB3BF8A3170918836ULL, 0x6A00E0A0B9C49708ULL, 0xC6BA0B2C8BBC27BEULL, 0xC9F98D11ED34DBF6ULL, 0x7AD5B7D0B6C12207ULL, 0xD91E8FEF55B7394BULL, 0x9037C9EDEFDA4DF8ULL, 0x6D3F8152AD6AC212ULL, 0x1DE6B85A1274A0A6ULL, 0xEB3D688A309C180EULL, 0xAF9A3C407BA1DF15ULL, 0xE6FA141DF95A56DBULL, 0xB54B1597B61D0A75ULL, 0xA20D64E5683B9FD1ULL, 0xD660FAA79559C51FULL, 0xAD107E1E9123A9D0ULL }; static const BN_ULONG dh2048_224_g[] = { 0x84B890D3191F2BFAULL, 0x81BC087F2A7065B3ULL, 0x19C418E1F6EC0179ULL, 0x7B5A0F1C71CFFF4CULL, 0xEDFE72FE9B6AA4BDULL, 0x81E1BCFE94B30269ULL, 0x566AFBB48D6C0191ULL, 0xB539CCE3409D13CDULL, 0x6AA21E7F5F2FF381ULL, 0xD9E263E4770589EFULL, 0x10E183EDD19963DDULL, 0xB70A8137150B8EEBULL, 0x051AE3D428C8F8ACULL, 0xBB77A86F0C1AB15BULL, 0x6E3025E316A330EFULL, 0x19529A45D6F83456ULL, 0xF180EB34118E98D1ULL, 0xB5F6C6B250717CBEULL, 0x09939D54DA7460CDULL, 0xE247150422EA1ED4ULL, 0xB8A762D0521BC98AULL, 0xF4D027275AC1348BULL, 0xC17669101999024AULL, 0xBE5E9001A8D66AD7ULL, 0xC57DB17C620A8652ULL, 0xAB739D7700C29F52ULL, 0xDD921F01A70C4AFAULL, 0xA6824A4E10B9A6F0ULL, 0x74866A08CFE4FFE3ULL, 0x6CDEBE7B89998CAFULL, 0x9DF30B5C8FFDAC50ULL, 0xAC4032EF4F2D9AE3ULL }; static const BN_ULONG dh2048_224_q[] = { 0xBF389A99B36371EBULL, 0x1F80535A4738CEBCULL, 0xC58D93FE99717710ULL, 0x00000000801C0D34ULL }; static const BN_ULONG dh2048_256_p[] = { 0xDB094AE91E1A1597ULL, 0x693877FAD7EF09CAULL, 0x6116D2276E11715FULL, 0xA4B54330C198AF12ULL, 0x75F26375D7014103ULL, 0xC3A3960A54E710C3ULL, 0xDED4010ABD0BE621ULL, 0xC0B857F689962856ULL, 0xB3CA3F7971506026ULL, 0x1CCACB83E6B486F6ULL, 0x67E144E514056425ULL, 0xF6A167B5A41825D9ULL, 0x3AD8347796524D8EULL, 0xF13C6D9A51BFA4ABULL, 0x2D52526735488A0EULL, 0xB63ACAE1CAA6B790ULL, 0x4FDB70C581B23F76ULL, 0xBC39A0BF12307F5CULL, 0xB941F54EB1E59BB8ULL, 0x6C5BFC11D45F9088ULL, 0x22E0B1EF4275BF7BULL, 0x91F9E6725B4758C0ULL, 0x5A8A9D306BCF67EDULL, 0x209E0C6497517ABDULL, 0x3BF4296D830E9A7CULL, 0x16C3D91134096FAAULL, 0xFAF7DF4561B2AA30ULL, 0xE00DF8F1D61957D4ULL, 0x5D2CEED4435E3B00ULL, 0x8CEEF608660DD0F2ULL, 0xFFBBD19C65195999ULL, 0x87A8E61DB4B6663CULL }; static const BN_ULONG dh2048_256_g[] = { 0x664B4C0F6CC41659ULL, 0x5E2327CFEF98C582ULL, 0xD647D148D4795451ULL, 0x2F63078490F00EF8ULL, 0x184B523D1DB246C3ULL, 0xC7891428CDC67EB6ULL, 0x7FD028370DF92B52ULL, 0xB3353BBB64E0EC37ULL, 0xECD06E1557CD0915ULL, 0xB7D2BBD2DF016199ULL, 0xC8484B1E052588B9ULL, 0xDB2A3B7313D3FE14ULL, 0xD052B985D182EA0AULL, 0xA4BD1BFFE83B9C80ULL, 0xDFC967C1FB3F2E55ULL, 0xB5045AF2767164E1ULL, 0x1D14348F6F2F9193ULL, 0x64E67982428EBC83ULL, 0x8AC376D282D6ED38ULL, 0x777DE62AAAB8A862ULL, 0xDDF463E5E9EC144BULL, 0x0196F931C77A57F2ULL, 0xA55AE31341000A65ULL, 0x901228F8C28CBB18ULL, 0xBC3773BF7E8C6F62ULL, 0xBE3A6C1B0C6B47B1ULL, 0xFF4FED4AAC0BB555ULL, 0x10DBC15077BE463FULL, 0x07F4793A1A0BA125ULL, 0x4CA7B18F21EF2054ULL, 0x2E77506660EDBD48ULL, 0x3FB32C9B73134D0BULL }; static const BN_ULONG dh2048_256_q[] = { 0xA308B0FE64F5FBD3ULL, 0x99B1A47D1EB3750BULL, 0xB447997640129DA2ULL, 0x8CF83642A709A097ULL }; /* Primes from RFC 7919 */ static const BN_ULONG ffdhe2048_p[] = { 0xFFFFFFFFFFFFFFFFULL, 0x886B423861285C97ULL, 0xC6F34A26C1B2EFFAULL, 0xC58EF1837D1683B2ULL, 0x3BB5FCBC2EC22005ULL, 0xC3FE3B1B4C6FAD73ULL, 0x8E4F1232EEF28183ULL, 0x9172FE9CE98583FFULL, 0xC03404CD28342F61ULL, 0x9E02FCE1CDF7E2ECULL, 0x0B07A7C8EE0A6D70ULL, 0xAE56EDE76372BB19ULL, 0x1D4F42A3DE394DF4ULL, 0xB96ADAB760D7F468ULL, 0xD108A94BB2C8E3FBULL, 0xBC0AB182B324FB61ULL, 0x30ACCA4F483A797AULL, 0x1DF158A136ADE735ULL, 0xE2A689DAF3EFE872ULL, 0x984F0C70E0E68B77ULL, 0xB557135E7F57C935ULL, 0x856365553DED1AF3ULL, 0x2433F51F5F066ED0ULL, 0xD3DF1ED5D5FD6561ULL, 0xF681B202AEC4617AULL, 0x7D2FE363630C75D8ULL, 0xCC939DCE249B3EF9ULL, 0xA9E13641146433FBULL, 0xD8B9C583CE2D3695ULL, 0xAFDC5620273D3CF1ULL, 0xADF85458A2BB4A9AULL, 0xFFFFFFFFFFFFFFFFULL }; static const BN_ULONG ffdhe3072_p[] = { 0xFFFFFFFFFFFFFFFFULL, 0x25E41D2B66C62E37ULL, 0x3C1B20EE3FD59D7CULL, 0x0ABCD06BFA53DDEFULL, 0x1DBF9A42D5C4484EULL, 0xABC521979B0DEADAULL, 0xE86D2BC522363A0DULL, 0x5CAE82AB9C9DF69EULL, 0x64F2E21E71F54BFFULL, 0xF4FD4452E2D74DD3ULL, 0xB4130C93BC437944ULL, 0xAEFE130985139270ULL, 0x598CB0FAC186D91CULL, 0x7AD91D2691F7F7EEULL, 0x61B46FC9D6E6C907ULL, 0xBC34F4DEF99C0238ULL, 0xDE355B3B6519035BULL, 0x886B4238611FCFDCULL, 0xC6F34A26C1B2EFFAULL, 0xC58EF1837D1683B2ULL, 0x3BB5FCBC2EC22005ULL, 0xC3FE3B1B4C6FAD73ULL, 0x8E4F1232EEF28183ULL, 0x9172FE9CE98583FFULL, 0xC03404CD28342F61ULL, 0x9E02FCE1CDF7E2ECULL, 0x0B07A7C8EE0A6D70ULL, 0xAE56EDE76372BB19ULL, 0x1D4F42A3DE394DF4ULL, 0xB96ADAB760D7F468ULL, 0xD108A94BB2C8E3FBULL, 0xBC0AB182B324FB61ULL, 0x30ACCA4F483A797AULL, 0x1DF158A136ADE735ULL, 0xE2A689DAF3EFE872ULL, 0x984F0C70E0E68B77ULL, 0xB557135E7F57C935ULL, 0x856365553DED1AF3ULL, 0x2433F51F5F066ED0ULL, 0xD3DF1ED5D5FD6561ULL, 0xF681B202AEC4617AULL, 0x7D2FE363630C75D8ULL, 0xCC939DCE249B3EF9ULL, 0xA9E13641146433FBULL, 0xD8B9C583CE2D3695ULL, 0xAFDC5620273D3CF1ULL, 0xADF85458A2BB4A9AULL, 0xFFFFFFFFFFFFFFFFULL }; static const BN_ULONG ffdhe4096_p[] = { 0xFFFFFFFFFFFFFFFFULL, 0xC68A007E5E655F6AULL, 0x4DB5A851F44182E1ULL, 0x8EC9B55A7F88A46BULL, 0x0A8291CDCEC97DCFULL, 0x2A4ECEA9F98D0ACCULL, 0x1A1DB93D7140003CULL, 0x092999A333CB8B7AULL, 0x6DC778F971AD0038ULL, 0xA907600A918130C4ULL, 0xED6A1E012D9E6832ULL, 0x7135C886EFB4318AULL, 0x87F55BA57E31CC7AULL, 0x7763CF1D55034004ULL, 0xAC7D5F42D69F6D18ULL, 0x7930E9E4E58857B6ULL, 0x6E6F52C3164DF4FBULL, 0x25E41D2B669E1EF1ULL, 0x3C1B20EE3FD59D7CULL, 0x0ABCD06BFA53DDEFULL, 0x1DBF9A42D5C4484EULL, 0xABC521979B0DEADAULL, 0xE86D2BC522363A0DULL, 0x5CAE82AB9C9DF69EULL, 0x64F2E21E71F54BFFULL, 0xF4FD4452E2D74DD3ULL, 0xB4130C93BC437944ULL, 0xAEFE130985139270ULL, 0x598CB0FAC186D91CULL, 0x7AD91D2691F7F7EEULL, 0x61B46FC9D6E6C907ULL, 0xBC34F4DEF99C0238ULL, 0xDE355B3B6519035BULL, 0x886B4238611FCFDCULL, 0xC6F34A26C1B2EFFAULL, 0xC58EF1837D1683B2ULL, 0x3BB5FCBC2EC22005ULL, 0xC3FE3B1B4C6FAD73ULL, 0x8E4F1232EEF28183ULL, 0x9172FE9CE98583FFULL, 0xC03404CD28342F61ULL, 0x9E02FCE1CDF7E2ECULL, 0x0B07A7C8EE0A6D70ULL, 0xAE56EDE76372BB19ULL, 0x1D4F42A3DE394DF4ULL, 0xB96ADAB760D7F468ULL, 0xD108A94BB2C8E3FBULL, 0xBC0AB182B324FB61ULL, 0x30ACCA4F483A797AULL, 0x1DF158A136ADE735ULL, 0xE2A689DAF3EFE872ULL, 0x984F0C70E0E68B77ULL, 0xB557135E7F57C935ULL, 0x856365553DED1AF3ULL, 0x2433F51F5F066ED0ULL, 0xD3DF1ED5D5FD6561ULL, 0xF681B202AEC4617AULL, 0x7D2FE363630C75D8ULL, 0xCC939DCE249B3EF9ULL, 0xA9E13641146433FBULL, 0xD8B9C583CE2D3695ULL, 0xAFDC5620273D3CF1ULL, 0xADF85458A2BB4A9AULL, 0xFFFFFFFFFFFFFFFFULL }; static const BN_ULONG ffdhe6144_p[] = { 0xFFFFFFFFFFFFFFFFULL, 0xA40E329CD0E40E65ULL, 0xA41D570D7938DAD4ULL, 0x62A69526D43161C1ULL, 0x3FDD4A8E9ADB1E69ULL, 0x5B3B71F9DC6B80D6ULL, 0xEC9D1810C6272B04ULL, 0x8CCF2DD5CACEF403ULL, 0xE49F5235C95B9117ULL, 0x505DC82DB854338AULL, 0x62292C311562A846ULL, 0xD72B03746AE77F5EULL, 0xF9C9091B462D538CULL, 0x0AE8DB5847A67CBEULL, 0xB3A739C122611682ULL, 0xEEAAC0232A281BF6ULL, 0x94C6651E77CAF992ULL, 0x763E4E4B94B2BBC1ULL, 0x587E38DA0077D9B4ULL, 0x7FB29F8C183023C3ULL, 0x0ABEC1FFF9E3A26EULL, 0xA00EF092350511E3ULL, 0xB855322EDB6340D8ULL, 0xA52471F7A9A96910ULL, 0x388147FB4CFDB477ULL, 0x9B1F5C3E4E46041FULL, 0xCDAD0657FCCFEC71ULL, 0xB38E8C334C701C3AULL, 0x917BDD64B1C0FD4CULL, 0x3BB454329B7624C8ULL, 0x23BA4442CAF53EA6ULL, 0x4E677D2C38532A3AULL, 0x0BFD64B645036C7AULL, 0xC68A007E5E0DD902ULL, 0x4DB5A851F44182E1ULL, 0x8EC9B55A7F88A46BULL, 0x0A8291CDCEC97DCFULL, 0x2A4ECEA9F98D0ACCULL, 0x1A1DB93D7140003CULL, 0x092999A333CB8B7AULL, 0x6DC778F971AD0038ULL, 0xA907600A918130C4ULL, 0xED6A1E012D9E6832ULL, 0x7135C886EFB4318AULL, 0x87F55BA57E31CC7AULL, 0x7763CF1D55034004ULL, 0xAC7D5F42D69F6D18ULL, 0x7930E9E4E58857B6ULL, 0x6E6F52C3164DF4FBULL, 0x25E41D2B669E1EF1ULL, 0x3C1B20EE3FD59D7CULL, 0x0ABCD06BFA53DDEFULL, 0x1DBF9A42D5C4484EULL, 0xABC521979B0DEADAULL, 0xE86D2BC522363A0DULL, 0x5CAE82AB9C9DF69EULL, 0x64F2E21E71F54BFFULL, 0xF4FD4452E2D74DD3ULL, 0xB4130C93BC437944ULL, 0xAEFE130985139270ULL, 0x598CB0FAC186D91CULL, 0x7AD91D2691F7F7EEULL, 0x61B46FC9D6E6C907ULL, 0xBC34F4DEF99C0238ULL, 0xDE355B3B6519035BULL, 0x886B4238611FCFDCULL, 0xC6F34A26C1B2EFFAULL, 0xC58EF1837D1683B2ULL, 0x3BB5FCBC2EC22005ULL, 0xC3FE3B1B4C6FAD73ULL, 0x8E4F1232EEF28183ULL, 0x9172FE9CE98583FFULL, 0xC03404CD28342F61ULL, 0x9E02FCE1CDF7E2ECULL, 0x0B07A7C8EE0A6D70ULL, 0xAE56EDE76372BB19ULL, 0x1D4F42A3DE394DF4ULL, 0xB96ADAB760D7F468ULL, 0xD108A94BB2C8E3FBULL, 0xBC0AB182B324FB61ULL, 0x30ACCA4F483A797AULL, 0x1DF158A136ADE735ULL, 0xE2A689DAF3EFE872ULL, 0x984F0C70E0E68B77ULL, 0xB557135E7F57C935ULL, 0x856365553DED1AF3ULL, 0x2433F51F5F066ED0ULL, 0xD3DF1ED5D5FD6561ULL, 0xF681B202AEC4617AULL, 0x7D2FE363630C75D8ULL, 0xCC939DCE249B3EF9ULL, 0xA9E13641146433FBULL, 0xD8B9C583CE2D3695ULL, 0xAFDC5620273D3CF1ULL, 0xADF85458A2BB4A9AULL, 0xFFFFFFFFFFFFFFFFULL }; static const BN_ULONG ffdhe8192_p[] = { 0xFFFFFFFFFFFFFFFFULL, 0xD68C8BB7C5C6424CULL, 0x011E2A94838FF88CULL, 0x0822E506A9F4614EULL, 0x97D11D49F7A8443DULL, 0xA6BBFDE530677F0DULL, 0x2F741EF8C1FE86FEULL, 0xFAFABE1C5D71A87EULL, 0xDED2FBABFBE58A30ULL, 0xB6855DFE72B0A66EULL, 0x1EFC8CE0BA8A4FE8ULL, 0x83F81D4A3F2FA457ULL, 0xA1FE3075A577E231ULL, 0xD5B8019488D9C0A0ULL, 0x624816CDAD9A95F9ULL, 0x99E9E31650C1217BULL, 0x51AA691E0E423CFCULL, 0x1C217E6C3826E52CULL, 0x51A8A93109703FEEULL, 0xBB7099876A460E74ULL, 0x541FC68C9C86B022ULL, 0x59160CC046FD8251ULL, 0x2846C0BA35C35F5CULL, 0x54504AC78B758282ULL, 0x29388839D2AF05E4ULL, 0xCB2C0F1CC01BD702ULL, 0x555B2F747C932665ULL, 0x86B63142A3AB8829ULL, 0x0B8CC3BDF64B10EFULL, 0x687FEB69EDD1CC5EULL, 0xFDB23FCEC9509D43ULL, 0x1E425A31D951AE64ULL, 0x36AD004CF600C838ULL, 0xA40E329CCFF46AAAULL, 0xA41D570D7938DAD4ULL, 0x62A69526D43161C1ULL, 0x3FDD4A8E9ADB1E69ULL, 0x5B3B71F9DC6B80D6ULL, 0xEC9D1810C6272B04ULL, 0x8CCF2DD5CACEF403ULL, 0xE49F5235C95B9117ULL, 0x505DC82DB854338AULL, 0x62292C311562A846ULL, 0xD72B03746AE77F5EULL, 0xF9C9091B462D538CULL, 0x0AE8DB5847A67CBEULL, 0xB3A739C122611682ULL, 0xEEAAC0232A281BF6ULL, 0x94C6651E77CAF992ULL, 0x763E4E4B94B2BBC1ULL, 0x587E38DA0077D9B4ULL, 0x7FB29F8C183023C3ULL, 0x0ABEC1FFF9E3A26EULL, 0xA00EF092350511E3ULL, 0xB855322EDB6340D8ULL, 0xA52471F7A9A96910ULL, 0x388147FB4CFDB477ULL, 0x9B1F5C3E4E46041FULL, 0xCDAD0657FCCFEC71ULL, 0xB38E8C334C701C3AULL, 0x917BDD64B1C0FD4CULL, 0x3BB454329B7624C8ULL, 0x23BA4442CAF53EA6ULL, 0x4E677D2C38532A3AULL, 0x0BFD64B645036C7AULL, 0xC68A007E5E0DD902ULL, 0x4DB5A851F44182E1ULL, 0x8EC9B55A7F88A46BULL, 0x0A8291CDCEC97DCFULL, 0x2A4ECEA9F98D0ACCULL, 0x1A1DB93D7140003CULL, 0x092999A333CB8B7AULL, 0x6DC778F971AD0038ULL, 0xA907600A918130C4ULL, 0xED6A1E012D9E6832ULL, 0x7135C886EFB4318AULL, 0x87F55BA57E31CC7AULL, 0x7763CF1D55034004ULL, 0xAC7D5F42D69F6D18ULL, 0x7930E9E4E58857B6ULL, 0x6E6F52C3164DF4FBULL, 0x25E41D2B669E1EF1ULL, 0x3C1B20EE3FD59D7CULL, 0x0ABCD06BFA53DDEFULL, 0x1DBF9A42D5C4484EULL, 0xABC521979B0DEADAULL, 0xE86D2BC522363A0DULL, 0x5CAE82AB9C9DF69EULL, 0x64F2E21E71F54BFFULL, 0xF4FD4452E2D74DD3ULL, 0xB4130C93BC437944ULL, 0xAEFE130985139270ULL, 0x598CB0FAC186D91CULL, 0x7AD91D2691F7F7EEULL, 0x61B46FC9D6E6C907ULL, 0xBC34F4DEF99C0238ULL, 0xDE355B3B6519035BULL, 0x886B4238611FCFDCULL, 0xC6F34A26C1B2EFFAULL, 0xC58EF1837D1683B2ULL, 0x3BB5FCBC2EC22005ULL, 0xC3FE3B1B4C6FAD73ULL, 0x8E4F1232EEF28183ULL, 0x9172FE9CE98583FFULL, 0xC03404CD28342F61ULL, 0x9E02FCE1CDF7E2ECULL, 0x0B07A7C8EE0A6D70ULL, 0xAE56EDE76372BB19ULL, 0x1D4F42A3DE394DF4ULL, 0xB96ADAB760D7F468ULL, 0xD108A94BB2C8E3FBULL, 0xBC0AB182B324FB61ULL, 0x30ACCA4F483A797AULL, 0x1DF158A136ADE735ULL, 0xE2A689DAF3EFE872ULL, 0x984F0C70E0E68B77ULL, 0xB557135E7F57C935ULL, 0x856365553DED1AF3ULL, 0x2433F51F5F066ED0ULL, 0xD3DF1ED5D5FD6561ULL, 0xF681B202AEC4617AULL, 0x7D2FE363630C75D8ULL, 0xCC939DCE249B3EF9ULL, 0xA9E13641146433FBULL, 0xD8B9C583CE2D3695ULL, 0xAFDC5620273D3CF1ULL, 0xADF85458A2BB4A9AULL, 0xFFFFFFFFFFFFFFFFULL }; # elif BN_BITS2 == 32 static const BN_ULONG dh1024_160_p[] = { 0x2E4A4371, 0xDF1FB2BC, 0x6D4DA708, 0xE68CFDA7, 0x365C1A65, 0x45BF37DF, 0x0DC8B4BD, 0xA151AF5F, 0xF55BCCC0, 0xFAA31A4F, 0xE5644738, 0x4EFFD6FA, 0x219A7372, 0x98488E9C, 0x90C4BD70, 0xACCBDD7D, 0xD49B83BF, 0x24975C3C, 0xA9061123, 0x13ECB4AE, 0x2EE652C0, 0x9838EF1E, 0x75A23D18, 0x6073E286, 0x52D23B61, 0x9A6A9DCA, 0xFB06A3C6, 0x52C99FBC, 0xAE5D54EC, 0xDE92DE5E, 0xA080E01D, 0xB10B8F96 }; static const BN_ULONG dh1024_160_g[] = { 0x22B3B2E5, 0x855E6EEB, 0xF97C2A24, 0x858F4DCE, 0x18D08BC8, 0x2D779D59, 0x8E73AFA3, 0xD662A4D1, 0x69B6A28A, 0x1DBF0A01, 0x7A091F53, 0xA6A24C08, 0x63F80A76, 0x909D0D22, 0xB9A92EE1, 0xD7FBD7D3, 0x9E2749F4, 0x5E91547F, 0xB01B886A, 0x160217B4, 0x5504F213, 0x777E690F, 0x5C41564B, 0x266FEA1E, 0x14266D31, 0xD6406CFF, 0x58AC507F, 0xF8104DD2, 0xEFB99905, 0x6765A442, 0xC3FD3412, 0xA4D1CBD5 }; static const BN_ULONG dh1024_160_q[] = { 0x49462353, 0x64B7CB9D, 0x8ABA4E7D, 0x81A8DF27, 0xF518AA87 }; static const BN_ULONG dh2048_224_p[] = { 0x0C10E64F, 0x0AC4DFFE, 0x4E71B81C, 0xCF9DE538, 0xFFA31F71, 0x7EF363E2, 0x6B8E75B9, 0xE3FB73C1, 0x4BA80A29, 0xC9B53DCF, 0x16E79763, 0x23F10B0E, 0x13042E9B, 0xC52172E4, 0xC928B2B9, 0xBE60E69C, 0xB9E587E8, 0x80CD86A1, 0x98C641A4, 0x315D75E1, 0x44328387, 0xCDF93ACC, 0xDC0A486D, 0x15987D9A, 0x1FD5A074, 0x7310F712, 0xDE31EFDC, 0x278273C7, 0x415D9330, 0x1602E714, 0xBC8985DB, 0x81286130, 0x70918836, 0xB3BF8A31, 0xB9C49708, 0x6A00E0A0, 0x8BBC27BE, 0xC6BA0B2C, 0xED34DBF6, 0xC9F98D11, 0xB6C12207, 0x7AD5B7D0, 0x55B7394B, 0xD91E8FEF, 0xEFDA4DF8, 0x9037C9ED, 0xAD6AC212, 0x6D3F8152, 0x1274A0A6, 0x1DE6B85A, 0x309C180E, 0xEB3D688A, 0x7BA1DF15, 0xAF9A3C40, 0xF95A56DB, 0xE6FA141D, 0xB61D0A75, 0xB54B1597, 0x683B9FD1, 0xA20D64E5, 0x9559C51F, 0xD660FAA7, 0x9123A9D0, 0xAD107E1E }; static const BN_ULONG dh2048_224_g[] = { 0x191F2BFA, 0x84B890D3, 0x2A7065B3, 0x81BC087F, 0xF6EC0179, 0x19C418E1, 0x71CFFF4C, 0x7B5A0F1C, 0x9B6AA4BD, 0xEDFE72FE, 0x94B30269, 0x81E1BCFE, 0x8D6C0191, 0x566AFBB4, 0x409D13CD, 0xB539CCE3, 0x5F2FF381, 0x6AA21E7F, 0x770589EF, 0xD9E263E4, 0xD19963DD, 0x10E183ED, 0x150B8EEB, 0xB70A8137, 0x28C8F8AC, 0x051AE3D4, 0x0C1AB15B, 0xBB77A86F, 0x16A330EF, 0x6E3025E3, 0xD6F83456, 0x19529A45, 0x118E98D1, 0xF180EB34, 0x50717CBE, 0xB5F6C6B2, 0xDA7460CD, 0x09939D54, 0x22EA1ED4, 0xE2471504, 0x521BC98A, 0xB8A762D0, 0x5AC1348B, 0xF4D02727, 0x1999024A, 0xC1766910, 0xA8D66AD7, 0xBE5E9001, 0x620A8652, 0xC57DB17C, 0x00C29F52, 0xAB739D77, 0xA70C4AFA, 0xDD921F01, 0x10B9A6F0, 0xA6824A4E, 0xCFE4FFE3, 0x74866A08, 0x89998CAF, 0x6CDEBE7B, 0x8FFDAC50, 0x9DF30B5C, 0x4F2D9AE3, 0xAC4032EF }; static const BN_ULONG dh2048_224_q[] = { 0xB36371EB, 0xBF389A99, 0x4738CEBC, 0x1F80535A, 0x99717710, 0xC58D93FE, 0x801C0D34 }; static const BN_ULONG dh2048_256_p[] = { 0x1E1A1597, 0xDB094AE9, 0xD7EF09CA, 0x693877FA, 0x6E11715F, 0x6116D227, 0xC198AF12, 0xA4B54330, 0xD7014103, 0x75F26375, 0x54E710C3, 0xC3A3960A, 0xBD0BE621, 0xDED4010A, 0x89962856, 0xC0B857F6, 0x71506026, 0xB3CA3F79, 0xE6B486F6, 0x1CCACB83, 0x14056425, 0x67E144E5, 0xA41825D9, 0xF6A167B5, 0x96524D8E, 0x3AD83477, 0x51BFA4AB, 0xF13C6D9A, 0x35488A0E, 0x2D525267, 0xCAA6B790, 0xB63ACAE1, 0x81B23F76, 0x4FDB70C5, 0x12307F5C, 0xBC39A0BF, 0xB1E59BB8, 0xB941F54E, 0xD45F9088, 0x6C5BFC11, 0x4275BF7B, 0x22E0B1EF, 0x5B4758C0, 0x91F9E672, 0x6BCF67ED, 0x5A8A9D30, 0x97517ABD, 0x209E0C64, 0x830E9A7C, 0x3BF4296D, 0x34096FAA, 0x16C3D911, 0x61B2AA30, 0xFAF7DF45, 0xD61957D4, 0xE00DF8F1, 0x435E3B00, 0x5D2CEED4, 0x660DD0F2, 0x8CEEF608, 0x65195999, 0xFFBBD19C, 0xB4B6663C, 0x87A8E61D }; static const BN_ULONG dh2048_256_g[] = { 0x6CC41659, 0x664B4C0F, 0xEF98C582, 0x5E2327CF, 0xD4795451, 0xD647D148, 0x90F00EF8, 0x2F630784, 0x1DB246C3, 0x184B523D, 0xCDC67EB6, 0xC7891428, 0x0DF92B52, 0x7FD02837, 0x64E0EC37, 0xB3353BBB, 0x57CD0915, 0xECD06E15, 0xDF016199, 0xB7D2BBD2, 0x052588B9, 0xC8484B1E, 0x13D3FE14, 0xDB2A3B73, 0xD182EA0A, 0xD052B985, 0xE83B9C80, 0xA4BD1BFF, 0xFB3F2E55, 0xDFC967C1, 0x767164E1, 0xB5045AF2, 0x6F2F9193, 0x1D14348F, 0x428EBC83, 0x64E67982, 0x82D6ED38, 0x8AC376D2, 0xAAB8A862, 0x777DE62A, 0xE9EC144B, 0xDDF463E5, 0xC77A57F2, 0x0196F931, 0x41000A65, 0xA55AE313, 0xC28CBB18, 0x901228F8, 0x7E8C6F62, 0xBC3773BF, 0x0C6B47B1, 0xBE3A6C1B, 0xAC0BB555, 0xFF4FED4A, 0x77BE463F, 0x10DBC150, 0x1A0BA125, 0x07F4793A, 0x21EF2054, 0x4CA7B18F, 0x60EDBD48, 0x2E775066, 0x73134D0B, 0x3FB32C9B }; static const BN_ULONG dh2048_256_q[] = { 0x64F5FBD3, 0xA308B0FE, 0x1EB3750B, 0x99B1A47D, 0x40129DA2, 0xB4479976, 0xA709A097, 0x8CF83642 }; /* Primes from RFC 7919 */ static const BN_ULONG ffdhe2048_p[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0x61285C97, 0x886B4238, 0xC1B2EFFA, 0xC6F34A26, 0x7D1683B2, 0xC58EF183, 0x2EC22005, 0x3BB5FCBC, 0x4C6FAD73, 0xC3FE3B1B, 0xEEF28183, 0x8E4F1232, 0xE98583FF, 0x9172FE9C, 0x28342F61, 0xC03404CD, 0xCDF7E2EC, 0x9E02FCE1, 0xEE0A6D70, 0x0B07A7C8, 0x6372BB19, 0xAE56EDE7, 0xDE394DF4, 0x1D4F42A3, 0x60D7F468, 0xB96ADAB7, 0xB2C8E3FB, 0xD108A94B, 0xB324FB61, 0xBC0AB182, 0x483A797A, 0x30ACCA4F, 0x36ADE735, 0x1DF158A1, 0xF3EFE872, 0xE2A689DA, 0xE0E68B77, 0x984F0C70, 0x7F57C935, 0xB557135E, 0x3DED1AF3, 0x85636555, 0x5F066ED0, 0x2433F51F, 0xD5FD6561, 0xD3DF1ED5, 0xAEC4617A, 0xF681B202, 0x630C75D8, 0x7D2FE363, 0x249B3EF9, 0xCC939DCE, 0x146433FB, 0xA9E13641, 0xCE2D3695, 0xD8B9C583, 0x273D3CF1, 0xAFDC5620, 0xA2BB4A9A, 0xADF85458, 0xFFFFFFFF, 0xFFFFFFFF }; static const BN_ULONG ffdhe3072_p[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0x66C62E37, 0x25E41D2B, 0x3FD59D7C, 0x3C1B20EE, 0xFA53DDEF, 0x0ABCD06B, 0xD5C4484E, 0x1DBF9A42, 0x9B0DEADA, 0xABC52197, 0x22363A0D, 0xE86D2BC5, 0x9C9DF69E, 0x5CAE82AB, 0x71F54BFF, 0x64F2E21E, 0xE2D74DD3, 0xF4FD4452, 0xBC437944, 0xB4130C93, 0x85139270, 0xAEFE1309, 0xC186D91C, 0x598CB0FA, 0x91F7F7EE, 0x7AD91D26, 0xD6E6C907, 0x61B46FC9, 0xF99C0238, 0xBC34F4DE, 0x6519035B, 0xDE355B3B, 0x611FCFDC, 0x886B4238, 0xC1B2EFFA, 0xC6F34A26, 0x7D1683B2, 0xC58EF183, 0x2EC22005, 0x3BB5FCBC, 0x4C6FAD73, 0xC3FE3B1B, 0xEEF28183, 0x8E4F1232, 0xE98583FF, 0x9172FE9C, 0x28342F61, 0xC03404CD, 0xCDF7E2EC, 0x9E02FCE1, 0xEE0A6D70, 0x0B07A7C8, 0x6372BB19, 0xAE56EDE7, 0xDE394DF4, 0x1D4F42A3, 0x60D7F468, 0xB96ADAB7, 0xB2C8E3FB, 0xD108A94B, 0xB324FB61, 0xBC0AB182, 0x483A797A, 0x30ACCA4F, 0x36ADE735, 0x1DF158A1, 0xF3EFE872, 0xE2A689DA, 0xE0E68B77, 0x984F0C70, 0x7F57C935, 0xB557135E, 0x3DED1AF3, 0x85636555, 0x5F066ED0, 0x2433F51F, 0xD5FD6561, 0xD3DF1ED5, 0xAEC4617A, 0xF681B202, 0x630C75D8, 0x7D2FE363, 0x249B3EF9, 0xCC939DCE, 0x146433FB, 0xA9E13641, 0xCE2D3695, 0xD8B9C583, 0x273D3CF1, 0xAFDC5620, 0xA2BB4A9A, 0xADF85458, 0xFFFFFFFF, 0xFFFFFFFF }; static const BN_ULONG ffdhe4096_p[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0x5E655F6A, 0xC68A007E, 0xF44182E1, 0x4DB5A851, 0x7F88A46B, 0x8EC9B55A, 0xCEC97DCF, 0x0A8291CD, 0xF98D0ACC, 0x2A4ECEA9, 0x7140003C, 0x1A1DB93D, 0x33CB8B7A, 0x092999A3, 0x71AD0038, 0x6DC778F9, 0x918130C4, 0xA907600A, 0x2D9E6832, 0xED6A1E01, 0xEFB4318A, 0x7135C886, 0x7E31CC7A, 0x87F55BA5, 0x55034004, 0x7763CF1D, 0xD69F6D18, 0xAC7D5F42, 0xE58857B6, 0x7930E9E4, 0x164DF4FB, 0x6E6F52C3, 0x669E1EF1, 0x25E41D2B, 0x3FD59D7C, 0x3C1B20EE, 0xFA53DDEF, 0x0ABCD06B, 0xD5C4484E, 0x1DBF9A42, 0x9B0DEADA, 0xABC52197, 0x22363A0D, 0xE86D2BC5, 0x9C9DF69E, 0x5CAE82AB, 0x71F54BFF, 0x64F2E21E, 0xE2D74DD3, 0xF4FD4452, 0xBC437944, 0xB4130C93, 0x85139270, 0xAEFE1309, 0xC186D91C, 0x598CB0FA, 0x91F7F7EE, 0x7AD91D26, 0xD6E6C907, 0x61B46FC9, 0xF99C0238, 0xBC34F4DE, 0x6519035B, 0xDE355B3B, 0x611FCFDC, 0x886B4238, 0xC1B2EFFA, 0xC6F34A26, 0x7D1683B2, 0xC58EF183, 0x2EC22005, 0x3BB5FCBC, 0x4C6FAD73, 0xC3FE3B1B, 0xEEF28183, 0x8E4F1232, 0xE98583FF, 0x9172FE9C, 0x28342F61, 0xC03404CD, 0xCDF7E2EC, 0x9E02FCE1, 0xEE0A6D70, 0x0B07A7C8, 0x6372BB19, 0xAE56EDE7, 0xDE394DF4, 0x1D4F42A3, 0x60D7F468, 0xB96ADAB7, 0xB2C8E3FB, 0xD108A94B, 0xB324FB61, 0xBC0AB182, 0x483A797A, 0x30ACCA4F, 0x36ADE735, 0x1DF158A1, 0xF3EFE872, 0xE2A689DA, 0xE0E68B77, 0x984F0C70, 0x7F57C935, 0xB557135E, 0x3DED1AF3, 0x85636555, 0x5F066ED0, 0x2433F51F, 0xD5FD6561, 0xD3DF1ED5, 0xAEC4617A, 0xF681B202, 0x630C75D8, 0x7D2FE363, 0x249B3EF9, 0xCC939DCE, 0x146433FB, 0xA9E13641, 0xCE2D3695, 0xD8B9C583, 0x273D3CF1, 0xAFDC5620, 0xA2BB4A9A, 0xADF85458, 0xFFFFFFFF, 0xFFFFFFFF }; static const BN_ULONG ffdhe6144_p[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xD0E40E65, 0xA40E329C, 0x7938DAD4, 0xA41D570D, 0xD43161C1, 0x62A69526, 0x9ADB1E69, 0x3FDD4A8E, 0xDC6B80D6, 0x5B3B71F9, 0xC6272B04, 0xEC9D1810, 0xCACEF403, 0x8CCF2DD5, 0xC95B9117, 0xE49F5235, 0xB854338A, 0x505DC82D, 0x1562A846, 0x62292C31, 0x6AE77F5E, 0xD72B0374, 0x462D538C, 0xF9C9091B, 0x47A67CBE, 0x0AE8DB58, 0x22611682, 0xB3A739C1, 0x2A281BF6, 0xEEAAC023, 0x77CAF992, 0x94C6651E, 0x94B2BBC1, 0x763E4E4B, 0x0077D9B4, 0x587E38DA, 0x183023C3, 0x7FB29F8C, 0xF9E3A26E, 0x0ABEC1FF, 0x350511E3, 0xA00EF092, 0xDB6340D8, 0xB855322E, 0xA9A96910, 0xA52471F7, 0x4CFDB477, 0x388147FB, 0x4E46041F, 0x9B1F5C3E, 0xFCCFEC71, 0xCDAD0657, 0x4C701C3A, 0xB38E8C33, 0xB1C0FD4C, 0x917BDD64, 0x9B7624C8, 0x3BB45432, 0xCAF53EA6, 0x23BA4442, 0x38532A3A, 0x4E677D2C, 0x45036C7A, 0x0BFD64B6, 0x5E0DD902, 0xC68A007E, 0xF44182E1, 0x4DB5A851, 0x7F88A46B, 0x8EC9B55A, 0xCEC97DCF, 0x0A8291CD, 0xF98D0ACC, 0x2A4ECEA9, 0x7140003C, 0x1A1DB93D, 0x33CB8B7A, 0x092999A3, 0x71AD0038, 0x6DC778F9, 0x918130C4, 0xA907600A, 0x2D9E6832, 0xED6A1E01, 0xEFB4318A, 0x7135C886, 0x7E31CC7A, 0x87F55BA5, 0x55034004, 0x7763CF1D, 0xD69F6D18, 0xAC7D5F42, 0xE58857B6, 0x7930E9E4, 0x164DF4FB, 0x6E6F52C3, 0x669E1EF1, 0x25E41D2B, 0x3FD59D7C, 0x3C1B20EE, 0xFA53DDEF, 0x0ABCD06B, 0xD5C4484E, 0x1DBF9A42, 0x9B0DEADA, 0xABC52197, 0x22363A0D, 0xE86D2BC5, 0x9C9DF69E, 0x5CAE82AB, 0x71F54BFF, 0x64F2E21E, 0xE2D74DD3, 0xF4FD4452, 0xBC437944, 0xB4130C93, 0x85139270, 0xAEFE1309, 0xC186D91C, 0x598CB0FA, 0x91F7F7EE, 0x7AD91D26, 0xD6E6C907, 0x61B46FC9, 0xF99C0238, 0xBC34F4DE, 0x6519035B, 0xDE355B3B, 0x611FCFDC, 0x886B4238, 0xC1B2EFFA, 0xC6F34A26, 0x7D1683B2, 0xC58EF183, 0x2EC22005, 0x3BB5FCBC, 0x4C6FAD73, 0xC3FE3B1B, 0xEEF28183, 0x8E4F1232, 0xE98583FF, 0x9172FE9C, 0x28342F61, 0xC03404CD, 0xCDF7E2EC, 0x9E02FCE1, 0xEE0A6D70, 0x0B07A7C8, 0x6372BB19, 0xAE56EDE7, 0xDE394DF4, 0x1D4F42A3, 0x60D7F468, 0xB96ADAB7, 0xB2C8E3FB, 0xD108A94B, 0xB324FB61, 0xBC0AB182, 0x483A797A, 0x30ACCA4F, 0x36ADE735, 0x1DF158A1, 0xF3EFE872, 0xE2A689DA, 0xE0E68B77, 0x984F0C70, 0x7F57C935, 0xB557135E, 0x3DED1AF3, 0x85636555, 0x5F066ED0, 0x2433F51F, 0xD5FD6561, 0xD3DF1ED5, 0xAEC4617A, 0xF681B202, 0x630C75D8, 0x7D2FE363, 0x249B3EF9, 0xCC939DCE, 0x146433FB, 0xA9E13641, 0xCE2D3695, 0xD8B9C583, 0x273D3CF1, 0xAFDC5620, 0xA2BB4A9A, 0xADF85458, 0xFFFFFFFF, 0xFFFFFFFF }; static const BN_ULONG ffdhe8192_p[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xC5C6424C, 0xD68C8BB7, 0x838FF88C, 0x011E2A94, 0xA9F4614E, 0x0822E506, 0xF7A8443D, 0x97D11D49, 0x30677F0D, 0xA6BBFDE5, 0xC1FE86FE, 0x2F741EF8, 0x5D71A87E, 0xFAFABE1C, 0xFBE58A30, 0xDED2FBAB, 0x72B0A66E, 0xB6855DFE, 0xBA8A4FE8, 0x1EFC8CE0, 0x3F2FA457, 0x83F81D4A, 0xA577E231, 0xA1FE3075, 0x88D9C0A0, 0xD5B80194, 0xAD9A95F9, 0x624816CD, 0x50C1217B, 0x99E9E316, 0x0E423CFC, 0x51AA691E, 0x3826E52C, 0x1C217E6C, 0x09703FEE, 0x51A8A931, 0x6A460E74, 0xBB709987, 0x9C86B022, 0x541FC68C, 0x46FD8251, 0x59160CC0, 0x35C35F5C, 0x2846C0BA, 0x8B758282, 0x54504AC7, 0xD2AF05E4, 0x29388839, 0xC01BD702, 0xCB2C0F1C, 0x7C932665, 0x555B2F74, 0xA3AB8829, 0x86B63142, 0xF64B10EF, 0x0B8CC3BD, 0xEDD1CC5E, 0x687FEB69, 0xC9509D43, 0xFDB23FCE, 0xD951AE64, 0x1E425A31, 0xF600C838, 0x36AD004C, 0xCFF46AAA, 0xA40E329C, 0x7938DAD4, 0xA41D570D, 0xD43161C1, 0x62A69526, 0x9ADB1E69, 0x3FDD4A8E, 0xDC6B80D6, 0x5B3B71F9, 0xC6272B04, 0xEC9D1810, 0xCACEF403, 0x8CCF2DD5, 0xC95B9117, 0xE49F5235, 0xB854338A, 0x505DC82D, 0x1562A846, 0x62292C31, 0x6AE77F5E, 0xD72B0374, 0x462D538C, 0xF9C9091B, 0x47A67CBE, 0x0AE8DB58, 0x22611682, 0xB3A739C1, 0x2A281BF6, 0xEEAAC023, 0x77CAF992, 0x94C6651E, 0x94B2BBC1, 0x763E4E4B, 0x0077D9B4, 0x587E38DA, 0x183023C3, 0x7FB29F8C, 0xF9E3A26E, 0x0ABEC1FF, 0x350511E3, 0xA00EF092, 0xDB6340D8, 0xB855322E, 0xA9A96910, 0xA52471F7, 0x4CFDB477, 0x388147FB, 0x4E46041F, 0x9B1F5C3E, 0xFCCFEC71, 0xCDAD0657, 0x4C701C3A, 0xB38E8C33, 0xB1C0FD4C, 0x917BDD64, 0x9B7624C8, 0x3BB45432, 0xCAF53EA6, 0x23BA4442, 0x38532A3A, 0x4E677D2C, 0x45036C7A, 0x0BFD64B6, 0x5E0DD902, 0xC68A007E, 0xF44182E1, 0x4DB5A851, 0x7F88A46B, 0x8EC9B55A, 0xCEC97DCF, 0x0A8291CD, 0xF98D0ACC, 0x2A4ECEA9, 0x7140003C, 0x1A1DB93D, 0x33CB8B7A, 0x092999A3, 0x71AD0038, 0x6DC778F9, 0x918130C4, 0xA907600A, 0x2D9E6832, 0xED6A1E01, 0xEFB4318A, 0x7135C886, 0x7E31CC7A, 0x87F55BA5, 0x55034004, 0x7763CF1D, 0xD69F6D18, 0xAC7D5F42, 0xE58857B6, 0x7930E9E4, 0x164DF4FB, 0x6E6F52C3, 0x669E1EF1, 0x25E41D2B, 0x3FD59D7C, 0x3C1B20EE, 0xFA53DDEF, 0x0ABCD06B, 0xD5C4484E, 0x1DBF9A42, 0x9B0DEADA, 0xABC52197, 0x22363A0D, 0xE86D2BC5, 0x9C9DF69E, 0x5CAE82AB, 0x71F54BFF, 0x64F2E21E, 0xE2D74DD3, 0xF4FD4452, 0xBC437944, 0xB4130C93, 0x85139270, 0xAEFE1309, 0xC186D91C, 0x598CB0FA, 0x91F7F7EE, 0x7AD91D26, 0xD6E6C907, 0x61B46FC9, 0xF99C0238, 0xBC34F4DE, 0x6519035B, 0xDE355B3B, 0x611FCFDC, 0x886B4238, 0xC1B2EFFA, 0xC6F34A26, 0x7D1683B2, 0xC58EF183, 0x2EC22005, 0x3BB5FCBC, 0x4C6FAD73, 0xC3FE3B1B, 0xEEF28183, 0x8E4F1232, 0xE98583FF, 0x9172FE9C, 0x28342F61, 0xC03404CD, 0xCDF7E2EC, 0x9E02FCE1, 0xEE0A6D70, 0x0B07A7C8, 0x6372BB19, 0xAE56EDE7, 0xDE394DF4, 0x1D4F42A3, 0x60D7F468, 0xB96ADAB7, 0xB2C8E3FB, 0xD108A94B, 0xB324FB61, 0xBC0AB182, 0x483A797A, 0x30ACCA4F, 0x36ADE735, 0x1DF158A1, 0xF3EFE872, 0xE2A689DA, 0xE0E68B77, 0x984F0C70, 0x7F57C935, 0xB557135E, 0x3DED1AF3, 0x85636555, 0x5F066ED0, 0x2433F51F, 0xD5FD6561, 0xD3DF1ED5, 0xAEC4617A, 0xF681B202, 0x630C75D8, 0x7D2FE363, 0x249B3EF9, 0xCC939DCE, 0x146433FB, 0xA9E13641, 0xCE2D3695, 0xD8B9C583, 0x273D3CF1, 0xAFDC5620, 0xA2BB4A9A, 0xADF85458, 0xFFFFFFFF, 0xFFFFFFFF }; # else # error "unsupported BN_BITS2" # endif /* Macro to make a BIGNUM from static data */ # define make_dh_bn(x) extern const BIGNUM _bignum_##x; \ const BIGNUM _bignum_##x = { (BN_ULONG *) x, \ OSSL_NELEM(x),\ OSSL_NELEM(x),\ 0, BN_FLG_STATIC_DATA }; static const BN_ULONG value_2 = 2; const BIGNUM _bignum_const_2 = { (BN_ULONG *)&value_2, 1, 1, 0, BN_FLG_STATIC_DATA }; make_dh_bn(dh1024_160_p) make_dh_bn(dh1024_160_g) make_dh_bn(dh1024_160_q) make_dh_bn(dh2048_224_p) make_dh_bn(dh2048_224_g) make_dh_bn(dh2048_224_q) make_dh_bn(dh2048_256_p) make_dh_bn(dh2048_256_g) make_dh_bn(dh2048_256_q) make_dh_bn(ffdhe2048_p) make_dh_bn(ffdhe3072_p) make_dh_bn(ffdhe4096_p) make_dh_bn(ffdhe6144_p) make_dh_bn(ffdhe8192_p) #endif openssl-1.1.1f/crypto/bn/bn_div.c000066400000000000000000000332471364063235100167030ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "bn_local.h" /* The old slow way */ #if 0 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) { int i, nm, nd; int ret = 0; BIGNUM *D; bn_check_top(m); bn_check_top(d); if (BN_is_zero(d)) { BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); return 0; } if (BN_ucmp(m, d) < 0) { if (rem != NULL) { if (BN_copy(rem, m) == NULL) return 0; } if (dv != NULL) BN_zero(dv); return 1; } BN_CTX_start(ctx); D = BN_CTX_get(ctx); if (dv == NULL) dv = BN_CTX_get(ctx); if (rem == NULL) rem = BN_CTX_get(ctx); if (D == NULL || dv == NULL || rem == NULL) goto end; nd = BN_num_bits(d); nm = BN_num_bits(m); if (BN_copy(D, d) == NULL) goto end; if (BN_copy(rem, m) == NULL) goto end; /* * The next 2 are needed so we can do a dv->d[0]|=1 later since * BN_lshift1 will only work once there is a value :-) */ BN_zero(dv); if (bn_wexpand(dv, 1) == NULL) goto end; dv->top = 1; if (!BN_lshift(D, D, nm - nd)) goto end; for (i = nm - nd; i >= 0; i--) { if (!BN_lshift1(dv, dv)) goto end; if (BN_ucmp(rem, D) >= 0) { dv->d[0] |= 1; if (!BN_usub(rem, rem, D)) goto end; } /* CAN IMPROVE (and have now :=) */ if (!BN_rshift1(D, D)) goto end; } rem->neg = BN_is_zero(rem) ? 0 : m->neg; dv->neg = m->neg ^ d->neg; ret = 1; end: BN_CTX_end(ctx); return ret; } #else # if defined(BN_DIV3W) BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0); # elif 0 /* * This is #if-ed away, because it's a reference for assembly implementations, * where it can and should be made constant-time. But if you want to test it, * just replace 0 with 1. */ # if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 # undef BN_ULLONG # define BN_ULLONG __uint128_t # define BN_LLONG # endif # ifdef BN_LLONG # define BN_DIV3W /* * Interface is somewhat quirky, |m| is pointer to most significant limb, * and less significant limb is referred at |m[-1]|. This means that caller * is responsible for ensuring that |m[-1]| is valid. Second condition that * has to be met is that |d0|'s most significant bit has to be set. Or in * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top * does all this. The subroutine considers four limbs, two of which are * "overlapping," hence the name... */ static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0) { BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1]; BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1; BN_ULONG Q = 0, mask; int i; for (i = 0; i < BN_BITS2; i++) { Q <<= 1; if (R >= D) { Q |= 1; R -= D; } D >>= 1; } mask = 0 - (Q >> (BN_BITS2 - 1)); /* does it overflow? */ Q <<= 1; Q |= (R >= D); return (Q | mask) & BN_MASK2; } # endif # endif static int bn_left_align(BIGNUM *num) { BN_ULONG *d = num->d, n, m, rmask; int top = num->top; int rshift = BN_num_bits_word(d[top - 1]), lshift, i; lshift = BN_BITS2 - rshift; rshift %= BN_BITS2; /* say no to undefined behaviour */ rmask = (BN_ULONG)0 - rshift; /* rmask = 0 - (rshift != 0) */ rmask |= rmask >> 8; for (i = 0, m = 0; i < top; i++) { n = d[i]; d[i] = ((n << lshift) | m) & BN_MASK2; m = (n >> rshift) & rmask; } return lshift; } # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \ && !defined(PEDANTIC) && !defined(BN_DIV3W) # if defined(__GNUC__) && __GNUC__>=2 # if defined(__i386) || defined (__i386__) /*- * There were two reasons for implementing this template: * - GNU C generates a call to a function (__udivdi3 to be exact) * in reply to ((((BN_ULLONG)n0)< */ # endif /* __GNUC__ */ # endif /* OPENSSL_NO_ASM */ /*- * BN_div computes dv := num / divisor, rounding towards * zero, and sets up rm such that dv*divisor + rm = num holds. * Thus: * dv->neg == num->neg ^ divisor->neg (unless the result is zero) * rm->neg == num->neg (unless the remainder is zero) * If 'dv' or 'rm' is NULL, the respective value is not returned. */ int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx) { int ret; if (BN_is_zero(divisor)) { BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); return 0; } /* * Invalid zero-padding would have particularly bad consequences so don't * just rely on bn_check_top() here (bn_check_top() works only for * BN_DEBUG builds) */ if (divisor->d[divisor->top - 1] == 0) { BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED); return 0; } ret = bn_div_fixed_top(dv, rm, num, divisor, ctx); if (ret) { if (dv != NULL) bn_correct_top(dv); if (rm != NULL) bn_correct_top(rm); } return ret; } /* * It's argued that *length* of *significant* part of divisor is public. * Even if it's private modulus that is. Again, *length* is assumed * public, but not *value*. Former is likely to be pre-defined by * algorithm with bit granularity, though below subroutine is invariant * of limb length. Thanks to this assumption we can require that |divisor| * may not be zero-padded, yet claim this subroutine "constant-time"(*). * This is because zero-padded dividend, |num|, is tolerated, so that * caller can pass dividend of public length(*), but with smaller amount * of significant limbs. This naturally means that quotient, |dv|, would * contain correspongly less significant limbs as well, and will be zero- * padded accordingly. Returned remainder, |rm|, will have same bit length * as divisor, also zero-padded if needed. These actually leave sign bits * in ambiguous state. In sense that we try to avoid negative zeros, while * zero-padded zeros would retain sign. * * (*) "Constant-time-ness" has two pre-conditions: * * - availability of constant-time bn_div_3_words; * - dividend is at least as "wide" as divisor, limb-wise, zero-padded * if so required, which shouldn't be a privacy problem, because * divisor's length is considered public; */ int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx) { int norm_shift, i, j, loop; BIGNUM *tmp, *snum, *sdiv, *res; BN_ULONG *resp, *wnum, *wnumtop; BN_ULONG d0, d1; int num_n, div_n; assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0); bn_check_top(num); bn_check_top(divisor); bn_check_top(dv); bn_check_top(rm); BN_CTX_start(ctx); res = (dv == NULL) ? BN_CTX_get(ctx) : dv; tmp = BN_CTX_get(ctx); snum = BN_CTX_get(ctx); sdiv = BN_CTX_get(ctx); if (sdiv == NULL) goto err; /* First we normalise the numbers */ if (!BN_copy(sdiv, divisor)) goto err; norm_shift = bn_left_align(sdiv); sdiv->neg = 0; /* * Note that bn_lshift_fixed_top's output is always one limb longer * than input, even when norm_shift is zero. This means that amount of * inner loop iterations is invariant of dividend value, and that one * doesn't need to compare dividend and divisor if they were originally * of the same bit length. */ if (!(bn_lshift_fixed_top(snum, num, norm_shift))) goto err; div_n = sdiv->top; num_n = snum->top; if (num_n <= div_n) { /* caller didn't pad dividend -> no constant-time guarantee... */ if (bn_wexpand(snum, div_n + 1) == NULL) goto err; memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG)); snum->top = num_n = div_n + 1; } loop = num_n - div_n; /* * Lets setup a 'window' into snum This is the part that corresponds to * the current 'area' being divided */ wnum = &(snum->d[loop]); wnumtop = &(snum->d[num_n - 1]); /* Get the top 2 words of sdiv */ d0 = sdiv->d[div_n - 1]; d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; /* Setup quotient */ if (!bn_wexpand(res, loop)) goto err; res->neg = (num->neg ^ divisor->neg); res->top = loop; res->flags |= BN_FLG_FIXED_TOP; resp = &(res->d[loop]); /* space for temp */ if (!bn_wexpand(tmp, (div_n + 1))) goto err; for (i = 0; i < loop; i++, wnumtop--) { BN_ULONG q, l0; /* * the first part of the loop uses the top two words of snum and sdiv * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */ # if defined(BN_DIV3W) q = bn_div_3_words(wnumtop, d1, d0); # else BN_ULONG n0, n1, rem = 0; n0 = wnumtop[0]; n1 = wnumtop[-1]; if (n0 == d0) q = BN_MASK2; else { /* n0 < d0 */ BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2]; # ifdef BN_LLONG BN_ULLONG t2; # if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0); # else q = bn_div_words(n0, n1, d0); # endif # ifndef REMAINDER_IS_ALREADY_CALCULATED /* * rem doesn't have to be BN_ULLONG. The least we * know it's less that d0, isn't it? */ rem = (n1 - q * d0) & BN_MASK2; # endif t2 = (BN_ULLONG) d1 *q; for (;;) { if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2)) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ t2 -= d1; } # else /* !BN_LLONG */ BN_ULONG t2l, t2h; q = bn_div_words(n0, n1, d0); # ifndef REMAINDER_IS_ALREADY_CALCULATED rem = (n1 - q * d0) & BN_MASK2; # endif # if defined(BN_UMULT_LOHI) BN_UMULT_LOHI(t2l, t2h, d1, q); # elif defined(BN_UMULT_HIGH) t2l = d1 * q; t2h = BN_UMULT_HIGH(d1, q); # else { BN_ULONG ql, qh; t2l = LBITS(d1); t2h = HBITS(d1); ql = LBITS(q); qh = HBITS(q); mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ } # endif for (;;) { if ((t2h < rem) || ((t2h == rem) && (t2l <= n2))) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ if (t2l < d1) t2h--; t2l -= d1; } # endif /* !BN_LLONG */ } # endif /* !BN_DIV3W */ l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); tmp->d[div_n] = l0; wnum--; /* * ignore top values of the bignums just sub the two BN_ULONG arrays * with bn_sub_words */ l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1); q -= l0; /* * Note: As we have considered only the leading two BN_ULONGs in * the calculation of q, sdiv * q might be greater than wnum (but * then (q-1) * sdiv is less or equal than wnum) */ for (l0 = 0 - l0, j = 0; j < div_n; j++) tmp->d[j] = sdiv->d[j] & l0; l0 = bn_add_words(wnum, wnum, tmp->d, div_n); (*wnumtop) += l0; assert((*wnumtop) == 0); /* store part of the result */ *--resp = q; } /* snum holds remainder, it's as wide as divisor */ snum->neg = num->neg; snum->top = div_n; snum->flags |= BN_FLG_FIXED_TOP; if (rm != NULL) bn_rshift_fixed_top(rm, snum, norm_shift); BN_CTX_end(ctx); return 1; err: bn_check_top(rm); BN_CTX_end(ctx); return 0; } #endif openssl-1.1.1f/crypto/bn/bn_err.c000066400000000000000000000133201364063235100166770ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA BN_str_functs[] = { {ERR_PACK(ERR_LIB_BN, BN_F_BNRAND, 0), "bnrand"}, {ERR_PACK(ERR_LIB_BN, BN_F_BNRAND_RANGE, 0), "bnrand_range"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_BLINDING_CONVERT_EX, 0), "BN_BLINDING_convert_ex"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_BLINDING_CREATE_PARAM, 0), "BN_BLINDING_create_param"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_BLINDING_INVERT_EX, 0), "BN_BLINDING_invert_ex"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_BLINDING_NEW, 0), "BN_BLINDING_new"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_BLINDING_UPDATE, 0), "BN_BLINDING_update"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_BN2DEC, 0), "BN_bn2dec"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_BN2HEX, 0), "BN_bn2hex"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_COMPUTE_WNAF, 0), "bn_compute_wNAF"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_CTX_GET, 0), "BN_CTX_get"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_CTX_NEW, 0), "BN_CTX_new"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_CTX_START, 0), "BN_CTX_start"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_DIV, 0), "BN_div"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_DIV_RECP, 0), "BN_div_recp"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_EXP, 0), "BN_exp"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_EXPAND_INTERNAL, 0), "bn_expand_internal"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GENCB_NEW, 0), "BN_GENCB_new"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GENERATE_DSA_NONCE, 0), "BN_generate_dsa_nonce"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GENERATE_PRIME_EX, 0), "BN_generate_prime_ex"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GF2M_MOD, 0), "BN_GF2m_mod"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GF2M_MOD_EXP, 0), "BN_GF2m_mod_exp"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GF2M_MOD_MUL, 0), "BN_GF2m_mod_mul"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GF2M_MOD_SOLVE_QUAD, 0), "BN_GF2m_mod_solve_quad"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, 0), "BN_GF2m_mod_solve_quad_arr"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GF2M_MOD_SQR, 0), "BN_GF2m_mod_sqr"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_GF2M_MOD_SQRT, 0), "BN_GF2m_mod_sqrt"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_LSHIFT, 0), "BN_lshift"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_EXP2_MONT, 0), "BN_mod_exp2_mont"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_EXP_MONT, 0), "BN_mod_exp_mont"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_EXP_MONT_CONSTTIME, 0), "BN_mod_exp_mont_consttime"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_EXP_MONT_WORD, 0), "BN_mod_exp_mont_word"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_EXP_RECP, 0), "BN_mod_exp_recp"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_EXP_SIMPLE, 0), "BN_mod_exp_simple"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_INVERSE, 0), "BN_mod_inverse"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_INVERSE_NO_BRANCH, 0), "BN_mod_inverse_no_branch"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_LSHIFT_QUICK, 0), "BN_mod_lshift_quick"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MOD_SQRT, 0), "BN_mod_sqrt"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MONT_CTX_NEW, 0), "BN_MONT_CTX_new"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_MPI2BN, 0), "BN_mpi2bn"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_NEW, 0), "BN_new"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_POOL_GET, 0), "BN_POOL_get"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_RAND, 0), "BN_rand"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_RAND_RANGE, 0), "BN_rand_range"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_RECP_CTX_NEW, 0), "BN_RECP_CTX_new"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_RSHIFT, 0), "BN_rshift"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_SET_WORDS, 0), "bn_set_words"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_STACK_PUSH, 0), "BN_STACK_push"}, {ERR_PACK(ERR_LIB_BN, BN_F_BN_USUB, 0), "BN_usub"}, {0, NULL} }; static const ERR_STRING_DATA BN_str_reasons[] = { {ERR_PACK(ERR_LIB_BN, 0, BN_R_ARG2_LT_ARG3), "arg2 lt arg3"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_BAD_RECIPROCAL), "bad reciprocal"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_BIGNUM_TOO_LONG), "bignum too long"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_BITS_TOO_SMALL), "bits too small"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_CALLED_WITH_EVEN_MODULUS), "called with even modulus"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_DIV_BY_ZERO), "div by zero"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_ENCODING_ERROR), "encoding error"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA), "expand on static bignum data"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_INPUT_NOT_REDUCED), "input not reduced"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_INVALID_LENGTH), "invalid length"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_INVALID_RANGE), "invalid range"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_INVALID_SHIFT), "invalid shift"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_NOT_A_SQUARE), "not a square"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_NOT_INITIALIZED), "not initialized"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_NO_INVERSE), "no inverse"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_NO_SOLUTION), "no solution"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_PRIVATE_KEY_TOO_LARGE), "private key too large"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_P_IS_NOT_PRIME), "p is not prime"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_TOO_MANY_ITERATIONS), "too many iterations"}, {ERR_PACK(ERR_LIB_BN, 0, BN_R_TOO_MANY_TEMPORARY_VARIABLES), "too many temporary variables"}, {0, NULL} }; #endif int ERR_load_BN_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(BN_str_functs[0].error) == NULL) { ERR_load_strings_const(BN_str_functs); ERR_load_strings_const(BN_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/bn/bn_exp.c000066400000000000000000001304761364063235100167170ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "internal/constant_time.h" #include "bn_local.h" #include #ifdef _WIN32 # include # ifndef alloca # define alloca _alloca # endif #elif defined(__GNUC__) # ifndef alloca # define alloca(s) __builtin_alloca((s)) # endif #elif defined(__sun) # include #endif #include "rsaz_exp.h" #undef SPARC_T4_MONT #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc)) # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_T4_MONT #endif /* maximum precomputation table size for *variable* sliding windows */ #define TABLE_SIZE 32 /* this one works - simple but works */ int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int i, bits, ret = 0; BIGNUM *v, *rr; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } BN_CTX_start(ctx); rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r; v = BN_CTX_get(ctx); if (rr == NULL || v == NULL) goto err; if (BN_copy(v, a) == NULL) goto err; bits = BN_num_bits(p); if (BN_is_odd(p)) { if (BN_copy(rr, a) == NULL) goto err; } else { if (!BN_one(rr)) goto err; } for (i = 1; i < bits; i++) { if (!BN_sqr(v, v, ctx)) goto err; if (BN_is_bit_set(p, i)) { if (!BN_mul(rr, rr, v, ctx)) goto err; } } if (r != rr && BN_copy(r, rr) == NULL) goto err; ret = 1; err: BN_CTX_end(ctx); bn_check_top(r); return ret; } int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int ret; bn_check_top(a); bn_check_top(p); bn_check_top(m); /*- * For even modulus m = 2^k*m_odd, it might make sense to compute * a^p mod m_odd and a^p mod 2^k separately (with Montgomery * exponentiation for the odd part), using appropriate exponent * reductions, and combine the results using the CRT. * * For now, we use Montgomery only if the modulus is odd; otherwise, * exponentiation using the reciprocal-based quick remaindering * algorithm is used. * * (Timing obtained with expspeed.c [computations a^p mod m * where a, p, m are of the same length: 256, 512, 1024, 2048, * 4096, 8192 bits], compared to the running time of the * standard algorithm: * * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] * 55 .. 77 % [UltraSparc processor, but * debug-solaris-sparcv8-gcc conf.] * * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] * * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont * at 2048 and more bits, but at 512 and 1024 bits, it was * slower even than the standard algorithm! * * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] * should be obtained when the new Montgomery reduction code * has been integrated into OpenSSL.) */ #define MONT_MUL_MOD #define MONT_EXP_WORD #define RECP_MUL_MOD #ifdef MONT_MUL_MOD if (BN_is_odd(m)) { # ifdef MONT_EXP_WORD if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0) && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0) && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) { BN_ULONG A = a->d[0]; ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL); } else # endif ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL); } else #endif #ifdef RECP_MUL_MOD { ret = BN_mod_exp_recp(r, a, p, m, ctx); } #else { ret = BN_mod_exp_simple(r, a, p, m, ctx); } #endif bn_check_top(r); return ret; } int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int i, j, bits, ret = 0, wstart, wend, window, wvalue; int start = 1; BIGNUM *aa; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; BN_RECP_CTX recp; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(r); } else { ret = BN_one(r); } return ret; } BN_CTX_start(ctx); aa = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (val[0] == NULL) goto err; BN_RECP_CTX_init(&recp); if (m->neg) { /* ignore sign of 'm' */ if (!BN_copy(aa, m)) goto err; aa->neg = 0; if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) goto err; } else { if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) goto err; } if (!BN_nnmod(val[0], a, m, ctx)) goto err; /* 1 */ if (BN_is_zero(val[0])) { BN_zero(r); ret = 1; goto err; } window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) goto err; /* 2 */ j = 1 << (window - 1); for (i = 1; i < j; i++) { if (((val[i] = BN_CTX_get(ctx)) == NULL) || !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) goto err; } } start = 1; /* This is used to avoid multiplication etc * when there is only the value '1' in the * buffer. */ wvalue = 0; /* The 'value' of the window */ wstart = bits - 1; /* The top bit of the window */ wend = 0; /* The bottom bit of the window */ if (!BN_one(r)) goto err; for (;;) { if (BN_is_bit_set(p, wstart) == 0) { if (!start) if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) goto err; if (wstart == 0) break; wstart--; continue; } /* * We now have wstart on a 'set' bit, we now need to work out how bit * a window to do. To do this we need to scan forward until the last * set bit before the end of the window */ j = wstart; wvalue = 1; wend = 0; for (i = 1; i < window; i++) { if (wstart - i < 0) break; if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wend); wvalue |= 1; wend = i; } } /* wend is the size of the current window */ j = wend + 1; /* add the 'bytes above' */ if (!start) for (i = 0; i < j; i++) { if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) goto err; } /* wvalue will be an odd number < 2^window */ if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) goto err; /* move the 'window' down further */ wstart -= wend + 1; wvalue = 0; start = 0; if (wstart < 0) break; } ret = 1; err: BN_CTX_end(ctx); BN_RECP_CTX_free(&recp); bn_check_top(r); return ret; } int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { int i, j, bits, ret = 0, wstart, wend, window, wvalue; int start = 1; BIGNUM *d, *r; const BIGNUM *aa; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; BN_MONT_CTX *mont = NULL; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); } bn_check_top(a); bn_check_top(p); bn_check_top(m); if (!BN_is_odd(m)) { BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(rr); } else { ret = BN_one(rr); } return ret; } BN_CTX_start(ctx); d = BN_CTX_get(ctx); r = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (val[0] == NULL) goto err; /* * If this is not done, things will break in the montgomery part */ if (in_mont != NULL) mont = in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } if (a->neg || BN_ucmp(a, m) >= 0) { if (!BN_nnmod(val[0], a, m, ctx)) goto err; aa = val[0]; } else aa = a; if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx)) goto err; /* 1 */ window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx)) goto err; /* 2 */ j = 1 << (window - 1); for (i = 1; i < j; i++) { if (((val[i] = BN_CTX_get(ctx)) == NULL) || !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx)) goto err; } } start = 1; /* This is used to avoid multiplication etc * when there is only the value '1' in the * buffer. */ wvalue = 0; /* The 'value' of the window */ wstart = bits - 1; /* The top bit of the window */ wend = 0; /* The bottom bit of the window */ #if 1 /* by Shay Gueron's suggestion */ j = m->top; /* borrow j */ if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { if (bn_wexpand(r, j) == NULL) goto err; /* 2^(top*BN_BITS2) - m */ r->d[0] = (0 - m->d[0]) & BN_MASK2; for (i = 1; i < j; i++) r->d[i] = (~m->d[i]) & BN_MASK2; r->top = j; r->flags |= BN_FLG_FIXED_TOP; } else #endif if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx)) goto err; for (;;) { if (BN_is_bit_set(p, wstart) == 0) { if (!start) { if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx)) goto err; } if (wstart == 0) break; wstart--; continue; } /* * We now have wstart on a 'set' bit, we now need to work out how bit * a window to do. To do this we need to scan forward until the last * set bit before the end of the window */ j = wstart; wvalue = 1; wend = 0; for (i = 1; i < window; i++) { if (wstart - i < 0) break; if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wend); wvalue |= 1; wend = i; } } /* wend is the size of the current window */ j = wend + 1; /* add the 'bytes above' */ if (!start) for (i = 0; i < j; i++) { if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx)) goto err; } /* wvalue will be an odd number < 2^window */ if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx)) goto err; /* move the 'window' down further */ wstart -= wend + 1; wvalue = 0; start = 0; if (wstart < 0) break; } /* * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery * removes padding [if any] and makes return value suitable for public * API consumer. */ #if defined(SPARC_T4_MONT) if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) { j = mont->N.top; /* borrow j */ val[0]->d[0] = 1; /* borrow val[0] */ for (i = 1; i < j; i++) val[0]->d[i] = 0; val[0]->top = j; if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx)) goto err; } else #endif if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; ret = 1; err: if (in_mont == NULL) BN_MONT_CTX_free(mont); BN_CTX_end(ctx); bn_check_top(rr); return ret; } static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos) { BN_ULONG ret = 0; int wordpos; wordpos = bitpos / BN_BITS2; bitpos %= BN_BITS2; if (wordpos >= 0 && wordpos < a->top) { ret = a->d[wordpos] & BN_MASK2; if (bitpos) { ret >>= bitpos; if (++wordpos < a->top) ret |= a->d[wordpos] << (BN_BITS2 - bitpos); } } return ret & BN_MASK2; } /* * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific * layout so that accessing any of these table values shows the same access * pattern as far as cache lines are concerned. The following functions are * used to transfer a BIGNUM from/to that table. */ static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, int idx, int window) { int i, j; int width = 1 << window; BN_ULONG *table = (BN_ULONG *)buf; if (top > b->top) top = b->top; /* this works because 'buf' is explicitly * zeroed */ for (i = 0, j = idx; i < top; i++, j += width) { table[j] = b->d[i]; } return 1; } static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int window) { int i, j; int width = 1 << window; /* * We declare table 'volatile' in order to discourage compiler * from reordering loads from the table. Concern is that if * reordered in specific manner loads might give away the * information we are trying to conceal. Some would argue that * compiler can reorder them anyway, but it can as well be * argued that doing so would be violation of standard... */ volatile BN_ULONG *table = (volatile BN_ULONG *)buf; if (bn_wexpand(b, top) == NULL) return 0; if (window <= 3) { for (i = 0; i < top; i++, table += width) { BN_ULONG acc = 0; for (j = 0; j < width; j++) { acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); } b->d[i] = acc; } } else { int xstride = 1 << (window - 2); BN_ULONG y0, y1, y2, y3; i = idx >> (window - 2); /* equivalent of idx / xstride */ idx &= xstride - 1; /* equivalent of idx % xstride */ y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1); y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1); y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1); y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1); for (i = 0; i < top; i++, table += width) { BN_ULONG acc = 0; for (j = 0; j < xstride; j++) { acc |= ( (table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) | (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3) ) & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); } b->d[i] = acc; } } b->top = top; b->flags |= BN_FLG_FIXED_TOP; return 1; } /* * Given a pointer value, compute the next address that is a cache line * multiple. */ #define MOD_EXP_CTIME_ALIGN(x_) \ ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) /* * This variant of BN_mod_exp_mont() uses fixed windows and the special * precomputation memory layout to limit data-dependency to a minimum to * protect secret exponents (cf. the hyper-threading timing attacks pointed * out by Colin Percival, * http://www.daemonology.net/hyperthreading-considered-harmful/) */ int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { int i, bits, ret = 0, window, wvalue, wmask, window0; int top; BN_MONT_CTX *mont = NULL; int numPowers; unsigned char *powerbufFree = NULL; int powerbufLen = 0; unsigned char *powerbuf = NULL; BIGNUM tmp, am; #if defined(SPARC_T4_MONT) unsigned int t4 = 0; #endif bn_check_top(a); bn_check_top(p); bn_check_top(m); if (!BN_is_odd(m)) { BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } top = m->top; /* * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak * whether the top bits are zero. */ bits = p->top * BN_BITS2; if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(rr); } else { ret = BN_one(rr); } return ret; } BN_CTX_start(ctx); /* * Allocate a montgomery context if it was not supplied by the caller. If * this is not done, things will break in the montgomery part. */ if (in_mont != NULL) mont = in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } if (a->neg || BN_ucmp(a, m) >= 0) { BIGNUM *reduced = BN_CTX_get(ctx); if (reduced == NULL || !BN_nnmod(reduced, a, m, ctx)) { goto err; } a = reduced; } #ifdef RSAZ_ENABLED /* * If the size of the operands allow it, perform the optimized * RSAZ exponentiation. For further information see * crypto/bn/rsaz_exp.c and accompanying assembly modules. */ if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) && rsaz_avx2_eligible()) { if (NULL == bn_wexpand(rr, 16)) goto err; RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]); rr->top = 16; rr->neg = 0; bn_correct_top(rr); ret = 1; goto err; } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) { if (NULL == bn_wexpand(rr, 8)) goto err; RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d); rr->top = 8; rr->neg = 0; bn_correct_top(rr); ret = 1; goto err; } #endif /* Get the window size to use with size of p. */ window = BN_window_bits_for_ctime_exponent_size(bits); #if defined(SPARC_T4_MONT) if (window >= 5 && (top & 15) == 0 && top <= 64 && (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) == (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0])) window = 5; else #endif #if defined(OPENSSL_BN_ASM_MONT5) if (window >= 5) { window = 5; /* ~5% improvement for RSA2048 sign, and even * for RSA4096 */ /* reserve space for mont->N.d[] copy */ powerbufLen += top * sizeof(mont->N.d[0]); } #endif (void)0; /* * Allocate a buffer large enough to hold all of the pre-computed powers * of am, am itself and tmp. */ numPowers = 1 << window; powerbufLen += sizeof(m->d[0]) * (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers)); #ifdef alloca if (powerbufLen < 3072) powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); else #endif if ((powerbufFree = OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) goto err; powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); memset(powerbuf, 0, powerbufLen); #ifdef alloca if (powerbufLen < 3072) powerbufFree = NULL; #endif /* lay down tmp and am right after powers table */ tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); am.d = tmp.d + top; tmp.top = am.top = 0; tmp.dmax = am.dmax = top; tmp.neg = am.neg = 0; tmp.flags = am.flags = BN_FLG_STATIC_DATA; /* prepare a^0 in Montgomery domain */ #if 1 /* by Shay Gueron's suggestion */ if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { /* 2^(top*BN_BITS2) - m */ tmp.d[0] = (0 - m->d[0]) & BN_MASK2; for (i = 1; i < top; i++) tmp.d[i] = (~m->d[i]) & BN_MASK2; tmp.top = top; } else #endif if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx)) goto err; /* prepare a^1 in Montgomery domain */ if (!bn_to_mont_fixed_top(&am, a, mont, ctx)) goto err; #if defined(SPARC_T4_MONT) if (t4) { typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np, const BN_ULONG *n0, const void *table, int power, int bits); static const bn_pwr5_mont_f pwr5_funcs[4] = { bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16, bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32 }; bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1]; typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0); static const bn_mul_mont_f mul_funcs[4] = { bn_mul_mont_t4_8, bn_mul_mont_t4_16, bn_mul_mont_t4_24, bn_mul_mont_t4_32 }; bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1]; void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap, const void *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap, const void *table, const BN_ULONG *np, const BN_ULONG *n0, int num, int power); void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num, void *table, size_t power); void bn_gather5_t4(BN_ULONG *out, size_t num, void *table, size_t power); void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num); BN_ULONG *np = mont->N.d, *n0 = mont->n0; int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less * than 32 */ /* * BN_to_montgomery can contaminate words above .top [in * BN_DEBUG[_DEBUG] build]... */ for (i = am.top; i < top; i++) am.d[i] = 0; for (i = tmp.top; i < top; i++) tmp.d[i] = 0; bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0); bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1); if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) && !(*mul_worker) (tmp.d, am.d, am.d, np, n0)) bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top); bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2); for (i = 3; i < 32; i++) { /* Calculate a^i = a^(i-1) * a */ if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) && !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0)) bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top); bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i); } /* switch to 64-bit domain */ np = alloca(top * sizeof(BN_ULONG)); top /= 2; bn_flip_t4(np, mont->N.d, top); /* * The exponent may not have a whole number of fixed-size windows. * To simplify the main loop, the initial window has between 1 and * full-window-size bits such that what remains is always a whole * number of windows */ window0 = (bits - 1) % 5 + 1; wmask = (1 << window0) - 1; bits -= window0; wvalue = bn_get_bits(p, bits) & wmask; bn_gather5_t4(tmp.d, top, powerbuf, wvalue); /* * Scan the exponent one window at a time starting from the most * significant bits. */ while (bits > 0) { if (bits < stride) stride = bits; bits -= stride; wvalue = bn_get_bits(p, bits); if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride)) continue; /* retry once and fall back */ if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride)) continue; bits += stride - 5; wvalue >>= stride - 5; wvalue &= 31; bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); } bn_flip_t4(tmp.d, tmp.d, top); top *= 2; /* back to 32-bit domain */ tmp.top = top; bn_correct_top(&tmp); OPENSSL_cleanse(np, top * sizeof(BN_ULONG)); } else #endif #if defined(OPENSSL_BN_ASM_MONT5) if (window == 5 && top > 1) { /* * This optimization uses ideas from http://eprint.iacr.org/2011/239, * specifically optimization of cache-timing attack countermeasures * and pre-computation optimization. */ /* * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as * 512-bit RSA is hardly relevant, we omit it to spare size... */ void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table, const BN_ULONG *np, const BN_ULONG *n0, int num, int power); void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power); void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power); void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table, const BN_ULONG *np, const BN_ULONG *n0, int num, int power); int bn_get_bits5(const BN_ULONG *ap, int off); int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *not_used, const BN_ULONG *np, const BN_ULONG *n0, int num); BN_ULONG *n0 = mont->n0, *np; /* * BN_to_montgomery can contaminate words above .top [in * BN_DEBUG[_DEBUG] build]... */ for (i = am.top; i < top; i++) am.d[i] = 0; for (i = tmp.top; i < top; i++) tmp.d[i] = 0; /* * copy mont->N.d[] to improve cache locality */ for (np = am.d + top, i = 0; i < top; i++) np[i] = mont->N.d[i]; bn_scatter5(tmp.d, top, powerbuf, 0); bn_scatter5(am.d, am.top, powerbuf, 1); bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, 2); # if 0 for (i = 3; i < 32; i++) { /* Calculate a^i = a^(i-1) * a */ bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); } # else /* same as above, but uses squaring for 1/2 of operations */ for (i = 4; i < 32; i *= 2) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, i); } for (i = 3; i < 8; i += 2) { int j; bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); for (j = 2 * i; j < 32; j *= 2) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, j); } } for (; i < 16; i += 2) { bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_scatter5(tmp.d, top, powerbuf, 2 * i); } for (; i < 32; i += 2) { bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); bn_scatter5(tmp.d, top, powerbuf, i); } # endif /* * The exponent may not have a whole number of fixed-size windows. * To simplify the main loop, the initial window has between 1 and * full-window-size bits such that what remains is always a whole * number of windows */ window0 = (bits - 1) % 5 + 1; wmask = (1 << window0) - 1; bits -= window0; wvalue = bn_get_bits(p, bits) & wmask; bn_gather5(tmp.d, top, powerbuf, wvalue); /* * Scan the exponent one window at a time starting from the most * significant bits. */ if (top & 7) { while (bits > 0) { bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, bn_get_bits5(p->d, bits -= 5)); } } else { while (bits > 0) { bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, bn_get_bits5(p->d, bits -= 5)); } } ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top); tmp.top = top; bn_correct_top(&tmp); if (ret) { if (!BN_copy(rr, &tmp)) ret = 0; goto err; /* non-zero ret means it's not error */ } } else #endif { if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window)) goto err; /* * If the window size is greater than 1, then calculate * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even * powers could instead be computed as (a^(i/2))^2 to use the slight * performance advantage of sqr over mul). */ if (window > 1) { if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, window)) goto err; for (i = 3; i < numPowers; i++) { /* Calculate a^i = a^(i-1) * a */ if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, window)) goto err; } } /* * The exponent may not have a whole number of fixed-size windows. * To simplify the main loop, the initial window has between 1 and * full-window-size bits such that what remains is always a whole * number of windows */ window0 = (bits - 1) % window + 1; wmask = (1 << window0) - 1; bits -= window0; wvalue = bn_get_bits(p, bits) & wmask; if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue, window)) goto err; wmask = (1 << window) - 1; /* * Scan the exponent one window at a time starting from the most * significant bits. */ while (bits > 0) { /* Square the result window-size times */ for (i = 0; i < window; i++) if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx)) goto err; /* * Get a window's worth of bits from the exponent * This avoids calling BN_is_bit_set for each bit, which * is not only slower but also makes each bit vulnerable to * EM (and likely other) side-channel attacks like One&Done * (for details see "One&Done: A Single-Decryption EM-Based * Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam, * H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and * M. Prvulovic, in USENIX Security'18) */ bits -= window; wvalue = bn_get_bits(p, bits) & wmask; /* * Fetch the appropriate pre-computed value from the pre-buf */ if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, window)) goto err; /* Multiply the result into the intermediate result */ if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx)) goto err; } } /* * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery * removes padding [if any] and makes return value suitable for public * API consumer. */ #if defined(SPARC_T4_MONT) if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) { am.d[0] = 1; /* borrow am */ for (i = 1; i < top; i++) am.d[i] = 0; if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx)) goto err; } else #endif if (!BN_from_montgomery(rr, &tmp, mont, ctx)) goto err; ret = 1; err: if (in_mont == NULL) BN_MONT_CTX_free(mont); if (powerbuf != NULL) { OPENSSL_cleanse(powerbuf, powerbufLen); OPENSSL_free(powerbufFree); } BN_CTX_end(ctx); return ret; } int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { BN_MONT_CTX *mont = NULL; int b, bits, ret = 0; int r_is_one; BN_ULONG w, next_w; BIGNUM *r, *t; BIGNUM *swap_tmp; #define BN_MOD_MUL_WORD(r, w, m) \ (BN_mul_word(r, (w)) && \ (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) /* * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is * probably more overhead than always using BN_mod (which uses BN_copy if * a similar test returns true). */ /* * We can use BN_mod and do not need BN_nnmod because our accumulator is * never negative (the result of BN_mod does not depend on the sign of * the modulus). */ #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } bn_check_top(p); bn_check_top(m); if (!BN_is_odd(m)) { BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } if (m->top == 1) a %= m->d[0]; /* make sure that 'a' is reduced */ bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(rr); } else { ret = BN_one(rr); } return ret; } if (a == 0) { BN_zero(rr); ret = 1; return ret; } BN_CTX_start(ctx); r = BN_CTX_get(ctx); t = BN_CTX_get(ctx); if (t == NULL) goto err; if (in_mont != NULL) mont = in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } r_is_one = 1; /* except for Montgomery factor */ /* bits-1 >= 0 */ /* The result is accumulated in the product r*w. */ w = a; /* bit 'bits-1' of 'p' is always set */ for (b = bits - 2; b >= 0; b--) { /* First, square r*w. */ next_w = w * w; if ((next_w / w) != w) { /* overflow */ if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } next_w = 1; } w = next_w; if (!r_is_one) { if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; } /* Second, multiply r*w by 'a' if exponent bit is set. */ if (BN_is_bit_set(p, b)) { next_w = w * a; if ((next_w / a) != w) { /* overflow */ if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } next_w = a; } w = next_w; } } /* Finally, set r:=r*w. */ if (w != 1) { if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } } if (r_is_one) { /* can happen only if a == 1 */ if (!BN_one(rr)) goto err; } else { if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; } ret = 1; err: if (in_mont == NULL) BN_MONT_CTX_free(mont); BN_CTX_end(ctx); bn_check_top(rr); return ret; } /* The old fallback, simple version :-) */ int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int i, j, bits, ret = 0, wstart, wend, window, wvalue; int start = 1; BIGNUM *d; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1, or x**0 mod -1 is still zero. */ if (BN_abs_is_word(m, 1)) { ret = 1; BN_zero(r); } else { ret = BN_one(r); } return ret; } BN_CTX_start(ctx); d = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (val[0] == NULL) goto err; if (!BN_nnmod(val[0], a, m, ctx)) goto err; /* 1 */ if (BN_is_zero(val[0])) { BN_zero(r); ret = 1; goto err; } window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul(d, val[0], val[0], m, ctx)) goto err; /* 2 */ j = 1 << (window - 1); for (i = 1; i < j; i++) { if (((val[i] = BN_CTX_get(ctx)) == NULL) || !BN_mod_mul(val[i], val[i - 1], d, m, ctx)) goto err; } } start = 1; /* This is used to avoid multiplication etc * when there is only the value '1' in the * buffer. */ wvalue = 0; /* The 'value' of the window */ wstart = bits - 1; /* The top bit of the window */ wend = 0; /* The bottom bit of the window */ if (!BN_one(r)) goto err; for (;;) { if (BN_is_bit_set(p, wstart) == 0) { if (!start) if (!BN_mod_mul(r, r, r, m, ctx)) goto err; if (wstart == 0) break; wstart--; continue; } /* * We now have wstart on a 'set' bit, we now need to work out how bit * a window to do. To do this we need to scan forward until the last * set bit before the end of the window */ j = wstart; wvalue = 1; wend = 0; for (i = 1; i < window; i++) { if (wstart - i < 0) break; if (BN_is_bit_set(p, wstart - i)) { wvalue <<= (i - wend); wvalue |= 1; wend = i; } } /* wend is the size of the current window */ j = wend + 1; /* add the 'bytes above' */ if (!start) for (i = 0; i < j; i++) { if (!BN_mod_mul(r, r, r, m, ctx)) goto err; } /* wvalue will be an odd number < 2^window */ if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) goto err; /* move the 'window' down further */ wstart -= wend + 1; wvalue = 0; start = 0; if (wstart < 0) break; } ret = 1; err: BN_CTX_end(ctx); bn_check_top(r); return ret; } openssl-1.1.1f/crypto/bn/bn_exp2.c000066400000000000000000000134661364063235100170000ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "bn_local.h" #define TABLE_SIZE 32 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2, wvalue1, wvalue2; int r_is_one = 1; BIGNUM *d, *r; const BIGNUM *a_mod_m; /* Tables of variables obtained from 'ctx' */ BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE]; BN_MONT_CTX *mont = NULL; bn_check_top(a1); bn_check_top(p1); bn_check_top(a2); bn_check_top(p2); bn_check_top(m); if (!(m->d[0] & 1)) { BNerr(BN_F_BN_MOD_EXP2_MONT, BN_R_CALLED_WITH_EVEN_MODULUS); return 0; } bits1 = BN_num_bits(p1); bits2 = BN_num_bits(p2); if ((bits1 == 0) && (bits2 == 0)) { ret = BN_one(rr); return ret; } bits = (bits1 > bits2) ? bits1 : bits2; BN_CTX_start(ctx); d = BN_CTX_get(ctx); r = BN_CTX_get(ctx); val1[0] = BN_CTX_get(ctx); val2[0] = BN_CTX_get(ctx); if (val2[0] == NULL) goto err; if (in_mont != NULL) mont = in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } window1 = BN_window_bits_for_exponent_size(bits1); window2 = BN_window_bits_for_exponent_size(bits2); /* * Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 .. 2^(window1-1) */ if (a1->neg || BN_ucmp(a1, m) >= 0) { if (!BN_mod(val1[0], a1, m, ctx)) goto err; a_mod_m = val1[0]; } else a_mod_m = a1; if (BN_is_zero(a_mod_m)) { BN_zero(rr); ret = 1; goto err; } if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) goto err; if (window1 > 1) { if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) goto err; j = 1 << (window1 - 1); for (i = 1; i < j; i++) { if (((val1[i] = BN_CTX_get(ctx)) == NULL) || !BN_mod_mul_montgomery(val1[i], val1[i - 1], d, mont, ctx)) goto err; } } /* * Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 .. 2^(window2-1) */ if (a2->neg || BN_ucmp(a2, m) >= 0) { if (!BN_mod(val2[0], a2, m, ctx)) goto err; a_mod_m = val2[0]; } else a_mod_m = a2; if (BN_is_zero(a_mod_m)) { BN_zero(rr); ret = 1; goto err; } if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) goto err; if (window2 > 1) { if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) goto err; j = 1 << (window2 - 1); for (i = 1; i < j; i++) { if (((val2[i] = BN_CTX_get(ctx)) == NULL) || !BN_mod_mul_montgomery(val2[i], val2[i - 1], d, mont, ctx)) goto err; } } /* Now compute the power product, using independent windows. */ r_is_one = 1; wvalue1 = 0; /* The 'value' of the first window */ wvalue2 = 0; /* The 'value' of the second window */ wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the * first window */ wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the * second window */ if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) goto err; for (b = bits - 1; b >= 0; b--) { if (!r_is_one) { if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; } if (!wvalue1) if (BN_is_bit_set(p1, b)) { /* * consider bits b-window1+1 .. b for this window */ i = b - window1 + 1; while (!BN_is_bit_set(p1, i)) /* works for i<0 */ i++; wpos1 = i; wvalue1 = 1; for (i = b - 1; i >= wpos1; i--) { wvalue1 <<= 1; if (BN_is_bit_set(p1, i)) wvalue1++; } } if (!wvalue2) if (BN_is_bit_set(p2, b)) { /* * consider bits b-window2+1 .. b for this window */ i = b - window2 + 1; while (!BN_is_bit_set(p2, i)) i++; wpos2 = i; wvalue2 = 1; for (i = b - 1; i >= wpos2; i--) { wvalue2 <<= 1; if (BN_is_bit_set(p2, i)) wvalue2++; } } if (wvalue1 && b == wpos1) { /* wvalue1 is odd and < 2^window1 */ if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], mont, ctx)) goto err; wvalue1 = 0; r_is_one = 0; } if (wvalue2 && b == wpos2) { /* wvalue2 is odd and < 2^window2 */ if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], mont, ctx)) goto err; wvalue2 = 0; r_is_one = 0; } } if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; ret = 1; err: if (in_mont == NULL) BN_MONT_CTX_free(mont); BN_CTX_end(ctx); bn_check_top(rr); return ret; } openssl-1.1.1f/crypto/bn/bn_gcd.c000066400000000000000000000444251364063235100166560ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" /* solves ax == 1 (mod n) */ static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); BIGNUM *BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) { BIGNUM *rv; int noinv; rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); if (noinv) BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); return rv; } BIGNUM *int_bn_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, int *pnoinv) { BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; BIGNUM *ret = NULL; int sign; /* This is invalid input so we don't worry about constant time here */ if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { if (pnoinv != NULL) *pnoinv = 1; return NULL; } if (pnoinv != NULL) *pnoinv = 0; if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { return BN_mod_inverse_no_branch(in, a, n, ctx); } bn_check_top(a); bn_check_top(n); BN_CTX_start(ctx); A = BN_CTX_get(ctx); B = BN_CTX_get(ctx); X = BN_CTX_get(ctx); D = BN_CTX_get(ctx); M = BN_CTX_get(ctx); Y = BN_CTX_get(ctx); T = BN_CTX_get(ctx); if (T == NULL) goto err; if (in == NULL) R = BN_new(); else R = in; if (R == NULL) goto err; BN_one(X); BN_zero(Y); if (BN_copy(B, a) == NULL) goto err; if (BN_copy(A, n) == NULL) goto err; A->neg = 0; if (B->neg || (BN_ucmp(B, A) >= 0)) { if (!BN_nnmod(B, B, A, ctx)) goto err; } sign = -1; /*- * From B = a mod |n|, A = |n| it follows that * * 0 <= B < A, * -sign*X*a == B (mod |n|), * sign*Y*a == A (mod |n|). */ if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { /* * Binary inversion algorithm; requires odd modulus. This is faster * than the general algorithm if the modulus is sufficiently small * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit * systems) */ int shift; while (!BN_is_zero(B)) { /*- * 0 < B < |n|, * 0 < A <= |n|, * (1) -sign*X*a == B (mod |n|), * (2) sign*Y*a == A (mod |n|) */ /* * Now divide B by the maximum possible power of two in the * integers, and divide X by the same value mod |n|. When we're * done, (1) still holds. */ shift = 0; while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ shift++; if (BN_is_odd(X)) { if (!BN_uadd(X, X, n)) goto err; } /* * now X is even, so we can easily divide it by two */ if (!BN_rshift1(X, X)) goto err; } if (shift > 0) { if (!BN_rshift(B, B, shift)) goto err; } /* * Same for A and Y. Afterwards, (2) still holds. */ shift = 0; while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ shift++; if (BN_is_odd(Y)) { if (!BN_uadd(Y, Y, n)) goto err; } /* now Y is even */ if (!BN_rshift1(Y, Y)) goto err; } if (shift > 0) { if (!BN_rshift(A, A, shift)) goto err; } /*- * We still have (1) and (2). * Both A and B are odd. * The following computations ensure that * * 0 <= B < |n|, * 0 < A < |n|, * (1) -sign*X*a == B (mod |n|), * (2) sign*Y*a == A (mod |n|), * * and that either A or B is even in the next iteration. */ if (BN_ucmp(B, A) >= 0) { /* -sign*(X + Y)*a == B - A (mod |n|) */ if (!BN_uadd(X, X, Y)) goto err; /* * NB: we could use BN_mod_add_quick(X, X, Y, n), but that * actually makes the algorithm slower */ if (!BN_usub(B, B, A)) goto err; } else { /* sign*(X + Y)*a == A - B (mod |n|) */ if (!BN_uadd(Y, Y, X)) goto err; /* * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ if (!BN_usub(A, A, B)) goto err; } } } else { /* general inversion algorithm */ while (!BN_is_zero(B)) { BIGNUM *tmp; /*- * 0 < B < A, * (*) -sign*X*a == B (mod |n|), * sign*Y*a == A (mod |n|) */ /* (D, M) := (A/B, A%B) ... */ if (BN_num_bits(A) == BN_num_bits(B)) { if (!BN_one(D)) goto err; if (!BN_sub(M, A, B)) goto err; } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { /* A/B is 1, 2, or 3 */ if (!BN_lshift1(T, B)) goto err; if (BN_ucmp(A, T) < 0) { /* A < 2*B, so D=1 */ if (!BN_one(D)) goto err; if (!BN_sub(M, A, B)) goto err; } else { /* A >= 2*B, so D=2 or D=3 */ if (!BN_sub(M, A, T)) goto err; if (!BN_add(D, T, B)) goto err; /* use D (:= 3*B) as temp */ if (BN_ucmp(A, D) < 0) { /* A < 3*B, so D=2 */ if (!BN_set_word(D, 2)) goto err; /* * M (= A - 2*B) already has the correct value */ } else { /* only D=3 remains */ if (!BN_set_word(D, 3)) goto err; /* * currently M = A - 2*B, but we need M = A - 3*B */ if (!BN_sub(M, M, B)) goto err; } } } else { if (!BN_div(D, M, A, B, ctx)) goto err; } /*- * Now * A = D*B + M; * thus we have * (**) sign*Y*a == D*B + M (mod |n|). */ tmp = A; /* keep the BIGNUM object, the value does not matter */ /* (A, B) := (B, A mod B) ... */ A = B; B = M; /* ... so we have 0 <= B < A again */ /*- * Since the former M is now B and the former B is now A, * (**) translates into * sign*Y*a == D*A + B (mod |n|), * i.e. * sign*Y*a - D*A == B (mod |n|). * Similarly, (*) translates into * -sign*X*a == A (mod |n|). * * Thus, * sign*Y*a + D*sign*X*a == B (mod |n|), * i.e. * sign*(Y + D*X)*a == B (mod |n|). * * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at * -sign*X*a == B (mod |n|), * sign*Y*a == A (mod |n|). * Note that X and Y stay non-negative all the time. */ /* * most of the time D is very small, so we can optimize tmp := D*X+Y */ if (BN_is_one(D)) { if (!BN_add(tmp, X, Y)) goto err; } else { if (BN_is_word(D, 2)) { if (!BN_lshift1(tmp, X)) goto err; } else if (BN_is_word(D, 4)) { if (!BN_lshift(tmp, X, 2)) goto err; } else if (D->top == 1) { if (!BN_copy(tmp, X)) goto err; if (!BN_mul_word(tmp, D->d[0])) goto err; } else { if (!BN_mul(tmp, D, X, ctx)) goto err; } if (!BN_add(tmp, tmp, Y)) goto err; } M = Y; /* keep the BIGNUM object, the value does not matter */ Y = X; X = tmp; sign = -sign; } } /*- * The while loop (Euclid's algorithm) ends when * A == gcd(a,n); * we have * sign*Y*a == A (mod |n|), * where Y is non-negative. */ if (sign < 0) { if (!BN_sub(Y, n, Y)) goto err; } /* Now Y*a == A (mod |n|). */ if (BN_is_one(A)) { /* Y*a == 1 (mod |n|) */ if (!Y->neg && BN_ucmp(Y, n) < 0) { if (!BN_copy(R, Y)) goto err; } else { if (!BN_nnmod(R, Y, n, ctx)) goto err; } } else { if (pnoinv) *pnoinv = 1; goto err; } ret = R; err: if ((ret == NULL) && (in == NULL)) BN_free(R); BN_CTX_end(ctx); bn_check_top(ret); return ret; } /* * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does * not contain branches that may leak sensitive information. */ static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) { BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; BIGNUM *ret = NULL; int sign; bn_check_top(a); bn_check_top(n); BN_CTX_start(ctx); A = BN_CTX_get(ctx); B = BN_CTX_get(ctx); X = BN_CTX_get(ctx); D = BN_CTX_get(ctx); M = BN_CTX_get(ctx); Y = BN_CTX_get(ctx); T = BN_CTX_get(ctx); if (T == NULL) goto err; if (in == NULL) R = BN_new(); else R = in; if (R == NULL) goto err; BN_one(X); BN_zero(Y); if (BN_copy(B, a) == NULL) goto err; if (BN_copy(A, n) == NULL) goto err; A->neg = 0; if (B->neg || (BN_ucmp(B, A) >= 0)) { /* * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, * BN_div_no_branch will be called eventually. */ { BIGNUM local_B; bn_init(&local_B); BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); if (!BN_nnmod(B, &local_B, A, ctx)) goto err; /* Ensure local_B goes out of scope before any further use of B */ } } sign = -1; /*- * From B = a mod |n|, A = |n| it follows that * * 0 <= B < A, * -sign*X*a == B (mod |n|), * sign*Y*a == A (mod |n|). */ while (!BN_is_zero(B)) { BIGNUM *tmp; /*- * 0 < B < A, * (*) -sign*X*a == B (mod |n|), * sign*Y*a == A (mod |n|) */ /* * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, * BN_div_no_branch will be called eventually. */ { BIGNUM local_A; bn_init(&local_A); BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); /* (D, M) := (A/B, A%B) ... */ if (!BN_div(D, M, &local_A, B, ctx)) goto err; /* Ensure local_A goes out of scope before any further use of A */ } /*- * Now * A = D*B + M; * thus we have * (**) sign*Y*a == D*B + M (mod |n|). */ tmp = A; /* keep the BIGNUM object, the value does not * matter */ /* (A, B) := (B, A mod B) ... */ A = B; B = M; /* ... so we have 0 <= B < A again */ /*- * Since the former M is now B and the former B is now A, * (**) translates into * sign*Y*a == D*A + B (mod |n|), * i.e. * sign*Y*a - D*A == B (mod |n|). * Similarly, (*) translates into * -sign*X*a == A (mod |n|). * * Thus, * sign*Y*a + D*sign*X*a == B (mod |n|), * i.e. * sign*(Y + D*X)*a == B (mod |n|). * * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at * -sign*X*a == B (mod |n|), * sign*Y*a == A (mod |n|). * Note that X and Y stay non-negative all the time. */ if (!BN_mul(tmp, D, X, ctx)) goto err; if (!BN_add(tmp, tmp, Y)) goto err; M = Y; /* keep the BIGNUM object, the value does not * matter */ Y = X; X = tmp; sign = -sign; } /*- * The while loop (Euclid's algorithm) ends when * A == gcd(a,n); * we have * sign*Y*a == A (mod |n|), * where Y is non-negative. */ if (sign < 0) { if (!BN_sub(Y, n, Y)) goto err; } /* Now Y*a == A (mod |n|). */ if (BN_is_one(A)) { /* Y*a == 1 (mod |n|) */ if (!Y->neg && BN_ucmp(Y, n) < 0) { if (!BN_copy(R, Y)) goto err; } else { if (!BN_nnmod(R, Y, n, ctx)) goto err; } } else { BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE); goto err; } ret = R; err: if ((ret == NULL) && (in == NULL)) BN_free(R); BN_CTX_end(ctx); bn_check_top(ret); return ret; } /*- * This function is based on the constant-time GCD work by Bernstein and Yang: * https://eprint.iacr.org/2019/266 * Generalized fast GCD function to allow even inputs. * The algorithm first finds the shared powers of 2 between * the inputs, and removes them, reducing at least one of the * inputs to an odd value. Then it proceeds to calculate the GCD. * Before returning the resulting GCD, we take care of adding * back the powers of two removed at the beginning. * Note 1: we assume the bit length of both inputs is public information, * since access to top potentially leaks this information. */ int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) { BIGNUM *g, *temp = NULL; BN_ULONG mask = 0; int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0; /* Note 2: zero input corner cases are not constant-time since they are * handled immediately. An attacker can run an attack under this * assumption without the need of side-channel information. */ if (BN_is_zero(in_b)) { ret = BN_copy(r, in_a) != NULL; r->neg = 0; return ret; } if (BN_is_zero(in_a)) { ret = BN_copy(r, in_b) != NULL; r->neg = 0; return ret; } bn_check_top(in_a); bn_check_top(in_b); BN_CTX_start(ctx); temp = BN_CTX_get(ctx); g = BN_CTX_get(ctx); /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */ if (g == NULL || !BN_lshift1(g, in_b) || !BN_lshift1(r, in_a)) goto err; /* find shared powers of two, i.e. "shifts" >= 1 */ for (i = 0; i < r->dmax && i < g->dmax; i++) { mask = ~(r->d[i] | g->d[i]); for (j = 0; j < BN_BITS2; j++) { bit &= mask; shifts += bit; mask >>= 1; } } /* subtract shared powers of two; shifts >= 1 */ if (!BN_rshift(r, r, shifts) || !BN_rshift(g, g, shifts)) goto err; /* expand to biggest nword, with room for a possible extra word */ top = 1 + ((r->top >= g->top) ? r->top : g->top); if (bn_wexpand(r, top) == NULL || bn_wexpand(g, top) == NULL || bn_wexpand(temp, top) == NULL) goto err; /* re arrange inputs s.t. r is odd */ BN_consttime_swap((~r->d[0]) & 1, r, g, top); /* compute the number of iterations */ rlen = BN_num_bits(r); glen = BN_num_bits(g); m = 4 + 3 * ((rlen >= glen) ? rlen : glen); for (i = 0; i < m; i++) { /* conditionally flip signs if delta is positive and g is odd */ cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1 /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))); delta = (-cond & -delta) | ((cond - 1) & delta); r->neg ^= cond; /* swap */ BN_consttime_swap(cond, r, g, top); /* elimination step */ delta++; if (!BN_add(temp, g, r)) goto err; BN_consttime_swap(g->d[0] & 1 /* g is odd */ /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))), g, temp, top); if (!BN_rshift1(g, g)) goto err; } /* remove possible negative sign */ r->neg = 0; /* add powers of 2 removed, then correct the artificial shift */ if (!BN_lshift(r, r, shifts) || !BN_rshift1(r, r)) goto err; ret = 1; err: BN_CTX_end(ctx); bn_check_top(r); return ret; } openssl-1.1.1f/crypto/bn/bn_gf2m.c000066400000000000000000000717701364063235100167570ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include "bn_local.h" #ifndef OPENSSL_NO_EC2M /* * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should * fail. */ # define MAX_ITERATIONS 50 # define SQR_nibble(w) ((((w) & 8) << 3) \ | (((w) & 4) << 2) \ | (((w) & 2) << 1) \ | ((w) & 1)) /* Platform-specific macros to accelerate squaring. */ # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) # define SQR1(w) \ SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \ SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \ SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \ SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32) # define SQR0(w) \ SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \ SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \ SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) # endif # ifdef THIRTY_TWO_BIT # define SQR1(w) \ SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \ SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16) # define SQR0(w) \ SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) # endif # if !defined(OPENSSL_BN_ASM_GF2m) /* * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that * the variables have the right amount of space allocated. */ # ifdef THIRTY_TWO_BIT static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) { register BN_ULONG h, l, s; BN_ULONG tab[8], top2b = a >> 30; register BN_ULONG a1, a2, a4; a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1 ^ a2; tab[4] = a4; tab[5] = a1 ^ a4; tab[6] = a2 ^ a4; tab[7] = a1 ^ a2 ^ a4; s = tab[b & 0x7]; l = s; s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; s = tab[b >> 30]; l ^= s << 30; h ^= s >> 2; /* compensate for the top two bits of a */ if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } *r1 = h; *r0 = l; } # endif # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) { register BN_ULONG h, l, s; BN_ULONG tab[16], top3b = a >> 61; register BN_ULONG a1, a2, a4, a8; a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1 ^ a2; tab[4] = a4; tab[5] = a1 ^ a4; tab[6] = a2 ^ a4; tab[7] = a1 ^ a2 ^ a4; tab[8] = a8; tab[9] = a1 ^ a8; tab[10] = a2 ^ a8; tab[11] = a1 ^ a2 ^ a8; tab[12] = a4 ^ a8; tab[13] = a1 ^ a4 ^ a8; tab[14] = a2 ^ a4 ^ a8; tab[15] = a1 ^ a2 ^ a4 ^ a8; s = tab[b & 0xF]; l = s; s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; s = tab[b >> 60]; l ^= s << 60; h ^= s >> 4; /* compensate for the top three bits of a */ if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } *r1 = h; *r0 = l; } # endif /* * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST * ensure that the variables have the right amount of space allocated. */ static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0) { BN_ULONG m1, m0; /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); bn_GF2m_mul_1x1(r + 1, r, a0, b0); bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ } # else void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0); # endif /* * Add polynomials a and b and store result in r; r could be a or b, a and b * could be equal; r is the bitwise XOR of a and b. */ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) { int i; const BIGNUM *at, *bt; bn_check_top(a); bn_check_top(b); if (a->top < b->top) { at = b; bt = a; } else { at = a; bt = b; } if (bn_wexpand(r, at->top) == NULL) return 0; for (i = 0; i < bt->top; i++) { r->d[i] = at->d[i] ^ bt->d[i]; } for (; i < at->top; i++) { r->d[i] = at->d[i]; } r->top = at->top; bn_correct_top(r); return 1; } /*- * Some functions allow for representation of the irreducible polynomials * as an int[], say p. The irreducible f(t) is then of the form: * t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. */ /* Performs modular reduction of a and store result in r. r could be a. */ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) { int j, k; int n, dN, d0, d1; BN_ULONG zz, *z; bn_check_top(a); if (!p[0]) { /* reduction mod 1 => return 0 */ BN_zero(r); return 1; } /* * Since the algorithm does reduction in the r value, if a != r, copy the * contents of a into r so we can do reduction in r. */ if (a != r) { if (!bn_wexpand(r, a->top)) return 0; for (j = 0; j < a->top; j++) { r->d[j] = a->d[j]; } r->top = a->top; } z = r->d; /* start reduction */ dN = p[0] / BN_BITS2; for (j = r->top - 1; j > dN;) { zz = z[j]; if (z[j] == 0) { j--; continue; } z[j] = 0; for (k = 1; p[k] != 0; k++) { /* reducing component t^p[k] */ n = p[0] - p[k]; d0 = n % BN_BITS2; d1 = BN_BITS2 - d0; n /= BN_BITS2; z[j - n] ^= (zz >> d0); if (d0) z[j - n - 1] ^= (zz << d1); } /* reducing component t^0 */ n = dN; d0 = p[0] % BN_BITS2; d1 = BN_BITS2 - d0; z[j - n] ^= (zz >> d0); if (d0) z[j - n - 1] ^= (zz << d1); } /* final round of reduction */ while (j == dN) { d0 = p[0] % BN_BITS2; zz = z[dN] >> d0; if (zz == 0) break; d1 = BN_BITS2 - d0; /* clear up the top d1 bits */ if (d0) z[dN] = (z[dN] << d1) >> d1; else z[dN] = 0; z[0] ^= zz; /* reduction t^0 component */ for (k = 1; p[k] != 0; k++) { BN_ULONG tmp_ulong; /* reducing component t^p[k] */ n = p[k] / BN_BITS2; d0 = p[k] % BN_BITS2; d1 = BN_BITS2 - d0; z[n] ^= (zz << d0); if (d0 && (tmp_ulong = zz >> d1)) z[n + 1] ^= tmp_ulong; } } bn_correct_top(r); return 1; } /* * Performs modular reduction of a by p and store result in r. r could be a. * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper * function is only provided for convenience; for best performance, use the * BN_GF2m_mod_arr function. */ int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) { int ret = 0; int arr[6]; bn_check_top(a); bn_check_top(p); ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); if (!ret || ret > (int)OSSL_NELEM(arr)) { BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH); return 0; } ret = BN_GF2m_mod_arr(r, a, arr); bn_check_top(r); return ret; } /* * Compute the product of two polynomials a and b, reduce modulo p, and store * the result in r. r could be a or b; a could be b. */ int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int zlen, i, j, k, ret = 0; BIGNUM *s; BN_ULONG x1, x0, y1, y0, zz[4]; bn_check_top(a); bn_check_top(b); if (a == b) { return BN_GF2m_mod_sqr_arr(r, a, p, ctx); } BN_CTX_start(ctx); if ((s = BN_CTX_get(ctx)) == NULL) goto err; zlen = a->top + b->top + 4; if (!bn_wexpand(s, zlen)) goto err; s->top = zlen; for (i = 0; i < zlen; i++) s->d[i] = 0; for (j = 0; j < b->top; j += 2) { y0 = b->d[j]; y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; for (i = 0; i < a->top; i += 2) { x0 = a->d[i]; x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); for (k = 0; k < 4; k++) s->d[i + j + k] ^= zz[k]; } } bn_correct_top(s); if (BN_GF2m_mod_arr(r, s, p)) ret = 1; bn_check_top(r); err: BN_CTX_end(ctx); return ret; } /* * Compute the product of two polynomials a and b, reduce modulo p, and store * the result in r. r could be a or b; a could equal b. This function calls * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is * only provided for convenience; for best performance, use the * BN_GF2m_mod_mul_arr function. */ int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; const int max = BN_num_bits(p) + 1; int *arr = NULL; bn_check_top(a); bn_check_top(b); bn_check_top(p); if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); bn_check_top(r); err: OPENSSL_free(arr); return ret; } /* Square a, reduce the result mod p, and store it in a. r could be a. */ int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int i, ret = 0; BIGNUM *s; bn_check_top(a); BN_CTX_start(ctx); if ((s = BN_CTX_get(ctx)) == NULL) goto err; if (!bn_wexpand(s, 2 * a->top)) goto err; for (i = a->top - 1; i >= 0; i--) { s->d[2 * i + 1] = SQR1(a->d[i]); s->d[2 * i] = SQR0(a->d[i]); } s->top = 2 * a->top; bn_correct_top(s); if (!BN_GF2m_mod_arr(r, s, p)) goto err; bn_check_top(r); ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Square a, reduce the result mod p, and store it in a. r could be a. This * function calls down to the BN_GF2m_mod_sqr_arr implementation; this * wrapper function is only provided for convenience; for best performance, * use the BN_GF2m_mod_sqr_arr function. */ int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; const int max = BN_num_bits(p) + 1; int *arr = NULL; bn_check_top(a); bn_check_top(p); if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); bn_check_top(r); err: OPENSSL_free(arr); return ret; } /* * Invert a, reduce modulo p, and store the result in r. r could be a. Uses * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic * Curve Cryptography Over Binary Fields". */ static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; int ret = 0; bn_check_top(a); bn_check_top(p); BN_CTX_start(ctx); b = BN_CTX_get(ctx); c = BN_CTX_get(ctx); u = BN_CTX_get(ctx); v = BN_CTX_get(ctx); if (v == NULL) goto err; if (!BN_GF2m_mod(u, a, p)) goto err; if (BN_is_zero(u)) goto err; if (!BN_copy(v, p)) goto err; # if 0 if (!BN_one(b)) goto err; while (1) { while (!BN_is_odd(u)) { if (BN_is_zero(u)) goto err; if (!BN_rshift1(u, u)) goto err; if (BN_is_odd(b)) { if (!BN_GF2m_add(b, b, p)) goto err; } if (!BN_rshift1(b, b)) goto err; } if (BN_abs_is_word(u, 1)) break; if (BN_num_bits(u) < BN_num_bits(v)) { tmp = u; u = v; v = tmp; tmp = b; b = c; c = tmp; } if (!BN_GF2m_add(u, u, v)) goto err; if (!BN_GF2m_add(b, b, c)) goto err; } # else { int i; int ubits = BN_num_bits(u); int vbits = BN_num_bits(v); /* v is copy of p */ int top = p->top; BN_ULONG *udp, *bdp, *vdp, *cdp; if (!bn_wexpand(u, top)) goto err; udp = u->d; for (i = u->top; i < top; i++) udp[i] = 0; u->top = top; if (!bn_wexpand(b, top)) goto err; bdp = b->d; bdp[0] = 1; for (i = 1; i < top; i++) bdp[i] = 0; b->top = top; if (!bn_wexpand(c, top)) goto err; cdp = c->d; for (i = 0; i < top; i++) cdp[i] = 0; c->top = top; vdp = v->d; /* It pays off to "cache" *->d pointers, * because it allows optimizer to be more * aggressive. But we don't have to "cache" * p->d, because *p is declared 'const'... */ while (1) { while (ubits && !(udp[0] & 1)) { BN_ULONG u0, u1, b0, b1, mask; u0 = udp[0]; b0 = bdp[0]; mask = (BN_ULONG)0 - (b0 & 1); b0 ^= p->d[0] & mask; for (i = 0; i < top - 1; i++) { u1 = udp[i + 1]; udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; u0 = u1; b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; b0 = b1; } udp[i] = u0 >> 1; bdp[i] = b0 >> 1; ubits--; } if (ubits <= BN_BITS2) { if (udp[0] == 0) /* poly was reducible */ goto err; if (udp[0] == 1) break; } if (ubits < vbits) { i = ubits; ubits = vbits; vbits = i; tmp = u; u = v; v = tmp; tmp = b; b = c; c = tmp; udp = vdp; vdp = v->d; bdp = cdp; cdp = c->d; } for (i = 0; i < top; i++) { udp[i] ^= vdp[i]; bdp[i] ^= cdp[i]; } if (ubits == vbits) { BN_ULONG ul; int utop = (ubits - 1) / BN_BITS2; while ((ul = udp[utop]) == 0 && utop) utop--; ubits = utop * BN_BITS2 + BN_num_bits_word(ul); } } bn_correct_top(b); } # endif if (!BN_copy(r, b)) goto err; bn_check_top(r); ret = 1; err: # ifdef BN_DEBUG /* BN_CTX_end would complain about the * expanded form */ bn_correct_top(c); bn_correct_top(u); bn_correct_top(v); # endif BN_CTX_end(ctx); return ret; } /*- * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling. * This is not constant time. * But it does eliminate first order deduction on the input. */ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { BIGNUM *b = NULL; int ret = 0; BN_CTX_start(ctx); if ((b = BN_CTX_get(ctx)) == NULL) goto err; /* generate blinding value */ do { if (!BN_priv_rand(b, BN_num_bits(p) - 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) goto err; } while (BN_is_zero(b)); /* r := a * b */ if (!BN_GF2m_mod_mul(r, a, b, p, ctx)) goto err; /* r := 1/(a * b) */ if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx)) goto err; /* r := b/(a * b) = 1/a */ if (!BN_GF2m_mod_mul(r, r, b, p, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Invert xx, reduce modulo p, and store the result in r. r could be xx. * This function calls down to the BN_GF2m_mod_inv implementation; this * wrapper function is only provided for convenience; for best performance, * use the BN_GF2m_mod_inv function. */ int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) { BIGNUM *field; int ret = 0; bn_check_top(xx); BN_CTX_start(ctx); if ((field = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_GF2m_arr2poly(p, field)) goto err; ret = BN_GF2m_mod_inv(r, xx, field, ctx); bn_check_top(r); err: BN_CTX_end(ctx); return ret; } /* * Divide y by x, reduce modulo p, and store the result in r. r could be x * or y, x could equal y. */ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) { BIGNUM *xinv = NULL; int ret = 0; bn_check_top(y); bn_check_top(x); bn_check_top(p); BN_CTX_start(ctx); xinv = BN_CTX_get(ctx); if (xinv == NULL) goto err; if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err; if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err; bn_check_top(r); ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx * * or yy, xx could equal yy. This function calls down to the * BN_GF2m_mod_div implementation; this wrapper function is only provided for * convenience; for best performance, use the BN_GF2m_mod_div function. */ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx) { BIGNUM *field; int ret = 0; bn_check_top(yy); bn_check_top(xx); BN_CTX_start(ctx); if ((field = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_GF2m_arr2poly(p, field)) goto err; ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); bn_check_top(r); err: BN_CTX_end(ctx); return ret; } /* * Compute the bth power of a, reduce modulo p, and store the result in r. r * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE * P1363. */ int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) { int ret = 0, i, n; BIGNUM *u; bn_check_top(a); bn_check_top(b); if (BN_is_zero(b)) return BN_one(r); if (BN_abs_is_word(b, 1)) return (BN_copy(r, a) != NULL); BN_CTX_start(ctx); if ((u = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_GF2m_mod_arr(u, a, p)) goto err; n = BN_num_bits(b) - 1; for (i = n - 1; i >= 0; i--) { if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err; if (BN_is_bit_set(b, i)) { if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err; } } if (!BN_copy(r, u)) goto err; bn_check_top(r); ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Compute the bth power of a, reduce modulo p, and store the result in r. r * could be a. This function calls down to the BN_GF2m_mod_exp_arr * implementation; this wrapper function is only provided for convenience; * for best performance, use the BN_GF2m_mod_exp_arr function. */ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; const int max = BN_num_bits(p) + 1; int *arr = NULL; bn_check_top(a); bn_check_top(b); bn_check_top(p); if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); bn_check_top(r); err: OPENSSL_free(arr); return ret; } /* * Compute the square root of a, reduce modulo p, and store the result in r. * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. */ int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) { int ret = 0; BIGNUM *u; bn_check_top(a); if (!p[0]) { /* reduction mod 1 => return 0 */ BN_zero(r); return 1; } BN_CTX_start(ctx); if ((u = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_set_bit(u, p[0] - 1)) goto err; ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); bn_check_top(r); err: BN_CTX_end(ctx); return ret; } /* * Compute the square root of a, reduce modulo p, and store the result in r. * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr * implementation; this wrapper function is only provided for convenience; * for best performance, use the BN_GF2m_mod_sqrt_arr function. */ int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; const int max = BN_num_bits(p) + 1; int *arr = NULL; bn_check_top(a); bn_check_top(p); if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); bn_check_top(r); err: OPENSSL_free(arr); return ret; } /* * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. */ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx) { int ret = 0, count = 0, j; BIGNUM *a, *z, *rho, *w, *w2, *tmp; bn_check_top(a_); if (!p[0]) { /* reduction mod 1 => return 0 */ BN_zero(r); return 1; } BN_CTX_start(ctx); a = BN_CTX_get(ctx); z = BN_CTX_get(ctx); w = BN_CTX_get(ctx); if (w == NULL) goto err; if (!BN_GF2m_mod_arr(a, a_, p)) goto err; if (BN_is_zero(a)) { BN_zero(r); ret = 1; goto err; } if (p[0] & 0x1) { /* m is odd */ /* compute half-trace of a */ if (!BN_copy(z, a)) goto err; for (j = 1; j <= (p[0] - 1) / 2; j++) { if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; if (!BN_GF2m_add(z, z, a)) goto err; } } else { /* m is even */ rho = BN_CTX_get(ctx); w2 = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL) goto err; do { if (!BN_priv_rand(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) goto err; if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; BN_zero(z); if (!BN_copy(w, rho)) goto err; for (j = 1; j <= p[0] - 1; j++) { if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err; if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err; if (!BN_GF2m_add(z, z, tmp)) goto err; if (!BN_GF2m_add(w, w2, rho)) goto err; } count++; } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); if (BN_is_zero(w)) { BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS); goto err; } } if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; if (!BN_GF2m_add(w, z, w)) goto err; if (BN_GF2m_cmp(w, a)) { BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); goto err; } if (!BN_copy(r, z)) goto err; bn_check_top(r); ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr * implementation; this wrapper function is only provided for convenience; * for best performance, use the BN_GF2m_mod_solve_quad_arr function. */ int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; const int max = BN_num_bits(p) + 1; int *arr = NULL; bn_check_top(a); bn_check_top(p); if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) goto err; ret = BN_GF2m_poly2arr(p, arr, max); if (!ret || ret > max) { BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH); goto err; } ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); bn_check_top(r); err: OPENSSL_free(arr); return ret; } /* * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * * x^i) into an array of integers corresponding to the bits with non-zero * coefficient. Array is terminated with -1. Up to max elements of the array * will be filled. Return value is total number of array elements that would * be filled if array was large enough. */ int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) { int i, j, k = 0; BN_ULONG mask; if (BN_is_zero(a)) return 0; for (i = a->top - 1; i >= 0; i--) { if (!a->d[i]) /* skip word if a->d[i] == 0 */ continue; mask = BN_TBIT; for (j = BN_BITS2 - 1; j >= 0; j--) { if (a->d[i] & mask) { if (k < max) p[k] = BN_BITS2 * i + j; k++; } mask >>= 1; } } if (k < max) { p[k] = -1; k++; } return k; } /* * Convert the coefficient array representation of a polynomial to a * bit-string. The array must be terminated by -1. */ int BN_GF2m_arr2poly(const int p[], BIGNUM *a) { int i; bn_check_top(a); BN_zero(a); for (i = 0; p[i] != -1; i++) { if (BN_set_bit(a, p[i]) == 0) return 0; } bn_check_top(a); return 1; } #endif openssl-1.1.1f/crypto/bn/bn_intern.c000066400000000000000000000127421364063235100174150ustar00rootroot00000000000000/* * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" /* * Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. * This is an array r[] of values that are either zero or odd with an * absolute value less than 2^w satisfying * scalar = \sum_j r[j]*2^j * where at most one of any w+1 consecutive digits is non-zero * with the exception that the most significant digit may be only * w-1 zeros away from that next non-zero digit. */ signed char *bn_compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) { int window_val; signed char *r = NULL; int sign = 1; int bit, next_bit, mask; size_t len = 0, j; if (BN_is_zero(scalar)) { r = OPENSSL_malloc(1); if (r == NULL) { BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); goto err; } r[0] = 0; *ret_len = 1; return r; } if (w <= 0 || w > 7) { /* 'signed char' can represent integers with * absolute values less than 2^7 */ BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); goto err; } bit = 1 << w; /* at most 128 */ next_bit = bit << 1; /* at most 256 */ mask = next_bit - 1; /* at most 255 */ if (BN_is_negative(scalar)) { sign = -1; } if (scalar->d == NULL || scalar->top == 0) { BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); goto err; } len = BN_num_bits(scalar); r = OPENSSL_malloc(len + 1); /* * Modified wNAF may be one digit longer than binary representation * (*ret_len will be set to the actual length, i.e. at most * BN_num_bits(scalar) + 1) */ if (r == NULL) { BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); goto err; } window_val = scalar->d[0] & mask; j = 0; while ((window_val != 0) || (j + w + 1 < len)) { /* if j+w+1 >= len, * window_val will not * increase */ int digit = 0; /* 0 <= window_val <= 2^(w+1) */ if (window_val & 1) { /* 0 < window_val < 2^(w+1) */ if (window_val & bit) { digit = window_val - next_bit; /* -2^w < digit < 0 */ #if 1 /* modified wNAF */ if (j + w + 1 >= len) { /* * Special case for generating modified wNAFs: * no new bits will be added into window_val, * so using a positive digit here will decrease * the total length of the representation */ digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ } #endif } else { digit = window_val; /* 0 < digit < 2^w */ } if (digit <= -bit || digit >= bit || !(digit & 1)) { BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); goto err; } window_val -= digit; /* * now window_val is 0 or 2^(w+1) in standard wNAF generation; * for modified window NAFs, it may also be 2^w */ if (window_val != 0 && window_val != next_bit && window_val != bit) { BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); goto err; } } r[j++] = sign * digit; window_val >>= 1; window_val += bit * BN_is_bit_set(scalar, j + w); if (window_val > next_bit) { BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); goto err; } } if (j > len + 1) { BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); goto err; } *ret_len = j; return r; err: OPENSSL_free(r); return NULL; } int bn_get_top(const BIGNUM *a) { return a->top; } int bn_get_dmax(const BIGNUM *a) { return a->dmax; } void bn_set_all_zero(BIGNUM *a) { int i; for (i = a->top; i < a->dmax; i++) a->d[i] = 0; } int bn_copy_words(BN_ULONG *out, const BIGNUM *in, int size) { if (in->top > size) return 0; memset(out, 0, sizeof(*out) * size); if (in->d != NULL) memcpy(out, in->d, sizeof(*out) * in->top); return 1; } BN_ULONG *bn_get_words(const BIGNUM *a) { return a->d; } void bn_set_static_words(BIGNUM *a, const BN_ULONG *words, int size) { /* * |const| qualifier omission is compensated by BN_FLG_STATIC_DATA * flag, which effectively means "read-only data". */ a->d = (BN_ULONG *)words; a->dmax = a->top = size; a->neg = 0; a->flags |= BN_FLG_STATIC_DATA; bn_correct_top(a); } int bn_set_words(BIGNUM *a, const BN_ULONG *words, int num_words) { if (bn_wexpand(a, num_words) == NULL) { BNerr(BN_F_BN_SET_WORDS, ERR_R_MALLOC_FAILURE); return 0; } memcpy(a->d, words, sizeof(BN_ULONG) * num_words); a->top = num_words; bn_correct_top(a); return 1; } openssl-1.1.1f/crypto/bn/bn_kron.c000066400000000000000000000063401364063235100170640ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" /* least significant word */ #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0]) /* Returns -2 for errors because both -1 and 0 are valid results. */ int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int i; int ret = -2; /* avoid 'uninitialized' warning */ int err = 0; BIGNUM *A, *B, *tmp; /*- * In 'tab', only odd-indexed entries are relevant: * For any odd BIGNUM n, * tab[BN_lsw(n) & 7] * is $(-1)^{(n^2-1)/8}$ (using TeX notation). * Note that the sign of n does not matter. */ static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 }; bn_check_top(a); bn_check_top(b); BN_CTX_start(ctx); A = BN_CTX_get(ctx); B = BN_CTX_get(ctx); if (B == NULL) goto end; err = !BN_copy(A, a); if (err) goto end; err = !BN_copy(B, b); if (err) goto end; /* * Kronecker symbol, implemented according to Henri Cohen, * "A Course in Computational Algebraic Number Theory" * (algorithm 1.4.10). */ /* Cohen's step 1: */ if (BN_is_zero(B)) { ret = BN_abs_is_word(A, 1); goto end; } /* Cohen's step 2: */ if (!BN_is_odd(A) && !BN_is_odd(B)) { ret = 0; goto end; } /* now B is non-zero */ i = 0; while (!BN_is_bit_set(B, i)) i++; err = !BN_rshift(B, B, i); if (err) goto end; if (i & 1) { /* i is odd */ /* (thus B was even, thus A must be odd!) */ /* set 'ret' to $(-1)^{(A^2-1)/8}$ */ ret = tab[BN_lsw(A) & 7]; } else { /* i is even */ ret = 1; } if (B->neg) { B->neg = 0; if (A->neg) ret = -ret; } /* * now B is positive and odd, so what remains to be done is to compute * the Jacobi symbol (A/B) and multiply it by 'ret' */ while (1) { /* Cohen's step 3: */ /* B is positive and odd */ if (BN_is_zero(A)) { ret = BN_is_one(B) ? ret : 0; goto end; } /* now A is non-zero */ i = 0; while (!BN_is_bit_set(A, i)) i++; err = !BN_rshift(A, A, i); if (err) goto end; if (i & 1) { /* i is odd */ /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */ ret = ret * tab[BN_lsw(B) & 7]; } /* Cohen's step 4: */ /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */ if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) ret = -ret; /* (A, B) := (B mod |A|, |A|) */ err = !BN_nnmod(B, B, A, ctx); if (err) goto end; tmp = A; A = B; B = tmp; tmp->neg = 0; } end: BN_CTX_end(ctx); if (err) return -2; else return ret; } openssl-1.1.1f/crypto/bn/bn_lib.c000066400000000000000000000543001364063235100166600ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "bn_local.h" #include #include "internal/constant_time.h" /* This stuff appears to be completely unused, so is deprecated */ #if OPENSSL_API_COMPAT < 0x00908000L /*- * For a 32 bit machine * 2 - 4 == 128 * 3 - 8 == 256 * 4 - 16 == 512 * 5 - 32 == 1024 * 6 - 64 == 2048 * 7 - 128 == 4096 * 8 - 256 == 8192 */ static int bn_limit_bits = 0; static int bn_limit_num = 8; /* (1<= 0) { if (mult > (int)(sizeof(int) * 8) - 1) mult = sizeof(int) * 8 - 1; bn_limit_bits = mult; bn_limit_num = 1 << mult; } if (high >= 0) { if (high > (int)(sizeof(int) * 8) - 1) high = sizeof(int) * 8 - 1; bn_limit_bits_high = high; bn_limit_num_high = 1 << high; } if (low >= 0) { if (low > (int)(sizeof(int) * 8) - 1) low = sizeof(int) * 8 - 1; bn_limit_bits_low = low; bn_limit_num_low = 1 << low; } if (mont >= 0) { if (mont > (int)(sizeof(int) * 8) - 1) mont = sizeof(int) * 8 - 1; bn_limit_bits_mont = mont; bn_limit_num_mont = 1 << mont; } } int BN_get_params(int which) { if (which == 0) return bn_limit_bits; else if (which == 1) return bn_limit_bits_high; else if (which == 2) return bn_limit_bits_low; else if (which == 3) return bn_limit_bits_mont; else return 0; } #endif const BIGNUM *BN_value_one(void) { static const BN_ULONG data_one = 1L; static const BIGNUM const_one = { (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA }; return &const_one; } int BN_num_bits_word(BN_ULONG l) { BN_ULONG x, mask; int bits = (l != 0); #if BN_BITS2 > 32 x = l >> 32; mask = (0 - x) & BN_MASK2; mask = (0 - (mask >> (BN_BITS2 - 1))); bits += 32 & mask; l ^= (x ^ l) & mask; #endif x = l >> 16; mask = (0 - x) & BN_MASK2; mask = (0 - (mask >> (BN_BITS2 - 1))); bits += 16 & mask; l ^= (x ^ l) & mask; x = l >> 8; mask = (0 - x) & BN_MASK2; mask = (0 - (mask >> (BN_BITS2 - 1))); bits += 8 & mask; l ^= (x ^ l) & mask; x = l >> 4; mask = (0 - x) & BN_MASK2; mask = (0 - (mask >> (BN_BITS2 - 1))); bits += 4 & mask; l ^= (x ^ l) & mask; x = l >> 2; mask = (0 - x) & BN_MASK2; mask = (0 - (mask >> (BN_BITS2 - 1))); bits += 2 & mask; l ^= (x ^ l) & mask; x = l >> 1; mask = (0 - x) & BN_MASK2; mask = (0 - (mask >> (BN_BITS2 - 1))); bits += 1 & mask; return bits; } /* * This function still leaks `a->dmax`: it's caller's responsibility to * expand the input `a` in advance to a public length. */ static ossl_inline int bn_num_bits_consttime(const BIGNUM *a) { int j, ret; unsigned int mask, past_i; int i = a->top - 1; bn_check_top(a); for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) { mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */ ret += BN_BITS2 & (~mask & ~past_i); ret += BN_num_bits_word(a->d[j]) & mask; past_i |= mask; /* past_i will become 0xff..ff after i==j */ } /* * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the * final result. */ mask = ~(constant_time_eq_int(i, ((int)-1))); return ret & mask; } int BN_num_bits(const BIGNUM *a) { int i = a->top - 1; bn_check_top(a); if (a->flags & BN_FLG_CONSTTIME) { /* * We assume that BIGNUMs flagged as CONSTTIME have also been expanded * so that a->dmax is not leaking secret information. * * In other words, it's the caller's responsibility to ensure `a` has * been preallocated in advance to a public length if we hit this * branch. * */ return bn_num_bits_consttime(a); } if (BN_is_zero(a)) return 0; return ((i * BN_BITS2) + BN_num_bits_word(a->d[i])); } static void bn_free_d(BIGNUM *a, int clear) { if (BN_get_flags(a, BN_FLG_SECURE)) OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0])); else if (clear != 0) OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0])); else OPENSSL_free(a->d); } void BN_clear_free(BIGNUM *a) { if (a == NULL) return; if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA)) bn_free_d(a, 1); if (BN_get_flags(a, BN_FLG_MALLOCED)) { OPENSSL_cleanse(a, sizeof(*a)); OPENSSL_free(a); } } void BN_free(BIGNUM *a) { if (a == NULL) return; if (!BN_get_flags(a, BN_FLG_STATIC_DATA)) bn_free_d(a, 0); if (a->flags & BN_FLG_MALLOCED) OPENSSL_free(a); } void bn_init(BIGNUM *a) { static BIGNUM nilbn; *a = nilbn; bn_check_top(a); } BIGNUM *BN_new(void) { BIGNUM *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->flags = BN_FLG_MALLOCED; bn_check_top(ret); return ret; } BIGNUM *BN_secure_new(void) { BIGNUM *ret = BN_new(); if (ret != NULL) ret->flags |= BN_FLG_SECURE; return ret; } /* This is used by bn_expand2() */ /* The caller MUST check that words > b->dmax before calling this */ static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words) { BN_ULONG *a = NULL; if (words > (INT_MAX / (4 * BN_BITS2))) { BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG); return NULL; } if (BN_get_flags(b, BN_FLG_STATIC_DATA)) { BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); return NULL; } if (BN_get_flags(b, BN_FLG_SECURE)) a = OPENSSL_secure_zalloc(words * sizeof(*a)); else a = OPENSSL_zalloc(words * sizeof(*a)); if (a == NULL) { BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE); return NULL; } assert(b->top <= words); if (b->top > 0) memcpy(a, b->d, sizeof(*a) * b->top); return a; } /* * This is an internal function that should not be used in applications. It * ensures that 'b' has enough room for a 'words' word number and initialises * any unused part of b->d with leading zeros. It is mostly used by the * various BIGNUM routines. If there is an error, NULL is returned. If not, * 'b' is returned. */ BIGNUM *bn_expand2(BIGNUM *b, int words) { if (words > b->dmax) { BN_ULONG *a = bn_expand_internal(b, words); if (!a) return NULL; if (b->d != NULL) bn_free_d(b, 1); b->d = a; b->dmax = words; } return b; } BIGNUM *BN_dup(const BIGNUM *a) { BIGNUM *t; if (a == NULL) return NULL; bn_check_top(a); t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new(); if (t == NULL) return NULL; if (!BN_copy(t, a)) { BN_free(t); return NULL; } bn_check_top(t); return t; } BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b) { bn_check_top(b); if (a == b) return a; if (bn_wexpand(a, b->top) == NULL) return NULL; if (b->top > 0) memcpy(a->d, b->d, sizeof(b->d[0]) * b->top); a->neg = b->neg; a->top = b->top; a->flags |= b->flags & BN_FLG_FIXED_TOP; bn_check_top(a); return a; } #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \ | BN_FLG_CONSTTIME \ | BN_FLG_SECURE \ | BN_FLG_FIXED_TOP)) #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED)) void BN_swap(BIGNUM *a, BIGNUM *b) { int flags_old_a, flags_old_b; BN_ULONG *tmp_d; int tmp_top, tmp_dmax, tmp_neg; bn_check_top(a); bn_check_top(b); flags_old_a = a->flags; flags_old_b = b->flags; tmp_d = a->d; tmp_top = a->top; tmp_dmax = a->dmax; tmp_neg = a->neg; a->d = b->d; a->top = b->top; a->dmax = b->dmax; a->neg = b->neg; b->d = tmp_d; b->top = tmp_top; b->dmax = tmp_dmax; b->neg = tmp_neg; a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b); b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a); bn_check_top(a); bn_check_top(b); } void BN_clear(BIGNUM *a) { if (a == NULL) return; bn_check_top(a); if (a->d != NULL) OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax); a->neg = 0; a->top = 0; a->flags &= ~BN_FLG_FIXED_TOP; } BN_ULONG BN_get_word(const BIGNUM *a) { if (a->top > 1) return BN_MASK2; else if (a->top == 1) return a->d[0]; /* a->top == 0 */ return 0; } int BN_set_word(BIGNUM *a, BN_ULONG w) { bn_check_top(a); if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL) return 0; a->neg = 0; a->d[0] = w; a->top = (w ? 1 : 0); a->flags &= ~BN_FLG_FIXED_TOP; bn_check_top(a); return 1; } BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret) { unsigned int i, m; unsigned int n; BN_ULONG l; BIGNUM *bn = NULL; if (ret == NULL) ret = bn = BN_new(); if (ret == NULL) return NULL; bn_check_top(ret); /* Skip leading zero's. */ for ( ; len > 0 && *s == 0; s++, len--) continue; n = len; if (n == 0) { ret->top = 0; return ret; } i = ((n - 1) / BN_BYTES) + 1; m = ((n - 1) % (BN_BYTES)); if (bn_wexpand(ret, (int)i) == NULL) { BN_free(bn); return NULL; } ret->top = i; ret->neg = 0; l = 0; while (n--) { l = (l << 8L) | *(s++); if (m-- == 0) { ret->d[--i] = l; l = 0; m = BN_BYTES - 1; } } /* * need to call this due to clear byte at top if avoiding having the top * bit set (-ve number) */ bn_correct_top(ret); return ret; } typedef enum {big, little} endianess_t; /* ignore negative */ static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen, endianess_t endianess) { int n; size_t i, lasti, j, atop, mask; BN_ULONG l; /* * In case |a| is fixed-top, BN_num_bytes can return bogus length, * but it's assumed that fixed-top inputs ought to be "nominated" * even for padded output, so it works out... */ n = BN_num_bytes(a); if (tolen == -1) { tolen = n; } else if (tolen < n) { /* uncommon/unlike case */ BIGNUM temp = *a; bn_correct_top(&temp); n = BN_num_bytes(&temp); if (tolen < n) return -1; } /* Swipe through whole available data and don't give away padded zero. */ atop = a->dmax * BN_BYTES; if (atop == 0) { OPENSSL_cleanse(to, tolen); return tolen; } lasti = atop - 1; atop = a->top * BN_BYTES; if (endianess == big) to += tolen; /* start from the end of the buffer */ for (i = 0, j = 0; j < (size_t)tolen; j++) { unsigned char val; l = a->d[i / BN_BYTES]; mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1)); val = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask); if (endianess == big) *--to = val; else *to++ = val; i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */ } return tolen; } int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen) { if (tolen < 0) return -1; return bn2binpad(a, to, tolen, big); } int BN_bn2bin(const BIGNUM *a, unsigned char *to) { return bn2binpad(a, to, -1, big); } BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret) { unsigned int i, m; unsigned int n; BN_ULONG l; BIGNUM *bn = NULL; if (ret == NULL) ret = bn = BN_new(); if (ret == NULL) return NULL; bn_check_top(ret); s += len; /* Skip trailing zeroes. */ for ( ; len > 0 && s[-1] == 0; s--, len--) continue; n = len; if (n == 0) { ret->top = 0; return ret; } i = ((n - 1) / BN_BYTES) + 1; m = ((n - 1) % (BN_BYTES)); if (bn_wexpand(ret, (int)i) == NULL) { BN_free(bn); return NULL; } ret->top = i; ret->neg = 0; l = 0; while (n--) { s--; l = (l << 8L) | *s; if (m-- == 0) { ret->d[--i] = l; l = 0; m = BN_BYTES - 1; } } /* * need to call this due to clear byte at top if avoiding having the top * bit set (-ve number) */ bn_correct_top(ret); return ret; } int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen) { if (tolen < 0) return -1; return bn2binpad(a, to, tolen, little); } int BN_ucmp(const BIGNUM *a, const BIGNUM *b) { int i; BN_ULONG t1, t2, *ap, *bp; bn_check_top(a); bn_check_top(b); i = a->top - b->top; if (i != 0) return i; ap = a->d; bp = b->d; for (i = a->top - 1; i >= 0; i--) { t1 = ap[i]; t2 = bp[i]; if (t1 != t2) return ((t1 > t2) ? 1 : -1); } return 0; } int BN_cmp(const BIGNUM *a, const BIGNUM *b) { int i; int gt, lt; BN_ULONG t1, t2; if ((a == NULL) || (b == NULL)) { if (a != NULL) return -1; else if (b != NULL) return 1; else return 0; } bn_check_top(a); bn_check_top(b); if (a->neg != b->neg) { if (a->neg) return -1; else return 1; } if (a->neg == 0) { gt = 1; lt = -1; } else { gt = -1; lt = 1; } if (a->top > b->top) return gt; if (a->top < b->top) return lt; for (i = a->top - 1; i >= 0; i--) { t1 = a->d[i]; t2 = b->d[i]; if (t1 > t2) return gt; if (t1 < t2) return lt; } return 0; } int BN_set_bit(BIGNUM *a, int n) { int i, j, k; if (n < 0) return 0; i = n / BN_BITS2; j = n % BN_BITS2; if (a->top <= i) { if (bn_wexpand(a, i + 1) == NULL) return 0; for (k = a->top; k < i + 1; k++) a->d[k] = 0; a->top = i + 1; a->flags &= ~BN_FLG_FIXED_TOP; } a->d[i] |= (((BN_ULONG)1) << j); bn_check_top(a); return 1; } int BN_clear_bit(BIGNUM *a, int n) { int i, j; bn_check_top(a); if (n < 0) return 0; i = n / BN_BITS2; j = n % BN_BITS2; if (a->top <= i) return 0; a->d[i] &= (~(((BN_ULONG)1) << j)); bn_correct_top(a); return 1; } int BN_is_bit_set(const BIGNUM *a, int n) { int i, j; bn_check_top(a); if (n < 0) return 0; i = n / BN_BITS2; j = n % BN_BITS2; if (a->top <= i) return 0; return (int)(((a->d[i]) >> j) & ((BN_ULONG)1)); } int BN_mask_bits(BIGNUM *a, int n) { int b, w; bn_check_top(a); if (n < 0) return 0; w = n / BN_BITS2; b = n % BN_BITS2; if (w >= a->top) return 0; if (b == 0) a->top = w; else { a->top = w + 1; a->d[w] &= ~(BN_MASK2 << b); } bn_correct_top(a); return 1; } void BN_set_negative(BIGNUM *a, int b) { if (b && !BN_is_zero(a)) a->neg = 1; else a->neg = 0; } int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n) { int i; BN_ULONG aa, bb; if (n == 0) return 0; aa = a[n - 1]; bb = b[n - 1]; if (aa != bb) return ((aa > bb) ? 1 : -1); for (i = n - 2; i >= 0; i--) { aa = a[i]; bb = b[i]; if (aa != bb) return ((aa > bb) ? 1 : -1); } return 0; } /* * Here follows a specialised variants of bn_cmp_words(). It has the * capability of performing the operation on arrays of different sizes. The * sizes of those arrays is expressed through cl, which is the common length * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the * two lengths, calculated as len(a)-len(b). All lengths are the number of * BN_ULONGs... */ int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { int n, i; n = cl - 1; if (dl < 0) { for (i = dl; i < 0; i++) { if (b[n - i] != 0) return -1; /* a < b */ } } if (dl > 0) { for (i = dl; i > 0; i--) { if (a[n + i] != 0) return 1; /* a > b */ } } return bn_cmp_words(a, b, cl); } /*- * Constant-time conditional swap of a and b. * a and b are swapped if condition is not 0. * nwords is the number of words to swap. * Assumes that at least nwords are allocated in both a and b. * Assumes that no more than nwords are used by either a or b. */ void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords) { BN_ULONG t; int i; if (a == b) return; bn_wcheck_size(a, nwords); bn_wcheck_size(b, nwords); condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1; t = (a->top ^ b->top) & condition; a->top ^= t; b->top ^= t; t = (a->neg ^ b->neg) & condition; a->neg ^= t; b->neg ^= t; /*- * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention * is actually to treat it as it's read-only data, and some (if not most) * of it does reside in read-only segment. In other words observation of * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal * condition. It would either cause SEGV or effectively cause data * corruption. * * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be * preserved. * * BN_FLG_SECURE: must be preserved, because it determines how x->d was * allocated and hence how to free it. * * BN_FLG_CONSTTIME: sufficient to mask and swap * * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on * the data, so the d array may be padded with additional 0 values (i.e. * top could be greater than the minimal value that it could be). We should * be swapping it */ #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP) t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition; a->flags ^= t; b->flags ^= t; /* conditionally swap the data */ for (i = 0; i < nwords; i++) { t = (a->d[i] ^ b->d[i]) & condition; a->d[i] ^= t; b->d[i] ^= t; } } #undef BN_CONSTTIME_SWAP_FLAGS /* Bits of security, see SP800-57 */ int BN_security_bits(int L, int N) { int secbits, bits; if (L >= 15360) secbits = 256; else if (L >= 7680) secbits = 192; else if (L >= 3072) secbits = 128; else if (L >= 2048) secbits = 112; else if (L >= 1024) secbits = 80; else return 0; if (N == -1) return secbits; bits = N / 2; if (bits < 80) return 0; return bits >= secbits ? secbits : bits; } void BN_zero_ex(BIGNUM *a) { a->neg = 0; a->top = 0; a->flags &= ~BN_FLG_FIXED_TOP; } int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w) { return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0)); } int BN_is_zero(const BIGNUM *a) { return a->top == 0; } int BN_is_one(const BIGNUM *a) { return BN_abs_is_word(a, 1) && !a->neg; } int BN_is_word(const BIGNUM *a, const BN_ULONG w) { return BN_abs_is_word(a, w) && (!w || !a->neg); } int BN_is_odd(const BIGNUM *a) { return (a->top > 0) && (a->d[0] & 1); } int BN_is_negative(const BIGNUM *a) { return (a->neg != 0); } int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx) { return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx); } void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags) { dest->d = b->d; dest->top = b->top; dest->dmax = b->dmax; dest->neg = b->neg; dest->flags = ((dest->flags & BN_FLG_MALLOCED) | (b->flags & ~BN_FLG_MALLOCED) | BN_FLG_STATIC_DATA | flags); } BN_GENCB *BN_GENCB_new(void) { BN_GENCB *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { BNerr(BN_F_BN_GENCB_NEW, ERR_R_MALLOC_FAILURE); return NULL; } return ret; } void BN_GENCB_free(BN_GENCB *cb) { if (cb == NULL) return; OPENSSL_free(cb); } void BN_set_flags(BIGNUM *b, int n) { b->flags |= n; } int BN_get_flags(const BIGNUM *b, int n) { return b->flags & n; } /* Populate a BN_GENCB structure with an "old"-style callback */ void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), void *cb_arg) { BN_GENCB *tmp_gencb = gencb; tmp_gencb->ver = 1; tmp_gencb->arg = cb_arg; tmp_gencb->cb.cb_1 = callback; } /* Populate a BN_GENCB structure with a "new"-style callback */ void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), void *cb_arg) { BN_GENCB *tmp_gencb = gencb; tmp_gencb->ver = 2; tmp_gencb->arg = cb_arg; tmp_gencb->cb.cb_2 = callback; } void *BN_GENCB_get_arg(BN_GENCB *cb) { return cb->arg; } BIGNUM *bn_wexpand(BIGNUM *a, int words) { return (words <= a->dmax) ? a : bn_expand2(a, words); } void bn_correct_top(BIGNUM *a) { BN_ULONG *ftl; int tmp_top = a->top; if (tmp_top > 0) { for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) { ftl--; if (*ftl != 0) break; } a->top = tmp_top; } if (a->top == 0) a->neg = 0; a->flags &= ~BN_FLG_FIXED_TOP; bn_pollute(a); } openssl-1.1.1f/crypto/bn/bn_local.h000066400000000000000000000611321364063235100172120ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_BN_LOCAL_H # define OSSL_CRYPTO_BN_LOCAL_H /* * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our * Configure script and needs to support both 32-bit and 64-bit. */ # include # if !defined(OPENSSL_SYS_UEFI) # include "crypto/bn_conf.h" # endif # include "crypto/bn.h" /* * These preprocessor symbols control various aspects of the bignum headers * and library code. They're not defined by any "normal" configuration, as * they are intended for development and testing purposes. NB: defining all * three can be useful for debugging application code as well as openssl * itself. BN_DEBUG - turn on various debugging alterations to the bignum * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up * mismanagement of bignum internals. You must also define BN_DEBUG. */ /* #define BN_DEBUG */ /* #define BN_DEBUG_RAND */ # ifndef OPENSSL_SMALL_FOOTPRINT # define BN_MUL_COMBA # define BN_SQR_COMBA # define BN_RECURSION # endif /* * This next option uses the C libraries (2 word)/(1 word) function. If it is * not defined, I use my C version (which is slower). The reason for this * flag is that when the particular C compiler library routine is used, and * the library is linked with a different compiler, the library is missing. * This mostly happens when the library is built with gcc and then linked * using normal cc. This would be a common occurrence because gcc normally * produces code that is 2 times faster than system compilers for the big * number stuff. For machines with only one compiler (or shared libraries), * this should be on. Again this in only really a problem on machines using * "long long's", are 32bit, and are not using my assembler code. */ # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ defined(OPENSSL_SYS_WIN32) || defined(linux) # define BN_DIV2W # endif /* * 64-bit processor with LP64 ABI */ # ifdef SIXTY_FOUR_BIT_LONG # define BN_ULLONG unsigned long long # define BN_BITS4 32 # define BN_MASK2 (0xffffffffffffffffL) # define BN_MASK2l (0xffffffffL) # define BN_MASK2h (0xffffffff00000000L) # define BN_MASK2h1 (0xffffffff80000000L) # define BN_DEC_CONV (10000000000000000000UL) # define BN_DEC_NUM 19 # define BN_DEC_FMT1 "%lu" # define BN_DEC_FMT2 "%019lu" # endif /* * 64-bit processor other than LP64 ABI */ # ifdef SIXTY_FOUR_BIT # undef BN_LLONG # undef BN_ULLONG # define BN_BITS4 32 # define BN_MASK2 (0xffffffffffffffffLL) # define BN_MASK2l (0xffffffffL) # define BN_MASK2h (0xffffffff00000000LL) # define BN_MASK2h1 (0xffffffff80000000LL) # define BN_DEC_CONV (10000000000000000000ULL) # define BN_DEC_NUM 19 # define BN_DEC_FMT1 "%llu" # define BN_DEC_FMT2 "%019llu" # endif # ifdef THIRTY_TWO_BIT # ifdef BN_LLONG # if defined(_WIN32) && !defined(__GNUC__) # define BN_ULLONG unsigned __int64 # else # define BN_ULLONG unsigned long long # endif # endif # define BN_BITS4 16 # define BN_MASK2 (0xffffffffL) # define BN_MASK2l (0xffff) # define BN_MASK2h1 (0xffff8000L) # define BN_MASK2h (0xffff0000L) # define BN_DEC_CONV (1000000000L) # define BN_DEC_NUM 9 # define BN_DEC_FMT1 "%u" # define BN_DEC_FMT2 "%09u" # endif /*- * Bignum consistency macros * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from * bignum data after direct manipulations on the data. There is also an * "internal" macro, bn_check_top(), for verifying that there are no leading * zeroes. Unfortunately, some auditing is required due to the fact that * bn_fix_top() has become an overabused duct-tape because bignum data is * occasionally passed around in an inconsistent state. So the following * changes have been made to sort this out; * - bn_fix_top()s implementation has been moved to bn_correct_top() * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and * bn_check_top() is as before. * - if BN_DEBUG *is* defined; * - bn_check_top() tries to pollute unused words even if the bignum 'top' is * consistent. (ed: only if BN_DEBUG_RAND is defined) * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. * The idea is to have debug builds flag up inconsistent bignums when they * occur. If that occurs in a bn_fix_top(), we examine the code in question; if * the use of bn_fix_top() was appropriate (ie. it follows directly after code * that manipulates the bignum) it is converted to bn_correct_top(), and if it * was not appropriate, we convert it permanently to bn_check_top() and track * down the cause of the bug. Eventually, no internal code should be using the * bn_fix_top() macro. External applications and libraries should try this with * their own code too, both in terms of building against the openssl headers * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it * defined. This not only improves external code, it provides more test * coverage for openssl's own code. */ # ifdef BN_DEBUG /* * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with * bn_correct_top, in other words such vectors are permitted to have zeros * in most significant limbs. Such vectors are used internally to achieve * execution time invariance for critical operations with private keys. * It's BN_DEBUG-only flag, because user application is not supposed to * observe it anyway. Moreover, optimizing compiler would actually remove * all operations manipulating the bit in question in non-BN_DEBUG build. */ # define BN_FLG_FIXED_TOP 0x10000 # ifdef BN_DEBUG_RAND # define bn_pollute(a) \ do { \ const BIGNUM *_bnum1 = (a); \ if (_bnum1->top < _bnum1->dmax) { \ unsigned char _tmp_char; \ /* We cast away const without the compiler knowing, any \ * *genuinely* constant variables that aren't mutable \ * wouldn't be constructed with top!=dmax. */ \ BN_ULONG *_not_const; \ memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \ RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\ memset(_not_const + _bnum1->top, _tmp_char, \ sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \ } \ } while(0) # else # define bn_pollute(a) # endif # define bn_check_top(a) \ do { \ const BIGNUM *_bnum2 = (a); \ if (_bnum2 != NULL) { \ int _top = _bnum2->top; \ (void)ossl_assert((_top == 0 && !_bnum2->neg) || \ (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \ || _bnum2->d[_top - 1] != 0))); \ bn_pollute(_bnum2); \ } \ } while(0) # define bn_fix_top(a) bn_check_top(a) # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2) # define bn_wcheck_size(bn, words) \ do { \ const BIGNUM *_bnum2 = (bn); \ assert((words) <= (_bnum2)->dmax && \ (words) >= (_bnum2)->top); \ /* avoid unused variable warning with NDEBUG */ \ (void)(_bnum2); \ } while(0) # else /* !BN_DEBUG */ # define BN_FLG_FIXED_TOP 0 # define bn_pollute(a) # define bn_check_top(a) # define bn_fix_top(a) bn_correct_top(a) # define bn_check_size(bn, bits) # define bn_wcheck_size(bn, words) # endif BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int num); BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int num); struct bignum_st { BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit * chunks. */ int top; /* Index of last used d +1. */ /* The next are internal book keeping for bn_expand. */ int dmax; /* Size of the d array. */ int neg; /* one if the number is negative */ int flags; }; /* Used for montgomery multiplication */ struct bn_mont_ctx_st { int ri; /* number of bits in R */ BIGNUM RR; /* used to convert to montgomery form, possibly zero-padded */ BIGNUM N; /* The modulus */ BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only * stored for bignum algorithm) */ BN_ULONG n0[2]; /* least significant word(s) of Ni; (type * changed with 0.9.9, was "BN_ULONG n0;" * before) */ int flags; }; /* * Used for reciprocal division/mod functions It cannot be shared between * threads */ struct bn_recp_ctx_st { BIGNUM N; /* the divisor */ BIGNUM Nr; /* the reciprocal */ int num_bits; int shift; int flags; }; /* Used for slow "generation" functions. */ struct bn_gencb_st { unsigned int ver; /* To handle binary (in)compatibility */ void *arg; /* callback-specific data */ union { /* if (ver==1) - handles old style callbacks */ void (*cb_1) (int, int, void *); /* if (ver==2) - new callback style */ int (*cb_2) (int, int, BN_GENCB *); } cb; }; /*- * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions * * * For window size 'w' (w >= 2) and a random 'b' bits exponent, * the number of multiplications is a constant plus on average * * 2^(w-1) + (b-w)/(w+1); * * here 2^(w-1) is for precomputing the table (we actually need * entries only for windows that have the lowest bit set), and * (b-w)/(w+1) is an approximation for the expected number of * w-bit windows, not counting the first one. * * Thus we should use * * w >= 6 if b > 671 * w = 5 if 671 > b > 239 * w = 4 if 239 > b > 79 * w = 3 if 79 > b > 23 * w <= 2 if 23 > b * * (with draws in between). Very small exponents are often selected * with low Hamming weight, so we use w = 1 for b <= 23. */ # define BN_window_bits_for_exponent_size(b) \ ((b) > 671 ? 6 : \ (b) > 239 ? 5 : \ (b) > 79 ? 4 : \ (b) > 23 ? 3 : 1) /* * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache * line width of the target processor is at least the following value. */ # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) /* * Window sizes optimized for fixed window size modular exponentiation * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are * defined for cache line sizes of 32 and 64, cache line sizes where * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be * used on processors that have a 128 byte or greater cache line size. */ # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 # define BN_window_bits_for_ctime_exponent_size(b) \ ((b) > 937 ? 6 : \ (b) > 306 ? 5 : \ (b) > 89 ? 4 : \ (b) > 22 ? 3 : 1) # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 # define BN_window_bits_for_ctime_exponent_size(b) \ ((b) > 306 ? 5 : \ (b) > 89 ? 4 : \ (b) > 22 ? 3 : 1) # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) # endif /* Pentium pro 16,16,16,32,64 */ /* Alpha 16,16,16,16.64 */ # define BN_MULL_SIZE_NORMAL (16)/* 32 */ # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */ # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */ # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */ # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */ /* * 2011-02-22 SMS. In various places, a size_t variable or a type cast to * size_t was used to perform integer-only operations on pointers. This * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t * is still only 32 bits. What's needed in these cases is an integer type * with the same size as a pointer, which size_t is not certain to be. The * only fix here is VMS-specific. */ # if defined(OPENSSL_SYS_VMS) # if __INITIAL_POINTER_SIZE == 64 # define PTR_SIZE_INT long long # else /* __INITIAL_POINTER_SIZE == 64 */ # define PTR_SIZE_INT int # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */ # define PTR_SIZE_INT size_t # endif /* defined(OPENSSL_SYS_VMS) [else] */ # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) /* * BN_UMULT_HIGH section. * If the compiler doesn't support 2*N integer type, then you have to * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some * shifts and additions which unavoidably results in severe performance * penalties. Of course provided that the hardware is capable of producing * 2*N result... That's when you normally start considering assembler * implementation. However! It should be pointed out that some CPUs (e.g., * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating * the upper half of the product placing the result into a general * purpose register. Now *if* the compiler supports inline assembler, * then it's not impossible to implement the "bignum" routines (and have * the compiler optimize 'em) exhibiting "native" performance in C. That's * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do * support 2*64 integer type, which is also used here. */ # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \ (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64) # define BN_UMULT_LOHI(low,high,a,b) ({ \ __uint128_t ret=(__uint128_t)(a)*(b); \ (high)=ret>>64; (low)=ret; }) # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) # if defined(__DECC) # include # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) # elif defined(__GNUC__) && __GNUC__>=2 # define BN_UMULT_HIGH(a,b) ({ \ register BN_ULONG ret; \ asm ("umulh %1,%2,%0" \ : "=r"(ret) \ : "r"(a), "r"(b)); \ ret; }) # endif /* compiler */ # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG) # if defined(__GNUC__) && __GNUC__>=2 # define BN_UMULT_HIGH(a,b) ({ \ register BN_ULONG ret; \ asm ("mulhdu %0,%1,%2" \ : "=r"(ret) \ : "r"(a), "r"(b)); \ ret; }) # endif /* compiler */ # elif (defined(__x86_64) || defined(__x86_64__)) && \ (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) # if defined(__GNUC__) && __GNUC__>=2 # define BN_UMULT_HIGH(a,b) ({ \ register BN_ULONG ret,discard; \ asm ("mulq %3" \ : "=a"(discard),"=d"(ret) \ : "a"(a), "g"(b) \ : "cc"); \ ret; }) # define BN_UMULT_LOHI(low,high,a,b) \ asm ("mulq %3" \ : "=a"(low),"=d"(high) \ : "a"(a),"g"(b) \ : "cc"); # endif # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) # if defined(_MSC_VER) && _MSC_VER>=1400 unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, unsigned __int64 *h); # pragma intrinsic(__umulh,_umul128) # define BN_UMULT_HIGH(a,b) __umulh((a),(b)) # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high))) # endif # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) # if defined(__GNUC__) && __GNUC__>=2 # define BN_UMULT_HIGH(a,b) ({ \ register BN_ULONG ret; \ asm ("dmultu %1,%2" \ : "=h"(ret) \ : "r"(a), "r"(b) : "l"); \ ret; }) # define BN_UMULT_LOHI(low,high,a,b) \ asm ("dmultu %2,%3" \ : "=l"(low),"=h"(high) \ : "r"(a), "r"(b)); # endif # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG) # if defined(__GNUC__) && __GNUC__>=2 # define BN_UMULT_HIGH(a,b) ({ \ register BN_ULONG ret; \ asm ("umulh %0,%1,%2" \ : "=r"(ret) \ : "r"(a), "r"(b)); \ ret; }) # endif # endif /* cpu */ # endif /* OPENSSL_NO_ASM */ # ifdef BN_DEBUG_RAND # define bn_clear_top2max(a) \ { \ int ind = (a)->dmax - (a)->top; \ BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ for (; ind != 0; ind--) \ *(++ftl) = 0x0; \ } # else # define bn_clear_top2max(a) # endif # ifdef BN_LLONG /******************************************************************* * Using the long long type, has to be twice as wide as BN_ULONG... */ # define Lw(t) (((BN_ULONG)(t))&BN_MASK2) # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) # define mul_add(r,a,w,c) { \ BN_ULLONG t; \ t=(BN_ULLONG)w * (a) + (r) + (c); \ (r)= Lw(t); \ (c)= Hw(t); \ } # define mul(r,a,w,c) { \ BN_ULLONG t; \ t=(BN_ULLONG)w * (a) + (c); \ (r)= Lw(t); \ (c)= Hw(t); \ } # define sqr(r0,r1,a) { \ BN_ULLONG t; \ t=(BN_ULLONG)(a)*(a); \ (r0)=Lw(t); \ (r1)=Hw(t); \ } # elif defined(BN_UMULT_LOHI) # define mul_add(r,a,w,c) { \ BN_ULONG high,low,ret,tmp=(a); \ ret = (r); \ BN_UMULT_LOHI(low,high,w,tmp); \ ret += (c); \ (c) = (ret<(c))?1:0; \ (c) += high; \ ret += low; \ (c) += (ret>BN_BITS4)&BN_MASK2l) # define L2HBITS(a) (((a)<>BN_BITS2)&BN_MASKl) # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<>(BN_BITS4-1); \ m =(m&BN_MASK2l)<<(BN_BITS4+1); \ l=(l+m)&BN_MASK2; if (l < m) h++; \ (lo)=l; \ (ho)=h; \ } # define mul_add(r,a,bl,bh,c) { \ BN_ULONG l,h; \ \ h= (a); \ l=LBITS(h); \ h=HBITS(h); \ mul64(l,h,(bl),(bh)); \ \ /* non-multiply part */ \ l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ (c)=(r); \ l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ (c)=h&BN_MASK2; \ (r)=l; \ } # define mul(r,a,bl,bh,c) { \ BN_ULONG l,h; \ \ h= (a); \ l=LBITS(h); \ h=HBITS(h); \ mul64(l,h,(bl),(bh)); \ \ /* non-multiply part */ \ l+=(c); if ((l&BN_MASK2) < (c)) h++; \ (c)=h&BN_MASK2; \ (r)=l&BN_MASK2; \ } # endif /* !BN_LLONG */ void BN_RECP_CTX_init(BN_RECP_CTX *recp); void BN_MONT_CTX_init(BN_MONT_CTX *ctx); void bn_init(BIGNUM *a); void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t); void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t); void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t); BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); BIGNUM *int_bn_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, int *noinv); static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits) { if (bits > (INT_MAX - BN_BITS2 + 1)) return NULL; if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax) return a; return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2); } #endif openssl-1.1.1f/crypto/bn/bn_mod.c000066400000000000000000000173551364063235100167020ustar00rootroot00000000000000/* * Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) { /* * like BN_mod, but returns non-negative remainder (i.e., 0 <= r < |d| * always holds) */ if (!(BN_mod(r, m, d, ctx))) return 0; if (!r->neg) return 1; /* now -|d| < r < 0, so we have to set r := r + |d| */ return (d->neg ? BN_sub : BN_add) (r, r, d); } int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx) { if (!BN_add(r, a, b)) return 0; return BN_nnmod(r, r, m, ctx); } /* * BN_mod_add variant that may be used if both a and b are non-negative and * less than m. The original algorithm was * * if (!BN_uadd(r, a, b)) * return 0; * if (BN_ucmp(r, m) >= 0) * return BN_usub(r, r, m); * * which is replaced with addition, subtracting modulus, and conditional * move depending on whether or not subtraction borrowed. */ int bn_mod_add_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) { size_t i, ai, bi, mtop = m->top; BN_ULONG storage[1024 / BN_BITS2]; BN_ULONG carry, temp, mask, *rp, *tp = storage; const BN_ULONG *ap, *bp; if (bn_wexpand(r, mtop) == NULL) return 0; if (mtop > sizeof(storage) / sizeof(storage[0]) && (tp = OPENSSL_malloc(mtop * sizeof(BN_ULONG))) == NULL) return 0; ap = a->d != NULL ? a->d : tp; bp = b->d != NULL ? b->d : tp; for (i = 0, ai = 0, bi = 0, carry = 0; i < mtop;) { mask = (BN_ULONG)0 - ((i - a->top) >> (8 * sizeof(i) - 1)); temp = ((ap[ai] & mask) + carry) & BN_MASK2; carry = (temp < carry); mask = (BN_ULONG)0 - ((i - b->top) >> (8 * sizeof(i) - 1)); tp[i] = ((bp[bi] & mask) + temp) & BN_MASK2; carry += (tp[i] < temp); i++; ai += (i - a->dmax) >> (8 * sizeof(i) - 1); bi += (i - b->dmax) >> (8 * sizeof(i) - 1); } rp = r->d; carry -= bn_sub_words(rp, tp, m->d, mtop); for (i = 0; i < mtop; i++) { rp[i] = (carry & tp[i]) | (~carry & rp[i]); ((volatile BN_ULONG *)tp)[i] = 0; } r->top = mtop; r->flags |= BN_FLG_FIXED_TOP; r->neg = 0; if (tp != storage) OPENSSL_free(tp); return 1; } int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) { int ret = bn_mod_add_fixed_top(r, a, b, m); if (ret) bn_correct_top(r); return ret; } int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx) { if (!BN_sub(r, a, b)) return 0; return BN_nnmod(r, r, m, ctx); } /* * BN_mod_sub variant that may be used if both a and b are non-negative, * a is less than m, while b is of same bit width as m. It's implemented * as subtraction followed by two conditional additions. * * 0 <= a < m * 0 <= b < 2^w < 2*m * * after subtraction * * -2*m < r = a - b < m * * Thus it takes up to two conditional additions to make |r| positive. */ int bn_mod_sub_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) { size_t i, ai, bi, mtop = m->top; BN_ULONG borrow, carry, ta, tb, mask, *rp; const BN_ULONG *ap, *bp; if (bn_wexpand(r, mtop) == NULL) return 0; rp = r->d; ap = a->d != NULL ? a->d : rp; bp = b->d != NULL ? b->d : rp; for (i = 0, ai = 0, bi = 0, borrow = 0; i < mtop;) { mask = (BN_ULONG)0 - ((i - a->top) >> (8 * sizeof(i) - 1)); ta = ap[ai] & mask; mask = (BN_ULONG)0 - ((i - b->top) >> (8 * sizeof(i) - 1)); tb = bp[bi] & mask; rp[i] = ta - tb - borrow; if (ta != tb) borrow = (ta < tb); i++; ai += (i - a->dmax) >> (8 * sizeof(i) - 1); bi += (i - b->dmax) >> (8 * sizeof(i) - 1); } ap = m->d; for (i = 0, mask = 0 - borrow, carry = 0; i < mtop; i++) { ta = ((ap[i] & mask) + carry) & BN_MASK2; carry = (ta < carry); rp[i] = (rp[i] + ta) & BN_MASK2; carry += (rp[i] < ta); } borrow -= carry; for (i = 0, mask = 0 - borrow, carry = 0; i < mtop; i++) { ta = ((ap[i] & mask) + carry) & BN_MASK2; carry = (ta < carry); rp[i] = (rp[i] + ta) & BN_MASK2; carry += (rp[i] < ta); } r->top = mtop; r->flags |= BN_FLG_FIXED_TOP; r->neg = 0; return 1; } /* * BN_mod_sub variant that may be used if both a and b are non-negative and * less than m */ int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) { if (!BN_sub(r, a, b)) return 0; if (r->neg) return BN_add(r, r, m); return 1; } /* slow but works */ int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx) { BIGNUM *t; int ret = 0; bn_check_top(a); bn_check_top(b); bn_check_top(m); BN_CTX_start(ctx); if ((t = BN_CTX_get(ctx)) == NULL) goto err; if (a == b) { if (!BN_sqr(t, a, ctx)) goto err; } else { if (!BN_mul(t, a, b, ctx)) goto err; } if (!BN_nnmod(r, t, m, ctx)) goto err; bn_check_top(r); ret = 1; err: BN_CTX_end(ctx); return ret; } int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { if (!BN_sqr(r, a, ctx)) return 0; /* r->neg == 0, thus we don't need BN_nnmod */ return BN_mod(r, r, m, ctx); } int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { if (!BN_lshift1(r, a)) return 0; bn_check_top(r); return BN_nnmod(r, r, m, ctx); } /* * BN_mod_lshift1 variant that may be used if a is non-negative and less than * m */ int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) { if (!BN_lshift1(r, a)) return 0; bn_check_top(r); if (BN_cmp(r, m) >= 0) return BN_sub(r, r, m); return 1; } int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx) { BIGNUM *abs_m = NULL; int ret; if (!BN_nnmod(r, a, m, ctx)) return 0; if (m->neg) { abs_m = BN_dup(m); if (abs_m == NULL) return 0; abs_m->neg = 0; } ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m)); bn_check_top(r); BN_free(abs_m); return ret; } /* * BN_mod_lshift variant that may be used if a is non-negative and less than * m */ int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) { if (r != a) { if (BN_copy(r, a) == NULL) return 0; } while (n > 0) { int max_shift; /* 0 < r < m */ max_shift = BN_num_bits(m) - BN_num_bits(r); /* max_shift >= 0 */ if (max_shift < 0) { BNerr(BN_F_BN_MOD_LSHIFT_QUICK, BN_R_INPUT_NOT_REDUCED); return 0; } if (max_shift > n) max_shift = n; if (max_shift) { if (!BN_lshift(r, r, max_shift)) return 0; n -= max_shift; } else { if (!BN_lshift1(r, r)) return 0; --n; } /* BN_num_bits(r) <= BN_num_bits(m) */ if (BN_cmp(r, m) >= 0) { if (!BN_sub(r, r, m)) return 0; } } bn_check_top(r); return 1; } openssl-1.1.1f/crypto/bn/bn_mont.c000066400000000000000000000302061364063235100170660ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Details about Montgomery multiplication algorithms can be found at * http://security.ece.orst.edu/publications.html, e.g. * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf */ #include "internal/cryptlib.h" #include "bn_local.h" #define MONT_WORD /* use the faster word-based algorithm */ #ifdef MONT_WORD static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont); #endif int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mont, BN_CTX *ctx) { int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx); bn_correct_top(r); bn_check_top(r); return ret; } int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mont, BN_CTX *ctx) { BIGNUM *tmp; int ret = 0; int num = mont->N.top; #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD) if (num > 1 && a->top == num && b->top == num) { if (bn_wexpand(r, num) == NULL) return 0; if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) { r->neg = a->neg ^ b->neg; r->top = num; r->flags |= BN_FLG_FIXED_TOP; return 1; } } #endif if ((a->top + b->top) > 2 * num) return 0; BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL) goto err; bn_check_top(tmp); if (a == b) { if (!bn_sqr_fixed_top(tmp, a, ctx)) goto err; } else { if (!bn_mul_fixed_top(tmp, a, b, ctx)) goto err; } /* reduce from aRR to aR */ #ifdef MONT_WORD if (!bn_from_montgomery_word(r, tmp, mont)) goto err; #else if (!BN_from_montgomery(r, tmp, mont, ctx)) goto err; #endif ret = 1; err: BN_CTX_end(ctx); return ret; } #ifdef MONT_WORD static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont) { BIGNUM *n; BN_ULONG *ap, *np, *rp, n0, v, carry; int nl, max, i; unsigned int rtop; n = &(mont->N); nl = n->top; if (nl == 0) { ret->top = 0; return 1; } max = (2 * nl); /* carry is stored separately */ if (bn_wexpand(r, max) == NULL) return 0; r->neg ^= n->neg; np = n->d; rp = r->d; /* clear the top words of T */ for (rtop = r->top, i = 0; i < max; i++) { v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1)); rp[i] &= v; } r->top = max; r->flags |= BN_FLG_FIXED_TOP; n0 = mont->n0[0]; /* * Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On * input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r| * includes |carry| which is stored separately. */ for (carry = 0, i = 0; i < nl; i++, rp++) { v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2); v = (v + carry + rp[nl]) & BN_MASK2; carry |= (v != rp[nl]); carry &= (v <= rp[nl]); rp[nl] = v; } if (bn_wexpand(ret, nl) == NULL) return 0; ret->top = nl; ret->flags |= BN_FLG_FIXED_TOP; ret->neg = r->neg; rp = ret->d; /* * Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap| * includes |carry| which is stored separately. */ ap = &(r->d[nl]); carry -= bn_sub_words(rp, ap, np, nl); /* * |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note * |carry| cannot be 1. That would imply the subtraction did not fit in * |nl| words, and we know at most one subtraction is needed. */ for (i = 0; i < nl; i++) { rp[i] = (carry & ap[i]) | (~carry & rp[i]); ap[i] = 0; } return 1; } #endif /* MONT_WORD */ int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx) { int retn; retn = bn_from_mont_fixed_top(ret, a, mont, ctx); bn_correct_top(ret); bn_check_top(ret); return retn; } int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx) { int retn = 0; #ifdef MONT_WORD BIGNUM *t; BN_CTX_start(ctx); if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) { retn = bn_from_montgomery_word(ret, t, mont); } BN_CTX_end(ctx); #else /* !MONT_WORD */ BIGNUM *t1, *t2; BN_CTX_start(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); if (t2 == NULL) goto err; if (!BN_copy(t1, a)) goto err; BN_mask_bits(t1, mont->ri); if (!BN_mul(t2, t1, &mont->Ni, ctx)) goto err; BN_mask_bits(t2, mont->ri); if (!BN_mul(t1, t2, &mont->N, ctx)) goto err; if (!BN_add(t2, a, t1)) goto err; if (!BN_rshift(ret, t2, mont->ri)) goto err; if (BN_ucmp(ret, &(mont->N)) >= 0) { if (!BN_usub(ret, ret, &(mont->N))) goto err; } retn = 1; bn_check_top(ret); err: BN_CTX_end(ctx); #endif /* MONT_WORD */ return retn; } int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx) { return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx); } BN_MONT_CTX *BN_MONT_CTX_new(void) { BN_MONT_CTX *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { BNerr(BN_F_BN_MONT_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } BN_MONT_CTX_init(ret); ret->flags = BN_FLG_MALLOCED; return ret; } void BN_MONT_CTX_init(BN_MONT_CTX *ctx) { ctx->ri = 0; bn_init(&ctx->RR); bn_init(&ctx->N); bn_init(&ctx->Ni); ctx->n0[0] = ctx->n0[1] = 0; ctx->flags = 0; } void BN_MONT_CTX_free(BN_MONT_CTX *mont) { if (mont == NULL) return; BN_clear_free(&mont->RR); BN_clear_free(&mont->N); BN_clear_free(&mont->Ni); if (mont->flags & BN_FLG_MALLOCED) OPENSSL_free(mont); } int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { int i, ret = 0; BIGNUM *Ri, *R; if (BN_is_zero(mod)) return 0; BN_CTX_start(ctx); if ((Ri = BN_CTX_get(ctx)) == NULL) goto err; R = &(mont->RR); /* grab RR as a temp */ if (!BN_copy(&(mont->N), mod)) goto err; /* Set N */ if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) BN_set_flags(&(mont->N), BN_FLG_CONSTTIME); mont->N.neg = 0; #ifdef MONT_WORD { BIGNUM tmod; BN_ULONG buf[2]; bn_init(&tmod); tmod.d = buf; tmod.dmax = 2; tmod.neg = 0; if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) BN_set_flags(&tmod, BN_FLG_CONSTTIME); mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; # if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32) /* * Only certain BN_BITS2<=32 platforms actually make use of n0[1], * and we could use the #else case (with a shorter R value) for the * others. However, currently only the assembler files do know which * is which. */ BN_zero(R); if (!(BN_set_bit(R, 2 * BN_BITS2))) goto err; tmod.top = 0; if ((buf[0] = mod->d[0])) tmod.top = 1; if ((buf[1] = mod->top > 1 ? mod->d[1] : 0)) tmod.top = 2; if (BN_is_one(&tmod)) BN_zero(Ri); else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, 2 * BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else { /* if N mod word size == 1 */ if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL) goto err; /* Ri-- (mod double word size) */ Ri->neg = 0; Ri->d[0] = BN_MASK2; Ri->d[1] = BN_MASK2; Ri->top = 2; } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) goto err; /* * Ni = (R*Ri-1)/N, keep only couple of least significant words: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; # else BN_zero(R); if (!(BN_set_bit(R, BN_BITS2))) goto err; /* R */ buf[0] = mod->d[0]; /* tmod = N mod word size */ buf[1] = 0; tmod.top = buf[0] != 0 ? 1 : 0; /* Ri = R^-1 mod N */ if (BN_is_one(&tmod)) BN_zero(Ri); else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else { /* if N mod word size == 1 */ if (!BN_set_word(Ri, BN_MASK2)) goto err; /* Ri-- (mod word size) */ } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) goto err; /* * Ni = (R*Ri-1)/N, keep only least significant word: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = 0; # endif } #else /* !MONT_WORD */ { /* bignum version */ mont->ri = BN_num_bits(&mont->N); BN_zero(R); if (!BN_set_bit(R, mont->ri)) goto err; /* R = 2^ri */ /* Ri = R^-1 mod N */ if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, mont->ri)) goto err; /* R*Ri */ if (!BN_sub_word(Ri, 1)) goto err; /* * Ni = (R*Ri-1) / N */ if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx)) goto err; } #endif /* setup RR for conversions */ BN_zero(&(mont->RR)); if (!BN_set_bit(&(mont->RR), mont->ri * 2)) goto err; if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx)) goto err; for (i = mont->RR.top, ret = mont->N.top; i < ret; i++) mont->RR.d[i] = 0; mont->RR.top = ret; mont->RR.flags |= BN_FLG_FIXED_TOP; ret = 1; err: BN_CTX_end(ctx); return ret; } BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from) { if (to == from) return to; if (!BN_copy(&(to->RR), &(from->RR))) return NULL; if (!BN_copy(&(to->N), &(from->N))) return NULL; if (!BN_copy(&(to->Ni), &(from->Ni))) return NULL; to->ri = from->ri; to->n0[0] = from->n0[0]; to->n0[1] = from->n0[1]; return to; } BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, const BIGNUM *mod, BN_CTX *ctx) { BN_MONT_CTX *ret; CRYPTO_THREAD_read_lock(lock); ret = *pmont; CRYPTO_THREAD_unlock(lock); if (ret) return ret; /* * We don't want to serialise globally while doing our lazy-init math in * BN_MONT_CTX_set. That punishes threads that are doing independent * things. Instead, punish the case where more than one thread tries to * lazy-init the same 'pmont', by having each do the lazy-init math work * independently and only use the one from the thread that wins the race * (the losers throw away the work they've done). */ ret = BN_MONT_CTX_new(); if (ret == NULL) return NULL; if (!BN_MONT_CTX_set(ret, mod, ctx)) { BN_MONT_CTX_free(ret); return NULL; } /* The locked compare-and-set, after the local work is done. */ CRYPTO_THREAD_write_lock(lock); if (*pmont) { BN_MONT_CTX_free(ret); ret = *pmont; } else *pmont = ret; CRYPTO_THREAD_unlock(lock); return ret; } openssl-1.1.1f/crypto/bn/bn_mpi.c000066400000000000000000000035671364063235100167100ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "bn_local.h" int BN_bn2mpi(const BIGNUM *a, unsigned char *d) { int bits; int num = 0; int ext = 0; long l; bits = BN_num_bits(a); num = (bits + 7) / 8; if (bits > 0) { ext = ((bits & 0x07) == 0); } if (d == NULL) return (num + 4 + ext); l = num + ext; d[0] = (unsigned char)(l >> 24) & 0xff; d[1] = (unsigned char)(l >> 16) & 0xff; d[2] = (unsigned char)(l >> 8) & 0xff; d[3] = (unsigned char)(l) & 0xff; if (ext) d[4] = 0; num = BN_bn2bin(a, &(d[4 + ext])); if (a->neg) d[4] |= 0x80; return (num + 4 + ext); } BIGNUM *BN_mpi2bn(const unsigned char *d, int n, BIGNUM *ain) { long len; int neg = 0; BIGNUM *a = NULL; if (n < 4) { BNerr(BN_F_BN_MPI2BN, BN_R_INVALID_LENGTH); return NULL; } len = ((long)d[0] << 24) | ((long)d[1] << 16) | ((int)d[2] << 8) | (int) d[3]; if ((len + 4) != n) { BNerr(BN_F_BN_MPI2BN, BN_R_ENCODING_ERROR); return NULL; } if (ain == NULL) a = BN_new(); else a = ain; if (a == NULL) return NULL; if (len == 0) { a->neg = 0; a->top = 0; return a; } d += 4; if ((*d) & 0x80) neg = 1; if (BN_bin2bn(d, (int)len, a) == NULL) { if (ain == NULL) BN_free(a); return NULL; } a->neg = neg; if (neg) { BN_clear_bit(a, BN_num_bits(a) - 1); } bn_check_top(a); return a; } openssl-1.1.1f/crypto/bn/bn_mul.c000066400000000000000000000453041364063235100167130ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "bn_local.h" #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) /* * Here follows specialised variants of bn_add_words() and bn_sub_words(). * They have the property performing operations on arrays of different sizes. * The sizes of those arrays is expressed through cl, which is the common * length ( basically, min(len(a),len(b)) ), and dl, which is the delta * between the two lengths, calculated as len(a)-len(b). All lengths are the * number of BN_ULONGs... For the operations that require a result array as * parameter, it must have the length cl+abs(dl). These functions should * probably end up in bn_asm.c as soon as there are assembler counterparts * for the systems that use assembler files. */ BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { BN_ULONG c, t; assert(cl >= 0); c = bn_sub_words(r, a, b, cl); if (dl == 0) return c; r += cl; a += cl; b += cl; if (dl < 0) { for (;;) { t = b[0]; r[0] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[1]; r[1] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[2]; r[2] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; t = b[3]; r[3] = (0 - t - c) & BN_MASK2; if (t != 0) c = 1; if (++dl >= 0) break; b += 4; r += 4; } } else { int save_dl = dl; while (c) { t = a[0]; r[0] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[1]; r[1] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[2]; r[2] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; t = a[3]; r[3] = (t - c) & BN_MASK2; if (t != 0) c = 0; if (--dl <= 0) break; save_dl = dl; a += 4; r += 4; } if (dl > 0) { if (save_dl > dl) { switch (save_dl - dl) { case 1: r[1] = a[1]; if (--dl <= 0) break; /* fall thru */ case 2: r[2] = a[2]; if (--dl <= 0) break; /* fall thru */ case 3: r[3] = a[3]; if (--dl <= 0) break; } a += 4; r += 4; } } if (dl > 0) { for (;;) { r[0] = a[0]; if (--dl <= 0) break; r[1] = a[1]; if (--dl <= 0) break; r[2] = a[2]; if (--dl <= 0) break; r[3] = a[3]; if (--dl <= 0) break; a += 4; r += 4; } } } return c; } #endif #ifdef BN_RECURSION /* * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of * Computer Programming, Vol. 2) */ /*- * r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ /* dnX may not be positive, but n2/2+dnX has to be */ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { int n = n2 / 2, c1, c2; int tna = n + dna, tnb = n + dnb; unsigned int neg, zero; BN_ULONG ln, lo, *p; # ifdef BN_MUL_COMBA # if 0 if (n2 == 4) { bn_mul_comba4(r, a, b); return; } # endif /* * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete * [steve] */ if (n2 == 8 && dna == 0 && dnb == 0) { bn_mul_comba8(r, a, b); return; } # endif /* BN_MUL_COMBA */ /* Else do normal multiply */ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); if ((dna + dnb) < 0) memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb)); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); zero = neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: zero = 1; break; case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: zero = 1; break; case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: zero = 1; break; case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } # ifdef BN_MUL_COMBA if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take * extra args to do this well */ if (!zero) bn_mul_comba4(&(t[n2]), t, &(t[n])); else memset(&t[n2], 0, sizeof(*t) * 8); bn_mul_comba4(r, a, b); bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could * take extra args to do * this well */ if (!zero) bn_mul_comba8(&(t[n2]), t, &(t[n])); else memset(&t[n2], 0, sizeof(*t) * 16); bn_mul_comba8(r, a, b); bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); } else # endif /* BN_MUL_COMBA */ { p = &(t[n2 * 2]); if (!zero) bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); else memset(&t[n2], 0, sizeof(*t) * n2); bn_mul_recursive(r, a, b, n, 0, 0, p); bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* * The overflow will stop before we over write words we should not * overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } /* * n+tn is the word length t needs to be n*4 is size, as does r */ /* tnX may not be negative but less than n */ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { int i, j, n2 = n * 2; int c1, c2, neg; BN_ULONG ln, lo, *p; if (n < 8) { bn_mul_normal(r, a, n + tna, b, n + tnb); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ break; case -3: case -2: bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ neg = 1; break; case -1: case 0: case 1: case 2: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ neg = 1; break; case 3: case 4: bn_sub_part_words(t, a, &(a[n]), tna, n - tna); bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); break; } /* * The zero case isn't yet implemented here. The speedup would probably * be negligible. */ # if 0 if (n == 4) { bn_mul_comba4(&(t[n2]), t, &(t[n])); bn_mul_comba4(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2)); } else # endif if (n == 8) { bn_mul_comba8(&(t[n2]), t, &(t[n])); bn_mul_comba8(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb)); } else { p = &(t[n2 * 2]); bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); bn_mul_recursive(r, a, b, n, 0, 0, p); i = n / 2; /* * If there is only a bottom half to the number, just do it */ if (tna > tnb) j = tna - i; else j = tnb - i; if (j == 0) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2)); } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ memset(&r[n2], 0, sizeof(*r) * n2); if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); } else { for (;;) { i /= 2; /* * these simplified conditions work exclusively because * difference between tna and tnb is 1 or 0 */ if (i < tna || i < tnb) { bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } else if (i == tna || i == tnb) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p); break; } } } } } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /*- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* * The overflow will stop before we over write words we should not * overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } /*- * a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 */ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) { int n = n2 / 2; bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); } else { bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); } } #endif /* BN_RECURSION */ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = bn_mul_fixed_top(r, a, b, ctx); bn_correct_top(r); bn_check_top(r); return ret; } int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; int top, al, bl; BIGNUM *rr; #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) int i; #endif #ifdef BN_RECURSION BIGNUM *t = NULL; int j = 0, k; #endif bn_check_top(a); bn_check_top(b); bn_check_top(r); al = a->top; bl = b->top; if ((al == 0) || (bl == 0)) { BN_zero(r); return 1; } top = al + bl; BN_CTX_start(ctx); if ((r == a) || (r == b)) { if ((rr = BN_CTX_get(ctx)) == NULL) goto err; } else rr = r; #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) i = al - bl; #endif #ifdef BN_MUL_COMBA if (i == 0) { # if 0 if (al == 4) { if (bn_wexpand(rr, 8) == NULL) goto err; rr->top = 8; bn_mul_comba4(rr->d, a->d, b->d); goto end; } # endif if (al == 8) { if (bn_wexpand(rr, 16) == NULL) goto err; rr->top = 16; bn_mul_comba8(rr->d, a->d, b->d); goto end; } } #endif /* BN_MUL_COMBA */ #ifdef BN_RECURSION if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { if (i >= -1 && i <= 1) { /* * Find out the power of two lower or equal to the longest of the * two numbers */ if (i >= 0) { j = BN_num_bits_word((BN_ULONG)al); } if (i == -1) { j = BN_num_bits_word((BN_ULONG)bl); } j = 1 << (j - 1); assert(j <= al || j <= bl); k = j + j; t = BN_CTX_get(ctx); if (t == NULL) goto err; if (al > j || bl > j) { if (bn_wexpand(t, k * 4) == NULL) goto err; if (bn_wexpand(rr, k * 4) == NULL) goto err; bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); } else { /* al <= j || bl <= j */ if (bn_wexpand(t, k * 2) == NULL) goto err; if (bn_wexpand(rr, k * 2) == NULL) goto err; bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); } rr->top = top; goto end; } } #endif /* BN_RECURSION */ if (bn_wexpand(rr, top) == NULL) goto err; rr->top = top; bn_mul_normal(rr->d, a->d, al, b->d, bl); #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) end: #endif rr->neg = a->neg ^ b->neg; rr->flags |= BN_FLG_FIXED_TOP; if (r != rr && BN_copy(r, rr) == NULL) goto err; ret = 1; err: bn_check_top(r); BN_CTX_end(ctx); return ret; } void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) { BN_ULONG *rr; if (na < nb) { int itmp; BN_ULONG *ltmp; itmp = na; na = nb; nb = itmp; ltmp = a; a = b; b = ltmp; } rr = &(r[na]); if (nb <= 0) { (void)bn_mul_words(r, a, na, 0); return; } else rr[0] = bn_mul_words(r, a, na, b[0]); for (;;) { if (--nb <= 0) return; rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); if (--nb <= 0) return; rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); if (--nb <= 0) return; rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); if (--nb <= 0) return; rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); rr += 4; r += 4; b += 4; } } void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) { bn_mul_words(r, a, n, b[0]); for (;;) { if (--n <= 0) return; bn_mul_add_words(&(r[1]), a, n, b[1]); if (--n <= 0) return; bn_mul_add_words(&(r[2]), a, n, b[2]); if (--n <= 0) return; bn_mul_add_words(&(r[3]), a, n, b[3]); if (--n <= 0) return; bn_mul_add_words(&(r[4]), a, n, b[4]); r += 4; b += 4; } } openssl-1.1.1f/crypto/bn/bn_nist.c000066400000000000000000001124331364063235100170710ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "bn_local.h" #include "internal/cryptlib.h" #define BN_NIST_192_TOP (192+BN_BITS2-1)/BN_BITS2 #define BN_NIST_224_TOP (224+BN_BITS2-1)/BN_BITS2 #define BN_NIST_256_TOP (256+BN_BITS2-1)/BN_BITS2 #define BN_NIST_384_TOP (384+BN_BITS2-1)/BN_BITS2 #define BN_NIST_521_TOP (521+BN_BITS2-1)/BN_BITS2 /* pre-computed tables are "carry-less" values of modulus*(i+1) */ #if BN_BITS2 == 64 static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = { {0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFFULL}, {0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFFULL}, {0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFCULL, 0xFFFFFFFFFFFFFFFFULL} }; static const BN_ULONG _nist_p_192_sqr[] = { 0x0000000000000001ULL, 0x0000000000000002ULL, 0x0000000000000001ULL, 0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFFULL }; static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = { {0x0000000000000001ULL, 0xFFFFFFFF00000000ULL, 0xFFFFFFFFFFFFFFFFULL, 0x00000000FFFFFFFFULL}, {0x0000000000000002ULL, 0xFFFFFFFE00000000ULL, 0xFFFFFFFFFFFFFFFFULL, 0x00000001FFFFFFFFULL} /* this one is * "carry-full" */ }; static const BN_ULONG _nist_p_224_sqr[] = { 0x0000000000000001ULL, 0xFFFFFFFE00000000ULL, 0xFFFFFFFFFFFFFFFFULL, 0x0000000200000000ULL, 0x0000000000000000ULL, 0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFFULL }; static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = { {0xFFFFFFFFFFFFFFFFULL, 0x00000000FFFFFFFFULL, 0x0000000000000000ULL, 0xFFFFFFFF00000001ULL}, {0xFFFFFFFFFFFFFFFEULL, 0x00000001FFFFFFFFULL, 0x0000000000000000ULL, 0xFFFFFFFE00000002ULL}, {0xFFFFFFFFFFFFFFFDULL, 0x00000002FFFFFFFFULL, 0x0000000000000000ULL, 0xFFFFFFFD00000003ULL}, {0xFFFFFFFFFFFFFFFCULL, 0x00000003FFFFFFFFULL, 0x0000000000000000ULL, 0xFFFFFFFC00000004ULL}, {0xFFFFFFFFFFFFFFFBULL, 0x00000004FFFFFFFFULL, 0x0000000000000000ULL, 0xFFFFFFFB00000005ULL}, }; static const BN_ULONG _nist_p_256_sqr[] = { 0x0000000000000001ULL, 0xFFFFFFFE00000000ULL, 0xFFFFFFFFFFFFFFFFULL, 0x00000001FFFFFFFEULL, 0x00000001FFFFFFFEULL, 0x00000001FFFFFFFEULL, 0xFFFFFFFE00000001ULL, 0xFFFFFFFE00000002ULL }; static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = { {0x00000000FFFFFFFFULL, 0xFFFFFFFF00000000ULL, 0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL}, {0x00000001FFFFFFFEULL, 0xFFFFFFFE00000000ULL, 0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL}, {0x00000002FFFFFFFDULL, 0xFFFFFFFD00000000ULL, 0xFFFFFFFFFFFFFFFCULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL}, {0x00000003FFFFFFFCULL, 0xFFFFFFFC00000000ULL, 0xFFFFFFFFFFFFFFFBULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL}, {0x00000004FFFFFFFBULL, 0xFFFFFFFB00000000ULL, 0xFFFFFFFFFFFFFFFAULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL}, }; static const BN_ULONG _nist_p_384_sqr[] = { 0xFFFFFFFE00000001ULL, 0x0000000200000000ULL, 0xFFFFFFFE00000000ULL, 0x0000000200000000ULL, 0x0000000000000001ULL, 0x0000000000000000ULL, 0x00000001FFFFFFFEULL, 0xFFFFFFFE00000000ULL, 0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL }; static const BN_ULONG _nist_p_521[] = { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0x00000000000001FFULL }; static const BN_ULONG _nist_p_521_sqr[] = { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0xFFFFFFFFFFFFFC00ULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0x000000000003FFFFULL }; #elif BN_BITS2 == 32 static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = { {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFC, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} }; static const BN_ULONG _nist_p_192_sqr[] = { 0x00000001, 0x00000000, 0x00000002, 0x00000000, 0x00000001, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = { {0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, {0x00000002, 0x00000000, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} }; static const BN_ULONG _nist_p_224_sqr[] = { 0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = { {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF}, {0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000001, 0x00000000, 0x00000000, 0x00000002, 0xFFFFFFFE}, {0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000002, 0x00000000, 0x00000000, 0x00000003, 0xFFFFFFFD}, {0xFFFFFFFC, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000003, 0x00000000, 0x00000000, 0x00000004, 0xFFFFFFFC}, {0xFFFFFFFB, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000004, 0x00000000, 0x00000000, 0x00000005, 0xFFFFFFFB}, }; static const BN_ULONG _nist_p_256_sqr[] = { 0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0x00000001, 0xFFFFFFFE, 0x00000001, 0xFFFFFFFE, 0x00000001, 0x00000001, 0xFFFFFFFE, 0x00000002, 0xFFFFFFFE }; static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = { {0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFE, 0x00000001, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFD, 0x00000002, 0x00000000, 0xFFFFFFFD, 0xFFFFFFFC, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFC, 0x00000003, 0x00000000, 0xFFFFFFFC, 0xFFFFFFFB, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFB, 0x00000004, 0x00000000, 0xFFFFFFFB, 0xFFFFFFFA, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, }; static const BN_ULONG _nist_p_384_sqr[] = { 0x00000001, 0xFFFFFFFE, 0x00000000, 0x00000002, 0x00000000, 0xFFFFFFFE, 0x00000000, 0x00000002, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFE, 0x00000001, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; static const BN_ULONG _nist_p_521[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x000001FF }; static const BN_ULONG _nist_p_521_sqr[] = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFC00, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0003FFFF }; #else # error "unsupported BN_BITS2" #endif static const BIGNUM _bignum_nist_p_192 = { (BN_ULONG *)_nist_p_192[0], BN_NIST_192_TOP, BN_NIST_192_TOP, 0, BN_FLG_STATIC_DATA }; static const BIGNUM _bignum_nist_p_224 = { (BN_ULONG *)_nist_p_224[0], BN_NIST_224_TOP, BN_NIST_224_TOP, 0, BN_FLG_STATIC_DATA }; static const BIGNUM _bignum_nist_p_256 = { (BN_ULONG *)_nist_p_256[0], BN_NIST_256_TOP, BN_NIST_256_TOP, 0, BN_FLG_STATIC_DATA }; static const BIGNUM _bignum_nist_p_384 = { (BN_ULONG *)_nist_p_384[0], BN_NIST_384_TOP, BN_NIST_384_TOP, 0, BN_FLG_STATIC_DATA }; static const BIGNUM _bignum_nist_p_521 = { (BN_ULONG *)_nist_p_521, BN_NIST_521_TOP, BN_NIST_521_TOP, 0, BN_FLG_STATIC_DATA }; const BIGNUM *BN_get0_nist_prime_192(void) { return &_bignum_nist_p_192; } const BIGNUM *BN_get0_nist_prime_224(void) { return &_bignum_nist_p_224; } const BIGNUM *BN_get0_nist_prime_256(void) { return &_bignum_nist_p_256; } const BIGNUM *BN_get0_nist_prime_384(void) { return &_bignum_nist_p_384; } const BIGNUM *BN_get0_nist_prime_521(void) { return &_bignum_nist_p_521; } static void nist_cp_bn_0(BN_ULONG *dst, const BN_ULONG *src, int top, int max) { int i; #ifdef BN_DEBUG (void)ossl_assert(top <= max); #endif for (i = 0; i < top; i++) dst[i] = src[i]; for (; i < max; i++) dst[i] = 0; } static void nist_cp_bn(BN_ULONG *dst, const BN_ULONG *src, int top) { int i; for (i = 0; i < top; i++) dst[i] = src[i]; } #if BN_BITS2 == 64 # define bn_cp_64(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; # define bn_64_set_0(to, n) (to)[n] = (BN_ULONG)0; /* * two following macros are implemented under assumption that they * are called in a sequence with *ascending* n, i.e. as they are... */ # define bn_cp_32_naked(to, n, from, m) (((n)&1)?(to[(n)/2]|=((m)&1)?(from[(m)/2]&BN_MASK2h):(from[(m)/2]<<32))\ :(to[(n)/2] =((m)&1)?(from[(m)/2]>>32):(from[(m)/2]&BN_MASK2l))) # define bn_32_set_0(to, n) (((n)&1)?(to[(n)/2]&=BN_MASK2l):(to[(n)/2]=0)); # define bn_cp_32(to,n,from,m) ((m)>=0)?bn_cp_32_naked(to,n,from,m):bn_32_set_0(to,n) # if defined(L_ENDIAN) # if defined(__arch64__) # define NIST_INT64 long # else # define NIST_INT64 long long # endif # endif #else # define bn_cp_64(to, n, from, m) \ { \ bn_cp_32(to, (n)*2, from, (m)*2); \ bn_cp_32(to, (n)*2+1, from, (m)*2+1); \ } # define bn_64_set_0(to, n) \ { \ bn_32_set_0(to, (n)*2); \ bn_32_set_0(to, (n)*2+1); \ } # define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; # define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0; # if defined(_WIN32) && !defined(__GNUC__) # define NIST_INT64 __int64 # elif defined(BN_LLONG) # define NIST_INT64 long long # endif #endif /* BN_BITS2 != 64 */ #define nist_set_192(to, from, a1, a2, a3) \ { \ bn_cp_64(to, 0, from, (a3) - 3) \ bn_cp_64(to, 1, from, (a2) - 3) \ bn_cp_64(to, 2, from, (a1) - 3) \ } int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) { int top = a->top, i; int carry; register BN_ULONG *r_d, *a_d = a->d; union { BN_ULONG bn[BN_NIST_192_TOP]; unsigned int ui[BN_NIST_192_TOP * sizeof(BN_ULONG) / sizeof(unsigned int)]; } buf; BN_ULONG c_d[BN_NIST_192_TOP], *res; PTR_SIZE_INT mask; static const BIGNUM _bignum_nist_p_192_sqr = { (BN_ULONG *)_nist_p_192_sqr, OSSL_NELEM(_nist_p_192_sqr), OSSL_NELEM(_nist_p_192_sqr), 0, BN_FLG_STATIC_DATA }; field = &_bignum_nist_p_192; /* just to make sure */ if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_192_sqr) >= 0) return BN_nnmod(r, a, field, ctx); i = BN_ucmp(field, a); if (i == 0) { BN_zero(r); return 1; } else if (i > 0) return (r == a) ? 1 : (BN_copy(r, a) != NULL); if (r != a) { if (!bn_wexpand(r, BN_NIST_192_TOP)) return 0; r_d = r->d; nist_cp_bn(r_d, a_d, BN_NIST_192_TOP); } else r_d = a_d; nist_cp_bn_0(buf.bn, a_d + BN_NIST_192_TOP, top - BN_NIST_192_TOP, BN_NIST_192_TOP); #if defined(NIST_INT64) { NIST_INT64 acc; /* accumulator */ unsigned int *rp = (unsigned int *)r_d; const unsigned int *bp = (const unsigned int *)buf.ui; acc = rp[0]; acc += bp[3 * 2 - 6]; acc += bp[5 * 2 - 6]; rp[0] = (unsigned int)acc; acc >>= 32; acc += rp[1]; acc += bp[3 * 2 - 5]; acc += bp[5 * 2 - 5]; rp[1] = (unsigned int)acc; acc >>= 32; acc += rp[2]; acc += bp[3 * 2 - 6]; acc += bp[4 * 2 - 6]; acc += bp[5 * 2 - 6]; rp[2] = (unsigned int)acc; acc >>= 32; acc += rp[3]; acc += bp[3 * 2 - 5]; acc += bp[4 * 2 - 5]; acc += bp[5 * 2 - 5]; rp[3] = (unsigned int)acc; acc >>= 32; acc += rp[4]; acc += bp[4 * 2 - 6]; acc += bp[5 * 2 - 6]; rp[4] = (unsigned int)acc; acc >>= 32; acc += rp[5]; acc += bp[4 * 2 - 5]; acc += bp[5 * 2 - 5]; rp[5] = (unsigned int)acc; carry = (int)(acc >> 32); } #else { BN_ULONG t_d[BN_NIST_192_TOP]; nist_set_192(t_d, buf.bn, 0, 3, 3); carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); nist_set_192(t_d, buf.bn, 4, 4, 0); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); nist_set_192(t_d, buf.bn, 5, 5, 5) carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); } #endif if (carry > 0) carry = (int)bn_sub_words(r_d, r_d, _nist_p_192[carry - 1], BN_NIST_192_TOP); else carry = 1; /* * we need 'if (carry==0 || result>=modulus) result-=modulus;' * as comparison implies subtraction, we can write * 'tmp=result-modulus; if (!carry || !borrow) result=tmp;' * this is what happens below, but without explicit if:-) a. */ mask = 0 - (PTR_SIZE_INT) bn_sub_words(c_d, r_d, _nist_p_192[0], BN_NIST_192_TOP); mask &= 0 - (PTR_SIZE_INT) carry; res = c_d; res = (BN_ULONG *) (((PTR_SIZE_INT) res & ~mask) | ((PTR_SIZE_INT) r_d & mask)); nist_cp_bn(r_d, res, BN_NIST_192_TOP); r->top = BN_NIST_192_TOP; bn_correct_top(r); return 1; } typedef BN_ULONG (*bn_addsub_f) (BN_ULONG *, const BN_ULONG *, const BN_ULONG *, int); #define nist_set_224(to, from, a1, a2, a3, a4, a5, a6, a7) \ { \ bn_cp_32(to, 0, from, (a7) - 7) \ bn_cp_32(to, 1, from, (a6) - 7) \ bn_cp_32(to, 2, from, (a5) - 7) \ bn_cp_32(to, 3, from, (a4) - 7) \ bn_cp_32(to, 4, from, (a3) - 7) \ bn_cp_32(to, 5, from, (a2) - 7) \ bn_cp_32(to, 6, from, (a1) - 7) \ } int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) { int top = a->top, i; int carry; BN_ULONG *r_d, *a_d = a->d; union { BN_ULONG bn[BN_NIST_224_TOP]; unsigned int ui[BN_NIST_224_TOP * sizeof(BN_ULONG) / sizeof(unsigned int)]; } buf; BN_ULONG c_d[BN_NIST_224_TOP], *res; PTR_SIZE_INT mask; union { bn_addsub_f f; PTR_SIZE_INT p; } u; static const BIGNUM _bignum_nist_p_224_sqr = { (BN_ULONG *)_nist_p_224_sqr, OSSL_NELEM(_nist_p_224_sqr), OSSL_NELEM(_nist_p_224_sqr), 0, BN_FLG_STATIC_DATA }; field = &_bignum_nist_p_224; /* just to make sure */ if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_224_sqr) >= 0) return BN_nnmod(r, a, field, ctx); i = BN_ucmp(field, a); if (i == 0) { BN_zero(r); return 1; } else if (i > 0) return (r == a) ? 1 : (BN_copy(r, a) != NULL); if (r != a) { if (!bn_wexpand(r, BN_NIST_224_TOP)) return 0; r_d = r->d; nist_cp_bn(r_d, a_d, BN_NIST_224_TOP); } else r_d = a_d; #if BN_BITS2==64 /* copy upper 256 bits of 448 bit number ... */ nist_cp_bn_0(c_d, a_d + (BN_NIST_224_TOP - 1), top - (BN_NIST_224_TOP - 1), BN_NIST_224_TOP); /* ... and right shift by 32 to obtain upper 224 bits */ nist_set_224(buf.bn, c_d, 14, 13, 12, 11, 10, 9, 8); /* truncate lower part to 224 bits too */ r_d[BN_NIST_224_TOP - 1] &= BN_MASK2l; #else nist_cp_bn_0(buf.bn, a_d + BN_NIST_224_TOP, top - BN_NIST_224_TOP, BN_NIST_224_TOP); #endif #if defined(NIST_INT64) && BN_BITS2!=64 { NIST_INT64 acc; /* accumulator */ unsigned int *rp = (unsigned int *)r_d; const unsigned int *bp = (const unsigned int *)buf.ui; acc = rp[0]; acc -= bp[7 - 7]; acc -= bp[11 - 7]; rp[0] = (unsigned int)acc; acc >>= 32; acc += rp[1]; acc -= bp[8 - 7]; acc -= bp[12 - 7]; rp[1] = (unsigned int)acc; acc >>= 32; acc += rp[2]; acc -= bp[9 - 7]; acc -= bp[13 - 7]; rp[2] = (unsigned int)acc; acc >>= 32; acc += rp[3]; acc += bp[7 - 7]; acc += bp[11 - 7]; acc -= bp[10 - 7]; rp[3] = (unsigned int)acc; acc >>= 32; acc += rp[4]; acc += bp[8 - 7]; acc += bp[12 - 7]; acc -= bp[11 - 7]; rp[4] = (unsigned int)acc; acc >>= 32; acc += rp[5]; acc += bp[9 - 7]; acc += bp[13 - 7]; acc -= bp[12 - 7]; rp[5] = (unsigned int)acc; acc >>= 32; acc += rp[6]; acc += bp[10 - 7]; acc -= bp[13 - 7]; rp[6] = (unsigned int)acc; carry = (int)(acc >> 32); # if BN_BITS2==64 rp[7] = carry; # endif } #else { BN_ULONG t_d[BN_NIST_224_TOP]; nist_set_224(t_d, buf.bn, 10, 9, 8, 7, 0, 0, 0); carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); nist_set_224(t_d, buf.bn, 0, 13, 12, 11, 0, 0, 0); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); nist_set_224(t_d, buf.bn, 13, 12, 11, 10, 9, 8, 7); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP); nist_set_224(t_d, buf.bn, 0, 0, 0, 0, 13, 12, 11); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP); # if BN_BITS2==64 carry = (int)(r_d[BN_NIST_224_TOP - 1] >> 32); # endif } #endif u.f = bn_sub_words; if (carry > 0) { carry = (int)bn_sub_words(r_d, r_d, _nist_p_224[carry - 1], BN_NIST_224_TOP); #if BN_BITS2==64 carry = (int)(~(r_d[BN_NIST_224_TOP - 1] >> 32)) & 1; #endif } else if (carry < 0) { /* * it's a bit more complicated logic in this case. if bn_add_words * yields no carry, then result has to be adjusted by unconditionally * *adding* the modulus. but if it does, then result has to be * compared to the modulus and conditionally adjusted by * *subtracting* the latter. */ carry = (int)bn_add_words(r_d, r_d, _nist_p_224[-carry - 1], BN_NIST_224_TOP); mask = 0 - (PTR_SIZE_INT) carry; u.p = ((PTR_SIZE_INT) bn_sub_words & mask) | ((PTR_SIZE_INT) bn_add_words & ~mask); } else carry = 1; /* otherwise it's effectively same as in BN_nist_mod_192... */ mask = 0 - (PTR_SIZE_INT) (*u.f) (c_d, r_d, _nist_p_224[0], BN_NIST_224_TOP); mask &= 0 - (PTR_SIZE_INT) carry; res = c_d; res = (BN_ULONG *)(((PTR_SIZE_INT) res & ~mask) | ((PTR_SIZE_INT) r_d & mask)); nist_cp_bn(r_d, res, BN_NIST_224_TOP); r->top = BN_NIST_224_TOP; bn_correct_top(r); return 1; } #define nist_set_256(to, from, a1, a2, a3, a4, a5, a6, a7, a8) \ { \ bn_cp_32(to, 0, from, (a8) - 8) \ bn_cp_32(to, 1, from, (a7) - 8) \ bn_cp_32(to, 2, from, (a6) - 8) \ bn_cp_32(to, 3, from, (a5) - 8) \ bn_cp_32(to, 4, from, (a4) - 8) \ bn_cp_32(to, 5, from, (a3) - 8) \ bn_cp_32(to, 6, from, (a2) - 8) \ bn_cp_32(to, 7, from, (a1) - 8) \ } int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) { int i, top = a->top; int carry = 0; register BN_ULONG *a_d = a->d, *r_d; union { BN_ULONG bn[BN_NIST_256_TOP]; unsigned int ui[BN_NIST_256_TOP * sizeof(BN_ULONG) / sizeof(unsigned int)]; } buf; BN_ULONG c_d[BN_NIST_256_TOP], *res; PTR_SIZE_INT mask; union { bn_addsub_f f; PTR_SIZE_INT p; } u; static const BIGNUM _bignum_nist_p_256_sqr = { (BN_ULONG *)_nist_p_256_sqr, OSSL_NELEM(_nist_p_256_sqr), OSSL_NELEM(_nist_p_256_sqr), 0, BN_FLG_STATIC_DATA }; field = &_bignum_nist_p_256; /* just to make sure */ if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_256_sqr) >= 0) return BN_nnmod(r, a, field, ctx); i = BN_ucmp(field, a); if (i == 0) { BN_zero(r); return 1; } else if (i > 0) return (r == a) ? 1 : (BN_copy(r, a) != NULL); if (r != a) { if (!bn_wexpand(r, BN_NIST_256_TOP)) return 0; r_d = r->d; nist_cp_bn(r_d, a_d, BN_NIST_256_TOP); } else r_d = a_d; nist_cp_bn_0(buf.bn, a_d + BN_NIST_256_TOP, top - BN_NIST_256_TOP, BN_NIST_256_TOP); #if defined(NIST_INT64) { NIST_INT64 acc; /* accumulator */ unsigned int *rp = (unsigned int *)r_d; const unsigned int *bp = (const unsigned int *)buf.ui; acc = rp[0]; acc += bp[8 - 8]; acc += bp[9 - 8]; acc -= bp[11 - 8]; acc -= bp[12 - 8]; acc -= bp[13 - 8]; acc -= bp[14 - 8]; rp[0] = (unsigned int)acc; acc >>= 32; acc += rp[1]; acc += bp[9 - 8]; acc += bp[10 - 8]; acc -= bp[12 - 8]; acc -= bp[13 - 8]; acc -= bp[14 - 8]; acc -= bp[15 - 8]; rp[1] = (unsigned int)acc; acc >>= 32; acc += rp[2]; acc += bp[10 - 8]; acc += bp[11 - 8]; acc -= bp[13 - 8]; acc -= bp[14 - 8]; acc -= bp[15 - 8]; rp[2] = (unsigned int)acc; acc >>= 32; acc += rp[3]; acc += bp[11 - 8]; acc += bp[11 - 8]; acc += bp[12 - 8]; acc += bp[12 - 8]; acc += bp[13 - 8]; acc -= bp[15 - 8]; acc -= bp[8 - 8]; acc -= bp[9 - 8]; rp[3] = (unsigned int)acc; acc >>= 32; acc += rp[4]; acc += bp[12 - 8]; acc += bp[12 - 8]; acc += bp[13 - 8]; acc += bp[13 - 8]; acc += bp[14 - 8]; acc -= bp[9 - 8]; acc -= bp[10 - 8]; rp[4] = (unsigned int)acc; acc >>= 32; acc += rp[5]; acc += bp[13 - 8]; acc += bp[13 - 8]; acc += bp[14 - 8]; acc += bp[14 - 8]; acc += bp[15 - 8]; acc -= bp[10 - 8]; acc -= bp[11 - 8]; rp[5] = (unsigned int)acc; acc >>= 32; acc += rp[6]; acc += bp[14 - 8]; acc += bp[14 - 8]; acc += bp[15 - 8]; acc += bp[15 - 8]; acc += bp[14 - 8]; acc += bp[13 - 8]; acc -= bp[8 - 8]; acc -= bp[9 - 8]; rp[6] = (unsigned int)acc; acc >>= 32; acc += rp[7]; acc += bp[15 - 8]; acc += bp[15 - 8]; acc += bp[15 - 8]; acc += bp[8 - 8]; acc -= bp[10 - 8]; acc -= bp[11 - 8]; acc -= bp[12 - 8]; acc -= bp[13 - 8]; rp[7] = (unsigned int)acc; carry = (int)(acc >> 32); } #else { BN_ULONG t_d[BN_NIST_256_TOP]; /* * S1 */ nist_set_256(t_d, buf.bn, 15, 14, 13, 12, 11, 0, 0, 0); /* * S2 */ nist_set_256(c_d, buf.bn, 0, 15, 14, 13, 12, 0, 0, 0); carry = (int)bn_add_words(t_d, t_d, c_d, BN_NIST_256_TOP); /* left shift */ { register BN_ULONG *ap, t, c; ap = t_d; c = 0; for (i = BN_NIST_256_TOP; i != 0; --i) { t = *ap; *(ap++) = ((t << 1) | c) & BN_MASK2; c = (t & BN_TBIT) ? 1 : 0; } carry <<= 1; carry |= c; } carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); /* * S3 */ nist_set_256(t_d, buf.bn, 15, 14, 0, 0, 0, 10, 9, 8); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); /* * S4 */ nist_set_256(t_d, buf.bn, 8, 13, 15, 14, 13, 11, 10, 9); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); /* * D1 */ nist_set_256(t_d, buf.bn, 10, 8, 0, 0, 0, 13, 12, 11); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); /* * D2 */ nist_set_256(t_d, buf.bn, 11, 9, 0, 0, 15, 14, 13, 12); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); /* * D3 */ nist_set_256(t_d, buf.bn, 12, 0, 10, 9, 8, 15, 14, 13); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); /* * D4 */ nist_set_256(t_d, buf.bn, 13, 0, 11, 10, 9, 0, 15, 14); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); } #endif /* see BN_nist_mod_224 for explanation */ u.f = bn_sub_words; if (carry > 0) carry = (int)bn_sub_words(r_d, r_d, _nist_p_256[carry - 1], BN_NIST_256_TOP); else if (carry < 0) { carry = (int)bn_add_words(r_d, r_d, _nist_p_256[-carry - 1], BN_NIST_256_TOP); mask = 0 - (PTR_SIZE_INT) carry; u.p = ((PTR_SIZE_INT) bn_sub_words & mask) | ((PTR_SIZE_INT) bn_add_words & ~mask); } else carry = 1; mask = 0 - (PTR_SIZE_INT) (*u.f) (c_d, r_d, _nist_p_256[0], BN_NIST_256_TOP); mask &= 0 - (PTR_SIZE_INT) carry; res = c_d; res = (BN_ULONG *)(((PTR_SIZE_INT) res & ~mask) | ((PTR_SIZE_INT) r_d & mask)); nist_cp_bn(r_d, res, BN_NIST_256_TOP); r->top = BN_NIST_256_TOP; bn_correct_top(r); return 1; } #define nist_set_384(to,from,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) \ { \ bn_cp_32(to, 0, from, (a12) - 12) \ bn_cp_32(to, 1, from, (a11) - 12) \ bn_cp_32(to, 2, from, (a10) - 12) \ bn_cp_32(to, 3, from, (a9) - 12) \ bn_cp_32(to, 4, from, (a8) - 12) \ bn_cp_32(to, 5, from, (a7) - 12) \ bn_cp_32(to, 6, from, (a6) - 12) \ bn_cp_32(to, 7, from, (a5) - 12) \ bn_cp_32(to, 8, from, (a4) - 12) \ bn_cp_32(to, 9, from, (a3) - 12) \ bn_cp_32(to, 10, from, (a2) - 12) \ bn_cp_32(to, 11, from, (a1) - 12) \ } int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) { int i, top = a->top; int carry = 0; register BN_ULONG *r_d, *a_d = a->d; union { BN_ULONG bn[BN_NIST_384_TOP]; unsigned int ui[BN_NIST_384_TOP * sizeof(BN_ULONG) / sizeof(unsigned int)]; } buf; BN_ULONG c_d[BN_NIST_384_TOP], *res; PTR_SIZE_INT mask; union { bn_addsub_f f; PTR_SIZE_INT p; } u; static const BIGNUM _bignum_nist_p_384_sqr = { (BN_ULONG *)_nist_p_384_sqr, OSSL_NELEM(_nist_p_384_sqr), OSSL_NELEM(_nist_p_384_sqr), 0, BN_FLG_STATIC_DATA }; field = &_bignum_nist_p_384; /* just to make sure */ if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_384_sqr) >= 0) return BN_nnmod(r, a, field, ctx); i = BN_ucmp(field, a); if (i == 0) { BN_zero(r); return 1; } else if (i > 0) return (r == a) ? 1 : (BN_copy(r, a) != NULL); if (r != a) { if (!bn_wexpand(r, BN_NIST_384_TOP)) return 0; r_d = r->d; nist_cp_bn(r_d, a_d, BN_NIST_384_TOP); } else r_d = a_d; nist_cp_bn_0(buf.bn, a_d + BN_NIST_384_TOP, top - BN_NIST_384_TOP, BN_NIST_384_TOP); #if defined(NIST_INT64) { NIST_INT64 acc; /* accumulator */ unsigned int *rp = (unsigned int *)r_d; const unsigned int *bp = (const unsigned int *)buf.ui; acc = rp[0]; acc += bp[12 - 12]; acc += bp[21 - 12]; acc += bp[20 - 12]; acc -= bp[23 - 12]; rp[0] = (unsigned int)acc; acc >>= 32; acc += rp[1]; acc += bp[13 - 12]; acc += bp[22 - 12]; acc += bp[23 - 12]; acc -= bp[12 - 12]; acc -= bp[20 - 12]; rp[1] = (unsigned int)acc; acc >>= 32; acc += rp[2]; acc += bp[14 - 12]; acc += bp[23 - 12]; acc -= bp[13 - 12]; acc -= bp[21 - 12]; rp[2] = (unsigned int)acc; acc >>= 32; acc += rp[3]; acc += bp[15 - 12]; acc += bp[12 - 12]; acc += bp[20 - 12]; acc += bp[21 - 12]; acc -= bp[14 - 12]; acc -= bp[22 - 12]; acc -= bp[23 - 12]; rp[3] = (unsigned int)acc; acc >>= 32; acc += rp[4]; acc += bp[21 - 12]; acc += bp[21 - 12]; acc += bp[16 - 12]; acc += bp[13 - 12]; acc += bp[12 - 12]; acc += bp[20 - 12]; acc += bp[22 - 12]; acc -= bp[15 - 12]; acc -= bp[23 - 12]; acc -= bp[23 - 12]; rp[4] = (unsigned int)acc; acc >>= 32; acc += rp[5]; acc += bp[22 - 12]; acc += bp[22 - 12]; acc += bp[17 - 12]; acc += bp[14 - 12]; acc += bp[13 - 12]; acc += bp[21 - 12]; acc += bp[23 - 12]; acc -= bp[16 - 12]; rp[5] = (unsigned int)acc; acc >>= 32; acc += rp[6]; acc += bp[23 - 12]; acc += bp[23 - 12]; acc += bp[18 - 12]; acc += bp[15 - 12]; acc += bp[14 - 12]; acc += bp[22 - 12]; acc -= bp[17 - 12]; rp[6] = (unsigned int)acc; acc >>= 32; acc += rp[7]; acc += bp[19 - 12]; acc += bp[16 - 12]; acc += bp[15 - 12]; acc += bp[23 - 12]; acc -= bp[18 - 12]; rp[7] = (unsigned int)acc; acc >>= 32; acc += rp[8]; acc += bp[20 - 12]; acc += bp[17 - 12]; acc += bp[16 - 12]; acc -= bp[19 - 12]; rp[8] = (unsigned int)acc; acc >>= 32; acc += rp[9]; acc += bp[21 - 12]; acc += bp[18 - 12]; acc += bp[17 - 12]; acc -= bp[20 - 12]; rp[9] = (unsigned int)acc; acc >>= 32; acc += rp[10]; acc += bp[22 - 12]; acc += bp[19 - 12]; acc += bp[18 - 12]; acc -= bp[21 - 12]; rp[10] = (unsigned int)acc; acc >>= 32; acc += rp[11]; acc += bp[23 - 12]; acc += bp[20 - 12]; acc += bp[19 - 12]; acc -= bp[22 - 12]; rp[11] = (unsigned int)acc; carry = (int)(acc >> 32); } #else { BN_ULONG t_d[BN_NIST_384_TOP]; /* * S1 */ nist_set_256(t_d, buf.bn, 0, 0, 0, 0, 0, 23 - 4, 22 - 4, 21 - 4); /* left shift */ { register BN_ULONG *ap, t, c; ap = t_d; c = 0; for (i = 3; i != 0; --i) { t = *ap; *(ap++) = ((t << 1) | c) & BN_MASK2; c = (t & BN_TBIT) ? 1 : 0; } *ap = c; } carry = (int)bn_add_words(r_d + (128 / BN_BITS2), r_d + (128 / BN_BITS2), t_d, BN_NIST_256_TOP); /* * S2 */ carry += (int)bn_add_words(r_d, r_d, buf.bn, BN_NIST_384_TOP); /* * S3 */ nist_set_384(t_d, buf.bn, 20, 19, 18, 17, 16, 15, 14, 13, 12, 23, 22, 21); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); /* * S4 */ nist_set_384(t_d, buf.bn, 19, 18, 17, 16, 15, 14, 13, 12, 20, 0, 23, 0); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); /* * S5 */ nist_set_384(t_d, buf.bn, 0, 0, 0, 0, 23, 22, 21, 20, 0, 0, 0, 0); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); /* * S6 */ nist_set_384(t_d, buf.bn, 0, 0, 0, 0, 0, 0, 23, 22, 21, 0, 0, 20); carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); /* * D1 */ nist_set_384(t_d, buf.bn, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 23); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); /* * D2 */ nist_set_384(t_d, buf.bn, 0, 0, 0, 0, 0, 0, 0, 23, 22, 21, 20, 0); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); /* * D3 */ nist_set_384(t_d, buf.bn, 0, 0, 0, 0, 0, 0, 0, 23, 23, 0, 0, 0); carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); } #endif /* see BN_nist_mod_224 for explanation */ u.f = bn_sub_words; if (carry > 0) carry = (int)bn_sub_words(r_d, r_d, _nist_p_384[carry - 1], BN_NIST_384_TOP); else if (carry < 0) { carry = (int)bn_add_words(r_d, r_d, _nist_p_384[-carry - 1], BN_NIST_384_TOP); mask = 0 - (PTR_SIZE_INT) carry; u.p = ((PTR_SIZE_INT) bn_sub_words & mask) | ((PTR_SIZE_INT) bn_add_words & ~mask); } else carry = 1; mask = 0 - (PTR_SIZE_INT) (*u.f) (c_d, r_d, _nist_p_384[0], BN_NIST_384_TOP); mask &= 0 - (PTR_SIZE_INT) carry; res = c_d; res = (BN_ULONG *)(((PTR_SIZE_INT) res & ~mask) | ((PTR_SIZE_INT) r_d & mask)); nist_cp_bn(r_d, res, BN_NIST_384_TOP); r->top = BN_NIST_384_TOP; bn_correct_top(r); return 1; } #define BN_NIST_521_RSHIFT (521%BN_BITS2) #define BN_NIST_521_LSHIFT (BN_BITS2-BN_NIST_521_RSHIFT) #define BN_NIST_521_TOP_MASK ((BN_ULONG)BN_MASK2>>BN_NIST_521_LSHIFT) int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) { int top = a->top, i; BN_ULONG *r_d, *a_d = a->d, t_d[BN_NIST_521_TOP], val, tmp, *res; PTR_SIZE_INT mask; static const BIGNUM _bignum_nist_p_521_sqr = { (BN_ULONG *)_nist_p_521_sqr, OSSL_NELEM(_nist_p_521_sqr), OSSL_NELEM(_nist_p_521_sqr), 0, BN_FLG_STATIC_DATA }; field = &_bignum_nist_p_521; /* just to make sure */ if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_521_sqr) >= 0) return BN_nnmod(r, a, field, ctx); i = BN_ucmp(field, a); if (i == 0) { BN_zero(r); return 1; } else if (i > 0) return (r == a) ? 1 : (BN_copy(r, a) != NULL); if (r != a) { if (!bn_wexpand(r, BN_NIST_521_TOP)) return 0; r_d = r->d; nist_cp_bn(r_d, a_d, BN_NIST_521_TOP); } else r_d = a_d; /* upper 521 bits, copy ... */ nist_cp_bn_0(t_d, a_d + (BN_NIST_521_TOP - 1), top - (BN_NIST_521_TOP - 1), BN_NIST_521_TOP); /* ... and right shift */ for (val = t_d[0], i = 0; i < BN_NIST_521_TOP - 1; i++) { #if 0 /* * MSC ARM compiler [version 2013, presumably even earlier, * much earlier] miscompiles this code, but not one in * #else section. See RT#3541. */ tmp = val >> BN_NIST_521_RSHIFT; val = t_d[i + 1]; t_d[i] = (tmp | val << BN_NIST_521_LSHIFT) & BN_MASK2; #else t_d[i] = (val >> BN_NIST_521_RSHIFT | (tmp = t_d[i + 1]) << BN_NIST_521_LSHIFT) & BN_MASK2; val = tmp; #endif } t_d[i] = val >> BN_NIST_521_RSHIFT; /* lower 521 bits */ r_d[i] &= BN_NIST_521_TOP_MASK; bn_add_words(r_d, r_d, t_d, BN_NIST_521_TOP); mask = 0 - (PTR_SIZE_INT) bn_sub_words(t_d, r_d, _nist_p_521, BN_NIST_521_TOP); res = t_d; res = (BN_ULONG *)(((PTR_SIZE_INT) res & ~mask) | ((PTR_SIZE_INT) r_d & mask)); nist_cp_bn(r_d, res, BN_NIST_521_TOP); r->top = BN_NIST_521_TOP; bn_correct_top(r); return 1; } int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) { if (BN_ucmp(&_bignum_nist_p_192, p) == 0) return BN_nist_mod_192; if (BN_ucmp(&_bignum_nist_p_224, p) == 0) return BN_nist_mod_224; if (BN_ucmp(&_bignum_nist_p_256, p) == 0) return BN_nist_mod_256; if (BN_ucmp(&_bignum_nist_p_384, p) == 0) return BN_nist_mod_384; if (BN_ucmp(&_bignum_nist_p_521, p) == 0) return BN_nist_mod_521; return 0; } openssl-1.1.1f/crypto/bn/bn_prime.c000066400000000000000000000255471364063235100172410ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "bn_local.h" /* * The quick sieve algorithm approach to weeding out primes is Philip * Zimmermann's, as implemented in PGP. I have had a read of his comments * and implemented my own version. */ #include "bn_prime.h" static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods); static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x)) int BN_GENCB_call(BN_GENCB *cb, int a, int b) { /* No callback means continue */ if (!cb) return 1; switch (cb->ver) { case 1: /* Deprecated-style callbacks */ if (!cb->cb.cb_1) return 1; cb->cb.cb_1(a, b, cb->arg); return 1; case 2: /* New-style callbacks */ return cb->cb.cb_2(a, b, cb); default: break; } /* Unrecognised callback type */ return 0; } int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) { BIGNUM *t; int found = 0; int i, j, c1 = 0; BN_CTX *ctx = NULL; prime_t *mods = NULL; int checks = BN_prime_checks_for_size(bits); if (bits < 2) { /* There are no prime numbers this small. */ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); return 0; } else if (add == NULL && safe && bits < 6 && bits != 3) { /* * The smallest safe prime (7) is three bits. * But the following two safe primes with less than 6 bits (11, 23) * are unreachable for BN_rand with BN_RAND_TOP_TWO. */ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); return 0; } mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES); if (mods == NULL) goto err; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); t = BN_CTX_get(ctx); if (t == NULL) goto err; loop: /* make a random number and set the top and bottom bits */ if (add == NULL) { if (!probable_prime(ret, bits, safe, mods)) goto err; } else { if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx)) goto err; } if (!BN_GENCB_call(cb, 0, c1++)) /* aborted */ goto err; if (!safe) { i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb); if (i == -1) goto err; if (i == 0) goto loop; } else { /* * for "safe prime" generation, check that (p-1)/2 is prime. Since a * prime is odd, We just need to divide by 2 */ if (!BN_rshift1(t, ret)) goto err; for (i = 0; i < checks; i++) { j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb); if (j == -1) goto err; if (j == 0) goto loop; j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb); if (j == -1) goto err; if (j == 0) goto loop; if (!BN_GENCB_call(cb, 2, c1 - 1)) goto err; /* We have a safe prime test pass */ } } /* we have a prime :-) */ found = 1; err: OPENSSL_free(mods); BN_CTX_end(ctx); BN_CTX_free(ctx); bn_check_top(ret); return found; } int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb) { return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); } int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, int do_trial_division, BN_GENCB *cb) { int i, j, ret = -1; int k; BN_CTX *ctx = NULL; BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */ BN_MONT_CTX *mont = NULL; /* Take care of the really small primes 2 & 3 */ if (BN_is_word(a, 2) || BN_is_word(a, 3)) return 1; /* Check odd and bigger than 1 */ if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0) return 0; if (checks == BN_prime_checks) checks = BN_prime_checks_for_size(BN_num_bits(a)); /* first look for small factors */ if (do_trial_division) { for (i = 1; i < NUMPRIMES; i++) { BN_ULONG mod = BN_mod_word(a, primes[i]); if (mod == (BN_ULONG)-1) goto err; if (mod == 0) return BN_is_word(a, primes[i]); } if (!BN_GENCB_call(cb, 1, -1)) goto err; } if (ctx_passed != NULL) ctx = ctx_passed; else if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); A1 = BN_CTX_get(ctx); A3 = BN_CTX_get(ctx); A1_odd = BN_CTX_get(ctx); check = BN_CTX_get(ctx); if (check == NULL) goto err; /* compute A1 := a - 1 */ if (!BN_copy(A1, a) || !BN_sub_word(A1, 1)) goto err; /* compute A3 := a - 3 */ if (!BN_copy(A3, a) || !BN_sub_word(A3, 3)) goto err; /* write A1 as A1_odd * 2^k */ k = 1; while (!BN_is_bit_set(A1, k)) k++; if (!BN_rshift(A1_odd, A1, k)) goto err; /* Montgomery setup for computations mod a */ mont = BN_MONT_CTX_new(); if (mont == NULL) goto err; if (!BN_MONT_CTX_set(mont, a, ctx)) goto err; for (i = 0; i < checks; i++) { /* 1 < check < a-1 */ if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2)) goto err; j = witness(check, a, A1, A1_odd, k, ctx, mont); if (j == -1) goto err; if (j) { ret = 0; goto err; } if (!BN_GENCB_call(cb, 1, i)) goto err; } ret = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); if (ctx_passed == NULL) BN_CTX_free(ctx); } BN_MONT_CTX_free(mont); return ret; } static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont) { if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ return -1; if (BN_is_one(w)) return 0; /* probably prime */ if (BN_cmp(w, a1) == 0) return 0; /* w == -1 (mod a), 'a' is probably prime */ while (--k) { if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ return -1; if (BN_is_one(w)) return 1; /* 'a' is composite, otherwise a previous 'w' * would have been == -1 (mod 'a') */ if (BN_cmp(w, a1) == 0) return 0; /* w == -1 (mod a), 'a' is probably prime */ } /* * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and * it is neither -1 nor +1 -- so 'a' cannot be prime */ bn_check_top(w); return 1; } static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods) { int i; BN_ULONG delta; BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; again: /* TODO: Not all primes are private */ if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) return 0; if (safe && !BN_set_bit(rnd, 1)) return 0; /* we now have a random number 'rnd' to test. */ for (i = 1; i < NUMPRIMES; i++) { BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); if (mod == (BN_ULONG)-1) return 0; mods[i] = (prime_t) mod; } delta = 0; loop: for (i = 1; i < NUMPRIMES; i++) { /* * check that rnd is a prime and also that * gcd(rnd-1,primes) == 1 (except for 2) * do the second check only if we are interested in safe primes * in the case that the candidate prime is a single word then * we check only the primes up to sqrt(rnd) */ if (bits <= 31 && delta <= 0x7fffffff && square(primes[i]) > BN_get_word(rnd) + delta) break; if (safe ? (mods[i] + delta) % primes[i] <= 1 : (mods[i] + delta) % primes[i] == 0) { delta += safe ? 4 : 2; if (delta > maxdelta) goto again; goto loop; } } if (!BN_add_word(rnd, delta)) return 0; if (BN_num_bits(rnd) != bits) goto again; bn_check_top(rnd); return 1; } static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx) { int i, ret = 0; BIGNUM *t1; BN_ULONG delta; BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; BN_CTX_start(ctx); if ((t1 = BN_CTX_get(ctx)) == NULL) goto err; if (maxdelta > BN_MASK2 - BN_get_word(add)) maxdelta = BN_MASK2 - BN_get_word(add); again: if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) goto err; /* we need ((rnd-rem) % add) == 0 */ if (!BN_mod(t1, rnd, add, ctx)) goto err; if (!BN_sub(rnd, rnd, t1)) goto err; if (rem == NULL) { if (!BN_add_word(rnd, safe ? 3u : 1u)) goto err; } else { if (!BN_add(rnd, rnd, rem)) goto err; } if (BN_num_bits(rnd) < bits || BN_get_word(rnd) < (safe ? 5u : 3u)) { if (!BN_add(rnd, rnd, add)) goto err; } /* we now have a random number 'rnd' to test. */ for (i = 1; i < NUMPRIMES; i++) { BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); if (mod == (BN_ULONG)-1) goto err; mods[i] = (prime_t) mod; } delta = 0; loop: for (i = 1; i < NUMPRIMES; i++) { /* check that rnd is a prime */ if (bits <= 31 && delta <= 0x7fffffff && square(primes[i]) > BN_get_word(rnd) + delta) break; /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */ if (safe ? (mods[i] + delta) % primes[i] <= 1 : (mods[i] + delta) % primes[i] == 0) { delta += BN_get_word(add); if (delta > maxdelta) goto again; goto loop; } } if (!BN_add_word(rnd, delta)) goto err; ret = 1; err: BN_CTX_end(ctx); bn_check_top(rnd); return ret; } openssl-1.1.1f/crypto/bn/bn_prime.h000066400000000000000000000367621364063235100172470ustar00rootroot00000000000000/* * WARNING: do not edit! * Generated by crypto/bn/bn_prime.pl * * Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ typedef unsigned short prime_t; # define NUMPRIMES 2048 static const prime_t primes[2048] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839, 17851, 17863, }; openssl-1.1.1f/crypto/bn/bn_prime.pl000066400000000000000000000026041364063235100174170ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1998-2019 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Output year depends on the year of the script. my $YEAR = [localtime([stat($0)]->[9])]->[5] + 1900; print <<"EOF"; /* * WARNING: do not edit! * Generated by crypto/bn/bn_prime.pl * * Copyright 1998-$YEAR The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ EOF my $num = shift || 2048; my @primes = ( 2 ); my $p = 1; loop: while ($#primes < $num-1) { $p += 2; my $s = int(sqrt($p)); for (my $i = 0; defined($primes[$i]) && $primes[$i] <= $s; $i++) { next loop if ($p % $primes[$i]) == 0; } push(@primes, $p); } print "typedef unsigned short prime_t;\n"; printf "# define NUMPRIMES %d\n\n", $num; printf "static const prime_t primes[%d] = {", $num; for (my $i = 0; $i <= $#primes; $i++) { printf "\n " if ($i % 8) == 0; printf " %5d,", $primes[$i]; } print "\n};\n"; openssl-1.1.1f/crypto/bn/bn_print.c000066400000000000000000000174231364063235100172530ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include #include "internal/cryptlib.h" #include #include "bn_local.h" static const char Hex[] = "0123456789ABCDEF"; /* Must 'OPENSSL_free' the returned data */ char *BN_bn2hex(const BIGNUM *a) { int i, j, v, z = 0; char *buf; char *p; if (BN_is_zero(a)) return OPENSSL_strdup("0"); buf = OPENSSL_malloc(a->top * BN_BYTES * 2 + 2); if (buf == NULL) { BNerr(BN_F_BN_BN2HEX, ERR_R_MALLOC_FAILURE); goto err; } p = buf; if (a->neg) *p++ = '-'; for (i = a->top - 1; i >= 0; i--) { for (j = BN_BITS2 - 8; j >= 0; j -= 8) { /* strip leading zeros */ v = (int)((a->d[i] >> j) & 0xff); if (z || v != 0) { *p++ = Hex[v >> 4]; *p++ = Hex[v & 0x0f]; z = 1; } } } *p = '\0'; err: return buf; } /* Must 'OPENSSL_free' the returned data */ char *BN_bn2dec(const BIGNUM *a) { int i = 0, num, ok = 0, n, tbytes; char *buf = NULL; char *p; BIGNUM *t = NULL; BN_ULONG *bn_data = NULL, *lp; int bn_data_num; /*- * get an upper bound for the length of the decimal integer * num <= (BN_num_bits(a) + 1) * log(2) * <= 3 * BN_num_bits(a) * 0.101 + log(2) + 1 (rounding error) * <= 3 * BN_num_bits(a) / 10 + 3 * BN_num_bits / 1000 + 1 + 1 */ i = BN_num_bits(a) * 3; num = (i / 10 + i / 1000 + 1) + 1; tbytes = num + 3; /* negative and terminator and one spare? */ bn_data_num = num / BN_DEC_NUM + 1; bn_data = OPENSSL_malloc(bn_data_num * sizeof(BN_ULONG)); buf = OPENSSL_malloc(tbytes); if (buf == NULL || bn_data == NULL) { BNerr(BN_F_BN_BN2DEC, ERR_R_MALLOC_FAILURE); goto err; } if ((t = BN_dup(a)) == NULL) goto err; p = buf; lp = bn_data; if (BN_is_zero(t)) { *p++ = '0'; *p++ = '\0'; } else { if (BN_is_negative(t)) *p++ = '-'; while (!BN_is_zero(t)) { if (lp - bn_data >= bn_data_num) goto err; *lp = BN_div_word(t, BN_DEC_CONV); if (*lp == (BN_ULONG)-1) goto err; lp++; } lp--; /* * We now have a series of blocks, BN_DEC_NUM chars in length, where * the last one needs truncation. The blocks need to be reversed in * order. */ n = BIO_snprintf(p, tbytes - (size_t)(p - buf), BN_DEC_FMT1, *lp); if (n < 0) goto err; p += n; while (lp != bn_data) { lp--; n = BIO_snprintf(p, tbytes - (size_t)(p - buf), BN_DEC_FMT2, *lp); if (n < 0) goto err; p += n; } } ok = 1; err: OPENSSL_free(bn_data); BN_free(t); if (ok) return buf; OPENSSL_free(buf); return NULL; } int BN_hex2bn(BIGNUM **bn, const char *a) { BIGNUM *ret = NULL; BN_ULONG l = 0; int neg = 0, h, m, i, j, k, c; int num; if (a == NULL || *a == '\0') return 0; if (*a == '-') { neg = 1; a++; } for (i = 0; i <= INT_MAX / 4 && ossl_isxdigit(a[i]); i++) continue; if (i == 0 || i > INT_MAX / 4) goto err; num = i + neg; if (bn == NULL) return num; /* a is the start of the hex digits, and it is 'i' long */ if (*bn == NULL) { if ((ret = BN_new()) == NULL) return 0; } else { ret = *bn; BN_zero(ret); } /* i is the number of hex digits */ if (bn_expand(ret, i * 4) == NULL) goto err; j = i; /* least significant 'hex' */ m = 0; h = 0; while (j > 0) { m = (BN_BYTES * 2 <= j) ? BN_BYTES * 2 : j; l = 0; for (;;) { c = a[j - m]; k = OPENSSL_hexchar2int(c); if (k < 0) k = 0; /* paranoia */ l = (l << 4) | k; if (--m <= 0) { ret->d[h++] = l; break; } } j -= BN_BYTES * 2; } ret->top = h; bn_correct_top(ret); *bn = ret; bn_check_top(ret); /* Don't set the negative flag if it's zero. */ if (ret->top != 0) ret->neg = neg; return num; err: if (*bn == NULL) BN_free(ret); return 0; } int BN_dec2bn(BIGNUM **bn, const char *a) { BIGNUM *ret = NULL; BN_ULONG l = 0; int neg = 0, i, j; int num; if (a == NULL || *a == '\0') return 0; if (*a == '-') { neg = 1; a++; } for (i = 0; i <= INT_MAX / 4 && ossl_isdigit(a[i]); i++) continue; if (i == 0 || i > INT_MAX / 4) goto err; num = i + neg; if (bn == NULL) return num; /* * a is the start of the digits, and it is 'i' long. We chop it into * BN_DEC_NUM digits at a time */ if (*bn == NULL) { if ((ret = BN_new()) == NULL) return 0; } else { ret = *bn; BN_zero(ret); } /* i is the number of digits, a bit of an over expand */ if (bn_expand(ret, i * 4) == NULL) goto err; j = BN_DEC_NUM - i % BN_DEC_NUM; if (j == BN_DEC_NUM) j = 0; l = 0; while (--i >= 0) { l *= 10; l += *a - '0'; a++; if (++j == BN_DEC_NUM) { if (!BN_mul_word(ret, BN_DEC_CONV) || !BN_add_word(ret, l)) goto err; l = 0; j = 0; } } bn_correct_top(ret); *bn = ret; bn_check_top(ret); /* Don't set the negative flag if it's zero. */ if (ret->top != 0) ret->neg = neg; return num; err: if (*bn == NULL) BN_free(ret); return 0; } int BN_asc2bn(BIGNUM **bn, const char *a) { const char *p = a; if (*p == '-') p++; if (p[0] == '0' && (p[1] == 'X' || p[1] == 'x')) { if (!BN_hex2bn(bn, p + 2)) return 0; } else { if (!BN_dec2bn(bn, p)) return 0; } /* Don't set the negative flag if it's zero. */ if (*a == '-' && (*bn)->top != 0) (*bn)->neg = 1; return 1; } # ifndef OPENSSL_NO_STDIO int BN_print_fp(FILE *fp, const BIGNUM *a) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) return 0; BIO_set_fp(b, fp, BIO_NOCLOSE); ret = BN_print(b, a); BIO_free(b); return ret; } # endif int BN_print(BIO *bp, const BIGNUM *a) { int i, j, v, z = 0; int ret = 0; if ((a->neg) && BIO_write(bp, "-", 1) != 1) goto end; if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) goto end; for (i = a->top - 1; i >= 0; i--) { for (j = BN_BITS2 - 4; j >= 0; j -= 4) { /* strip leading zeros */ v = (int)((a->d[i] >> j) & 0x0f); if (z || v != 0) { if (BIO_write(bp, &Hex[v], 1) != 1) goto end; z = 1; } } } ret = 1; end: return ret; } char *BN_options(void) { static int init = 0; static char data[16]; if (!init) { init++; #ifdef BN_LLONG BIO_snprintf(data, sizeof(data), "bn(%zu,%zu)", sizeof(BN_ULLONG) * 8, sizeof(BN_ULONG) * 8); #else BIO_snprintf(data, sizeof(data), "bn(%zu,%zu)", sizeof(BN_ULONG) * 8, sizeof(BN_ULONG) * 8); #endif } return data; } openssl-1.1.1f/crypto/bn/bn_rand.c000066400000000000000000000164741364063235100170500ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "bn_local.h" #include #include typedef enum bnrand_flag_e { NORMAL, TESTING, PRIVATE } BNRAND_FLAG; static int bnrand(BNRAND_FLAG flag, BIGNUM *rnd, int bits, int top, int bottom) { unsigned char *buf = NULL; int b, ret = 0, bit, bytes, mask; if (bits == 0) { if (top != BN_RAND_TOP_ANY || bottom != BN_RAND_BOTTOM_ANY) goto toosmall; BN_zero(rnd); return 1; } if (bits < 0 || (bits == 1 && top > 0)) goto toosmall; bytes = (bits + 7) / 8; bit = (bits - 1) % 8; mask = 0xff << (bit + 1); buf = OPENSSL_malloc(bytes); if (buf == NULL) { BNerr(BN_F_BNRAND, ERR_R_MALLOC_FAILURE); goto err; } /* make a random number and set the top and bottom bits */ b = flag == NORMAL ? RAND_bytes(buf, bytes) : RAND_priv_bytes(buf, bytes); if (b <= 0) goto err; if (flag == TESTING) { /* * generate patterns that are more likely to trigger BN library bugs */ int i; unsigned char c; for (i = 0; i < bytes; i++) { if (RAND_bytes(&c, 1) <= 0) goto err; if (c >= 128 && i > 0) buf[i] = buf[i - 1]; else if (c < 42) buf[i] = 0; else if (c < 84) buf[i] = 255; } } if (top >= 0) { if (top) { if (bit == 0) { buf[0] = 1; buf[1] |= 0x80; } else { buf[0] |= (3 << (bit - 1)); } } else { buf[0] |= (1 << bit); } } buf[0] &= ~mask; if (bottom) /* set bottom bit if requested */ buf[bytes - 1] |= 1; if (!BN_bin2bn(buf, bytes, rnd)) goto err; ret = 1; err: OPENSSL_clear_free(buf, bytes); bn_check_top(rnd); return ret; toosmall: BNerr(BN_F_BNRAND, BN_R_BITS_TOO_SMALL); return 0; } int BN_rand(BIGNUM *rnd, int bits, int top, int bottom) { return bnrand(NORMAL, rnd, bits, top, bottom); } int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom) { return bnrand(TESTING, rnd, bits, top, bottom); } int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom) { return bnrand(PRIVATE, rnd, bits, top, bottom); } /* random number r: 0 <= r < range */ static int bnrand_range(BNRAND_FLAG flag, BIGNUM *r, const BIGNUM *range) { int n; int count = 100; if (range->neg || BN_is_zero(range)) { BNerr(BN_F_BNRAND_RANGE, BN_R_INVALID_RANGE); return 0; } n = BN_num_bits(range); /* n > 0 */ /* BN_is_bit_set(range, n - 1) always holds */ if (n == 1) BN_zero(r); else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3)) { /* * range = 100..._2, so 3*range (= 11..._2) is exactly one bit longer * than range */ do { if (!bnrand(flag, r, n + 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) return 0; /* * If r < 3*range, use r := r MOD range (which is either r, r - * range, or r - 2*range). Otherwise, iterate once more. Since * 3*range = 11..._2, each iteration succeeds with probability >= * .75. */ if (BN_cmp(r, range) >= 0) { if (!BN_sub(r, r, range)) return 0; if (BN_cmp(r, range) >= 0) if (!BN_sub(r, r, range)) return 0; } if (!--count) { BNerr(BN_F_BNRAND_RANGE, BN_R_TOO_MANY_ITERATIONS); return 0; } } while (BN_cmp(r, range) >= 0); } else { do { /* range = 11..._2 or range = 101..._2 */ if (!bnrand(flag, r, n, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) return 0; if (!--count) { BNerr(BN_F_BNRAND_RANGE, BN_R_TOO_MANY_ITERATIONS); return 0; } } while (BN_cmp(r, range) >= 0); } bn_check_top(r); return 1; } int BN_rand_range(BIGNUM *r, const BIGNUM *range) { return bnrand_range(NORMAL, r, range); } int BN_priv_rand_range(BIGNUM *r, const BIGNUM *range) { return bnrand_range(PRIVATE, r, range); } int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) { return BN_rand(rnd, bits, top, bottom); } int BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range) { return BN_rand_range(r, range); } /* * BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike * BN_rand_range, it also includes the contents of |priv| and |message| in * the generation so that an RNG failure isn't fatal as long as |priv| * remains secret. This is intended for use in DSA and ECDSA where an RNG * weakness leads directly to private key exposure unless this function is * used. */ int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, const BIGNUM *priv, const unsigned char *message, size_t message_len, BN_CTX *ctx) { SHA512_CTX sha; /* * We use 512 bits of random data per iteration to ensure that we have at * least |range| bits of randomness. */ unsigned char random_bytes[64]; unsigned char digest[SHA512_DIGEST_LENGTH]; unsigned done, todo; /* We generate |range|+8 bytes of random output. */ const unsigned num_k_bytes = BN_num_bytes(range) + 8; unsigned char private_bytes[96]; unsigned char *k_bytes; int ret = 0; k_bytes = OPENSSL_malloc(num_k_bytes); if (k_bytes == NULL) goto err; /* We copy |priv| into a local buffer to avoid exposing its length. */ if (BN_bn2binpad(priv, private_bytes, sizeof(private_bytes)) < 0) { /* * No reasonable DSA or ECDSA key should have a private key this * large and we don't handle this case in order to avoid leaking the * length of the private key. */ BNerr(BN_F_BN_GENERATE_DSA_NONCE, BN_R_PRIVATE_KEY_TOO_LARGE); goto err; } for (done = 0; done < num_k_bytes;) { if (RAND_priv_bytes(random_bytes, sizeof(random_bytes)) != 1) goto err; SHA512_Init(&sha); SHA512_Update(&sha, &done, sizeof(done)); SHA512_Update(&sha, private_bytes, sizeof(private_bytes)); SHA512_Update(&sha, message, message_len); SHA512_Update(&sha, random_bytes, sizeof(random_bytes)); SHA512_Final(digest, &sha); todo = num_k_bytes - done; if (todo > SHA512_DIGEST_LENGTH) todo = SHA512_DIGEST_LENGTH; memcpy(k_bytes + done, digest, todo); done += todo; } if (!BN_bin2bn(k_bytes, num_k_bytes, out)) goto err; if (BN_mod(out, out, range, ctx) != 1) goto err; ret = 1; err: OPENSSL_free(k_bytes); OPENSSL_cleanse(private_bytes, sizeof(private_bytes)); return ret; } openssl-1.1.1f/crypto/bn/bn_recp.c000066400000000000000000000110101364063235100170320ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" void BN_RECP_CTX_init(BN_RECP_CTX *recp) { memset(recp, 0, sizeof(*recp)); bn_init(&(recp->N)); bn_init(&(recp->Nr)); } BN_RECP_CTX *BN_RECP_CTX_new(void) { BN_RECP_CTX *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { BNerr(BN_F_BN_RECP_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } bn_init(&(ret->N)); bn_init(&(ret->Nr)); ret->flags = BN_FLG_MALLOCED; return ret; } void BN_RECP_CTX_free(BN_RECP_CTX *recp) { if (recp == NULL) return; BN_free(&recp->N); BN_free(&recp->Nr); if (recp->flags & BN_FLG_MALLOCED) OPENSSL_free(recp); } int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) { if (!BN_copy(&(recp->N), d)) return 0; BN_zero(&(recp->Nr)); recp->num_bits = BN_num_bits(d); recp->shift = 0; return 1; } int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_RECP_CTX *recp, BN_CTX *ctx) { int ret = 0; BIGNUM *a; const BIGNUM *ca; BN_CTX_start(ctx); if ((a = BN_CTX_get(ctx)) == NULL) goto err; if (y != NULL) { if (x == y) { if (!BN_sqr(a, x, ctx)) goto err; } else { if (!BN_mul(a, x, y, ctx)) goto err; } ca = a; } else ca = x; /* Just do the mod */ ret = BN_div_recp(NULL, r, ca, recp, ctx); err: BN_CTX_end(ctx); bn_check_top(r); return ret; } int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, BN_RECP_CTX *recp, BN_CTX *ctx) { int i, j, ret = 0; BIGNUM *a, *b, *d, *r; BN_CTX_start(ctx); d = (dv != NULL) ? dv : BN_CTX_get(ctx); r = (rem != NULL) ? rem : BN_CTX_get(ctx); a = BN_CTX_get(ctx); b = BN_CTX_get(ctx); if (b == NULL) goto err; if (BN_ucmp(m, &(recp->N)) < 0) { BN_zero(d); if (!BN_copy(r, m)) { BN_CTX_end(ctx); return 0; } BN_CTX_end(ctx); return 1; } /* * We want the remainder Given input of ABCDEF / ab we need multiply * ABCDEF by 3 digests of the reciprocal of ab */ /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */ i = BN_num_bits(m); j = recp->num_bits << 1; if (j > i) i = j; /* Nr := round(2^i / N) */ if (i != recp->shift) recp->shift = BN_reciprocal(&(recp->Nr), &(recp->N), i, ctx); /* BN_reciprocal could have returned -1 for an error */ if (recp->shift == -1) goto err; /*- * d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - BN_num_bits(N)))| * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - BN_num_bits(N)))| * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| * = |m/N| */ if (!BN_rshift(a, m, recp->num_bits)) goto err; if (!BN_mul(b, a, &(recp->Nr), ctx)) goto err; if (!BN_rshift(d, b, i - recp->num_bits)) goto err; d->neg = 0; if (!BN_mul(b, &(recp->N), d, ctx)) goto err; if (!BN_usub(r, m, b)) goto err; r->neg = 0; j = 0; while (BN_ucmp(r, &(recp->N)) >= 0) { if (j++ > 2) { BNerr(BN_F_BN_DIV_RECP, BN_R_BAD_RECIPROCAL); goto err; } if (!BN_usub(r, r, &(recp->N))) goto err; if (!BN_add_word(d, 1)) goto err; } r->neg = BN_is_zero(r) ? 0 : m->neg; d->neg = m->neg ^ recp->N.neg; ret = 1; err: BN_CTX_end(ctx); bn_check_top(dv); bn_check_top(rem); return ret; } /* * len is the expected size of the result We actually calculate with an extra * word of precision, so we can do faster division if the remainder is not * required. */ /* r := 2^len / m */ int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) { int ret = -1; BIGNUM *t; BN_CTX_start(ctx); if ((t = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_set_bit(t, len)) goto err; if (!BN_div(r, NULL, t, m, ctx)) goto err; ret = len; err: bn_check_top(r); BN_CTX_end(ctx); return ret; } openssl-1.1.1f/crypto/bn/bn_shift.c000066400000000000000000000113271364063235100172310ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "bn_local.h" int BN_lshift1(BIGNUM *r, const BIGNUM *a) { register BN_ULONG *ap, *rp, t, c; int i; bn_check_top(r); bn_check_top(a); if (r != a) { r->neg = a->neg; if (bn_wexpand(r, a->top + 1) == NULL) return 0; r->top = a->top; } else { if (bn_wexpand(r, a->top + 1) == NULL) return 0; } ap = a->d; rp = r->d; c = 0; for (i = 0; i < a->top; i++) { t = *(ap++); *(rp++) = ((t << 1) | c) & BN_MASK2; c = t >> (BN_BITS2 - 1); } *rp = c; r->top += c; bn_check_top(r); return 1; } int BN_rshift1(BIGNUM *r, const BIGNUM *a) { BN_ULONG *ap, *rp, t, c; int i; bn_check_top(r); bn_check_top(a); if (BN_is_zero(a)) { BN_zero(r); return 1; } i = a->top; ap = a->d; if (a != r) { if (bn_wexpand(r, i) == NULL) return 0; r->neg = a->neg; } rp = r->d; r->top = i; t = ap[--i]; rp[i] = t >> 1; c = t << (BN_BITS2 - 1); r->top -= (t == 1); while (i > 0) { t = ap[--i]; rp[i] = ((t >> 1) & BN_MASK2) | c; c = t << (BN_BITS2 - 1); } if (!r->top) r->neg = 0; /* don't allow negative zero */ bn_check_top(r); return 1; } int BN_lshift(BIGNUM *r, const BIGNUM *a, int n) { int ret; if (n < 0) { BNerr(BN_F_BN_LSHIFT, BN_R_INVALID_SHIFT); return 0; } ret = bn_lshift_fixed_top(r, a, n); bn_correct_top(r); bn_check_top(r); return ret; } /* * In respect to shift factor the execution time is invariant of * |n % BN_BITS2|, but not |n / BN_BITS2|. Or in other words pre-condition * for constant-time-ness is |n < BN_BITS2| or |n / BN_BITS2| being * non-secret. */ int bn_lshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n) { int i, nw; unsigned int lb, rb; BN_ULONG *t, *f; BN_ULONG l, m, rmask = 0; assert(n >= 0); bn_check_top(r); bn_check_top(a); nw = n / BN_BITS2; if (bn_wexpand(r, a->top + nw + 1) == NULL) return 0; if (a->top != 0) { lb = (unsigned int)n % BN_BITS2; rb = BN_BITS2 - lb; rb %= BN_BITS2; /* say no to undefined behaviour */ rmask = (BN_ULONG)0 - rb; /* rmask = 0 - (rb != 0) */ rmask |= rmask >> 8; f = &(a->d[0]); t = &(r->d[nw]); l = f[a->top - 1]; t[a->top] = (l >> rb) & rmask; for (i = a->top - 1; i > 0; i--) { m = l << lb; l = f[i - 1]; t[i] = (m | ((l >> rb) & rmask)) & BN_MASK2; } t[0] = (l << lb) & BN_MASK2; } else { /* shouldn't happen, but formally required */ r->d[nw] = 0; } if (nw != 0) memset(r->d, 0, sizeof(*t) * nw); r->neg = a->neg; r->top = a->top + nw + 1; r->flags |= BN_FLG_FIXED_TOP; return 1; } int BN_rshift(BIGNUM *r, const BIGNUM *a, int n) { int ret = 0; if (n < 0) { BNerr(BN_F_BN_RSHIFT, BN_R_INVALID_SHIFT); return 0; } ret = bn_rshift_fixed_top(r, a, n); bn_correct_top(r); bn_check_top(r); return ret; } /* * In respect to shift factor the execution time is invariant of * |n % BN_BITS2|, but not |n / BN_BITS2|. Or in other words pre-condition * for constant-time-ness for sufficiently[!] zero-padded inputs is * |n < BN_BITS2| or |n / BN_BITS2| being non-secret. */ int bn_rshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n) { int i, top, nw; unsigned int lb, rb; BN_ULONG *t, *f; BN_ULONG l, m, mask; bn_check_top(r); bn_check_top(a); assert(n >= 0); nw = n / BN_BITS2; if (nw >= a->top) { /* shouldn't happen, but formally required */ BN_zero(r); return 1; } rb = (unsigned int)n % BN_BITS2; lb = BN_BITS2 - rb; lb %= BN_BITS2; /* say no to undefined behaviour */ mask = (BN_ULONG)0 - lb; /* mask = 0 - (lb != 0) */ mask |= mask >> 8; top = a->top - nw; if (r != a && bn_wexpand(r, top) == NULL) return 0; t = &(r->d[0]); f = &(a->d[nw]); l = f[0]; for (i = 0; i < top - 1; i++) { m = f[i + 1]; t[i] = (l >> rb) | ((m << lb) & mask); l = m; } t[i] = l >> rb; r->neg = a->neg; r->top = top; r->flags |= BN_FLG_FIXED_TOP; return 1; } openssl-1.1.1f/crypto/bn/bn_sqr.c000066400000000000000000000125761364063235100167300ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" /* r must not be a */ /* * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 */ int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { int ret = bn_sqr_fixed_top(r, a, ctx); bn_correct_top(r); bn_check_top(r); return ret; } int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { int max, al; int ret = 0; BIGNUM *tmp, *rr; bn_check_top(a); al = a->top; if (al <= 0) { r->top = 0; r->neg = 0; return 1; } BN_CTX_start(ctx); rr = (a != r) ? r : BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); if (rr == NULL || tmp == NULL) goto err; max = 2 * al; /* Non-zero (from above) */ if (bn_wexpand(rr, max) == NULL) goto err; if (al == 4) { #ifndef BN_SQR_COMBA BN_ULONG t[8]; bn_sqr_normal(rr->d, a->d, 4, t); #else bn_sqr_comba4(rr->d, a->d); #endif } else if (al == 8) { #ifndef BN_SQR_COMBA BN_ULONG t[16]; bn_sqr_normal(rr->d, a->d, 8, t); #else bn_sqr_comba8(rr->d, a->d); #endif } else { #if defined(BN_RECURSION) if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; bn_sqr_normal(rr->d, a->d, al, t); } else { int j, k; j = BN_num_bits_word((BN_ULONG)al); j = 1 << (j - 1); k = j + j; if (al == j) { if (bn_wexpand(tmp, k * 2) == NULL) goto err; bn_sqr_recursive(rr->d, a->d, al, tmp->d); } else { if (bn_wexpand(tmp, max) == NULL) goto err; bn_sqr_normal(rr->d, a->d, al, tmp->d); } } #else if (bn_wexpand(tmp, max) == NULL) goto err; bn_sqr_normal(rr->d, a->d, al, tmp->d); #endif } rr->neg = 0; rr->top = max; rr->flags |= BN_FLG_FIXED_TOP; if (r != rr && BN_copy(r, rr) == NULL) goto err; ret = 1; err: bn_check_top(rr); bn_check_top(tmp); BN_CTX_end(ctx); return ret; } /* tmp must have 2*n words */ void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) { int i, j, max; const BN_ULONG *ap; BN_ULONG *rp; max = n * 2; ap = a; rp = r; rp[0] = rp[max - 1] = 0; rp++; j = n; if (--j > 0) { ap++; rp[j] = bn_mul_words(rp, ap, j, ap[-1]); rp += 2; } for (i = n - 2; i > 0; i--) { j--; ap++; rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); rp += 2; } bn_add_words(r, r, r, max); /* There will not be a carry */ bn_sqr_words(tmp, a, n); bn_add_words(r, r, tmp, max); } #ifdef BN_RECURSION /*- * r is 2*n words in size, * a and b are both n words in size. (There's not actually a 'b' here ...) * n must be a power of 2. * We multiply and return the result. * t must be 2*n words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) { int n = n2 / 2; int zero, c1; BN_ULONG ln, lo, *p; if (n2 == 4) { # ifndef BN_SQR_COMBA bn_sqr_normal(r, a, 4, t); # else bn_sqr_comba4(r, a); # endif return; } else if (n2 == 8) { # ifndef BN_SQR_COMBA bn_sqr_normal(r, a, 8, t); # else bn_sqr_comba8(r, a); # endif return; } if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { bn_sqr_normal(r, a, n2, t); return; } /* r=(a[0]-a[1])*(a[1]-a[0]) */ c1 = bn_cmp_words(a, &(a[n]), n); zero = 0; if (c1 > 0) bn_sub_words(t, a, &(a[n]), n); else if (c1 < 0) bn_sub_words(t, &(a[n]), a, n); else zero = 1; /* The result will always be negative unless it is zero */ p = &(t[n2 * 2]); if (!zero) bn_sqr_recursive(&(t[n2]), t, n, p); else memset(&t[n2], 0, sizeof(*t) * n2); bn_sqr_recursive(r, a, n, p); bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); /*- * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); /* t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); /*- * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) * r[10] holds (a[0]*a[0]) * r[32] holds (a[1]*a[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* * The overflow will stop before we over write words we should not * overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } #endif openssl-1.1.1f/crypto/bn/bn_sqrt.c000066400000000000000000000224361364063235100171100ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number * Theory", algorithm 1.5.1). 'p' must be prime! */ { BIGNUM *ret = in; int err = 1; int r; BIGNUM *A, *b, *q, *t, *x, *y; int e, i, j; if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { if (BN_abs_is_word(p, 2)) { if (ret == NULL) ret = BN_new(); if (ret == NULL) goto end; if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { if (ret != in) BN_free(ret); return NULL; } bn_check_top(ret); return ret; } BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); return NULL; } if (BN_is_zero(a) || BN_is_one(a)) { if (ret == NULL) ret = BN_new(); if (ret == NULL) goto end; if (!BN_set_word(ret, BN_is_one(a))) { if (ret != in) BN_free(ret); return NULL; } bn_check_top(ret); return ret; } BN_CTX_start(ctx); A = BN_CTX_get(ctx); b = BN_CTX_get(ctx); q = BN_CTX_get(ctx); t = BN_CTX_get(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto end; if (ret == NULL) ret = BN_new(); if (ret == NULL) goto end; /* A = a mod p */ if (!BN_nnmod(A, a, p, ctx)) goto end; /* now write |p| - 1 as 2^e*q where q is odd */ e = 1; while (!BN_is_bit_set(p, e)) e++; /* we'll set q later (if needed) */ if (e == 1) { /*- * The easy case: (|p|-1)/2 is odd, so 2 has an inverse * modulo (|p|-1)/2, and square roots can be computed * directly by modular exponentiation. * We have * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. */ if (!BN_rshift(q, p, 2)) goto end; q->neg = 0; if (!BN_add_word(q, 1)) goto end; if (!BN_mod_exp(ret, A, q, p, ctx)) goto end; err = 0; goto vrfy; } if (e == 2) { /*- * |p| == 5 (mod 8) * * In this case 2 is always a non-square since * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. * So if a really is a square, then 2*a is a non-square. * Thus for * b := (2*a)^((|p|-5)/8), * i := (2*a)*b^2 * we have * i^2 = (2*a)^((1 + (|p|-5)/4)*2) * = (2*a)^((p-1)/2) * = -1; * so if we set * x := a*b*(i-1), * then * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) * = a^2 * b^2 * (-2*i) * = a*(-i)*(2*a*b^2) * = a*(-i)*i * = a. * * (This is due to A.O.L. Atkin, * Subject: Square Roots and Cognate Matters modulo p=8n+5. * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026 * November 1992.) */ /* t := 2*a */ if (!BN_mod_lshift1_quick(t, A, p)) goto end; /* b := (2*a)^((|p|-5)/8) */ if (!BN_rshift(q, p, 3)) goto end; q->neg = 0; if (!BN_mod_exp(b, t, q, p, ctx)) goto end; /* y := b^2 */ if (!BN_mod_sqr(y, b, p, ctx)) goto end; /* t := (2*a)*b^2 - 1 */ if (!BN_mod_mul(t, t, y, p, ctx)) goto end; if (!BN_sub_word(t, 1)) goto end; /* x = a*b*t */ if (!BN_mod_mul(x, A, b, p, ctx)) goto end; if (!BN_mod_mul(x, x, t, p, ctx)) goto end; if (!BN_copy(ret, x)) goto end; err = 0; goto vrfy; } /* * e > 2, so we really have to use the Tonelli/Shanks algorithm. First, * find some y that is not a square. */ if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ q->neg = 0; i = 2; do { /* * For efficiency, try small numbers first; if this fails, try random * numbers. */ if (i < 22) { if (!BN_set_word(y, i)) goto end; } else { if (!BN_priv_rand(y, BN_num_bits(p), 0, 0)) goto end; if (BN_ucmp(y, p) >= 0) { if (!(p->neg ? BN_add : BN_sub) (y, y, p)) goto end; } /* now 0 <= y < |p| */ if (BN_is_zero(y)) if (!BN_set_word(y, i)) goto end; } r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ if (r < -1) goto end; if (r == 0) { /* m divides p */ BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); goto end; } } while (r == 1 && ++i < 82); if (r != -1) { /* * Many rounds and still no non-square -- this is more likely a bug * than just bad luck. Even if p is not prime, we should have found * some y such that r == -1. */ BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); goto end; } /* Here's our actual 'q': */ if (!BN_rshift(q, q, e)) goto end; /* * Now that we have some non-square, we can find an element of order 2^e * by computing its q'th power. */ if (!BN_mod_exp(y, y, q, p, ctx)) goto end; if (BN_is_one(y)) { BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); goto end; } /*- * Now we know that (if p is indeed prime) there is an integer * k, 0 <= k < 2^e, such that * * a^q * y^k == 1 (mod p). * * As a^q is a square and y is not, k must be even. * q+1 is even, too, so there is an element * * X := a^((q+1)/2) * y^(k/2), * * and it satisfies * * X^2 = a^q * a * y^k * = a, * * so it is the square root that we are looking for. */ /* t := (q-1)/2 (note that q is odd) */ if (!BN_rshift1(t, q)) goto end; /* x := a^((q-1)/2) */ if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */ if (!BN_nnmod(t, A, p, ctx)) goto end; if (BN_is_zero(t)) { /* special case: a == 0 (mod p) */ BN_zero(ret); err = 0; goto end; } else if (!BN_one(x)) goto end; } else { if (!BN_mod_exp(x, A, t, p, ctx)) goto end; if (BN_is_zero(x)) { /* special case: a == 0 (mod p) */ BN_zero(ret); err = 0; goto end; } } /* b := a*x^2 (= a^q) */ if (!BN_mod_sqr(b, x, p, ctx)) goto end; if (!BN_mod_mul(b, b, A, p, ctx)) goto end; /* x := a*x (= a^((q+1)/2)) */ if (!BN_mod_mul(x, x, A, p, ctx)) goto end; while (1) { /*- * Now b is a^q * y^k for some even k (0 <= k < 2^E * where E refers to the original value of e, which we * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). * * We have a*b = x^2, * y^2^(e-1) = -1, * b^2^(e-1) = 1. */ if (BN_is_one(b)) { if (!BN_copy(ret, x)) goto end; err = 0; goto vrfy; } /* find smallest i such that b^(2^i) = 1 */ i = 1; if (!BN_mod_sqr(t, b, p, ctx)) goto end; while (!BN_is_one(t)) { i++; if (i == e) { BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); goto end; } if (!BN_mod_mul(t, t, t, p, ctx)) goto end; } /* t := y^2^(e - i - 1) */ if (!BN_copy(t, y)) goto end; for (j = e - i - 1; j > 0; j--) { if (!BN_mod_sqr(t, t, p, ctx)) goto end; } if (!BN_mod_mul(y, t, t, p, ctx)) goto end; if (!BN_mod_mul(x, x, t, p, ctx)) goto end; if (!BN_mod_mul(b, b, y, p, ctx)) goto end; e = i; } vrfy: if (!err) { /* * verify the result -- the input might have been not a square (test * added in 0.9.8) */ if (!BN_mod_sqr(x, ret, p, ctx)) err = 1; if (!err && 0 != BN_cmp(x, A)) { BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); err = 1; } } end: if (err) { if (ret != in) BN_clear_free(ret); ret = NULL; } BN_CTX_end(ctx); bn_check_top(ret); return ret; } openssl-1.1.1f/crypto/bn/bn_srp.c000066400000000000000000000525751364063235100167320ustar00rootroot00000000000000/* * Copyright 2014-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "bn_local.h" #include "internal/nelem.h" #ifndef OPENSSL_NO_SRP #include #include "crypto/bn_srp.h" # if (BN_BYTES == 8) # if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__) # define bn_pack4(a1,a2,a3,a4) ((a1##UI64<<48)|(a2##UI64<<32)|(a3##UI64<<16)|a4##UI64) # elif defined(__arch64__) # define bn_pack4(a1,a2,a3,a4) ((a1##UL<<48)|(a2##UL<<32)|(a3##UL<<16)|a4##UL) # else # define bn_pack4(a1,a2,a3,a4) ((a1##ULL<<48)|(a2##ULL<<32)|(a3##ULL<<16)|a4##ULL) # endif # elif (BN_BYTES == 4) # define bn_pack4(a1,a2,a3,a4) ((a3##UL<<16)|a4##UL), ((a1##UL<<16)|a2##UL) # else # error "unsupported BN_BYTES" # endif static const BN_ULONG bn_group_1024_value[] = { bn_pack4(0x9FC6, 0x1D2F, 0xC0EB, 0x06E3), bn_pack4(0xFD51, 0x38FE, 0x8376, 0x435B), bn_pack4(0x2FD4, 0xCBF4, 0x976E, 0xAA9A), bn_pack4(0x68ED, 0xBC3C, 0x0572, 0x6CC0), bn_pack4(0xC529, 0xF566, 0x660E, 0x57EC), bn_pack4(0x8255, 0x9B29, 0x7BCF, 0x1885), bn_pack4(0xCE8E, 0xF4AD, 0x69B1, 0x5D49), bn_pack4(0x5DC7, 0xD7B4, 0x6154, 0xD6B6), bn_pack4(0x8E49, 0x5C1D, 0x6089, 0xDAD1), bn_pack4(0xE0D5, 0xD8E2, 0x50B9, 0x8BE4), bn_pack4(0x383B, 0x4813, 0xD692, 0xC6E0), bn_pack4(0xD674, 0xDF74, 0x96EA, 0x81D3), bn_pack4(0x9EA2, 0x314C, 0x9C25, 0x6576), bn_pack4(0x6072, 0x6187, 0x75FF, 0x3C0B), bn_pack4(0x9C33, 0xF80A, 0xFA8F, 0xC5E8), bn_pack4(0xEEAF, 0x0AB9, 0xADB3, 0x8DD6) }; const BIGNUM bn_group_1024 = { (BN_ULONG *)bn_group_1024_value, OSSL_NELEM(bn_group_1024_value), OSSL_NELEM(bn_group_1024_value), 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_group_1536_value[] = { bn_pack4(0xCF76, 0xE3FE, 0xD135, 0xF9BB), bn_pack4(0x1518, 0x0F93, 0x499A, 0x234D), bn_pack4(0x8CE7, 0xA28C, 0x2442, 0xC6F3), bn_pack4(0x5A02, 0x1FFF, 0x5E91, 0x479E), bn_pack4(0x7F8A, 0x2FE9, 0xB8B5, 0x292E), bn_pack4(0x837C, 0x264A, 0xE3A9, 0xBEB8), bn_pack4(0xE442, 0x734A, 0xF7CC, 0xB7AE), bn_pack4(0x6577, 0x2E43, 0x7D6C, 0x7F8C), bn_pack4(0xDB2F, 0xD53D, 0x24B7, 0xC486), bn_pack4(0x6EDF, 0x0195, 0x3934, 0x9627), bn_pack4(0x158B, 0xFD3E, 0x2B9C, 0x8CF5), bn_pack4(0x764E, 0x3F4B, 0x53DD, 0x9DA1), bn_pack4(0x4754, 0x8381, 0xDBC5, 0xB1FC), bn_pack4(0x9B60, 0x9E0B, 0xE3BA, 0xB63D), bn_pack4(0x8134, 0xB1C8, 0xB979, 0x8914), bn_pack4(0xDF02, 0x8A7C, 0xEC67, 0xF0D0), bn_pack4(0x80B6, 0x55BB, 0x9A22, 0xE8DC), bn_pack4(0x1558, 0x903B, 0xA0D0, 0xF843), bn_pack4(0x51C6, 0xA94B, 0xE460, 0x7A29), bn_pack4(0x5F4F, 0x5F55, 0x6E27, 0xCBDE), bn_pack4(0xBEEE, 0xA961, 0x4B19, 0xCC4D), bn_pack4(0xDBA5, 0x1DF4, 0x99AC, 0x4C80), bn_pack4(0xB1F1, 0x2A86, 0x17A4, 0x7BBB), bn_pack4(0x9DEF, 0x3CAF, 0xB939, 0x277A) }; const BIGNUM bn_group_1536 = { (BN_ULONG *)bn_group_1536_value, OSSL_NELEM(bn_group_1536_value), OSSL_NELEM(bn_group_1536_value), 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_group_2048_value[] = { bn_pack4(0x0FA7, 0x111F, 0x9E4A, 0xFF73), bn_pack4(0x9B65, 0xE372, 0xFCD6, 0x8EF2), bn_pack4(0x35DE, 0x236D, 0x525F, 0x5475), bn_pack4(0x94B5, 0xC803, 0xD89F, 0x7AE4), bn_pack4(0x71AE, 0x35F8, 0xE9DB, 0xFBB6), bn_pack4(0x2A56, 0x98F3, 0xA8D0, 0xC382), bn_pack4(0x9CCC, 0x041C, 0x7BC3, 0x08D8), bn_pack4(0xAF87, 0x4E73, 0x03CE, 0x5329), bn_pack4(0x6160, 0x2790, 0x04E5, 0x7AE6), bn_pack4(0x032C, 0xFBDB, 0xF52F, 0xB378), bn_pack4(0x5EA7, 0x7A27, 0x75D2, 0xECFA), bn_pack4(0x5445, 0x23B5, 0x24B0, 0xD57D), bn_pack4(0x5B9D, 0x32E6, 0x88F8, 0x7748), bn_pack4(0xF1D2, 0xB907, 0x8717, 0x461A), bn_pack4(0x76BD, 0x207A, 0x436C, 0x6481), bn_pack4(0xCA97, 0xB43A, 0x23FB, 0x8016), bn_pack4(0x1D28, 0x1E44, 0x6B14, 0x773B), bn_pack4(0x7359, 0xD041, 0xD5C3, 0x3EA7), bn_pack4(0xA80D, 0x740A, 0xDBF4, 0xFF74), bn_pack4(0x55F9, 0x7993, 0xEC97, 0x5EEA), bn_pack4(0x2918, 0xA996, 0x2F0B, 0x93B8), bn_pack4(0x661A, 0x05FB, 0xD5FA, 0xAAE8), bn_pack4(0xCF60, 0x9517, 0x9A16, 0x3AB3), bn_pack4(0xE808, 0x3969, 0xEDB7, 0x67B0), bn_pack4(0xCD7F, 0x48A9, 0xDA04, 0xFD50), bn_pack4(0xD523, 0x12AB, 0x4B03, 0x310D), bn_pack4(0x8193, 0xE075, 0x7767, 0xA13D), bn_pack4(0xA373, 0x29CB, 0xB4A0, 0x99ED), bn_pack4(0xFC31, 0x9294, 0x3DB5, 0x6050), bn_pack4(0xAF72, 0xB665, 0x1987, 0xEE07), bn_pack4(0xF166, 0xDE5E, 0x1389, 0x582F), bn_pack4(0xAC6B, 0xDB41, 0x324A, 0x9A9B) }; const BIGNUM bn_group_2048 = { (BN_ULONG *)bn_group_2048_value, OSSL_NELEM(bn_group_2048_value), OSSL_NELEM(bn_group_2048_value), 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_group_3072_value[] = { bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF), bn_pack4(0x4B82, 0xD120, 0xA93A, 0xD2CA), bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E), bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31), bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2), bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C), bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C), bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64), bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864), bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B), bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D), bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7), bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7), bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D), bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A), bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64), bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33), bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D), bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510), bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5), bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718), bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9), bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F), bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603), bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B), bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C), bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804), bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D), bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB), bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96), bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F), bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A), bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05), bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D), bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6), bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5), bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED), bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B), bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6), bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245), bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437), bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B), bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD), bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22), bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74), bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1), bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234), bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF) }; const BIGNUM bn_group_3072 = { (BN_ULONG *)bn_group_3072_value, OSSL_NELEM(bn_group_3072_value), OSSL_NELEM(bn_group_3072_value), 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_group_4096_value[] = { bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF), bn_pack4(0x4DF4, 0x35C9, 0x3406, 0x3199), bn_pack4(0x86FF, 0xB7DC, 0x90A6, 0xC08F), bn_pack4(0x93B4, 0xEA98, 0x8D8F, 0xDDC1), bn_pack4(0xD006, 0x9127, 0xD5B0, 0x5AA9), bn_pack4(0xB81B, 0xDD76, 0x2170, 0x481C), bn_pack4(0x1F61, 0x2970, 0xCEE2, 0xD7AF), bn_pack4(0x233B, 0xA186, 0x515B, 0xE7ED), bn_pack4(0x99B2, 0x964F, 0xA090, 0xC3A2), bn_pack4(0x287C, 0x5947, 0x4E6B, 0xC05D), bn_pack4(0x2E8E, 0xFC14, 0x1FBE, 0xCAA6), bn_pack4(0xDBBB, 0xC2DB, 0x04DE, 0x8EF9), bn_pack4(0x2583, 0xE9CA, 0x2AD4, 0x4CE8), bn_pack4(0x1A94, 0x6834, 0xB615, 0x0BDA), bn_pack4(0x99C3, 0x2718, 0x6AF4, 0xE23C), bn_pack4(0x8871, 0x9A10, 0xBDBA, 0x5B26), bn_pack4(0x1A72, 0x3C12, 0xA787, 0xE6D7), bn_pack4(0x4B82, 0xD120, 0xA921, 0x0801), bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E), bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31), bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2), bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C), bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C), bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64), bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864), bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B), bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D), bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7), bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7), bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D), bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A), bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64), bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33), bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D), bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510), bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5), bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718), bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9), bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F), bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603), bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B), bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C), bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804), bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D), bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB), bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96), bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F), bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A), bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05), bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D), bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6), bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5), bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED), bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B), bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6), bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245), bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437), bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B), bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD), bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22), bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74), bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1), bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234), bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF) }; const BIGNUM bn_group_4096 = { (BN_ULONG *)bn_group_4096_value, OSSL_NELEM(bn_group_4096_value), OSSL_NELEM(bn_group_4096_value), 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_group_6144_value[] = { bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF), bn_pack4(0xE694, 0xF91E, 0x6DCC, 0x4024), bn_pack4(0x12BF, 0x2D5B, 0x0B74, 0x74D6), bn_pack4(0x043E, 0x8F66, 0x3F48, 0x60EE), bn_pack4(0x387F, 0xE8D7, 0x6E3C, 0x0468), bn_pack4(0xDA56, 0xC9EC, 0x2EF2, 0x9632), bn_pack4(0xEB19, 0xCCB1, 0xA313, 0xD55C), bn_pack4(0xF550, 0xAA3D, 0x8A1F, 0xBFF0), bn_pack4(0x06A1, 0xD58B, 0xB7C5, 0xDA76), bn_pack4(0xA797, 0x15EE, 0xF29B, 0xE328), bn_pack4(0x14CC, 0x5ED2, 0x0F80, 0x37E0), bn_pack4(0xCC8F, 0x6D7E, 0xBF48, 0xE1D8), bn_pack4(0x4BD4, 0x07B2, 0x2B41, 0x54AA), bn_pack4(0x0F1D, 0x45B7, 0xFF58, 0x5AC5), bn_pack4(0x23A9, 0x7A7E, 0x36CC, 0x88BE), bn_pack4(0x59E7, 0xC97F, 0xBEC7, 0xE8F3), bn_pack4(0xB5A8, 0x4031, 0x900B, 0x1C9E), bn_pack4(0xD55E, 0x702F, 0x4698, 0x0C82), bn_pack4(0xF482, 0xD7CE, 0x6E74, 0xFEF6), bn_pack4(0xF032, 0xEA15, 0xD172, 0x1D03), bn_pack4(0x5983, 0xCA01, 0xC64B, 0x92EC), bn_pack4(0x6FB8, 0xF401, 0x378C, 0xD2BF), bn_pack4(0x3320, 0x5151, 0x2BD7, 0xAF42), bn_pack4(0xDB7F, 0x1447, 0xE6CC, 0x254B), bn_pack4(0x44CE, 0x6CBA, 0xCED4, 0xBB1B), bn_pack4(0xDA3E, 0xDBEB, 0xCF9B, 0x14ED), bn_pack4(0x1797, 0x27B0, 0x865A, 0x8918), bn_pack4(0xB06A, 0x53ED, 0x9027, 0xD831), bn_pack4(0xE5DB, 0x382F, 0x4130, 0x01AE), bn_pack4(0xF8FF, 0x9406, 0xAD9E, 0x530E), bn_pack4(0xC975, 0x1E76, 0x3DBA, 0x37BD), bn_pack4(0xC1D4, 0xDCB2, 0x6026, 0x46DE), bn_pack4(0x36C3, 0xFAB4, 0xD27C, 0x7026), bn_pack4(0x4DF4, 0x35C9, 0x3402, 0x8492), bn_pack4(0x86FF, 0xB7DC, 0x90A6, 0xC08F), bn_pack4(0x93B4, 0xEA98, 0x8D8F, 0xDDC1), bn_pack4(0xD006, 0x9127, 0xD5B0, 0x5AA9), bn_pack4(0xB81B, 0xDD76, 0x2170, 0x481C), bn_pack4(0x1F61, 0x2970, 0xCEE2, 0xD7AF), bn_pack4(0x233B, 0xA186, 0x515B, 0xE7ED), bn_pack4(0x99B2, 0x964F, 0xA090, 0xC3A2), bn_pack4(0x287C, 0x5947, 0x4E6B, 0xC05D), bn_pack4(0x2E8E, 0xFC14, 0x1FBE, 0xCAA6), bn_pack4(0xDBBB, 0xC2DB, 0x04DE, 0x8EF9), bn_pack4(0x2583, 0xE9CA, 0x2AD4, 0x4CE8), bn_pack4(0x1A94, 0x6834, 0xB615, 0x0BDA), bn_pack4(0x99C3, 0x2718, 0x6AF4, 0xE23C), bn_pack4(0x8871, 0x9A10, 0xBDBA, 0x5B26), bn_pack4(0x1A72, 0x3C12, 0xA787, 0xE6D7), bn_pack4(0x4B82, 0xD120, 0xA921, 0x0801), bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E), bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31), bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2), bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C), bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C), bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64), bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864), bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B), bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D), bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7), bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7), bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D), bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A), bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64), bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33), bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D), bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510), bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5), bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718), bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9), bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F), bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603), bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B), bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C), bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804), bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D), bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB), bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96), bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F), bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A), bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05), bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D), bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6), bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5), bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED), bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B), bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6), bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245), bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437), bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B), bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD), bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22), bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74), bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1), bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234), bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF) }; const BIGNUM bn_group_6144 = { (BN_ULONG *)bn_group_6144_value, OSSL_NELEM(bn_group_6144_value), OSSL_NELEM(bn_group_6144_value), 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_group_8192_value[] = { bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF), bn_pack4(0x60C9, 0x80DD, 0x98ED, 0xD3DF), bn_pack4(0xC81F, 0x56E8, 0x80B9, 0x6E71), bn_pack4(0x9E30, 0x50E2, 0x7656, 0x94DF), bn_pack4(0x9558, 0xE447, 0x5677, 0xE9AA), bn_pack4(0xC919, 0x0DA6, 0xFC02, 0x6E47), bn_pack4(0x889A, 0x002E, 0xD5EE, 0x382B), bn_pack4(0x4009, 0x438B, 0x481C, 0x6CD7), bn_pack4(0x3590, 0x46F4, 0xEB87, 0x9F92), bn_pack4(0xFAF3, 0x6BC3, 0x1ECF, 0xA268), bn_pack4(0xB1D5, 0x10BD, 0x7EE7, 0x4D73), bn_pack4(0xF9AB, 0x4819, 0x5DED, 0x7EA1), bn_pack4(0x64F3, 0x1CC5, 0x0846, 0x851D), bn_pack4(0x4597, 0xE899, 0xA025, 0x5DC1), bn_pack4(0xDF31, 0x0EE0, 0x74AB, 0x6A36), bn_pack4(0x6D2A, 0x13F8, 0x3F44, 0xF82D), bn_pack4(0x062B, 0x3CF5, 0xB3A2, 0x78A6), bn_pack4(0x7968, 0x3303, 0xED5B, 0xDD3A), bn_pack4(0xFA9D, 0x4B7F, 0xA2C0, 0x87E8), bn_pack4(0x4BCB, 0xC886, 0x2F83, 0x85DD), bn_pack4(0x3473, 0xFC64, 0x6CEA, 0x306B), bn_pack4(0x13EB, 0x57A8, 0x1A23, 0xF0C7), bn_pack4(0x2222, 0x2E04, 0xA403, 0x7C07), bn_pack4(0xE3FD, 0xB8BE, 0xFC84, 0x8AD9), bn_pack4(0x238F, 0x16CB, 0xE39D, 0x652D), bn_pack4(0x3423, 0xB474, 0x2BF1, 0xC978), bn_pack4(0x3AAB, 0x639C, 0x5AE4, 0xF568), bn_pack4(0x2576, 0xF693, 0x6BA4, 0x2466), bn_pack4(0x741F, 0xA7BF, 0x8AFC, 0x47ED), bn_pack4(0x3BC8, 0x32B6, 0x8D9D, 0xD300), bn_pack4(0xD8BE, 0xC4D0, 0x73B9, 0x31BA), bn_pack4(0x3877, 0x7CB6, 0xA932, 0xDF8C), bn_pack4(0x74A3, 0x926F, 0x12FE, 0xE5E4), bn_pack4(0xE694, 0xF91E, 0x6DBE, 0x1159), bn_pack4(0x12BF, 0x2D5B, 0x0B74, 0x74D6), bn_pack4(0x043E, 0x8F66, 0x3F48, 0x60EE), bn_pack4(0x387F, 0xE8D7, 0x6E3C, 0x0468), bn_pack4(0xDA56, 0xC9EC, 0x2EF2, 0x9632), bn_pack4(0xEB19, 0xCCB1, 0xA313, 0xD55C), bn_pack4(0xF550, 0xAA3D, 0x8A1F, 0xBFF0), bn_pack4(0x06A1, 0xD58B, 0xB7C5, 0xDA76), bn_pack4(0xA797, 0x15EE, 0xF29B, 0xE328), bn_pack4(0x14CC, 0x5ED2, 0x0F80, 0x37E0), bn_pack4(0xCC8F, 0x6D7E, 0xBF48, 0xE1D8), bn_pack4(0x4BD4, 0x07B2, 0x2B41, 0x54AA), bn_pack4(0x0F1D, 0x45B7, 0xFF58, 0x5AC5), bn_pack4(0x23A9, 0x7A7E, 0x36CC, 0x88BE), bn_pack4(0x59E7, 0xC97F, 0xBEC7, 0xE8F3), bn_pack4(0xB5A8, 0x4031, 0x900B, 0x1C9E), bn_pack4(0xD55E, 0x702F, 0x4698, 0x0C82), bn_pack4(0xF482, 0xD7CE, 0x6E74, 0xFEF6), bn_pack4(0xF032, 0xEA15, 0xD172, 0x1D03), bn_pack4(0x5983, 0xCA01, 0xC64B, 0x92EC), bn_pack4(0x6FB8, 0xF401, 0x378C, 0xD2BF), bn_pack4(0x3320, 0x5151, 0x2BD7, 0xAF42), bn_pack4(0xDB7F, 0x1447, 0xE6CC, 0x254B), bn_pack4(0x44CE, 0x6CBA, 0xCED4, 0xBB1B), bn_pack4(0xDA3E, 0xDBEB, 0xCF9B, 0x14ED), bn_pack4(0x1797, 0x27B0, 0x865A, 0x8918), bn_pack4(0xB06A, 0x53ED, 0x9027, 0xD831), bn_pack4(0xE5DB, 0x382F, 0x4130, 0x01AE), bn_pack4(0xF8FF, 0x9406, 0xAD9E, 0x530E), bn_pack4(0xC975, 0x1E76, 0x3DBA, 0x37BD), bn_pack4(0xC1D4, 0xDCB2, 0x6026, 0x46DE), bn_pack4(0x36C3, 0xFAB4, 0xD27C, 0x7026), bn_pack4(0x4DF4, 0x35C9, 0x3402, 0x8492), bn_pack4(0x86FF, 0xB7DC, 0x90A6, 0xC08F), bn_pack4(0x93B4, 0xEA98, 0x8D8F, 0xDDC1), bn_pack4(0xD006, 0x9127, 0xD5B0, 0x5AA9), bn_pack4(0xB81B, 0xDD76, 0x2170, 0x481C), bn_pack4(0x1F61, 0x2970, 0xCEE2, 0xD7AF), bn_pack4(0x233B, 0xA186, 0x515B, 0xE7ED), bn_pack4(0x99B2, 0x964F, 0xA090, 0xC3A2), bn_pack4(0x287C, 0x5947, 0x4E6B, 0xC05D), bn_pack4(0x2E8E, 0xFC14, 0x1FBE, 0xCAA6), bn_pack4(0xDBBB, 0xC2DB, 0x04DE, 0x8EF9), bn_pack4(0x2583, 0xE9CA, 0x2AD4, 0x4CE8), bn_pack4(0x1A94, 0x6834, 0xB615, 0x0BDA), bn_pack4(0x99C3, 0x2718, 0x6AF4, 0xE23C), bn_pack4(0x8871, 0x9A10, 0xBDBA, 0x5B26), bn_pack4(0x1A72, 0x3C12, 0xA787, 0xE6D7), bn_pack4(0x4B82, 0xD120, 0xA921, 0x0801), bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E), bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31), bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2), bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C), bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C), bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64), bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864), bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B), bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D), bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7), bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7), bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D), bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A), bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64), bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33), bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D), bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510), bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5), bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718), bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9), bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F), bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603), bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B), bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C), bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804), bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D), bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB), bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96), bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F), bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A), bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05), bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D), bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6), bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5), bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED), bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B), bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6), bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245), bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437), bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B), bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD), bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22), bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74), bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1), bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234), bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF) }; const BIGNUM bn_group_8192 = { (BN_ULONG *)bn_group_8192_value, OSSL_NELEM(bn_group_8192_value), OSSL_NELEM(bn_group_8192_value), 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_generator_19_value[] = { 19 }; const BIGNUM bn_generator_19 = { (BN_ULONG *)bn_generator_19_value, 1, 1, 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_generator_5_value[] = { 5 }; const BIGNUM bn_generator_5 = { (BN_ULONG *)bn_generator_5_value, 1, 1, 0, BN_FLG_STATIC_DATA }; static const BN_ULONG bn_generator_2_value[] = { 2 }; const BIGNUM bn_generator_2 = { (BN_ULONG *)bn_generator_2_value, 1, 1, 0, BN_FLG_STATIC_DATA }; #endif openssl-1.1.1f/crypto/bn/bn_word.c000066400000000000000000000106351364063235100170700ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "bn_local.h" BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) { #ifndef BN_LLONG BN_ULONG ret = 0; #else BN_ULLONG ret = 0; #endif int i; if (w == 0) return (BN_ULONG)-1; #ifndef BN_LLONG /* * If |w| is too long and we don't have BN_ULLONG then we need to fall * back to using BN_div_word */ if (w > ((BN_ULONG)1 << BN_BITS4)) { BIGNUM *tmp = BN_dup(a); if (tmp == NULL) return (BN_ULONG)-1; ret = BN_div_word(tmp, w); BN_free(tmp); return ret; } #endif bn_check_top(a); w &= BN_MASK2; for (i = a->top - 1; i >= 0; i--) { #ifndef BN_LLONG /* * We can assume here that | w <= ((BN_ULONG)1 << BN_BITS4) | and so * | ret < ((BN_ULONG)1 << BN_BITS4) | and therefore the shifts here are * safe and will not overflow */ ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w; ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; #else ret = (BN_ULLONG) (((ret << (BN_ULLONG) BN_BITS2) | a->d[i]) % (BN_ULLONG) w); #endif } return (BN_ULONG)ret; } BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) { BN_ULONG ret = 0; int i, j; bn_check_top(a); w &= BN_MASK2; if (!w) /* actually this an error (division by zero) */ return (BN_ULONG)-1; if (a->top == 0) return 0; /* normalize input (so bn_div_words doesn't complain) */ j = BN_BITS2 - BN_num_bits_word(w); w <<= j; if (!BN_lshift(a, a, j)) return (BN_ULONG)-1; for (i = a->top - 1; i >= 0; i--) { BN_ULONG l, d; l = a->d[i]; d = bn_div_words(ret, l, w); ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2; a->d[i] = d; } if ((a->top > 0) && (a->d[a->top - 1] == 0)) a->top--; ret >>= j; if (!a->top) a->neg = 0; /* don't allow negative zero */ bn_check_top(a); return ret; } int BN_add_word(BIGNUM *a, BN_ULONG w) { BN_ULONG l; int i; bn_check_top(a); w &= BN_MASK2; /* degenerate case: w is zero */ if (!w) return 1; /* degenerate case: a is zero */ if (BN_is_zero(a)) return BN_set_word(a, w); /* handle 'a' when negative */ if (a->neg) { a->neg = 0; i = BN_sub_word(a, w); if (!BN_is_zero(a)) a->neg = !(a->neg); return i; } for (i = 0; w != 0 && i < a->top; i++) { a->d[i] = l = (a->d[i] + w) & BN_MASK2; w = (w > l) ? 1 : 0; } if (w && i == a->top) { if (bn_wexpand(a, a->top + 1) == NULL) return 0; a->top++; a->d[i] = w; } bn_check_top(a); return 1; } int BN_sub_word(BIGNUM *a, BN_ULONG w) { int i; bn_check_top(a); w &= BN_MASK2; /* degenerate case: w is zero */ if (!w) return 1; /* degenerate case: a is zero */ if (BN_is_zero(a)) { i = BN_set_word(a, w); if (i != 0) BN_set_negative(a, 1); return i; } /* handle 'a' when negative */ if (a->neg) { a->neg = 0; i = BN_add_word(a, w); a->neg = 1; return i; } if ((a->top == 1) && (a->d[0] < w)) { a->d[0] = w - a->d[0]; a->neg = 1; return 1; } i = 0; for (;;) { if (a->d[i] >= w) { a->d[i] -= w; break; } else { a->d[i] = (a->d[i] - w) & BN_MASK2; i++; w = 1; } } if ((a->d[i] == 0) && (i == (a->top - 1))) a->top--; bn_check_top(a); return 1; } int BN_mul_word(BIGNUM *a, BN_ULONG w) { BN_ULONG ll; bn_check_top(a); w &= BN_MASK2; if (a->top) { if (w == 0) BN_zero(a); else { ll = bn_mul_words(a->d, a->d, a->top, w); if (ll) { if (bn_wexpand(a, a->top + 1) == NULL) return 0; a->d[a->top++] = ll; } } } bn_check_top(a); return 1; } openssl-1.1.1f/crypto/bn/bn_x931p.c000066400000000000000000000133551364063235100170030ustar00rootroot00000000000000/* * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bn_local.h" /* X9.31 routines for prime derivation */ /* * X9.31 prime derivation. This is used to generate the primes pi (p1, p2, * q1, q2) from a parameter Xpi by checking successive odd integers. */ static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, BN_GENCB *cb) { int i = 0, is_prime; if (!BN_copy(pi, Xpi)) return 0; if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) return 0; for (;;) { i++; BN_GENCB_call(cb, 0, i); /* NB 27 MR is specified in X9.31 */ is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb); if (is_prime < 0) return 0; if (is_prime) break; if (!BN_add_word(pi, 2)) return 0; } BN_GENCB_call(cb, 2, i); return 1; } /* * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2 * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they * will be returned too: this is needed for testing. */ int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; BIGNUM *t, *p1p2, *pm1; /* Only even e supported */ if (!BN_is_odd(e)) return 0; BN_CTX_start(ctx); if (p1 == NULL) p1 = BN_CTX_get(ctx); if (p2 == NULL) p2 = BN_CTX_get(ctx); t = BN_CTX_get(ctx); p1p2 = BN_CTX_get(ctx); pm1 = BN_CTX_get(ctx); if (pm1 == NULL) goto err; if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) goto err; if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) goto err; if (!BN_mul(p1p2, p1, p2, ctx)) goto err; /* First set p to value of Rp */ if (!BN_mod_inverse(p, p2, p1, ctx)) goto err; if (!BN_mul(p, p, p2, ctx)) goto err; if (!BN_mod_inverse(t, p1, p2, ctx)) goto err; if (!BN_mul(t, t, p1, ctx)) goto err; if (!BN_sub(p, p, t)) goto err; if (p->neg && !BN_add(p, p, p1p2)) goto err; /* p now equals Rp */ if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) goto err; if (!BN_add(p, p, Xp)) goto err; /* p now equals Yp0 */ for (;;) { int i = 1; BN_GENCB_call(cb, 0, i++); if (!BN_copy(pm1, p)) goto err; if (!BN_sub_word(pm1, 1)) goto err; if (!BN_gcd(t, pm1, e, ctx)) goto err; if (BN_is_one(t)) { /* * X9.31 specifies 8 MR and 1 Lucas test or any prime test * offering similar or better guarantees 50 MR is considerably * better. */ int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb); if (r < 0) goto err; if (r) break; } if (!BN_add(p, p, p1p2)) goto err; } BN_GENCB_call(cb, 3, 0); ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits * parameter is sum of number of bits in both. */ int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) { BIGNUM *t; int i; /* * Number of bits for each prime is of the form 512+128s for s = 0, 1, * ... */ if ((nbits < 1024) || (nbits & 0xff)) return 0; nbits >>= 1; /* * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits * - 1. By setting the top two bits we ensure that the lower bound is * exceeded. */ if (!BN_priv_rand(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) goto err; BN_CTX_start(ctx); t = BN_CTX_get(ctx); if (t == NULL) goto err; for (i = 0; i < 1000; i++) { if (!BN_priv_rand(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) goto err; /* Check that |Xp - Xq| > 2^(nbits - 100) */ if (!BN_sub(t, Xp, Xq)) goto err; if (BN_num_bits(t) > (nbits - 100)) break; } BN_CTX_end(ctx); if (i < 1000) return 1; return 0; err: BN_CTX_end(ctx); return 0; } /* * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| > * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the * previous function and supplied as input. */ int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; BN_CTX_start(ctx); if (Xp1 == NULL) Xp1 = BN_CTX_get(ctx); if (Xp2 == NULL) Xp2 = BN_CTX_get(ctx); if (Xp1 == NULL || Xp2 == NULL) goto error; if (!BN_priv_rand(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) goto error; if (!BN_priv_rand(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) goto error; if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) goto error; ret = 1; error: BN_CTX_end(ctx); return ret; } openssl-1.1.1f/crypto/bn/build.info000066400000000000000000000051531364063235100172450ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c bn_mod.c \ bn_print.c bn_rand.c bn_shift.c bn_word.c bn_blind.c \ bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c \ {- $target{bn_asm_src} -} \ bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \ bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c INCLUDE[bn_exp.o]=.. GENERATE[bn-586.s]=asm/bn-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[bn-586.s]=../perlasm/x86asm.pl GENERATE[co-586.s]=asm/co-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[co-586.s]=../perlasm/x86asm.pl GENERATE[x86-mont.s]=asm/x86-mont.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[x86-mont.s]=../perlasm/x86asm.pl GENERATE[x86-gf2m.s]=asm/x86-gf2m.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[x86-gf2m.s]=../perlasm/x86asm.pl GENERATE[sparcv9a-mont.S]=asm/sparcv9a-mont.pl $(PERLASM_SCHEME) INCLUDE[sparcv9a-mont.o]=.. GENERATE[sparcv9-mont.S]=asm/sparcv9-mont.pl $(PERLASM_SCHEME) INCLUDE[sparcv9-mont.o]=.. GENERATE[vis3-mont.S]=asm/vis3-mont.pl $(PERLASM_SCHEME) INCLUDE[vis3-mont.o]=.. GENERATE[sparct4-mont.S]=asm/sparct4-mont.pl $(PERLASM_SCHEME) INCLUDE[sparct4-mont.o]=.. GENERATE[sparcv9-gf2m.S]=asm/sparcv9-gf2m.pl $(PERLASM_SCHEME) INCLUDE[sparcv9-gf2m.o]=.. GENERATE[bn-mips.S]=asm/mips.pl $(PERLASM_SCHEME) INCLUDE[bn-mips.o]=.. GENERATE[mips-mont.S]=asm/mips-mont.pl $(PERLASM_SCHEME) INCLUDE[mips-mont.o]=.. GENERATE[s390x-mont.S]=asm/s390x-mont.pl $(PERLASM_SCHEME) GENERATE[s390x-gf2m.s]=asm/s390x-gf2m.pl $(PERLASM_SCHEME) GENERATE[x86_64-mont.s]=asm/x86_64-mont.pl $(PERLASM_SCHEME) GENERATE[x86_64-mont5.s]=asm/x86_64-mont5.pl $(PERLASM_SCHEME) GENERATE[x86_64-gf2m.s]=asm/x86_64-gf2m.pl $(PERLASM_SCHEME) GENERATE[rsaz-x86_64.s]=asm/rsaz-x86_64.pl $(PERLASM_SCHEME) GENERATE[rsaz-avx2.s]=asm/rsaz-avx2.pl $(PERLASM_SCHEME) GENERATE[bn-ia64.s]=asm/ia64.S GENERATE[ia64-mont.s]=asm/ia64-mont.pl $(LIB_CFLAGS) $(LIB_CPPFLAGS) GENERATE[parisc-mont.s]=asm/parisc-mont.pl $(PERLASM_SCHEME) # ppc - AIX, Linux, MacOS X... GENERATE[bn-ppc.s]=asm/ppc.pl $(PERLASM_SCHEME) GENERATE[ppc-mont.s]=asm/ppc-mont.pl $(PERLASM_SCHEME) GENERATE[ppc64-mont.s]=asm/ppc64-mont.pl $(PERLASM_SCHEME) GENERATE[alpha-mont.S]=asm/alpha-mont.pl $(PERLASM_SCHEME) GENERATE[armv4-mont.S]=asm/armv4-mont.pl $(PERLASM_SCHEME) INCLUDE[armv4-mont.o]=.. GENERATE[armv4-gf2m.S]=asm/armv4-gf2m.pl $(PERLASM_SCHEME) INCLUDE[armv4-gf2m.o]=.. GENERATE[armv8-mont.S]=asm/armv8-mont.pl $(PERLASM_SCHEME) openssl-1.1.1f/crypto/bn/rsaz_exp.c000066400000000000000000000254171364063235100172750ustar00rootroot00000000000000/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2012, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel */ #include #include "rsaz_exp.h" #ifndef RSAZ_ENABLED NON_EMPTY_TRANSLATION_UNIT #else /* * See crypto/bn/asm/rsaz-avx2.pl for further details. */ void rsaz_1024_norm2red_avx2(void *red, const void *norm); void rsaz_1024_mul_avx2(void *ret, const void *a, const void *b, const void *n, BN_ULONG k); void rsaz_1024_sqr_avx2(void *ret, const void *a, const void *n, BN_ULONG k, int cnt); void rsaz_1024_scatter5_avx2(void *tbl, const void *val, int i); void rsaz_1024_gather5_avx2(void *val, const void *tbl, int i); void rsaz_1024_red2norm_avx2(void *norm, const void *red); #if defined(__GNUC__) # define ALIGN64 __attribute__((aligned(64))) #elif defined(_MSC_VER) # define ALIGN64 __declspec(align(64)) #elif defined(__SUNPRO_C) # define ALIGN64 # pragma align 64(one,two80) #else /* not fatal, might hurt performance a little */ # define ALIGN64 #endif ALIGN64 static const BN_ULONG one[40] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; ALIGN64 static const BN_ULONG two80[40] = { 0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16], const BN_ULONG base_norm[16], const BN_ULONG exponent[16], const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0) { unsigned char storage[320 * 3 + 32 * 9 * 16 + 64]; /* 5.5KB */ unsigned char *p_str = storage + (64 - ((size_t)storage % 64)); unsigned char *a_inv, *m, *result; unsigned char *table_s = p_str + 320 * 3; unsigned char *R2 = table_s; /* borrow */ int index; int wvalue; if ((((size_t)p_str & 4095) + 320) >> 12) { result = p_str; a_inv = p_str + 320; m = p_str + 320 * 2; /* should not cross page */ } else { m = p_str; /* should not cross page */ result = p_str + 320; a_inv = p_str + 320 * 2; } rsaz_1024_norm2red_avx2(m, m_norm); rsaz_1024_norm2red_avx2(a_inv, base_norm); rsaz_1024_norm2red_avx2(R2, RR); rsaz_1024_mul_avx2(R2, R2, R2, m, k0); rsaz_1024_mul_avx2(R2, R2, two80, m, k0); /* table[0] = 1 */ rsaz_1024_mul_avx2(result, R2, one, m, k0); /* table[1] = a_inv^1 */ rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 0); rsaz_1024_scatter5_avx2(table_s, a_inv, 1); /* table[2] = a_inv^2 */ rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 2); #if 0 /* this is almost 2x smaller and less than 1% slower */ for (index = 3; index < 32; index++) { rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, index); } #else /* table[4] = a_inv^4 */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 4); /* table[8] = a_inv^8 */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 8); /* table[16] = a_inv^16 */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 16); /* table[17] = a_inv^17 */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 17); /* table[3] */ rsaz_1024_gather5_avx2(result, table_s, 2); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 3); /* table[6] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 6); /* table[12] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 12); /* table[24] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 24); /* table[25] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 25); /* table[5] */ rsaz_1024_gather5_avx2(result, table_s, 4); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 5); /* table[10] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 10); /* table[20] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 20); /* table[21] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 21); /* table[7] */ rsaz_1024_gather5_avx2(result, table_s, 6); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 7); /* table[14] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 14); /* table[28] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 28); /* table[29] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 29); /* table[9] */ rsaz_1024_gather5_avx2(result, table_s, 8); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 9); /* table[18] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 18); /* table[19] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 19); /* table[11] */ rsaz_1024_gather5_avx2(result, table_s, 10); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 11); /* table[22] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 22); /* table[23] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 23); /* table[13] */ rsaz_1024_gather5_avx2(result, table_s, 12); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 13); /* table[26] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 26); /* table[27] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 27); /* table[15] */ rsaz_1024_gather5_avx2(result, table_s, 14); rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 15); /* table[30] */ rsaz_1024_sqr_avx2(result, result, m, k0, 1); rsaz_1024_scatter5_avx2(table_s, result, 30); /* table[31] */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); rsaz_1024_scatter5_avx2(table_s, result, 31); #endif /* load first window */ p_str = (unsigned char *)exponent; wvalue = p_str[127] >> 3; rsaz_1024_gather5_avx2(result, table_s, wvalue); index = 1014; while (index > -1) { /* loop for the remaining 127 windows */ rsaz_1024_sqr_avx2(result, result, m, k0, 5); wvalue = (p_str[(index / 8) + 1] << 8) | p_str[index / 8]; wvalue = (wvalue >> (index % 8)) & 31; index -= 5; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); /* borrow a_inv */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); } /* square four times */ rsaz_1024_sqr_avx2(result, result, m, k0, 4); wvalue = p_str[0] & 15; rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); /* borrow a_inv */ rsaz_1024_mul_avx2(result, result, a_inv, m, k0); /* from Montgomery */ rsaz_1024_mul_avx2(result, result, one, m, k0); rsaz_1024_red2norm_avx2(result_norm, result); OPENSSL_cleanse(storage, sizeof(storage)); } /* * See crypto/bn/rsaz-x86_64.pl for further details. */ void rsaz_512_mul(void *ret, const void *a, const void *b, const void *n, BN_ULONG k); void rsaz_512_mul_scatter4(void *ret, const void *a, const void *n, BN_ULONG k, const void *tbl, unsigned int power); void rsaz_512_mul_gather4(void *ret, const void *a, const void *tbl, const void *n, BN_ULONG k, unsigned int power); void rsaz_512_mul_by_one(void *ret, const void *a, const void *n, BN_ULONG k); void rsaz_512_sqr(void *ret, const void *a, const void *n, BN_ULONG k, int cnt); void rsaz_512_scatter4(void *tbl, const BN_ULONG *val, int power); void rsaz_512_gather4(BN_ULONG *val, const void *tbl, int power); void RSAZ_512_mod_exp(BN_ULONG result[8], const BN_ULONG base[8], const BN_ULONG exponent[8], const BN_ULONG m[8], BN_ULONG k0, const BN_ULONG RR[8]) { unsigned char storage[16 * 8 * 8 + 64 * 2 + 64]; /* 1.2KB */ unsigned char *table = storage + (64 - ((size_t)storage % 64)); BN_ULONG *a_inv = (BN_ULONG *)(table + 16 * 8 * 8); BN_ULONG *temp = (BN_ULONG *)(table + 16 * 8 * 8 + 8 * 8); unsigned char *p_str = (unsigned char *)exponent; int index; unsigned int wvalue; /* table[0] = 1_inv */ temp[0] = 0 - m[0]; temp[1] = ~m[1]; temp[2] = ~m[2]; temp[3] = ~m[3]; temp[4] = ~m[4]; temp[5] = ~m[5]; temp[6] = ~m[6]; temp[7] = ~m[7]; rsaz_512_scatter4(table, temp, 0); /* table [1] = a_inv^1 */ rsaz_512_mul(a_inv, base, RR, m, k0); rsaz_512_scatter4(table, a_inv, 1); /* table [2] = a_inv^2 */ rsaz_512_sqr(temp, a_inv, m, k0, 1); rsaz_512_scatter4(table, temp, 2); for (index = 3; index < 16; index++) rsaz_512_mul_scatter4(temp, a_inv, m, k0, table, index); /* load first window */ wvalue = p_str[63]; rsaz_512_gather4(temp, table, wvalue >> 4); rsaz_512_sqr(temp, temp, m, k0, 4); rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue & 0xf); for (index = 62; index >= 0; index--) { wvalue = p_str[index]; rsaz_512_sqr(temp, temp, m, k0, 4); rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue >> 4); rsaz_512_sqr(temp, temp, m, k0, 4); rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue & 0x0f); } /* from Montgomery */ rsaz_512_mul_by_one(result, temp, m, k0); OPENSSL_cleanse(storage, sizeof(storage)); } #endif openssl-1.1.1f/crypto/bn/rsaz_exp.h000066400000000000000000000026021364063235100172710ustar00rootroot00000000000000/* * Copyright 2013-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2012, Intel Corporation. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel */ #ifndef OSSL_CRYPTO_BN_RSAZ_EXP_H # define OSSL_CRYPTO_BN_RSAZ_EXP_H # undef RSAZ_ENABLED # if defined(OPENSSL_BN_ASM_MONT) && \ (defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64)) # define RSAZ_ENABLED # include void RSAZ_1024_mod_exp_avx2(BN_ULONG result[16], const BN_ULONG base_norm[16], const BN_ULONG exponent[16], const BN_ULONG m_norm[16], const BN_ULONG RR[16], BN_ULONG k0); int rsaz_avx2_eligible(void); void RSAZ_512_mod_exp(BN_ULONG result[8], const BN_ULONG base_norm[8], const BN_ULONG exponent[8], const BN_ULONG m_norm[8], BN_ULONG k0, const BN_ULONG RR[8]); # endif #endif openssl-1.1.1f/crypto/buffer/000077500000000000000000000000001364063235100161375ustar00rootroot00000000000000openssl-1.1.1f/crypto/buffer/buf_err.c000066400000000000000000000020501364063235100177240ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA BUF_str_functs[] = { {ERR_PACK(ERR_LIB_BUF, BUF_F_BUF_MEM_GROW, 0), "BUF_MEM_grow"}, {ERR_PACK(ERR_LIB_BUF, BUF_F_BUF_MEM_GROW_CLEAN, 0), "BUF_MEM_grow_clean"}, {ERR_PACK(ERR_LIB_BUF, BUF_F_BUF_MEM_NEW, 0), "BUF_MEM_new"}, {0, NULL} }; static const ERR_STRING_DATA BUF_str_reasons[] = { {0, NULL} }; #endif int ERR_load_BUF_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(BUF_str_functs[0].error) == NULL) { ERR_load_strings_const(BUF_str_functs); ERR_load_strings_const(BUF_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/buffer/buffer.c000066400000000000000000000101261364063235100175540ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* * LIMIT_BEFORE_EXPANSION is the maximum n such that (n+3)/3*4 < 2**31. That * function is applied in several functions in this file and this limit * ensures that the result fits in an int. */ #define LIMIT_BEFORE_EXPANSION 0x5ffffffc BUF_MEM *BUF_MEM_new_ex(unsigned long flags) { BUF_MEM *ret; ret = BUF_MEM_new(); if (ret != NULL) ret->flags = flags; return ret; } BUF_MEM *BUF_MEM_new(void) { BUF_MEM *ret; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { BUFerr(BUF_F_BUF_MEM_NEW, ERR_R_MALLOC_FAILURE); return NULL; } return ret; } void BUF_MEM_free(BUF_MEM *a) { if (a == NULL) return; if (a->data != NULL) { if (a->flags & BUF_MEM_FLAG_SECURE) OPENSSL_secure_clear_free(a->data, a->max); else OPENSSL_clear_free(a->data, a->max); } OPENSSL_free(a); } /* Allocate a block of secure memory; copy over old data if there * was any, and then free it. */ static char *sec_alloc_realloc(BUF_MEM *str, size_t len) { char *ret; ret = OPENSSL_secure_malloc(len); if (str->data != NULL) { if (ret != NULL) { memcpy(ret, str->data, str->length); OPENSSL_secure_clear_free(str->data, str->length); str->data = NULL; } } return ret; } size_t BUF_MEM_grow(BUF_MEM *str, size_t len) { char *ret; size_t n; if (str->length >= len) { str->length = len; return len; } if (str->max >= len) { if (str->data != NULL) memset(&str->data[str->length], 0, len - str->length); str->length = len; return len; } /* This limit is sufficient to ensure (len+3)/3*4 < 2**31 */ if (len > LIMIT_BEFORE_EXPANSION) { BUFerr(BUF_F_BUF_MEM_GROW, ERR_R_MALLOC_FAILURE); return 0; } n = (len + 3) / 3 * 4; if ((str->flags & BUF_MEM_FLAG_SECURE)) ret = sec_alloc_realloc(str, n); else ret = OPENSSL_realloc(str->data, n); if (ret == NULL) { BUFerr(BUF_F_BUF_MEM_GROW, ERR_R_MALLOC_FAILURE); len = 0; } else { str->data = ret; str->max = n; memset(&str->data[str->length], 0, len - str->length); str->length = len; } return len; } size_t BUF_MEM_grow_clean(BUF_MEM *str, size_t len) { char *ret; size_t n; if (str->length >= len) { if (str->data != NULL) memset(&str->data[len], 0, str->length - len); str->length = len; return len; } if (str->max >= len) { memset(&str->data[str->length], 0, len - str->length); str->length = len; return len; } /* This limit is sufficient to ensure (len+3)/3*4 < 2**31 */ if (len > LIMIT_BEFORE_EXPANSION) { BUFerr(BUF_F_BUF_MEM_GROW_CLEAN, ERR_R_MALLOC_FAILURE); return 0; } n = (len + 3) / 3 * 4; if ((str->flags & BUF_MEM_FLAG_SECURE)) ret = sec_alloc_realloc(str, n); else ret = OPENSSL_clear_realloc(str->data, str->max, n); if (ret == NULL) { BUFerr(BUF_F_BUF_MEM_GROW_CLEAN, ERR_R_MALLOC_FAILURE); len = 0; } else { str->data = ret; str->max = n; memset(&str->data[str->length], 0, len - str->length); str->length = len; } return len; } void BUF_reverse(unsigned char *out, const unsigned char *in, size_t size) { size_t i; if (in) { out += size - 1; for (i = 0; i < size; i++) *out-- = *in++; } else { unsigned char *q; char c; q = out + size - 1; for (i = 0; i < size / 2; i++) { c = *q; *q-- = *out; *out++ = c; } } } openssl-1.1.1f/crypto/buffer/build.info000066400000000000000000000001001364063235100201020ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=buffer.c buf_err.c openssl-1.1.1f/crypto/build.info000066400000000000000000000031021364063235100166360ustar00rootroot00000000000000LIBS=../libcrypto SOURCE[../libcrypto]=\ cryptlib.c mem.c mem_dbg.c cversion.c ex_data.c cpt_err.c \ ebcdic.c uid.c o_time.c o_str.c o_dir.c o_fopen.c ctype.c \ threads_pthread.c threads_win.c threads_none.c getenv.c \ o_init.c o_fips.c mem_sec.c init.c {- $target{cpuid_asm_src} -} \ {- $target{uplink_aux_src} -} EXTRA= ../ms/uplink-x86.pl ../ms/uplink.c ../ms/applink.c \ x86cpuid.pl x86_64cpuid.pl ia64cpuid.S \ ppccpuid.pl pariscid.pl alphacpuid.pl arm64cpuid.pl armv4cpuid.pl DEPEND[cversion.o]=buildinf.h GENERATE[buildinf.h]=../util/mkbuildinf.pl "$(CC) $(LIB_CFLAGS) $(CPPFLAGS_Q)" "$(PLATFORM)" DEPEND[buildinf.h]=../configdata.pm GENERATE[uplink-x86.s]=../ms/uplink-x86.pl $(PERLASM_SCHEME) GENERATE[uplink-x86_64.s]=../ms/uplink-x86_64.pl $(PERLASM_SCHEME) GENERATE[uplink-ia64.s]=../ms/uplink-ia64.pl $(PERLASM_SCHEME) GENERATE[x86cpuid.s]=x86cpuid.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[x86cpuid.s]=perlasm/x86asm.pl GENERATE[x86_64cpuid.s]=x86_64cpuid.pl $(PERLASM_SCHEME) GENERATE[ia64cpuid.s]=ia64cpuid.S GENERATE[ppccpuid.s]=ppccpuid.pl $(PERLASM_SCHEME) GENERATE[pariscid.s]=pariscid.pl $(PERLASM_SCHEME) GENERATE[alphacpuid.s]=alphacpuid.pl GENERATE[arm64cpuid.S]=arm64cpuid.pl $(PERLASM_SCHEME) INCLUDE[arm64cpuid.o]=. GENERATE[armv4cpuid.S]=armv4cpuid.pl $(PERLASM_SCHEME) INCLUDE[armv4cpuid.o]=. GENERATE[s390xcpuid.S]=s390xcpuid.pl $(PERLASM_SCHEME) INCLUDE[s390xcpuid.o]=. IF[{- $config{target} =~ /^(?:Cygwin|mingw|VC-)/ -}] SHARED_SOURCE[../libcrypto]=dllmain.c ENDIF openssl-1.1.1f/crypto/c64xpluscpuid.pl000066400000000000000000000124641364063235100177470ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .asg OPENSSL_rdtsc,_OPENSSL_rdtsc .asg OPENSSL_cleanse,_OPENSSL_cleanse .asg CRYPTO_memcmp,_CRYPTO_memcmp .asg OPENSSL_atomic_add,_OPENSSL_atomic_add .asg OPENSSL_wipe_cpu,_OPENSSL_wipe_cpu .asg OPENSSL_instrument_bus,_OPENSSL_instrument_bus .asg OPENSSL_instrument_bus2,_OPENSSL_instrument_bus2 .endif .asg B3,RA .global _OPENSSL_rdtsc _OPENSSL_rdtsc: .asmfunc B RA MVC TSCL,B0 MVC TSCH,B1 [!B0] MVC B0,TSCL ; start TSC MV B0,A4 MV B1,A5 .endasmfunc .global _OPENSSL_cleanse _OPENSSL_cleanse: .asmfunc ZERO A3:A2 || ZERO B2 || SHRU B4,3,B0 ; is length >= 8 || ADD 1,A4,B6 [!B0] BNOP RA || ZERO A1 || ZERO B1 [B0] MVC B0,ILC ||[!B0] CMPLT 0,B4,A1 ||[!B0] CMPLT 1,B4,B1 [A1] STB A2,*A4++[2] || [B1] STB B2,*B6++[2] ||[!B0] CMPLT 2,B4,A1 ||[!B0] CMPLT 3,B4,B1 [A1] STB A2,*A4++[2] || [B1] STB B2,*B6++[2] ||[!B0] CMPLT 4,B4,A1 ||[!B0] CMPLT 5,B4,B1 [A1] STB A2,*A4++[2] || [B1] STB B2,*B6++[2] ||[!B0] CMPLT 6,B4,A1 [A1] STB A2,*A4++[2] SPLOOP 1 STNDW A3:A2,*A4++ || SUB B4,8,B4 SPKERNEL MV B4,B0 ; remaining bytes || ADD 1,A4,B6 || BNOP RA [B0] CMPLT 0,B0,A1 || [B0] CMPLT 1,B0,B1 [A1] STB A2,*A4++[2] || [B1] STB B2,*B6++[2] || [B0] CMPLT 2,B0,A1 || [B0] CMPLT 3,B0,B1 [A1] STB A2,*A4++[2] || [B1] STB B2,*B6++[2] || [B0] CMPLT 4,B0,A1 || [B0] CMPLT 5,B0,B1 [A1] STB A2,*A4++[2] || [B1] STB B2,*B6++[2] || [B0] CMPLT 6,B0,A1 [A1] STB A2,*A4++[2] .endasmfunc .global _CRYPTO_memcmp _CRYPTO_memcmp: .asmfunc MV A6,B0 [!B0] BNOP RA ||[!B0] ZERO A4 [B0] MVC B0,ILC || [B0] ZERO A0 NOP 4 SPLOOP 1 LDBU *A4++,A1 || LDBU *B4++,B1 NOP 4 XOR.L B1,A1,A2 SPKERNEL 1,0 || OR.S A2,A0,A0 BNOP RA,3 ZERO.L A4 [A0] MVK 1,A4 .endasmfunc .global _OPENSSL_atomic_add _OPENSSL_atomic_add: .asmfunc MV A4,B0 atomic_add?: LL *B0,B5 NOP 4 ADD B4,B5,B5 SL B5,*B0 CMTL *B0,B1 NOP 4 [!B1] B atomic_add? [B1] BNOP RA,4 MV B5,A4 .endasmfunc .global _OPENSSL_wipe_cpu _OPENSSL_wipe_cpu: .asmfunc ZERO A0 || ZERO B0 || ZERO A1 || ZERO B1 ZERO A3:A2 || MVD B0,B2 || ZERO A4 || ZERO B4 || ZERO A5 || ZERO B5 || BNOP RA ZERO A7:A6 || ZERO B7:B6 || ZERO A8 || ZERO B8 || ZERO A9 || ZERO B9 ZERO A17:A16 || ZERO B17:B16 || ZERO A18 || ZERO B18 || ZERO A19 || ZERO B19 ZERO A21:A20 || ZERO B21:B20 || ZERO A22 || ZERO B22 || ZERO A23 || ZERO B23 ZERO A25:A24 || ZERO B25:B24 || ZERO A26 || ZERO B26 || ZERO A27 || ZERO B27 ZERO A29:A28 || ZERO B29:B28 || ZERO A30 || ZERO B30 || ZERO A31 || ZERO B31 .endasmfunc CLFLUSH .macro CONTROL,ADDR,LEN B passthrough? || STW ADDR,*CONTROL[0] STW LEN,*CONTROL[1] spinlock?: LDW *CONTROL[1],A0 NOP 3 passthrough?: NOP [A0] BNOP spinlock?,5 .endm .global _OPENSSL_instrument_bus _OPENSSL_instrument_bus: .asmfunc MV B4,B0 ; reassign sizeof(output) || MV A4,B4 ; reassign output || MVK 0x00004030,A3 MV B0,A4 ; return value || MVK 1,A1 || MVKH 0x01840000,A3 ; L1DWIBAR MVC TSCL,B8 ; collect 1st tick || MVK 0x00004010,A5 MV B8,B9 ; lasttick = tick || MVK 0,B7 ; lastdiff = 0 || MVKH 0x01840000,A5 ; L2WIBAR CLFLUSH A3,B4,A1 ; write-back and invalidate L1D line CLFLUSH A5,B4,A1 ; write-back and invalidate L2 line LL *B4,B5 NOP 4 ADD B7,B5,B5 SL B5,*B4 CMTL *B4,B1 NOP 4 STW B5,*B4 bus_loop1?: MVC TSCL,B8 || [B0] SUB B0,1,B0 SUB B8,B9,B7 ; lastdiff = tick - lasttick || MV B8,B9 ; lasttick = tick CLFLUSH A3,B4,A1 ; write-back and invalidate L1D line CLFLUSH A5,B4,A1 ; write-back and invalidate L2 line LL *B4,B5 NOP 4 ADD B7,B5,B5 SL B5,*B4 CMTL *B4,B1 STW B5,*B4 ; [!B1] is removed to flatten samples || ADDK 4,B4 || [B0] BNOP bus_loop1?,5 BNOP RA,5 .endasmfunc .global _OPENSSL_instrument_bus2 _OPENSSL_instrument_bus2: .asmfunc MV A6,B0 ; reassign max || MV B4,A6 ; reassign sizeof(output) || MVK 0x00004030,A3 MV A4,B4 ; reassign output || MVK 0,A4 ; return value || MVK 1,A1 || MVKH 0x01840000,A3 ; L1DWIBAR MVC TSCL,B8 ; collect 1st tick || MVK 0x00004010,A5 MV B8,B9 ; lasttick = tick || MVK 0,B7 ; lastdiff = 0 || MVKH 0x01840000,A5 ; L2WIBAR CLFLUSH A3,B4,A1 ; write-back and invalidate L1D line CLFLUSH A5,B4,A1 ; write-back and invalidate L2 line LL *B4,B5 NOP 4 ADD B7,B5,B5 SL B5,*B4 CMTL *B4,B1 NOP 4 STW B5,*B4 MVC TSCL,B8 ; collect 1st diff SUB B8,B9,B7 ; lastdiff = tick - lasttick || MV B8,B9 ; lasttick = tick || SUB B0,1,B0 bus_loop2?: CLFLUSH A3,B4,A1 ; write-back and invalidate L1D line CLFLUSH A5,B4,A1 ; write-back and invalidate L2 line LL *B4,B5 NOP 4 ADD B7,B5,B5 SL B5,*B4 CMTL *B4,B1 STW B5,*B4 ; [!B1] is removed to flatten samples ||[!B0] BNOP bus_loop2_done?,2 || SUB B0,1,B0 MVC TSCL,B8 SUB B8,B9,B8 || MV B8,B9 CMPEQ B8,B7,B2 || MV B8,B7 [!B2] ADDAW B4,1,B4 ||[!B2] ADDK 1,A4 CMPEQ A4,A6,A2 [!A2] BNOP bus_loop2?,5 bus_loop2_done?: BNOP RA,5 .endasmfunc ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/camellia/000077500000000000000000000000001364063235100164355ustar00rootroot00000000000000openssl-1.1.1f/crypto/camellia/asm/000077500000000000000000000000001364063235100172155ustar00rootroot00000000000000openssl-1.1.1f/crypto/camellia/asm/cmll-x86.pl000066400000000000000000001012261364063235100211260ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Copyright (c) 2008 Andy Polyakov # # This module may be used under the terms of either the GNU General # Public License version 2 or later, the GNU Lesser General Public # License version 2.1 or later, the Mozilla Public License version # 1.1 or the BSD License. The exact terms of either license are # distributed along with this module. For further details see # http://www.openssl.org/~appro/camellia/. # ==================================================================== # Performance in cycles per processed byte (less is better) in # 'openssl speed ...' benchmark: # # AMD K8 Core2 PIII P4 # -evp camellia-128-ecb 21.5 22.8 27.0 28.9 # + over gcc 3.4.6 +90/11% +70/10% +53/4% +160/64% # + over icc 8.0 +48/19% +21/15% +21/17% +55/37% # # camellia-128-cbc 17.3 21.1 23.9 25.9 # # 128-bit key setup 196 280 256 240 cycles/key # + over gcc 3.4.6 +30/0% +17/11% +11/0% +63/40% # + over icc 8.0 +18/3% +10/0% +10/3% +21/10% # # Pairs of numbers in "+" rows represent performance improvement over # compiler generated position-independent code, PIC, and non-PIC # respectively. PIC results are of greater relevance, as this module # is position-independent, i.e. suitable for a shared library or PIE. # Position independence "costs" one register, which is why compilers # are so close with non-PIC results, they have an extra register to # spare. CBC results are better than ECB ones thanks to "zero-copy" # private _x86_* interface, and are ~30-40% better than with compiler # generated cmll_cbc.o, and reach ~80-90% of x86_64 performance on # same CPU (where applicable). $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $OPENSSL=1; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); @T=("eax","ebx","ecx","edx"); $idx="esi"; $key="edi"; $Tbl="ebp"; # stack frame layout in _x86_Camellia_* routines, frame is allocated # by caller $__ra=&DWP(0,"esp"); # return address $__s0=&DWP(4,"esp"); # s0 backing store $__s1=&DWP(8,"esp"); # s1 backing store $__s2=&DWP(12,"esp"); # s2 backing store $__s3=&DWP(16,"esp"); # s3 backing store $__end=&DWP(20,"esp"); # pointer to end/start of key schedule # stack frame layout in Camellia_[en|crypt] routines, which differs from # above by 4 and overlaps by pointer to end/start of key schedule $_end=&DWP(16,"esp"); $_esp=&DWP(20,"esp"); # const unsigned int Camellia_SBOX[4][256]; # Well, sort of... Camellia_SBOX[0][] is interleaved with [1][], # and [2][] - with [3][]. This is done to optimize code size. $SBOX1_1110=0; # Camellia_SBOX[0] $SBOX4_4404=4; # Camellia_SBOX[1] $SBOX2_0222=2048; # Camellia_SBOX[2] $SBOX3_3033=2052; # Camellia_SBOX[3] &static_label("Camellia_SIGMA"); &static_label("Camellia_SBOX"); sub Camellia_Feistel { my $i=@_[0]; my $seed=defined(@_[1])?@_[1]:0; my $scale=$seed<0?-8:8; my $frame=defined(@_[2])?@_[2]:0; my $j=($i&1)*2; my $t0=@T[($j)%4],$t1=@T[($j+1)%4],$t2=@T[($j+2)%4],$t3=@T[($j+3)%4]; &xor ($t0,$idx); # t0^=key[0] &xor ($t1,&DWP($seed+$i*$scale+4,$key)); # t1^=key[1] &movz ($idx,&HB($t0)); # (t0>>8)&0xff &mov ($t3,&DWP($SBOX3_3033,$Tbl,$idx,8)); # t3=SBOX3_3033[0] &movz ($idx,&LB($t0)); # (t0>>0)&0xff &xor ($t3,&DWP($SBOX4_4404,$Tbl,$idx,8)); # t3^=SBOX4_4404[0] &shr ($t0,16); &movz ($idx,&LB($t1)); # (t1>>0)&0xff &mov ($t2,&DWP($SBOX1_1110,$Tbl,$idx,8)); # t2=SBOX1_1110[1] &movz ($idx,&HB($t0)); # (t0>>24)&0xff &xor ($t3,&DWP($SBOX1_1110,$Tbl,$idx,8)); # t3^=SBOX1_1110[0] &movz ($idx,&HB($t1)); # (t1>>8)&0xff &xor ($t2,&DWP($SBOX4_4404,$Tbl,$idx,8)); # t2^=SBOX4_4404[1] &shr ($t1,16); &movz ($t0,&LB($t0)); # (t0>>16)&0xff &xor ($t3,&DWP($SBOX2_0222,$Tbl,$t0,8)); # t3^=SBOX2_0222[0] &movz ($idx,&HB($t1)); # (t1>>24)&0xff &mov ($t0,&DWP($frame+4*(($j+3)%4),"esp")); # prefetch "s3" &xor ($t2,$t3); # t2^=t3 &rotr ($t3,8); # t3=RightRotate(t3,8) &xor ($t2,&DWP($SBOX2_0222,$Tbl,$idx,8)); # t2^=SBOX2_0222[1] &movz ($idx,&LB($t1)); # (t1>>16)&0xff &mov ($t1,&DWP($frame+4*(($j+2)%4),"esp")); # prefetch "s2" &xor ($t3,$t0); # t3^=s3 &xor ($t2,&DWP($SBOX3_3033,$Tbl,$idx,8)); # t2^=SBOX3_3033[1] &mov ($idx,&DWP($seed+($i+1)*$scale,$key)); # prefetch key[i+1] &xor ($t3,$t2); # t3^=t2 &mov (&DWP($frame+4*(($j+3)%4),"esp"),$t3); # s3=t3 &xor ($t2,$t1); # t2^=s2 &mov (&DWP($frame+4*(($j+2)%4),"esp"),$t2); # s2=t2 } # void Camellia_EncryptBlock_Rounds( # int grandRounds, # const Byte plaintext[], # const KEY_TABLE_TYPE keyTable, # Byte ciphertext[]) &function_begin("Camellia_EncryptBlock_Rounds"); &mov ("eax",&wparam(0)); # load grandRounds &mov ($idx,&wparam(1)); # load plaintext pointer &mov ($key,&wparam(2)); # load key schedule pointer &mov ("ebx","esp"); &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra &and ("esp",-64); # place stack frame just "above mod 1024" the key schedule # this ensures that cache associativity of 2 suffices &lea ("ecx",&DWP(-64-63,$key)); &sub ("ecx","esp"); &neg ("ecx"); &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line &sub ("esp","ecx"); &add ("esp",4); # 4 is reserved for callee's return address &shl ("eax",6); &lea ("eax",&DWP(0,$key,"eax")); &mov ($_esp,"ebx"); # save %esp &mov ($_end,"eax"); # save keyEnd &call (&label("pic_point")); &set_label("pic_point"); &blindpop($Tbl); &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)); &mov (@T[0],&DWP(0,$idx)); # load plaintext &mov (@T[1],&DWP(4,$idx)); &mov (@T[2],&DWP(8,$idx)); &bswap (@T[0]); &mov (@T[3],&DWP(12,$idx)); &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &call ("_x86_Camellia_encrypt"); &mov ("esp",$_esp); &bswap (@T[0]); &mov ($idx,&wparam(3)); # load ciphertext pointer &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &mov (&DWP(0,$idx),@T[0]); # write ciphertext &mov (&DWP(4,$idx),@T[1]); &mov (&DWP(8,$idx),@T[2]); &mov (&DWP(12,$idx),@T[3]); &function_end("Camellia_EncryptBlock_Rounds"); # V1.x API &function_begin_B("Camellia_EncryptBlock"); &mov ("eax",128); &sub ("eax",&wparam(0)); # load keyBitLength &mov ("eax",3); &adc ("eax",0); # keyBitLength==128?3:4 &mov (&wparam(0),"eax"); &jmp (&label("Camellia_EncryptBlock_Rounds")); &function_end_B("Camellia_EncryptBlock"); if ($OPENSSL) { # void Camellia_encrypt( # const unsigned char *in, # unsigned char *out, # const CAMELLIA_KEY *key) &function_begin("Camellia_encrypt"); &mov ($idx,&wparam(0)); # load plaintext pointer &mov ($key,&wparam(2)); # load key schedule pointer &mov ("ebx","esp"); &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra &and ("esp",-64); &mov ("eax",&DWP(272,$key)); # load grandRounds counter # place stack frame just "above mod 1024" the key schedule # this ensures that cache associativity of 2 suffices &lea ("ecx",&DWP(-64-63,$key)); &sub ("ecx","esp"); &neg ("ecx"); &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line &sub ("esp","ecx"); &add ("esp",4); # 4 is reserved for callee's return address &shl ("eax",6); &lea ("eax",&DWP(0,$key,"eax")); &mov ($_esp,"ebx"); # save %esp &mov ($_end,"eax"); # save keyEnd &call (&label("pic_point")); &set_label("pic_point"); &blindpop($Tbl); &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)); &mov (@T[0],&DWP(0,$idx)); # load plaintext &mov (@T[1],&DWP(4,$idx)); &mov (@T[2],&DWP(8,$idx)); &bswap (@T[0]); &mov (@T[3],&DWP(12,$idx)); &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &call ("_x86_Camellia_encrypt"); &mov ("esp",$_esp); &bswap (@T[0]); &mov ($idx,&wparam(1)); # load ciphertext pointer &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &mov (&DWP(0,$idx),@T[0]); # write ciphertext &mov (&DWP(4,$idx),@T[1]); &mov (&DWP(8,$idx),@T[2]); &mov (&DWP(12,$idx),@T[3]); &function_end("Camellia_encrypt"); } &function_begin_B("_x86_Camellia_encrypt"); &xor (@T[0],&DWP(0,$key)); # ^=key[0-3] &xor (@T[1],&DWP(4,$key)); &xor (@T[2],&DWP(8,$key)); &xor (@T[3],&DWP(12,$key)); &mov ($idx,&DWP(16,$key)); # prefetch key[4] &mov ($__s0,@T[0]); # save s[0-3] &mov ($__s1,@T[1]); &mov ($__s2,@T[2]); &mov ($__s3,@T[3]); &set_label("loop",16); for ($i=0;$i<6;$i++) { Camellia_Feistel($i,16,4); } &add ($key,16*4); &cmp ($key,$__end); &je (&label("done")); # @T[0-1] are preloaded, $idx is preloaded with key[0] &and ($idx,@T[0]); &mov (@T[3],$__s3); &rotl ($idx,1); &mov (@T[2],@T[3]); &xor (@T[1],$idx); &or (@T[2],&DWP(12,$key)); &mov ($__s1,@T[1]); # s1^=LeftRotate(s0&key[0],1); &xor (@T[2],$__s2); &mov ($idx,&DWP(4,$key)); &mov ($__s2,@T[2]); # s2^=s3|key[3]; &or ($idx,@T[1]); &and (@T[2],&DWP(8,$key)); &xor (@T[0],$idx); &rotl (@T[2],1); &mov ($__s0,@T[0]); # s0^=s1|key[1]; &xor (@T[3],@T[2]); &mov ($idx,&DWP(16,$key)); # prefetch key[4] &mov ($__s3,@T[3]); # s3^=LeftRotate(s2&key[2],1); &jmp (&label("loop")); &set_label("done",8); &mov (@T[2],@T[0]); # SwapHalf &mov (@T[3],@T[1]); &mov (@T[0],$__s2); &mov (@T[1],$__s3); &xor (@T[0],$idx); # $idx is preloaded with key[0] &xor (@T[1],&DWP(4,$key)); &xor (@T[2],&DWP(8,$key)); &xor (@T[3],&DWP(12,$key)); &ret (); &function_end_B("_x86_Camellia_encrypt"); # void Camellia_DecryptBlock_Rounds( # int grandRounds, # const Byte ciphertext[], # const KEY_TABLE_TYPE keyTable, # Byte plaintext[]) &function_begin("Camellia_DecryptBlock_Rounds"); &mov ("eax",&wparam(0)); # load grandRounds &mov ($idx,&wparam(1)); # load ciphertext pointer &mov ($key,&wparam(2)); # load key schedule pointer &mov ("ebx","esp"); &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra &and ("esp",-64); # place stack frame just "above mod 1024" the key schedule # this ensures that cache associativity of 2 suffices &lea ("ecx",&DWP(-64-63,$key)); &sub ("ecx","esp"); &neg ("ecx"); &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line &sub ("esp","ecx"); &add ("esp",4); # 4 is reserved for callee's return address &shl ("eax",6); &mov (&DWP(4*4,"esp"),$key); # save keyStart &lea ($key,&DWP(0,$key,"eax")); &mov (&DWP(5*4,"esp"),"ebx");# save %esp &call (&label("pic_point")); &set_label("pic_point"); &blindpop($Tbl); &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)); &mov (@T[0],&DWP(0,$idx)); # load ciphertext &mov (@T[1],&DWP(4,$idx)); &mov (@T[2],&DWP(8,$idx)); &bswap (@T[0]); &mov (@T[3],&DWP(12,$idx)); &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &call ("_x86_Camellia_decrypt"); &mov ("esp",&DWP(5*4,"esp")); &bswap (@T[0]); &mov ($idx,&wparam(3)); # load plaintext pointer &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &mov (&DWP(0,$idx),@T[0]); # write plaintext &mov (&DWP(4,$idx),@T[1]); &mov (&DWP(8,$idx),@T[2]); &mov (&DWP(12,$idx),@T[3]); &function_end("Camellia_DecryptBlock_Rounds"); # V1.x API &function_begin_B("Camellia_DecryptBlock"); &mov ("eax",128); &sub ("eax",&wparam(0)); # load keyBitLength &mov ("eax",3); &adc ("eax",0); # keyBitLength==128?3:4 &mov (&wparam(0),"eax"); &jmp (&label("Camellia_DecryptBlock_Rounds")); &function_end_B("Camellia_DecryptBlock"); if ($OPENSSL) { # void Camellia_decrypt( # const unsigned char *in, # unsigned char *out, # const CAMELLIA_KEY *key) &function_begin("Camellia_decrypt"); &mov ($idx,&wparam(0)); # load ciphertext pointer &mov ($key,&wparam(2)); # load key schedule pointer &mov ("ebx","esp"); &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra &and ("esp",-64); &mov ("eax",&DWP(272,$key)); # load grandRounds counter # place stack frame just "above mod 1024" the key schedule # this ensures that cache associativity of 2 suffices &lea ("ecx",&DWP(-64-63,$key)); &sub ("ecx","esp"); &neg ("ecx"); &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line &sub ("esp","ecx"); &add ("esp",4); # 4 is reserved for callee's return address &shl ("eax",6); &mov (&DWP(4*4,"esp"),$key); # save keyStart &lea ($key,&DWP(0,$key,"eax")); &mov (&DWP(5*4,"esp"),"ebx");# save %esp &call (&label("pic_point")); &set_label("pic_point"); &blindpop($Tbl); &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)); &mov (@T[0],&DWP(0,$idx)); # load ciphertext &mov (@T[1],&DWP(4,$idx)); &mov (@T[2],&DWP(8,$idx)); &bswap (@T[0]); &mov (@T[3],&DWP(12,$idx)); &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &call ("_x86_Camellia_decrypt"); &mov ("esp",&DWP(5*4,"esp")); &bswap (@T[0]); &mov ($idx,&wparam(1)); # load plaintext pointer &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &mov (&DWP(0,$idx),@T[0]); # write plaintext &mov (&DWP(4,$idx),@T[1]); &mov (&DWP(8,$idx),@T[2]); &mov (&DWP(12,$idx),@T[3]); &function_end("Camellia_decrypt"); } &function_begin_B("_x86_Camellia_decrypt"); &xor (@T[0],&DWP(0,$key)); # ^=key[0-3] &xor (@T[1],&DWP(4,$key)); &xor (@T[2],&DWP(8,$key)); &xor (@T[3],&DWP(12,$key)); &mov ($idx,&DWP(-8,$key)); # prefetch key[-2] &mov ($__s0,@T[0]); # save s[0-3] &mov ($__s1,@T[1]); &mov ($__s2,@T[2]); &mov ($__s3,@T[3]); &set_label("loop",16); for ($i=0;$i<6;$i++) { Camellia_Feistel($i,-8,4); } &sub ($key,16*4); &cmp ($key,$__end); &je (&label("done")); # @T[0-1] are preloaded, $idx is preloaded with key[2] &and ($idx,@T[0]); &mov (@T[3],$__s3); &rotl ($idx,1); &mov (@T[2],@T[3]); &xor (@T[1],$idx); &or (@T[2],&DWP(4,$key)); &mov ($__s1,@T[1]); # s1^=LeftRotate(s0&key[0],1); &xor (@T[2],$__s2); &mov ($idx,&DWP(12,$key)); &mov ($__s2,@T[2]); # s2^=s3|key[3]; &or ($idx,@T[1]); &and (@T[2],&DWP(0,$key)); &xor (@T[0],$idx); &rotl (@T[2],1); &mov ($__s0,@T[0]); # s0^=s1|key[1]; &xor (@T[3],@T[2]); &mov ($idx,&DWP(-8,$key)); # prefetch key[4] &mov ($__s3,@T[3]); # s3^=LeftRotate(s2&key[2],1); &jmp (&label("loop")); &set_label("done",8); &mov (@T[2],@T[0]); # SwapHalf &mov (@T[3],@T[1]); &mov (@T[0],$__s2); &mov (@T[1],$__s3); &xor (@T[2],$idx); # $idx is preloaded with key[2] &xor (@T[3],&DWP(12,$key)); &xor (@T[0],&DWP(0,$key)); &xor (@T[1],&DWP(4,$key)); &ret (); &function_end_B("_x86_Camellia_decrypt"); # shld is very slow on Intel P4 family. Even on AMD it limits # instruction decode rate [because it's VectorPath] and consequently # performance. PIII, PM and Core[2] seem to be the only ones which # execute this code ~7% faster... sub __rotl128 { my ($i0,$i1,$i2,$i3,$rot,$rnd,@T)=@_; $rnd *= 2; if ($rot) { &mov ($idx,$i0); &shld ($i0,$i1,$rot); &shld ($i1,$i2,$rot); &shld ($i2,$i3,$rot); &shld ($i3,$idx,$rot); } &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i0 eq @T[0]); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i1 eq @T[0]); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i2 eq @T[0]); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i3 eq @T[0]); } # ... Implementing 128-bit rotate without shld gives >3x performance # improvement on P4, only ~7% degradation on other Intel CPUs and # not worse performance on AMD. This is therefore preferred. sub _rotl128 { my ($i0,$i1,$i2,$i3,$rot,$rnd,@T)=@_; $rnd *= 2; if ($rot) { &mov ($Tbl,$i0); &shl ($i0,$rot); &mov ($idx,$i1); &shr ($idx,32-$rot); &shl ($i1,$rot); &or ($i0,$idx); &mov ($idx,$i2); &shl ($i2,$rot); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i0 eq @T[0]); &shr ($idx,32-$rot); &or ($i1,$idx); &shr ($Tbl,32-$rot); &mov ($idx,$i3); &shr ($idx,32-$rot); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i1 eq @T[0]); &shl ($i3,$rot); &or ($i2,$idx); &or ($i3,$Tbl); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i2 eq @T[0]); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i3 eq @T[0]); } else { &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i0 eq @T[0]); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i1 eq @T[0]); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i2 eq @T[0]); &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i3 eq @T[0]); } } sub _saveround { my ($rnd,$key,@T)=@_; my $bias=int(@T[0])?shift(@T):0; &mov (&DWP($bias+$rnd*8+0,$key),@T[0]); &mov (&DWP($bias+$rnd*8+4,$key),@T[1]) if ($#T>=1); &mov (&DWP($bias+$rnd*8+8,$key),@T[2]) if ($#T>=2); &mov (&DWP($bias+$rnd*8+12,$key),@T[3]) if ($#T>=3); } sub _loadround { my ($rnd,$key,@T)=@_; my $bias=int(@T[0])?shift(@T):0; &mov (@T[0],&DWP($bias+$rnd*8+0,$key)); &mov (@T[1],&DWP($bias+$rnd*8+4,$key)) if ($#T>=1); &mov (@T[2],&DWP($bias+$rnd*8+8,$key)) if ($#T>=2); &mov (@T[3],&DWP($bias+$rnd*8+12,$key)) if ($#T>=3); } # void Camellia_Ekeygen( # const int keyBitLength, # const Byte *rawKey, # KEY_TABLE_TYPE keyTable) &function_begin("Camellia_Ekeygen"); { my $step=0; &stack_push(4); # place for s[0-3] &mov ($Tbl,&wparam(0)); # load arguments &mov ($idx,&wparam(1)); &mov ($key,&wparam(2)); &mov (@T[0],&DWP(0,$idx)); # load 0-127 bits &mov (@T[1],&DWP(4,$idx)); &mov (@T[2],&DWP(8,$idx)); &mov (@T[3],&DWP(12,$idx)); &bswap (@T[0]); &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &_saveround (0,$key,@T); # KL<<<0 &cmp ($Tbl,128); &je (&label("1st128")); &mov (@T[0],&DWP(16,$idx)); # load 128-191 bits &mov (@T[1],&DWP(20,$idx)); &cmp ($Tbl,192); &je (&label("1st192")); &mov (@T[2],&DWP(24,$idx)); # load 192-255 bits &mov (@T[3],&DWP(28,$idx)); &jmp (&label("1st256")); &set_label("1st192",4); &mov (@T[2],@T[0]); &mov (@T[3],@T[1]); ¬ (@T[2]); ¬ (@T[3]); &set_label("1st256",4); &bswap (@T[0]); &bswap (@T[1]); &bswap (@T[2]); &bswap (@T[3]); &_saveround (4,$key,@T); # temporary storage for KR! &xor (@T[0],&DWP(0*8+0,$key)); # KR^KL &xor (@T[1],&DWP(0*8+4,$key)); &xor (@T[2],&DWP(1*8+0,$key)); &xor (@T[3],&DWP(1*8+4,$key)); &set_label("1st128",4); &call (&label("pic_point")); &set_label("pic_point"); &blindpop($Tbl); &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)); &lea ($key,&DWP(&label("Camellia_SIGMA")."-".&label("Camellia_SBOX"),$Tbl)); &mov ($idx,&DWP($step*8,$key)); # prefetch SIGMA[0] &mov (&swtmp(0),@T[0]); # save s[0-3] &mov (&swtmp(1),@T[1]); &mov (&swtmp(2),@T[2]); &mov (&swtmp(3),@T[3]); &Camellia_Feistel($step++); &Camellia_Feistel($step++); &mov (@T[2],&swtmp(2)); &mov (@T[3],&swtmp(3)); &mov ($idx,&wparam(2)); &xor (@T[0],&DWP(0*8+0,$idx)); # ^KL &xor (@T[1],&DWP(0*8+4,$idx)); &xor (@T[2],&DWP(1*8+0,$idx)); &xor (@T[3],&DWP(1*8+4,$idx)); &mov ($idx,&DWP($step*8,$key)); # prefetch SIGMA[4] &mov (&swtmp(0),@T[0]); # save s[0-3] &mov (&swtmp(1),@T[1]); &mov (&swtmp(2),@T[2]); &mov (&swtmp(3),@T[3]); &Camellia_Feistel($step++); &Camellia_Feistel($step++); &mov (@T[2],&swtmp(2)); &mov (@T[3],&swtmp(3)); &mov ($idx,&wparam(0)); &cmp ($idx,128); &jne (&label("2nd256")); &mov ($key,&wparam(2)); &lea ($key,&DWP(128,$key)); # size optimization ####### process KA &_saveround (2,$key,-128,@T); # KA<<<0 &_rotl128 (@T,15,6,@T); # KA<<<15 &_rotl128 (@T,15,8,@T); # KA<<<(15+15=30) &_rotl128 (@T,15,12,@T[0],@T[1]); # KA<<<(30+15=45) &_rotl128 (@T,15,14,@T); # KA<<<(45+15=60) push (@T,shift(@T)); # rotl128(@T,32); &_rotl128 (@T,2,20,@T); # KA<<<(60+32+2=94) &_rotl128 (@T,17,24,@T); # KA<<<(94+17=111) ####### process KL &_loadround (0,$key,-128,@T); # load KL &_rotl128 (@T,15,4,@T); # KL<<<15 &_rotl128 (@T,30,10,@T); # KL<<<(15+30=45) &_rotl128 (@T,15,13,@T[2],@T[3]); # KL<<<(45+15=60) &_rotl128 (@T,17,16,@T); # KL<<<(60+17=77) &_rotl128 (@T,17,18,@T); # KL<<<(77+17=94) &_rotl128 (@T,17,22,@T); # KL<<<(94+17=111) while (@T[0] ne "eax") # restore order { unshift (@T,pop(@T)); } &mov ("eax",3); # 3 grandRounds &jmp (&label("done")); &set_label("2nd256",16); &mov ($idx,&wparam(2)); &_saveround (6,$idx,@T); # temporary storage for KA! &xor (@T[0],&DWP(4*8+0,$idx)); # KA^KR &xor (@T[1],&DWP(4*8+4,$idx)); &xor (@T[2],&DWP(5*8+0,$idx)); &xor (@T[3],&DWP(5*8+4,$idx)); &mov ($idx,&DWP($step*8,$key)); # prefetch SIGMA[8] &mov (&swtmp(0),@T[0]); # save s[0-3] &mov (&swtmp(1),@T[1]); &mov (&swtmp(2),@T[2]); &mov (&swtmp(3),@T[3]); &Camellia_Feistel($step++); &Camellia_Feistel($step++); &mov (@T[2],&swtmp(2)); &mov (@T[3],&swtmp(3)); &mov ($key,&wparam(2)); &lea ($key,&DWP(128,$key)); # size optimization ####### process KB &_saveround (2,$key,-128,@T); # KB<<<0 &_rotl128 (@T,30,10,@T); # KB<<<30 &_rotl128 (@T,30,20,@T); # KB<<<(30+30=60) push (@T,shift(@T)); # rotl128(@T,32); &_rotl128 (@T,19,32,@T); # KB<<<(60+32+19=111) ####### process KR &_loadround (4,$key,-128,@T); # load KR &_rotl128 (@T,15,4,@T); # KR<<<15 &_rotl128 (@T,15,8,@T); # KR<<<(15+15=30) &_rotl128 (@T,30,18,@T); # KR<<<(30+30=60) push (@T,shift(@T)); # rotl128(@T,32); &_rotl128 (@T,2,26,@T); # KR<<<(60+32+2=94) ####### process KA &_loadround (6,$key,-128,@T); # load KA &_rotl128 (@T,15,6,@T); # KA<<<15 &_rotl128 (@T,30,14,@T); # KA<<<(15+30=45) push (@T,shift(@T)); # rotl128(@T,32); &_rotl128 (@T,0,24,@T); # KA<<<(45+32+0=77) &_rotl128 (@T,17,28,@T); # KA<<<(77+17=94) ####### process KL &_loadround (0,$key,-128,@T); # load KL push (@T,shift(@T)); # rotl128(@T,32); &_rotl128 (@T,13,12,@T); # KL<<<(32+13=45) &_rotl128 (@T,15,16,@T); # KL<<<(45+15=60) &_rotl128 (@T,17,22,@T); # KL<<<(60+17=77) push (@T,shift(@T)); # rotl128(@T,32); &_rotl128 (@T,2,30,@T); # KL<<<(77+32+2=111) while (@T[0] ne "eax") # restore order { unshift (@T,pop(@T)); } &mov ("eax",4); # 4 grandRounds &set_label("done"); &lea ("edx",&DWP(272-128,$key)); # end of key schedule &stack_pop(4); } &function_end("Camellia_Ekeygen"); if ($OPENSSL) { # int Camellia_set_key ( # const unsigned char *userKey, # int bits, # CAMELLIA_KEY *key) &function_begin_B("Camellia_set_key"); &push ("ebx"); &mov ("ecx",&wparam(0)); # pull arguments &mov ("ebx",&wparam(1)); &mov ("edx",&wparam(2)); &mov ("eax",-1); &test ("ecx","ecx"); &jz (&label("done")); # userKey==NULL? &test ("edx","edx"); &jz (&label("done")); # key==NULL? &mov ("eax",-2); &cmp ("ebx",256); &je (&label("arg_ok")); # bits==256? &cmp ("ebx",192); &je (&label("arg_ok")); # bits==192? &cmp ("ebx",128); &jne (&label("done")); # bits!=128? &set_label("arg_ok",4); &push ("edx"); # push arguments &push ("ecx"); &push ("ebx"); &call ("Camellia_Ekeygen"); &stack_pop(3); # eax holds grandRounds and edx points at where to put it &mov (&DWP(0,"edx"),"eax"); &xor ("eax","eax"); &set_label("done",4); &pop ("ebx"); &ret (); &function_end_B("Camellia_set_key"); } @SBOX=( 112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65, 35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189, 134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26, 166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77, 139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153, 223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215, 20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34, 254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80, 170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210, 16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148, 135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226, 82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46, 233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89, 120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250, 114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164, 64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158); sub S1110 { my $i=shift; $i=@SBOX[$i]; return $i<<24|$i<<16|$i<<8; } sub S4404 { my $i=shift; $i=($i<<1|$i>>7)&0xff; $i=@SBOX[$i]; return $i<<24|$i<<16|$i; } sub S0222 { my $i=shift; $i=@SBOX[$i]; $i=($i<<1|$i>>7)&0xff; return $i<<16|$i<<8|$i; } sub S3033 { my $i=shift; $i=@SBOX[$i]; $i=($i>>1|$i<<7)&0xff; return $i<<24|$i<<8|$i; } &set_label("Camellia_SIGMA",64); &data_word( 0xa09e667f, 0x3bcc908b, 0xb67ae858, 0x4caa73b2, 0xc6ef372f, 0xe94f82be, 0x54ff53a5, 0xf1d36f1c, 0x10e527fa, 0xde682d1d, 0xb05688c2, 0xb3e6c1fd, 0, 0, 0, 0); &set_label("Camellia_SBOX",64); # tables are interleaved, remember? for ($i=0;$i<256;$i++) { &data_word(&S1110($i),&S4404($i)); } for ($i=0;$i<256;$i++) { &data_word(&S0222($i),&S3033($i)); } # void Camellia_cbc_encrypt (const void char *inp, unsigned char *out, # size_t length, const CAMELLIA_KEY *key, # unsigned char *ivp,const int enc); { # stack frame layout # -4(%esp) # return address 0(%esp) # 0(%esp) # s0 4(%esp) # 4(%esp) # s1 8(%esp) # 8(%esp) # s2 12(%esp) # 12(%esp) # s3 16(%esp) # 16(%esp) # end of key schedule 20(%esp) # 20(%esp) # %esp backup my $_inp=&DWP(24,"esp"); #copy of wparam(0) my $_out=&DWP(28,"esp"); #copy of wparam(1) my $_len=&DWP(32,"esp"); #copy of wparam(2) my $_key=&DWP(36,"esp"); #copy of wparam(3) my $_ivp=&DWP(40,"esp"); #copy of wparam(4) my $ivec=&DWP(44,"esp"); #ivec[16] my $_tmp=&DWP(44,"esp"); #volatile variable [yes, aliases with ivec] my ($s0,$s1,$s2,$s3) = @T; &function_begin("Camellia_cbc_encrypt"); &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len &cmp ($s2,0); &je (&label("enc_out")); &pushf (); &cld (); &mov ($s0,&wparam(0)); # load inp &mov ($s1,&wparam(1)); # load out #&mov ($s2,&wparam(2)); # load len &mov ($s3,&wparam(3)); # load key &mov ($Tbl,&wparam(4)); # load ivp # allocate aligned stack frame... &lea ($idx,&DWP(-64,"esp")); &and ($idx,-64); # place stack frame just "above mod 1024" the key schedule # this ensures that cache associativity of 2 suffices &lea ($key,&DWP(-64-63,$s3)); &sub ($key,$idx); &neg ($key); &and ($key,0x3C0); # modulo 1024, but aligned to cache-line &sub ($idx,$key); &mov ($key,&wparam(5)); # load enc &exch ("esp",$idx); &add ("esp",4); # reserve for return address! &mov ($_esp,$idx); # save %esp &mov ($_inp,$s0); # save copy of inp &mov ($_out,$s1); # save copy of out &mov ($_len,$s2); # save copy of len &mov ($_key,$s3); # save copy of key &mov ($_ivp,$Tbl); # save copy of ivp &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($Tbl); &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)); &mov ($idx,32); &set_label("prefetch_sbox",4); &mov ($s0,&DWP(0,$Tbl)); &mov ($s1,&DWP(32,$Tbl)); &mov ($s2,&DWP(64,$Tbl)); &mov ($s3,&DWP(96,$Tbl)); &lea ($Tbl,&DWP(128,$Tbl)); &dec ($idx); &jnz (&label("prefetch_sbox")); &mov ($s0,$_key); &sub ($Tbl,4096); &mov ($idx,$_inp); &mov ($s3,&DWP(272,$s0)); # load grandRounds &cmp ($key,0); &je (&label("DECRYPT")); &mov ($s2,$_len); &mov ($key,$_ivp); &shl ($s3,6); &lea ($s3,&DWP(0,$s0,$s3)); &mov ($_end,$s3); &test ($s2,0xFFFFFFF0); &jz (&label("enc_tail")); # short input... &mov ($s0,&DWP(0,$key)); # load iv &mov ($s1,&DWP(4,$key)); &set_label("enc_loop",4); &mov ($s2,&DWP(8,$key)); &mov ($s3,&DWP(12,$key)); &xor ($s0,&DWP(0,$idx)); # xor input data &xor ($s1,&DWP(4,$idx)); &xor ($s2,&DWP(8,$idx)); &bswap ($s0); &xor ($s3,&DWP(12,$idx)); &bswap ($s1); &mov ($key,$_key); # load key &bswap ($s2); &bswap ($s3); &call ("_x86_Camellia_encrypt"); &mov ($idx,$_inp); # load inp &mov ($key,$_out); # load out &bswap ($s0); &bswap ($s1); &bswap ($s2); &mov (&DWP(0,$key),$s0); # save output data &bswap ($s3); &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($s2,$_len); # load len &lea ($idx,&DWP(16,$idx)); &mov ($_inp,$idx); # save inp &lea ($s3,&DWP(16,$key)); &mov ($_out,$s3); # save out &sub ($s2,16); &test ($s2,0xFFFFFFF0); &mov ($_len,$s2); # save len &jnz (&label("enc_loop")); &test ($s2,15); &jnz (&label("enc_tail")); &mov ($idx,$_ivp); # load ivp &mov ($s2,&DWP(8,$key)); # restore last dwords &mov ($s3,&DWP(12,$key)); &mov (&DWP(0,$idx),$s0); # save ivec &mov (&DWP(4,$idx),$s1); &mov (&DWP(8,$idx),$s2); &mov (&DWP(12,$idx),$s3); &mov ("esp",$_esp); &popf (); &set_label("enc_out"); &function_end_A(); &pushf (); # kludge, never executed &set_label("enc_tail",4); &mov ($s0,$key eq "edi" ? $key : ""); &mov ($key,$_out); # load out &push ($s0); # push ivp &mov ($s1,16); &sub ($s1,$s2); &cmp ($key,$idx); # compare with inp &je (&label("enc_in_place")); &align (4); &data_word(0xA4F3F689); # rep movsb # copy input &jmp (&label("enc_skip_in_place")); &set_label("enc_in_place"); &lea ($key,&DWP(0,$key,$s2)); &set_label("enc_skip_in_place"); &mov ($s2,$s1); &xor ($s0,$s0); &align (4); &data_word(0xAAF3F689); # rep stosb # zero tail &pop ($key); # pop ivp &mov ($idx,$_out); # output as input &mov ($s0,&DWP(0,$key)); &mov ($s1,&DWP(4,$key)); &mov ($_len,16); # len=16 &jmp (&label("enc_loop")); # one more spin... #----------------------------- DECRYPT -----------------------------# &set_label("DECRYPT",16); &shl ($s3,6); &lea ($s3,&DWP(0,$s0,$s3)); &mov ($_end,$s0); &mov ($_key,$s3); &cmp ($idx,$_out); &je (&label("dec_in_place")); # in-place processing... &mov ($key,$_ivp); # load ivp &mov ($_tmp,$key); &set_label("dec_loop",4); &mov ($s0,&DWP(0,$idx)); # read input &mov ($s1,&DWP(4,$idx)); &mov ($s2,&DWP(8,$idx)); &bswap ($s0); &mov ($s3,&DWP(12,$idx)); &bswap ($s1); &mov ($key,$_key); # load key &bswap ($s2); &bswap ($s3); &call ("_x86_Camellia_decrypt"); &mov ($key,$_tmp); # load ivp &mov ($idx,$_len); # load len &bswap ($s0); &bswap ($s1); &bswap ($s2); &xor ($s0,&DWP(0,$key)); # xor iv &bswap ($s3); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &sub ($idx,16); &jc (&label("dec_partial")); &mov ($_len,$idx); # save len &mov ($idx,$_inp); # load inp &mov ($key,$_out); # load out &mov (&DWP(0,$key),$s0); # write output &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($_tmp,$idx); # save ivp &lea ($idx,&DWP(16,$idx)); &mov ($_inp,$idx); # save inp &lea ($key,&DWP(16,$key)); &mov ($_out,$key); # save out &jnz (&label("dec_loop")); &mov ($key,$_tmp); # load temp ivp &set_label("dec_end"); &mov ($idx,$_ivp); # load user ivp &mov ($s0,&DWP(0,$key)); # load iv &mov ($s1,&DWP(4,$key)); &mov ($s2,&DWP(8,$key)); &mov ($s3,&DWP(12,$key)); &mov (&DWP(0,$idx),$s0); # copy back to user &mov (&DWP(4,$idx),$s1); &mov (&DWP(8,$idx),$s2); &mov (&DWP(12,$idx),$s3); &jmp (&label("dec_out")); &set_label("dec_partial",4); &lea ($key,$ivec); &mov (&DWP(0,$key),$s0); # dump output to stack &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &lea ($s2 eq "ecx" ? $s2 : "",&DWP(16,$idx)); &mov ($idx eq "esi" ? $idx : "",$key); &mov ($key eq "edi" ? $key : "",$_out); # load out &data_word(0xA4F3F689); # rep movsb # copy output &mov ($key,$_inp); # use inp as temp ivp &jmp (&label("dec_end")); &set_label("dec_in_place",4); &set_label("dec_in_place_loop"); &lea ($key,$ivec); &mov ($s0,&DWP(0,$idx)); # read input &mov ($s1,&DWP(4,$idx)); &mov ($s2,&DWP(8,$idx)); &mov ($s3,&DWP(12,$idx)); &mov (&DWP(0,$key),$s0); # copy to temp &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &bswap ($s0); &mov (&DWP(12,$key),$s3); &bswap ($s1); &mov ($key,$_key); # load key &bswap ($s2); &bswap ($s3); &call ("_x86_Camellia_decrypt"); &mov ($key,$_ivp); # load ivp &mov ($idx,$_out); # load out &bswap ($s0); &bswap ($s1); &bswap ($s2); &xor ($s0,&DWP(0,$key)); # xor iv &bswap ($s3); &xor ($s1,&DWP(4,$key)); &xor ($s2,&DWP(8,$key)); &xor ($s3,&DWP(12,$key)); &mov (&DWP(0,$idx),$s0); # write output &mov (&DWP(4,$idx),$s1); &mov (&DWP(8,$idx),$s2); &mov (&DWP(12,$idx),$s3); &lea ($idx,&DWP(16,$idx)); &mov ($_out,$idx); # save out &lea ($idx,$ivec); &mov ($s0,&DWP(0,$idx)); # read temp &mov ($s1,&DWP(4,$idx)); &mov ($s2,&DWP(8,$idx)); &mov ($s3,&DWP(12,$idx)); &mov (&DWP(0,$key),$s0); # copy iv &mov (&DWP(4,$key),$s1); &mov (&DWP(8,$key),$s2); &mov (&DWP(12,$key),$s3); &mov ($idx,$_inp); # load inp &lea ($idx,&DWP(16,$idx)); &mov ($_inp,$idx); # save inp &mov ($s2,$_len); # load len &sub ($s2,16); &jc (&label("dec_in_place_partial")); &mov ($_len,$s2); # save len &jnz (&label("dec_in_place_loop")); &jmp (&label("dec_out")); &set_label("dec_in_place_partial",4); # one can argue if this is actually required... &mov ($key eq "edi" ? $key : "",$_out); &lea ($idx eq "esi" ? $idx : "",$ivec); &lea ($key,&DWP(0,$key,$s2)); &lea ($idx,&DWP(16,$idx,$s2)); &neg ($s2 eq "ecx" ? $s2 : ""); &data_word(0xA4F3F689); # rep movsb # restore tail &set_label("dec_out",4); &mov ("esp",$_esp); &popf (); &function_end("Camellia_cbc_encrypt"); } &asciz("Camellia for x86 by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/camellia/asm/cmll-x86_64.pl000066400000000000000000000650161364063235100214450ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Copyright (c) 2008 Andy Polyakov # # This module may be used under the terms of either the GNU General # Public License version 2 or later, the GNU Lesser General Public # License version 2.1 or later, the Mozilla Public License version # 1.1 or the BSD License. The exact terms of either license are # distributed along with this module. For further details see # http://www.openssl.org/~appro/camellia/. # ==================================================================== # Performance in cycles per processed byte (less is better) in # 'openssl speed ...' benchmark: # # AMD64 Core2 EM64T # -evp camellia-128-ecb 16.7 21.0 22.7 # + over gcc 3.4.6 +25% +5% 0% # # camellia-128-cbc 15.7 20.4 21.1 # # 128-bit key setup 128 216 205 cycles/key # + over gcc 3.4.6 +54% +39% +15% # # Numbers in "+" rows represent performance improvement over compiler # generated code. Key setup timings are impressive on AMD and Core2 # thanks to 64-bit operations being covertly deployed. Improvement on # EM64T, pre-Core2 Intel x86_64 CPU, is not as impressive, because it # apparently emulates some of 64-bit operations in [32-bit] microcode. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; sub hi() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1h/; $r; } sub lo() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/; $r =~ s/%[er]([sd]i)/%\1l/; $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } $t0="%eax";$t1="%ebx";$t2="%ecx";$t3="%edx"; @S=("%r8d","%r9d","%r10d","%r11d"); $i0="%esi"; $i1="%edi"; $Tbl="%rbp"; # size optimization $inp="%r12"; $out="%r13"; $key="%r14"; $keyend="%r15"; $arg0d=$win64?"%ecx":"%edi"; # const unsigned int Camellia_SBOX[4][256]; # Well, sort of... Camellia_SBOX[0][] is interleaved with [1][], # and [2][] - with [3][]. This is done to minimize code size. $SBOX1_1110=0; # Camellia_SBOX[0] $SBOX4_4404=4; # Camellia_SBOX[1] $SBOX2_0222=2048; # Camellia_SBOX[2] $SBOX3_3033=2052; # Camellia_SBOX[3] sub Camellia_Feistel { my $i=@_[0]; my $seed=defined(@_[1])?@_[1]:0; my $scale=$seed<0?-8:8; my $j=($i&1)*2; my ($s0,$s1,$s2,$s3)=(@S[($j)%4],@S[($j+1)%4],@S[($j+2)%4],@S[($j+3)%4]); $code.=<<___; xor $s0,$t0 # t0^=key[0] xor $s1,$t1 # t1^=key[1] movz `&hi("$t0")`,$i0 # (t0>>8)&0xff movz `&lo("$t1")`,$i1 # (t1>>0)&0xff mov $SBOX3_3033($Tbl,$i0,8),$t3 # t3=SBOX3_3033[0] mov $SBOX1_1110($Tbl,$i1,8),$t2 # t2=SBOX1_1110[1] movz `&lo("$t0")`,$i0 # (t0>>0)&0xff shr \$16,$t0 movz `&hi("$t1")`,$i1 # (t1>>8)&0xff xor $SBOX4_4404($Tbl,$i0,8),$t3 # t3^=SBOX4_4404[0] shr \$16,$t1 xor $SBOX4_4404($Tbl,$i1,8),$t2 # t2^=SBOX4_4404[1] movz `&hi("$t0")`,$i0 # (t0>>24)&0xff movz `&lo("$t1")`,$i1 # (t1>>16)&0xff xor $SBOX1_1110($Tbl,$i0,8),$t3 # t3^=SBOX1_1110[0] xor $SBOX3_3033($Tbl,$i1,8),$t2 # t2^=SBOX3_3033[1] movz `&lo("$t0")`,$i0 # (t0>>16)&0xff movz `&hi("$t1")`,$i1 # (t1>>24)&0xff xor $SBOX2_0222($Tbl,$i0,8),$t3 # t3^=SBOX2_0222[0] xor $SBOX2_0222($Tbl,$i1,8),$t2 # t2^=SBOX2_0222[1] mov `$seed+($i+1)*$scale`($key),$t1 # prefetch key[i+1] mov `$seed+($i+1)*$scale+4`($key),$t0 xor $t3,$t2 # t2^=t3 ror \$8,$t3 # t3=RightRotate(t3,8) xor $t2,$s2 xor $t2,$s3 xor $t3,$s3 ___ } # void Camellia_EncryptBlock_Rounds( # int grandRounds, # const Byte plaintext[], # const KEY_TABLE_TYPE keyTable, # Byte ciphertext[]) $code=<<___; .text # V1.x API .globl Camellia_EncryptBlock .type Camellia_EncryptBlock,\@abi-omnipotent .align 16 Camellia_EncryptBlock: .cfi_startproc movl \$128,%eax subl $arg0d,%eax movl \$3,$arg0d adcl \$0,$arg0d # keyBitLength==128?3:4 jmp .Lenc_rounds .cfi_endproc .size Camellia_EncryptBlock,.-Camellia_EncryptBlock # V2 .globl Camellia_EncryptBlock_Rounds .type Camellia_EncryptBlock_Rounds,\@function,4 .align 16 .Lenc_rounds: Camellia_EncryptBlock_Rounds: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lenc_prologue: #mov %rsi,$inp # put away arguments mov %rcx,$out mov %rdx,$key shl \$6,%edi # process grandRounds lea .LCamellia_SBOX(%rip),$Tbl lea ($key,%rdi),$keyend mov 0(%rsi),@S[0] # load plaintext mov 4(%rsi),@S[1] mov 8(%rsi),@S[2] bswap @S[0] mov 12(%rsi),@S[3] bswap @S[1] bswap @S[2] bswap @S[3] call _x86_64_Camellia_encrypt bswap @S[0] bswap @S[1] bswap @S[2] mov @S[0],0($out) bswap @S[3] mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%rbp .cfi_restore %rbp mov 32(%rsp),%rbx .cfi_restore %rbx lea 40(%rsp),%rsp .cfi_adjust_cfa_offset -40 .Lenc_epilogue: ret .cfi_endproc .size Camellia_EncryptBlock_Rounds,.-Camellia_EncryptBlock_Rounds .type _x86_64_Camellia_encrypt,\@abi-omnipotent .align 16 _x86_64_Camellia_encrypt: .cfi_startproc xor 0($key),@S[1] xor 4($key),@S[0] # ^=key[0-3] xor 8($key),@S[3] xor 12($key),@S[2] .align 16 .Leloop: mov 16($key),$t1 # prefetch key[4-5] mov 20($key),$t0 ___ for ($i=0;$i<6;$i++) { Camellia_Feistel($i,16); } $code.=<<___; lea 16*4($key),$key cmp $keyend,$key mov 8($key),$t3 # prefetch key[2-3] mov 12($key),$t2 je .Ledone and @S[0],$t0 or @S[3],$t3 rol \$1,$t0 xor $t3,@S[2] # s2^=s3|key[3]; xor $t0,@S[1] # s1^=LeftRotate(s0&key[0],1); and @S[2],$t2 or @S[1],$t1 rol \$1,$t2 xor $t1,@S[0] # s0^=s1|key[1]; xor $t2,@S[3] # s3^=LeftRotate(s2&key[2],1); jmp .Leloop .align 16 .Ledone: xor @S[2],$t0 # SwapHalf xor @S[3],$t1 xor @S[0],$t2 xor @S[1],$t3 mov $t0,@S[0] mov $t1,@S[1] mov $t2,@S[2] mov $t3,@S[3] .byte 0xf3,0xc3 # rep ret .cfi_endproc .size _x86_64_Camellia_encrypt,.-_x86_64_Camellia_encrypt # V1.x API .globl Camellia_DecryptBlock .type Camellia_DecryptBlock,\@abi-omnipotent .align 16 Camellia_DecryptBlock: .cfi_startproc movl \$128,%eax subl $arg0d,%eax movl \$3,$arg0d adcl \$0,$arg0d # keyBitLength==128?3:4 jmp .Ldec_rounds .cfi_endproc .size Camellia_DecryptBlock,.-Camellia_DecryptBlock # V2 .globl Camellia_DecryptBlock_Rounds .type Camellia_DecryptBlock_Rounds,\@function,4 .align 16 .Ldec_rounds: Camellia_DecryptBlock_Rounds: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Ldec_prologue: #mov %rsi,$inp # put away arguments mov %rcx,$out mov %rdx,$keyend shl \$6,%edi # process grandRounds lea .LCamellia_SBOX(%rip),$Tbl lea ($keyend,%rdi),$key mov 0(%rsi),@S[0] # load plaintext mov 4(%rsi),@S[1] mov 8(%rsi),@S[2] bswap @S[0] mov 12(%rsi),@S[3] bswap @S[1] bswap @S[2] bswap @S[3] call _x86_64_Camellia_decrypt bswap @S[0] bswap @S[1] bswap @S[2] mov @S[0],0($out) bswap @S[3] mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%rbp .cfi_restore %rbp mov 32(%rsp),%rbx .cfi_restore %rbx lea 40(%rsp),%rsp .cfi_adjust_cfa_offset -40 .Ldec_epilogue: ret .cfi_endproc .size Camellia_DecryptBlock_Rounds,.-Camellia_DecryptBlock_Rounds .type _x86_64_Camellia_decrypt,\@abi-omnipotent .align 16 _x86_64_Camellia_decrypt: .cfi_startproc xor 0($key),@S[1] xor 4($key),@S[0] # ^=key[0-3] xor 8($key),@S[3] xor 12($key),@S[2] .align 16 .Ldloop: mov -8($key),$t1 # prefetch key[4-5] mov -4($key),$t0 ___ for ($i=0;$i<6;$i++) { Camellia_Feistel($i,-8); } $code.=<<___; lea -16*4($key),$key cmp $keyend,$key mov 0($key),$t3 # prefetch key[2-3] mov 4($key),$t2 je .Lddone and @S[0],$t0 or @S[3],$t3 rol \$1,$t0 xor $t3,@S[2] # s2^=s3|key[3]; xor $t0,@S[1] # s1^=LeftRotate(s0&key[0],1); and @S[2],$t2 or @S[1],$t1 rol \$1,$t2 xor $t1,@S[0] # s0^=s1|key[1]; xor $t2,@S[3] # s3^=LeftRotate(s2&key[2],1); jmp .Ldloop .align 16 .Lddone: xor @S[2],$t2 xor @S[3],$t3 xor @S[0],$t0 xor @S[1],$t1 mov $t2,@S[0] # SwapHalf mov $t3,@S[1] mov $t0,@S[2] mov $t1,@S[3] .byte 0xf3,0xc3 # rep ret .cfi_endproc .size _x86_64_Camellia_decrypt,.-_x86_64_Camellia_decrypt ___ sub _saveround { my ($rnd,$key,@T)=@_; my $bias=int(@T[0])?shift(@T):0; if ($#T==3) { $code.=<<___; mov @T[1],`$bias+$rnd*8+0`($key) mov @T[0],`$bias+$rnd*8+4`($key) mov @T[3],`$bias+$rnd*8+8`($key) mov @T[2],`$bias+$rnd*8+12`($key) ___ } else { $code.=" mov @T[0],`$bias+$rnd*8+0`($key)\n"; $code.=" mov @T[1],`$bias+$rnd*8+8`($key)\n" if ($#T>=1); } } sub _loadround { my ($rnd,$key,@T)=@_; my $bias=int(@T[0])?shift(@T):0; $code.=" mov `$bias+$rnd*8+0`($key),@T[0]\n"; $code.=" mov `$bias+$rnd*8+8`($key),@T[1]\n" if ($#T>=1); } # shld is very slow on Intel EM64T family. Even on AMD it limits # instruction decode rate [because it's VectorPath] and consequently # performance... sub __rotl128 { my ($i0,$i1,$rot)=@_; if ($rot) { $code.=<<___; mov $i0,%r11 shld \$$rot,$i1,$i0 shld \$$rot,%r11,$i1 ___ } } # ... Implementing 128-bit rotate without shld gives 80% better # performance EM64T, +15% on AMD64 and only ~7% degradation on # Core2. This is therefore preferred. sub _rotl128 { my ($i0,$i1,$rot)=@_; if ($rot) { $code.=<<___; mov $i0,%r11 shl \$$rot,$i0 mov $i1,%r9 shr \$`64-$rot`,%r9 shr \$`64-$rot`,%r11 or %r9,$i0 shl \$$rot,$i1 or %r11,$i1 ___ } } { my $step=0; $code.=<<___; .globl Camellia_Ekeygen .type Camellia_Ekeygen,\@function,3 .align 16 Camellia_Ekeygen: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lkey_prologue: mov %edi,${keyend}d # put away arguments, keyBitLength mov %rdx,$out # keyTable mov 0(%rsi),@S[0] # load 0-127 bits mov 4(%rsi),@S[1] mov 8(%rsi),@S[2] mov 12(%rsi),@S[3] bswap @S[0] bswap @S[1] bswap @S[2] bswap @S[3] ___ &_saveround (0,$out,@S); # KL<<<0 $code.=<<___; cmp \$128,$keyend # check keyBitLength je .L1st128 mov 16(%rsi),@S[0] # load 128-191 bits mov 20(%rsi),@S[1] cmp \$192,$keyend je .L1st192 mov 24(%rsi),@S[2] # load 192-255 bits mov 28(%rsi),@S[3] jmp .L1st256 .L1st192: mov @S[0],@S[2] mov @S[1],@S[3] not @S[2] not @S[3] .L1st256: bswap @S[0] bswap @S[1] bswap @S[2] bswap @S[3] ___ &_saveround (4,$out,@S); # temp storage for KR! $code.=<<___; xor 0($out),@S[1] # KR^KL xor 4($out),@S[0] xor 8($out),@S[3] xor 12($out),@S[2] .L1st128: lea .LCamellia_SIGMA(%rip),$key lea .LCamellia_SBOX(%rip),$Tbl mov 0($key),$t1 mov 4($key),$t0 ___ &Camellia_Feistel($step++); &Camellia_Feistel($step++); $code.=<<___; xor 0($out),@S[1] # ^KL xor 4($out),@S[0] xor 8($out),@S[3] xor 12($out),@S[2] ___ &Camellia_Feistel($step++); &Camellia_Feistel($step++); $code.=<<___; cmp \$128,$keyend jne .L2nd256 lea 128($out),$out # size optimization shl \$32,%r8 # @S[0]|| shl \$32,%r10 # @S[2]|| or %r9,%r8 # ||@S[1] or %r11,%r10 # ||@S[3] ___ &_loadround (0,$out,-128,"%rax","%rbx"); # KL &_saveround (2,$out,-128,"%r8","%r10"); # KA<<<0 &_rotl128 ("%rax","%rbx",15); &_saveround (4,$out,-128,"%rax","%rbx"); # KL<<<15 &_rotl128 ("%r8","%r10",15); &_saveround (6,$out,-128,"%r8","%r10"); # KA<<<15 &_rotl128 ("%r8","%r10",15); # 15+15=30 &_saveround (8,$out,-128,"%r8","%r10"); # KA<<<30 &_rotl128 ("%rax","%rbx",30); # 15+30=45 &_saveround (10,$out,-128,"%rax","%rbx"); # KL<<<45 &_rotl128 ("%r8","%r10",15); # 30+15=45 &_saveround (12,$out,-128,"%r8"); # KA<<<45 &_rotl128 ("%rax","%rbx",15); # 45+15=60 &_saveround (13,$out,-128,"%rbx"); # KL<<<60 &_rotl128 ("%r8","%r10",15); # 45+15=60 &_saveround (14,$out,-128,"%r8","%r10"); # KA<<<60 &_rotl128 ("%rax","%rbx",17); # 60+17=77 &_saveround (16,$out,-128,"%rax","%rbx"); # KL<<<77 &_rotl128 ("%rax","%rbx",17); # 77+17=94 &_saveround (18,$out,-128,"%rax","%rbx"); # KL<<<94 &_rotl128 ("%r8","%r10",34); # 60+34=94 &_saveround (20,$out,-128,"%r8","%r10"); # KA<<<94 &_rotl128 ("%rax","%rbx",17); # 94+17=111 &_saveround (22,$out,-128,"%rax","%rbx"); # KL<<<111 &_rotl128 ("%r8","%r10",17); # 94+17=111 &_saveround (24,$out,-128,"%r8","%r10"); # KA<<<111 $code.=<<___; mov \$3,%eax jmp .Ldone .align 16 .L2nd256: ___ &_saveround (6,$out,@S); # temp storage for KA! $code.=<<___; xor `4*8+0`($out),@S[1] # KA^KR xor `4*8+4`($out),@S[0] xor `5*8+0`($out),@S[3] xor `5*8+4`($out),@S[2] ___ &Camellia_Feistel($step++); &Camellia_Feistel($step++); &_loadround (0,$out,"%rax","%rbx"); # KL &_loadround (4,$out,"%rcx","%rdx"); # KR &_loadround (6,$out,"%r14","%r15"); # KA $code.=<<___; lea 128($out),$out # size optimization shl \$32,%r8 # @S[0]|| shl \$32,%r10 # @S[2]|| or %r9,%r8 # ||@S[1] or %r11,%r10 # ||@S[3] ___ &_saveround (2,$out,-128,"%r8","%r10"); # KB<<<0 &_rotl128 ("%rcx","%rdx",15); &_saveround (4,$out,-128,"%rcx","%rdx"); # KR<<<15 &_rotl128 ("%r14","%r15",15); &_saveround (6,$out,-128,"%r14","%r15"); # KA<<<15 &_rotl128 ("%rcx","%rdx",15); # 15+15=30 &_saveround (8,$out,-128,"%rcx","%rdx"); # KR<<<30 &_rotl128 ("%r8","%r10",30); &_saveround (10,$out,-128,"%r8","%r10"); # KB<<<30 &_rotl128 ("%rax","%rbx",45); &_saveround (12,$out,-128,"%rax","%rbx"); # KL<<<45 &_rotl128 ("%r14","%r15",30); # 15+30=45 &_saveround (14,$out,-128,"%r14","%r15"); # KA<<<45 &_rotl128 ("%rax","%rbx",15); # 45+15=60 &_saveround (16,$out,-128,"%rax","%rbx"); # KL<<<60 &_rotl128 ("%rcx","%rdx",30); # 30+30=60 &_saveround (18,$out,-128,"%rcx","%rdx"); # KR<<<60 &_rotl128 ("%r8","%r10",30); # 30+30=60 &_saveround (20,$out,-128,"%r8","%r10"); # KB<<<60 &_rotl128 ("%rax","%rbx",17); # 60+17=77 &_saveround (22,$out,-128,"%rax","%rbx"); # KL<<<77 &_rotl128 ("%r14","%r15",32); # 45+32=77 &_saveround (24,$out,-128,"%r14","%r15"); # KA<<<77 &_rotl128 ("%rcx","%rdx",34); # 60+34=94 &_saveround (26,$out,-128,"%rcx","%rdx"); # KR<<<94 &_rotl128 ("%r14","%r15",17); # 77+17=94 &_saveround (28,$out,-128,"%r14","%r15"); # KA<<<77 &_rotl128 ("%rax","%rbx",34); # 77+34=111 &_saveround (30,$out,-128,"%rax","%rbx"); # KL<<<111 &_rotl128 ("%r8","%r10",51); # 60+51=111 &_saveround (32,$out,-128,"%r8","%r10"); # KB<<<111 $code.=<<___; mov \$4,%eax .Ldone: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%rbp .cfi_restore %rbp mov 32(%rsp),%rbx .cfi_restore %rbx lea 40(%rsp),%rsp .cfi_adjust_cfa_offset -40 .Lkey_epilogue: ret .cfi_endproc .size Camellia_Ekeygen,.-Camellia_Ekeygen ___ } @SBOX=( 112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65, 35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189, 134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26, 166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77, 139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153, 223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215, 20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34, 254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80, 170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210, 16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148, 135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226, 82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46, 233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89, 120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250, 114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164, 64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158); sub S1110 { my $i=shift; $i=@SBOX[$i]; $i=$i<<24|$i<<16|$i<<8; sprintf("0x%08x",$i); } sub S4404 { my $i=shift; $i=($i<<1|$i>>7)&0xff; $i=@SBOX[$i]; $i=$i<<24|$i<<16|$i; sprintf("0x%08x",$i); } sub S0222 { my $i=shift; $i=@SBOX[$i]; $i=($i<<1|$i>>7)&0xff; $i=$i<<16|$i<<8|$i; sprintf("0x%08x",$i); } sub S3033 { my $i=shift; $i=@SBOX[$i]; $i=($i>>1|$i<<7)&0xff; $i=$i<<24|$i<<8|$i; sprintf("0x%08x",$i); } $code.=<<___; .align 64 .LCamellia_SIGMA: .long 0x3bcc908b, 0xa09e667f, 0x4caa73b2, 0xb67ae858 .long 0xe94f82be, 0xc6ef372f, 0xf1d36f1c, 0x54ff53a5 .long 0xde682d1d, 0x10e527fa, 0xb3e6c1fd, 0xb05688c2 .long 0, 0, 0, 0 .LCamellia_SBOX: ___ # tables are interleaved, remember? sub data_word { $code.=".long\t".join(',',@_)."\n"; } for ($i=0;$i<256;$i++) { &data_word(&S1110($i),&S4404($i)); } for ($i=0;$i<256;$i++) { &data_word(&S0222($i),&S3033($i)); } # void Camellia_cbc_encrypt (const void char *inp, unsigned char *out, # size_t length, const CAMELLIA_KEY *key, # unsigned char *ivp,const int enc); { $_key="0(%rsp)"; $_end="8(%rsp)"; # inp+len&~15 $_res="16(%rsp)"; # len&15 $ivec="24(%rsp)"; $_ivp="40(%rsp)"; $_rsp="48(%rsp)"; $code.=<<___; .globl Camellia_cbc_encrypt .type Camellia_cbc_encrypt,\@function,6 .align 16 Camellia_cbc_encrypt: .cfi_startproc cmp \$0,%rdx je .Lcbc_abort push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lcbc_prologue: mov %rsp,%rbp .cfi_def_cfa_register %rbp sub \$64,%rsp and \$-64,%rsp # place stack frame just "above mod 1024" the key schedule, # this ensures that cache associativity suffices lea -64-63(%rcx),%r10 sub %rsp,%r10 neg %r10 and \$0x3C0,%r10 sub %r10,%rsp #add \$8,%rsp # 8 is reserved for callee's ra mov %rdi,$inp # inp argument mov %rsi,$out # out argument mov %r8,%rbx # ivp argument mov %rcx,$key # key argument mov 272(%rcx),${keyend}d # grandRounds mov %r8,$_ivp mov %rbp,$_rsp .cfi_cfa_expression $_rsp,deref,+56 .Lcbc_body: lea .LCamellia_SBOX(%rip),$Tbl mov \$32,%ecx .align 4 .Lcbc_prefetch_sbox: mov 0($Tbl),%rax mov 32($Tbl),%rsi mov 64($Tbl),%rdi mov 96($Tbl),%r11 lea 128($Tbl),$Tbl loop .Lcbc_prefetch_sbox sub \$4096,$Tbl shl \$6,$keyend mov %rdx,%rcx # len argument lea ($key,$keyend),$keyend cmp \$0,%r9d # enc argument je .LCBC_DECRYPT and \$-16,%rdx and \$15,%rcx # length residue lea ($inp,%rdx),%rdx mov $key,$_key mov %rdx,$_end mov %rcx,$_res cmp $inp,%rdx mov 0(%rbx),@S[0] # load IV mov 4(%rbx),@S[1] mov 8(%rbx),@S[2] mov 12(%rbx),@S[3] je .Lcbc_enc_tail jmp .Lcbc_eloop .align 16 .Lcbc_eloop: xor 0($inp),@S[0] xor 4($inp),@S[1] xor 8($inp),@S[2] bswap @S[0] xor 12($inp),@S[3] bswap @S[1] bswap @S[2] bswap @S[3] call _x86_64_Camellia_encrypt mov $_key,$key # "rewind" the key bswap @S[0] mov $_end,%rdx bswap @S[1] mov $_res,%rcx bswap @S[2] mov @S[0],0($out) bswap @S[3] mov @S[1],4($out) mov @S[2],8($out) lea 16($inp),$inp mov @S[3],12($out) cmp %rdx,$inp lea 16($out),$out jne .Lcbc_eloop cmp \$0,%rcx jne .Lcbc_enc_tail mov $_ivp,$out mov @S[0],0($out) # write out IV residue mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) jmp .Lcbc_done .align 16 .Lcbc_enc_tail: xor %rax,%rax mov %rax,0+$ivec mov %rax,8+$ivec mov %rax,$_res .Lcbc_enc_pushf: pushfq cld mov $inp,%rsi lea 8+$ivec,%rdi .long 0x9066A4F3 # rep movsb popfq .Lcbc_enc_popf: lea $ivec,$inp lea 16+$ivec,%rax mov %rax,$_end jmp .Lcbc_eloop # one more time .align 16 .LCBC_DECRYPT: xchg $key,$keyend add \$15,%rdx and \$15,%rcx # length residue and \$-16,%rdx mov $key,$_key lea ($inp,%rdx),%rdx mov %rdx,$_end mov %rcx,$_res mov (%rbx),%rax # load IV mov 8(%rbx),%rbx jmp .Lcbc_dloop .align 16 .Lcbc_dloop: mov 0($inp),@S[0] mov 4($inp),@S[1] mov 8($inp),@S[2] bswap @S[0] mov 12($inp),@S[3] bswap @S[1] mov %rax,0+$ivec # save IV to temporary storage bswap @S[2] mov %rbx,8+$ivec bswap @S[3] call _x86_64_Camellia_decrypt mov $_key,$key # "rewind" the key mov $_end,%rdx mov $_res,%rcx bswap @S[0] mov ($inp),%rax # load IV for next iteration bswap @S[1] mov 8($inp),%rbx bswap @S[2] xor 0+$ivec,@S[0] bswap @S[3] xor 4+$ivec,@S[1] xor 8+$ivec,@S[2] lea 16($inp),$inp xor 12+$ivec,@S[3] cmp %rdx,$inp je .Lcbc_ddone mov @S[0],0($out) mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) lea 16($out),$out jmp .Lcbc_dloop .align 16 .Lcbc_ddone: mov $_ivp,%rdx cmp \$0,%rcx jne .Lcbc_dec_tail mov @S[0],0($out) mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) mov %rax,(%rdx) # write out IV residue mov %rbx,8(%rdx) jmp .Lcbc_done .align 16 .Lcbc_dec_tail: mov @S[0],0+$ivec mov @S[1],4+$ivec mov @S[2],8+$ivec mov @S[3],12+$ivec .Lcbc_dec_pushf: pushfq cld lea 8+$ivec,%rsi lea ($out),%rdi .long 0x9066A4F3 # rep movsb popfq .Lcbc_dec_popf: mov %rax,(%rdx) # write out IV residue mov %rbx,8(%rdx) jmp .Lcbc_done .align 16 .Lcbc_done: mov $_rsp,%rcx .cfi_def_cfa %rcx,56 mov 0(%rcx),%r15 .cfi_restore %r15 mov 8(%rcx),%r14 .cfi_restore %r14 mov 16(%rcx),%r13 .cfi_restore %r13 mov 24(%rcx),%r12 .cfi_restore %r12 mov 32(%rcx),%rbp .cfi_restore %rbp mov 40(%rcx),%rbx .cfi_restore %rbx lea 48(%rcx),%rsp .cfi_def_cfa %rsp,8 .Lcbc_abort: ret .cfi_endproc .size Camellia_cbc_encrypt,.-Camellia_cbc_encrypt .asciz "Camellia for x86_64 by " ___ } # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type common_se_handler,\@abi-omnipotent .align 16 common_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq lea -64(%rsp),%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue lea 40(%rax),%rax mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r13 mov -32(%rax),%r14 mov -40(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi jmp .Lcommon_seh_exit .size common_se_handler,.-common_se_handler .type cbc_se_handler,\@abi-omnipotent .align 16 cbc_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq lea -64(%rsp),%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lcbc_prologue(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_prologue jb .Lin_cbc_prologue lea .Lcbc_body(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_body jb .Lin_cbc_frame_setup mov 152($context),%rax # pull context->Rsp lea .Lcbc_abort(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lcbc_abort jae .Lin_cbc_prologue # handle pushf/popf in Camellia_cbc_encrypt lea .Lcbc_enc_pushf(%rip),%r10 cmp %r10,%rbx # context->Rip<=.Lcbc_enc_pushf jbe .Lin_cbc_no_flag lea 8(%rax),%rax lea .Lcbc_enc_popf(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_enc_popf jb .Lin_cbc_no_flag lea -8(%rax),%rax lea .Lcbc_dec_pushf(%rip),%r10 cmp %r10,%rbx # context->Rip<=.Lcbc_dec_pushf jbe .Lin_cbc_no_flag lea 8(%rax),%rax lea .Lcbc_dec_popf(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_dec_popf jb .Lin_cbc_no_flag lea -8(%rax),%rax .Lin_cbc_no_flag: mov 48(%rax),%rax # $_rsp lea 48(%rax),%rax .Lin_cbc_frame_setup: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_cbc_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi .align 4 .Lcommon_seh_exit: mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$`1232/8`,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch lea 64(%rsp),%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size cbc_se_handler,.-cbc_se_handler .section .pdata .align 4 .rva .LSEH_begin_Camellia_EncryptBlock_Rounds .rva .LSEH_end_Camellia_EncryptBlock_Rounds .rva .LSEH_info_Camellia_EncryptBlock_Rounds .rva .LSEH_begin_Camellia_DecryptBlock_Rounds .rva .LSEH_end_Camellia_DecryptBlock_Rounds .rva .LSEH_info_Camellia_DecryptBlock_Rounds .rva .LSEH_begin_Camellia_Ekeygen .rva .LSEH_end_Camellia_Ekeygen .rva .LSEH_info_Camellia_Ekeygen .rva .LSEH_begin_Camellia_cbc_encrypt .rva .LSEH_end_Camellia_cbc_encrypt .rva .LSEH_info_Camellia_cbc_encrypt .section .xdata .align 8 .LSEH_info_Camellia_EncryptBlock_Rounds: .byte 9,0,0,0 .rva common_se_handler .rva .Lenc_prologue,.Lenc_epilogue # HandlerData[] .LSEH_info_Camellia_DecryptBlock_Rounds: .byte 9,0,0,0 .rva common_se_handler .rva .Ldec_prologue,.Ldec_epilogue # HandlerData[] .LSEH_info_Camellia_Ekeygen: .byte 9,0,0,0 .rva common_se_handler .rva .Lkey_prologue,.Lkey_epilogue # HandlerData[] .LSEH_info_Camellia_cbc_encrypt: .byte 9,0,0,0 .rva cbc_se_handler ___ } $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/camellia/asm/cmllt4-sparcv9.pl000066400000000000000000000562331364063235100223470ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by David S. Miller and Andy Polyakov. # The module is licensed under 2-clause BSD # license. October 2012. All rights reserved. # ==================================================================== ###################################################################### # Camellia for SPARC T4. # # As with AES below results [for aligned data] are virtually identical # to critical path lengths for 3-cycle instruction latency: # # 128-bit key 192/256- # CBC encrypt 4.14/4.21(*) 5.46/5.52 # (*) numbers after slash are for # misaligned data. # # As with Intel AES-NI, question is if it's possible to improve # performance of parallelizable modes by interleaving round # instructions. In Camellia every instruction is dependent on # previous, which means that there is place for 2 additional ones # in between two dependent. Can we expect 3x performance improvement? # At least one can argue that it should be possible to break 2x # barrier... For some reason not even 2x appears to be possible: # # 128-bit key 192/256- # CBC decrypt 2.21/2.74 2.99/3.40 # CTR 2.15/2.68(*) 2.93/3.34 # (*) numbers after slash are for # misaligned data. # # This is for 2x interleave. But compared to 1x interleave CBC decrypt # improved by ... 0% for 128-bit key, and 11% for 192/256-bit one. # So that out-of-order execution logic can take non-interleaved code # to 1.87x, but can't take 2x interleaved one any further. There # surely is some explanation... As result 3x interleave was not even # attempted. Instead an effort was made to share specific modes # implementations with AES module (therefore sparct4_modes.pl). # # To anchor to something else, software C implementation processes # one byte in 38 cycles with 128-bit key on same processor. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "sparcv9_modes.pl"; $output = pop; open STDOUT,">$output"; $::evp=1; # if $evp is set to 0, script generates module with # Camellia_[en|de]crypt, Camellia_set_key and Camellia_cbc_encrypt # entry points. These are fully compatible with openssl/camellia.h. ###################################################################### # single-round subroutines # { my ($inp,$out,$key,$rounds,$tmp,$mask)=map("%o$_",(0..5)); $code=<<___; #include "sparc_arch.h" .text .globl cmll_t4_encrypt .align 32 cmll_t4_encrypt: andcc $inp, 7, %g1 ! is input aligned? andn $inp, 7, $inp ldx [$key + 0], %g4 ldx [$key + 8], %g5 ldx [$inp + 0], %o4 bz,pt %icc, 1f ldx [$inp + 8], %o5 ldx [$inp + 16], $inp sll %g1, 3, %g1 sub %g0, %g1, %o3 sllx %o4, %g1, %o4 sllx %o5, %g1, %g1 srlx %o5, %o3, %o5 srlx $inp, %o3, %o3 or %o5, %o4, %o4 or %o3, %g1, %o5 1: ld [$key + 272], $rounds ! grandRounds, 3 or 4 ldd [$key + 16], %f12 ldd [$key + 24], %f14 xor %g4, %o4, %o4 xor %g5, %o5, %o5 ldd [$key + 32], %f16 ldd [$key + 40], %f18 movxtod %o4, %f0 movxtod %o5, %f2 ldd [$key + 48], %f20 ldd [$key + 56], %f22 sub $rounds, 1, $rounds ldd [$key + 64], %f24 ldd [$key + 72], %f26 add $key, 80, $key .Lenc: camellia_f %f12, %f2, %f0, %f2 ldd [$key + 0], %f12 sub $rounds,1,$rounds camellia_f %f14, %f0, %f2, %f0 ldd [$key + 8], %f14 camellia_f %f16, %f2, %f0, %f2 ldd [$key + 16], %f16 camellia_f %f18, %f0, %f2, %f0 ldd [$key + 24], %f18 camellia_f %f20, %f2, %f0, %f2 ldd [$key + 32], %f20 camellia_f %f22, %f0, %f2, %f0 ldd [$key + 40], %f22 camellia_fl %f24, %f0, %f0 ldd [$key + 48], %f24 camellia_fli %f26, %f2, %f2 ldd [$key + 56], %f26 brnz,pt $rounds, .Lenc add $key, 64, $key andcc $out, 7, $tmp ! is output aligned? camellia_f %f12, %f2, %f0, %f2 camellia_f %f14, %f0, %f2, %f0 camellia_f %f16, %f2, %f0, %f2 camellia_f %f18, %f0, %f2, %f0 camellia_f %f20, %f2, %f0, %f4 camellia_f %f22, %f0, %f4, %f2 fxor %f24, %f4, %f0 fxor %f26, %f2, %f2 bnz,pn %icc, 2f nop std %f0, [$out + 0] retl std %f2, [$out + 8] 2: alignaddrl $out, %g0, $out mov 0xff, $mask srl $mask, $tmp, $mask faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $mask, $mask retl stda %f8, [$out + $mask]0xc0 ! partial store .type cmll_t4_encrypt,#function .size cmll_t4_encrypt,.-cmll_t4_encrypt .globl cmll_t4_decrypt .align 32 cmll_t4_decrypt: ld [$key + 272], $rounds ! grandRounds, 3 or 4 andcc $inp, 7, %g1 ! is input aligned? andn $inp, 7, $inp sll $rounds, 6, $rounds add $rounds, $key, $key ldx [$inp + 0], %o4 bz,pt %icc, 1f ldx [$inp + 8], %o5 ldx [$inp + 16], $inp sll %g1, 3, %g1 sub %g0, %g1, %g4 sllx %o4, %g1, %o4 sllx %o5, %g1, %g1 srlx %o5, %g4, %o5 srlx $inp, %g4, %g4 or %o5, %o4, %o4 or %g4, %g1, %o5 1: ldx [$key + 0], %g4 ldx [$key + 8], %g5 ldd [$key - 8], %f12 ldd [$key - 16], %f14 xor %g4, %o4, %o4 xor %g5, %o5, %o5 ldd [$key - 24], %f16 ldd [$key - 32], %f18 movxtod %o4, %f0 movxtod %o5, %f2 ldd [$key - 40], %f20 ldd [$key - 48], %f22 sub $rounds, 64, $rounds ldd [$key - 56], %f24 ldd [$key - 64], %f26 sub $key, 64, $key .Ldec: camellia_f %f12, %f2, %f0, %f2 ldd [$key - 8], %f12 sub $rounds, 64, $rounds camellia_f %f14, %f0, %f2, %f0 ldd [$key - 16], %f14 camellia_f %f16, %f2, %f0, %f2 ldd [$key - 24], %f16 camellia_f %f18, %f0, %f2, %f0 ldd [$key - 32], %f18 camellia_f %f20, %f2, %f0, %f2 ldd [$key - 40], %f20 camellia_f %f22, %f0, %f2, %f0 ldd [$key - 48], %f22 camellia_fl %f24, %f0, %f0 ldd [$key - 56], %f24 camellia_fli %f26, %f2, %f2 ldd [$key - 64], %f26 brnz,pt $rounds, .Ldec sub $key, 64, $key andcc $out, 7, $tmp ! is output aligned? camellia_f %f12, %f2, %f0, %f2 camellia_f %f14, %f0, %f2, %f0 camellia_f %f16, %f2, %f0, %f2 camellia_f %f18, %f0, %f2, %f0 camellia_f %f20, %f2, %f0, %f4 camellia_f %f22, %f0, %f4, %f2 fxor %f26, %f4, %f0 fxor %f24, %f2, %f2 bnz,pn %icc, 2f nop std %f0, [$out + 0] retl std %f2, [$out + 8] 2: alignaddrl $out, %g0, $out mov 0xff, $mask srl $mask, $tmp, $mask faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $mask, $mask retl stda %f8, [$out + $mask]0xc0 ! partial store .type cmll_t4_decrypt,#function .size cmll_t4_decrypt,.-cmll_t4_decrypt ___ } ###################################################################### # key setup subroutines # { sub ROTL128 { my $rot = shift; "srlx %o4, 64-$rot, %g4\n\t". "sllx %o4, $rot, %o4\n\t". "srlx %o5, 64-$rot, %g5\n\t". "sllx %o5, $rot, %o5\n\t". "or %o4, %g5, %o4\n\t". "or %o5, %g4, %o5"; } my ($inp,$bits,$out,$tmp)=map("%o$_",(0..5)); $code.=<<___; .globl cmll_t4_set_key .align 32 cmll_t4_set_key: and $inp, 7, $tmp alignaddr $inp, %g0, $inp cmp $bits, 192 ldd [$inp + 0], %f0 bl,pt %icc,.L128 ldd [$inp + 8], %f2 be,pt %icc,.L192 ldd [$inp + 16], %f4 brz,pt $tmp, .L256aligned ldd [$inp + 24], %f6 ldd [$inp + 32], %f8 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 b .L256aligned faligndata %f6, %f8, %f6 .align 16 .L192: brz,a,pt $tmp, .L256aligned fnot2 %f4, %f6 ldd [$inp + 24], %f6 nop faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 fnot2 %f4, %f6 .L256aligned: std %f0, [$out + 0] ! k[0, 1] fsrc2 %f0, %f28 std %f2, [$out + 8] ! k[2, 3] fsrc2 %f2, %f30 fxor %f4, %f0, %f0 b .L128key fxor %f6, %f2, %f2 .align 16 .L128: brz,pt $tmp, .L128aligned nop ldd [$inp + 16], %f4 nop faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 .L128aligned: std %f0, [$out + 0] ! k[0, 1] fsrc2 %f0, %f28 std %f2, [$out + 8] ! k[2, 3] fsrc2 %f2, %f30 .L128key: mov %o7, %o5 1: call .+8 add %o7, SIGMA-1b, %o4 mov %o5, %o7 ldd [%o4 + 0], %f16 ldd [%o4 + 8], %f18 ldd [%o4 + 16], %f20 ldd [%o4 + 24], %f22 camellia_f %f16, %f2, %f0, %f2 camellia_f %f18, %f0, %f2, %f0 fxor %f28, %f0, %f0 fxor %f30, %f2, %f2 camellia_f %f20, %f2, %f0, %f2 camellia_f %f22, %f0, %f2, %f0 bge,pn %icc, .L256key nop std %f0, [$out + 0x10] ! k[ 4, 5] std %f2, [$out + 0x18] ! k[ 6, 7] movdtox %f0, %o4 movdtox %f2, %o5 `&ROTL128(15)` stx %o4, [$out + 0x30] ! k[12, 13] stx %o5, [$out + 0x38] ! k[14, 15] `&ROTL128(15)` stx %o4, [$out + 0x40] ! k[16, 17] stx %o5, [$out + 0x48] ! k[18, 19] `&ROTL128(15)` stx %o4, [$out + 0x60] ! k[24, 25] `&ROTL128(15)` stx %o4, [$out + 0x70] ! k[28, 29] stx %o5, [$out + 0x78] ! k[30, 31] `&ROTL128(34)` stx %o4, [$out + 0xa0] ! k[40, 41] stx %o5, [$out + 0xa8] ! k[42, 43] `&ROTL128(17)` stx %o4, [$out + 0xc0] ! k[48, 49] stx %o5, [$out + 0xc8] ! k[50, 51] movdtox %f28, %o4 ! k[ 0, 1] movdtox %f30, %o5 ! k[ 2, 3] `&ROTL128(15)` stx %o4, [$out + 0x20] ! k[ 8, 9] stx %o5, [$out + 0x28] ! k[10, 11] `&ROTL128(30)` stx %o4, [$out + 0x50] ! k[20, 21] stx %o5, [$out + 0x58] ! k[22, 23] `&ROTL128(15)` stx %o5, [$out + 0x68] ! k[26, 27] `&ROTL128(17)` stx %o4, [$out + 0x80] ! k[32, 33] stx %o5, [$out + 0x88] ! k[34, 35] `&ROTL128(17)` stx %o4, [$out + 0x90] ! k[36, 37] stx %o5, [$out + 0x98] ! k[38, 39] `&ROTL128(17)` stx %o4, [$out + 0xb0] ! k[44, 45] stx %o5, [$out + 0xb8] ! k[46, 47] mov 3, $tmp st $tmp, [$out + 0x110] retl xor %o0, %o0, %o0 .align 16 .L256key: ldd [%o4 + 32], %f24 ldd [%o4 + 40], %f26 std %f0, [$out + 0x30] ! k[12, 13] std %f2, [$out + 0x38] ! k[14, 15] fxor %f4, %f0, %f0 fxor %f6, %f2, %f2 camellia_f %f24, %f2, %f0, %f2 camellia_f %f26, %f0, %f2, %f0 std %f0, [$out + 0x10] ! k[ 4, 5] std %f2, [$out + 0x18] ! k[ 6, 7] movdtox %f0, %o4 movdtox %f2, %o5 `&ROTL128(30)` stx %o4, [$out + 0x50] ! k[20, 21] stx %o5, [$out + 0x58] ! k[22, 23] `&ROTL128(30)` stx %o4, [$out + 0xa0] ! k[40, 41] stx %o5, [$out + 0xa8] ! k[42, 43] `&ROTL128(51)` stx %o4, [$out + 0x100] ! k[64, 65] stx %o5, [$out + 0x108] ! k[66, 67] movdtox %f4, %o4 ! k[ 8, 9] movdtox %f6, %o5 ! k[10, 11] `&ROTL128(15)` stx %o4, [$out + 0x20] ! k[ 8, 9] stx %o5, [$out + 0x28] ! k[10, 11] `&ROTL128(15)` stx %o4, [$out + 0x40] ! k[16, 17] stx %o5, [$out + 0x48] ! k[18, 19] `&ROTL128(30)` stx %o4, [$out + 0x90] ! k[36, 37] stx %o5, [$out + 0x98] ! k[38, 39] `&ROTL128(34)` stx %o4, [$out + 0xd0] ! k[52, 53] stx %o5, [$out + 0xd8] ! k[54, 55] ldx [$out + 0x30], %o4 ! k[12, 13] ldx [$out + 0x38], %o5 ! k[14, 15] `&ROTL128(15)` stx %o4, [$out + 0x30] ! k[12, 13] stx %o5, [$out + 0x38] ! k[14, 15] `&ROTL128(30)` stx %o4, [$out + 0x70] ! k[28, 29] stx %o5, [$out + 0x78] ! k[30, 31] srlx %o4, 32, %g4 srlx %o5, 32, %g5 st %o4, [$out + 0xc0] ! k[48] st %g5, [$out + 0xc4] ! k[49] st %o5, [$out + 0xc8] ! k[50] st %g4, [$out + 0xcc] ! k[51] `&ROTL128(49)` stx %o4, [$out + 0xe0] ! k[56, 57] stx %o5, [$out + 0xe8] ! k[58, 59] movdtox %f28, %o4 ! k[ 0, 1] movdtox %f30, %o5 ! k[ 2, 3] `&ROTL128(45)` stx %o4, [$out + 0x60] ! k[24, 25] stx %o5, [$out + 0x68] ! k[26, 27] `&ROTL128(15)` stx %o4, [$out + 0x80] ! k[32, 33] stx %o5, [$out + 0x88] ! k[34, 35] `&ROTL128(17)` stx %o4, [$out + 0xb0] ! k[44, 45] stx %o5, [$out + 0xb8] ! k[46, 47] `&ROTL128(34)` stx %o4, [$out + 0xf0] ! k[60, 61] stx %o5, [$out + 0xf8] ! k[62, 63] mov 4, $tmp st $tmp, [$out + 0x110] retl xor %o0, %o0, %o0 .type cmll_t4_set_key,#function .size cmll_t4_set_key,.-cmll_t4_set_key .align 32 SIGMA: .long 0xa09e667f, 0x3bcc908b, 0xb67ae858, 0x4caa73b2 .long 0xc6ef372f, 0xe94f82be, 0x54ff53a5, 0xf1d36f1c .long 0x10e527fa, 0xde682d1d, 0xb05688c2, 0xb3e6c1fd .type SIGMA,#object .size SIGMA,.-SIGMA .asciz "Camellia for SPARC T4, David S. Miller, Andy Polyakov" ___ } {{{ my ($inp,$out,$len,$key,$ivec,$enc)=map("%i$_",(0..5)); my ($ileft,$iright,$ooff,$omask,$ivoff)=map("%l$_",(1..7)); $code.=<<___; .align 32 _cmll128_load_enckey: ldx [$key + 0], %g4 ldx [$key + 8], %g5 ___ for ($i=2; $i<26;$i++) { # load key schedule $code.=<<___; ldd [$key + `8*$i`], %f`12+2*$i` ___ } $code.=<<___; retl nop .type _cmll128_load_enckey,#function .size _cmll128_load_enckey,.-_cmll128_load_enckey _cmll256_load_enckey=_cmll128_load_enckey .align 32 _cmll256_load_deckey: ldd [$key + 64], %f62 ldd [$key + 72], %f60 b .Load_deckey add $key, 64, $key _cmll128_load_deckey: ldd [$key + 0], %f60 ldd [$key + 8], %f62 .Load_deckey: ___ for ($i=2; $i<24;$i++) { # load key schedule $code.=<<___; ldd [$key + `8*$i`], %f`62-2*$i` ___ } $code.=<<___; ldx [$key + 192], %g4 retl ldx [$key + 200], %g5 .type _cmll256_load_deckey,#function .size _cmll256_load_deckey,.-_cmll256_load_deckey .align 32 _cmll128_encrypt_1x: ___ for ($i=0; $i<3; $i++) { $code.=<<___; camellia_f %f`16+16*$i+0`, %f2, %f0, %f2 camellia_f %f`16+16*$i+2`, %f0, %f2, %f0 camellia_f %f`16+16*$i+4`, %f2, %f0, %f2 camellia_f %f`16+16*$i+6`, %f0, %f2, %f0 ___ $code.=<<___ if ($i<2); camellia_f %f`16+16*$i+8`, %f2, %f0, %f2 camellia_f %f`16+16*$i+10`, %f0, %f2, %f0 camellia_fl %f`16+16*$i+12`, %f0, %f0 camellia_fli %f`16+16*$i+14`, %f2, %f2 ___ } $code.=<<___; camellia_f %f56, %f2, %f0, %f4 camellia_f %f58, %f0, %f4, %f2 fxor %f60, %f4, %f0 retl fxor %f62, %f2, %f2 .type _cmll128_encrypt_1x,#function .size _cmll128_encrypt_1x,.-_cmll128_encrypt_1x _cmll128_decrypt_1x=_cmll128_encrypt_1x .align 32 _cmll128_encrypt_2x: ___ for ($i=0; $i<3; $i++) { $code.=<<___; camellia_f %f`16+16*$i+0`, %f2, %f0, %f2 camellia_f %f`16+16*$i+0`, %f6, %f4, %f6 camellia_f %f`16+16*$i+2`, %f0, %f2, %f0 camellia_f %f`16+16*$i+2`, %f4, %f6, %f4 camellia_f %f`16+16*$i+4`, %f2, %f0, %f2 camellia_f %f`16+16*$i+4`, %f6, %f4, %f6 camellia_f %f`16+16*$i+6`, %f0, %f2, %f0 camellia_f %f`16+16*$i+6`, %f4, %f6, %f4 ___ $code.=<<___ if ($i<2); camellia_f %f`16+16*$i+8`, %f2, %f0, %f2 camellia_f %f`16+16*$i+8`, %f6, %f4, %f6 camellia_f %f`16+16*$i+10`, %f0, %f2, %f0 camellia_f %f`16+16*$i+10`, %f4, %f6, %f4 camellia_fl %f`16+16*$i+12`, %f0, %f0 camellia_fl %f`16+16*$i+12`, %f4, %f4 camellia_fli %f`16+16*$i+14`, %f2, %f2 camellia_fli %f`16+16*$i+14`, %f6, %f6 ___ } $code.=<<___; camellia_f %f56, %f2, %f0, %f8 camellia_f %f56, %f6, %f4, %f10 camellia_f %f58, %f0, %f8, %f2 camellia_f %f58, %f4, %f10, %f6 fxor %f60, %f8, %f0 fxor %f60, %f10, %f4 fxor %f62, %f2, %f2 retl fxor %f62, %f6, %f6 .type _cmll128_encrypt_2x,#function .size _cmll128_encrypt_2x,.-_cmll128_encrypt_2x _cmll128_decrypt_2x=_cmll128_encrypt_2x .align 32 _cmll256_encrypt_1x: camellia_f %f16, %f2, %f0, %f2 camellia_f %f18, %f0, %f2, %f0 ldd [$key + 208], %f16 ldd [$key + 216], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f22, %f0, %f2, %f0 ldd [$key + 224], %f20 ldd [$key + 232], %f22 camellia_f %f24, %f2, %f0, %f2 camellia_f %f26, %f0, %f2, %f0 ldd [$key + 240], %f24 ldd [$key + 248], %f26 camellia_fl %f28, %f0, %f0 camellia_fli %f30, %f2, %f2 ldd [$key + 256], %f28 ldd [$key + 264], %f30 ___ for ($i=1; $i<3; $i++) { $code.=<<___; camellia_f %f`16+16*$i+0`, %f2, %f0, %f2 camellia_f %f`16+16*$i+2`, %f0, %f2, %f0 camellia_f %f`16+16*$i+4`, %f2, %f0, %f2 camellia_f %f`16+16*$i+6`, %f0, %f2, %f0 camellia_f %f`16+16*$i+8`, %f2, %f0, %f2 camellia_f %f`16+16*$i+10`, %f0, %f2, %f0 camellia_fl %f`16+16*$i+12`, %f0, %f0 camellia_fli %f`16+16*$i+14`, %f2, %f2 ___ } $code.=<<___; camellia_f %f16, %f2, %f0, %f2 camellia_f %f18, %f0, %f2, %f0 ldd [$key + 16], %f16 ldd [$key + 24], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f22, %f0, %f2, %f0 ldd [$key + 32], %f20 ldd [$key + 40], %f22 camellia_f %f24, %f2, %f0, %f4 camellia_f %f26, %f0, %f4, %f2 ldd [$key + 48], %f24 ldd [$key + 56], %f26 fxor %f28, %f4, %f0 fxor %f30, %f2, %f2 ldd [$key + 64], %f28 retl ldd [$key + 72], %f30 .type _cmll256_encrypt_1x,#function .size _cmll256_encrypt_1x,.-_cmll256_encrypt_1x .align 32 _cmll256_encrypt_2x: camellia_f %f16, %f2, %f0, %f2 camellia_f %f16, %f6, %f4, %f6 camellia_f %f18, %f0, %f2, %f0 camellia_f %f18, %f4, %f6, %f4 ldd [$key + 208], %f16 ldd [$key + 216], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f20, %f6, %f4, %f6 camellia_f %f22, %f0, %f2, %f0 camellia_f %f22, %f4, %f6, %f4 ldd [$key + 224], %f20 ldd [$key + 232], %f22 camellia_f %f24, %f2, %f0, %f2 camellia_f %f24, %f6, %f4, %f6 camellia_f %f26, %f0, %f2, %f0 camellia_f %f26, %f4, %f6, %f4 ldd [$key + 240], %f24 ldd [$key + 248], %f26 camellia_fl %f28, %f0, %f0 camellia_fl %f28, %f4, %f4 camellia_fli %f30, %f2, %f2 camellia_fli %f30, %f6, %f6 ldd [$key + 256], %f28 ldd [$key + 264], %f30 ___ for ($i=1; $i<3; $i++) { $code.=<<___; camellia_f %f`16+16*$i+0`, %f2, %f0, %f2 camellia_f %f`16+16*$i+0`, %f6, %f4, %f6 camellia_f %f`16+16*$i+2`, %f0, %f2, %f0 camellia_f %f`16+16*$i+2`, %f4, %f6, %f4 camellia_f %f`16+16*$i+4`, %f2, %f0, %f2 camellia_f %f`16+16*$i+4`, %f6, %f4, %f6 camellia_f %f`16+16*$i+6`, %f0, %f2, %f0 camellia_f %f`16+16*$i+6`, %f4, %f6, %f4 camellia_f %f`16+16*$i+8`, %f2, %f0, %f2 camellia_f %f`16+16*$i+8`, %f6, %f4, %f6 camellia_f %f`16+16*$i+10`, %f0, %f2, %f0 camellia_f %f`16+16*$i+10`, %f4, %f6, %f4 camellia_fl %f`16+16*$i+12`, %f0, %f0 camellia_fl %f`16+16*$i+12`, %f4, %f4 camellia_fli %f`16+16*$i+14`, %f2, %f2 camellia_fli %f`16+16*$i+14`, %f6, %f6 ___ } $code.=<<___; camellia_f %f16, %f2, %f0, %f2 camellia_f %f16, %f6, %f4, %f6 camellia_f %f18, %f0, %f2, %f0 camellia_f %f18, %f4, %f6, %f4 ldd [$key + 16], %f16 ldd [$key + 24], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f20, %f6, %f4, %f6 camellia_f %f22, %f0, %f2, %f0 camellia_f %f22, %f4, %f6, %f4 ldd [$key + 32], %f20 ldd [$key + 40], %f22 camellia_f %f24, %f2, %f0, %f8 camellia_f %f24, %f6, %f4, %f10 camellia_f %f26, %f0, %f8, %f2 camellia_f %f26, %f4, %f10, %f6 ldd [$key + 48], %f24 ldd [$key + 56], %f26 fxor %f28, %f8, %f0 fxor %f28, %f10, %f4 fxor %f30, %f2, %f2 fxor %f30, %f6, %f6 ldd [$key + 64], %f28 retl ldd [$key + 72], %f30 .type _cmll256_encrypt_2x,#function .size _cmll256_encrypt_2x,.-_cmll256_encrypt_2x .align 32 _cmll256_decrypt_1x: camellia_f %f16, %f2, %f0, %f2 camellia_f %f18, %f0, %f2, %f0 ldd [$key - 8], %f16 ldd [$key - 16], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f22, %f0, %f2, %f0 ldd [$key - 24], %f20 ldd [$key - 32], %f22 camellia_f %f24, %f2, %f0, %f2 camellia_f %f26, %f0, %f2, %f0 ldd [$key - 40], %f24 ldd [$key - 48], %f26 camellia_fl %f28, %f0, %f0 camellia_fli %f30, %f2, %f2 ldd [$key - 56], %f28 ldd [$key - 64], %f30 ___ for ($i=1; $i<3; $i++) { $code.=<<___; camellia_f %f`16+16*$i+0`, %f2, %f0, %f2 camellia_f %f`16+16*$i+2`, %f0, %f2, %f0 camellia_f %f`16+16*$i+4`, %f2, %f0, %f2 camellia_f %f`16+16*$i+6`, %f0, %f2, %f0 camellia_f %f`16+16*$i+8`, %f2, %f0, %f2 camellia_f %f`16+16*$i+10`, %f0, %f2, %f0 camellia_fl %f`16+16*$i+12`, %f0, %f0 camellia_fli %f`16+16*$i+14`, %f2, %f2 ___ } $code.=<<___; camellia_f %f16, %f2, %f0, %f2 camellia_f %f18, %f0, %f2, %f0 ldd [$key + 184], %f16 ldd [$key + 176], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f22, %f0, %f2, %f0 ldd [$key + 168], %f20 ldd [$key + 160], %f22 camellia_f %f24, %f2, %f0, %f4 camellia_f %f26, %f0, %f4, %f2 ldd [$key + 152], %f24 ldd [$key + 144], %f26 fxor %f30, %f4, %f0 fxor %f28, %f2, %f2 ldd [$key + 136], %f28 retl ldd [$key + 128], %f30 .type _cmll256_decrypt_1x,#function .size _cmll256_decrypt_1x,.-_cmll256_decrypt_1x .align 32 _cmll256_decrypt_2x: camellia_f %f16, %f2, %f0, %f2 camellia_f %f16, %f6, %f4, %f6 camellia_f %f18, %f0, %f2, %f0 camellia_f %f18, %f4, %f6, %f4 ldd [$key - 8], %f16 ldd [$key - 16], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f20, %f6, %f4, %f6 camellia_f %f22, %f0, %f2, %f0 camellia_f %f22, %f4, %f6, %f4 ldd [$key - 24], %f20 ldd [$key - 32], %f22 camellia_f %f24, %f2, %f0, %f2 camellia_f %f24, %f6, %f4, %f6 camellia_f %f26, %f0, %f2, %f0 camellia_f %f26, %f4, %f6, %f4 ldd [$key - 40], %f24 ldd [$key - 48], %f26 camellia_fl %f28, %f0, %f0 camellia_fl %f28, %f4, %f4 camellia_fli %f30, %f2, %f2 camellia_fli %f30, %f6, %f6 ldd [$key - 56], %f28 ldd [$key - 64], %f30 ___ for ($i=1; $i<3; $i++) { $code.=<<___; camellia_f %f`16+16*$i+0`, %f2, %f0, %f2 camellia_f %f`16+16*$i+0`, %f6, %f4, %f6 camellia_f %f`16+16*$i+2`, %f0, %f2, %f0 camellia_f %f`16+16*$i+2`, %f4, %f6, %f4 camellia_f %f`16+16*$i+4`, %f2, %f0, %f2 camellia_f %f`16+16*$i+4`, %f6, %f4, %f6 camellia_f %f`16+16*$i+6`, %f0, %f2, %f0 camellia_f %f`16+16*$i+6`, %f4, %f6, %f4 camellia_f %f`16+16*$i+8`, %f2, %f0, %f2 camellia_f %f`16+16*$i+8`, %f6, %f4, %f6 camellia_f %f`16+16*$i+10`, %f0, %f2, %f0 camellia_f %f`16+16*$i+10`, %f4, %f6, %f4 camellia_fl %f`16+16*$i+12`, %f0, %f0 camellia_fl %f`16+16*$i+12`, %f4, %f4 camellia_fli %f`16+16*$i+14`, %f2, %f2 camellia_fli %f`16+16*$i+14`, %f6, %f6 ___ } $code.=<<___; camellia_f %f16, %f2, %f0, %f2 camellia_f %f16, %f6, %f4, %f6 camellia_f %f18, %f0, %f2, %f0 camellia_f %f18, %f4, %f6, %f4 ldd [$key + 184], %f16 ldd [$key + 176], %f18 camellia_f %f20, %f2, %f0, %f2 camellia_f %f20, %f6, %f4, %f6 camellia_f %f22, %f0, %f2, %f0 camellia_f %f22, %f4, %f6, %f4 ldd [$key + 168], %f20 ldd [$key + 160], %f22 camellia_f %f24, %f2, %f0, %f8 camellia_f %f24, %f6, %f4, %f10 camellia_f %f26, %f0, %f8, %f2 camellia_f %f26, %f4, %f10, %f6 ldd [$key + 152], %f24 ldd [$key + 144], %f26 fxor %f30, %f8, %f0 fxor %f30, %f10, %f4 fxor %f28, %f2, %f2 fxor %f28, %f6, %f6 ldd [$key + 136], %f28 retl ldd [$key + 128], %f30 .type _cmll256_decrypt_2x,#function .size _cmll256_decrypt_2x,.-_cmll256_decrypt_2x ___ &alg_cbc_encrypt_implement("cmll",128); &alg_cbc_encrypt_implement("cmll",256); &alg_cbc_decrypt_implement("cmll",128); &alg_cbc_decrypt_implement("cmll",256); if ($::evp) { &alg_ctr32_implement("cmll",128); &alg_ctr32_implement("cmll",256); } }}} if (!$::evp) { $code.=<<___; .global Camellia_encrypt Camellia_encrypt=cmll_t4_encrypt .global Camellia_decrypt Camellia_decrypt=cmll_t4_decrypt .global Camellia_set_key .align 32 Camellia_set_key: andcc %o2, 7, %g0 ! double-check alignment bnz,a,pn %icc, 1f mov -1, %o0 brz,a,pn %o0, 1f mov -1, %o0 brz,a,pn %o2, 1f mov -1, %o0 andncc %o1, 0x1c0, %g0 bnz,a,pn %icc, 1f mov -2, %o0 cmp %o1, 128 bl,a,pn %icc, 1f mov -2, %o0 b cmll_t4_set_key nop 1: retl nop .type Camellia_set_key,#function .size Camellia_set_key,.-Camellia_set_key ___ my ($inp,$out,$len,$key,$ivec,$enc)=map("%o$_",(0..5)); $code.=<<___; .globl Camellia_cbc_encrypt .align 32 Camellia_cbc_encrypt: ld [$key + 272], %g1 nop brz $enc, .Lcbc_decrypt cmp %g1, 3 be,pt %icc, cmll128_t4_cbc_encrypt nop ba cmll256_t4_cbc_encrypt nop .Lcbc_decrypt: be,pt %icc, cmll128_t4_cbc_decrypt nop ba cmll256_t4_cbc_decrypt nop .type Camellia_cbc_encrypt,#function .size Camellia_cbc_encrypt,.-Camellia_cbc_encrypt ___ } &emit_assembler(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/camellia/build.info000066400000000000000000000007721364063235100204170ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ cmll_ecb.c cmll_ofb.c cmll_cfb.c cmll_ctr.c \ {- $target{cmll_asm_src} -} GENERATE[cmll-x86.s]=asm/cmll-x86.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) \ $(PROCESSOR) DEPEND[cmll-x86.s]=../perlasm/x86asm.pl GENERATE[cmll-x86_64.s]=asm/cmll-x86_64.pl $(PERLASM_SCHEME) GENERATE[cmllt4-sparcv9.S]=asm/cmllt4-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[cmllt4-sparcv9.o]=.. DEPEND[cmllt4-sparcv9.S]=../perlasm/sparcv9_modes.pl openssl-1.1.1f/crypto/camellia/camellia.c000066400000000000000000000616611364063235100203620ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* ==================================================================== * Copyright 2006 NTT (Nippon Telegraph and Telephone Corporation) . * ALL RIGHTS RESERVED. * * Intellectual Property information for Camellia: * http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html * * News Release for Announcement of Camellia open source: * http://www.ntt.co.jp/news/news06e/0604/060413a.html * * The Camellia Code included herein is developed by * NTT (Nippon Telegraph and Telephone Corporation), and is contributed * to the OpenSSL project. */ /* * Algorithm Specification * http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html */ /* * This release balances code size and performance. In particular key * schedule setup is fully unrolled, because doing so *significantly* * reduces amount of instructions per setup round and code increase is * justifiable. In block functions on the other hand only inner loops * are unrolled, as full unroll gives only nominal performance boost, * while code size grows 4 or 7 times. Also, unlike previous versions * this one "encourages" compiler to keep intermediate variables in * registers, which should give better "all round" results, in other * words reasonable performance even with not so modern compilers. */ #include #include "cmll_local.h" #include #include #define RightRotate(x, s) ( ((x) >> (s)) + ((x) << (32 - s)) ) #define LeftRotate(x, s) ( ((x) << (s)) + ((x) >> (32 - s)) ) #define GETU32(p) (((u32)(p)[0] << 24) ^ ((u32)(p)[1] << 16) ^ ((u32)(p)[2] << 8) ^ ((u32)(p)[3])) #define PUTU32(p,v) ((p)[0] = (u8)((v) >> 24), (p)[1] = (u8)((v) >> 16), (p)[2] = (u8)((v) >> 8), (p)[3] = (u8)(v)) /* S-box data */ #define SBOX1_1110 Camellia_SBOX[0] #define SBOX4_4404 Camellia_SBOX[1] #define SBOX2_0222 Camellia_SBOX[2] #define SBOX3_3033 Camellia_SBOX[3] static const u32 Camellia_SBOX[][256] = { {0x70707000, 0x82828200, 0x2c2c2c00, 0xececec00, 0xb3b3b300, 0x27272700, 0xc0c0c000, 0xe5e5e500, 0xe4e4e400, 0x85858500, 0x57575700, 0x35353500, 0xeaeaea00, 0x0c0c0c00, 0xaeaeae00, 0x41414100, 0x23232300, 0xefefef00, 0x6b6b6b00, 0x93939300, 0x45454500, 0x19191900, 0xa5a5a500, 0x21212100, 0xededed00, 0x0e0e0e00, 0x4f4f4f00, 0x4e4e4e00, 0x1d1d1d00, 0x65656500, 0x92929200, 0xbdbdbd00, 0x86868600, 0xb8b8b800, 0xafafaf00, 0x8f8f8f00, 0x7c7c7c00, 0xebebeb00, 0x1f1f1f00, 0xcecece00, 0x3e3e3e00, 0x30303000, 0xdcdcdc00, 0x5f5f5f00, 0x5e5e5e00, 0xc5c5c500, 0x0b0b0b00, 0x1a1a1a00, 0xa6a6a600, 0xe1e1e100, 0x39393900, 0xcacaca00, 0xd5d5d500, 0x47474700, 0x5d5d5d00, 0x3d3d3d00, 0xd9d9d900, 0x01010100, 0x5a5a5a00, 0xd6d6d600, 0x51515100, 0x56565600, 0x6c6c6c00, 0x4d4d4d00, 0x8b8b8b00, 0x0d0d0d00, 0x9a9a9a00, 0x66666600, 0xfbfbfb00, 0xcccccc00, 0xb0b0b000, 0x2d2d2d00, 0x74747400, 0x12121200, 0x2b2b2b00, 0x20202000, 0xf0f0f000, 0xb1b1b100, 0x84848400, 0x99999900, 0xdfdfdf00, 0x4c4c4c00, 0xcbcbcb00, 0xc2c2c200, 0x34343400, 0x7e7e7e00, 0x76767600, 0x05050500, 0x6d6d6d00, 0xb7b7b700, 0xa9a9a900, 0x31313100, 0xd1d1d100, 0x17171700, 0x04040400, 0xd7d7d700, 0x14141400, 0x58585800, 0x3a3a3a00, 0x61616100, 0xdedede00, 0x1b1b1b00, 0x11111100, 0x1c1c1c00, 0x32323200, 0x0f0f0f00, 0x9c9c9c00, 0x16161600, 0x53535300, 0x18181800, 0xf2f2f200, 0x22222200, 0xfefefe00, 0x44444400, 0xcfcfcf00, 0xb2b2b200, 0xc3c3c300, 0xb5b5b500, 0x7a7a7a00, 0x91919100, 0x24242400, 0x08080800, 0xe8e8e800, 0xa8a8a800, 0x60606000, 0xfcfcfc00, 0x69696900, 0x50505000, 0xaaaaaa00, 0xd0d0d000, 0xa0a0a000, 0x7d7d7d00, 0xa1a1a100, 0x89898900, 0x62626200, 0x97979700, 0x54545400, 0x5b5b5b00, 0x1e1e1e00, 0x95959500, 0xe0e0e000, 0xffffff00, 0x64646400, 0xd2d2d200, 0x10101000, 0xc4c4c400, 0x00000000, 0x48484800, 0xa3a3a300, 0xf7f7f700, 0x75757500, 0xdbdbdb00, 0x8a8a8a00, 0x03030300, 0xe6e6e600, 0xdadada00, 0x09090900, 0x3f3f3f00, 0xdddddd00, 0x94949400, 0x87878700, 0x5c5c5c00, 0x83838300, 0x02020200, 0xcdcdcd00, 0x4a4a4a00, 0x90909000, 0x33333300, 0x73737300, 0x67676700, 0xf6f6f600, 0xf3f3f300, 0x9d9d9d00, 0x7f7f7f00, 0xbfbfbf00, 0xe2e2e200, 0x52525200, 0x9b9b9b00, 0xd8d8d800, 0x26262600, 0xc8c8c800, 0x37373700, 0xc6c6c600, 0x3b3b3b00, 0x81818100, 0x96969600, 0x6f6f6f00, 0x4b4b4b00, 0x13131300, 0xbebebe00, 0x63636300, 0x2e2e2e00, 0xe9e9e900, 0x79797900, 0xa7a7a700, 0x8c8c8c00, 0x9f9f9f00, 0x6e6e6e00, 0xbcbcbc00, 0x8e8e8e00, 0x29292900, 0xf5f5f500, 0xf9f9f900, 0xb6b6b600, 0x2f2f2f00, 0xfdfdfd00, 0xb4b4b400, 0x59595900, 0x78787800, 0x98989800, 0x06060600, 0x6a6a6a00, 0xe7e7e700, 0x46464600, 0x71717100, 0xbababa00, 0xd4d4d400, 0x25252500, 0xababab00, 0x42424200, 0x88888800, 0xa2a2a200, 0x8d8d8d00, 0xfafafa00, 0x72727200, 0x07070700, 0xb9b9b900, 0x55555500, 0xf8f8f800, 0xeeeeee00, 0xacacac00, 0x0a0a0a00, 0x36363600, 0x49494900, 0x2a2a2a00, 0x68686800, 0x3c3c3c00, 0x38383800, 0xf1f1f100, 0xa4a4a400, 0x40404000, 0x28282800, 0xd3d3d300, 0x7b7b7b00, 0xbbbbbb00, 0xc9c9c900, 0x43434300, 0xc1c1c100, 0x15151500, 0xe3e3e300, 0xadadad00, 0xf4f4f400, 0x77777700, 0xc7c7c700, 0x80808000, 0x9e9e9e00}, {0x70700070, 0x2c2c002c, 0xb3b300b3, 0xc0c000c0, 0xe4e400e4, 0x57570057, 0xeaea00ea, 0xaeae00ae, 0x23230023, 0x6b6b006b, 0x45450045, 0xa5a500a5, 0xeded00ed, 0x4f4f004f, 0x1d1d001d, 0x92920092, 0x86860086, 0xafaf00af, 0x7c7c007c, 0x1f1f001f, 0x3e3e003e, 0xdcdc00dc, 0x5e5e005e, 0x0b0b000b, 0xa6a600a6, 0x39390039, 0xd5d500d5, 0x5d5d005d, 0xd9d900d9, 0x5a5a005a, 0x51510051, 0x6c6c006c, 0x8b8b008b, 0x9a9a009a, 0xfbfb00fb, 0xb0b000b0, 0x74740074, 0x2b2b002b, 0xf0f000f0, 0x84840084, 0xdfdf00df, 0xcbcb00cb, 0x34340034, 0x76760076, 0x6d6d006d, 0xa9a900a9, 0xd1d100d1, 0x04040004, 0x14140014, 0x3a3a003a, 0xdede00de, 0x11110011, 0x32320032, 0x9c9c009c, 0x53530053, 0xf2f200f2, 0xfefe00fe, 0xcfcf00cf, 0xc3c300c3, 0x7a7a007a, 0x24240024, 0xe8e800e8, 0x60600060, 0x69690069, 0xaaaa00aa, 0xa0a000a0, 0xa1a100a1, 0x62620062, 0x54540054, 0x1e1e001e, 0xe0e000e0, 0x64640064, 0x10100010, 0x00000000, 0xa3a300a3, 0x75750075, 0x8a8a008a, 0xe6e600e6, 0x09090009, 0xdddd00dd, 0x87870087, 0x83830083, 0xcdcd00cd, 0x90900090, 0x73730073, 0xf6f600f6, 0x9d9d009d, 0xbfbf00bf, 0x52520052, 0xd8d800d8, 0xc8c800c8, 0xc6c600c6, 0x81810081, 0x6f6f006f, 0x13130013, 0x63630063, 0xe9e900e9, 0xa7a700a7, 0x9f9f009f, 0xbcbc00bc, 0x29290029, 0xf9f900f9, 0x2f2f002f, 0xb4b400b4, 0x78780078, 0x06060006, 0xe7e700e7, 0x71710071, 0xd4d400d4, 0xabab00ab, 0x88880088, 0x8d8d008d, 0x72720072, 0xb9b900b9, 0xf8f800f8, 0xacac00ac, 0x36360036, 0x2a2a002a, 0x3c3c003c, 0xf1f100f1, 0x40400040, 0xd3d300d3, 0xbbbb00bb, 0x43430043, 0x15150015, 0xadad00ad, 0x77770077, 0x80800080, 0x82820082, 0xecec00ec, 0x27270027, 0xe5e500e5, 0x85850085, 0x35350035, 0x0c0c000c, 0x41410041, 0xefef00ef, 0x93930093, 0x19190019, 0x21210021, 0x0e0e000e, 0x4e4e004e, 0x65650065, 0xbdbd00bd, 0xb8b800b8, 0x8f8f008f, 0xebeb00eb, 0xcece00ce, 0x30300030, 0x5f5f005f, 0xc5c500c5, 0x1a1a001a, 0xe1e100e1, 0xcaca00ca, 0x47470047, 0x3d3d003d, 0x01010001, 0xd6d600d6, 0x56560056, 0x4d4d004d, 0x0d0d000d, 0x66660066, 0xcccc00cc, 0x2d2d002d, 0x12120012, 0x20200020, 0xb1b100b1, 0x99990099, 0x4c4c004c, 0xc2c200c2, 0x7e7e007e, 0x05050005, 0xb7b700b7, 0x31310031, 0x17170017, 0xd7d700d7, 0x58580058, 0x61610061, 0x1b1b001b, 0x1c1c001c, 0x0f0f000f, 0x16160016, 0x18180018, 0x22220022, 0x44440044, 0xb2b200b2, 0xb5b500b5, 0x91910091, 0x08080008, 0xa8a800a8, 0xfcfc00fc, 0x50500050, 0xd0d000d0, 0x7d7d007d, 0x89890089, 0x97970097, 0x5b5b005b, 0x95950095, 0xffff00ff, 0xd2d200d2, 0xc4c400c4, 0x48480048, 0xf7f700f7, 0xdbdb00db, 0x03030003, 0xdada00da, 0x3f3f003f, 0x94940094, 0x5c5c005c, 0x02020002, 0x4a4a004a, 0x33330033, 0x67670067, 0xf3f300f3, 0x7f7f007f, 0xe2e200e2, 0x9b9b009b, 0x26260026, 0x37370037, 0x3b3b003b, 0x96960096, 0x4b4b004b, 0xbebe00be, 0x2e2e002e, 0x79790079, 0x8c8c008c, 0x6e6e006e, 0x8e8e008e, 0xf5f500f5, 0xb6b600b6, 0xfdfd00fd, 0x59590059, 0x98980098, 0x6a6a006a, 0x46460046, 0xbaba00ba, 0x25250025, 0x42420042, 0xa2a200a2, 0xfafa00fa, 0x07070007, 0x55550055, 0xeeee00ee, 0x0a0a000a, 0x49490049, 0x68680068, 0x38380038, 0xa4a400a4, 0x28280028, 0x7b7b007b, 0xc9c900c9, 0xc1c100c1, 0xe3e300e3, 0xf4f400f4, 0xc7c700c7, 0x9e9e009e}, {0x00e0e0e0, 0x00050505, 0x00585858, 0x00d9d9d9, 0x00676767, 0x004e4e4e, 0x00818181, 0x00cbcbcb, 0x00c9c9c9, 0x000b0b0b, 0x00aeaeae, 0x006a6a6a, 0x00d5d5d5, 0x00181818, 0x005d5d5d, 0x00828282, 0x00464646, 0x00dfdfdf, 0x00d6d6d6, 0x00272727, 0x008a8a8a, 0x00323232, 0x004b4b4b, 0x00424242, 0x00dbdbdb, 0x001c1c1c, 0x009e9e9e, 0x009c9c9c, 0x003a3a3a, 0x00cacaca, 0x00252525, 0x007b7b7b, 0x000d0d0d, 0x00717171, 0x005f5f5f, 0x001f1f1f, 0x00f8f8f8, 0x00d7d7d7, 0x003e3e3e, 0x009d9d9d, 0x007c7c7c, 0x00606060, 0x00b9b9b9, 0x00bebebe, 0x00bcbcbc, 0x008b8b8b, 0x00161616, 0x00343434, 0x004d4d4d, 0x00c3c3c3, 0x00727272, 0x00959595, 0x00ababab, 0x008e8e8e, 0x00bababa, 0x007a7a7a, 0x00b3b3b3, 0x00020202, 0x00b4b4b4, 0x00adadad, 0x00a2a2a2, 0x00acacac, 0x00d8d8d8, 0x009a9a9a, 0x00171717, 0x001a1a1a, 0x00353535, 0x00cccccc, 0x00f7f7f7, 0x00999999, 0x00616161, 0x005a5a5a, 0x00e8e8e8, 0x00242424, 0x00565656, 0x00404040, 0x00e1e1e1, 0x00636363, 0x00090909, 0x00333333, 0x00bfbfbf, 0x00989898, 0x00979797, 0x00858585, 0x00686868, 0x00fcfcfc, 0x00ececec, 0x000a0a0a, 0x00dadada, 0x006f6f6f, 0x00535353, 0x00626262, 0x00a3a3a3, 0x002e2e2e, 0x00080808, 0x00afafaf, 0x00282828, 0x00b0b0b0, 0x00747474, 0x00c2c2c2, 0x00bdbdbd, 0x00363636, 0x00222222, 0x00383838, 0x00646464, 0x001e1e1e, 0x00393939, 0x002c2c2c, 0x00a6a6a6, 0x00303030, 0x00e5e5e5, 0x00444444, 0x00fdfdfd, 0x00888888, 0x009f9f9f, 0x00656565, 0x00878787, 0x006b6b6b, 0x00f4f4f4, 0x00232323, 0x00484848, 0x00101010, 0x00d1d1d1, 0x00515151, 0x00c0c0c0, 0x00f9f9f9, 0x00d2d2d2, 0x00a0a0a0, 0x00555555, 0x00a1a1a1, 0x00414141, 0x00fafafa, 0x00434343, 0x00131313, 0x00c4c4c4, 0x002f2f2f, 0x00a8a8a8, 0x00b6b6b6, 0x003c3c3c, 0x002b2b2b, 0x00c1c1c1, 0x00ffffff, 0x00c8c8c8, 0x00a5a5a5, 0x00202020, 0x00898989, 0x00000000, 0x00909090, 0x00474747, 0x00efefef, 0x00eaeaea, 0x00b7b7b7, 0x00151515, 0x00060606, 0x00cdcdcd, 0x00b5b5b5, 0x00121212, 0x007e7e7e, 0x00bbbbbb, 0x00292929, 0x000f0f0f, 0x00b8b8b8, 0x00070707, 0x00040404, 0x009b9b9b, 0x00949494, 0x00212121, 0x00666666, 0x00e6e6e6, 0x00cecece, 0x00ededed, 0x00e7e7e7, 0x003b3b3b, 0x00fefefe, 0x007f7f7f, 0x00c5c5c5, 0x00a4a4a4, 0x00373737, 0x00b1b1b1, 0x004c4c4c, 0x00919191, 0x006e6e6e, 0x008d8d8d, 0x00767676, 0x00030303, 0x002d2d2d, 0x00dedede, 0x00969696, 0x00262626, 0x007d7d7d, 0x00c6c6c6, 0x005c5c5c, 0x00d3d3d3, 0x00f2f2f2, 0x004f4f4f, 0x00191919, 0x003f3f3f, 0x00dcdcdc, 0x00797979, 0x001d1d1d, 0x00525252, 0x00ebebeb, 0x00f3f3f3, 0x006d6d6d, 0x005e5e5e, 0x00fbfbfb, 0x00696969, 0x00b2b2b2, 0x00f0f0f0, 0x00313131, 0x000c0c0c, 0x00d4d4d4, 0x00cfcfcf, 0x008c8c8c, 0x00e2e2e2, 0x00757575, 0x00a9a9a9, 0x004a4a4a, 0x00575757, 0x00848484, 0x00111111, 0x00454545, 0x001b1b1b, 0x00f5f5f5, 0x00e4e4e4, 0x000e0e0e, 0x00737373, 0x00aaaaaa, 0x00f1f1f1, 0x00dddddd, 0x00595959, 0x00141414, 0x006c6c6c, 0x00929292, 0x00545454, 0x00d0d0d0, 0x00787878, 0x00707070, 0x00e3e3e3, 0x00494949, 0x00808080, 0x00505050, 0x00a7a7a7, 0x00f6f6f6, 0x00777777, 0x00939393, 0x00868686, 0x00838383, 0x002a2a2a, 0x00c7c7c7, 0x005b5b5b, 0x00e9e9e9, 0x00eeeeee, 0x008f8f8f, 0x00010101, 0x003d3d3d}, {0x38003838, 0x41004141, 0x16001616, 0x76007676, 0xd900d9d9, 0x93009393, 0x60006060, 0xf200f2f2, 0x72007272, 0xc200c2c2, 0xab00abab, 0x9a009a9a, 0x75007575, 0x06000606, 0x57005757, 0xa000a0a0, 0x91009191, 0xf700f7f7, 0xb500b5b5, 0xc900c9c9, 0xa200a2a2, 0x8c008c8c, 0xd200d2d2, 0x90009090, 0xf600f6f6, 0x07000707, 0xa700a7a7, 0x27002727, 0x8e008e8e, 0xb200b2b2, 0x49004949, 0xde00dede, 0x43004343, 0x5c005c5c, 0xd700d7d7, 0xc700c7c7, 0x3e003e3e, 0xf500f5f5, 0x8f008f8f, 0x67006767, 0x1f001f1f, 0x18001818, 0x6e006e6e, 0xaf00afaf, 0x2f002f2f, 0xe200e2e2, 0x85008585, 0x0d000d0d, 0x53005353, 0xf000f0f0, 0x9c009c9c, 0x65006565, 0xea00eaea, 0xa300a3a3, 0xae00aeae, 0x9e009e9e, 0xec00ecec, 0x80008080, 0x2d002d2d, 0x6b006b6b, 0xa800a8a8, 0x2b002b2b, 0x36003636, 0xa600a6a6, 0xc500c5c5, 0x86008686, 0x4d004d4d, 0x33003333, 0xfd00fdfd, 0x66006666, 0x58005858, 0x96009696, 0x3a003a3a, 0x09000909, 0x95009595, 0x10001010, 0x78007878, 0xd800d8d8, 0x42004242, 0xcc00cccc, 0xef00efef, 0x26002626, 0xe500e5e5, 0x61006161, 0x1a001a1a, 0x3f003f3f, 0x3b003b3b, 0x82008282, 0xb600b6b6, 0xdb00dbdb, 0xd400d4d4, 0x98009898, 0xe800e8e8, 0x8b008b8b, 0x02000202, 0xeb00ebeb, 0x0a000a0a, 0x2c002c2c, 0x1d001d1d, 0xb000b0b0, 0x6f006f6f, 0x8d008d8d, 0x88008888, 0x0e000e0e, 0x19001919, 0x87008787, 0x4e004e4e, 0x0b000b0b, 0xa900a9a9, 0x0c000c0c, 0x79007979, 0x11001111, 0x7f007f7f, 0x22002222, 0xe700e7e7, 0x59005959, 0xe100e1e1, 0xda00dada, 0x3d003d3d, 0xc800c8c8, 0x12001212, 0x04000404, 0x74007474, 0x54005454, 0x30003030, 0x7e007e7e, 0xb400b4b4, 0x28002828, 0x55005555, 0x68006868, 0x50005050, 0xbe00bebe, 0xd000d0d0, 0xc400c4c4, 0x31003131, 0xcb00cbcb, 0x2a002a2a, 0xad00adad, 0x0f000f0f, 0xca00caca, 0x70007070, 0xff00ffff, 0x32003232, 0x69006969, 0x08000808, 0x62006262, 0x00000000, 0x24002424, 0xd100d1d1, 0xfb00fbfb, 0xba00baba, 0xed00eded, 0x45004545, 0x81008181, 0x73007373, 0x6d006d6d, 0x84008484, 0x9f009f9f, 0xee00eeee, 0x4a004a4a, 0xc300c3c3, 0x2e002e2e, 0xc100c1c1, 0x01000101, 0xe600e6e6, 0x25002525, 0x48004848, 0x99009999, 0xb900b9b9, 0xb300b3b3, 0x7b007b7b, 0xf900f9f9, 0xce00cece, 0xbf00bfbf, 0xdf00dfdf, 0x71007171, 0x29002929, 0xcd00cdcd, 0x6c006c6c, 0x13001313, 0x64006464, 0x9b009b9b, 0x63006363, 0x9d009d9d, 0xc000c0c0, 0x4b004b4b, 0xb700b7b7, 0xa500a5a5, 0x89008989, 0x5f005f5f, 0xb100b1b1, 0x17001717, 0xf400f4f4, 0xbc00bcbc, 0xd300d3d3, 0x46004646, 0xcf00cfcf, 0x37003737, 0x5e005e5e, 0x47004747, 0x94009494, 0xfa00fafa, 0xfc00fcfc, 0x5b005b5b, 0x97009797, 0xfe00fefe, 0x5a005a5a, 0xac00acac, 0x3c003c3c, 0x4c004c4c, 0x03000303, 0x35003535, 0xf300f3f3, 0x23002323, 0xb800b8b8, 0x5d005d5d, 0x6a006a6a, 0x92009292, 0xd500d5d5, 0x21002121, 0x44004444, 0x51005151, 0xc600c6c6, 0x7d007d7d, 0x39003939, 0x83008383, 0xdc00dcdc, 0xaa00aaaa, 0x7c007c7c, 0x77007777, 0x56005656, 0x05000505, 0x1b001b1b, 0xa400a4a4, 0x15001515, 0x34003434, 0x1e001e1e, 0x1c001c1c, 0xf800f8f8, 0x52005252, 0x20002020, 0x14001414, 0xe900e9e9, 0xbd00bdbd, 0xdd00dddd, 0xe400e4e4, 0xa100a1a1, 0xe000e0e0, 0x8a008a8a, 0xf100f1f1, 0xd600d6d6, 0x7a007a7a, 0xbb00bbbb, 0xe300e3e3, 0x40004040, 0x4f004f4f} }; /* Key generation constants */ static const u32 SIGMA[] = { 0xa09e667f, 0x3bcc908b, 0xb67ae858, 0x4caa73b2, 0xc6ef372f, 0xe94f82be, 0x54ff53a5, 0xf1d36f1c, 0x10e527fa, 0xde682d1d, 0xb05688c2, 0xb3e6c1fd }; /* The phi algorithm given in C.2.7 of the Camellia spec document. */ /* * This version does not attempt to minimize amount of temporary * variables, but instead explicitly exposes algorithm's parallelism. * It is therefore most appropriate for platforms with not less than * ~16 registers. For platforms with less registers [well, x86 to be * specific] assembler version should be/is provided anyway... */ #define Camellia_Feistel(_s0,_s1,_s2,_s3,_key) do {\ register u32 _t0,_t1,_t2,_t3;\ \ _t0 = _s0 ^ (_key)[0];\ _t3 = SBOX4_4404[_t0&0xff];\ _t1 = _s1 ^ (_key)[1];\ _t3 ^= SBOX3_3033[(_t0 >> 8)&0xff];\ _t2 = SBOX1_1110[_t1&0xff];\ _t3 ^= SBOX2_0222[(_t0 >> 16)&0xff];\ _t2 ^= SBOX4_4404[(_t1 >> 8)&0xff];\ _t3 ^= SBOX1_1110[(_t0 >> 24)];\ _t2 ^= _t3;\ _t3 = RightRotate(_t3,8);\ _t2 ^= SBOX3_3033[(_t1 >> 16)&0xff];\ _s3 ^= _t3;\ _t2 ^= SBOX2_0222[(_t1 >> 24)];\ _s2 ^= _t2; \ _s3 ^= _t2;\ } while(0) /* * Note that n has to be less than 32. Rotations for larger amount * of bits are achieved by "rotating" order of s-elements and * adjusting n accordingly, e.g. RotLeft128(s1,s2,s3,s0,n-32). */ #define RotLeft128(_s0,_s1,_s2,_s3,_n) do {\ u32 _t0=_s0>>(32-_n);\ _s0 = (_s0<<_n) | (_s1>>(32-_n));\ _s1 = (_s1<<_n) | (_s2>>(32-_n));\ _s2 = (_s2<<_n) | (_s3>>(32-_n));\ _s3 = (_s3<<_n) | _t0;\ } while (0) int Camellia_Ekeygen(int keyBitLength, const u8 *rawKey, KEY_TABLE_TYPE k) { register u32 s0, s1, s2, s3; k[0] = s0 = GETU32(rawKey); k[1] = s1 = GETU32(rawKey + 4); k[2] = s2 = GETU32(rawKey + 8); k[3] = s3 = GETU32(rawKey + 12); if (keyBitLength != 128) { k[8] = s0 = GETU32(rawKey + 16); k[9] = s1 = GETU32(rawKey + 20); if (keyBitLength == 192) { k[10] = s2 = ~s0; k[11] = s3 = ~s1; } else { k[10] = s2 = GETU32(rawKey + 24); k[11] = s3 = GETU32(rawKey + 28); } s0 ^= k[0], s1 ^= k[1], s2 ^= k[2], s3 ^= k[3]; } /* Use the Feistel routine to scramble the key material */ Camellia_Feistel(s0, s1, s2, s3, SIGMA + 0); Camellia_Feistel(s2, s3, s0, s1, SIGMA + 2); s0 ^= k[0], s1 ^= k[1], s2 ^= k[2], s3 ^= k[3]; Camellia_Feistel(s0, s1, s2, s3, SIGMA + 4); Camellia_Feistel(s2, s3, s0, s1, SIGMA + 6); /* Fill the keyTable. Requires many block rotations. */ if (keyBitLength == 128) { k[4] = s0, k[5] = s1, k[6] = s2, k[7] = s3; RotLeft128(s0, s1, s2, s3, 15); /* KA <<< 15 */ k[12] = s0, k[13] = s1, k[14] = s2, k[15] = s3; RotLeft128(s0, s1, s2, s3, 15); /* KA <<< 30 */ k[16] = s0, k[17] = s1, k[18] = s2, k[19] = s3; RotLeft128(s0, s1, s2, s3, 15); /* KA <<< 45 */ k[24] = s0, k[25] = s1; RotLeft128(s0, s1, s2, s3, 15); /* KA <<< 60 */ k[28] = s0, k[29] = s1, k[30] = s2, k[31] = s3; RotLeft128(s1, s2, s3, s0, 2); /* KA <<< 94 */ k[40] = s1, k[41] = s2, k[42] = s3, k[43] = s0; RotLeft128(s1, s2, s3, s0, 17); /* KA <<<111 */ k[48] = s1, k[49] = s2, k[50] = s3, k[51] = s0; s0 = k[0], s1 = k[1], s2 = k[2], s3 = k[3]; RotLeft128(s0, s1, s2, s3, 15); /* KL <<< 15 */ k[8] = s0, k[9] = s1, k[10] = s2, k[11] = s3; RotLeft128(s0, s1, s2, s3, 30); /* KL <<< 45 */ k[20] = s0, k[21] = s1, k[22] = s2, k[23] = s3; RotLeft128(s0, s1, s2, s3, 15); /* KL <<< 60 */ k[26] = s2, k[27] = s3; RotLeft128(s0, s1, s2, s3, 17); /* KL <<< 77 */ k[32] = s0, k[33] = s1, k[34] = s2, k[35] = s3; RotLeft128(s0, s1, s2, s3, 17); /* KL <<< 94 */ k[36] = s0, k[37] = s1, k[38] = s2, k[39] = s3; RotLeft128(s0, s1, s2, s3, 17); /* KL <<<111 */ k[44] = s0, k[45] = s1, k[46] = s2, k[47] = s3; return 3; /* grand rounds */ } else { k[12] = s0, k[13] = s1, k[14] = s2, k[15] = s3; s0 ^= k[8], s1 ^= k[9], s2 ^= k[10], s3 ^= k[11]; Camellia_Feistel(s0, s1, s2, s3, (SIGMA + 8)); Camellia_Feistel(s2, s3, s0, s1, (SIGMA + 10)); k[4] = s0, k[5] = s1, k[6] = s2, k[7] = s3; RotLeft128(s0, s1, s2, s3, 30); /* KB <<< 30 */ k[20] = s0, k[21] = s1, k[22] = s2, k[23] = s3; RotLeft128(s0, s1, s2, s3, 30); /* KB <<< 60 */ k[40] = s0, k[41] = s1, k[42] = s2, k[43] = s3; RotLeft128(s1, s2, s3, s0, 19); /* KB <<<111 */ k[64] = s1, k[65] = s2, k[66] = s3, k[67] = s0; s0 = k[8], s1 = k[9], s2 = k[10], s3 = k[11]; RotLeft128(s0, s1, s2, s3, 15); /* KR <<< 15 */ k[8] = s0, k[9] = s1, k[10] = s2, k[11] = s3; RotLeft128(s0, s1, s2, s3, 15); /* KR <<< 30 */ k[16] = s0, k[17] = s1, k[18] = s2, k[19] = s3; RotLeft128(s0, s1, s2, s3, 30); /* KR <<< 60 */ k[36] = s0, k[37] = s1, k[38] = s2, k[39] = s3; RotLeft128(s1, s2, s3, s0, 2); /* KR <<< 94 */ k[52] = s1, k[53] = s2, k[54] = s3, k[55] = s0; s0 = k[12], s1 = k[13], s2 = k[14], s3 = k[15]; RotLeft128(s0, s1, s2, s3, 15); /* KA <<< 15 */ k[12] = s0, k[13] = s1, k[14] = s2, k[15] = s3; RotLeft128(s0, s1, s2, s3, 30); /* KA <<< 45 */ k[28] = s0, k[29] = s1, k[30] = s2, k[31] = s3; /* KA <<< 77 */ k[48] = s1, k[49] = s2, k[50] = s3, k[51] = s0; RotLeft128(s1, s2, s3, s0, 17); /* KA <<< 94 */ k[56] = s1, k[57] = s2, k[58] = s3, k[59] = s0; s0 = k[0], s1 = k[1], s2 = k[2], s3 = k[3]; RotLeft128(s1, s2, s3, s0, 13); /* KL <<< 45 */ k[24] = s1, k[25] = s2, k[26] = s3, k[27] = s0; RotLeft128(s1, s2, s3, s0, 15); /* KL <<< 60 */ k[32] = s1, k[33] = s2, k[34] = s3, k[35] = s0; RotLeft128(s1, s2, s3, s0, 17); /* KL <<< 77 */ k[44] = s1, k[45] = s2, k[46] = s3, k[47] = s0; RotLeft128(s2, s3, s0, s1, 2); /* KL <<<111 */ k[60] = s2, k[61] = s3, k[62] = s0, k[63] = s1; return 4; /* grand rounds */ } /* * It is possible to perform certain precalculations, which * would spare few cycles in block procedure. It's not done, * because it upsets the performance balance between key * setup and block procedures, negatively affecting overall * throughput in applications operating on short messages * and volatile keys. */ } void Camellia_EncryptBlock_Rounds(int grandRounds, const u8 plaintext[], const KEY_TABLE_TYPE keyTable, u8 ciphertext[]) { register u32 s0, s1, s2, s3; const u32 *k = keyTable, *kend = keyTable + grandRounds * 16; s0 = GETU32(plaintext) ^ k[0]; s1 = GETU32(plaintext + 4) ^ k[1]; s2 = GETU32(plaintext + 8) ^ k[2]; s3 = GETU32(plaintext + 12) ^ k[3]; k += 4; while (1) { /* Camellia makes 6 Feistel rounds */ Camellia_Feistel(s0, s1, s2, s3, k + 0); Camellia_Feistel(s2, s3, s0, s1, k + 2); Camellia_Feistel(s0, s1, s2, s3, k + 4); Camellia_Feistel(s2, s3, s0, s1, k + 6); Camellia_Feistel(s0, s1, s2, s3, k + 8); Camellia_Feistel(s2, s3, s0, s1, k + 10); k += 12; if (k == kend) break; /* * This is the same function as the diffusion function D of the * accompanying documentation. See section 3.2 for properties of the * FLlayer function. */ s1 ^= LeftRotate(s0 & k[0], 1); s2 ^= s3 | k[3]; s0 ^= s1 | k[1]; s3 ^= LeftRotate(s2 & k[2], 1); k += 4; } s2 ^= k[0], s3 ^= k[1], s0 ^= k[2], s1 ^= k[3]; PUTU32(ciphertext, s2); PUTU32(ciphertext + 4, s3); PUTU32(ciphertext + 8, s0); PUTU32(ciphertext + 12, s1); } void Camellia_EncryptBlock(int keyBitLength, const u8 plaintext[], const KEY_TABLE_TYPE keyTable, u8 ciphertext[]) { Camellia_EncryptBlock_Rounds(keyBitLength == 128 ? 3 : 4, plaintext, keyTable, ciphertext); } void Camellia_DecryptBlock_Rounds(int grandRounds, const u8 ciphertext[], const KEY_TABLE_TYPE keyTable, u8 plaintext[]) { u32 s0, s1, s2, s3; const u32 *k = keyTable + grandRounds * 16, *kend = keyTable + 4; s0 = GETU32(ciphertext) ^ k[0]; s1 = GETU32(ciphertext + 4) ^ k[1]; s2 = GETU32(ciphertext + 8) ^ k[2]; s3 = GETU32(ciphertext + 12) ^ k[3]; while (1) { /* Camellia makes 6 Feistel rounds */ k -= 12; Camellia_Feistel(s0, s1, s2, s3, k + 10); Camellia_Feistel(s2, s3, s0, s1, k + 8); Camellia_Feistel(s0, s1, s2, s3, k + 6); Camellia_Feistel(s2, s3, s0, s1, k + 4); Camellia_Feistel(s0, s1, s2, s3, k + 2); Camellia_Feistel(s2, s3, s0, s1, k + 0); if (k == kend) break; /* * This is the same function as the diffusion function D of the * accompanying documentation. See section 3.2 for properties of the * FLlayer function. */ k -= 4; s1 ^= LeftRotate(s0 & k[2], 1); s2 ^= s3 | k[1]; s0 ^= s1 | k[3]; s3 ^= LeftRotate(s2 & k[0], 1); } k -= 4; s2 ^= k[0], s3 ^= k[1], s0 ^= k[2], s1 ^= k[3]; PUTU32(plaintext, s2); PUTU32(plaintext + 4, s3); PUTU32(plaintext + 8, s0); PUTU32(plaintext + 12, s1); } void Camellia_DecryptBlock(int keyBitLength, const u8 plaintext[], const KEY_TABLE_TYPE keyTable, u8 ciphertext[]) { Camellia_DecryptBlock_Rounds(keyBitLength == 128 ? 3 : 4, plaintext, keyTable, ciphertext); } openssl-1.1.1f/crypto/camellia/cmll_cbc.c000066400000000000000000000015211364063235100203360ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include void Camellia_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const CAMELLIA_KEY *key, unsigned char *ivec, const int enc) { if (enc) CRYPTO_cbc128_encrypt(in, out, len, key, ivec, (block128_f) Camellia_encrypt); else CRYPTO_cbc128_decrypt(in, out, len, key, ivec, (block128_f) Camellia_decrypt); } openssl-1.1.1f/crypto/camellia/cmll_cfb.c000066400000000000000000000032131364063235100203410ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include /* * The input and output encrypted as though 128bit cfb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void Camellia_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const CAMELLIA_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_encrypt(in, out, length, key, ivec, num, enc, (block128_f) Camellia_encrypt); } /* N.B. This expects the input to be packed, MS bit first */ void Camellia_cfb1_encrypt(const unsigned char *in, unsigned char *out, size_t length, const CAMELLIA_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_1_encrypt(in, out, length, key, ivec, num, enc, (block128_f) Camellia_encrypt); } void Camellia_cfb8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const CAMELLIA_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_8_encrypt(in, out, length, key, ivec, num, enc, (block128_f) Camellia_encrypt); } openssl-1.1.1f/crypto/camellia/cmll_ctr.c000066400000000000000000000015371364063235100204060ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include void Camellia_ctr128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const CAMELLIA_KEY *key, unsigned char ivec[CAMELLIA_BLOCK_SIZE], unsigned char ecount_buf[CAMELLIA_BLOCK_SIZE], unsigned int *num) { CRYPTO_ctr128_encrypt(in, out, length, key, ivec, ecount_buf, num, (block128_f) Camellia_encrypt); } openssl-1.1.1f/crypto/camellia/cmll_ecb.c000066400000000000000000000012141364063235100203370ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "cmll_local.h" void Camellia_ecb_encrypt(const unsigned char *in, unsigned char *out, const CAMELLIA_KEY *key, const int enc) { if (CAMELLIA_ENCRYPT == enc) Camellia_encrypt(in, out, key); else Camellia_decrypt(in, out, key); } openssl-1.1.1f/crypto/camellia/cmll_local.h000066400000000000000000000035331364063235100207130ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* ==================================================================== * Copyright 2006 NTT (Nippon Telegraph and Telephone Corporation) . * ALL RIGHTS RESERVED. * * Intellectual Property information for Camellia: * http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html * * News Release for Announcement of Camellia open source: * http://www.ntt.co.jp/news/news06e/0604/060413a.html * * The Camellia Code included herein is developed by * NTT (Nippon Telegraph and Telephone Corporation), and is contributed * to the OpenSSL project. */ #ifndef OSSL_CRYPTO_CAMELLIA_CMLL_LOCAL_H # define OSSL_CRYPTO_CAMELLIA_CMLL_LOCAL_H typedef unsigned int u32; typedef unsigned char u8; int Camellia_Ekeygen(int keyBitLength, const u8 *rawKey, KEY_TABLE_TYPE keyTable); void Camellia_EncryptBlock_Rounds(int grandRounds, const u8 plaintext[], const KEY_TABLE_TYPE keyTable, u8 ciphertext[]); void Camellia_DecryptBlock_Rounds(int grandRounds, const u8 ciphertext[], const KEY_TABLE_TYPE keyTable, u8 plaintext[]); void Camellia_EncryptBlock(int keyBitLength, const u8 plaintext[], const KEY_TABLE_TYPE keyTable, u8 ciphertext[]); void Camellia_DecryptBlock(int keyBitLength, const u8 ciphertext[], const KEY_TABLE_TYPE keyTable, u8 plaintext[]); #endif /* #ifndef OSSL_CRYPTO_CAMELLIA_CMLL_LOCAL_H */ openssl-1.1.1f/crypto/camellia/cmll_misc.c000066400000000000000000000021431364063235100205430ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "cmll_local.h" int Camellia_set_key(const unsigned char *userKey, const int bits, CAMELLIA_KEY *key) { if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; key->grand_rounds = Camellia_Ekeygen(bits, userKey, key->u.rd_key); return 0; } void Camellia_encrypt(const unsigned char *in, unsigned char *out, const CAMELLIA_KEY *key) { Camellia_EncryptBlock_Rounds(key->grand_rounds, in, key->u.rd_key, out); } void Camellia_decrypt(const unsigned char *in, unsigned char *out, const CAMELLIA_KEY *key) { Camellia_DecryptBlock_Rounds(key->grand_rounds, in, key->u.rd_key, out); } openssl-1.1.1f/crypto/camellia/cmll_ofb.c000066400000000000000000000016121364063235100203560ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include /* * The input and output encrypted as though 128bit ofb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void Camellia_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const CAMELLIA_KEY *key, unsigned char *ivec, int *num) { CRYPTO_ofb128_encrypt(in, out, length, key, ivec, num, (block128_f) Camellia_encrypt); } openssl-1.1.1f/crypto/cast/000077500000000000000000000000001364063235100156205ustar00rootroot00000000000000openssl-1.1.1f/crypto/cast/asm/000077500000000000000000000000001364063235100164005ustar00rootroot00000000000000openssl-1.1.1f/crypto/cast/asm/cast-586.pl000066400000000000000000000120051364063235100202050ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # This flag makes the inner loop one cycle longer, but generates # code that runs %30 faster on the pentium pro/II, 44% faster # of PIII, while only %7 slower on the pentium. # By default, this flag is on. $ppro=1; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; require "cbc.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $CAST_ROUNDS=16; $L="edi"; $R="esi"; $K="ebp"; $tmp1="ecx"; $tmp2="ebx"; $tmp3="eax"; $tmp4="edx"; $S1="CAST_S_table0"; $S2="CAST_S_table1"; $S3="CAST_S_table2"; $S4="CAST_S_table3"; @F1=("add","xor","sub"); @F2=("xor","sub","add"); @F3=("sub","add","xor"); &CAST_encrypt("CAST_encrypt",1); &CAST_encrypt("CAST_decrypt",0); &cbc("CAST_cbc_encrypt","CAST_encrypt","CAST_decrypt",1,4,5,3,-1,-1); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub CAST_encrypt { local($name,$enc)=@_; local($win_ex)=<<"EOF"; EXTERN _CAST_S_table0:DWORD EXTERN _CAST_S_table1:DWORD EXTERN _CAST_S_table2:DWORD EXTERN _CAST_S_table3:DWORD EOF &main::external_label( "CAST_S_table0", "CAST_S_table1", "CAST_S_table2", "CAST_S_table3", ); &function_begin_B($name,$win_ex); &comment(""); &push("ebp"); &push("ebx"); &mov($tmp2,&wparam(0)); &mov($K,&wparam(1)); &push("esi"); &push("edi"); &comment("Load the 2 words"); &mov($L,&DWP(0,$tmp2,"",0)); &mov($R,&DWP(4,$tmp2,"",0)); &comment('Get short key flag'); &mov($tmp3,&DWP(128,$K,"",0)); if($enc) { &push($tmp3); } else { &or($tmp3,$tmp3); &jnz(&label('cast_dec_skip')); } &xor($tmp3, $tmp3); # encrypting part if ($enc) { &E_CAST( 0,$S,$L,$R,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 1,$S,$R,$L,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 2,$S,$L,$R,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 3,$S,$R,$L,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 4,$S,$L,$R,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 5,$S,$R,$L,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 6,$S,$L,$R,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 7,$S,$R,$L,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 8,$S,$L,$R,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 9,$S,$R,$L,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(10,$S,$L,$R,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(11,$S,$R,$L,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &comment('test short key flag'); &pop($tmp4); &or($tmp4,$tmp4); &jnz(&label('cast_enc_done')); &E_CAST(12,$S,$L,$R,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(13,$S,$R,$L,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(14,$S,$L,$R,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(15,$S,$R,$L,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); } else { &E_CAST(15,$S,$L,$R,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(14,$S,$R,$L,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(13,$S,$L,$R,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(12,$S,$R,$L,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &set_label('cast_dec_skip'); &E_CAST(11,$S,$L,$R,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST(10,$S,$R,$L,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 9,$S,$L,$R,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 8,$S,$R,$L,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 7,$S,$L,$R,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 6,$S,$R,$L,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 5,$S,$L,$R,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 4,$S,$R,$L,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 3,$S,$L,$R,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 2,$S,$R,$L,$K,@F3,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 1,$S,$L,$R,$K,@F2,$tmp1,$tmp2,$tmp3,$tmp4); &E_CAST( 0,$S,$R,$L,$K,@F1,$tmp1,$tmp2,$tmp3,$tmp4); } &set_label('cast_enc_done') if $enc; # Why the nop? - Ben 17/1/99 &nop(); &mov($tmp3,&wparam(0)); &mov(&DWP(4,$tmp3,"",0),$L); &mov(&DWP(0,$tmp3,"",0),$R); &function_end($name); } sub E_CAST { local($i,$S,$L,$R,$K,$OP1,$OP2,$OP3,$tmp1,$tmp2,$tmp3,$tmp4)=@_; # Ri needs to have 16 pre added. &comment("round $i"); &mov( $tmp4, &DWP($i*8,$K,"",1)); &mov( $tmp1, &DWP($i*8+4,$K,"",1)); &$OP1( $tmp4, $R); &rotl( $tmp4, &LB($tmp1)); if ($ppro) { &xor( $tmp1, $tmp1); &mov( $tmp2, 0xff); &movb( &LB($tmp1), &HB($tmp4)); # A &and( $tmp2, $tmp4); &shr( $tmp4, 16); # &xor( $tmp3, $tmp3); } else { &mov( $tmp2, $tmp4); # B &movb( &LB($tmp1), &HB($tmp4)); # A # BAD BAD BAD &shr( $tmp4, 16); # &and( $tmp2, 0xff); } &movb( &LB($tmp3), &HB($tmp4)); # C # BAD BAD BAD &and( $tmp4, 0xff); # D &mov( $tmp1, &DWP($S1,"",$tmp1,4)); &mov( $tmp2, &DWP($S2,"",$tmp2,4)); &$OP2( $tmp1, $tmp2); &mov( $tmp2, &DWP($S3,"",$tmp3,4)); &$OP3( $tmp1, $tmp2); &mov( $tmp2, &DWP($S4,"",$tmp4,4)); &$OP1( $tmp1, $tmp2); # XXX &xor( $L, $tmp1); # XXX } openssl-1.1.1f/crypto/cast/build.info000066400000000000000000000004371364063235100176000ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ c_skey.c c_ecb.c {- $target{cast_asm_src} -} c_cfb64.c c_ofb64.c GENERATE[cast-586.s]=asm/cast-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[cast-586.s]=../perlasm/x86asm.pl ../perlasm/cbc.pl openssl-1.1.1f/crypto/cast/c_cfb64.c000066400000000000000000000040521364063235100171730ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "cast_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void CAST_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, const CAST_KEY *schedule, unsigned char *ivec, int *num, int enc) { register CAST_LONG v0, v1, t; register int n = *num; register long l = length; CAST_LONG ti[2]; unsigned char *iv, c, cc; iv = ivec; if (enc) { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; CAST_encrypt((CAST_LONG *)ti, schedule); iv = ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; CAST_encrypt((CAST_LONG *)ti, schedule); iv = ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; } openssl-1.1.1f/crypto/cast/c_ecb.c000066400000000000000000000014241364063235100170200ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "cast_local.h" #include void CAST_ecb_encrypt(const unsigned char *in, unsigned char *out, const CAST_KEY *ks, int enc) { CAST_LONG l, d[2]; n2l(in, l); d[0] = l; n2l(in, l); d[1] = l; if (enc) CAST_encrypt(d, ks); else CAST_decrypt(d, ks); l = d[0]; l2n(l, out); l = d[1]; l2n(l, out); l = d[0] = d[1] = 0; } openssl-1.1.1f/crypto/cast/c_enc.c000066400000000000000000000077351364063235100170470ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "cast_local.h" void CAST_encrypt(CAST_LONG *data, const CAST_KEY *key) { CAST_LONG l, r, t; const CAST_LONG *k; k = &(key->data[0]); l = data[0]; r = data[1]; E_CAST(0, k, l, r, +, ^, -); E_CAST(1, k, r, l, ^, -, +); E_CAST(2, k, l, r, -, +, ^); E_CAST(3, k, r, l, +, ^, -); E_CAST(4, k, l, r, ^, -, +); E_CAST(5, k, r, l, -, +, ^); E_CAST(6, k, l, r, +, ^, -); E_CAST(7, k, r, l, ^, -, +); E_CAST(8, k, l, r, -, +, ^); E_CAST(9, k, r, l, +, ^, -); E_CAST(10, k, l, r, ^, -, +); E_CAST(11, k, r, l, -, +, ^); if (!key->short_key) { E_CAST(12, k, l, r, +, ^, -); E_CAST(13, k, r, l, ^, -, +); E_CAST(14, k, l, r, -, +, ^); E_CAST(15, k, r, l, +, ^, -); } data[1] = l & 0xffffffffL; data[0] = r & 0xffffffffL; } void CAST_decrypt(CAST_LONG *data, const CAST_KEY *key) { CAST_LONG l, r, t; const CAST_LONG *k; k = &(key->data[0]); l = data[0]; r = data[1]; if (!key->short_key) { E_CAST(15, k, l, r, +, ^, -); E_CAST(14, k, r, l, -, +, ^); E_CAST(13, k, l, r, ^, -, +); E_CAST(12, k, r, l, +, ^, -); } E_CAST(11, k, l, r, -, +, ^); E_CAST(10, k, r, l, ^, -, +); E_CAST(9, k, l, r, +, ^, -); E_CAST(8, k, r, l, -, +, ^); E_CAST(7, k, l, r, ^, -, +); E_CAST(6, k, r, l, +, ^, -); E_CAST(5, k, l, r, -, +, ^); E_CAST(4, k, r, l, ^, -, +); E_CAST(3, k, l, r, +, ^, -); E_CAST(2, k, r, l, -, +, ^); E_CAST(1, k, l, r, ^, -, +); E_CAST(0, k, r, l, +, ^, -); data[1] = l & 0xffffffffL; data[0] = r & 0xffffffffL; } void CAST_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, const CAST_KEY *ks, unsigned char *iv, int enc) { register CAST_LONG tin0, tin1; register CAST_LONG tout0, tout1, xor0, xor1; register long l = length; CAST_LONG tin[2]; if (enc) { n2l(iv, tout0); n2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); n2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; CAST_encrypt(tin, ks); tout0 = tin[0]; tout1 = tin[1]; l2n(tout0, out); l2n(tout1, out); } if (l != -8) { n2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; CAST_encrypt(tin, ks); tout0 = tin[0]; tout1 = tin[1]; l2n(tout0, out); l2n(tout1, out); } l2n(tout0, iv); l2n(tout1, iv); } else { n2l(iv, xor0); n2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); n2l(in, tin1); tin[0] = tin0; tin[1] = tin1; CAST_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2n(tout0, out); l2n(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { n2l(in, tin0); n2l(in, tin1); tin[0] = tin0; tin[1] = tin1; CAST_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2nn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2n(xor0, iv); l2n(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } openssl-1.1.1f/crypto/cast/c_ofb64.c000066400000000000000000000030641364063235100172110ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "cast_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void CAST_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, const CAST_KEY *schedule, unsigned char *ivec, int *num) { register CAST_LONG v0, v1, t; register int n = *num; register long l = length; unsigned char d[8]; register char *dp; CAST_LONG ti[2]; unsigned char *iv; int save = 0; iv = ivec; n2l(iv, v0); n2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2n(v0, dp); l2n(v1, dp); while (l--) { if (n == 0) { CAST_encrypt((CAST_LONG *)ti, schedule); dp = (char *)d; t = ti[0]; l2n(t, dp); t = ti[1]; l2n(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = ivec; l2n(v0, iv); l2n(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; } openssl-1.1.1f/crypto/cast/c_skey.c000066400000000000000000000105471364063235100172500ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "cast_local.h" #include "cast_s.h" #define CAST_exp(l,A,a,n) \ A[n/4]=l; \ a[n+3]=(l )&0xff; \ a[n+2]=(l>> 8)&0xff; \ a[n+1]=(l>>16)&0xff; \ a[n+0]=(l>>24)&0xff; #define S4 CAST_S_table4 #define S5 CAST_S_table5 #define S6 CAST_S_table6 #define S7 CAST_S_table7 void CAST_set_key(CAST_KEY *key, int len, const unsigned char *data) { CAST_LONG x[16]; CAST_LONG z[16]; CAST_LONG k[32]; CAST_LONG X[4], Z[4]; CAST_LONG l, *K; int i; for (i = 0; i < 16; i++) x[i] = 0; if (len > 16) len = 16; for (i = 0; i < len; i++) x[i] = data[i]; if (len <= 10) key->short_key = 1; else key->short_key = 0; K = &k[0]; X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL; X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL; X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL; X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL; for (;;) { l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; CAST_exp(l, Z, z, 0); l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; CAST_exp(l, Z, z, 4); l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; CAST_exp(l, Z, z, 8); l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; CAST_exp(l, Z, z, 12); K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]]; K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]]; K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]]; K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]]; l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; CAST_exp(l, X, x, 0); l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; CAST_exp(l, X, x, 4); l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; CAST_exp(l, X, x, 8); l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; CAST_exp(l, X, x, 12); K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]]; K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]]; K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]]; K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]]; l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; CAST_exp(l, Z, z, 0); l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; CAST_exp(l, Z, z, 4); l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; CAST_exp(l, Z, z, 8); l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; CAST_exp(l, Z, z, 12); K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]]; K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]]; K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]]; K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]]; l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; CAST_exp(l, X, x, 0); l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; CAST_exp(l, X, x, 4); l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; CAST_exp(l, X, x, 8); l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; CAST_exp(l, X, x, 12); K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]]; K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]]; K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]]; K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]]; if (K != k) break; K += 16; } for (i = 0; i < 16; i++) { key->data[i * 2] = k[i]; key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f; } } openssl-1.1.1f/crypto/cast/cast_local.h000066400000000000000000000202401364063235100200730ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef OPENSSL_SYS_WIN32 # include #endif #undef c2l #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<<24L) /* NOTE - c is not incremented as per c2l */ #undef c2ln #define c2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c))))<<24L; \ case 7: l2|=((unsigned long)(*(--(c))))<<16L; \ case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \ case 5: l2|=((unsigned long)(*(--(c)))); \ case 4: l1 =((unsigned long)(*(--(c))))<<24L; \ case 3: l1|=((unsigned long)(*(--(c))))<<16L; \ case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \ case 1: l1|=((unsigned long)(*(--(c)))); \ } \ } #undef l2c #define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>>24L)&0xff)) /* NOTE - c is not incremented as per l2c */ #undef l2cn #define l2cn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \ case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \ case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \ case 5: *(--(c))=(unsigned char)(((l2) )&0xff); \ case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \ case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \ case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \ case 1: *(--(c))=(unsigned char)(((l1) )&0xff); \ } \ } /* NOTE - c is not incremented as per n2l */ #define n2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 7: l2|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 6: l2|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 5: l2|=((unsigned long)(*(--(c))))<<24; \ /* fall thru */ \ case 4: l1 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 3: l1|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 2: l1|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 1: l1|=((unsigned long)(*(--(c))))<<24; \ } \ } /* NOTE - c is not incremented as per l2n */ #define l2nn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1) )&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \ } \ } #undef n2l #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))) #undef l2n #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) #if defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER) # define ROTL(a,n) (_lrotl(a,n)) #else # define ROTL(a,n) ((((a)<<(n))&0xffffffffL)|((a)>>((32-(n))&31))) #endif #define C_M 0x3fc #define C_0 22L #define C_1 14L #define C_2 6L #define C_3 2L /* left shift */ /* The rotate has an extra 16 added to it to help the x86 asm */ #if defined(CAST_PTR) # define E_CAST(n,key,L,R,OP1,OP2,OP3) \ { \ int i; \ t=(key[n*2] OP1 R)&0xffffffffL; \ i=key[n*2+1]; \ t=ROTL(t,i); \ L^= (((((*(CAST_LONG *)((unsigned char *) \ CAST_S_table0+((t>>C_2)&C_M)) OP2 \ *(CAST_LONG *)((unsigned char *) \ CAST_S_table1+((t<>C_0)&C_M)))&0xffffffffL) OP1 \ *(CAST_LONG *)((unsigned char *) \ CAST_S_table3+((t>>C_1)&C_M)))&0xffffffffL; \ } #elif defined(CAST_PTR2) # define E_CAST(n,key,L,R,OP1,OP2,OP3) \ { \ int i; \ CAST_LONG u,v,w; \ w=(key[n*2] OP1 R)&0xffffffffL; \ i=key[n*2+1]; \ w=ROTL(w,i); \ u=w>>C_2; \ v=w<>C_0; \ t=(t OP2 *(CAST_LONG *)((unsigned char *)CAST_S_table1+v))&0xffffffffL;\ v=w>>C_1; \ u&=C_M; \ v&=C_M; \ t=(t OP3 *(CAST_LONG *)((unsigned char *)CAST_S_table2+u)&0xffffffffL);\ t=(t OP1 *(CAST_LONG *)((unsigned char *)CAST_S_table3+v)&0xffffffffL);\ L^=(t&0xffffffff); \ } #else # define E_CAST(n,key,L,R,OP1,OP2,OP3) \ { \ CAST_LONG a,b,c,d; \ t=(key[n*2] OP1 R)&0xffffffff; \ t=ROTL(t,(key[n*2+1])); \ a=CAST_S_table0[(t>> 8)&0xff]; \ b=CAST_S_table1[(t )&0xff]; \ c=CAST_S_table2[(t>>24)&0xff]; \ d=CAST_S_table3[(t>>16)&0xff]; \ L^=(((((a OP2 b)&0xffffffffL) OP3 c)&0xffffffffL) OP1 d)&0xffffffffL; \ } #endif extern const CAST_LONG CAST_S_table0[256]; extern const CAST_LONG CAST_S_table1[256]; extern const CAST_LONG CAST_S_table2[256]; extern const CAST_LONG CAST_S_table3[256]; extern const CAST_LONG CAST_S_table4[256]; extern const CAST_LONG CAST_S_table5[256]; extern const CAST_LONG CAST_S_table6[256]; extern const CAST_LONG CAST_S_table7[256]; openssl-1.1.1f/crypto/cast/cast_s.h000066400000000000000000000652451364063235100172610ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ const CAST_LONG CAST_S_table0[256] = { 0x30fb40d4, 0x9fa0ff0b, 0x6beccd2f, 0x3f258c7a, 0x1e213f2f, 0x9c004dd3, 0x6003e540, 0xcf9fc949, 0xbfd4af27, 0x88bbbdb5, 0xe2034090, 0x98d09675, 0x6e63a0e0, 0x15c361d2, 0xc2e7661d, 0x22d4ff8e, 0x28683b6f, 0xc07fd059, 0xff2379c8, 0x775f50e2, 0x43c340d3, 0xdf2f8656, 0x887ca41a, 0xa2d2bd2d, 0xa1c9e0d6, 0x346c4819, 0x61b76d87, 0x22540f2f, 0x2abe32e1, 0xaa54166b, 0x22568e3a, 0xa2d341d0, 0x66db40c8, 0xa784392f, 0x004dff2f, 0x2db9d2de, 0x97943fac, 0x4a97c1d8, 0x527644b7, 0xb5f437a7, 0xb82cbaef, 0xd751d159, 0x6ff7f0ed, 0x5a097a1f, 0x827b68d0, 0x90ecf52e, 0x22b0c054, 0xbc8e5935, 0x4b6d2f7f, 0x50bb64a2, 0xd2664910, 0xbee5812d, 0xb7332290, 0xe93b159f, 0xb48ee411, 0x4bff345d, 0xfd45c240, 0xad31973f, 0xc4f6d02e, 0x55fc8165, 0xd5b1caad, 0xa1ac2dae, 0xa2d4b76d, 0xc19b0c50, 0x882240f2, 0x0c6e4f38, 0xa4e4bfd7, 0x4f5ba272, 0x564c1d2f, 0xc59c5319, 0xb949e354, 0xb04669fe, 0xb1b6ab8a, 0xc71358dd, 0x6385c545, 0x110f935d, 0x57538ad5, 0x6a390493, 0xe63d37e0, 0x2a54f6b3, 0x3a787d5f, 0x6276a0b5, 0x19a6fcdf, 0x7a42206a, 0x29f9d4d5, 0xf61b1891, 0xbb72275e, 0xaa508167, 0x38901091, 0xc6b505eb, 0x84c7cb8c, 0x2ad75a0f, 0x874a1427, 0xa2d1936b, 0x2ad286af, 0xaa56d291, 0xd7894360, 0x425c750d, 0x93b39e26, 0x187184c9, 0x6c00b32d, 0x73e2bb14, 0xa0bebc3c, 0x54623779, 0x64459eab, 0x3f328b82, 0x7718cf82, 0x59a2cea6, 0x04ee002e, 0x89fe78e6, 0x3fab0950, 0x325ff6c2, 0x81383f05, 0x6963c5c8, 0x76cb5ad6, 0xd49974c9, 0xca180dcf, 0x380782d5, 0xc7fa5cf6, 0x8ac31511, 0x35e79e13, 0x47da91d0, 0xf40f9086, 0xa7e2419e, 0x31366241, 0x051ef495, 0xaa573b04, 0x4a805d8d, 0x548300d0, 0x00322a3c, 0xbf64cddf, 0xba57a68e, 0x75c6372b, 0x50afd341, 0xa7c13275, 0x915a0bf5, 0x6b54bfab, 0x2b0b1426, 0xab4cc9d7, 0x449ccd82, 0xf7fbf265, 0xab85c5f3, 0x1b55db94, 0xaad4e324, 0xcfa4bd3f, 0x2deaa3e2, 0x9e204d02, 0xc8bd25ac, 0xeadf55b3, 0xd5bd9e98, 0xe31231b2, 0x2ad5ad6c, 0x954329de, 0xadbe4528, 0xd8710f69, 0xaa51c90f, 0xaa786bf6, 0x22513f1e, 0xaa51a79b, 0x2ad344cc, 0x7b5a41f0, 0xd37cfbad, 0x1b069505, 0x41ece491, 0xb4c332e6, 0x032268d4, 0xc9600acc, 0xce387e6d, 0xbf6bb16c, 0x6a70fb78, 0x0d03d9c9, 0xd4df39de, 0xe01063da, 0x4736f464, 0x5ad328d8, 0xb347cc96, 0x75bb0fc3, 0x98511bfb, 0x4ffbcc35, 0xb58bcf6a, 0xe11f0abc, 0xbfc5fe4a, 0xa70aec10, 0xac39570a, 0x3f04442f, 0x6188b153, 0xe0397a2e, 0x5727cb79, 0x9ceb418f, 0x1cacd68d, 0x2ad37c96, 0x0175cb9d, 0xc69dff09, 0xc75b65f0, 0xd9db40d8, 0xec0e7779, 0x4744ead4, 0xb11c3274, 0xdd24cb9e, 0x7e1c54bd, 0xf01144f9, 0xd2240eb1, 0x9675b3fd, 0xa3ac3755, 0xd47c27af, 0x51c85f4d, 0x56907596, 0xa5bb15e6, 0x580304f0, 0xca042cf1, 0x011a37ea, 0x8dbfaadb, 0x35ba3e4a, 0x3526ffa0, 0xc37b4d09, 0xbc306ed9, 0x98a52666, 0x5648f725, 0xff5e569d, 0x0ced63d0, 0x7c63b2cf, 0x700b45e1, 0xd5ea50f1, 0x85a92872, 0xaf1fbda7, 0xd4234870, 0xa7870bf3, 0x2d3b4d79, 0x42e04198, 0x0cd0ede7, 0x26470db8, 0xf881814c, 0x474d6ad7, 0x7c0c5e5c, 0xd1231959, 0x381b7298, 0xf5d2f4db, 0xab838653, 0x6e2f1e23, 0x83719c9e, 0xbd91e046, 0x9a56456e, 0xdc39200c, 0x20c8c571, 0x962bda1c, 0xe1e696ff, 0xb141ab08, 0x7cca89b9, 0x1a69e783, 0x02cc4843, 0xa2f7c579, 0x429ef47d, 0x427b169c, 0x5ac9f049, 0xdd8f0f00, 0x5c8165bf, }; const CAST_LONG CAST_S_table1[256] = { 0x1f201094, 0xef0ba75b, 0x69e3cf7e, 0x393f4380, 0xfe61cf7a, 0xeec5207a, 0x55889c94, 0x72fc0651, 0xada7ef79, 0x4e1d7235, 0xd55a63ce, 0xde0436ba, 0x99c430ef, 0x5f0c0794, 0x18dcdb7d, 0xa1d6eff3, 0xa0b52f7b, 0x59e83605, 0xee15b094, 0xe9ffd909, 0xdc440086, 0xef944459, 0xba83ccb3, 0xe0c3cdfb, 0xd1da4181, 0x3b092ab1, 0xf997f1c1, 0xa5e6cf7b, 0x01420ddb, 0xe4e7ef5b, 0x25a1ff41, 0xe180f806, 0x1fc41080, 0x179bee7a, 0xd37ac6a9, 0xfe5830a4, 0x98de8b7f, 0x77e83f4e, 0x79929269, 0x24fa9f7b, 0xe113c85b, 0xacc40083, 0xd7503525, 0xf7ea615f, 0x62143154, 0x0d554b63, 0x5d681121, 0xc866c359, 0x3d63cf73, 0xcee234c0, 0xd4d87e87, 0x5c672b21, 0x071f6181, 0x39f7627f, 0x361e3084, 0xe4eb573b, 0x602f64a4, 0xd63acd9c, 0x1bbc4635, 0x9e81032d, 0x2701f50c, 0x99847ab4, 0xa0e3df79, 0xba6cf38c, 0x10843094, 0x2537a95e, 0xf46f6ffe, 0xa1ff3b1f, 0x208cfb6a, 0x8f458c74, 0xd9e0a227, 0x4ec73a34, 0xfc884f69, 0x3e4de8df, 0xef0e0088, 0x3559648d, 0x8a45388c, 0x1d804366, 0x721d9bfd, 0xa58684bb, 0xe8256333, 0x844e8212, 0x128d8098, 0xfed33fb4, 0xce280ae1, 0x27e19ba5, 0xd5a6c252, 0xe49754bd, 0xc5d655dd, 0xeb667064, 0x77840b4d, 0xa1b6a801, 0x84db26a9, 0xe0b56714, 0x21f043b7, 0xe5d05860, 0x54f03084, 0x066ff472, 0xa31aa153, 0xdadc4755, 0xb5625dbf, 0x68561be6, 0x83ca6b94, 0x2d6ed23b, 0xeccf01db, 0xa6d3d0ba, 0xb6803d5c, 0xaf77a709, 0x33b4a34c, 0x397bc8d6, 0x5ee22b95, 0x5f0e5304, 0x81ed6f61, 0x20e74364, 0xb45e1378, 0xde18639b, 0x881ca122, 0xb96726d1, 0x8049a7e8, 0x22b7da7b, 0x5e552d25, 0x5272d237, 0x79d2951c, 0xc60d894c, 0x488cb402, 0x1ba4fe5b, 0xa4b09f6b, 0x1ca815cf, 0xa20c3005, 0x8871df63, 0xb9de2fcb, 0x0cc6c9e9, 0x0beeff53, 0xe3214517, 0xb4542835, 0x9f63293c, 0xee41e729, 0x6e1d2d7c, 0x50045286, 0x1e6685f3, 0xf33401c6, 0x30a22c95, 0x31a70850, 0x60930f13, 0x73f98417, 0xa1269859, 0xec645c44, 0x52c877a9, 0xcdff33a6, 0xa02b1741, 0x7cbad9a2, 0x2180036f, 0x50d99c08, 0xcb3f4861, 0xc26bd765, 0x64a3f6ab, 0x80342676, 0x25a75e7b, 0xe4e6d1fc, 0x20c710e6, 0xcdf0b680, 0x17844d3b, 0x31eef84d, 0x7e0824e4, 0x2ccb49eb, 0x846a3bae, 0x8ff77888, 0xee5d60f6, 0x7af75673, 0x2fdd5cdb, 0xa11631c1, 0x30f66f43, 0xb3faec54, 0x157fd7fa, 0xef8579cc, 0xd152de58, 0xdb2ffd5e, 0x8f32ce19, 0x306af97a, 0x02f03ef8, 0x99319ad5, 0xc242fa0f, 0xa7e3ebb0, 0xc68e4906, 0xb8da230c, 0x80823028, 0xdcdef3c8, 0xd35fb171, 0x088a1bc8, 0xbec0c560, 0x61a3c9e8, 0xbca8f54d, 0xc72feffa, 0x22822e99, 0x82c570b4, 0xd8d94e89, 0x8b1c34bc, 0x301e16e6, 0x273be979, 0xb0ffeaa6, 0x61d9b8c6, 0x00b24869, 0xb7ffce3f, 0x08dc283b, 0x43daf65a, 0xf7e19798, 0x7619b72f, 0x8f1c9ba4, 0xdc8637a0, 0x16a7d3b1, 0x9fc393b7, 0xa7136eeb, 0xc6bcc63e, 0x1a513742, 0xef6828bc, 0x520365d6, 0x2d6a77ab, 0x3527ed4b, 0x821fd216, 0x095c6e2e, 0xdb92f2fb, 0x5eea29cb, 0x145892f5, 0x91584f7f, 0x5483697b, 0x2667a8cc, 0x85196048, 0x8c4bacea, 0x833860d4, 0x0d23e0f9, 0x6c387e8a, 0x0ae6d249, 0xb284600c, 0xd835731d, 0xdcb1c647, 0xac4c56ea, 0x3ebd81b3, 0x230eabb0, 0x6438bc87, 0xf0b5b1fa, 0x8f5ea2b3, 0xfc184642, 0x0a036b7a, 0x4fb089bd, 0x649da589, 0xa345415e, 0x5c038323, 0x3e5d3bb9, 0x43d79572, 0x7e6dd07c, 0x06dfdf1e, 0x6c6cc4ef, 0x7160a539, 0x73bfbe70, 0x83877605, 0x4523ecf1, }; const CAST_LONG CAST_S_table2[256] = { 0x8defc240, 0x25fa5d9f, 0xeb903dbf, 0xe810c907, 0x47607fff, 0x369fe44b, 0x8c1fc644, 0xaececa90, 0xbeb1f9bf, 0xeefbcaea, 0xe8cf1950, 0x51df07ae, 0x920e8806, 0xf0ad0548, 0xe13c8d83, 0x927010d5, 0x11107d9f, 0x07647db9, 0xb2e3e4d4, 0x3d4f285e, 0xb9afa820, 0xfade82e0, 0xa067268b, 0x8272792e, 0x553fb2c0, 0x489ae22b, 0xd4ef9794, 0x125e3fbc, 0x21fffcee, 0x825b1bfd, 0x9255c5ed, 0x1257a240, 0x4e1a8302, 0xbae07fff, 0x528246e7, 0x8e57140e, 0x3373f7bf, 0x8c9f8188, 0xa6fc4ee8, 0xc982b5a5, 0xa8c01db7, 0x579fc264, 0x67094f31, 0xf2bd3f5f, 0x40fff7c1, 0x1fb78dfc, 0x8e6bd2c1, 0x437be59b, 0x99b03dbf, 0xb5dbc64b, 0x638dc0e6, 0x55819d99, 0xa197c81c, 0x4a012d6e, 0xc5884a28, 0xccc36f71, 0xb843c213, 0x6c0743f1, 0x8309893c, 0x0feddd5f, 0x2f7fe850, 0xd7c07f7e, 0x02507fbf, 0x5afb9a04, 0xa747d2d0, 0x1651192e, 0xaf70bf3e, 0x58c31380, 0x5f98302e, 0x727cc3c4, 0x0a0fb402, 0x0f7fef82, 0x8c96fdad, 0x5d2c2aae, 0x8ee99a49, 0x50da88b8, 0x8427f4a0, 0x1eac5790, 0x796fb449, 0x8252dc15, 0xefbd7d9b, 0xa672597d, 0xada840d8, 0x45f54504, 0xfa5d7403, 0xe83ec305, 0x4f91751a, 0x925669c2, 0x23efe941, 0xa903f12e, 0x60270df2, 0x0276e4b6, 0x94fd6574, 0x927985b2, 0x8276dbcb, 0x02778176, 0xf8af918d, 0x4e48f79e, 0x8f616ddf, 0xe29d840e, 0x842f7d83, 0x340ce5c8, 0x96bbb682, 0x93b4b148, 0xef303cab, 0x984faf28, 0x779faf9b, 0x92dc560d, 0x224d1e20, 0x8437aa88, 0x7d29dc96, 0x2756d3dc, 0x8b907cee, 0xb51fd240, 0xe7c07ce3, 0xe566b4a1, 0xc3e9615e, 0x3cf8209d, 0x6094d1e3, 0xcd9ca341, 0x5c76460e, 0x00ea983b, 0xd4d67881, 0xfd47572c, 0xf76cedd9, 0xbda8229c, 0x127dadaa, 0x438a074e, 0x1f97c090, 0x081bdb8a, 0x93a07ebe, 0xb938ca15, 0x97b03cff, 0x3dc2c0f8, 0x8d1ab2ec, 0x64380e51, 0x68cc7bfb, 0xd90f2788, 0x12490181, 0x5de5ffd4, 0xdd7ef86a, 0x76a2e214, 0xb9a40368, 0x925d958f, 0x4b39fffa, 0xba39aee9, 0xa4ffd30b, 0xfaf7933b, 0x6d498623, 0x193cbcfa, 0x27627545, 0x825cf47a, 0x61bd8ba0, 0xd11e42d1, 0xcead04f4, 0x127ea392, 0x10428db7, 0x8272a972, 0x9270c4a8, 0x127de50b, 0x285ba1c8, 0x3c62f44f, 0x35c0eaa5, 0xe805d231, 0x428929fb, 0xb4fcdf82, 0x4fb66a53, 0x0e7dc15b, 0x1f081fab, 0x108618ae, 0xfcfd086d, 0xf9ff2889, 0x694bcc11, 0x236a5cae, 0x12deca4d, 0x2c3f8cc5, 0xd2d02dfe, 0xf8ef5896, 0xe4cf52da, 0x95155b67, 0x494a488c, 0xb9b6a80c, 0x5c8f82bc, 0x89d36b45, 0x3a609437, 0xec00c9a9, 0x44715253, 0x0a874b49, 0xd773bc40, 0x7c34671c, 0x02717ef6, 0x4feb5536, 0xa2d02fff, 0xd2bf60c4, 0xd43f03c0, 0x50b4ef6d, 0x07478cd1, 0x006e1888, 0xa2e53f55, 0xb9e6d4bc, 0xa2048016, 0x97573833, 0xd7207d67, 0xde0f8f3d, 0x72f87b33, 0xabcc4f33, 0x7688c55d, 0x7b00a6b0, 0x947b0001, 0x570075d2, 0xf9bb88f8, 0x8942019e, 0x4264a5ff, 0x856302e0, 0x72dbd92b, 0xee971b69, 0x6ea22fde, 0x5f08ae2b, 0xaf7a616d, 0xe5c98767, 0xcf1febd2, 0x61efc8c2, 0xf1ac2571, 0xcc8239c2, 0x67214cb8, 0xb1e583d1, 0xb7dc3e62, 0x7f10bdce, 0xf90a5c38, 0x0ff0443d, 0x606e6dc6, 0x60543a49, 0x5727c148, 0x2be98a1d, 0x8ab41738, 0x20e1be24, 0xaf96da0f, 0x68458425, 0x99833be5, 0x600d457d, 0x282f9350, 0x8334b362, 0xd91d1120, 0x2b6d8da0, 0x642b1e31, 0x9c305a00, 0x52bce688, 0x1b03588a, 0xf7baefd5, 0x4142ed9c, 0xa4315c11, 0x83323ec5, 0xdfef4636, 0xa133c501, 0xe9d3531c, 0xee353783, }; const CAST_LONG CAST_S_table3[256] = { 0x9db30420, 0x1fb6e9de, 0xa7be7bef, 0xd273a298, 0x4a4f7bdb, 0x64ad8c57, 0x85510443, 0xfa020ed1, 0x7e287aff, 0xe60fb663, 0x095f35a1, 0x79ebf120, 0xfd059d43, 0x6497b7b1, 0xf3641f63, 0x241e4adf, 0x28147f5f, 0x4fa2b8cd, 0xc9430040, 0x0cc32220, 0xfdd30b30, 0xc0a5374f, 0x1d2d00d9, 0x24147b15, 0xee4d111a, 0x0fca5167, 0x71ff904c, 0x2d195ffe, 0x1a05645f, 0x0c13fefe, 0x081b08ca, 0x05170121, 0x80530100, 0xe83e5efe, 0xac9af4f8, 0x7fe72701, 0xd2b8ee5f, 0x06df4261, 0xbb9e9b8a, 0x7293ea25, 0xce84ffdf, 0xf5718801, 0x3dd64b04, 0xa26f263b, 0x7ed48400, 0x547eebe6, 0x446d4ca0, 0x6cf3d6f5, 0x2649abdf, 0xaea0c7f5, 0x36338cc1, 0x503f7e93, 0xd3772061, 0x11b638e1, 0x72500e03, 0xf80eb2bb, 0xabe0502e, 0xec8d77de, 0x57971e81, 0xe14f6746, 0xc9335400, 0x6920318f, 0x081dbb99, 0xffc304a5, 0x4d351805, 0x7f3d5ce3, 0xa6c866c6, 0x5d5bcca9, 0xdaec6fea, 0x9f926f91, 0x9f46222f, 0x3991467d, 0xa5bf6d8e, 0x1143c44f, 0x43958302, 0xd0214eeb, 0x022083b8, 0x3fb6180c, 0x18f8931e, 0x281658e6, 0x26486e3e, 0x8bd78a70, 0x7477e4c1, 0xb506e07c, 0xf32d0a25, 0x79098b02, 0xe4eabb81, 0x28123b23, 0x69dead38, 0x1574ca16, 0xdf871b62, 0x211c40b7, 0xa51a9ef9, 0x0014377b, 0x041e8ac8, 0x09114003, 0xbd59e4d2, 0xe3d156d5, 0x4fe876d5, 0x2f91a340, 0x557be8de, 0x00eae4a7, 0x0ce5c2ec, 0x4db4bba6, 0xe756bdff, 0xdd3369ac, 0xec17b035, 0x06572327, 0x99afc8b0, 0x56c8c391, 0x6b65811c, 0x5e146119, 0x6e85cb75, 0xbe07c002, 0xc2325577, 0x893ff4ec, 0x5bbfc92d, 0xd0ec3b25, 0xb7801ab7, 0x8d6d3b24, 0x20c763ef, 0xc366a5fc, 0x9c382880, 0x0ace3205, 0xaac9548a, 0xeca1d7c7, 0x041afa32, 0x1d16625a, 0x6701902c, 0x9b757a54, 0x31d477f7, 0x9126b031, 0x36cc6fdb, 0xc70b8b46, 0xd9e66a48, 0x56e55a79, 0x026a4ceb, 0x52437eff, 0x2f8f76b4, 0x0df980a5, 0x8674cde3, 0xedda04eb, 0x17a9be04, 0x2c18f4df, 0xb7747f9d, 0xab2af7b4, 0xefc34d20, 0x2e096b7c, 0x1741a254, 0xe5b6a035, 0x213d42f6, 0x2c1c7c26, 0x61c2f50f, 0x6552daf9, 0xd2c231f8, 0x25130f69, 0xd8167fa2, 0x0418f2c8, 0x001a96a6, 0x0d1526ab, 0x63315c21, 0x5e0a72ec, 0x49bafefd, 0x187908d9, 0x8d0dbd86, 0x311170a7, 0x3e9b640c, 0xcc3e10d7, 0xd5cad3b6, 0x0caec388, 0xf73001e1, 0x6c728aff, 0x71eae2a1, 0x1f9af36e, 0xcfcbd12f, 0xc1de8417, 0xac07be6b, 0xcb44a1d8, 0x8b9b0f56, 0x013988c3, 0xb1c52fca, 0xb4be31cd, 0xd8782806, 0x12a3a4e2, 0x6f7de532, 0x58fd7eb6, 0xd01ee900, 0x24adffc2, 0xf4990fc5, 0x9711aac5, 0x001d7b95, 0x82e5e7d2, 0x109873f6, 0x00613096, 0xc32d9521, 0xada121ff, 0x29908415, 0x7fbb977f, 0xaf9eb3db, 0x29c9ed2a, 0x5ce2a465, 0xa730f32c, 0xd0aa3fe8, 0x8a5cc091, 0xd49e2ce7, 0x0ce454a9, 0xd60acd86, 0x015f1919, 0x77079103, 0xdea03af6, 0x78a8565e, 0xdee356df, 0x21f05cbe, 0x8b75e387, 0xb3c50651, 0xb8a5c3ef, 0xd8eeb6d2, 0xe523be77, 0xc2154529, 0x2f69efdf, 0xafe67afb, 0xf470c4b2, 0xf3e0eb5b, 0xd6cc9876, 0x39e4460c, 0x1fda8538, 0x1987832f, 0xca007367, 0xa99144f8, 0x296b299e, 0x492fc295, 0x9266beab, 0xb5676e69, 0x9bd3ddda, 0xdf7e052f, 0xdb25701c, 0x1b5e51ee, 0xf65324e6, 0x6afce36c, 0x0316cc04, 0x8644213e, 0xb7dc59d0, 0x7965291f, 0xccd6fd43, 0x41823979, 0x932bcdf6, 0xb657c34d, 0x4edfd282, 0x7ae5290c, 0x3cb9536b, 0x851e20fe, 0x9833557e, 0x13ecf0b0, 0xd3ffb372, 0x3f85c5c1, 0x0aef7ed2, }; const CAST_LONG CAST_S_table4[256] = { 0x7ec90c04, 0x2c6e74b9, 0x9b0e66df, 0xa6337911, 0xb86a7fff, 0x1dd358f5, 0x44dd9d44, 0x1731167f, 0x08fbf1fa, 0xe7f511cc, 0xd2051b00, 0x735aba00, 0x2ab722d8, 0x386381cb, 0xacf6243a, 0x69befd7a, 0xe6a2e77f, 0xf0c720cd, 0xc4494816, 0xccf5c180, 0x38851640, 0x15b0a848, 0xe68b18cb, 0x4caadeff, 0x5f480a01, 0x0412b2aa, 0x259814fc, 0x41d0efe2, 0x4e40b48d, 0x248eb6fb, 0x8dba1cfe, 0x41a99b02, 0x1a550a04, 0xba8f65cb, 0x7251f4e7, 0x95a51725, 0xc106ecd7, 0x97a5980a, 0xc539b9aa, 0x4d79fe6a, 0xf2f3f763, 0x68af8040, 0xed0c9e56, 0x11b4958b, 0xe1eb5a88, 0x8709e6b0, 0xd7e07156, 0x4e29fea7, 0x6366e52d, 0x02d1c000, 0xc4ac8e05, 0x9377f571, 0x0c05372a, 0x578535f2, 0x2261be02, 0xd642a0c9, 0xdf13a280, 0x74b55bd2, 0x682199c0, 0xd421e5ec, 0x53fb3ce8, 0xc8adedb3, 0x28a87fc9, 0x3d959981, 0x5c1ff900, 0xfe38d399, 0x0c4eff0b, 0x062407ea, 0xaa2f4fb1, 0x4fb96976, 0x90c79505, 0xb0a8a774, 0xef55a1ff, 0xe59ca2c2, 0xa6b62d27, 0xe66a4263, 0xdf65001f, 0x0ec50966, 0xdfdd55bc, 0x29de0655, 0x911e739a, 0x17af8975, 0x32c7911c, 0x89f89468, 0x0d01e980, 0x524755f4, 0x03b63cc9, 0x0cc844b2, 0xbcf3f0aa, 0x87ac36e9, 0xe53a7426, 0x01b3d82b, 0x1a9e7449, 0x64ee2d7e, 0xcddbb1da, 0x01c94910, 0xb868bf80, 0x0d26f3fd, 0x9342ede7, 0x04a5c284, 0x636737b6, 0x50f5b616, 0xf24766e3, 0x8eca36c1, 0x136e05db, 0xfef18391, 0xfb887a37, 0xd6e7f7d4, 0xc7fb7dc9, 0x3063fcdf, 0xb6f589de, 0xec2941da, 0x26e46695, 0xb7566419, 0xf654efc5, 0xd08d58b7, 0x48925401, 0xc1bacb7f, 0xe5ff550f, 0xb6083049, 0x5bb5d0e8, 0x87d72e5a, 0xab6a6ee1, 0x223a66ce, 0xc62bf3cd, 0x9e0885f9, 0x68cb3e47, 0x086c010f, 0xa21de820, 0xd18b69de, 0xf3f65777, 0xfa02c3f6, 0x407edac3, 0xcbb3d550, 0x1793084d, 0xb0d70eba, 0x0ab378d5, 0xd951fb0c, 0xded7da56, 0x4124bbe4, 0x94ca0b56, 0x0f5755d1, 0xe0e1e56e, 0x6184b5be, 0x580a249f, 0x94f74bc0, 0xe327888e, 0x9f7b5561, 0xc3dc0280, 0x05687715, 0x646c6bd7, 0x44904db3, 0x66b4f0a3, 0xc0f1648a, 0x697ed5af, 0x49e92ff6, 0x309e374f, 0x2cb6356a, 0x85808573, 0x4991f840, 0x76f0ae02, 0x083be84d, 0x28421c9a, 0x44489406, 0x736e4cb8, 0xc1092910, 0x8bc95fc6, 0x7d869cf4, 0x134f616f, 0x2e77118d, 0xb31b2be1, 0xaa90b472, 0x3ca5d717, 0x7d161bba, 0x9cad9010, 0xaf462ba2, 0x9fe459d2, 0x45d34559, 0xd9f2da13, 0xdbc65487, 0xf3e4f94e, 0x176d486f, 0x097c13ea, 0x631da5c7, 0x445f7382, 0x175683f4, 0xcdc66a97, 0x70be0288, 0xb3cdcf72, 0x6e5dd2f3, 0x20936079, 0x459b80a5, 0xbe60e2db, 0xa9c23101, 0xeba5315c, 0x224e42f2, 0x1c5c1572, 0xf6721b2c, 0x1ad2fff3, 0x8c25404e, 0x324ed72f, 0x4067b7fd, 0x0523138e, 0x5ca3bc78, 0xdc0fd66e, 0x75922283, 0x784d6b17, 0x58ebb16e, 0x44094f85, 0x3f481d87, 0xfcfeae7b, 0x77b5ff76, 0x8c2302bf, 0xaaf47556, 0x5f46b02a, 0x2b092801, 0x3d38f5f7, 0x0ca81f36, 0x52af4a8a, 0x66d5e7c0, 0xdf3b0874, 0x95055110, 0x1b5ad7a8, 0xf61ed5ad, 0x6cf6e479, 0x20758184, 0xd0cefa65, 0x88f7be58, 0x4a046826, 0x0ff6f8f3, 0xa09c7f70, 0x5346aba0, 0x5ce96c28, 0xe176eda3, 0x6bac307f, 0x376829d2, 0x85360fa9, 0x17e3fe2a, 0x24b79767, 0xf5a96b20, 0xd6cd2595, 0x68ff1ebf, 0x7555442c, 0xf19f06be, 0xf9e0659a, 0xeeb9491d, 0x34010718, 0xbb30cab8, 0xe822fe15, 0x88570983, 0x750e6249, 0xda627e55, 0x5e76ffa8, 0xb1534546, 0x6d47de08, 0xefe9e7d4, }; const CAST_LONG CAST_S_table5[256] = { 0xf6fa8f9d, 0x2cac6ce1, 0x4ca34867, 0xe2337f7c, 0x95db08e7, 0x016843b4, 0xeced5cbc, 0x325553ac, 0xbf9f0960, 0xdfa1e2ed, 0x83f0579d, 0x63ed86b9, 0x1ab6a6b8, 0xde5ebe39, 0xf38ff732, 0x8989b138, 0x33f14961, 0xc01937bd, 0xf506c6da, 0xe4625e7e, 0xa308ea99, 0x4e23e33c, 0x79cbd7cc, 0x48a14367, 0xa3149619, 0xfec94bd5, 0xa114174a, 0xeaa01866, 0xa084db2d, 0x09a8486f, 0xa888614a, 0x2900af98, 0x01665991, 0xe1992863, 0xc8f30c60, 0x2e78ef3c, 0xd0d51932, 0xcf0fec14, 0xf7ca07d2, 0xd0a82072, 0xfd41197e, 0x9305a6b0, 0xe86be3da, 0x74bed3cd, 0x372da53c, 0x4c7f4448, 0xdab5d440, 0x6dba0ec3, 0x083919a7, 0x9fbaeed9, 0x49dbcfb0, 0x4e670c53, 0x5c3d9c01, 0x64bdb941, 0x2c0e636a, 0xba7dd9cd, 0xea6f7388, 0xe70bc762, 0x35f29adb, 0x5c4cdd8d, 0xf0d48d8c, 0xb88153e2, 0x08a19866, 0x1ae2eac8, 0x284caf89, 0xaa928223, 0x9334be53, 0x3b3a21bf, 0x16434be3, 0x9aea3906, 0xefe8c36e, 0xf890cdd9, 0x80226dae, 0xc340a4a3, 0xdf7e9c09, 0xa694a807, 0x5b7c5ecc, 0x221db3a6, 0x9a69a02f, 0x68818a54, 0xceb2296f, 0x53c0843a, 0xfe893655, 0x25bfe68a, 0xb4628abc, 0xcf222ebf, 0x25ac6f48, 0xa9a99387, 0x53bddb65, 0xe76ffbe7, 0xe967fd78, 0x0ba93563, 0x8e342bc1, 0xe8a11be9, 0x4980740d, 0xc8087dfc, 0x8de4bf99, 0xa11101a0, 0x7fd37975, 0xda5a26c0, 0xe81f994f, 0x9528cd89, 0xfd339fed, 0xb87834bf, 0x5f04456d, 0x22258698, 0xc9c4c83b, 0x2dc156be, 0x4f628daa, 0x57f55ec5, 0xe2220abe, 0xd2916ebf, 0x4ec75b95, 0x24f2c3c0, 0x42d15d99, 0xcd0d7fa0, 0x7b6e27ff, 0xa8dc8af0, 0x7345c106, 0xf41e232f, 0x35162386, 0xe6ea8926, 0x3333b094, 0x157ec6f2, 0x372b74af, 0x692573e4, 0xe9a9d848, 0xf3160289, 0x3a62ef1d, 0xa787e238, 0xf3a5f676, 0x74364853, 0x20951063, 0x4576698d, 0xb6fad407, 0x592af950, 0x36f73523, 0x4cfb6e87, 0x7da4cec0, 0x6c152daa, 0xcb0396a8, 0xc50dfe5d, 0xfcd707ab, 0x0921c42f, 0x89dff0bb, 0x5fe2be78, 0x448f4f33, 0x754613c9, 0x2b05d08d, 0x48b9d585, 0xdc049441, 0xc8098f9b, 0x7dede786, 0xc39a3373, 0x42410005, 0x6a091751, 0x0ef3c8a6, 0x890072d6, 0x28207682, 0xa9a9f7be, 0xbf32679d, 0xd45b5b75, 0xb353fd00, 0xcbb0e358, 0x830f220a, 0x1f8fb214, 0xd372cf08, 0xcc3c4a13, 0x8cf63166, 0x061c87be, 0x88c98f88, 0x6062e397, 0x47cf8e7a, 0xb6c85283, 0x3cc2acfb, 0x3fc06976, 0x4e8f0252, 0x64d8314d, 0xda3870e3, 0x1e665459, 0xc10908f0, 0x513021a5, 0x6c5b68b7, 0x822f8aa0, 0x3007cd3e, 0x74719eef, 0xdc872681, 0x073340d4, 0x7e432fd9, 0x0c5ec241, 0x8809286c, 0xf592d891, 0x08a930f6, 0x957ef305, 0xb7fbffbd, 0xc266e96f, 0x6fe4ac98, 0xb173ecc0, 0xbc60b42a, 0x953498da, 0xfba1ae12, 0x2d4bd736, 0x0f25faab, 0xa4f3fceb, 0xe2969123, 0x257f0c3d, 0x9348af49, 0x361400bc, 0xe8816f4a, 0x3814f200, 0xa3f94043, 0x9c7a54c2, 0xbc704f57, 0xda41e7f9, 0xc25ad33a, 0x54f4a084, 0xb17f5505, 0x59357cbe, 0xedbd15c8, 0x7f97c5ab, 0xba5ac7b5, 0xb6f6deaf, 0x3a479c3a, 0x5302da25, 0x653d7e6a, 0x54268d49, 0x51a477ea, 0x5017d55b, 0xd7d25d88, 0x44136c76, 0x0404a8c8, 0xb8e5a121, 0xb81a928a, 0x60ed5869, 0x97c55b96, 0xeaec991b, 0x29935913, 0x01fdb7f1, 0x088e8dfa, 0x9ab6f6f5, 0x3b4cbf9f, 0x4a5de3ab, 0xe6051d35, 0xa0e1d855, 0xd36b4cf1, 0xf544edeb, 0xb0e93524, 0xbebb8fbd, 0xa2d762cf, 0x49c92f54, 0x38b5f331, 0x7128a454, 0x48392905, 0xa65b1db8, 0x851c97bd, 0xd675cf2f, }; const CAST_LONG CAST_S_table6[256] = { 0x85e04019, 0x332bf567, 0x662dbfff, 0xcfc65693, 0x2a8d7f6f, 0xab9bc912, 0xde6008a1, 0x2028da1f, 0x0227bce7, 0x4d642916, 0x18fac300, 0x50f18b82, 0x2cb2cb11, 0xb232e75c, 0x4b3695f2, 0xb28707de, 0xa05fbcf6, 0xcd4181e9, 0xe150210c, 0xe24ef1bd, 0xb168c381, 0xfde4e789, 0x5c79b0d8, 0x1e8bfd43, 0x4d495001, 0x38be4341, 0x913cee1d, 0x92a79c3f, 0x089766be, 0xbaeeadf4, 0x1286becf, 0xb6eacb19, 0x2660c200, 0x7565bde4, 0x64241f7a, 0x8248dca9, 0xc3b3ad66, 0x28136086, 0x0bd8dfa8, 0x356d1cf2, 0x107789be, 0xb3b2e9ce, 0x0502aa8f, 0x0bc0351e, 0x166bf52a, 0xeb12ff82, 0xe3486911, 0xd34d7516, 0x4e7b3aff, 0x5f43671b, 0x9cf6e037, 0x4981ac83, 0x334266ce, 0x8c9341b7, 0xd0d854c0, 0xcb3a6c88, 0x47bc2829, 0x4725ba37, 0xa66ad22b, 0x7ad61f1e, 0x0c5cbafa, 0x4437f107, 0xb6e79962, 0x42d2d816, 0x0a961288, 0xe1a5c06e, 0x13749e67, 0x72fc081a, 0xb1d139f7, 0xf9583745, 0xcf19df58, 0xbec3f756, 0xc06eba30, 0x07211b24, 0x45c28829, 0xc95e317f, 0xbc8ec511, 0x38bc46e9, 0xc6e6fa14, 0xbae8584a, 0xad4ebc46, 0x468f508b, 0x7829435f, 0xf124183b, 0x821dba9f, 0xaff60ff4, 0xea2c4e6d, 0x16e39264, 0x92544a8b, 0x009b4fc3, 0xaba68ced, 0x9ac96f78, 0x06a5b79a, 0xb2856e6e, 0x1aec3ca9, 0xbe838688, 0x0e0804e9, 0x55f1be56, 0xe7e5363b, 0xb3a1f25d, 0xf7debb85, 0x61fe033c, 0x16746233, 0x3c034c28, 0xda6d0c74, 0x79aac56c, 0x3ce4e1ad, 0x51f0c802, 0x98f8f35a, 0x1626a49f, 0xeed82b29, 0x1d382fe3, 0x0c4fb99a, 0xbb325778, 0x3ec6d97b, 0x6e77a6a9, 0xcb658b5c, 0xd45230c7, 0x2bd1408b, 0x60c03eb7, 0xb9068d78, 0xa33754f4, 0xf430c87d, 0xc8a71302, 0xb96d8c32, 0xebd4e7be, 0xbe8b9d2d, 0x7979fb06, 0xe7225308, 0x8b75cf77, 0x11ef8da4, 0xe083c858, 0x8d6b786f, 0x5a6317a6, 0xfa5cf7a0, 0x5dda0033, 0xf28ebfb0, 0xf5b9c310, 0xa0eac280, 0x08b9767a, 0xa3d9d2b0, 0x79d34217, 0x021a718d, 0x9ac6336a, 0x2711fd60, 0x438050e3, 0x069908a8, 0x3d7fedc4, 0x826d2bef, 0x4eeb8476, 0x488dcf25, 0x36c9d566, 0x28e74e41, 0xc2610aca, 0x3d49a9cf, 0xbae3b9df, 0xb65f8de6, 0x92aeaf64, 0x3ac7d5e6, 0x9ea80509, 0xf22b017d, 0xa4173f70, 0xdd1e16c3, 0x15e0d7f9, 0x50b1b887, 0x2b9f4fd5, 0x625aba82, 0x6a017962, 0x2ec01b9c, 0x15488aa9, 0xd716e740, 0x40055a2c, 0x93d29a22, 0xe32dbf9a, 0x058745b9, 0x3453dc1e, 0xd699296e, 0x496cff6f, 0x1c9f4986, 0xdfe2ed07, 0xb87242d1, 0x19de7eae, 0x053e561a, 0x15ad6f8c, 0x66626c1c, 0x7154c24c, 0xea082b2a, 0x93eb2939, 0x17dcb0f0, 0x58d4f2ae, 0x9ea294fb, 0x52cf564c, 0x9883fe66, 0x2ec40581, 0x763953c3, 0x01d6692e, 0xd3a0c108, 0xa1e7160e, 0xe4f2dfa6, 0x693ed285, 0x74904698, 0x4c2b0edd, 0x4f757656, 0x5d393378, 0xa132234f, 0x3d321c5d, 0xc3f5e194, 0x4b269301, 0xc79f022f, 0x3c997e7e, 0x5e4f9504, 0x3ffafbbd, 0x76f7ad0e, 0x296693f4, 0x3d1fce6f, 0xc61e45be, 0xd3b5ab34, 0xf72bf9b7, 0x1b0434c0, 0x4e72b567, 0x5592a33d, 0xb5229301, 0xcfd2a87f, 0x60aeb767, 0x1814386b, 0x30bcc33d, 0x38a0c07d, 0xfd1606f2, 0xc363519b, 0x589dd390, 0x5479f8e6, 0x1cb8d647, 0x97fd61a9, 0xea7759f4, 0x2d57539d, 0x569a58cf, 0xe84e63ad, 0x462e1b78, 0x6580f87e, 0xf3817914, 0x91da55f4, 0x40a230f3, 0xd1988f35, 0xb6e318d2, 0x3ffa50bc, 0x3d40f021, 0xc3c0bdae, 0x4958c24c, 0x518f36b2, 0x84b1d370, 0x0fedce83, 0x878ddada, 0xf2a279c7, 0x94e01be8, 0x90716f4b, 0x954b8aa3, }; const CAST_LONG CAST_S_table7[256] = { 0xe216300d, 0xbbddfffc, 0xa7ebdabd, 0x35648095, 0x7789f8b7, 0xe6c1121b, 0x0e241600, 0x052ce8b5, 0x11a9cfb0, 0xe5952f11, 0xece7990a, 0x9386d174, 0x2a42931c, 0x76e38111, 0xb12def3a, 0x37ddddfc, 0xde9adeb1, 0x0a0cc32c, 0xbe197029, 0x84a00940, 0xbb243a0f, 0xb4d137cf, 0xb44e79f0, 0x049eedfd, 0x0b15a15d, 0x480d3168, 0x8bbbde5a, 0x669ded42, 0xc7ece831, 0x3f8f95e7, 0x72df191b, 0x7580330d, 0x94074251, 0x5c7dcdfa, 0xabbe6d63, 0xaa402164, 0xb301d40a, 0x02e7d1ca, 0x53571dae, 0x7a3182a2, 0x12a8ddec, 0xfdaa335d, 0x176f43e8, 0x71fb46d4, 0x38129022, 0xce949ad4, 0xb84769ad, 0x965bd862, 0x82f3d055, 0x66fb9767, 0x15b80b4e, 0x1d5b47a0, 0x4cfde06f, 0xc28ec4b8, 0x57e8726e, 0x647a78fc, 0x99865d44, 0x608bd593, 0x6c200e03, 0x39dc5ff6, 0x5d0b00a3, 0xae63aff2, 0x7e8bd632, 0x70108c0c, 0xbbd35049, 0x2998df04, 0x980cf42a, 0x9b6df491, 0x9e7edd53, 0x06918548, 0x58cb7e07, 0x3b74ef2e, 0x522fffb1, 0xd24708cc, 0x1c7e27cd, 0xa4eb215b, 0x3cf1d2e2, 0x19b47a38, 0x424f7618, 0x35856039, 0x9d17dee7, 0x27eb35e6, 0xc9aff67b, 0x36baf5b8, 0x09c467cd, 0xc18910b1, 0xe11dbf7b, 0x06cd1af8, 0x7170c608, 0x2d5e3354, 0xd4de495a, 0x64c6d006, 0xbcc0c62c, 0x3dd00db3, 0x708f8f34, 0x77d51b42, 0x264f620f, 0x24b8d2bf, 0x15c1b79e, 0x46a52564, 0xf8d7e54e, 0x3e378160, 0x7895cda5, 0x859c15a5, 0xe6459788, 0xc37bc75f, 0xdb07ba0c, 0x0676a3ab, 0x7f229b1e, 0x31842e7b, 0x24259fd7, 0xf8bef472, 0x835ffcb8, 0x6df4c1f2, 0x96f5b195, 0xfd0af0fc, 0xb0fe134c, 0xe2506d3d, 0x4f9b12ea, 0xf215f225, 0xa223736f, 0x9fb4c428, 0x25d04979, 0x34c713f8, 0xc4618187, 0xea7a6e98, 0x7cd16efc, 0x1436876c, 0xf1544107, 0xbedeee14, 0x56e9af27, 0xa04aa441, 0x3cf7c899, 0x92ecbae6, 0xdd67016d, 0x151682eb, 0xa842eedf, 0xfdba60b4, 0xf1907b75, 0x20e3030f, 0x24d8c29e, 0xe139673b, 0xefa63fb8, 0x71873054, 0xb6f2cf3b, 0x9f326442, 0xcb15a4cc, 0xb01a4504, 0xf1e47d8d, 0x844a1be5, 0xbae7dfdc, 0x42cbda70, 0xcd7dae0a, 0x57e85b7a, 0xd53f5af6, 0x20cf4d8c, 0xcea4d428, 0x79d130a4, 0x3486ebfb, 0x33d3cddc, 0x77853b53, 0x37effcb5, 0xc5068778, 0xe580b3e6, 0x4e68b8f4, 0xc5c8b37e, 0x0d809ea2, 0x398feb7c, 0x132a4f94, 0x43b7950e, 0x2fee7d1c, 0x223613bd, 0xdd06caa2, 0x37df932b, 0xc4248289, 0xacf3ebc3, 0x5715f6b7, 0xef3478dd, 0xf267616f, 0xc148cbe4, 0x9052815e, 0x5e410fab, 0xb48a2465, 0x2eda7fa4, 0xe87b40e4, 0xe98ea084, 0x5889e9e1, 0xefd390fc, 0xdd07d35b, 0xdb485694, 0x38d7e5b2, 0x57720101, 0x730edebc, 0x5b643113, 0x94917e4f, 0x503c2fba, 0x646f1282, 0x7523d24a, 0xe0779695, 0xf9c17a8f, 0x7a5b2121, 0xd187b896, 0x29263a4d, 0xba510cdf, 0x81f47c9f, 0xad1163ed, 0xea7b5965, 0x1a00726e, 0x11403092, 0x00da6d77, 0x4a0cdd61, 0xad1f4603, 0x605bdfb0, 0x9eedc364, 0x22ebe6a8, 0xcee7d28a, 0xa0e736a0, 0x5564a6b9, 0x10853209, 0xc7eb8f37, 0x2de705ca, 0x8951570f, 0xdf09822b, 0xbd691a6c, 0xaa12e4f2, 0x87451c0f, 0xe0f6a27a, 0x3ada4819, 0x4cf1764f, 0x0d771c2b, 0x67cdb156, 0x350d8384, 0x5938fa0f, 0x42399ef3, 0x36997b07, 0x0e84093d, 0x4aa93e61, 0x8360d87b, 0x1fa98b0c, 0x1149382c, 0xe97625a5, 0x0614d1b7, 0x0e25244b, 0x0c768347, 0x589e8d82, 0x0d2059d1, 0xa466bb1e, 0xf8da0a82, 0x04f19130, 0xba6e4ec0, 0x99265164, 0x1ee7230d, 0x50b2ad80, 0xeaee6801, 0x8db2a283, 0xea8bf59e, }; openssl-1.1.1f/crypto/chacha/000077500000000000000000000000001364063235100160755ustar00rootroot00000000000000openssl-1.1.1f/crypto/chacha/asm/000077500000000000000000000000001364063235100166555ustar00rootroot00000000000000openssl-1.1.1f/crypto/chacha/asm/chacha-armv4.pl000077500000000000000000000660011364063235100214560ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # December 2014 # # ChaCha20 for ARMv4. # # Performance in cycles per byte out of large buffer. # # IALU/gcc-4.4 1xNEON 3xNEON+1xIALU # # Cortex-A5 19.3(*)/+95% 21.8 14.1 # Cortex-A8 10.5(*)/+160% 13.9 6.35 # Cortex-A9 12.9(**)/+110% 14.3 6.50 # Cortex-A15 11.0/+40% 16.0 5.00 # Snapdragon S4 11.5/+125% 13.6 4.90 # # (*) most "favourable" result for aligned data on little-endian # processor, result for misaligned data is 10-15% lower; # (**) this result is a trade-off: it can be improved by 20%, # but then Snapdragon S4 and Cortex-A8 results get # 20-25% worse; $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } my @x=map("r$_",(0..7,"x","x","x","x",12,"x",14,"x")); my @t=map("r$_",(8..11)); sub ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my $odd = $d0&1; my ($xc,$xc_) = (@t[0..1]); my ($xd,$xd_) = $odd ? (@t[2],@x[$d1]) : (@x[$d0],@t[2]); my @ret; # Consider order in which variables are addressed by their # index: # # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 # # 'a', 'b' are permanently allocated in registers, @x[0..7], # while 'c's and pair of 'd's are maintained in memory. If # you observe 'c' column, you'll notice that pair of 'c's is # invariant between rounds. This means that we have to reload # them once per round, in the middle. This is why you'll see # bunch of 'c' stores and loads in the middle, but none in # the beginning or end. If you observe 'd' column, you'll # notice that 15 and 13 are reused in next pair of rounds. # This is why these two are chosen for offloading to memory, # to make loads count more. push @ret,( "&add (@x[$a0],@x[$a0],@x[$b0])", "&mov ($xd,$xd,'ror#16')", "&add (@x[$a1],@x[$a1],@x[$b1])", "&mov ($xd_,$xd_,'ror#16')", "&eor ($xd,$xd,@x[$a0],'ror#16')", "&eor ($xd_,$xd_,@x[$a1],'ror#16')", "&add ($xc,$xc,$xd)", "&mov (@x[$b0],@x[$b0],'ror#20')", "&add ($xc_,$xc_,$xd_)", "&mov (@x[$b1],@x[$b1],'ror#20')", "&eor (@x[$b0],@x[$b0],$xc,'ror#20')", "&eor (@x[$b1],@x[$b1],$xc_,'ror#20')", "&add (@x[$a0],@x[$a0],@x[$b0])", "&mov ($xd,$xd,'ror#24')", "&add (@x[$a1],@x[$a1],@x[$b1])", "&mov ($xd_,$xd_,'ror#24')", "&eor ($xd,$xd,@x[$a0],'ror#24')", "&eor ($xd_,$xd_,@x[$a1],'ror#24')", "&add ($xc,$xc,$xd)", "&mov (@x[$b0],@x[$b0],'ror#25')" ); push @ret,( "&str ($xd,'[sp,#4*(16+$d0)]')", "&ldr ($xd,'[sp,#4*(16+$d2)]')" ) if ($odd); push @ret,( "&add ($xc_,$xc_,$xd_)", "&mov (@x[$b1],@x[$b1],'ror#25')" ); push @ret,( "&str ($xd_,'[sp,#4*(16+$d1)]')", "&ldr ($xd_,'[sp,#4*(16+$d3)]')" ) if (!$odd); push @ret,( "&eor (@x[$b0],@x[$b0],$xc,'ror#25')", "&eor (@x[$b1],@x[$b1],$xc_,'ror#25')" ); $xd=@x[$d2] if (!$odd); $xd_=@x[$d3] if ($odd); push @ret,( "&str ($xc,'[sp,#4*(16+$c0)]')", "&ldr ($xc,'[sp,#4*(16+$c2)]')", "&add (@x[$a2],@x[$a2],@x[$b2])", "&mov ($xd,$xd,'ror#16')", "&str ($xc_,'[sp,#4*(16+$c1)]')", "&ldr ($xc_,'[sp,#4*(16+$c3)]')", "&add (@x[$a3],@x[$a3],@x[$b3])", "&mov ($xd_,$xd_,'ror#16')", "&eor ($xd,$xd,@x[$a2],'ror#16')", "&eor ($xd_,$xd_,@x[$a3],'ror#16')", "&add ($xc,$xc,$xd)", "&mov (@x[$b2],@x[$b2],'ror#20')", "&add ($xc_,$xc_,$xd_)", "&mov (@x[$b3],@x[$b3],'ror#20')", "&eor (@x[$b2],@x[$b2],$xc,'ror#20')", "&eor (@x[$b3],@x[$b3],$xc_,'ror#20')", "&add (@x[$a2],@x[$a2],@x[$b2])", "&mov ($xd,$xd,'ror#24')", "&add (@x[$a3],@x[$a3],@x[$b3])", "&mov ($xd_,$xd_,'ror#24')", "&eor ($xd,$xd,@x[$a2],'ror#24')", "&eor ($xd_,$xd_,@x[$a3],'ror#24')", "&add ($xc,$xc,$xd)", "&mov (@x[$b2],@x[$b2],'ror#25')", "&add ($xc_,$xc_,$xd_)", "&mov (@x[$b3],@x[$b3],'ror#25')", "&eor (@x[$b2],@x[$b2],$xc,'ror#25')", "&eor (@x[$b3],@x[$b3],$xc_,'ror#25')" ); @ret; } $code.=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) || defined(__clang__) .syntax unified #endif #if defined(__thumb2__) .thumb #else .code 32 #endif #if defined(__thumb2__) || defined(__clang__) #define ldrhsb ldrbhs #endif .align 5 .Lsigma: .long 0x61707865,0x3320646e,0x79622d32,0x6b206574 @ endian-neutral .Lone: .long 1,0,0,0 #if __ARM_MAX_ARCH__>=7 .LOPENSSL_armcap: .word OPENSSL_armcap_P-.LChaCha20_ctr32 #else .word -1 #endif .globl ChaCha20_ctr32 .type ChaCha20_ctr32,%function .align 5 ChaCha20_ctr32: .LChaCha20_ctr32: ldr r12,[sp,#0] @ pull pointer to counter and nonce stmdb sp!,{r0-r2,r4-r11,lr} #if __ARM_ARCH__<7 && !defined(__thumb2__) sub r14,pc,#16 @ ChaCha20_ctr32 #else adr r14,.LChaCha20_ctr32 #endif cmp r2,#0 @ len==0? #ifdef __thumb2__ itt eq #endif addeq sp,sp,#4*3 beq .Lno_data #if __ARM_MAX_ARCH__>=7 cmp r2,#192 @ test len bls .Lshort ldr r4,[r14,#-32] ldr r4,[r14,r4] # ifdef __APPLE__ ldr r4,[r4] # endif tst r4,#ARMV7_NEON bne .LChaCha20_neon .Lshort: #endif ldmia r12,{r4-r7} @ load counter and nonce sub sp,sp,#4*(16) @ off-load area sub r14,r14,#64 @ .Lsigma stmdb sp!,{r4-r7} @ copy counter and nonce ldmia r3,{r4-r11} @ load key ldmia r14,{r0-r3} @ load sigma stmdb sp!,{r4-r11} @ copy key stmdb sp!,{r0-r3} @ copy sigma str r10,[sp,#4*(16+10)] @ off-load "@x[10]" str r11,[sp,#4*(16+11)] @ off-load "@x[11]" b .Loop_outer_enter .align 4 .Loop_outer: ldmia sp,{r0-r9} @ load key material str @t[3],[sp,#4*(32+2)] @ save len str r12, [sp,#4*(32+1)] @ save inp str r14, [sp,#4*(32+0)] @ save out .Loop_outer_enter: ldr @t[3], [sp,#4*(15)] ldr @x[12],[sp,#4*(12)] @ modulo-scheduled load ldr @t[2], [sp,#4*(13)] ldr @x[14],[sp,#4*(14)] str @t[3], [sp,#4*(16+15)] mov @t[3],#10 b .Loop .align 4 .Loop: subs @t[3],@t[3],#1 ___ foreach (&ROUND(0, 4, 8,12)) { eval; } foreach (&ROUND(0, 5,10,15)) { eval; } $code.=<<___; bne .Loop ldr @t[3],[sp,#4*(32+2)] @ load len str @t[0], [sp,#4*(16+8)] @ modulo-scheduled store str @t[1], [sp,#4*(16+9)] str @x[12],[sp,#4*(16+12)] str @t[2], [sp,#4*(16+13)] str @x[14],[sp,#4*(16+14)] @ at this point we have first half of 512-bit result in @ @x[0-7] and second half at sp+4*(16+8) cmp @t[3],#64 @ done yet? #ifdef __thumb2__ itete lo #endif addlo r12,sp,#4*(0) @ shortcut or ... ldrhs r12,[sp,#4*(32+1)] @ ... load inp addlo r14,sp,#4*(0) @ shortcut or ... ldrhs r14,[sp,#4*(32+0)] @ ... load out ldr @t[0],[sp,#4*(0)] @ load key material ldr @t[1],[sp,#4*(1)] #if __ARM_ARCH__>=6 || !defined(__ARMEB__) # if __ARM_ARCH__<7 orr @t[2],r12,r14 tst @t[2],#3 @ are input and output aligned? ldr @t[2],[sp,#4*(2)] bne .Lunaligned cmp @t[3],#64 @ restore flags # else ldr @t[2],[sp,#4*(2)] # endif ldr @t[3],[sp,#4*(3)] add @x[0],@x[0],@t[0] @ accumulate key material add @x[1],@x[1],@t[1] # ifdef __thumb2__ itt hs # endif ldrhs @t[0],[r12],#16 @ load input ldrhs @t[1],[r12,#-12] add @x[2],@x[2],@t[2] add @x[3],@x[3],@t[3] # ifdef __thumb2__ itt hs # endif ldrhs @t[2],[r12,#-8] ldrhs @t[3],[r12,#-4] # if __ARM_ARCH__>=6 && defined(__ARMEB__) rev @x[0],@x[0] rev @x[1],@x[1] rev @x[2],@x[2] rev @x[3],@x[3] # endif # ifdef __thumb2__ itt hs # endif eorhs @x[0],@x[0],@t[0] @ xor with input eorhs @x[1],@x[1],@t[1] add @t[0],sp,#4*(4) str @x[0],[r14],#16 @ store output # ifdef __thumb2__ itt hs # endif eorhs @x[2],@x[2],@t[2] eorhs @x[3],@x[3],@t[3] ldmia @t[0],{@t[0]-@t[3]} @ load key material str @x[1],[r14,#-12] str @x[2],[r14,#-8] str @x[3],[r14,#-4] add @x[4],@x[4],@t[0] @ accumulate key material add @x[5],@x[5],@t[1] # ifdef __thumb2__ itt hs # endif ldrhs @t[0],[r12],#16 @ load input ldrhs @t[1],[r12,#-12] add @x[6],@x[6],@t[2] add @x[7],@x[7],@t[3] # ifdef __thumb2__ itt hs # endif ldrhs @t[2],[r12,#-8] ldrhs @t[3],[r12,#-4] # if __ARM_ARCH__>=6 && defined(__ARMEB__) rev @x[4],@x[4] rev @x[5],@x[5] rev @x[6],@x[6] rev @x[7],@x[7] # endif # ifdef __thumb2__ itt hs # endif eorhs @x[4],@x[4],@t[0] eorhs @x[5],@x[5],@t[1] add @t[0],sp,#4*(8) str @x[4],[r14],#16 @ store output # ifdef __thumb2__ itt hs # endif eorhs @x[6],@x[6],@t[2] eorhs @x[7],@x[7],@t[3] str @x[5],[r14,#-12] ldmia @t[0],{@t[0]-@t[3]} @ load key material str @x[6],[r14,#-8] add @x[0],sp,#4*(16+8) str @x[7],[r14,#-4] ldmia @x[0],{@x[0]-@x[7]} @ load second half add @x[0],@x[0],@t[0] @ accumulate key material add @x[1],@x[1],@t[1] # ifdef __thumb2__ itt hs # endif ldrhs @t[0],[r12],#16 @ load input ldrhs @t[1],[r12,#-12] # ifdef __thumb2__ itt hi # endif strhi @t[2],[sp,#4*(16+10)] @ copy "@x[10]" while at it strhi @t[3],[sp,#4*(16+11)] @ copy "@x[11]" while at it add @x[2],@x[2],@t[2] add @x[3],@x[3],@t[3] # ifdef __thumb2__ itt hs # endif ldrhs @t[2],[r12,#-8] ldrhs @t[3],[r12,#-4] # if __ARM_ARCH__>=6 && defined(__ARMEB__) rev @x[0],@x[0] rev @x[1],@x[1] rev @x[2],@x[2] rev @x[3],@x[3] # endif # ifdef __thumb2__ itt hs # endif eorhs @x[0],@x[0],@t[0] eorhs @x[1],@x[1],@t[1] add @t[0],sp,#4*(12) str @x[0],[r14],#16 @ store output # ifdef __thumb2__ itt hs # endif eorhs @x[2],@x[2],@t[2] eorhs @x[3],@x[3],@t[3] str @x[1],[r14,#-12] ldmia @t[0],{@t[0]-@t[3]} @ load key material str @x[2],[r14,#-8] str @x[3],[r14,#-4] add @x[4],@x[4],@t[0] @ accumulate key material add @x[5],@x[5],@t[1] # ifdef __thumb2__ itt hi # endif addhi @t[0],@t[0],#1 @ next counter value strhi @t[0],[sp,#4*(12)] @ save next counter value # ifdef __thumb2__ itt hs # endif ldrhs @t[0],[r12],#16 @ load input ldrhs @t[1],[r12,#-12] add @x[6],@x[6],@t[2] add @x[7],@x[7],@t[3] # ifdef __thumb2__ itt hs # endif ldrhs @t[2],[r12,#-8] ldrhs @t[3],[r12,#-4] # if __ARM_ARCH__>=6 && defined(__ARMEB__) rev @x[4],@x[4] rev @x[5],@x[5] rev @x[6],@x[6] rev @x[7],@x[7] # endif # ifdef __thumb2__ itt hs # endif eorhs @x[4],@x[4],@t[0] eorhs @x[5],@x[5],@t[1] # ifdef __thumb2__ it ne # endif ldrne @t[0],[sp,#4*(32+2)] @ re-load len # ifdef __thumb2__ itt hs # endif eorhs @x[6],@x[6],@t[2] eorhs @x[7],@x[7],@t[3] str @x[4],[r14],#16 @ store output str @x[5],[r14,#-12] # ifdef __thumb2__ it hs # endif subhs @t[3],@t[0],#64 @ len-=64 str @x[6],[r14,#-8] str @x[7],[r14,#-4] bhi .Loop_outer beq .Ldone # if __ARM_ARCH__<7 b .Ltail .align 4 .Lunaligned: @ unaligned endian-neutral path cmp @t[3],#64 @ restore flags # endif #endif #if __ARM_ARCH__<7 ldr @t[3],[sp,#4*(3)] ___ for ($i=0;$i<16;$i+=4) { my $j=$i&0x7; $code.=<<___ if ($i==4); add @x[0],sp,#4*(16+8) ___ $code.=<<___ if ($i==8); ldmia @x[0],{@x[0]-@x[7]} @ load second half # ifdef __thumb2__ itt hi # endif strhi @t[2],[sp,#4*(16+10)] @ copy "@x[10]" strhi @t[3],[sp,#4*(16+11)] @ copy "@x[11]" ___ $code.=<<___; add @x[$j+0],@x[$j+0],@t[0] @ accumulate key material ___ $code.=<<___ if ($i==12); # ifdef __thumb2__ itt hi # endif addhi @t[0],@t[0],#1 @ next counter value strhi @t[0],[sp,#4*(12)] @ save next counter value ___ $code.=<<___; add @x[$j+1],@x[$j+1],@t[1] add @x[$j+2],@x[$j+2],@t[2] # ifdef __thumb2__ itete lo # endif eorlo @t[0],@t[0],@t[0] @ zero or ... ldrhsb @t[0],[r12],#16 @ ... load input eorlo @t[1],@t[1],@t[1] ldrhsb @t[1],[r12,#-12] add @x[$j+3],@x[$j+3],@t[3] # ifdef __thumb2__ itete lo # endif eorlo @t[2],@t[2],@t[2] ldrhsb @t[2],[r12,#-8] eorlo @t[3],@t[3],@t[3] ldrhsb @t[3],[r12,#-4] eor @x[$j+0],@t[0],@x[$j+0] @ xor with input (or zero) eor @x[$j+1],@t[1],@x[$j+1] # ifdef __thumb2__ itt hs # endif ldrhsb @t[0],[r12,#-15] @ load more input ldrhsb @t[1],[r12,#-11] eor @x[$j+2],@t[2],@x[$j+2] strb @x[$j+0],[r14],#16 @ store output eor @x[$j+3],@t[3],@x[$j+3] # ifdef __thumb2__ itt hs # endif ldrhsb @t[2],[r12,#-7] ldrhsb @t[3],[r12,#-3] strb @x[$j+1],[r14,#-12] eor @x[$j+0],@t[0],@x[$j+0],lsr#8 strb @x[$j+2],[r14,#-8] eor @x[$j+1],@t[1],@x[$j+1],lsr#8 # ifdef __thumb2__ itt hs # endif ldrhsb @t[0],[r12,#-14] @ load more input ldrhsb @t[1],[r12,#-10] strb @x[$j+3],[r14,#-4] eor @x[$j+2],@t[2],@x[$j+2],lsr#8 strb @x[$j+0],[r14,#-15] eor @x[$j+3],@t[3],@x[$j+3],lsr#8 # ifdef __thumb2__ itt hs # endif ldrhsb @t[2],[r12,#-6] ldrhsb @t[3],[r12,#-2] strb @x[$j+1],[r14,#-11] eor @x[$j+0],@t[0],@x[$j+0],lsr#8 strb @x[$j+2],[r14,#-7] eor @x[$j+1],@t[1],@x[$j+1],lsr#8 # ifdef __thumb2__ itt hs # endif ldrhsb @t[0],[r12,#-13] @ load more input ldrhsb @t[1],[r12,#-9] strb @x[$j+3],[r14,#-3] eor @x[$j+2],@t[2],@x[$j+2],lsr#8 strb @x[$j+0],[r14,#-14] eor @x[$j+3],@t[3],@x[$j+3],lsr#8 # ifdef __thumb2__ itt hs # endif ldrhsb @t[2],[r12,#-5] ldrhsb @t[3],[r12,#-1] strb @x[$j+1],[r14,#-10] strb @x[$j+2],[r14,#-6] eor @x[$j+0],@t[0],@x[$j+0],lsr#8 strb @x[$j+3],[r14,#-2] eor @x[$j+1],@t[1],@x[$j+1],lsr#8 strb @x[$j+0],[r14,#-13] eor @x[$j+2],@t[2],@x[$j+2],lsr#8 strb @x[$j+1],[r14,#-9] eor @x[$j+3],@t[3],@x[$j+3],lsr#8 strb @x[$j+2],[r14,#-5] strb @x[$j+3],[r14,#-1] ___ $code.=<<___ if ($i<12); add @t[0],sp,#4*(4+$i) ldmia @t[0],{@t[0]-@t[3]} @ load key material ___ } $code.=<<___; # ifdef __thumb2__ it ne # endif ldrne @t[0],[sp,#4*(32+2)] @ re-load len # ifdef __thumb2__ it hs # endif subhs @t[3],@t[0],#64 @ len-=64 bhi .Loop_outer beq .Ldone #endif .Ltail: ldr r12,[sp,#4*(32+1)] @ load inp add @t[1],sp,#4*(0) ldr r14,[sp,#4*(32+0)] @ load out .Loop_tail: ldrb @t[2],[@t[1]],#1 @ read buffer on stack ldrb @t[3],[r12],#1 @ read input subs @t[0],@t[0],#1 eor @t[3],@t[3],@t[2] strb @t[3],[r14],#1 @ store output bne .Loop_tail .Ldone: add sp,sp,#4*(32+3) .Lno_data: ldmia sp!,{r4-r11,pc} .size ChaCha20_ctr32,.-ChaCha20_ctr32 ___ {{{ my ($a0,$b0,$c0,$d0,$a1,$b1,$c1,$d1,$a2,$b2,$c2,$d2,$t0,$t1,$t2,$t3) = map("q$_",(0..15)); sub NEONROUND { my $odd = pop; my ($a,$b,$c,$d,$t)=@_; ( "&vadd_i32 ($a,$a,$b)", "&veor ($d,$d,$a)", "&vrev32_16 ($d,$d)", # vrot ($d,16) "&vadd_i32 ($c,$c,$d)", "&veor ($t,$b,$c)", "&vshr_u32 ($b,$t,20)", "&vsli_32 ($b,$t,12)", "&vadd_i32 ($a,$a,$b)", "&veor ($t,$d,$a)", "&vshr_u32 ($d,$t,24)", "&vsli_32 ($d,$t,8)", "&vadd_i32 ($c,$c,$d)", "&veor ($t,$b,$c)", "&vshr_u32 ($b,$t,25)", "&vsli_32 ($b,$t,7)", "&vext_8 ($c,$c,$c,8)", "&vext_8 ($b,$b,$b,$odd?12:4)", "&vext_8 ($d,$d,$d,$odd?4:12)" ); } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .type ChaCha20_neon,%function .align 5 ChaCha20_neon: ldr r12,[sp,#0] @ pull pointer to counter and nonce stmdb sp!,{r0-r2,r4-r11,lr} .LChaCha20_neon: adr r14,.Lsigma vstmdb sp!,{d8-d15} @ ABI spec says so stmdb sp!,{r0-r3} vld1.32 {$b0-$c0},[r3] @ load key ldmia r3,{r4-r11} @ load key sub sp,sp,#4*(16+16) vld1.32 {$d0},[r12] @ load counter and nonce add r12,sp,#4*8 ldmia r14,{r0-r3} @ load sigma vld1.32 {$a0},[r14]! @ load sigma vld1.32 {$t0},[r14] @ one vst1.32 {$c0-$d0},[r12] @ copy 1/2key|counter|nonce vst1.32 {$a0-$b0},[sp] @ copy sigma|1/2key str r10,[sp,#4*(16+10)] @ off-load "@x[10]" str r11,[sp,#4*(16+11)] @ off-load "@x[11]" vshl.i32 $t1#lo,$t0#lo,#1 @ two vstr $t0#lo,[sp,#4*(16+0)] vshl.i32 $t2#lo,$t0#lo,#2 @ four vstr $t1#lo,[sp,#4*(16+2)] vmov $a1,$a0 vstr $t2#lo,[sp,#4*(16+4)] vmov $a2,$a0 vmov $b1,$b0 vmov $b2,$b0 b .Loop_neon_enter .align 4 .Loop_neon_outer: ldmia sp,{r0-r9} @ load key material cmp @t[3],#64*2 @ if len<=64*2 bls .Lbreak_neon @ switch to integer-only vmov $a1,$a0 str @t[3],[sp,#4*(32+2)] @ save len vmov $a2,$a0 str r12, [sp,#4*(32+1)] @ save inp vmov $b1,$b0 str r14, [sp,#4*(32+0)] @ save out vmov $b2,$b0 .Loop_neon_enter: ldr @t[3], [sp,#4*(15)] vadd.i32 $d1,$d0,$t0 @ counter+1 ldr @x[12],[sp,#4*(12)] @ modulo-scheduled load vmov $c1,$c0 ldr @t[2], [sp,#4*(13)] vmov $c2,$c0 ldr @x[14],[sp,#4*(14)] vadd.i32 $d2,$d1,$t0 @ counter+2 str @t[3], [sp,#4*(16+15)] mov @t[3],#10 add @x[12],@x[12],#3 @ counter+3 b .Loop_neon .align 4 .Loop_neon: subs @t[3],@t[3],#1 ___ my @thread0=&NEONROUND($a0,$b0,$c0,$d0,$t0,0); my @thread1=&NEONROUND($a1,$b1,$c1,$d1,$t1,0); my @thread2=&NEONROUND($a2,$b2,$c2,$d2,$t2,0); my @thread3=&ROUND(0,4,8,12); foreach (@thread0) { eval; eval(shift(@thread3)); eval(shift(@thread1)); eval(shift(@thread3)); eval(shift(@thread2)); eval(shift(@thread3)); } @thread0=&NEONROUND($a0,$b0,$c0,$d0,$t0,1); @thread1=&NEONROUND($a1,$b1,$c1,$d1,$t1,1); @thread2=&NEONROUND($a2,$b2,$c2,$d2,$t2,1); @thread3=&ROUND(0,5,10,15); foreach (@thread0) { eval; eval(shift(@thread3)); eval(shift(@thread1)); eval(shift(@thread3)); eval(shift(@thread2)); eval(shift(@thread3)); } $code.=<<___; bne .Loop_neon add @t[3],sp,#32 vld1.32 {$t0-$t1},[sp] @ load key material vld1.32 {$t2-$t3},[@t[3]] ldr @t[3],[sp,#4*(32+2)] @ load len str @t[0], [sp,#4*(16+8)] @ modulo-scheduled store str @t[1], [sp,#4*(16+9)] str @x[12],[sp,#4*(16+12)] str @t[2], [sp,#4*(16+13)] str @x[14],[sp,#4*(16+14)] @ at this point we have first half of 512-bit result in @ @x[0-7] and second half at sp+4*(16+8) ldr r12,[sp,#4*(32+1)] @ load inp ldr r14,[sp,#4*(32+0)] @ load out vadd.i32 $a0,$a0,$t0 @ accumulate key material vadd.i32 $a1,$a1,$t0 vadd.i32 $a2,$a2,$t0 vldr $t0#lo,[sp,#4*(16+0)] @ one vadd.i32 $b0,$b0,$t1 vadd.i32 $b1,$b1,$t1 vadd.i32 $b2,$b2,$t1 vldr $t1#lo,[sp,#4*(16+2)] @ two vadd.i32 $c0,$c0,$t2 vadd.i32 $c1,$c1,$t2 vadd.i32 $c2,$c2,$t2 vadd.i32 $d1#lo,$d1#lo,$t0#lo @ counter+1 vadd.i32 $d2#lo,$d2#lo,$t1#lo @ counter+2 vadd.i32 $d0,$d0,$t3 vadd.i32 $d1,$d1,$t3 vadd.i32 $d2,$d2,$t3 cmp @t[3],#64*4 blo .Ltail_neon vld1.8 {$t0-$t1},[r12]! @ load input mov @t[3],sp vld1.8 {$t2-$t3},[r12]! veor $a0,$a0,$t0 @ xor with input veor $b0,$b0,$t1 vld1.8 {$t0-$t1},[r12]! veor $c0,$c0,$t2 veor $d0,$d0,$t3 vld1.8 {$t2-$t3},[r12]! veor $a1,$a1,$t0 vst1.8 {$a0-$b0},[r14]! @ store output veor $b1,$b1,$t1 vld1.8 {$t0-$t1},[r12]! veor $c1,$c1,$t2 vst1.8 {$c0-$d0},[r14]! veor $d1,$d1,$t3 vld1.8 {$t2-$t3},[r12]! veor $a2,$a2,$t0 vld1.32 {$a0-$b0},[@t[3]]! @ load for next iteration veor $t0#hi,$t0#hi,$t0#hi vldr $t0#lo,[sp,#4*(16+4)] @ four veor $b2,$b2,$t1 vld1.32 {$c0-$d0},[@t[3]] veor $c2,$c2,$t2 vst1.8 {$a1-$b1},[r14]! veor $d2,$d2,$t3 vst1.8 {$c1-$d1},[r14]! vadd.i32 $d0#lo,$d0#lo,$t0#lo @ next counter value vldr $t0#lo,[sp,#4*(16+0)] @ one ldmia sp,{@t[0]-@t[3]} @ load key material add @x[0],@x[0],@t[0] @ accumulate key material ldr @t[0],[r12],#16 @ load input vst1.8 {$a2-$b2},[r14]! add @x[1],@x[1],@t[1] ldr @t[1],[r12,#-12] vst1.8 {$c2-$d2},[r14]! add @x[2],@x[2],@t[2] ldr @t[2],[r12,#-8] add @x[3],@x[3],@t[3] ldr @t[3],[r12,#-4] # ifdef __ARMEB__ rev @x[0],@x[0] rev @x[1],@x[1] rev @x[2],@x[2] rev @x[3],@x[3] # endif eor @x[0],@x[0],@t[0] @ xor with input add @t[0],sp,#4*(4) eor @x[1],@x[1],@t[1] str @x[0],[r14],#16 @ store output eor @x[2],@x[2],@t[2] str @x[1],[r14,#-12] eor @x[3],@x[3],@t[3] ldmia @t[0],{@t[0]-@t[3]} @ load key material str @x[2],[r14,#-8] str @x[3],[r14,#-4] add @x[4],@x[4],@t[0] @ accumulate key material ldr @t[0],[r12],#16 @ load input add @x[5],@x[5],@t[1] ldr @t[1],[r12,#-12] add @x[6],@x[6],@t[2] ldr @t[2],[r12,#-8] add @x[7],@x[7],@t[3] ldr @t[3],[r12,#-4] # ifdef __ARMEB__ rev @x[4],@x[4] rev @x[5],@x[5] rev @x[6],@x[6] rev @x[7],@x[7] # endif eor @x[4],@x[4],@t[0] add @t[0],sp,#4*(8) eor @x[5],@x[5],@t[1] str @x[4],[r14],#16 @ store output eor @x[6],@x[6],@t[2] str @x[5],[r14,#-12] eor @x[7],@x[7],@t[3] ldmia @t[0],{@t[0]-@t[3]} @ load key material str @x[6],[r14,#-8] add @x[0],sp,#4*(16+8) str @x[7],[r14,#-4] ldmia @x[0],{@x[0]-@x[7]} @ load second half add @x[0],@x[0],@t[0] @ accumulate key material ldr @t[0],[r12],#16 @ load input add @x[1],@x[1],@t[1] ldr @t[1],[r12,#-12] # ifdef __thumb2__ it hi # endif strhi @t[2],[sp,#4*(16+10)] @ copy "@x[10]" while at it add @x[2],@x[2],@t[2] ldr @t[2],[r12,#-8] # ifdef __thumb2__ it hi # endif strhi @t[3],[sp,#4*(16+11)] @ copy "@x[11]" while at it add @x[3],@x[3],@t[3] ldr @t[3],[r12,#-4] # ifdef __ARMEB__ rev @x[0],@x[0] rev @x[1],@x[1] rev @x[2],@x[2] rev @x[3],@x[3] # endif eor @x[0],@x[0],@t[0] add @t[0],sp,#4*(12) eor @x[1],@x[1],@t[1] str @x[0],[r14],#16 @ store output eor @x[2],@x[2],@t[2] str @x[1],[r14,#-12] eor @x[3],@x[3],@t[3] ldmia @t[0],{@t[0]-@t[3]} @ load key material str @x[2],[r14,#-8] str @x[3],[r14,#-4] add @x[4],@x[4],@t[0] @ accumulate key material add @t[0],@t[0],#4 @ next counter value add @x[5],@x[5],@t[1] str @t[0],[sp,#4*(12)] @ save next counter value ldr @t[0],[r12],#16 @ load input add @x[6],@x[6],@t[2] add @x[4],@x[4],#3 @ counter+3 ldr @t[1],[r12,#-12] add @x[7],@x[7],@t[3] ldr @t[2],[r12,#-8] ldr @t[3],[r12,#-4] # ifdef __ARMEB__ rev @x[4],@x[4] rev @x[5],@x[5] rev @x[6],@x[6] rev @x[7],@x[7] # endif eor @x[4],@x[4],@t[0] # ifdef __thumb2__ it hi # endif ldrhi @t[0],[sp,#4*(32+2)] @ re-load len eor @x[5],@x[5],@t[1] eor @x[6],@x[6],@t[2] str @x[4],[r14],#16 @ store output eor @x[7],@x[7],@t[3] str @x[5],[r14,#-12] sub @t[3],@t[0],#64*4 @ len-=64*4 str @x[6],[r14,#-8] str @x[7],[r14,#-4] bhi .Loop_neon_outer b .Ldone_neon .align 4 .Lbreak_neon: @ harmonize NEON and integer-only stack frames: load data @ from NEON frame, but save to integer-only one; distance @ between the two is 4*(32+4+16-32)=4*(20). str @t[3], [sp,#4*(20+32+2)] @ save len add @t[3],sp,#4*(32+4) str r12, [sp,#4*(20+32+1)] @ save inp str r14, [sp,#4*(20+32+0)] @ save out ldr @x[12],[sp,#4*(16+10)] ldr @x[14],[sp,#4*(16+11)] vldmia @t[3],{d8-d15} @ fulfill ABI requirement str @x[12],[sp,#4*(20+16+10)] @ copy "@x[10]" str @x[14],[sp,#4*(20+16+11)] @ copy "@x[11]" ldr @t[3], [sp,#4*(15)] ldr @x[12],[sp,#4*(12)] @ modulo-scheduled load ldr @t[2], [sp,#4*(13)] ldr @x[14],[sp,#4*(14)] str @t[3], [sp,#4*(20+16+15)] add @t[3],sp,#4*(20) vst1.32 {$a0-$b0},[@t[3]]! @ copy key add sp,sp,#4*(20) @ switch frame vst1.32 {$c0-$d0},[@t[3]] mov @t[3],#10 b .Loop @ go integer-only .align 4 .Ltail_neon: cmp @t[3],#64*3 bhs .L192_or_more_neon cmp @t[3],#64*2 bhs .L128_or_more_neon cmp @t[3],#64*1 bhs .L64_or_more_neon add @t[0],sp,#4*(8) vst1.8 {$a0-$b0},[sp] add @t[2],sp,#4*(0) vst1.8 {$c0-$d0},[@t[0]] b .Loop_tail_neon .align 4 .L64_or_more_neon: vld1.8 {$t0-$t1},[r12]! vld1.8 {$t2-$t3},[r12]! veor $a0,$a0,$t0 veor $b0,$b0,$t1 veor $c0,$c0,$t2 veor $d0,$d0,$t3 vst1.8 {$a0-$b0},[r14]! vst1.8 {$c0-$d0},[r14]! beq .Ldone_neon add @t[0],sp,#4*(8) vst1.8 {$a1-$b1},[sp] add @t[2],sp,#4*(0) vst1.8 {$c1-$d1},[@t[0]] sub @t[3],@t[3],#64*1 @ len-=64*1 b .Loop_tail_neon .align 4 .L128_or_more_neon: vld1.8 {$t0-$t1},[r12]! vld1.8 {$t2-$t3},[r12]! veor $a0,$a0,$t0 veor $b0,$b0,$t1 vld1.8 {$t0-$t1},[r12]! veor $c0,$c0,$t2 veor $d0,$d0,$t3 vld1.8 {$t2-$t3},[r12]! veor $a1,$a1,$t0 veor $b1,$b1,$t1 vst1.8 {$a0-$b0},[r14]! veor $c1,$c1,$t2 vst1.8 {$c0-$d0},[r14]! veor $d1,$d1,$t3 vst1.8 {$a1-$b1},[r14]! vst1.8 {$c1-$d1},[r14]! beq .Ldone_neon add @t[0],sp,#4*(8) vst1.8 {$a2-$b2},[sp] add @t[2],sp,#4*(0) vst1.8 {$c2-$d2},[@t[0]] sub @t[3],@t[3],#64*2 @ len-=64*2 b .Loop_tail_neon .align 4 .L192_or_more_neon: vld1.8 {$t0-$t1},[r12]! vld1.8 {$t2-$t3},[r12]! veor $a0,$a0,$t0 veor $b0,$b0,$t1 vld1.8 {$t0-$t1},[r12]! veor $c0,$c0,$t2 veor $d0,$d0,$t3 vld1.8 {$t2-$t3},[r12]! veor $a1,$a1,$t0 veor $b1,$b1,$t1 vld1.8 {$t0-$t1},[r12]! veor $c1,$c1,$t2 vst1.8 {$a0-$b0},[r14]! veor $d1,$d1,$t3 vld1.8 {$t2-$t3},[r12]! veor $a2,$a2,$t0 vst1.8 {$c0-$d0},[r14]! veor $b2,$b2,$t1 vst1.8 {$a1-$b1},[r14]! veor $c2,$c2,$t2 vst1.8 {$c1-$d1},[r14]! veor $d2,$d2,$t3 vst1.8 {$a2-$b2},[r14]! vst1.8 {$c2-$d2},[r14]! beq .Ldone_neon ldmia sp,{@t[0]-@t[3]} @ load key material add @x[0],@x[0],@t[0] @ accumulate key material add @t[0],sp,#4*(4) add @x[1],@x[1],@t[1] add @x[2],@x[2],@t[2] add @x[3],@x[3],@t[3] ldmia @t[0],{@t[0]-@t[3]} @ load key material add @x[4],@x[4],@t[0] @ accumulate key material add @t[0],sp,#4*(8) add @x[5],@x[5],@t[1] add @x[6],@x[6],@t[2] add @x[7],@x[7],@t[3] ldmia @t[0],{@t[0]-@t[3]} @ load key material # ifdef __ARMEB__ rev @x[0],@x[0] rev @x[1],@x[1] rev @x[2],@x[2] rev @x[3],@x[3] rev @x[4],@x[4] rev @x[5],@x[5] rev @x[6],@x[6] rev @x[7],@x[7] # endif stmia sp,{@x[0]-@x[7]} add @x[0],sp,#4*(16+8) ldmia @x[0],{@x[0]-@x[7]} @ load second half add @x[0],@x[0],@t[0] @ accumulate key material add @t[0],sp,#4*(12) add @x[1],@x[1],@t[1] add @x[2],@x[2],@t[2] add @x[3],@x[3],@t[3] ldmia @t[0],{@t[0]-@t[3]} @ load key material add @x[4],@x[4],@t[0] @ accumulate key material add @t[0],sp,#4*(8) add @x[5],@x[5],@t[1] add @x[4],@x[4],#3 @ counter+3 add @x[6],@x[6],@t[2] add @x[7],@x[7],@t[3] ldr @t[3],[sp,#4*(32+2)] @ re-load len # ifdef __ARMEB__ rev @x[0],@x[0] rev @x[1],@x[1] rev @x[2],@x[2] rev @x[3],@x[3] rev @x[4],@x[4] rev @x[5],@x[5] rev @x[6],@x[6] rev @x[7],@x[7] # endif stmia @t[0],{@x[0]-@x[7]} add @t[2],sp,#4*(0) sub @t[3],@t[3],#64*3 @ len-=64*3 .Loop_tail_neon: ldrb @t[0],[@t[2]],#1 @ read buffer on stack ldrb @t[1],[r12],#1 @ read input subs @t[3],@t[3],#1 eor @t[0],@t[0],@t[1] strb @t[0],[r14],#1 @ store output bne .Loop_tail_neon .Ldone_neon: add sp,sp,#4*(32+4) vldmia sp,{d8-d15} add sp,sp,#4*(16+3) ldmia sp!,{r4-r11,pc} .size ChaCha20_neon,.-ChaCha20_neon .comm OPENSSL_armcap_P,4,4 #endif ___ }}} foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/chacha/asm/chacha-armv8.pl000077500000000000000000000650171364063235100214700ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # June 2015 # # ChaCha20 for ARMv8. # # Performance in cycles per byte out of large buffer. # # IALU/gcc-4.9 3xNEON+1xIALU 6xNEON+2xIALU # # Apple A7 5.50/+49% 3.33 1.70 # Cortex-A53 8.40/+80% 4.72 4.72(*) # Cortex-A57 8.06/+43% 4.90 4.43(**) # Denver 4.50/+82% 2.63 2.67(*) # X-Gene 9.50/+46% 8.82 8.89(*) # Mongoose 8.00/+44% 3.64 3.25 # Kryo 8.17/+50% 4.83 4.65 # # (*) it's expected that doubling interleave factor doesn't help # all processors, only those with higher NEON latency and # higher instruction issue rate; # (**) expected improvement was actually higher; $flavour=shift; $output=shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } my ($out,$inp,$len,$key,$ctr) = map("x$_",(0..4)); my @x=map("x$_",(5..17,19..21)); my @d=map("x$_",(22..28,30)); sub ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); ( "&add_32 (@x[$a0],@x[$a0],@x[$b0])", "&add_32 (@x[$a1],@x[$a1],@x[$b1])", "&add_32 (@x[$a2],@x[$a2],@x[$b2])", "&add_32 (@x[$a3],@x[$a3],@x[$b3])", "&eor_32 (@x[$d0],@x[$d0],@x[$a0])", "&eor_32 (@x[$d1],@x[$d1],@x[$a1])", "&eor_32 (@x[$d2],@x[$d2],@x[$a2])", "&eor_32 (@x[$d3],@x[$d3],@x[$a3])", "&ror_32 (@x[$d0],@x[$d0],16)", "&ror_32 (@x[$d1],@x[$d1],16)", "&ror_32 (@x[$d2],@x[$d2],16)", "&ror_32 (@x[$d3],@x[$d3],16)", "&add_32 (@x[$c0],@x[$c0],@x[$d0])", "&add_32 (@x[$c1],@x[$c1],@x[$d1])", "&add_32 (@x[$c2],@x[$c2],@x[$d2])", "&add_32 (@x[$c3],@x[$c3],@x[$d3])", "&eor_32 (@x[$b0],@x[$b0],@x[$c0])", "&eor_32 (@x[$b1],@x[$b1],@x[$c1])", "&eor_32 (@x[$b2],@x[$b2],@x[$c2])", "&eor_32 (@x[$b3],@x[$b3],@x[$c3])", "&ror_32 (@x[$b0],@x[$b0],20)", "&ror_32 (@x[$b1],@x[$b1],20)", "&ror_32 (@x[$b2],@x[$b2],20)", "&ror_32 (@x[$b3],@x[$b3],20)", "&add_32 (@x[$a0],@x[$a0],@x[$b0])", "&add_32 (@x[$a1],@x[$a1],@x[$b1])", "&add_32 (@x[$a2],@x[$a2],@x[$b2])", "&add_32 (@x[$a3],@x[$a3],@x[$b3])", "&eor_32 (@x[$d0],@x[$d0],@x[$a0])", "&eor_32 (@x[$d1],@x[$d1],@x[$a1])", "&eor_32 (@x[$d2],@x[$d2],@x[$a2])", "&eor_32 (@x[$d3],@x[$d3],@x[$a3])", "&ror_32 (@x[$d0],@x[$d0],24)", "&ror_32 (@x[$d1],@x[$d1],24)", "&ror_32 (@x[$d2],@x[$d2],24)", "&ror_32 (@x[$d3],@x[$d3],24)", "&add_32 (@x[$c0],@x[$c0],@x[$d0])", "&add_32 (@x[$c1],@x[$c1],@x[$d1])", "&add_32 (@x[$c2],@x[$c2],@x[$d2])", "&add_32 (@x[$c3],@x[$c3],@x[$d3])", "&eor_32 (@x[$b0],@x[$b0],@x[$c0])", "&eor_32 (@x[$b1],@x[$b1],@x[$c1])", "&eor_32 (@x[$b2],@x[$b2],@x[$c2])", "&eor_32 (@x[$b3],@x[$b3],@x[$c3])", "&ror_32 (@x[$b0],@x[$b0],25)", "&ror_32 (@x[$b1],@x[$b1],25)", "&ror_32 (@x[$b2],@x[$b2],25)", "&ror_32 (@x[$b3],@x[$b3],25)" ); } $code.=<<___; #include "arm_arch.h" .text .extern OPENSSL_armcap_P .align 5 .Lsigma: .quad 0x3320646e61707865,0x6b20657479622d32 // endian-neutral .Lone: .long 1,0,0,0 .LOPENSSL_armcap_P: #ifdef __ILP32__ .long OPENSSL_armcap_P-. #else .quad OPENSSL_armcap_P-. #endif .asciz "ChaCha20 for ARMv8, CRYPTOGAMS by " .globl ChaCha20_ctr32 .type ChaCha20_ctr32,%function .align 5 ChaCha20_ctr32: cbz $len,.Labort adr @x[0],.LOPENSSL_armcap_P cmp $len,#192 b.lo .Lshort #ifdef __ILP32__ ldrsw @x[1],[@x[0]] #else ldr @x[1],[@x[0]] #endif ldr w17,[@x[1],@x[0]] tst w17,#ARMV7_NEON b.ne ChaCha20_neon .Lshort: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-96]! add x29,sp,#0 adr @x[0],.Lsigma stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub sp,sp,#64 ldp @d[0],@d[1],[@x[0]] // load sigma ldp @d[2],@d[3],[$key] // load key ldp @d[4],@d[5],[$key,#16] ldp @d[6],@d[7],[$ctr] // load counter #ifdef __ARMEB__ ror @d[2],@d[2],#32 ror @d[3],@d[3],#32 ror @d[4],@d[4],#32 ror @d[5],@d[5],#32 ror @d[6],@d[6],#32 ror @d[7],@d[7],#32 #endif .Loop_outer: mov.32 @x[0],@d[0] // unpack key block lsr @x[1],@d[0],#32 mov.32 @x[2],@d[1] lsr @x[3],@d[1],#32 mov.32 @x[4],@d[2] lsr @x[5],@d[2],#32 mov.32 @x[6],@d[3] lsr @x[7],@d[3],#32 mov.32 @x[8],@d[4] lsr @x[9],@d[4],#32 mov.32 @x[10],@d[5] lsr @x[11],@d[5],#32 mov.32 @x[12],@d[6] lsr @x[13],@d[6],#32 mov.32 @x[14],@d[7] lsr @x[15],@d[7],#32 mov $ctr,#10 subs $len,$len,#64 .Loop: sub $ctr,$ctr,#1 ___ foreach (&ROUND(0, 4, 8,12)) { eval; } foreach (&ROUND(0, 5,10,15)) { eval; } $code.=<<___; cbnz $ctr,.Loop add.32 @x[0],@x[0],@d[0] // accumulate key block add @x[1],@x[1],@d[0],lsr#32 add.32 @x[2],@x[2],@d[1] add @x[3],@x[3],@d[1],lsr#32 add.32 @x[4],@x[4],@d[2] add @x[5],@x[5],@d[2],lsr#32 add.32 @x[6],@x[6],@d[3] add @x[7],@x[7],@d[3],lsr#32 add.32 @x[8],@x[8],@d[4] add @x[9],@x[9],@d[4],lsr#32 add.32 @x[10],@x[10],@d[5] add @x[11],@x[11],@d[5],lsr#32 add.32 @x[12],@x[12],@d[6] add @x[13],@x[13],@d[6],lsr#32 add.32 @x[14],@x[14],@d[7] add @x[15],@x[15],@d[7],lsr#32 b.lo .Ltail add @x[0],@x[0],@x[1],lsl#32 // pack add @x[2],@x[2],@x[3],lsl#32 ldp @x[1],@x[3],[$inp,#0] // load input add @x[4],@x[4],@x[5],lsl#32 add @x[6],@x[6],@x[7],lsl#32 ldp @x[5],@x[7],[$inp,#16] add @x[8],@x[8],@x[9],lsl#32 add @x[10],@x[10],@x[11],lsl#32 ldp @x[9],@x[11],[$inp,#32] add @x[12],@x[12],@x[13],lsl#32 add @x[14],@x[14],@x[15],lsl#32 ldp @x[13],@x[15],[$inp,#48] add $inp,$inp,#64 #ifdef __ARMEB__ rev @x[0],@x[0] rev @x[2],@x[2] rev @x[4],@x[4] rev @x[6],@x[6] rev @x[8],@x[8] rev @x[10],@x[10] rev @x[12],@x[12] rev @x[14],@x[14] #endif eor @x[0],@x[0],@x[1] eor @x[2],@x[2],@x[3] eor @x[4],@x[4],@x[5] eor @x[6],@x[6],@x[7] eor @x[8],@x[8],@x[9] eor @x[10],@x[10],@x[11] eor @x[12],@x[12],@x[13] eor @x[14],@x[14],@x[15] stp @x[0],@x[2],[$out,#0] // store output add @d[6],@d[6],#1 // increment counter stp @x[4],@x[6],[$out,#16] stp @x[8],@x[10],[$out,#32] stp @x[12],@x[14],[$out,#48] add $out,$out,#64 b.hi .Loop_outer ldp x19,x20,[x29,#16] add sp,sp,#64 ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#96 .inst 0xd50323bf // autiasp .Labort: ret .align 4 .Ltail: add $len,$len,#64 .Less_than_64: sub $out,$out,#1 add $inp,$inp,$len add $out,$out,$len add $ctr,sp,$len neg $len,$len add @x[0],@x[0],@x[1],lsl#32 // pack add @x[2],@x[2],@x[3],lsl#32 add @x[4],@x[4],@x[5],lsl#32 add @x[6],@x[6],@x[7],lsl#32 add @x[8],@x[8],@x[9],lsl#32 add @x[10],@x[10],@x[11],lsl#32 add @x[12],@x[12],@x[13],lsl#32 add @x[14],@x[14],@x[15],lsl#32 #ifdef __ARMEB__ rev @x[0],@x[0] rev @x[2],@x[2] rev @x[4],@x[4] rev @x[6],@x[6] rev @x[8],@x[8] rev @x[10],@x[10] rev @x[12],@x[12] rev @x[14],@x[14] #endif stp @x[0],@x[2],[sp,#0] stp @x[4],@x[6],[sp,#16] stp @x[8],@x[10],[sp,#32] stp @x[12],@x[14],[sp,#48] .Loop_tail: ldrb w10,[$inp,$len] ldrb w11,[$ctr,$len] add $len,$len,#1 eor w10,w10,w11 strb w10,[$out,$len] cbnz $len,.Loop_tail stp xzr,xzr,[sp,#0] stp xzr,xzr,[sp,#16] stp xzr,xzr,[sp,#32] stp xzr,xzr,[sp,#48] ldp x19,x20,[x29,#16] add sp,sp,#64 ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#96 .inst 0xd50323bf // autiasp ret .size ChaCha20_ctr32,.-ChaCha20_ctr32 ___ {{{ my ($A0,$B0,$C0,$D0,$A1,$B1,$C1,$D1,$A2,$B2,$C2,$D2,$T0,$T1,$T2,$T3) = map("v$_.4s",(0..7,16..23)); my (@K)=map("v$_.4s",(24..30)); my $ONE="v31.4s"; sub NEONROUND { my $odd = pop; my ($a,$b,$c,$d,$t)=@_; ( "&add ('$a','$a','$b')", "&eor ('$d','$d','$a')", "&rev32_16 ('$d','$d')", # vrot ($d,16) "&add ('$c','$c','$d')", "&eor ('$t','$b','$c')", "&ushr ('$b','$t',20)", "&sli ('$b','$t',12)", "&add ('$a','$a','$b')", "&eor ('$t','$d','$a')", "&ushr ('$d','$t',24)", "&sli ('$d','$t',8)", "&add ('$c','$c','$d')", "&eor ('$t','$b','$c')", "&ushr ('$b','$t',25)", "&sli ('$b','$t',7)", "&ext ('$c','$c','$c',8)", "&ext ('$d','$d','$d',$odd?4:12)", "&ext ('$b','$b','$b',$odd?12:4)" ); } $code.=<<___; .type ChaCha20_neon,%function .align 5 ChaCha20_neon: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-96]! add x29,sp,#0 adr @x[0],.Lsigma stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] cmp $len,#512 b.hs .L512_or_more_neon sub sp,sp,#64 ldp @d[0],@d[1],[@x[0]] // load sigma ld1 {@K[0]},[@x[0]],#16 ldp @d[2],@d[3],[$key] // load key ldp @d[4],@d[5],[$key,#16] ld1 {@K[1],@K[2]},[$key] ldp @d[6],@d[7],[$ctr] // load counter ld1 {@K[3]},[$ctr] ld1 {$ONE},[@x[0]] #ifdef __ARMEB__ rev64 @K[0],@K[0] ror @d[2],@d[2],#32 ror @d[3],@d[3],#32 ror @d[4],@d[4],#32 ror @d[5],@d[5],#32 ror @d[6],@d[6],#32 ror @d[7],@d[7],#32 #endif add @K[3],@K[3],$ONE // += 1 add @K[4],@K[3],$ONE add @K[5],@K[4],$ONE shl $ONE,$ONE,#2 // 1 -> 4 .Loop_outer_neon: mov.32 @x[0],@d[0] // unpack key block lsr @x[1],@d[0],#32 mov $A0,@K[0] mov.32 @x[2],@d[1] lsr @x[3],@d[1],#32 mov $A1,@K[0] mov.32 @x[4],@d[2] lsr @x[5],@d[2],#32 mov $A2,@K[0] mov.32 @x[6],@d[3] mov $B0,@K[1] lsr @x[7],@d[3],#32 mov $B1,@K[1] mov.32 @x[8],@d[4] mov $B2,@K[1] lsr @x[9],@d[4],#32 mov $D0,@K[3] mov.32 @x[10],@d[5] mov $D1,@K[4] lsr @x[11],@d[5],#32 mov $D2,@K[5] mov.32 @x[12],@d[6] mov $C0,@K[2] lsr @x[13],@d[6],#32 mov $C1,@K[2] mov.32 @x[14],@d[7] mov $C2,@K[2] lsr @x[15],@d[7],#32 mov $ctr,#10 subs $len,$len,#256 .Loop_neon: sub $ctr,$ctr,#1 ___ my @thread0=&NEONROUND($A0,$B0,$C0,$D0,$T0,0); my @thread1=&NEONROUND($A1,$B1,$C1,$D1,$T1,0); my @thread2=&NEONROUND($A2,$B2,$C2,$D2,$T2,0); my @thread3=&ROUND(0,4,8,12); foreach (@thread0) { eval; eval(shift(@thread3)); eval(shift(@thread1)); eval(shift(@thread3)); eval(shift(@thread2)); eval(shift(@thread3)); } @thread0=&NEONROUND($A0,$B0,$C0,$D0,$T0,1); @thread1=&NEONROUND($A1,$B1,$C1,$D1,$T1,1); @thread2=&NEONROUND($A2,$B2,$C2,$D2,$T2,1); @thread3=&ROUND(0,5,10,15); foreach (@thread0) { eval; eval(shift(@thread3)); eval(shift(@thread1)); eval(shift(@thread3)); eval(shift(@thread2)); eval(shift(@thread3)); } $code.=<<___; cbnz $ctr,.Loop_neon add.32 @x[0],@x[0],@d[0] // accumulate key block add $A0,$A0,@K[0] add @x[1],@x[1],@d[0],lsr#32 add $A1,$A1,@K[0] add.32 @x[2],@x[2],@d[1] add $A2,$A2,@K[0] add @x[3],@x[3],@d[1],lsr#32 add $C0,$C0,@K[2] add.32 @x[4],@x[4],@d[2] add $C1,$C1,@K[2] add @x[5],@x[5],@d[2],lsr#32 add $C2,$C2,@K[2] add.32 @x[6],@x[6],@d[3] add $D0,$D0,@K[3] add @x[7],@x[7],@d[3],lsr#32 add.32 @x[8],@x[8],@d[4] add $D1,$D1,@K[4] add @x[9],@x[9],@d[4],lsr#32 add.32 @x[10],@x[10],@d[5] add $D2,$D2,@K[5] add @x[11],@x[11],@d[5],lsr#32 add.32 @x[12],@x[12],@d[6] add $B0,$B0,@K[1] add @x[13],@x[13],@d[6],lsr#32 add.32 @x[14],@x[14],@d[7] add $B1,$B1,@K[1] add @x[15],@x[15],@d[7],lsr#32 add $B2,$B2,@K[1] b.lo .Ltail_neon add @x[0],@x[0],@x[1],lsl#32 // pack add @x[2],@x[2],@x[3],lsl#32 ldp @x[1],@x[3],[$inp,#0] // load input add @x[4],@x[4],@x[5],lsl#32 add @x[6],@x[6],@x[7],lsl#32 ldp @x[5],@x[7],[$inp,#16] add @x[8],@x[8],@x[9],lsl#32 add @x[10],@x[10],@x[11],lsl#32 ldp @x[9],@x[11],[$inp,#32] add @x[12],@x[12],@x[13],lsl#32 add @x[14],@x[14],@x[15],lsl#32 ldp @x[13],@x[15],[$inp,#48] add $inp,$inp,#64 #ifdef __ARMEB__ rev @x[0],@x[0] rev @x[2],@x[2] rev @x[4],@x[4] rev @x[6],@x[6] rev @x[8],@x[8] rev @x[10],@x[10] rev @x[12],@x[12] rev @x[14],@x[14] #endif ld1.8 {$T0-$T3},[$inp],#64 eor @x[0],@x[0],@x[1] eor @x[2],@x[2],@x[3] eor @x[4],@x[4],@x[5] eor @x[6],@x[6],@x[7] eor @x[8],@x[8],@x[9] eor $A0,$A0,$T0 eor @x[10],@x[10],@x[11] eor $B0,$B0,$T1 eor @x[12],@x[12],@x[13] eor $C0,$C0,$T2 eor @x[14],@x[14],@x[15] eor $D0,$D0,$T3 ld1.8 {$T0-$T3},[$inp],#64 stp @x[0],@x[2],[$out,#0] // store output add @d[6],@d[6],#4 // increment counter stp @x[4],@x[6],[$out,#16] add @K[3],@K[3],$ONE // += 4 stp @x[8],@x[10],[$out,#32] add @K[4],@K[4],$ONE stp @x[12],@x[14],[$out,#48] add @K[5],@K[5],$ONE add $out,$out,#64 st1.8 {$A0-$D0},[$out],#64 ld1.8 {$A0-$D0},[$inp],#64 eor $A1,$A1,$T0 eor $B1,$B1,$T1 eor $C1,$C1,$T2 eor $D1,$D1,$T3 st1.8 {$A1-$D1},[$out],#64 eor $A2,$A2,$A0 eor $B2,$B2,$B0 eor $C2,$C2,$C0 eor $D2,$D2,$D0 st1.8 {$A2-$D2},[$out],#64 b.hi .Loop_outer_neon ldp x19,x20,[x29,#16] add sp,sp,#64 ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#96 .inst 0xd50323bf // autiasp ret .Ltail_neon: add $len,$len,#256 cmp $len,#64 b.lo .Less_than_64 add @x[0],@x[0],@x[1],lsl#32 // pack add @x[2],@x[2],@x[3],lsl#32 ldp @x[1],@x[3],[$inp,#0] // load input add @x[4],@x[4],@x[5],lsl#32 add @x[6],@x[6],@x[7],lsl#32 ldp @x[5],@x[7],[$inp,#16] add @x[8],@x[8],@x[9],lsl#32 add @x[10],@x[10],@x[11],lsl#32 ldp @x[9],@x[11],[$inp,#32] add @x[12],@x[12],@x[13],lsl#32 add @x[14],@x[14],@x[15],lsl#32 ldp @x[13],@x[15],[$inp,#48] add $inp,$inp,#64 #ifdef __ARMEB__ rev @x[0],@x[0] rev @x[2],@x[2] rev @x[4],@x[4] rev @x[6],@x[6] rev @x[8],@x[8] rev @x[10],@x[10] rev @x[12],@x[12] rev @x[14],@x[14] #endif eor @x[0],@x[0],@x[1] eor @x[2],@x[2],@x[3] eor @x[4],@x[4],@x[5] eor @x[6],@x[6],@x[7] eor @x[8],@x[8],@x[9] eor @x[10],@x[10],@x[11] eor @x[12],@x[12],@x[13] eor @x[14],@x[14],@x[15] stp @x[0],@x[2],[$out,#0] // store output add @d[6],@d[6],#4 // increment counter stp @x[4],@x[6],[$out,#16] stp @x[8],@x[10],[$out,#32] stp @x[12],@x[14],[$out,#48] add $out,$out,#64 b.eq .Ldone_neon sub $len,$len,#64 cmp $len,#64 b.lo .Less_than_128 ld1.8 {$T0-$T3},[$inp],#64 eor $A0,$A0,$T0 eor $B0,$B0,$T1 eor $C0,$C0,$T2 eor $D0,$D0,$T3 st1.8 {$A0-$D0},[$out],#64 b.eq .Ldone_neon sub $len,$len,#64 cmp $len,#64 b.lo .Less_than_192 ld1.8 {$T0-$T3},[$inp],#64 eor $A1,$A1,$T0 eor $B1,$B1,$T1 eor $C1,$C1,$T2 eor $D1,$D1,$T3 st1.8 {$A1-$D1},[$out],#64 b.eq .Ldone_neon sub $len,$len,#64 st1.8 {$A2-$D2},[sp] b .Last_neon .Less_than_128: st1.8 {$A0-$D0},[sp] b .Last_neon .Less_than_192: st1.8 {$A1-$D1},[sp] b .Last_neon .align 4 .Last_neon: sub $out,$out,#1 add $inp,$inp,$len add $out,$out,$len add $ctr,sp,$len neg $len,$len .Loop_tail_neon: ldrb w10,[$inp,$len] ldrb w11,[$ctr,$len] add $len,$len,#1 eor w10,w10,w11 strb w10,[$out,$len] cbnz $len,.Loop_tail_neon stp xzr,xzr,[sp,#0] stp xzr,xzr,[sp,#16] stp xzr,xzr,[sp,#32] stp xzr,xzr,[sp,#48] .Ldone_neon: ldp x19,x20,[x29,#16] add sp,sp,#64 ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#96 .inst 0xd50323bf // autiasp ret .size ChaCha20_neon,.-ChaCha20_neon ___ { my ($T0,$T1,$T2,$T3,$T4,$T5)=@K; my ($A0,$B0,$C0,$D0,$A1,$B1,$C1,$D1,$A2,$B2,$C2,$D2, $A3,$B3,$C3,$D3,$A4,$B4,$C4,$D4,$A5,$B5,$C5,$D5) = map("v$_.4s",(0..23)); $code.=<<___; .type ChaCha20_512_neon,%function .align 5 ChaCha20_512_neon: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-96]! add x29,sp,#0 adr @x[0],.Lsigma stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] .L512_or_more_neon: sub sp,sp,#128+64 ldp @d[0],@d[1],[@x[0]] // load sigma ld1 {@K[0]},[@x[0]],#16 ldp @d[2],@d[3],[$key] // load key ldp @d[4],@d[5],[$key,#16] ld1 {@K[1],@K[2]},[$key] ldp @d[6],@d[7],[$ctr] // load counter ld1 {@K[3]},[$ctr] ld1 {$ONE},[@x[0]] #ifdef __ARMEB__ rev64 @K[0],@K[0] ror @d[2],@d[2],#32 ror @d[3],@d[3],#32 ror @d[4],@d[4],#32 ror @d[5],@d[5],#32 ror @d[6],@d[6],#32 ror @d[7],@d[7],#32 #endif add @K[3],@K[3],$ONE // += 1 stp @K[0],@K[1],[sp,#0] // off-load key block, invariant part add @K[3],@K[3],$ONE // not typo str @K[2],[sp,#32] add @K[4],@K[3],$ONE add @K[5],@K[4],$ONE add @K[6],@K[5],$ONE shl $ONE,$ONE,#2 // 1 -> 4 stp d8,d9,[sp,#128+0] // meet ABI requirements stp d10,d11,[sp,#128+16] stp d12,d13,[sp,#128+32] stp d14,d15,[sp,#128+48] sub $len,$len,#512 // not typo .Loop_outer_512_neon: mov $A0,@K[0] mov $A1,@K[0] mov $A2,@K[0] mov $A3,@K[0] mov $A4,@K[0] mov $A5,@K[0] mov $B0,@K[1] mov.32 @x[0],@d[0] // unpack key block mov $B1,@K[1] lsr @x[1],@d[0],#32 mov $B2,@K[1] mov.32 @x[2],@d[1] mov $B3,@K[1] lsr @x[3],@d[1],#32 mov $B4,@K[1] mov.32 @x[4],@d[2] mov $B5,@K[1] lsr @x[5],@d[2],#32 mov $D0,@K[3] mov.32 @x[6],@d[3] mov $D1,@K[4] lsr @x[7],@d[3],#32 mov $D2,@K[5] mov.32 @x[8],@d[4] mov $D3,@K[6] lsr @x[9],@d[4],#32 mov $C0,@K[2] mov.32 @x[10],@d[5] mov $C1,@K[2] lsr @x[11],@d[5],#32 add $D4,$D0,$ONE // +4 mov.32 @x[12],@d[6] add $D5,$D1,$ONE // +4 lsr @x[13],@d[6],#32 mov $C2,@K[2] mov.32 @x[14],@d[7] mov $C3,@K[2] lsr @x[15],@d[7],#32 mov $C4,@K[2] stp @K[3],@K[4],[sp,#48] // off-load key block, variable part mov $C5,@K[2] str @K[5],[sp,#80] mov $ctr,#5 subs $len,$len,#512 .Loop_upper_neon: sub $ctr,$ctr,#1 ___ my @thread0=&NEONROUND($A0,$B0,$C0,$D0,$T0,0); my @thread1=&NEONROUND($A1,$B1,$C1,$D1,$T1,0); my @thread2=&NEONROUND($A2,$B2,$C2,$D2,$T2,0); my @thread3=&NEONROUND($A3,$B3,$C3,$D3,$T3,0); my @thread4=&NEONROUND($A4,$B4,$C4,$D4,$T4,0); my @thread5=&NEONROUND($A5,$B5,$C5,$D5,$T5,0); my @thread67=(&ROUND(0,4,8,12),&ROUND(0,5,10,15)); my $diff = ($#thread0+1)*6 - $#thread67 - 1; my $i = 0; foreach (@thread0) { eval; eval(shift(@thread67)); eval(shift(@thread1)); eval(shift(@thread67)); eval(shift(@thread2)); eval(shift(@thread67)); eval(shift(@thread3)); eval(shift(@thread67)); eval(shift(@thread4)); eval(shift(@thread67)); eval(shift(@thread5)); eval(shift(@thread67)); } @thread0=&NEONROUND($A0,$B0,$C0,$D0,$T0,1); @thread1=&NEONROUND($A1,$B1,$C1,$D1,$T1,1); @thread2=&NEONROUND($A2,$B2,$C2,$D2,$T2,1); @thread3=&NEONROUND($A3,$B3,$C3,$D3,$T3,1); @thread4=&NEONROUND($A4,$B4,$C4,$D4,$T4,1); @thread5=&NEONROUND($A5,$B5,$C5,$D5,$T5,1); @thread67=(&ROUND(0,4,8,12),&ROUND(0,5,10,15)); foreach (@thread0) { eval; eval(shift(@thread67)); eval(shift(@thread1)); eval(shift(@thread67)); eval(shift(@thread2)); eval(shift(@thread67)); eval(shift(@thread3)); eval(shift(@thread67)); eval(shift(@thread4)); eval(shift(@thread67)); eval(shift(@thread5)); eval(shift(@thread67)); } $code.=<<___; cbnz $ctr,.Loop_upper_neon add.32 @x[0],@x[0],@d[0] // accumulate key block add @x[1],@x[1],@d[0],lsr#32 add.32 @x[2],@x[2],@d[1] add @x[3],@x[3],@d[1],lsr#32 add.32 @x[4],@x[4],@d[2] add @x[5],@x[5],@d[2],lsr#32 add.32 @x[6],@x[6],@d[3] add @x[7],@x[7],@d[3],lsr#32 add.32 @x[8],@x[8],@d[4] add @x[9],@x[9],@d[4],lsr#32 add.32 @x[10],@x[10],@d[5] add @x[11],@x[11],@d[5],lsr#32 add.32 @x[12],@x[12],@d[6] add @x[13],@x[13],@d[6],lsr#32 add.32 @x[14],@x[14],@d[7] add @x[15],@x[15],@d[7],lsr#32 add @x[0],@x[0],@x[1],lsl#32 // pack add @x[2],@x[2],@x[3],lsl#32 ldp @x[1],@x[3],[$inp,#0] // load input add @x[4],@x[4],@x[5],lsl#32 add @x[6],@x[6],@x[7],lsl#32 ldp @x[5],@x[7],[$inp,#16] add @x[8],@x[8],@x[9],lsl#32 add @x[10],@x[10],@x[11],lsl#32 ldp @x[9],@x[11],[$inp,#32] add @x[12],@x[12],@x[13],lsl#32 add @x[14],@x[14],@x[15],lsl#32 ldp @x[13],@x[15],[$inp,#48] add $inp,$inp,#64 #ifdef __ARMEB__ rev @x[0],@x[0] rev @x[2],@x[2] rev @x[4],@x[4] rev @x[6],@x[6] rev @x[8],@x[8] rev @x[10],@x[10] rev @x[12],@x[12] rev @x[14],@x[14] #endif eor @x[0],@x[0],@x[1] eor @x[2],@x[2],@x[3] eor @x[4],@x[4],@x[5] eor @x[6],@x[6],@x[7] eor @x[8],@x[8],@x[9] eor @x[10],@x[10],@x[11] eor @x[12],@x[12],@x[13] eor @x[14],@x[14],@x[15] stp @x[0],@x[2],[$out,#0] // store output add @d[6],@d[6],#1 // increment counter mov.32 @x[0],@d[0] // unpack key block lsr @x[1],@d[0],#32 stp @x[4],@x[6],[$out,#16] mov.32 @x[2],@d[1] lsr @x[3],@d[1],#32 stp @x[8],@x[10],[$out,#32] mov.32 @x[4],@d[2] lsr @x[5],@d[2],#32 stp @x[12],@x[14],[$out,#48] add $out,$out,#64 mov.32 @x[6],@d[3] lsr @x[7],@d[3],#32 mov.32 @x[8],@d[4] lsr @x[9],@d[4],#32 mov.32 @x[10],@d[5] lsr @x[11],@d[5],#32 mov.32 @x[12],@d[6] lsr @x[13],@d[6],#32 mov.32 @x[14],@d[7] lsr @x[15],@d[7],#32 mov $ctr,#5 .Loop_lower_neon: sub $ctr,$ctr,#1 ___ @thread0=&NEONROUND($A0,$B0,$C0,$D0,$T0,0); @thread1=&NEONROUND($A1,$B1,$C1,$D1,$T1,0); @thread2=&NEONROUND($A2,$B2,$C2,$D2,$T2,0); @thread3=&NEONROUND($A3,$B3,$C3,$D3,$T3,0); @thread4=&NEONROUND($A4,$B4,$C4,$D4,$T4,0); @thread5=&NEONROUND($A5,$B5,$C5,$D5,$T5,0); @thread67=(&ROUND(0,4,8,12),&ROUND(0,5,10,15)); foreach (@thread0) { eval; eval(shift(@thread67)); eval(shift(@thread1)); eval(shift(@thread67)); eval(shift(@thread2)); eval(shift(@thread67)); eval(shift(@thread3)); eval(shift(@thread67)); eval(shift(@thread4)); eval(shift(@thread67)); eval(shift(@thread5)); eval(shift(@thread67)); } @thread0=&NEONROUND($A0,$B0,$C0,$D0,$T0,1); @thread1=&NEONROUND($A1,$B1,$C1,$D1,$T1,1); @thread2=&NEONROUND($A2,$B2,$C2,$D2,$T2,1); @thread3=&NEONROUND($A3,$B3,$C3,$D3,$T3,1); @thread4=&NEONROUND($A4,$B4,$C4,$D4,$T4,1); @thread5=&NEONROUND($A5,$B5,$C5,$D5,$T5,1); @thread67=(&ROUND(0,4,8,12),&ROUND(0,5,10,15)); foreach (@thread0) { eval; eval(shift(@thread67)); eval(shift(@thread1)); eval(shift(@thread67)); eval(shift(@thread2)); eval(shift(@thread67)); eval(shift(@thread3)); eval(shift(@thread67)); eval(shift(@thread4)); eval(shift(@thread67)); eval(shift(@thread5)); eval(shift(@thread67)); } $code.=<<___; cbnz $ctr,.Loop_lower_neon add.32 @x[0],@x[0],@d[0] // accumulate key block ldp @K[0],@K[1],[sp,#0] add @x[1],@x[1],@d[0],lsr#32 ldp @K[2],@K[3],[sp,#32] add.32 @x[2],@x[2],@d[1] ldp @K[4],@K[5],[sp,#64] add @x[3],@x[3],@d[1],lsr#32 add $A0,$A0,@K[0] add.32 @x[4],@x[4],@d[2] add $A1,$A1,@K[0] add @x[5],@x[5],@d[2],lsr#32 add $A2,$A2,@K[0] add.32 @x[6],@x[6],@d[3] add $A3,$A3,@K[0] add @x[7],@x[7],@d[3],lsr#32 add $A4,$A4,@K[0] add.32 @x[8],@x[8],@d[4] add $A5,$A5,@K[0] add @x[9],@x[9],@d[4],lsr#32 add $C0,$C0,@K[2] add.32 @x[10],@x[10],@d[5] add $C1,$C1,@K[2] add @x[11],@x[11],@d[5],lsr#32 add $C2,$C2,@K[2] add.32 @x[12],@x[12],@d[6] add $C3,$C3,@K[2] add @x[13],@x[13],@d[6],lsr#32 add $C4,$C4,@K[2] add.32 @x[14],@x[14],@d[7] add $C5,$C5,@K[2] add @x[15],@x[15],@d[7],lsr#32 add $D4,$D4,$ONE // +4 add @x[0],@x[0],@x[1],lsl#32 // pack add $D5,$D5,$ONE // +4 add @x[2],@x[2],@x[3],lsl#32 add $D0,$D0,@K[3] ldp @x[1],@x[3],[$inp,#0] // load input add $D1,$D1,@K[4] add @x[4],@x[4],@x[5],lsl#32 add $D2,$D2,@K[5] add @x[6],@x[6],@x[7],lsl#32 add $D3,$D3,@K[6] ldp @x[5],@x[7],[$inp,#16] add $D4,$D4,@K[3] add @x[8],@x[8],@x[9],lsl#32 add $D5,$D5,@K[4] add @x[10],@x[10],@x[11],lsl#32 add $B0,$B0,@K[1] ldp @x[9],@x[11],[$inp,#32] add $B1,$B1,@K[1] add @x[12],@x[12],@x[13],lsl#32 add $B2,$B2,@K[1] add @x[14],@x[14],@x[15],lsl#32 add $B3,$B3,@K[1] ldp @x[13],@x[15],[$inp,#48] add $B4,$B4,@K[1] add $inp,$inp,#64 add $B5,$B5,@K[1] #ifdef __ARMEB__ rev @x[0],@x[0] rev @x[2],@x[2] rev @x[4],@x[4] rev @x[6],@x[6] rev @x[8],@x[8] rev @x[10],@x[10] rev @x[12],@x[12] rev @x[14],@x[14] #endif ld1.8 {$T0-$T3},[$inp],#64 eor @x[0],@x[0],@x[1] eor @x[2],@x[2],@x[3] eor @x[4],@x[4],@x[5] eor @x[6],@x[6],@x[7] eor @x[8],@x[8],@x[9] eor $A0,$A0,$T0 eor @x[10],@x[10],@x[11] eor $B0,$B0,$T1 eor @x[12],@x[12],@x[13] eor $C0,$C0,$T2 eor @x[14],@x[14],@x[15] eor $D0,$D0,$T3 ld1.8 {$T0-$T3},[$inp],#64 stp @x[0],@x[2],[$out,#0] // store output add @d[6],@d[6],#7 // increment counter stp @x[4],@x[6],[$out,#16] stp @x[8],@x[10],[$out,#32] stp @x[12],@x[14],[$out,#48] add $out,$out,#64 st1.8 {$A0-$D0},[$out],#64 ld1.8 {$A0-$D0},[$inp],#64 eor $A1,$A1,$T0 eor $B1,$B1,$T1 eor $C1,$C1,$T2 eor $D1,$D1,$T3 st1.8 {$A1-$D1},[$out],#64 ld1.8 {$A1-$D1},[$inp],#64 eor $A2,$A2,$A0 ldp @K[0],@K[1],[sp,#0] eor $B2,$B2,$B0 ldp @K[2],@K[3],[sp,#32] eor $C2,$C2,$C0 eor $D2,$D2,$D0 st1.8 {$A2-$D2},[$out],#64 ld1.8 {$A2-$D2},[$inp],#64 eor $A3,$A3,$A1 eor $B3,$B3,$B1 eor $C3,$C3,$C1 eor $D3,$D3,$D1 st1.8 {$A3-$D3},[$out],#64 ld1.8 {$A3-$D3},[$inp],#64 eor $A4,$A4,$A2 eor $B4,$B4,$B2 eor $C4,$C4,$C2 eor $D4,$D4,$D2 st1.8 {$A4-$D4},[$out],#64 shl $A0,$ONE,#1 // 4 -> 8 eor $A5,$A5,$A3 eor $B5,$B5,$B3 eor $C5,$C5,$C3 eor $D5,$D5,$D3 st1.8 {$A5-$D5},[$out],#64 add @K[3],@K[3],$A0 // += 8 add @K[4],@K[4],$A0 add @K[5],@K[5],$A0 add @K[6],@K[6],$A0 b.hs .Loop_outer_512_neon adds $len,$len,#512 ushr $A0,$ONE,#2 // 4 -> 1 ldp d8,d9,[sp,#128+0] // meet ABI requirements ldp d10,d11,[sp,#128+16] ldp d12,d13,[sp,#128+32] ldp d14,d15,[sp,#128+48] stp @K[0],$ONE,[sp,#0] // wipe off-load area stp @K[0],$ONE,[sp,#32] stp @K[0],$ONE,[sp,#64] b.eq .Ldone_512_neon cmp $len,#192 sub @K[3],@K[3],$A0 // -= 1 sub @K[4],@K[4],$A0 sub @K[5],@K[5],$A0 add sp,sp,#128 b.hs .Loop_outer_neon eor @K[1],@K[1],@K[1] eor @K[2],@K[2],@K[2] eor @K[3],@K[3],@K[3] eor @K[4],@K[4],@K[4] eor @K[5],@K[5],@K[5] eor @K[6],@K[6],@K[6] b .Loop_outer .Ldone_512_neon: ldp x19,x20,[x29,#16] add sp,sp,#128+64 ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#96 .inst 0xd50323bf // autiasp ret .size ChaCha20_512_neon,.-ChaCha20_512_neon ___ } }}} foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; (s/\b([a-z]+)\.32\b/$1/ and (s/x([0-9]+)/w$1/g or 1)) or (m/\b(eor|ext|mov)\b/ and (s/\.4s/\.16b/g or 1)) or (s/\b((?:ld|st)1)\.8\b/$1/ and (s/\.4s/\.16b/g or 1)) or (m/\b(ld|st)[rp]\b/ and (s/v([0-9]+)\.4s/q$1/g or 1)) or (s/\brev32\.16\b/rev32/ and (s/\.4s/\.8h/g or 1)); #s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # flush openssl-1.1.1f/crypto/chacha/asm/chacha-c64xplus.pl000077500000000000000000000625231364063235100221220ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ChaCha20 for C64x+. # # October 2015 # # Performance is 3.54 cycles per processed byte, which is ~4.3 times # faster than code generated by TI compiler. Compiler also disables # interrupts for some reason, thus making interrupt response time # dependent on input length. This module on the other hand is free # from such limitation. $output=pop; open STDOUT,">$output"; ($OUT,$INP,$LEN,$KEYB,$COUNTERA)=("A4","B4","A6","B6","A8"); ($KEYA,$COUNTERB,$STEP)=("A7","B7","A3"); @X= ("A16","B16","A17","B17","A18","B18","A19","B19", "A20","B20","A21","B21","A22","B22","A23","B23"); @Y= ("A24","B24","A25","B25","A26","B26","A27","B27", "A28","B28","A29","B29","A30","B30","A31","B31"); @DAT=("A6", "A7", "B6", "B7", "A8", "A9", "B8", "B9", "A10","A11","B10","B11","A12","A13","B12","B13"); # yes, overlaps with @DAT, used only in 2x interleave code path... @K2x=("A6", "B6", "A7", "B7", "A8", "B8", "A9", "B9", "A10","B10","A11","B11","A2", "B2", "A13","B13"); $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .asg ChaCha20_ctr32,_ChaCha20_ctr32 .endif .asg B3,RA .asg A15,FP .asg B15,SP .global _ChaCha20_ctr32 .align 32 _ChaCha20_ctr32: .asmfunc stack_usage(40+64) MV $LEN,A0 ; reassign [!A0] BNOP RA ; no data || [A0] STW FP,*SP--(40+64) ; save frame pointer and alloca(40+64) || [A0] MV SP,FP [A0] STDW B13:B12,*SP[4+8] ; ABI says so || [A0] MV $KEYB,$KEYA || [A0] MV $COUNTERA,$COUNTERB [A0] STDW B11:B10,*SP[3+8] || [A0] STDW A13:A12,*FP[-3] [A0] STDW A11:A10,*FP[-4] || [A0] MVK 128,$STEP ; 2 * input block size [A0] LDW *${KEYA}[0],@Y[4] ; load key || [A0] LDW *${KEYB}[1],@Y[5] || [A0] MVK 0x00007865,@Y[0] ; synthesize sigma || [A0] MVK 0x0000646e,@Y[1] [A0] LDW *${KEYA}[2],@Y[6] || [A0] LDW *${KEYB}[3],@Y[7] || [A0] MVKH 0x61700000,@Y[0] || [A0] MVKH 0x33200000,@Y[1] LDW *${KEYA}[4],@Y[8] || LDW *${KEYB}[5],@Y[9] || MVK 0x00002d32,@Y[2] || MVK 0x00006574,@Y[3] LDW *${KEYA}[6],@Y[10] || LDW *${KEYB}[7],@Y[11] || MVKH 0x79620000,@Y[2] || MVKH 0x6b200000,@Y[3] LDW *${COUNTERA}[0],@Y[12] ; load counter||nonce || LDW *${COUNTERB}[1],@Y[13] || CMPLTU A0,$STEP,A1 ; is length < 2*blocks? LDW *${COUNTERA}[2],@Y[14] || LDW *${COUNTERB}[3],@Y[15] || [A1] BNOP top1x? [A1] MVK 64,$STEP ; input block size || MVK 10,B0 ; inner loop counter DMV @Y[2],@Y[0],@X[2]:@X[0] ; copy block || DMV @Y[3],@Y[1],@X[3]:@X[1] ||[!A1] STDW @Y[2]:@Y[0],*FP[-12] ; offload key material to stack ||[!A1] STDW @Y[3]:@Y[1],*SP[2] DMV @Y[6],@Y[4],@X[6]:@X[4] || DMV @Y[7],@Y[5],@X[7]:@X[5] ||[!A1] STDW @Y[6]:@Y[4],*FP[-10] ||[!A1] STDW @Y[7]:@Y[5],*SP[4] DMV @Y[10],@Y[8],@X[10]:@X[8] || DMV @Y[11],@Y[9],@X[11]:@X[9] ||[!A1] STDW @Y[10]:@Y[8],*FP[-8] ||[!A1] STDW @Y[11]:@Y[9],*SP[6] DMV @Y[14],@Y[12],@X[14]:@X[12] || DMV @Y[15],@Y[13],@X[15]:@X[13] ||[!A1] MV @Y[12],@K2x[12] ; counter ||[!A1] MV @Y[13],@K2x[13] ||[!A1] STW @Y[14],*FP[-6*2] ||[!A1] STW @Y[15],*SP[8*2] ___ { ################################################################ # 2x interleave gives 50% performance improvement # my ($a0,$a1,$a2,$a3) = (0..3); my ($b0,$b1,$b2,$b3) = (4..7); my ($c0,$c1,$c2,$c3) = (8..11); my ($d0,$d1,$d2,$d3) = (12..15); $code.=<<___; outer2x?: ADD @X[$b1],@X[$a1],@X[$a1] || ADD @X[$b2],@X[$a2],@X[$a2] || ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b3],@X[$a3],@X[$a3] || DMV @Y[2],@Y[0],@K2x[2]:@K2x[0] || DMV @Y[3],@Y[1],@K2x[3]:@K2x[1] XOR @X[$a1],@X[$d1],@X[$d1] || XOR @X[$a2],@X[$d2],@X[$d2] || XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a3],@X[$d3],@X[$d3] || DMV @Y[6],@Y[4],@K2x[6]:@K2x[4] || DMV @Y[7],@Y[5],@K2x[7]:@K2x[5] SWAP2 @X[$d1],@X[$d1] ; rotate by 16 || SWAP2 @X[$d2],@X[$d2] || SWAP2 @X[$d0],@X[$d0] || SWAP2 @X[$d3],@X[$d3] ADD @X[$d1],@X[$c1],@X[$c1] || ADD @X[$d2],@X[$c2],@X[$c2] || ADD @X[$d0],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c3],@X[$c3] || DMV @Y[10],@Y[8],@K2x[10]:@K2x[8] || DMV @Y[11],@Y[9],@K2x[11]:@K2x[9] XOR @X[$c1],@X[$b1],@X[$b1] || XOR @X[$c2],@X[$b2],@X[$b2] || XOR @X[$c0],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b3],@X[$b3] || ADD 1,@Y[12],@Y[12] ; adjust counter for 2nd block ROTL @X[$b1],12,@X[$b1] || ROTL @X[$b2],12,@X[$b2] || MV @Y[14],@K2x[14] || MV @Y[15],@K2x[15] top2x?: ROTL @X[$b0],12,@X[$b0] || ROTL @X[$b3],12,@X[$b3] || ADD @Y[$b1],@Y[$a1],@Y[$a1] || ADD @Y[$b2],@Y[$a2],@Y[$a2] ADD @Y[$b0],@Y[$a0],@Y[$a0] || ADD @Y[$b3],@Y[$a3],@Y[$a3] || ADD @X[$b1],@X[$a1],@X[$a1] || ADD @X[$b2],@X[$a2],@X[$a2] || XOR @Y[$a1],@Y[$d1],@Y[$d1] || XOR @Y[$a2],@Y[$d2],@Y[$d2] XOR @Y[$a0],@Y[$d0],@Y[$d0] || XOR @Y[$a3],@Y[$d3],@Y[$d3] || ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b3],@X[$a3],@X[$a3] || XOR @X[$a1],@X[$d1],@X[$d1] || XOR @X[$a2],@X[$d2],@X[$d2] XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a3],@X[$d3],@X[$d3] || ROTL @X[$d1],8,@X[$d1] || ROTL @X[$d2],8,@X[$d2] || SWAP2 @Y[$d1],@Y[$d1] ; rotate by 16 || SWAP2 @Y[$d2],@Y[$d2] || SWAP2 @Y[$d0],@Y[$d0] || SWAP2 @Y[$d3],@Y[$d3] ROTL @X[$d0],8,@X[$d0] || ROTL @X[$d3],8,@X[$d3] || ADD @Y[$d1],@Y[$c1],@Y[$c1] || ADD @Y[$d2],@Y[$c2],@Y[$c2] || ADD @Y[$d0],@Y[$c0],@Y[$c0] || ADD @Y[$d3],@Y[$c3],@Y[$c3] || BNOP middle2x1? ; protect from interrupt ADD @X[$d1],@X[$c1],@X[$c1] || ADD @X[$d2],@X[$c2],@X[$c2] || XOR @Y[$c1],@Y[$b1],@Y[$b1] || XOR @Y[$c2],@Y[$b2],@Y[$b2] || XOR @Y[$c0],@Y[$b0],@Y[$b0] || XOR @Y[$c3],@Y[$b3],@Y[$b3] ADD @X[$d0],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c3],@X[$c3] || XOR @X[$c1],@X[$b1],@X[$b1] || XOR @X[$c2],@X[$b2],@X[$b2] || ROTL @X[$d1],0,@X[$d2] ; moved to avoid cross-path stall || ROTL @X[$d2],0,@X[$d3] XOR @X[$c0],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b3],@X[$b3] || MV @X[$d0],@X[$d1] || MV @X[$d3],@X[$d0] || ROTL @Y[$b1],12,@Y[$b1] || ROTL @Y[$b2],12,@Y[$b2] ROTL @X[$b1],7,@X[$b0] ; avoided cross-path stall || ROTL @X[$b2],7,@X[$b1] ROTL @X[$b0],7,@X[$b3] || ROTL @X[$b3],7,@X[$b2] middle2x1?: ROTL @Y[$b0],12,@Y[$b0] || ROTL @Y[$b3],12,@Y[$b3] || ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b1],@X[$a1],@X[$a1] ADD @X[$b2],@X[$a2],@X[$a2] || ADD @X[$b3],@X[$a3],@X[$a3] || ADD @Y[$b1],@Y[$a1],@Y[$a1] || ADD @Y[$b2],@Y[$a2],@Y[$a2] || XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a1],@X[$d1],@X[$d1] XOR @X[$a2],@X[$d2],@X[$d2] || XOR @X[$a3],@X[$d3],@X[$d3] || ADD @Y[$b0],@Y[$a0],@Y[$a0] || ADD @Y[$b3],@Y[$a3],@Y[$a3] || XOR @Y[$a1],@Y[$d1],@Y[$d1] || XOR @Y[$a2],@Y[$d2],@Y[$d2] XOR @Y[$a0],@Y[$d0],@Y[$d0] || XOR @Y[$a3],@Y[$d3],@Y[$d3] || ROTL @Y[$d1],8,@Y[$d1] || ROTL @Y[$d2],8,@Y[$d2] || SWAP2 @X[$d0],@X[$d0] ; rotate by 16 || SWAP2 @X[$d1],@X[$d1] || SWAP2 @X[$d2],@X[$d2] || SWAP2 @X[$d3],@X[$d3] ROTL @Y[$d0],8,@Y[$d0] || ROTL @Y[$d3],8,@Y[$d3] || ADD @X[$d0],@X[$c2],@X[$c2] || ADD @X[$d1],@X[$c3],@X[$c3] || ADD @X[$d2],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c1],@X[$c1] || BNOP middle2x2? ; protect from interrupt ADD @Y[$d1],@Y[$c1],@Y[$c1] || ADD @Y[$d2],@Y[$c2],@Y[$c2] || XOR @X[$c2],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b1],@X[$b1] || XOR @X[$c0],@X[$b2],@X[$b2] || XOR @X[$c1],@X[$b3],@X[$b3] ADD @Y[$d0],@Y[$c0],@Y[$c0] || ADD @Y[$d3],@Y[$c3],@Y[$c3] || XOR @Y[$c1],@Y[$b1],@Y[$b1] || XOR @Y[$c2],@Y[$b2],@Y[$b2] || ROTL @Y[$d1],0,@Y[$d2] ; moved to avoid cross-path stall || ROTL @Y[$d2],0,@Y[$d3] XOR @Y[$c0],@Y[$b0],@Y[$b0] || XOR @Y[$c3],@Y[$b3],@Y[$b3] || MV @Y[$d0],@Y[$d1] || MV @Y[$d3],@Y[$d0] || ROTL @X[$b0],12,@X[$b0] || ROTL @X[$b1],12,@X[$b1] ROTL @Y[$b1],7,@Y[$b0] ; avoided cross-path stall || ROTL @Y[$b2],7,@Y[$b1] ROTL @Y[$b0],7,@Y[$b3] || ROTL @Y[$b3],7,@Y[$b2] middle2x2?: ROTL @X[$b2],12,@X[$b2] || ROTL @X[$b3],12,@X[$b3] || ADD @Y[$b0],@Y[$a0],@Y[$a0] || ADD @Y[$b1],@Y[$a1],@Y[$a1] ADD @Y[$b2],@Y[$a2],@Y[$a2] || ADD @Y[$b3],@Y[$a3],@Y[$a3] || ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b1],@X[$a1],@X[$a1] || XOR @Y[$a0],@Y[$d0],@Y[$d0] || XOR @Y[$a1],@Y[$d1],@Y[$d1] XOR @Y[$a2],@Y[$d2],@Y[$d2] || XOR @Y[$a3],@Y[$d3],@Y[$d3] || ADD @X[$b2],@X[$a2],@X[$a2] || ADD @X[$b3],@X[$a3],@X[$a3] || XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a1],@X[$d1],@X[$d1] XOR @X[$a2],@X[$d2],@X[$d2] || XOR @X[$a3],@X[$d3],@X[$d3] || ROTL @X[$d0],8,@X[$d0] || ROTL @X[$d1],8,@X[$d1] || SWAP2 @Y[$d0],@Y[$d0] ; rotate by 16 || SWAP2 @Y[$d1],@Y[$d1] || SWAP2 @Y[$d2],@Y[$d2] || SWAP2 @Y[$d3],@Y[$d3] ROTL @X[$d2],8,@X[$d2] || ROTL @X[$d3],8,@X[$d3] || ADD @Y[$d0],@Y[$c2],@Y[$c2] || ADD @Y[$d1],@Y[$c3],@Y[$c3] || ADD @Y[$d2],@Y[$c0],@Y[$c0] || ADD @Y[$d3],@Y[$c1],@Y[$c1] || BNOP bottom2x1? ; protect from interrupt ADD @X[$d0],@X[$c2],@X[$c2] || ADD @X[$d1],@X[$c3],@X[$c3] || XOR @Y[$c2],@Y[$b0],@Y[$b0] || XOR @Y[$c3],@Y[$b1],@Y[$b1] || XOR @Y[$c0],@Y[$b2],@Y[$b2] || XOR @Y[$c1],@Y[$b3],@Y[$b3] ADD @X[$d2],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c1],@X[$c1] || XOR @X[$c2],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b1],@X[$b1] || ROTL @X[$d0],0,@X[$d3] ; moved to avoid cross-path stall || ROTL @X[$d1],0,@X[$d0] XOR @X[$c0],@X[$b2],@X[$b2] || XOR @X[$c1],@X[$b3],@X[$b3] || MV @X[$d2],@X[$d1] || MV @X[$d3],@X[$d2] || ROTL @Y[$b0],12,@Y[$b0] || ROTL @Y[$b1],12,@Y[$b1] ROTL @X[$b0],7,@X[$b1] ; avoided cross-path stall || ROTL @X[$b1],7,@X[$b2] ROTL @X[$b2],7,@X[$b3] || ROTL @X[$b3],7,@X[$b0] || [B0] SUB B0,1,B0 ; decrement inner loop counter bottom2x1?: ROTL @Y[$b2],12,@Y[$b2] || ROTL @Y[$b3],12,@Y[$b3] || [B0] ADD @X[$b1],@X[$a1],@X[$a1] ; modulo-scheduled || [B0] ADD @X[$b2],@X[$a2],@X[$a2] [B0] ADD @X[$b0],@X[$a0],@X[$a0] || [B0] ADD @X[$b3],@X[$a3],@X[$a3] || ADD @Y[$b0],@Y[$a0],@Y[$a0] || ADD @Y[$b1],@Y[$a1],@Y[$a1] || [B0] XOR @X[$a1],@X[$d1],@X[$d1] || [B0] XOR @X[$a2],@X[$d2],@X[$d2] [B0] XOR @X[$a0],@X[$d0],@X[$d0] || [B0] XOR @X[$a3],@X[$d3],@X[$d3] || ADD @Y[$b2],@Y[$a2],@Y[$a2] || ADD @Y[$b3],@Y[$a3],@Y[$a3] || XOR @Y[$a0],@Y[$d0],@Y[$d0] || XOR @Y[$a1],@Y[$d1],@Y[$d1] XOR @Y[$a2],@Y[$d2],@Y[$d2] || XOR @Y[$a3],@Y[$d3],@Y[$d3] || ROTL @Y[$d0],8,@Y[$d0] || ROTL @Y[$d1],8,@Y[$d1] || [B0] SWAP2 @X[$d1],@X[$d1] ; rotate by 16 || [B0] SWAP2 @X[$d2],@X[$d2] || [B0] SWAP2 @X[$d0],@X[$d0] || [B0] SWAP2 @X[$d3],@X[$d3] ROTL @Y[$d2],8,@Y[$d2] || ROTL @Y[$d3],8,@Y[$d3] || [B0] ADD @X[$d1],@X[$c1],@X[$c1] || [B0] ADD @X[$d2],@X[$c2],@X[$c2] || [B0] ADD @X[$d0],@X[$c0],@X[$c0] || [B0] ADD @X[$d3],@X[$c3],@X[$c3] || [B0] BNOP top2x? ; even protects from interrupt ADD @Y[$d0],@Y[$c2],@Y[$c2] || ADD @Y[$d1],@Y[$c3],@Y[$c3] || [B0] XOR @X[$c1],@X[$b1],@X[$b1] || [B0] XOR @X[$c2],@X[$b2],@X[$b2] || [B0] XOR @X[$c0],@X[$b0],@X[$b0] || [B0] XOR @X[$c3],@X[$b3],@X[$b3] ADD @Y[$d2],@Y[$c0],@Y[$c0] || ADD @Y[$d3],@Y[$c1],@Y[$c1] || XOR @Y[$c2],@Y[$b0],@Y[$b0] || XOR @Y[$c3],@Y[$b1],@Y[$b1] || ROTL @Y[$d0],0,@Y[$d3] ; moved to avoid cross-path stall || ROTL @Y[$d1],0,@Y[$d0] XOR @Y[$c0],@Y[$b2],@Y[$b2] || XOR @Y[$c1],@Y[$b3],@Y[$b3] || MV @Y[$d2],@Y[$d1] || MV @Y[$d3],@Y[$d2] || [B0] ROTL @X[$b1],12,@X[$b1] || [B0] ROTL @X[$b2],12,@X[$b2] ROTL @Y[$b0],7,@Y[$b1] ; avoided cross-path stall || ROTL @Y[$b1],7,@Y[$b2] ROTL @Y[$b2],7,@Y[$b3] || ROTL @Y[$b3],7,@Y[$b0] bottom2x2?: ___ } $code.=<<___; ADD @K2x[0],@X[0],@X[0] ; accumulate key material || ADD @K2x[1],@X[1],@X[1] || ADD @K2x[2],@X[2],@X[2] || ADD @K2x[3],@X[3],@X[3] ADD @K2x[0],@Y[0],@Y[0] || ADD @K2x[1],@Y[1],@Y[1] || ADD @K2x[2],@Y[2],@Y[2] || ADD @K2x[3],@Y[3],@Y[3] || LDNDW *${INP}++[8],@DAT[1]:@DAT[0] ADD @K2x[4],@X[4],@X[4] || ADD @K2x[5],@X[5],@X[5] || ADD @K2x[6],@X[6],@X[6] || ADD @K2x[7],@X[7],@X[7] || LDNDW *${INP}[-7],@DAT[3]:@DAT[2] ADD @K2x[4],@Y[4],@Y[4] || ADD @K2x[5],@Y[5],@Y[5] || ADD @K2x[6],@Y[6],@Y[6] || ADD @K2x[7],@Y[7],@Y[7] || LDNDW *${INP}[-6],@DAT[5]:@DAT[4] ADD @K2x[8],@X[8],@X[8] || ADD @K2x[9],@X[9],@X[9] || ADD @K2x[10],@X[10],@X[10] || ADD @K2x[11],@X[11],@X[11] || LDNDW *${INP}[-5],@DAT[7]:@DAT[6] ADD @K2x[8],@Y[8],@Y[8] || ADD @K2x[9],@Y[9],@Y[9] || ADD @K2x[10],@Y[10],@Y[10] || ADD @K2x[11],@Y[11],@Y[11] || LDNDW *${INP}[-4],@DAT[9]:@DAT[8] ADD @K2x[12],@X[12],@X[12] || ADD @K2x[13],@X[13],@X[13] || ADD @K2x[14],@X[14],@X[14] || ADD @K2x[15],@X[15],@X[15] || LDNDW *${INP}[-3],@DAT[11]:@DAT[10] ADD @K2x[12],@Y[12],@Y[12] || ADD @K2x[13],@Y[13],@Y[13] || ADD @K2x[14],@Y[14],@Y[14] || ADD @K2x[15],@Y[15],@Y[15] || LDNDW *${INP}[-2],@DAT[13]:@DAT[12] ADD 1,@Y[12],@Y[12] ; adjust counter for 2nd block || ADD 2,@K2x[12],@K2x[12] ; increment counter || LDNDW *${INP}[-1],@DAT[15]:@DAT[14] .if .BIG_ENDIAN SWAP2 @X[0],@X[0] || SWAP2 @X[1],@X[1] || SWAP2 @X[2],@X[2] || SWAP2 @X[3],@X[3] SWAP2 @X[4],@X[4] || SWAP2 @X[5],@X[5] || SWAP2 @X[6],@X[6] || SWAP2 @X[7],@X[7] SWAP2 @X[8],@X[8] || SWAP2 @X[9],@X[9] || SWAP4 @X[0],@X[1] || SWAP4 @X[1],@X[0] SWAP2 @X[10],@X[10] || SWAP2 @X[11],@X[11] || SWAP4 @X[2],@X[3] || SWAP4 @X[3],@X[2] SWAP2 @X[12],@X[12] || SWAP2 @X[13],@X[13] || SWAP4 @X[4],@X[5] || SWAP4 @X[5],@X[4] SWAP2 @X[14],@X[14] || SWAP2 @X[15],@X[15] || SWAP4 @X[6],@X[7] || SWAP4 @X[7],@X[6] SWAP4 @X[8],@X[9] || SWAP4 @X[9],@X[8] || SWAP2 @Y[0],@Y[0] || SWAP2 @Y[1],@Y[1] SWAP4 @X[10],@X[11] || SWAP4 @X[11],@X[10] || SWAP2 @Y[2],@Y[2] || SWAP2 @Y[3],@Y[3] SWAP4 @X[12],@X[13] || SWAP4 @X[13],@X[12] || SWAP2 @Y[4],@Y[4] || SWAP2 @Y[5],@Y[5] SWAP4 @X[14],@X[15] || SWAP4 @X[15],@X[14] || SWAP2 @Y[6],@Y[6] || SWAP2 @Y[7],@Y[7] SWAP2 @Y[8],@Y[8] || SWAP2 @Y[9],@Y[9] || SWAP4 @Y[0],@Y[1] || SWAP4 @Y[1],@Y[0] SWAP2 @Y[10],@Y[10] || SWAP2 @Y[11],@Y[11] || SWAP4 @Y[2],@Y[3] || SWAP4 @Y[3],@Y[2] SWAP2 @Y[12],@Y[12] || SWAP2 @Y[13],@Y[13] || SWAP4 @Y[4],@Y[5] || SWAP4 @Y[5],@Y[4] SWAP2 @Y[14],@Y[14] || SWAP2 @Y[15],@Y[15] || SWAP4 @Y[6],@Y[7] || SWAP4 @Y[7],@Y[6] SWAP4 @Y[8],@Y[9] || SWAP4 @Y[9],@Y[8] SWAP4 @Y[10],@Y[11] || SWAP4 @Y[11],@Y[10] SWAP4 @Y[12],@Y[13] || SWAP4 @Y[13],@Y[12] SWAP4 @Y[14],@Y[15] || SWAP4 @Y[15],@Y[14] .endif XOR @DAT[0],@X[0],@X[0] ; xor 1st block || XOR @DAT[3],@X[3],@X[3] || XOR @DAT[2],@X[2],@X[1] || XOR @DAT[1],@X[1],@X[2] || LDNDW *${INP}++[8],@DAT[1]:@DAT[0] XOR @DAT[4],@X[4],@X[4] || XOR @DAT[7],@X[7],@X[7] || LDNDW *${INP}[-7],@DAT[3]:@DAT[2] XOR @DAT[6],@X[6],@X[5] || XOR @DAT[5],@X[5],@X[6] || LDNDW *${INP}[-6],@DAT[5]:@DAT[4] XOR @DAT[8],@X[8],@X[8] || XOR @DAT[11],@X[11],@X[11] || LDNDW *${INP}[-5],@DAT[7]:@DAT[6] XOR @DAT[10],@X[10],@X[9] || XOR @DAT[9],@X[9],@X[10] || LDNDW *${INP}[-4],@DAT[9]:@DAT[8] XOR @DAT[12],@X[12],@X[12] || XOR @DAT[15],@X[15],@X[15] || LDNDW *${INP}[-3],@DAT[11]:@DAT[10] XOR @DAT[14],@X[14],@X[13] || XOR @DAT[13],@X[13],@X[14] || LDNDW *${INP}[-2],@DAT[13]:@DAT[12] [A0] SUB A0,$STEP,A0 ; SUB A0,128,A0 || LDNDW *${INP}[-1],@DAT[15]:@DAT[14] XOR @Y[0],@DAT[0],@DAT[0] ; xor 2nd block || XOR @Y[1],@DAT[1],@DAT[1] || STNDW @X[2]:@X[0],*${OUT}++[8] XOR @Y[2],@DAT[2],@DAT[2] || XOR @Y[3],@DAT[3],@DAT[3] || STNDW @X[3]:@X[1],*${OUT}[-7] XOR @Y[4],@DAT[4],@DAT[4] || [A0] LDDW *FP[-12],@X[2]:@X[0] ; re-load key material from stack || [A0] LDDW *SP[2], @X[3]:@X[1] XOR @Y[5],@DAT[5],@DAT[5] || STNDW @X[6]:@X[4],*${OUT}[-6] XOR @Y[6],@DAT[6],@DAT[6] || XOR @Y[7],@DAT[7],@DAT[7] || STNDW @X[7]:@X[5],*${OUT}[-5] XOR @Y[8],@DAT[8],@DAT[8] || [A0] LDDW *FP[-10],@X[6]:@X[4] || [A0] LDDW *SP[4], @X[7]:@X[5] XOR @Y[9],@DAT[9],@DAT[9] || STNDW @X[10]:@X[8],*${OUT}[-4] XOR @Y[10],@DAT[10],@DAT[10] || XOR @Y[11],@DAT[11],@DAT[11] || STNDW @X[11]:@X[9],*${OUT}[-3] XOR @Y[12],@DAT[12],@DAT[12] || [A0] LDDW *FP[-8], @X[10]:@X[8] || [A0] LDDW *SP[6], @X[11]:@X[9] XOR @Y[13],@DAT[13],@DAT[13] || STNDW @X[14]:@X[12],*${OUT}[-2] XOR @Y[14],@DAT[14],@DAT[14] || XOR @Y[15],@DAT[15],@DAT[15] || STNDW @X[15]:@X[13],*${OUT}[-1] [A0] MV @K2x[12],@X[12] || [A0] MV @K2x[13],@X[13] || [A0] LDW *FP[-6*2], @X[14] || [A0] LDW *SP[8*2], @X[15] [A0] DMV @X[2],@X[0],@Y[2]:@Y[0] ; duplicate key material || STNDW @DAT[1]:@DAT[0],*${OUT}++[8] [A0] DMV @X[3],@X[1],@Y[3]:@Y[1] || STNDW @DAT[3]:@DAT[2],*${OUT}[-7] [A0] DMV @X[6],@X[4],@Y[6]:@Y[4] || STNDW @DAT[5]:@DAT[4],*${OUT}[-6] || CMPLTU A0,$STEP,A1 ; is remaining length < 2*blocks? ||[!A0] BNOP epilogue? [A0] DMV @X[7],@X[5],@Y[7]:@Y[5] || STNDW @DAT[7]:@DAT[6],*${OUT}[-5] ||[!A1] BNOP outer2x? [A0] DMV @X[10],@X[8],@Y[10]:@Y[8] || STNDW @DAT[9]:@DAT[8],*${OUT}[-4] [A0] DMV @X[11],@X[9],@Y[11]:@Y[9] || STNDW @DAT[11]:@DAT[10],*${OUT}[-3] [A0] DMV @X[14],@X[12],@Y[14]:@Y[12] || STNDW @DAT[13]:@DAT[12],*${OUT}[-2] [A0] DMV @X[15],@X[13],@Y[15]:@Y[13] || STNDW @DAT[15]:@DAT[14],*${OUT}[-1] ;;===== branch to epilogue? is taken here [A1] MVK 64,$STEP || [A0] MVK 10,B0 ; inner loop counter ;;===== branch to outer2x? is taken here ___ { my ($a0,$a1,$a2,$a3) = (0..3); my ($b0,$b1,$b2,$b3) = (4..7); my ($c0,$c1,$c2,$c3) = (8..11); my ($d0,$d1,$d2,$d3) = (12..15); $code.=<<___; top1x?: ADD @X[$b1],@X[$a1],@X[$a1] || ADD @X[$b2],@X[$a2],@X[$a2] ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b3],@X[$a3],@X[$a3] || XOR @X[$a1],@X[$d1],@X[$d1] || XOR @X[$a2],@X[$d2],@X[$d2] XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a3],@X[$d3],@X[$d3] || SWAP2 @X[$d1],@X[$d1] ; rotate by 16 || SWAP2 @X[$d2],@X[$d2] SWAP2 @X[$d0],@X[$d0] || SWAP2 @X[$d3],@X[$d3] || ADD @X[$d1],@X[$c1],@X[$c1] || ADD @X[$d2],@X[$c2],@X[$c2] ADD @X[$d0],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c3],@X[$c3] || XOR @X[$c1],@X[$b1],@X[$b1] || XOR @X[$c2],@X[$b2],@X[$b2] XOR @X[$c0],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b3],@X[$b3] || ROTL @X[$b1],12,@X[$b1] || ROTL @X[$b2],12,@X[$b2] ROTL @X[$b0],12,@X[$b0] || ROTL @X[$b3],12,@X[$b3] ADD @X[$b1],@X[$a1],@X[$a1] || ADD @X[$b2],@X[$a2],@X[$a2] ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b3],@X[$a3],@X[$a3] || XOR @X[$a1],@X[$d1],@X[$d1] || XOR @X[$a2],@X[$d2],@X[$d2] XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a3],@X[$d3],@X[$d3] || ROTL @X[$d1],8,@X[$d1] || ROTL @X[$d2],8,@X[$d2] ROTL @X[$d0],8,@X[$d0] || ROTL @X[$d3],8,@X[$d3] || BNOP middle1x? ; protect from interrupt ADD @X[$d1],@X[$c1],@X[$c1] || ADD @X[$d2],@X[$c2],@X[$c2] ADD @X[$d0],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c3],@X[$c3] || XOR @X[$c1],@X[$b1],@X[$b1] || XOR @X[$c2],@X[$b2],@X[$b2] || ROTL @X[$d1],0,@X[$d2] ; moved to avoid cross-path stall || ROTL @X[$d2],0,@X[$d3] XOR @X[$c0],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b3],@X[$b3] || ROTL @X[$d0],0,@X[$d1] || ROTL @X[$d3],0,@X[$d0] ROTL @X[$b1],7,@X[$b0] ; avoided cross-path stall || ROTL @X[$b2],7,@X[$b1] ROTL @X[$b0],7,@X[$b3] || ROTL @X[$b3],7,@X[$b2] middle1x?: ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b1],@X[$a1],@X[$a1] ADD @X[$b2],@X[$a2],@X[$a2] || ADD @X[$b3],@X[$a3],@X[$a3] || XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a1],@X[$d1],@X[$d1] XOR @X[$a2],@X[$d2],@X[$d2] || XOR @X[$a3],@X[$d3],@X[$d3] || SWAP2 @X[$d0],@X[$d0] ; rotate by 16 || SWAP2 @X[$d1],@X[$d1] SWAP2 @X[$d2],@X[$d2] || SWAP2 @X[$d3],@X[$d3] || ADD @X[$d0],@X[$c2],@X[$c2] || ADD @X[$d1],@X[$c3],@X[$c3] ADD @X[$d2],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c1],@X[$c1] || XOR @X[$c2],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b1],@X[$b1] XOR @X[$c0],@X[$b2],@X[$b2] || XOR @X[$c1],@X[$b3],@X[$b3] || ROTL @X[$b0],12,@X[$b0] || ROTL @X[$b1],12,@X[$b1] ROTL @X[$b2],12,@X[$b2] || ROTL @X[$b3],12,@X[$b3] ADD @X[$b0],@X[$a0],@X[$a0] || ADD @X[$b1],@X[$a1],@X[$a1] || [B0] SUB B0,1,B0 ; decrement inner loop counter ADD @X[$b2],@X[$a2],@X[$a2] || ADD @X[$b3],@X[$a3],@X[$a3] || XOR @X[$a0],@X[$d0],@X[$d0] || XOR @X[$a1],@X[$d1],@X[$d1] XOR @X[$a2],@X[$d2],@X[$d2] || XOR @X[$a3],@X[$d3],@X[$d3] || ROTL @X[$d0],8,@X[$d0] || ROTL @X[$d1],8,@X[$d1] ROTL @X[$d2],8,@X[$d2] || ROTL @X[$d3],8,@X[$d3] || [B0] BNOP top1x? ; even protects from interrupt ADD @X[$d0],@X[$c2],@X[$c2] || ADD @X[$d1],@X[$c3],@X[$c3] ADD @X[$d2],@X[$c0],@X[$c0] || ADD @X[$d3],@X[$c1],@X[$c1] || XOR @X[$c2],@X[$b0],@X[$b0] || XOR @X[$c3],@X[$b1],@X[$b1] || ROTL @X[$d0],0,@X[$d3] ; moved to avoid cross-path stall || ROTL @X[$d1],0,@X[$d0] XOR @X[$c0],@X[$b2],@X[$b2] || XOR @X[$c1],@X[$b3],@X[$b3] || ROTL @X[$d2],0,@X[$d1] || ROTL @X[$d3],0,@X[$d2] ROTL @X[$b0],7,@X[$b1] ; avoided cross-path stall || ROTL @X[$b1],7,@X[$b2] ROTL @X[$b2],7,@X[$b3] || ROTL @X[$b3],7,@X[$b0] ||[!B0] CMPLTU A0,$STEP,A1 ; less than 64 bytes left? bottom1x?: ___ } $code.=<<___; ADD @Y[0],@X[0],@X[0] ; accumulate key material || ADD @Y[1],@X[1],@X[1] || ADD @Y[2],@X[2],@X[2] || ADD @Y[3],@X[3],@X[3] ||[!A1] LDNDW *${INP}++[8],@DAT[1]:@DAT[0] || [A1] BNOP tail? ADD @Y[4],@X[4],@X[4] || ADD @Y[5],@X[5],@X[5] || ADD @Y[6],@X[6],@X[6] || ADD @Y[7],@X[7],@X[7] ||[!A1] LDNDW *${INP}[-7],@DAT[3]:@DAT[2] ADD @Y[8],@X[8],@X[8] || ADD @Y[9],@X[9],@X[9] || ADD @Y[10],@X[10],@X[10] || ADD @Y[11],@X[11],@X[11] ||[!A1] LDNDW *${INP}[-6],@DAT[5]:@DAT[4] ADD @Y[12],@X[12],@X[12] || ADD @Y[13],@X[13],@X[13] || ADD @Y[14],@X[14],@X[14] || ADD @Y[15],@X[15],@X[15] ||[!A1] LDNDW *${INP}[-5],@DAT[7]:@DAT[6] [!A1] LDNDW *${INP}[-4],@DAT[9]:@DAT[8] [!A1] LDNDW *${INP}[-3],@DAT[11]:@DAT[10] LDNDW *${INP}[-2],@DAT[13]:@DAT[12] LDNDW *${INP}[-1],@DAT[15]:@DAT[14] .if .BIG_ENDIAN SWAP2 @X[0],@X[0] || SWAP2 @X[1],@X[1] || SWAP2 @X[2],@X[2] || SWAP2 @X[3],@X[3] SWAP2 @X[4],@X[4] || SWAP2 @X[5],@X[5] || SWAP2 @X[6],@X[6] || SWAP2 @X[7],@X[7] SWAP2 @X[8],@X[8] || SWAP2 @X[9],@X[9] || SWAP4 @X[0],@X[1] || SWAP4 @X[1],@X[0] SWAP2 @X[10],@X[10] || SWAP2 @X[11],@X[11] || SWAP4 @X[2],@X[3] || SWAP4 @X[3],@X[2] SWAP2 @X[12],@X[12] || SWAP2 @X[13],@X[13] || SWAP4 @X[4],@X[5] || SWAP4 @X[5],@X[4] SWAP2 @X[14],@X[14] || SWAP2 @X[15],@X[15] || SWAP4 @X[6],@X[7] || SWAP4 @X[7],@X[6] SWAP4 @X[8],@X[9] || SWAP4 @X[9],@X[8] SWAP4 @X[10],@X[11] || SWAP4 @X[11],@X[10] SWAP4 @X[12],@X[13] || SWAP4 @X[13],@X[12] SWAP4 @X[14],@X[15] || SWAP4 @X[15],@X[14] .else NOP 1 .endif XOR @X[0],@DAT[0],@DAT[0] ; xor with input || XOR @X[1],@DAT[1],@DAT[1] || XOR @X[2],@DAT[2],@DAT[2] || XOR @X[3],@DAT[3],@DAT[3] || [A0] SUB A0,$STEP,A0 ; SUB A0,64,A0 XOR @X[4],@DAT[4],@DAT[4] || XOR @X[5],@DAT[5],@DAT[5] || XOR @X[6],@DAT[6],@DAT[6] || XOR @X[7],@DAT[7],@DAT[7] || STNDW @DAT[1]:@DAT[0],*${OUT}++[8] XOR @X[8],@DAT[8],@DAT[8] || XOR @X[9],@DAT[9],@DAT[9] || XOR @X[10],@DAT[10],@DAT[10] || XOR @X[11],@DAT[11],@DAT[11] || STNDW @DAT[3]:@DAT[2],*${OUT}[-7] XOR @X[12],@DAT[12],@DAT[12] || XOR @X[13],@DAT[13],@DAT[13] || XOR @X[14],@DAT[14],@DAT[14] || XOR @X[15],@DAT[15],@DAT[15] || STNDW @DAT[5]:@DAT[4],*${OUT}[-6] || [A0] BNOP top1x? [A0] DMV @Y[2],@Y[0],@X[2]:@X[0] ; duplicate key material || [A0] DMV @Y[3],@Y[1],@X[3]:@X[1] || STNDW @DAT[7]:@DAT[6],*${OUT}[-5] [A0] DMV @Y[6],@Y[4],@X[6]:@X[4] || [A0] DMV @Y[7],@Y[5],@X[7]:@X[5] || STNDW @DAT[9]:@DAT[8],*${OUT}[-4] [A0] DMV @Y[10],@Y[8],@X[10]:@X[8] || [A0] DMV @Y[11],@Y[9],@X[11]:@X[9] || [A0] ADD 1,@Y[12],@Y[12] ; increment counter || STNDW @DAT[11]:@DAT[10],*${OUT}[-3] [A0] DMV @Y[14],@Y[12],@X[14]:@X[12] || [A0] DMV @Y[15],@Y[13],@X[15]:@X[13] || STNDW @DAT[13]:@DAT[12],*${OUT}[-2] [A0] MVK 10,B0 ; inner loop counter || STNDW @DAT[15]:@DAT[14],*${OUT}[-1] ;;===== branch to top1x? is taken here epilogue?: LDDW *FP[-4],A11:A10 ; ABI says so LDDW *FP[-3],A13:A12 || LDDW *SP[3+8],B11:B10 LDDW *SP[4+8],B13:B12 || BNOP RA LDW *++SP(40+64),FP ; restore frame pointer NOP 4 tail?: LDBU *${INP}++[1],B24 ; load byte by byte || SUB A0,1,A0 || SUB A0,1,B1 [!B1] BNOP epilogue? ; interrupts are disabled for whole time || [A0] LDBU *${INP}++[1],B24 || [A0] SUB A0,1,A0 || SUB B1,1,B1 [!B1] BNOP epilogue? || [A0] LDBU *${INP}++[1],B24 || [A0] SUB A0,1,A0 || SUB B1,1,B1 [!B1] BNOP epilogue? || ROTL @X[0],0,A24 || [A0] LDBU *${INP}++[1],B24 || [A0] SUB A0,1,A0 || SUB B1,1,B1 [!B1] BNOP epilogue? || ROTL @X[0],24,A24 || [A0] LDBU *${INP}++[1],A24 || [A0] SUB A0,1,A0 || SUB B1,1,B1 [!B1] BNOP epilogue? || ROTL @X[0],16,A24 || [A0] LDBU *${INP}++[1],A24 || [A0] SUB A0,1,A0 || SUB B1,1,B1 || XOR A24,B24,B25 STB B25,*${OUT}++[1] ; store byte by byte ||[!B1] BNOP epilogue? || ROTL @X[0],8,A24 || [A0] LDBU *${INP}++[1],A24 || [A0] SUB A0,1,A0 || SUB B1,1,B1 || XOR A24,B24,B25 STB B25,*${OUT}++[1] ___ sub TAIL_STEP { my $Xi= shift; my $T = ($Xi=~/^B/?"B24":"A24"); # match @X[i] to avoid cross path my $D = $T; $D=~tr/AB/BA/; my $O = $D; $O=~s/24/25/; $code.=<<___; ||[!B1] BNOP epilogue? || ROTL $Xi,0,$T || [A0] LDBU *${INP}++[1],$D || [A0] SUB A0,1,A0 || SUB B1,1,B1 || XOR A24,B24,$O STB $O,*${OUT}++[1] ||[!B1] BNOP epilogue? || ROTL $Xi,24,$T || [A0] LDBU *${INP}++[1],$T || [A0] SUB A0,1,A0 || SUB B1,1,B1 || XOR A24,B24,$O STB $O,*${OUT}++[1] ||[!B1] BNOP epilogue? || ROTL $Xi,16,$T || [A0] LDBU *${INP}++[1],$T || [A0] SUB A0,1,A0 || SUB B1,1,B1 || XOR A24,B24,$O STB $O,*${OUT}++[1] ||[!B1] BNOP epilogue? || ROTL $Xi,8,$T || [A0] LDBU *${INP}++[1],$T || [A0] SUB A0,1,A0 || SUB B1,1,B1 || XOR A24,B24,$O STB $O,*${OUT}++[1] ___ } foreach (1..14) { TAIL_STEP(@X[$_]); } $code.=<<___; ||[!B1] BNOP epilogue? || ROTL @X[15],0,B24 || XOR A24,B24,A25 STB A25,*${OUT}++[1] || ROTL @X[15],24,B24 || XOR A24,B24,A25 STB A25,*${OUT}++[1] || ROTL @X[15],16,B24 || XOR A24,B24,A25 STB A25,*${OUT}++[1] || XOR A24,B24,A25 STB A25,*${OUT}++[1] || XOR A24,B24,B25 STB B25,*${OUT}++[1] .endasmfunc .sect .const .cstring "ChaCha20 for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/chacha/asm/chacha-ppc.pl000077500000000000000000000776231364063235100212230ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # October 2015 # # ChaCha20 for PowerPC/AltiVec. # # June 2018 # # Add VSX 2.07 code path. Original 3xAltiVec+1xIALU is well-suited for # processors that can't issue more than one vector instruction per # cycle. But POWER8 (and POWER9) can issue a pair, and vector-only 4x # interleave would perform better. Incidentally PowerISA 2.07 (first # implemented by POWER8) defined new usable instructions, hence 4xVSX # code path... # # Performance in cycles per byte out of large buffer. # # IALU/gcc-4.x 3xAltiVec+1xIALU 4xVSX # # Freescale e300 13.6/+115% - - # PPC74x0/G4e 6.81/+310% 3.81 - # PPC970/G5 9.29/+160% ? - # POWER7 8.62/+61% 3.35 - # POWER8 8.70/+51% 2.91 2.09 # POWER9 8.80/+29% 4.44(*) 2.45(**) # # (*) this is trade-off result, it's possible to improve it, but # then it would negatively affect all others; # (**) POWER9 seems to be "allergic" to mixing vector and integer # instructions, which is why switch to vector-only code pays # off that much; $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; $UCMP ="cmpld"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; $UCMP ="cmplw"; } else { die "nonsense $flavour"; } $LITTLE_ENDIAN = ($flavour=~/le$/) ? 1 : 0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $LOCALS=6*$SIZE_T; $FRAME=$LOCALS+64+18*$SIZE_T; # 64 is for local variables sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; $code .= "\t$opcode\t".join(',',@_)."\n"; } my $sp = "r1"; my ($out,$inp,$len,$key,$ctr) = map("r$_",(3..7)); my @x=map("r$_",(16..31)); my @d=map("r$_",(11,12,14,15)); my @t=map("r$_",(7..10)); sub ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); ( "&add (@x[$a0],@x[$a0],@x[$b0])", "&add (@x[$a1],@x[$a1],@x[$b1])", "&add (@x[$a2],@x[$a2],@x[$b2])", "&add (@x[$a3],@x[$a3],@x[$b3])", "&xor (@x[$d0],@x[$d0],@x[$a0])", "&xor (@x[$d1],@x[$d1],@x[$a1])", "&xor (@x[$d2],@x[$d2],@x[$a2])", "&xor (@x[$d3],@x[$d3],@x[$a3])", "&rotlwi (@x[$d0],@x[$d0],16)", "&rotlwi (@x[$d1],@x[$d1],16)", "&rotlwi (@x[$d2],@x[$d2],16)", "&rotlwi (@x[$d3],@x[$d3],16)", "&add (@x[$c0],@x[$c0],@x[$d0])", "&add (@x[$c1],@x[$c1],@x[$d1])", "&add (@x[$c2],@x[$c2],@x[$d2])", "&add (@x[$c3],@x[$c3],@x[$d3])", "&xor (@x[$b0],@x[$b0],@x[$c0])", "&xor (@x[$b1],@x[$b1],@x[$c1])", "&xor (@x[$b2],@x[$b2],@x[$c2])", "&xor (@x[$b3],@x[$b3],@x[$c3])", "&rotlwi (@x[$b0],@x[$b0],12)", "&rotlwi (@x[$b1],@x[$b1],12)", "&rotlwi (@x[$b2],@x[$b2],12)", "&rotlwi (@x[$b3],@x[$b3],12)", "&add (@x[$a0],@x[$a0],@x[$b0])", "&add (@x[$a1],@x[$a1],@x[$b1])", "&add (@x[$a2],@x[$a2],@x[$b2])", "&add (@x[$a3],@x[$a3],@x[$b3])", "&xor (@x[$d0],@x[$d0],@x[$a0])", "&xor (@x[$d1],@x[$d1],@x[$a1])", "&xor (@x[$d2],@x[$d2],@x[$a2])", "&xor (@x[$d3],@x[$d3],@x[$a3])", "&rotlwi (@x[$d0],@x[$d0],8)", "&rotlwi (@x[$d1],@x[$d1],8)", "&rotlwi (@x[$d2],@x[$d2],8)", "&rotlwi (@x[$d3],@x[$d3],8)", "&add (@x[$c0],@x[$c0],@x[$d0])", "&add (@x[$c1],@x[$c1],@x[$d1])", "&add (@x[$c2],@x[$c2],@x[$d2])", "&add (@x[$c3],@x[$c3],@x[$d3])", "&xor (@x[$b0],@x[$b0],@x[$c0])", "&xor (@x[$b1],@x[$b1],@x[$c1])", "&xor (@x[$b2],@x[$b2],@x[$c2])", "&xor (@x[$b3],@x[$b3],@x[$c3])", "&rotlwi (@x[$b0],@x[$b0],7)", "&rotlwi (@x[$b1],@x[$b1],7)", "&rotlwi (@x[$b2],@x[$b2],7)", "&rotlwi (@x[$b3],@x[$b3],7)" ); } $code.=<<___; .machine "any" .text .globl .ChaCha20_ctr32_int .align 5 .ChaCha20_ctr32_int: __ChaCha20_ctr32_int: ${UCMP}i $len,0 beqlr- $STU $sp,-$FRAME($sp) mflr r0 $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) lwz @d[0],0($ctr) # load counter lwz @d[1],4($ctr) lwz @d[2],8($ctr) lwz @d[3],12($ctr) bl __ChaCha20_1x $POP r0,`$FRAME+$LRSAVE`($sp) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,18,5,0 .long 0 .size .ChaCha20_ctr32_int,.-.ChaCha20_ctr32_int .align 5 __ChaCha20_1x: Loop_outer: lis @x[0],0x6170 # synthesize sigma lis @x[1],0x3320 lis @x[2],0x7962 lis @x[3],0x6b20 ori @x[0],@x[0],0x7865 ori @x[1],@x[1],0x646e ori @x[2],@x[2],0x2d32 ori @x[3],@x[3],0x6574 li r0,10 # inner loop counter lwz @x[4],0($key) # load key lwz @x[5],4($key) lwz @x[6],8($key) lwz @x[7],12($key) lwz @x[8],16($key) mr @x[12],@d[0] # copy counter lwz @x[9],20($key) mr @x[13],@d[1] lwz @x[10],24($key) mr @x[14],@d[2] lwz @x[11],28($key) mr @x[15],@d[3] mr @t[0],@x[4] mr @t[1],@x[5] mr @t[2],@x[6] mr @t[3],@x[7] mtctr r0 Loop: ___ foreach (&ROUND(0, 4, 8,12)) { eval; } foreach (&ROUND(0, 5,10,15)) { eval; } $code.=<<___; bdnz Loop subic $len,$len,64 # $len-=64 addi @x[0],@x[0],0x7865 # accumulate key block addi @x[1],@x[1],0x646e addi @x[2],@x[2],0x2d32 addi @x[3],@x[3],0x6574 addis @x[0],@x[0],0x6170 addis @x[1],@x[1],0x3320 addis @x[2],@x[2],0x7962 addis @x[3],@x[3],0x6b20 subfe. r0,r0,r0 # borrow?-1:0 add @x[4],@x[4],@t[0] lwz @t[0],16($key) add @x[5],@x[5],@t[1] lwz @t[1],20($key) add @x[6],@x[6],@t[2] lwz @t[2],24($key) add @x[7],@x[7],@t[3] lwz @t[3],28($key) add @x[8],@x[8],@t[0] add @x[9],@x[9],@t[1] add @x[10],@x[10],@t[2] add @x[11],@x[11],@t[3] add @x[12],@x[12],@d[0] add @x[13],@x[13],@d[1] add @x[14],@x[14],@d[2] add @x[15],@x[15],@d[3] addi @d[0],@d[0],1 # increment counter ___ if (!$LITTLE_ENDIAN) { for($i=0;$i<16;$i++) { # flip byte order $code.=<<___; mr @t[$i&3],@x[$i] rotlwi @x[$i],@x[$i],8 rlwimi @x[$i],@t[$i&3],24,0,7 rlwimi @x[$i],@t[$i&3],24,16,23 ___ } } $code.=<<___; bne Ltail # $len-=64 borrowed lwz @t[0],0($inp) # load input, aligned or not lwz @t[1],4($inp) ${UCMP}i $len,0 # done already? lwz @t[2],8($inp) lwz @t[3],12($inp) xor @x[0],@x[0],@t[0] # xor with input lwz @t[0],16($inp) xor @x[1],@x[1],@t[1] lwz @t[1],20($inp) xor @x[2],@x[2],@t[2] lwz @t[2],24($inp) xor @x[3],@x[3],@t[3] lwz @t[3],28($inp) xor @x[4],@x[4],@t[0] lwz @t[0],32($inp) xor @x[5],@x[5],@t[1] lwz @t[1],36($inp) xor @x[6],@x[6],@t[2] lwz @t[2],40($inp) xor @x[7],@x[7],@t[3] lwz @t[3],44($inp) xor @x[8],@x[8],@t[0] lwz @t[0],48($inp) xor @x[9],@x[9],@t[1] lwz @t[1],52($inp) xor @x[10],@x[10],@t[2] lwz @t[2],56($inp) xor @x[11],@x[11],@t[3] lwz @t[3],60($inp) xor @x[12],@x[12],@t[0] stw @x[0],0($out) # store output, aligned or not xor @x[13],@x[13],@t[1] stw @x[1],4($out) xor @x[14],@x[14],@t[2] stw @x[2],8($out) xor @x[15],@x[15],@t[3] stw @x[3],12($out) stw @x[4],16($out) stw @x[5],20($out) stw @x[6],24($out) stw @x[7],28($out) stw @x[8],32($out) stw @x[9],36($out) stw @x[10],40($out) stw @x[11],44($out) stw @x[12],48($out) stw @x[13],52($out) stw @x[14],56($out) addi $inp,$inp,64 stw @x[15],60($out) addi $out,$out,64 bne Loop_outer blr .align 4 Ltail: addi $len,$len,64 # restore tail length subi $inp,$inp,1 # prepare for *++ptr subi $out,$out,1 addi @t[0],$sp,$LOCALS-1 mtctr $len stw @x[0],`$LOCALS+0`($sp) # save whole block to stack stw @x[1],`$LOCALS+4`($sp) stw @x[2],`$LOCALS+8`($sp) stw @x[3],`$LOCALS+12`($sp) stw @x[4],`$LOCALS+16`($sp) stw @x[5],`$LOCALS+20`($sp) stw @x[6],`$LOCALS+24`($sp) stw @x[7],`$LOCALS+28`($sp) stw @x[8],`$LOCALS+32`($sp) stw @x[9],`$LOCALS+36`($sp) stw @x[10],`$LOCALS+40`($sp) stw @x[11],`$LOCALS+44`($sp) stw @x[12],`$LOCALS+48`($sp) stw @x[13],`$LOCALS+52`($sp) stw @x[14],`$LOCALS+56`($sp) stw @x[15],`$LOCALS+60`($sp) Loop_tail: # byte-by-byte loop lbzu @d[0],1($inp) lbzu @x[0],1(@t[0]) xor @d[1],@d[0],@x[0] stbu @d[1],1($out) bdnz Loop_tail stw $sp,`$LOCALS+0`($sp) # wipe block on stack stw $sp,`$LOCALS+4`($sp) stw $sp,`$LOCALS+8`($sp) stw $sp,`$LOCALS+12`($sp) stw $sp,`$LOCALS+16`($sp) stw $sp,`$LOCALS+20`($sp) stw $sp,`$LOCALS+24`($sp) stw $sp,`$LOCALS+28`($sp) stw $sp,`$LOCALS+32`($sp) stw $sp,`$LOCALS+36`($sp) stw $sp,`$LOCALS+40`($sp) stw $sp,`$LOCALS+44`($sp) stw $sp,`$LOCALS+48`($sp) stw $sp,`$LOCALS+52`($sp) stw $sp,`$LOCALS+56`($sp) stw $sp,`$LOCALS+60`($sp) blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ___ {{{ my ($A0,$B0,$C0,$D0,$A1,$B1,$C1,$D1,$A2,$B2,$C2,$D2) = map("v$_",(0..11)); my @K = map("v$_",(12..17)); my ($FOUR,$sixteen,$twenty4) = map("v$_",(18..19,23)); my ($inpperm,$outperm,$outmask) = map("v$_",(24..26)); my @D = map("v$_",(27..31)); my ($twelve,$seven,$T0,$T1) = @D; my $FRAME=$LOCALS+64+10*16+18*$SIZE_T; # 10*16 is for v23-v31 offload sub VMXROUND { my $odd = pop; my ($a,$b,$c,$d)=@_; ( "&vadduwm ('$a','$a','$b')", "&vxor ('$d','$d','$a')", "&vperm ('$d','$d','$d','$sixteen')", "&vadduwm ('$c','$c','$d')", "&vxor ('$b','$b','$c')", "&vrlw ('$b','$b','$twelve')", "&vadduwm ('$a','$a','$b')", "&vxor ('$d','$d','$a')", "&vperm ('$d','$d','$d','$twenty4')", "&vadduwm ('$c','$c','$d')", "&vxor ('$b','$b','$c')", "&vrlw ('$b','$b','$seven')", "&vrldoi ('$c','$c',8)", "&vrldoi ('$b','$b',$odd?4:12)", "&vrldoi ('$d','$d',$odd?12:4)" ); } $code.=<<___; .globl .ChaCha20_ctr32_vmx .align 5 .ChaCha20_ctr32_vmx: ${UCMP}i $len,256 blt __ChaCha20_ctr32_int $STU $sp,-$FRAME($sp) mflr r0 li r10,`15+$LOCALS+64` li r11,`31+$LOCALS+64` mfspr r12,256 stvx v23,r10,$sp addi r10,r10,32 stvx v24,r11,$sp addi r11,r11,32 stvx v25,r10,$sp addi r10,r10,32 stvx v26,r11,$sp addi r11,r11,32 stvx v27,r10,$sp addi r10,r10,32 stvx v28,r11,$sp addi r11,r11,32 stvx v29,r10,$sp addi r10,r10,32 stvx v30,r11,$sp stvx v31,r10,$sp stw r12,`$FRAME-$SIZE_T*18-4`($sp) # save vrsave $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) li r12,-4096+511 $PUSH r0, `$FRAME+$LRSAVE`($sp) mtspr 256,r12 # preserve 29 AltiVec registers bl Lconsts # returns pointer Lsigma in r12 li @x[0],16 li @x[1],32 li @x[2],48 li @x[3],64 li @x[4],31 # 31 is not a typo li @x[5],15 # nor is 15 lvx @K[1],0,$key # load key ?lvsr $T0,0,$key # prepare unaligned load lvx @K[2],@x[0],$key lvx @D[0],@x[4],$key lvx @K[3],0,$ctr # load counter ?lvsr $T1,0,$ctr # prepare unaligned load lvx @D[1],@x[5],$ctr lvx @K[0],0,r12 # load constants lvx @K[5],@x[0],r12 # one lvx $FOUR,@x[1],r12 lvx $sixteen,@x[2],r12 lvx $twenty4,@x[3],r12 ?vperm @K[1],@K[2],@K[1],$T0 # align key ?vperm @K[2],@D[0],@K[2],$T0 ?vperm @K[3],@D[1],@K[3],$T1 # align counter lwz @d[0],0($ctr) # load counter to GPR lwz @d[1],4($ctr) vadduwm @K[3],@K[3],@K[5] # adjust AltiVec counter lwz @d[2],8($ctr) vadduwm @K[4],@K[3],@K[5] lwz @d[3],12($ctr) vadduwm @K[5],@K[4],@K[5] vxor $T0,$T0,$T0 # 0x00..00 vspltisw $outmask,-1 # 0xff..ff ?lvsr $inpperm,0,$inp # prepare for unaligned load ?lvsl $outperm,0,$out # prepare for unaligned store ?vperm $outmask,$outmask,$T0,$outperm be?lvsl $T0,0,@x[0] # 0x00..0f be?vspltisb $T1,3 # 0x03..03 be?vxor $T0,$T0,$T1 # swap bytes within words be?vxor $outperm,$outperm,$T1 be?vperm $inpperm,$inpperm,$inpperm,$T0 li r0,10 # inner loop counter b Loop_outer_vmx .align 4 Loop_outer_vmx: lis @x[0],0x6170 # synthesize sigma lis @x[1],0x3320 vmr $A0,@K[0] lis @x[2],0x7962 lis @x[3],0x6b20 vmr $A1,@K[0] ori @x[0],@x[0],0x7865 ori @x[1],@x[1],0x646e vmr $A2,@K[0] ori @x[2],@x[2],0x2d32 ori @x[3],@x[3],0x6574 vmr $B0,@K[1] lwz @x[4],0($key) # load key to GPR vmr $B1,@K[1] lwz @x[5],4($key) vmr $B2,@K[1] lwz @x[6],8($key) vmr $C0,@K[2] lwz @x[7],12($key) vmr $C1,@K[2] lwz @x[8],16($key) vmr $C2,@K[2] mr @x[12],@d[0] # copy GPR counter lwz @x[9],20($key) vmr $D0,@K[3] mr @x[13],@d[1] lwz @x[10],24($key) vmr $D1,@K[4] mr @x[14],@d[2] lwz @x[11],28($key) vmr $D2,@K[5] mr @x[15],@d[3] mr @t[0],@x[4] mr @t[1],@x[5] mr @t[2],@x[6] mr @t[3],@x[7] vspltisw $twelve,12 # synthesize constants vspltisw $seven,7 mtctr r0 nop Loop_vmx: ___ my @thread0=&VMXROUND($A0,$B0,$C0,$D0,0); my @thread1=&VMXROUND($A1,$B1,$C1,$D1,0); my @thread2=&VMXROUND($A2,$B2,$C2,$D2,0); my @thread3=&ROUND(0,4,8,12); foreach (@thread0) { eval; eval(shift(@thread1)); eval(shift(@thread2)); eval(shift(@thread3)); eval(shift(@thread3)); eval(shift(@thread3)); } foreach (@thread3) { eval; } @thread0=&VMXROUND($A0,$B0,$C0,$D0,1); @thread1=&VMXROUND($A1,$B1,$C1,$D1,1); @thread2=&VMXROUND($A2,$B2,$C2,$D2,1); @thread3=&ROUND(0,5,10,15); foreach (@thread0) { eval; eval(shift(@thread1)); eval(shift(@thread2)); eval(shift(@thread3)); eval(shift(@thread3)); eval(shift(@thread3)); } foreach (@thread3) { eval; } $code.=<<___; bdnz Loop_vmx subi $len,$len,256 # $len-=256 addi @x[0],@x[0],0x7865 # accumulate key block addi @x[1],@x[1],0x646e addi @x[2],@x[2],0x2d32 addi @x[3],@x[3],0x6574 addis @x[0],@x[0],0x6170 addis @x[1],@x[1],0x3320 addis @x[2],@x[2],0x7962 addis @x[3],@x[3],0x6b20 add @x[4],@x[4],@t[0] lwz @t[0],16($key) add @x[5],@x[5],@t[1] lwz @t[1],20($key) add @x[6],@x[6],@t[2] lwz @t[2],24($key) add @x[7],@x[7],@t[3] lwz @t[3],28($key) add @x[8],@x[8],@t[0] add @x[9],@x[9],@t[1] add @x[10],@x[10],@t[2] add @x[11],@x[11],@t[3] add @x[12],@x[12],@d[0] add @x[13],@x[13],@d[1] add @x[14],@x[14],@d[2] add @x[15],@x[15],@d[3] vadduwm $A0,$A0,@K[0] # accumulate key block vadduwm $A1,$A1,@K[0] vadduwm $A2,$A2,@K[0] vadduwm $B0,$B0,@K[1] vadduwm $B1,$B1,@K[1] vadduwm $B2,$B2,@K[1] vadduwm $C0,$C0,@K[2] vadduwm $C1,$C1,@K[2] vadduwm $C2,$C2,@K[2] vadduwm $D0,$D0,@K[3] vadduwm $D1,$D1,@K[4] vadduwm $D2,$D2,@K[5] addi @d[0],@d[0],4 # increment counter vadduwm @K[3],@K[3],$FOUR vadduwm @K[4],@K[4],$FOUR vadduwm @K[5],@K[5],$FOUR ___ if (!$LITTLE_ENDIAN) { for($i=0;$i<16;$i++) { # flip byte order $code.=<<___; mr @t[$i&3],@x[$i] rotlwi @x[$i],@x[$i],8 rlwimi @x[$i],@t[$i&3],24,0,7 rlwimi @x[$i],@t[$i&3],24,16,23 ___ } } $code.=<<___; lwz @t[0],0($inp) # load input, aligned or not lwz @t[1],4($inp) lwz @t[2],8($inp) lwz @t[3],12($inp) xor @x[0],@x[0],@t[0] # xor with input lwz @t[0],16($inp) xor @x[1],@x[1],@t[1] lwz @t[1],20($inp) xor @x[2],@x[2],@t[2] lwz @t[2],24($inp) xor @x[3],@x[3],@t[3] lwz @t[3],28($inp) xor @x[4],@x[4],@t[0] lwz @t[0],32($inp) xor @x[5],@x[5],@t[1] lwz @t[1],36($inp) xor @x[6],@x[6],@t[2] lwz @t[2],40($inp) xor @x[7],@x[7],@t[3] lwz @t[3],44($inp) xor @x[8],@x[8],@t[0] lwz @t[0],48($inp) xor @x[9],@x[9],@t[1] lwz @t[1],52($inp) xor @x[10],@x[10],@t[2] lwz @t[2],56($inp) xor @x[11],@x[11],@t[3] lwz @t[3],60($inp) xor @x[12],@x[12],@t[0] stw @x[0],0($out) # store output, aligned or not xor @x[13],@x[13],@t[1] stw @x[1],4($out) xor @x[14],@x[14],@t[2] stw @x[2],8($out) xor @x[15],@x[15],@t[3] stw @x[3],12($out) addi $inp,$inp,64 stw @x[4],16($out) li @t[0],16 stw @x[5],20($out) li @t[1],32 stw @x[6],24($out) li @t[2],48 stw @x[7],28($out) li @t[3],64 stw @x[8],32($out) stw @x[9],36($out) stw @x[10],40($out) stw @x[11],44($out) stw @x[12],48($out) stw @x[13],52($out) stw @x[14],56($out) stw @x[15],60($out) addi $out,$out,64 lvx @D[0],0,$inp # load input lvx @D[1],@t[0],$inp lvx @D[2],@t[1],$inp lvx @D[3],@t[2],$inp lvx @D[4],@t[3],$inp addi $inp,$inp,64 ?vperm @D[0],@D[1],@D[0],$inpperm # align input ?vperm @D[1],@D[2],@D[1],$inpperm ?vperm @D[2],@D[3],@D[2],$inpperm ?vperm @D[3],@D[4],@D[3],$inpperm vxor $A0,$A0,@D[0] # xor with input vxor $B0,$B0,@D[1] lvx @D[1],@t[0],$inp # keep loading input vxor $C0,$C0,@D[2] lvx @D[2],@t[1],$inp vxor $D0,$D0,@D[3] lvx @D[3],@t[2],$inp lvx @D[0],@t[3],$inp addi $inp,$inp,64 li @t[3],63 # 63 is not a typo vperm $A0,$A0,$A0,$outperm # pre-misalign output vperm $B0,$B0,$B0,$outperm vperm $C0,$C0,$C0,$outperm vperm $D0,$D0,$D0,$outperm ?vperm @D[4],@D[1],@D[4],$inpperm # align input ?vperm @D[1],@D[2],@D[1],$inpperm ?vperm @D[2],@D[3],@D[2],$inpperm ?vperm @D[3],@D[0],@D[3],$inpperm vxor $A1,$A1,@D[4] vxor $B1,$B1,@D[1] lvx @D[1],@t[0],$inp # keep loading input vxor $C1,$C1,@D[2] lvx @D[2],@t[1],$inp vxor $D1,$D1,@D[3] lvx @D[3],@t[2],$inp lvx @D[4],@t[3],$inp # redundant in aligned case addi $inp,$inp,64 vperm $A1,$A1,$A1,$outperm # pre-misalign output vperm $B1,$B1,$B1,$outperm vperm $C1,$C1,$C1,$outperm vperm $D1,$D1,$D1,$outperm ?vperm @D[0],@D[1],@D[0],$inpperm # align input ?vperm @D[1],@D[2],@D[1],$inpperm ?vperm @D[2],@D[3],@D[2],$inpperm ?vperm @D[3],@D[4],@D[3],$inpperm vxor $A2,$A2,@D[0] vxor $B2,$B2,@D[1] vxor $C2,$C2,@D[2] vxor $D2,$D2,@D[3] vperm $A2,$A2,$A2,$outperm # pre-misalign output vperm $B2,$B2,$B2,$outperm vperm $C2,$C2,$C2,$outperm vperm $D2,$D2,$D2,$outperm andi. @x[1],$out,15 # is $out aligned? mr @x[0],$out vsel @D[0],$A0,$B0,$outmask # collect pre-misaligned output vsel @D[1],$B0,$C0,$outmask vsel @D[2],$C0,$D0,$outmask vsel @D[3],$D0,$A1,$outmask vsel $B0,$A1,$B1,$outmask vsel $C0,$B1,$C1,$outmask vsel $D0,$C1,$D1,$outmask vsel $A1,$D1,$A2,$outmask vsel $B1,$A2,$B2,$outmask vsel $C1,$B2,$C2,$outmask vsel $D1,$C2,$D2,$outmask #stvx $A0,0,$out # take it easy on the edges stvx @D[0],@t[0],$out # store output stvx @D[1],@t[1],$out stvx @D[2],@t[2],$out addi $out,$out,64 stvx @D[3],0,$out stvx $B0,@t[0],$out stvx $C0,@t[1],$out stvx $D0,@t[2],$out addi $out,$out,64 stvx $A1,0,$out stvx $B1,@t[0],$out stvx $C1,@t[1],$out stvx $D1,@t[2],$out addi $out,$out,64 beq Laligned_vmx sub @x[2],$out,@x[1] # in misaligned case edges li @x[3],0 # are written byte-by-byte Lunaligned_tail_vmx: stvebx $D2,@x[3],@x[2] addi @x[3],@x[3],1 cmpw @x[3],@x[1] bne Lunaligned_tail_vmx sub @x[2],@x[0],@x[1] Lunaligned_head_vmx: stvebx $A0,@x[1],@x[2] cmpwi @x[1],15 addi @x[1],@x[1],1 bne Lunaligned_head_vmx ${UCMP}i $len,255 # done with 256-byte blocks yet? bgt Loop_outer_vmx b Ldone_vmx .align 4 Laligned_vmx: stvx $A0,0,@x[0] # head hexaword was not stored ${UCMP}i $len,255 # done with 256-byte blocks yet? bgt Loop_outer_vmx nop Ldone_vmx: ${UCMP}i $len,0 # done yet? bnel __ChaCha20_1x lwz r12,`$FRAME-$SIZE_T*18-4`($sp) # pull vrsave li r10,`15+$LOCALS+64` li r11,`31+$LOCALS+64` mtspr 256,r12 # restore vrsave lvx v23,r10,$sp addi r10,r10,32 lvx v24,r11,$sp addi r11,r11,32 lvx v25,r10,$sp addi r10,r10,32 lvx v26,r11,$sp addi r11,r11,32 lvx v27,r10,$sp addi r10,r10,32 lvx v28,r11,$sp addi r11,r11,32 lvx v29,r10,$sp addi r10,r10,32 lvx v30,r11,$sp lvx v31,r10,$sp $POP r0, `$FRAME+$LRSAVE`($sp) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,18,5,0 .long 0 .size .ChaCha20_ctr32_vmx,.-.ChaCha20_ctr32_vmx ___ }}} {{{ my ($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, $xc0,$xc1,$xc2,$xc3, $xd0,$xd1,$xd2,$xd3) = map("v$_",(0..15)); my @K = map("v$_",(16..19)); my $CTR = "v26"; my ($xt0,$xt1,$xt2,$xt3) = map("v$_",(27..30)); my ($sixteen,$twelve,$eight,$seven) = ($xt0,$xt1,$xt2,$xt3); my $beperm = "v31"; my ($x00,$x10,$x20,$x30) = (0, map("r$_",(8..10))); my $FRAME=$LOCALS+64+7*16; # 7*16 is for v26-v31 offload sub VSX_lane_ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my @x=map("\"v$_\"",(0..15)); ( "&vadduwm (@x[$a0],@x[$a0],@x[$b0])", # Q1 "&vadduwm (@x[$a1],@x[$a1],@x[$b1])", # Q2 "&vadduwm (@x[$a2],@x[$a2],@x[$b2])", # Q3 "&vadduwm (@x[$a3],@x[$a3],@x[$b3])", # Q4 "&vxor (@x[$d0],@x[$d0],@x[$a0])", "&vxor (@x[$d1],@x[$d1],@x[$a1])", "&vxor (@x[$d2],@x[$d2],@x[$a2])", "&vxor (@x[$d3],@x[$d3],@x[$a3])", "&vrlw (@x[$d0],@x[$d0],'$sixteen')", "&vrlw (@x[$d1],@x[$d1],'$sixteen')", "&vrlw (@x[$d2],@x[$d2],'$sixteen')", "&vrlw (@x[$d3],@x[$d3],'$sixteen')", "&vadduwm (@x[$c0],@x[$c0],@x[$d0])", "&vadduwm (@x[$c1],@x[$c1],@x[$d1])", "&vadduwm (@x[$c2],@x[$c2],@x[$d2])", "&vadduwm (@x[$c3],@x[$c3],@x[$d3])", "&vxor (@x[$b0],@x[$b0],@x[$c0])", "&vxor (@x[$b1],@x[$b1],@x[$c1])", "&vxor (@x[$b2],@x[$b2],@x[$c2])", "&vxor (@x[$b3],@x[$b3],@x[$c3])", "&vrlw (@x[$b0],@x[$b0],'$twelve')", "&vrlw (@x[$b1],@x[$b1],'$twelve')", "&vrlw (@x[$b2],@x[$b2],'$twelve')", "&vrlw (@x[$b3],@x[$b3],'$twelve')", "&vadduwm (@x[$a0],@x[$a0],@x[$b0])", "&vadduwm (@x[$a1],@x[$a1],@x[$b1])", "&vadduwm (@x[$a2],@x[$a2],@x[$b2])", "&vadduwm (@x[$a3],@x[$a3],@x[$b3])", "&vxor (@x[$d0],@x[$d0],@x[$a0])", "&vxor (@x[$d1],@x[$d1],@x[$a1])", "&vxor (@x[$d2],@x[$d2],@x[$a2])", "&vxor (@x[$d3],@x[$d3],@x[$a3])", "&vrlw (@x[$d0],@x[$d0],'$eight')", "&vrlw (@x[$d1],@x[$d1],'$eight')", "&vrlw (@x[$d2],@x[$d2],'$eight')", "&vrlw (@x[$d3],@x[$d3],'$eight')", "&vadduwm (@x[$c0],@x[$c0],@x[$d0])", "&vadduwm (@x[$c1],@x[$c1],@x[$d1])", "&vadduwm (@x[$c2],@x[$c2],@x[$d2])", "&vadduwm (@x[$c3],@x[$c3],@x[$d3])", "&vxor (@x[$b0],@x[$b0],@x[$c0])", "&vxor (@x[$b1],@x[$b1],@x[$c1])", "&vxor (@x[$b2],@x[$b2],@x[$c2])", "&vxor (@x[$b3],@x[$b3],@x[$c3])", "&vrlw (@x[$b0],@x[$b0],'$seven')", "&vrlw (@x[$b1],@x[$b1],'$seven')", "&vrlw (@x[$b2],@x[$b2],'$seven')", "&vrlw (@x[$b3],@x[$b3],'$seven')" ); } $code.=<<___; .globl .ChaCha20_ctr32_vsx .align 5 .ChaCha20_ctr32_vsx: $STU $sp,-$FRAME($sp) mflr r0 li r10,`15+$LOCALS+64` li r11,`31+$LOCALS+64` mfspr r12,256 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r12,`$FRAME-4`($sp) # save vrsave li r12,-4096+63 $PUSH r0, `$FRAME+$LRSAVE`($sp) mtspr 256,r12 # preserve 29 AltiVec registers bl Lconsts # returns pointer Lsigma in r12 lvx_4w @K[0],0,r12 # load sigma addi r12,r12,0x50 li $x10,16 li $x20,32 li $x30,48 li r11,64 lvx_4w @K[1],0,$key # load key lvx_4w @K[2],$x10,$key lvx_4w @K[3],0,$ctr # load counter vxor $xt0,$xt0,$xt0 lvx_4w $xt1,r11,r12 vspltw $CTR,@K[3],0 vsldoi @K[3],@K[3],$xt0,4 vsldoi @K[3],$xt0,@K[3],12 # clear @K[3].word[0] vadduwm $CTR,$CTR,$xt1 be?lvsl $beperm,0,$x10 # 0x00..0f be?vspltisb $xt0,3 # 0x03..03 be?vxor $beperm,$beperm,$xt0 # swap bytes within words li r0,10 # inner loop counter mtctr r0 b Loop_outer_vsx .align 5 Loop_outer_vsx: lvx $xa0,$x00,r12 # load [smashed] sigma lvx $xa1,$x10,r12 lvx $xa2,$x20,r12 lvx $xa3,$x30,r12 vspltw $xb0,@K[1],0 # smash the key vspltw $xb1,@K[1],1 vspltw $xb2,@K[1],2 vspltw $xb3,@K[1],3 vspltw $xc0,@K[2],0 vspltw $xc1,@K[2],1 vspltw $xc2,@K[2],2 vspltw $xc3,@K[2],3 vmr $xd0,$CTR # smash the counter vspltw $xd1,@K[3],1 vspltw $xd2,@K[3],2 vspltw $xd3,@K[3],3 vspltisw $sixteen,-16 # synthesize constants vspltisw $twelve,12 vspltisw $eight,8 vspltisw $seven,7 Loop_vsx: ___ foreach (&VSX_lane_ROUND(0, 4, 8,12)) { eval; } foreach (&VSX_lane_ROUND(0, 5,10,15)) { eval; } $code.=<<___; bdnz Loop_vsx vadduwm $xd0,$xd0,$CTR vmrgew $xt0,$xa0,$xa1 # transpose data vmrgew $xt1,$xa2,$xa3 vmrgow $xa0,$xa0,$xa1 vmrgow $xa2,$xa2,$xa3 vmrgew $xt2,$xb0,$xb1 vmrgew $xt3,$xb2,$xb3 vpermdi $xa1,$xa0,$xa2,0b00 vpermdi $xa3,$xa0,$xa2,0b11 vpermdi $xa0,$xt0,$xt1,0b00 vpermdi $xa2,$xt0,$xt1,0b11 vmrgow $xb0,$xb0,$xb1 vmrgow $xb2,$xb2,$xb3 vmrgew $xt0,$xc0,$xc1 vmrgew $xt1,$xc2,$xc3 vpermdi $xb1,$xb0,$xb2,0b00 vpermdi $xb3,$xb0,$xb2,0b11 vpermdi $xb0,$xt2,$xt3,0b00 vpermdi $xb2,$xt2,$xt3,0b11 vmrgow $xc0,$xc0,$xc1 vmrgow $xc2,$xc2,$xc3 vmrgew $xt2,$xd0,$xd1 vmrgew $xt3,$xd2,$xd3 vpermdi $xc1,$xc0,$xc2,0b00 vpermdi $xc3,$xc0,$xc2,0b11 vpermdi $xc0,$xt0,$xt1,0b00 vpermdi $xc2,$xt0,$xt1,0b11 vmrgow $xd0,$xd0,$xd1 vmrgow $xd2,$xd2,$xd3 vspltisw $xt0,4 vadduwm $CTR,$CTR,$xt0 # next counter value vpermdi $xd1,$xd0,$xd2,0b00 vpermdi $xd3,$xd0,$xd2,0b11 vpermdi $xd0,$xt2,$xt3,0b00 vpermdi $xd2,$xt2,$xt3,0b11 vadduwm $xa0,$xa0,@K[0] vadduwm $xb0,$xb0,@K[1] vadduwm $xc0,$xc0,@K[2] vadduwm $xd0,$xd0,@K[3] be?vperm $xa0,$xa0,$xa0,$beperm be?vperm $xb0,$xb0,$xb0,$beperm be?vperm $xc0,$xc0,$xc0,$beperm be?vperm $xd0,$xd0,$xd0,$beperm ${UCMP}i $len,0x40 blt Ltail_vsx lvx_4w $xt0,$x00,$inp lvx_4w $xt1,$x10,$inp lvx_4w $xt2,$x20,$inp lvx_4w $xt3,$x30,$inp vxor $xt0,$xt0,$xa0 vxor $xt1,$xt1,$xb0 vxor $xt2,$xt2,$xc0 vxor $xt3,$xt3,$xd0 stvx_4w $xt0,$x00,$out stvx_4w $xt1,$x10,$out addi $inp,$inp,0x40 stvx_4w $xt2,$x20,$out subi $len,$len,0x40 stvx_4w $xt3,$x30,$out addi $out,$out,0x40 beq Ldone_vsx vadduwm $xa0,$xa1,@K[0] vadduwm $xb0,$xb1,@K[1] vadduwm $xc0,$xc1,@K[2] vadduwm $xd0,$xd1,@K[3] be?vperm $xa0,$xa0,$xa0,$beperm be?vperm $xb0,$xb0,$xb0,$beperm be?vperm $xc0,$xc0,$xc0,$beperm be?vperm $xd0,$xd0,$xd0,$beperm ${UCMP}i $len,0x40 blt Ltail_vsx lvx_4w $xt0,$x00,$inp lvx_4w $xt1,$x10,$inp lvx_4w $xt2,$x20,$inp lvx_4w $xt3,$x30,$inp vxor $xt0,$xt0,$xa0 vxor $xt1,$xt1,$xb0 vxor $xt2,$xt2,$xc0 vxor $xt3,$xt3,$xd0 stvx_4w $xt0,$x00,$out stvx_4w $xt1,$x10,$out addi $inp,$inp,0x40 stvx_4w $xt2,$x20,$out subi $len,$len,0x40 stvx_4w $xt3,$x30,$out addi $out,$out,0x40 beq Ldone_vsx vadduwm $xa0,$xa2,@K[0] vadduwm $xb0,$xb2,@K[1] vadduwm $xc0,$xc2,@K[2] vadduwm $xd0,$xd2,@K[3] be?vperm $xa0,$xa0,$xa0,$beperm be?vperm $xb0,$xb0,$xb0,$beperm be?vperm $xc0,$xc0,$xc0,$beperm be?vperm $xd0,$xd0,$xd0,$beperm ${UCMP}i $len,0x40 blt Ltail_vsx lvx_4w $xt0,$x00,$inp lvx_4w $xt1,$x10,$inp lvx_4w $xt2,$x20,$inp lvx_4w $xt3,$x30,$inp vxor $xt0,$xt0,$xa0 vxor $xt1,$xt1,$xb0 vxor $xt2,$xt2,$xc0 vxor $xt3,$xt3,$xd0 stvx_4w $xt0,$x00,$out stvx_4w $xt1,$x10,$out addi $inp,$inp,0x40 stvx_4w $xt2,$x20,$out subi $len,$len,0x40 stvx_4w $xt3,$x30,$out addi $out,$out,0x40 beq Ldone_vsx vadduwm $xa0,$xa3,@K[0] vadduwm $xb0,$xb3,@K[1] vadduwm $xc0,$xc3,@K[2] vadduwm $xd0,$xd3,@K[3] be?vperm $xa0,$xa0,$xa0,$beperm be?vperm $xb0,$xb0,$xb0,$beperm be?vperm $xc0,$xc0,$xc0,$beperm be?vperm $xd0,$xd0,$xd0,$beperm ${UCMP}i $len,0x40 blt Ltail_vsx lvx_4w $xt0,$x00,$inp lvx_4w $xt1,$x10,$inp lvx_4w $xt2,$x20,$inp lvx_4w $xt3,$x30,$inp vxor $xt0,$xt0,$xa0 vxor $xt1,$xt1,$xb0 vxor $xt2,$xt2,$xc0 vxor $xt3,$xt3,$xd0 stvx_4w $xt0,$x00,$out stvx_4w $xt1,$x10,$out addi $inp,$inp,0x40 stvx_4w $xt2,$x20,$out subi $len,$len,0x40 stvx_4w $xt3,$x30,$out addi $out,$out,0x40 mtctr r0 bne Loop_outer_vsx Ldone_vsx: lwz r12,`$FRAME-4`($sp) # pull vrsave li r10,`15+$LOCALS+64` li r11,`31+$LOCALS+64` $POP r0, `$FRAME+$LRSAVE`($sp) mtspr 256,r12 # restore vrsave lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp mtlr r0 addi $sp,$sp,$FRAME blr .align 4 Ltail_vsx: addi r11,$sp,$LOCALS mtctr $len stvx_4w $xa0,$x00,r11 # offload block to stack stvx_4w $xb0,$x10,r11 stvx_4w $xc0,$x20,r11 stvx_4w $xd0,$x30,r11 subi r12,r11,1 # prepare for *++ptr subi $inp,$inp,1 subi $out,$out,1 Loop_tail_vsx: lbzu r6,1(r12) lbzu r7,1($inp) xor r6,r6,r7 stbu r6,1($out) bdnz Loop_tail_vsx stvx_4w $K[0],$x00,r11 # wipe copy of the block stvx_4w $K[0],$x10,r11 stvx_4w $K[0],$x20,r11 stvx_4w $K[0],$x30,r11 b Ldone_vsx .long 0 .byte 0,12,0x04,1,0x80,0,5,0 .long 0 .size .ChaCha20_ctr32_vsx,.-.ChaCha20_ctr32_vsx ___ }}} $code.=<<___; .align 5 Lconsts: mflr r0 bcl 20,31,\$+4 mflr r12 #vvvvv "distance between . and Lsigma addi r12,r12,`64-8` mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `64-9*4` Lsigma: .long 0x61707865,0x3320646e,0x79622d32,0x6b206574 .long 1,0,0,0 .long 4,0,0,0 ___ $code.=<<___ if ($LITTLE_ENDIAN); .long 0x0e0f0c0d,0x0a0b0809,0x06070405,0x02030001 .long 0x0d0e0f0c,0x090a0b08,0x05060704,0x01020300 ___ $code.=<<___ if (!$LITTLE_ENDIAN); # flipped words .long 0x02030001,0x06070405,0x0a0b0809,0x0e0f0c0d .long 0x01020300,0x05060704,0x090a0b08,0x0d0e0f0c ___ $code.=<<___; .long 0x61707865,0x61707865,0x61707865,0x61707865 .long 0x3320646e,0x3320646e,0x3320646e,0x3320646e .long 0x79622d32,0x79622d32,0x79622d32,0x79622d32 .long 0x6b206574,0x6b206574,0x6b206574,0x6b206574 .long 0,1,2,3 .asciz "ChaCha20 for PowerPC/AltiVec, CRYPTOGAMS by " .align 2 ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; # instructions prefixed with '?' are endian-specific and need # to be adjusted accordingly... if ($flavour !~ /le$/) { # big-endian s/be\?// or s/le\?/#le#/ or s/\?lvsr/lvsl/ or s/\?lvsl/lvsr/ or s/\?(vperm\s+v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+)/$1$3$2$4/ or s/vrldoi(\s+v[0-9]+,\s*)(v[0-9]+,)\s*([0-9]+)/vsldoi$1$2$2 16-$3/; } else { # little-endian s/le\?// or s/be\?/#be#/ or s/\?([a-z]+)/$1/ or s/vrldoi(\s+v[0-9]+,\s*)(v[0-9]+,)\s*([0-9]+)/vsldoi$1$2$2 $3/; } print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/chacha/asm/chacha-s390x.pl000077500000000000000000000175651364063235100213260ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # December 2015 # # ChaCha20 for s390x. # # 3 times faster than compiler-generated code. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $code .= "\t$opcode\t".join(',',@_)."\n"; } my $sp="%r15"; my $stdframe=16*$SIZE_T+4*8; my $frame=$stdframe+4*20; my ($out,$inp,$len,$key,$counter)=map("%r$_",(2..6)); my @x=map("%r$_",(0..7,"x","x","x","x",(10..13))); my @t=map("%r$_",(8,9)); sub ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my ($xc,$xc_)=map("\"$_\"",@t); my @x=map("\"$_\"",@x); # Consider order in which variables are addressed by their # index: # # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 # # 'a', 'b' and 'd's are permanently allocated in registers, # @x[0..7,12..15], while 'c's are maintained in memory. If # you observe 'c' column, you'll notice that pair of 'c's is # invariant between rounds. This means that we have to reload # them once per round, in the middle. This is why you'll see # 'c' stores and loads in the middle, but none in the beginning # or end. ( "&alr (@x[$a0],@x[$b0])", # Q1 "&alr (@x[$a1],@x[$b1])", # Q2 "&xr (@x[$d0],@x[$a0])", "&xr (@x[$d1],@x[$a1])", "&rll (@x[$d0],@x[$d0],16)", "&rll (@x[$d1],@x[$d1],16)", "&alr ($xc,@x[$d0])", "&alr ($xc_,@x[$d1])", "&xr (@x[$b0],$xc)", "&xr (@x[$b1],$xc_)", "&rll (@x[$b0],@x[$b0],12)", "&rll (@x[$b1],@x[$b1],12)", "&alr (@x[$a0],@x[$b0])", "&alr (@x[$a1],@x[$b1])", "&xr (@x[$d0],@x[$a0])", "&xr (@x[$d1],@x[$a1])", "&rll (@x[$d0],@x[$d0],8)", "&rll (@x[$d1],@x[$d1],8)", "&alr ($xc,@x[$d0])", "&alr ($xc_,@x[$d1])", "&xr (@x[$b0],$xc)", "&xr (@x[$b1],$xc_)", "&rll (@x[$b0],@x[$b0],7)", "&rll (@x[$b1],@x[$b1],7)", "&stm ($xc,$xc_,'$stdframe+4*8+4*$c0($sp)')", # reload pair of 'c's "&lm ($xc,$xc_,'$stdframe+4*8+4*$c2($sp)')", "&alr (@x[$a2],@x[$b2])", # Q3 "&alr (@x[$a3],@x[$b3])", # Q4 "&xr (@x[$d2],@x[$a2])", "&xr (@x[$d3],@x[$a3])", "&rll (@x[$d2],@x[$d2],16)", "&rll (@x[$d3],@x[$d3],16)", "&alr ($xc,@x[$d2])", "&alr ($xc_,@x[$d3])", "&xr (@x[$b2],$xc)", "&xr (@x[$b3],$xc_)", "&rll (@x[$b2],@x[$b2],12)", "&rll (@x[$b3],@x[$b3],12)", "&alr (@x[$a2],@x[$b2])", "&alr (@x[$a3],@x[$b3])", "&xr (@x[$d2],@x[$a2])", "&xr (@x[$d3],@x[$a3])", "&rll (@x[$d2],@x[$d2],8)", "&rll (@x[$d3],@x[$d3],8)", "&alr ($xc,@x[$d2])", "&alr ($xc_,@x[$d3])", "&xr (@x[$b2],$xc)", "&xr (@x[$b3],$xc_)", "&rll (@x[$b2],@x[$b2],7)", "&rll (@x[$b3],@x[$b3],7)" ); } $code.=<<___; .text .globl ChaCha20_ctr32 .type ChaCha20_ctr32,\@function .align 32 ChaCha20_ctr32: lt${g}r $len,$len # $len==0? bzr %r14 a${g}hi $len,-64 l${g}hi %r1,-$frame stm${g} %r6,%r15,`6*$SIZE_T`($sp) sl${g}r $out,$inp # difference la $len,0($inp,$len) # end of input minus 64 larl %r7,.Lsigma lgr %r0,$sp la $sp,0(%r1,$sp) st${g} %r0,0($sp) lmg %r8,%r11,0($key) # load key lmg %r12,%r13,0($counter) # load counter lmg %r6,%r7,0(%r7) # load sigma constant la %r14,0($inp) st${g} $out,$frame+3*$SIZE_T($sp) st${g} $len,$frame+4*$SIZE_T($sp) stmg %r6,%r13,$stdframe($sp) # copy key schedule to stack srlg @x[12],%r12,32 # 32-bit counter value j .Loop_outer .align 16 .Loop_outer: lm @x[0],@x[7],$stdframe+4*0($sp) # load x[0]-x[7] lm @t[0],@t[1],$stdframe+4*10($sp) # load x[10]-x[11] lm @x[13],@x[15],$stdframe+4*13($sp) # load x[13]-x[15] stm @t[0],@t[1],$stdframe+4*8+4*10($sp) # offload x[10]-x[11] lm @t[0],@t[1],$stdframe+4*8($sp) # load x[8]-x[9] st @x[12],$stdframe+4*12($sp) # save counter st${g} %r14,$frame+2*$SIZE_T($sp) # save input pointer lhi %r14,10 j .Loop .align 4 .Loop: ___ foreach (&ROUND(0, 4, 8,12)) { eval; } foreach (&ROUND(0, 5,10,15)) { eval; } $code.=<<___; brct %r14,.Loop l${g} %r14,$frame+2*$SIZE_T($sp) # pull input pointer stm @t[0],@t[1],$stdframe+4*8+4*8($sp) # offload x[8]-x[9] lm${g} @t[0],@t[1],$frame+3*$SIZE_T($sp) al @x[0],$stdframe+4*0($sp) # accumulate key schedule al @x[1],$stdframe+4*1($sp) al @x[2],$stdframe+4*2($sp) al @x[3],$stdframe+4*3($sp) al @x[4],$stdframe+4*4($sp) al @x[5],$stdframe+4*5($sp) al @x[6],$stdframe+4*6($sp) al @x[7],$stdframe+4*7($sp) lrvr @x[0],@x[0] lrvr @x[1],@x[1] lrvr @x[2],@x[2] lrvr @x[3],@x[3] lrvr @x[4],@x[4] lrvr @x[5],@x[5] lrvr @x[6],@x[6] lrvr @x[7],@x[7] al @x[12],$stdframe+4*12($sp) al @x[13],$stdframe+4*13($sp) al @x[14],$stdframe+4*14($sp) al @x[15],$stdframe+4*15($sp) lrvr @x[12],@x[12] lrvr @x[13],@x[13] lrvr @x[14],@x[14] lrvr @x[15],@x[15] la @t[0],0(@t[0],%r14) # reconstruct output pointer cl${g}r %r14,@t[1] jh .Ltail x @x[0],4*0(%r14) # xor with input x @x[1],4*1(%r14) st @x[0],4*0(@t[0]) # store output x @x[2],4*2(%r14) st @x[1],4*1(@t[0]) x @x[3],4*3(%r14) st @x[2],4*2(@t[0]) x @x[4],4*4(%r14) st @x[3],4*3(@t[0]) lm @x[0],@x[3],$stdframe+4*8+4*8($sp) # load x[8]-x[11] x @x[5],4*5(%r14) st @x[4],4*4(@t[0]) x @x[6],4*6(%r14) al @x[0],$stdframe+4*8($sp) st @x[5],4*5(@t[0]) x @x[7],4*7(%r14) al @x[1],$stdframe+4*9($sp) st @x[6],4*6(@t[0]) x @x[12],4*12(%r14) al @x[2],$stdframe+4*10($sp) st @x[7],4*7(@t[0]) x @x[13],4*13(%r14) al @x[3],$stdframe+4*11($sp) st @x[12],4*12(@t[0]) x @x[14],4*14(%r14) st @x[13],4*13(@t[0]) x @x[15],4*15(%r14) st @x[14],4*14(@t[0]) lrvr @x[0],@x[0] st @x[15],4*15(@t[0]) lrvr @x[1],@x[1] lrvr @x[2],@x[2] lrvr @x[3],@x[3] lhi @x[12],1 x @x[0],4*8(%r14) al @x[12],$stdframe+4*12($sp) # increment counter x @x[1],4*9(%r14) st @x[0],4*8(@t[0]) x @x[2],4*10(%r14) st @x[1],4*9(@t[0]) x @x[3],4*11(%r14) st @x[2],4*10(@t[0]) st @x[3],4*11(@t[0]) cl${g}r %r14,@t[1] # done yet? la %r14,64(%r14) jl .Loop_outer .Ldone: xgr %r0,%r0 xgr %r1,%r1 xgr %r2,%r2 xgr %r3,%r3 stmg %r0,%r3,$stdframe+4*4($sp) # wipe key copy stmg %r0,%r3,$stdframe+4*12($sp) lm${g} %r6,%r15,`$frame+6*$SIZE_T`($sp) br %r14 .align 16 .Ltail: la @t[1],64($t[1]) stm @x[0],@x[7],$stdframe+4*0($sp) sl${g}r @t[1],%r14 lm @x[0],@x[3],$stdframe+4*8+4*8($sp) l${g}hi @x[6],0 stm @x[12],@x[15],$stdframe+4*12($sp) al @x[0],$stdframe+4*8($sp) al @x[1],$stdframe+4*9($sp) al @x[2],$stdframe+4*10($sp) al @x[3],$stdframe+4*11($sp) lrvr @x[0],@x[0] lrvr @x[1],@x[1] lrvr @x[2],@x[2] lrvr @x[3],@x[3] stm @x[0],@x[3],$stdframe+4*8($sp) .Loop_tail: llgc @x[4],0(@x[6],%r14) llgc @x[5],$stdframe(@x[6],$sp) xr @x[5],@x[4] stc @x[5],0(@x[6],@t[0]) la @x[6],1(@x[6]) brct @t[1],.Loop_tail j .Ldone .size ChaCha20_ctr32,.-ChaCha20_ctr32 .align 32 .Lsigma: .long 0x61707865,0x3320646e,0x79622d32,0x6b206574 # endian-neutral .asciz "ChaCha20 for s390x, CRYPTOGAMS by " .align 4 ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/chacha/asm/chacha-x86.pl000077500000000000000000001020701364063235100210470ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # January 2015 # # ChaCha20 for x86. # # Performance in cycles per byte out of large buffer. # # 1xIALU/gcc 4xSSSE3 # Pentium 17.5/+80% # PIII 14.2/+60% # P4 18.6/+84% # Core2 9.56/+89% 4.83 # Westmere 9.50/+45% 3.35 # Sandy Bridge 10.5/+47% 3.20 # Haswell 8.15/+50% 2.83 # Skylake 7.53/+22% 2.75 # Silvermont 17.4/+36% 8.35 # Goldmont 13.4/+40% 4.36 # Sledgehammer 10.2/+54% # Bulldozer 13.4/+50% 4.38(*) # # (*) Bulldozer actually executes 4xXOP code path that delivers 3.55; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $xmm=$ymm=0; for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } $ymm=1 if ($xmm && `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/ && ($gasver=$1)>=2.19); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ && $1>=2.03); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" && `ml 2>&1` =~ /Version ([0-9]+)\./ && $1>=10); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([0-9]+\.[0-9]+)/ && $2>=3.0); # first version supporting AVX $a="eax"; ($b,$b_)=("ebx","ebp"); ($c,$c_)=("ecx","esi"); ($d,$d_)=("edx","edi"); sub QUARTERROUND { my ($ai,$bi,$ci,$di,$i)=@_; my ($an,$bn,$cn,$dn)=map(($_&~3)+(($_+1)&3),($ai,$bi,$ci,$di)); # next my ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_-1)&3),($ai,$bi,$ci,$di)); # previous # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 if ($i==0) { my $j=4; ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_-$j--)&3),($ap,$bp,$cp,$dp)); } elsif ($i==3) { my $j=0; ($an,$bn,$cn,$dn)=map(($_&~3)+(($_+$j++)&3),($an,$bn,$cn,$dn)); } elsif ($i==4) { my $j=4; ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_+$j--)&3),($ap,$bp,$cp,$dp)); } elsif ($i==7) { my $j=0; ($an,$bn,$cn,$dn)=map(($_&~3)+(($_-$j++)&3),($an,$bn,$cn,$dn)); } #&add ($a,$b); # see elsewhere &xor ($d,$a); &mov (&DWP(4*$cp,"esp"),$c_) if ($ai>0 && $ai<3); &rol ($d,16); &mov (&DWP(4*$bp,"esp"),$b_) if ($i!=0); &add ($c,$d); &mov ($c_,&DWP(4*$cn,"esp")) if ($ai>0 && $ai<3); &xor ($b,$c); &mov ($d_,&DWP(4*$dn,"esp")) if ($di!=$dn); &rol ($b,12); &mov ($b_,&DWP(4*$bn,"esp")) if ($i<7); &mov ($b_,&DWP(128,"esp")) if ($i==7); # loop counter &add ($a,$b); &xor ($d,$a); &mov (&DWP(4*$ai,"esp"),$a); &rol ($d,8); &mov ($a,&DWP(4*$an,"esp")); &add ($c,$d); &mov (&DWP(4*$di,"esp"),$d) if ($di!=$dn); &mov ($d_,$d) if ($di==$dn); &xor ($b,$c); &add ($a,$b_) if ($i<7); # elsewhere &rol ($b,7); ($b,$b_)=($b_,$b); ($c,$c_)=($c_,$c); ($d,$d_)=($d_,$d); } &static_label("ssse3_shortcut"); &static_label("xop_shortcut"); &static_label("ssse3_data"); &static_label("pic_point"); &function_begin("ChaCha20_ctr32"); &xor ("eax","eax"); &cmp ("eax",&wparam(2)); # len==0? &je (&label("no_data")); if ($xmm) { &call (&label("pic_point")); &set_label("pic_point"); &blindpop("eax"); &picmeup("ebp","OPENSSL_ia32cap_P","eax",&label("pic_point")); &test (&DWP(0,"ebp"),1<<24); # test FXSR bit &jz (&label("x86")); &test (&DWP(4,"ebp"),1<<9); # test SSSE3 bit &jz (&label("x86")); &jmp (&label("ssse3_shortcut")); &set_label("x86"); } &mov ("esi",&wparam(3)); # key &mov ("edi",&wparam(4)); # counter and nonce &stack_push(33); &mov ("eax",&DWP(4*0,"esi")); # copy key &mov ("ebx",&DWP(4*1,"esi")); &mov ("ecx",&DWP(4*2,"esi")); &mov ("edx",&DWP(4*3,"esi")); &mov (&DWP(64+4*4,"esp"),"eax"); &mov (&DWP(64+4*5,"esp"),"ebx"); &mov (&DWP(64+4*6,"esp"),"ecx"); &mov (&DWP(64+4*7,"esp"),"edx"); &mov ("eax",&DWP(4*4,"esi")); &mov ("ebx",&DWP(4*5,"esi")); &mov ("ecx",&DWP(4*6,"esi")); &mov ("edx",&DWP(4*7,"esi")); &mov (&DWP(64+4*8,"esp"),"eax"); &mov (&DWP(64+4*9,"esp"),"ebx"); &mov (&DWP(64+4*10,"esp"),"ecx"); &mov (&DWP(64+4*11,"esp"),"edx"); &mov ("eax",&DWP(4*0,"edi")); # copy counter and nonce &mov ("ebx",&DWP(4*1,"edi")); &mov ("ecx",&DWP(4*2,"edi")); &mov ("edx",&DWP(4*3,"edi")); &sub ("eax",1); &mov (&DWP(64+4*12,"esp"),"eax"); &mov (&DWP(64+4*13,"esp"),"ebx"); &mov (&DWP(64+4*14,"esp"),"ecx"); &mov (&DWP(64+4*15,"esp"),"edx"); &jmp (&label("entry")); &set_label("outer_loop",16); &mov (&wparam(1),$b); # save input &mov (&wparam(0),$a); # save output &mov (&wparam(2),$c); # save len &set_label("entry"); &mov ($a,0x61707865); &mov (&DWP(4*1,"esp"),0x3320646e); &mov (&DWP(4*2,"esp"),0x79622d32); &mov (&DWP(4*3,"esp"),0x6b206574); &mov ($b, &DWP(64+4*5,"esp")); # copy key material &mov ($b_,&DWP(64+4*6,"esp")); &mov ($c, &DWP(64+4*10,"esp")); &mov ($c_,&DWP(64+4*11,"esp")); &mov ($d, &DWP(64+4*13,"esp")); &mov ($d_,&DWP(64+4*14,"esp")); &mov (&DWP(4*5,"esp"),$b); &mov (&DWP(4*6,"esp"),$b_); &mov (&DWP(4*10,"esp"),$c); &mov (&DWP(4*11,"esp"),$c_); &mov (&DWP(4*13,"esp"),$d); &mov (&DWP(4*14,"esp"),$d_); &mov ($b, &DWP(64+4*7,"esp")); &mov ($d_,&DWP(64+4*15,"esp")); &mov ($d, &DWP(64+4*12,"esp")); &mov ($b_,&DWP(64+4*4,"esp")); &mov ($c, &DWP(64+4*8,"esp")); &mov ($c_,&DWP(64+4*9,"esp")); &add ($d,1); # counter value &mov (&DWP(4*7,"esp"),$b); &mov (&DWP(4*15,"esp"),$d_); &mov (&DWP(64+4*12,"esp"),$d); # save counter value &mov ($b,10); # loop counter &jmp (&label("loop")); &set_label("loop",16); &add ($a,$b_); # elsewhere &mov (&DWP(128,"esp"),$b); # save loop counter &mov ($b,$b_); &QUARTERROUND(0, 4, 8, 12, 0); &QUARTERROUND(1, 5, 9, 13, 1); &QUARTERROUND(2, 6,10, 14, 2); &QUARTERROUND(3, 7,11, 15, 3); &QUARTERROUND(0, 5,10, 15, 4); &QUARTERROUND(1, 6,11, 12, 5); &QUARTERROUND(2, 7, 8, 13, 6); &QUARTERROUND(3, 4, 9, 14, 7); &dec ($b); &jnz (&label("loop")); &mov ($b,&wparam(2)); # load len &add ($a,0x61707865); # accumulate key material &add ($b_,&DWP(64+4*4,"esp")); &add ($c, &DWP(64+4*8,"esp")); &add ($c_,&DWP(64+4*9,"esp")); &cmp ($b,64); &jb (&label("tail")); &mov ($b,&wparam(1)); # load input pointer &add ($d, &DWP(64+4*12,"esp")); &add ($d_,&DWP(64+4*14,"esp")); &xor ($a, &DWP(4*0,$b)); # xor with input &xor ($b_,&DWP(4*4,$b)); &mov (&DWP(4*0,"esp"),$a); &mov ($a,&wparam(0)); # load output pointer &xor ($c, &DWP(4*8,$b)); &xor ($c_,&DWP(4*9,$b)); &xor ($d, &DWP(4*12,$b)); &xor ($d_,&DWP(4*14,$b)); &mov (&DWP(4*4,$a),$b_); # write output &mov (&DWP(4*8,$a),$c); &mov (&DWP(4*9,$a),$c_); &mov (&DWP(4*12,$a),$d); &mov (&DWP(4*14,$a),$d_); &mov ($b_,&DWP(4*1,"esp")); &mov ($c, &DWP(4*2,"esp")); &mov ($c_,&DWP(4*3,"esp")); &mov ($d, &DWP(4*5,"esp")); &mov ($d_,&DWP(4*6,"esp")); &add ($b_,0x3320646e); # accumulate key material &add ($c, 0x79622d32); &add ($c_,0x6b206574); &add ($d, &DWP(64+4*5,"esp")); &add ($d_,&DWP(64+4*6,"esp")); &xor ($b_,&DWP(4*1,$b)); &xor ($c, &DWP(4*2,$b)); &xor ($c_,&DWP(4*3,$b)); &xor ($d, &DWP(4*5,$b)); &xor ($d_,&DWP(4*6,$b)); &mov (&DWP(4*1,$a),$b_); &mov (&DWP(4*2,$a),$c); &mov (&DWP(4*3,$a),$c_); &mov (&DWP(4*5,$a),$d); &mov (&DWP(4*6,$a),$d_); &mov ($b_,&DWP(4*7,"esp")); &mov ($c, &DWP(4*10,"esp")); &mov ($c_,&DWP(4*11,"esp")); &mov ($d, &DWP(4*13,"esp")); &mov ($d_,&DWP(4*15,"esp")); &add ($b_,&DWP(64+4*7,"esp")); &add ($c, &DWP(64+4*10,"esp")); &add ($c_,&DWP(64+4*11,"esp")); &add ($d, &DWP(64+4*13,"esp")); &add ($d_,&DWP(64+4*15,"esp")); &xor ($b_,&DWP(4*7,$b)); &xor ($c, &DWP(4*10,$b)); &xor ($c_,&DWP(4*11,$b)); &xor ($d, &DWP(4*13,$b)); &xor ($d_,&DWP(4*15,$b)); &lea ($b,&DWP(4*16,$b)); &mov (&DWP(4*7,$a),$b_); &mov ($b_,&DWP(4*0,"esp")); &mov (&DWP(4*10,$a),$c); &mov ($c,&wparam(2)); # len &mov (&DWP(4*11,$a),$c_); &mov (&DWP(4*13,$a),$d); &mov (&DWP(4*15,$a),$d_); &mov (&DWP(4*0,$a),$b_); &lea ($a,&DWP(4*16,$a)); &sub ($c,64); &jnz (&label("outer_loop")); &jmp (&label("done")); &set_label("tail"); &add ($d, &DWP(64+4*12,"esp")); &add ($d_,&DWP(64+4*14,"esp")); &mov (&DWP(4*0,"esp"),$a); &mov (&DWP(4*4,"esp"),$b_); &mov (&DWP(4*8,"esp"),$c); &mov (&DWP(4*9,"esp"),$c_); &mov (&DWP(4*12,"esp"),$d); &mov (&DWP(4*14,"esp"),$d_); &mov ($b_,&DWP(4*1,"esp")); &mov ($c, &DWP(4*2,"esp")); &mov ($c_,&DWP(4*3,"esp")); &mov ($d, &DWP(4*5,"esp")); &mov ($d_,&DWP(4*6,"esp")); &add ($b_,0x3320646e); # accumulate key material &add ($c, 0x79622d32); &add ($c_,0x6b206574); &add ($d, &DWP(64+4*5,"esp")); &add ($d_,&DWP(64+4*6,"esp")); &mov (&DWP(4*1,"esp"),$b_); &mov (&DWP(4*2,"esp"),$c); &mov (&DWP(4*3,"esp"),$c_); &mov (&DWP(4*5,"esp"),$d); &mov (&DWP(4*6,"esp"),$d_); &mov ($b_,&DWP(4*7,"esp")); &mov ($c, &DWP(4*10,"esp")); &mov ($c_,&DWP(4*11,"esp")); &mov ($d, &DWP(4*13,"esp")); &mov ($d_,&DWP(4*15,"esp")); &add ($b_,&DWP(64+4*7,"esp")); &add ($c, &DWP(64+4*10,"esp")); &add ($c_,&DWP(64+4*11,"esp")); &add ($d, &DWP(64+4*13,"esp")); &add ($d_,&DWP(64+4*15,"esp")); &mov (&DWP(4*7,"esp"),$b_); &mov ($b_,&wparam(1)); # load input &mov (&DWP(4*10,"esp"),$c); &mov ($c,&wparam(0)); # load output &mov (&DWP(4*11,"esp"),$c_); &xor ($c_,$c_); &mov (&DWP(4*13,"esp"),$d); &mov (&DWP(4*15,"esp"),$d_); &xor ("eax","eax"); &xor ("edx","edx"); &set_label("tail_loop"); &movb ("al",&BP(0,$c_,$b_)); &movb ("dl",&BP(0,"esp",$c_)); &lea ($c_,&DWP(1,$c_)); &xor ("al","dl"); &mov (&BP(-1,$c,$c_),"al"); &dec ($b); &jnz (&label("tail_loop")); &set_label("done"); &stack_pop(33); &set_label("no_data"); &function_end("ChaCha20_ctr32"); if ($xmm) { my ($xa,$xa_,$xb,$xb_,$xc,$xc_,$xd,$xd_)=map("xmm$_",(0..7)); my ($out,$inp,$len)=("edi","esi","ecx"); sub QUARTERROUND_SSSE3 { my ($ai,$bi,$ci,$di,$i)=@_; my ($an,$bn,$cn,$dn)=map(($_&~3)+(($_+1)&3),($ai,$bi,$ci,$di)); # next my ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_-1)&3),($ai,$bi,$ci,$di)); # previous # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 if ($i==0) { my $j=4; ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_-$j--)&3),($ap,$bp,$cp,$dp)); } elsif ($i==3) { my $j=0; ($an,$bn,$cn,$dn)=map(($_&~3)+(($_+$j++)&3),($an,$bn,$cn,$dn)); } elsif ($i==4) { my $j=4; ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_+$j--)&3),($ap,$bp,$cp,$dp)); } elsif ($i==7) { my $j=0; ($an,$bn,$cn,$dn)=map(($_&~3)+(($_-$j++)&3),($an,$bn,$cn,$dn)); } #&paddd ($xa,$xb); # see elsewhere #&pxor ($xd,$xa); # see elsewhere &movdqa(&QWP(16*$cp-128,"ebx"),$xc_) if ($ai>0 && $ai<3); &pshufb ($xd,&QWP(0,"eax")); # rot16 &movdqa(&QWP(16*$bp-128,"ebx"),$xb_) if ($i!=0); &paddd ($xc,$xd); &movdqa($xc_,&QWP(16*$cn-128,"ebx")) if ($ai>0 && $ai<3); &pxor ($xb,$xc); &movdqa($xb_,&QWP(16*$bn-128,"ebx")) if ($i<7); &movdqa ($xa_,$xb); # borrow as temporary &pslld ($xb,12); &psrld ($xa_,20); &por ($xb,$xa_); &movdqa($xa_,&QWP(16*$an-128,"ebx")); &paddd ($xa,$xb); &movdqa($xd_,&QWP(16*$dn-128,"ebx")) if ($di!=$dn); &pxor ($xd,$xa); &movdqa (&QWP(16*$ai-128,"ebx"),$xa); &pshufb ($xd,&QWP(16,"eax")); # rot8 &paddd ($xc,$xd); &movdqa (&QWP(16*$di-128,"ebx"),$xd) if ($di!=$dn); &movdqa ($xd_,$xd) if ($di==$dn); &pxor ($xb,$xc); &paddd ($xa_,$xb_) if ($i<7); # elsewhere &movdqa ($xa,$xb); # borrow as temporary &pslld ($xb,7); &psrld ($xa,25); &pxor ($xd_,$xa_) if ($i<7); # elsewhere &por ($xb,$xa); ($xa,$xa_)=($xa_,$xa); ($xb,$xb_)=($xb_,$xb); ($xc,$xc_)=($xc_,$xc); ($xd,$xd_)=($xd_,$xd); } &function_begin("ChaCha20_ssse3"); &set_label("ssse3_shortcut"); if ($ymm) { &test (&DWP(4,"ebp"),1<<11); # test XOP bit &jnz (&label("xop_shortcut")); } &mov ($out,&wparam(0)); &mov ($inp,&wparam(1)); &mov ($len,&wparam(2)); &mov ("edx",&wparam(3)); # key &mov ("ebx",&wparam(4)); # counter and nonce &mov ("ebp","esp"); &stack_push (131); &and ("esp",-64); &mov (&DWP(512,"esp"),"ebp"); &lea ("eax",&DWP(&label("ssse3_data")."-". &label("pic_point"),"eax")); &movdqu ("xmm3",&QWP(0,"ebx")); # counter and nonce if (defined($gasver) && $gasver>=2.17) { # even though we encode # pshufb manually, we # handle only register # operands, while this # segment uses memory # operand... &cmp ($len,64*4); &jb (&label("1x")); &mov (&DWP(512+4,"esp"),"edx"); # offload pointers &mov (&DWP(512+8,"esp"),"ebx"); &sub ($len,64*4); # bias len &lea ("ebp",&DWP(256+128,"esp")); # size optimization &movdqu ("xmm7",&QWP(0,"edx")); # key &pshufd ("xmm0","xmm3",0x00); &pshufd ("xmm1","xmm3",0x55); &pshufd ("xmm2","xmm3",0xaa); &pshufd ("xmm3","xmm3",0xff); &paddd ("xmm0",&QWP(16*3,"eax")); # fix counters &pshufd ("xmm4","xmm7",0x00); &pshufd ("xmm5","xmm7",0x55); &psubd ("xmm0",&QWP(16*4,"eax")); &pshufd ("xmm6","xmm7",0xaa); &pshufd ("xmm7","xmm7",0xff); &movdqa (&QWP(16*12-128,"ebp"),"xmm0"); &movdqa (&QWP(16*13-128,"ebp"),"xmm1"); &movdqa (&QWP(16*14-128,"ebp"),"xmm2"); &movdqa (&QWP(16*15-128,"ebp"),"xmm3"); &movdqu ("xmm3",&QWP(16,"edx")); # key &movdqa (&QWP(16*4-128,"ebp"),"xmm4"); &movdqa (&QWP(16*5-128,"ebp"),"xmm5"); &movdqa (&QWP(16*6-128,"ebp"),"xmm6"); &movdqa (&QWP(16*7-128,"ebp"),"xmm7"); &movdqa ("xmm7",&QWP(16*2,"eax")); # sigma &lea ("ebx",&DWP(128,"esp")); # size optimization &pshufd ("xmm0","xmm3",0x00); &pshufd ("xmm1","xmm3",0x55); &pshufd ("xmm2","xmm3",0xaa); &pshufd ("xmm3","xmm3",0xff); &pshufd ("xmm4","xmm7",0x00); &pshufd ("xmm5","xmm7",0x55); &pshufd ("xmm6","xmm7",0xaa); &pshufd ("xmm7","xmm7",0xff); &movdqa (&QWP(16*8-128,"ebp"),"xmm0"); &movdqa (&QWP(16*9-128,"ebp"),"xmm1"); &movdqa (&QWP(16*10-128,"ebp"),"xmm2"); &movdqa (&QWP(16*11-128,"ebp"),"xmm3"); &movdqa (&QWP(16*0-128,"ebp"),"xmm4"); &movdqa (&QWP(16*1-128,"ebp"),"xmm5"); &movdqa (&QWP(16*2-128,"ebp"),"xmm6"); &movdqa (&QWP(16*3-128,"ebp"),"xmm7"); &lea ($inp,&DWP(128,$inp)); # size optimization &lea ($out,&DWP(128,$out)); # size optimization &jmp (&label("outer_loop")); &set_label("outer_loop",16); #&movdqa ("xmm0",&QWP(16*0-128,"ebp")); # copy key material &movdqa ("xmm1",&QWP(16*1-128,"ebp")); &movdqa ("xmm2",&QWP(16*2-128,"ebp")); &movdqa ("xmm3",&QWP(16*3-128,"ebp")); #&movdqa ("xmm4",&QWP(16*4-128,"ebp")); &movdqa ("xmm5",&QWP(16*5-128,"ebp")); &movdqa ("xmm6",&QWP(16*6-128,"ebp")); &movdqa ("xmm7",&QWP(16*7-128,"ebp")); #&movdqa (&QWP(16*0-128,"ebx"),"xmm0"); &movdqa (&QWP(16*1-128,"ebx"),"xmm1"); &movdqa (&QWP(16*2-128,"ebx"),"xmm2"); &movdqa (&QWP(16*3-128,"ebx"),"xmm3"); #&movdqa (&QWP(16*4-128,"ebx"),"xmm4"); &movdqa (&QWP(16*5-128,"ebx"),"xmm5"); &movdqa (&QWP(16*6-128,"ebx"),"xmm6"); &movdqa (&QWP(16*7-128,"ebx"),"xmm7"); #&movdqa ("xmm0",&QWP(16*8-128,"ebp")); #&movdqa ("xmm1",&QWP(16*9-128,"ebp")); &movdqa ("xmm2",&QWP(16*10-128,"ebp")); &movdqa ("xmm3",&QWP(16*11-128,"ebp")); &movdqa ("xmm4",&QWP(16*12-128,"ebp")); &movdqa ("xmm5",&QWP(16*13-128,"ebp")); &movdqa ("xmm6",&QWP(16*14-128,"ebp")); &movdqa ("xmm7",&QWP(16*15-128,"ebp")); &paddd ("xmm4",&QWP(16*4,"eax")); # counter value #&movdqa (&QWP(16*8-128,"ebx"),"xmm0"); #&movdqa (&QWP(16*9-128,"ebx"),"xmm1"); &movdqa (&QWP(16*10-128,"ebx"),"xmm2"); &movdqa (&QWP(16*11-128,"ebx"),"xmm3"); &movdqa (&QWP(16*12-128,"ebx"),"xmm4"); &movdqa (&QWP(16*13-128,"ebx"),"xmm5"); &movdqa (&QWP(16*14-128,"ebx"),"xmm6"); &movdqa (&QWP(16*15-128,"ebx"),"xmm7"); &movdqa (&QWP(16*12-128,"ebp"),"xmm4"); # save counter value &movdqa ($xa, &QWP(16*0-128,"ebp")); &movdqa ($xd, "xmm4"); &movdqa ($xb_,&QWP(16*4-128,"ebp")); &movdqa ($xc, &QWP(16*8-128,"ebp")); &movdqa ($xc_,&QWP(16*9-128,"ebp")); &mov ("edx",10); # loop counter &nop (); &set_label("loop",16); &paddd ($xa,$xb_); # elsewhere &movdqa ($xb,$xb_); &pxor ($xd,$xa); # elsewhere &QUARTERROUND_SSSE3(0, 4, 8, 12, 0); &QUARTERROUND_SSSE3(1, 5, 9, 13, 1); &QUARTERROUND_SSSE3(2, 6,10, 14, 2); &QUARTERROUND_SSSE3(3, 7,11, 15, 3); &QUARTERROUND_SSSE3(0, 5,10, 15, 4); &QUARTERROUND_SSSE3(1, 6,11, 12, 5); &QUARTERROUND_SSSE3(2, 7, 8, 13, 6); &QUARTERROUND_SSSE3(3, 4, 9, 14, 7); &dec ("edx"); &jnz (&label("loop")); &movdqa (&QWP(16*4-128,"ebx"),$xb_); &movdqa (&QWP(16*8-128,"ebx"),$xc); &movdqa (&QWP(16*9-128,"ebx"),$xc_); &movdqa (&QWP(16*12-128,"ebx"),$xd); &movdqa (&QWP(16*14-128,"ebx"),$xd_); my ($xa0,$xa1,$xa2,$xa3,$xt0,$xt1,$xt2,$xt3)=map("xmm$_",(0..7)); #&movdqa ($xa0,&QWP(16*0-128,"ebx")); # it's there &movdqa ($xa1,&QWP(16*1-128,"ebx")); &movdqa ($xa2,&QWP(16*2-128,"ebx")); &movdqa ($xa3,&QWP(16*3-128,"ebx")); for($i=0;$i<256;$i+=64) { &paddd ($xa0,&QWP($i+16*0-128,"ebp")); # accumulate key material &paddd ($xa1,&QWP($i+16*1-128,"ebp")); &paddd ($xa2,&QWP($i+16*2-128,"ebp")); &paddd ($xa3,&QWP($i+16*3-128,"ebp")); &movdqa ($xt2,$xa0); # "de-interlace" data &punpckldq ($xa0,$xa1); &movdqa ($xt3,$xa2); &punpckldq ($xa2,$xa3); &punpckhdq ($xt2,$xa1); &punpckhdq ($xt3,$xa3); &movdqa ($xa1,$xa0); &punpcklqdq ($xa0,$xa2); # "a0" &movdqa ($xa3,$xt2); &punpcklqdq ($xt2,$xt3); # "a2" &punpckhqdq ($xa1,$xa2); # "a1" &punpckhqdq ($xa3,$xt3); # "a3" #($xa2,$xt2)=($xt2,$xa2); &movdqu ($xt0,&QWP(64*0-128,$inp)); # load input &movdqu ($xt1,&QWP(64*1-128,$inp)); &movdqu ($xa2,&QWP(64*2-128,$inp)); &movdqu ($xt3,&QWP(64*3-128,$inp)); &lea ($inp,&QWP($i<192?16:(64*4-16*3),$inp)); &pxor ($xt0,$xa0); &movdqa ($xa0,&QWP($i+16*4-128,"ebx")) if ($i<192); &pxor ($xt1,$xa1); &movdqa ($xa1,&QWP($i+16*5-128,"ebx")) if ($i<192); &pxor ($xt2,$xa2); &movdqa ($xa2,&QWP($i+16*6-128,"ebx")) if ($i<192); &pxor ($xt3,$xa3); &movdqa ($xa3,&QWP($i+16*7-128,"ebx")) if ($i<192); &movdqu (&QWP(64*0-128,$out),$xt0); # store output &movdqu (&QWP(64*1-128,$out),$xt1); &movdqu (&QWP(64*2-128,$out),$xt2); &movdqu (&QWP(64*3-128,$out),$xt3); &lea ($out,&QWP($i<192?16:(64*4-16*3),$out)); } &sub ($len,64*4); &jnc (&label("outer_loop")); &add ($len,64*4); &jz (&label("done")); &mov ("ebx",&DWP(512+8,"esp")); # restore pointers &lea ($inp,&DWP(-128,$inp)); &mov ("edx",&DWP(512+4,"esp")); &lea ($out,&DWP(-128,$out)); &movd ("xmm2",&DWP(16*12-128,"ebp")); # counter value &movdqu ("xmm3",&QWP(0,"ebx")); &paddd ("xmm2",&QWP(16*6,"eax")); # +four &pand ("xmm3",&QWP(16*7,"eax")); &por ("xmm3","xmm2"); # counter value } { my ($a,$b,$c,$d,$t,$t1,$rot16,$rot24)=map("xmm$_",(0..7)); sub SSSE3ROUND { # critical path is 20 "SIMD ticks" per round &paddd ($a,$b); &pxor ($d,$a); &pshufb ($d,$rot16); &paddd ($c,$d); &pxor ($b,$c); &movdqa ($t,$b); &psrld ($b,20); &pslld ($t,12); &por ($b,$t); &paddd ($a,$b); &pxor ($d,$a); &pshufb ($d,$rot24); &paddd ($c,$d); &pxor ($b,$c); &movdqa ($t,$b); &psrld ($b,25); &pslld ($t,7); &por ($b,$t); } &set_label("1x"); &movdqa ($a,&QWP(16*2,"eax")); # sigma &movdqu ($b,&QWP(0,"edx")); &movdqu ($c,&QWP(16,"edx")); #&movdqu ($d,&QWP(0,"ebx")); # already loaded &movdqa ($rot16,&QWP(0,"eax")); &movdqa ($rot24,&QWP(16,"eax")); &mov (&DWP(16*3,"esp"),"ebp"); &movdqa (&QWP(16*0,"esp"),$a); &movdqa (&QWP(16*1,"esp"),$b); &movdqa (&QWP(16*2,"esp"),$c); &movdqa (&QWP(16*3,"esp"),$d); &mov ("edx",10); &jmp (&label("loop1x")); &set_label("outer1x",16); &movdqa ($d,&QWP(16*5,"eax")); # one &movdqa ($a,&QWP(16*0,"esp")); &movdqa ($b,&QWP(16*1,"esp")); &movdqa ($c,&QWP(16*2,"esp")); &paddd ($d,&QWP(16*3,"esp")); &mov ("edx",10); &movdqa (&QWP(16*3,"esp"),$d); &jmp (&label("loop1x")); &set_label("loop1x",16); &SSSE3ROUND(); &pshufd ($c,$c,0b01001110); &pshufd ($b,$b,0b00111001); &pshufd ($d,$d,0b10010011); &nop (); &SSSE3ROUND(); &pshufd ($c,$c,0b01001110); &pshufd ($b,$b,0b10010011); &pshufd ($d,$d,0b00111001); &dec ("edx"); &jnz (&label("loop1x")); &paddd ($a,&QWP(16*0,"esp")); &paddd ($b,&QWP(16*1,"esp")); &paddd ($c,&QWP(16*2,"esp")); &paddd ($d,&QWP(16*3,"esp")); &cmp ($len,64); &jb (&label("tail")); &movdqu ($t,&QWP(16*0,$inp)); &movdqu ($t1,&QWP(16*1,$inp)); &pxor ($a,$t); # xor with input &movdqu ($t,&QWP(16*2,$inp)); &pxor ($b,$t1); &movdqu ($t1,&QWP(16*3,$inp)); &pxor ($c,$t); &pxor ($d,$t1); &lea ($inp,&DWP(16*4,$inp)); # inp+=64 &movdqu (&QWP(16*0,$out),$a); # write output &movdqu (&QWP(16*1,$out),$b); &movdqu (&QWP(16*2,$out),$c); &movdqu (&QWP(16*3,$out),$d); &lea ($out,&DWP(16*4,$out)); # inp+=64 &sub ($len,64); &jnz (&label("outer1x")); &jmp (&label("done")); &set_label("tail"); &movdqa (&QWP(16*0,"esp"),$a); &movdqa (&QWP(16*1,"esp"),$b); &movdqa (&QWP(16*2,"esp"),$c); &movdqa (&QWP(16*3,"esp"),$d); &xor ("eax","eax"); &xor ("edx","edx"); &xor ("ebp","ebp"); &set_label("tail_loop"); &movb ("al",&BP(0,"esp","ebp")); &movb ("dl",&BP(0,$inp,"ebp")); &lea ("ebp",&DWP(1,"ebp")); &xor ("al","dl"); &movb (&BP(-1,$out,"ebp"),"al"); &dec ($len); &jnz (&label("tail_loop")); } &set_label("done"); &mov ("esp",&DWP(512,"esp")); &function_end("ChaCha20_ssse3"); &align (64); &set_label("ssse3_data"); &data_byte(0x2,0x3,0x0,0x1, 0x6,0x7,0x4,0x5, 0xa,0xb,0x8,0x9, 0xe,0xf,0xc,0xd); &data_byte(0x3,0x0,0x1,0x2, 0x7,0x4,0x5,0x6, 0xb,0x8,0x9,0xa, 0xf,0xc,0xd,0xe); &data_word(0x61707865,0x3320646e,0x79622d32,0x6b206574); &data_word(0,1,2,3); &data_word(4,4,4,4); &data_word(1,0,0,0); &data_word(4,0,0,0); &data_word(0,-1,-1,-1); &align (64); } &asciz ("ChaCha20 for x86, CRYPTOGAMS by "); if ($ymm) { my ($xa,$xa_,$xb,$xb_,$xc,$xc_,$xd,$xd_)=map("xmm$_",(0..7)); my ($out,$inp,$len)=("edi","esi","ecx"); sub QUARTERROUND_XOP { my ($ai,$bi,$ci,$di,$i)=@_; my ($an,$bn,$cn,$dn)=map(($_&~3)+(($_+1)&3),($ai,$bi,$ci,$di)); # next my ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_-1)&3),($ai,$bi,$ci,$di)); # previous # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 if ($i==0) { my $j=4; ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_-$j--)&3),($ap,$bp,$cp,$dp)); } elsif ($i==3) { my $j=0; ($an,$bn,$cn,$dn)=map(($_&~3)+(($_+$j++)&3),($an,$bn,$cn,$dn)); } elsif ($i==4) { my $j=4; ($ap,$bp,$cp,$dp)=map(($_&~3)+(($_+$j--)&3),($ap,$bp,$cp,$dp)); } elsif ($i==7) { my $j=0; ($an,$bn,$cn,$dn)=map(($_&~3)+(($_-$j++)&3),($an,$bn,$cn,$dn)); } #&vpaddd ($xa,$xa,$xb); # see elsewhere #&vpxor ($xd,$xd,$xa); # see elsewhere &vmovdqa (&QWP(16*$cp-128,"ebx"),$xc_) if ($ai>0 && $ai<3); &vprotd ($xd,$xd,16); &vmovdqa (&QWP(16*$bp-128,"ebx"),$xb_) if ($i!=0); &vpaddd ($xc,$xc,$xd); &vmovdqa ($xc_,&QWP(16*$cn-128,"ebx")) if ($ai>0 && $ai<3); &vpxor ($xb,$i!=0?$xb:$xb_,$xc); &vmovdqa ($xa_,&QWP(16*$an-128,"ebx")); &vprotd ($xb,$xb,12); &vmovdqa ($xb_,&QWP(16*$bn-128,"ebx")) if ($i<7); &vpaddd ($xa,$xa,$xb); &vmovdqa ($xd_,&QWP(16*$dn-128,"ebx")) if ($di!=$dn); &vpxor ($xd,$xd,$xa); &vpaddd ($xa_,$xa_,$xb_) if ($i<7); # elsewhere &vprotd ($xd,$xd,8); &vmovdqa (&QWP(16*$ai-128,"ebx"),$xa); &vpaddd ($xc,$xc,$xd); &vmovdqa (&QWP(16*$di-128,"ebx"),$xd) if ($di!=$dn); &vpxor ($xb,$xb,$xc); &vpxor ($xd_,$di==$dn?$xd:$xd_,$xa_) if ($i<7); # elsewhere &vprotd ($xb,$xb,7); ($xa,$xa_)=($xa_,$xa); ($xb,$xb_)=($xb_,$xb); ($xc,$xc_)=($xc_,$xc); ($xd,$xd_)=($xd_,$xd); } &function_begin("ChaCha20_xop"); &set_label("xop_shortcut"); &mov ($out,&wparam(0)); &mov ($inp,&wparam(1)); &mov ($len,&wparam(2)); &mov ("edx",&wparam(3)); # key &mov ("ebx",&wparam(4)); # counter and nonce &vzeroupper (); &mov ("ebp","esp"); &stack_push (131); &and ("esp",-64); &mov (&DWP(512,"esp"),"ebp"); &lea ("eax",&DWP(&label("ssse3_data")."-". &label("pic_point"),"eax")); &vmovdqu ("xmm3",&QWP(0,"ebx")); # counter and nonce &cmp ($len,64*4); &jb (&label("1x")); &mov (&DWP(512+4,"esp"),"edx"); # offload pointers &mov (&DWP(512+8,"esp"),"ebx"); &sub ($len,64*4); # bias len &lea ("ebp",&DWP(256+128,"esp")); # size optimization &vmovdqu ("xmm7",&QWP(0,"edx")); # key &vpshufd ("xmm0","xmm3",0x00); &vpshufd ("xmm1","xmm3",0x55); &vpshufd ("xmm2","xmm3",0xaa); &vpshufd ("xmm3","xmm3",0xff); &vpaddd ("xmm0","xmm0",&QWP(16*3,"eax")); # fix counters &vpshufd ("xmm4","xmm7",0x00); &vpshufd ("xmm5","xmm7",0x55); &vpsubd ("xmm0","xmm0",&QWP(16*4,"eax")); &vpshufd ("xmm6","xmm7",0xaa); &vpshufd ("xmm7","xmm7",0xff); &vmovdqa (&QWP(16*12-128,"ebp"),"xmm0"); &vmovdqa (&QWP(16*13-128,"ebp"),"xmm1"); &vmovdqa (&QWP(16*14-128,"ebp"),"xmm2"); &vmovdqa (&QWP(16*15-128,"ebp"),"xmm3"); &vmovdqu ("xmm3",&QWP(16,"edx")); # key &vmovdqa (&QWP(16*4-128,"ebp"),"xmm4"); &vmovdqa (&QWP(16*5-128,"ebp"),"xmm5"); &vmovdqa (&QWP(16*6-128,"ebp"),"xmm6"); &vmovdqa (&QWP(16*7-128,"ebp"),"xmm7"); &vmovdqa ("xmm7",&QWP(16*2,"eax")); # sigma &lea ("ebx",&DWP(128,"esp")); # size optimization &vpshufd ("xmm0","xmm3",0x00); &vpshufd ("xmm1","xmm3",0x55); &vpshufd ("xmm2","xmm3",0xaa); &vpshufd ("xmm3","xmm3",0xff); &vpshufd ("xmm4","xmm7",0x00); &vpshufd ("xmm5","xmm7",0x55); &vpshufd ("xmm6","xmm7",0xaa); &vpshufd ("xmm7","xmm7",0xff); &vmovdqa (&QWP(16*8-128,"ebp"),"xmm0"); &vmovdqa (&QWP(16*9-128,"ebp"),"xmm1"); &vmovdqa (&QWP(16*10-128,"ebp"),"xmm2"); &vmovdqa (&QWP(16*11-128,"ebp"),"xmm3"); &vmovdqa (&QWP(16*0-128,"ebp"),"xmm4"); &vmovdqa (&QWP(16*1-128,"ebp"),"xmm5"); &vmovdqa (&QWP(16*2-128,"ebp"),"xmm6"); &vmovdqa (&QWP(16*3-128,"ebp"),"xmm7"); &lea ($inp,&DWP(128,$inp)); # size optimization &lea ($out,&DWP(128,$out)); # size optimization &jmp (&label("outer_loop")); &set_label("outer_loop",32); #&vmovdqa ("xmm0",&QWP(16*0-128,"ebp")); # copy key material &vmovdqa ("xmm1",&QWP(16*1-128,"ebp")); &vmovdqa ("xmm2",&QWP(16*2-128,"ebp")); &vmovdqa ("xmm3",&QWP(16*3-128,"ebp")); #&vmovdqa ("xmm4",&QWP(16*4-128,"ebp")); &vmovdqa ("xmm5",&QWP(16*5-128,"ebp")); &vmovdqa ("xmm6",&QWP(16*6-128,"ebp")); &vmovdqa ("xmm7",&QWP(16*7-128,"ebp")); #&vmovdqa (&QWP(16*0-128,"ebx"),"xmm0"); &vmovdqa (&QWP(16*1-128,"ebx"),"xmm1"); &vmovdqa (&QWP(16*2-128,"ebx"),"xmm2"); &vmovdqa (&QWP(16*3-128,"ebx"),"xmm3"); #&vmovdqa (&QWP(16*4-128,"ebx"),"xmm4"); &vmovdqa (&QWP(16*5-128,"ebx"),"xmm5"); &vmovdqa (&QWP(16*6-128,"ebx"),"xmm6"); &vmovdqa (&QWP(16*7-128,"ebx"),"xmm7"); #&vmovdqa ("xmm0",&QWP(16*8-128,"ebp")); #&vmovdqa ("xmm1",&QWP(16*9-128,"ebp")); &vmovdqa ("xmm2",&QWP(16*10-128,"ebp")); &vmovdqa ("xmm3",&QWP(16*11-128,"ebp")); &vmovdqa ("xmm4",&QWP(16*12-128,"ebp")); &vmovdqa ("xmm5",&QWP(16*13-128,"ebp")); &vmovdqa ("xmm6",&QWP(16*14-128,"ebp")); &vmovdqa ("xmm7",&QWP(16*15-128,"ebp")); &vpaddd ("xmm4","xmm4",&QWP(16*4,"eax")); # counter value #&vmovdqa (&QWP(16*8-128,"ebx"),"xmm0"); #&vmovdqa (&QWP(16*9-128,"ebx"),"xmm1"); &vmovdqa (&QWP(16*10-128,"ebx"),"xmm2"); &vmovdqa (&QWP(16*11-128,"ebx"),"xmm3"); &vmovdqa (&QWP(16*12-128,"ebx"),"xmm4"); &vmovdqa (&QWP(16*13-128,"ebx"),"xmm5"); &vmovdqa (&QWP(16*14-128,"ebx"),"xmm6"); &vmovdqa (&QWP(16*15-128,"ebx"),"xmm7"); &vmovdqa (&QWP(16*12-128,"ebp"),"xmm4"); # save counter value &vmovdqa ($xa, &QWP(16*0-128,"ebp")); &vmovdqa ($xd, "xmm4"); &vmovdqa ($xb_,&QWP(16*4-128,"ebp")); &vmovdqa ($xc, &QWP(16*8-128,"ebp")); &vmovdqa ($xc_,&QWP(16*9-128,"ebp")); &mov ("edx",10); # loop counter &nop (); &set_label("loop",32); &vpaddd ($xa,$xa,$xb_); # elsewhere &vpxor ($xd,$xd,$xa); # elsewhere &QUARTERROUND_XOP(0, 4, 8, 12, 0); &QUARTERROUND_XOP(1, 5, 9, 13, 1); &QUARTERROUND_XOP(2, 6,10, 14, 2); &QUARTERROUND_XOP(3, 7,11, 15, 3); &QUARTERROUND_XOP(0, 5,10, 15, 4); &QUARTERROUND_XOP(1, 6,11, 12, 5); &QUARTERROUND_XOP(2, 7, 8, 13, 6); &QUARTERROUND_XOP(3, 4, 9, 14, 7); &dec ("edx"); &jnz (&label("loop")); &vmovdqa (&QWP(16*4-128,"ebx"),$xb_); &vmovdqa (&QWP(16*8-128,"ebx"),$xc); &vmovdqa (&QWP(16*9-128,"ebx"),$xc_); &vmovdqa (&QWP(16*12-128,"ebx"),$xd); &vmovdqa (&QWP(16*14-128,"ebx"),$xd_); my ($xa0,$xa1,$xa2,$xa3,$xt0,$xt1,$xt2,$xt3)=map("xmm$_",(0..7)); #&vmovdqa ($xa0,&QWP(16*0-128,"ebx")); # it's there &vmovdqa ($xa1,&QWP(16*1-128,"ebx")); &vmovdqa ($xa2,&QWP(16*2-128,"ebx")); &vmovdqa ($xa3,&QWP(16*3-128,"ebx")); for($i=0;$i<256;$i+=64) { &vpaddd ($xa0,$xa0,&QWP($i+16*0-128,"ebp")); # accumulate key material &vpaddd ($xa1,$xa1,&QWP($i+16*1-128,"ebp")); &vpaddd ($xa2,$xa2,&QWP($i+16*2-128,"ebp")); &vpaddd ($xa3,$xa3,&QWP($i+16*3-128,"ebp")); &vpunpckldq ($xt2,$xa0,$xa1); # "de-interlace" data &vpunpckldq ($xt3,$xa2,$xa3); &vpunpckhdq ($xa0,$xa0,$xa1); &vpunpckhdq ($xa2,$xa2,$xa3); &vpunpcklqdq ($xa1,$xt2,$xt3); # "a0" &vpunpckhqdq ($xt2,$xt2,$xt3); # "a1" &vpunpcklqdq ($xt3,$xa0,$xa2); # "a2" &vpunpckhqdq ($xa3,$xa0,$xa2); # "a3" &vpxor ($xt0,$xa1,&QWP(64*0-128,$inp)); &vpxor ($xt1,$xt2,&QWP(64*1-128,$inp)); &vpxor ($xt2,$xt3,&QWP(64*2-128,$inp)); &vpxor ($xt3,$xa3,&QWP(64*3-128,$inp)); &lea ($inp,&QWP($i<192?16:(64*4-16*3),$inp)); &vmovdqa ($xa0,&QWP($i+16*4-128,"ebx")) if ($i<192); &vmovdqa ($xa1,&QWP($i+16*5-128,"ebx")) if ($i<192); &vmovdqa ($xa2,&QWP($i+16*6-128,"ebx")) if ($i<192); &vmovdqa ($xa3,&QWP($i+16*7-128,"ebx")) if ($i<192); &vmovdqu (&QWP(64*0-128,$out),$xt0); # store output &vmovdqu (&QWP(64*1-128,$out),$xt1); &vmovdqu (&QWP(64*2-128,$out),$xt2); &vmovdqu (&QWP(64*3-128,$out),$xt3); &lea ($out,&QWP($i<192?16:(64*4-16*3),$out)); } &sub ($len,64*4); &jnc (&label("outer_loop")); &add ($len,64*4); &jz (&label("done")); &mov ("ebx",&DWP(512+8,"esp")); # restore pointers &lea ($inp,&DWP(-128,$inp)); &mov ("edx",&DWP(512+4,"esp")); &lea ($out,&DWP(-128,$out)); &vmovd ("xmm2",&DWP(16*12-128,"ebp")); # counter value &vmovdqu ("xmm3",&QWP(0,"ebx")); &vpaddd ("xmm2","xmm2",&QWP(16*6,"eax"));# +four &vpand ("xmm3","xmm3",&QWP(16*7,"eax")); &vpor ("xmm3","xmm3","xmm2"); # counter value { my ($a,$b,$c,$d,$t,$t1,$rot16,$rot24)=map("xmm$_",(0..7)); sub XOPROUND { &vpaddd ($a,$a,$b); &vpxor ($d,$d,$a); &vprotd ($d,$d,16); &vpaddd ($c,$c,$d); &vpxor ($b,$b,$c); &vprotd ($b,$b,12); &vpaddd ($a,$a,$b); &vpxor ($d,$d,$a); &vprotd ($d,$d,8); &vpaddd ($c,$c,$d); &vpxor ($b,$b,$c); &vprotd ($b,$b,7); } &set_label("1x"); &vmovdqa ($a,&QWP(16*2,"eax")); # sigma &vmovdqu ($b,&QWP(0,"edx")); &vmovdqu ($c,&QWP(16,"edx")); #&vmovdqu ($d,&QWP(0,"ebx")); # already loaded &vmovdqa ($rot16,&QWP(0,"eax")); &vmovdqa ($rot24,&QWP(16,"eax")); &mov (&DWP(16*3,"esp"),"ebp"); &vmovdqa (&QWP(16*0,"esp"),$a); &vmovdqa (&QWP(16*1,"esp"),$b); &vmovdqa (&QWP(16*2,"esp"),$c); &vmovdqa (&QWP(16*3,"esp"),$d); &mov ("edx",10); &jmp (&label("loop1x")); &set_label("outer1x",16); &vmovdqa ($d,&QWP(16*5,"eax")); # one &vmovdqa ($a,&QWP(16*0,"esp")); &vmovdqa ($b,&QWP(16*1,"esp")); &vmovdqa ($c,&QWP(16*2,"esp")); &vpaddd ($d,$d,&QWP(16*3,"esp")); &mov ("edx",10); &vmovdqa (&QWP(16*3,"esp"),$d); &jmp (&label("loop1x")); &set_label("loop1x",16); &XOPROUND(); &vpshufd ($c,$c,0b01001110); &vpshufd ($b,$b,0b00111001); &vpshufd ($d,$d,0b10010011); &XOPROUND(); &vpshufd ($c,$c,0b01001110); &vpshufd ($b,$b,0b10010011); &vpshufd ($d,$d,0b00111001); &dec ("edx"); &jnz (&label("loop1x")); &vpaddd ($a,$a,&QWP(16*0,"esp")); &vpaddd ($b,$b,&QWP(16*1,"esp")); &vpaddd ($c,$c,&QWP(16*2,"esp")); &vpaddd ($d,$d,&QWP(16*3,"esp")); &cmp ($len,64); &jb (&label("tail")); &vpxor ($a,$a,&QWP(16*0,$inp)); # xor with input &vpxor ($b,$b,&QWP(16*1,$inp)); &vpxor ($c,$c,&QWP(16*2,$inp)); &vpxor ($d,$d,&QWP(16*3,$inp)); &lea ($inp,&DWP(16*4,$inp)); # inp+=64 &vmovdqu (&QWP(16*0,$out),$a); # write output &vmovdqu (&QWP(16*1,$out),$b); &vmovdqu (&QWP(16*2,$out),$c); &vmovdqu (&QWP(16*3,$out),$d); &lea ($out,&DWP(16*4,$out)); # inp+=64 &sub ($len,64); &jnz (&label("outer1x")); &jmp (&label("done")); &set_label("tail"); &vmovdqa (&QWP(16*0,"esp"),$a); &vmovdqa (&QWP(16*1,"esp"),$b); &vmovdqa (&QWP(16*2,"esp"),$c); &vmovdqa (&QWP(16*3,"esp"),$d); &xor ("eax","eax"); &xor ("edx","edx"); &xor ("ebp","ebp"); &set_label("tail_loop"); &movb ("al",&BP(0,"esp","ebp")); &movb ("dl",&BP(0,$inp,"ebp")); &lea ("ebp",&DWP(1,"ebp")); &xor ("al","dl"); &movb (&BP(-1,$out,"ebp"),"al"); &dec ($len); &jnz (&label("tail_loop")); } &set_label("done"); &vzeroupper (); &mov ("esp",&DWP(512,"esp")); &function_end("ChaCha20_xop"); } &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/chacha/asm/chacha-x86_64.pl000077500000000000000000002746741364063235100214040ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # November 2014 # # ChaCha20 for x86_64. # # December 2016 # # Add AVX512F code path. # # December 2017 # # Add AVX512VL code path. # # Performance in cycles per byte out of large buffer. # # IALU/gcc 4.8(i) 1x/2xSSSE3(ii) 4xSSSE3 NxAVX(v) # # P4 9.48/+99% - - # Core2 7.83/+55% 7.90/5.76 4.35 # Westmere 7.19/+50% 5.60/4.50 3.00 # Sandy Bridge 8.31/+42% 5.45/4.00 2.72 # Ivy Bridge 6.71/+46% 5.40/? 2.41 # Haswell 5.92/+43% 5.20/3.45 2.42 1.23 # Skylake[-X] 5.87/+39% 4.70/3.22 2.31 1.19[0.80(vi)] # Silvermont 12.0/+33% 7.75/6.90 7.03(iii) # Knights L 11.7/- ? 9.60(iii) 0.80 # Goldmont 10.6/+17% 5.10/3.52 3.28 # Sledgehammer 7.28/+52% - - # Bulldozer 9.66/+28% 9.85/5.35(iv) 3.06(iv) # Ryzen 5.96/+50% 5.19/3.00 2.40 2.09 # VIA Nano 10.5/+46% 6.72/6.88 6.05 # # (i) compared to older gcc 3.x one can observe >2x improvement on # most platforms; # (ii) 2xSSSE3 is code path optimized specifically for 128 bytes used # by chacha20_poly1305_tls_cipher, results are EVP-free; # (iii) this is not optimal result for Atom because of MSROM # limitations, SSE2 can do better, but gain is considered too # low to justify the [maintenance] effort; # (iv) Bulldozer actually executes 4xXOP code path that delivers 2.20 # and 4.85 for 128-byte inputs; # (v) 8xAVX2, 8xAVX512VL or 16xAVX512F, whichever best applicable; # (vi) even though Skylake-X can execute AVX512F code and deliver 0.57 # cpb in single thread, the corresponding capability is suppressed; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22) + ($1>=2.25); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) { $avx = ($1>=2.09) + ($1>=2.10) + ($1>=2.12); $avx += 1 if ($1==2.11 && $2>=8); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; # input parameter block ($out,$inp,$len,$key,$counter)=("%rdi","%rsi","%rdx","%rcx","%r8"); $code.=<<___; .text .extern OPENSSL_ia32cap_P .align 64 .Lzero: .long 0,0,0,0 .Lone: .long 1,0,0,0 .Linc: .long 0,1,2,3 .Lfour: .long 4,4,4,4 .Lincy: .long 0,2,4,6,1,3,5,7 .Leight: .long 8,8,8,8,8,8,8,8 .Lrot16: .byte 0x2,0x3,0x0,0x1, 0x6,0x7,0x4,0x5, 0xa,0xb,0x8,0x9, 0xe,0xf,0xc,0xd .Lrot24: .byte 0x3,0x0,0x1,0x2, 0x7,0x4,0x5,0x6, 0xb,0x8,0x9,0xa, 0xf,0xc,0xd,0xe .Ltwoy: .long 2,0,0,0, 2,0,0,0 .align 64 .Lzeroz: .long 0,0,0,0, 1,0,0,0, 2,0,0,0, 3,0,0,0 .Lfourz: .long 4,0,0,0, 4,0,0,0, 4,0,0,0, 4,0,0,0 .Lincz: .long 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 .Lsixteen: .long 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16 .Lsigma: .asciz "expand 32-byte k" .asciz "ChaCha20 for x86_64, CRYPTOGAMS by " ___ sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; my $arg = pop; $arg = "\$$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; } @x=("%eax","%ebx","%ecx","%edx",map("%r${_}d",(8..11)), "%nox","%nox","%nox","%nox",map("%r${_}d",(12..15))); @t=("%esi","%edi"); sub ROUND { # critical path is 24 cycles per round my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my ($xc,$xc_)=map("\"$_\"",@t); my @x=map("\"$_\"",@x); # Consider order in which variables are addressed by their # index: # # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 # # 'a', 'b' and 'd's are permanently allocated in registers, # @x[0..7,12..15], while 'c's are maintained in memory. If # you observe 'c' column, you'll notice that pair of 'c's is # invariant between rounds. This means that we have to reload # them once per round, in the middle. This is why you'll see # bunch of 'c' stores and loads in the middle, but none in # the beginning or end. # Normally instructions would be interleaved to favour in-order # execution. Generally out-of-order cores manage it gracefully, # but not this time for some reason. As in-order execution # cores are dying breed, old Atom is the only one around, # instructions are left uninterleaved. Besides, Atom is better # off executing 1xSSSE3 code anyway... ( "&add (@x[$a0],@x[$b0])", # Q1 "&xor (@x[$d0],@x[$a0])", "&rol (@x[$d0],16)", "&add (@x[$a1],@x[$b1])", # Q2 "&xor (@x[$d1],@x[$a1])", "&rol (@x[$d1],16)", "&add ($xc,@x[$d0])", "&xor (@x[$b0],$xc)", "&rol (@x[$b0],12)", "&add ($xc_,@x[$d1])", "&xor (@x[$b1],$xc_)", "&rol (@x[$b1],12)", "&add (@x[$a0],@x[$b0])", "&xor (@x[$d0],@x[$a0])", "&rol (@x[$d0],8)", "&add (@x[$a1],@x[$b1])", "&xor (@x[$d1],@x[$a1])", "&rol (@x[$d1],8)", "&add ($xc,@x[$d0])", "&xor (@x[$b0],$xc)", "&rol (@x[$b0],7)", "&add ($xc_,@x[$d1])", "&xor (@x[$b1],$xc_)", "&rol (@x[$b1],7)", "&mov (\"4*$c0(%rsp)\",$xc)", # reload pair of 'c's "&mov (\"4*$c1(%rsp)\",$xc_)", "&mov ($xc,\"4*$c2(%rsp)\")", "&mov ($xc_,\"4*$c3(%rsp)\")", "&add (@x[$a2],@x[$b2])", # Q3 "&xor (@x[$d2],@x[$a2])", "&rol (@x[$d2],16)", "&add (@x[$a3],@x[$b3])", # Q4 "&xor (@x[$d3],@x[$a3])", "&rol (@x[$d3],16)", "&add ($xc,@x[$d2])", "&xor (@x[$b2],$xc)", "&rol (@x[$b2],12)", "&add ($xc_,@x[$d3])", "&xor (@x[$b3],$xc_)", "&rol (@x[$b3],12)", "&add (@x[$a2],@x[$b2])", "&xor (@x[$d2],@x[$a2])", "&rol (@x[$d2],8)", "&add (@x[$a3],@x[$b3])", "&xor (@x[$d3],@x[$a3])", "&rol (@x[$d3],8)", "&add ($xc,@x[$d2])", "&xor (@x[$b2],$xc)", "&rol (@x[$b2],7)", "&add ($xc_,@x[$d3])", "&xor (@x[$b3],$xc_)", "&rol (@x[$b3],7)" ); } ######################################################################## # Generic code path that handles all lengths on pre-SSSE3 processors. $code.=<<___; .globl ChaCha20_ctr32 .type ChaCha20_ctr32,\@function,5 .align 64 ChaCha20_ctr32: .cfi_startproc cmp \$0,$len je .Lno_data mov OPENSSL_ia32cap_P+4(%rip),%r10 ___ $code.=<<___ if ($avx>2); bt \$48,%r10 # check for AVX512F jc .LChaCha20_avx512 test %r10,%r10 # check for AVX512VL js .LChaCha20_avx512vl ___ $code.=<<___; test \$`1<<(41-32)`,%r10d jnz .LChaCha20_ssse3 push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$64+24,%rsp .cfi_adjust_cfa_offset 64+24 .Lctr32_body: #movdqa .Lsigma(%rip),%xmm0 movdqu ($key),%xmm1 movdqu 16($key),%xmm2 movdqu ($counter),%xmm3 movdqa .Lone(%rip),%xmm4 #movdqa %xmm0,4*0(%rsp) # key[0] movdqa %xmm1,4*4(%rsp) # key[1] movdqa %xmm2,4*8(%rsp) # key[2] movdqa %xmm3,4*12(%rsp) # key[3] mov $len,%rbp # reassign $len jmp .Loop_outer .align 32 .Loop_outer: mov \$0x61707865,@x[0] # 'expa' mov \$0x3320646e,@x[1] # 'nd 3' mov \$0x79622d32,@x[2] # '2-by' mov \$0x6b206574,@x[3] # 'te k' mov 4*4(%rsp),@x[4] mov 4*5(%rsp),@x[5] mov 4*6(%rsp),@x[6] mov 4*7(%rsp),@x[7] movd %xmm3,@x[12] mov 4*13(%rsp),@x[13] mov 4*14(%rsp),@x[14] mov 4*15(%rsp),@x[15] mov %rbp,64+0(%rsp) # save len mov \$10,%ebp mov $inp,64+8(%rsp) # save inp movq %xmm2,%rsi # "@x[8]" mov $out,64+16(%rsp) # save out mov %rsi,%rdi shr \$32,%rdi # "@x[9]" jmp .Loop .align 32 .Loop: ___ foreach (&ROUND (0, 4, 8,12)) { eval; } foreach (&ROUND (0, 5,10,15)) { eval; } &dec ("%ebp"); &jnz (".Loop"); $code.=<<___; mov @t[1],4*9(%rsp) # modulo-scheduled mov @t[0],4*8(%rsp) mov 64(%rsp),%rbp # load len movdqa %xmm2,%xmm1 mov 64+8(%rsp),$inp # load inp paddd %xmm4,%xmm3 # increment counter mov 64+16(%rsp),$out # load out add \$0x61707865,@x[0] # 'expa' add \$0x3320646e,@x[1] # 'nd 3' add \$0x79622d32,@x[2] # '2-by' add \$0x6b206574,@x[3] # 'te k' add 4*4(%rsp),@x[4] add 4*5(%rsp),@x[5] add 4*6(%rsp),@x[6] add 4*7(%rsp),@x[7] add 4*12(%rsp),@x[12] add 4*13(%rsp),@x[13] add 4*14(%rsp),@x[14] add 4*15(%rsp),@x[15] paddd 4*8(%rsp),%xmm1 cmp \$64,%rbp jb .Ltail xor 4*0($inp),@x[0] # xor with input xor 4*1($inp),@x[1] xor 4*2($inp),@x[2] xor 4*3($inp),@x[3] xor 4*4($inp),@x[4] xor 4*5($inp),@x[5] xor 4*6($inp),@x[6] xor 4*7($inp),@x[7] movdqu 4*8($inp),%xmm0 xor 4*12($inp),@x[12] xor 4*13($inp),@x[13] xor 4*14($inp),@x[14] xor 4*15($inp),@x[15] lea 4*16($inp),$inp # inp+=64 pxor %xmm1,%xmm0 movdqa %xmm2,4*8(%rsp) movd %xmm3,4*12(%rsp) mov @x[0],4*0($out) # write output mov @x[1],4*1($out) mov @x[2],4*2($out) mov @x[3],4*3($out) mov @x[4],4*4($out) mov @x[5],4*5($out) mov @x[6],4*6($out) mov @x[7],4*7($out) movdqu %xmm0,4*8($out) mov @x[12],4*12($out) mov @x[13],4*13($out) mov @x[14],4*14($out) mov @x[15],4*15($out) lea 4*16($out),$out # out+=64 sub \$64,%rbp jnz .Loop_outer jmp .Ldone .align 16 .Ltail: mov @x[0],4*0(%rsp) mov @x[1],4*1(%rsp) xor %rbx,%rbx mov @x[2],4*2(%rsp) mov @x[3],4*3(%rsp) mov @x[4],4*4(%rsp) mov @x[5],4*5(%rsp) mov @x[6],4*6(%rsp) mov @x[7],4*7(%rsp) movdqa %xmm1,4*8(%rsp) mov @x[12],4*12(%rsp) mov @x[13],4*13(%rsp) mov @x[14],4*14(%rsp) mov @x[15],4*15(%rsp) .Loop_tail: movzb ($inp,%rbx),%eax movzb (%rsp,%rbx),%edx lea 1(%rbx),%rbx xor %edx,%eax mov %al,-1($out,%rbx) dec %rbp jnz .Loop_tail .Ldone: lea 64+24+48(%rsp),%rsi .cfi_def_cfa %rsi,8 mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lno_data: ret .cfi_endproc .size ChaCha20_ctr32,.-ChaCha20_ctr32 ___ ######################################################################## # SSSE3 code path that handles shorter lengths { my ($a,$b,$c,$d,$t,$t1,$rot16,$rot24)=map("%xmm$_",(0..7)); sub SSSE3ROUND { # critical path is 20 "SIMD ticks" per round &paddd ($a,$b); &pxor ($d,$a); &pshufb ($d,$rot16); &paddd ($c,$d); &pxor ($b,$c); &movdqa ($t,$b); &psrld ($b,20); &pslld ($t,12); &por ($b,$t); &paddd ($a,$b); &pxor ($d,$a); &pshufb ($d,$rot24); &paddd ($c,$d); &pxor ($b,$c); &movdqa ($t,$b); &psrld ($b,25); &pslld ($t,7); &por ($b,$t); } my $xframe = $win64 ? 32+8 : 8; $code.=<<___; .type ChaCha20_ssse3,\@function,5 .align 32 ChaCha20_ssse3: .cfi_startproc .LChaCha20_ssse3: mov %rsp,%r9 # frame pointer .cfi_def_cfa_register %r9 ___ $code.=<<___ if ($avx); test \$`1<<(43-32)`,%r10d jnz .LChaCha20_4xop # XOP is fastest even if we use 1/4 ___ $code.=<<___; cmp \$128,$len # we might throw away some data, je .LChaCha20_128 ja .LChaCha20_4x # but overall it won't be slower .Ldo_sse3_after_all: sub \$64+$xframe,%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-0x28(%r9) movaps %xmm7,-0x18(%r9) .Lssse3_body: ___ $code.=<<___; movdqa .Lsigma(%rip),$a movdqu ($key),$b movdqu 16($key),$c movdqu ($counter),$d movdqa .Lrot16(%rip),$rot16 movdqa .Lrot24(%rip),$rot24 movdqa $a,0x00(%rsp) movdqa $b,0x10(%rsp) movdqa $c,0x20(%rsp) movdqa $d,0x30(%rsp) mov \$10,$counter # reuse $counter jmp .Loop_ssse3 .align 32 .Loop_outer_ssse3: movdqa .Lone(%rip),$d movdqa 0x00(%rsp),$a movdqa 0x10(%rsp),$b movdqa 0x20(%rsp),$c paddd 0x30(%rsp),$d mov \$10,$counter movdqa $d,0x30(%rsp) jmp .Loop_ssse3 .align 32 .Loop_ssse3: ___ &SSSE3ROUND(); &pshufd ($c,$c,0b01001110); &pshufd ($b,$b,0b00111001); &pshufd ($d,$d,0b10010011); &nop (); &SSSE3ROUND(); &pshufd ($c,$c,0b01001110); &pshufd ($b,$b,0b10010011); &pshufd ($d,$d,0b00111001); &dec ($counter); &jnz (".Loop_ssse3"); $code.=<<___; paddd 0x00(%rsp),$a paddd 0x10(%rsp),$b paddd 0x20(%rsp),$c paddd 0x30(%rsp),$d cmp \$64,$len jb .Ltail_ssse3 movdqu 0x00($inp),$t movdqu 0x10($inp),$t1 pxor $t,$a # xor with input movdqu 0x20($inp),$t pxor $t1,$b movdqu 0x30($inp),$t1 lea 0x40($inp),$inp # inp+=64 pxor $t,$c pxor $t1,$d movdqu $a,0x00($out) # write output movdqu $b,0x10($out) movdqu $c,0x20($out) movdqu $d,0x30($out) lea 0x40($out),$out # out+=64 sub \$64,$len jnz .Loop_outer_ssse3 jmp .Ldone_ssse3 .align 16 .Ltail_ssse3: movdqa $a,0x00(%rsp) movdqa $b,0x10(%rsp) movdqa $c,0x20(%rsp) movdqa $d,0x30(%rsp) xor $counter,$counter .Loop_tail_ssse3: movzb ($inp,$counter),%eax movzb (%rsp,$counter),%ecx lea 1($counter),$counter xor %ecx,%eax mov %al,-1($out,$counter) dec $len jnz .Loop_tail_ssse3 .Ldone_ssse3: ___ $code.=<<___ if ($win64); movaps -0x28(%r9),%xmm6 movaps -0x18(%r9),%xmm7 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .Lssse3_epilogue: ret .cfi_endproc .size ChaCha20_ssse3,.-ChaCha20_ssse3 ___ } ######################################################################## # SSSE3 code path that handles 128-byte inputs { my ($a,$b,$c,$d,$t,$t1,$rot16,$rot24)=map("%xmm$_",(8,9,2..7)); my ($a1,$b1,$c1,$d1)=map("%xmm$_",(10,11,0,1)); sub SSSE3ROUND_2x { &paddd ($a,$b); &pxor ($d,$a); &paddd ($a1,$b1); &pxor ($d1,$a1); &pshufb ($d,$rot16); &pshufb($d1,$rot16); &paddd ($c,$d); &paddd ($c1,$d1); &pxor ($b,$c); &pxor ($b1,$c1); &movdqa ($t,$b); &psrld ($b,20); &movdqa($t1,$b1); &pslld ($t,12); &psrld ($b1,20); &por ($b,$t); &pslld ($t1,12); &por ($b1,$t1); &paddd ($a,$b); &pxor ($d,$a); &paddd ($a1,$b1); &pxor ($d1,$a1); &pshufb ($d,$rot24); &pshufb($d1,$rot24); &paddd ($c,$d); &paddd ($c1,$d1); &pxor ($b,$c); &pxor ($b1,$c1); &movdqa ($t,$b); &psrld ($b,25); &movdqa($t1,$b1); &pslld ($t,7); &psrld ($b1,25); &por ($b,$t); &pslld ($t1,7); &por ($b1,$t1); } my $xframe = $win64 ? 0x68 : 8; $code.=<<___; .type ChaCha20_128,\@function,5 .align 32 ChaCha20_128: .cfi_startproc .LChaCha20_128: mov %rsp,%r9 # frame pointer .cfi_def_cfa_register %r9 sub \$64+$xframe,%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-0x68(%r9) movaps %xmm7,-0x58(%r9) movaps %xmm8,-0x48(%r9) movaps %xmm9,-0x38(%r9) movaps %xmm10,-0x28(%r9) movaps %xmm11,-0x18(%r9) .L128_body: ___ $code.=<<___; movdqa .Lsigma(%rip),$a movdqu ($key),$b movdqu 16($key),$c movdqu ($counter),$d movdqa .Lone(%rip),$d1 movdqa .Lrot16(%rip),$rot16 movdqa .Lrot24(%rip),$rot24 movdqa $a,$a1 movdqa $a,0x00(%rsp) movdqa $b,$b1 movdqa $b,0x10(%rsp) movdqa $c,$c1 movdqa $c,0x20(%rsp) paddd $d,$d1 movdqa $d,0x30(%rsp) mov \$10,$counter # reuse $counter jmp .Loop_128 .align 32 .Loop_128: ___ &SSSE3ROUND_2x(); &pshufd ($c,$c,0b01001110); &pshufd ($b,$b,0b00111001); &pshufd ($d,$d,0b10010011); &pshufd ($c1,$c1,0b01001110); &pshufd ($b1,$b1,0b00111001); &pshufd ($d1,$d1,0b10010011); &SSSE3ROUND_2x(); &pshufd ($c,$c,0b01001110); &pshufd ($b,$b,0b10010011); &pshufd ($d,$d,0b00111001); &pshufd ($c1,$c1,0b01001110); &pshufd ($b1,$b1,0b10010011); &pshufd ($d1,$d1,0b00111001); &dec ($counter); &jnz (".Loop_128"); $code.=<<___; paddd 0x00(%rsp),$a paddd 0x10(%rsp),$b paddd 0x20(%rsp),$c paddd 0x30(%rsp),$d paddd .Lone(%rip),$d1 paddd 0x00(%rsp),$a1 paddd 0x10(%rsp),$b1 paddd 0x20(%rsp),$c1 paddd 0x30(%rsp),$d1 movdqu 0x00($inp),$t movdqu 0x10($inp),$t1 pxor $t,$a # xor with input movdqu 0x20($inp),$t pxor $t1,$b movdqu 0x30($inp),$t1 pxor $t,$c movdqu 0x40($inp),$t pxor $t1,$d movdqu 0x50($inp),$t1 pxor $t,$a1 movdqu 0x60($inp),$t pxor $t1,$b1 movdqu 0x70($inp),$t1 pxor $t,$c1 pxor $t1,$d1 movdqu $a,0x00($out) # write output movdqu $b,0x10($out) movdqu $c,0x20($out) movdqu $d,0x30($out) movdqu $a1,0x40($out) movdqu $b1,0x50($out) movdqu $c1,0x60($out) movdqu $d1,0x70($out) ___ $code.=<<___ if ($win64); movaps -0x68(%r9),%xmm6 movaps -0x58(%r9),%xmm7 movaps -0x48(%r9),%xmm8 movaps -0x38(%r9),%xmm9 movaps -0x28(%r9),%xmm10 movaps -0x18(%r9),%xmm11 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .L128_epilogue: ret .cfi_endproc .size ChaCha20_128,.-ChaCha20_128 ___ } ######################################################################## # SSSE3 code path that handles longer messages. { # assign variables to favor Atom front-end my ($xd0,$xd1,$xd2,$xd3, $xt0,$xt1,$xt2,$xt3, $xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3)=map("%xmm$_",(0..15)); my @xx=($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, "%nox","%nox","%nox","%nox", $xd0,$xd1,$xd2,$xd3); sub SSSE3_lane_ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my ($xc,$xc_,$t0,$t1)=map("\"$_\"",$xt0,$xt1,$xt2,$xt3); my @x=map("\"$_\"",@xx); # Consider order in which variables are addressed by their # index: # # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 # # 'a', 'b' and 'd's are permanently allocated in registers, # @x[0..7,12..15], while 'c's are maintained in memory. If # you observe 'c' column, you'll notice that pair of 'c's is # invariant between rounds. This means that we have to reload # them once per round, in the middle. This is why you'll see # bunch of 'c' stores and loads in the middle, but none in # the beginning or end. ( "&paddd (@x[$a0],@x[$b0])", # Q1 "&paddd (@x[$a1],@x[$b1])", # Q2 "&pxor (@x[$d0],@x[$a0])", "&pxor (@x[$d1],@x[$a1])", "&pshufb (@x[$d0],$t1)", "&pshufb (@x[$d1],$t1)", "&paddd ($xc,@x[$d0])", "&paddd ($xc_,@x[$d1])", "&pxor (@x[$b0],$xc)", "&pxor (@x[$b1],$xc_)", "&movdqa ($t0,@x[$b0])", "&pslld (@x[$b0],12)", "&psrld ($t0,20)", "&movdqa ($t1,@x[$b1])", "&pslld (@x[$b1],12)", "&por (@x[$b0],$t0)", "&psrld ($t1,20)", "&movdqa ($t0,'(%r11)')", # .Lrot24(%rip) "&por (@x[$b1],$t1)", "&paddd (@x[$a0],@x[$b0])", "&paddd (@x[$a1],@x[$b1])", "&pxor (@x[$d0],@x[$a0])", "&pxor (@x[$d1],@x[$a1])", "&pshufb (@x[$d0],$t0)", "&pshufb (@x[$d1],$t0)", "&paddd ($xc,@x[$d0])", "&paddd ($xc_,@x[$d1])", "&pxor (@x[$b0],$xc)", "&pxor (@x[$b1],$xc_)", "&movdqa ($t1,@x[$b0])", "&pslld (@x[$b0],7)", "&psrld ($t1,25)", "&movdqa ($t0,@x[$b1])", "&pslld (@x[$b1],7)", "&por (@x[$b0],$t1)", "&psrld ($t0,25)", "&movdqa ($t1,'(%r10)')", # .Lrot16(%rip) "&por (@x[$b1],$t0)", "&movdqa (\"`16*($c0-8)`(%rsp)\",$xc)", # reload pair of 'c's "&movdqa (\"`16*($c1-8)`(%rsp)\",$xc_)", "&movdqa ($xc,\"`16*($c2-8)`(%rsp)\")", "&movdqa ($xc_,\"`16*($c3-8)`(%rsp)\")", "&paddd (@x[$a2],@x[$b2])", # Q3 "&paddd (@x[$a3],@x[$b3])", # Q4 "&pxor (@x[$d2],@x[$a2])", "&pxor (@x[$d3],@x[$a3])", "&pshufb (@x[$d2],$t1)", "&pshufb (@x[$d3],$t1)", "&paddd ($xc,@x[$d2])", "&paddd ($xc_,@x[$d3])", "&pxor (@x[$b2],$xc)", "&pxor (@x[$b3],$xc_)", "&movdqa ($t0,@x[$b2])", "&pslld (@x[$b2],12)", "&psrld ($t0,20)", "&movdqa ($t1,@x[$b3])", "&pslld (@x[$b3],12)", "&por (@x[$b2],$t0)", "&psrld ($t1,20)", "&movdqa ($t0,'(%r11)')", # .Lrot24(%rip) "&por (@x[$b3],$t1)", "&paddd (@x[$a2],@x[$b2])", "&paddd (@x[$a3],@x[$b3])", "&pxor (@x[$d2],@x[$a2])", "&pxor (@x[$d3],@x[$a3])", "&pshufb (@x[$d2],$t0)", "&pshufb (@x[$d3],$t0)", "&paddd ($xc,@x[$d2])", "&paddd ($xc_,@x[$d3])", "&pxor (@x[$b2],$xc)", "&pxor (@x[$b3],$xc_)", "&movdqa ($t1,@x[$b2])", "&pslld (@x[$b2],7)", "&psrld ($t1,25)", "&movdqa ($t0,@x[$b3])", "&pslld (@x[$b3],7)", "&por (@x[$b2],$t1)", "&psrld ($t0,25)", "&movdqa ($t1,'(%r10)')", # .Lrot16(%rip) "&por (@x[$b3],$t0)" ); } my $xframe = $win64 ? 0xa8 : 8; $code.=<<___; .type ChaCha20_4x,\@function,5 .align 32 ChaCha20_4x: .cfi_startproc .LChaCha20_4x: mov %rsp,%r9 # frame pointer .cfi_def_cfa_register %r9 mov %r10,%r11 ___ $code.=<<___ if ($avx>1); shr \$32,%r10 # OPENSSL_ia32cap_P+8 test \$`1<<5`,%r10 # test AVX2 jnz .LChaCha20_8x ___ $code.=<<___; cmp \$192,$len ja .Lproceed4x and \$`1<<26|1<<22`,%r11 # isolate XSAVE+MOVBE cmp \$`1<<22`,%r11 # check for MOVBE without XSAVE je .Ldo_sse3_after_all # to detect Atom .Lproceed4x: sub \$0x140+$xframe,%rsp ___ ################ stack layout # +0x00 SIMD equivalent of @x[8-12] # ... # +0x40 constant copy of key[0-2] smashed by lanes # ... # +0x100 SIMD counters (with nonce smashed by lanes) # ... # +0x140 $code.=<<___ if ($win64); movaps %xmm6,-0xa8(%r9) movaps %xmm7,-0x98(%r9) movaps %xmm8,-0x88(%r9) movaps %xmm9,-0x78(%r9) movaps %xmm10,-0x68(%r9) movaps %xmm11,-0x58(%r9) movaps %xmm12,-0x48(%r9) movaps %xmm13,-0x38(%r9) movaps %xmm14,-0x28(%r9) movaps %xmm15,-0x18(%r9) .L4x_body: ___ $code.=<<___; movdqa .Lsigma(%rip),$xa3 # key[0] movdqu ($key),$xb3 # key[1] movdqu 16($key),$xt3 # key[2] movdqu ($counter),$xd3 # key[3] lea 0x100(%rsp),%rcx # size optimization lea .Lrot16(%rip),%r10 lea .Lrot24(%rip),%r11 pshufd \$0x00,$xa3,$xa0 # smash key by lanes... pshufd \$0x55,$xa3,$xa1 movdqa $xa0,0x40(%rsp) # ... and offload pshufd \$0xaa,$xa3,$xa2 movdqa $xa1,0x50(%rsp) pshufd \$0xff,$xa3,$xa3 movdqa $xa2,0x60(%rsp) movdqa $xa3,0x70(%rsp) pshufd \$0x00,$xb3,$xb0 pshufd \$0x55,$xb3,$xb1 movdqa $xb0,0x80-0x100(%rcx) pshufd \$0xaa,$xb3,$xb2 movdqa $xb1,0x90-0x100(%rcx) pshufd \$0xff,$xb3,$xb3 movdqa $xb2,0xa0-0x100(%rcx) movdqa $xb3,0xb0-0x100(%rcx) pshufd \$0x00,$xt3,$xt0 # "$xc0" pshufd \$0x55,$xt3,$xt1 # "$xc1" movdqa $xt0,0xc0-0x100(%rcx) pshufd \$0xaa,$xt3,$xt2 # "$xc2" movdqa $xt1,0xd0-0x100(%rcx) pshufd \$0xff,$xt3,$xt3 # "$xc3" movdqa $xt2,0xe0-0x100(%rcx) movdqa $xt3,0xf0-0x100(%rcx) pshufd \$0x00,$xd3,$xd0 pshufd \$0x55,$xd3,$xd1 paddd .Linc(%rip),$xd0 # don't save counters yet pshufd \$0xaa,$xd3,$xd2 movdqa $xd1,0x110-0x100(%rcx) pshufd \$0xff,$xd3,$xd3 movdqa $xd2,0x120-0x100(%rcx) movdqa $xd3,0x130-0x100(%rcx) jmp .Loop_enter4x .align 32 .Loop_outer4x: movdqa 0x40(%rsp),$xa0 # re-load smashed key movdqa 0x50(%rsp),$xa1 movdqa 0x60(%rsp),$xa2 movdqa 0x70(%rsp),$xa3 movdqa 0x80-0x100(%rcx),$xb0 movdqa 0x90-0x100(%rcx),$xb1 movdqa 0xa0-0x100(%rcx),$xb2 movdqa 0xb0-0x100(%rcx),$xb3 movdqa 0xc0-0x100(%rcx),$xt0 # "$xc0" movdqa 0xd0-0x100(%rcx),$xt1 # "$xc1" movdqa 0xe0-0x100(%rcx),$xt2 # "$xc2" movdqa 0xf0-0x100(%rcx),$xt3 # "$xc3" movdqa 0x100-0x100(%rcx),$xd0 movdqa 0x110-0x100(%rcx),$xd1 movdqa 0x120-0x100(%rcx),$xd2 movdqa 0x130-0x100(%rcx),$xd3 paddd .Lfour(%rip),$xd0 # next SIMD counters .Loop_enter4x: movdqa $xt2,0x20(%rsp) # SIMD equivalent of "@x[10]" movdqa $xt3,0x30(%rsp) # SIMD equivalent of "@x[11]" movdqa (%r10),$xt3 # .Lrot16(%rip) mov \$10,%eax movdqa $xd0,0x100-0x100(%rcx) # save SIMD counters jmp .Loop4x .align 32 .Loop4x: ___ foreach (&SSSE3_lane_ROUND(0, 4, 8,12)) { eval; } foreach (&SSSE3_lane_ROUND(0, 5,10,15)) { eval; } $code.=<<___; dec %eax jnz .Loop4x paddd 0x40(%rsp),$xa0 # accumulate key material paddd 0x50(%rsp),$xa1 paddd 0x60(%rsp),$xa2 paddd 0x70(%rsp),$xa3 movdqa $xa0,$xt2 # "de-interlace" data punpckldq $xa1,$xa0 movdqa $xa2,$xt3 punpckldq $xa3,$xa2 punpckhdq $xa1,$xt2 punpckhdq $xa3,$xt3 movdqa $xa0,$xa1 punpcklqdq $xa2,$xa0 # "a0" movdqa $xt2,$xa3 punpcklqdq $xt3,$xt2 # "a2" punpckhqdq $xa2,$xa1 # "a1" punpckhqdq $xt3,$xa3 # "a3" ___ ($xa2,$xt2)=($xt2,$xa2); $code.=<<___; paddd 0x80-0x100(%rcx),$xb0 paddd 0x90-0x100(%rcx),$xb1 paddd 0xa0-0x100(%rcx),$xb2 paddd 0xb0-0x100(%rcx),$xb3 movdqa $xa0,0x00(%rsp) # offload $xaN movdqa $xa1,0x10(%rsp) movdqa 0x20(%rsp),$xa0 # "xc2" movdqa 0x30(%rsp),$xa1 # "xc3" movdqa $xb0,$xt2 punpckldq $xb1,$xb0 movdqa $xb2,$xt3 punpckldq $xb3,$xb2 punpckhdq $xb1,$xt2 punpckhdq $xb3,$xt3 movdqa $xb0,$xb1 punpcklqdq $xb2,$xb0 # "b0" movdqa $xt2,$xb3 punpcklqdq $xt3,$xt2 # "b2" punpckhqdq $xb2,$xb1 # "b1" punpckhqdq $xt3,$xb3 # "b3" ___ ($xb2,$xt2)=($xt2,$xb2); my ($xc0,$xc1,$xc2,$xc3)=($xt0,$xt1,$xa0,$xa1); $code.=<<___; paddd 0xc0-0x100(%rcx),$xc0 paddd 0xd0-0x100(%rcx),$xc1 paddd 0xe0-0x100(%rcx),$xc2 paddd 0xf0-0x100(%rcx),$xc3 movdqa $xa2,0x20(%rsp) # keep offloading $xaN movdqa $xa3,0x30(%rsp) movdqa $xc0,$xt2 punpckldq $xc1,$xc0 movdqa $xc2,$xt3 punpckldq $xc3,$xc2 punpckhdq $xc1,$xt2 punpckhdq $xc3,$xt3 movdqa $xc0,$xc1 punpcklqdq $xc2,$xc0 # "c0" movdqa $xt2,$xc3 punpcklqdq $xt3,$xt2 # "c2" punpckhqdq $xc2,$xc1 # "c1" punpckhqdq $xt3,$xc3 # "c3" ___ ($xc2,$xt2)=($xt2,$xc2); ($xt0,$xt1)=($xa2,$xa3); # use $xaN as temporary $code.=<<___; paddd 0x100-0x100(%rcx),$xd0 paddd 0x110-0x100(%rcx),$xd1 paddd 0x120-0x100(%rcx),$xd2 paddd 0x130-0x100(%rcx),$xd3 movdqa $xd0,$xt2 punpckldq $xd1,$xd0 movdqa $xd2,$xt3 punpckldq $xd3,$xd2 punpckhdq $xd1,$xt2 punpckhdq $xd3,$xt3 movdqa $xd0,$xd1 punpcklqdq $xd2,$xd0 # "d0" movdqa $xt2,$xd3 punpcklqdq $xt3,$xt2 # "d2" punpckhqdq $xd2,$xd1 # "d1" punpckhqdq $xt3,$xd3 # "d3" ___ ($xd2,$xt2)=($xt2,$xd2); $code.=<<___; cmp \$64*4,$len jb .Ltail4x movdqu 0x00($inp),$xt0 # xor with input movdqu 0x10($inp),$xt1 movdqu 0x20($inp),$xt2 movdqu 0x30($inp),$xt3 pxor 0x00(%rsp),$xt0 # $xaN is offloaded, remember? pxor $xb0,$xt1 pxor $xc0,$xt2 pxor $xd0,$xt3 movdqu $xt0,0x00($out) movdqu 0x40($inp),$xt0 movdqu $xt1,0x10($out) movdqu 0x50($inp),$xt1 movdqu $xt2,0x20($out) movdqu 0x60($inp),$xt2 movdqu $xt3,0x30($out) movdqu 0x70($inp),$xt3 lea 0x80($inp),$inp # size optimization pxor 0x10(%rsp),$xt0 pxor $xb1,$xt1 pxor $xc1,$xt2 pxor $xd1,$xt3 movdqu $xt0,0x40($out) movdqu 0x00($inp),$xt0 movdqu $xt1,0x50($out) movdqu 0x10($inp),$xt1 movdqu $xt2,0x60($out) movdqu 0x20($inp),$xt2 movdqu $xt3,0x70($out) lea 0x80($out),$out # size optimization movdqu 0x30($inp),$xt3 pxor 0x20(%rsp),$xt0 pxor $xb2,$xt1 pxor $xc2,$xt2 pxor $xd2,$xt3 movdqu $xt0,0x00($out) movdqu 0x40($inp),$xt0 movdqu $xt1,0x10($out) movdqu 0x50($inp),$xt1 movdqu $xt2,0x20($out) movdqu 0x60($inp),$xt2 movdqu $xt3,0x30($out) movdqu 0x70($inp),$xt3 lea 0x80($inp),$inp # inp+=64*4 pxor 0x30(%rsp),$xt0 pxor $xb3,$xt1 pxor $xc3,$xt2 pxor $xd3,$xt3 movdqu $xt0,0x40($out) movdqu $xt1,0x50($out) movdqu $xt2,0x60($out) movdqu $xt3,0x70($out) lea 0x80($out),$out # out+=64*4 sub \$64*4,$len jnz .Loop_outer4x jmp .Ldone4x .Ltail4x: cmp \$192,$len jae .L192_or_more4x cmp \$128,$len jae .L128_or_more4x cmp \$64,$len jae .L64_or_more4x #movdqa 0x00(%rsp),$xt0 # $xaN is offloaded, remember? xor %r10,%r10 #movdqa $xt0,0x00(%rsp) movdqa $xb0,0x10(%rsp) movdqa $xc0,0x20(%rsp) movdqa $xd0,0x30(%rsp) jmp .Loop_tail4x .align 32 .L64_or_more4x: movdqu 0x00($inp),$xt0 # xor with input movdqu 0x10($inp),$xt1 movdqu 0x20($inp),$xt2 movdqu 0x30($inp),$xt3 pxor 0x00(%rsp),$xt0 # $xaxN is offloaded, remember? pxor $xb0,$xt1 pxor $xc0,$xt2 pxor $xd0,$xt3 movdqu $xt0,0x00($out) movdqu $xt1,0x10($out) movdqu $xt2,0x20($out) movdqu $xt3,0x30($out) je .Ldone4x movdqa 0x10(%rsp),$xt0 # $xaN is offloaded, remember? lea 0x40($inp),$inp # inp+=64*1 xor %r10,%r10 movdqa $xt0,0x00(%rsp) movdqa $xb1,0x10(%rsp) lea 0x40($out),$out # out+=64*1 movdqa $xc1,0x20(%rsp) sub \$64,$len # len-=64*1 movdqa $xd1,0x30(%rsp) jmp .Loop_tail4x .align 32 .L128_or_more4x: movdqu 0x00($inp),$xt0 # xor with input movdqu 0x10($inp),$xt1 movdqu 0x20($inp),$xt2 movdqu 0x30($inp),$xt3 pxor 0x00(%rsp),$xt0 # $xaN is offloaded, remember? pxor $xb0,$xt1 pxor $xc0,$xt2 pxor $xd0,$xt3 movdqu $xt0,0x00($out) movdqu 0x40($inp),$xt0 movdqu $xt1,0x10($out) movdqu 0x50($inp),$xt1 movdqu $xt2,0x20($out) movdqu 0x60($inp),$xt2 movdqu $xt3,0x30($out) movdqu 0x70($inp),$xt3 pxor 0x10(%rsp),$xt0 pxor $xb1,$xt1 pxor $xc1,$xt2 pxor $xd1,$xt3 movdqu $xt0,0x40($out) movdqu $xt1,0x50($out) movdqu $xt2,0x60($out) movdqu $xt3,0x70($out) je .Ldone4x movdqa 0x20(%rsp),$xt0 # $xaN is offloaded, remember? lea 0x80($inp),$inp # inp+=64*2 xor %r10,%r10 movdqa $xt0,0x00(%rsp) movdqa $xb2,0x10(%rsp) lea 0x80($out),$out # out+=64*2 movdqa $xc2,0x20(%rsp) sub \$128,$len # len-=64*2 movdqa $xd2,0x30(%rsp) jmp .Loop_tail4x .align 32 .L192_or_more4x: movdqu 0x00($inp),$xt0 # xor with input movdqu 0x10($inp),$xt1 movdqu 0x20($inp),$xt2 movdqu 0x30($inp),$xt3 pxor 0x00(%rsp),$xt0 # $xaN is offloaded, remember? pxor $xb0,$xt1 pxor $xc0,$xt2 pxor $xd0,$xt3 movdqu $xt0,0x00($out) movdqu 0x40($inp),$xt0 movdqu $xt1,0x10($out) movdqu 0x50($inp),$xt1 movdqu $xt2,0x20($out) movdqu 0x60($inp),$xt2 movdqu $xt3,0x30($out) movdqu 0x70($inp),$xt3 lea 0x80($inp),$inp # size optimization pxor 0x10(%rsp),$xt0 pxor $xb1,$xt1 pxor $xc1,$xt2 pxor $xd1,$xt3 movdqu $xt0,0x40($out) movdqu 0x00($inp),$xt0 movdqu $xt1,0x50($out) movdqu 0x10($inp),$xt1 movdqu $xt2,0x60($out) movdqu 0x20($inp),$xt2 movdqu $xt3,0x70($out) lea 0x80($out),$out # size optimization movdqu 0x30($inp),$xt3 pxor 0x20(%rsp),$xt0 pxor $xb2,$xt1 pxor $xc2,$xt2 pxor $xd2,$xt3 movdqu $xt0,0x00($out) movdqu $xt1,0x10($out) movdqu $xt2,0x20($out) movdqu $xt3,0x30($out) je .Ldone4x movdqa 0x30(%rsp),$xt0 # $xaN is offloaded, remember? lea 0x40($inp),$inp # inp+=64*3 xor %r10,%r10 movdqa $xt0,0x00(%rsp) movdqa $xb3,0x10(%rsp) lea 0x40($out),$out # out+=64*3 movdqa $xc3,0x20(%rsp) sub \$192,$len # len-=64*3 movdqa $xd3,0x30(%rsp) .Loop_tail4x: movzb ($inp,%r10),%eax movzb (%rsp,%r10),%ecx lea 1(%r10),%r10 xor %ecx,%eax mov %al,-1($out,%r10) dec $len jnz .Loop_tail4x .Ldone4x: ___ $code.=<<___ if ($win64); movaps -0xa8(%r9),%xmm6 movaps -0x98(%r9),%xmm7 movaps -0x88(%r9),%xmm8 movaps -0x78(%r9),%xmm9 movaps -0x68(%r9),%xmm10 movaps -0x58(%r9),%xmm11 movaps -0x48(%r9),%xmm12 movaps -0x38(%r9),%xmm13 movaps -0x28(%r9),%xmm14 movaps -0x18(%r9),%xmm15 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .L4x_epilogue: ret .cfi_endproc .size ChaCha20_4x,.-ChaCha20_4x ___ } ######################################################################## # XOP code path that handles all lengths. if ($avx) { # There is some "anomaly" observed depending on instructions' size or # alignment. If you look closely at below code you'll notice that # sometimes argument order varies. The order affects instruction # encoding by making it larger, and such fiddling gives 5% performance # improvement. This is on FX-4100... my ($xb0,$xb1,$xb2,$xb3, $xd0,$xd1,$xd2,$xd3, $xa0,$xa1,$xa2,$xa3, $xt0,$xt1,$xt2,$xt3)=map("%xmm$_",(0..15)); my @xx=($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, $xt0,$xt1,$xt2,$xt3, $xd0,$xd1,$xd2,$xd3); sub XOP_lane_ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my @x=map("\"$_\"",@xx); ( "&vpaddd (@x[$a0],@x[$a0],@x[$b0])", # Q1 "&vpaddd (@x[$a1],@x[$a1],@x[$b1])", # Q2 "&vpaddd (@x[$a2],@x[$a2],@x[$b2])", # Q3 "&vpaddd (@x[$a3],@x[$a3],@x[$b3])", # Q4 "&vpxor (@x[$d0],@x[$a0],@x[$d0])", "&vpxor (@x[$d1],@x[$a1],@x[$d1])", "&vpxor (@x[$d2],@x[$a2],@x[$d2])", "&vpxor (@x[$d3],@x[$a3],@x[$d3])", "&vprotd (@x[$d0],@x[$d0],16)", "&vprotd (@x[$d1],@x[$d1],16)", "&vprotd (@x[$d2],@x[$d2],16)", "&vprotd (@x[$d3],@x[$d3],16)", "&vpaddd (@x[$c0],@x[$c0],@x[$d0])", "&vpaddd (@x[$c1],@x[$c1],@x[$d1])", "&vpaddd (@x[$c2],@x[$c2],@x[$d2])", "&vpaddd (@x[$c3],@x[$c3],@x[$d3])", "&vpxor (@x[$b0],@x[$c0],@x[$b0])", "&vpxor (@x[$b1],@x[$c1],@x[$b1])", "&vpxor (@x[$b2],@x[$b2],@x[$c2])", # flip "&vpxor (@x[$b3],@x[$b3],@x[$c3])", # flip "&vprotd (@x[$b0],@x[$b0],12)", "&vprotd (@x[$b1],@x[$b1],12)", "&vprotd (@x[$b2],@x[$b2],12)", "&vprotd (@x[$b3],@x[$b3],12)", "&vpaddd (@x[$a0],@x[$b0],@x[$a0])", # flip "&vpaddd (@x[$a1],@x[$b1],@x[$a1])", # flip "&vpaddd (@x[$a2],@x[$a2],@x[$b2])", "&vpaddd (@x[$a3],@x[$a3],@x[$b3])", "&vpxor (@x[$d0],@x[$a0],@x[$d0])", "&vpxor (@x[$d1],@x[$a1],@x[$d1])", "&vpxor (@x[$d2],@x[$a2],@x[$d2])", "&vpxor (@x[$d3],@x[$a3],@x[$d3])", "&vprotd (@x[$d0],@x[$d0],8)", "&vprotd (@x[$d1],@x[$d1],8)", "&vprotd (@x[$d2],@x[$d2],8)", "&vprotd (@x[$d3],@x[$d3],8)", "&vpaddd (@x[$c0],@x[$c0],@x[$d0])", "&vpaddd (@x[$c1],@x[$c1],@x[$d1])", "&vpaddd (@x[$c2],@x[$c2],@x[$d2])", "&vpaddd (@x[$c3],@x[$c3],@x[$d3])", "&vpxor (@x[$b0],@x[$c0],@x[$b0])", "&vpxor (@x[$b1],@x[$c1],@x[$b1])", "&vpxor (@x[$b2],@x[$b2],@x[$c2])", # flip "&vpxor (@x[$b3],@x[$b3],@x[$c3])", # flip "&vprotd (@x[$b0],@x[$b0],7)", "&vprotd (@x[$b1],@x[$b1],7)", "&vprotd (@x[$b2],@x[$b2],7)", "&vprotd (@x[$b3],@x[$b3],7)" ); } my $xframe = $win64 ? 0xa8 : 8; $code.=<<___; .type ChaCha20_4xop,\@function,5 .align 32 ChaCha20_4xop: .cfi_startproc .LChaCha20_4xop: mov %rsp,%r9 # frame pointer .cfi_def_cfa_register %r9 sub \$0x140+$xframe,%rsp ___ ################ stack layout # +0x00 SIMD equivalent of @x[8-12] # ... # +0x40 constant copy of key[0-2] smashed by lanes # ... # +0x100 SIMD counters (with nonce smashed by lanes) # ... # +0x140 $code.=<<___ if ($win64); movaps %xmm6,-0xa8(%r9) movaps %xmm7,-0x98(%r9) movaps %xmm8,-0x88(%r9) movaps %xmm9,-0x78(%r9) movaps %xmm10,-0x68(%r9) movaps %xmm11,-0x58(%r9) movaps %xmm12,-0x48(%r9) movaps %xmm13,-0x38(%r9) movaps %xmm14,-0x28(%r9) movaps %xmm15,-0x18(%r9) .L4xop_body: ___ $code.=<<___; vzeroupper vmovdqa .Lsigma(%rip),$xa3 # key[0] vmovdqu ($key),$xb3 # key[1] vmovdqu 16($key),$xt3 # key[2] vmovdqu ($counter),$xd3 # key[3] lea 0x100(%rsp),%rcx # size optimization vpshufd \$0x00,$xa3,$xa0 # smash key by lanes... vpshufd \$0x55,$xa3,$xa1 vmovdqa $xa0,0x40(%rsp) # ... and offload vpshufd \$0xaa,$xa3,$xa2 vmovdqa $xa1,0x50(%rsp) vpshufd \$0xff,$xa3,$xa3 vmovdqa $xa2,0x60(%rsp) vmovdqa $xa3,0x70(%rsp) vpshufd \$0x00,$xb3,$xb0 vpshufd \$0x55,$xb3,$xb1 vmovdqa $xb0,0x80-0x100(%rcx) vpshufd \$0xaa,$xb3,$xb2 vmovdqa $xb1,0x90-0x100(%rcx) vpshufd \$0xff,$xb3,$xb3 vmovdqa $xb2,0xa0-0x100(%rcx) vmovdqa $xb3,0xb0-0x100(%rcx) vpshufd \$0x00,$xt3,$xt0 # "$xc0" vpshufd \$0x55,$xt3,$xt1 # "$xc1" vmovdqa $xt0,0xc0-0x100(%rcx) vpshufd \$0xaa,$xt3,$xt2 # "$xc2" vmovdqa $xt1,0xd0-0x100(%rcx) vpshufd \$0xff,$xt3,$xt3 # "$xc3" vmovdqa $xt2,0xe0-0x100(%rcx) vmovdqa $xt3,0xf0-0x100(%rcx) vpshufd \$0x00,$xd3,$xd0 vpshufd \$0x55,$xd3,$xd1 vpaddd .Linc(%rip),$xd0,$xd0 # don't save counters yet vpshufd \$0xaa,$xd3,$xd2 vmovdqa $xd1,0x110-0x100(%rcx) vpshufd \$0xff,$xd3,$xd3 vmovdqa $xd2,0x120-0x100(%rcx) vmovdqa $xd3,0x130-0x100(%rcx) jmp .Loop_enter4xop .align 32 .Loop_outer4xop: vmovdqa 0x40(%rsp),$xa0 # re-load smashed key vmovdqa 0x50(%rsp),$xa1 vmovdqa 0x60(%rsp),$xa2 vmovdqa 0x70(%rsp),$xa3 vmovdqa 0x80-0x100(%rcx),$xb0 vmovdqa 0x90-0x100(%rcx),$xb1 vmovdqa 0xa0-0x100(%rcx),$xb2 vmovdqa 0xb0-0x100(%rcx),$xb3 vmovdqa 0xc0-0x100(%rcx),$xt0 # "$xc0" vmovdqa 0xd0-0x100(%rcx),$xt1 # "$xc1" vmovdqa 0xe0-0x100(%rcx),$xt2 # "$xc2" vmovdqa 0xf0-0x100(%rcx),$xt3 # "$xc3" vmovdqa 0x100-0x100(%rcx),$xd0 vmovdqa 0x110-0x100(%rcx),$xd1 vmovdqa 0x120-0x100(%rcx),$xd2 vmovdqa 0x130-0x100(%rcx),$xd3 vpaddd .Lfour(%rip),$xd0,$xd0 # next SIMD counters .Loop_enter4xop: mov \$10,%eax vmovdqa $xd0,0x100-0x100(%rcx) # save SIMD counters jmp .Loop4xop .align 32 .Loop4xop: ___ foreach (&XOP_lane_ROUND(0, 4, 8,12)) { eval; } foreach (&XOP_lane_ROUND(0, 5,10,15)) { eval; } $code.=<<___; dec %eax jnz .Loop4xop vpaddd 0x40(%rsp),$xa0,$xa0 # accumulate key material vpaddd 0x50(%rsp),$xa1,$xa1 vpaddd 0x60(%rsp),$xa2,$xa2 vpaddd 0x70(%rsp),$xa3,$xa3 vmovdqa $xt2,0x20(%rsp) # offload $xc2,3 vmovdqa $xt3,0x30(%rsp) vpunpckldq $xa1,$xa0,$xt2 # "de-interlace" data vpunpckldq $xa3,$xa2,$xt3 vpunpckhdq $xa1,$xa0,$xa0 vpunpckhdq $xa3,$xa2,$xa2 vpunpcklqdq $xt3,$xt2,$xa1 # "a0" vpunpckhqdq $xt3,$xt2,$xt2 # "a1" vpunpcklqdq $xa2,$xa0,$xa3 # "a2" vpunpckhqdq $xa2,$xa0,$xa0 # "a3" ___ ($xa0,$xa1,$xa2,$xa3,$xt2)=($xa1,$xt2,$xa3,$xa0,$xa2); $code.=<<___; vpaddd 0x80-0x100(%rcx),$xb0,$xb0 vpaddd 0x90-0x100(%rcx),$xb1,$xb1 vpaddd 0xa0-0x100(%rcx),$xb2,$xb2 vpaddd 0xb0-0x100(%rcx),$xb3,$xb3 vmovdqa $xa0,0x00(%rsp) # offload $xa0,1 vmovdqa $xa1,0x10(%rsp) vmovdqa 0x20(%rsp),$xa0 # "xc2" vmovdqa 0x30(%rsp),$xa1 # "xc3" vpunpckldq $xb1,$xb0,$xt2 vpunpckldq $xb3,$xb2,$xt3 vpunpckhdq $xb1,$xb0,$xb0 vpunpckhdq $xb3,$xb2,$xb2 vpunpcklqdq $xt3,$xt2,$xb1 # "b0" vpunpckhqdq $xt3,$xt2,$xt2 # "b1" vpunpcklqdq $xb2,$xb0,$xb3 # "b2" vpunpckhqdq $xb2,$xb0,$xb0 # "b3" ___ ($xb0,$xb1,$xb2,$xb3,$xt2)=($xb1,$xt2,$xb3,$xb0,$xb2); my ($xc0,$xc1,$xc2,$xc3)=($xt0,$xt1,$xa0,$xa1); $code.=<<___; vpaddd 0xc0-0x100(%rcx),$xc0,$xc0 vpaddd 0xd0-0x100(%rcx),$xc1,$xc1 vpaddd 0xe0-0x100(%rcx),$xc2,$xc2 vpaddd 0xf0-0x100(%rcx),$xc3,$xc3 vpunpckldq $xc1,$xc0,$xt2 vpunpckldq $xc3,$xc2,$xt3 vpunpckhdq $xc1,$xc0,$xc0 vpunpckhdq $xc3,$xc2,$xc2 vpunpcklqdq $xt3,$xt2,$xc1 # "c0" vpunpckhqdq $xt3,$xt2,$xt2 # "c1" vpunpcklqdq $xc2,$xc0,$xc3 # "c2" vpunpckhqdq $xc2,$xc0,$xc0 # "c3" ___ ($xc0,$xc1,$xc2,$xc3,$xt2)=($xc1,$xt2,$xc3,$xc0,$xc2); $code.=<<___; vpaddd 0x100-0x100(%rcx),$xd0,$xd0 vpaddd 0x110-0x100(%rcx),$xd1,$xd1 vpaddd 0x120-0x100(%rcx),$xd2,$xd2 vpaddd 0x130-0x100(%rcx),$xd3,$xd3 vpunpckldq $xd1,$xd0,$xt2 vpunpckldq $xd3,$xd2,$xt3 vpunpckhdq $xd1,$xd0,$xd0 vpunpckhdq $xd3,$xd2,$xd2 vpunpcklqdq $xt3,$xt2,$xd1 # "d0" vpunpckhqdq $xt3,$xt2,$xt2 # "d1" vpunpcklqdq $xd2,$xd0,$xd3 # "d2" vpunpckhqdq $xd2,$xd0,$xd0 # "d3" ___ ($xd0,$xd1,$xd2,$xd3,$xt2)=($xd1,$xt2,$xd3,$xd0,$xd2); ($xa0,$xa1)=($xt2,$xt3); $code.=<<___; vmovdqa 0x00(%rsp),$xa0 # restore $xa0,1 vmovdqa 0x10(%rsp),$xa1 cmp \$64*4,$len jb .Ltail4xop vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x10($inp),$xb0,$xb0 vpxor 0x20($inp),$xc0,$xc0 vpxor 0x30($inp),$xd0,$xd0 vpxor 0x40($inp),$xa1,$xa1 vpxor 0x50($inp),$xb1,$xb1 vpxor 0x60($inp),$xc1,$xc1 vpxor 0x70($inp),$xd1,$xd1 lea 0x80($inp),$inp # size optimization vpxor 0x00($inp),$xa2,$xa2 vpxor 0x10($inp),$xb2,$xb2 vpxor 0x20($inp),$xc2,$xc2 vpxor 0x30($inp),$xd2,$xd2 vpxor 0x40($inp),$xa3,$xa3 vpxor 0x50($inp),$xb3,$xb3 vpxor 0x60($inp),$xc3,$xc3 vpxor 0x70($inp),$xd3,$xd3 lea 0x80($inp),$inp # inp+=64*4 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x10($out) vmovdqu $xc0,0x20($out) vmovdqu $xd0,0x30($out) vmovdqu $xa1,0x40($out) vmovdqu $xb1,0x50($out) vmovdqu $xc1,0x60($out) vmovdqu $xd1,0x70($out) lea 0x80($out),$out # size optimization vmovdqu $xa2,0x00($out) vmovdqu $xb2,0x10($out) vmovdqu $xc2,0x20($out) vmovdqu $xd2,0x30($out) vmovdqu $xa3,0x40($out) vmovdqu $xb3,0x50($out) vmovdqu $xc3,0x60($out) vmovdqu $xd3,0x70($out) lea 0x80($out),$out # out+=64*4 sub \$64*4,$len jnz .Loop_outer4xop jmp .Ldone4xop .align 32 .Ltail4xop: cmp \$192,$len jae .L192_or_more4xop cmp \$128,$len jae .L128_or_more4xop cmp \$64,$len jae .L64_or_more4xop xor %r10,%r10 vmovdqa $xa0,0x00(%rsp) vmovdqa $xb0,0x10(%rsp) vmovdqa $xc0,0x20(%rsp) vmovdqa $xd0,0x30(%rsp) jmp .Loop_tail4xop .align 32 .L64_or_more4xop: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x10($inp),$xb0,$xb0 vpxor 0x20($inp),$xc0,$xc0 vpxor 0x30($inp),$xd0,$xd0 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x10($out) vmovdqu $xc0,0x20($out) vmovdqu $xd0,0x30($out) je .Ldone4xop lea 0x40($inp),$inp # inp+=64*1 vmovdqa $xa1,0x00(%rsp) xor %r10,%r10 vmovdqa $xb1,0x10(%rsp) lea 0x40($out),$out # out+=64*1 vmovdqa $xc1,0x20(%rsp) sub \$64,$len # len-=64*1 vmovdqa $xd1,0x30(%rsp) jmp .Loop_tail4xop .align 32 .L128_or_more4xop: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x10($inp),$xb0,$xb0 vpxor 0x20($inp),$xc0,$xc0 vpxor 0x30($inp),$xd0,$xd0 vpxor 0x40($inp),$xa1,$xa1 vpxor 0x50($inp),$xb1,$xb1 vpxor 0x60($inp),$xc1,$xc1 vpxor 0x70($inp),$xd1,$xd1 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x10($out) vmovdqu $xc0,0x20($out) vmovdqu $xd0,0x30($out) vmovdqu $xa1,0x40($out) vmovdqu $xb1,0x50($out) vmovdqu $xc1,0x60($out) vmovdqu $xd1,0x70($out) je .Ldone4xop lea 0x80($inp),$inp # inp+=64*2 vmovdqa $xa2,0x00(%rsp) xor %r10,%r10 vmovdqa $xb2,0x10(%rsp) lea 0x80($out),$out # out+=64*2 vmovdqa $xc2,0x20(%rsp) sub \$128,$len # len-=64*2 vmovdqa $xd2,0x30(%rsp) jmp .Loop_tail4xop .align 32 .L192_or_more4xop: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x10($inp),$xb0,$xb0 vpxor 0x20($inp),$xc0,$xc0 vpxor 0x30($inp),$xd0,$xd0 vpxor 0x40($inp),$xa1,$xa1 vpxor 0x50($inp),$xb1,$xb1 vpxor 0x60($inp),$xc1,$xc1 vpxor 0x70($inp),$xd1,$xd1 lea 0x80($inp),$inp # size optimization vpxor 0x00($inp),$xa2,$xa2 vpxor 0x10($inp),$xb2,$xb2 vpxor 0x20($inp),$xc2,$xc2 vpxor 0x30($inp),$xd2,$xd2 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x10($out) vmovdqu $xc0,0x20($out) vmovdqu $xd0,0x30($out) vmovdqu $xa1,0x40($out) vmovdqu $xb1,0x50($out) vmovdqu $xc1,0x60($out) vmovdqu $xd1,0x70($out) lea 0x80($out),$out # size optimization vmovdqu $xa2,0x00($out) vmovdqu $xb2,0x10($out) vmovdqu $xc2,0x20($out) vmovdqu $xd2,0x30($out) je .Ldone4xop lea 0x40($inp),$inp # inp+=64*3 vmovdqa $xa3,0x00(%rsp) xor %r10,%r10 vmovdqa $xb3,0x10(%rsp) lea 0x40($out),$out # out+=64*3 vmovdqa $xc3,0x20(%rsp) sub \$192,$len # len-=64*3 vmovdqa $xd3,0x30(%rsp) .Loop_tail4xop: movzb ($inp,%r10),%eax movzb (%rsp,%r10),%ecx lea 1(%r10),%r10 xor %ecx,%eax mov %al,-1($out,%r10) dec $len jnz .Loop_tail4xop .Ldone4xop: vzeroupper ___ $code.=<<___ if ($win64); movaps -0xa8(%r9),%xmm6 movaps -0x98(%r9),%xmm7 movaps -0x88(%r9),%xmm8 movaps -0x78(%r9),%xmm9 movaps -0x68(%r9),%xmm10 movaps -0x58(%r9),%xmm11 movaps -0x48(%r9),%xmm12 movaps -0x38(%r9),%xmm13 movaps -0x28(%r9),%xmm14 movaps -0x18(%r9),%xmm15 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .L4xop_epilogue: ret .cfi_endproc .size ChaCha20_4xop,.-ChaCha20_4xop ___ } ######################################################################## # AVX2 code path if ($avx>1) { my ($xb0,$xb1,$xb2,$xb3, $xd0,$xd1,$xd2,$xd3, $xa0,$xa1,$xa2,$xa3, $xt0,$xt1,$xt2,$xt3)=map("%ymm$_",(0..15)); my @xx=($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, "%nox","%nox","%nox","%nox", $xd0,$xd1,$xd2,$xd3); sub AVX2_lane_ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my ($xc,$xc_,$t0,$t1)=map("\"$_\"",$xt0,$xt1,$xt2,$xt3); my @x=map("\"$_\"",@xx); # Consider order in which variables are addressed by their # index: # # a b c d # # 0 4 8 12 < even round # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 # 0 5 10 15 < odd round # 1 6 11 12 # 2 7 8 13 # 3 4 9 14 # # 'a', 'b' and 'd's are permanently allocated in registers, # @x[0..7,12..15], while 'c's are maintained in memory. If # you observe 'c' column, you'll notice that pair of 'c's is # invariant between rounds. This means that we have to reload # them once per round, in the middle. This is why you'll see # bunch of 'c' stores and loads in the middle, but none in # the beginning or end. ( "&vpaddd (@x[$a0],@x[$a0],@x[$b0])", # Q1 "&vpxor (@x[$d0],@x[$a0],@x[$d0])", "&vpshufb (@x[$d0],@x[$d0],$t1)", "&vpaddd (@x[$a1],@x[$a1],@x[$b1])", # Q2 "&vpxor (@x[$d1],@x[$a1],@x[$d1])", "&vpshufb (@x[$d1],@x[$d1],$t1)", "&vpaddd ($xc,$xc,@x[$d0])", "&vpxor (@x[$b0],$xc,@x[$b0])", "&vpslld ($t0,@x[$b0],12)", "&vpsrld (@x[$b0],@x[$b0],20)", "&vpor (@x[$b0],$t0,@x[$b0])", "&vbroadcasti128($t0,'(%r11)')", # .Lrot24(%rip) "&vpaddd ($xc_,$xc_,@x[$d1])", "&vpxor (@x[$b1],$xc_,@x[$b1])", "&vpslld ($t1,@x[$b1],12)", "&vpsrld (@x[$b1],@x[$b1],20)", "&vpor (@x[$b1],$t1,@x[$b1])", "&vpaddd (@x[$a0],@x[$a0],@x[$b0])", "&vpxor (@x[$d0],@x[$a0],@x[$d0])", "&vpshufb (@x[$d0],@x[$d0],$t0)", "&vpaddd (@x[$a1],@x[$a1],@x[$b1])", "&vpxor (@x[$d1],@x[$a1],@x[$d1])", "&vpshufb (@x[$d1],@x[$d1],$t0)", "&vpaddd ($xc,$xc,@x[$d0])", "&vpxor (@x[$b0],$xc,@x[$b0])", "&vpslld ($t1,@x[$b0],7)", "&vpsrld (@x[$b0],@x[$b0],25)", "&vpor (@x[$b0],$t1,@x[$b0])", "&vbroadcasti128($t1,'(%r10)')", # .Lrot16(%rip) "&vpaddd ($xc_,$xc_,@x[$d1])", "&vpxor (@x[$b1],$xc_,@x[$b1])", "&vpslld ($t0,@x[$b1],7)", "&vpsrld (@x[$b1],@x[$b1],25)", "&vpor (@x[$b1],$t0,@x[$b1])", "&vmovdqa (\"`32*($c0-8)`(%rsp)\",$xc)", # reload pair of 'c's "&vmovdqa (\"`32*($c1-8)`(%rsp)\",$xc_)", "&vmovdqa ($xc,\"`32*($c2-8)`(%rsp)\")", "&vmovdqa ($xc_,\"`32*($c3-8)`(%rsp)\")", "&vpaddd (@x[$a2],@x[$a2],@x[$b2])", # Q3 "&vpxor (@x[$d2],@x[$a2],@x[$d2])", "&vpshufb (@x[$d2],@x[$d2],$t1)", "&vpaddd (@x[$a3],@x[$a3],@x[$b3])", # Q4 "&vpxor (@x[$d3],@x[$a3],@x[$d3])", "&vpshufb (@x[$d3],@x[$d3],$t1)", "&vpaddd ($xc,$xc,@x[$d2])", "&vpxor (@x[$b2],$xc,@x[$b2])", "&vpslld ($t0,@x[$b2],12)", "&vpsrld (@x[$b2],@x[$b2],20)", "&vpor (@x[$b2],$t0,@x[$b2])", "&vbroadcasti128($t0,'(%r11)')", # .Lrot24(%rip) "&vpaddd ($xc_,$xc_,@x[$d3])", "&vpxor (@x[$b3],$xc_,@x[$b3])", "&vpslld ($t1,@x[$b3],12)", "&vpsrld (@x[$b3],@x[$b3],20)", "&vpor (@x[$b3],$t1,@x[$b3])", "&vpaddd (@x[$a2],@x[$a2],@x[$b2])", "&vpxor (@x[$d2],@x[$a2],@x[$d2])", "&vpshufb (@x[$d2],@x[$d2],$t0)", "&vpaddd (@x[$a3],@x[$a3],@x[$b3])", "&vpxor (@x[$d3],@x[$a3],@x[$d3])", "&vpshufb (@x[$d3],@x[$d3],$t0)", "&vpaddd ($xc,$xc,@x[$d2])", "&vpxor (@x[$b2],$xc,@x[$b2])", "&vpslld ($t1,@x[$b2],7)", "&vpsrld (@x[$b2],@x[$b2],25)", "&vpor (@x[$b2],$t1,@x[$b2])", "&vbroadcasti128($t1,'(%r10)')", # .Lrot16(%rip) "&vpaddd ($xc_,$xc_,@x[$d3])", "&vpxor (@x[$b3],$xc_,@x[$b3])", "&vpslld ($t0,@x[$b3],7)", "&vpsrld (@x[$b3],@x[$b3],25)", "&vpor (@x[$b3],$t0,@x[$b3])" ); } my $xframe = $win64 ? 0xa8 : 8; $code.=<<___; .type ChaCha20_8x,\@function,5 .align 32 ChaCha20_8x: .cfi_startproc .LChaCha20_8x: mov %rsp,%r9 # frame register .cfi_def_cfa_register %r9 sub \$0x280+$xframe,%rsp and \$-32,%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-0xa8(%r9) movaps %xmm7,-0x98(%r9) movaps %xmm8,-0x88(%r9) movaps %xmm9,-0x78(%r9) movaps %xmm10,-0x68(%r9) movaps %xmm11,-0x58(%r9) movaps %xmm12,-0x48(%r9) movaps %xmm13,-0x38(%r9) movaps %xmm14,-0x28(%r9) movaps %xmm15,-0x18(%r9) .L8x_body: ___ $code.=<<___; vzeroupper ################ stack layout # +0x00 SIMD equivalent of @x[8-12] # ... # +0x80 constant copy of key[0-2] smashed by lanes # ... # +0x200 SIMD counters (with nonce smashed by lanes) # ... # +0x280 vbroadcasti128 .Lsigma(%rip),$xa3 # key[0] vbroadcasti128 ($key),$xb3 # key[1] vbroadcasti128 16($key),$xt3 # key[2] vbroadcasti128 ($counter),$xd3 # key[3] lea 0x100(%rsp),%rcx # size optimization lea 0x200(%rsp),%rax # size optimization lea .Lrot16(%rip),%r10 lea .Lrot24(%rip),%r11 vpshufd \$0x00,$xa3,$xa0 # smash key by lanes... vpshufd \$0x55,$xa3,$xa1 vmovdqa $xa0,0x80-0x100(%rcx) # ... and offload vpshufd \$0xaa,$xa3,$xa2 vmovdqa $xa1,0xa0-0x100(%rcx) vpshufd \$0xff,$xa3,$xa3 vmovdqa $xa2,0xc0-0x100(%rcx) vmovdqa $xa3,0xe0-0x100(%rcx) vpshufd \$0x00,$xb3,$xb0 vpshufd \$0x55,$xb3,$xb1 vmovdqa $xb0,0x100-0x100(%rcx) vpshufd \$0xaa,$xb3,$xb2 vmovdqa $xb1,0x120-0x100(%rcx) vpshufd \$0xff,$xb3,$xb3 vmovdqa $xb2,0x140-0x100(%rcx) vmovdqa $xb3,0x160-0x100(%rcx) vpshufd \$0x00,$xt3,$xt0 # "xc0" vpshufd \$0x55,$xt3,$xt1 # "xc1" vmovdqa $xt0,0x180-0x200(%rax) vpshufd \$0xaa,$xt3,$xt2 # "xc2" vmovdqa $xt1,0x1a0-0x200(%rax) vpshufd \$0xff,$xt3,$xt3 # "xc3" vmovdqa $xt2,0x1c0-0x200(%rax) vmovdqa $xt3,0x1e0-0x200(%rax) vpshufd \$0x00,$xd3,$xd0 vpshufd \$0x55,$xd3,$xd1 vpaddd .Lincy(%rip),$xd0,$xd0 # don't save counters yet vpshufd \$0xaa,$xd3,$xd2 vmovdqa $xd1,0x220-0x200(%rax) vpshufd \$0xff,$xd3,$xd3 vmovdqa $xd2,0x240-0x200(%rax) vmovdqa $xd3,0x260-0x200(%rax) jmp .Loop_enter8x .align 32 .Loop_outer8x: vmovdqa 0x80-0x100(%rcx),$xa0 # re-load smashed key vmovdqa 0xa0-0x100(%rcx),$xa1 vmovdqa 0xc0-0x100(%rcx),$xa2 vmovdqa 0xe0-0x100(%rcx),$xa3 vmovdqa 0x100-0x100(%rcx),$xb0 vmovdqa 0x120-0x100(%rcx),$xb1 vmovdqa 0x140-0x100(%rcx),$xb2 vmovdqa 0x160-0x100(%rcx),$xb3 vmovdqa 0x180-0x200(%rax),$xt0 # "xc0" vmovdqa 0x1a0-0x200(%rax),$xt1 # "xc1" vmovdqa 0x1c0-0x200(%rax),$xt2 # "xc2" vmovdqa 0x1e0-0x200(%rax),$xt3 # "xc3" vmovdqa 0x200-0x200(%rax),$xd0 vmovdqa 0x220-0x200(%rax),$xd1 vmovdqa 0x240-0x200(%rax),$xd2 vmovdqa 0x260-0x200(%rax),$xd3 vpaddd .Leight(%rip),$xd0,$xd0 # next SIMD counters .Loop_enter8x: vmovdqa $xt2,0x40(%rsp) # SIMD equivalent of "@x[10]" vmovdqa $xt3,0x60(%rsp) # SIMD equivalent of "@x[11]" vbroadcasti128 (%r10),$xt3 vmovdqa $xd0,0x200-0x200(%rax) # save SIMD counters mov \$10,%eax jmp .Loop8x .align 32 .Loop8x: ___ foreach (&AVX2_lane_ROUND(0, 4, 8,12)) { eval; } foreach (&AVX2_lane_ROUND(0, 5,10,15)) { eval; } $code.=<<___; dec %eax jnz .Loop8x lea 0x200(%rsp),%rax # size optimization vpaddd 0x80-0x100(%rcx),$xa0,$xa0 # accumulate key vpaddd 0xa0-0x100(%rcx),$xa1,$xa1 vpaddd 0xc0-0x100(%rcx),$xa2,$xa2 vpaddd 0xe0-0x100(%rcx),$xa3,$xa3 vpunpckldq $xa1,$xa0,$xt2 # "de-interlace" data vpunpckldq $xa3,$xa2,$xt3 vpunpckhdq $xa1,$xa0,$xa0 vpunpckhdq $xa3,$xa2,$xa2 vpunpcklqdq $xt3,$xt2,$xa1 # "a0" vpunpckhqdq $xt3,$xt2,$xt2 # "a1" vpunpcklqdq $xa2,$xa0,$xa3 # "a2" vpunpckhqdq $xa2,$xa0,$xa0 # "a3" ___ ($xa0,$xa1,$xa2,$xa3,$xt2)=($xa1,$xt2,$xa3,$xa0,$xa2); $code.=<<___; vpaddd 0x100-0x100(%rcx),$xb0,$xb0 vpaddd 0x120-0x100(%rcx),$xb1,$xb1 vpaddd 0x140-0x100(%rcx),$xb2,$xb2 vpaddd 0x160-0x100(%rcx),$xb3,$xb3 vpunpckldq $xb1,$xb0,$xt2 vpunpckldq $xb3,$xb2,$xt3 vpunpckhdq $xb1,$xb0,$xb0 vpunpckhdq $xb3,$xb2,$xb2 vpunpcklqdq $xt3,$xt2,$xb1 # "b0" vpunpckhqdq $xt3,$xt2,$xt2 # "b1" vpunpcklqdq $xb2,$xb0,$xb3 # "b2" vpunpckhqdq $xb2,$xb0,$xb0 # "b3" ___ ($xb0,$xb1,$xb2,$xb3,$xt2)=($xb1,$xt2,$xb3,$xb0,$xb2); $code.=<<___; vperm2i128 \$0x20,$xb0,$xa0,$xt3 # "de-interlace" further vperm2i128 \$0x31,$xb0,$xa0,$xb0 vperm2i128 \$0x20,$xb1,$xa1,$xa0 vperm2i128 \$0x31,$xb1,$xa1,$xb1 vperm2i128 \$0x20,$xb2,$xa2,$xa1 vperm2i128 \$0x31,$xb2,$xa2,$xb2 vperm2i128 \$0x20,$xb3,$xa3,$xa2 vperm2i128 \$0x31,$xb3,$xa3,$xb3 ___ ($xa0,$xa1,$xa2,$xa3,$xt3)=($xt3,$xa0,$xa1,$xa2,$xa3); my ($xc0,$xc1,$xc2,$xc3)=($xt0,$xt1,$xa0,$xa1); $code.=<<___; vmovdqa $xa0,0x00(%rsp) # offload $xaN vmovdqa $xa1,0x20(%rsp) vmovdqa 0x40(%rsp),$xc2 # $xa0 vmovdqa 0x60(%rsp),$xc3 # $xa1 vpaddd 0x180-0x200(%rax),$xc0,$xc0 vpaddd 0x1a0-0x200(%rax),$xc1,$xc1 vpaddd 0x1c0-0x200(%rax),$xc2,$xc2 vpaddd 0x1e0-0x200(%rax),$xc3,$xc3 vpunpckldq $xc1,$xc0,$xt2 vpunpckldq $xc3,$xc2,$xt3 vpunpckhdq $xc1,$xc0,$xc0 vpunpckhdq $xc3,$xc2,$xc2 vpunpcklqdq $xt3,$xt2,$xc1 # "c0" vpunpckhqdq $xt3,$xt2,$xt2 # "c1" vpunpcklqdq $xc2,$xc0,$xc3 # "c2" vpunpckhqdq $xc2,$xc0,$xc0 # "c3" ___ ($xc0,$xc1,$xc2,$xc3,$xt2)=($xc1,$xt2,$xc3,$xc0,$xc2); $code.=<<___; vpaddd 0x200-0x200(%rax),$xd0,$xd0 vpaddd 0x220-0x200(%rax),$xd1,$xd1 vpaddd 0x240-0x200(%rax),$xd2,$xd2 vpaddd 0x260-0x200(%rax),$xd3,$xd3 vpunpckldq $xd1,$xd0,$xt2 vpunpckldq $xd3,$xd2,$xt3 vpunpckhdq $xd1,$xd0,$xd0 vpunpckhdq $xd3,$xd2,$xd2 vpunpcklqdq $xt3,$xt2,$xd1 # "d0" vpunpckhqdq $xt3,$xt2,$xt2 # "d1" vpunpcklqdq $xd2,$xd0,$xd3 # "d2" vpunpckhqdq $xd2,$xd0,$xd0 # "d3" ___ ($xd0,$xd1,$xd2,$xd3,$xt2)=($xd1,$xt2,$xd3,$xd0,$xd2); $code.=<<___; vperm2i128 \$0x20,$xd0,$xc0,$xt3 # "de-interlace" further vperm2i128 \$0x31,$xd0,$xc0,$xd0 vperm2i128 \$0x20,$xd1,$xc1,$xc0 vperm2i128 \$0x31,$xd1,$xc1,$xd1 vperm2i128 \$0x20,$xd2,$xc2,$xc1 vperm2i128 \$0x31,$xd2,$xc2,$xd2 vperm2i128 \$0x20,$xd3,$xc3,$xc2 vperm2i128 \$0x31,$xd3,$xc3,$xd3 ___ ($xc0,$xc1,$xc2,$xc3,$xt3)=($xt3,$xc0,$xc1,$xc2,$xc3); ($xb0,$xb1,$xb2,$xb3,$xc0,$xc1,$xc2,$xc3)= ($xc0,$xc1,$xc2,$xc3,$xb0,$xb1,$xb2,$xb3); ($xa0,$xa1)=($xt2,$xt3); $code.=<<___; vmovdqa 0x00(%rsp),$xa0 # $xaN was offloaded, remember? vmovdqa 0x20(%rsp),$xa1 cmp \$64*8,$len jb .Ltail8x vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 lea 0x80($inp),$inp # size optimization vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) lea 0x80($out),$out # size optimization vpxor 0x00($inp),$xa1,$xa1 vpxor 0x20($inp),$xb1,$xb1 vpxor 0x40($inp),$xc1,$xc1 vpxor 0x60($inp),$xd1,$xd1 lea 0x80($inp),$inp # size optimization vmovdqu $xa1,0x00($out) vmovdqu $xb1,0x20($out) vmovdqu $xc1,0x40($out) vmovdqu $xd1,0x60($out) lea 0x80($out),$out # size optimization vpxor 0x00($inp),$xa2,$xa2 vpxor 0x20($inp),$xb2,$xb2 vpxor 0x40($inp),$xc2,$xc2 vpxor 0x60($inp),$xd2,$xd2 lea 0x80($inp),$inp # size optimization vmovdqu $xa2,0x00($out) vmovdqu $xb2,0x20($out) vmovdqu $xc2,0x40($out) vmovdqu $xd2,0x60($out) lea 0x80($out),$out # size optimization vpxor 0x00($inp),$xa3,$xa3 vpxor 0x20($inp),$xb3,$xb3 vpxor 0x40($inp),$xc3,$xc3 vpxor 0x60($inp),$xd3,$xd3 lea 0x80($inp),$inp # size optimization vmovdqu $xa3,0x00($out) vmovdqu $xb3,0x20($out) vmovdqu $xc3,0x40($out) vmovdqu $xd3,0x60($out) lea 0x80($out),$out # size optimization sub \$64*8,$len jnz .Loop_outer8x jmp .Ldone8x .Ltail8x: cmp \$448,$len jae .L448_or_more8x cmp \$384,$len jae .L384_or_more8x cmp \$320,$len jae .L320_or_more8x cmp \$256,$len jae .L256_or_more8x cmp \$192,$len jae .L192_or_more8x cmp \$128,$len jae .L128_or_more8x cmp \$64,$len jae .L64_or_more8x xor %r10,%r10 vmovdqa $xa0,0x00(%rsp) vmovdqa $xb0,0x20(%rsp) jmp .Loop_tail8x .align 32 .L64_or_more8x: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) je .Ldone8x lea 0x40($inp),$inp # inp+=64*1 xor %r10,%r10 vmovdqa $xc0,0x00(%rsp) lea 0x40($out),$out # out+=64*1 sub \$64,$len # len-=64*1 vmovdqa $xd0,0x20(%rsp) jmp .Loop_tail8x .align 32 .L128_or_more8x: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) je .Ldone8x lea 0x80($inp),$inp # inp+=64*2 xor %r10,%r10 vmovdqa $xa1,0x00(%rsp) lea 0x80($out),$out # out+=64*2 sub \$128,$len # len-=64*2 vmovdqa $xb1,0x20(%rsp) jmp .Loop_tail8x .align 32 .L192_or_more8x: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 vpxor 0x80($inp),$xa1,$xa1 vpxor 0xa0($inp),$xb1,$xb1 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) vmovdqu $xa1,0x80($out) vmovdqu $xb1,0xa0($out) je .Ldone8x lea 0xc0($inp),$inp # inp+=64*3 xor %r10,%r10 vmovdqa $xc1,0x00(%rsp) lea 0xc0($out),$out # out+=64*3 sub \$192,$len # len-=64*3 vmovdqa $xd1,0x20(%rsp) jmp .Loop_tail8x .align 32 .L256_or_more8x: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 vpxor 0x80($inp),$xa1,$xa1 vpxor 0xa0($inp),$xb1,$xb1 vpxor 0xc0($inp),$xc1,$xc1 vpxor 0xe0($inp),$xd1,$xd1 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) vmovdqu $xa1,0x80($out) vmovdqu $xb1,0xa0($out) vmovdqu $xc1,0xc0($out) vmovdqu $xd1,0xe0($out) je .Ldone8x lea 0x100($inp),$inp # inp+=64*4 xor %r10,%r10 vmovdqa $xa2,0x00(%rsp) lea 0x100($out),$out # out+=64*4 sub \$256,$len # len-=64*4 vmovdqa $xb2,0x20(%rsp) jmp .Loop_tail8x .align 32 .L320_or_more8x: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 vpxor 0x80($inp),$xa1,$xa1 vpxor 0xa0($inp),$xb1,$xb1 vpxor 0xc0($inp),$xc1,$xc1 vpxor 0xe0($inp),$xd1,$xd1 vpxor 0x100($inp),$xa2,$xa2 vpxor 0x120($inp),$xb2,$xb2 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) vmovdqu $xa1,0x80($out) vmovdqu $xb1,0xa0($out) vmovdqu $xc1,0xc0($out) vmovdqu $xd1,0xe0($out) vmovdqu $xa2,0x100($out) vmovdqu $xb2,0x120($out) je .Ldone8x lea 0x140($inp),$inp # inp+=64*5 xor %r10,%r10 vmovdqa $xc2,0x00(%rsp) lea 0x140($out),$out # out+=64*5 sub \$320,$len # len-=64*5 vmovdqa $xd2,0x20(%rsp) jmp .Loop_tail8x .align 32 .L384_or_more8x: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 vpxor 0x80($inp),$xa1,$xa1 vpxor 0xa0($inp),$xb1,$xb1 vpxor 0xc0($inp),$xc1,$xc1 vpxor 0xe0($inp),$xd1,$xd1 vpxor 0x100($inp),$xa2,$xa2 vpxor 0x120($inp),$xb2,$xb2 vpxor 0x140($inp),$xc2,$xc2 vpxor 0x160($inp),$xd2,$xd2 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) vmovdqu $xa1,0x80($out) vmovdqu $xb1,0xa0($out) vmovdqu $xc1,0xc0($out) vmovdqu $xd1,0xe0($out) vmovdqu $xa2,0x100($out) vmovdqu $xb2,0x120($out) vmovdqu $xc2,0x140($out) vmovdqu $xd2,0x160($out) je .Ldone8x lea 0x180($inp),$inp # inp+=64*6 xor %r10,%r10 vmovdqa $xa3,0x00(%rsp) lea 0x180($out),$out # out+=64*6 sub \$384,$len # len-=64*6 vmovdqa $xb3,0x20(%rsp) jmp .Loop_tail8x .align 32 .L448_or_more8x: vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 vpxor 0x80($inp),$xa1,$xa1 vpxor 0xa0($inp),$xb1,$xb1 vpxor 0xc0($inp),$xc1,$xc1 vpxor 0xe0($inp),$xd1,$xd1 vpxor 0x100($inp),$xa2,$xa2 vpxor 0x120($inp),$xb2,$xb2 vpxor 0x140($inp),$xc2,$xc2 vpxor 0x160($inp),$xd2,$xd2 vpxor 0x180($inp),$xa3,$xa3 vpxor 0x1a0($inp),$xb3,$xb3 vmovdqu $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) vmovdqu $xa1,0x80($out) vmovdqu $xb1,0xa0($out) vmovdqu $xc1,0xc0($out) vmovdqu $xd1,0xe0($out) vmovdqu $xa2,0x100($out) vmovdqu $xb2,0x120($out) vmovdqu $xc2,0x140($out) vmovdqu $xd2,0x160($out) vmovdqu $xa3,0x180($out) vmovdqu $xb3,0x1a0($out) je .Ldone8x lea 0x1c0($inp),$inp # inp+=64*7 xor %r10,%r10 vmovdqa $xc3,0x00(%rsp) lea 0x1c0($out),$out # out+=64*7 sub \$448,$len # len-=64*7 vmovdqa $xd3,0x20(%rsp) .Loop_tail8x: movzb ($inp,%r10),%eax movzb (%rsp,%r10),%ecx lea 1(%r10),%r10 xor %ecx,%eax mov %al,-1($out,%r10) dec $len jnz .Loop_tail8x .Ldone8x: vzeroall ___ $code.=<<___ if ($win64); movaps -0xa8(%r9),%xmm6 movaps -0x98(%r9),%xmm7 movaps -0x88(%r9),%xmm8 movaps -0x78(%r9),%xmm9 movaps -0x68(%r9),%xmm10 movaps -0x58(%r9),%xmm11 movaps -0x48(%r9),%xmm12 movaps -0x38(%r9),%xmm13 movaps -0x28(%r9),%xmm14 movaps -0x18(%r9),%xmm15 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .L8x_epilogue: ret .cfi_endproc .size ChaCha20_8x,.-ChaCha20_8x ___ } ######################################################################## # AVX512 code paths if ($avx>2) { # This one handles shorter inputs... my ($a,$b,$c,$d, $a_,$b_,$c_,$d_,$fourz) = map("%zmm$_",(0..3,16..20)); my ($t0,$t1,$t2,$t3) = map("%xmm$_",(4..7)); sub vpxord() # size optimization { my $opcode = "vpxor"; # adhere to vpxor when possible foreach (@_) { if (/%([zy])mm([0-9]+)/ && ($1 eq "z" || $2>=16)) { $opcode = "vpxord"; last; } } $code .= "\t$opcode\t".join(',',reverse @_)."\n"; } sub AVX512ROUND { # critical path is 14 "SIMD ticks" per round &vpaddd ($a,$a,$b); &vpxord ($d,$d,$a); &vprold ($d,$d,16); &vpaddd ($c,$c,$d); &vpxord ($b,$b,$c); &vprold ($b,$b,12); &vpaddd ($a,$a,$b); &vpxord ($d,$d,$a); &vprold ($d,$d,8); &vpaddd ($c,$c,$d); &vpxord ($b,$b,$c); &vprold ($b,$b,7); } my $xframe = $win64 ? 32+8 : 8; $code.=<<___; .type ChaCha20_avx512,\@function,5 .align 32 ChaCha20_avx512: .cfi_startproc .LChaCha20_avx512: mov %rsp,%r9 # frame pointer .cfi_def_cfa_register %r9 cmp \$512,$len ja .LChaCha20_16x sub \$64+$xframe,%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-0x28(%r9) movaps %xmm7,-0x18(%r9) .Lavx512_body: ___ $code.=<<___; vbroadcasti32x4 .Lsigma(%rip),$a vbroadcasti32x4 ($key),$b vbroadcasti32x4 16($key),$c vbroadcasti32x4 ($counter),$d vmovdqa32 $a,$a_ vmovdqa32 $b,$b_ vmovdqa32 $c,$c_ vpaddd .Lzeroz(%rip),$d,$d vmovdqa32 .Lfourz(%rip),$fourz mov \$10,$counter # reuse $counter vmovdqa32 $d,$d_ jmp .Loop_avx512 .align 16 .Loop_outer_avx512: vmovdqa32 $a_,$a vmovdqa32 $b_,$b vmovdqa32 $c_,$c vpaddd $fourz,$d_,$d mov \$10,$counter vmovdqa32 $d,$d_ jmp .Loop_avx512 .align 32 .Loop_avx512: ___ &AVX512ROUND(); &vpshufd ($c,$c,0b01001110); &vpshufd ($b,$b,0b00111001); &vpshufd ($d,$d,0b10010011); &AVX512ROUND(); &vpshufd ($c,$c,0b01001110); &vpshufd ($b,$b,0b10010011); &vpshufd ($d,$d,0b00111001); &dec ($counter); &jnz (".Loop_avx512"); $code.=<<___; vpaddd $a_,$a,$a vpaddd $b_,$b,$b vpaddd $c_,$c,$c vpaddd $d_,$d,$d sub \$64,$len jb .Ltail64_avx512 vpxor 0x00($inp),%x#$a,$t0 # xor with input vpxor 0x10($inp),%x#$b,$t1 vpxor 0x20($inp),%x#$c,$t2 vpxor 0x30($inp),%x#$d,$t3 lea 0x40($inp),$inp # inp+=64 vmovdqu $t0,0x00($out) # write output vmovdqu $t1,0x10($out) vmovdqu $t2,0x20($out) vmovdqu $t3,0x30($out) lea 0x40($out),$out # out+=64 jz .Ldone_avx512 vextracti32x4 \$1,$a,$t0 vextracti32x4 \$1,$b,$t1 vextracti32x4 \$1,$c,$t2 vextracti32x4 \$1,$d,$t3 sub \$64,$len jb .Ltail_avx512 vpxor 0x00($inp),$t0,$t0 # xor with input vpxor 0x10($inp),$t1,$t1 vpxor 0x20($inp),$t2,$t2 vpxor 0x30($inp),$t3,$t3 lea 0x40($inp),$inp # inp+=64 vmovdqu $t0,0x00($out) # write output vmovdqu $t1,0x10($out) vmovdqu $t2,0x20($out) vmovdqu $t3,0x30($out) lea 0x40($out),$out # out+=64 jz .Ldone_avx512 vextracti32x4 \$2,$a,$t0 vextracti32x4 \$2,$b,$t1 vextracti32x4 \$2,$c,$t2 vextracti32x4 \$2,$d,$t3 sub \$64,$len jb .Ltail_avx512 vpxor 0x00($inp),$t0,$t0 # xor with input vpxor 0x10($inp),$t1,$t1 vpxor 0x20($inp),$t2,$t2 vpxor 0x30($inp),$t3,$t3 lea 0x40($inp),$inp # inp+=64 vmovdqu $t0,0x00($out) # write output vmovdqu $t1,0x10($out) vmovdqu $t2,0x20($out) vmovdqu $t3,0x30($out) lea 0x40($out),$out # out+=64 jz .Ldone_avx512 vextracti32x4 \$3,$a,$t0 vextracti32x4 \$3,$b,$t1 vextracti32x4 \$3,$c,$t2 vextracti32x4 \$3,$d,$t3 sub \$64,$len jb .Ltail_avx512 vpxor 0x00($inp),$t0,$t0 # xor with input vpxor 0x10($inp),$t1,$t1 vpxor 0x20($inp),$t2,$t2 vpxor 0x30($inp),$t3,$t3 lea 0x40($inp),$inp # inp+=64 vmovdqu $t0,0x00($out) # write output vmovdqu $t1,0x10($out) vmovdqu $t2,0x20($out) vmovdqu $t3,0x30($out) lea 0x40($out),$out # out+=64 jnz .Loop_outer_avx512 jmp .Ldone_avx512 .align 16 .Ltail64_avx512: vmovdqa %x#$a,0x00(%rsp) vmovdqa %x#$b,0x10(%rsp) vmovdqa %x#$c,0x20(%rsp) vmovdqa %x#$d,0x30(%rsp) add \$64,$len jmp .Loop_tail_avx512 .align 16 .Ltail_avx512: vmovdqa $t0,0x00(%rsp) vmovdqa $t1,0x10(%rsp) vmovdqa $t2,0x20(%rsp) vmovdqa $t3,0x30(%rsp) add \$64,$len .Loop_tail_avx512: movzb ($inp,$counter),%eax movzb (%rsp,$counter),%ecx lea 1($counter),$counter xor %ecx,%eax mov %al,-1($out,$counter) dec $len jnz .Loop_tail_avx512 vmovdqu32 $a_,0x00(%rsp) .Ldone_avx512: vzeroall ___ $code.=<<___ if ($win64); movaps -0x28(%r9),%xmm6 movaps -0x18(%r9),%xmm7 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .Lavx512_epilogue: ret .cfi_endproc .size ChaCha20_avx512,.-ChaCha20_avx512 ___ map(s/%z/%y/, $a,$b,$c,$d, $a_,$b_,$c_,$d_,$fourz); $code.=<<___; .type ChaCha20_avx512vl,\@function,5 .align 32 ChaCha20_avx512vl: .cfi_startproc .LChaCha20_avx512vl: mov %rsp,%r9 # frame pointer .cfi_def_cfa_register %r9 cmp \$128,$len ja .LChaCha20_8xvl sub \$64+$xframe,%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-0x28(%r9) movaps %xmm7,-0x18(%r9) .Lavx512vl_body: ___ $code.=<<___; vbroadcasti128 .Lsigma(%rip),$a vbroadcasti128 ($key),$b vbroadcasti128 16($key),$c vbroadcasti128 ($counter),$d vmovdqa32 $a,$a_ vmovdqa32 $b,$b_ vmovdqa32 $c,$c_ vpaddd .Lzeroz(%rip),$d,$d vmovdqa32 .Ltwoy(%rip),$fourz mov \$10,$counter # reuse $counter vmovdqa32 $d,$d_ jmp .Loop_avx512vl .align 16 .Loop_outer_avx512vl: vmovdqa32 $c_,$c vpaddd $fourz,$d_,$d mov \$10,$counter vmovdqa32 $d,$d_ jmp .Loop_avx512vl .align 32 .Loop_avx512vl: ___ &AVX512ROUND(); &vpshufd ($c,$c,0b01001110); &vpshufd ($b,$b,0b00111001); &vpshufd ($d,$d,0b10010011); &AVX512ROUND(); &vpshufd ($c,$c,0b01001110); &vpshufd ($b,$b,0b10010011); &vpshufd ($d,$d,0b00111001); &dec ($counter); &jnz (".Loop_avx512vl"); $code.=<<___; vpaddd $a_,$a,$a vpaddd $b_,$b,$b vpaddd $c_,$c,$c vpaddd $d_,$d,$d sub \$64,$len jb .Ltail64_avx512vl vpxor 0x00($inp),%x#$a,$t0 # xor with input vpxor 0x10($inp),%x#$b,$t1 vpxor 0x20($inp),%x#$c,$t2 vpxor 0x30($inp),%x#$d,$t3 lea 0x40($inp),$inp # inp+=64 vmovdqu $t0,0x00($out) # write output vmovdqu $t1,0x10($out) vmovdqu $t2,0x20($out) vmovdqu $t3,0x30($out) lea 0x40($out),$out # out+=64 jz .Ldone_avx512vl vextracti128 \$1,$a,$t0 vextracti128 \$1,$b,$t1 vextracti128 \$1,$c,$t2 vextracti128 \$1,$d,$t3 sub \$64,$len jb .Ltail_avx512vl vpxor 0x00($inp),$t0,$t0 # xor with input vpxor 0x10($inp),$t1,$t1 vpxor 0x20($inp),$t2,$t2 vpxor 0x30($inp),$t3,$t3 lea 0x40($inp),$inp # inp+=64 vmovdqu $t0,0x00($out) # write output vmovdqu $t1,0x10($out) vmovdqu $t2,0x20($out) vmovdqu $t3,0x30($out) lea 0x40($out),$out # out+=64 vmovdqa32 $a_,$a vmovdqa32 $b_,$b jnz .Loop_outer_avx512vl jmp .Ldone_avx512vl .align 16 .Ltail64_avx512vl: vmovdqa %x#$a,0x00(%rsp) vmovdqa %x#$b,0x10(%rsp) vmovdqa %x#$c,0x20(%rsp) vmovdqa %x#$d,0x30(%rsp) add \$64,$len jmp .Loop_tail_avx512vl .align 16 .Ltail_avx512vl: vmovdqa $t0,0x00(%rsp) vmovdqa $t1,0x10(%rsp) vmovdqa $t2,0x20(%rsp) vmovdqa $t3,0x30(%rsp) add \$64,$len .Loop_tail_avx512vl: movzb ($inp,$counter),%eax movzb (%rsp,$counter),%ecx lea 1($counter),$counter xor %ecx,%eax mov %al,-1($out,$counter) dec $len jnz .Loop_tail_avx512vl vmovdqu32 $a_,0x00(%rsp) vmovdqu32 $a_,0x20(%rsp) .Ldone_avx512vl: vzeroall ___ $code.=<<___ if ($win64); movaps -0x28(%r9),%xmm6 movaps -0x18(%r9),%xmm7 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .Lavx512vl_epilogue: ret .cfi_endproc .size ChaCha20_avx512vl,.-ChaCha20_avx512vl ___ } if ($avx>2) { # This one handles longer inputs... my ($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, $xc0,$xc1,$xc2,$xc3, $xd0,$xd1,$xd2,$xd3)=map("%zmm$_",(0..15)); my @xx=($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, $xc0,$xc1,$xc2,$xc3, $xd0,$xd1,$xd2,$xd3); my @key=map("%zmm$_",(16..31)); my ($xt0,$xt1,$xt2,$xt3)=@key[0..3]; sub AVX512_lane_ROUND { my ($a0,$b0,$c0,$d0)=@_; my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0)); my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1)); my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2)); my @x=map("\"$_\"",@xx); ( "&vpaddd (@x[$a0],@x[$a0],@x[$b0])", # Q1 "&vpaddd (@x[$a1],@x[$a1],@x[$b1])", # Q2 "&vpaddd (@x[$a2],@x[$a2],@x[$b2])", # Q3 "&vpaddd (@x[$a3],@x[$a3],@x[$b3])", # Q4 "&vpxord (@x[$d0],@x[$d0],@x[$a0])", "&vpxord (@x[$d1],@x[$d1],@x[$a1])", "&vpxord (@x[$d2],@x[$d2],@x[$a2])", "&vpxord (@x[$d3],@x[$d3],@x[$a3])", "&vprold (@x[$d0],@x[$d0],16)", "&vprold (@x[$d1],@x[$d1],16)", "&vprold (@x[$d2],@x[$d2],16)", "&vprold (@x[$d3],@x[$d3],16)", "&vpaddd (@x[$c0],@x[$c0],@x[$d0])", "&vpaddd (@x[$c1],@x[$c1],@x[$d1])", "&vpaddd (@x[$c2],@x[$c2],@x[$d2])", "&vpaddd (@x[$c3],@x[$c3],@x[$d3])", "&vpxord (@x[$b0],@x[$b0],@x[$c0])", "&vpxord (@x[$b1],@x[$b1],@x[$c1])", "&vpxord (@x[$b2],@x[$b2],@x[$c2])", "&vpxord (@x[$b3],@x[$b3],@x[$c3])", "&vprold (@x[$b0],@x[$b0],12)", "&vprold (@x[$b1],@x[$b1],12)", "&vprold (@x[$b2],@x[$b2],12)", "&vprold (@x[$b3],@x[$b3],12)", "&vpaddd (@x[$a0],@x[$a0],@x[$b0])", "&vpaddd (@x[$a1],@x[$a1],@x[$b1])", "&vpaddd (@x[$a2],@x[$a2],@x[$b2])", "&vpaddd (@x[$a3],@x[$a3],@x[$b3])", "&vpxord (@x[$d0],@x[$d0],@x[$a0])", "&vpxord (@x[$d1],@x[$d1],@x[$a1])", "&vpxord (@x[$d2],@x[$d2],@x[$a2])", "&vpxord (@x[$d3],@x[$d3],@x[$a3])", "&vprold (@x[$d0],@x[$d0],8)", "&vprold (@x[$d1],@x[$d1],8)", "&vprold (@x[$d2],@x[$d2],8)", "&vprold (@x[$d3],@x[$d3],8)", "&vpaddd (@x[$c0],@x[$c0],@x[$d0])", "&vpaddd (@x[$c1],@x[$c1],@x[$d1])", "&vpaddd (@x[$c2],@x[$c2],@x[$d2])", "&vpaddd (@x[$c3],@x[$c3],@x[$d3])", "&vpxord (@x[$b0],@x[$b0],@x[$c0])", "&vpxord (@x[$b1],@x[$b1],@x[$c1])", "&vpxord (@x[$b2],@x[$b2],@x[$c2])", "&vpxord (@x[$b3],@x[$b3],@x[$c3])", "&vprold (@x[$b0],@x[$b0],7)", "&vprold (@x[$b1],@x[$b1],7)", "&vprold (@x[$b2],@x[$b2],7)", "&vprold (@x[$b3],@x[$b3],7)" ); } my $xframe = $win64 ? 0xa8 : 8; $code.=<<___; .type ChaCha20_16x,\@function,5 .align 32 ChaCha20_16x: .cfi_startproc .LChaCha20_16x: mov %rsp,%r9 # frame register .cfi_def_cfa_register %r9 sub \$64+$xframe,%rsp and \$-64,%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-0xa8(%r9) movaps %xmm7,-0x98(%r9) movaps %xmm8,-0x88(%r9) movaps %xmm9,-0x78(%r9) movaps %xmm10,-0x68(%r9) movaps %xmm11,-0x58(%r9) movaps %xmm12,-0x48(%r9) movaps %xmm13,-0x38(%r9) movaps %xmm14,-0x28(%r9) movaps %xmm15,-0x18(%r9) .L16x_body: ___ $code.=<<___; vzeroupper lea .Lsigma(%rip),%r10 vbroadcasti32x4 (%r10),$xa3 # key[0] vbroadcasti32x4 ($key),$xb3 # key[1] vbroadcasti32x4 16($key),$xc3 # key[2] vbroadcasti32x4 ($counter),$xd3 # key[3] vpshufd \$0x00,$xa3,$xa0 # smash key by lanes... vpshufd \$0x55,$xa3,$xa1 vpshufd \$0xaa,$xa3,$xa2 vpshufd \$0xff,$xa3,$xa3 vmovdqa64 $xa0,@key[0] vmovdqa64 $xa1,@key[1] vmovdqa64 $xa2,@key[2] vmovdqa64 $xa3,@key[3] vpshufd \$0x00,$xb3,$xb0 vpshufd \$0x55,$xb3,$xb1 vpshufd \$0xaa,$xb3,$xb2 vpshufd \$0xff,$xb3,$xb3 vmovdqa64 $xb0,@key[4] vmovdqa64 $xb1,@key[5] vmovdqa64 $xb2,@key[6] vmovdqa64 $xb3,@key[7] vpshufd \$0x00,$xc3,$xc0 vpshufd \$0x55,$xc3,$xc1 vpshufd \$0xaa,$xc3,$xc2 vpshufd \$0xff,$xc3,$xc3 vmovdqa64 $xc0,@key[8] vmovdqa64 $xc1,@key[9] vmovdqa64 $xc2,@key[10] vmovdqa64 $xc3,@key[11] vpshufd \$0x00,$xd3,$xd0 vpshufd \$0x55,$xd3,$xd1 vpshufd \$0xaa,$xd3,$xd2 vpshufd \$0xff,$xd3,$xd3 vpaddd .Lincz(%rip),$xd0,$xd0 # don't save counters yet vmovdqa64 $xd0,@key[12] vmovdqa64 $xd1,@key[13] vmovdqa64 $xd2,@key[14] vmovdqa64 $xd3,@key[15] mov \$10,%eax jmp .Loop16x .align 32 .Loop_outer16x: vpbroadcastd 0(%r10),$xa0 # reload key vpbroadcastd 4(%r10),$xa1 vpbroadcastd 8(%r10),$xa2 vpbroadcastd 12(%r10),$xa3 vpaddd .Lsixteen(%rip),@key[12],@key[12] # next SIMD counters vmovdqa64 @key[4],$xb0 vmovdqa64 @key[5],$xb1 vmovdqa64 @key[6],$xb2 vmovdqa64 @key[7],$xb3 vmovdqa64 @key[8],$xc0 vmovdqa64 @key[9],$xc1 vmovdqa64 @key[10],$xc2 vmovdqa64 @key[11],$xc3 vmovdqa64 @key[12],$xd0 vmovdqa64 @key[13],$xd1 vmovdqa64 @key[14],$xd2 vmovdqa64 @key[15],$xd3 vmovdqa64 $xa0,@key[0] vmovdqa64 $xa1,@key[1] vmovdqa64 $xa2,@key[2] vmovdqa64 $xa3,@key[3] mov \$10,%eax jmp .Loop16x .align 32 .Loop16x: ___ foreach (&AVX512_lane_ROUND(0, 4, 8,12)) { eval; } foreach (&AVX512_lane_ROUND(0, 5,10,15)) { eval; } $code.=<<___; dec %eax jnz .Loop16x vpaddd @key[0],$xa0,$xa0 # accumulate key vpaddd @key[1],$xa1,$xa1 vpaddd @key[2],$xa2,$xa2 vpaddd @key[3],$xa3,$xa3 vpunpckldq $xa1,$xa0,$xt2 # "de-interlace" data vpunpckldq $xa3,$xa2,$xt3 vpunpckhdq $xa1,$xa0,$xa0 vpunpckhdq $xa3,$xa2,$xa2 vpunpcklqdq $xt3,$xt2,$xa1 # "a0" vpunpckhqdq $xt3,$xt2,$xt2 # "a1" vpunpcklqdq $xa2,$xa0,$xa3 # "a2" vpunpckhqdq $xa2,$xa0,$xa0 # "a3" ___ ($xa0,$xa1,$xa2,$xa3,$xt2)=($xa1,$xt2,$xa3,$xa0,$xa2); $code.=<<___; vpaddd @key[4],$xb0,$xb0 vpaddd @key[5],$xb1,$xb1 vpaddd @key[6],$xb2,$xb2 vpaddd @key[7],$xb3,$xb3 vpunpckldq $xb1,$xb0,$xt2 vpunpckldq $xb3,$xb2,$xt3 vpunpckhdq $xb1,$xb0,$xb0 vpunpckhdq $xb3,$xb2,$xb2 vpunpcklqdq $xt3,$xt2,$xb1 # "b0" vpunpckhqdq $xt3,$xt2,$xt2 # "b1" vpunpcklqdq $xb2,$xb0,$xb3 # "b2" vpunpckhqdq $xb2,$xb0,$xb0 # "b3" ___ ($xb0,$xb1,$xb2,$xb3,$xt2)=($xb1,$xt2,$xb3,$xb0,$xb2); $code.=<<___; vshufi32x4 \$0x44,$xb0,$xa0,$xt3 # "de-interlace" further vshufi32x4 \$0xee,$xb0,$xa0,$xb0 vshufi32x4 \$0x44,$xb1,$xa1,$xa0 vshufi32x4 \$0xee,$xb1,$xa1,$xb1 vshufi32x4 \$0x44,$xb2,$xa2,$xa1 vshufi32x4 \$0xee,$xb2,$xa2,$xb2 vshufi32x4 \$0x44,$xb3,$xa3,$xa2 vshufi32x4 \$0xee,$xb3,$xa3,$xb3 ___ ($xa0,$xa1,$xa2,$xa3,$xt3)=($xt3,$xa0,$xa1,$xa2,$xa3); $code.=<<___; vpaddd @key[8],$xc0,$xc0 vpaddd @key[9],$xc1,$xc1 vpaddd @key[10],$xc2,$xc2 vpaddd @key[11],$xc3,$xc3 vpunpckldq $xc1,$xc0,$xt2 vpunpckldq $xc3,$xc2,$xt3 vpunpckhdq $xc1,$xc0,$xc0 vpunpckhdq $xc3,$xc2,$xc2 vpunpcklqdq $xt3,$xt2,$xc1 # "c0" vpunpckhqdq $xt3,$xt2,$xt2 # "c1" vpunpcklqdq $xc2,$xc0,$xc3 # "c2" vpunpckhqdq $xc2,$xc0,$xc0 # "c3" ___ ($xc0,$xc1,$xc2,$xc3,$xt2)=($xc1,$xt2,$xc3,$xc0,$xc2); $code.=<<___; vpaddd @key[12],$xd0,$xd0 vpaddd @key[13],$xd1,$xd1 vpaddd @key[14],$xd2,$xd2 vpaddd @key[15],$xd3,$xd3 vpunpckldq $xd1,$xd0,$xt2 vpunpckldq $xd3,$xd2,$xt3 vpunpckhdq $xd1,$xd0,$xd0 vpunpckhdq $xd3,$xd2,$xd2 vpunpcklqdq $xt3,$xt2,$xd1 # "d0" vpunpckhqdq $xt3,$xt2,$xt2 # "d1" vpunpcklqdq $xd2,$xd0,$xd3 # "d2" vpunpckhqdq $xd2,$xd0,$xd0 # "d3" ___ ($xd0,$xd1,$xd2,$xd3,$xt2)=($xd1,$xt2,$xd3,$xd0,$xd2); $code.=<<___; vshufi32x4 \$0x44,$xd0,$xc0,$xt3 # "de-interlace" further vshufi32x4 \$0xee,$xd0,$xc0,$xd0 vshufi32x4 \$0x44,$xd1,$xc1,$xc0 vshufi32x4 \$0xee,$xd1,$xc1,$xd1 vshufi32x4 \$0x44,$xd2,$xc2,$xc1 vshufi32x4 \$0xee,$xd2,$xc2,$xd2 vshufi32x4 \$0x44,$xd3,$xc3,$xc2 vshufi32x4 \$0xee,$xd3,$xc3,$xd3 ___ ($xc0,$xc1,$xc2,$xc3,$xt3)=($xt3,$xc0,$xc1,$xc2,$xc3); $code.=<<___; vshufi32x4 \$0x88,$xc0,$xa0,$xt0 # "de-interlace" further vshufi32x4 \$0xdd,$xc0,$xa0,$xa0 vshufi32x4 \$0x88,$xd0,$xb0,$xc0 vshufi32x4 \$0xdd,$xd0,$xb0,$xd0 vshufi32x4 \$0x88,$xc1,$xa1,$xt1 vshufi32x4 \$0xdd,$xc1,$xa1,$xa1 vshufi32x4 \$0x88,$xd1,$xb1,$xc1 vshufi32x4 \$0xdd,$xd1,$xb1,$xd1 vshufi32x4 \$0x88,$xc2,$xa2,$xt2 vshufi32x4 \$0xdd,$xc2,$xa2,$xa2 vshufi32x4 \$0x88,$xd2,$xb2,$xc2 vshufi32x4 \$0xdd,$xd2,$xb2,$xd2 vshufi32x4 \$0x88,$xc3,$xa3,$xt3 vshufi32x4 \$0xdd,$xc3,$xa3,$xa3 vshufi32x4 \$0x88,$xd3,$xb3,$xc3 vshufi32x4 \$0xdd,$xd3,$xb3,$xd3 ___ ($xa0,$xa1,$xa2,$xa3,$xb0,$xb1,$xb2,$xb3)= ($xt0,$xt1,$xt2,$xt3,$xa0,$xa1,$xa2,$xa3); ($xa0,$xb0,$xc0,$xd0, $xa1,$xb1,$xc1,$xd1, $xa2,$xb2,$xc2,$xd2, $xa3,$xb3,$xc3,$xd3) = ($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, $xc0,$xc1,$xc2,$xc3, $xd0,$xd1,$xd2,$xd3); $code.=<<___; cmp \$64*16,$len jb .Ltail16x vpxord 0x00($inp),$xa0,$xa0 # xor with input vpxord 0x40($inp),$xb0,$xb0 vpxord 0x80($inp),$xc0,$xc0 vpxord 0xc0($inp),$xd0,$xd0 vmovdqu32 $xa0,0x00($out) vmovdqu32 $xb0,0x40($out) vmovdqu32 $xc0,0x80($out) vmovdqu32 $xd0,0xc0($out) vpxord 0x100($inp),$xa1,$xa1 vpxord 0x140($inp),$xb1,$xb1 vpxord 0x180($inp),$xc1,$xc1 vpxord 0x1c0($inp),$xd1,$xd1 vmovdqu32 $xa1,0x100($out) vmovdqu32 $xb1,0x140($out) vmovdqu32 $xc1,0x180($out) vmovdqu32 $xd1,0x1c0($out) vpxord 0x200($inp),$xa2,$xa2 vpxord 0x240($inp),$xb2,$xb2 vpxord 0x280($inp),$xc2,$xc2 vpxord 0x2c0($inp),$xd2,$xd2 vmovdqu32 $xa2,0x200($out) vmovdqu32 $xb2,0x240($out) vmovdqu32 $xc2,0x280($out) vmovdqu32 $xd2,0x2c0($out) vpxord 0x300($inp),$xa3,$xa3 vpxord 0x340($inp),$xb3,$xb3 vpxord 0x380($inp),$xc3,$xc3 vpxord 0x3c0($inp),$xd3,$xd3 lea 0x400($inp),$inp vmovdqu32 $xa3,0x300($out) vmovdqu32 $xb3,0x340($out) vmovdqu32 $xc3,0x380($out) vmovdqu32 $xd3,0x3c0($out) lea 0x400($out),$out sub \$64*16,$len jnz .Loop_outer16x jmp .Ldone16x .align 32 .Ltail16x: xor %r10,%r10 sub $inp,$out cmp \$64*1,$len jb .Less_than_64_16x vpxord ($inp),$xa0,$xa0 # xor with input vmovdqu32 $xa0,($out,$inp) je .Ldone16x vmovdqa32 $xb0,$xa0 lea 64($inp),$inp cmp \$64*2,$len jb .Less_than_64_16x vpxord ($inp),$xb0,$xb0 vmovdqu32 $xb0,($out,$inp) je .Ldone16x vmovdqa32 $xc0,$xa0 lea 64($inp),$inp cmp \$64*3,$len jb .Less_than_64_16x vpxord ($inp),$xc0,$xc0 vmovdqu32 $xc0,($out,$inp) je .Ldone16x vmovdqa32 $xd0,$xa0 lea 64($inp),$inp cmp \$64*4,$len jb .Less_than_64_16x vpxord ($inp),$xd0,$xd0 vmovdqu32 $xd0,($out,$inp) je .Ldone16x vmovdqa32 $xa1,$xa0 lea 64($inp),$inp cmp \$64*5,$len jb .Less_than_64_16x vpxord ($inp),$xa1,$xa1 vmovdqu32 $xa1,($out,$inp) je .Ldone16x vmovdqa32 $xb1,$xa0 lea 64($inp),$inp cmp \$64*6,$len jb .Less_than_64_16x vpxord ($inp),$xb1,$xb1 vmovdqu32 $xb1,($out,$inp) je .Ldone16x vmovdqa32 $xc1,$xa0 lea 64($inp),$inp cmp \$64*7,$len jb .Less_than_64_16x vpxord ($inp),$xc1,$xc1 vmovdqu32 $xc1,($out,$inp) je .Ldone16x vmovdqa32 $xd1,$xa0 lea 64($inp),$inp cmp \$64*8,$len jb .Less_than_64_16x vpxord ($inp),$xd1,$xd1 vmovdqu32 $xd1,($out,$inp) je .Ldone16x vmovdqa32 $xa2,$xa0 lea 64($inp),$inp cmp \$64*9,$len jb .Less_than_64_16x vpxord ($inp),$xa2,$xa2 vmovdqu32 $xa2,($out,$inp) je .Ldone16x vmovdqa32 $xb2,$xa0 lea 64($inp),$inp cmp \$64*10,$len jb .Less_than_64_16x vpxord ($inp),$xb2,$xb2 vmovdqu32 $xb2,($out,$inp) je .Ldone16x vmovdqa32 $xc2,$xa0 lea 64($inp),$inp cmp \$64*11,$len jb .Less_than_64_16x vpxord ($inp),$xc2,$xc2 vmovdqu32 $xc2,($out,$inp) je .Ldone16x vmovdqa32 $xd2,$xa0 lea 64($inp),$inp cmp \$64*12,$len jb .Less_than_64_16x vpxord ($inp),$xd2,$xd2 vmovdqu32 $xd2,($out,$inp) je .Ldone16x vmovdqa32 $xa3,$xa0 lea 64($inp),$inp cmp \$64*13,$len jb .Less_than_64_16x vpxord ($inp),$xa3,$xa3 vmovdqu32 $xa3,($out,$inp) je .Ldone16x vmovdqa32 $xb3,$xa0 lea 64($inp),$inp cmp \$64*14,$len jb .Less_than_64_16x vpxord ($inp),$xb3,$xb3 vmovdqu32 $xb3,($out,$inp) je .Ldone16x vmovdqa32 $xc3,$xa0 lea 64($inp),$inp cmp \$64*15,$len jb .Less_than_64_16x vpxord ($inp),$xc3,$xc3 vmovdqu32 $xc3,($out,$inp) je .Ldone16x vmovdqa32 $xd3,$xa0 lea 64($inp),$inp .Less_than_64_16x: vmovdqa32 $xa0,0x00(%rsp) lea ($out,$inp),$out and \$63,$len .Loop_tail16x: movzb ($inp,%r10),%eax movzb (%rsp,%r10),%ecx lea 1(%r10),%r10 xor %ecx,%eax mov %al,-1($out,%r10) dec $len jnz .Loop_tail16x vpxord $xa0,$xa0,$xa0 vmovdqa32 $xa0,0(%rsp) .Ldone16x: vzeroall ___ $code.=<<___ if ($win64); movaps -0xa8(%r9),%xmm6 movaps -0x98(%r9),%xmm7 movaps -0x88(%r9),%xmm8 movaps -0x78(%r9),%xmm9 movaps -0x68(%r9),%xmm10 movaps -0x58(%r9),%xmm11 movaps -0x48(%r9),%xmm12 movaps -0x38(%r9),%xmm13 movaps -0x28(%r9),%xmm14 movaps -0x18(%r9),%xmm15 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .L16x_epilogue: ret .cfi_endproc .size ChaCha20_16x,.-ChaCha20_16x ___ # switch to %ymm domain ($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, $xc0,$xc1,$xc2,$xc3, $xd0,$xd1,$xd2,$xd3)=map("%ymm$_",(0..15)); @xx=($xa0,$xa1,$xa2,$xa3, $xb0,$xb1,$xb2,$xb3, $xc0,$xc1,$xc2,$xc3, $xd0,$xd1,$xd2,$xd3); @key=map("%ymm$_",(16..31)); ($xt0,$xt1,$xt2,$xt3)=@key[0..3]; $code.=<<___; .type ChaCha20_8xvl,\@function,5 .align 32 ChaCha20_8xvl: .cfi_startproc .LChaCha20_8xvl: mov %rsp,%r9 # frame register .cfi_def_cfa_register %r9 sub \$64+$xframe,%rsp and \$-64,%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-0xa8(%r9) movaps %xmm7,-0x98(%r9) movaps %xmm8,-0x88(%r9) movaps %xmm9,-0x78(%r9) movaps %xmm10,-0x68(%r9) movaps %xmm11,-0x58(%r9) movaps %xmm12,-0x48(%r9) movaps %xmm13,-0x38(%r9) movaps %xmm14,-0x28(%r9) movaps %xmm15,-0x18(%r9) .L8xvl_body: ___ $code.=<<___; vzeroupper lea .Lsigma(%rip),%r10 vbroadcasti128 (%r10),$xa3 # key[0] vbroadcasti128 ($key),$xb3 # key[1] vbroadcasti128 16($key),$xc3 # key[2] vbroadcasti128 ($counter),$xd3 # key[3] vpshufd \$0x00,$xa3,$xa0 # smash key by lanes... vpshufd \$0x55,$xa3,$xa1 vpshufd \$0xaa,$xa3,$xa2 vpshufd \$0xff,$xa3,$xa3 vmovdqa64 $xa0,@key[0] vmovdqa64 $xa1,@key[1] vmovdqa64 $xa2,@key[2] vmovdqa64 $xa3,@key[3] vpshufd \$0x00,$xb3,$xb0 vpshufd \$0x55,$xb3,$xb1 vpshufd \$0xaa,$xb3,$xb2 vpshufd \$0xff,$xb3,$xb3 vmovdqa64 $xb0,@key[4] vmovdqa64 $xb1,@key[5] vmovdqa64 $xb2,@key[6] vmovdqa64 $xb3,@key[7] vpshufd \$0x00,$xc3,$xc0 vpshufd \$0x55,$xc3,$xc1 vpshufd \$0xaa,$xc3,$xc2 vpshufd \$0xff,$xc3,$xc3 vmovdqa64 $xc0,@key[8] vmovdqa64 $xc1,@key[9] vmovdqa64 $xc2,@key[10] vmovdqa64 $xc3,@key[11] vpshufd \$0x00,$xd3,$xd0 vpshufd \$0x55,$xd3,$xd1 vpshufd \$0xaa,$xd3,$xd2 vpshufd \$0xff,$xd3,$xd3 vpaddd .Lincy(%rip),$xd0,$xd0 # don't save counters yet vmovdqa64 $xd0,@key[12] vmovdqa64 $xd1,@key[13] vmovdqa64 $xd2,@key[14] vmovdqa64 $xd3,@key[15] mov \$10,%eax jmp .Loop8xvl .align 32 .Loop_outer8xvl: #vpbroadcastd 0(%r10),$xa0 # reload key #vpbroadcastd 4(%r10),$xa1 vpbroadcastd 8(%r10),$xa2 vpbroadcastd 12(%r10),$xa3 vpaddd .Leight(%rip),@key[12],@key[12] # next SIMD counters vmovdqa64 @key[4],$xb0 vmovdqa64 @key[5],$xb1 vmovdqa64 @key[6],$xb2 vmovdqa64 @key[7],$xb3 vmovdqa64 @key[8],$xc0 vmovdqa64 @key[9],$xc1 vmovdqa64 @key[10],$xc2 vmovdqa64 @key[11],$xc3 vmovdqa64 @key[12],$xd0 vmovdqa64 @key[13],$xd1 vmovdqa64 @key[14],$xd2 vmovdqa64 @key[15],$xd3 vmovdqa64 $xa0,@key[0] vmovdqa64 $xa1,@key[1] vmovdqa64 $xa2,@key[2] vmovdqa64 $xa3,@key[3] mov \$10,%eax jmp .Loop8xvl .align 32 .Loop8xvl: ___ foreach (&AVX512_lane_ROUND(0, 4, 8,12)) { eval; } foreach (&AVX512_lane_ROUND(0, 5,10,15)) { eval; } $code.=<<___; dec %eax jnz .Loop8xvl vpaddd @key[0],$xa0,$xa0 # accumulate key vpaddd @key[1],$xa1,$xa1 vpaddd @key[2],$xa2,$xa2 vpaddd @key[3],$xa3,$xa3 vpunpckldq $xa1,$xa0,$xt2 # "de-interlace" data vpunpckldq $xa3,$xa2,$xt3 vpunpckhdq $xa1,$xa0,$xa0 vpunpckhdq $xa3,$xa2,$xa2 vpunpcklqdq $xt3,$xt2,$xa1 # "a0" vpunpckhqdq $xt3,$xt2,$xt2 # "a1" vpunpcklqdq $xa2,$xa0,$xa3 # "a2" vpunpckhqdq $xa2,$xa0,$xa0 # "a3" ___ ($xa0,$xa1,$xa2,$xa3,$xt2)=($xa1,$xt2,$xa3,$xa0,$xa2); $code.=<<___; vpaddd @key[4],$xb0,$xb0 vpaddd @key[5],$xb1,$xb1 vpaddd @key[6],$xb2,$xb2 vpaddd @key[7],$xb3,$xb3 vpunpckldq $xb1,$xb0,$xt2 vpunpckldq $xb3,$xb2,$xt3 vpunpckhdq $xb1,$xb0,$xb0 vpunpckhdq $xb3,$xb2,$xb2 vpunpcklqdq $xt3,$xt2,$xb1 # "b0" vpunpckhqdq $xt3,$xt2,$xt2 # "b1" vpunpcklqdq $xb2,$xb0,$xb3 # "b2" vpunpckhqdq $xb2,$xb0,$xb0 # "b3" ___ ($xb0,$xb1,$xb2,$xb3,$xt2)=($xb1,$xt2,$xb3,$xb0,$xb2); $code.=<<___; vshufi32x4 \$0,$xb0,$xa0,$xt3 # "de-interlace" further vshufi32x4 \$3,$xb0,$xa0,$xb0 vshufi32x4 \$0,$xb1,$xa1,$xa0 vshufi32x4 \$3,$xb1,$xa1,$xb1 vshufi32x4 \$0,$xb2,$xa2,$xa1 vshufi32x4 \$3,$xb2,$xa2,$xb2 vshufi32x4 \$0,$xb3,$xa3,$xa2 vshufi32x4 \$3,$xb3,$xa3,$xb3 ___ ($xa0,$xa1,$xa2,$xa3,$xt3)=($xt3,$xa0,$xa1,$xa2,$xa3); $code.=<<___; vpaddd @key[8],$xc0,$xc0 vpaddd @key[9],$xc1,$xc1 vpaddd @key[10],$xc2,$xc2 vpaddd @key[11],$xc3,$xc3 vpunpckldq $xc1,$xc0,$xt2 vpunpckldq $xc3,$xc2,$xt3 vpunpckhdq $xc1,$xc0,$xc0 vpunpckhdq $xc3,$xc2,$xc2 vpunpcklqdq $xt3,$xt2,$xc1 # "c0" vpunpckhqdq $xt3,$xt2,$xt2 # "c1" vpunpcklqdq $xc2,$xc0,$xc3 # "c2" vpunpckhqdq $xc2,$xc0,$xc0 # "c3" ___ ($xc0,$xc1,$xc2,$xc3,$xt2)=($xc1,$xt2,$xc3,$xc0,$xc2); $code.=<<___; vpaddd @key[12],$xd0,$xd0 vpaddd @key[13],$xd1,$xd1 vpaddd @key[14],$xd2,$xd2 vpaddd @key[15],$xd3,$xd3 vpunpckldq $xd1,$xd0,$xt2 vpunpckldq $xd3,$xd2,$xt3 vpunpckhdq $xd1,$xd0,$xd0 vpunpckhdq $xd3,$xd2,$xd2 vpunpcklqdq $xt3,$xt2,$xd1 # "d0" vpunpckhqdq $xt3,$xt2,$xt2 # "d1" vpunpcklqdq $xd2,$xd0,$xd3 # "d2" vpunpckhqdq $xd2,$xd0,$xd0 # "d3" ___ ($xd0,$xd1,$xd2,$xd3,$xt2)=($xd1,$xt2,$xd3,$xd0,$xd2); $code.=<<___; vperm2i128 \$0x20,$xd0,$xc0,$xt3 # "de-interlace" further vperm2i128 \$0x31,$xd0,$xc0,$xd0 vperm2i128 \$0x20,$xd1,$xc1,$xc0 vperm2i128 \$0x31,$xd1,$xc1,$xd1 vperm2i128 \$0x20,$xd2,$xc2,$xc1 vperm2i128 \$0x31,$xd2,$xc2,$xd2 vperm2i128 \$0x20,$xd3,$xc3,$xc2 vperm2i128 \$0x31,$xd3,$xc3,$xd3 ___ ($xc0,$xc1,$xc2,$xc3,$xt3)=($xt3,$xc0,$xc1,$xc2,$xc3); ($xb0,$xb1,$xb2,$xb3,$xc0,$xc1,$xc2,$xc3)= ($xc0,$xc1,$xc2,$xc3,$xb0,$xb1,$xb2,$xb3); $code.=<<___; cmp \$64*8,$len jb .Ltail8xvl mov \$0x80,%eax # size optimization vpxord 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vpxor 0x40($inp),$xc0,$xc0 vpxor 0x60($inp),$xd0,$xd0 lea ($inp,%rax),$inp # size optimization vmovdqu32 $xa0,0x00($out) vmovdqu $xb0,0x20($out) vmovdqu $xc0,0x40($out) vmovdqu $xd0,0x60($out) lea ($out,%rax),$out # size optimization vpxor 0x00($inp),$xa1,$xa1 vpxor 0x20($inp),$xb1,$xb1 vpxor 0x40($inp),$xc1,$xc1 vpxor 0x60($inp),$xd1,$xd1 lea ($inp,%rax),$inp # size optimization vmovdqu $xa1,0x00($out) vmovdqu $xb1,0x20($out) vmovdqu $xc1,0x40($out) vmovdqu $xd1,0x60($out) lea ($out,%rax),$out # size optimization vpxord 0x00($inp),$xa2,$xa2 vpxor 0x20($inp),$xb2,$xb2 vpxor 0x40($inp),$xc2,$xc2 vpxor 0x60($inp),$xd2,$xd2 lea ($inp,%rax),$inp # size optimization vmovdqu32 $xa2,0x00($out) vmovdqu $xb2,0x20($out) vmovdqu $xc2,0x40($out) vmovdqu $xd2,0x60($out) lea ($out,%rax),$out # size optimization vpxor 0x00($inp),$xa3,$xa3 vpxor 0x20($inp),$xb3,$xb3 vpxor 0x40($inp),$xc3,$xc3 vpxor 0x60($inp),$xd3,$xd3 lea ($inp,%rax),$inp # size optimization vmovdqu $xa3,0x00($out) vmovdqu $xb3,0x20($out) vmovdqu $xc3,0x40($out) vmovdqu $xd3,0x60($out) lea ($out,%rax),$out # size optimization vpbroadcastd 0(%r10),%ymm0 # reload key vpbroadcastd 4(%r10),%ymm1 sub \$64*8,$len jnz .Loop_outer8xvl jmp .Ldone8xvl .align 32 .Ltail8xvl: vmovdqa64 $xa0,%ymm8 # size optimization ___ $xa0 = "%ymm8"; $code.=<<___; xor %r10,%r10 sub $inp,$out cmp \$64*1,$len jb .Less_than_64_8xvl vpxor 0x00($inp),$xa0,$xa0 # xor with input vpxor 0x20($inp),$xb0,$xb0 vmovdqu $xa0,0x00($out,$inp) vmovdqu $xb0,0x20($out,$inp) je .Ldone8xvl vmovdqa $xc0,$xa0 vmovdqa $xd0,$xb0 lea 64($inp),$inp cmp \$64*2,$len jb .Less_than_64_8xvl vpxor 0x00($inp),$xc0,$xc0 vpxor 0x20($inp),$xd0,$xd0 vmovdqu $xc0,0x00($out,$inp) vmovdqu $xd0,0x20($out,$inp) je .Ldone8xvl vmovdqa $xa1,$xa0 vmovdqa $xb1,$xb0 lea 64($inp),$inp cmp \$64*3,$len jb .Less_than_64_8xvl vpxor 0x00($inp),$xa1,$xa1 vpxor 0x20($inp),$xb1,$xb1 vmovdqu $xa1,0x00($out,$inp) vmovdqu $xb1,0x20($out,$inp) je .Ldone8xvl vmovdqa $xc1,$xa0 vmovdqa $xd1,$xb0 lea 64($inp),$inp cmp \$64*4,$len jb .Less_than_64_8xvl vpxor 0x00($inp),$xc1,$xc1 vpxor 0x20($inp),$xd1,$xd1 vmovdqu $xc1,0x00($out,$inp) vmovdqu $xd1,0x20($out,$inp) je .Ldone8xvl vmovdqa32 $xa2,$xa0 vmovdqa $xb2,$xb0 lea 64($inp),$inp cmp \$64*5,$len jb .Less_than_64_8xvl vpxord 0x00($inp),$xa2,$xa2 vpxor 0x20($inp),$xb2,$xb2 vmovdqu32 $xa2,0x00($out,$inp) vmovdqu $xb2,0x20($out,$inp) je .Ldone8xvl vmovdqa $xc2,$xa0 vmovdqa $xd2,$xb0 lea 64($inp),$inp cmp \$64*6,$len jb .Less_than_64_8xvl vpxor 0x00($inp),$xc2,$xc2 vpxor 0x20($inp),$xd2,$xd2 vmovdqu $xc2,0x00($out,$inp) vmovdqu $xd2,0x20($out,$inp) je .Ldone8xvl vmovdqa $xa3,$xa0 vmovdqa $xb3,$xb0 lea 64($inp),$inp cmp \$64*7,$len jb .Less_than_64_8xvl vpxor 0x00($inp),$xa3,$xa3 vpxor 0x20($inp),$xb3,$xb3 vmovdqu $xa3,0x00($out,$inp) vmovdqu $xb3,0x20($out,$inp) je .Ldone8xvl vmovdqa $xc3,$xa0 vmovdqa $xd3,$xb0 lea 64($inp),$inp .Less_than_64_8xvl: vmovdqa $xa0,0x00(%rsp) vmovdqa $xb0,0x20(%rsp) lea ($out,$inp),$out and \$63,$len .Loop_tail8xvl: movzb ($inp,%r10),%eax movzb (%rsp,%r10),%ecx lea 1(%r10),%r10 xor %ecx,%eax mov %al,-1($out,%r10) dec $len jnz .Loop_tail8xvl vpxor $xa0,$xa0,$xa0 vmovdqa $xa0,0x00(%rsp) vmovdqa $xa0,0x20(%rsp) .Ldone8xvl: vzeroall ___ $code.=<<___ if ($win64); movaps -0xa8(%r9),%xmm6 movaps -0x98(%r9),%xmm7 movaps -0x88(%r9),%xmm8 movaps -0x78(%r9),%xmm9 movaps -0x68(%r9),%xmm10 movaps -0x58(%r9),%xmm11 movaps -0x48(%r9),%xmm12 movaps -0x38(%r9),%xmm13 movaps -0x28(%r9),%xmm14 movaps -0x18(%r9),%xmm15 ___ $code.=<<___; lea (%r9),%rsp .cfi_def_cfa_register %rsp .L8xvl_epilogue: ret .cfi_endproc .size ChaCha20_8xvl,.-ChaCha20_8xvl ___ } # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData lea .Lctr32_body(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lprologue jb .Lcommon_seh_tail mov 152($context),%rax # pull context->Rsp lea .Lno_data(%rip),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lcommon_seh_tail lea 64+24+48(%rax),%rax mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R14 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .type simd_handler,\@abi-omnipotent .align 16 simd_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipR9 mov 4(%r11),%r10d # HandlerData[1] mov 8(%r11),%ecx # HandlerData[2] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail neg %rcx lea -8(%rax,%rcx),%rsi lea 512($context),%rdi # &context.Xmm6 neg %ecx shr \$3,%ecx .long 0xa548f3fc # cld; rep movsq jmp .Lcommon_seh_tail .size simd_handler,.-simd_handler .section .pdata .align 4 .rva .LSEH_begin_ChaCha20_ctr32 .rva .LSEH_end_ChaCha20_ctr32 .rva .LSEH_info_ChaCha20_ctr32 .rva .LSEH_begin_ChaCha20_ssse3 .rva .LSEH_end_ChaCha20_ssse3 .rva .LSEH_info_ChaCha20_ssse3 .rva .LSEH_begin_ChaCha20_128 .rva .LSEH_end_ChaCha20_128 .rva .LSEH_info_ChaCha20_128 .rva .LSEH_begin_ChaCha20_4x .rva .LSEH_end_ChaCha20_4x .rva .LSEH_info_ChaCha20_4x ___ $code.=<<___ if ($avx); .rva .LSEH_begin_ChaCha20_4xop .rva .LSEH_end_ChaCha20_4xop .rva .LSEH_info_ChaCha20_4xop ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_ChaCha20_8x .rva .LSEH_end_ChaCha20_8x .rva .LSEH_info_ChaCha20_8x ___ $code.=<<___ if ($avx>2); .rva .LSEH_begin_ChaCha20_avx512 .rva .LSEH_end_ChaCha20_avx512 .rva .LSEH_info_ChaCha20_avx512 .rva .LSEH_begin_ChaCha20_avx512vl .rva .LSEH_end_ChaCha20_avx512vl .rva .LSEH_info_ChaCha20_avx512vl .rva .LSEH_begin_ChaCha20_16x .rva .LSEH_end_ChaCha20_16x .rva .LSEH_info_ChaCha20_16x .rva .LSEH_begin_ChaCha20_8xvl .rva .LSEH_end_ChaCha20_8xvl .rva .LSEH_info_ChaCha20_8xvl ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_ChaCha20_ctr32: .byte 9,0,0,0 .rva se_handler .LSEH_info_ChaCha20_ssse3: .byte 9,0,0,0 .rva simd_handler .rva .Lssse3_body,.Lssse3_epilogue .long 0x20,0 .LSEH_info_ChaCha20_128: .byte 9,0,0,0 .rva simd_handler .rva .L128_body,.L128_epilogue .long 0x60,0 .LSEH_info_ChaCha20_4x: .byte 9,0,0,0 .rva simd_handler .rva .L4x_body,.L4x_epilogue .long 0xa0,0 ___ $code.=<<___ if ($avx); .LSEH_info_ChaCha20_4xop: .byte 9,0,0,0 .rva simd_handler .rva .L4xop_body,.L4xop_epilogue # HandlerData[] .long 0xa0,0 ___ $code.=<<___ if ($avx>1); .LSEH_info_ChaCha20_8x: .byte 9,0,0,0 .rva simd_handler .rva .L8x_body,.L8x_epilogue # HandlerData[] .long 0xa0,0 ___ $code.=<<___ if ($avx>2); .LSEH_info_ChaCha20_avx512: .byte 9,0,0,0 .rva simd_handler .rva .Lavx512_body,.Lavx512_epilogue # HandlerData[] .long 0x20,0 .LSEH_info_ChaCha20_avx512vl: .byte 9,0,0,0 .rva simd_handler .rva .Lavx512vl_body,.Lavx512vl_epilogue # HandlerData[] .long 0x20,0 .LSEH_info_ChaCha20_16x: .byte 9,0,0,0 .rva simd_handler .rva .L16x_body,.L16x_epilogue # HandlerData[] .long 0xa0,0 .LSEH_info_ChaCha20_8xvl: .byte 9,0,0,0 .rva simd_handler .rva .L8xvl_body,.L8xvl_epilogue # HandlerData[] .long 0xa0,0 ___ } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/%x#%[yz]/%x/g; # "down-shift" print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/chacha/build.info000066400000000000000000000014101364063235100200450ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]={- $target{chacha_asm_src} -} GENERATE[chacha-x86.s]=asm/chacha-x86.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) GENERATE[chacha-x86_64.s]=asm/chacha-x86_64.pl $(PERLASM_SCHEME) GENERATE[chacha-ppc.s]=asm/chacha-ppc.pl $(PERLASM_SCHEME) GENERATE[chacha-armv4.S]=asm/chacha-armv4.pl $(PERLASM_SCHEME) INCLUDE[chacha-armv4.o]=.. GENERATE[chacha-armv8.S]=asm/chacha-armv8.pl $(PERLASM_SCHEME) INCLUDE[chacha-armv8.o]=.. GENERATE[chacha-s390x.S]=asm/chacha-s390x.pl $(PERLASM_SCHEME) INCLUDE[chacha-s390x.o]=.. BEGINRAW[Makefile(unix)] ##### CHACHA assembler implementations {- $builddir -}/chacha-%.S: {- $sourcedir -}/asm/chacha-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ ENDRAW[Makefile(unix)] openssl-1.1.1f/crypto/chacha/chacha_enc.c000066400000000000000000000077761364063235100203160ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Adapted from the public domain code by D. Bernstein from SUPERCOP. */ #include #include "crypto/chacha.h" #include "crypto/ctype.h" typedef unsigned int u32; typedef unsigned char u8; typedef union { u32 u[16]; u8 c[64]; } chacha_buf; # define ROTATE(v, n) (((v) << (n)) | ((v) >> (32 - (n)))) # define U32TO8_LITTLE(p, v) do { \ (p)[0] = (u8)(v >> 0); \ (p)[1] = (u8)(v >> 8); \ (p)[2] = (u8)(v >> 16); \ (p)[3] = (u8)(v >> 24); \ } while(0) /* QUARTERROUND updates a, b, c, d with a ChaCha "quarter" round. */ # define QUARTERROUND(a,b,c,d) ( \ x[a] += x[b], x[d] = ROTATE((x[d] ^ x[a]),16), \ x[c] += x[d], x[b] = ROTATE((x[b] ^ x[c]),12), \ x[a] += x[b], x[d] = ROTATE((x[d] ^ x[a]), 8), \ x[c] += x[d], x[b] = ROTATE((x[b] ^ x[c]), 7) ) /* chacha_core performs 20 rounds of ChaCha on the input words in * |input| and writes the 64 output bytes to |output|. */ static void chacha20_core(chacha_buf *output, const u32 input[16]) { u32 x[16]; int i; const union { long one; char little; } is_endian = { 1 }; memcpy(x, input, sizeof(x)); for (i = 20; i > 0; i -= 2) { QUARTERROUND(0, 4, 8, 12); QUARTERROUND(1, 5, 9, 13); QUARTERROUND(2, 6, 10, 14); QUARTERROUND(3, 7, 11, 15); QUARTERROUND(0, 5, 10, 15); QUARTERROUND(1, 6, 11, 12); QUARTERROUND(2, 7, 8, 13); QUARTERROUND(3, 4, 9, 14); } if (is_endian.little) { for (i = 0; i < 16; ++i) output->u[i] = x[i] + input[i]; } else { for (i = 0; i < 16; ++i) U32TO8_LITTLE(output->c + 4 * i, (x[i] + input[i])); } } void ChaCha20_ctr32(unsigned char *out, const unsigned char *inp, size_t len, const unsigned int key[8], const unsigned int counter[4]) { u32 input[16]; chacha_buf buf; size_t todo, i; /* sigma constant "expand 32-byte k" in little-endian encoding */ input[0] = ((u32)ossl_toascii('e')) | ((u32)ossl_toascii('x') << 8) | ((u32)ossl_toascii('p') << 16) | ((u32)ossl_toascii('a') << 24); input[1] = ((u32)ossl_toascii('n')) | ((u32)ossl_toascii('d') << 8) | ((u32)ossl_toascii(' ') << 16) | ((u32)ossl_toascii('3') << 24); input[2] = ((u32)ossl_toascii('2')) | ((u32)ossl_toascii('-') << 8) | ((u32)ossl_toascii('b') << 16) | ((u32)ossl_toascii('y') << 24); input[3] = ((u32)ossl_toascii('t')) | ((u32)ossl_toascii('e') << 8) | ((u32)ossl_toascii(' ') << 16) | ((u32)ossl_toascii('k') << 24); input[4] = key[0]; input[5] = key[1]; input[6] = key[2]; input[7] = key[3]; input[8] = key[4]; input[9] = key[5]; input[10] = key[6]; input[11] = key[7]; input[12] = counter[0]; input[13] = counter[1]; input[14] = counter[2]; input[15] = counter[3]; while (len > 0) { todo = sizeof(buf); if (len < todo) todo = len; chacha20_core(&buf, input); for (i = 0; i < todo; i++) out[i] = inp[i] ^ buf.c[i]; out += todo; inp += todo; len -= todo; /* * Advance 32-bit counter. Note that as subroutine is so to * say nonce-agnostic, this limited counter width doesn't * prevent caller from implementing wider counter. It would * simply take two calls split on counter overflow... */ input[12]++; } } openssl-1.1.1f/crypto/cmac/000077500000000000000000000000001364063235100155715ustar00rootroot00000000000000openssl-1.1.1f/crypto/cmac/build.info000066400000000000000000000001121364063235100175370ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=cmac.c cm_ameth.c cm_pmeth.c openssl-1.1.1f/crypto/cmac/cm_ameth.c000066400000000000000000000020101364063235100175030ustar00rootroot00000000000000/* * Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" /* * CMAC "ASN1" method. This is just here to indicate the maximum CMAC output * length and to free up a CMAC key. */ static int cmac_size(const EVP_PKEY *pkey) { return EVP_MAX_BLOCK_LENGTH; } static void cmac_key_free(EVP_PKEY *pkey) { CMAC_CTX *cmctx = EVP_PKEY_get0(pkey); CMAC_CTX_free(cmctx); } const EVP_PKEY_ASN1_METHOD cmac_asn1_meth = { EVP_PKEY_CMAC, EVP_PKEY_CMAC, 0, "CMAC", "OpenSSL CMAC method", 0, 0, 0, 0, 0, 0, 0, cmac_size, 0, 0, 0, 0, 0, 0, 0, 0, 0, cmac_key_free, 0, 0, 0 }; openssl-1.1.1f/crypto/cmac/cm_pmeth.c000066400000000000000000000070731364063235100175400ustar00rootroot00000000000000/* * Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/evp.h" /* The context structure and "key" is simply a CMAC_CTX */ static int pkey_cmac_init(EVP_PKEY_CTX *ctx) { ctx->data = CMAC_CTX_new(); if (ctx->data == NULL) return 0; ctx->keygen_info_count = 0; return 1; } static int pkey_cmac_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { if (!pkey_cmac_init(dst)) return 0; if (!CMAC_CTX_copy(dst->data, src->data)) return 0; return 1; } static void pkey_cmac_cleanup(EVP_PKEY_CTX *ctx) { CMAC_CTX_free(ctx->data); } static int pkey_cmac_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { CMAC_CTX *cmkey = CMAC_CTX_new(); CMAC_CTX *cmctx = ctx->data; if (cmkey == NULL) return 0; if (!CMAC_CTX_copy(cmkey, cmctx)) { CMAC_CTX_free(cmkey); return 0; } EVP_PKEY_assign(pkey, EVP_PKEY_CMAC, cmkey); return 1; } static int int_update(EVP_MD_CTX *ctx, const void *data, size_t count) { if (!CMAC_Update(EVP_MD_CTX_pkey_ctx(ctx)->data, data, count)) return 0; return 1; } static int cmac_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) { EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT); EVP_MD_CTX_set_update_fn(mctx, int_update); return 1; } static int cmac_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx) { return CMAC_Final(ctx->data, sig, siglen); } static int pkey_cmac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { CMAC_CTX *cmctx = ctx->data; switch (type) { case EVP_PKEY_CTRL_SET_MAC_KEY: if (!p2 || p1 < 0) return 0; if (!CMAC_Init(cmctx, p2, p1, NULL, NULL)) return 0; break; case EVP_PKEY_CTRL_CIPHER: if (!CMAC_Init(cmctx, NULL, 0, p2, ctx->engine)) return 0; break; case EVP_PKEY_CTRL_MD: if (ctx->pkey && !CMAC_CTX_copy(ctx->data, (CMAC_CTX *)ctx->pkey->pkey.ptr)) return 0; if (!CMAC_Init(cmctx, NULL, 0, NULL, NULL)) return 0; break; default: return -2; } return 1; } static int pkey_cmac_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (!value) { return 0; } if (strcmp(type, "cipher") == 0) { const EVP_CIPHER *c; c = EVP_get_cipherbyname(value); if (!c) return 0; return pkey_cmac_ctrl(ctx, EVP_PKEY_CTRL_CIPHER, -1, (void *)c); } if (strcmp(type, "key") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); if (strcmp(type, "hexkey") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); return -2; } const EVP_PKEY_METHOD cmac_pkey_meth = { EVP_PKEY_CMAC, EVP_PKEY_FLAG_SIGCTX_CUSTOM, pkey_cmac_init, pkey_cmac_copy, pkey_cmac_cleanup, 0, 0, 0, pkey_cmac_keygen, 0, 0, 0, 0, 0, 0, cmac_signctx_init, cmac_signctx, 0, 0, 0, 0, 0, 0, 0, 0, pkey_cmac_ctrl, pkey_cmac_ctrl_str }; openssl-1.1.1f/crypto/cmac/cmac.c000066400000000000000000000150361364063235100166450ustar00rootroot00000000000000/* * Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include struct CMAC_CTX_st { /* Cipher context to use */ EVP_CIPHER_CTX *cctx; /* Keys k1 and k2 */ unsigned char k1[EVP_MAX_BLOCK_LENGTH]; unsigned char k2[EVP_MAX_BLOCK_LENGTH]; /* Temporary block */ unsigned char tbl[EVP_MAX_BLOCK_LENGTH]; /* Last (possibly partial) block */ unsigned char last_block[EVP_MAX_BLOCK_LENGTH]; /* Number of bytes in last block: -1 means context not initialised */ int nlast_block; }; /* Make temporary keys K1 and K2 */ static void make_kn(unsigned char *k1, const unsigned char *l, int bl) { int i; unsigned char c = l[0], carry = c >> 7, cnext; /* Shift block to left, including carry */ for (i = 0; i < bl - 1; i++, c = cnext) k1[i] = (c << 1) | ((cnext = l[i + 1]) >> 7); /* If MSB set fixup with R */ k1[i] = (c << 1) ^ ((0 - carry) & (bl == 16 ? 0x87 : 0x1b)); } CMAC_CTX *CMAC_CTX_new(void) { CMAC_CTX *ctx; if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL) { CRYPTOerr(CRYPTO_F_CMAC_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ctx->cctx = EVP_CIPHER_CTX_new(); if (ctx->cctx == NULL) { OPENSSL_free(ctx); return NULL; } ctx->nlast_block = -1; return ctx; } void CMAC_CTX_cleanup(CMAC_CTX *ctx) { EVP_CIPHER_CTX_reset(ctx->cctx); OPENSSL_cleanse(ctx->tbl, EVP_MAX_BLOCK_LENGTH); OPENSSL_cleanse(ctx->k1, EVP_MAX_BLOCK_LENGTH); OPENSSL_cleanse(ctx->k2, EVP_MAX_BLOCK_LENGTH); OPENSSL_cleanse(ctx->last_block, EVP_MAX_BLOCK_LENGTH); ctx->nlast_block = -1; } EVP_CIPHER_CTX *CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx) { return ctx->cctx; } void CMAC_CTX_free(CMAC_CTX *ctx) { if (!ctx) return; CMAC_CTX_cleanup(ctx); EVP_CIPHER_CTX_free(ctx->cctx); OPENSSL_free(ctx); } int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { int bl; if (in->nlast_block == -1) return 0; if (!EVP_CIPHER_CTX_copy(out->cctx, in->cctx)) return 0; bl = EVP_CIPHER_CTX_block_size(in->cctx); memcpy(out->k1, in->k1, bl); memcpy(out->k2, in->k2, bl); memcpy(out->tbl, in->tbl, bl); memcpy(out->last_block, in->last_block, bl); out->nlast_block = in->nlast_block; return 1; } int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen, const EVP_CIPHER *cipher, ENGINE *impl) { static const unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH] = { 0 }; /* All zeros means restart */ if (!key && !cipher && !impl && keylen == 0) { /* Not initialised */ if (ctx->nlast_block == -1) return 0; if (!EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, NULL, zero_iv)) return 0; memset(ctx->tbl, 0, EVP_CIPHER_CTX_block_size(ctx->cctx)); ctx->nlast_block = 0; return 1; } /* Initialise context */ if (cipher && !EVP_EncryptInit_ex(ctx->cctx, cipher, impl, NULL, NULL)) return 0; /* Non-NULL key means initialisation complete */ if (key) { int bl; if (!EVP_CIPHER_CTX_cipher(ctx->cctx)) return 0; if (!EVP_CIPHER_CTX_set_key_length(ctx->cctx, keylen)) return 0; if (!EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, key, zero_iv)) return 0; bl = EVP_CIPHER_CTX_block_size(ctx->cctx); if (!EVP_Cipher(ctx->cctx, ctx->tbl, zero_iv, bl)) return 0; make_kn(ctx->k1, ctx->tbl, bl); make_kn(ctx->k2, ctx->k1, bl); OPENSSL_cleanse(ctx->tbl, bl); /* Reset context again ready for first data block */ if (!EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, NULL, zero_iv)) return 0; /* Zero tbl so resume works */ memset(ctx->tbl, 0, bl); ctx->nlast_block = 0; } return 1; } int CMAC_Update(CMAC_CTX *ctx, const void *in, size_t dlen) { const unsigned char *data = in; size_t bl; if (ctx->nlast_block == -1) return 0; if (dlen == 0) return 1; bl = EVP_CIPHER_CTX_block_size(ctx->cctx); /* Copy into partial block if we need to */ if (ctx->nlast_block > 0) { size_t nleft; nleft = bl - ctx->nlast_block; if (dlen < nleft) nleft = dlen; memcpy(ctx->last_block + ctx->nlast_block, data, nleft); dlen -= nleft; ctx->nlast_block += nleft; /* If no more to process return */ if (dlen == 0) return 1; data += nleft; /* Else not final block so encrypt it */ if (!EVP_Cipher(ctx->cctx, ctx->tbl, ctx->last_block, bl)) return 0; } /* Encrypt all but one of the complete blocks left */ while (dlen > bl) { if (!EVP_Cipher(ctx->cctx, ctx->tbl, data, bl)) return 0; dlen -= bl; data += bl; } /* Copy any data left to last block buffer */ memcpy(ctx->last_block, data, dlen); ctx->nlast_block = dlen; return 1; } int CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen) { int i, bl, lb; if (ctx->nlast_block == -1) return 0; bl = EVP_CIPHER_CTX_block_size(ctx->cctx); *poutlen = (size_t)bl; if (!out) return 1; lb = ctx->nlast_block; /* Is last block complete? */ if (lb == bl) { for (i = 0; i < bl; i++) out[i] = ctx->last_block[i] ^ ctx->k1[i]; } else { ctx->last_block[lb] = 0x80; if (bl - lb > 1) memset(ctx->last_block + lb + 1, 0, bl - lb - 1); for (i = 0; i < bl; i++) out[i] = ctx->last_block[i] ^ ctx->k2[i]; } if (!EVP_Cipher(ctx->cctx, out, out, bl)) { OPENSSL_cleanse(out, bl); return 0; } return 1; } int CMAC_resume(CMAC_CTX *ctx) { if (ctx->nlast_block == -1) return 0; /* * The buffer "tbl" contains the last fully encrypted block which is the * last IV (or all zeroes if no last encrypted block). The last block has * not been modified since CMAC_final(). So reinitialising using the last * decrypted block will allow CMAC to continue after calling * CMAC_Final(). */ return EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, NULL, ctx->tbl); } openssl-1.1.1f/crypto/cms/000077500000000000000000000000001364063235100154505ustar00rootroot00000000000000openssl-1.1.1f/crypto/cms/build.info000066400000000000000000000003311364063235100174210ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]= \ cms_lib.c cms_asn1.c cms_att.c cms_io.c cms_smime.c cms_err.c \ cms_sd.c cms_dd.c cms_cd.c cms_env.c cms_enc.c cms_ess.c \ cms_pwri.c cms_kari.c openssl-1.1.1f/crypto/cms/cms_asn1.c000066400000000000000000000424641364063235100173320ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "cms_local.h" ASN1_SEQUENCE(CMS_IssuerAndSerialNumber) = { ASN1_SIMPLE(CMS_IssuerAndSerialNumber, issuer, X509_NAME), ASN1_SIMPLE(CMS_IssuerAndSerialNumber, serialNumber, ASN1_INTEGER) } ASN1_SEQUENCE_END(CMS_IssuerAndSerialNumber) ASN1_SEQUENCE(CMS_OtherCertificateFormat) = { ASN1_SIMPLE(CMS_OtherCertificateFormat, otherCertFormat, ASN1_OBJECT), ASN1_OPT(CMS_OtherCertificateFormat, otherCert, ASN1_ANY) } static_ASN1_SEQUENCE_END(CMS_OtherCertificateFormat) ASN1_CHOICE(CMS_CertificateChoices) = { ASN1_SIMPLE(CMS_CertificateChoices, d.certificate, X509), ASN1_IMP(CMS_CertificateChoices, d.extendedCertificate, ASN1_SEQUENCE, 0), ASN1_IMP(CMS_CertificateChoices, d.v1AttrCert, ASN1_SEQUENCE, 1), ASN1_IMP(CMS_CertificateChoices, d.v2AttrCert, ASN1_SEQUENCE, 2), ASN1_IMP(CMS_CertificateChoices, d.other, CMS_OtherCertificateFormat, 3) } ASN1_CHOICE_END(CMS_CertificateChoices) ASN1_CHOICE(CMS_SignerIdentifier) = { ASN1_SIMPLE(CMS_SignerIdentifier, d.issuerAndSerialNumber, CMS_IssuerAndSerialNumber), ASN1_IMP(CMS_SignerIdentifier, d.subjectKeyIdentifier, ASN1_OCTET_STRING, 0) } static_ASN1_CHOICE_END(CMS_SignerIdentifier) ASN1_NDEF_SEQUENCE(CMS_EncapsulatedContentInfo) = { ASN1_SIMPLE(CMS_EncapsulatedContentInfo, eContentType, ASN1_OBJECT), ASN1_NDEF_EXP_OPT(CMS_EncapsulatedContentInfo, eContent, ASN1_OCTET_STRING_NDEF, 0) } static_ASN1_NDEF_SEQUENCE_END(CMS_EncapsulatedContentInfo) /* Minor tweak to operation: free up signer key, cert */ static int cms_si_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_POST) { CMS_SignerInfo *si = (CMS_SignerInfo *)*pval; EVP_PKEY_free(si->pkey); X509_free(si->signer); EVP_MD_CTX_free(si->mctx); } return 1; } ASN1_SEQUENCE_cb(CMS_SignerInfo, cms_si_cb) = { ASN1_EMBED(CMS_SignerInfo, version, INT32), ASN1_SIMPLE(CMS_SignerInfo, sid, CMS_SignerIdentifier), ASN1_SIMPLE(CMS_SignerInfo, digestAlgorithm, X509_ALGOR), ASN1_IMP_SET_OF_OPT(CMS_SignerInfo, signedAttrs, X509_ATTRIBUTE, 0), ASN1_SIMPLE(CMS_SignerInfo, signatureAlgorithm, X509_ALGOR), ASN1_SIMPLE(CMS_SignerInfo, signature, ASN1_OCTET_STRING), ASN1_IMP_SET_OF_OPT(CMS_SignerInfo, unsignedAttrs, X509_ATTRIBUTE, 1) } ASN1_SEQUENCE_END_cb(CMS_SignerInfo, CMS_SignerInfo) ASN1_SEQUENCE(CMS_OtherRevocationInfoFormat) = { ASN1_SIMPLE(CMS_OtherRevocationInfoFormat, otherRevInfoFormat, ASN1_OBJECT), ASN1_OPT(CMS_OtherRevocationInfoFormat, otherRevInfo, ASN1_ANY) } static_ASN1_SEQUENCE_END(CMS_OtherRevocationInfoFormat) ASN1_CHOICE(CMS_RevocationInfoChoice) = { ASN1_SIMPLE(CMS_RevocationInfoChoice, d.crl, X509_CRL), ASN1_IMP(CMS_RevocationInfoChoice, d.other, CMS_OtherRevocationInfoFormat, 1) } ASN1_CHOICE_END(CMS_RevocationInfoChoice) ASN1_NDEF_SEQUENCE(CMS_SignedData) = { ASN1_EMBED(CMS_SignedData, version, INT32), ASN1_SET_OF(CMS_SignedData, digestAlgorithms, X509_ALGOR), ASN1_SIMPLE(CMS_SignedData, encapContentInfo, CMS_EncapsulatedContentInfo), ASN1_IMP_SET_OF_OPT(CMS_SignedData, certificates, CMS_CertificateChoices, 0), ASN1_IMP_SET_OF_OPT(CMS_SignedData, crls, CMS_RevocationInfoChoice, 1), ASN1_SET_OF(CMS_SignedData, signerInfos, CMS_SignerInfo) } ASN1_NDEF_SEQUENCE_END(CMS_SignedData) ASN1_SEQUENCE(CMS_OriginatorInfo) = { ASN1_IMP_SET_OF_OPT(CMS_OriginatorInfo, certificates, CMS_CertificateChoices, 0), ASN1_IMP_SET_OF_OPT(CMS_OriginatorInfo, crls, CMS_RevocationInfoChoice, 1) } static_ASN1_SEQUENCE_END(CMS_OriginatorInfo) ASN1_NDEF_SEQUENCE(CMS_EncryptedContentInfo) = { ASN1_SIMPLE(CMS_EncryptedContentInfo, contentType, ASN1_OBJECT), ASN1_SIMPLE(CMS_EncryptedContentInfo, contentEncryptionAlgorithm, X509_ALGOR), ASN1_IMP_OPT(CMS_EncryptedContentInfo, encryptedContent, ASN1_OCTET_STRING_NDEF, 0) } static_ASN1_NDEF_SEQUENCE_END(CMS_EncryptedContentInfo) ASN1_SEQUENCE(CMS_KeyTransRecipientInfo) = { ASN1_EMBED(CMS_KeyTransRecipientInfo, version, INT32), ASN1_SIMPLE(CMS_KeyTransRecipientInfo, rid, CMS_SignerIdentifier), ASN1_SIMPLE(CMS_KeyTransRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR), ASN1_SIMPLE(CMS_KeyTransRecipientInfo, encryptedKey, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(CMS_KeyTransRecipientInfo) ASN1_SEQUENCE(CMS_OtherKeyAttribute) = { ASN1_SIMPLE(CMS_OtherKeyAttribute, keyAttrId, ASN1_OBJECT), ASN1_OPT(CMS_OtherKeyAttribute, keyAttr, ASN1_ANY) } ASN1_SEQUENCE_END(CMS_OtherKeyAttribute) ASN1_SEQUENCE(CMS_RecipientKeyIdentifier) = { ASN1_SIMPLE(CMS_RecipientKeyIdentifier, subjectKeyIdentifier, ASN1_OCTET_STRING), ASN1_OPT(CMS_RecipientKeyIdentifier, date, ASN1_GENERALIZEDTIME), ASN1_OPT(CMS_RecipientKeyIdentifier, other, CMS_OtherKeyAttribute) } ASN1_SEQUENCE_END(CMS_RecipientKeyIdentifier) ASN1_CHOICE(CMS_KeyAgreeRecipientIdentifier) = { ASN1_SIMPLE(CMS_KeyAgreeRecipientIdentifier, d.issuerAndSerialNumber, CMS_IssuerAndSerialNumber), ASN1_IMP(CMS_KeyAgreeRecipientIdentifier, d.rKeyId, CMS_RecipientKeyIdentifier, 0) } static_ASN1_CHOICE_END(CMS_KeyAgreeRecipientIdentifier) static int cms_rek_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { CMS_RecipientEncryptedKey *rek = (CMS_RecipientEncryptedKey *)*pval; if (operation == ASN1_OP_FREE_POST) { EVP_PKEY_free(rek->pkey); } return 1; } ASN1_SEQUENCE_cb(CMS_RecipientEncryptedKey, cms_rek_cb) = { ASN1_SIMPLE(CMS_RecipientEncryptedKey, rid, CMS_KeyAgreeRecipientIdentifier), ASN1_SIMPLE(CMS_RecipientEncryptedKey, encryptedKey, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END_cb(CMS_RecipientEncryptedKey, CMS_RecipientEncryptedKey) ASN1_SEQUENCE(CMS_OriginatorPublicKey) = { ASN1_SIMPLE(CMS_OriginatorPublicKey, algorithm, X509_ALGOR), ASN1_SIMPLE(CMS_OriginatorPublicKey, publicKey, ASN1_BIT_STRING) } ASN1_SEQUENCE_END(CMS_OriginatorPublicKey) ASN1_CHOICE(CMS_OriginatorIdentifierOrKey) = { ASN1_SIMPLE(CMS_OriginatorIdentifierOrKey, d.issuerAndSerialNumber, CMS_IssuerAndSerialNumber), ASN1_IMP(CMS_OriginatorIdentifierOrKey, d.subjectKeyIdentifier, ASN1_OCTET_STRING, 0), ASN1_IMP(CMS_OriginatorIdentifierOrKey, d.originatorKey, CMS_OriginatorPublicKey, 1) } static_ASN1_CHOICE_END(CMS_OriginatorIdentifierOrKey) static int cms_kari_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { CMS_KeyAgreeRecipientInfo *kari = (CMS_KeyAgreeRecipientInfo *)*pval; if (operation == ASN1_OP_NEW_POST) { kari->ctx = EVP_CIPHER_CTX_new(); if (kari->ctx == NULL) return 0; EVP_CIPHER_CTX_set_flags(kari->ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); kari->pctx = NULL; } else if (operation == ASN1_OP_FREE_POST) { EVP_PKEY_CTX_free(kari->pctx); EVP_CIPHER_CTX_free(kari->ctx); } return 1; } ASN1_SEQUENCE_cb(CMS_KeyAgreeRecipientInfo, cms_kari_cb) = { ASN1_EMBED(CMS_KeyAgreeRecipientInfo, version, INT32), ASN1_EXP(CMS_KeyAgreeRecipientInfo, originator, CMS_OriginatorIdentifierOrKey, 0), ASN1_EXP_OPT(CMS_KeyAgreeRecipientInfo, ukm, ASN1_OCTET_STRING, 1), ASN1_SIMPLE(CMS_KeyAgreeRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR), ASN1_SEQUENCE_OF(CMS_KeyAgreeRecipientInfo, recipientEncryptedKeys, CMS_RecipientEncryptedKey) } ASN1_SEQUENCE_END_cb(CMS_KeyAgreeRecipientInfo, CMS_KeyAgreeRecipientInfo) ASN1_SEQUENCE(CMS_KEKIdentifier) = { ASN1_SIMPLE(CMS_KEKIdentifier, keyIdentifier, ASN1_OCTET_STRING), ASN1_OPT(CMS_KEKIdentifier, date, ASN1_GENERALIZEDTIME), ASN1_OPT(CMS_KEKIdentifier, other, CMS_OtherKeyAttribute) } static_ASN1_SEQUENCE_END(CMS_KEKIdentifier) ASN1_SEQUENCE(CMS_KEKRecipientInfo) = { ASN1_EMBED(CMS_KEKRecipientInfo, version, INT32), ASN1_SIMPLE(CMS_KEKRecipientInfo, kekid, CMS_KEKIdentifier), ASN1_SIMPLE(CMS_KEKRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR), ASN1_SIMPLE(CMS_KEKRecipientInfo, encryptedKey, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(CMS_KEKRecipientInfo) ASN1_SEQUENCE(CMS_PasswordRecipientInfo) = { ASN1_EMBED(CMS_PasswordRecipientInfo, version, INT32), ASN1_IMP_OPT(CMS_PasswordRecipientInfo, keyDerivationAlgorithm, X509_ALGOR, 0), ASN1_SIMPLE(CMS_PasswordRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR), ASN1_SIMPLE(CMS_PasswordRecipientInfo, encryptedKey, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(CMS_PasswordRecipientInfo) ASN1_SEQUENCE(CMS_OtherRecipientInfo) = { ASN1_SIMPLE(CMS_OtherRecipientInfo, oriType, ASN1_OBJECT), ASN1_OPT(CMS_OtherRecipientInfo, oriValue, ASN1_ANY) } static_ASN1_SEQUENCE_END(CMS_OtherRecipientInfo) /* Free up RecipientInfo additional data */ static int cms_ri_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_PRE) { CMS_RecipientInfo *ri = (CMS_RecipientInfo *)*pval; if (ri->type == CMS_RECIPINFO_TRANS) { CMS_KeyTransRecipientInfo *ktri = ri->d.ktri; EVP_PKEY_free(ktri->pkey); X509_free(ktri->recip); EVP_PKEY_CTX_free(ktri->pctx); } else if (ri->type == CMS_RECIPINFO_KEK) { CMS_KEKRecipientInfo *kekri = ri->d.kekri; OPENSSL_clear_free(kekri->key, kekri->keylen); } else if (ri->type == CMS_RECIPINFO_PASS) { CMS_PasswordRecipientInfo *pwri = ri->d.pwri; OPENSSL_clear_free(pwri->pass, pwri->passlen); } } return 1; } ASN1_CHOICE_cb(CMS_RecipientInfo, cms_ri_cb) = { ASN1_SIMPLE(CMS_RecipientInfo, d.ktri, CMS_KeyTransRecipientInfo), ASN1_IMP(CMS_RecipientInfo, d.kari, CMS_KeyAgreeRecipientInfo, 1), ASN1_IMP(CMS_RecipientInfo, d.kekri, CMS_KEKRecipientInfo, 2), ASN1_IMP(CMS_RecipientInfo, d.pwri, CMS_PasswordRecipientInfo, 3), ASN1_IMP(CMS_RecipientInfo, d.ori, CMS_OtherRecipientInfo, 4) } ASN1_CHOICE_END_cb(CMS_RecipientInfo, CMS_RecipientInfo, type) ASN1_NDEF_SEQUENCE(CMS_EnvelopedData) = { ASN1_EMBED(CMS_EnvelopedData, version, INT32), ASN1_IMP_OPT(CMS_EnvelopedData, originatorInfo, CMS_OriginatorInfo, 0), ASN1_SET_OF(CMS_EnvelopedData, recipientInfos, CMS_RecipientInfo), ASN1_SIMPLE(CMS_EnvelopedData, encryptedContentInfo, CMS_EncryptedContentInfo), ASN1_IMP_SET_OF_OPT(CMS_EnvelopedData, unprotectedAttrs, X509_ATTRIBUTE, 1) } ASN1_NDEF_SEQUENCE_END(CMS_EnvelopedData) ASN1_NDEF_SEQUENCE(CMS_DigestedData) = { ASN1_EMBED(CMS_DigestedData, version, INT32), ASN1_SIMPLE(CMS_DigestedData, digestAlgorithm, X509_ALGOR), ASN1_SIMPLE(CMS_DigestedData, encapContentInfo, CMS_EncapsulatedContentInfo), ASN1_SIMPLE(CMS_DigestedData, digest, ASN1_OCTET_STRING) } ASN1_NDEF_SEQUENCE_END(CMS_DigestedData) ASN1_NDEF_SEQUENCE(CMS_EncryptedData) = { ASN1_EMBED(CMS_EncryptedData, version, INT32), ASN1_SIMPLE(CMS_EncryptedData, encryptedContentInfo, CMS_EncryptedContentInfo), ASN1_IMP_SET_OF_OPT(CMS_EncryptedData, unprotectedAttrs, X509_ATTRIBUTE, 1) } ASN1_NDEF_SEQUENCE_END(CMS_EncryptedData) ASN1_NDEF_SEQUENCE(CMS_AuthenticatedData) = { ASN1_EMBED(CMS_AuthenticatedData, version, INT32), ASN1_IMP_OPT(CMS_AuthenticatedData, originatorInfo, CMS_OriginatorInfo, 0), ASN1_SET_OF(CMS_AuthenticatedData, recipientInfos, CMS_RecipientInfo), ASN1_SIMPLE(CMS_AuthenticatedData, macAlgorithm, X509_ALGOR), ASN1_IMP(CMS_AuthenticatedData, digestAlgorithm, X509_ALGOR, 1), ASN1_SIMPLE(CMS_AuthenticatedData, encapContentInfo, CMS_EncapsulatedContentInfo), ASN1_IMP_SET_OF_OPT(CMS_AuthenticatedData, authAttrs, X509_ALGOR, 2), ASN1_SIMPLE(CMS_AuthenticatedData, mac, ASN1_OCTET_STRING), ASN1_IMP_SET_OF_OPT(CMS_AuthenticatedData, unauthAttrs, X509_ALGOR, 3) } static_ASN1_NDEF_SEQUENCE_END(CMS_AuthenticatedData) ASN1_NDEF_SEQUENCE(CMS_CompressedData) = { ASN1_EMBED(CMS_CompressedData, version, INT32), ASN1_SIMPLE(CMS_CompressedData, compressionAlgorithm, X509_ALGOR), ASN1_SIMPLE(CMS_CompressedData, encapContentInfo, CMS_EncapsulatedContentInfo), } ASN1_NDEF_SEQUENCE_END(CMS_CompressedData) /* This is the ANY DEFINED BY table for the top level ContentInfo structure */ ASN1_ADB_TEMPLATE(cms_default) = ASN1_EXP(CMS_ContentInfo, d.other, ASN1_ANY, 0); ASN1_ADB(CMS_ContentInfo) = { ADB_ENTRY(NID_pkcs7_data, ASN1_NDEF_EXP(CMS_ContentInfo, d.data, ASN1_OCTET_STRING_NDEF, 0)), ADB_ENTRY(NID_pkcs7_signed, ASN1_NDEF_EXP(CMS_ContentInfo, d.signedData, CMS_SignedData, 0)), ADB_ENTRY(NID_pkcs7_enveloped, ASN1_NDEF_EXP(CMS_ContentInfo, d.envelopedData, CMS_EnvelopedData, 0)), ADB_ENTRY(NID_pkcs7_digest, ASN1_NDEF_EXP(CMS_ContentInfo, d.digestedData, CMS_DigestedData, 0)), ADB_ENTRY(NID_pkcs7_encrypted, ASN1_NDEF_EXP(CMS_ContentInfo, d.encryptedData, CMS_EncryptedData, 0)), ADB_ENTRY(NID_id_smime_ct_authData, ASN1_NDEF_EXP(CMS_ContentInfo, d.authenticatedData, CMS_AuthenticatedData, 0)), ADB_ENTRY(NID_id_smime_ct_compressedData, ASN1_NDEF_EXP(CMS_ContentInfo, d.compressedData, CMS_CompressedData, 0)), } ASN1_ADB_END(CMS_ContentInfo, 0, contentType, 0, &cms_default_tt, NULL); /* CMS streaming support */ static int cms_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { ASN1_STREAM_ARG *sarg = exarg; CMS_ContentInfo *cms = NULL; if (pval) cms = (CMS_ContentInfo *)*pval; else return 1; switch (operation) { case ASN1_OP_STREAM_PRE: if (CMS_stream(&sarg->boundary, cms) <= 0) return 0; /* fall thru */ case ASN1_OP_DETACHED_PRE: sarg->ndef_bio = CMS_dataInit(cms, sarg->out); if (!sarg->ndef_bio) return 0; break; case ASN1_OP_STREAM_POST: case ASN1_OP_DETACHED_POST: if (CMS_dataFinal(cms, sarg->ndef_bio) <= 0) return 0; break; } return 1; } ASN1_NDEF_SEQUENCE_cb(CMS_ContentInfo, cms_cb) = { ASN1_SIMPLE(CMS_ContentInfo, contentType, ASN1_OBJECT), ASN1_ADB_OBJECT(CMS_ContentInfo) } ASN1_NDEF_SEQUENCE_END_cb(CMS_ContentInfo, CMS_ContentInfo) /* Specials for signed attributes */ /* * When signing attributes we want to reorder them to match the sorted * encoding. */ ASN1_ITEM_TEMPLATE(CMS_Attributes_Sign) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_ORDER, 0, CMS_ATTRIBUTES, X509_ATTRIBUTE) ASN1_ITEM_TEMPLATE_END(CMS_Attributes_Sign) /* * When verifying attributes we need to use the received order. So we use * SEQUENCE OF and tag it to SET OF */ ASN1_ITEM_TEMPLATE(CMS_Attributes_Verify) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF | ASN1_TFLG_IMPTAG | ASN1_TFLG_UNIVERSAL, V_ASN1_SET, CMS_ATTRIBUTES, X509_ATTRIBUTE) ASN1_ITEM_TEMPLATE_END(CMS_Attributes_Verify) ASN1_CHOICE(CMS_ReceiptsFrom) = { ASN1_IMP_EMBED(CMS_ReceiptsFrom, d.allOrFirstTier, INT32, 0), ASN1_IMP_SEQUENCE_OF(CMS_ReceiptsFrom, d.receiptList, GENERAL_NAMES, 1) } static_ASN1_CHOICE_END(CMS_ReceiptsFrom) ASN1_SEQUENCE(CMS_ReceiptRequest) = { ASN1_SIMPLE(CMS_ReceiptRequest, signedContentIdentifier, ASN1_OCTET_STRING), ASN1_SIMPLE(CMS_ReceiptRequest, receiptsFrom, CMS_ReceiptsFrom), ASN1_SEQUENCE_OF(CMS_ReceiptRequest, receiptsTo, GENERAL_NAMES) } ASN1_SEQUENCE_END(CMS_ReceiptRequest) ASN1_SEQUENCE(CMS_Receipt) = { ASN1_EMBED(CMS_Receipt, version, INT32), ASN1_SIMPLE(CMS_Receipt, contentType, ASN1_OBJECT), ASN1_SIMPLE(CMS_Receipt, signedContentIdentifier, ASN1_OCTET_STRING), ASN1_SIMPLE(CMS_Receipt, originatorSignatureValue, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(CMS_Receipt) /* * Utilities to encode the CMS_SharedInfo structure used during key * derivation. */ typedef struct { X509_ALGOR *keyInfo; ASN1_OCTET_STRING *entityUInfo; ASN1_OCTET_STRING *suppPubInfo; } CMS_SharedInfo; ASN1_SEQUENCE(CMS_SharedInfo) = { ASN1_SIMPLE(CMS_SharedInfo, keyInfo, X509_ALGOR), ASN1_EXP_OPT(CMS_SharedInfo, entityUInfo, ASN1_OCTET_STRING, 0), ASN1_EXP_OPT(CMS_SharedInfo, suppPubInfo, ASN1_OCTET_STRING, 2), } static_ASN1_SEQUENCE_END(CMS_SharedInfo) int CMS_SharedInfo_encode(unsigned char **pder, X509_ALGOR *kekalg, ASN1_OCTET_STRING *ukm, int keylen) { union { CMS_SharedInfo *pecsi; ASN1_VALUE *a; } intsi = { NULL }; ASN1_OCTET_STRING oklen; unsigned char kl[4]; CMS_SharedInfo ecsi; keylen <<= 3; kl[0] = (keylen >> 24) & 0xff; kl[1] = (keylen >> 16) & 0xff; kl[2] = (keylen >> 8) & 0xff; kl[3] = keylen & 0xff; oklen.length = 4; oklen.data = kl; oklen.type = V_ASN1_OCTET_STRING; oklen.flags = 0; ecsi.keyInfo = kekalg; ecsi.entityUInfo = ukm; ecsi.suppPubInfo = &oklen; intsi.pecsi = &ecsi; return ASN1_item_i2d(intsi.a, pder, ASN1_ITEM_rptr(CMS_SharedInfo)); } openssl-1.1.1f/crypto/cms/cms_att.c000066400000000000000000000226561364063235100172610ustar00rootroot00000000000000/* * Copyright 2008-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "cms_local.h" #include "internal/nelem.h" /*- * Attribute flags. * CMS attribute restrictions are discussed in * - RFC 5652 Section 11. * ESS attribute restrictions are discussed in * - RFC 2634 Section 1.3.4 AND * - RFC 5035 Section 5.4 */ /* This is a signed attribute */ #define CMS_ATTR_F_SIGNED 0x01 /* This is an unsigned attribute */ #define CMS_ATTR_F_UNSIGNED 0x02 /* Must be present if there are any other attributes of the same type */ #define CMS_ATTR_F_REQUIRED_COND 0x10 /* There can only be one instance of this attribute */ #define CMS_ATTR_F_ONLY_ONE 0x20 /* The Attribute's value must have exactly one entry */ #define CMS_ATTR_F_ONE_ATTR_VALUE 0x40 /* Attributes rules for different attributes */ static const struct { int nid; /* The attribute id */ int flags; } cms_attribute_properties[] = { /* See RFC Section 11 */ { NID_pkcs9_contentType, CMS_ATTR_F_SIGNED | CMS_ATTR_F_ONLY_ONE | CMS_ATTR_F_ONE_ATTR_VALUE | CMS_ATTR_F_REQUIRED_COND }, { NID_pkcs9_messageDigest, CMS_ATTR_F_SIGNED | CMS_ATTR_F_ONLY_ONE | CMS_ATTR_F_ONE_ATTR_VALUE | CMS_ATTR_F_REQUIRED_COND }, { NID_pkcs9_signingTime, CMS_ATTR_F_SIGNED | CMS_ATTR_F_ONLY_ONE | CMS_ATTR_F_ONE_ATTR_VALUE }, { NID_pkcs9_countersignature, CMS_ATTR_F_UNSIGNED }, /* ESS */ { NID_id_smime_aa_signingCertificate, CMS_ATTR_F_SIGNED | CMS_ATTR_F_ONLY_ONE | CMS_ATTR_F_ONE_ATTR_VALUE }, { NID_id_smime_aa_signingCertificateV2, CMS_ATTR_F_SIGNED | CMS_ATTR_F_ONLY_ONE | CMS_ATTR_F_ONE_ATTR_VALUE }, { NID_id_smime_aa_receiptRequest, CMS_ATTR_F_SIGNED | CMS_ATTR_F_ONLY_ONE | CMS_ATTR_F_ONE_ATTR_VALUE } }; /* CMS SignedData Attribute utilities */ int CMS_signed_get_attr_count(const CMS_SignerInfo *si) { return X509at_get_attr_count(si->signedAttrs); } int CMS_signed_get_attr_by_NID(const CMS_SignerInfo *si, int nid, int lastpos) { return X509at_get_attr_by_NID(si->signedAttrs, nid, lastpos); } int CMS_signed_get_attr_by_OBJ(const CMS_SignerInfo *si, const ASN1_OBJECT *obj, int lastpos) { return X509at_get_attr_by_OBJ(si->signedAttrs, obj, lastpos); } X509_ATTRIBUTE *CMS_signed_get_attr(const CMS_SignerInfo *si, int loc) { return X509at_get_attr(si->signedAttrs, loc); } X509_ATTRIBUTE *CMS_signed_delete_attr(CMS_SignerInfo *si, int loc) { return X509at_delete_attr(si->signedAttrs, loc); } int CMS_signed_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr) { if (X509at_add1_attr(&si->signedAttrs, attr)) return 1; return 0; } int CMS_signed_add1_attr_by_OBJ(CMS_SignerInfo *si, const ASN1_OBJECT *obj, int type, const void *bytes, int len) { if (X509at_add1_attr_by_OBJ(&si->signedAttrs, obj, type, bytes, len)) return 1; return 0; } int CMS_signed_add1_attr_by_NID(CMS_SignerInfo *si, int nid, int type, const void *bytes, int len) { if (X509at_add1_attr_by_NID(&si->signedAttrs, nid, type, bytes, len)) return 1; return 0; } int CMS_signed_add1_attr_by_txt(CMS_SignerInfo *si, const char *attrname, int type, const void *bytes, int len) { if (X509at_add1_attr_by_txt(&si->signedAttrs, attrname, type, bytes, len)) return 1; return 0; } void *CMS_signed_get0_data_by_OBJ(CMS_SignerInfo *si, const ASN1_OBJECT *oid, int lastpos, int type) { return X509at_get0_data_by_OBJ(si->signedAttrs, oid, lastpos, type); } int CMS_unsigned_get_attr_count(const CMS_SignerInfo *si) { return X509at_get_attr_count(si->unsignedAttrs); } int CMS_unsigned_get_attr_by_NID(const CMS_SignerInfo *si, int nid, int lastpos) { return X509at_get_attr_by_NID(si->unsignedAttrs, nid, lastpos); } int CMS_unsigned_get_attr_by_OBJ(const CMS_SignerInfo *si, const ASN1_OBJECT *obj, int lastpos) { return X509at_get_attr_by_OBJ(si->unsignedAttrs, obj, lastpos); } X509_ATTRIBUTE *CMS_unsigned_get_attr(const CMS_SignerInfo *si, int loc) { return X509at_get_attr(si->unsignedAttrs, loc); } X509_ATTRIBUTE *CMS_unsigned_delete_attr(CMS_SignerInfo *si, int loc) { return X509at_delete_attr(si->unsignedAttrs, loc); } int CMS_unsigned_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr) { if (X509at_add1_attr(&si->unsignedAttrs, attr)) return 1; return 0; } int CMS_unsigned_add1_attr_by_OBJ(CMS_SignerInfo *si, const ASN1_OBJECT *obj, int type, const void *bytes, int len) { if (X509at_add1_attr_by_OBJ(&si->unsignedAttrs, obj, type, bytes, len)) return 1; return 0; } int CMS_unsigned_add1_attr_by_NID(CMS_SignerInfo *si, int nid, int type, const void *bytes, int len) { if (X509at_add1_attr_by_NID(&si->unsignedAttrs, nid, type, bytes, len)) return 1; return 0; } int CMS_unsigned_add1_attr_by_txt(CMS_SignerInfo *si, const char *attrname, int type, const void *bytes, int len) { if (X509at_add1_attr_by_txt(&si->unsignedAttrs, attrname, type, bytes, len)) return 1; return 0; } void *CMS_unsigned_get0_data_by_OBJ(CMS_SignerInfo *si, ASN1_OBJECT *oid, int lastpos, int type) { return X509at_get0_data_by_OBJ(si->unsignedAttrs, oid, lastpos, type); } /* * Retrieve an attribute by nid from a stack of attributes starting at index * *lastpos + 1. * Returns the attribute or NULL if there is no attribute. * If an attribute was found *lastpos returns the index of the found attribute. */ static X509_ATTRIBUTE *cms_attrib_get(int nid, const STACK_OF(X509_ATTRIBUTE) *attrs, int *lastpos) { X509_ATTRIBUTE *at; int loc; loc = X509at_get_attr_by_NID(attrs, nid, *lastpos); if (loc < 0) return NULL; at = X509at_get_attr(attrs, loc); *lastpos = loc; return at; } static int cms_check_attribute(int nid, int flags, int type, const STACK_OF(X509_ATTRIBUTE) *attrs, int have_attrs) { int lastpos = -1; X509_ATTRIBUTE *at = cms_attrib_get(nid, attrs, &lastpos); if (at != NULL) { int count = X509_ATTRIBUTE_count(at); /* Is this attribute allowed? */ if (((flags & type) == 0) /* check if multiple attributes of the same type are allowed */ || (((flags & CMS_ATTR_F_ONLY_ONE) != 0) && cms_attrib_get(nid, attrs, &lastpos) != NULL) /* Check if attribute should have exactly one value in its set */ || (((flags & CMS_ATTR_F_ONE_ATTR_VALUE) != 0) && count != 1) /* There should be at least one value */ || count == 0) return 0; } else { /* fail if a required attribute is missing */ if (have_attrs && ((flags & CMS_ATTR_F_REQUIRED_COND) != 0) && (flags & type) != 0) return 0; } return 1; } /* * Check that the signerinfo attributes obey the attribute rules which includes * the following checks * - If any signed attributes exist then there must be a Content Type * and Message Digest attribute in the signed attributes. * - The countersignature attribute is an optional unsigned attribute only. * - Content Type, Message Digest, and Signing time attributes are signed * attributes. Only one instance of each is allowed, with each of these * attributes containing a single attribute value in its set. */ int CMS_si_check_attributes(const CMS_SignerInfo *si) { int i; int have_signed_attrs = (CMS_signed_get_attr_count(si) > 0); int have_unsigned_attrs = (CMS_unsigned_get_attr_count(si) > 0); for (i = 0; i < (int)OSSL_NELEM(cms_attribute_properties); ++i) { int nid = cms_attribute_properties[i].nid; int flags = cms_attribute_properties[i].flags; if (!cms_check_attribute(nid, flags, CMS_ATTR_F_SIGNED, si->signedAttrs, have_signed_attrs) || !cms_check_attribute(nid, flags, CMS_ATTR_F_UNSIGNED, si->unsignedAttrs, have_unsigned_attrs)) { CMSerr(CMS_F_CMS_SI_CHECK_ATTRIBUTES, CMS_R_ATTRIBUTE_ERROR); return 0; } } return 1; } openssl-1.1.1f/crypto/cms/cms_cd.c000066400000000000000000000043311364063235100170450ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "cms_local.h" #ifdef ZLIB /* CMS CompressedData Utilities */ CMS_ContentInfo *cms_CompressedData_create(int comp_nid) { CMS_ContentInfo *cms; CMS_CompressedData *cd; /* * Will need something cleverer if there is ever more than one * compression algorithm or parameters have some meaning... */ if (comp_nid != NID_zlib_compression) { CMSerr(CMS_F_CMS_COMPRESSEDDATA_CREATE, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM); return NULL; } cms = CMS_ContentInfo_new(); if (cms == NULL) return NULL; cd = M_ASN1_new_of(CMS_CompressedData); if (cd == NULL) goto err; cms->contentType = OBJ_nid2obj(NID_id_smime_ct_compressedData); cms->d.compressedData = cd; cd->version = 0; X509_ALGOR_set0(cd->compressionAlgorithm, OBJ_nid2obj(NID_zlib_compression), V_ASN1_UNDEF, NULL); cd->encapContentInfo->eContentType = OBJ_nid2obj(NID_pkcs7_data); return cms; err: CMS_ContentInfo_free(cms); return NULL; } BIO *cms_CompressedData_init_bio(CMS_ContentInfo *cms) { CMS_CompressedData *cd; const ASN1_OBJECT *compoid; if (OBJ_obj2nid(cms->contentType) != NID_id_smime_ct_compressedData) { CMSerr(CMS_F_CMS_COMPRESSEDDATA_INIT_BIO, CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA); return NULL; } cd = cms->d.compressedData; X509_ALGOR_get0(&compoid, NULL, NULL, cd->compressionAlgorithm); if (OBJ_obj2nid(compoid) != NID_zlib_compression) { CMSerr(CMS_F_CMS_COMPRESSEDDATA_INIT_BIO, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM); return NULL; } return BIO_new(BIO_f_zlib()); } #endif openssl-1.1.1f/crypto/cms/cms_dd.c000066400000000000000000000045311364063235100170500ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include "cms_local.h" /* CMS DigestedData Utilities */ CMS_ContentInfo *cms_DigestedData_create(const EVP_MD *md) { CMS_ContentInfo *cms; CMS_DigestedData *dd; cms = CMS_ContentInfo_new(); if (cms == NULL) return NULL; dd = M_ASN1_new_of(CMS_DigestedData); if (dd == NULL) goto err; cms->contentType = OBJ_nid2obj(NID_pkcs7_digest); cms->d.digestedData = dd; dd->version = 0; dd->encapContentInfo->eContentType = OBJ_nid2obj(NID_pkcs7_data); X509_ALGOR_set_md(dd->digestAlgorithm, md); return cms; err: CMS_ContentInfo_free(cms); return NULL; } BIO *cms_DigestedData_init_bio(CMS_ContentInfo *cms) { CMS_DigestedData *dd; dd = cms->d.digestedData; return cms_DigestAlgorithm_init_bio(dd->digestAlgorithm); } int cms_DigestedData_do_final(CMS_ContentInfo *cms, BIO *chain, int verify) { EVP_MD_CTX *mctx = EVP_MD_CTX_new(); unsigned char md[EVP_MAX_MD_SIZE]; unsigned int mdlen; int r = 0; CMS_DigestedData *dd; if (mctx == NULL) { CMSerr(CMS_F_CMS_DIGESTEDDATA_DO_FINAL, ERR_R_MALLOC_FAILURE); goto err; } dd = cms->d.digestedData; if (!cms_DigestAlgorithm_find_ctx(mctx, chain, dd->digestAlgorithm)) goto err; if (EVP_DigestFinal_ex(mctx, md, &mdlen) <= 0) goto err; if (verify) { if (mdlen != (unsigned int)dd->digest->length) { CMSerr(CMS_F_CMS_DIGESTEDDATA_DO_FINAL, CMS_R_MESSAGEDIGEST_WRONG_LENGTH); goto err; } if (memcmp(md, dd->digest->data, mdlen)) CMSerr(CMS_F_CMS_DIGESTEDDATA_DO_FINAL, CMS_R_VERIFICATION_FAILURE); else r = 1; } else { if (!ASN1_STRING_set(dd->digest, md, mdlen)) goto err; r = 1; } err: EVP_MD_CTX_free(mctx); return r; } openssl-1.1.1f/crypto/cms/cms_enc.c000066400000000000000000000144471364063235100172350ustar00rootroot00000000000000/* * Copyright 2008-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include "cms_local.h" /* CMS EncryptedData Utilities */ /* Return BIO based on EncryptedContentInfo and key */ BIO *cms_EncryptedContent_init_bio(CMS_EncryptedContentInfo *ec) { BIO *b; EVP_CIPHER_CTX *ctx; const EVP_CIPHER *ciph; X509_ALGOR *calg = ec->contentEncryptionAlgorithm; unsigned char iv[EVP_MAX_IV_LENGTH], *piv = NULL; unsigned char *tkey = NULL; size_t tkeylen = 0; int ok = 0; int enc, keep_key = 0; enc = ec->cipher ? 1 : 0; b = BIO_new(BIO_f_cipher()); if (b == NULL) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, ERR_R_MALLOC_FAILURE); return NULL; } BIO_get_cipher_ctx(b, &ctx); if (enc) { ciph = ec->cipher; /* * If not keeping key set cipher to NULL so subsequent calls decrypt. */ if (ec->key) ec->cipher = NULL; } else { ciph = EVP_get_cipherbyobj(calg->algorithm); if (!ciph) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, CMS_R_UNKNOWN_CIPHER); goto err; } } if (EVP_CipherInit_ex(ctx, ciph, NULL, NULL, NULL, enc) <= 0) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, CMS_R_CIPHER_INITIALISATION_ERROR); goto err; } if (enc) { int ivlen; calg->algorithm = OBJ_nid2obj(EVP_CIPHER_CTX_type(ctx)); /* Generate a random IV if we need one */ ivlen = EVP_CIPHER_CTX_iv_length(ctx); if (ivlen > 0) { if (RAND_bytes(iv, ivlen) <= 0) goto err; piv = iv; } } else if (EVP_CIPHER_asn1_to_param(ctx, calg->parameter) <= 0) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR); goto err; } tkeylen = EVP_CIPHER_CTX_key_length(ctx); /* Generate random session key */ if (!enc || !ec->key) { tkey = OPENSSL_malloc(tkeylen); if (tkey == NULL) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_CIPHER_CTX_rand_key(ctx, tkey) <= 0) goto err; } if (!ec->key) { ec->key = tkey; ec->keylen = tkeylen; tkey = NULL; if (enc) keep_key = 1; else ERR_clear_error(); } if (ec->keylen != tkeylen) { /* If necessary set key length */ if (EVP_CIPHER_CTX_set_key_length(ctx, ec->keylen) <= 0) { /* * Only reveal failure if debugging so we don't leak information * which may be useful in MMA. */ if (enc || ec->debug) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, CMS_R_INVALID_KEY_LENGTH); goto err; } else { /* Use random key */ OPENSSL_clear_free(ec->key, ec->keylen); ec->key = tkey; ec->keylen = tkeylen; tkey = NULL; ERR_clear_error(); } } } if (EVP_CipherInit_ex(ctx, NULL, NULL, ec->key, piv, enc) <= 0) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, CMS_R_CIPHER_INITIALISATION_ERROR); goto err; } if (enc) { calg->parameter = ASN1_TYPE_new(); if (calg->parameter == NULL) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_CIPHER_param_to_asn1(ctx, calg->parameter) <= 0) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR); goto err; } /* If parameter type not set omit parameter */ if (calg->parameter->type == V_ASN1_UNDEF) { ASN1_TYPE_free(calg->parameter); calg->parameter = NULL; } } ok = 1; err: if (!keep_key || !ok) { OPENSSL_clear_free(ec->key, ec->keylen); ec->key = NULL; } OPENSSL_clear_free(tkey, tkeylen); if (ok) return b; BIO_free(b); return NULL; } int cms_EncryptedContent_init(CMS_EncryptedContentInfo *ec, const EVP_CIPHER *cipher, const unsigned char *key, size_t keylen) { ec->cipher = cipher; if (key) { if ((ec->key = OPENSSL_malloc(keylen)) == NULL) { CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT, ERR_R_MALLOC_FAILURE); return 0; } memcpy(ec->key, key, keylen); } ec->keylen = keylen; if (cipher) ec->contentType = OBJ_nid2obj(NID_pkcs7_data); return 1; } int CMS_EncryptedData_set1_key(CMS_ContentInfo *cms, const EVP_CIPHER *ciph, const unsigned char *key, size_t keylen) { CMS_EncryptedContentInfo *ec; if (!key || !keylen) { CMSerr(CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY, CMS_R_NO_KEY); return 0; } if (ciph) { cms->d.encryptedData = M_ASN1_new_of(CMS_EncryptedData); if (!cms->d.encryptedData) { CMSerr(CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY, ERR_R_MALLOC_FAILURE); return 0; } cms->contentType = OBJ_nid2obj(NID_pkcs7_encrypted); cms->d.encryptedData->version = 0; } else if (OBJ_obj2nid(cms->contentType) != NID_pkcs7_encrypted) { CMSerr(CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY, CMS_R_NOT_ENCRYPTED_DATA); return 0; } ec = cms->d.encryptedData->encryptedContentInfo; return cms_EncryptedContent_init(ec, ciph, key, keylen); } BIO *cms_EncryptedData_init_bio(CMS_ContentInfo *cms) { CMS_EncryptedData *enc = cms->d.encryptedData; if (enc->encryptedContentInfo->cipher && enc->unprotectedAttrs) enc->version = 2; return cms_EncryptedContent_init_bio(enc->encryptedContentInfo); } openssl-1.1.1f/crypto/cms/cms_env.c000066400000000000000000000571361364063235100172620ustar00rootroot00000000000000/* * Copyright 2008-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include "cms_local.h" #include "crypto/asn1.h" #include "crypto/evp.h" /* CMS EnvelopedData Utilities */ CMS_EnvelopedData *cms_get0_enveloped(CMS_ContentInfo *cms) { if (OBJ_obj2nid(cms->contentType) != NID_pkcs7_enveloped) { CMSerr(CMS_F_CMS_GET0_ENVELOPED, CMS_R_CONTENT_TYPE_NOT_ENVELOPED_DATA); return NULL; } return cms->d.envelopedData; } static CMS_EnvelopedData *cms_enveloped_data_init(CMS_ContentInfo *cms) { if (cms->d.other == NULL) { cms->d.envelopedData = M_ASN1_new_of(CMS_EnvelopedData); if (!cms->d.envelopedData) { CMSerr(CMS_F_CMS_ENVELOPED_DATA_INIT, ERR_R_MALLOC_FAILURE); return NULL; } cms->d.envelopedData->version = 0; cms->d.envelopedData->encryptedContentInfo->contentType = OBJ_nid2obj(NID_pkcs7_data); ASN1_OBJECT_free(cms->contentType); cms->contentType = OBJ_nid2obj(NID_pkcs7_enveloped); return cms->d.envelopedData; } return cms_get0_enveloped(cms); } int cms_env_asn1_ctrl(CMS_RecipientInfo *ri, int cmd) { EVP_PKEY *pkey; int i; if (ri->type == CMS_RECIPINFO_TRANS) pkey = ri->d.ktri->pkey; else if (ri->type == CMS_RECIPINFO_AGREE) { EVP_PKEY_CTX *pctx = ri->d.kari->pctx; if (!pctx) return 0; pkey = EVP_PKEY_CTX_get0_pkey(pctx); if (!pkey) return 0; } else return 0; if (!pkey->ameth || !pkey->ameth->pkey_ctrl) return 1; i = pkey->ameth->pkey_ctrl(pkey, ASN1_PKEY_CTRL_CMS_ENVELOPE, cmd, ri); if (i == -2) { CMSerr(CMS_F_CMS_ENV_ASN1_CTRL, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE); return 0; } if (i <= 0) { CMSerr(CMS_F_CMS_ENV_ASN1_CTRL, CMS_R_CTRL_FAILURE); return 0; } return 1; } STACK_OF(CMS_RecipientInfo) *CMS_get0_RecipientInfos(CMS_ContentInfo *cms) { CMS_EnvelopedData *env; env = cms_get0_enveloped(cms); if (!env) return NULL; return env->recipientInfos; } int CMS_RecipientInfo_type(CMS_RecipientInfo *ri) { return ri->type; } EVP_PKEY_CTX *CMS_RecipientInfo_get0_pkey_ctx(CMS_RecipientInfo *ri) { if (ri->type == CMS_RECIPINFO_TRANS) return ri->d.ktri->pctx; else if (ri->type == CMS_RECIPINFO_AGREE) return ri->d.kari->pctx; return NULL; } CMS_ContentInfo *CMS_EnvelopedData_create(const EVP_CIPHER *cipher) { CMS_ContentInfo *cms; CMS_EnvelopedData *env; cms = CMS_ContentInfo_new(); if (cms == NULL) goto merr; env = cms_enveloped_data_init(cms); if (env == NULL) goto merr; if (!cms_EncryptedContent_init(env->encryptedContentInfo, cipher, NULL, 0)) goto merr; return cms; merr: CMS_ContentInfo_free(cms); CMSerr(CMS_F_CMS_ENVELOPEDDATA_CREATE, ERR_R_MALLOC_FAILURE); return NULL; } /* Key Transport Recipient Info (KTRI) routines */ /* Initialise a ktri based on passed certificate and key */ static int cms_RecipientInfo_ktri_init(CMS_RecipientInfo *ri, X509 *recip, EVP_PKEY *pk, unsigned int flags) { CMS_KeyTransRecipientInfo *ktri; int idtype; ri->d.ktri = M_ASN1_new_of(CMS_KeyTransRecipientInfo); if (!ri->d.ktri) return 0; ri->type = CMS_RECIPINFO_TRANS; ktri = ri->d.ktri; if (flags & CMS_USE_KEYID) { ktri->version = 2; idtype = CMS_RECIPINFO_KEYIDENTIFIER; } else { ktri->version = 0; idtype = CMS_RECIPINFO_ISSUER_SERIAL; } /* * Not a typo: RecipientIdentifier and SignerIdentifier are the same * structure. */ if (!cms_set1_SignerIdentifier(ktri->rid, recip, idtype)) return 0; X509_up_ref(recip); EVP_PKEY_up_ref(pk); ktri->pkey = pk; ktri->recip = recip; if (flags & CMS_KEY_PARAM) { ktri->pctx = EVP_PKEY_CTX_new(ktri->pkey, NULL); if (ktri->pctx == NULL) return 0; if (EVP_PKEY_encrypt_init(ktri->pctx) <= 0) return 0; } else if (!cms_env_asn1_ctrl(ri, 0)) return 0; return 1; } /* * Add a recipient certificate using appropriate type of RecipientInfo */ CMS_RecipientInfo *CMS_add1_recipient_cert(CMS_ContentInfo *cms, X509 *recip, unsigned int flags) { CMS_RecipientInfo *ri = NULL; CMS_EnvelopedData *env; EVP_PKEY *pk = NULL; env = cms_get0_enveloped(cms); if (!env) goto err; /* Initialize recipient info */ ri = M_ASN1_new_of(CMS_RecipientInfo); if (!ri) goto merr; pk = X509_get0_pubkey(recip); if (!pk) { CMSerr(CMS_F_CMS_ADD1_RECIPIENT_CERT, CMS_R_ERROR_GETTING_PUBLIC_KEY); goto err; } switch (cms_pkey_get_ri_type(pk)) { case CMS_RECIPINFO_TRANS: if (!cms_RecipientInfo_ktri_init(ri, recip, pk, flags)) goto err; break; case CMS_RECIPINFO_AGREE: if (!cms_RecipientInfo_kari_init(ri, recip, pk, flags)) goto err; break; default: CMSerr(CMS_F_CMS_ADD1_RECIPIENT_CERT, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE); goto err; } if (!sk_CMS_RecipientInfo_push(env->recipientInfos, ri)) goto merr; return ri; merr: CMSerr(CMS_F_CMS_ADD1_RECIPIENT_CERT, ERR_R_MALLOC_FAILURE); err: M_ASN1_free_of(ri, CMS_RecipientInfo); return NULL; } int CMS_RecipientInfo_ktri_get0_algs(CMS_RecipientInfo *ri, EVP_PKEY **pk, X509 **recip, X509_ALGOR **palg) { CMS_KeyTransRecipientInfo *ktri; if (ri->type != CMS_RECIPINFO_TRANS) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_ALGS, CMS_R_NOT_KEY_TRANSPORT); return 0; } ktri = ri->d.ktri; if (pk) *pk = ktri->pkey; if (recip) *recip = ktri->recip; if (palg) *palg = ktri->keyEncryptionAlgorithm; return 1; } int CMS_RecipientInfo_ktri_get0_signer_id(CMS_RecipientInfo *ri, ASN1_OCTET_STRING **keyid, X509_NAME **issuer, ASN1_INTEGER **sno) { CMS_KeyTransRecipientInfo *ktri; if (ri->type != CMS_RECIPINFO_TRANS) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_SIGNER_ID, CMS_R_NOT_KEY_TRANSPORT); return 0; } ktri = ri->d.ktri; return cms_SignerIdentifier_get0_signer_id(ktri->rid, keyid, issuer, sno); } int CMS_RecipientInfo_ktri_cert_cmp(CMS_RecipientInfo *ri, X509 *cert) { if (ri->type != CMS_RECIPINFO_TRANS) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_CERT_CMP, CMS_R_NOT_KEY_TRANSPORT); return -2; } return cms_SignerIdentifier_cert_cmp(ri->d.ktri->rid, cert); } int CMS_RecipientInfo_set0_pkey(CMS_RecipientInfo *ri, EVP_PKEY *pkey) { if (ri->type != CMS_RECIPINFO_TRANS) { CMSerr(CMS_F_CMS_RECIPIENTINFO_SET0_PKEY, CMS_R_NOT_KEY_TRANSPORT); return 0; } EVP_PKEY_free(ri->d.ktri->pkey); ri->d.ktri->pkey = pkey; return 1; } /* Encrypt content key in key transport recipient info */ static int cms_RecipientInfo_ktri_encrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri) { CMS_KeyTransRecipientInfo *ktri; CMS_EncryptedContentInfo *ec; EVP_PKEY_CTX *pctx; unsigned char *ek = NULL; size_t eklen; int ret = 0; if (ri->type != CMS_RECIPINFO_TRANS) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT, CMS_R_NOT_KEY_TRANSPORT); return 0; } ktri = ri->d.ktri; ec = cms->d.envelopedData->encryptedContentInfo; pctx = ktri->pctx; if (pctx) { if (!cms_env_asn1_ctrl(ri, 0)) goto err; } else { pctx = EVP_PKEY_CTX_new(ktri->pkey, NULL); if (pctx == NULL) return 0; if (EVP_PKEY_encrypt_init(pctx) <= 0) goto err; } if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_ENCRYPT, EVP_PKEY_CTRL_CMS_ENCRYPT, 0, ri) <= 0) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT, CMS_R_CTRL_ERROR); goto err; } if (EVP_PKEY_encrypt(pctx, NULL, &eklen, ec->key, ec->keylen) <= 0) goto err; ek = OPENSSL_malloc(eklen); if (ek == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_PKEY_encrypt(pctx, ek, &eklen, ec->key, ec->keylen) <= 0) goto err; ASN1_STRING_set0(ktri->encryptedKey, ek, eklen); ek = NULL; ret = 1; err: EVP_PKEY_CTX_free(pctx); ktri->pctx = NULL; OPENSSL_free(ek); return ret; } /* Decrypt content key from KTRI */ static int cms_RecipientInfo_ktri_decrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri) { CMS_KeyTransRecipientInfo *ktri = ri->d.ktri; EVP_PKEY *pkey = ktri->pkey; unsigned char *ek = NULL; size_t eklen; int ret = 0; size_t fixlen = 0; CMS_EncryptedContentInfo *ec; ec = cms->d.envelopedData->encryptedContentInfo; if (ktri->pkey == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, CMS_R_NO_PRIVATE_KEY); return 0; } if (cms->d.envelopedData->encryptedContentInfo->havenocert && !cms->d.envelopedData->encryptedContentInfo->debug) { X509_ALGOR *calg = ec->contentEncryptionAlgorithm; const EVP_CIPHER *ciph = EVP_get_cipherbyobj(calg->algorithm); if (ciph == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, CMS_R_UNKNOWN_CIPHER); return 0; } fixlen = EVP_CIPHER_key_length(ciph); } ktri->pctx = EVP_PKEY_CTX_new(pkey, NULL); if (ktri->pctx == NULL) return 0; if (EVP_PKEY_decrypt_init(ktri->pctx) <= 0) goto err; if (!cms_env_asn1_ctrl(ri, 1)) goto err; if (EVP_PKEY_CTX_ctrl(ktri->pctx, -1, EVP_PKEY_OP_DECRYPT, EVP_PKEY_CTRL_CMS_DECRYPT, 0, ri) <= 0) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, CMS_R_CTRL_ERROR); goto err; } if (EVP_PKEY_decrypt(ktri->pctx, NULL, &eklen, ktri->encryptedKey->data, ktri->encryptedKey->length) <= 0) goto err; ek = OPENSSL_malloc(eklen); if (ek == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_PKEY_decrypt(ktri->pctx, ek, &eklen, ktri->encryptedKey->data, ktri->encryptedKey->length) <= 0 || eklen == 0 || (fixlen != 0 && eklen != fixlen)) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, CMS_R_CMS_LIB); goto err; } ret = 1; OPENSSL_clear_free(ec->key, ec->keylen); ec->key = ek; ec->keylen = eklen; err: EVP_PKEY_CTX_free(ktri->pctx); ktri->pctx = NULL; if (!ret) OPENSSL_free(ek); return ret; } /* Key Encrypted Key (KEK) RecipientInfo routines */ int CMS_RecipientInfo_kekri_id_cmp(CMS_RecipientInfo *ri, const unsigned char *id, size_t idlen) { ASN1_OCTET_STRING tmp_os; CMS_KEKRecipientInfo *kekri; if (ri->type != CMS_RECIPINFO_KEK) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ID_CMP, CMS_R_NOT_KEK); return -2; } kekri = ri->d.kekri; tmp_os.type = V_ASN1_OCTET_STRING; tmp_os.flags = 0; tmp_os.data = (unsigned char *)id; tmp_os.length = (int)idlen; return ASN1_OCTET_STRING_cmp(&tmp_os, kekri->kekid->keyIdentifier); } /* For now hard code AES key wrap info */ static size_t aes_wrap_keylen(int nid) { switch (nid) { case NID_id_aes128_wrap: return 16; case NID_id_aes192_wrap: return 24; case NID_id_aes256_wrap: return 32; default: return 0; } } CMS_RecipientInfo *CMS_add0_recipient_key(CMS_ContentInfo *cms, int nid, unsigned char *key, size_t keylen, unsigned char *id, size_t idlen, ASN1_GENERALIZEDTIME *date, ASN1_OBJECT *otherTypeId, ASN1_TYPE *otherType) { CMS_RecipientInfo *ri = NULL; CMS_EnvelopedData *env; CMS_KEKRecipientInfo *kekri; env = cms_get0_enveloped(cms); if (!env) goto err; if (nid == NID_undef) { switch (keylen) { case 16: nid = NID_id_aes128_wrap; break; case 24: nid = NID_id_aes192_wrap; break; case 32: nid = NID_id_aes256_wrap; break; default: CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY, CMS_R_INVALID_KEY_LENGTH); goto err; } } else { size_t exp_keylen = aes_wrap_keylen(nid); if (!exp_keylen) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY, CMS_R_UNSUPPORTED_KEK_ALGORITHM); goto err; } if (keylen != exp_keylen) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY, CMS_R_INVALID_KEY_LENGTH); goto err; } } /* Initialize recipient info */ ri = M_ASN1_new_of(CMS_RecipientInfo); if (!ri) goto merr; ri->d.kekri = M_ASN1_new_of(CMS_KEKRecipientInfo); if (!ri->d.kekri) goto merr; ri->type = CMS_RECIPINFO_KEK; kekri = ri->d.kekri; if (otherTypeId) { kekri->kekid->other = M_ASN1_new_of(CMS_OtherKeyAttribute); if (kekri->kekid->other == NULL) goto merr; } if (!sk_CMS_RecipientInfo_push(env->recipientInfos, ri)) goto merr; /* After this point no calls can fail */ kekri->version = 4; kekri->key = key; kekri->keylen = keylen; ASN1_STRING_set0(kekri->kekid->keyIdentifier, id, idlen); kekri->kekid->date = date; if (kekri->kekid->other) { kekri->kekid->other->keyAttrId = otherTypeId; kekri->kekid->other->keyAttr = otherType; } X509_ALGOR_set0(kekri->keyEncryptionAlgorithm, OBJ_nid2obj(nid), V_ASN1_UNDEF, NULL); return ri; merr: CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY, ERR_R_MALLOC_FAILURE); err: M_ASN1_free_of(ri, CMS_RecipientInfo); return NULL; } int CMS_RecipientInfo_kekri_get0_id(CMS_RecipientInfo *ri, X509_ALGOR **palg, ASN1_OCTET_STRING **pid, ASN1_GENERALIZEDTIME **pdate, ASN1_OBJECT **potherid, ASN1_TYPE **pothertype) { CMS_KEKIdentifier *rkid; if (ri->type != CMS_RECIPINFO_KEK) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_GET0_ID, CMS_R_NOT_KEK); return 0; } rkid = ri->d.kekri->kekid; if (palg) *palg = ri->d.kekri->keyEncryptionAlgorithm; if (pid) *pid = rkid->keyIdentifier; if (pdate) *pdate = rkid->date; if (potherid) { if (rkid->other) *potherid = rkid->other->keyAttrId; else *potherid = NULL; } if (pothertype) { if (rkid->other) *pothertype = rkid->other->keyAttr; else *pothertype = NULL; } return 1; } int CMS_RecipientInfo_set0_key(CMS_RecipientInfo *ri, unsigned char *key, size_t keylen) { CMS_KEKRecipientInfo *kekri; if (ri->type != CMS_RECIPINFO_KEK) { CMSerr(CMS_F_CMS_RECIPIENTINFO_SET0_KEY, CMS_R_NOT_KEK); return 0; } kekri = ri->d.kekri; kekri->key = key; kekri->keylen = keylen; return 1; } /* Encrypt content key in KEK recipient info */ static int cms_RecipientInfo_kekri_encrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri) { CMS_EncryptedContentInfo *ec; CMS_KEKRecipientInfo *kekri; AES_KEY actx; unsigned char *wkey = NULL; int wkeylen; int r = 0; ec = cms->d.envelopedData->encryptedContentInfo; kekri = ri->d.kekri; if (!kekri->key) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT, CMS_R_NO_KEY); return 0; } if (AES_set_encrypt_key(kekri->key, kekri->keylen << 3, &actx)) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT, CMS_R_ERROR_SETTING_KEY); goto err; } wkey = OPENSSL_malloc(ec->keylen + 8); if (wkey == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT, ERR_R_MALLOC_FAILURE); goto err; } wkeylen = AES_wrap_key(&actx, NULL, wkey, ec->key, ec->keylen); if (wkeylen <= 0) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT, CMS_R_WRAP_ERROR); goto err; } ASN1_STRING_set0(kekri->encryptedKey, wkey, wkeylen); r = 1; err: if (!r) OPENSSL_free(wkey); OPENSSL_cleanse(&actx, sizeof(actx)); return r; } /* Decrypt content key in KEK recipient info */ static int cms_RecipientInfo_kekri_decrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri) { CMS_EncryptedContentInfo *ec; CMS_KEKRecipientInfo *kekri; AES_KEY actx; unsigned char *ukey = NULL; int ukeylen; int r = 0, wrap_nid; ec = cms->d.envelopedData->encryptedContentInfo; kekri = ri->d.kekri; if (!kekri->key) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, CMS_R_NO_KEY); return 0; } wrap_nid = OBJ_obj2nid(kekri->keyEncryptionAlgorithm->algorithm); if (aes_wrap_keylen(wrap_nid) != kekri->keylen) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, CMS_R_INVALID_KEY_LENGTH); return 0; } /* If encrypted key length is invalid don't bother */ if (kekri->encryptedKey->length < 16) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, CMS_R_INVALID_ENCRYPTED_KEY_LENGTH); goto err; } if (AES_set_decrypt_key(kekri->key, kekri->keylen << 3, &actx)) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, CMS_R_ERROR_SETTING_KEY); goto err; } ukey = OPENSSL_malloc(kekri->encryptedKey->length - 8); if (ukey == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, ERR_R_MALLOC_FAILURE); goto err; } ukeylen = AES_unwrap_key(&actx, NULL, ukey, kekri->encryptedKey->data, kekri->encryptedKey->length); if (ukeylen <= 0) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, CMS_R_UNWRAP_ERROR); goto err; } ec->key = ukey; ec->keylen = ukeylen; r = 1; err: if (!r) OPENSSL_free(ukey); OPENSSL_cleanse(&actx, sizeof(actx)); return r; } int CMS_RecipientInfo_decrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri) { switch (ri->type) { case CMS_RECIPINFO_TRANS: return cms_RecipientInfo_ktri_decrypt(cms, ri); case CMS_RECIPINFO_KEK: return cms_RecipientInfo_kekri_decrypt(cms, ri); case CMS_RECIPINFO_PASS: return cms_RecipientInfo_pwri_crypt(cms, ri, 0); default: CMSerr(CMS_F_CMS_RECIPIENTINFO_DECRYPT, CMS_R_UNSUPPORTED_RECIPIENTINFO_TYPE); return 0; } } int CMS_RecipientInfo_encrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri) { switch (ri->type) { case CMS_RECIPINFO_TRANS: return cms_RecipientInfo_ktri_encrypt(cms, ri); case CMS_RECIPINFO_AGREE: return cms_RecipientInfo_kari_encrypt(cms, ri); case CMS_RECIPINFO_KEK: return cms_RecipientInfo_kekri_encrypt(cms, ri); case CMS_RECIPINFO_PASS: return cms_RecipientInfo_pwri_crypt(cms, ri, 1); default: CMSerr(CMS_F_CMS_RECIPIENTINFO_ENCRYPT, CMS_R_UNSUPPORTED_RECIPIENT_TYPE); return 0; } } /* Check structures and fixup version numbers (if necessary) */ static void cms_env_set_originfo_version(CMS_EnvelopedData *env) { CMS_OriginatorInfo *org = env->originatorInfo; int i; if (org == NULL) return; for (i = 0; i < sk_CMS_CertificateChoices_num(org->certificates); i++) { CMS_CertificateChoices *cch; cch = sk_CMS_CertificateChoices_value(org->certificates, i); if (cch->type == CMS_CERTCHOICE_OTHER) { env->version = 4; return; } else if (cch->type == CMS_CERTCHOICE_V2ACERT) { if (env->version < 3) env->version = 3; } } for (i = 0; i < sk_CMS_RevocationInfoChoice_num(org->crls); i++) { CMS_RevocationInfoChoice *rch; rch = sk_CMS_RevocationInfoChoice_value(org->crls, i); if (rch->type == CMS_REVCHOICE_OTHER) { env->version = 4; return; } } } static void cms_env_set_version(CMS_EnvelopedData *env) { int i; CMS_RecipientInfo *ri; /* * Can't set version higher than 4 so if 4 or more already nothing to do. */ if (env->version >= 4) return; cms_env_set_originfo_version(env); if (env->version >= 3) return; for (i = 0; i < sk_CMS_RecipientInfo_num(env->recipientInfos); i++) { ri = sk_CMS_RecipientInfo_value(env->recipientInfos, i); if (ri->type == CMS_RECIPINFO_PASS || ri->type == CMS_RECIPINFO_OTHER) { env->version = 3; return; } else if (ri->type != CMS_RECIPINFO_TRANS || ri->d.ktri->version != 0) { env->version = 2; } } if (env->originatorInfo || env->unprotectedAttrs) env->version = 2; if (env->version == 2) return; env->version = 0; } BIO *cms_EnvelopedData_init_bio(CMS_ContentInfo *cms) { CMS_EncryptedContentInfo *ec; STACK_OF(CMS_RecipientInfo) *rinfos; CMS_RecipientInfo *ri; int i, ok = 0; BIO *ret; /* Get BIO first to set up key */ ec = cms->d.envelopedData->encryptedContentInfo; ret = cms_EncryptedContent_init_bio(ec); /* If error or no cipher end of processing */ if (!ret || !ec->cipher) return ret; /* Now encrypt content key according to each RecipientInfo type */ rinfos = cms->d.envelopedData->recipientInfos; for (i = 0; i < sk_CMS_RecipientInfo_num(rinfos); i++) { ri = sk_CMS_RecipientInfo_value(rinfos, i); if (CMS_RecipientInfo_encrypt(cms, ri) <= 0) { CMSerr(CMS_F_CMS_ENVELOPEDDATA_INIT_BIO, CMS_R_ERROR_SETTING_RECIPIENTINFO); goto err; } } cms_env_set_version(cms->d.envelopedData); ok = 1; err: ec->cipher = NULL; OPENSSL_clear_free(ec->key, ec->keylen); ec->key = NULL; ec->keylen = 0; if (ok) return ret; BIO_free(ret); return NULL; } /* * Get RecipientInfo type (if any) supported by a key (public or private). To * retain compatibility with previous behaviour if the ctrl value isn't * supported we assume key transport. */ int cms_pkey_get_ri_type(EVP_PKEY *pk) { if (pk->ameth && pk->ameth->pkey_ctrl) { int i, r; i = pk->ameth->pkey_ctrl(pk, ASN1_PKEY_CTRL_CMS_RI_TYPE, 0, &r); if (i > 0) return r; } return CMS_RECIPINFO_TRANS; } openssl-1.1.1f/crypto/cms/cms_err.c000066400000000000000000000364101364063235100172520ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA CMS_str_functs[] = { {ERR_PACK(ERR_LIB_CMS, CMS_F_CHECK_CONTENT, 0), "check_content"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ADD0_CERT, 0), "CMS_add0_cert"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ADD0_RECIPIENT_KEY, 0), "CMS_add0_recipient_key"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, 0), "CMS_add0_recipient_password"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ADD1_RECEIPTREQUEST, 0), "CMS_add1_ReceiptRequest"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ADD1_RECIPIENT_CERT, 0), "CMS_add1_recipient_cert"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ADD1_SIGNER, 0), "CMS_add1_signer"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ADD1_SIGNINGTIME, 0), "cms_add1_signingTime"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_COMPRESS, 0), "CMS_compress"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_COMPRESSEDDATA_CREATE, 0), "cms_CompressedData_create"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_COMPRESSEDDATA_INIT_BIO, 0), "cms_CompressedData_init_bio"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_COPY_CONTENT, 0), "cms_copy_content"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_COPY_MESSAGEDIGEST, 0), "cms_copy_messageDigest"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DATA, 0), "CMS_data"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DATAFINAL, 0), "CMS_dataFinal"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DATAINIT, 0), "CMS_dataInit"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DECRYPT, 0), "CMS_decrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DECRYPT_SET1_KEY, 0), "CMS_decrypt_set1_key"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DECRYPT_SET1_PASSWORD, 0), "CMS_decrypt_set1_password"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DECRYPT_SET1_PKEY, 0), "CMS_decrypt_set1_pkey"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DIGESTALGORITHM_FIND_CTX, 0), "cms_DigestAlgorithm_find_ctx"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DIGESTALGORITHM_INIT_BIO, 0), "cms_DigestAlgorithm_init_bio"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DIGESTEDDATA_DO_FINAL, 0), "cms_DigestedData_do_final"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_DIGEST_VERIFY, 0), "CMS_digest_verify"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENCODE_RECEIPT, 0), "cms_encode_Receipt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENCRYPT, 0), "CMS_encrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENCRYPTEDCONTENT_INIT, 0), "cms_EncryptedContent_init"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO, 0), "cms_EncryptedContent_init_bio"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENCRYPTEDDATA_DECRYPT, 0), "CMS_EncryptedData_decrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENCRYPTEDDATA_ENCRYPT, 0), "CMS_EncryptedData_encrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY, 0), "CMS_EncryptedData_set1_key"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENVELOPEDDATA_CREATE, 0), "CMS_EnvelopedData_create"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENVELOPEDDATA_INIT_BIO, 0), "cms_EnvelopedData_init_bio"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENVELOPED_DATA_INIT, 0), "cms_enveloped_data_init"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_ENV_ASN1_CTRL, 0), "cms_env_asn1_ctrl"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_FINAL, 0), "CMS_final"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_GET0_CERTIFICATE_CHOICES, 0), "cms_get0_certificate_choices"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_GET0_CONTENT, 0), "CMS_get0_content"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_GET0_ECONTENT_TYPE, 0), "cms_get0_econtent_type"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_GET0_ENVELOPED, 0), "cms_get0_enveloped"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_GET0_REVOCATION_CHOICES, 0), "cms_get0_revocation_choices"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_GET0_SIGNED, 0), "cms_get0_signed"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_MSGSIGDIGEST_ADD1, 0), "cms_msgSigDigest_add1"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECEIPTREQUEST_CREATE0, 0), "CMS_ReceiptRequest_create0"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECEIPT_VERIFY, 0), "cms_Receipt_verify"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_DECRYPT, 0), "CMS_RecipientInfo_decrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_ENCRYPT, 0), "CMS_RecipientInfo_encrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KARI_ENCRYPT, 0), "cms_RecipientInfo_kari_encrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KARI_GET0_ALG, 0), "CMS_RecipientInfo_kari_get0_alg"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KARI_GET0_ORIG_ID, 0), "CMS_RecipientInfo_kari_get0_orig_id"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KARI_GET0_REKS, 0), "CMS_RecipientInfo_kari_get0_reks"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KARI_ORIG_ID_CMP, 0), "CMS_RecipientInfo_kari_orig_id_cmp"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, 0), "cms_RecipientInfo_kekri_decrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT, 0), "cms_RecipientInfo_kekri_encrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KEKRI_GET0_ID, 0), "CMS_RecipientInfo_kekri_get0_id"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KEKRI_ID_CMP, 0), "CMS_RecipientInfo_kekri_id_cmp"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KTRI_CERT_CMP, 0), "CMS_RecipientInfo_ktri_cert_cmp"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, 0), "cms_RecipientInfo_ktri_decrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT, 0), "cms_RecipientInfo_ktri_encrypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_ALGS, 0), "CMS_RecipientInfo_ktri_get0_algs"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_SIGNER_ID, 0), "CMS_RecipientInfo_ktri_get0_signer_id"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, 0), "cms_RecipientInfo_pwri_crypt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_SET0_KEY, 0), "CMS_RecipientInfo_set0_key"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_SET0_PASSWORD, 0), "CMS_RecipientInfo_set0_password"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_RECIPIENTINFO_SET0_PKEY, 0), "CMS_RecipientInfo_set0_pkey"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SD_ASN1_CTRL, 0), "cms_sd_asn1_ctrl"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SET1_IAS, 0), "cms_set1_ias"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SET1_KEYID, 0), "cms_set1_keyid"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SET1_SIGNERIDENTIFIER, 0), "cms_set1_SignerIdentifier"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SET_DETACHED, 0), "CMS_set_detached"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGN, 0), "CMS_sign"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGNED_DATA_INIT, 0), "cms_signed_data_init"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGNERINFO_CONTENT_SIGN, 0), "cms_SignerInfo_content_sign"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGNERINFO_SIGN, 0), "CMS_SignerInfo_sign"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGNERINFO_VERIFY, 0), "CMS_SignerInfo_verify"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGNERINFO_VERIFY_CERT, 0), "cms_signerinfo_verify_cert"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT, 0), "CMS_SignerInfo_verify_content"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SIGN_RECEIPT, 0), "CMS_sign_receipt"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_SI_CHECK_ATTRIBUTES, 0), "CMS_si_check_attributes"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_STREAM, 0), "CMS_stream"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_UNCOMPRESS, 0), "CMS_uncompress"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_CMS_VERIFY, 0), "CMS_verify"}, {ERR_PACK(ERR_LIB_CMS, CMS_F_KEK_UNWRAP_KEY, 0), "kek_unwrap_key"}, {0, NULL} }; static const ERR_STRING_DATA CMS_str_reasons[] = { {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ADD_SIGNER_ERROR), "add signer error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ATTRIBUTE_ERROR), "attribute error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CERTIFICATE_ALREADY_PRESENT), "certificate already present"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CERTIFICATE_HAS_NO_KEYID), "certificate has no keyid"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CERTIFICATE_VERIFY_ERROR), "certificate verify error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CIPHER_INITIALISATION_ERROR), "cipher initialisation error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR), "cipher parameter initialisation error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CMS_DATAFINAL_ERROR), "cms datafinal error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CMS_LIB), "cms lib"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENTIDENTIFIER_MISMATCH), "contentidentifier mismatch"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_NOT_FOUND), "content not found"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_MISMATCH), "content type mismatch"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA), "content type not compressed data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_NOT_ENVELOPED_DATA), "content type not enveloped data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_NOT_SIGNED_DATA), "content type not signed data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_VERIFY_ERROR), "content verify error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CTRL_ERROR), "ctrl error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CTRL_FAILURE), "ctrl failure"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_DECRYPT_ERROR), "decrypt error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_GETTING_PUBLIC_KEY), "error getting public key"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE), "error reading messagedigest attribute"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_SETTING_KEY), "error setting key"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_SETTING_RECIPIENTINFO), "error setting recipientinfo"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_ENCRYPTED_KEY_LENGTH), "invalid encrypted key length"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER), "invalid key encryption parameter"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_KEY_LENGTH), "invalid key length"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MD_BIO_INIT_ERROR), "md bio init error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MESSAGEDIGEST_ATTRIBUTE_WRONG_LENGTH), "messagedigest attribute wrong length"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MESSAGEDIGEST_WRONG_LENGTH), "messagedigest wrong length"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MSGSIGDIGEST_ERROR), "msgsigdigest error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE), "msgsigdigest verification failure"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MSGSIGDIGEST_WRONG_LENGTH), "msgsigdigest wrong length"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NEED_ONE_SIGNER), "need one signer"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_A_SIGNED_RECEIPT), "not a signed receipt"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_ENCRYPTED_DATA), "not encrypted data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_KEK), "not kek"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_KEY_AGREEMENT), "not key agreement"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_KEY_TRANSPORT), "not key transport"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_PWRI), "not pwri"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE), "not supported for this key type"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_CIPHER), "no cipher"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_CONTENT), "no content"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_CONTENT_TYPE), "no content type"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_DEFAULT_DIGEST), "no default digest"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_DIGEST_SET), "no digest set"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_KEY), "no key"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_KEY_OR_CERT), "no key or cert"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MATCHING_DIGEST), "no matching digest"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MATCHING_RECIPIENT), "no matching recipient"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MATCHING_SIGNATURE), "no matching signature"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MSGSIGDIGEST), "no msgsigdigest"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_PASSWORD), "no password"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_PRIVATE_KEY), "no private key"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_PUBLIC_KEY), "no public key"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_RECEIPT_REQUEST), "no receipt request"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_SIGNERS), "no signers"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE), "private key does not match certificate"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_RECEIPT_DECODE_ERROR), "receipt decode error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_RECIPIENT_ERROR), "recipient error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_SIGNER_CERTIFICATE_NOT_FOUND), "signer certificate not found"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_SIGNFINAL_ERROR), "signfinal error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_SMIME_TEXT_ERROR), "smime text error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_STORE_INIT_ERROR), "store init error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_COMPRESSED_DATA), "type not compressed data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_DATA), "type not data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_DIGESTED_DATA), "type not digested data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_ENCRYPTED_DATA), "type not encrypted data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_ENVELOPED_DATA), "type not enveloped data"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNABLE_TO_FINALIZE_CONTEXT), "unable to finalize context"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNKNOWN_CIPHER), "unknown cipher"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNKNOWN_DIGEST_ALGORITHM), "unknown digest algorithm"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNKNOWN_ID), "unknown id"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM), "unsupported compression algorithm"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_CONTENT_TYPE), "unsupported content type"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_KEK_ALGORITHM), "unsupported kek algorithm"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM), "unsupported key encryption algorithm"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_RECIPIENTINFO_TYPE), "unsupported recipientinfo type"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_RECIPIENT_TYPE), "unsupported recipient type"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_TYPE), "unsupported type"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNWRAP_ERROR), "unwrap error"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNWRAP_FAILURE), "unwrap failure"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_VERIFICATION_FAILURE), "verification failure"}, {ERR_PACK(ERR_LIB_CMS, 0, CMS_R_WRAP_ERROR), "wrap error"}, {0, NULL} }; #endif int ERR_load_CMS_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(CMS_str_functs[0].error) == NULL) { ERR_load_strings_const(CMS_str_functs); ERR_load_strings_const(CMS_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/cms/cms_ess.c000066400000000000000000000225641364063235100172610ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include "cms_local.h" IMPLEMENT_ASN1_FUNCTIONS(CMS_ReceiptRequest) /* ESS services: for now just Signed Receipt related */ int CMS_get1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest **prr) { ASN1_STRING *str; CMS_ReceiptRequest *rr = NULL; if (prr) *prr = NULL; str = CMS_signed_get0_data_by_OBJ(si, OBJ_nid2obj (NID_id_smime_aa_receiptRequest), -3, V_ASN1_SEQUENCE); if (!str) return 0; rr = ASN1_item_unpack(str, ASN1_ITEM_rptr(CMS_ReceiptRequest)); if (!rr) return -1; if (prr) *prr = rr; else CMS_ReceiptRequest_free(rr); return 1; } CMS_ReceiptRequest *CMS_ReceiptRequest_create0(unsigned char *id, int idlen, int allorfirst, STACK_OF(GENERAL_NAMES) *receiptList, STACK_OF(GENERAL_NAMES) *receiptsTo) { CMS_ReceiptRequest *rr = NULL; rr = CMS_ReceiptRequest_new(); if (rr == NULL) goto merr; if (id) ASN1_STRING_set0(rr->signedContentIdentifier, id, idlen); else { if (!ASN1_STRING_set(rr->signedContentIdentifier, NULL, 32)) goto merr; if (RAND_bytes(rr->signedContentIdentifier->data, 32) <= 0) goto err; } sk_GENERAL_NAMES_pop_free(rr->receiptsTo, GENERAL_NAMES_free); rr->receiptsTo = receiptsTo; if (receiptList) { rr->receiptsFrom->type = 1; rr->receiptsFrom->d.receiptList = receiptList; } else { rr->receiptsFrom->type = 0; rr->receiptsFrom->d.allOrFirstTier = allorfirst; } return rr; merr: CMSerr(CMS_F_CMS_RECEIPTREQUEST_CREATE0, ERR_R_MALLOC_FAILURE); err: CMS_ReceiptRequest_free(rr); return NULL; } int CMS_add1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest *rr) { unsigned char *rrder = NULL; int rrderlen, r = 0; rrderlen = i2d_CMS_ReceiptRequest(rr, &rrder); if (rrderlen < 0) goto merr; if (!CMS_signed_add1_attr_by_NID(si, NID_id_smime_aa_receiptRequest, V_ASN1_SEQUENCE, rrder, rrderlen)) goto merr; r = 1; merr: if (!r) CMSerr(CMS_F_CMS_ADD1_RECEIPTREQUEST, ERR_R_MALLOC_FAILURE); OPENSSL_free(rrder); return r; } void CMS_ReceiptRequest_get0_values(CMS_ReceiptRequest *rr, ASN1_STRING **pcid, int *pallorfirst, STACK_OF(GENERAL_NAMES) **plist, STACK_OF(GENERAL_NAMES) **prto) { if (pcid) *pcid = rr->signedContentIdentifier; if (rr->receiptsFrom->type == 0) { if (pallorfirst) *pallorfirst = (int)rr->receiptsFrom->d.allOrFirstTier; if (plist) *plist = NULL; } else { if (pallorfirst) *pallorfirst = -1; if (plist) *plist = rr->receiptsFrom->d.receiptList; } if (prto) *prto = rr->receiptsTo; } /* Digest a SignerInfo structure for msgSigDigest attribute processing */ static int cms_msgSigDigest(CMS_SignerInfo *si, unsigned char *dig, unsigned int *diglen) { const EVP_MD *md; md = EVP_get_digestbyobj(si->digestAlgorithm->algorithm); if (md == NULL) return 0; if (!ASN1_item_digest(ASN1_ITEM_rptr(CMS_Attributes_Verify), md, si->signedAttrs, dig, diglen)) return 0; return 1; } /* Add a msgSigDigest attribute to a SignerInfo */ int cms_msgSigDigest_add1(CMS_SignerInfo *dest, CMS_SignerInfo *src) { unsigned char dig[EVP_MAX_MD_SIZE]; unsigned int diglen; if (!cms_msgSigDigest(src, dig, &diglen)) { CMSerr(CMS_F_CMS_MSGSIGDIGEST_ADD1, CMS_R_MSGSIGDIGEST_ERROR); return 0; } if (!CMS_signed_add1_attr_by_NID(dest, NID_id_smime_aa_msgSigDigest, V_ASN1_OCTET_STRING, dig, diglen)) { CMSerr(CMS_F_CMS_MSGSIGDIGEST_ADD1, ERR_R_MALLOC_FAILURE); return 0; } return 1; } /* Verify signed receipt after it has already passed normal CMS verify */ int cms_Receipt_verify(CMS_ContentInfo *cms, CMS_ContentInfo *req_cms) { int r = 0, i; CMS_ReceiptRequest *rr = NULL; CMS_Receipt *rct = NULL; STACK_OF(CMS_SignerInfo) *sis, *osis; CMS_SignerInfo *si, *osi = NULL; ASN1_OCTET_STRING *msig, **pcont; ASN1_OBJECT *octype; unsigned char dig[EVP_MAX_MD_SIZE]; unsigned int diglen; /* Get SignerInfos, also checks SignedData content type */ osis = CMS_get0_SignerInfos(req_cms); sis = CMS_get0_SignerInfos(cms); if (!osis || !sis) goto err; if (sk_CMS_SignerInfo_num(sis) != 1) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NEED_ONE_SIGNER); goto err; } /* Check receipt content type */ if (OBJ_obj2nid(CMS_get0_eContentType(cms)) != NID_id_smime_ct_receipt) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NOT_A_SIGNED_RECEIPT); goto err; } /* Extract and decode receipt content */ pcont = CMS_get0_content(cms); if (!pcont || !*pcont) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_CONTENT); goto err; } rct = ASN1_item_unpack(*pcont, ASN1_ITEM_rptr(CMS_Receipt)); if (!rct) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_RECEIPT_DECODE_ERROR); goto err; } /* Locate original request */ for (i = 0; i < sk_CMS_SignerInfo_num(osis); i++) { osi = sk_CMS_SignerInfo_value(osis, i); if (!ASN1_STRING_cmp(osi->signature, rct->originatorSignatureValue)) break; } if (i == sk_CMS_SignerInfo_num(osis)) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_MATCHING_SIGNATURE); goto err; } si = sk_CMS_SignerInfo_value(sis, 0); /* Get msgSigDigest value and compare */ msig = CMS_signed_get0_data_by_OBJ(si, OBJ_nid2obj (NID_id_smime_aa_msgSigDigest), -3, V_ASN1_OCTET_STRING); if (!msig) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_MSGSIGDIGEST); goto err; } if (!cms_msgSigDigest(osi, dig, &diglen)) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_MSGSIGDIGEST_ERROR); goto err; } if (diglen != (unsigned int)msig->length) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_MSGSIGDIGEST_WRONG_LENGTH); goto err; } if (memcmp(dig, msig->data, diglen)) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE); goto err; } /* Compare content types */ octype = CMS_signed_get0_data_by_OBJ(osi, OBJ_nid2obj(NID_pkcs9_contentType), -3, V_ASN1_OBJECT); if (!octype) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_CONTENT_TYPE); goto err; } /* Compare details in receipt request */ if (OBJ_cmp(octype, rct->contentType)) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_CONTENT_TYPE_MISMATCH); goto err; } /* Get original receipt request details */ if (CMS_get1_ReceiptRequest(osi, &rr) <= 0) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_RECEIPT_REQUEST); goto err; } if (ASN1_STRING_cmp(rr->signedContentIdentifier, rct->signedContentIdentifier)) { CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_CONTENTIDENTIFIER_MISMATCH); goto err; } r = 1; err: CMS_ReceiptRequest_free(rr); M_ASN1_free_of(rct, CMS_Receipt); return r; } /* * Encode a Receipt into an OCTET STRING read for including into content of a * SignedData ContentInfo. */ ASN1_OCTET_STRING *cms_encode_Receipt(CMS_SignerInfo *si) { CMS_Receipt rct; CMS_ReceiptRequest *rr = NULL; ASN1_OBJECT *ctype; ASN1_OCTET_STRING *os = NULL; /* Get original receipt request */ /* Get original receipt request details */ if (CMS_get1_ReceiptRequest(si, &rr) <= 0) { CMSerr(CMS_F_CMS_ENCODE_RECEIPT, CMS_R_NO_RECEIPT_REQUEST); goto err; } /* Get original content type */ ctype = CMS_signed_get0_data_by_OBJ(si, OBJ_nid2obj(NID_pkcs9_contentType), -3, V_ASN1_OBJECT); if (!ctype) { CMSerr(CMS_F_CMS_ENCODE_RECEIPT, CMS_R_NO_CONTENT_TYPE); goto err; } rct.version = 1; rct.contentType = ctype; rct.signedContentIdentifier = rr->signedContentIdentifier; rct.originatorSignatureValue = si->signature; os = ASN1_item_pack(&rct, ASN1_ITEM_rptr(CMS_Receipt), NULL); err: CMS_ReceiptRequest_free(rr); return os; } openssl-1.1.1f/crypto/cms/cms_io.c000066400000000000000000000053401364063235100170670ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "cms_local.h" int CMS_stream(unsigned char ***boundary, CMS_ContentInfo *cms) { ASN1_OCTET_STRING **pos; pos = CMS_get0_content(cms); if (pos == NULL) return 0; if (*pos == NULL) *pos = ASN1_OCTET_STRING_new(); if (*pos != NULL) { (*pos)->flags |= ASN1_STRING_FLAG_NDEF; (*pos)->flags &= ~ASN1_STRING_FLAG_CONT; *boundary = &(*pos)->data; return 1; } CMSerr(CMS_F_CMS_STREAM, ERR_R_MALLOC_FAILURE); return 0; } CMS_ContentInfo *d2i_CMS_bio(BIO *bp, CMS_ContentInfo **cms) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(CMS_ContentInfo), bp, cms); } int i2d_CMS_bio(BIO *bp, CMS_ContentInfo *cms) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(CMS_ContentInfo), bp, cms); } IMPLEMENT_PEM_rw_const(CMS, CMS_ContentInfo, PEM_STRING_CMS, CMS_ContentInfo) BIO *BIO_new_CMS(BIO *out, CMS_ContentInfo *cms) { return BIO_new_NDEF(out, (ASN1_VALUE *)cms, ASN1_ITEM_rptr(CMS_ContentInfo)); } /* CMS wrappers round generalised stream and MIME routines */ int i2d_CMS_bio_stream(BIO *out, CMS_ContentInfo *cms, BIO *in, int flags) { return i2d_ASN1_bio_stream(out, (ASN1_VALUE *)cms, in, flags, ASN1_ITEM_rptr(CMS_ContentInfo)); } int PEM_write_bio_CMS_stream(BIO *out, CMS_ContentInfo *cms, BIO *in, int flags) { return PEM_write_bio_ASN1_stream(out, (ASN1_VALUE *)cms, in, flags, "CMS", ASN1_ITEM_rptr(CMS_ContentInfo)); } int SMIME_write_CMS(BIO *bio, CMS_ContentInfo *cms, BIO *data, int flags) { STACK_OF(X509_ALGOR) *mdalgs; int ctype_nid = OBJ_obj2nid(cms->contentType); int econt_nid = OBJ_obj2nid(CMS_get0_eContentType(cms)); if (ctype_nid == NID_pkcs7_signed) mdalgs = cms->d.signedData->digestAlgorithms; else mdalgs = NULL; return SMIME_write_ASN1(bio, (ASN1_VALUE *)cms, data, flags, ctype_nid, econt_nid, mdalgs, ASN1_ITEM_rptr(CMS_ContentInfo)); } CMS_ContentInfo *SMIME_read_CMS(BIO *bio, BIO **bcont) { return (CMS_ContentInfo *)SMIME_read_ASN1(bio, bcont, ASN1_ITEM_rptr (CMS_ContentInfo)); } openssl-1.1.1f/crypto/cms/cms_kari.c000066400000000000000000000305541364063235100174130ustar00rootroot00000000000000/* * Copyright 2013-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include "cms_local.h" #include "crypto/asn1.h" /* Key Agreement Recipient Info (KARI) routines */ int CMS_RecipientInfo_kari_get0_alg(CMS_RecipientInfo *ri, X509_ALGOR **palg, ASN1_OCTET_STRING **pukm) { if (ri->type != CMS_RECIPINFO_AGREE) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KARI_GET0_ALG, CMS_R_NOT_KEY_AGREEMENT); return 0; } if (palg) *palg = ri->d.kari->keyEncryptionAlgorithm; if (pukm) *pukm = ri->d.kari->ukm; return 1; } /* Retrieve recipient encrypted keys from a kari */ STACK_OF(CMS_RecipientEncryptedKey) *CMS_RecipientInfo_kari_get0_reks(CMS_RecipientInfo *ri) { if (ri->type != CMS_RECIPINFO_AGREE) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KARI_GET0_REKS, CMS_R_NOT_KEY_AGREEMENT); return NULL; } return ri->d.kari->recipientEncryptedKeys; } int CMS_RecipientInfo_kari_get0_orig_id(CMS_RecipientInfo *ri, X509_ALGOR **pubalg, ASN1_BIT_STRING **pubkey, ASN1_OCTET_STRING **keyid, X509_NAME **issuer, ASN1_INTEGER **sno) { CMS_OriginatorIdentifierOrKey *oik; if (ri->type != CMS_RECIPINFO_AGREE) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KARI_GET0_ORIG_ID, CMS_R_NOT_KEY_AGREEMENT); return 0; } oik = ri->d.kari->originator; if (issuer) *issuer = NULL; if (sno) *sno = NULL; if (keyid) *keyid = NULL; if (pubalg) *pubalg = NULL; if (pubkey) *pubkey = NULL; if (oik->type == CMS_OIK_ISSUER_SERIAL) { if (issuer) *issuer = oik->d.issuerAndSerialNumber->issuer; if (sno) *sno = oik->d.issuerAndSerialNumber->serialNumber; } else if (oik->type == CMS_OIK_KEYIDENTIFIER) { if (keyid) *keyid = oik->d.subjectKeyIdentifier; } else if (oik->type == CMS_OIK_PUBKEY) { if (pubalg) *pubalg = oik->d.originatorKey->algorithm; if (pubkey) *pubkey = oik->d.originatorKey->publicKey; } else return 0; return 1; } int CMS_RecipientInfo_kari_orig_id_cmp(CMS_RecipientInfo *ri, X509 *cert) { CMS_OriginatorIdentifierOrKey *oik; if (ri->type != CMS_RECIPINFO_AGREE) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KARI_ORIG_ID_CMP, CMS_R_NOT_KEY_AGREEMENT); return -2; } oik = ri->d.kari->originator; if (oik->type == CMS_OIK_ISSUER_SERIAL) return cms_ias_cert_cmp(oik->d.issuerAndSerialNumber, cert); else if (oik->type == CMS_OIK_KEYIDENTIFIER) return cms_keyid_cert_cmp(oik->d.subjectKeyIdentifier, cert); return -1; } int CMS_RecipientEncryptedKey_get0_id(CMS_RecipientEncryptedKey *rek, ASN1_OCTET_STRING **keyid, ASN1_GENERALIZEDTIME **tm, CMS_OtherKeyAttribute **other, X509_NAME **issuer, ASN1_INTEGER **sno) { CMS_KeyAgreeRecipientIdentifier *rid = rek->rid; if (rid->type == CMS_REK_ISSUER_SERIAL) { if (issuer) *issuer = rid->d.issuerAndSerialNumber->issuer; if (sno) *sno = rid->d.issuerAndSerialNumber->serialNumber; if (keyid) *keyid = NULL; if (tm) *tm = NULL; if (other) *other = NULL; } else if (rid->type == CMS_REK_KEYIDENTIFIER) { if (keyid) *keyid = rid->d.rKeyId->subjectKeyIdentifier; if (tm) *tm = rid->d.rKeyId->date; if (other) *other = rid->d.rKeyId->other; if (issuer) *issuer = NULL; if (sno) *sno = NULL; } else return 0; return 1; } int CMS_RecipientEncryptedKey_cert_cmp(CMS_RecipientEncryptedKey *rek, X509 *cert) { CMS_KeyAgreeRecipientIdentifier *rid = rek->rid; if (rid->type == CMS_REK_ISSUER_SERIAL) return cms_ias_cert_cmp(rid->d.issuerAndSerialNumber, cert); else if (rid->type == CMS_REK_KEYIDENTIFIER) return cms_keyid_cert_cmp(rid->d.rKeyId->subjectKeyIdentifier, cert); else return -1; } int CMS_RecipientInfo_kari_set0_pkey(CMS_RecipientInfo *ri, EVP_PKEY *pk) { EVP_PKEY_CTX *pctx; CMS_KeyAgreeRecipientInfo *kari = ri->d.kari; EVP_PKEY_CTX_free(kari->pctx); kari->pctx = NULL; if (!pk) return 1; pctx = EVP_PKEY_CTX_new(pk, NULL); if (!pctx || EVP_PKEY_derive_init(pctx) <= 0) goto err; kari->pctx = pctx; return 1; err: EVP_PKEY_CTX_free(pctx); return 0; } EVP_CIPHER_CTX *CMS_RecipientInfo_kari_get0_ctx(CMS_RecipientInfo *ri) { if (ri->type == CMS_RECIPINFO_AGREE) return ri->d.kari->ctx; return NULL; } /* * Derive KEK and decrypt/encrypt with it to produce either the original CEK * or the encrypted CEK. */ static int cms_kek_cipher(unsigned char **pout, size_t *poutlen, const unsigned char *in, size_t inlen, CMS_KeyAgreeRecipientInfo *kari, int enc) { /* Key encryption key */ unsigned char kek[EVP_MAX_KEY_LENGTH]; size_t keklen; int rv = 0; unsigned char *out = NULL; int outlen; keklen = EVP_CIPHER_CTX_key_length(kari->ctx); if (keklen > EVP_MAX_KEY_LENGTH) return 0; /* Derive KEK */ if (EVP_PKEY_derive(kari->pctx, kek, &keklen) <= 0) goto err; /* Set KEK in context */ if (!EVP_CipherInit_ex(kari->ctx, NULL, NULL, kek, NULL, enc)) goto err; /* obtain output length of ciphered key */ if (!EVP_CipherUpdate(kari->ctx, NULL, &outlen, in, inlen)) goto err; out = OPENSSL_malloc(outlen); if (out == NULL) goto err; if (!EVP_CipherUpdate(kari->ctx, out, &outlen, in, inlen)) goto err; *pout = out; *poutlen = (size_t)outlen; rv = 1; err: OPENSSL_cleanse(kek, keklen); if (!rv) OPENSSL_free(out); EVP_CIPHER_CTX_reset(kari->ctx); /* FIXME: WHY IS kari->pctx freed here? /RL */ EVP_PKEY_CTX_free(kari->pctx); kari->pctx = NULL; return rv; } int CMS_RecipientInfo_kari_decrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri, CMS_RecipientEncryptedKey *rek) { int rv = 0; unsigned char *enckey = NULL, *cek = NULL; size_t enckeylen; size_t ceklen; CMS_EncryptedContentInfo *ec; enckeylen = rek->encryptedKey->length; enckey = rek->encryptedKey->data; /* Setup all parameters to derive KEK */ if (!cms_env_asn1_ctrl(ri, 1)) goto err; /* Attempt to decrypt CEK */ if (!cms_kek_cipher(&cek, &ceklen, enckey, enckeylen, ri->d.kari, 0)) goto err; ec = cms->d.envelopedData->encryptedContentInfo; OPENSSL_clear_free(ec->key, ec->keylen); ec->key = cek; ec->keylen = ceklen; cek = NULL; rv = 1; err: OPENSSL_free(cek); return rv; } /* Create ephemeral key and initialise context based on it */ static int cms_kari_create_ephemeral_key(CMS_KeyAgreeRecipientInfo *kari, EVP_PKEY *pk) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *ekey = NULL; int rv = 0; pctx = EVP_PKEY_CTX_new(pk, NULL); if (!pctx) goto err; if (EVP_PKEY_keygen_init(pctx) <= 0) goto err; if (EVP_PKEY_keygen(pctx, &ekey) <= 0) goto err; EVP_PKEY_CTX_free(pctx); pctx = EVP_PKEY_CTX_new(ekey, NULL); if (!pctx) goto err; if (EVP_PKEY_derive_init(pctx) <= 0) goto err; kari->pctx = pctx; rv = 1; err: if (!rv) EVP_PKEY_CTX_free(pctx); EVP_PKEY_free(ekey); return rv; } /* Initialise a kari based on passed certificate and key */ int cms_RecipientInfo_kari_init(CMS_RecipientInfo *ri, X509 *recip, EVP_PKEY *pk, unsigned int flags) { CMS_KeyAgreeRecipientInfo *kari; CMS_RecipientEncryptedKey *rek = NULL; ri->d.kari = M_ASN1_new_of(CMS_KeyAgreeRecipientInfo); if (!ri->d.kari) return 0; ri->type = CMS_RECIPINFO_AGREE; kari = ri->d.kari; kari->version = 3; rek = M_ASN1_new_of(CMS_RecipientEncryptedKey); if (rek == NULL) return 0; if (!sk_CMS_RecipientEncryptedKey_push(kari->recipientEncryptedKeys, rek)) { M_ASN1_free_of(rek, CMS_RecipientEncryptedKey); return 0; } if (flags & CMS_USE_KEYID) { rek->rid->type = CMS_REK_KEYIDENTIFIER; rek->rid->d.rKeyId = M_ASN1_new_of(CMS_RecipientKeyIdentifier); if (rek->rid->d.rKeyId == NULL) return 0; if (!cms_set1_keyid(&rek->rid->d.rKeyId->subjectKeyIdentifier, recip)) return 0; } else { rek->rid->type = CMS_REK_ISSUER_SERIAL; if (!cms_set1_ias(&rek->rid->d.issuerAndSerialNumber, recip)) return 0; } /* Create ephemeral key */ if (!cms_kari_create_ephemeral_key(kari, pk)) return 0; EVP_PKEY_up_ref(pk); rek->pkey = pk; return 1; } static int cms_wrap_init(CMS_KeyAgreeRecipientInfo *kari, const EVP_CIPHER *cipher) { EVP_CIPHER_CTX *ctx = kari->ctx; const EVP_CIPHER *kekcipher; int keylen = EVP_CIPHER_key_length(cipher); /* If a suitable wrap algorithm is already set nothing to do */ kekcipher = EVP_CIPHER_CTX_cipher(ctx); if (kekcipher) { if (EVP_CIPHER_CTX_mode(ctx) != EVP_CIPH_WRAP_MODE) return 0; return 1; } /* * Pick a cipher based on content encryption cipher. If it is DES3 use * DES3 wrap otherwise use AES wrap similar to key size. */ #ifndef OPENSSL_NO_DES if (EVP_CIPHER_type(cipher) == NID_des_ede3_cbc) kekcipher = EVP_des_ede3_wrap(); else #endif if (keylen <= 16) kekcipher = EVP_aes_128_wrap(); else if (keylen <= 24) kekcipher = EVP_aes_192_wrap(); else kekcipher = EVP_aes_256_wrap(); return EVP_EncryptInit_ex(ctx, kekcipher, NULL, NULL, NULL); } /* Encrypt content key in key agreement recipient info */ int cms_RecipientInfo_kari_encrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri) { CMS_KeyAgreeRecipientInfo *kari; CMS_EncryptedContentInfo *ec; CMS_RecipientEncryptedKey *rek; STACK_OF(CMS_RecipientEncryptedKey) *reks; int i; if (ri->type != CMS_RECIPINFO_AGREE) { CMSerr(CMS_F_CMS_RECIPIENTINFO_KARI_ENCRYPT, CMS_R_NOT_KEY_AGREEMENT); return 0; } kari = ri->d.kari; reks = kari->recipientEncryptedKeys; ec = cms->d.envelopedData->encryptedContentInfo; /* Initialise wrap algorithm parameters */ if (!cms_wrap_init(kari, ec->cipher)) return 0; /* * If no originator key set up initialise for ephemeral key the public key * ASN1 structure will set the actual public key value. */ if (kari->originator->type == -1) { CMS_OriginatorIdentifierOrKey *oik = kari->originator; oik->type = CMS_OIK_PUBKEY; oik->d.originatorKey = M_ASN1_new_of(CMS_OriginatorPublicKey); if (!oik->d.originatorKey) return 0; } /* Initialise KDF algorithm */ if (!cms_env_asn1_ctrl(ri, 0)) return 0; /* For each rek, derive KEK, encrypt CEK */ for (i = 0; i < sk_CMS_RecipientEncryptedKey_num(reks); i++) { unsigned char *enckey; size_t enckeylen; rek = sk_CMS_RecipientEncryptedKey_value(reks, i); if (EVP_PKEY_derive_set_peer(kari->pctx, rek->pkey) <= 0) return 0; if (!cms_kek_cipher(&enckey, &enckeylen, ec->key, ec->keylen, kari, 1)) return 0; ASN1_STRING_set0(rek->encryptedKey, enckey, enckeylen); } return 1; } openssl-1.1.1f/crypto/cms/cms_lib.c000066400000000000000000000367201364063235100172340ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "cms_local.h" IMPLEMENT_ASN1_FUNCTIONS(CMS_ContentInfo) IMPLEMENT_ASN1_PRINT_FUNCTION(CMS_ContentInfo) const ASN1_OBJECT *CMS_get0_type(const CMS_ContentInfo *cms) { return cms->contentType; } CMS_ContentInfo *cms_Data_create(void) { CMS_ContentInfo *cms; cms = CMS_ContentInfo_new(); if (cms != NULL) { cms->contentType = OBJ_nid2obj(NID_pkcs7_data); /* Never detached */ CMS_set_detached(cms, 0); } return cms; } BIO *cms_content_bio(CMS_ContentInfo *cms) { ASN1_OCTET_STRING **pos = CMS_get0_content(cms); if (!pos) return NULL; /* If content detached data goes nowhere: create NULL BIO */ if (!*pos) return BIO_new(BIO_s_null()); /* * If content not detached and created return memory BIO */ if (!*pos || ((*pos)->flags == ASN1_STRING_FLAG_CONT)) return BIO_new(BIO_s_mem()); /* Else content was read in: return read only BIO for it */ return BIO_new_mem_buf((*pos)->data, (*pos)->length); } BIO *CMS_dataInit(CMS_ContentInfo *cms, BIO *icont) { BIO *cmsbio, *cont; if (icont) cont = icont; else cont = cms_content_bio(cms); if (!cont) { CMSerr(CMS_F_CMS_DATAINIT, CMS_R_NO_CONTENT); return NULL; } switch (OBJ_obj2nid(cms->contentType)) { case NID_pkcs7_data: return cont; case NID_pkcs7_signed: cmsbio = cms_SignedData_init_bio(cms); break; case NID_pkcs7_digest: cmsbio = cms_DigestedData_init_bio(cms); break; #ifdef ZLIB case NID_id_smime_ct_compressedData: cmsbio = cms_CompressedData_init_bio(cms); break; #endif case NID_pkcs7_encrypted: cmsbio = cms_EncryptedData_init_bio(cms); break; case NID_pkcs7_enveloped: cmsbio = cms_EnvelopedData_init_bio(cms); break; default: CMSerr(CMS_F_CMS_DATAINIT, CMS_R_UNSUPPORTED_TYPE); return NULL; } if (cmsbio) return BIO_push(cmsbio, cont); if (!icont) BIO_free(cont); return NULL; } int CMS_dataFinal(CMS_ContentInfo *cms, BIO *cmsbio) { ASN1_OCTET_STRING **pos = CMS_get0_content(cms); if (!pos) return 0; /* If embedded content find memory BIO and set content */ if (*pos && ((*pos)->flags & ASN1_STRING_FLAG_CONT)) { BIO *mbio; unsigned char *cont; long contlen; mbio = BIO_find_type(cmsbio, BIO_TYPE_MEM); if (!mbio) { CMSerr(CMS_F_CMS_DATAFINAL, CMS_R_CONTENT_NOT_FOUND); return 0; } contlen = BIO_get_mem_data(mbio, &cont); /* Set bio as read only so its content can't be clobbered */ BIO_set_flags(mbio, BIO_FLAGS_MEM_RDONLY); BIO_set_mem_eof_return(mbio, 0); ASN1_STRING_set0(*pos, cont, contlen); (*pos)->flags &= ~ASN1_STRING_FLAG_CONT; } switch (OBJ_obj2nid(cms->contentType)) { case NID_pkcs7_data: case NID_pkcs7_enveloped: case NID_pkcs7_encrypted: case NID_id_smime_ct_compressedData: /* Nothing to do */ return 1; case NID_pkcs7_signed: return cms_SignedData_final(cms, cmsbio); case NID_pkcs7_digest: return cms_DigestedData_do_final(cms, cmsbio, 0); default: CMSerr(CMS_F_CMS_DATAFINAL, CMS_R_UNSUPPORTED_TYPE); return 0; } } /* * Return an OCTET STRING pointer to content. This allows it to be accessed * or set later. */ ASN1_OCTET_STRING **CMS_get0_content(CMS_ContentInfo *cms) { switch (OBJ_obj2nid(cms->contentType)) { case NID_pkcs7_data: return &cms->d.data; case NID_pkcs7_signed: return &cms->d.signedData->encapContentInfo->eContent; case NID_pkcs7_enveloped: return &cms->d.envelopedData->encryptedContentInfo->encryptedContent; case NID_pkcs7_digest: return &cms->d.digestedData->encapContentInfo->eContent; case NID_pkcs7_encrypted: return &cms->d.encryptedData->encryptedContentInfo->encryptedContent; case NID_id_smime_ct_authData: return &cms->d.authenticatedData->encapContentInfo->eContent; case NID_id_smime_ct_compressedData: return &cms->d.compressedData->encapContentInfo->eContent; default: if (cms->d.other->type == V_ASN1_OCTET_STRING) return &cms->d.other->value.octet_string; CMSerr(CMS_F_CMS_GET0_CONTENT, CMS_R_UNSUPPORTED_CONTENT_TYPE); return NULL; } } /* * Return an ASN1_OBJECT pointer to content type. This allows it to be * accessed or set later. */ static ASN1_OBJECT **cms_get0_econtent_type(CMS_ContentInfo *cms) { switch (OBJ_obj2nid(cms->contentType)) { case NID_pkcs7_signed: return &cms->d.signedData->encapContentInfo->eContentType; case NID_pkcs7_enveloped: return &cms->d.envelopedData->encryptedContentInfo->contentType; case NID_pkcs7_digest: return &cms->d.digestedData->encapContentInfo->eContentType; case NID_pkcs7_encrypted: return &cms->d.encryptedData->encryptedContentInfo->contentType; case NID_id_smime_ct_authData: return &cms->d.authenticatedData->encapContentInfo->eContentType; case NID_id_smime_ct_compressedData: return &cms->d.compressedData->encapContentInfo->eContentType; default: CMSerr(CMS_F_CMS_GET0_ECONTENT_TYPE, CMS_R_UNSUPPORTED_CONTENT_TYPE); return NULL; } } const ASN1_OBJECT *CMS_get0_eContentType(CMS_ContentInfo *cms) { ASN1_OBJECT **petype; petype = cms_get0_econtent_type(cms); if (petype) return *petype; return NULL; } int CMS_set1_eContentType(CMS_ContentInfo *cms, const ASN1_OBJECT *oid) { ASN1_OBJECT **petype, *etype; petype = cms_get0_econtent_type(cms); if (!petype) return 0; if (!oid) return 1; etype = OBJ_dup(oid); if (!etype) return 0; ASN1_OBJECT_free(*petype); *petype = etype; return 1; } int CMS_is_detached(CMS_ContentInfo *cms) { ASN1_OCTET_STRING **pos; pos = CMS_get0_content(cms); if (!pos) return -1; if (*pos) return 0; return 1; } int CMS_set_detached(CMS_ContentInfo *cms, int detached) { ASN1_OCTET_STRING **pos; pos = CMS_get0_content(cms); if (!pos) return 0; if (detached) { ASN1_OCTET_STRING_free(*pos); *pos = NULL; return 1; } if (*pos == NULL) *pos = ASN1_OCTET_STRING_new(); if (*pos != NULL) { /* * NB: special flag to show content is created and not read in. */ (*pos)->flags |= ASN1_STRING_FLAG_CONT; return 1; } CMSerr(CMS_F_CMS_SET_DETACHED, ERR_R_MALLOC_FAILURE); return 0; } /* Create a digest BIO from an X509_ALGOR structure */ BIO *cms_DigestAlgorithm_init_bio(X509_ALGOR *digestAlgorithm) { BIO *mdbio = NULL; const ASN1_OBJECT *digestoid; const EVP_MD *digest; X509_ALGOR_get0(&digestoid, NULL, NULL, digestAlgorithm); digest = EVP_get_digestbyobj(digestoid); if (!digest) { CMSerr(CMS_F_CMS_DIGESTALGORITHM_INIT_BIO, CMS_R_UNKNOWN_DIGEST_ALGORITHM); goto err; } mdbio = BIO_new(BIO_f_md()); if (mdbio == NULL || !BIO_set_md(mdbio, digest)) { CMSerr(CMS_F_CMS_DIGESTALGORITHM_INIT_BIO, CMS_R_MD_BIO_INIT_ERROR); goto err; } return mdbio; err: BIO_free(mdbio); return NULL; } /* Locate a message digest content from a BIO chain based on SignerInfo */ int cms_DigestAlgorithm_find_ctx(EVP_MD_CTX *mctx, BIO *chain, X509_ALGOR *mdalg) { int nid; const ASN1_OBJECT *mdoid; X509_ALGOR_get0(&mdoid, NULL, NULL, mdalg); nid = OBJ_obj2nid(mdoid); /* Look for digest type to match signature */ for (;;) { EVP_MD_CTX *mtmp; chain = BIO_find_type(chain, BIO_TYPE_MD); if (chain == NULL) { CMSerr(CMS_F_CMS_DIGESTALGORITHM_FIND_CTX, CMS_R_NO_MATCHING_DIGEST); return 0; } BIO_get_md_ctx(chain, &mtmp); if (EVP_MD_CTX_type(mtmp) == nid /* * Workaround for broken implementations that use signature * algorithm OID instead of digest. */ || EVP_MD_pkey_type(EVP_MD_CTX_md(mtmp)) == nid) return EVP_MD_CTX_copy_ex(mctx, mtmp); chain = BIO_next(chain); } } static STACK_OF(CMS_CertificateChoices) **cms_get0_certificate_choices(CMS_ContentInfo *cms) { switch (OBJ_obj2nid(cms->contentType)) { case NID_pkcs7_signed: return &cms->d.signedData->certificates; case NID_pkcs7_enveloped: if (cms->d.envelopedData->originatorInfo == NULL) return NULL; return &cms->d.envelopedData->originatorInfo->certificates; default: CMSerr(CMS_F_CMS_GET0_CERTIFICATE_CHOICES, CMS_R_UNSUPPORTED_CONTENT_TYPE); return NULL; } } CMS_CertificateChoices *CMS_add0_CertificateChoices(CMS_ContentInfo *cms) { STACK_OF(CMS_CertificateChoices) **pcerts; CMS_CertificateChoices *cch; pcerts = cms_get0_certificate_choices(cms); if (!pcerts) return NULL; if (!*pcerts) *pcerts = sk_CMS_CertificateChoices_new_null(); if (!*pcerts) return NULL; cch = M_ASN1_new_of(CMS_CertificateChoices); if (!cch) return NULL; if (!sk_CMS_CertificateChoices_push(*pcerts, cch)) { M_ASN1_free_of(cch, CMS_CertificateChoices); return NULL; } return cch; } int CMS_add0_cert(CMS_ContentInfo *cms, X509 *cert) { CMS_CertificateChoices *cch; STACK_OF(CMS_CertificateChoices) **pcerts; int i; pcerts = cms_get0_certificate_choices(cms); if (!pcerts) return 0; for (i = 0; i < sk_CMS_CertificateChoices_num(*pcerts); i++) { cch = sk_CMS_CertificateChoices_value(*pcerts, i); if (cch->type == CMS_CERTCHOICE_CERT) { if (!X509_cmp(cch->d.certificate, cert)) { CMSerr(CMS_F_CMS_ADD0_CERT, CMS_R_CERTIFICATE_ALREADY_PRESENT); return 0; } } } cch = CMS_add0_CertificateChoices(cms); if (!cch) return 0; cch->type = CMS_CERTCHOICE_CERT; cch->d.certificate = cert; return 1; } int CMS_add1_cert(CMS_ContentInfo *cms, X509 *cert) { int r; r = CMS_add0_cert(cms, cert); if (r > 0) X509_up_ref(cert); return r; } static STACK_OF(CMS_RevocationInfoChoice) **cms_get0_revocation_choices(CMS_ContentInfo *cms) { switch (OBJ_obj2nid(cms->contentType)) { case NID_pkcs7_signed: return &cms->d.signedData->crls; case NID_pkcs7_enveloped: if (cms->d.envelopedData->originatorInfo == NULL) return NULL; return &cms->d.envelopedData->originatorInfo->crls; default: CMSerr(CMS_F_CMS_GET0_REVOCATION_CHOICES, CMS_R_UNSUPPORTED_CONTENT_TYPE); return NULL; } } CMS_RevocationInfoChoice *CMS_add0_RevocationInfoChoice(CMS_ContentInfo *cms) { STACK_OF(CMS_RevocationInfoChoice) **pcrls; CMS_RevocationInfoChoice *rch; pcrls = cms_get0_revocation_choices(cms); if (!pcrls) return NULL; if (!*pcrls) *pcrls = sk_CMS_RevocationInfoChoice_new_null(); if (!*pcrls) return NULL; rch = M_ASN1_new_of(CMS_RevocationInfoChoice); if (!rch) return NULL; if (!sk_CMS_RevocationInfoChoice_push(*pcrls, rch)) { M_ASN1_free_of(rch, CMS_RevocationInfoChoice); return NULL; } return rch; } int CMS_add0_crl(CMS_ContentInfo *cms, X509_CRL *crl) { CMS_RevocationInfoChoice *rch; rch = CMS_add0_RevocationInfoChoice(cms); if (!rch) return 0; rch->type = CMS_REVCHOICE_CRL; rch->d.crl = crl; return 1; } int CMS_add1_crl(CMS_ContentInfo *cms, X509_CRL *crl) { int r; r = CMS_add0_crl(cms, crl); if (r > 0) X509_CRL_up_ref(crl); return r; } STACK_OF(X509) *CMS_get1_certs(CMS_ContentInfo *cms) { STACK_OF(X509) *certs = NULL; CMS_CertificateChoices *cch; STACK_OF(CMS_CertificateChoices) **pcerts; int i; pcerts = cms_get0_certificate_choices(cms); if (!pcerts) return NULL; for (i = 0; i < sk_CMS_CertificateChoices_num(*pcerts); i++) { cch = sk_CMS_CertificateChoices_value(*pcerts, i); if (cch->type == 0) { if (!certs) { certs = sk_X509_new_null(); if (!certs) return NULL; } if (!sk_X509_push(certs, cch->d.certificate)) { sk_X509_pop_free(certs, X509_free); return NULL; } X509_up_ref(cch->d.certificate); } } return certs; } STACK_OF(X509_CRL) *CMS_get1_crls(CMS_ContentInfo *cms) { STACK_OF(X509_CRL) *crls = NULL; STACK_OF(CMS_RevocationInfoChoice) **pcrls; CMS_RevocationInfoChoice *rch; int i; pcrls = cms_get0_revocation_choices(cms); if (!pcrls) return NULL; for (i = 0; i < sk_CMS_RevocationInfoChoice_num(*pcrls); i++) { rch = sk_CMS_RevocationInfoChoice_value(*pcrls, i); if (rch->type == 0) { if (!crls) { crls = sk_X509_CRL_new_null(); if (!crls) return NULL; } if (!sk_X509_CRL_push(crls, rch->d.crl)) { sk_X509_CRL_pop_free(crls, X509_CRL_free); return NULL; } X509_CRL_up_ref(rch->d.crl); } } return crls; } int cms_ias_cert_cmp(CMS_IssuerAndSerialNumber *ias, X509 *cert) { int ret; ret = X509_NAME_cmp(ias->issuer, X509_get_issuer_name(cert)); if (ret) return ret; return ASN1_INTEGER_cmp(ias->serialNumber, X509_get_serialNumber(cert)); } int cms_keyid_cert_cmp(ASN1_OCTET_STRING *keyid, X509 *cert) { const ASN1_OCTET_STRING *cert_keyid = X509_get0_subject_key_id(cert); if (cert_keyid == NULL) return -1; return ASN1_OCTET_STRING_cmp(keyid, cert_keyid); } int cms_set1_ias(CMS_IssuerAndSerialNumber **pias, X509 *cert) { CMS_IssuerAndSerialNumber *ias; ias = M_ASN1_new_of(CMS_IssuerAndSerialNumber); if (!ias) goto err; if (!X509_NAME_set(&ias->issuer, X509_get_issuer_name(cert))) goto err; if (!ASN1_STRING_copy(ias->serialNumber, X509_get_serialNumber(cert))) goto err; M_ASN1_free_of(*pias, CMS_IssuerAndSerialNumber); *pias = ias; return 1; err: M_ASN1_free_of(ias, CMS_IssuerAndSerialNumber); CMSerr(CMS_F_CMS_SET1_IAS, ERR_R_MALLOC_FAILURE); return 0; } int cms_set1_keyid(ASN1_OCTET_STRING **pkeyid, X509 *cert) { ASN1_OCTET_STRING *keyid = NULL; const ASN1_OCTET_STRING *cert_keyid; cert_keyid = X509_get0_subject_key_id(cert); if (cert_keyid == NULL) { CMSerr(CMS_F_CMS_SET1_KEYID, CMS_R_CERTIFICATE_HAS_NO_KEYID); return 0; } keyid = ASN1_STRING_dup(cert_keyid); if (!keyid) { CMSerr(CMS_F_CMS_SET1_KEYID, ERR_R_MALLOC_FAILURE); return 0; } ASN1_OCTET_STRING_free(*pkeyid); *pkeyid = keyid; return 1; } openssl-1.1.1f/crypto/cms/cms_local.h000066400000000000000000000330321364063235100175560ustar00rootroot00000000000000/* * Copyright 2008-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_CMS_LOCAL_H # define OSSL_CRYPTO_CMS_LOCAL_H # include /* * Cryptographic message syntax (CMS) structures: taken from RFC3852 */ /* Forward references */ typedef struct CMS_IssuerAndSerialNumber_st CMS_IssuerAndSerialNumber; typedef struct CMS_EncapsulatedContentInfo_st CMS_EncapsulatedContentInfo; typedef struct CMS_SignerIdentifier_st CMS_SignerIdentifier; typedef struct CMS_SignedData_st CMS_SignedData; typedef struct CMS_OtherRevocationInfoFormat_st CMS_OtherRevocationInfoFormat; typedef struct CMS_OriginatorInfo_st CMS_OriginatorInfo; typedef struct CMS_EncryptedContentInfo_st CMS_EncryptedContentInfo; typedef struct CMS_EnvelopedData_st CMS_EnvelopedData; typedef struct CMS_DigestedData_st CMS_DigestedData; typedef struct CMS_EncryptedData_st CMS_EncryptedData; typedef struct CMS_AuthenticatedData_st CMS_AuthenticatedData; typedef struct CMS_CompressedData_st CMS_CompressedData; typedef struct CMS_OtherCertificateFormat_st CMS_OtherCertificateFormat; typedef struct CMS_KeyTransRecipientInfo_st CMS_KeyTransRecipientInfo; typedef struct CMS_OriginatorPublicKey_st CMS_OriginatorPublicKey; typedef struct CMS_OriginatorIdentifierOrKey_st CMS_OriginatorIdentifierOrKey; typedef struct CMS_KeyAgreeRecipientInfo_st CMS_KeyAgreeRecipientInfo; typedef struct CMS_RecipientKeyIdentifier_st CMS_RecipientKeyIdentifier; typedef struct CMS_KeyAgreeRecipientIdentifier_st CMS_KeyAgreeRecipientIdentifier; typedef struct CMS_KEKIdentifier_st CMS_KEKIdentifier; typedef struct CMS_KEKRecipientInfo_st CMS_KEKRecipientInfo; typedef struct CMS_PasswordRecipientInfo_st CMS_PasswordRecipientInfo; typedef struct CMS_OtherRecipientInfo_st CMS_OtherRecipientInfo; typedef struct CMS_ReceiptsFrom_st CMS_ReceiptsFrom; struct CMS_ContentInfo_st { ASN1_OBJECT *contentType; union { ASN1_OCTET_STRING *data; CMS_SignedData *signedData; CMS_EnvelopedData *envelopedData; CMS_DigestedData *digestedData; CMS_EncryptedData *encryptedData; CMS_AuthenticatedData *authenticatedData; CMS_CompressedData *compressedData; ASN1_TYPE *other; /* Other types ... */ void *otherData; } d; }; DEFINE_STACK_OF(CMS_CertificateChoices) struct CMS_SignedData_st { int32_t version; STACK_OF(X509_ALGOR) *digestAlgorithms; CMS_EncapsulatedContentInfo *encapContentInfo; STACK_OF(CMS_CertificateChoices) *certificates; STACK_OF(CMS_RevocationInfoChoice) *crls; STACK_OF(CMS_SignerInfo) *signerInfos; }; struct CMS_EncapsulatedContentInfo_st { ASN1_OBJECT *eContentType; ASN1_OCTET_STRING *eContent; /* Set to 1 if incomplete structure only part set up */ int partial; }; struct CMS_SignerInfo_st { int32_t version; CMS_SignerIdentifier *sid; X509_ALGOR *digestAlgorithm; STACK_OF(X509_ATTRIBUTE) *signedAttrs; X509_ALGOR *signatureAlgorithm; ASN1_OCTET_STRING *signature; STACK_OF(X509_ATTRIBUTE) *unsignedAttrs; /* Signing certificate and key */ X509 *signer; EVP_PKEY *pkey; /* Digest and public key context for alternative parameters */ EVP_MD_CTX *mctx; EVP_PKEY_CTX *pctx; }; struct CMS_SignerIdentifier_st { int type; union { CMS_IssuerAndSerialNumber *issuerAndSerialNumber; ASN1_OCTET_STRING *subjectKeyIdentifier; } d; }; struct CMS_EnvelopedData_st { int32_t version; CMS_OriginatorInfo *originatorInfo; STACK_OF(CMS_RecipientInfo) *recipientInfos; CMS_EncryptedContentInfo *encryptedContentInfo; STACK_OF(X509_ATTRIBUTE) *unprotectedAttrs; }; struct CMS_OriginatorInfo_st { STACK_OF(CMS_CertificateChoices) *certificates; STACK_OF(CMS_RevocationInfoChoice) *crls; }; struct CMS_EncryptedContentInfo_st { ASN1_OBJECT *contentType; X509_ALGOR *contentEncryptionAlgorithm; ASN1_OCTET_STRING *encryptedContent; /* Content encryption algorithm and key */ const EVP_CIPHER *cipher; unsigned char *key; size_t keylen; /* Set to 1 if we are debugging decrypt and don't fake keys for MMA */ int debug; /* Set to 1 if we have no cert and need extra safety measures for MMA */ int havenocert; }; struct CMS_RecipientInfo_st { int type; union { CMS_KeyTransRecipientInfo *ktri; CMS_KeyAgreeRecipientInfo *kari; CMS_KEKRecipientInfo *kekri; CMS_PasswordRecipientInfo *pwri; CMS_OtherRecipientInfo *ori; } d; }; typedef CMS_SignerIdentifier CMS_RecipientIdentifier; struct CMS_KeyTransRecipientInfo_st { int32_t version; CMS_RecipientIdentifier *rid; X509_ALGOR *keyEncryptionAlgorithm; ASN1_OCTET_STRING *encryptedKey; /* Recipient Key and cert */ X509 *recip; EVP_PKEY *pkey; /* Public key context for this operation */ EVP_PKEY_CTX *pctx; }; struct CMS_KeyAgreeRecipientInfo_st { int32_t version; CMS_OriginatorIdentifierOrKey *originator; ASN1_OCTET_STRING *ukm; X509_ALGOR *keyEncryptionAlgorithm; STACK_OF(CMS_RecipientEncryptedKey) *recipientEncryptedKeys; /* Public key context associated with current operation */ EVP_PKEY_CTX *pctx; /* Cipher context for CEK wrapping */ EVP_CIPHER_CTX *ctx; }; struct CMS_OriginatorIdentifierOrKey_st { int type; union { CMS_IssuerAndSerialNumber *issuerAndSerialNumber; ASN1_OCTET_STRING *subjectKeyIdentifier; CMS_OriginatorPublicKey *originatorKey; } d; }; struct CMS_OriginatorPublicKey_st { X509_ALGOR *algorithm; ASN1_BIT_STRING *publicKey; }; struct CMS_RecipientEncryptedKey_st { CMS_KeyAgreeRecipientIdentifier *rid; ASN1_OCTET_STRING *encryptedKey; /* Public key associated with this recipient */ EVP_PKEY *pkey; }; struct CMS_KeyAgreeRecipientIdentifier_st { int type; union { CMS_IssuerAndSerialNumber *issuerAndSerialNumber; CMS_RecipientKeyIdentifier *rKeyId; } d; }; struct CMS_RecipientKeyIdentifier_st { ASN1_OCTET_STRING *subjectKeyIdentifier; ASN1_GENERALIZEDTIME *date; CMS_OtherKeyAttribute *other; }; struct CMS_KEKRecipientInfo_st { int32_t version; CMS_KEKIdentifier *kekid; X509_ALGOR *keyEncryptionAlgorithm; ASN1_OCTET_STRING *encryptedKey; /* Extra info: symmetric key to use */ unsigned char *key; size_t keylen; }; struct CMS_KEKIdentifier_st { ASN1_OCTET_STRING *keyIdentifier; ASN1_GENERALIZEDTIME *date; CMS_OtherKeyAttribute *other; }; struct CMS_PasswordRecipientInfo_st { int32_t version; X509_ALGOR *keyDerivationAlgorithm; X509_ALGOR *keyEncryptionAlgorithm; ASN1_OCTET_STRING *encryptedKey; /* Extra info: password to use */ unsigned char *pass; size_t passlen; }; struct CMS_OtherRecipientInfo_st { ASN1_OBJECT *oriType; ASN1_TYPE *oriValue; }; struct CMS_DigestedData_st { int32_t version; X509_ALGOR *digestAlgorithm; CMS_EncapsulatedContentInfo *encapContentInfo; ASN1_OCTET_STRING *digest; }; struct CMS_EncryptedData_st { int32_t version; CMS_EncryptedContentInfo *encryptedContentInfo; STACK_OF(X509_ATTRIBUTE) *unprotectedAttrs; }; struct CMS_AuthenticatedData_st { int32_t version; CMS_OriginatorInfo *originatorInfo; STACK_OF(CMS_RecipientInfo) *recipientInfos; X509_ALGOR *macAlgorithm; X509_ALGOR *digestAlgorithm; CMS_EncapsulatedContentInfo *encapContentInfo; STACK_OF(X509_ATTRIBUTE) *authAttrs; ASN1_OCTET_STRING *mac; STACK_OF(X509_ATTRIBUTE) *unauthAttrs; }; struct CMS_CompressedData_st { int32_t version; X509_ALGOR *compressionAlgorithm; STACK_OF(CMS_RecipientInfo) *recipientInfos; CMS_EncapsulatedContentInfo *encapContentInfo; }; struct CMS_RevocationInfoChoice_st { int type; union { X509_CRL *crl; CMS_OtherRevocationInfoFormat *other; } d; }; # define CMS_REVCHOICE_CRL 0 # define CMS_REVCHOICE_OTHER 1 struct CMS_OtherRevocationInfoFormat_st { ASN1_OBJECT *otherRevInfoFormat; ASN1_TYPE *otherRevInfo; }; struct CMS_CertificateChoices { int type; union { X509 *certificate; ASN1_STRING *extendedCertificate; /* Obsolete */ ASN1_STRING *v1AttrCert; /* Left encoded for now */ ASN1_STRING *v2AttrCert; /* Left encoded for now */ CMS_OtherCertificateFormat *other; } d; }; # define CMS_CERTCHOICE_CERT 0 # define CMS_CERTCHOICE_EXCERT 1 # define CMS_CERTCHOICE_V1ACERT 2 # define CMS_CERTCHOICE_V2ACERT 3 # define CMS_CERTCHOICE_OTHER 4 struct CMS_OtherCertificateFormat_st { ASN1_OBJECT *otherCertFormat; ASN1_TYPE *otherCert; }; /* * This is also defined in pkcs7.h but we duplicate it to allow the CMS code * to be independent of PKCS#7 */ struct CMS_IssuerAndSerialNumber_st { X509_NAME *issuer; ASN1_INTEGER *serialNumber; }; struct CMS_OtherKeyAttribute_st { ASN1_OBJECT *keyAttrId; ASN1_TYPE *keyAttr; }; /* ESS structures */ struct CMS_ReceiptRequest_st { ASN1_OCTET_STRING *signedContentIdentifier; CMS_ReceiptsFrom *receiptsFrom; STACK_OF(GENERAL_NAMES) *receiptsTo; }; struct CMS_ReceiptsFrom_st { int type; union { int32_t allOrFirstTier; STACK_OF(GENERAL_NAMES) *receiptList; } d; }; struct CMS_Receipt_st { int32_t version; ASN1_OBJECT *contentType; ASN1_OCTET_STRING *signedContentIdentifier; ASN1_OCTET_STRING *originatorSignatureValue; }; DECLARE_ASN1_FUNCTIONS(CMS_ContentInfo) DECLARE_ASN1_ITEM(CMS_SignerInfo) DECLARE_ASN1_ITEM(CMS_IssuerAndSerialNumber) DECLARE_ASN1_ITEM(CMS_Attributes_Sign) DECLARE_ASN1_ITEM(CMS_Attributes_Verify) DECLARE_ASN1_ITEM(CMS_RecipientInfo) DECLARE_ASN1_ITEM(CMS_PasswordRecipientInfo) DECLARE_ASN1_ALLOC_FUNCTIONS(CMS_IssuerAndSerialNumber) # define CMS_SIGNERINFO_ISSUER_SERIAL 0 # define CMS_SIGNERINFO_KEYIDENTIFIER 1 # define CMS_RECIPINFO_ISSUER_SERIAL 0 # define CMS_RECIPINFO_KEYIDENTIFIER 1 # define CMS_REK_ISSUER_SERIAL 0 # define CMS_REK_KEYIDENTIFIER 1 # define CMS_OIK_ISSUER_SERIAL 0 # define CMS_OIK_KEYIDENTIFIER 1 # define CMS_OIK_PUBKEY 2 BIO *cms_content_bio(CMS_ContentInfo *cms); CMS_ContentInfo *cms_Data_create(void); CMS_ContentInfo *cms_DigestedData_create(const EVP_MD *md); BIO *cms_DigestedData_init_bio(CMS_ContentInfo *cms); int cms_DigestedData_do_final(CMS_ContentInfo *cms, BIO *chain, int verify); BIO *cms_SignedData_init_bio(CMS_ContentInfo *cms); int cms_SignedData_final(CMS_ContentInfo *cms, BIO *chain); int cms_set1_SignerIdentifier(CMS_SignerIdentifier *sid, X509 *cert, int type); int cms_SignerIdentifier_get0_signer_id(CMS_SignerIdentifier *sid, ASN1_OCTET_STRING **keyid, X509_NAME **issuer, ASN1_INTEGER **sno); int cms_SignerIdentifier_cert_cmp(CMS_SignerIdentifier *sid, X509 *cert); CMS_ContentInfo *cms_CompressedData_create(int comp_nid); BIO *cms_CompressedData_init_bio(CMS_ContentInfo *cms); BIO *cms_DigestAlgorithm_init_bio(X509_ALGOR *digestAlgorithm); int cms_DigestAlgorithm_find_ctx(EVP_MD_CTX *mctx, BIO *chain, X509_ALGOR *mdalg); int cms_ias_cert_cmp(CMS_IssuerAndSerialNumber *ias, X509 *cert); int cms_keyid_cert_cmp(ASN1_OCTET_STRING *keyid, X509 *cert); int cms_set1_ias(CMS_IssuerAndSerialNumber **pias, X509 *cert); int cms_set1_keyid(ASN1_OCTET_STRING **pkeyid, X509 *cert); BIO *cms_EncryptedContent_init_bio(CMS_EncryptedContentInfo *ec); BIO *cms_EncryptedData_init_bio(CMS_ContentInfo *cms); int cms_EncryptedContent_init(CMS_EncryptedContentInfo *ec, const EVP_CIPHER *cipher, const unsigned char *key, size_t keylen); int cms_Receipt_verify(CMS_ContentInfo *cms, CMS_ContentInfo *req_cms); int cms_msgSigDigest_add1(CMS_SignerInfo *dest, CMS_SignerInfo *src); ASN1_OCTET_STRING *cms_encode_Receipt(CMS_SignerInfo *si); BIO *cms_EnvelopedData_init_bio(CMS_ContentInfo *cms); CMS_EnvelopedData *cms_get0_enveloped(CMS_ContentInfo *cms); int cms_env_asn1_ctrl(CMS_RecipientInfo *ri, int cmd); int cms_pkey_get_ri_type(EVP_PKEY *pk); /* KARI routines */ int cms_RecipientInfo_kari_init(CMS_RecipientInfo *ri, X509 *recip, EVP_PKEY *pk, unsigned int flags); int cms_RecipientInfo_kari_encrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri); /* PWRI routines */ int cms_RecipientInfo_pwri_crypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri, int en_de); /* SignerInfo routines */ int CMS_si_check_attributes(const CMS_SignerInfo *si); DECLARE_ASN1_ITEM(CMS_CertificateChoices) DECLARE_ASN1_ITEM(CMS_DigestedData) DECLARE_ASN1_ITEM(CMS_EncryptedData) DECLARE_ASN1_ITEM(CMS_EnvelopedData) DECLARE_ASN1_ITEM(CMS_KEKRecipientInfo) DECLARE_ASN1_ITEM(CMS_KeyAgreeRecipientInfo) DECLARE_ASN1_ITEM(CMS_KeyTransRecipientInfo) DECLARE_ASN1_ITEM(CMS_OriginatorPublicKey) DECLARE_ASN1_ITEM(CMS_OtherKeyAttribute) DECLARE_ASN1_ITEM(CMS_Receipt) DECLARE_ASN1_ITEM(CMS_ReceiptRequest) DECLARE_ASN1_ITEM(CMS_RecipientEncryptedKey) DECLARE_ASN1_ITEM(CMS_RecipientKeyIdentifier) DECLARE_ASN1_ITEM(CMS_RevocationInfoChoice) DECLARE_ASN1_ITEM(CMS_SignedData) DECLARE_ASN1_ITEM(CMS_CompressedData) #endif openssl-1.1.1f/crypto/cms/cms_pwri.c000066400000000000000000000265741364063235100174550ustar00rootroot00000000000000/* * Copyright 2009-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "cms_local.h" #include "crypto/asn1.h" int CMS_RecipientInfo_set0_password(CMS_RecipientInfo *ri, unsigned char *pass, ossl_ssize_t passlen) { CMS_PasswordRecipientInfo *pwri; if (ri->type != CMS_RECIPINFO_PASS) { CMSerr(CMS_F_CMS_RECIPIENTINFO_SET0_PASSWORD, CMS_R_NOT_PWRI); return 0; } pwri = ri->d.pwri; pwri->pass = pass; if (pass && passlen < 0) passlen = strlen((char *)pass); pwri->passlen = passlen; return 1; } CMS_RecipientInfo *CMS_add0_recipient_password(CMS_ContentInfo *cms, int iter, int wrap_nid, int pbe_nid, unsigned char *pass, ossl_ssize_t passlen, const EVP_CIPHER *kekciph) { CMS_RecipientInfo *ri = NULL; CMS_EnvelopedData *env; CMS_PasswordRecipientInfo *pwri; EVP_CIPHER_CTX *ctx = NULL; X509_ALGOR *encalg = NULL; unsigned char iv[EVP_MAX_IV_LENGTH]; int ivlen; env = cms_get0_enveloped(cms); if (!env) return NULL; if (wrap_nid <= 0) wrap_nid = NID_id_alg_PWRI_KEK; if (pbe_nid <= 0) pbe_nid = NID_id_pbkdf2; /* Get from enveloped data */ if (kekciph == NULL) kekciph = env->encryptedContentInfo->cipher; if (kekciph == NULL) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, CMS_R_NO_CIPHER); return NULL; } if (wrap_nid != NID_id_alg_PWRI_KEK) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM); return NULL; } /* Setup algorithm identifier for cipher */ encalg = X509_ALGOR_new(); if (encalg == NULL) { goto merr; } ctx = EVP_CIPHER_CTX_new(); if (EVP_EncryptInit_ex(ctx, kekciph, NULL, NULL, NULL) <= 0) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, ERR_R_EVP_LIB); goto err; } ivlen = EVP_CIPHER_CTX_iv_length(ctx); if (ivlen > 0) { if (RAND_bytes(iv, ivlen) <= 0) goto err; if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, ERR_R_EVP_LIB); goto err; } encalg->parameter = ASN1_TYPE_new(); if (!encalg->parameter) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_CIPHER_param_to_asn1(ctx, encalg->parameter) <= 0) { CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR); goto err; } } encalg->algorithm = OBJ_nid2obj(EVP_CIPHER_CTX_type(ctx)); EVP_CIPHER_CTX_free(ctx); ctx = NULL; /* Initialize recipient info */ ri = M_ASN1_new_of(CMS_RecipientInfo); if (ri == NULL) goto merr; ri->d.pwri = M_ASN1_new_of(CMS_PasswordRecipientInfo); if (ri->d.pwri == NULL) goto merr; ri->type = CMS_RECIPINFO_PASS; pwri = ri->d.pwri; /* Since this is overwritten, free up empty structure already there */ X509_ALGOR_free(pwri->keyEncryptionAlgorithm); pwri->keyEncryptionAlgorithm = X509_ALGOR_new(); if (pwri->keyEncryptionAlgorithm == NULL) goto merr; pwri->keyEncryptionAlgorithm->algorithm = OBJ_nid2obj(wrap_nid); pwri->keyEncryptionAlgorithm->parameter = ASN1_TYPE_new(); if (pwri->keyEncryptionAlgorithm->parameter == NULL) goto merr; if (!ASN1_item_pack(encalg, ASN1_ITEM_rptr(X509_ALGOR), &pwri->keyEncryptionAlgorithm->parameter-> value.sequence)) goto merr; pwri->keyEncryptionAlgorithm->parameter->type = V_ASN1_SEQUENCE; X509_ALGOR_free(encalg); encalg = NULL; /* Setup PBE algorithm */ pwri->keyDerivationAlgorithm = PKCS5_pbkdf2_set(iter, NULL, 0, -1, -1); if (!pwri->keyDerivationAlgorithm) goto err; CMS_RecipientInfo_set0_password(ri, pass, passlen); pwri->version = 0; if (!sk_CMS_RecipientInfo_push(env->recipientInfos, ri)) goto merr; return ri; merr: CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, ERR_R_MALLOC_FAILURE); err: EVP_CIPHER_CTX_free(ctx); if (ri) M_ASN1_free_of(ri, CMS_RecipientInfo); X509_ALGOR_free(encalg); return NULL; } /* * This is an implementation of the key wrapping mechanism in RFC3211, at * some point this should go into EVP. */ static int kek_unwrap_key(unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen, EVP_CIPHER_CTX *ctx) { size_t blocklen = EVP_CIPHER_CTX_block_size(ctx); unsigned char *tmp; int outl, rv = 0; if (inlen < 2 * blocklen) { /* too small */ return 0; } if (inlen % blocklen) { /* Invalid size */ return 0; } if ((tmp = OPENSSL_malloc(inlen)) == NULL) { CMSerr(CMS_F_KEK_UNWRAP_KEY, ERR_R_MALLOC_FAILURE); return 0; } /* setup IV by decrypting last two blocks */ if (!EVP_DecryptUpdate(ctx, tmp + inlen - 2 * blocklen, &outl, in + inlen - 2 * blocklen, blocklen * 2) /* * Do a decrypt of last decrypted block to set IV to correct value * output it to start of buffer so we don't corrupt decrypted block * this works because buffer is at least two block lengths long. */ || !EVP_DecryptUpdate(ctx, tmp, &outl, tmp + inlen - blocklen, blocklen) /* Can now decrypt first n - 1 blocks */ || !EVP_DecryptUpdate(ctx, tmp, &outl, in, inlen - blocklen) /* Reset IV to original value */ || !EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, NULL) /* Decrypt again */ || !EVP_DecryptUpdate(ctx, tmp, &outl, tmp, inlen)) goto err; /* Check check bytes */ if (((tmp[1] ^ tmp[4]) & (tmp[2] ^ tmp[5]) & (tmp[3] ^ tmp[6])) != 0xff) { /* Check byte failure */ goto err; } if (inlen < (size_t)(tmp[0] - 4)) { /* Invalid length value */ goto err; } *outlen = (size_t)tmp[0]; memcpy(out, tmp + 4, *outlen); rv = 1; err: OPENSSL_clear_free(tmp, inlen); return rv; } static int kek_wrap_key(unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen, EVP_CIPHER_CTX *ctx) { size_t blocklen = EVP_CIPHER_CTX_block_size(ctx); size_t olen; int dummy; /* * First decide length of output buffer: need header and round up to * multiple of block length. */ olen = (inlen + 4 + blocklen - 1) / blocklen; olen *= blocklen; if (olen < 2 * blocklen) { /* Key too small */ return 0; } if (inlen > 0xFF) { /* Key too large */ return 0; } if (out) { /* Set header */ out[0] = (unsigned char)inlen; out[1] = in[0] ^ 0xFF; out[2] = in[1] ^ 0xFF; out[3] = in[2] ^ 0xFF; memcpy(out + 4, in, inlen); /* Add random padding to end */ if (olen > inlen + 4 && RAND_bytes(out + 4 + inlen, olen - 4 - inlen) <= 0) return 0; /* Encrypt twice */ if (!EVP_EncryptUpdate(ctx, out, &dummy, out, olen) || !EVP_EncryptUpdate(ctx, out, &dummy, out, olen)) return 0; } *outlen = olen; return 1; } /* Encrypt/Decrypt content key in PWRI recipient info */ int cms_RecipientInfo_pwri_crypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri, int en_de) { CMS_EncryptedContentInfo *ec; CMS_PasswordRecipientInfo *pwri; int r = 0; X509_ALGOR *algtmp, *kekalg = NULL; EVP_CIPHER_CTX *kekctx = NULL; const EVP_CIPHER *kekcipher; unsigned char *key = NULL; size_t keylen; ec = cms->d.envelopedData->encryptedContentInfo; pwri = ri->d.pwri; if (!pwri->pass) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, CMS_R_NO_PASSWORD); return 0; } algtmp = pwri->keyEncryptionAlgorithm; if (!algtmp || OBJ_obj2nid(algtmp->algorithm) != NID_id_alg_PWRI_KEK) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM); return 0; } kekalg = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(X509_ALGOR), algtmp->parameter); if (kekalg == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER); return 0; } kekcipher = EVP_get_cipherbyobj(kekalg->algorithm); if (!kekcipher) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, CMS_R_UNKNOWN_CIPHER); return 0; } kekctx = EVP_CIPHER_CTX_new(); if (kekctx == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, ERR_R_MALLOC_FAILURE); return 0; } /* Fixup cipher based on AlgorithmIdentifier to set IV etc */ if (!EVP_CipherInit_ex(kekctx, kekcipher, NULL, NULL, NULL, en_de)) goto err; EVP_CIPHER_CTX_set_padding(kekctx, 0); if (EVP_CIPHER_asn1_to_param(kekctx, kekalg->parameter) <= 0) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR); goto err; } algtmp = pwri->keyDerivationAlgorithm; /* Finish password based key derivation to setup key in "ctx" */ if (EVP_PBE_CipherInit(algtmp->algorithm, (char *)pwri->pass, pwri->passlen, algtmp->parameter, kekctx, en_de) < 0) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, ERR_R_EVP_LIB); goto err; } /* Finally wrap/unwrap the key */ if (en_de) { if (!kek_wrap_key(NULL, &keylen, ec->key, ec->keylen, kekctx)) goto err; key = OPENSSL_malloc(keylen); if (key == NULL) goto err; if (!kek_wrap_key(key, &keylen, ec->key, ec->keylen, kekctx)) goto err; pwri->encryptedKey->data = key; pwri->encryptedKey->length = keylen; } else { key = OPENSSL_malloc(pwri->encryptedKey->length); if (key == NULL) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (!kek_unwrap_key(key, &keylen, pwri->encryptedKey->data, pwri->encryptedKey->length, kekctx)) { CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, CMS_R_UNWRAP_FAILURE); goto err; } OPENSSL_clear_free(ec->key, ec->keylen); ec->key = key; ec->keylen = keylen; } r = 1; err: EVP_CIPHER_CTX_free(kekctx); if (!r) OPENSSL_free(key); X509_ALGOR_free(kekalg); return r; } openssl-1.1.1f/crypto/cms/cms_sd.c000066400000000000000000000661121364063235100170720ustar00rootroot00000000000000/* * Copyright 2008-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include "cms_local.h" #include "crypto/asn1.h" #include "crypto/evp.h" /* CMS SignedData Utilities */ static CMS_SignedData *cms_get0_signed(CMS_ContentInfo *cms) { if (OBJ_obj2nid(cms->contentType) != NID_pkcs7_signed) { CMSerr(CMS_F_CMS_GET0_SIGNED, CMS_R_CONTENT_TYPE_NOT_SIGNED_DATA); return NULL; } return cms->d.signedData; } static CMS_SignedData *cms_signed_data_init(CMS_ContentInfo *cms) { if (cms->d.other == NULL) { cms->d.signedData = M_ASN1_new_of(CMS_SignedData); if (!cms->d.signedData) { CMSerr(CMS_F_CMS_SIGNED_DATA_INIT, ERR_R_MALLOC_FAILURE); return NULL; } cms->d.signedData->version = 1; cms->d.signedData->encapContentInfo->eContentType = OBJ_nid2obj(NID_pkcs7_data); cms->d.signedData->encapContentInfo->partial = 1; ASN1_OBJECT_free(cms->contentType); cms->contentType = OBJ_nid2obj(NID_pkcs7_signed); return cms->d.signedData; } return cms_get0_signed(cms); } /* Just initialise SignedData e.g. for certs only structure */ int CMS_SignedData_init(CMS_ContentInfo *cms) { if (cms_signed_data_init(cms)) return 1; else return 0; } /* Check structures and fixup version numbers (if necessary) */ static void cms_sd_set_version(CMS_SignedData *sd) { int i; CMS_CertificateChoices *cch; CMS_RevocationInfoChoice *rch; CMS_SignerInfo *si; for (i = 0; i < sk_CMS_CertificateChoices_num(sd->certificates); i++) { cch = sk_CMS_CertificateChoices_value(sd->certificates, i); if (cch->type == CMS_CERTCHOICE_OTHER) { if (sd->version < 5) sd->version = 5; } else if (cch->type == CMS_CERTCHOICE_V2ACERT) { if (sd->version < 4) sd->version = 4; } else if (cch->type == CMS_CERTCHOICE_V1ACERT) { if (sd->version < 3) sd->version = 3; } } for (i = 0; i < sk_CMS_RevocationInfoChoice_num(sd->crls); i++) { rch = sk_CMS_RevocationInfoChoice_value(sd->crls, i); if (rch->type == CMS_REVCHOICE_OTHER) { if (sd->version < 5) sd->version = 5; } } if ((OBJ_obj2nid(sd->encapContentInfo->eContentType) != NID_pkcs7_data) && (sd->version < 3)) sd->version = 3; for (i = 0; i < sk_CMS_SignerInfo_num(sd->signerInfos); i++) { si = sk_CMS_SignerInfo_value(sd->signerInfos, i); if (si->sid->type == CMS_SIGNERINFO_KEYIDENTIFIER) { if (si->version < 3) si->version = 3; if (sd->version < 3) sd->version = 3; } else if (si->version < 1) si->version = 1; } if (sd->version < 1) sd->version = 1; } /* * RFC 5652 Section 11.1 Content Type * The content-type attribute within signed-data MUST * 1) be present if there are signed attributes * 2) match the content type in the signed-data, * 3) be a signed attribute. * 4) not have more than one copy of the attribute. * * Note that since the CMS_SignerInfo_sign() always adds the "signing time" * attribute, the content type attribute MUST be added also. * Assumptions: This assumes that the attribute does not already exist. */ static int cms_set_si_contentType_attr(CMS_ContentInfo *cms, CMS_SignerInfo *si) { ASN1_OBJECT *ctype = cms->d.signedData->encapContentInfo->eContentType; /* Add the contentType attribute */ return CMS_signed_add1_attr_by_NID(si, NID_pkcs9_contentType, V_ASN1_OBJECT, ctype, -1) > 0; } /* Copy an existing messageDigest value */ static int cms_copy_messageDigest(CMS_ContentInfo *cms, CMS_SignerInfo *si) { STACK_OF(CMS_SignerInfo) *sinfos; CMS_SignerInfo *sitmp; int i; sinfos = CMS_get0_SignerInfos(cms); for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++) { ASN1_OCTET_STRING *messageDigest; sitmp = sk_CMS_SignerInfo_value(sinfos, i); if (sitmp == si) continue; if (CMS_signed_get_attr_count(sitmp) < 0) continue; if (OBJ_cmp(si->digestAlgorithm->algorithm, sitmp->digestAlgorithm->algorithm)) continue; messageDigest = CMS_signed_get0_data_by_OBJ(sitmp, OBJ_nid2obj (NID_pkcs9_messageDigest), -3, V_ASN1_OCTET_STRING); if (!messageDigest) { CMSerr(CMS_F_CMS_COPY_MESSAGEDIGEST, CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE); return 0; } if (CMS_signed_add1_attr_by_NID(si, NID_pkcs9_messageDigest, V_ASN1_OCTET_STRING, messageDigest, -1)) return 1; else return 0; } CMSerr(CMS_F_CMS_COPY_MESSAGEDIGEST, CMS_R_NO_MATCHING_DIGEST); return 0; } int cms_set1_SignerIdentifier(CMS_SignerIdentifier *sid, X509 *cert, int type) { switch (type) { case CMS_SIGNERINFO_ISSUER_SERIAL: if (!cms_set1_ias(&sid->d.issuerAndSerialNumber, cert)) return 0; break; case CMS_SIGNERINFO_KEYIDENTIFIER: if (!cms_set1_keyid(&sid->d.subjectKeyIdentifier, cert)) return 0; break; default: CMSerr(CMS_F_CMS_SET1_SIGNERIDENTIFIER, CMS_R_UNKNOWN_ID); return 0; } sid->type = type; return 1; } int cms_SignerIdentifier_get0_signer_id(CMS_SignerIdentifier *sid, ASN1_OCTET_STRING **keyid, X509_NAME **issuer, ASN1_INTEGER **sno) { if (sid->type == CMS_SIGNERINFO_ISSUER_SERIAL) { if (issuer) *issuer = sid->d.issuerAndSerialNumber->issuer; if (sno) *sno = sid->d.issuerAndSerialNumber->serialNumber; } else if (sid->type == CMS_SIGNERINFO_KEYIDENTIFIER) { if (keyid) *keyid = sid->d.subjectKeyIdentifier; } else return 0; return 1; } int cms_SignerIdentifier_cert_cmp(CMS_SignerIdentifier *sid, X509 *cert) { if (sid->type == CMS_SIGNERINFO_ISSUER_SERIAL) return cms_ias_cert_cmp(sid->d.issuerAndSerialNumber, cert); else if (sid->type == CMS_SIGNERINFO_KEYIDENTIFIER) return cms_keyid_cert_cmp(sid->d.subjectKeyIdentifier, cert); else return -1; } static int cms_sd_asn1_ctrl(CMS_SignerInfo *si, int cmd) { EVP_PKEY *pkey = si->pkey; int i; if (!pkey->ameth || !pkey->ameth->pkey_ctrl) return 1; i = pkey->ameth->pkey_ctrl(pkey, ASN1_PKEY_CTRL_CMS_SIGN, cmd, si); if (i == -2) { CMSerr(CMS_F_CMS_SD_ASN1_CTRL, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE); return 0; } if (i <= 0) { CMSerr(CMS_F_CMS_SD_ASN1_CTRL, CMS_R_CTRL_FAILURE); return 0; } return 1; } CMS_SignerInfo *CMS_add1_signer(CMS_ContentInfo *cms, X509 *signer, EVP_PKEY *pk, const EVP_MD *md, unsigned int flags) { CMS_SignedData *sd; CMS_SignerInfo *si = NULL; X509_ALGOR *alg; int i, type; if (!X509_check_private_key(signer, pk)) { CMSerr(CMS_F_CMS_ADD1_SIGNER, CMS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE); return NULL; } sd = cms_signed_data_init(cms); if (!sd) goto err; si = M_ASN1_new_of(CMS_SignerInfo); if (!si) goto merr; /* Call for side-effect of computing hash and caching extensions */ X509_check_purpose(signer, -1, -1); X509_up_ref(signer); EVP_PKEY_up_ref(pk); si->pkey = pk; si->signer = signer; si->mctx = EVP_MD_CTX_new(); si->pctx = NULL; if (si->mctx == NULL) { CMSerr(CMS_F_CMS_ADD1_SIGNER, ERR_R_MALLOC_FAILURE); goto err; } if (flags & CMS_USE_KEYID) { si->version = 3; if (sd->version < 3) sd->version = 3; type = CMS_SIGNERINFO_KEYIDENTIFIER; } else { type = CMS_SIGNERINFO_ISSUER_SERIAL; si->version = 1; } if (!cms_set1_SignerIdentifier(si->sid, signer, type)) goto err; if (md == NULL) { int def_nid; if (EVP_PKEY_get_default_digest_nid(pk, &def_nid) <= 0) goto err; md = EVP_get_digestbynid(def_nid); if (md == NULL) { CMSerr(CMS_F_CMS_ADD1_SIGNER, CMS_R_NO_DEFAULT_DIGEST); goto err; } } if (!md) { CMSerr(CMS_F_CMS_ADD1_SIGNER, CMS_R_NO_DIGEST_SET); goto err; } X509_ALGOR_set_md(si->digestAlgorithm, md); /* See if digest is present in digestAlgorithms */ for (i = 0; i < sk_X509_ALGOR_num(sd->digestAlgorithms); i++) { const ASN1_OBJECT *aoid; alg = sk_X509_ALGOR_value(sd->digestAlgorithms, i); X509_ALGOR_get0(&aoid, NULL, NULL, alg); if (OBJ_obj2nid(aoid) == EVP_MD_type(md)) break; } if (i == sk_X509_ALGOR_num(sd->digestAlgorithms)) { alg = X509_ALGOR_new(); if (alg == NULL) goto merr; X509_ALGOR_set_md(alg, md); if (!sk_X509_ALGOR_push(sd->digestAlgorithms, alg)) { X509_ALGOR_free(alg); goto merr; } } if (!(flags & CMS_KEY_PARAM) && !cms_sd_asn1_ctrl(si, 0)) goto err; if (!(flags & CMS_NOATTR)) { /* * Initialize signed attributes structure so other attributes * such as signing time etc are added later even if we add none here. */ if (!si->signedAttrs) { si->signedAttrs = sk_X509_ATTRIBUTE_new_null(); if (!si->signedAttrs) goto merr; } if (!(flags & CMS_NOSMIMECAP)) { STACK_OF(X509_ALGOR) *smcap = NULL; i = CMS_add_standard_smimecap(&smcap); if (i) i = CMS_add_smimecap(si, smcap); sk_X509_ALGOR_pop_free(smcap, X509_ALGOR_free); if (!i) goto merr; } if (flags & CMS_REUSE_DIGEST) { if (!cms_copy_messageDigest(cms, si)) goto err; if (!cms_set_si_contentType_attr(cms, si)) goto err; if (!(flags & (CMS_PARTIAL | CMS_KEY_PARAM)) && !CMS_SignerInfo_sign(si)) goto err; } } if (!(flags & CMS_NOCERTS)) { /* NB ignore -1 return for duplicate cert */ if (!CMS_add1_cert(cms, signer)) goto merr; } if (flags & CMS_KEY_PARAM) { if (flags & CMS_NOATTR) { si->pctx = EVP_PKEY_CTX_new(si->pkey, NULL); if (si->pctx == NULL) goto err; if (EVP_PKEY_sign_init(si->pctx) <= 0) goto err; if (EVP_PKEY_CTX_set_signature_md(si->pctx, md) <= 0) goto err; } else if (EVP_DigestSignInit(si->mctx, &si->pctx, md, NULL, pk) <= 0) goto err; } if (!sd->signerInfos) sd->signerInfos = sk_CMS_SignerInfo_new_null(); if (!sd->signerInfos || !sk_CMS_SignerInfo_push(sd->signerInfos, si)) goto merr; return si; merr: CMSerr(CMS_F_CMS_ADD1_SIGNER, ERR_R_MALLOC_FAILURE); err: M_ASN1_free_of(si, CMS_SignerInfo); return NULL; } static int cms_add1_signingTime(CMS_SignerInfo *si, ASN1_TIME *t) { ASN1_TIME *tt; int r = 0; if (t) tt = t; else tt = X509_gmtime_adj(NULL, 0); if (!tt) goto merr; if (CMS_signed_add1_attr_by_NID(si, NID_pkcs9_signingTime, tt->type, tt, -1) <= 0) goto merr; r = 1; merr: if (!t) ASN1_TIME_free(tt); if (!r) CMSerr(CMS_F_CMS_ADD1_SIGNINGTIME, ERR_R_MALLOC_FAILURE); return r; } EVP_PKEY_CTX *CMS_SignerInfo_get0_pkey_ctx(CMS_SignerInfo *si) { return si->pctx; } EVP_MD_CTX *CMS_SignerInfo_get0_md_ctx(CMS_SignerInfo *si) { return si->mctx; } STACK_OF(CMS_SignerInfo) *CMS_get0_SignerInfos(CMS_ContentInfo *cms) { CMS_SignedData *sd; sd = cms_get0_signed(cms); if (!sd) return NULL; return sd->signerInfos; } STACK_OF(X509) *CMS_get0_signers(CMS_ContentInfo *cms) { STACK_OF(X509) *signers = NULL; STACK_OF(CMS_SignerInfo) *sinfos; CMS_SignerInfo *si; int i; sinfos = CMS_get0_SignerInfos(cms); for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++) { si = sk_CMS_SignerInfo_value(sinfos, i); if (si->signer) { if (!signers) { signers = sk_X509_new_null(); if (!signers) return NULL; } if (!sk_X509_push(signers, si->signer)) { sk_X509_free(signers); return NULL; } } } return signers; } void CMS_SignerInfo_set1_signer_cert(CMS_SignerInfo *si, X509 *signer) { if (signer) { X509_up_ref(signer); EVP_PKEY_free(si->pkey); si->pkey = X509_get_pubkey(signer); } X509_free(si->signer); si->signer = signer; } int CMS_SignerInfo_get0_signer_id(CMS_SignerInfo *si, ASN1_OCTET_STRING **keyid, X509_NAME **issuer, ASN1_INTEGER **sno) { return cms_SignerIdentifier_get0_signer_id(si->sid, keyid, issuer, sno); } int CMS_SignerInfo_cert_cmp(CMS_SignerInfo *si, X509 *cert) { return cms_SignerIdentifier_cert_cmp(si->sid, cert); } int CMS_set1_signers_certs(CMS_ContentInfo *cms, STACK_OF(X509) *scerts, unsigned int flags) { CMS_SignedData *sd; CMS_SignerInfo *si; CMS_CertificateChoices *cch; STACK_OF(CMS_CertificateChoices) *certs; X509 *x; int i, j; int ret = 0; sd = cms_get0_signed(cms); if (!sd) return -1; certs = sd->certificates; for (i = 0; i < sk_CMS_SignerInfo_num(sd->signerInfos); i++) { si = sk_CMS_SignerInfo_value(sd->signerInfos, i); if (si->signer) continue; for (j = 0; j < sk_X509_num(scerts); j++) { x = sk_X509_value(scerts, j); if (CMS_SignerInfo_cert_cmp(si, x) == 0) { CMS_SignerInfo_set1_signer_cert(si, x); ret++; break; } } if (si->signer || (flags & CMS_NOINTERN)) continue; for (j = 0; j < sk_CMS_CertificateChoices_num(certs); j++) { cch = sk_CMS_CertificateChoices_value(certs, j); if (cch->type != 0) continue; x = cch->d.certificate; if (CMS_SignerInfo_cert_cmp(si, x) == 0) { CMS_SignerInfo_set1_signer_cert(si, x); ret++; break; } } } return ret; } void CMS_SignerInfo_get0_algs(CMS_SignerInfo *si, EVP_PKEY **pk, X509 **signer, X509_ALGOR **pdig, X509_ALGOR **psig) { if (pk) *pk = si->pkey; if (signer) *signer = si->signer; if (pdig) *pdig = si->digestAlgorithm; if (psig) *psig = si->signatureAlgorithm; } ASN1_OCTET_STRING *CMS_SignerInfo_get0_signature(CMS_SignerInfo *si) { return si->signature; } static int cms_SignerInfo_content_sign(CMS_ContentInfo *cms, CMS_SignerInfo *si, BIO *chain) { EVP_MD_CTX *mctx = EVP_MD_CTX_new(); int r = 0; EVP_PKEY_CTX *pctx = NULL; if (mctx == NULL) { CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN, ERR_R_MALLOC_FAILURE); return 0; } if (!si->pkey) { CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN, CMS_R_NO_PRIVATE_KEY); goto err; } if (!cms_DigestAlgorithm_find_ctx(mctx, chain, si->digestAlgorithm)) goto err; /* Set SignerInfo algorithm details if we used custom parameter */ if (si->pctx && !cms_sd_asn1_ctrl(si, 0)) goto err; /* * If any signed attributes calculate and add messageDigest attribute */ if (CMS_signed_get_attr_count(si) >= 0) { unsigned char md[EVP_MAX_MD_SIZE]; unsigned int mdlen; if (!EVP_DigestFinal_ex(mctx, md, &mdlen)) goto err; if (!CMS_signed_add1_attr_by_NID(si, NID_pkcs9_messageDigest, V_ASN1_OCTET_STRING, md, mdlen)) goto err; /* Copy content type across */ if (!cms_set_si_contentType_attr(cms, si)) goto err; if (!CMS_SignerInfo_sign(si)) goto err; } else if (si->pctx) { unsigned char *sig; size_t siglen; unsigned char md[EVP_MAX_MD_SIZE]; unsigned int mdlen; pctx = si->pctx; if (!EVP_DigestFinal_ex(mctx, md, &mdlen)) goto err; siglen = EVP_PKEY_size(si->pkey); sig = OPENSSL_malloc(siglen); if (sig == NULL) { CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_PKEY_sign(pctx, sig, &siglen, md, mdlen) <= 0) { OPENSSL_free(sig); goto err; } ASN1_STRING_set0(si->signature, sig, siglen); } else { unsigned char *sig; unsigned int siglen; sig = OPENSSL_malloc(EVP_PKEY_size(si->pkey)); if (sig == NULL) { CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN, ERR_R_MALLOC_FAILURE); goto err; } if (!EVP_SignFinal(mctx, sig, &siglen, si->pkey)) { CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN, CMS_R_SIGNFINAL_ERROR); OPENSSL_free(sig); goto err; } ASN1_STRING_set0(si->signature, sig, siglen); } r = 1; err: EVP_MD_CTX_free(mctx); EVP_PKEY_CTX_free(pctx); return r; } int cms_SignedData_final(CMS_ContentInfo *cms, BIO *chain) { STACK_OF(CMS_SignerInfo) *sinfos; CMS_SignerInfo *si; int i; sinfos = CMS_get0_SignerInfos(cms); for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++) { si = sk_CMS_SignerInfo_value(sinfos, i); if (!cms_SignerInfo_content_sign(cms, si, chain)) return 0; } cms->d.signedData->encapContentInfo->partial = 0; return 1; } int CMS_SignerInfo_sign(CMS_SignerInfo *si) { EVP_MD_CTX *mctx = si->mctx; EVP_PKEY_CTX *pctx = NULL; unsigned char *abuf = NULL; int alen; size_t siglen; const EVP_MD *md = NULL; md = EVP_get_digestbyobj(si->digestAlgorithm->algorithm); if (md == NULL) return 0; if (CMS_signed_get_attr_by_NID(si, NID_pkcs9_signingTime, -1) < 0) { if (!cms_add1_signingTime(si, NULL)) goto err; } if (!CMS_si_check_attributes(si)) goto err; if (si->pctx) pctx = si->pctx; else { EVP_MD_CTX_reset(mctx); if (EVP_DigestSignInit(mctx, &pctx, md, NULL, si->pkey) <= 0) goto err; si->pctx = pctx; } if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN, EVP_PKEY_CTRL_CMS_SIGN, 0, si) <= 0) { CMSerr(CMS_F_CMS_SIGNERINFO_SIGN, CMS_R_CTRL_ERROR); goto err; } alen = ASN1_item_i2d((ASN1_VALUE *)si->signedAttrs, &abuf, ASN1_ITEM_rptr(CMS_Attributes_Sign)); if (!abuf) goto err; if (EVP_DigestSignUpdate(mctx, abuf, alen) <= 0) goto err; if (EVP_DigestSignFinal(mctx, NULL, &siglen) <= 0) goto err; OPENSSL_free(abuf); abuf = OPENSSL_malloc(siglen); if (abuf == NULL) goto err; if (EVP_DigestSignFinal(mctx, abuf, &siglen) <= 0) goto err; if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN, EVP_PKEY_CTRL_CMS_SIGN, 1, si) <= 0) { CMSerr(CMS_F_CMS_SIGNERINFO_SIGN, CMS_R_CTRL_ERROR); goto err; } EVP_MD_CTX_reset(mctx); ASN1_STRING_set0(si->signature, abuf, siglen); return 1; err: OPENSSL_free(abuf); EVP_MD_CTX_reset(mctx); return 0; } int CMS_SignerInfo_verify(CMS_SignerInfo *si) { EVP_MD_CTX *mctx = NULL; unsigned char *abuf = NULL; int alen, r = -1; const EVP_MD *md = NULL; if (!si->pkey) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY, CMS_R_NO_PUBLIC_KEY); return -1; } if (!CMS_si_check_attributes(si)) return -1; md = EVP_get_digestbyobj(si->digestAlgorithm->algorithm); if (md == NULL) return -1; if (si->mctx == NULL && (si->mctx = EVP_MD_CTX_new()) == NULL) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY, ERR_R_MALLOC_FAILURE); return -1; } mctx = si->mctx; if (EVP_DigestVerifyInit(mctx, &si->pctx, md, NULL, si->pkey) <= 0) goto err; if (!cms_sd_asn1_ctrl(si, 1)) goto err; alen = ASN1_item_i2d((ASN1_VALUE *)si->signedAttrs, &abuf, ASN1_ITEM_rptr(CMS_Attributes_Verify)); if (!abuf) goto err; r = EVP_DigestVerifyUpdate(mctx, abuf, alen); OPENSSL_free(abuf); if (r <= 0) { r = -1; goto err; } r = EVP_DigestVerifyFinal(mctx, si->signature->data, si->signature->length); if (r <= 0) CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY, CMS_R_VERIFICATION_FAILURE); err: EVP_MD_CTX_reset(mctx); return r; } /* Create a chain of digest BIOs from a CMS ContentInfo */ BIO *cms_SignedData_init_bio(CMS_ContentInfo *cms) { int i; CMS_SignedData *sd; BIO *chain = NULL; sd = cms_get0_signed(cms); if (!sd) return NULL; if (cms->d.signedData->encapContentInfo->partial) cms_sd_set_version(sd); for (i = 0; i < sk_X509_ALGOR_num(sd->digestAlgorithms); i++) { X509_ALGOR *digestAlgorithm; BIO *mdbio; digestAlgorithm = sk_X509_ALGOR_value(sd->digestAlgorithms, i); mdbio = cms_DigestAlgorithm_init_bio(digestAlgorithm); if (!mdbio) goto err; if (chain) BIO_push(chain, mdbio); else chain = mdbio; } return chain; err: BIO_free_all(chain); return NULL; } int CMS_SignerInfo_verify_content(CMS_SignerInfo *si, BIO *chain) { ASN1_OCTET_STRING *os = NULL; EVP_MD_CTX *mctx = EVP_MD_CTX_new(); EVP_PKEY_CTX *pkctx = NULL; int r = -1; unsigned char mval[EVP_MAX_MD_SIZE]; unsigned int mlen; if (mctx == NULL) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT, ERR_R_MALLOC_FAILURE); goto err; } /* If we have any signed attributes look for messageDigest value */ if (CMS_signed_get_attr_count(si) >= 0) { os = CMS_signed_get0_data_by_OBJ(si, OBJ_nid2obj(NID_pkcs9_messageDigest), -3, V_ASN1_OCTET_STRING); if (!os) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT, CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE); goto err; } } if (!cms_DigestAlgorithm_find_ctx(mctx, chain, si->digestAlgorithm)) goto err; if (EVP_DigestFinal_ex(mctx, mval, &mlen) <= 0) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT, CMS_R_UNABLE_TO_FINALIZE_CONTEXT); goto err; } /* If messageDigest found compare it */ if (os) { if (mlen != (unsigned int)os->length) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT, CMS_R_MESSAGEDIGEST_ATTRIBUTE_WRONG_LENGTH); goto err; } if (memcmp(mval, os->data, mlen)) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT, CMS_R_VERIFICATION_FAILURE); r = 0; } else r = 1; } else { const EVP_MD *md = EVP_MD_CTX_md(mctx); pkctx = EVP_PKEY_CTX_new(si->pkey, NULL); if (pkctx == NULL) goto err; if (EVP_PKEY_verify_init(pkctx) <= 0) goto err; if (EVP_PKEY_CTX_set_signature_md(pkctx, md) <= 0) goto err; si->pctx = pkctx; if (!cms_sd_asn1_ctrl(si, 1)) goto err; r = EVP_PKEY_verify(pkctx, si->signature->data, si->signature->length, mval, mlen); if (r <= 0) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT, CMS_R_VERIFICATION_FAILURE); r = 0; } } err: EVP_PKEY_CTX_free(pkctx); EVP_MD_CTX_free(mctx); return r; } int CMS_add_smimecap(CMS_SignerInfo *si, STACK_OF(X509_ALGOR) *algs) { unsigned char *smder = NULL; int smderlen, r; smderlen = i2d_X509_ALGORS(algs, &smder); if (smderlen <= 0) return 0; r = CMS_signed_add1_attr_by_NID(si, NID_SMIMECapabilities, V_ASN1_SEQUENCE, smder, smderlen); OPENSSL_free(smder); return r; } int CMS_add_simple_smimecap(STACK_OF(X509_ALGOR) **algs, int algnid, int keysize) { X509_ALGOR *alg; ASN1_INTEGER *key = NULL; if (keysize > 0) { key = ASN1_INTEGER_new(); if (key == NULL || !ASN1_INTEGER_set(key, keysize)) return 0; } alg = X509_ALGOR_new(); if (alg == NULL) { ASN1_INTEGER_free(key); return 0; } X509_ALGOR_set0(alg, OBJ_nid2obj(algnid), key ? V_ASN1_INTEGER : V_ASN1_UNDEF, key); if (*algs == NULL) *algs = sk_X509_ALGOR_new_null(); if (*algs == NULL || !sk_X509_ALGOR_push(*algs, alg)) { X509_ALGOR_free(alg); return 0; } return 1; } /* Check to see if a cipher exists and if so add S/MIME capabilities */ static int cms_add_cipher_smcap(STACK_OF(X509_ALGOR) **sk, int nid, int arg) { if (EVP_get_cipherbynid(nid)) return CMS_add_simple_smimecap(sk, nid, arg); return 1; } static int cms_add_digest_smcap(STACK_OF(X509_ALGOR) **sk, int nid, int arg) { if (EVP_get_digestbynid(nid)) return CMS_add_simple_smimecap(sk, nid, arg); return 1; } int CMS_add_standard_smimecap(STACK_OF(X509_ALGOR) **smcap) { if (!cms_add_cipher_smcap(smcap, NID_aes_256_cbc, -1) || !cms_add_digest_smcap(smcap, NID_id_GostR3411_2012_256, -1) || !cms_add_digest_smcap(smcap, NID_id_GostR3411_2012_512, -1) || !cms_add_digest_smcap(smcap, NID_id_GostR3411_94, -1) || !cms_add_cipher_smcap(smcap, NID_id_Gost28147_89, -1) || !cms_add_cipher_smcap(smcap, NID_aes_192_cbc, -1) || !cms_add_cipher_smcap(smcap, NID_aes_128_cbc, -1) || !cms_add_cipher_smcap(smcap, NID_des_ede3_cbc, -1) || !cms_add_cipher_smcap(smcap, NID_rc2_cbc, 128) || !cms_add_cipher_smcap(smcap, NID_rc2_cbc, 64) || !cms_add_cipher_smcap(smcap, NID_des_cbc, -1) || !cms_add_cipher_smcap(smcap, NID_rc2_cbc, 40)) return 0; return 1; } openssl-1.1.1f/crypto/cms/cms_smime.c000066400000000000000000000555651364063235100176100ustar00rootroot00000000000000/* * Copyright 2008-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include "cms_local.h" #include "crypto/asn1.h" static BIO *cms_get_text_bio(BIO *out, unsigned int flags) { BIO *rbio; if (out == NULL) rbio = BIO_new(BIO_s_null()); else if (flags & CMS_TEXT) { rbio = BIO_new(BIO_s_mem()); BIO_set_mem_eof_return(rbio, 0); } else rbio = out; return rbio; } static int cms_copy_content(BIO *out, BIO *in, unsigned int flags) { unsigned char buf[4096]; int r = 0, i; BIO *tmpout; tmpout = cms_get_text_bio(out, flags); if (tmpout == NULL) { CMSerr(CMS_F_CMS_COPY_CONTENT, ERR_R_MALLOC_FAILURE); goto err; } /* Read all content through chain to process digest, decrypt etc */ for (;;) { i = BIO_read(in, buf, sizeof(buf)); if (i <= 0) { if (BIO_method_type(in) == BIO_TYPE_CIPHER) { if (!BIO_get_cipher_status(in)) goto err; } if (i < 0) goto err; break; } if (tmpout && (BIO_write(tmpout, buf, i) != i)) goto err; } if (flags & CMS_TEXT) { if (!SMIME_text(tmpout, out)) { CMSerr(CMS_F_CMS_COPY_CONTENT, CMS_R_SMIME_TEXT_ERROR); goto err; } } r = 1; err: if (tmpout != out) BIO_free(tmpout); return r; } static int check_content(CMS_ContentInfo *cms) { ASN1_OCTET_STRING **pos = CMS_get0_content(cms); if (!pos || !*pos) { CMSerr(CMS_F_CHECK_CONTENT, CMS_R_NO_CONTENT); return 0; } return 1; } static void do_free_upto(BIO *f, BIO *upto) { if (upto) { BIO *tbio; do { tbio = BIO_pop(f); BIO_free(f); f = tbio; } while (f && f != upto); } else BIO_free_all(f); } int CMS_data(CMS_ContentInfo *cms, BIO *out, unsigned int flags) { BIO *cont; int r; if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_data) { CMSerr(CMS_F_CMS_DATA, CMS_R_TYPE_NOT_DATA); return 0; } cont = CMS_dataInit(cms, NULL); if (!cont) return 0; r = cms_copy_content(out, cont, flags); BIO_free_all(cont); return r; } CMS_ContentInfo *CMS_data_create(BIO *in, unsigned int flags) { CMS_ContentInfo *cms; cms = cms_Data_create(); if (!cms) return NULL; if ((flags & CMS_STREAM) || CMS_final(cms, in, NULL, flags)) return cms; CMS_ContentInfo_free(cms); return NULL; } int CMS_digest_verify(CMS_ContentInfo *cms, BIO *dcont, BIO *out, unsigned int flags) { BIO *cont; int r; if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_digest) { CMSerr(CMS_F_CMS_DIGEST_VERIFY, CMS_R_TYPE_NOT_DIGESTED_DATA); return 0; } if (!dcont && !check_content(cms)) return 0; cont = CMS_dataInit(cms, dcont); if (!cont) return 0; r = cms_copy_content(out, cont, flags); if (r) r = cms_DigestedData_do_final(cms, cont, 1); do_free_upto(cont, dcont); return r; } CMS_ContentInfo *CMS_digest_create(BIO *in, const EVP_MD *md, unsigned int flags) { CMS_ContentInfo *cms; if (!md) md = EVP_sha1(); cms = cms_DigestedData_create(md); if (!cms) return NULL; if (!(flags & CMS_DETACHED)) CMS_set_detached(cms, 0); if ((flags & CMS_STREAM) || CMS_final(cms, in, NULL, flags)) return cms; CMS_ContentInfo_free(cms); return NULL; } int CMS_EncryptedData_decrypt(CMS_ContentInfo *cms, const unsigned char *key, size_t keylen, BIO *dcont, BIO *out, unsigned int flags) { BIO *cont; int r; if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_encrypted) { CMSerr(CMS_F_CMS_ENCRYPTEDDATA_DECRYPT, CMS_R_TYPE_NOT_ENCRYPTED_DATA); return 0; } if (!dcont && !check_content(cms)) return 0; if (CMS_EncryptedData_set1_key(cms, NULL, key, keylen) <= 0) return 0; cont = CMS_dataInit(cms, dcont); if (!cont) return 0; r = cms_copy_content(out, cont, flags); do_free_upto(cont, dcont); return r; } CMS_ContentInfo *CMS_EncryptedData_encrypt(BIO *in, const EVP_CIPHER *cipher, const unsigned char *key, size_t keylen, unsigned int flags) { CMS_ContentInfo *cms; if (!cipher) { CMSerr(CMS_F_CMS_ENCRYPTEDDATA_ENCRYPT, CMS_R_NO_CIPHER); return NULL; } cms = CMS_ContentInfo_new(); if (cms == NULL) return NULL; if (!CMS_EncryptedData_set1_key(cms, cipher, key, keylen)) return NULL; if (!(flags & CMS_DETACHED)) CMS_set_detached(cms, 0); if ((flags & (CMS_STREAM | CMS_PARTIAL)) || CMS_final(cms, in, NULL, flags)) return cms; CMS_ContentInfo_free(cms); return NULL; } static int cms_signerinfo_verify_cert(CMS_SignerInfo *si, X509_STORE *store, STACK_OF(X509) *certs, STACK_OF(X509_CRL) *crls) { X509_STORE_CTX *ctx = X509_STORE_CTX_new(); X509 *signer; int i, j, r = 0; if (ctx == NULL) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CERT, ERR_R_MALLOC_FAILURE); goto err; } CMS_SignerInfo_get0_algs(si, NULL, &signer, NULL, NULL); if (!X509_STORE_CTX_init(ctx, store, signer, certs)) { CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CERT, CMS_R_STORE_INIT_ERROR); goto err; } X509_STORE_CTX_set_default(ctx, "smime_sign"); if (crls) X509_STORE_CTX_set0_crls(ctx, crls); i = X509_verify_cert(ctx); if (i <= 0) { j = X509_STORE_CTX_get_error(ctx); CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CERT, CMS_R_CERTIFICATE_VERIFY_ERROR); ERR_add_error_data(2, "Verify error:", X509_verify_cert_error_string(j)); goto err; } r = 1; err: X509_STORE_CTX_free(ctx); return r; } int CMS_verify(CMS_ContentInfo *cms, STACK_OF(X509) *certs, X509_STORE *store, BIO *dcont, BIO *out, unsigned int flags) { CMS_SignerInfo *si; STACK_OF(CMS_SignerInfo) *sinfos; STACK_OF(X509) *cms_certs = NULL; STACK_OF(X509_CRL) *crls = NULL; X509 *signer; int i, scount = 0, ret = 0; BIO *cmsbio = NULL, *tmpin = NULL, *tmpout = NULL; if (!dcont && !check_content(cms)) return 0; if (dcont && !(flags & CMS_BINARY)) { const ASN1_OBJECT *coid = CMS_get0_eContentType(cms); if (OBJ_obj2nid(coid) == NID_id_ct_asciiTextWithCRLF) flags |= CMS_ASCIICRLF; } /* Attempt to find all signer certificates */ sinfos = CMS_get0_SignerInfos(cms); if (sk_CMS_SignerInfo_num(sinfos) <= 0) { CMSerr(CMS_F_CMS_VERIFY, CMS_R_NO_SIGNERS); goto err; } for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++) { si = sk_CMS_SignerInfo_value(sinfos, i); CMS_SignerInfo_get0_algs(si, NULL, &signer, NULL, NULL); if (signer) scount++; } if (scount != sk_CMS_SignerInfo_num(sinfos)) scount += CMS_set1_signers_certs(cms, certs, flags); if (scount != sk_CMS_SignerInfo_num(sinfos)) { CMSerr(CMS_F_CMS_VERIFY, CMS_R_SIGNER_CERTIFICATE_NOT_FOUND); goto err; } /* Attempt to verify all signers certs */ if (!(flags & CMS_NO_SIGNER_CERT_VERIFY)) { cms_certs = CMS_get1_certs(cms); if (!(flags & CMS_NOCRL)) crls = CMS_get1_crls(cms); for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++) { si = sk_CMS_SignerInfo_value(sinfos, i); if (!cms_signerinfo_verify_cert(si, store, cms_certs, crls)) goto err; } } /* Attempt to verify all SignerInfo signed attribute signatures */ if (!(flags & CMS_NO_ATTR_VERIFY)) { for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++) { si = sk_CMS_SignerInfo_value(sinfos, i); if (CMS_signed_get_attr_count(si) < 0) continue; if (CMS_SignerInfo_verify(si) <= 0) goto err; } } /* * Performance optimization: if the content is a memory BIO then store * its contents in a temporary read only memory BIO. This avoids * potentially large numbers of slow copies of data which will occur when * reading from a read write memory BIO when signatures are calculated. */ if (dcont && (BIO_method_type(dcont) == BIO_TYPE_MEM)) { char *ptr; long len; len = BIO_get_mem_data(dcont, &ptr); tmpin = BIO_new_mem_buf(ptr, len); if (tmpin == NULL) { CMSerr(CMS_F_CMS_VERIFY, ERR_R_MALLOC_FAILURE); goto err2; } } else tmpin = dcont; /* * If not binary mode and detached generate digests by *writing* through * the BIO. That makes it possible to canonicalise the input. */ if (!(flags & SMIME_BINARY) && dcont) { /* * Create output BIO so we can either handle text or to ensure * included content doesn't override detached content. */ tmpout = cms_get_text_bio(out, flags); if (!tmpout) { CMSerr(CMS_F_CMS_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } cmsbio = CMS_dataInit(cms, tmpout); if (!cmsbio) goto err; /* * Don't use SMIME_TEXT for verify: it adds headers and we want to * remove them. */ SMIME_crlf_copy(dcont, cmsbio, flags & ~SMIME_TEXT); if (flags & CMS_TEXT) { if (!SMIME_text(tmpout, out)) { CMSerr(CMS_F_CMS_VERIFY, CMS_R_SMIME_TEXT_ERROR); goto err; } } } else { cmsbio = CMS_dataInit(cms, tmpin); if (!cmsbio) goto err; if (!cms_copy_content(out, cmsbio, flags)) goto err; } if (!(flags & CMS_NO_CONTENT_VERIFY)) { for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++) { si = sk_CMS_SignerInfo_value(sinfos, i); if (CMS_SignerInfo_verify_content(si, cmsbio) <= 0) { CMSerr(CMS_F_CMS_VERIFY, CMS_R_CONTENT_VERIFY_ERROR); goto err; } } } ret = 1; err: if (!(flags & SMIME_BINARY) && dcont) { do_free_upto(cmsbio, tmpout); if (tmpin != dcont) BIO_free(tmpin); } else { if (dcont && (tmpin == dcont)) do_free_upto(cmsbio, dcont); else BIO_free_all(cmsbio); } if (out != tmpout) BIO_free_all(tmpout); err2: sk_X509_pop_free(cms_certs, X509_free); sk_X509_CRL_pop_free(crls, X509_CRL_free); return ret; } int CMS_verify_receipt(CMS_ContentInfo *rcms, CMS_ContentInfo *ocms, STACK_OF(X509) *certs, X509_STORE *store, unsigned int flags) { int r; flags &= ~(CMS_DETACHED | CMS_TEXT); r = CMS_verify(rcms, certs, store, NULL, NULL, flags); if (r <= 0) return r; return cms_Receipt_verify(rcms, ocms); } CMS_ContentInfo *CMS_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs, BIO *data, unsigned int flags) { CMS_ContentInfo *cms; int i; cms = CMS_ContentInfo_new(); if (cms == NULL || !CMS_SignedData_init(cms)) goto merr; if (flags & CMS_ASCIICRLF && !CMS_set1_eContentType(cms, OBJ_nid2obj(NID_id_ct_asciiTextWithCRLF))) goto err; if (pkey && !CMS_add1_signer(cms, signcert, pkey, NULL, flags)) { CMSerr(CMS_F_CMS_SIGN, CMS_R_ADD_SIGNER_ERROR); goto err; } for (i = 0; i < sk_X509_num(certs); i++) { X509 *x = sk_X509_value(certs, i); if (!CMS_add1_cert(cms, x)) goto merr; } if (!(flags & CMS_DETACHED)) CMS_set_detached(cms, 0); if ((flags & (CMS_STREAM | CMS_PARTIAL)) || CMS_final(cms, data, NULL, flags)) return cms; else goto err; merr: CMSerr(CMS_F_CMS_SIGN, ERR_R_MALLOC_FAILURE); err: CMS_ContentInfo_free(cms); return NULL; } CMS_ContentInfo *CMS_sign_receipt(CMS_SignerInfo *si, X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs, unsigned int flags) { CMS_SignerInfo *rct_si; CMS_ContentInfo *cms = NULL; ASN1_OCTET_STRING **pos, *os; BIO *rct_cont = NULL; int r = 0; flags &= ~(CMS_STREAM | CMS_TEXT); /* Not really detached but avoids content being allocated */ flags |= CMS_PARTIAL | CMS_BINARY | CMS_DETACHED; if (!pkey || !signcert) { CMSerr(CMS_F_CMS_SIGN_RECEIPT, CMS_R_NO_KEY_OR_CERT); return NULL; } /* Initialize signed data */ cms = CMS_sign(NULL, NULL, certs, NULL, flags); if (!cms) goto err; /* Set inner content type to signed receipt */ if (!CMS_set1_eContentType(cms, OBJ_nid2obj(NID_id_smime_ct_receipt))) goto err; rct_si = CMS_add1_signer(cms, signcert, pkey, NULL, flags); if (!rct_si) { CMSerr(CMS_F_CMS_SIGN_RECEIPT, CMS_R_ADD_SIGNER_ERROR); goto err; } os = cms_encode_Receipt(si); if (!os) goto err; /* Set content to digest */ rct_cont = BIO_new_mem_buf(os->data, os->length); if (!rct_cont) goto err; /* Add msgSigDigest attribute */ if (!cms_msgSigDigest_add1(rct_si, si)) goto err; /* Finalize structure */ if (!CMS_final(cms, rct_cont, NULL, flags)) goto err; /* Set embedded content */ pos = CMS_get0_content(cms); *pos = os; r = 1; err: BIO_free(rct_cont); if (r) return cms; CMS_ContentInfo_free(cms); return NULL; } CMS_ContentInfo *CMS_encrypt(STACK_OF(X509) *certs, BIO *data, const EVP_CIPHER *cipher, unsigned int flags) { CMS_ContentInfo *cms; int i; X509 *recip; cms = CMS_EnvelopedData_create(cipher); if (!cms) goto merr; for (i = 0; i < sk_X509_num(certs); i++) { recip = sk_X509_value(certs, i); if (!CMS_add1_recipient_cert(cms, recip, flags)) { CMSerr(CMS_F_CMS_ENCRYPT, CMS_R_RECIPIENT_ERROR); goto err; } } if (!(flags & CMS_DETACHED)) CMS_set_detached(cms, 0); if ((flags & (CMS_STREAM | CMS_PARTIAL)) || CMS_final(cms, data, NULL, flags)) return cms; else goto err; merr: CMSerr(CMS_F_CMS_ENCRYPT, ERR_R_MALLOC_FAILURE); err: CMS_ContentInfo_free(cms); return NULL; } static int cms_kari_set1_pkey(CMS_ContentInfo *cms, CMS_RecipientInfo *ri, EVP_PKEY *pk, X509 *cert) { int i; STACK_OF(CMS_RecipientEncryptedKey) *reks; CMS_RecipientEncryptedKey *rek; reks = CMS_RecipientInfo_kari_get0_reks(ri); for (i = 0; i < sk_CMS_RecipientEncryptedKey_num(reks); i++) { int rv; rek = sk_CMS_RecipientEncryptedKey_value(reks, i); if (cert != NULL && CMS_RecipientEncryptedKey_cert_cmp(rek, cert)) continue; CMS_RecipientInfo_kari_set0_pkey(ri, pk); rv = CMS_RecipientInfo_kari_decrypt(cms, ri, rek); CMS_RecipientInfo_kari_set0_pkey(ri, NULL); if (rv > 0) return 1; return cert == NULL ? 0 : -1; } return 0; } int CMS_decrypt_set1_pkey(CMS_ContentInfo *cms, EVP_PKEY *pk, X509 *cert) { STACK_OF(CMS_RecipientInfo) *ris; CMS_RecipientInfo *ri; int i, r, ri_type; int debug = 0, match_ri = 0; ris = CMS_get0_RecipientInfos(cms); if (ris) debug = cms->d.envelopedData->encryptedContentInfo->debug; ri_type = cms_pkey_get_ri_type(pk); if (ri_type == CMS_RECIPINFO_NONE) { CMSerr(CMS_F_CMS_DECRYPT_SET1_PKEY, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE); return 0; } for (i = 0; i < sk_CMS_RecipientInfo_num(ris); i++) { ri = sk_CMS_RecipientInfo_value(ris, i); if (CMS_RecipientInfo_type(ri) != ri_type) continue; match_ri = 1; if (ri_type == CMS_RECIPINFO_AGREE) { r = cms_kari_set1_pkey(cms, ri, pk, cert); if (r > 0) return 1; if (r < 0) return 0; } /* * If we have a cert try matching RecipientInfo otherwise try them * all. */ else if (!cert || !CMS_RecipientInfo_ktri_cert_cmp(ri, cert)) { EVP_PKEY_up_ref(pk); CMS_RecipientInfo_set0_pkey(ri, pk); r = CMS_RecipientInfo_decrypt(cms, ri); CMS_RecipientInfo_set0_pkey(ri, NULL); if (cert) { /* * If not debugging clear any error and return success to * avoid leaking of information useful to MMA */ if (!debug) { ERR_clear_error(); return 1; } if (r > 0) return 1; CMSerr(CMS_F_CMS_DECRYPT_SET1_PKEY, CMS_R_DECRYPT_ERROR); return 0; } /* * If no cert and not debugging don't leave loop after first * successful decrypt. Always attempt to decrypt all recipients * to avoid leaking timing of a successful decrypt. */ else if (r > 0 && debug) return 1; } } /* If no cert, key transport and not debugging always return success */ if (cert == NULL && ri_type == CMS_RECIPINFO_TRANS && match_ri && !debug) { ERR_clear_error(); return 1; } CMSerr(CMS_F_CMS_DECRYPT_SET1_PKEY, CMS_R_NO_MATCHING_RECIPIENT); return 0; } int CMS_decrypt_set1_key(CMS_ContentInfo *cms, unsigned char *key, size_t keylen, const unsigned char *id, size_t idlen) { STACK_OF(CMS_RecipientInfo) *ris; CMS_RecipientInfo *ri; int i, r; ris = CMS_get0_RecipientInfos(cms); for (i = 0; i < sk_CMS_RecipientInfo_num(ris); i++) { ri = sk_CMS_RecipientInfo_value(ris, i); if (CMS_RecipientInfo_type(ri) != CMS_RECIPINFO_KEK) continue; /* * If we have an id try matching RecipientInfo otherwise try them * all. */ if (!id || (CMS_RecipientInfo_kekri_id_cmp(ri, id, idlen) == 0)) { CMS_RecipientInfo_set0_key(ri, key, keylen); r = CMS_RecipientInfo_decrypt(cms, ri); CMS_RecipientInfo_set0_key(ri, NULL, 0); if (r > 0) return 1; if (id) { CMSerr(CMS_F_CMS_DECRYPT_SET1_KEY, CMS_R_DECRYPT_ERROR); return 0; } ERR_clear_error(); } } CMSerr(CMS_F_CMS_DECRYPT_SET1_KEY, CMS_R_NO_MATCHING_RECIPIENT); return 0; } int CMS_decrypt_set1_password(CMS_ContentInfo *cms, unsigned char *pass, ossl_ssize_t passlen) { STACK_OF(CMS_RecipientInfo) *ris; CMS_RecipientInfo *ri; int i, r; ris = CMS_get0_RecipientInfos(cms); for (i = 0; i < sk_CMS_RecipientInfo_num(ris); i++) { ri = sk_CMS_RecipientInfo_value(ris, i); if (CMS_RecipientInfo_type(ri) != CMS_RECIPINFO_PASS) continue; CMS_RecipientInfo_set0_password(ri, pass, passlen); r = CMS_RecipientInfo_decrypt(cms, ri); CMS_RecipientInfo_set0_password(ri, NULL, 0); if (r > 0) return 1; } CMSerr(CMS_F_CMS_DECRYPT_SET1_PASSWORD, CMS_R_NO_MATCHING_RECIPIENT); return 0; } int CMS_decrypt(CMS_ContentInfo *cms, EVP_PKEY *pk, X509 *cert, BIO *dcont, BIO *out, unsigned int flags) { int r; BIO *cont; if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_enveloped) { CMSerr(CMS_F_CMS_DECRYPT, CMS_R_TYPE_NOT_ENVELOPED_DATA); return 0; } if (!dcont && !check_content(cms)) return 0; if (flags & CMS_DEBUG_DECRYPT) cms->d.envelopedData->encryptedContentInfo->debug = 1; else cms->d.envelopedData->encryptedContentInfo->debug = 0; if (!cert) cms->d.envelopedData->encryptedContentInfo->havenocert = 1; else cms->d.envelopedData->encryptedContentInfo->havenocert = 0; if (!pk && !cert && !dcont && !out) return 1; if (pk && !CMS_decrypt_set1_pkey(cms, pk, cert)) return 0; cont = CMS_dataInit(cms, dcont); if (!cont) return 0; r = cms_copy_content(out, cont, flags); do_free_upto(cont, dcont); return r; } int CMS_final(CMS_ContentInfo *cms, BIO *data, BIO *dcont, unsigned int flags) { BIO *cmsbio; int ret = 0; if ((cmsbio = CMS_dataInit(cms, dcont)) == NULL) { CMSerr(CMS_F_CMS_FINAL, CMS_R_CMS_LIB); return 0; } SMIME_crlf_copy(data, cmsbio, flags); (void)BIO_flush(cmsbio); if (!CMS_dataFinal(cms, cmsbio)) { CMSerr(CMS_F_CMS_FINAL, CMS_R_CMS_DATAFINAL_ERROR); goto err; } ret = 1; err: do_free_upto(cmsbio, dcont); return ret; } #ifdef ZLIB int CMS_uncompress(CMS_ContentInfo *cms, BIO *dcont, BIO *out, unsigned int flags) { BIO *cont; int r; if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_id_smime_ct_compressedData) { CMSerr(CMS_F_CMS_UNCOMPRESS, CMS_R_TYPE_NOT_COMPRESSED_DATA); return 0; } if (!dcont && !check_content(cms)) return 0; cont = CMS_dataInit(cms, dcont); if (!cont) return 0; r = cms_copy_content(out, cont, flags); do_free_upto(cont, dcont); return r; } CMS_ContentInfo *CMS_compress(BIO *in, int comp_nid, unsigned int flags) { CMS_ContentInfo *cms; if (comp_nid <= 0) comp_nid = NID_zlib_compression; cms = cms_CompressedData_create(comp_nid); if (!cms) return NULL; if (!(flags & CMS_DETACHED)) CMS_set_detached(cms, 0); if ((flags & CMS_STREAM) || CMS_final(cms, in, NULL, flags)) return cms; CMS_ContentInfo_free(cms); return NULL; } #else int CMS_uncompress(CMS_ContentInfo *cms, BIO *dcont, BIO *out, unsigned int flags) { CMSerr(CMS_F_CMS_UNCOMPRESS, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM); return 0; } CMS_ContentInfo *CMS_compress(BIO *in, int comp_nid, unsigned int flags) { CMSerr(CMS_F_CMS_COMPRESS, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM); return NULL; } #endif openssl-1.1.1f/crypto/comp/000077500000000000000000000000001364063235100156245ustar00rootroot00000000000000openssl-1.1.1f/crypto/comp/build.info000066400000000000000000000001411364063235100175740ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]= \ comp_lib.c comp_err.c \ c_zlib.c openssl-1.1.1f/crypto/comp/c_zlib.c000066400000000000000000000426711364063235100172440ustar00rootroot00000000000000/* * Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "internal/comp.h" #include #include "crypto/cryptlib.h" #include "internal/bio.h" #include "comp_local.h" COMP_METHOD *COMP_zlib(void); static COMP_METHOD zlib_method_nozlib = { NID_undef, "(undef)", NULL, NULL, NULL, NULL, }; #ifndef ZLIB # undef ZLIB_SHARED #else # include static int zlib_stateful_init(COMP_CTX *ctx); static void zlib_stateful_finish(COMP_CTX *ctx); static int zlib_stateful_compress_block(COMP_CTX *ctx, unsigned char *out, unsigned int olen, unsigned char *in, unsigned int ilen); static int zlib_stateful_expand_block(COMP_CTX *ctx, unsigned char *out, unsigned int olen, unsigned char *in, unsigned int ilen); /* memory allocations functions for zlib initialisation */ static void *zlib_zalloc(void *opaque, unsigned int no, unsigned int size) { void *p; p = OPENSSL_zalloc(no * size); return p; } static void zlib_zfree(void *opaque, void *address) { OPENSSL_free(address); } static COMP_METHOD zlib_stateful_method = { NID_zlib_compression, LN_zlib_compression, zlib_stateful_init, zlib_stateful_finish, zlib_stateful_compress_block, zlib_stateful_expand_block }; /* * When OpenSSL is built on Windows, we do not want to require that * the ZLIB.DLL be available in order for the OpenSSL DLLs to * work. Therefore, all ZLIB routines are loaded at run time * and we do not link to a .LIB file when ZLIB_SHARED is set. */ # if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) # include # endif /* !(OPENSSL_SYS_WINDOWS || * OPENSSL_SYS_WIN32) */ # ifdef ZLIB_SHARED # include "internal/dso.h" /* Function pointers */ typedef int (*compress_ft) (Bytef *dest, uLongf * destLen, const Bytef *source, uLong sourceLen); typedef int (*inflateEnd_ft) (z_streamp strm); typedef int (*inflate_ft) (z_streamp strm, int flush); typedef int (*inflateInit__ft) (z_streamp strm, const char *version, int stream_size); typedef int (*deflateEnd_ft) (z_streamp strm); typedef int (*deflate_ft) (z_streamp strm, int flush); typedef int (*deflateInit__ft) (z_streamp strm, int level, const char *version, int stream_size); typedef const char *(*zError__ft) (int err); static compress_ft p_compress = NULL; static inflateEnd_ft p_inflateEnd = NULL; static inflate_ft p_inflate = NULL; static inflateInit__ft p_inflateInit_ = NULL; static deflateEnd_ft p_deflateEnd = NULL; static deflate_ft p_deflate = NULL; static deflateInit__ft p_deflateInit_ = NULL; static zError__ft p_zError = NULL; static int zlib_loaded = 0; /* only attempt to init func pts once */ static DSO *zlib_dso = NULL; # define compress p_compress # define inflateEnd p_inflateEnd # define inflate p_inflate # define inflateInit_ p_inflateInit_ # define deflateEnd p_deflateEnd # define deflate p_deflate # define deflateInit_ p_deflateInit_ # define zError p_zError # endif /* ZLIB_SHARED */ struct zlib_state { z_stream istream; z_stream ostream; }; static int zlib_stateful_init(COMP_CTX *ctx) { int err; struct zlib_state *state = OPENSSL_zalloc(sizeof(*state)); if (state == NULL) goto err; state->istream.zalloc = zlib_zalloc; state->istream.zfree = zlib_zfree; state->istream.opaque = Z_NULL; state->istream.next_in = Z_NULL; state->istream.next_out = Z_NULL; err = inflateInit_(&state->istream, ZLIB_VERSION, sizeof(z_stream)); if (err != Z_OK) goto err; state->ostream.zalloc = zlib_zalloc; state->ostream.zfree = zlib_zfree; state->ostream.opaque = Z_NULL; state->ostream.next_in = Z_NULL; state->ostream.next_out = Z_NULL; err = deflateInit_(&state->ostream, Z_DEFAULT_COMPRESSION, ZLIB_VERSION, sizeof(z_stream)); if (err != Z_OK) goto err; ctx->data = state; return 1; err: OPENSSL_free(state); return 0; } static void zlib_stateful_finish(COMP_CTX *ctx) { struct zlib_state *state = ctx->data; inflateEnd(&state->istream); deflateEnd(&state->ostream); OPENSSL_free(state); } static int zlib_stateful_compress_block(COMP_CTX *ctx, unsigned char *out, unsigned int olen, unsigned char *in, unsigned int ilen) { int err = Z_OK; struct zlib_state *state = ctx->data; if (state == NULL) return -1; state->ostream.next_in = in; state->ostream.avail_in = ilen; state->ostream.next_out = out; state->ostream.avail_out = olen; if (ilen > 0) err = deflate(&state->ostream, Z_SYNC_FLUSH); if (err != Z_OK) return -1; return olen - state->ostream.avail_out; } static int zlib_stateful_expand_block(COMP_CTX *ctx, unsigned char *out, unsigned int olen, unsigned char *in, unsigned int ilen) { int err = Z_OK; struct zlib_state *state = ctx->data; if (state == NULL) return 0; state->istream.next_in = in; state->istream.avail_in = ilen; state->istream.next_out = out; state->istream.avail_out = olen; if (ilen > 0) err = inflate(&state->istream, Z_SYNC_FLUSH); if (err != Z_OK) return -1; return olen - state->istream.avail_out; } #endif COMP_METHOD *COMP_zlib(void) { COMP_METHOD *meth = &zlib_method_nozlib; #ifdef ZLIB_SHARED /* LIBZ may be externally defined, and we should respect that value */ # ifndef LIBZ # if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) # define LIBZ "ZLIB1" # elif defined(OPENSSL_SYS_VMS) # define LIBZ "LIBZ" # else # define LIBZ "z" # endif # endif if (!zlib_loaded) { zlib_dso = DSO_load(NULL, LIBZ, NULL, 0); if (zlib_dso != NULL) { p_compress = (compress_ft) DSO_bind_func(zlib_dso, "compress"); p_inflateEnd = (inflateEnd_ft) DSO_bind_func(zlib_dso, "inflateEnd"); p_inflate = (inflate_ft) DSO_bind_func(zlib_dso, "inflate"); p_inflateInit_ = (inflateInit__ft) DSO_bind_func(zlib_dso, "inflateInit_"); p_deflateEnd = (deflateEnd_ft) DSO_bind_func(zlib_dso, "deflateEnd"); p_deflate = (deflate_ft) DSO_bind_func(zlib_dso, "deflate"); p_deflateInit_ = (deflateInit__ft) DSO_bind_func(zlib_dso, "deflateInit_"); p_zError = (zError__ft) DSO_bind_func(zlib_dso, "zError"); if (p_compress && p_inflateEnd && p_inflate && p_inflateInit_ && p_deflateEnd && p_deflate && p_deflateInit_ && p_zError) zlib_loaded++; if (!OPENSSL_init_crypto(OPENSSL_INIT_ZLIB, NULL)) { comp_zlib_cleanup_int(); return meth; } if (zlib_loaded) meth = &zlib_stateful_method; } } #endif #if defined(ZLIB) meth = &zlib_stateful_method; #endif return meth; } void comp_zlib_cleanup_int(void) { #ifdef ZLIB_SHARED DSO_free(zlib_dso); zlib_dso = NULL; #endif } #ifdef ZLIB /* Zlib based compression/decompression filter BIO */ typedef struct { unsigned char *ibuf; /* Input buffer */ int ibufsize; /* Buffer size */ z_stream zin; /* Input decompress context */ unsigned char *obuf; /* Output buffer */ int obufsize; /* Output buffer size */ unsigned char *optr; /* Position in output buffer */ int ocount; /* Amount of data in output buffer */ int odone; /* deflate EOF */ int comp_level; /* Compression level to use */ z_stream zout; /* Output compression context */ } BIO_ZLIB_CTX; # define ZLIB_DEFAULT_BUFSIZE 1024 static int bio_zlib_new(BIO *bi); static int bio_zlib_free(BIO *bi); static int bio_zlib_read(BIO *b, char *out, int outl); static int bio_zlib_write(BIO *b, const char *in, int inl); static long bio_zlib_ctrl(BIO *b, int cmd, long num, void *ptr); static long bio_zlib_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp); static const BIO_METHOD bio_meth_zlib = { BIO_TYPE_COMP, "zlib", /* TODO: Convert to new style write function */ bwrite_conv, bio_zlib_write, /* TODO: Convert to new style read function */ bread_conv, bio_zlib_read, NULL, /* bio_zlib_puts, */ NULL, /* bio_zlib_gets, */ bio_zlib_ctrl, bio_zlib_new, bio_zlib_free, bio_zlib_callback_ctrl }; const BIO_METHOD *BIO_f_zlib(void) { return &bio_meth_zlib; } static int bio_zlib_new(BIO *bi) { BIO_ZLIB_CTX *ctx; # ifdef ZLIB_SHARED (void)COMP_zlib(); if (!zlib_loaded) { COMPerr(COMP_F_BIO_ZLIB_NEW, COMP_R_ZLIB_NOT_SUPPORTED); return 0; } # endif ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) { COMPerr(COMP_F_BIO_ZLIB_NEW, ERR_R_MALLOC_FAILURE); return 0; } ctx->ibufsize = ZLIB_DEFAULT_BUFSIZE; ctx->obufsize = ZLIB_DEFAULT_BUFSIZE; ctx->zin.zalloc = Z_NULL; ctx->zin.zfree = Z_NULL; ctx->zout.zalloc = Z_NULL; ctx->zout.zfree = Z_NULL; ctx->comp_level = Z_DEFAULT_COMPRESSION; BIO_set_init(bi, 1); BIO_set_data(bi, ctx); return 1; } static int bio_zlib_free(BIO *bi) { BIO_ZLIB_CTX *ctx; if (!bi) return 0; ctx = BIO_get_data(bi); if (ctx->ibuf) { /* Destroy decompress context */ inflateEnd(&ctx->zin); OPENSSL_free(ctx->ibuf); } if (ctx->obuf) { /* Destroy compress context */ deflateEnd(&ctx->zout); OPENSSL_free(ctx->obuf); } OPENSSL_free(ctx); BIO_set_data(bi, NULL); BIO_set_init(bi, 0); return 1; } static int bio_zlib_read(BIO *b, char *out, int outl) { BIO_ZLIB_CTX *ctx; int ret; z_stream *zin; BIO *next = BIO_next(b); if (!out || !outl) return 0; ctx = BIO_get_data(b); zin = &ctx->zin; BIO_clear_retry_flags(b); if (!ctx->ibuf) { ctx->ibuf = OPENSSL_malloc(ctx->ibufsize); if (ctx->ibuf == NULL) { COMPerr(COMP_F_BIO_ZLIB_READ, ERR_R_MALLOC_FAILURE); return 0; } inflateInit(zin); zin->next_in = ctx->ibuf; zin->avail_in = 0; } /* Copy output data directly to supplied buffer */ zin->next_out = (unsigned char *)out; zin->avail_out = (unsigned int)outl; for (;;) { /* Decompress while data available */ while (zin->avail_in) { ret = inflate(zin, 0); if ((ret != Z_OK) && (ret != Z_STREAM_END)) { COMPerr(COMP_F_BIO_ZLIB_READ, COMP_R_ZLIB_INFLATE_ERROR); ERR_add_error_data(2, "zlib error:", zError(ret)); return 0; } /* If EOF or we've read everything then return */ if ((ret == Z_STREAM_END) || !zin->avail_out) return outl - zin->avail_out; } /* * No data in input buffer try to read some in, if an error then * return the total data read. */ ret = BIO_read(next, ctx->ibuf, ctx->ibufsize); if (ret <= 0) { /* Total data read */ int tot = outl - zin->avail_out; BIO_copy_next_retry(b); if (ret < 0) return (tot > 0) ? tot : ret; return tot; } zin->avail_in = ret; zin->next_in = ctx->ibuf; } } static int bio_zlib_write(BIO *b, const char *in, int inl) { BIO_ZLIB_CTX *ctx; int ret; z_stream *zout; BIO *next = BIO_next(b); if (!in || !inl) return 0; ctx = BIO_get_data(b); if (ctx->odone) return 0; zout = &ctx->zout; BIO_clear_retry_flags(b); if (!ctx->obuf) { ctx->obuf = OPENSSL_malloc(ctx->obufsize); /* Need error here */ if (ctx->obuf == NULL) { COMPerr(COMP_F_BIO_ZLIB_WRITE, ERR_R_MALLOC_FAILURE); return 0; } ctx->optr = ctx->obuf; ctx->ocount = 0; deflateInit(zout, ctx->comp_level); zout->next_out = ctx->obuf; zout->avail_out = ctx->obufsize; } /* Obtain input data directly from supplied buffer */ zout->next_in = (void *)in; zout->avail_in = inl; for (;;) { /* If data in output buffer write it first */ while (ctx->ocount) { ret = BIO_write(next, ctx->optr, ctx->ocount); if (ret <= 0) { /* Total data written */ int tot = inl - zout->avail_in; BIO_copy_next_retry(b); if (ret < 0) return (tot > 0) ? tot : ret; return tot; } ctx->optr += ret; ctx->ocount -= ret; } /* Have we consumed all supplied data? */ if (!zout->avail_in) return inl; /* Compress some more */ /* Reset buffer */ ctx->optr = ctx->obuf; zout->next_out = ctx->obuf; zout->avail_out = ctx->obufsize; /* Compress some more */ ret = deflate(zout, 0); if (ret != Z_OK) { COMPerr(COMP_F_BIO_ZLIB_WRITE, COMP_R_ZLIB_DEFLATE_ERROR); ERR_add_error_data(2, "zlib error:", zError(ret)); return 0; } ctx->ocount = ctx->obufsize - zout->avail_out; } } static int bio_zlib_flush(BIO *b) { BIO_ZLIB_CTX *ctx; int ret; z_stream *zout; BIO *next = BIO_next(b); ctx = BIO_get_data(b); /* If no data written or already flush show success */ if (!ctx->obuf || (ctx->odone && !ctx->ocount)) return 1; zout = &ctx->zout; BIO_clear_retry_flags(b); /* No more input data */ zout->next_in = NULL; zout->avail_in = 0; for (;;) { /* If data in output buffer write it first */ while (ctx->ocount) { ret = BIO_write(next, ctx->optr, ctx->ocount); if (ret <= 0) { BIO_copy_next_retry(b); return ret; } ctx->optr += ret; ctx->ocount -= ret; } if (ctx->odone) return 1; /* Compress some more */ /* Reset buffer */ ctx->optr = ctx->obuf; zout->next_out = ctx->obuf; zout->avail_out = ctx->obufsize; /* Compress some more */ ret = deflate(zout, Z_FINISH); if (ret == Z_STREAM_END) ctx->odone = 1; else if (ret != Z_OK) { COMPerr(COMP_F_BIO_ZLIB_FLUSH, COMP_R_ZLIB_DEFLATE_ERROR); ERR_add_error_data(2, "zlib error:", zError(ret)); return 0; } ctx->ocount = ctx->obufsize - zout->avail_out; } } static long bio_zlib_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO_ZLIB_CTX *ctx; int ret, *ip; int ibs, obs; BIO *next = BIO_next(b); if (next == NULL) return 0; ctx = BIO_get_data(b); switch (cmd) { case BIO_CTRL_RESET: ctx->ocount = 0; ctx->odone = 0; ret = 1; break; case BIO_CTRL_FLUSH: ret = bio_zlib_flush(b); if (ret > 0) ret = BIO_flush(next); break; case BIO_C_SET_BUFF_SIZE: ibs = -1; obs = -1; if (ptr != NULL) { ip = ptr; if (*ip == 0) ibs = (int)num; else obs = (int)num; } else { ibs = (int)num; obs = ibs; } if (ibs != -1) { OPENSSL_free(ctx->ibuf); ctx->ibuf = NULL; ctx->ibufsize = ibs; } if (obs != -1) { OPENSSL_free(ctx->obuf); ctx->obuf = NULL; ctx->obufsize = obs; } ret = 1; break; case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(next, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_WPENDING: if (ctx->obuf == NULL) return 0; if (ctx->odone) { ret = ctx->ocount; } else { ret = ctx->ocount; if (ret == 0) /* Unknown amount pending but we are not finished */ ret = 1; } if (ret == 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_PENDING: ret = ctx->zin.avail_in; if (ret == 0) ret = BIO_ctrl(next, cmd, num, ptr); break; default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static long bio_zlib_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { BIO *next = BIO_next(b); if (next == NULL) return 0; return BIO_callback_ctrl(next, cmd, fp); } #endif openssl-1.1.1f/crypto/comp/comp_err.c000066400000000000000000000027001364063235100175750ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA COMP_str_functs[] = { {ERR_PACK(ERR_LIB_COMP, COMP_F_BIO_ZLIB_FLUSH, 0), "bio_zlib_flush"}, {ERR_PACK(ERR_LIB_COMP, COMP_F_BIO_ZLIB_NEW, 0), "bio_zlib_new"}, {ERR_PACK(ERR_LIB_COMP, COMP_F_BIO_ZLIB_READ, 0), "bio_zlib_read"}, {ERR_PACK(ERR_LIB_COMP, COMP_F_BIO_ZLIB_WRITE, 0), "bio_zlib_write"}, {ERR_PACK(ERR_LIB_COMP, COMP_F_COMP_CTX_NEW, 0), "COMP_CTX_new"}, {0, NULL} }; static const ERR_STRING_DATA COMP_str_reasons[] = { {ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZLIB_DEFLATE_ERROR), "zlib deflate error"}, {ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZLIB_INFLATE_ERROR), "zlib inflate error"}, {ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZLIB_NOT_SUPPORTED), "zlib not supported"}, {0, NULL} }; #endif int ERR_load_COMP_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(COMP_str_functs[0].error) == NULL) { ERR_load_strings_const(COMP_str_functs); ERR_load_strings_const(COMP_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/comp/comp_lib.c000066400000000000000000000040601364063235100175540ustar00rootroot00000000000000/* * Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "comp_local.h" COMP_CTX *COMP_CTX_new(COMP_METHOD *meth) { COMP_CTX *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { COMPerr(COMP_F_COMP_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->meth = meth; if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { OPENSSL_free(ret); ret = NULL; } return ret; } const COMP_METHOD *COMP_CTX_get_method(const COMP_CTX *ctx) { return ctx->meth; } int COMP_get_type(const COMP_METHOD *meth) { return meth->type; } const char *COMP_get_name(const COMP_METHOD *meth) { return meth->name; } void COMP_CTX_free(COMP_CTX *ctx) { if (ctx == NULL) return; if (ctx->meth->finish != NULL) ctx->meth->finish(ctx); OPENSSL_free(ctx); } int COMP_compress_block(COMP_CTX *ctx, unsigned char *out, int olen, unsigned char *in, int ilen) { int ret; if (ctx->meth->compress == NULL) { return -1; } ret = ctx->meth->compress(ctx, out, olen, in, ilen); if (ret > 0) { ctx->compress_in += ilen; ctx->compress_out += ret; } return ret; } int COMP_expand_block(COMP_CTX *ctx, unsigned char *out, int olen, unsigned char *in, int ilen) { int ret; if (ctx->meth->expand == NULL) { return -1; } ret = ctx->meth->expand(ctx, out, olen, in, ilen); if (ret > 0) { ctx->expand_in += ilen; ctx->expand_out += ret; } return ret; } int COMP_CTX_get_type(const COMP_CTX* comp) { return comp->meth ? comp->meth->type : NID_undef; } openssl-1.1.1f/crypto/comp/comp_local.h000066400000000000000000000020621364063235100201050ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ struct comp_method_st { int type; /* NID for compression library */ const char *name; /* A text string to identify the library */ int (*init) (COMP_CTX *ctx); void (*finish) (COMP_CTX *ctx); int (*compress) (COMP_CTX *ctx, unsigned char *out, unsigned int olen, unsigned char *in, unsigned int ilen); int (*expand) (COMP_CTX *ctx, unsigned char *out, unsigned int olen, unsigned char *in, unsigned int ilen); }; struct comp_ctx_st { struct comp_method_st *meth; unsigned long compress_in; unsigned long compress_out; unsigned long expand_in; unsigned long expand_out; void* data; }; openssl-1.1.1f/crypto/conf/000077500000000000000000000000001364063235100156135ustar00rootroot00000000000000openssl-1.1.1f/crypto/conf/build.info000066400000000000000000000002331364063235100175650ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]= \ conf_err.c conf_lib.c conf_api.c conf_def.c conf_mod.c \ conf_mall.c conf_sap.c conf_ssl.c openssl-1.1.1f/crypto/conf/conf_api.c000066400000000000000000000127461364063235100175470ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Part of the code in here was originally in conf.c, which is now removed */ #include "e_os.h" #include "internal/cryptlib.h" #include #include #include #include static void value_free_hash(const CONF_VALUE *a, LHASH_OF(CONF_VALUE) *conf); static void value_free_stack_doall(CONF_VALUE *a); /* Up until OpenSSL 0.9.5a, this was get_section */ CONF_VALUE *_CONF_get_section(const CONF *conf, const char *section) { CONF_VALUE *v, vv; if ((conf == NULL) || (section == NULL)) return NULL; vv.name = NULL; vv.section = (char *)section; v = lh_CONF_VALUE_retrieve(conf->data, &vv); return v; } /* Up until OpenSSL 0.9.5a, this was CONF_get_section */ STACK_OF(CONF_VALUE) *_CONF_get_section_values(const CONF *conf, const char *section) { CONF_VALUE *v; v = _CONF_get_section(conf, section); if (v != NULL) return ((STACK_OF(CONF_VALUE) *)v->value); else return NULL; } int _CONF_add_string(CONF *conf, CONF_VALUE *section, CONF_VALUE *value) { CONF_VALUE *v = NULL; STACK_OF(CONF_VALUE) *ts; ts = (STACK_OF(CONF_VALUE) *)section->value; value->section = section->section; if (!sk_CONF_VALUE_push(ts, value)) { return 0; } v = lh_CONF_VALUE_insert(conf->data, value); if (v != NULL) { (void)sk_CONF_VALUE_delete_ptr(ts, v); OPENSSL_free(v->name); OPENSSL_free(v->value); OPENSSL_free(v); } return 1; } char *_CONF_get_string(const CONF *conf, const char *section, const char *name) { CONF_VALUE *v, vv; char *p; if (name == NULL) return NULL; if (conf != NULL) { if (section != NULL) { vv.name = (char *)name; vv.section = (char *)section; v = lh_CONF_VALUE_retrieve(conf->data, &vv); if (v != NULL) return v->value; if (strcmp(section, "ENV") == 0) { p = ossl_safe_getenv(name); if (p != NULL) return p; } } vv.section = "default"; vv.name = (char *)name; v = lh_CONF_VALUE_retrieve(conf->data, &vv); if (v != NULL) return v->value; else return NULL; } else return ossl_safe_getenv(name); } static unsigned long conf_value_hash(const CONF_VALUE *v) { return (OPENSSL_LH_strhash(v->section) << 2) ^ OPENSSL_LH_strhash(v->name); } static int conf_value_cmp(const CONF_VALUE *a, const CONF_VALUE *b) { int i; if (a->section != b->section) { i = strcmp(a->section, b->section); if (i) return i; } if ((a->name != NULL) && (b->name != NULL)) { i = strcmp(a->name, b->name); return i; } else if (a->name == b->name) return 0; else return ((a->name == NULL) ? -1 : 1); } int _CONF_new_data(CONF *conf) { if (conf == NULL) { return 0; } if (conf->data == NULL) { conf->data = lh_CONF_VALUE_new(conf_value_hash, conf_value_cmp); if (conf->data == NULL) return 0; } return 1; } typedef LHASH_OF(CONF_VALUE) LH_CONF_VALUE; IMPLEMENT_LHASH_DOALL_ARG_CONST(CONF_VALUE, LH_CONF_VALUE); void _CONF_free_data(CONF *conf) { if (conf == NULL || conf->data == NULL) return; /* evil thing to make sure the 'OPENSSL_free()' works as expected */ lh_CONF_VALUE_set_down_load(conf->data, 0); lh_CONF_VALUE_doall_LH_CONF_VALUE(conf->data, value_free_hash, conf->data); /* * We now have only 'section' entries in the hash table. Due to problems * with */ lh_CONF_VALUE_doall(conf->data, value_free_stack_doall); lh_CONF_VALUE_free(conf->data); } static void value_free_hash(const CONF_VALUE *a, LHASH_OF(CONF_VALUE) *conf) { if (a->name != NULL) (void)lh_CONF_VALUE_delete(conf, a); } static void value_free_stack_doall(CONF_VALUE *a) { CONF_VALUE *vv; STACK_OF(CONF_VALUE) *sk; int i; if (a->name != NULL) return; sk = (STACK_OF(CONF_VALUE) *)a->value; for (i = sk_CONF_VALUE_num(sk) - 1; i >= 0; i--) { vv = sk_CONF_VALUE_value(sk, i); OPENSSL_free(vv->value); OPENSSL_free(vv->name); OPENSSL_free(vv); } sk_CONF_VALUE_free(sk); OPENSSL_free(a->section); OPENSSL_free(a); } /* Up until OpenSSL 0.9.5a, this was new_section */ CONF_VALUE *_CONF_new_section(CONF *conf, const char *section) { STACK_OF(CONF_VALUE) *sk = NULL; int i; CONF_VALUE *v = NULL, *vv; if ((sk = sk_CONF_VALUE_new_null()) == NULL) goto err; if ((v = OPENSSL_malloc(sizeof(*v))) == NULL) goto err; i = strlen(section) + 1; if ((v->section = OPENSSL_malloc(i)) == NULL) goto err; memcpy(v->section, section, i); v->name = NULL; v->value = (char *)sk; vv = lh_CONF_VALUE_insert(conf->data, v); if (vv != NULL || lh_CONF_VALUE_error(conf->data) > 0) goto err; return v; err: sk_CONF_VALUE_free(sk); if (v != NULL) OPENSSL_free(v->section); OPENSSL_free(v); return NULL; } openssl-1.1.1f/crypto/conf/conf_def.c000066400000000000000000000563341364063235100175350ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Part of the code in here was originally in conf.c, which is now removed */ #include #include #include "internal/cryptlib.h" #include "internal/o_dir.h" #include #include #include #include "conf_def.h" #include #include #ifndef OPENSSL_NO_POSIX_IO # include # ifdef _WIN32 # define stat _stat # define strcasecmp _stricmp # endif #endif #ifndef S_ISDIR # define S_ISDIR(a) (((a) & S_IFMT) == S_IFDIR) #endif /* * The maximum length we can grow a value to after variable expansion. 64k * should be more than enough for all reasonable uses. */ #define MAX_CONF_VALUE_LENGTH 65536 static int is_keytype(const CONF *conf, char c, unsigned short type); static char *eat_ws(CONF *conf, char *p); static void trim_ws(CONF *conf, char *start); static char *eat_alpha_numeric(CONF *conf, char *p); static void clear_comments(CONF *conf, char *p); static int str_copy(CONF *conf, char *section, char **to, char *from); static char *scan_quote(CONF *conf, char *p); static char *scan_dquote(CONF *conf, char *p); #define scan_esc(conf,p) (((IS_EOF((conf),(p)[1]))?((p)+1):((p)+2))) #ifndef OPENSSL_NO_POSIX_IO static BIO *process_include(char *include, OPENSSL_DIR_CTX **dirctx, char **dirpath); static BIO *get_next_file(const char *path, OPENSSL_DIR_CTX **dirctx); #endif static CONF *def_create(CONF_METHOD *meth); static int def_init_default(CONF *conf); static int def_init_WIN32(CONF *conf); static int def_destroy(CONF *conf); static int def_destroy_data(CONF *conf); static int def_load(CONF *conf, const char *name, long *eline); static int def_load_bio(CONF *conf, BIO *bp, long *eline); static int def_dump(const CONF *conf, BIO *bp); static int def_is_number(const CONF *conf, char c); static int def_to_int(const CONF *conf, char c); static CONF_METHOD default_method = { "OpenSSL default", def_create, def_init_default, def_destroy, def_destroy_data, def_load_bio, def_dump, def_is_number, def_to_int, def_load }; static CONF_METHOD WIN32_method = { "WIN32", def_create, def_init_WIN32, def_destroy, def_destroy_data, def_load_bio, def_dump, def_is_number, def_to_int, def_load }; CONF_METHOD *NCONF_default(void) { return &default_method; } CONF_METHOD *NCONF_WIN32(void) { return &WIN32_method; } static CONF *def_create(CONF_METHOD *meth) { CONF *ret; ret = OPENSSL_malloc(sizeof(*ret)); if (ret != NULL) if (meth->init(ret) == 0) { OPENSSL_free(ret); ret = NULL; } return ret; } static int def_init_default(CONF *conf) { if (conf == NULL) return 0; conf->meth = &default_method; conf->meth_data = (void *)CONF_type_default; conf->data = NULL; return 1; } static int def_init_WIN32(CONF *conf) { if (conf == NULL) return 0; conf->meth = &WIN32_method; conf->meth_data = (void *)CONF_type_win32; conf->data = NULL; return 1; } static int def_destroy(CONF *conf) { if (def_destroy_data(conf)) { OPENSSL_free(conf); return 1; } return 0; } static int def_destroy_data(CONF *conf) { if (conf == NULL) return 0; _CONF_free_data(conf); return 1; } static int def_load(CONF *conf, const char *name, long *line) { int ret; BIO *in = NULL; #ifdef OPENSSL_SYS_VMS in = BIO_new_file(name, "r"); #else in = BIO_new_file(name, "rb"); #endif if (in == NULL) { if (ERR_GET_REASON(ERR_peek_last_error()) == BIO_R_NO_SUCH_FILE) CONFerr(CONF_F_DEF_LOAD, CONF_R_NO_SUCH_FILE); else CONFerr(CONF_F_DEF_LOAD, ERR_R_SYS_LIB); return 0; } ret = def_load_bio(conf, in, line); BIO_free(in); return ret; } static int def_load_bio(CONF *conf, BIO *in, long *line) { /* The macro BUFSIZE conflicts with a system macro in VxWorks */ #define CONFBUFSIZE 512 int bufnum = 0, i, ii; BUF_MEM *buff = NULL; char *s, *p, *end; int again; long eline = 0; char btmp[DECIMAL_SIZE(eline) + 1]; CONF_VALUE *v = NULL, *tv; CONF_VALUE *sv = NULL; char *section = NULL, *buf; char *start, *psection, *pname; void *h = (void *)(conf->data); STACK_OF(BIO) *biosk = NULL; #ifndef OPENSSL_NO_POSIX_IO char *dirpath = NULL; OPENSSL_DIR_CTX *dirctx = NULL; #endif if ((buff = BUF_MEM_new()) == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_BUF_LIB); goto err; } section = OPENSSL_strdup("default"); if (section == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_MALLOC_FAILURE); goto err; } if (_CONF_new_data(conf) == 0) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_MALLOC_FAILURE); goto err; } sv = _CONF_new_section(conf, section); if (sv == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, CONF_R_UNABLE_TO_CREATE_NEW_SECTION); goto err; } bufnum = 0; again = 0; for (;;) { if (!BUF_MEM_grow(buff, bufnum + CONFBUFSIZE)) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_BUF_LIB); goto err; } p = &(buff->data[bufnum]); *p = '\0'; read_retry: BIO_gets(in, p, CONFBUFSIZE - 1); p[CONFBUFSIZE - 1] = '\0'; ii = i = strlen(p); if (i == 0 && !again) { /* the currently processed BIO is at EOF */ BIO *parent; #ifndef OPENSSL_NO_POSIX_IO /* continue processing with the next file from directory */ if (dirctx != NULL) { BIO *next; if ((next = get_next_file(dirpath, &dirctx)) != NULL) { BIO_vfree(in); in = next; goto read_retry; } else { OPENSSL_free(dirpath); dirpath = NULL; } } #endif /* no more files in directory, continue with processing parent */ if ((parent = sk_BIO_pop(biosk)) == NULL) { /* everything processed get out of the loop */ break; } else { BIO_vfree(in); in = parent; goto read_retry; } } again = 0; while (i > 0) { if ((p[i - 1] != '\r') && (p[i - 1] != '\n')) break; else i--; } /* * we removed some trailing stuff so there is a new line on the end. */ if (ii && i == ii) again = 1; /* long line */ else { p[i] = '\0'; eline++; /* another input line */ } /* we now have a line with trailing \r\n removed */ /* i is the number of bytes */ bufnum += i; v = NULL; /* check for line continuation */ if (bufnum >= 1) { /* * If we have bytes and the last char '\\' and second last char * is not '\\' */ p = &(buff->data[bufnum - 1]); if (IS_ESC(conf, p[0]) && ((bufnum <= 1) || !IS_ESC(conf, p[-1]))) { bufnum--; again = 1; } } if (again) continue; bufnum = 0; buf = buff->data; clear_comments(conf, buf); s = eat_ws(conf, buf); if (IS_EOF(conf, *s)) continue; /* blank line */ if (*s == '[') { char *ss; s++; start = eat_ws(conf, s); ss = start; again: end = eat_alpha_numeric(conf, ss); p = eat_ws(conf, end); if (*p != ']') { if (*p != '\0' && ss != p) { ss = p; goto again; } CONFerr(CONF_F_DEF_LOAD_BIO, CONF_R_MISSING_CLOSE_SQUARE_BRACKET); goto err; } *end = '\0'; if (!str_copy(conf, NULL, §ion, start)) goto err; if ((sv = _CONF_get_section(conf, section)) == NULL) sv = _CONF_new_section(conf, section); if (sv == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, CONF_R_UNABLE_TO_CREATE_NEW_SECTION); goto err; } continue; } else { pname = s; end = eat_alpha_numeric(conf, s); if ((end[0] == ':') && (end[1] == ':')) { *end = '\0'; end += 2; psection = pname; pname = end; end = eat_alpha_numeric(conf, end); } else { psection = section; } p = eat_ws(conf, end); if (strncmp(pname, ".include", 8) == 0 && (p != pname + 8 || *p == '=')) { char *include = NULL; BIO *next; if (*p == '=') { p++; p = eat_ws(conf, p); } trim_ws(conf, p); if (!str_copy(conf, psection, &include, p)) goto err; /* get the BIO of the included file */ #ifndef OPENSSL_NO_POSIX_IO next = process_include(include, &dirctx, &dirpath); if (include != dirpath) { /* dirpath will contain include in case of a directory */ OPENSSL_free(include); } #else next = BIO_new_file(include, "r"); OPENSSL_free(include); #endif if (next != NULL) { /* push the currently processing BIO onto stack */ if (biosk == NULL) { if ((biosk = sk_BIO_new_null()) == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_MALLOC_FAILURE); goto err; } } if (!sk_BIO_push(biosk, in)) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_MALLOC_FAILURE); goto err; } /* continue with reading from the included BIO */ in = next; } continue; } else if (*p != '=') { CONFerr(CONF_F_DEF_LOAD_BIO, CONF_R_MISSING_EQUAL_SIGN); goto err; } *end = '\0'; p++; start = eat_ws(conf, p); trim_ws(conf, start); if ((v = OPENSSL_malloc(sizeof(*v))) == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_MALLOC_FAILURE); goto err; } v->name = OPENSSL_strdup(pname); v->value = NULL; if (v->name == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_MALLOC_FAILURE); goto err; } if (!str_copy(conf, psection, &(v->value), start)) goto err; if (strcmp(psection, section) != 0) { if ((tv = _CONF_get_section(conf, psection)) == NULL) tv = _CONF_new_section(conf, psection); if (tv == NULL) { CONFerr(CONF_F_DEF_LOAD_BIO, CONF_R_UNABLE_TO_CREATE_NEW_SECTION); goto err; } } else tv = sv; if (_CONF_add_string(conf, tv, v) == 0) { CONFerr(CONF_F_DEF_LOAD_BIO, ERR_R_MALLOC_FAILURE); goto err; } v = NULL; } } BUF_MEM_free(buff); OPENSSL_free(section); /* * No need to pop, since we only get here if the stack is empty. * If this causes a BIO leak, THE ISSUE IS SOMEWHERE ELSE! */ sk_BIO_free(biosk); return 1; err: BUF_MEM_free(buff); OPENSSL_free(section); /* * Since |in| is the first element of the stack and should NOT be freed * here, we cannot use sk_BIO_pop_free(). Instead, we pop and free one * BIO at a time, making sure that the last one popped isn't. */ while (sk_BIO_num(biosk) > 0) { BIO *popped = sk_BIO_pop(biosk); BIO_vfree(in); in = popped; } sk_BIO_free(biosk); #ifndef OPENSSL_NO_POSIX_IO OPENSSL_free(dirpath); if (dirctx != NULL) OPENSSL_DIR_end(&dirctx); #endif if (line != NULL) *line = eline; BIO_snprintf(btmp, sizeof(btmp), "%ld", eline); ERR_add_error_data(2, "line ", btmp); if (h != conf->data) { CONF_free(conf->data); conf->data = NULL; } if (v != NULL) { OPENSSL_free(v->name); OPENSSL_free(v->value); OPENSSL_free(v); } return 0; } static void clear_comments(CONF *conf, char *p) { for (;;) { if (IS_FCOMMENT(conf, *p)) { *p = '\0'; return; } if (!IS_WS(conf, *p)) { break; } p++; } for (;;) { if (IS_COMMENT(conf, *p)) { *p = '\0'; return; } if (IS_DQUOTE(conf, *p)) { p = scan_dquote(conf, p); continue; } if (IS_QUOTE(conf, *p)) { p = scan_quote(conf, p); continue; } if (IS_ESC(conf, *p)) { p = scan_esc(conf, p); continue; } if (IS_EOF(conf, *p)) return; else p++; } } static int str_copy(CONF *conf, char *section, char **pto, char *from) { int q, r, rr = 0, to = 0, len = 0; char *s, *e, *rp, *p, *rrp, *np, *cp, v; BUF_MEM *buf; if ((buf = BUF_MEM_new()) == NULL) return 0; len = strlen(from) + 1; if (!BUF_MEM_grow(buf, len)) goto err; for (;;) { if (IS_QUOTE(conf, *from)) { q = *from; from++; while (!IS_EOF(conf, *from) && (*from != q)) { if (IS_ESC(conf, *from)) { from++; if (IS_EOF(conf, *from)) break; } buf->data[to++] = *(from++); } if (*from == q) from++; } else if (IS_DQUOTE(conf, *from)) { q = *from; from++; while (!IS_EOF(conf, *from)) { if (*from == q) { if (*(from + 1) == q) { from++; } else { break; } } buf->data[to++] = *(from++); } if (*from == q) from++; } else if (IS_ESC(conf, *from)) { from++; v = *(from++); if (IS_EOF(conf, v)) break; else if (v == 'r') v = '\r'; else if (v == 'n') v = '\n'; else if (v == 'b') v = '\b'; else if (v == 't') v = '\t'; buf->data[to++] = v; } else if (IS_EOF(conf, *from)) break; else if (*from == '$') { size_t newsize; /* try to expand it */ rrp = NULL; s = &(from[1]); if (*s == '{') q = '}'; else if (*s == '(') q = ')'; else q = 0; if (q) s++; cp = section; e = np = s; while (IS_ALNUM(conf, *e)) e++; if ((e[0] == ':') && (e[1] == ':')) { cp = np; rrp = e; rr = *e; *rrp = '\0'; e += 2; np = e; while (IS_ALNUM(conf, *e)) e++; } r = *e; *e = '\0'; rp = e; if (q) { if (r != q) { CONFerr(CONF_F_STR_COPY, CONF_R_NO_CLOSE_BRACE); goto err; } e++; } /*- * So at this point we have * np which is the start of the name string which is * '\0' terminated. * cp which is the start of the section string which is * '\0' terminated. * e is the 'next point after'. * r and rr are the chars replaced by the '\0' * rp and rrp is where 'r' and 'rr' came from. */ p = _CONF_get_string(conf, cp, np); if (rrp != NULL) *rrp = rr; *rp = r; if (p == NULL) { CONFerr(CONF_F_STR_COPY, CONF_R_VARIABLE_HAS_NO_VALUE); goto err; } newsize = strlen(p) + buf->length - (e - from); if (newsize > MAX_CONF_VALUE_LENGTH) { CONFerr(CONF_F_STR_COPY, CONF_R_VARIABLE_EXPANSION_TOO_LONG); goto err; } if (!BUF_MEM_grow_clean(buf, newsize)) { CONFerr(CONF_F_STR_COPY, ERR_R_MALLOC_FAILURE); goto err; } while (*p) buf->data[to++] = *(p++); /* * Since we change the pointer 'from', we also have to change the * perceived length of the string it points at. /RL */ len -= e - from; from = e; /* * In case there were no braces or parenthesis around the * variable reference, we have to put back the character that was * replaced with a '\0'. /RL */ *rp = r; } else buf->data[to++] = *(from++); } buf->data[to] = '\0'; OPENSSL_free(*pto); *pto = buf->data; OPENSSL_free(buf); return 1; err: BUF_MEM_free(buf); return 0; } #ifndef OPENSSL_NO_POSIX_IO /* * Check whether included path is a directory. * Returns next BIO to process and in case of a directory * also an opened directory context and the include path. */ static BIO *process_include(char *include, OPENSSL_DIR_CTX **dirctx, char **dirpath) { struct stat st = { 0 }; BIO *next; if (stat(include, &st) < 0) { SYSerr(SYS_F_STAT, errno); ERR_add_error_data(1, include); /* missing include file is not fatal error */ return NULL; } if (S_ISDIR(st.st_mode)) { if (*dirctx != NULL) { CONFerr(CONF_F_PROCESS_INCLUDE, CONF_R_RECURSIVE_DIRECTORY_INCLUDE); ERR_add_error_data(1, include); return NULL; } /* a directory, load its contents */ if ((next = get_next_file(include, dirctx)) != NULL) *dirpath = include; return next; } next = BIO_new_file(include, "r"); return next; } /* * Get next file from the directory path. * Returns BIO of the next file to read and updates dirctx. */ static BIO *get_next_file(const char *path, OPENSSL_DIR_CTX **dirctx) { const char *filename; size_t pathlen; pathlen = strlen(path); while ((filename = OPENSSL_DIR_read(dirctx, path)) != NULL) { size_t namelen; namelen = strlen(filename); if ((namelen > 5 && strcasecmp(filename + namelen - 5, ".conf") == 0) || (namelen > 4 && strcasecmp(filename + namelen - 4, ".cnf") == 0)) { size_t newlen; char *newpath; BIO *bio; newlen = pathlen + namelen + 2; newpath = OPENSSL_zalloc(newlen); if (newpath == NULL) { CONFerr(CONF_F_GET_NEXT_FILE, ERR_R_MALLOC_FAILURE); break; } #ifdef OPENSSL_SYS_VMS /* * If the given path isn't clear VMS syntax, * we treat it as on Unix. */ if (path[pathlen - 1] == ']' || path[pathlen - 1] == '>' || path[pathlen - 1] == ':') { /* Clear VMS directory syntax, just copy as is */ OPENSSL_strlcpy(newpath, path, newlen); } #endif if (newpath[0] == '\0') { OPENSSL_strlcpy(newpath, path, newlen); OPENSSL_strlcat(newpath, "/", newlen); } OPENSSL_strlcat(newpath, filename, newlen); bio = BIO_new_file(newpath, "r"); OPENSSL_free(newpath); /* Errors when opening files are non-fatal. */ if (bio != NULL) return bio; } } OPENSSL_DIR_end(dirctx); *dirctx = NULL; return NULL; } #endif static int is_keytype(const CONF *conf, char c, unsigned short type) { const unsigned short * keytypes = (const unsigned short *) conf->meth_data; unsigned char key = (unsigned char)c; #ifdef CHARSET_EBCDIC # if CHAR_BIT > 8 if (key > 255) { /* key is out of range for os_toascii table */ return 0; } # endif /* convert key from ebcdic to ascii */ key = os_toascii[key]; #endif if (key > 127) { /* key is not a seven bit ascii character */ return 0; } return (keytypes[key] & type) ? 1 : 0; } static char *eat_ws(CONF *conf, char *p) { while (IS_WS(conf, *p) && (!IS_EOF(conf, *p))) p++; return p; } static void trim_ws(CONF *conf, char *start) { char *p = start; while (!IS_EOF(conf, *p)) p++; p--; while ((p >= start) && IS_WS(conf, *p)) p--; p++; *p = '\0'; } static char *eat_alpha_numeric(CONF *conf, char *p) { for (;;) { if (IS_ESC(conf, *p)) { p = scan_esc(conf, p); continue; } if (!IS_ALNUM_PUNCT(conf, *p)) return p; p++; } } static char *scan_quote(CONF *conf, char *p) { int q = *p; p++; while (!(IS_EOF(conf, *p)) && (*p != q)) { if (IS_ESC(conf, *p)) { p++; if (IS_EOF(conf, *p)) return p; } p++; } if (*p == q) p++; return p; } static char *scan_dquote(CONF *conf, char *p) { int q = *p; p++; while (!(IS_EOF(conf, *p))) { if (*p == q) { if (*(p + 1) == q) { p++; } else { break; } } p++; } if (*p == q) p++; return p; } static void dump_value_doall_arg(const CONF_VALUE *a, BIO *out) { if (a->name) BIO_printf(out, "[%s] %s=%s\n", a->section, a->name, a->value); else BIO_printf(out, "[[%s]]\n", a->section); } IMPLEMENT_LHASH_DOALL_ARG_CONST(CONF_VALUE, BIO); static int def_dump(const CONF *conf, BIO *out) { lh_CONF_VALUE_doall_BIO(conf->data, dump_value_doall_arg, out); return 1; } static int def_is_number(const CONF *conf, char c) { return IS_NUMBER(conf, c); } static int def_to_int(const CONF *conf, char c) { return c - '0'; } openssl-1.1.1f/crypto/conf/conf_def.h000066400000000000000000000074301364063235100175330ustar00rootroot00000000000000/* * WARNING: do not edit! * Generated by crypto/conf/keysets.pl * * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define CONF_NUMBER 1 #define CONF_UPPER 2 #define CONF_LOWER 4 #define CONF_UNDER 256 #define CONF_PUNCT 512 #define CONF_WS 16 #define CONF_ESC 32 #define CONF_QUOTE 64 #define CONF_DQUOTE 1024 #define CONF_COMMENT 128 #define CONF_FCOMMENT 2048 #define CONF_EOF 8 #define CONF_ALPHA (CONF_UPPER|CONF_LOWER) #define CONF_ALNUM (CONF_ALPHA|CONF_NUMBER|CONF_UNDER) #define CONF_ALNUM_PUNCT (CONF_ALPHA|CONF_NUMBER|CONF_UNDER|CONF_PUNCT) #define IS_COMMENT(conf,c) is_keytype(conf, c, CONF_COMMENT) #define IS_FCOMMENT(conf,c) is_keytype(conf, c, CONF_FCOMMENT) #define IS_EOF(conf,c) is_keytype(conf, c, CONF_EOF) #define IS_ESC(conf,c) is_keytype(conf, c, CONF_ESC) #define IS_NUMBER(conf,c) is_keytype(conf, c, CONF_NUMBER) #define IS_WS(conf,c) is_keytype(conf, c, CONF_WS) #define IS_ALNUM(conf,c) is_keytype(conf, c, CONF_ALNUM) #define IS_ALNUM_PUNCT(conf,c) is_keytype(conf, c, CONF_ALNUM_PUNCT) #define IS_QUOTE(conf,c) is_keytype(conf, c, CONF_QUOTE) #define IS_DQUOTE(conf,c) is_keytype(conf, c, CONF_DQUOTE) static const unsigned short CONF_type_default[128] = { 0x0008, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0010, 0x0010, 0x0000, 0x0000, 0x0010, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0010, 0x0200, 0x0040, 0x0080, 0x0000, 0x0200, 0x0200, 0x0040, 0x0000, 0x0000, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0200, 0x0000, 0x0000, 0x0000, 0x0200, 0x0200, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0000, 0x0020, 0x0000, 0x0200, 0x0100, 0x0040, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0000, 0x0200, 0x0000, 0x0200, 0x0000, }; static const unsigned short CONF_type_win32[128] = { 0x0008, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0010, 0x0010, 0x0000, 0x0000, 0x0010, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0010, 0x0200, 0x0400, 0x0000, 0x0000, 0x0200, 0x0200, 0x0000, 0x0000, 0x0000, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0A00, 0x0000, 0x0000, 0x0000, 0x0200, 0x0200, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0000, 0x0000, 0x0000, 0x0200, 0x0100, 0x0000, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0000, 0x0200, 0x0000, 0x0200, 0x0000, }; openssl-1.1.1f/crypto/conf/conf_err.c000066400000000000000000000105371364063235100175620ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA CONF_str_functs[] = { {ERR_PACK(ERR_LIB_CONF, CONF_F_CONF_DUMP_FP, 0), "CONF_dump_fp"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_CONF_LOAD, 0), "CONF_load"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_CONF_LOAD_FP, 0), "CONF_load_fp"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_CONF_PARSE_LIST, 0), "CONF_parse_list"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_DEF_LOAD, 0), "def_load"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_DEF_LOAD_BIO, 0), "def_load_bio"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_GET_NEXT_FILE, 0), "get_next_file"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_MODULE_ADD, 0), "module_add"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_MODULE_INIT, 0), "module_init"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_MODULE_LOAD_DSO, 0), "module_load_dso"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_MODULE_RUN, 0), "module_run"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_DUMP_BIO, 0), "NCONF_dump_bio"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_DUMP_FP, 0), "NCONF_dump_fp"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_GET_NUMBER_E, 0), "NCONF_get_number_e"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_GET_SECTION, 0), "NCONF_get_section"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_GET_STRING, 0), "NCONF_get_string"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_LOAD, 0), "NCONF_load"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_LOAD_BIO, 0), "NCONF_load_bio"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_LOAD_FP, 0), "NCONF_load_fp"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_NCONF_NEW, 0), "NCONF_new"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_PROCESS_INCLUDE, 0), "process_include"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_SSL_MODULE_INIT, 0), "ssl_module_init"}, {ERR_PACK(ERR_LIB_CONF, CONF_F_STR_COPY, 0), "str_copy"}, {0, NULL} }; static const ERR_STRING_DATA CONF_str_reasons[] = { {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_ERROR_LOADING_DSO), "error loading dso"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_LIST_CANNOT_BE_NULL), "list cannot be null"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MISSING_CLOSE_SQUARE_BRACKET), "missing close square bracket"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MISSING_EQUAL_SIGN), "missing equal sign"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MISSING_INIT_FUNCTION), "missing init function"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MODULE_INITIALIZATION_ERROR), "module initialization error"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_CLOSE_BRACE), "no close brace"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_CONF), "no conf"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE), "no conf or environment variable"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_SECTION), "no section"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_SUCH_FILE), "no such file"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_VALUE), "no value"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NUMBER_TOO_LARGE), "number too large"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_RECURSIVE_DIRECTORY_INCLUDE), "recursive directory include"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_COMMAND_SECTION_EMPTY), "ssl command section empty"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_COMMAND_SECTION_NOT_FOUND), "ssl command section not found"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_SECTION_EMPTY), "ssl section empty"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_SECTION_NOT_FOUND), "ssl section not found"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_UNABLE_TO_CREATE_NEW_SECTION), "unable to create new section"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_UNKNOWN_MODULE_NAME), "unknown module name"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_VARIABLE_EXPANSION_TOO_LONG), "variable expansion too long"}, {ERR_PACK(ERR_LIB_CONF, 0, CONF_R_VARIABLE_HAS_NO_VALUE), "variable has no value"}, {0, NULL} }; #endif int ERR_load_CONF_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(CONF_str_functs[0].error) == NULL) { ERR_load_strings_const(CONF_str_functs); ERR_load_strings_const(CONF_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/conf/conf_lib.c000066400000000000000000000226521364063235100175410ustar00rootroot00000000000000/* * Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include "internal/conf.h" #include "crypto/ctype.h" #include #include #include #include #include static CONF_METHOD *default_CONF_method = NULL; /* Init a 'CONF' structure from an old LHASH */ void CONF_set_nconf(CONF *conf, LHASH_OF(CONF_VALUE) *hash) { if (default_CONF_method == NULL) default_CONF_method = NCONF_default(); default_CONF_method->init(conf); conf->data = hash; } /* * The following section contains the "CONF classic" functions, rewritten in * terms of the new CONF interface. */ int CONF_set_default_method(CONF_METHOD *meth) { default_CONF_method = meth; return 1; } LHASH_OF(CONF_VALUE) *CONF_load(LHASH_OF(CONF_VALUE) *conf, const char *file, long *eline) { LHASH_OF(CONF_VALUE) *ltmp; BIO *in = NULL; #ifdef OPENSSL_SYS_VMS in = BIO_new_file(file, "r"); #else in = BIO_new_file(file, "rb"); #endif if (in == NULL) { CONFerr(CONF_F_CONF_LOAD, ERR_R_SYS_LIB); return NULL; } ltmp = CONF_load_bio(conf, in, eline); BIO_free(in); return ltmp; } #ifndef OPENSSL_NO_STDIO LHASH_OF(CONF_VALUE) *CONF_load_fp(LHASH_OF(CONF_VALUE) *conf, FILE *fp, long *eline) { BIO *btmp; LHASH_OF(CONF_VALUE) *ltmp; if ((btmp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) { CONFerr(CONF_F_CONF_LOAD_FP, ERR_R_BUF_LIB); return NULL; } ltmp = CONF_load_bio(conf, btmp, eline); BIO_free(btmp); return ltmp; } #endif LHASH_OF(CONF_VALUE) *CONF_load_bio(LHASH_OF(CONF_VALUE) *conf, BIO *bp, long *eline) { CONF ctmp; int ret; CONF_set_nconf(&ctmp, conf); ret = NCONF_load_bio(&ctmp, bp, eline); if (ret) return ctmp.data; return NULL; } STACK_OF(CONF_VALUE) *CONF_get_section(LHASH_OF(CONF_VALUE) *conf, const char *section) { if (conf == NULL) { return NULL; } else { CONF ctmp; CONF_set_nconf(&ctmp, conf); return NCONF_get_section(&ctmp, section); } } char *CONF_get_string(LHASH_OF(CONF_VALUE) *conf, const char *group, const char *name) { if (conf == NULL) { return NCONF_get_string(NULL, group, name); } else { CONF ctmp; CONF_set_nconf(&ctmp, conf); return NCONF_get_string(&ctmp, group, name); } } long CONF_get_number(LHASH_OF(CONF_VALUE) *conf, const char *group, const char *name) { int status; long result = 0; ERR_set_mark(); if (conf == NULL) { status = NCONF_get_number_e(NULL, group, name, &result); } else { CONF ctmp; CONF_set_nconf(&ctmp, conf); status = NCONF_get_number_e(&ctmp, group, name, &result); } ERR_pop_to_mark(); return status == 0 ? 0L : result; } void CONF_free(LHASH_OF(CONF_VALUE) *conf) { CONF ctmp; CONF_set_nconf(&ctmp, conf); NCONF_free_data(&ctmp); } #ifndef OPENSSL_NO_STDIO int CONF_dump_fp(LHASH_OF(CONF_VALUE) *conf, FILE *out) { BIO *btmp; int ret; if ((btmp = BIO_new_fp(out, BIO_NOCLOSE)) == NULL) { CONFerr(CONF_F_CONF_DUMP_FP, ERR_R_BUF_LIB); return 0; } ret = CONF_dump_bio(conf, btmp); BIO_free(btmp); return ret; } #endif int CONF_dump_bio(LHASH_OF(CONF_VALUE) *conf, BIO *out) { CONF ctmp; CONF_set_nconf(&ctmp, conf); return NCONF_dump_bio(&ctmp, out); } /* * The following section contains the "New CONF" functions. They are * completely centralised around a new CONF structure that may contain * basically anything, but at least a method pointer and a table of data. * These functions are also written in terms of the bridge functions used by * the "CONF classic" functions, for consistency. */ CONF *NCONF_new(CONF_METHOD *meth) { CONF *ret; if (meth == NULL) meth = NCONF_default(); ret = meth->create(meth); if (ret == NULL) { CONFerr(CONF_F_NCONF_NEW, ERR_R_MALLOC_FAILURE); return NULL; } return ret; } void NCONF_free(CONF *conf) { if (conf == NULL) return; conf->meth->destroy(conf); } void NCONF_free_data(CONF *conf) { if (conf == NULL) return; conf->meth->destroy_data(conf); } int NCONF_load(CONF *conf, const char *file, long *eline) { if (conf == NULL) { CONFerr(CONF_F_NCONF_LOAD, CONF_R_NO_CONF); return 0; } return conf->meth->load(conf, file, eline); } #ifndef OPENSSL_NO_STDIO int NCONF_load_fp(CONF *conf, FILE *fp, long *eline) { BIO *btmp; int ret; if ((btmp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) { CONFerr(CONF_F_NCONF_LOAD_FP, ERR_R_BUF_LIB); return 0; } ret = NCONF_load_bio(conf, btmp, eline); BIO_free(btmp); return ret; } #endif int NCONF_load_bio(CONF *conf, BIO *bp, long *eline) { if (conf == NULL) { CONFerr(CONF_F_NCONF_LOAD_BIO, CONF_R_NO_CONF); return 0; } return conf->meth->load_bio(conf, bp, eline); } STACK_OF(CONF_VALUE) *NCONF_get_section(const CONF *conf, const char *section) { if (conf == NULL) { CONFerr(CONF_F_NCONF_GET_SECTION, CONF_R_NO_CONF); return NULL; } if (section == NULL) { CONFerr(CONF_F_NCONF_GET_SECTION, CONF_R_NO_SECTION); return NULL; } return _CONF_get_section_values(conf, section); } char *NCONF_get_string(const CONF *conf, const char *group, const char *name) { char *s = _CONF_get_string(conf, group, name); /* * Since we may get a value from an environment variable even if conf is * NULL, let's check the value first */ if (s) return s; if (conf == NULL) { CONFerr(CONF_F_NCONF_GET_STRING, CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE); return NULL; } CONFerr(CONF_F_NCONF_GET_STRING, CONF_R_NO_VALUE); ERR_add_error_data(4, "group=", group, " name=", name); return NULL; } static int default_is_number(const CONF *conf, char c) { return ossl_isdigit(c); } static int default_to_int(const CONF *conf, char c) { return (int)(c - '0'); } int NCONF_get_number_e(const CONF *conf, const char *group, const char *name, long *result) { char *str; long res; int (*is_number)(const CONF *, char) = &default_is_number; int (*to_int)(const CONF *, char) = &default_to_int; if (result == NULL) { CONFerr(CONF_F_NCONF_GET_NUMBER_E, ERR_R_PASSED_NULL_PARAMETER); return 0; } str = NCONF_get_string(conf, group, name); if (str == NULL) return 0; if (conf != NULL) { if (conf->meth->is_number != NULL) is_number = conf->meth->is_number; if (conf->meth->to_int != NULL) to_int = conf->meth->to_int; } for (res = 0; is_number(conf, *str); str++) { const int d = to_int(conf, *str); if (res > (LONG_MAX - d) / 10L) { CONFerr(CONF_F_NCONF_GET_NUMBER_E, CONF_R_NUMBER_TOO_LARGE); return 0; } res = res * 10 + d; } *result = res; return 1; } #ifndef OPENSSL_NO_STDIO int NCONF_dump_fp(const CONF *conf, FILE *out) { BIO *btmp; int ret; if ((btmp = BIO_new_fp(out, BIO_NOCLOSE)) == NULL) { CONFerr(CONF_F_NCONF_DUMP_FP, ERR_R_BUF_LIB); return 0; } ret = NCONF_dump_bio(conf, btmp); BIO_free(btmp); return ret; } #endif int NCONF_dump_bio(const CONF *conf, BIO *out) { if (conf == NULL) { CONFerr(CONF_F_NCONF_DUMP_BIO, CONF_R_NO_CONF); return 0; } return conf->meth->dump(conf, out); } /* * These routines call the C malloc/free, to avoid intermixing with * OpenSSL function pointers before the library is initialized. */ OPENSSL_INIT_SETTINGS *OPENSSL_INIT_new(void) { OPENSSL_INIT_SETTINGS *ret = malloc(sizeof(*ret)); if (ret == NULL) return NULL; memset(ret, 0, sizeof(*ret)); ret->flags = DEFAULT_CONF_MFLAGS; return ret; } #ifndef OPENSSL_NO_STDIO int OPENSSL_INIT_set_config_filename(OPENSSL_INIT_SETTINGS *settings, const char *filename) { char *newfilename = NULL; if (filename != NULL) { newfilename = strdup(filename); if (newfilename == NULL) return 0; } free(settings->filename); settings->filename = newfilename; return 1; } void OPENSSL_INIT_set_config_file_flags(OPENSSL_INIT_SETTINGS *settings, unsigned long flags) { settings->flags = flags; } int OPENSSL_INIT_set_config_appname(OPENSSL_INIT_SETTINGS *settings, const char *appname) { char *newappname = NULL; if (appname != NULL) { newappname = strdup(appname); if (newappname == NULL) return 0; } free(settings->appname); settings->appname = newappname; return 1; } #endif void OPENSSL_INIT_free(OPENSSL_INIT_SETTINGS *settings) { free(settings->filename); free(settings->appname); free(settings); } openssl-1.1.1f/crypto/conf/conf_local.h000066400000000000000000000005521364063235100200650ustar00rootroot00000000000000/* * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ void conf_add_ssl_module(void); openssl-1.1.1f/crypto/conf/conf_mall.c000066400000000000000000000015031364063235100177100ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include #include #include "conf_local.h" /* Load all OpenSSL builtin modules */ void OPENSSL_load_builtin_modules(void) { /* Add builtin modules here */ ASN1_add_oid_module(); ASN1_add_stable_module(); #ifndef OPENSSL_NO_ENGINE ENGINE_add_conf_module(); #endif EVP_add_alg_module(); conf_add_ssl_module(); } openssl-1.1.1f/crypto/conf/conf_mod.c000066400000000000000000000326421364063235100175520ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include "internal/conf.h" #include "internal/dso.h" #include #define DSO_mod_init_name "OPENSSL_init" #define DSO_mod_finish_name "OPENSSL_finish" /* * This structure contains a data about supported modules. entries in this * table correspond to either dynamic or static modules. */ struct conf_module_st { /* DSO of this module or NULL if static */ DSO *dso; /* Name of the module */ char *name; /* Init function */ conf_init_func *init; /* Finish function */ conf_finish_func *finish; /* Number of successfully initialized modules */ int links; void *usr_data; }; /* * This structure contains information about modules that have been * successfully initialized. There may be more than one entry for a given * module. */ struct conf_imodule_st { CONF_MODULE *pmod; char *name; char *value; unsigned long flags; void *usr_data; }; static STACK_OF(CONF_MODULE) *supported_modules = NULL; static STACK_OF(CONF_IMODULE) *initialized_modules = NULL; static void module_free(CONF_MODULE *md); static void module_finish(CONF_IMODULE *imod); static int module_run(const CONF *cnf, const char *name, const char *value, unsigned long flags); static CONF_MODULE *module_add(DSO *dso, const char *name, conf_init_func *ifunc, conf_finish_func *ffunc); static CONF_MODULE *module_find(const char *name); static int module_init(CONF_MODULE *pmod, const char *name, const char *value, const CONF *cnf); static CONF_MODULE *module_load_dso(const CONF *cnf, const char *name, const char *value); /* Main function: load modules from a CONF structure */ int CONF_modules_load(const CONF *cnf, const char *appname, unsigned long flags) { STACK_OF(CONF_VALUE) *values; CONF_VALUE *vl; char *vsection = NULL; int ret, i; if (!cnf) return 1; if (appname) vsection = NCONF_get_string(cnf, NULL, appname); if (!appname || (!vsection && (flags & CONF_MFLAGS_DEFAULT_SECTION))) vsection = NCONF_get_string(cnf, NULL, "openssl_conf"); if (!vsection) { ERR_clear_error(); return 1; } values = NCONF_get_section(cnf, vsection); if (!values) return 0; for (i = 0; i < sk_CONF_VALUE_num(values); i++) { vl = sk_CONF_VALUE_value(values, i); ret = module_run(cnf, vl->name, vl->value, flags); if (ret <= 0) if (!(flags & CONF_MFLAGS_IGNORE_ERRORS)) return ret; } return 1; } int CONF_modules_load_file(const char *filename, const char *appname, unsigned long flags) { char *file = NULL; CONF *conf = NULL; int ret = 0; conf = NCONF_new(NULL); if (conf == NULL) goto err; if (filename == NULL) { file = CONF_get1_default_config_file(); if (!file) goto err; } else file = (char *)filename; if (NCONF_load(conf, file, NULL) <= 0) { if ((flags & CONF_MFLAGS_IGNORE_MISSING_FILE) && (ERR_GET_REASON(ERR_peek_last_error()) == CONF_R_NO_SUCH_FILE)) { ERR_clear_error(); ret = 1; } goto err; } ret = CONF_modules_load(conf, appname, flags); err: if (filename == NULL) OPENSSL_free(file); NCONF_free(conf); if (flags & CONF_MFLAGS_IGNORE_RETURN_CODES) return 1; return ret; } static int module_run(const CONF *cnf, const char *name, const char *value, unsigned long flags) { CONF_MODULE *md; int ret; md = module_find(name); /* Module not found: try to load DSO */ if (!md && !(flags & CONF_MFLAGS_NO_DSO)) md = module_load_dso(cnf, name, value); if (!md) { if (!(flags & CONF_MFLAGS_SILENT)) { CONFerr(CONF_F_MODULE_RUN, CONF_R_UNKNOWN_MODULE_NAME); ERR_add_error_data(2, "module=", name); } return -1; } ret = module_init(md, name, value, cnf); if (ret <= 0) { if (!(flags & CONF_MFLAGS_SILENT)) { char rcode[DECIMAL_SIZE(ret) + 1]; CONFerr(CONF_F_MODULE_RUN, CONF_R_MODULE_INITIALIZATION_ERROR); BIO_snprintf(rcode, sizeof(rcode), "%-8d", ret); ERR_add_error_data(6, "module=", name, ", value=", value, ", retcode=", rcode); } } return ret; } /* Load a module from a DSO */ static CONF_MODULE *module_load_dso(const CONF *cnf, const char *name, const char *value) { DSO *dso = NULL; conf_init_func *ifunc; conf_finish_func *ffunc; const char *path = NULL; int errcode = 0; CONF_MODULE *md; /* Look for alternative path in module section */ path = NCONF_get_string(cnf, value, "path"); if (!path) { ERR_clear_error(); path = name; } dso = DSO_load(NULL, path, NULL, 0); if (!dso) { errcode = CONF_R_ERROR_LOADING_DSO; goto err; } ifunc = (conf_init_func *)DSO_bind_func(dso, DSO_mod_init_name); if (!ifunc) { errcode = CONF_R_MISSING_INIT_FUNCTION; goto err; } ffunc = (conf_finish_func *)DSO_bind_func(dso, DSO_mod_finish_name); /* All OK, add module */ md = module_add(dso, name, ifunc, ffunc); if (!md) goto err; return md; err: DSO_free(dso); CONFerr(CONF_F_MODULE_LOAD_DSO, errcode); ERR_add_error_data(4, "module=", name, ", path=", path); return NULL; } /* add module to list */ static CONF_MODULE *module_add(DSO *dso, const char *name, conf_init_func *ifunc, conf_finish_func *ffunc) { CONF_MODULE *tmod = NULL; if (supported_modules == NULL) supported_modules = sk_CONF_MODULE_new_null(); if (supported_modules == NULL) return NULL; if ((tmod = OPENSSL_zalloc(sizeof(*tmod))) == NULL) { CONFerr(CONF_F_MODULE_ADD, ERR_R_MALLOC_FAILURE); return NULL; } tmod->dso = dso; tmod->name = OPENSSL_strdup(name); tmod->init = ifunc; tmod->finish = ffunc; if (tmod->name == NULL) { OPENSSL_free(tmod); return NULL; } if (!sk_CONF_MODULE_push(supported_modules, tmod)) { OPENSSL_free(tmod->name); OPENSSL_free(tmod); return NULL; } return tmod; } /* * Find a module from the list. We allow module names of the form * modname.XXXX to just search for modname to allow the same module to be * initialized more than once. */ static CONF_MODULE *module_find(const char *name) { CONF_MODULE *tmod; int i, nchar; char *p; p = strrchr(name, '.'); if (p) nchar = p - name; else nchar = strlen(name); for (i = 0; i < sk_CONF_MODULE_num(supported_modules); i++) { tmod = sk_CONF_MODULE_value(supported_modules, i); if (strncmp(tmod->name, name, nchar) == 0) return tmod; } return NULL; } /* initialize a module */ static int module_init(CONF_MODULE *pmod, const char *name, const char *value, const CONF *cnf) { int ret = 1; int init_called = 0; CONF_IMODULE *imod = NULL; /* Otherwise add initialized module to list */ imod = OPENSSL_malloc(sizeof(*imod)); if (imod == NULL) goto err; imod->pmod = pmod; imod->name = OPENSSL_strdup(name); imod->value = OPENSSL_strdup(value); imod->usr_data = NULL; if (!imod->name || !imod->value) goto memerr; /* Try to initialize module */ if (pmod->init) { ret = pmod->init(imod, cnf); init_called = 1; /* Error occurred, exit */ if (ret <= 0) goto err; } if (initialized_modules == NULL) { initialized_modules = sk_CONF_IMODULE_new_null(); if (!initialized_modules) { CONFerr(CONF_F_MODULE_INIT, ERR_R_MALLOC_FAILURE); goto err; } } if (!sk_CONF_IMODULE_push(initialized_modules, imod)) { CONFerr(CONF_F_MODULE_INIT, ERR_R_MALLOC_FAILURE); goto err; } pmod->links++; return ret; err: /* We've started the module so we'd better finish it */ if (pmod->finish && init_called) pmod->finish(imod); memerr: if (imod) { OPENSSL_free(imod->name); OPENSSL_free(imod->value); OPENSSL_free(imod); } return -1; } /* * Unload any dynamic modules that have a link count of zero: i.e. have no * active initialized modules. If 'all' is set then all modules are unloaded * including static ones. */ void CONF_modules_unload(int all) { int i; CONF_MODULE *md; CONF_modules_finish(); /* unload modules in reverse order */ for (i = sk_CONF_MODULE_num(supported_modules) - 1; i >= 0; i--) { md = sk_CONF_MODULE_value(supported_modules, i); /* If static or in use and 'all' not set ignore it */ if (((md->links > 0) || !md->dso) && !all) continue; /* Since we're working in reverse this is OK */ (void)sk_CONF_MODULE_delete(supported_modules, i); module_free(md); } if (sk_CONF_MODULE_num(supported_modules) == 0) { sk_CONF_MODULE_free(supported_modules); supported_modules = NULL; } } /* unload a single module */ static void module_free(CONF_MODULE *md) { DSO_free(md->dso); OPENSSL_free(md->name); OPENSSL_free(md); } /* finish and free up all modules instances */ void CONF_modules_finish(void) { CONF_IMODULE *imod; while (sk_CONF_IMODULE_num(initialized_modules) > 0) { imod = sk_CONF_IMODULE_pop(initialized_modules); module_finish(imod); } sk_CONF_IMODULE_free(initialized_modules); initialized_modules = NULL; } /* finish a module instance */ static void module_finish(CONF_IMODULE *imod) { if (!imod) return; if (imod->pmod->finish) imod->pmod->finish(imod); imod->pmod->links--; OPENSSL_free(imod->name); OPENSSL_free(imod->value); OPENSSL_free(imod); } /* Add a static module to OpenSSL */ int CONF_module_add(const char *name, conf_init_func *ifunc, conf_finish_func *ffunc) { if (module_add(NULL, name, ifunc, ffunc)) return 1; else return 0; } void conf_modules_free_int(void) { CONF_modules_finish(); CONF_modules_unload(1); } /* Utility functions */ const char *CONF_imodule_get_name(const CONF_IMODULE *md) { return md->name; } const char *CONF_imodule_get_value(const CONF_IMODULE *md) { return md->value; } void *CONF_imodule_get_usr_data(const CONF_IMODULE *md) { return md->usr_data; } void CONF_imodule_set_usr_data(CONF_IMODULE *md, void *usr_data) { md->usr_data = usr_data; } CONF_MODULE *CONF_imodule_get_module(const CONF_IMODULE *md) { return md->pmod; } unsigned long CONF_imodule_get_flags(const CONF_IMODULE *md) { return md->flags; } void CONF_imodule_set_flags(CONF_IMODULE *md, unsigned long flags) { md->flags = flags; } void *CONF_module_get_usr_data(CONF_MODULE *pmod) { return pmod->usr_data; } void CONF_module_set_usr_data(CONF_MODULE *pmod, void *usr_data) { pmod->usr_data = usr_data; } /* Return default config file name */ char *CONF_get1_default_config_file(void) { char *file, *sep = ""; int len; if ((file = ossl_safe_getenv("OPENSSL_CONF")) != NULL) return OPENSSL_strdup(file); len = strlen(X509_get_default_cert_area()); #ifndef OPENSSL_SYS_VMS len++; sep = "/"; #endif len += strlen(OPENSSL_CONF); file = OPENSSL_malloc(len + 1); if (file == NULL) return NULL; BIO_snprintf(file, len + 1, "%s%s%s", X509_get_default_cert_area(), sep, OPENSSL_CONF); return file; } /* * This function takes a list separated by 'sep' and calls the callback * function giving the start and length of each member optionally stripping * leading and trailing whitespace. This can be used to parse comma separated * lists for example. */ int CONF_parse_list(const char *list_, int sep, int nospc, int (*list_cb) (const char *elem, int len, void *usr), void *arg) { int ret; const char *lstart, *tmpend, *p; if (list_ == NULL) { CONFerr(CONF_F_CONF_PARSE_LIST, CONF_R_LIST_CANNOT_BE_NULL); return 0; } lstart = list_; for (;;) { if (nospc) { while (*lstart && isspace((unsigned char)*lstart)) lstart++; } p = strchr(lstart, sep); if (p == lstart || !*lstart) ret = list_cb(NULL, 0, arg); else { if (p) tmpend = p - 1; else tmpend = lstart + strlen(lstart) - 1; if (nospc) { while (isspace((unsigned char)*tmpend)) tmpend--; } ret = list_cb(lstart, tmpend - lstart + 1, arg); } if (ret <= 0) return ret; if (p == NULL) return 1; lstart = p + 1; } } openssl-1.1.1f/crypto/conf/conf_sap.c000066400000000000000000000040021364063235100175430ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "internal/conf.h" #include #include #include #ifdef _WIN32 # define strdup _strdup #endif /* * This is the automatic configuration loader: it is called automatically by * OpenSSL when any of a number of standard initialisation functions are * called, unless this is overridden by calling OPENSSL_no_config() */ static int openssl_configured = 0; #if OPENSSL_API_COMPAT < 0x10100000L void OPENSSL_config(const char *appname) { OPENSSL_INIT_SETTINGS settings; memset(&settings, 0, sizeof(settings)); if (appname != NULL) settings.appname = strdup(appname); settings.flags = DEFAULT_CONF_MFLAGS; OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CONFIG, &settings); } #endif int openssl_config_int(const OPENSSL_INIT_SETTINGS *settings) { int ret = 0; const char *filename; const char *appname; unsigned long flags; if (openssl_configured) return 1; filename = settings ? settings->filename : NULL; appname = settings ? settings->appname : NULL; flags = settings ? settings->flags : DEFAULT_CONF_MFLAGS; #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: openssl_config_int(%s, %s, %lu)\n", filename, appname, flags); #endif OPENSSL_load_builtin_modules(); #ifndef OPENSSL_NO_ENGINE /* Need to load ENGINEs */ ENGINE_load_builtin_engines(); #endif ERR_clear_error(); #ifndef OPENSSL_SYS_UEFI ret = CONF_modules_load_file(filename, appname, flags); #endif openssl_configured = 1; return ret; } void openssl_no_config_int(void) { openssl_configured = 1; } openssl-1.1.1f/crypto/conf/conf_ssl.c000066400000000000000000000124231364063235100175670ustar00rootroot00000000000000/* * Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "internal/sslconf.h" #include "conf_local.h" /* * SSL library configuration module placeholder. We load it here but defer * all decisions about its contents to libssl. */ struct ssl_conf_name_st { /* Name of this set of commands */ char *name; /* List of commands */ SSL_CONF_CMD *cmds; /* Number of commands */ size_t cmd_count; }; struct ssl_conf_cmd_st { /* Command */ char *cmd; /* Argument */ char *arg; }; static struct ssl_conf_name_st *ssl_names; static size_t ssl_names_count; static void ssl_module_free(CONF_IMODULE *md) { size_t i, j; if (ssl_names == NULL) return; for (i = 0; i < ssl_names_count; i++) { struct ssl_conf_name_st *tname = ssl_names + i; OPENSSL_free(tname->name); for (j = 0; j < tname->cmd_count; j++) { OPENSSL_free(tname->cmds[j].cmd); OPENSSL_free(tname->cmds[j].arg); } OPENSSL_free(tname->cmds); } OPENSSL_free(ssl_names); ssl_names = NULL; ssl_names_count = 0; } static int ssl_module_init(CONF_IMODULE *md, const CONF *cnf) { size_t i, j, cnt; int rv = 0; const char *ssl_conf_section; STACK_OF(CONF_VALUE) *cmd_lists; ssl_conf_section = CONF_imodule_get_value(md); cmd_lists = NCONF_get_section(cnf, ssl_conf_section); if (sk_CONF_VALUE_num(cmd_lists) <= 0) { if (cmd_lists == NULL) CONFerr(CONF_F_SSL_MODULE_INIT, CONF_R_SSL_SECTION_NOT_FOUND); else CONFerr(CONF_F_SSL_MODULE_INIT, CONF_R_SSL_SECTION_EMPTY); ERR_add_error_data(2, "section=", ssl_conf_section); goto err; } cnt = sk_CONF_VALUE_num(cmd_lists); ssl_module_free(md); ssl_names = OPENSSL_zalloc(sizeof(*ssl_names) * cnt); if (ssl_names == NULL) goto err; ssl_names_count = cnt; for (i = 0; i < ssl_names_count; i++) { struct ssl_conf_name_st *ssl_name = ssl_names + i; CONF_VALUE *sect = sk_CONF_VALUE_value(cmd_lists, (int)i); STACK_OF(CONF_VALUE) *cmds = NCONF_get_section(cnf, sect->value); if (sk_CONF_VALUE_num(cmds) <= 0) { if (cmds == NULL) CONFerr(CONF_F_SSL_MODULE_INIT, CONF_R_SSL_COMMAND_SECTION_NOT_FOUND); else CONFerr(CONF_F_SSL_MODULE_INIT, CONF_R_SSL_COMMAND_SECTION_EMPTY); ERR_add_error_data(4, "name=", sect->name, ", value=", sect->value); goto err; } ssl_name->name = OPENSSL_strdup(sect->name); if (ssl_name->name == NULL) goto err; cnt = sk_CONF_VALUE_num(cmds); ssl_name->cmds = OPENSSL_zalloc(cnt * sizeof(struct ssl_conf_cmd_st)); if (ssl_name->cmds == NULL) goto err; ssl_name->cmd_count = cnt; for (j = 0; j < cnt; j++) { const char *name; CONF_VALUE *cmd_conf = sk_CONF_VALUE_value(cmds, (int)j); struct ssl_conf_cmd_st *cmd = ssl_name->cmds + j; /* Skip any initial dot in name */ name = strchr(cmd_conf->name, '.'); if (name != NULL) name++; else name = cmd_conf->name; cmd->cmd = OPENSSL_strdup(name); cmd->arg = OPENSSL_strdup(cmd_conf->value); if (cmd->cmd == NULL || cmd->arg == NULL) goto err; } } rv = 1; err: if (rv == 0) ssl_module_free(md); return rv; } /* * Returns the set of commands with index |idx| previously searched for via * conf_ssl_name_find. Also stores the name of the set of commands in |*name| * and the number of commands in the set in |*cnt|. */ const SSL_CONF_CMD *conf_ssl_get(size_t idx, const char **name, size_t *cnt) { *name = ssl_names[idx].name; *cnt = ssl_names[idx].cmd_count; return ssl_names[idx].cmds; } /* * Search for the named set of commands given in |name|. On success return the * index for the command set in |*idx|. * Returns 1 on success or 0 on failure. */ int conf_ssl_name_find(const char *name, size_t *idx) { size_t i; const struct ssl_conf_name_st *nm; if (name == NULL) return 0; for (i = 0, nm = ssl_names; i < ssl_names_count; i++, nm++) { if (strcmp(nm->name, name) == 0) { *idx = i; return 1; } } return 0; } /* * Given a command set |cmd|, return details on the command at index |idx| which * must be less than the number of commands in the set (as returned by * conf_ssl_get). The name of the command will be returned in |*cmdstr| and the * argument is returned in |*arg|. */ void conf_ssl_get_cmd(const SSL_CONF_CMD *cmd, size_t idx, char **cmdstr, char **arg) { *cmdstr = cmd[idx].cmd; *arg = cmd[idx].arg; } void conf_add_ssl_module(void) { CONF_module_add("ssl_conf", ssl_module_init, ssl_module_free); } openssl-1.1.1f/crypto/conf/keysets.pl000066400000000000000000000073511364063235100176450ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html use strict; use warnings; my $NUMBER = 0x0001; my $UPPER = 0x0002; my $LOWER = 0x0004; my $UNDER = 0x0100; my $PUNCTUATION = 0x0200; my $WS = 0x0010; my $ESC = 0x0020; my $QUOTE = 0x0040; my $DQUOTE = 0x0400; my $COMMENT = 0x0080; my $FCOMMENT = 0x0800; my $EOF = 0x0008; my @V_def; my @V_w32; my $v; my $c; foreach (0 .. 127) { $c = sprintf("%c", $_); $v = 0; $v |= $NUMBER if $c =~ /[0-9]/; $v |= $UPPER if $c =~ /[A-Z]/; $v |= $LOWER if $c =~ /[a-z]/; $v |= $UNDER if $c =~ /_/; $v |= $PUNCTUATION if $c =~ /[!\.%&\*\+,\/;\?\@\^\~\|-]/; $v |= $WS if $c =~ /[ \t\r\n]/; $v |= $ESC if $c =~ /\\/; $v |= $QUOTE if $c =~ /['`"]/; # for emacs: "`' $v |= $COMMENT if $c =~ /\#/; $v |= $EOF if $c =~ /\0/; push(@V_def, $v); $v = 0; $v |= $NUMBER if $c =~ /[0-9]/; $v |= $UPPER if $c =~ /[A-Z]/; $v |= $LOWER if $c =~ /[a-z]/; $v |= $UNDER if $c =~ /_/; $v |= $PUNCTUATION if $c =~ /[!\.%&\*\+,\/;\?\@\^\~\|-]/; $v |= $WS if $c =~ /[ \t\r\n]/; $v |= $DQUOTE if $c =~ /["]/; # for emacs: " $v |= $FCOMMENT if $c =~ /;/; $v |= $EOF if $c =~ /\0/; push(@V_w32, $v); } # Output year depends on the year of the script. my $YEAR = [localtime([stat($0)]->[9])]->[5] + 1900; print <<"EOF"; /* * WARNING: do not edit! * Generated by crypto/conf/keysets.pl * * Copyright 1995-$YEAR The OpenSSL Project Authors. All Rights Reserved. * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define CONF_NUMBER $NUMBER #define CONF_UPPER $UPPER #define CONF_LOWER $LOWER #define CONF_UNDER $UNDER #define CONF_PUNCT $PUNCTUATION #define CONF_WS $WS #define CONF_ESC $ESC #define CONF_QUOTE $QUOTE #define CONF_DQUOTE $DQUOTE #define CONF_COMMENT $COMMENT #define CONF_FCOMMENT $FCOMMENT #define CONF_EOF $EOF #define CONF_ALPHA (CONF_UPPER|CONF_LOWER) #define CONF_ALNUM (CONF_ALPHA|CONF_NUMBER|CONF_UNDER) #define CONF_ALNUM_PUNCT (CONF_ALPHA|CONF_NUMBER|CONF_UNDER|CONF_PUNCT) #define IS_COMMENT(conf,c) is_keytype(conf, c, CONF_COMMENT) #define IS_FCOMMENT(conf,c) is_keytype(conf, c, CONF_FCOMMENT) #define IS_EOF(conf,c) is_keytype(conf, c, CONF_EOF) #define IS_ESC(conf,c) is_keytype(conf, c, CONF_ESC) #define IS_NUMBER(conf,c) is_keytype(conf, c, CONF_NUMBER) #define IS_WS(conf,c) is_keytype(conf, c, CONF_WS) #define IS_ALNUM(conf,c) is_keytype(conf, c, CONF_ALNUM) #define IS_ALNUM_PUNCT(conf,c) is_keytype(conf, c, CONF_ALNUM_PUNCT) #define IS_QUOTE(conf,c) is_keytype(conf, c, CONF_QUOTE) #define IS_DQUOTE(conf,c) is_keytype(conf, c, CONF_DQUOTE) EOF my $i; print "static const unsigned short CONF_type_default[128] = {"; for ($i = 0; $i < 128; $i++) { print "\n " if ($i % 8) == 0; printf " 0x%04X,", $V_def[$i]; } print "\n};\n\n"; print "static const unsigned short CONF_type_win32[128] = {"; for ($i = 0; $i < 128; $i++) { print "\n " if ($i % 8) == 0; printf " 0x%04X,", $V_w32[$i]; } print "\n};\n"; openssl-1.1.1f/crypto/cpt_err.c000066400000000000000000000060531364063235100164740ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA CRYPTO_str_functs[] = { {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CMAC_CTX_NEW, 0), "CMAC_CTX_new"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_DUP_EX_DATA, 0), "CRYPTO_dup_ex_data"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_FREE_EX_DATA, 0), "CRYPTO_free_ex_data"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, 0), "CRYPTO_get_ex_new_index"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_MEMDUP, 0), "CRYPTO_memdup"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_NEW_EX_DATA, 0), "CRYPTO_new_ex_data"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_OCB128_COPY_CTX, 0), "CRYPTO_ocb128_copy_ctx"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_OCB128_INIT, 0), "CRYPTO_ocb128_init"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_CRYPTO_SET_EX_DATA, 0), "CRYPTO_set_ex_data"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_FIPS_MODE_SET, 0), "FIPS_mode_set"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_GET_AND_LOCK, 0), "get_and_lock"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_ATEXIT, 0), "OPENSSL_atexit"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_BUF2HEXSTR, 0), "OPENSSL_buf2hexstr"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_FOPEN, 0), "openssl_fopen"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_HEXSTR2BUF, 0), "OPENSSL_hexstr2buf"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_INIT_CRYPTO, 0), "OPENSSL_init_crypto"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_LH_NEW, 0), "OPENSSL_LH_new"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_SK_DEEP_COPY, 0), "OPENSSL_sk_deep_copy"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_OPENSSL_SK_DUP, 0), "OPENSSL_sk_dup"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_PKEY_HMAC_INIT, 0), "pkey_hmac_init"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_PKEY_POLY1305_INIT, 0), "pkey_poly1305_init"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_PKEY_SIPHASH_INIT, 0), "pkey_siphash_init"}, {ERR_PACK(ERR_LIB_CRYPTO, CRYPTO_F_SK_RESERVE, 0), "sk_reserve"}, {0, NULL} }; static const ERR_STRING_DATA CRYPTO_str_reasons[] = { {ERR_PACK(ERR_LIB_CRYPTO, 0, CRYPTO_R_FIPS_MODE_NOT_SUPPORTED), "fips mode not supported"}, {ERR_PACK(ERR_LIB_CRYPTO, 0, CRYPTO_R_ILLEGAL_HEX_DIGIT), "illegal hex digit"}, {ERR_PACK(ERR_LIB_CRYPTO, 0, CRYPTO_R_ODD_NUMBER_OF_DIGITS), "odd number of digits"}, {0, NULL} }; #endif int ERR_load_CRYPTO_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(CRYPTO_str_functs[0].error) == NULL) { ERR_load_strings_const(CRYPTO_str_functs); ERR_load_strings_const(CRYPTO_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/cryptlib.c000066400000000000000000000315651364063235100166740ustar00rootroot00000000000000/* * Copyright 1998-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "crypto/cryptlib.h" #include #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) extern unsigned int OPENSSL_ia32cap_P[4]; # if defined(OPENSSL_CPUID_OBJ) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY) /* * Purpose of these minimalistic and character-type-agnostic subroutines * is to break dependency on MSVCRT (on Windows) and locale. This makes * OPENSSL_cpuid_setup safe to use as "constructor". "Character-type- * agnostic" means that they work with either wide or 8-bit characters, * exploiting the fact that first 127 characters can be simply casted * between the sets, while the rest would be simply rejected by ossl_is* * subroutines. */ # ifdef _WIN32 typedef WCHAR variant_char; static variant_char *ossl_getenv(const char *name) { /* * Since we pull only one environment variable, it's simpler to * to just ignore |name| and use equivalent wide-char L-literal. * As well as to ignore excessively long values... */ static WCHAR value[48]; DWORD len = GetEnvironmentVariableW(L"OPENSSL_ia32cap", value, 48); return (len > 0 && len < 48) ? value : NULL; } # else typedef char variant_char; # define ossl_getenv getenv # endif # include "crypto/ctype.h" static int todigit(variant_char c) { if (ossl_isdigit(c)) return c - '0'; else if (ossl_isxdigit(c)) return ossl_tolower(c) - 'a' + 10; /* return largest base value to make caller terminate the loop */ return 16; } static uint64_t ossl_strtouint64(const variant_char *str) { uint64_t ret = 0; unsigned int digit, base = 10; if (*str == '0') { base = 8, str++; if (ossl_tolower(*str) == 'x') base = 16, str++; } while((digit = todigit(*str++)) < base) ret = ret * base + digit; return ret; } static variant_char *ossl_strchr(const variant_char *str, char srch) { variant_char c; while((c = *str)) { if (c == srch) return (variant_char *)str; str++; } return NULL; } # define OPENSSL_CPUID_SETUP typedef uint64_t IA32CAP; void OPENSSL_cpuid_setup(void) { static int trigger = 0; IA32CAP OPENSSL_ia32_cpuid(unsigned int *); IA32CAP vec; const variant_char *env; if (trigger) return; trigger = 1; if ((env = ossl_getenv("OPENSSL_ia32cap")) != NULL) { int off = (env[0] == '~') ? 1 : 0; vec = ossl_strtouint64(env + off); if (off) { IA32CAP mask = vec; vec = OPENSSL_ia32_cpuid(OPENSSL_ia32cap_P) & ~mask; if (mask & (1<<24)) { /* * User disables FXSR bit, mask even other capabilities * that operate exclusively on XMM, so we don't have to * double-check all the time. We mask PCLMULQDQ, AMD XOP, * AES-NI and AVX. Formally speaking we don't have to * do it in x86_64 case, but we can safely assume that * x86_64 users won't actually flip this flag. */ vec &= ~((IA32CAP)(1<<1|1<<11|1<<25|1<<28) << 32); } } else if (env[0] == ':') { vec = OPENSSL_ia32_cpuid(OPENSSL_ia32cap_P); } if ((env = ossl_strchr(env, ':')) != NULL) { IA32CAP vecx; env++; off = (env[0] == '~') ? 1 : 0; vecx = ossl_strtouint64(env + off); if (off) { OPENSSL_ia32cap_P[2] &= ~(unsigned int)vecx; OPENSSL_ia32cap_P[3] &= ~(unsigned int)(vecx >> 32); } else { OPENSSL_ia32cap_P[2] = (unsigned int)vecx; OPENSSL_ia32cap_P[3] = (unsigned int)(vecx >> 32); } } else { OPENSSL_ia32cap_P[2] = 0; OPENSSL_ia32cap_P[3] = 0; } } else { vec = OPENSSL_ia32_cpuid(OPENSSL_ia32cap_P); } /* * |(1<<10) sets a reserved bit to signal that variable * was initialized already... This is to avoid interference * with cpuid snippets in ELF .init segment. */ OPENSSL_ia32cap_P[0] = (unsigned int)vec | (1 << 10); OPENSSL_ia32cap_P[1] = (unsigned int)(vec >> 32); } # else unsigned int OPENSSL_ia32cap_P[4]; # endif #endif #if !defined(OPENSSL_CPUID_SETUP) && !defined(OPENSSL_CPUID_OBJ) void OPENSSL_cpuid_setup(void) { } #endif #if defined(_WIN32) # include # include # ifdef __WATCOMC__ # if defined(_UNICODE) || defined(__UNICODE__) # define _vsntprintf _vsnwprintf # else # define _vsntprintf _vsnprintf # endif # endif # ifdef _MSC_VER # define alloca _alloca # endif # if defined(_WIN32_WINNT) && _WIN32_WINNT>=0x0333 # ifdef OPENSSL_SYS_WIN_CORE int OPENSSL_isservice(void) { /* OneCore API cannot interact with GUI */ return 1; } # else int OPENSSL_isservice(void) { HWINSTA h; DWORD len; WCHAR *name; static union { void *p; FARPROC f; } _OPENSSL_isservice = { NULL }; if (_OPENSSL_isservice.p == NULL) { HANDLE mod = GetModuleHandle(NULL); FARPROC f = NULL; if (mod != NULL) f = GetProcAddress(mod, "_OPENSSL_isservice"); if (f == NULL) _OPENSSL_isservice.p = (void *)-1; else _OPENSSL_isservice.f = f; } if (_OPENSSL_isservice.p != (void *)-1) return (*_OPENSSL_isservice.f) (); h = GetProcessWindowStation(); if (h == NULL) return -1; if (GetUserObjectInformationW(h, UOI_NAME, NULL, 0, &len) || GetLastError() != ERROR_INSUFFICIENT_BUFFER) return -1; if (len > 512) return -1; /* paranoia */ len++, len &= ~1; /* paranoia */ name = (WCHAR *)alloca(len + sizeof(WCHAR)); if (!GetUserObjectInformationW(h, UOI_NAME, name, len, &len)) return -1; len++, len &= ~1; /* paranoia */ name[len / sizeof(WCHAR)] = L'\0'; /* paranoia */ # if 1 /* * This doesn't cover "interactive" services [working with real * WinSta0's] nor programs started non-interactively by Task Scheduler * [those are working with SAWinSta]. */ if (wcsstr(name, L"Service-0x")) return 1; # else /* This covers all non-interactive programs such as services. */ if (!wcsstr(name, L"WinSta0")) return 1; # endif else return 0; } # endif # else int OPENSSL_isservice(void) { return 0; } # endif void OPENSSL_showfatal(const char *fmta, ...) { va_list ap; TCHAR buf[256]; const TCHAR *fmt; /* * First check if it's a console application, in which case the * error message would be printed to standard error. * Windows CE does not have a concept of a console application, * so we need to guard the check. */ # ifdef STD_ERROR_HANDLE HANDLE h; if ((h = GetStdHandle(STD_ERROR_HANDLE)) != NULL && GetFileType(h) != FILE_TYPE_UNKNOWN) { /* must be console application */ int len; DWORD out; va_start(ap, fmta); len = _vsnprintf((char *)buf, sizeof(buf), fmta, ap); WriteFile(h, buf, len < 0 ? sizeof(buf) : (DWORD) len, &out, NULL); va_end(ap); return; } # endif if (sizeof(TCHAR) == sizeof(char)) fmt = (const TCHAR *)fmta; else do { int keepgoing; size_t len_0 = strlen(fmta) + 1, i; WCHAR *fmtw; fmtw = (WCHAR *)alloca(len_0 * sizeof(WCHAR)); if (fmtw == NULL) { fmt = (const TCHAR *)L"no stack?"; break; } if (!MultiByteToWideChar(CP_ACP, 0, fmta, len_0, fmtw, len_0)) for (i = 0; i < len_0; i++) fmtw[i] = (WCHAR)fmta[i]; for (i = 0; i < len_0; i++) { if (fmtw[i] == L'%') do { keepgoing = 0; switch (fmtw[i + 1]) { case L'0': case L'1': case L'2': case L'3': case L'4': case L'5': case L'6': case L'7': case L'8': case L'9': case L'.': case L'*': case L'-': i++; keepgoing = 1; break; case L's': fmtw[i + 1] = L'S'; break; case L'S': fmtw[i + 1] = L's'; break; case L'c': fmtw[i + 1] = L'C'; break; case L'C': fmtw[i + 1] = L'c'; break; } } while (keepgoing); } fmt = (const TCHAR *)fmtw; } while (0); va_start(ap, fmta); _vsntprintf(buf, OSSL_NELEM(buf) - 1, fmt, ap); buf[OSSL_NELEM(buf) - 1] = _T('\0'); va_end(ap); # if defined(_WIN32_WINNT) && _WIN32_WINNT>=0x0333 # ifdef OPENSSL_SYS_WIN_CORE /* ONECORE is always NONGUI and NT >= 0x0601 */ /* * TODO: (For non GUI and no std error cases) * Add event logging feature here. */ # if !defined(NDEBUG) /* * We are in a situation where we tried to report a critical * error and this failed for some reason. As a last resort, * in debug builds, send output to the debugger or any other * tool like DebugView which can monitor the output. */ OutputDebugString(buf); # endif # else /* this -------------v--- guards NT-specific calls */ if (check_winnt() && OPENSSL_isservice() > 0) { HANDLE hEventLog = RegisterEventSource(NULL, _T("OpenSSL")); if (hEventLog != NULL) { const TCHAR *pmsg = buf; if (!ReportEvent(hEventLog, EVENTLOG_ERROR_TYPE, 0, 0, NULL, 1, 0, &pmsg, NULL)) { # if !defined(NDEBUG) /* * We are in a situation where we tried to report a critical * error and this failed for some reason. As a last resort, * in debug builds, send output to the debugger or any other * tool like DebugView which can monitor the output. */ OutputDebugString(pmsg); # endif } (void)DeregisterEventSource(hEventLog); } } else { MessageBox(NULL, buf, _T("OpenSSL: FATAL"), MB_OK | MB_ICONERROR); } # endif # else MessageBox(NULL, buf, _T("OpenSSL: FATAL"), MB_OK | MB_ICONERROR); # endif } #else void OPENSSL_showfatal(const char *fmta, ...) { #ifndef OPENSSL_NO_STDIO va_list ap; va_start(ap, fmta); vfprintf(stderr, fmta, ap); va_end(ap); #endif } int OPENSSL_isservice(void) { return 0; } #endif void OPENSSL_die(const char *message, const char *file, int line) { OPENSSL_showfatal("%s:%d: OpenSSL internal error: %s\n", file, line, message); #if !defined(_WIN32) abort(); #else /* * Win32 abort() customarily shows a dialog, but we just did that... */ # if !defined(_WIN32_WCE) raise(SIGABRT); # endif _exit(3); #endif } #if !defined(OPENSSL_CPUID_OBJ) /* * The volatile is used to to ensure that the compiler generates code that reads * all values from the array and doesn't try to optimize this away. The standard * doesn't actually require this behavior if the original data pointed to is * not volatile, but compilers do this in practice anyway. * * There are also assembler versions of this function. */ # undef CRYPTO_memcmp int CRYPTO_memcmp(const void * in_a, const void * in_b, size_t len) { size_t i; const volatile unsigned char *a = in_a; const volatile unsigned char *b = in_b; unsigned char x = 0; for (i = 0; i < len; i++) x |= a[i] ^ b[i]; return x; } /* * For systems that don't provide an instruction counter register or equivalent. */ uint32_t OPENSSL_rdtsc(void) { return 0; } size_t OPENSSL_instrument_bus(unsigned int *out, size_t cnt) { return 0; } size_t OPENSSL_instrument_bus2(unsigned int *out, size_t cnt, size_t max) { return 0; } #endif openssl-1.1.1f/crypto/ct/000077500000000000000000000000001364063235100152745ustar00rootroot00000000000000openssl-1.1.1f/crypto/ct/build.info000066400000000000000000000002551364063235100172520ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]= ct_b64.c ct_err.c ct_log.c ct_oct.c ct_policy.c \ ct_prn.c ct_sct.c ct_sct_ctx.c ct_vfy.c ct_x509v3.c openssl-1.1.1f/crypto/ct/ct_b64.c000066400000000000000000000103201364063235100165150ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "ct_local.h" /* * Decodes the base64 string |in| into |out|. * A new string will be malloc'd and assigned to |out|. This will be owned by * the caller. Do not provide a pre-allocated string in |out|. */ static int ct_base64_decode(const char *in, unsigned char **out) { size_t inlen = strlen(in); int outlen, i; unsigned char *outbuf = NULL; if (inlen == 0) { *out = NULL; return 0; } outlen = (inlen / 4) * 3; outbuf = OPENSSL_malloc(outlen); if (outbuf == NULL) { CTerr(CT_F_CT_BASE64_DECODE, ERR_R_MALLOC_FAILURE); goto err; } outlen = EVP_DecodeBlock(outbuf, (unsigned char *)in, inlen); if (outlen < 0) { CTerr(CT_F_CT_BASE64_DECODE, CT_R_BASE64_DECODE_ERROR); goto err; } /* Subtract padding bytes from |outlen|. Any more than 2 is malformed. */ i = 0; while (in[--inlen] == '=') { --outlen; if (++i > 2) goto err; } *out = outbuf; return outlen; err: OPENSSL_free(outbuf); return -1; } SCT *SCT_new_from_base64(unsigned char version, const char *logid_base64, ct_log_entry_type_t entry_type, uint64_t timestamp, const char *extensions_base64, const char *signature_base64) { SCT *sct = SCT_new(); unsigned char *dec = NULL; const unsigned char* p = NULL; int declen; if (sct == NULL) { CTerr(CT_F_SCT_NEW_FROM_BASE64, ERR_R_MALLOC_FAILURE); return NULL; } /* * RFC6962 section 4.1 says we "MUST NOT expect this to be 0", but we * can only construct SCT versions that have been defined. */ if (!SCT_set_version(sct, version)) { CTerr(CT_F_SCT_NEW_FROM_BASE64, CT_R_SCT_UNSUPPORTED_VERSION); goto err; } declen = ct_base64_decode(logid_base64, &dec); if (declen < 0) { CTerr(CT_F_SCT_NEW_FROM_BASE64, X509_R_BASE64_DECODE_ERROR); goto err; } if (!SCT_set0_log_id(sct, dec, declen)) goto err; dec = NULL; declen = ct_base64_decode(extensions_base64, &dec); if (declen < 0) { CTerr(CT_F_SCT_NEW_FROM_BASE64, X509_R_BASE64_DECODE_ERROR); goto err; } SCT_set0_extensions(sct, dec, declen); dec = NULL; declen = ct_base64_decode(signature_base64, &dec); if (declen < 0) { CTerr(CT_F_SCT_NEW_FROM_BASE64, X509_R_BASE64_DECODE_ERROR); goto err; } p = dec; if (o2i_SCT_signature(sct, &p, declen) <= 0) goto err; OPENSSL_free(dec); dec = NULL; SCT_set_timestamp(sct, timestamp); if (!SCT_set_log_entry_type(sct, entry_type)) goto err; return sct; err: OPENSSL_free(dec); SCT_free(sct); return NULL; } /* * Allocate, build and returns a new |ct_log| from input |pkey_base64| * It returns 1 on success, * 0 on decoding failure, or invalid parameter if any * -1 on internal (malloc) failure */ int CTLOG_new_from_base64(CTLOG **ct_log, const char *pkey_base64, const char *name) { unsigned char *pkey_der = NULL; int pkey_der_len; const unsigned char *p; EVP_PKEY *pkey = NULL; if (ct_log == NULL) { CTerr(CT_F_CTLOG_NEW_FROM_BASE64, ERR_R_PASSED_INVALID_ARGUMENT); return 0; } pkey_der_len = ct_base64_decode(pkey_base64, &pkey_der); if (pkey_der_len < 0) { CTerr(CT_F_CTLOG_NEW_FROM_BASE64, CT_R_LOG_CONF_INVALID_KEY); return 0; } p = pkey_der; pkey = d2i_PUBKEY(NULL, &p, pkey_der_len); OPENSSL_free(pkey_der); if (pkey == NULL) { CTerr(CT_F_CTLOG_NEW_FROM_BASE64, CT_R_LOG_CONF_INVALID_KEY); return 0; } *ct_log = CTLOG_new(pkey, name); if (*ct_log == NULL) { EVP_PKEY_free(pkey); return 0; } return 1; } openssl-1.1.1f/crypto/ct/ct_err.c000066400000000000000000000103041364063235100167140ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA CT_str_functs[] = { {ERR_PACK(ERR_LIB_CT, CT_F_CTLOG_NEW, 0), "CTLOG_new"}, {ERR_PACK(ERR_LIB_CT, CT_F_CTLOG_NEW_FROM_BASE64, 0), "CTLOG_new_from_base64"}, {ERR_PACK(ERR_LIB_CT, CT_F_CTLOG_NEW_FROM_CONF, 0), "ctlog_new_from_conf"}, {ERR_PACK(ERR_LIB_CT, CT_F_CTLOG_STORE_LOAD_CTX_NEW, 0), "ctlog_store_load_ctx_new"}, {ERR_PACK(ERR_LIB_CT, CT_F_CTLOG_STORE_LOAD_FILE, 0), "CTLOG_STORE_load_file"}, {ERR_PACK(ERR_LIB_CT, CT_F_CTLOG_STORE_LOAD_LOG, 0), "ctlog_store_load_log"}, {ERR_PACK(ERR_LIB_CT, CT_F_CTLOG_STORE_NEW, 0), "CTLOG_STORE_new"}, {ERR_PACK(ERR_LIB_CT, CT_F_CT_BASE64_DECODE, 0), "ct_base64_decode"}, {ERR_PACK(ERR_LIB_CT, CT_F_CT_POLICY_EVAL_CTX_NEW, 0), "CT_POLICY_EVAL_CTX_new"}, {ERR_PACK(ERR_LIB_CT, CT_F_CT_V1_LOG_ID_FROM_PKEY, 0), "ct_v1_log_id_from_pkey"}, {ERR_PACK(ERR_LIB_CT, CT_F_I2O_SCT, 0), "i2o_SCT"}, {ERR_PACK(ERR_LIB_CT, CT_F_I2O_SCT_LIST, 0), "i2o_SCT_LIST"}, {ERR_PACK(ERR_LIB_CT, CT_F_I2O_SCT_SIGNATURE, 0), "i2o_SCT_signature"}, {ERR_PACK(ERR_LIB_CT, CT_F_O2I_SCT, 0), "o2i_SCT"}, {ERR_PACK(ERR_LIB_CT, CT_F_O2I_SCT_LIST, 0), "o2i_SCT_LIST"}, {ERR_PACK(ERR_LIB_CT, CT_F_O2I_SCT_SIGNATURE, 0), "o2i_SCT_signature"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_CTX_NEW, 0), "SCT_CTX_new"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_CTX_VERIFY, 0), "SCT_CTX_verify"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_NEW, 0), "SCT_new"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_NEW_FROM_BASE64, 0), "SCT_new_from_base64"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_SET0_LOG_ID, 0), "SCT_set0_log_id"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_SET1_EXTENSIONS, 0), "SCT_set1_extensions"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_SET1_LOG_ID, 0), "SCT_set1_log_id"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_SET1_SIGNATURE, 0), "SCT_set1_signature"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_SET_LOG_ENTRY_TYPE, 0), "SCT_set_log_entry_type"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_SET_SIGNATURE_NID, 0), "SCT_set_signature_nid"}, {ERR_PACK(ERR_LIB_CT, CT_F_SCT_SET_VERSION, 0), "SCT_set_version"}, {0, NULL} }; static const ERR_STRING_DATA CT_str_reasons[] = { {ERR_PACK(ERR_LIB_CT, 0, CT_R_BASE64_DECODE_ERROR), "base64 decode error"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_INVALID_LOG_ID_LENGTH), "invalid log id length"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_INVALID), "log conf invalid"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_INVALID_KEY), "log conf invalid key"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_MISSING_DESCRIPTION), "log conf missing description"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_MISSING_KEY), "log conf missing key"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_KEY_INVALID), "log key invalid"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_FUTURE_TIMESTAMP), "sct future timestamp"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_INVALID), "sct invalid"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_INVALID_SIGNATURE), "sct invalid signature"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_LIST_INVALID), "sct list invalid"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_LOG_ID_MISMATCH), "sct log id mismatch"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_NOT_SET), "sct not set"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_UNSUPPORTED_VERSION), "sct unsupported version"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_UNRECOGNIZED_SIGNATURE_NID), "unrecognized signature nid"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_UNSUPPORTED_ENTRY_TYPE), "unsupported entry type"}, {ERR_PACK(ERR_LIB_CT, 0, CT_R_UNSUPPORTED_VERSION), "unsupported version"}, {0, NULL} }; #endif int ERR_load_CT_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(CT_str_functs[0].error) == NULL) { ERR_load_strings_const(CT_str_functs); ERR_load_strings_const(CT_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/ct/ct_local.h000066400000000000000000000173251364063235100172350ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include /* * From RFC6962: opaque SerializedSCT<1..2^16-1>; struct { SerializedSCT * sct_list <1..2^16-1>; } SignedCertificateTimestampList; */ # define MAX_SCT_SIZE 65535 # define MAX_SCT_LIST_SIZE MAX_SCT_SIZE /* * Macros to read and write integers in network-byte order. */ #define n2s(c,s) ((s=(((unsigned int)((c)[0]))<< 8)| \ (((unsigned int)((c)[1])) )),c+=2) #define s2n(s,c) ((c[0]=(unsigned char)(((s)>> 8)&0xff), \ c[1]=(unsigned char)(((s) )&0xff)),c+=2) #define l2n3(l,c) ((c[0]=(unsigned char)(((l)>>16)&0xff), \ c[1]=(unsigned char)(((l)>> 8)&0xff), \ c[2]=(unsigned char)(((l) )&0xff)),c+=3) #define n2l8(c,l) (l =((uint64_t)(*((c)++)))<<56, \ l|=((uint64_t)(*((c)++)))<<48, \ l|=((uint64_t)(*((c)++)))<<40, \ l|=((uint64_t)(*((c)++)))<<32, \ l|=((uint64_t)(*((c)++)))<<24, \ l|=((uint64_t)(*((c)++)))<<16, \ l|=((uint64_t)(*((c)++)))<< 8, \ l|=((uint64_t)(*((c)++)))) #define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \ *((c)++)=(unsigned char)(((l)>>48)&0xff), \ *((c)++)=(unsigned char)(((l)>>40)&0xff), \ *((c)++)=(unsigned char)(((l)>>32)&0xff), \ *((c)++)=(unsigned char)(((l)>>24)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) /* Signed Certificate Timestamp */ struct sct_st { sct_version_t version; /* If version is not SCT_VERSION_V1, this contains the encoded SCT */ unsigned char *sct; size_t sct_len; /* If version is SCT_VERSION_V1, fields below contain components of the SCT */ unsigned char *log_id; size_t log_id_len; /* * Note, we cannot distinguish between an unset timestamp, and one * that is set to 0. However since CT didn't exist in 1970, no real * SCT should ever be set as such. */ uint64_t timestamp; unsigned char *ext; size_t ext_len; unsigned char hash_alg; unsigned char sig_alg; unsigned char *sig; size_t sig_len; /* Log entry type */ ct_log_entry_type_t entry_type; /* Where this SCT was found, e.g. certificate, OCSP response, etc. */ sct_source_t source; /* The result of the last attempt to validate this SCT. */ sct_validation_status_t validation_status; }; /* Miscellaneous data that is useful when verifying an SCT */ struct sct_ctx_st { /* Public key */ EVP_PKEY *pkey; /* Hash of public key */ unsigned char *pkeyhash; size_t pkeyhashlen; /* For pre-certificate: issuer public key hash */ unsigned char *ihash; size_t ihashlen; /* certificate encoding */ unsigned char *certder; size_t certderlen; /* pre-certificate encoding */ unsigned char *preder; size_t prederlen; /* milliseconds since epoch (to check that the SCT isn't from the future) */ uint64_t epoch_time_in_ms; }; /* Context when evaluating whether a Certificate Transparency policy is met */ struct ct_policy_eval_ctx_st { X509 *cert; X509 *issuer; CTLOG_STORE *log_store; /* milliseconds since epoch (to check that SCTs aren't from the future) */ uint64_t epoch_time_in_ms; }; /* * Creates a new context for verifying an SCT. */ SCT_CTX *SCT_CTX_new(void); /* * Deletes an SCT verification context. */ void SCT_CTX_free(SCT_CTX *sctx); /* * Sets the certificate that the SCT was created for. * If *cert does not have a poison extension, presigner must be NULL. * If *cert does not have a poison extension, it may have a single SCT * (NID_ct_precert_scts) extension. * If either *cert or *presigner have an AKID (NID_authority_key_identifier) * extension, both must have one. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_cert(SCT_CTX *sctx, X509 *cert, X509 *presigner); /* * Sets the issuer of the certificate that the SCT was created for. * This is just a convenience method to save extracting the public key and * calling SCT_CTX_set1_issuer_pubkey(). * Issuer must not be NULL. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_issuer(SCT_CTX *sctx, const X509 *issuer); /* * Sets the public key of the issuer of the certificate that the SCT was created * for. * The public key must not be NULL. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_issuer_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey); /* * Sets the public key of the CT log that the SCT is from. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey); /* * Sets the time to evaluate the SCT against, in milliseconds since the Unix * epoch. If the SCT's timestamp is after this time, it will be interpreted as * having been issued in the future. RFC6962 states that "TLS clients MUST * reject SCTs whose timestamp is in the future", so an SCT will not validate * in this case. */ void SCT_CTX_set_time(SCT_CTX *sctx, uint64_t time_in_ms); /* * Verifies an SCT with the given context. * Returns 1 if the SCT verifies successfully; any other value indicates * failure. See EVP_DigestVerifyFinal() for the meaning of those values. */ __owur int SCT_CTX_verify(const SCT_CTX *sctx, const SCT *sct); /* * Does this SCT have the minimum fields populated to be usable? * Returns 1 if so, 0 otherwise. */ __owur int SCT_is_complete(const SCT *sct); /* * Does this SCT have the signature-related fields populated? * Returns 1 if so, 0 otherwise. * This checks that the signature and hash algorithms are set to supported * values and that the signature field is set. */ __owur int SCT_signature_is_complete(const SCT *sct); /* * TODO(RJPercival): Create an SCT_signature struct and make i2o_SCT_signature * and o2i_SCT_signature conform to the i2d/d2i conventions. */ /* * Serialize (to TLS format) an |sct| signature and write it to |out|. * If |out| is null, no signature will be output but the length will be returned. * If |out| points to a null pointer, a string will be allocated to hold the * TLS-format signature. It is the responsibility of the caller to free it. * If |out| points to an allocated string, the signature will be written to it. * The length of the signature in TLS format will be returned. */ __owur int i2o_SCT_signature(const SCT *sct, unsigned char **out); /* * Parses an SCT signature in TLS format and populates the |sct| with it. * |in| should be a pointer to a string containing the TLS-format signature. * |in| will be advanced to the end of the signature if parsing succeeds. * |len| should be the length of the signature in |in|. * Returns the number of bytes parsed, or a negative integer if an error occurs. * If an error occurs, the SCT's signature NID may be updated whilst the * signature field itself remains unset. */ __owur int o2i_SCT_signature(SCT *sct, const unsigned char **in, size_t len); /* * Handlers for Certificate Transparency X509v3/OCSP extensions */ extern const X509V3_EXT_METHOD v3_ct_scts[3]; openssl-1.1.1f/crypto/ct/ct_log.c000066400000000000000000000164351364063235100167200ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "internal/cryptlib.h" /* * Information about a CT log server. */ struct ctlog_st { char *name; uint8_t log_id[CT_V1_HASHLEN]; EVP_PKEY *public_key; }; /* * A store for multiple CTLOG instances. * It takes ownership of any CTLOG instances added to it. */ struct ctlog_store_st { STACK_OF(CTLOG) *logs; }; /* The context when loading a CT log list from a CONF file. */ typedef struct ctlog_store_load_ctx_st { CTLOG_STORE *log_store; CONF *conf; size_t invalid_log_entries; } CTLOG_STORE_LOAD_CTX; /* * Creates an empty context for loading a CT log store. * It should be populated before use. */ static CTLOG_STORE_LOAD_CTX *ctlog_store_load_ctx_new(void); /* * Deletes a CT log store load context. * Does not delete any of the fields. */ static void ctlog_store_load_ctx_free(CTLOG_STORE_LOAD_CTX* ctx); static CTLOG_STORE_LOAD_CTX *ctlog_store_load_ctx_new(void) { CTLOG_STORE_LOAD_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) CTerr(CT_F_CTLOG_STORE_LOAD_CTX_NEW, ERR_R_MALLOC_FAILURE); return ctx; } static void ctlog_store_load_ctx_free(CTLOG_STORE_LOAD_CTX* ctx) { OPENSSL_free(ctx); } /* Converts a log's public key into a SHA256 log ID */ static int ct_v1_log_id_from_pkey(EVP_PKEY *pkey, unsigned char log_id[CT_V1_HASHLEN]) { int ret = 0; unsigned char *pkey_der = NULL; int pkey_der_len = i2d_PUBKEY(pkey, &pkey_der); if (pkey_der_len <= 0) { CTerr(CT_F_CT_V1_LOG_ID_FROM_PKEY, CT_R_LOG_KEY_INVALID); goto err; } SHA256(pkey_der, pkey_der_len, log_id); ret = 1; err: OPENSSL_free(pkey_der); return ret; } CTLOG_STORE *CTLOG_STORE_new(void) { CTLOG_STORE *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { CTerr(CT_F_CTLOG_STORE_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->logs = sk_CTLOG_new_null(); if (ret->logs == NULL) goto err; return ret; err: OPENSSL_free(ret); return NULL; } void CTLOG_STORE_free(CTLOG_STORE *store) { if (store != NULL) { sk_CTLOG_pop_free(store->logs, CTLOG_free); OPENSSL_free(store); } } static int ctlog_new_from_conf(CTLOG **ct_log, const CONF *conf, const char *section) { const char *description = NCONF_get_string(conf, section, "description"); char *pkey_base64; if (description == NULL) { CTerr(CT_F_CTLOG_NEW_FROM_CONF, CT_R_LOG_CONF_MISSING_DESCRIPTION); return 0; } pkey_base64 = NCONF_get_string(conf, section, "key"); if (pkey_base64 == NULL) { CTerr(CT_F_CTLOG_NEW_FROM_CONF, CT_R_LOG_CONF_MISSING_KEY); return 0; } return CTLOG_new_from_base64(ct_log, pkey_base64, description); } int CTLOG_STORE_load_default_file(CTLOG_STORE *store) { const char *fpath = ossl_safe_getenv(CTLOG_FILE_EVP); if (fpath == NULL) fpath = CTLOG_FILE; return CTLOG_STORE_load_file(store, fpath); } /* * Called by CONF_parse_list, which stops if this returns <= 0, * Otherwise, one bad log entry would stop loading of any of * the following log entries. * It may stop parsing and returns -1 on any internal (malloc) error. */ static int ctlog_store_load_log(const char *log_name, int log_name_len, void *arg) { CTLOG_STORE_LOAD_CTX *load_ctx = arg; CTLOG *ct_log = NULL; /* log_name may not be null-terminated, so fix that before using it */ char *tmp; int ret = 0; /* log_name will be NULL for empty list entries */ if (log_name == NULL) return 1; tmp = OPENSSL_strndup(log_name, log_name_len); if (tmp == NULL) goto mem_err; ret = ctlog_new_from_conf(&ct_log, load_ctx->conf, tmp); OPENSSL_free(tmp); if (ret < 0) { /* Propagate any internal error */ return ret; } if (ret == 0) { /* If we can't load this log, record that fact and skip it */ ++load_ctx->invalid_log_entries; return 1; } if (!sk_CTLOG_push(load_ctx->log_store->logs, ct_log)) { goto mem_err; } return 1; mem_err: CTLOG_free(ct_log); CTerr(CT_F_CTLOG_STORE_LOAD_LOG, ERR_R_MALLOC_FAILURE); return -1; } int CTLOG_STORE_load_file(CTLOG_STORE *store, const char *file) { int ret = 0; char *enabled_logs; CTLOG_STORE_LOAD_CTX* load_ctx = ctlog_store_load_ctx_new(); if (load_ctx == NULL) return 0; load_ctx->log_store = store; load_ctx->conf = NCONF_new(NULL); if (load_ctx->conf == NULL) goto end; if (NCONF_load(load_ctx->conf, file, NULL) <= 0) { CTerr(CT_F_CTLOG_STORE_LOAD_FILE, CT_R_LOG_CONF_INVALID); goto end; } enabled_logs = NCONF_get_string(load_ctx->conf, NULL, "enabled_logs"); if (enabled_logs == NULL) { CTerr(CT_F_CTLOG_STORE_LOAD_FILE, CT_R_LOG_CONF_INVALID); goto end; } if (!CONF_parse_list(enabled_logs, ',', 1, ctlog_store_load_log, load_ctx) || load_ctx->invalid_log_entries > 0) { CTerr(CT_F_CTLOG_STORE_LOAD_FILE, CT_R_LOG_CONF_INVALID); goto end; } ret = 1; end: NCONF_free(load_ctx->conf); ctlog_store_load_ctx_free(load_ctx); return ret; } /* * Initialize a new CTLOG object. * Takes ownership of the public key. * Copies the name. */ CTLOG *CTLOG_new(EVP_PKEY *public_key, const char *name) { CTLOG *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { CTerr(CT_F_CTLOG_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->name = OPENSSL_strdup(name); if (ret->name == NULL) { CTerr(CT_F_CTLOG_NEW, ERR_R_MALLOC_FAILURE); goto err; } if (ct_v1_log_id_from_pkey(public_key, ret->log_id) != 1) goto err; ret->public_key = public_key; return ret; err: CTLOG_free(ret); return NULL; } /* Frees CT log and associated structures */ void CTLOG_free(CTLOG *log) { if (log != NULL) { OPENSSL_free(log->name); EVP_PKEY_free(log->public_key); OPENSSL_free(log); } } const char *CTLOG_get0_name(const CTLOG *log) { return log->name; } void CTLOG_get0_log_id(const CTLOG *log, const uint8_t **log_id, size_t *log_id_len) { *log_id = log->log_id; *log_id_len = CT_V1_HASHLEN; } EVP_PKEY *CTLOG_get0_public_key(const CTLOG *log) { return log->public_key; } /* * Given a log ID, finds the matching log. * Returns NULL if no match found. */ const CTLOG *CTLOG_STORE_get0_log_by_id(const CTLOG_STORE *store, const uint8_t *log_id, size_t log_id_len) { int i; for (i = 0; i < sk_CTLOG_num(store->logs); ++i) { const CTLOG *log = sk_CTLOG_value(store->logs, i); if (memcmp(log->log_id, log_id, log_id_len) == 0) return log; } return NULL; } openssl-1.1.1f/crypto/ct/ct_oct.c000066400000000000000000000230631364063235100167170ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef OPENSSL_NO_CT # error "CT is disabled" #endif #include #include #include #include #include #include #include "ct_local.h" int o2i_SCT_signature(SCT *sct, const unsigned char **in, size_t len) { size_t siglen; size_t len_remaining = len; const unsigned char *p; if (sct->version != SCT_VERSION_V1) { CTerr(CT_F_O2I_SCT_SIGNATURE, CT_R_UNSUPPORTED_VERSION); return -1; } /* * digitally-signed struct header: (1 byte) Hash algorithm (1 byte) * Signature algorithm (2 bytes + ?) Signature * * This explicitly rejects empty signatures: they're invalid for * all supported algorithms. */ if (len <= 4) { CTerr(CT_F_O2I_SCT_SIGNATURE, CT_R_SCT_INVALID_SIGNATURE); return -1; } p = *in; /* Get hash and signature algorithm */ sct->hash_alg = *p++; sct->sig_alg = *p++; if (SCT_get_signature_nid(sct) == NID_undef) { CTerr(CT_F_O2I_SCT_SIGNATURE, CT_R_SCT_INVALID_SIGNATURE); return -1; } /* Retrieve signature and check it is consistent with the buffer length */ n2s(p, siglen); len_remaining -= (p - *in); if (siglen > len_remaining) { CTerr(CT_F_O2I_SCT_SIGNATURE, CT_R_SCT_INVALID_SIGNATURE); return -1; } if (SCT_set1_signature(sct, p, siglen) != 1) return -1; len_remaining -= siglen; *in = p + siglen; return len - len_remaining; } SCT *o2i_SCT(SCT **psct, const unsigned char **in, size_t len) { SCT *sct = NULL; const unsigned char *p; if (len == 0 || len > MAX_SCT_SIZE) { CTerr(CT_F_O2I_SCT, CT_R_SCT_INVALID); goto err; } if ((sct = SCT_new()) == NULL) goto err; p = *in; sct->version = *p; if (sct->version == SCT_VERSION_V1) { int sig_len; size_t len2; /*- * Fixed-length header: * struct { * Version sct_version; (1 byte) * log_id id; (32 bytes) * uint64 timestamp; (8 bytes) * CtExtensions extensions; (2 bytes + ?) * } */ if (len < 43) { CTerr(CT_F_O2I_SCT, CT_R_SCT_INVALID); goto err; } len -= 43; p++; sct->log_id = BUF_memdup(p, CT_V1_HASHLEN); if (sct->log_id == NULL) goto err; sct->log_id_len = CT_V1_HASHLEN; p += CT_V1_HASHLEN; n2l8(p, sct->timestamp); n2s(p, len2); if (len < len2) { CTerr(CT_F_O2I_SCT, CT_R_SCT_INVALID); goto err; } if (len2 > 0) { sct->ext = BUF_memdup(p, len2); if (sct->ext == NULL) goto err; } sct->ext_len = len2; p += len2; len -= len2; sig_len = o2i_SCT_signature(sct, &p, len); if (sig_len <= 0) { CTerr(CT_F_O2I_SCT, CT_R_SCT_INVALID); goto err; } len -= sig_len; *in = p + len; } else { /* If not V1 just cache encoding */ sct->sct = BUF_memdup(p, len); if (sct->sct == NULL) goto err; sct->sct_len = len; *in = p + len; } if (psct != NULL) { SCT_free(*psct); *psct = sct; } return sct; err: SCT_free(sct); return NULL; } int i2o_SCT_signature(const SCT *sct, unsigned char **out) { size_t len; unsigned char *p = NULL, *pstart = NULL; if (!SCT_signature_is_complete(sct)) { CTerr(CT_F_I2O_SCT_SIGNATURE, CT_R_SCT_INVALID_SIGNATURE); goto err; } if (sct->version != SCT_VERSION_V1) { CTerr(CT_F_I2O_SCT_SIGNATURE, CT_R_UNSUPPORTED_VERSION); goto err; } /* * (1 byte) Hash algorithm * (1 byte) Signature algorithm * (2 bytes + ?) Signature */ len = 4 + sct->sig_len; if (out != NULL) { if (*out != NULL) { p = *out; *out += len; } else { pstart = p = OPENSSL_malloc(len); if (p == NULL) { CTerr(CT_F_I2O_SCT_SIGNATURE, ERR_R_MALLOC_FAILURE); goto err; } *out = p; } *p++ = sct->hash_alg; *p++ = sct->sig_alg; s2n(sct->sig_len, p); memcpy(p, sct->sig, sct->sig_len); } return len; err: OPENSSL_free(pstart); return -1; } int i2o_SCT(const SCT *sct, unsigned char **out) { size_t len; unsigned char *p = NULL, *pstart = NULL; if (!SCT_is_complete(sct)) { CTerr(CT_F_I2O_SCT, CT_R_SCT_NOT_SET); goto err; } /* * Fixed-length header: struct { (1 byte) Version sct_version; (32 bytes) * log_id id; (8 bytes) uint64 timestamp; (2 bytes + ?) CtExtensions * extensions; (1 byte) Hash algorithm (1 byte) Signature algorithm (2 * bytes + ?) Signature */ if (sct->version == SCT_VERSION_V1) len = 43 + sct->ext_len + 4 + sct->sig_len; else len = sct->sct_len; if (out == NULL) return len; if (*out != NULL) { p = *out; *out += len; } else { pstart = p = OPENSSL_malloc(len); if (p == NULL) { CTerr(CT_F_I2O_SCT, ERR_R_MALLOC_FAILURE); goto err; } *out = p; } if (sct->version == SCT_VERSION_V1) { *p++ = sct->version; memcpy(p, sct->log_id, CT_V1_HASHLEN); p += CT_V1_HASHLEN; l2n8(sct->timestamp, p); s2n(sct->ext_len, p); if (sct->ext_len > 0) { memcpy(p, sct->ext, sct->ext_len); p += sct->ext_len; } if (i2o_SCT_signature(sct, &p) <= 0) goto err; } else { memcpy(p, sct->sct, len); } return len; err: OPENSSL_free(pstart); return -1; } STACK_OF(SCT) *o2i_SCT_LIST(STACK_OF(SCT) **a, const unsigned char **pp, size_t len) { STACK_OF(SCT) *sk = NULL; size_t list_len, sct_len; if (len < 2 || len > MAX_SCT_LIST_SIZE) { CTerr(CT_F_O2I_SCT_LIST, CT_R_SCT_LIST_INVALID); return NULL; } n2s(*pp, list_len); if (list_len != len - 2) { CTerr(CT_F_O2I_SCT_LIST, CT_R_SCT_LIST_INVALID); return NULL; } if (a == NULL || *a == NULL) { sk = sk_SCT_new_null(); if (sk == NULL) return NULL; } else { SCT *sct; /* Use the given stack, but empty it first. */ sk = *a; while ((sct = sk_SCT_pop(sk)) != NULL) SCT_free(sct); } while (list_len > 0) { SCT *sct; if (list_len < 2) { CTerr(CT_F_O2I_SCT_LIST, CT_R_SCT_LIST_INVALID); goto err; } n2s(*pp, sct_len); list_len -= 2; if (sct_len == 0 || sct_len > list_len) { CTerr(CT_F_O2I_SCT_LIST, CT_R_SCT_LIST_INVALID); goto err; } list_len -= sct_len; if ((sct = o2i_SCT(NULL, pp, sct_len)) == NULL) goto err; if (!sk_SCT_push(sk, sct)) { SCT_free(sct); goto err; } } if (a != NULL && *a == NULL) *a = sk; return sk; err: if (a == NULL || *a == NULL) SCT_LIST_free(sk); return NULL; } int i2o_SCT_LIST(const STACK_OF(SCT) *a, unsigned char **pp) { int len, sct_len, i, is_pp_new = 0; size_t len2; unsigned char *p = NULL, *p2; if (pp != NULL) { if (*pp == NULL) { if ((len = i2o_SCT_LIST(a, NULL)) == -1) { CTerr(CT_F_I2O_SCT_LIST, CT_R_SCT_LIST_INVALID); return -1; } if ((*pp = OPENSSL_malloc(len)) == NULL) { CTerr(CT_F_I2O_SCT_LIST, ERR_R_MALLOC_FAILURE); return -1; } is_pp_new = 1; } p = *pp + 2; } len2 = 2; for (i = 0; i < sk_SCT_num(a); i++) { if (pp != NULL) { p2 = p; p += 2; if ((sct_len = i2o_SCT(sk_SCT_value(a, i), &p)) == -1) goto err; s2n(sct_len, p2); } else { if ((sct_len = i2o_SCT(sk_SCT_value(a, i), NULL)) == -1) goto err; } len2 += 2 + sct_len; } if (len2 > MAX_SCT_LIST_SIZE) goto err; if (pp != NULL) { p = *pp; s2n(len2 - 2, p); if (!is_pp_new) *pp += len2; } return len2; err: if (is_pp_new) { OPENSSL_free(*pp); *pp = NULL; } return -1; } STACK_OF(SCT) *d2i_SCT_LIST(STACK_OF(SCT) **a, const unsigned char **pp, long len) { ASN1_OCTET_STRING *oct = NULL; STACK_OF(SCT) *sk = NULL; const unsigned char *p; p = *pp; if (d2i_ASN1_OCTET_STRING(&oct, &p, len) == NULL) return NULL; p = oct->data; if ((sk = o2i_SCT_LIST(a, &p, oct->length)) != NULL) *pp += len; ASN1_OCTET_STRING_free(oct); return sk; } int i2d_SCT_LIST(const STACK_OF(SCT) *a, unsigned char **out) { ASN1_OCTET_STRING oct; int len; oct.data = NULL; if ((oct.length = i2o_SCT_LIST(a, &oct.data)) == -1) return -1; len = i2d_ASN1_OCTET_STRING(&oct, out); OPENSSL_free(oct.data); return len; } openssl-1.1.1f/crypto/ct/ct_policy.c000066400000000000000000000046361364063235100174360ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef OPENSSL_NO_CT # error "CT is disabled" #endif #include #include #include #include "ct_local.h" /* * Number of seconds in the future that an SCT timestamp can be, by default, * without being considered invalid. This is added to time() when setting a * default value for CT_POLICY_EVAL_CTX.epoch_time_in_ms. * It can be overridden by calling CT_POLICY_EVAL_CTX_set_time(). */ static const time_t SCT_CLOCK_DRIFT_TOLERANCE = 300; CT_POLICY_EVAL_CTX *CT_POLICY_EVAL_CTX_new(void) { CT_POLICY_EVAL_CTX *ctx = OPENSSL_zalloc(sizeof(CT_POLICY_EVAL_CTX)); if (ctx == NULL) { CTerr(CT_F_CT_POLICY_EVAL_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } /* time(NULL) shouldn't ever fail, so don't bother checking for -1. */ ctx->epoch_time_in_ms = (uint64_t)(time(NULL) + SCT_CLOCK_DRIFT_TOLERANCE) * 1000; return ctx; } void CT_POLICY_EVAL_CTX_free(CT_POLICY_EVAL_CTX *ctx) { if (ctx == NULL) return; X509_free(ctx->cert); X509_free(ctx->issuer); OPENSSL_free(ctx); } int CT_POLICY_EVAL_CTX_set1_cert(CT_POLICY_EVAL_CTX *ctx, X509 *cert) { if (!X509_up_ref(cert)) return 0; ctx->cert = cert; return 1; } int CT_POLICY_EVAL_CTX_set1_issuer(CT_POLICY_EVAL_CTX *ctx, X509 *issuer) { if (!X509_up_ref(issuer)) return 0; ctx->issuer = issuer; return 1; } void CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(CT_POLICY_EVAL_CTX *ctx, CTLOG_STORE *log_store) { ctx->log_store = log_store; } void CT_POLICY_EVAL_CTX_set_time(CT_POLICY_EVAL_CTX *ctx, uint64_t time_in_ms) { ctx->epoch_time_in_ms = time_in_ms; } X509* CT_POLICY_EVAL_CTX_get0_cert(const CT_POLICY_EVAL_CTX *ctx) { return ctx->cert; } X509* CT_POLICY_EVAL_CTX_get0_issuer(const CT_POLICY_EVAL_CTX *ctx) { return ctx->issuer; } const CTLOG_STORE *CT_POLICY_EVAL_CTX_get0_log_store(const CT_POLICY_EVAL_CTX *ctx) { return ctx->log_store; } uint64_t CT_POLICY_EVAL_CTX_get_time(const CT_POLICY_EVAL_CTX *ctx) { return ctx->epoch_time_in_ms; } openssl-1.1.1f/crypto/ct/ct_prn.c000066400000000000000000000075431364063235100167360ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef OPENSSL_NO_CT # error "CT is disabled" #endif #include #include #include "ct_local.h" static void SCT_signature_algorithms_print(const SCT *sct, BIO *out) { int nid = SCT_get_signature_nid(sct); if (nid == NID_undef) BIO_printf(out, "%02X%02X", sct->hash_alg, sct->sig_alg); else BIO_printf(out, "%s", OBJ_nid2ln(nid)); } static void timestamp_print(uint64_t timestamp, BIO *out) { ASN1_GENERALIZEDTIME *gen = ASN1_GENERALIZEDTIME_new(); char genstr[20]; if (gen == NULL) return; ASN1_GENERALIZEDTIME_adj(gen, (time_t)0, (int)(timestamp / 86400000), (timestamp % 86400000) / 1000); /* * Note GeneralizedTime from ASN1_GENERALIZETIME_adj is always 15 * characters long with a final Z. Update it with fractional seconds. */ BIO_snprintf(genstr, sizeof(genstr), "%.14s.%03dZ", ASN1_STRING_get0_data(gen), (unsigned int)(timestamp % 1000)); if (ASN1_GENERALIZEDTIME_set_string(gen, genstr)) ASN1_GENERALIZEDTIME_print(out, gen); ASN1_GENERALIZEDTIME_free(gen); } const char *SCT_validation_status_string(const SCT *sct) { switch (SCT_get_validation_status(sct)) { case SCT_VALIDATION_STATUS_NOT_SET: return "not set"; case SCT_VALIDATION_STATUS_UNKNOWN_VERSION: return "unknown version"; case SCT_VALIDATION_STATUS_UNKNOWN_LOG: return "unknown log"; case SCT_VALIDATION_STATUS_UNVERIFIED: return "unverified"; case SCT_VALIDATION_STATUS_INVALID: return "invalid"; case SCT_VALIDATION_STATUS_VALID: return "valid"; } return "unknown status"; } void SCT_print(const SCT *sct, BIO *out, int indent, const CTLOG_STORE *log_store) { const CTLOG *log = NULL; if (log_store != NULL) { log = CTLOG_STORE_get0_log_by_id(log_store, sct->log_id, sct->log_id_len); } BIO_printf(out, "%*sSigned Certificate Timestamp:", indent, ""); BIO_printf(out, "\n%*sVersion : ", indent + 4, ""); if (sct->version != SCT_VERSION_V1) { BIO_printf(out, "unknown\n%*s", indent + 16, ""); BIO_hex_string(out, indent + 16, 16, sct->sct, sct->sct_len); return; } BIO_printf(out, "v1 (0x0)"); if (log != NULL) { BIO_printf(out, "\n%*sLog : %s", indent + 4, "", CTLOG_get0_name(log)); } BIO_printf(out, "\n%*sLog ID : ", indent + 4, ""); BIO_hex_string(out, indent + 16, 16, sct->log_id, sct->log_id_len); BIO_printf(out, "\n%*sTimestamp : ", indent + 4, ""); timestamp_print(sct->timestamp, out); BIO_printf(out, "\n%*sExtensions: ", indent + 4, ""); if (sct->ext_len == 0) BIO_printf(out, "none"); else BIO_hex_string(out, indent + 16, 16, sct->ext, sct->ext_len); BIO_printf(out, "\n%*sSignature : ", indent + 4, ""); SCT_signature_algorithms_print(sct, out); BIO_printf(out, "\n%*s ", indent + 4, ""); BIO_hex_string(out, indent + 16, 16, sct->sig, sct->sig_len); } void SCT_LIST_print(const STACK_OF(SCT) *sct_list, BIO *out, int indent, const char *separator, const CTLOG_STORE *log_store) { int sct_count = sk_SCT_num(sct_list); int i; for (i = 0; i < sct_count; ++i) { SCT *sct = sk_SCT_value(sct_list, i); SCT_print(sct, out, indent, log_store); if (i < sk_SCT_num(sct_list) - 1) BIO_printf(out, "%s", separator); } } openssl-1.1.1f/crypto/ct/ct_sct.c000066400000000000000000000251471364063235100167300ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef OPENSSL_NO_CT # error "CT disabled" #endif #include #include #include #include #include #include "ct_local.h" SCT *SCT_new(void) { SCT *sct = OPENSSL_zalloc(sizeof(*sct)); if (sct == NULL) { CTerr(CT_F_SCT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } sct->entry_type = CT_LOG_ENTRY_TYPE_NOT_SET; sct->version = SCT_VERSION_NOT_SET; return sct; } void SCT_free(SCT *sct) { if (sct == NULL) return; OPENSSL_free(sct->log_id); OPENSSL_free(sct->ext); OPENSSL_free(sct->sig); OPENSSL_free(sct->sct); OPENSSL_free(sct); } void SCT_LIST_free(STACK_OF(SCT) *a) { sk_SCT_pop_free(a, SCT_free); } int SCT_set_version(SCT *sct, sct_version_t version) { if (version != SCT_VERSION_V1) { CTerr(CT_F_SCT_SET_VERSION, CT_R_UNSUPPORTED_VERSION); return 0; } sct->version = version; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; return 1; } int SCT_set_log_entry_type(SCT *sct, ct_log_entry_type_t entry_type) { sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; switch (entry_type) { case CT_LOG_ENTRY_TYPE_X509: case CT_LOG_ENTRY_TYPE_PRECERT: sct->entry_type = entry_type; return 1; case CT_LOG_ENTRY_TYPE_NOT_SET: break; } CTerr(CT_F_SCT_SET_LOG_ENTRY_TYPE, CT_R_UNSUPPORTED_ENTRY_TYPE); return 0; } int SCT_set0_log_id(SCT *sct, unsigned char *log_id, size_t log_id_len) { if (sct->version == SCT_VERSION_V1 && log_id_len != CT_V1_HASHLEN) { CTerr(CT_F_SCT_SET0_LOG_ID, CT_R_INVALID_LOG_ID_LENGTH); return 0; } OPENSSL_free(sct->log_id); sct->log_id = log_id; sct->log_id_len = log_id_len; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; return 1; } int SCT_set1_log_id(SCT *sct, const unsigned char *log_id, size_t log_id_len) { if (sct->version == SCT_VERSION_V1 && log_id_len != CT_V1_HASHLEN) { CTerr(CT_F_SCT_SET1_LOG_ID, CT_R_INVALID_LOG_ID_LENGTH); return 0; } OPENSSL_free(sct->log_id); sct->log_id = NULL; sct->log_id_len = 0; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; if (log_id != NULL && log_id_len > 0) { sct->log_id = OPENSSL_memdup(log_id, log_id_len); if (sct->log_id == NULL) { CTerr(CT_F_SCT_SET1_LOG_ID, ERR_R_MALLOC_FAILURE); return 0; } sct->log_id_len = log_id_len; } return 1; } void SCT_set_timestamp(SCT *sct, uint64_t timestamp) { sct->timestamp = timestamp; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; } int SCT_set_signature_nid(SCT *sct, int nid) { switch (nid) { case NID_sha256WithRSAEncryption: sct->hash_alg = TLSEXT_hash_sha256; sct->sig_alg = TLSEXT_signature_rsa; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; return 1; case NID_ecdsa_with_SHA256: sct->hash_alg = TLSEXT_hash_sha256; sct->sig_alg = TLSEXT_signature_ecdsa; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; return 1; default: CTerr(CT_F_SCT_SET_SIGNATURE_NID, CT_R_UNRECOGNIZED_SIGNATURE_NID); return 0; } } void SCT_set0_extensions(SCT *sct, unsigned char *ext, size_t ext_len) { OPENSSL_free(sct->ext); sct->ext = ext; sct->ext_len = ext_len; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; } int SCT_set1_extensions(SCT *sct, const unsigned char *ext, size_t ext_len) { OPENSSL_free(sct->ext); sct->ext = NULL; sct->ext_len = 0; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; if (ext != NULL && ext_len > 0) { sct->ext = OPENSSL_memdup(ext, ext_len); if (sct->ext == NULL) { CTerr(CT_F_SCT_SET1_EXTENSIONS, ERR_R_MALLOC_FAILURE); return 0; } sct->ext_len = ext_len; } return 1; } void SCT_set0_signature(SCT *sct, unsigned char *sig, size_t sig_len) { OPENSSL_free(sct->sig); sct->sig = sig; sct->sig_len = sig_len; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; } int SCT_set1_signature(SCT *sct, const unsigned char *sig, size_t sig_len) { OPENSSL_free(sct->sig); sct->sig = NULL; sct->sig_len = 0; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; if (sig != NULL && sig_len > 0) { sct->sig = OPENSSL_memdup(sig, sig_len); if (sct->sig == NULL) { CTerr(CT_F_SCT_SET1_SIGNATURE, ERR_R_MALLOC_FAILURE); return 0; } sct->sig_len = sig_len; } return 1; } sct_version_t SCT_get_version(const SCT *sct) { return sct->version; } ct_log_entry_type_t SCT_get_log_entry_type(const SCT *sct) { return sct->entry_type; } size_t SCT_get0_log_id(const SCT *sct, unsigned char **log_id) { *log_id = sct->log_id; return sct->log_id_len; } uint64_t SCT_get_timestamp(const SCT *sct) { return sct->timestamp; } int SCT_get_signature_nid(const SCT *sct) { if (sct->version == SCT_VERSION_V1) { if (sct->hash_alg == TLSEXT_hash_sha256) { switch (sct->sig_alg) { case TLSEXT_signature_ecdsa: return NID_ecdsa_with_SHA256; case TLSEXT_signature_rsa: return NID_sha256WithRSAEncryption; default: return NID_undef; } } } return NID_undef; } size_t SCT_get0_extensions(const SCT *sct, unsigned char **ext) { *ext = sct->ext; return sct->ext_len; } size_t SCT_get0_signature(const SCT *sct, unsigned char **sig) { *sig = sct->sig; return sct->sig_len; } int SCT_is_complete(const SCT *sct) { switch (sct->version) { case SCT_VERSION_NOT_SET: return 0; case SCT_VERSION_V1: return sct->log_id != NULL && SCT_signature_is_complete(sct); default: return sct->sct != NULL; /* Just need cached encoding */ } } int SCT_signature_is_complete(const SCT *sct) { return SCT_get_signature_nid(sct) != NID_undef && sct->sig != NULL && sct->sig_len > 0; } sct_source_t SCT_get_source(const SCT *sct) { return sct->source; } int SCT_set_source(SCT *sct, sct_source_t source) { sct->source = source; sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET; switch (source) { case SCT_SOURCE_TLS_EXTENSION: case SCT_SOURCE_OCSP_STAPLED_RESPONSE: return SCT_set_log_entry_type(sct, CT_LOG_ENTRY_TYPE_X509); case SCT_SOURCE_X509V3_EXTENSION: return SCT_set_log_entry_type(sct, CT_LOG_ENTRY_TYPE_PRECERT); case SCT_SOURCE_UNKNOWN: break; } /* if we aren't sure, leave the log entry type alone */ return 1; } sct_validation_status_t SCT_get_validation_status(const SCT *sct) { return sct->validation_status; } int SCT_validate(SCT *sct, const CT_POLICY_EVAL_CTX *ctx) { int is_sct_valid = -1; SCT_CTX *sctx = NULL; X509_PUBKEY *pub = NULL, *log_pkey = NULL; const CTLOG *log; /* * With an unrecognized SCT version we don't know what such an SCT means, * let alone validate one. So we return validation failure (0). */ if (sct->version != SCT_VERSION_V1) { sct->validation_status = SCT_VALIDATION_STATUS_UNKNOWN_VERSION; return 0; } log = CTLOG_STORE_get0_log_by_id(ctx->log_store, sct->log_id, sct->log_id_len); /* Similarly, an SCT from an unknown log also cannot be validated. */ if (log == NULL) { sct->validation_status = SCT_VALIDATION_STATUS_UNKNOWN_LOG; return 0; } sctx = SCT_CTX_new(); if (sctx == NULL) goto err; if (X509_PUBKEY_set(&log_pkey, CTLOG_get0_public_key(log)) != 1) goto err; if (SCT_CTX_set1_pubkey(sctx, log_pkey) != 1) goto err; if (SCT_get_log_entry_type(sct) == CT_LOG_ENTRY_TYPE_PRECERT) { EVP_PKEY *issuer_pkey; if (ctx->issuer == NULL) { sct->validation_status = SCT_VALIDATION_STATUS_UNVERIFIED; goto end; } issuer_pkey = X509_get0_pubkey(ctx->issuer); if (X509_PUBKEY_set(&pub, issuer_pkey) != 1) goto err; if (SCT_CTX_set1_issuer_pubkey(sctx, pub) != 1) goto err; } SCT_CTX_set_time(sctx, ctx->epoch_time_in_ms); /* * XXX: Potential for optimization. This repeats some idempotent heavy * lifting on the certificate for each candidate SCT, and appears to not * use any information in the SCT itself, only the certificate is * processed. So it may make more sense to to do this just once, perhaps * associated with the shared (by all SCTs) policy eval ctx. * * XXX: Failure here is global (SCT independent) and represents either an * issue with the certificate (e.g. duplicate extensions) or an out of * memory condition. When the certificate is incompatible with CT, we just * mark the SCTs invalid, rather than report a failure to determine the * validation status. That way, callbacks that want to do "soft" SCT * processing will not abort handshakes with false positive internal * errors. Since the function does not distinguish between certificate * issues (peer's fault) and internal problems (out fault) the safe thing * to do is to report a validation failure and let the callback or * application decide what to do. */ if (SCT_CTX_set1_cert(sctx, ctx->cert, NULL) != 1) sct->validation_status = SCT_VALIDATION_STATUS_UNVERIFIED; else sct->validation_status = SCT_CTX_verify(sctx, sct) == 1 ? SCT_VALIDATION_STATUS_VALID : SCT_VALIDATION_STATUS_INVALID; end: is_sct_valid = sct->validation_status == SCT_VALIDATION_STATUS_VALID; err: X509_PUBKEY_free(pub); X509_PUBKEY_free(log_pkey); SCT_CTX_free(sctx); return is_sct_valid; } int SCT_LIST_validate(const STACK_OF(SCT) *scts, CT_POLICY_EVAL_CTX *ctx) { int are_scts_valid = 1; int sct_count = scts != NULL ? sk_SCT_num(scts) : 0; int i; for (i = 0; i < sct_count; ++i) { int is_sct_valid = -1; SCT *sct = sk_SCT_value(scts, i); if (sct == NULL) continue; is_sct_valid = SCT_validate(sct, ctx); if (is_sct_valid < 0) return is_sct_valid; are_scts_valid &= is_sct_valid; } return are_scts_valid; } openssl-1.1.1f/crypto/ct/ct_sct_ctx.c000066400000000000000000000156171364063235100176070ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef OPENSSL_NO_CT # error "CT is disabled" #endif #include #include #include #include #include #include "ct_local.h" SCT_CTX *SCT_CTX_new(void) { SCT_CTX *sctx = OPENSSL_zalloc(sizeof(*sctx)); if (sctx == NULL) CTerr(CT_F_SCT_CTX_NEW, ERR_R_MALLOC_FAILURE); return sctx; } void SCT_CTX_free(SCT_CTX *sctx) { if (sctx == NULL) return; EVP_PKEY_free(sctx->pkey); OPENSSL_free(sctx->pkeyhash); OPENSSL_free(sctx->ihash); OPENSSL_free(sctx->certder); OPENSSL_free(sctx->preder); OPENSSL_free(sctx); } /* * Finds the index of the first extension with the given NID in cert. * If there is more than one extension with that NID, *is_duplicated is set to * 1, otherwise 0 (unless it is NULL). */ static int ct_x509_get_ext(X509 *cert, int nid, int *is_duplicated) { int ret = X509_get_ext_by_NID(cert, nid, -1); if (is_duplicated != NULL) *is_duplicated = ret >= 0 && X509_get_ext_by_NID(cert, nid, ret) >= 0; return ret; } /* * Modifies a certificate by deleting extensions and copying the issuer and * AKID from the presigner certificate, if necessary. * Returns 1 on success, 0 otherwise. */ __owur static int ct_x509_cert_fixup(X509 *cert, X509 *presigner) { int preidx, certidx; int pre_akid_ext_is_dup, cert_akid_ext_is_dup; if (presigner == NULL) return 1; preidx = ct_x509_get_ext(presigner, NID_authority_key_identifier, &pre_akid_ext_is_dup); certidx = ct_x509_get_ext(cert, NID_authority_key_identifier, &cert_akid_ext_is_dup); /* An error occurred whilst searching for the extension */ if (preidx < -1 || certidx < -1) return 0; /* Invalid certificate if they contain duplicate extensions */ if (pre_akid_ext_is_dup || cert_akid_ext_is_dup) return 0; /* AKID must be present in both certificate or absent in both */ if (preidx >= 0 && certidx == -1) return 0; if (preidx == -1 && certidx >= 0) return 0; /* Copy issuer name */ if (!X509_set_issuer_name(cert, X509_get_issuer_name(presigner))) return 0; if (preidx != -1) { /* Retrieve and copy AKID encoding */ X509_EXTENSION *preext = X509_get_ext(presigner, preidx); X509_EXTENSION *certext = X509_get_ext(cert, certidx); ASN1_OCTET_STRING *preextdata; /* Should never happen */ if (preext == NULL || certext == NULL) return 0; preextdata = X509_EXTENSION_get_data(preext); if (preextdata == NULL || !X509_EXTENSION_set_data(certext, preextdata)) return 0; } return 1; } int SCT_CTX_set1_cert(SCT_CTX *sctx, X509 *cert, X509 *presigner) { unsigned char *certder = NULL, *preder = NULL; X509 *pretmp = NULL; int certderlen = 0, prederlen = 0; int idx = -1; int poison_ext_is_dup, sct_ext_is_dup; int poison_idx = ct_x509_get_ext(cert, NID_ct_precert_poison, &poison_ext_is_dup); /* Duplicate poison extensions are present - error */ if (poison_ext_is_dup) goto err; /* If *cert doesn't have a poison extension, it isn't a precert */ if (poison_idx == -1) { /* cert isn't a precert, so we shouldn't have a presigner */ if (presigner != NULL) goto err; certderlen = i2d_X509(cert, &certder); if (certderlen < 0) goto err; } /* See if cert has a precert SCTs extension */ idx = ct_x509_get_ext(cert, NID_ct_precert_scts, &sct_ext_is_dup); /* Duplicate SCT extensions are present - error */ if (sct_ext_is_dup) goto err; if (idx >= 0 && poison_idx >= 0) { /* * cert can't both contain SCTs (i.e. have an SCT extension) and be a * precert (i.e. have a poison extension). */ goto err; } if (idx == -1) { idx = poison_idx; } /* * If either a poison or SCT extension is present, remove it before encoding * cert. This, along with ct_x509_cert_fixup(), gets a TBSCertificate (see * RFC5280) from cert, which is what the CT log signed when it produced the * SCT. */ if (idx >= 0) { X509_EXTENSION *ext; /* Take a copy of certificate so we don't modify passed version */ pretmp = X509_dup(cert); if (pretmp == NULL) goto err; ext = X509_delete_ext(pretmp, idx); X509_EXTENSION_free(ext); if (!ct_x509_cert_fixup(pretmp, presigner)) goto err; prederlen = i2d_re_X509_tbs(pretmp, &preder); if (prederlen <= 0) goto err; } X509_free(pretmp); OPENSSL_free(sctx->certder); sctx->certder = certder; sctx->certderlen = certderlen; OPENSSL_free(sctx->preder); sctx->preder = preder; sctx->prederlen = prederlen; return 1; err: OPENSSL_free(certder); OPENSSL_free(preder); X509_free(pretmp); return 0; } __owur static int ct_public_key_hash(X509_PUBKEY *pkey, unsigned char **hash, size_t *hash_len) { int ret = 0; unsigned char *md = NULL, *der = NULL; int der_len; unsigned int md_len; /* Reuse buffer if possible */ if (*hash != NULL && *hash_len >= SHA256_DIGEST_LENGTH) { md = *hash; } else { md = OPENSSL_malloc(SHA256_DIGEST_LENGTH); if (md == NULL) goto err; } /* Calculate key hash */ der_len = i2d_X509_PUBKEY(pkey, &der); if (der_len <= 0) goto err; if (!EVP_Digest(der, der_len, md, &md_len, EVP_sha256(), NULL)) goto err; if (md != *hash) { OPENSSL_free(*hash); *hash = md; *hash_len = SHA256_DIGEST_LENGTH; } md = NULL; ret = 1; err: OPENSSL_free(md); OPENSSL_free(der); return ret; } int SCT_CTX_set1_issuer(SCT_CTX *sctx, const X509 *issuer) { return SCT_CTX_set1_issuer_pubkey(sctx, X509_get_X509_PUBKEY(issuer)); } int SCT_CTX_set1_issuer_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey) { return ct_public_key_hash(pubkey, &sctx->ihash, &sctx->ihashlen); } int SCT_CTX_set1_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey) { EVP_PKEY *pkey = X509_PUBKEY_get(pubkey); if (pkey == NULL) return 0; if (!ct_public_key_hash(pubkey, &sctx->pkeyhash, &sctx->pkeyhashlen)) { EVP_PKEY_free(pkey); return 0; } EVP_PKEY_free(sctx->pkey); sctx->pkey = pkey; return 1; } void SCT_CTX_set_time(SCT_CTX *sctx, uint64_t time_in_ms) { sctx->epoch_time_in_ms = time_in_ms; } openssl-1.1.1f/crypto/ct/ct_vfy.c000066400000000000000000000074651364063235100167460ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "ct_local.h" typedef enum sct_signature_type_t { SIGNATURE_TYPE_NOT_SET = -1, SIGNATURE_TYPE_CERT_TIMESTAMP, SIGNATURE_TYPE_TREE_HASH } SCT_SIGNATURE_TYPE; /* * Update encoding for SCT signature verification/generation to supplied * EVP_MD_CTX. */ static int sct_ctx_update(EVP_MD_CTX *ctx, const SCT_CTX *sctx, const SCT *sct) { unsigned char tmpbuf[12]; unsigned char *p, *der; size_t derlen; /*+ * digitally-signed struct { * (1 byte) Version sct_version; * (1 byte) SignatureType signature_type = certificate_timestamp; * (8 bytes) uint64 timestamp; * (2 bytes) LogEntryType entry_type; * (? bytes) select(entry_type) { * case x509_entry: ASN.1Cert; * case precert_entry: PreCert; * } signed_entry; * (2 bytes + sct->ext_len) CtExtensions extensions; * } */ if (sct->entry_type == CT_LOG_ENTRY_TYPE_NOT_SET) return 0; if (sct->entry_type == CT_LOG_ENTRY_TYPE_PRECERT && sctx->ihash == NULL) return 0; p = tmpbuf; *p++ = sct->version; *p++ = SIGNATURE_TYPE_CERT_TIMESTAMP; l2n8(sct->timestamp, p); s2n(sct->entry_type, p); if (!EVP_DigestUpdate(ctx, tmpbuf, p - tmpbuf)) return 0; if (sct->entry_type == CT_LOG_ENTRY_TYPE_X509) { der = sctx->certder; derlen = sctx->certderlen; } else { if (!EVP_DigestUpdate(ctx, sctx->ihash, sctx->ihashlen)) return 0; der = sctx->preder; derlen = sctx->prederlen; } /* If no encoding available, fatal error */ if (der == NULL) return 0; /* Include length first */ p = tmpbuf; l2n3(derlen, p); if (!EVP_DigestUpdate(ctx, tmpbuf, 3)) return 0; if (!EVP_DigestUpdate(ctx, der, derlen)) return 0; /* Add any extensions */ p = tmpbuf; s2n(sct->ext_len, p); if (!EVP_DigestUpdate(ctx, tmpbuf, 2)) return 0; if (sct->ext_len && !EVP_DigestUpdate(ctx, sct->ext, sct->ext_len)) return 0; return 1; } int SCT_CTX_verify(const SCT_CTX *sctx, const SCT *sct) { EVP_MD_CTX *ctx = NULL; int ret = 0; if (!SCT_is_complete(sct) || sctx->pkey == NULL || sct->entry_type == CT_LOG_ENTRY_TYPE_NOT_SET || (sct->entry_type == CT_LOG_ENTRY_TYPE_PRECERT && sctx->ihash == NULL)) { CTerr(CT_F_SCT_CTX_VERIFY, CT_R_SCT_NOT_SET); return 0; } if (sct->version != SCT_VERSION_V1) { CTerr(CT_F_SCT_CTX_VERIFY, CT_R_SCT_UNSUPPORTED_VERSION); return 0; } if (sct->log_id_len != sctx->pkeyhashlen || memcmp(sct->log_id, sctx->pkeyhash, sctx->pkeyhashlen) != 0) { CTerr(CT_F_SCT_CTX_VERIFY, CT_R_SCT_LOG_ID_MISMATCH); return 0; } if (sct->timestamp > sctx->epoch_time_in_ms) { CTerr(CT_F_SCT_CTX_VERIFY, CT_R_SCT_FUTURE_TIMESTAMP); return 0; } ctx = EVP_MD_CTX_new(); if (ctx == NULL) goto end; if (!EVP_DigestVerifyInit(ctx, NULL, EVP_sha256(), NULL, sctx->pkey)) goto end; if (!sct_ctx_update(ctx, sctx, sct)) goto end; /* Verify signature */ ret = EVP_DigestVerifyFinal(ctx, sct->sig, sct->sig_len); /* If ret < 0 some other error: fall through without setting error */ if (ret == 0) CTerr(CT_F_SCT_CTX_VERIFY, CT_R_SCT_INVALID_SIGNATURE); end: EVP_MD_CTX_free(ctx); return ret; } openssl-1.1.1f/crypto/ct/ct_x509v3.c000066400000000000000000000054611364063235100171120ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef OPENSSL_NO_CT # error "CT is disabled" #endif #include "ct_local.h" static char *i2s_poison(const X509V3_EXT_METHOD *method, void *val) { return OPENSSL_strdup("NULL"); } static void *s2i_poison(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { return ASN1_NULL_new(); } static int i2r_SCT_LIST(X509V3_EXT_METHOD *method, STACK_OF(SCT) *sct_list, BIO *out, int indent) { SCT_LIST_print(sct_list, out, indent, "\n", NULL); return 1; } static int set_sct_list_source(STACK_OF(SCT) *s, sct_source_t source) { if (s != NULL) { int i; for (i = 0; i < sk_SCT_num(s); i++) { int res = SCT_set_source(sk_SCT_value(s, i), source); if (res != 1) { return 0; } } } return 1; } static STACK_OF(SCT) *x509_ext_d2i_SCT_LIST(STACK_OF(SCT) **a, const unsigned char **pp, long len) { STACK_OF(SCT) *s = d2i_SCT_LIST(a, pp, len); if (set_sct_list_source(s, SCT_SOURCE_X509V3_EXTENSION) != 1) { SCT_LIST_free(s); *a = NULL; return NULL; } return s; } static STACK_OF(SCT) *ocsp_ext_d2i_SCT_LIST(STACK_OF(SCT) **a, const unsigned char **pp, long len) { STACK_OF(SCT) *s = d2i_SCT_LIST(a, pp, len); if (set_sct_list_source(s, SCT_SOURCE_OCSP_STAPLED_RESPONSE) != 1) { SCT_LIST_free(s); *a = NULL; return NULL; } return s; } /* Handlers for X509v3/OCSP Certificate Transparency extensions */ const X509V3_EXT_METHOD v3_ct_scts[3] = { /* X509v3 extension in certificates that contains SCTs */ { NID_ct_precert_scts, 0, NULL, NULL, (X509V3_EXT_FREE)SCT_LIST_free, (X509V3_EXT_D2I)x509_ext_d2i_SCT_LIST, (X509V3_EXT_I2D)i2d_SCT_LIST, NULL, NULL, NULL, NULL, (X509V3_EXT_I2R)i2r_SCT_LIST, NULL, NULL }, /* X509v3 extension to mark a certificate as a pre-certificate */ { NID_ct_precert_poison, 0, ASN1_ITEM_ref(ASN1_NULL), NULL, NULL, NULL, NULL, i2s_poison, s2i_poison, NULL, NULL, NULL, NULL, NULL }, /* OCSP extension that contains SCTs */ { NID_ct_cert_scts, 0, NULL, 0, (X509V3_EXT_FREE)SCT_LIST_free, (X509V3_EXT_D2I)ocsp_ext_d2i_SCT_LIST, (X509V3_EXT_I2D)i2d_SCT_LIST, NULL, NULL, NULL, NULL, (X509V3_EXT_I2R)i2r_SCT_LIST, NULL, NULL }, }; openssl-1.1.1f/crypto/ctype.c000066400000000000000000000346201364063235100161630ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "crypto/ctype.h" #include "openssl/ebcdic.h" /* * Define the character classes for each character in the seven bit ASCII * character set. This is independent of the host's character set, characters * are converted to ASCII before being used as an index in to this table. * Characters outside of the seven bit ASCII range are detected before indexing. */ static const unsigned short ctype_char_map[128] = { /* 00 nul */ CTYPE_MASK_cntrl, /* 01 soh */ CTYPE_MASK_cntrl, /* 02 stx */ CTYPE_MASK_cntrl, /* 03 etx */ CTYPE_MASK_cntrl, /* 04 eot */ CTYPE_MASK_cntrl, /* 05 enq */ CTYPE_MASK_cntrl, /* 06 ack */ CTYPE_MASK_cntrl, /* 07 \a */ CTYPE_MASK_cntrl, /* 08 \b */ CTYPE_MASK_cntrl, /* 09 \t */ CTYPE_MASK_blank | CTYPE_MASK_cntrl | CTYPE_MASK_space, /* 0A \n */ CTYPE_MASK_cntrl | CTYPE_MASK_space, /* 0B \v */ CTYPE_MASK_cntrl | CTYPE_MASK_space, /* 0C \f */ CTYPE_MASK_cntrl | CTYPE_MASK_space, /* 0D \r */ CTYPE_MASK_cntrl | CTYPE_MASK_space, /* 0E so */ CTYPE_MASK_cntrl, /* 0F si */ CTYPE_MASK_cntrl, /* 10 dle */ CTYPE_MASK_cntrl, /* 11 dc1 */ CTYPE_MASK_cntrl, /* 12 dc2 */ CTYPE_MASK_cntrl, /* 13 dc3 */ CTYPE_MASK_cntrl, /* 14 dc4 */ CTYPE_MASK_cntrl, /* 15 nak */ CTYPE_MASK_cntrl, /* 16 syn */ CTYPE_MASK_cntrl, /* 17 etb */ CTYPE_MASK_cntrl, /* 18 can */ CTYPE_MASK_cntrl, /* 19 em */ CTYPE_MASK_cntrl, /* 1A sub */ CTYPE_MASK_cntrl, /* 1B esc */ CTYPE_MASK_cntrl, /* 1C fs */ CTYPE_MASK_cntrl, /* 1D gs */ CTYPE_MASK_cntrl, /* 1E rs */ CTYPE_MASK_cntrl, /* 1F us */ CTYPE_MASK_cntrl, /* 20 */ CTYPE_MASK_blank | CTYPE_MASK_print | CTYPE_MASK_space | CTYPE_MASK_asn1print, /* 21 ! */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 22 " */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 23 # */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 24 $ */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 25 % */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 26 & */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 27 ' */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 28 ( */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 29 ) */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 2A * */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 2B + */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 2C , */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 2D - */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 2E . */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 2F / */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 30 0 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 31 1 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 32 2 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 33 3 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 34 4 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 35 5 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 36 6 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 37 7 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 38 8 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 39 9 */ CTYPE_MASK_digit | CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 3A : */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 3B ; */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 3C < */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 3D = */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 3E > */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 3F ? */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct | CTYPE_MASK_asn1print, /* 40 @ */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 41 A */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 42 B */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 43 C */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 44 D */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 45 E */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 46 F */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 47 G */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 48 H */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 49 I */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 4A J */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 4B K */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 4C L */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 4D M */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 4E N */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 4F O */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 50 P */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 51 Q */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 52 R */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 53 S */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 54 T */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 55 U */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 56 V */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 57 W */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 58 X */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 59 Y */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 5A Z */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_upper | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 5B [ */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 5C \ */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 5D ] */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 5E ^ */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 5F _ */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 60 ` */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 61 a */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 62 b */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 63 c */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 64 d */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 65 e */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 66 f */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_xdigit | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 67 g */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 68 h */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 69 i */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 6A j */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 6B k */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 6C l */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 6D m */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 6E n */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 6F o */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 70 p */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 71 q */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 72 r */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 73 s */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 74 t */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 75 u */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 76 v */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 77 w */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 78 x */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 79 y */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 7A z */ CTYPE_MASK_graph | CTYPE_MASK_lower | CTYPE_MASK_print | CTYPE_MASK_base64 | CTYPE_MASK_asn1print, /* 7B { */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 7C | */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 7D } */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 7E ~ */ CTYPE_MASK_graph | CTYPE_MASK_print | CTYPE_MASK_punct, /* 7F del */ CTYPE_MASK_cntrl }; #ifdef CHARSET_EBCDIC int ossl_toascii(int c) { if (c < -128 || c > 256 || c == EOF) return c; /* * Adjust negatively signed characters. * This is not required for ASCII because any character that sign extends * is not seven bit and all of the checks are on the seven bit characters. * I.e. any check must fail on sign extension. */ if (c < 0) c += 256; return os_toascii[c]; } int ossl_fromascii(int c) { if (c < -128 || c > 256 || c == EOF) return c; if (c < 0) c += 256; return os_toebcdic[c]; } #endif int ossl_ctype_check(int c, unsigned int mask) { const int max = sizeof(ctype_char_map) / sizeof(*ctype_char_map); const int a = ossl_toascii(c); return a >= 0 && a < max && (ctype_char_map[a] & mask) != 0; } #if defined(CHARSET_EBCDIC) && !defined(CHARSET_EBCDIC_TEST) static const int case_change = 0x40; #else static const int case_change = 0x20; #endif int ossl_tolower(int c) { return ossl_isupper(c) ? c ^ case_change : c; } int ossl_toupper(int c) { return ossl_islower(c) ? c ^ case_change : c; } int ascii_isdigit(const char inchar) { if (inchar > 0x2F && inchar < 0x3A) return 1; return 0; } openssl-1.1.1f/crypto/cversion.c000066400000000000000000000020421364063235100166600ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "buildinf.h" unsigned long OpenSSL_version_num(void) { return OPENSSL_VERSION_NUMBER; } const char *OpenSSL_version(int t) { switch (t) { case OPENSSL_VERSION: return OPENSSL_VERSION_TEXT; case OPENSSL_BUILT_ON: return DATE; case OPENSSL_CFLAGS: return compiler_flags; case OPENSSL_PLATFORM: return PLATFORM; case OPENSSL_DIR: #ifdef OPENSSLDIR return "OPENSSLDIR: \"" OPENSSLDIR "\""; #else return "OPENSSLDIR: N/A"; #endif case OPENSSL_ENGINES_DIR: #ifdef ENGINESDIR return "ENGINESDIR: \"" ENGINESDIR "\""; #else return "ENGINESDIR: N/A"; #endif } return "not available"; } openssl-1.1.1f/crypto/des/000077500000000000000000000000001364063235100154415ustar00rootroot00000000000000openssl-1.1.1f/crypto/des/asm/000077500000000000000000000000001364063235100162215ustar00rootroot00000000000000openssl-1.1.1f/crypto/des/asm/crypt586.pl000066400000000000000000000110241364063235100201600ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # The inner loop instruction sequence and the IP/FP modifications are from # Svend Olaf Mikkelsen $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $L="edi"; $R="esi"; &external_label("DES_SPtrans"); &fcrypt_body("fcrypt_body"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub fcrypt_body { local($name,$do_ip)=@_; &function_begin($name); &comment(""); &comment("Load the 2 words"); $trans="ebp"; &xor( $L, $L); &xor( $R, $R); # PIC-ification:-) &picmeup("edx","DES_SPtrans"); #if ($cpp) { &picmeup("edx","DES_SPtrans"); } #else { &lea("edx",&DWP("DES_SPtrans")); } &push("edx"); # becomes &swtmp(1) # &mov($trans,&wparam(1)); # reloaded with DES_SPtrans in D_ENCRYPT &push(&DWC(25)); # add a variable &set_label("start"); for ($i=0; $i<16; $i+=2) { &comment(""); &comment("Round $i"); &D_ENCRYPT($i,$L,$R,$i*2,$trans,"eax","ebx","ecx","edx"); &comment(""); &comment("Round ".sprintf("%d",$i+1)); &D_ENCRYPT($i+1,$R,$L,($i+1)*2,$trans,"eax","ebx","ecx","edx"); } &mov("ebx", &swtmp(0)); &mov("eax", $L); &dec("ebx"); &mov($L, $R); &mov($R, "eax"); &mov(&swtmp(0), "ebx"); &jnz(&label("start")); &comment(""); &comment("FP"); &mov("edx",&wparam(0)); &FP_new($R,$L,"eax",3); &mov(&DWP(0,"edx","",0),"eax"); &mov(&DWP(4,"edx","",0),$L); &add("esp",8); # remove variables &function_end($name); } sub D_ENCRYPT { local($r,$L,$R,$S,$trans,$u,$tmp1,$tmp2,$t)=@_; &mov( $u, &wparam(2)); # 2 &mov( $t, $R); &shr( $t, 16); # 1 &mov( $tmp2, &wparam(3)); # 2 &xor( $t, $R); # 1 &and( $u, $t); # 2 &and( $t, $tmp2); # 2 &mov( $tmp1, $u); &shl( $tmp1, 16); # 1 &mov( $tmp2, $t); &shl( $tmp2, 16); # 1 &xor( $u, $tmp1); # 2 &xor( $t, $tmp2); # 2 &mov( $tmp1, &DWP(&n2a($S*4),$trans,"",0)); # 2 &xor( $u, $tmp1); &mov( $tmp2, &DWP(&n2a(($S+1)*4),$trans,"",0)); # 2 &xor( $u, $R); &xor( $t, $R); &xor( $t, $tmp2); &and( $u, "0xfcfcfcfc" ); # 2 &xor( $tmp1, $tmp1); # 1 &and( $t, "0xcfcfcfcf" ); # 2 &xor( $tmp2, $tmp2); &movb( &LB($tmp1), &LB($u) ); &movb( &LB($tmp2), &HB($u) ); &rotr( $t, 4 ); &mov( $trans, &swtmp(1)); &xor( $L, &DWP(" ",$trans,$tmp1,0)); &movb( &LB($tmp1), &LB($t) ); &xor( $L, &DWP("0x200",$trans,$tmp2,0)); &movb( &LB($tmp2), &HB($t) ); &shr( $u, 16); &xor( $L, &DWP("0x100",$trans,$tmp1,0)); &movb( &LB($tmp1), &HB($u) ); &shr( $t, 16); &xor( $L, &DWP("0x300",$trans,$tmp2,0)); &movb( &LB($tmp2), &HB($t) ); &and( $u, "0xff" ); &and( $t, "0xff" ); &mov( $tmp1, &DWP("0x600",$trans,$tmp1,0)); &xor( $L, $tmp1); &mov( $tmp1, &DWP("0x700",$trans,$tmp2,0)); &xor( $L, $tmp1); &mov( $tmp1, &DWP("0x400",$trans,$u,0)); &xor( $L, $tmp1); &mov( $tmp1, &DWP("0x500",$trans,$t,0)); &xor( $L, $tmp1); &mov( $trans, &wparam(1)); } sub n2a { sprintf("%d",$_[0]); } # now has a side affect of rotating $a by $shift sub R_PERM_OP { local($a,$b,$tt,$shift,$mask,$last)=@_; &rotl( $a, $shift ) if ($shift != 0); &mov( $tt, $a ); &xor( $a, $b ); &and( $a, $mask ); if ($notlast eq $b) { &xor( $b, $a ); &xor( $tt, $a ); } else { &xor( $tt, $a ); &xor( $b, $a ); } &comment(""); } sub IP_new { local($l,$r,$tt,$lr)=@_; &R_PERM_OP($l,$r,$tt, 4,"0xf0f0f0f0",$l); &R_PERM_OP($r,$tt,$l,20,"0xfff0000f",$l); &R_PERM_OP($l,$tt,$r,14,"0x33333333",$r); &R_PERM_OP($tt,$r,$l,22,"0x03fc03fc",$r); &R_PERM_OP($l,$r,$tt, 9,"0xaaaaaaaa",$r); if ($lr != 3) { if (($lr-3) < 0) { &rotr($tt, 3-$lr); } else { &rotl($tt, $lr-3); } } if ($lr != 2) { if (($lr-2) < 0) { &rotr($r, 2-$lr); } else { &rotl($r, $lr-2); } } } sub FP_new { local($l,$r,$tt,$lr)=@_; if ($lr != 2) { if (($lr-2) < 0) { &rotl($r, 2-$lr); } else { &rotr($r, $lr-2); } } if ($lr != 3) { if (($lr-3) < 0) { &rotl($l, 3-$lr); } else { &rotr($l, $lr-3); } } &R_PERM_OP($l,$r,$tt, 0,"0xaaaaaaaa",$r); &R_PERM_OP($tt,$r,$l,23,"0x03fc03fc",$r); &R_PERM_OP($l,$r,$tt,10,"0x33333333",$l); &R_PERM_OP($r,$tt,$l,18,"0xfff0000f",$l); &R_PERM_OP($l,$tt,$r,12,"0xf0f0f0f0",$r); &rotr($tt , 4); } openssl-1.1.1f/crypto/des/asm/des-586.pl000066400000000000000000000351121364063235100176530ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # The inner loop instruction sequence and the IP/FP modifications are from # Svend Olaf Mikkelsen. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; require "cbc.pl"; require "desboth.pl"; # base code is in Microsoft # op dest, source # format. # $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $L="edi"; $R="esi"; $trans="ebp"; $small_footprint=1 if (grep(/\-DOPENSSL_SMALL_FOOTPRINT/,@ARGV)); # one can discuss setting this variable to 1 unconditionally, as # the folded loop is only 3% slower than unrolled, but >7 times smaller &public_label("DES_SPtrans"); &static_label("des_sptrans"); &DES_encrypt_internal(); &DES_decrypt_internal(); &DES_encrypt("DES_encrypt1",1); &DES_encrypt("DES_encrypt2",0); &DES_encrypt3("DES_encrypt3",1); &DES_encrypt3("DES_decrypt3",0); &cbc("DES_ncbc_encrypt","DES_encrypt1","DES_encrypt1",0,4,5,3,5,-1); &cbc("DES_ede3_cbc_encrypt","DES_encrypt3","DES_decrypt3",0,6,7,3,4,5); &DES_SPtrans(); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub DES_encrypt_internal() { &function_begin_B("_x86_DES_encrypt"); if ($small_footprint) { &lea("edx",&DWP(128,"ecx")); &push("edx"); &push("ecx"); &set_label("eloop"); &D_ENCRYPT(0,$L,$R,0,$trans,"eax","ebx","ecx","edx",&swtmp(0)); &comment(""); &D_ENCRYPT(1,$R,$L,2,$trans,"eax","ebx","ecx","edx",&swtmp(0)); &comment(""); &add("ecx",16); &cmp("ecx",&swtmp(1)); &mov(&swtmp(0),"ecx"); &jb(&label("eloop")); &add("esp",8); } else { &push("ecx"); for ($i=0; $i<16; $i+=2) { &comment("Round $i"); &D_ENCRYPT($i,$L,$R,$i*2,$trans,"eax","ebx","ecx","edx",&swtmp(0)); &comment("Round ".sprintf("%d",$i+1)); &D_ENCRYPT($i+1,$R,$L,($i+1)*2,$trans,"eax","ebx","ecx","edx",&swtmp(0)); } &add("esp",4); } &ret(); &function_end_B("_x86_DES_encrypt"); } sub DES_decrypt_internal() { &function_begin_B("_x86_DES_decrypt"); if ($small_footprint) { &push("ecx"); &lea("ecx",&DWP(128,"ecx")); &push("ecx"); &set_label("dloop"); &D_ENCRYPT(0,$L,$R,-2,$trans,"eax","ebx","ecx","edx",&swtmp(0)); &comment(""); &D_ENCRYPT(1,$R,$L,-4,$trans,"eax","ebx","ecx","edx",&swtmp(0)); &comment(""); &sub("ecx",16); &cmp("ecx",&swtmp(1)); &mov(&swtmp(0),"ecx"); &ja(&label("dloop")); &add("esp",8); } else { &push("ecx"); for ($i=15; $i>0; $i-=2) { &comment("Round $i"); &D_ENCRYPT(15-$i,$L,$R,$i*2,$trans,"eax","ebx","ecx","edx",&swtmp(0)); &comment("Round ".sprintf("%d",$i-1)); &D_ENCRYPT(15-$i+1,$R,$L,($i-1)*2,$trans,"eax","ebx","ecx","edx",&swtmp(0)); } &add("esp",4); } &ret(); &function_end_B("_x86_DES_decrypt"); } sub DES_encrypt { local($name,$do_ip)=@_; &function_begin_B($name); &push("esi"); &push("edi"); &comment(""); &comment("Load the 2 words"); if ($do_ip) { &mov($R,&wparam(0)); &xor( "ecx", "ecx" ); &push("ebx"); &push("ebp"); &mov("eax",&DWP(0,$R,"",0)); &mov("ebx",&wparam(2)); # get encrypt flag &mov($L,&DWP(4,$R,"",0)); &comment(""); &comment("IP"); &IP_new("eax",$L,$R,3); } else { &mov("eax",&wparam(0)); &xor( "ecx", "ecx" ); &push("ebx"); &push("ebp"); &mov($R,&DWP(0,"eax","",0)); &mov("ebx",&wparam(2)); # get encrypt flag &rotl($R,3); &mov($L,&DWP(4,"eax","",0)); &rotl($L,3); } # PIC-ification:-) &call (&label("pic_point")); &set_label("pic_point"); &blindpop($trans); &lea ($trans,&DWP(&label("des_sptrans")."-".&label("pic_point"),$trans)); &mov( "ecx", &wparam(1) ); &cmp("ebx","0"); &je(&label("decrypt")); &call("_x86_DES_encrypt"); &jmp(&label("done")); &set_label("decrypt"); &call("_x86_DES_decrypt"); &set_label("done"); if ($do_ip) { &comment(""); &comment("FP"); &mov("edx",&wparam(0)); &FP_new($L,$R,"eax",3); &mov(&DWP(0,"edx","",0),"eax"); &mov(&DWP(4,"edx","",0),$R); } else { &comment(""); &comment("Fixup"); &rotr($L,3); # r &mov("eax",&wparam(0)); &rotr($R,3); # l &mov(&DWP(0,"eax","",0),$L); &mov(&DWP(4,"eax","",0),$R); } &pop("ebp"); &pop("ebx"); &pop("edi"); &pop("esi"); &ret(); &function_end_B($name); } sub D_ENCRYPT { local($r,$L,$R,$S,$trans,$u,$tmp1,$tmp2,$t,$wp1)=@_; &mov( $u, &DWP(&n2a($S*4),$tmp2,"",0)); &xor( $tmp1, $tmp1); &mov( $t, &DWP(&n2a(($S+1)*4),$tmp2,"",0)); &xor( $u, $R); &xor( $tmp2, $tmp2); &xor( $t, $R); &and( $u, "0xfcfcfcfc" ); &and( $t, "0xcfcfcfcf" ); &movb( &LB($tmp1), &LB($u) ); &movb( &LB($tmp2), &HB($u) ); &rotr( $t, 4 ); &xor( $L, &DWP(" ",$trans,$tmp1,0)); &movb( &LB($tmp1), &LB($t) ); &xor( $L, &DWP("0x200",$trans,$tmp2,0)); &movb( &LB($tmp2), &HB($t) ); &shr( $u, 16); &xor( $L, &DWP("0x100",$trans,$tmp1,0)); &movb( &LB($tmp1), &HB($u) ); &shr( $t, 16); &xor( $L, &DWP("0x300",$trans,$tmp2,0)); &movb( &LB($tmp2), &HB($t) ); &and( $u, "0xff" ); &and( $t, "0xff" ); &xor( $L, &DWP("0x600",$trans,$tmp1,0)); &xor( $L, &DWP("0x700",$trans,$tmp2,0)); &mov( $tmp2, $wp1 ); &xor( $L, &DWP("0x400",$trans,$u,0)); &xor( $L, &DWP("0x500",$trans,$t,0)); } sub n2a { sprintf("%d",$_[0]); } # now has a side affect of rotating $a by $shift sub R_PERM_OP { local($a,$b,$tt,$shift,$mask,$last)=@_; &rotl( $a, $shift ) if ($shift != 0); &mov( $tt, $a ); &xor( $a, $b ); &and( $a, $mask ); # This can never succeed, and besides it is difficult to see what the # idea was - Ben 13 Feb 99 if (!$last eq $b) { &xor( $b, $a ); &xor( $tt, $a ); } else { &xor( $tt, $a ); &xor( $b, $a ); } &comment(""); } sub IP_new { local($l,$r,$tt,$lr)=@_; &R_PERM_OP($l,$r,$tt, 4,"0xf0f0f0f0",$l); &R_PERM_OP($r,$tt,$l,20,"0xfff0000f",$l); &R_PERM_OP($l,$tt,$r,14,"0x33333333",$r); &R_PERM_OP($tt,$r,$l,22,"0x03fc03fc",$r); &R_PERM_OP($l,$r,$tt, 9,"0xaaaaaaaa",$r); if ($lr != 3) { if (($lr-3) < 0) { &rotr($tt, 3-$lr); } else { &rotl($tt, $lr-3); } } if ($lr != 2) { if (($lr-2) < 0) { &rotr($r, 2-$lr); } else { &rotl($r, $lr-2); } } } sub FP_new { local($l,$r,$tt,$lr)=@_; if ($lr != 2) { if (($lr-2) < 0) { &rotl($r, 2-$lr); } else { &rotr($r, $lr-2); } } if ($lr != 3) { if (($lr-3) < 0) { &rotl($l, 3-$lr); } else { &rotr($l, $lr-3); } } &R_PERM_OP($l,$r,$tt, 0,"0xaaaaaaaa",$r); &R_PERM_OP($tt,$r,$l,23,"0x03fc03fc",$r); &R_PERM_OP($l,$r,$tt,10,"0x33333333",$l); &R_PERM_OP($r,$tt,$l,18,"0xfff0000f",$l); &R_PERM_OP($l,$tt,$r,12,"0xf0f0f0f0",$r); &rotr($tt , 4); } sub DES_SPtrans { &set_label("DES_SPtrans",64); &set_label("des_sptrans"); &data_word(0x02080800, 0x00080000, 0x02000002, 0x02080802); &data_word(0x02000000, 0x00080802, 0x00080002, 0x02000002); &data_word(0x00080802, 0x02080800, 0x02080000, 0x00000802); &data_word(0x02000802, 0x02000000, 0x00000000, 0x00080002); &data_word(0x00080000, 0x00000002, 0x02000800, 0x00080800); &data_word(0x02080802, 0x02080000, 0x00000802, 0x02000800); &data_word(0x00000002, 0x00000800, 0x00080800, 0x02080002); &data_word(0x00000800, 0x02000802, 0x02080002, 0x00000000); &data_word(0x00000000, 0x02080802, 0x02000800, 0x00080002); &data_word(0x02080800, 0x00080000, 0x00000802, 0x02000800); &data_word(0x02080002, 0x00000800, 0x00080800, 0x02000002); &data_word(0x00080802, 0x00000002, 0x02000002, 0x02080000); &data_word(0x02080802, 0x00080800, 0x02080000, 0x02000802); &data_word(0x02000000, 0x00000802, 0x00080002, 0x00000000); &data_word(0x00080000, 0x02000000, 0x02000802, 0x02080800); &data_word(0x00000002, 0x02080002, 0x00000800, 0x00080802); # nibble 1 &data_word(0x40108010, 0x00000000, 0x00108000, 0x40100000); &data_word(0x40000010, 0x00008010, 0x40008000, 0x00108000); &data_word(0x00008000, 0x40100010, 0x00000010, 0x40008000); &data_word(0x00100010, 0x40108000, 0x40100000, 0x00000010); &data_word(0x00100000, 0x40008010, 0x40100010, 0x00008000); &data_word(0x00108010, 0x40000000, 0x00000000, 0x00100010); &data_word(0x40008010, 0x00108010, 0x40108000, 0x40000010); &data_word(0x40000000, 0x00100000, 0x00008010, 0x40108010); &data_word(0x00100010, 0x40108000, 0x40008000, 0x00108010); &data_word(0x40108010, 0x00100010, 0x40000010, 0x00000000); &data_word(0x40000000, 0x00008010, 0x00100000, 0x40100010); &data_word(0x00008000, 0x40000000, 0x00108010, 0x40008010); &data_word(0x40108000, 0x00008000, 0x00000000, 0x40000010); &data_word(0x00000010, 0x40108010, 0x00108000, 0x40100000); &data_word(0x40100010, 0x00100000, 0x00008010, 0x40008000); &data_word(0x40008010, 0x00000010, 0x40100000, 0x00108000); # nibble 2 &data_word(0x04000001, 0x04040100, 0x00000100, 0x04000101); &data_word(0x00040001, 0x04000000, 0x04000101, 0x00040100); &data_word(0x04000100, 0x00040000, 0x04040000, 0x00000001); &data_word(0x04040101, 0x00000101, 0x00000001, 0x04040001); &data_word(0x00000000, 0x00040001, 0x04040100, 0x00000100); &data_word(0x00000101, 0x04040101, 0x00040000, 0x04000001); &data_word(0x04040001, 0x04000100, 0x00040101, 0x04040000); &data_word(0x00040100, 0x00000000, 0x04000000, 0x00040101); &data_word(0x04040100, 0x00000100, 0x00000001, 0x00040000); &data_word(0x00000101, 0x00040001, 0x04040000, 0x04000101); &data_word(0x00000000, 0x04040100, 0x00040100, 0x04040001); &data_word(0x00040001, 0x04000000, 0x04040101, 0x00000001); &data_word(0x00040101, 0x04000001, 0x04000000, 0x04040101); &data_word(0x00040000, 0x04000100, 0x04000101, 0x00040100); &data_word(0x04000100, 0x00000000, 0x04040001, 0x00000101); &data_word(0x04000001, 0x00040101, 0x00000100, 0x04040000); # nibble 3 &data_word(0x00401008, 0x10001000, 0x00000008, 0x10401008); &data_word(0x00000000, 0x10400000, 0x10001008, 0x00400008); &data_word(0x10401000, 0x10000008, 0x10000000, 0x00001008); &data_word(0x10000008, 0x00401008, 0x00400000, 0x10000000); &data_word(0x10400008, 0x00401000, 0x00001000, 0x00000008); &data_word(0x00401000, 0x10001008, 0x10400000, 0x00001000); &data_word(0x00001008, 0x00000000, 0x00400008, 0x10401000); &data_word(0x10001000, 0x10400008, 0x10401008, 0x00400000); &data_word(0x10400008, 0x00001008, 0x00400000, 0x10000008); &data_word(0x00401000, 0x10001000, 0x00000008, 0x10400000); &data_word(0x10001008, 0x00000000, 0x00001000, 0x00400008); &data_word(0x00000000, 0x10400008, 0x10401000, 0x00001000); &data_word(0x10000000, 0x10401008, 0x00401008, 0x00400000); &data_word(0x10401008, 0x00000008, 0x10001000, 0x00401008); &data_word(0x00400008, 0x00401000, 0x10400000, 0x10001008); &data_word(0x00001008, 0x10000000, 0x10000008, 0x10401000); # nibble 4 &data_word(0x08000000, 0x00010000, 0x00000400, 0x08010420); &data_word(0x08010020, 0x08000400, 0x00010420, 0x08010000); &data_word(0x00010000, 0x00000020, 0x08000020, 0x00010400); &data_word(0x08000420, 0x08010020, 0x08010400, 0x00000000); &data_word(0x00010400, 0x08000000, 0x00010020, 0x00000420); &data_word(0x08000400, 0x00010420, 0x00000000, 0x08000020); &data_word(0x00000020, 0x08000420, 0x08010420, 0x00010020); &data_word(0x08010000, 0x00000400, 0x00000420, 0x08010400); &data_word(0x08010400, 0x08000420, 0x00010020, 0x08010000); &data_word(0x00010000, 0x00000020, 0x08000020, 0x08000400); &data_word(0x08000000, 0x00010400, 0x08010420, 0x00000000); &data_word(0x00010420, 0x08000000, 0x00000400, 0x00010020); &data_word(0x08000420, 0x00000400, 0x00000000, 0x08010420); &data_word(0x08010020, 0x08010400, 0x00000420, 0x00010000); &data_word(0x00010400, 0x08010020, 0x08000400, 0x00000420); &data_word(0x00000020, 0x00010420, 0x08010000, 0x08000020); # nibble 5 &data_word(0x80000040, 0x00200040, 0x00000000, 0x80202000); &data_word(0x00200040, 0x00002000, 0x80002040, 0x00200000); &data_word(0x00002040, 0x80202040, 0x00202000, 0x80000000); &data_word(0x80002000, 0x80000040, 0x80200000, 0x00202040); &data_word(0x00200000, 0x80002040, 0x80200040, 0x00000000); &data_word(0x00002000, 0x00000040, 0x80202000, 0x80200040); &data_word(0x80202040, 0x80200000, 0x80000000, 0x00002040); &data_word(0x00000040, 0x00202000, 0x00202040, 0x80002000); &data_word(0x00002040, 0x80000000, 0x80002000, 0x00202040); &data_word(0x80202000, 0x00200040, 0x00000000, 0x80002000); &data_word(0x80000000, 0x00002000, 0x80200040, 0x00200000); &data_word(0x00200040, 0x80202040, 0x00202000, 0x00000040); &data_word(0x80202040, 0x00202000, 0x00200000, 0x80002040); &data_word(0x80000040, 0x80200000, 0x00202040, 0x00000000); &data_word(0x00002000, 0x80000040, 0x80002040, 0x80202000); &data_word(0x80200000, 0x00002040, 0x00000040, 0x80200040); # nibble 6 &data_word(0x00004000, 0x00000200, 0x01000200, 0x01000004); &data_word(0x01004204, 0x00004004, 0x00004200, 0x00000000); &data_word(0x01000000, 0x01000204, 0x00000204, 0x01004000); &data_word(0x00000004, 0x01004200, 0x01004000, 0x00000204); &data_word(0x01000204, 0x00004000, 0x00004004, 0x01004204); &data_word(0x00000000, 0x01000200, 0x01000004, 0x00004200); &data_word(0x01004004, 0x00004204, 0x01004200, 0x00000004); &data_word(0x00004204, 0x01004004, 0x00000200, 0x01000000); &data_word(0x00004204, 0x01004000, 0x01004004, 0x00000204); &data_word(0x00004000, 0x00000200, 0x01000000, 0x01004004); &data_word(0x01000204, 0x00004204, 0x00004200, 0x00000000); &data_word(0x00000200, 0x01000004, 0x00000004, 0x01000200); &data_word(0x00000000, 0x01000204, 0x01000200, 0x00004200); &data_word(0x00000204, 0x00004000, 0x01004204, 0x01000000); &data_word(0x01004200, 0x00000004, 0x00004004, 0x01004204); &data_word(0x01000004, 0x01004200, 0x01004000, 0x00004004); # nibble 7 &data_word(0x20800080, 0x20820000, 0x00020080, 0x00000000); &data_word(0x20020000, 0x00800080, 0x20800000, 0x20820080); &data_word(0x00000080, 0x20000000, 0x00820000, 0x00020080); &data_word(0x00820080, 0x20020080, 0x20000080, 0x20800000); &data_word(0x00020000, 0x00820080, 0x00800080, 0x20020000); &data_word(0x20820080, 0x20000080, 0x00000000, 0x00820000); &data_word(0x20000000, 0x00800000, 0x20020080, 0x20800080); &data_word(0x00800000, 0x00020000, 0x20820000, 0x00000080); &data_word(0x00800000, 0x00020000, 0x20000080, 0x20820080); &data_word(0x00020080, 0x20000000, 0x00000000, 0x00820000); &data_word(0x20800080, 0x20020080, 0x20020000, 0x00800080); &data_word(0x20820000, 0x00000080, 0x00800080, 0x20020000); &data_word(0x20820080, 0x00800000, 0x20800000, 0x20000080); &data_word(0x00820000, 0x00020080, 0x20020080, 0x20800000); &data_word(0x00000080, 0x20820000, 0x00820080, 0x00000000); &data_word(0x20000000, 0x20800080, 0x00020000, 0x00820080); } openssl-1.1.1f/crypto/des/asm/des_enc.m4000066400000000000000000001331001364063235100200610ustar00rootroot00000000000000! Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. ! ! Licensed under the OpenSSL license (the "License"). You may not use ! this file except in compliance with the License. You can obtain a copy ! in the file LICENSE in the source distribution or at ! https://www.openssl.org/source/license.html ! ! To expand the m4 macros: m4 -B 8192 des_enc.m4 > des_enc.S ! ! Global registers 1 to 5 are used. This is the same as done by the ! cc compiler. The UltraSPARC load/store little endian feature is used. ! ! Instruction grouping often refers to one CPU cycle. ! ! Assemble through gcc: gcc -c -mcpu=ultrasparc -o des_enc.o des_enc.S ! ! Assemble through cc: cc -c -xarch=v8plusa -o des_enc.o des_enc.S ! ! Performance improvement according to './apps/openssl speed des' ! ! 32-bit build: ! 23% faster than cc-5.2 -xarch=v8plus -xO5 ! 115% faster than gcc-3.2.1 -m32 -mcpu=ultrasparc -O5 ! 64-bit build: ! 50% faster than cc-5.2 -xarch=v9 -xO5 ! 100% faster than gcc-3.2.1 -m64 -mcpu=ultrasparc -O5 ! .ident "des_enc.m4 2.1" .file "des_enc-sparc.S" #include #if defined(__SUNPRO_C) && defined(__sparcv9) # define ABI64 /* They've said -xarch=v9 at command line */ #elif defined(__GNUC__) && defined(__arch64__) # define ABI64 /* They've said -m64 at command line */ #endif #ifdef ABI64 .register %g2,#scratch .register %g3,#scratch # define FRAME -192 # define BIAS 2047 # define LDPTR ldx # define STPTR stx # define ARG0 128 # define ARGSZ 8 #else # define FRAME -96 # define BIAS 0 # define LDPTR ld # define STPTR st # define ARG0 68 # define ARGSZ 4 #endif #define LOOPS 7 #define global0 %g0 #define global1 %g1 #define global2 %g2 #define global3 %g3 #define global4 %g4 #define global5 %g5 #define local0 %l0 #define local1 %l1 #define local2 %l2 #define local3 %l3 #define local4 %l4 #define local5 %l5 #define local7 %l6 #define local6 %l7 #define in0 %i0 #define in1 %i1 #define in2 %i2 #define in3 %i3 #define in4 %i4 #define in5 %i5 #define in6 %i6 #define in7 %i7 #define out0 %o0 #define out1 %o1 #define out2 %o2 #define out3 %o3 #define out4 %o4 #define out5 %o5 #define out6 %o6 #define out7 %o7 #define stub stb changequote({,}) ! Macro definitions: ! {ip_macro} ! ! The logic used in initial and final permutations is the same as in ! the C code. The permutations are done with a clever shift, xor, and ! technique. ! ! The macro also loads address sbox 1 to 5 to global 1 to 5, address ! sbox 6 to local6, and address sbox 8 to out3. ! ! Rotates the halves 3 left to bring the sbox bits in convenient positions. ! ! Loads key first round from address in parameter 5 to out0, out1. ! ! After the original LibDES initial permutation, the resulting left ! is in the variable initially used for right and vice versa. The macro ! implements the possibility to keep the halves in the original registers. ! ! parameter 1 left ! parameter 2 right ! parameter 3 result left (modify in first round) ! parameter 4 result right (use in first round) ! parameter 5 key address ! parameter 6 1/2 for include encryption/decryption ! parameter 7 1 for move in1 to in3 ! parameter 8 1 for move in3 to in4, 2 for move in4 to in3 ! parameter 9 1 for load ks3 and ks2 to in4 and in3 define(ip_macro, { ! {ip_macro} ! $1 $2 $4 $3 $5 $6 $7 $8 $9 ld [out2+256], local1 srl $2, 4, local4 xor local4, $1, local4 ifelse($7,1,{mov in1, in3},{nop}) ld [out2+260], local2 and local4, local1, local4 ifelse($8,1,{mov in3, in4},{}) ifelse($8,2,{mov in4, in3},{}) ld [out2+280], out4 ! loop counter sll local4, 4, local1 xor $1, local4, $1 ld [out2+264], local3 srl $1, 16, local4 xor $2, local1, $2 ifelse($9,1,{LDPTR KS3, in4},{}) xor local4, $2, local4 nop !sethi %hi(DES_SPtrans), global1 ! sbox addr ifelse($9,1,{LDPTR KS2, in3},{}) and local4, local2, local4 nop !or global1, %lo(DES_SPtrans), global1 ! sbox addr sll local4, 16, local1 xor $2, local4, $2 srl $2, 2, local4 xor $1, local1, $1 sethi %hi(16711680), local5 xor local4, $1, local4 and local4, local3, local4 or local5, 255, local5 sll local4, 2, local2 xor $1, local4, $1 srl $1, 8, local4 xor $2, local2, $2 xor local4, $2, local4 add global1, 768, global4 and local4, local5, local4 add global1, 1024, global5 ld [out2+272], local7 sll local4, 8, local1 xor $2, local4, $2 srl $2, 1, local4 xor $1, local1, $1 ld [$5], out0 ! key 7531 xor local4, $1, local4 add global1, 256, global2 ld [$5+4], out1 ! key 8642 and local4, local7, local4 add global1, 512, global3 sll local4, 1, local1 xor $1, local4, $1 sll $1, 3, local3 xor $2, local1, $2 sll $2, 3, local2 add global1, 1280, local6 ! address sbox 8 srl $1, 29, local4 add global1, 1792, out3 ! address sbox 8 srl $2, 29, local1 or local4, local3, $4 or local2, local1, $3 ifelse($6, 1, { ld [out2+284], local5 ! 0x0000FC00 used in the rounds or local2, local1, $3 xor $4, out0, local1 call .des_enc.1 and local1, 252, local1 },{}) ifelse($6, 2, { ld [out2+284], local5 ! 0x0000FC00 used in the rounds or local2, local1, $3 xor $4, out0, local1 call .des_dec.1 and local1, 252, local1 },{}) }) ! {rounds_macro} ! ! The logic used in the DES rounds is the same as in the C code, ! except that calculations for sbox 1 and sbox 5 begin before ! the previous round is finished. ! ! In each round one half (work) is modified based on key and the ! other half (use). ! ! In this version we do two rounds in a loop repeated 7 times ! and two rounds separately. ! ! One half has the bits for the sboxes in the following positions: ! ! 777777xx555555xx333333xx111111xx ! ! 88xx666666xx444444xx222222xx8888 ! ! The bits for each sbox are xor-ed with the key bits for that box. ! The above xx bits are cleared, and the result used for lookup in ! the sbox table. Each sbox entry contains the 4 output bits permuted ! into 32 bits according to the P permutation. ! ! In the description of DES, left and right are switched after ! each round, except after last round. In this code the original ! left and right are kept in the same register in all rounds, meaning ! that after the 16 rounds the result for right is in the register ! originally used for left. ! ! parameter 1 first work (left in first round) ! parameter 2 first use (right in first round) ! parameter 3 enc/dec 1/-1 ! parameter 4 loop label ! parameter 5 key address register ! parameter 6 optional address for key next encryption/decryption ! parameter 7 not empty for include retl ! ! also compares in2 to 8 define(rounds_macro, { ! {rounds_macro} ! $1 $2 $3 $4 $5 $6 $7 $8 $9 xor $2, out0, local1 ld [out2+284], local5 ! 0x0000FC00 ba $4 and local1, 252, local1 .align 32 $4: ! local6 is address sbox 6 ! out3 is address sbox 8 ! out4 is loop counter ld [global1+local1], local1 xor $2, out1, out1 ! 8642 xor $2, out0, out0 ! 7531 ! fmovs %f0, %f0 ! fxor used for alignment srl out1, 4, local0 ! rotate 4 right and out0, local5, local3 ! 3 ! fmovs %f0, %f0 ld [$5+$3*8], local7 ! key 7531 next round srl local3, 8, local3 ! 3 and local0, 252, local2 ! 2 ! fmovs %f0, %f0 ld [global3+local3],local3 ! 3 sll out1, 28, out1 ! rotate xor $1, local1, $1 ! 1 finished, local1 now sbox 7 ld [global2+local2], local2 ! 2 srl out0, 24, local1 ! 7 or out1, local0, out1 ! rotate ldub [out2+local1], local1 ! 7 (and 0xFC) srl out1, 24, local0 ! 8 and out1, local5, local4 ! 4 ldub [out2+local0], local0 ! 8 (and 0xFC) srl local4, 8, local4 ! 4 xor $1, local2, $1 ! 2 finished local2 now sbox 6 ld [global4+local4],local4 ! 4 srl out1, 16, local2 ! 6 xor $1, local3, $1 ! 3 finished local3 now sbox 5 ld [out3+local0],local0 ! 8 and local2, 252, local2 ! 6 add global1, 1536, local5 ! address sbox 7 ld [local6+local2], local2 ! 6 srl out0, 16, local3 ! 5 xor $1, local4, $1 ! 4 finished ld [local5+local1],local1 ! 7 and local3, 252, local3 ! 5 xor $1, local0, $1 ! 8 finished ld [global5+local3],local3 ! 5 xor $1, local2, $1 ! 6 finished subcc out4, 1, out4 ld [$5+$3*8+4], out0 ! key 8642 next round xor $1, local7, local2 ! sbox 5 next round xor $1, local1, $1 ! 7 finished srl local2, 16, local2 ! sbox 5 next round xor $1, local3, $1 ! 5 finished ld [$5+$3*16+4], out1 ! key 8642 next round again and local2, 252, local2 ! sbox5 next round ! next round xor $1, local7, local7 ! 7531 ld [global5+local2], local2 ! 5 srl local7, 24, local3 ! 7 xor $1, out0, out0 ! 8642 ldub [out2+local3], local3 ! 7 (and 0xFC) srl out0, 4, local0 ! rotate 4 right and local7, 252, local1 ! 1 sll out0, 28, out0 ! rotate xor $2, local2, $2 ! 5 finished local2 used srl local0, 8, local4 ! 4 and local0, 252, local2 ! 2 ld [local5+local3], local3 ! 7 srl local0, 16, local5 ! 6 or out0, local0, out0 ! rotate ld [global2+local2], local2 ! 2 srl out0, 24, local0 ld [$5+$3*16], out0 ! key 7531 next round and local4, 252, local4 ! 4 and local5, 252, local5 ! 6 ld [global4+local4], local4 ! 4 xor $2, local3, $2 ! 7 finished local3 used and local0, 252, local0 ! 8 ld [local6+local5], local5 ! 6 xor $2, local2, $2 ! 2 finished local2 now sbox 3 srl local7, 8, local2 ! 3 start ld [out3+local0], local0 ! 8 xor $2, local4, $2 ! 4 finished and local2, 252, local2 ! 3 ld [global1+local1], local1 ! 1 xor $2, local5, $2 ! 6 finished local5 used ld [global3+local2], local2 ! 3 xor $2, local0, $2 ! 8 finished add $5, $3*16, $5 ! enc add 8, dec add -8 to key pointer ld [out2+284], local5 ! 0x0000FC00 xor $2, out0, local4 ! sbox 1 next round xor $2, local1, $2 ! 1 finished xor $2, local2, $2 ! 3 finished bne $4 and local4, 252, local1 ! sbox 1 next round ! two rounds more: ld [global1+local1], local1 xor $2, out1, out1 xor $2, out0, out0 srl out1, 4, local0 ! rotate and out0, local5, local3 ld [$5+$3*8], local7 ! key 7531 srl local3, 8, local3 and local0, 252, local2 ld [global3+local3],local3 sll out1, 28, out1 ! rotate xor $1, local1, $1 ! 1 finished, local1 now sbox 7 ld [global2+local2], local2 srl out0, 24, local1 or out1, local0, out1 ! rotate ldub [out2+local1], local1 srl out1, 24, local0 and out1, local5, local4 ldub [out2+local0], local0 srl local4, 8, local4 xor $1, local2, $1 ! 2 finished local2 now sbox 6 ld [global4+local4],local4 srl out1, 16, local2 xor $1, local3, $1 ! 3 finished local3 now sbox 5 ld [out3+local0],local0 and local2, 252, local2 add global1, 1536, local5 ! address sbox 7 ld [local6+local2], local2 srl out0, 16, local3 xor $1, local4, $1 ! 4 finished ld [local5+local1],local1 and local3, 252, local3 xor $1, local0, $1 ld [global5+local3],local3 xor $1, local2, $1 ! 6 finished cmp in2, 8 ifelse($6,{}, {}, {ld [out2+280], out4}) ! loop counter xor $1, local7, local2 ! sbox 5 next round xor $1, local1, $1 ! 7 finished ld [$5+$3*8+4], out0 srl local2, 16, local2 ! sbox 5 next round xor $1, local3, $1 ! 5 finished and local2, 252, local2 ! next round (two rounds more) xor $1, local7, local7 ! 7531 ld [global5+local2], local2 srl local7, 24, local3 xor $1, out0, out0 ! 8642 ldub [out2+local3], local3 srl out0, 4, local0 ! rotate and local7, 252, local1 sll out0, 28, out0 ! rotate xor $2, local2, $2 ! 5 finished local2 used srl local0, 8, local4 and local0, 252, local2 ld [local5+local3], local3 srl local0, 16, local5 or out0, local0, out0 ! rotate ld [global2+local2], local2 srl out0, 24, local0 ifelse($6,{}, {}, {ld [$6], out0}) ! key next encryption/decryption and local4, 252, local4 and local5, 252, local5 ld [global4+local4], local4 xor $2, local3, $2 ! 7 finished local3 used and local0, 252, local0 ld [local6+local5], local5 xor $2, local2, $2 ! 2 finished local2 now sbox 3 srl local7, 8, local2 ! 3 start ld [out3+local0], local0 xor $2, local4, $2 and local2, 252, local2 ld [global1+local1], local1 xor $2, local5, $2 ! 6 finished local5 used ld [global3+local2], local2 srl $1, 3, local3 xor $2, local0, $2 ifelse($6,{}, {}, {ld [$6+4], out1}) ! key next encryption/decryption sll $1, 29, local4 xor $2, local1, $2 ifelse($7,{}, {}, {retl}) xor $2, local2, $2 }) ! {fp_macro} ! ! parameter 1 right (original left) ! parameter 2 left (original right) ! parameter 3 1 for optional store to [in0] ! parameter 4 1 for load input/output address to local5/7 ! ! The final permutation logic switches the halves, meaning that ! left and right ends up the registers originally used. define(fp_macro, { ! {fp_macro} ! $1 $2 $3 $4 $5 $6 $7 $8 $9 ! initially undo the rotate 3 left done after initial permutation ! original left is received shifted 3 right and 29 left in local3/4 sll $2, 29, local1 or local3, local4, $1 srl $2, 3, $2 sethi %hi(0x55555555), local2 or $2, local1, $2 or local2, %lo(0x55555555), local2 srl $2, 1, local3 sethi %hi(0x00ff00ff), local1 xor local3, $1, local3 or local1, %lo(0x00ff00ff), local1 and local3, local2, local3 sethi %hi(0x33333333), local4 sll local3, 1, local2 xor $1, local3, $1 srl $1, 8, local3 xor $2, local2, $2 xor local3, $2, local3 or local4, %lo(0x33333333), local4 and local3, local1, local3 sethi %hi(0x0000ffff), local1 sll local3, 8, local2 xor $2, local3, $2 srl $2, 2, local3 xor $1, local2, $1 xor local3, $1, local3 or local1, %lo(0x0000ffff), local1 and local3, local4, local3 sethi %hi(0x0f0f0f0f), local4 sll local3, 2, local2 ifelse($4,1, {LDPTR INPUT, local5}) xor $1, local3, $1 ifelse($4,1, {LDPTR OUTPUT, local7}) srl $1, 16, local3 xor $2, local2, $2 xor local3, $2, local3 or local4, %lo(0x0f0f0f0f), local4 and local3, local1, local3 sll local3, 16, local2 xor $2, local3, local1 srl local1, 4, local3 xor $1, local2, $1 xor local3, $1, local3 and local3, local4, local3 sll local3, 4, local2 xor $1, local3, $1 ! optional store: ifelse($3,1, {st $1, [in0]}) xor local1, local2, $2 ifelse($3,1, {st $2, [in0+4]}) }) ! {fp_ip_macro} ! ! Does initial permutation for next block mixed with ! final permutation for current block. ! ! parameter 1 original left ! parameter 2 original right ! parameter 3 left ip ! parameter 4 right ip ! parameter 5 1: load ks1/ks2 to in3/in4, add 120 to in4 ! 2: mov in4 to in3 ! ! also adds -8 to length in2 and loads loop counter to out4 define(fp_ip_macro, { ! {fp_ip_macro} ! $1 $2 $3 $4 $5 $6 $7 $8 $9 define({temp1},{out4}) define({temp2},{local3}) define({ip1},{local1}) define({ip2},{local2}) define({ip4},{local4}) define({ip5},{local5}) ! $1 in local3, local4 ld [out2+256], ip1 sll out5, 29, temp1 or local3, local4, $1 srl out5, 3, $2 ifelse($5,2,{mov in4, in3}) ld [out2+272], ip5 srl $4, 4, local0 or $2, temp1, $2 srl $2, 1, temp1 xor temp1, $1, temp1 and temp1, ip5, temp1 xor local0, $3, local0 sll temp1, 1, temp2 xor $1, temp1, $1 and local0, ip1, local0 add in2, -8, in2 sll local0, 4, local7 xor $3, local0, $3 ld [out2+268], ip4 srl $1, 8, temp1 xor $2, temp2, $2 ld [out2+260], ip2 srl $3, 16, local0 xor $4, local7, $4 xor temp1, $2, temp1 xor local0, $4, local0 and temp1, ip4, temp1 and local0, ip2, local0 sll temp1, 8, temp2 xor $2, temp1, $2 sll local0, 16, local7 xor $4, local0, $4 srl $2, 2, temp1 xor $1, temp2, $1 ld [out2+264], temp2 ! ip3 srl $4, 2, local0 xor $3, local7, $3 xor temp1, $1, temp1 xor local0, $3, local0 and temp1, temp2, temp1 and local0, temp2, local0 sll temp1, 2, temp2 xor $1, temp1, $1 sll local0, 2, local7 xor $3, local0, $3 srl $1, 16, temp1 xor $2, temp2, $2 srl $3, 8, local0 xor $4, local7, $4 xor temp1, $2, temp1 xor local0, $4, local0 and temp1, ip2, temp1 and local0, ip4, local0 sll temp1, 16, temp2 xor $2, temp1, local4 sll local0, 8, local7 xor $4, local0, $4 srl $4, 1, local0 xor $3, local7, $3 srl local4, 4, temp1 xor local0, $3, local0 xor $1, temp2, $1 and local0, ip5, local0 sll local0, 1, local7 xor temp1, $1, temp1 xor $3, local0, $3 xor $4, local7, $4 sll $3, 3, local5 and temp1, ip1, temp1 sll temp1, 4, temp2 xor $1, temp1, $1 ifelse($5,1,{LDPTR KS2, in4}) sll $4, 3, local2 xor local4, temp2, $2 ! reload since used as temporary: ld [out2+280], out4 ! loop counter srl $3, 29, local0 ifelse($5,1,{add in4, 120, in4}) ifelse($5,1,{LDPTR KS1, in3}) srl $4, 29, local7 or local0, local5, $4 or local2, local7, $3 }) ! {load_little_endian} ! ! parameter 1 address ! parameter 2 destination left ! parameter 3 destination right ! parameter 4 temporary ! parameter 5 label define(load_little_endian, { ! {load_little_endian} ! $1 $2 $3 $4 $5 $6 $7 $8 $9 ! first in memory to rightmost in register $5: ldub [$1+3], $2 ldub [$1+2], $4 sll $2, 8, $2 or $2, $4, $2 ldub [$1+1], $4 sll $2, 8, $2 or $2, $4, $2 ldub [$1+0], $4 sll $2, 8, $2 or $2, $4, $2 ldub [$1+3+4], $3 ldub [$1+2+4], $4 sll $3, 8, $3 or $3, $4, $3 ldub [$1+1+4], $4 sll $3, 8, $3 or $3, $4, $3 ldub [$1+0+4], $4 sll $3, 8, $3 or $3, $4, $3 $5a: }) ! {load_little_endian_inc} ! ! parameter 1 address ! parameter 2 destination left ! parameter 3 destination right ! parameter 4 temporary ! parameter 4 label ! ! adds 8 to address define(load_little_endian_inc, { ! {load_little_endian_inc} ! $1 $2 $3 $4 $5 $6 $7 $8 $9 ! first in memory to rightmost in register $5: ldub [$1+3], $2 ldub [$1+2], $4 sll $2, 8, $2 or $2, $4, $2 ldub [$1+1], $4 sll $2, 8, $2 or $2, $4, $2 ldub [$1+0], $4 sll $2, 8, $2 or $2, $4, $2 ldub [$1+3+4], $3 add $1, 8, $1 ldub [$1+2+4-8], $4 sll $3, 8, $3 or $3, $4, $3 ldub [$1+1+4-8], $4 sll $3, 8, $3 or $3, $4, $3 ldub [$1+0+4-8], $4 sll $3, 8, $3 or $3, $4, $3 $5a: }) ! {load_n_bytes} ! ! Loads 1 to 7 bytes little endian ! Remaining bytes are zeroed. ! ! parameter 1 address ! parameter 2 length ! parameter 3 destination register left ! parameter 4 destination register right ! parameter 5 temp ! parameter 6 temp2 ! parameter 7 label ! parameter 8 return label define(load_n_bytes, { ! {load_n_bytes} ! $1 $2 $5 $6 $7 $8 $7 $8 $9 $7.0: call .+8 sll $2, 2, $6 add %o7,$7.jmp.table-$7.0,$5 add $5, $6, $5 mov 0, $4 ld [$5], $5 jmp %o7+$5 mov 0, $3 $7.7: ldub [$1+6], $5 sll $5, 16, $5 or $3, $5, $3 $7.6: ldub [$1+5], $5 sll $5, 8, $5 or $3, $5, $3 $7.5: ldub [$1+4], $5 or $3, $5, $3 $7.4: ldub [$1+3], $5 sll $5, 24, $5 or $4, $5, $4 $7.3: ldub [$1+2], $5 sll $5, 16, $5 or $4, $5, $4 $7.2: ldub [$1+1], $5 sll $5, 8, $5 or $4, $5, $4 $7.1: ldub [$1+0], $5 ba $8 or $4, $5, $4 .align 4 $7.jmp.table: .word 0 .word $7.1-$7.0 .word $7.2-$7.0 .word $7.3-$7.0 .word $7.4-$7.0 .word $7.5-$7.0 .word $7.6-$7.0 .word $7.7-$7.0 }) ! {store_little_endian} ! ! parameter 1 address ! parameter 2 source left ! parameter 3 source right ! parameter 4 temporary define(store_little_endian, { ! {store_little_endian} ! $1 $2 $3 $4 $5 $6 $7 $8 $9 ! rightmost in register to first in memory $5: and $2, 255, $4 stub $4, [$1+0] srl $2, 8, $4 and $4, 255, $4 stub $4, [$1+1] srl $2, 16, $4 and $4, 255, $4 stub $4, [$1+2] srl $2, 24, $4 stub $4, [$1+3] and $3, 255, $4 stub $4, [$1+0+4] srl $3, 8, $4 and $4, 255, $4 stub $4, [$1+1+4] srl $3, 16, $4 and $4, 255, $4 stub $4, [$1+2+4] srl $3, 24, $4 stub $4, [$1+3+4] $5a: }) ! {store_n_bytes} ! ! Stores 1 to 7 bytes little endian ! ! parameter 1 address ! parameter 2 length ! parameter 3 source register left ! parameter 4 source register right ! parameter 5 temp ! parameter 6 temp2 ! parameter 7 label ! parameter 8 return label define(store_n_bytes, { ! {store_n_bytes} ! $1 $2 $5 $6 $7 $8 $7 $8 $9 $7.0: call .+8 sll $2, 2, $6 add %o7,$7.jmp.table-$7.0,$5 add $5, $6, $5 ld [$5], $5 jmp %o7+$5 nop $7.7: srl $3, 16, $5 and $5, 0xff, $5 stub $5, [$1+6] $7.6: srl $3, 8, $5 and $5, 0xff, $5 stub $5, [$1+5] $7.5: and $3, 0xff, $5 stub $5, [$1+4] $7.4: srl $4, 24, $5 stub $5, [$1+3] $7.3: srl $4, 16, $5 and $5, 0xff, $5 stub $5, [$1+2] $7.2: srl $4, 8, $5 and $5, 0xff, $5 stub $5, [$1+1] $7.1: and $4, 0xff, $5 ba $8 stub $5, [$1] .align 4 $7.jmp.table: .word 0 .word $7.1-$7.0 .word $7.2-$7.0 .word $7.3-$7.0 .word $7.4-$7.0 .word $7.5-$7.0 .word $7.6-$7.0 .word $7.7-$7.0 }) define(testvalue,{1}) define(register_init, { ! For test purposes: sethi %hi(testvalue), local0 or local0, %lo(testvalue), local0 ifelse($1,{},{}, {mov local0, $1}) ifelse($2,{},{}, {mov local0, $2}) ifelse($3,{},{}, {mov local0, $3}) ifelse($4,{},{}, {mov local0, $4}) ifelse($5,{},{}, {mov local0, $5}) ifelse($6,{},{}, {mov local0, $6}) ifelse($7,{},{}, {mov local0, $7}) ifelse($8,{},{}, {mov local0, $8}) mov local0, local1 mov local0, local2 mov local0, local3 mov local0, local4 mov local0, local5 mov local0, local7 mov local0, local6 mov local0, out0 mov local0, out1 mov local0, out2 mov local0, out3 mov local0, out4 mov local0, out5 mov local0, global1 mov local0, global2 mov local0, global3 mov local0, global4 mov local0, global5 }) .section ".text" .align 32 .des_enc: ! key address in3 ! loads key next encryption/decryption first round from [in4] rounds_macro(in5, out5, 1, .des_enc.1, in3, in4, retl) .align 32 .des_dec: ! implemented with out5 as first parameter to avoid ! register exchange in ede modes ! key address in4 ! loads key next encryption/decryption first round from [in3] rounds_macro(out5, in5, -1, .des_dec.1, in4, in3, retl) ! void DES_encrypt1(data, ks, enc) ! ******************************* .align 32 .global DES_encrypt1 .type DES_encrypt1,#function DES_encrypt1: save %sp, FRAME, %sp sethi %hi(.PIC.DES_SPtrans-1f),global1 or global1,%lo(.PIC.DES_SPtrans-1f),global1 1: call .+8 add %o7,global1,global1 sub global1,.PIC.DES_SPtrans-.des_and,out2 ld [in0], in5 ! left cmp in2, 0 ! enc be .encrypt.dec ld [in0+4], out5 ! right ! parameter 6 1/2 for include encryption/decryption ! parameter 7 1 for move in1 to in3 ! parameter 8 1 for move in3 to in4, 2 for move in4 to in3 ip_macro(in5, out5, in5, out5, in3, 0, 1, 1) rounds_macro(in5, out5, 1, .des_encrypt1.1, in3, in4) ! in4 not used fp_macro(in5, out5, 1) ! 1 for store to [in0] ret restore .encrypt.dec: add in1, 120, in3 ! use last subkey for first round ! parameter 6 1/2 for include encryption/decryption ! parameter 7 1 for move in1 to in3 ! parameter 8 1 for move in3 to in4, 2 for move in4 to in3 ip_macro(in5, out5, out5, in5, in4, 2, 0, 1) ! include dec, ks in4 fp_macro(out5, in5, 1) ! 1 for store to [in0] ret restore .DES_encrypt1.end: .size DES_encrypt1,.DES_encrypt1.end-DES_encrypt1 ! void DES_encrypt2(data, ks, enc) !********************************* ! encrypts/decrypts without initial/final permutation .align 32 .global DES_encrypt2 .type DES_encrypt2,#function DES_encrypt2: save %sp, FRAME, %sp sethi %hi(.PIC.DES_SPtrans-1f),global1 or global1,%lo(.PIC.DES_SPtrans-1f),global1 1: call .+8 add %o7,global1,global1 sub global1,.PIC.DES_SPtrans-.des_and,out2 ! Set sbox address 1 to 6 and rotate halves 3 left ! Errors caught by destest? Yes. Still? *NO* !sethi %hi(DES_SPtrans), global1 ! address sbox 1 !or global1, %lo(DES_SPtrans), global1 ! sbox 1 add global1, 256, global2 ! sbox 2 add global1, 512, global3 ! sbox 3 ld [in0], out5 ! right add global1, 768, global4 ! sbox 4 add global1, 1024, global5 ! sbox 5 ld [in0+4], in5 ! left add global1, 1280, local6 ! sbox 6 add global1, 1792, out3 ! sbox 8 ! rotate sll in5, 3, local5 mov in1, in3 ! key address to in3 sll out5, 3, local7 srl in5, 29, in5 srl out5, 29, out5 add in5, local5, in5 add out5, local7, out5 cmp in2, 0 ! we use our own stackframe be .encrypt2.dec STPTR in0, [%sp+BIAS+ARG0+0*ARGSZ] ld [in3], out0 ! key 7531 first round mov LOOPS, out4 ! loop counter ld [in3+4], out1 ! key 8642 first round sethi %hi(0x0000FC00), local5 call .des_enc mov in3, in4 ! rotate sll in5, 29, in0 srl in5, 3, in5 sll out5, 29, in1 add in5, in0, in5 srl out5, 3, out5 LDPTR [%sp+BIAS+ARG0+0*ARGSZ], in0 add out5, in1, out5 st in5, [in0] st out5, [in0+4] ret restore .encrypt2.dec: add in3, 120, in4 ld [in4], out0 ! key 7531 first round mov LOOPS, out4 ! loop counter ld [in4+4], out1 ! key 8642 first round sethi %hi(0x0000FC00), local5 mov in5, local1 ! left expected in out5 mov out5, in5 call .des_dec mov local1, out5 .encrypt2.finish: ! rotate sll in5, 29, in0 srl in5, 3, in5 sll out5, 29, in1 add in5, in0, in5 srl out5, 3, out5 LDPTR [%sp+BIAS+ARG0+0*ARGSZ], in0 add out5, in1, out5 st out5, [in0] st in5, [in0+4] ret restore .DES_encrypt2.end: .size DES_encrypt2, .DES_encrypt2.end-DES_encrypt2 ! void DES_encrypt3(data, ks1, ks2, ks3) ! ************************************** .align 32 .global DES_encrypt3 .type DES_encrypt3,#function DES_encrypt3: save %sp, FRAME, %sp sethi %hi(.PIC.DES_SPtrans-1f),global1 or global1,%lo(.PIC.DES_SPtrans-1f),global1 1: call .+8 add %o7,global1,global1 sub global1,.PIC.DES_SPtrans-.des_and,out2 ld [in0], in5 ! left add in2, 120, in4 ! ks2 ld [in0+4], out5 ! right mov in3, in2 ! save ks3 ! parameter 6 1/2 for include encryption/decryption ! parameter 7 1 for mov in1 to in3 ! parameter 8 1 for mov in3 to in4 ! parameter 9 1 for load ks3 and ks2 to in4 and in3 ip_macro(in5, out5, in5, out5, in3, 1, 1, 0, 0) call .des_dec mov in2, in3 ! preload ks3 call .des_enc nop fp_macro(in5, out5, 1) ret restore .DES_encrypt3.end: .size DES_encrypt3,.DES_encrypt3.end-DES_encrypt3 ! void DES_decrypt3(data, ks1, ks2, ks3) ! ************************************** .align 32 .global DES_decrypt3 .type DES_decrypt3,#function DES_decrypt3: save %sp, FRAME, %sp sethi %hi(.PIC.DES_SPtrans-1f),global1 or global1,%lo(.PIC.DES_SPtrans-1f),global1 1: call .+8 add %o7,global1,global1 sub global1,.PIC.DES_SPtrans-.des_and,out2 ld [in0], in5 ! left add in3, 120, in4 ! ks3 ld [in0+4], out5 ! right mov in2, in3 ! ks2 ! parameter 6 1/2 for include encryption/decryption ! parameter 7 1 for mov in1 to in3 ! parameter 8 1 for mov in3 to in4 ! parameter 9 1 for load ks3 and ks2 to in4 and in3 ip_macro(in5, out5, out5, in5, in4, 2, 0, 0, 0) call .des_enc add in1, 120, in4 ! preload ks1 call .des_dec nop fp_macro(out5, in5, 1) ret restore .DES_decrypt3.end: .size DES_decrypt3,.DES_decrypt3.end-DES_decrypt3 ! void DES_ncbc_encrypt(input, output, length, schedule, ivec, enc) ! ***************************************************************** .align 32 .global DES_ncbc_encrypt .type DES_ncbc_encrypt,#function DES_ncbc_encrypt: save %sp, FRAME, %sp define({INPUT}, { [%sp+BIAS+ARG0+0*ARGSZ] }) define({OUTPUT}, { [%sp+BIAS+ARG0+1*ARGSZ] }) define({IVEC}, { [%sp+BIAS+ARG0+4*ARGSZ] }) sethi %hi(.PIC.DES_SPtrans-1f),global1 or global1,%lo(.PIC.DES_SPtrans-1f),global1 1: call .+8 add %o7,global1,global1 sub global1,.PIC.DES_SPtrans-.des_and,out2 cmp in5, 0 ! enc be .ncbc.dec STPTR in4, IVEC ! addr left right temp label load_little_endian(in4, in5, out5, local3, .LLE1) ! iv addcc in2, -8, in2 ! bytes missing when first block done bl .ncbc.enc.seven.or.less mov in3, in4 ! schedule .ncbc.enc.next.block: load_little_endian(in0, out4, global4, local3, .LLE2) ! block .ncbc.enc.next.block_1: xor in5, out4, in5 ! iv xor xor out5, global4, out5 ! iv xor ! parameter 8 1 for move in3 to in4, 2 for move in4 to in3 ip_macro(in5, out5, in5, out5, in3, 0, 0, 2) .ncbc.enc.next.block_2: !// call .des_enc ! compares in2 to 8 ! rounds inlined for alignment purposes add global1, 768, global4 ! address sbox 4 since register used below rounds_macro(in5, out5, 1, .ncbc.enc.1, in3, in4) ! include encryption ks in3 bl .ncbc.enc.next.block_fp add in0, 8, in0 ! input address ! If 8 or more bytes are to be encrypted after this block, ! we combine final permutation for this block with initial ! permutation for next block. Load next block: load_little_endian(in0, global3, global4, local5, .LLE12) ! parameter 1 original left ! parameter 2 original right ! parameter 3 left ip ! parameter 4 right ip ! parameter 5 1: load ks1/ks2 to in3/in4, add 120 to in4 ! 2: mov in4 to in3 ! ! also adds -8 to length in2 and loads loop counter to out4 fp_ip_macro(out0, out1, global3, global4, 2) store_little_endian(in1, out0, out1, local3, .SLE10) ! block ld [in3], out0 ! key 7531 first round next block mov in5, local1 xor global3, out5, in5 ! iv xor next block ld [in3+4], out1 ! key 8642 add global1, 512, global3 ! address sbox 3 since register used xor global4, local1, out5 ! iv xor next block ba .ncbc.enc.next.block_2 add in1, 8, in1 ! output address .ncbc.enc.next.block_fp: fp_macro(in5, out5) store_little_endian(in1, in5, out5, local3, .SLE1) ! block addcc in2, -8, in2 ! bytes missing when next block done bpos .ncbc.enc.next.block add in1, 8, in1 .ncbc.enc.seven.or.less: cmp in2, -8 ble .ncbc.enc.finish nop add in2, 8, local1 ! bytes to load ! addr, length, dest left, dest right, temp, temp2, label, ret label load_n_bytes(in0, local1, global4, out4, local2, local3, .LNB1, .ncbc.enc.next.block_1) ! Loads 1 to 7 bytes little endian to global4, out4 .ncbc.enc.finish: LDPTR IVEC, local4 store_little_endian(local4, in5, out5, local5, .SLE2) ! ivec ret restore .ncbc.dec: STPTR in0, INPUT cmp in2, 0 ! length add in3, 120, in3 LDPTR IVEC, local7 ! ivec ble .ncbc.dec.finish mov in3, in4 ! schedule STPTR in1, OUTPUT mov in0, local5 ! input load_little_endian(local7, in0, in1, local3, .LLE3) ! ivec .ncbc.dec.next.block: load_little_endian(local5, in5, out5, local3, .LLE4) ! block ! parameter 6 1/2 for include encryption/decryption ! parameter 7 1 for mov in1 to in3 ! parameter 8 1 for mov in3 to in4 ip_macro(in5, out5, out5, in5, in4, 2, 0, 1) ! include decryption ks in4 fp_macro(out5, in5, 0, 1) ! 1 for input and output address to local5/7 ! in2 is bytes left to be stored ! in2 is compared to 8 in the rounds xor out5, in0, out4 ! iv xor bl .ncbc.dec.seven.or.less xor in5, in1, global4 ! iv xor ! Load ivec next block now, since input and output address might be the same. load_little_endian_inc(local5, in0, in1, local3, .LLE5) ! iv store_little_endian(local7, out4, global4, local3, .SLE3) STPTR local5, INPUT add local7, 8, local7 addcc in2, -8, in2 bg .ncbc.dec.next.block STPTR local7, OUTPUT .ncbc.dec.store.iv: LDPTR IVEC, local4 ! ivec store_little_endian(local4, in0, in1, local5, .SLE4) .ncbc.dec.finish: ret restore .ncbc.dec.seven.or.less: load_little_endian_inc(local5, in0, in1, local3, .LLE13) ! ivec store_n_bytes(local7, in2, global4, out4, local3, local4, .SNB1, .ncbc.dec.store.iv) .DES_ncbc_encrypt.end: .size DES_ncbc_encrypt, .DES_ncbc_encrypt.end-DES_ncbc_encrypt ! void DES_ede3_cbc_encrypt(input, output, length, ks1, ks2, ks3, ivec, enc) ! ************************************************************************** .align 32 .global DES_ede3_cbc_encrypt .type DES_ede3_cbc_encrypt,#function DES_ede3_cbc_encrypt: save %sp, FRAME, %sp define({KS1}, { [%sp+BIAS+ARG0+3*ARGSZ] }) define({KS2}, { [%sp+BIAS+ARG0+4*ARGSZ] }) define({KS3}, { [%sp+BIAS+ARG0+5*ARGSZ] }) sethi %hi(.PIC.DES_SPtrans-1f),global1 or global1,%lo(.PIC.DES_SPtrans-1f),global1 1: call .+8 add %o7,global1,global1 sub global1,.PIC.DES_SPtrans-.des_and,out2 LDPTR [%fp+BIAS+ARG0+7*ARGSZ], local3 ! enc LDPTR [%fp+BIAS+ARG0+6*ARGSZ], local4 ! ivec cmp local3, 0 ! enc be .ede3.dec STPTR in4, KS2 STPTR in5, KS3 load_little_endian(local4, in5, out5, local3, .LLE6) ! ivec addcc in2, -8, in2 ! bytes missing after next block bl .ede3.enc.seven.or.less STPTR in3, KS1 .ede3.enc.next.block: load_little_endian(in0, out4, global4, local3, .LLE7) .ede3.enc.next.block_1: LDPTR KS2, in4 xor in5, out4, in5 ! iv xor xor out5, global4, out5 ! iv xor LDPTR KS1, in3 add in4, 120, in4 ! for decryption we use last subkey first nop ip_macro(in5, out5, in5, out5, in3) .ede3.enc.next.block_2: call .des_enc ! ks1 in3 nop call .des_dec ! ks2 in4 LDPTR KS3, in3 call .des_enc ! ks3 in3 compares in2 to 8 nop bl .ede3.enc.next.block_fp add in0, 8, in0 ! If 8 or more bytes are to be encrypted after this block, ! we combine final permutation for this block with initial ! permutation for next block. Load next block: load_little_endian(in0, global3, global4, local5, .LLE11) ! parameter 1 original left ! parameter 2 original right ! parameter 3 left ip ! parameter 4 right ip ! parameter 5 1: load ks1/ks2 to in3/in4, add 120 to in4 ! 2: mov in4 to in3 ! ! also adds -8 to length in2 and loads loop counter to out4 fp_ip_macro(out0, out1, global3, global4, 1) store_little_endian(in1, out0, out1, local3, .SLE9) ! block mov in5, local1 xor global3, out5, in5 ! iv xor next block ld [in3], out0 ! key 7531 add global1, 512, global3 ! address sbox 3 xor global4, local1, out5 ! iv xor next block ld [in3+4], out1 ! key 8642 add global1, 768, global4 ! address sbox 4 ba .ede3.enc.next.block_2 add in1, 8, in1 .ede3.enc.next.block_fp: fp_macro(in5, out5) store_little_endian(in1, in5, out5, local3, .SLE5) ! block addcc in2, -8, in2 ! bytes missing when next block done bpos .ede3.enc.next.block add in1, 8, in1 .ede3.enc.seven.or.less: cmp in2, -8 ble .ede3.enc.finish nop add in2, 8, local1 ! bytes to load ! addr, length, dest left, dest right, temp, temp2, label, ret label load_n_bytes(in0, local1, global4, out4, local2, local3, .LNB2, .ede3.enc.next.block_1) .ede3.enc.finish: LDPTR [%fp+BIAS+ARG0+6*ARGSZ], local4 ! ivec store_little_endian(local4, in5, out5, local5, .SLE6) ! ivec ret restore .ede3.dec: STPTR in0, INPUT add in5, 120, in5 STPTR in1, OUTPUT mov in0, local5 add in3, 120, in3 STPTR in3, KS1 cmp in2, 0 ble .ede3.dec.finish STPTR in5, KS3 LDPTR [%fp+BIAS+ARG0+6*ARGSZ], local7 ! iv load_little_endian(local7, in0, in1, local3, .LLE8) .ede3.dec.next.block: load_little_endian(local5, in5, out5, local3, .LLE9) ! parameter 6 1/2 for include encryption/decryption ! parameter 7 1 for mov in1 to in3 ! parameter 8 1 for mov in3 to in4 ! parameter 9 1 for load ks3 and ks2 to in4 and in3 ip_macro(in5, out5, out5, in5, in4, 2, 0, 0, 1) ! inc .des_dec ks3 in4 call .des_enc ! ks2 in3 LDPTR KS1, in4 call .des_dec ! ks1 in4 nop fp_macro(out5, in5, 0, 1) ! 1 for input and output address local5/7 ! in2 is bytes left to be stored ! in2 is compared to 8 in the rounds xor out5, in0, out4 bl .ede3.dec.seven.or.less xor in5, in1, global4 load_little_endian_inc(local5, in0, in1, local3, .LLE10) ! iv next block store_little_endian(local7, out4, global4, local3, .SLE7) ! block STPTR local5, INPUT addcc in2, -8, in2 add local7, 8, local7 bg .ede3.dec.next.block STPTR local7, OUTPUT .ede3.dec.store.iv: LDPTR [%fp+BIAS+ARG0+6*ARGSZ], local4 ! ivec store_little_endian(local4, in0, in1, local5, .SLE8) ! ivec .ede3.dec.finish: ret restore .ede3.dec.seven.or.less: load_little_endian_inc(local5, in0, in1, local3, .LLE14) ! iv store_n_bytes(local7, in2, global4, out4, local3, local4, .SNB2, .ede3.dec.store.iv) .DES_ede3_cbc_encrypt.end: .size DES_ede3_cbc_encrypt,.DES_ede3_cbc_encrypt.end-DES_ede3_cbc_encrypt .align 256 .type .des_and,#object .size .des_and,284 .des_and: ! This table is used for AND 0xFC when it is known that register ! bits 8-31 are zero. Makes it possible to do three arithmetic ! operations in one cycle. .byte 0, 0, 0, 0, 4, 4, 4, 4 .byte 8, 8, 8, 8, 12, 12, 12, 12 .byte 16, 16, 16, 16, 20, 20, 20, 20 .byte 24, 24, 24, 24, 28, 28, 28, 28 .byte 32, 32, 32, 32, 36, 36, 36, 36 .byte 40, 40, 40, 40, 44, 44, 44, 44 .byte 48, 48, 48, 48, 52, 52, 52, 52 .byte 56, 56, 56, 56, 60, 60, 60, 60 .byte 64, 64, 64, 64, 68, 68, 68, 68 .byte 72, 72, 72, 72, 76, 76, 76, 76 .byte 80, 80, 80, 80, 84, 84, 84, 84 .byte 88, 88, 88, 88, 92, 92, 92, 92 .byte 96, 96, 96, 96, 100, 100, 100, 100 .byte 104, 104, 104, 104, 108, 108, 108, 108 .byte 112, 112, 112, 112, 116, 116, 116, 116 .byte 120, 120, 120, 120, 124, 124, 124, 124 .byte 128, 128, 128, 128, 132, 132, 132, 132 .byte 136, 136, 136, 136, 140, 140, 140, 140 .byte 144, 144, 144, 144, 148, 148, 148, 148 .byte 152, 152, 152, 152, 156, 156, 156, 156 .byte 160, 160, 160, 160, 164, 164, 164, 164 .byte 168, 168, 168, 168, 172, 172, 172, 172 .byte 176, 176, 176, 176, 180, 180, 180, 180 .byte 184, 184, 184, 184, 188, 188, 188, 188 .byte 192, 192, 192, 192, 196, 196, 196, 196 .byte 200, 200, 200, 200, 204, 204, 204, 204 .byte 208, 208, 208, 208, 212, 212, 212, 212 .byte 216, 216, 216, 216, 220, 220, 220, 220 .byte 224, 224, 224, 224, 228, 228, 228, 228 .byte 232, 232, 232, 232, 236, 236, 236, 236 .byte 240, 240, 240, 240, 244, 244, 244, 244 .byte 248, 248, 248, 248, 252, 252, 252, 252 ! 5 numbers for initial/final permutation .word 0x0f0f0f0f ! offset 256 .word 0x0000ffff ! 260 .word 0x33333333 ! 264 .word 0x00ff00ff ! 268 .word 0x55555555 ! 272 .word 0 ! 276 .word LOOPS ! 280 .word 0x0000FC00 ! 284 .global DES_SPtrans .type DES_SPtrans,#object .size DES_SPtrans,2048 .align 64 DES_SPtrans: .PIC.DES_SPtrans: ! nibble 0 .word 0x02080800, 0x00080000, 0x02000002, 0x02080802 .word 0x02000000, 0x00080802, 0x00080002, 0x02000002 .word 0x00080802, 0x02080800, 0x02080000, 0x00000802 .word 0x02000802, 0x02000000, 0x00000000, 0x00080002 .word 0x00080000, 0x00000002, 0x02000800, 0x00080800 .word 0x02080802, 0x02080000, 0x00000802, 0x02000800 .word 0x00000002, 0x00000800, 0x00080800, 0x02080002 .word 0x00000800, 0x02000802, 0x02080002, 0x00000000 .word 0x00000000, 0x02080802, 0x02000800, 0x00080002 .word 0x02080800, 0x00080000, 0x00000802, 0x02000800 .word 0x02080002, 0x00000800, 0x00080800, 0x02000002 .word 0x00080802, 0x00000002, 0x02000002, 0x02080000 .word 0x02080802, 0x00080800, 0x02080000, 0x02000802 .word 0x02000000, 0x00000802, 0x00080002, 0x00000000 .word 0x00080000, 0x02000000, 0x02000802, 0x02080800 .word 0x00000002, 0x02080002, 0x00000800, 0x00080802 ! nibble 1 .word 0x40108010, 0x00000000, 0x00108000, 0x40100000 .word 0x40000010, 0x00008010, 0x40008000, 0x00108000 .word 0x00008000, 0x40100010, 0x00000010, 0x40008000 .word 0x00100010, 0x40108000, 0x40100000, 0x00000010 .word 0x00100000, 0x40008010, 0x40100010, 0x00008000 .word 0x00108010, 0x40000000, 0x00000000, 0x00100010 .word 0x40008010, 0x00108010, 0x40108000, 0x40000010 .word 0x40000000, 0x00100000, 0x00008010, 0x40108010 .word 0x00100010, 0x40108000, 0x40008000, 0x00108010 .word 0x40108010, 0x00100010, 0x40000010, 0x00000000 .word 0x40000000, 0x00008010, 0x00100000, 0x40100010 .word 0x00008000, 0x40000000, 0x00108010, 0x40008010 .word 0x40108000, 0x00008000, 0x00000000, 0x40000010 .word 0x00000010, 0x40108010, 0x00108000, 0x40100000 .word 0x40100010, 0x00100000, 0x00008010, 0x40008000 .word 0x40008010, 0x00000010, 0x40100000, 0x00108000 ! nibble 2 .word 0x04000001, 0x04040100, 0x00000100, 0x04000101 .word 0x00040001, 0x04000000, 0x04000101, 0x00040100 .word 0x04000100, 0x00040000, 0x04040000, 0x00000001 .word 0x04040101, 0x00000101, 0x00000001, 0x04040001 .word 0x00000000, 0x00040001, 0x04040100, 0x00000100 .word 0x00000101, 0x04040101, 0x00040000, 0x04000001 .word 0x04040001, 0x04000100, 0x00040101, 0x04040000 .word 0x00040100, 0x00000000, 0x04000000, 0x00040101 .word 0x04040100, 0x00000100, 0x00000001, 0x00040000 .word 0x00000101, 0x00040001, 0x04040000, 0x04000101 .word 0x00000000, 0x04040100, 0x00040100, 0x04040001 .word 0x00040001, 0x04000000, 0x04040101, 0x00000001 .word 0x00040101, 0x04000001, 0x04000000, 0x04040101 .word 0x00040000, 0x04000100, 0x04000101, 0x00040100 .word 0x04000100, 0x00000000, 0x04040001, 0x00000101 .word 0x04000001, 0x00040101, 0x00000100, 0x04040000 ! nibble 3 .word 0x00401008, 0x10001000, 0x00000008, 0x10401008 .word 0x00000000, 0x10400000, 0x10001008, 0x00400008 .word 0x10401000, 0x10000008, 0x10000000, 0x00001008 .word 0x10000008, 0x00401008, 0x00400000, 0x10000000 .word 0x10400008, 0x00401000, 0x00001000, 0x00000008 .word 0x00401000, 0x10001008, 0x10400000, 0x00001000 .word 0x00001008, 0x00000000, 0x00400008, 0x10401000 .word 0x10001000, 0x10400008, 0x10401008, 0x00400000 .word 0x10400008, 0x00001008, 0x00400000, 0x10000008 .word 0x00401000, 0x10001000, 0x00000008, 0x10400000 .word 0x10001008, 0x00000000, 0x00001000, 0x00400008 .word 0x00000000, 0x10400008, 0x10401000, 0x00001000 .word 0x10000000, 0x10401008, 0x00401008, 0x00400000 .word 0x10401008, 0x00000008, 0x10001000, 0x00401008 .word 0x00400008, 0x00401000, 0x10400000, 0x10001008 .word 0x00001008, 0x10000000, 0x10000008, 0x10401000 ! nibble 4 .word 0x08000000, 0x00010000, 0x00000400, 0x08010420 .word 0x08010020, 0x08000400, 0x00010420, 0x08010000 .word 0x00010000, 0x00000020, 0x08000020, 0x00010400 .word 0x08000420, 0x08010020, 0x08010400, 0x00000000 .word 0x00010400, 0x08000000, 0x00010020, 0x00000420 .word 0x08000400, 0x00010420, 0x00000000, 0x08000020 .word 0x00000020, 0x08000420, 0x08010420, 0x00010020 .word 0x08010000, 0x00000400, 0x00000420, 0x08010400 .word 0x08010400, 0x08000420, 0x00010020, 0x08010000 .word 0x00010000, 0x00000020, 0x08000020, 0x08000400 .word 0x08000000, 0x00010400, 0x08010420, 0x00000000 .word 0x00010420, 0x08000000, 0x00000400, 0x00010020 .word 0x08000420, 0x00000400, 0x00000000, 0x08010420 .word 0x08010020, 0x08010400, 0x00000420, 0x00010000 .word 0x00010400, 0x08010020, 0x08000400, 0x00000420 .word 0x00000020, 0x00010420, 0x08010000, 0x08000020 ! nibble 5 .word 0x80000040, 0x00200040, 0x00000000, 0x80202000 .word 0x00200040, 0x00002000, 0x80002040, 0x00200000 .word 0x00002040, 0x80202040, 0x00202000, 0x80000000 .word 0x80002000, 0x80000040, 0x80200000, 0x00202040 .word 0x00200000, 0x80002040, 0x80200040, 0x00000000 .word 0x00002000, 0x00000040, 0x80202000, 0x80200040 .word 0x80202040, 0x80200000, 0x80000000, 0x00002040 .word 0x00000040, 0x00202000, 0x00202040, 0x80002000 .word 0x00002040, 0x80000000, 0x80002000, 0x00202040 .word 0x80202000, 0x00200040, 0x00000000, 0x80002000 .word 0x80000000, 0x00002000, 0x80200040, 0x00200000 .word 0x00200040, 0x80202040, 0x00202000, 0x00000040 .word 0x80202040, 0x00202000, 0x00200000, 0x80002040 .word 0x80000040, 0x80200000, 0x00202040, 0x00000000 .word 0x00002000, 0x80000040, 0x80002040, 0x80202000 .word 0x80200000, 0x00002040, 0x00000040, 0x80200040 ! nibble 6 .word 0x00004000, 0x00000200, 0x01000200, 0x01000004 .word 0x01004204, 0x00004004, 0x00004200, 0x00000000 .word 0x01000000, 0x01000204, 0x00000204, 0x01004000 .word 0x00000004, 0x01004200, 0x01004000, 0x00000204 .word 0x01000204, 0x00004000, 0x00004004, 0x01004204 .word 0x00000000, 0x01000200, 0x01000004, 0x00004200 .word 0x01004004, 0x00004204, 0x01004200, 0x00000004 .word 0x00004204, 0x01004004, 0x00000200, 0x01000000 .word 0x00004204, 0x01004000, 0x01004004, 0x00000204 .word 0x00004000, 0x00000200, 0x01000000, 0x01004004 .word 0x01000204, 0x00004204, 0x00004200, 0x00000000 .word 0x00000200, 0x01000004, 0x00000004, 0x01000200 .word 0x00000000, 0x01000204, 0x01000200, 0x00004200 .word 0x00000204, 0x00004000, 0x01004204, 0x01000000 .word 0x01004200, 0x00000004, 0x00004004, 0x01004204 .word 0x01000004, 0x01004200, 0x01004000, 0x00004004 ! nibble 7 .word 0x20800080, 0x20820000, 0x00020080, 0x00000000 .word 0x20020000, 0x00800080, 0x20800000, 0x20820080 .word 0x00000080, 0x20000000, 0x00820000, 0x00020080 .word 0x00820080, 0x20020080, 0x20000080, 0x20800000 .word 0x00020000, 0x00820080, 0x00800080, 0x20020000 .word 0x20820080, 0x20000080, 0x00000000, 0x00820000 .word 0x20000000, 0x00800000, 0x20020080, 0x20800080 .word 0x00800000, 0x00020000, 0x20820000, 0x00000080 .word 0x00800000, 0x00020000, 0x20000080, 0x20820080 .word 0x00020080, 0x20000000, 0x00000000, 0x00820000 .word 0x20800080, 0x20020080, 0x20020000, 0x00800080 .word 0x20820000, 0x00000080, 0x00800080, 0x20020000 .word 0x20820080, 0x00800000, 0x20800000, 0x20000080 .word 0x00820000, 0x00020080, 0x20020080, 0x20800000 .word 0x00000080, 0x20820000, 0x00820080, 0x00000000 .word 0x20000000, 0x20800080, 0x00020000, 0x00820080 openssl-1.1.1f/crypto/des/asm/desboth.pl000066400000000000000000000032361364063235100202120ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $L="edi"; $R="esi"; sub DES_encrypt3 { local($name,$enc)=@_; &function_begin_B($name,""); &push("ebx"); &mov("ebx",&wparam(0)); &push("ebp"); &push("esi"); &push("edi"); &comment(""); &comment("Load the data words"); &mov($L,&DWP(0,"ebx","",0)); &mov($R,&DWP(4,"ebx","",0)); &stack_push(3); &comment(""); &comment("IP"); &IP_new($L,$R,"edx",0); # put them back if ($enc) { &mov(&DWP(4,"ebx","",0),$R); &mov("eax",&wparam(1)); &mov(&DWP(0,"ebx","",0),"edx"); &mov("edi",&wparam(2)); &mov("esi",&wparam(3)); } else { &mov(&DWP(4,"ebx","",0),$R); &mov("esi",&wparam(1)); &mov(&DWP(0,"ebx","",0),"edx"); &mov("edi",&wparam(2)); &mov("eax",&wparam(3)); } &mov(&swtmp(2), (DWC(($enc)?"1":"0"))); &mov(&swtmp(1), "eax"); &mov(&swtmp(0), "ebx"); &call("DES_encrypt2"); &mov(&swtmp(2), (DWC(($enc)?"0":"1"))); &mov(&swtmp(1), "edi"); &mov(&swtmp(0), "ebx"); &call("DES_encrypt2"); &mov(&swtmp(2), (DWC(($enc)?"1":"0"))); &mov(&swtmp(1), "esi"); &mov(&swtmp(0), "ebx"); &call("DES_encrypt2"); &stack_pop(3); &mov($L,&DWP(0,"ebx","",0)); &mov($R,&DWP(4,"ebx","",0)); &comment(""); &comment("FP"); &FP_new($L,$R,"eax",0); &mov(&DWP(0,"ebx","",0),"eax"); &mov(&DWP(4,"ebx","",0),$R); &pop("edi"); &pop("esi"); &pop("ebp"); &pop("ebx"); &ret(); &function_end_B($name); } openssl-1.1.1f/crypto/des/asm/dest4-sparcv9.pl000066400000000000000000000364121364063235100211740ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by David S. Miller and Andy Polyakov. # The module is licensed under 2-clause BSD # license. March 2013. All rights reserved. # ==================================================================== ###################################################################### # DES for SPARC T4. # # As with other hardware-assisted ciphers CBC encrypt results [for # aligned data] are virtually identical to critical path lengths: # # DES Triple-DES # CBC encrypt 4.14/4.15(*) 11.7/11.7 # CBC decrypt 1.77/4.11(**) 6.42/7.47 # # (*) numbers after slash are for # misaligned data; # (**) this is result for largest # block size, unlike all other # cases smaller blocks results # are better[?]; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "sparcv9_modes.pl"; $output=pop; open STDOUT,">$output"; $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .text ___ { my ($inp,$out)=("%o0","%o1"); $code.=<<___; .align 32 .globl des_t4_key_expand .type des_t4_key_expand,#function des_t4_key_expand: andcc $inp, 0x7, %g0 alignaddr $inp, %g0, $inp bz,pt %icc, 1f ldd [$inp + 0x00], %f0 ldd [$inp + 0x08], %f2 faligndata %f0, %f2, %f0 1: des_kexpand %f0, 0, %f0 des_kexpand %f0, 1, %f2 std %f0, [$out + 0x00] des_kexpand %f2, 3, %f6 std %f2, [$out + 0x08] des_kexpand %f2, 2, %f4 des_kexpand %f6, 3, %f10 std %f6, [$out + 0x18] des_kexpand %f6, 2, %f8 std %f4, [$out + 0x10] des_kexpand %f10, 3, %f14 std %f10, [$out + 0x28] des_kexpand %f10, 2, %f12 std %f8, [$out + 0x20] des_kexpand %f14, 1, %f16 std %f14, [$out + 0x38] des_kexpand %f16, 3, %f20 std %f12, [$out + 0x30] des_kexpand %f16, 2, %f18 std %f16, [$out + 0x40] des_kexpand %f20, 3, %f24 std %f20, [$out + 0x50] des_kexpand %f20, 2, %f22 std %f18, [$out + 0x48] des_kexpand %f24, 3, %f28 std %f24, [$out + 0x60] des_kexpand %f24, 2, %f26 std %f22, [$out + 0x58] des_kexpand %f28, 1, %f30 std %f28, [$out + 0x70] std %f26, [$out + 0x68] retl std %f30, [$out + 0x78] .size des_t4_key_expand,.-des_t4_key_expand ___ } { my ($inp,$out,$len,$key,$ivec) = map("%o$_",(0..4)); my ($ileft,$iright,$omask) = map("%g$_",(1..3)); $code.=<<___; .globl des_t4_cbc_encrypt .align 32 des_t4_cbc_encrypt: cmp $len, 0 be,pn $::size_t_cc, .Lcbc_abort srln $len, 0, $len ! needed on v8+, "nop" on v9 ld [$ivec + 0], %f0 ! load ivec ld [$ivec + 4], %f1 and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 0xff, $omask prefetch [$inp], 20 prefetch [$inp + 63], 20 sub %g0, $ileft, $iright and $out, 7, %g4 alignaddrl $out, %g0, $out srl $omask, %g4, $omask srlx $len, 3, $len movrz %g4, 0, $omask prefetch [$out], 22 ldd [$key + 0x00], %f4 ! load key schedule ldd [$key + 0x08], %f6 ldd [$key + 0x10], %f8 ldd [$key + 0x18], %f10 ldd [$key + 0x20], %f12 ldd [$key + 0x28], %f14 ldd [$key + 0x30], %f16 ldd [$key + 0x38], %f18 ldd [$key + 0x40], %f20 ldd [$key + 0x48], %f22 ldd [$key + 0x50], %f24 ldd [$key + 0x58], %f26 ldd [$key + 0x60], %f28 ldd [$key + 0x68], %f30 ldd [$key + 0x70], %f32 ldd [$key + 0x78], %f34 .Ldes_cbc_enc_loop: ldx [$inp + 0], %g4 brz,pt $ileft, 4f nop ldx [$inp + 8], %g5 sllx %g4, $ileft, %g4 srlx %g5, $iright, %g5 or %g5, %g4, %g4 4: movxtod %g4, %f2 prefetch [$inp + 8+63], 20 add $inp, 8, $inp fxor %f2, %f0, %f0 ! ^= ivec prefetch [$out + 63], 22 des_ip %f0, %f0 des_round %f4, %f6, %f0, %f0 des_round %f8, %f10, %f0, %f0 des_round %f12, %f14, %f0, %f0 des_round %f16, %f18, %f0, %f0 des_round %f20, %f22, %f0, %f0 des_round %f24, %f26, %f0, %f0 des_round %f28, %f30, %f0, %f0 des_round %f32, %f34, %f0, %f0 des_iip %f0, %f0 brnz,pn $omask, 2f sub $len, 1, $len std %f0, [$out + 0] brnz,pt $len, .Ldes_cbc_enc_loop add $out, 8, $out st %f0, [$ivec + 0] ! write out ivec retl st %f1, [$ivec + 4] .Lcbc_abort: retl nop .align 16 2: ldxa [$inp]0x82, %g4 ! avoid read-after-write hazard ! and ~4x deterioration ! in inp==out case faligndata %f0, %f0, %f2 ! handle unaligned output stda %f2, [$out + $omask]0xc0 ! partial store add $out, 8, $out orn %g0, $omask, $omask stda %f2, [$out + $omask]0xc0 ! partial store brnz,pt $len, .Ldes_cbc_enc_loop+4 orn %g0, $omask, $omask st %f0, [$ivec + 0] ! write out ivec retl st %f1, [$ivec + 4] .type des_t4_cbc_encrypt,#function .size des_t4_cbc_encrypt,.-des_t4_cbc_encrypt .globl des_t4_cbc_decrypt .align 32 des_t4_cbc_decrypt: cmp $len, 0 be,pn $::size_t_cc, .Lcbc_abort srln $len, 0, $len ! needed on v8+, "nop" on v9 ld [$ivec + 0], %f2 ! load ivec ld [$ivec + 4], %f3 and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 0xff, $omask prefetch [$inp], 20 prefetch [$inp + 63], 20 sub %g0, $ileft, $iright and $out, 7, %g4 alignaddrl $out, %g0, $out srl $omask, %g4, $omask srlx $len, 3, $len movrz %g4, 0, $omask prefetch [$out], 22 ldd [$key + 0x78], %f4 ! load key schedule ldd [$key + 0x70], %f6 ldd [$key + 0x68], %f8 ldd [$key + 0x60], %f10 ldd [$key + 0x58], %f12 ldd [$key + 0x50], %f14 ldd [$key + 0x48], %f16 ldd [$key + 0x40], %f18 ldd [$key + 0x38], %f20 ldd [$key + 0x30], %f22 ldd [$key + 0x28], %f24 ldd [$key + 0x20], %f26 ldd [$key + 0x18], %f28 ldd [$key + 0x10], %f30 ldd [$key + 0x08], %f32 ldd [$key + 0x00], %f34 .Ldes_cbc_dec_loop: ldx [$inp + 0], %g4 brz,pt $ileft, 4f nop ldx [$inp + 8], %g5 sllx %g4, $ileft, %g4 srlx %g5, $iright, %g5 or %g5, %g4, %g4 4: movxtod %g4, %f0 prefetch [$inp + 8+63], 20 add $inp, 8, $inp prefetch [$out + 63], 22 des_ip %f0, %f0 des_round %f4, %f6, %f0, %f0 des_round %f8, %f10, %f0, %f0 des_round %f12, %f14, %f0, %f0 des_round %f16, %f18, %f0, %f0 des_round %f20, %f22, %f0, %f0 des_round %f24, %f26, %f0, %f0 des_round %f28, %f30, %f0, %f0 des_round %f32, %f34, %f0, %f0 des_iip %f0, %f0 fxor %f2, %f0, %f0 ! ^= ivec movxtod %g4, %f2 brnz,pn $omask, 2f sub $len, 1, $len std %f0, [$out + 0] brnz,pt $len, .Ldes_cbc_dec_loop add $out, 8, $out st %f2, [$ivec + 0] ! write out ivec retl st %f3, [$ivec + 4] .align 16 2: ldxa [$inp]0x82, %g4 ! avoid read-after-write hazard ! and ~4x deterioration ! in inp==out case faligndata %f0, %f0, %f0 ! handle unaligned output stda %f0, [$out + $omask]0xc0 ! partial store add $out, 8, $out orn %g0, $omask, $omask stda %f0, [$out + $omask]0xc0 ! partial store brnz,pt $len, .Ldes_cbc_dec_loop+4 orn %g0, $omask, $omask st %f2, [$ivec + 0] ! write out ivec retl st %f3, [$ivec + 4] .type des_t4_cbc_decrypt,#function .size des_t4_cbc_decrypt,.-des_t4_cbc_decrypt ___ # One might wonder why does one have back-to-back des_iip/des_ip # pairs between EDE passes. Indeed, aren't they inverse of each other? # They almost are. Outcome of the pair is 32-bit words being swapped # in target register. Consider pair of des_iip/des_ip as a way to # perform the due swap, it's actually fastest way in this case. $code.=<<___; .globl des_t4_ede3_cbc_encrypt .align 32 des_t4_ede3_cbc_encrypt: cmp $len, 0 be,pn $::size_t_cc, .Lcbc_abort srln $len, 0, $len ! needed on v8+, "nop" on v9 ld [$ivec + 0], %f0 ! load ivec ld [$ivec + 4], %f1 and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 0xff, $omask prefetch [$inp], 20 prefetch [$inp + 63], 20 sub %g0, $ileft, $iright and $out, 7, %g4 alignaddrl $out, %g0, $out srl $omask, %g4, $omask srlx $len, 3, $len movrz %g4, 0, $omask prefetch [$out], 22 ldd [$key + 0x00], %f4 ! load key schedule ldd [$key + 0x08], %f6 ldd [$key + 0x10], %f8 ldd [$key + 0x18], %f10 ldd [$key + 0x20], %f12 ldd [$key + 0x28], %f14 ldd [$key + 0x30], %f16 ldd [$key + 0x38], %f18 ldd [$key + 0x40], %f20 ldd [$key + 0x48], %f22 ldd [$key + 0x50], %f24 ldd [$key + 0x58], %f26 ldd [$key + 0x60], %f28 ldd [$key + 0x68], %f30 ldd [$key + 0x70], %f32 ldd [$key + 0x78], %f34 .Ldes_ede3_cbc_enc_loop: ldx [$inp + 0], %g4 brz,pt $ileft, 4f nop ldx [$inp + 8], %g5 sllx %g4, $ileft, %g4 srlx %g5, $iright, %g5 or %g5, %g4, %g4 4: movxtod %g4, %f2 prefetch [$inp + 8+63], 20 add $inp, 8, $inp fxor %f2, %f0, %f0 ! ^= ivec prefetch [$out + 63], 22 des_ip %f0, %f0 des_round %f4, %f6, %f0, %f0 des_round %f8, %f10, %f0, %f0 des_round %f12, %f14, %f0, %f0 des_round %f16, %f18, %f0, %f0 ldd [$key + 0x100-0x08], %f36 ldd [$key + 0x100-0x10], %f38 des_round %f20, %f22, %f0, %f0 ldd [$key + 0x100-0x18], %f40 ldd [$key + 0x100-0x20], %f42 des_round %f24, %f26, %f0, %f0 ldd [$key + 0x100-0x28], %f44 ldd [$key + 0x100-0x30], %f46 des_round %f28, %f30, %f0, %f0 ldd [$key + 0x100-0x38], %f48 ldd [$key + 0x100-0x40], %f50 des_round %f32, %f34, %f0, %f0 ldd [$key + 0x100-0x48], %f52 ldd [$key + 0x100-0x50], %f54 des_iip %f0, %f0 ldd [$key + 0x100-0x58], %f56 ldd [$key + 0x100-0x60], %f58 des_ip %f0, %f0 ldd [$key + 0x100-0x68], %f60 ldd [$key + 0x100-0x70], %f62 des_round %f36, %f38, %f0, %f0 ldd [$key + 0x100-0x78], %f36 ldd [$key + 0x100-0x80], %f38 des_round %f40, %f42, %f0, %f0 des_round %f44, %f46, %f0, %f0 des_round %f48, %f50, %f0, %f0 ldd [$key + 0x100+0x00], %f40 ldd [$key + 0x100+0x08], %f42 des_round %f52, %f54, %f0, %f0 ldd [$key + 0x100+0x10], %f44 ldd [$key + 0x100+0x18], %f46 des_round %f56, %f58, %f0, %f0 ldd [$key + 0x100+0x20], %f48 ldd [$key + 0x100+0x28], %f50 des_round %f60, %f62, %f0, %f0 ldd [$key + 0x100+0x30], %f52 ldd [$key + 0x100+0x38], %f54 des_round %f36, %f38, %f0, %f0 ldd [$key + 0x100+0x40], %f56 ldd [$key + 0x100+0x48], %f58 des_iip %f0, %f0 ldd [$key + 0x100+0x50], %f60 ldd [$key + 0x100+0x58], %f62 des_ip %f0, %f0 ldd [$key + 0x100+0x60], %f36 ldd [$key + 0x100+0x68], %f38 des_round %f40, %f42, %f0, %f0 ldd [$key + 0x100+0x70], %f40 ldd [$key + 0x100+0x78], %f42 des_round %f44, %f46, %f0, %f0 des_round %f48, %f50, %f0, %f0 des_round %f52, %f54, %f0, %f0 des_round %f56, %f58, %f0, %f0 des_round %f60, %f62, %f0, %f0 des_round %f36, %f38, %f0, %f0 des_round %f40, %f42, %f0, %f0 des_iip %f0, %f0 brnz,pn $omask, 2f sub $len, 1, $len std %f0, [$out + 0] brnz,pt $len, .Ldes_ede3_cbc_enc_loop add $out, 8, $out st %f0, [$ivec + 0] ! write out ivec retl st %f1, [$ivec + 4] .align 16 2: ldxa [$inp]0x82, %g4 ! avoid read-after-write hazard ! and ~2x deterioration ! in inp==out case faligndata %f0, %f0, %f2 ! handle unaligned output stda %f2, [$out + $omask]0xc0 ! partial store add $out, 8, $out orn %g0, $omask, $omask stda %f2, [$out + $omask]0xc0 ! partial store brnz,pt $len, .Ldes_ede3_cbc_enc_loop+4 orn %g0, $omask, $omask st %f0, [$ivec + 0] ! write out ivec retl st %f1, [$ivec + 4] .type des_t4_ede3_cbc_encrypt,#function .size des_t4_ede3_cbc_encrypt,.-des_t4_ede3_cbc_encrypt .globl des_t4_ede3_cbc_decrypt .align 32 des_t4_ede3_cbc_decrypt: cmp $len, 0 be,pn $::size_t_cc, .Lcbc_abort srln $len, 0, $len ! needed on v8+, "nop" on v9 ld [$ivec + 0], %f2 ! load ivec ld [$ivec + 4], %f3 and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 0xff, $omask prefetch [$inp], 20 prefetch [$inp + 63], 20 sub %g0, $ileft, $iright and $out, 7, %g4 alignaddrl $out, %g0, $out srl $omask, %g4, $omask srlx $len, 3, $len movrz %g4, 0, $omask prefetch [$out], 22 ldd [$key + 0x100+0x78], %f4 ! load key schedule ldd [$key + 0x100+0x70], %f6 ldd [$key + 0x100+0x68], %f8 ldd [$key + 0x100+0x60], %f10 ldd [$key + 0x100+0x58], %f12 ldd [$key + 0x100+0x50], %f14 ldd [$key + 0x100+0x48], %f16 ldd [$key + 0x100+0x40], %f18 ldd [$key + 0x100+0x38], %f20 ldd [$key + 0x100+0x30], %f22 ldd [$key + 0x100+0x28], %f24 ldd [$key + 0x100+0x20], %f26 ldd [$key + 0x100+0x18], %f28 ldd [$key + 0x100+0x10], %f30 ldd [$key + 0x100+0x08], %f32 ldd [$key + 0x100+0x00], %f34 .Ldes_ede3_cbc_dec_loop: ldx [$inp + 0], %g4 brz,pt $ileft, 4f nop ldx [$inp + 8], %g5 sllx %g4, $ileft, %g4 srlx %g5, $iright, %g5 or %g5, %g4, %g4 4: movxtod %g4, %f0 prefetch [$inp + 8+63], 20 add $inp, 8, $inp prefetch [$out + 63], 22 des_ip %f0, %f0 des_round %f4, %f6, %f0, %f0 des_round %f8, %f10, %f0, %f0 des_round %f12, %f14, %f0, %f0 des_round %f16, %f18, %f0, %f0 ldd [$key + 0x80+0x00], %f36 ldd [$key + 0x80+0x08], %f38 des_round %f20, %f22, %f0, %f0 ldd [$key + 0x80+0x10], %f40 ldd [$key + 0x80+0x18], %f42 des_round %f24, %f26, %f0, %f0 ldd [$key + 0x80+0x20], %f44 ldd [$key + 0x80+0x28], %f46 des_round %f28, %f30, %f0, %f0 ldd [$key + 0x80+0x30], %f48 ldd [$key + 0x80+0x38], %f50 des_round %f32, %f34, %f0, %f0 ldd [$key + 0x80+0x40], %f52 ldd [$key + 0x80+0x48], %f54 des_iip %f0, %f0 ldd [$key + 0x80+0x50], %f56 ldd [$key + 0x80+0x58], %f58 des_ip %f0, %f0 ldd [$key + 0x80+0x60], %f60 ldd [$key + 0x80+0x68], %f62 des_round %f36, %f38, %f0, %f0 ldd [$key + 0x80+0x70], %f36 ldd [$key + 0x80+0x78], %f38 des_round %f40, %f42, %f0, %f0 des_round %f44, %f46, %f0, %f0 des_round %f48, %f50, %f0, %f0 ldd [$key + 0x80-0x08], %f40 ldd [$key + 0x80-0x10], %f42 des_round %f52, %f54, %f0, %f0 ldd [$key + 0x80-0x18], %f44 ldd [$key + 0x80-0x20], %f46 des_round %f56, %f58, %f0, %f0 ldd [$key + 0x80-0x28], %f48 ldd [$key + 0x80-0x30], %f50 des_round %f60, %f62, %f0, %f0 ldd [$key + 0x80-0x38], %f52 ldd [$key + 0x80-0x40], %f54 des_round %f36, %f38, %f0, %f0 ldd [$key + 0x80-0x48], %f56 ldd [$key + 0x80-0x50], %f58 des_iip %f0, %f0 ldd [$key + 0x80-0x58], %f60 ldd [$key + 0x80-0x60], %f62 des_ip %f0, %f0 ldd [$key + 0x80-0x68], %f36 ldd [$key + 0x80-0x70], %f38 des_round %f40, %f42, %f0, %f0 ldd [$key + 0x80-0x78], %f40 ldd [$key + 0x80-0x80], %f42 des_round %f44, %f46, %f0, %f0 des_round %f48, %f50, %f0, %f0 des_round %f52, %f54, %f0, %f0 des_round %f56, %f58, %f0, %f0 des_round %f60, %f62, %f0, %f0 des_round %f36, %f38, %f0, %f0 des_round %f40, %f42, %f0, %f0 des_iip %f0, %f0 fxor %f2, %f0, %f0 ! ^= ivec movxtod %g4, %f2 brnz,pn $omask, 2f sub $len, 1, $len std %f0, [$out + 0] brnz,pt $len, .Ldes_ede3_cbc_dec_loop add $out, 8, $out st %f2, [$ivec + 0] ! write out ivec retl st %f3, [$ivec + 4] .align 16 2: ldxa [$inp]0x82, %g4 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f0 ! handle unaligned output stda %f0, [$out + $omask]0xc0 ! partial store add $out, 8, $out orn %g0, $omask, $omask stda %f0, [$out + $omask]0xc0 ! partial store brnz,pt $len, .Ldes_ede3_cbc_dec_loop+4 orn %g0, $omask, $omask st %f2, [$ivec + 0] ! write out ivec retl st %f3, [$ivec + 4] .type des_t4_ede3_cbc_decrypt,#function .size des_t4_ede3_cbc_decrypt,.-des_t4_ede3_cbc_decrypt ___ } $code.=<<___; .asciz "DES for SPARC T4, David S. Miller, Andy Polyakov" .align 4 ___ &emit_assembler(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/des/build.info000066400000000000000000000013611364063235100174160ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ set_key.c ecb_enc.c cbc_enc.c \ ecb3_enc.c cfb64enc.c cfb64ede.c cfb_enc.c \ ofb64ede.c ofb64enc.c ofb_enc.c \ str2key.c pcbc_enc.c qud_cksm.c rand_key.c \ {- $target{des_asm_src} -} \ fcrypt.c xcbc_enc.c cbc_cksm.c GENERATE[des_enc-sparc.S]=asm/des_enc.m4 GENERATE[dest4-sparcv9.S]=asm/dest4-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[dest4-sparcv9.o]=.. GENERATE[des-586.s]=asm/des-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) DEPEND[des-586.s]=../perlasm/x86asm.pl ../perlasm/cbc.pl GENERATE[crypt586.s]=asm/crypt586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) DEPEND[crypt586.s]=../perlasm/x86asm.pl ../perlasm/cbc.pl openssl-1.1.1f/crypto/des/cbc_cksm.c000066400000000000000000000030571364063235100173560ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" DES_LONG DES_cbc_cksum(const unsigned char *in, DES_cblock *output, long length, DES_key_schedule *schedule, const_DES_cblock *ivec) { register DES_LONG tout0, tout1, tin0, tin1; register long l = length; DES_LONG tin[2]; unsigned char *out = &(*output)[0]; const unsigned char *iv = &(*ivec)[0]; c2l(iv, tout0); c2l(iv, tout1); for (; l > 0; l -= 8) { if (l >= 8) { c2l(in, tin0); c2l(in, tin1); } else c2ln(in, tin0, tin1, l); tin0 ^= tout0; tin[0] = tin0; tin1 ^= tout1; tin[1] = tin1; DES_encrypt1((DES_LONG *)tin, schedule, DES_ENCRYPT); tout0 = tin[0]; tout1 = tin[1]; } if (out != NULL) { l2c(tout0, out); l2c(tout1, out); } tout0 = tin0 = tin1 = tin[0] = tin[1] = 0; /* * Transform the data in tout1 so that it will match the return value * that the MIT Kerberos mit_des_cbc_cksum API returns. */ tout1 = ((tout1 >> 24L) & 0x000000FF) | ((tout1 >> 8L) & 0x0000FF00) | ((tout1 << 8L) & 0x00FF0000) | ((tout1 << 24L) & 0xFF000000); return tout1; } openssl-1.1.1f/crypto/des/cbc_enc.c000066400000000000000000000006471364063235100171700ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define CBC_ENC_C__DONT_UPDATE_IV #include "ncbc_enc.c" /* des_cbc_encrypt */ openssl-1.1.1f/crypto/des/cfb64ede.c000066400000000000000000000126131364063235100171720ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc) { register DES_LONG v0, v1; register long l = length; register int n = *num; DES_LONG ti[2]; unsigned char *iv, c, cc; iv = &(*ivec)[0]; if (enc) { while (l--) { if (n == 0) { c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; DES_encrypt3(ti, ks1, ks2, ks3); v0 = ti[0]; v1 = ti[1]; iv = &(*ivec)[0]; l2c(v0, iv); l2c(v1, iv); iv = &(*ivec)[0]; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; DES_encrypt3(ti, ks1, ks2, ks3); v0 = ti[0]; v1 = ti[1]; iv = &(*ivec)[0]; l2c(v0, iv); l2c(v1, iv); iv = &(*ivec)[0]; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = c = cc = 0; *num = n; } /* * This is compatible with the single key CFB-r for DES, even thought that's * not what EVP needs. */ void DES_ede3_cfb_encrypt(const unsigned char *in, unsigned char *out, int numbits, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec, int enc) { register DES_LONG d0, d1, v0, v1; register unsigned long l = length, n = ((unsigned int)numbits + 7) / 8; register int num = numbits, i; DES_LONG ti[2]; unsigned char *iv; unsigned char ovec[16]; if (num > 64) return; iv = &(*ivec)[0]; c2l(iv, v0); c2l(iv, v1); if (enc) { while (l >= n) { l -= n; ti[0] = v0; ti[1] = v1; DES_encrypt3(ti, ks1, ks2, ks3); c2ln(in, d0, d1, n); in += n; d0 ^= ti[0]; d1 ^= ti[1]; l2cn(d0, d1, out, n); out += n; /* * 30-08-94 - eay - changed because l>>32 and l<<32 are bad under * gcc :-( */ if (num == 32) { v0 = v1; v1 = d0; } else if (num == 64) { v0 = d0; v1 = d1; } else { iv = &ovec[0]; l2c(v0, iv); l2c(v1, iv); l2c(d0, iv); l2c(d1, iv); /* shift ovec left most of the bits... */ memmove(ovec, ovec + num / 8, 8 + (num % 8 ? 1 : 0)); /* now the remaining bits */ if (num % 8 != 0) for (i = 0; i < 8; ++i) { ovec[i] <<= num % 8; ovec[i] |= ovec[i + 1] >> (8 - num % 8); } iv = &ovec[0]; c2l(iv, v0); c2l(iv, v1); } } } else { while (l >= n) { l -= n; ti[0] = v0; ti[1] = v1; DES_encrypt3(ti, ks1, ks2, ks3); c2ln(in, d0, d1, n); in += n; /* * 30-08-94 - eay - changed because l>>32 and l<<32 are bad under * gcc :-( */ if (num == 32) { v0 = v1; v1 = d0; } else if (num == 64) { v0 = d0; v1 = d1; } else { iv = &ovec[0]; l2c(v0, iv); l2c(v1, iv); l2c(d0, iv); l2c(d1, iv); /* shift ovec left most of the bits... */ memmove(ovec, ovec + num / 8, 8 + (num % 8 ? 1 : 0)); /* now the remaining bits */ if (num % 8 != 0) for (i = 0; i < 8; ++i) { ovec[i] <<= num % 8; ovec[i] |= ovec[i + 1] >> (8 - num % 8); } iv = &ovec[0]; c2l(iv, v0); c2l(iv, v1); } d0 ^= ti[0]; d1 ^= ti[1]; l2cn(d0, d1, out, n); out += n; } } iv = &(*ivec)[0]; l2c(v0, iv); l2c(v1, iv); v0 = v1 = d0 = d1 = ti[0] = ti[1] = 0; } openssl-1.1.1f/crypto/des/cfb64enc.c000066400000000000000000000040551364063235100172030ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *schedule, DES_cblock *ivec, int *num, int enc) { register DES_LONG v0, v1; register long l = length; register int n = *num; DES_LONG ti[2]; unsigned char *iv, c, cc; iv = &(*ivec)[0]; if (enc) { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; DES_encrypt1(ti, schedule, DES_ENCRYPT); iv = &(*ivec)[0]; v0 = ti[0]; l2c(v0, iv); v0 = ti[1]; l2c(v0, iv); iv = &(*ivec)[0]; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; DES_encrypt1(ti, schedule, DES_ENCRYPT); iv = &(*ivec)[0]; v0 = ti[0]; l2c(v0, iv); v0 = ti[1]; l2c(v0, iv); iv = &(*ivec)[0]; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = c = cc = 0; *num = n; } openssl-1.1.1f/crypto/des/cfb_enc.c000066400000000000000000000105641364063235100171720ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "des_local.h" #include /* * The input and output are loaded in multiples of 8 bits. What this means is * that if you hame numbits=12 and length=2 the first 12 bits will be * retrieved from the first byte and half the second. The second 12 bits * will come from the 3rd and half the 4th byte. */ /* * Until Aug 1 2003 this function did not correctly implement CFB-r, so it * will not be compatible with any encryption prior to that date. Ben. */ void DES_cfb_encrypt(const unsigned char *in, unsigned char *out, int numbits, long length, DES_key_schedule *schedule, DES_cblock *ivec, int enc) { register DES_LONG d0, d1, v0, v1; register unsigned long l = length; register int num = numbits / 8, n = (numbits + 7) / 8, i, rem = numbits % 8; DES_LONG ti[2]; unsigned char *iv; #ifndef L_ENDIAN unsigned char ovec[16]; #else unsigned int sh[4]; unsigned char *ovec = (unsigned char *)sh; /* I kind of count that compiler optimizes away this assertion, */ assert(sizeof(sh[0]) == 4); /* as this holds true for all, */ /* but 16-bit platforms... */ #endif if (numbits <= 0 || numbits > 64) return; iv = &(*ivec)[0]; c2l(iv, v0); c2l(iv, v1); if (enc) { while (l >= (unsigned long)n) { l -= n; ti[0] = v0; ti[1] = v1; DES_encrypt1((DES_LONG *)ti, schedule, DES_ENCRYPT); c2ln(in, d0, d1, n); in += n; d0 ^= ti[0]; d1 ^= ti[1]; l2cn(d0, d1, out, n); out += n; /* * 30-08-94 - eay - changed because l>>32 and l<<32 are bad under * gcc :-( */ if (numbits == 32) { v0 = v1; v1 = d0; } else if (numbits == 64) { v0 = d0; v1 = d1; } else { #ifndef L_ENDIAN iv = &ovec[0]; l2c(v0, iv); l2c(v1, iv); l2c(d0, iv); l2c(d1, iv); #else sh[0] = v0, sh[1] = v1, sh[2] = d0, sh[3] = d1; #endif if (rem == 0) memmove(ovec, ovec + num, 8); else for (i = 0; i < 8; ++i) ovec[i] = ovec[i + num] << rem | ovec[i + num + 1] >> (8 - rem); #ifdef L_ENDIAN v0 = sh[0], v1 = sh[1]; #else iv = &ovec[0]; c2l(iv, v0); c2l(iv, v1); #endif } } } else { while (l >= (unsigned long)n) { l -= n; ti[0] = v0; ti[1] = v1; DES_encrypt1((DES_LONG *)ti, schedule, DES_ENCRYPT); c2ln(in, d0, d1, n); in += n; /* * 30-08-94 - eay - changed because l>>32 and l<<32 are bad under * gcc :-( */ if (numbits == 32) { v0 = v1; v1 = d0; } else if (numbits == 64) { v0 = d0; v1 = d1; } else { #ifndef L_ENDIAN iv = &ovec[0]; l2c(v0, iv); l2c(v1, iv); l2c(d0, iv); l2c(d1, iv); #else sh[0] = v0, sh[1] = v1, sh[2] = d0, sh[3] = d1; #endif if (rem == 0) memmove(ovec, ovec + num, 8); else for (i = 0; i < 8; ++i) ovec[i] = ovec[i + num] << rem | ovec[i + num + 1] >> (8 - rem); #ifdef L_ENDIAN v0 = sh[0], v1 = sh[1]; #else iv = &ovec[0]; c2l(iv, v0); c2l(iv, v1); #endif } d0 ^= ti[0]; d1 ^= ti[1]; l2cn(d0, d1, out, n); out += n; } } iv = &(*ivec)[0]; l2c(v0, iv); l2c(v1, iv); v0 = v1 = d0 = d1 = ti[0] = ti[1] = 0; } openssl-1.1.1f/crypto/des/des_enc.c000066400000000000000000000210141364063235100172030ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "des_local.h" #include "spr.h" void DES_encrypt1(DES_LONG *data, DES_key_schedule *ks, int enc) { register DES_LONG l, r, t, u; register DES_LONG *s; r = data[0]; l = data[1]; IP(r, l); /* * Things have been modified so that the initial rotate is done outside * the loop. This required the DES_SPtrans values in sp.h to be rotated * 1 bit to the right. One perl script later and things have a 5% speed * up on a sparc2. Thanks to Richard Outerbridge for pointing this out. */ /* clear the top bits on machines with 8byte longs */ /* shift left by 2 */ r = ROTATE(r, 29) & 0xffffffffL; l = ROTATE(l, 29) & 0xffffffffL; s = ks->ks->deslong; /* * I don't know if it is worth the effort of loop unrolling the inner * loop */ if (enc) { D_ENCRYPT(l, r, 0); /* 1 */ D_ENCRYPT(r, l, 2); /* 2 */ D_ENCRYPT(l, r, 4); /* 3 */ D_ENCRYPT(r, l, 6); /* 4 */ D_ENCRYPT(l, r, 8); /* 5 */ D_ENCRYPT(r, l, 10); /* 6 */ D_ENCRYPT(l, r, 12); /* 7 */ D_ENCRYPT(r, l, 14); /* 8 */ D_ENCRYPT(l, r, 16); /* 9 */ D_ENCRYPT(r, l, 18); /* 10 */ D_ENCRYPT(l, r, 20); /* 11 */ D_ENCRYPT(r, l, 22); /* 12 */ D_ENCRYPT(l, r, 24); /* 13 */ D_ENCRYPT(r, l, 26); /* 14 */ D_ENCRYPT(l, r, 28); /* 15 */ D_ENCRYPT(r, l, 30); /* 16 */ } else { D_ENCRYPT(l, r, 30); /* 16 */ D_ENCRYPT(r, l, 28); /* 15 */ D_ENCRYPT(l, r, 26); /* 14 */ D_ENCRYPT(r, l, 24); /* 13 */ D_ENCRYPT(l, r, 22); /* 12 */ D_ENCRYPT(r, l, 20); /* 11 */ D_ENCRYPT(l, r, 18); /* 10 */ D_ENCRYPT(r, l, 16); /* 9 */ D_ENCRYPT(l, r, 14); /* 8 */ D_ENCRYPT(r, l, 12); /* 7 */ D_ENCRYPT(l, r, 10); /* 6 */ D_ENCRYPT(r, l, 8); /* 5 */ D_ENCRYPT(l, r, 6); /* 4 */ D_ENCRYPT(r, l, 4); /* 3 */ D_ENCRYPT(l, r, 2); /* 2 */ D_ENCRYPT(r, l, 0); /* 1 */ } /* rotate and clear the top bits on machines with 8byte longs */ l = ROTATE(l, 3) & 0xffffffffL; r = ROTATE(r, 3) & 0xffffffffL; FP(r, l); data[0] = l; data[1] = r; l = r = t = u = 0; } void DES_encrypt2(DES_LONG *data, DES_key_schedule *ks, int enc) { register DES_LONG l, r, t, u; register DES_LONG *s; r = data[0]; l = data[1]; /* * Things have been modified so that the initial rotate is done outside * the loop. This required the DES_SPtrans values in sp.h to be rotated * 1 bit to the right. One perl script later and things have a 5% speed * up on a sparc2. Thanks to Richard Outerbridge for pointing this out. */ /* clear the top bits on machines with 8byte longs */ r = ROTATE(r, 29) & 0xffffffffL; l = ROTATE(l, 29) & 0xffffffffL; s = ks->ks->deslong; /* * I don't know if it is worth the effort of loop unrolling the inner * loop */ if (enc) { D_ENCRYPT(l, r, 0); /* 1 */ D_ENCRYPT(r, l, 2); /* 2 */ D_ENCRYPT(l, r, 4); /* 3 */ D_ENCRYPT(r, l, 6); /* 4 */ D_ENCRYPT(l, r, 8); /* 5 */ D_ENCRYPT(r, l, 10); /* 6 */ D_ENCRYPT(l, r, 12); /* 7 */ D_ENCRYPT(r, l, 14); /* 8 */ D_ENCRYPT(l, r, 16); /* 9 */ D_ENCRYPT(r, l, 18); /* 10 */ D_ENCRYPT(l, r, 20); /* 11 */ D_ENCRYPT(r, l, 22); /* 12 */ D_ENCRYPT(l, r, 24); /* 13 */ D_ENCRYPT(r, l, 26); /* 14 */ D_ENCRYPT(l, r, 28); /* 15 */ D_ENCRYPT(r, l, 30); /* 16 */ } else { D_ENCRYPT(l, r, 30); /* 16 */ D_ENCRYPT(r, l, 28); /* 15 */ D_ENCRYPT(l, r, 26); /* 14 */ D_ENCRYPT(r, l, 24); /* 13 */ D_ENCRYPT(l, r, 22); /* 12 */ D_ENCRYPT(r, l, 20); /* 11 */ D_ENCRYPT(l, r, 18); /* 10 */ D_ENCRYPT(r, l, 16); /* 9 */ D_ENCRYPT(l, r, 14); /* 8 */ D_ENCRYPT(r, l, 12); /* 7 */ D_ENCRYPT(l, r, 10); /* 6 */ D_ENCRYPT(r, l, 8); /* 5 */ D_ENCRYPT(l, r, 6); /* 4 */ D_ENCRYPT(r, l, 4); /* 3 */ D_ENCRYPT(l, r, 2); /* 2 */ D_ENCRYPT(r, l, 0); /* 1 */ } /* rotate and clear the top bits on machines with 8byte longs */ data[0] = ROTATE(l, 3) & 0xffffffffL; data[1] = ROTATE(r, 3) & 0xffffffffL; l = r = t = u = 0; } void DES_encrypt3(DES_LONG *data, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3) { register DES_LONG l, r; l = data[0]; r = data[1]; IP(l, r); data[0] = l; data[1] = r; DES_encrypt2((DES_LONG *)data, ks1, DES_ENCRYPT); DES_encrypt2((DES_LONG *)data, ks2, DES_DECRYPT); DES_encrypt2((DES_LONG *)data, ks3, DES_ENCRYPT); l = data[0]; r = data[1]; FP(r, l); data[0] = l; data[1] = r; } void DES_decrypt3(DES_LONG *data, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3) { register DES_LONG l, r; l = data[0]; r = data[1]; IP(l, r); data[0] = l; data[1] = r; DES_encrypt2((DES_LONG *)data, ks3, DES_DECRYPT); DES_encrypt2((DES_LONG *)data, ks2, DES_ENCRYPT); DES_encrypt2((DES_LONG *)data, ks1, DES_DECRYPT); l = data[0]; r = data[1]; FP(r, l); data[0] = l; data[1] = r; } #ifndef DES_DEFAULT_OPTIONS # undef CBC_ENC_C__DONT_UPDATE_IV # include "ncbc_enc.c" /* DES_ncbc_encrypt */ void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec, int enc) { register DES_LONG tin0, tin1; register DES_LONG tout0, tout1, xor0, xor1; register const unsigned char *in; unsigned char *out; register long l = length; DES_LONG tin[2]; unsigned char *iv; in = input; out = output; iv = &(*ivec)[0]; if (enc) { c2l(iv, tout0); c2l(iv, tout1); for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; DES_encrypt3((DES_LONG *)tin, ks1, ks2, ks3); tout0 = tin[0]; tout1 = tin[1]; l2c(tout0, out); l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; DES_encrypt3((DES_LONG *)tin, ks1, ks2, ks3); tout0 = tin[0]; tout1 = tin[1]; l2c(tout0, out); l2c(tout1, out); } iv = &(*ivec)[0]; l2c(tout0, iv); l2c(tout1, iv); } else { register DES_LONG t0, t1; c2l(iv, xor0); c2l(iv, xor1); for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); t0 = tin0; t1 = tin1; tin[0] = tin0; tin[1] = tin1; DES_decrypt3((DES_LONG *)tin, ks1, ks2, ks3); tout0 = tin[0]; tout1 = tin[1]; tout0 ^= xor0; tout1 ^= xor1; l2c(tout0, out); l2c(tout1, out); xor0 = t0; xor1 = t1; } if (l != -8) { c2l(in, tin0); c2l(in, tin1); t0 = tin0; t1 = tin1; tin[0] = tin0; tin[1] = tin1; DES_decrypt3((DES_LONG *)tin, ks1, ks2, ks3); tout0 = tin[0]; tout1 = tin[1]; tout0 ^= xor0; tout1 ^= xor1; l2cn(tout0, tout1, out, l + 8); xor0 = t0; xor1 = t1; } iv = &(*ivec)[0]; l2c(xor0, iv); l2c(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } #endif /* DES_DEFAULT_OPTIONS */ openssl-1.1.1f/crypto/des/des_local.h000066400000000000000000000216411364063235100175430ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_DES_LOCAL_H # define OSSL_CRYPTO_DES_LOCAL_H # include # include # include # include # include # ifdef OPENSSL_BUILD_SHLIBCRYPTO # undef OPENSSL_EXTERN # define OPENSSL_EXTERN OPENSSL_EXPORT # endif # define ITERATIONS 16 # define HALF_ITERATIONS 8 # define c2l(c,l) (l =((DES_LONG)(*((c)++))) , \ l|=((DES_LONG)(*((c)++)))<< 8L, \ l|=((DES_LONG)(*((c)++)))<<16L, \ l|=((DES_LONG)(*((c)++)))<<24L) /* NOTE - c is not incremented as per c2l */ # define c2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((DES_LONG)(*(--(c))))<<24L; \ /* fall thru */ \ case 7: l2|=((DES_LONG)(*(--(c))))<<16L; \ /* fall thru */ \ case 6: l2|=((DES_LONG)(*(--(c))))<< 8L; \ /* fall thru */ \ case 5: l2|=((DES_LONG)(*(--(c)))); \ /* fall thru */ \ case 4: l1 =((DES_LONG)(*(--(c))))<<24L; \ /* fall thru */ \ case 3: l1|=((DES_LONG)(*(--(c))))<<16L; \ /* fall thru */ \ case 2: l1|=((DES_LONG)(*(--(c))))<< 8L; \ /* fall thru */ \ case 1: l1|=((DES_LONG)(*(--(c)))); \ } \ } # define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>>24L)&0xff)) /* * replacements for htonl and ntohl since I have no idea what to do when * faced with machines with 8 byte longs. */ # define n2l(c,l) (l =((DES_LONG)(*((c)++)))<<24L, \ l|=((DES_LONG)(*((c)++)))<<16L, \ l|=((DES_LONG)(*((c)++)))<< 8L, \ l|=((DES_LONG)(*((c)++)))) # define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) /* NOTE - c is not incremented as per l2c */ # define l2cn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1) )&0xff); \ } \ } # if defined(_MSC_VER) # define ROTATE(a,n) (_lrotr(a,n)) # elif defined(__ICC) # define ROTATE(a,n) (_rotr(a,n)) # elif defined(__GNUC__) && __GNUC__>=2 && !defined(__STRICT_ANSI__) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) # define ROTATE(a,n) ({ register unsigned int ret; \ asm ("rorl %1,%0" \ : "=r"(ret) \ : "I"(n),"0"(a) \ : "cc"); \ ret; \ }) # endif # endif # ifndef ROTATE # define ROTATE(a,n) (((a)>>(n))+((a)<<(32-(n)))) # endif /* * Don't worry about the LOAD_DATA() stuff, that is used by fcrypt() to add * it's little bit to the front */ # ifdef DES_FCRYPT # define LOAD_DATA_tmp(R,S,u,t,E0,E1) \ { DES_LONG tmp; LOAD_DATA(R,S,u,t,E0,E1,tmp); } # define LOAD_DATA(R,S,u,t,E0,E1,tmp) \ t=R^(R>>16L); \ u=t&E0; t&=E1; \ tmp=(u<<16); u^=R^s[S ]; u^=tmp; \ tmp=(t<<16); t^=R^s[S+1]; t^=tmp # else # define LOAD_DATA_tmp(a,b,c,d,e,f) LOAD_DATA(a,b,c,d,e,f,g) # define LOAD_DATA(R,S,u,t,E0,E1,tmp) \ u=R^s[S ]; \ t=R^s[S+1] # endif /* * It recently occurred to me that 0^0^0^0^0^0^0 == 0, so there is no reason * to not xor all the sub items together. This potentially saves a register * since things can be xored directly into L */ # define D_ENCRYPT(LL,R,S) { \ LOAD_DATA_tmp(R,S,u,t,E0,E1); \ t=ROTATE(t,4); \ LL^= \ DES_SPtrans[0][(u>> 2L)&0x3f]^ \ DES_SPtrans[2][(u>>10L)&0x3f]^ \ DES_SPtrans[4][(u>>18L)&0x3f]^ \ DES_SPtrans[6][(u>>26L)&0x3f]^ \ DES_SPtrans[1][(t>> 2L)&0x3f]^ \ DES_SPtrans[3][(t>>10L)&0x3f]^ \ DES_SPtrans[5][(t>>18L)&0x3f]^ \ DES_SPtrans[7][(t>>26L)&0x3f]; } /*- * IP and FP * The problem is more of a geometric problem that random bit fiddling. 0 1 2 3 4 5 6 7 62 54 46 38 30 22 14 6 8 9 10 11 12 13 14 15 60 52 44 36 28 20 12 4 16 17 18 19 20 21 22 23 58 50 42 34 26 18 10 2 24 25 26 27 28 29 30 31 to 56 48 40 32 24 16 8 0 32 33 34 35 36 37 38 39 63 55 47 39 31 23 15 7 40 41 42 43 44 45 46 47 61 53 45 37 29 21 13 5 48 49 50 51 52 53 54 55 59 51 43 35 27 19 11 3 56 57 58 59 60 61 62 63 57 49 41 33 25 17 9 1 The output has been subject to swaps of the form 0 1 -> 3 1 but the odd and even bits have been put into 2 3 2 0 different words. The main trick is to remember that t=((l>>size)^r)&(mask); r^=t; l^=(t<>(n))^(b))&(m)),\ (b)^=(t),\ (a)^=((t)<<(n))) # define IP(l,r) \ { \ register DES_LONG tt; \ PERM_OP(r,l,tt, 4,0x0f0f0f0fL); \ PERM_OP(l,r,tt,16,0x0000ffffL); \ PERM_OP(r,l,tt, 2,0x33333333L); \ PERM_OP(l,r,tt, 8,0x00ff00ffL); \ PERM_OP(r,l,tt, 1,0x55555555L); \ } # define FP(l,r) \ { \ register DES_LONG tt; \ PERM_OP(l,r,tt, 1,0x55555555L); \ PERM_OP(r,l,tt, 8,0x00ff00ffL); \ PERM_OP(l,r,tt, 2,0x33333333L); \ PERM_OP(r,l,tt,16,0x0000ffffL); \ PERM_OP(l,r,tt, 4,0x0f0f0f0fL); \ } extern const DES_LONG DES_SPtrans[8][64]; void fcrypt_body(DES_LONG *out, DES_key_schedule *ks, DES_LONG Eswap0, DES_LONG Eswap1); #endif openssl-1.1.1f/crypto/des/ecb3_enc.c000066400000000000000000000016341364063235100172520ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, int enc) { register DES_LONG l0, l1; DES_LONG ll[2]; const unsigned char *in = &(*input)[0]; unsigned char *out = &(*output)[0]; c2l(in, l0); c2l(in, l1); ll[0] = l0; ll[1] = l1; if (enc) DES_encrypt3(ll, ks1, ks2, ks3); else DES_decrypt3(ll, ks1, ks2, ks3); l0 = ll[0]; l1 = ll[1]; l2c(l0, out); l2c(l1, out); } openssl-1.1.1f/crypto/des/ecb_enc.c000066400000000000000000000022221364063235100171610ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" #include #include const char *DES_options(void) { static int init = 1; static char buf[12]; if (init) { if (sizeof(DES_LONG) != sizeof(long)) OPENSSL_strlcpy(buf, "des(int)", sizeof(buf)); else OPENSSL_strlcpy(buf, "des(long)", sizeof(buf)); init = 0; } return buf; } void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output, DES_key_schedule *ks, int enc) { register DES_LONG l; DES_LONG ll[2]; const unsigned char *in = &(*input)[0]; unsigned char *out = &(*output)[0]; c2l(in, l); ll[0] = l; c2l(in, l); ll[1] = l; DES_encrypt1(ll, ks, enc); l = ll[0]; l2c(l, out); l = ll[1]; l2c(l, out); l = ll[0] = ll[1] = 0; } openssl-1.1.1f/crypto/des/fcrypt.c000066400000000000000000000077541364063235100171310ustar00rootroot00000000000000/* * Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* NOCW */ #include #ifdef _OSD_POSIX # ifndef CHARSET_EBCDIC # define CHARSET_EBCDIC 1 # endif #endif #ifdef CHARSET_EBCDIC # include #endif #include #include "des_local.h" /* * Added more values to handle illegal salt values the way normal crypt() * implementations do. */ static unsigned const char con_salt[128] = { 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, }; static unsigned const char cov_2char[64] = { 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A }; char *DES_crypt(const char *buf, const char *salt) { static char buff[14]; #ifndef CHARSET_EBCDIC return DES_fcrypt(buf, salt, buff); #else char e_salt[2 + 1]; char e_buf[32 + 1]; /* replace 32 by 8 ? */ char *ret; if (salt[0] == '\0' || salt[1] == '\0') return NULL; /* Copy salt, convert to ASCII. */ e_salt[0] = salt[0]; e_salt[1] = salt[1]; e_salt[2] = '\0'; ebcdic2ascii(e_salt, e_salt, sizeof(e_salt)); /* Convert password to ASCII. */ OPENSSL_strlcpy(e_buf, buf, sizeof(e_buf)); ebcdic2ascii(e_buf, e_buf, sizeof(e_buf)); /* Encrypt it (from/to ASCII); if it worked, convert back. */ ret = DES_fcrypt(e_buf, e_salt, buff); if (ret != NULL) ascii2ebcdic(ret, ret, strlen(ret)); return ret; #endif } char *DES_fcrypt(const char *buf, const char *salt, char *ret) { unsigned int i, j, x, y; DES_LONG Eswap0, Eswap1; DES_LONG out[2], ll; DES_cblock key; DES_key_schedule ks; unsigned char bb[9]; unsigned char *b = bb; unsigned char c, u; x = ret[0] = salt[0]; if (x == 0 || x >= sizeof(con_salt)) return NULL; Eswap0 = con_salt[x] << 2; x = ret[1] = salt[1]; if (x == 0 || x >= sizeof(con_salt)) return NULL; Eswap1 = con_salt[x] << 6; /* * EAY r=strlen(buf); r=(r+7)/8; */ for (i = 0; i < 8; i++) { c = *(buf++); if (!c) break; key[i] = (c << 1); } for (; i < 8; i++) key[i] = 0; DES_set_key_unchecked(&key, &ks); fcrypt_body(&(out[0]), &ks, Eswap0, Eswap1); ll = out[0]; l2c(ll, b); ll = out[1]; l2c(ll, b); y = 0; u = 0x80; bb[8] = 0; for (i = 2; i < 13; i++) { c = 0; for (j = 0; j < 6; j++) { c <<= 1; if (bb[y] & u) c |= 1; u >>= 1; if (!u) { y++; u = 0x80; } } ret[i] = cov_2char[c]; } ret[13] = '\0'; return ret; } openssl-1.1.1f/crypto/des/fcrypt_b.c000066400000000000000000000036721364063235100174250ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #define DES_FCRYPT #include "des_local.h" #undef DES_FCRYPT #undef PERM_OP #define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\ (b)^=(t),\ (a)^=((t)<<(n))) #undef HPERM_OP #define HPERM_OP(a,t,n,m) ((t)=((((a)<<(16-(n)))^(a))&(m)),\ (a)=(a)^(t)^(t>>(16-(n))))\ void fcrypt_body(DES_LONG *out, DES_key_schedule *ks, DES_LONG Eswap0, DES_LONG Eswap1) { register DES_LONG l, r, t, u; register DES_LONG *s; register int j; register DES_LONG E0, E1; l = 0; r = 0; s = (DES_LONG *)ks; E0 = Eswap0; E1 = Eswap1; for (j = 0; j < 25; j++) { D_ENCRYPT(l, r, 0); /* 1 */ D_ENCRYPT(r, l, 2); /* 2 */ D_ENCRYPT(l, r, 4); /* 3 */ D_ENCRYPT(r, l, 6); /* 4 */ D_ENCRYPT(l, r, 8); /* 5 */ D_ENCRYPT(r, l, 10); /* 6 */ D_ENCRYPT(l, r, 12); /* 7 */ D_ENCRYPT(r, l, 14); /* 8 */ D_ENCRYPT(l, r, 16); /* 9 */ D_ENCRYPT(r, l, 18); /* 10 */ D_ENCRYPT(l, r, 20); /* 11 */ D_ENCRYPT(r, l, 22); /* 12 */ D_ENCRYPT(l, r, 24); /* 13 */ D_ENCRYPT(r, l, 26); /* 14 */ D_ENCRYPT(l, r, 28); /* 15 */ D_ENCRYPT(r, l, 30); /* 16 */ t = l; l = r; r = t; } l = ROTATE(l, 3) & 0xffffffffL; r = ROTATE(r, 3) & 0xffffffffL; PERM_OP(l, r, t, 1, 0x55555555L); PERM_OP(r, l, t, 8, 0x00ff00ffL); PERM_OP(l, r, t, 2, 0x33333333L); PERM_OP(r, l, t, 16, 0x0000ffffL); PERM_OP(l, r, t, 4, 0x0f0f0f0fL); out[0] = r; out[1] = l; } openssl-1.1.1f/crypto/des/ncbc_enc.c000066400000000000000000000057171364063235100173510ustar00rootroot00000000000000/* * Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- * #included by: * cbc_enc.c (DES_cbc_encrypt) * des_enc.c (DES_ncbc_encrypt) */ #include "des_local.h" #ifdef CBC_ENC_C__DONT_UPDATE_IV void DES_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *_schedule, DES_cblock *ivec, int enc) #else void DES_ncbc_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *_schedule, DES_cblock *ivec, int enc) #endif { register DES_LONG tin0, tin1; register DES_LONG tout0, tout1, xor0, xor1; register long l = length; DES_LONG tin[2]; unsigned char *iv; iv = &(*ivec)[0]; if (enc) { c2l(iv, tout0); c2l(iv, tout1); for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0; tin[0] = tin0; tin1 ^= tout1; tin[1] = tin1; DES_encrypt1((DES_LONG *)tin, _schedule, DES_ENCRYPT); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin[0] = tin0; tin1 ^= tout1; tin[1] = tin1; DES_encrypt1((DES_LONG *)tin, _schedule, DES_ENCRYPT); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } #ifndef CBC_ENC_C__DONT_UPDATE_IV iv = &(*ivec)[0]; l2c(tout0, iv); l2c(tout1, iv); #endif } else { c2l(iv, xor0); c2l(iv, xor1); for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; DES_encrypt1((DES_LONG *)tin, _schedule, DES_DECRYPT); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2c(tout0, out); l2c(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; DES_encrypt1((DES_LONG *)tin, _schedule, DES_DECRYPT); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2cn(tout0, tout1, out, l + 8); #ifndef CBC_ENC_C__DONT_UPDATE_IV xor0 = tin0; xor1 = tin1; #endif } #ifndef CBC_ENC_C__DONT_UPDATE_IV iv = &(*ivec)[0]; l2c(xor0, iv); l2c(xor1, iv); #endif } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } openssl-1.1.1f/crypto/des/ofb64ede.c000066400000000000000000000032011364063235100171770ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void DES_ede3_ofb64_encrypt(register const unsigned char *in, register unsigned char *out, long length, DES_key_schedule *k1, DES_key_schedule *k2, DES_key_schedule *k3, DES_cblock *ivec, int *num) { register DES_LONG v0, v1; register int n = *num; register long l = length; DES_cblock d; register char *dp; DES_LONG ti[2]; unsigned char *iv; int save = 0; iv = &(*ivec)[0]; c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2c(v0, dp); l2c(v1, dp); while (l--) { if (n == 0) { /* ti[0]=v0; */ /* ti[1]=v1; */ DES_encrypt3(ti, k1, k2, k3); v0 = ti[0]; v1 = ti[1]; dp = (char *)d; l2c(v0, dp); l2c(v1, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { iv = &(*ivec)[0]; l2c(v0, iv); l2c(v1, iv); } v0 = v1 = ti[0] = ti[1] = 0; *num = n; } openssl-1.1.1f/crypto/des/ofb64enc.c000066400000000000000000000030461364063235100172160ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void DES_ofb64_encrypt(register const unsigned char *in, register unsigned char *out, long length, DES_key_schedule *schedule, DES_cblock *ivec, int *num) { register DES_LONG v0, v1, t; register int n = *num; register long l = length; DES_cblock d; register unsigned char *dp; DES_LONG ti[2]; unsigned char *iv; int save = 0; iv = &(*ivec)[0]; c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = d; l2c(v0, dp); l2c(v1, dp); while (l--) { if (n == 0) { DES_encrypt1(ti, schedule, DES_ENCRYPT); dp = d; t = ti[0]; l2c(t, dp); t = ti[1]; l2c(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = &(*ivec)[0]; l2c(v0, iv); l2c(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; } openssl-1.1.1f/crypto/des/ofb_enc.c000066400000000000000000000046201364063235100172020ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" /* * The input and output are loaded in multiples of 8 bits. What this means is * that if you have numbits=12 and length=2 the first 12 bits will be * retrieved from the first byte and half the second. The second 12 bits * will come from the 3rd and half the 4th byte. */ void DES_ofb_encrypt(const unsigned char *in, unsigned char *out, int numbits, long length, DES_key_schedule *schedule, DES_cblock *ivec) { register DES_LONG d0, d1, vv0, vv1, v0, v1, n = (numbits + 7) / 8; register DES_LONG mask0, mask1; register long l = length; register int num = numbits; DES_LONG ti[2]; unsigned char *iv; if (num > 64) return; if (num > 32) { mask0 = 0xffffffffL; if (num >= 64) mask1 = mask0; else mask1 = (1L << (num - 32)) - 1; } else { if (num == 32) mask0 = 0xffffffffL; else mask0 = (1L << num) - 1; mask1 = 0x00000000L; } iv = &(*ivec)[0]; c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; while (l-- > 0) { ti[0] = v0; ti[1] = v1; DES_encrypt1((DES_LONG *)ti, schedule, DES_ENCRYPT); vv0 = ti[0]; vv1 = ti[1]; c2ln(in, d0, d1, n); in += n; d0 = (d0 ^ vv0) & mask0; d1 = (d1 ^ vv1) & mask1; l2cn(d0, d1, out, n); out += n; if (num == 32) { v0 = v1; v1 = vv0; } else if (num == 64) { v0 = vv0; v1 = vv1; } else if (num > 32) { /* && num != 64 */ v0 = ((v1 >> (num - 32)) | (vv0 << (64 - num))) & 0xffffffffL; v1 = ((vv0 >> (num - 32)) | (vv1 << (64 - num))) & 0xffffffffL; } else { /* num < 32 */ v0 = ((v0 >> num) | (v1 << (32 - num))) & 0xffffffffL; v1 = ((v1 >> num) | (vv0 << (32 - num))) & 0xffffffffL; } } iv = &(*ivec)[0]; l2c(v0, iv); l2c(v1, iv); v0 = v1 = d0 = d1 = ti[0] = ti[1] = vv0 = vv1 = 0; } openssl-1.1.1f/crypto/des/pcbc_enc.c000066400000000000000000000037151364063235100173470ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *schedule, DES_cblock *ivec, int enc) { register DES_LONG sin0, sin1, xor0, xor1, tout0, tout1; DES_LONG tin[2]; const unsigned char *in; unsigned char *out, *iv; in = input; out = output; iv = &(*ivec)[0]; if (enc) { c2l(iv, xor0); c2l(iv, xor1); for (; length > 0; length -= 8) { if (length >= 8) { c2l(in, sin0); c2l(in, sin1); } else c2ln(in, sin0, sin1, length); tin[0] = sin0 ^ xor0; tin[1] = sin1 ^ xor1; DES_encrypt1((DES_LONG *)tin, schedule, DES_ENCRYPT); tout0 = tin[0]; tout1 = tin[1]; xor0 = sin0 ^ tout0; xor1 = sin1 ^ tout1; l2c(tout0, out); l2c(tout1, out); } } else { c2l(iv, xor0); c2l(iv, xor1); for (; length > 0; length -= 8) { c2l(in, sin0); c2l(in, sin1); tin[0] = sin0; tin[1] = sin1; DES_encrypt1((DES_LONG *)tin, schedule, DES_DECRYPT); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; if (length >= 8) { l2c(tout0, out); l2c(tout1, out); } else l2cn(tout0, tout1, out, length); xor0 = tout0 ^ sin0; xor1 = tout1 ^ sin1; } } tin[0] = tin[1] = 0; sin0 = sin1 = xor0 = xor1 = tout0 = tout1 = 0; } openssl-1.1.1f/crypto/des/qud_cksm.c000066400000000000000000000045101364063235100174130ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * From "Message Authentication" R.R. Jueneman, S.M. Matyas, C.H. Meyer IEEE * Communications Magazine Sept 1985 Vol. 23 No. 9 p 29-40 This module in * only based on the code in this paper and is almost definitely not the same * as the MIT implementation. */ #include "des_local.h" #define Q_B0(a) (((DES_LONG)(a))) #define Q_B1(a) (((DES_LONG)(a))<<8) #define Q_B2(a) (((DES_LONG)(a))<<16) #define Q_B3(a) (((DES_LONG)(a))<<24) /* used to scramble things a bit */ /* Got the value MIT uses via brute force :-) 2/10/90 eay */ #define NOISE ((DES_LONG)83653421L) DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[], long length, int out_count, DES_cblock *seed) { DES_LONG z0, z1, t0, t1; int i; long l; const unsigned char *cp; DES_LONG *lp; if (out_count < 1) out_count = 1; lp = (DES_LONG *)&(output[0])[0]; z0 = Q_B0((*seed)[0]) | Q_B1((*seed)[1]) | Q_B2((*seed)[2]) | Q_B3((*seed)[3]); z1 = Q_B0((*seed)[4]) | Q_B1((*seed)[5]) | Q_B2((*seed)[6]) | Q_B3((*seed)[7]); for (i = 0; ((i < 4) && (i < out_count)); i++) { cp = input; l = length; while (l > 0) { if (l > 1) { t0 = (DES_LONG)(*(cp++)); t0 |= (DES_LONG)Q_B1(*(cp++)); l--; } else t0 = (DES_LONG)(*(cp++)); l--; /* add */ t0 += z0; t0 &= 0xffffffffL; t1 = z1; /* square, well sort of square */ z0 = ((((t0 * t0) & 0xffffffffL) + ((t1 * t1) & 0xffffffffL)) & 0xffffffffL) % 0x7fffffffL; z1 = ((t0 * ((t1 + NOISE) & 0xffffffffL)) & 0xffffffffL) % 0x7fffffffL; } if (lp != NULL) { /* * The MIT library assumes that the checksum is composed of * 2*out_count 32 bit ints */ *lp++ = z0; *lp++ = z1; } } return z0; } openssl-1.1.1f/crypto/des/rand_key.c000066400000000000000000000011441364063235100174010ustar00rootroot00000000000000/* * Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include int DES_random_key(DES_cblock *ret) { do { if (RAND_priv_bytes((unsigned char *)ret, sizeof(DES_cblock)) != 1) return 0; } while (DES_is_weak_key(ret)); DES_set_odd_parity(ret); return 1; } openssl-1.1.1f/crypto/des/set_key.c000066400000000000000000000347571364063235100172700ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- * set_key.c v 1.4 eay 24/9/91 * 1.4 Speed up by 400% :-) * 1.3 added register declarations. * 1.2 unrolled make_key_sched a bit more * 1.1 added norm_expand_bits * 1.0 First working version */ #include #include "des_local.h" /* defaults to false */ OPENSSL_IMPLEMENT_GLOBAL(int, DES_check_key, 0) static const unsigned char odd_parity[256] = { 1, 1, 2, 2, 4, 4, 7, 7, 8, 8, 11, 11, 13, 13, 14, 14, 16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44, 47, 47, 49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62, 64, 64, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79, 81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94, 97, 97, 98, 98, 100, 100, 103, 103, 104, 104, 107, 107, 109, 109, 110, 110, 112, 112, 115, 115, 117, 117, 118, 118, 121, 121, 122, 122, 124, 124, 127, 127, 128, 128, 131, 131, 133, 133, 134, 134, 137, 137, 138, 138, 140, 140, 143, 143, 145, 145, 146, 146, 148, 148, 151, 151, 152, 152, 155, 155, 157, 157, 158, 158, 161, 161, 162, 162, 164, 164, 167, 167, 168, 168, 171, 171, 173, 173, 174, 174, 176, 176, 179, 179, 181, 181, 182, 182, 185, 185, 186, 186, 188, 188, 191, 191, 193, 193, 194, 194, 196, 196, 199, 199, 200, 200, 203, 203, 205, 205, 206, 206, 208, 208, 211, 211, 213, 213, 214, 214, 217, 217, 218, 218, 220, 220, 223, 223, 224, 224, 227, 227, 229, 229, 230, 230, 233, 233, 234, 234, 236, 236, 239, 239, 241, 241, 242, 242, 244, 244, 247, 247, 248, 248, 251, 251, 253, 253, 254, 254 }; void DES_set_odd_parity(DES_cblock *key) { unsigned int i; for (i = 0; i < DES_KEY_SZ; i++) (*key)[i] = odd_parity[(*key)[i]]; } int DES_check_key_parity(const_DES_cblock *key) { unsigned int i; for (i = 0; i < DES_KEY_SZ; i++) { if ((*key)[i] != odd_parity[(*key)[i]]) return 0; } return 1; } /*- * Weak and semi weak keys as taken from * %A D.W. Davies * %A W.L. Price * %T Security for Computer Networks * %I John Wiley & Sons * %D 1984 */ #define NUM_WEAK_KEY 16 static const DES_cblock weak_keys[NUM_WEAK_KEY] = { /* weak keys */ {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}, {0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE}, {0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E}, {0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1}, /* semi-weak keys */ {0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE}, {0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01}, {0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1}, {0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E}, {0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1}, {0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01}, {0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE}, {0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E}, {0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E}, {0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01}, {0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE}, {0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1} }; int DES_is_weak_key(const_DES_cblock *key) { int i; for (i = 0; i < NUM_WEAK_KEY; i++) if (memcmp(weak_keys[i], key, sizeof(DES_cblock)) == 0) return 1; return 0; } /*- * NOW DEFINED IN des_local.h * See ecb_encrypt.c for a pseudo description of these macros. * #define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\ * (b)^=(t),\ * (a)=((a)^((t)<<(n)))) */ #define HPERM_OP(a,t,n,m) ((t)=((((a)<<(16-(n)))^(a))&(m)),\ (a)=(a)^(t)^(t>>(16-(n)))) static const DES_LONG des_skb[8][64] = { { /* for C bits (numbered as per FIPS 46) 1 2 3 4 5 6 */ 0x00000000L, 0x00000010L, 0x20000000L, 0x20000010L, 0x00010000L, 0x00010010L, 0x20010000L, 0x20010010L, 0x00000800L, 0x00000810L, 0x20000800L, 0x20000810L, 0x00010800L, 0x00010810L, 0x20010800L, 0x20010810L, 0x00000020L, 0x00000030L, 0x20000020L, 0x20000030L, 0x00010020L, 0x00010030L, 0x20010020L, 0x20010030L, 0x00000820L, 0x00000830L, 0x20000820L, 0x20000830L, 0x00010820L, 0x00010830L, 0x20010820L, 0x20010830L, 0x00080000L, 0x00080010L, 0x20080000L, 0x20080010L, 0x00090000L, 0x00090010L, 0x20090000L, 0x20090010L, 0x00080800L, 0x00080810L, 0x20080800L, 0x20080810L, 0x00090800L, 0x00090810L, 0x20090800L, 0x20090810L, 0x00080020L, 0x00080030L, 0x20080020L, 0x20080030L, 0x00090020L, 0x00090030L, 0x20090020L, 0x20090030L, 0x00080820L, 0x00080830L, 0x20080820L, 0x20080830L, 0x00090820L, 0x00090830L, 0x20090820L, 0x20090830L, }, { /* for C bits (numbered as per FIPS 46) 7 8 10 11 12 13 */ 0x00000000L, 0x02000000L, 0x00002000L, 0x02002000L, 0x00200000L, 0x02200000L, 0x00202000L, 0x02202000L, 0x00000004L, 0x02000004L, 0x00002004L, 0x02002004L, 0x00200004L, 0x02200004L, 0x00202004L, 0x02202004L, 0x00000400L, 0x02000400L, 0x00002400L, 0x02002400L, 0x00200400L, 0x02200400L, 0x00202400L, 0x02202400L, 0x00000404L, 0x02000404L, 0x00002404L, 0x02002404L, 0x00200404L, 0x02200404L, 0x00202404L, 0x02202404L, 0x10000000L, 0x12000000L, 0x10002000L, 0x12002000L, 0x10200000L, 0x12200000L, 0x10202000L, 0x12202000L, 0x10000004L, 0x12000004L, 0x10002004L, 0x12002004L, 0x10200004L, 0x12200004L, 0x10202004L, 0x12202004L, 0x10000400L, 0x12000400L, 0x10002400L, 0x12002400L, 0x10200400L, 0x12200400L, 0x10202400L, 0x12202400L, 0x10000404L, 0x12000404L, 0x10002404L, 0x12002404L, 0x10200404L, 0x12200404L, 0x10202404L, 0x12202404L, }, { /* for C bits (numbered as per FIPS 46) 14 15 16 17 19 20 */ 0x00000000L, 0x00000001L, 0x00040000L, 0x00040001L, 0x01000000L, 0x01000001L, 0x01040000L, 0x01040001L, 0x00000002L, 0x00000003L, 0x00040002L, 0x00040003L, 0x01000002L, 0x01000003L, 0x01040002L, 0x01040003L, 0x00000200L, 0x00000201L, 0x00040200L, 0x00040201L, 0x01000200L, 0x01000201L, 0x01040200L, 0x01040201L, 0x00000202L, 0x00000203L, 0x00040202L, 0x00040203L, 0x01000202L, 0x01000203L, 0x01040202L, 0x01040203L, 0x08000000L, 0x08000001L, 0x08040000L, 0x08040001L, 0x09000000L, 0x09000001L, 0x09040000L, 0x09040001L, 0x08000002L, 0x08000003L, 0x08040002L, 0x08040003L, 0x09000002L, 0x09000003L, 0x09040002L, 0x09040003L, 0x08000200L, 0x08000201L, 0x08040200L, 0x08040201L, 0x09000200L, 0x09000201L, 0x09040200L, 0x09040201L, 0x08000202L, 0x08000203L, 0x08040202L, 0x08040203L, 0x09000202L, 0x09000203L, 0x09040202L, 0x09040203L, }, { /* for C bits (numbered as per FIPS 46) 21 23 24 26 27 28 */ 0x00000000L, 0x00100000L, 0x00000100L, 0x00100100L, 0x00000008L, 0x00100008L, 0x00000108L, 0x00100108L, 0x00001000L, 0x00101000L, 0x00001100L, 0x00101100L, 0x00001008L, 0x00101008L, 0x00001108L, 0x00101108L, 0x04000000L, 0x04100000L, 0x04000100L, 0x04100100L, 0x04000008L, 0x04100008L, 0x04000108L, 0x04100108L, 0x04001000L, 0x04101000L, 0x04001100L, 0x04101100L, 0x04001008L, 0x04101008L, 0x04001108L, 0x04101108L, 0x00020000L, 0x00120000L, 0x00020100L, 0x00120100L, 0x00020008L, 0x00120008L, 0x00020108L, 0x00120108L, 0x00021000L, 0x00121000L, 0x00021100L, 0x00121100L, 0x00021008L, 0x00121008L, 0x00021108L, 0x00121108L, 0x04020000L, 0x04120000L, 0x04020100L, 0x04120100L, 0x04020008L, 0x04120008L, 0x04020108L, 0x04120108L, 0x04021000L, 0x04121000L, 0x04021100L, 0x04121100L, 0x04021008L, 0x04121008L, 0x04021108L, 0x04121108L, }, { /* for D bits (numbered as per FIPS 46) 1 2 3 4 5 6 */ 0x00000000L, 0x10000000L, 0x00010000L, 0x10010000L, 0x00000004L, 0x10000004L, 0x00010004L, 0x10010004L, 0x20000000L, 0x30000000L, 0x20010000L, 0x30010000L, 0x20000004L, 0x30000004L, 0x20010004L, 0x30010004L, 0x00100000L, 0x10100000L, 0x00110000L, 0x10110000L, 0x00100004L, 0x10100004L, 0x00110004L, 0x10110004L, 0x20100000L, 0x30100000L, 0x20110000L, 0x30110000L, 0x20100004L, 0x30100004L, 0x20110004L, 0x30110004L, 0x00001000L, 0x10001000L, 0x00011000L, 0x10011000L, 0x00001004L, 0x10001004L, 0x00011004L, 0x10011004L, 0x20001000L, 0x30001000L, 0x20011000L, 0x30011000L, 0x20001004L, 0x30001004L, 0x20011004L, 0x30011004L, 0x00101000L, 0x10101000L, 0x00111000L, 0x10111000L, 0x00101004L, 0x10101004L, 0x00111004L, 0x10111004L, 0x20101000L, 0x30101000L, 0x20111000L, 0x30111000L, 0x20101004L, 0x30101004L, 0x20111004L, 0x30111004L, }, { /* for D bits (numbered as per FIPS 46) 8 9 11 12 13 14 */ 0x00000000L, 0x08000000L, 0x00000008L, 0x08000008L, 0x00000400L, 0x08000400L, 0x00000408L, 0x08000408L, 0x00020000L, 0x08020000L, 0x00020008L, 0x08020008L, 0x00020400L, 0x08020400L, 0x00020408L, 0x08020408L, 0x00000001L, 0x08000001L, 0x00000009L, 0x08000009L, 0x00000401L, 0x08000401L, 0x00000409L, 0x08000409L, 0x00020001L, 0x08020001L, 0x00020009L, 0x08020009L, 0x00020401L, 0x08020401L, 0x00020409L, 0x08020409L, 0x02000000L, 0x0A000000L, 0x02000008L, 0x0A000008L, 0x02000400L, 0x0A000400L, 0x02000408L, 0x0A000408L, 0x02020000L, 0x0A020000L, 0x02020008L, 0x0A020008L, 0x02020400L, 0x0A020400L, 0x02020408L, 0x0A020408L, 0x02000001L, 0x0A000001L, 0x02000009L, 0x0A000009L, 0x02000401L, 0x0A000401L, 0x02000409L, 0x0A000409L, 0x02020001L, 0x0A020001L, 0x02020009L, 0x0A020009L, 0x02020401L, 0x0A020401L, 0x02020409L, 0x0A020409L, }, { /* for D bits (numbered as per FIPS 46) 16 17 18 19 20 21 */ 0x00000000L, 0x00000100L, 0x00080000L, 0x00080100L, 0x01000000L, 0x01000100L, 0x01080000L, 0x01080100L, 0x00000010L, 0x00000110L, 0x00080010L, 0x00080110L, 0x01000010L, 0x01000110L, 0x01080010L, 0x01080110L, 0x00200000L, 0x00200100L, 0x00280000L, 0x00280100L, 0x01200000L, 0x01200100L, 0x01280000L, 0x01280100L, 0x00200010L, 0x00200110L, 0x00280010L, 0x00280110L, 0x01200010L, 0x01200110L, 0x01280010L, 0x01280110L, 0x00000200L, 0x00000300L, 0x00080200L, 0x00080300L, 0x01000200L, 0x01000300L, 0x01080200L, 0x01080300L, 0x00000210L, 0x00000310L, 0x00080210L, 0x00080310L, 0x01000210L, 0x01000310L, 0x01080210L, 0x01080310L, 0x00200200L, 0x00200300L, 0x00280200L, 0x00280300L, 0x01200200L, 0x01200300L, 0x01280200L, 0x01280300L, 0x00200210L, 0x00200310L, 0x00280210L, 0x00280310L, 0x01200210L, 0x01200310L, 0x01280210L, 0x01280310L, }, { /* for D bits (numbered as per FIPS 46) 22 23 24 25 27 28 */ 0x00000000L, 0x04000000L, 0x00040000L, 0x04040000L, 0x00000002L, 0x04000002L, 0x00040002L, 0x04040002L, 0x00002000L, 0x04002000L, 0x00042000L, 0x04042000L, 0x00002002L, 0x04002002L, 0x00042002L, 0x04042002L, 0x00000020L, 0x04000020L, 0x00040020L, 0x04040020L, 0x00000022L, 0x04000022L, 0x00040022L, 0x04040022L, 0x00002020L, 0x04002020L, 0x00042020L, 0x04042020L, 0x00002022L, 0x04002022L, 0x00042022L, 0x04042022L, 0x00000800L, 0x04000800L, 0x00040800L, 0x04040800L, 0x00000802L, 0x04000802L, 0x00040802L, 0x04040802L, 0x00002800L, 0x04002800L, 0x00042800L, 0x04042800L, 0x00002802L, 0x04002802L, 0x00042802L, 0x04042802L, 0x00000820L, 0x04000820L, 0x00040820L, 0x04040820L, 0x00000822L, 0x04000822L, 0x00040822L, 0x04040822L, 0x00002820L, 0x04002820L, 0x00042820L, 0x04042820L, 0x00002822L, 0x04002822L, 0x00042822L, 0x04042822L, } }; int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule) { if (DES_check_key) { return DES_set_key_checked(key, schedule); } else { DES_set_key_unchecked(key, schedule); return 0; } } /*- * return 0 if key parity is odd (correct), * return -1 if key parity error, * return -2 if illegal weak key. */ int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule) { if (!DES_check_key_parity(key)) return -1; if (DES_is_weak_key(key)) return -2; DES_set_key_unchecked(key, schedule); return 0; } void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule) { static const int shifts2[16] = { 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0 }; register DES_LONG c, d, t, s, t2; register const unsigned char *in; register DES_LONG *k; register int i; #ifdef OPENBSD_DEV_CRYPTO memcpy(schedule->key, key, sizeof(schedule->key)); schedule->session = NULL; #endif k = &schedule->ks->deslong[0]; in = &(*key)[0]; c2l(in, c); c2l(in, d); /* * do PC1 in 47 simple operations. Thanks to John Fletcher * for the inspiration. */ PERM_OP(d, c, t, 4, 0x0f0f0f0fL); HPERM_OP(c, t, -2, 0xcccc0000L); HPERM_OP(d, t, -2, 0xcccc0000L); PERM_OP(d, c, t, 1, 0x55555555L); PERM_OP(c, d, t, 8, 0x00ff00ffL); PERM_OP(d, c, t, 1, 0x55555555L); d = (((d & 0x000000ffL) << 16L) | (d & 0x0000ff00L) | ((d & 0x00ff0000L) >> 16L) | ((c & 0xf0000000L) >> 4L)); c &= 0x0fffffffL; for (i = 0; i < ITERATIONS; i++) { if (shifts2[i]) { c = ((c >> 2L) | (c << 26L)); d = ((d >> 2L) | (d << 26L)); } else { c = ((c >> 1L) | (c << 27L)); d = ((d >> 1L) | (d << 27L)); } c &= 0x0fffffffL; d &= 0x0fffffffL; /* * could be a few less shifts but I am to lazy at this point in time * to investigate */ s = des_skb[0][(c) & 0x3f] | des_skb[1][((c >> 6L) & 0x03) | ((c >> 7L) & 0x3c)] | des_skb[2][((c >> 13L) & 0x0f) | ((c >> 14L) & 0x30)] | des_skb[3][((c >> 20L) & 0x01) | ((c >> 21L) & 0x06) | ((c >> 22L) & 0x38)]; t = des_skb[4][(d) & 0x3f] | des_skb[5][((d >> 7L) & 0x03) | ((d >> 8L) & 0x3c)] | des_skb[6][(d >> 15L) & 0x3f] | des_skb[7][((d >> 21L) & 0x0f) | ((d >> 22L) & 0x30)]; /* table contained 0213 4657 */ t2 = ((t << 16L) | (s & 0x0000ffffL)) & 0xffffffffL; *(k++) = ROTATE(t2, 30) & 0xffffffffL; t2 = ((s >> 16L) | (t & 0xffff0000L)); *(k++) = ROTATE(t2, 26) & 0xffffffffL; } } int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule) { return DES_set_key(key, schedule); } openssl-1.1.1f/crypto/des/spr.h000066400000000000000000000202261364063235100164200ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ const DES_LONG DES_SPtrans[8][64] = { { /* nibble 0 */ 0x02080800L, 0x00080000L, 0x02000002L, 0x02080802L, 0x02000000L, 0x00080802L, 0x00080002L, 0x02000002L, 0x00080802L, 0x02080800L, 0x02080000L, 0x00000802L, 0x02000802L, 0x02000000L, 0x00000000L, 0x00080002L, 0x00080000L, 0x00000002L, 0x02000800L, 0x00080800L, 0x02080802L, 0x02080000L, 0x00000802L, 0x02000800L, 0x00000002L, 0x00000800L, 0x00080800L, 0x02080002L, 0x00000800L, 0x02000802L, 0x02080002L, 0x00000000L, 0x00000000L, 0x02080802L, 0x02000800L, 0x00080002L, 0x02080800L, 0x00080000L, 0x00000802L, 0x02000800L, 0x02080002L, 0x00000800L, 0x00080800L, 0x02000002L, 0x00080802L, 0x00000002L, 0x02000002L, 0x02080000L, 0x02080802L, 0x00080800L, 0x02080000L, 0x02000802L, 0x02000000L, 0x00000802L, 0x00080002L, 0x00000000L, 0x00080000L, 0x02000000L, 0x02000802L, 0x02080800L, 0x00000002L, 0x02080002L, 0x00000800L, 0x00080802L, }, { /* nibble 1 */ 0x40108010L, 0x00000000L, 0x00108000L, 0x40100000L, 0x40000010L, 0x00008010L, 0x40008000L, 0x00108000L, 0x00008000L, 0x40100010L, 0x00000010L, 0x40008000L, 0x00100010L, 0x40108000L, 0x40100000L, 0x00000010L, 0x00100000L, 0x40008010L, 0x40100010L, 0x00008000L, 0x00108010L, 0x40000000L, 0x00000000L, 0x00100010L, 0x40008010L, 0x00108010L, 0x40108000L, 0x40000010L, 0x40000000L, 0x00100000L, 0x00008010L, 0x40108010L, 0x00100010L, 0x40108000L, 0x40008000L, 0x00108010L, 0x40108010L, 0x00100010L, 0x40000010L, 0x00000000L, 0x40000000L, 0x00008010L, 0x00100000L, 0x40100010L, 0x00008000L, 0x40000000L, 0x00108010L, 0x40008010L, 0x40108000L, 0x00008000L, 0x00000000L, 0x40000010L, 0x00000010L, 0x40108010L, 0x00108000L, 0x40100000L, 0x40100010L, 0x00100000L, 0x00008010L, 0x40008000L, 0x40008010L, 0x00000010L, 0x40100000L, 0x00108000L, }, { /* nibble 2 */ 0x04000001L, 0x04040100L, 0x00000100L, 0x04000101L, 0x00040001L, 0x04000000L, 0x04000101L, 0x00040100L, 0x04000100L, 0x00040000L, 0x04040000L, 0x00000001L, 0x04040101L, 0x00000101L, 0x00000001L, 0x04040001L, 0x00000000L, 0x00040001L, 0x04040100L, 0x00000100L, 0x00000101L, 0x04040101L, 0x00040000L, 0x04000001L, 0x04040001L, 0x04000100L, 0x00040101L, 0x04040000L, 0x00040100L, 0x00000000L, 0x04000000L, 0x00040101L, 0x04040100L, 0x00000100L, 0x00000001L, 0x00040000L, 0x00000101L, 0x00040001L, 0x04040000L, 0x04000101L, 0x00000000L, 0x04040100L, 0x00040100L, 0x04040001L, 0x00040001L, 0x04000000L, 0x04040101L, 0x00000001L, 0x00040101L, 0x04000001L, 0x04000000L, 0x04040101L, 0x00040000L, 0x04000100L, 0x04000101L, 0x00040100L, 0x04000100L, 0x00000000L, 0x04040001L, 0x00000101L, 0x04000001L, 0x00040101L, 0x00000100L, 0x04040000L, }, { /* nibble 3 */ 0x00401008L, 0x10001000L, 0x00000008L, 0x10401008L, 0x00000000L, 0x10400000L, 0x10001008L, 0x00400008L, 0x10401000L, 0x10000008L, 0x10000000L, 0x00001008L, 0x10000008L, 0x00401008L, 0x00400000L, 0x10000000L, 0x10400008L, 0x00401000L, 0x00001000L, 0x00000008L, 0x00401000L, 0x10001008L, 0x10400000L, 0x00001000L, 0x00001008L, 0x00000000L, 0x00400008L, 0x10401000L, 0x10001000L, 0x10400008L, 0x10401008L, 0x00400000L, 0x10400008L, 0x00001008L, 0x00400000L, 0x10000008L, 0x00401000L, 0x10001000L, 0x00000008L, 0x10400000L, 0x10001008L, 0x00000000L, 0x00001000L, 0x00400008L, 0x00000000L, 0x10400008L, 0x10401000L, 0x00001000L, 0x10000000L, 0x10401008L, 0x00401008L, 0x00400000L, 0x10401008L, 0x00000008L, 0x10001000L, 0x00401008L, 0x00400008L, 0x00401000L, 0x10400000L, 0x10001008L, 0x00001008L, 0x10000000L, 0x10000008L, 0x10401000L, }, { /* nibble 4 */ 0x08000000L, 0x00010000L, 0x00000400L, 0x08010420L, 0x08010020L, 0x08000400L, 0x00010420L, 0x08010000L, 0x00010000L, 0x00000020L, 0x08000020L, 0x00010400L, 0x08000420L, 0x08010020L, 0x08010400L, 0x00000000L, 0x00010400L, 0x08000000L, 0x00010020L, 0x00000420L, 0x08000400L, 0x00010420L, 0x00000000L, 0x08000020L, 0x00000020L, 0x08000420L, 0x08010420L, 0x00010020L, 0x08010000L, 0x00000400L, 0x00000420L, 0x08010400L, 0x08010400L, 0x08000420L, 0x00010020L, 0x08010000L, 0x00010000L, 0x00000020L, 0x08000020L, 0x08000400L, 0x08000000L, 0x00010400L, 0x08010420L, 0x00000000L, 0x00010420L, 0x08000000L, 0x00000400L, 0x00010020L, 0x08000420L, 0x00000400L, 0x00000000L, 0x08010420L, 0x08010020L, 0x08010400L, 0x00000420L, 0x00010000L, 0x00010400L, 0x08010020L, 0x08000400L, 0x00000420L, 0x00000020L, 0x00010420L, 0x08010000L, 0x08000020L, }, { /* nibble 5 */ 0x80000040L, 0x00200040L, 0x00000000L, 0x80202000L, 0x00200040L, 0x00002000L, 0x80002040L, 0x00200000L, 0x00002040L, 0x80202040L, 0x00202000L, 0x80000000L, 0x80002000L, 0x80000040L, 0x80200000L, 0x00202040L, 0x00200000L, 0x80002040L, 0x80200040L, 0x00000000L, 0x00002000L, 0x00000040L, 0x80202000L, 0x80200040L, 0x80202040L, 0x80200000L, 0x80000000L, 0x00002040L, 0x00000040L, 0x00202000L, 0x00202040L, 0x80002000L, 0x00002040L, 0x80000000L, 0x80002000L, 0x00202040L, 0x80202000L, 0x00200040L, 0x00000000L, 0x80002000L, 0x80000000L, 0x00002000L, 0x80200040L, 0x00200000L, 0x00200040L, 0x80202040L, 0x00202000L, 0x00000040L, 0x80202040L, 0x00202000L, 0x00200000L, 0x80002040L, 0x80000040L, 0x80200000L, 0x00202040L, 0x00000000L, 0x00002000L, 0x80000040L, 0x80002040L, 0x80202000L, 0x80200000L, 0x00002040L, 0x00000040L, 0x80200040L, }, { /* nibble 6 */ 0x00004000L, 0x00000200L, 0x01000200L, 0x01000004L, 0x01004204L, 0x00004004L, 0x00004200L, 0x00000000L, 0x01000000L, 0x01000204L, 0x00000204L, 0x01004000L, 0x00000004L, 0x01004200L, 0x01004000L, 0x00000204L, 0x01000204L, 0x00004000L, 0x00004004L, 0x01004204L, 0x00000000L, 0x01000200L, 0x01000004L, 0x00004200L, 0x01004004L, 0x00004204L, 0x01004200L, 0x00000004L, 0x00004204L, 0x01004004L, 0x00000200L, 0x01000000L, 0x00004204L, 0x01004000L, 0x01004004L, 0x00000204L, 0x00004000L, 0x00000200L, 0x01000000L, 0x01004004L, 0x01000204L, 0x00004204L, 0x00004200L, 0x00000000L, 0x00000200L, 0x01000004L, 0x00000004L, 0x01000200L, 0x00000000L, 0x01000204L, 0x01000200L, 0x00004200L, 0x00000204L, 0x00004000L, 0x01004204L, 0x01000000L, 0x01004200L, 0x00000004L, 0x00004004L, 0x01004204L, 0x01000004L, 0x01004200L, 0x01004000L, 0x00004004L, }, { /* nibble 7 */ 0x20800080L, 0x20820000L, 0x00020080L, 0x00000000L, 0x20020000L, 0x00800080L, 0x20800000L, 0x20820080L, 0x00000080L, 0x20000000L, 0x00820000L, 0x00020080L, 0x00820080L, 0x20020080L, 0x20000080L, 0x20800000L, 0x00020000L, 0x00820080L, 0x00800080L, 0x20020000L, 0x20820080L, 0x20000080L, 0x00000000L, 0x00820000L, 0x20000000L, 0x00800000L, 0x20020080L, 0x20800080L, 0x00800000L, 0x00020000L, 0x20820000L, 0x00000080L, 0x00800000L, 0x00020000L, 0x20000080L, 0x20820080L, 0x00020080L, 0x20000000L, 0x00000000L, 0x00820000L, 0x20800080L, 0x20020080L, 0x20020000L, 0x00800080L, 0x20820000L, 0x00000080L, 0x00800080L, 0x20020000L, 0x20820080L, 0x00800000L, 0x20800000L, 0x20000080L, 0x00820000L, 0x00020080L, 0x20020080L, 0x20800000L, 0x00000080L, 0x20820000L, 0x00820080L, 0x00000000L, 0x20000000L, 0x20800080L, 0x00020000L, 0x00820080L, } }; openssl-1.1.1f/crypto/des/str2key.c000066400000000000000000000045151364063235100172150ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "des_local.h" void DES_string_to_key(const char *str, DES_cblock *key) { DES_key_schedule ks; int i, length; memset(key, 0, 8); length = strlen(str); for (i = 0; i < length; i++) { register unsigned char j = str[i]; if ((i % 16) < 8) (*key)[i % 8] ^= (j << 1); else { /* Reverse the bit order 05/05/92 eay */ j = ((j << 4) & 0xf0) | ((j >> 4) & 0x0f); j = ((j << 2) & 0xcc) | ((j >> 2) & 0x33); j = ((j << 1) & 0xaa) | ((j >> 1) & 0x55); (*key)[7 - (i % 8)] ^= j; } } DES_set_odd_parity(key); DES_set_key_unchecked(key, &ks); DES_cbc_cksum((const unsigned char *)str, key, length, &ks, key); OPENSSL_cleanse(&ks, sizeof(ks)); DES_set_odd_parity(key); } void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2) { DES_key_schedule ks; int i, length; memset(key1, 0, 8); memset(key2, 0, 8); length = strlen(str); for (i = 0; i < length; i++) { register unsigned char j = str[i]; if ((i % 32) < 16) { if ((i % 16) < 8) (*key1)[i % 8] ^= (j << 1); else (*key2)[i % 8] ^= (j << 1); } else { j = ((j << 4) & 0xf0) | ((j >> 4) & 0x0f); j = ((j << 2) & 0xcc) | ((j >> 2) & 0x33); j = ((j << 1) & 0xaa) | ((j >> 1) & 0x55); if ((i % 16) < 8) (*key1)[7 - (i % 8)] ^= j; else (*key2)[7 - (i % 8)] ^= j; } } if (length <= 8) memcpy(key2, key1, 8); DES_set_odd_parity(key1); DES_set_odd_parity(key2); DES_set_key_unchecked(key1, &ks); DES_cbc_cksum((const unsigned char *)str, key1, length, &ks, key1); DES_set_key_unchecked(key2, &ks); DES_cbc_cksum((const unsigned char *)str, key2, length, &ks, key2); OPENSSL_cleanse(&ks, sizeof(ks)); DES_set_odd_parity(key1); DES_set_odd_parity(key2); } openssl-1.1.1f/crypto/des/xcbc_enc.c000066400000000000000000000056771364063235100173700ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "des_local.h" /* RSA's DESX */ void DES_xcbc_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *schedule, DES_cblock *ivec, const_DES_cblock *inw, const_DES_cblock *outw, int enc) { register DES_LONG tin0, tin1; register DES_LONG tout0, tout1, xor0, xor1; register DES_LONG inW0, inW1, outW0, outW1; register const unsigned char *in2; register long l = length; DES_LONG tin[2]; unsigned char *iv; in2 = &(*inw)[0]; c2l(in2, inW0); c2l(in2, inW1); in2 = &(*outw)[0]; c2l(in2, outW0); c2l(in2, outW1); iv = &(*ivec)[0]; if (enc) { c2l(iv, tout0); c2l(iv, tout1); for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0 ^ inW0; tin[0] = tin0; tin1 ^= tout1 ^ inW1; tin[1] = tin1; DES_encrypt1(tin, schedule, DES_ENCRYPT); tout0 = tin[0] ^ outW0; l2c(tout0, out); tout1 = tin[1] ^ outW1; l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0 ^ inW0; tin[0] = tin0; tin1 ^= tout1 ^ inW1; tin[1] = tin1; DES_encrypt1(tin, schedule, DES_ENCRYPT); tout0 = tin[0] ^ outW0; l2c(tout0, out); tout1 = tin[1] ^ outW1; l2c(tout1, out); } iv = &(*ivec)[0]; l2c(tout0, iv); l2c(tout1, iv); } else { c2l(iv, xor0); c2l(iv, xor1); for (l -= 8; l > 0; l -= 8) { c2l(in, tin0); tin[0] = tin0 ^ outW0; c2l(in, tin1); tin[1] = tin1 ^ outW1; DES_encrypt1(tin, schedule, DES_DECRYPT); tout0 = tin[0] ^ xor0 ^ inW0; tout1 = tin[1] ^ xor1 ^ inW1; l2c(tout0, out); l2c(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { c2l(in, tin0); tin[0] = tin0 ^ outW0; c2l(in, tin1); tin[1] = tin1 ^ outW1; DES_encrypt1(tin, schedule, DES_DECRYPT); tout0 = tin[0] ^ xor0 ^ inW0; tout1 = tin[1] ^ xor1 ^ inW1; l2cn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } iv = &(*ivec)[0]; l2c(xor0, iv); l2c(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; inW0 = inW1 = outW0 = outW1 = 0; tin[0] = tin[1] = 0; } openssl-1.1.1f/crypto/dh/000077500000000000000000000000001364063235100152615ustar00rootroot00000000000000openssl-1.1.1f/crypto/dh/build.info000066400000000000000000000003321364063235100172330ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ dh_asn1.c dh_gen.c dh_key.c dh_lib.c dh_check.c dh_err.c dh_depr.c \ dh_ameth.c dh_pmeth.c dh_prn.c dh_rfc5114.c dh_kdf.c dh_meth.c \ dh_rfc7919.c openssl-1.1.1f/crypto/dh/dh1024.pem000066400000000000000000000003651364063235100166720ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MIGHAoGBAJf2QmHKtQXdKCjhPx1ottPb0PMTBH9A6FbaWMsTuKG/K3g6TG1Z1fkq /Gz/PWk/eLI9TzFgqVAuPvr3q14a1aZeVUMTgo2oO5/y2UHe6VaJ+trqCTat3xlx /mNbIK9HA2RgPC3gWfVLZQrY+gz3ASHHR5nXWHEyvpuZm7m3h+irAgEC -----END DH PARAMETERS----- openssl-1.1.1f/crypto/dh/dh192.pem000066400000000000000000000001471364063235100166150ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MB4CGQDUoLoCULb9LsYm5+/WN992xxbiLQlEuIsCAQM= -----END DH PARAMETERS----- openssl-1.1.1f/crypto/dh/dh2048.pem000066400000000000000000000015201364063235100166730ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MIIBCAKCAQEA7ZKJNYJFVcs7+6J2WmkEYb8h86tT0s0h2v94GRFS8Q7B4lW9aG9o AFO5Imov5Jo0H2XMWTKKvbHbSe3fpxJmw/0hBHAY8H/W91hRGXKCeyKpNBgdL8sh z22SrkO2qCnHJ6PLAMXy5fsKpFmFor2tRfCzrfnggTXu2YOzzK7q62bmqVdmufEo pT8igNcLpvZxk5uBDvhakObMym9mX3rAEBoe8PwttggMYiiw7NuJKO4MqD1llGkW aVM8U2ATsCun1IKHrRxynkE1/MJ86VHeYYX8GZt2YA8z+GuzylIOKcMH6JAWzMwA Gbatw6QwizOhr9iMjZ0B26TE3X8LvW84wwIBAg== -----END DH PARAMETERS----- -----BEGIN DH PARAMETERS----- MIIBCAKCAQEArtA3w73zP6Lu3EOQtwogiXt3AXXpuS6yD4BhzNS1pZFyPHk0/an5 8ydEkPhQZHKDW+BZJxxPLANaTudWo2YT8TgtvUdN6KSgMiEi6McwqDw+SADuvW+F SKUYFxG6VFIxyEP6xBdf+vhJxEDbRG2EYsHDRRtJ76gp9cSKTHusf2R+4AAVGqnt gRAbNqtcOar/7FSj+Pl8G3v0Bty0LcCSpbqgYlnv6z+rErQmmC6PPvSz97TDMCok yKpCE9hFA1zkqK3TH4FmFvGeIaXJUIBZf4mArWuBTjWFW3nmhESRUn1VK3K3x42N a5k6c2+EhrMFiLjxuH6JZoqL0/E93FF9SwIBAg== -----END DH PARAMETERS----- openssl-1.1.1f/crypto/dh/dh4096.pem000066400000000000000000000014021364063235100166770ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MIICCAKCAgEA/urRnb6vkPYc/KEGXWnbCIOaKitq7ySIq9dTH7s+Ri59zs77zty7 vfVlSe6VFTBWgYjD2XKUFmtqq6CqXMhVX5ElUDoYDpAyTH85xqNFLzFC7nKrff/H TFKNttp22cZE9V0IPpzedPfnQkE7aUdmF9JnDyv21Z/818O93u1B4r0szdnmEvEF bKuIxEHX+bp0ZR7RqE1AeifXGJX3d6tsd2PMAObxwwsv55RGkn50vHO4QxtTARr1 rRUV5j3B3oPMgC7Offxx+98Xn45B1/G0Prp11anDsR1PGwtaCYipqsvMwQUSJtyE EOQWk+yFkeMe4vWv367eEi0Sd/wnC+TSXBE3pYvpYerJ8n1MceI5GQTdarJ77OW9 bGTHmxRsLSCM1jpLdPja5jjb4siAa6EHc4qN9c/iFKS3PQPJEnX7pXKBRs5f7AF3 W3RIGt+G9IVNZfXaS7Z/iCpgzgvKCs0VeqN38QsJGtC1aIkwOeyjPNy2G6jJ4yqH ovXYt/0mc00vCWeSNS1wren0pR2EiLxX0ypjjgsU1mk/Z3b/+zVf7fZSIB+nDLjb NPtUlJCVGnAeBK1J1nG3TQicqowOXoM6ISkdaXj5GPJdXHab2+S7cqhKGv5qC7rR jT6sx7RUr0CNTxzLI7muV2/a4tGmj0PSdXQdsZ7tw7gbXlaWT1+MM2MCAQI= -----END DH PARAMETERS----- openssl-1.1.1f/crypto/dh/dh512.pem000066400000000000000000000002341364063235100166060ustar00rootroot00000000000000-----BEGIN DH PARAMETERS----- MEYCQQDaWDwW2YUiidDkr3VvTMqS3UvlM7gE+w/tlO+cikQD7VdGUNNpmdsp13Yn a6LT1BLiGPTdHghM9tgAPnxHdOgzAgEC -----END DH PARAMETERS----- openssl-1.1.1f/crypto/dh/dh_ameth.c000066400000000000000000000546071364063235100172120ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "dh_local.h" #include #include "crypto/asn1.h" #include "crypto/evp.h" #include /* * i2d/d2i like DH parameter functions which use the appropriate routine for * PKCS#3 DH or X9.42 DH. */ static DH *d2i_dhp(const EVP_PKEY *pkey, const unsigned char **pp, long length) { if (pkey->ameth == &dhx_asn1_meth) return d2i_DHxparams(NULL, pp, length); return d2i_DHparams(NULL, pp, length); } static int i2d_dhp(const EVP_PKEY *pkey, const DH *a, unsigned char **pp) { if (pkey->ameth == &dhx_asn1_meth) return i2d_DHxparams(a, pp); return i2d_DHparams(a, pp); } static void int_dh_free(EVP_PKEY *pkey) { DH_free(pkey->pkey.dh); } static int dh_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) { const unsigned char *p, *pm; int pklen, pmlen; int ptype; const void *pval; const ASN1_STRING *pstr; X509_ALGOR *palg; ASN1_INTEGER *public_key = NULL; DH *dh = NULL; if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey)) return 0; X509_ALGOR_get0(NULL, &ptype, &pval, palg); if (ptype != V_ASN1_SEQUENCE) { DHerr(DH_F_DH_PUB_DECODE, DH_R_PARAMETER_ENCODING_ERROR); goto err; } pstr = pval; pm = pstr->data; pmlen = pstr->length; if ((dh = d2i_dhp(pkey, &pm, pmlen)) == NULL) { DHerr(DH_F_DH_PUB_DECODE, DH_R_DECODE_ERROR); goto err; } if ((public_key = d2i_ASN1_INTEGER(NULL, &p, pklen)) == NULL) { DHerr(DH_F_DH_PUB_DECODE, DH_R_DECODE_ERROR); goto err; } /* We have parameters now set public key */ if ((dh->pub_key = ASN1_INTEGER_to_BN(public_key, NULL)) == NULL) { DHerr(DH_F_DH_PUB_DECODE, DH_R_BN_DECODE_ERROR); goto err; } ASN1_INTEGER_free(public_key); EVP_PKEY_assign(pkey, pkey->ameth->pkey_id, dh); return 1; err: ASN1_INTEGER_free(public_key); DH_free(dh); return 0; } static int dh_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) { DH *dh; int ptype; unsigned char *penc = NULL; int penclen; ASN1_STRING *str; ASN1_INTEGER *pub_key = NULL; dh = pkey->pkey.dh; str = ASN1_STRING_new(); if (str == NULL) { DHerr(DH_F_DH_PUB_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } str->length = i2d_dhp(pkey, dh, &str->data); if (str->length <= 0) { DHerr(DH_F_DH_PUB_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } ptype = V_ASN1_SEQUENCE; pub_key = BN_to_ASN1_INTEGER(dh->pub_key, NULL); if (!pub_key) goto err; penclen = i2d_ASN1_INTEGER(pub_key, &penc); ASN1_INTEGER_free(pub_key); if (penclen <= 0) { DHerr(DH_F_DH_PUB_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(pkey->ameth->pkey_id), ptype, str, penc, penclen)) return 1; err: OPENSSL_free(penc); ASN1_STRING_free(str); return 0; } /* * PKCS#8 DH is defined in PKCS#11 of all places. It is similar to DH in that * the AlgorithmIdentifier contains the parameters, the private key is * explicitly included and the pubkey must be recalculated. */ static int dh_priv_decode(EVP_PKEY *pkey, const PKCS8_PRIV_KEY_INFO *p8) { const unsigned char *p, *pm; int pklen, pmlen; int ptype; const void *pval; const ASN1_STRING *pstr; const X509_ALGOR *palg; ASN1_INTEGER *privkey = NULL; DH *dh = NULL; if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8)) return 0; X509_ALGOR_get0(NULL, &ptype, &pval, palg); if (ptype != V_ASN1_SEQUENCE) goto decerr; if ((privkey = d2i_ASN1_INTEGER(NULL, &p, pklen)) == NULL) goto decerr; pstr = pval; pm = pstr->data; pmlen = pstr->length; if ((dh = d2i_dhp(pkey, &pm, pmlen)) == NULL) goto decerr; /* We have parameters now set private key */ if ((dh->priv_key = BN_secure_new()) == NULL || !ASN1_INTEGER_to_BN(privkey, dh->priv_key)) { DHerr(DH_F_DH_PRIV_DECODE, DH_R_BN_ERROR); goto dherr; } /* Calculate public key */ if (!DH_generate_key(dh)) goto dherr; EVP_PKEY_assign(pkey, pkey->ameth->pkey_id, dh); ASN1_STRING_clear_free(privkey); return 1; decerr: DHerr(DH_F_DH_PRIV_DECODE, EVP_R_DECODE_ERROR); dherr: DH_free(dh); ASN1_STRING_clear_free(privkey); return 0; } static int dh_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { ASN1_STRING *params = NULL; ASN1_INTEGER *prkey = NULL; unsigned char *dp = NULL; int dplen; params = ASN1_STRING_new(); if (params == NULL) { DHerr(DH_F_DH_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } params->length = i2d_dhp(pkey, pkey->pkey.dh, ¶ms->data); if (params->length <= 0) { DHerr(DH_F_DH_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } params->type = V_ASN1_SEQUENCE; /* Get private key into integer */ prkey = BN_to_ASN1_INTEGER(pkey->pkey.dh->priv_key, NULL); if (!prkey) { DHerr(DH_F_DH_PRIV_ENCODE, DH_R_BN_ERROR); goto err; } dplen = i2d_ASN1_INTEGER(prkey, &dp); ASN1_STRING_clear_free(prkey); prkey = NULL; if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(pkey->ameth->pkey_id), 0, V_ASN1_SEQUENCE, params, dp, dplen)) goto err; return 1; err: OPENSSL_free(dp); ASN1_STRING_free(params); ASN1_STRING_clear_free(prkey); return 0; } static int dh_param_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen) { DH *dh; if ((dh = d2i_dhp(pkey, pder, derlen)) == NULL) { DHerr(DH_F_DH_PARAM_DECODE, ERR_R_DH_LIB); return 0; } EVP_PKEY_assign(pkey, pkey->ameth->pkey_id, dh); return 1; } static int dh_param_encode(const EVP_PKEY *pkey, unsigned char **pder) { return i2d_dhp(pkey, pkey->pkey.dh, pder); } static int do_dh_print(BIO *bp, const DH *x, int indent, int ptype) { int reason = ERR_R_BUF_LIB; const char *ktype = NULL; BIGNUM *priv_key, *pub_key; if (ptype == 2) priv_key = x->priv_key; else priv_key = NULL; if (ptype > 0) pub_key = x->pub_key; else pub_key = NULL; if (x->p == NULL || (ptype == 2 && priv_key == NULL) || (ptype > 0 && pub_key == NULL)) { reason = ERR_R_PASSED_NULL_PARAMETER; goto err; } if (ptype == 2) ktype = "DH Private-Key"; else if (ptype == 1) ktype = "DH Public-Key"; else ktype = "DH Parameters"; BIO_indent(bp, indent, 128); if (BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) goto err; indent += 4; if (!ASN1_bn_print(bp, "private-key:", priv_key, NULL, indent)) goto err; if (!ASN1_bn_print(bp, "public-key:", pub_key, NULL, indent)) goto err; if (!ASN1_bn_print(bp, "prime:", x->p, NULL, indent)) goto err; if (!ASN1_bn_print(bp, "generator:", x->g, NULL, indent)) goto err; if (x->q && !ASN1_bn_print(bp, "subgroup order:", x->q, NULL, indent)) goto err; if (x->j && !ASN1_bn_print(bp, "subgroup factor:", x->j, NULL, indent)) goto err; if (x->seed) { int i; BIO_indent(bp, indent, 128); BIO_puts(bp, "seed:"); for (i = 0; i < x->seedlen; i++) { if ((i % 15) == 0) { if (BIO_puts(bp, "\n") <= 0 || !BIO_indent(bp, indent + 4, 128)) goto err; } if (BIO_printf(bp, "%02x%s", x->seed[i], ((i + 1) == x->seedlen) ? "" : ":") <= 0) goto err; } if (BIO_write(bp, "\n", 1) <= 0) return 0; } if (x->counter && !ASN1_bn_print(bp, "counter:", x->counter, NULL, indent)) goto err; if (x->length != 0) { BIO_indent(bp, indent, 128); if (BIO_printf(bp, "recommended-private-length: %d bits\n", (int)x->length) <= 0) goto err; } return 1; err: DHerr(DH_F_DO_DH_PRINT, reason); return 0; } static int int_dh_size(const EVP_PKEY *pkey) { return DH_size(pkey->pkey.dh); } static int dh_bits(const EVP_PKEY *pkey) { return BN_num_bits(pkey->pkey.dh->p); } static int dh_security_bits(const EVP_PKEY *pkey) { return DH_security_bits(pkey->pkey.dh); } static int dh_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) { if (BN_cmp(a->pkey.dh->p, b->pkey.dh->p) || BN_cmp(a->pkey.dh->g, b->pkey.dh->g)) return 0; else if (a->ameth == &dhx_asn1_meth) { if (BN_cmp(a->pkey.dh->q, b->pkey.dh->q)) return 0; } return 1; } static int int_dh_bn_cpy(BIGNUM **dst, const BIGNUM *src) { BIGNUM *a; /* * If source is read only just copy the pointer, so * we don't have to reallocate it. */ if (src == NULL) a = NULL; else if (BN_get_flags(src, BN_FLG_STATIC_DATA) && !BN_get_flags(src, BN_FLG_MALLOCED)) a = (BIGNUM *)src; else if ((a = BN_dup(src)) == NULL) return 0; BN_clear_free(*dst); *dst = a; return 1; } static int int_dh_param_copy(DH *to, const DH *from, int is_x942) { if (is_x942 == -1) is_x942 = ! !from->q; if (!int_dh_bn_cpy(&to->p, from->p)) return 0; if (!int_dh_bn_cpy(&to->g, from->g)) return 0; if (is_x942) { if (!int_dh_bn_cpy(&to->q, from->q)) return 0; if (!int_dh_bn_cpy(&to->j, from->j)) return 0; OPENSSL_free(to->seed); to->seed = NULL; to->seedlen = 0; if (from->seed) { to->seed = OPENSSL_memdup(from->seed, from->seedlen); if (!to->seed) return 0; to->seedlen = from->seedlen; } } else to->length = from->length; return 1; } DH *DHparams_dup(DH *dh) { DH *ret; ret = DH_new(); if (ret == NULL) return NULL; if (!int_dh_param_copy(ret, dh, -1)) { DH_free(ret); return NULL; } return ret; } static int dh_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from) { if (to->pkey.dh == NULL) { to->pkey.dh = DH_new(); if (to->pkey.dh == NULL) return 0; } return int_dh_param_copy(to->pkey.dh, from->pkey.dh, from->ameth == &dhx_asn1_meth); } static int dh_missing_parameters(const EVP_PKEY *a) { if (a->pkey.dh == NULL || a->pkey.dh->p == NULL || a->pkey.dh->g == NULL) return 1; return 0; } static int dh_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { if (dh_cmp_parameters(a, b) == 0) return 0; if (BN_cmp(b->pkey.dh->pub_key, a->pkey.dh->pub_key) != 0) return 0; else return 1; } static int dh_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dh_print(bp, pkey->pkey.dh, indent, 0); } static int dh_public_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dh_print(bp, pkey->pkey.dh, indent, 1); } static int dh_private_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dh_print(bp, pkey->pkey.dh, indent, 2); } int DHparams_print(BIO *bp, const DH *x) { return do_dh_print(bp, x, 4, 0); } #ifndef OPENSSL_NO_CMS static int dh_cms_decrypt(CMS_RecipientInfo *ri); static int dh_cms_encrypt(CMS_RecipientInfo *ri); #endif static int dh_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { switch (op) { #ifndef OPENSSL_NO_CMS case ASN1_PKEY_CTRL_CMS_ENVELOPE: if (arg1 == 1) return dh_cms_decrypt(arg2); else if (arg1 == 0) return dh_cms_encrypt(arg2); return -2; case ASN1_PKEY_CTRL_CMS_RI_TYPE: *(int *)arg2 = CMS_RECIPINFO_AGREE; return 1; #endif default: return -2; } } static int dh_pkey_public_check(const EVP_PKEY *pkey) { DH *dh = pkey->pkey.dh; if (dh->pub_key == NULL) { DHerr(DH_F_DH_PKEY_PUBLIC_CHECK, DH_R_MISSING_PUBKEY); return 0; } return DH_check_pub_key_ex(dh, dh->pub_key); } static int dh_pkey_param_check(const EVP_PKEY *pkey) { DH *dh = pkey->pkey.dh; return DH_check_ex(dh); } const EVP_PKEY_ASN1_METHOD dh_asn1_meth = { EVP_PKEY_DH, EVP_PKEY_DH, 0, "DH", "OpenSSL PKCS#3 DH method", dh_pub_decode, dh_pub_encode, dh_pub_cmp, dh_public_print, dh_priv_decode, dh_priv_encode, dh_private_print, int_dh_size, dh_bits, dh_security_bits, dh_param_decode, dh_param_encode, dh_missing_parameters, dh_copy_parameters, dh_cmp_parameters, dh_param_print, 0, int_dh_free, 0, 0, 0, 0, 0, 0, 0, dh_pkey_public_check, dh_pkey_param_check }; const EVP_PKEY_ASN1_METHOD dhx_asn1_meth = { EVP_PKEY_DHX, EVP_PKEY_DHX, 0, "X9.42 DH", "OpenSSL X9.42 DH method", dh_pub_decode, dh_pub_encode, dh_pub_cmp, dh_public_print, dh_priv_decode, dh_priv_encode, dh_private_print, int_dh_size, dh_bits, dh_security_bits, dh_param_decode, dh_param_encode, dh_missing_parameters, dh_copy_parameters, dh_cmp_parameters, dh_param_print, 0, int_dh_free, dh_pkey_ctrl, 0, 0, 0, 0, 0, 0, dh_pkey_public_check, dh_pkey_param_check }; #ifndef OPENSSL_NO_CMS static int dh_cms_set_peerkey(EVP_PKEY_CTX *pctx, X509_ALGOR *alg, ASN1_BIT_STRING *pubkey) { const ASN1_OBJECT *aoid; int atype; const void *aval; ASN1_INTEGER *public_key = NULL; int rv = 0; EVP_PKEY *pkpeer = NULL, *pk = NULL; DH *dhpeer = NULL; const unsigned char *p; int plen; X509_ALGOR_get0(&aoid, &atype, &aval, alg); if (OBJ_obj2nid(aoid) != NID_dhpublicnumber) goto err; /* Only absent parameters allowed in RFC XXXX */ if (atype != V_ASN1_UNDEF && atype == V_ASN1_NULL) goto err; pk = EVP_PKEY_CTX_get0_pkey(pctx); if (!pk) goto err; if (pk->type != EVP_PKEY_DHX) goto err; /* Get parameters from parent key */ dhpeer = DHparams_dup(pk->pkey.dh); /* We have parameters now set public key */ plen = ASN1_STRING_length(pubkey); p = ASN1_STRING_get0_data(pubkey); if (!p || !plen) goto err; if ((public_key = d2i_ASN1_INTEGER(NULL, &p, plen)) == NULL) { DHerr(DH_F_DH_CMS_SET_PEERKEY, DH_R_DECODE_ERROR); goto err; } /* We have parameters now set public key */ if ((dhpeer->pub_key = ASN1_INTEGER_to_BN(public_key, NULL)) == NULL) { DHerr(DH_F_DH_CMS_SET_PEERKEY, DH_R_BN_DECODE_ERROR); goto err; } pkpeer = EVP_PKEY_new(); if (pkpeer == NULL) goto err; EVP_PKEY_assign(pkpeer, pk->ameth->pkey_id, dhpeer); dhpeer = NULL; if (EVP_PKEY_derive_set_peer(pctx, pkpeer) > 0) rv = 1; err: ASN1_INTEGER_free(public_key); EVP_PKEY_free(pkpeer); DH_free(dhpeer); return rv; } static int dh_cms_set_shared_info(EVP_PKEY_CTX *pctx, CMS_RecipientInfo *ri) { int rv = 0; X509_ALGOR *alg, *kekalg = NULL; ASN1_OCTET_STRING *ukm; const unsigned char *p; unsigned char *dukm = NULL; size_t dukmlen = 0; int keylen, plen; const EVP_CIPHER *kekcipher; EVP_CIPHER_CTX *kekctx; if (!CMS_RecipientInfo_kari_get0_alg(ri, &alg, &ukm)) goto err; /* * For DH we only have one OID permissible. If ever any more get defined * we will need something cleverer. */ if (OBJ_obj2nid(alg->algorithm) != NID_id_smime_alg_ESDH) { DHerr(DH_F_DH_CMS_SET_SHARED_INFO, DH_R_KDF_PARAMETER_ERROR); goto err; } if (EVP_PKEY_CTX_set_dh_kdf_type(pctx, EVP_PKEY_DH_KDF_X9_42) <= 0) goto err; if (EVP_PKEY_CTX_set_dh_kdf_md(pctx, EVP_sha1()) <= 0) goto err; if (alg->parameter->type != V_ASN1_SEQUENCE) goto err; p = alg->parameter->value.sequence->data; plen = alg->parameter->value.sequence->length; kekalg = d2i_X509_ALGOR(NULL, &p, plen); if (!kekalg) goto err; kekctx = CMS_RecipientInfo_kari_get0_ctx(ri); if (!kekctx) goto err; kekcipher = EVP_get_cipherbyobj(kekalg->algorithm); if (!kekcipher || EVP_CIPHER_mode(kekcipher) != EVP_CIPH_WRAP_MODE) goto err; if (!EVP_EncryptInit_ex(kekctx, kekcipher, NULL, NULL, NULL)) goto err; if (EVP_CIPHER_asn1_to_param(kekctx, kekalg->parameter) <= 0) goto err; keylen = EVP_CIPHER_CTX_key_length(kekctx); if (EVP_PKEY_CTX_set_dh_kdf_outlen(pctx, keylen) <= 0) goto err; /* Use OBJ_nid2obj to ensure we use built in OID that isn't freed */ if (EVP_PKEY_CTX_set0_dh_kdf_oid(pctx, OBJ_nid2obj(EVP_CIPHER_type(kekcipher))) <= 0) goto err; if (ukm) { dukmlen = ASN1_STRING_length(ukm); dukm = OPENSSL_memdup(ASN1_STRING_get0_data(ukm), dukmlen); if (!dukm) goto err; } if (EVP_PKEY_CTX_set0_dh_kdf_ukm(pctx, dukm, dukmlen) <= 0) goto err; dukm = NULL; rv = 1; err: X509_ALGOR_free(kekalg); OPENSSL_free(dukm); return rv; } static int dh_cms_decrypt(CMS_RecipientInfo *ri) { EVP_PKEY_CTX *pctx; pctx = CMS_RecipientInfo_get0_pkey_ctx(ri); if (!pctx) return 0; /* See if we need to set peer key */ if (!EVP_PKEY_CTX_get0_peerkey(pctx)) { X509_ALGOR *alg; ASN1_BIT_STRING *pubkey; if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &alg, &pubkey, NULL, NULL, NULL)) return 0; if (!alg || !pubkey) return 0; if (!dh_cms_set_peerkey(pctx, alg, pubkey)) { DHerr(DH_F_DH_CMS_DECRYPT, DH_R_PEER_KEY_ERROR); return 0; } } /* Set DH derivation parameters and initialise unwrap context */ if (!dh_cms_set_shared_info(pctx, ri)) { DHerr(DH_F_DH_CMS_DECRYPT, DH_R_SHARED_INFO_ERROR); return 0; } return 1; } static int dh_cms_encrypt(CMS_RecipientInfo *ri) { EVP_PKEY_CTX *pctx; EVP_PKEY *pkey; EVP_CIPHER_CTX *ctx; int keylen; X509_ALGOR *talg, *wrap_alg = NULL; const ASN1_OBJECT *aoid; ASN1_BIT_STRING *pubkey; ASN1_STRING *wrap_str; ASN1_OCTET_STRING *ukm; unsigned char *penc = NULL, *dukm = NULL; int penclen; size_t dukmlen = 0; int rv = 0; int kdf_type, wrap_nid; const EVP_MD *kdf_md; pctx = CMS_RecipientInfo_get0_pkey_ctx(ri); if (!pctx) return 0; /* Get ephemeral key */ pkey = EVP_PKEY_CTX_get0_pkey(pctx); if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &talg, &pubkey, NULL, NULL, NULL)) goto err; X509_ALGOR_get0(&aoid, NULL, NULL, talg); /* Is everything uninitialised? */ if (aoid == OBJ_nid2obj(NID_undef)) { ASN1_INTEGER *pubk = BN_to_ASN1_INTEGER(pkey->pkey.dh->pub_key, NULL); if (!pubk) goto err; /* Set the key */ penclen = i2d_ASN1_INTEGER(pubk, &penc); ASN1_INTEGER_free(pubk); if (penclen <= 0) goto err; ASN1_STRING_set0(pubkey, penc, penclen); pubkey->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); pubkey->flags |= ASN1_STRING_FLAG_BITS_LEFT; penc = NULL; X509_ALGOR_set0(talg, OBJ_nid2obj(NID_dhpublicnumber), V_ASN1_UNDEF, NULL); } /* See if custom parameters set */ kdf_type = EVP_PKEY_CTX_get_dh_kdf_type(pctx); if (kdf_type <= 0) goto err; if (!EVP_PKEY_CTX_get_dh_kdf_md(pctx, &kdf_md)) goto err; if (kdf_type == EVP_PKEY_DH_KDF_NONE) { kdf_type = EVP_PKEY_DH_KDF_X9_42; if (EVP_PKEY_CTX_set_dh_kdf_type(pctx, kdf_type) <= 0) goto err; } else if (kdf_type != EVP_PKEY_DH_KDF_X9_42) /* Unknown KDF */ goto err; if (kdf_md == NULL) { /* Only SHA1 supported */ kdf_md = EVP_sha1(); if (EVP_PKEY_CTX_set_dh_kdf_md(pctx, kdf_md) <= 0) goto err; } else if (EVP_MD_type(kdf_md) != NID_sha1) /* Unsupported digest */ goto err; if (!CMS_RecipientInfo_kari_get0_alg(ri, &talg, &ukm)) goto err; /* Get wrap NID */ ctx = CMS_RecipientInfo_kari_get0_ctx(ri); wrap_nid = EVP_CIPHER_CTX_type(ctx); if (EVP_PKEY_CTX_set0_dh_kdf_oid(pctx, OBJ_nid2obj(wrap_nid)) <= 0) goto err; keylen = EVP_CIPHER_CTX_key_length(ctx); /* Package wrap algorithm in an AlgorithmIdentifier */ wrap_alg = X509_ALGOR_new(); if (wrap_alg == NULL) goto err; wrap_alg->algorithm = OBJ_nid2obj(wrap_nid); wrap_alg->parameter = ASN1_TYPE_new(); if (wrap_alg->parameter == NULL) goto err; if (EVP_CIPHER_param_to_asn1(ctx, wrap_alg->parameter) <= 0) goto err; if (ASN1_TYPE_get(wrap_alg->parameter) == NID_undef) { ASN1_TYPE_free(wrap_alg->parameter); wrap_alg->parameter = NULL; } if (EVP_PKEY_CTX_set_dh_kdf_outlen(pctx, keylen) <= 0) goto err; if (ukm) { dukmlen = ASN1_STRING_length(ukm); dukm = OPENSSL_memdup(ASN1_STRING_get0_data(ukm), dukmlen); if (!dukm) goto err; } if (EVP_PKEY_CTX_set0_dh_kdf_ukm(pctx, dukm, dukmlen) <= 0) goto err; dukm = NULL; /* * Now need to wrap encoding of wrap AlgorithmIdentifier into parameter * of another AlgorithmIdentifier. */ penc = NULL; penclen = i2d_X509_ALGOR(wrap_alg, &penc); if (!penc || !penclen) goto err; wrap_str = ASN1_STRING_new(); if (wrap_str == NULL) goto err; ASN1_STRING_set0(wrap_str, penc, penclen); penc = NULL; X509_ALGOR_set0(talg, OBJ_nid2obj(NID_id_smime_alg_ESDH), V_ASN1_SEQUENCE, wrap_str); rv = 1; err: OPENSSL_free(penc); X509_ALGOR_free(wrap_alg); OPENSSL_free(dukm); return rv; } #endif openssl-1.1.1f/crypto/dh/dh_asn1.c000066400000000000000000000071661364063235100167540ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "dh_local.h" #include #include /* Override the default free and new methods */ static int dh_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_NEW_PRE) { *pval = (ASN1_VALUE *)DH_new(); if (*pval != NULL) return 2; return 0; } else if (operation == ASN1_OP_FREE_PRE) { DH_free((DH *)*pval); *pval = NULL; return 2; } return 1; } ASN1_SEQUENCE_cb(DHparams, dh_cb) = { ASN1_SIMPLE(DH, p, BIGNUM), ASN1_SIMPLE(DH, g, BIGNUM), ASN1_OPT_EMBED(DH, length, ZINT32), } ASN1_SEQUENCE_END_cb(DH, DHparams) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DH, DHparams, DHparams) /* * Internal only structures for handling X9.42 DH: this gets translated to or * from a DH structure straight away. */ typedef struct { ASN1_BIT_STRING *seed; BIGNUM *counter; } int_dhvparams; typedef struct { BIGNUM *p; BIGNUM *q; BIGNUM *g; BIGNUM *j; int_dhvparams *vparams; } int_dhx942_dh; ASN1_SEQUENCE(DHvparams) = { ASN1_SIMPLE(int_dhvparams, seed, ASN1_BIT_STRING), ASN1_SIMPLE(int_dhvparams, counter, BIGNUM) } static_ASN1_SEQUENCE_END_name(int_dhvparams, DHvparams) ASN1_SEQUENCE(DHxparams) = { ASN1_SIMPLE(int_dhx942_dh, p, BIGNUM), ASN1_SIMPLE(int_dhx942_dh, g, BIGNUM), ASN1_SIMPLE(int_dhx942_dh, q, BIGNUM), ASN1_OPT(int_dhx942_dh, j, BIGNUM), ASN1_OPT(int_dhx942_dh, vparams, DHvparams), } static_ASN1_SEQUENCE_END_name(int_dhx942_dh, DHxparams) int_dhx942_dh *d2i_int_dhx(int_dhx942_dh **a, const unsigned char **pp, long length); int i2d_int_dhx(const int_dhx942_dh *a, unsigned char **pp); IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(int_dhx942_dh, DHxparams, int_dhx) /* Application public function: read in X9.42 DH parameters into DH structure */ DH *d2i_DHxparams(DH **a, const unsigned char **pp, long length) { int_dhx942_dh *dhx = NULL; DH *dh = NULL; dh = DH_new(); if (dh == NULL) return NULL; dhx = d2i_int_dhx(NULL, pp, length); if (dhx == NULL) { DH_free(dh); return NULL; } if (a) { DH_free(*a); *a = dh; } dh->p = dhx->p; dh->q = dhx->q; dh->g = dhx->g; dh->j = dhx->j; if (dhx->vparams) { dh->seed = dhx->vparams->seed->data; dh->seedlen = dhx->vparams->seed->length; dh->counter = dhx->vparams->counter; dhx->vparams->seed->data = NULL; ASN1_BIT_STRING_free(dhx->vparams->seed); OPENSSL_free(dhx->vparams); dhx->vparams = NULL; } OPENSSL_free(dhx); return dh; } int i2d_DHxparams(const DH *dh, unsigned char **pp) { int_dhx942_dh dhx; int_dhvparams dhv; ASN1_BIT_STRING bs; dhx.p = dh->p; dhx.g = dh->g; dhx.q = dh->q; dhx.j = dh->j; if (dh->counter && dh->seed && dh->seedlen > 0) { bs.flags = ASN1_STRING_FLAG_BITS_LEFT; bs.data = dh->seed; bs.length = dh->seedlen; dhv.seed = &bs; dhv.counter = dh->counter; dhx.vparams = &dhv; } else dhx.vparams = NULL; return i2d_int_dhx(&dhx, pp); } openssl-1.1.1f/crypto/dh/dh_check.c000066400000000000000000000132571364063235100171650ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "dh_local.h" # define DH_NUMBER_ITERATIONS_FOR_PRIME 64 /*- * Check that p and g are suitable enough * * p is odd * 1 < g < p - 1 */ int DH_check_params_ex(const DH *dh) { int errflags = 0; if (!DH_check_params(dh, &errflags)) return 0; if ((errflags & DH_CHECK_P_NOT_PRIME) != 0) DHerr(DH_F_DH_CHECK_PARAMS_EX, DH_R_CHECK_P_NOT_PRIME); if ((errflags & DH_NOT_SUITABLE_GENERATOR) != 0) DHerr(DH_F_DH_CHECK_PARAMS_EX, DH_R_NOT_SUITABLE_GENERATOR); return errflags == 0; } int DH_check_params(const DH *dh, int *ret) { int ok = 0; BIGNUM *tmp = NULL; BN_CTX *ctx = NULL; *ret = 0; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL) goto err; if (!BN_is_odd(dh->p)) *ret |= DH_CHECK_P_NOT_PRIME; if (BN_is_negative(dh->g) || BN_is_zero(dh->g) || BN_is_one(dh->g)) *ret |= DH_NOT_SUITABLE_GENERATOR; if (BN_copy(tmp, dh->p) == NULL || !BN_sub_word(tmp, 1)) goto err; if (BN_cmp(dh->g, tmp) >= 0) *ret |= DH_NOT_SUITABLE_GENERATOR; ok = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; } /*- * Check that p is a safe prime and * g is a suitable generator. */ int DH_check_ex(const DH *dh) { int errflags = 0; if (!DH_check(dh, &errflags)) return 0; if ((errflags & DH_NOT_SUITABLE_GENERATOR) != 0) DHerr(DH_F_DH_CHECK_EX, DH_R_NOT_SUITABLE_GENERATOR); if ((errflags & DH_CHECK_Q_NOT_PRIME) != 0) DHerr(DH_F_DH_CHECK_EX, DH_R_CHECK_Q_NOT_PRIME); if ((errflags & DH_CHECK_INVALID_Q_VALUE) != 0) DHerr(DH_F_DH_CHECK_EX, DH_R_CHECK_INVALID_Q_VALUE); if ((errflags & DH_CHECK_INVALID_J_VALUE) != 0) DHerr(DH_F_DH_CHECK_EX, DH_R_CHECK_INVALID_J_VALUE); if ((errflags & DH_UNABLE_TO_CHECK_GENERATOR) != 0) DHerr(DH_F_DH_CHECK_EX, DH_R_UNABLE_TO_CHECK_GENERATOR); if ((errflags & DH_CHECK_P_NOT_PRIME) != 0) DHerr(DH_F_DH_CHECK_EX, DH_R_CHECK_P_NOT_PRIME); if ((errflags & DH_CHECK_P_NOT_SAFE_PRIME) != 0) DHerr(DH_F_DH_CHECK_EX, DH_R_CHECK_P_NOT_SAFE_PRIME); return errflags == 0; } int DH_check(const DH *dh, int *ret) { int ok = 0, r; BN_CTX *ctx = NULL; BIGNUM *t1 = NULL, *t2 = NULL; if (!DH_check_params(dh, ret)) return 0; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); if (t2 == NULL) goto err; if (dh->q) { if (BN_cmp(dh->g, BN_value_one()) <= 0) *ret |= DH_NOT_SUITABLE_GENERATOR; else if (BN_cmp(dh->g, dh->p) >= 0) *ret |= DH_NOT_SUITABLE_GENERATOR; else { /* Check g^q == 1 mod p */ if (!BN_mod_exp(t1, dh->g, dh->q, dh->p, ctx)) goto err; if (!BN_is_one(t1)) *ret |= DH_NOT_SUITABLE_GENERATOR; } r = BN_is_prime_ex(dh->q, DH_NUMBER_ITERATIONS_FOR_PRIME, ctx, NULL); if (r < 0) goto err; if (!r) *ret |= DH_CHECK_Q_NOT_PRIME; /* Check p == 1 mod q i.e. q divides p - 1 */ if (!BN_div(t1, t2, dh->p, dh->q, ctx)) goto err; if (!BN_is_one(t2)) *ret |= DH_CHECK_INVALID_Q_VALUE; if (dh->j && BN_cmp(dh->j, t1)) *ret |= DH_CHECK_INVALID_J_VALUE; } r = BN_is_prime_ex(dh->p, DH_NUMBER_ITERATIONS_FOR_PRIME, ctx, NULL); if (r < 0) goto err; if (!r) *ret |= DH_CHECK_P_NOT_PRIME; else if (!dh->q) { if (!BN_rshift1(t1, dh->p)) goto err; r = BN_is_prime_ex(t1, DH_NUMBER_ITERATIONS_FOR_PRIME, ctx, NULL); if (r < 0) goto err; if (!r) *ret |= DH_CHECK_P_NOT_SAFE_PRIME; } ok = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; } int DH_check_pub_key_ex(const DH *dh, const BIGNUM *pub_key) { int errflags = 0; if (!DH_check_pub_key(dh, pub_key, &errflags)) return 0; if ((errflags & DH_CHECK_PUBKEY_TOO_SMALL) != 0) DHerr(DH_F_DH_CHECK_PUB_KEY_EX, DH_R_CHECK_PUBKEY_TOO_SMALL); if ((errflags & DH_CHECK_PUBKEY_TOO_LARGE) != 0) DHerr(DH_F_DH_CHECK_PUB_KEY_EX, DH_R_CHECK_PUBKEY_TOO_LARGE); if ((errflags & DH_CHECK_PUBKEY_INVALID) != 0) DHerr(DH_F_DH_CHECK_PUB_KEY_EX, DH_R_CHECK_PUBKEY_INVALID); return errflags == 0; } int DH_check_pub_key(const DH *dh, const BIGNUM *pub_key, int *ret) { int ok = 0; BIGNUM *tmp = NULL; BN_CTX *ctx = NULL; *ret = 0; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL || !BN_set_word(tmp, 1)) goto err; if (BN_cmp(pub_key, tmp) <= 0) *ret |= DH_CHECK_PUBKEY_TOO_SMALL; if (BN_copy(tmp, dh->p) == NULL || !BN_sub_word(tmp, 1)) goto err; if (BN_cmp(pub_key, tmp) >= 0) *ret |= DH_CHECK_PUBKEY_TOO_LARGE; if (dh->q != NULL) { /* Check pub_key^q == 1 mod p */ if (!BN_mod_exp(tmp, pub_key, dh->q, dh->p, ctx)) goto err; if (!BN_is_one(tmp)) *ret |= DH_CHECK_PUBKEY_INVALID; } ok = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; } openssl-1.1.1f/crypto/dh/dh_depr.c000066400000000000000000000022321364063235100170310ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This file contains deprecated functions as wrappers to the new ones */ #include #if OPENSSL_API_COMPAT >= 0x00908000L NON_EMPTY_TRANSLATION_UNIT #else # include # include "internal/cryptlib.h" # include # include DH *DH_generate_parameters(int prime_len, int generator, void (*callback) (int, int, void *), void *cb_arg) { BN_GENCB *cb; DH *ret = NULL; if ((ret = DH_new()) == NULL) return NULL; cb = BN_GENCB_new(); if (cb == NULL) { DH_free(ret); return NULL; } BN_GENCB_set_old(cb, callback, cb_arg); if (DH_generate_parameters_ex(ret, prime_len, generator, cb)) { BN_GENCB_free(cb); return ret; } BN_GENCB_free(cb); DH_free(ret); return NULL; } #endif openssl-1.1.1f/crypto/dh/dh_err.c000066400000000000000000000112551364063235100166740ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA DH_str_functs[] = { {ERR_PACK(ERR_LIB_DH, DH_F_COMPUTE_KEY, 0), "compute_key"}, {ERR_PACK(ERR_LIB_DH, DH_F_DHPARAMS_PRINT_FP, 0), "DHparams_print_fp"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_BUILTIN_GENPARAMS, 0), "dh_builtin_genparams"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_CHECK_EX, 0), "DH_check_ex"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_CHECK_PARAMS_EX, 0), "DH_check_params_ex"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_CHECK_PUB_KEY_EX, 0), "DH_check_pub_key_ex"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_CMS_DECRYPT, 0), "dh_cms_decrypt"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_CMS_SET_PEERKEY, 0), "dh_cms_set_peerkey"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_CMS_SET_SHARED_INFO, 0), "dh_cms_set_shared_info"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_METH_DUP, 0), "DH_meth_dup"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_METH_NEW, 0), "DH_meth_new"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_METH_SET1_NAME, 0), "DH_meth_set1_name"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_NEW_BY_NID, 0), "DH_new_by_nid"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_NEW_METHOD, 0), "DH_new_method"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_PARAM_DECODE, 0), "dh_param_decode"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_PKEY_PUBLIC_CHECK, 0), "dh_pkey_public_check"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_PRIV_DECODE, 0), "dh_priv_decode"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_PRIV_ENCODE, 0), "dh_priv_encode"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_PUB_DECODE, 0), "dh_pub_decode"}, {ERR_PACK(ERR_LIB_DH, DH_F_DH_PUB_ENCODE, 0), "dh_pub_encode"}, {ERR_PACK(ERR_LIB_DH, DH_F_DO_DH_PRINT, 0), "do_dh_print"}, {ERR_PACK(ERR_LIB_DH, DH_F_GENERATE_KEY, 0), "generate_key"}, {ERR_PACK(ERR_LIB_DH, DH_F_PKEY_DH_CTRL_STR, 0), "pkey_dh_ctrl_str"}, {ERR_PACK(ERR_LIB_DH, DH_F_PKEY_DH_DERIVE, 0), "pkey_dh_derive"}, {ERR_PACK(ERR_LIB_DH, DH_F_PKEY_DH_INIT, 0), "pkey_dh_init"}, {ERR_PACK(ERR_LIB_DH, DH_F_PKEY_DH_KEYGEN, 0), "pkey_dh_keygen"}, {0, NULL} }; static const ERR_STRING_DATA DH_str_reasons[] = { {ERR_PACK(ERR_LIB_DH, 0, DH_R_BAD_GENERATOR), "bad generator"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_BN_DECODE_ERROR), "bn decode error"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_BN_ERROR), "bn error"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_INVALID_J_VALUE), "check invalid j value"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_INVALID_Q_VALUE), "check invalid q value"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_PUBKEY_INVALID), "check pubkey invalid"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_PUBKEY_TOO_LARGE), "check pubkey too large"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_PUBKEY_TOO_SMALL), "check pubkey too small"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_P_NOT_PRIME), "check p not prime"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_P_NOT_SAFE_PRIME), "check p not safe prime"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_CHECK_Q_NOT_PRIME), "check q not prime"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_DECODE_ERROR), "decode error"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_INVALID_PARAMETER_NAME), "invalid parameter name"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_INVALID_PARAMETER_NID), "invalid parameter nid"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_INVALID_PUBKEY), "invalid public key"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_KDF_PARAMETER_ERROR), "kdf parameter error"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_KEYS_NOT_SET), "keys not set"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_MISSING_PUBKEY), "missing pubkey"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_MODULUS_TOO_LARGE), "modulus too large"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_NOT_SUITABLE_GENERATOR), "not suitable generator"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_NO_PARAMETERS_SET), "no parameters set"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_NO_PRIVATE_VALUE), "no private value"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_PARAMETER_ENCODING_ERROR), "parameter encoding error"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_PEER_KEY_ERROR), "peer key error"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_SHARED_INFO_ERROR), "shared info error"}, {ERR_PACK(ERR_LIB_DH, 0, DH_R_UNABLE_TO_CHECK_GENERATOR), "unable to check generator"}, {0, NULL} }; #endif int ERR_load_DH_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(DH_str_functs[0].error) == NULL) { ERR_load_strings_const(DH_str_functs); ERR_load_strings_const(DH_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/dh/dh_gen.c000066400000000000000000000074051364063235100166570ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * NB: These functions have been upgraded - the previous prototypes are in * dh_depr.c as wrappers to these ones. - Geoff */ #include #include "internal/cryptlib.h" #include #include "dh_local.h" static int dh_builtin_genparams(DH *ret, int prime_len, int generator, BN_GENCB *cb); int DH_generate_parameters_ex(DH *ret, int prime_len, int generator, BN_GENCB *cb) { if (ret->meth->generate_params) return ret->meth->generate_params(ret, prime_len, generator, cb); return dh_builtin_genparams(ret, prime_len, generator, cb); } /*- * We generate DH parameters as follows * find a prime p which is prime_len bits long, * where q=(p-1)/2 is also prime. * In the following we assume that g is not 0, 1 or p-1, since it * would generate only trivial subgroups. * For this case, g is a generator of the order-q subgroup if * g^q mod p == 1. * Or in terms of the Legendre symbol: (g/p) == 1. * * Having said all that, * there is another special case method for the generators 2, 3 and 5. * Using the quadratic reciprocity law it is possible to solve * (g/p) == 1 for the special values 2, 3, 5: * (2/p) == 1 if p mod 8 == 1 or 7. * (3/p) == 1 if p mod 12 == 1 or 11. * (5/p) == 1 if p mod 5 == 1 or 4. * See for instance: https://en.wikipedia.org/wiki/Legendre_symbol * * Since all safe primes > 7 must satisfy p mod 12 == 11 * and all safe primes > 11 must satisfy p mod 5 != 1 * we can further improve the condition for g = 2, 3 and 5: * for 2, p mod 24 == 23 * for 3, p mod 12 == 11 * for 5, p mod 60 == 59 * * However for compatibility with previous versions we use: * for 2, p mod 24 == 11 * for 5, p mod 60 == 23 */ static int dh_builtin_genparams(DH *ret, int prime_len, int generator, BN_GENCB *cb) { BIGNUM *t1, *t2; int g, ok = -1; BN_CTX *ctx = NULL; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); if (t2 == NULL) goto err; /* Make sure 'ret' has the necessary elements */ if (!ret->p && ((ret->p = BN_new()) == NULL)) goto err; if (!ret->g && ((ret->g = BN_new()) == NULL)) goto err; if (generator <= 1) { DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR); goto err; } if (generator == DH_GENERATOR_2) { if (!BN_set_word(t1, 24)) goto err; if (!BN_set_word(t2, 11)) goto err; g = 2; } else if (generator == DH_GENERATOR_5) { if (!BN_set_word(t1, 60)) goto err; if (!BN_set_word(t2, 23)) goto err; g = 5; } else { /* * in the general case, don't worry if 'generator' is a generator or * not: since we are using safe primes, it will generate either an * order-q or an order-2q group, which both is OK */ if (!BN_set_word(t1, 12)) goto err; if (!BN_set_word(t2, 11)) goto err; g = generator; } if (!BN_generate_prime_ex(ret->p, prime_len, 1, t1, t2, cb)) goto err; if (!BN_GENCB_call(cb, 3, 0)) goto err; if (!BN_set_word(ret->g, g)) goto err; ok = 1; err: if (ok == -1) { DHerr(DH_F_DH_BUILTIN_GENPARAMS, ERR_R_BN_LIB); ok = 0; } BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; } openssl-1.1.1f/crypto/dh/dh_kdf.c000066400000000000000000000103531364063235100166460ustar00rootroot00000000000000/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #ifndef OPENSSL_NO_CMS #include #include #include #include #include /* Key derivation from X9.42/RFC2631 */ /* Uses CMS functions, hence the #ifdef wrapper. */ #define DH_KDF_MAX (1L << 30) /* Skip past an ASN1 structure: for OBJECT skip content octets too */ static int skip_asn1(unsigned char **pp, long *plen, int exptag) { const unsigned char *q = *pp; int i, tag, xclass; long tmplen; i = ASN1_get_object(&q, &tmplen, &tag, &xclass, *plen); if (i & 0x80) return 0; if (tag != exptag || xclass != V_ASN1_UNIVERSAL) return 0; if (tag == V_ASN1_OBJECT) q += tmplen; *plen -= q - *pp; *pp = (unsigned char *)q; return 1; } /* * Encode the DH shared info structure, return an offset to the counter value * so we can update the structure without reencoding it. */ static int dh_sharedinfo_encode(unsigned char **pder, unsigned char **pctr, ASN1_OBJECT *key_oid, size_t outlen, const unsigned char *ukm, size_t ukmlen) { unsigned char *p; int derlen; long tlen; /* "magic" value to check offset is sane */ static unsigned char ctr[4] = { 0xF3, 0x17, 0x22, 0x53 }; X509_ALGOR atmp; ASN1_OCTET_STRING ctr_oct, ukm_oct, *pukm_oct; ASN1_TYPE ctr_atype; if (ukmlen > DH_KDF_MAX || outlen > DH_KDF_MAX) return 0; ctr_oct.data = ctr; ctr_oct.length = 4; ctr_oct.flags = 0; ctr_oct.type = V_ASN1_OCTET_STRING; ctr_atype.type = V_ASN1_OCTET_STRING; ctr_atype.value.octet_string = &ctr_oct; atmp.algorithm = key_oid; atmp.parameter = &ctr_atype; if (ukm) { ukm_oct.type = V_ASN1_OCTET_STRING; ukm_oct.flags = 0; ukm_oct.data = (unsigned char *)ukm; ukm_oct.length = ukmlen; pukm_oct = &ukm_oct; } else pukm_oct = NULL; derlen = CMS_SharedInfo_encode(pder, &atmp, pukm_oct, outlen); if (derlen <= 0) return 0; p = *pder; tlen = derlen; if (!skip_asn1(&p, &tlen, V_ASN1_SEQUENCE)) return 0; if (!skip_asn1(&p, &tlen, V_ASN1_SEQUENCE)) return 0; if (!skip_asn1(&p, &tlen, V_ASN1_OBJECT)) return 0; if (!skip_asn1(&p, &tlen, V_ASN1_OCTET_STRING)) return 0; if (CRYPTO_memcmp(p, ctr, 4)) return 0; *pctr = p; return derlen; } int DH_KDF_X9_42(unsigned char *out, size_t outlen, const unsigned char *Z, size_t Zlen, ASN1_OBJECT *key_oid, const unsigned char *ukm, size_t ukmlen, const EVP_MD *md) { EVP_MD_CTX *mctx = NULL; int rv = 0; unsigned int i; size_t mdlen; unsigned char *der = NULL, *ctr; int derlen; if (Zlen > DH_KDF_MAX) return 0; mctx = EVP_MD_CTX_new(); if (mctx == NULL) return 0; mdlen = EVP_MD_size(md); derlen = dh_sharedinfo_encode(&der, &ctr, key_oid, outlen, ukm, ukmlen); if (derlen == 0) goto err; for (i = 1;; i++) { unsigned char mtmp[EVP_MAX_MD_SIZE]; if (!EVP_DigestInit_ex(mctx, md, NULL) || !EVP_DigestUpdate(mctx, Z, Zlen)) goto err; ctr[3] = i & 0xFF; ctr[2] = (i >> 8) & 0xFF; ctr[1] = (i >> 16) & 0xFF; ctr[0] = (i >> 24) & 0xFF; if (!EVP_DigestUpdate(mctx, der, derlen)) goto err; if (outlen >= mdlen) { if (!EVP_DigestFinal(mctx, out, NULL)) goto err; outlen -= mdlen; if (outlen == 0) break; out += mdlen; } else { if (!EVP_DigestFinal(mctx, mtmp, NULL)) goto err; memcpy(out, mtmp, outlen); OPENSSL_cleanse(mtmp, mdlen); break; } } rv = 1; err: OPENSSL_free(der); EVP_MD_CTX_free(mctx); return rv; } #endif openssl-1.1.1f/crypto/dh/dh_key.c000066400000000000000000000135461364063235100167010ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "dh_local.h" #include "crypto/bn.h" static int generate_key(DH *dh); static int compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh); static int dh_bn_mod_exp(const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); static int dh_init(DH *dh); static int dh_finish(DH *dh); int DH_generate_key(DH *dh) { return dh->meth->generate_key(dh); } int DH_compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh) { return dh->meth->compute_key(key, pub_key, dh); } int DH_compute_key_padded(unsigned char *key, const BIGNUM *pub_key, DH *dh) { int rv, pad; rv = dh->meth->compute_key(key, pub_key, dh); if (rv <= 0) return rv; pad = BN_num_bytes(dh->p) - rv; if (pad > 0) { memmove(key + pad, key, rv); memset(key, 0, pad); } return rv + pad; } static DH_METHOD dh_ossl = { "OpenSSL DH Method", generate_key, compute_key, dh_bn_mod_exp, dh_init, dh_finish, DH_FLAG_FIPS_METHOD, NULL, NULL }; static const DH_METHOD *default_DH_method = &dh_ossl; const DH_METHOD *DH_OpenSSL(void) { return &dh_ossl; } void DH_set_default_method(const DH_METHOD *meth) { default_DH_method = meth; } const DH_METHOD *DH_get_default_method(void) { return default_DH_method; } static int generate_key(DH *dh) { int ok = 0; int generate_new_key = 0; unsigned l; BN_CTX *ctx = NULL; BN_MONT_CTX *mont = NULL; BIGNUM *pub_key = NULL, *priv_key = NULL; if (BN_num_bits(dh->p) > OPENSSL_DH_MAX_MODULUS_BITS) { DHerr(DH_F_GENERATE_KEY, DH_R_MODULUS_TOO_LARGE); return 0; } ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (dh->priv_key == NULL) { priv_key = BN_secure_new(); if (priv_key == NULL) goto err; generate_new_key = 1; } else priv_key = dh->priv_key; if (dh->pub_key == NULL) { pub_key = BN_new(); if (pub_key == NULL) goto err; } else pub_key = dh->pub_key; if (dh->flags & DH_FLAG_CACHE_MONT_P) { mont = BN_MONT_CTX_set_locked(&dh->method_mont_p, dh->lock, dh->p, ctx); if (!mont) goto err; } if (generate_new_key) { if (dh->q) { do { if (!BN_priv_rand_range(priv_key, dh->q)) goto err; } while (BN_is_zero(priv_key) || BN_is_one(priv_key)); } else { /* secret exponent length */ l = dh->length ? dh->length : BN_num_bits(dh->p) - 1; if (!BN_priv_rand(priv_key, l, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) goto err; /* * We handle just one known case where g is a quadratic non-residue: * for g = 2: p % 8 == 3 */ if (BN_is_word(dh->g, DH_GENERATOR_2) && !BN_is_bit_set(dh->p, 2)) { /* clear bit 0, since it won't be a secret anyway */ if (!BN_clear_bit(priv_key, 0)) goto err; } } } { BIGNUM *prk = BN_new(); if (prk == NULL) goto err; BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME); if (!dh->meth->bn_mod_exp(dh, pub_key, dh->g, prk, dh->p, ctx, mont)) { BN_clear_free(prk); goto err; } /* We MUST free prk before any further use of priv_key */ BN_clear_free(prk); } dh->pub_key = pub_key; dh->priv_key = priv_key; ok = 1; err: if (ok != 1) DHerr(DH_F_GENERATE_KEY, ERR_R_BN_LIB); if (pub_key != dh->pub_key) BN_free(pub_key); if (priv_key != dh->priv_key) BN_free(priv_key); BN_CTX_free(ctx); return ok; } static int compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh) { BN_CTX *ctx = NULL; BN_MONT_CTX *mont = NULL; BIGNUM *tmp; int ret = -1; int check_result; if (BN_num_bits(dh->p) > OPENSSL_DH_MAX_MODULUS_BITS) { DHerr(DH_F_COMPUTE_KEY, DH_R_MODULUS_TOO_LARGE); goto err; } ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL) goto err; if (dh->priv_key == NULL) { DHerr(DH_F_COMPUTE_KEY, DH_R_NO_PRIVATE_VALUE); goto err; } if (dh->flags & DH_FLAG_CACHE_MONT_P) { mont = BN_MONT_CTX_set_locked(&dh->method_mont_p, dh->lock, dh->p, ctx); BN_set_flags(dh->priv_key, BN_FLG_CONSTTIME); if (!mont) goto err; } if (!DH_check_pub_key(dh, pub_key, &check_result) || check_result) { DHerr(DH_F_COMPUTE_KEY, DH_R_INVALID_PUBKEY); goto err; } if (!dh-> meth->bn_mod_exp(dh, tmp, pub_key, dh->priv_key, dh->p, ctx, mont)) { DHerr(DH_F_COMPUTE_KEY, ERR_R_BN_LIB); goto err; } ret = BN_bn2bin(tmp, key); err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } static int dh_bn_mod_exp(const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return BN_mod_exp_mont(r, a, p, m, ctx, m_ctx); } static int dh_init(DH *dh) { dh->flags |= DH_FLAG_CACHE_MONT_P; return 1; } static int dh_finish(DH *dh) { BN_MONT_CTX_free(dh->method_mont_p); return 1; } openssl-1.1.1f/crypto/dh/dh_lib.c000066400000000000000000000132131364063235100166460ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include #include "dh_local.h" #include int DH_set_method(DH *dh, const DH_METHOD *meth) { /* * NB: The caller is specifically setting a method, so it's not up to us * to deal with which ENGINE it comes from. */ const DH_METHOD *mtmp; mtmp = dh->meth; if (mtmp->finish) mtmp->finish(dh); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(dh->engine); dh->engine = NULL; #endif dh->meth = meth; if (meth->init) meth->init(dh); return 1; } DH *DH_new(void) { return DH_new_method(NULL); } DH *DH_new_method(ENGINE *engine) { DH *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { DHerr(DH_F_DH_NEW_METHOD, ERR_R_MALLOC_FAILURE); return NULL; } ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { DHerr(DH_F_DH_NEW_METHOD, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } ret->meth = DH_get_default_method(); #ifndef OPENSSL_NO_ENGINE ret->flags = ret->meth->flags; /* early default init */ if (engine) { if (!ENGINE_init(engine)) { DHerr(DH_F_DH_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } ret->engine = engine; } else ret->engine = ENGINE_get_default_DH(); if (ret->engine) { ret->meth = ENGINE_get_DH(ret->engine); if (ret->meth == NULL) { DHerr(DH_F_DH_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } } #endif ret->flags = ret->meth->flags; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_DH, ret, &ret->ex_data)) goto err; if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { DHerr(DH_F_DH_NEW_METHOD, ERR_R_INIT_FAIL); goto err; } return ret; err: DH_free(ret); return NULL; } void DH_free(DH *r) { int i; if (r == NULL) return; CRYPTO_DOWN_REF(&r->references, &i, r->lock); REF_PRINT_COUNT("DH", r); if (i > 0) return; REF_ASSERT_ISNT(i < 0); if (r->meth != NULL && r->meth->finish != NULL) r->meth->finish(r); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(r->engine); #endif CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DH, r, &r->ex_data); CRYPTO_THREAD_lock_free(r->lock); BN_clear_free(r->p); BN_clear_free(r->g); BN_clear_free(r->q); BN_clear_free(r->j); OPENSSL_free(r->seed); BN_clear_free(r->counter); BN_clear_free(r->pub_key); BN_clear_free(r->priv_key); OPENSSL_free(r); } int DH_up_ref(DH *r) { int i; if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0) return 0; REF_PRINT_COUNT("DH", r); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } int DH_set_ex_data(DH *d, int idx, void *arg) { return CRYPTO_set_ex_data(&d->ex_data, idx, arg); } void *DH_get_ex_data(DH *d, int idx) { return CRYPTO_get_ex_data(&d->ex_data, idx); } int DH_bits(const DH *dh) { return BN_num_bits(dh->p); } int DH_size(const DH *dh) { return BN_num_bytes(dh->p); } int DH_security_bits(const DH *dh) { int N; if (dh->q) N = BN_num_bits(dh->q); else if (dh->length) N = dh->length; else N = -1; return BN_security_bits(BN_num_bits(dh->p), N); } void DH_get0_pqg(const DH *dh, const BIGNUM **p, const BIGNUM **q, const BIGNUM **g) { if (p != NULL) *p = dh->p; if (q != NULL) *q = dh->q; if (g != NULL) *g = dh->g; } int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) { /* If the fields p and g in d are NULL, the corresponding input * parameters MUST be non-NULL. q may remain NULL. */ if ((dh->p == NULL && p == NULL) || (dh->g == NULL && g == NULL)) return 0; if (p != NULL) { BN_free(dh->p); dh->p = p; } if (q != NULL) { BN_free(dh->q); dh->q = q; } if (g != NULL) { BN_free(dh->g); dh->g = g; } if (q != NULL) { dh->length = BN_num_bits(q); } return 1; } long DH_get_length(const DH *dh) { return dh->length; } int DH_set_length(DH *dh, long length) { dh->length = length; return 1; } void DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key) { if (pub_key != NULL) *pub_key = dh->pub_key; if (priv_key != NULL) *priv_key = dh->priv_key; } int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) { if (pub_key != NULL) { BN_clear_free(dh->pub_key); dh->pub_key = pub_key; } if (priv_key != NULL) { BN_clear_free(dh->priv_key); dh->priv_key = priv_key; } return 1; } const BIGNUM *DH_get0_p(const DH *dh) { return dh->p; } const BIGNUM *DH_get0_q(const DH *dh) { return dh->q; } const BIGNUM *DH_get0_g(const DH *dh) { return dh->g; } const BIGNUM *DH_get0_priv_key(const DH *dh) { return dh->priv_key; } const BIGNUM *DH_get0_pub_key(const DH *dh) { return dh->pub_key; } void DH_clear_flags(DH *dh, int flags) { dh->flags &= ~flags; } int DH_test_flags(const DH *dh, int flags) { return dh->flags & flags; } void DH_set_flags(DH *dh, int flags) { dh->flags |= flags; } ENGINE *DH_get0_engine(DH *dh) { return dh->engine; } openssl-1.1.1f/crypto/dh/dh_local.h000066400000000000000000000032161364063235100172010ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/refcount.h" struct dh_st { /* * This first argument is used to pick up errors when a DH is passed * instead of a EVP_PKEY */ int pad; int version; BIGNUM *p; BIGNUM *g; int32_t length; /* optional */ BIGNUM *pub_key; /* g^x % p */ BIGNUM *priv_key; /* x */ int flags; BN_MONT_CTX *method_mont_p; /* Place holders if we want to do X9.42 DH */ BIGNUM *q; BIGNUM *j; unsigned char *seed; int seedlen; BIGNUM *counter; CRYPTO_REF_COUNT references; CRYPTO_EX_DATA ex_data; const DH_METHOD *meth; ENGINE *engine; CRYPTO_RWLOCK *lock; }; struct dh_method { char *name; /* Methods here */ int (*generate_key) (DH *dh); int (*compute_key) (unsigned char *key, const BIGNUM *pub_key, DH *dh); /* Can be null */ int (*bn_mod_exp) (const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int (*init) (DH *dh); int (*finish) (DH *dh); int flags; char *app_data; /* If this is non-NULL, it will be used to generate parameters */ int (*generate_params) (DH *dh, int prime_len, int generator, BN_GENCB *cb); }; openssl-1.1.1f/crypto/dh/dh_meth.c000066400000000000000000000070551364063235100170440ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "dh_local.h" #include #include DH_METHOD *DH_meth_new(const char *name, int flags) { DH_METHOD *dhm = OPENSSL_zalloc(sizeof(*dhm)); if (dhm != NULL) { dhm->flags = flags; dhm->name = OPENSSL_strdup(name); if (dhm->name != NULL) return dhm; OPENSSL_free(dhm); } DHerr(DH_F_DH_METH_NEW, ERR_R_MALLOC_FAILURE); return NULL; } void DH_meth_free(DH_METHOD *dhm) { if (dhm != NULL) { OPENSSL_free(dhm->name); OPENSSL_free(dhm); } } DH_METHOD *DH_meth_dup(const DH_METHOD *dhm) { DH_METHOD *ret = OPENSSL_malloc(sizeof(*ret)); if (ret != NULL) { memcpy(ret, dhm, sizeof(*dhm)); ret->name = OPENSSL_strdup(dhm->name); if (ret->name != NULL) return ret; OPENSSL_free(ret); } DHerr(DH_F_DH_METH_DUP, ERR_R_MALLOC_FAILURE); return NULL; } const char *DH_meth_get0_name(const DH_METHOD *dhm) { return dhm->name; } int DH_meth_set1_name(DH_METHOD *dhm, const char *name) { char *tmpname = OPENSSL_strdup(name); if (tmpname == NULL) { DHerr(DH_F_DH_METH_SET1_NAME, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_free(dhm->name); dhm->name = tmpname; return 1; } int DH_meth_get_flags(const DH_METHOD *dhm) { return dhm->flags; } int DH_meth_set_flags(DH_METHOD *dhm, int flags) { dhm->flags = flags; return 1; } void *DH_meth_get0_app_data(const DH_METHOD *dhm) { return dhm->app_data; } int DH_meth_set0_app_data(DH_METHOD *dhm, void *app_data) { dhm->app_data = app_data; return 1; } int (*DH_meth_get_generate_key(const DH_METHOD *dhm)) (DH *) { return dhm->generate_key; } int DH_meth_set_generate_key(DH_METHOD *dhm, int (*generate_key) (DH *)) { dhm->generate_key = generate_key; return 1; } int (*DH_meth_get_compute_key(const DH_METHOD *dhm)) (unsigned char *key, const BIGNUM *pub_key, DH *dh) { return dhm->compute_key; } int DH_meth_set_compute_key(DH_METHOD *dhm, int (*compute_key) (unsigned char *key, const BIGNUM *pub_key, DH *dh)) { dhm->compute_key = compute_key; return 1; } int (*DH_meth_get_bn_mod_exp(const DH_METHOD *dhm)) (const DH *, BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *, BN_MONT_CTX *) { return dhm->bn_mod_exp; } int DH_meth_set_bn_mod_exp(DH_METHOD *dhm, int (*bn_mod_exp) (const DH *, BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *, BN_MONT_CTX *)) { dhm->bn_mod_exp = bn_mod_exp; return 1; } int (*DH_meth_get_init(const DH_METHOD *dhm))(DH *) { return dhm->init; } int DH_meth_set_init(DH_METHOD *dhm, int (*init)(DH *)) { dhm->init = init; return 1; } int (*DH_meth_get_finish(const DH_METHOD *dhm)) (DH *) { return dhm->finish; } int DH_meth_set_finish(DH_METHOD *dhm, int (*finish) (DH *)) { dhm->finish = finish; return 1; } int (*DH_meth_get_generate_params(const DH_METHOD *dhm)) (DH *, int, int, BN_GENCB *) { return dhm->generate_params; } int DH_meth_set_generate_params(DH_METHOD *dhm, int (*generate_params) (DH *, int, int, BN_GENCB *)) { dhm->generate_params = generate_params; return 1; } openssl-1.1.1f/crypto/dh/dh_pmeth.c000066400000000000000000000320171364063235100172200ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "dh_local.h" #include #include #include #include "crypto/evp.h" /* DH pkey context structure */ typedef struct { /* Parameter gen parameters */ int prime_len; int generator; int use_dsa; int subprime_len; int pad; /* message digest used for parameter generation */ const EVP_MD *md; int rfc5114_param; int param_nid; /* Keygen callback info */ int gentmp[2]; /* KDF (if any) to use for DH */ char kdf_type; /* OID to use for KDF */ ASN1_OBJECT *kdf_oid; /* Message digest to use for key derivation */ const EVP_MD *kdf_md; /* User key material */ unsigned char *kdf_ukm; size_t kdf_ukmlen; /* KDF output length */ size_t kdf_outlen; } DH_PKEY_CTX; static int pkey_dh_init(EVP_PKEY_CTX *ctx) { DH_PKEY_CTX *dctx; if ((dctx = OPENSSL_zalloc(sizeof(*dctx))) == NULL) { DHerr(DH_F_PKEY_DH_INIT, ERR_R_MALLOC_FAILURE); return 0; } dctx->prime_len = 2048; dctx->subprime_len = -1; dctx->generator = 2; dctx->kdf_type = EVP_PKEY_DH_KDF_NONE; ctx->data = dctx; ctx->keygen_info = dctx->gentmp; ctx->keygen_info_count = 2; return 1; } static void pkey_dh_cleanup(EVP_PKEY_CTX *ctx) { DH_PKEY_CTX *dctx = ctx->data; if (dctx != NULL) { OPENSSL_free(dctx->kdf_ukm); ASN1_OBJECT_free(dctx->kdf_oid); OPENSSL_free(dctx); } } static int pkey_dh_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { DH_PKEY_CTX *dctx, *sctx; if (!pkey_dh_init(dst)) return 0; sctx = src->data; dctx = dst->data; dctx->prime_len = sctx->prime_len; dctx->subprime_len = sctx->subprime_len; dctx->generator = sctx->generator; dctx->use_dsa = sctx->use_dsa; dctx->pad = sctx->pad; dctx->md = sctx->md; dctx->rfc5114_param = sctx->rfc5114_param; dctx->param_nid = sctx->param_nid; dctx->kdf_type = sctx->kdf_type; dctx->kdf_oid = OBJ_dup(sctx->kdf_oid); if (dctx->kdf_oid == NULL) return 0; dctx->kdf_md = sctx->kdf_md; if (sctx->kdf_ukm != NULL) { dctx->kdf_ukm = OPENSSL_memdup(sctx->kdf_ukm, sctx->kdf_ukmlen); if (dctx->kdf_ukm == NULL) return 0; dctx->kdf_ukmlen = sctx->kdf_ukmlen; } dctx->kdf_outlen = sctx->kdf_outlen; return 1; } static int pkey_dh_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { DH_PKEY_CTX *dctx = ctx->data; switch (type) { case EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN: if (p1 < 256) return -2; dctx->prime_len = p1; return 1; case EVP_PKEY_CTRL_DH_PARAMGEN_SUBPRIME_LEN: if (dctx->use_dsa == 0) return -2; dctx->subprime_len = p1; return 1; case EVP_PKEY_CTRL_DH_PAD: dctx->pad = p1; return 1; case EVP_PKEY_CTRL_DH_PARAMGEN_GENERATOR: if (dctx->use_dsa) return -2; dctx->generator = p1; return 1; case EVP_PKEY_CTRL_DH_PARAMGEN_TYPE: #ifdef OPENSSL_NO_DSA if (p1 != 0) return -2; #else if (p1 < 0 || p1 > 2) return -2; #endif dctx->use_dsa = p1; return 1; case EVP_PKEY_CTRL_DH_RFC5114: if (p1 < 1 || p1 > 3 || dctx->param_nid != NID_undef) return -2; dctx->rfc5114_param = p1; return 1; case EVP_PKEY_CTRL_DH_NID: if (p1 <= 0 || dctx->rfc5114_param != 0) return -2; dctx->param_nid = p1; return 1; case EVP_PKEY_CTRL_PEER_KEY: /* Default behaviour is OK */ return 1; case EVP_PKEY_CTRL_DH_KDF_TYPE: if (p1 == -2) return dctx->kdf_type; #ifdef OPENSSL_NO_CMS if (p1 != EVP_PKEY_DH_KDF_NONE) #else if (p1 != EVP_PKEY_DH_KDF_NONE && p1 != EVP_PKEY_DH_KDF_X9_42) #endif return -2; dctx->kdf_type = p1; return 1; case EVP_PKEY_CTRL_DH_KDF_MD: dctx->kdf_md = p2; return 1; case EVP_PKEY_CTRL_GET_DH_KDF_MD: *(const EVP_MD **)p2 = dctx->kdf_md; return 1; case EVP_PKEY_CTRL_DH_KDF_OUTLEN: if (p1 <= 0) return -2; dctx->kdf_outlen = (size_t)p1; return 1; case EVP_PKEY_CTRL_GET_DH_KDF_OUTLEN: *(int *)p2 = dctx->kdf_outlen; return 1; case EVP_PKEY_CTRL_DH_KDF_UKM: OPENSSL_free(dctx->kdf_ukm); dctx->kdf_ukm = p2; if (p2) dctx->kdf_ukmlen = p1; else dctx->kdf_ukmlen = 0; return 1; case EVP_PKEY_CTRL_GET_DH_KDF_UKM: *(unsigned char **)p2 = dctx->kdf_ukm; return dctx->kdf_ukmlen; case EVP_PKEY_CTRL_DH_KDF_OID: ASN1_OBJECT_free(dctx->kdf_oid); dctx->kdf_oid = p2; return 1; case EVP_PKEY_CTRL_GET_DH_KDF_OID: *(ASN1_OBJECT **)p2 = dctx->kdf_oid; return 1; default: return -2; } } static int pkey_dh_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (strcmp(type, "dh_paramgen_prime_len") == 0) { int len; len = atoi(value); return EVP_PKEY_CTX_set_dh_paramgen_prime_len(ctx, len); } if (strcmp(type, "dh_rfc5114") == 0) { DH_PKEY_CTX *dctx = ctx->data; int len; len = atoi(value); if (len < 0 || len > 3) return -2; dctx->rfc5114_param = len; return 1; } if (strcmp(type, "dh_param") == 0) { DH_PKEY_CTX *dctx = ctx->data; int nid = OBJ_sn2nid(value); if (nid == NID_undef) { DHerr(DH_F_PKEY_DH_CTRL_STR, DH_R_INVALID_PARAMETER_NAME); return -2; } dctx->param_nid = nid; return 1; } if (strcmp(type, "dh_paramgen_generator") == 0) { int len; len = atoi(value); return EVP_PKEY_CTX_set_dh_paramgen_generator(ctx, len); } if (strcmp(type, "dh_paramgen_subprime_len") == 0) { int len; len = atoi(value); return EVP_PKEY_CTX_set_dh_paramgen_subprime_len(ctx, len); } if (strcmp(type, "dh_paramgen_type") == 0) { int typ; typ = atoi(value); return EVP_PKEY_CTX_set_dh_paramgen_type(ctx, typ); } if (strcmp(type, "dh_pad") == 0) { int pad; pad = atoi(value); return EVP_PKEY_CTX_set_dh_pad(ctx, pad); } return -2; } #ifndef OPENSSL_NO_DSA extern int dsa_builtin_paramgen(DSA *ret, size_t bits, size_t qbits, const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len, unsigned char *seed_out, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb); extern int dsa_builtin_paramgen2(DSA *ret, size_t L, size_t N, const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len, int idx, unsigned char *seed_out, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb); static DSA *dsa_dh_generate(DH_PKEY_CTX *dctx, BN_GENCB *pcb) { DSA *ret; int rv = 0; int prime_len = dctx->prime_len; int subprime_len = dctx->subprime_len; const EVP_MD *md = dctx->md; if (dctx->use_dsa > 2) return NULL; ret = DSA_new(); if (ret == NULL) return NULL; if (subprime_len == -1) { if (prime_len >= 2048) subprime_len = 256; else subprime_len = 160; } if (md == NULL) { if (prime_len >= 2048) md = EVP_sha256(); else md = EVP_sha1(); } if (dctx->use_dsa == 1) rv = dsa_builtin_paramgen(ret, prime_len, subprime_len, md, NULL, 0, NULL, NULL, NULL, pcb); else if (dctx->use_dsa == 2) rv = dsa_builtin_paramgen2(ret, prime_len, subprime_len, md, NULL, 0, -1, NULL, NULL, NULL, pcb); if (rv <= 0) { DSA_free(ret); return NULL; } return ret; } #endif static int pkey_dh_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { DH *dh = NULL; DH_PKEY_CTX *dctx = ctx->data; BN_GENCB *pcb; int ret; if (dctx->rfc5114_param) { switch (dctx->rfc5114_param) { case 1: dh = DH_get_1024_160(); break; case 2: dh = DH_get_2048_224(); break; case 3: dh = DH_get_2048_256(); break; default: return -2; } EVP_PKEY_assign(pkey, EVP_PKEY_DHX, dh); return 1; } if (dctx->param_nid != 0) { if ((dh = DH_new_by_nid(dctx->param_nid)) == NULL) return 0; EVP_PKEY_assign(pkey, EVP_PKEY_DH, dh); return 1; } if (ctx->pkey_gencb) { pcb = BN_GENCB_new(); if (pcb == NULL) return 0; evp_pkey_set_cb_translate(pcb, ctx); } else pcb = NULL; #ifndef OPENSSL_NO_DSA if (dctx->use_dsa) { DSA *dsa_dh; dsa_dh = dsa_dh_generate(dctx, pcb); BN_GENCB_free(pcb); if (dsa_dh == NULL) return 0; dh = DSA_dup_DH(dsa_dh); DSA_free(dsa_dh); if (!dh) return 0; EVP_PKEY_assign(pkey, EVP_PKEY_DHX, dh); return 1; } #endif dh = DH_new(); if (dh == NULL) { BN_GENCB_free(pcb); return 0; } ret = DH_generate_parameters_ex(dh, dctx->prime_len, dctx->generator, pcb); BN_GENCB_free(pcb); if (ret) EVP_PKEY_assign_DH(pkey, dh); else DH_free(dh); return ret; } static int pkey_dh_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { DH_PKEY_CTX *dctx = ctx->data; DH *dh = NULL; if (ctx->pkey == NULL && dctx->param_nid == 0) { DHerr(DH_F_PKEY_DH_KEYGEN, DH_R_NO_PARAMETERS_SET); return 0; } if (dctx->param_nid != 0) dh = DH_new_by_nid(dctx->param_nid); else dh = DH_new(); if (dh == NULL) return 0; EVP_PKEY_assign(pkey, ctx->pmeth->pkey_id, dh); /* Note: if error return, pkey is freed by parent routine */ if (ctx->pkey != NULL && !EVP_PKEY_copy_parameters(pkey, ctx->pkey)) return 0; return DH_generate_key(pkey->pkey.dh); } static int pkey_dh_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { int ret; DH *dh; DH_PKEY_CTX *dctx = ctx->data; BIGNUM *dhpub; if (!ctx->pkey || !ctx->peerkey) { DHerr(DH_F_PKEY_DH_DERIVE, DH_R_KEYS_NOT_SET); return 0; } dh = ctx->pkey->pkey.dh; dhpub = ctx->peerkey->pkey.dh->pub_key; if (dctx->kdf_type == EVP_PKEY_DH_KDF_NONE) { if (key == NULL) { *keylen = DH_size(dh); return 1; } if (dctx->pad) ret = DH_compute_key_padded(key, dhpub, dh); else ret = DH_compute_key(key, dhpub, dh); if (ret < 0) return ret; *keylen = ret; return 1; } #ifndef OPENSSL_NO_CMS else if (dctx->kdf_type == EVP_PKEY_DH_KDF_X9_42) { unsigned char *Z = NULL; size_t Zlen = 0; if (!dctx->kdf_outlen || !dctx->kdf_oid) return 0; if (key == NULL) { *keylen = dctx->kdf_outlen; return 1; } if (*keylen != dctx->kdf_outlen) return 0; ret = 0; Zlen = DH_size(dh); Z = OPENSSL_malloc(Zlen); if (Z == NULL) { goto err; } if (DH_compute_key_padded(Z, dhpub, dh) <= 0) goto err; if (!DH_KDF_X9_42(key, *keylen, Z, Zlen, dctx->kdf_oid, dctx->kdf_ukm, dctx->kdf_ukmlen, dctx->kdf_md)) goto err; *keylen = dctx->kdf_outlen; ret = 1; err: OPENSSL_clear_free(Z, Zlen); return ret; } #endif return 0; } const EVP_PKEY_METHOD dh_pkey_meth = { EVP_PKEY_DH, 0, pkey_dh_init, pkey_dh_copy, pkey_dh_cleanup, 0, pkey_dh_paramgen, 0, pkey_dh_keygen, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_dh_derive, pkey_dh_ctrl, pkey_dh_ctrl_str }; const EVP_PKEY_METHOD dhx_pkey_meth = { EVP_PKEY_DHX, 0, pkey_dh_init, pkey_dh_copy, pkey_dh_cleanup, 0, pkey_dh_paramgen, 0, pkey_dh_keygen, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_dh_derive, pkey_dh_ctrl, pkey_dh_ctrl_str }; openssl-1.1.1f/crypto/dh/dh_prn.c000066400000000000000000000013771364063235100167070ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #ifndef OPENSSL_NO_STDIO int DHparams_print_fp(FILE *fp, const DH *x) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { DHerr(DH_F_DHPARAMS_PRINT_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = DHparams_print(b, x); BIO_free(b); return ret; } #endif openssl-1.1.1f/crypto/dh/dh_rfc5114.c000066400000000000000000000021411364063235100171630ustar00rootroot00000000000000/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "dh_local.h" #include #include "crypto/bn_dh.h" /* * Macro to make a DH structure from BIGNUM data. NB: although just copying * the BIGNUM static pointers would be more efficient, we can't do that * because they get wiped using BN_clear_free() when DH_free() is called. */ #define make_dh(x) \ DH *DH_get_##x(void) \ { \ DH *dh = DH_new(); \ \ if (dh == NULL) \ return NULL; \ dh->p = BN_dup(&_bignum_dh##x##_p); \ dh->g = BN_dup(&_bignum_dh##x##_g); \ dh->q = BN_dup(&_bignum_dh##x##_q); \ if (dh->p == NULL || dh->q == NULL || dh->g == NULL) {\ DH_free(dh); \ return NULL; \ } \ return dh; \ } make_dh(1024_160) make_dh(2048_224) make_dh(2048_256) openssl-1.1.1f/crypto/dh/dh_rfc7919.c000066400000000000000000000040431364063235100172050ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "dh_local.h" #include #include #include "crypto/bn_dh.h" static DH *dh_param_init(const BIGNUM *p, int32_t nbits) { DH *dh = DH_new(); if (dh == NULL) return NULL; dh->p = (BIGNUM *)p; dh->g = (BIGNUM *)&_bignum_const_2; dh->length = nbits; return dh; } DH *DH_new_by_nid(int nid) { switch (nid) { case NID_ffdhe2048: return dh_param_init(&_bignum_ffdhe2048_p, 225); case NID_ffdhe3072: return dh_param_init(&_bignum_ffdhe3072_p, 275); case NID_ffdhe4096: return dh_param_init(&_bignum_ffdhe4096_p, 325); case NID_ffdhe6144: return dh_param_init(&_bignum_ffdhe6144_p, 375); case NID_ffdhe8192: return dh_param_init(&_bignum_ffdhe8192_p, 400); default: DHerr(DH_F_DH_NEW_BY_NID, DH_R_INVALID_PARAMETER_NID); return NULL; } } int DH_get_nid(const DH *dh) { int nid; if (BN_get_word(dh->g) != 2) return NID_undef; if (!BN_cmp(dh->p, &_bignum_ffdhe2048_p)) nid = NID_ffdhe2048; else if (!BN_cmp(dh->p, &_bignum_ffdhe3072_p)) nid = NID_ffdhe3072; else if (!BN_cmp(dh->p, &_bignum_ffdhe4096_p)) nid = NID_ffdhe4096; else if (!BN_cmp(dh->p, &_bignum_ffdhe6144_p)) nid = NID_ffdhe6144; else if (!BN_cmp(dh->p, &_bignum_ffdhe8192_p)) nid = NID_ffdhe8192; else return NID_undef; if (dh->q != NULL) { BIGNUM *q = BN_dup(dh->p); /* Check q = p * 2 + 1 we already know q is odd, so just shift right */ if (q == NULL || !BN_rshift1(q, q) || !BN_cmp(dh->q, q)) nid = NID_undef; BN_free(q); } return nid; } openssl-1.1.1f/crypto/dllmain.c000066400000000000000000000022531364063235100164540ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "crypto/cryptlib.h" #if defined(_WIN32) || defined(__CYGWIN__) # ifdef __CYGWIN__ /* pick DLL_[PROCESS|THREAD]_[ATTACH|DETACH] definitions */ # include /* * this has side-effect of _WIN32 getting defined, which otherwise is * mutually exclusive with __CYGWIN__... */ # endif /* * All we really need to do is remove the 'error' state when a thread * detaches */ BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved); BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved) { switch (fdwReason) { case DLL_PROCESS_ATTACH: OPENSSL_cpuid_setup(); break; case DLL_THREAD_ATTACH: break; case DLL_THREAD_DETACH: OPENSSL_thread_stop(); break; case DLL_PROCESS_DETACH: break; } return TRUE; } #endif openssl-1.1.1f/crypto/dsa/000077500000000000000000000000001364063235100154355ustar00rootroot00000000000000openssl-1.1.1f/crypto/dsa/build.info000066400000000000000000000003261364063235100174120ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ dsa_gen.c dsa_key.c dsa_lib.c dsa_asn1.c dsa_vrf.c dsa_sign.c \ dsa_err.c dsa_ossl.c dsa_depr.c dsa_ameth.c dsa_pmeth.c dsa_prn.c \ dsa_meth.c openssl-1.1.1f/crypto/dsa/dsa_ameth.c000066400000000000000000000331341364063235100175320ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "dsa_local.h" #include #include #include "crypto/asn1.h" #include "crypto/evp.h" static int dsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) { const unsigned char *p, *pm; int pklen, pmlen; int ptype; const void *pval; const ASN1_STRING *pstr; X509_ALGOR *palg; ASN1_INTEGER *public_key = NULL; DSA *dsa = NULL; if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey)) return 0; X509_ALGOR_get0(NULL, &ptype, &pval, palg); if (ptype == V_ASN1_SEQUENCE) { pstr = pval; pm = pstr->data; pmlen = pstr->length; if ((dsa = d2i_DSAparams(NULL, &pm, pmlen)) == NULL) { DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_DECODE_ERROR); goto err; } } else if ((ptype == V_ASN1_NULL) || (ptype == V_ASN1_UNDEF)) { if ((dsa = DSA_new()) == NULL) { DSAerr(DSA_F_DSA_PUB_DECODE, ERR_R_MALLOC_FAILURE); goto err; } } else { DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_PARAMETER_ENCODING_ERROR); goto err; } if ((public_key = d2i_ASN1_INTEGER(NULL, &p, pklen)) == NULL) { DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_DECODE_ERROR); goto err; } if ((dsa->pub_key = ASN1_INTEGER_to_BN(public_key, NULL)) == NULL) { DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_BN_DECODE_ERROR); goto err; } ASN1_INTEGER_free(public_key); EVP_PKEY_assign_DSA(pkey, dsa); return 1; err: ASN1_INTEGER_free(public_key); DSA_free(dsa); return 0; } static int dsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) { DSA *dsa; int ptype; unsigned char *penc = NULL; int penclen; ASN1_STRING *str = NULL; ASN1_INTEGER *pubint = NULL; ASN1_OBJECT *aobj; dsa = pkey->pkey.dsa; if (pkey->save_parameters && dsa->p && dsa->q && dsa->g) { str = ASN1_STRING_new(); if (str == NULL) { DSAerr(DSA_F_DSA_PUB_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } str->length = i2d_DSAparams(dsa, &str->data); if (str->length <= 0) { DSAerr(DSA_F_DSA_PUB_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } ptype = V_ASN1_SEQUENCE; } else ptype = V_ASN1_UNDEF; pubint = BN_to_ASN1_INTEGER(dsa->pub_key, NULL); if (pubint == NULL) { DSAerr(DSA_F_DSA_PUB_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } penclen = i2d_ASN1_INTEGER(pubint, &penc); ASN1_INTEGER_free(pubint); if (penclen <= 0) { DSAerr(DSA_F_DSA_PUB_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } aobj = OBJ_nid2obj(EVP_PKEY_DSA); if (aobj == NULL) goto err; if (X509_PUBKEY_set0_param(pk, aobj, ptype, str, penc, penclen)) return 1; err: OPENSSL_free(penc); ASN1_STRING_free(str); return 0; } /* * In PKCS#8 DSA: you just get a private key integer and parameters in the * AlgorithmIdentifier the pubkey must be recalculated. */ static int dsa_priv_decode(EVP_PKEY *pkey, const PKCS8_PRIV_KEY_INFO *p8) { const unsigned char *p, *pm; int pklen, pmlen; int ptype; const void *pval; const ASN1_STRING *pstr; const X509_ALGOR *palg; ASN1_INTEGER *privkey = NULL; BN_CTX *ctx = NULL; DSA *dsa = NULL; int ret = 0; if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8)) return 0; X509_ALGOR_get0(NULL, &ptype, &pval, palg); if ((privkey = d2i_ASN1_INTEGER(NULL, &p, pklen)) == NULL) goto decerr; if (privkey->type == V_ASN1_NEG_INTEGER || ptype != V_ASN1_SEQUENCE) goto decerr; pstr = pval; pm = pstr->data; pmlen = pstr->length; if ((dsa = d2i_DSAparams(NULL, &pm, pmlen)) == NULL) goto decerr; /* We have parameters now set private key */ if ((dsa->priv_key = BN_secure_new()) == NULL || !ASN1_INTEGER_to_BN(privkey, dsa->priv_key)) { DSAerr(DSA_F_DSA_PRIV_DECODE, DSA_R_BN_ERROR); goto dsaerr; } /* Calculate public key */ if ((dsa->pub_key = BN_new()) == NULL) { DSAerr(DSA_F_DSA_PRIV_DECODE, ERR_R_MALLOC_FAILURE); goto dsaerr; } if ((ctx = BN_CTX_new()) == NULL) { DSAerr(DSA_F_DSA_PRIV_DECODE, ERR_R_MALLOC_FAILURE); goto dsaerr; } BN_set_flags(dsa->priv_key, BN_FLG_CONSTTIME); if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx)) { DSAerr(DSA_F_DSA_PRIV_DECODE, DSA_R_BN_ERROR); goto dsaerr; } EVP_PKEY_assign_DSA(pkey, dsa); ret = 1; goto done; decerr: DSAerr(DSA_F_DSA_PRIV_DECODE, DSA_R_DECODE_ERROR); dsaerr: DSA_free(dsa); done: BN_CTX_free(ctx); ASN1_STRING_clear_free(privkey); return ret; } static int dsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { ASN1_STRING *params = NULL; ASN1_INTEGER *prkey = NULL; unsigned char *dp = NULL; int dplen; if (!pkey->pkey.dsa || !pkey->pkey.dsa->priv_key) { DSAerr(DSA_F_DSA_PRIV_ENCODE, DSA_R_MISSING_PARAMETERS); goto err; } params = ASN1_STRING_new(); if (params == NULL) { DSAerr(DSA_F_DSA_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } params->length = i2d_DSAparams(pkey->pkey.dsa, ¶ms->data); if (params->length <= 0) { DSAerr(DSA_F_DSA_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); goto err; } params->type = V_ASN1_SEQUENCE; /* Get private key into integer */ prkey = BN_to_ASN1_INTEGER(pkey->pkey.dsa->priv_key, NULL); if (!prkey) { DSAerr(DSA_F_DSA_PRIV_ENCODE, DSA_R_BN_ERROR); goto err; } dplen = i2d_ASN1_INTEGER(prkey, &dp); ASN1_STRING_clear_free(prkey); prkey = NULL; if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(NID_dsa), 0, V_ASN1_SEQUENCE, params, dp, dplen)) goto err; return 1; err: OPENSSL_free(dp); ASN1_STRING_free(params); ASN1_STRING_clear_free(prkey); return 0; } static int int_dsa_size(const EVP_PKEY *pkey) { return DSA_size(pkey->pkey.dsa); } static int dsa_bits(const EVP_PKEY *pkey) { return DSA_bits(pkey->pkey.dsa); } static int dsa_security_bits(const EVP_PKEY *pkey) { return DSA_security_bits(pkey->pkey.dsa); } static int dsa_missing_parameters(const EVP_PKEY *pkey) { DSA *dsa; dsa = pkey->pkey.dsa; if (dsa == NULL || dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) return 1; return 0; } static int dsa_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from) { BIGNUM *a; if (to->pkey.dsa == NULL) { to->pkey.dsa = DSA_new(); if (to->pkey.dsa == NULL) return 0; } if ((a = BN_dup(from->pkey.dsa->p)) == NULL) return 0; BN_free(to->pkey.dsa->p); to->pkey.dsa->p = a; if ((a = BN_dup(from->pkey.dsa->q)) == NULL) return 0; BN_free(to->pkey.dsa->q); to->pkey.dsa->q = a; if ((a = BN_dup(from->pkey.dsa->g)) == NULL) return 0; BN_free(to->pkey.dsa->g); to->pkey.dsa->g = a; return 1; } static int dsa_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) { if (BN_cmp(a->pkey.dsa->p, b->pkey.dsa->p) || BN_cmp(a->pkey.dsa->q, b->pkey.dsa->q) || BN_cmp(a->pkey.dsa->g, b->pkey.dsa->g)) return 0; else return 1; } static int dsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { if (BN_cmp(b->pkey.dsa->pub_key, a->pkey.dsa->pub_key) != 0) return 0; else return 1; } static void int_dsa_free(EVP_PKEY *pkey) { DSA_free(pkey->pkey.dsa); } static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { int ret = 0; const char *ktype = NULL; const BIGNUM *priv_key, *pub_key; if (ptype == 2) priv_key = x->priv_key; else priv_key = NULL; if (ptype > 0) pub_key = x->pub_key; else pub_key = NULL; if (ptype == 2) ktype = "Private-Key"; else if (ptype == 1) ktype = "Public-Key"; else ktype = "DSA-Parameters"; if (priv_key) { if (!BIO_indent(bp, off, 128)) goto err; if (BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) goto err; } if (!ASN1_bn_print(bp, "priv:", priv_key, NULL, off)) goto err; if (!ASN1_bn_print(bp, "pub: ", pub_key, NULL, off)) goto err; if (!ASN1_bn_print(bp, "P: ", x->p, NULL, off)) goto err; if (!ASN1_bn_print(bp, "Q: ", x->q, NULL, off)) goto err; if (!ASN1_bn_print(bp, "G: ", x->g, NULL, off)) goto err; ret = 1; err: return ret; } static int dsa_param_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen) { DSA *dsa; if ((dsa = d2i_DSAparams(NULL, pder, derlen)) == NULL) { DSAerr(DSA_F_DSA_PARAM_DECODE, ERR_R_DSA_LIB); return 0; } EVP_PKEY_assign_DSA(pkey, dsa); return 1; } static int dsa_param_encode(const EVP_PKEY *pkey, unsigned char **pder) { return i2d_DSAparams(pkey->pkey.dsa, pder); } static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 0); } static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 1); } static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_dsa_print(bp, pkey->pkey.dsa, indent, 2); } static int old_dsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen) { DSA *dsa; if ((dsa = d2i_DSAPrivateKey(NULL, pder, derlen)) == NULL) { DSAerr(DSA_F_OLD_DSA_PRIV_DECODE, ERR_R_DSA_LIB); return 0; } EVP_PKEY_assign_DSA(pkey, dsa); return 1; } static int old_dsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) { return i2d_DSAPrivateKey(pkey->pkey.dsa, pder); } static int dsa_sig_print(BIO *bp, const X509_ALGOR *sigalg, const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) { DSA_SIG *dsa_sig; const unsigned char *p; if (!sig) { if (BIO_puts(bp, "\n") <= 0) return 0; else return 1; } p = sig->data; dsa_sig = d2i_DSA_SIG(NULL, &p, sig->length); if (dsa_sig) { int rv = 0; const BIGNUM *r, *s; DSA_SIG_get0(dsa_sig, &r, &s); if (BIO_write(bp, "\n", 1) != 1) goto err; if (!ASN1_bn_print(bp, "r: ", r, NULL, indent)) goto err; if (!ASN1_bn_print(bp, "s: ", s, NULL, indent)) goto err; rv = 1; err: DSA_SIG_free(dsa_sig); return rv; } return X509_signature_dump(bp, sig, indent); } static int dsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { switch (op) { case ASN1_PKEY_CTRL_PKCS7_SIGN: if (arg1 == 0) { int snid, hnid; X509_ALGOR *alg1, *alg2; PKCS7_SIGNER_INFO_get0_algs(arg2, NULL, &alg1, &alg2); if (alg1 == NULL || alg1->algorithm == NULL) return -1; hnid = OBJ_obj2nid(alg1->algorithm); if (hnid == NID_undef) return -1; if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pkey))) return -1; X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0); } return 1; #ifndef OPENSSL_NO_CMS case ASN1_PKEY_CTRL_CMS_SIGN: if (arg1 == 0) { int snid, hnid; X509_ALGOR *alg1, *alg2; CMS_SignerInfo_get0_algs(arg2, NULL, NULL, &alg1, &alg2); if (alg1 == NULL || alg1->algorithm == NULL) return -1; hnid = OBJ_obj2nid(alg1->algorithm); if (hnid == NID_undef) return -1; if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pkey))) return -1; X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0); } return 1; case ASN1_PKEY_CTRL_CMS_RI_TYPE: *(int *)arg2 = CMS_RECIPINFO_NONE; return 1; #endif case ASN1_PKEY_CTRL_DEFAULT_MD_NID: *(int *)arg2 = NID_sha256; return 1; default: return -2; } } /* NB these are sorted in pkey_id order, lowest first */ const EVP_PKEY_ASN1_METHOD dsa_asn1_meths[5] = { { EVP_PKEY_DSA2, EVP_PKEY_DSA, ASN1_PKEY_ALIAS}, { EVP_PKEY_DSA1, EVP_PKEY_DSA, ASN1_PKEY_ALIAS}, { EVP_PKEY_DSA4, EVP_PKEY_DSA, ASN1_PKEY_ALIAS}, { EVP_PKEY_DSA3, EVP_PKEY_DSA, ASN1_PKEY_ALIAS}, { EVP_PKEY_DSA, EVP_PKEY_DSA, 0, "DSA", "OpenSSL DSA method", dsa_pub_decode, dsa_pub_encode, dsa_pub_cmp, dsa_pub_print, dsa_priv_decode, dsa_priv_encode, dsa_priv_print, int_dsa_size, dsa_bits, dsa_security_bits, dsa_param_decode, dsa_param_encode, dsa_missing_parameters, dsa_copy_parameters, dsa_cmp_parameters, dsa_param_print, dsa_sig_print, int_dsa_free, dsa_pkey_ctrl, old_dsa_priv_decode, old_dsa_priv_encode} }; openssl-1.1.1f/crypto/dsa/dsa_asn1.c000066400000000000000000000100371364063235100172730ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "dsa_local.h" #include #include #include ASN1_SEQUENCE(DSA_SIG) = { ASN1_SIMPLE(DSA_SIG, r, CBIGNUM), ASN1_SIMPLE(DSA_SIG, s, CBIGNUM) } static_ASN1_SEQUENCE_END(DSA_SIG) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA_SIG, DSA_SIG, DSA_SIG) DSA_SIG *DSA_SIG_new(void) { DSA_SIG *sig = OPENSSL_zalloc(sizeof(*sig)); if (sig == NULL) DSAerr(DSA_F_DSA_SIG_NEW, ERR_R_MALLOC_FAILURE); return sig; } void DSA_SIG_free(DSA_SIG *sig) { if (sig == NULL) return; BN_clear_free(sig->r); BN_clear_free(sig->s); OPENSSL_free(sig); } void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) { if (pr != NULL) *pr = sig->r; if (ps != NULL) *ps = sig->s; } int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) { if (r == NULL || s == NULL) return 0; BN_clear_free(sig->r); BN_clear_free(sig->s); sig->r = r; sig->s = s; return 1; } /* Override the default free and new methods */ static int dsa_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_NEW_PRE) { *pval = (ASN1_VALUE *)DSA_new(); if (*pval != NULL) return 2; return 0; } else if (operation == ASN1_OP_FREE_PRE) { DSA_free((DSA *)*pval); *pval = NULL; return 2; } return 1; } ASN1_SEQUENCE_cb(DSAPrivateKey, dsa_cb) = { ASN1_EMBED(DSA, version, INT32), ASN1_SIMPLE(DSA, p, BIGNUM), ASN1_SIMPLE(DSA, q, BIGNUM), ASN1_SIMPLE(DSA, g, BIGNUM), ASN1_SIMPLE(DSA, pub_key, BIGNUM), ASN1_SIMPLE(DSA, priv_key, CBIGNUM) } static_ASN1_SEQUENCE_END_cb(DSA, DSAPrivateKey) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPrivateKey, DSAPrivateKey) ASN1_SEQUENCE_cb(DSAparams, dsa_cb) = { ASN1_SIMPLE(DSA, p, BIGNUM), ASN1_SIMPLE(DSA, q, BIGNUM), ASN1_SIMPLE(DSA, g, BIGNUM), } static_ASN1_SEQUENCE_END_cb(DSA, DSAparams) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAparams, DSAparams) ASN1_SEQUENCE_cb(DSAPublicKey, dsa_cb) = { ASN1_SIMPLE(DSA, pub_key, BIGNUM), ASN1_SIMPLE(DSA, p, BIGNUM), ASN1_SIMPLE(DSA, q, BIGNUM), ASN1_SIMPLE(DSA, g, BIGNUM) } static_ASN1_SEQUENCE_END_cb(DSA, DSAPublicKey) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPublicKey, DSAPublicKey) DSA *DSAparams_dup(DSA *dsa) { return ASN1_item_dup(ASN1_ITEM_rptr(DSAparams), dsa); } int DSA_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, DSA *dsa) { DSA_SIG *s; s = DSA_do_sign(dgst, dlen, dsa); if (s == NULL) { *siglen = 0; return 0; } *siglen = i2d_DSA_SIG(s, &sig); DSA_SIG_free(s); return 1; } /* data has already been hashed (probably with SHA or SHA-1). */ /*- * returns * 1: correct signature * 0: incorrect signature * -1: error */ int DSA_verify(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int siglen, DSA *dsa) { DSA_SIG *s; const unsigned char *p = sigbuf; unsigned char *der = NULL; int derlen = -1; int ret = -1; s = DSA_SIG_new(); if (s == NULL) return ret; if (d2i_DSA_SIG(&s, &p, siglen) == NULL) goto err; /* Ensure signature uses DER and doesn't have trailing garbage */ derlen = i2d_DSA_SIG(s, &der); if (derlen != siglen || memcmp(sigbuf, der, derlen)) goto err; ret = DSA_do_verify(dgst, dgst_len, s, dsa); err: OPENSSL_clear_free(der, derlen); DSA_SIG_free(s); return ret; } openssl-1.1.1f/crypto/dsa/dsa_depr.c000066400000000000000000000031631364063235100173650ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file contains deprecated function(s) that are now wrappers to the new * version(s). */ /* * Parameter generation follows the updated Appendix 2.2 for FIPS PUB 186, * also Appendix 2.2 of FIPS PUB 186-1 (i.e. use SHA as defined in FIPS PUB * 180-1) */ #define xxxHASH EVP_sha1() #include #if OPENSSL_API_COMPAT >= 0x00908000L NON_EMPTY_TRANSLATION_UNIT #else # include # include # include "internal/cryptlib.h" # include # include # include # include DSA *DSA_generate_parameters(int bits, unsigned char *seed_in, int seed_len, int *counter_ret, unsigned long *h_ret, void (*callback) (int, int, void *), void *cb_arg) { BN_GENCB *cb; DSA *ret; if ((ret = DSA_new()) == NULL) return NULL; cb = BN_GENCB_new(); if (cb == NULL) goto err; BN_GENCB_set_old(cb, callback, cb_arg); if (DSA_generate_parameters_ex(ret, bits, seed_in, seed_len, counter_ret, h_ret, cb)) { BN_GENCB_free(cb); return ret; } BN_GENCB_free(cb); err: DSA_free(ret); return NULL; } #endif openssl-1.1.1f/crypto/dsa/dsa_err.c000066400000000000000000000067551364063235100172350ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA DSA_str_functs[] = { {ERR_PACK(ERR_LIB_DSA, DSA_F_DSAPARAMS_PRINT, 0), "DSAparams_print"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSAPARAMS_PRINT_FP, 0), "DSAparams_print_fp"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_BUILTIN_PARAMGEN, 0), "dsa_builtin_paramgen"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_BUILTIN_PARAMGEN2, 0), "dsa_builtin_paramgen2"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_DO_SIGN, 0), "DSA_do_sign"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_DO_VERIFY, 0), "DSA_do_verify"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_METH_DUP, 0), "DSA_meth_dup"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_METH_NEW, 0), "DSA_meth_new"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_METH_SET1_NAME, 0), "DSA_meth_set1_name"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_NEW_METHOD, 0), "DSA_new_method"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_PARAM_DECODE, 0), "dsa_param_decode"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_PRINT_FP, 0), "DSA_print_fp"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_PRIV_DECODE, 0), "dsa_priv_decode"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_PRIV_ENCODE, 0), "dsa_priv_encode"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_PUB_DECODE, 0), "dsa_pub_decode"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_PUB_ENCODE, 0), "dsa_pub_encode"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_SIGN, 0), "DSA_sign"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_SIGN_SETUP, 0), "DSA_sign_setup"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_DSA_SIG_NEW, 0), "DSA_SIG_new"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_OLD_DSA_PRIV_DECODE, 0), "old_dsa_priv_decode"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_PKEY_DSA_CTRL, 0), "pkey_dsa_ctrl"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_PKEY_DSA_CTRL_STR, 0), "pkey_dsa_ctrl_str"}, {ERR_PACK(ERR_LIB_DSA, DSA_F_PKEY_DSA_KEYGEN, 0), "pkey_dsa_keygen"}, {0, NULL} }; static const ERR_STRING_DATA DSA_str_reasons[] = { {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_BAD_Q_VALUE), "bad q value"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_BN_DECODE_ERROR), "bn decode error"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_BN_ERROR), "bn error"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_DECODE_ERROR), "decode error"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_INVALID_DIGEST_TYPE), "invalid digest type"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_INVALID_PARAMETERS), "invalid parameters"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_MISSING_PARAMETERS), "missing parameters"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_MISSING_PRIVATE_KEY), "missing private key"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_MODULUS_TOO_LARGE), "modulus too large"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_NO_PARAMETERS_SET), "no parameters set"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_PARAMETER_ENCODING_ERROR), "parameter encoding error"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_Q_NOT_PRIME), "q not prime"}, {ERR_PACK(ERR_LIB_DSA, 0, DSA_R_SEED_LEN_SMALL), "seed_len is less than the length of q"}, {0, NULL} }; #endif int ERR_load_DSA_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(DSA_str_functs[0].error) == NULL) { ERR_load_strings_const(DSA_str_functs); ERR_load_strings_const(DSA_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/dsa/dsa_gen.c000066400000000000000000000411011364063235100171760ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Parameter generation follows the updated Appendix 2.2 for FIPS PUB 186, * also Appendix 2.2 of FIPS PUB 186-1 (i.e. use SHA as defined in FIPS PUB * 180-1) */ #define xxxHASH EVP_sha1() #include #include #include "internal/cryptlib.h" #include #include #include #include #include "dsa_local.h" int DSA_generate_parameters_ex(DSA *ret, int bits, const unsigned char *seed_in, int seed_len, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb) { if (ret->meth->dsa_paramgen) return ret->meth->dsa_paramgen(ret, bits, seed_in, seed_len, counter_ret, h_ret, cb); else { const EVP_MD *evpmd = bits >= 2048 ? EVP_sha256() : EVP_sha1(); size_t qbits = EVP_MD_size(evpmd) * 8; return dsa_builtin_paramgen(ret, bits, qbits, evpmd, seed_in, seed_len, NULL, counter_ret, h_ret, cb); } } int dsa_builtin_paramgen(DSA *ret, size_t bits, size_t qbits, const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len, unsigned char *seed_out, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb) { int ok = 0; unsigned char seed[SHA256_DIGEST_LENGTH]; unsigned char md[SHA256_DIGEST_LENGTH]; unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH]; BIGNUM *r0, *W, *X, *c, *test; BIGNUM *g = NULL, *q = NULL, *p = NULL; BN_MONT_CTX *mont = NULL; int i, k, n = 0, m = 0, qsize = qbits >> 3; int counter = 0; int r = 0; BN_CTX *ctx = NULL; unsigned int h = 2; if (qsize != SHA_DIGEST_LENGTH && qsize != SHA224_DIGEST_LENGTH && qsize != SHA256_DIGEST_LENGTH) /* invalid q size */ return 0; if (evpmd == NULL) { if (qsize == SHA_DIGEST_LENGTH) evpmd = EVP_sha1(); else if (qsize == SHA224_DIGEST_LENGTH) evpmd = EVP_sha224(); else evpmd = EVP_sha256(); } else { qsize = EVP_MD_size(evpmd); } if (bits < 512) bits = 512; bits = (bits + 63) / 64 * 64; if (seed_in != NULL) { if (seed_len < (size_t)qsize) { DSAerr(DSA_F_DSA_BUILTIN_PARAMGEN, DSA_R_SEED_LEN_SMALL); return 0; } if (seed_len > (size_t)qsize) { /* Only consume as much seed as is expected. */ seed_len = qsize; } memcpy(seed, seed_in, seed_len); } if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); g = BN_CTX_get(ctx); W = BN_CTX_get(ctx); q = BN_CTX_get(ctx); X = BN_CTX_get(ctx); c = BN_CTX_get(ctx); p = BN_CTX_get(ctx); test = BN_CTX_get(ctx); if (test == NULL) goto err; if (!BN_lshift(test, BN_value_one(), bits - 1)) goto err; for (;;) { for (;;) { /* find q */ int use_random_seed = (seed_in == NULL); /* step 1 */ if (!BN_GENCB_call(cb, 0, m++)) goto err; if (use_random_seed) { if (RAND_bytes(seed, qsize) <= 0) goto err; } else { /* If we come back through, use random seed next time. */ seed_in = NULL; } memcpy(buf, seed, qsize); memcpy(buf2, seed, qsize); /* precompute "SEED + 1" for step 7: */ for (i = qsize - 1; i >= 0; i--) { buf[i]++; if (buf[i] != 0) break; } /* step 2 */ if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL)) goto err; if (!EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) goto err; for (i = 0; i < qsize; i++) md[i] ^= buf2[i]; /* step 3 */ md[0] |= 0x80; md[qsize - 1] |= 0x01; if (!BN_bin2bn(md, qsize, q)) goto err; /* step 4 */ r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, use_random_seed, cb); if (r > 0) break; if (r != 0) goto err; /* do a callback call */ /* step 5 */ } if (!BN_GENCB_call(cb, 2, 0)) goto err; if (!BN_GENCB_call(cb, 3, 0)) goto err; /* step 6 */ counter = 0; /* "offset = 2" */ n = (bits - 1) / 160; for (;;) { if ((counter != 0) && !BN_GENCB_call(cb, 0, counter)) goto err; /* step 7 */ BN_zero(W); /* now 'buf' contains "SEED + offset - 1" */ for (k = 0; k <= n; k++) { /* * obtain "SEED + offset + k" by incrementing: */ for (i = qsize - 1; i >= 0; i--) { buf[i]++; if (buf[i] != 0) break; } if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) goto err; /* step 8 */ if (!BN_bin2bn(md, qsize, r0)) goto err; if (!BN_lshift(r0, r0, (qsize << 3) * k)) goto err; if (!BN_add(W, W, r0)) goto err; } /* more of step 8 */ if (!BN_mask_bits(W, bits - 1)) goto err; if (!BN_copy(X, W)) goto err; if (!BN_add(X, X, test)) goto err; /* step 9 */ if (!BN_lshift1(r0, q)) goto err; if (!BN_mod(c, X, r0, ctx)) goto err; if (!BN_sub(r0, c, BN_value_one())) goto err; if (!BN_sub(p, X, r0)) goto err; /* step 10 */ if (BN_cmp(p, test) >= 0) { /* step 11 */ r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb); if (r > 0) goto end; /* found it */ if (r != 0) goto err; } /* step 13 */ counter++; /* "offset = offset + n + 1" */ /* step 14 */ if (counter >= 4096) break; } } end: if (!BN_GENCB_call(cb, 2, 1)) goto err; /* We now need to generate g */ /* Set r0=(p-1)/q */ if (!BN_sub(test, p, BN_value_one())) goto err; if (!BN_div(r0, NULL, test, q, ctx)) goto err; if (!BN_set_word(test, h)) goto err; if (!BN_MONT_CTX_set(mont, p, ctx)) goto err; for (;;) { /* g=test^r0%p */ if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) goto err; if (!BN_is_one(g)) break; if (!BN_add(test, test, BN_value_one())) goto err; h++; } if (!BN_GENCB_call(cb, 3, 1)) goto err; ok = 1; err: if (ok) { BN_free(ret->p); BN_free(ret->q); BN_free(ret->g); ret->p = BN_dup(p); ret->q = BN_dup(q); ret->g = BN_dup(g); if (ret->p == NULL || ret->q == NULL || ret->g == NULL) { ok = 0; goto err; } if (counter_ret != NULL) *counter_ret = counter; if (h_ret != NULL) *h_ret = h; if (seed_out) memcpy(seed_out, seed, qsize); } BN_CTX_end(ctx); BN_CTX_free(ctx); BN_MONT_CTX_free(mont); return ok; } /* * This is a parameter generation algorithm for the DSA2 algorithm as * described in FIPS 186-3. */ int dsa_builtin_paramgen2(DSA *ret, size_t L, size_t N, const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len, int idx, unsigned char *seed_out, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb) { int ok = -1; unsigned char *seed = NULL, *seed_tmp = NULL; unsigned char md[EVP_MAX_MD_SIZE]; int mdsize; BIGNUM *r0, *W, *X, *c, *test; BIGNUM *g = NULL, *q = NULL, *p = NULL; BN_MONT_CTX *mont = NULL; int i, k, n = 0, m = 0, qsize = N >> 3; int counter = 0; int r = 0; BN_CTX *ctx = NULL; EVP_MD_CTX *mctx = EVP_MD_CTX_new(); unsigned int h = 2; if (mctx == NULL) goto err; /* make sure L > N, otherwise we'll get trapped in an infinite loop */ if (L <= N) { DSAerr(DSA_F_DSA_BUILTIN_PARAMGEN2, DSA_R_INVALID_PARAMETERS); goto err; } if (evpmd == NULL) { if (N == 160) evpmd = EVP_sha1(); else if (N == 224) evpmd = EVP_sha224(); else evpmd = EVP_sha256(); } mdsize = EVP_MD_size(evpmd); /* If unverifiable g generation only don't need seed */ if (!ret->p || !ret->q || idx >= 0) { if (seed_len == 0) seed_len = mdsize; seed = OPENSSL_malloc(seed_len); if (seed_out) seed_tmp = seed_out; else seed_tmp = OPENSSL_malloc(seed_len); if (seed == NULL || seed_tmp == NULL) goto err; if (seed_in) memcpy(seed, seed_in, seed_len); } if ((ctx = BN_CTX_new()) == NULL) goto err; if ((mont = BN_MONT_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); g = BN_CTX_get(ctx); W = BN_CTX_get(ctx); X = BN_CTX_get(ctx); c = BN_CTX_get(ctx); test = BN_CTX_get(ctx); if (test == NULL) goto err; /* if p, q already supplied generate g only */ if (ret->p && ret->q) { p = ret->p; q = ret->q; if (idx >= 0) memcpy(seed_tmp, seed, seed_len); goto g_only; } else { p = BN_CTX_get(ctx); q = BN_CTX_get(ctx); if (q == NULL) goto err; } if (!BN_lshift(test, BN_value_one(), L - 1)) goto err; for (;;) { for (;;) { /* find q */ unsigned char *pmd; /* step 1 */ if (!BN_GENCB_call(cb, 0, m++)) goto err; if (!seed_in) { if (RAND_bytes(seed, seed_len) <= 0) goto err; } /* step 2 */ if (!EVP_Digest(seed, seed_len, md, NULL, evpmd, NULL)) goto err; /* Take least significant bits of md */ if (mdsize > qsize) pmd = md + mdsize - qsize; else pmd = md; if (mdsize < qsize) memset(md + mdsize, 0, qsize - mdsize); /* step 3 */ pmd[0] |= 0x80; pmd[qsize - 1] |= 0x01; if (!BN_bin2bn(pmd, qsize, q)) goto err; /* step 4 */ r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, seed_in ? 1 : 0, cb); if (r > 0) break; if (r != 0) goto err; /* Provided seed didn't produce a prime: error */ if (seed_in) { ok = 0; DSAerr(DSA_F_DSA_BUILTIN_PARAMGEN2, DSA_R_Q_NOT_PRIME); goto err; } /* do a callback call */ /* step 5 */ } /* Copy seed to seed_out before we mess with it */ if (seed_out) memcpy(seed_out, seed, seed_len); if (!BN_GENCB_call(cb, 2, 0)) goto err; if (!BN_GENCB_call(cb, 3, 0)) goto err; /* step 6 */ counter = 0; /* "offset = 1" */ n = (L - 1) / (mdsize << 3); for (;;) { if ((counter != 0) && !BN_GENCB_call(cb, 0, counter)) goto err; /* step 7 */ BN_zero(W); /* now 'buf' contains "SEED + offset - 1" */ for (k = 0; k <= n; k++) { /* * obtain "SEED + offset + k" by incrementing: */ for (i = seed_len - 1; i >= 0; i--) { seed[i]++; if (seed[i] != 0) break; } if (!EVP_Digest(seed, seed_len, md, NULL, evpmd, NULL)) goto err; /* step 8 */ if (!BN_bin2bn(md, mdsize, r0)) goto err; if (!BN_lshift(r0, r0, (mdsize << 3) * k)) goto err; if (!BN_add(W, W, r0)) goto err; } /* more of step 8 */ if (!BN_mask_bits(W, L - 1)) goto err; if (!BN_copy(X, W)) goto err; if (!BN_add(X, X, test)) goto err; /* step 9 */ if (!BN_lshift1(r0, q)) goto err; if (!BN_mod(c, X, r0, ctx)) goto err; if (!BN_sub(r0, c, BN_value_one())) goto err; if (!BN_sub(p, X, r0)) goto err; /* step 10 */ if (BN_cmp(p, test) >= 0) { /* step 11 */ r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb); if (r > 0) goto end; /* found it */ if (r != 0) goto err; } /* step 13 */ counter++; /* "offset = offset + n + 1" */ /* step 14 */ if (counter >= (int)(4 * L)) break; } if (seed_in) { ok = 0; DSAerr(DSA_F_DSA_BUILTIN_PARAMGEN2, DSA_R_INVALID_PARAMETERS); goto err; } } end: if (!BN_GENCB_call(cb, 2, 1)) goto err; g_only: /* We now need to generate g */ /* Set r0=(p-1)/q */ if (!BN_sub(test, p, BN_value_one())) goto err; if (!BN_div(r0, NULL, test, q, ctx)) goto err; if (idx < 0) { if (!BN_set_word(test, h)) goto err; } else h = 1; if (!BN_MONT_CTX_set(mont, p, ctx)) goto err; for (;;) { static const unsigned char ggen[4] = { 0x67, 0x67, 0x65, 0x6e }; if (idx >= 0) { md[0] = idx & 0xff; md[1] = (h >> 8) & 0xff; md[2] = h & 0xff; if (!EVP_DigestInit_ex(mctx, evpmd, NULL)) goto err; if (!EVP_DigestUpdate(mctx, seed_tmp, seed_len)) goto err; if (!EVP_DigestUpdate(mctx, ggen, sizeof(ggen))) goto err; if (!EVP_DigestUpdate(mctx, md, 3)) goto err; if (!EVP_DigestFinal_ex(mctx, md, NULL)) goto err; if (!BN_bin2bn(md, mdsize, test)) goto err; } /* g=test^r0%p */ if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) goto err; if (!BN_is_one(g)) break; if (idx < 0 && !BN_add(test, test, BN_value_one())) goto err; h++; if (idx >= 0 && h > 0xffff) goto err; } if (!BN_GENCB_call(cb, 3, 1)) goto err; ok = 1; err: if (ok == 1) { if (p != ret->p) { BN_free(ret->p); ret->p = BN_dup(p); } if (q != ret->q) { BN_free(ret->q); ret->q = BN_dup(q); } BN_free(ret->g); ret->g = BN_dup(g); if (ret->p == NULL || ret->q == NULL || ret->g == NULL) { ok = -1; goto err; } if (counter_ret != NULL) *counter_ret = counter; if (h_ret != NULL) *h_ret = h; } OPENSSL_free(seed); if (seed_out != seed_tmp) OPENSSL_free(seed_tmp); BN_CTX_end(ctx); BN_CTX_free(ctx); BN_MONT_CTX_free(mont); EVP_MD_CTX_free(mctx); return ok; } openssl-1.1.1f/crypto/dsa/dsa_key.c000066400000000000000000000034421364063235100172230ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include "dsa_local.h" static int dsa_builtin_keygen(DSA *dsa); int DSA_generate_key(DSA *dsa) { if (dsa->meth->dsa_keygen) return dsa->meth->dsa_keygen(dsa); return dsa_builtin_keygen(dsa); } static int dsa_builtin_keygen(DSA *dsa) { int ok = 0; BN_CTX *ctx = NULL; BIGNUM *pub_key = NULL, *priv_key = NULL; if ((ctx = BN_CTX_new()) == NULL) goto err; if (dsa->priv_key == NULL) { if ((priv_key = BN_secure_new()) == NULL) goto err; } else priv_key = dsa->priv_key; do if (!BN_priv_rand_range(priv_key, dsa->q)) goto err; while (BN_is_zero(priv_key)) ; if (dsa->pub_key == NULL) { if ((pub_key = BN_new()) == NULL) goto err; } else pub_key = dsa->pub_key; { BIGNUM *prk = BN_new(); if (prk == NULL) goto err; BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME); if (!BN_mod_exp(pub_key, dsa->g, prk, dsa->p, ctx)) { BN_free(prk); goto err; } /* We MUST free prk before any further use of priv_key */ BN_free(prk); } dsa->priv_key = priv_key; dsa->pub_key = pub_key; ok = 1; err: if (pub_key != dsa->pub_key) BN_free(pub_key); if (priv_key != dsa->priv_key) BN_free(priv_key); BN_CTX_free(ctx); return ok; } openssl-1.1.1f/crypto/dsa/dsa_lib.c000066400000000000000000000173161364063235100172060ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include #include "dsa_local.h" #include #include #include DSA *DSA_new(void) { return DSA_new_method(NULL); } int DSA_set_method(DSA *dsa, const DSA_METHOD *meth) { /* * NB: The caller is specifically setting a method, so it's not up to us * to deal with which ENGINE it comes from. */ const DSA_METHOD *mtmp; mtmp = dsa->meth; if (mtmp->finish) mtmp->finish(dsa); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(dsa->engine); dsa->engine = NULL; #endif dsa->meth = meth; if (meth->init) meth->init(dsa); return 1; } const DSA_METHOD *DSA_get_method(DSA *d) { return d->meth; } DSA *DSA_new_method(ENGINE *engine) { DSA *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { DSAerr(DSA_F_DSA_NEW_METHOD, ERR_R_MALLOC_FAILURE); return NULL; } ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { DSAerr(DSA_F_DSA_NEW_METHOD, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } ret->meth = DSA_get_default_method(); #ifndef OPENSSL_NO_ENGINE ret->flags = ret->meth->flags & ~DSA_FLAG_NON_FIPS_ALLOW; /* early default init */ if (engine) { if (!ENGINE_init(engine)) { DSAerr(DSA_F_DSA_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } ret->engine = engine; } else ret->engine = ENGINE_get_default_DSA(); if (ret->engine) { ret->meth = ENGINE_get_DSA(ret->engine); if (ret->meth == NULL) { DSAerr(DSA_F_DSA_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } } #endif ret->flags = ret->meth->flags & ~DSA_FLAG_NON_FIPS_ALLOW; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_DSA, ret, &ret->ex_data)) goto err; if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { DSAerr(DSA_F_DSA_NEW_METHOD, ERR_R_INIT_FAIL); goto err; } return ret; err: DSA_free(ret); return NULL; } void DSA_free(DSA *r) { int i; if (r == NULL) return; CRYPTO_DOWN_REF(&r->references, &i, r->lock); REF_PRINT_COUNT("DSA", r); if (i > 0) return; REF_ASSERT_ISNT(i < 0); if (r->meth != NULL && r->meth->finish != NULL) r->meth->finish(r); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(r->engine); #endif CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DSA, r, &r->ex_data); CRYPTO_THREAD_lock_free(r->lock); BN_clear_free(r->p); BN_clear_free(r->q); BN_clear_free(r->g); BN_clear_free(r->pub_key); BN_clear_free(r->priv_key); OPENSSL_free(r); } int DSA_up_ref(DSA *r) { int i; if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0) return 0; REF_PRINT_COUNT("DSA", r); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } int DSA_size(const DSA *r) { int ret, i; ASN1_INTEGER bs; unsigned char buf[4]; /* 4 bytes looks really small. However, * i2d_ASN1_INTEGER() will not look beyond * the first byte, as long as the second * parameter is NULL. */ i = BN_num_bits(r->q); bs.length = (i + 7) / 8; bs.data = buf; bs.type = V_ASN1_INTEGER; /* If the top bit is set the asn1 encoding is 1 larger. */ buf[0] = 0xff; i = i2d_ASN1_INTEGER(&bs, NULL); i += i; /* r and s */ ret = ASN1_object_size(1, i, V_ASN1_SEQUENCE); return ret; } int DSA_set_ex_data(DSA *d, int idx, void *arg) { return CRYPTO_set_ex_data(&d->ex_data, idx, arg); } void *DSA_get_ex_data(DSA *d, int idx) { return CRYPTO_get_ex_data(&d->ex_data, idx); } int DSA_security_bits(const DSA *d) { if (d->p && d->q) return BN_security_bits(BN_num_bits(d->p), BN_num_bits(d->q)); return -1; } #ifndef OPENSSL_NO_DH DH *DSA_dup_DH(const DSA *r) { /* * DSA has p, q, g, optional pub_key, optional priv_key. DH has p, * optional length, g, optional pub_key, optional priv_key, optional q. */ DH *ret = NULL; BIGNUM *p = NULL, *q = NULL, *g = NULL, *pub_key = NULL, *priv_key = NULL; if (r == NULL) goto err; ret = DH_new(); if (ret == NULL) goto err; if (r->p != NULL || r->g != NULL || r->q != NULL) { if (r->p == NULL || r->g == NULL || r->q == NULL) { /* Shouldn't happen */ goto err; } p = BN_dup(r->p); g = BN_dup(r->g); q = BN_dup(r->q); if (p == NULL || g == NULL || q == NULL || !DH_set0_pqg(ret, p, q, g)) goto err; p = g = q = NULL; } if (r->pub_key != NULL) { pub_key = BN_dup(r->pub_key); if (pub_key == NULL) goto err; if (r->priv_key != NULL) { priv_key = BN_dup(r->priv_key); if (priv_key == NULL) goto err; } if (!DH_set0_key(ret, pub_key, priv_key)) goto err; } else if (r->priv_key != NULL) { /* Shouldn't happen */ goto err; } return ret; err: BN_free(p); BN_free(g); BN_free(q); BN_free(pub_key); BN_free(priv_key); DH_free(ret); return NULL; } #endif void DSA_get0_pqg(const DSA *d, const BIGNUM **p, const BIGNUM **q, const BIGNUM **g) { if (p != NULL) *p = d->p; if (q != NULL) *q = d->q; if (g != NULL) *g = d->g; } int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g) { /* If the fields p, q and g in d are NULL, the corresponding input * parameters MUST be non-NULL. */ if ((d->p == NULL && p == NULL) || (d->q == NULL && q == NULL) || (d->g == NULL && g == NULL)) return 0; if (p != NULL) { BN_free(d->p); d->p = p; } if (q != NULL) { BN_free(d->q); d->q = q; } if (g != NULL) { BN_free(d->g); d->g = g; } return 1; } void DSA_get0_key(const DSA *d, const BIGNUM **pub_key, const BIGNUM **priv_key) { if (pub_key != NULL) *pub_key = d->pub_key; if (priv_key != NULL) *priv_key = d->priv_key; } int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key) { /* If the field pub_key in d is NULL, the corresponding input * parameters MUST be non-NULL. The priv_key field may * be left NULL. */ if (d->pub_key == NULL && pub_key == NULL) return 0; if (pub_key != NULL) { BN_free(d->pub_key); d->pub_key = pub_key; } if (priv_key != NULL) { BN_free(d->priv_key); d->priv_key = priv_key; } return 1; } const BIGNUM *DSA_get0_p(const DSA *d) { return d->p; } const BIGNUM *DSA_get0_q(const DSA *d) { return d->q; } const BIGNUM *DSA_get0_g(const DSA *d) { return d->g; } const BIGNUM *DSA_get0_pub_key(const DSA *d) { return d->pub_key; } const BIGNUM *DSA_get0_priv_key(const DSA *d) { return d->priv_key; } void DSA_clear_flags(DSA *d, int flags) { d->flags &= ~flags; } int DSA_test_flags(const DSA *d, int flags) { return d->flags & flags; } void DSA_set_flags(DSA *d, int flags) { d->flags |= flags; } ENGINE *DSA_get0_engine(DSA *d) { return d->engine; } int DSA_bits(const DSA *dsa) { return BN_num_bits(dsa->p); } openssl-1.1.1f/crypto/dsa/dsa_local.h000066400000000000000000000055631364063235100175400ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/refcount.h" struct dsa_st { /* * This first variable is used to pick up errors where a DSA is passed * instead of of a EVP_PKEY */ int pad; int32_t version; BIGNUM *p; BIGNUM *q; /* == 20 */ BIGNUM *g; BIGNUM *pub_key; /* y public key */ BIGNUM *priv_key; /* x private key */ int flags; /* Normally used to cache montgomery values */ BN_MONT_CTX *method_mont_p; CRYPTO_REF_COUNT references; CRYPTO_EX_DATA ex_data; const DSA_METHOD *meth; /* functional reference if 'meth' is ENGINE-provided */ ENGINE *engine; CRYPTO_RWLOCK *lock; }; struct DSA_SIG_st { BIGNUM *r; BIGNUM *s; }; struct dsa_method { char *name; DSA_SIG *(*dsa_do_sign) (const unsigned char *dgst, int dlen, DSA *dsa); int (*dsa_sign_setup) (DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp); int (*dsa_do_verify) (const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa); int (*dsa_mod_exp) (DSA *dsa, BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); /* Can be null */ int (*bn_mod_exp) (DSA *dsa, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int (*init) (DSA *dsa); int (*finish) (DSA *dsa); int flags; void *app_data; /* If this is non-NULL, it is used to generate DSA parameters */ int (*dsa_paramgen) (DSA *dsa, int bits, const unsigned char *seed, int seed_len, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb); /* If this is non-NULL, it is used to generate DSA keys */ int (*dsa_keygen) (DSA *dsa); }; int dsa_builtin_paramgen(DSA *ret, size_t bits, size_t qbits, const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len, unsigned char *seed_out, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb); int dsa_builtin_paramgen2(DSA *ret, size_t L, size_t N, const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len, int idx, unsigned char *seed_out, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb); openssl-1.1.1f/crypto/dsa/dsa_meth.c000066400000000000000000000120531364063235100173660ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Licensed under the OpenSSL licenses, (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * https://www.openssl.org/source/license.html * or in the file LICENSE in the source distribution. */ #include "dsa_local.h" #include #include DSA_METHOD *DSA_meth_new(const char *name, int flags) { DSA_METHOD *dsam = OPENSSL_zalloc(sizeof(*dsam)); if (dsam != NULL) { dsam->flags = flags; dsam->name = OPENSSL_strdup(name); if (dsam->name != NULL) return dsam; OPENSSL_free(dsam); } DSAerr(DSA_F_DSA_METH_NEW, ERR_R_MALLOC_FAILURE); return NULL; } void DSA_meth_free(DSA_METHOD *dsam) { if (dsam != NULL) { OPENSSL_free(dsam->name); OPENSSL_free(dsam); } } DSA_METHOD *DSA_meth_dup(const DSA_METHOD *dsam) { DSA_METHOD *ret = OPENSSL_malloc(sizeof(*ret)); if (ret != NULL) { memcpy(ret, dsam, sizeof(*dsam)); ret->name = OPENSSL_strdup(dsam->name); if (ret->name != NULL) return ret; OPENSSL_free(ret); } DSAerr(DSA_F_DSA_METH_DUP, ERR_R_MALLOC_FAILURE); return NULL; } const char *DSA_meth_get0_name(const DSA_METHOD *dsam) { return dsam->name; } int DSA_meth_set1_name(DSA_METHOD *dsam, const char *name) { char *tmpname = OPENSSL_strdup(name); if (tmpname == NULL) { DSAerr(DSA_F_DSA_METH_SET1_NAME, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_free(dsam->name); dsam->name = tmpname; return 1; } int DSA_meth_get_flags(const DSA_METHOD *dsam) { return dsam->flags; } int DSA_meth_set_flags(DSA_METHOD *dsam, int flags) { dsam->flags = flags; return 1; } void *DSA_meth_get0_app_data(const DSA_METHOD *dsam) { return dsam->app_data; } int DSA_meth_set0_app_data(DSA_METHOD *dsam, void *app_data) { dsam->app_data = app_data; return 1; } DSA_SIG *(*DSA_meth_get_sign(const DSA_METHOD *dsam)) (const unsigned char *, int, DSA *) { return dsam->dsa_do_sign; } int DSA_meth_set_sign(DSA_METHOD *dsam, DSA_SIG *(*sign) (const unsigned char *, int, DSA *)) { dsam->dsa_do_sign = sign; return 1; } int (*DSA_meth_get_sign_setup(const DSA_METHOD *dsam)) (DSA *, BN_CTX *, BIGNUM **, BIGNUM **) { return dsam->dsa_sign_setup; } int DSA_meth_set_sign_setup(DSA_METHOD *dsam, int (*sign_setup) (DSA *, BN_CTX *, BIGNUM **, BIGNUM **)) { dsam->dsa_sign_setup = sign_setup; return 1; } int (*DSA_meth_get_verify(const DSA_METHOD *dsam)) (const unsigned char *, int, DSA_SIG *, DSA *) { return dsam->dsa_do_verify; } int DSA_meth_set_verify(DSA_METHOD *dsam, int (*verify) (const unsigned char *, int, DSA_SIG *, DSA *)) { dsam->dsa_do_verify = verify; return 1; } int (*DSA_meth_get_mod_exp(const DSA_METHOD *dsam)) (DSA *, BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *, BN_MONT_CTX *) { return dsam->dsa_mod_exp; } int DSA_meth_set_mod_exp(DSA_METHOD *dsam, int (*mod_exp) (DSA *, BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *, BN_MONT_CTX *)) { dsam->dsa_mod_exp = mod_exp; return 1; } int (*DSA_meth_get_bn_mod_exp(const DSA_METHOD *dsam)) (DSA *, BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *, BN_MONT_CTX *) { return dsam->bn_mod_exp; } int DSA_meth_set_bn_mod_exp(DSA_METHOD *dsam, int (*bn_mod_exp) (DSA *, BIGNUM *, const BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *, BN_MONT_CTX *)) { dsam->bn_mod_exp = bn_mod_exp; return 1; } int (*DSA_meth_get_init(const DSA_METHOD *dsam))(DSA *) { return dsam->init; } int DSA_meth_set_init(DSA_METHOD *dsam, int (*init)(DSA *)) { dsam->init = init; return 1; } int (*DSA_meth_get_finish(const DSA_METHOD *dsam)) (DSA *) { return dsam->finish; } int DSA_meth_set_finish(DSA_METHOD *dsam, int (*finish) (DSA *)) { dsam->finish = finish; return 1; } int (*DSA_meth_get_paramgen(const DSA_METHOD *dsam)) (DSA *, int, const unsigned char *, int, int *, unsigned long *, BN_GENCB *) { return dsam->dsa_paramgen; } int DSA_meth_set_paramgen(DSA_METHOD *dsam, int (*paramgen) (DSA *, int, const unsigned char *, int, int *, unsigned long *, BN_GENCB *)) { dsam->dsa_paramgen = paramgen; return 1; } int (*DSA_meth_get_keygen(const DSA_METHOD *dsam)) (DSA *) { return dsam->dsa_keygen; } int DSA_meth_set_keygen(DSA_METHOD *dsam, int (*keygen) (DSA *)) { dsam->dsa_keygen = keygen; return 1; } openssl-1.1.1f/crypto/dsa/dsa_ossl.c000066400000000000000000000277011364063235100174170ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "crypto/bn.h" #include #include #include "dsa_local.h" #include static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa); static int dsa_sign_setup_no_digest(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp); static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp, const unsigned char *dgst, int dlen); static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa); static int dsa_init(DSA *dsa); static int dsa_finish(DSA *dsa); static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q, BN_CTX *ctx); static DSA_METHOD openssl_dsa_meth = { "OpenSSL DSA method", dsa_do_sign, dsa_sign_setup_no_digest, dsa_do_verify, NULL, /* dsa_mod_exp, */ NULL, /* dsa_bn_mod_exp, */ dsa_init, dsa_finish, DSA_FLAG_FIPS_METHOD, NULL, NULL, NULL }; static const DSA_METHOD *default_DSA_method = &openssl_dsa_meth; void DSA_set_default_method(const DSA_METHOD *meth) { default_DSA_method = meth; } const DSA_METHOD *DSA_get_default_method(void) { return default_DSA_method; } const DSA_METHOD *DSA_OpenSSL(void) { return &openssl_dsa_meth; } static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa) { BIGNUM *kinv = NULL; BIGNUM *m, *blind, *blindm, *tmp; BN_CTX *ctx = NULL; int reason = ERR_R_BN_LIB; DSA_SIG *ret = NULL; int rv = 0; if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) { reason = DSA_R_MISSING_PARAMETERS; goto err; } if (dsa->priv_key == NULL) { reason = DSA_R_MISSING_PRIVATE_KEY; goto err; } ret = DSA_SIG_new(); if (ret == NULL) goto err; ret->r = BN_new(); ret->s = BN_new(); if (ret->r == NULL || ret->s == NULL) goto err; ctx = BN_CTX_new(); if (ctx == NULL) goto err; m = BN_CTX_get(ctx); blind = BN_CTX_get(ctx); blindm = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL) goto err; redo: if (!dsa_sign_setup(dsa, ctx, &kinv, &ret->r, dgst, dlen)) goto err; if (dlen > BN_num_bytes(dsa->q)) /* * if the digest length is greater than the size of q use the * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3, * 4.2 */ dlen = BN_num_bytes(dsa->q); if (BN_bin2bn(dgst, dlen, m) == NULL) goto err; /* * The normal signature calculation is: * * s := k^-1 * (m + r * priv_key) mod q * * We will blind this to protect against side channel attacks * * s := blind^-1 * k^-1 * (blind * m + blind * r * priv_key) mod q */ /* Generate a blinding value */ do { if (!BN_priv_rand(blind, BN_num_bits(dsa->q) - 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) goto err; } while (BN_is_zero(blind)); BN_set_flags(blind, BN_FLG_CONSTTIME); BN_set_flags(blindm, BN_FLG_CONSTTIME); BN_set_flags(tmp, BN_FLG_CONSTTIME); /* tmp := blind * priv_key * r mod q */ if (!BN_mod_mul(tmp, blind, dsa->priv_key, dsa->q, ctx)) goto err; if (!BN_mod_mul(tmp, tmp, ret->r, dsa->q, ctx)) goto err; /* blindm := blind * m mod q */ if (!BN_mod_mul(blindm, blind, m, dsa->q, ctx)) goto err; /* s : = (blind * priv_key * r) + (blind * m) mod q */ if (!BN_mod_add_quick(ret->s, tmp, blindm, dsa->q)) goto err; /* s := s * k^-1 mod q */ if (!BN_mod_mul(ret->s, ret->s, kinv, dsa->q, ctx)) goto err; /* s:= s * blind^-1 mod q */ if (BN_mod_inverse(blind, blind, dsa->q, ctx) == NULL) goto err; if (!BN_mod_mul(ret->s, ret->s, blind, dsa->q, ctx)) goto err; /* * Redo if r or s is zero as required by FIPS 186-3: this is very * unlikely. */ if (BN_is_zero(ret->r) || BN_is_zero(ret->s)) goto redo; rv = 1; err: if (rv == 0) { DSAerr(DSA_F_DSA_DO_SIGN, reason); DSA_SIG_free(ret); ret = NULL; } BN_CTX_free(ctx); BN_clear_free(kinv); return ret; } static int dsa_sign_setup_no_digest(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) { return dsa_sign_setup(dsa, ctx_in, kinvp, rp, NULL, 0); } static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp, const unsigned char *dgst, int dlen) { BN_CTX *ctx = NULL; BIGNUM *k, *kinv = NULL, *r = *rp; BIGNUM *l; int ret = 0; int q_bits, q_words; if (!dsa->p || !dsa->q || !dsa->g) { DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_MISSING_PARAMETERS); return 0; } /* Reject obviously invalid parameters */ if (BN_is_zero(dsa->p) || BN_is_zero(dsa->q) || BN_is_zero(dsa->g)) { DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_INVALID_PARAMETERS); return 0; } if (dsa->priv_key == NULL) { DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_MISSING_PRIVATE_KEY); return 0; } k = BN_new(); l = BN_new(); if (k == NULL || l == NULL) goto err; if (ctx_in == NULL) { if ((ctx = BN_CTX_new()) == NULL) goto err; } else ctx = ctx_in; /* Preallocate space */ q_bits = BN_num_bits(dsa->q); q_words = bn_get_top(dsa->q); if (!bn_wexpand(k, q_words + 2) || !bn_wexpand(l, q_words + 2)) goto err; /* Get random k */ do { if (dgst != NULL) { /* * We calculate k from SHA512(private_key + H(message) + random). * This protects the private key from a weak PRNG. */ if (!BN_generate_dsa_nonce(k, dsa->q, dsa->priv_key, dgst, dlen, ctx)) goto err; } else if (!BN_priv_rand_range(k, dsa->q)) goto err; } while (BN_is_zero(k)); BN_set_flags(k, BN_FLG_CONSTTIME); BN_set_flags(l, BN_FLG_CONSTTIME); if (dsa->flags & DSA_FLAG_CACHE_MONT_P) { if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, dsa->lock, dsa->p, ctx)) goto err; } /* Compute r = (g^k mod p) mod q */ /* * We do not want timing information to leak the length of k, so we * compute G^k using an equivalent scalar of fixed bit-length. * * We unconditionally perform both of these additions to prevent a * small timing information leakage. We then choose the sum that is * one bit longer than the modulus. * * There are some concerns about the efficacy of doing this. More * specifically refer to the discussion starting with: * https://github.com/openssl/openssl/pull/7486#discussion_r228323705 * The fix is to rework BN so these gymnastics aren't required. */ if (!BN_add(l, k, dsa->q) || !BN_add(k, l, dsa->q)) goto err; BN_consttime_swap(BN_is_bit_set(l, q_bits), k, l, q_words + 2); if ((dsa)->meth->bn_mod_exp != NULL) { if (!dsa->meth->bn_mod_exp(dsa, r, dsa->g, k, dsa->p, ctx, dsa->method_mont_p)) goto err; } else { if (!BN_mod_exp_mont(r, dsa->g, k, dsa->p, ctx, dsa->method_mont_p)) goto err; } if (!BN_mod(r, r, dsa->q, ctx)) goto err; /* Compute part of 's = inv(k) (m + xr) mod q' */ if ((kinv = dsa_mod_inverse_fermat(k, dsa->q, ctx)) == NULL) goto err; BN_clear_free(*kinvp); *kinvp = kinv; kinv = NULL; ret = 1; err: if (!ret) DSAerr(DSA_F_DSA_SIGN_SETUP, ERR_R_BN_LIB); if (ctx != ctx_in) BN_CTX_free(ctx); BN_clear_free(k); BN_clear_free(l); return ret; } static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa) { BN_CTX *ctx; BIGNUM *u1, *u2, *t1; BN_MONT_CTX *mont = NULL; const BIGNUM *r, *s; int ret = -1, i; if (!dsa->p || !dsa->q || !dsa->g) { DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MISSING_PARAMETERS); return -1; } i = BN_num_bits(dsa->q); /* fips 186-3 allows only different sizes for q */ if (i != 160 && i != 224 && i != 256) { DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_BAD_Q_VALUE); return -1; } if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) { DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MODULUS_TOO_LARGE); return -1; } u1 = BN_new(); u2 = BN_new(); t1 = BN_new(); ctx = BN_CTX_new(); if (u1 == NULL || u2 == NULL || t1 == NULL || ctx == NULL) goto err; DSA_SIG_get0(sig, &r, &s); if (BN_is_zero(r) || BN_is_negative(r) || BN_ucmp(r, dsa->q) >= 0) { ret = 0; goto err; } if (BN_is_zero(s) || BN_is_negative(s) || BN_ucmp(s, dsa->q) >= 0) { ret = 0; goto err; } /* * Calculate W = inv(S) mod Q save W in u2 */ if ((BN_mod_inverse(u2, s, dsa->q, ctx)) == NULL) goto err; /* save M in u1 */ if (dgst_len > (i >> 3)) /* * if the digest length is greater than the size of q use the * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3, * 4.2 */ dgst_len = (i >> 3); if (BN_bin2bn(dgst, dgst_len, u1) == NULL) goto err; /* u1 = M * w mod q */ if (!BN_mod_mul(u1, u1, u2, dsa->q, ctx)) goto err; /* u2 = r * w mod q */ if (!BN_mod_mul(u2, r, u2, dsa->q, ctx)) goto err; if (dsa->flags & DSA_FLAG_CACHE_MONT_P) { mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p, dsa->lock, dsa->p, ctx); if (!mont) goto err; } if (dsa->meth->dsa_mod_exp != NULL) { if (!dsa->meth->dsa_mod_exp(dsa, t1, dsa->g, u1, dsa->pub_key, u2, dsa->p, ctx, mont)) goto err; } else { if (!BN_mod_exp2_mont(t1, dsa->g, u1, dsa->pub_key, u2, dsa->p, ctx, mont)) goto err; } /* let u1 = u1 mod q */ if (!BN_mod(u1, t1, dsa->q, ctx)) goto err; /* * V is now in u1. If the signature is correct, it will be equal to R. */ ret = (BN_ucmp(u1, r) == 0); err: if (ret < 0) DSAerr(DSA_F_DSA_DO_VERIFY, ERR_R_BN_LIB); BN_CTX_free(ctx); BN_free(u1); BN_free(u2); BN_free(t1); return ret; } static int dsa_init(DSA *dsa) { dsa->flags |= DSA_FLAG_CACHE_MONT_P; return 1; } static int dsa_finish(DSA *dsa) { BN_MONT_CTX_free(dsa->method_mont_p); return 1; } /* * Compute the inverse of k modulo q. * Since q is prime, Fermat's Little Theorem applies, which reduces this to * mod-exp operation. Both the exponent and modulus are public information * so a mod-exp that doesn't leak the base is sufficient. A newly allocated * BIGNUM is returned which the caller must free. */ static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q, BN_CTX *ctx) { BIGNUM *res = NULL; BIGNUM *r, *e; if ((r = BN_new()) == NULL) return NULL; BN_CTX_start(ctx); if ((e = BN_CTX_get(ctx)) != NULL && BN_set_word(r, 2) && BN_sub(e, q, r) && BN_mod_exp_mont(r, k, e, q, ctx, NULL)) res = r; else BN_free(r); BN_CTX_end(ctx); return res; } openssl-1.1.1f/crypto/dsa/dsa_pmeth.c000066400000000000000000000156041364063235100175530ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/evp.h" #include "dsa_local.h" /* DSA pkey context structure */ typedef struct { /* Parameter gen parameters */ int nbits; /* size of p in bits (default: 2048) */ int qbits; /* size of q in bits (default: 224) */ const EVP_MD *pmd; /* MD for parameter generation */ /* Keygen callback info */ int gentmp[2]; /* message digest */ const EVP_MD *md; /* MD for the signature */ } DSA_PKEY_CTX; static int pkey_dsa_init(EVP_PKEY_CTX *ctx) { DSA_PKEY_CTX *dctx = OPENSSL_malloc(sizeof(*dctx)); if (dctx == NULL) return 0; dctx->nbits = 2048; dctx->qbits = 224; dctx->pmd = NULL; dctx->md = NULL; ctx->data = dctx; ctx->keygen_info = dctx->gentmp; ctx->keygen_info_count = 2; return 1; } static int pkey_dsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { DSA_PKEY_CTX *dctx, *sctx; if (!pkey_dsa_init(dst)) return 0; sctx = src->data; dctx = dst->data; dctx->nbits = sctx->nbits; dctx->qbits = sctx->qbits; dctx->pmd = sctx->pmd; dctx->md = sctx->md; return 1; } static void pkey_dsa_cleanup(EVP_PKEY_CTX *ctx) { DSA_PKEY_CTX *dctx = ctx->data; OPENSSL_free(dctx); } static int pkey_dsa_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) { int ret; unsigned int sltmp; DSA_PKEY_CTX *dctx = ctx->data; DSA *dsa = ctx->pkey->pkey.dsa; if (dctx->md != NULL && tbslen != (size_t)EVP_MD_size(dctx->md)) return 0; ret = DSA_sign(0, tbs, tbslen, sig, &sltmp, dsa); if (ret <= 0) return ret; *siglen = sltmp; return 1; } static int pkey_dsa_verify(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { int ret; DSA_PKEY_CTX *dctx = ctx->data; DSA *dsa = ctx->pkey->pkey.dsa; if (dctx->md != NULL && tbslen != (size_t)EVP_MD_size(dctx->md)) return 0; ret = DSA_verify(0, tbs, tbslen, sig, siglen, dsa); return ret; } static int pkey_dsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { DSA_PKEY_CTX *dctx = ctx->data; switch (type) { case EVP_PKEY_CTRL_DSA_PARAMGEN_BITS: if (p1 < 256) return -2; dctx->nbits = p1; return 1; case EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS: if (p1 != 160 && p1 != 224 && p1 && p1 != 256) return -2; dctx->qbits = p1; return 1; case EVP_PKEY_CTRL_DSA_PARAMGEN_MD: if (EVP_MD_type((const EVP_MD *)p2) != NID_sha1 && EVP_MD_type((const EVP_MD *)p2) != NID_sha224 && EVP_MD_type((const EVP_MD *)p2) != NID_sha256) { DSAerr(DSA_F_PKEY_DSA_CTRL, DSA_R_INVALID_DIGEST_TYPE); return 0; } dctx->pmd = p2; return 1; case EVP_PKEY_CTRL_MD: if (EVP_MD_type((const EVP_MD *)p2) != NID_sha1 && EVP_MD_type((const EVP_MD *)p2) != NID_dsa && EVP_MD_type((const EVP_MD *)p2) != NID_dsaWithSHA && EVP_MD_type((const EVP_MD *)p2) != NID_sha224 && EVP_MD_type((const EVP_MD *)p2) != NID_sha256 && EVP_MD_type((const EVP_MD *)p2) != NID_sha384 && EVP_MD_type((const EVP_MD *)p2) != NID_sha512 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_224 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_256 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_384 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_512) { DSAerr(DSA_F_PKEY_DSA_CTRL, DSA_R_INVALID_DIGEST_TYPE); return 0; } dctx->md = p2; return 1; case EVP_PKEY_CTRL_GET_MD: *(const EVP_MD **)p2 = dctx->md; return 1; case EVP_PKEY_CTRL_DIGESTINIT: case EVP_PKEY_CTRL_PKCS7_SIGN: case EVP_PKEY_CTRL_CMS_SIGN: return 1; case EVP_PKEY_CTRL_PEER_KEY: DSAerr(DSA_F_PKEY_DSA_CTRL, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; default: return -2; } } static int pkey_dsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (strcmp(type, "dsa_paramgen_bits") == 0) { int nbits; nbits = atoi(value); return EVP_PKEY_CTX_set_dsa_paramgen_bits(ctx, nbits); } if (strcmp(type, "dsa_paramgen_q_bits") == 0) { int qbits = atoi(value); return EVP_PKEY_CTX_set_dsa_paramgen_q_bits(ctx, qbits); } if (strcmp(type, "dsa_paramgen_md") == 0) { const EVP_MD *md = EVP_get_digestbyname(value); if (md == NULL) { DSAerr(DSA_F_PKEY_DSA_CTRL_STR, DSA_R_INVALID_DIGEST_TYPE); return 0; } return EVP_PKEY_CTX_set_dsa_paramgen_md(ctx, md); } return -2; } static int pkey_dsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { DSA *dsa = NULL; DSA_PKEY_CTX *dctx = ctx->data; BN_GENCB *pcb; int ret; if (ctx->pkey_gencb) { pcb = BN_GENCB_new(); if (pcb == NULL) return 0; evp_pkey_set_cb_translate(pcb, ctx); } else pcb = NULL; dsa = DSA_new(); if (dsa == NULL) { BN_GENCB_free(pcb); return 0; } ret = dsa_builtin_paramgen(dsa, dctx->nbits, dctx->qbits, dctx->pmd, NULL, 0, NULL, NULL, NULL, pcb); BN_GENCB_free(pcb); if (ret) EVP_PKEY_assign_DSA(pkey, dsa); else DSA_free(dsa); return ret; } static int pkey_dsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { DSA *dsa = NULL; if (ctx->pkey == NULL) { DSAerr(DSA_F_PKEY_DSA_KEYGEN, DSA_R_NO_PARAMETERS_SET); return 0; } dsa = DSA_new(); if (dsa == NULL) return 0; EVP_PKEY_assign_DSA(pkey, dsa); /* Note: if error return, pkey is freed by parent routine */ if (!EVP_PKEY_copy_parameters(pkey, ctx->pkey)) return 0; return DSA_generate_key(pkey->pkey.dsa); } const EVP_PKEY_METHOD dsa_pkey_meth = { EVP_PKEY_DSA, EVP_PKEY_FLAG_AUTOARGLEN, pkey_dsa_init, pkey_dsa_copy, pkey_dsa_cleanup, 0, pkey_dsa_paramgen, 0, pkey_dsa_keygen, 0, pkey_dsa_sign, 0, pkey_dsa_verify, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_dsa_ctrl, pkey_dsa_ctrl_str }; openssl-1.1.1f/crypto/dsa/dsa_prn.c000066400000000000000000000031221364063235100172250ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #ifndef OPENSSL_NO_STDIO int DSA_print_fp(FILE *fp, const DSA *x, int off) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { DSAerr(DSA_F_DSA_PRINT_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = DSA_print(b, x, off); BIO_free(b); return ret; } int DSAparams_print_fp(FILE *fp, const DSA *x) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { DSAerr(DSA_F_DSAPARAMS_PRINT_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = DSAparams_print(b, x); BIO_free(b); return ret; } #endif int DSA_print(BIO *bp, const DSA *x, int off) { EVP_PKEY *pk; int ret; pk = EVP_PKEY_new(); if (pk == NULL || !EVP_PKEY_set1_DSA(pk, (DSA *)x)) return 0; ret = EVP_PKEY_print_private(bp, pk, off, NULL); EVP_PKEY_free(pk); return ret; } int DSAparams_print(BIO *bp, const DSA *x) { EVP_PKEY *pk; int ret; pk = EVP_PKEY_new(); if (pk == NULL || !EVP_PKEY_set1_DSA(pk, (DSA *)x)) return 0; ret = EVP_PKEY_print_params(bp, pk, 4, NULL); EVP_PKEY_free(pk); return ret; } openssl-1.1.1f/crypto/dsa/dsa_sign.c000066400000000000000000000013221364063235100173660ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "dsa_local.h" #include DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa) { return dsa->meth->dsa_do_sign(dgst, dlen, dsa); } #if OPENSSL_API_COMPAT < 0x10200000L int DSA_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) { return dsa->meth->dsa_sign_setup(dsa, ctx_in, kinvp, rp); } #endif openssl-1.1.1f/crypto/dsa/dsa_vrf.c000066400000000000000000000010551364063235100172260ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "dsa_local.h" int DSA_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa) { return dsa->meth->dsa_do_verify(dgst, dgst_len, sig, dsa); } openssl-1.1.1f/crypto/dso/000077500000000000000000000000001364063235100154535ustar00rootroot00000000000000openssl-1.1.1f/crypto/dso/build.info000066400000000000000000000002161364063235100174260ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ dso_dl.c dso_dlfcn.c dso_err.c dso_lib.c \ dso_openssl.c dso_win32.c dso_vms.c openssl-1.1.1f/crypto/dso/dso_dl.c000066400000000000000000000201541364063235100170650ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "dso_local.h" #ifdef DSO_DL # include /* Part of the hack in "dl_load" ... */ # define DSO_MAX_TRANSLATED_SIZE 256 static int dl_load(DSO *dso); static int dl_unload(DSO *dso); static DSO_FUNC_TYPE dl_bind_func(DSO *dso, const char *symname); static char *dl_name_converter(DSO *dso, const char *filename); static char *dl_merger(DSO *dso, const char *filespec1, const char *filespec2); static int dl_pathbyaddr(void *addr, char *path, int sz); static void *dl_globallookup(const char *name); static DSO_METHOD dso_meth_dl = { "OpenSSL 'dl' shared library method", dl_load, dl_unload, dl_bind_func, NULL, /* ctrl */ dl_name_converter, dl_merger, NULL, /* init */ NULL, /* finish */ dl_pathbyaddr, dl_globallookup }; DSO_METHOD *DSO_METHOD_openssl(void) { return &dso_meth_dl; } /* * For this DSO_METHOD, our meth_data STACK will contain; (i) the handle * (shl_t) returned from shl_load(). NB: I checked on HPUX11 and shl_t is * itself a pointer type so the cast is safe. */ static int dl_load(DSO *dso) { shl_t ptr = NULL; /* * We don't do any fancy retries or anything, just take the method's (or * DSO's if it has the callback set) best translation of the * platform-independent filename and try once with that. */ char *filename = DSO_convert_filename(dso, NULL); if (filename == NULL) { DSOerr(DSO_F_DL_LOAD, DSO_R_NO_FILENAME); goto err; } ptr = shl_load(filename, BIND_IMMEDIATE | (dso->flags & DSO_FLAG_NO_NAME_TRANSLATION ? 0 : DYNAMIC_PATH), 0L); if (ptr == NULL) { char errbuf[160]; DSOerr(DSO_F_DL_LOAD, DSO_R_LOAD_FAILED); if (openssl_strerror_r(errno, errbuf, sizeof(errbuf))) ERR_add_error_data(4, "filename(", filename, "): ", errbuf); goto err; } if (!sk_push(dso->meth_data, (char *)ptr)) { DSOerr(DSO_F_DL_LOAD, DSO_R_STACK_ERROR); goto err; } /* * Success, stick the converted filename we've loaded under into the DSO * (it also serves as the indicator that we are currently loaded). */ dso->loaded_filename = filename; return 1; err: /* Cleanup! */ OPENSSL_free(filename); if (ptr != NULL) shl_unload(ptr); return 0; } static int dl_unload(DSO *dso) { shl_t ptr; if (dso == NULL) { DSOerr(DSO_F_DL_UNLOAD, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (sk_num(dso->meth_data) < 1) return 1; /* Is this statement legal? */ ptr = (shl_t) sk_pop(dso->meth_data); if (ptr == NULL) { DSOerr(DSO_F_DL_UNLOAD, DSO_R_NULL_HANDLE); /* * Should push the value back onto the stack in case of a retry. */ sk_push(dso->meth_data, (char *)ptr); return 0; } shl_unload(ptr); return 1; } static DSO_FUNC_TYPE dl_bind_func(DSO *dso, const char *symname) { shl_t ptr; void *sym; if ((dso == NULL) || (symname == NULL)) { DSOerr(DSO_F_DL_BIND_FUNC, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (sk_num(dso->meth_data) < 1) { DSOerr(DSO_F_DL_BIND_FUNC, DSO_R_STACK_ERROR); return NULL; } ptr = (shl_t) sk_value(dso->meth_data, sk_num(dso->meth_data) - 1); if (ptr == NULL) { DSOerr(DSO_F_DL_BIND_FUNC, DSO_R_NULL_HANDLE); return NULL; } if (shl_findsym(&ptr, symname, TYPE_UNDEFINED, &sym) < 0) { char errbuf[160]; DSOerr(DSO_F_DL_BIND_FUNC, DSO_R_SYM_FAILURE); if (openssl_strerror_r(errno, errbuf, sizeof(errbuf))) ERR_add_error_data(4, "symname(", symname, "): ", errbuf); return NULL; } return (DSO_FUNC_TYPE)sym; } static char *dl_merger(DSO *dso, const char *filespec1, const char *filespec2) { char *merged; if (!filespec1 && !filespec2) { DSOerr(DSO_F_DL_MERGER, ERR_R_PASSED_NULL_PARAMETER); return NULL; } /* * If the first file specification is a rooted path, it rules. same goes * if the second file specification is missing. */ if (!filespec2 || filespec1[0] == '/') { merged = OPENSSL_strdup(filespec1); if (merged == NULL) { DSOerr(DSO_F_DL_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } } /* * If the first file specification is missing, the second one rules. */ else if (!filespec1) { merged = OPENSSL_strdup(filespec2); if (merged == NULL) { DSOerr(DSO_F_DL_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } } else /* * This part isn't as trivial as it looks. It assumes that the * second file specification really is a directory, and makes no * checks whatsoever. Therefore, the result becomes the * concatenation of filespec2 followed by a slash followed by * filespec1. */ { int spec2len, len; spec2len = (filespec2 ? strlen(filespec2) : 0); len = spec2len + (filespec1 ? strlen(filespec1) : 0); if (spec2len && filespec2[spec2len - 1] == '/') { spec2len--; len--; } merged = OPENSSL_malloc(len + 2); if (merged == NULL) { DSOerr(DSO_F_DL_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } strcpy(merged, filespec2); merged[spec2len] = '/'; strcpy(&merged[spec2len + 1], filespec1); } return merged; } /* * This function is identical to the one in dso_dlfcn.c, but as it is highly * unlikely that both the "dl" *and* "dlfcn" variants are being compiled at * the same time, there's no great duplicating the code. Figuring out an * elegant way to share one copy of the code would be more difficult and * would not leave the implementations independent. */ static char *dl_name_converter(DSO *dso, const char *filename) { char *translated; int len, rsize, transform; len = strlen(filename); rsize = len + 1; transform = (strstr(filename, "/") == NULL); { /* We will convert this to "%s.s?" or "lib%s.s?" */ rsize += strlen(DSO_EXTENSION); /* The length of ".s?" */ if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0) rsize += 3; /* The length of "lib" */ } translated = OPENSSL_malloc(rsize); if (translated == NULL) { DSOerr(DSO_F_DL_NAME_CONVERTER, DSO_R_NAME_TRANSLATION_FAILED); return NULL; } if (transform) { if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0) sprintf(translated, "lib%s%s", filename, DSO_EXTENSION); else sprintf(translated, "%s%s", filename, DSO_EXTENSION); } else sprintf(translated, "%s", filename); return translated; } static int dl_pathbyaddr(void *addr, char *path, int sz) { struct shl_descriptor inf; int i, len; if (addr == NULL) { union { int (*f) (void *, char *, int); void *p; } t = { dl_pathbyaddr }; addr = t.p; } for (i = -1; shl_get_r(i, &inf) == 0; i++) { if (((size_t)addr >= inf.tstart && (size_t)addr < inf.tend) || ((size_t)addr >= inf.dstart && (size_t)addr < inf.dend)) { len = (int)strlen(inf.filename); if (sz <= 0) return len + 1; if (len >= sz) len = sz - 1; memcpy(path, inf.filename, len); path[len++] = 0; return len; } } return -1; } static void *dl_globallookup(const char *name) { void *ret; shl_t h = NULL; return shl_findsym(&h, name, TYPE_UNDEFINED, &ret) ? NULL : ret; } #endif /* DSO_DL */ openssl-1.1.1f/crypto/dso/dso_dlfcn.c000066400000000000000000000326351364063235100175630ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * We need to do this early, because stdio.h includes the header files that * handle _GNU_SOURCE and other similar macros. Defining it later is simply * too late, because those headers are protected from re- inclusion. */ #ifndef _GNU_SOURCE # define _GNU_SOURCE /* make sure dladdr is declared */ #endif #include "dso_local.h" #include "e_os.h" #ifdef DSO_DLFCN # ifdef HAVE_DLFCN_H # ifdef __osf__ # define __EXTENSIONS__ # endif # include # define HAVE_DLINFO 1 # if defined(__SCO_VERSION__) || defined(_SCO_ELF) || \ (defined(__osf__) && !defined(RTLD_NEXT)) || \ (defined(__OpenBSD__) && !defined(RTLD_SELF)) || \ defined(__ANDROID__) # undef HAVE_DLINFO # endif # endif /* Part of the hack in "dlfcn_load" ... */ # define DSO_MAX_TRANSLATED_SIZE 256 static int dlfcn_load(DSO *dso); static int dlfcn_unload(DSO *dso); static DSO_FUNC_TYPE dlfcn_bind_func(DSO *dso, const char *symname); static char *dlfcn_name_converter(DSO *dso, const char *filename); static char *dlfcn_merger(DSO *dso, const char *filespec1, const char *filespec2); static int dlfcn_pathbyaddr(void *addr, char *path, int sz); static void *dlfcn_globallookup(const char *name); static DSO_METHOD dso_meth_dlfcn = { "OpenSSL 'dlfcn' shared library method", dlfcn_load, dlfcn_unload, dlfcn_bind_func, NULL, /* ctrl */ dlfcn_name_converter, dlfcn_merger, NULL, /* init */ NULL, /* finish */ dlfcn_pathbyaddr, dlfcn_globallookup }; DSO_METHOD *DSO_METHOD_openssl(void) { return &dso_meth_dlfcn; } /* * Prior to using the dlopen() function, we should decide on the flag we * send. There's a few different ways of doing this and it's a messy * venn-diagram to match up which platforms support what. So as we don't have * autoconf yet, I'm implementing a hack that could be hacked further * relatively easily to deal with cases as we find them. Initially this is to * cope with OpenBSD. */ # if defined(__OpenBSD__) || defined(__NetBSD__) # ifdef DL_LAZY # define DLOPEN_FLAG DL_LAZY # else # ifdef RTLD_NOW # define DLOPEN_FLAG RTLD_NOW # else # define DLOPEN_FLAG 0 # endif # endif # else # define DLOPEN_FLAG RTLD_NOW /* Hope this works everywhere else */ # endif /* * For this DSO_METHOD, our meth_data STACK will contain; (i) the handle * (void*) returned from dlopen(). */ static int dlfcn_load(DSO *dso) { void *ptr = NULL; /* See applicable comments in dso_dl.c */ char *filename = DSO_convert_filename(dso, NULL); int flags = DLOPEN_FLAG; int saveerrno = get_last_sys_error(); if (filename == NULL) { DSOerr(DSO_F_DLFCN_LOAD, DSO_R_NO_FILENAME); goto err; } # ifdef RTLD_GLOBAL if (dso->flags & DSO_FLAG_GLOBAL_SYMBOLS) flags |= RTLD_GLOBAL; # endif # ifdef _AIX if (filename[strlen(filename) - 1] == ')') flags |= RTLD_MEMBER; # endif ptr = dlopen(filename, flags); if (ptr == NULL) { DSOerr(DSO_F_DLFCN_LOAD, DSO_R_LOAD_FAILED); ERR_add_error_data(4, "filename(", filename, "): ", dlerror()); goto err; } /* * Some dlopen() implementations (e.g. solaris) do no preserve errno, even * on a successful call. */ set_sys_error(saveerrno); if (!sk_void_push(dso->meth_data, (char *)ptr)) { DSOerr(DSO_F_DLFCN_LOAD, DSO_R_STACK_ERROR); goto err; } /* Success */ dso->loaded_filename = filename; return 1; err: /* Cleanup! */ OPENSSL_free(filename); if (ptr != NULL) dlclose(ptr); return 0; } static int dlfcn_unload(DSO *dso) { void *ptr; if (dso == NULL) { DSOerr(DSO_F_DLFCN_UNLOAD, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (sk_void_num(dso->meth_data) < 1) return 1; ptr = sk_void_pop(dso->meth_data); if (ptr == NULL) { DSOerr(DSO_F_DLFCN_UNLOAD, DSO_R_NULL_HANDLE); /* * Should push the value back onto the stack in case of a retry. */ sk_void_push(dso->meth_data, ptr); return 0; } /* For now I'm not aware of any errors associated with dlclose() */ dlclose(ptr); return 1; } static DSO_FUNC_TYPE dlfcn_bind_func(DSO *dso, const char *symname) { void *ptr; union { DSO_FUNC_TYPE sym; void *dlret; } u; if ((dso == NULL) || (symname == NULL)) { DSOerr(DSO_F_DLFCN_BIND_FUNC, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (sk_void_num(dso->meth_data) < 1) { DSOerr(DSO_F_DLFCN_BIND_FUNC, DSO_R_STACK_ERROR); return NULL; } ptr = sk_void_value(dso->meth_data, sk_void_num(dso->meth_data) - 1); if (ptr == NULL) { DSOerr(DSO_F_DLFCN_BIND_FUNC, DSO_R_NULL_HANDLE); return NULL; } u.dlret = dlsym(ptr, symname); if (u.dlret == NULL) { DSOerr(DSO_F_DLFCN_BIND_FUNC, DSO_R_SYM_FAILURE); ERR_add_error_data(4, "symname(", symname, "): ", dlerror()); return NULL; } return u.sym; } static char *dlfcn_merger(DSO *dso, const char *filespec1, const char *filespec2) { char *merged; if (!filespec1 && !filespec2) { DSOerr(DSO_F_DLFCN_MERGER, ERR_R_PASSED_NULL_PARAMETER); return NULL; } /* * If the first file specification is a rooted path, it rules. same goes * if the second file specification is missing. */ if (!filespec2 || (filespec1 != NULL && filespec1[0] == '/')) { merged = OPENSSL_strdup(filespec1); if (merged == NULL) { DSOerr(DSO_F_DLFCN_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } } /* * If the first file specification is missing, the second one rules. */ else if (!filespec1) { merged = OPENSSL_strdup(filespec2); if (merged == NULL) { DSOerr(DSO_F_DLFCN_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } } else { /* * This part isn't as trivial as it looks. It assumes that the * second file specification really is a directory, and makes no * checks whatsoever. Therefore, the result becomes the * concatenation of filespec2 followed by a slash followed by * filespec1. */ int spec2len, len; spec2len = strlen(filespec2); len = spec2len + strlen(filespec1); if (spec2len && filespec2[spec2len - 1] == '/') { spec2len--; len--; } merged = OPENSSL_malloc(len + 2); if (merged == NULL) { DSOerr(DSO_F_DLFCN_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } strcpy(merged, filespec2); merged[spec2len] = '/'; strcpy(&merged[spec2len + 1], filespec1); } return merged; } static char *dlfcn_name_converter(DSO *dso, const char *filename) { char *translated; int len, rsize, transform; len = strlen(filename); rsize = len + 1; transform = (strstr(filename, "/") == NULL); if (transform) { /* We will convert this to "%s.so" or "lib%s.so" etc */ rsize += strlen(DSO_EXTENSION); /* The length of ".so" */ if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0) rsize += 3; /* The length of "lib" */ } translated = OPENSSL_malloc(rsize); if (translated == NULL) { DSOerr(DSO_F_DLFCN_NAME_CONVERTER, DSO_R_NAME_TRANSLATION_FAILED); return NULL; } if (transform) { if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0) sprintf(translated, "lib%s" DSO_EXTENSION, filename); else sprintf(translated, "%s" DSO_EXTENSION, filename); } else sprintf(translated, "%s", filename); return translated; } # ifdef __sgi /*- This is a quote from IRIX manual for dladdr(3c): does not contain a prototype for dladdr or definition of Dl_info. The #include in the SYNOPSIS line is traditional, but contains no dladdr prototype and no IRIX library contains an implementation. Write your own declaration based on the code below. The following code is dependent on internal interfaces that are not part of the IRIX compatibility guarantee; however, there is no future intention to change this interface, so on a practical level, the code below is safe to use on IRIX. */ # include # ifndef _RLD_INTERFACE_DLFCN_H_DLADDR # define _RLD_INTERFACE_DLFCN_H_DLADDR typedef struct Dl_info { const char *dli_fname; void *dli_fbase; const char *dli_sname; void *dli_saddr; int dli_version; int dli_reserved1; long dli_reserved[4]; } Dl_info; # else typedef struct Dl_info Dl_info; # endif # define _RLD_DLADDR 14 static int dladdr(void *address, Dl_info *dl) { void *v; v = _rld_new_interface(_RLD_DLADDR, address, dl); return (int)v; } # endif /* __sgi */ # ifdef _AIX /*- * See IBM's AIX Version 7.2, Technical Reference: * Base Operating System and Extensions, Volume 1 and 2 * https://www.ibm.com/support/knowledgecenter/ssw_aix_72/com.ibm.aix.base/technicalreferences.htm */ # include # include /* ~ 64 * (sizeof(struct ld_info) + _XOPEN_PATH_MAX + _XOPEN_NAME_MAX) */ # define DLFCN_LDINFO_SIZE 86976 typedef struct Dl_info { const char *dli_fname; } Dl_info; /* * This dladdr()-implementation will also find the ptrgl (Pointer Glue) virtual * address of a function, which is just located in the DATA segment instead of * the TEXT segment. */ static int dladdr(void *ptr, Dl_info *dl) { uintptr_t addr = (uintptr_t)ptr; unsigned int found = 0; struct ld_info *ldinfos, *next_ldi, *this_ldi; if ((ldinfos = OPENSSL_malloc(DLFCN_LDINFO_SIZE)) == NULL) { errno = ENOMEM; dl->dli_fname = NULL; return 0; } if ((loadquery(L_GETINFO, (void *)ldinfos, DLFCN_LDINFO_SIZE)) < 0) { /*- * Error handling is done through errno and dlerror() reading errno: * ENOMEM (ldinfos buffer is too small), * EINVAL (invalid flags), * EFAULT (invalid ldinfos ptr) */ OPENSSL_free((void *)ldinfos); dl->dli_fname = NULL; return 0; } next_ldi = ldinfos; do { this_ldi = next_ldi; if (((addr >= (uintptr_t)this_ldi->ldinfo_textorg) && (addr < ((uintptr_t)this_ldi->ldinfo_textorg + this_ldi->ldinfo_textsize))) || ((addr >= (uintptr_t)this_ldi->ldinfo_dataorg) && (addr < ((uintptr_t)this_ldi->ldinfo_dataorg + this_ldi->ldinfo_datasize)))) { char *buffer, *member; size_t buffer_sz, member_len; buffer_sz = strlen(this_ldi->ldinfo_filename) + 1; member = this_ldi->ldinfo_filename + buffer_sz; if ((member_len = strlen(member)) > 0) buffer_sz += 1 + member_len + 1; found = 1; if ((buffer = OPENSSL_malloc(buffer_sz)) != NULL) { OPENSSL_strlcpy(buffer, this_ldi->ldinfo_filename, buffer_sz); if (member_len > 0) { /* * Need to respect a possible member name and not just * returning the path name in this case. See docs: * sys/ldr.h, loadquery() and dlopen()/RTLD_MEMBER. */ OPENSSL_strlcat(buffer, "(", buffer_sz); OPENSSL_strlcat(buffer, member, buffer_sz); OPENSSL_strlcat(buffer, ")", buffer_sz); } dl->dli_fname = buffer; } else { errno = ENOMEM; } } else { next_ldi = (struct ld_info *)((uintptr_t)this_ldi + this_ldi->ldinfo_next); } } while (this_ldi->ldinfo_next && !found); OPENSSL_free((void *)ldinfos); return (found && dl->dli_fname != NULL); } # endif /* _AIX */ static int dlfcn_pathbyaddr(void *addr, char *path, int sz) { # ifdef HAVE_DLINFO Dl_info dli; int len; if (addr == NULL) { union { int (*f) (void *, char *, int); void *p; } t = { dlfcn_pathbyaddr }; addr = t.p; } if (dladdr(addr, &dli)) { len = (int)strlen(dli.dli_fname); if (sz <= 0) { # ifdef _AIX OPENSSL_free((void *)dli.dli_fname); # endif return len + 1; } if (len >= sz) len = sz - 1; memcpy(path, dli.dli_fname, len); path[len++] = 0; # ifdef _AIX OPENSSL_free((void *)dli.dli_fname); # endif return len; } ERR_add_error_data(2, "dlfcn_pathbyaddr(): ", dlerror()); # endif return -1; } static void *dlfcn_globallookup(const char *name) { void *ret = NULL, *handle = dlopen(NULL, RTLD_LAZY); if (handle) { ret = dlsym(handle, name); dlclose(handle); } return ret; } #endif /* DSO_DLFCN */ openssl-1.1.1f/crypto/dso/dso_err.c000066400000000000000000000110441364063235100172540ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/dsoerr.h" #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA DSO_str_functs[] = { {ERR_PACK(ERR_LIB_DSO, DSO_F_DLFCN_BIND_FUNC, 0), "dlfcn_bind_func"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DLFCN_LOAD, 0), "dlfcn_load"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DLFCN_MERGER, 0), "dlfcn_merger"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DLFCN_NAME_CONVERTER, 0), "dlfcn_name_converter"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DLFCN_UNLOAD, 0), "dlfcn_unload"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DL_BIND_FUNC, 0), "dl_bind_func"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DL_LOAD, 0), "dl_load"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DL_MERGER, 0), "dl_merger"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DL_NAME_CONVERTER, 0), "dl_name_converter"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DL_UNLOAD, 0), "dl_unload"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_BIND_FUNC, 0), "DSO_bind_func"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_CONVERT_FILENAME, 0), "DSO_convert_filename"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_CTRL, 0), "DSO_ctrl"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_FREE, 0), "DSO_free"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_GET_FILENAME, 0), "DSO_get_filename"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_GLOBAL_LOOKUP, 0), "DSO_global_lookup"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_LOAD, 0), "DSO_load"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_MERGE, 0), "DSO_merge"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_NEW_METHOD, 0), "DSO_new_method"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_PATHBYADDR, 0), "DSO_pathbyaddr"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_SET_FILENAME, 0), "DSO_set_filename"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_DSO_UP_REF, 0), "DSO_up_ref"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_VMS_BIND_SYM, 0), "vms_bind_sym"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_VMS_LOAD, 0), "vms_load"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_VMS_MERGER, 0), "vms_merger"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_VMS_UNLOAD, 0), "vms_unload"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_BIND_FUNC, 0), "win32_bind_func"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_GLOBALLOOKUP, 0), "win32_globallookup"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_JOINER, 0), "win32_joiner"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_LOAD, 0), "win32_load"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_MERGER, 0), "win32_merger"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_NAME_CONVERTER, 0), "win32_name_converter"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_PATHBYADDR, 0), ""}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_SPLITTER, 0), "win32_splitter"}, {ERR_PACK(ERR_LIB_DSO, DSO_F_WIN32_UNLOAD, 0), "win32_unload"}, {0, NULL} }; static const ERR_STRING_DATA DSO_str_reasons[] = { {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_CTRL_FAILED), "control command failed"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_DSO_ALREADY_LOADED), "dso already loaded"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_EMPTY_FILE_STRUCTURE), "empty file structure"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_FAILURE), "failure"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_FILENAME_TOO_BIG), "filename too big"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_FINISH_FAILED), "cleanup method function failed"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_INCORRECT_FILE_SYNTAX), "incorrect file syntax"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_LOAD_FAILED), "could not load the shared library"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_NAME_TRANSLATION_FAILED), "name translation failed"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_NO_FILENAME), "no filename"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_NULL_HANDLE), "a null shared library handle was used"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_SET_FILENAME_FAILED), "set filename failed"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_STACK_ERROR), "the meth_data stack is corrupt"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_SYM_FAILURE), "could not bind to the requested symbol name"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_UNLOAD_FAILED), "could not unload the shared library"}, {ERR_PACK(ERR_LIB_DSO, 0, DSO_R_UNSUPPORTED), "functionality not supported"}, {0, NULL} }; #endif int ERR_load_DSO_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(DSO_str_functs[0].error) == NULL) { ERR_load_strings_const(DSO_str_functs); ERR_load_strings_const(DSO_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/dso/dso_lib.c000066400000000000000000000223751364063235100172430ustar00rootroot00000000000000/* * Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "dso_local.h" #include "internal/refcount.h" static DSO_METHOD *default_DSO_meth = NULL; static DSO *DSO_new_method(DSO_METHOD *meth) { DSO *ret; if (default_DSO_meth == NULL) { /* * We default to DSO_METH_openssl() which in turn defaults to * stealing the "best available" method. Will fallback to * DSO_METH_null() in the worst case. */ default_DSO_meth = DSO_METHOD_openssl(); } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { DSOerr(DSO_F_DSO_NEW_METHOD, ERR_R_MALLOC_FAILURE); return NULL; } ret->meth_data = sk_void_new_null(); if (ret->meth_data == NULL) { /* sk_new doesn't generate any errors so we do */ DSOerr(DSO_F_DSO_NEW_METHOD, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } ret->meth = default_DSO_meth; ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { DSOerr(DSO_F_DSO_NEW_METHOD, ERR_R_MALLOC_FAILURE); sk_void_free(ret->meth_data); OPENSSL_free(ret); return NULL; } if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { DSO_free(ret); ret = NULL; } return ret; } DSO *DSO_new(void) { return DSO_new_method(NULL); } int DSO_free(DSO *dso) { int i; if (dso == NULL) return 1; if (CRYPTO_DOWN_REF(&dso->references, &i, dso->lock) <= 0) return 0; REF_PRINT_COUNT("DSO", dso); if (i > 0) return 1; REF_ASSERT_ISNT(i < 0); if ((dso->flags & DSO_FLAG_NO_UNLOAD_ON_FREE) == 0) { if ((dso->meth->dso_unload != NULL) && !dso->meth->dso_unload(dso)) { DSOerr(DSO_F_DSO_FREE, DSO_R_UNLOAD_FAILED); return 0; } } if ((dso->meth->finish != NULL) && !dso->meth->finish(dso)) { DSOerr(DSO_F_DSO_FREE, DSO_R_FINISH_FAILED); return 0; } sk_void_free(dso->meth_data); OPENSSL_free(dso->filename); OPENSSL_free(dso->loaded_filename); CRYPTO_THREAD_lock_free(dso->lock); OPENSSL_free(dso); return 1; } int DSO_flags(DSO *dso) { return ((dso == NULL) ? 0 : dso->flags); } int DSO_up_ref(DSO *dso) { int i; if (dso == NULL) { DSOerr(DSO_F_DSO_UP_REF, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (CRYPTO_UP_REF(&dso->references, &i, dso->lock) <= 0) return 0; REF_PRINT_COUNT("DSO", r); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } DSO *DSO_load(DSO *dso, const char *filename, DSO_METHOD *meth, int flags) { DSO *ret; int allocated = 0; if (dso == NULL) { ret = DSO_new_method(meth); if (ret == NULL) { DSOerr(DSO_F_DSO_LOAD, ERR_R_MALLOC_FAILURE); goto err; } allocated = 1; /* Pass the provided flags to the new DSO object */ if (DSO_ctrl(ret, DSO_CTRL_SET_FLAGS, flags, NULL) < 0) { DSOerr(DSO_F_DSO_LOAD, DSO_R_CTRL_FAILED); goto err; } } else ret = dso; /* Don't load if we're currently already loaded */ if (ret->filename != NULL) { DSOerr(DSO_F_DSO_LOAD, DSO_R_DSO_ALREADY_LOADED); goto err; } /* * filename can only be NULL if we were passed a dso that already has one * set. */ if (filename != NULL) if (!DSO_set_filename(ret, filename)) { DSOerr(DSO_F_DSO_LOAD, DSO_R_SET_FILENAME_FAILED); goto err; } filename = ret->filename; if (filename == NULL) { DSOerr(DSO_F_DSO_LOAD, DSO_R_NO_FILENAME); goto err; } if (ret->meth->dso_load == NULL) { DSOerr(DSO_F_DSO_LOAD, DSO_R_UNSUPPORTED); goto err; } if (!ret->meth->dso_load(ret)) { DSOerr(DSO_F_DSO_LOAD, DSO_R_LOAD_FAILED); goto err; } /* Load succeeded */ return ret; err: if (allocated) DSO_free(ret); return NULL; } DSO_FUNC_TYPE DSO_bind_func(DSO *dso, const char *symname) { DSO_FUNC_TYPE ret = NULL; if ((dso == NULL) || (symname == NULL)) { DSOerr(DSO_F_DSO_BIND_FUNC, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (dso->meth->dso_bind_func == NULL) { DSOerr(DSO_F_DSO_BIND_FUNC, DSO_R_UNSUPPORTED); return NULL; } if ((ret = dso->meth->dso_bind_func(dso, symname)) == NULL) { DSOerr(DSO_F_DSO_BIND_FUNC, DSO_R_SYM_FAILURE); return NULL; } /* Success */ return ret; } /* * I don't really like these *_ctrl functions very much to be perfectly * honest. For one thing, I think I have to return a negative value for any * error because possible DSO_ctrl() commands may return values such as * "size"s that can legitimately be zero (making the standard * "if (DSO_cmd(...))" form that works almost everywhere else fail at odd * times. I'd prefer "output" values to be passed by reference and the return * value as success/failure like usual ... but we conform when we must... :-) */ long DSO_ctrl(DSO *dso, int cmd, long larg, void *parg) { if (dso == NULL) { DSOerr(DSO_F_DSO_CTRL, ERR_R_PASSED_NULL_PARAMETER); return -1; } /* * We should intercept certain generic commands and only pass control to * the method-specific ctrl() function if it's something we don't handle. */ switch (cmd) { case DSO_CTRL_GET_FLAGS: return dso->flags; case DSO_CTRL_SET_FLAGS: dso->flags = (int)larg; return 0; case DSO_CTRL_OR_FLAGS: dso->flags |= (int)larg; return 0; default: break; } if ((dso->meth == NULL) || (dso->meth->dso_ctrl == NULL)) { DSOerr(DSO_F_DSO_CTRL, DSO_R_UNSUPPORTED); return -1; } return dso->meth->dso_ctrl(dso, cmd, larg, parg); } const char *DSO_get_filename(DSO *dso) { if (dso == NULL) { DSOerr(DSO_F_DSO_GET_FILENAME, ERR_R_PASSED_NULL_PARAMETER); return NULL; } return dso->filename; } int DSO_set_filename(DSO *dso, const char *filename) { char *copied; if ((dso == NULL) || (filename == NULL)) { DSOerr(DSO_F_DSO_SET_FILENAME, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (dso->loaded_filename) { DSOerr(DSO_F_DSO_SET_FILENAME, DSO_R_DSO_ALREADY_LOADED); return 0; } /* We'll duplicate filename */ copied = OPENSSL_strdup(filename); if (copied == NULL) { DSOerr(DSO_F_DSO_SET_FILENAME, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_free(dso->filename); dso->filename = copied; return 1; } char *DSO_merge(DSO *dso, const char *filespec1, const char *filespec2) { char *result = NULL; if (dso == NULL || filespec1 == NULL) { DSOerr(DSO_F_DSO_MERGE, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if ((dso->flags & DSO_FLAG_NO_NAME_TRANSLATION) == 0) { if (dso->merger != NULL) result = dso->merger(dso, filespec1, filespec2); else if (dso->meth->dso_merger != NULL) result = dso->meth->dso_merger(dso, filespec1, filespec2); } return result; } char *DSO_convert_filename(DSO *dso, const char *filename) { char *result = NULL; if (dso == NULL) { DSOerr(DSO_F_DSO_CONVERT_FILENAME, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (filename == NULL) filename = dso->filename; if (filename == NULL) { DSOerr(DSO_F_DSO_CONVERT_FILENAME, DSO_R_NO_FILENAME); return NULL; } if ((dso->flags & DSO_FLAG_NO_NAME_TRANSLATION) == 0) { if (dso->name_converter != NULL) result = dso->name_converter(dso, filename); else if (dso->meth->dso_name_converter != NULL) result = dso->meth->dso_name_converter(dso, filename); } if (result == NULL) { result = OPENSSL_strdup(filename); if (result == NULL) { DSOerr(DSO_F_DSO_CONVERT_FILENAME, ERR_R_MALLOC_FAILURE); return NULL; } } return result; } int DSO_pathbyaddr(void *addr, char *path, int sz) { DSO_METHOD *meth = default_DSO_meth; if (meth == NULL) meth = DSO_METHOD_openssl(); if (meth->pathbyaddr == NULL) { DSOerr(DSO_F_DSO_PATHBYADDR, DSO_R_UNSUPPORTED); return -1; } return (*meth->pathbyaddr) (addr, path, sz); } DSO *DSO_dsobyaddr(void *addr, int flags) { DSO *ret = NULL; char *filename = NULL; int len = DSO_pathbyaddr(addr, NULL, 0); if (len < 0) return NULL; filename = OPENSSL_malloc(len); if (filename != NULL && DSO_pathbyaddr(addr, filename, len) == len) ret = DSO_load(NULL, filename, NULL, flags); OPENSSL_free(filename); return ret; } void *DSO_global_lookup(const char *name) { DSO_METHOD *meth = default_DSO_meth; if (meth == NULL) meth = DSO_METHOD_openssl(); if (meth->globallookup == NULL) { DSOerr(DSO_F_DSO_GLOBAL_LOOKUP, DSO_R_UNSUPPORTED); return NULL; } return (*meth->globallookup) (name); } openssl-1.1.1f/crypto/dso/dso_local.h000066400000000000000000000100661364063235100175660ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/dso.h" #include "crypto/dso_conf.h" #include "internal/refcount.h" /**********************************************************************/ /* The low-level handle type used to refer to a loaded shared library */ struct dso_st { DSO_METHOD *meth; /* * Standard dlopen uses a (void *). Win32 uses a HANDLE. VMS doesn't use * anything but will need to cache the filename for use in the dso_bind * handler. All in all, let each method control its own destiny. * "Handles" and such go in a STACK. */ STACK_OF(void) *meth_data; CRYPTO_REF_COUNT references; int flags; /* * For use by applications etc ... use this for your bits'n'pieces, don't * touch meth_data! */ CRYPTO_EX_DATA ex_data; /* * If this callback function pointer is set to non-NULL, then it will be * used in DSO_load() in place of meth->dso_name_converter. NB: This * should normally set using DSO_set_name_converter(). */ DSO_NAME_CONVERTER_FUNC name_converter; /* * If this callback function pointer is set to non-NULL, then it will be * used in DSO_load() in place of meth->dso_merger. NB: This should * normally set using DSO_set_merger(). */ DSO_MERGER_FUNC merger; /* * This is populated with (a copy of) the platform-independent filename * used for this DSO. */ char *filename; /* * This is populated with (a copy of) the translated filename by which * the DSO was actually loaded. It is NULL iff the DSO is not currently * loaded. NB: This is here because the filename translation process may * involve a callback being invoked more than once not only to convert to * a platform-specific form, but also to try different filenames in the * process of trying to perform a load. As such, this variable can be * used to indicate (a) whether this DSO structure corresponds to a * loaded library or not, and (b) the filename with which it was actually * loaded. */ char *loaded_filename; CRYPTO_RWLOCK *lock; }; struct dso_meth_st { const char *name; /* * Loads a shared library, NB: new DSO_METHODs must ensure that a * successful load populates the loaded_filename field, and likewise a * successful unload OPENSSL_frees and NULLs it out. */ int (*dso_load) (DSO *dso); /* Unloads a shared library */ int (*dso_unload) (DSO *dso); /* * Binds a function - assumes a return type of DSO_FUNC_TYPE. This should * be cast to the real function prototype by the caller. Platforms that * don't have compatible representations for different prototypes (this * is possible within ANSI C) are highly unlikely to have shared * libraries at all, let alone a DSO_METHOD implemented for them. */ DSO_FUNC_TYPE (*dso_bind_func) (DSO *dso, const char *symname); /* * The generic (yuck) "ctrl()" function. NB: Negative return values * (rather than zero) indicate errors. */ long (*dso_ctrl) (DSO *dso, int cmd, long larg, void *parg); /* * The default DSO_METHOD-specific function for converting filenames to a * canonical native form. */ DSO_NAME_CONVERTER_FUNC dso_name_converter; /* * The default DSO_METHOD-specific function for converting filenames to a * canonical native form. */ DSO_MERGER_FUNC dso_merger; /* [De]Initialisation handlers. */ int (*init) (DSO *dso); int (*finish) (DSO *dso); /* Return pathname of the module containing location */ int (*pathbyaddr) (void *addr, char *path, int sz); /* Perform global symbol lookup, i.e. among *all* modules */ void *(*globallookup) (const char *symname); }; openssl-1.1.1f/crypto/dso/dso_openssl.c000066400000000000000000000010131364063235100201420ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "dso_local.h" #ifdef DSO_NONE static DSO_METHOD dso_meth_null = { "NULL shared library method" }; DSO_METHOD *DSO_METHOD_openssl(void) { return &dso_meth_null; } #endif openssl-1.1.1f/crypto/dso/dso_vms.c000066400000000000000000000343401364063235100172750ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "dso_local.h" #ifdef OPENSSL_SYS_VMS # pragma message disable DOLLARID # include # include # include # include # include # include # include # include "../vms_rms.h" /* Some compiler options may mask the declaration of "_malloc32". */ # if __INITIAL_POINTER_SIZE && defined _ANSI_C_SOURCE # if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size save # pragma pointer_size 32 void *_malloc32(__size_t); # pragma pointer_size restore # endif /* __INITIAL_POINTER_SIZE == 64 */ # endif /* __INITIAL_POINTER_SIZE && defined * _ANSI_C_SOURCE */ # pragma message disable DOLLARID static int vms_load(DSO *dso); static int vms_unload(DSO *dso); static DSO_FUNC_TYPE vms_bind_func(DSO *dso, const char *symname); static char *vms_name_converter(DSO *dso, const char *filename); static char *vms_merger(DSO *dso, const char *filespec1, const char *filespec2); static DSO_METHOD dso_meth_vms = { "OpenSSL 'VMS' shared library method", vms_load, NULL, /* unload */ vms_bind_func, NULL, /* ctrl */ vms_name_converter, vms_merger, NULL, /* init */ NULL, /* finish */ NULL, /* pathbyaddr */ NULL /* globallookup */ }; /* * On VMS, the only "handle" is the file name. LIB$FIND_IMAGE_SYMBOL depends * on the reference to the file name being the same for all calls regarding * one shared image, so we'll just store it in an instance of the following * structure and put a pointer to that instance in the meth_data stack. */ typedef struct dso_internal_st { /* * This should contain the name only, no directory, no extension, nothing * but a name. */ struct dsc$descriptor_s filename_dsc; char filename[NAMX_MAXRSS + 1]; /* * This contains whatever is not in filename, if needed. Normally not * defined. */ struct dsc$descriptor_s imagename_dsc; char imagename[NAMX_MAXRSS + 1]; } DSO_VMS_INTERNAL; DSO_METHOD *DSO_METHOD_openssl(void) { return &dso_meth_vms; } static int vms_load(DSO *dso) { void *ptr = NULL; /* See applicable comments in dso_dl.c */ char *filename = DSO_convert_filename(dso, NULL); /* Ensure 32-bit pointer for "p", and appropriate malloc() function. */ # if __INITIAL_POINTER_SIZE == 64 # define DSO_MALLOC _malloc32 # pragma pointer_size save # pragma pointer_size 32 # else /* __INITIAL_POINTER_SIZE == 64 */ # define DSO_MALLOC OPENSSL_malloc # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ DSO_VMS_INTERNAL *p = NULL; # if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size restore # endif /* __INITIAL_POINTER_SIZE == 64 */ const char *sp1, *sp2; /* Search result */ const char *ext = NULL; /* possible extension to add */ if (filename == NULL) { DSOerr(DSO_F_VMS_LOAD, DSO_R_NO_FILENAME); goto err; } /*- * A file specification may look like this: * * node::dev:[dir-spec]name.type;ver * * or (for compatibility with TOPS-20): * * node::dev:name.type;ver * * and the dir-spec uses '.' as separator. Also, a dir-spec * may consist of several parts, with mixed use of [] and <>: * * [dir1.] * * We need to split the file specification into the name and * the rest (both before and after the name itself). */ /* * Start with trying to find the end of a dir-spec, and save the position * of the byte after in sp1 */ sp1 = strrchr(filename, ']'); sp2 = strrchr(filename, '>'); if (sp1 == NULL) sp1 = sp2; if (sp2 != NULL && sp2 > sp1) sp1 = sp2; if (sp1 == NULL) sp1 = strrchr(filename, ':'); if (sp1 == NULL) sp1 = filename; else sp1++; /* The byte after the found character */ /* Now, let's see if there's a type, and save the position in sp2 */ sp2 = strchr(sp1, '.'); /* * If there is a period and the next character is a semi-colon, * we need to add an extension */ if (sp2 != NULL && sp2[1] == ';') ext = ".EXE"; /* * If we found it, that's where we'll cut. Otherwise, look for a version * number and save the position in sp2 */ if (sp2 == NULL) { sp2 = strchr(sp1, ';'); ext = ".EXE"; } /* * If there was still nothing to find, set sp2 to point at the end of the * string */ if (sp2 == NULL) sp2 = sp1 + strlen(sp1); /* Check that we won't get buffer overflows */ if (sp2 - sp1 > FILENAME_MAX || (sp1 - filename) + strlen(sp2) > FILENAME_MAX) { DSOerr(DSO_F_VMS_LOAD, DSO_R_FILENAME_TOO_BIG); goto err; } p = DSO_MALLOC(sizeof(*p)); if (p == NULL) { DSOerr(DSO_F_VMS_LOAD, ERR_R_MALLOC_FAILURE); goto err; } strncpy(p->filename, sp1, sp2 - sp1); p->filename[sp2 - sp1] = '\0'; strncpy(p->imagename, filename, sp1 - filename); p->imagename[sp1 - filename] = '\0'; if (ext) { strcat(p->imagename, ext); if (*sp2 == '.') sp2++; } strcat(p->imagename, sp2); p->filename_dsc.dsc$w_length = strlen(p->filename); p->filename_dsc.dsc$b_dtype = DSC$K_DTYPE_T; p->filename_dsc.dsc$b_class = DSC$K_CLASS_S; p->filename_dsc.dsc$a_pointer = p->filename; p->imagename_dsc.dsc$w_length = strlen(p->imagename); p->imagename_dsc.dsc$b_dtype = DSC$K_DTYPE_T; p->imagename_dsc.dsc$b_class = DSC$K_CLASS_S; p->imagename_dsc.dsc$a_pointer = p->imagename; if (!sk_void_push(dso->meth_data, (char *)p)) { DSOerr(DSO_F_VMS_LOAD, DSO_R_STACK_ERROR); goto err; } /* Success (for now, we lie. We actually do not know...) */ dso->loaded_filename = filename; return 1; err: /* Cleanup! */ OPENSSL_free(p); OPENSSL_free(filename); return 0; } /* * Note that this doesn't actually unload the shared image, as there is no * such thing in VMS. Next time it get loaded again, a new copy will * actually be loaded. */ static int vms_unload(DSO *dso) { DSO_VMS_INTERNAL *p; if (dso == NULL) { DSOerr(DSO_F_VMS_UNLOAD, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (sk_void_num(dso->meth_data) < 1) return 1; p = (DSO_VMS_INTERNAL *)sk_void_pop(dso->meth_data); if (p == NULL) { DSOerr(DSO_F_VMS_UNLOAD, DSO_R_NULL_HANDLE); return 0; } /* Cleanup */ OPENSSL_free(p); return 1; } /* * We must do this in a separate function because of the way the exception * handler works (it makes this function return */ static int do_find_symbol(DSO_VMS_INTERNAL *ptr, struct dsc$descriptor_s *symname_dsc, void **sym, unsigned long flags) { /* * Make sure that signals are caught and returned instead of aborting the * program. The exception handler gets unestablished automatically on * return from this function. */ lib$establish(lib$sig_to_ret); if (ptr->imagename_dsc.dsc$w_length) return lib$find_image_symbol(&ptr->filename_dsc, symname_dsc, sym, &ptr->imagename_dsc, flags); else return lib$find_image_symbol(&ptr->filename_dsc, symname_dsc, sym, 0, flags); } # ifndef LIB$M_FIS_MIXEDCASE # define LIB$M_FIS_MIXEDCASE (1 << 4); # endif void vms_bind_sym(DSO *dso, const char *symname, void **sym) { DSO_VMS_INTERNAL *ptr; int status = 0; struct dsc$descriptor_s symname_dsc; /* Arrange 32-bit pointer to (copied) string storage, if needed. */ # if __INITIAL_POINTER_SIZE == 64 # define SYMNAME symname_32p # pragma pointer_size save # pragma pointer_size 32 char *symname_32p; # pragma pointer_size restore char symname_32[NAMX_MAXRSS + 1]; # else /* __INITIAL_POINTER_SIZE == 64 */ # define SYMNAME ((char *) symname) # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ *sym = NULL; if ((dso == NULL) || (symname == NULL)) { DSOerr(DSO_F_VMS_BIND_SYM, ERR_R_PASSED_NULL_PARAMETER); return; } # if __INITIAL_POINTER_SIZE == 64 /* Copy the symbol name to storage with a 32-bit pointer. */ symname_32p = symname_32; strcpy(symname_32p, symname); # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ symname_dsc.dsc$w_length = strlen(SYMNAME); symname_dsc.dsc$b_dtype = DSC$K_DTYPE_T; symname_dsc.dsc$b_class = DSC$K_CLASS_S; symname_dsc.dsc$a_pointer = SYMNAME; if (sk_void_num(dso->meth_data) < 1) { DSOerr(DSO_F_VMS_BIND_SYM, DSO_R_STACK_ERROR); return; } ptr = (DSO_VMS_INTERNAL *)sk_void_value(dso->meth_data, sk_void_num(dso->meth_data) - 1); if (ptr == NULL) { DSOerr(DSO_F_VMS_BIND_SYM, DSO_R_NULL_HANDLE); return; } status = do_find_symbol(ptr, &symname_dsc, sym, LIB$M_FIS_MIXEDCASE); if (!$VMS_STATUS_SUCCESS(status)) status = do_find_symbol(ptr, &symname_dsc, sym, 0); if (!$VMS_STATUS_SUCCESS(status)) { unsigned short length; char errstring[257]; struct dsc$descriptor_s errstring_dsc; errstring_dsc.dsc$w_length = sizeof(errstring); errstring_dsc.dsc$b_dtype = DSC$K_DTYPE_T; errstring_dsc.dsc$b_class = DSC$K_CLASS_S; errstring_dsc.dsc$a_pointer = errstring; *sym = NULL; status = sys$getmsg(status, &length, &errstring_dsc, 1, 0); if (!$VMS_STATUS_SUCCESS(status)) lib$signal(status); /* This is really bad. Abort! */ else { errstring[length] = '\0'; DSOerr(DSO_F_VMS_BIND_SYM, DSO_R_SYM_FAILURE); if (ptr->imagename_dsc.dsc$w_length) ERR_add_error_data(9, "Symbol ", symname, " in ", ptr->filename, " (", ptr->imagename, ")", ": ", errstring); else ERR_add_error_data(6, "Symbol ", symname, " in ", ptr->filename, ": ", errstring); } return; } return; } static DSO_FUNC_TYPE vms_bind_func(DSO *dso, const char *symname) { DSO_FUNC_TYPE sym = 0; vms_bind_sym(dso, symname, (void **)&sym); return sym; } static char *vms_merger(DSO *dso, const char *filespec1, const char *filespec2) { int status; int filespec1len, filespec2len; struct FAB fab; struct NAMX_STRUCT nam; char esa[NAMX_MAXRSS + 1]; char *merged; /* Arrange 32-bit pointer to (copied) string storage, if needed. */ # if __INITIAL_POINTER_SIZE == 64 # define FILESPEC1 filespec1_32p; # define FILESPEC2 filespec2_32p; # pragma pointer_size save # pragma pointer_size 32 char *filespec1_32p; char *filespec2_32p; # pragma pointer_size restore char filespec1_32[NAMX_MAXRSS + 1]; char filespec2_32[NAMX_MAXRSS + 1]; # else /* __INITIAL_POINTER_SIZE == 64 */ # define FILESPEC1 ((char *) filespec1) # define FILESPEC2 ((char *) filespec2) # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ if (!filespec1) filespec1 = ""; if (!filespec2) filespec2 = ""; filespec1len = strlen(filespec1); filespec2len = strlen(filespec2); # if __INITIAL_POINTER_SIZE == 64 /* Copy the file names to storage with a 32-bit pointer. */ filespec1_32p = filespec1_32; filespec2_32p = filespec2_32; strcpy(filespec1_32p, filespec1); strcpy(filespec2_32p, filespec2); # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ fab = cc$rms_fab; nam = CC_RMS_NAMX; FAB_OR_NAML(fab, nam).FAB_OR_NAML_FNA = FILESPEC1; FAB_OR_NAML(fab, nam).FAB_OR_NAML_FNS = filespec1len; FAB_OR_NAML(fab, nam).FAB_OR_NAML_DNA = FILESPEC2; FAB_OR_NAML(fab, nam).FAB_OR_NAML_DNS = filespec2len; NAMX_DNA_FNA_SET(fab) nam.NAMX_ESA = esa; nam.NAMX_ESS = NAMX_MAXRSS; nam.NAMX_NOP = NAM$M_SYNCHK | NAM$M_PWD; SET_NAMX_NO_SHORT_UPCASE(nam); fab.FAB_NAMX = &nam; status = sys$parse(&fab, 0, 0); if (!$VMS_STATUS_SUCCESS(status)) { unsigned short length; char errstring[257]; struct dsc$descriptor_s errstring_dsc; errstring_dsc.dsc$w_length = sizeof(errstring); errstring_dsc.dsc$b_dtype = DSC$K_DTYPE_T; errstring_dsc.dsc$b_class = DSC$K_CLASS_S; errstring_dsc.dsc$a_pointer = errstring; status = sys$getmsg(status, &length, &errstring_dsc, 1, 0); if (!$VMS_STATUS_SUCCESS(status)) lib$signal(status); /* This is really bad. Abort! */ else { errstring[length] = '\0'; DSOerr(DSO_F_VMS_MERGER, DSO_R_FAILURE); ERR_add_error_data(7, "filespec \"", filespec1, "\", ", "defaults \"", filespec2, "\": ", errstring); } return NULL; } merged = OPENSSL_malloc(nam.NAMX_ESL + 1); if (merged == NULL) goto malloc_err; strncpy(merged, nam.NAMX_ESA, nam.NAMX_ESL); merged[nam.NAMX_ESL] = '\0'; return merged; malloc_err: DSOerr(DSO_F_VMS_MERGER, ERR_R_MALLOC_FAILURE); } static char *vms_name_converter(DSO *dso, const char *filename) { int len = strlen(filename); char *not_translated = OPENSSL_malloc(len + 1); if (not_translated != NULL) strcpy(not_translated, filename); return not_translated; } #endif /* OPENSSL_SYS_VMS */ openssl-1.1.1f/crypto/dso/dso_win32.c000066400000000000000000000470101364063235100174300ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "dso_local.h" #if defined(DSO_WIN32) # ifdef _WIN32_WCE # if _WIN32_WCE < 300 static FARPROC GetProcAddressA(HMODULE hModule, LPCSTR lpProcName) { WCHAR lpProcNameW[64]; int i; for (i = 0; lpProcName[i] && i < 64; i++) lpProcNameW[i] = (WCHAR)lpProcName[i]; if (i == 64) return NULL; lpProcNameW[i] = 0; return GetProcAddressW(hModule, lpProcNameW); } # endif # undef GetProcAddress # define GetProcAddress GetProcAddressA static HINSTANCE LoadLibraryA(LPCSTR lpLibFileName) { WCHAR *fnamw; size_t len_0 = strlen(lpLibFileName) + 1, i; # ifdef _MSC_VER fnamw = (WCHAR *)_alloca(len_0 * sizeof(WCHAR)); # else fnamw = (WCHAR *)alloca(len_0 * sizeof(WCHAR)); # endif if (fnamw == NULL) { SetLastError(ERROR_NOT_ENOUGH_MEMORY); return NULL; } # if defined(_WIN32_WCE) && _WIN32_WCE>=101 if (!MultiByteToWideChar(CP_ACP, 0, lpLibFileName, len_0, fnamw, len_0)) # endif for (i = 0; i < len_0; i++) fnamw[i] = (WCHAR)lpLibFileName[i]; return LoadLibraryW(fnamw); } # endif /* Part of the hack in "win32_load" ... */ # define DSO_MAX_TRANSLATED_SIZE 256 static int win32_load(DSO *dso); static int win32_unload(DSO *dso); static DSO_FUNC_TYPE win32_bind_func(DSO *dso, const char *symname); static char *win32_name_converter(DSO *dso, const char *filename); static char *win32_merger(DSO *dso, const char *filespec1, const char *filespec2); static int win32_pathbyaddr(void *addr, char *path, int sz); static void *win32_globallookup(const char *name); static const char *openssl_strnchr(const char *string, int c, size_t len); static DSO_METHOD dso_meth_win32 = { "OpenSSL 'win32' shared library method", win32_load, win32_unload, win32_bind_func, NULL, /* ctrl */ win32_name_converter, win32_merger, NULL, /* init */ NULL, /* finish */ win32_pathbyaddr, /* pathbyaddr */ win32_globallookup }; DSO_METHOD *DSO_METHOD_openssl(void) { return &dso_meth_win32; } /* * For this DSO_METHOD, our meth_data STACK will contain; (i) a pointer to * the handle (HINSTANCE) returned from LoadLibrary(), and copied. */ static int win32_load(DSO *dso) { HINSTANCE h = NULL, *p = NULL; /* See applicable comments from dso_dl.c */ char *filename = DSO_convert_filename(dso, NULL); if (filename == NULL) { DSOerr(DSO_F_WIN32_LOAD, DSO_R_NO_FILENAME); goto err; } h = LoadLibraryA(filename); if (h == NULL) { DSOerr(DSO_F_WIN32_LOAD, DSO_R_LOAD_FAILED); ERR_add_error_data(3, "filename(", filename, ")"); goto err; } p = OPENSSL_malloc(sizeof(*p)); if (p == NULL) { DSOerr(DSO_F_WIN32_LOAD, ERR_R_MALLOC_FAILURE); goto err; } *p = h; if (!sk_void_push(dso->meth_data, p)) { DSOerr(DSO_F_WIN32_LOAD, DSO_R_STACK_ERROR); goto err; } /* Success */ dso->loaded_filename = filename; return 1; err: /* Cleanup ! */ OPENSSL_free(filename); OPENSSL_free(p); if (h != NULL) FreeLibrary(h); return 0; } static int win32_unload(DSO *dso) { HINSTANCE *p; if (dso == NULL) { DSOerr(DSO_F_WIN32_UNLOAD, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (sk_void_num(dso->meth_data) < 1) return 1; p = sk_void_pop(dso->meth_data); if (p == NULL) { DSOerr(DSO_F_WIN32_UNLOAD, DSO_R_NULL_HANDLE); return 0; } if (!FreeLibrary(*p)) { DSOerr(DSO_F_WIN32_UNLOAD, DSO_R_UNLOAD_FAILED); /* * We should push the value back onto the stack in case of a retry. */ sk_void_push(dso->meth_data, p); return 0; } /* Cleanup */ OPENSSL_free(p); return 1; } static DSO_FUNC_TYPE win32_bind_func(DSO *dso, const char *symname) { HINSTANCE *ptr; union { void *p; FARPROC f; } sym; if ((dso == NULL) || (symname == NULL)) { DSOerr(DSO_F_WIN32_BIND_FUNC, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (sk_void_num(dso->meth_data) < 1) { DSOerr(DSO_F_WIN32_BIND_FUNC, DSO_R_STACK_ERROR); return NULL; } ptr = sk_void_value(dso->meth_data, sk_void_num(dso->meth_data) - 1); if (ptr == NULL) { DSOerr(DSO_F_WIN32_BIND_FUNC, DSO_R_NULL_HANDLE); return NULL; } sym.f = GetProcAddress(*ptr, symname); if (sym.p == NULL) { DSOerr(DSO_F_WIN32_BIND_FUNC, DSO_R_SYM_FAILURE); ERR_add_error_data(3, "symname(", symname, ")"); return NULL; } return (DSO_FUNC_TYPE)sym.f; } struct file_st { const char *node; int nodelen; const char *device; int devicelen; const char *predir; int predirlen; const char *dir; int dirlen; const char *file; int filelen; }; static struct file_st *win32_splitter(DSO *dso, const char *filename, int assume_last_is_dir) { struct file_st *result = NULL; enum { IN_NODE, IN_DEVICE, IN_FILE } position; const char *start = filename; char last; if (!filename) { DSOerr(DSO_F_WIN32_SPLITTER, DSO_R_NO_FILENAME); return NULL; } result = OPENSSL_zalloc(sizeof(*result)); if (result == NULL) { DSOerr(DSO_F_WIN32_SPLITTER, ERR_R_MALLOC_FAILURE); return NULL; } position = IN_DEVICE; if ((filename[0] == '\\' && filename[1] == '\\') || (filename[0] == '/' && filename[1] == '/')) { position = IN_NODE; filename += 2; start = filename; result->node = start; } do { last = filename[0]; switch (last) { case ':': if (position != IN_DEVICE) { DSOerr(DSO_F_WIN32_SPLITTER, DSO_R_INCORRECT_FILE_SYNTAX); OPENSSL_free(result); return NULL; } result->device = start; result->devicelen = (int)(filename - start); position = IN_FILE; start = ++filename; result->dir = start; break; case '\\': case '/': if (position == IN_NODE) { result->nodelen = (int)(filename - start); position = IN_FILE; start = ++filename; result->dir = start; } else if (position == IN_DEVICE) { position = IN_FILE; filename++; result->dir = start; result->dirlen = (int)(filename - start); start = filename; } else { filename++; result->dirlen += (int)(filename - start); start = filename; } break; case '\0': if (position == IN_NODE) { result->nodelen = (int)(filename - start); } else { if (filename - start > 0) { if (assume_last_is_dir) { if (position == IN_DEVICE) { result->dir = start; result->dirlen = 0; } result->dirlen += (int)(filename - start); } else { result->file = start; result->filelen = (int)(filename - start); } } } break; default: filename++; break; } } while (last); if (!result->nodelen) result->node = NULL; if (!result->devicelen) result->device = NULL; if (!result->dirlen) result->dir = NULL; if (!result->filelen) result->file = NULL; return result; } static char *win32_joiner(DSO *dso, const struct file_st *file_split) { int len = 0, offset = 0; char *result = NULL; const char *start; if (!file_split) { DSOerr(DSO_F_WIN32_JOINER, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (file_split->node) { len += 2 + file_split->nodelen; /* 2 for starting \\ */ if (file_split->predir || file_split->dir || file_split->file) len++; /* 1 for ending \ */ } else if (file_split->device) { len += file_split->devicelen + 1; /* 1 for ending : */ } len += file_split->predirlen; if (file_split->predir && (file_split->dir || file_split->file)) { len++; /* 1 for ending \ */ } len += file_split->dirlen; if (file_split->dir && file_split->file) { len++; /* 1 for ending \ */ } len += file_split->filelen; if (!len) { DSOerr(DSO_F_WIN32_JOINER, DSO_R_EMPTY_FILE_STRUCTURE); return NULL; } result = OPENSSL_malloc(len + 1); if (result == NULL) { DSOerr(DSO_F_WIN32_JOINER, ERR_R_MALLOC_FAILURE); return NULL; } if (file_split->node) { strcpy(&result[offset], "\\\\"); offset += 2; strncpy(&result[offset], file_split->node, file_split->nodelen); offset += file_split->nodelen; if (file_split->predir || file_split->dir || file_split->file) { result[offset] = '\\'; offset++; } } else if (file_split->device) { strncpy(&result[offset], file_split->device, file_split->devicelen); offset += file_split->devicelen; result[offset] = ':'; offset++; } start = file_split->predir; while (file_split->predirlen > (start - file_split->predir)) { const char *end = openssl_strnchr(start, '/', file_split->predirlen - (start - file_split->predir)); if (!end) end = start + file_split->predirlen - (start - file_split->predir); strncpy(&result[offset], start, end - start); offset += (int)(end - start); result[offset] = '\\'; offset++; start = end + 1; } start = file_split->dir; while (file_split->dirlen > (start - file_split->dir)) { const char *end = openssl_strnchr(start, '/', file_split->dirlen - (start - file_split->dir)); if (!end) end = start + file_split->dirlen - (start - file_split->dir); strncpy(&result[offset], start, end - start); offset += (int)(end - start); result[offset] = '\\'; offset++; start = end + 1; } strncpy(&result[offset], file_split->file, file_split->filelen); offset += file_split->filelen; result[offset] = '\0'; return result; } static char *win32_merger(DSO *dso, const char *filespec1, const char *filespec2) { char *merged = NULL; struct file_st *filespec1_split = NULL; struct file_st *filespec2_split = NULL; if (!filespec1 && !filespec2) { DSOerr(DSO_F_WIN32_MERGER, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (!filespec2) { merged = OPENSSL_strdup(filespec1); if (merged == NULL) { DSOerr(DSO_F_WIN32_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } } else if (!filespec1) { merged = OPENSSL_strdup(filespec2); if (merged == NULL) { DSOerr(DSO_F_WIN32_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } } else { filespec1_split = win32_splitter(dso, filespec1, 0); if (!filespec1_split) { DSOerr(DSO_F_WIN32_MERGER, ERR_R_MALLOC_FAILURE); return NULL; } filespec2_split = win32_splitter(dso, filespec2, 1); if (!filespec2_split) { DSOerr(DSO_F_WIN32_MERGER, ERR_R_MALLOC_FAILURE); OPENSSL_free(filespec1_split); return NULL; } /* Fill in into filespec1_split */ if (!filespec1_split->node && !filespec1_split->device) { filespec1_split->node = filespec2_split->node; filespec1_split->nodelen = filespec2_split->nodelen; filespec1_split->device = filespec2_split->device; filespec1_split->devicelen = filespec2_split->devicelen; } if (!filespec1_split->dir) { filespec1_split->dir = filespec2_split->dir; filespec1_split->dirlen = filespec2_split->dirlen; } else if (filespec1_split->dir[0] != '\\' && filespec1_split->dir[0] != '/') { filespec1_split->predir = filespec2_split->dir; filespec1_split->predirlen = filespec2_split->dirlen; } if (!filespec1_split->file) { filespec1_split->file = filespec2_split->file; filespec1_split->filelen = filespec2_split->filelen; } merged = win32_joiner(dso, filespec1_split); } OPENSSL_free(filespec1_split); OPENSSL_free(filespec2_split); return merged; } static char *win32_name_converter(DSO *dso, const char *filename) { char *translated; int len, transform; len = strlen(filename); transform = ((strstr(filename, "/") == NULL) && (strstr(filename, "\\") == NULL) && (strstr(filename, ":") == NULL)); if (transform) /* We will convert this to "%s.dll" */ translated = OPENSSL_malloc(len + 5); else /* We will simply duplicate filename */ translated = OPENSSL_malloc(len + 1); if (translated == NULL) { DSOerr(DSO_F_WIN32_NAME_CONVERTER, DSO_R_NAME_TRANSLATION_FAILED); return NULL; } if (transform) sprintf(translated, "%s.dll", filename); else sprintf(translated, "%s", filename); return translated; } static const char *openssl_strnchr(const char *string, int c, size_t len) { size_t i; const char *p; for (i = 0, p = string; i < len && *p; i++, p++) { if (*p == c) return p; } return NULL; } # include # ifdef _WIN32_WCE # define DLLNAME "TOOLHELP.DLL" # else # ifdef MODULEENTRY32 # undef MODULEENTRY32 /* unmask the ASCII version! */ # endif # define DLLNAME "KERNEL32.DLL" # endif typedef HANDLE(WINAPI *CREATETOOLHELP32SNAPSHOT) (DWORD, DWORD); typedef BOOL(WINAPI *CLOSETOOLHELP32SNAPSHOT) (HANDLE); typedef BOOL(WINAPI *MODULE32) (HANDLE, MODULEENTRY32 *); static int win32_pathbyaddr(void *addr, char *path, int sz) { HMODULE dll; HANDLE hModuleSnap = INVALID_HANDLE_VALUE; MODULEENTRY32 me32; CREATETOOLHELP32SNAPSHOT create_snap; CLOSETOOLHELP32SNAPSHOT close_snap; MODULE32 module_first, module_next; if (addr == NULL) { union { int (*f) (void *, char *, int); void *p; } t = { win32_pathbyaddr }; addr = t.p; } dll = LoadLibrary(TEXT(DLLNAME)); if (dll == NULL) { DSOerr(DSO_F_WIN32_PATHBYADDR, DSO_R_UNSUPPORTED); return -1; } create_snap = (CREATETOOLHELP32SNAPSHOT) GetProcAddress(dll, "CreateToolhelp32Snapshot"); if (create_snap == NULL) { FreeLibrary(dll); DSOerr(DSO_F_WIN32_PATHBYADDR, DSO_R_UNSUPPORTED); return -1; } /* We take the rest for granted... */ # ifdef _WIN32_WCE close_snap = (CLOSETOOLHELP32SNAPSHOT) GetProcAddress(dll, "CloseToolhelp32Snapshot"); # else close_snap = (CLOSETOOLHELP32SNAPSHOT) CloseHandle; # endif module_first = (MODULE32) GetProcAddress(dll, "Module32First"); module_next = (MODULE32) GetProcAddress(dll, "Module32Next"); /* * Take a snapshot of current process which includes * list of all involved modules. */ hModuleSnap = (*create_snap) (TH32CS_SNAPMODULE, 0); if (hModuleSnap == INVALID_HANDLE_VALUE) { FreeLibrary(dll); DSOerr(DSO_F_WIN32_PATHBYADDR, DSO_R_UNSUPPORTED); return -1; } me32.dwSize = sizeof(me32); if (!(*module_first) (hModuleSnap, &me32)) { (*close_snap) (hModuleSnap); FreeLibrary(dll); DSOerr(DSO_F_WIN32_PATHBYADDR, DSO_R_FAILURE); return -1; } /* Enumerate the modules to find one which includes me. */ do { if ((uintptr_t) addr >= (uintptr_t) me32.modBaseAddr && (uintptr_t) addr < (uintptr_t) (me32.modBaseAddr + me32.modBaseSize)) { (*close_snap) (hModuleSnap); FreeLibrary(dll); # ifdef _WIN32_WCE # if _WIN32_WCE >= 101 return WideCharToMultiByte(CP_ACP, 0, me32.szExePath, -1, path, sz, NULL, NULL); # else { int i, len = (int)wcslen(me32.szExePath); if (sz <= 0) return len + 1; if (len >= sz) len = sz - 1; for (i = 0; i < len; i++) path[i] = (char)me32.szExePath[i]; path[len++] = '\0'; return len; } # endif # else { int len = (int)strlen(me32.szExePath); if (sz <= 0) return len + 1; if (len >= sz) len = sz - 1; memcpy(path, me32.szExePath, len); path[len++] = '\0'; return len; } # endif } } while ((*module_next) (hModuleSnap, &me32)); (*close_snap) (hModuleSnap); FreeLibrary(dll); return 0; } static void *win32_globallookup(const char *name) { HMODULE dll; HANDLE hModuleSnap = INVALID_HANDLE_VALUE; MODULEENTRY32 me32; CREATETOOLHELP32SNAPSHOT create_snap; CLOSETOOLHELP32SNAPSHOT close_snap; MODULE32 module_first, module_next; union { void *p; FARPROC f; } ret = { NULL }; dll = LoadLibrary(TEXT(DLLNAME)); if (dll == NULL) { DSOerr(DSO_F_WIN32_GLOBALLOOKUP, DSO_R_UNSUPPORTED); return NULL; } create_snap = (CREATETOOLHELP32SNAPSHOT) GetProcAddress(dll, "CreateToolhelp32Snapshot"); if (create_snap == NULL) { FreeLibrary(dll); DSOerr(DSO_F_WIN32_GLOBALLOOKUP, DSO_R_UNSUPPORTED); return NULL; } /* We take the rest for granted... */ # ifdef _WIN32_WCE close_snap = (CLOSETOOLHELP32SNAPSHOT) GetProcAddress(dll, "CloseToolhelp32Snapshot"); # else close_snap = (CLOSETOOLHELP32SNAPSHOT) CloseHandle; # endif module_first = (MODULE32) GetProcAddress(dll, "Module32First"); module_next = (MODULE32) GetProcAddress(dll, "Module32Next"); hModuleSnap = (*create_snap) (TH32CS_SNAPMODULE, 0); if (hModuleSnap == INVALID_HANDLE_VALUE) { FreeLibrary(dll); DSOerr(DSO_F_WIN32_GLOBALLOOKUP, DSO_R_UNSUPPORTED); return NULL; } me32.dwSize = sizeof(me32); if (!(*module_first) (hModuleSnap, &me32)) { (*close_snap) (hModuleSnap); FreeLibrary(dll); return NULL; } do { if ((ret.f = GetProcAddress(me32.hModule, name))) { (*close_snap) (hModuleSnap); FreeLibrary(dll); return ret.p; } } while ((*module_next) (hModuleSnap, &me32)); (*close_snap) (hModuleSnap); FreeLibrary(dll); return NULL; } #endif /* DSO_WIN32 */ openssl-1.1.1f/crypto/ebcdic.c000066400000000000000000000357431364063235100162570ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ # include #ifndef CHARSET_EBCDIC NON_EMPTY_TRANSLATION_UNIT #else # include # ifdef CHARSET_EBCDIC_TEST /* * Here we're looking to test the EBCDIC code on an ASCII system so we don't do * any translation in these tables at all. */ /* The ebcdic-to-ascii table: */ const unsigned char os_toascii[256] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; /* The ascii-to-ebcdic table: */ const unsigned char os_toebcdic[256] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; # elif defined(_OSD_POSIX) /* * "BS2000 OSD" is a POSIX subsystem on a main frame. It is made by Siemens * AG, Germany, for their BS2000 mainframe machines. Within the POSIX * subsystem, the same character set was chosen as in "native BS2000", namely * EBCDIC. (EDF04) * * The name "ASCII" in these routines is misleading: actually, conversion is * not between EBCDIC and ASCII, but EBCDIC(EDF04) and ISO-8859.1; that means * that (western european) national characters are preserved. * * This table is identical to the one used by rsh/rcp/ftp and other POSIX * tools. */ /* Here's the bijective ebcdic-to-ascii table: */ const unsigned char os_toascii[256] = { /* * 00 */ 0x00, 0x01, 0x02, 0x03, 0x85, 0x09, 0x86, 0x7f, 0x87, 0x8d, 0x8e, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* ................ */ /* * 10 */ 0x10, 0x11, 0x12, 0x13, 0x8f, 0x0a, 0x08, 0x97, 0x18, 0x19, 0x9c, 0x9d, 0x1c, 0x1d, 0x1e, 0x1f, /* ................ */ /* * 20 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x92, 0x17, 0x1b, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x05, 0x06, 0x07, /* ................ */ /* * 30 */ 0x90, 0x91, 0x16, 0x93, 0x94, 0x95, 0x96, 0x04, 0x98, 0x99, 0x9a, 0x9b, 0x14, 0x15, 0x9e, 0x1a, /* ................ */ /* * 40 */ 0x20, 0xa0, 0xe2, 0xe4, 0xe0, 0xe1, 0xe3, 0xe5, 0xe7, 0xf1, 0x60, 0x2e, 0x3c, 0x28, 0x2b, 0x7c, /* .........`.<(+| */ /* * 50 */ 0x26, 0xe9, 0xea, 0xeb, 0xe8, 0xed, 0xee, 0xef, 0xec, 0xdf, 0x21, 0x24, 0x2a, 0x29, 0x3b, 0x9f, /* &.........!$*);. */ /* * 60 */ 0x2d, 0x2f, 0xc2, 0xc4, 0xc0, 0xc1, 0xc3, 0xc5, 0xc7, 0xd1, 0x5e, 0x2c, 0x25, 0x5f, 0x3e, 0x3f, /*-/........^,%_>?*/ /* * 70 */ 0xf8, 0xc9, 0xca, 0xcb, 0xc8, 0xcd, 0xce, 0xcf, 0xcc, 0xa8, 0x3a, 0x23, 0x40, 0x27, 0x3d, 0x22, /* ..........:#@'=" */ /* * 80 */ 0xd8, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0xab, 0xbb, 0xf0, 0xfd, 0xfe, 0xb1, /* .abcdefghi...... */ /* * 90 */ 0xb0, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0xaa, 0xba, 0xe6, 0xb8, 0xc6, 0xa4, /* .jklmnopqr...... */ /* * a0 */ 0xb5, 0xaf, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0xa1, 0xbf, 0xd0, 0xdd, 0xde, 0xae, /* ..stuvwxyz...... */ /* * b0 */ 0xa2, 0xa3, 0xa5, 0xb7, 0xa9, 0xa7, 0xb6, 0xbc, 0xbd, 0xbe, 0xac, 0x5b, 0x5c, 0x5d, 0xb4, 0xd7, /* ...........[\].. */ /* * c0 */ 0xf9, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0xad, 0xf4, 0xf6, 0xf2, 0xf3, 0xf5, /* .ABCDEFGHI...... */ /* * d0 */ 0xa6, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0xb9, 0xfb, 0xfc, 0xdb, 0xfa, 0xff, /* .JKLMNOPQR...... */ /* * e0 */ 0xd9, 0xf7, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0xb2, 0xd4, 0xd6, 0xd2, 0xd3, 0xd5, /* ..STUVWXYZ...... */ /* * f0 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0xb3, 0x7b, 0xdc, 0x7d, 0xda, 0x7e /* 0123456789.{.}.~ */ }; /* The ascii-to-ebcdic table: */ const unsigned char os_toebcdic[256] = { /* * 00 */ 0x00, 0x01, 0x02, 0x03, 0x37, 0x2d, 0x2e, 0x2f, 0x16, 0x05, 0x15, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* ................ */ /* * 10 */ 0x10, 0x11, 0x12, 0x13, 0x3c, 0x3d, 0x32, 0x26, 0x18, 0x19, 0x3f, 0x27, 0x1c, 0x1d, 0x1e, 0x1f, /* ................ */ /* * 20 */ 0x40, 0x5a, 0x7f, 0x7b, 0x5b, 0x6c, 0x50, 0x7d, 0x4d, 0x5d, 0x5c, 0x4e, 0x6b, 0x60, 0x4b, 0x61, /* !"#$%&'()*+,-./ */ /* * 30 */ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0x7a, 0x5e, 0x4c, 0x7e, 0x6e, 0x6f, /* 0123456789:;<=>? */ /* * 40 */ 0x7c, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, /* @ABCDEFGHIJKLMNO */ /* * 50 */ 0xd7, 0xd8, 0xd9, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xbb, 0xbc, 0xbd, 0x6a, 0x6d, /* PQRSTUVWXYZ[\]^_ */ /* * 60 */ 0x4a, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, /* `abcdefghijklmno */ /* * 70 */ 0x97, 0x98, 0x99, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xfb, 0x4f, 0xfd, 0xff, 0x07, /* pqrstuvwxyz{|}~. */ /* * 80 */ 0x20, 0x21, 0x22, 0x23, 0x24, 0x04, 0x06, 0x08, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x09, 0x0a, 0x14, /* ................ */ /* * 90 */ 0x30, 0x31, 0x25, 0x33, 0x34, 0x35, 0x36, 0x17, 0x38, 0x39, 0x3a, 0x3b, 0x1a, 0x1b, 0x3e, 0x5f, /* ................ */ /* * a0 */ 0x41, 0xaa, 0xb0, 0xb1, 0x9f, 0xb2, 0xd0, 0xb5, 0x79, 0xb4, 0x9a, 0x8a, 0xba, 0xca, 0xaf, 0xa1, /* ................ */ /* * b0 */ 0x90, 0x8f, 0xea, 0xfa, 0xbe, 0xa0, 0xb6, 0xb3, 0x9d, 0xda, 0x9b, 0x8b, 0xb7, 0xb8, 0xb9, 0xab, /* ................ */ /* * c0 */ 0x64, 0x65, 0x62, 0x66, 0x63, 0x67, 0x9e, 0x68, 0x74, 0x71, 0x72, 0x73, 0x78, 0x75, 0x76, 0x77, /* ................ */ /* * d0 */ 0xac, 0x69, 0xed, 0xee, 0xeb, 0xef, 0xec, 0xbf, 0x80, 0xe0, 0xfe, 0xdd, 0xfc, 0xad, 0xae, 0x59, /* ................ */ /* * e0 */ 0x44, 0x45, 0x42, 0x46, 0x43, 0x47, 0x9c, 0x48, 0x54, 0x51, 0x52, 0x53, 0x58, 0x55, 0x56, 0x57, /* ................ */ /* * f0 */ 0x8c, 0x49, 0xcd, 0xce, 0xcb, 0xcf, 0xcc, 0xe1, 0x70, 0xc0, 0xde, 0xdb, 0xdc, 0x8d, 0x8e, 0xdf /* ................ */ }; # else /*_OSD_POSIX*/ /* * This code does basic character mapping for IBM's TPF and OS/390 operating * systems. It is a modified version of the BS2000 table. * * Bijective EBCDIC (character set IBM-1047) to US-ASCII table: This table is * bijective - there are no ambiguous or duplicate characters. */ const unsigned char os_toascii[256] = { 0x00, 0x01, 0x02, 0x03, 0x85, 0x09, 0x86, 0x7f, /* 00-0f: */ 0x87, 0x8d, 0x8e, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* ................ */ 0x10, 0x11, 0x12, 0x13, 0x8f, 0x0a, 0x08, 0x97, /* 10-1f: */ 0x18, 0x19, 0x9c, 0x9d, 0x1c, 0x1d, 0x1e, 0x1f, /* ................ */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x92, 0x17, 0x1b, /* 20-2f: */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x05, 0x06, 0x07, /* ................ */ 0x90, 0x91, 0x16, 0x93, 0x94, 0x95, 0x96, 0x04, /* 30-3f: */ 0x98, 0x99, 0x9a, 0x9b, 0x14, 0x15, 0x9e, 0x1a, /* ................ */ 0x20, 0xa0, 0xe2, 0xe4, 0xe0, 0xe1, 0xe3, 0xe5, /* 40-4f: */ 0xe7, 0xf1, 0xa2, 0x2e, 0x3c, 0x28, 0x2b, 0x7c, /* ...........<(+| */ 0x26, 0xe9, 0xea, 0xeb, 0xe8, 0xed, 0xee, 0xef, /* 50-5f: */ 0xec, 0xdf, 0x21, 0x24, 0x2a, 0x29, 0x3b, 0x5e, /* &.........!$*);^ */ 0x2d, 0x2f, 0xc2, 0xc4, 0xc0, 0xc1, 0xc3, 0xc5, /* 60-6f: */ 0xc7, 0xd1, 0xa6, 0x2c, 0x25, 0x5f, 0x3e, 0x3f, /* -/.........,%_>? */ 0xf8, 0xc9, 0xca, 0xcb, 0xc8, 0xcd, 0xce, 0xcf, /* 70-7f: */ 0xcc, 0x60, 0x3a, 0x23, 0x40, 0x27, 0x3d, 0x22, /* .........`:#@'=" */ 0xd8, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, /* 80-8f: */ 0x68, 0x69, 0xab, 0xbb, 0xf0, 0xfd, 0xfe, 0xb1, /* .abcdefghi...... */ 0xb0, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, /* 90-9f: */ 0x71, 0x72, 0xaa, 0xba, 0xe6, 0xb8, 0xc6, 0xa4, /* .jklmnopqr...... */ 0xb5, 0x7e, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, /* a0-af: */ 0x79, 0x7a, 0xa1, 0xbf, 0xd0, 0x5b, 0xde, 0xae, /* .~stuvwxyz...[.. */ 0xac, 0xa3, 0xa5, 0xb7, 0xa9, 0xa7, 0xb6, 0xbc, /* b0-bf: */ 0xbd, 0xbe, 0xdd, 0xa8, 0xaf, 0x5d, 0xb4, 0xd7, /* .............].. */ 0x7b, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, /* c0-cf: */ 0x48, 0x49, 0xad, 0xf4, 0xf6, 0xf2, 0xf3, 0xf5, /* {ABCDEFGHI...... */ 0x7d, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, /* d0-df: */ 0x51, 0x52, 0xb9, 0xfb, 0xfc, 0xf9, 0xfa, 0xff, /* }JKLMNOPQR...... */ 0x5c, 0xf7, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, /* e0-ef: */ 0x59, 0x5a, 0xb2, 0xd4, 0xd6, 0xd2, 0xd3, 0xd5, /* \.STUVWXYZ...... */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, /* f0-ff: */ 0x38, 0x39, 0xb3, 0xdb, 0xdc, 0xd9, 0xda, 0x9f /* 0123456789...... */ }; /* * The US-ASCII to EBCDIC (character set IBM-1047) table: This table is * bijective (no ambiguous or duplicate characters) */ const unsigned char os_toebcdic[256] = { 0x00, 0x01, 0x02, 0x03, 0x37, 0x2d, 0x2e, 0x2f, /* 00-0f: */ 0x16, 0x05, 0x15, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* ................ */ 0x10, 0x11, 0x12, 0x13, 0x3c, 0x3d, 0x32, 0x26, /* 10-1f: */ 0x18, 0x19, 0x3f, 0x27, 0x1c, 0x1d, 0x1e, 0x1f, /* ................ */ 0x40, 0x5a, 0x7f, 0x7b, 0x5b, 0x6c, 0x50, 0x7d, /* 20-2f: */ 0x4d, 0x5d, 0x5c, 0x4e, 0x6b, 0x60, 0x4b, 0x61, /* !"#$%&'()*+,-./ */ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, /* 30-3f: */ 0xf8, 0xf9, 0x7a, 0x5e, 0x4c, 0x7e, 0x6e, 0x6f, /* 0123456789:;<=>? */ 0x7c, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, /* 40-4f: */ 0xc8, 0xc9, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, /* @ABCDEFGHIJKLMNO */ 0xd7, 0xd8, 0xd9, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, /* 50-5f: */ 0xe7, 0xe8, 0xe9, 0xad, 0xe0, 0xbd, 0x5f, 0x6d, /* PQRSTUVWXYZ[\]^_ */ 0x79, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, /* 60-6f: */ 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, /* `abcdefghijklmno */ 0x97, 0x98, 0x99, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, /* 70-7f: */ 0xa7, 0xa8, 0xa9, 0xc0, 0x4f, 0xd0, 0xa1, 0x07, /* pqrstuvwxyz{|}~. */ 0x20, 0x21, 0x22, 0x23, 0x24, 0x04, 0x06, 0x08, /* 80-8f: */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x09, 0x0a, 0x14, /* ................ */ 0x30, 0x31, 0x25, 0x33, 0x34, 0x35, 0x36, 0x17, /* 90-9f: */ 0x38, 0x39, 0x3a, 0x3b, 0x1a, 0x1b, 0x3e, 0xff, /* ................ */ 0x41, 0xaa, 0x4a, 0xb1, 0x9f, 0xb2, 0x6a, 0xb5, /* a0-af: */ 0xbb, 0xb4, 0x9a, 0x8a, 0xb0, 0xca, 0xaf, 0xbc, /* ................ */ 0x90, 0x8f, 0xea, 0xfa, 0xbe, 0xa0, 0xb6, 0xb3, /* b0-bf: */ 0x9d, 0xda, 0x9b, 0x8b, 0xb7, 0xb8, 0xb9, 0xab, /* ................ */ 0x64, 0x65, 0x62, 0x66, 0x63, 0x67, 0x9e, 0x68, /* c0-cf: */ 0x74, 0x71, 0x72, 0x73, 0x78, 0x75, 0x76, 0x77, /* ................ */ 0xac, 0x69, 0xed, 0xee, 0xeb, 0xef, 0xec, 0xbf, /* d0-df: */ 0x80, 0xfd, 0xfe, 0xfb, 0xfc, 0xba, 0xae, 0x59, /* ................ */ 0x44, 0x45, 0x42, 0x46, 0x43, 0x47, 0x9c, 0x48, /* e0-ef: */ 0x54, 0x51, 0x52, 0x53, 0x58, 0x55, 0x56, 0x57, /* ................ */ 0x8c, 0x49, 0xcd, 0xce, 0xcb, 0xcf, 0xcc, 0xe1, /* f0-ff: */ 0x70, 0xdd, 0xde, 0xdb, 0xdc, 0x8d, 0x8e, 0xdf /* ................ */ }; # endif/*_OSD_POSIX*/ /* * Translate a memory block from EBCDIC (host charset) to ASCII (net charset) * dest and srce may be identical, or separate memory blocks, but should not * overlap. These functions intentionally have an interface compatible to * memcpy(3). */ void *ebcdic2ascii(void *dest, const void *srce, size_t count) { unsigned char *udest = dest; const unsigned char *usrce = srce; while (count-- != 0) { *udest++ = os_toascii[*usrce++]; } return dest; } void *ascii2ebcdic(void *dest, const void *srce, size_t count) { unsigned char *udest = dest; const unsigned char *usrce = srce; while (count-- != 0) { *udest++ = os_toebcdic[*usrce++]; } return dest; } #endif openssl-1.1.1f/crypto/ec/000077500000000000000000000000001364063235100152555ustar00rootroot00000000000000openssl-1.1.1f/crypto/ec/asm/000077500000000000000000000000001364063235100160355ustar00rootroot00000000000000openssl-1.1.1f/crypto/ec/asm/ecp_nistz256-armv4.pl000077500000000000000000001314311364063235100216620ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for ARMv4. # # October 2014. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. In the process of adaptation # original .c module was made 32-bit savvy in order to make this # implementation possible. # # with/without -DECP_NISTZ256_ASM # Cortex-A8 +53-170% # Cortex-A9 +76-205% # Cortex-A15 +100-316% # Snapdragon S4 +66-187% # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, server-side # operation. Keep in mind that +200% means 3x improvement. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $code.=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif ___ ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; # See ecp_nistz256_table.c for explanation for why it's 64*16*37. # 64*16*37-1 is because $#arr returns last valid index or @arr, not # amount of elements. die "insane number of elements" if ($#arr != 64*16*37-1); $code.=<<___; .globl ecp_nistz256_precomputed .type ecp_nistz256_precomputed,%object .align 12 ecp_nistz256_precomputed: ___ ######################################################################## # this conversion smashes P256_POINT_AFFINE by individual bytes with # 64 byte interval, similar to # 1111222233334444 # 1234123412341234 for(1..37) { @tbl = splice(@arr,0,64*16); for($i=0;$i<64;$i++) { undef @line; for($j=0;$j<64;$j++) { push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; } $code.=".byte\t"; $code.=join(',',map { sprintf "0x%02x",$_} @line); $code.="\n"; } } $code.=<<___; .size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed .align 5 .LRR: @ 2^512 mod P precomputed for NIST P256 polynomial .long 0x00000003, 0x00000000, 0xffffffff, 0xfffffffb .long 0xfffffffe, 0xffffffff, 0xfffffffd, 0x00000004 .Lone: .long 1,0,0,0,0,0,0,0 .asciz "ECP_NISTZ256 for ARMv4, CRYPTOGAMS by " .align 6 ___ ######################################################################## # common register layout, note that $t2 is link register, so that if # internal subroutine uses $t2, then it has to offload lr... ($r_ptr,$a_ptr,$b_ptr,$ff,$a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7,$t1,$t2)= map("r$_",(0..12,14)); ($t0,$t3)=($ff,$a_ptr); $code.=<<___; @ void ecp_nistz256_to_mont(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl ecp_nistz256_to_mont .type ecp_nistz256_to_mont,%function ecp_nistz256_to_mont: adr $b_ptr,.LRR b .Lecp_nistz256_mul_mont .size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont @ void ecp_nistz256_from_mont(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl ecp_nistz256_from_mont .type ecp_nistz256_from_mont,%function ecp_nistz256_from_mont: adr $b_ptr,.Lone b .Lecp_nistz256_mul_mont .size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont @ void ecp_nistz256_mul_by_2(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl ecp_nistz256_mul_by_2 .type ecp_nistz256_mul_by_2,%function .align 4 ecp_nistz256_mul_by_2: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_mul_by_2 #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 .type __ecp_nistz256_mul_by_2,%function .align 4 __ecp_nistz256_mul_by_2: ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] adds $a0,$a0,$a0 @ a[0:7]+=a[0:7], i.e. add with itself ldr $a3,[$a_ptr,#12] adcs $a1,$a1,$a1 ldr $a4,[$a_ptr,#16] adcs $a2,$a2,$a2 ldr $a5,[$a_ptr,#20] adcs $a3,$a3,$a3 ldr $a6,[$a_ptr,#24] adcs $a4,$a4,$a4 ldr $a7,[$a_ptr,#28] adcs $a5,$a5,$a5 adcs $a6,$a6,$a6 mov $ff,#0 adcs $a7,$a7,$a7 adc $ff,$ff,#0 b .Lreduce_by_sub .size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2 @ void ecp_nistz256_add(BN_ULONG r0[8],const BN_ULONG r1[8], @ const BN_ULONG r2[8]); .globl ecp_nistz256_add .type ecp_nistz256_add,%function .align 4 ecp_nistz256_add: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_add #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_add,.-ecp_nistz256_add .type __ecp_nistz256_add,%function .align 4 __ecp_nistz256_add: str lr,[sp,#-4]! @ push lr ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] ldr $a3,[$a_ptr,#12] ldr $a4,[$a_ptr,#16] ldr $t0,[$b_ptr,#0] ldr $a5,[$a_ptr,#20] ldr $t1,[$b_ptr,#4] ldr $a6,[$a_ptr,#24] ldr $t2,[$b_ptr,#8] ldr $a7,[$a_ptr,#28] ldr $t3,[$b_ptr,#12] adds $a0,$a0,$t0 ldr $t0,[$b_ptr,#16] adcs $a1,$a1,$t1 ldr $t1,[$b_ptr,#20] adcs $a2,$a2,$t2 ldr $t2,[$b_ptr,#24] adcs $a3,$a3,$t3 ldr $t3,[$b_ptr,#28] adcs $a4,$a4,$t0 adcs $a5,$a5,$t1 adcs $a6,$a6,$t2 mov $ff,#0 adcs $a7,$a7,$t3 adc $ff,$ff,#0 ldr lr,[sp],#4 @ pop lr .Lreduce_by_sub: @ if a+b >= modulus, subtract modulus. @ @ But since comparison implies subtraction, we subtract @ modulus and then add it back if subtraction borrowed. subs $a0,$a0,#-1 sbcs $a1,$a1,#-1 sbcs $a2,$a2,#-1 sbcs $a3,$a3,#0 sbcs $a4,$a4,#0 sbcs $a5,$a5,#0 sbcs $a6,$a6,#1 sbcs $a7,$a7,#-1 sbc $ff,$ff,#0 @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ using value of borrow as a whole or extracting single bit. @ Follow $ff register... adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_add,.-__ecp_nistz256_add @ void ecp_nistz256_mul_by_3(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl ecp_nistz256_mul_by_3 .type ecp_nistz256_mul_by_3,%function .align 4 ecp_nistz256_mul_by_3: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_mul_by_3 #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 .type __ecp_nistz256_mul_by_3,%function .align 4 __ecp_nistz256_mul_by_3: str lr,[sp,#-4]! @ push lr @ As multiplication by 3 is performed as 2*n+n, below are inline @ copies of __ecp_nistz256_mul_by_2 and __ecp_nistz256_add, see @ corresponding subroutines for details. ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] adds $a0,$a0,$a0 @ a[0:7]+=a[0:7] ldr $a3,[$a_ptr,#12] adcs $a1,$a1,$a1 ldr $a4,[$a_ptr,#16] adcs $a2,$a2,$a2 ldr $a5,[$a_ptr,#20] adcs $a3,$a3,$a3 ldr $a6,[$a_ptr,#24] adcs $a4,$a4,$a4 ldr $a7,[$a_ptr,#28] adcs $a5,$a5,$a5 adcs $a6,$a6,$a6 mov $ff,#0 adcs $a7,$a7,$a7 adc $ff,$ff,#0 subs $a0,$a0,#-1 @ .Lreduce_by_sub but without stores sbcs $a1,$a1,#-1 sbcs $a2,$a2,#-1 sbcs $a3,$a3,#0 sbcs $a4,$a4,#0 sbcs $a5,$a5,#0 sbcs $a6,$a6,#1 sbcs $a7,$a7,#-1 sbc $ff,$ff,#0 adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff adcs $a2,$a2,$ff adcs $a3,$a3,#0 adcs $a4,$a4,#0 ldr $b_ptr,[$a_ptr,#0] adcs $a5,$a5,#0 ldr $t1,[$a_ptr,#4] adcs $a6,$a6,$ff,lsr#31 ldr $t2,[$a_ptr,#8] adc $a7,$a7,$ff ldr $t0,[$a_ptr,#12] adds $a0,$a0,$b_ptr @ 2*a[0:7]+=a[0:7] ldr $b_ptr,[$a_ptr,#16] adcs $a1,$a1,$t1 ldr $t1,[$a_ptr,#20] adcs $a2,$a2,$t2 ldr $t2,[$a_ptr,#24] adcs $a3,$a3,$t0 ldr $t3,[$a_ptr,#28] adcs $a4,$a4,$b_ptr adcs $a5,$a5,$t1 adcs $a6,$a6,$t2 mov $ff,#0 adcs $a7,$a7,$t3 adc $ff,$ff,#0 ldr lr,[sp],#4 @ pop lr b .Lreduce_by_sub .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 @ void ecp_nistz256_div_by_2(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl ecp_nistz256_div_by_2 .type ecp_nistz256_div_by_2,%function .align 4 ecp_nistz256_div_by_2: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_div_by_2 #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 .type __ecp_nistz256_div_by_2,%function .align 4 __ecp_nistz256_div_by_2: @ ret = (a is odd ? a+mod : a) >> 1 ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] mov $ff,$a0,lsl#31 @ place least significant bit to most @ significant position, now arithmetic @ right shift by 31 will produce -1 or @ 0, while logical right shift 1 or 0, @ this is how modulus is conditionally @ synthesized in this case... ldr $a3,[$a_ptr,#12] adds $a0,$a0,$ff,asr#31 ldr $a4,[$a_ptr,#16] adcs $a1,$a1,$ff,asr#31 ldr $a5,[$a_ptr,#20] adcs $a2,$a2,$ff,asr#31 ldr $a6,[$a_ptr,#24] adcs $a3,$a3,#0 ldr $a7,[$a_ptr,#28] adcs $a4,$a4,#0 mov $a0,$a0,lsr#1 @ a[0:7]>>=1, we can start early @ because it doesn't affect flags adcs $a5,$a5,#0 orr $a0,$a0,$a1,lsl#31 adcs $a6,$a6,$ff,lsr#31 mov $b_ptr,#0 adcs $a7,$a7,$ff,asr#31 mov $a1,$a1,lsr#1 adc $b_ptr,$b_ptr,#0 @ top-most carry bit from addition orr $a1,$a1,$a2,lsl#31 mov $a2,$a2,lsr#1 str $a0,[$r_ptr,#0] orr $a2,$a2,$a3,lsl#31 mov $a3,$a3,lsr#1 str $a1,[$r_ptr,#4] orr $a3,$a3,$a4,lsl#31 mov $a4,$a4,lsr#1 str $a2,[$r_ptr,#8] orr $a4,$a4,$a5,lsl#31 mov $a5,$a5,lsr#1 str $a3,[$r_ptr,#12] orr $a5,$a5,$a6,lsl#31 mov $a6,$a6,lsr#1 str $a4,[$r_ptr,#16] orr $a6,$a6,$a7,lsl#31 mov $a7,$a7,lsr#1 str $a5,[$r_ptr,#20] orr $a7,$a7,$b_ptr,lsl#31 @ don't forget the top-most carry bit str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 @ void ecp_nistz256_sub(BN_ULONG r0[8],const BN_ULONG r1[8], @ const BN_ULONG r2[8]); .globl ecp_nistz256_sub .type ecp_nistz256_sub,%function .align 4 ecp_nistz256_sub: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_sub #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_sub,.-ecp_nistz256_sub .type __ecp_nistz256_sub,%function .align 4 __ecp_nistz256_sub: str lr,[sp,#-4]! @ push lr ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] ldr $a3,[$a_ptr,#12] ldr $a4,[$a_ptr,#16] ldr $t0,[$b_ptr,#0] ldr $a5,[$a_ptr,#20] ldr $t1,[$b_ptr,#4] ldr $a6,[$a_ptr,#24] ldr $t2,[$b_ptr,#8] ldr $a7,[$a_ptr,#28] ldr $t3,[$b_ptr,#12] subs $a0,$a0,$t0 ldr $t0,[$b_ptr,#16] sbcs $a1,$a1,$t1 ldr $t1,[$b_ptr,#20] sbcs $a2,$a2,$t2 ldr $t2,[$b_ptr,#24] sbcs $a3,$a3,$t3 ldr $t3,[$b_ptr,#28] sbcs $a4,$a4,$t0 sbcs $a5,$a5,$t1 sbcs $a6,$a6,$t2 sbcs $a7,$a7,$t3 sbc $ff,$ff,$ff @ broadcast borrow bit ldr lr,[sp],#4 @ pop lr .Lreduce_by_add: @ if a-b borrows, add modulus. @ @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ broadcasting borrow bit to a register, $ff, and using it as @ a whole or extracting single bit. adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_sub,.-__ecp_nistz256_sub @ void ecp_nistz256_neg(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl ecp_nistz256_neg .type ecp_nistz256_neg,%function .align 4 ecp_nistz256_neg: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_neg #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_neg,.-ecp_nistz256_neg .type __ecp_nistz256_neg,%function .align 4 __ecp_nistz256_neg: ldr $a0,[$a_ptr,#0] eor $ff,$ff,$ff ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] subs $a0,$ff,$a0 ldr $a3,[$a_ptr,#12] sbcs $a1,$ff,$a1 ldr $a4,[$a_ptr,#16] sbcs $a2,$ff,$a2 ldr $a5,[$a_ptr,#20] sbcs $a3,$ff,$a3 ldr $a6,[$a_ptr,#24] sbcs $a4,$ff,$a4 ldr $a7,[$a_ptr,#28] sbcs $a5,$ff,$a5 sbcs $a6,$ff,$a6 sbcs $a7,$ff,$a7 sbc $ff,$ff,$ff b .Lreduce_by_add .size __ecp_nistz256_neg,.-__ecp_nistz256_neg ___ { my @acc=map("r$_",(3..11)); my ($t0,$t1,$bj,$t2,$t3)=map("r$_",(0,1,2,12,14)); $code.=<<___; @ void ecp_nistz256_sqr_mont(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl ecp_nistz256_sqr_mont .type ecp_nistz256_sqr_mont,%function .align 4 ecp_nistz256_sqr_mont: mov $b_ptr,$a_ptr b .Lecp_nistz256_mul_mont .size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont @ void ecp_nistz256_mul_mont(BN_ULONG r0[8],const BN_ULONG r1[8], @ const BN_ULONG r2[8]); .globl ecp_nistz256_mul_mont .type ecp_nistz256_mul_mont,%function .align 4 ecp_nistz256_mul_mont: .Lecp_nistz256_mul_mont: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_mul_mont #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont .type __ecp_nistz256_mul_mont,%function .align 4 __ecp_nistz256_mul_mont: stmdb sp!,{r0-r2,lr} @ make a copy of arguments too ldr $bj,[$b_ptr,#0] @ b[0] ldmia $a_ptr,{@acc[1]-@acc[8]} umull @acc[0],$t3,@acc[1],$bj @ r[0]=a[0]*b[0] stmdb sp!,{$acc[1]-@acc[8]} @ copy a[0-7] to stack, so @ that it can be addressed @ without spending register @ on address umull @acc[1],$t0,@acc[2],$bj @ r[1]=a[1]*b[0] umull @acc[2],$t1,@acc[3],$bj adds @acc[1],@acc[1],$t3 @ accumulate high part of mult umull @acc[3],$t2,@acc[4],$bj adcs @acc[2],@acc[2],$t0 umull @acc[4],$t3,@acc[5],$bj adcs @acc[3],@acc[3],$t1 umull @acc[5],$t0,@acc[6],$bj adcs @acc[4],@acc[4],$t2 umull @acc[6],$t1,@acc[7],$bj adcs @acc[5],@acc[5],$t3 umull @acc[7],$t2,@acc[8],$bj adcs @acc[6],@acc[6],$t0 adcs @acc[7],@acc[7],$t1 eor $t3,$t3,$t3 @ first overflow bit is zero adc @acc[8],$t2,#0 ___ for(my $i=1;$i<8;$i++) { my $t4=@acc[0]; # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff.0001.0000.0000.0000.ffff.ffff.ffff # * abcd # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 # - abcd.0000.0000.0000.0000.0000.0000.abcd # # or marking redundant operations: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- # + abcd.0000.abcd.0000.0000.abcd.----.----.---- # - abcd.----.----.----.----.----.----.---- $code.=<<___; @ multiplication-less reduction $i adds @acc[3],@acc[3],@acc[0] @ r[3]+=r[0] ldr $bj,[sp,#40] @ restore b_ptr adcs @acc[4],@acc[4],#0 @ r[4]+=0 adcs @acc[5],@acc[5],#0 @ r[5]+=0 adcs @acc[6],@acc[6],@acc[0] @ r[6]+=r[0] ldr $t1,[sp,#0] @ load a[0] adcs @acc[7],@acc[7],#0 @ r[7]+=0 ldr $bj,[$bj,#4*$i] @ load b[i] adcs @acc[8],@acc[8],@acc[0] @ r[8]+=r[0] eor $t0,$t0,$t0 adc $t3,$t3,#0 @ overflow bit subs @acc[7],@acc[7],@acc[0] @ r[7]-=r[0] ldr $t2,[sp,#4] @ a[1] sbcs @acc[8],@acc[8],#0 @ r[8]-=0 umlal @acc[1],$t0,$t1,$bj @ "r[0]"+=a[0]*b[i] eor $t1,$t1,$t1 sbc @acc[0],$t3,#0 @ overflow bit, keep in mind @ that netto result is @ addition of a value which @ makes underflow impossible ldr $t3,[sp,#8] @ a[2] umlal @acc[2],$t1,$t2,$bj @ "r[1]"+=a[1]*b[i] str @acc[0],[sp,#36] @ temporarily offload overflow eor $t2,$t2,$t2 ldr $t4,[sp,#12] @ a[3], $t4 is alias @acc[0] umlal @acc[3],$t2,$t3,$bj @ "r[2]"+=a[2]*b[i] eor $t3,$t3,$t3 adds @acc[2],@acc[2],$t0 @ accumulate high part of mult ldr $t0,[sp,#16] @ a[4] umlal @acc[4],$t3,$t4,$bj @ "r[3]"+=a[3]*b[i] eor $t4,$t4,$t4 adcs @acc[3],@acc[3],$t1 ldr $t1,[sp,#20] @ a[5] umlal @acc[5],$t4,$t0,$bj @ "r[4]"+=a[4]*b[i] eor $t0,$t0,$t0 adcs @acc[4],@acc[4],$t2 ldr $t2,[sp,#24] @ a[6] umlal @acc[6],$t0,$t1,$bj @ "r[5]"+=a[5]*b[i] eor $t1,$t1,$t1 adcs @acc[5],@acc[5],$t3 ldr $t3,[sp,#28] @ a[7] umlal @acc[7],$t1,$t2,$bj @ "r[6]"+=a[6]*b[i] eor $t2,$t2,$t2 adcs @acc[6],@acc[6],$t4 ldr @acc[0],[sp,#36] @ restore overflow bit umlal @acc[8],$t2,$t3,$bj @ "r[7]"+=a[7]*b[i] eor $t3,$t3,$t3 adcs @acc[7],@acc[7],$t0 adcs @acc[8],@acc[8],$t1 adcs @acc[0],$acc[0],$t2 adc $t3,$t3,#0 @ new overflow bit ___ push(@acc,shift(@acc)); # rotate registers, so that # "r[i]" becomes r[i] } $code.=<<___; @ last multiplication-less reduction adds @acc[3],@acc[3],@acc[0] ldr $r_ptr,[sp,#32] @ restore r_ptr adcs @acc[4],@acc[4],#0 adcs @acc[5],@acc[5],#0 adcs @acc[6],@acc[6],@acc[0] adcs @acc[7],@acc[7],#0 adcs @acc[8],@acc[8],@acc[0] adc $t3,$t3,#0 subs @acc[7],@acc[7],@acc[0] sbcs @acc[8],@acc[8],#0 sbc @acc[0],$t3,#0 @ overflow bit @ Final step is "if result > mod, subtract mod", but we do it @ "other way around", namely subtract modulus from result @ and if it borrowed, add modulus back. adds @acc[1],@acc[1],#1 @ subs @acc[1],@acc[1],#-1 adcs @acc[2],@acc[2],#0 @ sbcs @acc[2],@acc[2],#-1 adcs @acc[3],@acc[3],#0 @ sbcs @acc[3],@acc[3],#-1 sbcs @acc[4],@acc[4],#0 sbcs @acc[5],@acc[5],#0 sbcs @acc[6],@acc[6],#0 sbcs @acc[7],@acc[7],#1 adcs @acc[8],@acc[8],#0 @ sbcs @acc[8],@acc[8],#-1 ldr lr,[sp,#44] @ restore lr sbc @acc[0],@acc[0],#0 @ broadcast borrow bit add sp,sp,#48 @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ broadcasting borrow bit to a register, @acc[0], and using it as @ a whole or extracting single bit. adds @acc[1],@acc[1],@acc[0] @ add modulus or zero adcs @acc[2],@acc[2],@acc[0] str @acc[1],[$r_ptr,#0] adcs @acc[3],@acc[3],@acc[0] str @acc[2],[$r_ptr,#4] adcs @acc[4],@acc[4],#0 str @acc[3],[$r_ptr,#8] adcs @acc[5],@acc[5],#0 str @acc[4],[$r_ptr,#12] adcs @acc[6],@acc[6],#0 str @acc[5],[$r_ptr,#16] adcs @acc[7],@acc[7],@acc[0],lsr#31 str @acc[6],[$r_ptr,#20] adc @acc[8],@acc[8],@acc[0] str @acc[7],[$r_ptr,#24] str @acc[8],[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont ___ } { my ($out,$inp,$index,$mask)=map("r$_",(0..3)); $code.=<<___; @ void ecp_nistz256_scatter_w5(void *r0,const P256_POINT *r1, @ int r2); .globl ecp_nistz256_scatter_w5 .type ecp_nistz256_scatter_w5,%function .align 5 ecp_nistz256_scatter_w5: stmdb sp!,{r4-r11} add $out,$out,$index,lsl#2 ldmia $inp!,{r4-r11} @ X str r4,[$out,#64*0-4] str r5,[$out,#64*1-4] str r6,[$out,#64*2-4] str r7,[$out,#64*3-4] str r8,[$out,#64*4-4] str r9,[$out,#64*5-4] str r10,[$out,#64*6-4] str r11,[$out,#64*7-4] add $out,$out,#64*8 ldmia $inp!,{r4-r11} @ Y str r4,[$out,#64*0-4] str r5,[$out,#64*1-4] str r6,[$out,#64*2-4] str r7,[$out,#64*3-4] str r8,[$out,#64*4-4] str r9,[$out,#64*5-4] str r10,[$out,#64*6-4] str r11,[$out,#64*7-4] add $out,$out,#64*8 ldmia $inp,{r4-r11} @ Z str r4,[$out,#64*0-4] str r5,[$out,#64*1-4] str r6,[$out,#64*2-4] str r7,[$out,#64*3-4] str r8,[$out,#64*4-4] str r9,[$out,#64*5-4] str r10,[$out,#64*6-4] str r11,[$out,#64*7-4] ldmia sp!,{r4-r11} #if __ARM_ARCH__>=5 || defined(__thumb__) bx lr #else mov pc,lr #endif .size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5 @ void ecp_nistz256_gather_w5(P256_POINT *r0,const void *r1, @ int r2); .globl ecp_nistz256_gather_w5 .type ecp_nistz256_gather_w5,%function .align 5 ecp_nistz256_gather_w5: stmdb sp!,{r4-r11} cmp $index,#0 mov $mask,#0 #ifdef __thumb2__ itt ne #endif subne $index,$index,#1 movne $mask,#-1 add $inp,$inp,$index,lsl#2 ldr r4,[$inp,#64*0] ldr r5,[$inp,#64*1] ldr r6,[$inp,#64*2] and r4,r4,$mask ldr r7,[$inp,#64*3] and r5,r5,$mask ldr r8,[$inp,#64*4] and r6,r6,$mask ldr r9,[$inp,#64*5] and r7,r7,$mask ldr r10,[$inp,#64*6] and r8,r8,$mask ldr r11,[$inp,#64*7] add $inp,$inp,#64*8 and r9,r9,$mask and r10,r10,$mask and r11,r11,$mask stmia $out!,{r4-r11} @ X ldr r4,[$inp,#64*0] ldr r5,[$inp,#64*1] ldr r6,[$inp,#64*2] and r4,r4,$mask ldr r7,[$inp,#64*3] and r5,r5,$mask ldr r8,[$inp,#64*4] and r6,r6,$mask ldr r9,[$inp,#64*5] and r7,r7,$mask ldr r10,[$inp,#64*6] and r8,r8,$mask ldr r11,[$inp,#64*7] add $inp,$inp,#64*8 and r9,r9,$mask and r10,r10,$mask and r11,r11,$mask stmia $out!,{r4-r11} @ Y ldr r4,[$inp,#64*0] ldr r5,[$inp,#64*1] ldr r6,[$inp,#64*2] and r4,r4,$mask ldr r7,[$inp,#64*3] and r5,r5,$mask ldr r8,[$inp,#64*4] and r6,r6,$mask ldr r9,[$inp,#64*5] and r7,r7,$mask ldr r10,[$inp,#64*6] and r8,r8,$mask ldr r11,[$inp,#64*7] and r9,r9,$mask and r10,r10,$mask and r11,r11,$mask stmia $out,{r4-r11} @ Z ldmia sp!,{r4-r11} #if __ARM_ARCH__>=5 || defined(__thumb__) bx lr #else mov pc,lr #endif .size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5 @ void ecp_nistz256_scatter_w7(void *r0,const P256_POINT_AFFINE *r1, @ int r2); .globl ecp_nistz256_scatter_w7 .type ecp_nistz256_scatter_w7,%function .align 5 ecp_nistz256_scatter_w7: add $out,$out,$index mov $index,#64/4 .Loop_scatter_w7: ldr $mask,[$inp],#4 subs $index,$index,#1 strb $mask,[$out,#64*0] mov $mask,$mask,lsr#8 strb $mask,[$out,#64*1] mov $mask,$mask,lsr#8 strb $mask,[$out,#64*2] mov $mask,$mask,lsr#8 strb $mask,[$out,#64*3] add $out,$out,#64*4 bne .Loop_scatter_w7 #if __ARM_ARCH__>=5 || defined(__thumb__) bx lr #else mov pc,lr #endif .size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7 @ void ecp_nistz256_gather_w7(P256_POINT_AFFINE *r0,const void *r1, @ int r2); .globl ecp_nistz256_gather_w7 .type ecp_nistz256_gather_w7,%function .align 5 ecp_nistz256_gather_w7: stmdb sp!,{r4-r7} cmp $index,#0 mov $mask,#0 #ifdef __thumb2__ itt ne #endif subne $index,$index,#1 movne $mask,#-1 add $inp,$inp,$index mov $index,#64/4 nop .Loop_gather_w7: ldrb r4,[$inp,#64*0] subs $index,$index,#1 ldrb r5,[$inp,#64*1] ldrb r6,[$inp,#64*2] ldrb r7,[$inp,#64*3] add $inp,$inp,#64*4 orr r4,r4,r5,lsl#8 orr r4,r4,r6,lsl#16 orr r4,r4,r7,lsl#24 and r4,r4,$mask str r4,[$out],#4 bne .Loop_gather_w7 ldmia sp!,{r4-r7} #if __ARM_ARCH__>=5 || defined(__thumb__) bx lr #else mov pc,lr #endif .size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7 ___ } if (0) { # In comparison to integer-only equivalent of below subroutine: # # Cortex-A8 +10% # Cortex-A9 -10% # Snapdragon S4 +5% # # As not all time is spent in multiplication, overall impact is deemed # too low to care about. my ($A0,$A1,$A2,$A3,$Bi,$zero,$temp)=map("d$_",(0..7)); my $mask="q4"; my $mult="q5"; my @AxB=map("q$_",(8..15)); my ($rptr,$aptr,$bptr,$toutptr)=map("r$_",(0..3)); $code.=<<___; #if __ARM_ARCH__>=7 .fpu neon .globl ecp_nistz256_mul_mont_neon .type ecp_nistz256_mul_mont_neon,%function .align 5 ecp_nistz256_mul_mont_neon: mov ip,sp stmdb sp!,{r4-r9} vstmdb sp!,{q4-q5} @ ABI specification says so sub $toutptr,sp,#40 vld1.32 {${Bi}[0]},[$bptr,:32]! veor $zero,$zero,$zero vld1.32 {$A0-$A3}, [$aptr] @ can't specify :32 :-( vzip.16 $Bi,$zero mov sp,$toutptr @ alloca vmov.i64 $mask,#0xffff vmull.u32 @AxB[0],$Bi,${A0}[0] vmull.u32 @AxB[1],$Bi,${A0}[1] vmull.u32 @AxB[2],$Bi,${A1}[0] vmull.u32 @AxB[3],$Bi,${A1}[1] vshr.u64 $temp,@AxB[0]#lo,#16 vmull.u32 @AxB[4],$Bi,${A2}[0] vadd.u64 @AxB[0]#hi,@AxB[0]#hi,$temp vmull.u32 @AxB[5],$Bi,${A2}[1] vshr.u64 $temp,@AxB[0]#hi,#16 @ upper 32 bits of a[0]*b[0] vmull.u32 @AxB[6],$Bi,${A3}[0] vand.u64 @AxB[0],@AxB[0],$mask @ lower 32 bits of a[0]*b[0] vmull.u32 @AxB[7],$Bi,${A3}[1] ___ for($i=1;$i<8;$i++) { $code.=<<___; vld1.32 {${Bi}[0]},[$bptr,:32]! veor $zero,$zero,$zero vadd.u64 @AxB[1]#lo,@AxB[1]#lo,$temp @ reduction vshl.u64 $mult,@AxB[0],#32 vadd.u64 @AxB[3],@AxB[3],@AxB[0] vsub.u64 $mult,$mult,@AxB[0] vzip.16 $Bi,$zero vadd.u64 @AxB[6],@AxB[6],@AxB[0] vadd.u64 @AxB[7],@AxB[7],$mult ___ push(@AxB,shift(@AxB)); $code.=<<___; vmlal.u32 @AxB[0],$Bi,${A0}[0] vmlal.u32 @AxB[1],$Bi,${A0}[1] vmlal.u32 @AxB[2],$Bi,${A1}[0] vmlal.u32 @AxB[3],$Bi,${A1}[1] vshr.u64 $temp,@AxB[0]#lo,#16 vmlal.u32 @AxB[4],$Bi,${A2}[0] vadd.u64 @AxB[0]#hi,@AxB[0]#hi,$temp vmlal.u32 @AxB[5],$Bi,${A2}[1] vshr.u64 $temp,@AxB[0]#hi,#16 @ upper 33 bits of a[0]*b[i]+t[0] vmlal.u32 @AxB[6],$Bi,${A3}[0] vand.u64 @AxB[0],@AxB[0],$mask @ lower 32 bits of a[0]*b[0] vmull.u32 @AxB[7],$Bi,${A3}[1] ___ } $code.=<<___; vadd.u64 @AxB[1]#lo,@AxB[1]#lo,$temp @ last reduction vshl.u64 $mult,@AxB[0],#32 vadd.u64 @AxB[3],@AxB[3],@AxB[0] vsub.u64 $mult,$mult,@AxB[0] vadd.u64 @AxB[6],@AxB[6],@AxB[0] vadd.u64 @AxB[7],@AxB[7],$mult vshr.u64 $temp,@AxB[1]#lo,#16 @ convert vadd.u64 @AxB[1]#hi,@AxB[1]#hi,$temp vshr.u64 $temp,@AxB[1]#hi,#16 vzip.16 @AxB[1]#lo,@AxB[1]#hi ___ foreach (2..7) { $code.=<<___; vadd.u64 @AxB[$_]#lo,@AxB[$_]#lo,$temp vst1.32 {@AxB[$_-1]#lo[0]},[$toutptr,:32]! vshr.u64 $temp,@AxB[$_]#lo,#16 vadd.u64 @AxB[$_]#hi,@AxB[$_]#hi,$temp vshr.u64 $temp,@AxB[$_]#hi,#16 vzip.16 @AxB[$_]#lo,@AxB[$_]#hi ___ } $code.=<<___; vst1.32 {@AxB[7]#lo[0]},[$toutptr,:32]! vst1.32 {$temp},[$toutptr] @ upper 33 bits ldr r1,[sp,#0] ldr r2,[sp,#4] ldr r3,[sp,#8] subs r1,r1,#-1 ldr r4,[sp,#12] sbcs r2,r2,#-1 ldr r5,[sp,#16] sbcs r3,r3,#-1 ldr r6,[sp,#20] sbcs r4,r4,#0 ldr r7,[sp,#24] sbcs r5,r5,#0 ldr r8,[sp,#28] sbcs r6,r6,#0 ldr r9,[sp,#32] @ top-most bit sbcs r7,r7,#1 sub sp,ip,#40+16 sbcs r8,r8,#-1 sbc r9,r9,#0 vldmia sp!,{q4-q5} adds r1,r1,r9 adcs r2,r2,r9 str r1,[$rptr,#0] adcs r3,r3,r9 str r2,[$rptr,#4] adcs r4,r4,#0 str r3,[$rptr,#8] adcs r5,r5,#0 str r4,[$rptr,#12] adcs r6,r6,#0 str r5,[$rptr,#16] adcs r7,r7,r9,lsr#31 str r6,[$rptr,#20] adcs r8,r8,r9 str r7,[$rptr,#24] str r8,[$rptr,#28] ldmia sp!,{r4-r9} bx lr .size ecp_nistz256_mul_mont_neon,.-ecp_nistz256_mul_mont_neon #endif ___ } {{{ ######################################################################## # Below $aN assignment matches order in which 256-bit result appears in # register bank at return from __ecp_nistz256_mul_mont, so that we can # skip over reloading it from memory. This means that below functions # use custom calling sequence accepting 256-bit input in registers, # output pointer in r0, $r_ptr, and optional pointer in r2, $b_ptr. # # See their "normal" counterparts for insights on calculations. my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7, $t0,$t1,$t2,$t3)=map("r$_",(11,3..10,12,14,1)); my $ff=$b_ptr; $code.=<<___; .type __ecp_nistz256_sub_from,%function .align 5 __ecp_nistz256_sub_from: str lr,[sp,#-4]! @ push lr ldr $t0,[$b_ptr,#0] ldr $t1,[$b_ptr,#4] ldr $t2,[$b_ptr,#8] ldr $t3,[$b_ptr,#12] subs $a0,$a0,$t0 ldr $t0,[$b_ptr,#16] sbcs $a1,$a1,$t1 ldr $t1,[$b_ptr,#20] sbcs $a2,$a2,$t2 ldr $t2,[$b_ptr,#24] sbcs $a3,$a3,$t3 ldr $t3,[$b_ptr,#28] sbcs $a4,$a4,$t0 sbcs $a5,$a5,$t1 sbcs $a6,$a6,$t2 sbcs $a7,$a7,$t3 sbc $ff,$ff,$ff @ broadcast borrow bit ldr lr,[sp],#4 @ pop lr adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from .type __ecp_nistz256_sub_morf,%function .align 5 __ecp_nistz256_sub_morf: str lr,[sp,#-4]! @ push lr ldr $t0,[$b_ptr,#0] ldr $t1,[$b_ptr,#4] ldr $t2,[$b_ptr,#8] ldr $t3,[$b_ptr,#12] subs $a0,$t0,$a0 ldr $t0,[$b_ptr,#16] sbcs $a1,$t1,$a1 ldr $t1,[$b_ptr,#20] sbcs $a2,$t2,$a2 ldr $t2,[$b_ptr,#24] sbcs $a3,$t3,$a3 ldr $t3,[$b_ptr,#28] sbcs $a4,$t0,$a4 sbcs $a5,$t1,$a5 sbcs $a6,$t2,$a6 sbcs $a7,$t3,$a7 sbc $ff,$ff,$ff @ broadcast borrow bit ldr lr,[sp],#4 @ pop lr adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf .type __ecp_nistz256_add_self,%function .align 4 __ecp_nistz256_add_self: adds $a0,$a0,$a0 @ a[0:7]+=a[0:7] adcs $a1,$a1,$a1 adcs $a2,$a2,$a2 adcs $a3,$a3,$a3 adcs $a4,$a4,$a4 adcs $a5,$a5,$a5 adcs $a6,$a6,$a6 mov $ff,#0 adcs $a7,$a7,$a7 adc $ff,$ff,#0 @ if a+b >= modulus, subtract modulus. @ @ But since comparison implies subtraction, we subtract @ modulus and then add it back if subtraction borrowed. subs $a0,$a0,#-1 sbcs $a1,$a1,#-1 sbcs $a2,$a2,#-1 sbcs $a3,$a3,#0 sbcs $a4,$a4,#0 sbcs $a5,$a5,#0 sbcs $a6,$a6,#1 sbcs $a7,$a7,#-1 sbc $ff,$ff,#0 @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ using value of borrow as a whole or extracting single bit. @ Follow $ff register... adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_add_self,.-__ecp_nistz256_add_self ___ ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # { my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); # above map() describes stack layout with 5 temporary # 256-bit vectors on top. Then note that we push # starting from r0, which means that we have copy of # input arguments just below these temporary vectors. $code.=<<___; .globl ecp_nistz256_point_double .type ecp_nistz256_point_double,%function .align 5 ecp_nistz256_point_double: stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional sub sp,sp,#32*5 .Lpoint_double_shortcut: add r3,sp,#$in_x ldmia $a_ptr!,{r4-r11} @ copy in_x stmia r3,{r4-r11} add $r_ptr,sp,#$S bl __ecp_nistz256_mul_by_2 @ p256_mul_by_2(S, in_y); add $b_ptr,$a_ptr,#32 add $a_ptr,$a_ptr,#32 add $r_ptr,sp,#$Zsqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Zsqr, in_z); add $a_ptr,sp,#$S add $b_ptr,sp,#$S add $r_ptr,sp,#$S bl __ecp_nistz256_mul_mont @ p256_sqr_mont(S, S); ldr $b_ptr,[sp,#32*5+4] add $a_ptr,$b_ptr,#32 add $b_ptr,$b_ptr,#64 add $r_ptr,sp,#$tmp0 bl __ecp_nistz256_mul_mont @ p256_mul_mont(tmp0, in_z, in_y); ldr $r_ptr,[sp,#32*5] add $r_ptr,$r_ptr,#64 bl __ecp_nistz256_add_self @ p256_mul_by_2(res_z, tmp0); add $a_ptr,sp,#$in_x add $b_ptr,sp,#$Zsqr add $r_ptr,sp,#$M bl __ecp_nistz256_add @ p256_add(M, in_x, Zsqr); add $a_ptr,sp,#$in_x add $b_ptr,sp,#$Zsqr add $r_ptr,sp,#$Zsqr bl __ecp_nistz256_sub @ p256_sub(Zsqr, in_x, Zsqr); add $a_ptr,sp,#$S add $b_ptr,sp,#$S add $r_ptr,sp,#$tmp0 bl __ecp_nistz256_mul_mont @ p256_sqr_mont(tmp0, S); add $a_ptr,sp,#$Zsqr add $b_ptr,sp,#$M add $r_ptr,sp,#$M bl __ecp_nistz256_mul_mont @ p256_mul_mont(M, M, Zsqr); ldr $r_ptr,[sp,#32*5] add $a_ptr,sp,#$tmp0 add $r_ptr,$r_ptr,#32 bl __ecp_nistz256_div_by_2 @ p256_div_by_2(res_y, tmp0); add $a_ptr,sp,#$M add $r_ptr,sp,#$M bl __ecp_nistz256_mul_by_3 @ p256_mul_by_3(M, M); add $a_ptr,sp,#$in_x add $b_ptr,sp,#$S add $r_ptr,sp,#$S bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, in_x); add $r_ptr,sp,#$tmp0 bl __ecp_nistz256_add_self @ p256_mul_by_2(tmp0, S); ldr $r_ptr,[sp,#32*5] add $a_ptr,sp,#$M add $b_ptr,sp,#$M bl __ecp_nistz256_mul_mont @ p256_sqr_mont(res_x, M); add $b_ptr,sp,#$tmp0 bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, tmp0); add $b_ptr,sp,#$S add $r_ptr,sp,#$S bl __ecp_nistz256_sub_morf @ p256_sub(S, S, res_x); add $a_ptr,sp,#$M add $b_ptr,sp,#$S bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, M); ldr $r_ptr,[sp,#32*5] add $b_ptr,$r_ptr,#32 add $r_ptr,$r_ptr,#32 bl __ecp_nistz256_sub_from @ p256_sub(res_y, S, res_y); add sp,sp,#32*5+16 @ +16 means "skip even over saved r0-r3" #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_point_double,.-ecp_nistz256_point_double ___ } ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y,$in2_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); # above map() describes stack layout with 18 temporary # 256-bit vectors on top. Then note that we push # starting from r0, which means that we have copy of # input arguments just below these temporary vectors. # We use three of them for ~in1infty, ~in2infty and # result of check for zero. $code.=<<___; .globl ecp_nistz256_point_add .type ecp_nistz256_point_add,%function .align 5 ecp_nistz256_point_add: stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional sub sp,sp,#32*18+16 ldmia $b_ptr!,{r4-r11} @ copy in2_x add r3,sp,#$in2_x stmia r3!,{r4-r11} ldmia $b_ptr!,{r4-r11} @ copy in2_y stmia r3!,{r4-r11} ldmia $b_ptr,{r4-r11} @ copy in2_z orr r12,r4,r5 orr r12,r12,r6 orr r12,r12,r7 orr r12,r12,r8 orr r12,r12,r9 orr r12,r12,r10 orr r12,r12,r11 cmp r12,#0 #ifdef __thumb2__ it ne #endif movne r12,#-1 stmia r3,{r4-r11} str r12,[sp,#32*18+8] @ ~in2infty ldmia $a_ptr!,{r4-r11} @ copy in1_x add r3,sp,#$in1_x stmia r3!,{r4-r11} ldmia $a_ptr!,{r4-r11} @ copy in1_y stmia r3!,{r4-r11} ldmia $a_ptr,{r4-r11} @ copy in1_z orr r12,r4,r5 orr r12,r12,r6 orr r12,r12,r7 orr r12,r12,r8 orr r12,r12,r9 orr r12,r12,r10 orr r12,r12,r11 cmp r12,#0 #ifdef __thumb2__ it ne #endif movne r12,#-1 stmia r3,{r4-r11} str r12,[sp,#32*18+4] @ ~in1infty add $a_ptr,sp,#$in2_z add $b_ptr,sp,#$in2_z add $r_ptr,sp,#$Z2sqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Z2sqr, in2_z); add $a_ptr,sp,#$in1_z add $b_ptr,sp,#$in1_z add $r_ptr,sp,#$Z1sqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Z1sqr, in1_z); add $a_ptr,sp,#$in2_z add $b_ptr,sp,#$Z2sqr add $r_ptr,sp,#$S1 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S1, Z2sqr, in2_z); add $a_ptr,sp,#$in1_z add $b_ptr,sp,#$Z1sqr add $r_ptr,sp,#$S2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, Z1sqr, in1_z); add $a_ptr,sp,#$in1_y add $b_ptr,sp,#$S1 add $r_ptr,sp,#$S1 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S1, S1, in1_y); add $a_ptr,sp,#$in2_y add $b_ptr,sp,#$S2 add $r_ptr,sp,#$S2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, S2, in2_y); add $b_ptr,sp,#$S1 add $r_ptr,sp,#$R bl __ecp_nistz256_sub_from @ p256_sub(R, S2, S1); orr $a0,$a0,$a1 @ see if result is zero orr $a2,$a2,$a3 orr $a4,$a4,$a5 orr $a0,$a0,$a2 orr $a4,$a4,$a6 orr $a0,$a0,$a7 add $a_ptr,sp,#$in1_x orr $a0,$a0,$a4 add $b_ptr,sp,#$Z2sqr str $a0,[sp,#32*18+12] add $r_ptr,sp,#$U1 bl __ecp_nistz256_mul_mont @ p256_mul_mont(U1, in1_x, Z2sqr); add $a_ptr,sp,#$in2_x add $b_ptr,sp,#$Z1sqr add $r_ptr,sp,#$U2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, in2_x, Z1sqr); add $b_ptr,sp,#$U1 add $r_ptr,sp,#$H bl __ecp_nistz256_sub_from @ p256_sub(H, U2, U1); orr $a0,$a0,$a1 @ see if result is zero orr $a2,$a2,$a3 orr $a4,$a4,$a5 orr $a0,$a0,$a2 orr $a4,$a4,$a6 orr $a0,$a0,$a7 orr $a0,$a0,$a4 @ ~is_equal(U1,U2) ldr $t0,[sp,#32*18+4] @ ~in1infty ldr $t1,[sp,#32*18+8] @ ~in2infty ldr $t2,[sp,#32*18+12] @ ~is_equal(S1,S2) mvn $t0,$t0 @ -1/0 -> 0/-1 mvn $t1,$t1 @ -1/0 -> 0/-1 orr $a0,$t0 orr $a0,$t1 orrs $a0,$t2 @ set flags @ if(~is_equal(U1,U2) | in1infty | in2infty | ~is_equal(S1,S2)) bne .Ladd_proceed .Ladd_double: ldr $a_ptr,[sp,#32*18+20] add sp,sp,#32*(18-5)+16 @ difference in frame sizes b .Lpoint_double_shortcut .align 4 .Ladd_proceed: add $a_ptr,sp,#$R add $b_ptr,sp,#$R add $r_ptr,sp,#$Rsqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Rsqr, R); add $a_ptr,sp,#$H add $b_ptr,sp,#$in1_z add $r_ptr,sp,#$res_z bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_z, H, in1_z); add $a_ptr,sp,#$H add $b_ptr,sp,#$H add $r_ptr,sp,#$Hsqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Hsqr, H); add $a_ptr,sp,#$in2_z add $b_ptr,sp,#$res_z add $r_ptr,sp,#$res_z bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_z, res_z, in2_z); add $a_ptr,sp,#$H add $b_ptr,sp,#$Hsqr add $r_ptr,sp,#$Hcub bl __ecp_nistz256_mul_mont @ p256_mul_mont(Hcub, Hsqr, H); add $a_ptr,sp,#$Hsqr add $b_ptr,sp,#$U1 add $r_ptr,sp,#$U2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, U1, Hsqr); add $r_ptr,sp,#$Hsqr bl __ecp_nistz256_add_self @ p256_mul_by_2(Hsqr, U2); add $b_ptr,sp,#$Rsqr add $r_ptr,sp,#$res_x bl __ecp_nistz256_sub_morf @ p256_sub(res_x, Rsqr, Hsqr); add $b_ptr,sp,#$Hcub bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, Hcub); add $b_ptr,sp,#$U2 add $r_ptr,sp,#$res_y bl __ecp_nistz256_sub_morf @ p256_sub(res_y, U2, res_x); add $a_ptr,sp,#$Hcub add $b_ptr,sp,#$S1 add $r_ptr,sp,#$S2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, S1, Hcub); add $a_ptr,sp,#$R add $b_ptr,sp,#$res_y add $r_ptr,sp,#$res_y bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_y, res_y, R); add $b_ptr,sp,#$S2 bl __ecp_nistz256_sub_from @ p256_sub(res_y, res_y, S2); ldr r11,[sp,#32*18+4] @ ~in1infty ldr r12,[sp,#32*18+8] @ ~in2infty add r1,sp,#$res_x add r2,sp,#$in2_x and r10,r11,r12 @ ~in1infty & ~in2infty mvn r11,r11 add r3,sp,#$in1_x and r11,r11,r12 @ in1infty & ~in2infty mvn r12,r12 @ in2infty ldr $r_ptr,[sp,#32*18+16] ___ for($i=0;$i<96;$i+=8) { # conditional moves $code.=<<___; ldmia r1!,{r4-r5} @ res_x ldmia r2!,{r6-r7} @ in2_x ldmia r3!,{r8-r9} @ in1_x and r4,r4,r10 @ ~in1infty & ~in2infty and r5,r5,r10 and r6,r6,r11 @ in1infty & ~in2infty and r7,r7,r11 and r8,r8,r12 @ in2infty and r9,r9,r12 orr r4,r4,r6 orr r5,r5,r7 orr r4,r4,r8 orr r5,r5,r9 stmia $r_ptr!,{r4-r5} ___ } $code.=<<___; .Ladd_done: add sp,sp,#32*18+16+16 @ +16 means "skip even over saved r0-r3" #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_point_add,.-ecp_nistz256_point_add ___ } ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, # const P256_POINT_AFFINE *in2); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); my $Z1sqr = $S2; # above map() describes stack layout with 18 temporary # 256-bit vectors on top. Then note that we push # starting from r0, which means that we have copy of # input arguments just below these temporary vectors. # We use two of them for ~in1infty, ~in2infty. my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); $code.=<<___; .globl ecp_nistz256_point_add_affine .type ecp_nistz256_point_add_affine,%function .align 5 ecp_nistz256_point_add_affine: stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional sub sp,sp,#32*15 ldmia $a_ptr!,{r4-r11} @ copy in1_x add r3,sp,#$in1_x stmia r3!,{r4-r11} ldmia $a_ptr!,{r4-r11} @ copy in1_y stmia r3!,{r4-r11} ldmia $a_ptr,{r4-r11} @ copy in1_z orr r12,r4,r5 orr r12,r12,r6 orr r12,r12,r7 orr r12,r12,r8 orr r12,r12,r9 orr r12,r12,r10 orr r12,r12,r11 cmp r12,#0 #ifdef __thumb2__ it ne #endif movne r12,#-1 stmia r3,{r4-r11} str r12,[sp,#32*15+4] @ ~in1infty ldmia $b_ptr!,{r4-r11} @ copy in2_x add r3,sp,#$in2_x orr r12,r4,r5 orr r12,r12,r6 orr r12,r12,r7 orr r12,r12,r8 orr r12,r12,r9 orr r12,r12,r10 orr r12,r12,r11 stmia r3!,{r4-r11} ldmia $b_ptr!,{r4-r11} @ copy in2_y orr r12,r12,r4 orr r12,r12,r5 orr r12,r12,r6 orr r12,r12,r7 orr r12,r12,r8 orr r12,r12,r9 orr r12,r12,r10 orr r12,r12,r11 stmia r3!,{r4-r11} cmp r12,#0 #ifdef __thumb2__ it ne #endif movne r12,#-1 str r12,[sp,#32*15+8] @ ~in2infty add $a_ptr,sp,#$in1_z add $b_ptr,sp,#$in1_z add $r_ptr,sp,#$Z1sqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Z1sqr, in1_z); add $a_ptr,sp,#$Z1sqr add $b_ptr,sp,#$in2_x add $r_ptr,sp,#$U2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, Z1sqr, in2_x); add $b_ptr,sp,#$in1_x add $r_ptr,sp,#$H bl __ecp_nistz256_sub_from @ p256_sub(H, U2, in1_x); add $a_ptr,sp,#$Z1sqr add $b_ptr,sp,#$in1_z add $r_ptr,sp,#$S2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, Z1sqr, in1_z); add $a_ptr,sp,#$H add $b_ptr,sp,#$in1_z add $r_ptr,sp,#$res_z bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_z, H, in1_z); add $a_ptr,sp,#$in2_y add $b_ptr,sp,#$S2 add $r_ptr,sp,#$S2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, S2, in2_y); add $b_ptr,sp,#$in1_y add $r_ptr,sp,#$R bl __ecp_nistz256_sub_from @ p256_sub(R, S2, in1_y); add $a_ptr,sp,#$H add $b_ptr,sp,#$H add $r_ptr,sp,#$Hsqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Hsqr, H); add $a_ptr,sp,#$R add $b_ptr,sp,#$R add $r_ptr,sp,#$Rsqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Rsqr, R); add $a_ptr,sp,#$H add $b_ptr,sp,#$Hsqr add $r_ptr,sp,#$Hcub bl __ecp_nistz256_mul_mont @ p256_mul_mont(Hcub, Hsqr, H); add $a_ptr,sp,#$Hsqr add $b_ptr,sp,#$in1_x add $r_ptr,sp,#$U2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, in1_x, Hsqr); add $r_ptr,sp,#$Hsqr bl __ecp_nistz256_add_self @ p256_mul_by_2(Hsqr, U2); add $b_ptr,sp,#$Rsqr add $r_ptr,sp,#$res_x bl __ecp_nistz256_sub_morf @ p256_sub(res_x, Rsqr, Hsqr); add $b_ptr,sp,#$Hcub bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, Hcub); add $b_ptr,sp,#$U2 add $r_ptr,sp,#$res_y bl __ecp_nistz256_sub_morf @ p256_sub(res_y, U2, res_x); add $a_ptr,sp,#$Hcub add $b_ptr,sp,#$in1_y add $r_ptr,sp,#$S2 bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, in1_y, Hcub); add $a_ptr,sp,#$R add $b_ptr,sp,#$res_y add $r_ptr,sp,#$res_y bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_y, res_y, R); add $b_ptr,sp,#$S2 bl __ecp_nistz256_sub_from @ p256_sub(res_y, res_y, S2); ldr r11,[sp,#32*15+4] @ ~in1infty ldr r12,[sp,#32*15+8] @ ~in2infty add r1,sp,#$res_x add r2,sp,#$in2_x and r10,r11,r12 @ ~in1infty & ~in2infty mvn r11,r11 add r3,sp,#$in1_x and r11,r11,r12 @ in1infty & ~in2infty mvn r12,r12 @ in2infty ldr $r_ptr,[sp,#32*15] ___ for($i=0;$i<64;$i+=8) { # conditional moves $code.=<<___; ldmia r1!,{r4-r5} @ res_x ldmia r2!,{r6-r7} @ in2_x ldmia r3!,{r8-r9} @ in1_x and r4,r4,r10 @ ~in1infty & ~in2infty and r5,r5,r10 and r6,r6,r11 @ in1infty & ~in2infty and r7,r7,r11 and r8,r8,r12 @ in2infty and r9,r9,r12 orr r4,r4,r6 orr r5,r5,r7 orr r4,r4,r8 orr r5,r5,r9 stmia $r_ptr!,{r4-r5} ___ } for(;$i<96;$i+=8) { my $j=($i-64)/4; $code.=<<___; ldmia r1!,{r4-r5} @ res_z ldmia r3!,{r8-r9} @ in1_z and r4,r4,r10 and r5,r5,r10 and r6,r11,#@ONE_mont[$j] and r7,r11,#@ONE_mont[$j+1] and r8,r8,r12 and r9,r9,r12 orr r4,r4,r6 orr r5,r5,r7 orr r4,r4,r8 orr r5,r5,r9 stmia $r_ptr!,{r4-r5} ___ } $code.=<<___; add sp,sp,#32*15+16 @ +16 means "skip even over saved r0-r3" #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine ___ } }}} foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/ec/asm/ecp_nistz256-armv8.pl000066400000000000000000001324221364063235100216640ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for ARMv8. # # February 2015. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. # # with/without -DECP_NISTZ256_ASM # Apple A7 +190-360% # Cortex-A53 +190-400% # Cortex-A57 +190-350% # Denver +230-400% # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, server-side # operation. Keep in mind that +400% means 5x improvement. $flavour = shift; while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; { my ($rp,$ap,$bp,$bi,$a0,$a1,$a2,$a3,$t0,$t1,$t2,$t3,$poly1,$poly3, $acc0,$acc1,$acc2,$acc3,$acc4,$acc5) = map("x$_",(0..17,19,20)); my ($acc6,$acc7)=($ap,$bp); # used in __ecp_nistz256_sqr_mont $code.=<<___; #include "arm_arch.h" .text ___ ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; # See ecp_nistz256_table.c for explanation for why it's 64*16*37. # 64*16*37-1 is because $#arr returns last valid index or @arr, not # amount of elements. die "insane number of elements" if ($#arr != 64*16*37-1); $code.=<<___; .globl ecp_nistz256_precomputed .type ecp_nistz256_precomputed,%object .align 12 ecp_nistz256_precomputed: ___ ######################################################################## # this conversion smashes P256_POINT_AFFINE by individual bytes with # 64 byte interval, similar to # 1111222233334444 # 1234123412341234 for(1..37) { @tbl = splice(@arr,0,64*16); for($i=0;$i<64;$i++) { undef @line; for($j=0;$j<64;$j++) { push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; } $code.=".byte\t"; $code.=join(',',map { sprintf "0x%02x",$_} @line); $code.="\n"; } } $code.=<<___; .size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed .align 5 .Lpoly: .quad 0xffffffffffffffff,0x00000000ffffffff,0x0000000000000000,0xffffffff00000001 .LRR: // 2^512 mod P precomputed for NIST P256 polynomial .quad 0x0000000000000003,0xfffffffbffffffff,0xfffffffffffffffe,0x00000004fffffffd .Lone_mont: .quad 0x0000000000000001,0xffffffff00000000,0xffffffffffffffff,0x00000000fffffffe .Lone: .quad 1,0,0,0 .Lord: .quad 0xf3b9cac2fc632551,0xbce6faada7179e84,0xffffffffffffffff,0xffffffff00000000 .LordK: .quad 0xccd1c8aaee00bc4f .asciz "ECP_NISTZ256 for ARMv8, CRYPTOGAMS by " // void ecp_nistz256_to_mont(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_to_mont .type ecp_nistz256_to_mont,%function .align 6 ecp_nistz256_to_mont: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-32]! add x29,sp,#0 stp x19,x20,[sp,#16] ldr $bi,.LRR // bp[0] ldp $a0,$a1,[$ap] ldp $a2,$a3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 adr $bp,.LRR // &bp[0] bl __ecp_nistz256_mul_mont ldp x19,x20,[sp,#16] ldp x29,x30,[sp],#32 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont // void ecp_nistz256_from_mont(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_from_mont .type ecp_nistz256_from_mont,%function .align 4 ecp_nistz256_from_mont: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-32]! add x29,sp,#0 stp x19,x20,[sp,#16] mov $bi,#1 // bp[0] ldp $a0,$a1,[$ap] ldp $a2,$a3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 adr $bp,.Lone // &bp[0] bl __ecp_nistz256_mul_mont ldp x19,x20,[sp,#16] ldp x29,x30,[sp],#32 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont // void ecp_nistz256_mul_mont(BN_ULONG x0[4],const BN_ULONG x1[4], // const BN_ULONG x2[4]); .globl ecp_nistz256_mul_mont .type ecp_nistz256_mul_mont,%function .align 4 ecp_nistz256_mul_mont: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-32]! add x29,sp,#0 stp x19,x20,[sp,#16] ldr $bi,[$bp] // bp[0] ldp $a0,$a1,[$ap] ldp $a2,$a3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 bl __ecp_nistz256_mul_mont ldp x19,x20,[sp,#16] ldp x29,x30,[sp],#32 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont // void ecp_nistz256_sqr_mont(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_sqr_mont .type ecp_nistz256_sqr_mont,%function .align 4 ecp_nistz256_sqr_mont: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-32]! add x29,sp,#0 stp x19,x20,[sp,#16] ldp $a0,$a1,[$ap] ldp $a2,$a3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 bl __ecp_nistz256_sqr_mont ldp x19,x20,[sp,#16] ldp x29,x30,[sp],#32 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont // void ecp_nistz256_add(BN_ULONG x0[4],const BN_ULONG x1[4], // const BN_ULONG x2[4]); .globl ecp_nistz256_add .type ecp_nistz256_add,%function .align 4 ecp_nistz256_add: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ldp $acc0,$acc1,[$ap] ldp $t0,$t1,[$bp] ldp $acc2,$acc3,[$ap,#16] ldp $t2,$t3,[$bp,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 bl __ecp_nistz256_add ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_add,.-ecp_nistz256_add // void ecp_nistz256_div_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_div_by_2 .type ecp_nistz256_div_by_2,%function .align 4 ecp_nistz256_div_by_2: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ldp $acc0,$acc1,[$ap] ldp $acc2,$acc3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 bl __ecp_nistz256_div_by_2 ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 // void ecp_nistz256_mul_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_mul_by_2 .type ecp_nistz256_mul_by_2,%function .align 4 ecp_nistz256_mul_by_2: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ldp $acc0,$acc1,[$ap] ldp $acc2,$acc3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 mov $t0,$acc0 mov $t1,$acc1 mov $t2,$acc2 mov $t3,$acc3 bl __ecp_nistz256_add // ret = a+a // 2*a ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 // void ecp_nistz256_mul_by_3(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_mul_by_3 .type ecp_nistz256_mul_by_3,%function .align 4 ecp_nistz256_mul_by_3: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ldp $acc0,$acc1,[$ap] ldp $acc2,$acc3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 mov $t0,$acc0 mov $t1,$acc1 mov $t2,$acc2 mov $t3,$acc3 mov $a0,$acc0 mov $a1,$acc1 mov $a2,$acc2 mov $a3,$acc3 bl __ecp_nistz256_add // ret = a+a // 2*a mov $t0,$a0 mov $t1,$a1 mov $t2,$a2 mov $t3,$a3 bl __ecp_nistz256_add // ret += a // 2*a+a=3*a ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 // void ecp_nistz256_sub(BN_ULONG x0[4],const BN_ULONG x1[4], // const BN_ULONG x2[4]); .globl ecp_nistz256_sub .type ecp_nistz256_sub,%function .align 4 ecp_nistz256_sub: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 ldp $acc0,$acc1,[$ap] ldp $acc2,$acc3,[$ap,#16] ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 bl __ecp_nistz256_sub_from ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_sub,.-ecp_nistz256_sub // void ecp_nistz256_neg(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_neg .type ecp_nistz256_neg,%function .align 4 ecp_nistz256_neg: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 mov $bp,$ap mov $acc0,xzr // a = 0 mov $acc1,xzr mov $acc2,xzr mov $acc3,xzr ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 bl __ecp_nistz256_sub_from ldp x29,x30,[sp],#16 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_neg,.-ecp_nistz256_neg // note that __ecp_nistz256_mul_mont expects a[0-3] input pre-loaded // to $a0-$a3 and b[0] - to $bi .type __ecp_nistz256_mul_mont,%function .align 4 __ecp_nistz256_mul_mont: mul $acc0,$a0,$bi // a[0]*b[0] umulh $t0,$a0,$bi mul $acc1,$a1,$bi // a[1]*b[0] umulh $t1,$a1,$bi mul $acc2,$a2,$bi // a[2]*b[0] umulh $t2,$a2,$bi mul $acc3,$a3,$bi // a[3]*b[0] umulh $t3,$a3,$bi ldr $bi,[$bp,#8] // b[1] adds $acc1,$acc1,$t0 // accumulate high parts of multiplication lsl $t0,$acc0,#32 adcs $acc2,$acc2,$t1 lsr $t1,$acc0,#32 adcs $acc3,$acc3,$t2 adc $acc4,xzr,$t3 mov $acc5,xzr ___ for($i=1;$i<4;$i++) { # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff0001.00000000.0000ffff.ffffffff # * abcdefgh # + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000 # - 0000abcd.efgh0000.00000000.00000000.abcdefgh # # or marking redundant operations: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.-------- # + abcdefgh.abcdefgh.0000abcd.efgh0000.-------- # - 0000abcd.efgh0000.--------.--------.-------- $code.=<<___; subs $t2,$acc0,$t0 // "*0xffff0001" sbc $t3,$acc0,$t1 adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0] mul $t0,$a0,$bi // lo(a[0]*b[i]) adcs $acc1,$acc2,$t1 mul $t1,$a1,$bi // lo(a[1]*b[i]) adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001 mul $t2,$a2,$bi // lo(a[2]*b[i]) adcs $acc3,$acc4,$t3 mul $t3,$a3,$bi // lo(a[3]*b[i]) adc $acc4,$acc5,xzr adds $acc0,$acc0,$t0 // accumulate low parts of multiplication umulh $t0,$a0,$bi // hi(a[0]*b[i]) adcs $acc1,$acc1,$t1 umulh $t1,$a1,$bi // hi(a[1]*b[i]) adcs $acc2,$acc2,$t2 umulh $t2,$a2,$bi // hi(a[2]*b[i]) adcs $acc3,$acc3,$t3 umulh $t3,$a3,$bi // hi(a[3]*b[i]) adc $acc4,$acc4,xzr ___ $code.=<<___ if ($i<3); ldr $bi,[$bp,#8*($i+1)] // b[$i+1] ___ $code.=<<___; adds $acc1,$acc1,$t0 // accumulate high parts of multiplication lsl $t0,$acc0,#32 adcs $acc2,$acc2,$t1 lsr $t1,$acc0,#32 adcs $acc3,$acc3,$t2 adcs $acc4,$acc4,$t3 adc $acc5,xzr,xzr ___ } $code.=<<___; // last reduction subs $t2,$acc0,$t0 // "*0xffff0001" sbc $t3,$acc0,$t1 adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0] adcs $acc1,$acc2,$t1 adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001 adcs $acc3,$acc4,$t3 adc $acc4,$acc5,xzr adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus sbcs $t1,$acc1,$poly1 sbcs $t2,$acc2,xzr sbcs $t3,$acc3,$poly3 sbcs xzr,$acc4,xzr // did it borrow? csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus csel $acc1,$acc1,$t1,lo csel $acc2,$acc2,$t2,lo stp $acc0,$acc1,[$rp] csel $acc3,$acc3,$t3,lo stp $acc2,$acc3,[$rp,#16] ret .size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont // note that __ecp_nistz256_sqr_mont expects a[0-3] input pre-loaded // to $a0-$a3 .type __ecp_nistz256_sqr_mont,%function .align 4 __ecp_nistz256_sqr_mont: // | | | | | |a1*a0| | // | | | | |a2*a0| | | // | |a3*a2|a3*a0| | | | // | | | |a2*a1| | | | // | | |a3*a1| | | | | // *| | | | | | | | 2| // +|a3*a3|a2*a2|a1*a1|a0*a0| // |--+--+--+--+--+--+--+--| // |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx // // "can't overflow" below mark carrying into high part of // multiplication result, which can't overflow, because it // can never be all ones. mul $acc1,$a1,$a0 // a[1]*a[0] umulh $t1,$a1,$a0 mul $acc2,$a2,$a0 // a[2]*a[0] umulh $t2,$a2,$a0 mul $acc3,$a3,$a0 // a[3]*a[0] umulh $acc4,$a3,$a0 adds $acc2,$acc2,$t1 // accumulate high parts of multiplication mul $t0,$a2,$a1 // a[2]*a[1] umulh $t1,$a2,$a1 adcs $acc3,$acc3,$t2 mul $t2,$a3,$a1 // a[3]*a[1] umulh $t3,$a3,$a1 adc $acc4,$acc4,xzr // can't overflow mul $acc5,$a3,$a2 // a[3]*a[2] umulh $acc6,$a3,$a2 adds $t1,$t1,$t2 // accumulate high parts of multiplication mul $acc0,$a0,$a0 // a[0]*a[0] adc $t2,$t3,xzr // can't overflow adds $acc3,$acc3,$t0 // accumulate low parts of multiplication umulh $a0,$a0,$a0 adcs $acc4,$acc4,$t1 mul $t1,$a1,$a1 // a[1]*a[1] adcs $acc5,$acc5,$t2 umulh $a1,$a1,$a1 adc $acc6,$acc6,xzr // can't overflow adds $acc1,$acc1,$acc1 // acc[1-6]*=2 mul $t2,$a2,$a2 // a[2]*a[2] adcs $acc2,$acc2,$acc2 umulh $a2,$a2,$a2 adcs $acc3,$acc3,$acc3 mul $t3,$a3,$a3 // a[3]*a[3] adcs $acc4,$acc4,$acc4 umulh $a3,$a3,$a3 adcs $acc5,$acc5,$acc5 adcs $acc6,$acc6,$acc6 adc $acc7,xzr,xzr adds $acc1,$acc1,$a0 // +a[i]*a[i] adcs $acc2,$acc2,$t1 adcs $acc3,$acc3,$a1 adcs $acc4,$acc4,$t2 adcs $acc5,$acc5,$a2 lsl $t0,$acc0,#32 adcs $acc6,$acc6,$t3 lsr $t1,$acc0,#32 adc $acc7,$acc7,$a3 ___ for($i=0;$i<3;$i++) { # reductions, see commentary in # multiplication for details $code.=<<___; subs $t2,$acc0,$t0 // "*0xffff0001" sbc $t3,$acc0,$t1 adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0] adcs $acc1,$acc2,$t1 lsl $t0,$acc0,#32 adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001 lsr $t1,$acc0,#32 adc $acc3,$t3,xzr // can't overflow ___ } $code.=<<___; subs $t2,$acc0,$t0 // "*0xffff0001" sbc $t3,$acc0,$t1 adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0] adcs $acc1,$acc2,$t1 adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001 adc $acc3,$t3,xzr // can't overflow adds $acc0,$acc0,$acc4 // accumulate upper half adcs $acc1,$acc1,$acc5 adcs $acc2,$acc2,$acc6 adcs $acc3,$acc3,$acc7 adc $acc4,xzr,xzr adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus sbcs $t1,$acc1,$poly1 sbcs $t2,$acc2,xzr sbcs $t3,$acc3,$poly3 sbcs xzr,$acc4,xzr // did it borrow? csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus csel $acc1,$acc1,$t1,lo csel $acc2,$acc2,$t2,lo stp $acc0,$acc1,[$rp] csel $acc3,$acc3,$t3,lo stp $acc2,$acc3,[$rp,#16] ret .size __ecp_nistz256_sqr_mont,.-__ecp_nistz256_sqr_mont // Note that __ecp_nistz256_add expects both input vectors pre-loaded to // $a0-$a3 and $t0-$t3. This is done because it's used in multiple // contexts, e.g. in multiplication by 2 and 3... .type __ecp_nistz256_add,%function .align 4 __ecp_nistz256_add: adds $acc0,$acc0,$t0 // ret = a+b adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 adc $ap,xzr,xzr // zap $ap adds $t0,$acc0,#1 // subs $t0,$a0,#-1 // tmp = ret-modulus sbcs $t1,$acc1,$poly1 sbcs $t2,$acc2,xzr sbcs $t3,$acc3,$poly3 sbcs xzr,$ap,xzr // did subtraction borrow? csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus csel $acc1,$acc1,$t1,lo csel $acc2,$acc2,$t2,lo stp $acc0,$acc1,[$rp] csel $acc3,$acc3,$t3,lo stp $acc2,$acc3,[$rp,#16] ret .size __ecp_nistz256_add,.-__ecp_nistz256_add .type __ecp_nistz256_sub_from,%function .align 4 __ecp_nistz256_sub_from: ldp $t0,$t1,[$bp] ldp $t2,$t3,[$bp,#16] subs $acc0,$acc0,$t0 // ret = a-b sbcs $acc1,$acc1,$t1 sbcs $acc2,$acc2,$t2 sbcs $acc3,$acc3,$t3 sbc $ap,xzr,xzr // zap $ap subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus adcs $t1,$acc1,$poly1 adcs $t2,$acc2,xzr adc $t3,$acc3,$poly3 cmp $ap,xzr // did subtraction borrow? csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret csel $acc1,$acc1,$t1,eq csel $acc2,$acc2,$t2,eq stp $acc0,$acc1,[$rp] csel $acc3,$acc3,$t3,eq stp $acc2,$acc3,[$rp,#16] ret .size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from .type __ecp_nistz256_sub_morf,%function .align 4 __ecp_nistz256_sub_morf: ldp $t0,$t1,[$bp] ldp $t2,$t3,[$bp,#16] subs $acc0,$t0,$acc0 // ret = b-a sbcs $acc1,$t1,$acc1 sbcs $acc2,$t2,$acc2 sbcs $acc3,$t3,$acc3 sbc $ap,xzr,xzr // zap $ap subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus adcs $t1,$acc1,$poly1 adcs $t2,$acc2,xzr adc $t3,$acc3,$poly3 cmp $ap,xzr // did subtraction borrow? csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret csel $acc1,$acc1,$t1,eq csel $acc2,$acc2,$t2,eq stp $acc0,$acc1,[$rp] csel $acc3,$acc3,$t3,eq stp $acc2,$acc3,[$rp,#16] ret .size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf .type __ecp_nistz256_div_by_2,%function .align 4 __ecp_nistz256_div_by_2: subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = a+modulus adcs $t1,$acc1,$poly1 adcs $t2,$acc2,xzr adcs $t3,$acc3,$poly3 adc $ap,xzr,xzr // zap $ap tst $acc0,#1 // is a even? csel $acc0,$acc0,$t0,eq // ret = even ? a : a+modulus csel $acc1,$acc1,$t1,eq csel $acc2,$acc2,$t2,eq csel $acc3,$acc3,$t3,eq csel $ap,xzr,$ap,eq lsr $acc0,$acc0,#1 // ret >>= 1 orr $acc0,$acc0,$acc1,lsl#63 lsr $acc1,$acc1,#1 orr $acc1,$acc1,$acc2,lsl#63 lsr $acc2,$acc2,#1 orr $acc2,$acc2,$acc3,lsl#63 lsr $acc3,$acc3,#1 stp $acc0,$acc1,[$rp] orr $acc3,$acc3,$ap,lsl#63 stp $acc2,$acc3,[$rp,#16] ret .size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 ___ ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # { my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3)); # above map() describes stack layout with 4 temporary # 256-bit vectors on top. my ($rp_real,$ap_real) = map("x$_",(21,22)); $code.=<<___; .globl ecp_nistz256_point_double .type ecp_nistz256_point_double,%function .align 5 ecp_nistz256_point_double: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-96]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] sub sp,sp,#32*4 .Ldouble_shortcut: ldp $acc0,$acc1,[$ap,#32] mov $rp_real,$rp ldp $acc2,$acc3,[$ap,#48] mov $ap_real,$ap ldr $poly1,.Lpoly+8 mov $t0,$acc0 ldr $poly3,.Lpoly+24 mov $t1,$acc1 ldp $a0,$a1,[$ap_real,#64] // forward load for p256_sqr_mont mov $t2,$acc2 mov $t3,$acc3 ldp $a2,$a3,[$ap_real,#64+16] add $rp,sp,#$S bl __ecp_nistz256_add // p256_mul_by_2(S, in_y); add $rp,sp,#$Zsqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Zsqr, in_z); ldp $t0,$t1,[$ap_real] ldp $t2,$t3,[$ap_real,#16] mov $a0,$acc0 // put Zsqr aside for p256_sub mov $a1,$acc1 mov $a2,$acc2 mov $a3,$acc3 add $rp,sp,#$M bl __ecp_nistz256_add // p256_add(M, Zsqr, in_x); add $bp,$ap_real,#0 mov $acc0,$a0 // restore Zsqr mov $acc1,$a1 ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont mov $acc2,$a2 mov $acc3,$a3 ldp $a2,$a3,[sp,#$S+16] add $rp,sp,#$Zsqr bl __ecp_nistz256_sub_morf // p256_sub(Zsqr, in_x, Zsqr); add $rp,sp,#$S bl __ecp_nistz256_sqr_mont // p256_sqr_mont(S, S); ldr $bi,[$ap_real,#32] ldp $a0,$a1,[$ap_real,#64] ldp $a2,$a3,[$ap_real,#64+16] add $bp,$ap_real,#32 add $rp,sp,#$tmp0 bl __ecp_nistz256_mul_mont // p256_mul_mont(tmp0, in_z, in_y); mov $t0,$acc0 mov $t1,$acc1 ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont mov $t2,$acc2 mov $t3,$acc3 ldp $a2,$a3,[sp,#$S+16] add $rp,$rp_real,#64 bl __ecp_nistz256_add // p256_mul_by_2(res_z, tmp0); add $rp,sp,#$tmp0 bl __ecp_nistz256_sqr_mont // p256_sqr_mont(tmp0, S); ldr $bi,[sp,#$Zsqr] // forward load for p256_mul_mont ldp $a0,$a1,[sp,#$M] ldp $a2,$a3,[sp,#$M+16] add $rp,$rp_real,#32 bl __ecp_nistz256_div_by_2 // p256_div_by_2(res_y, tmp0); add $bp,sp,#$Zsqr add $rp,sp,#$M bl __ecp_nistz256_mul_mont // p256_mul_mont(M, M, Zsqr); mov $t0,$acc0 // duplicate M mov $t1,$acc1 mov $t2,$acc2 mov $t3,$acc3 mov $a0,$acc0 // put M aside mov $a1,$acc1 mov $a2,$acc2 mov $a3,$acc3 add $rp,sp,#$M bl __ecp_nistz256_add mov $t0,$a0 // restore M mov $t1,$a1 ldr $bi,[$ap_real] // forward load for p256_mul_mont mov $t2,$a2 ldp $a0,$a1,[sp,#$S] mov $t3,$a3 ldp $a2,$a3,[sp,#$S+16] bl __ecp_nistz256_add // p256_mul_by_3(M, M); add $bp,$ap_real,#0 add $rp,sp,#$S bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, in_x); mov $t0,$acc0 mov $t1,$acc1 ldp $a0,$a1,[sp,#$M] // forward load for p256_sqr_mont mov $t2,$acc2 mov $t3,$acc3 ldp $a2,$a3,[sp,#$M+16] add $rp,sp,#$tmp0 bl __ecp_nistz256_add // p256_mul_by_2(tmp0, S); add $rp,$rp_real,#0 bl __ecp_nistz256_sqr_mont // p256_sqr_mont(res_x, M); add $bp,sp,#$tmp0 bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, tmp0); add $bp,sp,#$S add $rp,sp,#$S bl __ecp_nistz256_sub_morf // p256_sub(S, S, res_x); ldr $bi,[sp,#$M] mov $a0,$acc0 // copy S mov $a1,$acc1 mov $a2,$acc2 mov $a3,$acc3 add $bp,sp,#$M bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, M); add $bp,$rp_real,#32 add $rp,$rp_real,#32 bl __ecp_nistz256_sub_from // p256_sub(res_y, S, res_y); add sp,x29,#0 // destroy frame ldp x19,x20,[x29,#16] ldp x21,x22,[x29,#32] ldp x29,x30,[sp],#96 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_point_double,.-ecp_nistz256_point_double ___ } ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); { my ($res_x,$res_y,$res_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..11)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); # above map() describes stack layout with 12 temporary # 256-bit vectors on top. my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp0,$temp1,$temp2)=map("x$_",(21..28)); $code.=<<___; .globl ecp_nistz256_point_add .type ecp_nistz256_point_add,%function .align 5 ecp_nistz256_point_add: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-96]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub sp,sp,#32*12 ldp $a0,$a1,[$bp,#64] // in2_z ldp $a2,$a3,[$bp,#64+16] mov $rp_real,$rp mov $ap_real,$ap mov $bp_real,$bp ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 orr $t0,$a0,$a1 orr $t2,$a2,$a3 orr $in2infty,$t0,$t2 cmp $in2infty,#0 csetm $in2infty,ne // ~in2infty add $rp,sp,#$Z2sqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z2sqr, in2_z); ldp $a0,$a1,[$ap_real,#64] // in1_z ldp $a2,$a3,[$ap_real,#64+16] orr $t0,$a0,$a1 orr $t2,$a2,$a3 orr $in1infty,$t0,$t2 cmp $in1infty,#0 csetm $in1infty,ne // ~in1infty add $rp,sp,#$Z1sqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z1sqr, in1_z); ldr $bi,[$bp_real,#64] ldp $a0,$a1,[sp,#$Z2sqr] ldp $a2,$a3,[sp,#$Z2sqr+16] add $bp,$bp_real,#64 add $rp,sp,#$S1 bl __ecp_nistz256_mul_mont // p256_mul_mont(S1, Z2sqr, in2_z); ldr $bi,[$ap_real,#64] ldp $a0,$a1,[sp,#$Z1sqr] ldp $a2,$a3,[sp,#$Z1sqr+16] add $bp,$ap_real,#64 add $rp,sp,#$S2 bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, Z1sqr, in1_z); ldr $bi,[$ap_real,#32] ldp $a0,$a1,[sp,#$S1] ldp $a2,$a3,[sp,#$S1+16] add $bp,$ap_real,#32 add $rp,sp,#$S1 bl __ecp_nistz256_mul_mont // p256_mul_mont(S1, S1, in1_y); ldr $bi,[$bp_real,#32] ldp $a0,$a1,[sp,#$S2] ldp $a2,$a3,[sp,#$S2+16] add $bp,$bp_real,#32 add $rp,sp,#$S2 bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S2, in2_y); add $bp,sp,#$S1 ldr $bi,[sp,#$Z2sqr] // forward load for p256_mul_mont ldp $a0,$a1,[$ap_real] ldp $a2,$a3,[$ap_real,#16] add $rp,sp,#$R bl __ecp_nistz256_sub_from // p256_sub(R, S2, S1); orr $acc0,$acc0,$acc1 // see if result is zero orr $acc2,$acc2,$acc3 orr $temp0,$acc0,$acc2 // ~is_equal(S1,S2) add $bp,sp,#$Z2sqr add $rp,sp,#$U1 bl __ecp_nistz256_mul_mont // p256_mul_mont(U1, in1_x, Z2sqr); ldr $bi,[sp,#$Z1sqr] ldp $a0,$a1,[$bp_real] ldp $a2,$a3,[$bp_real,#16] add $bp,sp,#$Z1sqr add $rp,sp,#$U2 bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, in2_x, Z1sqr); add $bp,sp,#$U1 ldp $a0,$a1,[sp,#$R] // forward load for p256_sqr_mont ldp $a2,$a3,[sp,#$R+16] add $rp,sp,#$H bl __ecp_nistz256_sub_from // p256_sub(H, U2, U1); orr $acc0,$acc0,$acc1 // see if result is zero orr $acc2,$acc2,$acc3 orr $acc0,$acc0,$acc2 // ~is_equal(U1,U2) mvn $temp1,$in1infty // -1/0 -> 0/-1 mvn $temp2,$in2infty // -1/0 -> 0/-1 orr $acc0,$acc0,$temp1 orr $acc0,$acc0,$temp2 orr $acc0,$acc0,$temp0 cbnz $acc0,.Ladd_proceed // if(~is_equal(U1,U2) | in1infty | in2infty | ~is_equal(S1,S2)) .Ladd_double: mov $ap,$ap_real mov $rp,$rp_real ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] add sp,sp,#32*(12-4) // difference in stack frames b .Ldouble_shortcut .align 4 .Ladd_proceed: add $rp,sp,#$Rsqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Rsqr, R); ldr $bi,[$ap_real,#64] ldp $a0,$a1,[sp,#$H] ldp $a2,$a3,[sp,#$H+16] add $bp,$ap_real,#64 add $rp,sp,#$res_z bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, H, in1_z); ldp $a0,$a1,[sp,#$H] ldp $a2,$a3,[sp,#$H+16] add $rp,sp,#$Hsqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Hsqr, H); ldr $bi,[$bp_real,#64] ldp $a0,$a1,[sp,#$res_z] ldp $a2,$a3,[sp,#$res_z+16] add $bp,$bp_real,#64 add $rp,sp,#$res_z bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, res_z, in2_z); ldr $bi,[sp,#$H] ldp $a0,$a1,[sp,#$Hsqr] ldp $a2,$a3,[sp,#$Hsqr+16] add $bp,sp,#$H add $rp,sp,#$Hcub bl __ecp_nistz256_mul_mont // p256_mul_mont(Hcub, Hsqr, H); ldr $bi,[sp,#$Hsqr] ldp $a0,$a1,[sp,#$U1] ldp $a2,$a3,[sp,#$U1+16] add $bp,sp,#$Hsqr add $rp,sp,#$U2 bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, U1, Hsqr); mov $t0,$acc0 mov $t1,$acc1 mov $t2,$acc2 mov $t3,$acc3 add $rp,sp,#$Hsqr bl __ecp_nistz256_add // p256_mul_by_2(Hsqr, U2); add $bp,sp,#$Rsqr add $rp,sp,#$res_x bl __ecp_nistz256_sub_morf // p256_sub(res_x, Rsqr, Hsqr); add $bp,sp,#$Hcub bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, Hcub); add $bp,sp,#$U2 ldr $bi,[sp,#$Hcub] // forward load for p256_mul_mont ldp $a0,$a1,[sp,#$S1] ldp $a2,$a3,[sp,#$S1+16] add $rp,sp,#$res_y bl __ecp_nistz256_sub_morf // p256_sub(res_y, U2, res_x); add $bp,sp,#$Hcub add $rp,sp,#$S2 bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S1, Hcub); ldr $bi,[sp,#$R] ldp $a0,$a1,[sp,#$res_y] ldp $a2,$a3,[sp,#$res_y+16] add $bp,sp,#$R add $rp,sp,#$res_y bl __ecp_nistz256_mul_mont // p256_mul_mont(res_y, res_y, R); add $bp,sp,#$S2 bl __ecp_nistz256_sub_from // p256_sub(res_y, res_y, S2); ldp $a0,$a1,[sp,#$res_x] // res ldp $a2,$a3,[sp,#$res_x+16] ldp $t0,$t1,[$bp_real] // in2 ldp $t2,$t3,[$bp_real,#16] ___ for($i=0;$i<64;$i+=32) { # conditional moves $code.=<<___; ldp $acc0,$acc1,[$ap_real,#$i] // in1 cmp $in1infty,#0 // ~$in1intfy, remember? ldp $acc2,$acc3,[$ap_real,#$i+16] csel $t0,$a0,$t0,ne csel $t1,$a1,$t1,ne ldp $a0,$a1,[sp,#$res_x+$i+32] // res csel $t2,$a2,$t2,ne csel $t3,$a3,$t3,ne cmp $in2infty,#0 // ~$in2intfy, remember? ldp $a2,$a3,[sp,#$res_x+$i+48] csel $acc0,$t0,$acc0,ne csel $acc1,$t1,$acc1,ne ldp $t0,$t1,[$bp_real,#$i+32] // in2 csel $acc2,$t2,$acc2,ne csel $acc3,$t3,$acc3,ne ldp $t2,$t3,[$bp_real,#$i+48] stp $acc0,$acc1,[$rp_real,#$i] stp $acc2,$acc3,[$rp_real,#$i+16] ___ } $code.=<<___; ldp $acc0,$acc1,[$ap_real,#$i] // in1 cmp $in1infty,#0 // ~$in1intfy, remember? ldp $acc2,$acc3,[$ap_real,#$i+16] csel $t0,$a0,$t0,ne csel $t1,$a1,$t1,ne csel $t2,$a2,$t2,ne csel $t3,$a3,$t3,ne cmp $in2infty,#0 // ~$in2intfy, remember? csel $acc0,$t0,$acc0,ne csel $acc1,$t1,$acc1,ne csel $acc2,$t2,$acc2,ne csel $acc3,$t3,$acc3,ne stp $acc0,$acc1,[$rp_real,#$i] stp $acc2,$acc3,[$rp_real,#$i+16] .Ladd_done: add sp,x29,#0 // destroy frame ldp x19,x20,[x29,#16] ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#96 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_point_add,.-ecp_nistz256_point_add ___ } ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, # const P256_POINT_AFFINE *in2); { my ($res_x,$res_y,$res_z, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9)); my $Z1sqr = $S2; # above map() describes stack layout with 10 temporary # 256-bit vectors on top. my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp)=map("x$_",(21..26)); $code.=<<___; .globl ecp_nistz256_point_add_affine .type ecp_nistz256_point_add_affine,%function .align 5 ecp_nistz256_point_add_affine: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-80]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] sub sp,sp,#32*10 mov $rp_real,$rp mov $ap_real,$ap mov $bp_real,$bp ldr $poly1,.Lpoly+8 ldr $poly3,.Lpoly+24 ldp $a0,$a1,[$ap,#64] // in1_z ldp $a2,$a3,[$ap,#64+16] orr $t0,$a0,$a1 orr $t2,$a2,$a3 orr $in1infty,$t0,$t2 cmp $in1infty,#0 csetm $in1infty,ne // ~in1infty ldp $acc0,$acc1,[$bp] // in2_x ldp $acc2,$acc3,[$bp,#16] ldp $t0,$t1,[$bp,#32] // in2_y ldp $t2,$t3,[$bp,#48] orr $acc0,$acc0,$acc1 orr $acc2,$acc2,$acc3 orr $t0,$t0,$t1 orr $t2,$t2,$t3 orr $acc0,$acc0,$acc2 orr $t0,$t0,$t2 orr $in2infty,$acc0,$t0 cmp $in2infty,#0 csetm $in2infty,ne // ~in2infty add $rp,sp,#$Z1sqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z1sqr, in1_z); mov $a0,$acc0 mov $a1,$acc1 mov $a2,$acc2 mov $a3,$acc3 ldr $bi,[$bp_real] add $bp,$bp_real,#0 add $rp,sp,#$U2 bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, Z1sqr, in2_x); add $bp,$ap_real,#0 ldr $bi,[$ap_real,#64] // forward load for p256_mul_mont ldp $a0,$a1,[sp,#$Z1sqr] ldp $a2,$a3,[sp,#$Z1sqr+16] add $rp,sp,#$H bl __ecp_nistz256_sub_from // p256_sub(H, U2, in1_x); add $bp,$ap_real,#64 add $rp,sp,#$S2 bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, Z1sqr, in1_z); ldr $bi,[$ap_real,#64] ldp $a0,$a1,[sp,#$H] ldp $a2,$a3,[sp,#$H+16] add $bp,$ap_real,#64 add $rp,sp,#$res_z bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, H, in1_z); ldr $bi,[$bp_real,#32] ldp $a0,$a1,[sp,#$S2] ldp $a2,$a3,[sp,#$S2+16] add $bp,$bp_real,#32 add $rp,sp,#$S2 bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S2, in2_y); add $bp,$ap_real,#32 ldp $a0,$a1,[sp,#$H] // forward load for p256_sqr_mont ldp $a2,$a3,[sp,#$H+16] add $rp,sp,#$R bl __ecp_nistz256_sub_from // p256_sub(R, S2, in1_y); add $rp,sp,#$Hsqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Hsqr, H); ldp $a0,$a1,[sp,#$R] ldp $a2,$a3,[sp,#$R+16] add $rp,sp,#$Rsqr bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Rsqr, R); ldr $bi,[sp,#$H] ldp $a0,$a1,[sp,#$Hsqr] ldp $a2,$a3,[sp,#$Hsqr+16] add $bp,sp,#$H add $rp,sp,#$Hcub bl __ecp_nistz256_mul_mont // p256_mul_mont(Hcub, Hsqr, H); ldr $bi,[$ap_real] ldp $a0,$a1,[sp,#$Hsqr] ldp $a2,$a3,[sp,#$Hsqr+16] add $bp,$ap_real,#0 add $rp,sp,#$U2 bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, in1_x, Hsqr); mov $t0,$acc0 mov $t1,$acc1 mov $t2,$acc2 mov $t3,$acc3 add $rp,sp,#$Hsqr bl __ecp_nistz256_add // p256_mul_by_2(Hsqr, U2); add $bp,sp,#$Rsqr add $rp,sp,#$res_x bl __ecp_nistz256_sub_morf // p256_sub(res_x, Rsqr, Hsqr); add $bp,sp,#$Hcub bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, Hcub); add $bp,sp,#$U2 ldr $bi,[$ap_real,#32] // forward load for p256_mul_mont ldp $a0,$a1,[sp,#$Hcub] ldp $a2,$a3,[sp,#$Hcub+16] add $rp,sp,#$res_y bl __ecp_nistz256_sub_morf // p256_sub(res_y, U2, res_x); add $bp,$ap_real,#32 add $rp,sp,#$S2 bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, in1_y, Hcub); ldr $bi,[sp,#$R] ldp $a0,$a1,[sp,#$res_y] ldp $a2,$a3,[sp,#$res_y+16] add $bp,sp,#$R add $rp,sp,#$res_y bl __ecp_nistz256_mul_mont // p256_mul_mont(res_y, res_y, R); add $bp,sp,#$S2 bl __ecp_nistz256_sub_from // p256_sub(res_y, res_y, S2); ldp $a0,$a1,[sp,#$res_x] // res ldp $a2,$a3,[sp,#$res_x+16] ldp $t0,$t1,[$bp_real] // in2 ldp $t2,$t3,[$bp_real,#16] ___ for($i=0;$i<64;$i+=32) { # conditional moves $code.=<<___; ldp $acc0,$acc1,[$ap_real,#$i] // in1 cmp $in1infty,#0 // ~$in1intfy, remember? ldp $acc2,$acc3,[$ap_real,#$i+16] csel $t0,$a0,$t0,ne csel $t1,$a1,$t1,ne ldp $a0,$a1,[sp,#$res_x+$i+32] // res csel $t2,$a2,$t2,ne csel $t3,$a3,$t3,ne cmp $in2infty,#0 // ~$in2intfy, remember? ldp $a2,$a3,[sp,#$res_x+$i+48] csel $acc0,$t0,$acc0,ne csel $acc1,$t1,$acc1,ne ldp $t0,$t1,[$bp_real,#$i+32] // in2 csel $acc2,$t2,$acc2,ne csel $acc3,$t3,$acc3,ne ldp $t2,$t3,[$bp_real,#$i+48] stp $acc0,$acc1,[$rp_real,#$i] stp $acc2,$acc3,[$rp_real,#$i+16] ___ $code.=<<___ if ($i == 0); adr $bp_real,.Lone_mont-64 ___ } $code.=<<___; ldp $acc0,$acc1,[$ap_real,#$i] // in1 cmp $in1infty,#0 // ~$in1intfy, remember? ldp $acc2,$acc3,[$ap_real,#$i+16] csel $t0,$a0,$t0,ne csel $t1,$a1,$t1,ne csel $t2,$a2,$t2,ne csel $t3,$a3,$t3,ne cmp $in2infty,#0 // ~$in2intfy, remember? csel $acc0,$t0,$acc0,ne csel $acc1,$t1,$acc1,ne csel $acc2,$t2,$acc2,ne csel $acc3,$t3,$acc3,ne stp $acc0,$acc1,[$rp_real,#$i] stp $acc2,$acc3,[$rp_real,#$i+16] add sp,x29,#0 // destroy frame ldp x19,x20,[x29,#16] ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x29,x30,[sp],#80 .inst 0xd50323bf // autiasp ret .size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine ___ } if (1) { my ($ord0,$ord1) = ($poly1,$poly3); my ($ord2,$ord3,$ordk,$t4) = map("x$_",(21..24)); my $acc7 = $bi; $code.=<<___; //////////////////////////////////////////////////////////////////////// // void ecp_nistz256_ord_mul_mont(uint64_t res[4], uint64_t a[4], // uint64_t b[4]); .globl ecp_nistz256_ord_mul_mont .type ecp_nistz256_ord_mul_mont,%function .align 4 ecp_nistz256_ord_mul_mont: stp x29,x30,[sp,#-64]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] adr $ordk,.Lord ldr $bi,[$bp] // bp[0] ldp $a0,$a1,[$ap] ldp $a2,$a3,[$ap,#16] ldp $ord0,$ord1,[$ordk,#0] ldp $ord2,$ord3,[$ordk,#16] ldr $ordk,[$ordk,#32] mul $acc0,$a0,$bi // a[0]*b[0] umulh $t0,$a0,$bi mul $acc1,$a1,$bi // a[1]*b[0] umulh $t1,$a1,$bi mul $acc2,$a2,$bi // a[2]*b[0] umulh $t2,$a2,$bi mul $acc3,$a3,$bi // a[3]*b[0] umulh $acc4,$a3,$bi mul $t4,$acc0,$ordk adds $acc1,$acc1,$t0 // accumulate high parts of multiplication adcs $acc2,$acc2,$t1 adcs $acc3,$acc3,$t2 adc $acc4,$acc4,xzr mov $acc5,xzr ___ for ($i=1;$i<4;$i++) { ################################################################ # ffff0000.ffffffff.yyyyyyyy.zzzzzzzz # * abcdefgh # + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx # - 0000abcd.efgh0000.abcdefgh.00000000.00000000 # + abcdefgh.abcdefgh.yzayzbyz.cyzdyzey.zfyzgyzh $code.=<<___; ldr $bi,[$bp,#8*$i] // b[i] lsl $t0,$t4,#32 subs $acc2,$acc2,$t4 lsr $t1,$t4,#32 sbcs $acc3,$acc3,$t0 sbcs $acc4,$acc4,$t1 sbc $acc5,$acc5,xzr subs xzr,$acc0,#1 umulh $t1,$ord0,$t4 mul $t2,$ord1,$t4 umulh $t3,$ord1,$t4 adcs $t2,$t2,$t1 mul $t0,$a0,$bi adc $t3,$t3,xzr mul $t1,$a1,$bi adds $acc0,$acc1,$t2 mul $t2,$a2,$bi adcs $acc1,$acc2,$t3 mul $t3,$a3,$bi adcs $acc2,$acc3,$t4 adcs $acc3,$acc4,$t4 adc $acc4,$acc5,xzr adds $acc0,$acc0,$t0 // accumulate low parts umulh $t0,$a0,$bi adcs $acc1,$acc1,$t1 umulh $t1,$a1,$bi adcs $acc2,$acc2,$t2 umulh $t2,$a2,$bi adcs $acc3,$acc3,$t3 umulh $t3,$a3,$bi adc $acc4,$acc4,xzr mul $t4,$acc0,$ordk adds $acc1,$acc1,$t0 // accumulate high parts adcs $acc2,$acc2,$t1 adcs $acc3,$acc3,$t2 adcs $acc4,$acc4,$t3 adc $acc5,xzr,xzr ___ } $code.=<<___; lsl $t0,$t4,#32 // last reduction subs $acc2,$acc2,$t4 lsr $t1,$t4,#32 sbcs $acc3,$acc3,$t0 sbcs $acc4,$acc4,$t1 sbc $acc5,$acc5,xzr subs xzr,$acc0,#1 umulh $t1,$ord0,$t4 mul $t2,$ord1,$t4 umulh $t3,$ord1,$t4 adcs $t2,$t2,$t1 adc $t3,$t3,xzr adds $acc0,$acc1,$t2 adcs $acc1,$acc2,$t3 adcs $acc2,$acc3,$t4 adcs $acc3,$acc4,$t4 adc $acc4,$acc5,xzr subs $t0,$acc0,$ord0 // ret -= modulus sbcs $t1,$acc1,$ord1 sbcs $t2,$acc2,$ord2 sbcs $t3,$acc3,$ord3 sbcs xzr,$acc4,xzr csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus csel $acc1,$acc1,$t1,lo csel $acc2,$acc2,$t2,lo stp $acc0,$acc1,[$rp] csel $acc3,$acc3,$t3,lo stp $acc2,$acc3,[$rp,#16] ldp x19,x20,[sp,#16] ldp x21,x22,[sp,#32] ldp x23,x24,[sp,#48] ldr x29,[sp],#64 ret .size ecp_nistz256_ord_mul_mont,.-ecp_nistz256_ord_mul_mont //////////////////////////////////////////////////////////////////////// // void ecp_nistz256_ord_sqr_mont(uint64_t res[4], uint64_t a[4], // int rep); .globl ecp_nistz256_ord_sqr_mont .type ecp_nistz256_ord_sqr_mont,%function .align 4 ecp_nistz256_ord_sqr_mont: stp x29,x30,[sp,#-64]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] adr $ordk,.Lord ldp $a0,$a1,[$ap] ldp $a2,$a3,[$ap,#16] ldp $ord0,$ord1,[$ordk,#0] ldp $ord2,$ord3,[$ordk,#16] ldr $ordk,[$ordk,#32] b .Loop_ord_sqr .align 4 .Loop_ord_sqr: sub $bp,$bp,#1 //////////////////////////////////////////////////////////////// // | | | | | |a1*a0| | // | | | | |a2*a0| | | // | |a3*a2|a3*a0| | | | // | | | |a2*a1| | | | // | | |a3*a1| | | | | // *| | | | | | | | 2| // +|a3*a3|a2*a2|a1*a1|a0*a0| // |--+--+--+--+--+--+--+--| // |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx // // "can't overflow" below mark carrying into high part of // multiplication result, which can't overflow, because it // can never be all ones. mul $acc1,$a1,$a0 // a[1]*a[0] umulh $t1,$a1,$a0 mul $acc2,$a2,$a0 // a[2]*a[0] umulh $t2,$a2,$a0 mul $acc3,$a3,$a0 // a[3]*a[0] umulh $acc4,$a3,$a0 adds $acc2,$acc2,$t1 // accumulate high parts of multiplication mul $t0,$a2,$a1 // a[2]*a[1] umulh $t1,$a2,$a1 adcs $acc3,$acc3,$t2 mul $t2,$a3,$a1 // a[3]*a[1] umulh $t3,$a3,$a1 adc $acc4,$acc4,xzr // can't overflow mul $acc5,$a3,$a2 // a[3]*a[2] umulh $acc6,$a3,$a2 adds $t1,$t1,$t2 // accumulate high parts of multiplication mul $acc0,$a0,$a0 // a[0]*a[0] adc $t2,$t3,xzr // can't overflow adds $acc3,$acc3,$t0 // accumulate low parts of multiplication umulh $a0,$a0,$a0 adcs $acc4,$acc4,$t1 mul $t1,$a1,$a1 // a[1]*a[1] adcs $acc5,$acc5,$t2 umulh $a1,$a1,$a1 adc $acc6,$acc6,xzr // can't overflow adds $acc1,$acc1,$acc1 // acc[1-6]*=2 mul $t2,$a2,$a2 // a[2]*a[2] adcs $acc2,$acc2,$acc2 umulh $a2,$a2,$a2 adcs $acc3,$acc3,$acc3 mul $t3,$a3,$a3 // a[3]*a[3] adcs $acc4,$acc4,$acc4 umulh $a3,$a3,$a3 adcs $acc5,$acc5,$acc5 adcs $acc6,$acc6,$acc6 adc $acc7,xzr,xzr adds $acc1,$acc1,$a0 // +a[i]*a[i] mul $t4,$acc0,$ordk adcs $acc2,$acc2,$t1 adcs $acc3,$acc3,$a1 adcs $acc4,$acc4,$t2 adcs $acc5,$acc5,$a2 adcs $acc6,$acc6,$t3 adc $acc7,$acc7,$a3 ___ for($i=0; $i<4; $i++) { # reductions $code.=<<___; subs xzr,$acc0,#1 umulh $t1,$ord0,$t4 mul $t2,$ord1,$t4 umulh $t3,$ord1,$t4 adcs $t2,$t2,$t1 adc $t3,$t3,xzr adds $acc0,$acc1,$t2 adcs $acc1,$acc2,$t3 adcs $acc2,$acc3,$t4 adc $acc3,xzr,$t4 // can't overflow ___ $code.=<<___ if ($i<3); mul $t3,$acc0,$ordk ___ $code.=<<___; lsl $t0,$t4,#32 subs $acc1,$acc1,$t4 lsr $t1,$t4,#32 sbcs $acc2,$acc2,$t0 sbc $acc3,$acc3,$t1 // can't borrow ___ ($t3,$t4) = ($t4,$t3); } $code.=<<___; adds $acc0,$acc0,$acc4 // accumulate upper half adcs $acc1,$acc1,$acc5 adcs $acc2,$acc2,$acc6 adcs $acc3,$acc3,$acc7 adc $acc4,xzr,xzr subs $t0,$acc0,$ord0 // ret -= modulus sbcs $t1,$acc1,$ord1 sbcs $t2,$acc2,$ord2 sbcs $t3,$acc3,$ord3 sbcs xzr,$acc4,xzr csel $a0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus csel $a1,$acc1,$t1,lo csel $a2,$acc2,$t2,lo csel $a3,$acc3,$t3,lo cbnz $bp,.Loop_ord_sqr stp $a0,$a1,[$rp] stp $a2,$a3,[$rp,#16] ldp x19,x20,[sp,#16] ldp x21,x22,[sp,#32] ldp x23,x24,[sp,#48] ldr x29,[sp],#64 ret .size ecp_nistz256_ord_sqr_mont,.-ecp_nistz256_ord_sqr_mont ___ } } ######################################################################## # scatter-gather subroutines { my ($out,$inp,$index,$mask)=map("x$_",(0..3)); $code.=<<___; // void ecp_nistz256_scatter_w5(void *x0,const P256_POINT *x1, // int x2); .globl ecp_nistz256_scatter_w5 .type ecp_nistz256_scatter_w5,%function .align 4 ecp_nistz256_scatter_w5: stp x29,x30,[sp,#-16]! add x29,sp,#0 add $out,$out,$index,lsl#2 ldp x4,x5,[$inp] // X ldp x6,x7,[$inp,#16] str w4,[$out,#64*0-4] lsr x4,x4,#32 str w5,[$out,#64*1-4] lsr x5,x5,#32 str w6,[$out,#64*2-4] lsr x6,x6,#32 str w7,[$out,#64*3-4] lsr x7,x7,#32 str w4,[$out,#64*4-4] str w5,[$out,#64*5-4] str w6,[$out,#64*6-4] str w7,[$out,#64*7-4] add $out,$out,#64*8 ldp x4,x5,[$inp,#32] // Y ldp x6,x7,[$inp,#48] str w4,[$out,#64*0-4] lsr x4,x4,#32 str w5,[$out,#64*1-4] lsr x5,x5,#32 str w6,[$out,#64*2-4] lsr x6,x6,#32 str w7,[$out,#64*3-4] lsr x7,x7,#32 str w4,[$out,#64*4-4] str w5,[$out,#64*5-4] str w6,[$out,#64*6-4] str w7,[$out,#64*7-4] add $out,$out,#64*8 ldp x4,x5,[$inp,#64] // Z ldp x6,x7,[$inp,#80] str w4,[$out,#64*0-4] lsr x4,x4,#32 str w5,[$out,#64*1-4] lsr x5,x5,#32 str w6,[$out,#64*2-4] lsr x6,x6,#32 str w7,[$out,#64*3-4] lsr x7,x7,#32 str w4,[$out,#64*4-4] str w5,[$out,#64*5-4] str w6,[$out,#64*6-4] str w7,[$out,#64*7-4] ldr x29,[sp],#16 ret .size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5 // void ecp_nistz256_gather_w5(P256_POINT *x0,const void *x1, // int x2); .globl ecp_nistz256_gather_w5 .type ecp_nistz256_gather_w5,%function .align 4 ecp_nistz256_gather_w5: stp x29,x30,[sp,#-16]! add x29,sp,#0 cmp $index,xzr csetm x3,ne add $index,$index,x3 add $inp,$inp,$index,lsl#2 ldr w4,[$inp,#64*0] ldr w5,[$inp,#64*1] ldr w6,[$inp,#64*2] ldr w7,[$inp,#64*3] ldr w8,[$inp,#64*4] ldr w9,[$inp,#64*5] ldr w10,[$inp,#64*6] ldr w11,[$inp,#64*7] add $inp,$inp,#64*8 orr x4,x4,x8,lsl#32 orr x5,x5,x9,lsl#32 orr x6,x6,x10,lsl#32 orr x7,x7,x11,lsl#32 csel x4,x4,xzr,ne csel x5,x5,xzr,ne csel x6,x6,xzr,ne csel x7,x7,xzr,ne stp x4,x5,[$out] // X stp x6,x7,[$out,#16] ldr w4,[$inp,#64*0] ldr w5,[$inp,#64*1] ldr w6,[$inp,#64*2] ldr w7,[$inp,#64*3] ldr w8,[$inp,#64*4] ldr w9,[$inp,#64*5] ldr w10,[$inp,#64*6] ldr w11,[$inp,#64*7] add $inp,$inp,#64*8 orr x4,x4,x8,lsl#32 orr x5,x5,x9,lsl#32 orr x6,x6,x10,lsl#32 orr x7,x7,x11,lsl#32 csel x4,x4,xzr,ne csel x5,x5,xzr,ne csel x6,x6,xzr,ne csel x7,x7,xzr,ne stp x4,x5,[$out,#32] // Y stp x6,x7,[$out,#48] ldr w4,[$inp,#64*0] ldr w5,[$inp,#64*1] ldr w6,[$inp,#64*2] ldr w7,[$inp,#64*3] ldr w8,[$inp,#64*4] ldr w9,[$inp,#64*5] ldr w10,[$inp,#64*6] ldr w11,[$inp,#64*7] orr x4,x4,x8,lsl#32 orr x5,x5,x9,lsl#32 orr x6,x6,x10,lsl#32 orr x7,x7,x11,lsl#32 csel x4,x4,xzr,ne csel x5,x5,xzr,ne csel x6,x6,xzr,ne csel x7,x7,xzr,ne stp x4,x5,[$out,#64] // Z stp x6,x7,[$out,#80] ldr x29,[sp],#16 ret .size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5 // void ecp_nistz256_scatter_w7(void *x0,const P256_POINT_AFFINE *x1, // int x2); .globl ecp_nistz256_scatter_w7 .type ecp_nistz256_scatter_w7,%function .align 4 ecp_nistz256_scatter_w7: stp x29,x30,[sp,#-16]! add x29,sp,#0 add $out,$out,$index mov $index,#64/8 .Loop_scatter_w7: ldr x3,[$inp],#8 subs $index,$index,#1 prfm pstl1strm,[$out,#4096+64*0] prfm pstl1strm,[$out,#4096+64*1] prfm pstl1strm,[$out,#4096+64*2] prfm pstl1strm,[$out,#4096+64*3] prfm pstl1strm,[$out,#4096+64*4] prfm pstl1strm,[$out,#4096+64*5] prfm pstl1strm,[$out,#4096+64*6] prfm pstl1strm,[$out,#4096+64*7] strb w3,[$out,#64*0] lsr x3,x3,#8 strb w3,[$out,#64*1] lsr x3,x3,#8 strb w3,[$out,#64*2] lsr x3,x3,#8 strb w3,[$out,#64*3] lsr x3,x3,#8 strb w3,[$out,#64*4] lsr x3,x3,#8 strb w3,[$out,#64*5] lsr x3,x3,#8 strb w3,[$out,#64*6] lsr x3,x3,#8 strb w3,[$out,#64*7] add $out,$out,#64*8 b.ne .Loop_scatter_w7 ldr x29,[sp],#16 ret .size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7 // void ecp_nistz256_gather_w7(P256_POINT_AFFINE *x0,const void *x1, // int x2); .globl ecp_nistz256_gather_w7 .type ecp_nistz256_gather_w7,%function .align 4 ecp_nistz256_gather_w7: stp x29,x30,[sp,#-16]! add x29,sp,#0 cmp $index,xzr csetm x3,ne add $index,$index,x3 add $inp,$inp,$index mov $index,#64/8 nop .Loop_gather_w7: ldrb w4,[$inp,#64*0] prfm pldl1strm,[$inp,#4096+64*0] subs $index,$index,#1 ldrb w5,[$inp,#64*1] prfm pldl1strm,[$inp,#4096+64*1] ldrb w6,[$inp,#64*2] prfm pldl1strm,[$inp,#4096+64*2] ldrb w7,[$inp,#64*3] prfm pldl1strm,[$inp,#4096+64*3] ldrb w8,[$inp,#64*4] prfm pldl1strm,[$inp,#4096+64*4] ldrb w9,[$inp,#64*5] prfm pldl1strm,[$inp,#4096+64*5] ldrb w10,[$inp,#64*6] prfm pldl1strm,[$inp,#4096+64*6] ldrb w11,[$inp,#64*7] prfm pldl1strm,[$inp,#4096+64*7] add $inp,$inp,#64*8 orr x4,x4,x5,lsl#8 orr x6,x6,x7,lsl#8 orr x8,x8,x9,lsl#8 orr x4,x4,x6,lsl#16 orr x10,x10,x11,lsl#8 orr x4,x4,x8,lsl#32 orr x4,x4,x10,lsl#48 and x4,x4,x3 str x4,[$out],#8 b.ne .Loop_gather_w7 ldr x29,[sp],#16 ret .size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7 ___ } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/ec/asm/ecp_nistz256-avx2.pl000077500000000000000000001555051364063235100215210ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # Copyright (c) 2014, Intel Corporation. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) # (1) Intel Corporation, Israel Development Center, Haifa, Israel # (2) University of Haifa, Israel # # Reference: # S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with # 256 Bit Primes" $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $avx = ($ver>=3.0) + ($ver>=3.01); $addx = ($ver>=3.03); } if ($avx>=2) {{ $digit_size = "\$29"; $n_digits = "\$9"; $code.=<<___; .text .align 64 .LAVX2_AND_MASK: .LAVX2_POLY: .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x000001ff, 0x000001ff, 0x000001ff, 0x000001ff .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x00040000, 0x00040000, 0x00040000, 0x00040000 .quad 0x1fe00000, 0x1fe00000, 0x1fe00000, 0x1fe00000 .quad 0x00ffffff, 0x00ffffff, 0x00ffffff, 0x00ffffff .LAVX2_POLY_x2: .quad 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC .quad 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC .quad 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC .quad 0x400007FC, 0x400007FC, 0x400007FC, 0x400007FC .quad 0x3FFFFFFE, 0x3FFFFFFE, 0x3FFFFFFE, 0x3FFFFFFE .quad 0x3FFFFFFE, 0x3FFFFFFE, 0x3FFFFFFE, 0x3FFFFFFE .quad 0x400FFFFE, 0x400FFFFE, 0x400FFFFE, 0x400FFFFE .quad 0x7F7FFFFE, 0x7F7FFFFE, 0x7F7FFFFE, 0x7F7FFFFE .quad 0x03FFFFFC, 0x03FFFFFC, 0x03FFFFFC, 0x03FFFFFC .LAVX2_POLY_x8: .quad 0xFFFFFFF8, 0xFFFFFFF8, 0xFFFFFFF8, 0xFFFFFFF8 .quad 0xFFFFFFF8, 0xFFFFFFF8, 0xFFFFFFF8, 0xFFFFFFF8 .quad 0xFFFFFFF8, 0xFFFFFFF8, 0xFFFFFFF8, 0xFFFFFFF8 .quad 0x80000FF8, 0x80000FF8, 0x80000FF8, 0x80000FF8 .quad 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC .quad 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC, 0x7FFFFFFC .quad 0x801FFFFC, 0x801FFFFC, 0x801FFFFC, 0x801FFFFC .quad 0xFEFFFFFC, 0xFEFFFFFC, 0xFEFFFFFC, 0xFEFFFFFC .quad 0x07FFFFF8, 0x07FFFFF8, 0x07FFFFF8, 0x07FFFFF8 .LONE: .quad 0x00000020, 0x00000020, 0x00000020, 0x00000020 .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x1fffc000, 0x1fffc000, 0x1fffc000, 0x1fffc000 .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x1f7fffff, 0x1f7fffff, 0x1f7fffff, 0x1f7fffff .quad 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 # RR = 2^266 mod p in AVX2 format, to transform from the native OpenSSL # Montgomery form (*2^256) to our format (*2^261) .LTO_MONT_AVX2: .quad 0x00000400, 0x00000400, 0x00000400, 0x00000400 .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x1ff80000, 0x1ff80000, 0x1ff80000, 0x1ff80000 .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x0fffffff, 0x0fffffff, 0x0fffffff, 0x0fffffff .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x00000003, 0x00000003, 0x00000003, 0x00000003 .LFROM_MONT_AVX2: .quad 0x00000001, 0x00000001, 0x00000001, 0x00000001 .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .quad 0x1ffffe00, 0x1ffffe00, 0x1ffffe00, 0x1ffffe00 .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x1fffffff, 0x1fffffff, 0x1fffffff, 0x1fffffff .quad 0x1ffbffff, 0x1ffbffff, 0x1ffbffff, 0x1ffbffff .quad 0x001fffff, 0x001fffff, 0x001fffff, 0x001fffff .quad 0x00000000, 0x00000000, 0x00000000, 0x00000000 .LIntOne: .long 1,1,1,1,1,1,1,1 ___ { # This function receives a pointer to an array of four affine points # (X, Y, <1>) and rearranges the data for AVX2 execution, while # converting it to 2^29 radix redundant form my ($X0,$X1,$X2,$X3, $Y0,$Y1,$Y2,$Y3, $T0,$T1,$T2,$T3, $T4,$T5,$T6,$T7)=map("%ymm$_",(0..15)); $code.=<<___; .globl ecp_nistz256_avx2_transpose_convert .type ecp_nistz256_avx2_transpose_convert,\@function,2 .align 64 ecp_nistz256_avx2_transpose_convert: vzeroupper ___ $code.=<<___ if ($win64); lea -8-16*10(%rsp), %rsp vmovaps %xmm6, -8-16*10(%rax) vmovaps %xmm7, -8-16*9(%rax) vmovaps %xmm8, -8-16*8(%rax) vmovaps %xmm9, -8-16*7(%rax) vmovaps %xmm10, -8-16*6(%rax) vmovaps %xmm11, -8-16*5(%rax) vmovaps %xmm12, -8-16*4(%rax) vmovaps %xmm13, -8-16*3(%rax) vmovaps %xmm14, -8-16*2(%rax) vmovaps %xmm15, -8-16*1(%rax) ___ $code.=<<___; # Load the data vmovdqa 32*0(%rsi), $X0 lea 112(%rsi), %rax # size optimization vmovdqa 32*1(%rsi), $Y0 lea .LAVX2_AND_MASK(%rip), %rdx vmovdqa 32*2(%rsi), $X1 vmovdqa 32*3(%rsi), $Y1 vmovdqa 32*4-112(%rax), $X2 vmovdqa 32*5-112(%rax), $Y2 vmovdqa 32*6-112(%rax), $X3 vmovdqa 32*7-112(%rax), $Y3 # Transpose X and Y independently vpunpcklqdq $X1, $X0, $T0 # T0 = [B2 A2 B0 A0] vpunpcklqdq $X3, $X2, $T1 # T1 = [D2 C2 D0 C0] vpunpckhqdq $X1, $X0, $T2 # T2 = [B3 A3 B1 A1] vpunpckhqdq $X3, $X2, $T3 # T3 = [D3 C3 D1 C1] vpunpcklqdq $Y1, $Y0, $T4 vpunpcklqdq $Y3, $Y2, $T5 vpunpckhqdq $Y1, $Y0, $T6 vpunpckhqdq $Y3, $Y2, $T7 vperm2i128 \$0x20, $T1, $T0, $X0 # X0 = [D0 C0 B0 A0] vperm2i128 \$0x20, $T3, $T2, $X1 # X1 = [D1 C1 B1 A1] vperm2i128 \$0x31, $T1, $T0, $X2 # X2 = [D2 C2 B2 A2] vperm2i128 \$0x31, $T3, $T2, $X3 # X3 = [D3 C3 B3 A3] vperm2i128 \$0x20, $T5, $T4, $Y0 vperm2i128 \$0x20, $T7, $T6, $Y1 vperm2i128 \$0x31, $T5, $T4, $Y2 vperm2i128 \$0x31, $T7, $T6, $Y3 vmovdqa (%rdx), $T7 vpand (%rdx), $X0, $T0 # out[0] = in[0] & mask; vpsrlq \$29, $X0, $X0 vpand $T7, $X0, $T1 # out[1] = (in[0] >> shift) & mask; vpsrlq \$29, $X0, $X0 vpsllq \$6, $X1, $T2 vpxor $X0, $T2, $T2 vpand $T7, $T2, $T2 # out[2] = ((in[0] >> (shift*2)) ^ (in[1] << (64-shift*2))) & mask; vpsrlq \$23, $X1, $X1 vpand $T7, $X1, $T3 # out[3] = (in[1] >> ((shift*3)%64)) & mask; vpsrlq \$29, $X1, $X1 vpsllq \$12, $X2, $T4 vpxor $X1, $T4, $T4 vpand $T7, $T4, $T4 # out[4] = ((in[1] >> ((shift*4)%64)) ^ (in[2] << (64*2-shift*4))) & mask; vpsrlq \$17, $X2, $X2 vpand $T7, $X2, $T5 # out[5] = (in[2] >> ((shift*5)%64)) & mask; vpsrlq \$29, $X2, $X2 vpsllq \$18, $X3, $T6 vpxor $X2, $T6, $T6 vpand $T7, $T6, $T6 # out[6] = ((in[2] >> ((shift*6)%64)) ^ (in[3] << (64*3-shift*6))) & mask; vpsrlq \$11, $X3, $X3 vmovdqa $T0, 32*0(%rdi) lea 112(%rdi), %rax # size optimization vpand $T7, $X3, $T0 # out[7] = (in[3] >> ((shift*7)%64)) & mask; vpsrlq \$29, $X3, $X3 # out[8] = (in[3] >> ((shift*8)%64)) & mask; vmovdqa $T1, 32*1(%rdi) vmovdqa $T2, 32*2(%rdi) vmovdqa $T3, 32*3(%rdi) vmovdqa $T4, 32*4-112(%rax) vmovdqa $T5, 32*5-112(%rax) vmovdqa $T6, 32*6-112(%rax) vmovdqa $T0, 32*7-112(%rax) vmovdqa $X3, 32*8-112(%rax) lea 448(%rdi), %rax # size optimization vpand $T7, $Y0, $T0 # out[0] = in[0] & mask; vpsrlq \$29, $Y0, $Y0 vpand $T7, $Y0, $T1 # out[1] = (in[0] >> shift) & mask; vpsrlq \$29, $Y0, $Y0 vpsllq \$6, $Y1, $T2 vpxor $Y0, $T2, $T2 vpand $T7, $T2, $T2 # out[2] = ((in[0] >> (shift*2)) ^ (in[1] << (64-shift*2))) & mask; vpsrlq \$23, $Y1, $Y1 vpand $T7, $Y1, $T3 # out[3] = (in[1] >> ((shift*3)%64)) & mask; vpsrlq \$29, $Y1, $Y1 vpsllq \$12, $Y2, $T4 vpxor $Y1, $T4, $T4 vpand $T7, $T4, $T4 # out[4] = ((in[1] >> ((shift*4)%64)) ^ (in[2] << (64*2-shift*4))) & mask; vpsrlq \$17, $Y2, $Y2 vpand $T7, $Y2, $T5 # out[5] = (in[2] >> ((shift*5)%64)) & mask; vpsrlq \$29, $Y2, $Y2 vpsllq \$18, $Y3, $T6 vpxor $Y2, $T6, $T6 vpand $T7, $T6, $T6 # out[6] = ((in[2] >> ((shift*6)%64)) ^ (in[3] << (64*3-shift*6))) & mask; vpsrlq \$11, $Y3, $Y3 vmovdqa $T0, 32*9-448(%rax) vpand $T7, $Y3, $T0 # out[7] = (in[3] >> ((shift*7)%64)) & mask; vpsrlq \$29, $Y3, $Y3 # out[8] = (in[3] >> ((shift*8)%64)) & mask; vmovdqa $T1, 32*10-448(%rax) vmovdqa $T2, 32*11-448(%rax) vmovdqa $T3, 32*12-448(%rax) vmovdqa $T4, 32*13-448(%rax) vmovdqa $T5, 32*14-448(%rax) vmovdqa $T6, 32*15-448(%rax) vmovdqa $T0, 32*16-448(%rax) vmovdqa $Y3, 32*17-448(%rax) vzeroupper ___ $code.=<<___ if ($win64); movaps 16*0(%rsp), %xmm6 movaps 16*1(%rsp), %xmm7 movaps 16*2(%rsp), %xmm8 movaps 16*3(%rsp), %xmm9 movaps 16*4(%rsp), %xmm10 movaps 16*5(%rsp), %xmm11 movaps 16*6(%rsp), %xmm12 movaps 16*7(%rsp), %xmm13 movaps 16*8(%rsp), %xmm14 movaps 16*9(%rsp), %xmm15 lea 8+16*10(%rsp), %rsp ___ $code.=<<___; ret .size ecp_nistz256_avx2_transpose_convert,.-ecp_nistz256_avx2_transpose_convert ___ } { ################################################################################ # This function receives a pointer to an array of four AVX2 formatted points # (X, Y, Z) convert the data to normal representation, and rearranges the data my ($D0,$D1,$D2,$D3, $D4,$D5,$D6,$D7, $D8)=map("%ymm$_",(0..8)); my ($T0,$T1,$T2,$T3, $T4,$T5,$T6)=map("%ymm$_",(9..15)); $code.=<<___; .globl ecp_nistz256_avx2_convert_transpose_back .type ecp_nistz256_avx2_convert_transpose_back,\@function,2 .align 32 ecp_nistz256_avx2_convert_transpose_back: vzeroupper ___ $code.=<<___ if ($win64); lea -8-16*10(%rsp), %rsp vmovaps %xmm6, -8-16*10(%rax) vmovaps %xmm7, -8-16*9(%rax) vmovaps %xmm8, -8-16*8(%rax) vmovaps %xmm9, -8-16*7(%rax) vmovaps %xmm10, -8-16*6(%rax) vmovaps %xmm11, -8-16*5(%rax) vmovaps %xmm12, -8-16*4(%rax) vmovaps %xmm13, -8-16*3(%rax) vmovaps %xmm14, -8-16*2(%rax) vmovaps %xmm15, -8-16*1(%rax) ___ $code.=<<___; mov \$3, %ecx .Lconv_loop: vmovdqa 32*0(%rsi), $D0 lea 160(%rsi), %rax # size optimization vmovdqa 32*1(%rsi), $D1 vmovdqa 32*2(%rsi), $D2 vmovdqa 32*3(%rsi), $D3 vmovdqa 32*4-160(%rax), $D4 vmovdqa 32*5-160(%rax), $D5 vmovdqa 32*6-160(%rax), $D6 vmovdqa 32*7-160(%rax), $D7 vmovdqa 32*8-160(%rax), $D8 vpsllq \$29, $D1, $D1 vpsllq \$58, $D2, $T0 vpaddq $D1, $D0, $D0 vpaddq $T0, $D0, $D0 # out[0] = (in[0]) ^ (in[1] << shift*1) ^ (in[2] << shift*2); vpsrlq \$6, $D2, $D2 vpsllq \$23, $D3, $D3 vpsllq \$52, $D4, $T1 vpaddq $D2, $D3, $D3 vpaddq $D3, $T1, $D1 # out[1] = (in[2] >> (64*1-shift*2)) ^ (in[3] << shift*3%64) ^ (in[4] << shift*4%64); vpsrlq \$12, $D4, $D4 vpsllq \$17, $D5, $D5 vpsllq \$46, $D6, $T2 vpaddq $D4, $D5, $D5 vpaddq $D5, $T2, $D2 # out[2] = (in[4] >> (64*2-shift*4)) ^ (in[5] << shift*5%64) ^ (in[6] << shift*6%64); vpsrlq \$18, $D6, $D6 vpsllq \$11, $D7, $D7 vpsllq \$40, $D8, $T3 vpaddq $D6, $D7, $D7 vpaddq $D7, $T3, $D3 # out[3] = (in[6] >> (64*3-shift*6)) ^ (in[7] << shift*7%64) ^ (in[8] << shift*8%64); vpunpcklqdq $D1, $D0, $T0 # T0 = [B2 A2 B0 A0] vpunpcklqdq $D3, $D2, $T1 # T1 = [D2 C2 D0 C0] vpunpckhqdq $D1, $D0, $T2 # T2 = [B3 A3 B1 A1] vpunpckhqdq $D3, $D2, $T3 # T3 = [D3 C3 D1 C1] vperm2i128 \$0x20, $T1, $T0, $D0 # X0 = [D0 C0 B0 A0] vperm2i128 \$0x20, $T3, $T2, $D1 # X1 = [D1 C1 B1 A1] vperm2i128 \$0x31, $T1, $T0, $D2 # X2 = [D2 C2 B2 A2] vperm2i128 \$0x31, $T3, $T2, $D3 # X3 = [D3 C3 B3 A3] vmovdqa $D0, 32*0(%rdi) vmovdqa $D1, 32*3(%rdi) vmovdqa $D2, 32*6(%rdi) vmovdqa $D3, 32*9(%rdi) lea 32*9(%rsi), %rsi lea 32*1(%rdi), %rdi dec %ecx jnz .Lconv_loop vzeroupper ___ $code.=<<___ if ($win64); movaps 16*0(%rsp), %xmm6 movaps 16*1(%rsp), %xmm7 movaps 16*2(%rsp), %xmm8 movaps 16*3(%rsp), %xmm9 movaps 16*4(%rsp), %xmm10 movaps 16*5(%rsp), %xmm11 movaps 16*6(%rsp), %xmm12 movaps 16*7(%rsp), %xmm13 movaps 16*8(%rsp), %xmm14 movaps 16*9(%rsp), %xmm15 lea 8+16*10(%rsp), %rsp ___ $code.=<<___; ret .size ecp_nistz256_avx2_convert_transpose_back,.-ecp_nistz256_avx2_convert_transpose_back ___ } { my ($r_ptr,$a_ptr,$b_ptr,$itr)=("%rdi","%rsi","%rdx","%ecx"); my ($ACC0,$ACC1,$ACC2,$ACC3,$ACC4,$ACC5,$ACC6,$ACC7,$ACC8)=map("%ymm$_",(0..8)); my ($B,$Y,$T0,$AND_MASK,$OVERFLOW)=map("%ymm$_",(9..13)); sub NORMALIZE { my $ret=<<___; vpsrlq $digit_size, $ACC0, $T0 vpand $AND_MASK, $ACC0, $ACC0 vpaddq $T0, $ACC1, $ACC1 vpsrlq $digit_size, $ACC1, $T0 vpand $AND_MASK, $ACC1, $ACC1 vpaddq $T0, $ACC2, $ACC2 vpsrlq $digit_size, $ACC2, $T0 vpand $AND_MASK, $ACC2, $ACC2 vpaddq $T0, $ACC3, $ACC3 vpsrlq $digit_size, $ACC3, $T0 vpand $AND_MASK, $ACC3, $ACC3 vpaddq $T0, $ACC4, $ACC4 vpsrlq $digit_size, $ACC4, $T0 vpand $AND_MASK, $ACC4, $ACC4 vpaddq $T0, $ACC5, $ACC5 vpsrlq $digit_size, $ACC5, $T0 vpand $AND_MASK, $ACC5, $ACC5 vpaddq $T0, $ACC6, $ACC6 vpsrlq $digit_size, $ACC6, $T0 vpand $AND_MASK, $ACC6, $ACC6 vpaddq $T0, $ACC7, $ACC7 vpsrlq $digit_size, $ACC7, $T0 vpand $AND_MASK, $ACC7, $ACC7 vpaddq $T0, $ACC8, $ACC8 #vpand $AND_MASK, $ACC8, $ACC8 ___ $ret; } sub STORE { my $ret=<<___; vmovdqa $ACC0, 32*0(%rdi) lea 160(%rdi), %rax # size optimization vmovdqa $ACC1, 32*1(%rdi) vmovdqa $ACC2, 32*2(%rdi) vmovdqa $ACC3, 32*3(%rdi) vmovdqa $ACC4, 32*4-160(%rax) vmovdqa $ACC5, 32*5-160(%rax) vmovdqa $ACC6, 32*6-160(%rax) vmovdqa $ACC7, 32*7-160(%rax) vmovdqa $ACC8, 32*8-160(%rax) ___ $ret; } $code.=<<___; .type avx2_normalize,\@abi-omnipotent .align 32 avx2_normalize: vpsrlq $digit_size, $ACC0, $T0 vpand $AND_MASK, $ACC0, $ACC0 vpaddq $T0, $ACC1, $ACC1 vpsrlq $digit_size, $ACC1, $T0 vpand $AND_MASK, $ACC1, $ACC1 vpaddq $T0, $ACC2, $ACC2 vpsrlq $digit_size, $ACC2, $T0 vpand $AND_MASK, $ACC2, $ACC2 vpaddq $T0, $ACC3, $ACC3 vpsrlq $digit_size, $ACC3, $T0 vpand $AND_MASK, $ACC3, $ACC3 vpaddq $T0, $ACC4, $ACC4 vpsrlq $digit_size, $ACC4, $T0 vpand $AND_MASK, $ACC4, $ACC4 vpaddq $T0, $ACC5, $ACC5 vpsrlq $digit_size, $ACC5, $T0 vpand $AND_MASK, $ACC5, $ACC5 vpaddq $T0, $ACC6, $ACC6 vpsrlq $digit_size, $ACC6, $T0 vpand $AND_MASK, $ACC6, $ACC6 vpaddq $T0, $ACC7, $ACC7 vpsrlq $digit_size, $ACC7, $T0 vpand $AND_MASK, $ACC7, $ACC7 vpaddq $T0, $ACC8, $ACC8 #vpand $AND_MASK, $ACC8, $ACC8 ret .size avx2_normalize,.-avx2_normalize .type avx2_normalize_n_store,\@abi-omnipotent .align 32 avx2_normalize_n_store: vpsrlq $digit_size, $ACC0, $T0 vpand $AND_MASK, $ACC0, $ACC0 vpaddq $T0, $ACC1, $ACC1 vpsrlq $digit_size, $ACC1, $T0 vpand $AND_MASK, $ACC1, $ACC1 vmovdqa $ACC0, 32*0(%rdi) lea 160(%rdi), %rax # size optimization vpaddq $T0, $ACC2, $ACC2 vpsrlq $digit_size, $ACC2, $T0 vpand $AND_MASK, $ACC2, $ACC2 vmovdqa $ACC1, 32*1(%rdi) vpaddq $T0, $ACC3, $ACC3 vpsrlq $digit_size, $ACC3, $T0 vpand $AND_MASK, $ACC3, $ACC3 vmovdqa $ACC2, 32*2(%rdi) vpaddq $T0, $ACC4, $ACC4 vpsrlq $digit_size, $ACC4, $T0 vpand $AND_MASK, $ACC4, $ACC4 vmovdqa $ACC3, 32*3(%rdi) vpaddq $T0, $ACC5, $ACC5 vpsrlq $digit_size, $ACC5, $T0 vpand $AND_MASK, $ACC5, $ACC5 vmovdqa $ACC4, 32*4-160(%rax) vpaddq $T0, $ACC6, $ACC6 vpsrlq $digit_size, $ACC6, $T0 vpand $AND_MASK, $ACC6, $ACC6 vmovdqa $ACC5, 32*5-160(%rax) vpaddq $T0, $ACC7, $ACC7 vpsrlq $digit_size, $ACC7, $T0 vpand $AND_MASK, $ACC7, $ACC7 vmovdqa $ACC6, 32*6-160(%rax) vpaddq $T0, $ACC8, $ACC8 #vpand $AND_MASK, $ACC8, $ACC8 vmovdqa $ACC7, 32*7-160(%rax) vmovdqa $ACC8, 32*8-160(%rax) ret .size avx2_normalize_n_store,.-avx2_normalize_n_store ################################################################################ # void avx2_mul_x4(void* RESULTx4, void *Ax4, void *Bx4); .type avx2_mul_x4,\@abi-omnipotent .align 32 avx2_mul_x4: lea .LAVX2_POLY(%rip), %rax vpxor $ACC0, $ACC0, $ACC0 vpxor $ACC1, $ACC1, $ACC1 vpxor $ACC2, $ACC2, $ACC2 vpxor $ACC3, $ACC3, $ACC3 vpxor $ACC4, $ACC4, $ACC4 vpxor $ACC5, $ACC5, $ACC5 vpxor $ACC6, $ACC6, $ACC6 vpxor $ACC7, $ACC7, $ACC7 vmovdqa 32*7(%rax), %ymm14 vmovdqa 32*8(%rax), %ymm15 mov $n_digits, $itr lea -512($a_ptr), $a_ptr # strategic bias to control u-op density jmp .Lavx2_mul_x4_loop .align 32 .Lavx2_mul_x4_loop: vmovdqa 32*0($b_ptr), $B lea 32*1($b_ptr), $b_ptr vpmuludq 32*0+512($a_ptr), $B, $T0 vpmuludq 32*1+512($a_ptr), $B, $OVERFLOW # borrow $OVERFLOW vpaddq $T0, $ACC0, $ACC0 vpmuludq 32*2+512($a_ptr), $B, $T0 vpaddq $OVERFLOW, $ACC1, $ACC1 vpand $AND_MASK, $ACC0, $Y vpmuludq 32*3+512($a_ptr), $B, $OVERFLOW vpaddq $T0, $ACC2, $ACC2 vpmuludq 32*4+512($a_ptr), $B, $T0 vpaddq $OVERFLOW, $ACC3, $ACC3 vpmuludq 32*5+512($a_ptr), $B, $OVERFLOW vpaddq $T0, $ACC4, $ACC4 vpmuludq 32*6+512($a_ptr), $B, $T0 vpaddq $OVERFLOW, $ACC5, $ACC5 vpmuludq 32*7+512($a_ptr), $B, $OVERFLOW vpaddq $T0, $ACC6, $ACC6 # Skip some multiplications, optimizing for the constant poly vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*8+512($a_ptr), $B, $ACC8 vpaddq $T0, $ACC0, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 .byte 0x67 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $OVERFLOW .byte 0x67 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $T0 vpaddq $OVERFLOW, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $OVERFLOW vpaddq $T0, $ACC7, $ACC6 vpaddq $OVERFLOW, $ACC8, $ACC7 dec $itr jnz .Lavx2_mul_x4_loop vpxor $ACC8, $ACC8, $ACC8 ret .size avx2_mul_x4,.-avx2_mul_x4 # Function optimized for the constant 1 ################################################################################ # void avx2_mul_by1_x4(void* RESULTx4, void *Ax4); .type avx2_mul_by1_x4,\@abi-omnipotent .align 32 avx2_mul_by1_x4: lea .LAVX2_POLY(%rip), %rax vpxor $ACC0, $ACC0, $ACC0 vpxor $ACC1, $ACC1, $ACC1 vpxor $ACC2, $ACC2, $ACC2 vpxor $ACC3, $ACC3, $ACC3 vpxor $ACC4, $ACC4, $ACC4 vpxor $ACC5, $ACC5, $ACC5 vpxor $ACC6, $ACC6, $ACC6 vpxor $ACC7, $ACC7, $ACC7 vpxor $ACC8, $ACC8, $ACC8 vmovdqa 32*3+.LONE(%rip), %ymm14 vmovdqa 32*7+.LONE(%rip), %ymm15 mov $n_digits, $itr jmp .Lavx2_mul_by1_x4_loop .align 32 .Lavx2_mul_by1_x4_loop: vmovdqa 32*0($a_ptr), $B .byte 0x48,0x8d,0xb6,0x20,0,0,0 # lea 32*1($a_ptr), $a_ptr vpsllq \$5, $B, $OVERFLOW vpmuludq %ymm14, $B, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC3 .byte 0x67 vpmuludq $AND_MASK, $B, $T0 vpand $AND_MASK, $ACC0, $Y vpaddq $T0, $ACC4, $ACC4 vpaddq $T0, $ACC5, $ACC5 vpaddq $T0, $ACC6, $ACC6 vpsllq \$23, $B, $T0 .byte 0x67,0x67 vpmuludq %ymm15, $B, $OVERFLOW vpsubq $T0, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpaddq $T0, $ACC0, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 .byte 0x67,0x67 vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $OVERFLOW vmovdqa $ACC5, $ACC4 vpmuludq 32*7(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC6, $ACC5 vpaddq $T0, $ACC7, $ACC6 vpmuludq 32*8(%rax), $Y, $ACC7 dec $itr jnz .Lavx2_mul_by1_x4_loop ret .size avx2_mul_by1_x4,.-avx2_mul_by1_x4 ################################################################################ # void avx2_sqr_x4(void* RESULTx4, void *Ax4, void *Bx4); .type avx2_sqr_x4,\@abi-omnipotent .align 32 avx2_sqr_x4: lea .LAVX2_POLY(%rip), %rax vmovdqa 32*7(%rax), %ymm14 vmovdqa 32*8(%rax), %ymm15 vmovdqa 32*0($a_ptr), $B vmovdqa 32*1($a_ptr), $ACC1 vmovdqa 32*2($a_ptr), $ACC2 vmovdqa 32*3($a_ptr), $ACC3 vmovdqa 32*4($a_ptr), $ACC4 vmovdqa 32*5($a_ptr), $ACC5 vmovdqa 32*6($a_ptr), $ACC6 vmovdqa 32*7($a_ptr), $ACC7 vpaddq $ACC1, $ACC1, $ACC1 # 2*$ACC0..7 vmovdqa 32*8($a_ptr), $ACC8 vpaddq $ACC2, $ACC2, $ACC2 vmovdqa $ACC1, 32*0(%rcx) vpaddq $ACC3, $ACC3, $ACC3 vmovdqa $ACC2, 32*1(%rcx) vpaddq $ACC4, $ACC4, $ACC4 vmovdqa $ACC3, 32*2(%rcx) vpaddq $ACC5, $ACC5, $ACC5 vmovdqa $ACC4, 32*3(%rcx) vpaddq $ACC6, $ACC6, $ACC6 vmovdqa $ACC5, 32*4(%rcx) vpaddq $ACC7, $ACC7, $ACC7 vmovdqa $ACC6, 32*5(%rcx) vpaddq $ACC8, $ACC8, $ACC8 vmovdqa $ACC7, 32*6(%rcx) vmovdqa $ACC8, 32*7(%rcx) #itr 1 vpmuludq $B, $B, $ACC0 vpmuludq $B, $ACC1, $ACC1 vpand $AND_MASK, $ACC0, $Y vpmuludq $B, $ACC2, $ACC2 vpmuludq $B, $ACC3, $ACC3 vpmuludq $B, $ACC4, $ACC4 vpmuludq $B, $ACC5, $ACC5 vpmuludq $B, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpmuludq $B, $ACC7, $ACC7 vpmuludq $B, $ACC8, $ACC8 vmovdqa 32*1($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 2 vpmuludq $B, $B, $OVERFLOW vpand $AND_MASK, $ACC0, $Y vpmuludq 32*1(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC1, $ACC1 vpmuludq 32*2(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC2, $ACC2 vpmuludq 32*3(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC3, $ACC3 vpmuludq 32*4(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC4, $ACC4 vpmuludq 32*5(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC5, $ACC5 vpmuludq 32*6(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*7(%rcx), $B, $ACC8 vmovdqa 32*2($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 3 vpmuludq $B, $B, $T0 vpand $AND_MASK, $ACC0, $Y vpmuludq 32*2(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC2, $ACC2 vpmuludq 32*3(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC3, $ACC3 vpmuludq 32*4(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC4, $ACC4 vpmuludq 32*5(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC5, $ACC5 vpmuludq 32*6(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*7(%rcx), $B, $ACC8 vmovdqa 32*3($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpand $AND_MASK, $ACC0, $Y vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 4 vpmuludq $B, $B, $OVERFLOW vpmuludq 32*3(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC3, $ACC3 vpmuludq 32*4(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC4, $ACC4 vpmuludq 32*5(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC5, $ACC5 vpmuludq 32*6(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*7(%rcx), $B, $ACC8 vmovdqa 32*4($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpand $AND_MASK, $ACC0, $Y vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 5 vpmuludq $B, $B, $T0 vpmuludq 32*4(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC4, $ACC4 vpmuludq 32*5(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC5, $ACC5 vpmuludq 32*6(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*7(%rcx), $B, $ACC8 vmovdqa 32*5($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3+.LAVX2_POLY(%rip), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpand $AND_MASK, $ACC0, $Y vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 6 vpmuludq $B, $B, $OVERFLOW vpmuludq 32*5(%rcx), $B, $T0 vpaddq $OVERFLOW, $ACC5, $ACC5 vpmuludq 32*6(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*7(%rcx), $B, $ACC8 vmovdqa 32*6($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpand $AND_MASK, $ACC0, $Y vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 7 vpmuludq $B, $B, $T0 vpmuludq 32*6(%rcx), $B, $OVERFLOW vpaddq $T0, $ACC6, $ACC6 vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*7(%rcx), $B, $ACC8 vmovdqa 32*7($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpand $AND_MASK, $ACC0, $Y vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 8 vpmuludq $B, $B, $OVERFLOW vpmuludq $AND_MASK, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC7 vpmuludq 32*7(%rcx), $B, $ACC8 vmovdqa 32*8($a_ptr), $B vpaddq $T0, $ACC0, $OVERFLOW vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpand $AND_MASK, $ACC0, $Y vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 #itr 9 vpmuludq $B, $B, $ACC8 vpmuludq $AND_MASK, $Y, $T0 vpaddq $T0, $ACC0, $OVERFLOW vpsrlq $digit_size, $OVERFLOW, $OVERFLOW vpaddq $T0, $ACC1, $ACC0 vpaddq $T0, $ACC2, $ACC1 vpmuludq 32*3(%rax), $Y, $T0 vpaddq $OVERFLOW, $ACC0, $ACC0 vpaddq $T0, $ACC3, $ACC2 vmovdqa $ACC4, $ACC3 vpsllq \$18, $Y, $T0 vmovdqa $ACC5, $ACC4 vpmuludq %ymm14, $Y, $OVERFLOW vpaddq $T0, $ACC6, $ACC5 vpmuludq %ymm15, $Y, $T0 vpaddq $OVERFLOW, $ACC7, $ACC6 vpaddq $T0, $ACC8, $ACC7 vpxor $ACC8, $ACC8, $ACC8 ret .size avx2_sqr_x4,.-avx2_sqr_x4 ################################################################################ # void avx2_sub_x4(void* RESULTx4, void *Ax4, void *Bx4); .type avx2_sub_x4,\@abi-omnipotent .align 32 avx2_sub_x4: vmovdqa 32*0($a_ptr), $ACC0 lea 160($a_ptr), $a_ptr lea .LAVX2_POLY_x8+128(%rip), %rax lea 128($b_ptr), $b_ptr vmovdqa 32*1-160($a_ptr), $ACC1 vmovdqa 32*2-160($a_ptr), $ACC2 vmovdqa 32*3-160($a_ptr), $ACC3 vmovdqa 32*4-160($a_ptr), $ACC4 vmovdqa 32*5-160($a_ptr), $ACC5 vmovdqa 32*6-160($a_ptr), $ACC6 vmovdqa 32*7-160($a_ptr), $ACC7 vmovdqa 32*8-160($a_ptr), $ACC8 vpaddq 32*0-128(%rax), $ACC0, $ACC0 vpaddq 32*1-128(%rax), $ACC1, $ACC1 vpaddq 32*2-128(%rax), $ACC2, $ACC2 vpaddq 32*3-128(%rax), $ACC3, $ACC3 vpaddq 32*4-128(%rax), $ACC4, $ACC4 vpaddq 32*5-128(%rax), $ACC5, $ACC5 vpaddq 32*6-128(%rax), $ACC6, $ACC6 vpaddq 32*7-128(%rax), $ACC7, $ACC7 vpaddq 32*8-128(%rax), $ACC8, $ACC8 vpsubq 32*0-128($b_ptr), $ACC0, $ACC0 vpsubq 32*1-128($b_ptr), $ACC1, $ACC1 vpsubq 32*2-128($b_ptr), $ACC2, $ACC2 vpsubq 32*3-128($b_ptr), $ACC3, $ACC3 vpsubq 32*4-128($b_ptr), $ACC4, $ACC4 vpsubq 32*5-128($b_ptr), $ACC5, $ACC5 vpsubq 32*6-128($b_ptr), $ACC6, $ACC6 vpsubq 32*7-128($b_ptr), $ACC7, $ACC7 vpsubq 32*8-128($b_ptr), $ACC8, $ACC8 ret .size avx2_sub_x4,.-avx2_sub_x4 .type avx2_select_n_store,\@abi-omnipotent .align 32 avx2_select_n_store: vmovdqa `8+32*9*8`(%rsp), $Y vpor `8+32*9*8+32`(%rsp), $Y, $Y vpandn $ACC0, $Y, $ACC0 vpandn $ACC1, $Y, $ACC1 vpandn $ACC2, $Y, $ACC2 vpandn $ACC3, $Y, $ACC3 vpandn $ACC4, $Y, $ACC4 vpandn $ACC5, $Y, $ACC5 vpandn $ACC6, $Y, $ACC6 vmovdqa `8+32*9*8+32`(%rsp), $B vpandn $ACC7, $Y, $ACC7 vpandn `8+32*9*8`(%rsp), $B, $B vpandn $ACC8, $Y, $ACC8 vpand 32*0(%rsi), $B, $T0 lea 160(%rsi), %rax vpand 32*1(%rsi), $B, $Y vpxor $T0, $ACC0, $ACC0 vpand 32*2(%rsi), $B, $T0 vpxor $Y, $ACC1, $ACC1 vpand 32*3(%rsi), $B, $Y vpxor $T0, $ACC2, $ACC2 vpand 32*4-160(%rax), $B, $T0 vpxor $Y, $ACC3, $ACC3 vpand 32*5-160(%rax), $B, $Y vpxor $T0, $ACC4, $ACC4 vpand 32*6-160(%rax), $B, $T0 vpxor $Y, $ACC5, $ACC5 vpand 32*7-160(%rax), $B, $Y vpxor $T0, $ACC6, $ACC6 vpand 32*8-160(%rax), $B, $T0 vmovdqa `8+32*9*8+32`(%rsp), $B vpxor $Y, $ACC7, $ACC7 vpand 32*0(%rdx), $B, $Y lea 160(%rdx), %rax vpxor $T0, $ACC8, $ACC8 vpand 32*1(%rdx), $B, $T0 vpxor $Y, $ACC0, $ACC0 vpand 32*2(%rdx), $B, $Y vpxor $T0, $ACC1, $ACC1 vpand 32*3(%rdx), $B, $T0 vpxor $Y, $ACC2, $ACC2 vpand 32*4-160(%rax), $B, $Y vpxor $T0, $ACC3, $ACC3 vpand 32*5-160(%rax), $B, $T0 vpxor $Y, $ACC4, $ACC4 vpand 32*6-160(%rax), $B, $Y vpxor $T0, $ACC5, $ACC5 vpand 32*7-160(%rax), $B, $T0 vpxor $Y, $ACC6, $ACC6 vpand 32*8-160(%rax), $B, $Y vpxor $T0, $ACC7, $ACC7 vpxor $Y, $ACC8, $ACC8 `&STORE` ret .size avx2_select_n_store,.-avx2_select_n_store ___ $code.=<<___ if (0); # inlined ################################################################################ # void avx2_mul_by2_x4(void* RESULTx4, void *Ax4); .type avx2_mul_by2_x4,\@abi-omnipotent .align 32 avx2_mul_by2_x4: vmovdqa 32*0($a_ptr), $ACC0 lea 160($a_ptr), %rax vmovdqa 32*1($a_ptr), $ACC1 vmovdqa 32*2($a_ptr), $ACC2 vmovdqa 32*3($a_ptr), $ACC3 vmovdqa 32*4-160(%rax), $ACC4 vmovdqa 32*5-160(%rax), $ACC5 vmovdqa 32*6-160(%rax), $ACC6 vmovdqa 32*7-160(%rax), $ACC7 vmovdqa 32*8-160(%rax), $ACC8 vpaddq $ACC0, $ACC0, $ACC0 vpaddq $ACC1, $ACC1, $ACC1 vpaddq $ACC2, $ACC2, $ACC2 vpaddq $ACC3, $ACC3, $ACC3 vpaddq $ACC4, $ACC4, $ACC4 vpaddq $ACC5, $ACC5, $ACC5 vpaddq $ACC6, $ACC6, $ACC6 vpaddq $ACC7, $ACC7, $ACC7 vpaddq $ACC8, $ACC8, $ACC8 ret .size avx2_mul_by2_x4,.-avx2_mul_by2_x4 ___ my ($r_ptr_in,$a_ptr_in,$b_ptr_in)=("%rdi","%rsi","%rdx"); my ($r_ptr,$a_ptr,$b_ptr)=("%r8","%r9","%r10"); $code.=<<___; ################################################################################ # void ecp_nistz256_avx2_point_add_affine_x4(void* RESULTx4, void *Ax4, void *Bx4); .globl ecp_nistz256_avx2_point_add_affine_x4 .type ecp_nistz256_avx2_point_add_affine_x4,\@function,3 .align 32 ecp_nistz256_avx2_point_add_affine_x4: mov %rsp, %rax push %rbp vzeroupper ___ $code.=<<___ if ($win64); lea -16*10(%rsp), %rsp vmovaps %xmm6, -8-16*10(%rax) vmovaps %xmm7, -8-16*9(%rax) vmovaps %xmm8, -8-16*8(%rax) vmovaps %xmm9, -8-16*7(%rax) vmovaps %xmm10, -8-16*6(%rax) vmovaps %xmm11, -8-16*5(%rax) vmovaps %xmm12, -8-16*4(%rax) vmovaps %xmm13, -8-16*3(%rax) vmovaps %xmm14, -8-16*2(%rax) vmovaps %xmm15, -8-16*1(%rax) ___ $code.=<<___; lea -8(%rax), %rbp # Result + 32*0 = Result.X # Result + 32*9 = Result.Y # Result + 32*18 = Result.Z # A + 32*0 = A.X # A + 32*9 = A.Y # A + 32*18 = A.Z # B + 32*0 = B.X # B + 32*9 = B.Y sub \$`32*9*8+32*2+32*8`, %rsp and \$-64, %rsp mov $r_ptr_in, $r_ptr mov $a_ptr_in, $a_ptr mov $b_ptr_in, $b_ptr vmovdqa 32*0($a_ptr_in), %ymm0 vmovdqa .LAVX2_AND_MASK(%rip), $AND_MASK vpxor %ymm1, %ymm1, %ymm1 lea 256($a_ptr_in), %rax # size optimization vpor 32*1($a_ptr_in), %ymm0, %ymm0 vpor 32*2($a_ptr_in), %ymm0, %ymm0 vpor 32*3($a_ptr_in), %ymm0, %ymm0 vpor 32*4-256(%rax), %ymm0, %ymm0 lea 256(%rax), %rcx # size optimization vpor 32*5-256(%rax), %ymm0, %ymm0 vpor 32*6-256(%rax), %ymm0, %ymm0 vpor 32*7-256(%rax), %ymm0, %ymm0 vpor 32*8-256(%rax), %ymm0, %ymm0 vpor 32*9-256(%rax), %ymm0, %ymm0 vpor 32*10-256(%rax), %ymm0, %ymm0 vpor 32*11-256(%rax), %ymm0, %ymm0 vpor 32*12-512(%rcx), %ymm0, %ymm0 vpor 32*13-512(%rcx), %ymm0, %ymm0 vpor 32*14-512(%rcx), %ymm0, %ymm0 vpor 32*15-512(%rcx), %ymm0, %ymm0 vpor 32*16-512(%rcx), %ymm0, %ymm0 vpor 32*17-512(%rcx), %ymm0, %ymm0 vpcmpeqq %ymm1, %ymm0, %ymm0 vmovdqa %ymm0, `32*9*8`(%rsp) vpxor %ymm1, %ymm1, %ymm1 vmovdqa 32*0($b_ptr), %ymm0 lea 256($b_ptr), %rax # size optimization vpor 32*1($b_ptr), %ymm0, %ymm0 vpor 32*2($b_ptr), %ymm0, %ymm0 vpor 32*3($b_ptr), %ymm0, %ymm0 vpor 32*4-256(%rax), %ymm0, %ymm0 lea 256(%rax), %rcx # size optimization vpor 32*5-256(%rax), %ymm0, %ymm0 vpor 32*6-256(%rax), %ymm0, %ymm0 vpor 32*7-256(%rax), %ymm0, %ymm0 vpor 32*8-256(%rax), %ymm0, %ymm0 vpor 32*9-256(%rax), %ymm0, %ymm0 vpor 32*10-256(%rax), %ymm0, %ymm0 vpor 32*11-256(%rax), %ymm0, %ymm0 vpor 32*12-512(%rcx), %ymm0, %ymm0 vpor 32*13-512(%rcx), %ymm0, %ymm0 vpor 32*14-512(%rcx), %ymm0, %ymm0 vpor 32*15-512(%rcx), %ymm0, %ymm0 vpor 32*16-512(%rcx), %ymm0, %ymm0 vpor 32*17-512(%rcx), %ymm0, %ymm0 vpcmpeqq %ymm1, %ymm0, %ymm0 vmovdqa %ymm0, `32*9*8+32`(%rsp) # Z1^2 = Z1*Z1 lea `32*9*2`($a_ptr), %rsi lea `32*9*2`(%rsp), %rdi lea `32*9*8+32*2`(%rsp), %rcx # temporary vector call avx2_sqr_x4 call avx2_normalize_n_store # U2 = X2*Z1^2 lea `32*9*0`($b_ptr), %rsi lea `32*9*2`(%rsp), %rdx lea `32*9*0`(%rsp), %rdi call avx2_mul_x4 #call avx2_normalize `&STORE` # S2 = Z1*Z1^2 = Z1^3 lea `32*9*2`($a_ptr), %rsi lea `32*9*2`(%rsp), %rdx lea `32*9*1`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # S2 = S2*Y2 = Y2*Z1^3 lea `32*9*1`($b_ptr), %rsi lea `32*9*1`(%rsp), %rdx lea `32*9*1`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # H = U2 - U1 = U2 - X1 lea `32*9*0`(%rsp), %rsi lea `32*9*0`($a_ptr), %rdx lea `32*9*3`(%rsp), %rdi call avx2_sub_x4 call avx2_normalize_n_store # R = S2 - S1 = S2 - Y1 lea `32*9*1`(%rsp), %rsi lea `32*9*1`($a_ptr), %rdx lea `32*9*4`(%rsp), %rdi call avx2_sub_x4 call avx2_normalize_n_store # Z3 = H*Z1*Z2 lea `32*9*3`(%rsp), %rsi lea `32*9*2`($a_ptr), %rdx lea `32*9*2`($r_ptr), %rdi call avx2_mul_x4 call avx2_normalize lea .LONE(%rip), %rsi lea `32*9*2`($a_ptr), %rdx call avx2_select_n_store # R^2 = R^2 lea `32*9*4`(%rsp), %rsi lea `32*9*6`(%rsp), %rdi lea `32*9*8+32*2`(%rsp), %rcx # temporary vector call avx2_sqr_x4 call avx2_normalize_n_store # H^2 = H^2 lea `32*9*3`(%rsp), %rsi lea `32*9*5`(%rsp), %rdi call avx2_sqr_x4 call avx2_normalize_n_store # H^3 = H^2*H lea `32*9*3`(%rsp), %rsi lea `32*9*5`(%rsp), %rdx lea `32*9*7`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # U2 = U1*H^2 lea `32*9*0`($a_ptr), %rsi lea `32*9*5`(%rsp), %rdx lea `32*9*0`(%rsp), %rdi call avx2_mul_x4 #call avx2_normalize `&STORE` # Hsqr = U2*2 #lea 32*9*0(%rsp), %rsi #lea 32*9*5(%rsp), %rdi #call avx2_mul_by2_x4 vpaddq $ACC0, $ACC0, $ACC0 # inlined avx2_mul_by2_x4 lea `32*9*5`(%rsp), %rdi vpaddq $ACC1, $ACC1, $ACC1 vpaddq $ACC2, $ACC2, $ACC2 vpaddq $ACC3, $ACC3, $ACC3 vpaddq $ACC4, $ACC4, $ACC4 vpaddq $ACC5, $ACC5, $ACC5 vpaddq $ACC6, $ACC6, $ACC6 vpaddq $ACC7, $ACC7, $ACC7 vpaddq $ACC8, $ACC8, $ACC8 call avx2_normalize_n_store # X3 = R^2 - H^3 #lea 32*9*6(%rsp), %rsi #lea 32*9*7(%rsp), %rdx #lea 32*9*5(%rsp), %rcx #lea 32*9*0($r_ptr), %rdi #call avx2_sub_x4 #NORMALIZE #STORE # X3 = X3 - U2*2 #lea 32*9*0($r_ptr), %rsi #lea 32*9*0($r_ptr), %rdi #call avx2_sub_x4 #NORMALIZE #STORE lea `32*9*6+128`(%rsp), %rsi lea .LAVX2_POLY_x2+128(%rip), %rax lea `32*9*7+128`(%rsp), %rdx lea `32*9*5+128`(%rsp), %rcx lea `32*9*0`($r_ptr), %rdi vmovdqa 32*0-128(%rsi), $ACC0 vmovdqa 32*1-128(%rsi), $ACC1 vmovdqa 32*2-128(%rsi), $ACC2 vmovdqa 32*3-128(%rsi), $ACC3 vmovdqa 32*4-128(%rsi), $ACC4 vmovdqa 32*5-128(%rsi), $ACC5 vmovdqa 32*6-128(%rsi), $ACC6 vmovdqa 32*7-128(%rsi), $ACC7 vmovdqa 32*8-128(%rsi), $ACC8 vpaddq 32*0-128(%rax), $ACC0, $ACC0 vpaddq 32*1-128(%rax), $ACC1, $ACC1 vpaddq 32*2-128(%rax), $ACC2, $ACC2 vpaddq 32*3-128(%rax), $ACC3, $ACC3 vpaddq 32*4-128(%rax), $ACC4, $ACC4 vpaddq 32*5-128(%rax), $ACC5, $ACC5 vpaddq 32*6-128(%rax), $ACC6, $ACC6 vpaddq 32*7-128(%rax), $ACC7, $ACC7 vpaddq 32*8-128(%rax), $ACC8, $ACC8 vpsubq 32*0-128(%rdx), $ACC0, $ACC0 vpsubq 32*1-128(%rdx), $ACC1, $ACC1 vpsubq 32*2-128(%rdx), $ACC2, $ACC2 vpsubq 32*3-128(%rdx), $ACC3, $ACC3 vpsubq 32*4-128(%rdx), $ACC4, $ACC4 vpsubq 32*5-128(%rdx), $ACC5, $ACC5 vpsubq 32*6-128(%rdx), $ACC6, $ACC6 vpsubq 32*7-128(%rdx), $ACC7, $ACC7 vpsubq 32*8-128(%rdx), $ACC8, $ACC8 vpsubq 32*0-128(%rcx), $ACC0, $ACC0 vpsubq 32*1-128(%rcx), $ACC1, $ACC1 vpsubq 32*2-128(%rcx), $ACC2, $ACC2 vpsubq 32*3-128(%rcx), $ACC3, $ACC3 vpsubq 32*4-128(%rcx), $ACC4, $ACC4 vpsubq 32*5-128(%rcx), $ACC5, $ACC5 vpsubq 32*6-128(%rcx), $ACC6, $ACC6 vpsubq 32*7-128(%rcx), $ACC7, $ACC7 vpsubq 32*8-128(%rcx), $ACC8, $ACC8 call avx2_normalize lea 32*0($b_ptr), %rsi lea 32*0($a_ptr), %rdx call avx2_select_n_store # H = U2 - X3 lea `32*9*0`(%rsp), %rsi lea `32*9*0`($r_ptr), %rdx lea `32*9*3`(%rsp), %rdi call avx2_sub_x4 call avx2_normalize_n_store # lea `32*9*3`(%rsp), %rsi lea `32*9*4`(%rsp), %rdx lea `32*9*3`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # lea `32*9*7`(%rsp), %rsi lea `32*9*1`($a_ptr), %rdx lea `32*9*1`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # lea `32*9*3`(%rsp), %rsi lea `32*9*1`(%rsp), %rdx lea `32*9*1`($r_ptr), %rdi call avx2_sub_x4 call avx2_normalize lea 32*9($b_ptr), %rsi lea 32*9($a_ptr), %rdx call avx2_select_n_store #lea 32*9*0($r_ptr), %rsi #lea 32*9*0($r_ptr), %rdi #call avx2_mul_by1_x4 #NORMALIZE #STORE lea `32*9*1`($r_ptr), %rsi lea `32*9*1`($r_ptr), %rdi call avx2_mul_by1_x4 call avx2_normalize_n_store vzeroupper ___ $code.=<<___ if ($win64); movaps %xmm6, -16*10(%rbp) movaps %xmm7, -16*9(%rbp) movaps %xmm8, -16*8(%rbp) movaps %xmm9, -16*7(%rbp) movaps %xmm10, -16*6(%rbp) movaps %xmm11, -16*5(%rbp) movaps %xmm12, -16*4(%rbp) movaps %xmm13, -16*3(%rbp) movaps %xmm14, -16*2(%rbp) movaps %xmm15, -16*1(%rbp) ___ $code.=<<___; mov %rbp, %rsp pop %rbp ret .size ecp_nistz256_avx2_point_add_affine_x4,.-ecp_nistz256_avx2_point_add_affine_x4 ################################################################################ # void ecp_nistz256_avx2_point_add_affines_x4(void* RESULTx4, void *Ax4, void *Bx4); .globl ecp_nistz256_avx2_point_add_affines_x4 .type ecp_nistz256_avx2_point_add_affines_x4,\@function,3 .align 32 ecp_nistz256_avx2_point_add_affines_x4: mov %rsp, %rax push %rbp vzeroupper ___ $code.=<<___ if ($win64); lea -16*10(%rsp), %rsp vmovaps %xmm6, -8-16*10(%rax) vmovaps %xmm7, -8-16*9(%rax) vmovaps %xmm8, -8-16*8(%rax) vmovaps %xmm9, -8-16*7(%rax) vmovaps %xmm10, -8-16*6(%rax) vmovaps %xmm11, -8-16*5(%rax) vmovaps %xmm12, -8-16*4(%rax) vmovaps %xmm13, -8-16*3(%rax) vmovaps %xmm14, -8-16*2(%rax) vmovaps %xmm15, -8-16*1(%rax) ___ $code.=<<___; lea -8(%rax), %rbp # Result + 32*0 = Result.X # Result + 32*9 = Result.Y # Result + 32*18 = Result.Z # A + 32*0 = A.X # A + 32*9 = A.Y # B + 32*0 = B.X # B + 32*9 = B.Y sub \$`32*9*8+32*2+32*8`, %rsp and \$-64, %rsp mov $r_ptr_in, $r_ptr mov $a_ptr_in, $a_ptr mov $b_ptr_in, $b_ptr vmovdqa 32*0($a_ptr_in), %ymm0 vmovdqa .LAVX2_AND_MASK(%rip), $AND_MASK vpxor %ymm1, %ymm1, %ymm1 lea 256($a_ptr_in), %rax # size optimization vpor 32*1($a_ptr_in), %ymm0, %ymm0 vpor 32*2($a_ptr_in), %ymm0, %ymm0 vpor 32*3($a_ptr_in), %ymm0, %ymm0 vpor 32*4-256(%rax), %ymm0, %ymm0 lea 256(%rax), %rcx # size optimization vpor 32*5-256(%rax), %ymm0, %ymm0 vpor 32*6-256(%rax), %ymm0, %ymm0 vpor 32*7-256(%rax), %ymm0, %ymm0 vpor 32*8-256(%rax), %ymm0, %ymm0 vpor 32*9-256(%rax), %ymm0, %ymm0 vpor 32*10-256(%rax), %ymm0, %ymm0 vpor 32*11-256(%rax), %ymm0, %ymm0 vpor 32*12-512(%rcx), %ymm0, %ymm0 vpor 32*13-512(%rcx), %ymm0, %ymm0 vpor 32*14-512(%rcx), %ymm0, %ymm0 vpor 32*15-512(%rcx), %ymm0, %ymm0 vpor 32*16-512(%rcx), %ymm0, %ymm0 vpor 32*17-512(%rcx), %ymm0, %ymm0 vpcmpeqq %ymm1, %ymm0, %ymm0 vmovdqa %ymm0, `32*9*8`(%rsp) vpxor %ymm1, %ymm1, %ymm1 vmovdqa 32*0($b_ptr), %ymm0 lea 256($b_ptr), %rax # size optimization vpor 32*1($b_ptr), %ymm0, %ymm0 vpor 32*2($b_ptr), %ymm0, %ymm0 vpor 32*3($b_ptr), %ymm0, %ymm0 vpor 32*4-256(%rax), %ymm0, %ymm0 lea 256(%rax), %rcx # size optimization vpor 32*5-256(%rax), %ymm0, %ymm0 vpor 32*6-256(%rax), %ymm0, %ymm0 vpor 32*7-256(%rax), %ymm0, %ymm0 vpor 32*8-256(%rax), %ymm0, %ymm0 vpor 32*9-256(%rax), %ymm0, %ymm0 vpor 32*10-256(%rax), %ymm0, %ymm0 vpor 32*11-256(%rax), %ymm0, %ymm0 vpor 32*12-512(%rcx), %ymm0, %ymm0 vpor 32*13-512(%rcx), %ymm0, %ymm0 vpor 32*14-512(%rcx), %ymm0, %ymm0 vpor 32*15-512(%rcx), %ymm0, %ymm0 vpor 32*16-512(%rcx), %ymm0, %ymm0 vpor 32*17-512(%rcx), %ymm0, %ymm0 vpcmpeqq %ymm1, %ymm0, %ymm0 vmovdqa %ymm0, `32*9*8+32`(%rsp) # H = U2 - U1 = X2 - X1 lea `32*9*0`($b_ptr), %rsi lea `32*9*0`($a_ptr), %rdx lea `32*9*3`(%rsp), %rdi call avx2_sub_x4 call avx2_normalize_n_store # R = S2 - S1 = Y2 - Y1 lea `32*9*1`($b_ptr), %rsi lea `32*9*1`($a_ptr), %rdx lea `32*9*4`(%rsp), %rdi call avx2_sub_x4 call avx2_normalize_n_store # Z3 = H*Z1*Z2 = H lea `32*9*3`(%rsp), %rsi lea `32*9*2`($r_ptr), %rdi call avx2_mul_by1_x4 call avx2_normalize vmovdqa `32*9*8`(%rsp), $B vpor `32*9*8+32`(%rsp), $B, $B vpandn $ACC0, $B, $ACC0 lea .LONE+128(%rip), %rax vpandn $ACC1, $B, $ACC1 vpandn $ACC2, $B, $ACC2 vpandn $ACC3, $B, $ACC3 vpandn $ACC4, $B, $ACC4 vpandn $ACC5, $B, $ACC5 vpandn $ACC6, $B, $ACC6 vpandn $ACC7, $B, $ACC7 vpand 32*0-128(%rax), $B, $T0 vpandn $ACC8, $B, $ACC8 vpand 32*1-128(%rax), $B, $Y vpxor $T0, $ACC0, $ACC0 vpand 32*2-128(%rax), $B, $T0 vpxor $Y, $ACC1, $ACC1 vpand 32*3-128(%rax), $B, $Y vpxor $T0, $ACC2, $ACC2 vpand 32*4-128(%rax), $B, $T0 vpxor $Y, $ACC3, $ACC3 vpand 32*5-128(%rax), $B, $Y vpxor $T0, $ACC4, $ACC4 vpand 32*6-128(%rax), $B, $T0 vpxor $Y, $ACC5, $ACC5 vpand 32*7-128(%rax), $B, $Y vpxor $T0, $ACC6, $ACC6 vpand 32*8-128(%rax), $B, $T0 vpxor $Y, $ACC7, $ACC7 vpxor $T0, $ACC8, $ACC8 `&STORE` # R^2 = R^2 lea `32*9*4`(%rsp), %rsi lea `32*9*6`(%rsp), %rdi lea `32*9*8+32*2`(%rsp), %rcx # temporary vector call avx2_sqr_x4 call avx2_normalize_n_store # H^2 = H^2 lea `32*9*3`(%rsp), %rsi lea `32*9*5`(%rsp), %rdi call avx2_sqr_x4 call avx2_normalize_n_store # H^3 = H^2*H lea `32*9*3`(%rsp), %rsi lea `32*9*5`(%rsp), %rdx lea `32*9*7`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # U2 = U1*H^2 lea `32*9*0`($a_ptr), %rsi lea `32*9*5`(%rsp), %rdx lea `32*9*0`(%rsp), %rdi call avx2_mul_x4 #call avx2_normalize `&STORE` # Hsqr = U2*2 #lea 32*9*0(%rsp), %rsi #lea 32*9*5(%rsp), %rdi #call avx2_mul_by2_x4 vpaddq $ACC0, $ACC0, $ACC0 # inlined avx2_mul_by2_x4 lea `32*9*5`(%rsp), %rdi vpaddq $ACC1, $ACC1, $ACC1 vpaddq $ACC2, $ACC2, $ACC2 vpaddq $ACC3, $ACC3, $ACC3 vpaddq $ACC4, $ACC4, $ACC4 vpaddq $ACC5, $ACC5, $ACC5 vpaddq $ACC6, $ACC6, $ACC6 vpaddq $ACC7, $ACC7, $ACC7 vpaddq $ACC8, $ACC8, $ACC8 call avx2_normalize_n_store # X3 = R^2 - H^3 #lea 32*9*6(%rsp), %rsi #lea 32*9*7(%rsp), %rdx #lea 32*9*5(%rsp), %rcx #lea 32*9*0($r_ptr), %rdi #call avx2_sub_x4 #NORMALIZE #STORE # X3 = X3 - U2*2 #lea 32*9*0($r_ptr), %rsi #lea 32*9*0($r_ptr), %rdi #call avx2_sub_x4 #NORMALIZE #STORE lea `32*9*6+128`(%rsp), %rsi lea .LAVX2_POLY_x2+128(%rip), %rax lea `32*9*7+128`(%rsp), %rdx lea `32*9*5+128`(%rsp), %rcx lea `32*9*0`($r_ptr), %rdi vmovdqa 32*0-128(%rsi), $ACC0 vmovdqa 32*1-128(%rsi), $ACC1 vmovdqa 32*2-128(%rsi), $ACC2 vmovdqa 32*3-128(%rsi), $ACC3 vmovdqa 32*4-128(%rsi), $ACC4 vmovdqa 32*5-128(%rsi), $ACC5 vmovdqa 32*6-128(%rsi), $ACC6 vmovdqa 32*7-128(%rsi), $ACC7 vmovdqa 32*8-128(%rsi), $ACC8 vpaddq 32*0-128(%rax), $ACC0, $ACC0 vpaddq 32*1-128(%rax), $ACC1, $ACC1 vpaddq 32*2-128(%rax), $ACC2, $ACC2 vpaddq 32*3-128(%rax), $ACC3, $ACC3 vpaddq 32*4-128(%rax), $ACC4, $ACC4 vpaddq 32*5-128(%rax), $ACC5, $ACC5 vpaddq 32*6-128(%rax), $ACC6, $ACC6 vpaddq 32*7-128(%rax), $ACC7, $ACC7 vpaddq 32*8-128(%rax), $ACC8, $ACC8 vpsubq 32*0-128(%rdx), $ACC0, $ACC0 vpsubq 32*1-128(%rdx), $ACC1, $ACC1 vpsubq 32*2-128(%rdx), $ACC2, $ACC2 vpsubq 32*3-128(%rdx), $ACC3, $ACC3 vpsubq 32*4-128(%rdx), $ACC4, $ACC4 vpsubq 32*5-128(%rdx), $ACC5, $ACC5 vpsubq 32*6-128(%rdx), $ACC6, $ACC6 vpsubq 32*7-128(%rdx), $ACC7, $ACC7 vpsubq 32*8-128(%rdx), $ACC8, $ACC8 vpsubq 32*0-128(%rcx), $ACC0, $ACC0 vpsubq 32*1-128(%rcx), $ACC1, $ACC1 vpsubq 32*2-128(%rcx), $ACC2, $ACC2 vpsubq 32*3-128(%rcx), $ACC3, $ACC3 vpsubq 32*4-128(%rcx), $ACC4, $ACC4 vpsubq 32*5-128(%rcx), $ACC5, $ACC5 vpsubq 32*6-128(%rcx), $ACC6, $ACC6 vpsubq 32*7-128(%rcx), $ACC7, $ACC7 vpsubq 32*8-128(%rcx), $ACC8, $ACC8 call avx2_normalize lea 32*0($b_ptr), %rsi lea 32*0($a_ptr), %rdx call avx2_select_n_store # H = U2 - X3 lea `32*9*0`(%rsp), %rsi lea `32*9*0`($r_ptr), %rdx lea `32*9*3`(%rsp), %rdi call avx2_sub_x4 call avx2_normalize_n_store # H = H*R lea `32*9*3`(%rsp), %rsi lea `32*9*4`(%rsp), %rdx lea `32*9*3`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # S2 = S1 * H^3 lea `32*9*7`(%rsp), %rsi lea `32*9*1`($a_ptr), %rdx lea `32*9*1`(%rsp), %rdi call avx2_mul_x4 call avx2_normalize_n_store # lea `32*9*3`(%rsp), %rsi lea `32*9*1`(%rsp), %rdx lea `32*9*1`($r_ptr), %rdi call avx2_sub_x4 call avx2_normalize lea 32*9($b_ptr), %rsi lea 32*9($a_ptr), %rdx call avx2_select_n_store #lea 32*9*0($r_ptr), %rsi #lea 32*9*0($r_ptr), %rdi #call avx2_mul_by1_x4 #NORMALIZE #STORE lea `32*9*1`($r_ptr), %rsi lea `32*9*1`($r_ptr), %rdi call avx2_mul_by1_x4 call avx2_normalize_n_store vzeroupper ___ $code.=<<___ if ($win64); movaps %xmm6, -16*10(%rbp) movaps %xmm7, -16*9(%rbp) movaps %xmm8, -16*8(%rbp) movaps %xmm9, -16*7(%rbp) movaps %xmm10, -16*6(%rbp) movaps %xmm11, -16*5(%rbp) movaps %xmm12, -16*4(%rbp) movaps %xmm13, -16*3(%rbp) movaps %xmm14, -16*2(%rbp) movaps %xmm15, -16*1(%rbp) ___ $code.=<<___; mov %rbp, %rsp pop %rbp ret .size ecp_nistz256_avx2_point_add_affines_x4,.-ecp_nistz256_avx2_point_add_affines_x4 ################################################################################ # void ecp_nistz256_avx2_to_mont(void* RESULTx4, void *Ax4); .globl ecp_nistz256_avx2_to_mont .type ecp_nistz256_avx2_to_mont,\@function,2 .align 32 ecp_nistz256_avx2_to_mont: vzeroupper ___ $code.=<<___ if ($win64); lea -8-16*10(%rsp), %rsp vmovaps %xmm6, -8-16*10(%rax) vmovaps %xmm7, -8-16*9(%rax) vmovaps %xmm8, -8-16*8(%rax) vmovaps %xmm9, -8-16*7(%rax) vmovaps %xmm10, -8-16*6(%rax) vmovaps %xmm11, -8-16*5(%rax) vmovaps %xmm12, -8-16*4(%rax) vmovaps %xmm13, -8-16*3(%rax) vmovaps %xmm14, -8-16*2(%rax) vmovaps %xmm15, -8-16*1(%rax) ___ $code.=<<___; vmovdqa .LAVX2_AND_MASK(%rip), $AND_MASK lea .LTO_MONT_AVX2(%rip), %rdx call avx2_mul_x4 call avx2_normalize_n_store vzeroupper ___ $code.=<<___ if ($win64); movaps 16*0(%rsp), %xmm6 movaps 16*1(%rsp), %xmm7 movaps 16*2(%rsp), %xmm8 movaps 16*3(%rsp), %xmm9 movaps 16*4(%rsp), %xmm10 movaps 16*5(%rsp), %xmm11 movaps 16*6(%rsp), %xmm12 movaps 16*7(%rsp), %xmm13 movaps 16*8(%rsp), %xmm14 movaps 16*9(%rsp), %xmm15 lea 8+16*10(%rsp), %rsp ___ $code.=<<___; ret .size ecp_nistz256_avx2_to_mont,.-ecp_nistz256_avx2_to_mont ################################################################################ # void ecp_nistz256_avx2_from_mont(void* RESULTx4, void *Ax4); .globl ecp_nistz256_avx2_from_mont .type ecp_nistz256_avx2_from_mont,\@function,2 .align 32 ecp_nistz256_avx2_from_mont: vzeroupper ___ $code.=<<___ if ($win64); lea -8-16*10(%rsp), %rsp vmovaps %xmm6, -8-16*10(%rax) vmovaps %xmm7, -8-16*9(%rax) vmovaps %xmm8, -8-16*8(%rax) vmovaps %xmm9, -8-16*7(%rax) vmovaps %xmm10, -8-16*6(%rax) vmovaps %xmm11, -8-16*5(%rax) vmovaps %xmm12, -8-16*4(%rax) vmovaps %xmm13, -8-16*3(%rax) vmovaps %xmm14, -8-16*2(%rax) vmovaps %xmm15, -8-16*1(%rax) ___ $code.=<<___; vmovdqa .LAVX2_AND_MASK(%rip), $AND_MASK lea .LFROM_MONT_AVX2(%rip), %rdx call avx2_mul_x4 call avx2_normalize_n_store vzeroupper ___ $code.=<<___ if ($win64); movaps 16*0(%rsp), %xmm6 movaps 16*1(%rsp), %xmm7 movaps 16*2(%rsp), %xmm8 movaps 16*3(%rsp), %xmm9 movaps 16*4(%rsp), %xmm10 movaps 16*5(%rsp), %xmm11 movaps 16*6(%rsp), %xmm12 movaps 16*7(%rsp), %xmm13 movaps 16*8(%rsp), %xmm14 movaps 16*9(%rsp), %xmm15 lea 8+16*10(%rsp), %rsp ___ $code.=<<___; ret .size ecp_nistz256_avx2_from_mont,.-ecp_nistz256_avx2_from_mont ################################################################################ # void ecp_nistz256_avx2_set1(void* RESULTx4); .globl ecp_nistz256_avx2_set1 .type ecp_nistz256_avx2_set1,\@function,1 .align 32 ecp_nistz256_avx2_set1: lea .LONE+128(%rip), %rax lea 128(%rdi), %rdi vzeroupper vmovdqa 32*0-128(%rax), %ymm0 vmovdqa 32*1-128(%rax), %ymm1 vmovdqa 32*2-128(%rax), %ymm2 vmovdqa 32*3-128(%rax), %ymm3 vmovdqa 32*4-128(%rax), %ymm4 vmovdqa 32*5-128(%rax), %ymm5 vmovdqa %ymm0, 32*0-128(%rdi) vmovdqa 32*6-128(%rax), %ymm0 vmovdqa %ymm1, 32*1-128(%rdi) vmovdqa 32*7-128(%rax), %ymm1 vmovdqa %ymm2, 32*2-128(%rdi) vmovdqa 32*8-128(%rax), %ymm2 vmovdqa %ymm3, 32*3-128(%rdi) vmovdqa %ymm4, 32*4-128(%rdi) vmovdqa %ymm5, 32*5-128(%rdi) vmovdqa %ymm0, 32*6-128(%rdi) vmovdqa %ymm1, 32*7-128(%rdi) vmovdqa %ymm2, 32*8-128(%rdi) vzeroupper ret .size ecp_nistz256_avx2_set1,.-ecp_nistz256_avx2_set1 ___ } { ################################################################################ # void ecp_nistz256_avx2_multi_gather_w7(void* RESULT, void *in, # int index0, int index1, int index2, int index3); ################################################################################ my ($val,$in_t,$index0,$index1,$index2,$index3)=("%rdi","%rsi","%edx","%ecx","%r8d","%r9d"); my ($INDEX0,$INDEX1,$INDEX2,$INDEX3)=map("%ymm$_",(0..3)); my ($R0a,$R0b,$R1a,$R1b,$R2a,$R2b,$R3a,$R3b)=map("%ymm$_",(4..11)); my ($M0,$T0,$T1,$TMP0)=map("%ymm$_",(12..15)); $code.=<<___; .globl ecp_nistz256_avx2_multi_gather_w7 .type ecp_nistz256_avx2_multi_gather_w7,\@function,6 .align 32 ecp_nistz256_avx2_multi_gather_w7: vzeroupper ___ $code.=<<___ if ($win64); lea -8-16*10(%rsp), %rsp vmovaps %xmm6, -8-16*10(%rax) vmovaps %xmm7, -8-16*9(%rax) vmovaps %xmm8, -8-16*8(%rax) vmovaps %xmm9, -8-16*7(%rax) vmovaps %xmm10, -8-16*6(%rax) vmovaps %xmm11, -8-16*5(%rax) vmovaps %xmm12, -8-16*4(%rax) vmovaps %xmm13, -8-16*3(%rax) vmovaps %xmm14, -8-16*2(%rax) vmovaps %xmm15, -8-16*1(%rax) ___ $code.=<<___; lea .LIntOne(%rip), %rax vmovd $index0, %xmm0 vmovd $index1, %xmm1 vmovd $index2, %xmm2 vmovd $index3, %xmm3 vpxor $R0a, $R0a, $R0a vpxor $R0b, $R0b, $R0b vpxor $R1a, $R1a, $R1a vpxor $R1b, $R1b, $R1b vpxor $R2a, $R2a, $R2a vpxor $R2b, $R2b, $R2b vpxor $R3a, $R3a, $R3a vpxor $R3b, $R3b, $R3b vmovdqa (%rax), $M0 vpermd $INDEX0, $R0a, $INDEX0 vpermd $INDEX1, $R0a, $INDEX1 vpermd $INDEX2, $R0a, $INDEX2 vpermd $INDEX3, $R0a, $INDEX3 mov \$64, %ecx lea 112($val), $val # size optimization jmp .Lmulti_select_loop_avx2 # INDEX=0, corresponds to the point at infty (0,0) .align 32 .Lmulti_select_loop_avx2: vpcmpeqd $INDEX0, $M0, $TMP0 vmovdqa `32*0+32*64*2*0`($in_t), $T0 vmovdqa `32*1+32*64*2*0`($in_t), $T1 vpand $TMP0, $T0, $T0 vpand $TMP0, $T1, $T1 vpxor $T0, $R0a, $R0a vpxor $T1, $R0b, $R0b vpcmpeqd $INDEX1, $M0, $TMP0 vmovdqa `32*0+32*64*2*1`($in_t), $T0 vmovdqa `32*1+32*64*2*1`($in_t), $T1 vpand $TMP0, $T0, $T0 vpand $TMP0, $T1, $T1 vpxor $T0, $R1a, $R1a vpxor $T1, $R1b, $R1b vpcmpeqd $INDEX2, $M0, $TMP0 vmovdqa `32*0+32*64*2*2`($in_t), $T0 vmovdqa `32*1+32*64*2*2`($in_t), $T1 vpand $TMP0, $T0, $T0 vpand $TMP0, $T1, $T1 vpxor $T0, $R2a, $R2a vpxor $T1, $R2b, $R2b vpcmpeqd $INDEX3, $M0, $TMP0 vmovdqa `32*0+32*64*2*3`($in_t), $T0 vmovdqa `32*1+32*64*2*3`($in_t), $T1 vpand $TMP0, $T0, $T0 vpand $TMP0, $T1, $T1 vpxor $T0, $R3a, $R3a vpxor $T1, $R3b, $R3b vpaddd (%rax), $M0, $M0 # increment lea 32*2($in_t), $in_t dec %ecx jnz .Lmulti_select_loop_avx2 vmovdqu $R0a, 32*0-112($val) vmovdqu $R0b, 32*1-112($val) vmovdqu $R1a, 32*2-112($val) vmovdqu $R1b, 32*3-112($val) vmovdqu $R2a, 32*4-112($val) vmovdqu $R2b, 32*5-112($val) vmovdqu $R3a, 32*6-112($val) vmovdqu $R3b, 32*7-112($val) vzeroupper ___ $code.=<<___ if ($win64); movaps 16*0(%rsp), %xmm6 movaps 16*1(%rsp), %xmm7 movaps 16*2(%rsp), %xmm8 movaps 16*3(%rsp), %xmm9 movaps 16*4(%rsp), %xmm10 movaps 16*5(%rsp), %xmm11 movaps 16*6(%rsp), %xmm12 movaps 16*7(%rsp), %xmm13 movaps 16*8(%rsp), %xmm14 movaps 16*9(%rsp), %xmm15 lea 8+16*10(%rsp), %rsp ___ $code.=<<___; ret .size ecp_nistz256_avx2_multi_gather_w7,.-ecp_nistz256_avx2_multi_gather_w7 .extern OPENSSL_ia32cap_P .globl ecp_nistz_avx2_eligible .type ecp_nistz_avx2_eligible,\@abi-omnipotent .align 32 ecp_nistz_avx2_eligible: mov OPENSSL_ia32cap_P+8(%rip),%eax shr \$5,%eax and \$1,%eax ret .size ecp_nistz_avx2_eligible,.-ecp_nistz_avx2_eligible ___ } }} else {{ # assembler is too old $code.=<<___; .text .globl ecp_nistz256_avx2_transpose_convert .globl ecp_nistz256_avx2_convert_transpose_back .globl ecp_nistz256_avx2_point_add_affine_x4 .globl ecp_nistz256_avx2_point_add_affines_x4 .globl ecp_nistz256_avx2_to_mont .globl ecp_nistz256_avx2_from_mont .globl ecp_nistz256_avx2_set1 .globl ecp_nistz256_avx2_multi_gather_w7 .type ecp_nistz256_avx2_multi_gather_w7,\@abi-omnipotent ecp_nistz256_avx2_transpose_convert: ecp_nistz256_avx2_convert_transpose_back: ecp_nistz256_avx2_point_add_affine_x4: ecp_nistz256_avx2_point_add_affines_x4: ecp_nistz256_avx2_to_mont: ecp_nistz256_avx2_from_mont: ecp_nistz256_avx2_set1: ecp_nistz256_avx2_multi_gather_w7: .byte 0x0f,0x0b # ud2 ret .size ecp_nistz256_avx2_multi_gather_w7,.-ecp_nistz256_avx2_multi_gather_w7 .globl ecp_nistz_avx2_eligible .type ecp_nistz_avx2_eligible,\@abi-omnipotent ecp_nistz_avx2_eligible: xor %eax,%eax ret .size ecp_nistz_avx2_eligible,.-ecp_nistz_avx2_eligible ___ }} foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/ec/asm/ecp_nistz256-ppc64.pl000077500000000000000000001467571364063235100216060ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for PPC64. # # August 2016. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. # # with/without -DECP_NISTZ256_ASM # POWER7 +260-530% # POWER8 +220-340% $flavour = shift; while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; my $sp="r1"; { my ($rp,$ap,$bp,$bi,$acc0,$acc1,$acc2,$acc3,$poly1,$poly3, $acc4,$acc5,$a0,$a1,$a2,$a3,$t0,$t1,$t2,$t3) = map("r$_",(3..12,22..31)); my ($acc6,$acc7)=($bp,$bi); # used in __ecp_nistz256_sqr_mont $code.=<<___; .machine "any" .text ___ ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; # See ecp_nistz256_table.c for explanation for why it's 64*16*37. # 64*16*37-1 is because $#arr returns last valid index or @arr, not # amount of elements. die "insane number of elements" if ($#arr != 64*16*37-1); $code.=<<___; .type ecp_nistz256_precomputed,\@object .globl ecp_nistz256_precomputed .align 12 ecp_nistz256_precomputed: ___ ######################################################################## # this conversion smashes P256_POINT_AFFINE by individual bytes with # 64 byte interval, similar to # 1111222233334444 # 1234123412341234 for(1..37) { @tbl = splice(@arr,0,64*16); for($i=0;$i<64;$i++) { undef @line; for($j=0;$j<64;$j++) { push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; } $code.=".byte\t"; $code.=join(',',map { sprintf "0x%02x",$_} @line); $code.="\n"; } } $code.=<<___; .size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed .asciz "ECP_NISTZ256 for PPC64, CRYPTOGAMS by " # void ecp_nistz256_mul_mont(BN_ULONG x0[4],const BN_ULONG x1[4], # const BN_ULONG x2[4]); .globl ecp_nistz256_mul_mont .align 5 ecp_nistz256_mul_mont: stdu $sp,-128($sp) mflr r0 std r22,48($sp) std r23,56($sp) std r24,64($sp) std r25,72($sp) std r26,80($sp) std r27,88($sp) std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) ld $a0,0($ap) ld $bi,0($bp) ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_mul_mont mtlr r0 ld r22,48($sp) ld r23,56($sp) ld r24,64($sp) ld r25,72($sp) ld r26,80($sp) ld r27,88($sp) ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,10,3,0 .long 0 .size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont # void ecp_nistz256_sqr_mont(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_sqr_mont .align 4 ecp_nistz256_sqr_mont: stdu $sp,-128($sp) mflr r0 std r22,48($sp) std r23,56($sp) std r24,64($sp) std r25,72($sp) std r26,80($sp) std r27,88($sp) std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) ld $a0,0($ap) ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_sqr_mont mtlr r0 ld r22,48($sp) ld r23,56($sp) ld r24,64($sp) ld r25,72($sp) ld r26,80($sp) ld r27,88($sp) ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,10,2,0 .long 0 .size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont # void ecp_nistz256_add(BN_ULONG x0[4],const BN_ULONG x1[4], # const BN_ULONG x2[4]); .globl ecp_nistz256_add .align 4 ecp_nistz256_add: stdu $sp,-128($sp) mflr r0 std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) ld $acc0,0($ap) ld $t0, 0($bp) ld $acc1,8($ap) ld $t1, 8($bp) ld $acc2,16($ap) ld $t2, 16($bp) ld $acc3,24($ap) ld $t3, 24($bp) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_add mtlr r0 ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,4,3,0 .long 0 .size ecp_nistz256_add,.-ecp_nistz256_add # void ecp_nistz256_div_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_div_by_2 .align 4 ecp_nistz256_div_by_2: stdu $sp,-128($sp) mflr r0 std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) ld $acc0,0($ap) ld $acc1,8($ap) ld $acc2,16($ap) ld $acc3,24($ap) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_div_by_2 mtlr r0 ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,4,2,0 .long 0 .size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 # void ecp_nistz256_mul_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_mul_by_2 .align 4 ecp_nistz256_mul_by_2: stdu $sp,-128($sp) mflr r0 std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) ld $acc0,0($ap) ld $acc1,8($ap) ld $acc2,16($ap) ld $acc3,24($ap) mr $t0,$acc0 mr $t1,$acc1 mr $t2,$acc2 mr $t3,$acc3 li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_add # ret = a+a // 2*a mtlr r0 ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,4,3,0 .long 0 .size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 # void ecp_nistz256_mul_by_3(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_mul_by_3 .align 4 ecp_nistz256_mul_by_3: stdu $sp,-128($sp) mflr r0 std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) ld $acc0,0($ap) ld $acc1,8($ap) ld $acc2,16($ap) ld $acc3,24($ap) mr $t0,$acc0 std $acc0,64($sp) mr $t1,$acc1 std $acc1,72($sp) mr $t2,$acc2 std $acc2,80($sp) mr $t3,$acc3 std $acc3,88($sp) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_add # ret = a+a // 2*a ld $t0,64($sp) ld $t1,72($sp) ld $t2,80($sp) ld $t3,88($sp) bl __ecp_nistz256_add # ret += a // 2*a+a=3*a mtlr r0 ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,4,2,0 .long 0 .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 # void ecp_nistz256_sub(BN_ULONG x0[4],const BN_ULONG x1[4], # const BN_ULONG x2[4]); .globl ecp_nistz256_sub .align 4 ecp_nistz256_sub: stdu $sp,-128($sp) mflr r0 std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) ld $acc0,0($ap) ld $acc1,8($ap) ld $acc2,16($ap) ld $acc3,24($ap) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_sub_from mtlr r0 ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,4,3,0 .long 0 .size ecp_nistz256_sub,.-ecp_nistz256_sub # void ecp_nistz256_neg(BN_ULONG x0[4],const BN_ULONG x1[4]); .globl ecp_nistz256_neg .align 4 ecp_nistz256_neg: stdu $sp,-128($sp) mflr r0 std r28,96($sp) std r29,104($sp) std r30,112($sp) std r31,120($sp) mr $bp,$ap li $acc0,0 li $acc1,0 li $acc2,0 li $acc3,0 li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 bl __ecp_nistz256_sub_from mtlr r0 ld r28,96($sp) ld r29,104($sp) ld r30,112($sp) ld r31,120($sp) addi $sp,$sp,128 blr .long 0 .byte 0,12,4,0,0x80,4,2,0 .long 0 .size ecp_nistz256_neg,.-ecp_nistz256_neg # note that __ecp_nistz256_mul_mont expects a[0-3] input pre-loaded # to $a0-$a3 and b[0] - to $bi .type __ecp_nistz256_mul_mont,\@function .align 4 __ecp_nistz256_mul_mont: mulld $acc0,$a0,$bi # a[0]*b[0] mulhdu $t0,$a0,$bi mulld $acc1,$a1,$bi # a[1]*b[0] mulhdu $t1,$a1,$bi mulld $acc2,$a2,$bi # a[2]*b[0] mulhdu $t2,$a2,$bi mulld $acc3,$a3,$bi # a[3]*b[0] mulhdu $t3,$a3,$bi ld $bi,8($bp) # b[1] addc $acc1,$acc1,$t0 # accumulate high parts of multiplication sldi $t0,$acc0,32 adde $acc2,$acc2,$t1 srdi $t1,$acc0,32 adde $acc3,$acc3,$t2 addze $acc4,$t3 li $acc5,0 ___ for($i=1;$i<4;$i++) { ################################################################ # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff0001.00000000.0000ffff.ffffffff # * abcdefgh # + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000 # - 0000abcd.efgh0000.00000000.00000000.abcdefgh # # or marking redundant operations: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.-------- # + abcdefgh.abcdefgh.0000abcd.efgh0000.-------- # - 0000abcd.efgh0000.--------.--------.-------- $code.=<<___; subfc $t2,$t0,$acc0 # "*0xffff0001" subfe $t3,$t1,$acc0 addc $acc0,$acc1,$t0 # +=acc[0]<<96 and omit acc[0] adde $acc1,$acc2,$t1 adde $acc2,$acc3,$t2 # +=acc[0]*0xffff0001 adde $acc3,$acc4,$t3 addze $acc4,$acc5 mulld $t0,$a0,$bi # lo(a[0]*b[i]) mulld $t1,$a1,$bi # lo(a[1]*b[i]) mulld $t2,$a2,$bi # lo(a[2]*b[i]) mulld $t3,$a3,$bi # lo(a[3]*b[i]) addc $acc0,$acc0,$t0 # accumulate low parts of multiplication mulhdu $t0,$a0,$bi # hi(a[0]*b[i]) adde $acc1,$acc1,$t1 mulhdu $t1,$a1,$bi # hi(a[1]*b[i]) adde $acc2,$acc2,$t2 mulhdu $t2,$a2,$bi # hi(a[2]*b[i]) adde $acc3,$acc3,$t3 mulhdu $t3,$a3,$bi # hi(a[3]*b[i]) addze $acc4,$acc4 ___ $code.=<<___ if ($i<3); ld $bi,8*($i+1)($bp) # b[$i+1] ___ $code.=<<___; addc $acc1,$acc1,$t0 # accumulate high parts of multiplication sldi $t0,$acc0,32 adde $acc2,$acc2,$t1 srdi $t1,$acc0,32 adde $acc3,$acc3,$t2 adde $acc4,$acc4,$t3 li $acc5,0 addze $acc5,$acc5 ___ } $code.=<<___; # last reduction subfc $t2,$t0,$acc0 # "*0xffff0001" subfe $t3,$t1,$acc0 addc $acc0,$acc1,$t0 # +=acc[0]<<96 and omit acc[0] adde $acc1,$acc2,$t1 adde $acc2,$acc3,$t2 # +=acc[0]*0xffff0001 adde $acc3,$acc4,$t3 addze $acc4,$acc5 li $t2,0 addic $acc0,$acc0,1 # ret -= modulus subfe $acc1,$poly1,$acc1 subfe $acc2,$t2,$acc2 subfe $acc3,$poly3,$acc3 subfe $acc4,$t2,$acc4 addc $acc0,$acc0,$acc4 # ret += modulus if borrow and $t1,$poly1,$acc4 and $t3,$poly3,$acc4 adde $acc1,$acc1,$t1 addze $acc2,$acc2 adde $acc3,$acc3,$t3 std $acc0,0($rp) std $acc1,8($rp) std $acc2,16($rp) std $acc3,24($rp) blr .long 0 .byte 0,12,0x14,0,0,0,1,0 .long 0 .size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont # note that __ecp_nistz256_sqr_mont expects a[0-3] input pre-loaded # to $a0-$a3 .type __ecp_nistz256_sqr_mont,\@function .align 4 __ecp_nistz256_sqr_mont: ################################################################ # | | | | | |a1*a0| | # | | | | |a2*a0| | | # | |a3*a2|a3*a0| | | | # | | | |a2*a1| | | | # | | |a3*a1| | | | | # *| | | | | | | | 2| # +|a3*a3|a2*a2|a1*a1|a0*a0| # |--+--+--+--+--+--+--+--| # |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx # # "can't overflow" below mark carrying into high part of # multiplication result, which can't overflow, because it # can never be all ones. mulld $acc1,$a1,$a0 # a[1]*a[0] mulhdu $t1,$a1,$a0 mulld $acc2,$a2,$a0 # a[2]*a[0] mulhdu $t2,$a2,$a0 mulld $acc3,$a3,$a0 # a[3]*a[0] mulhdu $acc4,$a3,$a0 addc $acc2,$acc2,$t1 # accumulate high parts of multiplication mulld $t0,$a2,$a1 # a[2]*a[1] mulhdu $t1,$a2,$a1 adde $acc3,$acc3,$t2 mulld $t2,$a3,$a1 # a[3]*a[1] mulhdu $t3,$a3,$a1 addze $acc4,$acc4 # can't overflow mulld $acc5,$a3,$a2 # a[3]*a[2] mulhdu $acc6,$a3,$a2 addc $t1,$t1,$t2 # accumulate high parts of multiplication addze $t2,$t3 # can't overflow addc $acc3,$acc3,$t0 # accumulate low parts of multiplication adde $acc4,$acc4,$t1 adde $acc5,$acc5,$t2 addze $acc6,$acc6 # can't overflow addc $acc1,$acc1,$acc1 # acc[1-6]*=2 adde $acc2,$acc2,$acc2 adde $acc3,$acc3,$acc3 adde $acc4,$acc4,$acc4 adde $acc5,$acc5,$acc5 adde $acc6,$acc6,$acc6 li $acc7,0 addze $acc7,$acc7 mulld $acc0,$a0,$a0 # a[0]*a[0] mulhdu $a0,$a0,$a0 mulld $t1,$a1,$a1 # a[1]*a[1] mulhdu $a1,$a1,$a1 mulld $t2,$a2,$a2 # a[2]*a[2] mulhdu $a2,$a2,$a2 mulld $t3,$a3,$a3 # a[3]*a[3] mulhdu $a3,$a3,$a3 addc $acc1,$acc1,$a0 # +a[i]*a[i] sldi $t0,$acc0,32 adde $acc2,$acc2,$t1 srdi $t1,$acc0,32 adde $acc3,$acc3,$a1 adde $acc4,$acc4,$t2 adde $acc5,$acc5,$a2 adde $acc6,$acc6,$t3 adde $acc7,$acc7,$a3 ___ for($i=0;$i<3;$i++) { # reductions, see commentary in # multiplication for details $code.=<<___; subfc $t2,$t0,$acc0 # "*0xffff0001" subfe $t3,$t1,$acc0 addc $acc0,$acc1,$t0 # +=acc[0]<<96 and omit acc[0] sldi $t0,$acc0,32 adde $acc1,$acc2,$t1 srdi $t1,$acc0,32 adde $acc2,$acc3,$t2 # +=acc[0]*0xffff0001 addze $acc3,$t3 # can't overflow ___ } $code.=<<___; subfc $t2,$t0,$acc0 # "*0xffff0001" subfe $t3,$t1,$acc0 addc $acc0,$acc1,$t0 # +=acc[0]<<96 and omit acc[0] adde $acc1,$acc2,$t1 adde $acc2,$acc3,$t2 # +=acc[0]*0xffff0001 addze $acc3,$t3 # can't overflow addc $acc0,$acc0,$acc4 # accumulate upper half adde $acc1,$acc1,$acc5 adde $acc2,$acc2,$acc6 adde $acc3,$acc3,$acc7 li $t2,0 addze $acc4,$t2 addic $acc0,$acc0,1 # ret -= modulus subfe $acc1,$poly1,$acc1 subfe $acc2,$t2,$acc2 subfe $acc3,$poly3,$acc3 subfe $acc4,$t2,$acc4 addc $acc0,$acc0,$acc4 # ret += modulus if borrow and $t1,$poly1,$acc4 and $t3,$poly3,$acc4 adde $acc1,$acc1,$t1 addze $acc2,$acc2 adde $acc3,$acc3,$t3 std $acc0,0($rp) std $acc1,8($rp) std $acc2,16($rp) std $acc3,24($rp) blr .long 0 .byte 0,12,0x14,0,0,0,1,0 .long 0 .size __ecp_nistz256_sqr_mont,.-__ecp_nistz256_sqr_mont # Note that __ecp_nistz256_add expects both input vectors pre-loaded to # $a0-$a3 and $t0-$t3. This is done because it's used in multiple # contexts, e.g. in multiplication by 2 and 3... .type __ecp_nistz256_add,\@function .align 4 __ecp_nistz256_add: addc $acc0,$acc0,$t0 # ret = a+b adde $acc1,$acc1,$t1 adde $acc2,$acc2,$t2 li $t2,0 adde $acc3,$acc3,$t3 addze $t0,$t2 # if a+b >= modulus, subtract modulus # # But since comparison implies subtraction, we subtract # modulus and then add it back if subtraction borrowed. subic $acc0,$acc0,-1 subfe $acc1,$poly1,$acc1 subfe $acc2,$t2,$acc2 subfe $acc3,$poly3,$acc3 subfe $t0,$t2,$t0 addc $acc0,$acc0,$t0 and $t1,$poly1,$t0 and $t3,$poly3,$t0 adde $acc1,$acc1,$t1 addze $acc2,$acc2 adde $acc3,$acc3,$t3 std $acc0,0($rp) std $acc1,8($rp) std $acc2,16($rp) std $acc3,24($rp) blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size __ecp_nistz256_add,.-__ecp_nistz256_add .type __ecp_nistz256_sub_from,\@function .align 4 __ecp_nistz256_sub_from: ld $t0,0($bp) ld $t1,8($bp) ld $t2,16($bp) ld $t3,24($bp) subfc $acc0,$t0,$acc0 # ret = a-b subfe $acc1,$t1,$acc1 subfe $acc2,$t2,$acc2 subfe $acc3,$t3,$acc3 subfe $t0,$t0,$t0 # t0 = borrow ? -1 : 0 # if a-b borrowed, add modulus addc $acc0,$acc0,$t0 # ret -= modulus & t0 and $t1,$poly1,$t0 and $t3,$poly3,$t0 adde $acc1,$acc1,$t1 addze $acc2,$acc2 adde $acc3,$acc3,$t3 std $acc0,0($rp) std $acc1,8($rp) std $acc2,16($rp) std $acc3,24($rp) blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from .type __ecp_nistz256_sub_morf,\@function .align 4 __ecp_nistz256_sub_morf: ld $t0,0($bp) ld $t1,8($bp) ld $t2,16($bp) ld $t3,24($bp) subfc $acc0,$acc0,$t0 # ret = b-a subfe $acc1,$acc1,$t1 subfe $acc2,$acc2,$t2 subfe $acc3,$acc3,$t3 subfe $t0,$t0,$t0 # t0 = borrow ? -1 : 0 # if b-a borrowed, add modulus addc $acc0,$acc0,$t0 # ret -= modulus & t0 and $t1,$poly1,$t0 and $t3,$poly3,$t0 adde $acc1,$acc1,$t1 addze $acc2,$acc2 adde $acc3,$acc3,$t3 std $acc0,0($rp) std $acc1,8($rp) std $acc2,16($rp) std $acc3,24($rp) blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf .type __ecp_nistz256_div_by_2,\@function .align 4 __ecp_nistz256_div_by_2: andi. $t0,$acc0,1 addic $acc0,$acc0,-1 # a += modulus neg $t0,$t0 adde $acc1,$acc1,$poly1 not $t0,$t0 addze $acc2,$acc2 li $t2,0 adde $acc3,$acc3,$poly3 and $t1,$poly1,$t0 addze $ap,$t2 # ap = carry and $t3,$poly3,$t0 subfc $acc0,$t0,$acc0 # a -= modulus if a was even subfe $acc1,$t1,$acc1 subfe $acc2,$t2,$acc2 subfe $acc3,$t3,$acc3 subfe $ap, $t2,$ap srdi $acc0,$acc0,1 sldi $t0,$acc1,63 srdi $acc1,$acc1,1 sldi $t1,$acc2,63 srdi $acc2,$acc2,1 sldi $t2,$acc3,63 srdi $acc3,$acc3,1 sldi $t3,$ap,63 or $acc0,$acc0,$t0 or $acc1,$acc1,$t1 or $acc2,$acc2,$t2 or $acc3,$acc3,$t3 std $acc0,0($rp) std $acc1,8($rp) std $acc2,16($rp) std $acc3,24($rp) blr .long 0 .byte 0,12,0x14,0,0,0,1,0 .long 0 .size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 ___ ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # if (1) { my $FRAME=64+32*4+12*8; my ($S,$M,$Zsqr,$tmp0)=map(64+32*$_,(0..3)); # above map() describes stack layout with 4 temporary # 256-bit vectors on top. my ($rp_real,$ap_real) = map("r$_",(20,21)); $code.=<<___; .globl ecp_nistz256_point_double .align 5 ecp_nistz256_point_double: stdu $sp,-$FRAME($sp) mflr r0 std r20,$FRAME-8*12($sp) std r21,$FRAME-8*11($sp) std r22,$FRAME-8*10($sp) std r23,$FRAME-8*9($sp) std r24,$FRAME-8*8($sp) std r25,$FRAME-8*7($sp) std r26,$FRAME-8*6($sp) std r27,$FRAME-8*5($sp) std r28,$FRAME-8*4($sp) std r29,$FRAME-8*3($sp) std r30,$FRAME-8*2($sp) std r31,$FRAME-8*1($sp) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 .Ldouble_shortcut: ld $acc0,32($ap) ld $acc1,40($ap) ld $acc2,48($ap) ld $acc3,56($ap) mr $t0,$acc0 mr $t1,$acc1 mr $t2,$acc2 mr $t3,$acc3 ld $a0,64($ap) # forward load for p256_sqr_mont ld $a1,72($ap) ld $a2,80($ap) ld $a3,88($ap) mr $rp_real,$rp mr $ap_real,$ap addi $rp,$sp,$S bl __ecp_nistz256_add # p256_mul_by_2(S, in_y); addi $rp,$sp,$Zsqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Zsqr, in_z); ld $t0,0($ap_real) ld $t1,8($ap_real) ld $t2,16($ap_real) ld $t3,24($ap_real) mr $a0,$acc0 # put Zsqr aside for p256_sub mr $a1,$acc1 mr $a2,$acc2 mr $a3,$acc3 addi $rp,$sp,$M bl __ecp_nistz256_add # p256_add(M, Zsqr, in_x); addi $bp,$ap_real,0 mr $acc0,$a0 # restore Zsqr mr $acc1,$a1 mr $acc2,$a2 mr $acc3,$a3 ld $a0,$S+0($sp) # forward load for p256_sqr_mont ld $a1,$S+8($sp) ld $a2,$S+16($sp) ld $a3,$S+24($sp) addi $rp,$sp,$Zsqr bl __ecp_nistz256_sub_morf # p256_sub(Zsqr, in_x, Zsqr); addi $rp,$sp,$S bl __ecp_nistz256_sqr_mont # p256_sqr_mont(S, S); ld $bi,32($ap_real) ld $a0,64($ap_real) ld $a1,72($ap_real) ld $a2,80($ap_real) ld $a3,88($ap_real) addi $bp,$ap_real,32 addi $rp,$sp,$tmp0 bl __ecp_nistz256_mul_mont # p256_mul_mont(tmp0, in_z, in_y); mr $t0,$acc0 mr $t1,$acc1 mr $t2,$acc2 mr $t3,$acc3 ld $a0,$S+0($sp) # forward load for p256_sqr_mont ld $a1,$S+8($sp) ld $a2,$S+16($sp) ld $a3,$S+24($sp) addi $rp,$rp_real,64 bl __ecp_nistz256_add # p256_mul_by_2(res_z, tmp0); addi $rp,$sp,$tmp0 bl __ecp_nistz256_sqr_mont # p256_sqr_mont(tmp0, S); ld $bi,$Zsqr($sp) # forward load for p256_mul_mont ld $a0,$M+0($sp) ld $a1,$M+8($sp) ld $a2,$M+16($sp) ld $a3,$M+24($sp) addi $rp,$rp_real,32 bl __ecp_nistz256_div_by_2 # p256_div_by_2(res_y, tmp0); addi $bp,$sp,$Zsqr addi $rp,$sp,$M bl __ecp_nistz256_mul_mont # p256_mul_mont(M, M, Zsqr); mr $t0,$acc0 # duplicate M mr $t1,$acc1 mr $t2,$acc2 mr $t3,$acc3 mr $a0,$acc0 # put M aside mr $a1,$acc1 mr $a2,$acc2 mr $a3,$acc3 addi $rp,$sp,$M bl __ecp_nistz256_add mr $t0,$a0 # restore M mr $t1,$a1 mr $t2,$a2 mr $t3,$a3 ld $bi,0($ap_real) # forward load for p256_mul_mont ld $a0,$S+0($sp) ld $a1,$S+8($sp) ld $a2,$S+16($sp) ld $a3,$S+24($sp) bl __ecp_nistz256_add # p256_mul_by_3(M, M); addi $bp,$ap_real,0 addi $rp,$sp,$S bl __ecp_nistz256_mul_mont # p256_mul_mont(S, S, in_x); mr $t0,$acc0 mr $t1,$acc1 mr $t2,$acc2 mr $t3,$acc3 ld $a0,$M+0($sp) # forward load for p256_sqr_mont ld $a1,$M+8($sp) ld $a2,$M+16($sp) ld $a3,$M+24($sp) addi $rp,$sp,$tmp0 bl __ecp_nistz256_add # p256_mul_by_2(tmp0, S); addi $rp,$rp_real,0 bl __ecp_nistz256_sqr_mont # p256_sqr_mont(res_x, M); addi $bp,$sp,$tmp0 bl __ecp_nistz256_sub_from # p256_sub(res_x, res_x, tmp0); addi $bp,$sp,$S addi $rp,$sp,$S bl __ecp_nistz256_sub_morf # p256_sub(S, S, res_x); ld $bi,$M($sp) mr $a0,$acc0 # copy S mr $a1,$acc1 mr $a2,$acc2 mr $a3,$acc3 addi $bp,$sp,$M bl __ecp_nistz256_mul_mont # p256_mul_mont(S, S, M); addi $bp,$rp_real,32 addi $rp,$rp_real,32 bl __ecp_nistz256_sub_from # p256_sub(res_y, S, res_y); mtlr r0 ld r20,$FRAME-8*12($sp) ld r21,$FRAME-8*11($sp) ld r22,$FRAME-8*10($sp) ld r23,$FRAME-8*9($sp) ld r24,$FRAME-8*8($sp) ld r25,$FRAME-8*7($sp) ld r26,$FRAME-8*6($sp) ld r27,$FRAME-8*5($sp) ld r28,$FRAME-8*4($sp) ld r29,$FRAME-8*3($sp) ld r30,$FRAME-8*2($sp) ld r31,$FRAME-8*1($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,0,0x80,12,2,0 .long 0 .size ecp_nistz256_point_double,.-ecp_nistz256_point_double ___ } ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); if (1) { my $FRAME = 64 + 32*12 + 16*8; my ($res_x,$res_y,$res_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(64+32*$_,(0..11)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); # above map() describes stack layout with 12 temporary # 256-bit vectors on top. my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp)=map("r$_",(16..21)); $code.=<<___; .globl ecp_nistz256_point_add .align 5 ecp_nistz256_point_add: stdu $sp,-$FRAME($sp) mflr r0 std r16,$FRAME-8*16($sp) std r17,$FRAME-8*15($sp) std r18,$FRAME-8*14($sp) std r19,$FRAME-8*13($sp) std r20,$FRAME-8*12($sp) std r21,$FRAME-8*11($sp) std r22,$FRAME-8*10($sp) std r23,$FRAME-8*9($sp) std r24,$FRAME-8*8($sp) std r25,$FRAME-8*7($sp) std r26,$FRAME-8*6($sp) std r27,$FRAME-8*5($sp) std r28,$FRAME-8*4($sp) std r29,$FRAME-8*3($sp) std r30,$FRAME-8*2($sp) std r31,$FRAME-8*1($sp) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 ld $a0,64($bp) # in2_z ld $a1,72($bp) ld $a2,80($bp) ld $a3,88($bp) mr $rp_real,$rp mr $ap_real,$ap mr $bp_real,$bp or $t0,$a0,$a1 or $t2,$a2,$a3 or $in2infty,$t0,$t2 neg $t0,$in2infty or $in2infty,$in2infty,$t0 sradi $in2infty,$in2infty,63 # !in2infty addi $rp,$sp,$Z2sqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Z2sqr, in2_z); ld $a0,64($ap_real) # in1_z ld $a1,72($ap_real) ld $a2,80($ap_real) ld $a3,88($ap_real) or $t0,$a0,$a1 or $t2,$a2,$a3 or $in1infty,$t0,$t2 neg $t0,$in1infty or $in1infty,$in1infty,$t0 sradi $in1infty,$in1infty,63 # !in1infty addi $rp,$sp,$Z1sqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Z1sqr, in1_z); ld $bi,64($bp_real) ld $a0,$Z2sqr+0($sp) ld $a1,$Z2sqr+8($sp) ld $a2,$Z2sqr+16($sp) ld $a3,$Z2sqr+24($sp) addi $bp,$bp_real,64 addi $rp,$sp,$S1 bl __ecp_nistz256_mul_mont # p256_mul_mont(S1, Z2sqr, in2_z); ld $bi,64($ap_real) ld $a0,$Z1sqr+0($sp) ld $a1,$Z1sqr+8($sp) ld $a2,$Z1sqr+16($sp) ld $a3,$Z1sqr+24($sp) addi $bp,$ap_real,64 addi $rp,$sp,$S2 bl __ecp_nistz256_mul_mont # p256_mul_mont(S2, Z1sqr, in1_z); ld $bi,32($ap_real) ld $a0,$S1+0($sp) ld $a1,$S1+8($sp) ld $a2,$S1+16($sp) ld $a3,$S1+24($sp) addi $bp,$ap_real,32 addi $rp,$sp,$S1 bl __ecp_nistz256_mul_mont # p256_mul_mont(S1, S1, in1_y); ld $bi,32($bp_real) ld $a0,$S2+0($sp) ld $a1,$S2+8($sp) ld $a2,$S2+16($sp) ld $a3,$S2+24($sp) addi $bp,$bp_real,32 addi $rp,$sp,$S2 bl __ecp_nistz256_mul_mont # p256_mul_mont(S2, S2, in2_y); addi $bp,$sp,$S1 ld $bi,$Z2sqr($sp) # forward load for p256_mul_mont ld $a0,0($ap_real) ld $a1,8($ap_real) ld $a2,16($ap_real) ld $a3,24($ap_real) addi $rp,$sp,$R bl __ecp_nistz256_sub_from # p256_sub(R, S2, S1); or $acc0,$acc0,$acc1 # see if result is zero or $acc2,$acc2,$acc3 or $temp,$acc0,$acc2 addi $bp,$sp,$Z2sqr addi $rp,$sp,$U1 bl __ecp_nistz256_mul_mont # p256_mul_mont(U1, in1_x, Z2sqr); ld $bi,$Z1sqr($sp) ld $a0,0($bp_real) ld $a1,8($bp_real) ld $a2,16($bp_real) ld $a3,24($bp_real) addi $bp,$sp,$Z1sqr addi $rp,$sp,$U2 bl __ecp_nistz256_mul_mont # p256_mul_mont(U2, in2_x, Z1sqr); addi $bp,$sp,$U1 ld $a0,$R+0($sp) # forward load for p256_sqr_mont ld $a1,$R+8($sp) ld $a2,$R+16($sp) ld $a3,$R+24($sp) addi $rp,$sp,$H bl __ecp_nistz256_sub_from # p256_sub(H, U2, U1); or $acc0,$acc0,$acc1 # see if result is zero or $acc2,$acc2,$acc3 or. $acc0,$acc0,$acc2 bne .Ladd_proceed # is_equal(U1,U2)? and. $t0,$in1infty,$in2infty beq .Ladd_proceed # (in1infty || in2infty)? cmpldi $temp,0 beq .Ladd_double # is_equal(S1,S2)? xor $a0,$a0,$a0 std $a0,0($rp_real) std $a0,8($rp_real) std $a0,16($rp_real) std $a0,24($rp_real) std $a0,32($rp_real) std $a0,40($rp_real) std $a0,48($rp_real) std $a0,56($rp_real) std $a0,64($rp_real) std $a0,72($rp_real) std $a0,80($rp_real) std $a0,88($rp_real) b .Ladd_done .align 4 .Ladd_double: ld $bp,0($sp) # back-link mr $ap,$ap_real mr $rp,$rp_real ld r16,$FRAME-8*16($sp) ld r17,$FRAME-8*15($sp) ld r18,$FRAME-8*14($sp) ld r19,$FRAME-8*13($sp) stdu $bp,$FRAME-288($sp) # difference in stack frame sizes b .Ldouble_shortcut .align 4 .Ladd_proceed: addi $rp,$sp,$Rsqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Rsqr, R); ld $bi,64($ap_real) ld $a0,$H+0($sp) ld $a1,$H+8($sp) ld $a2,$H+16($sp) ld $a3,$H+24($sp) addi $bp,$ap_real,64 addi $rp,$sp,$res_z bl __ecp_nistz256_mul_mont # p256_mul_mont(res_z, H, in1_z); ld $a0,$H+0($sp) ld $a1,$H+8($sp) ld $a2,$H+16($sp) ld $a3,$H+24($sp) addi $rp,$sp,$Hsqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Hsqr, H); ld $bi,64($bp_real) ld $a0,$res_z+0($sp) ld $a1,$res_z+8($sp) ld $a2,$res_z+16($sp) ld $a3,$res_z+24($sp) addi $bp,$bp_real,64 addi $rp,$sp,$res_z bl __ecp_nistz256_mul_mont # p256_mul_mont(res_z, res_z, in2_z); ld $bi,$H($sp) ld $a0,$Hsqr+0($sp) ld $a1,$Hsqr+8($sp) ld $a2,$Hsqr+16($sp) ld $a3,$Hsqr+24($sp) addi $bp,$sp,$H addi $rp,$sp,$Hcub bl __ecp_nistz256_mul_mont # p256_mul_mont(Hcub, Hsqr, H); ld $bi,$Hsqr($sp) ld $a0,$U1+0($sp) ld $a1,$U1+8($sp) ld $a2,$U1+16($sp) ld $a3,$U1+24($sp) addi $bp,$sp,$Hsqr addi $rp,$sp,$U2 bl __ecp_nistz256_mul_mont # p256_mul_mont(U2, U1, Hsqr); mr $t0,$acc0 mr $t1,$acc1 mr $t2,$acc2 mr $t3,$acc3 addi $rp,$sp,$Hsqr bl __ecp_nistz256_add # p256_mul_by_2(Hsqr, U2); addi $bp,$sp,$Rsqr addi $rp,$sp,$res_x bl __ecp_nistz256_sub_morf # p256_sub(res_x, Rsqr, Hsqr); addi $bp,$sp,$Hcub bl __ecp_nistz256_sub_from # p256_sub(res_x, res_x, Hcub); addi $bp,$sp,$U2 ld $bi,$Hcub($sp) # forward load for p256_mul_mont ld $a0,$S1+0($sp) ld $a1,$S1+8($sp) ld $a2,$S1+16($sp) ld $a3,$S1+24($sp) addi $rp,$sp,$res_y bl __ecp_nistz256_sub_morf # p256_sub(res_y, U2, res_x); addi $bp,$sp,$Hcub addi $rp,$sp,$S2 bl __ecp_nistz256_mul_mont # p256_mul_mont(S2, S1, Hcub); ld $bi,$R($sp) ld $a0,$res_y+0($sp) ld $a1,$res_y+8($sp) ld $a2,$res_y+16($sp) ld $a3,$res_y+24($sp) addi $bp,$sp,$R addi $rp,$sp,$res_y bl __ecp_nistz256_mul_mont # p256_mul_mont(res_y, res_y, R); addi $bp,$sp,$S2 bl __ecp_nistz256_sub_from # p256_sub(res_y, res_y, S2); ld $t0,0($bp_real) # in2 ld $t1,8($bp_real) ld $t2,16($bp_real) ld $t3,24($bp_real) ld $a0,$res_x+0($sp) # res ld $a1,$res_x+8($sp) ld $a2,$res_x+16($sp) ld $a3,$res_x+24($sp) ___ for($i=0;$i<64;$i+=32) { # conditional moves $code.=<<___; ld $acc0,$i+0($ap_real) # in1 ld $acc1,$i+8($ap_real) ld $acc2,$i+16($ap_real) ld $acc3,$i+24($ap_real) andc $t0,$t0,$in1infty andc $t1,$t1,$in1infty andc $t2,$t2,$in1infty andc $t3,$t3,$in1infty and $a0,$a0,$in1infty and $a1,$a1,$in1infty and $a2,$a2,$in1infty and $a3,$a3,$in1infty or $t0,$t0,$a0 or $t1,$t1,$a1 or $t2,$t2,$a2 or $t3,$t3,$a3 andc $acc0,$acc0,$in2infty andc $acc1,$acc1,$in2infty andc $acc2,$acc2,$in2infty andc $acc3,$acc3,$in2infty and $t0,$t0,$in2infty and $t1,$t1,$in2infty and $t2,$t2,$in2infty and $t3,$t3,$in2infty or $acc0,$acc0,$t0 or $acc1,$acc1,$t1 or $acc2,$acc2,$t2 or $acc3,$acc3,$t3 ld $t0,$i+32($bp_real) # in2 ld $t1,$i+40($bp_real) ld $t2,$i+48($bp_real) ld $t3,$i+56($bp_real) ld $a0,$res_x+$i+32($sp) ld $a1,$res_x+$i+40($sp) ld $a2,$res_x+$i+48($sp) ld $a3,$res_x+$i+56($sp) std $acc0,$i+0($rp_real) std $acc1,$i+8($rp_real) std $acc2,$i+16($rp_real) std $acc3,$i+24($rp_real) ___ } $code.=<<___; ld $acc0,$i+0($ap_real) # in1 ld $acc1,$i+8($ap_real) ld $acc2,$i+16($ap_real) ld $acc3,$i+24($ap_real) andc $t0,$t0,$in1infty andc $t1,$t1,$in1infty andc $t2,$t2,$in1infty andc $t3,$t3,$in1infty and $a0,$a0,$in1infty and $a1,$a1,$in1infty and $a2,$a2,$in1infty and $a3,$a3,$in1infty or $t0,$t0,$a0 or $t1,$t1,$a1 or $t2,$t2,$a2 or $t3,$t3,$a3 andc $acc0,$acc0,$in2infty andc $acc1,$acc1,$in2infty andc $acc2,$acc2,$in2infty andc $acc3,$acc3,$in2infty and $t0,$t0,$in2infty and $t1,$t1,$in2infty and $t2,$t2,$in2infty and $t3,$t3,$in2infty or $acc0,$acc0,$t0 or $acc1,$acc1,$t1 or $acc2,$acc2,$t2 or $acc3,$acc3,$t3 std $acc0,$i+0($rp_real) std $acc1,$i+8($rp_real) std $acc2,$i+16($rp_real) std $acc3,$i+24($rp_real) .Ladd_done: mtlr r0 ld r16,$FRAME-8*16($sp) ld r17,$FRAME-8*15($sp) ld r18,$FRAME-8*14($sp) ld r19,$FRAME-8*13($sp) ld r20,$FRAME-8*12($sp) ld r21,$FRAME-8*11($sp) ld r22,$FRAME-8*10($sp) ld r23,$FRAME-8*9($sp) ld r24,$FRAME-8*8($sp) ld r25,$FRAME-8*7($sp) ld r26,$FRAME-8*6($sp) ld r27,$FRAME-8*5($sp) ld r28,$FRAME-8*4($sp) ld r29,$FRAME-8*3($sp) ld r30,$FRAME-8*2($sp) ld r31,$FRAME-8*1($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,0,0x80,16,3,0 .long 0 .size ecp_nistz256_point_add,.-ecp_nistz256_point_add ___ } ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, # const P256_POINT_AFFINE *in2); if (1) { my $FRAME = 64 + 32*10 + 16*8; my ($res_x,$res_y,$res_z, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(64+32*$_,(0..9)); my $Z1sqr = $S2; # above map() describes stack layout with 10 temporary # 256-bit vectors on top. my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp)=map("r$_",(16..21)); $code.=<<___; .globl ecp_nistz256_point_add_affine .align 5 ecp_nistz256_point_add_affine: stdu $sp,-$FRAME($sp) mflr r0 std r16,$FRAME-8*16($sp) std r17,$FRAME-8*15($sp) std r18,$FRAME-8*14($sp) std r19,$FRAME-8*13($sp) std r20,$FRAME-8*12($sp) std r21,$FRAME-8*11($sp) std r22,$FRAME-8*10($sp) std r23,$FRAME-8*9($sp) std r24,$FRAME-8*8($sp) std r25,$FRAME-8*7($sp) std r26,$FRAME-8*6($sp) std r27,$FRAME-8*5($sp) std r28,$FRAME-8*4($sp) std r29,$FRAME-8*3($sp) std r30,$FRAME-8*2($sp) std r31,$FRAME-8*1($sp) li $poly1,-1 srdi $poly1,$poly1,32 # 0x00000000ffffffff li $poly3,1 orc $poly3,$poly3,$poly1 # 0xffffffff00000001 mr $rp_real,$rp mr $ap_real,$ap mr $bp_real,$bp ld $a0,64($ap) # in1_z ld $a1,72($ap) ld $a2,80($ap) ld $a3,88($ap) or $t0,$a0,$a1 or $t2,$a2,$a3 or $in1infty,$t0,$t2 neg $t0,$in1infty or $in1infty,$in1infty,$t0 sradi $in1infty,$in1infty,63 # !in1infty ld $acc0,0($bp) # in2_x ld $acc1,8($bp) ld $acc2,16($bp) ld $acc3,24($bp) ld $t0,32($bp) # in2_y ld $t1,40($bp) ld $t2,48($bp) ld $t3,56($bp) or $acc0,$acc0,$acc1 or $acc2,$acc2,$acc3 or $acc0,$acc0,$acc2 or $t0,$t0,$t1 or $t2,$t2,$t3 or $t0,$t0,$t2 or $in2infty,$acc0,$t0 neg $t0,$in2infty or $in2infty,$in2infty,$t0 sradi $in2infty,$in2infty,63 # !in2infty addi $rp,$sp,$Z1sqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Z1sqr, in1_z); mr $a0,$acc0 mr $a1,$acc1 mr $a2,$acc2 mr $a3,$acc3 ld $bi,0($bp_real) addi $bp,$bp_real,0 addi $rp,$sp,$U2 bl __ecp_nistz256_mul_mont # p256_mul_mont(U2, Z1sqr, in2_x); addi $bp,$ap_real,0 ld $bi,64($ap_real) # forward load for p256_mul_mont ld $a0,$Z1sqr+0($sp) ld $a1,$Z1sqr+8($sp) ld $a2,$Z1sqr+16($sp) ld $a3,$Z1sqr+24($sp) addi $rp,$sp,$H bl __ecp_nistz256_sub_from # p256_sub(H, U2, in1_x); addi $bp,$ap_real,64 addi $rp,$sp,$S2 bl __ecp_nistz256_mul_mont # p256_mul_mont(S2, Z1sqr, in1_z); ld $bi,64($ap_real) ld $a0,$H+0($sp) ld $a1,$H+8($sp) ld $a2,$H+16($sp) ld $a3,$H+24($sp) addi $bp,$ap_real,64 addi $rp,$sp,$res_z bl __ecp_nistz256_mul_mont # p256_mul_mont(res_z, H, in1_z); ld $bi,32($bp_real) ld $a0,$S2+0($sp) ld $a1,$S2+8($sp) ld $a2,$S2+16($sp) ld $a3,$S2+24($sp) addi $bp,$bp_real,32 addi $rp,$sp,$S2 bl __ecp_nistz256_mul_mont # p256_mul_mont(S2, S2, in2_y); addi $bp,$ap_real,32 ld $a0,$H+0($sp) # forward load for p256_sqr_mont ld $a1,$H+8($sp) ld $a2,$H+16($sp) ld $a3,$H+24($sp) addi $rp,$sp,$R bl __ecp_nistz256_sub_from # p256_sub(R, S2, in1_y); addi $rp,$sp,$Hsqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Hsqr, H); ld $a0,$R+0($sp) ld $a1,$R+8($sp) ld $a2,$R+16($sp) ld $a3,$R+24($sp) addi $rp,$sp,$Rsqr bl __ecp_nistz256_sqr_mont # p256_sqr_mont(Rsqr, R); ld $bi,$H($sp) ld $a0,$Hsqr+0($sp) ld $a1,$Hsqr+8($sp) ld $a2,$Hsqr+16($sp) ld $a3,$Hsqr+24($sp) addi $bp,$sp,$H addi $rp,$sp,$Hcub bl __ecp_nistz256_mul_mont # p256_mul_mont(Hcub, Hsqr, H); ld $bi,0($ap_real) ld $a0,$Hsqr+0($sp) ld $a1,$Hsqr+8($sp) ld $a2,$Hsqr+16($sp) ld $a3,$Hsqr+24($sp) addi $bp,$ap_real,0 addi $rp,$sp,$U2 bl __ecp_nistz256_mul_mont # p256_mul_mont(U2, in1_x, Hsqr); mr $t0,$acc0 mr $t1,$acc1 mr $t2,$acc2 mr $t3,$acc3 addi $rp,$sp,$Hsqr bl __ecp_nistz256_add # p256_mul_by_2(Hsqr, U2); addi $bp,$sp,$Rsqr addi $rp,$sp,$res_x bl __ecp_nistz256_sub_morf # p256_sub(res_x, Rsqr, Hsqr); addi $bp,$sp,$Hcub bl __ecp_nistz256_sub_from # p256_sub(res_x, res_x, Hcub); addi $bp,$sp,$U2 ld $bi,32($ap_real) # forward load for p256_mul_mont ld $a0,$Hcub+0($sp) ld $a1,$Hcub+8($sp) ld $a2,$Hcub+16($sp) ld $a3,$Hcub+24($sp) addi $rp,$sp,$res_y bl __ecp_nistz256_sub_morf # p256_sub(res_y, U2, res_x); addi $bp,$ap_real,32 addi $rp,$sp,$S2 bl __ecp_nistz256_mul_mont # p256_mul_mont(S2, in1_y, Hcub); ld $bi,$R($sp) ld $a0,$res_y+0($sp) ld $a1,$res_y+8($sp) ld $a2,$res_y+16($sp) ld $a3,$res_y+24($sp) addi $bp,$sp,$R addi $rp,$sp,$res_y bl __ecp_nistz256_mul_mont # p256_mul_mont(res_y, res_y, R); addi $bp,$sp,$S2 bl __ecp_nistz256_sub_from # p256_sub(res_y, res_y, S2); ld $t0,0($bp_real) # in2 ld $t1,8($bp_real) ld $t2,16($bp_real) ld $t3,24($bp_real) ld $a0,$res_x+0($sp) # res ld $a1,$res_x+8($sp) ld $a2,$res_x+16($sp) ld $a3,$res_x+24($sp) ___ for($i=0;$i<64;$i+=32) { # conditional moves $code.=<<___; ld $acc0,$i+0($ap_real) # in1 ld $acc1,$i+8($ap_real) ld $acc2,$i+16($ap_real) ld $acc3,$i+24($ap_real) andc $t0,$t0,$in1infty andc $t1,$t1,$in1infty andc $t2,$t2,$in1infty andc $t3,$t3,$in1infty and $a0,$a0,$in1infty and $a1,$a1,$in1infty and $a2,$a2,$in1infty and $a3,$a3,$in1infty or $t0,$t0,$a0 or $t1,$t1,$a1 or $t2,$t2,$a2 or $t3,$t3,$a3 andc $acc0,$acc0,$in2infty andc $acc1,$acc1,$in2infty andc $acc2,$acc2,$in2infty andc $acc3,$acc3,$in2infty and $t0,$t0,$in2infty and $t1,$t1,$in2infty and $t2,$t2,$in2infty and $t3,$t3,$in2infty or $acc0,$acc0,$t0 or $acc1,$acc1,$t1 or $acc2,$acc2,$t2 or $acc3,$acc3,$t3 ___ $code.=<<___ if ($i==0); ld $t0,32($bp_real) # in2 ld $t1,40($bp_real) ld $t2,48($bp_real) ld $t3,56($bp_real) ___ $code.=<<___ if ($i==32); li $t0,1 # Lone_mont not $t1,$poly1 li $t2,-1 not $t3,$poly3 ___ $code.=<<___; ld $a0,$res_x+$i+32($sp) ld $a1,$res_x+$i+40($sp) ld $a2,$res_x+$i+48($sp) ld $a3,$res_x+$i+56($sp) std $acc0,$i+0($rp_real) std $acc1,$i+8($rp_real) std $acc2,$i+16($rp_real) std $acc3,$i+24($rp_real) ___ } $code.=<<___; ld $acc0,$i+0($ap_real) # in1 ld $acc1,$i+8($ap_real) ld $acc2,$i+16($ap_real) ld $acc3,$i+24($ap_real) andc $t0,$t0,$in1infty andc $t1,$t1,$in1infty andc $t2,$t2,$in1infty andc $t3,$t3,$in1infty and $a0,$a0,$in1infty and $a1,$a1,$in1infty and $a2,$a2,$in1infty and $a3,$a3,$in1infty or $t0,$t0,$a0 or $t1,$t1,$a1 or $t2,$t2,$a2 or $t3,$t3,$a3 andc $acc0,$acc0,$in2infty andc $acc1,$acc1,$in2infty andc $acc2,$acc2,$in2infty andc $acc3,$acc3,$in2infty and $t0,$t0,$in2infty and $t1,$t1,$in2infty and $t2,$t2,$in2infty and $t3,$t3,$in2infty or $acc0,$acc0,$t0 or $acc1,$acc1,$t1 or $acc2,$acc2,$t2 or $acc3,$acc3,$t3 std $acc0,$i+0($rp_real) std $acc1,$i+8($rp_real) std $acc2,$i+16($rp_real) std $acc3,$i+24($rp_real) mtlr r0 ld r16,$FRAME-8*16($sp) ld r17,$FRAME-8*15($sp) ld r18,$FRAME-8*14($sp) ld r19,$FRAME-8*13($sp) ld r20,$FRAME-8*12($sp) ld r21,$FRAME-8*11($sp) ld r22,$FRAME-8*10($sp) ld r23,$FRAME-8*9($sp) ld r24,$FRAME-8*8($sp) ld r25,$FRAME-8*7($sp) ld r26,$FRAME-8*6($sp) ld r27,$FRAME-8*5($sp) ld r28,$FRAME-8*4($sp) ld r29,$FRAME-8*3($sp) ld r30,$FRAME-8*2($sp) ld r31,$FRAME-8*1($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,0,0x80,16,3,0 .long 0 .size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine ___ } if (1) { my ($ordk,$ord0,$ord1,$t4) = map("r$_",(18..21)); my ($ord2,$ord3,$zr) = ($poly1,$poly3,"r0"); $code.=<<___; ######################################################################## # void ecp_nistz256_ord_mul_mont(uint64_t res[4], uint64_t a[4], # uint64_t b[4]); .globl ecp_nistz256_ord_mul_mont .align 5 ecp_nistz256_ord_mul_mont: stdu $sp,-160($sp) std r18,48($sp) std r19,56($sp) std r20,64($sp) std r21,72($sp) std r22,80($sp) std r23,88($sp) std r24,96($sp) std r25,104($sp) std r26,112($sp) std r27,120($sp) std r28,128($sp) std r29,136($sp) std r30,144($sp) std r31,152($sp) ld $a0,0($ap) ld $bi,0($bp) ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) lis $ordk,0xccd1 lis $ord0,0xf3b9 lis $ord1,0xbce6 ori $ordk,$ordk,0xc8aa ori $ord0,$ord0,0xcac2 ori $ord1,$ord1,0xfaad sldi $ordk,$ordk,32 sldi $ord0,$ord0,32 sldi $ord1,$ord1,32 oris $ordk,$ordk,0xee00 oris $ord0,$ord0,0xfc63 oris $ord1,$ord1,0xa717 ori $ordk,$ordk,0xbc4f # 0xccd1c8aaee00bc4f ori $ord0,$ord0,0x2551 # 0xf3b9cac2fc632551 ori $ord1,$ord1,0x9e84 # 0xbce6faada7179e84 li $ord2,-1 # 0xffffffffffffffff sldi $ord3,$ord2,32 # 0xffffffff00000000 li $zr,0 mulld $acc0,$a0,$bi # a[0]*b[0] mulhdu $t0,$a0,$bi mulld $acc1,$a1,$bi # a[1]*b[0] mulhdu $t1,$a1,$bi mulld $acc2,$a2,$bi # a[2]*b[0] mulhdu $t2,$a2,$bi mulld $acc3,$a3,$bi # a[3]*b[0] mulhdu $acc4,$a3,$bi mulld $t4,$acc0,$ordk addc $acc1,$acc1,$t0 # accumulate high parts of multiplication adde $acc2,$acc2,$t1 adde $acc3,$acc3,$t2 addze $acc4,$acc4 li $acc5,0 ___ for ($i=1;$i<4;$i++) { ################################################################ # ffff0000.ffffffff.yyyyyyyy.zzzzzzzz # * abcdefgh # + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx # - 0000abcd.efgh0000.abcdefgh.00000000.00000000 # + abcdefgh.abcdefgh.yzayzbyz.cyzdyzey.zfyzgyzh $code.=<<___; ld $bi,8*$i($bp) # b[i] sldi $t0,$t4,32 subfc $acc2,$t4,$acc2 srdi $t1,$t4,32 subfe $acc3,$t0,$acc3 subfe $acc4,$t1,$acc4 subfe $acc5,$zr,$acc5 addic $t0,$acc0,-1 # discarded mulhdu $t1,$ord0,$t4 mulld $t2,$ord1,$t4 mulhdu $t3,$ord1,$t4 adde $t2,$t2,$t1 mulld $t0,$a0,$bi addze $t3,$t3 mulld $t1,$a1,$bi addc $acc0,$acc1,$t2 mulld $t2,$a2,$bi adde $acc1,$acc2,$t3 mulld $t3,$a3,$bi adde $acc2,$acc3,$t4 adde $acc3,$acc4,$t4 addze $acc4,$acc5 addc $acc0,$acc0,$t0 # accumulate low parts mulhdu $t0,$a0,$bi adde $acc1,$acc1,$t1 mulhdu $t1,$a1,$bi adde $acc2,$acc2,$t2 mulhdu $t2,$a2,$bi adde $acc3,$acc3,$t3 mulhdu $t3,$a3,$bi addze $acc4,$acc4 mulld $t4,$acc0,$ordk addc $acc1,$acc1,$t0 # accumulate high parts adde $acc2,$acc2,$t1 adde $acc3,$acc3,$t2 adde $acc4,$acc4,$t3 addze $acc5,$zr ___ } $code.=<<___; sldi $t0,$t4,32 # last reduction subfc $acc2,$t4,$acc2 srdi $t1,$t4,32 subfe $acc3,$t0,$acc3 subfe $acc4,$t1,$acc4 subfe $acc5,$zr,$acc5 addic $t0,$acc0,-1 # discarded mulhdu $t1,$ord0,$t4 mulld $t2,$ord1,$t4 mulhdu $t3,$ord1,$t4 adde $t2,$t2,$t1 addze $t3,$t3 addc $acc0,$acc1,$t2 adde $acc1,$acc2,$t3 adde $acc2,$acc3,$t4 adde $acc3,$acc4,$t4 addze $acc4,$acc5 subfc $acc0,$ord0,$acc0 # ret -= modulus subfe $acc1,$ord1,$acc1 subfe $acc2,$ord2,$acc2 subfe $acc3,$ord3,$acc3 subfe $acc4,$zr,$acc4 and $t0,$ord0,$acc4 and $t1,$ord1,$acc4 addc $acc0,$acc0,$t0 # ret += modulus if borrow and $t3,$ord3,$acc4 adde $acc1,$acc1,$t1 adde $acc2,$acc2,$acc4 adde $acc3,$acc3,$t3 std $acc0,0($rp) std $acc1,8($rp) std $acc2,16($rp) std $acc3,24($rp) ld r18,48($sp) ld r19,56($sp) ld r20,64($sp) ld r21,72($sp) ld r22,80($sp) ld r23,88($sp) ld r24,96($sp) ld r25,104($sp) ld r26,112($sp) ld r27,120($sp) ld r28,128($sp) ld r29,136($sp) ld r30,144($sp) ld r31,152($sp) addi $sp,$sp,160 blr .long 0 .byte 0,12,4,0,0x80,14,3,0 .long 0 .size ecp_nistz256_ord_mul_mont,.-ecp_nistz256_ord_mul_mont ################################################################################ # void ecp_nistz256_ord_sqr_mont(uint64_t res[4], uint64_t a[4], # int rep); .globl ecp_nistz256_ord_sqr_mont .align 5 ecp_nistz256_ord_sqr_mont: stdu $sp,-160($sp) std r18,48($sp) std r19,56($sp) std r20,64($sp) std r21,72($sp) std r22,80($sp) std r23,88($sp) std r24,96($sp) std r25,104($sp) std r26,112($sp) std r27,120($sp) std r28,128($sp) std r29,136($sp) std r30,144($sp) std r31,152($sp) mtctr $bp ld $a0,0($ap) ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) lis $ordk,0xccd1 lis $ord0,0xf3b9 lis $ord1,0xbce6 ori $ordk,$ordk,0xc8aa ori $ord0,$ord0,0xcac2 ori $ord1,$ord1,0xfaad sldi $ordk,$ordk,32 sldi $ord0,$ord0,32 sldi $ord1,$ord1,32 oris $ordk,$ordk,0xee00 oris $ord0,$ord0,0xfc63 oris $ord1,$ord1,0xa717 ori $ordk,$ordk,0xbc4f # 0xccd1c8aaee00bc4f ori $ord0,$ord0,0x2551 # 0xf3b9cac2fc632551 ori $ord1,$ord1,0x9e84 # 0xbce6faada7179e84 li $ord2,-1 # 0xffffffffffffffff sldi $ord3,$ord2,32 # 0xffffffff00000000 li $zr,0 b .Loop_ord_sqr .align 5 .Loop_ord_sqr: ################################################################ # | | | | | |a1*a0| | # | | | | |a2*a0| | | # | |a3*a2|a3*a0| | | | # | | | |a2*a1| | | | # | | |a3*a1| | | | | # *| | | | | | | | 2| # +|a3*a3|a2*a2|a1*a1|a0*a0| # |--+--+--+--+--+--+--+--| # |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx # # "can't overflow" below mark carrying into high part of # multiplication result, which can't overflow, because it # can never be all ones. mulld $acc1,$a1,$a0 # a[1]*a[0] mulhdu $t1,$a1,$a0 mulld $acc2,$a2,$a0 # a[2]*a[0] mulhdu $t2,$a2,$a0 mulld $acc3,$a3,$a0 # a[3]*a[0] mulhdu $acc4,$a3,$a0 addc $acc2,$acc2,$t1 # accumulate high parts of multiplication mulld $t0,$a2,$a1 # a[2]*a[1] mulhdu $t1,$a2,$a1 adde $acc3,$acc3,$t2 mulld $t2,$a3,$a1 # a[3]*a[1] mulhdu $t3,$a3,$a1 addze $acc4,$acc4 # can't overflow mulld $acc5,$a3,$a2 # a[3]*a[2] mulhdu $acc6,$a3,$a2 addc $t1,$t1,$t2 # accumulate high parts of multiplication mulld $acc0,$a0,$a0 # a[0]*a[0] addze $t2,$t3 # can't overflow addc $acc3,$acc3,$t0 # accumulate low parts of multiplication mulhdu $a0,$a0,$a0 adde $acc4,$acc4,$t1 mulld $t1,$a1,$a1 # a[1]*a[1] adde $acc5,$acc5,$t2 mulhdu $a1,$a1,$a1 addze $acc6,$acc6 # can't overflow addc $acc1,$acc1,$acc1 # acc[1-6]*=2 mulld $t2,$a2,$a2 # a[2]*a[2] adde $acc2,$acc2,$acc2 mulhdu $a2,$a2,$a2 adde $acc3,$acc3,$acc3 mulld $t3,$a3,$a3 # a[3]*a[3] adde $acc4,$acc4,$acc4 mulhdu $a3,$a3,$a3 adde $acc5,$acc5,$acc5 adde $acc6,$acc6,$acc6 addze $acc7,$zr addc $acc1,$acc1,$a0 # +a[i]*a[i] mulld $t4,$acc0,$ordk adde $acc2,$acc2,$t1 adde $acc3,$acc3,$a1 adde $acc4,$acc4,$t2 adde $acc5,$acc5,$a2 adde $acc6,$acc6,$t3 adde $acc7,$acc7,$a3 ___ for($i=0; $i<4; $i++) { # reductions $code.=<<___; addic $t0,$acc0,-1 # discarded mulhdu $t1,$ord0,$t4 mulld $t2,$ord1,$t4 mulhdu $t3,$ord1,$t4 adde $t2,$t2,$t1 addze $t3,$t3 addc $acc0,$acc1,$t2 adde $acc1,$acc2,$t3 adde $acc2,$acc3,$t4 adde $acc3,$zr,$t4 # can't overflow ___ $code.=<<___ if ($i<3); mulld $t3,$acc0,$ordk ___ $code.=<<___; sldi $t0,$t4,32 subfc $acc1,$t4,$acc1 srdi $t1,$t4,32 subfe $acc2,$t0,$acc2 subfe $acc3,$t1,$acc3 # can't borrow ___ ($t3,$t4) = ($t4,$t3); } $code.=<<___; addc $acc0,$acc0,$acc4 # accumulate upper half adde $acc1,$acc1,$acc5 adde $acc2,$acc2,$acc6 adde $acc3,$acc3,$acc7 addze $acc4,$zr subfc $acc0,$ord0,$acc0 # ret -= modulus subfe $acc1,$ord1,$acc1 subfe $acc2,$ord2,$acc2 subfe $acc3,$ord3,$acc3 subfe $acc4,$zr,$acc4 and $t0,$ord0,$acc4 and $t1,$ord1,$acc4 addc $a0,$acc0,$t0 # ret += modulus if borrow and $t3,$ord3,$acc4 adde $a1,$acc1,$t1 adde $a2,$acc2,$acc4 adde $a3,$acc3,$t3 bdnz .Loop_ord_sqr std $a0,0($rp) std $a1,8($rp) std $a2,16($rp) std $a3,24($rp) ld r18,48($sp) ld r19,56($sp) ld r20,64($sp) ld r21,72($sp) ld r22,80($sp) ld r23,88($sp) ld r24,96($sp) ld r25,104($sp) ld r26,112($sp) ld r27,120($sp) ld r28,128($sp) ld r29,136($sp) ld r30,144($sp) ld r31,152($sp) addi $sp,$sp,160 blr .long 0 .byte 0,12,4,0,0x80,14,3,0 .long 0 .size ecp_nistz256_ord_sqr_mont,.-ecp_nistz256_ord_sqr_mont ___ } } ######################################################################## # scatter-gather subroutines { my ($out,$inp,$index,$mask)=map("r$_",(3..7)); $code.=<<___; ######################################################################## # void ecp_nistz256_scatter_w5(void *out, const P256_POINT *inp, # int index); .globl ecp_nistz256_scatter_w5 .align 4 ecp_nistz256_scatter_w5: slwi $index,$index,2 add $out,$out,$index ld r8, 0($inp) # X ld r9, 8($inp) ld r10,16($inp) ld r11,24($inp) stw r8, 64*0-4($out) srdi r8, r8, 32 stw r9, 64*1-4($out) srdi r9, r9, 32 stw r10,64*2-4($out) srdi r10,r10,32 stw r11,64*3-4($out) srdi r11,r11,32 stw r8, 64*4-4($out) stw r9, 64*5-4($out) stw r10,64*6-4($out) stw r11,64*7-4($out) addi $out,$out,64*8 ld r8, 32($inp) # Y ld r9, 40($inp) ld r10,48($inp) ld r11,56($inp) stw r8, 64*0-4($out) srdi r8, r8, 32 stw r9, 64*1-4($out) srdi r9, r9, 32 stw r10,64*2-4($out) srdi r10,r10,32 stw r11,64*3-4($out) srdi r11,r11,32 stw r8, 64*4-4($out) stw r9, 64*5-4($out) stw r10,64*6-4($out) stw r11,64*7-4($out) addi $out,$out,64*8 ld r8, 64($inp) # Z ld r9, 72($inp) ld r10,80($inp) ld r11,88($inp) stw r8, 64*0-4($out) srdi r8, r8, 32 stw r9, 64*1-4($out) srdi r9, r9, 32 stw r10,64*2-4($out) srdi r10,r10,32 stw r11,64*3-4($out) srdi r11,r11,32 stw r8, 64*4-4($out) stw r9, 64*5-4($out) stw r10,64*6-4($out) stw r11,64*7-4($out) blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5 ######################################################################## # void ecp_nistz256_gather_w5(P256_POINT *out, const void *inp, # int index); .globl ecp_nistz256_gather_w5 .align 4 ecp_nistz256_gather_w5: neg r0,$index sradi r0,r0,63 add $index,$index,r0 slwi $index,$index,2 add $inp,$inp,$index lwz r5, 64*0($inp) lwz r6, 64*1($inp) lwz r7, 64*2($inp) lwz r8, 64*3($inp) lwz r9, 64*4($inp) lwz r10,64*5($inp) lwz r11,64*6($inp) lwz r12,64*7($inp) addi $inp,$inp,64*8 sldi r9, r9, 32 sldi r10,r10,32 sldi r11,r11,32 sldi r12,r12,32 or r5,r5,r9 or r6,r6,r10 or r7,r7,r11 or r8,r8,r12 and r5,r5,r0 and r6,r6,r0 and r7,r7,r0 and r8,r8,r0 std r5,0($out) # X std r6,8($out) std r7,16($out) std r8,24($out) lwz r5, 64*0($inp) lwz r6, 64*1($inp) lwz r7, 64*2($inp) lwz r8, 64*3($inp) lwz r9, 64*4($inp) lwz r10,64*5($inp) lwz r11,64*6($inp) lwz r12,64*7($inp) addi $inp,$inp,64*8 sldi r9, r9, 32 sldi r10,r10,32 sldi r11,r11,32 sldi r12,r12,32 or r5,r5,r9 or r6,r6,r10 or r7,r7,r11 or r8,r8,r12 and r5,r5,r0 and r6,r6,r0 and r7,r7,r0 and r8,r8,r0 std r5,32($out) # Y std r6,40($out) std r7,48($out) std r8,56($out) lwz r5, 64*0($inp) lwz r6, 64*1($inp) lwz r7, 64*2($inp) lwz r8, 64*3($inp) lwz r9, 64*4($inp) lwz r10,64*5($inp) lwz r11,64*6($inp) lwz r12,64*7($inp) sldi r9, r9, 32 sldi r10,r10,32 sldi r11,r11,32 sldi r12,r12,32 or r5,r5,r9 or r6,r6,r10 or r7,r7,r11 or r8,r8,r12 and r5,r5,r0 and r6,r6,r0 and r7,r7,r0 and r8,r8,r0 std r5,64($out) # Z std r6,72($out) std r7,80($out) std r8,88($out) blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5 ######################################################################## # void ecp_nistz256_scatter_w7(void *out, const P256_POINT_AFFINE *inp, # int index); .globl ecp_nistz256_scatter_w7 .align 4 ecp_nistz256_scatter_w7: li r0,8 mtctr r0 add $out,$out,$index subi $inp,$inp,8 .Loop_scatter_w7: ldu r0,8($inp) stb r0,64*0($out) srdi r0,r0,8 stb r0,64*1($out) srdi r0,r0,8 stb r0,64*2($out) srdi r0,r0,8 stb r0,64*3($out) srdi r0,r0,8 stb r0,64*4($out) srdi r0,r0,8 stb r0,64*5($out) srdi r0,r0,8 stb r0,64*6($out) srdi r0,r0,8 stb r0,64*7($out) addi $out,$out,64*8 bdnz .Loop_scatter_w7 blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7 ######################################################################## # void ecp_nistz256_gather_w7(P256_POINT_AFFINE *out, const void *inp, # int index); .globl ecp_nistz256_gather_w7 .align 4 ecp_nistz256_gather_w7: li r0,8 mtctr r0 neg r0,$index sradi r0,r0,63 add $index,$index,r0 add $inp,$inp,$index subi $out,$out,8 .Loop_gather_w7: lbz r5, 64*0($inp) lbz r6, 64*1($inp) lbz r7, 64*2($inp) lbz r8, 64*3($inp) lbz r9, 64*4($inp) lbz r10,64*5($inp) lbz r11,64*6($inp) lbz r12,64*7($inp) addi $inp,$inp,64*8 sldi r6, r6, 8 sldi r7, r7, 16 sldi r8, r8, 24 sldi r9, r9, 32 sldi r10,r10,40 sldi r11,r11,48 sldi r12,r12,56 or r5,r5,r6 or r7,r7,r8 or r9,r9,r10 or r11,r11,r12 or r5,r5,r7 or r9,r9,r11 or r5,r5,r9 and r5,r5,r0 stdu r5,8($out) bdnz .Loop_gather_w7 blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7 ___ } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/ec/asm/ecp_nistz256-sparcv9.pl000077500000000000000000002306701364063235100222250ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for SPARCv9. # # February 2015. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. In the process of adaptation # original .c module was made 32-bit savvy in order to make this # implementation possible. # # with/without -DECP_NISTZ256_ASM # UltraSPARC III +12-18% # SPARC T4 +99-550% (+66-150% on 32-bit Solaris) # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, server-side # operation. Keep in mind that +200% means 3x improvement. $output = pop; open STDOUT,">$output"; $code.=<<___; #include "sparc_arch.h" #define LOCALS (STACK_BIAS+STACK_FRAME) #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch # define STACK64_FRAME STACK_FRAME # define LOCALS64 LOCALS #else # define STACK64_FRAME (2047+192) # define LOCALS64 STACK64_FRAME #endif .section ".text",#alloc,#execinstr ___ ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; # See ecp_nistz256_table.c for explanation for why it's 64*16*37. # 64*16*37-1 is because $#arr returns last valid index or @arr, not # amount of elements. die "insane number of elements" if ($#arr != 64*16*37-1); $code.=<<___; .globl ecp_nistz256_precomputed .align 4096 ecp_nistz256_precomputed: ___ ######################################################################## # this conversion smashes P256_POINT_AFFINE by individual bytes with # 64 byte interval, similar to # 1111222233334444 # 1234123412341234 for(1..37) { @tbl = splice(@arr,0,64*16); for($i=0;$i<64;$i++) { undef @line; for($j=0;$j<64;$j++) { push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; } $code.=".byte\t"; $code.=join(',',map { sprintf "0x%02x",$_} @line); $code.="\n"; } } {{{ my ($rp,$ap,$bp)=map("%i$_",(0..2)); my @acc=map("%l$_",(0..7)); my ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7)=(map("%o$_",(0..5)),"%g4","%g5"); my ($bi,$a0,$mask,$carry)=(map("%i$_",(3..5)),"%g1"); my ($rp_real,$ap_real)=("%g2","%g3"); $code.=<<___; .type ecp_nistz256_precomputed,#object .size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed .align 64 .LRR: ! 2^512 mod P precomputed for NIST P256 polynomial .long 0x00000003, 0x00000000, 0xffffffff, 0xfffffffb .long 0xfffffffe, 0xffffffff, 0xfffffffd, 0x00000004 .Lone: .long 1,0,0,0,0,0,0,0 .asciz "ECP_NISTZ256 for SPARCv9, CRYPTOGAMS by " ! void ecp_nistz256_to_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_to_mont .align 64 ecp_nistz256_to_mont: save %sp,-STACK_FRAME,%sp nop 1: call .+8 add %o7,.LRR-1b,$bp call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_to_mont,#function .size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont ! void ecp_nistz256_from_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_from_mont .align 32 ecp_nistz256_from_mont: save %sp,-STACK_FRAME,%sp nop 1: call .+8 add %o7,.Lone-1b,$bp call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_from_mont,#function .size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont ! void ecp_nistz256_mul_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8], ! const BN_ULONG %i2[8]); .globl ecp_nistz256_mul_mont .align 32 ecp_nistz256_mul_mont: save %sp,-STACK_FRAME,%sp nop call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_mul_mont,#function .size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont ! void ecp_nistz256_sqr_mont(BN_ULONG %i0[8],const BN_ULONG %i2[8]); .globl ecp_nistz256_sqr_mont .align 32 ecp_nistz256_sqr_mont: save %sp,-STACK_FRAME,%sp mov $ap,$bp call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_sqr_mont,#function .size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont ___ ######################################################################## # Special thing to keep in mind is that $t0-$t7 hold 64-bit values, # while all others are meant to keep 32. "Meant to" means that additions # to @acc[0-7] do "contaminate" upper bits, but they are cleared before # they can affect outcome (follow 'and' with $mask). Also keep in mind # that addition with carry is addition with 32-bit carry, even though # CPU is 64-bit. [Addition with 64-bit carry was introduced in T3, see # below for VIS3 code paths.] $code.=<<___; .align 32 __ecp_nistz256_mul_mont: ld [$bp+0],$bi ! b[0] mov -1,$mask ld [$ap+0],$a0 srl $mask,0,$mask ! 0xffffffff ld [$ap+4],$t1 ld [$ap+8],$t2 ld [$ap+12],$t3 ld [$ap+16],$t4 ld [$ap+20],$t5 ld [$ap+24],$t6 ld [$ap+28],$t7 mulx $a0,$bi,$t0 ! a[0-7]*b[0], 64-bit results mulx $t1,$bi,$t1 mulx $t2,$bi,$t2 mulx $t3,$bi,$t3 mulx $t4,$bi,$t4 mulx $t5,$bi,$t5 mulx $t6,$bi,$t6 mulx $t7,$bi,$t7 srlx $t0,32,@acc[1] ! extract high parts srlx $t1,32,@acc[2] srlx $t2,32,@acc[3] srlx $t3,32,@acc[4] srlx $t4,32,@acc[5] srlx $t5,32,@acc[6] srlx $t6,32,@acc[7] srlx $t7,32,@acc[0] ! "@acc[8]" mov 0,$carry ___ for($i=1;$i<8;$i++) { $code.=<<___; addcc @acc[1],$t1,@acc[1] ! accumulate high parts ld [$bp+4*$i],$bi ! b[$i] ld [$ap+4],$t1 ! re-load a[1-7] addccc @acc[2],$t2,@acc[2] addccc @acc[3],$t3,@acc[3] ld [$ap+8],$t2 ld [$ap+12],$t3 addccc @acc[4],$t4,@acc[4] addccc @acc[5],$t5,@acc[5] ld [$ap+16],$t4 ld [$ap+20],$t5 addccc @acc[6],$t6,@acc[6] addccc @acc[7],$t7,@acc[7] ld [$ap+24],$t6 ld [$ap+28],$t7 addccc @acc[0],$carry,@acc[0] ! "@acc[8]" addc %g0,%g0,$carry ___ # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff.0001.0000.0000.0000.ffff.ffff.ffff # * abcd # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 # - abcd.0000.0000.0000.0000.0000.0000.abcd # # or marking redundant operations: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- # + abcd.0000.abcd.0000.0000.abcd.----.----.---- # - abcd.----.----.----.----.----.----.---- $code.=<<___; ! multiplication-less reduction addcc @acc[3],$t0,@acc[3] ! r[3]+=r[0] addccc @acc[4],%g0,@acc[4] ! r[4]+=0 and @acc[1],$mask,@acc[1] and @acc[2],$mask,@acc[2] addccc @acc[5],%g0,@acc[5] ! r[5]+=0 addccc @acc[6],$t0,@acc[6] ! r[6]+=r[0] and @acc[3],$mask,@acc[3] and @acc[4],$mask,@acc[4] addccc @acc[7],%g0,@acc[7] ! r[7]+=0 addccc @acc[0],$t0,@acc[0] ! r[8]+=r[0] "@acc[8]" and @acc[5],$mask,@acc[5] and @acc[6],$mask,@acc[6] addc $carry,%g0,$carry ! top-most carry subcc @acc[7],$t0,@acc[7] ! r[7]-=r[0] subccc @acc[0],%g0,@acc[0] ! r[8]-=0 "@acc[8]" subc $carry,%g0,$carry ! top-most carry and @acc[7],$mask,@acc[7] and @acc[0],$mask,@acc[0] ! "@acc[8]" ___ push(@acc,shift(@acc)); # rotate registers to "omit" acc[0] $code.=<<___; mulx $a0,$bi,$t0 ! a[0-7]*b[$i], 64-bit results mulx $t1,$bi,$t1 mulx $t2,$bi,$t2 mulx $t3,$bi,$t3 mulx $t4,$bi,$t4 mulx $t5,$bi,$t5 mulx $t6,$bi,$t6 mulx $t7,$bi,$t7 add @acc[0],$t0,$t0 ! accumulate low parts, can't overflow add @acc[1],$t1,$t1 srlx $t0,32,@acc[1] ! extract high parts add @acc[2],$t2,$t2 srlx $t1,32,@acc[2] add @acc[3],$t3,$t3 srlx $t2,32,@acc[3] add @acc[4],$t4,$t4 srlx $t3,32,@acc[4] add @acc[5],$t5,$t5 srlx $t4,32,@acc[5] add @acc[6],$t6,$t6 srlx $t5,32,@acc[6] add @acc[7],$t7,$t7 srlx $t6,32,@acc[7] srlx $t7,32,@acc[0] ! "@acc[8]" ___ } $code.=<<___; addcc @acc[1],$t1,@acc[1] ! accumulate high parts addccc @acc[2],$t2,@acc[2] addccc @acc[3],$t3,@acc[3] addccc @acc[4],$t4,@acc[4] addccc @acc[5],$t5,@acc[5] addccc @acc[6],$t6,@acc[6] addccc @acc[7],$t7,@acc[7] addccc @acc[0],$carry,@acc[0] ! "@acc[8]" addc %g0,%g0,$carry addcc @acc[3],$t0,@acc[3] ! multiplication-less reduction addccc @acc[4],%g0,@acc[4] addccc @acc[5],%g0,@acc[5] addccc @acc[6],$t0,@acc[6] addccc @acc[7],%g0,@acc[7] addccc @acc[0],$t0,@acc[0] ! "@acc[8]" addc $carry,%g0,$carry subcc @acc[7],$t0,@acc[7] subccc @acc[0],%g0,@acc[0] ! "@acc[8]" subc $carry,%g0,$carry ! top-most carry ___ push(@acc,shift(@acc)); # rotate registers to omit acc[0] $code.=<<___; ! Final step is "if result > mod, subtract mod", but we do it ! "other way around", namely subtract modulus from result ! and if it borrowed, add modulus back. subcc @acc[0],-1,@acc[0] ! subtract modulus subccc @acc[1],-1,@acc[1] subccc @acc[2],-1,@acc[2] subccc @acc[3],0,@acc[3] subccc @acc[4],0,@acc[4] subccc @acc[5],0,@acc[5] subccc @acc[6],1,@acc[6] subccc @acc[7],-1,@acc[7] subc $carry,0,$carry ! broadcast borrow bit ! Note that because mod has special form, i.e. consists of ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by ! using value of broadcasted borrow and the borrow bit itself. ! To minimize dependency chain we first broadcast and then ! extract the bit by negating (follow $bi). addcc @acc[0],$carry,@acc[0] ! add modulus or zero addccc @acc[1],$carry,@acc[1] neg $carry,$bi st @acc[0],[$rp] addccc @acc[2],$carry,@acc[2] st @acc[1],[$rp+4] addccc @acc[3],0,@acc[3] st @acc[2],[$rp+8] addccc @acc[4],0,@acc[4] st @acc[3],[$rp+12] addccc @acc[5],0,@acc[5] st @acc[4],[$rp+16] addccc @acc[6],$bi,@acc[6] st @acc[5],[$rp+20] addc @acc[7],$carry,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_mul_mont,#function .size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont ! void ecp_nistz256_add(BN_ULONG %i0[8],const BN_ULONG %i1[8], ! const BN_ULONG %i2[8]); .globl ecp_nistz256_add .align 32 ecp_nistz256_add: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_add ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_add,#function .size ecp_nistz256_add,.-ecp_nistz256_add .align 32 __ecp_nistz256_add: ld [$bp+0],$t0 ! b[0] ld [$bp+4],$t1 ld [$bp+8],$t2 ld [$bp+12],$t3 addcc @acc[0],$t0,@acc[0] ld [$bp+16],$t4 ld [$bp+20],$t5 addccc @acc[1],$t1,@acc[1] ld [$bp+24],$t6 ld [$bp+28],$t7 addccc @acc[2],$t2,@acc[2] addccc @acc[3],$t3,@acc[3] addccc @acc[4],$t4,@acc[4] addccc @acc[5],$t5,@acc[5] addccc @acc[6],$t6,@acc[6] addccc @acc[7],$t7,@acc[7] addc %g0,%g0,$carry .Lreduce_by_sub: ! if a+b >= modulus, subtract modulus. ! ! But since comparison implies subtraction, we subtract ! modulus and then add it back if subtraction borrowed. subcc @acc[0],-1,@acc[0] subccc @acc[1],-1,@acc[1] subccc @acc[2],-1,@acc[2] subccc @acc[3], 0,@acc[3] subccc @acc[4], 0,@acc[4] subccc @acc[5], 0,@acc[5] subccc @acc[6], 1,@acc[6] subccc @acc[7],-1,@acc[7] subc $carry,0,$carry ! Note that because mod has special form, i.e. consists of ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by ! using value of borrow and its negative. addcc @acc[0],$carry,@acc[0] ! add synthesized modulus addccc @acc[1],$carry,@acc[1] neg $carry,$bi st @acc[0],[$rp] addccc @acc[2],$carry,@acc[2] st @acc[1],[$rp+4] addccc @acc[3],0,@acc[3] st @acc[2],[$rp+8] addccc @acc[4],0,@acc[4] st @acc[3],[$rp+12] addccc @acc[5],0,@acc[5] st @acc[4],[$rp+16] addccc @acc[6],$bi,@acc[6] st @acc[5],[$rp+20] addc @acc[7],$carry,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_add,#function .size __ecp_nistz256_add,.-__ecp_nistz256_add ! void ecp_nistz256_mul_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_mul_by_2 .align 32 ecp_nistz256_mul_by_2: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_mul_by_2 ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_mul_by_2,#function .size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 .align 32 __ecp_nistz256_mul_by_2: addcc @acc[0],@acc[0],@acc[0] ! a+a=2*a addccc @acc[1],@acc[1],@acc[1] addccc @acc[2],@acc[2],@acc[2] addccc @acc[3],@acc[3],@acc[3] addccc @acc[4],@acc[4],@acc[4] addccc @acc[5],@acc[5],@acc[5] addccc @acc[6],@acc[6],@acc[6] addccc @acc[7],@acc[7],@acc[7] b .Lreduce_by_sub addc %g0,%g0,$carry .type __ecp_nistz256_mul_by_2,#function .size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2 ! void ecp_nistz256_mul_by_3(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_mul_by_3 .align 32 ecp_nistz256_mul_by_3: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_mul_by_3 ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_mul_by_3,#function .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 .align 32 __ecp_nistz256_mul_by_3: addcc @acc[0],@acc[0],$t0 ! a+a=2*a addccc @acc[1],@acc[1],$t1 addccc @acc[2],@acc[2],$t2 addccc @acc[3],@acc[3],$t3 addccc @acc[4],@acc[4],$t4 addccc @acc[5],@acc[5],$t5 addccc @acc[6],@acc[6],$t6 addccc @acc[7],@acc[7],$t7 addc %g0,%g0,$carry subcc $t0,-1,$t0 ! .Lreduce_by_sub but without stores subccc $t1,-1,$t1 subccc $t2,-1,$t2 subccc $t3, 0,$t3 subccc $t4, 0,$t4 subccc $t5, 0,$t5 subccc $t6, 1,$t6 subccc $t7,-1,$t7 subc $carry,0,$carry addcc $t0,$carry,$t0 ! add synthesized modulus addccc $t1,$carry,$t1 neg $carry,$bi addccc $t2,$carry,$t2 addccc $t3,0,$t3 addccc $t4,0,$t4 addccc $t5,0,$t5 addccc $t6,$bi,$t6 addc $t7,$carry,$t7 addcc $t0,@acc[0],@acc[0] ! 2*a+a=3*a addccc $t1,@acc[1],@acc[1] addccc $t2,@acc[2],@acc[2] addccc $t3,@acc[3],@acc[3] addccc $t4,@acc[4],@acc[4] addccc $t5,@acc[5],@acc[5] addccc $t6,@acc[6],@acc[6] addccc $t7,@acc[7],@acc[7] b .Lreduce_by_sub addc %g0,%g0,$carry .type __ecp_nistz256_mul_by_3,#function .size __ecp_nistz256_mul_by_3,.-__ecp_nistz256_mul_by_3 ! void ecp_nistz256_sub(BN_ULONG %i0[8],const BN_ULONG %i1[8], ! const BN_ULONG %i2[8]); .globl ecp_nistz256_sub .align 32 ecp_nistz256_sub: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_sub_from ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_sub,#function .size ecp_nistz256_sub,.-ecp_nistz256_sub ! void ecp_nistz256_neg(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_neg .align 32 ecp_nistz256_neg: save %sp,-STACK_FRAME,%sp mov $ap,$bp mov 0,@acc[0] mov 0,@acc[1] mov 0,@acc[2] mov 0,@acc[3] mov 0,@acc[4] mov 0,@acc[5] mov 0,@acc[6] call __ecp_nistz256_sub_from mov 0,@acc[7] ret restore .type ecp_nistz256_neg,#function .size ecp_nistz256_neg,.-ecp_nistz256_neg .align 32 __ecp_nistz256_sub_from: ld [$bp+0],$t0 ! b[0] ld [$bp+4],$t1 ld [$bp+8],$t2 ld [$bp+12],$t3 subcc @acc[0],$t0,@acc[0] ld [$bp+16],$t4 ld [$bp+20],$t5 subccc @acc[1],$t1,@acc[1] subccc @acc[2],$t2,@acc[2] ld [$bp+24],$t6 ld [$bp+28],$t7 subccc @acc[3],$t3,@acc[3] subccc @acc[4],$t4,@acc[4] subccc @acc[5],$t5,@acc[5] subccc @acc[6],$t6,@acc[6] subccc @acc[7],$t7,@acc[7] subc %g0,%g0,$carry ! broadcast borrow bit .Lreduce_by_add: ! if a-b borrows, add modulus. ! ! Note that because mod has special form, i.e. consists of ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by ! using value of broadcasted borrow and the borrow bit itself. ! To minimize dependency chain we first broadcast and then ! extract the bit by negating (follow $bi). addcc @acc[0],$carry,@acc[0] ! add synthesized modulus addccc @acc[1],$carry,@acc[1] neg $carry,$bi st @acc[0],[$rp] addccc @acc[2],$carry,@acc[2] st @acc[1],[$rp+4] addccc @acc[3],0,@acc[3] st @acc[2],[$rp+8] addccc @acc[4],0,@acc[4] st @acc[3],[$rp+12] addccc @acc[5],0,@acc[5] st @acc[4],[$rp+16] addccc @acc[6],$bi,@acc[6] st @acc[5],[$rp+20] addc @acc[7],$carry,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_sub_from,#function .size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from .align 32 __ecp_nistz256_sub_morf: ld [$bp+0],$t0 ! b[0] ld [$bp+4],$t1 ld [$bp+8],$t2 ld [$bp+12],$t3 subcc $t0,@acc[0],@acc[0] ld [$bp+16],$t4 ld [$bp+20],$t5 subccc $t1,@acc[1],@acc[1] subccc $t2,@acc[2],@acc[2] ld [$bp+24],$t6 ld [$bp+28],$t7 subccc $t3,@acc[3],@acc[3] subccc $t4,@acc[4],@acc[4] subccc $t5,@acc[5],@acc[5] subccc $t6,@acc[6],@acc[6] subccc $t7,@acc[7],@acc[7] b .Lreduce_by_add subc %g0,%g0,$carry ! broadcast borrow bit .type __ecp_nistz256_sub_morf,#function .size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf ! void ecp_nistz256_div_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_div_by_2 .align 32 ecp_nistz256_div_by_2: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_div_by_2 ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_div_by_2,#function .size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 .align 32 __ecp_nistz256_div_by_2: ! ret = (a is odd ? a+mod : a) >> 1 and @acc[0],1,$bi neg $bi,$carry addcc @acc[0],$carry,@acc[0] addccc @acc[1],$carry,@acc[1] addccc @acc[2],$carry,@acc[2] addccc @acc[3],0,@acc[3] addccc @acc[4],0,@acc[4] addccc @acc[5],0,@acc[5] addccc @acc[6],$bi,@acc[6] addccc @acc[7],$carry,@acc[7] addc %g0,%g0,$carry ! ret >>= 1 srl @acc[0],1,@acc[0] sll @acc[1],31,$t0 srl @acc[1],1,@acc[1] or @acc[0],$t0,@acc[0] sll @acc[2],31,$t1 srl @acc[2],1,@acc[2] or @acc[1],$t1,@acc[1] sll @acc[3],31,$t2 st @acc[0],[$rp] srl @acc[3],1,@acc[3] or @acc[2],$t2,@acc[2] sll @acc[4],31,$t3 st @acc[1],[$rp+4] srl @acc[4],1,@acc[4] or @acc[3],$t3,@acc[3] sll @acc[5],31,$t4 st @acc[2],[$rp+8] srl @acc[5],1,@acc[5] or @acc[4],$t4,@acc[4] sll @acc[6],31,$t5 st @acc[3],[$rp+12] srl @acc[6],1,@acc[6] or @acc[5],$t5,@acc[5] sll @acc[7],31,$t6 st @acc[4],[$rp+16] srl @acc[7],1,@acc[7] or @acc[6],$t6,@acc[6] sll $carry,31,$t7 st @acc[5],[$rp+20] or @acc[7],$t7,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_div_by_2,#function .size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 ___ ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # { my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3)); # above map() describes stack layout with 4 temporary # 256-bit vectors on top. $code.=<<___; #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .globl ecp_nistz256_point_double .align 32 ecp_nistz256_point_double: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) be ecp_nistz256_point_double_vis3 nop save %sp,-STACK_FRAME-32*4,%sp mov $rp,$rp_real mov $ap,$ap_real .Lpoint_double_shortcut: ld [$ap+32],@acc[0] ld [$ap+32+4],@acc[1] ld [$ap+32+8],@acc[2] ld [$ap+32+12],@acc[3] ld [$ap+32+16],@acc[4] ld [$ap+32+20],@acc[5] ld [$ap+32+24],@acc[6] ld [$ap+32+28],@acc[7] call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(S, in_y); add %sp,LOCALS+$S,$rp add $ap_real,64,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Zsqr, in_z); add %sp,LOCALS+$Zsqr,$rp add $ap_real,0,$bp call __ecp_nistz256_add ! p256_add(M, Zsqr, in_x); add %sp,LOCALS+$M,$rp add %sp,LOCALS+$S,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(S, S); add %sp,LOCALS+$S,$rp ld [$ap_real],@acc[0] add %sp,LOCALS+$Zsqr,$bp ld [$ap_real+4],@acc[1] ld [$ap_real+8],@acc[2] ld [$ap_real+12],@acc[3] ld [$ap_real+16],@acc[4] ld [$ap_real+20],@acc[5] ld [$ap_real+24],@acc[6] ld [$ap_real+28],@acc[7] call __ecp_nistz256_sub_from ! p256_sub(Zsqr, in_x, Zsqr); add %sp,LOCALS+$Zsqr,$rp add $ap_real,32,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(tmp0, in_z, in_y); add %sp,LOCALS+$tmp0,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(res_z, tmp0); add $rp_real,64,$rp add %sp,LOCALS+$Zsqr,$bp add %sp,LOCALS+$M,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(M, M, Zsqr); add %sp,LOCALS+$M,$rp call __ecp_nistz256_mul_by_3 ! p256_mul_by_3(M, M); add %sp,LOCALS+$M,$rp add %sp,LOCALS+$S,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(tmp0, S); add %sp,LOCALS+$tmp0,$rp call __ecp_nistz256_div_by_2 ! p256_div_by_2(res_y, tmp0); add $rp_real,32,$rp add $ap_real,0,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, in_x); add %sp,LOCALS+$S,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(tmp0, S); add %sp,LOCALS+$tmp0,$rp add %sp,LOCALS+$M,$bp add %sp,LOCALS+$M,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(res_x, M); add $rp_real,0,$rp add %sp,LOCALS+$tmp0,$bp call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, tmp0); add $rp_real,0,$rp add %sp,LOCALS+$S,$bp call __ecp_nistz256_sub_morf ! p256_sub(S, S, res_x); add %sp,LOCALS+$S,$rp add %sp,LOCALS+$M,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, M); add %sp,LOCALS+$S,$rp add $rp_real,32,$bp call __ecp_nistz256_sub_from ! p256_sub(res_y, S, res_y); add $rp_real,32,$rp ret restore .type ecp_nistz256_point_double,#function .size ecp_nistz256_point_double,.-ecp_nistz256_point_double ___ } ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); { my ($res_x,$res_y,$res_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..11)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); # above map() describes stack layout with 12 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty, !in2infty, result of check for zero and return pointer. my $bp_real=$rp_real; $code.=<<___; .globl ecp_nistz256_point_add .align 32 ecp_nistz256_point_add: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) be ecp_nistz256_point_add_vis3 nop save %sp,-STACK_FRAME-32*12-32,%sp stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp mov $ap,$ap_real mov $bp,$bp_real ld [$bp+64],$t0 ! in2_z ld [$bp+64+4],$t1 ld [$bp+64+8],$t2 ld [$bp+64+12],$t3 ld [$bp+64+16],$t4 ld [$bp+64+20],$t5 ld [$bp+64+24],$t6 ld [$bp+64+28],$t7 or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 ! !in2infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-12] ld [$ap+64],$t0 ! in1_z ld [$ap+64+4],$t1 ld [$ap+64+8],$t2 ld [$ap+64+12],$t3 ld [$ap+64+16],$t4 ld [$ap+64+20],$t5 ld [$ap+64+24],$t6 ld [$ap+64+28],$t7 or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 ! !in1infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-16] add $bp_real,64,$bp add $bp_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z2sqr, in2_z); add %sp,LOCALS+$Z2sqr,$rp add $ap_real,64,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS+$Z1sqr,$rp add $bp_real,64,$bp add %sp,LOCALS+$Z2sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, Z2sqr, in2_z); add %sp,LOCALS+$S1,$rp add $ap_real,64,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS+$S2,$rp add $ap_real,32,$bp add %sp,LOCALS+$S1,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, S1, in1_y); add %sp,LOCALS+$S1,$rp add $bp_real,32,$bp add %sp,LOCALS+$S2,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS+$S2,$rp add %sp,LOCALS+$S1,$bp call __ecp_nistz256_sub_from ! p256_sub(R, S2, S1); add %sp,LOCALS+$R,$rp or @acc[1],@acc[0],@acc[0] ! see if result is zero or @acc[3],@acc[2],@acc[2] or @acc[5],@acc[4],@acc[4] or @acc[7],@acc[6],@acc[6] or @acc[2],@acc[0],@acc[0] or @acc[6],@acc[4],@acc[4] or @acc[4],@acc[0],@acc[0] st @acc[0],[%fp+STACK_BIAS-20] add $ap_real,0,$bp add %sp,LOCALS+$Z2sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U1, in1_x, Z2sqr); add %sp,LOCALS+$U1,$rp add $bp_real,0,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in2_x, Z1sqr); add %sp,LOCALS+$U2,$rp add %sp,LOCALS+$U1,$bp call __ecp_nistz256_sub_from ! p256_sub(H, U2, U1); add %sp,LOCALS+$H,$rp or @acc[1],@acc[0],@acc[0] ! see if result is zero or @acc[3],@acc[2],@acc[2] or @acc[5],@acc[4],@acc[4] or @acc[7],@acc[6],@acc[6] or @acc[2],@acc[0],@acc[0] or @acc[6],@acc[4],@acc[4] orcc @acc[4],@acc[0],@acc[0] bne,pt %icc,.Ladd_proceed ! is_equal(U1,U2)? nop ld [%fp+STACK_BIAS-12],$t0 ld [%fp+STACK_BIAS-16],$t1 ld [%fp+STACK_BIAS-20],$t2 andcc $t0,$t1,%g0 be,pt %icc,.Ladd_proceed ! (in1infty || in2infty)? nop andcc $t2,$t2,%g0 be,pt %icc,.Ladd_double ! is_equal(S1,S2)? nop ldx [%fp+STACK_BIAS-8],$rp st %g0,[$rp] st %g0,[$rp+4] st %g0,[$rp+8] st %g0,[$rp+12] st %g0,[$rp+16] st %g0,[$rp+20] st %g0,[$rp+24] st %g0,[$rp+28] st %g0,[$rp+32] st %g0,[$rp+32+4] st %g0,[$rp+32+8] st %g0,[$rp+32+12] st %g0,[$rp+32+16] st %g0,[$rp+32+20] st %g0,[$rp+32+24] st %g0,[$rp+32+28] st %g0,[$rp+64] st %g0,[$rp+64+4] st %g0,[$rp+64+8] st %g0,[$rp+64+12] st %g0,[$rp+64+16] st %g0,[$rp+64+20] st %g0,[$rp+64+24] st %g0,[$rp+64+28] b .Ladd_done nop .align 16 .Ladd_double: ldx [%fp+STACK_BIAS-8],$rp_real mov $ap_real,$ap b .Lpoint_double_shortcut add %sp,32*(12-4)+32,%sp ! difference in frame sizes .align 16 .Ladd_proceed: add %sp,LOCALS+$R,$bp add %sp,LOCALS+$R,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS+$Rsqr,$rp add $ap_real,64,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS+$res_z,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS+$Hsqr,$rp add $bp_real,64,$bp add %sp,LOCALS+$res_z,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, res_z, in2_z); add %sp,LOCALS+$res_z,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS+$Hcub,$rp add %sp,LOCALS+$U1,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, U1, Hsqr); add %sp,LOCALS+$U2,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS+$Hsqr,$rp add %sp,LOCALS+$Rsqr,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$Hcub,$bp call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$U2,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x); add %sp,LOCALS+$res_y,$rp add %sp,LOCALS+$Hcub,$bp add %sp,LOCALS+$S1,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S1, Hcub); add %sp,LOCALS+$S2,$rp add %sp,LOCALS+$R,$bp add %sp,LOCALS+$res_y,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS+$res_y,$rp add %sp,LOCALS+$S2,$bp call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2); add %sp,LOCALS+$res_y,$rp ld [%fp+STACK_BIAS-16],$t1 ! !in1infty ld [%fp+STACK_BIAS-12],$t2 ! !in2infty ldx [%fp+STACK_BIAS-8],$rp ___ for($i=0;$i<96;$i+=8) { # conditional moves $code.=<<___; ld [%sp+LOCALS+$i],@acc[0] ! res ld [%sp+LOCALS+$i+4],@acc[1] ld [$bp_real+$i],@acc[2] ! in2 ld [$bp_real+$i+4],@acc[3] ld [$ap_real+$i],@acc[4] ! in1 ld [$ap_real+$i+4],@acc[5] movrz $t1,@acc[2],@acc[0] movrz $t1,@acc[3],@acc[1] movrz $t2,@acc[4],@acc[0] movrz $t2,@acc[5],@acc[1] st @acc[0],[$rp+$i] st @acc[1],[$rp+$i+4] ___ } $code.=<<___; .Ladd_done: ret restore .type ecp_nistz256_point_add,#function .size ecp_nistz256_point_add,.-ecp_nistz256_point_add ___ } ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, # const P256_POINT_AFFINE *in2); { my ($res_x,$res_y,$res_z, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9)); my $Z1sqr = $S2; # above map() describes stack layout with 10 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty, !in2infty, result of check for zero and return pointer. my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); my $bp_real=$rp_real; $code.=<<___; .globl ecp_nistz256_point_add_affine .align 32 ecp_nistz256_point_add_affine: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) be ecp_nistz256_point_add_affine_vis3 nop save %sp,-STACK_FRAME-32*10-32,%sp stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp mov $ap,$ap_real mov $bp,$bp_real ld [$ap+64],$t0 ! in1_z ld [$ap+64+4],$t1 ld [$ap+64+8],$t2 ld [$ap+64+12],$t3 ld [$ap+64+16],$t4 ld [$ap+64+20],$t5 ld [$ap+64+24],$t6 ld [$ap+64+28],$t7 or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 ! !in1infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-16] ld [$bp],@acc[0] ! in2_x ld [$bp+4],@acc[1] ld [$bp+8],@acc[2] ld [$bp+12],@acc[3] ld [$bp+16],@acc[4] ld [$bp+20],@acc[5] ld [$bp+24],@acc[6] ld [$bp+28],@acc[7] ld [$bp+32],$t0 ! in2_y ld [$bp+32+4],$t1 ld [$bp+32+8],$t2 ld [$bp+32+12],$t3 ld [$bp+32+16],$t4 ld [$bp+32+20],$t5 ld [$bp+32+24],$t6 ld [$bp+32+28],$t7 or @acc[1],@acc[0],@acc[0] or @acc[3],@acc[2],@acc[2] or @acc[5],@acc[4],@acc[4] or @acc[7],@acc[6],@acc[6] or @acc[2],@acc[0],@acc[0] or @acc[6],@acc[4],@acc[4] or @acc[4],@acc[0],@acc[0] or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 or @acc[0],$t0,$t0 ! !in2infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-12] add $ap_real,64,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS+$Z1sqr,$rp add $bp_real,0,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, Z1sqr, in2_x); add %sp,LOCALS+$U2,$rp add $ap_real,0,$bp call __ecp_nistz256_sub_from ! p256_sub(H, U2, in1_x); add %sp,LOCALS+$H,$rp add $ap_real,64,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS+$S2,$rp add $ap_real,64,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS+$res_z,$rp add $bp_real,32,$bp add %sp,LOCALS+$S2,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS+$S2,$rp add $ap_real,32,$bp call __ecp_nistz256_sub_from ! p256_sub(R, S2, in1_y); add %sp,LOCALS+$R,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS+$Hsqr,$rp add %sp,LOCALS+$R,$bp add %sp,LOCALS+$R,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS+$Rsqr,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS+$Hcub,$rp add $ap_real,0,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in1_x, Hsqr); add %sp,LOCALS+$U2,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS+$Hsqr,$rp add %sp,LOCALS+$Rsqr,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$Hcub,$bp call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$U2,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x); add %sp,LOCALS+$res_y,$rp add $ap_real,32,$bp add %sp,LOCALS+$Hcub,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, in1_y, Hcub); add %sp,LOCALS+$S2,$rp add %sp,LOCALS+$R,$bp add %sp,LOCALS+$res_y,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS+$res_y,$rp add %sp,LOCALS+$S2,$bp call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2); add %sp,LOCALS+$res_y,$rp ld [%fp+STACK_BIAS-16],$t1 ! !in1infty ld [%fp+STACK_BIAS-12],$t2 ! !in2infty ldx [%fp+STACK_BIAS-8],$rp ___ for($i=0;$i<64;$i+=8) { # conditional moves $code.=<<___; ld [%sp+LOCALS+$i],@acc[0] ! res ld [%sp+LOCALS+$i+4],@acc[1] ld [$bp_real+$i],@acc[2] ! in2 ld [$bp_real+$i+4],@acc[3] ld [$ap_real+$i],@acc[4] ! in1 ld [$ap_real+$i+4],@acc[5] movrz $t1,@acc[2],@acc[0] movrz $t1,@acc[3],@acc[1] movrz $t2,@acc[4],@acc[0] movrz $t2,@acc[5],@acc[1] st @acc[0],[$rp+$i] st @acc[1],[$rp+$i+4] ___ } for(;$i<96;$i+=8) { my $j=($i-64)/4; $code.=<<___; ld [%sp+LOCALS+$i],@acc[0] ! res ld [%sp+LOCALS+$i+4],@acc[1] ld [$ap_real+$i],@acc[4] ! in1 ld [$ap_real+$i+4],@acc[5] movrz $t1,@ONE_mont[$j],@acc[0] movrz $t1,@ONE_mont[$j+1],@acc[1] movrz $t2,@acc[4],@acc[0] movrz $t2,@acc[5],@acc[1] st @acc[0],[$rp+$i] st @acc[1],[$rp+$i+4] ___ } $code.=<<___; ret restore .type ecp_nistz256_point_add_affine,#function .size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine ___ } }}} {{{ my ($out,$inp,$index)=map("%i$_",(0..2)); my $mask="%o0"; $code.=<<___; ! void ecp_nistz256_scatter_w5(void *%i0,const P256_POINT *%i1, ! int %i2); .globl ecp_nistz256_scatter_w5 .align 32 ecp_nistz256_scatter_w5: save %sp,-STACK_FRAME,%sp sll $index,2,$index add $out,$index,$out ld [$inp],%l0 ! X ld [$inp+4],%l1 ld [$inp+8],%l2 ld [$inp+12],%l3 ld [$inp+16],%l4 ld [$inp+20],%l5 ld [$inp+24],%l6 ld [$inp+28],%l7 add $inp,32,$inp st %l0,[$out+64*0-4] st %l1,[$out+64*1-4] st %l2,[$out+64*2-4] st %l3,[$out+64*3-4] st %l4,[$out+64*4-4] st %l5,[$out+64*5-4] st %l6,[$out+64*6-4] st %l7,[$out+64*7-4] add $out,64*8,$out ld [$inp],%l0 ! Y ld [$inp+4],%l1 ld [$inp+8],%l2 ld [$inp+12],%l3 ld [$inp+16],%l4 ld [$inp+20],%l5 ld [$inp+24],%l6 ld [$inp+28],%l7 add $inp,32,$inp st %l0,[$out+64*0-4] st %l1,[$out+64*1-4] st %l2,[$out+64*2-4] st %l3,[$out+64*3-4] st %l4,[$out+64*4-4] st %l5,[$out+64*5-4] st %l6,[$out+64*6-4] st %l7,[$out+64*7-4] add $out,64*8,$out ld [$inp],%l0 ! Z ld [$inp+4],%l1 ld [$inp+8],%l2 ld [$inp+12],%l3 ld [$inp+16],%l4 ld [$inp+20],%l5 ld [$inp+24],%l6 ld [$inp+28],%l7 st %l0,[$out+64*0-4] st %l1,[$out+64*1-4] st %l2,[$out+64*2-4] st %l3,[$out+64*3-4] st %l4,[$out+64*4-4] st %l5,[$out+64*5-4] st %l6,[$out+64*6-4] st %l7,[$out+64*7-4] ret restore .type ecp_nistz256_scatter_w5,#function .size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5 ! void ecp_nistz256_gather_w5(P256_POINT *%i0,const void *%i1, ! int %i2); .globl ecp_nistz256_gather_w5 .align 32 ecp_nistz256_gather_w5: save %sp,-STACK_FRAME,%sp neg $index,$mask srax $mask,63,$mask add $index,$mask,$index sll $index,2,$index add $inp,$index,$inp ld [$inp+64*0],%l0 ld [$inp+64*1],%l1 ld [$inp+64*2],%l2 ld [$inp+64*3],%l3 ld [$inp+64*4],%l4 ld [$inp+64*5],%l5 ld [$inp+64*6],%l6 ld [$inp+64*7],%l7 add $inp,64*8,$inp and %l0,$mask,%l0 and %l1,$mask,%l1 st %l0,[$out] ! X and %l2,$mask,%l2 st %l1,[$out+4] and %l3,$mask,%l3 st %l2,[$out+8] and %l4,$mask,%l4 st %l3,[$out+12] and %l5,$mask,%l5 st %l4,[$out+16] and %l6,$mask,%l6 st %l5,[$out+20] and %l7,$mask,%l7 st %l6,[$out+24] st %l7,[$out+28] add $out,32,$out ld [$inp+64*0],%l0 ld [$inp+64*1],%l1 ld [$inp+64*2],%l2 ld [$inp+64*3],%l3 ld [$inp+64*4],%l4 ld [$inp+64*5],%l5 ld [$inp+64*6],%l6 ld [$inp+64*7],%l7 add $inp,64*8,$inp and %l0,$mask,%l0 and %l1,$mask,%l1 st %l0,[$out] ! Y and %l2,$mask,%l2 st %l1,[$out+4] and %l3,$mask,%l3 st %l2,[$out+8] and %l4,$mask,%l4 st %l3,[$out+12] and %l5,$mask,%l5 st %l4,[$out+16] and %l6,$mask,%l6 st %l5,[$out+20] and %l7,$mask,%l7 st %l6,[$out+24] st %l7,[$out+28] add $out,32,$out ld [$inp+64*0],%l0 ld [$inp+64*1],%l1 ld [$inp+64*2],%l2 ld [$inp+64*3],%l3 ld [$inp+64*4],%l4 ld [$inp+64*5],%l5 ld [$inp+64*6],%l6 ld [$inp+64*7],%l7 and %l0,$mask,%l0 and %l1,$mask,%l1 st %l0,[$out] ! Z and %l2,$mask,%l2 st %l1,[$out+4] and %l3,$mask,%l3 st %l2,[$out+8] and %l4,$mask,%l4 st %l3,[$out+12] and %l5,$mask,%l5 st %l4,[$out+16] and %l6,$mask,%l6 st %l5,[$out+20] and %l7,$mask,%l7 st %l6,[$out+24] st %l7,[$out+28] ret restore .type ecp_nistz256_gather_w5,#function .size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5 ! void ecp_nistz256_scatter_w7(void *%i0,const P256_POINT_AFFINE *%i1, ! int %i2); .globl ecp_nistz256_scatter_w7 .align 32 ecp_nistz256_scatter_w7: save %sp,-STACK_FRAME,%sp nop add $out,$index,$out mov 64/4,$index .Loop_scatter_w7: ld [$inp],%l0 add $inp,4,$inp subcc $index,1,$index stb %l0,[$out+64*0] srl %l0,8,%l1 stb %l1,[$out+64*1] srl %l0,16,%l2 stb %l2,[$out+64*2] srl %l0,24,%l3 stb %l3,[$out+64*3] bne .Loop_scatter_w7 add $out,64*4,$out ret restore .type ecp_nistz256_scatter_w7,#function .size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7 ! void ecp_nistz256_gather_w7(P256_POINT_AFFINE *%i0,const void *%i1, ! int %i2); .globl ecp_nistz256_gather_w7 .align 32 ecp_nistz256_gather_w7: save %sp,-STACK_FRAME,%sp neg $index,$mask srax $mask,63,$mask add $index,$mask,$index add $inp,$index,$inp mov 64/4,$index .Loop_gather_w7: ldub [$inp+64*0],%l0 prefetch [$inp+3840+64*0],1 subcc $index,1,$index ldub [$inp+64*1],%l1 prefetch [$inp+3840+64*1],1 ldub [$inp+64*2],%l2 prefetch [$inp+3840+64*2],1 ldub [$inp+64*3],%l3 prefetch [$inp+3840+64*3],1 add $inp,64*4,$inp sll %l1,8,%l1 sll %l2,16,%l2 or %l0,%l1,%l0 sll %l3,24,%l3 or %l0,%l2,%l0 or %l0,%l3,%l0 and %l0,$mask,%l0 st %l0,[$out] bne .Loop_gather_w7 add $out,4,$out ret restore .type ecp_nistz256_gather_w7,#function .size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7 ___ }}} {{{ ######################################################################## # Following subroutines are VIS3 counterparts of those above that # implement ones found in ecp_nistz256.c. Key difference is that they # use 128-bit multiplication and addition with 64-bit carry, and in order # to do that they perform conversion from uin32_t[8] to uint64_t[4] upon # entry and vice versa on return. # my ($rp,$ap,$bp)=map("%i$_",(0..2)); my ($t0,$t1,$t2,$t3,$a0,$a1,$a2,$a3)=map("%l$_",(0..7)); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5)=map("%o$_",(0..5)); my ($bi,$poly1,$poly3,$minus1)=(map("%i$_",(3..5)),"%g1"); my ($rp_real,$ap_real)=("%g2","%g3"); my ($acc6,$acc7)=($bp,$bi); # used in squaring $code.=<<___; .align 32 __ecp_nistz256_mul_by_2_vis3: addcc $acc0,$acc0,$acc0 addxccc $acc1,$acc1,$acc1 addxccc $acc2,$acc2,$acc2 addxccc $acc3,$acc3,$acc3 b .Lreduce_by_sub_vis3 addxc %g0,%g0,$acc4 ! did it carry? .type __ecp_nistz256_mul_by_2_vis3,#function .size __ecp_nistz256_mul_by_2_vis3,.-__ecp_nistz256_mul_by_2_vis3 .align 32 __ecp_nistz256_add_vis3: ldx [$bp+0],$t0 ldx [$bp+8],$t1 ldx [$bp+16],$t2 ldx [$bp+24],$t3 __ecp_nistz256_add_noload_vis3: addcc $t0,$acc0,$acc0 addxccc $t1,$acc1,$acc1 addxccc $t2,$acc2,$acc2 addxccc $t3,$acc3,$acc3 addxc %g0,%g0,$acc4 ! did it carry? .Lreduce_by_sub_vis3: addcc $acc0,1,$t0 ! add -modulus, i.e. subtract addxccc $acc1,$poly1,$t1 addxccc $acc2,$minus1,$t2 addxccc $acc3,$poly3,$t3 addxc $acc4,$minus1,$acc4 movrz $acc4,$t0,$acc0 ! ret = borrow ? ret : ret-modulus movrz $acc4,$t1,$acc1 stx $acc0,[$rp] movrz $acc4,$t2,$acc2 stx $acc1,[$rp+8] movrz $acc4,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_add_vis3,#function .size __ecp_nistz256_add_vis3,.-__ecp_nistz256_add_vis3 ! Trouble with subtraction is that there is no subtraction with 64-bit ! borrow, only with 32-bit one. For this reason we "decompose" 64-bit ! $acc0-$acc3 to 32-bit values and pick b[4] in 32-bit pieces. But ! recall that SPARC is big-endian, which is why you'll observe that ! b[4] is accessed as 4-0-12-8-20-16-28-24. And prior reduction we ! "collect" result back to 64-bit $acc0-$acc3. .align 32 __ecp_nistz256_sub_from_vis3: ld [$bp+4],$t0 ld [$bp+0],$t1 ld [$bp+12],$t2 ld [$bp+8],$t3 srlx $acc0,32,$acc4 not $poly1,$poly1 srlx $acc1,32,$acc5 subcc $acc0,$t0,$acc0 ld [$bp+20],$t0 subccc $acc4,$t1,$acc4 ld [$bp+16],$t1 subccc $acc1,$t2,$acc1 ld [$bp+28],$t2 and $acc0,$poly1,$acc0 subccc $acc5,$t3,$acc5 ld [$bp+24],$t3 sllx $acc4,32,$acc4 and $acc1,$poly1,$acc1 sllx $acc5,32,$acc5 or $acc0,$acc4,$acc0 srlx $acc2,32,$acc4 or $acc1,$acc5,$acc1 srlx $acc3,32,$acc5 subccc $acc2,$t0,$acc2 subccc $acc4,$t1,$acc4 subccc $acc3,$t2,$acc3 and $acc2,$poly1,$acc2 subccc $acc5,$t3,$acc5 sllx $acc4,32,$acc4 and $acc3,$poly1,$acc3 sllx $acc5,32,$acc5 or $acc2,$acc4,$acc2 subc %g0,%g0,$acc4 ! did it borrow? b .Lreduce_by_add_vis3 or $acc3,$acc5,$acc3 .type __ecp_nistz256_sub_from_vis3,#function .size __ecp_nistz256_sub_from_vis3,.-__ecp_nistz256_sub_from_vis3 .align 32 __ecp_nistz256_sub_morf_vis3: ld [$bp+4],$t0 ld [$bp+0],$t1 ld [$bp+12],$t2 ld [$bp+8],$t3 srlx $acc0,32,$acc4 not $poly1,$poly1 srlx $acc1,32,$acc5 subcc $t0,$acc0,$acc0 ld [$bp+20],$t0 subccc $t1,$acc4,$acc4 ld [$bp+16],$t1 subccc $t2,$acc1,$acc1 ld [$bp+28],$t2 and $acc0,$poly1,$acc0 subccc $t3,$acc5,$acc5 ld [$bp+24],$t3 sllx $acc4,32,$acc4 and $acc1,$poly1,$acc1 sllx $acc5,32,$acc5 or $acc0,$acc4,$acc0 srlx $acc2,32,$acc4 or $acc1,$acc5,$acc1 srlx $acc3,32,$acc5 subccc $t0,$acc2,$acc2 subccc $t1,$acc4,$acc4 subccc $t2,$acc3,$acc3 and $acc2,$poly1,$acc2 subccc $t3,$acc5,$acc5 sllx $acc4,32,$acc4 and $acc3,$poly1,$acc3 sllx $acc5,32,$acc5 or $acc2,$acc4,$acc2 subc %g0,%g0,$acc4 ! did it borrow? or $acc3,$acc5,$acc3 .Lreduce_by_add_vis3: addcc $acc0,-1,$t0 ! add modulus not $poly3,$t3 addxccc $acc1,$poly1,$t1 not $poly1,$poly1 ! restore $poly1 addxccc $acc2,%g0,$t2 addxc $acc3,$t3,$t3 movrnz $acc4,$t0,$acc0 ! if a-b borrowed, ret = ret+mod movrnz $acc4,$t1,$acc1 stx $acc0,[$rp] movrnz $acc4,$t2,$acc2 stx $acc1,[$rp+8] movrnz $acc4,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_sub_morf_vis3,#function .size __ecp_nistz256_sub_morf_vis3,.-__ecp_nistz256_sub_morf_vis3 .align 32 __ecp_nistz256_div_by_2_vis3: ! ret = (a is odd ? a+mod : a) >> 1 not $poly1,$t1 not $poly3,$t3 and $acc0,1,$acc5 addcc $acc0,-1,$t0 ! add modulus addxccc $acc1,$t1,$t1 addxccc $acc2,%g0,$t2 addxccc $acc3,$t3,$t3 addxc %g0,%g0,$acc4 ! carry bit movrnz $acc5,$t0,$acc0 movrnz $acc5,$t1,$acc1 movrnz $acc5,$t2,$acc2 movrnz $acc5,$t3,$acc3 movrz $acc5,%g0,$acc4 ! ret >>= 1 srlx $acc0,1,$acc0 sllx $acc1,63,$t0 srlx $acc1,1,$acc1 or $acc0,$t0,$acc0 sllx $acc2,63,$t1 srlx $acc2,1,$acc2 or $acc1,$t1,$acc1 sllx $acc3,63,$t2 stx $acc0,[$rp] srlx $acc3,1,$acc3 or $acc2,$t2,$acc2 sllx $acc4,63,$t3 ! don't forget carry bit stx $acc1,[$rp+8] or $acc3,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_div_by_2_vis3,#function .size __ecp_nistz256_div_by_2_vis3,.-__ecp_nistz256_div_by_2_vis3 ! compared to __ecp_nistz256_mul_mont it's almost 4x smaller and ! 4x faster [on T4]... .align 32 __ecp_nistz256_mul_mont_vis3: mulx $a0,$bi,$acc0 not $poly3,$poly3 ! 0xFFFFFFFF00000001 umulxhi $a0,$bi,$t0 mulx $a1,$bi,$acc1 umulxhi $a1,$bi,$t1 mulx $a2,$bi,$acc2 umulxhi $a2,$bi,$t2 mulx $a3,$bi,$acc3 umulxhi $a3,$bi,$t3 ldx [$bp+8],$bi ! b[1] addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication sllx $acc0,32,$t0 addxccc $acc2,$t1,$acc2 srlx $acc0,32,$t1 addxccc $acc3,$t2,$acc3 addxc %g0,$t3,$acc4 mov 0,$acc5 ___ for($i=1;$i<4;$i++) { # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff0001.00000000.0000ffff.ffffffff # * abcdefgh # + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000 # - 0000abcd.efgh0000.00000000.00000000.abcdefgh # # or marking redundant operations: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.-------- # + abcdefgh.abcdefgh.0000abcd.efgh0000.-------- # - 0000abcd.efgh0000.--------.--------.-------- # ^^^^^^^^ but this word is calculated with umulxhi, because # there is no subtract with 64-bit borrow:-( $code.=<<___; sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] mulx $a0,$bi,$t0 addxccc $acc2,$t1,$acc1 mulx $a1,$bi,$t1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 mulx $a2,$bi,$t2 addxccc $acc4,$t3,$acc3 mulx $a3,$bi,$t3 addxc $acc5,%g0,$acc4 addcc $acc0,$t0,$acc0 ! accumulate low parts of multiplication umulxhi $a0,$bi,$t0 addxccc $acc1,$t1,$acc1 umulxhi $a1,$bi,$t1 addxccc $acc2,$t2,$acc2 umulxhi $a2,$bi,$t2 addxccc $acc3,$t3,$acc3 umulxhi $a3,$bi,$t3 addxc $acc4,%g0,$acc4 ___ $code.=<<___ if ($i<3); ldx [$bp+8*($i+1)],$bi ! bp[$i+1] ___ $code.=<<___; addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication sllx $acc0,32,$t0 addxccc $acc2,$t1,$acc2 srlx $acc0,32,$t1 addxccc $acc3,$t2,$acc3 addxccc $acc4,$t3,$acc4 addxc %g0,%g0,$acc5 ___ } $code.=<<___; sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] addxccc $acc2,$t1,$acc1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 addxccc $acc4,$t3,$acc3 b .Lmul_final_vis3 ! see below addxc $acc5,%g0,$acc4 .type __ecp_nistz256_mul_mont_vis3,#function .size __ecp_nistz256_mul_mont_vis3,.-__ecp_nistz256_mul_mont_vis3 ! compared to above __ecp_nistz256_mul_mont_vis3 it's 21% less ! instructions, but only 14% faster [on T4]... .align 32 __ecp_nistz256_sqr_mont_vis3: ! | | | | | |a1*a0| | ! | | | | |a2*a0| | | ! | |a3*a2|a3*a0| | | | ! | | | |a2*a1| | | | ! | | |a3*a1| | | | | ! *| | | | | | | | 2| ! +|a3*a3|a2*a2|a1*a1|a0*a0| ! |--+--+--+--+--+--+--+--| ! |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx ! ! "can't overflow" below mark carrying into high part of ! multiplication result, which can't overflow, because it ! can never be all ones. mulx $a1,$a0,$acc1 ! a[1]*a[0] umulxhi $a1,$a0,$t1 mulx $a2,$a0,$acc2 ! a[2]*a[0] umulxhi $a2,$a0,$t2 mulx $a3,$a0,$acc3 ! a[3]*a[0] umulxhi $a3,$a0,$acc4 addcc $acc2,$t1,$acc2 ! accumulate high parts of multiplication mulx $a2,$a1,$t0 ! a[2]*a[1] umulxhi $a2,$a1,$t1 addxccc $acc3,$t2,$acc3 mulx $a3,$a1,$t2 ! a[3]*a[1] umulxhi $a3,$a1,$t3 addxc $acc4,%g0,$acc4 ! can't overflow mulx $a3,$a2,$acc5 ! a[3]*a[2] not $poly3,$poly3 ! 0xFFFFFFFF00000001 umulxhi $a3,$a2,$acc6 addcc $t2,$t1,$t1 ! accumulate high parts of multiplication mulx $a0,$a0,$acc0 ! a[0]*a[0] addxc $t3,%g0,$t2 ! can't overflow addcc $acc3,$t0,$acc3 ! accumulate low parts of multiplication umulxhi $a0,$a0,$a0 addxccc $acc4,$t1,$acc4 mulx $a1,$a1,$t1 ! a[1]*a[1] addxccc $acc5,$t2,$acc5 umulxhi $a1,$a1,$a1 addxc $acc6,%g0,$acc6 ! can't overflow addcc $acc1,$acc1,$acc1 ! acc[1-6]*=2 mulx $a2,$a2,$t2 ! a[2]*a[2] addxccc $acc2,$acc2,$acc2 umulxhi $a2,$a2,$a2 addxccc $acc3,$acc3,$acc3 mulx $a3,$a3,$t3 ! a[3]*a[3] addxccc $acc4,$acc4,$acc4 umulxhi $a3,$a3,$a3 addxccc $acc5,$acc5,$acc5 addxccc $acc6,$acc6,$acc6 addxc %g0,%g0,$acc7 addcc $acc1,$a0,$acc1 ! +a[i]*a[i] addxccc $acc2,$t1,$acc2 addxccc $acc3,$a1,$acc3 addxccc $acc4,$t2,$acc4 sllx $acc0,32,$t0 addxccc $acc5,$a2,$acc5 srlx $acc0,32,$t1 addxccc $acc6,$t3,$acc6 sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part addxc $acc7,$a3,$acc7 ___ for($i=0;$i<3;$i++) { # reductions, see commentary # in multiplication for details $code.=<<___; umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] sllx $acc0,32,$t0 addxccc $acc2,$t1,$acc1 srlx $acc0,32,$t1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part addxc %g0,$t3,$acc3 ! can't overflow ___ } $code.=<<___; umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] addxccc $acc2,$t1,$acc1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 addxc %g0,$t3,$acc3 ! can't overflow addcc $acc0,$acc4,$acc0 ! accumulate upper half addxccc $acc1,$acc5,$acc1 addxccc $acc2,$acc6,$acc2 addxccc $acc3,$acc7,$acc3 addxc %g0,%g0,$acc4 .Lmul_final_vis3: ! Final step is "if result > mod, subtract mod", but as comparison ! means subtraction, we do the subtraction and then copy outcome ! if it didn't borrow. But note that as we [have to] replace ! subtraction with addition with negative, carry/borrow logic is ! inverse. addcc $acc0,1,$t0 ! add -modulus, i.e. subtract not $poly3,$poly3 ! restore 0x00000000FFFFFFFE addxccc $acc1,$poly1,$t1 addxccc $acc2,$minus1,$t2 addxccc $acc3,$poly3,$t3 addxccc $acc4,$minus1,%g0 ! did it carry? movcs %xcc,$t0,$acc0 movcs %xcc,$t1,$acc1 stx $acc0,[$rp] movcs %xcc,$t2,$acc2 stx $acc1,[$rp+8] movcs %xcc,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_sqr_mont_vis3,#function .size __ecp_nistz256_sqr_mont_vis3,.-__ecp_nistz256_sqr_mont_vis3 ___ ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # { my ($res_x,$res_y,$res_z, $in_x,$in_y,$in_z, $S,$M,$Zsqr,$tmp0)=map(32*$_,(0..9)); # above map() describes stack layout with 10 temporary # 256-bit vectors on top. $code.=<<___; .align 32 ecp_nistz256_point_double_vis3: save %sp,-STACK64_FRAME-32*10,%sp mov $rp,$rp_real .Ldouble_shortcut_vis3: mov -1,$minus1 mov -2,$poly3 sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE ! convert input to uint64_t[4] ld [$ap],$a0 ! in_x ld [$ap+4],$t0 ld [$ap+8],$a1 ld [$ap+12],$t1 ld [$ap+16],$a2 ld [$ap+20],$t2 ld [$ap+24],$a3 ld [$ap+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$ap+32],$acc0 ! in_y or $a0,$t0,$a0 ld [$ap+32+4],$t0 sllx $t2,32,$t2 ld [$ap+32+8],$acc1 or $a1,$t1,$a1 ld [$ap+32+12],$t1 sllx $t3,32,$t3 ld [$ap+32+16],$acc2 or $a2,$t2,$a2 ld [$ap+32+20],$t2 or $a3,$t3,$a3 ld [$ap+32+24],$acc3 sllx $t0,32,$t0 ld [$ap+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in_y+16] stx $acc3,[%sp+LOCALS64+$in_y+24] ld [$ap+64],$a0 ! in_z ld [$ap+64+4],$t0 ld [$ap+64+8],$a1 ld [$ap+64+12],$t1 ld [$ap+64+16],$a2 ld [$ap+64+20],$t2 ld [$ap+64+24],$a3 ld [$ap+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 or $a0,$t0,$a0 sllx $t2,32,$t2 or $a1,$t1,$a1 sllx $t3,32,$t3 or $a2,$t2,$a2 or $a3,$t3,$a3 sllx $t0,32,$t0 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in_z] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in_z+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in_z+16] stx $a3,[%sp+LOCALS64+$in_z+24] ! in_y is still in $acc0-$acc3 call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(S, in_y); add %sp,LOCALS64+$S,$rp ! in_z is still in $a0-$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Zsqr, in_z); add %sp,LOCALS64+$Zsqr,$rp mov $acc0,$a0 ! put Zsqr aside mov $acc1,$a1 mov $acc2,$a2 mov $acc3,$a3 add %sp,LOCALS64+$in_x,$bp call __ecp_nistz256_add_vis3 ! p256_add(M, Zsqr, in_x); add %sp,LOCALS64+$M,$rp mov $a0,$acc0 ! restore Zsqr ldx [%sp+LOCALS64+$S],$a0 ! forward load mov $a1,$acc1 ldx [%sp+LOCALS64+$S+8],$a1 mov $a2,$acc2 ldx [%sp+LOCALS64+$S+16],$a2 mov $a3,$acc3 ldx [%sp+LOCALS64+$S+24],$a3 add %sp,LOCALS64+$in_x,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(Zsqr, in_x, Zsqr); add %sp,LOCALS64+$Zsqr,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(S, S); add %sp,LOCALS64+$S,$rp ldx [%sp+LOCALS64+$in_z],$bi ldx [%sp+LOCALS64+$in_y],$a0 ldx [%sp+LOCALS64+$in_y+8],$a1 ldx [%sp+LOCALS64+$in_y+16],$a2 ldx [%sp+LOCALS64+$in_y+24],$a3 add %sp,LOCALS64+$in_z,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(tmp0, in_z, in_y); add %sp,LOCALS64+$tmp0,$rp ldx [%sp+LOCALS64+$M],$bi ! forward load ldx [%sp+LOCALS64+$Zsqr],$a0 ldx [%sp+LOCALS64+$Zsqr+8],$a1 ldx [%sp+LOCALS64+$Zsqr+16],$a2 ldx [%sp+LOCALS64+$Zsqr+24],$a3 call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(res_z, tmp0); add %sp,LOCALS64+$res_z,$rp add %sp,LOCALS64+$M,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(M, M, Zsqr); add %sp,LOCALS64+$M,$rp mov $acc0,$a0 ! put aside M mov $acc1,$a1 mov $acc2,$a2 mov $acc3,$a3 call __ecp_nistz256_mul_by_2_vis3 add %sp,LOCALS64+$M,$rp mov $a0,$t0 ! copy M ldx [%sp+LOCALS64+$S],$a0 ! forward load mov $a1,$t1 ldx [%sp+LOCALS64+$S+8],$a1 mov $a2,$t2 ldx [%sp+LOCALS64+$S+16],$a2 mov $a3,$t3 ldx [%sp+LOCALS64+$S+24],$a3 call __ecp_nistz256_add_noload_vis3 ! p256_mul_by_3(M, M); add %sp,LOCALS64+$M,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(tmp0, S); add %sp,LOCALS64+$tmp0,$rp ldx [%sp+LOCALS64+$S],$bi ! forward load ldx [%sp+LOCALS64+$in_x],$a0 ldx [%sp+LOCALS64+$in_x+8],$a1 ldx [%sp+LOCALS64+$in_x+16],$a2 ldx [%sp+LOCALS64+$in_x+24],$a3 call __ecp_nistz256_div_by_2_vis3 ! p256_div_by_2(res_y, tmp0); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, in_x); add %sp,LOCALS64+$S,$rp ldx [%sp+LOCALS64+$M],$a0 ! forward load ldx [%sp+LOCALS64+$M+8],$a1 ldx [%sp+LOCALS64+$M+16],$a2 ldx [%sp+LOCALS64+$M+24],$a3 call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(tmp0, S); add %sp,LOCALS64+$tmp0,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(res_x, M); add %sp,LOCALS64+$res_x,$rp add %sp,LOCALS64+$tmp0,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, tmp0); add %sp,LOCALS64+$res_x,$rp ldx [%sp+LOCALS64+$M],$a0 ! forward load ldx [%sp+LOCALS64+$M+8],$a1 ldx [%sp+LOCALS64+$M+16],$a2 ldx [%sp+LOCALS64+$M+24],$a3 add %sp,LOCALS64+$S,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(S, S, res_x); add %sp,LOCALS64+$S,$rp mov $acc0,$bi call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, M); add %sp,LOCALS64+$S,$rp ldx [%sp+LOCALS64+$res_x],$a0 ! forward load ldx [%sp+LOCALS64+$res_x+8],$a1 ldx [%sp+LOCALS64+$res_x+16],$a2 ldx [%sp+LOCALS64+$res_x+24],$a3 add %sp,LOCALS64+$res_y,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, S, res_y); add %sp,LOCALS64+$res_y,$bp ! convert output to uint_32[8] srlx $a0,32,$t0 srlx $a1,32,$t1 st $a0,[$rp_real] ! res_x srlx $a2,32,$t2 st $t0,[$rp_real+4] srlx $a3,32,$t3 st $a1,[$rp_real+8] st $t1,[$rp_real+12] st $a2,[$rp_real+16] st $t2,[$rp_real+20] st $a3,[$rp_real+24] st $t3,[$rp_real+28] ldx [%sp+LOCALS64+$res_z],$a0 ! forward load srlx $acc0,32,$t0 ldx [%sp+LOCALS64+$res_z+8],$a1 srlx $acc1,32,$t1 ldx [%sp+LOCALS64+$res_z+16],$a2 srlx $acc2,32,$t2 ldx [%sp+LOCALS64+$res_z+24],$a3 srlx $acc3,32,$t3 st $acc0,[$rp_real+32] ! res_y st $t0, [$rp_real+32+4] st $acc1,[$rp_real+32+8] st $t1, [$rp_real+32+12] st $acc2,[$rp_real+32+16] st $t2, [$rp_real+32+20] st $acc3,[$rp_real+32+24] st $t3, [$rp_real+32+28] srlx $a0,32,$t0 srlx $a1,32,$t1 st $a0,[$rp_real+64] ! res_z srlx $a2,32,$t2 st $t0,[$rp_real+64+4] srlx $a3,32,$t3 st $a1,[$rp_real+64+8] st $t1,[$rp_real+64+12] st $a2,[$rp_real+64+16] st $t2,[$rp_real+64+20] st $a3,[$rp_real+64+24] st $t3,[$rp_real+64+28] ret restore .type ecp_nistz256_point_double_vis3,#function .size ecp_nistz256_point_double_vis3,.-ecp_nistz256_point_double_vis3 ___ } ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y,$in2_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); # above map() describes stack layout with 18 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty, !in2infty and result of check for zero. $code.=<<___; .align 32 ecp_nistz256_point_add_vis3: save %sp,-STACK64_FRAME-32*18-32,%sp mov $rp,$rp_real mov -1,$minus1 mov -2,$poly3 sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE ! convert input to uint64_t[4] ld [$bp],$a0 ! in2_x ld [$bp+4],$t0 ld [$bp+8],$a1 ld [$bp+12],$t1 ld [$bp+16],$a2 ld [$bp+20],$t2 ld [$bp+24],$a3 ld [$bp+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$bp+32],$acc0 ! in2_y or $a0,$t0,$a0 ld [$bp+32+4],$t0 sllx $t2,32,$t2 ld [$bp+32+8],$acc1 or $a1,$t1,$a1 ld [$bp+32+12],$t1 sllx $t3,32,$t3 ld [$bp+32+16],$acc2 or $a2,$t2,$a2 ld [$bp+32+20],$t2 or $a3,$t3,$a3 ld [$bp+32+24],$acc3 sllx $t0,32,$t0 ld [$bp+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in2_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in2_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in2_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in2_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in2_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in2_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in2_y+16] stx $acc3,[%sp+LOCALS64+$in2_y+24] ld [$bp+64],$acc0 ! in2_z ld [$bp+64+4],$t0 ld [$bp+64+8],$acc1 ld [$bp+64+12],$t1 ld [$bp+64+16],$acc2 ld [$bp+64+20],$t2 ld [$bp+64+24],$acc3 ld [$bp+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$ap],$a0 ! in1_x or $acc0,$t0,$acc0 ld [$ap+4],$t0 sllx $t2,32,$t2 ld [$ap+8],$a1 or $acc1,$t1,$acc1 ld [$ap+12],$t1 sllx $t3,32,$t3 ld [$ap+16],$a2 or $acc2,$t2,$acc2 ld [$ap+20],$t2 or $acc3,$t3,$acc3 ld [$ap+24],$a3 sllx $t0,32,$t0 ld [$ap+28],$t3 sllx $t1,32,$t1 stx $acc0,[%sp+LOCALS64+$in2_z] sllx $t2,32,$t2 stx $acc1,[%sp+LOCALS64+$in2_z+8] sllx $t3,32,$t3 stx $acc2,[%sp+LOCALS64+$in2_z+16] stx $acc3,[%sp+LOCALS64+$in2_z+24] or $acc1,$acc0,$acc0 or $acc3,$acc2,$acc2 or $acc2,$acc0,$acc0 movrnz $acc0,-1,$acc0 ! !in2infty stx $acc0,[%fp+STACK_BIAS-8] or $a0,$t0,$a0 ld [$ap+32],$acc0 ! in1_y or $a1,$t1,$a1 ld [$ap+32+4],$t0 or $a2,$t2,$a2 ld [$ap+32+8],$acc1 or $a3,$t3,$a3 ld [$ap+32+12],$t1 ld [$ap+32+16],$acc2 ld [$ap+32+20],$t2 ld [$ap+32+24],$acc3 sllx $t0,32,$t0 ld [$ap+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in1_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in1_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in1_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in1_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in1_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in1_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in1_y+16] stx $acc3,[%sp+LOCALS64+$in1_y+24] ldx [%sp+LOCALS64+$in2_z],$a0 ! forward load ldx [%sp+LOCALS64+$in2_z+8],$a1 ldx [%sp+LOCALS64+$in2_z+16],$a2 ldx [%sp+LOCALS64+$in2_z+24],$a3 ld [$ap+64],$acc0 ! in1_z ld [$ap+64+4],$t0 ld [$ap+64+8],$acc1 ld [$ap+64+12],$t1 ld [$ap+64+16],$acc2 ld [$ap+64+20],$t2 ld [$ap+64+24],$acc3 ld [$ap+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 or $acc0,$t0,$acc0 sllx $t2,32,$t2 or $acc1,$t1,$acc1 sllx $t3,32,$t3 stx $acc0,[%sp+LOCALS64+$in1_z] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in1_z+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in1_z+16] stx $acc3,[%sp+LOCALS64+$in1_z+24] or $acc1,$acc0,$acc0 or $acc3,$acc2,$acc2 or $acc2,$acc0,$acc0 movrnz $acc0,-1,$acc0 ! !in1infty stx $acc0,[%fp+STACK_BIAS-16] call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z2sqr, in2_z); add %sp,LOCALS64+$Z2sqr,$rp ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS64+$Z1sqr,$rp ldx [%sp+LOCALS64+$Z2sqr],$bi ldx [%sp+LOCALS64+$in2_z],$a0 ldx [%sp+LOCALS64+$in2_z+8],$a1 ldx [%sp+LOCALS64+$in2_z+16],$a2 ldx [%sp+LOCALS64+$in2_z+24],$a3 add %sp,LOCALS64+$Z2sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, Z2sqr, in2_z); add %sp,LOCALS64+$S1,$rp ldx [%sp+LOCALS64+$Z1sqr],$bi ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$Z1sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$S1],$bi ldx [%sp+LOCALS64+$in1_y],$a0 ldx [%sp+LOCALS64+$in1_y+8],$a1 ldx [%sp+LOCALS64+$in1_y+16],$a2 ldx [%sp+LOCALS64+$in1_y+24],$a3 add %sp,LOCALS64+$S1,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, S1, in1_y); add %sp,LOCALS64+$S1,$rp ldx [%sp+LOCALS64+$S2],$bi ldx [%sp+LOCALS64+$in2_y],$a0 ldx [%sp+LOCALS64+$in2_y+8],$a1 ldx [%sp+LOCALS64+$in2_y+16],$a2 ldx [%sp+LOCALS64+$in2_y+24],$a3 add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$Z2sqr],$bi ! forward load ldx [%sp+LOCALS64+$in1_x],$a0 ldx [%sp+LOCALS64+$in1_x+8],$a1 ldx [%sp+LOCALS64+$in1_x+16],$a2 ldx [%sp+LOCALS64+$in1_x+24],$a3 add %sp,LOCALS64+$S1,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, S1); add %sp,LOCALS64+$R,$rp or $acc1,$acc0,$acc0 ! see if result is zero or $acc3,$acc2,$acc2 or $acc2,$acc0,$acc0 stx $acc0,[%fp+STACK_BIAS-24] add %sp,LOCALS64+$Z2sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U1, in1_x, Z2sqr); add %sp,LOCALS64+$U1,$rp ldx [%sp+LOCALS64+$Z1sqr],$bi ldx [%sp+LOCALS64+$in2_x],$a0 ldx [%sp+LOCALS64+$in2_x+8],$a1 ldx [%sp+LOCALS64+$in2_x+16],$a2 ldx [%sp+LOCALS64+$in2_x+24],$a3 add %sp,LOCALS64+$Z1sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in2_x, Z1sqr); add %sp,LOCALS64+$U2,$rp ldx [%sp+LOCALS64+$R],$a0 ! forward load ldx [%sp+LOCALS64+$R+8],$a1 ldx [%sp+LOCALS64+$R+16],$a2 ldx [%sp+LOCALS64+$R+24],$a3 add %sp,LOCALS64+$U1,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, U1); add %sp,LOCALS64+$H,$rp or $acc1,$acc0,$acc0 ! see if result is zero or $acc3,$acc2,$acc2 orcc $acc2,$acc0,$acc0 bne,pt %xcc,.Ladd_proceed_vis3 ! is_equal(U1,U2)? nop ldx [%fp+STACK_BIAS-8],$t0 ldx [%fp+STACK_BIAS-16],$t1 ldx [%fp+STACK_BIAS-24],$t2 andcc $t0,$t1,%g0 be,pt %xcc,.Ladd_proceed_vis3 ! (in1infty || in2infty)? nop andcc $t2,$t2,%g0 be,a,pt %xcc,.Ldouble_shortcut_vis3 ! is_equal(S1,S2)? add %sp,32*(12-10)+32,%sp ! difference in frame sizes st %g0,[$rp_real] st %g0,[$rp_real+4] st %g0,[$rp_real+8] st %g0,[$rp_real+12] st %g0,[$rp_real+16] st %g0,[$rp_real+20] st %g0,[$rp_real+24] st %g0,[$rp_real+28] st %g0,[$rp_real+32] st %g0,[$rp_real+32+4] st %g0,[$rp_real+32+8] st %g0,[$rp_real+32+12] st %g0,[$rp_real+32+16] st %g0,[$rp_real+32+20] st %g0,[$rp_real+32+24] st %g0,[$rp_real+32+28] st %g0,[$rp_real+64] st %g0,[$rp_real+64+4] st %g0,[$rp_real+64+8] st %g0,[$rp_real+64+12] st %g0,[$rp_real+64+16] st %g0,[$rp_real+64+20] st %g0,[$rp_real+64+24] st %g0,[$rp_real+64+28] b .Ladd_done_vis3 nop .align 16 .Ladd_proceed_vis3: call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS64+$Rsqr,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS64+$res_z,$rp ldx [%sp+LOCALS64+$H],$a0 ldx [%sp+LOCALS64+$H+8],$a1 ldx [%sp+LOCALS64+$H+16],$a2 ldx [%sp+LOCALS64+$H+24],$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS64+$Hsqr,$rp ldx [%sp+LOCALS64+$res_z],$bi ldx [%sp+LOCALS64+$in2_z],$a0 ldx [%sp+LOCALS64+$in2_z+8],$a1 ldx [%sp+LOCALS64+$in2_z+16],$a2 ldx [%sp+LOCALS64+$in2_z+24],$a3 add %sp,LOCALS64+$res_z,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, res_z, in2_z); add %sp,LOCALS64+$res_z,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$Hsqr],$a0 ldx [%sp+LOCALS64+$Hsqr+8],$a1 ldx [%sp+LOCALS64+$Hsqr+16],$a2 ldx [%sp+LOCALS64+$Hsqr+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS64+$Hcub,$rp ldx [%sp+LOCALS64+$U1],$bi ldx [%sp+LOCALS64+$Hsqr],$a0 ldx [%sp+LOCALS64+$Hsqr+8],$a1 ldx [%sp+LOCALS64+$Hsqr+16],$a2 ldx [%sp+LOCALS64+$Hsqr+24],$a3 add %sp,LOCALS64+$U1,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, U1, Hsqr); add %sp,LOCALS64+$U2,$rp call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS64+$Hsqr,$rp add %sp,LOCALS64+$Rsqr,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS64+$res_x,$rp add %sp,LOCALS64+$Hcub,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS64+$res_x,$rp ldx [%sp+LOCALS64+$S1],$bi ! forward load ldx [%sp+LOCALS64+$Hcub],$a0 ldx [%sp+LOCALS64+$Hcub+8],$a1 ldx [%sp+LOCALS64+$Hcub+16],$a2 ldx [%sp+LOCALS64+$Hcub+24],$a3 add %sp,LOCALS64+$U2,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S1,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S1, Hcub); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$R],$bi ldx [%sp+LOCALS64+$res_y],$a0 ldx [%sp+LOCALS64+$res_y+8],$a1 ldx [%sp+LOCALS64+$res_y+16],$a2 ldx [%sp+LOCALS64+$res_y+24],$a3 add %sp,LOCALS64+$R,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2); add %sp,LOCALS64+$res_y,$rp ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty ___ for($i=0;$i<96;$i+=16) { # conditional moves $code.=<<___; ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2 ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3 ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 movrz $t1,$acc2,$acc0 movrz $t1,$acc3,$acc1 movrz $t2,$acc4,$acc0 movrz $t2,$acc5,$acc1 srlx $acc0,32,$acc2 srlx $acc1,32,$acc3 st $acc0,[$rp_real+$i] st $acc2,[$rp_real+$i+4] st $acc1,[$rp_real+$i+8] st $acc3,[$rp_real+$i+12] ___ } $code.=<<___; .Ladd_done_vis3: ret restore .type ecp_nistz256_point_add_vis3,#function .size ecp_nistz256_point_add_vis3,.-ecp_nistz256_point_add_vis3 ___ } ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, # const P256_POINT_AFFINE *in2); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); my $Z1sqr = $S2; # above map() describes stack layout with 15 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty and !in2infty. $code.=<<___; .align 32 ecp_nistz256_point_add_affine_vis3: save %sp,-STACK64_FRAME-32*15-32,%sp mov $rp,$rp_real mov -1,$minus1 mov -2,$poly3 sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE ! convert input to uint64_t[4] ld [$bp],$a0 ! in2_x ld [$bp+4],$t0 ld [$bp+8],$a1 ld [$bp+12],$t1 ld [$bp+16],$a2 ld [$bp+20],$t2 ld [$bp+24],$a3 ld [$bp+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$bp+32],$acc0 ! in2_y or $a0,$t0,$a0 ld [$bp+32+4],$t0 sllx $t2,32,$t2 ld [$bp+32+8],$acc1 or $a1,$t1,$a1 ld [$bp+32+12],$t1 sllx $t3,32,$t3 ld [$bp+32+16],$acc2 or $a2,$t2,$a2 ld [$bp+32+20],$t2 or $a3,$t3,$a3 ld [$bp+32+24],$acc3 sllx $t0,32,$t0 ld [$bp+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in2_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in2_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in2_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in2_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in2_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in2_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in2_y+16] stx $acc3,[%sp+LOCALS64+$in2_y+24] or $a1,$a0,$a0 or $a3,$a2,$a2 or $acc1,$acc0,$acc0 or $acc3,$acc2,$acc2 or $a2,$a0,$a0 or $acc2,$acc0,$acc0 or $acc0,$a0,$a0 movrnz $a0,-1,$a0 ! !in2infty stx $a0,[%fp+STACK_BIAS-8] ld [$ap],$a0 ! in1_x ld [$ap+4],$t0 ld [$ap+8],$a1 ld [$ap+12],$t1 ld [$ap+16],$a2 ld [$ap+20],$t2 ld [$ap+24],$a3 ld [$ap+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$ap+32],$acc0 ! in1_y or $a0,$t0,$a0 ld [$ap+32+4],$t0 sllx $t2,32,$t2 ld [$ap+32+8],$acc1 or $a1,$t1,$a1 ld [$ap+32+12],$t1 sllx $t3,32,$t3 ld [$ap+32+16],$acc2 or $a2,$t2,$a2 ld [$ap+32+20],$t2 or $a3,$t3,$a3 ld [$ap+32+24],$acc3 sllx $t0,32,$t0 ld [$ap+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in1_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in1_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in1_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in1_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in1_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in1_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in1_y+16] stx $acc3,[%sp+LOCALS64+$in1_y+24] ld [$ap+64],$a0 ! in1_z ld [$ap+64+4],$t0 ld [$ap+64+8],$a1 ld [$ap+64+12],$t1 ld [$ap+64+16],$a2 ld [$ap+64+20],$t2 ld [$ap+64+24],$a3 ld [$ap+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 or $a0,$t0,$a0 sllx $t2,32,$t2 or $a1,$t1,$a1 sllx $t3,32,$t3 stx $a0,[%sp+LOCALS64+$in1_z] or $a2,$t2,$a2 stx $a1,[%sp+LOCALS64+$in1_z+8] or $a3,$t3,$a3 stx $a2,[%sp+LOCALS64+$in1_z+16] stx $a3,[%sp+LOCALS64+$in1_z+24] or $a1,$a0,$t0 or $a3,$a2,$t2 or $t2,$t0,$t0 movrnz $t0,-1,$t0 ! !in1infty stx $t0,[%fp+STACK_BIAS-16] call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS64+$Z1sqr,$rp ldx [%sp+LOCALS64+$in2_x],$bi mov $acc0,$a0 mov $acc1,$a1 mov $acc2,$a2 mov $acc3,$a3 add %sp,LOCALS64+$in2_x,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, Z1sqr, in2_x); add %sp,LOCALS64+$U2,$rp ldx [%sp+LOCALS64+$Z1sqr],$bi ! forward load ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$in1_x,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, in1_x); add %sp,LOCALS64+$H,$rp add %sp,LOCALS64+$Z1sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS64+$res_z,$rp ldx [%sp+LOCALS64+$S2],$bi ldx [%sp+LOCALS64+$in2_y],$a0 ldx [%sp+LOCALS64+$in2_y+8],$a1 ldx [%sp+LOCALS64+$in2_y+16],$a2 ldx [%sp+LOCALS64+$in2_y+24],$a3 add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$H],$a0 ! forward load ldx [%sp+LOCALS64+$H+8],$a1 ldx [%sp+LOCALS64+$H+16],$a2 ldx [%sp+LOCALS64+$H+24],$a3 add %sp,LOCALS64+$in1_y,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, in1_y); add %sp,LOCALS64+$R,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS64+$Hsqr,$rp ldx [%sp+LOCALS64+$R],$a0 ldx [%sp+LOCALS64+$R+8],$a1 ldx [%sp+LOCALS64+$R+16],$a2 ldx [%sp+LOCALS64+$R+24],$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS64+$Rsqr,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$Hsqr],$a0 ldx [%sp+LOCALS64+$Hsqr+8],$a1 ldx [%sp+LOCALS64+$Hsqr+16],$a2 ldx [%sp+LOCALS64+$Hsqr+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS64+$Hcub,$rp ldx [%sp+LOCALS64+$Hsqr],$bi ldx [%sp+LOCALS64+$in1_x],$a0 ldx [%sp+LOCALS64+$in1_x+8],$a1 ldx [%sp+LOCALS64+$in1_x+16],$a2 ldx [%sp+LOCALS64+$in1_x+24],$a3 add %sp,LOCALS64+$Hsqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in1_x, Hsqr); add %sp,LOCALS64+$U2,$rp call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS64+$Hsqr,$rp add %sp,LOCALS64+$Rsqr,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS64+$res_x,$rp add %sp,LOCALS64+$Hcub,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS64+$res_x,$rp ldx [%sp+LOCALS64+$Hcub],$bi ! forward load ldx [%sp+LOCALS64+$in1_y],$a0 ldx [%sp+LOCALS64+$in1_y+8],$a1 ldx [%sp+LOCALS64+$in1_y+16],$a2 ldx [%sp+LOCALS64+$in1_y+24],$a3 add %sp,LOCALS64+$U2,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$Hcub,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, in1_y, Hcub); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$R],$bi ldx [%sp+LOCALS64+$res_y],$a0 ldx [%sp+LOCALS64+$res_y+8],$a1 ldx [%sp+LOCALS64+$res_y+16],$a2 ldx [%sp+LOCALS64+$res_y+24],$a3 add %sp,LOCALS64+$R,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2); add %sp,LOCALS64+$res_y,$rp ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty 1: call .+8 add %o7,.Lone_mont_vis3-1b,$bp ___ for($i=0;$i<64;$i+=16) { # conditional moves $code.=<<___; ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2 ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3 ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 movrz $t1,$acc2,$acc0 movrz $t1,$acc3,$acc1 movrz $t2,$acc4,$acc0 movrz $t2,$acc5,$acc1 srlx $acc0,32,$acc2 srlx $acc1,32,$acc3 st $acc0,[$rp_real+$i] st $acc2,[$rp_real+$i+4] st $acc1,[$rp_real+$i+8] st $acc3,[$rp_real+$i+12] ___ } for(;$i<96;$i+=16) { $code.=<<___; ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 ldx [$bp+$i-64],$acc2 ! "in2" ldx [$bp+$i-64+8],$acc3 ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 movrz $t1,$acc2,$acc0 movrz $t1,$acc3,$acc1 movrz $t2,$acc4,$acc0 movrz $t2,$acc5,$acc1 srlx $acc0,32,$acc2 srlx $acc1,32,$acc3 st $acc0,[$rp_real+$i] st $acc2,[$rp_real+$i+4] st $acc1,[$rp_real+$i+8] st $acc3,[$rp_real+$i+12] ___ } $code.=<<___; ret restore .type ecp_nistz256_point_add_affine_vis3,#function .size ecp_nistz256_point_add_affine_vis3,.-ecp_nistz256_point_add_affine_vis3 .align 64 .Lone_mont_vis3: .long 0x00000000,0x00000001, 0xffffffff,0x00000000 .long 0xffffffff,0xffffffff, 0x00000000,0xfffffffe .align 64 ___ } }}} # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "addxc" => 0x011, "addxccc" => 0x013, "umulxhi" => 0x016 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(umulxhi|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/ec/asm/ecp_nistz256-x86.pl000077500000000000000000001604101364063235100212550ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for x86/SSE2. # # October 2014. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. In the process of adaptation # original .c module was made 32-bit savvy in order to make this # implementation possible. # # with/without -DECP_NISTZ256_ASM # Pentium +66-163% # PIII +72-172% # P4 +65-132% # Core2 +90-215% # Sandy Bridge +105-265% (contemporary i[57]-* are all close to this) # Atom +65-155% # Opteron +54-110% # Bulldozer +99-240% # VIA Nano +93-290% # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, server-side # operation. Keep in mind that +200% means 3x improvement. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; # See ecp_nistz256_table.c for explanation for why it's 64*16*37. # 64*16*37-1 is because $#arr returns last valid index or @arr, not # amount of elements. die "insane number of elements" if ($#arr != 64*16*37-1); &public_label("ecp_nistz256_precomputed"); &align(4096); &set_label("ecp_nistz256_precomputed"); ######################################################################## # this conversion smashes P256_POINT_AFFINE by individual bytes with # 64 byte interval, similar to # 1111222233334444 # 1234123412341234 for(1..37) { @tbl = splice(@arr,0,64*16); for($i=0;$i<64;$i++) { undef @line; for($j=0;$j<64;$j++) { push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; } &data_byte(join(',',map { sprintf "0x%02x",$_} @line)); } } ######################################################################## # Keep in mind that constants are stored least to most significant word &static_label("RR"); &set_label("RR",64); &data_word(3,0,-1,-5,-2,-1,-3,4); # 2^512 mod P-256 &static_label("ONE_mont"); &set_label("ONE_mont"); &data_word(1,0,0,-1,-1,-1,-2,0); &static_label("ONE"); &set_label("ONE"); &data_word(1,0,0,0,0,0,0,0); &asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by "); &align(64); ######################################################################## # void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_mul_by_2"); &mov ("esi",&wparam(1)); &mov ("edi",&wparam(0)); &mov ("ebp","esi"); ######################################################################## # common pattern for internal functions is that %edi is result pointer, # %esi and %ebp are input ones, %ebp being optional. %edi is preserved. &call ("_ecp_nistz256_add"); &function_end("ecp_nistz256_mul_by_2"); ######################################################################## # void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_mul_by_3"); &mov ("esi",&wparam(1)); # multiplication by 3 is performed # as 2*n+n, but we can't use output # to store 2*n, because if output # pointer equals to input, then # we'll get 2*n+2*n. &stack_push(8); # therefore we need to allocate # 256-bit intermediate buffer. &mov ("edi","esp"); &mov ("ebp","esi"); &call ("_ecp_nistz256_add"); &lea ("esi",&DWP(0,"edi")); &mov ("ebp",&wparam(1)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_add"); &stack_pop(8); &function_end("ecp_nistz256_mul_by_3"); ######################################################################## # void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_div_by_2"); &mov ("esi",&wparam(1)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_div_by_2"); &function_end("ecp_nistz256_div_by_2"); &function_begin_B("_ecp_nistz256_div_by_2"); # tmp = a is odd ? a+mod : a # # note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning least significant bit of input to one register, # %ebp, and its negative to another, %edx. &mov ("ebp",&DWP(0,"esi")); &xor ("edx","edx"); &mov ("ebx",&DWP(4,"esi")); &mov ("eax","ebp"); &and ("ebp",1); &mov ("ecx",&DWP(8,"esi")); &sub ("edx","ebp"); &add ("eax","edx"); &adc ("ebx","edx"); &mov (&DWP(0,"edi"),"eax"); &adc ("ecx","edx"); &mov (&DWP(4,"edi"),"ebx"); &mov (&DWP(8,"edi"),"ecx"); &mov ("eax",&DWP(12,"esi")); &mov ("ebx",&DWP(16,"esi")); &adc ("eax",0); &mov ("ecx",&DWP(20,"esi")); &adc ("ebx",0); &mov (&DWP(12,"edi"),"eax"); &adc ("ecx",0); &mov (&DWP(16,"edi"),"ebx"); &mov (&DWP(20,"edi"),"ecx"); &mov ("eax",&DWP(24,"esi")); &mov ("ebx",&DWP(28,"esi")); &adc ("eax","ebp"); &adc ("ebx","edx"); &mov (&DWP(24,"edi"),"eax"); &sbb ("esi","esi"); # broadcast carry bit &mov (&DWP(28,"edi"),"ebx"); # ret = tmp >> 1 &mov ("eax",&DWP(0,"edi")); &mov ("ebx",&DWP(4,"edi")); &mov ("ecx",&DWP(8,"edi")); &mov ("edx",&DWP(12,"edi")); &shr ("eax",1); &mov ("ebp","ebx"); &shl ("ebx",31); &or ("eax","ebx"); &shr ("ebp",1); &mov ("ebx","ecx"); &shl ("ecx",31); &mov (&DWP(0,"edi"),"eax"); &or ("ebp","ecx"); &mov ("eax",&DWP(16,"edi")); &shr ("ebx",1); &mov ("ecx","edx"); &shl ("edx",31); &mov (&DWP(4,"edi"),"ebp"); &or ("ebx","edx"); &mov ("ebp",&DWP(20,"edi")); &shr ("ecx",1); &mov ("edx","eax"); &shl ("eax",31); &mov (&DWP(8,"edi"),"ebx"); &or ("ecx","eax"); &mov ("ebx",&DWP(24,"edi")); &shr ("edx",1); &mov ("eax","ebp"); &shl ("ebp",31); &mov (&DWP(12,"edi"),"ecx"); &or ("edx","ebp"); &mov ("ecx",&DWP(28,"edi")); &shr ("eax",1); &mov ("ebp","ebx"); &shl ("ebx",31); &mov (&DWP(16,"edi"),"edx"); &or ("eax","ebx"); &shr ("ebp",1); &mov ("ebx","ecx"); &shl ("ecx",31); &mov (&DWP(20,"edi"),"eax"); &or ("ebp","ecx"); &shr ("ebx",1); &shl ("esi",31); &mov (&DWP(24,"edi"),"ebp"); &or ("ebx","esi"); # handle top-most carry bit &mov (&DWP(28,"edi"),"ebx"); &ret (); &function_end_B("_ecp_nistz256_div_by_2"); ######################################################################## # void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8], # const BN_ULONG ebp[8]); &function_begin("ecp_nistz256_add"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_add"); &function_end("ecp_nistz256_add"); &function_begin_B("_ecp_nistz256_add"); &mov ("eax",&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &add ("eax",&DWP(0,"ebp")); &mov ("edx",&DWP(12,"esi")); &adc ("ebx",&DWP(4,"ebp")); &mov (&DWP(0,"edi"),"eax"); &adc ("ecx",&DWP(8,"ebp")); &mov (&DWP(4,"edi"),"ebx"); &adc ("edx",&DWP(12,"ebp")); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &adc ("eax",&DWP(16,"ebp")); &mov ("edx",&DWP(28,"esi")); &adc ("ebx",&DWP(20,"ebp")); &mov (&DWP(16,"edi"),"eax"); &adc ("ecx",&DWP(24,"ebp")); &mov (&DWP(20,"edi"),"ebx"); &mov ("esi",0); &adc ("edx",&DWP(28,"ebp")); &mov (&DWP(24,"edi"),"ecx"); &adc ("esi",0); &mov (&DWP(28,"edi"),"edx"); # if a+b >= modulus, subtract modulus. # # But since comparison implies subtraction, we subtract modulus # to see if it borrows, and then subtract it for real if # subtraction didn't borrow. &mov ("eax",&DWP(0,"edi")); &mov ("ebx",&DWP(4,"edi")); &mov ("ecx",&DWP(8,"edi")); &sub ("eax",-1); &mov ("edx",&DWP(12,"edi")); &sbb ("ebx",-1); &mov ("eax",&DWP(16,"edi")); &sbb ("ecx",-1); &mov ("ebx",&DWP(20,"edi")); &sbb ("edx",0); &mov ("ecx",&DWP(24,"edi")); &sbb ("eax",0); &mov ("edx",&DWP(28,"edi")); &sbb ("ebx",0); &sbb ("ecx",1); &sbb ("edx",-1); &sbb ("esi",0); # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # by using borrow. ¬ ("esi"); &mov ("eax",&DWP(0,"edi")); &mov ("ebp","esi"); &mov ("ebx",&DWP(4,"edi")); &shr ("ebp",31); &mov ("ecx",&DWP(8,"edi")); &sub ("eax","esi"); &mov ("edx",&DWP(12,"edi")); &sbb ("ebx","esi"); &mov (&DWP(0,"edi"),"eax"); &sbb ("ecx","esi"); &mov (&DWP(4,"edi"),"ebx"); &sbb ("edx",0); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"edi")); &mov ("ebx",&DWP(20,"edi")); &mov ("ecx",&DWP(24,"edi")); &sbb ("eax",0); &mov ("edx",&DWP(28,"edi")); &sbb ("ebx",0); &mov (&DWP(16,"edi"),"eax"); &sbb ("ecx","ebp"); &mov (&DWP(20,"edi"),"ebx"); &sbb ("edx","esi"); &mov (&DWP(24,"edi"),"ecx"); &mov (&DWP(28,"edi"),"edx"); &ret (); &function_end_B("_ecp_nistz256_add"); ######################################################################## # void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8], # const BN_ULONG ebp[8]); &function_begin("ecp_nistz256_sub"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_sub"); &function_end("ecp_nistz256_sub"); &function_begin_B("_ecp_nistz256_sub"); &mov ("eax",&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &sub ("eax",&DWP(0,"ebp")); &mov ("edx",&DWP(12,"esi")); &sbb ("ebx",&DWP(4,"ebp")); &mov (&DWP(0,"edi"),"eax"); &sbb ("ecx",&DWP(8,"ebp")); &mov (&DWP(4,"edi"),"ebx"); &sbb ("edx",&DWP(12,"ebp")); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &sbb ("eax",&DWP(16,"ebp")); &mov ("edx",&DWP(28,"esi")); &sbb ("ebx",&DWP(20,"ebp")); &sbb ("ecx",&DWP(24,"ebp")); &mov (&DWP(16,"edi"),"eax"); &sbb ("edx",&DWP(28,"ebp")); &mov (&DWP(20,"edi"),"ebx"); &sbb ("esi","esi"); # broadcast borrow bit &mov (&DWP(24,"edi"),"ecx"); &mov (&DWP(28,"edi"),"edx"); # if a-b borrows, add modulus. # # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning borrow bit to one register, %ebp, and its negative # to another, %esi. But we started by calculating %esi... &mov ("eax",&DWP(0,"edi")); &mov ("ebp","esi"); &mov ("ebx",&DWP(4,"edi")); &shr ("ebp",31); &mov ("ecx",&DWP(8,"edi")); &add ("eax","esi"); &mov ("edx",&DWP(12,"edi")); &adc ("ebx","esi"); &mov (&DWP(0,"edi"),"eax"); &adc ("ecx","esi"); &mov (&DWP(4,"edi"),"ebx"); &adc ("edx",0); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"edi")); &mov ("ebx",&DWP(20,"edi")); &mov ("ecx",&DWP(24,"edi")); &adc ("eax",0); &mov ("edx",&DWP(28,"edi")); &adc ("ebx",0); &mov (&DWP(16,"edi"),"eax"); &adc ("ecx","ebp"); &mov (&DWP(20,"edi"),"ebx"); &adc ("edx","esi"); &mov (&DWP(24,"edi"),"ecx"); &mov (&DWP(28,"edi"),"edx"); &ret (); &function_end_B("_ecp_nistz256_sub"); ######################################################################## # void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_neg"); &mov ("ebp",&wparam(1)); &mov ("edi",&wparam(0)); &xor ("eax","eax"); &stack_push(8); &mov (&DWP(0,"esp"),"eax"); &mov ("esi","esp"); &mov (&DWP(4,"esp"),"eax"); &mov (&DWP(8,"esp"),"eax"); &mov (&DWP(12,"esp"),"eax"); &mov (&DWP(16,"esp"),"eax"); &mov (&DWP(20,"esp"),"eax"); &mov (&DWP(24,"esp"),"eax"); &mov (&DWP(28,"esp"),"eax"); &call ("_ecp_nistz256_sub"); &stack_pop(8); &function_end("ecp_nistz256_neg"); &function_begin_B("_picup_eax"); &mov ("eax",&DWP(0,"esp")); &ret (); &function_end_B("_picup_eax"); ######################################################################## # void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_to_mont"); &mov ("esi",&wparam(1)); &call ("_picup_eax"); &set_label("pic"); &lea ("ebp",&DWP(&label("RR")."-".&label("pic"),"eax")); if ($sse2) { &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_to_mont"); ######################################################################## # void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_from_mont"); &mov ("esi",&wparam(1)); &call ("_picup_eax"); &set_label("pic"); &lea ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax")); if ($sse2) { &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_from_mont"); ######################################################################## # void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8], # const BN_ULONG ebp[8]); &function_begin("ecp_nistz256_mul_mont"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_mul_mont"); ######################################################################## # void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_sqr_mont"); &mov ("esi",&wparam(1)); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &mov ("ebp","esi"); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_sqr_mont"); &function_begin_B("_ecp_nistz256_mul_mont"); if ($sse2) { &and ("eax",1<<24|1<<26); &cmp ("eax",1<<24|1<<26); # see if XMM+SSE2 is on &jne (&label("mul_mont_ialu")); ######################################## # SSE2 code path featuring 32x16-bit # multiplications is ~2x faster than # IALU counterpart (except on Atom)... ######################################## # stack layout: # +------------------------------------+< %esp # | 7 16-byte temporary XMM words, | # | "sliding" toward lower address | # . . # +------------------------------------+ # | unused XMM word | # +------------------------------------+< +128,%ebx # | 8 16-byte XMM words holding copies | # | of a[i]<<64|a[i] | # . . # . . # +------------------------------------+< +256 &mov ("edx","esp"); &sub ("esp",0x100); &movd ("xmm7",&DWP(0,"ebp")); # b[0] -> 0000.00xy &lea ("ebp",&DWP(4,"ebp")); &pcmpeqd("xmm6","xmm6"); &psrlq ("xmm6",48); # compose 0xffff<<64|0xffff &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y &and ("esp",-64); &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y &lea ("ebx",&DWP(0x80,"esp")); &movd ("xmm0",&DWP(4*0,"esi")); # a[0] -> 0000.00xy &pshufd ("xmm0","xmm0",0b11001100); # 0000.00xy -> 00xy.00xy &movd ("xmm1",&DWP(4*1,"esi")); # a[1] -> ... &movdqa (&QWP(0x00,"ebx"),"xmm0"); # offload converted a[0] &pmuludq("xmm0","xmm7"); # a[0]*b[0] &movd ("xmm2",&DWP(4*2,"esi")); &pshufd ("xmm1","xmm1",0b11001100); &movdqa (&QWP(0x10,"ebx"),"xmm1"); &pmuludq("xmm1","xmm7"); # a[1]*b[0] &movq ("xmm4","xmm0"); # clear upper 64 bits &pslldq("xmm4",6); &paddq ("xmm4","xmm0"); &movdqa("xmm5","xmm4"); &psrldq("xmm4",10); # upper 32 bits of a[0]*b[0] &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[0] # Upper half of a[0]*b[i] is carried into next multiplication # iteration, while lower one "participates" in actual reduction. # Normally latter is done by accumulating result of multiplication # of modulus by "magic" digit, but thanks to special form of modulus # and "magic" digit it can be performed only with additions and # subtractions (see note in IALU section below). Note that we are # not bothered with carry bits, they are accumulated in "flatten" # phase after all multiplications and reductions. &movd ("xmm3",&DWP(4*3,"esi")); &pshufd ("xmm2","xmm2",0b11001100); &movdqa (&QWP(0x20,"ebx"),"xmm2"); &pmuludq("xmm2","xmm7"); # a[2]*b[0] &paddq ("xmm1","xmm4"); # a[1]*b[0]+hw(a[0]*b[0]), carry &movdqa (&QWP(0x00,"esp"),"xmm1"); # t[0] &movd ("xmm0",&DWP(4*4,"esi")); &pshufd ("xmm3","xmm3",0b11001100); &movdqa (&QWP(0x30,"ebx"),"xmm3"); &pmuludq("xmm3","xmm7"); # a[3]*b[0] &movdqa (&QWP(0x10,"esp"),"xmm2"); &movd ("xmm1",&DWP(4*5,"esi")); &pshufd ("xmm0","xmm0",0b11001100); &movdqa (&QWP(0x40,"ebx"),"xmm0"); &pmuludq("xmm0","xmm7"); # a[4]*b[0] &paddq ("xmm3","xmm5"); # a[3]*b[0]+lw(a[0]*b[0]), reduction step &movdqa (&QWP(0x20,"esp"),"xmm3"); &movd ("xmm2",&DWP(4*6,"esi")); &pshufd ("xmm1","xmm1",0b11001100); &movdqa (&QWP(0x50,"ebx"),"xmm1"); &pmuludq("xmm1","xmm7"); # a[5]*b[0] &movdqa (&QWP(0x30,"esp"),"xmm0"); &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step &movd ("xmm3",&DWP(4*7,"esi")); &pshufd ("xmm2","xmm2",0b11001100); &movdqa (&QWP(0x60,"ebx"),"xmm2"); &pmuludq("xmm2","xmm7"); # a[6]*b[0] &movdqa (&QWP(0x40,"esp"),"xmm1"); &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step &movd ("xmm0",&DWP(0,"ebp")); # b[1] -> 0000.00xy &pshufd ("xmm3","xmm3",0b11001100); &movdqa (&QWP(0x70,"ebx"),"xmm3"); &pmuludq("xmm3","xmm7"); # a[7]*b[0] &pshuflw("xmm7","xmm0",0b11011100); # 0000.00xy -> 0000.0x0y &movdqa ("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y &mov ("ecx",6); &lea ("ebp",&DWP(4,"ebp")); &jmp (&label("madd_sse2")); &set_label("madd_sse2",16); &paddq ("xmm2","xmm5"); # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled] &paddq ("xmm3","xmm4"); # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled] &movdqa ("xmm1",&QWP(0x10,"ebx")); &pmuludq("xmm0","xmm7"); # a[0]*b[i] &movdqa(&QWP(0x50,"esp"),"xmm2"); &movdqa ("xmm2",&QWP(0x20,"ebx")); &pmuludq("xmm1","xmm7"); # a[1]*b[i] &movdqa(&QWP(0x60,"esp"),"xmm3"); &paddq ("xmm0",&QWP(0x00,"esp")); &movdqa ("xmm3",&QWP(0x30,"ebx")); &pmuludq("xmm2","xmm7"); # a[2]*b[i] &movq ("xmm4","xmm0"); # clear upper 64 bits &pslldq("xmm4",6); &paddq ("xmm1",&QWP(0x10,"esp")); &paddq ("xmm4","xmm0"); &movdqa("xmm5","xmm4"); &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] &movdqa ("xmm0",&QWP(0x40,"ebx")); &pmuludq("xmm3","xmm7"); # a[3]*b[i] &paddq ("xmm1","xmm4"); # a[1]*b[i]+hw(a[0]*b[i]), carry &paddq ("xmm2",&QWP(0x20,"esp")); &movdqa (&QWP(0x00,"esp"),"xmm1"); &movdqa ("xmm1",&QWP(0x50,"ebx")); &pmuludq("xmm0","xmm7"); # a[4]*b[i] &paddq ("xmm3",&QWP(0x30,"esp")); &movdqa (&QWP(0x10,"esp"),"xmm2"); &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] &movdqa ("xmm2",&QWP(0x60,"ebx")); &pmuludq("xmm1","xmm7"); # a[5]*b[i] &paddq ("xmm3","xmm5"); # a[3]*b[i]+lw(a[0]*b[i]), reduction step &paddq ("xmm0",&QWP(0x40,"esp")); &movdqa (&QWP(0x20,"esp"),"xmm3"); &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step &movdqa ("xmm3","xmm7"); &pmuludq("xmm2","xmm7"); # a[6]*b[i] &movd ("xmm7",&DWP(0,"ebp")); # b[i++] -> 0000.00xy &lea ("ebp",&DWP(4,"ebp")); &paddq ("xmm1",&QWP(0x50,"esp")); &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step &movdqa (&QWP(0x30,"esp"),"xmm0"); &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y &pmuludq("xmm3",&QWP(0x70,"ebx")); # a[7]*b[i] &pshufd("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y &movdqa("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] &movdqa (&QWP(0x40,"esp"),"xmm1"); &paddq ("xmm2",&QWP(0x60,"esp")); &dec ("ecx"); &jnz (&label("madd_sse2")); &paddq ("xmm2","xmm5"); # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled] &paddq ("xmm3","xmm4"); # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled] &movdqa ("xmm1",&QWP(0x10,"ebx")); &pmuludq("xmm0","xmm7"); # a[0]*b[7] &movdqa(&QWP(0x50,"esp"),"xmm2"); &movdqa ("xmm2",&QWP(0x20,"ebx")); &pmuludq("xmm1","xmm7"); # a[1]*b[7] &movdqa(&QWP(0x60,"esp"),"xmm3"); &paddq ("xmm0",&QWP(0x00,"esp")); &movdqa ("xmm3",&QWP(0x30,"ebx")); &pmuludq("xmm2","xmm7"); # a[2]*b[7] &movq ("xmm4","xmm0"); # clear upper 64 bits &pslldq("xmm4",6); &paddq ("xmm1",&QWP(0x10,"esp")); &paddq ("xmm4","xmm0"); &movdqa("xmm5","xmm4"); &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] &movdqa ("xmm0",&QWP(0x40,"ebx")); &pmuludq("xmm3","xmm7"); # a[3]*b[7] &paddq ("xmm1","xmm4"); # a[1]*b[7]+hw(a[0]*b[7]), carry &paddq ("xmm2",&QWP(0x20,"esp")); &movdqa (&QWP(0x00,"esp"),"xmm1"); &movdqa ("xmm1",&QWP(0x50,"ebx")); &pmuludq("xmm0","xmm7"); # a[4]*b[7] &paddq ("xmm3",&QWP(0x30,"esp")); &movdqa (&QWP(0x10,"esp"),"xmm2"); &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] &movdqa ("xmm2",&QWP(0x60,"ebx")); &pmuludq("xmm1","xmm7"); # a[5]*b[7] &paddq ("xmm3","xmm5"); # reduction step &paddq ("xmm0",&QWP(0x40,"esp")); &movdqa (&QWP(0x20,"esp"),"xmm3"); &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step &movdqa ("xmm3",&QWP(0x70,"ebx")); &pmuludq("xmm2","xmm7"); # a[6]*b[7] &paddq ("xmm1",&QWP(0x50,"esp")); &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step &movdqa (&QWP(0x30,"esp"),"xmm0"); &pmuludq("xmm3","xmm7"); # a[7]*b[7] &pcmpeqd("xmm7","xmm7"); &movdqa ("xmm0",&QWP(0x00,"esp")); &pslldq ("xmm7",8); &movdqa (&QWP(0x40,"esp"),"xmm1"); &paddq ("xmm2",&QWP(0x60,"esp")); &paddq ("xmm2","xmm5"); # a[6]*b[7]+lw(a[0]*b[7]), reduction step &paddq ("xmm3","xmm4"); # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step &movdqa(&QWP(0x50,"esp"),"xmm2"); &movdqa(&QWP(0x60,"esp"),"xmm3"); &movdqa ("xmm1",&QWP(0x10,"esp")); &movdqa ("xmm2",&QWP(0x20,"esp")); &movdqa ("xmm3",&QWP(0x30,"esp")); &movq ("xmm4","xmm0"); # "flatten" &pand ("xmm0","xmm7"); &xor ("ebp","ebp"); &pslldq ("xmm4",6); &movq ("xmm5","xmm1"); &paddq ("xmm0","xmm4"); &pand ("xmm1","xmm7"); &psrldq ("xmm0",6); &movd ("eax","xmm0"); &psrldq ("xmm0",4); &paddq ("xmm5","xmm0"); &movdqa ("xmm0",&QWP(0x40,"esp")); &sub ("eax",-1); # start subtracting modulus, # this is used to determine # if result is larger/smaller # than modulus (see below) &pslldq ("xmm5",6); &movq ("xmm4","xmm2"); &paddq ("xmm1","xmm5"); &pand ("xmm2","xmm7"); &psrldq ("xmm1",6); &mov (&DWP(4*0,"edi"),"eax"); &movd ("eax","xmm1"); &psrldq ("xmm1",4); &paddq ("xmm4","xmm1"); &movdqa ("xmm1",&QWP(0x50,"esp")); &sbb ("eax",-1); &pslldq ("xmm4",6); &movq ("xmm5","xmm3"); &paddq ("xmm2","xmm4"); &pand ("xmm3","xmm7"); &psrldq ("xmm2",6); &mov (&DWP(4*1,"edi"),"eax"); &movd ("eax","xmm2"); &psrldq ("xmm2",4); &paddq ("xmm5","xmm2"); &movdqa ("xmm2",&QWP(0x60,"esp")); &sbb ("eax",-1); &pslldq ("xmm5",6); &movq ("xmm4","xmm0"); &paddq ("xmm3","xmm5"); &pand ("xmm0","xmm7"); &psrldq ("xmm3",6); &mov (&DWP(4*2,"edi"),"eax"); &movd ("eax","xmm3"); &psrldq ("xmm3",4); &paddq ("xmm4","xmm3"); &sbb ("eax",0); &pslldq ("xmm4",6); &movq ("xmm5","xmm1"); &paddq ("xmm0","xmm4"); &pand ("xmm1","xmm7"); &psrldq ("xmm0",6); &mov (&DWP(4*3,"edi"),"eax"); &movd ("eax","xmm0"); &psrldq ("xmm0",4); &paddq ("xmm5","xmm0"); &sbb ("eax",0); &pslldq ("xmm5",6); &movq ("xmm4","xmm2"); &paddq ("xmm1","xmm5"); &pand ("xmm2","xmm7"); &psrldq ("xmm1",6); &movd ("ebx","xmm1"); &psrldq ("xmm1",4); &mov ("esp","edx"); &paddq ("xmm4","xmm1"); &pslldq ("xmm4",6); &paddq ("xmm2","xmm4"); &psrldq ("xmm2",6); &movd ("ecx","xmm2"); &psrldq ("xmm2",4); &sbb ("ebx",0); &movd ("edx","xmm2"); &pextrw ("esi","xmm2",2); # top-most overflow bit &sbb ("ecx",1); &sbb ("edx",-1); &sbb ("esi",0); # borrow from subtraction # Final step is "if result > mod, subtract mod", and at this point # we have result - mod written to output buffer, as well as borrow # bit from this subtraction, and if borrow bit is set, we add # modulus back. # # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning borrow bit to one register, %ebp, and its negative # to another, %esi. But we started by calculating %esi... &sub ("ebp","esi"); &add (&DWP(4*0,"edi"),"esi"); # add modulus or zero &adc (&DWP(4*1,"edi"),"esi"); &adc (&DWP(4*2,"edi"),"esi"); &adc (&DWP(4*3,"edi"),0); &adc ("eax",0); &adc ("ebx",0); &mov (&DWP(4*4,"edi"),"eax"); &adc ("ecx","ebp"); &mov (&DWP(4*5,"edi"),"ebx"); &adc ("edx","esi"); &mov (&DWP(4*6,"edi"),"ecx"); &mov (&DWP(4*7,"edi"),"edx"); &ret (); &set_label("mul_mont_ialu",16); } ######################################## # IALU code path suitable for all CPUs. ######################################## # stack layout: # +------------------------------------+< %esp # | 8 32-bit temporary words, accessed | # | as circular buffer | # . . # . . # +------------------------------------+< +32 # | offloaded destination pointer | # +------------------------------------+ # | unused | # +------------------------------------+< +40 &sub ("esp",10*4); &mov ("eax",&DWP(0*4,"esi")); # a[0] &mov ("ebx",&DWP(0*4,"ebp")); # b[0] &mov (&DWP(8*4,"esp"),"edi"); # off-load dst ptr &mul ("ebx"); # a[0]*b[0] &mov (&DWP(0*4,"esp"),"eax"); # t[0] &mov ("eax",&DWP(1*4,"esi")); &mov ("ecx","edx") &mul ("ebx"); # a[1]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(2*4,"esi")); &adc ("edx",0); &mov (&DWP(1*4,"esp"),"ecx"); # t[1] &mov ("ecx","edx"); &mul ("ebx"); # a[2]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(3*4,"esi")); &adc ("edx",0); &mov (&DWP(2*4,"esp"),"ecx"); # t[2] &mov ("ecx","edx"); &mul ("ebx"); # a[3]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(4*4,"esi")); &adc ("edx",0); &mov (&DWP(3*4,"esp"),"ecx"); # t[3] &mov ("ecx","edx"); &mul ("ebx"); # a[4]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(5*4,"esi")); &adc ("edx",0); &mov (&DWP(4*4,"esp"),"ecx"); # t[4] &mov ("ecx","edx"); &mul ("ebx"); # a[5]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(6*4,"esi")); &adc ("edx",0); &mov (&DWP(5*4,"esp"),"ecx"); # t[5] &mov ("ecx","edx"); &mul ("ebx"); # a[6]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(7*4,"esi")); &adc ("edx",0); &mov (&DWP(6*4,"esp"),"ecx"); # t[6] &mov ("ecx","edx"); &xor ("edi","edi"); # initial top-most carry &mul ("ebx"); # a[7]*b[0] &add ("ecx","eax"); # t[7] &mov ("eax",&DWP(0*4,"esp")); # t[0] &adc ("edx",0); # t[8] for ($i=0;$i<7;$i++) { my $j=$i+1; # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff.0001.0000.0000.0000.ffff.ffff.ffff # * abcd # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 # - abcd.0000.0000.0000.0000.0000.0000.abcd # # or marking redundant operations: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- # + abcd.0000.abcd.0000.0000.abcd.----.----.---- # - abcd.----.----.----.----.----.----.---- &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] &adc ("ecx",0); # t[7]+=0 &adc ("edx","eax"); # t[8]+=t[0] &adc ("edi",0); # top-most carry &mov ("ebx",&DWP($j*4,"ebp")); # b[i] &sub ("ecx","eax"); # t[7]-=t[0] &mov ("eax",&DWP(0*4,"esi")); # a[0] &sbb ("edx",0); # t[8]-=0 &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); &sbb ("edi",0); # top-most carry, # keep in mind that # netto result is # *addition* of value # with (abcd<<32)-abcd # on top, so that # underflow is # impossible, because # (abcd<<32)-abcd # doesn't underflow &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); &mul ("ebx"); # a[0]*b[i] &add ("eax",&DWP((($j+0)%8)*4,"esp")); &adc ("edx",0); &mov (&DWP((($j+0)%8)*4,"esp"),"eax"); &mov ("eax",&DWP(1*4,"esi")); &mov ("ecx","edx") &mul ("ebx"); # a[1]*b[i] &add ("ecx",&DWP((($j+1)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(2*4,"esi")); &mov (&DWP((($j+1)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[2]*b[i] &add ("ecx",&DWP((($j+2)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(3*4,"esi")); &mov (&DWP((($j+2)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[3]*b[i] &add ("ecx",&DWP((($j+3)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(4*4,"esi")); &mov (&DWP((($j+3)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[4]*b[i] &add ("ecx",&DWP((($j+4)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(5*4,"esi")); &mov (&DWP((($j+4)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[5]*b[i] &add ("ecx",&DWP((($j+5)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(6*4,"esi")); &mov (&DWP((($j+5)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[6]*b[i] &add ("ecx",&DWP((($j+6)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(7*4,"esi")); &mov (&DWP((($j+6)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[7]*b[i] &add ("ecx",&DWP((($j+7)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); # t[7] &mov ("eax",&DWP((($j+0)%8)*4,"esp")); # t[0] &adc ("edx","edi"); # t[8] &mov ("edi",0); &adc ("edi",0); # top-most carry } &mov ("ebp",&DWP(8*4,"esp")); # restore dst ptr &xor ("esi","esi"); my $j=$i+1; # last multiplication-less reduction &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] &adc ("ecx",0); # t[7]+=0 &adc ("edx","eax"); # t[8]+=t[0] &adc ("edi",0); # top-most carry &mov ("ebx",&DWP((($j+1)%8)*4,"esp")); &sub ("ecx","eax"); # t[7]-=t[0] &mov ("eax",&DWP((($j+0)%8)*4,"esp")); &sbb ("edx",0); # t[8]-=0 &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); &sbb ("edi",0); # top-most carry &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); # Final step is "if result > mod, subtract mod", but we do it # "other way around", namely write result - mod to output buffer # and if subtraction borrowed, add modulus back. &mov ("ecx",&DWP((($j+2)%8)*4,"esp")); &sub ("eax",-1); &mov ("edx",&DWP((($j+3)%8)*4,"esp")); &sbb ("ebx",-1); &mov (&DWP(0*4,"ebp"),"eax"); &sbb ("ecx",-1); &mov (&DWP(1*4,"ebp"),"ebx"); &sbb ("edx",0); &mov (&DWP(2*4,"ebp"),"ecx"); &mov (&DWP(3*4,"ebp"),"edx"); &mov ("eax",&DWP((($j+4)%8)*4,"esp")); &mov ("ebx",&DWP((($j+5)%8)*4,"esp")); &mov ("ecx",&DWP((($j+6)%8)*4,"esp")); &sbb ("eax",0); &mov ("edx",&DWP((($j+7)%8)*4,"esp")); &sbb ("ebx",0); &sbb ("ecx",1); &sbb ("edx",-1); &sbb ("edi",0); # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning borrow bit to one register, %ebp, and its negative # to another, %esi. But we started by calculating %esi... &sub ("esi","edi"); &add (&DWP(0*4,"ebp"),"edi"); # add modulus or zero &adc (&DWP(1*4,"ebp"),"edi"); &adc (&DWP(2*4,"ebp"),"edi"); &adc (&DWP(3*4,"ebp"),0); &adc ("eax",0); &adc ("ebx",0); &mov (&DWP(4*4,"ebp"),"eax"); &adc ("ecx","esi"); &mov (&DWP(5*4,"ebp"),"ebx"); &adc ("edx","edi"); &mov (&DWP(6*4,"ebp"),"ecx"); &mov ("edi","ebp"); # fulfill contract &mov (&DWP(7*4,"ebp"),"edx"); &add ("esp",10*4); &ret (); &function_end_B("_ecp_nistz256_mul_mont"); ######################################################################## # void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi, # int ebp); &function_begin("ecp_nistz256_scatter_w5"); &mov ("edi",&wparam(0)); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &lea ("edi",&DWP(128-4,"edi","ebp",4)); &mov ("ebp",96/16); &set_label("scatter_w5_loop"); &mov ("eax",&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edx",&DWP(12,"esi")); &lea ("esi",&DWP(16,"esi")); &mov (&DWP(64*0-128,"edi"),"eax"); &mov (&DWP(64*1-128,"edi"),"ebx"); &mov (&DWP(64*2-128,"edi"),"ecx"); &mov (&DWP(64*3-128,"edi"),"edx"); &lea ("edi",&DWP(64*4,"edi")); &dec ("ebp"); &jnz (&label("scatter_w5_loop")); &function_end("ecp_nistz256_scatter_w5"); ######################################################################## # void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi, # int ebp); &function_begin("ecp_nistz256_gather_w5"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &lea ("esi",&DWP(0,"esi","ebp",4)); &neg ("ebp"); &sar ("ebp",31); &mov ("edi",&wparam(0)); &lea ("esi",&DWP(0,"esi","ebp",4)); for($i=0;$i<24;$i+=4) { &mov ("eax",&DWP(64*($i+0),"esi")); &mov ("ebx",&DWP(64*($i+1),"esi")); &mov ("ecx",&DWP(64*($i+2),"esi")); &mov ("edx",&DWP(64*($i+3),"esi")); &and ("eax","ebp"); &and ("ebx","ebp"); &and ("ecx","ebp"); &and ("edx","ebp"); &mov (&DWP(4*($i+0),"edi"),"eax"); &mov (&DWP(4*($i+1),"edi"),"ebx"); &mov (&DWP(4*($i+2),"edi"),"ecx"); &mov (&DWP(4*($i+3),"edi"),"edx"); } &function_end("ecp_nistz256_gather_w5"); ######################################################################## # void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi, # int ebp); &function_begin("ecp_nistz256_scatter_w7"); &mov ("edi",&wparam(0)); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &lea ("edi",&DWP(0,"edi","ebp")); &mov ("ebp",64/4); &set_label("scatter_w7_loop"); &mov ("eax",&DWP(0,"esi")); &lea ("esi",&DWP(4,"esi")); &mov (&BP(64*0,"edi"),"al"); &mov (&BP(64*1,"edi"),"ah"); &shr ("eax",16); &mov (&BP(64*2,"edi"),"al"); &mov (&BP(64*3,"edi"),"ah"); &lea ("edi",&DWP(64*4,"edi")); &dec ("ebp"); &jnz (&label("scatter_w7_loop")); &function_end("ecp_nistz256_scatter_w7"); ######################################################################## # void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi, # int ebp); &function_begin("ecp_nistz256_gather_w7"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &add ("esi","ebp"); &neg ("ebp"), &sar ("ebp",31); &mov ("edi",&wparam(0)); &lea ("esi",&DWP(0,"esi","ebp")); for($i=0;$i<64;$i+=4) { &movz ("eax",&BP(64*($i+0),"esi")); &movz ("ebx",&BP(64*($i+1),"esi")); &movz ("ecx",&BP(64*($i+2),"esi")); &and ("eax","ebp"); &movz ("edx",&BP(64*($i+3),"esi")); &and ("ebx","ebp"); &mov (&BP($i+0,"edi"),"al"); &and ("ecx","ebp"); &mov (&BP($i+1,"edi"),"bl"); &and ("edx","ebp"); &mov (&BP($i+2,"edi"),"cl"); &mov (&BP($i+3,"edi"),"dl"); } &function_end("ecp_nistz256_gather_w7"); ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # &static_label("point_double_shortcut"); &function_begin("ecp_nistz256_point_double"); { my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); &mov ("esi",&wparam(1)); # above map() describes stack layout with 5 temporary # 256-bit vectors on top, then we take extra word for # OPENSSL_ia32cap_P copy. &stack_push(8*5+1); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("ebp",&DWP(0,"edx")); } &set_label("point_double_shortcut"); &mov ("eax",&DWP(0,"esi")); # copy in_x &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edx",&DWP(12,"esi")); &mov (&DWP($in_x+0,"esp"),"eax"); &mov (&DWP($in_x+4,"esp"),"ebx"); &mov (&DWP($in_x+8,"esp"),"ecx"); &mov (&DWP($in_x+12,"esp"),"edx"); &mov ("eax",&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("edx",&DWP(28,"esi")); &mov (&DWP($in_x+16,"esp"),"eax"); &mov (&DWP($in_x+20,"esp"),"ebx"); &mov (&DWP($in_x+24,"esp"),"ecx"); &mov (&DWP($in_x+28,"esp"),"edx"); &mov (&DWP(32*5,"esp"),"ebp"); # OPENSSL_ia32cap_P copy &lea ("ebp",&DWP(32,"esi")); &lea ("esi",&DWP(32,"esi")); &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(S, in_y); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &mov ("esi",64); &add ("esi",&wparam(1)); &lea ("edi",&DWP($Zsqr,"esp")); &mov ("ebp","esi"); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Zsqr, in_z); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($S,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(S, S); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &mov ("ebp",&wparam(1)); &lea ("esi",&DWP(32,"ebp")); &lea ("ebp",&DWP(64,"ebp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(tmp0, in_z, in_y); &lea ("esi",&DWP($in_x,"esp")); &lea ("ebp",&DWP($Zsqr,"esp")); &lea ("edi",&DWP($M,"esp")); &call ("_ecp_nistz256_add"); # p256_add(M, in_x, Zsqr); &mov ("edi",64); &lea ("esi",&DWP($tmp0,"esp")); &lea ("ebp",&DWP($tmp0,"esp")); &add ("edi",&wparam(0)); &call ("_ecp_nistz256_add"); # p256_mul_by_2(res_z, tmp0); &lea ("esi",&DWP($in_x,"esp")); &lea ("ebp",&DWP($Zsqr,"esp")); &lea ("edi",&DWP($Zsqr,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(Zsqr, in_x, Zsqr); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($S,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(tmp0, S); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($M,"esp")); &lea ("ebp",&DWP($Zsqr,"esp")); &lea ("edi",&DWP($M,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(M, M, Zsqr); &mov ("edi",32); &lea ("esi",&DWP($tmp0,"esp")); &add ("edi",&wparam(0)); &call ("_ecp_nistz256_div_by_2"); # p256_div_by_2(res_y, tmp0); &lea ("esi",&DWP($M,"esp")); &lea ("ebp",&DWP($M,"esp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_add"); # 1/2 p256_mul_by_3(M, M); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in_x,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, in_x); &lea ("esi",&DWP($tmp0,"esp")); &lea ("ebp",&DWP($M,"esp")); &lea ("edi",&DWP($M,"esp")); &call ("_ecp_nistz256_add"); # 2/2 p256_mul_by_3(M, M); &lea ("esi",&DWP($S,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(tmp0, S); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($M,"esp")); &lea ("ebp",&DWP($M,"esp")); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(res_x, M); &mov ("esi","edi"); # %edi is still res_x here &lea ("ebp",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, tmp0); &lea ("esi",&DWP($S,"esp")); &mov ("ebp","edi"); # %edi is still res_x &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(S, S, res_x); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &mov ("esi","edi"); # %edi is still &S &lea ("ebp",&DWP($M,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, M); &mov ("ebp",32); &lea ("esi",&DWP($S,"esp")); &add ("ebp",&wparam(0)); &mov ("edi","ebp"); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, S, res_y); &stack_pop(8*5+1); } &function_end("ecp_nistz256_point_double"); ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); &function_begin("ecp_nistz256_point_add"); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y,$in2_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); &mov ("esi",&wparam(2)); # above map() describes stack layout with 18 temporary # 256-bit vectors on top, then we take extra words for # ~in1infty, ~in2infty, result of check for zero and # OPENSSL_ia32cap_P copy. [one unused word for padding] &stack_push(8*18+5); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("ebp",&DWP(0,"edx")); } &lea ("edi",&DWP($in2_x,"esp")); for($i=0;$i<96;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in2 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov (&DWP(32*18+12,"esp"),"ebp") if ($i==0); &mov ("ebp","eax") if ($i==64); &or ("ebp","eax") if ($i>64); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx") if ($i>=64); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx") if ($i>=64); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx") if ($i>=64); } &xor ("eax","eax"); &mov ("esi",&wparam(1)); &sub ("eax","ebp"); &or ("ebp","eax"); &sar ("ebp",31); &mov (&DWP(32*18+4,"esp"),"ebp"); # ~in2infty &lea ("edi",&DWP($in1_x,"esp")); for($i=0;$i<96;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in1 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov ("ebp","eax") if ($i==64); &or ("ebp","eax") if ($i>64); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx") if ($i>=64); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx") if ($i>=64); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx") if ($i>=64); } &xor ("eax","eax"); &sub ("eax","ebp"); &or ("ebp","eax"); &sar ("ebp",31); &mov (&DWP(32*18+0,"esp"),"ebp"); # ~in1infty &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_z,"esp")); &lea ("ebp",&DWP($in2_z,"esp")); &lea ("edi",&DWP($Z2sqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z2sqr, in2_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_z,"esp")); &lea ("ebp",&DWP($in1_z,"esp")); &lea ("edi",&DWP($Z1sqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Z2sqr,"esp")); &lea ("ebp",&DWP($in2_z,"esp")); &lea ("edi",&DWP($S1,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, Z2sqr, in2_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Z1sqr,"esp")); &lea ("ebp",&DWP($in1_z,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_y,"esp")); &lea ("ebp",&DWP($S1,"esp")); &lea ("edi",&DWP($S1,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, S1, in1_y); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); &lea ("esi",&DWP($S2,"esp")); &lea ("ebp",&DWP($S1,"esp")); &lea ("edi",&DWP($R,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, S1); &or ("ebx","eax"); # see if result is zero &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &or ("ebx","ecx"); &or ("ebx","edx"); &or ("ebx",&DWP(0,"edi")); &or ("ebx",&DWP(4,"edi")); &lea ("esi",&DWP($in1_x,"esp")); &or ("ebx",&DWP(8,"edi")); &lea ("ebp",&DWP($Z2sqr,"esp")); &or ("ebx",&DWP(12,"edi")); &lea ("edi",&DWP($U1,"esp")); &mov (&DWP(32*18+8,"esp"),"ebx"); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U1, in1_x, Z2sqr); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_x,"esp")); &lea ("ebp",&DWP($Z1sqr,"esp")); &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in2_x, Z1sqr); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($U1,"esp")); &lea ("edi",&DWP($H,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, U1); &or ("eax","ebx"); # see if result is zero &or ("eax","ecx"); &or ("eax","edx"); &or ("eax",&DWP(0,"edi")); &or ("eax",&DWP(4,"edi")); &or ("eax",&DWP(8,"edi")); &or ("eax",&DWP(12,"edi")); # ~is_equal(U1,U2) &mov ("ebx",&DWP(32*18+0,"esp")); # ~in1infty ¬ ("ebx"); # -1/0 -> 0/-1 &or ("eax","ebx"); &mov ("ebx",&DWP(32*18+4,"esp")); # ~in2infty ¬ ("ebx"); # -1/0 -> 0/-1 &or ("eax","ebx"); &or ("eax",&DWP(32*18+8,"esp")); # ~is_equal(S1,S2) # if (~is_equal(U1,U2) | in1infty | in2infty | ~is_equal(S1,S2)) &data_byte(0x3e); # predict taken &jnz (&label("add_proceed")); &set_label("add_double",16); &mov ("esi",&wparam(1)); &mov ("ebp",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &add ("esp",4*((8*18+5)-(8*5+1))); # difference in frame sizes &jmp (&label("point_double_shortcut")); &set_label("add_proceed",16); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($R,"esp")); &lea ("edi",&DWP($Rsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($in1_z,"esp")); &lea ("edi",&DWP($res_z,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($H,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_z,"esp")); &lea ("ebp",&DWP($res_z,"esp")); &lea ("edi",&DWP($res_z,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, res_z, in2_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Hsqr,"esp")); &lea ("ebp",&DWP($U1,"esp")); &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, U1, Hsqr); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($Hcub,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($U2,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); &lea ("esi",&DWP($Rsqr,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); &lea ("esi",&DWP($res_x,"esp")); &lea ("ebp",&DWP($Hcub,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($res_x,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Hcub,"esp")); &lea ("ebp",&DWP($S1,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S1, Hcub); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($res_y,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, R, res_y); &lea ("esi",&DWP($res_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); &mov ("ebp",&DWP(32*18+0,"esp")); # ~in1infty &mov ("esi",&DWP(32*18+4,"esp")); # ~in2infty &mov ("edi",&wparam(0)); &mov ("edx","ebp"); ¬ ("ebp"); &and ("edx","esi"); # ~in1infty & ~in2infty &and ("ebp","esi"); # in1infty & ~in2infty ¬ ("esi"); # in2infty ######################################## # conditional moves for($i=64;$i<96;$i+=4) { &mov ("eax","edx"); # ~in1infty & ~in2infty &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp"); # in1infty & ~in2infty &and ("ebx",&DWP($in2_x+$i,"esp")); &mov ("ecx","esi"); # in2infty &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax","ebx"); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } for($i=0;$i<64;$i+=4) { &mov ("eax","edx"); # ~in1infty & ~in2infty &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp"); # in1infty & ~in2infty &and ("ebx",&DWP($in2_x+$i,"esp")); &mov ("ecx","esi"); # in2infty &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax","ebx"); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } &set_label("add_done"); &stack_pop(8*18+5); } &function_end("ecp_nistz256_point_add"); ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out, # const P256_POINT *in1, # const P256_POINT_AFFINE *in2); &function_begin("ecp_nistz256_point_add_affine"); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); my $Z1sqr = $S2; my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); &mov ("esi",&wparam(1)); # above map() describes stack layout with 15 temporary # 256-bit vectors on top, then we take extra words for # ~in1infty, ~in2infty, and OPENSSL_ia32cap_P copy. &stack_push(8*15+3); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("ebp",&DWP(0,"edx")); } &lea ("edi",&DWP($in1_x,"esp")); for($i=0;$i<96;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in1 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov (&DWP(32*15+8,"esp"),"ebp") if ($i==0); &mov ("ebp","eax") if ($i==64); &or ("ebp","eax") if ($i>64); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx") if ($i>=64); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx") if ($i>=64); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx") if ($i>=64); } &xor ("eax","eax"); &mov ("esi",&wparam(2)); &sub ("eax","ebp"); &or ("ebp","eax"); &sar ("ebp",31); &mov (&DWP(32*15+0,"esp"),"ebp"); # ~in1infty &lea ("edi",&DWP($in2_x,"esp")); for($i=0;$i<64;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in2 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov ("ebp","eax") if ($i==0); &or ("ebp","eax") if ($i!=0); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx"); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx"); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx"); } &xor ("ebx","ebx"); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &sub ("ebx","ebp"); &lea ("esi",&DWP($in1_z,"esp")); &or ("ebx","ebp"); &lea ("ebp",&DWP($in1_z,"esp")); &sar ("ebx",31); &lea ("edi",&DWP($Z1sqr,"esp")); &mov (&DWP(32*15+4,"esp"),"ebx"); # ~in2infty &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_x,"esp")); &mov ("ebp","edi"); # %esi is stull &Z1sqr &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, Z1sqr, in2_x); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_z,"esp")); &lea ("ebp",&DWP($Z1sqr,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($in1_x,"esp")); &lea ("edi",&DWP($H,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, in1_x); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_z,"esp")); &lea ("ebp",&DWP($H,"esp")); &lea ("edi",&DWP($res_z,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); &lea ("esi",&DWP($S2,"esp")); &lea ("ebp",&DWP($in1_y,"esp")); &lea ("edi",&DWP($R,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, in1_y); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($H,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($R,"esp")); &lea ("edi",&DWP($Rsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_x,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in1_x, Hsqr); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($Hcub,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($U2,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); &lea ("esi",&DWP($Rsqr,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); &lea ("esi",&DWP($res_x,"esp")); &lea ("ebp",&DWP($Hcub,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($res_x,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Hcub,"esp")); &lea ("ebp",&DWP($in1_y,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Hcub, in1_y); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($res_y,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, res_y, R); &lea ("esi",&DWP($res_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); &mov ("ebp",&DWP(32*15+0,"esp")); # ~in1infty &mov ("esi",&DWP(32*15+4,"esp")); # ~in2infty &mov ("edi",&wparam(0)); &mov ("edx","ebp"); ¬ ("ebp"); &and ("edx","esi"); # ~in1infty & ~in2infty &and ("ebp","esi"); # in1infty & ~in2infty ¬ ("esi"); # in2infty ######################################## # conditional moves for($i=64;$i<96;$i+=4) { my $one=@ONE_mont[($i-64)/4]; &mov ("eax","edx"); &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp") if ($one && $one!=-1); &and ("ebx",$one) if ($one && $one!=-1); &mov ("ecx","esi"); &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax",$one==-1?"ebp":"ebx") if ($one); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } for($i=0;$i<64;$i+=4) { &mov ("eax","edx"); # ~in1infty & ~in2infty &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp"); # in1infty & ~in2infty &and ("ebx",&DWP($in2_x+$i,"esp")); &mov ("ecx","esi"); # in2infty &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax","ebx"); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } &stack_pop(8*15+3); } &function_end("ecp_nistz256_point_add_affine"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/ec/asm/ecp_nistz256-x86_64.pl000077500000000000000000003132141364063235100215700ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # Copyright (c) 2014, Intel Corporation. All Rights Reserved. # Copyright (c) 2015 CloudFlare, Inc. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3) # (1) Intel Corporation, Israel Development Center, Haifa, Israel # (2) University of Haifa, Israel # (3) CloudFlare, Inc. # # Reference: # S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with # 256 Bit Primes" # Further optimization by : # # this/original with/without -DECP_NISTZ256_ASM(*) # Opteron +15-49% +150-195% # Bulldozer +18-45% +175-240% # P4 +24-46% +100-150% # Westmere +18-34% +87-160% # Sandy Bridge +14-35% +120-185% # Ivy Bridge +11-35% +125-180% # Haswell +10-37% +160-200% # Broadwell +24-58% +210-270% # Atom +20-50% +180-240% # VIA Nano +50-160% +480-480% # # (*) "without -DECP_NISTZ256_ASM" refers to build with # "enable-ec_nistp_64_gcc_128"; # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. In "this/original" column lower coefficient is for # ECDSA sign, while in "with/without" - for ECDH key agreement, and # higher - for ECDSA sign, relatively fastest server-side operation. # Keep in mind that +100% means 2x improvement. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $avx = ($ver>=3.0) + ($ver>=3.01); $addx = ($ver>=3.03); } $code.=<<___; .text .extern OPENSSL_ia32cap_P # The polynomial .align 64 .Lpoly: .quad 0xffffffffffffffff, 0x00000000ffffffff, 0x0000000000000000, 0xffffffff00000001 # 2^512 mod P precomputed for NIST P256 polynomial .LRR: .quad 0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd .LOne: .long 1,1,1,1,1,1,1,1 .LTwo: .long 2,2,2,2,2,2,2,2 .LThree: .long 3,3,3,3,3,3,3,3 .LONE_mont: .quad 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe # Constants for computations modulo ord(p256) .Lord: .quad 0xf3b9cac2fc632551, 0xbce6faada7179e84, 0xffffffffffffffff, 0xffffffff00000000 .LordK: .quad 0xccd1c8aaee00bc4f ___ { ################################################################################ # void ecp_nistz256_mul_by_2(uint64_t res[4], uint64_t a[4]); my ($a0,$a1,$a2,$a3)=map("%r$_",(8..11)); my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rdx","%rcx","%r12","%r13"); my ($r_ptr,$a_ptr,$b_ptr)=("%rdi","%rsi","%rdx"); $code.=<<___; .globl ecp_nistz256_mul_by_2 .type ecp_nistz256_mul_by_2,\@function,2 .align 64 ecp_nistz256_mul_by_2: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Lmul_by_2_body: mov 8*0($a_ptr), $a0 xor $t4,$t4 mov 8*1($a_ptr), $a1 add $a0, $a0 # a0:a3+a0:a3 mov 8*2($a_ptr), $a2 adc $a1, $a1 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 sub 8*0($a_ptr), $a0 mov $a2, $t2 sbb 8*1($a_ptr), $a1 sbb 8*2($a_ptr), $a2 mov $a3, $t3 sbb 8*3($a_ptr), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) mov 0(%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 lea 16(%rsp),%rsp .cfi_adjust_cfa_offset -16 .Lmul_by_2_epilogue: ret .cfi_endproc .size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 ################################################################################ # void ecp_nistz256_div_by_2(uint64_t res[4], uint64_t a[4]); .globl ecp_nistz256_div_by_2 .type ecp_nistz256_div_by_2,\@function,2 .align 32 ecp_nistz256_div_by_2: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Ldiv_by_2_body: mov 8*0($a_ptr), $a0 mov 8*1($a_ptr), $a1 mov 8*2($a_ptr), $a2 mov $a0, $t0 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr mov $a1, $t1 xor $t4, $t4 add 8*0($a_ptr), $a0 mov $a2, $t2 adc 8*1($a_ptr), $a1 adc 8*2($a_ptr), $a2 mov $a3, $t3 adc 8*3($a_ptr), $a3 adc \$0, $t4 xor $a_ptr, $a_ptr # borrow $a_ptr test \$1, $t0 cmovz $t0, $a0 cmovz $t1, $a1 cmovz $t2, $a2 cmovz $t3, $a3 cmovz $a_ptr, $t4 mov $a1, $t0 # a0:a3>>1 shr \$1, $a0 shl \$63, $t0 mov $a2, $t1 shr \$1, $a1 or $t0, $a0 shl \$63, $t1 mov $a3, $t2 shr \$1, $a2 or $t1, $a1 shl \$63, $t2 shr \$1, $a3 shl \$63, $t4 or $t2, $a2 or $t4, $a3 mov $a0, 8*0($r_ptr) mov $a1, 8*1($r_ptr) mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) mov 0(%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 lea 16(%rsp),%rsp .cfi_adjust_cfa_offset -16 .Ldiv_by_2_epilogue: ret .cfi_endproc .size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 ################################################################################ # void ecp_nistz256_mul_by_3(uint64_t res[4], uint64_t a[4]); .globl ecp_nistz256_mul_by_3 .type ecp_nistz256_mul_by_3,\@function,2 .align 32 ecp_nistz256_mul_by_3: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Lmul_by_3_body: mov 8*0($a_ptr), $a0 xor $t4, $t4 mov 8*1($a_ptr), $a1 add $a0, $a0 # a0:a3+a0:a3 mov 8*2($a_ptr), $a2 adc $a1, $a1 mov 8*3($a_ptr), $a3 mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb .Lpoly+8*1(%rip), $a1 sbb \$0, $a2 mov $a3, $t3 sbb .Lpoly+8*3(%rip), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 cmovc $t2, $a2 cmovc $t3, $a3 xor $t4, $t4 add 8*0($a_ptr), $a0 # a0:a3+=a_ptr[0:3] adc 8*1($a_ptr), $a1 mov $a0, $t0 adc 8*2($a_ptr), $a2 adc 8*3($a_ptr), $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb .Lpoly+8*1(%rip), $a1 sbb \$0, $a2 mov $a3, $t3 sbb .Lpoly+8*3(%rip), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) mov 0(%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 lea 16(%rsp),%rsp .cfi_adjust_cfa_offset -16 .Lmul_by_3_epilogue: ret .cfi_endproc .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 ################################################################################ # void ecp_nistz256_add(uint64_t res[4], uint64_t a[4], uint64_t b[4]); .globl ecp_nistz256_add .type ecp_nistz256_add,\@function,3 .align 32 ecp_nistz256_add: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Ladd_body: mov 8*0($a_ptr), $a0 xor $t4, $t4 mov 8*1($a_ptr), $a1 mov 8*2($a_ptr), $a2 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr add 8*0($b_ptr), $a0 adc 8*1($b_ptr), $a1 mov $a0, $t0 adc 8*2($b_ptr), $a2 adc 8*3($b_ptr), $a3 mov $a1, $t1 adc \$0, $t4 sub 8*0($a_ptr), $a0 mov $a2, $t2 sbb 8*1($a_ptr), $a1 sbb 8*2($a_ptr), $a2 mov $a3, $t3 sbb 8*3($a_ptr), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) mov 0(%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 lea 16(%rsp),%rsp .cfi_adjust_cfa_offset -16 .Ladd_epilogue: ret .cfi_endproc .size ecp_nistz256_add,.-ecp_nistz256_add ################################################################################ # void ecp_nistz256_sub(uint64_t res[4], uint64_t a[4], uint64_t b[4]); .globl ecp_nistz256_sub .type ecp_nistz256_sub,\@function,3 .align 32 ecp_nistz256_sub: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Lsub_body: mov 8*0($a_ptr), $a0 xor $t4, $t4 mov 8*1($a_ptr), $a1 mov 8*2($a_ptr), $a2 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr sub 8*0($b_ptr), $a0 sbb 8*1($b_ptr), $a1 mov $a0, $t0 sbb 8*2($b_ptr), $a2 sbb 8*3($b_ptr), $a3 mov $a1, $t1 sbb \$0, $t4 add 8*0($a_ptr), $a0 mov $a2, $t2 adc 8*1($a_ptr), $a1 adc 8*2($a_ptr), $a2 mov $a3, $t3 adc 8*3($a_ptr), $a3 test $t4, $t4 cmovz $t0, $a0 cmovz $t1, $a1 mov $a0, 8*0($r_ptr) cmovz $t2, $a2 mov $a1, 8*1($r_ptr) cmovz $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) mov 0(%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 lea 16(%rsp),%rsp .cfi_adjust_cfa_offset -16 .Lsub_epilogue: ret .cfi_endproc .size ecp_nistz256_sub,.-ecp_nistz256_sub ################################################################################ # void ecp_nistz256_neg(uint64_t res[4], uint64_t a[4]); .globl ecp_nistz256_neg .type ecp_nistz256_neg,\@function,2 .align 32 ecp_nistz256_neg: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Lneg_body: xor $a0, $a0 xor $a1, $a1 xor $a2, $a2 xor $a3, $a3 xor $t4, $t4 sub 8*0($a_ptr), $a0 sbb 8*1($a_ptr), $a1 sbb 8*2($a_ptr), $a2 mov $a0, $t0 sbb 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr mov $a1, $t1 sbb \$0, $t4 add 8*0($a_ptr), $a0 mov $a2, $t2 adc 8*1($a_ptr), $a1 adc 8*2($a_ptr), $a2 mov $a3, $t3 adc 8*3($a_ptr), $a3 test $t4, $t4 cmovz $t0, $a0 cmovz $t1, $a1 mov $a0, 8*0($r_ptr) cmovz $t2, $a2 mov $a1, 8*1($r_ptr) cmovz $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) mov 0(%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 lea 16(%rsp),%rsp .cfi_adjust_cfa_offset -16 .Lneg_epilogue: ret .cfi_endproc .size ecp_nistz256_neg,.-ecp_nistz256_neg ___ } { my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx"); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15)); my ($t0,$t1,$t2,$t3,$t4)=("%rcx","%rbp","%rbx","%rdx","%rax"); my ($poly1,$poly3)=($acc6,$acc7); $code.=<<___; ################################################################################ # void ecp_nistz256_ord_mul_mont( # uint64_t res[4], # uint64_t a[4], # uint64_t b[4]); .globl ecp_nistz256_ord_mul_mont .type ecp_nistz256_ord_mul_mont,\@function,3 .align 32 ecp_nistz256_ord_mul_mont: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lecp_nistz256_ord_mul_montx ___ $code.=<<___; push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lord_mul_body: mov 8*0($b_org), %rax mov $b_org, $b_ptr lea .Lord(%rip), %r14 mov .LordK(%rip), %r15 ################################# * b[0] mov %rax, $t0 mulq 8*0($a_ptr) mov %rax, $acc0 mov $t0, %rax mov %rdx, $acc1 mulq 8*1($a_ptr) add %rax, $acc1 mov $t0, %rax adc \$0, %rdx mov %rdx, $acc2 mulq 8*2($a_ptr) add %rax, $acc2 mov $t0, %rax adc \$0, %rdx mov $acc0, $acc5 imulq %r15,$acc0 mov %rdx, $acc3 mulq 8*3($a_ptr) add %rax, $acc3 mov $acc0, %rax adc \$0, %rdx mov %rdx, $acc4 ################################# First reduction step mulq 8*0(%r14) mov $acc0, $t1 add %rax, $acc5 # guaranteed to be zero mov $acc0, %rax adc \$0, %rdx mov %rdx, $t0 sub $acc0, $acc2 sbb \$0, $acc0 # can't borrow mulq 8*1(%r14) add $t0, $acc1 adc \$0, %rdx add %rax, $acc1 mov $t1, %rax adc %rdx, $acc2 mov $t1, %rdx adc \$0, $acc0 # can't overflow shl \$32, %rax shr \$32, %rdx sub %rax, $acc3 mov 8*1($b_ptr), %rax sbb %rdx, $t1 # can't borrow add $acc0, $acc3 adc $t1, $acc4 adc \$0, $acc5 ################################# * b[1] mov %rax, $t0 mulq 8*0($a_ptr) add %rax, $acc1 mov $t0, %rax adc \$0, %rdx mov %rdx, $t1 mulq 8*1($a_ptr) add $t1, $acc2 adc \$0, %rdx add %rax, $acc2 mov $t0, %rax adc \$0, %rdx mov %rdx, $t1 mulq 8*2($a_ptr) add $t1, $acc3 adc \$0, %rdx add %rax, $acc3 mov $t0, %rax adc \$0, %rdx mov $acc1, $t0 imulq %r15, $acc1 mov %rdx, $t1 mulq 8*3($a_ptr) add $t1, $acc4 adc \$0, %rdx xor $acc0, $acc0 add %rax, $acc4 mov $acc1, %rax adc %rdx, $acc5 adc \$0, $acc0 ################################# Second reduction step mulq 8*0(%r14) mov $acc1, $t1 add %rax, $t0 # guaranteed to be zero mov $acc1, %rax adc %rdx, $t0 sub $acc1, $acc3 sbb \$0, $acc1 # can't borrow mulq 8*1(%r14) add $t0, $acc2 adc \$0, %rdx add %rax, $acc2 mov $t1, %rax adc %rdx, $acc3 mov $t1, %rdx adc \$0, $acc1 # can't overflow shl \$32, %rax shr \$32, %rdx sub %rax, $acc4 mov 8*2($b_ptr), %rax sbb %rdx, $t1 # can't borrow add $acc1, $acc4 adc $t1, $acc5 adc \$0, $acc0 ################################## * b[2] mov %rax, $t0 mulq 8*0($a_ptr) add %rax, $acc2 mov $t0, %rax adc \$0, %rdx mov %rdx, $t1 mulq 8*1($a_ptr) add $t1, $acc3 adc \$0, %rdx add %rax, $acc3 mov $t0, %rax adc \$0, %rdx mov %rdx, $t1 mulq 8*2($a_ptr) add $t1, $acc4 adc \$0, %rdx add %rax, $acc4 mov $t0, %rax adc \$0, %rdx mov $acc2, $t0 imulq %r15, $acc2 mov %rdx, $t1 mulq 8*3($a_ptr) add $t1, $acc5 adc \$0, %rdx xor $acc1, $acc1 add %rax, $acc5 mov $acc2, %rax adc %rdx, $acc0 adc \$0, $acc1 ################################# Third reduction step mulq 8*0(%r14) mov $acc2, $t1 add %rax, $t0 # guaranteed to be zero mov $acc2, %rax adc %rdx, $t0 sub $acc2, $acc4 sbb \$0, $acc2 # can't borrow mulq 8*1(%r14) add $t0, $acc3 adc \$0, %rdx add %rax, $acc3 mov $t1, %rax adc %rdx, $acc4 mov $t1, %rdx adc \$0, $acc2 # can't overflow shl \$32, %rax shr \$32, %rdx sub %rax, $acc5 mov 8*3($b_ptr), %rax sbb %rdx, $t1 # can't borrow add $acc2, $acc5 adc $t1, $acc0 adc \$0, $acc1 ################################# * b[3] mov %rax, $t0 mulq 8*0($a_ptr) add %rax, $acc3 mov $t0, %rax adc \$0, %rdx mov %rdx, $t1 mulq 8*1($a_ptr) add $t1, $acc4 adc \$0, %rdx add %rax, $acc4 mov $t0, %rax adc \$0, %rdx mov %rdx, $t1 mulq 8*2($a_ptr) add $t1, $acc5 adc \$0, %rdx add %rax, $acc5 mov $t0, %rax adc \$0, %rdx mov $acc3, $t0 imulq %r15, $acc3 mov %rdx, $t1 mulq 8*3($a_ptr) add $t1, $acc0 adc \$0, %rdx xor $acc2, $acc2 add %rax, $acc0 mov $acc3, %rax adc %rdx, $acc1 adc \$0, $acc2 ################################# Last reduction step mulq 8*0(%r14) mov $acc3, $t1 add %rax, $t0 # guaranteed to be zero mov $acc3, %rax adc %rdx, $t0 sub $acc3, $acc5 sbb \$0, $acc3 # can't borrow mulq 8*1(%r14) add $t0, $acc4 adc \$0, %rdx add %rax, $acc4 mov $t1, %rax adc %rdx, $acc5 mov $t1, %rdx adc \$0, $acc3 # can't overflow shl \$32, %rax shr \$32, %rdx sub %rax, $acc0 sbb %rdx, $t1 # can't borrow add $acc3, $acc0 adc $t1, $acc1 adc \$0, $acc2 ################################# Subtract ord mov $acc4, $a_ptr sub 8*0(%r14), $acc4 mov $acc5, $acc3 sbb 8*1(%r14), $acc5 mov $acc0, $t0 sbb 8*2(%r14), $acc0 mov $acc1, $t1 sbb 8*3(%r14), $acc1 sbb \$0, $acc2 cmovc $a_ptr, $acc4 cmovc $acc3, $acc5 cmovc $t0, $acc0 cmovc $t1, $acc1 mov $acc4, 8*0($r_ptr) mov $acc5, 8*1($r_ptr) mov $acc0, 8*2($r_ptr) mov $acc1, 8*3($r_ptr) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbx .cfi_restore %rbx mov 40(%rsp),%rbp .cfi_restore %rbp lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lord_mul_epilogue: ret .cfi_endproc .size ecp_nistz256_ord_mul_mont,.-ecp_nistz256_ord_mul_mont ################################################################################ # void ecp_nistz256_ord_sqr_mont( # uint64_t res[4], # uint64_t a[4], # int rep); .globl ecp_nistz256_ord_sqr_mont .type ecp_nistz256_ord_sqr_mont,\@function,3 .align 32 ecp_nistz256_ord_sqr_mont: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lecp_nistz256_ord_sqr_montx ___ $code.=<<___; push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lord_sqr_body: mov 8*0($a_ptr), $acc0 mov 8*1($a_ptr), %rax mov 8*2($a_ptr), $acc6 mov 8*3($a_ptr), $acc7 lea .Lord(%rip), $a_ptr # pointer to modulus mov $b_org, $b_ptr jmp .Loop_ord_sqr .align 32 .Loop_ord_sqr: ################################# a[1:] * a[0] mov %rax, $t1 # put aside a[1] mul $acc0 # a[1] * a[0] mov %rax, $acc1 movq $t1, %xmm1 # offload a[1] mov $acc6, %rax mov %rdx, $acc2 mul $acc0 # a[2] * a[0] add %rax, $acc2 mov $acc7, %rax movq $acc6, %xmm2 # offload a[2] adc \$0, %rdx mov %rdx, $acc3 mul $acc0 # a[3] * a[0] add %rax, $acc3 mov $acc7, %rax movq $acc7, %xmm3 # offload a[3] adc \$0, %rdx mov %rdx, $acc4 ################################# a[3] * a[2] mul $acc6 # a[3] * a[2] mov %rax, $acc5 mov $acc6, %rax mov %rdx, $acc6 ################################# a[2:] * a[1] mul $t1 # a[2] * a[1] add %rax, $acc3 mov $acc7, %rax adc \$0, %rdx mov %rdx, $acc7 mul $t1 # a[3] * a[1] add %rax, $acc4 adc \$0, %rdx add $acc7, $acc4 adc %rdx, $acc5 adc \$0, $acc6 # can't overflow ################################# *2 xor $acc7, $acc7 mov $acc0, %rax add $acc1, $acc1 adc $acc2, $acc2 adc $acc3, $acc3 adc $acc4, $acc4 adc $acc5, $acc5 adc $acc6, $acc6 adc \$0, $acc7 ################################# Missing products mul %rax # a[0] * a[0] mov %rax, $acc0 movq %xmm1, %rax mov %rdx, $t1 mul %rax # a[1] * a[1] add $t1, $acc1 adc %rax, $acc2 movq %xmm2, %rax adc \$0, %rdx mov %rdx, $t1 mul %rax # a[2] * a[2] add $t1, $acc3 adc %rax, $acc4 movq %xmm3, %rax adc \$0, %rdx mov %rdx, $t1 mov $acc0, $t0 imulq 8*4($a_ptr), $acc0 # *= .LordK mul %rax # a[3] * a[3] add $t1, $acc5 adc %rax, $acc6 mov 8*0($a_ptr), %rax # modulus[0] adc %rdx, $acc7 # can't overflow ################################# First reduction step mul $acc0 mov $acc0, $t1 add %rax, $t0 # guaranteed to be zero mov 8*1($a_ptr), %rax # modulus[1] adc %rdx, $t0 sub $acc0, $acc2 sbb \$0, $t1 # can't borrow mul $acc0 add $t0, $acc1 adc \$0, %rdx add %rax, $acc1 mov $acc0, %rax adc %rdx, $acc2 mov $acc0, %rdx adc \$0, $t1 # can't overflow mov $acc1, $t0 imulq 8*4($a_ptr), $acc1 # *= .LordK shl \$32, %rax shr \$32, %rdx sub %rax, $acc3 mov 8*0($a_ptr), %rax sbb %rdx, $acc0 # can't borrow add $t1, $acc3 adc \$0, $acc0 # can't overflow ################################# Second reduction step mul $acc1 mov $acc1, $t1 add %rax, $t0 # guaranteed to be zero mov 8*1($a_ptr), %rax adc %rdx, $t0 sub $acc1, $acc3 sbb \$0, $t1 # can't borrow mul $acc1 add $t0, $acc2 adc \$0, %rdx add %rax, $acc2 mov $acc1, %rax adc %rdx, $acc3 mov $acc1, %rdx adc \$0, $t1 # can't overflow mov $acc2, $t0 imulq 8*4($a_ptr), $acc2 # *= .LordK shl \$32, %rax shr \$32, %rdx sub %rax, $acc0 mov 8*0($a_ptr), %rax sbb %rdx, $acc1 # can't borrow add $t1, $acc0 adc \$0, $acc1 # can't overflow ################################# Third reduction step mul $acc2 mov $acc2, $t1 add %rax, $t0 # guaranteed to be zero mov 8*1($a_ptr), %rax adc %rdx, $t0 sub $acc2, $acc0 sbb \$0, $t1 # can't borrow mul $acc2 add $t0, $acc3 adc \$0, %rdx add %rax, $acc3 mov $acc2, %rax adc %rdx, $acc0 mov $acc2, %rdx adc \$0, $t1 # can't overflow mov $acc3, $t0 imulq 8*4($a_ptr), $acc3 # *= .LordK shl \$32, %rax shr \$32, %rdx sub %rax, $acc1 mov 8*0($a_ptr), %rax sbb %rdx, $acc2 # can't borrow add $t1, $acc1 adc \$0, $acc2 # can't overflow ################################# Last reduction step mul $acc3 mov $acc3, $t1 add %rax, $t0 # guaranteed to be zero mov 8*1($a_ptr), %rax adc %rdx, $t0 sub $acc3, $acc1 sbb \$0, $t1 # can't borrow mul $acc3 add $t0, $acc0 adc \$0, %rdx add %rax, $acc0 mov $acc3, %rax adc %rdx, $acc1 mov $acc3, %rdx adc \$0, $t1 # can't overflow shl \$32, %rax shr \$32, %rdx sub %rax, $acc2 sbb %rdx, $acc3 # can't borrow add $t1, $acc2 adc \$0, $acc3 # can't overflow ################################# Add bits [511:256] of the sqr result xor %rdx, %rdx add $acc4, $acc0 adc $acc5, $acc1 mov $acc0, $acc4 adc $acc6, $acc2 adc $acc7, $acc3 mov $acc1, %rax adc \$0, %rdx ################################# Compare to modulus sub 8*0($a_ptr), $acc0 mov $acc2, $acc6 sbb 8*1($a_ptr), $acc1 sbb 8*2($a_ptr), $acc2 mov $acc3, $acc7 sbb 8*3($a_ptr), $acc3 sbb \$0, %rdx cmovc $acc4, $acc0 cmovnc $acc1, %rax cmovnc $acc2, $acc6 cmovnc $acc3, $acc7 dec $b_ptr jnz .Loop_ord_sqr mov $acc0, 8*0($r_ptr) mov %rax, 8*1($r_ptr) pxor %xmm1, %xmm1 mov $acc6, 8*2($r_ptr) pxor %xmm2, %xmm2 mov $acc7, 8*3($r_ptr) pxor %xmm3, %xmm3 mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbx .cfi_restore %rbx mov 40(%rsp),%rbp .cfi_restore %rbp lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lord_sqr_epilogue: ret .cfi_endproc .size ecp_nistz256_ord_sqr_mont,.-ecp_nistz256_ord_sqr_mont ___ $code.=<<___ if ($addx); ################################################################################ .type ecp_nistz256_ord_mul_montx,\@function,3 .align 32 ecp_nistz256_ord_mul_montx: .cfi_startproc .Lecp_nistz256_ord_mul_montx: push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lord_mulx_body: mov $b_org, $b_ptr mov 8*0($b_org), %rdx mov 8*0($a_ptr), $acc1 mov 8*1($a_ptr), $acc2 mov 8*2($a_ptr), $acc3 mov 8*3($a_ptr), $acc4 lea -128($a_ptr), $a_ptr # control u-op density lea .Lord-128(%rip), %r14 mov .LordK(%rip), %r15 ################################# Multiply by b[0] mulx $acc1, $acc0, $acc1 mulx $acc2, $t0, $acc2 mulx $acc3, $t1, $acc3 add $t0, $acc1 mulx $acc4, $t0, $acc4 mov $acc0, %rdx mulx %r15, %rdx, %rax adc $t1, $acc2 adc $t0, $acc3 adc \$0, $acc4 ################################# reduction xor $acc5, $acc5 # $acc5=0, cf=0, of=0 mulx 8*0+128(%r14), $t0, $t1 adcx $t0, $acc0 # guaranteed to be zero adox $t1, $acc1 mulx 8*1+128(%r14), $t0, $t1 adcx $t0, $acc1 adox $t1, $acc2 mulx 8*2+128(%r14), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*3+128(%r14), $t0, $t1 mov 8*1($b_ptr), %rdx adcx $t0, $acc3 adox $t1, $acc4 adcx $acc0, $acc4 adox $acc0, $acc5 adc \$0, $acc5 # cf=0, of=0 ################################# Multiply by b[1] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc1 adox $t1, $acc2 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc1, %rdx mulx %r15, %rdx, %rax adcx $t0, $acc4 adox $t1, $acc5 adcx $acc0, $acc5 adox $acc0, $acc0 adc \$0, $acc0 # cf=0, of=0 ################################# reduction mulx 8*0+128(%r14), $t0, $t1 adcx $t0, $acc1 # guaranteed to be zero adox $t1, $acc2 mulx 8*1+128(%r14), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*2+128(%r14), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*3+128(%r14), $t0, $t1 mov 8*2($b_ptr), %rdx adcx $t0, $acc4 adox $t1, $acc5 adcx $acc1, $acc5 adox $acc1, $acc0 adc \$0, $acc0 # cf=0, of=0 ################################# Multiply by b[2] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc2, %rdx mulx %r15, %rdx, %rax adcx $t0, $acc5 adox $t1, $acc0 adcx $acc1, $acc0 adox $acc1, $acc1 adc \$0, $acc1 # cf=0, of=0 ################################# reduction mulx 8*0+128(%r14), $t0, $t1 adcx $t0, $acc2 # guaranteed to be zero adox $t1, $acc3 mulx 8*1+128(%r14), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*2+128(%r14), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*3+128(%r14), $t0, $t1 mov 8*3($b_ptr), %rdx adcx $t0, $acc5 adox $t1, $acc0 adcx $acc2, $acc0 adox $acc2, $acc1 adc \$0, $acc1 # cf=0, of=0 ################################# Multiply by b[3] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc5 adox $t1, $acc0 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc3, %rdx mulx %r15, %rdx, %rax adcx $t0, $acc0 adox $t1, $acc1 adcx $acc2, $acc1 adox $acc2, $acc2 adc \$0, $acc2 # cf=0, of=0 ################################# reduction mulx 8*0+128(%r14), $t0, $t1 adcx $t0, $acc3 # guaranteed to be zero adox $t1, $acc4 mulx 8*1+128(%r14), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*2+128(%r14), $t0, $t1 adcx $t0, $acc5 adox $t1, $acc0 mulx 8*3+128(%r14), $t0, $t1 lea 128(%r14),%r14 mov $acc4, $t2 adcx $t0, $acc0 adox $t1, $acc1 mov $acc5, $t3 adcx $acc3, $acc1 adox $acc3, $acc2 adc \$0, $acc2 ################################# # Branch-less conditional subtraction of P mov $acc0, $t0 sub 8*0(%r14), $acc4 sbb 8*1(%r14), $acc5 sbb 8*2(%r14), $acc0 mov $acc1, $t1 sbb 8*3(%r14), $acc1 sbb \$0, $acc2 cmovc $t2, $acc4 cmovc $t3, $acc5 cmovc $t0, $acc0 cmovc $t1, $acc1 mov $acc4, 8*0($r_ptr) mov $acc5, 8*1($r_ptr) mov $acc0, 8*2($r_ptr) mov $acc1, 8*3($r_ptr) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbx .cfi_restore %rbx mov 40(%rsp),%rbp .cfi_restore %rbp lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lord_mulx_epilogue: ret .cfi_endproc .size ecp_nistz256_ord_mul_montx,.-ecp_nistz256_ord_mul_montx .type ecp_nistz256_ord_sqr_montx,\@function,3 .align 32 ecp_nistz256_ord_sqr_montx: .cfi_startproc .Lecp_nistz256_ord_sqr_montx: push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lord_sqrx_body: mov $b_org, $b_ptr mov 8*0($a_ptr), %rdx mov 8*1($a_ptr), $acc6 mov 8*2($a_ptr), $acc7 mov 8*3($a_ptr), $acc0 lea .Lord(%rip), $a_ptr jmp .Loop_ord_sqrx .align 32 .Loop_ord_sqrx: mulx $acc6, $acc1, $acc2 # a[0]*a[1] mulx $acc7, $t0, $acc3 # a[0]*a[2] mov %rdx, %rax # offload a[0] movq $acc6, %xmm1 # offload a[1] mulx $acc0, $t1, $acc4 # a[0]*a[3] mov $acc6, %rdx add $t0, $acc2 movq $acc7, %xmm2 # offload a[2] adc $t1, $acc3 adc \$0, $acc4 xor $acc5, $acc5 # $acc5=0,cf=0,of=0 ################################# mulx $acc7, $t0, $t1 # a[1]*a[2] adcx $t0, $acc3 adox $t1, $acc4 mulx $acc0, $t0, $t1 # a[1]*a[3] mov $acc7, %rdx adcx $t0, $acc4 adox $t1, $acc5 adc \$0, $acc5 ################################# mulx $acc0, $t0, $acc6 # a[2]*a[3] mov %rax, %rdx movq $acc0, %xmm3 # offload a[3] xor $acc7, $acc7 # $acc7=0,cf=0,of=0 adcx $acc1, $acc1 # acc1:6<<1 adox $t0, $acc5 adcx $acc2, $acc2 adox $acc7, $acc6 # of=0 ################################# a[i]*a[i] mulx %rdx, $acc0, $t1 movq %xmm1, %rdx adcx $acc3, $acc3 adox $t1, $acc1 adcx $acc4, $acc4 mulx %rdx, $t0, $t4 movq %xmm2, %rdx adcx $acc5, $acc5 adox $t0, $acc2 adcx $acc6, $acc6 mulx %rdx, $t0, $t1 .byte 0x67 movq %xmm3, %rdx adox $t4, $acc3 adcx $acc7, $acc7 adox $t0, $acc4 adox $t1, $acc5 mulx %rdx, $t0, $t4 adox $t0, $acc6 adox $t4, $acc7 ################################# reduction mov $acc0, %rdx mulx 8*4($a_ptr), %rdx, $t0 xor %rax, %rax # cf=0, of=0 mulx 8*0($a_ptr), $t0, $t1 adcx $t0, $acc0 # guaranteed to be zero adox $t1, $acc1 mulx 8*1($a_ptr), $t0, $t1 adcx $t0, $acc1 adox $t1, $acc2 mulx 8*2($a_ptr), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*3($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc0 # of=0 adcx %rax, $acc0 # cf=0 ################################# mov $acc1, %rdx mulx 8*4($a_ptr), %rdx, $t0 mulx 8*0($a_ptr), $t0, $t1 adox $t0, $acc1 # guaranteed to be zero adcx $t1, $acc2 mulx 8*1($a_ptr), $t0, $t1 adox $t0, $acc2 adcx $t1, $acc3 mulx 8*2($a_ptr), $t0, $t1 adox $t0, $acc3 adcx $t1, $acc0 mulx 8*3($a_ptr), $t0, $t1 adox $t0, $acc0 adcx $t1, $acc1 # cf=0 adox %rax, $acc1 # of=0 ################################# mov $acc2, %rdx mulx 8*4($a_ptr), %rdx, $t0 mulx 8*0($a_ptr), $t0, $t1 adcx $t0, $acc2 # guaranteed to be zero adox $t1, $acc3 mulx 8*1($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc0 mulx 8*2($a_ptr), $t0, $t1 adcx $t0, $acc0 adox $t1, $acc1 mulx 8*3($a_ptr), $t0, $t1 adcx $t0, $acc1 adox $t1, $acc2 # of=0 adcx %rax, $acc2 # cf=0 ################################# mov $acc3, %rdx mulx 8*4($a_ptr), %rdx, $t0 mulx 8*0($a_ptr), $t0, $t1 adox $t0, $acc3 # guaranteed to be zero adcx $t1, $acc0 mulx 8*1($a_ptr), $t0, $t1 adox $t0, $acc0 adcx $t1, $acc1 mulx 8*2($a_ptr), $t0, $t1 adox $t0, $acc1 adcx $t1, $acc2 mulx 8*3($a_ptr), $t0, $t1 adox $t0, $acc2 adcx $t1, $acc3 adox %rax, $acc3 ################################# accumulate upper half add $acc0, $acc4 # add $acc4, $acc0 adc $acc5, $acc1 mov $acc4, %rdx adc $acc6, $acc2 adc $acc7, $acc3 mov $acc1, $acc6 adc \$0, %rax ################################# compare to modulus sub 8*0($a_ptr), $acc4 mov $acc2, $acc7 sbb 8*1($a_ptr), $acc1 sbb 8*2($a_ptr), $acc2 mov $acc3, $acc0 sbb 8*3($a_ptr), $acc3 sbb \$0, %rax cmovnc $acc4, %rdx cmovnc $acc1, $acc6 cmovnc $acc2, $acc7 cmovnc $acc3, $acc0 dec $b_ptr jnz .Loop_ord_sqrx mov %rdx, 8*0($r_ptr) mov $acc6, 8*1($r_ptr) pxor %xmm1, %xmm1 mov $acc7, 8*2($r_ptr) pxor %xmm2, %xmm2 mov $acc0, 8*3($r_ptr) pxor %xmm3, %xmm3 mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbx .cfi_restore %rbx mov 40(%rsp),%rbp .cfi_restore %rbp lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lord_sqrx_epilogue: ret .cfi_endproc .size ecp_nistz256_ord_sqr_montx,.-ecp_nistz256_ord_sqr_montx ___ $code.=<<___; ################################################################################ # void ecp_nistz256_to_mont( # uint64_t res[4], # uint64_t in[4]); .globl ecp_nistz256_to_mont .type ecp_nistz256_to_mont,\@function,2 .align 32 ecp_nistz256_to_mont: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx ___ $code.=<<___; lea .LRR(%rip), $b_org jmp .Lmul_mont .cfi_endproc .size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont ################################################################################ # void ecp_nistz256_mul_mont( # uint64_t res[4], # uint64_t a[4], # uint64_t b[4]); .globl ecp_nistz256_mul_mont .type ecp_nistz256_mul_mont,\@function,3 .align 32 ecp_nistz256_mul_mont: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx ___ $code.=<<___; .Lmul_mont: push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lmul_body: ___ $code.=<<___ if ($addx); cmp \$0x80100, %ecx je .Lmul_montx ___ $code.=<<___; mov $b_org, $b_ptr mov 8*0($b_org), %rax mov 8*0($a_ptr), $acc1 mov 8*1($a_ptr), $acc2 mov 8*2($a_ptr), $acc3 mov 8*3($a_ptr), $acc4 call __ecp_nistz256_mul_montq ___ $code.=<<___ if ($addx); jmp .Lmul_mont_done .align 32 .Lmul_montx: mov $b_org, $b_ptr mov 8*0($b_org), %rdx mov 8*0($a_ptr), $acc1 mov 8*1($a_ptr), $acc2 mov 8*2($a_ptr), $acc3 mov 8*3($a_ptr), $acc4 lea -128($a_ptr), $a_ptr # control u-op density call __ecp_nistz256_mul_montx ___ $code.=<<___; .Lmul_mont_done: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbx .cfi_restore %rbx mov 40(%rsp),%rbp .cfi_restore %rbp lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lmul_epilogue: ret .cfi_endproc .size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont .type __ecp_nistz256_mul_montq,\@abi-omnipotent .align 32 __ecp_nistz256_mul_montq: .cfi_startproc ######################################################################## # Multiply a by b[0] mov %rax, $t1 mulq $acc1 mov .Lpoly+8*1(%rip),$poly1 mov %rax, $acc0 mov $t1, %rax mov %rdx, $acc1 mulq $acc2 mov .Lpoly+8*3(%rip),$poly3 add %rax, $acc1 mov $t1, %rax adc \$0, %rdx mov %rdx, $acc2 mulq $acc3 add %rax, $acc2 mov $t1, %rax adc \$0, %rdx mov %rdx, $acc3 mulq $acc4 add %rax, $acc3 mov $acc0, %rax adc \$0, %rdx xor $acc5, $acc5 mov %rdx, $acc4 ######################################################################## # First reduction step # Basically now we want to multiply acc[0] by p256, # and add the result to the acc. # Due to the special form of p256 we do some optimizations # # acc[0] x p256[0..1] = acc[0] x 2^96 - acc[0] # then we add acc[0] and get acc[0] x 2^96 mov $acc0, $t1 shl \$32, $acc0 mulq $poly3 shr \$32, $t1 add $acc0, $acc1 # +=acc[0]<<96 adc $t1, $acc2 adc %rax, $acc3 mov 8*1($b_ptr), %rax adc %rdx, $acc4 adc \$0, $acc5 xor $acc0, $acc0 ######################################################################## # Multiply by b[1] mov %rax, $t1 mulq 8*0($a_ptr) add %rax, $acc1 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*1($a_ptr) add $t0, $acc2 adc \$0, %rdx add %rax, $acc2 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*2($a_ptr) add $t0, $acc3 adc \$0, %rdx add %rax, $acc3 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*3($a_ptr) add $t0, $acc4 adc \$0, %rdx add %rax, $acc4 mov $acc1, %rax adc %rdx, $acc5 adc \$0, $acc0 ######################################################################## # Second reduction step mov $acc1, $t1 shl \$32, $acc1 mulq $poly3 shr \$32, $t1 add $acc1, $acc2 adc $t1, $acc3 adc %rax, $acc4 mov 8*2($b_ptr), %rax adc %rdx, $acc5 adc \$0, $acc0 xor $acc1, $acc1 ######################################################################## # Multiply by b[2] mov %rax, $t1 mulq 8*0($a_ptr) add %rax, $acc2 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*1($a_ptr) add $t0, $acc3 adc \$0, %rdx add %rax, $acc3 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*2($a_ptr) add $t0, $acc4 adc \$0, %rdx add %rax, $acc4 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*3($a_ptr) add $t0, $acc5 adc \$0, %rdx add %rax, $acc5 mov $acc2, %rax adc %rdx, $acc0 adc \$0, $acc1 ######################################################################## # Third reduction step mov $acc2, $t1 shl \$32, $acc2 mulq $poly3 shr \$32, $t1 add $acc2, $acc3 adc $t1, $acc4 adc %rax, $acc5 mov 8*3($b_ptr), %rax adc %rdx, $acc0 adc \$0, $acc1 xor $acc2, $acc2 ######################################################################## # Multiply by b[3] mov %rax, $t1 mulq 8*0($a_ptr) add %rax, $acc3 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*1($a_ptr) add $t0, $acc4 adc \$0, %rdx add %rax, $acc4 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*2($a_ptr) add $t0, $acc5 adc \$0, %rdx add %rax, $acc5 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*3($a_ptr) add $t0, $acc0 adc \$0, %rdx add %rax, $acc0 mov $acc3, %rax adc %rdx, $acc1 adc \$0, $acc2 ######################################################################## # Final reduction step mov $acc3, $t1 shl \$32, $acc3 mulq $poly3 shr \$32, $t1 add $acc3, $acc4 adc $t1, $acc5 mov $acc4, $t0 adc %rax, $acc0 adc %rdx, $acc1 mov $acc5, $t1 adc \$0, $acc2 ######################################################################## # Branch-less conditional subtraction of P sub \$-1, $acc4 # .Lpoly[0] mov $acc0, $t2 sbb $poly1, $acc5 # .Lpoly[1] sbb \$0, $acc0 # .Lpoly[2] mov $acc1, $t3 sbb $poly3, $acc1 # .Lpoly[3] sbb \$0, $acc2 cmovc $t0, $acc4 cmovc $t1, $acc5 mov $acc4, 8*0($r_ptr) cmovc $t2, $acc0 mov $acc5, 8*1($r_ptr) cmovc $t3, $acc1 mov $acc0, 8*2($r_ptr) mov $acc1, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_mul_montq,.-__ecp_nistz256_mul_montq ################################################################################ # void ecp_nistz256_sqr_mont( # uint64_t res[4], # uint64_t a[4]); # we optimize the square according to S.Gueron and V.Krasnov, # "Speeding up Big-Number Squaring" .globl ecp_nistz256_sqr_mont .type ecp_nistz256_sqr_mont,\@function,2 .align 32 ecp_nistz256_sqr_mont: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx ___ $code.=<<___; push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lsqr_body: ___ $code.=<<___ if ($addx); cmp \$0x80100, %ecx je .Lsqr_montx ___ $code.=<<___; mov 8*0($a_ptr), %rax mov 8*1($a_ptr), $acc6 mov 8*2($a_ptr), $acc7 mov 8*3($a_ptr), $acc0 call __ecp_nistz256_sqr_montq ___ $code.=<<___ if ($addx); jmp .Lsqr_mont_done .align 32 .Lsqr_montx: mov 8*0($a_ptr), %rdx mov 8*1($a_ptr), $acc6 mov 8*2($a_ptr), $acc7 mov 8*3($a_ptr), $acc0 lea -128($a_ptr), $a_ptr # control u-op density call __ecp_nistz256_sqr_montx ___ $code.=<<___; .Lsqr_mont_done: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbx .cfi_restore %rbx mov 40(%rsp),%rbp .cfi_restore %rbp lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lsqr_epilogue: ret .cfi_endproc .size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont .type __ecp_nistz256_sqr_montq,\@abi-omnipotent .align 32 __ecp_nistz256_sqr_montq: .cfi_startproc mov %rax, $acc5 mulq $acc6 # a[1]*a[0] mov %rax, $acc1 mov $acc7, %rax mov %rdx, $acc2 mulq $acc5 # a[0]*a[2] add %rax, $acc2 mov $acc0, %rax adc \$0, %rdx mov %rdx, $acc3 mulq $acc5 # a[0]*a[3] add %rax, $acc3 mov $acc7, %rax adc \$0, %rdx mov %rdx, $acc4 ################################# mulq $acc6 # a[1]*a[2] add %rax, $acc3 mov $acc0, %rax adc \$0, %rdx mov %rdx, $t1 mulq $acc6 # a[1]*a[3] add %rax, $acc4 mov $acc0, %rax adc \$0, %rdx add $t1, $acc4 mov %rdx, $acc5 adc \$0, $acc5 ################################# mulq $acc7 # a[2]*a[3] xor $acc7, $acc7 add %rax, $acc5 mov 8*0($a_ptr), %rax mov %rdx, $acc6 adc \$0, $acc6 add $acc1, $acc1 # acc1:6<<1 adc $acc2, $acc2 adc $acc3, $acc3 adc $acc4, $acc4 adc $acc5, $acc5 adc $acc6, $acc6 adc \$0, $acc7 mulq %rax mov %rax, $acc0 mov 8*1($a_ptr), %rax mov %rdx, $t0 mulq %rax add $t0, $acc1 adc %rax, $acc2 mov 8*2($a_ptr), %rax adc \$0, %rdx mov %rdx, $t0 mulq %rax add $t0, $acc3 adc %rax, $acc4 mov 8*3($a_ptr), %rax adc \$0, %rdx mov %rdx, $t0 mulq %rax add $t0, $acc5 adc %rax, $acc6 mov $acc0, %rax adc %rdx, $acc7 mov .Lpoly+8*1(%rip), $a_ptr mov .Lpoly+8*3(%rip), $t1 ########################################## # Now the reduction # First iteration mov $acc0, $t0 shl \$32, $acc0 mulq $t1 shr \$32, $t0 add $acc0, $acc1 # +=acc[0]<<96 adc $t0, $acc2 adc %rax, $acc3 mov $acc1, %rax adc \$0, %rdx ########################################## # Second iteration mov $acc1, $t0 shl \$32, $acc1 mov %rdx, $acc0 mulq $t1 shr \$32, $t0 add $acc1, $acc2 adc $t0, $acc3 adc %rax, $acc0 mov $acc2, %rax adc \$0, %rdx ########################################## # Third iteration mov $acc2, $t0 shl \$32, $acc2 mov %rdx, $acc1 mulq $t1 shr \$32, $t0 add $acc2, $acc3 adc $t0, $acc0 adc %rax, $acc1 mov $acc3, %rax adc \$0, %rdx ########################################### # Last iteration mov $acc3, $t0 shl \$32, $acc3 mov %rdx, $acc2 mulq $t1 shr \$32, $t0 add $acc3, $acc0 adc $t0, $acc1 adc %rax, $acc2 adc \$0, %rdx xor $acc3, $acc3 ############################################ # Add the rest of the acc add $acc0, $acc4 adc $acc1, $acc5 mov $acc4, $acc0 adc $acc2, $acc6 adc %rdx, $acc7 mov $acc5, $acc1 adc \$0, $acc3 sub \$-1, $acc4 # .Lpoly[0] mov $acc6, $acc2 sbb $a_ptr, $acc5 # .Lpoly[1] sbb \$0, $acc6 # .Lpoly[2] mov $acc7, $t0 sbb $t1, $acc7 # .Lpoly[3] sbb \$0, $acc3 cmovc $acc0, $acc4 cmovc $acc1, $acc5 mov $acc4, 8*0($r_ptr) cmovc $acc2, $acc6 mov $acc5, 8*1($r_ptr) cmovc $t0, $acc7 mov $acc6, 8*2($r_ptr) mov $acc7, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_sqr_montq,.-__ecp_nistz256_sqr_montq ___ if ($addx) { $code.=<<___; .type __ecp_nistz256_mul_montx,\@abi-omnipotent .align 32 __ecp_nistz256_mul_montx: .cfi_startproc ######################################################################## # Multiply by b[0] mulx $acc1, $acc0, $acc1 mulx $acc2, $t0, $acc2 mov \$32, $poly1 xor $acc5, $acc5 # cf=0 mulx $acc3, $t1, $acc3 mov .Lpoly+8*3(%rip), $poly3 adc $t0, $acc1 mulx $acc4, $t0, $acc4 mov $acc0, %rdx adc $t1, $acc2 shlx $poly1,$acc0,$t1 adc $t0, $acc3 shrx $poly1,$acc0,$t0 adc \$0, $acc4 ######################################################################## # First reduction step add $t1, $acc1 adc $t0, $acc2 mulx $poly3, $t0, $t1 mov 8*1($b_ptr), %rdx adc $t0, $acc3 adc $t1, $acc4 adc \$0, $acc5 xor $acc0, $acc0 # $acc0=0,cf=0,of=0 ######################################################################## # Multiply by b[1] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc1 adox $t1, $acc2 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc1, %rdx adcx $t0, $acc4 shlx $poly1, $acc1, $t0 adox $t1, $acc5 shrx $poly1, $acc1, $t1 adcx $acc0, $acc5 adox $acc0, $acc0 adc \$0, $acc0 ######################################################################## # Second reduction step add $t0, $acc2 adc $t1, $acc3 mulx $poly3, $t0, $t1 mov 8*2($b_ptr), %rdx adc $t0, $acc4 adc $t1, $acc5 adc \$0, $acc0 xor $acc1 ,$acc1 # $acc1=0,cf=0,of=0 ######################################################################## # Multiply by b[2] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc2, %rdx adcx $t0, $acc5 shlx $poly1, $acc2, $t0 adox $t1, $acc0 shrx $poly1, $acc2, $t1 adcx $acc1, $acc0 adox $acc1, $acc1 adc \$0, $acc1 ######################################################################## # Third reduction step add $t0, $acc3 adc $t1, $acc4 mulx $poly3, $t0, $t1 mov 8*3($b_ptr), %rdx adc $t0, $acc5 adc $t1, $acc0 adc \$0, $acc1 xor $acc2, $acc2 # $acc2=0,cf=0,of=0 ######################################################################## # Multiply by b[3] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc5 adox $t1, $acc0 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc3, %rdx adcx $t0, $acc0 shlx $poly1, $acc3, $t0 adox $t1, $acc1 shrx $poly1, $acc3, $t1 adcx $acc2, $acc1 adox $acc2, $acc2 adc \$0, $acc2 ######################################################################## # Fourth reduction step add $t0, $acc4 adc $t1, $acc5 mulx $poly3, $t0, $t1 mov $acc4, $t2 mov .Lpoly+8*1(%rip), $poly1 adc $t0, $acc0 mov $acc5, $t3 adc $t1, $acc1 adc \$0, $acc2 ######################################################################## # Branch-less conditional subtraction of P xor %eax, %eax mov $acc0, $t0 sbb \$-1, $acc4 # .Lpoly[0] sbb $poly1, $acc5 # .Lpoly[1] sbb \$0, $acc0 # .Lpoly[2] mov $acc1, $t1 sbb $poly3, $acc1 # .Lpoly[3] sbb \$0, $acc2 cmovc $t2, $acc4 cmovc $t3, $acc5 mov $acc4, 8*0($r_ptr) cmovc $t0, $acc0 mov $acc5, 8*1($r_ptr) cmovc $t1, $acc1 mov $acc0, 8*2($r_ptr) mov $acc1, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_mul_montx,.-__ecp_nistz256_mul_montx .type __ecp_nistz256_sqr_montx,\@abi-omnipotent .align 32 __ecp_nistz256_sqr_montx: .cfi_startproc mulx $acc6, $acc1, $acc2 # a[0]*a[1] mulx $acc7, $t0, $acc3 # a[0]*a[2] xor %eax, %eax adc $t0, $acc2 mulx $acc0, $t1, $acc4 # a[0]*a[3] mov $acc6, %rdx adc $t1, $acc3 adc \$0, $acc4 xor $acc5, $acc5 # $acc5=0,cf=0,of=0 ################################# mulx $acc7, $t0, $t1 # a[1]*a[2] adcx $t0, $acc3 adox $t1, $acc4 mulx $acc0, $t0, $t1 # a[1]*a[3] mov $acc7, %rdx adcx $t0, $acc4 adox $t1, $acc5 adc \$0, $acc5 ################################# mulx $acc0, $t0, $acc6 # a[2]*a[3] mov 8*0+128($a_ptr), %rdx xor $acc7, $acc7 # $acc7=0,cf=0,of=0 adcx $acc1, $acc1 # acc1:6<<1 adox $t0, $acc5 adcx $acc2, $acc2 adox $acc7, $acc6 # of=0 mulx %rdx, $acc0, $t1 mov 8*1+128($a_ptr), %rdx adcx $acc3, $acc3 adox $t1, $acc1 adcx $acc4, $acc4 mulx %rdx, $t0, $t4 mov 8*2+128($a_ptr), %rdx adcx $acc5, $acc5 adox $t0, $acc2 adcx $acc6, $acc6 .byte 0x67 mulx %rdx, $t0, $t1 mov 8*3+128($a_ptr), %rdx adox $t4, $acc3 adcx $acc7, $acc7 adox $t0, $acc4 mov \$32, $a_ptr adox $t1, $acc5 .byte 0x67,0x67 mulx %rdx, $t0, $t4 mov .Lpoly+8*3(%rip), %rdx adox $t0, $acc6 shlx $a_ptr, $acc0, $t0 adox $t4, $acc7 shrx $a_ptr, $acc0, $t4 mov %rdx,$t1 # reduction step 1 add $t0, $acc1 adc $t4, $acc2 mulx $acc0, $t0, $acc0 adc $t0, $acc3 shlx $a_ptr, $acc1, $t0 adc \$0, $acc0 shrx $a_ptr, $acc1, $t4 # reduction step 2 add $t0, $acc2 adc $t4, $acc3 mulx $acc1, $t0, $acc1 adc $t0, $acc0 shlx $a_ptr, $acc2, $t0 adc \$0, $acc1 shrx $a_ptr, $acc2, $t4 # reduction step 3 add $t0, $acc3 adc $t4, $acc0 mulx $acc2, $t0, $acc2 adc $t0, $acc1 shlx $a_ptr, $acc3, $t0 adc \$0, $acc2 shrx $a_ptr, $acc3, $t4 # reduction step 4 add $t0, $acc0 adc $t4, $acc1 mulx $acc3, $t0, $acc3 adc $t0, $acc2 adc \$0, $acc3 xor $t3, $t3 add $acc0, $acc4 # accumulate upper half mov .Lpoly+8*1(%rip), $a_ptr adc $acc1, $acc5 mov $acc4, $acc0 adc $acc2, $acc6 adc $acc3, $acc7 mov $acc5, $acc1 adc \$0, $t3 sub \$-1, $acc4 # .Lpoly[0] mov $acc6, $acc2 sbb $a_ptr, $acc5 # .Lpoly[1] sbb \$0, $acc6 # .Lpoly[2] mov $acc7, $acc3 sbb $t1, $acc7 # .Lpoly[3] sbb \$0, $t3 cmovc $acc0, $acc4 cmovc $acc1, $acc5 mov $acc4, 8*0($r_ptr) cmovc $acc2, $acc6 mov $acc5, 8*1($r_ptr) cmovc $acc3, $acc7 mov $acc6, 8*2($r_ptr) mov $acc7, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_sqr_montx,.-__ecp_nistz256_sqr_montx ___ } } { my ($r_ptr,$in_ptr)=("%rdi","%rsi"); my ($acc0,$acc1,$acc2,$acc3)=map("%r$_",(8..11)); my ($t0,$t1,$t2)=("%rcx","%r12","%r13"); $code.=<<___; ################################################################################ # void ecp_nistz256_from_mont( # uint64_t res[4], # uint64_t in[4]); # This one performs Montgomery multiplication by 1, so we only need the reduction .globl ecp_nistz256_from_mont .type ecp_nistz256_from_mont,\@function,2 .align 32 ecp_nistz256_from_mont: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Lfrom_body: mov 8*0($in_ptr), %rax mov .Lpoly+8*3(%rip), $t2 mov 8*1($in_ptr), $acc1 mov 8*2($in_ptr), $acc2 mov 8*3($in_ptr), $acc3 mov %rax, $acc0 mov .Lpoly+8*1(%rip), $t1 ######################################### # First iteration mov %rax, $t0 shl \$32, $acc0 mulq $t2 shr \$32, $t0 add $acc0, $acc1 adc $t0, $acc2 adc %rax, $acc3 mov $acc1, %rax adc \$0, %rdx ######################################### # Second iteration mov $acc1, $t0 shl \$32, $acc1 mov %rdx, $acc0 mulq $t2 shr \$32, $t0 add $acc1, $acc2 adc $t0, $acc3 adc %rax, $acc0 mov $acc2, %rax adc \$0, %rdx ########################################## # Third iteration mov $acc2, $t0 shl \$32, $acc2 mov %rdx, $acc1 mulq $t2 shr \$32, $t0 add $acc2, $acc3 adc $t0, $acc0 adc %rax, $acc1 mov $acc3, %rax adc \$0, %rdx ########################################### # Last iteration mov $acc3, $t0 shl \$32, $acc3 mov %rdx, $acc2 mulq $t2 shr \$32, $t0 add $acc3, $acc0 adc $t0, $acc1 mov $acc0, $t0 adc %rax, $acc2 mov $acc1, $in_ptr adc \$0, %rdx ########################################### # Branch-less conditional subtraction sub \$-1, $acc0 mov $acc2, %rax sbb $t1, $acc1 sbb \$0, $acc2 mov %rdx, $acc3 sbb $t2, %rdx sbb $t2, $t2 cmovnz $t0, $acc0 cmovnz $in_ptr, $acc1 mov $acc0, 8*0($r_ptr) cmovnz %rax, $acc2 mov $acc1, 8*1($r_ptr) cmovz %rdx, $acc3 mov $acc2, 8*2($r_ptr) mov $acc3, 8*3($r_ptr) mov 0(%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 lea 16(%rsp),%rsp .cfi_adjust_cfa_offset -16 .Lfrom_epilogue: ret .cfi_endproc .size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont ___ } { my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx"); my ($ONE,$INDEX,$Ra,$Rb,$Rc,$Rd,$Re,$Rf)=map("%xmm$_",(0..7)); my ($M0,$T0a,$T0b,$T0c,$T0d,$T0e,$T0f,$TMP0)=map("%xmm$_",(8..15)); my ($M1,$T2a,$T2b,$TMP2,$M2,$T2a,$T2b,$TMP2)=map("%xmm$_",(8..15)); $code.=<<___; ################################################################################ # void ecp_nistz256_scatter_w5(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_scatter_w5 .type ecp_nistz256_scatter_w5,\@abi-omnipotent .align 32 ecp_nistz256_scatter_w5: .cfi_startproc lea -3($index,$index,2), $index movdqa 0x00($in_t), %xmm0 shl \$5, $index movdqa 0x10($in_t), %xmm1 movdqa 0x20($in_t), %xmm2 movdqa 0x30($in_t), %xmm3 movdqa 0x40($in_t), %xmm4 movdqa 0x50($in_t), %xmm5 movdqa %xmm0, 0x00($val,$index) movdqa %xmm1, 0x10($val,$index) movdqa %xmm2, 0x20($val,$index) movdqa %xmm3, 0x30($val,$index) movdqa %xmm4, 0x40($val,$index) movdqa %xmm5, 0x50($val,$index) ret .cfi_endproc .size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5 ################################################################################ # void ecp_nistz256_gather_w5(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_gather_w5 .type ecp_nistz256_gather_w5,\@abi-omnipotent .align 32 ecp_nistz256_gather_w5: .cfi_startproc ___ $code.=<<___ if ($avx>1); mov OPENSSL_ia32cap_P+8(%rip), %eax test \$`1<<5`, %eax jnz .Lavx2_gather_w5 ___ $code.=<<___ if ($win64); lea -0x88(%rsp), %rax .LSEH_begin_ecp_nistz256_gather_w5: .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax) ___ $code.=<<___; movdqa .LOne(%rip), $ONE movd $index, $INDEX pxor $Ra, $Ra pxor $Rb, $Rb pxor $Rc, $Rc pxor $Rd, $Rd pxor $Re, $Re pxor $Rf, $Rf movdqa $ONE, $M0 pshufd \$0, $INDEX, $INDEX mov \$16, %rax .Lselect_loop_sse_w5: movdqa $M0, $TMP0 paddd $ONE, $M0 pcmpeqd $INDEX, $TMP0 movdqa 16*0($in_t), $T0a movdqa 16*1($in_t), $T0b movdqa 16*2($in_t), $T0c movdqa 16*3($in_t), $T0d movdqa 16*4($in_t), $T0e movdqa 16*5($in_t), $T0f lea 16*6($in_t), $in_t pand $TMP0, $T0a pand $TMP0, $T0b por $T0a, $Ra pand $TMP0, $T0c por $T0b, $Rb pand $TMP0, $T0d por $T0c, $Rc pand $TMP0, $T0e por $T0d, $Rd pand $TMP0, $T0f por $T0e, $Re por $T0f, $Rf dec %rax jnz .Lselect_loop_sse_w5 movdqu $Ra, 16*0($val) movdqu $Rb, 16*1($val) movdqu $Rc, 16*2($val) movdqu $Rd, 16*3($val) movdqu $Re, 16*4($val) movdqu $Rf, 16*5($val) ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea 0xa8(%rsp), %rsp ___ $code.=<<___; ret .cfi_endproc .LSEH_end_ecp_nistz256_gather_w5: .size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5 ################################################################################ # void ecp_nistz256_scatter_w7(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_scatter_w7 .type ecp_nistz256_scatter_w7,\@abi-omnipotent .align 32 ecp_nistz256_scatter_w7: .cfi_startproc movdqu 0x00($in_t), %xmm0 shl \$6, $index movdqu 0x10($in_t), %xmm1 movdqu 0x20($in_t), %xmm2 movdqu 0x30($in_t), %xmm3 movdqa %xmm0, 0x00($val,$index) movdqa %xmm1, 0x10($val,$index) movdqa %xmm2, 0x20($val,$index) movdqa %xmm3, 0x30($val,$index) ret .cfi_endproc .size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7 ################################################################################ # void ecp_nistz256_gather_w7(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_gather_w7 .type ecp_nistz256_gather_w7,\@abi-omnipotent .align 32 ecp_nistz256_gather_w7: .cfi_startproc ___ $code.=<<___ if ($avx>1); mov OPENSSL_ia32cap_P+8(%rip), %eax test \$`1<<5`, %eax jnz .Lavx2_gather_w7 ___ $code.=<<___ if ($win64); lea -0x88(%rsp), %rax .LSEH_begin_ecp_nistz256_gather_w7: .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax) ___ $code.=<<___; movdqa .LOne(%rip), $M0 movd $index, $INDEX pxor $Ra, $Ra pxor $Rb, $Rb pxor $Rc, $Rc pxor $Rd, $Rd movdqa $M0, $ONE pshufd \$0, $INDEX, $INDEX mov \$64, %rax .Lselect_loop_sse_w7: movdqa $M0, $TMP0 paddd $ONE, $M0 movdqa 16*0($in_t), $T0a movdqa 16*1($in_t), $T0b pcmpeqd $INDEX, $TMP0 movdqa 16*2($in_t), $T0c movdqa 16*3($in_t), $T0d lea 16*4($in_t), $in_t pand $TMP0, $T0a pand $TMP0, $T0b por $T0a, $Ra pand $TMP0, $T0c por $T0b, $Rb pand $TMP0, $T0d por $T0c, $Rc prefetcht0 255($in_t) por $T0d, $Rd dec %rax jnz .Lselect_loop_sse_w7 movdqu $Ra, 16*0($val) movdqu $Rb, 16*1($val) movdqu $Rc, 16*2($val) movdqu $Rd, 16*3($val) ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea 0xa8(%rsp), %rsp ___ $code.=<<___; ret .cfi_endproc .LSEH_end_ecp_nistz256_gather_w7: .size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7 ___ } if ($avx>1) { my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx"); my ($TWO,$INDEX,$Ra,$Rb,$Rc)=map("%ymm$_",(0..4)); my ($M0,$T0a,$T0b,$T0c,$TMP0)=map("%ymm$_",(5..9)); my ($M1,$T1a,$T1b,$T1c,$TMP1)=map("%ymm$_",(10..14)); $code.=<<___; ################################################################################ # void ecp_nistz256_avx2_gather_w5(uint64_t *val, uint64_t *in_t, int index); .type ecp_nistz256_avx2_gather_w5,\@abi-omnipotent .align 32 ecp_nistz256_avx2_gather_w5: .cfi_startproc .Lavx2_gather_w5: vzeroupper ___ $code.=<<___ if ($win64); lea -0x88(%rsp), %rax mov %rsp,%r11 .LSEH_begin_ecp_nistz256_avx2_gather_w5: .byte 0x48,0x8d,0x60,0xe0 # lea -0x20(%rax), %rsp .byte 0xc5,0xf8,0x29,0x70,0xe0 # vmovaps %xmm6, -0x20(%rax) .byte 0xc5,0xf8,0x29,0x78,0xf0 # vmovaps %xmm7, -0x10(%rax) .byte 0xc5,0x78,0x29,0x40,0x00 # vmovaps %xmm8, 8(%rax) .byte 0xc5,0x78,0x29,0x48,0x10 # vmovaps %xmm9, 0x10(%rax) .byte 0xc5,0x78,0x29,0x50,0x20 # vmovaps %xmm10, 0x20(%rax) .byte 0xc5,0x78,0x29,0x58,0x30 # vmovaps %xmm11, 0x30(%rax) .byte 0xc5,0x78,0x29,0x60,0x40 # vmovaps %xmm12, 0x40(%rax) .byte 0xc5,0x78,0x29,0x68,0x50 # vmovaps %xmm13, 0x50(%rax) .byte 0xc5,0x78,0x29,0x70,0x60 # vmovaps %xmm14, 0x60(%rax) .byte 0xc5,0x78,0x29,0x78,0x70 # vmovaps %xmm15, 0x70(%rax) ___ $code.=<<___; vmovdqa .LTwo(%rip), $TWO vpxor $Ra, $Ra, $Ra vpxor $Rb, $Rb, $Rb vpxor $Rc, $Rc, $Rc vmovdqa .LOne(%rip), $M0 vmovdqa .LTwo(%rip), $M1 vmovd $index, %xmm1 vpermd $INDEX, $Ra, $INDEX mov \$8, %rax .Lselect_loop_avx2_w5: vmovdqa 32*0($in_t), $T0a vmovdqa 32*1($in_t), $T0b vmovdqa 32*2($in_t), $T0c vmovdqa 32*3($in_t), $T1a vmovdqa 32*4($in_t), $T1b vmovdqa 32*5($in_t), $T1c vpcmpeqd $INDEX, $M0, $TMP0 vpcmpeqd $INDEX, $M1, $TMP1 vpaddd $TWO, $M0, $M0 vpaddd $TWO, $M1, $M1 lea 32*6($in_t), $in_t vpand $TMP0, $T0a, $T0a vpand $TMP0, $T0b, $T0b vpand $TMP0, $T0c, $T0c vpand $TMP1, $T1a, $T1a vpand $TMP1, $T1b, $T1b vpand $TMP1, $T1c, $T1c vpxor $T0a, $Ra, $Ra vpxor $T0b, $Rb, $Rb vpxor $T0c, $Rc, $Rc vpxor $T1a, $Ra, $Ra vpxor $T1b, $Rb, $Rb vpxor $T1c, $Rc, $Rc dec %rax jnz .Lselect_loop_avx2_w5 vmovdqu $Ra, 32*0($val) vmovdqu $Rb, 32*1($val) vmovdqu $Rc, 32*2($val) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea (%r11), %rsp ___ $code.=<<___; ret .cfi_endproc .LSEH_end_ecp_nistz256_avx2_gather_w5: .size ecp_nistz256_avx2_gather_w5,.-ecp_nistz256_avx2_gather_w5 ___ } if ($avx>1) { my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx"); my ($THREE,$INDEX,$Ra,$Rb)=map("%ymm$_",(0..3)); my ($M0,$T0a,$T0b,$TMP0)=map("%ymm$_",(4..7)); my ($M1,$T1a,$T1b,$TMP1)=map("%ymm$_",(8..11)); my ($M2,$T2a,$T2b,$TMP2)=map("%ymm$_",(12..15)); $code.=<<___; ################################################################################ # void ecp_nistz256_avx2_gather_w7(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_avx2_gather_w7 .type ecp_nistz256_avx2_gather_w7,\@abi-omnipotent .align 32 ecp_nistz256_avx2_gather_w7: .cfi_startproc .Lavx2_gather_w7: vzeroupper ___ $code.=<<___ if ($win64); mov %rsp,%r11 lea -0x88(%rsp), %rax .LSEH_begin_ecp_nistz256_avx2_gather_w7: .byte 0x48,0x8d,0x60,0xe0 # lea -0x20(%rax), %rsp .byte 0xc5,0xf8,0x29,0x70,0xe0 # vmovaps %xmm6, -0x20(%rax) .byte 0xc5,0xf8,0x29,0x78,0xf0 # vmovaps %xmm7, -0x10(%rax) .byte 0xc5,0x78,0x29,0x40,0x00 # vmovaps %xmm8, 8(%rax) .byte 0xc5,0x78,0x29,0x48,0x10 # vmovaps %xmm9, 0x10(%rax) .byte 0xc5,0x78,0x29,0x50,0x20 # vmovaps %xmm10, 0x20(%rax) .byte 0xc5,0x78,0x29,0x58,0x30 # vmovaps %xmm11, 0x30(%rax) .byte 0xc5,0x78,0x29,0x60,0x40 # vmovaps %xmm12, 0x40(%rax) .byte 0xc5,0x78,0x29,0x68,0x50 # vmovaps %xmm13, 0x50(%rax) .byte 0xc5,0x78,0x29,0x70,0x60 # vmovaps %xmm14, 0x60(%rax) .byte 0xc5,0x78,0x29,0x78,0x70 # vmovaps %xmm15, 0x70(%rax) ___ $code.=<<___; vmovdqa .LThree(%rip), $THREE vpxor $Ra, $Ra, $Ra vpxor $Rb, $Rb, $Rb vmovdqa .LOne(%rip), $M0 vmovdqa .LTwo(%rip), $M1 vmovdqa .LThree(%rip), $M2 vmovd $index, %xmm1 vpermd $INDEX, $Ra, $INDEX # Skip index = 0, because it is implicitly the point at infinity mov \$21, %rax .Lselect_loop_avx2_w7: vmovdqa 32*0($in_t), $T0a vmovdqa 32*1($in_t), $T0b vmovdqa 32*2($in_t), $T1a vmovdqa 32*3($in_t), $T1b vmovdqa 32*4($in_t), $T2a vmovdqa 32*5($in_t), $T2b vpcmpeqd $INDEX, $M0, $TMP0 vpcmpeqd $INDEX, $M1, $TMP1 vpcmpeqd $INDEX, $M2, $TMP2 vpaddd $THREE, $M0, $M0 vpaddd $THREE, $M1, $M1 vpaddd $THREE, $M2, $M2 lea 32*6($in_t), $in_t vpand $TMP0, $T0a, $T0a vpand $TMP0, $T0b, $T0b vpand $TMP1, $T1a, $T1a vpand $TMP1, $T1b, $T1b vpand $TMP2, $T2a, $T2a vpand $TMP2, $T2b, $T2b vpxor $T0a, $Ra, $Ra vpxor $T0b, $Rb, $Rb vpxor $T1a, $Ra, $Ra vpxor $T1b, $Rb, $Rb vpxor $T2a, $Ra, $Ra vpxor $T2b, $Rb, $Rb dec %rax jnz .Lselect_loop_avx2_w7 vmovdqa 32*0($in_t), $T0a vmovdqa 32*1($in_t), $T0b vpcmpeqd $INDEX, $M0, $TMP0 vpand $TMP0, $T0a, $T0a vpand $TMP0, $T0b, $T0b vpxor $T0a, $Ra, $Ra vpxor $T0b, $Rb, $Rb vmovdqu $Ra, 32*0($val) vmovdqu $Rb, 32*1($val) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea (%r11), %rsp ___ $code.=<<___; ret .cfi_endproc .LSEH_end_ecp_nistz256_avx2_gather_w7: .size ecp_nistz256_avx2_gather_w7,.-ecp_nistz256_avx2_gather_w7 ___ } else { $code.=<<___; .globl ecp_nistz256_avx2_gather_w7 .type ecp_nistz256_avx2_gather_w7,\@function,3 .align 32 ecp_nistz256_avx2_gather_w7: .cfi_startproc .byte 0x0f,0x0b # ud2 ret .cfi_endproc .size ecp_nistz256_avx2_gather_w7,.-ecp_nistz256_avx2_gather_w7 ___ } {{{ ######################################################################## # This block implements higher level point_double, point_add and # point_add_affine. The key to performance in this case is to allow # out-of-order execution logic to overlap computations from next step # with tail processing from current step. By using tailored calling # sequence we minimize inter-step overhead to give processor better # shot at overlapping operations... # # You will notice that input data is copied to stack. Trouble is that # there are no registers to spare for holding original pointers and # reloading them, pointers, would create undesired dependencies on # effective addresses calculation paths. In other words it's too done # to favour out-of-order execution logic. # my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx"); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15)); my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rbp","%rcx",$acc4,$acc4); my ($poly1,$poly3)=($acc6,$acc7); sub load_for_mul () { my ($a,$b,$src0) = @_; my $bias = $src0 eq "%rax" ? 0 : -128; " mov $b, $src0 lea $b, $b_ptr mov 8*0+$a, $acc1 mov 8*1+$a, $acc2 lea $bias+$a, $a_ptr mov 8*2+$a, $acc3 mov 8*3+$a, $acc4" } sub load_for_sqr () { my ($a,$src0) = @_; my $bias = $src0 eq "%rax" ? 0 : -128; " mov 8*0+$a, $src0 mov 8*1+$a, $acc6 lea $bias+$a, $a_ptr mov 8*2+$a, $acc7 mov 8*3+$a, $acc0" } { ######################################################################## # operate in 4-5-0-1 "name space" that matches multiplication output # my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); $code.=<<___; .type __ecp_nistz256_add_toq,\@abi-omnipotent .align 32 __ecp_nistz256_add_toq: .cfi_startproc xor $t4,$t4 add 8*0($b_ptr), $a0 adc 8*1($b_ptr), $a1 mov $a0, $t0 adc 8*2($b_ptr), $a2 adc 8*3($b_ptr), $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_add_toq,.-__ecp_nistz256_add_toq .type __ecp_nistz256_sub_fromq,\@abi-omnipotent .align 32 __ecp_nistz256_sub_fromq: .cfi_startproc sub 8*0($b_ptr), $a0 sbb 8*1($b_ptr), $a1 mov $a0, $t0 sbb 8*2($b_ptr), $a2 sbb 8*3($b_ptr), $a3 mov $a1, $t1 sbb $t4, $t4 add \$-1, $a0 mov $a2, $t2 adc $poly1, $a1 adc \$0, $a2 mov $a3, $t3 adc $poly3, $a3 test $t4, $t4 cmovz $t0, $a0 cmovz $t1, $a1 mov $a0, 8*0($r_ptr) cmovz $t2, $a2 mov $a1, 8*1($r_ptr) cmovz $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_sub_fromq,.-__ecp_nistz256_sub_fromq .type __ecp_nistz256_subq,\@abi-omnipotent .align 32 __ecp_nistz256_subq: .cfi_startproc sub $a0, $t0 sbb $a1, $t1 mov $t0, $a0 sbb $a2, $t2 sbb $a3, $t3 mov $t1, $a1 sbb $t4, $t4 add \$-1, $t0 mov $t2, $a2 adc $poly1, $t1 adc \$0, $t2 mov $t3, $a3 adc $poly3, $t3 test $t4, $t4 cmovnz $t0, $a0 cmovnz $t1, $a1 cmovnz $t2, $a2 cmovnz $t3, $a3 ret .cfi_endproc .size __ecp_nistz256_subq,.-__ecp_nistz256_subq .type __ecp_nistz256_mul_by_2q,\@abi-omnipotent .align 32 __ecp_nistz256_mul_by_2q: .cfi_startproc xor $t4, $t4 add $a0, $a0 # a0:a3+a0:a3 adc $a1, $a1 mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_mul_by_2q,.-__ecp_nistz256_mul_by_2q ___ } sub gen_double () { my $x = shift; my ($src0,$sfx,$bias); my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); if ($x ne "x") { $src0 = "%rax"; $sfx = ""; $bias = 0; $code.=<<___; .globl ecp_nistz256_point_double .type ecp_nistz256_point_double,\@function,2 .align 32 ecp_nistz256_point_double: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lpoint_doublex ___ } else { $src0 = "%rdx"; $sfx = "x"; $bias = 128; $code.=<<___; .type ecp_nistz256_point_doublex,\@function,2 .align 32 ecp_nistz256_point_doublex: .cfi_startproc .Lpoint_doublex: ___ } $code.=<<___; push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$32*5+8, %rsp .cfi_adjust_cfa_offset 32*5+8 .Lpoint_double${x}_body: .Lpoint_double_shortcut$x: movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr.x mov $a_ptr, $b_ptr # backup copy movdqu 0x10($a_ptr), %xmm1 mov 0x20+8*0($a_ptr), $acc4 # load in_y in "5-4-0-1" order mov 0x20+8*1($a_ptr), $acc5 mov 0x20+8*2($a_ptr), $acc0 mov 0x20+8*3($a_ptr), $acc1 mov .Lpoly+8*1(%rip), $poly1 mov .Lpoly+8*3(%rip), $poly3 movdqa %xmm0, $in_x(%rsp) movdqa %xmm1, $in_x+0x10(%rsp) lea 0x20($r_ptr), $acc2 lea 0x40($r_ptr), $acc3 movq $r_ptr, %xmm0 movq $acc2, %xmm1 movq $acc3, %xmm2 lea $S(%rsp), $r_ptr call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(S, in_y); mov 0x40+8*0($a_ptr), $src0 mov 0x40+8*1($a_ptr), $acc6 mov 0x40+8*2($a_ptr), $acc7 mov 0x40+8*3($a_ptr), $acc0 lea 0x40-$bias($a_ptr), $a_ptr lea $Zsqr(%rsp), $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Zsqr, in_z); `&load_for_sqr("$S(%rsp)", "$src0")` lea $S(%rsp), $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(S, S); mov 0x20($b_ptr), $src0 # $b_ptr is still valid mov 0x40+8*0($b_ptr), $acc1 mov 0x40+8*1($b_ptr), $acc2 mov 0x40+8*2($b_ptr), $acc3 mov 0x40+8*3($b_ptr), $acc4 lea 0x40-$bias($b_ptr), $a_ptr lea 0x20($b_ptr), $b_ptr movq %xmm2, $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, in_z, in_y); call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(res_z, res_z); mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order mov $in_x+8*1(%rsp), $acc5 lea $Zsqr(%rsp), $b_ptr mov $in_x+8*2(%rsp), $acc0 mov $in_x+8*3(%rsp), $acc1 lea $M(%rsp), $r_ptr call __ecp_nistz256_add_to$x # p256_add(M, in_x, Zsqr); mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order mov $in_x+8*1(%rsp), $acc5 lea $Zsqr(%rsp), $b_ptr mov $in_x+8*2(%rsp), $acc0 mov $in_x+8*3(%rsp), $acc1 lea $Zsqr(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(Zsqr, in_x, Zsqr); `&load_for_sqr("$S(%rsp)", "$src0")` movq %xmm1, $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_y, S); ___ { ######## ecp_nistz256_div_by_2(res_y, res_y); ########################## # operate in 4-5-6-7 "name space" that matches squaring output # my ($poly1,$poly3)=($a_ptr,$t1); my ($a0,$a1,$a2,$a3,$t3,$t4,$t1)=($acc4,$acc5,$acc6,$acc7,$acc0,$acc1,$acc2); $code.=<<___; xor $t4, $t4 mov $a0, $t0 add \$-1, $a0 mov $a1, $t1 adc $poly1, $a1 mov $a2, $t2 adc \$0, $a2 mov $a3, $t3 adc $poly3, $a3 adc \$0, $t4 xor $a_ptr, $a_ptr # borrow $a_ptr test \$1, $t0 cmovz $t0, $a0 cmovz $t1, $a1 cmovz $t2, $a2 cmovz $t3, $a3 cmovz $a_ptr, $t4 mov $a1, $t0 # a0:a3>>1 shr \$1, $a0 shl \$63, $t0 mov $a2, $t1 shr \$1, $a1 or $t0, $a0 shl \$63, $t1 mov $a3, $t2 shr \$1, $a2 or $t1, $a1 shl \$63, $t2 mov $a0, 8*0($r_ptr) shr \$1, $a3 mov $a1, 8*1($r_ptr) shl \$63, $t4 or $t2, $a2 or $t4, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ___ } $code.=<<___; `&load_for_mul("$M(%rsp)", "$Zsqr(%rsp)", "$src0")` lea $M(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(M, M, Zsqr); lea $tmp0(%rsp), $r_ptr call __ecp_nistz256_mul_by_2$x lea $M(%rsp), $b_ptr lea $M(%rsp), $r_ptr call __ecp_nistz256_add_to$x # p256_mul_by_3(M, M); `&load_for_mul("$S(%rsp)", "$in_x(%rsp)", "$src0")` lea $S(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, in_x); lea $tmp0(%rsp), $r_ptr call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(tmp0, S); `&load_for_sqr("$M(%rsp)", "$src0")` movq %xmm0, $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_x, M); lea $tmp0(%rsp), $b_ptr mov $acc6, $acc0 # harmonize sqr output and sub input mov $acc7, $acc1 mov $a_ptr, $poly1 mov $t1, $poly3 call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, tmp0); mov $S+8*0(%rsp), $t0 mov $S+8*1(%rsp), $t1 mov $S+8*2(%rsp), $t2 mov $S+8*3(%rsp), $acc2 # "4-5-0-1" order lea $S(%rsp), $r_ptr call __ecp_nistz256_sub$x # p256_sub(S, S, res_x); mov $M(%rsp), $src0 lea $M(%rsp), $b_ptr mov $acc4, $acc6 # harmonize sub output and mul input xor %ecx, %ecx mov $acc4, $S+8*0(%rsp) # have to save:-( mov $acc5, $acc2 mov $acc5, $S+8*1(%rsp) cmovz $acc0, $acc3 mov $acc0, $S+8*2(%rsp) lea $S-$bias(%rsp), $a_ptr cmovz $acc1, $acc4 mov $acc1, $S+8*3(%rsp) mov $acc6, $acc1 lea $S(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, M); movq %xmm1, $b_ptr movq %xmm1, $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_y, S, res_y); lea 32*5+56(%rsp), %rsi .cfi_def_cfa %rsi,8 mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbx .cfi_restore %rbx mov -8(%rsi),%rbp .cfi_restore %rbp lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lpoint_double${x}_epilogue: ret .cfi_endproc .size ecp_nistz256_point_double$sfx,.-ecp_nistz256_point_double$sfx ___ } &gen_double("q"); sub gen_add () { my $x = shift; my ($src0,$sfx,$bias); my ($H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2, $res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y,$in2_z)=map(32*$_,(0..17)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); if ($x ne "x") { $src0 = "%rax"; $sfx = ""; $bias = 0; $code.=<<___; .globl ecp_nistz256_point_add .type ecp_nistz256_point_add,\@function,3 .align 32 ecp_nistz256_point_add: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lpoint_addx ___ } else { $src0 = "%rdx"; $sfx = "x"; $bias = 128; $code.=<<___; .type ecp_nistz256_point_addx,\@function,3 .align 32 ecp_nistz256_point_addx: .cfi_startproc .Lpoint_addx: ___ } $code.=<<___; push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$32*18+8, %rsp .cfi_adjust_cfa_offset 32*18+8 .Lpoint_add${x}_body: movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr movdqu 0x10($a_ptr), %xmm1 movdqu 0x20($a_ptr), %xmm2 movdqu 0x30($a_ptr), %xmm3 movdqu 0x40($a_ptr), %xmm4 movdqu 0x50($a_ptr), %xmm5 mov $a_ptr, $b_ptr # reassign mov $b_org, $a_ptr # reassign movdqa %xmm0, $in1_x(%rsp) movdqa %xmm1, $in1_x+0x10(%rsp) movdqa %xmm2, $in1_y(%rsp) movdqa %xmm3, $in1_y+0x10(%rsp) movdqa %xmm4, $in1_z(%rsp) movdqa %xmm5, $in1_z+0x10(%rsp) por %xmm4, %xmm5 movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$b_ptr pshufd \$0xb1, %xmm5, %xmm3 movdqu 0x10($a_ptr), %xmm1 movdqu 0x20($a_ptr), %xmm2 por %xmm3, %xmm5 movdqu 0x30($a_ptr), %xmm3 mov 0x40+8*0($a_ptr), $src0 # load original in2_z mov 0x40+8*1($a_ptr), $acc6 mov 0x40+8*2($a_ptr), $acc7 mov 0x40+8*3($a_ptr), $acc0 movdqa %xmm0, $in2_x(%rsp) pshufd \$0x1e, %xmm5, %xmm4 movdqa %xmm1, $in2_x+0x10(%rsp) movdqu 0x40($a_ptr),%xmm0 # in2_z again movdqu 0x50($a_ptr),%xmm1 movdqa %xmm2, $in2_y(%rsp) movdqa %xmm3, $in2_y+0x10(%rsp) por %xmm4, %xmm5 pxor %xmm4, %xmm4 por %xmm0, %xmm1 movq $r_ptr, %xmm0 # save $r_ptr lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid mov $src0, $in2_z+8*0(%rsp) # make in2_z copy mov $acc6, $in2_z+8*1(%rsp) mov $acc7, $in2_z+8*2(%rsp) mov $acc0, $in2_z+8*3(%rsp) lea $Z2sqr(%rsp), $r_ptr # Z2^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z2sqr, in2_z); pcmpeqd %xmm4, %xmm5 pshufd \$0xb1, %xmm1, %xmm4 por %xmm1, %xmm4 pshufd \$0, %xmm5, %xmm5 # in1infty pshufd \$0x1e, %xmm4, %xmm3 por %xmm3, %xmm4 pxor %xmm3, %xmm3 pcmpeqd %xmm3, %xmm4 pshufd \$0, %xmm4, %xmm4 # in2infty mov 0x40+8*0($b_ptr), $src0 # load original in1_z mov 0x40+8*1($b_ptr), $acc6 mov 0x40+8*2($b_ptr), $acc7 mov 0x40+8*3($b_ptr), $acc0 movq $b_ptr, %xmm1 lea 0x40-$bias($b_ptr), $a_ptr lea $Z1sqr(%rsp), $r_ptr # Z1^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z); `&load_for_mul("$Z2sqr(%rsp)", "$in2_z(%rsp)", "$src0")` lea $S1(%rsp), $r_ptr # S1 = Z2^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, Z2sqr, in2_z); `&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z); `&load_for_mul("$S1(%rsp)", "$in1_y(%rsp)", "$src0")` lea $S1(%rsp), $r_ptr # S1 = Y1*Z2^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, S1, in1_y); `&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y); lea $S1(%rsp), $b_ptr lea $R(%rsp), $r_ptr # R = S2 - S1 call __ecp_nistz256_sub_from$x # p256_sub(R, S2, S1); or $acc5, $acc4 # see if result is zero movdqa %xmm4, %xmm2 or $acc0, $acc4 or $acc1, $acc4 por %xmm5, %xmm2 # in1infty || in2infty movq $acc4, %xmm3 `&load_for_mul("$Z2sqr(%rsp)", "$in1_x(%rsp)", "$src0")` lea $U1(%rsp), $r_ptr # U1 = X1*Z2^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U1, in1_x, Z2sqr); `&load_for_mul("$Z1sqr(%rsp)", "$in2_x(%rsp)", "$src0")` lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in2_x, Z1sqr); lea $U1(%rsp), $b_ptr lea $H(%rsp), $r_ptr # H = U2 - U1 call __ecp_nistz256_sub_from$x # p256_sub(H, U2, U1); or $acc5, $acc4 # see if result is zero or $acc0, $acc4 or $acc1, $acc4 # !is_equal(U1, U2) movq %xmm2, $acc0 # in1infty | in2infty movq %xmm3, $acc1 # !is_equal(S1, S2) or $acc0, $acc4 or $acc1, $acc4 # if (!is_equal(U1, U2) | in1infty | in2infty | !is_equal(S1, S2)) .byte 0x3e # predict taken jnz .Ladd_proceed$x .Ladd_double$x: movq %xmm1, $a_ptr # restore $a_ptr movq %xmm0, $r_ptr # restore $r_ptr add \$`32*(18-5)`, %rsp # difference in frame sizes .cfi_adjust_cfa_offset `-32*(18-5)` jmp .Lpoint_double_shortcut$x .cfi_adjust_cfa_offset `32*(18-5)` .align 32 .Ladd_proceed$x: `&load_for_sqr("$R(%rsp)", "$src0")` lea $Rsqr(%rsp), $r_ptr # R^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R); `&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")` lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z); `&load_for_sqr("$H(%rsp)", "$src0")` lea $Hsqr(%rsp), $r_ptr # H^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H); `&load_for_mul("$res_z(%rsp)", "$in2_z(%rsp)", "$src0")` lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, res_z, in2_z); `&load_for_mul("$Hsqr(%rsp)", "$H(%rsp)", "$src0")` lea $Hcub(%rsp), $r_ptr # H^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H); `&load_for_mul("$Hsqr(%rsp)", "$U1(%rsp)", "$src0")` lea $U2(%rsp), $r_ptr # U1*H^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, U1, Hsqr); ___ { ####################################################################### # operate in 4-5-0-1 "name space" that matches multiplication output # my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); my ($poly1, $poly3)=($acc6,$acc7); $code.=<<___; #lea $U2(%rsp), $a_ptr #lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2 #call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2); xor $t4, $t4 add $acc0, $acc0 # a0:a3+a0:a3 lea $Rsqr(%rsp), $a_ptr adc $acc1, $acc1 mov $acc0, $t0 adc $acc2, $acc2 adc $acc3, $acc3 mov $acc1, $t1 adc \$0, $t4 sub \$-1, $acc0 mov $acc2, $t2 sbb $poly1, $acc1 sbb \$0, $acc2 mov $acc3, $t3 sbb $poly3, $acc3 sbb \$0, $t4 cmovc $t0, $acc0 mov 8*0($a_ptr), $t0 cmovc $t1, $acc1 mov 8*1($a_ptr), $t1 cmovc $t2, $acc2 mov 8*2($a_ptr), $t2 cmovc $t3, $acc3 mov 8*3($a_ptr), $t3 call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr); lea $Hcub(%rsp), $b_ptr lea $res_x(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub); mov $U2+8*0(%rsp), $t0 mov $U2+8*1(%rsp), $t1 mov $U2+8*2(%rsp), $t2 mov $U2+8*3(%rsp), $t3 lea $res_y(%rsp), $r_ptr call __ecp_nistz256_sub$x # p256_sub(res_y, U2, res_x); mov $acc0, 8*0($r_ptr) # save the result, as mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't mov $acc2, 8*2($r_ptr) mov $acc3, 8*3($r_ptr) ___ } $code.=<<___; `&load_for_mul("$S1(%rsp)", "$Hcub(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S1, Hcub); `&load_for_mul("$R(%rsp)", "$res_y(%rsp)", "$src0")` lea $res_y(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_y, R, res_y); lea $S2(%rsp), $b_ptr lea $res_y(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_y, res_y, S2); movq %xmm0, $r_ptr # restore $r_ptr movdqa %xmm5, %xmm0 # copy_conditional(res_z, in2_z, in1infty); movdqa %xmm5, %xmm1 pandn $res_z(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_z+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_z(%rsp), %xmm2 pand $in2_z+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_z(%rsp), %xmm2 pand $in1_z+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x40($r_ptr) movdqu %xmm3, 0x50($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty); movdqa %xmm5, %xmm1 pandn $res_x(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_x+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_x(%rsp), %xmm2 pand $in2_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_x(%rsp), %xmm2 pand $in1_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x00($r_ptr) movdqu %xmm3, 0x10($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty); movdqa %xmm5, %xmm1 pandn $res_y(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_y+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_y(%rsp), %xmm2 pand $in2_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_y(%rsp), %xmm2 pand $in1_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x20($r_ptr) movdqu %xmm3, 0x30($r_ptr) .Ladd_done$x: lea 32*18+56(%rsp), %rsi .cfi_def_cfa %rsi,8 mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbx .cfi_restore %rbx mov -8(%rsi),%rbp .cfi_restore %rbp lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lpoint_add${x}_epilogue: ret .cfi_endproc .size ecp_nistz256_point_add$sfx,.-ecp_nistz256_point_add$sfx ___ } &gen_add("q"); sub gen_add_affine () { my $x = shift; my ($src0,$sfx,$bias); my ($U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr, $res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y)=map(32*$_,(0..14)); my $Z1sqr = $S2; if ($x ne "x") { $src0 = "%rax"; $sfx = ""; $bias = 0; $code.=<<___; .globl ecp_nistz256_point_add_affine .type ecp_nistz256_point_add_affine,\@function,3 .align 32 ecp_nistz256_point_add_affine: .cfi_startproc ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lpoint_add_affinex ___ } else { $src0 = "%rdx"; $sfx = "x"; $bias = 128; $code.=<<___; .type ecp_nistz256_point_add_affinex,\@function,3 .align 32 ecp_nistz256_point_add_affinex: .cfi_startproc .Lpoint_add_affinex: ___ } $code.=<<___; push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$32*15+8, %rsp .cfi_adjust_cfa_offset 32*15+8 .Ladd_affine${x}_body: movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr mov $b_org, $b_ptr # reassign movdqu 0x10($a_ptr), %xmm1 movdqu 0x20($a_ptr), %xmm2 movdqu 0x30($a_ptr), %xmm3 movdqu 0x40($a_ptr), %xmm4 movdqu 0x50($a_ptr), %xmm5 mov 0x40+8*0($a_ptr), $src0 # load original in1_z mov 0x40+8*1($a_ptr), $acc6 mov 0x40+8*2($a_ptr), $acc7 mov 0x40+8*3($a_ptr), $acc0 movdqa %xmm0, $in1_x(%rsp) movdqa %xmm1, $in1_x+0x10(%rsp) movdqa %xmm2, $in1_y(%rsp) movdqa %xmm3, $in1_y+0x10(%rsp) movdqa %xmm4, $in1_z(%rsp) movdqa %xmm5, $in1_z+0x10(%rsp) por %xmm4, %xmm5 movdqu 0x00($b_ptr), %xmm0 # copy *(P256_POINT_AFFINE *)$b_ptr pshufd \$0xb1, %xmm5, %xmm3 movdqu 0x10($b_ptr), %xmm1 movdqu 0x20($b_ptr), %xmm2 por %xmm3, %xmm5 movdqu 0x30($b_ptr), %xmm3 movdqa %xmm0, $in2_x(%rsp) pshufd \$0x1e, %xmm5, %xmm4 movdqa %xmm1, $in2_x+0x10(%rsp) por %xmm0, %xmm1 movq $r_ptr, %xmm0 # save $r_ptr movdqa %xmm2, $in2_y(%rsp) movdqa %xmm3, $in2_y+0x10(%rsp) por %xmm2, %xmm3 por %xmm4, %xmm5 pxor %xmm4, %xmm4 por %xmm1, %xmm3 lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid lea $Z1sqr(%rsp), $r_ptr # Z1^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z); pcmpeqd %xmm4, %xmm5 pshufd \$0xb1, %xmm3, %xmm4 mov 0x00($b_ptr), $src0 # $b_ptr is still valid #lea 0x00($b_ptr), $b_ptr mov $acc4, $acc1 # harmonize sqr output and mul input por %xmm3, %xmm4 pshufd \$0, %xmm5, %xmm5 # in1infty pshufd \$0x1e, %xmm4, %xmm3 mov $acc5, $acc2 por %xmm3, %xmm4 pxor %xmm3, %xmm3 mov $acc6, $acc3 pcmpeqd %xmm3, %xmm4 pshufd \$0, %xmm4, %xmm4 # in2infty lea $Z1sqr-$bias(%rsp), $a_ptr mov $acc7, $acc4 lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, Z1sqr, in2_x); lea $in1_x(%rsp), $b_ptr lea $H(%rsp), $r_ptr # H = U2 - U1 call __ecp_nistz256_sub_from$x # p256_sub(H, U2, in1_x); `&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z); `&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")` lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z); `&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y); lea $in1_y(%rsp), $b_ptr lea $R(%rsp), $r_ptr # R = S2 - S1 call __ecp_nistz256_sub_from$x # p256_sub(R, S2, in1_y); `&load_for_sqr("$H(%rsp)", "$src0")` lea $Hsqr(%rsp), $r_ptr # H^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H); `&load_for_sqr("$R(%rsp)", "$src0")` lea $Rsqr(%rsp), $r_ptr # R^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R); `&load_for_mul("$H(%rsp)", "$Hsqr(%rsp)", "$src0")` lea $Hcub(%rsp), $r_ptr # H^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H); `&load_for_mul("$Hsqr(%rsp)", "$in1_x(%rsp)", "$src0")` lea $U2(%rsp), $r_ptr # U1*H^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in1_x, Hsqr); ___ { ####################################################################### # operate in 4-5-0-1 "name space" that matches multiplication output # my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); my ($poly1, $poly3)=($acc6,$acc7); $code.=<<___; #lea $U2(%rsp), $a_ptr #lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2 #call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2); xor $t4, $t4 add $acc0, $acc0 # a0:a3+a0:a3 lea $Rsqr(%rsp), $a_ptr adc $acc1, $acc1 mov $acc0, $t0 adc $acc2, $acc2 adc $acc3, $acc3 mov $acc1, $t1 adc \$0, $t4 sub \$-1, $acc0 mov $acc2, $t2 sbb $poly1, $acc1 sbb \$0, $acc2 mov $acc3, $t3 sbb $poly3, $acc3 sbb \$0, $t4 cmovc $t0, $acc0 mov 8*0($a_ptr), $t0 cmovc $t1, $acc1 mov 8*1($a_ptr), $t1 cmovc $t2, $acc2 mov 8*2($a_ptr), $t2 cmovc $t3, $acc3 mov 8*3($a_ptr), $t3 call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr); lea $Hcub(%rsp), $b_ptr lea $res_x(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub); mov $U2+8*0(%rsp), $t0 mov $U2+8*1(%rsp), $t1 mov $U2+8*2(%rsp), $t2 mov $U2+8*3(%rsp), $t3 lea $H(%rsp), $r_ptr call __ecp_nistz256_sub$x # p256_sub(H, U2, res_x); mov $acc0, 8*0($r_ptr) # save the result, as mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't mov $acc2, 8*2($r_ptr) mov $acc3, 8*3($r_ptr) ___ } $code.=<<___; `&load_for_mul("$Hcub(%rsp)", "$in1_y(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Hcub, in1_y); `&load_for_mul("$H(%rsp)", "$R(%rsp)", "$src0")` lea $H(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(H, H, R); lea $S2(%rsp), $b_ptr lea $res_y(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_y, H, S2); movq %xmm0, $r_ptr # restore $r_ptr movdqa %xmm5, %xmm0 # copy_conditional(res_z, ONE, in1infty); movdqa %xmm5, %xmm1 pandn $res_z(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_z+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand .LONE_mont(%rip), %xmm2 pand .LONE_mont+0x10(%rip), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_z(%rsp), %xmm2 pand $in1_z+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x40($r_ptr) movdqu %xmm3, 0x50($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty); movdqa %xmm5, %xmm1 pandn $res_x(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_x+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_x(%rsp), %xmm2 pand $in2_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_x(%rsp), %xmm2 pand $in1_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x00($r_ptr) movdqu %xmm3, 0x10($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty); movdqa %xmm5, %xmm1 pandn $res_y(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_y+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_y(%rsp), %xmm2 pand $in2_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_y(%rsp), %xmm2 pand $in1_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x20($r_ptr) movdqu %xmm3, 0x30($r_ptr) lea 32*15+56(%rsp), %rsi .cfi_def_cfa %rsi,8 mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbx .cfi_restore %rbx mov -8(%rsi),%rbp .cfi_restore %rbp lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Ladd_affine${x}_epilogue: ret .cfi_endproc .size ecp_nistz256_point_add_affine$sfx,.-ecp_nistz256_point_add_affine$sfx ___ } &gen_add_affine("q"); ######################################################################## # AD*X magic # if ($addx) { { ######################################################################## # operate in 4-5-0-1 "name space" that matches multiplication output # my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); $code.=<<___; .type __ecp_nistz256_add_tox,\@abi-omnipotent .align 32 __ecp_nistz256_add_tox: .cfi_startproc xor $t4, $t4 adc 8*0($b_ptr), $a0 adc 8*1($b_ptr), $a1 mov $a0, $t0 adc 8*2($b_ptr), $a2 adc 8*3($b_ptr), $a3 mov $a1, $t1 adc \$0, $t4 xor $t3, $t3 sbb \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_add_tox,.-__ecp_nistz256_add_tox .type __ecp_nistz256_sub_fromx,\@abi-omnipotent .align 32 __ecp_nistz256_sub_fromx: .cfi_startproc xor $t4, $t4 sbb 8*0($b_ptr), $a0 sbb 8*1($b_ptr), $a1 mov $a0, $t0 sbb 8*2($b_ptr), $a2 sbb 8*3($b_ptr), $a3 mov $a1, $t1 sbb \$0, $t4 xor $t3, $t3 adc \$-1, $a0 mov $a2, $t2 adc $poly1, $a1 adc \$0, $a2 mov $a3, $t3 adc $poly3, $a3 bt \$0, $t4 cmovnc $t0, $a0 cmovnc $t1, $a1 mov $a0, 8*0($r_ptr) cmovnc $t2, $a2 mov $a1, 8*1($r_ptr) cmovnc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_sub_fromx,.-__ecp_nistz256_sub_fromx .type __ecp_nistz256_subx,\@abi-omnipotent .align 32 __ecp_nistz256_subx: .cfi_startproc xor $t4, $t4 sbb $a0, $t0 sbb $a1, $t1 mov $t0, $a0 sbb $a2, $t2 sbb $a3, $t3 mov $t1, $a1 sbb \$0, $t4 xor $a3 ,$a3 adc \$-1, $t0 mov $t2, $a2 adc $poly1, $t1 adc \$0, $t2 mov $t3, $a3 adc $poly3, $t3 bt \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 cmovc $t2, $a2 cmovc $t3, $a3 ret .cfi_endproc .size __ecp_nistz256_subx,.-__ecp_nistz256_subx .type __ecp_nistz256_mul_by_2x,\@abi-omnipotent .align 32 __ecp_nistz256_mul_by_2x: .cfi_startproc xor $t4, $t4 adc $a0, $a0 # a0:a3+a0:a3 adc $a1, $a1 mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 xor $t3, $t3 sbb \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .cfi_endproc .size __ecp_nistz256_mul_by_2x,.-__ecp_nistz256_mul_by_2x ___ } &gen_double("x"); &gen_add("x"); &gen_add_affine("x"); } }}} # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type short_handler,\@abi-omnipotent .align 16 short_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail lea 16(%rax),%rax mov -8(%rax),%r12 mov -16(%rax),%r13 mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 jmp .Lcommon_seh_tail .size short_handler,.-short_handler .type full_handler,\@abi-omnipotent .align 16 full_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 8(%r11),%r10d # HandlerData[2] lea (%rax,%r10),%rax mov -8(%rax),%rbp mov -16(%rax),%rbx mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size full_handler,.-full_handler .section .pdata .align 4 .rva .LSEH_begin_ecp_nistz256_mul_by_2 .rva .LSEH_end_ecp_nistz256_mul_by_2 .rva .LSEH_info_ecp_nistz256_mul_by_2 .rva .LSEH_begin_ecp_nistz256_div_by_2 .rva .LSEH_end_ecp_nistz256_div_by_2 .rva .LSEH_info_ecp_nistz256_div_by_2 .rva .LSEH_begin_ecp_nistz256_mul_by_3 .rva .LSEH_end_ecp_nistz256_mul_by_3 .rva .LSEH_info_ecp_nistz256_mul_by_3 .rva .LSEH_begin_ecp_nistz256_add .rva .LSEH_end_ecp_nistz256_add .rva .LSEH_info_ecp_nistz256_add .rva .LSEH_begin_ecp_nistz256_sub .rva .LSEH_end_ecp_nistz256_sub .rva .LSEH_info_ecp_nistz256_sub .rva .LSEH_begin_ecp_nistz256_neg .rva .LSEH_end_ecp_nistz256_neg .rva .LSEH_info_ecp_nistz256_neg .rva .LSEH_begin_ecp_nistz256_ord_mul_mont .rva .LSEH_end_ecp_nistz256_ord_mul_mont .rva .LSEH_info_ecp_nistz256_ord_mul_mont .rva .LSEH_begin_ecp_nistz256_ord_sqr_mont .rva .LSEH_end_ecp_nistz256_ord_sqr_mont .rva .LSEH_info_ecp_nistz256_ord_sqr_mont ___ $code.=<<___ if ($addx); .rva .LSEH_begin_ecp_nistz256_ord_mul_montx .rva .LSEH_end_ecp_nistz256_ord_mul_montx .rva .LSEH_info_ecp_nistz256_ord_mul_montx .rva .LSEH_begin_ecp_nistz256_ord_sqr_montx .rva .LSEH_end_ecp_nistz256_ord_sqr_montx .rva .LSEH_info_ecp_nistz256_ord_sqr_montx ___ $code.=<<___; .rva .LSEH_begin_ecp_nistz256_to_mont .rva .LSEH_end_ecp_nistz256_to_mont .rva .LSEH_info_ecp_nistz256_to_mont .rva .LSEH_begin_ecp_nistz256_mul_mont .rva .LSEH_end_ecp_nistz256_mul_mont .rva .LSEH_info_ecp_nistz256_mul_mont .rva .LSEH_begin_ecp_nistz256_sqr_mont .rva .LSEH_end_ecp_nistz256_sqr_mont .rva .LSEH_info_ecp_nistz256_sqr_mont .rva .LSEH_begin_ecp_nistz256_from_mont .rva .LSEH_end_ecp_nistz256_from_mont .rva .LSEH_info_ecp_nistz256_from_mont .rva .LSEH_begin_ecp_nistz256_gather_w5 .rva .LSEH_end_ecp_nistz256_gather_w5 .rva .LSEH_info_ecp_nistz256_gather_wX .rva .LSEH_begin_ecp_nistz256_gather_w7 .rva .LSEH_end_ecp_nistz256_gather_w7 .rva .LSEH_info_ecp_nistz256_gather_wX ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_ecp_nistz256_avx2_gather_w5 .rva .LSEH_end_ecp_nistz256_avx2_gather_w5 .rva .LSEH_info_ecp_nistz256_avx2_gather_wX .rva .LSEH_begin_ecp_nistz256_avx2_gather_w7 .rva .LSEH_end_ecp_nistz256_avx2_gather_w7 .rva .LSEH_info_ecp_nistz256_avx2_gather_wX ___ $code.=<<___; .rva .LSEH_begin_ecp_nistz256_point_double .rva .LSEH_end_ecp_nistz256_point_double .rva .LSEH_info_ecp_nistz256_point_double .rva .LSEH_begin_ecp_nistz256_point_add .rva .LSEH_end_ecp_nistz256_point_add .rva .LSEH_info_ecp_nistz256_point_add .rva .LSEH_begin_ecp_nistz256_point_add_affine .rva .LSEH_end_ecp_nistz256_point_add_affine .rva .LSEH_info_ecp_nistz256_point_add_affine ___ $code.=<<___ if ($addx); .rva .LSEH_begin_ecp_nistz256_point_doublex .rva .LSEH_end_ecp_nistz256_point_doublex .rva .LSEH_info_ecp_nistz256_point_doublex .rva .LSEH_begin_ecp_nistz256_point_addx .rva .LSEH_end_ecp_nistz256_point_addx .rva .LSEH_info_ecp_nistz256_point_addx .rva .LSEH_begin_ecp_nistz256_point_add_affinex .rva .LSEH_end_ecp_nistz256_point_add_affinex .rva .LSEH_info_ecp_nistz256_point_add_affinex ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_ecp_nistz256_mul_by_2: .byte 9,0,0,0 .rva short_handler .rva .Lmul_by_2_body,.Lmul_by_2_epilogue # HandlerData[] .LSEH_info_ecp_nistz256_div_by_2: .byte 9,0,0,0 .rva short_handler .rva .Ldiv_by_2_body,.Ldiv_by_2_epilogue # HandlerData[] .LSEH_info_ecp_nistz256_mul_by_3: .byte 9,0,0,0 .rva short_handler .rva .Lmul_by_3_body,.Lmul_by_3_epilogue # HandlerData[] .LSEH_info_ecp_nistz256_add: .byte 9,0,0,0 .rva short_handler .rva .Ladd_body,.Ladd_epilogue # HandlerData[] .LSEH_info_ecp_nistz256_sub: .byte 9,0,0,0 .rva short_handler .rva .Lsub_body,.Lsub_epilogue # HandlerData[] .LSEH_info_ecp_nistz256_neg: .byte 9,0,0,0 .rva short_handler .rva .Lneg_body,.Lneg_epilogue # HandlerData[] .LSEH_info_ecp_nistz256_ord_mul_mont: .byte 9,0,0,0 .rva full_handler .rva .Lord_mul_body,.Lord_mul_epilogue # HandlerData[] .long 48,0 .LSEH_info_ecp_nistz256_ord_sqr_mont: .byte 9,0,0,0 .rva full_handler .rva .Lord_sqr_body,.Lord_sqr_epilogue # HandlerData[] .long 48,0 ___ $code.=<<___ if ($addx); .LSEH_info_ecp_nistz256_ord_mul_montx: .byte 9,0,0,0 .rva full_handler .rva .Lord_mulx_body,.Lord_mulx_epilogue # HandlerData[] .long 48,0 .LSEH_info_ecp_nistz256_ord_sqr_montx: .byte 9,0,0,0 .rva full_handler .rva .Lord_sqrx_body,.Lord_sqrx_epilogue # HandlerData[] .long 48,0 ___ $code.=<<___; .LSEH_info_ecp_nistz256_to_mont: .byte 9,0,0,0 .rva full_handler .rva .Lmul_body,.Lmul_epilogue # HandlerData[] .long 48,0 .LSEH_info_ecp_nistz256_mul_mont: .byte 9,0,0,0 .rva full_handler .rva .Lmul_body,.Lmul_epilogue # HandlerData[] .long 48,0 .LSEH_info_ecp_nistz256_sqr_mont: .byte 9,0,0,0 .rva full_handler .rva .Lsqr_body,.Lsqr_epilogue # HandlerData[] .long 48,0 .LSEH_info_ecp_nistz256_from_mont: .byte 9,0,0,0 .rva short_handler .rva .Lfrom_body,.Lfrom_epilogue # HandlerData[] .LSEH_info_ecp_nistz256_gather_wX: .byte 0x01,0x33,0x16,0x00 .byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15 .byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14 .byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13 .byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12 .byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11 .byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 .byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 .byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 .byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8 .align 8 ___ $code.=<<___ if ($avx>1); .LSEH_info_ecp_nistz256_avx2_gather_wX: .byte 0x01,0x36,0x17,0x0b .byte 0x36,0xf8,0x09,0x00 # vmovaps 0x90(rsp),xmm15 .byte 0x31,0xe8,0x08,0x00 # vmovaps 0x80(rsp),xmm14 .byte 0x2c,0xd8,0x07,0x00 # vmovaps 0x70(rsp),xmm13 .byte 0x27,0xc8,0x06,0x00 # vmovaps 0x60(rsp),xmm12 .byte 0x22,0xb8,0x05,0x00 # vmovaps 0x50(rsp),xmm11 .byte 0x1d,0xa8,0x04,0x00 # vmovaps 0x40(rsp),xmm10 .byte 0x18,0x98,0x03,0x00 # vmovaps 0x30(rsp),xmm9 .byte 0x13,0x88,0x02,0x00 # vmovaps 0x20(rsp),xmm8 .byte 0x0e,0x78,0x01,0x00 # vmovaps 0x10(rsp),xmm7 .byte 0x09,0x68,0x00,0x00 # vmovaps 0x00(rsp),xmm6 .byte 0x04,0x01,0x15,0x00 # sub rsp,0xa8 .byte 0x00,0xb3,0x00,0x00 # set_frame r11 .align 8 ___ $code.=<<___; .LSEH_info_ecp_nistz256_point_double: .byte 9,0,0,0 .rva full_handler .rva .Lpoint_doubleq_body,.Lpoint_doubleq_epilogue # HandlerData[] .long 32*5+56,0 .LSEH_info_ecp_nistz256_point_add: .byte 9,0,0,0 .rva full_handler .rva .Lpoint_addq_body,.Lpoint_addq_epilogue # HandlerData[] .long 32*18+56,0 .LSEH_info_ecp_nistz256_point_add_affine: .byte 9,0,0,0 .rva full_handler .rva .Ladd_affineq_body,.Ladd_affineq_epilogue # HandlerData[] .long 32*15+56,0 ___ $code.=<<___ if ($addx); .align 8 .LSEH_info_ecp_nistz256_point_doublex: .byte 9,0,0,0 .rva full_handler .rva .Lpoint_doublex_body,.Lpoint_doublex_epilogue # HandlerData[] .long 32*5+56,0 .LSEH_info_ecp_nistz256_point_addx: .byte 9,0,0,0 .rva full_handler .rva .Lpoint_addx_body,.Lpoint_addx_epilogue # HandlerData[] .long 32*18+56,0 .LSEH_info_ecp_nistz256_point_add_affinex: .byte 9,0,0,0 .rva full_handler .rva .Ladd_affinex_body,.Ladd_affinex_epilogue # HandlerData[] .long 32*15+56,0 ___ } ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; die "insane number of elements" if ($#arr != 64*16*37-1); print <<___; .text .globl ecp_nistz256_precomputed .type ecp_nistz256_precomputed,\@object .align 4096 ecp_nistz256_precomputed: ___ while (@line=splice(@arr,0,16)) { print ".long\t",join(',',map { sprintf "0x%08x",$_} @line),"\n"; } print <<___; .size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/ec/asm/x25519-ppc64.pl000077500000000000000000000420021364063235100202020ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # X25519 lower-level primitives for PPC64. # # July 2018. # # Base 2^64 is faster than base 2^51 on pre-POWER8, most notably ~15% # faster on PPC970/G5. POWER8 on the other hand seems to trip on own # shoelaces when handling longer carry chains. As base 2^51 has just # single-carry pairs, it's 25% faster than base 2^64. Since PPC970 is # pretty old, base 2^64 implementation is not engaged. Comparison to # compiler-generated code is complicated by the fact that not all # compilers support 128-bit integers. When compiler doesn't, like xlc, # this module delivers more than 2x improvement, and when it does, # from 12% to 30% improvement was measured... $flavour = shift; while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; my $sp = "r1"; my ($rp,$ap,$bp) = map("r$_",3..5); ####################################################### base 2^64 if (0) { my ($bi,$a0,$a1,$a2,$a3,$t0,$t1, $t2,$t3, $acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7) = map("r$_",(6..12,22..31)); my $zero = "r0"; my $FRAME = 16*8; $code.=<<___; .text .globl x25519_fe64_mul .type x25519_fe64_mul,\@function .align 5 x25519_fe64_mul: stdu $sp,-$FRAME($sp) std r22,`$FRAME-8*10`($sp) std r23,`$FRAME-8*9`($sp) std r24,`$FRAME-8*8`($sp) std r25,`$FRAME-8*7`($sp) std r26,`$FRAME-8*6`($sp) std r27,`$FRAME-8*5`($sp) std r28,`$FRAME-8*4`($sp) std r29,`$FRAME-8*3`($sp) std r30,`$FRAME-8*2`($sp) std r31,`$FRAME-8*1`($sp) ld $bi,0($bp) ld $a0,0($ap) xor $zero,$zero,$zero ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) mulld $acc0,$a0,$bi # a[0]*b[0] mulhdu $t0,$a0,$bi mulld $acc1,$a1,$bi # a[1]*b[0] mulhdu $t1,$a1,$bi mulld $acc2,$a2,$bi # a[2]*b[0] mulhdu $t2,$a2,$bi mulld $acc3,$a3,$bi # a[3]*b[0] mulhdu $t3,$a3,$bi ___ for(my @acc=($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7), my $i=1; $i<4; shift(@acc), $i++) { my $acc4 = $i==1? $zero : @acc[4]; $code.=<<___; ld $bi,`8*$i`($bp) addc @acc[1],@acc[1],$t0 # accumulate high parts mulld $t0,$a0,$bi adde @acc[2],@acc[2],$t1 mulld $t1,$a1,$bi adde @acc[3],@acc[3],$t2 mulld $t2,$a2,$bi adde @acc[4],$acc4,$t3 mulld $t3,$a3,$bi addc @acc[1],@acc[1],$t0 # accumulate low parts mulhdu $t0,$a0,$bi adde @acc[2],@acc[2],$t1 mulhdu $t1,$a1,$bi adde @acc[3],@acc[3],$t2 mulhdu $t2,$a2,$bi adde @acc[4],@acc[4],$t3 mulhdu $t3,$a3,$bi adde @acc[5],$zero,$zero ___ } $code.=<<___; li $bi,38 addc $acc4,$acc4,$t0 mulld $t0,$acc4,$bi adde $acc5,$acc5,$t1 mulld $t1,$acc5,$bi adde $acc6,$acc6,$t2 mulld $t2,$acc6,$bi adde $acc7,$acc7,$t3 mulld $t3,$acc7,$bi addc $acc0,$acc0,$t0 mulhdu $t0,$acc4,$bi adde $acc1,$acc1,$t1 mulhdu $t1,$acc5,$bi adde $acc2,$acc2,$t2 mulhdu $t2,$acc6,$bi adde $acc3,$acc3,$t3 mulhdu $t3,$acc7,$bi adde $acc4,$zero,$zero addc $acc1,$acc1,$t0 adde $acc2,$acc2,$t1 adde $acc3,$acc3,$t2 adde $acc4,$acc4,$t3 mulld $acc4,$acc4,$bi addc $acc0,$acc0,$acc4 addze $acc1,$acc1 addze $acc2,$acc2 addze $acc3,$acc3 subfe $acc4,$acc4,$acc4 # carry -> ~mask std $acc1,8($rp) andc $acc4,$bi,$acc4 std $acc2,16($rp) add $acc0,$acc0,$acc4 std $acc3,24($rp) std $acc0,0($rp) ld r22,`$FRAME-8*10`($sp) ld r23,`$FRAME-8*9`($sp) ld r24,`$FRAME-8*8`($sp) ld r25,`$FRAME-8*7`($sp) ld r26,`$FRAME-8*6`($sp) ld r27,`$FRAME-8*5`($sp) ld r28,`$FRAME-8*4`($sp) ld r29,`$FRAME-8*3`($sp) ld r30,`$FRAME-8*2`($sp) ld r31,`$FRAME-8*1`($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,0,0x80,10,3,0 .long 0 .size x25519_fe64_mul,.-x25519_fe64_mul .globl x25519_fe64_sqr .type x25519_fe64_sqr,\@function .align 5 x25519_fe64_sqr: stdu $sp,-$FRAME($sp) std r22,`$FRAME-8*10`($sp) std r23,`$FRAME-8*9`($sp) std r24,`$FRAME-8*8`($sp) std r25,`$FRAME-8*7`($sp) std r26,`$FRAME-8*6`($sp) std r27,`$FRAME-8*5`($sp) std r28,`$FRAME-8*4`($sp) std r29,`$FRAME-8*3`($sp) std r30,`$FRAME-8*2`($sp) std r31,`$FRAME-8*1`($sp) ld $a0,0($ap) xor $zero,$zero,$zero ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) ################################ # | | | | | |a1*a0| | # | | | | |a2*a0| | | # | |a3*a2|a3*a0| | | | # | | | |a2*a1| | | | # | | |a3*a1| | | | | # *| | | | | | | | 2| # +|a3*a3|a2*a2|a1*a1|a0*a0| # |--+--+--+--+--+--+--+--| # |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx # # "can't overflow" below mark carrying into high part of # multiplication result, which can't overflow, because it # can never be all ones. mulld $acc1,$a1,$a0 # a[1]*a[0] mulhdu $t1,$a1,$a0 mulld $acc2,$a2,$a0 # a[2]*a[0] mulhdu $t2,$a2,$a0 mulld $acc3,$a3,$a0 # a[3]*a[0] mulhdu $acc4,$a3,$a0 addc $acc2,$acc2,$t1 # accumulate high parts of multiplication mulld $t0,$a2,$a1 # a[2]*a[1] mulhdu $t1,$a2,$a1 adde $acc3,$acc3,$t2 mulld $t2,$a3,$a1 # a[3]*a[1] mulhdu $t3,$a3,$a1 addze $acc4,$acc4 # can't overflow mulld $acc5,$a3,$a2 # a[3]*a[2] mulhdu $acc6,$a3,$a2 addc $t1,$t1,$t2 # accumulate high parts of multiplication mulld $acc0,$a0,$a0 # a[0]*a[0] addze $t2,$t3 # can't overflow addc $acc3,$acc3,$t0 # accumulate low parts of multiplication mulhdu $a0,$a0,$a0 adde $acc4,$acc4,$t1 mulld $t1,$a1,$a1 # a[1]*a[1] adde $acc5,$acc5,$t2 mulhdu $a1,$a1,$a1 addze $acc6,$acc6 # can't overflow addc $acc1,$acc1,$acc1 # acc[1-6]*=2 mulld $t2,$a2,$a2 # a[2]*a[2] adde $acc2,$acc2,$acc2 mulhdu $a2,$a2,$a2 adde $acc3,$acc3,$acc3 mulld $t3,$a3,$a3 # a[3]*a[3] adde $acc4,$acc4,$acc4 mulhdu $a3,$a3,$a3 adde $acc5,$acc5,$acc5 adde $acc6,$acc6,$acc6 addze $acc7,$zero addc $acc1,$acc1,$a0 # +a[i]*a[i] li $bi,38 adde $acc2,$acc2,$t1 adde $acc3,$acc3,$a1 adde $acc4,$acc4,$t2 adde $acc5,$acc5,$a2 adde $acc6,$acc6,$t3 adde $acc7,$acc7,$a3 mulld $t0,$acc4,$bi mulld $t1,$acc5,$bi mulld $t2,$acc6,$bi mulld $t3,$acc7,$bi addc $acc0,$acc0,$t0 mulhdu $t0,$acc4,$bi adde $acc1,$acc1,$t1 mulhdu $t1,$acc5,$bi adde $acc2,$acc2,$t2 mulhdu $t2,$acc6,$bi adde $acc3,$acc3,$t3 mulhdu $t3,$acc7,$bi addze $acc4,$zero addc $acc1,$acc1,$t0 adde $acc2,$acc2,$t1 adde $acc3,$acc3,$t2 adde $acc4,$acc4,$t3 mulld $acc4,$acc4,$bi addc $acc0,$acc0,$acc4 addze $acc1,$acc1 addze $acc2,$acc2 addze $acc3,$acc3 subfe $acc4,$acc4,$acc4 # carry -> ~mask std $acc1,8($rp) andc $acc4,$bi,$acc4 std $acc2,16($rp) add $acc0,$acc0,$acc4 std $acc3,24($rp) std $acc0,0($rp) ld r22,`$FRAME-8*10`($sp) ld r23,`$FRAME-8*9`($sp) ld r24,`$FRAME-8*8`($sp) ld r25,`$FRAME-8*7`($sp) ld r26,`$FRAME-8*6`($sp) ld r27,`$FRAME-8*5`($sp) ld r28,`$FRAME-8*4`($sp) ld r29,`$FRAME-8*3`($sp) ld r30,`$FRAME-8*2`($sp) ld r31,`$FRAME-8*1`($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,0,0x80,10,2,0 .long 0 .size x25519_fe64_sqr,.-x25519_fe64_sqr .globl x25519_fe64_mul121666 .type x25519_fe64_mul121666,\@function .align 5 x25519_fe64_mul121666: lis $bi,`65536>>16` ori $bi,$bi,`121666-65536` ld $t0,0($ap) ld $t1,8($ap) ld $bp,16($ap) ld $ap,24($ap) mulld $a0,$t0,$bi mulhdu $t0,$t0,$bi mulld $a1,$t1,$bi mulhdu $t1,$t1,$bi mulld $a2,$bp,$bi mulhdu $bp,$bp,$bi mulld $a3,$ap,$bi mulhdu $ap,$ap,$bi addc $a1,$a1,$t0 adde $a2,$a2,$t1 adde $a3,$a3,$bp addze $ap, $ap mulli $ap,$ap,38 addc $a0,$a0,$ap addze $a1,$a1 addze $a2,$a2 addze $a3,$a3 subfe $t1,$t1,$t1 # carry -> ~mask std $a1,8($rp) andc $t0,$t0,$t1 std $a2,16($rp) add $a0,$a0,$t0 std $a3,24($rp) std $a0,0($rp) blr .long 0 .byte 0,12,0x14,0,0,0,2,0 .long 0 .size x25519_fe64_mul121666,.-x25519_fe64_mul121666 .globl x25519_fe64_add .type x25519_fe64_add,\@function .align 5 x25519_fe64_add: ld $a0,0($ap) ld $t0,0($bp) ld $a1,8($ap) ld $t1,8($bp) ld $a2,16($ap) ld $bi,16($bp) ld $a3,24($ap) ld $bp,24($bp) addc $a0,$a0,$t0 adde $a1,$a1,$t1 adde $a2,$a2,$bi adde $a3,$a3,$bp li $t0,38 subfe $t1,$t1,$t1 # carry -> ~mask andc $t1,$t0,$t1 addc $a0,$a0,$t1 addze $a1,$a1 addze $a2,$a2 addze $a3,$a3 subfe $t1,$t1,$t1 # carry -> ~mask std $a1,8($rp) andc $t0,$t0,$t1 std $a2,16($rp) add $a0,$a0,$t0 std $a3,24($rp) std $a0,0($rp) blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size x25519_fe64_add,.-x25519_fe64_add .globl x25519_fe64_sub .type x25519_fe64_sub,\@function .align 5 x25519_fe64_sub: ld $a0,0($ap) ld $t0,0($bp) ld $a1,8($ap) ld $t1,8($bp) ld $a2,16($ap) ld $bi,16($bp) ld $a3,24($ap) ld $bp,24($bp) subfc $a0,$t0,$a0 subfe $a1,$t1,$a1 subfe $a2,$bi,$a2 subfe $a3,$bp,$a3 li $t0,38 subfe $t1,$t1,$t1 # borrow -> mask xor $zero,$zero,$zero and $t1,$t0,$t1 subfc $a0,$t1,$a0 subfe $a1,$zero,$a1 subfe $a2,$zero,$a2 subfe $a3,$zero,$a3 subfe $t1,$t1,$t1 # borrow -> mask std $a1,8($rp) and $t0,$t0,$t1 std $a2,16($rp) subf $a0,$t0,$a0 std $a3,24($rp) std $a0,0($rp) blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .long 0 .size x25519_fe64_sub,.-x25519_fe64_sub .globl x25519_fe64_tobytes .type x25519_fe64_tobytes,\@function .align 5 x25519_fe64_tobytes: ld $a3,24($ap) ld $a0,0($ap) ld $a1,8($ap) ld $a2,16($ap) sradi $t0,$a3,63 # most significant bit -> mask li $t1,19 and $t0,$t0,$t1 sldi $a3,$a3,1 add $t0,$t0,$t1 # compare to modulus in the same go srdi $a3,$a3,1 # most significant bit cleared addc $a0,$a0,$t0 addze $a1,$a1 addze $a2,$a2 addze $a3,$a3 xor $zero,$zero,$zero sradi $t0,$a3,63 # most significant bit -> mask sldi $a3,$a3,1 andc $t0,$t1,$t0 srdi $a3,$a3,1 # most significant bit cleared subi $rp,$rp,1 subfc $a0,$t0,$a0 subfe $a1,$zero,$a1 subfe $a2,$zero,$a2 subfe $a3,$zero,$a3 ___ for (my @a=($a0,$a1,$a2,$a3), my $i=0; $i<4; shift(@a), $i++) { $code.=<<___; srdi $t0,@a[0],8 stbu @a[0],1($rp) srdi @a[0],@a[0],16 stbu $t0,1($rp) srdi $t0,@a[0],8 stbu @a[0],1($rp) srdi @a[0],@a[0],16 stbu $t0,1($rp) srdi $t0,@a[0],8 stbu @a[0],1($rp) srdi @a[0],@a[0],16 stbu $t0,1($rp) srdi $t0,@a[0],8 stbu @a[0],1($rp) stbu $t0,1($rp) ___ } $code.=<<___; blr .long 0 .byte 0,12,0x14,0,0,0,2,0 .long 0 .size x25519_fe64_tobytes,.-x25519_fe64_tobytes ___ } ####################################################### base 2^51 { my ($bi,$a0,$a1,$a2,$a3,$a4,$t0, $t1, $h0lo,$h0hi,$h1lo,$h1hi,$h2lo,$h2hi,$h3lo,$h3hi,$h4lo,$h4hi) = map("r$_",(6..12,21..31)); my $mask = "r0"; my $FRAME = 18*8; $code.=<<___; .text .globl x25519_fe51_mul .type x25519_fe51_mul,\@function .align 5 x25519_fe51_mul: stdu $sp,-$FRAME($sp) std r21,`$FRAME-8*11`($sp) std r22,`$FRAME-8*10`($sp) std r23,`$FRAME-8*9`($sp) std r24,`$FRAME-8*8`($sp) std r25,`$FRAME-8*7`($sp) std r26,`$FRAME-8*6`($sp) std r27,`$FRAME-8*5`($sp) std r28,`$FRAME-8*4`($sp) std r29,`$FRAME-8*3`($sp) std r30,`$FRAME-8*2`($sp) std r31,`$FRAME-8*1`($sp) ld $bi,0($bp) ld $a0,0($ap) ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) ld $a4,32($ap) mulld $h0lo,$a0,$bi # a[0]*b[0] mulhdu $h0hi,$a0,$bi mulld $h1lo,$a1,$bi # a[1]*b[0] mulhdu $h1hi,$a1,$bi mulld $h4lo,$a4,$bi # a[4]*b[0] mulhdu $h4hi,$a4,$bi ld $ap,8($bp) mulli $a4,$a4,19 mulld $h2lo,$a2,$bi # a[2]*b[0] mulhdu $h2hi,$a2,$bi mulld $h3lo,$a3,$bi # a[3]*b[0] mulhdu $h3hi,$a3,$bi ___ for(my @a=($a0,$a1,$a2,$a3,$a4), my $i=1; $i<4; $i++) { ($ap,$bi) = ($bi,$ap); $code.=<<___; mulld $t0,@a[4],$bi mulhdu $t1,@a[4],$bi addc $h0lo,$h0lo,$t0 adde $h0hi,$h0hi,$t1 mulld $t0,@a[0],$bi mulhdu $t1,@a[0],$bi addc $h1lo,$h1lo,$t0 adde $h1hi,$h1hi,$t1 mulld $t0,@a[3],$bi mulhdu $t1,@a[3],$bi ld $ap,`8*($i+1)`($bp) mulli @a[3],@a[3],19 addc $h4lo,$h4lo,$t0 adde $h4hi,$h4hi,$t1 mulld $t0,@a[1],$bi mulhdu $t1,@a[1],$bi addc $h2lo,$h2lo,$t0 adde $h2hi,$h2hi,$t1 mulld $t0,@a[2],$bi mulhdu $t1,@a[2],$bi addc $h3lo,$h3lo,$t0 adde $h3hi,$h3hi,$t1 ___ unshift(@a,pop(@a)); } ($ap,$bi) = ($bi,$ap); $code.=<<___; mulld $t0,$a1,$bi mulhdu $t1,$a1,$bi addc $h0lo,$h0lo,$t0 adde $h0hi,$h0hi,$t1 mulld $t0,$a2,$bi mulhdu $t1,$a2,$bi addc $h1lo,$h1lo,$t0 adde $h1hi,$h1hi,$t1 mulld $t0,$a3,$bi mulhdu $t1,$a3,$bi addc $h2lo,$h2lo,$t0 adde $h2hi,$h2hi,$t1 mulld $t0,$a4,$bi mulhdu $t1,$a4,$bi addc $h3lo,$h3lo,$t0 adde $h3hi,$h3hi,$t1 mulld $t0,$a0,$bi mulhdu $t1,$a0,$bi addc $h4lo,$h4lo,$t0 adde $h4hi,$h4hi,$t1 .Lfe51_reduce: li $mask,-1 srdi $mask,$mask,13 # 0x7ffffffffffff srdi $t0,$h2lo,51 and $a2,$h2lo,$mask insrdi $t0,$h2hi,51,0 # h2>>51 srdi $t1,$h0lo,51 and $a0,$h0lo,$mask insrdi $t1,$h0hi,51,0 # h0>>51 addc $h3lo,$h3lo,$t0 addze $h3hi,$h3hi addc $h1lo,$h1lo,$t1 addze $h1hi,$h1hi srdi $t0,$h3lo,51 and $a3,$h3lo,$mask insrdi $t0,$h3hi,51,0 # h3>>51 srdi $t1,$h1lo,51 and $a1,$h1lo,$mask insrdi $t1,$h1hi,51,0 # h1>>51 addc $h4lo,$h4lo,$t0 addze $h4hi,$h4hi add $a2,$a2,$t1 srdi $t0,$h4lo,51 and $a4,$h4lo,$mask insrdi $t0,$h4hi,51,0 mulli $t0,$t0,19 # (h4 >> 51) * 19 add $a0,$a0,$t0 srdi $t1,$a2,51 and $a2,$a2,$mask add $a3,$a3,$t1 srdi $t0,$a0,51 and $a0,$a0,$mask add $a1,$a1,$t0 std $a2,16($rp) std $a3,24($rp) std $a4,32($rp) std $a0,0($rp) std $a1,8($rp) ld r21,`$FRAME-8*11`($sp) ld r22,`$FRAME-8*10`($sp) ld r23,`$FRAME-8*9`($sp) ld r24,`$FRAME-8*8`($sp) ld r25,`$FRAME-8*7`($sp) ld r26,`$FRAME-8*6`($sp) ld r27,`$FRAME-8*5`($sp) ld r28,`$FRAME-8*4`($sp) ld r29,`$FRAME-8*3`($sp) ld r30,`$FRAME-8*2`($sp) ld r31,`$FRAME-8*1`($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,0,0x80,11,3,0 .long 0 .size x25519_fe51_mul,.-x25519_fe51_mul ___ { my ($a0,$a1,$a2,$a3,$a4,$t0,$t1) = ($a0,$a1,$a2,$a3,$a4,$t0,$t1); $code.=<<___; .globl x25519_fe51_sqr .type x25519_fe51_sqr,\@function .align 5 x25519_fe51_sqr: stdu $sp,-$FRAME($sp) std r21,`$FRAME-8*11`($sp) std r22,`$FRAME-8*10`($sp) std r23,`$FRAME-8*9`($sp) std r24,`$FRAME-8*8`($sp) std r25,`$FRAME-8*7`($sp) std r26,`$FRAME-8*6`($sp) std r27,`$FRAME-8*5`($sp) std r28,`$FRAME-8*4`($sp) std r29,`$FRAME-8*3`($sp) std r30,`$FRAME-8*2`($sp) std r31,`$FRAME-8*1`($sp) ld $a0,0($ap) ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) ld $a4,32($ap) add $bi,$a0,$a0 # a[0]*2 mulli $t1,$a4,19 # a[4]*19 mulld $h0lo,$a0,$a0 mulhdu $h0hi,$a0,$a0 mulld $h1lo,$a1,$bi mulhdu $h1hi,$a1,$bi mulld $h2lo,$a2,$bi mulhdu $h2hi,$a2,$bi mulld $h3lo,$a3,$bi mulhdu $h3hi,$a3,$bi mulld $h4lo,$a4,$bi mulhdu $h4hi,$a4,$bi add $bi,$a1,$a1 # a[1]*2 ___ ($a4,$t1) = ($t1,$a4); $code.=<<___; mulld $t0,$t1,$a4 mulhdu $t1,$t1,$a4 addc $h3lo,$h3lo,$t0 adde $h3hi,$h3hi,$t1 mulli $bp,$a3,19 # a[3]*19 mulld $t0,$a1,$a1 mulhdu $t1,$a1,$a1 addc $h2lo,$h2lo,$t0 adde $h2hi,$h2hi,$t1 mulld $t0,$a2,$bi mulhdu $t1,$a2,$bi addc $h3lo,$h3lo,$t0 adde $h3hi,$h3hi,$t1 mulld $t0,$a3,$bi mulhdu $t1,$a3,$bi addc $h4lo,$h4lo,$t0 adde $h4hi,$h4hi,$t1 mulld $t0,$a4,$bi mulhdu $t1,$a4,$bi add $bi,$a3,$a3 # a[3]*2 addc $h0lo,$h0lo,$t0 adde $h0hi,$h0hi,$t1 ___ ($a3,$t1) = ($bp,$a3); $code.=<<___; mulld $t0,$t1,$a3 mulhdu $t1,$t1,$a3 addc $h1lo,$h1lo,$t0 adde $h1hi,$h1hi,$t1 mulld $t0,$bi,$a4 mulhdu $t1,$bi,$a4 add $bi,$a2,$a2 # a[2]*2 addc $h2lo,$h2lo,$t0 adde $h2hi,$h2hi,$t1 mulld $t0,$a2,$a2 mulhdu $t1,$a2,$a2 addc $h4lo,$h4lo,$t0 adde $h4hi,$h4hi,$t1 mulld $t0,$a3,$bi mulhdu $t1,$a3,$bi addc $h0lo,$h0lo,$t0 adde $h0hi,$h0hi,$t1 mulld $t0,$a4,$bi mulhdu $t1,$a4,$bi addc $h1lo,$h1lo,$t0 adde $h1hi,$h1hi,$t1 b .Lfe51_reduce .long 0 .byte 0,12,4,0,0x80,11,2,0 .long 0 .size x25519_fe51_sqr,.-x25519_fe51_sqr ___ } $code.=<<___; .globl x25519_fe51_mul121666 .type x25519_fe51_mul121666,\@function .align 5 x25519_fe51_mul121666: stdu $sp,-$FRAME($sp) std r21,`$FRAME-8*11`($sp) std r22,`$FRAME-8*10`($sp) std r23,`$FRAME-8*9`($sp) std r24,`$FRAME-8*8`($sp) std r25,`$FRAME-8*7`($sp) std r26,`$FRAME-8*6`($sp) std r27,`$FRAME-8*5`($sp) std r28,`$FRAME-8*4`($sp) std r29,`$FRAME-8*3`($sp) std r30,`$FRAME-8*2`($sp) std r31,`$FRAME-8*1`($sp) lis $bi,`65536>>16` ori $bi,$bi,`121666-65536` ld $a0,0($ap) ld $a1,8($ap) ld $a2,16($ap) ld $a3,24($ap) ld $a4,32($ap) mulld $h0lo,$a0,$bi # a[0]*121666 mulhdu $h0hi,$a0,$bi mulld $h1lo,$a1,$bi # a[1]*121666 mulhdu $h1hi,$a1,$bi mulld $h2lo,$a2,$bi # a[2]*121666 mulhdu $h2hi,$a2,$bi mulld $h3lo,$a3,$bi # a[3]*121666 mulhdu $h3hi,$a3,$bi mulld $h4lo,$a4,$bi # a[4]*121666 mulhdu $h4hi,$a4,$bi b .Lfe51_reduce .long 0 .byte 0,12,4,0,0x80,11,2,0 .long 0 .size x25519_fe51_mul121666,.-x25519_fe51_mul121666 ___ } $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/ec/asm/x25519-x86_64.pl000077500000000000000000000604761364063235100202230ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # X25519 lower-level primitives for x86_64. # # February 2018. # # This module implements radix 2^51 multiplication and squaring, and # radix 2^64 multiplication, squaring, addition, subtraction and final # reduction. Latter radix is used on ADCX/ADOX-capable processors such # as Broadwell. On related note one should mention that there are # vector implementations that provide significantly better performance # on some processors(*), but they are large and overly complex. Which # in combination with them being effectively processor-specific makes # the undertaking hard to justify. The goal for this implementation # is rather versatility and simplicity [and ultimately formal # verification]. # # (*) For example sandy2x should provide ~30% improvement on Sandy # Bridge, but only nominal ~5% on Haswell [and big loss on # Broadwell and successors]. # ###################################################################### # Improvement coefficients: # # amd64-51(*) gcc-5.x(**) # # P4 +22% +40% # Sandy Bridge -3% +11% # Haswell -1% +13% # Broadwell(***) +30% +35% # Skylake(***) +33% +47% # Silvermont +20% +26% # Goldmont +40% +50% # Bulldozer +20% +9% # Ryzen(***) +43% +40% # VIA +170% +120% # # (*) amd64-51 is popular assembly implementation with 2^51 radix, # only multiplication and squaring subroutines were linked # for comparison, but not complete ladder step; gain on most # processors is because this module refrains from shld, and # minor regression on others is because this does result in # higher instruction count; # (**) compiler is free to inline functions, in assembly one would # need to implement ladder step to do that, and it will improve # performance by several percent; # (***) ADCX/ADOX result for 2^64 radix, there is no corresponding # C implementation, so that comparison is always against # 2^51 radix; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $addx = ($ver>=3.03); } $code.=<<___; .text .globl x25519_fe51_mul .type x25519_fe51_mul,\@function,3 .align 32 x25519_fe51_mul: .cfi_startproc push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea -8*5(%rsp),%rsp .cfi_adjust_cfa_offset 40 .Lfe51_mul_body: mov 8*0(%rsi),%rax # f[0] mov 8*0(%rdx),%r11 # load g[0-4] mov 8*1(%rdx),%r12 mov 8*2(%rdx),%r13 mov 8*3(%rdx),%rbp mov 8*4(%rdx),%r14 mov %rdi,8*4(%rsp) # offload 1st argument mov %rax,%rdi mulq %r11 # f[0]*g[0] mov %r11,8*0(%rsp) # offload g[0] mov %rax,%rbx # %rbx:%rcx = h0 mov %rdi,%rax mov %rdx,%rcx mulq %r12 # f[0]*g[1] mov %r12,8*1(%rsp) # offload g[1] mov %rax,%r8 # %r8:%r9 = h1 mov %rdi,%rax lea (%r14,%r14,8),%r15 mov %rdx,%r9 mulq %r13 # f[0]*g[2] mov %r13,8*2(%rsp) # offload g[2] mov %rax,%r10 # %r10:%r11 = h2 mov %rdi,%rax lea (%r14,%r15,2),%rdi # g[4]*19 mov %rdx,%r11 mulq %rbp # f[0]*g[3] mov %rax,%r12 # %r12:%r13 = h3 mov 8*0(%rsi),%rax # f[0] mov %rdx,%r13 mulq %r14 # f[0]*g[4] mov %rax,%r14 # %r14:%r15 = h4 mov 8*1(%rsi),%rax # f[1] mov %rdx,%r15 mulq %rdi # f[1]*g[4]*19 add %rax,%rbx mov 8*2(%rsi),%rax # f[2] adc %rdx,%rcx mulq %rdi # f[2]*g[4]*19 add %rax,%r8 mov 8*3(%rsi),%rax # f[3] adc %rdx,%r9 mulq %rdi # f[3]*g[4]*19 add %rax,%r10 mov 8*4(%rsi),%rax # f[4] adc %rdx,%r11 mulq %rdi # f[4]*g[4]*19 imulq \$19,%rbp,%rdi # g[3]*19 add %rax,%r12 mov 8*1(%rsi),%rax # f[1] adc %rdx,%r13 mulq %rbp # f[1]*g[3] mov 8*2(%rsp),%rbp # g[2] add %rax,%r14 mov 8*2(%rsi),%rax # f[2] adc %rdx,%r15 mulq %rdi # f[2]*g[3]*19 add %rax,%rbx mov 8*3(%rsi),%rax # f[3] adc %rdx,%rcx mulq %rdi # f[3]*g[3]*19 add %rax,%r8 mov 8*4(%rsi),%rax # f[4] adc %rdx,%r9 mulq %rdi # f[4]*g[3]*19 imulq \$19,%rbp,%rdi # g[2]*19 add %rax,%r10 mov 8*1(%rsi),%rax # f[1] adc %rdx,%r11 mulq %rbp # f[1]*g[2] add %rax,%r12 mov 8*2(%rsi),%rax # f[2] adc %rdx,%r13 mulq %rbp # f[2]*g[2] mov 8*1(%rsp),%rbp # g[1] add %rax,%r14 mov 8*3(%rsi),%rax # f[3] adc %rdx,%r15 mulq %rdi # f[3]*g[2]*19 add %rax,%rbx mov 8*4(%rsi),%rax # f[3] adc %rdx,%rcx mulq %rdi # f[4]*g[2]*19 add %rax,%r8 mov 8*1(%rsi),%rax # f[1] adc %rdx,%r9 mulq %rbp # f[1]*g[1] imulq \$19,%rbp,%rdi add %rax,%r10 mov 8*2(%rsi),%rax # f[2] adc %rdx,%r11 mulq %rbp # f[2]*g[1] add %rax,%r12 mov 8*3(%rsi),%rax # f[3] adc %rdx,%r13 mulq %rbp # f[3]*g[1] mov 8*0(%rsp),%rbp # g[0] add %rax,%r14 mov 8*4(%rsi),%rax # f[4] adc %rdx,%r15 mulq %rdi # f[4]*g[1]*19 add %rax,%rbx mov 8*1(%rsi),%rax # f[1] adc %rdx,%rcx mul %rbp # f[1]*g[0] add %rax,%r8 mov 8*2(%rsi),%rax # f[2] adc %rdx,%r9 mul %rbp # f[2]*g[0] add %rax,%r10 mov 8*3(%rsi),%rax # f[3] adc %rdx,%r11 mul %rbp # f[3]*g[0] add %rax,%r12 mov 8*4(%rsi),%rax # f[4] adc %rdx,%r13 mulq %rbp # f[4]*g[0] add %rax,%r14 adc %rdx,%r15 mov 8*4(%rsp),%rdi # restore 1st argument jmp .Lreduce51 .Lfe51_mul_epilogue: .cfi_endproc .size x25519_fe51_mul,.-x25519_fe51_mul .globl x25519_fe51_sqr .type x25519_fe51_sqr,\@function,2 .align 32 x25519_fe51_sqr: .cfi_startproc push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea -8*5(%rsp),%rsp .cfi_adjust_cfa_offset 40 .Lfe51_sqr_body: mov 8*0(%rsi),%rax # g[0] mov 8*2(%rsi),%r15 # g[2] mov 8*4(%rsi),%rbp # g[4] mov %rdi,8*4(%rsp) # offload 1st argument lea (%rax,%rax),%r14 mulq %rax # g[0]*g[0] mov %rax,%rbx mov 8*1(%rsi),%rax # g[1] mov %rdx,%rcx mulq %r14 # 2*g[0]*g[1] mov %rax,%r8 mov %r15,%rax mov %r15,8*0(%rsp) # offload g[2] mov %rdx,%r9 mulq %r14 # 2*g[0]*g[2] mov %rax,%r10 mov 8*3(%rsi),%rax mov %rdx,%r11 imulq \$19,%rbp,%rdi # g[4]*19 mulq %r14 # 2*g[0]*g[3] mov %rax,%r12 mov %rbp,%rax mov %rdx,%r13 mulq %r14 # 2*g[0]*g[4] mov %rax,%r14 mov %rbp,%rax mov %rdx,%r15 mulq %rdi # g[4]*g[4]*19 add %rax,%r12 mov 8*1(%rsi),%rax # g[1] adc %rdx,%r13 mov 8*3(%rsi),%rsi # g[3] lea (%rax,%rax),%rbp mulq %rax # g[1]*g[1] add %rax,%r10 mov 8*0(%rsp),%rax # g[2] adc %rdx,%r11 mulq %rbp # 2*g[1]*g[2] add %rax,%r12 mov %rbp,%rax adc %rdx,%r13 mulq %rsi # 2*g[1]*g[3] add %rax,%r14 mov %rbp,%rax adc %rdx,%r15 imulq \$19,%rsi,%rbp # g[3]*19 mulq %rdi # 2*g[1]*g[4]*19 add %rax,%rbx lea (%rsi,%rsi),%rax adc %rdx,%rcx mulq %rdi # 2*g[3]*g[4]*19 add %rax,%r10 mov %rsi,%rax adc %rdx,%r11 mulq %rbp # g[3]*g[3]*19 add %rax,%r8 mov 8*0(%rsp),%rax # g[2] adc %rdx,%r9 lea (%rax,%rax),%rsi mulq %rax # g[2]*g[2] add %rax,%r14 mov %rbp,%rax adc %rdx,%r15 mulq %rsi # 2*g[2]*g[3]*19 add %rax,%rbx mov %rsi,%rax adc %rdx,%rcx mulq %rdi # 2*g[2]*g[4]*19 add %rax,%r8 adc %rdx,%r9 mov 8*4(%rsp),%rdi # restore 1st argument jmp .Lreduce51 .align 32 .Lreduce51: mov \$0x7ffffffffffff,%rbp mov %r10,%rdx shr \$51,%r10 shl \$13,%r11 and %rbp,%rdx # %rdx = g2 = h2 & mask or %r10,%r11 # h2>>51 add %r11,%r12 adc \$0,%r13 # h3 += h2>>51 mov %rbx,%rax shr \$51,%rbx shl \$13,%rcx and %rbp,%rax # %rax = g0 = h0 & mask or %rbx,%rcx # h0>>51 add %rcx,%r8 # h1 += h0>>51 adc \$0,%r9 mov %r12,%rbx shr \$51,%r12 shl \$13,%r13 and %rbp,%rbx # %rbx = g3 = h3 & mask or %r12,%r13 # h3>>51 add %r13,%r14 # h4 += h3>>51 adc \$0,%r15 mov %r8,%rcx shr \$51,%r8 shl \$13,%r9 and %rbp,%rcx # %rcx = g1 = h1 & mask or %r8,%r9 add %r9,%rdx # g2 += h1>>51 mov %r14,%r10 shr \$51,%r14 shl \$13,%r15 and %rbp,%r10 # %r10 = g4 = h0 & mask or %r14,%r15 # h0>>51 lea (%r15,%r15,8),%r14 lea (%r15,%r14,2),%r15 add %r15,%rax # g0 += (h0>>51)*19 mov %rdx,%r8 and %rbp,%rdx # g2 &= mask shr \$51,%r8 add %r8,%rbx # g3 += g2>>51 mov %rax,%r9 and %rbp,%rax # g0 &= mask shr \$51,%r9 add %r9,%rcx # g1 += g0>>51 mov %rax,8*0(%rdi) # save the result mov %rcx,8*1(%rdi) mov %rdx,8*2(%rdi) mov %rbx,8*3(%rdi) mov %r10,8*4(%rdi) mov 8*5(%rsp),%r15 .cfi_restore %r15 mov 8*6(%rsp),%r14 .cfi_restore %r14 mov 8*7(%rsp),%r13 .cfi_restore %r13 mov 8*8(%rsp),%r12 .cfi_restore %r12 mov 8*9(%rsp),%rbx .cfi_restore %rbx mov 8*10(%rsp),%rbp .cfi_restore %rbp lea 8*11(%rsp),%rsp .cfi_adjust_cfa_offset 88 .Lfe51_sqr_epilogue: ret .cfi_endproc .size x25519_fe51_sqr,.-x25519_fe51_sqr .globl x25519_fe51_mul121666 .type x25519_fe51_mul121666,\@function,2 .align 32 x25519_fe51_mul121666: .cfi_startproc push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea -8*5(%rsp),%rsp .cfi_adjust_cfa_offset 40 .Lfe51_mul121666_body: mov \$121666,%eax mulq 8*0(%rsi) mov %rax,%rbx # %rbx:%rcx = h0 mov \$121666,%eax mov %rdx,%rcx mulq 8*1(%rsi) mov %rax,%r8 # %r8:%r9 = h1 mov \$121666,%eax mov %rdx,%r9 mulq 8*2(%rsi) mov %rax,%r10 # %r10:%r11 = h2 mov \$121666,%eax mov %rdx,%r11 mulq 8*3(%rsi) mov %rax,%r12 # %r12:%r13 = h3 mov \$121666,%eax # f[0] mov %rdx,%r13 mulq 8*4(%rsi) mov %rax,%r14 # %r14:%r15 = h4 mov %rdx,%r15 jmp .Lreduce51 .Lfe51_mul121666_epilogue: .cfi_endproc .size x25519_fe51_mul121666,.-x25519_fe51_mul121666 ___ ######################################################################## # Base 2^64 subroutines modulo 2*(2^255-19) # if ($addx) { my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7) = map("%r$_",(8..15)); $code.=<<___; .extern OPENSSL_ia32cap_P .globl x25519_fe64_eligible .type x25519_fe64_eligible,\@abi-omnipotent .align 32 x25519_fe64_eligible: .cfi_startproc mov OPENSSL_ia32cap_P+8(%rip),%ecx xor %eax,%eax and \$0x80100,%ecx cmp \$0x80100,%ecx cmove %ecx,%eax ret .cfi_endproc .size x25519_fe64_eligible,.-x25519_fe64_eligible .globl x25519_fe64_mul .type x25519_fe64_mul,\@function,3 .align 32 x25519_fe64_mul: .cfi_startproc push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 push %rdi # offload dst .cfi_push %rdi lea -8*2(%rsp),%rsp .cfi_adjust_cfa_offset 16 .Lfe64_mul_body: mov %rdx,%rax mov 8*0(%rdx),%rbp # b[0] mov 8*0(%rsi),%rdx # a[0] mov 8*1(%rax),%rcx # b[1] mov 8*2(%rax),$acc6 # b[2] mov 8*3(%rax),$acc7 # b[3] mulx %rbp,$acc0,%rax # a[0]*b[0] xor %edi,%edi # cf=0,of=0 mulx %rcx,$acc1,%rbx # a[0]*b[1] adcx %rax,$acc1 mulx $acc6,$acc2,%rax # a[0]*b[2] adcx %rbx,$acc2 mulx $acc7,$acc3,$acc4 # a[0]*b[3] mov 8*1(%rsi),%rdx # a[1] adcx %rax,$acc3 mov $acc6,(%rsp) # offload b[2] adcx %rdi,$acc4 # cf=0 mulx %rbp,%rax,%rbx # a[1]*b[0] adox %rax,$acc1 adcx %rbx,$acc2 mulx %rcx,%rax,%rbx # a[1]*b[1] adox %rax,$acc2 adcx %rbx,$acc3 mulx $acc6,%rax,%rbx # a[1]*b[2] adox %rax,$acc3 adcx %rbx,$acc4 mulx $acc7,%rax,$acc5 # a[1]*b[3] mov 8*2(%rsi),%rdx # a[2] adox %rax,$acc4 adcx %rdi,$acc5 # cf=0 adox %rdi,$acc5 # of=0 mulx %rbp,%rax,%rbx # a[2]*b[0] adcx %rax,$acc2 adox %rbx,$acc3 mulx %rcx,%rax,%rbx # a[2]*b[1] adcx %rax,$acc3 adox %rbx,$acc4 mulx $acc6,%rax,%rbx # a[2]*b[2] adcx %rax,$acc4 adox %rbx,$acc5 mulx $acc7,%rax,$acc6 # a[2]*b[3] mov 8*3(%rsi),%rdx # a[3] adcx %rax,$acc5 adox %rdi,$acc6 # of=0 adcx %rdi,$acc6 # cf=0 mulx %rbp,%rax,%rbx # a[3]*b[0] adox %rax,$acc3 adcx %rbx,$acc4 mulx %rcx,%rax,%rbx # a[3]*b[1] adox %rax,$acc4 adcx %rbx,$acc5 mulx (%rsp),%rax,%rbx # a[3]*b[2] adox %rax,$acc5 adcx %rbx,$acc6 mulx $acc7,%rax,$acc7 # a[3]*b[3] mov \$38,%edx adox %rax,$acc6 adcx %rdi,$acc7 # cf=0 adox %rdi,$acc7 # of=0 jmp .Lreduce64 .Lfe64_mul_epilogue: .cfi_endproc .size x25519_fe64_mul,.-x25519_fe64_mul .globl x25519_fe64_sqr .type x25519_fe64_sqr,\@function,2 .align 32 x25519_fe64_sqr: .cfi_startproc push %rbp .cfi_push %rbp push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 push %rdi # offload dst .cfi_push %rdi lea -8*2(%rsp),%rsp .cfi_adjust_cfa_offset 16 .Lfe64_sqr_body: mov 8*0(%rsi),%rdx # a[0] mov 8*1(%rsi),%rcx # a[1] mov 8*2(%rsi),%rbp # a[2] mov 8*3(%rsi),%rsi # a[3] ################################################################ mulx %rdx,$acc0,$acc7 # a[0]*a[0] mulx %rcx,$acc1,%rax # a[0]*a[1] xor %edi,%edi # cf=0,of=0 mulx %rbp,$acc2,%rbx # a[0]*a[2] adcx %rax,$acc2 mulx %rsi,$acc3,$acc4 # a[0]*a[3] mov %rcx,%rdx # a[1] adcx %rbx,$acc3 adcx %rdi,$acc4 # cf=0 ################################################################ mulx %rbp,%rax,%rbx # a[1]*a[2] adox %rax,$acc3 adcx %rbx,$acc4 mulx %rsi,%rax,$acc5 # a[1]*a[3] mov %rbp,%rdx # a[2] adox %rax,$acc4 adcx %rdi,$acc5 ################################################################ mulx %rsi,%rax,$acc6 # a[2]*a[3] mov %rcx,%rdx # a[1] adox %rax,$acc5 adcx %rdi,$acc6 # cf=0 adox %rdi,$acc6 # of=0 adcx $acc1,$acc1 # acc1:6<<1 adox $acc7,$acc1 adcx $acc2,$acc2 mulx %rdx,%rax,%rbx # a[1]*a[1] mov %rbp,%rdx # a[2] adcx $acc3,$acc3 adox %rax,$acc2 adcx $acc4,$acc4 adox %rbx,$acc3 mulx %rdx,%rax,%rbx # a[2]*a[2] mov %rsi,%rdx # a[3] adcx $acc5,$acc5 adox %rax,$acc4 adcx $acc6,$acc6 adox %rbx,$acc5 mulx %rdx,%rax,$acc7 # a[3]*a[3] mov \$38,%edx adox %rax,$acc6 adcx %rdi,$acc7 # cf=0 adox %rdi,$acc7 # of=0 jmp .Lreduce64 .align 32 .Lreduce64: mulx $acc4,%rax,%rbx adcx %rax,$acc0 adox %rbx,$acc1 mulx $acc5,%rax,%rbx adcx %rax,$acc1 adox %rbx,$acc2 mulx $acc6,%rax,%rbx adcx %rax,$acc2 adox %rbx,$acc3 mulx $acc7,%rax,$acc4 adcx %rax,$acc3 adox %rdi,$acc4 adcx %rdi,$acc4 mov 8*2(%rsp),%rdi # restore dst imulq %rdx,$acc4 add $acc4,$acc0 adc \$0,$acc1 adc \$0,$acc2 adc \$0,$acc3 sbb %rax,%rax # cf -> mask and \$38,%rax add %rax,$acc0 mov $acc1,8*1(%rdi) mov $acc2,8*2(%rdi) mov $acc3,8*3(%rdi) mov $acc0,8*0(%rdi) mov 8*3(%rsp),%r15 .cfi_restore %r15 mov 8*4(%rsp),%r14 .cfi_restore %r14 mov 8*5(%rsp),%r13 .cfi_restore %r13 mov 8*6(%rsp),%r12 .cfi_restore %r12 mov 8*7(%rsp),%rbx .cfi_restore %rbx mov 8*8(%rsp),%rbp .cfi_restore %rbp lea 8*9(%rsp),%rsp .cfi_adjust_cfa_offset 88 .Lfe64_sqr_epilogue: ret .cfi_endproc .size x25519_fe64_sqr,.-x25519_fe64_sqr .globl x25519_fe64_mul121666 .type x25519_fe64_mul121666,\@function,2 .align 32 x25519_fe64_mul121666: .Lfe64_mul121666_body: .cfi_startproc mov \$121666,%edx mulx 8*0(%rsi),$acc0,%rcx mulx 8*1(%rsi),$acc1,%rax add %rcx,$acc1 mulx 8*2(%rsi),$acc2,%rcx adc %rax,$acc2 mulx 8*3(%rsi),$acc3,%rax adc %rcx,$acc3 adc \$0,%rax imulq \$38,%rax,%rax add %rax,$acc0 adc \$0,$acc1 adc \$0,$acc2 adc \$0,$acc3 sbb %rax,%rax # cf -> mask and \$38,%rax add %rax,$acc0 mov $acc1,8*1(%rdi) mov $acc2,8*2(%rdi) mov $acc3,8*3(%rdi) mov $acc0,8*0(%rdi) .Lfe64_mul121666_epilogue: ret .cfi_endproc .size x25519_fe64_mul121666,.-x25519_fe64_mul121666 .globl x25519_fe64_add .type x25519_fe64_add,\@function,3 .align 32 x25519_fe64_add: .Lfe64_add_body: .cfi_startproc mov 8*0(%rsi),$acc0 mov 8*1(%rsi),$acc1 mov 8*2(%rsi),$acc2 mov 8*3(%rsi),$acc3 add 8*0(%rdx),$acc0 adc 8*1(%rdx),$acc1 adc 8*2(%rdx),$acc2 adc 8*3(%rdx),$acc3 sbb %rax,%rax # cf -> mask and \$38,%rax add %rax,$acc0 adc \$0,$acc1 adc \$0,$acc2 mov $acc1,8*1(%rdi) adc \$0,$acc3 mov $acc2,8*2(%rdi) sbb %rax,%rax # cf -> mask mov $acc3,8*3(%rdi) and \$38,%rax add %rax,$acc0 mov $acc0,8*0(%rdi) .Lfe64_add_epilogue: ret .cfi_endproc .size x25519_fe64_add,.-x25519_fe64_add .globl x25519_fe64_sub .type x25519_fe64_sub,\@function,3 .align 32 x25519_fe64_sub: .Lfe64_sub_body: .cfi_startproc mov 8*0(%rsi),$acc0 mov 8*1(%rsi),$acc1 mov 8*2(%rsi),$acc2 mov 8*3(%rsi),$acc3 sub 8*0(%rdx),$acc0 sbb 8*1(%rdx),$acc1 sbb 8*2(%rdx),$acc2 sbb 8*3(%rdx),$acc3 sbb %rax,%rax # cf -> mask and \$38,%rax sub %rax,$acc0 sbb \$0,$acc1 sbb \$0,$acc2 mov $acc1,8*1(%rdi) sbb \$0,$acc3 mov $acc2,8*2(%rdi) sbb %rax,%rax # cf -> mask mov $acc3,8*3(%rdi) and \$38,%rax sub %rax,$acc0 mov $acc0,8*0(%rdi) .Lfe64_sub_epilogue: ret .cfi_endproc .size x25519_fe64_sub,.-x25519_fe64_sub .globl x25519_fe64_tobytes .type x25519_fe64_tobytes,\@function,2 .align 32 x25519_fe64_tobytes: .Lfe64_to_body: .cfi_startproc mov 8*0(%rsi),$acc0 mov 8*1(%rsi),$acc1 mov 8*2(%rsi),$acc2 mov 8*3(%rsi),$acc3 ################################# reduction modulo 2^255-19 lea ($acc3,$acc3),%rax sar \$63,$acc3 # most significant bit -> mask shr \$1,%rax # most significant bit cleared and \$19,$acc3 add \$19,$acc3 # compare to modulus in the same go add $acc3,$acc0 adc \$0,$acc1 adc \$0,$acc2 adc \$0,%rax lea (%rax,%rax),$acc3 sar \$63,%rax # most significant bit -> mask shr \$1,$acc3 # most significant bit cleared not %rax and \$19,%rax sub %rax,$acc0 sbb \$0,$acc1 sbb \$0,$acc2 sbb \$0,$acc3 mov $acc0,8*0(%rdi) mov $acc1,8*1(%rdi) mov $acc2,8*2(%rdi) mov $acc3,8*3(%rdi) .Lfe64_to_epilogue: ret .cfi_endproc .size x25519_fe64_tobytes,.-x25519_fe64_tobytes ___ } else { $code.=<<___; .globl x25519_fe64_eligible .type x25519_fe64_eligible,\@abi-omnipotent .align 32 x25519_fe64_eligible: .cfi_startproc xor %eax,%eax ret .cfi_endproc .size x25519_fe64_eligible,.-x25519_fe64_eligible .globl x25519_fe64_mul .type x25519_fe64_mul,\@abi-omnipotent .globl x25519_fe64_sqr .globl x25519_fe64_mul121666 .globl x25519_fe64_add .globl x25519_fe64_sub .globl x25519_fe64_tobytes x25519_fe64_mul: x25519_fe64_sqr: x25519_fe64_mul121666: x25519_fe64_add: x25519_fe64_sub: x25519_fe64_tobytes: .cfi_startproc .byte 0x0f,0x0b # ud2 ret .cfi_endproc .size x25519_fe64_mul,.-x25519_fe64_mul ___ } $code.=<<___; .asciz "X25519 primitives for x86_64, CRYPTOGAMS by " ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type short_handler,\@abi-omnipotent .align 16 short_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp jmp .Lcommon_seh_tail .size short_handler,.-short_handler .type full_handler,\@abi-omnipotent .align 16 full_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 8(%r11),%r10d # HandlerData[2] lea (%rax,%r10),%rax mov -8(%rax),%rbp mov -16(%rax),%rbx mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size full_handler,.-full_handler .section .pdata .align 4 .rva .LSEH_begin_x25519_fe51_mul .rva .LSEH_end_x25519_fe51_mul .rva .LSEH_info_x25519_fe51_mul .rva .LSEH_begin_x25519_fe51_sqr .rva .LSEH_end_x25519_fe51_sqr .rva .LSEH_info_x25519_fe51_sqr .rva .LSEH_begin_x25519_fe51_mul121666 .rva .LSEH_end_x25519_fe51_mul121666 .rva .LSEH_info_x25519_fe51_mul121666 ___ $code.=<<___ if ($addx); .rva .LSEH_begin_x25519_fe64_mul .rva .LSEH_end_x25519_fe64_mul .rva .LSEH_info_x25519_fe64_mul .rva .LSEH_begin_x25519_fe64_sqr .rva .LSEH_end_x25519_fe64_sqr .rva .LSEH_info_x25519_fe64_sqr .rva .LSEH_begin_x25519_fe64_mul121666 .rva .LSEH_end_x25519_fe64_mul121666 .rva .LSEH_info_x25519_fe64_mul121666 .rva .LSEH_begin_x25519_fe64_add .rva .LSEH_end_x25519_fe64_add .rva .LSEH_info_x25519_fe64_add .rva .LSEH_begin_x25519_fe64_sub .rva .LSEH_end_x25519_fe64_sub .rva .LSEH_info_x25519_fe64_sub .rva .LSEH_begin_x25519_fe64_tobytes .rva .LSEH_end_x25519_fe64_tobytes .rva .LSEH_info_x25519_fe64_tobytes ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_x25519_fe51_mul: .byte 9,0,0,0 .rva full_handler .rva .Lfe51_mul_body,.Lfe51_mul_epilogue # HandlerData[] .long 88,0 .LSEH_info_x25519_fe51_sqr: .byte 9,0,0,0 .rva full_handler .rva .Lfe51_sqr_body,.Lfe51_sqr_epilogue # HandlerData[] .long 88,0 .LSEH_info_x25519_fe51_mul121666: .byte 9,0,0,0 .rva full_handler .rva .Lfe51_mul121666_body,.Lfe51_mul121666_epilogue # HandlerData[] .long 88,0 ___ $code.=<<___ if ($addx); .LSEH_info_x25519_fe64_mul: .byte 9,0,0,0 .rva full_handler .rva .Lfe64_mul_body,.Lfe64_mul_epilogue # HandlerData[] .long 72,0 .LSEH_info_x25519_fe64_sqr: .byte 9,0,0,0 .rva full_handler .rva .Lfe64_sqr_body,.Lfe64_sqr_epilogue # HandlerData[] .long 72,0 .LSEH_info_x25519_fe64_mul121666: .byte 9,0,0,0 .rva short_handler .rva .Lfe64_mul121666_body,.Lfe64_mul121666_epilogue # HandlerData[] .LSEH_info_x25519_fe64_add: .byte 9,0,0,0 .rva short_handler .rva .Lfe64_add_body,.Lfe64_add_epilogue # HandlerData[] .LSEH_info_x25519_fe64_sub: .byte 9,0,0,0 .rva short_handler .rva .Lfe64_sub_body,.Lfe64_sub_epilogue # HandlerData[] .LSEH_info_x25519_fe64_tobytes: .byte 9,0,0,0 .rva short_handler .rva .Lfe64_to_body,.Lfe64_to_epilogue # HandlerData[] ___ } $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/ec/build.info000066400000000000000000000036341364063235100172370ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ ec_lib.c ecp_smpl.c ecp_mont.c ecp_nist.c ec_cvt.c ec_mult.c \ ec_err.c ec_curve.c ec_check.c ec_print.c ec_asn1.c ec_key.c \ ec2_smpl.c ec_ameth.c ec_pmeth.c eck_prn.c \ ecp_nistp224.c ecp_nistp256.c ecp_nistp521.c ecp_nistputil.c \ ecp_oct.c ec2_oct.c ec_oct.c ec_kmeth.c ecdh_ossl.c ecdh_kdf.c \ ecdsa_ossl.c ecdsa_sign.c ecdsa_vrf.c curve25519.c ecx_meth.c \ curve448/arch_32/f_impl.c curve448/f_generic.c curve448/scalar.c \ curve448/curve448_tables.c curve448/eddsa.c curve448/curve448.c \ {- $target{ec_asm_src} -} GENERATE[ecp_nistz256-x86.s]=asm/ecp_nistz256-x86.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) GENERATE[ecp_nistz256-x86_64.s]=asm/ecp_nistz256-x86_64.pl $(PERLASM_SCHEME) GENERATE[ecp_nistz256-avx2.s]=asm/ecp_nistz256-avx2.pl $(PERLASM_SCHEME) GENERATE[ecp_nistz256-sparcv9.S]=asm/ecp_nistz256-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[ecp_nistz256-sparcv9.o]=.. GENERATE[ecp_nistz256-armv4.S]=asm/ecp_nistz256-armv4.pl $(PERLASM_SCHEME) INCLUDE[ecp_nistz256-armv4.o]=.. GENERATE[ecp_nistz256-armv8.S]=asm/ecp_nistz256-armv8.pl $(PERLASM_SCHEME) INCLUDE[ecp_nistz256-armv8.o]=.. GENERATE[ecp_nistz256-ppc64.s]=asm/ecp_nistz256-ppc64.pl $(PERLASM_SCHEME) GENERATE[x25519-x86_64.s]=asm/x25519-x86_64.pl $(PERLASM_SCHEME) GENERATE[x25519-ppc64.s]=asm/x25519-ppc64.pl $(PERLASM_SCHEME) BEGINRAW[Makefile] {- $builddir -}/ecp_nistz256-%.S: {- $sourcedir -}/asm/ecp_nistz256-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ ENDRAW[Makefile] INCLUDE[curve448/arch_32/f_impl.o]=curve448/arch_32 curve448 INCLUDE[curve448/f_generic.o]=curve448/arch_32 curve448 INCLUDE[curve448/scalar.o]=curve448/arch_32 curve448 INCLUDE[curve448/curve448_tables.o]=curve448/arch_32 curve448 INCLUDE[curve448/eddsa.o]=curve448/arch_32 curve448 INCLUDE[curve448/curve448.o]=curve448/arch_32 curve448 openssl-1.1.1f/crypto/ec/curve25519.c000066400000000000000000006116461364063235100171710ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" #include #if defined(X25519_ASM) && (defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64)) # define BASE_2_64_IMPLEMENTED typedef uint64_t fe64[4]; int x25519_fe64_eligible(void); /* * Following subroutines perform corresponding operations modulo * 2^256-38, i.e. double the curve modulus. However, inputs and * outputs are permitted to be partially reduced, i.e. to remain * in [0..2^256) range. It's all tied up in final fe64_tobytes * that performs full reduction modulo 2^255-19. * * There are no reference C implementations for these. */ void x25519_fe64_mul(fe64 h, const fe64 f, const fe64 g); void x25519_fe64_sqr(fe64 h, const fe64 f); void x25519_fe64_mul121666(fe64 h, fe64 f); void x25519_fe64_add(fe64 h, const fe64 f, const fe64 g); void x25519_fe64_sub(fe64 h, const fe64 f, const fe64 g); void x25519_fe64_tobytes(uint8_t *s, const fe64 f); # define fe64_mul x25519_fe64_mul # define fe64_sqr x25519_fe64_sqr # define fe64_mul121666 x25519_fe64_mul121666 # define fe64_add x25519_fe64_add # define fe64_sub x25519_fe64_sub # define fe64_tobytes x25519_fe64_tobytes static uint64_t load_8(const uint8_t *in) { uint64_t result; result = in[0]; result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; result |= ((uint64_t)in[3]) << 24; result |= ((uint64_t)in[4]) << 32; result |= ((uint64_t)in[5]) << 40; result |= ((uint64_t)in[6]) << 48; result |= ((uint64_t)in[7]) << 56; return result; } static void fe64_frombytes(fe64 h, const uint8_t *s) { h[0] = load_8(s); h[1] = load_8(s + 8); h[2] = load_8(s + 16); h[3] = load_8(s + 24) & 0x7fffffffffffffff; } static void fe64_0(fe64 h) { h[0] = 0; h[1] = 0; h[2] = 0; h[3] = 0; } static void fe64_1(fe64 h) { h[0] = 1; h[1] = 0; h[2] = 0; h[3] = 0; } static void fe64_copy(fe64 h, const fe64 f) { h[0] = f[0]; h[1] = f[1]; h[2] = f[2]; h[3] = f[3]; } static void fe64_cswap(fe64 f, fe64 g, unsigned int b) { int i; uint64_t mask = 0 - (uint64_t)b; for (i = 0; i < 4; i++) { uint64_t x = f[i] ^ g[i]; x &= mask; f[i] ^= x; g[i] ^= x; } } static void fe64_invert(fe64 out, const fe64 z) { fe64 t0; fe64 t1; fe64 t2; fe64 t3; int i; /* * Compute z ** -1 = z ** (2 ** 255 - 19 - 2) with the exponent as * 2 ** 255 - 21 = (2 ** 5) * (2 ** 250 - 1) + 11. */ /* t0 = z ** 2 */ fe64_sqr(t0, z); /* t1 = t0 ** (2 ** 2) = z ** 8 */ fe64_sqr(t1, t0); fe64_sqr(t1, t1); /* t1 = z * t1 = z ** 9 */ fe64_mul(t1, z, t1); /* t0 = t0 * t1 = z ** 11 -- stash t0 away for the end. */ fe64_mul(t0, t0, t1); /* t2 = t0 ** 2 = z ** 22 */ fe64_sqr(t2, t0); /* t1 = t1 * t2 = z ** (2 ** 5 - 1) */ fe64_mul(t1, t1, t2); /* t2 = t1 ** (2 ** 5) = z ** ((2 ** 5) * (2 ** 5 - 1)) */ fe64_sqr(t2, t1); for (i = 1; i < 5; ++i) fe64_sqr(t2, t2); /* t1 = t1 * t2 = z ** ((2 ** 5 + 1) * (2 ** 5 - 1)) = z ** (2 ** 10 - 1) */ fe64_mul(t1, t2, t1); /* Continuing similarly... */ /* t2 = z ** (2 ** 20 - 1) */ fe64_sqr(t2, t1); for (i = 1; i < 10; ++i) fe64_sqr(t2, t2); fe64_mul(t2, t2, t1); /* t2 = z ** (2 ** 40 - 1) */ fe64_sqr(t3, t2); for (i = 1; i < 20; ++i) fe64_sqr(t3, t3); fe64_mul(t2, t3, t2); /* t2 = z ** (2 ** 10) * (2 ** 40 - 1) */ for (i = 0; i < 10; ++i) fe64_sqr(t2, t2); /* t1 = z ** (2 ** 50 - 1) */ fe64_mul(t1, t2, t1); /* t2 = z ** (2 ** 100 - 1) */ fe64_sqr(t2, t1); for (i = 1; i < 50; ++i) fe64_sqr(t2, t2); fe64_mul(t2, t2, t1); /* t2 = z ** (2 ** 200 - 1) */ fe64_sqr(t3, t2); for (i = 1; i < 100; ++i) fe64_sqr(t3, t3); fe64_mul(t2, t3, t2); /* t2 = z ** ((2 ** 50) * (2 ** 200 - 1) */ for (i = 0; i < 50; ++i) fe64_sqr(t2, t2); /* t1 = z ** (2 ** 250 - 1) */ fe64_mul(t1, t2, t1); /* t1 = z ** ((2 ** 5) * (2 ** 250 - 1)) */ for (i = 0; i < 5; ++i) fe64_sqr(t1, t1); /* Recall t0 = z ** 11; out = z ** (2 ** 255 - 21) */ fe64_mul(out, t1, t0); } /* * Duplicate of original x25519_scalar_mult_generic, but using * fe64_* subroutines. */ static void x25519_scalar_mulx(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { fe64 x1, x2, z2, x3, z3, tmp0, tmp1; uint8_t e[32]; unsigned swap = 0; int pos; memcpy(e, scalar, 32); e[0] &= 0xf8; e[31] &= 0x7f; e[31] |= 0x40; fe64_frombytes(x1, point); fe64_1(x2); fe64_0(z2); fe64_copy(x3, x1); fe64_1(z3); for (pos = 254; pos >= 0; --pos) { unsigned int b = 1 & (e[pos / 8] >> (pos & 7)); swap ^= b; fe64_cswap(x2, x3, swap); fe64_cswap(z2, z3, swap); swap = b; fe64_sub(tmp0, x3, z3); fe64_sub(tmp1, x2, z2); fe64_add(x2, x2, z2); fe64_add(z2, x3, z3); fe64_mul(z3, x2, tmp0); fe64_mul(z2, z2, tmp1); fe64_sqr(tmp0, tmp1); fe64_sqr(tmp1, x2); fe64_add(x3, z3, z2); fe64_sub(z2, z3, z2); fe64_mul(x2, tmp1, tmp0); fe64_sub(tmp1, tmp1, tmp0); fe64_sqr(z2, z2); fe64_mul121666(z3, tmp1); fe64_sqr(x3, x3); fe64_add(tmp0, tmp0, z3); fe64_mul(z3, x1, z2); fe64_mul(z2, tmp1, tmp0); } fe64_invert(z2, z2); fe64_mul(x2, x2, z2); fe64_tobytes(out, x2); OPENSSL_cleanse(e, sizeof(e)); } #endif #if defined(X25519_ASM) \ || ( (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16) \ && !defined(__sparc__) \ && (!defined(__SIZEOF_LONG__) || (__SIZEOF_LONG__ == 8)) \ && !(defined(__ANDROID__) && !defined(__clang__)) ) /* * Base 2^51 implementation. It's virtually no different from reference * base 2^25.5 implementation in respect to lax boundary conditions for * intermediate values and even individual limbs. So that whatever you * know about the reference, applies even here... */ # define BASE_2_51_IMPLEMENTED typedef uint64_t fe51[5]; static const uint64_t MASK51 = 0x7ffffffffffff; static uint64_t load_7(const uint8_t *in) { uint64_t result; result = in[0]; result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; result |= ((uint64_t)in[3]) << 24; result |= ((uint64_t)in[4]) << 32; result |= ((uint64_t)in[5]) << 40; result |= ((uint64_t)in[6]) << 48; return result; } static uint64_t load_6(const uint8_t *in) { uint64_t result; result = in[0]; result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; result |= ((uint64_t)in[3]) << 24; result |= ((uint64_t)in[4]) << 32; result |= ((uint64_t)in[5]) << 40; return result; } static void fe51_frombytes(fe51 h, const uint8_t *s) { uint64_t h0 = load_7(s); /* 56 bits */ uint64_t h1 = load_6(s + 7) << 5; /* 53 bits */ uint64_t h2 = load_7(s + 13) << 2; /* 58 bits */ uint64_t h3 = load_6(s + 20) << 7; /* 55 bits */ uint64_t h4 = (load_6(s + 26) & 0x7fffffffffff) << 4; /* 51 bits */ h1 |= h0 >> 51; h0 &= MASK51; h2 |= h1 >> 51; h1 &= MASK51; h3 |= h2 >> 51; h2 &= MASK51; h4 |= h3 >> 51; h3 &= MASK51; h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; } static void fe51_tobytes(uint8_t *s, const fe51 h) { uint64_t h0 = h[0]; uint64_t h1 = h[1]; uint64_t h2 = h[2]; uint64_t h3 = h[3]; uint64_t h4 = h[4]; uint64_t q; /* compare to modulus */ q = (h0 + 19) >> 51; q = (h1 + q) >> 51; q = (h2 + q) >> 51; q = (h3 + q) >> 51; q = (h4 + q) >> 51; /* full reduce */ h0 += 19 * q; h1 += h0 >> 51; h0 &= MASK51; h2 += h1 >> 51; h1 &= MASK51; h3 += h2 >> 51; h2 &= MASK51; h4 += h3 >> 51; h3 &= MASK51; h4 &= MASK51; /* smash */ s[0] = (uint8_t)(h0 >> 0); s[1] = (uint8_t)(h0 >> 8); s[2] = (uint8_t)(h0 >> 16); s[3] = (uint8_t)(h0 >> 24); s[4] = (uint8_t)(h0 >> 32); s[5] = (uint8_t)(h0 >> 40); s[6] = (uint8_t)((h0 >> 48) | ((uint32_t)h1 << 3)); s[7] = (uint8_t)(h1 >> 5); s[8] = (uint8_t)(h1 >> 13); s[9] = (uint8_t)(h1 >> 21); s[10] = (uint8_t)(h1 >> 29); s[11] = (uint8_t)(h1 >> 37); s[12] = (uint8_t)((h1 >> 45) | ((uint32_t)h2 << 6)); s[13] = (uint8_t)(h2 >> 2); s[14] = (uint8_t)(h2 >> 10); s[15] = (uint8_t)(h2 >> 18); s[16] = (uint8_t)(h2 >> 26); s[17] = (uint8_t)(h2 >> 34); s[18] = (uint8_t)(h2 >> 42); s[19] = (uint8_t)((h2 >> 50) | ((uint32_t)h3 << 1)); s[20] = (uint8_t)(h3 >> 7); s[21] = (uint8_t)(h3 >> 15); s[22] = (uint8_t)(h3 >> 23); s[23] = (uint8_t)(h3 >> 31); s[24] = (uint8_t)(h3 >> 39); s[25] = (uint8_t)((h3 >> 47) | ((uint32_t)h4 << 4)); s[26] = (uint8_t)(h4 >> 4); s[27] = (uint8_t)(h4 >> 12); s[28] = (uint8_t)(h4 >> 20); s[29] = (uint8_t)(h4 >> 28); s[30] = (uint8_t)(h4 >> 36); s[31] = (uint8_t)(h4 >> 44); } # if defined(X25519_ASM) void x25519_fe51_mul(fe51 h, const fe51 f, const fe51 g); void x25519_fe51_sqr(fe51 h, const fe51 f); void x25519_fe51_mul121666(fe51 h, fe51 f); # define fe51_mul x25519_fe51_mul # define fe51_sq x25519_fe51_sqr # define fe51_mul121666 x25519_fe51_mul121666 # else typedef __uint128_t u128; static void fe51_mul(fe51 h, const fe51 f, const fe51 g) { u128 h0, h1, h2, h3, h4; uint64_t f_i, g0, g1, g2, g3, g4; f_i = f[0]; h0 = (u128)f_i * (g0 = g[0]); h1 = (u128)f_i * (g1 = g[1]); h2 = (u128)f_i * (g2 = g[2]); h3 = (u128)f_i * (g3 = g[3]); h4 = (u128)f_i * (g4 = g[4]); f_i = f[1]; h0 += (u128)f_i * (g4 *= 19); h1 += (u128)f_i * g0; h2 += (u128)f_i * g1; h3 += (u128)f_i * g2; h4 += (u128)f_i * g3; f_i = f[2]; h0 += (u128)f_i * (g3 *= 19); h1 += (u128)f_i * g4; h2 += (u128)f_i * g0; h3 += (u128)f_i * g1; h4 += (u128)f_i * g2; f_i = f[3]; h0 += (u128)f_i * (g2 *= 19); h1 += (u128)f_i * g3; h2 += (u128)f_i * g4; h3 += (u128)f_i * g0; h4 += (u128)f_i * g1; f_i = f[4]; h0 += (u128)f_i * (g1 *= 19); h1 += (u128)f_i * g2; h2 += (u128)f_i * g3; h3 += (u128)f_i * g4; h4 += (u128)f_i * g0; /* partial [lazy] reduction */ h3 += (uint64_t)(h2 >> 51); g2 = (uint64_t)h2 & MASK51; h1 += (uint64_t)(h0 >> 51); g0 = (uint64_t)h0 & MASK51; h4 += (uint64_t)(h3 >> 51); g3 = (uint64_t)h3 & MASK51; g2 += (uint64_t)(h1 >> 51); g1 = (uint64_t)h1 & MASK51; g0 += (uint64_t)(h4 >> 51) * 19; g4 = (uint64_t)h4 & MASK51; g3 += g2 >> 51; g2 &= MASK51; g1 += g0 >> 51; g0 &= MASK51; h[0] = g0; h[1] = g1; h[2] = g2; h[3] = g3; h[4] = g4; } static void fe51_sq(fe51 h, const fe51 f) { # if defined(OPENSSL_SMALL_FOOTPRINT) fe51_mul(h, f, f); # else /* dedicated squaring gives 16-25% overall improvement */ uint64_t g0 = f[0]; uint64_t g1 = f[1]; uint64_t g2 = f[2]; uint64_t g3 = f[3]; uint64_t g4 = f[4]; u128 h0, h1, h2, h3, h4; h0 = (u128)g0 * g0; g0 *= 2; h1 = (u128)g0 * g1; h2 = (u128)g0 * g2; h3 = (u128)g0 * g3; h4 = (u128)g0 * g4; g0 = g4; /* borrow g0 */ h3 += (u128)g0 * (g4 *= 19); h2 += (u128)g1 * g1; g1 *= 2; h3 += (u128)g1 * g2; h4 += (u128)g1 * g3; h0 += (u128)g1 * g4; g0 = g3; /* borrow g0 */ h1 += (u128)g0 * (g3 *= 19); h2 += (u128)(g0 * 2) * g4; h4 += (u128)g2 * g2; g2 *= 2; h0 += (u128)g2 * g3; h1 += (u128)g2 * g4; /* partial [lazy] reduction */ h3 += (uint64_t)(h2 >> 51); g2 = (uint64_t)h2 & MASK51; h1 += (uint64_t)(h0 >> 51); g0 = (uint64_t)h0 & MASK51; h4 += (uint64_t)(h3 >> 51); g3 = (uint64_t)h3 & MASK51; g2 += (uint64_t)(h1 >> 51); g1 = (uint64_t)h1 & MASK51; g0 += (uint64_t)(h4 >> 51) * 19; g4 = (uint64_t)h4 & MASK51; g3 += g2 >> 51; g2 &= MASK51; g1 += g0 >> 51; g0 &= MASK51; h[0] = g0; h[1] = g1; h[2] = g2; h[3] = g3; h[4] = g4; # endif } static void fe51_mul121666(fe51 h, fe51 f) { u128 h0 = f[0] * (u128)121666; u128 h1 = f[1] * (u128)121666; u128 h2 = f[2] * (u128)121666; u128 h3 = f[3] * (u128)121666; u128 h4 = f[4] * (u128)121666; uint64_t g0, g1, g2, g3, g4; h3 += (uint64_t)(h2 >> 51); g2 = (uint64_t)h2 & MASK51; h1 += (uint64_t)(h0 >> 51); g0 = (uint64_t)h0 & MASK51; h4 += (uint64_t)(h3 >> 51); g3 = (uint64_t)h3 & MASK51; g2 += (uint64_t)(h1 >> 51); g1 = (uint64_t)h1 & MASK51; g0 += (uint64_t)(h4 >> 51) * 19; g4 = (uint64_t)h4 & MASK51; g3 += g2 >> 51; g2 &= MASK51; g1 += g0 >> 51; g0 &= MASK51; h[0] = g0; h[1] = g1; h[2] = g2; h[3] = g3; h[4] = g4; } # endif static void fe51_add(fe51 h, const fe51 f, const fe51 g) { h[0] = f[0] + g[0]; h[1] = f[1] + g[1]; h[2] = f[2] + g[2]; h[3] = f[3] + g[3]; h[4] = f[4] + g[4]; } static void fe51_sub(fe51 h, const fe51 f, const fe51 g) { /* * Add 2*modulus to ensure that result remains positive * even if subtrahend is partially reduced. */ h[0] = (f[0] + 0xfffffffffffda) - g[0]; h[1] = (f[1] + 0xffffffffffffe) - g[1]; h[2] = (f[2] + 0xffffffffffffe) - g[2]; h[3] = (f[3] + 0xffffffffffffe) - g[3]; h[4] = (f[4] + 0xffffffffffffe) - g[4]; } static void fe51_0(fe51 h) { h[0] = 0; h[1] = 0; h[2] = 0; h[3] = 0; h[4] = 0; } static void fe51_1(fe51 h) { h[0] = 1; h[1] = 0; h[2] = 0; h[3] = 0; h[4] = 0; } static void fe51_copy(fe51 h, const fe51 f) { h[0] = f[0]; h[1] = f[1]; h[2] = f[2]; h[3] = f[3]; h[4] = f[4]; } static void fe51_cswap(fe51 f, fe51 g, unsigned int b) { int i; uint64_t mask = 0 - (uint64_t)b; for (i = 0; i < 5; i++) { int64_t x = f[i] ^ g[i]; x &= mask; f[i] ^= x; g[i] ^= x; } } static void fe51_invert(fe51 out, const fe51 z) { fe51 t0; fe51 t1; fe51 t2; fe51 t3; int i; /* * Compute z ** -1 = z ** (2 ** 255 - 19 - 2) with the exponent as * 2 ** 255 - 21 = (2 ** 5) * (2 ** 250 - 1) + 11. */ /* t0 = z ** 2 */ fe51_sq(t0, z); /* t1 = t0 ** (2 ** 2) = z ** 8 */ fe51_sq(t1, t0); fe51_sq(t1, t1); /* t1 = z * t1 = z ** 9 */ fe51_mul(t1, z, t1); /* t0 = t0 * t1 = z ** 11 -- stash t0 away for the end. */ fe51_mul(t0, t0, t1); /* t2 = t0 ** 2 = z ** 22 */ fe51_sq(t2, t0); /* t1 = t1 * t2 = z ** (2 ** 5 - 1) */ fe51_mul(t1, t1, t2); /* t2 = t1 ** (2 ** 5) = z ** ((2 ** 5) * (2 ** 5 - 1)) */ fe51_sq(t2, t1); for (i = 1; i < 5; ++i) fe51_sq(t2, t2); /* t1 = t1 * t2 = z ** ((2 ** 5 + 1) * (2 ** 5 - 1)) = z ** (2 ** 10 - 1) */ fe51_mul(t1, t2, t1); /* Continuing similarly... */ /* t2 = z ** (2 ** 20 - 1) */ fe51_sq(t2, t1); for (i = 1; i < 10; ++i) fe51_sq(t2, t2); fe51_mul(t2, t2, t1); /* t2 = z ** (2 ** 40 - 1) */ fe51_sq(t3, t2); for (i = 1; i < 20; ++i) fe51_sq(t3, t3); fe51_mul(t2, t3, t2); /* t2 = z ** (2 ** 10) * (2 ** 40 - 1) */ for (i = 0; i < 10; ++i) fe51_sq(t2, t2); /* t1 = z ** (2 ** 50 - 1) */ fe51_mul(t1, t2, t1); /* t2 = z ** (2 ** 100 - 1) */ fe51_sq(t2, t1); for (i = 1; i < 50; ++i) fe51_sq(t2, t2); fe51_mul(t2, t2, t1); /* t2 = z ** (2 ** 200 - 1) */ fe51_sq(t3, t2); for (i = 1; i < 100; ++i) fe51_sq(t3, t3); fe51_mul(t2, t3, t2); /* t2 = z ** ((2 ** 50) * (2 ** 200 - 1) */ for (i = 0; i < 50; ++i) fe51_sq(t2, t2); /* t1 = z ** (2 ** 250 - 1) */ fe51_mul(t1, t2, t1); /* t1 = z ** ((2 ** 5) * (2 ** 250 - 1)) */ for (i = 0; i < 5; ++i) fe51_sq(t1, t1); /* Recall t0 = z ** 11; out = z ** (2 ** 255 - 21) */ fe51_mul(out, t1, t0); } /* * Duplicate of original x25519_scalar_mult_generic, but using * fe51_* subroutines. */ static void x25519_scalar_mult(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { fe51 x1, x2, z2, x3, z3, tmp0, tmp1; uint8_t e[32]; unsigned swap = 0; int pos; # ifdef BASE_2_64_IMPLEMENTED if (x25519_fe64_eligible()) { x25519_scalar_mulx(out, scalar, point); return; } # endif memcpy(e, scalar, 32); e[0] &= 0xf8; e[31] &= 0x7f; e[31] |= 0x40; fe51_frombytes(x1, point); fe51_1(x2); fe51_0(z2); fe51_copy(x3, x1); fe51_1(z3); for (pos = 254; pos >= 0; --pos) { unsigned int b = 1 & (e[pos / 8] >> (pos & 7)); swap ^= b; fe51_cswap(x2, x3, swap); fe51_cswap(z2, z3, swap); swap = b; fe51_sub(tmp0, x3, z3); fe51_sub(tmp1, x2, z2); fe51_add(x2, x2, z2); fe51_add(z2, x3, z3); fe51_mul(z3, tmp0, x2); fe51_mul(z2, z2, tmp1); fe51_sq(tmp0, tmp1); fe51_sq(tmp1, x2); fe51_add(x3, z3, z2); fe51_sub(z2, z3, z2); fe51_mul(x2, tmp1, tmp0); fe51_sub(tmp1, tmp1, tmp0); fe51_sq(z2, z2); fe51_mul121666(z3, tmp1); fe51_sq(x3, x3); fe51_add(tmp0, tmp0, z3); fe51_mul(z3, x1, z2); fe51_mul(z2, tmp1, tmp0); } fe51_invert(z2, z2); fe51_mul(x2, x2, z2); fe51_tobytes(out, x2); OPENSSL_cleanse(e, sizeof(e)); } #endif /* * Reference base 2^25.5 implementation. * * This code is mostly taken from the ref10 version of Ed25519 in SUPERCOP * 20141124 (http://bench.cr.yp.to/supercop.html). * * The field functions are shared by Ed25519 and X25519 where possible. */ /* * fe means field element. Here the field is \Z/(2^255-19). An element t, * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 * t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on * context. */ typedef int32_t fe[10]; static const int64_t kBottom21Bits = 0x1fffffLL; static const int64_t kBottom25Bits = 0x1ffffffLL; static const int64_t kBottom26Bits = 0x3ffffffLL; static const int64_t kTop39Bits = 0xfffffffffe000000LL; static const int64_t kTop38Bits = 0xfffffffffc000000LL; static uint64_t load_3(const uint8_t *in) { uint64_t result; result = ((uint64_t)in[0]); result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; return result; } static uint64_t load_4(const uint8_t *in) { uint64_t result; result = ((uint64_t)in[0]); result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; result |= ((uint64_t)in[3]) << 24; return result; } static void fe_frombytes(fe h, const uint8_t *s) { /* Ignores top bit of h. */ int64_t h0 = load_4(s); int64_t h1 = load_3(s + 4) << 6; int64_t h2 = load_3(s + 7) << 5; int64_t h3 = load_3(s + 10) << 3; int64_t h4 = load_3(s + 13) << 2; int64_t h5 = load_4(s + 16); int64_t h6 = load_3(s + 20) << 7; int64_t h7 = load_3(s + 23) << 5; int64_t h8 = load_3(s + 26) << 4; int64_t h9 = (load_3(s + 29) & 0x7fffff) << 2; int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; carry9 = h9 + (1 << 24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits; carry1 = h1 + (1 << 24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits; carry3 = h3 + (1 << 24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits; carry5 = h5 + (1 << 24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits; carry7 = h7 + (1 << 24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits; carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; carry2 = h2 + (1 << 25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits; carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; carry6 = h6 + (1 << 25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits; carry8 = h8 + (1 << 25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits; h[0] = (int32_t)h0; h[1] = (int32_t)h1; h[2] = (int32_t)h2; h[3] = (int32_t)h3; h[4] = (int32_t)h4; h[5] = (int32_t)h5; h[6] = (int32_t)h6; h[7] = (int32_t)h7; h[8] = (int32_t)h8; h[9] = (int32_t)h9; } /* * Preconditions: * |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. * * Write p=2^255-19; q=floor(h/p). * Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))). * * Proof: * Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4. * Also have |h-2^230 h9|<2^231 so |19 2^(-255)(h-2^230 h9)|<1/4. * * Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9). * Then 0> 25; q = (h0 + q) >> 26; q = (h1 + q) >> 25; q = (h2 + q) >> 26; q = (h3 + q) >> 25; q = (h4 + q) >> 26; q = (h5 + q) >> 25; q = (h6 + q) >> 26; q = (h7 + q) >> 25; q = (h8 + q) >> 26; q = (h9 + q) >> 25; /* Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. */ h0 += 19 * q; /* Goal: Output h-2^255 q, which is between 0 and 2^255-20. */ h1 += h0 >> 26; h0 &= kBottom26Bits; h2 += h1 >> 25; h1 &= kBottom25Bits; h3 += h2 >> 26; h2 &= kBottom26Bits; h4 += h3 >> 25; h3 &= kBottom25Bits; h5 += h4 >> 26; h4 &= kBottom26Bits; h6 += h5 >> 25; h5 &= kBottom25Bits; h7 += h6 >> 26; h6 &= kBottom26Bits; h8 += h7 >> 25; h7 &= kBottom25Bits; h9 += h8 >> 26; h8 &= kBottom26Bits; h9 &= kBottom25Bits; /* h10 = carry9 */ /* * Goal: Output h0+...+2^255 h10-2^255 q, which is between 0 and 2^255-20. * Have h0+...+2^230 h9 between 0 and 2^255-1; * evidently 2^255 h10-2^255 q = 0. * Goal: Output h0+...+2^230 h9. */ s[ 0] = (uint8_t) (h0 >> 0); s[ 1] = (uint8_t) (h0 >> 8); s[ 2] = (uint8_t) (h0 >> 16); s[ 3] = (uint8_t)((h0 >> 24) | ((uint32_t)(h1) << 2)); s[ 4] = (uint8_t) (h1 >> 6); s[ 5] = (uint8_t) (h1 >> 14); s[ 6] = (uint8_t)((h1 >> 22) | ((uint32_t)(h2) << 3)); s[ 7] = (uint8_t) (h2 >> 5); s[ 8] = (uint8_t) (h2 >> 13); s[ 9] = (uint8_t)((h2 >> 21) | ((uint32_t)(h3) << 5)); s[10] = (uint8_t) (h3 >> 3); s[11] = (uint8_t) (h3 >> 11); s[12] = (uint8_t)((h3 >> 19) | ((uint32_t)(h4) << 6)); s[13] = (uint8_t) (h4 >> 2); s[14] = (uint8_t) (h4 >> 10); s[15] = (uint8_t) (h4 >> 18); s[16] = (uint8_t) (h5 >> 0); s[17] = (uint8_t) (h5 >> 8); s[18] = (uint8_t) (h5 >> 16); s[19] = (uint8_t)((h5 >> 24) | ((uint32_t)(h6) << 1)); s[20] = (uint8_t) (h6 >> 7); s[21] = (uint8_t) (h6 >> 15); s[22] = (uint8_t)((h6 >> 23) | ((uint32_t)(h7) << 3)); s[23] = (uint8_t) (h7 >> 5); s[24] = (uint8_t) (h7 >> 13); s[25] = (uint8_t)((h7 >> 21) | ((uint32_t)(h8) << 4)); s[26] = (uint8_t) (h8 >> 4); s[27] = (uint8_t) (h8 >> 12); s[28] = (uint8_t)((h8 >> 20) | ((uint32_t)(h9) << 6)); s[29] = (uint8_t) (h9 >> 2); s[30] = (uint8_t) (h9 >> 10); s[31] = (uint8_t) (h9 >> 18); } /* h = f */ static void fe_copy(fe h, const fe f) { memmove(h, f, sizeof(int32_t) * 10); } /* h = 0 */ static void fe_0(fe h) { memset(h, 0, sizeof(int32_t) * 10); } /* h = 1 */ static void fe_1(fe h) { memset(h, 0, sizeof(int32_t) * 10); h[0] = 1; } /* * h = f + g * * Can overlap h with f or g. * * Preconditions: * |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. * |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. * * Postconditions: * |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ static void fe_add(fe h, const fe f, const fe g) { unsigned i; for (i = 0; i < 10; i++) { h[i] = f[i] + g[i]; } } /* * h = f - g * * Can overlap h with f or g. * * Preconditions: * |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. * |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. * * Postconditions: * |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ static void fe_sub(fe h, const fe f, const fe g) { unsigned i; for (i = 0; i < 10; i++) { h[i] = f[i] - g[i]; } } /* * h = f * g * * Can overlap h with f or g. * * Preconditions: * |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. * |g| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. * * Postconditions: * |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc. * * Notes on implementation strategy: * * Using schoolbook multiplication. * Karatsuba would save a little in some cost models. * * Most multiplications by 2 and 19 are 32-bit precomputations; * cheaper than 64-bit postcomputations. * * There is one remaining multiplication by 19 in the carry chain; * one *19 precomputation can be merged into this, * but the resulting data flow is considerably less clean. * * There are 12 carries below. * 10 of them are 2-way parallelizable and vectorizable. * Can get away with 11 carries, but then data flow is much deeper. * * With tighter constraints on inputs can squeeze carries into int32. */ static void fe_mul(fe h, const fe f, const fe g) { int32_t f0 = f[0]; int32_t f1 = f[1]; int32_t f2 = f[2]; int32_t f3 = f[3]; int32_t f4 = f[4]; int32_t f5 = f[5]; int32_t f6 = f[6]; int32_t f7 = f[7]; int32_t f8 = f[8]; int32_t f9 = f[9]; int32_t g0 = g[0]; int32_t g1 = g[1]; int32_t g2 = g[2]; int32_t g3 = g[3]; int32_t g4 = g[4]; int32_t g5 = g[5]; int32_t g6 = g[6]; int32_t g7 = g[7]; int32_t g8 = g[8]; int32_t g9 = g[9]; int32_t g1_19 = 19 * g1; /* 1.959375*2^29 */ int32_t g2_19 = 19 * g2; /* 1.959375*2^30; still ok */ int32_t g3_19 = 19 * g3; int32_t g4_19 = 19 * g4; int32_t g5_19 = 19 * g5; int32_t g6_19 = 19 * g6; int32_t g7_19 = 19 * g7; int32_t g8_19 = 19 * g8; int32_t g9_19 = 19 * g9; int32_t f1_2 = 2 * f1; int32_t f3_2 = 2 * f3; int32_t f5_2 = 2 * f5; int32_t f7_2 = 2 * f7; int32_t f9_2 = 2 * f9; int64_t f0g0 = f0 * (int64_t) g0; int64_t f0g1 = f0 * (int64_t) g1; int64_t f0g2 = f0 * (int64_t) g2; int64_t f0g3 = f0 * (int64_t) g3; int64_t f0g4 = f0 * (int64_t) g4; int64_t f0g5 = f0 * (int64_t) g5; int64_t f0g6 = f0 * (int64_t) g6; int64_t f0g7 = f0 * (int64_t) g7; int64_t f0g8 = f0 * (int64_t) g8; int64_t f0g9 = f0 * (int64_t) g9; int64_t f1g0 = f1 * (int64_t) g0; int64_t f1g1_2 = f1_2 * (int64_t) g1; int64_t f1g2 = f1 * (int64_t) g2; int64_t f1g3_2 = f1_2 * (int64_t) g3; int64_t f1g4 = f1 * (int64_t) g4; int64_t f1g5_2 = f1_2 * (int64_t) g5; int64_t f1g6 = f1 * (int64_t) g6; int64_t f1g7_2 = f1_2 * (int64_t) g7; int64_t f1g8 = f1 * (int64_t) g8; int64_t f1g9_38 = f1_2 * (int64_t) g9_19; int64_t f2g0 = f2 * (int64_t) g0; int64_t f2g1 = f2 * (int64_t) g1; int64_t f2g2 = f2 * (int64_t) g2; int64_t f2g3 = f2 * (int64_t) g3; int64_t f2g4 = f2 * (int64_t) g4; int64_t f2g5 = f2 * (int64_t) g5; int64_t f2g6 = f2 * (int64_t) g6; int64_t f2g7 = f2 * (int64_t) g7; int64_t f2g8_19 = f2 * (int64_t) g8_19; int64_t f2g9_19 = f2 * (int64_t) g9_19; int64_t f3g0 = f3 * (int64_t) g0; int64_t f3g1_2 = f3_2 * (int64_t) g1; int64_t f3g2 = f3 * (int64_t) g2; int64_t f3g3_2 = f3_2 * (int64_t) g3; int64_t f3g4 = f3 * (int64_t) g4; int64_t f3g5_2 = f3_2 * (int64_t) g5; int64_t f3g6 = f3 * (int64_t) g6; int64_t f3g7_38 = f3_2 * (int64_t) g7_19; int64_t f3g8_19 = f3 * (int64_t) g8_19; int64_t f3g9_38 = f3_2 * (int64_t) g9_19; int64_t f4g0 = f4 * (int64_t) g0; int64_t f4g1 = f4 * (int64_t) g1; int64_t f4g2 = f4 * (int64_t) g2; int64_t f4g3 = f4 * (int64_t) g3; int64_t f4g4 = f4 * (int64_t) g4; int64_t f4g5 = f4 * (int64_t) g5; int64_t f4g6_19 = f4 * (int64_t) g6_19; int64_t f4g7_19 = f4 * (int64_t) g7_19; int64_t f4g8_19 = f4 * (int64_t) g8_19; int64_t f4g9_19 = f4 * (int64_t) g9_19; int64_t f5g0 = f5 * (int64_t) g0; int64_t f5g1_2 = f5_2 * (int64_t) g1; int64_t f5g2 = f5 * (int64_t) g2; int64_t f5g3_2 = f5_2 * (int64_t) g3; int64_t f5g4 = f5 * (int64_t) g4; int64_t f5g5_38 = f5_2 * (int64_t) g5_19; int64_t f5g6_19 = f5 * (int64_t) g6_19; int64_t f5g7_38 = f5_2 * (int64_t) g7_19; int64_t f5g8_19 = f5 * (int64_t) g8_19; int64_t f5g9_38 = f5_2 * (int64_t) g9_19; int64_t f6g0 = f6 * (int64_t) g0; int64_t f6g1 = f6 * (int64_t) g1; int64_t f6g2 = f6 * (int64_t) g2; int64_t f6g3 = f6 * (int64_t) g3; int64_t f6g4_19 = f6 * (int64_t) g4_19; int64_t f6g5_19 = f6 * (int64_t) g5_19; int64_t f6g6_19 = f6 * (int64_t) g6_19; int64_t f6g7_19 = f6 * (int64_t) g7_19; int64_t f6g8_19 = f6 * (int64_t) g8_19; int64_t f6g9_19 = f6 * (int64_t) g9_19; int64_t f7g0 = f7 * (int64_t) g0; int64_t f7g1_2 = f7_2 * (int64_t) g1; int64_t f7g2 = f7 * (int64_t) g2; int64_t f7g3_38 = f7_2 * (int64_t) g3_19; int64_t f7g4_19 = f7 * (int64_t) g4_19; int64_t f7g5_38 = f7_2 * (int64_t) g5_19; int64_t f7g6_19 = f7 * (int64_t) g6_19; int64_t f7g7_38 = f7_2 * (int64_t) g7_19; int64_t f7g8_19 = f7 * (int64_t) g8_19; int64_t f7g9_38 = f7_2 * (int64_t) g9_19; int64_t f8g0 = f8 * (int64_t) g0; int64_t f8g1 = f8 * (int64_t) g1; int64_t f8g2_19 = f8 * (int64_t) g2_19; int64_t f8g3_19 = f8 * (int64_t) g3_19; int64_t f8g4_19 = f8 * (int64_t) g4_19; int64_t f8g5_19 = f8 * (int64_t) g5_19; int64_t f8g6_19 = f8 * (int64_t) g6_19; int64_t f8g7_19 = f8 * (int64_t) g7_19; int64_t f8g8_19 = f8 * (int64_t) g8_19; int64_t f8g9_19 = f8 * (int64_t) g9_19; int64_t f9g0 = f9 * (int64_t) g0; int64_t f9g1_38 = f9_2 * (int64_t) g1_19; int64_t f9g2_19 = f9 * (int64_t) g2_19; int64_t f9g3_38 = f9_2 * (int64_t) g3_19; int64_t f9g4_19 = f9 * (int64_t) g4_19; int64_t f9g5_38 = f9_2 * (int64_t) g5_19; int64_t f9g6_19 = f9 * (int64_t) g6_19; int64_t f9g7_38 = f9_2 * (int64_t) g7_19; int64_t f9g8_19 = f9 * (int64_t) g8_19; int64_t f9g9_38 = f9_2 * (int64_t) g9_19; int64_t h0 = f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38; int64_t h1 = f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19; int64_t h2 = f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38; int64_t h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19; int64_t h4 = f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38; int64_t h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19; int64_t h6 = f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38; int64_t h7 = f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19; int64_t h8 = f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38; int64_t h9 = f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0 ; int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; /* |h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38)) * i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8 * |h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19)) * i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9 */ carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; /* |h0| <= 2^25 */ /* |h4| <= 2^25 */ /* |h1| <= 1.71*2^59 */ /* |h5| <= 1.71*2^59 */ carry1 = h1 + (1 << 24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits; carry5 = h5 + (1 << 24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits; /* |h1| <= 2^24; from now on fits into int32 */ /* |h5| <= 2^24; from now on fits into int32 */ /* |h2| <= 1.41*2^60 */ /* |h6| <= 1.41*2^60 */ carry2 = h2 + (1 << 25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits; carry6 = h6 + (1 << 25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits; /* |h2| <= 2^25; from now on fits into int32 unchanged */ /* |h6| <= 2^25; from now on fits into int32 unchanged */ /* |h3| <= 1.71*2^59 */ /* |h7| <= 1.71*2^59 */ carry3 = h3 + (1 << 24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits; carry7 = h7 + (1 << 24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits; /* |h3| <= 2^24; from now on fits into int32 unchanged */ /* |h7| <= 2^24; from now on fits into int32 unchanged */ /* |h4| <= 1.72*2^34 */ /* |h8| <= 1.41*2^60 */ carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; carry8 = h8 + (1 << 25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits; /* |h4| <= 2^25; from now on fits into int32 unchanged */ /* |h8| <= 2^25; from now on fits into int32 unchanged */ /* |h5| <= 1.01*2^24 */ /* |h9| <= 1.71*2^59 */ carry9 = h9 + (1 << 24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits; /* |h9| <= 2^24; from now on fits into int32 unchanged */ /* |h0| <= 1.1*2^39 */ carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; /* |h0| <= 2^25; from now on fits into int32 unchanged */ /* |h1| <= 1.01*2^24 */ h[0] = (int32_t)h0; h[1] = (int32_t)h1; h[2] = (int32_t)h2; h[3] = (int32_t)h3; h[4] = (int32_t)h4; h[5] = (int32_t)h5; h[6] = (int32_t)h6; h[7] = (int32_t)h7; h[8] = (int32_t)h8; h[9] = (int32_t)h9; } /* * h = f * f * * Can overlap h with f. * * Preconditions: * |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. * * Postconditions: * |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc. * * See fe_mul.c for discussion of implementation strategy. */ static void fe_sq(fe h, const fe f) { int32_t f0 = f[0]; int32_t f1 = f[1]; int32_t f2 = f[2]; int32_t f3 = f[3]; int32_t f4 = f[4]; int32_t f5 = f[5]; int32_t f6 = f[6]; int32_t f7 = f[7]; int32_t f8 = f[8]; int32_t f9 = f[9]; int32_t f0_2 = 2 * f0; int32_t f1_2 = 2 * f1; int32_t f2_2 = 2 * f2; int32_t f3_2 = 2 * f3; int32_t f4_2 = 2 * f4; int32_t f5_2 = 2 * f5; int32_t f6_2 = 2 * f6; int32_t f7_2 = 2 * f7; int32_t f5_38 = 38 * f5; /* 1.959375*2^30 */ int32_t f6_19 = 19 * f6; /* 1.959375*2^30 */ int32_t f7_38 = 38 * f7; /* 1.959375*2^30 */ int32_t f8_19 = 19 * f8; /* 1.959375*2^30 */ int32_t f9_38 = 38 * f9; /* 1.959375*2^30 */ int64_t f0f0 = f0 * (int64_t) f0; int64_t f0f1_2 = f0_2 * (int64_t) f1; int64_t f0f2_2 = f0_2 * (int64_t) f2; int64_t f0f3_2 = f0_2 * (int64_t) f3; int64_t f0f4_2 = f0_2 * (int64_t) f4; int64_t f0f5_2 = f0_2 * (int64_t) f5; int64_t f0f6_2 = f0_2 * (int64_t) f6; int64_t f0f7_2 = f0_2 * (int64_t) f7; int64_t f0f8_2 = f0_2 * (int64_t) f8; int64_t f0f9_2 = f0_2 * (int64_t) f9; int64_t f1f1_2 = f1_2 * (int64_t) f1; int64_t f1f2_2 = f1_2 * (int64_t) f2; int64_t f1f3_4 = f1_2 * (int64_t) f3_2; int64_t f1f4_2 = f1_2 * (int64_t) f4; int64_t f1f5_4 = f1_2 * (int64_t) f5_2; int64_t f1f6_2 = f1_2 * (int64_t) f6; int64_t f1f7_4 = f1_2 * (int64_t) f7_2; int64_t f1f8_2 = f1_2 * (int64_t) f8; int64_t f1f9_76 = f1_2 * (int64_t) f9_38; int64_t f2f2 = f2 * (int64_t) f2; int64_t f2f3_2 = f2_2 * (int64_t) f3; int64_t f2f4_2 = f2_2 * (int64_t) f4; int64_t f2f5_2 = f2_2 * (int64_t) f5; int64_t f2f6_2 = f2_2 * (int64_t) f6; int64_t f2f7_2 = f2_2 * (int64_t) f7; int64_t f2f8_38 = f2_2 * (int64_t) f8_19; int64_t f2f9_38 = f2 * (int64_t) f9_38; int64_t f3f3_2 = f3_2 * (int64_t) f3; int64_t f3f4_2 = f3_2 * (int64_t) f4; int64_t f3f5_4 = f3_2 * (int64_t) f5_2; int64_t f3f6_2 = f3_2 * (int64_t) f6; int64_t f3f7_76 = f3_2 * (int64_t) f7_38; int64_t f3f8_38 = f3_2 * (int64_t) f8_19; int64_t f3f9_76 = f3_2 * (int64_t) f9_38; int64_t f4f4 = f4 * (int64_t) f4; int64_t f4f5_2 = f4_2 * (int64_t) f5; int64_t f4f6_38 = f4_2 * (int64_t) f6_19; int64_t f4f7_38 = f4 * (int64_t) f7_38; int64_t f4f8_38 = f4_2 * (int64_t) f8_19; int64_t f4f9_38 = f4 * (int64_t) f9_38; int64_t f5f5_38 = f5 * (int64_t) f5_38; int64_t f5f6_38 = f5_2 * (int64_t) f6_19; int64_t f5f7_76 = f5_2 * (int64_t) f7_38; int64_t f5f8_38 = f5_2 * (int64_t) f8_19; int64_t f5f9_76 = f5_2 * (int64_t) f9_38; int64_t f6f6_19 = f6 * (int64_t) f6_19; int64_t f6f7_38 = f6 * (int64_t) f7_38; int64_t f6f8_38 = f6_2 * (int64_t) f8_19; int64_t f6f9_38 = f6 * (int64_t) f9_38; int64_t f7f7_38 = f7 * (int64_t) f7_38; int64_t f7f8_38 = f7_2 * (int64_t) f8_19; int64_t f7f9_76 = f7_2 * (int64_t) f9_38; int64_t f8f8_19 = f8 * (int64_t) f8_19; int64_t f8f9_38 = f8 * (int64_t) f9_38; int64_t f9f9_38 = f9 * (int64_t) f9_38; int64_t h0 = f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38; int64_t h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38; int64_t h2 = f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19; int64_t h3 = f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38; int64_t h4 = f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38; int64_t h5 = f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38; int64_t h6 = f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19; int64_t h7 = f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38; int64_t h8 = f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38; int64_t h9 = f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2; int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; carry1 = h1 + (1 << 24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits; carry5 = h5 + (1 << 24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits; carry2 = h2 + (1 << 25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits; carry6 = h6 + (1 << 25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits; carry3 = h3 + (1 << 24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits; carry7 = h7 + (1 << 24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits; carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; carry8 = h8 + (1 << 25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits; carry9 = h9 + (1 << 24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits; carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; h[0] = (int32_t)h0; h[1] = (int32_t)h1; h[2] = (int32_t)h2; h[3] = (int32_t)h3; h[4] = (int32_t)h4; h[5] = (int32_t)h5; h[6] = (int32_t)h6; h[7] = (int32_t)h7; h[8] = (int32_t)h8; h[9] = (int32_t)h9; } static void fe_invert(fe out, const fe z) { fe t0; fe t1; fe t2; fe t3; int i; /* * Compute z ** -1 = z ** (2 ** 255 - 19 - 2) with the exponent as * 2 ** 255 - 21 = (2 ** 5) * (2 ** 250 - 1) + 11. */ /* t0 = z ** 2 */ fe_sq(t0, z); /* t1 = t0 ** (2 ** 2) = z ** 8 */ fe_sq(t1, t0); fe_sq(t1, t1); /* t1 = z * t1 = z ** 9 */ fe_mul(t1, z, t1); /* t0 = t0 * t1 = z ** 11 -- stash t0 away for the end. */ fe_mul(t0, t0, t1); /* t2 = t0 ** 2 = z ** 22 */ fe_sq(t2, t0); /* t1 = t1 * t2 = z ** (2 ** 5 - 1) */ fe_mul(t1, t1, t2); /* t2 = t1 ** (2 ** 5) = z ** ((2 ** 5) * (2 ** 5 - 1)) */ fe_sq(t2, t1); for (i = 1; i < 5; ++i) { fe_sq(t2, t2); } /* t1 = t1 * t2 = z ** ((2 ** 5 + 1) * (2 ** 5 - 1)) = z ** (2 ** 10 - 1) */ fe_mul(t1, t2, t1); /* Continuing similarly... */ /* t2 = z ** (2 ** 20 - 1) */ fe_sq(t2, t1); for (i = 1; i < 10; ++i) { fe_sq(t2, t2); } fe_mul(t2, t2, t1); /* t2 = z ** (2 ** 40 - 1) */ fe_sq(t3, t2); for (i = 1; i < 20; ++i) { fe_sq(t3, t3); } fe_mul(t2, t3, t2); /* t2 = z ** (2 ** 10) * (2 ** 40 - 1) */ for (i = 0; i < 10; ++i) { fe_sq(t2, t2); } /* t1 = z ** (2 ** 50 - 1) */ fe_mul(t1, t2, t1); /* t2 = z ** (2 ** 100 - 1) */ fe_sq(t2, t1); for (i = 1; i < 50; ++i) { fe_sq(t2, t2); } fe_mul(t2, t2, t1); /* t2 = z ** (2 ** 200 - 1) */ fe_sq(t3, t2); for (i = 1; i < 100; ++i) { fe_sq(t3, t3); } fe_mul(t2, t3, t2); /* t2 = z ** ((2 ** 50) * (2 ** 200 - 1) */ fe_sq(t2, t2); for (i = 1; i < 50; ++i) { fe_sq(t2, t2); } /* t1 = z ** (2 ** 250 - 1) */ fe_mul(t1, t2, t1); /* t1 = z ** ((2 ** 5) * (2 ** 250 - 1)) */ fe_sq(t1, t1); for (i = 1; i < 5; ++i) { fe_sq(t1, t1); } /* Recall t0 = z ** 11; out = z ** (2 ** 255 - 21) */ fe_mul(out, t1, t0); } /* * h = -f * * Preconditions: * |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. * * Postconditions: * |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. */ static void fe_neg(fe h, const fe f) { unsigned i; for (i = 0; i < 10; i++) { h[i] = -f[i]; } } /* * Replace (f,g) with (g,g) if b == 1; * replace (f,g) with (f,g) if b == 0. * * Preconditions: b in {0,1}. */ static void fe_cmov(fe f, const fe g, unsigned b) { size_t i; b = 0-b; for (i = 0; i < 10; i++) { int32_t x = f[i] ^ g[i]; x &= b; f[i] ^= x; } } /* * return 0 if f == 0 * return 1 if f != 0 * * Preconditions: * |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ static int fe_isnonzero(const fe f) { uint8_t s[32]; static const uint8_t zero[32] = {0}; fe_tobytes(s, f); return CRYPTO_memcmp(s, zero, sizeof(zero)) != 0; } /* * return 1 if f is in {1,3,5,...,q-2} * return 0 if f is in {0,2,4,...,q-1} * * Preconditions: * |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ static int fe_isnegative(const fe f) { uint8_t s[32]; fe_tobytes(s, f); return s[0] & 1; } /* * h = 2 * f * f * * Can overlap h with f. * * Preconditions: * |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. * * Postconditions: * |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc. * * See fe_mul.c for discussion of implementation strategy. */ static void fe_sq2(fe h, const fe f) { int32_t f0 = f[0]; int32_t f1 = f[1]; int32_t f2 = f[2]; int32_t f3 = f[3]; int32_t f4 = f[4]; int32_t f5 = f[5]; int32_t f6 = f[6]; int32_t f7 = f[7]; int32_t f8 = f[8]; int32_t f9 = f[9]; int32_t f0_2 = 2 * f0; int32_t f1_2 = 2 * f1; int32_t f2_2 = 2 * f2; int32_t f3_2 = 2 * f3; int32_t f4_2 = 2 * f4; int32_t f5_2 = 2 * f5; int32_t f6_2 = 2 * f6; int32_t f7_2 = 2 * f7; int32_t f5_38 = 38 * f5; /* 1.959375*2^30 */ int32_t f6_19 = 19 * f6; /* 1.959375*2^30 */ int32_t f7_38 = 38 * f7; /* 1.959375*2^30 */ int32_t f8_19 = 19 * f8; /* 1.959375*2^30 */ int32_t f9_38 = 38 * f9; /* 1.959375*2^30 */ int64_t f0f0 = f0 * (int64_t) f0; int64_t f0f1_2 = f0_2 * (int64_t) f1; int64_t f0f2_2 = f0_2 * (int64_t) f2; int64_t f0f3_2 = f0_2 * (int64_t) f3; int64_t f0f4_2 = f0_2 * (int64_t) f4; int64_t f0f5_2 = f0_2 * (int64_t) f5; int64_t f0f6_2 = f0_2 * (int64_t) f6; int64_t f0f7_2 = f0_2 * (int64_t) f7; int64_t f0f8_2 = f0_2 * (int64_t) f8; int64_t f0f9_2 = f0_2 * (int64_t) f9; int64_t f1f1_2 = f1_2 * (int64_t) f1; int64_t f1f2_2 = f1_2 * (int64_t) f2; int64_t f1f3_4 = f1_2 * (int64_t) f3_2; int64_t f1f4_2 = f1_2 * (int64_t) f4; int64_t f1f5_4 = f1_2 * (int64_t) f5_2; int64_t f1f6_2 = f1_2 * (int64_t) f6; int64_t f1f7_4 = f1_2 * (int64_t) f7_2; int64_t f1f8_2 = f1_2 * (int64_t) f8; int64_t f1f9_76 = f1_2 * (int64_t) f9_38; int64_t f2f2 = f2 * (int64_t) f2; int64_t f2f3_2 = f2_2 * (int64_t) f3; int64_t f2f4_2 = f2_2 * (int64_t) f4; int64_t f2f5_2 = f2_2 * (int64_t) f5; int64_t f2f6_2 = f2_2 * (int64_t) f6; int64_t f2f7_2 = f2_2 * (int64_t) f7; int64_t f2f8_38 = f2_2 * (int64_t) f8_19; int64_t f2f9_38 = f2 * (int64_t) f9_38; int64_t f3f3_2 = f3_2 * (int64_t) f3; int64_t f3f4_2 = f3_2 * (int64_t) f4; int64_t f3f5_4 = f3_2 * (int64_t) f5_2; int64_t f3f6_2 = f3_2 * (int64_t) f6; int64_t f3f7_76 = f3_2 * (int64_t) f7_38; int64_t f3f8_38 = f3_2 * (int64_t) f8_19; int64_t f3f9_76 = f3_2 * (int64_t) f9_38; int64_t f4f4 = f4 * (int64_t) f4; int64_t f4f5_2 = f4_2 * (int64_t) f5; int64_t f4f6_38 = f4_2 * (int64_t) f6_19; int64_t f4f7_38 = f4 * (int64_t) f7_38; int64_t f4f8_38 = f4_2 * (int64_t) f8_19; int64_t f4f9_38 = f4 * (int64_t) f9_38; int64_t f5f5_38 = f5 * (int64_t) f5_38; int64_t f5f6_38 = f5_2 * (int64_t) f6_19; int64_t f5f7_76 = f5_2 * (int64_t) f7_38; int64_t f5f8_38 = f5_2 * (int64_t) f8_19; int64_t f5f9_76 = f5_2 * (int64_t) f9_38; int64_t f6f6_19 = f6 * (int64_t) f6_19; int64_t f6f7_38 = f6 * (int64_t) f7_38; int64_t f6f8_38 = f6_2 * (int64_t) f8_19; int64_t f6f9_38 = f6 * (int64_t) f9_38; int64_t f7f7_38 = f7 * (int64_t) f7_38; int64_t f7f8_38 = f7_2 * (int64_t) f8_19; int64_t f7f9_76 = f7_2 * (int64_t) f9_38; int64_t f8f8_19 = f8 * (int64_t) f8_19; int64_t f8f9_38 = f8 * (int64_t) f9_38; int64_t f9f9_38 = f9 * (int64_t) f9_38; int64_t h0 = f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38; int64_t h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38; int64_t h2 = f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19; int64_t h3 = f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38; int64_t h4 = f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38; int64_t h5 = f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38; int64_t h6 = f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19; int64_t h7 = f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38; int64_t h8 = f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38; int64_t h9 = f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2; int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; h0 += h0; h1 += h1; h2 += h2; h3 += h3; h4 += h4; h5 += h5; h6 += h6; h7 += h7; h8 += h8; h9 += h9; carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; carry1 = h1 + (1 << 24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits; carry5 = h5 + (1 << 24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits; carry2 = h2 + (1 << 25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits; carry6 = h6 + (1 << 25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits; carry3 = h3 + (1 << 24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits; carry7 = h7 + (1 << 24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits; carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; carry8 = h8 + (1 << 25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits; carry9 = h9 + (1 << 24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits; carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; h[0] = (int32_t)h0; h[1] = (int32_t)h1; h[2] = (int32_t)h2; h[3] = (int32_t)h3; h[4] = (int32_t)h4; h[5] = (int32_t)h5; h[6] = (int32_t)h6; h[7] = (int32_t)h7; h[8] = (int32_t)h8; h[9] = (int32_t)h9; } static void fe_pow22523(fe out, const fe z) { fe t0; fe t1; fe t2; int i; fe_sq(t0, z); fe_sq(t1, t0); for (i = 1; i < 2; ++i) { fe_sq(t1, t1); } fe_mul(t1, z, t1); fe_mul(t0, t0, t1); fe_sq(t0, t0); fe_mul(t0, t1, t0); fe_sq(t1, t0); for (i = 1; i < 5; ++i) { fe_sq(t1, t1); } fe_mul(t0, t1, t0); fe_sq(t1, t0); for (i = 1; i < 10; ++i) { fe_sq(t1, t1); } fe_mul(t1, t1, t0); fe_sq(t2, t1); for (i = 1; i < 20; ++i) { fe_sq(t2, t2); } fe_mul(t1, t2, t1); fe_sq(t1, t1); for (i = 1; i < 10; ++i) { fe_sq(t1, t1); } fe_mul(t0, t1, t0); fe_sq(t1, t0); for (i = 1; i < 50; ++i) { fe_sq(t1, t1); } fe_mul(t1, t1, t0); fe_sq(t2, t1); for (i = 1; i < 100; ++i) { fe_sq(t2, t2); } fe_mul(t1, t2, t1); fe_sq(t1, t1); for (i = 1; i < 50; ++i) { fe_sq(t1, t1); } fe_mul(t0, t1, t0); fe_sq(t0, t0); for (i = 1; i < 2; ++i) { fe_sq(t0, t0); } fe_mul(out, t0, z); } /* * ge means group element. * * Here the group is the set of pairs (x,y) of field elements (see fe.h) * satisfying -x^2 + y^2 = 1 + d x^2y^2 * where d = -121665/121666. * * Representations: * ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z * ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT * ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T * ge_precomp (Duif): (y+x,y-x,2dxy) */ typedef struct { fe X; fe Y; fe Z; } ge_p2; typedef struct { fe X; fe Y; fe Z; fe T; } ge_p3; typedef struct { fe X; fe Y; fe Z; fe T; } ge_p1p1; typedef struct { fe yplusx; fe yminusx; fe xy2d; } ge_precomp; typedef struct { fe YplusX; fe YminusX; fe Z; fe T2d; } ge_cached; static void ge_tobytes(uint8_t *s, const ge_p2 *h) { fe recip; fe x; fe y; fe_invert(recip, h->Z); fe_mul(x, h->X, recip); fe_mul(y, h->Y, recip); fe_tobytes(s, y); s[31] ^= fe_isnegative(x) << 7; } static void ge_p3_tobytes(uint8_t *s, const ge_p3 *h) { fe recip; fe x; fe y; fe_invert(recip, h->Z); fe_mul(x, h->X, recip); fe_mul(y, h->Y, recip); fe_tobytes(s, y); s[31] ^= fe_isnegative(x) << 7; } static const fe d = { -10913610, 13857413, -15372611, 6949391, 114729, -8787816, -6275908, -3247719, -18696448, -12055116 }; static const fe sqrtm1 = { -32595792, -7943725, 9377950, 3500415, 12389472, -272473, -25146209, -2005654, 326686, 11406482 }; static int ge_frombytes_vartime(ge_p3 *h, const uint8_t *s) { fe u; fe v; fe v3; fe vxx; fe check; fe_frombytes(h->Y, s); fe_1(h->Z); fe_sq(u, h->Y); fe_mul(v, u, d); fe_sub(u, u, h->Z); /* u = y^2-1 */ fe_add(v, v, h->Z); /* v = dy^2+1 */ fe_sq(v3, v); fe_mul(v3, v3, v); /* v3 = v^3 */ fe_sq(h->X, v3); fe_mul(h->X, h->X, v); fe_mul(h->X, h->X, u); /* x = uv^7 */ fe_pow22523(h->X, h->X); /* x = (uv^7)^((q-5)/8) */ fe_mul(h->X, h->X, v3); fe_mul(h->X, h->X, u); /* x = uv^3(uv^7)^((q-5)/8) */ fe_sq(vxx, h->X); fe_mul(vxx, vxx, v); fe_sub(check, vxx, u); /* vx^2-u */ if (fe_isnonzero(check)) { fe_add(check, vxx, u); /* vx^2+u */ if (fe_isnonzero(check)) { return -1; } fe_mul(h->X, h->X, sqrtm1); } if (fe_isnegative(h->X) != (s[31] >> 7)) { fe_neg(h->X, h->X); } fe_mul(h->T, h->X, h->Y); return 0; } static void ge_p2_0(ge_p2 *h) { fe_0(h->X); fe_1(h->Y); fe_1(h->Z); } static void ge_p3_0(ge_p3 *h) { fe_0(h->X); fe_1(h->Y); fe_1(h->Z); fe_0(h->T); } static void ge_precomp_0(ge_precomp *h) { fe_1(h->yplusx); fe_1(h->yminusx); fe_0(h->xy2d); } /* r = p */ static void ge_p3_to_p2(ge_p2 *r, const ge_p3 *p) { fe_copy(r->X, p->X); fe_copy(r->Y, p->Y); fe_copy(r->Z, p->Z); } static const fe d2 = { -21827239, -5839606, -30745221, 13898782, 229458, 15978800, -12551817, -6495438, 29715968, 9444199 }; /* r = p */ static void ge_p3_to_cached(ge_cached *r, const ge_p3 *p) { fe_add(r->YplusX, p->Y, p->X); fe_sub(r->YminusX, p->Y, p->X); fe_copy(r->Z, p->Z); fe_mul(r->T2d, p->T, d2); } /* r = p */ static void ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p) { fe_mul(r->X, p->X, p->T); fe_mul(r->Y, p->Y, p->Z); fe_mul(r->Z, p->Z, p->T); } /* r = p */ static void ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p) { fe_mul(r->X, p->X, p->T); fe_mul(r->Y, p->Y, p->Z); fe_mul(r->Z, p->Z, p->T); fe_mul(r->T, p->X, p->Y); } /* r = 2 * p */ static void ge_p2_dbl(ge_p1p1 *r, const ge_p2 *p) { fe t0; fe_sq(r->X, p->X); fe_sq(r->Z, p->Y); fe_sq2(r->T, p->Z); fe_add(r->Y, p->X, p->Y); fe_sq(t0, r->Y); fe_add(r->Y, r->Z, r->X); fe_sub(r->Z, r->Z, r->X); fe_sub(r->X, t0, r->Y); fe_sub(r->T, r->T, r->Z); } /* r = 2 * p */ static void ge_p3_dbl(ge_p1p1 *r, const ge_p3 *p) { ge_p2 q; ge_p3_to_p2(&q, p); ge_p2_dbl(r, &q); } /* r = p + q */ static void ge_madd(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { fe t0; fe_add(r->X, p->Y, p->X); fe_sub(r->Y, p->Y, p->X); fe_mul(r->Z, r->X, q->yplusx); fe_mul(r->Y, r->Y, q->yminusx); fe_mul(r->T, q->xy2d, p->T); fe_add(t0, p->Z, p->Z); fe_sub(r->X, r->Z, r->Y); fe_add(r->Y, r->Z, r->Y); fe_add(r->Z, t0, r->T); fe_sub(r->T, t0, r->T); } /* r = p - q */ static void ge_msub(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { fe t0; fe_add(r->X, p->Y, p->X); fe_sub(r->Y, p->Y, p->X); fe_mul(r->Z, r->X, q->yminusx); fe_mul(r->Y, r->Y, q->yplusx); fe_mul(r->T, q->xy2d, p->T); fe_add(t0, p->Z, p->Z); fe_sub(r->X, r->Z, r->Y); fe_add(r->Y, r->Z, r->Y); fe_sub(r->Z, t0, r->T); fe_add(r->T, t0, r->T); } /* r = p + q */ static void ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { fe t0; fe_add(r->X, p->Y, p->X); fe_sub(r->Y, p->Y, p->X); fe_mul(r->Z, r->X, q->YplusX); fe_mul(r->Y, r->Y, q->YminusX); fe_mul(r->T, q->T2d, p->T); fe_mul(r->X, p->Z, q->Z); fe_add(t0, r->X, r->X); fe_sub(r->X, r->Z, r->Y); fe_add(r->Y, r->Z, r->Y); fe_add(r->Z, t0, r->T); fe_sub(r->T, t0, r->T); } /* r = p - q */ static void ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { fe t0; fe_add(r->X, p->Y, p->X); fe_sub(r->Y, p->Y, p->X); fe_mul(r->Z, r->X, q->YminusX); fe_mul(r->Y, r->Y, q->YplusX); fe_mul(r->T, q->T2d, p->T); fe_mul(r->X, p->Z, q->Z); fe_add(t0, r->X, r->X); fe_sub(r->X, r->Z, r->Y); fe_add(r->Y, r->Z, r->Y); fe_sub(r->Z, t0, r->T); fe_add(r->T, t0, r->T); } static uint8_t equal(signed char b, signed char c) { uint8_t ub = b; uint8_t uc = c; uint8_t x = ub ^ uc; /* 0: yes; 1..255: no */ uint32_t y = x; /* 0: yes; 1..255: no */ y -= 1; /* 4294967295: yes; 0..254: no */ y >>= 31; /* 1: yes; 0: no */ return y; } static void cmov(ge_precomp *t, const ge_precomp *u, uint8_t b) { fe_cmov(t->yplusx, u->yplusx, b); fe_cmov(t->yminusx, u->yminusx, b); fe_cmov(t->xy2d, u->xy2d, b); } /* k25519Precomp[i][j] = (j+1)*256^i*B */ static const ge_precomp k25519Precomp[32][8] = { { { {25967493, -14356035, 29566456, 3660896, -12694345, 4014787, 27544626, -11754271, -6079156, 2047605}, {-12545711, 934262, -2722910, 3049990, -727428, 9406986, 12720692, 5043384, 19500929, -15469378}, {-8738181, 4489570, 9688441, -14785194, 10184609, -12363380, 29287919, 11864899, -24514362, -4438546}, }, { {-12815894, -12976347, -21581243, 11784320, -25355658, -2750717, -11717903, -3814571, -358445, -10211303}, {-21703237, 6903825, 27185491, 6451973, -29577724, -9554005, -15616551, 11189268, -26829678, -5319081}, {26966642, 11152617, 32442495, 15396054, 14353839, -12752335, -3128826, -9541118, -15472047, -4166697}, }, { {15636291, -9688557, 24204773, -7912398, 616977, -16685262, 27787600, -14772189, 28944400, -1550024}, {16568933, 4717097, -11556148, -1102322, 15682896, -11807043, 16354577, -11775962, 7689662, 11199574}, {30464156, -5976125, -11779434, -15670865, 23220365, 15915852, 7512774, 10017326, -17749093, -9920357}, }, { {-17036878, 13921892, 10945806, -6033431, 27105052, -16084379, -28926210, 15006023, 3284568, -6276540}, {23599295, -8306047, -11193664, -7687416, 13236774, 10506355, 7464579, 9656445, 13059162, 10374397}, {7798556, 16710257, 3033922, 2874086, 28997861, 2835604, 32406664, -3839045, -641708, -101325}, }, { {10861363, 11473154, 27284546, 1981175, -30064349, 12577861, 32867885, 14515107, -15438304, 10819380}, {4708026, 6336745, 20377586, 9066809, -11272109, 6594696, -25653668, 12483688, -12668491, 5581306}, {19563160, 16186464, -29386857, 4097519, 10237984, -4348115, 28542350, 13850243, -23678021, -15815942}, }, { {-15371964, -12862754, 32573250, 4720197, -26436522, 5875511, -19188627, -15224819, -9818940, -12085777}, {-8549212, 109983, 15149363, 2178705, 22900618, 4543417, 3044240, -15689887, 1762328, 14866737}, {-18199695, -15951423, -10473290, 1707278, -17185920, 3916101, -28236412, 3959421, 27914454, 4383652}, }, { {5153746, 9909285, 1723747, -2777874, 30523605, 5516873, 19480852, 5230134, -23952439, -15175766}, {-30269007, -3463509, 7665486, 10083793, 28475525, 1649722, 20654025, 16520125, 30598449, 7715701}, {28881845, 14381568, 9657904, 3680757, -20181635, 7843316, -31400660, 1370708, 29794553, -1409300}, }, { {14499471, -2729599, -33191113, -4254652, 28494862, 14271267, 30290735, 10876454, -33154098, 2381726}, {-7195431, -2655363, -14730155, 462251, -27724326, 3941372, -6236617, 3696005, -32300832, 15351955}, {27431194, 8222322, 16448760, -3907995, -18707002, 11938355, -32961401, -2970515, 29551813, 10109425}, }, }, { { {-13657040, -13155431, -31283750, 11777098, 21447386, 6519384, -2378284, -1627556, 10092783, -4764171}, {27939166, 14210322, 4677035, 16277044, -22964462, -12398139, -32508754, 12005538, -17810127, 12803510}, {17228999, -15661624, -1233527, 300140, -1224870, -11714777, 30364213, -9038194, 18016357, 4397660}, }, { {-10958843, -7690207, 4776341, -14954238, 27850028, -15602212, -26619106, 14544525, -17477504, 982639}, {29253598, 15796703, -2863982, -9908884, 10057023, 3163536, 7332899, -4120128, -21047696, 9934963}, {5793303, 16271923, -24131614, -10116404, 29188560, 1206517, -14747930, 4559895, -30123922, -10897950}, }, { {-27643952, -11493006, 16282657, -11036493, 28414021, -15012264, 24191034, 4541697, -13338309, 5500568}, {12650548, -1497113, 9052871, 11355358, -17680037, -8400164, -17430592, 12264343, 10874051, 13524335}, {25556948, -3045990, 714651, 2510400, 23394682, -10415330, 33119038, 5080568, -22528059, 5376628}, }, { {-26088264, -4011052, -17013699, -3537628, -6726793, 1920897, -22321305, -9447443, 4535768, 1569007}, {-2255422, 14606630, -21692440, -8039818, 28430649, 8775819, -30494562, 3044290, 31848280, 12543772}, {-22028579, 2943893, -31857513, 6777306, 13784462, -4292203, -27377195, -2062731, 7718482, 14474653}, }, { {2385315, 2454213, -22631320, 46603, -4437935, -15680415, 656965, -7236665, 24316168, -5253567}, {13741529, 10911568, -33233417, -8603737, -20177830, -1033297, 33040651, -13424532, -20729456, 8321686}, {21060490, -2212744, 15712757, -4336099, 1639040, 10656336, 23845965, -11874838, -9984458, 608372}, }, { {-13672732, -15087586, -10889693, -7557059, -6036909, 11305547, 1123968, -6780577, 27229399, 23887}, {-23244140, -294205, -11744728, 14712571, -29465699, -2029617, 12797024, -6440308, -1633405, 16678954}, {-29500620, 4770662, -16054387, 14001338, 7830047, 9564805, -1508144, -4795045, -17169265, 4904953}, }, { {24059557, 14617003, 19037157, -15039908, 19766093, -14906429, 5169211, 16191880, 2128236, -4326833}, {-16981152, 4124966, -8540610, -10653797, 30336522, -14105247, -29806336, 916033, -6882542, -2986532}, {-22630907, 12419372, -7134229, -7473371, -16478904, 16739175, 285431, 2763829, 15736322, 4143876}, }, { {2379352, 11839345, -4110402, -5988665, 11274298, 794957, 212801, -14594663, 23527084, -16458268}, {33431127, -11130478, -17838966, -15626900, 8909499, 8376530, -32625340, 4087881, -15188911, -14416214}, {1767683, 7197987, -13205226, -2022635, -13091350, 448826, 5799055, 4357868, -4774191, -16323038}, }, }, { { {6721966, 13833823, -23523388, -1551314, 26354293, -11863321, 23365147, -3949732, 7390890, 2759800}, {4409041, 2052381, 23373853, 10530217, 7676779, -12885954, 21302353, -4264057, 1244380, -12919645}, {-4421239, 7169619, 4982368, -2957590, 30256825, -2777540, 14086413, 9208236, 15886429, 16489664}, }, { {1996075, 10375649, 14346367, 13311202, -6874135, -16438411, -13693198, 398369, -30606455, -712933}, {-25307465, 9795880, -2777414, 14878809, -33531835, 14780363, 13348553, 12076947, -30836462, 5113182}, {-17770784, 11797796, 31950843, 13929123, -25888302, 12288344, -30341101, -7336386, 13847711, 5387222}, }, { {-18582163, -3416217, 17824843, -2340966, 22744343, -10442611, 8763061, 3617786, -19600662, 10370991}, {20246567, -14369378, 22358229, -543712, 18507283, -10413996, 14554437, -8746092, 32232924, 16763880}, {9648505, 10094563, 26416693, 14745928, -30374318, -6472621, 11094161, 15689506, 3140038, -16510092}, }, { {-16160072, 5472695, 31895588, 4744994, 8823515, 10365685, -27224800, 9448613, -28774454, 366295}, {19153450, 11523972, -11096490, -6503142, -24647631, 5420647, 28344573, 8041113, 719605, 11671788}, {8678025, 2694440, -6808014, 2517372, 4964326, 11152271, -15432916, -15266516, 27000813, -10195553}, }, { {-15157904, 7134312, 8639287, -2814877, -7235688, 10421742, 564065, 5336097, 6750977, -14521026}, {11836410, -3979488, 26297894, 16080799, 23455045, 15735944, 1695823, -8819122, 8169720, 16220347}, {-18115838, 8653647, 17578566, -6092619, -8025777, -16012763, -11144307, -2627664, -5990708, -14166033}, }, { {-23308498, -10968312, 15213228, -10081214, -30853605, -11050004, 27884329, 2847284, 2655861, 1738395}, {-27537433, -14253021, -25336301, -8002780, -9370762, 8129821, 21651608, -3239336, -19087449, -11005278}, {1533110, 3437855, 23735889, 459276, 29970501, 11335377, 26030092, 5821408, 10478196, 8544890}, }, { {32173121, -16129311, 24896207, 3921497, 22579056, -3410854, 19270449, 12217473, 17789017, -3395995}, {-30552961, -2228401, -15578829, -10147201, 13243889, 517024, 15479401, -3853233, 30460520, 1052596}, {-11614875, 13323618, 32618793, 8175907, -15230173, 12596687, 27491595, -4612359, 3179268, -9478891}, }, { {31947069, -14366651, -4640583, -15339921, -15125977, -6039709, -14756777, -16411740, 19072640, -9511060}, {11685058, 11822410, 3158003, -13952594, 33402194, -4165066, 5977896, -5215017, 473099, 5040608}, {-20290863, 8198642, -27410132, 11602123, 1290375, -2799760, 28326862, 1721092, -19558642, -3131606}, }, }, { { {7881532, 10687937, 7578723, 7738378, -18951012, -2553952, 21820786, 8076149, -27868496, 11538389}, {-19935666, 3899861, 18283497, -6801568, -15728660, -11249211, 8754525, 7446702, -5676054, 5797016}, {-11295600, -3793569, -15782110, -7964573, 12708869, -8456199, 2014099, -9050574, -2369172, -5877341}, }, { {-22472376, -11568741, -27682020, 1146375, 18956691, 16640559, 1192730, -3714199, 15123619, 10811505}, {14352098, -3419715, -18942044, 10822655, 32750596, 4699007, -70363, 15776356, -28886779, -11974553}, {-28241164, -8072475, -4978962, -5315317, 29416931, 1847569, -20654173, -16484855, 4714547, -9600655}, }, { {15200332, 8368572, 19679101, 15970074, -31872674, 1959451, 24611599, -4543832, -11745876, 12340220}, {12876937, -10480056, 33134381, 6590940, -6307776, 14872440, 9613953, 8241152, 15370987, 9608631}, {-4143277, -12014408, 8446281, -391603, 4407738, 13629032, -7724868, 15866074, -28210621, -8814099}, }, { {26660628, -15677655, 8393734, 358047, -7401291, 992988, -23904233, 858697, 20571223, 8420556}, {14620715, 13067227, -15447274, 8264467, 14106269, 15080814, 33531827, 12516406, -21574435, -12476749}, {236881, 10476226, 57258, -14677024, 6472998, 2466984, 17258519, 7256740, 8791136, 15069930}, }, { {1276410, -9371918, 22949635, -16322807, -23493039, -5702186, 14711875, 4874229, -30663140, -2331391}, {5855666, 4990204, -13711848, 7294284, -7804282, 1924647, -1423175, -7912378, -33069337, 9234253}, {20590503, -9018988, 31529744, -7352666, -2706834, 10650548, 31559055, -11609587, 18979186, 13396066}, }, { {24474287, 4968103, 22267082, 4407354, 24063882, -8325180, -18816887, 13594782, 33514650, 7021958}, {-11566906, -6565505, -21365085, 15928892, -26158305, 4315421, -25948728, -3916677, -21480480, 12868082}, {-28635013, 13504661, 19988037, -2132761, 21078225, 6443208, -21446107, 2244500, -12455797, -8089383}, }, { {-30595528, 13793479, -5852820, 319136, -25723172, -6263899, 33086546, 8957937, -15233648, 5540521}, {-11630176, -11503902, -8119500, -7643073, 2620056, 1022908, -23710744, -1568984, -16128528, -14962807}, {23152971, 775386, 27395463, 14006635, -9701118, 4649512, 1689819, 892185, -11513277, -15205948}, }, { {9770129, 9586738, 26496094, 4324120, 1556511, -3550024, 27453819, 4763127, -19179614, 5867134}, {-32765025, 1927590, 31726409, -4753295, 23962434, -16019500, 27846559, 5931263, -29749703, -16108455}, {27461885, -2977536, 22380810, 1815854, -23033753, -3031938, 7283490, -15148073, -19526700, 7734629}, }, }, { { {-8010264, -9590817, -11120403, 6196038, 29344158, -13430885, 7585295, -3176626, 18549497, 15302069}, {-32658337, -6171222, -7672793, -11051681, 6258878, 13504381, 10458790, -6418461, -8872242, 8424746}, {24687205, 8613276, -30667046, -3233545, 1863892, -1830544, 19206234, 7134917, -11284482, -828919}, }, { {11334899, -9218022, 8025293, 12707519, 17523892, -10476071, 10243738, -14685461, -5066034, 16498837}, {8911542, 6887158, -9584260, -6958590, 11145641, -9543680, 17303925, -14124238, 6536641, 10543906}, {-28946384, 15479763, -17466835, 568876, -1497683, 11223454, -2669190, -16625574, -27235709, 8876771}, }, { {-25742899, -12566864, -15649966, -846607, -33026686, -796288, -33481822, 15824474, -604426, -9039817}, {10330056, 70051, 7957388, -9002667, 9764902, 15609756, 27698697, -4890037, 1657394, 3084098}, {10477963, -7470260, 12119566, -13250805, 29016247, -5365589, 31280319, 14396151, -30233575, 15272409}, }, { {-12288309, 3169463, 28813183, 16658753, 25116432, -5630466, -25173957, -12636138, -25014757, 1950504}, {-26180358, 9489187, 11053416, -14746161, -31053720, 5825630, -8384306, -8767532, 15341279, 8373727}, {28685821, 7759505, -14378516, -12002860, -31971820, 4079242, 298136, -10232602, -2878207, 15190420}, }, { {-32932876, 13806336, -14337485, -15794431, -24004620, 10940928, 8669718, 2742393, -26033313, -6875003}, {-1580388, -11729417, -25979658, -11445023, -17411874, -10912854, 9291594, -16247779, -12154742, 6048605}, {-30305315, 14843444, 1539301, 11864366, 20201677, 1900163, 13934231, 5128323, 11213262, 9168384}, }, { {-26280513, 11007847, 19408960, -940758, -18592965, -4328580, -5088060, -11105150, 20470157, -16398701}, {-23136053, 9282192, 14855179, -15390078, -7362815, -14408560, -22783952, 14461608, 14042978, 5230683}, {29969567, -2741594, -16711867, -8552442, 9175486, -2468974, 21556951, 3506042, -5933891, -12449708}, }, { {-3144746, 8744661, 19704003, 4581278, -20430686, 6830683, -21284170, 8971513, -28539189, 15326563}, {-19464629, 10110288, -17262528, -3503892, -23500387, 1355669, -15523050, 15300988, -20514118, 9168260}, {-5353335, 4488613, -23803248, 16314347, 7780487, -15638939, -28948358, 9601605, 33087103, -9011387}, }, { {-19443170, -15512900, -20797467, -12445323, -29824447, 10229461, -27444329, -15000531, -5996870, 15664672}, {23294591, -16632613, -22650781, -8470978, 27844204, 11461195, 13099750, -2460356, 18151676, 13417686}, {-24722913, -4176517, -31150679, 5988919, -26858785, 6685065, 1661597, -12551441, 15271676, -15452665}, }, }, { { {11433042, -13228665, 8239631, -5279517, -1985436, -725718, -18698764, 2167544, -6921301, -13440182}, {-31436171, 15575146, 30436815, 12192228, -22463353, 9395379, -9917708, -8638997, 12215110, 12028277}, {14098400, 6555944, 23007258, 5757252, -15427832, -12950502, 30123440, 4617780, -16900089, -655628}, }, { {-4026201, -15240835, 11893168, 13718664, -14809462, 1847385, -15819999, 10154009, 23973261, -12684474}, {-26531820, -3695990, -1908898, 2534301, -31870557, -16550355, 18341390, -11419951, 32013174, -10103539}, {-25479301, 10876443, -11771086, -14625140, -12369567, 1838104, 21911214, 6354752, 4425632, -837822}, }, { {-10433389, -14612966, 22229858, -3091047, -13191166, 776729, -17415375, -12020462, 4725005, 14044970}, {19268650, -7304421, 1555349, 8692754, -21474059, -9910664, 6347390, -1411784, -19522291, -16109756}, {-24864089, 12986008, -10898878, -5558584, -11312371, -148526, 19541418, 8180106, 9282262, 10282508}, }, { {-26205082, 4428547, -8661196, -13194263, 4098402, -14165257, 15522535, 8372215, 5542595, -10702683}, {-10562541, 14895633, 26814552, -16673850, -17480754, -2489360, -2781891, 6993761, -18093885, 10114655}, {-20107055, -929418, 31422704, 10427861, -7110749, 6150669, -29091755, -11529146, 25953725, -106158}, }, { {-4234397, -8039292, -9119125, 3046000, 2101609, -12607294, 19390020, 6094296, -3315279, 12831125}, {-15998678, 7578152, 5310217, 14408357, -33548620, -224739, 31575954, 6326196, 7381791, -2421839}, {-20902779, 3296811, 24736065, -16328389, 18374254, 7318640, 6295303, 8082724, -15362489, 12339664}, }, { {27724736, 2291157, 6088201, -14184798, 1792727, 5857634, 13848414, 15768922, 25091167, 14856294}, {-18866652, 8331043, 24373479, 8541013, -701998, -9269457, 12927300, -12695493, -22182473, -9012899}, {-11423429, -5421590, 11632845, 3405020, 30536730, -11674039, -27260765, 13866390, 30146206, 9142070}, }, { {3924129, -15307516, -13817122, -10054960, 12291820, -668366, -27702774, 9326384, -8237858, 4171294}, {-15921940, 16037937, 6713787, 16606682, -21612135, 2790944, 26396185, 3731949, 345228, -5462949}, {-21327538, 13448259, 25284571, 1143661, 20614966, -8849387, 2031539, -12391231, -16253183, -13582083}, }, { {31016211, -16722429, 26371392, -14451233, -5027349, 14854137, 17477601, 3842657, 28012650, -16405420}, {-5075835, 9368966, -8562079, -4600902, -15249953, 6970560, -9189873, 16292057, -8867157, 3507940}, {29439664, 3537914, 23333589, 6997794, -17555561, -11018068, -15209202, -15051267, -9164929, 6580396}, }, }, { { {-12185861, -7679788, 16438269, 10826160, -8696817, -6235611, 17860444, -9273846, -2095802, 9304567}, {20714564, -4336911, 29088195, 7406487, 11426967, -5095705, 14792667, -14608617, 5289421, -477127}, {-16665533, -10650790, -6160345, -13305760, 9192020, -1802462, 17271490, 12349094, 26939669, -3752294}, }, { {-12889898, 9373458, 31595848, 16374215, 21471720, 13221525, -27283495, -12348559, -3698806, 117887}, {22263325, -6560050, 3984570, -11174646, -15114008, -566785, 28311253, 5358056, -23319780, 541964}, {16259219, 3261970, 2309254, -15534474, -16885711, -4581916, 24134070, -16705829, -13337066, -13552195}, }, { {9378160, -13140186, -22845982, -12745264, 28198281, -7244098, -2399684, -717351, 690426, 14876244}, {24977353, -314384, -8223969, -13465086, 28432343, -1176353, -13068804, -12297348, -22380984, 6618999}, {-1538174, 11685646, 12944378, 13682314, -24389511, -14413193, 8044829, -13817328, 32239829, -5652762}, }, { {-18603066, 4762990, -926250, 8885304, -28412480, -3187315, 9781647, -10350059, 32779359, 5095274}, {-33008130, -5214506, -32264887, -3685216, 9460461, -9327423, -24601656, 14506724, 21639561, -2630236}, {-16400943, -13112215, 25239338, 15531969, 3987758, -4499318, -1289502, -6863535, 17874574, 558605}, }, { {-13600129, 10240081, 9171883, 16131053, -20869254, 9599700, 33499487, 5080151, 2085892, 5119761}, {-22205145, -2519528, -16381601, 414691, -25019550, 2170430, 30634760, -8363614, -31999993, -5759884}, {-6845704, 15791202, 8550074, -1312654, 29928809, -12092256, 27534430, -7192145, -22351378, 12961482}, }, { {-24492060, -9570771, 10368194, 11582341, -23397293, -2245287, 16533930, 8206996, -30194652, -5159638}, {-11121496, -3382234, 2307366, 6362031, -135455, 8868177, -16835630, 7031275, 7589640, 8945490}, {-32152748, 8917967, 6661220, -11677616, -1192060, -15793393, 7251489, -11182180, 24099109, -14456170}, }, { {5019558, -7907470, 4244127, -14714356, -26933272, 6453165, -19118182, -13289025, -6231896, -10280736}, {10853594, 10721687, 26480089, 5861829, -22995819, 1972175, -1866647, -10557898, -3363451, -6441124}, {-17002408, 5906790, 221599, -6563147, 7828208, -13248918, 24362661, -2008168, -13866408, 7421392}, }, { {8139927, -6546497, 32257646, -5890546, 30375719, 1886181, -21175108, 15441252, 28826358, -4123029}, {6267086, 9695052, 7709135, -16603597, -32869068, -1886135, 14795160, -7840124, 13746021, -1742048}, {28584902, 7787108, -6732942, -15050729, 22846041, -7571236, -3181936, -363524, 4771362, -8419958}, }, }, { { {24949256, 6376279, -27466481, -8174608, -18646154, -9930606, 33543569, -12141695, 3569627, 11342593}, {26514989, 4740088, 27912651, 3697550, 19331575, -11472339, 6809886, 4608608, 7325975, -14801071}, {-11618399, -14554430, -24321212, 7655128, -1369274, 5214312, -27400540, 10258390, -17646694, -8186692}, }, { {11431204, 15823007, 26570245, 14329124, 18029990, 4796082, -31446179, 15580664, 9280358, -3973687}, {-160783, -10326257, -22855316, -4304997, -20861367, -13621002, -32810901, -11181622, -15545091, 4387441}, {-20799378, 12194512, 3937617, -5805892, -27154820, 9340370, -24513992, 8548137, 20617071, -7482001}, }, { {-938825, -3930586, -8714311, 16124718, 24603125, -6225393, -13775352, -11875822, 24345683, 10325460}, {-19855277, -1568885, -22202708, 8714034, 14007766, 6928528, 16318175, -1010689, 4766743, 3552007}, {-21751364, -16730916, 1351763, -803421, -4009670, 3950935, 3217514, 14481909, 10988822, -3994762}, }, { {15564307, -14311570, 3101243, 5684148, 30446780, -8051356, 12677127, -6505343, -8295852, 13296005}, {-9442290, 6624296, -30298964, -11913677, -4670981, -2057379, 31521204, 9614054, -30000824, 12074674}, {4771191, -135239, 14290749, -13089852, 27992298, 14998318, -1413936, -1556716, 29832613, -16391035}, }, { {7064884, -7541174, -19161962, -5067537, -18891269, -2912736, 25825242, 5293297, -27122660, 13101590}, {-2298563, 2439670, -7466610, 1719965, -27267541, -16328445, 32512469, -5317593, -30356070, -4190957}, {-30006540, 10162316, -33180176, 3981723, -16482138, -13070044, 14413974, 9515896, 19568978, 9628812}, }, { {33053803, 199357, 15894591, 1583059, 27380243, -4580435, -17838894, -6106839, -6291786, 3437740}, {-18978877, 3884493, 19469877, 12726490, 15913552, 13614290, -22961733, 70104, 7463304, 4176122}, {-27124001, 10659917, 11482427, -16070381, 12771467, -6635117, -32719404, -5322751, 24216882, 5944158}, }, { {8894125, 7450974, -2664149, -9765752, -28080517, -12389115, 19345746, 14680796, 11632993, 5847885}, {26942781, -2315317, 9129564, -4906607, 26024105, 11769399, -11518837, 6367194, -9727230, 4782140}, {19916461, -4828410, -22910704, -11414391, 25606324, -5972441, 33253853, 8220911, 6358847, -1873857}, }, { {801428, -2081702, 16569428, 11065167, 29875704, 96627, 7908388, -4480480, -13538503, 1387155}, {19646058, 5720633, -11416706, 12814209, 11607948, 12749789, 14147075, 15156355, -21866831, 11835260}, {19299512, 1155910, 28703737, 14890794, 2925026, 7269399, 26121523, 15467869, -26560550, 5052483}, }, }, { { {-3017432, 10058206, 1980837, 3964243, 22160966, 12322533, -6431123, -12618185, 12228557, -7003677}, {32944382, 14922211, -22844894, 5188528, 21913450, -8719943, 4001465, 13238564, -6114803, 8653815}, {22865569, -4652735, 27603668, -12545395, 14348958, 8234005, 24808405, 5719875, 28483275, 2841751}, }, { {-16420968, -1113305, -327719, -12107856, 21886282, -15552774, -1887966, -315658, 19932058, -12739203}, {-11656086, 10087521, -8864888, -5536143, -19278573, -3055912, 3999228, 13239134, -4777469, -13910208}, {1382174, -11694719, 17266790, 9194690, -13324356, 9720081, 20403944, 11284705, -14013818, 3093230}, }, { {16650921, -11037932, -1064178, 1570629, -8329746, 7352753, -302424, 16271225, -24049421, -6691850}, {-21911077, -5927941, -4611316, -5560156, -31744103, -10785293, 24123614, 15193618, -21652117, -16739389}, {-9935934, -4289447, -25279823, 4372842, 2087473, 10399484, 31870908, 14690798, 17361620, 11864968}, }, { {-11307610, 6210372, 13206574, 5806320, -29017692, -13967200, -12331205, -7486601, -25578460, -16240689}, {14668462, -12270235, 26039039, 15305210, 25515617, 4542480, 10453892, 6577524, 9145645, -6443880}, {5974874, 3053895, -9433049, -10385191, -31865124, 3225009, -7972642, 3936128, -5652273, -3050304}, }, { {30625386, -4729400, -25555961, -12792866, -20484575, 7695099, 17097188, -16303496, -27999779, 1803632}, {-3553091, 9865099, -5228566, 4272701, -5673832, -16689700, 14911344, 12196514, -21405489, 7047412}, {20093277, 9920966, -11138194, -5343857, 13161587, 12044805, -32856851, 4124601, -32343828, -10257566}, }, { {-20788824, 14084654, -13531713, 7842147, 19119038, -13822605, 4752377, -8714640, -21679658, 2288038}, {-26819236, -3283715, 29965059, 3039786, -14473765, 2540457, 29457502, 14625692, -24819617, 12570232}, {-1063558, -11551823, 16920318, 12494842, 1278292, -5869109, -21159943, -3498680, -11974704, 4724943}, }, { {17960970, -11775534, -4140968, -9702530, -8876562, -1410617, -12907383, -8659932, -29576300, 1903856}, {23134274, -14279132, -10681997, -1611936, 20684485, 15770816, -12989750, 3190296, 26955097, 14109738}, {15308788, 5320727, -30113809, -14318877, 22902008, 7767164, 29425325, -11277562, 31960942, 11934971}, }, { {-27395711, 8435796, 4109644, 12222639, -24627868, 14818669, 20638173, 4875028, 10491392, 1379718}, {-13159415, 9197841, 3875503, -8936108, -1383712, -5879801, 33518459, 16176658, 21432314, 12180697}, {-11787308, 11500838, 13787581, -13832590, -22430679, 10140205, 1465425, 12689540, -10301319, -13872883}, }, }, { { {5414091, -15386041, -21007664, 9643570, 12834970, 1186149, -2622916, -1342231, 26128231, 6032912}, {-26337395, -13766162, 32496025, -13653919, 17847801, -12669156, 3604025, 8316894, -25875034, -10437358}, {3296484, 6223048, 24680646, -12246460, -23052020, 5903205, -8862297, -4639164, 12376617, 3188849}, }, { {29190488, -14659046, 27549113, -1183516, 3520066, -10697301, 32049515, -7309113, -16109234, -9852307}, {-14744486, -9309156, 735818, -598978, -20407687, -5057904, 25246078, -15795669, 18640741, -960977}, {-6928835, -16430795, 10361374, 5642961, 4910474, 12345252, -31638386, -494430, 10530747, 1053335}, }, { {-29265967, -14186805, -13538216, -12117373, -19457059, -10655384, -31462369, -2948985, 24018831, 15026644}, {-22592535, -3145277, -2289276, 5953843, -13440189, 9425631, 25310643, 13003497, -2314791, -15145616}, {-27419985, -603321, -8043984, -1669117, -26092265, 13987819, -27297622, 187899, -23166419, -2531735}, }, { {-21744398, -13810475, 1844840, 5021428, -10434399, -15911473, 9716667, 16266922, -5070217, 726099}, {29370922, -6053998, 7334071, -15342259, 9385287, 2247707, -13661962, -4839461, 30007388, -15823341}, {-936379, 16086691, 23751945, -543318, -1167538, -5189036, 9137109, 730663, 9835848, 4555336}, }, { {-23376435, 1410446, -22253753, -12899614, 30867635, 15826977, 17693930, 544696, -11985298, 12422646}, {31117226, -12215734, -13502838, 6561947, -9876867, -12757670, -5118685, -4096706, 29120153, 13924425}, {-17400879, -14233209, 19675799, -2734756, -11006962, -5858820, -9383939, -11317700, 7240931, -237388}, }, { {-31361739, -11346780, -15007447, -5856218, -22453340, -12152771, 1222336, 4389483, 3293637, -15551743}, {-16684801, -14444245, 11038544, 11054958, -13801175, -3338533, -24319580, 7733547, 12796905, -6335822}, {-8759414, -10817836, -25418864, 10783769, -30615557, -9746811, -28253339, 3647836, 3222231, -11160462}, }, { {18606113, 1693100, -25448386, -15170272, 4112353, 10045021, 23603893, -2048234, -7550776, 2484985}, {9255317, -3131197, -12156162, -1004256, 13098013, -9214866, 16377220, -2102812, -19802075, -3034702}, {-22729289, 7496160, -5742199, 11329249, 19991973, -3347502, -31718148, 9936966, -30097688, -10618797}, }, { {21878590, -5001297, 4338336, 13643897, -3036865, 13160960, 19708896, 5415497, -7360503, -4109293}, {27736861, 10103576, 12500508, 8502413, -3413016, -9633558, 10436918, -1550276, -23659143, -8132100}, {19492550, -12104365, -29681976, -852630, -3208171, 12403437, 30066266, 8367329, 13243957, 8709688}, }, }, { { {12015105, 2801261, 28198131, 10151021, 24818120, -4743133, -11194191, -5645734, 5150968, 7274186}, {2831366, -12492146, 1478975, 6122054, 23825128, -12733586, 31097299, 6083058, 31021603, -9793610}, {-2529932, -2229646, 445613, 10720828, -13849527, -11505937, -23507731, 16354465, 15067285, -14147707}, }, { {7840942, 14037873, -33364863, 15934016, -728213, -3642706, 21403988, 1057586, -19379462, -12403220}, {915865, -16469274, 15608285, -8789130, -24357026, 6060030, -17371319, 8410997, -7220461, 16527025}, {32922597, -556987, 20336074, -16184568, 10903705, -5384487, 16957574, 52992, 23834301, 6588044}, }, { {32752030, 11232950, 3381995, -8714866, 22652988, -10744103, 17159699, 16689107, -20314580, -1305992}, {-4689649, 9166776, -25710296, -10847306, 11576752, 12733943, 7924251, -2752281, 1976123, -7249027}, {21251222, 16309901, -2983015, -6783122, 30810597, 12967303, 156041, -3371252, 12331345, -8237197}, }, { {8651614, -4477032, -16085636, -4996994, 13002507, 2950805, 29054427, -5106970, 10008136, -4667901}, {31486080, 15114593, -14261250, 12951354, 14369431, -7387845, 16347321, -13662089, 8684155, -10532952}, {19443825, 11385320, 24468943, -9659068, -23919258, 2187569, -26263207, -6086921, 31316348, 14219878}, }, { {-28594490, 1193785, 32245219, 11392485, 31092169, 15722801, 27146014, 6992409, 29126555, 9207390}, {32382935, 1110093, 18477781, 11028262, -27411763, -7548111, -4980517, 10843782, -7957600, -14435730}, {2814918, 7836403, 27519878, -7868156, -20894015, -11553689, -21494559, 8550130, 28346258, 1994730}, }, { {-19578299, 8085545, -14000519, -3948622, 2785838, -16231307, -19516951, 7174894, 22628102, 8115180}, {-30405132, 955511, -11133838, -15078069, -32447087, -13278079, -25651578, 3317160, -9943017, 930272}, {-15303681, -6833769, 28856490, 1357446, 23421993, 1057177, 24091212, -1388970, -22765376, -10650715}, }, { {-22751231, -5303997, -12907607, -12768866, -15811511, -7797053, -14839018, -16554220, -1867018, 8398970}, {-31969310, 2106403, -4736360, 1362501, 12813763, 16200670, 22981545, -6291273, 18009408, -15772772}, {-17220923, -9545221, -27784654, 14166835, 29815394, 7444469, 29551787, -3727419, 19288549, 1325865}, }, { {15100157, -15835752, -23923978, -1005098, -26450192, 15509408, 12376730, -3479146, 33166107, -8042750}, {20909231, 13023121, -9209752, 16251778, -5778415, -8094914, 12412151, 10018715, 2213263, -13878373}, {32529814, -11074689, 30361439, -16689753, -9135940, 1513226, 22922121, 6382134, -5766928, 8371348}, }, }, { { {9923462, 11271500, 12616794, 3544722, -29998368, -1721626, 12891687, -8193132, -26442943, 10486144}, {-22597207, -7012665, 8587003, -8257861, 4084309, -12970062, 361726, 2610596, -23921530, -11455195}, {5408411, -1136691, -4969122, 10561668, 24145918, 14240566, 31319731, -4235541, 19985175, -3436086}, }, { {-13994457, 16616821, 14549246, 3341099, 32155958, 13648976, -17577068, 8849297, 65030, 8370684}, {-8320926, -12049626, 31204563, 5839400, -20627288, -1057277, -19442942, 6922164, 12743482, -9800518}, {-2361371, 12678785, 28815050, 4759974, -23893047, 4884717, 23783145, 11038569, 18800704, 255233}, }, { {-5269658, -1773886, 13957886, 7990715, 23132995, 728773, 13393847, 9066957, 19258688, -14753793}, {-2936654, -10827535, -10432089, 14516793, -3640786, 4372541, -31934921, 2209390, -1524053, 2055794}, {580882, 16705327, 5468415, -2683018, -30926419, -14696000, -7203346, -8994389, -30021019, 7394435}, }, { {23838809, 1822728, -15738443, 15242727, 8318092, -3733104, -21672180, -3492205, -4821741, 14799921}, {13345610, 9759151, 3371034, -16137791, 16353039, 8577942, 31129804, 13496856, -9056018, 7402518}, {2286874, -4435931, -20042458, -2008336, -13696227, 5038122, 11006906, -15760352, 8205061, 1607563}, }, { {14414086, -8002132, 3331830, -3208217, 22249151, -5594188, 18364661, -2906958, 30019587, -9029278}, {-27688051, 1585953, -10775053, 931069, -29120221, -11002319, -14410829, 12029093, 9944378, 8024}, {4368715, -3709630, 29874200, -15022983, -20230386, -11410704, -16114594, -999085, -8142388, 5640030}, }, { {10299610, 13746483, 11661824, 16234854, 7630238, 5998374, 9809887, -16694564, 15219798, -14327783}, {27425505, -5719081, 3055006, 10660664, 23458024, 595578, -15398605, -1173195, -18342183, 9742717}, {6744077, 2427284, 26042789, 2720740, -847906, 1118974, 32324614, 7406442, 12420155, 1994844}, }, { {14012521, -5024720, -18384453, -9578469, -26485342, -3936439, -13033478, -10909803, 24319929, -6446333}, {16412690, -4507367, 10772641, 15929391, -17068788, -4658621, 10555945, -10484049, -30102368, -4739048}, {22397382, -7767684, -9293161, -12792868, 17166287, -9755136, -27333065, 6199366, 21880021, -12250760}, }, { {-4283307, 5368523, -31117018, 8163389, -30323063, 3209128, 16557151, 8890729, 8840445, 4957760}, {-15447727, 709327, -6919446, -10870178, -29777922, 6522332, -21720181, 12130072, -14796503, 5005757}, {-2114751, -14308128, 23019042, 15765735, -25269683, 6002752, 10183197, -13239326, -16395286, -2176112}, }, }, { { {-19025756, 1632005, 13466291, -7995100, -23640451, 16573537, -32013908, -3057104, 22208662, 2000468}, {3065073, -1412761, -25598674, -361432, -17683065, -5703415, -8164212, 11248527, -3691214, -7414184}, {10379208, -6045554, 8877319, 1473647, -29291284, -12507580, 16690915, 2553332, -3132688, 16400289}, }, { {15716668, 1254266, -18472690, 7446274, -8448918, 6344164, -22097271, -7285580, 26894937, 9132066}, {24158887, 12938817, 11085297, -8177598, -28063478, -4457083, -30576463, 64452, -6817084, -2692882}, {13488534, 7794716, 22236231, 5989356, 25426474, -12578208, 2350710, -3418511, -4688006, 2364226}, }, { {16335052, 9132434, 25640582, 6678888, 1725628, 8517937, -11807024, -11697457, 15445875, -7798101}, {29004207, -7867081, 28661402, -640412, -12794003, -7943086, 31863255, -4135540, -278050, -15759279}, {-6122061, -14866665, -28614905, 14569919, -10857999, -3591829, 10343412, -6976290, -29828287, -10815811}, }, { {27081650, 3463984, 14099042, -4517604, 1616303, -6205604, 29542636, 15372179, 17293797, 960709}, {20263915, 11434237, -5765435, 11236810, 13505955, -10857102, -16111345, 6493122, -19384511, 7639714}, {-2830798, -14839232, 25403038, -8215196, -8317012, -16173699, 18006287, -16043750, 29994677, -15808121}, }, { {9769828, 5202651, -24157398, -13631392, -28051003, -11561624, -24613141, -13860782, -31184575, 709464}, {12286395, 13076066, -21775189, -1176622, -25003198, 4057652, -32018128, -8890874, 16102007, 13205847}, {13733362, 5599946, 10557076, 3195751, -5557991, 8536970, -25540170, 8525972, 10151379, 10394400}, }, { {4024660, -16137551, 22436262, 12276534, -9099015, -2686099, 19698229, 11743039, -33302334, 8934414}, {-15879800, -4525240, -8580747, -2934061, 14634845, -698278, -9449077, 3137094, -11536886, 11721158}, {17555939, -5013938, 8268606, 2331751, -22738815, 9761013, 9319229, 8835153, -9205489, -1280045}, }, { {-461409, -7830014, 20614118, 16688288, -7514766, -4807119, 22300304, 505429, 6108462, -6183415}, {-5070281, 12367917, -30663534, 3234473, 32617080, -8422642, 29880583, -13483331, -26898490, -7867459}, {-31975283, 5726539, 26934134, 10237677, -3173717, -605053, 24199304, 3795095, 7592688, -14992079}, }, { {21594432, -14964228, 17466408, -4077222, 32537084, 2739898, 6407723, 12018833, -28256052, 4298412}, {-20650503, -11961496, -27236275, 570498, 3767144, -1717540, 13891942, -1569194, 13717174, 10805743}, {-14676630, -15644296, 15287174, 11927123, 24177847, -8175568, -796431, 14860609, -26938930, -5863836}, }, }, { { {12962541, 5311799, -10060768, 11658280, 18855286, -7954201, 13286263, -12808704, -4381056, 9882022}, {18512079, 11319350, -20123124, 15090309, 18818594, 5271736, -22727904, 3666879, -23967430, -3299429}, {-6789020, -3146043, 16192429, 13241070, 15898607, -14206114, -10084880, -6661110, -2403099, 5276065}, }, { {30169808, -5317648, 26306206, -11750859, 27814964, 7069267, 7152851, 3684982, 1449224, 13082861}, {10342826, 3098505, 2119311, 193222, 25702612, 12233820, 23697382, 15056736, -21016438, -8202000}, {-33150110, 3261608, 22745853, 7948688, 19370557, -15177665, -26171976, 6482814, -10300080, -11060101}, }, { {32869458, -5408545, 25609743, 15678670, -10687769, -15471071, 26112421, 2521008, -22664288, 6904815}, {29506923, 4457497, 3377935, -9796444, -30510046, 12935080, 1561737, 3841096, -29003639, -6657642}, {10340844, -6630377, -18656632, -2278430, 12621151, -13339055, 30878497, -11824370, -25584551, 5181966}, }, { {25940115, -12658025, 17324188, -10307374, -8671468, 15029094, 24396252, -16450922, -2322852, -12388574}, {-21765684, 9916823, -1300409, 4079498, -1028346, 11909559, 1782390, 12641087, 20603771, -6561742}, {-18882287, -11673380, 24849422, 11501709, 13161720, -4768874, 1925523, 11914390, 4662781, 7820689}, }, { {12241050, -425982, 8132691, 9393934, 32846760, -1599620, 29749456, 12172924, 16136752, 15264020}, {-10349955, -14680563, -8211979, 2330220, -17662549, -14545780, 10658213, 6671822, 19012087, 3772772}, {3753511, -3421066, 10617074, 2028709, 14841030, -6721664, 28718732, -15762884, 20527771, 12988982}, }, { {-14822485, -5797269, -3707987, 12689773, -898983, -10914866, -24183046, -10564943, 3299665, -12424953}, {-16777703, -15253301, -9642417, 4978983, 3308785, 8755439, 6943197, 6461331, -25583147, 8991218}, {-17226263, 1816362, -1673288, -6086439, 31783888, -8175991, -32948145, 7417950, -30242287, 1507265}, }, { {29692663, 6829891, -10498800, 4334896, 20945975, -11906496, -28887608, 8209391, 14606362, -10647073}, {-3481570, 8707081, 32188102, 5672294, 22096700, 1711240, -33020695, 9761487, 4170404, -2085325}, {-11587470, 14855945, -4127778, -1531857, -26649089, 15084046, 22186522, 16002000, -14276837, -8400798}, }, { {-4811456, 13761029, -31703877, -2483919, -3312471, 7869047, -7113572, -9620092, 13240845, 10965870}, {-7742563, -8256762, -14768334, -13656260, -23232383, 12387166, 4498947, 14147411, 29514390, 4302863}, {-13413405, -12407859, 20757302, -13801832, 14785143, 8976368, -5061276, -2144373, 17846988, -13971927}, }, }, { { {-2244452, -754728, -4597030, -1066309, -6247172, 1455299, -21647728, -9214789, -5222701, 12650267}, {-9906797, -16070310, 21134160, 12198166, -27064575, 708126, 387813, 13770293, -19134326, 10958663}, {22470984, 12369526, 23446014, -5441109, -21520802, -9698723, -11772496, -11574455, -25083830, 4271862}, }, { {-25169565, -10053642, -19909332, 15361595, -5984358, 2159192, 75375, -4278529, -32526221, 8469673}, {15854970, 4148314, -8893890, 7259002, 11666551, 13824734, -30531198, 2697372, 24154791, -9460943}, {15446137, -15806644, 29759747, 14019369, 30811221, -9610191, -31582008, 12840104, 24913809, 9815020}, }, { {-4709286, -5614269, -31841498, -12288893, -14443537, 10799414, -9103676, 13438769, 18735128, 9466238}, {11933045, 9281483, 5081055, -5183824, -2628162, -4905629, -7727821, -10896103, -22728655, 16199064}, {14576810, 379472, -26786533, -8317236, -29426508, -10812974, -102766, 1876699, 30801119, 2164795}, }, { {15995086, 3199873, 13672555, 13712240, -19378835, -4647646, -13081610, -15496269, -13492807, 1268052}, {-10290614, -3659039, -3286592, 10948818, 23037027, 3794475, -3470338, -12600221, -17055369, 3565904}, {29210088, -9419337, -5919792, -4952785, 10834811, -13327726, -16512102, -10820713, -27162222, -14030531}, }, { {-13161890, 15508588, 16663704, -8156150, -28349942, 9019123, -29183421, -3769423, 2244111, -14001979}, {-5152875, -3800936, -9306475, -6071583, 16243069, 14684434, -25673088, -16180800, 13491506, 4641841}, {10813417, 643330, -19188515, -728916, 30292062, -16600078, 27548447, -7721242, 14476989, -12767431}, }, { {10292079, 9984945, 6481436, 8279905, -7251514, 7032743, 27282937, -1644259, -27912810, 12651324}, {-31185513, -813383, 22271204, 11835308, 10201545, 15351028, 17099662, 3988035, 21721536, -3148940}, {10202177, -6545839, -31373232, -9574638, -32150642, -8119683, -12906320, 3852694, 13216206, 14842320}, }, { {-15815640, -10601066, -6538952, -7258995, -6984659, -6581778, -31500847, 13765824, -27434397, 9900184}, {14465505, -13833331, -32133984, -14738873, -27443187, 12990492, 33046193, 15796406, -7051866, -8040114}, {30924417, -8279620, 6359016, -12816335, 16508377, 9071735, -25488601, 15413635, 9524356, -7018878}, }, { {12274201, -13175547, 32627641, -1785326, 6736625, 13267305, 5237659, -5109483, 15663516, 4035784}, {-2951309, 8903985, 17349946, 601635, -16432815, -4612556, -13732739, -15889334, -22258478, 4659091}, {-16916263, -4952973, -30393711, -15158821, 20774812, 15897498, 5736189, 15026997, -2178256, -13455585}, }, }, { { {-8858980, -2219056, 28571666, -10155518, -474467, -10105698, -3801496, 278095, 23440562, -290208}, {10226241, -5928702, 15139956, 120818, -14867693, 5218603, 32937275, 11551483, -16571960, -7442864}, {17932739, -12437276, -24039557, 10749060, 11316803, 7535897, 22503767, 5561594, -3646624, 3898661}, }, { {7749907, -969567, -16339731, -16464, -25018111, 15122143, -1573531, 7152530, 21831162, 1245233}, {26958459, -14658026, 4314586, 8346991, -5677764, 11960072, -32589295, -620035, -30402091, -16716212}, {-12165896, 9166947, 33491384, 13673479, 29787085, 13096535, 6280834, 14587357, -22338025, 13987525}, }, { {-24349909, 7778775, 21116000, 15572597, -4833266, -5357778, -4300898, -5124639, -7469781, -2858068}, {9681908, -6737123, -31951644, 13591838, -6883821, 386950, 31622781, 6439245, -14581012, 4091397}, {-8426427, 1470727, -28109679, -1596990, 3978627, -5123623, -19622683, 12092163, 29077877, -14741988}, }, { {5269168, -6859726, -13230211, -8020715, 25932563, 1763552, -5606110, -5505881, -20017847, 2357889}, {32264008, -15407652, -5387735, -1160093, -2091322, -3946900, 23104804, -12869908, 5727338, 189038}, {14609123, -8954470, -6000566, -16622781, -14577387, -7743898, -26745169, 10942115, -25888931, -14884697}, }, { {20513500, 5557931, -15604613, 7829531, 26413943, -2019404, -21378968, 7471781, 13913677, -5137875}, {-25574376, 11967826, 29233242, 12948236, -6754465, 4713227, -8940970, 14059180, 12878652, 8511905}, {-25656801, 3393631, -2955415, -7075526, -2250709, 9366908, -30223418, 6812974, 5568676, -3127656}, }, { {11630004, 12144454, 2116339, 13606037, 27378885, 15676917, -17408753, -13504373, -14395196, 8070818}, {27117696, -10007378, -31282771, -5570088, 1127282, 12772488, -29845906, 10483306, -11552749, -1028714}, {10637467, -5688064, 5674781, 1072708, -26343588, -6982302, -1683975, 9177853, -27493162, 15431203}, }, { {20525145, 10892566, -12742472, 12779443, -29493034, 16150075, -28240519, 14943142, -15056790, -7935931}, {-30024462, 5626926, -551567, -9981087, 753598, 11981191, 25244767, -3239766, -3356550, 9594024}, {-23752644, 2636870, -5163910, -10103818, 585134, 7877383, 11345683, -6492290, 13352335, -10977084}, }, { {-1931799, -5407458, 3304649, -12884869, 17015806, -4877091, -29783850, -7752482, -13215537, -319204}, {20239939, 6607058, 6203985, 3483793, -18386976, -779229, -20723742, 15077870, -22750759, 14523817}, {27406042, -6041657, 27423596, -4497394, 4996214, 10002360, -28842031, -4545494, -30172742, -4805667}, }, }, { { {11374242, 12660715, 17861383, -12540833, 10935568, 1099227, -13886076, -9091740, -27727044, 11358504}, {-12730809, 10311867, 1510375, 10778093, -2119455, -9145702, 32676003, 11149336, -26123651, 4985768}, {-19096303, 341147, -6197485, -239033, 15756973, -8796662, -983043, 13794114, -19414307, -15621255}, }, { {6490081, 11940286, 25495923, -7726360, 8668373, -8751316, 3367603, 6970005, -1691065, -9004790}, {1656497, 13457317, 15370807, 6364910, 13605745, 8362338, -19174622, -5475723, -16796596, -5031438}, {-22273315, -13524424, -64685, -4334223, -18605636, -10921968, -20571065, -7007978, -99853, -10237333}, }, { {17747465, 10039260, 19368299, -4050591, -20630635, -16041286, 31992683, -15857976, -29260363, -5511971}, {31932027, -4986141, -19612382, 16366580, 22023614, 88450, 11371999, -3744247, 4882242, -10626905}, {29796507, 37186, 19818052, 10115756, -11829032, 3352736, 18551198, 3272828, -5190932, -4162409}, }, { {12501286, 4044383, -8612957, -13392385, -32430052, 5136599, -19230378, -3529697, 330070, -3659409}, {6384877, 2899513, 17807477, 7663917, -2358888, 12363165, 25366522, -8573892, -271295, 12071499}, {-8365515, -4042521, 25133448, -4517355, -6211027, 2265927, -32769618, 1936675, -5159697, 3829363}, }, { {28425966, -5835433, -577090, -4697198, -14217555, 6870930, 7921550, -6567787, 26333140, 14267664}, {-11067219, 11871231, 27385719, -10559544, -4585914, -11189312, 10004786, -8709488, -21761224, 8930324}, {-21197785, -16396035, 25654216, -1725397, 12282012, 11008919, 1541940, 4757911, -26491501, -16408940}, }, { {13537262, -7759490, -20604840, 10961927, -5922820, -13218065, -13156584, 6217254, -15943699, 13814990}, {-17422573, 15157790, 18705543, 29619, 24409717, -260476, 27361681, 9257833, -1956526, -1776914}, {-25045300, -10191966, 15366585, 15166509, -13105086, 8423556, -29171540, 12361135, -18685978, 4578290}, }, { {24579768, 3711570, 1342322, -11180126, -27005135, 14124956, -22544529, 14074919, 21964432, 8235257}, {-6528613, -2411497, 9442966, -5925588, 12025640, -1487420, -2981514, -1669206, 13006806, 2355433}, {-16304899, -13605259, -6632427, -5142349, 16974359, -10911083, 27202044, 1719366, 1141648, -12796236}, }, { {-12863944, -13219986, -8318266, -11018091, -6810145, -4843894, 13475066, -3133972, 32674895, 13715045}, {11423335, -5468059, 32344216, 8962751, 24989809, 9241752, -13265253, 16086212, -28740881, -15642093}, {-1409668, 12530728, -6368726, 10847387, 19531186, -14132160, -11709148, 7791794, -27245943, 4383347}, }, }, { { {-28970898, 5271447, -1266009, -9736989, -12455236, 16732599, -4862407, -4906449, 27193557, 6245191}, {-15193956, 5362278, -1783893, 2695834, 4960227, 12840725, 23061898, 3260492, 22510453, 8577507}, {-12632451, 11257346, -32692994, 13548177, -721004, 10879011, 31168030, 13952092, -29571492, -3635906}, }, { {3877321, -9572739, 32416692, 5405324, -11004407, -13656635, 3759769, 11935320, 5611860, 8164018}, {-16275802, 14667797, 15906460, 12155291, -22111149, -9039718, 32003002, -8832289, 5773085, -8422109}, {-23788118, -8254300, 1950875, 8937633, 18686727, 16459170, -905725, 12376320, 31632953, 190926}, }, { {-24593607, -16138885, -8423991, 13378746, 14162407, 6901328, -8288749, 4508564, -25341555, -3627528}, {8884438, -5884009, 6023974, 10104341, -6881569, -4941533, 18722941, -14786005, -1672488, 827625}, {-32720583, -16289296, -32503547, 7101210, 13354605, 2659080, -1800575, -14108036, -24878478, 1541286}, }, { {2901347, -1117687, 3880376, -10059388, -17620940, -3612781, -21802117, -3567481, 20456845, -1885033}, {27019610, 12299467, -13658288, -1603234, -12861660, -4861471, -19540150, -5016058, 29439641, 15138866}, {21536104, -6626420, -32447818, -10690208, -22408077, 5175814, -5420040, -16361163, 7779328, 109896}, }, { {30279744, 14648750, -8044871, 6425558, 13639621, -743509, 28698390, 12180118, 23177719, -554075}, {26572847, 3405927, -31701700, 12890905, -19265668, 5335866, -6493768, 2378492, 4439158, -13279347}, {-22716706, 3489070, -9225266, -332753, 18875722, -1140095, 14819434, -12731527, -17717757, -5461437}, }, { {-5056483, 16566551, 15953661, 3767752, -10436499, 15627060, -820954, 2177225, 8550082, -15114165}, {-18473302, 16596775, -381660, 15663611, 22860960, 15585581, -27844109, -3582739, -23260460, -8428588}, {-32480551, 15707275, -8205912, -5652081, 29464558, 2713815, -22725137, 15860482, -21902570, 1494193}, }, { {-19562091, -14087393, -25583872, -9299552, 13127842, 759709, 21923482, 16529112, 8742704, 12967017}, {-28464899, 1553205, 32536856, -10473729, -24691605, -406174, -8914625, -2933896, -29903758, 15553883}, {21877909, 3230008, 9881174, 10539357, -4797115, 2841332, 11543572, 14513274, 19375923, -12647961}, }, { {8832269, -14495485, 13253511, 5137575, 5037871, 4078777, 24880818, -6222716, 2862653, 9455043}, {29306751, 5123106, 20245049, -14149889, 9592566, 8447059, -2077124, -2990080, 15511449, 4789663}, {-20679756, 7004547, 8824831, -9434977, -4045704, -3750736, -5754762, 108893, 23513200, 16652362}, }, }, { { {-33256173, 4144782, -4476029, -6579123, 10770039, -7155542, -6650416, -12936300, -18319198, 10212860}, {2756081, 8598110, 7383731, -6859892, 22312759, -1105012, 21179801, 2600940, -9988298, -12506466}, {-24645692, 13317462, -30449259, -15653928, 21365574, -10869657, 11344424, 864440, -2499677, -16710063}, }, { {-26432803, 6148329, -17184412, -14474154, 18782929, -275997, -22561534, 211300, 2719757, 4940997}, {-1323882, 3911313, -6948744, 14759765, -30027150, 7851207, 21690126, 8518463, 26699843, 5276295}, {-13149873, -6429067, 9396249, 365013, 24703301, -10488939, 1321586, 149635, -15452774, 7159369}, }, { {9987780, -3404759, 17507962, 9505530, 9731535, -2165514, 22356009, 8312176, 22477218, -8403385}, {18155857, -16504990, 19744716, 9006923, 15154154, -10538976, 24256460, -4864995, -22548173, 9334109}, {2986088, -4911893, 10776628, -3473844, 10620590, -7083203, -21413845, 14253545, -22587149, 536906}, }, { {4377756, 8115836, 24567078, 15495314, 11625074, 13064599, 7390551, 10589625, 10838060, -15420424}, {-19342404, 867880, 9277171, -3218459, -14431572, -1986443, 19295826, -15796950, 6378260, 699185}, {7895026, 4057113, -7081772, -13077756, -17886831, -323126, -716039, 15693155, -5045064, -13373962}, }, { {-7737563, -5869402, -14566319, -7406919, 11385654, 13201616, 31730678, -10962840, -3918636, -9669325}, {10188286, -15770834, -7336361, 13427543, 22223443, 14896287, 30743455, 7116568, -21786507, 5427593}, {696102, 13206899, 27047647, -10632082, 15285305, -9853179, 10798490, -4578720, 19236243, 12477404}, }, { {-11229439, 11243796, -17054270, -8040865, -788228, -8167967, -3897669, 11180504, -23169516, 7733644}, {17800790, -14036179, -27000429, -11766671, 23887827, 3149671, 23466177, -10538171, 10322027, 15313801}, {26246234, 11968874, 32263343, -5468728, 6830755, -13323031, -15794704, -101982, -24449242, 10890804}, }, { {-31365647, 10271363, -12660625, -6267268, 16690207, -13062544, -14982212, 16484931, 25180797, -5334884}, {-586574, 10376444, -32586414, -11286356, 19801893, 10997610, 2276632, 9482883, 316878, 13820577}, {-9882808, -4510367, -2115506, 16457136, -11100081, 11674996, 30756178, -7515054, 30696930, -3712849}, }, { {32988917, -9603412, 12499366, 7910787, -10617257, -11931514, -7342816, -9985397, -32349517, 7392473}, {-8855661, 15927861, 9866406, -3649411, -2396914, -16655781, -30409476, -9134995, 25112947, -2926644}, {-2504044, -436966, 25621774, -5678772, 15085042, -5479877, -24884878, -13526194, 5537438, -13914319}, }, }, { { {-11225584, 2320285, -9584280, 10149187, -33444663, 5808648, -14876251, -1729667, 31234590, 6090599}, {-9633316, 116426, 26083934, 2897444, -6364437, -2688086, 609721, 15878753, -6970405, -9034768}, {-27757857, 247744, -15194774, -9002551, 23288161, -10011936, -23869595, 6503646, 20650474, 1804084}, }, { {-27589786, 15456424, 8972517, 8469608, 15640622, 4439847, 3121995, -10329713, 27842616, -202328}, {-15306973, 2839644, 22530074, 10026331, 4602058, 5048462, 28248656, 5031932, -11375082, 12714369}, {20807691, -7270825, 29286141, 11421711, -27876523, -13868230, -21227475, 1035546, -19733229, 12796920}, }, { {12076899, -14301286, -8785001, -11848922, -25012791, 16400684, -17591495, -12899438, 3480665, -15182815}, {-32361549, 5457597, 28548107, 7833186, 7303070, -11953545, -24363064, -15921875, -33374054, 2771025}, {-21389266, 421932, 26597266, 6860826, 22486084, -6737172, -17137485, -4210226, -24552282, 15673397}, }, { {-20184622, 2338216, 19788685, -9620956, -4001265, -8740893, -20271184, 4733254, 3727144, -12934448}, {6120119, 814863, -11794402, -622716, 6812205, -15747771, 2019594, 7975683, 31123697, -10958981}, {30069250, -11435332, 30434654, 2958439, 18399564, -976289, 12296869, 9204260, -16432438, 9648165}, }, { {32705432, -1550977, 30705658, 7451065, -11805606, 9631813, 3305266, 5248604, -26008332, -11377501}, {17219865, 2375039, -31570947, -5575615, -19459679, 9219903, 294711, 15298639, 2662509, -16297073}, {-1172927, -7558695, -4366770, -4287744, -21346413, -8434326, 32087529, -1222777, 32247248, -14389861}, }, { {14312628, 1221556, 17395390, -8700143, -4945741, -8684635, -28197744, -9637817, -16027623, -13378845}, {-1428825, -9678990, -9235681, 6549687, -7383069, -468664, 23046502, 9803137, 17597934, 2346211}, {18510800, 15337574, 26171504, 981392, -22241552, 7827556, -23491134, -11323352, 3059833, -11782870}, }, { {10141598, 6082907, 17829293, -1947643, 9830092, 13613136, -25556636, -5544586, -33502212, 3592096}, {33114168, -15889352, -26525686, -13343397, 33076705, 8716171, 1151462, 1521897, -982665, -6837803}, {-32939165, -4255815, 23947181, -324178, -33072974, -12305637, -16637686, 3891704, 26353178, 693168}, }, { {30374239, 1595580, -16884039, 13186931, 4600344, 406904, 9585294, -400668, 31375464, 14369965}, {-14370654, -7772529, 1510301, 6434173, -18784789, -6262728, 32732230, -13108839, 17901441, 16011505}, {18171223, -11934626, -12500402, 15197122, -11038147, -15230035, -19172240, -16046376, 8764035, 12309598}, }, }, { { {5975908, -5243188, -19459362, -9681747, -11541277, 14015782, -23665757, 1228319, 17544096, -10593782}, {5811932, -1715293, 3442887, -2269310, -18367348, -8359541, -18044043, -15410127, -5565381, 12348900}, {-31399660, 11407555, 25755363, 6891399, -3256938, 14872274, -24849353, 8141295, -10632534, -585479}, }, { {-12675304, 694026, -5076145, 13300344, 14015258, -14451394, -9698672, -11329050, 30944593, 1130208}, {8247766, -6710942, -26562381, -7709309, -14401939, -14648910, 4652152, 2488540, 23550156, -271232}, {17294316, -3788438, 7026748, 15626851, 22990044, 113481, 2267737, -5908146, -408818, -137719}, }, { {16091085, -16253926, 18599252, 7340678, 2137637, -1221657, -3364161, 14550936, 3260525, -7166271}, {-4910104, -13332887, 18550887, 10864893, -16459325, -7291596, -23028869, -13204905, -12748722, 2701326}, {-8574695, 16099415, 4629974, -16340524, -20786213, -6005432, -10018363, 9276971, 11329923, 1862132}, }, { {14763076, -15903608, -30918270, 3689867, 3511892, 10313526, -21951088, 12219231, -9037963, -940300}, {8894987, -3446094, 6150753, 3013931, 301220, 15693451, -31981216, -2909717, -15438168, 11595570}, {15214962, 3537601, -26238722, -14058872, 4418657, -15230761, 13947276, 10730794, -13489462, -4363670}, }, { {-2538306, 7682793, 32759013, 263109, -29984731, -7955452, -22332124, -10188635, 977108, 699994}, {-12466472, 4195084, -9211532, 550904, -15565337, 12917920, 19118110, -439841, -30534533, -14337913}, {31788461, -14507657, 4799989, 7372237, 8808585, -14747943, 9408237, -10051775, 12493932, -5409317}, }, { {-25680606, 5260744, -19235809, -6284470, -3695942, 16566087, 27218280, 2607121, 29375955, 6024730}, {842132, -2794693, -4763381, -8722815, 26332018, -12405641, 11831880, 6985184, -9940361, 2854096}, {-4847262, -7969331, 2516242, -5847713, 9695691, -7221186, 16512645, 960770, 12121869, 16648078}, }, { {-15218652, 14667096, -13336229, 2013717, 30598287, -464137, -31504922, -7882064, 20237806, 2838411}, {-19288047, 4453152, 15298546, -16178388, 22115043, -15972604, 12544294, -13470457, 1068881, -12499905}, {-9558883, -16518835, 33238498, 13506958, 30505848, -1114596, -8486907, -2630053, 12521378, 4845654}, }, { {-28198521, 10744108, -2958380, 10199664, 7759311, -13088600, 3409348, -873400, -6482306, -12885870}, {-23561822, 6230156, -20382013, 10655314, -24040585, -11621172, 10477734, -1240216, -3113227, 13974498}, {12966261, 15550616, -32038948, -1615346, 21025980, -629444, 5642325, 7188737, 18895762, 12629579}, }, }, { { {14741879, -14946887, 22177208, -11721237, 1279741, 8058600, 11758140, 789443, 32195181, 3895677}, {10758205, 15755439, -4509950, 9243698, -4879422, 6879879, -2204575, -3566119, -8982069, 4429647}, {-2453894, 15725973, -20436342, -10410672, -5803908, -11040220, -7135870, -11642895, 18047436, -15281743}, }, { {-25173001, -11307165, 29759956, 11776784, -22262383, -15820455, 10993114, -12850837, -17620701, -9408468}, {21987233, 700364, -24505048, 14972008, -7774265, -5718395, 32155026, 2581431, -29958985, 8773375}, {-25568350, 454463, -13211935, 16126715, 25240068, 8594567, 20656846, 12017935, -7874389, -13920155}, }, { {6028182, 6263078, -31011806, -11301710, -818919, 2461772, -31841174, -5468042, -1721788, -2776725}, {-12278994, 16624277, 987579, -5922598, 32908203, 1248608, 7719845, -4166698, 28408820, 6816612}, {-10358094, -8237829, 19549651, -12169222, 22082623, 16147817, 20613181, 13982702, -10339570, 5067943}, }, { {-30505967, -3821767, 12074681, 13582412, -19877972, 2443951, -19719286, 12746132, 5331210, -10105944}, {30528811, 3601899, -1957090, 4619785, -27361822, -15436388, 24180793, -12570394, 27679908, -1648928}, {9402404, -13957065, 32834043, 10838634, -26580150, -13237195, 26653274, -8685565, 22611444, -12715406}, }, { {22190590, 1118029, 22736441, 15130463, -30460692, -5991321, 19189625, -4648942, 4854859, 6622139}, {-8310738, -2953450, -8262579, -3388049, -10401731, -271929, 13424426, -3567227, 26404409, 13001963}, {-31241838, -15415700, -2994250, 8939346, 11562230, -12840670, -26064365, -11621720, -15405155, 11020693}, }, { {1866042, -7949489, -7898649, -10301010, 12483315, 13477547, 3175636, -12424163, 28761762, 1406734}, {-448555, -1777666, 13018551, 3194501, -9580420, -11161737, 24760585, -4347088, 25577411, -13378680}, {-24290378, 4759345, -690653, -1852816, 2066747, 10693769, -29595790, 9884936, -9368926, 4745410}, }, { {-9141284, 6049714, -19531061, -4341411, -31260798, 9944276, -15462008, -11311852, 10931924, -11931931}, {-16561513, 14112680, -8012645, 4817318, -8040464, -11414606, -22853429, 10856641, -20470770, 13434654}, {22759489, -10073434, -16766264, -1871422, 13637442, -10168091, 1765144, -12654326, 28445307, -5364710}, }, { {29875063, 12493613, 2795536, -3786330, 1710620, 15181182, -10195717, -8788675, 9074234, 1167180}, {-26205683, 11014233, -9842651, -2635485, -26908120, 7532294, -18716888, -9535498, 3843903, 9367684}, {-10969595, -6403711, 9591134, 9582310, 11349256, 108879, 16235123, 8601684, -139197, 4242895}, }, }, { { {22092954, -13191123, -2042793, -11968512, 32186753, -11517388, -6574341, 2470660, -27417366, 16625501}, {-11057722, 3042016, 13770083, -9257922, 584236, -544855, -7770857, 2602725, -27351616, 14247413}, {6314175, -10264892, -32772502, 15957557, -10157730, 168750, -8618807, 14290061, 27108877, -1180880}, }, { {-8586597, -7170966, 13241782, 10960156, -32991015, -13794596, 33547976, -11058889, -27148451, 981874}, {22833440, 9293594, -32649448, -13618667, -9136966, 14756819, -22928859, -13970780, -10479804, -16197962}, {-7768587, 3326786, -28111797, 10783824, 19178761, 14905060, 22680049, 13906969, -15933690, 3797899}, }, { {21721356, -4212746, -12206123, 9310182, -3882239, -13653110, 23740224, -2709232, 20491983, -8042152}, {9209270, -15135055, -13256557, -6167798, -731016, 15289673, 25947805, 15286587, 30997318, -6703063}, {7392032, 16618386, 23946583, -8039892, -13265164, -1533858, -14197445, -2321576, 17649998, -250080}, }, { {-9301088, -14193827, 30609526, -3049543, -25175069, -1283752, -15241566, -9525724, -2233253, 7662146}, {-17558673, 1763594, -33114336, 15908610, -30040870, -12174295, 7335080, -8472199, -3174674, 3440183}, {-19889700, -5977008, -24111293, -9688870, 10799743, -16571957, 40450, -4431835, 4862400, 1133}, }, { {-32856209, -7873957, -5422389, 14860950, -16319031, 7956142, 7258061, 311861, -30594991, -7379421}, {-3773428, -1565936, 28985340, 7499440, 24445838, 9325937, 29727763, 16527196, 18278453, 15405622}, {-4381906, 8508652, -19898366, -3674424, -5984453, 15149970, -13313598, 843523, -21875062, 13626197}, }, { {2281448, -13487055, -10915418, -2609910, 1879358, 16164207, -10783882, 3953792, 13340839, 15928663}, {31727126, -7179855, -18437503, -8283652, 2875793, -16390330, -25269894, -7014826, -23452306, 5964753}, {4100420, -5959452, -17179337, 6017714, -18705837, 12227141, -26684835, 11344144, 2538215, -7570755}, }, { {-9433605, 6123113, 11159803, -2156608, 30016280, 14966241, -20474983, 1485421, -629256, -15958862}, {-26804558, 4260919, 11851389, 9658551, -32017107, 16367492, -20205425, -13191288, 11659922, -11115118}, {26180396, 10015009, -30844224, -8581293, 5418197, 9480663, 2231568, -10170080, 33100372, -1306171}, }, { {15121113, -5201871, -10389905, 15427821, -27509937, -15992507, 21670947, 4486675, -5931810, -14466380}, {16166486, -9483733, -11104130, 6023908, -31926798, -1364923, 2340060, -16254968, -10735770, -10039824}, {28042865, -3557089, -12126526, 12259706, -3717498, -6945899, 6766453, -8689599, 18036436, 5803270}, }, }, { { {-817581, 6763912, 11803561, 1585585, 10958447, -2671165, 23855391, 4598332, -6159431, -14117438}, {-31031306, -14256194, 17332029, -2383520, 31312682, -5967183, 696309, 50292, -20095739, 11763584}, {-594563, -2514283, -32234153, 12643980, 12650761, 14811489, 665117, -12613632, -19773211, -10713562}, }, { {30464590, -11262872, -4127476, -12734478, 19835327, -7105613, -24396175, 2075773, -17020157, 992471}, {18357185, -6994433, 7766382, 16342475, -29324918, 411174, 14578841, 8080033, -11574335, -10601610}, {19598397, 10334610, 12555054, 2555664, 18821899, -10339780, 21873263, 16014234, 26224780, 16452269}, }, { {-30223925, 5145196, 5944548, 16385966, 3976735, 2009897, -11377804, -7618186, -20533829, 3698650}, {14187449, 3448569, -10636236, -10810935, -22663880, -3433596, 7268410, -10890444, 27394301, 12015369}, {19695761, 16087646, 28032085, 12999827, 6817792, 11427614, 20244189, -1312777, -13259127, -3402461}, }, { {30860103, 12735208, -1888245, -4699734, -16974906, 2256940, -8166013, 12298312, -8550524, -10393462}, {-5719826, -11245325, -1910649, 15569035, 26642876, -7587760, -5789354, -15118654, -4976164, 12651793}, {-2848395, 9953421, 11531313, -5282879, 26895123, -12697089, -13118820, -16517902, 9768698, -2533218}, }, { {-24719459, 1894651, -287698, -4704085, 15348719, -8156530, 32767513, 12765450, 4940095, 10678226}, {18860224, 15980149, -18987240, -1562570, -26233012, -11071856, -7843882, 13944024, -24372348, 16582019}, {-15504260, 4970268, -29893044, 4175593, -20993212, -2199756, -11704054, 15444560, -11003761, 7989037}, }, { {31490452, 5568061, -2412803, 2182383, -32336847, 4531686, -32078269, 6200206, -19686113, -14800171}, {-17308668, -15879940, -31522777, -2831, -32887382, 16375549, 8680158, -16371713, 28550068, -6857132}, {-28126887, -5688091, 16837845, -1820458, -6850681, 12700016, -30039981, 4364038, 1155602, 5988841}, }, { {21890435, -13272907, -12624011, 12154349, -7831873, 15300496, 23148983, -4470481, 24618407, 8283181}, {-33136107, -10512751, 9975416, 6841041, -31559793, 16356536, 3070187, -7025928, 1466169, 10740210}, {-1509399, -15488185, -13503385, -10655916, 32799044, 909394, -13938903, -5779719, -32164649, -15327040}, }, { {3960823, -14267803, -28026090, -15918051, -19404858, 13146868, 15567327, 951507, -3260321, -573935}, {24740841, 5052253, -30094131, 8961361, 25877428, 6165135, -24368180, 14397372, -7380369, -6144105}, {-28888365, 3510803, -28103278, -1158478, -11238128, -10631454, -15441463, -14453128, -1625486, -6494814}, }, }, { { {793299, -9230478, 8836302, -6235707, -27360908, -2369593, 33152843, -4885251, -9906200, -621852}, {5666233, 525582, 20782575, -8038419, -24538499, 14657740, 16099374, 1468826, -6171428, -15186581}, {-4859255, -3779343, -2917758, -6748019, 7778750, 11688288, -30404353, -9871238, -1558923, -9863646}, }, { {10896332, -7719704, 824275, 472601, -19460308, 3009587, 25248958, 14783338, -30581476, -15757844}, {10566929, 12612572, -31944212, 11118703, -12633376, 12362879, 21752402, 8822496, 24003793, 14264025}, {27713862, -7355973, -11008240, 9227530, 27050101, 2504721, 23886875, -13117525, 13958495, -5732453}, }, { {-23481610, 4867226, -27247128, 3900521, 29838369, -8212291, -31889399, -10041781, 7340521, -15410068}, {4646514, -8011124, -22766023, -11532654, 23184553, 8566613, 31366726, -1381061, -15066784, -10375192}, {-17270517, 12723032, -16993061, 14878794, 21619651, -6197576, 27584817, 3093888, -8843694, 3849921}, }, { {-9064912, 2103172, 25561640, -15125738, -5239824, 9582958, 32477045, -9017955, 5002294, -15550259}, {-12057553, -11177906, 21115585, -13365155, 8808712, -12030708, 16489530, 13378448, -25845716, 12741426}, {-5946367, 10645103, -30911586, 15390284, -3286982, -7118677, 24306472, 15852464, 28834118, -7646072}, }, { {-17335748, -9107057, -24531279, 9434953, -8472084, -583362, -13090771, 455841, 20461858, 5491305}, {13669248, -16095482, -12481974, -10203039, -14569770, -11893198, -24995986, 11293807, -28588204, -9421832}, {28497928, 6272777, -33022994, 14470570, 8906179, -1225630, 18504674, -14165166, 29867745, -8795943}, }, { {-16207023, 13517196, -27799630, -13697798, 24009064, -6373891, -6367600, -13175392, 22853429, -4012011}, {24191378, 16712145, -13931797, 15217831, 14542237, 1646131, 18603514, -11037887, 12876623, -2112447}, {17902668, 4518229, -411702, -2829247, 26878217, 5258055, -12860753, 608397, 16031844, 3723494}, }, { {-28632773, 12763728, -20446446, 7577504, 33001348, -13017745, 17558842, -7872890, 23896954, -4314245}, {-20005381, -12011952, 31520464, 605201, 2543521, 5991821, -2945064, 7229064, -9919646, -8826859}, {28816045, 298879, -28165016, -15920938, 19000928, -1665890, -12680833, -2949325, -18051778, -2082915}, }, { {16000882, -344896, 3493092, -11447198, -29504595, -13159789, 12577740, 16041268, -19715240, 7847707}, {10151868, 10572098, 27312476, 7922682, 14825339, 4723128, -32855931, -6519018, -10020567, 3852848}, {-11430470, 15697596, -21121557, -4420647, 5386314, 15063598, 16514493, -15932110, 29330899, -15076224}, }, }, { { {-25499735, -4378794, -15222908, -6901211, 16615731, 2051784, 3303702, 15490, -27548796, 12314391}, {15683520, -6003043, 18109120, -9980648, 15337968, -5997823, -16717435, 15921866, 16103996, -3731215}, {-23169824, -10781249, 13588192, -1628807, -3798557, -1074929, -19273607, 5402699, -29815713, -9841101}, }, { {23190676, 2384583, -32714340, 3462154, -29903655, -1529132, -11266856, 8911517, -25205859, 2739713}, {21374101, -3554250, -33524649, 9874411, 15377179, 11831242, -33529904, 6134907, 4931255, 11987849}, {-7732, -2978858, -16223486, 7277597, 105524, -322051, -31480539, 13861388, -30076310, 10117930}, }, { {-29501170, -10744872, -26163768, 13051539, -25625564, 5089643, -6325503, 6704079, 12890019, 15728940}, {-21972360, -11771379, -951059, -4418840, 14704840, 2695116, 903376, -10428139, 12885167, 8311031}, {-17516482, 5352194, 10384213, -13811658, 7506451, 13453191, 26423267, 4384730, 1888765, -5435404}, }, { {-25817338, -3107312, -13494599, -3182506, 30896459, -13921729, -32251644, -12707869, -19464434, -3340243}, {-23607977, -2665774, -526091, 4651136, 5765089, 4618330, 6092245, 14845197, 17151279, -9854116}, {-24830458, -12733720, -15165978, 10367250, -29530908, -265356, 22825805, -7087279, -16866484, 16176525}, }, { {-23583256, 6564961, 20063689, 3798228, -4740178, 7359225, 2006182, -10363426, -28746253, -10197509}, {-10626600, -4486402, -13320562, -5125317, 3432136, -6393229, 23632037, -1940610, 32808310, 1099883}, {15030977, 5768825, -27451236, -2887299, -6427378, -15361371, -15277896, -6809350, 2051441, -15225865}, }, { {-3362323, -7239372, 7517890, 9824992, 23555850, 295369, 5148398, -14154188, -22686354, 16633660}, {4577086, -16752288, 13249841, -15304328, 19958763, -14537274, 18559670, -10759549, 8402478, -9864273}, {-28406330, -1051581, -26790155, -907698, -17212414, -11030789, 9453451, -14980072, 17983010, 9967138}, }, { {-25762494, 6524722, 26585488, 9969270, 24709298, 1220360, -1677990, 7806337, 17507396, 3651560}, {-10420457, -4118111, 14584639, 15971087, -15768321, 8861010, 26556809, -5574557, -18553322, -11357135}, {2839101, 14284142, 4029895, 3472686, 14402957, 12689363, -26642121, 8459447, -5605463, -7621941}, }, { {-4839289, -3535444, 9744961, 2871048, 25113978, 3187018, -25110813, -849066, 17258084, -7977739}, {18164541, -10595176, -17154882, -1542417, 19237078, -9745295, 23357533, -15217008, 26908270, 12150756}, {-30264870, -7647865, 5112249, -7036672, -1499807, -6974257, 43168, -5537701, -32302074, 16215819}, }, }, { { {-6898905, 9824394, -12304779, -4401089, -31397141, -6276835, 32574489, 12532905, -7503072, -8675347}, {-27343522, -16515468, -27151524, -10722951, 946346, 16291093, 254968, 7168080, 21676107, -1943028}, {21260961, -8424752, -16831886, -11920822, -23677961, 3968121, -3651949, -6215466, -3556191, -7913075}, }, { {16544754, 13250366, -16804428, 15546242, -4583003, 12757258, -2462308, -8680336, -18907032, -9662799}, {-2415239, -15577728, 18312303, 4964443, -15272530, -12653564, 26820651, 16690659, 25459437, -4564609}, {-25144690, 11425020, 28423002, -11020557, -6144921, -15826224, 9142795, -2391602, -6432418, -1644817}, }, { {-23104652, 6253476, 16964147, -3768872, -25113972, -12296437, -27457225, -16344658, 6335692, 7249989}, {-30333227, 13979675, 7503222, -12368314, -11956721, -4621693, -30272269, 2682242, 25993170, -12478523}, {4364628, 5930691, 32304656, -10044554, -8054781, 15091131, 22857016, -10598955, 31820368, 15075278}, }, { {31879134, -8918693, 17258761, 90626, -8041836, -4917709, 24162788, -9650886, -17970238, 12833045}, {19073683, 14851414, -24403169, -11860168, 7625278, 11091125, -19619190, 2074449, -9413939, 14905377}, {24483667, -11935567, -2518866, -11547418, -1553130, 15355506, -25282080, 9253129, 27628530, -7555480}, }, { {17597607, 8340603, 19355617, 552187, 26198470, -3176583, 4593324, -9157582, -14110875, 15297016}, {510886, 14337390, -31785257, 16638632, 6328095, 2713355, -20217417, -11864220, 8683221, 2921426}, {18606791, 11874196, 27155355, -5281482, -24031742, 6265446, -25178240, -1278924, 4674690, 13890525}, }, { {13609624, 13069022, -27372361, -13055908, 24360586, 9592974, 14977157, 9835105, 4389687, 288396}, {9922506, -519394, 13613107, 5883594, -18758345, -434263, -12304062, 8317628, 23388070, 16052080}, {12720016, 11937594, -31970060, -5028689, 26900120, 8561328, -20155687, -11632979, -14754271, -10812892}, }, { {15961858, 14150409, 26716931, -665832, -22794328, 13603569, 11829573, 7467844, -28822128, 929275}, {11038231, -11582396, -27310482, -7316562, -10498527, -16307831, -23479533, -9371869, -21393143, 2465074}, {20017163, -4323226, 27915242, 1529148, 12396362, 15675764, 13817261, -9658066, 2463391, -4622140}, }, { {-16358878, -12663911, -12065183, 4996454, -1256422, 1073572, 9583558, 12851107, 4003896, 12673717}, {-1731589, -15155870, -3262930, 16143082, 19294135, 13385325, 14741514, -9103726, 7903886, 2348101}, {24536016, -16515207, 12715592, -3862155, 1511293, 10047386, -3842346, -7129159, -28377538, 10048127}, }, }, { { {-12622226, -6204820, 30718825, 2591312, -10617028, 12192840, 18873298, -7297090, -32297756, 15221632}, {-26478122, -11103864, 11546244, -1852483, 9180880, 7656409, -21343950, 2095755, 29769758, 6593415}, {-31994208, -2907461, 4176912, 3264766, 12538965, -868111, 26312345, -6118678, 30958054, 8292160}, }, { {31429822, -13959116, 29173532, 15632448, 12174511, -2760094, 32808831, 3977186, 26143136, -3148876}, {22648901, 1402143, -22799984, 13746059, 7936347, 365344, -8668633, -1674433, -3758243, -2304625}, {-15491917, 8012313, -2514730, -12702462, -23965846, -10254029, -1612713, -1535569, -16664475, 8194478}, }, { {27338066, -7507420, -7414224, 10140405, -19026427, -6589889, 27277191, 8855376, 28572286, 3005164}, {26287124, 4821776, 25476601, -4145903, -3764513, -15788984, -18008582, 1182479, -26094821, -13079595}, {-7171154, 3178080, 23970071, 6201893, -17195577, -4489192, -21876275, -13982627, 32208683, -1198248}, }, { {-16657702, 2817643, -10286362, 14811298, 6024667, 13349505, -27315504, -10497842, -27672585, -11539858}, {15941029, -9405932, -21367050, 8062055, 31876073, -238629, -15278393, -1444429, 15397331, -4130193}, {8934485, -13485467, -23286397, -13423241, -32446090, 14047986, 31170398, -1441021, -27505566, 15087184}, }, { {-18357243, -2156491, 24524913, -16677868, 15520427, -6360776, -15502406, 11461896, 16788528, -5868942}, {-1947386, 16013773, 21750665, 3714552, -17401782, -16055433, -3770287, -10323320, 31322514, -11615635}, {21426655, -5650218, -13648287, -5347537, -28812189, -4920970, -18275391, -14621414, 13040862, -12112948}, }, { {11293895, 12478086, -27136401, 15083750, -29307421, 14748872, 14555558, -13417103, 1613711, 4896935}, {-25894883, 15323294, -8489791, -8057900, 25967126, -13425460, 2825960, -4897045, -23971776, -11267415}, {-15924766, -5229880, -17443532, 6410664, 3622847, 10243618, 20615400, 12405433, -23753030, -8436416}, }, { {-7091295, 12556208, -20191352, 9025187, -17072479, 4333801, 4378436, 2432030, 23097949, -566018}, {4565804, -16025654, 20084412, -7842817, 1724999, 189254, 24767264, 10103221, -18512313, 2424778}, {366633, -11976806, 8173090, -6890119, 30788634, 5745705, -7168678, 1344109, -3642553, 12412659}, }, { {-24001791, 7690286, 14929416, -168257, -32210835, -13412986, 24162697, -15326504, -3141501, 11179385}, {18289522, -14724954, 8056945, 16430056, -21729724, 7842514, -6001441, -1486897, -18684645, -11443503}, {476239, 6601091, -6152790, -9723375, 17503545, -4863900, 27672959, 13403813, 11052904, 5219329}, }, }, { { {20678546, -8375738, -32671898, 8849123, -5009758, 14574752, 31186971, -3973730, 9014762, -8579056}, {-13644050, -10350239, -15962508, 5075808, -1514661, -11534600, -33102500, 9160280, 8473550, -3256838}, {24900749, 14435722, 17209120, -15292541, -22592275, 9878983, -7689309, -16335821, -24568481, 11788948}, }, { {-3118155, -11395194, -13802089, 14797441, 9652448, -6845904, -20037437, 10410733, -24568470, -1458691}, {-15659161, 16736706, -22467150, 10215878, -9097177, 7563911, 11871841, -12505194, -18513325, 8464118}, {-23400612, 8348507, -14585951, -861714, -3950205, -6373419, 14325289, 8628612, 33313881, -8370517}, }, { {-20186973, -4967935, 22367356, 5271547, -1097117, -4788838, -24805667, -10236854, -8940735, -5818269}, {-6948785, -1795212, -32625683, -16021179, 32635414, -7374245, 15989197, -12838188, 28358192, -4253904}, {-23561781, -2799059, -32351682, -1661963, -9147719, 10429267, -16637684, 4072016, -5351664, 5596589}, }, { {-28236598, -3390048, 12312896, 6213178, 3117142, 16078565, 29266239, 2557221, 1768301, 15373193}, {-7243358, -3246960, -4593467, -7553353, -127927, -912245, -1090902, -4504991, -24660491, 3442910}, {-30210571, 5124043, 14181784, 8197961, 18964734, -11939093, 22597931, 7176455, -18585478, 13365930}, }, { {-7877390, -1499958, 8324673, 4690079, 6261860, 890446, 24538107, -8570186, -9689599, -3031667}, {25008904, -10771599, -4305031, -9638010, 16265036, 15721635, 683793, -11823784, 15723479, -15163481}, {-9660625, 12374379, -27006999, -7026148, -7724114, -12314514, 11879682, 5400171, 519526, -1235876}, }, { {22258397, -16332233, -7869817, 14613016, -22520255, -2950923, -20353881, 7315967, 16648397, 7605640}, {-8081308, -8464597, -8223311, 9719710, 19259459, -15348212, 23994942, -5281555, -9468848, 4763278}, {-21699244, 9220969, -15730624, 1084137, -25476107, -2852390, 31088447, -7764523, -11356529, 728112}, }, { {26047220, -11751471, -6900323, -16521798, 24092068, 9158119, -4273545, -12555558, -29365436, -5498272}, {17510331, -322857, 5854289, 8403524, 17133918, -3112612, -28111007, 12327945, 10750447, 10014012}, {-10312768, 3936952, 9156313, -8897683, 16498692, -994647, -27481051, -666732, 3424691, 7540221}, }, { {30322361, -6964110, 11361005, -4143317, 7433304, 4989748, -7071422, -16317219, -9244265, 15258046}, {13054562, -2779497, 19155474, 469045, -12482797, 4566042, 5631406, 2711395, 1062915, -5136345}, {-19240248, -11254599, -29509029, -7499965, -5835763, 13005411, -6066489, 12194497, 32960380, 1459310}, }, }, { { {19852034, 7027924, 23669353, 10020366, 8586503, -6657907, 394197, -6101885, 18638003, -11174937}, {31395534, 15098109, 26581030, 8030562, -16527914, -5007134, 9012486, -7584354, -6643087, -5442636}, {-9192165, -2347377, -1997099, 4529534, 25766844, 607986, -13222, 9677543, -32294889, -6456008}, }, { {-2444496, -149937, 29348902, 8186665, 1873760, 12489863, -30934579, -7839692, -7852844, -8138429}, {-15236356, -15433509, 7766470, 746860, 26346930, -10221762, -27333451, 10754588, -9431476, 5203576}, {31834314, 14135496, -770007, 5159118, 20917671, -16768096, -7467973, -7337524, 31809243, 7347066}, }, { {-9606723, -11874240, 20414459, 13033986, 13716524, -11691881, 19797970, -12211255, 15192876, -2087490}, {-12663563, -2181719, 1168162, -3804809, 26747877, -14138091, 10609330, 12694420, 33473243, -13382104}, {33184999, 11180355, 15832085, -11385430, -1633671, 225884, 15089336, -11023903, -6135662, 14480053}, }, { {31308717, -5619998, 31030840, -1897099, 15674547, -6582883, 5496208, 13685227, 27595050, 8737275}, {-20318852, -15150239, 10933843, -16178022, 8335352, -7546022, -31008351, -12610604, 26498114, 66511}, {22644454, -8761729, -16671776, 4884562, -3105614, -13559366, 30540766, -4286747, -13327787, -7515095}, }, { {-28017847, 9834845, 18617207, -2681312, -3401956, -13307506, 8205540, 13585437, -17127465, 15115439}, {23711543, -672915, 31206561, -8362711, 6164647, -9709987, -33535882, -1426096, 8236921, 16492939}, {-23910559, -13515526, -26299483, -4503841, 25005590, -7687270, 19574902, 10071562, 6708380, -6222424}, }, { {2101391, -4930054, 19702731, 2367575, -15427167, 1047675, 5301017, 9328700, 29955601, -11678310}, {3096359, 9271816, -21620864, -15521844, -14847996, -7592937, -25892142, -12635595, -9917575, 6216608}, {-32615849, 338663, -25195611, 2510422, -29213566, -13820213, 24822830, -6146567, -26767480, 7525079}, }, { {-23066649, -13985623, 16133487, -7896178, -3389565, 778788, -910336, -2782495, -19386633, 11994101}, {21691500, -13624626, -641331, -14367021, 3285881, -3483596, -25064666, 9718258, -7477437, 13381418}, {18445390, -4202236, 14979846, 11622458, -1727110, -3582980, 23111648, -6375247, 28535282, 15779576}, }, { {30098053, 3089662, -9234387, 16662135, -21306940, 11308411, -14068454, 12021730, 9955285, -16303356}, {9734894, -14576830, -7473633, -9138735, 2060392, 11313496, -18426029, 9924399, 20194861, 13380996}, {-26378102, -7965207, -22167821, 15789297, -18055342, -6168792, -1984914, 15707771, 26342023, 10146099}, }, }, { { {-26016874, -219943, 21339191, -41388, 19745256, -2878700, -29637280, 2227040, 21612326, -545728}, {-13077387, 1184228, 23562814, -5970442, -20351244, -6348714, 25764461, 12243797, -20856566, 11649658}, {-10031494, 11262626, 27384172, 2271902, 26947504, -15997771, 39944, 6114064, 33514190, 2333242}, }, { {-21433588, -12421821, 8119782, 7219913, -21830522, -9016134, -6679750, -12670638, 24350578, -13450001}, {-4116307, -11271533, -23886186, 4843615, -30088339, 690623, -31536088, -10406836, 8317860, 12352766}, {18200138, -14475911, -33087759, -2696619, -23702521, -9102511, -23552096, -2287550, 20712163, 6719373}, }, { {26656208, 6075253, -7858556, 1886072, -28344043, 4262326, 11117530, -3763210, 26224235, -3297458}, {-17168938, -14854097, -3395676, -16369877, -19954045, 14050420, 21728352, 9493610, 18620611, -16428628}, {-13323321, 13325349, 11432106, 5964811, 18609221, 6062965, -5269471, -9725556, -30701573, -16479657}, }, { {-23860538, -11233159, 26961357, 1640861, -32413112, -16737940, 12248509, -5240639, 13735342, 1934062}, {25089769, 6742589, 17081145, -13406266, 21909293, -16067981, -15136294, -3765346, -21277997, 5473616}, {31883677, -7961101, 1083432, -11572403, 22828471, 13290673, -7125085, 12469656, 29111212, -5451014}, }, { {24244947, -15050407, -26262976, 2791540, -14997599, 16666678, 24367466, 6388839, -10295587, 452383}, {-25640782, -3417841, 5217916, 16224624, 19987036, -4082269, -24236251, -5915248, 15766062, 8407814}, {-20406999, 13990231, 15495425, 16395525, 5377168, 15166495, -8917023, -4388953, -8067909, 2276718}, }, { {30157918, 12924066, -17712050, 9245753, 19895028, 3368142, -23827587, 5096219, 22740376, -7303417}, {2041139, -14256350, 7783687, 13876377, -25946985, -13352459, 24051124, 13742383, -15637599, 13295222}, {33338237, -8505733, 12532113, 7977527, 9106186, -1715251, -17720195, -4612972, -4451357, -14669444}, }, { {-20045281, 5454097, -14346548, 6447146, 28862071, 1883651, -2469266, -4141880, 7770569, 9620597}, {23208068, 7979712, 33071466, 8149229, 1758231, -10834995, 30945528, -1694323, -33502340, -14767970}, {1439958, -16270480, -1079989, -793782, 4625402, 10647766, -5043801, 1220118, 30494170, -11440799}, }, { {-5037580, -13028295, -2970559, -3061767, 15640974, -6701666, -26739026, 926050, -1684339, -13333647}, {13908495, -3549272, 30919928, -6273825, -21521863, 7989039, 9021034, 9078865, 3353509, 4033511}, {-29663431, -15113610, 32259991, -344482, 24295849, -12912123, 23161163, 8839127, 27485041, 7356032}, }, }, { { {9661027, 705443, 11980065, -5370154, -1628543, 14661173, -6346142, 2625015, 28431036, -16771834}, {-23839233, -8311415, -25945511, 7480958, -17681669, -8354183, -22545972, 14150565, 15970762, 4099461}, {29262576, 16756590, 26350592, -8793563, 8529671, -11208050, 13617293, -9937143, 11465739, 8317062}, }, { {-25493081, -6962928, 32500200, -9419051, -23038724, -2302222, 14898637, 3848455, 20969334, -5157516}, {-20384450, -14347713, -18336405, 13884722, -33039454, 2842114, -21610826, -3649888, 11177095, 14989547}, {-24496721, -11716016, 16959896, 2278463, 12066309, 10137771, 13515641, 2581286, -28487508, 9930240}, }, { {-17751622, -2097826, 16544300, -13009300, -15914807, -14949081, 18345767, -13403753, 16291481, -5314038}, {-33229194, 2553288, 32678213, 9875984, 8534129, 6889387, -9676774, 6957617, 4368891, 9788741}, {16660756, 7281060, -10830758, 12911820, 20108584, -8101676, -21722536, -8613148, 16250552, -11111103}, }, { {-19765507, 2390526, -16551031, 14161980, 1905286, 6414907, 4689584, 10604807, -30190403, 4782747}, {-1354539, 14736941, -7367442, -13292886, 7710542, -14155590, -9981571, 4383045, 22546403, 437323}, {31665577, -12180464, -16186830, 1491339, -18368625, 3294682, 27343084, 2786261, -30633590, -14097016}, }, { {-14467279, -683715, -33374107, 7448552, 19294360, 14334329, -19690631, 2355319, -19284671, -6114373}, {15121312, -15796162, 6377020, -6031361, -10798111, -12957845, 18952177, 15496498, -29380133, 11754228}, {-2637277, -13483075, 8488727, -14303896, 12728761, -1622493, 7141596, 11724556, 22761615, -10134141}, }, { {16918416, 11729663, -18083579, 3022987, -31015732, -13339659, -28741185, -12227393, 32851222, 11717399}, {11166634, 7338049, -6722523, 4531520, -29468672, -7302055, 31474879, 3483633, -1193175, -4030831}, {-185635, 9921305, 31456609, -13536438, -12013818, 13348923, 33142652, 6546660, -19985279, -3948376}, }, { {-32460596, 11266712, -11197107, -7899103, 31703694, 3855903, -8537131, -12833048, -30772034, -15486313}, {-18006477, 12709068, 3991746, -6479188, -21491523, -10550425, -31135347, -16049879, 10928917, 3011958}, {-6957757, -15594337, 31696059, 334240, 29576716, 14796075, -30831056, -12805180, 18008031, 10258577}, }, { {-22448644, 15655569, 7018479, -4410003, -30314266, -1201591, -1853465, 1367120, 25127874, 6671743}, {29701166, -14373934, -10878120, 9279288, -17568, 13127210, 21382910, 11042292, 25838796, 4642684}, {-20430234, 14955537, -24126347, 8124619, -5369288, -5990470, 30468147, -13900640, 18423289, 4177476}, }, }, }; static uint8_t negative(signed char b) { uint32_t x = b; x >>= 31; /* 1: yes; 0: no */ return x; } static void table_select(ge_precomp *t, int pos, signed char b) { ge_precomp minust; uint8_t bnegative = negative(b); uint8_t babs = b - ((uint8_t)((-bnegative) & b) << 1); ge_precomp_0(t); cmov(t, &k25519Precomp[pos][0], equal(babs, 1)); cmov(t, &k25519Precomp[pos][1], equal(babs, 2)); cmov(t, &k25519Precomp[pos][2], equal(babs, 3)); cmov(t, &k25519Precomp[pos][3], equal(babs, 4)); cmov(t, &k25519Precomp[pos][4], equal(babs, 5)); cmov(t, &k25519Precomp[pos][5], equal(babs, 6)); cmov(t, &k25519Precomp[pos][6], equal(babs, 7)); cmov(t, &k25519Precomp[pos][7], equal(babs, 8)); fe_copy(minust.yplusx, t->yminusx); fe_copy(minust.yminusx, t->yplusx); fe_neg(minust.xy2d, t->xy2d); cmov(t, &minust, bnegative); } /* * h = a * B * * where a = a[0]+256*a[1]+...+256^31 a[31] * B is the Ed25519 base point (x,4/5) with x positive. * * Preconditions: * a[31] <= 127 */ static void ge_scalarmult_base(ge_p3 *h, const uint8_t *a) { signed char e[64]; signed char carry; ge_p1p1 r; ge_p2 s; ge_precomp t; int i; for (i = 0; i < 32; ++i) { e[2 * i + 0] = (a[i] >> 0) & 15; e[2 * i + 1] = (a[i] >> 4) & 15; } /* each e[i] is between 0 and 15 */ /* e[63] is between 0 and 7 */ carry = 0; for (i = 0; i < 63; ++i) { e[i] += carry; carry = e[i] + 8; carry >>= 4; e[i] -= carry << 4; } e[63] += carry; /* each e[i] is between -8 and 8 */ ge_p3_0(h); for (i = 1; i < 64; i += 2) { table_select(&t, i / 2, e[i]); ge_madd(&r, h, &t); ge_p1p1_to_p3(h, &r); } ge_p3_dbl(&r, h); ge_p1p1_to_p2(&s, &r); ge_p2_dbl(&r, &s); ge_p1p1_to_p2(&s, &r); ge_p2_dbl(&r, &s); ge_p1p1_to_p2(&s, &r); ge_p2_dbl(&r, &s); ge_p1p1_to_p3(h, &r); for (i = 0; i < 64; i += 2) { table_select(&t, i / 2, e[i]); ge_madd(&r, h, &t); ge_p1p1_to_p3(h, &r); } OPENSSL_cleanse(e, sizeof(e)); } #if !defined(BASE_2_51_IMPLEMENTED) /* * Replace (f,g) with (g,f) if b == 1; * replace (f,g) with (f,g) if b == 0. * * Preconditions: b in {0,1}. */ static void fe_cswap(fe f, fe g, unsigned int b) { size_t i; b = 0-b; for (i = 0; i < 10; i++) { int32_t x = f[i] ^ g[i]; x &= b; f[i] ^= x; g[i] ^= x; } } /* * h = f * 121666 * * Can overlap h with f. * * Preconditions: * |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. * * Postconditions: * |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. */ static void fe_mul121666(fe h, fe f) { int32_t f0 = f[0]; int32_t f1 = f[1]; int32_t f2 = f[2]; int32_t f3 = f[3]; int32_t f4 = f[4]; int32_t f5 = f[5]; int32_t f6 = f[6]; int32_t f7 = f[7]; int32_t f8 = f[8]; int32_t f9 = f[9]; int64_t h0 = f0 * (int64_t) 121666; int64_t h1 = f1 * (int64_t) 121666; int64_t h2 = f2 * (int64_t) 121666; int64_t h3 = f3 * (int64_t) 121666; int64_t h4 = f4 * (int64_t) 121666; int64_t h5 = f5 * (int64_t) 121666; int64_t h6 = f6 * (int64_t) 121666; int64_t h7 = f7 * (int64_t) 121666; int64_t h8 = f8 * (int64_t) 121666; int64_t h9 = f9 * (int64_t) 121666; int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; carry9 = h9 + (1 << 24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits; carry1 = h1 + (1 << 24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits; carry3 = h3 + (1 << 24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits; carry5 = h5 + (1 << 24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits; carry7 = h7 + (1 << 24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits; carry0 = h0 + (1 << 25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits; carry2 = h2 + (1 << 25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits; carry4 = h4 + (1 << 25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits; carry6 = h6 + (1 << 25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits; carry8 = h8 + (1 << 25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits; h[0] = (int32_t)h0; h[1] = (int32_t)h1; h[2] = (int32_t)h2; h[3] = (int32_t)h3; h[4] = (int32_t)h4; h[5] = (int32_t)h5; h[6] = (int32_t)h6; h[7] = (int32_t)h7; h[8] = (int32_t)h8; h[9] = (int32_t)h9; } static void x25519_scalar_mult_generic(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { fe x1, x2, z2, x3, z3, tmp0, tmp1; uint8_t e[32]; unsigned swap = 0; int pos; memcpy(e, scalar, 32); e[0] &= 248; e[31] &= 127; e[31] |= 64; fe_frombytes(x1, point); fe_1(x2); fe_0(z2); fe_copy(x3, x1); fe_1(z3); for (pos = 254; pos >= 0; --pos) { unsigned b = 1 & (e[pos / 8] >> (pos & 7)); swap ^= b; fe_cswap(x2, x3, swap); fe_cswap(z2, z3, swap); swap = b; fe_sub(tmp0, x3, z3); fe_sub(tmp1, x2, z2); fe_add(x2, x2, z2); fe_add(z2, x3, z3); fe_mul(z3, tmp0, x2); fe_mul(z2, z2, tmp1); fe_sq(tmp0, tmp1); fe_sq(tmp1, x2); fe_add(x3, z3, z2); fe_sub(z2, z3, z2); fe_mul(x2, tmp1, tmp0); fe_sub(tmp1, tmp1, tmp0); fe_sq(z2, z2); fe_mul121666(z3, tmp1); fe_sq(x3, x3); fe_add(tmp0, tmp0, z3); fe_mul(z3, x1, z2); fe_mul(z2, tmp1, tmp0); } fe_invert(z2, z2); fe_mul(x2, x2, z2); fe_tobytes(out, x2); OPENSSL_cleanse(e, sizeof(e)); } static void x25519_scalar_mult(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { x25519_scalar_mult_generic(out, scalar, point); } #endif static void slide(signed char *r, const uint8_t *a) { int i; int b; int k; for (i = 0; i < 256; ++i) { r[i] = 1 & (a[i >> 3] >> (i & 7)); } for (i = 0; i < 256; ++i) { if (r[i]) { for (b = 1; b <= 6 && i + b < 256; ++b) { if (r[i + b]) { if (r[i] + (r[i + b] << b) <= 15) { r[i] += r[i + b] << b; r[i + b] = 0; } else if (r[i] - (r[i + b] << b) >= -15) { r[i] -= r[i + b] << b; for (k = i + b; k < 256; ++k) { if (!r[k]) { r[k] = 1; break; } r[k] = 0; } } else { break; } } } } } } static const ge_precomp Bi[8] = { { {25967493, -14356035, 29566456, 3660896, -12694345, 4014787, 27544626, -11754271, -6079156, 2047605}, {-12545711, 934262, -2722910, 3049990, -727428, 9406986, 12720692, 5043384, 19500929, -15469378}, {-8738181, 4489570, 9688441, -14785194, 10184609, -12363380, 29287919, 11864899, -24514362, -4438546}, }, { {15636291, -9688557, 24204773, -7912398, 616977, -16685262, 27787600, -14772189, 28944400, -1550024}, {16568933, 4717097, -11556148, -1102322, 15682896, -11807043, 16354577, -11775962, 7689662, 11199574}, {30464156, -5976125, -11779434, -15670865, 23220365, 15915852, 7512774, 10017326, -17749093, -9920357}, }, { {10861363, 11473154, 27284546, 1981175, -30064349, 12577861, 32867885, 14515107, -15438304, 10819380}, {4708026, 6336745, 20377586, 9066809, -11272109, 6594696, -25653668, 12483688, -12668491, 5581306}, {19563160, 16186464, -29386857, 4097519, 10237984, -4348115, 28542350, 13850243, -23678021, -15815942}, }, { {5153746, 9909285, 1723747, -2777874, 30523605, 5516873, 19480852, 5230134, -23952439, -15175766}, {-30269007, -3463509, 7665486, 10083793, 28475525, 1649722, 20654025, 16520125, 30598449, 7715701}, {28881845, 14381568, 9657904, 3680757, -20181635, 7843316, -31400660, 1370708, 29794553, -1409300}, }, { {-22518993, -6692182, 14201702, -8745502, -23510406, 8844726, 18474211, -1361450, -13062696, 13821877}, {-6455177, -7839871, 3374702, -4740862, -27098617, -10571707, 31655028, -7212327, 18853322, -14220951}, {4566830, -12963868, -28974889, -12240689, -7602672, -2830569, -8514358, -10431137, 2207753, -3209784}, }, { {-25154831, -4185821, 29681144, 7868801, -6854661, -9423865, -12437364, -663000, -31111463, -16132436}, {25576264, -2703214, 7349804, -11814844, 16472782, 9300885, 3844789, 15725684, 171356, 6466918}, {23103977, 13316479, 9739013, -16149481, 817875, -15038942, 8965339, -14088058, -30714912, 16193877}, }, { {-33521811, 3180713, -2394130, 14003687, -16903474, -16270840, 17238398, 4729455, -18074513, 9256800}, {-25182317, -4174131, 32336398, 5036987, -21236817, 11360617, 22616405, 9761698, -19827198, 630305}, {-13720693, 2639453, -24237460, -7406481, 9494427, -5774029, -6554551, -15960994, -2449256, -14291300}, }, { {-3151181, -5046075, 9282714, 6866145, -31907062, -863023, -18940575, 15033784, 25105118, -7894876}, {-24326370, 15950226, -31801215, -14592823, -11662737, -5090925, 1573892, -2625887, 2198790, -15804619}, {-3099351, 10324967, -2241613, 7453183, -5446979, -2735503, -13812022, -16236442, -32461234, -12290683}, }, }; /* * r = a * A + b * B * * where a = a[0]+256*a[1]+...+256^31 a[31]. * and b = b[0]+256*b[1]+...+256^31 b[31]. * B is the Ed25519 base point (x,4/5) with x positive. */ static void ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a, const ge_p3 *A, const uint8_t *b) { signed char aslide[256]; signed char bslide[256]; ge_cached Ai[8]; /* A,3A,5A,7A,9A,11A,13A,15A */ ge_p1p1 t; ge_p3 u; ge_p3 A2; int i; slide(aslide, a); slide(bslide, b); ge_p3_to_cached(&Ai[0], A); ge_p3_dbl(&t, A); ge_p1p1_to_p3(&A2, &t); ge_add(&t, &A2, &Ai[0]); ge_p1p1_to_p3(&u, &t); ge_p3_to_cached(&Ai[1], &u); ge_add(&t, &A2, &Ai[1]); ge_p1p1_to_p3(&u, &t); ge_p3_to_cached(&Ai[2], &u); ge_add(&t, &A2, &Ai[2]); ge_p1p1_to_p3(&u, &t); ge_p3_to_cached(&Ai[3], &u); ge_add(&t, &A2, &Ai[3]); ge_p1p1_to_p3(&u, &t); ge_p3_to_cached(&Ai[4], &u); ge_add(&t, &A2, &Ai[4]); ge_p1p1_to_p3(&u, &t); ge_p3_to_cached(&Ai[5], &u); ge_add(&t, &A2, &Ai[5]); ge_p1p1_to_p3(&u, &t); ge_p3_to_cached(&Ai[6], &u); ge_add(&t, &A2, &Ai[6]); ge_p1p1_to_p3(&u, &t); ge_p3_to_cached(&Ai[7], &u); ge_p2_0(r); for (i = 255; i >= 0; --i) { if (aslide[i] || bslide[i]) { break; } } for (; i >= 0; --i) { ge_p2_dbl(&t, r); if (aslide[i] > 0) { ge_p1p1_to_p3(&u, &t); ge_add(&t, &u, &Ai[aslide[i] / 2]); } else if (aslide[i] < 0) { ge_p1p1_to_p3(&u, &t); ge_sub(&t, &u, &Ai[(-aslide[i]) / 2]); } if (bslide[i] > 0) { ge_p1p1_to_p3(&u, &t); ge_madd(&t, &u, &Bi[bslide[i] / 2]); } else if (bslide[i] < 0) { ge_p1p1_to_p3(&u, &t); ge_msub(&t, &u, &Bi[(-bslide[i]) / 2]); } ge_p1p1_to_p2(r, &t); } } /* * The set of scalars is \Z/l * where l = 2^252 + 27742317777372353535851937790883648493. * * Input: * s[0]+256*s[1]+...+256^63*s[63] = s * * Output: * s[0]+256*s[1]+...+256^31*s[31] = s mod l * where l = 2^252 + 27742317777372353535851937790883648493. * Overwrites s in place. */ static void x25519_sc_reduce(uint8_t *s) { int64_t s0 = kBottom21Bits & load_3(s); int64_t s1 = kBottom21Bits & (load_4(s + 2) >> 5); int64_t s2 = kBottom21Bits & (load_3(s + 5) >> 2); int64_t s3 = kBottom21Bits & (load_4(s + 7) >> 7); int64_t s4 = kBottom21Bits & (load_4(s + 10) >> 4); int64_t s5 = kBottom21Bits & (load_3(s + 13) >> 1); int64_t s6 = kBottom21Bits & (load_4(s + 15) >> 6); int64_t s7 = kBottom21Bits & (load_3(s + 18) >> 3); int64_t s8 = kBottom21Bits & load_3(s + 21); int64_t s9 = kBottom21Bits & (load_4(s + 23) >> 5); int64_t s10 = kBottom21Bits & (load_3(s + 26) >> 2); int64_t s11 = kBottom21Bits & (load_4(s + 28) >> 7); int64_t s12 = kBottom21Bits & (load_4(s + 31) >> 4); int64_t s13 = kBottom21Bits & (load_3(s + 34) >> 1); int64_t s14 = kBottom21Bits & (load_4(s + 36) >> 6); int64_t s15 = kBottom21Bits & (load_3(s + 39) >> 3); int64_t s16 = kBottom21Bits & load_3(s + 42); int64_t s17 = kBottom21Bits & (load_4(s + 44) >> 5); int64_t s18 = kBottom21Bits & (load_3(s + 47) >> 2); int64_t s19 = kBottom21Bits & (load_4(s + 49) >> 7); int64_t s20 = kBottom21Bits & (load_4(s + 52) >> 4); int64_t s21 = kBottom21Bits & (load_3(s + 55) >> 1); int64_t s22 = kBottom21Bits & (load_4(s + 57) >> 6); int64_t s23 = (load_4(s + 60) >> 3); int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; int64_t carry10; int64_t carry11; int64_t carry12; int64_t carry13; int64_t carry14; int64_t carry15; int64_t carry16; s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; s18 = 0; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 * (1 << 21); carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 * (1 << 21); carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 * (1 << 21); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 * (1 << 21); carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 * (1 << 21); carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 * (1 << 21); s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 * (1 << 21); carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 * (1 << 21); carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 * (1 << 21); carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 * (1 << 21); carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 * (1 << 21); carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 * (1 << 21); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 * (1 << 21); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 * (1 << 21); carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 * (1 << 21); carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 * (1 << 21); carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 * (1 << 21); carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 * (1 << 21); carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 * (1 << 21); carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 * (1 << 21); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 * (1 << 21); carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 * (1 << 21); carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 * (1 << 21); carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 * (1 << 21); carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 * (1 << 21); carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 * (1 << 21); carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); s[ 0] = (uint8_t) (s0 >> 0); s[ 1] = (uint8_t) (s0 >> 8); s[ 2] = (uint8_t)((s0 >> 16) | (s1 << 5)); s[ 3] = (uint8_t) (s1 >> 3); s[ 4] = (uint8_t) (s1 >> 11); s[ 5] = (uint8_t)((s1 >> 19) | (s2 << 2)); s[ 6] = (uint8_t) (s2 >> 6); s[ 7] = (uint8_t)((s2 >> 14) | (s3 << 7)); s[ 8] = (uint8_t) (s3 >> 1); s[ 9] = (uint8_t) (s3 >> 9); s[10] = (uint8_t)((s3 >> 17) | (s4 << 4)); s[11] = (uint8_t) (s4 >> 4); s[12] = (uint8_t) (s4 >> 12); s[13] = (uint8_t)((s4 >> 20) | (s5 << 1)); s[14] = (uint8_t) (s5 >> 7); s[15] = (uint8_t)((s5 >> 15) | (s6 << 6)); s[16] = (uint8_t) (s6 >> 2); s[17] = (uint8_t) (s6 >> 10); s[18] = (uint8_t)((s6 >> 18) | (s7 << 3)); s[19] = (uint8_t) (s7 >> 5); s[20] = (uint8_t) (s7 >> 13); s[21] = (uint8_t) (s8 >> 0); s[22] = (uint8_t) (s8 >> 8); s[23] = (uint8_t)((s8 >> 16) | (s9 << 5)); s[24] = (uint8_t) (s9 >> 3); s[25] = (uint8_t) (s9 >> 11); s[26] = (uint8_t)((s9 >> 19) | (s10 << 2)); s[27] = (uint8_t) (s10 >> 6); s[28] = (uint8_t)((s10 >> 14) | (s11 << 7)); s[29] = (uint8_t) (s11 >> 1); s[30] = (uint8_t) (s11 >> 9); s[31] = (uint8_t) (s11 >> 17); } /* * Input: * a[0]+256*a[1]+...+256^31*a[31] = a * b[0]+256*b[1]+...+256^31*b[31] = b * c[0]+256*c[1]+...+256^31*c[31] = c * * Output: * s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l * where l = 2^252 + 27742317777372353535851937790883648493. */ static void sc_muladd(uint8_t *s, const uint8_t *a, const uint8_t *b, const uint8_t *c) { int64_t a0 = kBottom21Bits & load_3(a); int64_t a1 = kBottom21Bits & (load_4(a + 2) >> 5); int64_t a2 = kBottom21Bits & (load_3(a + 5) >> 2); int64_t a3 = kBottom21Bits & (load_4(a + 7) >> 7); int64_t a4 = kBottom21Bits & (load_4(a + 10) >> 4); int64_t a5 = kBottom21Bits & (load_3(a + 13) >> 1); int64_t a6 = kBottom21Bits & (load_4(a + 15) >> 6); int64_t a7 = kBottom21Bits & (load_3(a + 18) >> 3); int64_t a8 = kBottom21Bits & load_3(a + 21); int64_t a9 = kBottom21Bits & (load_4(a + 23) >> 5); int64_t a10 = kBottom21Bits & (load_3(a + 26) >> 2); int64_t a11 = (load_4(a + 28) >> 7); int64_t b0 = kBottom21Bits & load_3(b); int64_t b1 = kBottom21Bits & (load_4(b + 2) >> 5); int64_t b2 = kBottom21Bits & (load_3(b + 5) >> 2); int64_t b3 = kBottom21Bits & (load_4(b + 7) >> 7); int64_t b4 = kBottom21Bits & (load_4(b + 10) >> 4); int64_t b5 = kBottom21Bits & (load_3(b + 13) >> 1); int64_t b6 = kBottom21Bits & (load_4(b + 15) >> 6); int64_t b7 = kBottom21Bits & (load_3(b + 18) >> 3); int64_t b8 = kBottom21Bits & load_3(b + 21); int64_t b9 = kBottom21Bits & (load_4(b + 23) >> 5); int64_t b10 = kBottom21Bits & (load_3(b + 26) >> 2); int64_t b11 = (load_4(b + 28) >> 7); int64_t c0 = kBottom21Bits & load_3(c); int64_t c1 = kBottom21Bits & (load_4(c + 2) >> 5); int64_t c2 = kBottom21Bits & (load_3(c + 5) >> 2); int64_t c3 = kBottom21Bits & (load_4(c + 7) >> 7); int64_t c4 = kBottom21Bits & (load_4(c + 10) >> 4); int64_t c5 = kBottom21Bits & (load_3(c + 13) >> 1); int64_t c6 = kBottom21Bits & (load_4(c + 15) >> 6); int64_t c7 = kBottom21Bits & (load_3(c + 18) >> 3); int64_t c8 = kBottom21Bits & load_3(c + 21); int64_t c9 = kBottom21Bits & (load_4(c + 23) >> 5); int64_t c10 = kBottom21Bits & (load_3(c + 26) >> 2); int64_t c11 = (load_4(c + 28) >> 7); int64_t s0; int64_t s1; int64_t s2; int64_t s3; int64_t s4; int64_t s5; int64_t s6; int64_t s7; int64_t s8; int64_t s9; int64_t s10; int64_t s11; int64_t s12; int64_t s13; int64_t s14; int64_t s15; int64_t s16; int64_t s17; int64_t s18; int64_t s19; int64_t s20; int64_t s21; int64_t s22; int64_t s23; int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; int64_t carry10; int64_t carry11; int64_t carry12; int64_t carry13; int64_t carry14; int64_t carry15; int64_t carry16; int64_t carry17; int64_t carry18; int64_t carry19; int64_t carry20; int64_t carry21; int64_t carry22; s0 = c0 + a0 * b0; s1 = c1 + a0 * b1 + a1 * b0; s2 = c2 + a0 * b2 + a1 * b1 + a2 * b0; s3 = c3 + a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0; s4 = c4 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0; s5 = c5 + a0 * b5 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 + a5 * b0; s6 = c6 + a0 * b6 + a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 + a6 * b0; s7 = c7 + a0 * b7 + a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 + a6 * b1 + a7 * b0; s8 = c8 + a0 * b8 + a1 * b7 + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 + a6 * b2 + a7 * b1 + a8 * b0; s9 = c9 + a0 * b9 + a1 * b8 + a2 * b7 + a3 * b6 + a4 * b5 + a5 * b4 + a6 * b3 + a7 * b2 + a8 * b1 + a9 * b0; s10 = c10 + a0 * b10 + a1 * b9 + a2 * b8 + a3 * b7 + a4 * b6 + a5 * b5 + a6 * b4 + a7 * b3 + a8 * b2 + a9 * b1 + a10 * b0; s11 = c11 + a0 * b11 + a1 * b10 + a2 * b9 + a3 * b8 + a4 * b7 + a5 * b6 + a6 * b5 + a7 * b4 + a8 * b3 + a9 * b2 + a10 * b1 + a11 * b0; s12 = a1 * b11 + a2 * b10 + a3 * b9 + a4 * b8 + a5 * b7 + a6 * b6 + a7 * b5 + a8 * b4 + a9 * b3 + a10 * b2 + a11 * b1; s13 = a2 * b11 + a3 * b10 + a4 * b9 + a5 * b8 + a6 * b7 + a7 * b6 + a8 * b5 + a9 * b4 + a10 * b3 + a11 * b2; s14 = a3 * b11 + a4 * b10 + a5 * b9 + a6 * b8 + a7 * b7 + a8 * b6 + a9 * b5 + a10 * b4 + a11 * b3; s15 = a4 * b11 + a5 * b10 + a6 * b9 + a7 * b8 + a8 * b7 + a9 * b6 + a10 * b5 + a11 * b4; s16 = a5 * b11 + a6 * b10 + a7 * b9 + a8 * b8 + a9 * b7 + a10 * b6 + a11 * b5; s17 = a6 * b11 + a7 * b10 + a8 * b9 + a9 * b8 + a10 * b7 + a11 * b6; s18 = a7 * b11 + a8 * b10 + a9 * b9 + a10 * b8 + a11 * b7; s19 = a8 * b11 + a9 * b10 + a10 * b9 + a11 * b8; s20 = a9 * b11 + a10 * b10 + a11 * b9; s21 = a10 * b11 + a11 * b10; s22 = a11 * b11; s23 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 * (1 << 21); carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 * (1 << 21); carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 * (1 << 21); carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 * (1 << 21); carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 * (1 << 21); carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 * (1 << 21); carry18 = (s18 + (1 << 20)) >> 21; s19 += carry18; s18 -= carry18 * (1 << 21); carry20 = (s20 + (1 << 20)) >> 21; s21 += carry20; s20 -= carry20 * (1 << 21); carry22 = (s22 + (1 << 20)) >> 21; s23 += carry22; s22 -= carry22 * (1 << 21); carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 * (1 << 21); carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 * (1 << 21); carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 * (1 << 21); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 * (1 << 21); carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 * (1 << 21); carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 * (1 << 21); carry17 = (s17 + (1 << 20)) >> 21; s18 += carry17; s17 -= carry17 * (1 << 21); carry19 = (s19 + (1 << 20)) >> 21; s20 += carry19; s19 -= carry19 * (1 << 21); carry21 = (s21 + (1 << 20)) >> 21; s22 += carry21; s21 -= carry21 * (1 << 21); s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; s18 = 0; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 * (1 << 21); carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 * (1 << 21); carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 * (1 << 21); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 * (1 << 21); carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 * (1 << 21); carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 * (1 << 21); s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 * (1 << 21); carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 * (1 << 21); carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 * (1 << 21); carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 * (1 << 21); carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 * (1 << 21); carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 * (1 << 21); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 * (1 << 21); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 * (1 << 21); carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 * (1 << 21); carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 * (1 << 21); carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 * (1 << 21); carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 * (1 << 21); carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 * (1 << 21); carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 * (1 << 21); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 * (1 << 21); carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 * (1 << 21); carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 * (1 << 21); carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 * (1 << 21); carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 * (1 << 21); carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 * (1 << 21); carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 * (1 << 21); carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 * (1 << 21); carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 * (1 << 21); carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 * (1 << 21); carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 * (1 << 21); s[ 0] = (uint8_t) (s0 >> 0); s[ 1] = (uint8_t) (s0 >> 8); s[ 2] = (uint8_t)((s0 >> 16) | (s1 << 5)); s[ 3] = (uint8_t) (s1 >> 3); s[ 4] = (uint8_t) (s1 >> 11); s[ 5] = (uint8_t)((s1 >> 19) | (s2 << 2)); s[ 6] = (uint8_t) (s2 >> 6); s[ 7] = (uint8_t)((s2 >> 14) | (s3 << 7)); s[ 8] = (uint8_t) (s3 >> 1); s[ 9] = (uint8_t) (s3 >> 9); s[10] = (uint8_t)((s3 >> 17) | (s4 << 4)); s[11] = (uint8_t) (s4 >> 4); s[12] = (uint8_t) (s4 >> 12); s[13] = (uint8_t)((s4 >> 20) | (s5 << 1)); s[14] = (uint8_t) (s5 >> 7); s[15] = (uint8_t)((s5 >> 15) | (s6 << 6)); s[16] = (uint8_t) (s6 >> 2); s[17] = (uint8_t) (s6 >> 10); s[18] = (uint8_t)((s6 >> 18) | (s7 << 3)); s[19] = (uint8_t) (s7 >> 5); s[20] = (uint8_t) (s7 >> 13); s[21] = (uint8_t) (s8 >> 0); s[22] = (uint8_t) (s8 >> 8); s[23] = (uint8_t)((s8 >> 16) | (s9 << 5)); s[24] = (uint8_t) (s9 >> 3); s[25] = (uint8_t) (s9 >> 11); s[26] = (uint8_t)((s9 >> 19) | (s10 << 2)); s[27] = (uint8_t) (s10 >> 6); s[28] = (uint8_t)((s10 >> 14) | (s11 << 7)); s[29] = (uint8_t) (s11 >> 1); s[30] = (uint8_t) (s11 >> 9); s[31] = (uint8_t) (s11 >> 17); } int ED25519_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len, const uint8_t public_key[32], const uint8_t private_key[32]) { uint8_t az[SHA512_DIGEST_LENGTH]; uint8_t nonce[SHA512_DIGEST_LENGTH]; ge_p3 R; uint8_t hram[SHA512_DIGEST_LENGTH]; SHA512_CTX hash_ctx; SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, private_key, 32); SHA512_Final(az, &hash_ctx); az[0] &= 248; az[31] &= 63; az[31] |= 64; SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, az + 32, 32); SHA512_Update(&hash_ctx, message, message_len); SHA512_Final(nonce, &hash_ctx); x25519_sc_reduce(nonce); ge_scalarmult_base(&R, nonce); ge_p3_tobytes(out_sig, &R); SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, out_sig, 32); SHA512_Update(&hash_ctx, public_key, 32); SHA512_Update(&hash_ctx, message, message_len); SHA512_Final(hram, &hash_ctx); x25519_sc_reduce(hram); sc_muladd(out_sig + 32, hram, az, nonce); OPENSSL_cleanse(&hash_ctx, sizeof(hash_ctx)); OPENSSL_cleanse(nonce, sizeof(nonce)); OPENSSL_cleanse(az, sizeof(az)); return 1; } static const char allzeroes[15]; int ED25519_verify(const uint8_t *message, size_t message_len, const uint8_t signature[64], const uint8_t public_key[32]) { int i; ge_p3 A; const uint8_t *r, *s; SHA512_CTX hash_ctx; ge_p2 R; uint8_t rcheck[32]; uint8_t h[SHA512_DIGEST_LENGTH]; /* 27742317777372353535851937790883648493 in little endian format */ const uint8_t l_low[16] = { 0xED, 0xD3, 0xF5, 0x5C, 0x1A, 0x63, 0x12, 0x58, 0xD6, 0x9C, 0xF7, 0xA2, 0xDE, 0xF9, 0xDE, 0x14 }; r = signature; s = signature + 32; /* * Check 0 <= s < L where L = 2^252 + 27742317777372353535851937790883648493 * * If not the signature is publicly invalid. Since it's public we can do the * check in variable time. * * First check the most significant byte */ if (s[31] > 0x10) return 0; if (s[31] == 0x10) { /* * Most significant byte indicates a value close to 2^252 so check the * rest */ if (memcmp(s + 16, allzeroes, sizeof(allzeroes)) != 0) return 0; for (i = 15; i >= 0; i--) { if (s[i] < l_low[i]) break; if (s[i] > l_low[i]) return 0; } if (i < 0) return 0; } if (ge_frombytes_vartime(&A, public_key) != 0) { return 0; } fe_neg(A.X, A.X); fe_neg(A.T, A.T); SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, r, 32); SHA512_Update(&hash_ctx, public_key, 32); SHA512_Update(&hash_ctx, message, message_len); SHA512_Final(h, &hash_ctx); x25519_sc_reduce(h); ge_double_scalarmult_vartime(&R, h, &A, s); ge_tobytes(rcheck, &R); return CRYPTO_memcmp(rcheck, r, sizeof(rcheck)) == 0; } void ED25519_public_from_private(uint8_t out_public_key[32], const uint8_t private_key[32]) { uint8_t az[SHA512_DIGEST_LENGTH]; ge_p3 A; SHA512(private_key, 32, az); az[0] &= 248; az[31] &= 63; az[31] |= 64; ge_scalarmult_base(&A, az); ge_p3_tobytes(out_public_key, &A); OPENSSL_cleanse(az, sizeof(az)); } int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32], const uint8_t peer_public_value[32]) { static const uint8_t kZeros[32] = {0}; x25519_scalar_mult(out_shared_key, private_key, peer_public_value); /* The all-zero output results when the input is a point of small order. */ return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0; } void X25519_public_from_private(uint8_t out_public_value[32], const uint8_t private_key[32]) { uint8_t e[32]; ge_p3 A; fe zplusy, zminusy, zminusy_inv; memcpy(e, private_key, 32); e[0] &= 248; e[31] &= 127; e[31] |= 64; ge_scalarmult_base(&A, e); /* * We only need the u-coordinate of the curve25519 point. * The map is u=(y+1)/(1-y). Since y=Y/Z, this gives * u=(Z+Y)/(Z-Y). */ fe_add(zplusy, A.Z, A.Y); fe_sub(zminusy, A.Z, A.Y); fe_invert(zminusy_inv, zminusy); fe_mul(zplusy, zplusy, zminusy_inv); fe_tobytes(out_public_value, zplusy); OPENSSL_cleanse(e, sizeof(e)); } openssl-1.1.1f/crypto/ec/curve448/000077500000000000000000000000001364063235100166415ustar00rootroot00000000000000openssl-1.1.1f/crypto/ec/curve448/arch_32/000077500000000000000000000000001364063235100200625ustar00rootroot00000000000000openssl-1.1.1f/crypto/ec/curve448/arch_32/arch_intrinsics.h000066400000000000000000000014751364063235100234240ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef OSSL_CRYPTO_EC_CURVE448_ARCH_32_INTRINSICS_H # define OSSL_CRYPTO_EC_CURVE448_ARCH_32_INTRINSICS_H #include "internal/constant_time.h" # define ARCH_WORD_BITS 32 #define word_is_zero(a) constant_time_is_zero_32(a) static ossl_inline uint64_t widemul(uint32_t a, uint32_t b) { return ((uint64_t)a) * b; } #endif /* OSSL_CRYPTO_EC_CURVE448_ARCH_32_INTRINSICS_H */ openssl-1.1.1f/crypto/ec/curve448/arch_32/f_impl.c000066400000000000000000000050231364063235100214740ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2014 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #include "field.h" void gf_mul(gf_s * RESTRICT cs, const gf as, const gf bs) { const uint32_t *a = as->limb, *b = bs->limb; uint32_t *c = cs->limb; uint64_t accum0 = 0, accum1 = 0, accum2 = 0; uint32_t mask = (1 << 28) - 1; uint32_t aa[8], bb[8]; int i, j; for (i = 0; i < 8; i++) { aa[i] = a[i] + a[i + 8]; bb[i] = b[i] + b[i + 8]; } for (j = 0; j < 8; j++) { accum2 = 0; for (i = 0; i < j + 1; i++) { accum2 += widemul(a[j - i], b[i]); accum1 += widemul(aa[j - i], bb[i]); accum0 += widemul(a[8 + j - i], b[8 + i]); } accum1 -= accum2; accum0 += accum2; accum2 = 0; for (i = j + 1; i < 8; i++) { accum0 -= widemul(a[8 + j - i], b[i]); accum2 += widemul(aa[8 + j - i], bb[i]); accum1 += widemul(a[16 + j - i], b[8 + i]); } accum1 += accum2; accum0 += accum2; c[j] = ((uint32_t)(accum0)) & mask; c[j + 8] = ((uint32_t)(accum1)) & mask; accum0 >>= 28; accum1 >>= 28; } accum0 += accum1; accum0 += c[8]; accum1 += c[0]; c[8] = ((uint32_t)(accum0)) & mask; c[0] = ((uint32_t)(accum1)) & mask; accum0 >>= 28; accum1 >>= 28; c[9] += ((uint32_t)(accum0)); c[1] += ((uint32_t)(accum1)); } void gf_mulw_unsigned(gf_s * RESTRICT cs, const gf as, uint32_t b) { const uint32_t *a = as->limb; uint32_t *c = cs->limb; uint64_t accum0 = 0, accum8 = 0; uint32_t mask = (1 << 28) - 1; int i; assert(b <= mask); for (i = 0; i < 8; i++) { accum0 += widemul(b, a[i]); accum8 += widemul(b, a[i + 8]); c[i] = accum0 & mask; accum0 >>= 28; c[i + 8] = accum8 & mask; accum8 >>= 28; } accum0 += accum8 + c[8]; c[8] = ((uint32_t)accum0) & mask; c[9] += (uint32_t)(accum0 >> 28); accum8 += c[0]; c[0] = ((uint32_t)accum8) & mask; c[1] += (uint32_t)(accum8 >> 28); } void gf_sqr(gf_s * RESTRICT cs, const gf as) { gf_mul(cs, as, as); /* Performs better with a dedicated square */ } openssl-1.1.1f/crypto/ec/curve448/arch_32/f_impl.h000066400000000000000000000031721364063235100215040ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2014-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef OSSL_CRYPTO_EC_CURVE448_ARCH_32_F_IMPL_H # define OSSL_CRYPTO_EC_CURVE448_ARCH_32_F_IMPL_H # define GF_HEADROOM 2 # define LIMB(x) ((x) & ((1 << 28) - 1)), ((x) >> 28) # define FIELD_LITERAL(a, b, c, d, e, f, g, h) \ {{LIMB(a), LIMB(b), LIMB(c), LIMB(d), LIMB(e), LIMB(f), LIMB(g), LIMB(h)}} # define LIMB_PLACE_VALUE(i) 28 void gf_add_RAW(gf out, const gf a, const gf b) { unsigned int i; for (i = 0; i < NLIMBS; i++) out->limb[i] = a->limb[i] + b->limb[i]; } void gf_sub_RAW(gf out, const gf a, const gf b) { unsigned int i; for (i = 0; i < NLIMBS; i++) out->limb[i] = a->limb[i] - b->limb[i]; } void gf_bias(gf a, int amt) { unsigned int i; uint32_t co1 = ((1 << 28) - 1) * amt, co2 = co1 - amt; for (i = 0; i < NLIMBS; i++) a->limb[i] += (i == NLIMBS / 2) ? co2 : co1; } void gf_weak_reduce(gf a) { uint32_t mask = (1 << 28) - 1; uint32_t tmp = a->limb[NLIMBS - 1] >> 28; unsigned int i; a->limb[NLIMBS / 2] += tmp; for (i = NLIMBS - 1; i > 0; i--) a->limb[i] = (a->limb[i] & mask) + (a->limb[i - 1] >> 28); a->limb[0] = (a->limb[0] & mask) + tmp; } #endif /* OSSL_CRYPTO_EC_CURVE448_ARCH_32_F_IMPL_H */ openssl-1.1.1f/crypto/ec/curve448/curve448.c000066400000000000000000000513341364063235100203770ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #include #include "word.h" #include "field.h" #include "point_448.h" #include "ed448.h" #include "curve448_local.h" #define COFACTOR 4 #define C448_WNAF_FIXED_TABLE_BITS 5 #define C448_WNAF_VAR_TABLE_BITS 3 #define EDWARDS_D (-39081) static const curve448_scalar_t precomputed_scalarmul_adjustment = { { { SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL), SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL) } } }; #define TWISTED_D (EDWARDS_D - 1) #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */ /* Inverse. */ static void gf_invert(gf y, const gf x, int assert_nonzero) { mask_t ret; gf t1, t2; gf_sqr(t1, x); /* o^2 */ ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */ (void)ret; if (assert_nonzero) assert(ret); gf_sqr(t1, t2); gf_mul(t2, t1, x); /* not direct to y in case of alias. */ gf_copy(y, t2); } /** identity = (0,1) */ const curve448_point_t curve448_point_identity = { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} }; static void point_double_internal(curve448_point_t p, const curve448_point_t q, int before_double) { gf a, b, c, d; gf_sqr(c, q->x); gf_sqr(a, q->y); gf_add_nr(d, c, a); /* 2+e */ gf_add_nr(p->t, q->y, q->x); /* 2+e */ gf_sqr(b, p->t); gf_subx_nr(b, b, d, 3); /* 4+e */ gf_sub_nr(p->t, a, c); /* 3+e */ gf_sqr(p->x, q->z); gf_add_nr(p->z, p->x, p->x); /* 2+e */ gf_subx_nr(a, p->z, p->t, 4); /* 6+e */ if (GF_HEADROOM == 5) gf_weak_reduce(a); /* or 1+e */ gf_mul(p->x, a, b); gf_mul(p->z, p->t, a); gf_mul(p->y, p->t, d); if (!before_double) gf_mul(p->t, b, d); } void curve448_point_double(curve448_point_t p, const curve448_point_t q) { point_double_internal(p, q, 0); } /* Operations on [p]niels */ static ossl_inline void cond_neg_niels(niels_t n, mask_t neg) { gf_cond_swap(n->a, n->b, neg); gf_cond_neg(n->c, neg); } static void pt_to_pniels(pniels_t b, const curve448_point_t a) { gf_sub(b->n->a, a->y, a->x); gf_add(b->n->b, a->x, a->y); gf_mulw(b->n->c, a->t, 2 * TWISTED_D); gf_add(b->z, a->z, a->z); } static void pniels_to_pt(curve448_point_t e, const pniels_t d) { gf eu; gf_add(eu, d->n->b, d->n->a); gf_sub(e->y, d->n->b, d->n->a); gf_mul(e->t, e->y, eu); gf_mul(e->x, d->z, e->y); gf_mul(e->y, d->z, eu); gf_sqr(e->z, d->z); } static void niels_to_pt(curve448_point_t e, const niels_t n) { gf_add(e->y, n->b, n->a); gf_sub(e->x, n->b, n->a); gf_mul(e->t, e->y, e->x); gf_copy(e->z, ONE); } static void add_niels_to_pt(curve448_point_t d, const niels_t e, int before_double) { gf a, b, c; gf_sub_nr(b, d->y, d->x); /* 3+e */ gf_mul(a, e->a, b); gf_add_nr(b, d->x, d->y); /* 2+e */ gf_mul(d->y, e->b, b); gf_mul(d->x, e->c, d->t); gf_add_nr(c, a, d->y); /* 2+e */ gf_sub_nr(b, d->y, a); /* 3+e */ gf_sub_nr(d->y, d->z, d->x); /* 3+e */ gf_add_nr(a, d->x, d->z); /* 2+e */ gf_mul(d->z, a, d->y); gf_mul(d->x, d->y, b); gf_mul(d->y, a, c); if (!before_double) gf_mul(d->t, b, c); } static void sub_niels_from_pt(curve448_point_t d, const niels_t e, int before_double) { gf a, b, c; gf_sub_nr(b, d->y, d->x); /* 3+e */ gf_mul(a, e->b, b); gf_add_nr(b, d->x, d->y); /* 2+e */ gf_mul(d->y, e->a, b); gf_mul(d->x, e->c, d->t); gf_add_nr(c, a, d->y); /* 2+e */ gf_sub_nr(b, d->y, a); /* 3+e */ gf_add_nr(d->y, d->z, d->x); /* 2+e */ gf_sub_nr(a, d->z, d->x); /* 3+e */ gf_mul(d->z, a, d->y); gf_mul(d->x, d->y, b); gf_mul(d->y, a, c); if (!before_double) gf_mul(d->t, b, c); } static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn, int before_double) { gf L0; gf_mul(L0, p->z, pn->z); gf_copy(p->z, L0); add_niels_to_pt(p, pn->n, before_double); } static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn, int before_double) { gf L0; gf_mul(L0, p->z, pn->z); gf_copy(p->z, L0); sub_niels_from_pt(p, pn->n, before_double); } c448_bool_t curve448_point_eq(const curve448_point_t p, const curve448_point_t q) { mask_t succ; gf a, b; /* equality mod 2-torsion compares x/y */ gf_mul(a, p->y, q->x); gf_mul(b, q->y, p->x); succ = gf_eq(a, b); return mask_to_bool(succ); } c448_bool_t curve448_point_valid(const curve448_point_t p) { mask_t out; gf a, b, c; gf_mul(a, p->x, p->y); gf_mul(b, p->z, p->t); out = gf_eq(a, b); gf_sqr(a, p->x); gf_sqr(b, p->y); gf_sub(a, b, a); gf_sqr(b, p->t); gf_mulw(c, b, TWISTED_D); gf_sqr(b, p->z); gf_add(b, b, c); out &= gf_eq(a, b); out &= ~gf_eq(p->z, ZERO); return mask_to_bool(out); } static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni, const niels_t * table, int nelts, int idx) { constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx); } void curve448_precomputed_scalarmul(curve448_point_t out, const curve448_precomputed_s * table, const curve448_scalar_t scalar) { unsigned int i, j, k; const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S; niels_t ni; curve448_scalar_t scalar1x; curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment); curve448_scalar_halve(scalar1x, scalar1x); for (i = s; i > 0; i--) { if (i != s) point_double_internal(out, out, 0); for (j = 0; j < n; j++) { int tab = 0; mask_t invert; for (k = 0; k < t; k++) { unsigned int bit = (i - 1) + s * (k + j * t); if (bit < C448_SCALAR_BITS) tab |= (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k; } invert = (tab >> (t - 1)) - 1; tab ^= invert; tab &= (1 << (t - 1)) - 1; constant_time_lookup_niels(ni, &table->table[j << (t - 1)], 1 << (t - 1), tab); cond_neg_niels(ni, invert); if ((i != s) || j != 0) add_niels_to_pt(out, ni, j == n - 1 && i != 1); else niels_to_pt(out, ni); } } OPENSSL_cleanse(ni, sizeof(ni)); OPENSSL_cleanse(scalar1x, sizeof(scalar1x)); } void curve448_point_mul_by_ratio_and_encode_like_eddsa( uint8_t enc[EDDSA_448_PUBLIC_BYTES], const curve448_point_t p) { gf x, y, z, t; curve448_point_t q; /* The point is now on the twisted curve. Move it to untwisted. */ curve448_point_copy(q, p); { /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */ gf u; gf_sqr(x, q->x); gf_sqr(t, q->y); gf_add(u, x, t); gf_add(z, q->y, q->x); gf_sqr(y, z); gf_sub(y, y, u); gf_sub(z, t, x); gf_sqr(x, q->z); gf_add(t, x, x); gf_sub(t, t, z); gf_mul(x, t, y); gf_mul(y, z, u); gf_mul(z, u, t); OPENSSL_cleanse(u, sizeof(u)); } /* Affinize */ gf_invert(z, z, 1); gf_mul(t, x, z); gf_mul(x, y, z); /* Encode */ enc[EDDSA_448_PRIVATE_BYTES - 1] = 0; gf_serialize(enc, x, 1); enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t); OPENSSL_cleanse(x, sizeof(x)); OPENSSL_cleanse(y, sizeof(y)); OPENSSL_cleanse(z, sizeof(z)); OPENSSL_cleanse(t, sizeof(t)); curve448_point_destroy(q); } c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio( curve448_point_t p, const uint8_t enc[EDDSA_448_PUBLIC_BYTES]) { uint8_t enc2[EDDSA_448_PUBLIC_BYTES]; mask_t low; mask_t succ; memcpy(enc2, enc, sizeof(enc2)); low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80); enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80; succ = gf_deserialize(p->y, enc2, 1, 0); succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]); gf_sqr(p->x, p->y); gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */ gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */ gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */ gf_mul(p->x, p->z, p->t); succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */ gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */ gf_cond_neg(p->x, gf_lobit(p->x) ^ low); gf_copy(p->z, ONE); { gf a, b, c, d; /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */ gf_sqr(c, p->x); gf_sqr(a, p->y); gf_add(d, c, a); gf_add(p->t, p->y, p->x); gf_sqr(b, p->t); gf_sub(b, b, d); gf_sub(p->t, a, c); gf_sqr(p->x, p->z); gf_add(p->z, p->x, p->x); gf_sub(a, p->z, d); gf_mul(p->x, a, b); gf_mul(p->z, p->t, a); gf_mul(p->y, p->t, d); gf_mul(p->t, b, d); OPENSSL_cleanse(a, sizeof(a)); OPENSSL_cleanse(b, sizeof(b)); OPENSSL_cleanse(c, sizeof(c)); OPENSSL_cleanse(d, sizeof(d)); } OPENSSL_cleanse(enc2, sizeof(enc2)); assert(curve448_point_valid(p) || ~succ); return c448_succeed_if(mask_to_bool(succ)); } c448_error_t x448_int(uint8_t out[X_PUBLIC_BYTES], const uint8_t base[X_PUBLIC_BYTES], const uint8_t scalar[X_PRIVATE_BYTES]) { gf x1, x2, z2, x3, z3, t1, t2; int t; mask_t swap = 0; mask_t nz; (void)gf_deserialize(x1, base, 1, 0); gf_copy(x2, ONE); gf_copy(z2, ZERO); gf_copy(x3, x1); gf_copy(z3, ONE); for (t = X_PRIVATE_BITS - 1; t >= 0; t--) { uint8_t sb = scalar[t / 8]; mask_t k_t; /* Scalar conditioning */ if (t / 8 == 0) sb &= -(uint8_t)COFACTOR; else if (t == X_PRIVATE_BITS - 1) sb = -1; k_t = (sb >> (t % 8)) & 1; k_t = 0 - k_t; /* set to all 0s or all 1s */ swap ^= k_t; gf_cond_swap(x2, x3, swap); gf_cond_swap(z2, z3, swap); swap = k_t; /* * The "_nr" below skips coefficient reduction. In the following * comments, "2+e" is saying that the coefficients are at most 2+epsilon * times the reduction limit. */ gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */ gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */ gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */ gf_mul(x2, t1, z2); /* DA */ gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */ gf_mul(x3, t2, z2); /* CB */ gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */ gf_sqr(z2, z3); /* (DA-CB)^2 */ gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */ gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */ gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */ gf_sqr(z2, t1); /* AA = A^2 */ gf_sqr(t1, t2); /* BB = B^2 */ gf_mul(x2, z2, t1); /* x2 = AA*BB */ gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */ gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */ gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */ gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */ } /* Finish */ gf_cond_swap(x2, x3, swap); gf_cond_swap(z2, z3, swap); gf_invert(z2, z2, 0); gf_mul(x1, x2, z2); gf_serialize(out, x1, 1); nz = ~gf_eq(x1, ZERO); OPENSSL_cleanse(x1, sizeof(x1)); OPENSSL_cleanse(x2, sizeof(x2)); OPENSSL_cleanse(z2, sizeof(z2)); OPENSSL_cleanse(x3, sizeof(x3)); OPENSSL_cleanse(z3, sizeof(z3)); OPENSSL_cleanse(t1, sizeof(t1)); OPENSSL_cleanse(t2, sizeof(t2)); return c448_succeed_if(mask_to_bool(nz)); } void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t out[X_PUBLIC_BYTES], const curve448_point_t p) { curve448_point_t q; curve448_point_copy(q, p); gf_invert(q->t, q->x, 0); /* 1/x */ gf_mul(q->z, q->t, q->y); /* y/x */ gf_sqr(q->y, q->z); /* (y/x)^2 */ gf_serialize(out, q->y, 1); curve448_point_destroy(q); } void x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES], const uint8_t scalar[X_PRIVATE_BYTES]) { /* Scalar conditioning */ uint8_t scalar2[X_PRIVATE_BYTES]; curve448_scalar_t the_scalar; curve448_point_t p; unsigned int i; memcpy(scalar2, scalar, sizeof(scalar2)); scalar2[0] &= -(uint8_t)COFACTOR; scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8)); scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8); curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2)); /* Compensate for the encoding ratio */ for (i = 1; i < X448_ENCODE_RATIO; i <<= 1) curve448_scalar_halve(the_scalar, the_scalar); curve448_precomputed_scalarmul(p, curve448_precomputed_base, the_scalar); curve448_point_mul_by_ratio_and_encode_like_x448(out, p); curve448_point_destroy(p); } /* Control for variable-time scalar multiply algorithms. */ struct smvt_control { int power, addend; }; #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)) # define NUMTRAILINGZEROS __builtin_ctz #else # define NUMTRAILINGZEROS numtrailingzeros static uint32_t numtrailingzeros(uint32_t i) { uint32_t tmp; uint32_t num = 31; if (i == 0) return 32; tmp = i << 16; if (tmp != 0) { i = tmp; num -= 16; } tmp = i << 8; if (tmp != 0) { i = tmp; num -= 8; } tmp = i << 4; if (tmp != 0) { i = tmp; num -= 4; } tmp = i << 2; if (tmp != 0) { i = tmp; num -= 2; } tmp = i << 1; if (tmp != 0) num--; return num; } #endif static int recode_wnaf(struct smvt_control *control, /* [nbits/(table_bits + 1) + 3] */ const curve448_scalar_t scalar, unsigned int table_bits) { unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3; int position = table_size - 1; /* at the end */ uint64_t current = scalar->limb[0] & 0xFFFF; uint32_t mask = (1 << (table_bits + 1)) - 1; unsigned int w; const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2; unsigned int n, i; /* place the end marker */ control[position].power = -1; control[position].addend = 0; position--; /* * PERF: Could negate scalar if it's large. But then would need more cases * in the actual code that uses it, all for an expected reduction of like * 1/5 op. Probably not worth it. */ for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) { if (w < (C448_SCALAR_BITS - 1) / 16 + 1) { /* Refill the 16 high bits of current */ current += (uint32_t)((scalar->limb[w / B_OVER_16] >> (16 * (w % B_OVER_16))) << 16); } while (current & 0xFFFF) { uint32_t pos = NUMTRAILINGZEROS((uint32_t)current); uint32_t odd = (uint32_t)current >> pos; int32_t delta = odd & mask; assert(position >= 0); if (odd & (1 << (table_bits + 1))) delta -= (1 << (table_bits + 1)); current -= delta * (1 << pos); control[position].power = pos + 16 * (w - 1); control[position].addend = delta; position--; } current >>= 16; } assert(current == 0); position++; n = table_size - position; for (i = 0; i < n; i++) control[i] = control[i + position]; return n - 1; } static void prepare_wnaf_table(pniels_t * output, const curve448_point_t working, unsigned int tbits) { curve448_point_t tmp; int i; pniels_t twop; pt_to_pniels(output[0], working); if (tbits == 0) return; curve448_point_double(tmp, working); pt_to_pniels(twop, tmp); add_pniels_to_pt(tmp, output[0], 0); pt_to_pniels(output[1], tmp); for (i = 2; i < 1 << tbits; i++) { add_pniels_to_pt(tmp, twop, 0); pt_to_pniels(output[i], tmp); } curve448_point_destroy(tmp); OPENSSL_cleanse(twop, sizeof(twop)); } void curve448_base_double_scalarmul_non_secret(curve448_point_t combo, const curve448_scalar_t scalar1, const curve448_point_t base2, const curve448_scalar_t scalar2) { const int table_bits_var = C448_WNAF_VAR_TABLE_BITS; const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS; struct smvt_control control_var[C448_SCALAR_BITS / (C448_WNAF_VAR_TABLE_BITS + 1) + 3]; struct smvt_control control_pre[C448_SCALAR_BITS / (C448_WNAF_FIXED_TABLE_BITS + 1) + 3]; int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre); int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var); pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS]; int contp = 0, contv = 0, i; prepare_wnaf_table(precmp_var, base2, table_bits_var); i = control_var[0].power; if (i < 0) { curve448_point_copy(combo, curve448_point_identity); return; } if (i > control_pre[0].power) { pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); contv++; } else if (i == control_pre[0].power && i >= 0) { pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); add_niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1], i); contv++; contp++; } else { i = control_pre[0].power; niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1]); contp++; } for (i--; i >= 0; i--) { int cv = (i == control_var[contv].power); int cp = (i == control_pre[contp].power); point_double_internal(combo, combo, i && !(cv || cp)); if (cv) { assert(control_var[contv].addend); if (control_var[contv].addend > 0) add_pniels_to_pt(combo, precmp_var[control_var[contv].addend >> 1], i && !cp); else sub_pniels_from_pt(combo, precmp_var[(-control_var[contv].addend) >> 1], i && !cp); contv++; } if (cp) { assert(control_pre[contp].addend); if (control_pre[contp].addend > 0) add_niels_to_pt(combo, curve448_wnaf_base[control_pre[contp].addend >> 1], i); else sub_niels_from_pt(combo, curve448_wnaf_base[(-control_pre [contp].addend) >> 1], i); contp++; } } /* This function is non-secret, but whatever this is cheap. */ OPENSSL_cleanse(control_var, sizeof(control_var)); OPENSSL_cleanse(control_pre, sizeof(control_pre)); OPENSSL_cleanse(precmp_var, sizeof(precmp_var)); assert(contv == ncb_var); (void)ncb_var; assert(contp == ncb_pre); (void)ncb_pre; } void curve448_point_destroy(curve448_point_t point) { OPENSSL_cleanse(point, sizeof(curve448_point_t)); } int X448(uint8_t out_shared_key[56], const uint8_t private_key[56], const uint8_t peer_public_value[56]) { return x448_int(out_shared_key, peer_public_value, private_key) == C448_SUCCESS; } void X448_public_from_private(uint8_t out_public_value[56], const uint8_t private_key[56]) { x448_derive_public_key(out_public_value, private_key); } openssl-1.1.1f/crypto/ec/curve448/curve448_local.h000066400000000000000000000031771364063235100215600ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_EC_CURVE448_LOCAL_H # define OSSL_CRYPTO_EC_CURVE448_LOCAL_H # include "curve448utils.h" int X448(uint8_t out_shared_key[56], const uint8_t private_key[56], const uint8_t peer_public_value[56]); void X448_public_from_private(uint8_t out_public_value[56], const uint8_t private_key[56]); int ED448_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len, const uint8_t public_key[57], const uint8_t private_key[57], const uint8_t *context, size_t context_len); int ED448_verify(const uint8_t *message, size_t message_len, const uint8_t signature[114], const uint8_t public_key[57], const uint8_t *context, size_t context_len); int ED448ph_sign(uint8_t *out_sig, const uint8_t hash[64], const uint8_t public_key[57], const uint8_t private_key[57], const uint8_t *context, size_t context_len); int ED448ph_verify(const uint8_t hash[64], const uint8_t signature[114], const uint8_t public_key[57], const uint8_t *context, size_t context_len); int ED448_public_from_private(uint8_t out_public_key[57], const uint8_t private_key[57]); #endif /* OSSL_CRYPTO_EC_CURVE448_LOCAL_H */ openssl-1.1.1f/crypto/ec/curve448/curve448_tables.c000066400000000000000000003024051364063235100217270ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #include "field.h" #include "point_448.h" static const curve448_precomputed_s curve448_precomputed_base_table = { { {{ {FIELD_LITERAL(0x00cc3b062366f4ccULL, 0x003d6e34e314aa3cULL, 0x00d51c0a7521774dULL, 0x0094e060eec6ab8bULL, 0x00d21291b4d80082ULL, 0x00befed12b55ef1eULL, 0x00c3dd2df5c94518ULL, 0x00e0a7b112b8d4e6ULL)}, {FIELD_LITERAL(0x0019eb5608d8723aULL, 0x00d1bab52fb3aedbULL, 0x00270a7311ebc90cULL, 0x0037c12b91be7f13ULL, 0x005be16cd8b5c704ULL, 0x003e181acda888e1ULL, 0x00bc1f00fc3fc6d0ULL, 0x00d3839bfa319e20ULL)}, {FIELD_LITERAL(0x003caeb88611909fULL, 0x00ea8b378c4df3d4ULL, 0x00b3295b95a5a19aULL, 0x00a65f97514bdfb5ULL, 0x00b39efba743cab1ULL, 0x0016ba98b862fd2dULL, 0x0001508812ee71d7ULL, 0x000a75740eea114aULL)}, }}, {{ {FIELD_LITERAL(0x00ebcf0eb649f823ULL, 0x00166d332e98ea03ULL, 0x0059ddf64f5cd5f6ULL, 0x0047763123d9471bULL, 0x00a64065c53ef62fULL, 0x00978e44c480153dULL, 0x000b5b2a0265f194ULL, 0x0046a24b9f32965aULL)}, {FIELD_LITERAL(0x00b9eef787034df0ULL, 0x0020bc24de3390cdULL, 0x000022160bae99bbULL, 0x00ae66e886e97946ULL, 0x0048d4bbe02cbb8bULL, 0x0072ba97b34e38d4ULL, 0x00eae7ec8f03e85aULL, 0x005ba92ecf808b2cULL)}, {FIELD_LITERAL(0x00c9cfbbe74258fdULL, 0x00843a979ea9eaa7ULL, 0x000cbb4371cfbe90ULL, 0x0059bac8f7f0a628ULL, 0x004b3dff882ff530ULL, 0x0011869df4d90733ULL, 0x00595aa71f4abfc2ULL, 0x0070e2d38990c2e6ULL)}, }}, {{ {FIELD_LITERAL(0x00de2010c0a01733ULL, 0x00c739a612e24297ULL, 0x00a7212643141d7cULL, 0x00f88444f6b67c11ULL, 0x00484b7b16ec28f2ULL, 0x009c1b8856af9c68ULL, 0x00ff4669591fe9d6ULL, 0x0054974be08a32c8ULL)}, {FIELD_LITERAL(0x0010de3fd682ceedULL, 0x008c07642d83ca4eULL, 0x0013bb064e00a1ccULL, 0x009411ae27870e11ULL, 0x00ea8e5b4d531223ULL, 0x0032fe7d2aaece2eULL, 0x00d989e243e7bb41ULL, 0x000fe79a508e9b8bULL)}, {FIELD_LITERAL(0x005e0426b9bfc5b1ULL, 0x0041a5b1d29ee4faULL, 0x0015b0def7774391ULL, 0x00bc164f1f51af01ULL, 0x00d543b0942797b9ULL, 0x003c129b6398099cULL, 0x002b114c6e5adf18ULL, 0x00b4e630e4018a7bULL)}, }}, {{ {FIELD_LITERAL(0x00d490afc95f8420ULL, 0x00b096bf50c1d9b9ULL, 0x00799fd707679866ULL, 0x007c74d9334afbeaULL, 0x00efaa8be80ff4edULL, 0x0075c4943bb81694ULL, 0x00c21c2fca161f36ULL, 0x00e77035d492bfeeULL)}, {FIELD_LITERAL(0x006658a190dd6661ULL, 0x00e0e9bab38609a6ULL, 0x0028895c802237edULL, 0x006a0229c494f587ULL, 0x002dcde96c9916b7ULL, 0x00d158822de16218ULL, 0x00173b917a06856fULL, 0x00ca78a79ae07326ULL)}, {FIELD_LITERAL(0x00e35bfc79caced4ULL, 0x0087238a3e1fe3bbULL, 0x00bcbf0ff4ceff5bULL, 0x00a19c1c94099b91ULL, 0x0071e102b49db976ULL, 0x0059e3d004eada1eULL, 0x008da78afa58a47eULL, 0x00579c8ebf269187ULL)}, }}, {{ {FIELD_LITERAL(0x00a16c2905eee75fULL, 0x009d4bcaea2c7e1dULL, 0x00d3bd79bfad19dfULL, 0x0050da745193342cULL, 0x006abdb8f6b29ab1ULL, 0x00a24fe0a4fef7efULL, 0x0063730da1057dfbULL, 0x00a08c312c8eb108ULL)}, {FIELD_LITERAL(0x00b583be005375beULL, 0x00a40c8f8a4e3df4ULL, 0x003fac4a8f5bdbf7ULL, 0x00d4481d872cd718ULL, 0x004dc8749cdbaefeULL, 0x00cce740d5e5c975ULL, 0x000b1c1f4241fd21ULL, 0x00a76de1b4e1cd07ULL)}, {FIELD_LITERAL(0x007a076500d30b62ULL, 0x000a6e117b7f090fULL, 0x00c8712ae7eebd9aULL, 0x000fbd6c1d5f6ff7ULL, 0x003a7977246ebf11ULL, 0x00166ed969c6600eULL, 0x00aa42e469c98becULL, 0x00dc58f307cf0666ULL)}, }}, {{ {FIELD_LITERAL(0x004b491f65a9a28bULL, 0x006a10309e8a55b7ULL, 0x00b67210185187efULL, 0x00cf6497b12d9b8fULL, 0x0085778c56e2b1baULL, 0x0015b4c07a814d85ULL, 0x00686479e62da561ULL, 0x008de5d88f114916ULL)}, {FIELD_LITERAL(0x00e37c88d6bba7b1ULL, 0x003e4577e1b8d433ULL, 0x0050d8ea5f510ec0ULL, 0x0042fc9f2da9ef59ULL, 0x003bd074c1141420ULL, 0x00561b8b7b68774eULL, 0x00232e5e5d1013a3ULL, 0x006b7f2cb3d7e73fULL)}, {FIELD_LITERAL(0x004bdd0f0b41e6a0ULL, 0x001773057c405d24ULL, 0x006029f99915bd97ULL, 0x006a5ba70a17fe2fULL, 0x0046111977df7e08ULL, 0x004d8124c89fb6b7ULL, 0x00580983b2bb2724ULL, 0x00207bf330d6f3feULL)}, }}, {{ {FIELD_LITERAL(0x007efdc93972a48bULL, 0x002f5e50e78d5feeULL, 0x0080dc11d61c7fe5ULL, 0x0065aa598707245bULL, 0x009abba2300641beULL, 0x000c68787656543aULL, 0x00ffe0fef2dc0a17ULL, 0x00007ffbd6cb4f3aULL)}, {FIELD_LITERAL(0x0036012f2b836efcULL, 0x00458c126d6b5fbcULL, 0x00a34436d719ad1eULL, 0x0097be6167117deaULL, 0x0009c219c879cff3ULL, 0x0065564493e60755ULL, 0x00993ac94a8cdec0ULL, 0x002d4885a4d0dbafULL)}, {FIELD_LITERAL(0x00598b60b4c068baULL, 0x00c547a0be7f1afdULL, 0x009582164acf12afULL, 0x00af4acac4fbbe40ULL, 0x005f6ca7c539121aULL, 0x003b6e752ebf9d66ULL, 0x00f08a30d5cac5d4ULL, 0x00e399bb5f97c5a9ULL)}, }}, {{ {FIELD_LITERAL(0x007445a0409c0a66ULL, 0x00a65c369f3829c0ULL, 0x0031d248a4f74826ULL, 0x006817f34defbe8eULL, 0x00649741d95ebf2eULL, 0x00d46466ab16b397ULL, 0x00fdc35703bee414ULL, 0x00343b43334525f8ULL)}, {FIELD_LITERAL(0x001796bea93f6401ULL, 0x00090c5a42e85269ULL, 0x00672412ba1252edULL, 0x001201d47b6de7deULL, 0x006877bccfe66497ULL, 0x00b554fd97a4c161ULL, 0x009753f42dbac3cfULL, 0x00e983e3e378270aULL)}, {FIELD_LITERAL(0x00ac3eff18849872ULL, 0x00f0eea3bff05690ULL, 0x00a6d72c21dd505dULL, 0x001b832642424169ULL, 0x00a6813017b540e5ULL, 0x00a744bd71b385cdULL, 0x0022a7d089130a7bULL, 0x004edeec9a133486ULL)}, }}, {{ {FIELD_LITERAL(0x00b2d6729196e8a9ULL, 0x0088a9bb2031cef4ULL, 0x00579e7787dc1567ULL, 0x0030f49feb059190ULL, 0x00a0b1d69c7f7d8fULL, 0x0040bdcc6d9d806fULL, 0x00d76c4037edd095ULL, 0x00bbf24376415dd7ULL)}, {FIELD_LITERAL(0x00240465ff5a7197ULL, 0x00bb97e76caf27d0ULL, 0x004b4edbf8116d39ULL, 0x001d8586f708cbaaULL, 0x000f8ee8ff8e4a50ULL, 0x00dde5a1945dd622ULL, 0x00e6fc1c0957e07cULL, 0x0041c9cdabfd88a0ULL)}, {FIELD_LITERAL(0x005344b0bf5b548cULL, 0x002957d0b705cc99ULL, 0x00f586a70390553dULL, 0x0075b3229f583cc3ULL, 0x00a1aa78227490e4ULL, 0x001bf09cf7957717ULL, 0x00cf6bf344325f52ULL, 0x0065bd1c23ca3ecfULL)}, }}, {{ {FIELD_LITERAL(0x009bff3b3239363cULL, 0x00e17368796ef7c0ULL, 0x00528b0fe0971f3aULL, 0x0008014fc8d4a095ULL, 0x00d09f2e8a521ec4ULL, 0x006713ab5dde5987ULL, 0x0003015758e0dbb1ULL, 0x00215999f1ba212dULL)}, {FIELD_LITERAL(0x002c88e93527da0eULL, 0x0077c78f3456aad5ULL, 0x0071087a0a389d1cULL, 0x00934dac1fb96dbdULL, 0x008470e801162697ULL, 0x005bc2196cd4ad49ULL, 0x00e535601d5087c3ULL, 0x00769888700f497fULL)}, {FIELD_LITERAL(0x00da7a4b557298adULL, 0x0019d2589ea5df76ULL, 0x00ef3e38be0c6497ULL, 0x00a9644e1312609aULL, 0x004592f61b2558daULL, 0x0082c1df510d7e46ULL, 0x0042809a535c0023ULL, 0x00215bcb5afd7757ULL)}, }}, {{ {FIELD_LITERAL(0x002b9df55a1a4213ULL, 0x00dcfc3b464a26beULL, 0x00c4f9e07a8144d5ULL, 0x00c8e0617a92b602ULL, 0x008e3c93accafae0ULL, 0x00bf1bcb95b2ca60ULL, 0x004ce2426a613bf3ULL, 0x00266cac58e40921ULL)}, {FIELD_LITERAL(0x008456d5db76e8f0ULL, 0x0032ca9cab2ce163ULL, 0x0059f2b8bf91abcfULL, 0x0063c2a021712788ULL, 0x00f86155af22f72dULL, 0x00db98b2a6c005a0ULL, 0x00ac6e416a693ac4ULL, 0x007a93572af53226ULL)}, {FIELD_LITERAL(0x0087767520f0de22ULL, 0x0091f64012279fb5ULL, 0x001050f1f0644999ULL, 0x004f097a2477ad3cULL, 0x006b37913a9947bdULL, 0x001a3d78645af241ULL, 0x0057832bbb3008a7ULL, 0x002c1d902b80dc20ULL)}, }}, {{ {FIELD_LITERAL(0x001a6002bf178877ULL, 0x009bce168aa5af50ULL, 0x005fc318ff04a7f5ULL, 0x0052818f55c36461ULL, 0x008768f5d4b24afbULL, 0x0037ffbae7b69c85ULL, 0x0018195a4b61edc0ULL, 0x001e12ea088434b2ULL)}, {FIELD_LITERAL(0x0047d3f804e7ab07ULL, 0x00a809ab5f905260ULL, 0x00b3ffc7cdaf306dULL, 0x00746e8ec2d6e509ULL, 0x00d0dade8887a645ULL, 0x00acceeebde0dd37ULL, 0x009bc2579054686bULL, 0x0023804f97f1c2bfULL)}, {FIELD_LITERAL(0x0043e2e2e50b80d7ULL, 0x00143aafe4427e0fULL, 0x005594aaecab855bULL, 0x008b12ccaaecbc01ULL, 0x002deeb091082bc3ULL, 0x009cca4be2ae7514ULL, 0x00142b96e696d047ULL, 0x00ad2a2b1c05256aULL)}, }}, {{ {FIELD_LITERAL(0x003914f2f144b78bULL, 0x007a95dd8bee6f68ULL, 0x00c7f4384d61c8e6ULL, 0x004e51eb60f1bdb2ULL, 0x00f64be7aa4621d8ULL, 0x006797bfec2f0ac0ULL, 0x007d17aab3c75900ULL, 0x001893e73cac8bc5ULL)}, {FIELD_LITERAL(0x00140360b768665bULL, 0x00b68aca4967f977ULL, 0x0001089b66195ae4ULL, 0x00fe71122185e725ULL, 0x000bca2618d49637ULL, 0x00a54f0557d7e98aULL, 0x00cdcd2f91d6f417ULL, 0x00ab8c13741fd793ULL)}, {FIELD_LITERAL(0x00725ee6b1e549e0ULL, 0x007124a0769777faULL, 0x000b68fdad07ae42ULL, 0x0085b909cd4952dfULL, 0x0092d2e3c81606f4ULL, 0x009f22f6cac099a0ULL, 0x00f59da57f2799a8ULL, 0x00f06c090122f777ULL)}, }}, {{ {FIELD_LITERAL(0x00ce0bed0a3532bcULL, 0x001a5048a22df16bULL, 0x00e31db4cbad8bf1ULL, 0x00e89292120cf00eULL, 0x007d1dd1a9b00034ULL, 0x00e2a9041ff8f680ULL, 0x006a4c837ae596e7ULL, 0x00713af1068070b3ULL)}, {FIELD_LITERAL(0x00c4fe64ce66d04bULL, 0x00b095d52e09b3d7ULL, 0x00758bbecb1a3a8eULL, 0x00f35cce8d0650c0ULL, 0x002b878aa5984473ULL, 0x0062e0a3b7544ddcULL, 0x00b25b290ed116feULL, 0x007b0f6abe0bebf2ULL)}, {FIELD_LITERAL(0x0081d4e3addae0a8ULL, 0x003410c836c7ffccULL, 0x00c8129ad89e4314ULL, 0x000e3d5a23922dcdULL, 0x00d91e46f29c31f3ULL, 0x006c728cde8c5947ULL, 0x002bc655ba2566c0ULL, 0x002ca94721533108ULL)}, }}, {{ {FIELD_LITERAL(0x0051e4b3f764d8a9ULL, 0x0019792d46e904a0ULL, 0x00853bc13dbc8227ULL, 0x000840208179f12dULL, 0x0068243474879235ULL, 0x0013856fbfe374d0ULL, 0x00bda12fe8676424ULL, 0x00bbb43635926eb2ULL)}, {FIELD_LITERAL(0x0012cdc880a93982ULL, 0x003c495b21cd1b58ULL, 0x00b7e5c93f22a26eULL, 0x0044aa82dfb99458ULL, 0x009ba092cdffe9c0ULL, 0x00a14b3ab2083b73ULL, 0x000271c2f70e1c4bULL, 0x00eea9cac0f66eb8ULL)}, {FIELD_LITERAL(0x001a1847c4ac5480ULL, 0x00b1b412935bb03aULL, 0x00f74285983bf2b2ULL, 0x00624138b5b5d0f1ULL, 0x008820c0b03d38bfULL, 0x00b94e50a18c1572ULL, 0x0060f6934841798fULL, 0x00c52f5d66d6ebe2ULL)}, }}, {{ {FIELD_LITERAL(0x00da23d59f9bcea6ULL, 0x00e0f27007a06a4bULL, 0x00128b5b43a6758cULL, 0x000cf50190fa8b56ULL, 0x00fc877aba2b2d72ULL, 0x00623bef52edf53fULL, 0x00e6af6b819669e2ULL, 0x00e314dc34fcaa4fULL)}, {FIELD_LITERAL(0x0066e5eddd164d1eULL, 0x00418a7c6fe28238ULL, 0x0002e2f37e962c25ULL, 0x00f01f56b5975306ULL, 0x0048842fa503875cULL, 0x0057b0e968078143ULL, 0x00ff683024f3d134ULL, 0x0082ae28fcad12e4ULL)}, {FIELD_LITERAL(0x0011ddfd21260e42ULL, 0x00d05b0319a76892ULL, 0x00183ea4368e9b8fULL, 0x00b0815662affc96ULL, 0x00b466a5e7ce7c88ULL, 0x00db93b07506e6eeULL, 0x0033885f82f62401ULL, 0x0086f9090ec9b419ULL)}, }}, {{ {FIELD_LITERAL(0x00d95d1c5fcb435aULL, 0x0016d1ed6b5086f9ULL, 0x00792aa0b7e54d71ULL, 0x0067b65715f1925dULL, 0x00a219755ec6176bULL, 0x00bc3f026b12c28fULL, 0x00700c897ffeb93eULL, 0x0089b83f6ec50b46ULL)}, {FIELD_LITERAL(0x003c97e6384da36eULL, 0x00423d53eac81a09ULL, 0x00b70d68f3cdce35ULL, 0x00ee7959b354b92cULL, 0x00f4e9718819c8caULL, 0x009349f12acbffe9ULL, 0x005aee7b62cb7da6ULL, 0x00d97764154ffc86ULL)}, {FIELD_LITERAL(0x00526324babb46dcULL, 0x002ee99b38d7bf9eULL, 0x007ea51794706ef4ULL, 0x00abeb04da6e3c39ULL, 0x006b457c1d281060ULL, 0x00fe243e9a66c793ULL, 0x00378de0fb6c6ee4ULL, 0x003e4194b9c3cb93ULL)}, }}, {{ {FIELD_LITERAL(0x00fed3cd80ca2292ULL, 0x0015b043a73ca613ULL, 0x000a9fd7bf9be227ULL, 0x003b5e03de2db983ULL, 0x005af72d46904ef7ULL, 0x00c0f1b5c49faa99ULL, 0x00dc86fc3bd305e1ULL, 0x00c92f08c1cb1797ULL)}, {FIELD_LITERAL(0x0079680ce111ed3bULL, 0x001a1ed82806122cULL, 0x000c2e7466d15df3ULL, 0x002c407f6f7150fdULL, 0x00c5e7c96b1b0ce3ULL, 0x009aa44626863ff9ULL, 0x00887b8b5b80be42ULL, 0x00b6023cec964825ULL)}, {FIELD_LITERAL(0x00e4a8e1048970c8ULL, 0x0062887b7830a302ULL, 0x00bcf1c8cd81402bULL, 0x0056dbb81a68f5beULL, 0x0014eced83f12452ULL, 0x00139e1a510150dfULL, 0x00bb81140a82d1a3ULL, 0x000febcc1aaf1aa7ULL)}, }}, {{ {FIELD_LITERAL(0x00a7527958238159ULL, 0x0013ec9537a84cd6ULL, 0x001d7fee7d562525ULL, 0x00b9eefa6191d5e5ULL, 0x00dbc97db70bcb8aULL, 0x00481affc7a4d395ULL, 0x006f73d3e70c31bbULL, 0x00183f324ed96a61ULL)}, {FIELD_LITERAL(0x0039dd7ce7fc6860ULL, 0x00d64f6425653da1ULL, 0x003e037c7f57d0afULL, 0x0063477a06e2bcf2ULL, 0x001727dbb7ac67e6ULL, 0x0049589f5efafe2eULL, 0x00fc0fef2e813d54ULL, 0x008baa5d087fb50dULL)}, {FIELD_LITERAL(0x0024fb59d9b457c7ULL, 0x00a7d4e060223e4cULL, 0x00c118d1b555fd80ULL, 0x0082e216c732f22aULL, 0x00cd2a2993089504ULL, 0x003638e836a3e13dULL, 0x000d855ee89b4729ULL, 0x008ec5b7d4810c91ULL)}, }}, {{ {FIELD_LITERAL(0x001bf51f7d65cdfdULL, 0x00d14cdafa16a97dULL, 0x002c38e60fcd10e7ULL, 0x00a27446e393efbdULL, 0x000b5d8946a71fddULL, 0x0063df2cde128f2fULL, 0x006c8679569b1888ULL, 0x0059ffc4925d732dULL)}, {FIELD_LITERAL(0x00ece96f95f2b66fULL, 0x00ece7952813a27bULL, 0x0026fc36592e489eULL, 0x007157d1a2de0f66ULL, 0x00759dc111d86ddfULL, 0x0012881e5780bb0fULL, 0x00c8ccc83ad29496ULL, 0x0012b9bd1929eb71ULL)}, {FIELD_LITERAL(0x000fa15a20da5df0ULL, 0x00349ddb1a46cd31ULL, 0x002c512ad1d8e726ULL, 0x00047611f669318dULL, 0x009e68fba591e17eULL, 0x004320dffa803906ULL, 0x00a640874951a3d3ULL, 0x00b6353478baa24fULL)}, }}, {{ {FIELD_LITERAL(0x009696510000d333ULL, 0x00ec2f788bc04826ULL, 0x000e4d02b1f67ba5ULL, 0x00659aa8dace08b6ULL, 0x00d7a38a3a3ae533ULL, 0x008856defa8c746bULL, 0x004d7a4402d3da1aULL, 0x00ea82e06229260fULL)}, {FIELD_LITERAL(0x006a15bb20f75c0cULL, 0x0079a144027a5d0cULL, 0x00d19116ce0b4d70ULL, 0x0059b83bcb0b268eULL, 0x005f58f63f16c127ULL, 0x0079958318ee2c37ULL, 0x00defbb063d07f82ULL, 0x00f1f0b931d2d446ULL)}, {FIELD_LITERAL(0x00cb5e4c3c35d422ULL, 0x008df885ca43577fULL, 0x00fa50b16ca3e471ULL, 0x005a0e58e17488c8ULL, 0x00b2ceccd6d34d19ULL, 0x00f01d5d235e36e9ULL, 0x00db2e7e4be6ca44ULL, 0x00260ab77f35fccdULL)}, }}, {{ {FIELD_LITERAL(0x006f6fd9baac61d5ULL, 0x002a7710a020a895ULL, 0x009de0db7fc03d4dULL, 0x00cdedcb1875f40bULL, 0x00050caf9b6b1e22ULL, 0x005e3a6654456ab0ULL, 0x00775fdf8c4423d4ULL, 0x0028701ea5738b5dULL)}, {FIELD_LITERAL(0x009ffd90abfeae96ULL, 0x00cba3c2b624a516ULL, 0x005ef08bcee46c91ULL, 0x00e6fde30afb6185ULL, 0x00f0b4db4f818ce4ULL, 0x006c54f45d2127f5ULL, 0x00040125035854c7ULL, 0x00372658a3287e13ULL)}, {FIELD_LITERAL(0x00d7070fb1beb2abULL, 0x0078fc845a93896bULL, 0x006894a4b2f224a6ULL, 0x005bdd8192b9dbdeULL, 0x00b38839874b3a9eULL, 0x00f93618b04b7a57ULL, 0x003e3ec75fd2c67eULL, 0x00bf5e6bfc29494aULL)}, }}, {{ {FIELD_LITERAL(0x00f19224ebba2aa5ULL, 0x0074f89d358e694dULL, 0x00eea486597135adULL, 0x0081579a4555c7e1ULL, 0x0010b9b872930a9dULL, 0x00f002e87a30ecc0ULL, 0x009b9d66b6de56e2ULL, 0x00a3c4f45e8004ebULL)}, {FIELD_LITERAL(0x0045e8dda9400888ULL, 0x002ff12e5fc05db7ULL, 0x00a7098d54afe69cULL, 0x00cdbe846a500585ULL, 0x00879c1593ca1882ULL, 0x003f7a7fea76c8b0ULL, 0x002cd73dd0c8e0a1ULL, 0x00645d6ce96f51feULL)}, {FIELD_LITERAL(0x002b7e83e123d6d6ULL, 0x00398346f7419c80ULL, 0x0042922e55940163ULL, 0x005e7fc5601886a3ULL, 0x00e88f2cee1d3103ULL, 0x00e7fab135f2e377ULL, 0x00b059984dbf0dedULL, 0x0009ce080faa5bb8ULL)}, }}, {{ {FIELD_LITERAL(0x0085e78af7758979ULL, 0x00275a4ee1631a3aULL, 0x00d26bc0ed78b683ULL, 0x004f8355ea21064fULL, 0x00d618e1a32696e5ULL, 0x008d8d7b150e5680ULL, 0x00a74cd854b278d2ULL, 0x001dd62702203ea0ULL)}, {FIELD_LITERAL(0x00f89335c2a59286ULL, 0x00a0f5c905d55141ULL, 0x00b41fb836ee9382ULL, 0x00e235d51730ca43ULL, 0x00a5cb37b5c0a69aULL, 0x009b966ffe136c45ULL, 0x00cb2ea10bf80ed1ULL, 0x00fb2b370b40dc35ULL)}, {FIELD_LITERAL(0x00d687d16d4ee8baULL, 0x0071520bdd069dffULL, 0x00de85c60d32355dULL, 0x0087d2e3565102f4ULL, 0x00cde391b8dfc9aaULL, 0x00e18d69efdfefe5ULL, 0x004a9d0591954e91ULL, 0x00fa36dd8b50eee5ULL)}, }}, {{ {FIELD_LITERAL(0x002e788749a865f7ULL, 0x006e4dc3116861eaULL, 0x009f1428c37276e6ULL, 0x00e7d2e0fc1e1226ULL, 0x003aeebc6b6c45f6ULL, 0x0071a8073bf500c9ULL, 0x004b22ad986b530cULL, 0x00f439e63c0d79d4ULL)}, {FIELD_LITERAL(0x006bc3d53011f470ULL, 0x00032d6e692b83e8ULL, 0x00059722f497cd0bULL, 0x0009b4e6f0c497ccULL, 0x0058a804b7cce6c0ULL, 0x002b71d3302bbd5dULL, 0x00e2f82a36765fceULL, 0x008dded99524c703ULL)}, {FIELD_LITERAL(0x004d058953747d64ULL, 0x00701940fe79aa6fULL, 0x00a620ac71c760bfULL, 0x009532b611158b75ULL, 0x00547ed7f466f300ULL, 0x003cb5ab53a8401aULL, 0x00c7763168ce3120ULL, 0x007e48e33e4b9ab2ULL)}, }}, {{ {FIELD_LITERAL(0x001b2fc57bf3c738ULL, 0x006a3f918993fb80ULL, 0x0026f7a14fdec288ULL, 0x0075a2cdccef08dbULL, 0x00d3ecbc9eecdbf1ULL, 0x0048c40f06e5bf7fULL, 0x00d63e423009896bULL, 0x000598bc99c056a8ULL)}, {FIELD_LITERAL(0x002f194eaafa46dcULL, 0x008e38f57fe87613ULL, 0x00dc8e5ae25f4ab2ULL, 0x000a17809575e6bdULL, 0x00d3ec7923ba366aULL, 0x003a7e72e0ad75e3ULL, 0x0010024b88436e0aULL, 0x00ed3c5444b64051ULL)}, {FIELD_LITERAL(0x00831fc1340af342ULL, 0x00c9645669466d35ULL, 0x007692b4cc5a080fULL, 0x009fd4a47ac9259fULL, 0x001eeddf7d45928bULL, 0x003c0446fc45f28bULL, 0x002c0713aa3e2507ULL, 0x0095706935f0f41eULL)}, }}, {{ {FIELD_LITERAL(0x00766ae4190ec6d8ULL, 0x0065768cabc71380ULL, 0x00b902598416cdc2ULL, 0x00380021ad38df52ULL, 0x008f0b89d6551134ULL, 0x004254d4cc62c5a5ULL, 0x000d79f4484b9b94ULL, 0x00b516732ae3c50eULL)}, {FIELD_LITERAL(0x001fb73475c45509ULL, 0x00d2b2e5ea43345aULL, 0x00cb3c3842077bd1ULL, 0x0029f90ad820946eULL, 0x007c11b2380778aaULL, 0x009e54ece62c1704ULL, 0x004bc60c41ca01c3ULL, 0x004525679a5a0b03ULL)}, {FIELD_LITERAL(0x00c64fbddbed87b3ULL, 0x0040601d11731faaULL, 0x009c22475b6f9d67ULL, 0x0024b79dae875f15ULL, 0x00616fed3f02c3b0ULL, 0x0000cf39f6af2d3bULL, 0x00c46bac0aa9a688ULL, 0x00ab23e2800da204ULL)}, }}, {{ {FIELD_LITERAL(0x000b3a37617632b0ULL, 0x00597199fe1cfb6cULL, 0x0042a7ccdfeafdd6ULL, 0x004cc9f15ebcea17ULL, 0x00f436e596a6b4a4ULL, 0x00168861142df0d8ULL, 0x000753edfec26af5ULL, 0x000c495d7e388116ULL)}, {FIELD_LITERAL(0x0017085f4a346148ULL, 0x00c7cf7a37f62272ULL, 0x001776e129bc5c30ULL, 0x009955134c9eef2aULL, 0x001ba5bdf1df07beULL, 0x00ec39497103a55cULL, 0x006578354fda6cfbULL, 0x005f02719d4f15eeULL)}, {FIELD_LITERAL(0x0052b9d9b5d9655dULL, 0x00d4ec7ba1b461c3ULL, 0x00f95df4974f280bULL, 0x003d8e5ca11aeb51ULL, 0x00d4981eb5a70b26ULL, 0x000af9a4f6659f29ULL, 0x004598c846faeb43ULL, 0x0049d9a183a47670ULL)}, }}, {{ {FIELD_LITERAL(0x000a72d23dcb3f1fULL, 0x00a3737f84011727ULL, 0x00f870c0fbbf4a47ULL, 0x00a7aadd04b5c9caULL, 0x000c7715c67bd072ULL, 0x00015a136afcd74eULL, 0x0080d5caea499634ULL, 0x0026b448ec7514b7ULL)}, {FIELD_LITERAL(0x00b60167d9e7d065ULL, 0x00e60ba0d07381e8ULL, 0x003a4f17b725c2d4ULL, 0x006c19fe176b64faULL, 0x003b57b31af86ccbULL, 0x0021047c286180fdULL, 0x00bdc8fb00c6dbb6ULL, 0x00fe4a9f4bab4f3fULL)}, {FIELD_LITERAL(0x0088ffc3a16111f7ULL, 0x009155e4245d0bc8ULL, 0x00851d68220572d5ULL, 0x00557ace1e514d29ULL, 0x0031d7c339d91022ULL, 0x00101d0ae2eaceeaULL, 0x00246ab3f837b66aULL, 0x00d5216d381ff530ULL)}, }}, {{ {FIELD_LITERAL(0x0057e7ea35f36daeULL, 0x00f47d7ad15de22eULL, 0x00d757ea4b105115ULL, 0x008311457d579d7eULL, 0x00b49b75b1edd4ebULL, 0x0081c7ff742fd63aULL, 0x00ddda3187433df6ULL, 0x00475727d55f9c66ULL)}, {FIELD_LITERAL(0x00a6295218dc136aULL, 0x00563b3af0e9c012ULL, 0x00d3753b0145db1bULL, 0x004550389c043dc1ULL, 0x00ea94ae27401bdfULL, 0x002b0b949f2b7956ULL, 0x00c63f780ad8e23cULL, 0x00e591c47d6bab15ULL)}, {FIELD_LITERAL(0x00416c582b058eb6ULL, 0x004107da5b2cc695ULL, 0x00b3cd2556aeec64ULL, 0x00c0b418267e57a1ULL, 0x001799293579bd2eULL, 0x0046ed44590e4d07ULL, 0x001d7459b3630a1eULL, 0x00c6afba8b6696aaULL)}, }}, {{ {FIELD_LITERAL(0x008d6009b26da3f8ULL, 0x00898e88ca06b1caULL, 0x00edb22b2ed7fe62ULL, 0x00fbc93516aabe80ULL, 0x008b4b470c42ce0dULL, 0x00e0032ba7d0dcbbULL, 0x00d76da3a956ecc8ULL, 0x007f20fe74e3852aULL)}, {FIELD_LITERAL(0x002419222c607674ULL, 0x00a7f23af89188b3ULL, 0x00ad127284e73d1cULL, 0x008bba582fae1c51ULL, 0x00fc6aa7ca9ecab1ULL, 0x003df5319eb6c2baULL, 0x002a05af8a8b199aULL, 0x004bf8354558407cULL)}, {FIELD_LITERAL(0x00ce7d4a30f0fcbfULL, 0x00d02c272629f03dULL, 0x0048c001f7400bc2ULL, 0x002c21368011958dULL, 0x0098a550391e96b5ULL, 0x002d80b66390f379ULL, 0x001fa878760cc785ULL, 0x001adfce54b613d5ULL)}, }}, {{ {FIELD_LITERAL(0x001ed4dc71fa2523ULL, 0x005d0bff19bf9b5cULL, 0x00c3801cee065a64ULL, 0x001ed0b504323fbfULL, 0x0003ab9fdcbbc593ULL, 0x00df82070178b8d2ULL, 0x00a2bcaa9c251f85ULL, 0x00c628a3674bd02eULL)}, {FIELD_LITERAL(0x006b7a0674f9f8deULL, 0x00a742414e5c7cffULL, 0x0041cbf3c6e13221ULL, 0x00e3a64fd207af24ULL, 0x0087c05f15fbe8d1ULL, 0x004c50936d9e8a33ULL, 0x001306ec21042b6dULL, 0x00a4f4137d1141c2ULL)}, {FIELD_LITERAL(0x0009e6fb921568b0ULL, 0x00b3c60120219118ULL, 0x002a6c3460dd503aULL, 0x009db1ef11654b54ULL, 0x0063e4bf0be79601ULL, 0x00670d34bb2592b9ULL, 0x00dcee2f6c4130ceULL, 0x00b2682e88e77f54ULL)}, }}, {{ {FIELD_LITERAL(0x000d5b4b3da135abULL, 0x00838f3e5064d81dULL, 0x00d44eb50f6d94edULL, 0x0008931ab502ac6dULL, 0x00debe01ca3d3586ULL, 0x0025c206775f0641ULL, 0x005ad4b6ae912763ULL, 0x007e2c318ad8f247ULL)}, {FIELD_LITERAL(0x00ddbe0750dd1addULL, 0x004b3c7b885844b8ULL, 0x00363e7ecf12f1aeULL, 0x0062e953e6438f9dULL, 0x0023cc73b076afe9ULL, 0x00b09fa083b4da32ULL, 0x00c7c3d2456c541dULL, 0x005b591ec6b694d4ULL)}, {FIELD_LITERAL(0x0028656e19d62fcfULL, 0x0052a4af03df148dULL, 0x00122765ddd14e42ULL, 0x00f2252904f67157ULL, 0x004741965b636f3aULL, 0x006441d296132cb9ULL, 0x005e2106f956a5b7ULL, 0x00247029592d335cULL)}, }}, {{ {FIELD_LITERAL(0x003fe038eb92f894ULL, 0x000e6da1b72e8e32ULL, 0x003a1411bfcbe0faULL, 0x00b55d473164a9e4ULL, 0x00b9a775ac2df48dULL, 0x0002ddf350659e21ULL, 0x00a279a69eb19cb3ULL, 0x00f844eab25cba44ULL)}, {FIELD_LITERAL(0x00c41d1f9c1f1ac1ULL, 0x007b2df4e9f19146ULL, 0x00b469355fd5ba7aULL, 0x00b5e1965afc852aULL, 0x00388d5f1e2d8217ULL, 0x0022079e4c09ae93ULL, 0x0014268acd4ef518ULL, 0x00c1dd8d9640464cULL)}, {FIELD_LITERAL(0x0038526adeed0c55ULL, 0x00dd68c607e3fe85ULL, 0x00f746ddd48a5d57ULL, 0x0042f2952b963b7cULL, 0x001cbbd6876d5ec2ULL, 0x005e341470bca5c2ULL, 0x00871d41e085f413ULL, 0x00e53ab098f45732ULL)}, }}, {{ {FIELD_LITERAL(0x004d51124797c831ULL, 0x008f5ae3750347adULL, 0x0070ced94c1a0c8eULL, 0x00f6db2043898e64ULL, 0x000d00c9a5750cd0ULL, 0x000741ec59bad712ULL, 0x003c9d11aab37b7fULL, 0x00a67ba169807714ULL)}, {FIELD_LITERAL(0x00adb2c1566e8b8fULL, 0x0096c68a35771a9aULL, 0x00869933356f334aULL, 0x00ba9c93459f5962ULL, 0x009ec73fb6e8ca4bULL, 0x003c3802c27202e1ULL, 0x0031f5b733e0c008ULL, 0x00f9058c19611fa9ULL)}, {FIELD_LITERAL(0x00238f01814a3421ULL, 0x00c325a44b6cce28ULL, 0x002136f97aeb0e73ULL, 0x000cac8268a4afe2ULL, 0x0022fd218da471b3ULL, 0x009dcd8dfff8def9ULL, 0x00cb9f8181d999bbULL, 0x00143ae56edea349ULL)}, }}, {{ {FIELD_LITERAL(0x0000623bf87622c5ULL, 0x00a1966fdd069496ULL, 0x00c315b7b812f9fcULL, 0x00bdf5efcd128b97ULL, 0x001d464f532e3e16ULL, 0x003cd94f081bfd7eULL, 0x00ed9dae12ce4009ULL, 0x002756f5736eee70ULL)}, {FIELD_LITERAL(0x00a5187e6ee7341bULL, 0x00e6d52e82d83b6eULL, 0x00df3c41323094a7ULL, 0x00b3324f444e9de9ULL, 0x00689eb21a35bfe5ULL, 0x00f16363becd548dULL, 0x00e187cc98e7f60fULL, 0x00127d9062f0ccabULL)}, {FIELD_LITERAL(0x004ad71b31c29e40ULL, 0x00a5fcace12fae29ULL, 0x004425b5597280edULL, 0x00e7ef5d716c3346ULL, 0x0010b53ada410ac8ULL, 0x0092310226060c9bULL, 0x0091c26128729c7eULL, 0x0088b42900f8ec3bULL)}, }}, {{ {FIELD_LITERAL(0x00f1e26e9762d4a8ULL, 0x00d9d74082183414ULL, 0x00ffec9bd57a0282ULL, 0x000919e128fd497aULL, 0x00ab7ae7d00fe5f8ULL, 0x0054dc442851ff68ULL, 0x00c9ebeb3b861687ULL, 0x00507f7cab8b698fULL)}, {FIELD_LITERAL(0x00c13c5aae3ae341ULL, 0x009c6c9ed98373e7ULL, 0x00098f26864577a8ULL, 0x0015b886e9488b45ULL, 0x0037692c42aadba5ULL, 0x00b83170b8e7791cULL, 0x001670952ece1b44ULL, 0x00fd932a39276da2ULL)}, {FIELD_LITERAL(0x0081a3259bef3398ULL, 0x005480fff416107bULL, 0x00ce4f607d21be98ULL, 0x003ffc084b41df9bULL, 0x0043d0bb100502d1ULL, 0x00ec35f575ba3261ULL, 0x00ca18f677300ef3ULL, 0x00e8bb0a827d8548ULL)}, }}, {{ {FIELD_LITERAL(0x00df76b3328ada72ULL, 0x002e20621604a7c2ULL, 0x00f910638a105b09ULL, 0x00ef4724d96ef2cdULL, 0x00377d83d6b8a2f7ULL, 0x00b4f48805ade324ULL, 0x001cd5da8b152018ULL, 0x0045af671a20ca7fULL)}, {FIELD_LITERAL(0x009ae3b93a56c404ULL, 0x004a410b7a456699ULL, 0x00023a619355e6b2ULL, 0x009cdc7297387257ULL, 0x0055b94d4ae70d04ULL, 0x002cbd607f65b005ULL, 0x003208b489697166ULL, 0x00ea2aa058867370ULL)}, {FIELD_LITERAL(0x00f29d2598ee3f32ULL, 0x00b4ac5385d82adcULL, 0x007633eaf04df19bULL, 0x00aa2d3d77ceab01ULL, 0x004a2302fcbb778aULL, 0x00927f225d5afa34ULL, 0x004a8e9d5047f237ULL, 0x008224ae9dbce530ULL)}, }}, {{ {FIELD_LITERAL(0x001cf640859b02f8ULL, 0x00758d1d5d5ce427ULL, 0x00763c784ef4604cULL, 0x005fa81aee205270ULL, 0x00ac537bfdfc44cbULL, 0x004b919bd342d670ULL, 0x00238508d9bf4b7aULL, 0x00154888795644f3ULL)}, {FIELD_LITERAL(0x00c845923c084294ULL, 0x00072419a201bc25ULL, 0x0045f408b5f8e669ULL, 0x00e9d6a186b74dfeULL, 0x00e19108c68fa075ULL, 0x0017b91d874177b7ULL, 0x002f0ca2c7912c5aULL, 0x009400aa385a90a2ULL)}, {FIELD_LITERAL(0x0071110b01482184ULL, 0x00cfed0044f2bef8ULL, 0x0034f2901cf4662eULL, 0x003b4ae2a67f9834ULL, 0x00cca9b96fe94810ULL, 0x00522507ae77abd0ULL, 0x00bac7422721e73eULL, 0x0066622b0f3a62b0ULL)}, }}, {{ {FIELD_LITERAL(0x00f8ac5cf4705b6aULL, 0x00867d82dcb457e3ULL, 0x007e13ab2ccc2ce9ULL, 0x009ee9a018d3930eULL, 0x008370f8ecb42df8ULL, 0x002d9f019add263eULL, 0x003302385b92d196ULL, 0x00a15654536e2c0cULL)}, {FIELD_LITERAL(0x0026ef1614e160afULL, 0x00c023f9edfc9c76ULL, 0x00cff090da5f57baULL, 0x0076db7a66643ae9ULL, 0x0019462f8c646999ULL, 0x008fec00b3854b22ULL, 0x00d55041692a0a1cULL, 0x0065db894215ca00ULL)}, {FIELD_LITERAL(0x00a925036e0a451cULL, 0x002a0390c36b6cc1ULL, 0x00f27020d90894f4ULL, 0x008d90d52cbd3d7fULL, 0x00e1d0137392f3b8ULL, 0x00f017c158b51a8fULL, 0x00cac313d3ed7dbcULL, 0x00b99a81e3eb42d3ULL)}, }}, {{ {FIELD_LITERAL(0x00b54850275fe626ULL, 0x0053a3fd1ec71140ULL, 0x00e3d2d7dbe096faULL, 0x00e4ac7b595cce4cULL, 0x0077bad449c0a494ULL, 0x00b7c98814afd5b3ULL, 0x0057226f58486cf9ULL, 0x00b1557154f0cc57ULL)}, {FIELD_LITERAL(0x008cc9cd236315c0ULL, 0x0031d9c5b39fda54ULL, 0x00a5713ef37e1171ULL, 0x00293d5ae2886325ULL, 0x00c4aba3e05015e1ULL, 0x0003f35ef78e4fc6ULL, 0x0039d6bd3ac1527bULL, 0x0019d7c3afb77106ULL)}, {FIELD_LITERAL(0x007b162931a985afULL, 0x00ad40a2e0daa713ULL, 0x006df27c4009f118ULL, 0x00503e9f4e2e8becULL, 0x00751a77c82c182dULL, 0x000298937769245bULL, 0x00ffb1e8fabf9ee5ULL, 0x0008334706e09abeULL)}, }}, {{ {FIELD_LITERAL(0x00dbca4e98a7dcd9ULL, 0x00ee29cfc78bde99ULL, 0x00e4a3b6995f52e9ULL, 0x0045d70189ae8096ULL, 0x00fd2a8a3b9b0d1bULL, 0x00af1793b107d8e1ULL, 0x00dbf92cbe4afa20ULL, 0x00da60f798e3681dULL)}, {FIELD_LITERAL(0x004246bfcecc627aULL, 0x004ba431246c03a4ULL, 0x00bd1d101872d497ULL, 0x003b73d3f185ee16ULL, 0x001feb2e2678c0e3ULL, 0x00ff13c5a89dec76ULL, 0x00ed06042e771d8fULL, 0x00a4fd2a897a83ddULL)}, {FIELD_LITERAL(0x009a4a3be50d6597ULL, 0x00de3165fc5a1096ULL, 0x004f3f56e345b0c7ULL, 0x00f7bf721d5ab8bcULL, 0x004313e47b098c50ULL, 0x00e4c7d5c0e1adbbULL, 0x002e3e3db365051eULL, 0x00a480c2cd6a96fbULL)}, }}, {{ {FIELD_LITERAL(0x00417fa30a7119edULL, 0x00af257758419751ULL, 0x00d358a487b463d4ULL, 0x0089703cc720b00dULL, 0x00ce56314ff7f271ULL, 0x0064db171ade62c1ULL, 0x00640b36d4a22fedULL, 0x00424eb88696d23fULL)}, {FIELD_LITERAL(0x004ede34af2813f3ULL, 0x00d4a8e11c9e8216ULL, 0x004796d5041de8a5ULL, 0x00c4c6b4d21cc987ULL, 0x00e8a433ee07fa1eULL, 0x0055720b5abcc5a1ULL, 0x008873ea9c74b080ULL, 0x005b3fec1ab65d48ULL)}, {FIELD_LITERAL(0x0047e5277db70ec5ULL, 0x000a096c66db7d6bULL, 0x00b4164cc1730159ULL, 0x004a9f783fe720feULL, 0x00a8177b94449dbcULL, 0x0095a24ff49a599fULL, 0x0069c1c578250cbcULL, 0x00452019213debf4ULL)}, }}, {{ {FIELD_LITERAL(0x0021ce99e09ebda3ULL, 0x00fcbd9f91875ad0ULL, 0x009bbf6b7b7a0b5fULL, 0x00388886a69b1940ULL, 0x00926a56d0f81f12ULL, 0x00e12903c3358d46ULL, 0x005dfce4e8e1ce9dULL, 0x0044cfa94e2f7e23ULL)}, {FIELD_LITERAL(0x001bd59c09e982eaULL, 0x00f72daeb937b289ULL, 0x0018b76dca908e0eULL, 0x00edb498512384adULL, 0x00ce0243b6cc9538ULL, 0x00f96ff690cb4e70ULL, 0x007c77bf9f673c8dULL, 0x005bf704c088a528ULL)}, {FIELD_LITERAL(0x0093d4628dcb33beULL, 0x0095263d51d42582ULL, 0x0049b3222458fe06ULL, 0x00e7fce73b653a7fULL, 0x003ca2ebce60b369ULL, 0x00c5de239a32bea4ULL, 0x0063b8b3d71fb6bfULL, 0x0039aeeb78a1a839ULL)}, }}, {{ {FIELD_LITERAL(0x007dc52da400336cULL, 0x001fded1e15b9457ULL, 0x00902e00f5568e3aULL, 0x00219bef40456d2dULL, 0x005684161fb3dbc9ULL, 0x004a4e9be49a76eaULL, 0x006e685ae88b78ffULL, 0x0021c42f13042d3cULL)}, {FIELD_LITERAL(0x00fb22bb5fd3ce50ULL, 0x0017b48aada7ae54ULL, 0x00fd5c44ad19a536ULL, 0x000ccc4e4e55e45cULL, 0x00fd637d45b4c3f5ULL, 0x0038914e023c37cfULL, 0x00ac1881d6a8d898ULL, 0x00611ed8d3d943a8ULL)}, {FIELD_LITERAL(0x0056e2259d113d2bULL, 0x00594819b284ec16ULL, 0x00c7bf794bb36696ULL, 0x00721ee75097cdc6ULL, 0x00f71be9047a2892ULL, 0x00df6ba142564edfULL, 0x0069580b7a184e8dULL, 0x00f056e38fca0feeULL)}, }}, {{ {FIELD_LITERAL(0x009df98566a18c6dULL, 0x00cf3a200968f219ULL, 0x0044ba60da6d9086ULL, 0x00dbc9c0e344da03ULL, 0x000f9401c4466855ULL, 0x00d46a57c5b0a8d1ULL, 0x00875a635d7ac7c6ULL, 0x00ef4a933b7e0ae6ULL)}, {FIELD_LITERAL(0x005e8694077a1535ULL, 0x008bef75f71c8f1dULL, 0x000a7c1316423511ULL, 0x00906e1d70604320ULL, 0x003fc46c1a2ffbd6ULL, 0x00d1d5022e68f360ULL, 0x002515fba37bbf46ULL, 0x00ca16234e023b44ULL)}, {FIELD_LITERAL(0x00787c99561f4690ULL, 0x00a857a8c1561f27ULL, 0x00a10df9223c09feULL, 0x00b98a9562e3b154ULL, 0x004330b8744c3ed2ULL, 0x00e06812807ec5c4ULL, 0x00e4cf6a7db9f1e3ULL, 0x00d95b089f132a34ULL)}, }}, {{ {FIELD_LITERAL(0x002922b39ca33eecULL, 0x0090d12a5f3ab194ULL, 0x00ab60c02fb5f8edULL, 0x00188d292abba1cfULL, 0x00e10edec9698f6eULL, 0x0069a4d9934133c8ULL, 0x0024aac40e6d3d06ULL, 0x001702c2177661b0ULL)}, {FIELD_LITERAL(0x00139078397030bdULL, 0x000e3c447e859a00ULL, 0x0064a5b334c82393ULL, 0x00b8aabeb7358093ULL, 0x00020778bb9ae73bULL, 0x0032ee94c7892a18ULL, 0x008215253cb41bdaULL, 0x005e2797593517aeULL)}, {FIELD_LITERAL(0x0083765a5f855d4aULL, 0x0051b6d1351b8ee2ULL, 0x00116de548b0f7bbULL, 0x0087bd88703affa0ULL, 0x0095b2cc34d7fdd2ULL, 0x0084cd81b53f0bc8ULL, 0x008562fc995350edULL, 0x00a39abb193651e3ULL)}, }}, {{ {FIELD_LITERAL(0x0019e23f0474b114ULL, 0x00eb94c2ad3b437eULL, 0x006ddb34683b75acULL, 0x00391f9209b564c6ULL, 0x00083b3bb3bff7aaULL, 0x00eedcd0f6dceefcULL, 0x00b50817f794fe01ULL, 0x0036474deaaa75c9ULL)}, {FIELD_LITERAL(0x0091868594265aa2ULL, 0x00797accae98ca6dULL, 0x0008d8c5f0f8a184ULL, 0x00d1f4f1c2b2fe6eULL, 0x0036783dfb48a006ULL, 0x008c165120503527ULL, 0x0025fd780058ce9bULL, 0x0068beb007be7d27ULL)}, {FIELD_LITERAL(0x00d0ff88aa7c90c2ULL, 0x00b2c60dacf53394ULL, 0x0094a7284d9666d6ULL, 0x00bed9022ce7a19dULL, 0x00c51553f0cd7682ULL, 0x00c3fb870b124992ULL, 0x008d0bc539956c9bULL, 0x00fc8cf258bb8885ULL)}, }}, {{ {FIELD_LITERAL(0x003667bf998406f8ULL, 0x0000115c43a12975ULL, 0x001e662f3b20e8fdULL, 0x0019ffa534cb24ebULL, 0x00016be0dc8efb45ULL, 0x00ff76a8b26243f5ULL, 0x00ae20d241a541e3ULL, 0x0069bd6af13cd430ULL)}, {FIELD_LITERAL(0x0045fdc16487cda3ULL, 0x00b2d8e844cf2ed7ULL, 0x00612c50e88c1607ULL, 0x00a08aabc66c1672ULL, 0x006031fdcbb24d97ULL, 0x001b639525744b93ULL, 0x004409d62639ab17ULL, 0x00a1853d0347ab1dULL)}, {FIELD_LITERAL(0x0075a1a56ebf5c21ULL, 0x00a3e72be9ac53edULL, 0x00efcde1629170c2ULL, 0x0004225fe91ef535ULL, 0x0088049fc73dfda7ULL, 0x004abc74857e1288ULL, 0x0024e2434657317cULL, 0x00d98cb3d3e5543cULL)}, }}, {{ {FIELD_LITERAL(0x00b4b53eab6bdb19ULL, 0x009b22d8b43711d0ULL, 0x00d948b9d961785dULL, 0x00cb167b6f279eadULL, 0x00191de3a678e1c9ULL, 0x00d9dd9511095c2eULL, 0x00f284324cd43067ULL, 0x00ed74fa535151ddULL)}, {FIELD_LITERAL(0x007e32c049b5c477ULL, 0x009d2bfdbd9bcfd8ULL, 0x00636e93045938c6ULL, 0x007fde4af7687298ULL, 0x0046a5184fafa5d3ULL, 0x0079b1e7f13a359bULL, 0x00875adf1fb927d6ULL, 0x00333e21c61bcad2ULL)}, {FIELD_LITERAL(0x00048014f73d8b8dULL, 0x0075684aa0966388ULL, 0x0092be7df06dc47cULL, 0x0097cebcd0f5568aULL, 0x005a7004d9c4c6a9ULL, 0x00b0ecbb659924c7ULL, 0x00d90332dd492a7cULL, 0x0057fc14df11493dULL)}, }}, {{ {FIELD_LITERAL(0x0008ed8ea0ad95beULL, 0x0041d324b9709645ULL, 0x00e25412257a19b4ULL, 0x0058df9f3423d8d2ULL, 0x00a9ab20def71304ULL, 0x009ae0dbf8ac4a81ULL, 0x00c9565977e4392aULL, 0x003c9269444baf55ULL)}, {FIELD_LITERAL(0x007df6cbb926830bULL, 0x00d336058ae37865ULL, 0x007af47dac696423ULL, 0x0048d3011ec64ac8ULL, 0x006b87666e40049fULL, 0x0036a2e0e51303d7ULL, 0x00ba319bd79dbc55ULL, 0x003e2737ecc94f53ULL)}, {FIELD_LITERAL(0x00d296ff726272d9ULL, 0x00f6d097928fcf57ULL, 0x00e0e616a55d7013ULL, 0x00deaf454ed9eac7ULL, 0x0073a56bedef4d92ULL, 0x006ccfdf6fc92e19ULL, 0x009d1ee1371a7218ULL, 0x00ee3c2ee4462d80ULL)}, }}, {{ {FIELD_LITERAL(0x00437bce9bccdf9dULL, 0x00e0c8e2f85dc0a3ULL, 0x00c91a7073995a19ULL, 0x00856ec9fe294559ULL, 0x009e4b33394b156eULL, 0x00e245b0dc497e5cULL, 0x006a54e687eeaeffULL, 0x00f1cd1cd00fdb7cULL)}, {FIELD_LITERAL(0x008132ae5c5d8cd1ULL, 0x00121d68324a1d9fULL, 0x00d6be9dafcb8c76ULL, 0x00684d9070edf745ULL, 0x00519fbc96d7448eULL, 0x00388182fdc1f27eULL, 0x000235baed41f158ULL, 0x00bf6cf6f1a1796aULL)}, {FIELD_LITERAL(0x002adc4b4d148219ULL, 0x003084ada0d3a90aULL, 0x0046de8aab0f2e4eULL, 0x00452d342a67b5fdULL, 0x00d4b50f01d4de21ULL, 0x00db6d9fc0cefb79ULL, 0x008c184c86a462cdULL, 0x00e17c83764d42daULL)}, }}, {{ {FIELD_LITERAL(0x007b2743b9a1e01aULL, 0x007847ffd42688c4ULL, 0x006c7844d610a316ULL, 0x00f0cb8b250aa4b0ULL, 0x00a19060143b3ae6ULL, 0x0014eb10b77cfd80ULL, 0x000170905729dd06ULL, 0x00063b5b9cd72477ULL)}, {FIELD_LITERAL(0x00ce382dc7993d92ULL, 0x00021153e938b4c8ULL, 0x00096f7567f48f51ULL, 0x0058f81ddfe4b0d5ULL, 0x00cc379a56b355c7ULL, 0x002c760770d3e819ULL, 0x00ee22d1d26e5a40ULL, 0x00de6d93d5b082d7ULL)}, {FIELD_LITERAL(0x000a91a42c52e056ULL, 0x00185f6b77fce7eaULL, 0x000803c51962f6b5ULL, 0x0022528582ba563dULL, 0x0043f8040e9856d6ULL, 0x0085a29ec81fb860ULL, 0x005f9a611549f5ffULL, 0x00c1f974ecbd4b06ULL)}, }}, {{ {FIELD_LITERAL(0x005b64c6fd65ec97ULL, 0x00c1fdd7f877bc7fULL, 0x000d9cc6c89f841cULL, 0x005c97b7f1aff9adULL, 0x0075e3c61475d47eULL, 0x001ecb1ba8153011ULL, 0x00fe7f1c8d71d40dULL, 0x003fa9757a229832ULL)}, {FIELD_LITERAL(0x00ffc5c89d2b0cbaULL, 0x00d363d42e3e6fc3ULL, 0x0019a1a0118e2e8aULL, 0x00f7baeff48882e1ULL, 0x001bd5af28c6b514ULL, 0x0055476ca2253cb2ULL, 0x00d8eb1977e2ddf3ULL, 0x00b173b1adb228a1ULL)}, {FIELD_LITERAL(0x00f2cb99dd0ad707ULL, 0x00e1e08b6859ddd8ULL, 0x000008f2d0650bccULL, 0x00d7ed392f8615c3ULL, 0x00976750a94da27fULL, 0x003e83bb0ecb69baULL, 0x00df8e8d15c14ac6ULL, 0x00f9f7174295d9c2ULL)}, }}, {{ {FIELD_LITERAL(0x00f11cc8e0e70bcbULL, 0x00e5dc689974e7ddULL, 0x0014e409f9ee5870ULL, 0x00826e6689acbd63ULL, 0x008a6f4e3d895d88ULL, 0x00b26a8da41fd4adULL, 0x000fb7723f83efd7ULL, 0x009c749db0a5f6c3ULL)}, {FIELD_LITERAL(0x002389319450f9baULL, 0x003677f31aa1250aULL, 0x0092c3db642f38cbULL, 0x00f8b64c0dfc9773ULL, 0x00cd49fe3505b795ULL, 0x0068105a4090a510ULL, 0x00df0ba2072a8bb6ULL, 0x00eb396143afd8beULL)}, {FIELD_LITERAL(0x00a0d4ecfb24cdffULL, 0x00ddaf8008ba6479ULL, 0x00f0b3e36d4b0f44ULL, 0x003734bd3af1f146ULL, 0x00b87e2efc75527eULL, 0x00d230df55ddab50ULL, 0x002613257ae56c1dULL, 0x00bc0946d135934dULL)}, }}, {{ {FIELD_LITERAL(0x00468711bd994651ULL, 0x0033108fa67561bfULL, 0x0089d760192a54b4ULL, 0x00adc433de9f1871ULL, 0x000467d05f36e050ULL, 0x007847e0f0579f7fULL, 0x00a2314ad320052dULL, 0x00b3a93649f0b243ULL)}, {FIELD_LITERAL(0x0067f8f0c4fe26c9ULL, 0x0079c4a3cc8f67b9ULL, 0x0082b1e62f23550dULL, 0x00f2d409caefd7f5ULL, 0x0080e67dcdb26e81ULL, 0x0087ae993ea1f98aULL, 0x00aa108becf61d03ULL, 0x001acf11efb608a3ULL)}, {FIELD_LITERAL(0x008225febbab50d9ULL, 0x00f3b605e4dd2083ULL, 0x00a32b28189e23d2ULL, 0x00d507e5e5eb4c97ULL, 0x005a1a84e302821fULL, 0x0006f54c1c5f08c7ULL, 0x00a347c8cb2843f0ULL, 0x0009f73e9544bfa5ULL)}, }}, {{ {FIELD_LITERAL(0x006c59c9ae744185ULL, 0x009fc32f1b4282cdULL, 0x004d6348ca59b1acULL, 0x00105376881be067ULL, 0x00af4096013147dcULL, 0x004abfb5a5cb3124ULL, 0x000d2a7f8626c354ULL, 0x009c6ed568e07431ULL)}, {FIELD_LITERAL(0x00e828333c297f8bULL, 0x009ef3cf8c3f7e1fULL, 0x00ab45f8fff31cb9ULL, 0x00c8b4178cb0b013ULL, 0x00d0c50dd3260a3fULL, 0x0097126ac257f5bcULL, 0x0042376cc90c705aULL, 0x001d96fdb4a1071eULL)}, {FIELD_LITERAL(0x00542d44d89ee1a8ULL, 0x00306642e0442d98ULL, 0x0090853872b87338ULL, 0x002362cbf22dc044ULL, 0x002c222adff663b8ULL, 0x0067c924495fcb79ULL, 0x000e621d983c977cULL, 0x00df77a9eccb66fbULL)}, }}, {{ {FIELD_LITERAL(0x002809e4bbf1814aULL, 0x00b9e854f9fafb32ULL, 0x00d35e67c10f7a67ULL, 0x008f1bcb76e748cfULL, 0x004224d9515687d2ULL, 0x005ba0b774e620c4ULL, 0x00b5e57db5d54119ULL, 0x00e15babe5683282ULL)}, {FIELD_LITERAL(0x00832d02369b482cULL, 0x00cba52ff0d93450ULL, 0x003fa9c908d554dbULL, 0x008d1e357b54122fULL, 0x00abd91c2dc950c6ULL, 0x007eff1df4c0ec69ULL, 0x003f6aeb13fb2d31ULL, 0x00002d6179fc5b2cULL)}, {FIELD_LITERAL(0x0046c9eda81c9c89ULL, 0x00b60cb71c8f62fcULL, 0x0022f5a683baa558ULL, 0x00f87319fccdf997ULL, 0x009ca09b51ce6a22ULL, 0x005b12baf4af7d77ULL, 0x008a46524a1e33e2ULL, 0x00035a77e988be0dULL)}, }}, {{ {FIELD_LITERAL(0x00a7efe46a7dbe2fULL, 0x002f66fd55014fe7ULL, 0x006a428afa1ff026ULL, 0x0056caaa9604ab72ULL, 0x0033f3bcd7fac8aeULL, 0x00ccb1aa01c86764ULL, 0x00158d1edf13bf40ULL, 0x009848ee76fcf3b4ULL)}, {FIELD_LITERAL(0x00a9e7730a819691ULL, 0x00d9cc73c4992b70ULL, 0x00e299bde067de5aULL, 0x008c314eb705192aULL, 0x00e7226f17e8a3ccULL, 0x0029dfd956e65a47ULL, 0x0053a8e839073b12ULL, 0x006f942b2ab1597eULL)}, {FIELD_LITERAL(0x001c3d780ecd5e39ULL, 0x0094f247fbdcc5feULL, 0x00d5c786fd527764ULL, 0x00b6f4da74f0db2aULL, 0x0080f1f8badcd5fcULL, 0x00f36a373ad2e23bULL, 0x00f804f9f4343bf2ULL, 0x00d1af40ec623982ULL)}, }}, {{ {FIELD_LITERAL(0x0082aeace5f1b144ULL, 0x00f68b3108cf4dd3ULL, 0x00634af01dde3020ULL, 0x000beab5df5c2355ULL, 0x00e8b790d1b49b0bULL, 0x00e48d15854e36f4ULL, 0x0040ab2d95f3db9fULL, 0x002711c4ed9e899aULL)}, {FIELD_LITERAL(0x0039343746531ebeULL, 0x00c8509d835d429dULL, 0x00e79eceff6b0018ULL, 0x004abfd31e8efce5ULL, 0x007bbfaaa1e20210ULL, 0x00e3be89c193e179ULL, 0x001c420f4c31d585ULL, 0x00f414a315bef5aeULL)}, {FIELD_LITERAL(0x007c296a24990df8ULL, 0x00d5d07525a75588ULL, 0x00dd8e113e94b7e7ULL, 0x007bbc58febe0cc8ULL, 0x0029f51af9bfcad3ULL, 0x007e9311ec7ab6f3ULL, 0x009a884de1676343ULL, 0x0050d5f2dce84be9ULL)}, }}, {{ {FIELD_LITERAL(0x005fa020cca2450aULL, 0x00491c29db6416d8ULL, 0x0037cefe3f9f9a85ULL, 0x003d405230647066ULL, 0x0049e835f0fdbe89ULL, 0x00feb78ac1a0815cULL, 0x00828e4b32dc9724ULL, 0x00db84f2dc8d6fd4ULL)}, {FIELD_LITERAL(0x0098cddc8b39549aULL, 0x006da37e3b05d22cULL, 0x00ce633cfd4eb3cbULL, 0x00fda288ef526acdULL, 0x0025338878c5d30aULL, 0x00f34438c4e5a1b4ULL, 0x00584efea7c310f1ULL, 0x0041a551f1b660adULL)}, {FIELD_LITERAL(0x00d7f7a8fbd6437aULL, 0x0062872413bf3753ULL, 0x00ad4bbcb43c584bULL, 0x007fe49be601d7e3ULL, 0x0077c659789babf4ULL, 0x00eb45fcb06a741bULL, 0x005ce244913f9708ULL, 0x0088426401736326ULL)}, }}, {{ {FIELD_LITERAL(0x007bf562ca768d7cULL, 0x006c1f3a174e387cULL, 0x00f024b447fee939ULL, 0x007e7af75f01143fULL, 0x003adb70b4eed89dULL, 0x00e43544021ad79aULL, 0x0091f7f7042011f6ULL, 0x0093c1a1ee3a0ddcULL)}, {FIELD_LITERAL(0x00a0b68ec1eb72d2ULL, 0x002c03235c0d45a0ULL, 0x00553627323fe8c5ULL, 0x006186e94b17af94ULL, 0x00a9906196e29f14ULL, 0x0025b3aee6567733ULL, 0x007e0dd840080517ULL, 0x0018eb5801a4ba93ULL)}, {FIELD_LITERAL(0x00d7fe7017bf6a40ULL, 0x006e3f0624be0c42ULL, 0x00ffbba205358245ULL, 0x00f9fc2cf8194239ULL, 0x008d93b37bf15b4eULL, 0x006ddf2e38be8e95ULL, 0x002b6e79bf5fcff9ULL, 0x00ab355da425e2deULL)}, }}, {{ {FIELD_LITERAL(0x00938f97e20be973ULL, 0x0099141a36aaf306ULL, 0x0057b0ca29e545a1ULL, 0x0085db571f9fbc13ULL, 0x008b333c554b4693ULL, 0x0043ab6ef3e241cbULL, 0x0054fb20aa1e5c70ULL, 0x00be0ff852760adfULL)}, {FIELD_LITERAL(0x003973d8938971d6ULL, 0x002aca26fa80c1f5ULL, 0x00108af1faa6b513ULL, 0x00daae275d7924e6ULL, 0x0053634ced721308ULL, 0x00d2355fe0bbd443ULL, 0x00357612b2d22095ULL, 0x00f9bb9dd4136cf3ULL)}, {FIELD_LITERAL(0x002bff12cf5e03a5ULL, 0x001bdb1fa8a19cf8ULL, 0x00c91c6793f84d39ULL, 0x00f869f1b2eba9afULL, 0x0059bc547dc3236bULL, 0x00d91611d6d38689ULL, 0x00e062daaa2c0214ULL, 0x00ed3c047cc2bc82ULL)}, }}, {{ {FIELD_LITERAL(0x000050d70c32b31aULL, 0x001939d576d437b3ULL, 0x00d709e598bf9fe6ULL, 0x00a885b34bd2ee9eULL, 0x00dd4b5c08ab1a50ULL, 0x0091bebd50b55639ULL, 0x00cf79ff64acdbc6ULL, 0x006067a39d826336ULL)}, {FIELD_LITERAL(0x0062dd0fb31be374ULL, 0x00fcc96b84c8e727ULL, 0x003f64f1375e6ae3ULL, 0x0057d9b6dd1af004ULL, 0x00d6a167b1103c7bULL, 0x00dd28f3180fb537ULL, 0x004ff27ad7167128ULL, 0x008934c33461f2acULL)}, {FIELD_LITERAL(0x0065b472b7900043ULL, 0x00ba7efd2ff1064bULL, 0x000b67d6c4c3020fULL, 0x0012d28469f4e46dULL, 0x0031c32939703ec7ULL, 0x00b49f0bce133066ULL, 0x00f7e10416181d47ULL, 0x005c90f51867eeccULL)}, }}, {{ {FIELD_LITERAL(0x0051207abd179101ULL, 0x00fc2a5c20d9c5daULL, 0x00fb9d5f2701b6dfULL, 0x002dd040fdea82b8ULL, 0x00f163b0738442ffULL, 0x00d9736bd68855b8ULL, 0x00e0d8e93005e61cULL, 0x00df5a40b3988570ULL)}, {FIELD_LITERAL(0x0006918f5dfce6dcULL, 0x00d4bf1c793c57fbULL, 0x0069a3f649435364ULL, 0x00e89a50e5b0cd6eULL, 0x00b9f6a237e973afULL, 0x006d4ed8b104e41dULL, 0x00498946a3924cd2ULL, 0x00c136ec5ac9d4f7ULL)}, {FIELD_LITERAL(0x0011a9c290ac5336ULL, 0x002b9a2d4a6a6533ULL, 0x009a8a68c445d937ULL, 0x00361b27b07e5e5cULL, 0x003c043b1755b974ULL, 0x00b7eb66cf1155eeULL, 0x0077af5909eefff2ULL, 0x0098f609877cc806ULL)}, }}, {{ {FIELD_LITERAL(0x00ab13af436bf8f4ULL, 0x000bcf0a0dac8574ULL, 0x00d50c864f705045ULL, 0x00c40e611debc842ULL, 0x0085010489bd5caaULL, 0x007c5050acec026fULL, 0x00f67d943c8da6d1ULL, 0x00de1da0278074c6ULL)}, {FIELD_LITERAL(0x00b373076597455fULL, 0x00e83f1af53ac0f5ULL, 0x0041f63c01dc6840ULL, 0x0097dea19b0c6f4bULL, 0x007f9d63b4c1572cULL, 0x00e692d492d0f5f0ULL, 0x00cbcb392e83b4adULL, 0x0069c0f39ed9b1a8ULL)}, {FIELD_LITERAL(0x00861030012707c9ULL, 0x009fbbdc7fd4aafbULL, 0x008f591d6b554822ULL, 0x00df08a41ea18adeULL, 0x009d7d83e642abeaULL, 0x0098c71bda3b78ffULL, 0x0022c89e7021f005ULL, 0x0044d29a3fe1e3c4ULL)}, }}, {{ {FIELD_LITERAL(0x00e748cd7b5c52f2ULL, 0x00ea9df883f89cc3ULL, 0x0018970df156b6c7ULL, 0x00c5a46c2a33a847ULL, 0x00cbde395e32aa09ULL, 0x0072474ebb423140ULL, 0x00fb00053086a23dULL, 0x001dafcfe22d4e1fULL)}, {FIELD_LITERAL(0x00c903ee6d825540ULL, 0x00add6c4cf98473eULL, 0x007636efed4227f1ULL, 0x00905124ae55e772ULL, 0x00e6b38fab12ed53ULL, 0x0045e132b863fe55ULL, 0x003974662edb366aULL, 0x00b1787052be8208ULL)}, {FIELD_LITERAL(0x00a614b00d775c7cULL, 0x00d7c78941cc7754ULL, 0x00422dd68b5dabc4ULL, 0x00a6110f0167d28bULL, 0x00685a309c252886ULL, 0x00b439ffd5143660ULL, 0x003656e29ee7396fULL, 0x00c7c9b9ed5ad854ULL)}, }}, {{ {FIELD_LITERAL(0x0040f7e7c5b37bf2ULL, 0x0064e4dc81181bbaULL, 0x00a8767ae2a366b6ULL, 0x001496b4f90546f2ULL, 0x002a28493f860441ULL, 0x0021f59513049a3aULL, 0x00852d369a8b7ee3ULL, 0x00dd2e7d8b7d30a9ULL)}, {FIELD_LITERAL(0x00006e34a35d9fbcULL, 0x00eee4e48b2f019aULL, 0x006b344743003a5fULL, 0x00541d514f04a7e3ULL, 0x00e81f9ee7647455ULL, 0x005e2b916c438f81ULL, 0x00116f8137b7eff0ULL, 0x009bd3decc7039d1ULL)}, {FIELD_LITERAL(0x0005d226f434110dULL, 0x00af8288b8ef21d5ULL, 0x004a7a52ef181c8cULL, 0x00be0b781b4b06deULL, 0x00e6e3627ded07e1ULL, 0x00e43aa342272b8bULL, 0x00e86ab424577d84ULL, 0x00fb292c566e35bbULL)}, }}, {{ {FIELD_LITERAL(0x00334f5303ea1222ULL, 0x00dfb3dbeb0a5d3eULL, 0x002940d9592335c1ULL, 0x00706a7a63e8938aULL, 0x005a533558bc4cafULL, 0x00558e33192022a9ULL, 0x00970d9faf74c133ULL, 0x002979fcb63493caULL)}, {FIELD_LITERAL(0x00e38abece3c82abULL, 0x005a51f18a2c7a86ULL, 0x009dafa2e86d592eULL, 0x00495a62eb688678ULL, 0x00b79df74c0eb212ULL, 0x0023e8cc78b75982ULL, 0x005998cb91075e13ULL, 0x00735aa9ba61bc76ULL)}, {FIELD_LITERAL(0x00d9f7a82ddbe628ULL, 0x00a1fc782889ae0fULL, 0x0071ffda12d14b66ULL, 0x0037cf4eca7fb3d5ULL, 0x00c80bc242c58808ULL, 0x0075bf8c2d08c863ULL, 0x008d41f31afc52a7ULL, 0x00197962ecf38741ULL)}, }}, {{ {FIELD_LITERAL(0x006e9f475cccf2eeULL, 0x00454b9cd506430cULL, 0x00224a4fb79ee479ULL, 0x0062e3347ef0b5e2ULL, 0x0034fd2a3512232aULL, 0x00b8b3cb0f457046ULL, 0x00eb20165daa38ecULL, 0x00128eebc2d9c0f7ULL)}, {FIELD_LITERAL(0x00bfc5fa1e4ea21fULL, 0x00c21d7b6bb892e6ULL, 0x00cf043f3acf0291ULL, 0x00c13f2f849b3c90ULL, 0x00d1a97ebef10891ULL, 0x0061e130a445e7feULL, 0x0019513fdedbf22bULL, 0x001d60c813bff841ULL)}, {FIELD_LITERAL(0x0019561c7fcf0213ULL, 0x00e3dca6843ebd77ULL, 0x0068ea95b9ca920eULL, 0x009bdfb70f253595ULL, 0x00c68f59186aa02aULL, 0x005aee1cca1c3039ULL, 0x00ab79a8a937a1ceULL, 0x00b9a0e549959e6fULL)}, }}, {{ {FIELD_LITERAL(0x00c79e0b6d97dfbdULL, 0x00917c71fd2bc6e8ULL, 0x00db7529ccfb63d8ULL, 0x00be5be957f17866ULL, 0x00a9e11fdc2cdac1ULL, 0x007b91a8e1f44443ULL, 0x00a3065e4057d80fULL, 0x004825f5b8d5f6d4ULL)}, {FIELD_LITERAL(0x003e4964fa8a8fc8ULL, 0x00f6a1cdbcf41689ULL, 0x00943cb18fe7fda7ULL, 0x00606dafbf34440aULL, 0x005d37a86399c789ULL, 0x00e79a2a69417403ULL, 0x00fe34f7e68b8866ULL, 0x0011f448ed2df10eULL)}, {FIELD_LITERAL(0x00f1f57efcc1fcc4ULL, 0x00513679117de154ULL, 0x002e5b5b7c86d8c3ULL, 0x009f6486561f9cfbULL, 0x00169e74b0170cf7ULL, 0x00900205af4af696ULL, 0x006acfddb77853f3ULL, 0x00df184c90f31068ULL)}, }}, {{ {FIELD_LITERAL(0x00b37396c3320791ULL, 0x00fc7b67175c5783ULL, 0x00c36d2cd73ecc38ULL, 0x0080ebcc0b328fc5ULL, 0x0043a5b22b35d35dULL, 0x00466c9f1713c9daULL, 0x0026ad346dcaa8daULL, 0x007c684e701183a6ULL)}, {FIELD_LITERAL(0x00fd579ffb691713ULL, 0x00b76af4f81c412dULL, 0x00f239de96110f82ULL, 0x00e965fb437f0306ULL, 0x00ca7e9436900921ULL, 0x00e487f1325fa24aULL, 0x00633907de476380ULL, 0x00721c62ac5b8ea0ULL)}, {FIELD_LITERAL(0x00c0d54e542eb4f9ULL, 0x004ed657171c8dcfULL, 0x00b743a4f7c2a39bULL, 0x00fd9f93ed6cc567ULL, 0x00307fae3113e58bULL, 0x0058aa577c93c319ULL, 0x00d254556f35b346ULL, 0x00491aada2203f0dULL)}, }}, {{ {FIELD_LITERAL(0x00dff3103786ff34ULL, 0x000144553b1f20c3ULL, 0x0095613baeb930e4ULL, 0x00098058275ea5d4ULL, 0x007cd1402b046756ULL, 0x0074d74e4d58aee3ULL, 0x005f93fc343ff69bULL, 0x00873df17296b3b0ULL)}, {FIELD_LITERAL(0x00c4a1fb48635413ULL, 0x00b5dd54423ad59fULL, 0x009ff5d53fd24a88ULL, 0x003c98d267fc06a7ULL, 0x002db7cb20013641ULL, 0x00bd1d6716e191f2ULL, 0x006dbc8b29094241ULL, 0x0044bbf233dafa2cULL)}, {FIELD_LITERAL(0x0055838d41f531e6ULL, 0x00bf6a2dd03c81b2ULL, 0x005827a061c4839eULL, 0x0000de2cbb36aac3ULL, 0x002efa29d9717478ULL, 0x00f9e928cc8a77baULL, 0x00c134b458def9efULL, 0x00958a182223fc48ULL)}, }}, {{ {FIELD_LITERAL(0x000a9ee23c06881fULL, 0x002c727d3d871945ULL, 0x00f47d971512d24aULL, 0x00671e816f9ef31aULL, 0x00883af2cfaad673ULL, 0x00601f98583d6c9aULL, 0x00b435f5adc79655ULL, 0x00ad87b71c04bff2ULL)}, {FIELD_LITERAL(0x007860d99db787cfULL, 0x00fda8983018f4a8ULL, 0x008c8866bac4743cULL, 0x00ef471f84c82a3fULL, 0x00abea5976d3b8e7ULL, 0x00714882896cd015ULL, 0x00b49fae584ddac5ULL, 0x008e33a1a0b69c81ULL)}, {FIELD_LITERAL(0x007b6ee2c9e8a9ecULL, 0x002455dbbd89d622ULL, 0x006490cf4eaab038ULL, 0x00d925f6c3081561ULL, 0x00153b3047de7382ULL, 0x003b421f8bdceb6fULL, 0x00761a4a5049da78ULL, 0x00980348c5202433ULL)}, }}, {{ {FIELD_LITERAL(0x007f8a43da97dd5cULL, 0x00058539c800fc7bULL, 0x0040f3cf5a28414aULL, 0x00d68dd0d95283d6ULL, 0x004adce9da90146eULL, 0x00befa41c7d4f908ULL, 0x007603bc2e3c3060ULL, 0x00bdf360ab3545dbULL)}, {FIELD_LITERAL(0x00eebfd4e2312cc3ULL, 0x00474b2564e4fc8cULL, 0x003303ef14b1da9bULL, 0x003c93e0e66beb1dULL, 0x0013619b0566925aULL, 0x008817c24d901bf3ULL, 0x00b62bd8898d218bULL, 0x0075a7716f1e88a2ULL)}, {FIELD_LITERAL(0x0009218da1e6890fULL, 0x0026907f5fd02575ULL, 0x004dabed5f19d605ULL, 0x003abf181870249dULL, 0x00b52fd048cc92c4ULL, 0x00b6dd51e415a5c5ULL, 0x00d9eb82bd2b4014ULL, 0x002c865a43b46b43ULL)}, }}, {{ {FIELD_LITERAL(0x0070047189452f4cULL, 0x00f7ad12e1ce78d5ULL, 0x00af1ba51ec44a8bULL, 0x005f39f63e667cd6ULL, 0x00058eac4648425eULL, 0x00d7fdab42bea03bULL, 0x0028576a5688de15ULL, 0x00af973209e77c10ULL)}, {FIELD_LITERAL(0x00c338b915d8fef0ULL, 0x00a893292045c39aULL, 0x0028ab4f2eba6887ULL, 0x0060743cb519fd61ULL, 0x0006213964093ac0ULL, 0x007c0b7a43f6266dULL, 0x008e3557c4fa5bdaULL, 0x002da976de7b8d9dULL)}, {FIELD_LITERAL(0x0048729f8a8b6dcdULL, 0x00fe23b85cc4d323ULL, 0x00e7384d16e4db0eULL, 0x004a423970678942ULL, 0x00ec0b763345d4baULL, 0x00c477b9f99ed721ULL, 0x00c29dad3777b230ULL, 0x001c517b466f7df6ULL)}, }}, {{ {FIELD_LITERAL(0x006366c380f7b574ULL, 0x001c7d1f09ff0438ULL, 0x003e20a7301f5b22ULL, 0x00d3efb1916d28f6ULL, 0x0049f4f81060ce83ULL, 0x00c69d91ea43ced1ULL, 0x002b6f3e5cd269edULL, 0x005b0fb22ce9ec65ULL)}, {FIELD_LITERAL(0x00aa2261022d883fULL, 0x00ebcca4548010acULL, 0x002528512e28a437ULL, 0x0070ca7676b66082ULL, 0x0084bda170f7c6d3ULL, 0x00581b4747c9b8bbULL, 0x005c96a01061c7e2ULL, 0x00fb7c4a362b5273ULL)}, {FIELD_LITERAL(0x00c30020eb512d02ULL, 0x0060f288283a4d26ULL, 0x00b7ed13becde260ULL, 0x0075ebb74220f6e9ULL, 0x00701079fcfe8a1fULL, 0x001c28fcdff58938ULL, 0x002e4544b8f4df6bULL, 0x0060c5bc4f1a7d73ULL)}, }}, {{ {FIELD_LITERAL(0x00ae307cf069f701ULL, 0x005859f222dd618bULL, 0x00212d6c46ec0b0dULL, 0x00a0fe4642afb62dULL, 0x00420d8e4a0a8903ULL, 0x00a80ff639bdf7b0ULL, 0x0019bee1490b5d8eULL, 0x007439e4b9c27a86ULL)}, {FIELD_LITERAL(0x00a94700032a093fULL, 0x0076e96c225216e7ULL, 0x00a63a4316e45f91ULL, 0x007d8bbb4645d3b2ULL, 0x00340a6ff22793ebULL, 0x006f935d4572aeb7ULL, 0x00b1fb69f00afa28ULL, 0x009e8f3423161ed3ULL)}, {FIELD_LITERAL(0x009ef49c6b5ced17ULL, 0x00a555e6269e9f0aULL, 0x007e6f1d79ec73b5ULL, 0x009ac78695a32ac4ULL, 0x0001d77fbbcd5682ULL, 0x008cea1fee0aaeedULL, 0x00f42bea82a53462ULL, 0x002e46ab96cafcc9ULL)}, }}, {{ {FIELD_LITERAL(0x0051cfcc5885377aULL, 0x00dce566cb1803caULL, 0x00430c7643f2c7d4ULL, 0x00dce1a1337bdcc0ULL, 0x0010d5bd7283c128ULL, 0x003b1b547f9b46feULL, 0x000f245e37e770abULL, 0x007b72511f022b37ULL)}, {FIELD_LITERAL(0x0060db815bc4786cULL, 0x006fab25beedc434ULL, 0x00c610d06084797cULL, 0x000c48f08537bec0ULL, 0x0031aba51c5b93daULL, 0x007968fa6e01f347ULL, 0x0030070da52840c6ULL, 0x00c043c225a4837fULL)}, {FIELD_LITERAL(0x001bcfd00649ee93ULL, 0x006dceb47e2a0fd5ULL, 0x00f2cebda0cf8fd0ULL, 0x00b6b9d9d1fbdec3ULL, 0x00815262e6490611ULL, 0x00ef7f5ce3176760ULL, 0x00e49cd0c998d58bULL, 0x005fc6cc269ba57cULL)}, }}, {{ {FIELD_LITERAL(0x008940211aa0d633ULL, 0x00addae28136571dULL, 0x00d68fdbba20d673ULL, 0x003bc6129bc9e21aULL, 0x000346cf184ebe9aULL, 0x0068774d741ebc7fULL, 0x0019d5e9e6966557ULL, 0x0003cbd7f981b651ULL)}, {FIELD_LITERAL(0x004a2902926f8d3fULL, 0x00ad79b42637ab75ULL, 0x0088f60b90f2d4e8ULL, 0x0030f54ef0e398c4ULL, 0x00021dc9bf99681eULL, 0x007ebf66fde74ee3ULL, 0x004ade654386e9a4ULL, 0x00e7485066be4c27ULL)}, {FIELD_LITERAL(0x00445f1263983be0ULL, 0x004cf371dda45e6aULL, 0x00744a89d5a310e7ULL, 0x001f20ce4f904833ULL, 0x00e746edebe66e29ULL, 0x000912ab1f6c153dULL, 0x00f61d77d9b2444cULL, 0x0001499cd6647610ULL)}, }} } }; const struct curve448_precomputed_s *curve448_precomputed_base = &curve448_precomputed_base_table; static const niels_t curve448_wnaf_base_table[32] = { {{ {FIELD_LITERAL(0x00303cda6feea532ULL, 0x00860f1d5a3850e4ULL, 0x00226b9fa4728ccdULL, 0x00e822938a0a0c0cULL, 0x00263a61c9ea9216ULL, 0x001204029321b828ULL, 0x006a468360983c65ULL, 0x0002846f0a782143ULL)}, {FIELD_LITERAL(0x00303cda6feea532ULL, 0x00860f1d5a3850e4ULL, 0x00226b9fa4728ccdULL, 0x006822938a0a0c0cULL, 0x00263a61c9ea9215ULL, 0x001204029321b828ULL, 0x006a468360983c65ULL, 0x0082846f0a782143ULL)}, {FIELD_LITERAL(0x00ef8e22b275198dULL, 0x00b0eb141a0b0e8bULL, 0x001f6789da3cb38cULL, 0x006d2ff8ed39073eULL, 0x00610bdb69a167f3ULL, 0x00571f306c9689b4ULL, 0x00f557e6f84b2df8ULL, 0x002affd38b2c86dbULL)}, }}, {{ {FIELD_LITERAL(0x00cea0fc8d2e88b5ULL, 0x00821612d69f1862ULL, 0x0074c283b3e67522ULL, 0x005a195ba05a876dULL, 0x000cddfe557feea4ULL, 0x008046c795bcc5e5ULL, 0x00540969f4d6e119ULL, 0x00d27f96d6b143d5ULL)}, {FIELD_LITERAL(0x000c3b1019d474e8ULL, 0x00e19533e4952284ULL, 0x00cc9810ba7c920aULL, 0x00f103d2785945acULL, 0x00bfa5696cc69b34ULL, 0x00a8d3d51e9ca839ULL, 0x005623cb459586b9ULL, 0x00eae7ce1cd52e9eULL)}, {FIELD_LITERAL(0x0005a178751dd7d8ULL, 0x002cc3844c69c42fULL, 0x00acbfe5efe10539ULL, 0x009c20f43431a65aULL, 0x008435d96374a7b3ULL, 0x009ee57566877bd3ULL, 0x0044691725ed4757ULL, 0x001e87bb2fe2c6b2ULL)}, }}, {{ {FIELD_LITERAL(0x000cedc4debf7a04ULL, 0x002ffa45000470acULL, 0x002e9f9678201915ULL, 0x0017da1208c4fe72ULL, 0x007d558cc7d656cbULL, 0x0037a827287cf289ULL, 0x00142472d3441819ULL, 0x009c21f166cf8dd1ULL)}, {FIELD_LITERAL(0x003ef83af164b2f2ULL, 0x000949a5a0525d0dULL, 0x00f4498186cac051ULL, 0x00e77ac09ef126d2ULL, 0x0073ae0b2c9296e9ULL, 0x001c163f6922e3edULL, 0x0062946159321beaULL, 0x00cfb79b22990b39ULL)}, {FIELD_LITERAL(0x00b001431ca9e654ULL, 0x002d7e5eabcc9a3aULL, 0x0052e8114c2f6747ULL, 0x0079ac4f94487f92ULL, 0x00bffd919b5d749cULL, 0x00261f92ad15e620ULL, 0x00718397b7a97895ULL, 0x00c1443e6ebbc0c4ULL)}, }}, {{ {FIELD_LITERAL(0x00eacd90c1e0a049ULL, 0x008977935b149fbeULL, 0x0004cb9ba11c93dcULL, 0x009fbd5b3470844dULL, 0x004bc18c9bfc22cfULL, 0x0057679a991839f3ULL, 0x00ef15b76fb4092eULL, 0x0074a5173a225041ULL)}, {FIELD_LITERAL(0x003f5f9d7ec4777bULL, 0x00ab2e733c919c94ULL, 0x001bb6c035245ae5ULL, 0x00a325a49a883630ULL, 0x0033e9a9ea3cea2fULL, 0x00e442a1eaa0e844ULL, 0x00b2116d5b0e71b8ULL, 0x00c16abed6d64047ULL)}, {FIELD_LITERAL(0x00c560b5ed051165ULL, 0x001945adc5d65094ULL, 0x00e221865710f910ULL, 0x00cc12bc9e9b8cebULL, 0x004faa9518914e35ULL, 0x0017476d89d42f6dULL, 0x00b8f637c8fa1c8bULL, 0x0088c7d2790864b8ULL)}, }}, {{ {FIELD_LITERAL(0x00ef7eafc1c69be6ULL, 0x0085d3855778fbeaULL, 0x002c8d5b450cb6f5ULL, 0x004e77de5e1e7fecULL, 0x0047c057893abdedULL, 0x001b430b85d51e16ULL, 0x00965c7b45640c3cULL, 0x00487b2bb1162b97ULL)}, {FIELD_LITERAL(0x0099c73a311beec2ULL, 0x00a3eff38d8912adULL, 0x002efa9d1d7e8972ULL, 0x00f717ae1e14d126ULL, 0x002833f795850c8bULL, 0x0066c12ad71486bdULL, 0x00ae9889da4820ebULL, 0x00d6044309555c08ULL)}, {FIELD_LITERAL(0x004b1c5283d15e41ULL, 0x00669d8ea308ff75ULL, 0x0004390233f762a1ULL, 0x00e1d67b83cb6cecULL, 0x003eebaa964c78b1ULL, 0x006b0aff965eb664ULL, 0x00b313d4470bdc37ULL, 0x008814ffcb3cb9d8ULL)}, }}, {{ {FIELD_LITERAL(0x009724b8ce68db70ULL, 0x007678b5ed006f3dULL, 0x00bdf4b89c0abd73ULL, 0x00299748e04c7c6dULL, 0x00ddd86492c3c977ULL, 0x00c5a7febfa30a99ULL, 0x00ed84715b4b02bbULL, 0x00319568adf70486ULL)}, {FIELD_LITERAL(0x0070ff2d864de5bbULL, 0x005a37eeb637ee95ULL, 0x0033741c258de160ULL, 0x00e6ca5cb1988f46ULL, 0x001ceabd92a24661ULL, 0x0030957bd500fe40ULL, 0x001c3362afe912c5ULL, 0x005187889f678bd2ULL)}, {FIELD_LITERAL(0x0086835fc62bbdc7ULL, 0x009c3516ca4910a1ULL, 0x00956c71f8d00783ULL, 0x0095c78fcf63235fULL, 0x00fc7ff6ba05c222ULL, 0x00cdd8b3f8d74a52ULL, 0x00ac5ae16de8256eULL, 0x00e9d4be8ed48624ULL)}, }}, {{ {FIELD_LITERAL(0x00c0ce11405df2d8ULL, 0x004e3f37b293d7b6ULL, 0x002410172e1ac6dbULL, 0x00b8dbff4bf8143dULL, 0x003a7b409d56eb66ULL, 0x003e0f6a0dfef9afULL, 0x0081c4e4d3645be1ULL, 0x00ce76076b127623ULL)}, {FIELD_LITERAL(0x00f6ee0f98974239ULL, 0x0042d89af07d3a4fULL, 0x00846b7fe84346b5ULL, 0x006a21fc6a8d39a1ULL, 0x00ac8bc2541ff2d9ULL, 0x006d4e2a77732732ULL, 0x009a39b694cc3f2fULL, 0x0085c0aa2a404c8fULL)}, {FIELD_LITERAL(0x00b261101a218548ULL, 0x00c1cae96424277bULL, 0x00869da0a77dd268ULL, 0x00bc0b09f8ec83eaULL, 0x00d61027f8e82ba9ULL, 0x00aa4c85999dce67ULL, 0x00eac3132b9f3fe1ULL, 0x00fb9b0cf1c695d2ULL)}, }}, {{ {FIELD_LITERAL(0x0043079295512f0dULL, 0x0046a009861758e0ULL, 0x003ee2842a807378ULL, 0x0034cc9d1298e4faULL, 0x009744eb4d31b3eeULL, 0x00afacec96650cd0ULL, 0x00ac891b313761aeULL, 0x00e864d6d26e708aULL)}, {FIELD_LITERAL(0x00a84d7c8a23b491ULL, 0x0088e19aa868b27fULL, 0x0005986d43e78ce9ULL, 0x00f28012f0606d28ULL, 0x0017ded7e10249b3ULL, 0x005ed4084b23af9bULL, 0x00b9b0a940564472ULL, 0x00ad9056cceeb1f4ULL)}, {FIELD_LITERAL(0x00db91b357fe755eULL, 0x00a1aa544b15359cULL, 0x00af4931a0195574ULL, 0x007686124fe11aefULL, 0x00d1ead3c7b9ef7eULL, 0x00aaf5fc580f8c15ULL, 0x00e727be147ee1ecULL, 0x003c61c1e1577b86ULL)}, }}, {{ {FIELD_LITERAL(0x009d3fca983220cfULL, 0x00cd11acbc853dc4ULL, 0x0017590409d27f1dULL, 0x00d2176698082802ULL, 0x00fa01251b2838c8ULL, 0x00dd297a0d9b51c6ULL, 0x00d76c92c045820aULL, 0x00534bc7c46c9033ULL)}, {FIELD_LITERAL(0x0080ed9bc9b07338ULL, 0x00fceac7745d2652ULL, 0x008a9d55f5f2cc69ULL, 0x0096ce72df301ac5ULL, 0x00f53232e7974d87ULL, 0x0071728c7ae73947ULL, 0x0090507602570778ULL, 0x00cb81cfd883b1b2ULL)}, {FIELD_LITERAL(0x005011aadea373daULL, 0x003a8578ec896034ULL, 0x00f20a6535fa6d71ULL, 0x005152d31e5a87cfULL, 0x002bac1c8e68ca31ULL, 0x00b0e323db4c1381ULL, 0x00f1d596b7d5ae25ULL, 0x00eae458097cb4e0ULL)}, }}, {{ {FIELD_LITERAL(0x00920ac80f9b0d21ULL, 0x00f80f7f73401246ULL, 0x0086d37849b557d6ULL, 0x0002bd4b317b752eULL, 0x00b26463993a42bbULL, 0x002070422a73b129ULL, 0x00341acaa0380cb3ULL, 0x00541914dd66a1b2ULL)}, {FIELD_LITERAL(0x00c1513cd66abe8cULL, 0x000139e01118944dULL, 0x0064abbcb8080bbbULL, 0x00b3b08202473142ULL, 0x00c629ef25da2403ULL, 0x00f0aec3310d9b7fULL, 0x0050b2227472d8cdULL, 0x00f6c8a922d41fb4ULL)}, {FIELD_LITERAL(0x001075ccf26b7b1fULL, 0x00bb6bb213170433ULL, 0x00e9491ad262da79ULL, 0x009ef4f48d2d384cULL, 0x008992770766f09dULL, 0x001584396b6b1101ULL, 0x00af3f8676c9feefULL, 0x0024603c40269118ULL)}, }}, {{ {FIELD_LITERAL(0x009dd7b31319527cULL, 0x001e7ac948d873a9ULL, 0x00fa54b46ef9673aULL, 0x0066efb8d5b02fe6ULL, 0x00754b1d3928aeaeULL, 0x0004262ac72a6f6bULL, 0x0079b7d49a6eb026ULL, 0x003126a753540102ULL)}, {FIELD_LITERAL(0x009666e24f693947ULL, 0x00f714311269d45fULL, 0x0010ffac1d0c851cULL, 0x0066e80c37363497ULL, 0x00f1f4ad010c60b0ULL, 0x0015c87408470ff7ULL, 0x00651d5e9c7766a4ULL, 0x008138819d7116deULL)}, {FIELD_LITERAL(0x003934b11c57253bULL, 0x00ef308edf21f46eULL, 0x00e54e99c7a16198ULL, 0x0080d57135764e63ULL, 0x00751c27b946bc24ULL, 0x00dd389ce4e9e129ULL, 0x00a1a2bfd1cd84dcULL, 0x002fae73e5149b32ULL)}, }}, {{ {FIELD_LITERAL(0x00911657dffb4cddULL, 0x00c100b7cc553d06ULL, 0x00449d075ec467ccULL, 0x007062100bc64e70ULL, 0x0043cf86f7bd21e7ULL, 0x00f401dc4b797deaULL, 0x005224afb2f62e65ULL, 0x00d1ede3fb5a42beULL)}, {FIELD_LITERAL(0x00f2ba36a41aa144ULL, 0x00a0c22d946ee18fULL, 0x008aae8ef9a14f99ULL, 0x00eef4d79b19bb36ULL, 0x008e75ce3d27b1fcULL, 0x00a65daa03b29a27ULL, 0x00d9cc83684eb145ULL, 0x009e1ed80cc2ed74ULL)}, {FIELD_LITERAL(0x00bed953d1997988ULL, 0x00b93ed175a24128ULL, 0x00871c5963fb6365ULL, 0x00ca2df20014a787ULL, 0x00f5d9c1d0b34322ULL, 0x00f6f5942818db0aULL, 0x004cc091f49c9906ULL, 0x00e8a188a60bff9fULL)}, }}, {{ {FIELD_LITERAL(0x0032c7762032fae8ULL, 0x00e4087232e0bc21ULL, 0x00f767344b6e8d85ULL, 0x00bbf369b76c2aa2ULL, 0x008a1f46c6e1570cULL, 0x001368cd9780369fULL, 0x007359a39d079430ULL, 0x0003646512921434ULL)}, {FIELD_LITERAL(0x007c4b47ca7c73e7ULL, 0x005396221039734bULL, 0x008b64ddf0e45d7eULL, 0x00bfad5af285e6c2ULL, 0x008ec711c5b1a1a8ULL, 0x00cf663301237f98ULL, 0x00917ee3f1655126ULL, 0x004152f337efedd8ULL)}, {FIELD_LITERAL(0x0007c7edc9305daaULL, 0x000a6664f273701cULL, 0x00f6e78795e200b1ULL, 0x005d05b9ecd2473eULL, 0x0014f5f17c865786ULL, 0x00c7fd2d166fa995ULL, 0x004939a2d8eb80e0ULL, 0x002244ba0942c199ULL)}, }}, {{ {FIELD_LITERAL(0x00321e767f0262cfULL, 0x002e57d776caf68eULL, 0x00bf2c94814f0437ULL, 0x00c339196acd622fULL, 0x001db4cce71e2770ULL, 0x001ded5ddba6eee2ULL, 0x0078608ab1554c8dULL, 0x00067fe0ab76365bULL)}, {FIELD_LITERAL(0x00f09758e11e3985ULL, 0x00169efdbd64fad3ULL, 0x00e8889b7d6dacd6ULL, 0x0035cdd58ea88209ULL, 0x00bcda47586d7f49ULL, 0x003cdddcb2879088ULL, 0x0016da70187e954bULL, 0x009556ea2e92aacdULL)}, {FIELD_LITERAL(0x008cab16bd1ff897ULL, 0x00b389972cdf753fULL, 0x00ea8ed1e46dfdc0ULL, 0x004fe7ef94c589f4ULL, 0x002b8ae9b805ecf3ULL, 0x0025c08d892874a5ULL, 0x0023938e98d44c4cULL, 0x00f759134cabf69cULL)}, }}, {{ {FIELD_LITERAL(0x006c2a84678e4b3bULL, 0x007a194aacd1868fULL, 0x00ed0225af424761ULL, 0x00da0a6f293c64b8ULL, 0x001062ac5c6a7a18ULL, 0x0030f5775a8aeef4ULL, 0x0002acaad76b7af0ULL, 0x00410b8fd63a579fULL)}, {FIELD_LITERAL(0x001ec59db3d9590eULL, 0x001e9e3f1c3f182dULL, 0x0045a9c3ec2cab14ULL, 0x0008198572aeb673ULL, 0x00773b74068bd167ULL, 0x0012535eaa395434ULL, 0x0044dba9e3bbb74aULL, 0x002fba4d3c74bd0eULL)}, {FIELD_LITERAL(0x0042bf08fe66922cULL, 0x003318b8fbb49e8cULL, 0x00d75946004aa14cULL, 0x00f601586b42bf1cULL, 0x00c74cf1d912fe66ULL, 0x00abcb36974b30adULL, 0x007eb78720c9d2b8ULL, 0x009f54ab7bd4df85ULL)}, }}, {{ {FIELD_LITERAL(0x00db9fc948f73826ULL, 0x00fa8b3746ed8ee9ULL, 0x00132cb65aafbeb2ULL, 0x00c36ff3fe7925b8ULL, 0x00837daed353d2feULL, 0x00ec661be0667cf4ULL, 0x005beb8ed2e90204ULL, 0x00d77dd69e564967ULL)}, {FIELD_LITERAL(0x0042e6268b861751ULL, 0x0008dd0469500c16ULL, 0x00b51b57c338a3fdULL, 0x00cc4497d85cff6bULL, 0x002f13d6b57c34a4ULL, 0x0083652eaf301105ULL, 0x00cc344294cc93a8ULL, 0x0060f4d02810e270ULL)}, {FIELD_LITERAL(0x00a8954363cd518bULL, 0x00ad171124bccb7bULL, 0x0065f46a4adaae00ULL, 0x001b1a5b2a96e500ULL, 0x0043fe24f8233285ULL, 0x0066996d8ae1f2c3ULL, 0x00c530f3264169f9ULL, 0x00c0f92d07cf6a57ULL)}, }}, {{ {FIELD_LITERAL(0x0036a55c6815d943ULL, 0x008c8d1def993db3ULL, 0x002e0e1e8ff7318fULL, 0x00d883a4b92db00aULL, 0x002f5e781ae33906ULL, 0x001a72adb235c06dULL, 0x00f2e59e736e9caaULL, 0x001a4b58e3031914ULL)}, {FIELD_LITERAL(0x00d73bfae5e00844ULL, 0x00bf459766fb5f52ULL, 0x0061b4f5a5313cdeULL, 0x004392d4c3b95514ULL, 0x000d3551b1077523ULL, 0x0000998840ee5d71ULL, 0x006de6e340448b7bULL, 0x00251aa504875d6eULL)}, {FIELD_LITERAL(0x003bf343427ac342ULL, 0x00adc0a78642b8c5ULL, 0x0003b893175a8314ULL, 0x0061a34ade5703bcULL, 0x00ea3ea8bb71d632ULL, 0x00be0df9a1f198c2ULL, 0x0046dd8e7c1635fbULL, 0x00f1523fdd25d5e5ULL)}, }}, {{ {FIELD_LITERAL(0x00633f63fc9dd406ULL, 0x00e713ff80e04a43ULL, 0x0060c6e970f2d621ULL, 0x00a57cd7f0df1891ULL, 0x00f2406a550650bbULL, 0x00b064290efdc684ULL, 0x001eab0144d17916ULL, 0x00cd15f863c293abULL)}, {FIELD_LITERAL(0x0029cec55273f70dULL, 0x007044ee275c6340ULL, 0x0040f637a93015e2ULL, 0x00338bb78db5aae9ULL, 0x001491b2a6132147ULL, 0x00a125d6cfe6bde3ULL, 0x005f7ac561ba8669ULL, 0x001d5eaea3fbaacfULL)}, {FIELD_LITERAL(0x00054e9635e3be31ULL, 0x000e43f31e2872beULL, 0x00d05b1c9e339841ULL, 0x006fac50bd81fd98ULL, 0x00cdc7852eaebb09ULL, 0x004ff519b061991bULL, 0x009099e8107d4c85ULL, 0x00273e24c36a4a61ULL)}, }}, {{ {FIELD_LITERAL(0x00070b4441ef2c46ULL, 0x00efa5b02801a109ULL, 0x00bf0b8c3ee64adfULL, 0x008a67e0b3452e98ULL, 0x001916b1f2fa7a74ULL, 0x00d781a78ff6cdc3ULL, 0x008682ce57e5c919ULL, 0x00cc1109dd210da3ULL)}, {FIELD_LITERAL(0x00cae8aaff388663ULL, 0x005e983a35dda1c7ULL, 0x007ab1030d8e37f4ULL, 0x00e48940f5d032feULL, 0x006a36f9ef30b331ULL, 0x009be6f03958c757ULL, 0x0086231ceba91400ULL, 0x008bd0f7b823e7aaULL)}, {FIELD_LITERAL(0x00cf881ebef5a45aULL, 0x004ebea78e7c6f2cULL, 0x0090da9209cf26a0ULL, 0x00de2b2e4c775b84ULL, 0x0071d6031c3c15aeULL, 0x00d9e927ef177d70ULL, 0x00894ee8c23896fdULL, 0x00e3b3b401e41aadULL)}, }}, {{ {FIELD_LITERAL(0x00204fef26864170ULL, 0x00819269c5dee0f8ULL, 0x00bfb4713ec97966ULL, 0x0026339a6f34df78ULL, 0x001f26e64c761dc2ULL, 0x00effe3af313cb60ULL, 0x00e17b70138f601bULL, 0x00f16e1ccd9ede5eULL)}, {FIELD_LITERAL(0x005d9a8353fdb2dbULL, 0x0055cc2048c698f0ULL, 0x00f6c4ac89657218ULL, 0x00525034d73faeb2ULL, 0x00435776fbda3c7dULL, 0x0070ea5312323cbcULL, 0x007a105d44d069fbULL, 0x006dbc8d6dc786aaULL)}, {FIELD_LITERAL(0x0017cff19cd394ecULL, 0x00fef7b810922587ULL, 0x00e6483970dff548ULL, 0x00ddf36ad6874264ULL, 0x00e61778523fcce2ULL, 0x0093a66c0c93b24aULL, 0x00fd367114db7f86ULL, 0x007652d7ddce26ddULL)}, }}, {{ {FIELD_LITERAL(0x00d92ced7ba12843ULL, 0x00aea9c7771e86e7ULL, 0x0046639693354f7bULL, 0x00a628dbb6a80c47ULL, 0x003a0b0507372953ULL, 0x00421113ab45c0d9ULL, 0x00e545f08362ab7aULL, 0x0028ce087b4d6d96ULL)}, {FIELD_LITERAL(0x00a67ee7cf9f99ebULL, 0x005713b275f2ff68ULL, 0x00f1d536a841513dULL, 0x00823b59b024712eULL, 0x009c46b9d0d38cecULL, 0x00cdb1595aa2d7d4ULL, 0x008375b3423d9af8ULL, 0x000ab0b516d978f7ULL)}, {FIELD_LITERAL(0x00428dcb3c510b0fULL, 0x00585607ea24bb4eULL, 0x003736bf1603687aULL, 0x00c47e568c4fe3c7ULL, 0x003cd00282848605ULL, 0x0043a487c3b91939ULL, 0x004ffc04e1095a06ULL, 0x00a4c989a3d4b918ULL)}, }}, {{ {FIELD_LITERAL(0x00a8778d0e429f7aULL, 0x004c02b059105a68ULL, 0x0016653b609da3ffULL, 0x00d5107bd1a12d27ULL, 0x00b4708f9a771cabULL, 0x00bb63b662033f69ULL, 0x0072f322240e7215ULL, 0x0019445b59c69222ULL)}, {FIELD_LITERAL(0x00cf4f6069a658e6ULL, 0x0053ca52859436a6ULL, 0x0064b994d7e3e117ULL, 0x00cb469b9a07f534ULL, 0x00cfb68f399e9d47ULL, 0x00f0dcb8dac1c6e7ULL, 0x00f2ab67f538b3a5ULL, 0x0055544f178ab975ULL)}, {FIELD_LITERAL(0x0099b7a2685d538cULL, 0x00e2f1897b7c0018ULL, 0x003adac8ce48dae3ULL, 0x00089276d5c50c0cULL, 0x00172fca07ad6717ULL, 0x00cb1a72f54069e5ULL, 0x004ee42f133545b3ULL, 0x00785f8651362f16ULL)}, }}, {{ {FIELD_LITERAL(0x0049cbac38509e11ULL, 0x0015234505d42cdfULL, 0x00794fb0b5840f1cULL, 0x00496437344045a5ULL, 0x0031b6d944e4f9b0ULL, 0x00b207318ac1f5d8ULL, 0x0000c840da7f5c5dULL, 0x00526f373a5c8814ULL)}, {FIELD_LITERAL(0x002c7b7742d1dfd9ULL, 0x002cabeb18623c01ULL, 0x00055f5e3e044446ULL, 0x006c20f3b4ef54baULL, 0x00c600141ec6b35fULL, 0x00354f437f1a32a3ULL, 0x00bac4624a3520f9ULL, 0x00c483f734a90691ULL)}, {FIELD_LITERAL(0x0053a737d422918dULL, 0x00f7fca1d8758625ULL, 0x00c360336dadb04cULL, 0x00f38e3d9158a1b8ULL, 0x0069ce3b418e84c6ULL, 0x005d1697eca16eadULL, 0x00f8bd6a35ece13dULL, 0x007885dfc2b5afeaULL)}, }}, {{ {FIELD_LITERAL(0x00c3617ae260776cULL, 0x00b20dc3e96922d7ULL, 0x00a1a7802246706aULL, 0x00ca6505a5240244ULL, 0x002246b62d919782ULL, 0x001439102d7aa9b3ULL, 0x00e8af1139e6422cULL, 0x00c888d1b52f2b05ULL)}, {FIELD_LITERAL(0x005b67690ffd41d9ULL, 0x005294f28df516f9ULL, 0x00a879272412fcb9ULL, 0x00098b629a6d1c8dULL, 0x00fabd3c8050865aULL, 0x00cd7e5b0a3879c5ULL, 0x00153238210f3423ULL, 0x00357cac101e9f42ULL)}, {FIELD_LITERAL(0x008917b454444fb7ULL, 0x00f59247c97e441bULL, 0x00a6200a6815152dULL, 0x0009a4228601d254ULL, 0x001c0360559bd374ULL, 0x007563362039cb36ULL, 0x00bd75b48d74e32bULL, 0x0017f515ac3499e8ULL)}, }}, {{ {FIELD_LITERAL(0x001532a7ffe41c5aULL, 0x00eb1edce358d6bfULL, 0x00ddbacc7b678a7bULL, 0x008a7b70f3c841a3ULL, 0x00f1923bf27d3f4cULL, 0x000b2713ed8f7873ULL, 0x00aaf67e29047902ULL, 0x0044994a70b3976dULL)}, {FIELD_LITERAL(0x00d54e802082d42cULL, 0x00a55aa0dce7cc6cULL, 0x006477b96073f146ULL, 0x0082efe4ceb43594ULL, 0x00a922bcba026845ULL, 0x0077f19d1ab75182ULL, 0x00c2bb2737846e59ULL, 0x0004d7eec791dd33ULL)}, {FIELD_LITERAL(0x0044588d1a81d680ULL, 0x00b0a9097208e4f8ULL, 0x00212605350dc57eULL, 0x0028717cd2871123ULL, 0x00fb083c100fd979ULL, 0x0045a056ce063fdfULL, 0x00a5d604b4dd6a41ULL, 0x001dabc08ba4e236ULL)}, }}, {{ {FIELD_LITERAL(0x00c4887198d7a7faULL, 0x00244f98fb45784aULL, 0x0045911e15a15d01ULL, 0x001d323d374c0966ULL, 0x00967c3915196562ULL, 0x0039373abd2f3c67ULL, 0x000d2c5614312423ULL, 0x0041cf2215442ce3ULL)}, {FIELD_LITERAL(0x008ede889ada7f06ULL, 0x001611e91de2e135ULL, 0x00fdb9a458a471b9ULL, 0x00563484e03710d1ULL, 0x0031cc81925e3070ULL, 0x0062c97b3af80005ULL, 0x00fa733eea28edebULL, 0x00e82457e1ebbc88ULL)}, {FIELD_LITERAL(0x006a0df5fe9b6f59ULL, 0x00a0d4ff46040d92ULL, 0x004a7cedb6f93250ULL, 0x00d1df8855b8c357ULL, 0x00e73a46086fd058ULL, 0x0048fb0add6dfe59ULL, 0x001e03a28f1b4e3dULL, 0x00a871c993308d76ULL)}, }}, {{ {FIELD_LITERAL(0x0030dbb2d1766ec8ULL, 0x00586c0ad138555eULL, 0x00d1a34f9e91c77cULL, 0x0063408ad0e89014ULL, 0x00d61231b05f6f5bULL, 0x0009abf569f5fd8aULL, 0x00aec67a110f1c43ULL, 0x0031d1a790938dd7ULL)}, {FIELD_LITERAL(0x006cded841e2a862ULL, 0x00198d60af0ab6fbULL, 0x0018f09db809e750ULL, 0x004e6ac676016263ULL, 0x00eafcd1620969cbULL, 0x002c9784ca34917dULL, 0x0054f00079796de7ULL, 0x00d9fab5c5972204ULL)}, {FIELD_LITERAL(0x004bd0fee2438a83ULL, 0x00b571e62b0f83bdULL, 0x0059287d7ce74800ULL, 0x00fb3631b645c3f0ULL, 0x00a018e977f78494ULL, 0x0091e27065c27b12ULL, 0x007696c1817165e0ULL, 0x008c40be7c45ba3aULL)}, }}, {{ {FIELD_LITERAL(0x00a0f326327cb684ULL, 0x001c7d0f672680ffULL, 0x008c1c81ffb112d1ULL, 0x00f8f801674eddc8ULL, 0x00e926d5d48c2a9dULL, 0x005bd6d954c6fe9aULL, 0x004c6b24b4e33703ULL, 0x00d05eb5c09105ccULL)}, {FIELD_LITERAL(0x00d61731caacf2cfULL, 0x002df0c7609e01c5ULL, 0x00306172208b1e2bULL, 0x00b413fe4fb2b686ULL, 0x00826d360902a221ULL, 0x003f8d056e67e7f7ULL, 0x0065025b0175e989ULL, 0x00369add117865ebULL)}, {FIELD_LITERAL(0x00aaf895aec2fa11ULL, 0x000f892bc313eb52ULL, 0x005b1c794dad050bULL, 0x003f8ec4864cec14ULL, 0x00af81058d0b90e5ULL, 0x00ebe43e183997bbULL, 0x00a9d610f9f3e615ULL, 0x007acd8eec2e88d3ULL)}, }}, {{ {FIELD_LITERAL(0x0049b2fab13812a3ULL, 0x00846db32cd60431ULL, 0x000177fa578c8d6cULL, 0x00047d0e2ad4bc51ULL, 0x00b158ba38d1e588ULL, 0x006a45daad79e3f3ULL, 0x000997b93cab887bULL, 0x00c47ea42fa23dc3ULL)}, {FIELD_LITERAL(0x0012b6fef7aeb1caULL, 0x009412768194b6a7ULL, 0x00ff0d351f23ab93ULL, 0x007e8a14c1aff71bULL, 0x006c1c0170c512bcULL, 0x0016243ea02ab2e5ULL, 0x007bb6865b303f3eULL, 0x0015ce6b29b159f4ULL)}, {FIELD_LITERAL(0x009961cd02e68108ULL, 0x00e2035d3a1d0836ULL, 0x005d51f69b5e1a1dULL, 0x004bccb4ea36edcdULL, 0x0069be6a7aeef268ULL, 0x0063f4dd9de8d5a7ULL, 0x006283783092ca35ULL, 0x0075a31af2c35409ULL)}, }}, {{ {FIELD_LITERAL(0x00c412365162e8cfULL, 0x00012283fb34388aULL, 0x003e6543babf39e2ULL, 0x00eead6b3a804978ULL, 0x0099c0314e8b326fULL, 0x00e98e0a8d477a4fULL, 0x00d2eb96b127a687ULL, 0x00ed8d7df87571bbULL)}, {FIELD_LITERAL(0x00777463e308cacfULL, 0x00c8acb93950132dULL, 0x00ebddbf4ca48b2cULL, 0x0026ad7ca0795a0aULL, 0x00f99a3d9a715064ULL, 0x000d60bcf9d4dfccULL, 0x005e65a73a437a06ULL, 0x0019d536a8db56c8ULL)}, {FIELD_LITERAL(0x00192d7dd558d135ULL, 0x0027cd6a8323ffa7ULL, 0x00239f1a412dc1e7ULL, 0x0046b4b3be74fc5cULL, 0x0020c47a2bef5bceULL, 0x00aa17e48f43862bULL, 0x00f7e26c96342e5fULL, 0x0008011c530f39a9ULL)}, }}, {{ {FIELD_LITERAL(0x00aad4ac569bf0f1ULL, 0x00a67adc90b27740ULL, 0x0048551369a5751aULL, 0x0031252584a3306aULL, 0x0084e15df770e6fcULL, 0x00d7bba1c74b5805ULL, 0x00a80ef223af1012ULL, 0x0089c85ceb843a34ULL)}, {FIELD_LITERAL(0x00c4545be4a54004ULL, 0x0099e11f60357e6cULL, 0x001f3936d19515a6ULL, 0x007793df84341a6eULL, 0x0051061886717ffaULL, 0x00e9b0a660b28f85ULL, 0x0044ea685892de0dULL, 0x000257d2a1fda9d9ULL)}, {FIELD_LITERAL(0x007e8b01b24ac8a8ULL, 0x006cf3b0b5ca1337ULL, 0x00f1607d3e36a570ULL, 0x0039b7fab82991a1ULL, 0x00231777065840c5ULL, 0x00998e5afdd346f9ULL, 0x00b7dc3e64acc85fULL, 0x00baacc748013ad6ULL)}, }}, {{ {FIELD_LITERAL(0x008ea6a4177580bfULL, 0x005fa1953e3f0378ULL, 0x005fe409ac74d614ULL, 0x00452327f477e047ULL, 0x00a4018507fb6073ULL, 0x007b6e71951caac8ULL, 0x0012b42ab8a6ce91ULL, 0x0080eca677294ab7ULL)}, {FIELD_LITERAL(0x00a53edc023ba69bULL, 0x00c6afa83ddde2e8ULL, 0x00c3f638b307b14eULL, 0x004a357a64414062ULL, 0x00e4d94d8b582dc9ULL, 0x001739caf71695b7ULL, 0x0012431b2ae28de1ULL, 0x003b6bc98682907cULL)}, {FIELD_LITERAL(0x008a9a93be1f99d6ULL, 0x0079fa627cc699c8ULL, 0x00b0cfb134ba84c8ULL, 0x001c4b778249419aULL, 0x00df4ab3d9c44f40ULL, 0x009f596e6c1a9e3cULL, 0x001979c0df237316ULL, 0x00501e953a919b87ULL)}, }} }; const niels_t *curve448_wnaf_base = curve448_wnaf_base_table; openssl-1.1.1f/crypto/ec/curve448/curve448utils.h000066400000000000000000000052701364063235100214630ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef OSSL_CRYPTO_EC_CURVE448UTILS_H # define OSSL_CRYPTO_EC_CURVE448UTILS_H # include /* * Internal word types. Somewhat tricky. This could be decided separately per * platform. However, the structs do need to be all the same size and * alignment on a given platform to support dynamic linking, since even if you * header was built with eg arch_neon, you might end up linking a library built * with arch_arm32. */ # ifndef C448_WORD_BITS # if (defined(__SIZEOF_INT128__) && (__SIZEOF_INT128__ == 16)) \ && !defined(__sparc__) \ && (!defined(__SIZEOF_LONG__) || (__SIZEOF_LONG__ == 8)) # define C448_WORD_BITS 64 /* The number of bits in a word */ # else # define C448_WORD_BITS 32 /* The number of bits in a word */ # endif # endif # if C448_WORD_BITS == 64 /* Word size for internal computations */ typedef uint64_t c448_word_t; /* Signed word size for internal computations */ typedef int64_t c448_sword_t; /* "Boolean" type, will be set to all-zero or all-one (i.e. -1u) */ typedef uint64_t c448_bool_t; /* Double-word size for internal computations */ typedef __uint128_t c448_dword_t; /* Signed double-word size for internal computations */ typedef __int128_t c448_dsword_t; # elif C448_WORD_BITS == 32 /* Word size for internal computations */ typedef uint32_t c448_word_t; /* Signed word size for internal computations */ typedef int32_t c448_sword_t; /* "Boolean" type, will be set to all-zero or all-one (i.e. -1u) */ typedef uint32_t c448_bool_t; /* Double-word size for internal computations */ typedef uint64_t c448_dword_t; /* Signed double-word size for internal computations */ typedef int64_t c448_dsword_t; # else # error "Only supporting C448_WORD_BITS = 32 or 64 for now" # endif /* C448_TRUE = -1 so that C448_TRUE & x = x */ # define C448_TRUE (0 - (c448_bool_t)1) /* C448_FALSE = 0 so that C448_FALSE & x = 0 */ # define C448_FALSE 0 /* Another boolean type used to indicate success or failure. */ typedef enum { C448_SUCCESS = -1, /**< The operation succeeded. */ C448_FAILURE = 0 /**< The operation failed. */ } c448_error_t; /* Return success if x is true */ static ossl_inline c448_error_t c448_succeed_if(c448_bool_t x) { return (c448_error_t) x; } #endif /* __C448_COMMON_H__ */ openssl-1.1.1f/crypto/ec/curve448/ed448.h000066400000000000000000000167311364063235100176520ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef OSSL_CRYPTO_EC_CURVE448_ED448_H # define OSSL_CRYPTO_EC_CURVE448_ED448_H # include "point_448.h" /* Number of bytes in an EdDSA public key. */ # define EDDSA_448_PUBLIC_BYTES 57 /* Number of bytes in an EdDSA private key. */ # define EDDSA_448_PRIVATE_BYTES EDDSA_448_PUBLIC_BYTES /* Number of bytes in an EdDSA private key. */ # define EDDSA_448_SIGNATURE_BYTES (EDDSA_448_PUBLIC_BYTES + \ EDDSA_448_PRIVATE_BYTES) /* EdDSA encoding ratio. */ # define C448_EDDSA_ENCODE_RATIO 4 /* EdDSA decoding ratio. */ # define C448_EDDSA_DECODE_RATIO (4 / 4) /* * EdDSA key generation. This function uses a different (non-Decaf) encoding. * * pubkey (out): The public key. * privkey (in): The private key. */ c448_error_t c448_ed448_derive_public_key( uint8_t pubkey [EDDSA_448_PUBLIC_BYTES], const uint8_t privkey [EDDSA_448_PRIVATE_BYTES]); /* * EdDSA signing. * * signature (out): The signature. * privkey (in): The private key. * pubkey (in): The public key. * message (in): The message to sign. * message_len (in): The length of the message. * prehashed (in): Nonzero if the message is actually the hash of something * you want to sign. * context (in): A "context" for this signature of up to 255 bytes. * context_len (in): Length of the context. * * For Ed25519, it is unsafe to use the same key for both prehashed and * non-prehashed messages, at least without some very careful protocol-level * disambiguation. For Ed448 it is safe. */ c448_error_t c448_ed448_sign( uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t *message, size_t message_len, uint8_t prehashed, const uint8_t *context, size_t context_len); /* * EdDSA signing with prehash. * * signature (out): The signature. * privkey (in): The private key. * pubkey (in): The public key. * hash (in): The hash of the message. This object will not be modified by the * call. * context (in): A "context" for this signature of up to 255 bytes. Must be the * same as what was used for the prehash. * context_len (in): Length of the context. * * For Ed25519, it is unsafe to use the same key for both prehashed and * non-prehashed messages, at least without some very careful protocol-level * disambiguation. For Ed448 it is safe. */ c448_error_t c448_ed448_sign_prehash( uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t hash[64], const uint8_t *context, size_t context_len); /* * EdDSA signature verification. * * Uses the standard (i.e. less-strict) verification formula. * * signature (in): The signature. * pubkey (in): The public key. * message (in): The message to verify. * message_len (in): The length of the message. * prehashed (in): Nonzero if the message is actually the hash of something you * want to verify. * context (in): A "context" for this signature of up to 255 bytes. * context_len (in): Length of the context. * * For Ed25519, it is unsafe to use the same key for both prehashed and * non-prehashed messages, at least without some very careful protocol-level * disambiguation. For Ed448 it is safe. */ c448_error_t c448_ed448_verify(const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t *message, size_t message_len, uint8_t prehashed, const uint8_t *context, uint8_t context_len); /* * EdDSA signature verification. * * Uses the standard (i.e. less-strict) verification formula. * * signature (in): The signature. * pubkey (in): The public key. * hash (in): The hash of the message. This object will not be modified by the * call. * context (in): A "context" for this signature of up to 255 bytes. Must be the * same as what was used for the prehash. * context_len (in): Length of the context. * * For Ed25519, it is unsafe to use the same key for both prehashed and * non-prehashed messages, at least without some very careful protocol-level * disambiguation. For Ed448 it is safe. */ c448_error_t c448_ed448_verify_prehash( const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t hash[64], const uint8_t *context, uint8_t context_len); /* * EdDSA point encoding. Used internally, exposed externally. * Multiplies by C448_EDDSA_ENCODE_RATIO first. * * The multiplication is required because the EdDSA encoding represents * the cofactor information, but the Decaf encoding ignores it (which * is the whole point). So if you decode from EdDSA and re-encode to * EdDSA, the cofactor info must get cleared, because the intermediate * representation doesn't track it. * * The way we handle this is to multiply by C448_EDDSA_DECODE_RATIO when * decoding, and by C448_EDDSA_ENCODE_RATIO when encoding. The product of * these ratios is always exactly the cofactor 4, so the cofactor ends up * cleared one way or another. But exactly how that shakes out depends on the * base points specified in RFC 8032. * * The upshot is that if you pass the Decaf/Ristretto base point to * this function, you will get C448_EDDSA_ENCODE_RATIO times the * EdDSA base point. * * enc (out): The encoded point. * p (in): The point. */ void curve448_point_mul_by_ratio_and_encode_like_eddsa( uint8_t enc [EDDSA_448_PUBLIC_BYTES], const curve448_point_t p); /* * EdDSA point decoding. Multiplies by C448_EDDSA_DECODE_RATIO, and * ignores cofactor information. * * See notes on curve448_point_mul_by_ratio_and_encode_like_eddsa * * enc (out): The encoded point. * p (in): The point. */ c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio( curve448_point_t p, const uint8_t enc[EDDSA_448_PUBLIC_BYTES]); /* * EdDSA to ECDH private key conversion * Using the appropriate hash function, hash the EdDSA private key * and keep only the lower bytes to get the ECDH private key * * x (out): The ECDH private key as in RFC7748 * ed (in): The EdDSA private key */ c448_error_t c448_ed448_convert_private_key_to_x448( uint8_t x[X448_PRIVATE_BYTES], const uint8_t ed[EDDSA_448_PRIVATE_BYTES]); #endif /* OSSL_CRYPTO_EC_CURVE448_ED448_H */ openssl-1.1.1f/crypto/ec/curve448/eddsa.c000066400000000000000000000335141364063235100200730ustar00rootroot00000000000000/* * Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #include #include #include #include "curve448_local.h" #include "word.h" #include "ed448.h" #include "internal/numbers.h" #define COFACTOR 4 static c448_error_t oneshot_hash(uint8_t *out, size_t outlen, const uint8_t *in, size_t inlen) { EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); if (hashctx == NULL) return C448_FAILURE; if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL) || !EVP_DigestUpdate(hashctx, in, inlen) || !EVP_DigestFinalXOF(hashctx, out, outlen)) { EVP_MD_CTX_free(hashctx); return C448_FAILURE; } EVP_MD_CTX_free(hashctx); return C448_SUCCESS; } static void clamp(uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES]) { secret_scalar_ser[0] &= -COFACTOR; secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 1] = 0; secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 2] |= 0x80; } static c448_error_t hash_init_with_dom(EVP_MD_CTX *hashctx, uint8_t prehashed, uint8_t for_prehash, const uint8_t *context, size_t context_len) { #ifdef CHARSET_EBCDIC const char dom_s[] = {0x53, 0x69, 0x67, 0x45, 0x64, 0x34, 0x34, 0x38, 0x00}; #else const char dom_s[] = "SigEd448"; #endif uint8_t dom[2]; if (context_len > UINT8_MAX) return C448_FAILURE; dom[0] = (uint8_t)(2 - (prehashed == 0 ? 1 : 0) - (for_prehash == 0 ? 1 : 0)); dom[1] = (uint8_t)context_len; if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL) || !EVP_DigestUpdate(hashctx, dom_s, strlen(dom_s)) || !EVP_DigestUpdate(hashctx, dom, sizeof(dom)) || !EVP_DigestUpdate(hashctx, context, context_len)) return C448_FAILURE; return C448_SUCCESS; } /* In this file because it uses the hash */ c448_error_t c448_ed448_convert_private_key_to_x448( uint8_t x[X448_PRIVATE_BYTES], const uint8_t ed [EDDSA_448_PRIVATE_BYTES]) { /* pass the private key through oneshot_hash function */ /* and keep the first X448_PRIVATE_BYTES bytes */ return oneshot_hash(x, X448_PRIVATE_BYTES, ed, EDDSA_448_PRIVATE_BYTES); } c448_error_t c448_ed448_derive_public_key( uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES]) { /* only this much used for keygen */ uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES]; curve448_scalar_t secret_scalar; unsigned int c; curve448_point_t p; if (!oneshot_hash(secret_scalar_ser, sizeof(secret_scalar_ser), privkey, EDDSA_448_PRIVATE_BYTES)) return C448_FAILURE; clamp(secret_scalar_ser); curve448_scalar_decode_long(secret_scalar, secret_scalar_ser, sizeof(secret_scalar_ser)); /* * Since we are going to mul_by_cofactor during encoding, divide by it * here. However, the EdDSA base point is not the same as the decaf base * point if the sigma isogeny is in use: the EdDSA base point is on * Etwist_d/(1-d) and the decaf base point is on Etwist_d, and when * converted it effectively picks up a factor of 2 from the isogenies. So * we might start at 2 instead of 1. */ for (c = 1; c < C448_EDDSA_ENCODE_RATIO; c <<= 1) curve448_scalar_halve(secret_scalar, secret_scalar); curve448_precomputed_scalarmul(p, curve448_precomputed_base, secret_scalar); curve448_point_mul_by_ratio_and_encode_like_eddsa(pubkey, p); /* Cleanup */ curve448_scalar_destroy(secret_scalar); curve448_point_destroy(p); OPENSSL_cleanse(secret_scalar_ser, sizeof(secret_scalar_ser)); return C448_SUCCESS; } c448_error_t c448_ed448_sign( uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t *message, size_t message_len, uint8_t prehashed, const uint8_t *context, size_t context_len) { curve448_scalar_t secret_scalar; EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); c448_error_t ret = C448_FAILURE; curve448_scalar_t nonce_scalar; uint8_t nonce_point[EDDSA_448_PUBLIC_BYTES] = { 0 }; unsigned int c; curve448_scalar_t challenge_scalar; if (hashctx == NULL) return C448_FAILURE; { /* * Schedule the secret key, First EDDSA_448_PRIVATE_BYTES is serialised * secret scalar,next EDDSA_448_PRIVATE_BYTES bytes is the seed. */ uint8_t expanded[EDDSA_448_PRIVATE_BYTES * 2]; if (!oneshot_hash(expanded, sizeof(expanded), privkey, EDDSA_448_PRIVATE_BYTES)) goto err; clamp(expanded); curve448_scalar_decode_long(secret_scalar, expanded, EDDSA_448_PRIVATE_BYTES); /* Hash to create the nonce */ if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len) || !EVP_DigestUpdate(hashctx, expanded + EDDSA_448_PRIVATE_BYTES, EDDSA_448_PRIVATE_BYTES) || !EVP_DigestUpdate(hashctx, message, message_len)) { OPENSSL_cleanse(expanded, sizeof(expanded)); goto err; } OPENSSL_cleanse(expanded, sizeof(expanded)); } /* Decode the nonce */ { uint8_t nonce[2 * EDDSA_448_PRIVATE_BYTES]; if (!EVP_DigestFinalXOF(hashctx, nonce, sizeof(nonce))) goto err; curve448_scalar_decode_long(nonce_scalar, nonce, sizeof(nonce)); OPENSSL_cleanse(nonce, sizeof(nonce)); } { /* Scalarmul to create the nonce-point */ curve448_scalar_t nonce_scalar_2; curve448_point_t p; curve448_scalar_halve(nonce_scalar_2, nonce_scalar); for (c = 2; c < C448_EDDSA_ENCODE_RATIO; c <<= 1) curve448_scalar_halve(nonce_scalar_2, nonce_scalar_2); curve448_precomputed_scalarmul(p, curve448_precomputed_base, nonce_scalar_2); curve448_point_mul_by_ratio_and_encode_like_eddsa(nonce_point, p); curve448_point_destroy(p); curve448_scalar_destroy(nonce_scalar_2); } { uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES]; /* Compute the challenge */ if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len) || !EVP_DigestUpdate(hashctx, nonce_point, sizeof(nonce_point)) || !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES) || !EVP_DigestUpdate(hashctx, message, message_len) || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) goto err; curve448_scalar_decode_long(challenge_scalar, challenge, sizeof(challenge)); OPENSSL_cleanse(challenge, sizeof(challenge)); } curve448_scalar_mul(challenge_scalar, challenge_scalar, secret_scalar); curve448_scalar_add(challenge_scalar, challenge_scalar, nonce_scalar); OPENSSL_cleanse(signature, EDDSA_448_SIGNATURE_BYTES); memcpy(signature, nonce_point, sizeof(nonce_point)); curve448_scalar_encode(&signature[EDDSA_448_PUBLIC_BYTES], challenge_scalar); curve448_scalar_destroy(secret_scalar); curve448_scalar_destroy(nonce_scalar); curve448_scalar_destroy(challenge_scalar); ret = C448_SUCCESS; err: EVP_MD_CTX_free(hashctx); return ret; } c448_error_t c448_ed448_sign_prehash( uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t hash[64], const uint8_t *context, size_t context_len) { return c448_ed448_sign(signature, privkey, pubkey, hash, 64, 1, context, context_len); } c448_error_t c448_ed448_verify( const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t *message, size_t message_len, uint8_t prehashed, const uint8_t *context, uint8_t context_len) { curve448_point_t pk_point, r_point; c448_error_t error; curve448_scalar_t challenge_scalar; curve448_scalar_t response_scalar; /* Order in little endian format */ static const uint8_t order[] = { 0xF3, 0x44, 0x58, 0xAB, 0x92, 0xC2, 0x78, 0x23, 0x55, 0x8F, 0xC5, 0x8D, 0x72, 0xC2, 0x6C, 0x21, 0x90, 0x36, 0xD6, 0xAE, 0x49, 0xDB, 0x4E, 0xC4, 0xE9, 0x23, 0xCA, 0x7C, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x00 }; int i; /* * Check that s (second 57 bytes of the sig) is less than the order. Both * s and the order are in little-endian format. This can be done in * variable time, since if this is not the case the signature if publicly * invalid. */ for (i = EDDSA_448_PUBLIC_BYTES - 1; i >= 0; i--) { if (signature[i + EDDSA_448_PUBLIC_BYTES] > order[i]) return C448_FAILURE; if (signature[i + EDDSA_448_PUBLIC_BYTES] < order[i]) break; } if (i < 0) return C448_FAILURE; error = curve448_point_decode_like_eddsa_and_mul_by_ratio(pk_point, pubkey); if (C448_SUCCESS != error) return error; error = curve448_point_decode_like_eddsa_and_mul_by_ratio(r_point, signature); if (C448_SUCCESS != error) return error; { /* Compute the challenge */ EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES]; if (hashctx == NULL || !hash_init_with_dom(hashctx, prehashed, 0, context, context_len) || !EVP_DigestUpdate(hashctx, signature, EDDSA_448_PUBLIC_BYTES) || !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES) || !EVP_DigestUpdate(hashctx, message, message_len) || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) { EVP_MD_CTX_free(hashctx); return C448_FAILURE; } EVP_MD_CTX_free(hashctx); curve448_scalar_decode_long(challenge_scalar, challenge, sizeof(challenge)); OPENSSL_cleanse(challenge, sizeof(challenge)); } curve448_scalar_sub(challenge_scalar, curve448_scalar_zero, challenge_scalar); curve448_scalar_decode_long(response_scalar, &signature[EDDSA_448_PUBLIC_BYTES], EDDSA_448_PRIVATE_BYTES); /* pk_point = -c(x(P)) + (cx + k)G = kG */ curve448_base_double_scalarmul_non_secret(pk_point, response_scalar, pk_point, challenge_scalar); return c448_succeed_if(curve448_point_eq(pk_point, r_point)); } c448_error_t c448_ed448_verify_prehash( const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t hash[64], const uint8_t *context, uint8_t context_len) { return c448_ed448_verify(signature, pubkey, hash, 64, 1, context, context_len); } int ED448_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len, const uint8_t public_key[57], const uint8_t private_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_sign(out_sig, private_key, public_key, message, message_len, 0, context, context_len) == C448_SUCCESS; } int ED448_verify(const uint8_t *message, size_t message_len, const uint8_t signature[114], const uint8_t public_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_verify(signature, public_key, message, message_len, 0, context, (uint8_t)context_len) == C448_SUCCESS; } int ED448ph_sign(uint8_t *out_sig, const uint8_t hash[64], const uint8_t public_key[57], const uint8_t private_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_sign_prehash(out_sig, private_key, public_key, hash, context, context_len) == C448_SUCCESS; } int ED448ph_verify(const uint8_t hash[64], const uint8_t signature[114], const uint8_t public_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_verify_prehash(signature, public_key, hash, context, (uint8_t)context_len) == C448_SUCCESS; } int ED448_public_from_private(uint8_t out_public_key[57], const uint8_t private_key[57]) { return c448_ed448_derive_public_key(out_public_key, private_key) == C448_SUCCESS; } openssl-1.1.1f/crypto/ec/curve448/f_generic.c000066400000000000000000000123671364063235100207370ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #include "field.h" static const gf MODULUS = { FIELD_LITERAL(0xffffffffffffffULL, 0xffffffffffffffULL, 0xffffffffffffffULL, 0xffffffffffffffULL, 0xfffffffffffffeULL, 0xffffffffffffffULL, 0xffffffffffffffULL, 0xffffffffffffffULL) }; /* Serialize to wire format. */ void gf_serialize(uint8_t serial[SER_BYTES], const gf x, int with_hibit) { unsigned int j = 0, fill = 0; dword_t buffer = 0; int i; gf red; gf_copy(red, x); gf_strong_reduce(red); if (!with_hibit) assert(gf_hibit(red) == 0); for (i = 0; i < (with_hibit ? X_SER_BYTES : SER_BYTES); i++) { if (fill < 8 && j < NLIMBS) { buffer |= ((dword_t) red->limb[LIMBPERM(j)]) << fill; fill += LIMB_PLACE_VALUE(LIMBPERM(j)); j++; } serial[i] = (uint8_t)buffer; fill -= 8; buffer >>= 8; } } /* Return high bit of x = low bit of 2x mod p */ mask_t gf_hibit(const gf x) { gf y; gf_add(y, x, x); gf_strong_reduce(y); return 0 - (y->limb[0] & 1); } /* Return high bit of x = low bit of 2x mod p */ mask_t gf_lobit(const gf x) { gf y; gf_copy(y, x); gf_strong_reduce(y); return 0 - (y->limb[0] & 1); } /* Deserialize from wire format; return -1 on success and 0 on failure. */ mask_t gf_deserialize(gf x, const uint8_t serial[SER_BYTES], int with_hibit, uint8_t hi_nmask) { unsigned int j = 0, fill = 0; dword_t buffer = 0; dsword_t scarry = 0; const unsigned nbytes = with_hibit ? X_SER_BYTES : SER_BYTES; unsigned int i; mask_t succ; for (i = 0; i < NLIMBS; i++) { while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < nbytes) { uint8_t sj; sj = serial[j]; if (j == nbytes - 1) sj &= ~hi_nmask; buffer |= ((dword_t) sj) << fill; fill += 8; j++; } x->limb[LIMBPERM(i)] = (word_t) ((i < NLIMBS - 1) ? buffer & LIMB_MASK(LIMBPERM(i)) : buffer); fill -= LIMB_PLACE_VALUE(LIMBPERM(i)); buffer >>= LIMB_PLACE_VALUE(LIMBPERM(i)); scarry = (scarry + x->limb[LIMBPERM(i)] - MODULUS->limb[LIMBPERM(i)]) >> (8 * sizeof(word_t)); } succ = with_hibit ? 0 - (mask_t) 1 : ~gf_hibit(x); return succ & word_is_zero((word_t)buffer) & ~word_is_zero((word_t)scarry); } /* Reduce to canonical form. */ void gf_strong_reduce(gf a) { dsword_t scarry; word_t scarry_0; dword_t carry = 0; unsigned int i; /* first, clear high */ gf_weak_reduce(a); /* Determined to have negligible perf impact. */ /* now the total is less than 2p */ /* compute total_value - p. No need to reduce mod p. */ scarry = 0; for (i = 0; i < NLIMBS; i++) { scarry = scarry + a->limb[LIMBPERM(i)] - MODULUS->limb[LIMBPERM(i)]; a->limb[LIMBPERM(i)] = scarry & LIMB_MASK(LIMBPERM(i)); scarry >>= LIMB_PLACE_VALUE(LIMBPERM(i)); } /* * uncommon case: it was >= p, so now scarry = 0 and this = x common case: * it was < p, so now scarry = -1 and this = x - p + 2^255 so let's add * back in p. will carry back off the top for 2^255. */ assert(scarry == 0 || scarry == -1); scarry_0 = (word_t)scarry; /* add it back */ for (i = 0; i < NLIMBS; i++) { carry = carry + a->limb[LIMBPERM(i)] + (scarry_0 & MODULUS->limb[LIMBPERM(i)]); a->limb[LIMBPERM(i)] = carry & LIMB_MASK(LIMBPERM(i)); carry >>= LIMB_PLACE_VALUE(LIMBPERM(i)); } assert(carry < 2 && ((word_t)carry + scarry_0) == 0); } /* Subtract two gf elements d=a-b */ void gf_sub(gf d, const gf a, const gf b) { gf_sub_RAW(d, a, b); gf_bias(d, 2); gf_weak_reduce(d); } /* Add two field elements d = a+b */ void gf_add(gf d, const gf a, const gf b) { gf_add_RAW(d, a, b); gf_weak_reduce(d); } /* Compare a==b */ mask_t gf_eq(const gf a, const gf b) { gf c; mask_t ret = 0; unsigned int i; gf_sub(c, a, b); gf_strong_reduce(c); for (i = 0; i < NLIMBS; i++) ret |= c->limb[LIMBPERM(i)]; return word_is_zero(ret); } mask_t gf_isr(gf a, const gf x) { gf L0, L1, L2; gf_sqr(L1, x); gf_mul(L2, x, L1); gf_sqr(L1, L2); gf_mul(L2, x, L1); gf_sqrn(L1, L2, 3); gf_mul(L0, L2, L1); gf_sqrn(L1, L0, 3); gf_mul(L0, L2, L1); gf_sqrn(L2, L0, 9); gf_mul(L1, L0, L2); gf_sqr(L0, L1); gf_mul(L2, x, L0); gf_sqrn(L0, L2, 18); gf_mul(L2, L1, L0); gf_sqrn(L0, L2, 37); gf_mul(L1, L2, L0); gf_sqrn(L0, L1, 37); gf_mul(L1, L2, L0); gf_sqrn(L0, L1, 111); gf_mul(L2, L1, L0); gf_sqr(L0, L2); gf_mul(L1, x, L0); gf_sqrn(L0, L1, 223); gf_mul(L1, L2, L0); gf_sqr(L2, L1); gf_mul(L0, L2, x); gf_copy(a, L1); return gf_eq(L0, ONE); } openssl-1.1.1f/crypto/ec/curve448/field.h000066400000000000000000000110051364063235100200720ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2014 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef OSSL_CRYPTO_EC_CURVE448_FIELD_H # define OSSL_CRYPTO_EC_CURVE448_FIELD_H # include "internal/constant_time.h" # include # include # include "word.h" # define NLIMBS (64/sizeof(word_t)) # define X_SER_BYTES 56 # define SER_BYTES 56 # if defined(__GNUC__) || defined(__clang__) # define INLINE_UNUSED __inline__ __attribute__((__unused__,__always_inline__)) # define RESTRICT __restrict__ # define ALIGNED __attribute__((__aligned__(16))) # else # define INLINE_UNUSED ossl_inline # define RESTRICT # define ALIGNED # endif typedef struct gf_s { word_t limb[NLIMBS]; } ALIGNED gf_s, gf[1]; /* RFC 7748 support */ # define X_PUBLIC_BYTES X_SER_BYTES # define X_PRIVATE_BYTES X_PUBLIC_BYTES # define X_PRIVATE_BITS 448 static INLINE_UNUSED void gf_copy(gf out, const gf a) { *out = *a; } static INLINE_UNUSED void gf_add_RAW(gf out, const gf a, const gf b); static INLINE_UNUSED void gf_sub_RAW(gf out, const gf a, const gf b); static INLINE_UNUSED void gf_bias(gf inout, int amount); static INLINE_UNUSED void gf_weak_reduce(gf inout); void gf_strong_reduce(gf inout); void gf_add(gf out, const gf a, const gf b); void gf_sub(gf out, const gf a, const gf b); void gf_mul(gf_s * RESTRICT out, const gf a, const gf b); void gf_mulw_unsigned(gf_s * RESTRICT out, const gf a, uint32_t b); void gf_sqr(gf_s * RESTRICT out, const gf a); mask_t gf_isr(gf a, const gf x); /** a^2 x = 1, QNR, or 0 if x=0. Return true if successful */ mask_t gf_eq(const gf x, const gf y); mask_t gf_lobit(const gf x); mask_t gf_hibit(const gf x); void gf_serialize(uint8_t *serial, const gf x, int with_highbit); mask_t gf_deserialize(gf x, const uint8_t serial[SER_BYTES], int with_hibit, uint8_t hi_nmask); # include "f_impl.h" /* Bring in the inline implementations */ # define LIMBPERM(i) (i) # define LIMB_MASK(i) (((1)< 0); if (n & 1) { gf_sqr(y, x); n--; } else { gf_sqr(tmp, x); gf_sqr(y, tmp); n -= 2; } for (; n; n -= 2) { gf_sqr(tmp, y); gf_sqr(y, tmp); } } # define gf_add_nr gf_add_RAW /* Subtract mod p. Bias by 2 and don't reduce */ static ossl_inline void gf_sub_nr(gf c, const gf a, const gf b) { gf_sub_RAW(c, a, b); gf_bias(c, 2); if (GF_HEADROOM < 3) gf_weak_reduce(c); } /* Subtract mod p. Bias by amt but don't reduce. */ static ossl_inline void gf_subx_nr(gf c, const gf a, const gf b, int amt) { gf_sub_RAW(c, a, b); gf_bias(c, amt); if (GF_HEADROOM < amt + 1) gf_weak_reduce(c); } /* Mul by signed int. Not constant-time WRT the sign of that int. */ static ossl_inline void gf_mulw(gf c, const gf a, int32_t w) { if (w > 0) { gf_mulw_unsigned(c, a, w); } else { gf_mulw_unsigned(c, a, -w); gf_sub(c, ZERO, c); } } /* Constant time, x = is_z ? z : y */ static ossl_inline void gf_cond_sel(gf x, const gf y, const gf z, mask_t is_z) { size_t i; for (i = 0; i < NLIMBS; i++) { #if ARCH_WORD_BITS == 32 x[0].limb[i] = constant_time_select_32(is_z, z[0].limb[i], y[0].limb[i]); #else /* Must be 64 bit */ x[0].limb[i] = constant_time_select_64(is_z, z[0].limb[i], y[0].limb[i]); #endif } } /* Constant time, if (neg) x=-x; */ static ossl_inline void gf_cond_neg(gf x, mask_t neg) { gf y; gf_sub(y, ZERO, x); gf_cond_sel(x, x, y, neg); } /* Constant time, if (swap) (x,y) = (y,x); */ static ossl_inline void gf_cond_swap(gf x, gf_s * RESTRICT y, mask_t swap) { size_t i; for (i = 0; i < NLIMBS; i++) { #if ARCH_WORD_BITS == 32 constant_time_cond_swap_32(swap, &(x[0].limb[i]), &(y->limb[i])); #else /* Must be 64 bit */ constant_time_cond_swap_64(swap, &(x[0].limb[i]), &(y->limb[i])); #endif } } #endif /* OSSL_CRYPTO_EC_CURVE448_FIELD_H */ openssl-1.1.1f/crypto/ec/curve448/point_448.h000066400000000000000000000220201364063235100205360ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef OSSL_CRYPTO_EC_CURVE448_POINT_448_H # define OSSL_CRYPTO_EC_CURVE448_POINT_448_H # include "curve448utils.h" # include "field.h" /* Comb config: number of combs, n, t, s. */ #define COMBS_N 5 #define COMBS_T 5 #define COMBS_S 18 /* Projective Niels coordinates */ typedef struct { gf a, b, c; } niels_s, niels_t[1]; typedef struct { niels_t n; gf z; } pniels_t[1]; /* Precomputed base */ struct curve448_precomputed_s { niels_t table[COMBS_N << (COMBS_T - 1)]; }; # define C448_SCALAR_LIMBS ((446-1)/C448_WORD_BITS+1) /* The number of bits in a scalar */ # define C448_SCALAR_BITS 446 /* Number of bytes in a serialized scalar. */ # define C448_SCALAR_BYTES 56 /* X448 encoding ratio. */ # define X448_ENCODE_RATIO 2 /* Number of bytes in an x448 public key */ # define X448_PUBLIC_BYTES 56 /* Number of bytes in an x448 private key */ # define X448_PRIVATE_BYTES 56 /* Twisted Edwards extended homogeneous coordinates */ typedef struct curve448_point_s { gf x, y, z, t; } curve448_point_t[1]; /* Precomputed table based on a point. Can be trivial implementation. */ struct curve448_precomputed_s; /* Precomputed table based on a point. Can be trivial implementation. */ typedef struct curve448_precomputed_s curve448_precomputed_s; /* Scalar is stored packed, because we don't need the speed. */ typedef struct curve448_scalar_s { c448_word_t limb[C448_SCALAR_LIMBS]; } curve448_scalar_t[1]; /* A scalar equal to 1. */ extern const curve448_scalar_t curve448_scalar_one; /* A scalar equal to 0. */ extern const curve448_scalar_t curve448_scalar_zero; /* The identity point on the curve. */ extern const curve448_point_t curve448_point_identity; /* Precomputed table for the base point on the curve. */ extern const struct curve448_precomputed_s *curve448_precomputed_base; extern const niels_t *curve448_wnaf_base; /* * Read a scalar from wire format or from bytes. * * ser (in): Serialized form of a scalar. * out (out): Deserialized form. * * Returns: * C448_SUCCESS: The scalar was correctly encoded. * C448_FAILURE: The scalar was greater than the modulus, and has been reduced * modulo that modulus. */ c448_error_t curve448_scalar_decode(curve448_scalar_t out, const unsigned char ser[C448_SCALAR_BYTES]); /* * Read a scalar from wire format or from bytes. Reduces mod scalar prime. * * ser (in): Serialized form of a scalar. * ser_len (in): Length of serialized form. * out (out): Deserialized form. */ void curve448_scalar_decode_long(curve448_scalar_t out, const unsigned char *ser, size_t ser_len); /* * Serialize a scalar to wire format. * * ser (out): Serialized form of a scalar. * s (in): Deserialized scalar. */ void curve448_scalar_encode(unsigned char ser[C448_SCALAR_BYTES], const curve448_scalar_t s); /* * Add two scalars. |a|, |b| and |out| may alias each other. * * a (in): One scalar. * b (in): Another scalar. * out (out): a+b. */ void curve448_scalar_add(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /* * Subtract two scalars. |a|, |b| and |out| may alias each other. * a (in): One scalar. * b (in): Another scalar. * out (out): a-b. */ void curve448_scalar_sub(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /* * Multiply two scalars. |a|, |b| and |out| may alias each other. * * a (in): One scalar. * b (in): Another scalar. * out (out): a*b. */ void curve448_scalar_mul(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /* * Halve a scalar. |a| and |out| may alias each other. * * a (in): A scalar. * out (out): a/2. */ void curve448_scalar_halve(curve448_scalar_t out, const curve448_scalar_t a); /* * Copy a scalar. The scalars may alias each other, in which case this * function does nothing. * * a (in): A scalar. * out (out): Will become a copy of a. */ static ossl_inline void curve448_scalar_copy(curve448_scalar_t out, const curve448_scalar_t a) { *out = *a; } /* * Copy a point. The input and output may alias, in which case this function * does nothing. * * a (out): A copy of the point. * b (in): Any point. */ static ossl_inline void curve448_point_copy(curve448_point_t a, const curve448_point_t b) { *a = *b; } /* * Test whether two points are equal. If yes, return C448_TRUE, else return * C448_FALSE. * * a (in): A point. * b (in): Another point. * * Returns: * C448_TRUE: The points are equal. * C448_FALSE: The points are not equal. */ __owur c448_bool_t curve448_point_eq(const curve448_point_t a, const curve448_point_t b); /* * Double a point. Equivalent to curve448_point_add(two_a,a,a), but potentially * faster. * * two_a (out): The sum a+a. * a (in): A point. */ void curve448_point_double(curve448_point_t two_a, const curve448_point_t a); /* * RFC 7748 Diffie-Hellman scalarmul. This function uses a different * (non-Decaf) encoding. * * out (out): The scaled point base*scalar * base (in): The point to be scaled. * scalar (in): The scalar to multiply by. * * Returns: * C448_SUCCESS: The scalarmul succeeded. * C448_FAILURE: The scalarmul didn't succeed, because the base point is in a * small subgroup. */ __owur c448_error_t x448_int(uint8_t out[X448_PUBLIC_BYTES], const uint8_t base[X448_PUBLIC_BYTES], const uint8_t scalar[X448_PRIVATE_BYTES]); /* * Multiply a point by X448_ENCODE_RATIO, then encode it like RFC 7748. * * This function is mainly used internally, but is exported in case * it will be useful. * * The ratio is necessary because the internal representation doesn't * track the cofactor information, so on output we must clear the cofactor. * This would multiply by the cofactor, but in fact internally points are always * even, so it multiplies by half the cofactor instead. * * As it happens, this aligns with the base point definitions; that is, * if you pass the Decaf/Ristretto base point to this function, the result * will be X448_ENCODE_RATIO times the X448 * base point. * * out (out): The scaled and encoded point. * p (in): The point to be scaled and encoded. */ void curve448_point_mul_by_ratio_and_encode_like_x448( uint8_t out[X448_PUBLIC_BYTES], const curve448_point_t p); /* * RFC 7748 Diffie-Hellman base point scalarmul. This function uses a different * (non-Decaf) encoding. * * out (out): The scaled point base*scalar * scalar (in): The scalar to multiply by. */ void x448_derive_public_key(uint8_t out[X448_PUBLIC_BYTES], const uint8_t scalar[X448_PRIVATE_BYTES]); /* * Multiply a precomputed base point by a scalar: out = scalar*base. * * scaled (out): The scaled point base*scalar * base (in): The point to be scaled. * scalar (in): The scalar to multiply by. */ void curve448_precomputed_scalarmul(curve448_point_t scaled, const curve448_precomputed_s * base, const curve448_scalar_t scalar); /* * Multiply two base points by two scalars: * combo = scalar1*curve448_point_base + scalar2*base2. * * Otherwise equivalent to curve448_point_double_scalarmul, but may be * faster at the expense of being variable time. * * combo (out): The linear combination scalar1*base + scalar2*base2. * scalar1 (in): A first scalar to multiply by. * base2 (in): A second point to be scaled. * scalar2 (in) A second scalar to multiply by. * * Warning: This function takes variable time, and may leak the scalars used. * It is designed for signature verification. */ void curve448_base_double_scalarmul_non_secret(curve448_point_t combo, const curve448_scalar_t scalar1, const curve448_point_t base2, const curve448_scalar_t scalar2); /* * Test that a point is valid, for debugging purposes. * * to_test (in): The point to test. * * Returns: * C448_TRUE The point is valid. * C448_FALSE The point is invalid. */ __owur c448_bool_t curve448_point_valid(const curve448_point_t to_test); /* Overwrite scalar with zeros. */ void curve448_scalar_destroy(curve448_scalar_t scalar); /* Overwrite point with zeros. */ void curve448_point_destroy(curve448_point_t point); #endif /* OSSL_CRYPTO_EC_CURVE448_POINT_448_H */ openssl-1.1.1f/crypto/ec/curve448/scalar.c000066400000000000000000000156371364063235100202660ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #include #include "word.h" #include "point_448.h" static const c448_word_t MONTGOMERY_FACTOR = (c448_word_t) 0x3bd440fae918bc5ULL; static const curve448_scalar_t sc_p = { { { SC_LIMB(0x2378c292ab5844f3ULL), SC_LIMB(0x216cc2728dc58f55ULL), SC_LIMB(0xc44edb49aed63690ULL), SC_LIMB(0xffffffff7cca23e9ULL), SC_LIMB(0xffffffffffffffffULL), SC_LIMB(0xffffffffffffffffULL), SC_LIMB(0x3fffffffffffffffULL) } } }, sc_r2 = { { { SC_LIMB(0xe3539257049b9b60ULL), SC_LIMB(0x7af32c4bc1b195d9ULL), SC_LIMB(0x0d66de2388ea1859ULL), SC_LIMB(0xae17cf725ee4d838ULL), SC_LIMB(0x1a9cc14ba3c47c44ULL), SC_LIMB(0x2052bcb7e4d070afULL), SC_LIMB(0x3402a939f823b729ULL) } } }; #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */ const curve448_scalar_t curve448_scalar_one = {{{1}}}; const curve448_scalar_t curve448_scalar_zero = {{{0}}}; /* * {extra,accum} - sub +? p * Must have extra <= 1 */ static void sc_subx(curve448_scalar_t out, const c448_word_t accum[C448_SCALAR_LIMBS], const curve448_scalar_t sub, const curve448_scalar_t p, c448_word_t extra) { c448_dsword_t chain = 0; unsigned int i; c448_word_t borrow; for (i = 0; i < C448_SCALAR_LIMBS; i++) { chain = (chain + accum[i]) - sub->limb[i]; out->limb[i] = (c448_word_t)chain; chain >>= WBITS; } borrow = (c448_word_t)chain + extra; /* = 0 or -1 */ chain = 0; for (i = 0; i < C448_SCALAR_LIMBS; i++) { chain = (chain + out->limb[i]) + (p->limb[i] & borrow); out->limb[i] = (c448_word_t)chain; chain >>= WBITS; } } static void sc_montmul(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b) { unsigned int i, j; c448_word_t accum[C448_SCALAR_LIMBS + 1] = { 0 }; c448_word_t hi_carry = 0; for (i = 0; i < C448_SCALAR_LIMBS; i++) { c448_word_t mand = a->limb[i]; const c448_word_t *mier = b->limb; c448_dword_t chain = 0; for (j = 0; j < C448_SCALAR_LIMBS; j++) { chain += ((c448_dword_t) mand) * mier[j] + accum[j]; accum[j] = (c448_word_t)chain; chain >>= WBITS; } accum[j] = (c448_word_t)chain; mand = accum[0] * MONTGOMERY_FACTOR; chain = 0; mier = sc_p->limb; for (j = 0; j < C448_SCALAR_LIMBS; j++) { chain += (c448_dword_t) mand *mier[j] + accum[j]; if (j) accum[j - 1] = (c448_word_t)chain; chain >>= WBITS; } chain += accum[j]; chain += hi_carry; accum[j - 1] = (c448_word_t)chain; hi_carry = chain >> WBITS; } sc_subx(out, accum, sc_p, sc_p, hi_carry); } void curve448_scalar_mul(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b) { sc_montmul(out, a, b); sc_montmul(out, out, sc_r2); } void curve448_scalar_sub(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b) { sc_subx(out, a->limb, b, sc_p, 0); } void curve448_scalar_add(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b) { c448_dword_t chain = 0; unsigned int i; for (i = 0; i < C448_SCALAR_LIMBS; i++) { chain = (chain + a->limb[i]) + b->limb[i]; out->limb[i] = (c448_word_t)chain; chain >>= WBITS; } sc_subx(out, out->limb, sc_p, sc_p, (c448_word_t)chain); } static ossl_inline void scalar_decode_short(curve448_scalar_t s, const unsigned char *ser, size_t nbytes) { size_t i, j, k = 0; for (i = 0; i < C448_SCALAR_LIMBS; i++) { c448_word_t out = 0; for (j = 0; j < sizeof(c448_word_t) && k < nbytes; j++, k++) out |= ((c448_word_t) ser[k]) << (8 * j); s->limb[i] = out; } } c448_error_t curve448_scalar_decode( curve448_scalar_t s, const unsigned char ser[C448_SCALAR_BYTES]) { unsigned int i; c448_dsword_t accum = 0; scalar_decode_short(s, ser, C448_SCALAR_BYTES); for (i = 0; i < C448_SCALAR_LIMBS; i++) accum = (accum + s->limb[i] - sc_p->limb[i]) >> WBITS; /* Here accum == 0 or -1 */ curve448_scalar_mul(s, s, curve448_scalar_one); /* ham-handed reduce */ return c448_succeed_if(~word_is_zero((uint32_t)accum)); } void curve448_scalar_destroy(curve448_scalar_t scalar) { OPENSSL_cleanse(scalar, sizeof(curve448_scalar_t)); } void curve448_scalar_decode_long(curve448_scalar_t s, const unsigned char *ser, size_t ser_len) { size_t i; curve448_scalar_t t1, t2; if (ser_len == 0) { curve448_scalar_copy(s, curve448_scalar_zero); return; } i = ser_len - (ser_len % C448_SCALAR_BYTES); if (i == ser_len) i -= C448_SCALAR_BYTES; scalar_decode_short(t1, &ser[i], ser_len - i); if (ser_len == sizeof(curve448_scalar_t)) { assert(i == 0); /* ham-handed reduce */ curve448_scalar_mul(s, t1, curve448_scalar_one); curve448_scalar_destroy(t1); return; } while (i) { i -= C448_SCALAR_BYTES; sc_montmul(t1, t1, sc_r2); (void)curve448_scalar_decode(t2, ser + i); curve448_scalar_add(t1, t1, t2); } curve448_scalar_copy(s, t1); curve448_scalar_destroy(t1); curve448_scalar_destroy(t2); } void curve448_scalar_encode(unsigned char ser[C448_SCALAR_BYTES], const curve448_scalar_t s) { unsigned int i, j, k = 0; for (i = 0; i < C448_SCALAR_LIMBS; i++) { for (j = 0; j < sizeof(c448_word_t); j++, k++) ser[k] = s->limb[i] >> (8 * j); } } void curve448_scalar_halve(curve448_scalar_t out, const curve448_scalar_t a) { c448_word_t mask = 0 - (a->limb[0] & 1); c448_dword_t chain = 0; unsigned int i; for (i = 0; i < C448_SCALAR_LIMBS; i++) { chain = (chain + a->limb[i]) + (sc_p->limb[i] & mask); out->limb[i] = (c448_word_t)chain; chain >>= C448_WORD_BITS; } for (i = 0; i < C448_SCALAR_LIMBS - 1; i++) out->limb[i] = out->limb[i] >> 1 | out->limb[i + 1] << (WBITS - 1); out->limb[i] = out->limb[i] >> 1 | (c448_word_t)(chain << (WBITS - 1)); } openssl-1.1.1f/crypto/ec/curve448/word.h000066400000000000000000000046071364063235100177740ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2014 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef OSSL_CRYPTO_EC_CURVE448_WORD_H # define OSSL_CRYPTO_EC_CURVE448_WORD_H # include # include # include # include # include "arch_intrinsics.h" # include "curve448utils.h" # if (ARCH_WORD_BITS == 64) typedef uint64_t word_t, mask_t; typedef __uint128_t dword_t; typedef int32_t hsword_t; typedef int64_t sword_t; typedef __int128_t dsword_t; # elif (ARCH_WORD_BITS == 32) typedef uint32_t word_t, mask_t; typedef uint64_t dword_t; typedef int16_t hsword_t; typedef int32_t sword_t; typedef int64_t dsword_t; # else # error "For now, we only support 32- and 64-bit architectures." # endif /* * Scalar limbs are keyed off of the API word size instead of the arch word * size. */ # if C448_WORD_BITS == 64 # define SC_LIMB(x) (x) # elif C448_WORD_BITS == 32 # define SC_LIMB(x) ((uint32_t)(x)),((x) >> 32) # else # error "For now we only support 32- and 64-bit architectures." # endif /* * The plan on booleans: The external interface uses c448_bool_t, but this * might be a different size than our particular arch's word_t (and thus * mask_t). Also, the caller isn't guaranteed to pass it as nonzero. So * bool_to_mask converts word sizes and checks nonzero. On the flip side, * mask_t is always -1 or 0, but it might be a different size than * c448_bool_t. On the third hand, we have success vs boolean types, but * that's handled in common.h: it converts between c448_bool_t and * c448_error_t. */ static ossl_inline c448_bool_t mask_to_bool(mask_t m) { return (c448_sword_t)(sword_t)m; } static ossl_inline mask_t bool_to_mask(c448_bool_t m) { /* On most arches this will be optimized to a simple cast. */ mask_t ret = 0; unsigned int i; unsigned int limit = sizeof(c448_bool_t) / sizeof(mask_t); if (limit < 1) limit = 1; for (i = 0; i < limit; i++) ret |= ~word_is_zero(m >> (i * 8 * sizeof(word_t))); return ret; } #endif /* OSSL_CRYPTO_EC_CURVE448_WORD_H */ openssl-1.1.1f/crypto/ec/ec2_oct.c000066400000000000000000000230441364063235100167420ustar00rootroot00000000000000/* * Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" #ifndef OPENSSL_NO_EC2M /*- * Calculates and sets the affine coordinates of an EC_POINT from the given * compressed coordinates. Uses algorithm 2.3.4 of SEC 1. * Note that the simple implementation only uses affine coordinates. * * The method is from the following publication: * * Harper, Menezes, Vanstone: * "Public-Key Cryptosystems with Very Small Key Lengths", * EUROCRYPT '92, Springer-Verlag LNCS 658, * published February 1993 * * US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe * the same method, but claim no priority date earlier than July 29, 1994 * (and additionally fail to cite the EUROCRYPT '92 publication as prior art). */ int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x_, int y_bit, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp, *x, *y, *z; int ret = 0, z0; /* clear error queue */ ERR_clear_error(); if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } y_bit = (y_bit != 0) ? 1 : 0; BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); z = BN_CTX_get(ctx); if (z == NULL) goto err; if (!BN_GF2m_mod_arr(x, x_, group->poly)) goto err; if (BN_is_zero(x)) { if (!BN_GF2m_mod_sqrt_arr(y, group->b, group->poly, ctx)) goto err; } else { if (!group->meth->field_sqr(group, tmp, x, ctx)) goto err; if (!group->meth->field_div(group, tmp, group->b, tmp, ctx)) goto err; if (!BN_GF2m_add(tmp, group->a, tmp)) goto err; if (!BN_GF2m_add(tmp, x, tmp)) goto err; if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) { unsigned long err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NO_SOLUTION) { ERR_clear_error(); ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); } else ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB); goto err; } z0 = (BN_is_odd(z)) ? 1 : 0; if (!group->meth->field_mul(group, y, x, z, ctx)) goto err; if (z0 != y_bit) { if (!BN_GF2m_add(y, y, x)) goto err; } } if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* * Converts an EC_POINT to an octet string. If buf is NULL, the encoded * length will be returned. If the length len of buf is smaller than required * an error will be returned. */ size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *ctx) { size_t ret; BN_CTX *new_ctx = NULL; int used_ctx = 0; BIGNUM *x, *y, *yxi; size_t field_len, i, skip; if ((form != POINT_CONVERSION_COMPRESSED) && (form != POINT_CONVERSION_UNCOMPRESSED) && (form != POINT_CONVERSION_HYBRID)) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); goto err; } if (EC_POINT_is_at_infinity(group, point)) { /* encodes to a single 0 octet */ if (buf != NULL) { if (len < 1) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); return 0; } buf[0] = 0; } return 1; } /* ret := required output buffer length */ field_len = (EC_GROUP_get_degree(group) + 7) / 8; ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; /* if 'buf' is NULL, just return required length */ if (buf != NULL) { if (len < ret) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); goto err; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); used_ctx = 1; x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); yxi = BN_CTX_get(ctx); if (yxi == NULL) goto err; if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) goto err; buf[0] = form; if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) { if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; if (BN_is_odd(yxi)) buf[0]++; } i = 1; skip = field_len - BN_num_bytes(x); if (skip > field_len) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } while (skip > 0) { buf[i++] = 0; skip--; } skip = BN_bn2bin(x, buf + i); i += skip; if (i != 1 + field_len) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) { skip = field_len - BN_num_bytes(y); if (skip > field_len) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } while (skip > 0) { buf[i++] = 0; skip--; } skip = BN_bn2bin(y, buf + i); i += skip; } if (i != ret) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } } if (used_ctx) BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; err: if (used_ctx) BN_CTX_end(ctx); BN_CTX_free(new_ctx); return 0; } /* * Converts an octet string representation to an EC_POINT. Note that the * simple implementation only uses affine coordinates. */ int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, const unsigned char *buf, size_t len, BN_CTX *ctx) { point_conversion_form_t form; int y_bit, m; BN_CTX *new_ctx = NULL; BIGNUM *x, *y, *yxi; size_t field_len, enc_len; int ret = 0; if (len == 0) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); return 0; } form = buf[0]; y_bit = form & 1; form = form & ~1U; if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) && (form != POINT_CONVERSION_UNCOMPRESSED) && (form != POINT_CONVERSION_HYBRID)) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if (form == 0) { if (len != 1) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } return EC_POINT_set_to_infinity(group, point); } m = EC_GROUP_get_degree(group); field_len = (m + 7) / 8; enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; if (len != enc_len) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); yxi = BN_CTX_get(ctx); if (yxi == NULL) goto err; if (!BN_bin2bn(buf + 1, field_len, x)) goto err; if (BN_num_bits(x) > m) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_COMPRESSED) { if (!EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx)) goto err; } else { if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; if (BN_num_bits(y) > m) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_HYBRID) { if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; if (y_bit != BN_is_odd(yxi)) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } } /* * EC_POINT_set_affine_coordinates is responsible for checking that * the point is on the curve. */ if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } #endif openssl-1.1.1f/crypto/ec/ec2_smpl.c000066400000000000000000000651541364063235100171400ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/bn.h" #include "ec_local.h" #ifndef OPENSSL_NO_EC2M /* * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members * are handled by EC_GROUP_new. */ int ec_GF2m_simple_group_init(EC_GROUP *group) { group->field = BN_new(); group->a = BN_new(); group->b = BN_new(); if (group->field == NULL || group->a == NULL || group->b == NULL) { BN_free(group->field); BN_free(group->a); BN_free(group->b); return 0; } return 1; } /* * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are * handled by EC_GROUP_free. */ void ec_GF2m_simple_group_finish(EC_GROUP *group) { BN_free(group->field); BN_free(group->a); BN_free(group->b); } /* * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other * members are handled by EC_GROUP_clear_free. */ void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) { BN_clear_free(group->field); BN_clear_free(group->a); BN_clear_free(group->b); group->poly[0] = 0; group->poly[1] = 0; group->poly[2] = 0; group->poly[3] = 0; group->poly[4] = 0; group->poly[5] = -1; } /* * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are * handled by EC_GROUP_copy. */ int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) { if (!BN_copy(dest->field, src->field)) return 0; if (!BN_copy(dest->a, src->a)) return 0; if (!BN_copy(dest->b, src->b)) return 0; dest->poly[0] = src->poly[0]; dest->poly[1] = src->poly[1]; dest->poly[2] = src->poly[2]; dest->poly[3] = src->poly[3]; dest->poly[4] = src->poly[4]; dest->poly[5] = src->poly[5]; if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; bn_set_all_zero(dest->a); bn_set_all_zero(dest->b); return 1; } /* Set the curve parameters of an EC_GROUP structure. */ int ec_GF2m_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0, i; /* group->field */ if (!BN_copy(group->field, p)) goto err; i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1; if ((i != 5) && (i != 3)) { ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); goto err; } /* group->a */ if (!BN_GF2m_mod_arr(group->a, a, group->poly)) goto err; if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; bn_set_all_zero(group->a); /* group->b */ if (!BN_GF2m_mod_arr(group->b, b, group->poly)) goto err; if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; bn_set_all_zero(group->b); ret = 1; err: return ret; } /* * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL * then there values will not be set but the method will return with success. */ int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { int ret = 0; if (p != NULL) { if (!BN_copy(p, group->field)) return 0; } if (a != NULL) { if (!BN_copy(a, group->a)) goto err; } if (b != NULL) { if (!BN_copy(b, group->b)) goto err; } ret = 1; err: return ret; } /* * Gets the degree of the field. For a curve over GF(2^m) this is the value * m. */ int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) { return BN_num_bits(group->field) - 1; } /* * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an * elliptic curve <=> b != 0 (mod p) */ int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) { int ret = 0; BIGNUM *b; BN_CTX *new_ctx = NULL; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); goto err; } } BN_CTX_start(ctx); b = BN_CTX_get(ctx); if (b == NULL) goto err; if (!BN_GF2m_mod_arr(b, group->b, group->poly)) goto err; /* * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic * curve <=> b != 0 (mod p) */ if (BN_is_zero(b)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* Initializes an EC_POINT. */ int ec_GF2m_simple_point_init(EC_POINT *point) { point->X = BN_new(); point->Y = BN_new(); point->Z = BN_new(); if (point->X == NULL || point->Y == NULL || point->Z == NULL) { BN_free(point->X); BN_free(point->Y); BN_free(point->Z); return 0; } return 1; } /* Frees an EC_POINT. */ void ec_GF2m_simple_point_finish(EC_POINT *point) { BN_free(point->X); BN_free(point->Y); BN_free(point->Z); } /* Clears and frees an EC_POINT. */ void ec_GF2m_simple_point_clear_finish(EC_POINT *point) { BN_clear_free(point->X); BN_clear_free(point->Y); BN_clear_free(point->Z); point->Z_is_one = 0; } /* * Copy the contents of one EC_POINT into another. Assumes dest is * initialized. */ int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) { if (!BN_copy(dest->X, src->X)) return 0; if (!BN_copy(dest->Y, src->Y)) return 0; if (!BN_copy(dest->Z, src->Z)) return 0; dest->Z_is_one = src->Z_is_one; dest->curve_name = src->curve_name; return 1; } /* * Set an EC_POINT to the point at infinity. A point at infinity is * represented by having Z=0. */ int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { point->Z_is_one = 0; BN_zero(point->Z); return 1; } /* * Set the coordinates of an EC_POINT using affine coordinates. Note that * the simple implementation only uses affine coordinates. */ int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { int ret = 0; if (x == NULL || y == NULL) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!BN_copy(point->X, x)) goto err; BN_set_negative(point->X, 0); if (!BN_copy(point->Y, y)) goto err; BN_set_negative(point->Y, 0); if (!BN_copy(point->Z, BN_value_one())) goto err; BN_set_negative(point->Z, 0); point->Z_is_one = 1; ret = 1; err: return ret; } /* * Gets the affine coordinates of an EC_POINT. Note that the simple * implementation only uses affine coordinates. */ int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { int ret = 0; if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } if (BN_cmp(point->Z, BN_value_one())) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (x != NULL) { if (!BN_copy(x, point->X)) goto err; BN_set_negative(x, 0); } if (y != NULL) { if (!BN_copy(y, point->Y)) goto err; BN_set_negative(y, 0); } ret = 1; err: return ret; } /* * Computes a + b and stores the result in r. r could be a or b, a could be * b. Uses algorithm A.10.2 of IEEE P1363. */ int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; int ret = 0; if (EC_POINT_is_at_infinity(group, a)) { if (!EC_POINT_copy(r, b)) return 0; return 1; } if (EC_POINT_is_at_infinity(group, b)) { if (!EC_POINT_copy(r, a)) return 0; return 1; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x0 = BN_CTX_get(ctx); y0 = BN_CTX_get(ctx); x1 = BN_CTX_get(ctx); y1 = BN_CTX_get(ctx); x2 = BN_CTX_get(ctx); y2 = BN_CTX_get(ctx); s = BN_CTX_get(ctx); t = BN_CTX_get(ctx); if (t == NULL) goto err; if (a->Z_is_one) { if (!BN_copy(x0, a->X)) goto err; if (!BN_copy(y0, a->Y)) goto err; } else { if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx)) goto err; } if (b->Z_is_one) { if (!BN_copy(x1, b->X)) goto err; if (!BN_copy(y1, b->Y)) goto err; } else { if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx)) goto err; } if (BN_GF2m_cmp(x0, x1)) { if (!BN_GF2m_add(t, x0, x1)) goto err; if (!BN_GF2m_add(s, y0, y1)) goto err; if (!group->meth->field_div(group, s, s, t, ctx)) goto err; if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; if (!BN_GF2m_add(x2, x2, group->a)) goto err; if (!BN_GF2m_add(x2, x2, s)) goto err; if (!BN_GF2m_add(x2, x2, t)) goto err; } else { if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { if (!EC_POINT_set_to_infinity(group, r)) goto err; ret = 1; goto err; } if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; if (!BN_GF2m_add(s, s, x1)) goto err; if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; if (!BN_GF2m_add(x2, x2, s)) goto err; if (!BN_GF2m_add(x2, x2, group->a)) goto err; } if (!BN_GF2m_add(y2, x1, x2)) goto err; if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; if (!BN_GF2m_add(y2, y2, x2)) goto err; if (!BN_GF2m_add(y2, y2, y1)) goto err; if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* * Computes 2 * a and stores the result in r. r could be a. Uses algorithm * A.10.2 of IEEE P1363. */ int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { return ec_GF2m_simple_add(group, r, a, a, ctx); } int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) /* point is its own inverse */ return 1; if (!EC_POINT_make_affine(group, point, ctx)) return 0; return BN_GF2m_add(point->Y, point->X, point->Y); } /* Indicates whether the given point is the point at infinity. */ int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { return BN_is_zero(point->Z); } /*- * Determines whether the given EC_POINT is an actual point on the curve defined * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: * y^2 + x*y = x^3 + a*x^2 + b. */ int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { int ret = -1; BN_CTX *new_ctx = NULL; BIGNUM *lh, *y2; int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); if (EC_POINT_is_at_infinity(group, point)) return 1; field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; /* only support affine coordinates */ if (!point->Z_is_one) return -1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); y2 = BN_CTX_get(ctx); lh = BN_CTX_get(ctx); if (lh == NULL) goto err; /*- * We have a curve defined by a Weierstrass equation * y^2 + x*y = x^3 + a*x^2 + b. * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 * <=> ((x + a) * x + y ) * x + b + y^2 = 0 */ if (!BN_GF2m_add(lh, point->X, group->a)) goto err; if (!field_mul(group, lh, lh, point->X, ctx)) goto err; if (!BN_GF2m_add(lh, lh, point->Y)) goto err; if (!field_mul(group, lh, lh, point->X, ctx)) goto err; if (!BN_GF2m_add(lh, lh, group->b)) goto err; if (!field_sqr(group, y2, point->Y, ctx)) goto err; if (!BN_GF2m_add(lh, lh, y2)) goto err; ret = BN_is_zero(lh); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /*- * Indicates whether two points are equal. * Return values: * -1 error * 0 equal (in affine coordinates) * 1 not equal */ int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { BIGNUM *aX, *aY, *bX, *bY; BN_CTX *new_ctx = NULL; int ret = -1; if (EC_POINT_is_at_infinity(group, a)) { return EC_POINT_is_at_infinity(group, b) ? 0 : 1; } if (EC_POINT_is_at_infinity(group, b)) return 1; if (a->Z_is_one && b->Z_is_one) { return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); aX = BN_CTX_get(ctx); aY = BN_CTX_get(ctx); bX = BN_CTX_get(ctx); bY = BN_CTX_get(ctx); if (bY == NULL) goto err; if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx)) goto err; if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx)) goto err; ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* Forces the given EC_POINT to internally use affine coordinates. */ int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *x, *y; int ret = 0; if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) goto err; if (!BN_copy(point->X, x)) goto err; if (!BN_copy(point->Y, y)) goto err; if (!BN_one(point->Z)) goto err; point->Z_is_one = 1; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* * Forces each of the EC_POINTs in the given array to use affine coordinates. */ int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { size_t i; for (i = 0; i < num; i++) { if (!group->meth->make_affine(group, points[i], ctx)) return 0; } return 1; } /* Wrapper to simple binary polynomial field multiplication implementation. */ int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); } /* Wrapper to simple binary polynomial field squaring implementation. */ int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); } /* Wrapper to simple binary polynomial field division implementation. */ int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return BN_GF2m_mod_div(r, a, b, group->field, ctx); } /*- * Lopez-Dahab ladder, pre step. * See e.g. "Guide to ECC" Alg 3.40. * Modified to blind s and r independently. * s:= p, r := 2p */ static int ec_GF2m_simple_ladder_pre(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { /* if p is not affine, something is wrong */ if (p->Z_is_one == 0) return 0; /* s blinding: make sure lambda (s->Z here) is not zero */ do { if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) { ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB); return 0; } } while (BN_is_zero(s->Z)); /* if field_encode defined convert between representations */ if ((group->meth->field_encode != NULL && !group->meth->field_encode(group, s->Z, s->Z, ctx)) || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) return 0; /* r blinding: make sure lambda (r->Y here for storage) is not zero */ do { if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) { ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB); return 0; } } while (BN_is_zero(r->Y)); if ((group->meth->field_encode != NULL && !group->meth->field_encode(group, r->Y, r->Y, ctx)) || !group->meth->field_sqr(group, r->Z, p->X, ctx) || !group->meth->field_sqr(group, r->X, r->Z, ctx) || !BN_GF2m_add(r->X, r->X, group->b) || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx) || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)) return 0; s->Z_is_one = 0; r->Z_is_one = 0; return 1; } /*- * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords. * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3 * s := r + s, r := 2r */ static int ec_GF2m_simple_ladder_step(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx) || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx) || !group->meth->field_sqr(group, s->Y, r->Z, ctx) || !group->meth->field_sqr(group, r->Z, r->X, ctx) || !BN_GF2m_add(s->Z, r->Y, s->X) || !group->meth->field_sqr(group, s->Z, s->Z, ctx) || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx) || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx) || !BN_GF2m_add(s->X, s->X, r->Y) || !group->meth->field_sqr(group, r->Y, r->Z, ctx) || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx) || !group->meth->field_sqr(group, s->Y, s->Y, ctx) || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx) || !BN_GF2m_add(r->X, r->Y, s->Y)) return 0; return 1; } /*- * Recover affine (x,y) result from Lopez-Dahab r and s, affine p. * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m) * without Precomputation" (Lopez and Dahab, CHES 1999), * Appendix Alg Mxy. */ static int ec_GF2m_simple_ladder_post(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { int ret = 0; BIGNUM *t0, *t1, *t2 = NULL; if (BN_is_zero(r->Z)) return EC_POINT_set_to_infinity(group, r); if (BN_is_zero(s->Z)) { if (!EC_POINT_copy(r, p) || !EC_POINT_invert(group, r, ctx)) { ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB); return 0; } return 1; } BN_CTX_start(ctx); t0 = BN_CTX_get(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); if (t2 == NULL) { ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE); goto err; } if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx) || !group->meth->field_mul(group, t1, p->X, r->Z, ctx) || !BN_GF2m_add(t1, r->X, t1) || !group->meth->field_mul(group, t2, p->X, s->Z, ctx) || !group->meth->field_mul(group, r->Z, r->X, t2, ctx) || !BN_GF2m_add(t2, t2, s->X) || !group->meth->field_mul(group, t1, t1, t2, ctx) || !group->meth->field_sqr(group, t2, p->X, ctx) || !BN_GF2m_add(t2, p->Y, t2) || !group->meth->field_mul(group, t2, t2, t0, ctx) || !BN_GF2m_add(t1, t2, t1) || !group->meth->field_mul(group, t2, p->X, t0, ctx) || !group->meth->field_inv(group, t2, t2, ctx) || !group->meth->field_mul(group, t1, t1, t2, ctx) || !group->meth->field_mul(group, r->X, r->Z, t2, ctx) || !BN_GF2m_add(t2, p->X, r->X) || !group->meth->field_mul(group, t2, t2, t1, ctx) || !BN_GF2m_add(r->Y, p->Y, t2) || !BN_one(r->Z)) goto err; r->Z_is_one = 1; /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ BN_set_negative(r->X, 0); BN_set_negative(r->Y, 0); ret = 1; err: BN_CTX_end(ctx); return ret; } static int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int ret = 0; EC_POINT *t = NULL; /*- * We limit use of the ladder only to the following cases: * - r := scalar * G * Fixed point mul: scalar != NULL && num == 0; * - r := scalars[0] * points[0] * Variable point mul: scalar == NULL && num == 1; * - r := scalar * G + scalars[0] * points[0] * used, e.g., in ECDSA verification: scalar != NULL && num == 1 * * In any other case (num > 1) we use the default wNAF implementation. * * We also let the default implementation handle degenerate cases like group * order or cofactor set to 0. */ if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor)) return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); if (scalar != NULL && num == 0) /* Fixed point multiplication */ return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); if (scalar == NULL && num == 1) /* Variable point multiplication */ return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); /*- * Double point multiplication: * r := scalar * G + scalars[0] * points[0] */ if ((t = EC_POINT_new(group)) == NULL) { ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE); return 0; } if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx) || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx) || !EC_POINT_add(group, r, t, r, ctx)) goto err; ret = 1; err: EC_POINT_free(t); return ret; } /*- * Computes the multiplicative inverse of a in GF(2^m), storing the result in r. * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. * SCA hardening is with blinding: BN_GF2m_mod_inv does that. */ static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { int ret; if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx))) ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT); return ret; } const EC_METHOD *EC_GF2m_simple_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_characteristic_two_field, ec_GF2m_simple_group_init, ec_GF2m_simple_group_finish, ec_GF2m_simple_group_clear_finish, ec_GF2m_simple_group_copy, ec_GF2m_simple_group_set_curve, ec_GF2m_simple_group_get_curve, ec_GF2m_simple_group_get_degree, ec_group_simple_order_bits, ec_GF2m_simple_group_check_discriminant, ec_GF2m_simple_point_init, ec_GF2m_simple_point_finish, ec_GF2m_simple_point_clear_finish, ec_GF2m_simple_point_copy, ec_GF2m_simple_point_set_to_infinity, 0, /* set_Jprojective_coordinates_GFp */ 0, /* get_Jprojective_coordinates_GFp */ ec_GF2m_simple_point_set_affine_coordinates, ec_GF2m_simple_point_get_affine_coordinates, 0, /* point_set_compressed_coordinates */ 0, /* point2oct */ 0, /* oct2point */ ec_GF2m_simple_add, ec_GF2m_simple_dbl, ec_GF2m_simple_invert, ec_GF2m_simple_is_at_infinity, ec_GF2m_simple_is_on_curve, ec_GF2m_simple_cmp, ec_GF2m_simple_make_affine, ec_GF2m_simple_points_make_affine, ec_GF2m_simple_points_mul, 0, /* precompute_mult */ 0, /* have_precompute_mult */ ec_GF2m_simple_field_mul, ec_GF2m_simple_field_sqr, ec_GF2m_simple_field_div, ec_GF2m_simple_field_inv, 0, /* field_encode */ 0, /* field_decode */ 0, /* field_set_to_one */ ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, 0, /* field_inverse_mod_ord */ 0, /* blind_coordinates */ ec_GF2m_simple_ladder_pre, ec_GF2m_simple_ladder_step, ec_GF2m_simple_ladder_post }; return &ret; } #endif openssl-1.1.1f/crypto/ec/ec_ameth.c000066400000000000000000000613451364063235100171770ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "ec_local.h" #ifndef OPENSSL_NO_CMS static int ecdh_cms_decrypt(CMS_RecipientInfo *ri); static int ecdh_cms_encrypt(CMS_RecipientInfo *ri); #endif static int eckey_param2type(int *pptype, void **ppval, EC_KEY *ec_key) { const EC_GROUP *group; int nid; if (ec_key == NULL || (group = EC_KEY_get0_group(ec_key)) == NULL) { ECerr(EC_F_ECKEY_PARAM2TYPE, EC_R_MISSING_PARAMETERS); return 0; } if (EC_GROUP_get_asn1_flag(group) && (nid = EC_GROUP_get_curve_name(group))) /* we have a 'named curve' => just set the OID */ { *ppval = OBJ_nid2obj(nid); *pptype = V_ASN1_OBJECT; } else { /* explicit parameters */ ASN1_STRING *pstr = NULL; pstr = ASN1_STRING_new(); if (pstr == NULL) return 0; pstr->length = i2d_ECParameters(ec_key, &pstr->data); if (pstr->length <= 0) { ASN1_STRING_free(pstr); ECerr(EC_F_ECKEY_PARAM2TYPE, ERR_R_EC_LIB); return 0; } *ppval = pstr; *pptype = V_ASN1_SEQUENCE; } return 1; } static int eckey_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) { EC_KEY *ec_key = pkey->pkey.ec; void *pval = NULL; int ptype; unsigned char *penc = NULL, *p; int penclen; if (!eckey_param2type(&ptype, &pval, ec_key)) { ECerr(EC_F_ECKEY_PUB_ENCODE, ERR_R_EC_LIB); return 0; } penclen = i2o_ECPublicKey(ec_key, NULL); if (penclen <= 0) goto err; penc = OPENSSL_malloc(penclen); if (penc == NULL) goto err; p = penc; penclen = i2o_ECPublicKey(ec_key, &p); if (penclen <= 0) goto err; if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_EC), ptype, pval, penc, penclen)) return 1; err: if (ptype == V_ASN1_OBJECT) ASN1_OBJECT_free(pval); else ASN1_STRING_free(pval); OPENSSL_free(penc); return 0; } static EC_KEY *eckey_type2param(int ptype, const void *pval) { EC_KEY *eckey = NULL; EC_GROUP *group = NULL; if (ptype == V_ASN1_SEQUENCE) { const ASN1_STRING *pstr = pval; const unsigned char *pm = pstr->data; int pmlen = pstr->length; if ((eckey = d2i_ECParameters(NULL, &pm, pmlen)) == NULL) { ECerr(EC_F_ECKEY_TYPE2PARAM, EC_R_DECODE_ERROR); goto ecerr; } } else if (ptype == V_ASN1_OBJECT) { const ASN1_OBJECT *poid = pval; /* * type == V_ASN1_OBJECT => the parameters are given by an asn1 OID */ if ((eckey = EC_KEY_new()) == NULL) { ECerr(EC_F_ECKEY_TYPE2PARAM, ERR_R_MALLOC_FAILURE); goto ecerr; } group = EC_GROUP_new_by_curve_name(OBJ_obj2nid(poid)); if (group == NULL) goto ecerr; EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE); if (EC_KEY_set_group(eckey, group) == 0) goto ecerr; EC_GROUP_free(group); } else { ECerr(EC_F_ECKEY_TYPE2PARAM, EC_R_DECODE_ERROR); goto ecerr; } return eckey; ecerr: EC_KEY_free(eckey); EC_GROUP_free(group); return NULL; } static int eckey_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) { const unsigned char *p = NULL; const void *pval; int ptype, pklen; EC_KEY *eckey = NULL; X509_ALGOR *palg; if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey)) return 0; X509_ALGOR_get0(NULL, &ptype, &pval, palg); eckey = eckey_type2param(ptype, pval); if (!eckey) { ECerr(EC_F_ECKEY_PUB_DECODE, ERR_R_EC_LIB); return 0; } /* We have parameters now set public key */ if (!o2i_ECPublicKey(&eckey, &p, pklen)) { ECerr(EC_F_ECKEY_PUB_DECODE, EC_R_DECODE_ERROR); goto ecerr; } EVP_PKEY_assign_EC_KEY(pkey, eckey); return 1; ecerr: EC_KEY_free(eckey); return 0; } static int eckey_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { int r; const EC_GROUP *group = EC_KEY_get0_group(b->pkey.ec); const EC_POINT *pa = EC_KEY_get0_public_key(a->pkey.ec), *pb = EC_KEY_get0_public_key(b->pkey.ec); if (group == NULL || pa == NULL || pb == NULL) return -2; r = EC_POINT_cmp(group, pa, pb, NULL); if (r == 0) return 1; if (r == 1) return 0; return -2; } static int eckey_priv_decode(EVP_PKEY *pkey, const PKCS8_PRIV_KEY_INFO *p8) { const unsigned char *p = NULL; const void *pval; int ptype, pklen; EC_KEY *eckey = NULL; const X509_ALGOR *palg; if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8)) return 0; X509_ALGOR_get0(NULL, &ptype, &pval, palg); eckey = eckey_type2param(ptype, pval); if (!eckey) goto ecliberr; /* We have parameters now set private key */ if (!d2i_ECPrivateKey(&eckey, &p, pklen)) { ECerr(EC_F_ECKEY_PRIV_DECODE, EC_R_DECODE_ERROR); goto ecerr; } EVP_PKEY_assign_EC_KEY(pkey, eckey); return 1; ecliberr: ECerr(EC_F_ECKEY_PRIV_DECODE, ERR_R_EC_LIB); ecerr: EC_KEY_free(eckey); return 0; } static int eckey_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { EC_KEY ec_key = *(pkey->pkey.ec); unsigned char *ep, *p; int eplen, ptype; void *pval; unsigned int old_flags; if (!eckey_param2type(&ptype, &pval, &ec_key)) { ECerr(EC_F_ECKEY_PRIV_ENCODE, EC_R_DECODE_ERROR); return 0; } /* set the private key */ /* * do not include the parameters in the SEC1 private key see PKCS#11 * 12.11 */ old_flags = EC_KEY_get_enc_flags(&ec_key); EC_KEY_set_enc_flags(&ec_key, old_flags | EC_PKEY_NO_PARAMETERS); eplen = i2d_ECPrivateKey(&ec_key, NULL); if (!eplen) { ECerr(EC_F_ECKEY_PRIV_ENCODE, ERR_R_EC_LIB); return 0; } ep = OPENSSL_malloc(eplen); if (ep == NULL) { ECerr(EC_F_ECKEY_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); return 0; } p = ep; if (!i2d_ECPrivateKey(&ec_key, &p)) { OPENSSL_free(ep); ECerr(EC_F_ECKEY_PRIV_ENCODE, ERR_R_EC_LIB); return 0; } if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(NID_X9_62_id_ecPublicKey), 0, ptype, pval, ep, eplen)) { OPENSSL_free(ep); return 0; } return 1; } static int int_ec_size(const EVP_PKEY *pkey) { return ECDSA_size(pkey->pkey.ec); } static int ec_bits(const EVP_PKEY *pkey) { return EC_GROUP_order_bits(EC_KEY_get0_group(pkey->pkey.ec)); } static int ec_security_bits(const EVP_PKEY *pkey) { int ecbits = ec_bits(pkey); if (ecbits >= 512) return 256; if (ecbits >= 384) return 192; if (ecbits >= 256) return 128; if (ecbits >= 224) return 112; if (ecbits >= 160) return 80; return ecbits / 2; } static int ec_missing_parameters(const EVP_PKEY *pkey) { if (pkey->pkey.ec == NULL || EC_KEY_get0_group(pkey->pkey.ec) == NULL) return 1; return 0; } static int ec_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from) { EC_GROUP *group = EC_GROUP_dup(EC_KEY_get0_group(from->pkey.ec)); if (group == NULL) return 0; if (to->pkey.ec == NULL) { to->pkey.ec = EC_KEY_new(); if (to->pkey.ec == NULL) goto err; } if (EC_KEY_set_group(to->pkey.ec, group) == 0) goto err; EC_GROUP_free(group); return 1; err: EC_GROUP_free(group); return 0; } static int ec_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) { const EC_GROUP *group_a = EC_KEY_get0_group(a->pkey.ec), *group_b = EC_KEY_get0_group(b->pkey.ec); if (group_a == NULL || group_b == NULL) return -2; if (EC_GROUP_cmp(group_a, group_b, NULL)) return 0; else return 1; } static void int_ec_free(EVP_PKEY *pkey) { EC_KEY_free(pkey->pkey.ec); } typedef enum { EC_KEY_PRINT_PRIVATE, EC_KEY_PRINT_PUBLIC, EC_KEY_PRINT_PARAM } ec_print_t; static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, ec_print_t ktype) { const char *ecstr; unsigned char *priv = NULL, *pub = NULL; size_t privlen = 0, publen = 0; int ret = 0; const EC_GROUP *group; if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { ECerr(EC_F_DO_EC_KEY_PRINT, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (ktype != EC_KEY_PRINT_PARAM && EC_KEY_get0_public_key(x) != NULL) { publen = EC_KEY_key2buf(x, EC_KEY_get_conv_form(x), &pub, NULL); if (publen == 0) goto err; } if (ktype == EC_KEY_PRINT_PRIVATE && EC_KEY_get0_private_key(x) != NULL) { privlen = EC_KEY_priv2buf(x, &priv); if (privlen == 0) goto err; } if (ktype == EC_KEY_PRINT_PRIVATE) ecstr = "Private-Key"; else if (ktype == EC_KEY_PRINT_PUBLIC) ecstr = "Public-Key"; else ecstr = "ECDSA-Parameters"; if (!BIO_indent(bp, off, 128)) goto err; if (BIO_printf(bp, "%s: (%d bit)\n", ecstr, EC_GROUP_order_bits(group)) <= 0) goto err; if (privlen != 0) { if (BIO_printf(bp, "%*spriv:\n", off, "") <= 0) goto err; if (ASN1_buf_print(bp, priv, privlen, off + 4) == 0) goto err; } if (publen != 0) { if (BIO_printf(bp, "%*spub:\n", off, "") <= 0) goto err; if (ASN1_buf_print(bp, pub, publen, off + 4) == 0) goto err; } if (!ECPKParameters_print(bp, group, off)) goto err; ret = 1; err: if (!ret) ECerr(EC_F_DO_EC_KEY_PRINT, ERR_R_EC_LIB); OPENSSL_clear_free(priv, privlen); OPENSSL_free(pub); return ret; } static int eckey_param_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen) { EC_KEY *eckey; if ((eckey = d2i_ECParameters(NULL, pder, derlen)) == NULL) { ECerr(EC_F_ECKEY_PARAM_DECODE, ERR_R_EC_LIB); return 0; } EVP_PKEY_assign_EC_KEY(pkey, eckey); return 1; } static int eckey_param_encode(const EVP_PKEY *pkey, unsigned char **pder) { return i2d_ECParameters(pkey->pkey.ec, pder); } static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_EC_KEY_print(bp, pkey->pkey.ec, indent, EC_KEY_PRINT_PARAM); } static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_EC_KEY_print(bp, pkey->pkey.ec, indent, EC_KEY_PRINT_PUBLIC); } static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return do_EC_KEY_print(bp, pkey->pkey.ec, indent, EC_KEY_PRINT_PRIVATE); } static int old_ec_priv_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen) { EC_KEY *ec; if ((ec = d2i_ECPrivateKey(NULL, pder, derlen)) == NULL) { ECerr(EC_F_OLD_EC_PRIV_DECODE, EC_R_DECODE_ERROR); return 0; } EVP_PKEY_assign_EC_KEY(pkey, ec); return 1; } static int old_ec_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) { return i2d_ECPrivateKey(pkey->pkey.ec, pder); } static int ec_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { switch (op) { case ASN1_PKEY_CTRL_PKCS7_SIGN: if (arg1 == 0) { int snid, hnid; X509_ALGOR *alg1, *alg2; PKCS7_SIGNER_INFO_get0_algs(arg2, NULL, &alg1, &alg2); if (alg1 == NULL || alg1->algorithm == NULL) return -1; hnid = OBJ_obj2nid(alg1->algorithm); if (hnid == NID_undef) return -1; if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pkey))) return -1; X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0); } return 1; #ifndef OPENSSL_NO_CMS case ASN1_PKEY_CTRL_CMS_SIGN: if (arg1 == 0) { int snid, hnid; X509_ALGOR *alg1, *alg2; CMS_SignerInfo_get0_algs(arg2, NULL, NULL, &alg1, &alg2); if (alg1 == NULL || alg1->algorithm == NULL) return -1; hnid = OBJ_obj2nid(alg1->algorithm); if (hnid == NID_undef) return -1; if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pkey))) return -1; X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0); } return 1; case ASN1_PKEY_CTRL_CMS_ENVELOPE: if (arg1 == 1) return ecdh_cms_decrypt(arg2); else if (arg1 == 0) return ecdh_cms_encrypt(arg2); return -2; case ASN1_PKEY_CTRL_CMS_RI_TYPE: *(int *)arg2 = CMS_RECIPINFO_AGREE; return 1; #endif case ASN1_PKEY_CTRL_DEFAULT_MD_NID: if (EVP_PKEY_id(pkey) == EVP_PKEY_SM2) { /* For SM2, the only valid digest-alg is SM3 */ *(int *)arg2 = NID_sm3; } else { *(int *)arg2 = NID_sha256; } return 1; case ASN1_PKEY_CTRL_SET1_TLS_ENCPT: return EC_KEY_oct2key(EVP_PKEY_get0_EC_KEY(pkey), arg2, arg1, NULL); case ASN1_PKEY_CTRL_GET1_TLS_ENCPT: return EC_KEY_key2buf(EVP_PKEY_get0_EC_KEY(pkey), POINT_CONVERSION_UNCOMPRESSED, arg2, NULL); default: return -2; } } static int ec_pkey_check(const EVP_PKEY *pkey) { EC_KEY *eckey = pkey->pkey.ec; /* stay consistent to what EVP_PKEY_check demands */ if (eckey->priv_key == NULL) { ECerr(EC_F_EC_PKEY_CHECK, EC_R_MISSING_PRIVATE_KEY); return 0; } return EC_KEY_check_key(eckey); } static int ec_pkey_public_check(const EVP_PKEY *pkey) { EC_KEY *eckey = pkey->pkey.ec; /* * Note: it unnecessary to check eckey->pub_key here since * it will be checked in EC_KEY_check_key(). In fact, the * EC_KEY_check_key() mainly checks the public key, and checks * the private key optionally (only if there is one). So if * someone passes a whole EC key (public + private), this * will also work... */ return EC_KEY_check_key(eckey); } static int ec_pkey_param_check(const EVP_PKEY *pkey) { EC_KEY *eckey = pkey->pkey.ec; /* stay consistent to what EVP_PKEY_check demands */ if (eckey->group == NULL) { ECerr(EC_F_EC_PKEY_PARAM_CHECK, EC_R_MISSING_PARAMETERS); return 0; } return EC_GROUP_check(eckey->group, NULL); } const EVP_PKEY_ASN1_METHOD eckey_asn1_meth = { EVP_PKEY_EC, EVP_PKEY_EC, 0, "EC", "OpenSSL EC algorithm", eckey_pub_decode, eckey_pub_encode, eckey_pub_cmp, eckey_pub_print, eckey_priv_decode, eckey_priv_encode, eckey_priv_print, int_ec_size, ec_bits, ec_security_bits, eckey_param_decode, eckey_param_encode, ec_missing_parameters, ec_copy_parameters, ec_cmp_parameters, eckey_param_print, 0, int_ec_free, ec_pkey_ctrl, old_ec_priv_decode, old_ec_priv_encode, 0, 0, 0, ec_pkey_check, ec_pkey_public_check, ec_pkey_param_check }; #if !defined(OPENSSL_NO_SM2) const EVP_PKEY_ASN1_METHOD sm2_asn1_meth = { EVP_PKEY_SM2, EVP_PKEY_EC, ASN1_PKEY_ALIAS }; #endif int EC_KEY_print(BIO *bp, const EC_KEY *x, int off) { int private = EC_KEY_get0_private_key(x) != NULL; return do_EC_KEY_print(bp, x, off, private ? EC_KEY_PRINT_PRIVATE : EC_KEY_PRINT_PUBLIC); } int ECParameters_print(BIO *bp, const EC_KEY *x) { return do_EC_KEY_print(bp, x, 4, EC_KEY_PRINT_PARAM); } #ifndef OPENSSL_NO_CMS static int ecdh_cms_set_peerkey(EVP_PKEY_CTX *pctx, X509_ALGOR *alg, ASN1_BIT_STRING *pubkey) { const ASN1_OBJECT *aoid; int atype; const void *aval; int rv = 0; EVP_PKEY *pkpeer = NULL; EC_KEY *ecpeer = NULL; const unsigned char *p; int plen; X509_ALGOR_get0(&aoid, &atype, &aval, alg); if (OBJ_obj2nid(aoid) != NID_X9_62_id_ecPublicKey) goto err; /* If absent parameters get group from main key */ if (atype == V_ASN1_UNDEF || atype == V_ASN1_NULL) { const EC_GROUP *grp; EVP_PKEY *pk; pk = EVP_PKEY_CTX_get0_pkey(pctx); if (!pk) goto err; grp = EC_KEY_get0_group(pk->pkey.ec); ecpeer = EC_KEY_new(); if (ecpeer == NULL) goto err; if (!EC_KEY_set_group(ecpeer, grp)) goto err; } else { ecpeer = eckey_type2param(atype, aval); if (!ecpeer) goto err; } /* We have parameters now set public key */ plen = ASN1_STRING_length(pubkey); p = ASN1_STRING_get0_data(pubkey); if (!p || !plen) goto err; if (!o2i_ECPublicKey(&ecpeer, &p, plen)) goto err; pkpeer = EVP_PKEY_new(); if (pkpeer == NULL) goto err; EVP_PKEY_set1_EC_KEY(pkpeer, ecpeer); if (EVP_PKEY_derive_set_peer(pctx, pkpeer) > 0) rv = 1; err: EC_KEY_free(ecpeer); EVP_PKEY_free(pkpeer); return rv; } /* Set KDF parameters based on KDF NID */ static int ecdh_cms_set_kdf_param(EVP_PKEY_CTX *pctx, int eckdf_nid) { int kdf_nid, kdfmd_nid, cofactor; const EVP_MD *kdf_md; if (eckdf_nid == NID_undef) return 0; /* Lookup KDF type, cofactor mode and digest */ if (!OBJ_find_sigid_algs(eckdf_nid, &kdfmd_nid, &kdf_nid)) return 0; if (kdf_nid == NID_dh_std_kdf) cofactor = 0; else if (kdf_nid == NID_dh_cofactor_kdf) cofactor = 1; else return 0; if (EVP_PKEY_CTX_set_ecdh_cofactor_mode(pctx, cofactor) <= 0) return 0; if (EVP_PKEY_CTX_set_ecdh_kdf_type(pctx, EVP_PKEY_ECDH_KDF_X9_63) <= 0) return 0; kdf_md = EVP_get_digestbynid(kdfmd_nid); if (!kdf_md) return 0; if (EVP_PKEY_CTX_set_ecdh_kdf_md(pctx, kdf_md) <= 0) return 0; return 1; } static int ecdh_cms_set_shared_info(EVP_PKEY_CTX *pctx, CMS_RecipientInfo *ri) { int rv = 0; X509_ALGOR *alg, *kekalg = NULL; ASN1_OCTET_STRING *ukm; const unsigned char *p; unsigned char *der = NULL; int plen, keylen; const EVP_CIPHER *kekcipher; EVP_CIPHER_CTX *kekctx; if (!CMS_RecipientInfo_kari_get0_alg(ri, &alg, &ukm)) return 0; if (!ecdh_cms_set_kdf_param(pctx, OBJ_obj2nid(alg->algorithm))) { ECerr(EC_F_ECDH_CMS_SET_SHARED_INFO, EC_R_KDF_PARAMETER_ERROR); return 0; } if (alg->parameter->type != V_ASN1_SEQUENCE) return 0; p = alg->parameter->value.sequence->data; plen = alg->parameter->value.sequence->length; kekalg = d2i_X509_ALGOR(NULL, &p, plen); if (!kekalg) goto err; kekctx = CMS_RecipientInfo_kari_get0_ctx(ri); if (!kekctx) goto err; kekcipher = EVP_get_cipherbyobj(kekalg->algorithm); if (!kekcipher || EVP_CIPHER_mode(kekcipher) != EVP_CIPH_WRAP_MODE) goto err; if (!EVP_EncryptInit_ex(kekctx, kekcipher, NULL, NULL, NULL)) goto err; if (EVP_CIPHER_asn1_to_param(kekctx, kekalg->parameter) <= 0) goto err; keylen = EVP_CIPHER_CTX_key_length(kekctx); if (EVP_PKEY_CTX_set_ecdh_kdf_outlen(pctx, keylen) <= 0) goto err; plen = CMS_SharedInfo_encode(&der, kekalg, ukm, keylen); if (!plen) goto err; if (EVP_PKEY_CTX_set0_ecdh_kdf_ukm(pctx, der, plen) <= 0) goto err; der = NULL; rv = 1; err: X509_ALGOR_free(kekalg); OPENSSL_free(der); return rv; } static int ecdh_cms_decrypt(CMS_RecipientInfo *ri) { EVP_PKEY_CTX *pctx; pctx = CMS_RecipientInfo_get0_pkey_ctx(ri); if (!pctx) return 0; /* See if we need to set peer key */ if (!EVP_PKEY_CTX_get0_peerkey(pctx)) { X509_ALGOR *alg; ASN1_BIT_STRING *pubkey; if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &alg, &pubkey, NULL, NULL, NULL)) return 0; if (!alg || !pubkey) return 0; if (!ecdh_cms_set_peerkey(pctx, alg, pubkey)) { ECerr(EC_F_ECDH_CMS_DECRYPT, EC_R_PEER_KEY_ERROR); return 0; } } /* Set ECDH derivation parameters and initialise unwrap context */ if (!ecdh_cms_set_shared_info(pctx, ri)) { ECerr(EC_F_ECDH_CMS_DECRYPT, EC_R_SHARED_INFO_ERROR); return 0; } return 1; } static int ecdh_cms_encrypt(CMS_RecipientInfo *ri) { EVP_PKEY_CTX *pctx; EVP_PKEY *pkey; EVP_CIPHER_CTX *ctx; int keylen; X509_ALGOR *talg, *wrap_alg = NULL; const ASN1_OBJECT *aoid; ASN1_BIT_STRING *pubkey; ASN1_STRING *wrap_str; ASN1_OCTET_STRING *ukm; unsigned char *penc = NULL; int penclen; int rv = 0; int ecdh_nid, kdf_type, kdf_nid, wrap_nid; const EVP_MD *kdf_md; pctx = CMS_RecipientInfo_get0_pkey_ctx(ri); if (!pctx) return 0; /* Get ephemeral key */ pkey = EVP_PKEY_CTX_get0_pkey(pctx); if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &talg, &pubkey, NULL, NULL, NULL)) goto err; X509_ALGOR_get0(&aoid, NULL, NULL, talg); /* Is everything uninitialised? */ if (aoid == OBJ_nid2obj(NID_undef)) { EC_KEY *eckey = pkey->pkey.ec; /* Set the key */ unsigned char *p; penclen = i2o_ECPublicKey(eckey, NULL); if (penclen <= 0) goto err; penc = OPENSSL_malloc(penclen); if (penc == NULL) goto err; p = penc; penclen = i2o_ECPublicKey(eckey, &p); if (penclen <= 0) goto err; ASN1_STRING_set0(pubkey, penc, penclen); pubkey->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); pubkey->flags |= ASN1_STRING_FLAG_BITS_LEFT; penc = NULL; X509_ALGOR_set0(talg, OBJ_nid2obj(NID_X9_62_id_ecPublicKey), V_ASN1_UNDEF, NULL); } /* See if custom parameters set */ kdf_type = EVP_PKEY_CTX_get_ecdh_kdf_type(pctx); if (kdf_type <= 0) goto err; if (!EVP_PKEY_CTX_get_ecdh_kdf_md(pctx, &kdf_md)) goto err; ecdh_nid = EVP_PKEY_CTX_get_ecdh_cofactor_mode(pctx); if (ecdh_nid < 0) goto err; else if (ecdh_nid == 0) ecdh_nid = NID_dh_std_kdf; else if (ecdh_nid == 1) ecdh_nid = NID_dh_cofactor_kdf; if (kdf_type == EVP_PKEY_ECDH_KDF_NONE) { kdf_type = EVP_PKEY_ECDH_KDF_X9_63; if (EVP_PKEY_CTX_set_ecdh_kdf_type(pctx, kdf_type) <= 0) goto err; } else /* Unknown KDF */ goto err; if (kdf_md == NULL) { /* Fixme later for better MD */ kdf_md = EVP_sha1(); if (EVP_PKEY_CTX_set_ecdh_kdf_md(pctx, kdf_md) <= 0) goto err; } if (!CMS_RecipientInfo_kari_get0_alg(ri, &talg, &ukm)) goto err; /* Lookup NID for KDF+cofactor+digest */ if (!OBJ_find_sigid_by_algs(&kdf_nid, EVP_MD_type(kdf_md), ecdh_nid)) goto err; /* Get wrap NID */ ctx = CMS_RecipientInfo_kari_get0_ctx(ri); wrap_nid = EVP_CIPHER_CTX_type(ctx); keylen = EVP_CIPHER_CTX_key_length(ctx); /* Package wrap algorithm in an AlgorithmIdentifier */ wrap_alg = X509_ALGOR_new(); if (wrap_alg == NULL) goto err; wrap_alg->algorithm = OBJ_nid2obj(wrap_nid); wrap_alg->parameter = ASN1_TYPE_new(); if (wrap_alg->parameter == NULL) goto err; if (EVP_CIPHER_param_to_asn1(ctx, wrap_alg->parameter) <= 0) goto err; if (ASN1_TYPE_get(wrap_alg->parameter) == NID_undef) { ASN1_TYPE_free(wrap_alg->parameter); wrap_alg->parameter = NULL; } if (EVP_PKEY_CTX_set_ecdh_kdf_outlen(pctx, keylen) <= 0) goto err; penclen = CMS_SharedInfo_encode(&penc, wrap_alg, ukm, keylen); if (!penclen) goto err; if (EVP_PKEY_CTX_set0_ecdh_kdf_ukm(pctx, penc, penclen) <= 0) goto err; penc = NULL; /* * Now need to wrap encoding of wrap AlgorithmIdentifier into parameter * of another AlgorithmIdentifier. */ penclen = i2d_X509_ALGOR(wrap_alg, &penc); if (!penc || !penclen) goto err; wrap_str = ASN1_STRING_new(); if (wrap_str == NULL) goto err; ASN1_STRING_set0(wrap_str, penc, penclen); penc = NULL; X509_ALGOR_set0(talg, OBJ_nid2obj(kdf_nid), V_ASN1_SEQUENCE, wrap_str); rv = 1; err: OPENSSL_free(penc); X509_ALGOR_free(wrap_alg); return rv; } #endif openssl-1.1.1f/crypto/ec/ec_asn1.c000066400000000000000000001146311364063235100167400ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" #include #include #include #include "internal/nelem.h" int EC_GROUP_get_basis_type(const EC_GROUP *group) { int i; if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_characteristic_two_field) /* everything else is currently not supported */ return 0; /* Find the last non-zero element of group->poly[] */ for (i = 0; i < (int)OSSL_NELEM(group->poly) && group->poly[i] != 0; i++) continue; if (i == 4) return NID_X9_62_ppBasis; else if (i == 2) return NID_X9_62_tpBasis; else /* everything else is currently not supported */ return 0; } #ifndef OPENSSL_NO_EC2M int EC_GROUP_get_trinomial_basis(const EC_GROUP *group, unsigned int *k) { if (group == NULL) return 0; if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_characteristic_two_field || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] == 0))) { ECerr(EC_F_EC_GROUP_GET_TRINOMIAL_BASIS, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (k) *k = group->poly[1]; return 1; } int EC_GROUP_get_pentanomial_basis(const EC_GROUP *group, unsigned int *k1, unsigned int *k2, unsigned int *k3) { if (group == NULL) return 0; if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_characteristic_two_field || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] != 0) && (group->poly[3] != 0) && (group->poly[4] == 0))) { ECerr(EC_F_EC_GROUP_GET_PENTANOMIAL_BASIS, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (k1) *k1 = group->poly[3]; if (k2) *k2 = group->poly[2]; if (k3) *k3 = group->poly[1]; return 1; } #endif /* some structures needed for the asn1 encoding */ typedef struct x9_62_pentanomial_st { int32_t k1; int32_t k2; int32_t k3; } X9_62_PENTANOMIAL; typedef struct x9_62_characteristic_two_st { int32_t m; ASN1_OBJECT *type; union { char *ptr; /* NID_X9_62_onBasis */ ASN1_NULL *onBasis; /* NID_X9_62_tpBasis */ ASN1_INTEGER *tpBasis; /* NID_X9_62_ppBasis */ X9_62_PENTANOMIAL *ppBasis; /* anything else */ ASN1_TYPE *other; } p; } X9_62_CHARACTERISTIC_TWO; typedef struct x9_62_fieldid_st { ASN1_OBJECT *fieldType; union { char *ptr; /* NID_X9_62_prime_field */ ASN1_INTEGER *prime; /* NID_X9_62_characteristic_two_field */ X9_62_CHARACTERISTIC_TWO *char_two; /* anything else */ ASN1_TYPE *other; } p; } X9_62_FIELDID; typedef struct x9_62_curve_st { ASN1_OCTET_STRING *a; ASN1_OCTET_STRING *b; ASN1_BIT_STRING *seed; } X9_62_CURVE; struct ec_parameters_st { int32_t version; X9_62_FIELDID *fieldID; X9_62_CURVE *curve; ASN1_OCTET_STRING *base; ASN1_INTEGER *order; ASN1_INTEGER *cofactor; } /* ECPARAMETERS */ ; struct ecpk_parameters_st { int type; union { ASN1_OBJECT *named_curve; ECPARAMETERS *parameters; ASN1_NULL *implicitlyCA; } value; } /* ECPKPARAMETERS */ ; /* SEC1 ECPrivateKey */ typedef struct ec_privatekey_st { int32_t version; ASN1_OCTET_STRING *privateKey; ECPKPARAMETERS *parameters; ASN1_BIT_STRING *publicKey; } EC_PRIVATEKEY; /* the OpenSSL ASN.1 definitions */ ASN1_SEQUENCE(X9_62_PENTANOMIAL) = { ASN1_EMBED(X9_62_PENTANOMIAL, k1, INT32), ASN1_EMBED(X9_62_PENTANOMIAL, k2, INT32), ASN1_EMBED(X9_62_PENTANOMIAL, k3, INT32) } static_ASN1_SEQUENCE_END(X9_62_PENTANOMIAL) DECLARE_ASN1_ALLOC_FUNCTIONS(X9_62_PENTANOMIAL) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(X9_62_PENTANOMIAL) ASN1_ADB_TEMPLATE(char_two_def) = ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.other, ASN1_ANY); ASN1_ADB(X9_62_CHARACTERISTIC_TWO) = { ADB_ENTRY(NID_X9_62_onBasis, ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.onBasis, ASN1_NULL)), ADB_ENTRY(NID_X9_62_tpBasis, ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.tpBasis, ASN1_INTEGER)), ADB_ENTRY(NID_X9_62_ppBasis, ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, p.ppBasis, X9_62_PENTANOMIAL)) } ASN1_ADB_END(X9_62_CHARACTERISTIC_TWO, 0, type, 0, &char_two_def_tt, NULL); ASN1_SEQUENCE(X9_62_CHARACTERISTIC_TWO) = { ASN1_EMBED(X9_62_CHARACTERISTIC_TWO, m, INT32), ASN1_SIMPLE(X9_62_CHARACTERISTIC_TWO, type, ASN1_OBJECT), ASN1_ADB_OBJECT(X9_62_CHARACTERISTIC_TWO) } static_ASN1_SEQUENCE_END(X9_62_CHARACTERISTIC_TWO) DECLARE_ASN1_ALLOC_FUNCTIONS(X9_62_CHARACTERISTIC_TWO) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(X9_62_CHARACTERISTIC_TWO) ASN1_ADB_TEMPLATE(fieldID_def) = ASN1_SIMPLE(X9_62_FIELDID, p.other, ASN1_ANY); ASN1_ADB(X9_62_FIELDID) = { ADB_ENTRY(NID_X9_62_prime_field, ASN1_SIMPLE(X9_62_FIELDID, p.prime, ASN1_INTEGER)), ADB_ENTRY(NID_X9_62_characteristic_two_field, ASN1_SIMPLE(X9_62_FIELDID, p.char_two, X9_62_CHARACTERISTIC_TWO)) } ASN1_ADB_END(X9_62_FIELDID, 0, fieldType, 0, &fieldID_def_tt, NULL); ASN1_SEQUENCE(X9_62_FIELDID) = { ASN1_SIMPLE(X9_62_FIELDID, fieldType, ASN1_OBJECT), ASN1_ADB_OBJECT(X9_62_FIELDID) } static_ASN1_SEQUENCE_END(X9_62_FIELDID) ASN1_SEQUENCE(X9_62_CURVE) = { ASN1_SIMPLE(X9_62_CURVE, a, ASN1_OCTET_STRING), ASN1_SIMPLE(X9_62_CURVE, b, ASN1_OCTET_STRING), ASN1_OPT(X9_62_CURVE, seed, ASN1_BIT_STRING) } static_ASN1_SEQUENCE_END(X9_62_CURVE) ASN1_SEQUENCE(ECPARAMETERS) = { ASN1_EMBED(ECPARAMETERS, version, INT32), ASN1_SIMPLE(ECPARAMETERS, fieldID, X9_62_FIELDID), ASN1_SIMPLE(ECPARAMETERS, curve, X9_62_CURVE), ASN1_SIMPLE(ECPARAMETERS, base, ASN1_OCTET_STRING), ASN1_SIMPLE(ECPARAMETERS, order, ASN1_INTEGER), ASN1_OPT(ECPARAMETERS, cofactor, ASN1_INTEGER) } ASN1_SEQUENCE_END(ECPARAMETERS) DECLARE_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS) ASN1_CHOICE(ECPKPARAMETERS) = { ASN1_SIMPLE(ECPKPARAMETERS, value.named_curve, ASN1_OBJECT), ASN1_SIMPLE(ECPKPARAMETERS, value.parameters, ECPARAMETERS), ASN1_SIMPLE(ECPKPARAMETERS, value.implicitlyCA, ASN1_NULL) } ASN1_CHOICE_END(ECPKPARAMETERS) DECLARE_ASN1_FUNCTIONS_const(ECPKPARAMETERS) DECLARE_ASN1_ENCODE_FUNCTIONS_const(ECPKPARAMETERS, ECPKPARAMETERS) IMPLEMENT_ASN1_FUNCTIONS_const(ECPKPARAMETERS) ASN1_SEQUENCE(EC_PRIVATEKEY) = { ASN1_EMBED(EC_PRIVATEKEY, version, INT32), ASN1_SIMPLE(EC_PRIVATEKEY, privateKey, ASN1_OCTET_STRING), ASN1_EXP_OPT(EC_PRIVATEKEY, parameters, ECPKPARAMETERS, 0), ASN1_EXP_OPT(EC_PRIVATEKEY, publicKey, ASN1_BIT_STRING, 1) } static_ASN1_SEQUENCE_END(EC_PRIVATEKEY) DECLARE_ASN1_FUNCTIONS_const(EC_PRIVATEKEY) DECLARE_ASN1_ENCODE_FUNCTIONS_const(EC_PRIVATEKEY, EC_PRIVATEKEY) IMPLEMENT_ASN1_FUNCTIONS_const(EC_PRIVATEKEY) /* some declarations of internal function */ /* ec_asn1_group2field() sets the values in a X9_62_FIELDID object */ static int ec_asn1_group2fieldid(const EC_GROUP *, X9_62_FIELDID *); /* ec_asn1_group2curve() sets the values in a X9_62_CURVE object */ static int ec_asn1_group2curve(const EC_GROUP *, X9_62_CURVE *); /* the function definitions */ static int ec_asn1_group2fieldid(const EC_GROUP *group, X9_62_FIELDID *field) { int ok = 0, nid; BIGNUM *tmp = NULL; if (group == NULL || field == NULL) return 0; /* clear the old values (if necessary) */ ASN1_OBJECT_free(field->fieldType); ASN1_TYPE_free(field->p.other); nid = EC_METHOD_get_field_type(EC_GROUP_method_of(group)); /* set OID for the field */ if ((field->fieldType = OBJ_nid2obj(nid)) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_OBJ_LIB); goto err; } if (nid == NID_X9_62_prime_field) { if ((tmp = BN_new()) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } /* the parameters are specified by the prime number p */ if (!EC_GROUP_get_curve(group, tmp, NULL, NULL, NULL)) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_EC_LIB); goto err; } /* set the prime number */ field->p.prime = BN_to_ASN1_INTEGER(tmp, NULL); if (field->p.prime == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_ASN1_LIB); goto err; } } else if (nid == NID_X9_62_characteristic_two_field) #ifdef OPENSSL_NO_EC2M { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, EC_R_GF2M_NOT_SUPPORTED); goto err; } #else { int field_type; X9_62_CHARACTERISTIC_TWO *char_two; field->p.char_two = X9_62_CHARACTERISTIC_TWO_new(); char_two = field->p.char_two; if (char_two == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } char_two->m = (long)EC_GROUP_get_degree(group); field_type = EC_GROUP_get_basis_type(group); if (field_type == 0) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_EC_LIB); goto err; } /* set base type OID */ if ((char_two->type = OBJ_nid2obj(field_type)) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_OBJ_LIB); goto err; } if (field_type == NID_X9_62_tpBasis) { unsigned int k; if (!EC_GROUP_get_trinomial_basis(group, &k)) goto err; char_two->p.tpBasis = ASN1_INTEGER_new(); if (char_two->p.tpBasis == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } if (!ASN1_INTEGER_set(char_two->p.tpBasis, (long)k)) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_ASN1_LIB); goto err; } } else if (field_type == NID_X9_62_ppBasis) { unsigned int k1, k2, k3; if (!EC_GROUP_get_pentanomial_basis(group, &k1, &k2, &k3)) goto err; char_two->p.ppBasis = X9_62_PENTANOMIAL_new(); if (char_two->p.ppBasis == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } /* set k? values */ char_two->p.ppBasis->k1 = (long)k1; char_two->p.ppBasis->k2 = (long)k2; char_two->p.ppBasis->k3 = (long)k3; } else { /* field_type == NID_X9_62_onBasis */ /* for ONB the parameters are (asn1) NULL */ char_two->p.onBasis = ASN1_NULL_new(); if (char_two->p.onBasis == NULL) { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); goto err; } } } #endif else { ECerr(EC_F_EC_ASN1_GROUP2FIELDID, EC_R_UNSUPPORTED_FIELD); goto err; } ok = 1; err: BN_free(tmp); return ok; } static int ec_asn1_group2curve(const EC_GROUP *group, X9_62_CURVE *curve) { int ok = 0; BIGNUM *tmp_1 = NULL, *tmp_2 = NULL; unsigned char *a_buf = NULL, *b_buf = NULL; size_t len; if (!group || !curve || !curve->a || !curve->b) return 0; if ((tmp_1 = BN_new()) == NULL || (tmp_2 = BN_new()) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); goto err; } /* get a and b */ if (!EC_GROUP_get_curve(group, NULL, tmp_1, tmp_2, NULL)) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_EC_LIB); goto err; } /* * Per SEC 1, the curve coefficients must be padded up to size. See C.2's * definition of Curve, C.1's definition of FieldElement, and 2.3.5's * definition of how to encode the field elements. */ len = ((size_t)EC_GROUP_get_degree(group) + 7) / 8; if ((a_buf = OPENSSL_malloc(len)) == NULL || (b_buf = OPENSSL_malloc(len)) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); goto err; } if (BN_bn2binpad(tmp_1, a_buf, len) < 0 || BN_bn2binpad(tmp_2, b_buf, len) < 0) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_BN_LIB); goto err; } /* set a and b */ if (!ASN1_OCTET_STRING_set(curve->a, a_buf, len) || !ASN1_OCTET_STRING_set(curve->b, b_buf, len)) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_ASN1_LIB); goto err; } /* set the seed (optional) */ if (group->seed) { if (!curve->seed) if ((curve->seed = ASN1_BIT_STRING_new()) == NULL) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); goto err; } curve->seed->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); curve->seed->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (!ASN1_BIT_STRING_set(curve->seed, group->seed, (int)group->seed_len)) { ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_ASN1_LIB); goto err; } } else { ASN1_BIT_STRING_free(curve->seed); curve->seed = NULL; } ok = 1; err: OPENSSL_free(a_buf); OPENSSL_free(b_buf); BN_free(tmp_1); BN_free(tmp_2); return ok; } ECPARAMETERS *EC_GROUP_get_ecparameters(const EC_GROUP *group, ECPARAMETERS *params) { size_t len = 0; ECPARAMETERS *ret = NULL; const BIGNUM *tmp; unsigned char *buffer = NULL; const EC_POINT *point = NULL; point_conversion_form_t form; ASN1_INTEGER *orig; if (params == NULL) { if ((ret = ECPARAMETERS_new()) == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } } else ret = params; /* set the version (always one) */ ret->version = (long)0x1; /* set the fieldID */ if (!ec_asn1_group2fieldid(group, ret->fieldID)) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* set the curve */ if (!ec_asn1_group2curve(group, ret->curve)) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* set the base point */ if ((point = EC_GROUP_get0_generator(group)) == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, EC_R_UNDEFINED_GENERATOR); goto err; } form = EC_GROUP_get_point_conversion_form(group); len = EC_POINT_point2buf(group, point, form, &buffer, NULL); if (len == 0) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } if (ret->base == NULL && (ret->base = ASN1_OCTET_STRING_new()) == NULL) { OPENSSL_free(buffer); ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } ASN1_STRING_set0(ret->base, buffer, len); /* set the order */ tmp = EC_GROUP_get0_order(group); if (tmp == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_EC_LIB); goto err; } ret->order = BN_to_ASN1_INTEGER(tmp, orig = ret->order); if (ret->order == NULL) { ret->order = orig; ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } /* set the cofactor (optional) */ tmp = EC_GROUP_get0_cofactor(group); if (tmp != NULL) { ret->cofactor = BN_to_ASN1_INTEGER(tmp, orig = ret->cofactor); if (ret->cofactor == NULL) { ret->cofactor = orig; ECerr(EC_F_EC_GROUP_GET_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } } return ret; err: if (params == NULL) ECPARAMETERS_free(ret); return NULL; } ECPKPARAMETERS *EC_GROUP_get_ecpkparameters(const EC_GROUP *group, ECPKPARAMETERS *params) { int ok = 1, tmp; ECPKPARAMETERS *ret = params; if (ret == NULL) { if ((ret = ECPKPARAMETERS_new()) == NULL) { ECerr(EC_F_EC_GROUP_GET_ECPKPARAMETERS, ERR_R_MALLOC_FAILURE); return NULL; } } else { if (ret->type == 0) ASN1_OBJECT_free(ret->value.named_curve); else if (ret->type == 1 && ret->value.parameters) ECPARAMETERS_free(ret->value.parameters); } if (EC_GROUP_get_asn1_flag(group)) { /* * use the asn1 OID to describe the elliptic curve parameters */ tmp = EC_GROUP_get_curve_name(group); if (tmp) { ret->type = 0; if ((ret->value.named_curve = OBJ_nid2obj(tmp)) == NULL) ok = 0; } else /* we don't know the nid => ERROR */ ok = 0; } else { /* use the ECPARAMETERS structure */ ret->type = 1; if ((ret->value.parameters = EC_GROUP_get_ecparameters(group, NULL)) == NULL) ok = 0; } if (!ok) { ECPKPARAMETERS_free(ret); return NULL; } return ret; } EC_GROUP *EC_GROUP_new_from_ecparameters(const ECPARAMETERS *params) { int ok = 0, tmp; EC_GROUP *ret = NULL, *dup = NULL; BIGNUM *p = NULL, *a = NULL, *b = NULL; EC_POINT *point = NULL; long field_bits; int curve_name = NID_undef; BN_CTX *ctx = NULL; if (!params->fieldID || !params->fieldID->fieldType || !params->fieldID->p.ptr) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } /* * Now extract the curve parameters a and b. Note that, although SEC 1 * specifies the length of their encodings, historical versions of OpenSSL * encoded them incorrectly, so we must accept any length for backwards * compatibility. */ if (!params->curve || !params->curve->a || !params->curve->a->data || !params->curve->b || !params->curve->b->data) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } a = BN_bin2bn(params->curve->a->data, params->curve->a->length, NULL); if (a == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_BN_LIB); goto err; } b = BN_bin2bn(params->curve->b->data, params->curve->b->length, NULL); if (b == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_BN_LIB); goto err; } /* get the field parameters */ tmp = OBJ_obj2nid(params->fieldID->fieldType); if (tmp == NID_X9_62_characteristic_two_field) #ifdef OPENSSL_NO_EC2M { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_GF2M_NOT_SUPPORTED); goto err; } #else { X9_62_CHARACTERISTIC_TWO *char_two; char_two = params->fieldID->p.char_two; field_bits = char_two->m; if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_FIELD_TOO_LARGE); goto err; } if ((p = BN_new()) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } /* get the base type */ tmp = OBJ_obj2nid(char_two->type); if (tmp == NID_X9_62_tpBasis) { long tmp_long; if (!char_two->p.tpBasis) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } tmp_long = ASN1_INTEGER_get(char_two->p.tpBasis); if (!(char_two->m > tmp_long && tmp_long > 0)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_TRINOMIAL_BASIS); goto err; } /* create the polynomial */ if (!BN_set_bit(p, (int)char_two->m)) goto err; if (!BN_set_bit(p, (int)tmp_long)) goto err; if (!BN_set_bit(p, 0)) goto err; } else if (tmp == NID_X9_62_ppBasis) { X9_62_PENTANOMIAL *penta; penta = char_two->p.ppBasis; if (!penta) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } if (! (char_two->m > penta->k3 && penta->k3 > penta->k2 && penta->k2 > penta->k1 && penta->k1 > 0)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_PENTANOMIAL_BASIS); goto err; } /* create the polynomial */ if (!BN_set_bit(p, (int)char_two->m)) goto err; if (!BN_set_bit(p, (int)penta->k1)) goto err; if (!BN_set_bit(p, (int)penta->k2)) goto err; if (!BN_set_bit(p, (int)penta->k3)) goto err; if (!BN_set_bit(p, 0)) goto err; } else if (tmp == NID_X9_62_onBasis) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_NOT_IMPLEMENTED); goto err; } else { /* error */ ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } /* create the EC_GROUP structure */ ret = EC_GROUP_new_curve_GF2m(p, a, b, NULL); } #endif else if (tmp == NID_X9_62_prime_field) { /* we have a curve over a prime field */ /* extract the prime number */ if (!params->fieldID->p.prime) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } p = ASN1_INTEGER_to_BN(params->fieldID->p.prime, NULL); if (p == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } if (BN_is_negative(p) || BN_is_zero(p)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_FIELD); goto err; } field_bits = BN_num_bits(p); if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_FIELD_TOO_LARGE); goto err; } /* create the EC_GROUP structure */ ret = EC_GROUP_new_curve_GFp(p, a, b, NULL); } else { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_FIELD); goto err; } if (ret == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* extract seed (optional) */ if (params->curve->seed != NULL) { OPENSSL_free(ret->seed); if ((ret->seed = OPENSSL_malloc(params->curve->seed->length)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_MALLOC_FAILURE); goto err; } memcpy(ret->seed, params->curve->seed->data, params->curve->seed->length); ret->seed_len = params->curve->seed->length; } if (!params->order || !params->base || !params->base->data) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_ASN1_ERROR); goto err; } if ((point = EC_POINT_new(ret)) == NULL) goto err; /* set the point conversion form */ EC_GROUP_set_point_conversion_form(ret, (point_conversion_form_t) (params->base->data[0] & ~0x01)); /* extract the ec point */ if (!EC_POINT_oct2point(ret, point, params->base->data, params->base->length, NULL)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* extract the order */ if ((a = ASN1_INTEGER_to_BN(params->order, a)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } if (BN_is_negative(a) || BN_is_zero(a)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_GROUP_ORDER); goto err; } if (BN_num_bits(a) > (int)field_bits + 1) { /* Hasse bound */ ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, EC_R_INVALID_GROUP_ORDER); goto err; } /* extract the cofactor (optional) */ if (params->cofactor == NULL) { BN_free(b); b = NULL; } else if ((b = ASN1_INTEGER_to_BN(params->cofactor, b)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_ASN1_LIB); goto err; } /* set the generator, order and cofactor (if present) */ if (!EC_GROUP_set_generator(ret, point, a, b)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } /* * Check if the explicit parameters group just created matches one of the * built-in curves. * * We create a copy of the group just built, so that we can remove optional * fields for the lookup: we do this to avoid the possibility that one of * the optional parameters is used to force the library into using a less * performant and less secure EC_METHOD instead of the specialized one. * In any case, `seed` is not really used in any computation, while a * cofactor different from the one in the built-in table is just * mathematically wrong anyway and should not be used. */ if ((ctx = BN_CTX_new()) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_BN_LIB); goto err; } if ((dup = EC_GROUP_dup(ret)) == NULL || EC_GROUP_set_seed(dup, NULL, 0) != 1 || !EC_GROUP_set_generator(dup, point, a, NULL)) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } if ((curve_name = ec_curve_nid_from_params(dup, ctx)) != NID_undef) { /* * The input explicit parameters successfully matched one of the * built-in curves: often for built-in curves we have specialized * methods with better performance and hardening. * * In this case we replace the `EC_GROUP` created through explicit * parameters with one created from a named group. */ EC_GROUP *named_group = NULL; #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 /* * NID_wap_wsg_idm_ecid_wtls12 and NID_secp224r1 are both aliases for * the same curve, we prefer the SECP nid when matching explicit * parameters as that is associated with a specialized EC_METHOD. */ if (curve_name == NID_wap_wsg_idm_ecid_wtls12) curve_name = NID_secp224r1; #endif /* !def(OPENSSL_NO_EC_NISTP_64_GCC_128) */ if ((named_group = EC_GROUP_new_by_curve_name(curve_name)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, ERR_R_EC_LIB); goto err; } EC_GROUP_free(ret); ret = named_group; /* * Set the flag so that EC_GROUPs created from explicit parameters are * serialized using explicit parameters by default. */ EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_EXPLICIT_CURVE); /* * If the input params do not contain the optional seed field we make * sure it is not added to the returned group. * * The seed field is not really used inside libcrypto anyway, and * adding it to parsed explicit parameter keys would alter their DER * encoding output (because of the extra field) which could impact * applications fingerprinting keys by their DER encoding. */ if (params->curve->seed == NULL) { if (EC_GROUP_set_seed(ret, NULL, 0) != 1) goto err; } } ok = 1; err: if (!ok) { EC_GROUP_free(ret); ret = NULL; } EC_GROUP_free(dup); BN_free(p); BN_free(a); BN_free(b); EC_POINT_free(point); BN_CTX_free(ctx); return ret; } EC_GROUP *EC_GROUP_new_from_ecpkparameters(const ECPKPARAMETERS *params) { EC_GROUP *ret = NULL; int tmp = 0; if (params == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, EC_R_MISSING_PARAMETERS); return NULL; } if (params->type == 0) { /* the curve is given by an OID */ tmp = OBJ_obj2nid(params->value.named_curve); if ((ret = EC_GROUP_new_by_curve_name(tmp)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, EC_R_EC_GROUP_NEW_BY_NAME_FAILURE); return NULL; } EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_NAMED_CURVE); } else if (params->type == 1) { /* the parameters are given by a * ECPARAMETERS structure */ ret = EC_GROUP_new_from_ecparameters(params->value.parameters); if (!ret) { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, ERR_R_EC_LIB); return NULL; } EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_EXPLICIT_CURVE); } else if (params->type == 2) { /* implicitlyCA */ return NULL; } else { ECerr(EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, EC_R_ASN1_ERROR); return NULL; } return ret; } /* EC_GROUP <-> DER encoding of ECPKPARAMETERS */ EC_GROUP *d2i_ECPKParameters(EC_GROUP **a, const unsigned char **in, long len) { EC_GROUP *group = NULL; ECPKPARAMETERS *params = NULL; const unsigned char *p = *in; if ((params = d2i_ECPKPARAMETERS(NULL, &p, len)) == NULL) { ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_D2I_ECPKPARAMETERS_FAILURE); ECPKPARAMETERS_free(params); return NULL; } if ((group = EC_GROUP_new_from_ecpkparameters(params)) == NULL) { ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_PKPARAMETERS2GROUP_FAILURE); ECPKPARAMETERS_free(params); return NULL; } if (a) { EC_GROUP_free(*a); *a = group; } ECPKPARAMETERS_free(params); *in = p; return group; } int i2d_ECPKParameters(const EC_GROUP *a, unsigned char **out) { int ret = 0; ECPKPARAMETERS *tmp = EC_GROUP_get_ecpkparameters(a, NULL); if (tmp == NULL) { ECerr(EC_F_I2D_ECPKPARAMETERS, EC_R_GROUP2PKPARAMETERS_FAILURE); return 0; } if ((ret = i2d_ECPKPARAMETERS(tmp, out)) == 0) { ECerr(EC_F_I2D_ECPKPARAMETERS, EC_R_I2D_ECPKPARAMETERS_FAILURE); ECPKPARAMETERS_free(tmp); return 0; } ECPKPARAMETERS_free(tmp); return ret; } /* some EC_KEY functions */ EC_KEY *d2i_ECPrivateKey(EC_KEY **a, const unsigned char **in, long len) { EC_KEY *ret = NULL; EC_PRIVATEKEY *priv_key = NULL; const unsigned char *p = *in; if ((priv_key = d2i_EC_PRIVATEKEY(NULL, &p, len)) == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); return NULL; } if (a == NULL || *a == NULL) { if ((ret = EC_KEY_new()) == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); goto err; } } else ret = *a; if (priv_key->parameters) { EC_GROUP_free(ret->group); ret->group = EC_GROUP_new_from_ecpkparameters(priv_key->parameters); } if (ret->group == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } ret->version = priv_key->version; if (priv_key->privateKey) { ASN1_OCTET_STRING *pkey = priv_key->privateKey; if (EC_KEY_oct2priv(ret, ASN1_STRING_get0_data(pkey), ASN1_STRING_length(pkey)) == 0) goto err; } else { ECerr(EC_F_D2I_ECPRIVATEKEY, EC_R_MISSING_PRIVATE_KEY); goto err; } EC_POINT_clear_free(ret->pub_key); ret->pub_key = EC_POINT_new(ret->group); if (ret->pub_key == NULL) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } if (priv_key->publicKey) { const unsigned char *pub_oct; int pub_oct_len; pub_oct = ASN1_STRING_get0_data(priv_key->publicKey); pub_oct_len = ASN1_STRING_length(priv_key->publicKey); if (!EC_KEY_oct2key(ret, pub_oct, pub_oct_len, NULL)) { ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } } else { if (ret->group->meth->keygenpub == NULL || ret->group->meth->keygenpub(ret) == 0) goto err; /* Remember the original private-key-only encoding. */ ret->enc_flag |= EC_PKEY_NO_PUBKEY; } if (a) *a = ret; EC_PRIVATEKEY_free(priv_key); *in = p; return ret; err: if (a == NULL || *a != ret) EC_KEY_free(ret); EC_PRIVATEKEY_free(priv_key); return NULL; } int i2d_ECPrivateKey(EC_KEY *a, unsigned char **out) { int ret = 0, ok = 0; unsigned char *priv= NULL, *pub= NULL; size_t privlen = 0, publen = 0; EC_PRIVATEKEY *priv_key = NULL; if (a == NULL || a->group == NULL || (!(a->enc_flag & EC_PKEY_NO_PUBKEY) && a->pub_key == NULL)) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_PASSED_NULL_PARAMETER); goto err; } if ((priv_key = EC_PRIVATEKEY_new()) == NULL) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); goto err; } priv_key->version = a->version; privlen = EC_KEY_priv2buf(a, &priv); if (privlen == 0) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } ASN1_STRING_set0(priv_key->privateKey, priv, privlen); priv = NULL; if (!(a->enc_flag & EC_PKEY_NO_PARAMETERS)) { if ((priv_key->parameters = EC_GROUP_get_ecpkparameters(a->group, priv_key->parameters)) == NULL) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } } if (!(a->enc_flag & EC_PKEY_NO_PUBKEY)) { priv_key->publicKey = ASN1_BIT_STRING_new(); if (priv_key->publicKey == NULL) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); goto err; } publen = EC_KEY_key2buf(a, a->conv_form, &pub, NULL); if (publen == 0) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } priv_key->publicKey->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); priv_key->publicKey->flags |= ASN1_STRING_FLAG_BITS_LEFT; ASN1_STRING_set0(priv_key->publicKey, pub, publen); pub = NULL; } if ((ret = i2d_EC_PRIVATEKEY(priv_key, out)) == 0) { ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); goto err; } ok = 1; err: OPENSSL_clear_free(priv, privlen); OPENSSL_free(pub); EC_PRIVATEKEY_free(priv_key); return (ok ? ret : 0); } int i2d_ECParameters(EC_KEY *a, unsigned char **out) { if (a == NULL) { ECerr(EC_F_I2D_ECPARAMETERS, ERR_R_PASSED_NULL_PARAMETER); return 0; } return i2d_ECPKParameters(a->group, out); } EC_KEY *d2i_ECParameters(EC_KEY **a, const unsigned char **in, long len) { EC_KEY *ret; if (in == NULL || *in == NULL) { ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (a == NULL || *a == NULL) { if ((ret = EC_KEY_new()) == NULL) { ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_MALLOC_FAILURE); return NULL; } } else ret = *a; if (!d2i_ECPKParameters(&ret->group, in, len)) { ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_EC_LIB); if (a == NULL || *a != ret) EC_KEY_free(ret); return NULL; } if (a) *a = ret; return ret; } EC_KEY *o2i_ECPublicKey(EC_KEY **a, const unsigned char **in, long len) { EC_KEY *ret = NULL; if (a == NULL || (*a) == NULL || (*a)->group == NULL) { /* * sorry, but a EC_GROUP-structure is necessary to set the public key */ ECerr(EC_F_O2I_ECPUBLICKEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } ret = *a; if (!EC_KEY_oct2key(ret, *in, len, NULL)) { ECerr(EC_F_O2I_ECPUBLICKEY, ERR_R_EC_LIB); return 0; } *in += len; return ret; } int i2o_ECPublicKey(const EC_KEY *a, unsigned char **out) { size_t buf_len = 0; int new_buffer = 0; if (a == NULL) { ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } buf_len = EC_POINT_point2oct(a->group, a->pub_key, a->conv_form, NULL, 0, NULL); if (out == NULL || buf_len == 0) /* out == NULL => just return the length of the octet string */ return buf_len; if (*out == NULL) { if ((*out = OPENSSL_malloc(buf_len)) == NULL) { ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_MALLOC_FAILURE); return 0; } new_buffer = 1; } if (!EC_POINT_point2oct(a->group, a->pub_key, a->conv_form, *out, buf_len, NULL)) { ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_EC_LIB); if (new_buffer) { OPENSSL_free(*out); *out = NULL; } return 0; } if (!new_buffer) *out += buf_len; return buf_len; } ASN1_SEQUENCE(ECDSA_SIG) = { ASN1_SIMPLE(ECDSA_SIG, r, CBIGNUM), ASN1_SIMPLE(ECDSA_SIG, s, CBIGNUM) } static_ASN1_SEQUENCE_END(ECDSA_SIG) DECLARE_ASN1_FUNCTIONS_const(ECDSA_SIG) DECLARE_ASN1_ENCODE_FUNCTIONS_const(ECDSA_SIG, ECDSA_SIG) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(ECDSA_SIG, ECDSA_SIG, ECDSA_SIG) ECDSA_SIG *ECDSA_SIG_new(void) { ECDSA_SIG *sig = OPENSSL_zalloc(sizeof(*sig)); if (sig == NULL) ECerr(EC_F_ECDSA_SIG_NEW, ERR_R_MALLOC_FAILURE); return sig; } void ECDSA_SIG_free(ECDSA_SIG *sig) { if (sig == NULL) return; BN_clear_free(sig->r); BN_clear_free(sig->s); OPENSSL_free(sig); } void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) { if (pr != NULL) *pr = sig->r; if (ps != NULL) *ps = sig->s; } const BIGNUM *ECDSA_SIG_get0_r(const ECDSA_SIG *sig) { return sig->r; } const BIGNUM *ECDSA_SIG_get0_s(const ECDSA_SIG *sig) { return sig->s; } int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) { if (r == NULL || s == NULL) return 0; BN_clear_free(sig->r); BN_clear_free(sig->s); sig->r = r; sig->s = s; return 1; } int ECDSA_size(const EC_KEY *r) { int ret, i; ASN1_INTEGER bs; unsigned char buf[4]; const EC_GROUP *group; if (r == NULL) return 0; group = EC_KEY_get0_group(r); if (group == NULL) return 0; i = EC_GROUP_order_bits(group); if (i == 0) return 0; bs.length = (i + 7) / 8; bs.data = buf; bs.type = V_ASN1_INTEGER; /* If the top bit is set the asn1 encoding is 1 larger. */ buf[0] = 0xff; i = i2d_ASN1_INTEGER(&bs, NULL); i += i; /* r and s */ ret = ASN1_object_size(1, i, V_ASN1_SEQUENCE); return ret; } openssl-1.1.1f/crypto/ec/ec_check.c000066400000000000000000000036231364063235100171510ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "ec_local.h" #include int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx) { int ret = 0; const BIGNUM *order; BN_CTX *new_ctx = NULL; EC_POINT *point = NULL; /* Custom curves assumed to be correct */ if ((group->meth->flags & EC_FLAGS_CUSTOM_CURVE) != 0) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { ECerr(EC_F_EC_GROUP_CHECK, ERR_R_MALLOC_FAILURE); goto err; } } /* check the discriminant */ if (!EC_GROUP_check_discriminant(group, ctx)) { ECerr(EC_F_EC_GROUP_CHECK, EC_R_DISCRIMINANT_IS_ZERO); goto err; } /* check the generator */ if (group->generator == NULL) { ECerr(EC_F_EC_GROUP_CHECK, EC_R_UNDEFINED_GENERATOR); goto err; } if (EC_POINT_is_on_curve(group, group->generator, ctx) <= 0) { ECerr(EC_F_EC_GROUP_CHECK, EC_R_POINT_IS_NOT_ON_CURVE); goto err; } /* check the order of the generator */ if ((point = EC_POINT_new(group)) == NULL) goto err; order = EC_GROUP_get0_order(group); if (order == NULL) goto err; if (BN_is_zero(order)) { ECerr(EC_F_EC_GROUP_CHECK, EC_R_UNDEFINED_ORDER); goto err; } if (!EC_POINT_mul(group, point, order, NULL, NULL, ctx)) goto err; if (!EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GROUP_CHECK, EC_R_INVALID_GROUP_ORDER); goto err; } ret = 1; err: BN_CTX_free(new_ctx); EC_POINT_free(point); return ret; } openssl-1.1.1f/crypto/ec/ec_curve.c000066400000000000000000004247171364063235100172330ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" #include #include #include #include "internal/nelem.h" typedef struct { int field_type, /* either NID_X9_62_prime_field or * NID_X9_62_characteristic_two_field */ seed_len, param_len; unsigned int cofactor; /* promoted to BN_ULONG */ } EC_CURVE_DATA; /* the nist prime curves */ static const struct { EC_CURVE_DATA h; unsigned char data[20 + 24 * 6]; } _EC_NIST_PRIME_192 = { { NID_X9_62_prime_field, 20, 24, 1 }, { /* seed */ 0x30, 0x45, 0xAE, 0x6F, 0xC8, 0x42, 0x2F, 0x64, 0xED, 0x57, 0x95, 0x28, 0xD3, 0x81, 0x20, 0xEA, 0xE1, 0x21, 0x96, 0xD5, /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0x64, 0x21, 0x05, 0x19, 0xE5, 0x9C, 0x80, 0xE7, 0x0F, 0xA7, 0xE9, 0xAB, 0x72, 0x24, 0x30, 0x49, 0xFE, 0xB8, 0xDE, 0xEC, 0xC1, 0x46, 0xB9, 0xB1, /* x */ 0x18, 0x8D, 0xA8, 0x0E, 0xB0, 0x30, 0x90, 0xF6, 0x7C, 0xBF, 0x20, 0xEB, 0x43, 0xA1, 0x88, 0x00, 0xF4, 0xFF, 0x0A, 0xFD, 0x82, 0xFF, 0x10, 0x12, /* y */ 0x07, 0x19, 0x2b, 0x95, 0xff, 0xc8, 0xda, 0x78, 0x63, 0x10, 0x11, 0xed, 0x6b, 0x24, 0xcd, 0xd5, 0x73, 0xf9, 0x77, 0xa1, 0x1e, 0x79, 0x48, 0x11, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x99, 0xDE, 0xF8, 0x36, 0x14, 0x6B, 0xC9, 0xB1, 0xB4, 0xD2, 0x28, 0x31 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 28 * 6]; } _EC_NIST_PRIME_224 = { { NID_X9_62_prime_field, 20, 28, 1 }, { /* seed */ 0xBD, 0x71, 0x34, 0x47, 0x99, 0xD5, 0xC7, 0xFC, 0xDC, 0x45, 0xB5, 0x9F, 0xA3, 0xB9, 0xAB, 0x8F, 0x6A, 0x94, 0x8B, 0xC5, /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, /* b */ 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4, /* x */ 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21, /* y */ 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, 0x13, 0xDD, 0x29, 0x45, 0x5C, 0x5C, 0x2A, 0x3D } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 48 * 6]; } _EC_NIST_PRIME_384 = { { NID_X9_62_prime_field, 20, 48, 1 }, { /* seed */ 0xA3, 0x35, 0x92, 0x6A, 0xA3, 0x19, 0xA2, 0x7A, 0x1D, 0x00, 0x89, 0x6A, 0x67, 0x73, 0xA4, 0x82, 0x7A, 0xCD, 0xAC, 0x73, /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, 0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12, 0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D, 0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF, /* x */ 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, 0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98, 0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D, 0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7, /* y */ 0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce, 0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2, 0x48, 0xB0, 0xA7, 0x7A, 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 66 * 6]; } _EC_NIST_PRIME_521 = { { NID_X9_62_prime_field, 20, 66, 1 }, { /* seed */ 0xD0, 0x9E, 0x88, 0x00, 0x29, 0x1C, 0xB8, 0x53, 0x96, 0xCC, 0x67, 0x17, 0x39, 0x32, 0x84, 0xAA, 0xA0, 0xDA, 0x64, 0xBA, /* p */ 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0x00, 0x51, 0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F, 0x92, 0x9A, 0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE, 0xA2, 0xDA, 0x72, 0x5B, 0x99, 0xB3, 0x15, 0xF3, 0xB8, 0xB4, 0x89, 0x91, 0x8E, 0xF1, 0x09, 0xE1, 0x56, 0x19, 0x39, 0x51, 0xEC, 0x7E, 0x93, 0x7B, 0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1, 0xBF, 0x07, 0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1, 0xEF, 0x45, 0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00, /* x */ 0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, 0x9E, 0x3E, 0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F, 0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B, 0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF, 0xA8, 0xDE, 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E, 0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66, /* y */ 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50, /* order */ 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86, 0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09, 0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F, 0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09 } }; /* the x9.62 prime curves (minus the nist prime curves) */ static const struct { EC_CURVE_DATA h; unsigned char data[20 + 24 * 6]; } _EC_X9_62_PRIME_192V2 = { { NID_X9_62_prime_field, 20, 24, 1 }, { /* seed */ 0x31, 0xA9, 0x2E, 0xE2, 0x02, 0x9F, 0xD1, 0x0D, 0x90, 0x1B, 0x11, 0x3E, 0x99, 0x07, 0x10, 0xF0, 0xD2, 0x1A, 0xC6, 0xB6, /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0xCC, 0x22, 0xD6, 0xDF, 0xB9, 0x5C, 0x6B, 0x25, 0xE4, 0x9C, 0x0D, 0x63, 0x64, 0xA4, 0xE5, 0x98, 0x0C, 0x39, 0x3A, 0xA2, 0x16, 0x68, 0xD9, 0x53, /* x */ 0xEE, 0xA2, 0xBA, 0xE7, 0xE1, 0x49, 0x78, 0x42, 0xF2, 0xDE, 0x77, 0x69, 0xCF, 0xE9, 0xC9, 0x89, 0xC0, 0x72, 0xAD, 0x69, 0x6F, 0x48, 0x03, 0x4A, /* y */ 0x65, 0x74, 0xd1, 0x1d, 0x69, 0xb6, 0xec, 0x7a, 0x67, 0x2b, 0xb8, 0x2a, 0x08, 0x3d, 0xf2, 0xf2, 0xb0, 0x84, 0x7d, 0xe9, 0x70, 0xb2, 0xde, 0x15, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0x5F, 0xB1, 0xA7, 0x24, 0xDC, 0x80, 0x41, 0x86, 0x48, 0xD8, 0xDD, 0x31 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 24 * 6]; } _EC_X9_62_PRIME_192V3 = { { NID_X9_62_prime_field, 20, 24, 1 }, { /* seed */ 0xC4, 0x69, 0x68, 0x44, 0x35, 0xDE, 0xB3, 0x78, 0xC4, 0xB6, 0x5C, 0xA9, 0x59, 0x1E, 0x2A, 0x57, 0x63, 0x05, 0x9A, 0x2E, /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0x22, 0x12, 0x3D, 0xC2, 0x39, 0x5A, 0x05, 0xCA, 0xA7, 0x42, 0x3D, 0xAE, 0xCC, 0xC9, 0x47, 0x60, 0xA7, 0xD4, 0x62, 0x25, 0x6B, 0xD5, 0x69, 0x16, /* x */ 0x7D, 0x29, 0x77, 0x81, 0x00, 0xC6, 0x5A, 0x1D, 0xA1, 0x78, 0x37, 0x16, 0x58, 0x8D, 0xCE, 0x2B, 0x8B, 0x4A, 0xEE, 0x8E, 0x22, 0x8F, 0x18, 0x96, /* y */ 0x38, 0xa9, 0x0f, 0x22, 0x63, 0x73, 0x37, 0x33, 0x4b, 0x49, 0xdc, 0xb6, 0x6a, 0x6d, 0xc8, 0xf9, 0x97, 0x8a, 0xca, 0x76, 0x48, 0xa9, 0x43, 0xb0, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7A, 0x62, 0xD0, 0x31, 0xC8, 0x3F, 0x42, 0x94, 0xF6, 0x40, 0xEC, 0x13 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 30 * 6]; } _EC_X9_62_PRIME_239V1 = { { NID_X9_62_prime_field, 20, 30, 1 }, { /* seed */ 0xE4, 0x3B, 0xB4, 0x60, 0xF0, 0xB8, 0x0C, 0xC0, 0xC0, 0xB0, 0x75, 0x79, 0x8E, 0x94, 0x80, 0x60, 0xF8, 0x32, 0x1B, 0x7D, /* p */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0x6B, 0x01, 0x6C, 0x3B, 0xDC, 0xF1, 0x89, 0x41, 0xD0, 0xD6, 0x54, 0x92, 0x14, 0x75, 0xCA, 0x71, 0xA9, 0xDB, 0x2F, 0xB2, 0x7D, 0x1D, 0x37, 0x79, 0x61, 0x85, 0xC2, 0x94, 0x2C, 0x0A, /* x */ 0x0F, 0xFA, 0x96, 0x3C, 0xDC, 0xA8, 0x81, 0x6C, 0xCC, 0x33, 0xB8, 0x64, 0x2B, 0xED, 0xF9, 0x05, 0xC3, 0xD3, 0x58, 0x57, 0x3D, 0x3F, 0x27, 0xFB, 0xBD, 0x3B, 0x3C, 0xB9, 0xAA, 0xAF, /* y */ 0x7d, 0xeb, 0xe8, 0xe4, 0xe9, 0x0a, 0x5d, 0xae, 0x6e, 0x40, 0x54, 0xca, 0x53, 0x0b, 0xa0, 0x46, 0x54, 0xb3, 0x68, 0x18, 0xce, 0x22, 0x6b, 0x39, 0xfc, 0xcb, 0x7b, 0x02, 0xf1, 0xae, /* order */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0x9E, 0x5E, 0x9A, 0x9F, 0x5D, 0x90, 0x71, 0xFB, 0xD1, 0x52, 0x26, 0x88, 0x90, 0x9D, 0x0B } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 30 * 6]; } _EC_X9_62_PRIME_239V2 = { { NID_X9_62_prime_field, 20, 30, 1 }, { /* seed */ 0xE8, 0xB4, 0x01, 0x16, 0x04, 0x09, 0x53, 0x03, 0xCA, 0x3B, 0x80, 0x99, 0x98, 0x2B, 0xE0, 0x9F, 0xCB, 0x9A, 0xE6, 0x16, /* p */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0x61, 0x7F, 0xAB, 0x68, 0x32, 0x57, 0x6C, 0xBB, 0xFE, 0xD5, 0x0D, 0x99, 0xF0, 0x24, 0x9C, 0x3F, 0xEE, 0x58, 0xB9, 0x4B, 0xA0, 0x03, 0x8C, 0x7A, 0xE8, 0x4C, 0x8C, 0x83, 0x2F, 0x2C, /* x */ 0x38, 0xAF, 0x09, 0xD9, 0x87, 0x27, 0x70, 0x51, 0x20, 0xC9, 0x21, 0xBB, 0x5E, 0x9E, 0x26, 0x29, 0x6A, 0x3C, 0xDC, 0xF2, 0xF3, 0x57, 0x57, 0xA0, 0xEA, 0xFD, 0x87, 0xB8, 0x30, 0xE7, /* y */ 0x5b, 0x01, 0x25, 0xe4, 0xdb, 0xea, 0x0e, 0xc7, 0x20, 0x6d, 0xa0, 0xfc, 0x01, 0xd9, 0xb0, 0x81, 0x32, 0x9f, 0xb5, 0x55, 0xde, 0x6e, 0xf4, 0x60, 0x23, 0x7d, 0xff, 0x8b, 0xe4, 0xba, /* order */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0xCF, 0xA7, 0xE8, 0x59, 0x43, 0x77, 0xD4, 0x14, 0xC0, 0x38, 0x21, 0xBC, 0x58, 0x20, 0x63 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 30 * 6]; } _EC_X9_62_PRIME_239V3 = { { NID_X9_62_prime_field, 20, 30, 1 }, { /* seed */ 0x7D, 0x73, 0x74, 0x16, 0x8F, 0xFE, 0x34, 0x71, 0xB6, 0x0A, 0x85, 0x76, 0x86, 0xA1, 0x94, 0x75, 0xD3, 0xBF, 0xA2, 0xFF, /* p */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0x25, 0x57, 0x05, 0xFA, 0x2A, 0x30, 0x66, 0x54, 0xB1, 0xF4, 0xCB, 0x03, 0xD6, 0xA7, 0x50, 0xA3, 0x0C, 0x25, 0x01, 0x02, 0xD4, 0x98, 0x87, 0x17, 0xD9, 0xBA, 0x15, 0xAB, 0x6D, 0x3E, /* x */ 0x67, 0x68, 0xAE, 0x8E, 0x18, 0xBB, 0x92, 0xCF, 0xCF, 0x00, 0x5C, 0x94, 0x9A, 0xA2, 0xC6, 0xD9, 0x48, 0x53, 0xD0, 0xE6, 0x60, 0xBB, 0xF8, 0x54, 0xB1, 0xC9, 0x50, 0x5F, 0xE9, 0x5A, /* y */ 0x16, 0x07, 0xe6, 0x89, 0x8f, 0x39, 0x0c, 0x06, 0xbc, 0x1d, 0x55, 0x2b, 0xad, 0x22, 0x6f, 0x3b, 0x6f, 0xcf, 0xe4, 0x8b, 0x6e, 0x81, 0x84, 0x99, 0xaf, 0x18, 0xe3, 0xed, 0x6c, 0xf3, /* order */ 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0x97, 0x5D, 0xEB, 0x41, 0xB3, 0xA6, 0x05, 0x7C, 0x3C, 0x43, 0x21, 0x46, 0x52, 0x65, 0x51 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 32 * 6]; } _EC_X9_62_PRIME_256V1 = { { NID_X9_62_prime_field, 20, 32, 1 }, { /* seed */ 0xC4, 0x9D, 0x36, 0x08, 0x86, 0xE7, 0x04, 0x93, 0x6A, 0x66, 0x78, 0xE1, 0x13, 0x9D, 0x26, 0xB7, 0x81, 0x9F, 0x7E, 0x90, /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55, 0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6, 0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B, /* x */ 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96, /* y */ 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51 } }; /* the secg prime curves (minus the nist and x9.62 prime curves) */ static const struct { EC_CURVE_DATA h; unsigned char data[20 + 14 * 6]; } _EC_SECG_PRIME_112R1 = { { NID_X9_62_prime_field, 20, 14, 1 }, { /* seed */ 0x00, 0xF5, 0x0B, 0x02, 0x8E, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x29, 0x04, 0x72, 0x78, 0x3F, 0xB1, /* p */ 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x66, 0x80, 0x76, 0xBE, 0xAD, 0x20, 0x8B, /* a */ 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x66, 0x80, 0x76, 0xBE, 0xAD, 0x20, 0x88, /* b */ 0x65, 0x9E, 0xF8, 0xBA, 0x04, 0x39, 0x16, 0xEE, 0xDE, 0x89, 0x11, 0x70, 0x2B, 0x22, /* x */ 0x09, 0x48, 0x72, 0x39, 0x99, 0x5A, 0x5E, 0xE7, 0x6B, 0x55, 0xF9, 0xC2, 0xF0, 0x98, /* y */ 0xa8, 0x9c, 0xe5, 0xaf, 0x87, 0x24, 0xc0, 0xa2, 0x3e, 0x0e, 0x0f, 0xf7, 0x75, 0x00, /* order */ 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x76, 0x28, 0xDF, 0xAC, 0x65, 0x61, 0xC5 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 14 * 6]; } _EC_SECG_PRIME_112R2 = { { NID_X9_62_prime_field, 20, 14, 4 }, { /* seed */ 0x00, 0x27, 0x57, 0xA1, 0x11, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x53, 0x16, 0xC0, 0x5E, 0x0B, 0xD4, /* p */ 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x66, 0x80, 0x76, 0xBE, 0xAD, 0x20, 0x8B, /* a */ 0x61, 0x27, 0xC2, 0x4C, 0x05, 0xF3, 0x8A, 0x0A, 0xAA, 0xF6, 0x5C, 0x0E, 0xF0, 0x2C, /* b */ 0x51, 0xDE, 0xF1, 0x81, 0x5D, 0xB5, 0xED, 0x74, 0xFC, 0xC3, 0x4C, 0x85, 0xD7, 0x09, /* x */ 0x4B, 0xA3, 0x0A, 0xB5, 0xE8, 0x92, 0xB4, 0xE1, 0x64, 0x9D, 0xD0, 0x92, 0x86, 0x43, /* y */ 0xad, 0xcd, 0x46, 0xf5, 0x88, 0x2e, 0x37, 0x47, 0xde, 0xf3, 0x6e, 0x95, 0x6e, 0x97, /* order */ 0x36, 0xDF, 0x0A, 0xAF, 0xD8, 0xB8, 0xD7, 0x59, 0x7C, 0xA1, 0x05, 0x20, 0xD0, 0x4B } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 16 * 6]; } _EC_SECG_PRIME_128R1 = { { NID_X9_62_prime_field, 20, 16, 1 }, { /* seed */ 0x00, 0x0E, 0x0D, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x0C, 0xC0, 0x3A, 0x44, 0x73, 0xD0, 0x36, 0x79, /* p */ 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, /* b */ 0xE8, 0x75, 0x79, 0xC1, 0x10, 0x79, 0xF4, 0x3D, 0xD8, 0x24, 0x99, 0x3C, 0x2C, 0xEE, 0x5E, 0xD3, /* x */ 0x16, 0x1F, 0xF7, 0x52, 0x8B, 0x89, 0x9B, 0x2D, 0x0C, 0x28, 0x60, 0x7C, 0xA5, 0x2C, 0x5B, 0x86, /* y */ 0xcf, 0x5a, 0xc8, 0x39, 0x5b, 0xaf, 0xeb, 0x13, 0xc0, 0x2d, 0xa2, 0x92, 0xdd, 0xed, 0x7a, 0x83, /* order */ 0xFF, 0xFF, 0xFF, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x75, 0xA3, 0x0D, 0x1B, 0x90, 0x38, 0xA1, 0x15 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 16 * 6]; } _EC_SECG_PRIME_128R2 = { { NID_X9_62_prime_field, 20, 16, 4 }, { /* seed */ 0x00, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x12, 0xD8, 0xF0, 0x34, 0x31, 0xFC, 0xE6, 0x3B, 0x88, 0xF4, /* p */ 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xD6, 0x03, 0x19, 0x98, 0xD1, 0xB3, 0xBB, 0xFE, 0xBF, 0x59, 0xCC, 0x9B, 0xBF, 0xF9, 0xAE, 0xE1, /* b */ 0x5E, 0xEE, 0xFC, 0xA3, 0x80, 0xD0, 0x29, 0x19, 0xDC, 0x2C, 0x65, 0x58, 0xBB, 0x6D, 0x8A, 0x5D, /* x */ 0x7B, 0x6A, 0xA5, 0xD8, 0x5E, 0x57, 0x29, 0x83, 0xE6, 0xFB, 0x32, 0xA7, 0xCD, 0xEB, 0xC1, 0x40, /* y */ 0x27, 0xb6, 0x91, 0x6a, 0x89, 0x4d, 0x3a, 0xee, 0x71, 0x06, 0xfe, 0x80, 0x5f, 0xc3, 0x4b, 0x44, /* order */ 0x3F, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xBE, 0x00, 0x24, 0x72, 0x06, 0x13, 0xB5, 0xA3 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 21 * 6]; } _EC_SECG_PRIME_160K1 = { { NID_X9_62_prime_field, 0, 21, 1 }, { /* no seed */ /* p */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xAC, 0x73, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, /* x */ 0x00, 0x3B, 0x4C, 0x38, 0x2C, 0xE3, 0x7A, 0xA1, 0x92, 0xA4, 0x01, 0x9E, 0x76, 0x30, 0x36, 0xF4, 0xF5, 0xDD, 0x4D, 0x7E, 0xBB, /* y */ 0x00, 0x93, 0x8c, 0xf9, 0x35, 0x31, 0x8f, 0xdc, 0xed, 0x6b, 0xc2, 0x82, 0x86, 0x53, 0x17, 0x33, 0xc3, 0xf0, 0x3c, 0x4f, 0xee, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xB8, 0xFA, 0x16, 0xDF, 0xAB, 0x9A, 0xCA, 0x16, 0xB6, 0xB3 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 21 * 6]; } _EC_SECG_PRIME_160R1 = { { NID_X9_62_prime_field, 20, 21, 1 }, { /* seed */ 0x10, 0x53, 0xCD, 0xE4, 0x2C, 0x14, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x53, 0x3B, 0xF3, 0xF8, 0x33, 0x45, /* p */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, /* a */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFC, /* b */ 0x00, 0x1C, 0x97, 0xBE, 0xFC, 0x54, 0xBD, 0x7A, 0x8B, 0x65, 0xAC, 0xF8, 0x9F, 0x81, 0xD4, 0xD4, 0xAD, 0xC5, 0x65, 0xFA, 0x45, /* x */ 0x00, 0x4A, 0x96, 0xB5, 0x68, 0x8E, 0xF5, 0x73, 0x28, 0x46, 0x64, 0x69, 0x89, 0x68, 0xC3, 0x8B, 0xB9, 0x13, 0xCB, 0xFC, 0x82, /* y */ 0x00, 0x23, 0xa6, 0x28, 0x55, 0x31, 0x68, 0x94, 0x7d, 0x59, 0xdc, 0xc9, 0x12, 0x04, 0x23, 0x51, 0x37, 0x7a, 0xc5, 0xfb, 0x32, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xF4, 0xC8, 0xF9, 0x27, 0xAE, 0xD3, 0xCA, 0x75, 0x22, 0x57 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 21 * 6]; } _EC_SECG_PRIME_160R2 = { { NID_X9_62_prime_field, 20, 21, 1 }, { /* seed */ 0xB9, 0x9B, 0x99, 0xB0, 0x99, 0xB3, 0x23, 0xE0, 0x27, 0x09, 0xA4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x51, /* p */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xAC, 0x73, /* a */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xAC, 0x70, /* b */ 0x00, 0xB4, 0xE1, 0x34, 0xD3, 0xFB, 0x59, 0xEB, 0x8B, 0xAB, 0x57, 0x27, 0x49, 0x04, 0x66, 0x4D, 0x5A, 0xF5, 0x03, 0x88, 0xBA, /* x */ 0x00, 0x52, 0xDC, 0xB0, 0x34, 0x29, 0x3A, 0x11, 0x7E, 0x1F, 0x4F, 0xF1, 0x1B, 0x30, 0xF7, 0x19, 0x9D, 0x31, 0x44, 0xCE, 0x6D, /* y */ 0x00, 0xfe, 0xaf, 0xfe, 0xf2, 0xe3, 0x31, 0xf2, 0x96, 0xe0, 0x71, 0xfa, 0x0d, 0xf9, 0x98, 0x2c, 0xfe, 0xa7, 0xd4, 0x3f, 0x2e, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x35, 0x1E, 0xE7, 0x86, 0xA8, 0x18, 0xF3, 0xA1, 0xA1, 0x6B } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 24 * 6]; } _EC_SECG_PRIME_192K1 = { { NID_X9_62_prime_field, 0, 24, 1 }, { /* no seed */ /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xEE, 0x37, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, /* x */ 0xDB, 0x4F, 0xF1, 0x0E, 0xC0, 0x57, 0xE9, 0xAE, 0x26, 0xB0, 0x7D, 0x02, 0x80, 0xB7, 0xF4, 0x34, 0x1D, 0xA5, 0xD1, 0xB1, 0xEA, 0xE0, 0x6C, 0x7D, /* y */ 0x9b, 0x2f, 0x2f, 0x6d, 0x9c, 0x56, 0x28, 0xa7, 0x84, 0x41, 0x63, 0xd0, 0x15, 0xbe, 0x86, 0x34, 0x40, 0x82, 0xaa, 0x88, 0xd9, 0x5e, 0x2f, 0x9d, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0x26, 0xF2, 0xFC, 0x17, 0x0F, 0x69, 0x46, 0x6A, 0x74, 0xDE, 0xFD, 0x8D } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 29 * 6]; } _EC_SECG_PRIME_224K1 = { { NID_X9_62_prime_field, 0, 29, 1 }, { /* no seed */ /* p */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xE5, 0x6D, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, /* x */ 0x00, 0xA1, 0x45, 0x5B, 0x33, 0x4D, 0xF0, 0x99, 0xDF, 0x30, 0xFC, 0x28, 0xA1, 0x69, 0xA4, 0x67, 0xE9, 0xE4, 0x70, 0x75, 0xA9, 0x0F, 0x7E, 0x65, 0x0E, 0xB6, 0xB7, 0xA4, 0x5C, /* y */ 0x00, 0x7e, 0x08, 0x9f, 0xed, 0x7f, 0xba, 0x34, 0x42, 0x82, 0xca, 0xfb, 0xd6, 0xf7, 0xe3, 0x19, 0xf7, 0xc0, 0xb0, 0xbd, 0x59, 0xe2, 0xca, 0x4b, 0xdb, 0x55, 0x6d, 0x61, 0xa5, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xDC, 0xE8, 0xD2, 0xEC, 0x61, 0x84, 0xCA, 0xF0, 0xA9, 0x71, 0x76, 0x9F, 0xB1, 0xF7 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 32 * 6]; } _EC_SECG_PRIME_256K1 = { { NID_X9_62_prime_field, 0, 32, 1 }, { /* no seed */ /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, /* x */ 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B, 0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, 0x98, /* y */ 0x48, 0x3a, 0xda, 0x77, 0x26, 0xa3, 0xc4, 0x65, 0x5d, 0xa4, 0xfb, 0xfc, 0x0e, 0x11, 0x08, 0xa8, 0xfd, 0x17, 0xb4, 0x48, 0xa6, 0x85, 0x54, 0x19, 0x9c, 0x47, 0xd0, 0x8f, 0xfb, 0x10, 0xd4, 0xb8, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41 } }; /* some wap/wtls curves */ static const struct { EC_CURVE_DATA h; unsigned char data[0 + 15 * 6]; } _EC_WTLS_8 = { { NID_X9_62_prime_field, 0, 15, 1 }, { /* no seed */ /* p */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xE7, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, /* x */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* y */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xEC, 0xEA, 0x55, 0x1A, 0xD8, 0x37, 0xE9 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 21 * 6]; } _EC_WTLS_9 = { { NID_X9_62_prime_field, 0, 21, 1 }, { /* no seed */ /* p */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0x80, 0x8F, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, /* x */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* y */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xCD, 0xC9, 0x8A, 0xE0, 0xE2, 0xDE, 0x57, 0x4A, 0xBF, 0x33 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 28 * 6]; } _EC_WTLS_12 = { { NID_X9_62_prime_field, 0, 28, 1 }, { /* no seed */ /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, /* b */ 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4, /* x */ 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21, /* y */ 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34, /* order */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, 0x13, 0xDD, 0x29, 0x45, 0x5C, 0x5C, 0x2A, 0x3D } }; #ifndef OPENSSL_NO_EC2M /* characteristic two curves */ static const struct { EC_CURVE_DATA h; unsigned char data[20 + 15 * 6]; } _EC_SECG_CHAR2_113R1 = { { NID_X9_62_characteristic_two_field, 20, 15, 2 }, { /* seed */ 0x10, 0xE7, 0x23, 0xAB, 0x14, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x56, 0xFE, 0xBF, 0x8F, 0xCB, 0x49, 0xA9, /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01, /* a */ 0x00, 0x30, 0x88, 0x25, 0x0C, 0xA6, 0xE7, 0xC7, 0xFE, 0x64, 0x9C, 0xE8, 0x58, 0x20, 0xF7, /* b */ 0x00, 0xE8, 0xBE, 0xE4, 0xD3, 0xE2, 0x26, 0x07, 0x44, 0x18, 0x8B, 0xE0, 0xE9, 0xC7, 0x23, /* x */ 0x00, 0x9D, 0x73, 0x61, 0x6F, 0x35, 0xF4, 0xAB, 0x14, 0x07, 0xD7, 0x35, 0x62, 0xC1, 0x0F, /* y */ 0x00, 0xA5, 0x28, 0x30, 0x27, 0x79, 0x58, 0xEE, 0x84, 0xD1, 0x31, 0x5E, 0xD3, 0x18, 0x86, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD9, 0xCC, 0xEC, 0x8A, 0x39, 0xE5, 0x6F } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 15 * 6]; } _EC_SECG_CHAR2_113R2 = { { NID_X9_62_characteristic_two_field, 20, 15, 2 }, { /* seed */ 0x10, 0xC0, 0xFB, 0x15, 0x76, 0x08, 0x60, 0xDE, 0xF1, 0xEE, 0xF4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x5D, /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01, /* a */ 0x00, 0x68, 0x99, 0x18, 0xDB, 0xEC, 0x7E, 0x5A, 0x0D, 0xD6, 0xDF, 0xC0, 0xAA, 0x55, 0xC7, /* b */ 0x00, 0x95, 0xE9, 0xA9, 0xEC, 0x9B, 0x29, 0x7B, 0xD4, 0xBF, 0x36, 0xE0, 0x59, 0x18, 0x4F, /* x */ 0x01, 0xA5, 0x7A, 0x6A, 0x7B, 0x26, 0xCA, 0x5E, 0xF5, 0x2F, 0xCD, 0xB8, 0x16, 0x47, 0x97, /* y */ 0x00, 0xB3, 0xAD, 0xC9, 0x4E, 0xD1, 0xFE, 0x67, 0x4C, 0x06, 0xE6, 0x95, 0xBA, 0xBA, 0x1D, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x08, 0x78, 0x9B, 0x24, 0x96, 0xAF, 0x93 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 17 * 6]; } _EC_SECG_CHAR2_131R1 = { { NID_X9_62_characteristic_two_field, 20, 17, 2 }, { /* seed */ 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x98, 0x5B, 0xD3, 0xAD, 0xBA, 0xDA, 0x21, 0xB4, 0x3A, 0x97, 0xE2, /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0D, /* a */ 0x07, 0xA1, 0x1B, 0x09, 0xA7, 0x6B, 0x56, 0x21, 0x44, 0x41, 0x8F, 0xF3, 0xFF, 0x8C, 0x25, 0x70, 0xB8, /* b */ 0x02, 0x17, 0xC0, 0x56, 0x10, 0x88, 0x4B, 0x63, 0xB9, 0xC6, 0xC7, 0x29, 0x16, 0x78, 0xF9, 0xD3, 0x41, /* x */ 0x00, 0x81, 0xBA, 0xF9, 0x1F, 0xDF, 0x98, 0x33, 0xC4, 0x0F, 0x9C, 0x18, 0x13, 0x43, 0x63, 0x83, 0x99, /* y */ 0x07, 0x8C, 0x6E, 0x7E, 0xA3, 0x8C, 0x00, 0x1F, 0x73, 0xC8, 0x13, 0x4B, 0x1B, 0x4E, 0xF9, 0xE1, 0x50, /* order */ 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x31, 0x23, 0x95, 0x3A, 0x94, 0x64, 0xB5, 0x4D } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 17 * 6]; } _EC_SECG_CHAR2_131R2 = { { NID_X9_62_characteristic_two_field, 20, 17, 2 }, { /* seed */ 0x98, 0x5B, 0xD3, 0xAD, 0xBA, 0xD4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x5A, 0x21, 0xB4, 0x3A, 0x97, 0xE3, /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0D, /* a */ 0x03, 0xE5, 0xA8, 0x89, 0x19, 0xD7, 0xCA, 0xFC, 0xBF, 0x41, 0x5F, 0x07, 0xC2, 0x17, 0x65, 0x73, 0xB2, /* b */ 0x04, 0xB8, 0x26, 0x6A, 0x46, 0xC5, 0x56, 0x57, 0xAC, 0x73, 0x4C, 0xE3, 0x8F, 0x01, 0x8F, 0x21, 0x92, /* x */ 0x03, 0x56, 0xDC, 0xD8, 0xF2, 0xF9, 0x50, 0x31, 0xAD, 0x65, 0x2D, 0x23, 0x95, 0x1B, 0xB3, 0x66, 0xA8, /* y */ 0x06, 0x48, 0xF0, 0x6D, 0x86, 0x79, 0x40, 0xA5, 0x36, 0x6D, 0x9E, 0x26, 0x5D, 0xE9, 0xEB, 0x24, 0x0F, /* order */ 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x69, 0x54, 0xA2, 0x33, 0x04, 0x9B, 0xA9, 0x8F } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 21 * 6]; } _EC_NIST_CHAR2_163K = { { NID_X9_62_characteristic_two_field, 0, 21, 2 }, { /* no seed */ /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC9, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* x */ 0x02, 0xFE, 0x13, 0xC0, 0x53, 0x7B, 0xBC, 0x11, 0xAC, 0xAA, 0x07, 0xD7, 0x93, 0xDE, 0x4E, 0x6D, 0x5E, 0x5C, 0x94, 0xEE, 0xE8, /* y */ 0x02, 0x89, 0x07, 0x0F, 0xB0, 0x5D, 0x38, 0xFF, 0x58, 0x32, 0x1F, 0x2E, 0x80, 0x05, 0x36, 0xD5, 0x38, 0xCC, 0xDA, 0xA3, 0xD9, /* order */ 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01, 0x08, 0xA2, 0xE0, 0xCC, 0x0D, 0x99, 0xF8, 0xA5, 0xEF } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 21 * 6]; } _EC_SECG_CHAR2_163R1 = { { NID_X9_62_characteristic_two_field, 0, 21, 2 }, { /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC9, /* a */ 0x07, 0xB6, 0x88, 0x2C, 0xAA, 0xEF, 0xA8, 0x4F, 0x95, 0x54, 0xFF, 0x84, 0x28, 0xBD, 0x88, 0xE2, 0x46, 0xD2, 0x78, 0x2A, 0xE2, /* b */ 0x07, 0x13, 0x61, 0x2D, 0xCD, 0xDC, 0xB4, 0x0A, 0xAB, 0x94, 0x6B, 0xDA, 0x29, 0xCA, 0x91, 0xF7, 0x3A, 0xF9, 0x58, 0xAF, 0xD9, /* x */ 0x03, 0x69, 0x97, 0x96, 0x97, 0xAB, 0x43, 0x89, 0x77, 0x89, 0x56, 0x67, 0x89, 0x56, 0x7F, 0x78, 0x7A, 0x78, 0x76, 0xA6, 0x54, /* y */ 0x00, 0x43, 0x5E, 0xDB, 0x42, 0xEF, 0xAF, 0xB2, 0x98, 0x9D, 0x51, 0xFE, 0xFC, 0xE3, 0xC8, 0x09, 0x88, 0xF4, 0x1F, 0xF8, 0x83, /* order */ 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x48, 0xAA, 0xB6, 0x89, 0xC2, 0x9C, 0xA7, 0x10, 0x27, 0x9B } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 21 * 6]; } _EC_NIST_CHAR2_163B = { { NID_X9_62_characteristic_two_field, 0, 21, 2 }, { /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC9, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* b */ 0x02, 0x0A, 0x60, 0x19, 0x07, 0xB8, 0xC9, 0x53, 0xCA, 0x14, 0x81, 0xEB, 0x10, 0x51, 0x2F, 0x78, 0x74, 0x4A, 0x32, 0x05, 0xFD, /* x */ 0x03, 0xF0, 0xEB, 0xA1, 0x62, 0x86, 0xA2, 0xD5, 0x7E, 0xA0, 0x99, 0x11, 0x68, 0xD4, 0x99, 0x46, 0x37, 0xE8, 0x34, 0x3E, 0x36, /* y */ 0x00, 0xD5, 0x1F, 0xBC, 0x6C, 0x71, 0xA0, 0x09, 0x4F, 0xA2, 0xCD, 0xD5, 0x45, 0xB1, 0x1C, 0x5C, 0x0C, 0x79, 0x73, 0x24, 0xF1, /* order */ 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x92, 0xFE, 0x77, 0xE7, 0x0C, 0x12, 0xA4, 0x23, 0x4C, 0x33 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 25 * 6]; } _EC_SECG_CHAR2_193R1 = { { NID_X9_62_characteristic_two_field, 20, 25, 2 }, { /* seed */ 0x10, 0x3F, 0xAE, 0xC7, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x77, 0x7F, 0xC5, 0xB1, 0x91, 0xEF, 0x30, /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x01, /* a */ 0x00, 0x17, 0x85, 0x8F, 0xEB, 0x7A, 0x98, 0x97, 0x51, 0x69, 0xE1, 0x71, 0xF7, 0x7B, 0x40, 0x87, 0xDE, 0x09, 0x8A, 0xC8, 0xA9, 0x11, 0xDF, 0x7B, 0x01, /* b */ 0x00, 0xFD, 0xFB, 0x49, 0xBF, 0xE6, 0xC3, 0xA8, 0x9F, 0xAC, 0xAD, 0xAA, 0x7A, 0x1E, 0x5B, 0xBC, 0x7C, 0xC1, 0xC2, 0xE5, 0xD8, 0x31, 0x47, 0x88, 0x14, /* x */ 0x01, 0xF4, 0x81, 0xBC, 0x5F, 0x0F, 0xF8, 0x4A, 0x74, 0xAD, 0x6C, 0xDF, 0x6F, 0xDE, 0xF4, 0xBF, 0x61, 0x79, 0x62, 0x53, 0x72, 0xD8, 0xC0, 0xC5, 0xE1, /* y */ 0x00, 0x25, 0xE3, 0x99, 0xF2, 0x90, 0x37, 0x12, 0xCC, 0xF3, 0xEA, 0x9E, 0x3A, 0x1A, 0xD1, 0x7F, 0xB0, 0xB3, 0x20, 0x1B, 0x6A, 0xF7, 0xCE, 0x1B, 0x05, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC7, 0xF3, 0x4A, 0x77, 0x8F, 0x44, 0x3A, 0xCC, 0x92, 0x0E, 0xBA, 0x49 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 25 * 6]; } _EC_SECG_CHAR2_193R2 = { { NID_X9_62_characteristic_two_field, 20, 25, 2 }, { /* seed */ 0x10, 0xB7, 0xB4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x51, 0x37, 0xC8, 0xA1, 0x6F, 0xD0, 0xDA, 0x22, 0x11, /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x01, /* a */ 0x01, 0x63, 0xF3, 0x5A, 0x51, 0x37, 0xC2, 0xCE, 0x3E, 0xA6, 0xED, 0x86, 0x67, 0x19, 0x0B, 0x0B, 0xC4, 0x3E, 0xCD, 0x69, 0x97, 0x77, 0x02, 0x70, 0x9B, /* b */ 0x00, 0xC9, 0xBB, 0x9E, 0x89, 0x27, 0xD4, 0xD6, 0x4C, 0x37, 0x7E, 0x2A, 0xB2, 0x85, 0x6A, 0x5B, 0x16, 0xE3, 0xEF, 0xB7, 0xF6, 0x1D, 0x43, 0x16, 0xAE, /* x */ 0x00, 0xD9, 0xB6, 0x7D, 0x19, 0x2E, 0x03, 0x67, 0xC8, 0x03, 0xF3, 0x9E, 0x1A, 0x7E, 0x82, 0xCA, 0x14, 0xA6, 0x51, 0x35, 0x0A, 0xAE, 0x61, 0x7E, 0x8F, /* y */ 0x01, 0xCE, 0x94, 0x33, 0x56, 0x07, 0xC3, 0x04, 0xAC, 0x29, 0xE7, 0xDE, 0xFB, 0xD9, 0xCA, 0x01, 0xF5, 0x96, 0xF9, 0x27, 0x22, 0x4C, 0xDE, 0xCF, 0x6C, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x5A, 0xAB, 0x56, 0x1B, 0x00, 0x54, 0x13, 0xCC, 0xD4, 0xEE, 0x99, 0xD5 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 30 * 6]; } _EC_NIST_CHAR2_233K = { { NID_X9_62_characteristic_two_field, 0, 30, 4 }, { /* no seed */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* x */ 0x01, 0x72, 0x32, 0xBA, 0x85, 0x3A, 0x7E, 0x73, 0x1A, 0xF1, 0x29, 0xF2, 0x2F, 0xF4, 0x14, 0x95, 0x63, 0xA4, 0x19, 0xC2, 0x6B, 0xF5, 0x0A, 0x4C, 0x9D, 0x6E, 0xEF, 0xAD, 0x61, 0x26, /* y */ 0x01, 0xDB, 0x53, 0x7D, 0xEC, 0xE8, 0x19, 0xB7, 0xF7, 0x0F, 0x55, 0x5A, 0x67, 0xC4, 0x27, 0xA8, 0xCD, 0x9B, 0xF1, 0x8A, 0xEB, 0x9B, 0x56, 0xE0, 0xC1, 0x10, 0x56, 0xFA, 0xE6, 0xA3, /* order */ 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x9D, 0x5B, 0xB9, 0x15, 0xBC, 0xD4, 0x6E, 0xFB, 0x1A, 0xD5, 0xF1, 0x73, 0xAB, 0xDF } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 30 * 6]; } _EC_NIST_CHAR2_233B = { { NID_X9_62_characteristic_two_field, 20, 30, 2 }, { /* seed */ 0x74, 0xD5, 0x9F, 0xF0, 0x7F, 0x6B, 0x41, 0x3D, 0x0E, 0xA1, 0x4B, 0x34, 0x4B, 0x20, 0xA2, 0xDB, 0x04, 0x9B, 0x50, 0xC3, /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* b */ 0x00, 0x66, 0x64, 0x7E, 0xDE, 0x6C, 0x33, 0x2C, 0x7F, 0x8C, 0x09, 0x23, 0xBB, 0x58, 0x21, 0x3B, 0x33, 0x3B, 0x20, 0xE9, 0xCE, 0x42, 0x81, 0xFE, 0x11, 0x5F, 0x7D, 0x8F, 0x90, 0xAD, /* x */ 0x00, 0xFA, 0xC9, 0xDF, 0xCB, 0xAC, 0x83, 0x13, 0xBB, 0x21, 0x39, 0xF1, 0xBB, 0x75, 0x5F, 0xEF, 0x65, 0xBC, 0x39, 0x1F, 0x8B, 0x36, 0xF8, 0xF8, 0xEB, 0x73, 0x71, 0xFD, 0x55, 0x8B, /* y */ 0x01, 0x00, 0x6A, 0x08, 0xA4, 0x19, 0x03, 0x35, 0x06, 0x78, 0xE5, 0x85, 0x28, 0xBE, 0xBF, 0x8A, 0x0B, 0xEF, 0xF8, 0x67, 0xA7, 0xCA, 0x36, 0x71, 0x6F, 0x7E, 0x01, 0xF8, 0x10, 0x52, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0xE9, 0x74, 0xE7, 0x2F, 0x8A, 0x69, 0x22, 0x03, 0x1D, 0x26, 0x03, 0xCF, 0xE0, 0xD7 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 30 * 6]; } _EC_SECG_CHAR2_239K1 = { { NID_X9_62_characteristic_two_field, 0, 30, 4 }, { /* no seed */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* x */ 0x29, 0xA0, 0xB6, 0xA8, 0x87, 0xA9, 0x83, 0xE9, 0x73, 0x09, 0x88, 0xA6, 0x87, 0x27, 0xA8, 0xB2, 0xD1, 0x26, 0xC4, 0x4C, 0xC2, 0xCC, 0x7B, 0x2A, 0x65, 0x55, 0x19, 0x30, 0x35, 0xDC, /* y */ 0x76, 0x31, 0x08, 0x04, 0xF1, 0x2E, 0x54, 0x9B, 0xDB, 0x01, 0x1C, 0x10, 0x30, 0x89, 0xE7, 0x35, 0x10, 0xAC, 0xB2, 0x75, 0xFC, 0x31, 0x2A, 0x5D, 0xC6, 0xB7, 0x65, 0x53, 0xF0, 0xCA, /* order */ 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5A, 0x79, 0xFE, 0xC6, 0x7C, 0xB6, 0xE9, 0x1F, 0x1C, 0x1D, 0xA8, 0x00, 0xE4, 0x78, 0xA5 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 36 * 6]; } _EC_NIST_CHAR2_283K = { { NID_X9_62_characteristic_two_field, 0, 36, 4 }, { /* no seed */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0xA1, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* x */ 0x05, 0x03, 0x21, 0x3F, 0x78, 0xCA, 0x44, 0x88, 0x3F, 0x1A, 0x3B, 0x81, 0x62, 0xF1, 0x88, 0xE5, 0x53, 0xCD, 0x26, 0x5F, 0x23, 0xC1, 0x56, 0x7A, 0x16, 0x87, 0x69, 0x13, 0xB0, 0xC2, 0xAC, 0x24, 0x58, 0x49, 0x28, 0x36, /* y */ 0x01, 0xCC, 0xDA, 0x38, 0x0F, 0x1C, 0x9E, 0x31, 0x8D, 0x90, 0xF9, 0x5D, 0x07, 0xE5, 0x42, 0x6F, 0xE8, 0x7E, 0x45, 0xC0, 0xE8, 0x18, 0x46, 0x98, 0xE4, 0x59, 0x62, 0x36, 0x4E, 0x34, 0x11, 0x61, 0x77, 0xDD, 0x22, 0x59, /* order */ 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE9, 0xAE, 0x2E, 0xD0, 0x75, 0x77, 0x26, 0x5D, 0xFF, 0x7F, 0x94, 0x45, 0x1E, 0x06, 0x1E, 0x16, 0x3C, 0x61 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 36 * 6]; } _EC_NIST_CHAR2_283B = { { NID_X9_62_characteristic_two_field, 20, 36, 2 }, { /* no seed */ 0x77, 0xE2, 0xB0, 0x73, 0x70, 0xEB, 0x0F, 0x83, 0x2A, 0x6D, 0xD5, 0xB6, 0x2D, 0xFC, 0x88, 0xCD, 0x06, 0xBB, 0x84, 0xBE, /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0xA1, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* b */ 0x02, 0x7B, 0x68, 0x0A, 0xC8, 0xB8, 0x59, 0x6D, 0xA5, 0xA4, 0xAF, 0x8A, 0x19, 0xA0, 0x30, 0x3F, 0xCA, 0x97, 0xFD, 0x76, 0x45, 0x30, 0x9F, 0xA2, 0xA5, 0x81, 0x48, 0x5A, 0xF6, 0x26, 0x3E, 0x31, 0x3B, 0x79, 0xA2, 0xF5, /* x */ 0x05, 0xF9, 0x39, 0x25, 0x8D, 0xB7, 0xDD, 0x90, 0xE1, 0x93, 0x4F, 0x8C, 0x70, 0xB0, 0xDF, 0xEC, 0x2E, 0xED, 0x25, 0xB8, 0x55, 0x7E, 0xAC, 0x9C, 0x80, 0xE2, 0xE1, 0x98, 0xF8, 0xCD, 0xBE, 0xCD, 0x86, 0xB1, 0x20, 0x53, /* y */ 0x03, 0x67, 0x68, 0x54, 0xFE, 0x24, 0x14, 0x1C, 0xB9, 0x8F, 0xE6, 0xD4, 0xB2, 0x0D, 0x02, 0xB4, 0x51, 0x6F, 0xF7, 0x02, 0x35, 0x0E, 0xDD, 0xB0, 0x82, 0x67, 0x79, 0xC8, 0x13, 0xF0, 0xDF, 0x45, 0xBE, 0x81, 0x12, 0xF4, /* order */ 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEF, 0x90, 0x39, 0x96, 0x60, 0xFC, 0x93, 0x8A, 0x90, 0x16, 0x5B, 0x04, 0x2A, 0x7C, 0xEF, 0xAD, 0xB3, 0x07 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 52 * 6]; } _EC_NIST_CHAR2_409K = { { NID_X9_62_characteristic_two_field, 0, 52, 4 }, { /* no seed */ /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* x */ 0x00, 0x60, 0xF0, 0x5F, 0x65, 0x8F, 0x49, 0xC1, 0xAD, 0x3A, 0xB1, 0x89, 0x0F, 0x71, 0x84, 0x21, 0x0E, 0xFD, 0x09, 0x87, 0xE3, 0x07, 0xC8, 0x4C, 0x27, 0xAC, 0xCF, 0xB8, 0xF9, 0xF6, 0x7C, 0xC2, 0xC4, 0x60, 0x18, 0x9E, 0xB5, 0xAA, 0xAA, 0x62, 0xEE, 0x22, 0x2E, 0xB1, 0xB3, 0x55, 0x40, 0xCF, 0xE9, 0x02, 0x37, 0x46, /* y */ 0x01, 0xE3, 0x69, 0x05, 0x0B, 0x7C, 0x4E, 0x42, 0xAC, 0xBA, 0x1D, 0xAC, 0xBF, 0x04, 0x29, 0x9C, 0x34, 0x60, 0x78, 0x2F, 0x91, 0x8E, 0xA4, 0x27, 0xE6, 0x32, 0x51, 0x65, 0xE9, 0xEA, 0x10, 0xE3, 0xDA, 0x5F, 0x6C, 0x42, 0xE9, 0xC5, 0x52, 0x15, 0xAA, 0x9C, 0xA2, 0x7A, 0x58, 0x63, 0xEC, 0x48, 0xD8, 0xE0, 0x28, 0x6B, /* order */ 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0x5F, 0x83, 0xB2, 0xD4, 0xEA, 0x20, 0x40, 0x0E, 0xC4, 0x55, 0x7D, 0x5E, 0xD3, 0xE3, 0xE7, 0xCA, 0x5B, 0x4B, 0x5C, 0x83, 0xB8, 0xE0, 0x1E, 0x5F, 0xCF } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 52 * 6]; } _EC_NIST_CHAR2_409B = { { NID_X9_62_characteristic_two_field, 20, 52, 2 }, { /* seed */ 0x40, 0x99, 0xB5, 0xA4, 0x57, 0xF9, 0xD6, 0x9F, 0x79, 0x21, 0x3D, 0x09, 0x4C, 0x4B, 0xCD, 0x4D, 0x42, 0x62, 0x21, 0x0B, /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* b */ 0x00, 0x21, 0xA5, 0xC2, 0xC8, 0xEE, 0x9F, 0xEB, 0x5C, 0x4B, 0x9A, 0x75, 0x3B, 0x7B, 0x47, 0x6B, 0x7F, 0xD6, 0x42, 0x2E, 0xF1, 0xF3, 0xDD, 0x67, 0x47, 0x61, 0xFA, 0x99, 0xD6, 0xAC, 0x27, 0xC8, 0xA9, 0xA1, 0x97, 0xB2, 0x72, 0x82, 0x2F, 0x6C, 0xD5, 0x7A, 0x55, 0xAA, 0x4F, 0x50, 0xAE, 0x31, 0x7B, 0x13, 0x54, 0x5F, /* x */ 0x01, 0x5D, 0x48, 0x60, 0xD0, 0x88, 0xDD, 0xB3, 0x49, 0x6B, 0x0C, 0x60, 0x64, 0x75, 0x62, 0x60, 0x44, 0x1C, 0xDE, 0x4A, 0xF1, 0x77, 0x1D, 0x4D, 0xB0, 0x1F, 0xFE, 0x5B, 0x34, 0xE5, 0x97, 0x03, 0xDC, 0x25, 0x5A, 0x86, 0x8A, 0x11, 0x80, 0x51, 0x56, 0x03, 0xAE, 0xAB, 0x60, 0x79, 0x4E, 0x54, 0xBB, 0x79, 0x96, 0xA7, /* y */ 0x00, 0x61, 0xB1, 0xCF, 0xAB, 0x6B, 0xE5, 0xF3, 0x2B, 0xBF, 0xA7, 0x83, 0x24, 0xED, 0x10, 0x6A, 0x76, 0x36, 0xB9, 0xC5, 0xA7, 0xBD, 0x19, 0x8D, 0x01, 0x58, 0xAA, 0x4F, 0x54, 0x88, 0xD0, 0x8F, 0x38, 0x51, 0x4F, 0x1F, 0xDF, 0x4B, 0x4F, 0x40, 0xD2, 0x18, 0x1B, 0x36, 0x81, 0xC3, 0x64, 0xBA, 0x02, 0x73, 0xC7, 0x06, /* order */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xE2, 0xAA, 0xD6, 0xA6, 0x12, 0xF3, 0x33, 0x07, 0xBE, 0x5F, 0xA4, 0x7C, 0x3C, 0x9E, 0x05, 0x2F, 0x83, 0x81, 0x64, 0xCD, 0x37, 0xD9, 0xA2, 0x11, 0x73 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 72 * 6]; } _EC_NIST_CHAR2_571K = { { NID_X9_62_characteristic_two_field, 0, 72, 4 }, { /* no seed */ /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x25, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* x */ 0x02, 0x6E, 0xB7, 0xA8, 0x59, 0x92, 0x3F, 0xBC, 0x82, 0x18, 0x96, 0x31, 0xF8, 0x10, 0x3F, 0xE4, 0xAC, 0x9C, 0xA2, 0x97, 0x00, 0x12, 0xD5, 0xD4, 0x60, 0x24, 0x80, 0x48, 0x01, 0x84, 0x1C, 0xA4, 0x43, 0x70, 0x95, 0x84, 0x93, 0xB2, 0x05, 0xE6, 0x47, 0xDA, 0x30, 0x4D, 0xB4, 0xCE, 0xB0, 0x8C, 0xBB, 0xD1, 0xBA, 0x39, 0x49, 0x47, 0x76, 0xFB, 0x98, 0x8B, 0x47, 0x17, 0x4D, 0xCA, 0x88, 0xC7, 0xE2, 0x94, 0x52, 0x83, 0xA0, 0x1C, 0x89, 0x72, /* y */ 0x03, 0x49, 0xDC, 0x80, 0x7F, 0x4F, 0xBF, 0x37, 0x4F, 0x4A, 0xEA, 0xDE, 0x3B, 0xCA, 0x95, 0x31, 0x4D, 0xD5, 0x8C, 0xEC, 0x9F, 0x30, 0x7A, 0x54, 0xFF, 0xC6, 0x1E, 0xFC, 0x00, 0x6D, 0x8A, 0x2C, 0x9D, 0x49, 0x79, 0xC0, 0xAC, 0x44, 0xAE, 0xA7, 0x4F, 0xBE, 0xBB, 0xB9, 0xF7, 0x72, 0xAE, 0xDC, 0xB6, 0x20, 0xB0, 0x1A, 0x7B, 0xA7, 0xAF, 0x1B, 0x32, 0x04, 0x30, 0xC8, 0x59, 0x19, 0x84, 0xF6, 0x01, 0xCD, 0x4C, 0x14, 0x3E, 0xF1, 0xC7, 0xA3, /* order */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x18, 0x50, 0xE1, 0xF1, 0x9A, 0x63, 0xE4, 0xB3, 0x91, 0xA8, 0xDB, 0x91, 0x7F, 0x41, 0x38, 0xB6, 0x30, 0xD8, 0x4B, 0xE5, 0xD6, 0x39, 0x38, 0x1E, 0x91, 0xDE, 0xB4, 0x5C, 0xFE, 0x77, 0x8F, 0x63, 0x7C, 0x10, 0x01 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 72 * 6]; } _EC_NIST_CHAR2_571B = { { NID_X9_62_characteristic_two_field, 20, 72, 2 }, { /* seed */ 0x2A, 0xA0, 0x58, 0xF7, 0x3A, 0x0E, 0x33, 0xAB, 0x48, 0x6B, 0x0F, 0x61, 0x04, 0x10, 0xC5, 0x3A, 0x7F, 0x13, 0x23, 0x10, /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x25, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* b */ 0x02, 0xF4, 0x0E, 0x7E, 0x22, 0x21, 0xF2, 0x95, 0xDE, 0x29, 0x71, 0x17, 0xB7, 0xF3, 0xD6, 0x2F, 0x5C, 0x6A, 0x97, 0xFF, 0xCB, 0x8C, 0xEF, 0xF1, 0xCD, 0x6B, 0xA8, 0xCE, 0x4A, 0x9A, 0x18, 0xAD, 0x84, 0xFF, 0xAB, 0xBD, 0x8E, 0xFA, 0x59, 0x33, 0x2B, 0xE7, 0xAD, 0x67, 0x56, 0xA6, 0x6E, 0x29, 0x4A, 0xFD, 0x18, 0x5A, 0x78, 0xFF, 0x12, 0xAA, 0x52, 0x0E, 0x4D, 0xE7, 0x39, 0xBA, 0xCA, 0x0C, 0x7F, 0xFE, 0xFF, 0x7F, 0x29, 0x55, 0x72, 0x7A, /* x */ 0x03, 0x03, 0x00, 0x1D, 0x34, 0xB8, 0x56, 0x29, 0x6C, 0x16, 0xC0, 0xD4, 0x0D, 0x3C, 0xD7, 0x75, 0x0A, 0x93, 0xD1, 0xD2, 0x95, 0x5F, 0xA8, 0x0A, 0xA5, 0xF4, 0x0F, 0xC8, 0xDB, 0x7B, 0x2A, 0xBD, 0xBD, 0xE5, 0x39, 0x50, 0xF4, 0xC0, 0xD2, 0x93, 0xCD, 0xD7, 0x11, 0xA3, 0x5B, 0x67, 0xFB, 0x14, 0x99, 0xAE, 0x60, 0x03, 0x86, 0x14, 0xF1, 0x39, 0x4A, 0xBF, 0xA3, 0xB4, 0xC8, 0x50, 0xD9, 0x27, 0xE1, 0xE7, 0x76, 0x9C, 0x8E, 0xEC, 0x2D, 0x19, /* y */ 0x03, 0x7B, 0xF2, 0x73, 0x42, 0xDA, 0x63, 0x9B, 0x6D, 0xCC, 0xFF, 0xFE, 0xB7, 0x3D, 0x69, 0xD7, 0x8C, 0x6C, 0x27, 0xA6, 0x00, 0x9C, 0xBB, 0xCA, 0x19, 0x80, 0xF8, 0x53, 0x39, 0x21, 0xE8, 0xA6, 0x84, 0x42, 0x3E, 0x43, 0xBA, 0xB0, 0x8A, 0x57, 0x62, 0x91, 0xAF, 0x8F, 0x46, 0x1B, 0xB2, 0xA8, 0xB3, 0x53, 0x1D, 0x2F, 0x04, 0x85, 0xC1, 0x9B, 0x16, 0xE2, 0xF1, 0x51, 0x6E, 0x23, 0xDD, 0x3C, 0x1A, 0x48, 0x27, 0xAF, 0x1B, 0x8A, 0xC1, 0x5B, /* order */ 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE6, 0x61, 0xCE, 0x18, 0xFF, 0x55, 0x98, 0x73, 0x08, 0x05, 0x9B, 0x18, 0x68, 0x23, 0x85, 0x1E, 0xC7, 0xDD, 0x9C, 0xA1, 0x16, 0x1D, 0xE9, 0x3D, 0x51, 0x74, 0xD6, 0x6E, 0x83, 0x82, 0xE9, 0xBB, 0x2F, 0xE8, 0x4E, 0x47 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 21 * 6]; } _EC_X9_62_CHAR2_163V1 = { { NID_X9_62_characteristic_two_field, 20, 21, 2 }, { /* seed */ 0xD2, 0xC0, 0xFB, 0x15, 0x76, 0x08, 0x60, 0xDE, 0xF1, 0xEE, 0xF4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x54, /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x07, /* a */ 0x07, 0x25, 0x46, 0xB5, 0x43, 0x52, 0x34, 0xA4, 0x22, 0xE0, 0x78, 0x96, 0x75, 0xF4, 0x32, 0xC8, 0x94, 0x35, 0xDE, 0x52, 0x42, /* b */ 0x00, 0xC9, 0x51, 0x7D, 0x06, 0xD5, 0x24, 0x0D, 0x3C, 0xFF, 0x38, 0xC7, 0x4B, 0x20, 0xB6, 0xCD, 0x4D, 0x6F, 0x9D, 0xD4, 0xD9, /* x */ 0x07, 0xAF, 0x69, 0x98, 0x95, 0x46, 0x10, 0x3D, 0x79, 0x32, 0x9F, 0xCC, 0x3D, 0x74, 0x88, 0x0F, 0x33, 0xBB, 0xE8, 0x03, 0xCB, /* y */ 0x01, 0xEC, 0x23, 0x21, 0x1B, 0x59, 0x66, 0xAD, 0xEA, 0x1D, 0x3F, 0x87, 0xF7, 0xEA, 0x58, 0x48, 0xAE, 0xF0, 0xB7, 0xCA, 0x9F, /* order */ 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xE6, 0x0F, 0xC8, 0x82, 0x1C, 0xC7, 0x4D, 0xAE, 0xAF, 0xC1 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 21 * 6]; } _EC_X9_62_CHAR2_163V2 = { { NID_X9_62_characteristic_two_field, 20, 21, 2 }, { /* seed */ 0x53, 0x81, 0x4C, 0x05, 0x0D, 0x44, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x58, 0x0C, 0xA4, 0xE2, 0x9F, 0xFD, /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x07, /* a */ 0x01, 0x08, 0xB3, 0x9E, 0x77, 0xC4, 0xB1, 0x08, 0xBE, 0xD9, 0x81, 0xED, 0x0E, 0x89, 0x0E, 0x11, 0x7C, 0x51, 0x1C, 0xF0, 0x72, /* b */ 0x06, 0x67, 0xAC, 0xEB, 0x38, 0xAF, 0x4E, 0x48, 0x8C, 0x40, 0x74, 0x33, 0xFF, 0xAE, 0x4F, 0x1C, 0x81, 0x16, 0x38, 0xDF, 0x20, /* x */ 0x00, 0x24, 0x26, 0x6E, 0x4E, 0xB5, 0x10, 0x6D, 0x0A, 0x96, 0x4D, 0x92, 0xC4, 0x86, 0x0E, 0x26, 0x71, 0xDB, 0x9B, 0x6C, 0xC5, /* y */ 0x07, 0x9F, 0x68, 0x4D, 0xDF, 0x66, 0x84, 0xC5, 0xCD, 0x25, 0x8B, 0x38, 0x90, 0x02, 0x1B, 0x23, 0x86, 0xDF, 0xD1, 0x9F, 0xC5, /* order */ 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xF6, 0x4D, 0xE1, 0x15, 0x1A, 0xDB, 0xB7, 0x8F, 0x10, 0xA7 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 21 * 6]; } _EC_X9_62_CHAR2_163V3 = { { NID_X9_62_characteristic_two_field, 20, 21, 2 }, { /* seed */ 0x50, 0xCB, 0xF1, 0xD9, 0x5C, 0xA9, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0xF1, 0x6A, 0x36, 0xA3, 0xB8, /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x07, /* a */ 0x07, 0xA5, 0x26, 0xC6, 0x3D, 0x3E, 0x25, 0xA2, 0x56, 0xA0, 0x07, 0x69, 0x9F, 0x54, 0x47, 0xE3, 0x2A, 0xE4, 0x56, 0xB5, 0x0E, /* b */ 0x03, 0xF7, 0x06, 0x17, 0x98, 0xEB, 0x99, 0xE2, 0x38, 0xFD, 0x6F, 0x1B, 0xF9, 0x5B, 0x48, 0xFE, 0xEB, 0x48, 0x54, 0x25, 0x2B, /* x */ 0x02, 0xF9, 0xF8, 0x7B, 0x7C, 0x57, 0x4D, 0x0B, 0xDE, 0xCF, 0x8A, 0x22, 0xE6, 0x52, 0x47, 0x75, 0xF9, 0x8C, 0xDE, 0xBD, 0xCB, /* y */ 0x05, 0xB9, 0x35, 0x59, 0x0C, 0x15, 0x5E, 0x17, 0xEA, 0x48, 0xEB, 0x3F, 0xF3, 0x71, 0x8B, 0x89, 0x3D, 0xF5, 0x9A, 0x05, 0xD0, /* order */ 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0x1A, 0xEE, 0x14, 0x0F, 0x11, 0x0A, 0xFF, 0x96, 0x13, 0x09 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 23 * 6]; } _EC_X9_62_CHAR2_176V1 = { { NID_X9_62_characteristic_two_field, 0, 23, 0xFF6E }, { /* no seed */ /* p */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x07, /* a */ 0x00, 0xE4, 0xE6, 0xDB, 0x29, 0x95, 0x06, 0x5C, 0x40, 0x7D, 0x9D, 0x39, 0xB8, 0xD0, 0x96, 0x7B, 0x96, 0x70, 0x4B, 0xA8, 0xE9, 0xC9, 0x0B, /* b */ 0x00, 0x5D, 0xDA, 0x47, 0x0A, 0xBE, 0x64, 0x14, 0xDE, 0x8E, 0xC1, 0x33, 0xAE, 0x28, 0xE9, 0xBB, 0xD7, 0xFC, 0xEC, 0x0A, 0xE0, 0xFF, 0xF2, /* x */ 0x00, 0x8D, 0x16, 0xC2, 0x86, 0x67, 0x98, 0xB6, 0x00, 0xF9, 0xF0, 0x8B, 0xB4, 0xA8, 0xE8, 0x60, 0xF3, 0x29, 0x8C, 0xE0, 0x4A, 0x57, 0x98, /* y */ 0x00, 0x6F, 0xA4, 0x53, 0x9C, 0x2D, 0xAD, 0xDD, 0xD6, 0xBA, 0xB5, 0x16, 0x7D, 0x61, 0xB4, 0x36, 0xE1, 0xD9, 0x2B, 0xB1, 0x6A, 0x56, 0x2C, /* order */ 0x00, 0x00, 0x01, 0x00, 0x92, 0x53, 0x73, 0x97, 0xEC, 0xA4, 0xF6, 0x14, 0x57, 0x99, 0xD6, 0x2B, 0x0A, 0x19, 0xCE, 0x06, 0xFE, 0x26, 0xAD } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 24 * 6]; } _EC_X9_62_CHAR2_191V1 = { { NID_X9_62_characteristic_two_field, 20, 24, 2 }, { /* seed */ 0x4E, 0x13, 0xCA, 0x54, 0x27, 0x44, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x55, 0x2F, 0x27, 0x9A, 0x8C, 0x84, /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01, /* a */ 0x28, 0x66, 0x53, 0x7B, 0x67, 0x67, 0x52, 0x63, 0x6A, 0x68, 0xF5, 0x65, 0x54, 0xE1, 0x26, 0x40, 0x27, 0x6B, 0x64, 0x9E, 0xF7, 0x52, 0x62, 0x67, /* b */ 0x2E, 0x45, 0xEF, 0x57, 0x1F, 0x00, 0x78, 0x6F, 0x67, 0xB0, 0x08, 0x1B, 0x94, 0x95, 0xA3, 0xD9, 0x54, 0x62, 0xF5, 0xDE, 0x0A, 0xA1, 0x85, 0xEC, /* x */ 0x36, 0xB3, 0xDA, 0xF8, 0xA2, 0x32, 0x06, 0xF9, 0xC4, 0xF2, 0x99, 0xD7, 0xB2, 0x1A, 0x9C, 0x36, 0x91, 0x37, 0xF2, 0xC8, 0x4A, 0xE1, 0xAA, 0x0D, /* y */ 0x76, 0x5B, 0xE7, 0x34, 0x33, 0xB3, 0xF9, 0x5E, 0x33, 0x29, 0x32, 0xE7, 0x0E, 0xA2, 0x45, 0xCA, 0x24, 0x18, 0xEA, 0x0E, 0xF9, 0x80, 0x18, 0xFB, /* order */ 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0xA2, 0x0E, 0x90, 0xC3, 0x90, 0x67, 0xC8, 0x93, 0xBB, 0xB9, 0xA5 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 24 * 6]; } _EC_X9_62_CHAR2_191V2 = { { NID_X9_62_characteristic_two_field, 20, 24, 4 }, { /* seed */ 0x08, 0x71, 0xEF, 0x2F, 0xEF, 0x24, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x58, 0xBE, 0xE0, 0xD9, 0x5C, 0x15, /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01, /* a */ 0x40, 0x10, 0x28, 0x77, 0x4D, 0x77, 0x77, 0xC7, 0xB7, 0x66, 0x6D, 0x13, 0x66, 0xEA, 0x43, 0x20, 0x71, 0x27, 0x4F, 0x89, 0xFF, 0x01, 0xE7, 0x18, /* b */ 0x06, 0x20, 0x04, 0x8D, 0x28, 0xBC, 0xBD, 0x03, 0xB6, 0x24, 0x9C, 0x99, 0x18, 0x2B, 0x7C, 0x8C, 0xD1, 0x97, 0x00, 0xC3, 0x62, 0xC4, 0x6A, 0x01, /* x */ 0x38, 0x09, 0xB2, 0xB7, 0xCC, 0x1B, 0x28, 0xCC, 0x5A, 0x87, 0x92, 0x6A, 0xAD, 0x83, 0xFD, 0x28, 0x78, 0x9E, 0x81, 0xE2, 0xC9, 0xE3, 0xBF, 0x10, /* y */ 0x17, 0x43, 0x43, 0x86, 0x62, 0x6D, 0x14, 0xF3, 0xDB, 0xF0, 0x17, 0x60, 0xD9, 0x21, 0x3A, 0x3E, 0x1C, 0xF3, 0x7A, 0xEC, 0x43, 0x7D, 0x66, 0x8A, /* order */ 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x50, 0x8C, 0xB8, 0x9F, 0x65, 0x28, 0x24, 0xE0, 0x6B, 0x81, 0x73 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 24 * 6]; } _EC_X9_62_CHAR2_191V3 = { { NID_X9_62_characteristic_two_field, 20, 24, 6 }, { /* seed */ 0xE0, 0x53, 0x51, 0x2D, 0xC6, 0x84, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x50, 0x67, 0xAE, 0x78, 0x6D, 0x1F, /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01, /* a */ 0x6C, 0x01, 0x07, 0x47, 0x56, 0x09, 0x91, 0x22, 0x22, 0x10, 0x56, 0x91, 0x1C, 0x77, 0xD7, 0x7E, 0x77, 0xA7, 0x77, 0xE7, 0xE7, 0xE7, 0x7F, 0xCB, /* b */ 0x71, 0xFE, 0x1A, 0xF9, 0x26, 0xCF, 0x84, 0x79, 0x89, 0xEF, 0xEF, 0x8D, 0xB4, 0x59, 0xF6, 0x63, 0x94, 0xD9, 0x0F, 0x32, 0xAD, 0x3F, 0x15, 0xE8, /* x */ 0x37, 0x5D, 0x4C, 0xE2, 0x4F, 0xDE, 0x43, 0x44, 0x89, 0xDE, 0x87, 0x46, 0xE7, 0x17, 0x86, 0x01, 0x50, 0x09, 0xE6, 0x6E, 0x38, 0xA9, 0x26, 0xDD, /* y */ 0x54, 0x5A, 0x39, 0x17, 0x61, 0x96, 0x57, 0x5D, 0x98, 0x59, 0x99, 0x36, 0x6E, 0x6A, 0xD3, 0x4C, 0xE0, 0xA7, 0x7C, 0xD7, 0x12, 0x7B, 0x06, 0xBE, /* order */ 0x15, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x61, 0x0C, 0x0B, 0x19, 0x68, 0x12, 0xBF, 0xB6, 0x28, 0x8A, 0x3E, 0xA3 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 27 * 6]; } _EC_X9_62_CHAR2_208W1 = { { NID_X9_62_characteristic_two_field, 0, 27, 0xFE48 }, { /* no seed */ /* p */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0xC8, 0x61, 0x9E, 0xD4, 0x5A, 0x62, 0xE6, 0x21, 0x2E, 0x11, 0x60, 0x34, 0x9E, 0x2B, 0xFA, 0x84, 0x44, 0x39, 0xFA, 0xFC, 0x2A, 0x3F, 0xD1, 0x63, 0x8F, 0x9E, /* x */ 0x00, 0x89, 0xFD, 0xFB, 0xE4, 0xAB, 0xE1, 0x93, 0xDF, 0x95, 0x59, 0xEC, 0xF0, 0x7A, 0xC0, 0xCE, 0x78, 0x55, 0x4E, 0x27, 0x84, 0xEB, 0x8C, 0x1E, 0xD1, 0xA5, 0x7A, /* y */ 0x00, 0x0F, 0x55, 0xB5, 0x1A, 0x06, 0xE7, 0x8E, 0x9A, 0xC3, 0x8A, 0x03, 0x5F, 0xF5, 0x20, 0xD8, 0xB0, 0x17, 0x81, 0xBE, 0xB1, 0xA6, 0xBB, 0x08, 0x61, 0x7D, 0xE3, /* order */ 0x00, 0x00, 0x01, 0x01, 0xBA, 0xF9, 0x5C, 0x97, 0x23, 0xC5, 0x7B, 0x6C, 0x21, 0xDA, 0x2E, 0xFF, 0x2D, 0x5E, 0xD5, 0x88, 0xBD, 0xD5, 0x71, 0x7E, 0x21, 0x2F, 0x9D } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 30 * 6]; } _EC_X9_62_CHAR2_239V1 = { { NID_X9_62_characteristic_two_field, 20, 30, 4 }, { /* seed */ 0xD3, 0x4B, 0x9A, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0xCA, 0x71, 0xB9, 0x20, 0xBF, 0xEF, 0xB0, 0x5D, /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, /* a */ 0x32, 0x01, 0x08, 0x57, 0x07, 0x7C, 0x54, 0x31, 0x12, 0x3A, 0x46, 0xB8, 0x08, 0x90, 0x67, 0x56, 0xF5, 0x43, 0x42, 0x3E, 0x8D, 0x27, 0x87, 0x75, 0x78, 0x12, 0x57, 0x78, 0xAC, 0x76, /* b */ 0x79, 0x04, 0x08, 0xF2, 0xEE, 0xDA, 0xF3, 0x92, 0xB0, 0x12, 0xED, 0xEF, 0xB3, 0x39, 0x2F, 0x30, 0xF4, 0x32, 0x7C, 0x0C, 0xA3, 0xF3, 0x1F, 0xC3, 0x83, 0xC4, 0x22, 0xAA, 0x8C, 0x16, /* x */ 0x57, 0x92, 0x70, 0x98, 0xFA, 0x93, 0x2E, 0x7C, 0x0A, 0x96, 0xD3, 0xFD, 0x5B, 0x70, 0x6E, 0xF7, 0xE5, 0xF5, 0xC1, 0x56, 0xE1, 0x6B, 0x7E, 0x7C, 0x86, 0x03, 0x85, 0x52, 0xE9, 0x1D, /* y */ 0x61, 0xD8, 0xEE, 0x50, 0x77, 0xC3, 0x3F, 0xEC, 0xF6, 0xF1, 0xA1, 0x6B, 0x26, 0x8D, 0xE4, 0x69, 0xC3, 0xC7, 0x74, 0x4E, 0xA9, 0xA9, 0x71, 0x64, 0x9F, 0xC7, 0xA9, 0x61, 0x63, 0x05, /* order */ 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x4D, 0x42, 0xFF, 0xE1, 0x49, 0x2A, 0x49, 0x93, 0xF1, 0xCA, 0xD6, 0x66, 0xE4, 0x47 } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 30 * 6]; } _EC_X9_62_CHAR2_239V2 = { { NID_X9_62_characteristic_two_field, 20, 30, 6 }, { /* seed */ 0x2A, 0xA6, 0x98, 0x2F, 0xDF, 0xA4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x5D, 0x26, 0x67, 0x27, 0x27, 0x7D, /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, /* a */ 0x42, 0x30, 0x01, 0x77, 0x57, 0xA7, 0x67, 0xFA, 0xE4, 0x23, 0x98, 0x56, 0x9B, 0x74, 0x63, 0x25, 0xD4, 0x53, 0x13, 0xAF, 0x07, 0x66, 0x26, 0x64, 0x79, 0xB7, 0x56, 0x54, 0xE6, 0x5F, /* b */ 0x50, 0x37, 0xEA, 0x65, 0x41, 0x96, 0xCF, 0xF0, 0xCD, 0x82, 0xB2, 0xC1, 0x4A, 0x2F, 0xCF, 0x2E, 0x3F, 0xF8, 0x77, 0x52, 0x85, 0xB5, 0x45, 0x72, 0x2F, 0x03, 0xEA, 0xCD, 0xB7, 0x4B, /* x */ 0x28, 0xF9, 0xD0, 0x4E, 0x90, 0x00, 0x69, 0xC8, 0xDC, 0x47, 0xA0, 0x85, 0x34, 0xFE, 0x76, 0xD2, 0xB9, 0x00, 0xB7, 0xD7, 0xEF, 0x31, 0xF5, 0x70, 0x9F, 0x20, 0x0C, 0x4C, 0xA2, 0x05, /* y */ 0x56, 0x67, 0x33, 0x4C, 0x45, 0xAF, 0xF3, 0xB5, 0xA0, 0x3B, 0xAD, 0x9D, 0xD7, 0x5E, 0x2C, 0x71, 0xA9, 0x93, 0x62, 0x56, 0x7D, 0x54, 0x53, 0xF7, 0xFA, 0x6E, 0x22, 0x7E, 0xC8, 0x33, /* order */ 0x15, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x3C, 0x6F, 0x28, 0x85, 0x25, 0x9C, 0x31, 0xE3, 0xFC, 0xDF, 0x15, 0x46, 0x24, 0x52, 0x2D } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 30 * 6]; } _EC_X9_62_CHAR2_239V3 = { { NID_X9_62_characteristic_two_field, 20, 30, 0xA }, { /* seed */ 0x9E, 0x07, 0x6F, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0xE1, 0x1E, 0x9F, 0xDD, 0x77, 0xF9, 0x20, 0x41, /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, /* a */ 0x01, 0x23, 0x87, 0x74, 0x66, 0x6A, 0x67, 0x76, 0x6D, 0x66, 0x76, 0xF7, 0x78, 0xE6, 0x76, 0xB6, 0x69, 0x99, 0x17, 0x66, 0x66, 0xE6, 0x87, 0x66, 0x6D, 0x87, 0x66, 0xC6, 0x6A, 0x9F, /* b */ 0x6A, 0x94, 0x19, 0x77, 0xBA, 0x9F, 0x6A, 0x43, 0x51, 0x99, 0xAC, 0xFC, 0x51, 0x06, 0x7E, 0xD5, 0x87, 0xF5, 0x19, 0xC5, 0xEC, 0xB5, 0x41, 0xB8, 0xE4, 0x41, 0x11, 0xDE, 0x1D, 0x40, /* x */ 0x70, 0xF6, 0xE9, 0xD0, 0x4D, 0x28, 0x9C, 0x4E, 0x89, 0x91, 0x3C, 0xE3, 0x53, 0x0B, 0xFD, 0xE9, 0x03, 0x97, 0x7D, 0x42, 0xB1, 0x46, 0xD5, 0x39, 0xBF, 0x1B, 0xDE, 0x4E, 0x9C, 0x92, /* y */ 0x2E, 0x5A, 0x0E, 0xAF, 0x6E, 0x5E, 0x13, 0x05, 0xB9, 0x00, 0x4D, 0xCE, 0x5C, 0x0E, 0xD7, 0xFE, 0x59, 0xA3, 0x56, 0x08, 0xF3, 0x38, 0x37, 0xC8, 0x16, 0xD8, 0x0B, 0x79, 0xF4, 0x61, /* order */ 0x0C, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xAC, 0x49, 0x12, 0xD2, 0xD9, 0xDF, 0x90, 0x3E, 0xF9, 0x88, 0x8B, 0x8A, 0x0E, 0x4C, 0xFF } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 35 * 6]; } _EC_X9_62_CHAR2_272W1 = { { NID_X9_62_characteristic_two_field, 0, 35, 0xFF06 }, { /* no seed */ /* p */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0B, /* a */ 0x00, 0x91, 0xA0, 0x91, 0xF0, 0x3B, 0x5F, 0xBA, 0x4A, 0xB2, 0xCC, 0xF4, 0x9C, 0x4E, 0xDD, 0x22, 0x0F, 0xB0, 0x28, 0x71, 0x2D, 0x42, 0xBE, 0x75, 0x2B, 0x2C, 0x40, 0x09, 0x4D, 0xBA, 0xCD, 0xB5, 0x86, 0xFB, 0x20, /* b */ 0x00, 0x71, 0x67, 0xEF, 0xC9, 0x2B, 0xB2, 0xE3, 0xCE, 0x7C, 0x8A, 0xAA, 0xFF, 0x34, 0xE1, 0x2A, 0x9C, 0x55, 0x70, 0x03, 0xD7, 0xC7, 0x3A, 0x6F, 0xAF, 0x00, 0x3F, 0x99, 0xF6, 0xCC, 0x84, 0x82, 0xE5, 0x40, 0xF7, /* x */ 0x00, 0x61, 0x08, 0xBA, 0xBB, 0x2C, 0xEE, 0xBC, 0xF7, 0x87, 0x05, 0x8A, 0x05, 0x6C, 0xBE, 0x0C, 0xFE, 0x62, 0x2D, 0x77, 0x23, 0xA2, 0x89, 0xE0, 0x8A, 0x07, 0xAE, 0x13, 0xEF, 0x0D, 0x10, 0xD1, 0x71, 0xDD, 0x8D, /* y */ 0x00, 0x10, 0xC7, 0x69, 0x57, 0x16, 0x85, 0x1E, 0xEF, 0x6B, 0xA7, 0xF6, 0x87, 0x2E, 0x61, 0x42, 0xFB, 0xD2, 0x41, 0xB8, 0x30, 0xFF, 0x5E, 0xFC, 0xAC, 0xEC, 0xCA, 0xB0, 0x5E, 0x02, 0x00, 0x5D, 0xDE, 0x9D, 0x23, /* order */ 0x00, 0x00, 0x01, 0x00, 0xFA, 0xF5, 0x13, 0x54, 0xE0, 0xE3, 0x9E, 0x48, 0x92, 0xDF, 0x6E, 0x31, 0x9C, 0x72, 0xC8, 0x16, 0x16, 0x03, 0xFA, 0x45, 0xAA, 0x7B, 0x99, 0x8A, 0x16, 0x7B, 0x8F, 0x1E, 0x62, 0x95, 0x21 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 39 * 6]; } _EC_X9_62_CHAR2_304W1 = { { NID_X9_62_characteristic_two_field, 0, 39, 0xFE2E }, { /* no seed */ /* p */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x07, /* a */ 0x00, 0xFD, 0x0D, 0x69, 0x31, 0x49, 0xA1, 0x18, 0xF6, 0x51, 0xE6, 0xDC, 0xE6, 0x80, 0x20, 0x85, 0x37, 0x7E, 0x5F, 0x88, 0x2D, 0x1B, 0x51, 0x0B, 0x44, 0x16, 0x00, 0x74, 0xC1, 0x28, 0x80, 0x78, 0x36, 0x5A, 0x03, 0x96, 0xC8, 0xE6, 0x81, /* b */ 0x00, 0xBD, 0xDB, 0x97, 0xE5, 0x55, 0xA5, 0x0A, 0x90, 0x8E, 0x43, 0xB0, 0x1C, 0x79, 0x8E, 0xA5, 0xDA, 0xA6, 0x78, 0x8F, 0x1E, 0xA2, 0x79, 0x4E, 0xFC, 0xF5, 0x71, 0x66, 0xB8, 0xC1, 0x40, 0x39, 0x60, 0x1E, 0x55, 0x82, 0x73, 0x40, 0xBE, /* x */ 0x00, 0x19, 0x7B, 0x07, 0x84, 0x5E, 0x9B, 0xE2, 0xD9, 0x6A, 0xDB, 0x0F, 0x5F, 0x3C, 0x7F, 0x2C, 0xFF, 0xBD, 0x7A, 0x3E, 0xB8, 0xB6, 0xFE, 0xC3, 0x5C, 0x7F, 0xD6, 0x7F, 0x26, 0xDD, 0xF6, 0x28, 0x5A, 0x64, 0x4F, 0x74, 0x0A, 0x26, 0x14, /* y */ 0x00, 0xE1, 0x9F, 0xBE, 0xB7, 0x6E, 0x0D, 0xA1, 0x71, 0x51, 0x7E, 0xCF, 0x40, 0x1B, 0x50, 0x28, 0x9B, 0xF0, 0x14, 0x10, 0x32, 0x88, 0x52, 0x7A, 0x9B, 0x41, 0x6A, 0x10, 0x5E, 0x80, 0x26, 0x0B, 0x54, 0x9F, 0xDC, 0x1B, 0x92, 0xC0, 0x3B, /* order */ 0x00, 0x00, 0x01, 0x01, 0xD5, 0x56, 0x57, 0x2A, 0xAB, 0xAC, 0x80, 0x01, 0x01, 0xD5, 0x56, 0x57, 0x2A, 0xAB, 0xAC, 0x80, 0x01, 0x02, 0x2D, 0x5C, 0x91, 0xDD, 0x17, 0x3F, 0x8F, 0xB5, 0x61, 0xDA, 0x68, 0x99, 0x16, 0x44, 0x43, 0x05, 0x1D } }; static const struct { EC_CURVE_DATA h; unsigned char data[20 + 45 * 6]; } _EC_X9_62_CHAR2_359V1 = { { NID_X9_62_characteristic_two_field, 20, 45, 0x4C }, { /* seed */ 0x2B, 0x35, 0x49, 0x20, 0xB7, 0x24, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x58, 0x5B, 0xA1, 0x33, 0x2D, 0xC6, /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x56, 0x67, 0x67, 0x6A, 0x65, 0x4B, 0x20, 0x75, 0x4F, 0x35, 0x6E, 0xA9, 0x20, 0x17, 0xD9, 0x46, 0x56, 0x7C, 0x46, 0x67, 0x55, 0x56, 0xF1, 0x95, 0x56, 0xA0, 0x46, 0x16, 0xB5, 0x67, 0xD2, 0x23, 0xA5, 0xE0, 0x56, 0x56, 0xFB, 0x54, 0x90, 0x16, 0xA9, 0x66, 0x56, 0xA5, 0x57, /* b */ 0x24, 0x72, 0xE2, 0xD0, 0x19, 0x7C, 0x49, 0x36, 0x3F, 0x1F, 0xE7, 0xF5, 0xB6, 0xDB, 0x07, 0x5D, 0x52, 0xB6, 0x94, 0x7D, 0x13, 0x5D, 0x8C, 0xA4, 0x45, 0x80, 0x5D, 0x39, 0xBC, 0x34, 0x56, 0x26, 0x08, 0x96, 0x87, 0x74, 0x2B, 0x63, 0x29, 0xE7, 0x06, 0x80, 0x23, 0x19, 0x88, /* x */ 0x3C, 0x25, 0x8E, 0xF3, 0x04, 0x77, 0x67, 0xE7, 0xED, 0xE0, 0xF1, 0xFD, 0xAA, 0x79, 0xDA, 0xEE, 0x38, 0x41, 0x36, 0x6A, 0x13, 0x2E, 0x16, 0x3A, 0xCE, 0xD4, 0xED, 0x24, 0x01, 0xDF, 0x9C, 0x6B, 0xDC, 0xDE, 0x98, 0xE8, 0xE7, 0x07, 0xC0, 0x7A, 0x22, 0x39, 0xB1, 0xB0, 0x97, /* y */ 0x53, 0xD7, 0xE0, 0x85, 0x29, 0x54, 0x70, 0x48, 0x12, 0x1E, 0x9C, 0x95, 0xF3, 0x79, 0x1D, 0xD8, 0x04, 0x96, 0x39, 0x48, 0xF3, 0x4F, 0xAE, 0x7B, 0xF4, 0x4E, 0xA8, 0x23, 0x65, 0xDC, 0x78, 0x68, 0xFE, 0x57, 0xE4, 0xAE, 0x2D, 0xE2, 0x11, 0x30, 0x5A, 0x40, 0x71, 0x04, 0xBD, /* order */ 0x01, 0xAF, 0x28, 0x6B, 0xCA, 0x1A, 0xF2, 0x86, 0xBC, 0xA1, 0xAF, 0x28, 0x6B, 0xCA, 0x1A, 0xF2, 0x86, 0xBC, 0xA1, 0xAF, 0x28, 0x6B, 0xC9, 0xFB, 0x8F, 0x6B, 0x85, 0xC5, 0x56, 0x89, 0x2C, 0x20, 0xA7, 0xEB, 0x96, 0x4F, 0xE7, 0x71, 0x9E, 0x74, 0xF4, 0x90, 0x75, 0x8D, 0x3B } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 47 * 6]; } _EC_X9_62_CHAR2_368W1 = { { NID_X9_62_characteristic_two_field, 0, 47, 0xFF70 }, { /* no seed */ /* p */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, /* a */ 0x00, 0xE0, 0xD2, 0xEE, 0x25, 0x09, 0x52, 0x06, 0xF5, 0xE2, 0xA4, 0xF9, 0xED, 0x22, 0x9F, 0x1F, 0x25, 0x6E, 0x79, 0xA0, 0xE2, 0xB4, 0x55, 0x97, 0x0D, 0x8D, 0x0D, 0x86, 0x5B, 0xD9, 0x47, 0x78, 0xC5, 0x76, 0xD6, 0x2F, 0x0A, 0xB7, 0x51, 0x9C, 0xCD, 0x2A, 0x1A, 0x90, 0x6A, 0xE3, 0x0D, /* b */ 0x00, 0xFC, 0x12, 0x17, 0xD4, 0x32, 0x0A, 0x90, 0x45, 0x2C, 0x76, 0x0A, 0x58, 0xED, 0xCD, 0x30, 0xC8, 0xDD, 0x06, 0x9B, 0x3C, 0x34, 0x45, 0x38, 0x37, 0xA3, 0x4E, 0xD5, 0x0C, 0xB5, 0x49, 0x17, 0xE1, 0xC2, 0x11, 0x2D, 0x84, 0xD1, 0x64, 0xF4, 0x44, 0xF8, 0xF7, 0x47, 0x86, 0x04, 0x6A, /* x */ 0x00, 0x10, 0x85, 0xE2, 0x75, 0x53, 0x81, 0xDC, 0xCC, 0xE3, 0xC1, 0x55, 0x7A, 0xFA, 0x10, 0xC2, 0xF0, 0xC0, 0xC2, 0x82, 0x56, 0x46, 0xC5, 0xB3, 0x4A, 0x39, 0x4C, 0xBC, 0xFA, 0x8B, 0xC1, 0x6B, 0x22, 0xE7, 0xE7, 0x89, 0xE9, 0x27, 0xBE, 0x21, 0x6F, 0x02, 0xE1, 0xFB, 0x13, 0x6A, 0x5F, /* y */ 0x00, 0x7B, 0x3E, 0xB1, 0xBD, 0xDC, 0xBA, 0x62, 0xD5, 0xD8, 0xB2, 0x05, 0x9B, 0x52, 0x57, 0x97, 0xFC, 0x73, 0x82, 0x2C, 0x59, 0x05, 0x9C, 0x62, 0x3A, 0x45, 0xFF, 0x38, 0x43, 0xCE, 0xE8, 0xF8, 0x7C, 0xD1, 0x85, 0x5A, 0xDA, 0xA8, 0x1E, 0x2A, 0x07, 0x50, 0xB8, 0x0F, 0xDA, 0x23, 0x10, /* order */ 0x00, 0x00, 0x01, 0x00, 0x90, 0x51, 0x2D, 0xA9, 0xAF, 0x72, 0xB0, 0x83, 0x49, 0xD9, 0x8A, 0x5D, 0xD4, 0xC7, 0xB0, 0x53, 0x2E, 0xCA, 0x51, 0xCE, 0x03, 0xE2, 0xD1, 0x0F, 0x3B, 0x7A, 0xC5, 0x79, 0xBD, 0x87, 0xE9, 0x09, 0xAE, 0x40, 0xA6, 0xF1, 0x31, 0xE9, 0xCF, 0xCE, 0x5B, 0xD9, 0x67 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 54 * 6]; } _EC_X9_62_CHAR2_431R1 = { { NID_X9_62_characteristic_two_field, 0, 54, 0x2760 }, { /* no seed */ /* p */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x1A, 0x82, 0x7E, 0xF0, 0x0D, 0xD6, 0xFC, 0x0E, 0x23, 0x4C, 0xAF, 0x04, 0x6C, 0x6A, 0x5D, 0x8A, 0x85, 0x39, 0x5B, 0x23, 0x6C, 0xC4, 0xAD, 0x2C, 0xF3, 0x2A, 0x0C, 0xAD, 0xBD, 0xC9, 0xDD, 0xF6, 0x20, 0xB0, 0xEB, 0x99, 0x06, 0xD0, 0x95, 0x7F, 0x6C, 0x6F, 0xEA, 0xCD, 0x61, 0x54, 0x68, 0xDF, 0x10, 0x4D, 0xE2, 0x96, 0xCD, 0x8F, /* b */ 0x10, 0xD9, 0xB4, 0xA3, 0xD9, 0x04, 0x7D, 0x8B, 0x15, 0x43, 0x59, 0xAB, 0xFB, 0x1B, 0x7F, 0x54, 0x85, 0xB0, 0x4C, 0xEB, 0x86, 0x82, 0x37, 0xDD, 0xC9, 0xDE, 0xDA, 0x98, 0x2A, 0x67, 0x9A, 0x5A, 0x91, 0x9B, 0x62, 0x6D, 0x4E, 0x50, 0xA8, 0xDD, 0x73, 0x1B, 0x10, 0x7A, 0x99, 0x62, 0x38, 0x1F, 0xB5, 0xD8, 0x07, 0xBF, 0x26, 0x18, /* x */ 0x12, 0x0F, 0xC0, 0x5D, 0x3C, 0x67, 0xA9, 0x9D, 0xE1, 0x61, 0xD2, 0xF4, 0x09, 0x26, 0x22, 0xFE, 0xCA, 0x70, 0x1B, 0xE4, 0xF5, 0x0F, 0x47, 0x58, 0x71, 0x4E, 0x8A, 0x87, 0xBB, 0xF2, 0xA6, 0x58, 0xEF, 0x8C, 0x21, 0xE7, 0xC5, 0xEF, 0xE9, 0x65, 0x36, 0x1F, 0x6C, 0x29, 0x99, 0xC0, 0xC2, 0x47, 0xB0, 0xDB, 0xD7, 0x0C, 0xE6, 0xB7, /* y */ 0x20, 0xD0, 0xAF, 0x89, 0x03, 0xA9, 0x6F, 0x8D, 0x5F, 0xA2, 0xC2, 0x55, 0x74, 0x5D, 0x3C, 0x45, 0x1B, 0x30, 0x2C, 0x93, 0x46, 0xD9, 0xB7, 0xE4, 0x85, 0xE7, 0xBC, 0xE4, 0x1F, 0x6B, 0x59, 0x1F, 0x3E, 0x8F, 0x6A, 0xDD, 0xCB, 0xB0, 0xBC, 0x4C, 0x2F, 0x94, 0x7A, 0x7D, 0xE1, 0xA8, 0x9B, 0x62, 0x5D, 0x6A, 0x59, 0x8B, 0x37, 0x60, /* order */ 0x00, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x23, 0xC3, 0x13, 0xFA, 0xB5, 0x05, 0x89, 0x70, 0x3B, 0x5E, 0xC6, 0x8D, 0x35, 0x87, 0xFE, 0xC6, 0x0D, 0x16, 0x1C, 0xC1, 0x49, 0xC1, 0xAD, 0x4A, 0x91 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 15 * 6]; } _EC_WTLS_1 = { { NID_X9_62_characteristic_two_field, 0, 15, 2 }, { /* no seed */ /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* x */ 0x01, 0x66, 0x79, 0x79, 0xA4, 0x0B, 0xA4, 0x97, 0xE5, 0xD5, 0xC2, 0x70, 0x78, 0x06, 0x17, /* y */ 0x00, 0xF4, 0x4B, 0x4A, 0xF1, 0xEC, 0xC2, 0x63, 0x0E, 0x08, 0x78, 0x5C, 0xEB, 0xCC, 0x15, /* order */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xBF, 0x91, 0xAF, 0x6D, 0xEA, 0x73 } }; /* IPSec curves */ /* * NOTE: The of curves over a extension field of non prime degree is not * recommended (Weil-descent). As the group order is not a prime this curve * is not suitable for ECDSA. */ static const struct { EC_CURVE_DATA h; unsigned char data[0 + 20 * 6]; } _EC_IPSEC_155_ID3 = { { NID_X9_62_characteristic_two_field, 0, 20, 3 }, { /* no seed */ /* p */ 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x33, 0x8f, /* x */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7b, /* y */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xc8, /* order */ 0x02, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xC7, 0xF3, 0xC7, 0x88, 0x1B, 0xD0, 0x86, 0x8F, 0xA8, 0x6C } }; /* * NOTE: The of curves over a extension field of non prime degree is not * recommended (Weil-descent). As the group order is not a prime this curve * is not suitable for ECDSA. */ static const struct { EC_CURVE_DATA h; unsigned char data[0 + 24 * 6]; } _EC_IPSEC_185_ID4 = { { NID_X9_62_characteristic_two_field, 0, 24, 2 }, { /* no seed */ /* p */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0xe9, /* x */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, /* y */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, /* order */ 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xED, 0xF9, 0x7C, 0x44, 0xDB, 0x9F, 0x24, 0x20, 0xBA, 0xFC, 0xA7, 0x5E } }; #endif /* * These curves were added by Annie Yousar. * For the definition of RFC 5639 curves see * http://www.ietf.org/rfc/rfc5639.txt These curves are generated verifiable * at random, nevertheless the seed is omitted as parameter because the * generation mechanism is different from those defined in ANSI X9.62. */ static const struct { EC_CURVE_DATA h; unsigned char data[0 + 20 * 6]; } _EC_brainpoolP160r1 = { { NID_X9_62_prime_field, 0, 20, 1 }, { /* no seed */ /* p */ 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, 0xC7, 0xAD, 0x95, 0xB3, 0xD8, 0x13, 0x95, 0x15, 0x62, 0x0F, /* a */ 0x34, 0x0E, 0x7B, 0xE2, 0xA2, 0x80, 0xEB, 0x74, 0xE2, 0xBE, 0x61, 0xBA, 0xDA, 0x74, 0x5D, 0x97, 0xE8, 0xF7, 0xC3, 0x00, /* b */ 0x1E, 0x58, 0x9A, 0x85, 0x95, 0x42, 0x34, 0x12, 0x13, 0x4F, 0xAA, 0x2D, 0xBD, 0xEC, 0x95, 0xC8, 0xD8, 0x67, 0x5E, 0x58, /* x */ 0xBE, 0xD5, 0xAF, 0x16, 0xEA, 0x3F, 0x6A, 0x4F, 0x62, 0x93, 0x8C, 0x46, 0x31, 0xEB, 0x5A, 0xF7, 0xBD, 0xBC, 0xDB, 0xC3, /* y */ 0x16, 0x67, 0xCB, 0x47, 0x7A, 0x1A, 0x8E, 0xC3, 0x38, 0xF9, 0x47, 0x41, 0x66, 0x9C, 0x97, 0x63, 0x16, 0xDA, 0x63, 0x21, /* order */ 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, 0x59, 0x91, 0xD4, 0x50, 0x29, 0x40, 0x9E, 0x60, 0xFC, 0x09 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 20 * 6]; } _EC_brainpoolP160t1 = { { NID_X9_62_prime_field, 0, 20, 1 }, { /* no seed */ /* p */ 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, 0xC7, 0xAD, 0x95, 0xB3, 0xD8, 0x13, 0x95, 0x15, 0x62, 0x0F, /* a */ 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, 0xC7, 0xAD, 0x95, 0xB3, 0xD8, 0x13, 0x95, 0x15, 0x62, 0x0C, /* b */ 0x7A, 0x55, 0x6B, 0x6D, 0xAE, 0x53, 0x5B, 0x7B, 0x51, 0xED, 0x2C, 0x4D, 0x7D, 0xAA, 0x7A, 0x0B, 0x5C, 0x55, 0xF3, 0x80, /* x */ 0xB1, 0x99, 0xB1, 0x3B, 0x9B, 0x34, 0xEF, 0xC1, 0x39, 0x7E, 0x64, 0xBA, 0xEB, 0x05, 0xAC, 0xC2, 0x65, 0xFF, 0x23, 0x78, /* y */ 0xAD, 0xD6, 0x71, 0x8B, 0x7C, 0x7C, 0x19, 0x61, 0xF0, 0x99, 0x1B, 0x84, 0x24, 0x43, 0x77, 0x21, 0x52, 0xC9, 0xE0, 0xAD, /* order */ 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, 0x59, 0x91, 0xD4, 0x50, 0x29, 0x40, 0x9E, 0x60, 0xFC, 0x09 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 24 * 6]; } _EC_brainpoolP192r1 = { { NID_X9_62_prime_field, 0, 24, 1 }, { /* no seed */ /* p */ 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, 0x46, 0x30, 0x93, 0xD1, 0x8D, 0xB7, 0x8F, 0xCE, 0x47, 0x6D, 0xE1, 0xA8, 0x62, 0x97, /* a */ 0x6A, 0x91, 0x17, 0x40, 0x76, 0xB1, 0xE0, 0xE1, 0x9C, 0x39, 0xC0, 0x31, 0xFE, 0x86, 0x85, 0xC1, 0xCA, 0xE0, 0x40, 0xE5, 0xC6, 0x9A, 0x28, 0xEF, /* b */ 0x46, 0x9A, 0x28, 0xEF, 0x7C, 0x28, 0xCC, 0xA3, 0xDC, 0x72, 0x1D, 0x04, 0x4F, 0x44, 0x96, 0xBC, 0xCA, 0x7E, 0xF4, 0x14, 0x6F, 0xBF, 0x25, 0xC9, /* x */ 0xC0, 0xA0, 0x64, 0x7E, 0xAA, 0xB6, 0xA4, 0x87, 0x53, 0xB0, 0x33, 0xC5, 0x6C, 0xB0, 0xF0, 0x90, 0x0A, 0x2F, 0x5C, 0x48, 0x53, 0x37, 0x5F, 0xD6, /* y */ 0x14, 0xB6, 0x90, 0x86, 0x6A, 0xBD, 0x5B, 0xB8, 0x8B, 0x5F, 0x48, 0x28, 0xC1, 0x49, 0x00, 0x02, 0xE6, 0x77, 0x3F, 0xA2, 0xFA, 0x29, 0x9B, 0x8F, /* order */ 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, 0x46, 0x2F, 0x9E, 0x9E, 0x91, 0x6B, 0x5B, 0xE8, 0xF1, 0x02, 0x9A, 0xC4, 0xAC, 0xC1 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 24 * 6]; } _EC_brainpoolP192t1 = { { NID_X9_62_prime_field, 0, 24, 1 }, { /* no seed */ /* p */ 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, 0x46, 0x30, 0x93, 0xD1, 0x8D, 0xB7, 0x8F, 0xCE, 0x47, 0x6D, 0xE1, 0xA8, 0x62, 0x97, /* a */ 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, 0x46, 0x30, 0x93, 0xD1, 0x8D, 0xB7, 0x8F, 0xCE, 0x47, 0x6D, 0xE1, 0xA8, 0x62, 0x94, /* b */ 0x13, 0xD5, 0x6F, 0xFA, 0xEC, 0x78, 0x68, 0x1E, 0x68, 0xF9, 0xDE, 0xB4, 0x3B, 0x35, 0xBE, 0xC2, 0xFB, 0x68, 0x54, 0x2E, 0x27, 0x89, 0x7B, 0x79, /* x */ 0x3A, 0xE9, 0xE5, 0x8C, 0x82, 0xF6, 0x3C, 0x30, 0x28, 0x2E, 0x1F, 0xE7, 0xBB, 0xF4, 0x3F, 0xA7, 0x2C, 0x44, 0x6A, 0xF6, 0xF4, 0x61, 0x81, 0x29, /* y */ 0x09, 0x7E, 0x2C, 0x56, 0x67, 0xC2, 0x22, 0x3A, 0x90, 0x2A, 0xB5, 0xCA, 0x44, 0x9D, 0x00, 0x84, 0xB7, 0xE5, 0xB3, 0xDE, 0x7C, 0xCC, 0x01, 0xC9, /* order */ 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, 0x46, 0x2F, 0x9E, 0x9E, 0x91, 0x6B, 0x5B, 0xE8, 0xF1, 0x02, 0x9A, 0xC4, 0xAC, 0xC1 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 28 * 6]; } _EC_brainpoolP224r1 = { { NID_X9_62_prime_field, 0, 28, 1 }, { /* no seed */ /* p */ 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, 0x30, 0x25, 0x75, 0xD1, 0xD7, 0x87, 0xB0, 0x9F, 0x07, 0x57, 0x97, 0xDA, 0x89, 0xF5, 0x7E, 0xC8, 0xC0, 0xFF, /* a */ 0x68, 0xA5, 0xE6, 0x2C, 0xA9, 0xCE, 0x6C, 0x1C, 0x29, 0x98, 0x03, 0xA6, 0xC1, 0x53, 0x0B, 0x51, 0x4E, 0x18, 0x2A, 0xD8, 0xB0, 0x04, 0x2A, 0x59, 0xCA, 0xD2, 0x9F, 0x43, /* b */ 0x25, 0x80, 0xF6, 0x3C, 0xCF, 0xE4, 0x41, 0x38, 0x87, 0x07, 0x13, 0xB1, 0xA9, 0x23, 0x69, 0xE3, 0x3E, 0x21, 0x35, 0xD2, 0x66, 0xDB, 0xB3, 0x72, 0x38, 0x6C, 0x40, 0x0B, /* x */ 0x0D, 0x90, 0x29, 0xAD, 0x2C, 0x7E, 0x5C, 0xF4, 0x34, 0x08, 0x23, 0xB2, 0xA8, 0x7D, 0xC6, 0x8C, 0x9E, 0x4C, 0xE3, 0x17, 0x4C, 0x1E, 0x6E, 0xFD, 0xEE, 0x12, 0xC0, 0x7D, /* y */ 0x58, 0xAA, 0x56, 0xF7, 0x72, 0xC0, 0x72, 0x6F, 0x24, 0xC6, 0xB8, 0x9E, 0x4E, 0xCD, 0xAC, 0x24, 0x35, 0x4B, 0x9E, 0x99, 0xCA, 0xA3, 0xF6, 0xD3, 0x76, 0x14, 0x02, 0xCD, /* order */ 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, 0x30, 0x25, 0x75, 0xD0, 0xFB, 0x98, 0xD1, 0x16, 0xBC, 0x4B, 0x6D, 0xDE, 0xBC, 0xA3, 0xA5, 0xA7, 0x93, 0x9F } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 28 * 6]; } _EC_brainpoolP224t1 = { { NID_X9_62_prime_field, 0, 28, 1 }, { /* no seed */ /* p */ 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, 0x30, 0x25, 0x75, 0xD1, 0xD7, 0x87, 0xB0, 0x9F, 0x07, 0x57, 0x97, 0xDA, 0x89, 0xF5, 0x7E, 0xC8, 0xC0, 0xFF, /* a */ 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, 0x30, 0x25, 0x75, 0xD1, 0xD7, 0x87, 0xB0, 0x9F, 0x07, 0x57, 0x97, 0xDA, 0x89, 0xF5, 0x7E, 0xC8, 0xC0, 0xFC, /* b */ 0x4B, 0x33, 0x7D, 0x93, 0x41, 0x04, 0xCD, 0x7B, 0xEF, 0x27, 0x1B, 0xF6, 0x0C, 0xED, 0x1E, 0xD2, 0x0D, 0xA1, 0x4C, 0x08, 0xB3, 0xBB, 0x64, 0xF1, 0x8A, 0x60, 0x88, 0x8D, /* x */ 0x6A, 0xB1, 0xE3, 0x44, 0xCE, 0x25, 0xFF, 0x38, 0x96, 0x42, 0x4E, 0x7F, 0xFE, 0x14, 0x76, 0x2E, 0xCB, 0x49, 0xF8, 0x92, 0x8A, 0xC0, 0xC7, 0x60, 0x29, 0xB4, 0xD5, 0x80, /* y */ 0x03, 0x74, 0xE9, 0xF5, 0x14, 0x3E, 0x56, 0x8C, 0xD2, 0x3F, 0x3F, 0x4D, 0x7C, 0x0D, 0x4B, 0x1E, 0x41, 0xC8, 0xCC, 0x0D, 0x1C, 0x6A, 0xBD, 0x5F, 0x1A, 0x46, 0xDB, 0x4C, /* order */ 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, 0x30, 0x25, 0x75, 0xD0, 0xFB, 0x98, 0xD1, 0x16, 0xBC, 0x4B, 0x6D, 0xDE, 0xBC, 0xA3, 0xA5, 0xA7, 0x93, 0x9F } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 32 * 6]; } _EC_brainpoolP256r1 = { { NID_X9_62_prime_field, 0, 32, 1 }, { /* no seed */ /* p */ 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x77, /* a */ 0x7D, 0x5A, 0x09, 0x75, 0xFC, 0x2C, 0x30, 0x57, 0xEE, 0xF6, 0x75, 0x30, 0x41, 0x7A, 0xFF, 0xE7, 0xFB, 0x80, 0x55, 0xC1, 0x26, 0xDC, 0x5C, 0x6C, 0xE9, 0x4A, 0x4B, 0x44, 0xF3, 0x30, 0xB5, 0xD9, /* b */ 0x26, 0xDC, 0x5C, 0x6C, 0xE9, 0x4A, 0x4B, 0x44, 0xF3, 0x30, 0xB5, 0xD9, 0xBB, 0xD7, 0x7C, 0xBF, 0x95, 0x84, 0x16, 0x29, 0x5C, 0xF7, 0xE1, 0xCE, 0x6B, 0xCC, 0xDC, 0x18, 0xFF, 0x8C, 0x07, 0xB6, /* x */ 0x8B, 0xD2, 0xAE, 0xB9, 0xCB, 0x7E, 0x57, 0xCB, 0x2C, 0x4B, 0x48, 0x2F, 0xFC, 0x81, 0xB7, 0xAF, 0xB9, 0xDE, 0x27, 0xE1, 0xE3, 0xBD, 0x23, 0xC2, 0x3A, 0x44, 0x53, 0xBD, 0x9A, 0xCE, 0x32, 0x62, /* y */ 0x54, 0x7E, 0xF8, 0x35, 0xC3, 0xDA, 0xC4, 0xFD, 0x97, 0xF8, 0x46, 0x1A, 0x14, 0x61, 0x1D, 0xC9, 0xC2, 0x77, 0x45, 0x13, 0x2D, 0xED, 0x8E, 0x54, 0x5C, 0x1D, 0x54, 0xC7, 0x2F, 0x04, 0x69, 0x97, /* order */ 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, 0x8C, 0x39, 0x7A, 0xA3, 0xB5, 0x61, 0xA6, 0xF7, 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, 0x56, 0xA7 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 32 * 6]; } _EC_brainpoolP256t1 = { { NID_X9_62_prime_field, 0, 32, 1 }, { /* no seed */ /* p */ 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x77, /* a */ 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x74, /* b */ 0x66, 0x2C, 0x61, 0xC4, 0x30, 0xD8, 0x4E, 0xA4, 0xFE, 0x66, 0xA7, 0x73, 0x3D, 0x0B, 0x76, 0xB7, 0xBF, 0x93, 0xEB, 0xC4, 0xAF, 0x2F, 0x49, 0x25, 0x6A, 0xE5, 0x81, 0x01, 0xFE, 0xE9, 0x2B, 0x04, /* x */ 0xA3, 0xE8, 0xEB, 0x3C, 0xC1, 0xCF, 0xE7, 0xB7, 0x73, 0x22, 0x13, 0xB2, 0x3A, 0x65, 0x61, 0x49, 0xAF, 0xA1, 0x42, 0xC4, 0x7A, 0xAF, 0xBC, 0x2B, 0x79, 0xA1, 0x91, 0x56, 0x2E, 0x13, 0x05, 0xF4, /* y */ 0x2D, 0x99, 0x6C, 0x82, 0x34, 0x39, 0xC5, 0x6D, 0x7F, 0x7B, 0x22, 0xE1, 0x46, 0x44, 0x41, 0x7E, 0x69, 0xBC, 0xB6, 0xDE, 0x39, 0xD0, 0x27, 0x00, 0x1D, 0xAB, 0xE8, 0xF3, 0x5B, 0x25, 0xC9, 0xBE, /* order */ 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, 0x8C, 0x39, 0x7A, 0xA3, 0xB5, 0x61, 0xA6, 0xF7, 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, 0x56, 0xA7 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 40 * 6]; } _EC_brainpoolP320r1 = { { NID_X9_62_prime_field, 0, 40, 1 }, { /* no seed */ /* p */ 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA6, 0xF6, 0xF4, 0x0D, 0xEF, 0x4F, 0x92, 0xB9, 0xEC, 0x78, 0x93, 0xEC, 0x28, 0xFC, 0xD4, 0x12, 0xB1, 0xF1, 0xB3, 0x2E, 0x27, /* a */ 0x3E, 0xE3, 0x0B, 0x56, 0x8F, 0xBA, 0xB0, 0xF8, 0x83, 0xCC, 0xEB, 0xD4, 0x6D, 0x3F, 0x3B, 0xB8, 0xA2, 0xA7, 0x35, 0x13, 0xF5, 0xEB, 0x79, 0xDA, 0x66, 0x19, 0x0E, 0xB0, 0x85, 0xFF, 0xA9, 0xF4, 0x92, 0xF3, 0x75, 0xA9, 0x7D, 0x86, 0x0E, 0xB4, /* b */ 0x52, 0x08, 0x83, 0x94, 0x9D, 0xFD, 0xBC, 0x42, 0xD3, 0xAD, 0x19, 0x86, 0x40, 0x68, 0x8A, 0x6F, 0xE1, 0x3F, 0x41, 0x34, 0x95, 0x54, 0xB4, 0x9A, 0xCC, 0x31, 0xDC, 0xCD, 0x88, 0x45, 0x39, 0x81, 0x6F, 0x5E, 0xB4, 0xAC, 0x8F, 0xB1, 0xF1, 0xA6, /* x */ 0x43, 0xBD, 0x7E, 0x9A, 0xFB, 0x53, 0xD8, 0xB8, 0x52, 0x89, 0xBC, 0xC4, 0x8E, 0xE5, 0xBF, 0xE6, 0xF2, 0x01, 0x37, 0xD1, 0x0A, 0x08, 0x7E, 0xB6, 0xE7, 0x87, 0x1E, 0x2A, 0x10, 0xA5, 0x99, 0xC7, 0x10, 0xAF, 0x8D, 0x0D, 0x39, 0xE2, 0x06, 0x11, /* y */ 0x14, 0xFD, 0xD0, 0x55, 0x45, 0xEC, 0x1C, 0xC8, 0xAB, 0x40, 0x93, 0x24, 0x7F, 0x77, 0x27, 0x5E, 0x07, 0x43, 0xFF, 0xED, 0x11, 0x71, 0x82, 0xEA, 0xA9, 0xC7, 0x78, 0x77, 0xAA, 0xAC, 0x6A, 0xC7, 0xD3, 0x52, 0x45, 0xD1, 0x69, 0x2E, 0x8E, 0xE1, /* order */ 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA5, 0xB6, 0x8F, 0x12, 0xA3, 0x2D, 0x48, 0x2E, 0xC7, 0xEE, 0x86, 0x58, 0xE9, 0x86, 0x91, 0x55, 0x5B, 0x44, 0xC5, 0x93, 0x11 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 40 * 6]; } _EC_brainpoolP320t1 = { { NID_X9_62_prime_field, 0, 40, 1 }, { /* no seed */ /* p */ 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA6, 0xF6, 0xF4, 0x0D, 0xEF, 0x4F, 0x92, 0xB9, 0xEC, 0x78, 0x93, 0xEC, 0x28, 0xFC, 0xD4, 0x12, 0xB1, 0xF1, 0xB3, 0x2E, 0x27, /* a */ 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA6, 0xF6, 0xF4, 0x0D, 0xEF, 0x4F, 0x92, 0xB9, 0xEC, 0x78, 0x93, 0xEC, 0x28, 0xFC, 0xD4, 0x12, 0xB1, 0xF1, 0xB3, 0x2E, 0x24, /* b */ 0xA7, 0xF5, 0x61, 0xE0, 0x38, 0xEB, 0x1E, 0xD5, 0x60, 0xB3, 0xD1, 0x47, 0xDB, 0x78, 0x20, 0x13, 0x06, 0x4C, 0x19, 0xF2, 0x7E, 0xD2, 0x7C, 0x67, 0x80, 0xAA, 0xF7, 0x7F, 0xB8, 0xA5, 0x47, 0xCE, 0xB5, 0xB4, 0xFE, 0xF4, 0x22, 0x34, 0x03, 0x53, /* x */ 0x92, 0x5B, 0xE9, 0xFB, 0x01, 0xAF, 0xC6, 0xFB, 0x4D, 0x3E, 0x7D, 0x49, 0x90, 0x01, 0x0F, 0x81, 0x34, 0x08, 0xAB, 0x10, 0x6C, 0x4F, 0x09, 0xCB, 0x7E, 0xE0, 0x78, 0x68, 0xCC, 0x13, 0x6F, 0xFF, 0x33, 0x57, 0xF6, 0x24, 0xA2, 0x1B, 0xED, 0x52, /* y */ 0x63, 0xBA, 0x3A, 0x7A, 0x27, 0x48, 0x3E, 0xBF, 0x66, 0x71, 0xDB, 0xEF, 0x7A, 0xBB, 0x30, 0xEB, 0xEE, 0x08, 0x4E, 0x58, 0xA0, 0xB0, 0x77, 0xAD, 0x42, 0xA5, 0xA0, 0x98, 0x9D, 0x1E, 0xE7, 0x1B, 0x1B, 0x9B, 0xC0, 0x45, 0x5F, 0xB0, 0xD2, 0xC3, /* order */ 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA5, 0xB6, 0x8F, 0x12, 0xA3, 0x2D, 0x48, 0x2E, 0xC7, 0xEE, 0x86, 0x58, 0xE9, 0x86, 0x91, 0x55, 0x5B, 0x44, 0xC5, 0x93, 0x11 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 48 * 6]; } _EC_brainpoolP384r1 = { { NID_X9_62_prime_field, 0, 48, 1 }, { /* no seed */ /* p */ 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, 0xED, 0x54, 0x56, 0xB4, 0x12, 0xB1, 0xDA, 0x19, 0x7F, 0xB7, 0x11, 0x23, 0xAC, 0xD3, 0xA7, 0x29, 0x90, 0x1D, 0x1A, 0x71, 0x87, 0x47, 0x00, 0x13, 0x31, 0x07, 0xEC, 0x53, /* a */ 0x7B, 0xC3, 0x82, 0xC6, 0x3D, 0x8C, 0x15, 0x0C, 0x3C, 0x72, 0x08, 0x0A, 0xCE, 0x05, 0xAF, 0xA0, 0xC2, 0xBE, 0xA2, 0x8E, 0x4F, 0xB2, 0x27, 0x87, 0x13, 0x91, 0x65, 0xEF, 0xBA, 0x91, 0xF9, 0x0F, 0x8A, 0xA5, 0x81, 0x4A, 0x50, 0x3A, 0xD4, 0xEB, 0x04, 0xA8, 0xC7, 0xDD, 0x22, 0xCE, 0x28, 0x26, /* b */ 0x04, 0xA8, 0xC7, 0xDD, 0x22, 0xCE, 0x28, 0x26, 0x8B, 0x39, 0xB5, 0x54, 0x16, 0xF0, 0x44, 0x7C, 0x2F, 0xB7, 0x7D, 0xE1, 0x07, 0xDC, 0xD2, 0xA6, 0x2E, 0x88, 0x0E, 0xA5, 0x3E, 0xEB, 0x62, 0xD5, 0x7C, 0xB4, 0x39, 0x02, 0x95, 0xDB, 0xC9, 0x94, 0x3A, 0xB7, 0x86, 0x96, 0xFA, 0x50, 0x4C, 0x11, /* x */ 0x1D, 0x1C, 0x64, 0xF0, 0x68, 0xCF, 0x45, 0xFF, 0xA2, 0xA6, 0x3A, 0x81, 0xB7, 0xC1, 0x3F, 0x6B, 0x88, 0x47, 0xA3, 0xE7, 0x7E, 0xF1, 0x4F, 0xE3, 0xDB, 0x7F, 0xCA, 0xFE, 0x0C, 0xBD, 0x10, 0xE8, 0xE8, 0x26, 0xE0, 0x34, 0x36, 0xD6, 0x46, 0xAA, 0xEF, 0x87, 0xB2, 0xE2, 0x47, 0xD4, 0xAF, 0x1E, /* y */ 0x8A, 0xBE, 0x1D, 0x75, 0x20, 0xF9, 0xC2, 0xA4, 0x5C, 0xB1, 0xEB, 0x8E, 0x95, 0xCF, 0xD5, 0x52, 0x62, 0xB7, 0x0B, 0x29, 0xFE, 0xEC, 0x58, 0x64, 0xE1, 0x9C, 0x05, 0x4F, 0xF9, 0x91, 0x29, 0x28, 0x0E, 0x46, 0x46, 0x21, 0x77, 0x91, 0x81, 0x11, 0x42, 0x82, 0x03, 0x41, 0x26, 0x3C, 0x53, 0x15, /* order */ 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, 0xED, 0x54, 0x56, 0xB3, 0x1F, 0x16, 0x6E, 0x6C, 0xAC, 0x04, 0x25, 0xA7, 0xCF, 0x3A, 0xB6, 0xAF, 0x6B, 0x7F, 0xC3, 0x10, 0x3B, 0x88, 0x32, 0x02, 0xE9, 0x04, 0x65, 0x65 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 48 * 6]; } _EC_brainpoolP384t1 = { { NID_X9_62_prime_field, 0, 48, 1 }, { /* no seed */ /* p */ 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, 0xED, 0x54, 0x56, 0xB4, 0x12, 0xB1, 0xDA, 0x19, 0x7F, 0xB7, 0x11, 0x23, 0xAC, 0xD3, 0xA7, 0x29, 0x90, 0x1D, 0x1A, 0x71, 0x87, 0x47, 0x00, 0x13, 0x31, 0x07, 0xEC, 0x53, /* a */ 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, 0xED, 0x54, 0x56, 0xB4, 0x12, 0xB1, 0xDA, 0x19, 0x7F, 0xB7, 0x11, 0x23, 0xAC, 0xD3, 0xA7, 0x29, 0x90, 0x1D, 0x1A, 0x71, 0x87, 0x47, 0x00, 0x13, 0x31, 0x07, 0xEC, 0x50, /* b */ 0x7F, 0x51, 0x9E, 0xAD, 0xA7, 0xBD, 0xA8, 0x1B, 0xD8, 0x26, 0xDB, 0xA6, 0x47, 0x91, 0x0F, 0x8C, 0x4B, 0x93, 0x46, 0xED, 0x8C, 0xCD, 0xC6, 0x4E, 0x4B, 0x1A, 0xBD, 0x11, 0x75, 0x6D, 0xCE, 0x1D, 0x20, 0x74, 0xAA, 0x26, 0x3B, 0x88, 0x80, 0x5C, 0xED, 0x70, 0x35, 0x5A, 0x33, 0xB4, 0x71, 0xEE, /* x */ 0x18, 0xDE, 0x98, 0xB0, 0x2D, 0xB9, 0xA3, 0x06, 0xF2, 0xAF, 0xCD, 0x72, 0x35, 0xF7, 0x2A, 0x81, 0x9B, 0x80, 0xAB, 0x12, 0xEB, 0xD6, 0x53, 0x17, 0x24, 0x76, 0xFE, 0xCD, 0x46, 0x2A, 0xAB, 0xFF, 0xC4, 0xFF, 0x19, 0x1B, 0x94, 0x6A, 0x5F, 0x54, 0xD8, 0xD0, 0xAA, 0x2F, 0x41, 0x88, 0x08, 0xCC, /* y */ 0x25, 0xAB, 0x05, 0x69, 0x62, 0xD3, 0x06, 0x51, 0xA1, 0x14, 0xAF, 0xD2, 0x75, 0x5A, 0xD3, 0x36, 0x74, 0x7F, 0x93, 0x47, 0x5B, 0x7A, 0x1F, 0xCA, 0x3B, 0x88, 0xF2, 0xB6, 0xA2, 0x08, 0xCC, 0xFE, 0x46, 0x94, 0x08, 0x58, 0x4D, 0xC2, 0xB2, 0x91, 0x26, 0x75, 0xBF, 0x5B, 0x9E, 0x58, 0x29, 0x28, /* order */ 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, 0xED, 0x54, 0x56, 0xB3, 0x1F, 0x16, 0x6E, 0x6C, 0xAC, 0x04, 0x25, 0xA7, 0xCF, 0x3A, 0xB6, 0xAF, 0x6B, 0x7F, 0xC3, 0x10, 0x3B, 0x88, 0x32, 0x02, 0xE9, 0x04, 0x65, 0x65 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 64 * 6]; } _EC_brainpoolP512r1 = { { NID_X9_62_prime_field, 0, 64, 1 }, { /* no seed */ /* p */ 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, 0x08, 0x71, 0x7D, 0x4D, 0x9B, 0x00, 0x9B, 0xC6, 0x68, 0x42, 0xAE, 0xCD, 0xA1, 0x2A, 0xE6, 0xA3, 0x80, 0xE6, 0x28, 0x81, 0xFF, 0x2F, 0x2D, 0x82, 0xC6, 0x85, 0x28, 0xAA, 0x60, 0x56, 0x58, 0x3A, 0x48, 0xF3, /* a */ 0x78, 0x30, 0xA3, 0x31, 0x8B, 0x60, 0x3B, 0x89, 0xE2, 0x32, 0x71, 0x45, 0xAC, 0x23, 0x4C, 0xC5, 0x94, 0xCB, 0xDD, 0x8D, 0x3D, 0xF9, 0x16, 0x10, 0xA8, 0x34, 0x41, 0xCA, 0xEA, 0x98, 0x63, 0xBC, 0x2D, 0xED, 0x5D, 0x5A, 0xA8, 0x25, 0x3A, 0xA1, 0x0A, 0x2E, 0xF1, 0xC9, 0x8B, 0x9A, 0xC8, 0xB5, 0x7F, 0x11, 0x17, 0xA7, 0x2B, 0xF2, 0xC7, 0xB9, 0xE7, 0xC1, 0xAC, 0x4D, 0x77, 0xFC, 0x94, 0xCA, /* b */ 0x3D, 0xF9, 0x16, 0x10, 0xA8, 0x34, 0x41, 0xCA, 0xEA, 0x98, 0x63, 0xBC, 0x2D, 0xED, 0x5D, 0x5A, 0xA8, 0x25, 0x3A, 0xA1, 0x0A, 0x2E, 0xF1, 0xC9, 0x8B, 0x9A, 0xC8, 0xB5, 0x7F, 0x11, 0x17, 0xA7, 0x2B, 0xF2, 0xC7, 0xB9, 0xE7, 0xC1, 0xAC, 0x4D, 0x77, 0xFC, 0x94, 0xCA, 0xDC, 0x08, 0x3E, 0x67, 0x98, 0x40, 0x50, 0xB7, 0x5E, 0xBA, 0xE5, 0xDD, 0x28, 0x09, 0xBD, 0x63, 0x80, 0x16, 0xF7, 0x23, /* x */ 0x81, 0xAE, 0xE4, 0xBD, 0xD8, 0x2E, 0xD9, 0x64, 0x5A, 0x21, 0x32, 0x2E, 0x9C, 0x4C, 0x6A, 0x93, 0x85, 0xED, 0x9F, 0x70, 0xB5, 0xD9, 0x16, 0xC1, 0xB4, 0x3B, 0x62, 0xEE, 0xF4, 0xD0, 0x09, 0x8E, 0xFF, 0x3B, 0x1F, 0x78, 0xE2, 0xD0, 0xD4, 0x8D, 0x50, 0xD1, 0x68, 0x7B, 0x93, 0xB9, 0x7D, 0x5F, 0x7C, 0x6D, 0x50, 0x47, 0x40, 0x6A, 0x5E, 0x68, 0x8B, 0x35, 0x22, 0x09, 0xBC, 0xB9, 0xF8, 0x22, /* y */ 0x7D, 0xDE, 0x38, 0x5D, 0x56, 0x63, 0x32, 0xEC, 0xC0, 0xEA, 0xBF, 0xA9, 0xCF, 0x78, 0x22, 0xFD, 0xF2, 0x09, 0xF7, 0x00, 0x24, 0xA5, 0x7B, 0x1A, 0xA0, 0x00, 0xC5, 0x5B, 0x88, 0x1F, 0x81, 0x11, 0xB2, 0xDC, 0xDE, 0x49, 0x4A, 0x5F, 0x48, 0x5E, 0x5B, 0xCA, 0x4B, 0xD8, 0x8A, 0x27, 0x63, 0xAE, 0xD1, 0xCA, 0x2B, 0x2F, 0xA8, 0xF0, 0x54, 0x06, 0x78, 0xCD, 0x1E, 0x0F, 0x3A, 0xD8, 0x08, 0x92, /* order */ 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, 0x08, 0x70, 0x55, 0x3E, 0x5C, 0x41, 0x4C, 0xA9, 0x26, 0x19, 0x41, 0x86, 0x61, 0x19, 0x7F, 0xAC, 0x10, 0x47, 0x1D, 0xB1, 0xD3, 0x81, 0x08, 0x5D, 0xDA, 0xDD, 0xB5, 0x87, 0x96, 0x82, 0x9C, 0xA9, 0x00, 0x69 } }; static const struct { EC_CURVE_DATA h; unsigned char data[0 + 64 * 6]; } _EC_brainpoolP512t1 = { { NID_X9_62_prime_field, 0, 64, 1 }, { /* no seed */ /* p */ 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, 0x08, 0x71, 0x7D, 0x4D, 0x9B, 0x00, 0x9B, 0xC6, 0x68, 0x42, 0xAE, 0xCD, 0xA1, 0x2A, 0xE6, 0xA3, 0x80, 0xE6, 0x28, 0x81, 0xFF, 0x2F, 0x2D, 0x82, 0xC6, 0x85, 0x28, 0xAA, 0x60, 0x56, 0x58, 0x3A, 0x48, 0xF3, /* a */ 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, 0x08, 0x71, 0x7D, 0x4D, 0x9B, 0x00, 0x9B, 0xC6, 0x68, 0x42, 0xAE, 0xCD, 0xA1, 0x2A, 0xE6, 0xA3, 0x80, 0xE6, 0x28, 0x81, 0xFF, 0x2F, 0x2D, 0x82, 0xC6, 0x85, 0x28, 0xAA, 0x60, 0x56, 0x58, 0x3A, 0x48, 0xF0, /* b */ 0x7C, 0xBB, 0xBC, 0xF9, 0x44, 0x1C, 0xFA, 0xB7, 0x6E, 0x18, 0x90, 0xE4, 0x68, 0x84, 0xEA, 0xE3, 0x21, 0xF7, 0x0C, 0x0B, 0xCB, 0x49, 0x81, 0x52, 0x78, 0x97, 0x50, 0x4B, 0xEC, 0x3E, 0x36, 0xA6, 0x2B, 0xCD, 0xFA, 0x23, 0x04, 0x97, 0x65, 0x40, 0xF6, 0x45, 0x00, 0x85, 0xF2, 0xDA, 0xE1, 0x45, 0xC2, 0x25, 0x53, 0xB4, 0x65, 0x76, 0x36, 0x89, 0x18, 0x0E, 0xA2, 0x57, 0x18, 0x67, 0x42, 0x3E, /* x */ 0x64, 0x0E, 0xCE, 0x5C, 0x12, 0x78, 0x87, 0x17, 0xB9, 0xC1, 0xBA, 0x06, 0xCB, 0xC2, 0xA6, 0xFE, 0xBA, 0x85, 0x84, 0x24, 0x58, 0xC5, 0x6D, 0xDE, 0x9D, 0xB1, 0x75, 0x8D, 0x39, 0xC0, 0x31, 0x3D, 0x82, 0xBA, 0x51, 0x73, 0x5C, 0xDB, 0x3E, 0xA4, 0x99, 0xAA, 0x77, 0xA7, 0xD6, 0x94, 0x3A, 0x64, 0xF7, 0xA3, 0xF2, 0x5F, 0xE2, 0x6F, 0x06, 0xB5, 0x1B, 0xAA, 0x26, 0x96, 0xFA, 0x90, 0x35, 0xDA, /* y */ 0x5B, 0x53, 0x4B, 0xD5, 0x95, 0xF5, 0xAF, 0x0F, 0xA2, 0xC8, 0x92, 0x37, 0x6C, 0x84, 0xAC, 0xE1, 0xBB, 0x4E, 0x30, 0x19, 0xB7, 0x16, 0x34, 0xC0, 0x11, 0x31, 0x15, 0x9C, 0xAE, 0x03, 0xCE, 0xE9, 0xD9, 0x93, 0x21, 0x84, 0xBE, 0xEF, 0x21, 0x6B, 0xD7, 0x1D, 0xF2, 0xDA, 0xDF, 0x86, 0xA6, 0x27, 0x30, 0x6E, 0xCF, 0xF9, 0x6D, 0xBB, 0x8B, 0xAC, 0xE1, 0x98, 0xB6, 0x1E, 0x00, 0xF8, 0xB3, 0x32, /* order */ 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, 0x08, 0x70, 0x55, 0x3E, 0x5C, 0x41, 0x4C, 0xA9, 0x26, 0x19, 0x41, 0x86, 0x61, 0x19, 0x7F, 0xAC, 0x10, 0x47, 0x1D, 0xB1, 0xD3, 0x81, 0x08, 0x5D, 0xDA, 0xDD, 0xB5, 0x87, 0x96, 0x82, 0x9C, 0xA9, 0x00, 0x69 } }; #ifndef OPENSSL_NO_SM2 static const struct { EC_CURVE_DATA h; unsigned char data[0 + 32 * 6]; } _EC_sm2p256v1 = { { NID_X9_62_prime_field, 0, 32, 1 }, { /* no seed */ /* p */ 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a */ 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, /* b */ 0x28, 0xe9, 0xfa, 0x9e, 0x9d, 0x9f, 0x5e, 0x34, 0x4d, 0x5a, 0x9e, 0x4b, 0xcf, 0x65, 0x09, 0xa7, 0xf3, 0x97, 0x89, 0xf5, 0x15, 0xab, 0x8f, 0x92, 0xdd, 0xbc, 0xbd, 0x41, 0x4d, 0x94, 0x0e, 0x93, /* x */ 0x32, 0xc4, 0xae, 0x2c, 0x1f, 0x19, 0x81, 0x19, 0x5f, 0x99, 0x04, 0x46, 0x6a, 0x39, 0xc9, 0x94, 0x8f, 0xe3, 0x0b, 0xbf, 0xf2, 0x66, 0x0b, 0xe1, 0x71, 0x5a, 0x45, 0x89, 0x33, 0x4c, 0x74, 0xc7, /* y */ 0xbc, 0x37, 0x36, 0xa2, 0xf4, 0xf6, 0x77, 0x9c, 0x59, 0xbd, 0xce, 0xe3, 0x6b, 0x69, 0x21, 0x53, 0xd0, 0xa9, 0x87, 0x7c, 0xc6, 0x2a, 0x47, 0x40, 0x02, 0xdf, 0x32, 0xe5, 0x21, 0x39, 0xf0, 0xa0, /* order */ 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x72, 0x03, 0xdf, 0x6b, 0x21, 0xc6, 0x05, 0x2b, 0x53, 0xbb, 0xf4, 0x09, 0x39, 0xd5, 0x41, 0x23, } }; #endif /* OPENSSL_NO_SM2 */ typedef struct _ec_list_element_st { int nid; const EC_CURVE_DATA *data; const EC_METHOD *(*meth) (void); const char *comment; } ec_list_element; static const ec_list_element curve_list[] = { /* prime field curves */ /* secg curves */ {NID_secp112r1, &_EC_SECG_PRIME_112R1.h, 0, "SECG/WTLS curve over a 112 bit prime field"}, {NID_secp112r2, &_EC_SECG_PRIME_112R2.h, 0, "SECG curve over a 112 bit prime field"}, {NID_secp128r1, &_EC_SECG_PRIME_128R1.h, 0, "SECG curve over a 128 bit prime field"}, {NID_secp128r2, &_EC_SECG_PRIME_128R2.h, 0, "SECG curve over a 128 bit prime field"}, {NID_secp160k1, &_EC_SECG_PRIME_160K1.h, 0, "SECG curve over a 160 bit prime field"}, {NID_secp160r1, &_EC_SECG_PRIME_160R1.h, 0, "SECG curve over a 160 bit prime field"}, {NID_secp160r2, &_EC_SECG_PRIME_160R2.h, 0, "SECG/WTLS curve over a 160 bit prime field"}, /* SECG secp192r1 is the same as X9.62 prime192v1 and hence omitted */ {NID_secp192k1, &_EC_SECG_PRIME_192K1.h, 0, "SECG curve over a 192 bit prime field"}, {NID_secp224k1, &_EC_SECG_PRIME_224K1.h, 0, "SECG curve over a 224 bit prime field"}, #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 {NID_secp224r1, &_EC_NIST_PRIME_224.h, EC_GFp_nistp224_method, "NIST/SECG curve over a 224 bit prime field"}, #else {NID_secp224r1, &_EC_NIST_PRIME_224.h, 0, "NIST/SECG curve over a 224 bit prime field"}, #endif {NID_secp256k1, &_EC_SECG_PRIME_256K1.h, 0, "SECG curve over a 256 bit prime field"}, /* SECG secp256r1 is the same as X9.62 prime256v1 and hence omitted */ {NID_secp384r1, &_EC_NIST_PRIME_384.h, 0, "NIST/SECG curve over a 384 bit prime field"}, #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 {NID_secp521r1, &_EC_NIST_PRIME_521.h, EC_GFp_nistp521_method, "NIST/SECG curve over a 521 bit prime field"}, #else {NID_secp521r1, &_EC_NIST_PRIME_521.h, 0, "NIST/SECG curve over a 521 bit prime field"}, #endif /* X9.62 curves */ {NID_X9_62_prime192v1, &_EC_NIST_PRIME_192.h, 0, "NIST/X9.62/SECG curve over a 192 bit prime field"}, {NID_X9_62_prime192v2, &_EC_X9_62_PRIME_192V2.h, 0, "X9.62 curve over a 192 bit prime field"}, {NID_X9_62_prime192v3, &_EC_X9_62_PRIME_192V3.h, 0, "X9.62 curve over a 192 bit prime field"}, {NID_X9_62_prime239v1, &_EC_X9_62_PRIME_239V1.h, 0, "X9.62 curve over a 239 bit prime field"}, {NID_X9_62_prime239v2, &_EC_X9_62_PRIME_239V2.h, 0, "X9.62 curve over a 239 bit prime field"}, {NID_X9_62_prime239v3, &_EC_X9_62_PRIME_239V3.h, 0, "X9.62 curve over a 239 bit prime field"}, {NID_X9_62_prime256v1, &_EC_X9_62_PRIME_256V1.h, #if defined(ECP_NISTZ256_ASM) EC_GFp_nistz256_method, #elif !defined(OPENSSL_NO_EC_NISTP_64_GCC_128) EC_GFp_nistp256_method, #else 0, #endif "X9.62/SECG curve over a 256 bit prime field"}, #ifndef OPENSSL_NO_EC2M /* characteristic two field curves */ /* NIST/SECG curves */ {NID_sect113r1, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field"}, {NID_sect113r2, &_EC_SECG_CHAR2_113R2.h, 0, "SECG curve over a 113 bit binary field"}, {NID_sect131r1, &_EC_SECG_CHAR2_131R1.h, 0, "SECG/WTLS curve over a 131 bit binary field"}, {NID_sect131r2, &_EC_SECG_CHAR2_131R2.h, 0, "SECG curve over a 131 bit binary field"}, {NID_sect163k1, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field"}, {NID_sect163r1, &_EC_SECG_CHAR2_163R1.h, 0, "SECG curve over a 163 bit binary field"}, {NID_sect163r2, &_EC_NIST_CHAR2_163B.h, 0, "NIST/SECG curve over a 163 bit binary field"}, {NID_sect193r1, &_EC_SECG_CHAR2_193R1.h, 0, "SECG curve over a 193 bit binary field"}, {NID_sect193r2, &_EC_SECG_CHAR2_193R2.h, 0, "SECG curve over a 193 bit binary field"}, {NID_sect233k1, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, {NID_sect233r1, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, {NID_sect239k1, &_EC_SECG_CHAR2_239K1.h, 0, "SECG curve over a 239 bit binary field"}, {NID_sect283k1, &_EC_NIST_CHAR2_283K.h, 0, "NIST/SECG curve over a 283 bit binary field"}, {NID_sect283r1, &_EC_NIST_CHAR2_283B.h, 0, "NIST/SECG curve over a 283 bit binary field"}, {NID_sect409k1, &_EC_NIST_CHAR2_409K.h, 0, "NIST/SECG curve over a 409 bit binary field"}, {NID_sect409r1, &_EC_NIST_CHAR2_409B.h, 0, "NIST/SECG curve over a 409 bit binary field"}, {NID_sect571k1, &_EC_NIST_CHAR2_571K.h, 0, "NIST/SECG curve over a 571 bit binary field"}, {NID_sect571r1, &_EC_NIST_CHAR2_571B.h, 0, "NIST/SECG curve over a 571 bit binary field"}, /* X9.62 curves */ {NID_X9_62_c2pnb163v1, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field"}, {NID_X9_62_c2pnb163v2, &_EC_X9_62_CHAR2_163V2.h, 0, "X9.62 curve over a 163 bit binary field"}, {NID_X9_62_c2pnb163v3, &_EC_X9_62_CHAR2_163V3.h, 0, "X9.62 curve over a 163 bit binary field"}, {NID_X9_62_c2pnb176v1, &_EC_X9_62_CHAR2_176V1.h, 0, "X9.62 curve over a 176 bit binary field"}, {NID_X9_62_c2tnb191v1, &_EC_X9_62_CHAR2_191V1.h, 0, "X9.62 curve over a 191 bit binary field"}, {NID_X9_62_c2tnb191v2, &_EC_X9_62_CHAR2_191V2.h, 0, "X9.62 curve over a 191 bit binary field"}, {NID_X9_62_c2tnb191v3, &_EC_X9_62_CHAR2_191V3.h, 0, "X9.62 curve over a 191 bit binary field"}, {NID_X9_62_c2pnb208w1, &_EC_X9_62_CHAR2_208W1.h, 0, "X9.62 curve over a 208 bit binary field"}, {NID_X9_62_c2tnb239v1, &_EC_X9_62_CHAR2_239V1.h, 0, "X9.62 curve over a 239 bit binary field"}, {NID_X9_62_c2tnb239v2, &_EC_X9_62_CHAR2_239V2.h, 0, "X9.62 curve over a 239 bit binary field"}, {NID_X9_62_c2tnb239v3, &_EC_X9_62_CHAR2_239V3.h, 0, "X9.62 curve over a 239 bit binary field"}, {NID_X9_62_c2pnb272w1, &_EC_X9_62_CHAR2_272W1.h, 0, "X9.62 curve over a 272 bit binary field"}, {NID_X9_62_c2pnb304w1, &_EC_X9_62_CHAR2_304W1.h, 0, "X9.62 curve over a 304 bit binary field"}, {NID_X9_62_c2tnb359v1, &_EC_X9_62_CHAR2_359V1.h, 0, "X9.62 curve over a 359 bit binary field"}, {NID_X9_62_c2pnb368w1, &_EC_X9_62_CHAR2_368W1.h, 0, "X9.62 curve over a 368 bit binary field"}, {NID_X9_62_c2tnb431r1, &_EC_X9_62_CHAR2_431R1.h, 0, "X9.62 curve over a 431 bit binary field"}, /* * the WAP/WTLS curves [unlike SECG, spec has its own OIDs for curves * from X9.62] */ {NID_wap_wsg_idm_ecid_wtls1, &_EC_WTLS_1.h, 0, "WTLS curve over a 113 bit binary field"}, {NID_wap_wsg_idm_ecid_wtls3, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field"}, {NID_wap_wsg_idm_ecid_wtls4, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field"}, {NID_wap_wsg_idm_ecid_wtls5, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field"}, #endif {NID_wap_wsg_idm_ecid_wtls6, &_EC_SECG_PRIME_112R1.h, 0, "SECG/WTLS curve over a 112 bit prime field"}, {NID_wap_wsg_idm_ecid_wtls7, &_EC_SECG_PRIME_160R2.h, 0, "SECG/WTLS curve over a 160 bit prime field"}, {NID_wap_wsg_idm_ecid_wtls8, &_EC_WTLS_8.h, 0, "WTLS curve over a 112 bit prime field"}, {NID_wap_wsg_idm_ecid_wtls9, &_EC_WTLS_9.h, 0, "WTLS curve over a 160 bit prime field"}, #ifndef OPENSSL_NO_EC2M {NID_wap_wsg_idm_ecid_wtls10, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, {NID_wap_wsg_idm_ecid_wtls11, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, #endif {NID_wap_wsg_idm_ecid_wtls12, &_EC_WTLS_12.h, 0, "WTLS curve over a 224 bit prime field"}, #ifndef OPENSSL_NO_EC2M /* IPSec curves */ {NID_ipsec3, &_EC_IPSEC_155_ID3.h, 0, "\n\tIPSec/IKE/Oakley curve #3 over a 155 bit binary field.\n" "\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, {NID_ipsec4, &_EC_IPSEC_185_ID4.h, 0, "\n\tIPSec/IKE/Oakley curve #4 over a 185 bit binary field.\n" "\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, #endif /* brainpool curves */ {NID_brainpoolP160r1, &_EC_brainpoolP160r1.h, 0, "RFC 5639 curve over a 160 bit prime field"}, {NID_brainpoolP160t1, &_EC_brainpoolP160t1.h, 0, "RFC 5639 curve over a 160 bit prime field"}, {NID_brainpoolP192r1, &_EC_brainpoolP192r1.h, 0, "RFC 5639 curve over a 192 bit prime field"}, {NID_brainpoolP192t1, &_EC_brainpoolP192t1.h, 0, "RFC 5639 curve over a 192 bit prime field"}, {NID_brainpoolP224r1, &_EC_brainpoolP224r1.h, 0, "RFC 5639 curve over a 224 bit prime field"}, {NID_brainpoolP224t1, &_EC_brainpoolP224t1.h, 0, "RFC 5639 curve over a 224 bit prime field"}, {NID_brainpoolP256r1, &_EC_brainpoolP256r1.h, 0, "RFC 5639 curve over a 256 bit prime field"}, {NID_brainpoolP256t1, &_EC_brainpoolP256t1.h, 0, "RFC 5639 curve over a 256 bit prime field"}, {NID_brainpoolP320r1, &_EC_brainpoolP320r1.h, 0, "RFC 5639 curve over a 320 bit prime field"}, {NID_brainpoolP320t1, &_EC_brainpoolP320t1.h, 0, "RFC 5639 curve over a 320 bit prime field"}, {NID_brainpoolP384r1, &_EC_brainpoolP384r1.h, 0, "RFC 5639 curve over a 384 bit prime field"}, {NID_brainpoolP384t1, &_EC_brainpoolP384t1.h, 0, "RFC 5639 curve over a 384 bit prime field"}, {NID_brainpoolP512r1, &_EC_brainpoolP512r1.h, 0, "RFC 5639 curve over a 512 bit prime field"}, {NID_brainpoolP512t1, &_EC_brainpoolP512t1.h, 0, "RFC 5639 curve over a 512 bit prime field"}, #ifndef OPENSSL_NO_SM2 {NID_sm2, &_EC_sm2p256v1.h, 0, "SM2 curve over a 256 bit prime field"}, #endif }; #define curve_list_length OSSL_NELEM(curve_list) static EC_GROUP *ec_group_new_from_data(const ec_list_element curve) { EC_GROUP *group = NULL; EC_POINT *P = NULL; BN_CTX *ctx = NULL; BIGNUM *p = NULL, *a = NULL, *b = NULL, *x = NULL, *y = NULL, *order = NULL; int ok = 0; int seed_len, param_len; const EC_METHOD *meth; const EC_CURVE_DATA *data; const unsigned char *params; /* If no curve data curve method must handle everything */ if (curve.data == NULL) return EC_GROUP_new(curve.meth != NULL ? curve.meth() : NULL); if ((ctx = BN_CTX_new()) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_MALLOC_FAILURE); goto err; } data = curve.data; seed_len = data->seed_len; param_len = data->param_len; params = (const unsigned char *)(data + 1); /* skip header */ params += seed_len; /* skip seed */ if ((p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) == NULL || (a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) == NULL || (b = BN_bin2bn(params + 2 * param_len, param_len, NULL)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); goto err; } if (curve.meth != 0) { meth = curve.meth(); if (((group = EC_GROUP_new(meth)) == NULL) || (!(group->meth->group_set_curve(group, p, a, b, ctx)))) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); goto err; } } else if (data->field_type == NID_X9_62_prime_field) { if ((group = EC_GROUP_new_curve_GFp(p, a, b, ctx)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); goto err; } } #ifndef OPENSSL_NO_EC2M else { /* field_type == * NID_X9_62_characteristic_two_field */ if ((group = EC_GROUP_new_curve_GF2m(p, a, b, ctx)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); goto err; } } #endif EC_GROUP_set_curve_name(group, curve.nid); if ((P = EC_POINT_new(group)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); goto err; } if ((x = BN_bin2bn(params + 3 * param_len, param_len, NULL)) == NULL || (y = BN_bin2bn(params + 4 * param_len, param_len, NULL)) == NULL) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); goto err; } if (!EC_POINT_set_affine_coordinates(group, P, x, y, ctx)) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); goto err; } if ((order = BN_bin2bn(params + 5 * param_len, param_len, NULL)) == NULL || !BN_set_word(x, (BN_ULONG)data->cofactor)) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); goto err; } if (!EC_GROUP_set_generator(group, P, order, x)) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); goto err; } if (seed_len) { if (!EC_GROUP_set_seed(group, params - seed_len, seed_len)) { ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); goto err; } } ok = 1; err: if (!ok) { EC_GROUP_free(group); group = NULL; } EC_POINT_free(P); BN_CTX_free(ctx); BN_free(p); BN_free(a); BN_free(b); BN_free(order); BN_free(x); BN_free(y); return group; } EC_GROUP *EC_GROUP_new_by_curve_name(int nid) { size_t i; EC_GROUP *ret = NULL; if (nid <= 0) return NULL; for (i = 0; i < curve_list_length; i++) if (curve_list[i].nid == nid) { ret = ec_group_new_from_data(curve_list[i]); break; } if (ret == NULL) { ECerr(EC_F_EC_GROUP_NEW_BY_CURVE_NAME, EC_R_UNKNOWN_GROUP); return NULL; } return ret; } size_t EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems) { size_t i, min; if (r == NULL || nitems == 0) return curve_list_length; min = nitems < curve_list_length ? nitems : curve_list_length; for (i = 0; i < min; i++) { r[i].nid = curve_list[i].nid; r[i].comment = curve_list[i].comment; } return curve_list_length; } /* Functions to translate between common NIST curve names and NIDs */ typedef struct { const char *name; /* NIST Name of curve */ int nid; /* Curve NID */ } EC_NIST_NAME; static EC_NIST_NAME nist_curves[] = { {"B-163", NID_sect163r2}, {"B-233", NID_sect233r1}, {"B-283", NID_sect283r1}, {"B-409", NID_sect409r1}, {"B-571", NID_sect571r1}, {"K-163", NID_sect163k1}, {"K-233", NID_sect233k1}, {"K-283", NID_sect283k1}, {"K-409", NID_sect409k1}, {"K-571", NID_sect571k1}, {"P-192", NID_X9_62_prime192v1}, {"P-224", NID_secp224r1}, {"P-256", NID_X9_62_prime256v1}, {"P-384", NID_secp384r1}, {"P-521", NID_secp521r1} }; const char *EC_curve_nid2nist(int nid) { size_t i; for (i = 0; i < OSSL_NELEM(nist_curves); i++) { if (nist_curves[i].nid == nid) return nist_curves[i].name; } return NULL; } int EC_curve_nist2nid(const char *name) { size_t i; for (i = 0; i < OSSL_NELEM(nist_curves); i++) { if (strcmp(nist_curves[i].name, name) == 0) return nist_curves[i].nid; } return NID_undef; } #define NUM_BN_FIELDS 6 /* * Validates EC domain parameter data for known named curves. * This can be used when a curve is loaded explicitly (without a curve * name) or to validate that domain parameters have not been modified. * * Returns: The nid associated with the found named curve, or NID_undef * if not found. If there was an error it returns -1. */ int ec_curve_nid_from_params(const EC_GROUP *group, BN_CTX *ctx) { int ret = -1, nid, len, field_type, param_len; size_t i, seed_len; const unsigned char *seed, *params_seed, *params; unsigned char *param_bytes = NULL; const EC_CURVE_DATA *data; const EC_POINT *generator = NULL; const EC_METHOD *meth; const BIGNUM *cofactor = NULL; /* An array of BIGNUMs for (p, a, b, x, y, order) */ BIGNUM *bn[NUM_BN_FIELDS] = {NULL, NULL, NULL, NULL, NULL, NULL}; meth = EC_GROUP_method_of(group); if (meth == NULL) return -1; /* Use the optional named curve nid as a search field */ nid = EC_GROUP_get_curve_name(group); field_type = EC_METHOD_get_field_type(meth); seed_len = EC_GROUP_get_seed_len(group); seed = EC_GROUP_get0_seed(group); cofactor = EC_GROUP_get0_cofactor(group); BN_CTX_start(ctx); /* * The built-in curves contains data fields (p, a, b, x, y, order) that are * all zero-padded to be the same size. The size of the padding is * determined by either the number of bytes in the field modulus (p) or the * EC group order, whichever is larger. */ param_len = BN_num_bytes(group->order); len = BN_num_bytes(group->field); if (len > param_len) param_len = len; /* Allocate space to store the padded data for (p, a, b, x, y, order) */ param_bytes = OPENSSL_malloc(param_len * NUM_BN_FIELDS); if (param_bytes == NULL) goto end; /* Create the bignums */ for (i = 0; i < NUM_BN_FIELDS; ++i) { if ((bn[i] = BN_CTX_get(ctx)) == NULL) goto end; } /* * Fill in the bn array with the same values as the internal curves * i.e. the values are p, a, b, x, y, order. */ /* Get p, a & b */ if (!(EC_GROUP_get_curve(group, bn[0], bn[1], bn[2], ctx) && ((generator = EC_GROUP_get0_generator(group)) != NULL) /* Get x & y */ && EC_POINT_get_affine_coordinates(group, generator, bn[3], bn[4], ctx) /* Get order */ && EC_GROUP_get_order(group, bn[5], ctx))) goto end; /* * Convert the bignum array to bytes that are joined together to form * a single buffer that contains data for all fields. * (p, a, b, x, y, order) are all zero padded to be the same size. */ for (i = 0; i < NUM_BN_FIELDS; ++i) { if (BN_bn2binpad(bn[i], ¶m_bytes[i*param_len], param_len) <= 0) goto end; } for (i = 0; i < curve_list_length; i++) { const ec_list_element curve = curve_list[i]; data = curve.data; /* Get the raw order byte data */ params_seed = (const unsigned char *)(data + 1); /* skip header */ params = params_seed + data->seed_len; /* Look for unique fields in the fixed curve data */ if (data->field_type == field_type && param_len == data->param_len && (nid <= 0 || nid == curve.nid) /* check the optional cofactor (ignore if its zero) */ && (BN_is_zero(cofactor) || BN_is_word(cofactor, (const BN_ULONG)curve.data->cofactor)) /* Check the optional seed (ignore if its not set) */ && (data->seed_len == 0 || seed_len == 0 || ((size_t)data->seed_len == seed_len && memcmp(params_seed, seed, seed_len) == 0)) /* Check that the groups params match the built-in curve params */ && memcmp(param_bytes, params, param_len * NUM_BN_FIELDS) == 0) { ret = curve.nid; goto end; } } /* Gets here if the group was not found */ ret = NID_undef; end: OPENSSL_free(param_bytes); BN_CTX_end(ctx); return ret; } openssl-1.1.1f/crypto/ec/ec_cvt.c000066400000000000000000000052171364063235100166710ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { const EC_METHOD *meth; EC_GROUP *ret; #if defined(OPENSSL_BN_ASM_MONT) /* * This might appear controversial, but the fact is that generic * prime method was observed to deliver better performance even * for NIST primes on a range of platforms, e.g.: 60%-15% * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25% * in 32-bit build and 35%--12% in 64-bit build on Core2... * Coefficients are relative to optimized bn_nist.c for most * intensive ECDSA verify and ECDH operations for 192- and 521- * bit keys respectively. Choice of these boundary values is * arguable, because the dependency of improvement coefficient * from key length is not a "monotone" curve. For example while * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's * generally faster, sometimes "respectfully" faster, sometimes * "tolerably" slower... What effectively happens is that loop * with bn_mul_add_words is put against bn_mul_mont, and the * latter "wins" on short vectors. Correct solution should be * implementing dedicated NxN multiplication subroutines for * small N. But till it materializes, let's stick to generic * prime method... * */ meth = EC_GFp_mont_method(); #else if (BN_nist_mod_func(p)) meth = EC_GFp_nist_method(); else meth = EC_GFp_mont_method(); #endif ret = EC_GROUP_new(meth); if (ret == NULL) return NULL; if (!EC_GROUP_set_curve(ret, p, a, b, ctx)) { EC_GROUP_clear_free(ret); return NULL; } return ret; } #ifndef OPENSSL_NO_EC2M EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { const EC_METHOD *meth; EC_GROUP *ret; meth = EC_GF2m_simple_method(); ret = EC_GROUP_new(meth); if (ret == NULL) return NULL; if (!EC_GROUP_set_curve(ret, p, a, b, ctx)) { EC_GROUP_clear_free(ret); return NULL; } return ret; } #endif openssl-1.1.1f/crypto/ec/ec_err.c000066400000000000000000000522051364063235100166640ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA EC_str_functs[] = { {ERR_PACK(ERR_LIB_EC, EC_F_BN_TO_FELEM, 0), "BN_to_felem"}, {ERR_PACK(ERR_LIB_EC, EC_F_D2I_ECPARAMETERS, 0), "d2i_ECParameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_D2I_ECPKPARAMETERS, 0), "d2i_ECPKParameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_D2I_ECPRIVATEKEY, 0), "d2i_ECPrivateKey"}, {ERR_PACK(ERR_LIB_EC, EC_F_DO_EC_KEY_PRINT, 0), "do_EC_KEY_print"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDH_CMS_DECRYPT, 0), "ecdh_cms_decrypt"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDH_CMS_SET_SHARED_INFO, 0), "ecdh_cms_set_shared_info"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDH_COMPUTE_KEY, 0), "ECDH_compute_key"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDH_SIMPLE_COMPUTE_KEY, 0), "ecdh_simple_compute_key"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDSA_DO_SIGN_EX, 0), "ECDSA_do_sign_ex"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDSA_DO_VERIFY, 0), "ECDSA_do_verify"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDSA_SIGN_EX, 0), "ECDSA_sign_ex"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDSA_SIGN_SETUP, 0), "ECDSA_sign_setup"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDSA_SIG_NEW, 0), "ECDSA_SIG_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECDSA_VERIFY, 0), "ECDSA_verify"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECD_ITEM_VERIFY, 0), "ecd_item_verify"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECKEY_PARAM2TYPE, 0), "eckey_param2type"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECKEY_PARAM_DECODE, 0), "eckey_param_decode"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECKEY_PRIV_DECODE, 0), "eckey_priv_decode"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECKEY_PRIV_ENCODE, 0), "eckey_priv_encode"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECKEY_PUB_DECODE, 0), "eckey_pub_decode"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECKEY_PUB_ENCODE, 0), "eckey_pub_encode"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECKEY_TYPE2PARAM, 0), "eckey_type2param"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECPARAMETERS_PRINT, 0), "ECParameters_print"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECPARAMETERS_PRINT_FP, 0), "ECParameters_print_fp"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECPKPARAMETERS_PRINT, 0), "ECPKParameters_print"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECPKPARAMETERS_PRINT_FP, 0), "ECPKParameters_print_fp"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_GET_AFFINE, 0), "ecp_nistz256_get_affine"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_INV_MOD_ORD, 0), "ecp_nistz256_inv_mod_ord"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, 0), "ecp_nistz256_mult_precompute"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_POINTS_MUL, 0), "ecp_nistz256_points_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_PRE_COMP_NEW, 0), "ecp_nistz256_pre_comp_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_WINDOWED_MUL, 0), "ecp_nistz256_windowed_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECX_KEY_OP, 0), "ecx_key_op"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECX_PRIV_ENCODE, 0), "ecx_priv_encode"}, {ERR_PACK(ERR_LIB_EC, EC_F_ECX_PUB_ENCODE, 0), "ecx_pub_encode"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_ASN1_GROUP2CURVE, 0), "ec_asn1_group2curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_ASN1_GROUP2FIELDID, 0), "ec_asn1_group2fieldid"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, 0), "ec_GF2m_montgomery_point_multiply"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_FIELD_INV, 0), "ec_GF2m_simple_field_inv"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, 0), "ec_GF2m_simple_group_check_discriminant"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, 0), "ec_GF2m_simple_group_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_LADDER_POST, 0), "ec_GF2m_simple_ladder_post"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_LADDER_PRE, 0), "ec_GF2m_simple_ladder_pre"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_OCT2POINT, 0), "ec_GF2m_simple_oct2point"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_POINT2OCT, 0), "ec_GF2m_simple_point2oct"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_POINTS_MUL, 0), "ec_GF2m_simple_points_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, 0), "ec_GF2m_simple_point_get_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, 0), "ec_GF2m_simple_point_set_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, 0), "ec_GF2m_simple_set_compressed_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_MONT_FIELD_DECODE, 0), "ec_GFp_mont_field_decode"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_MONT_FIELD_ENCODE, 0), "ec_GFp_mont_field_encode"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_MONT_FIELD_INV, 0), "ec_GFp_mont_field_inv"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_MONT_FIELD_MUL, 0), "ec_GFp_mont_field_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE, 0), "ec_GFp_mont_field_set_to_one"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_MONT_FIELD_SQR, 0), "ec_GFp_mont_field_sqr"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_MONT_GROUP_SET_CURVE, 0), "ec_GFp_mont_group_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, 0), "ec_GFp_nistp224_group_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP224_POINTS_MUL, 0), "ec_GFp_nistp224_points_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, 0), "ec_GFp_nistp224_point_get_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, 0), "ec_GFp_nistp256_group_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP256_POINTS_MUL, 0), "ec_GFp_nistp256_points_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, 0), "ec_GFp_nistp256_point_get_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE, 0), "ec_GFp_nistp521_group_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP521_POINTS_MUL, 0), "ec_GFp_nistp521_points_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, 0), "ec_GFp_nistp521_point_get_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NIST_FIELD_MUL, 0), "ec_GFp_nist_field_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NIST_FIELD_SQR, 0), "ec_GFp_nist_field_sqr"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_NIST_GROUP_SET_CURVE, 0), "ec_GFp_nist_group_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, 0), "ec_GFp_simple_blind_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_FIELD_INV, 0), "ec_GFp_simple_field_inv"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, 0), "ec_GFp_simple_group_check_discriminant"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, 0), "ec_GFp_simple_group_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, 0), "ec_GFp_simple_make_affine"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_OCT2POINT, 0), "ec_GFp_simple_oct2point"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_POINT2OCT, 0), "ec_GFp_simple_point2oct"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, 0), "ec_GFp_simple_points_make_affine"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, 0), "ec_GFp_simple_point_get_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, 0), "ec_GFp_simple_point_set_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, 0), "ec_GFp_simple_set_compressed_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_CHECK, 0), "EC_GROUP_check"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_CHECK_DISCRIMINANT, 0), "EC_GROUP_check_discriminant"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_COPY, 0), "EC_GROUP_copy"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_CURVE, 0), "EC_GROUP_get_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_CURVE_GF2M, 0), "EC_GROUP_get_curve_GF2m"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_CURVE_GFP, 0), "EC_GROUP_get_curve_GFp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_DEGREE, 0), "EC_GROUP_get_degree"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_ECPARAMETERS, 0), "EC_GROUP_get_ecparameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_ECPKPARAMETERS, 0), "EC_GROUP_get_ecpkparameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_PENTANOMIAL_BASIS, 0), "EC_GROUP_get_pentanomial_basis"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_GET_TRINOMIAL_BASIS, 0), "EC_GROUP_get_trinomial_basis"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_NEW, 0), "EC_GROUP_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_NEW_BY_CURVE_NAME, 0), "EC_GROUP_new_by_curve_name"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_NEW_FROM_DATA, 0), "ec_group_new_from_data"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS, 0), "EC_GROUP_new_from_ecparameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS, 0), "EC_GROUP_new_from_ecpkparameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_SET_CURVE, 0), "EC_GROUP_set_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_SET_CURVE_GF2M, 0), "EC_GROUP_set_curve_GF2m"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_SET_CURVE_GFP, 0), "EC_GROUP_set_curve_GFp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_SET_GENERATOR, 0), "EC_GROUP_set_generator"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_GROUP_SET_SEED, 0), "EC_GROUP_set_seed"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_CHECK_KEY, 0), "EC_KEY_check_key"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_COPY, 0), "EC_KEY_copy"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_GENERATE_KEY, 0), "EC_KEY_generate_key"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_NEW, 0), "EC_KEY_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_NEW_METHOD, 0), "EC_KEY_new_method"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_OCT2PRIV, 0), "EC_KEY_oct2priv"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_PRINT, 0), "EC_KEY_print"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_PRINT_FP, 0), "EC_KEY_print_fp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_PRIV2BUF, 0), "EC_KEY_priv2buf"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_PRIV2OCT, 0), "EC_KEY_priv2oct"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, 0), "EC_KEY_set_public_key_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_SIMPLE_CHECK_KEY, 0), "ec_key_simple_check_key"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_SIMPLE_OCT2PRIV, 0), "ec_key_simple_oct2priv"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_KEY_SIMPLE_PRIV2OCT, 0), "ec_key_simple_priv2oct"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_PKEY_CHECK, 0), "ec_pkey_check"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_PKEY_PARAM_CHECK, 0), "ec_pkey_param_check"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINTS_MAKE_AFFINE, 0), "EC_POINTs_make_affine"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINTS_MUL, 0), "EC_POINTs_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_ADD, 0), "EC_POINT_add"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_BN2POINT, 0), "EC_POINT_bn2point"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_CMP, 0), "EC_POINT_cmp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_COPY, 0), "EC_POINT_copy"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_DBL, 0), "EC_POINT_dbl"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_GET_AFFINE_COORDINATES, 0), "EC_POINT_get_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M, 0), "EC_POINT_get_affine_coordinates_GF2m"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP, 0), "EC_POINT_get_affine_coordinates_GFp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, 0), "EC_POINT_get_Jprojective_coordinates_GFp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_INVERT, 0), "EC_POINT_invert"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_IS_AT_INFINITY, 0), "EC_POINT_is_at_infinity"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_IS_ON_CURVE, 0), "EC_POINT_is_on_curve"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_MAKE_AFFINE, 0), "EC_POINT_make_affine"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_NEW, 0), "EC_POINT_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_OCT2POINT, 0), "EC_POINT_oct2point"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_POINT2BUF, 0), "EC_POINT_point2buf"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_POINT2OCT, 0), "EC_POINT_point2oct"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_AFFINE_COORDINATES, 0), "EC_POINT_set_affine_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M, 0), "EC_POINT_set_affine_coordinates_GF2m"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP, 0), "EC_POINT_set_affine_coordinates_GFp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_COMPRESSED_COORDINATES, 0), "EC_POINT_set_compressed_coordinates"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M, 0), "EC_POINT_set_compressed_coordinates_GF2m"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP, 0), "EC_POINT_set_compressed_coordinates_GFp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, 0), "EC_POINT_set_Jprojective_coordinates_GFp"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_TO_INFINITY, 0), "EC_POINT_set_to_infinity"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_PRE_COMP_NEW, 0), "ec_pre_comp_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_SCALAR_MUL_LADDER, 0), "ec_scalar_mul_ladder"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_WNAF_MUL, 0), "ec_wNAF_mul"}, {ERR_PACK(ERR_LIB_EC, EC_F_EC_WNAF_PRECOMPUTE_MULT, 0), "ec_wNAF_precompute_mult"}, {ERR_PACK(ERR_LIB_EC, EC_F_I2D_ECPARAMETERS, 0), "i2d_ECParameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_I2D_ECPKPARAMETERS, 0), "i2d_ECPKParameters"}, {ERR_PACK(ERR_LIB_EC, EC_F_I2D_ECPRIVATEKEY, 0), "i2d_ECPrivateKey"}, {ERR_PACK(ERR_LIB_EC, EC_F_I2O_ECPUBLICKEY, 0), "i2o_ECPublicKey"}, {ERR_PACK(ERR_LIB_EC, EC_F_NISTP224_PRE_COMP_NEW, 0), "nistp224_pre_comp_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_NISTP256_PRE_COMP_NEW, 0), "nistp256_pre_comp_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_NISTP521_PRE_COMP_NEW, 0), "nistp521_pre_comp_new"}, {ERR_PACK(ERR_LIB_EC, EC_F_O2I_ECPUBLICKEY, 0), "o2i_ECPublicKey"}, {ERR_PACK(ERR_LIB_EC, EC_F_OLD_EC_PRIV_DECODE, 0), "old_ec_priv_decode"}, {ERR_PACK(ERR_LIB_EC, EC_F_OSSL_ECDH_COMPUTE_KEY, 0), "ossl_ecdh_compute_key"}, {ERR_PACK(ERR_LIB_EC, EC_F_OSSL_ECDSA_SIGN_SIG, 0), "ossl_ecdsa_sign_sig"}, {ERR_PACK(ERR_LIB_EC, EC_F_OSSL_ECDSA_VERIFY_SIG, 0), "ossl_ecdsa_verify_sig"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_ECD_CTRL, 0), "pkey_ecd_ctrl"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_ECD_DIGESTSIGN, 0), "pkey_ecd_digestsign"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_ECD_DIGESTSIGN25519, 0), "pkey_ecd_digestsign25519"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_ECD_DIGESTSIGN448, 0), "pkey_ecd_digestsign448"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_ECX_DERIVE, 0), "pkey_ecx_derive"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_CTRL, 0), "pkey_ec_ctrl"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_CTRL_STR, 0), "pkey_ec_ctrl_str"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_DERIVE, 0), "pkey_ec_derive"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_INIT, 0), "pkey_ec_init"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_KDF_DERIVE, 0), "pkey_ec_kdf_derive"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_KEYGEN, 0), "pkey_ec_keygen"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_PARAMGEN, 0), "pkey_ec_paramgen"}, {ERR_PACK(ERR_LIB_EC, EC_F_PKEY_EC_SIGN, 0), "pkey_ec_sign"}, {ERR_PACK(ERR_LIB_EC, EC_F_VALIDATE_ECX_DERIVE, 0), "validate_ecx_derive"}, {0, NULL} }; static const ERR_STRING_DATA EC_str_reasons[] = { {ERR_PACK(ERR_LIB_EC, 0, EC_R_ASN1_ERROR), "asn1 error"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_BAD_SIGNATURE), "bad signature"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_BIGNUM_OUT_OF_RANGE), "bignum out of range"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_BUFFER_TOO_SMALL), "buffer too small"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_CANNOT_INVERT), "cannot invert"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_COORDINATES_OUT_OF_RANGE), "coordinates out of range"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_CURVE_DOES_NOT_SUPPORT_ECDH), "curve does not support ecdh"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING), "curve does not support signing"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_D2I_ECPKPARAMETERS_FAILURE), "d2i ecpkparameters failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_DECODE_ERROR), "decode error"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_DISCRIMINANT_IS_ZERO), "discriminant is zero"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_EC_GROUP_NEW_BY_NAME_FAILURE), "ec group new by name failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_FIELD_TOO_LARGE), "field too large"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_GF2M_NOT_SUPPORTED), "gf2m not supported"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_GROUP2PKPARAMETERS_FAILURE), "group2pkparameters failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_I2D_ECPKPARAMETERS_FAILURE), "i2d ecpkparameters failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INCOMPATIBLE_OBJECTS), "incompatible objects"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_ARGUMENT), "invalid argument"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_COMPRESSED_POINT), "invalid compressed point"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_COMPRESSION_BIT), "invalid compression bit"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_CURVE), "invalid curve"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_DIGEST), "invalid digest"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_DIGEST_TYPE), "invalid digest type"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_ENCODING), "invalid encoding"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_FIELD), "invalid field"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_FORM), "invalid form"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_GROUP_ORDER), "invalid group order"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_KEY), "invalid key"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_OUTPUT_LENGTH), "invalid output length"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_PEER_KEY), "invalid peer key"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_PENTANOMIAL_BASIS), "invalid pentanomial basis"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_PRIVATE_KEY), "invalid private key"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_INVALID_TRINOMIAL_BASIS), "invalid trinomial basis"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_KDF_PARAMETER_ERROR), "kdf parameter error"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_KEYS_NOT_SET), "keys not set"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_LADDER_POST_FAILURE), "ladder post failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_LADDER_PRE_FAILURE), "ladder pre failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_LADDER_STEP_FAILURE), "ladder step failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_MISSING_PARAMETERS), "missing parameters"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_MISSING_PRIVATE_KEY), "missing private key"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_NEED_NEW_SETUP_VALUES), "need new setup values"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_NOT_A_NIST_PRIME), "not a NIST prime"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_NOT_IMPLEMENTED), "not implemented"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_NOT_INITIALIZED), "not initialized"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_NO_PARAMETERS_SET), "no parameters set"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_NO_PRIVATE_VALUE), "no private value"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_OPERATION_NOT_SUPPORTED), "operation not supported"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_PASSED_NULL_PARAMETER), "passed null parameter"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_PEER_KEY_ERROR), "peer key error"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_PKPARAMETERS2GROUP_FAILURE), "pkparameters2group failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_ARITHMETIC_FAILURE), "point arithmetic failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_AT_INFINITY), "point at infinity"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_COORDINATES_BLIND_FAILURE), "point coordinates blind failure"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_IS_NOT_ON_CURVE), "point is not on curve"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_RANDOM_NUMBER_GENERATION_FAILED), "random number generation failed"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_SHARED_INFO_ERROR), "shared info error"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_SLOT_FULL), "slot full"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_UNDEFINED_GENERATOR), "undefined generator"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_UNDEFINED_ORDER), "undefined order"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_UNKNOWN_COFACTOR), "unknown cofactor"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_UNKNOWN_GROUP), "unknown group"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_UNKNOWN_ORDER), "unknown order"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_UNSUPPORTED_FIELD), "unsupported field"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_WRONG_CURVE_PARAMETERS), "wrong curve parameters"}, {ERR_PACK(ERR_LIB_EC, 0, EC_R_WRONG_ORDER), "wrong order"}, {0, NULL} }; #endif int ERR_load_EC_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(EC_str_functs[0].error) == NULL) { ERR_load_strings_const(EC_str_functs); ERR_load_strings_const(EC_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/ec/ec_key.c000066400000000000000000000377301364063235100166720ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include "ec_local.h" #include "internal/refcount.h" #include #include EC_KEY *EC_KEY_new(void) { return EC_KEY_new_method(NULL); } EC_KEY *EC_KEY_new_by_curve_name(int nid) { EC_KEY *ret = EC_KEY_new(); if (ret == NULL) return NULL; ret->group = EC_GROUP_new_by_curve_name(nid); if (ret->group == NULL) { EC_KEY_free(ret); return NULL; } if (ret->meth->set_group != NULL && ret->meth->set_group(ret, ret->group) == 0) { EC_KEY_free(ret); return NULL; } return ret; } void EC_KEY_free(EC_KEY *r) { int i; if (r == NULL) return; CRYPTO_DOWN_REF(&r->references, &i, r->lock); REF_PRINT_COUNT("EC_KEY", r); if (i > 0) return; REF_ASSERT_ISNT(i < 0); if (r->meth != NULL && r->meth->finish != NULL) r->meth->finish(r); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(r->engine); #endif if (r->group && r->group->meth->keyfinish) r->group->meth->keyfinish(r); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_EC_KEY, r, &r->ex_data); CRYPTO_THREAD_lock_free(r->lock); EC_GROUP_free(r->group); EC_POINT_free(r->pub_key); BN_clear_free(r->priv_key); OPENSSL_clear_free((void *)r, sizeof(EC_KEY)); } EC_KEY *EC_KEY_copy(EC_KEY *dest, const EC_KEY *src) { if (dest == NULL || src == NULL) { ECerr(EC_F_EC_KEY_COPY, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (src->meth != dest->meth) { if (dest->meth->finish != NULL) dest->meth->finish(dest); if (dest->group && dest->group->meth->keyfinish) dest->group->meth->keyfinish(dest); #ifndef OPENSSL_NO_ENGINE if (ENGINE_finish(dest->engine) == 0) return 0; dest->engine = NULL; #endif } /* copy the parameters */ if (src->group != NULL) { const EC_METHOD *meth = EC_GROUP_method_of(src->group); /* clear the old group */ EC_GROUP_free(dest->group); dest->group = EC_GROUP_new(meth); if (dest->group == NULL) return NULL; if (!EC_GROUP_copy(dest->group, src->group)) return NULL; /* copy the public key */ if (src->pub_key != NULL) { EC_POINT_free(dest->pub_key); dest->pub_key = EC_POINT_new(src->group); if (dest->pub_key == NULL) return NULL; if (!EC_POINT_copy(dest->pub_key, src->pub_key)) return NULL; } /* copy the private key */ if (src->priv_key != NULL) { if (dest->priv_key == NULL) { dest->priv_key = BN_new(); if (dest->priv_key == NULL) return NULL; } if (!BN_copy(dest->priv_key, src->priv_key)) return NULL; if (src->group->meth->keycopy && src->group->meth->keycopy(dest, src) == 0) return NULL; } } /* copy the rest */ dest->enc_flag = src->enc_flag; dest->conv_form = src->conv_form; dest->version = src->version; dest->flags = src->flags; if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_EC_KEY, &dest->ex_data, &src->ex_data)) return NULL; if (src->meth != dest->meth) { #ifndef OPENSSL_NO_ENGINE if (src->engine != NULL && ENGINE_init(src->engine) == 0) return NULL; dest->engine = src->engine; #endif dest->meth = src->meth; } if (src->meth->copy != NULL && src->meth->copy(dest, src) == 0) return NULL; return dest; } EC_KEY *EC_KEY_dup(const EC_KEY *ec_key) { EC_KEY *ret = EC_KEY_new_method(ec_key->engine); if (ret == NULL) return NULL; if (EC_KEY_copy(ret, ec_key) == NULL) { EC_KEY_free(ret); return NULL; } return ret; } int EC_KEY_up_ref(EC_KEY *r) { int i; if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0) return 0; REF_PRINT_COUNT("EC_KEY", r); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } ENGINE *EC_KEY_get0_engine(const EC_KEY *eckey) { return eckey->engine; } int EC_KEY_generate_key(EC_KEY *eckey) { if (eckey == NULL || eckey->group == NULL) { ECerr(EC_F_EC_KEY_GENERATE_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (eckey->meth->keygen != NULL) return eckey->meth->keygen(eckey); ECerr(EC_F_EC_KEY_GENERATE_KEY, EC_R_OPERATION_NOT_SUPPORTED); return 0; } int ossl_ec_key_gen(EC_KEY *eckey) { return eckey->group->meth->keygen(eckey); } int ec_key_simple_generate_key(EC_KEY *eckey) { int ok = 0; BN_CTX *ctx = NULL; BIGNUM *priv_key = NULL; const BIGNUM *order = NULL; EC_POINT *pub_key = NULL; if ((ctx = BN_CTX_new()) == NULL) goto err; if (eckey->priv_key == NULL) { priv_key = BN_new(); if (priv_key == NULL) goto err; } else priv_key = eckey->priv_key; order = EC_GROUP_get0_order(eckey->group); if (order == NULL) goto err; do if (!BN_priv_rand_range(priv_key, order)) goto err; while (BN_is_zero(priv_key)) ; if (eckey->pub_key == NULL) { pub_key = EC_POINT_new(eckey->group); if (pub_key == NULL) goto err; } else pub_key = eckey->pub_key; if (!EC_POINT_mul(eckey->group, pub_key, priv_key, NULL, NULL, ctx)) goto err; eckey->priv_key = priv_key; eckey->pub_key = pub_key; ok = 1; err: if (eckey->pub_key == NULL) EC_POINT_free(pub_key); if (eckey->priv_key != priv_key) BN_free(priv_key); BN_CTX_free(ctx); return ok; } int ec_key_simple_generate_public_key(EC_KEY *eckey) { return EC_POINT_mul(eckey->group, eckey->pub_key, eckey->priv_key, NULL, NULL, NULL); } int EC_KEY_check_key(const EC_KEY *eckey) { if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) { ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (eckey->group->meth->keycheck == NULL) { ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return eckey->group->meth->keycheck(eckey); } int ec_key_simple_check_key(const EC_KEY *eckey) { int ok = 0; BN_CTX *ctx = NULL; const BIGNUM *order = NULL; EC_POINT *point = NULL; if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (EC_POINT_is_at_infinity(eckey->group, eckey->pub_key)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_POINT_AT_INFINITY); goto err; } if ((ctx = BN_CTX_new()) == NULL) goto err; if ((point = EC_POINT_new(eckey->group)) == NULL) goto err; /* testing whether the pub_key is on the elliptic curve */ if (EC_POINT_is_on_curve(eckey->group, eckey->pub_key, ctx) <= 0) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_POINT_IS_NOT_ON_CURVE); goto err; } /* testing whether pub_key * order is the point at infinity */ order = eckey->group->order; if (BN_is_zero(order)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_INVALID_GROUP_ORDER); goto err; } if (!EC_POINT_mul(eckey->group, point, NULL, eckey->pub_key, order, ctx)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, ERR_R_EC_LIB); goto err; } if (!EC_POINT_is_at_infinity(eckey->group, point)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_WRONG_ORDER); goto err; } /* * in case the priv_key is present : check if generator * priv_key == * pub_key */ if (eckey->priv_key != NULL) { if (BN_cmp(eckey->priv_key, order) >= 0) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_WRONG_ORDER); goto err; } if (!EC_POINT_mul(eckey->group, point, eckey->priv_key, NULL, NULL, ctx)) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, ERR_R_EC_LIB); goto err; } if (EC_POINT_cmp(eckey->group, point, eckey->pub_key, ctx) != 0) { ECerr(EC_F_EC_KEY_SIMPLE_CHECK_KEY, EC_R_INVALID_PRIVATE_KEY); goto err; } } ok = 1; err: BN_CTX_free(ctx); EC_POINT_free(point); return ok; } int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x, BIGNUM *y) { BN_CTX *ctx = NULL; BIGNUM *tx, *ty; EC_POINT *point = NULL; int ok = 0; if (key == NULL || key->group == NULL || x == NULL || y == NULL) { ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); return 0; } ctx = BN_CTX_new(); if (ctx == NULL) return 0; BN_CTX_start(ctx); point = EC_POINT_new(key->group); if (point == NULL) goto err; tx = BN_CTX_get(ctx); ty = BN_CTX_get(ctx); if (ty == NULL) goto err; if (!EC_POINT_set_affine_coordinates(key->group, point, x, y, ctx)) goto err; if (!EC_POINT_get_affine_coordinates(key->group, point, tx, ty, ctx)) goto err; /* * Check if retrieved coordinates match originals and are less than field * order: if not values are out of range. */ if (BN_cmp(x, tx) || BN_cmp(y, ty) || (BN_cmp(x, key->group->field) >= 0) || (BN_cmp(y, key->group->field) >= 0)) { ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, EC_R_COORDINATES_OUT_OF_RANGE); goto err; } if (!EC_KEY_set_public_key(key, point)) goto err; if (EC_KEY_check_key(key) == 0) goto err; ok = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); EC_POINT_free(point); return ok; } const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key) { return key->group; } int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group) { if (key->meth->set_group != NULL && key->meth->set_group(key, group) == 0) return 0; EC_GROUP_free(key->group); key->group = EC_GROUP_dup(group); return (key->group == NULL) ? 0 : 1; } const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key) { return key->priv_key; } int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *priv_key) { if (key->group == NULL || key->group->meth == NULL) return 0; if (key->group->meth->set_private != NULL && key->group->meth->set_private(key, priv_key) == 0) return 0; if (key->meth->set_private != NULL && key->meth->set_private(key, priv_key) == 0) return 0; BN_clear_free(key->priv_key); key->priv_key = BN_dup(priv_key); return (key->priv_key == NULL) ? 0 : 1; } const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key) { return key->pub_key; } int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub_key) { if (key->meth->set_public != NULL && key->meth->set_public(key, pub_key) == 0) return 0; EC_POINT_free(key->pub_key); key->pub_key = EC_POINT_dup(pub_key, key->group); return (key->pub_key == NULL) ? 0 : 1; } unsigned int EC_KEY_get_enc_flags(const EC_KEY *key) { return key->enc_flag; } void EC_KEY_set_enc_flags(EC_KEY *key, unsigned int flags) { key->enc_flag = flags; } point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key) { return key->conv_form; } void EC_KEY_set_conv_form(EC_KEY *key, point_conversion_form_t cform) { key->conv_form = cform; if (key->group != NULL) EC_GROUP_set_point_conversion_form(key->group, cform); } void EC_KEY_set_asn1_flag(EC_KEY *key, int flag) { if (key->group != NULL) EC_GROUP_set_asn1_flag(key->group, flag); } int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx) { if (key->group == NULL) return 0; return EC_GROUP_precompute_mult(key->group, ctx); } int EC_KEY_get_flags(const EC_KEY *key) { return key->flags; } void EC_KEY_set_flags(EC_KEY *key, int flags) { key->flags |= flags; } void EC_KEY_clear_flags(EC_KEY *key, int flags) { key->flags &= ~flags; } size_t EC_KEY_key2buf(const EC_KEY *key, point_conversion_form_t form, unsigned char **pbuf, BN_CTX *ctx) { if (key == NULL || key->pub_key == NULL || key->group == NULL) return 0; return EC_POINT_point2buf(key->group, key->pub_key, form, pbuf, ctx); } int EC_KEY_oct2key(EC_KEY *key, const unsigned char *buf, size_t len, BN_CTX *ctx) { if (key == NULL || key->group == NULL) return 0; if (key->pub_key == NULL) key->pub_key = EC_POINT_new(key->group); if (key->pub_key == NULL) return 0; if (EC_POINT_oct2point(key->group, key->pub_key, buf, len, ctx) == 0) return 0; /* * Save the point conversion form. * For non-custom curves the first octet of the buffer (excluding * the last significant bit) contains the point conversion form. * EC_POINT_oct2point() has already performed sanity checking of * the buffer so we know it is valid. */ if ((key->group->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) key->conv_form = (point_conversion_form_t)(buf[0] & ~0x01); return 1; } size_t EC_KEY_priv2oct(const EC_KEY *eckey, unsigned char *buf, size_t len) { if (eckey->group == NULL || eckey->group->meth == NULL) return 0; if (eckey->group->meth->priv2oct == NULL) { ECerr(EC_F_EC_KEY_PRIV2OCT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return eckey->group->meth->priv2oct(eckey, buf, len); } size_t ec_key_simple_priv2oct(const EC_KEY *eckey, unsigned char *buf, size_t len) { size_t buf_len; buf_len = (EC_GROUP_order_bits(eckey->group) + 7) / 8; if (eckey->priv_key == NULL) return 0; if (buf == NULL) return buf_len; else if (len < buf_len) return 0; /* Octetstring may need leading zeros if BN is to short */ if (BN_bn2binpad(eckey->priv_key, buf, buf_len) == -1) { ECerr(EC_F_EC_KEY_SIMPLE_PRIV2OCT, EC_R_BUFFER_TOO_SMALL); return 0; } return buf_len; } int EC_KEY_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len) { if (eckey->group == NULL || eckey->group->meth == NULL) return 0; if (eckey->group->meth->oct2priv == NULL) { ECerr(EC_F_EC_KEY_OCT2PRIV, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return eckey->group->meth->oct2priv(eckey, buf, len); } int ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len) { if (eckey->priv_key == NULL) eckey->priv_key = BN_secure_new(); if (eckey->priv_key == NULL) { ECerr(EC_F_EC_KEY_SIMPLE_OCT2PRIV, ERR_R_MALLOC_FAILURE); return 0; } eckey->priv_key = BN_bin2bn(buf, len, eckey->priv_key); if (eckey->priv_key == NULL) { ECerr(EC_F_EC_KEY_SIMPLE_OCT2PRIV, ERR_R_BN_LIB); return 0; } return 1; } size_t EC_KEY_priv2buf(const EC_KEY *eckey, unsigned char **pbuf) { size_t len; unsigned char *buf; len = EC_KEY_priv2oct(eckey, NULL, 0); if (len == 0) return 0; if ((buf = OPENSSL_malloc(len)) == NULL) { ECerr(EC_F_EC_KEY_PRIV2BUF, ERR_R_MALLOC_FAILURE); return 0; } len = EC_KEY_priv2oct(eckey, buf, len); if (len == 0) { OPENSSL_free(buf); return 0; } *pbuf = buf; return len; } int EC_KEY_can_sign(const EC_KEY *eckey) { if (eckey->group == NULL || eckey->group->meth == NULL || (eckey->group->meth->flags & EC_FLAGS_NO_SIGN)) return 0; return 1; } openssl-1.1.1f/crypto/ec/ec_kmeth.c000066400000000000000000000245521364063235100172100ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "ec_local.h" static const EC_KEY_METHOD openssl_ec_key_method = { "OpenSSL EC_KEY method", 0, 0,0,0,0,0,0, ossl_ec_key_gen, ossl_ecdh_compute_key, ossl_ecdsa_sign, ossl_ecdsa_sign_setup, ossl_ecdsa_sign_sig, ossl_ecdsa_verify, ossl_ecdsa_verify_sig }; static const EC_KEY_METHOD *default_ec_key_meth = &openssl_ec_key_method; const EC_KEY_METHOD *EC_KEY_OpenSSL(void) { return &openssl_ec_key_method; } const EC_KEY_METHOD *EC_KEY_get_default_method(void) { return default_ec_key_meth; } void EC_KEY_set_default_method(const EC_KEY_METHOD *meth) { if (meth == NULL) default_ec_key_meth = &openssl_ec_key_method; else default_ec_key_meth = meth; } const EC_KEY_METHOD *EC_KEY_get_method(const EC_KEY *key) { return key->meth; } int EC_KEY_set_method(EC_KEY *key, const EC_KEY_METHOD *meth) { void (*finish)(EC_KEY *key) = key->meth->finish; if (finish != NULL) finish(key); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(key->engine); key->engine = NULL; #endif key->meth = meth; if (meth->init != NULL) return meth->init(key); return 1; } EC_KEY *EC_KEY_new_method(ENGINE *engine) { EC_KEY *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_EC_KEY_NEW_METHOD, ERR_R_MALLOC_FAILURE); return NULL; } ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ECerr(EC_F_EC_KEY_NEW_METHOD, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } ret->meth = EC_KEY_get_default_method(); #ifndef OPENSSL_NO_ENGINE if (engine != NULL) { if (!ENGINE_init(engine)) { ECerr(EC_F_EC_KEY_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } ret->engine = engine; } else ret->engine = ENGINE_get_default_EC(); if (ret->engine != NULL) { ret->meth = ENGINE_get_EC(ret->engine); if (ret->meth == NULL) { ECerr(EC_F_EC_KEY_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } } #endif ret->version = 1; ret->conv_form = POINT_CONVERSION_UNCOMPRESSED; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_EC_KEY, ret, &ret->ex_data)) { goto err; } if (ret->meth->init != NULL && ret->meth->init(ret) == 0) { ECerr(EC_F_EC_KEY_NEW_METHOD, ERR_R_INIT_FAIL); goto err; } return ret; err: EC_KEY_free(ret); return NULL; } int ECDH_compute_key(void *out, size_t outlen, const EC_POINT *pub_key, const EC_KEY *eckey, void *(*KDF) (const void *in, size_t inlen, void *out, size_t *outlen)) { unsigned char *sec = NULL; size_t seclen; if (eckey->meth->compute_key == NULL) { ECerr(EC_F_ECDH_COMPUTE_KEY, EC_R_OPERATION_NOT_SUPPORTED); return 0; } if (outlen > INT_MAX) { ECerr(EC_F_ECDH_COMPUTE_KEY, EC_R_INVALID_OUTPUT_LENGTH); return 0; } if (!eckey->meth->compute_key(&sec, &seclen, pub_key, eckey)) return 0; if (KDF != NULL) { KDF(sec, seclen, out, &outlen); } else { if (outlen > seclen) outlen = seclen; memcpy(out, sec, outlen); } OPENSSL_clear_free(sec, seclen); return outlen; } EC_KEY_METHOD *EC_KEY_METHOD_new(const EC_KEY_METHOD *meth) { EC_KEY_METHOD *ret = OPENSSL_zalloc(sizeof(*meth)); if (ret == NULL) return NULL; if (meth != NULL) *ret = *meth; ret->flags |= EC_KEY_METHOD_DYNAMIC; return ret; } void EC_KEY_METHOD_free(EC_KEY_METHOD *meth) { if (meth->flags & EC_KEY_METHOD_DYNAMIC) OPENSSL_free(meth); } void EC_KEY_METHOD_set_init(EC_KEY_METHOD *meth, int (*init)(EC_KEY *key), void (*finish)(EC_KEY *key), int (*copy)(EC_KEY *dest, const EC_KEY *src), int (*set_group)(EC_KEY *key, const EC_GROUP *grp), int (*set_private)(EC_KEY *key, const BIGNUM *priv_key), int (*set_public)(EC_KEY *key, const EC_POINT *pub_key)) { meth->init = init; meth->finish = finish; meth->copy = copy; meth->set_group = set_group; meth->set_private = set_private; meth->set_public = set_public; } void EC_KEY_METHOD_set_keygen(EC_KEY_METHOD *meth, int (*keygen)(EC_KEY *key)) { meth->keygen = keygen; } void EC_KEY_METHOD_set_compute_key(EC_KEY_METHOD *meth, int (*ckey)(unsigned char **psec, size_t *pseclen, const EC_POINT *pub_key, const EC_KEY *ecdh)) { meth->compute_key = ckey; } void EC_KEY_METHOD_set_sign(EC_KEY_METHOD *meth, int (*sign)(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey), int (*sign_setup)(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp), ECDSA_SIG *(*sign_sig)(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)) { meth->sign = sign; meth->sign_setup = sign_setup; meth->sign_sig = sign_sig; } void EC_KEY_METHOD_set_verify(EC_KEY_METHOD *meth, int (*verify)(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey), int (*verify_sig)(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey)) { meth->verify = verify; meth->verify_sig = verify_sig; } void EC_KEY_METHOD_get_init(const EC_KEY_METHOD *meth, int (**pinit)(EC_KEY *key), void (**pfinish)(EC_KEY *key), int (**pcopy)(EC_KEY *dest, const EC_KEY *src), int (**pset_group)(EC_KEY *key, const EC_GROUP *grp), int (**pset_private)(EC_KEY *key, const BIGNUM *priv_key), int (**pset_public)(EC_KEY *key, const EC_POINT *pub_key)) { if (pinit != NULL) *pinit = meth->init; if (pfinish != NULL) *pfinish = meth->finish; if (pcopy != NULL) *pcopy = meth->copy; if (pset_group != NULL) *pset_group = meth->set_group; if (pset_private != NULL) *pset_private = meth->set_private; if (pset_public != NULL) *pset_public = meth->set_public; } void EC_KEY_METHOD_get_keygen(const EC_KEY_METHOD *meth, int (**pkeygen)(EC_KEY *key)) { if (pkeygen != NULL) *pkeygen = meth->keygen; } void EC_KEY_METHOD_get_compute_key(const EC_KEY_METHOD *meth, int (**pck)(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh)) { if (pck != NULL) *pck = meth->compute_key; } void EC_KEY_METHOD_get_sign(const EC_KEY_METHOD *meth, int (**psign)(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey), int (**psign_setup)(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp), ECDSA_SIG *(**psign_sig)(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)) { if (psign != NULL) *psign = meth->sign; if (psign_setup != NULL) *psign_setup = meth->sign_setup; if (psign_sig != NULL) *psign_sig = meth->sign_sig; } void EC_KEY_METHOD_get_verify(const EC_KEY_METHOD *meth, int (**pverify)(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey), int (**pverify_sig)(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey)) { if (pverify != NULL) *pverify = meth->verify; if (pverify_sig != NULL) *pverify_sig = meth->verify_sig; } openssl-1.1.1f/crypto/ec/ec_lib.c000066400000000000000000001023201364063235100166340ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "ec_local.h" /* functions for EC_GROUP objects */ EC_GROUP *EC_GROUP_new(const EC_METHOD *meth) { EC_GROUP *ret; if (meth == NULL) { ECerr(EC_F_EC_GROUP_NEW, EC_R_SLOT_FULL); return NULL; } if (meth->group_init == 0) { ECerr(EC_F_EC_GROUP_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return NULL; } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_EC_GROUP_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->meth = meth; if ((ret->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) { ret->order = BN_new(); if (ret->order == NULL) goto err; ret->cofactor = BN_new(); if (ret->cofactor == NULL) goto err; } ret->asn1_flag = OPENSSL_EC_NAMED_CURVE; ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED; if (!meth->group_init(ret)) goto err; return ret; err: BN_free(ret->order); BN_free(ret->cofactor); OPENSSL_free(ret); return NULL; } void EC_pre_comp_free(EC_GROUP *group) { switch (group->pre_comp_type) { case PCT_none: break; case PCT_nistz256: #ifdef ECP_NISTZ256_ASM EC_nistz256_pre_comp_free(group->pre_comp.nistz256); #endif break; #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 case PCT_nistp224: EC_nistp224_pre_comp_free(group->pre_comp.nistp224); break; case PCT_nistp256: EC_nistp256_pre_comp_free(group->pre_comp.nistp256); break; case PCT_nistp521: EC_nistp521_pre_comp_free(group->pre_comp.nistp521); break; #else case PCT_nistp224: case PCT_nistp256: case PCT_nistp521: break; #endif case PCT_ec: EC_ec_pre_comp_free(group->pre_comp.ec); break; } group->pre_comp.ec = NULL; } void EC_GROUP_free(EC_GROUP *group) { if (!group) return; if (group->meth->group_finish != 0) group->meth->group_finish(group); EC_pre_comp_free(group); BN_MONT_CTX_free(group->mont_data); EC_POINT_free(group->generator); BN_free(group->order); BN_free(group->cofactor); OPENSSL_free(group->seed); OPENSSL_free(group); } void EC_GROUP_clear_free(EC_GROUP *group) { if (!group) return; if (group->meth->group_clear_finish != 0) group->meth->group_clear_finish(group); else if (group->meth->group_finish != 0) group->meth->group_finish(group); EC_pre_comp_free(group); BN_MONT_CTX_free(group->mont_data); EC_POINT_clear_free(group->generator); BN_clear_free(group->order); BN_clear_free(group->cofactor); OPENSSL_clear_free(group->seed, group->seed_len); OPENSSL_clear_free(group, sizeof(*group)); } int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src) { if (dest->meth->group_copy == 0) { ECerr(EC_F_EC_GROUP_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth) { ECerr(EC_F_EC_GROUP_COPY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; dest->curve_name = src->curve_name; /* Copy precomputed */ dest->pre_comp_type = src->pre_comp_type; switch (src->pre_comp_type) { case PCT_none: dest->pre_comp.ec = NULL; break; case PCT_nistz256: #ifdef ECP_NISTZ256_ASM dest->pre_comp.nistz256 = EC_nistz256_pre_comp_dup(src->pre_comp.nistz256); #endif break; #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 case PCT_nistp224: dest->pre_comp.nistp224 = EC_nistp224_pre_comp_dup(src->pre_comp.nistp224); break; case PCT_nistp256: dest->pre_comp.nistp256 = EC_nistp256_pre_comp_dup(src->pre_comp.nistp256); break; case PCT_nistp521: dest->pre_comp.nistp521 = EC_nistp521_pre_comp_dup(src->pre_comp.nistp521); break; #else case PCT_nistp224: case PCT_nistp256: case PCT_nistp521: break; #endif case PCT_ec: dest->pre_comp.ec = EC_ec_pre_comp_dup(src->pre_comp.ec); break; } if (src->mont_data != NULL) { if (dest->mont_data == NULL) { dest->mont_data = BN_MONT_CTX_new(); if (dest->mont_data == NULL) return 0; } if (!BN_MONT_CTX_copy(dest->mont_data, src->mont_data)) return 0; } else { /* src->generator == NULL */ BN_MONT_CTX_free(dest->mont_data); dest->mont_data = NULL; } if (src->generator != NULL) { if (dest->generator == NULL) { dest->generator = EC_POINT_new(dest); if (dest->generator == NULL) return 0; } if (!EC_POINT_copy(dest->generator, src->generator)) return 0; } else { /* src->generator == NULL */ EC_POINT_clear_free(dest->generator); dest->generator = NULL; } if ((src->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) { if (!BN_copy(dest->order, src->order)) return 0; if (!BN_copy(dest->cofactor, src->cofactor)) return 0; } dest->asn1_flag = src->asn1_flag; dest->asn1_form = src->asn1_form; if (src->seed) { OPENSSL_free(dest->seed); if ((dest->seed = OPENSSL_malloc(src->seed_len)) == NULL) { ECerr(EC_F_EC_GROUP_COPY, ERR_R_MALLOC_FAILURE); return 0; } if (!memcpy(dest->seed, src->seed, src->seed_len)) return 0; dest->seed_len = src->seed_len; } else { OPENSSL_free(dest->seed); dest->seed = NULL; dest->seed_len = 0; } return dest->meth->group_copy(dest, src); } EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) { EC_GROUP *t = NULL; int ok = 0; if (a == NULL) return NULL; if ((t = EC_GROUP_new(a->meth)) == NULL) return NULL; if (!EC_GROUP_copy(t, a)) goto err; ok = 1; err: if (!ok) { EC_GROUP_free(t); return NULL; } return t; } const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) { return group->meth; } int EC_METHOD_get_field_type(const EC_METHOD *meth) { return meth->field_type; } static int ec_precompute_mont_data(EC_GROUP *); /*- * Try computing cofactor from the generator order (n) and field cardinality (q). * This works for all curves of cryptographic interest. * * Hasse thm: q + 1 - 2*sqrt(q) <= n*h <= q + 1 + 2*sqrt(q) * h_min = (q + 1 - 2*sqrt(q))/n * h_max = (q + 1 + 2*sqrt(q))/n * h_max - h_min = 4*sqrt(q)/n * So if n > 4*sqrt(q) holds, there is only one possible value for h: * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil * * Otherwise, zero cofactor and return success. */ static int ec_guess_cofactor(EC_GROUP *group) { int ret = 0; BN_CTX *ctx = NULL; BIGNUM *q = NULL; /*- * If the cofactor is too large, we cannot guess it. * The RHS of below is a strict overestimate of lg(4 * sqrt(q)) */ if (BN_num_bits(group->order) <= (BN_num_bits(group->field) + 1) / 2 + 3) { /* default to 0 */ BN_zero(group->cofactor); /* return success */ return 1; } if ((ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); if ((q = BN_CTX_get(ctx)) == NULL) goto err; /* set q = 2**m for binary fields; q = p otherwise */ if (group->meth->field_type == NID_X9_62_characteristic_two_field) { BN_zero(q); if (!BN_set_bit(q, BN_num_bits(group->field) - 1)) goto err; } else { if (!BN_copy(q, group->field)) goto err; } /* compute h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2)/n \rfloor */ if (!BN_rshift1(group->cofactor, group->order) /* n/2 */ || !BN_add(group->cofactor, group->cofactor, q) /* q + n/2 */ /* q + 1 + n/2 */ || !BN_add(group->cofactor, group->cofactor, BN_value_one()) /* (q + 1 + n/2)/n */ || !BN_div(group->cofactor, NULL, group->cofactor, group->order, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor) { if (generator == NULL) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, ERR_R_PASSED_NULL_PARAMETER); return 0; } /* require group->field >= 1 */ if (group->field == NULL || BN_is_zero(group->field) || BN_is_negative(group->field)) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_FIELD); return 0; } /*- * - require order >= 1 * - enforce upper bound due to Hasse thm: order can be no more than one bit * longer than field cardinality */ if (order == NULL || BN_is_zero(order) || BN_is_negative(order) || BN_num_bits(order) > BN_num_bits(group->field) + 1) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_GROUP_ORDER); return 0; } /*- * Unfortunately the cofactor is an optional field in many standards. * Internally, the lib uses 0 cofactor as a marker for "unknown cofactor". * So accept cofactor == NULL or cofactor >= 0. */ if (cofactor != NULL && BN_is_negative(cofactor)) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_UNKNOWN_COFACTOR); return 0; } if (group->generator == NULL) { group->generator = EC_POINT_new(group); if (group->generator == NULL) return 0; } if (!EC_POINT_copy(group->generator, generator)) return 0; if (!BN_copy(group->order, order)) return 0; /* Either take the provided positive cofactor, or try to compute it */ if (cofactor != NULL && !BN_is_zero(cofactor)) { if (!BN_copy(group->cofactor, cofactor)) return 0; } else if (!ec_guess_cofactor(group)) { BN_zero(group->cofactor); return 0; } /* * Some groups have an order with * factors of two, which makes the Montgomery setup fail. * |group->mont_data| will be NULL in this case. */ if (BN_is_odd(group->order)) { return ec_precompute_mont_data(group); } BN_MONT_CTX_free(group->mont_data); group->mont_data = NULL; return 1; } const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) { return group->generator; } BN_MONT_CTX *EC_GROUP_get_mont_data(const EC_GROUP *group) { return group->mont_data; } int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { if (group->order == NULL) return 0; if (!BN_copy(order, group->order)) return 0; return !BN_is_zero(order); } const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) { return group->order; } int EC_GROUP_order_bits(const EC_GROUP *group) { return group->meth->group_order_bits(group); } int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) { if (group->cofactor == NULL) return 0; if (!BN_copy(cofactor, group->cofactor)) return 0; return !BN_is_zero(group->cofactor); } const BIGNUM *EC_GROUP_get0_cofactor(const EC_GROUP *group) { return group->cofactor; } void EC_GROUP_set_curve_name(EC_GROUP *group, int nid) { group->curve_name = nid; } int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) { group->asn1_flag = flag; } int EC_GROUP_get_asn1_flag(const EC_GROUP *group) { return group->asn1_flag; } void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form) { group->asn1_form = form; } point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *group) { return group->asn1_form; } size_t EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *p, size_t len) { OPENSSL_free(group->seed); group->seed = NULL; group->seed_len = 0; if (!len || !p) return 1; if ((group->seed = OPENSSL_malloc(len)) == NULL) { ECerr(EC_F_EC_GROUP_SET_SEED, ERR_R_MALLOC_FAILURE); return 0; } memcpy(group->seed, p, len); group->seed_len = len; return len; } unsigned char *EC_GROUP_get0_seed(const EC_GROUP *group) { return group->seed; } size_t EC_GROUP_get_seed_len(const EC_GROUP *group) { return group->seed_len; } int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { if (group->meth->group_set_curve == 0) { ECerr(EC_F_EC_GROUP_SET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { if (group->meth->group_get_curve == NULL) { ECerr(EC_F_EC_GROUP_GET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_get_curve(group, p, a, b, ctx); } #if OPENSSL_API_COMPAT < 0x10200000L int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } # ifndef OPENSSL_NO_EC2M int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } # endif #endif int EC_GROUP_get_degree(const EC_GROUP *group) { if (group->meth->group_get_degree == 0) { ECerr(EC_F_EC_GROUP_GET_DEGREE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_get_degree(group); } int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) { if (group->meth->group_check_discriminant == 0) { ECerr(EC_F_EC_GROUP_CHECK_DISCRIMINANT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_check_discriminant(group, ctx); } int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx) { int r = 0; BIGNUM *a1, *a2, *a3, *b1, *b2, *b3; BN_CTX *ctx_new = NULL; /* compare the field types */ if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) != EC_METHOD_get_field_type(EC_GROUP_method_of(b))) return 1; /* compare the curve name (if present in both) */ if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) && EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b)) return 1; if (a->meth->flags & EC_FLAGS_CUSTOM_CURVE) return 0; if (ctx == NULL) ctx_new = ctx = BN_CTX_new(); if (ctx == NULL) return -1; BN_CTX_start(ctx); a1 = BN_CTX_get(ctx); a2 = BN_CTX_get(ctx); a3 = BN_CTX_get(ctx); b1 = BN_CTX_get(ctx); b2 = BN_CTX_get(ctx); b3 = BN_CTX_get(ctx); if (b3 == NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx_new); return -1; } /* * XXX This approach assumes that the external representation of curves * over the same field type is the same. */ if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) || !b->meth->group_get_curve(b, b1, b2, b3, ctx)) r = 1; if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3)) r = 1; /* XXX EC_POINT_cmp() assumes that the methods are equal */ if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a), EC_GROUP_get0_generator(b), ctx)) r = 1; if (!r) { const BIGNUM *ao, *bo, *ac, *bc; /* compare the order and cofactor */ ao = EC_GROUP_get0_order(a); bo = EC_GROUP_get0_order(b); ac = EC_GROUP_get0_cofactor(a); bc = EC_GROUP_get0_cofactor(b); if (ao == NULL || bo == NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx_new); return -1; } if (BN_cmp(ao, bo) || BN_cmp(ac, bc)) r = 1; } BN_CTX_end(ctx); BN_CTX_free(ctx_new); return r; } /* functions for EC_POINT objects */ EC_POINT *EC_POINT_new(const EC_GROUP *group) { EC_POINT *ret; if (group == NULL) { ECerr(EC_F_EC_POINT_NEW, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (group->meth->point_init == NULL) { ECerr(EC_F_EC_POINT_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return NULL; } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_EC_POINT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->meth = group->meth; ret->curve_name = group->curve_name; if (!ret->meth->point_init(ret)) { OPENSSL_free(ret); return NULL; } return ret; } void EC_POINT_free(EC_POINT *point) { if (!point) return; if (point->meth->point_finish != 0) point->meth->point_finish(point); OPENSSL_free(point); } void EC_POINT_clear_free(EC_POINT *point) { if (!point) return; if (point->meth->point_clear_finish != 0) point->meth->point_clear_finish(point); else if (point->meth->point_finish != 0) point->meth->point_finish(point); OPENSSL_clear_free(point, sizeof(*point)); } int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { if (dest->meth->point_copy == 0) { ECerr(EC_F_EC_POINT_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth || (dest->curve_name != src->curve_name && dest->curve_name != 0 && src->curve_name != 0)) { ECerr(EC_F_EC_POINT_COPY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; return dest->meth->point_copy(dest, src); } EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) { EC_POINT *t; int r; if (a == NULL) return NULL; t = EC_POINT_new(group); if (t == NULL) return NULL; r = EC_POINT_copy(t, a); if (!r) { EC_POINT_free(t); return NULL; } return t; } const EC_METHOD *EC_POINT_method_of(const EC_POINT *point) { return point->meth; } int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { if (group->meth->point_set_to_infinity == 0) { ECerr(EC_F_EC_POINT_SET_TO_INFINITY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerr(EC_F_EC_POINT_SET_TO_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_set_to_infinity(group, point); } int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) { if (group->meth->point_set_Jprojective_coordinates_GFp == 0) { ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_set_Jprojective_coordinates_GFp(group, point, x, y, z, ctx); } int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) { if (group->meth->point_get_Jprojective_coordinates_GFp == 0) { ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_get_Jprojective_coordinates_GFp(group, point, x, y, z, ctx); } int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { if (group->meth->point_set_affine_coordinates == NULL) { ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx)) return 0; if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_POINT_IS_NOT_ON_CURVE); return 0; } return 1; } #if OPENSSL_API_COMPAT < 0x10200000L int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } # ifndef OPENSSL_NO_EC2M int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } # endif #endif int EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { if (group->meth->point_get_affine_coordinates == NULL) { ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } return group->meth->point_get_affine_coordinates(group, point, x, y, ctx); } #if OPENSSL_API_COMPAT < 0x10200000L int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } # ifndef OPENSSL_NO_EC2M int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } # endif #endif int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { if (group->meth->add == 0) { ECerr(EC_F_EC_POINT_ADD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group) || !ec_point_is_compat(b, group)) { ECerr(EC_F_EC_POINT_ADD, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->add(group, r, a, b, ctx); } int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { if (group->meth->dbl == 0) { ECerr(EC_F_EC_POINT_DBL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group)) { ECerr(EC_F_EC_POINT_DBL, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->dbl(group, r, a, ctx); } int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { if (group->meth->invert == 0) { ECerr(EC_F_EC_POINT_INVERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(a, group)) { ECerr(EC_F_EC_POINT_INVERT, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->invert(group, a, ctx); } int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { if (group->meth->is_at_infinity == 0) { ECerr(EC_F_EC_POINT_IS_AT_INFINITY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_IS_AT_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->is_at_infinity(group, point); } /* * Check whether an EC_POINT is on the curve or not. Note that the return * value for this function should NOT be treated as a boolean. Return values: * 1: The point is on the curve * 0: The point is not on the curve * -1: An error occurred */ int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { if (group->meth->is_on_curve == 0) { ECerr(EC_F_EC_POINT_IS_ON_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_IS_ON_CURVE, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->is_on_curve(group, point, ctx); } int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { if (group->meth->point_cmp == 0) { ECerr(EC_F_EC_POINT_CMP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } if (!ec_point_is_compat(a, group) || !ec_point_is_compat(b, group)) { ECerr(EC_F_EC_POINT_CMP, EC_R_INCOMPATIBLE_OBJECTS); return -1; } return group->meth->point_cmp(group, a, b, ctx); } int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (group->meth->make_affine == 0) { ECerr(EC_F_EC_POINT_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->make_affine(group, point, ctx); } int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { size_t i; if (group->meth->points_make_affine == 0) { ECerr(EC_F_EC_POINTS_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } for (i = 0; i < num; i++) { if (!ec_point_is_compat(points[i], group)) { ECerr(EC_F_EC_POINTS_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); return 0; } } return group->meth->points_make_affine(group, num, points, ctx); } /* * Functions for point multiplication. If group->meth->mul is 0, we use the * wNAF-based implementations in ec_mult.c; otherwise we dispatch through * methods. */ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int ret = 0; size_t i = 0; BN_CTX *new_ctx = NULL; if ((scalar == NULL) && (num == 0)) { return EC_POINT_set_to_infinity(group, r); } if (!ec_point_is_compat(r, group)) { ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); return 0; } for (i = 0; i < num; i++) { if (!ec_point_is_compat(points[i], group)) { ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); return 0; } } if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) { ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR); return 0; } if (group->meth->mul != NULL) ret = group->meth->mul(group, r, scalar, num, points, scalars, ctx); else /* use default */ ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); BN_CTX_free(new_ctx); return ret; } int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) { /* just a convenient interface to EC_POINTs_mul() */ const EC_POINT *points[1]; const BIGNUM *scalars[1]; points[0] = point; scalars[0] = p_scalar; return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx); } int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { if (group->meth->mul == 0) /* use default */ return ec_wNAF_precompute_mult(group, ctx); if (group->meth->precompute_mult != 0) return group->meth->precompute_mult(group, ctx); else return 1; /* nothing to do, so report success */ } int EC_GROUP_have_precompute_mult(const EC_GROUP *group) { if (group->meth->mul == 0) /* use default */ return ec_wNAF_have_precompute_mult(group); if (group->meth->have_precompute_mult != 0) return group->meth->have_precompute_mult(group); else return 0; /* cannot tell whether precomputation has * been performed */ } /* * ec_precompute_mont_data sets |group->mont_data| from |group->order| and * returns one on success. On error it returns zero. */ static int ec_precompute_mont_data(EC_GROUP *group) { BN_CTX *ctx = BN_CTX_new(); int ret = 0; BN_MONT_CTX_free(group->mont_data); group->mont_data = NULL; if (ctx == NULL) goto err; group->mont_data = BN_MONT_CTX_new(); if (group->mont_data == NULL) goto err; if (!BN_MONT_CTX_set(group->mont_data, group->order, ctx)) { BN_MONT_CTX_free(group->mont_data); group->mont_data = NULL; goto err; } ret = 1; err: BN_CTX_free(ctx); return ret; } int EC_KEY_set_ex_data(EC_KEY *key, int idx, void *arg) { return CRYPTO_set_ex_data(&key->ex_data, idx, arg); } void *EC_KEY_get_ex_data(const EC_KEY *key, int idx) { return CRYPTO_get_ex_data(&key->ex_data, idx); } int ec_group_simple_order_bits(const EC_GROUP *group) { if (group->order == NULL) return 0; return BN_num_bits(group->order); } static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r, const BIGNUM *x, BN_CTX *ctx) { BIGNUM *e = NULL; BN_CTX *new_ctx = NULL; int ret = 0; if (group->mont_data == NULL) return 0; if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) return 0; BN_CTX_start(ctx); if ((e = BN_CTX_get(ctx)) == NULL) goto err; /*- * We want inverse in constant time, therefore we utilize the fact * order must be prime and use Fermats Little Theorem instead. */ if (!BN_set_word(e, 2)) goto err; if (!BN_sub(e, group->order, e)) goto err; /*- * Exponent e is public. * No need for scatter-gather or BN_FLG_CONSTTIME. */ if (!BN_mod_exp_mont(r, x, e, group->order, ctx, group->mont_data)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /*- * Default behavior, if group->meth->field_inverse_mod_ord is NULL: * - When group->order is even, this function returns an error. * - When group->order is otherwise composite, the correctness * of the output is not guaranteed. * - When x is outside the range [1, group->order), the correctness * of the output is not guaranteed. * - Otherwise, this function returns the multiplicative inverse in the * range [1, group->order). * * EC_METHODs must implement their own field_inverse_mod_ord for * other functionality. */ int ec_group_do_inverse_ord(const EC_GROUP *group, BIGNUM *res, const BIGNUM *x, BN_CTX *ctx) { if (group->meth->field_inverse_mod_ord != NULL) return group->meth->field_inverse_mod_ord(group, res, x, ctx); else return ec_field_inverse_mod_ord(group, res, x, ctx); } /*- * Coordinate blinding for EC_POINT. * * The underlying EC_METHOD can optionally implement this function: * underlying implementations should return 0 on errors, or 1 on * success. * * This wrapper returns 1 in case the underlying EC_METHOD does not * support coordinate blinding. */ int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) { if (group->meth->blind_coordinates == NULL) return 1; /* ignore if not implemented */ return group->meth->blind_coordinates(group, p, ctx); } openssl-1.1.1f/crypto/ec/ec_local.h000066400000000000000000001040621364063235100171720ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "internal/refcount.h" #include "crypto/ec.h" #if defined(__SUNPRO_C) # if __SUNPRO_C >= 0x520 # pragma error_messages (off,E_ARRAY_OF_INCOMPLETE_NONAME,E_ARRAY_OF_INCOMPLETE) # endif #endif /* Use default functions for poin2oct, oct2point and compressed coordinates */ #define EC_FLAGS_DEFAULT_OCT 0x1 /* Use custom formats for EC_GROUP, EC_POINT and EC_KEY */ #define EC_FLAGS_CUSTOM_CURVE 0x2 /* Curve does not support signing operations */ #define EC_FLAGS_NO_SIGN 0x4 /* * Structure details are not part of the exported interface, so all this may * change in future versions. */ struct ec_method_st { /* Various method flags */ int flags; /* used by EC_METHOD_get_field_type: */ int field_type; /* a NID */ /* * used by EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, * EC_GROUP_copy: */ int (*group_init) (EC_GROUP *); void (*group_finish) (EC_GROUP *); void (*group_clear_finish) (EC_GROUP *); int (*group_copy) (EC_GROUP *, const EC_GROUP *); /* used by EC_GROUP_set_curve, EC_GROUP_get_curve: */ int (*group_set_curve) (EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int (*group_get_curve) (const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); /* used by EC_GROUP_get_degree: */ int (*group_get_degree) (const EC_GROUP *); int (*group_order_bits) (const EC_GROUP *); /* used by EC_GROUP_check: */ int (*group_check_discriminant) (const EC_GROUP *, BN_CTX *); /* * used by EC_POINT_new, EC_POINT_free, EC_POINT_clear_free, * EC_POINT_copy: */ int (*point_init) (EC_POINT *); void (*point_finish) (EC_POINT *); void (*point_clear_finish) (EC_POINT *); int (*point_copy) (EC_POINT *, const EC_POINT *); /*- * used by EC_POINT_set_to_infinity, * EC_POINT_set_Jprojective_coordinates_GFp, * EC_POINT_get_Jprojective_coordinates_GFp, * EC_POINT_set_affine_coordinates, * EC_POINT_get_affine_coordinates, * EC_POINT_set_compressed_coordinates: */ int (*point_set_to_infinity) (const EC_GROUP *, EC_POINT *); int (*point_set_Jprojective_coordinates_GFp) (const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *); int (*point_get_Jprojective_coordinates_GFp) (const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *); int (*point_set_affine_coordinates) (const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, BN_CTX *); int (*point_get_affine_coordinates) (const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BN_CTX *); int (*point_set_compressed_coordinates) (const EC_GROUP *, EC_POINT *, const BIGNUM *x, int y_bit, BN_CTX *); /* used by EC_POINT_point2oct, EC_POINT_oct2point: */ size_t (*point2oct) (const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *); int (*oct2point) (const EC_GROUP *, EC_POINT *, const unsigned char *buf, size_t len, BN_CTX *); /* used by EC_POINT_add, EC_POINT_dbl, ECP_POINT_invert: */ int (*add) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int (*dbl) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); int (*invert) (const EC_GROUP *, EC_POINT *, BN_CTX *); /* * used by EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp: */ int (*is_at_infinity) (const EC_GROUP *, const EC_POINT *); int (*is_on_curve) (const EC_GROUP *, const EC_POINT *, BN_CTX *); int (*point_cmp) (const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); /* used by EC_POINT_make_affine, EC_POINTs_make_affine: */ int (*make_affine) (const EC_GROUP *, EC_POINT *, BN_CTX *); int (*points_make_affine) (const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); /* * used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, * EC_POINT_have_precompute_mult (default implementations are used if the * 'mul' pointer is 0): */ /*- * mul() calculates the value * * r := generator * scalar * + points[0] * scalars[0] * + ... * + points[num-1] * scalars[num-1]. * * For a fixed point multiplication (scalar != NULL, num == 0) * or a variable point multiplication (scalar == NULL, num == 1), * mul() must use a constant time algorithm: in both cases callers * should provide an input scalar (either scalar or scalars[0]) * in the range [0, ec_group_order); for robustness, implementers * should handle the case when the scalar has not been reduced, but * may treat it as an unusual input, without any constant-timeness * guarantee. */ int (*mul) (const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int (*precompute_mult) (EC_GROUP *group, BN_CTX *); int (*have_precompute_mult) (const EC_GROUP *group); /* internal functions */ /* * 'field_mul', 'field_sqr', and 'field_div' can be used by 'add' and * 'dbl' so that the same implementations of point operations can be used * with different optimized implementations of expensive field * operations: */ int (*field_mul) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int (*field_div) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); /*- * 'field_inv' computes the multiplicative inverse of a in the field, * storing the result in r. * * If 'a' is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error. */ int (*field_inv) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); /* e.g. to Montgomery */ int (*field_encode) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); /* e.g. from Montgomery */ int (*field_decode) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int (*field_set_to_one) (const EC_GROUP *, BIGNUM *r, BN_CTX *); /* private key operations */ size_t (*priv2oct)(const EC_KEY *eckey, unsigned char *buf, size_t len); int (*oct2priv)(EC_KEY *eckey, const unsigned char *buf, size_t len); int (*set_private)(EC_KEY *eckey, const BIGNUM *priv_key); int (*keygen)(EC_KEY *eckey); int (*keycheck)(const EC_KEY *eckey); int (*keygenpub)(EC_KEY *eckey); int (*keycopy)(EC_KEY *dst, const EC_KEY *src); void (*keyfinish)(EC_KEY *eckey); /* custom ECDH operation */ int (*ecdh_compute_key)(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); /* Inverse modulo order */ int (*field_inverse_mod_ord)(const EC_GROUP *, BIGNUM *r, const BIGNUM *x, BN_CTX *); int (*blind_coordinates)(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx); int (*ladder_pre)(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); int (*ladder_step)(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); int (*ladder_post)(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); }; /* * Types and functions to manipulate pre-computed values. */ typedef struct nistp224_pre_comp_st NISTP224_PRE_COMP; typedef struct nistp256_pre_comp_st NISTP256_PRE_COMP; typedef struct nistp521_pre_comp_st NISTP521_PRE_COMP; typedef struct nistz256_pre_comp_st NISTZ256_PRE_COMP; typedef struct ec_pre_comp_st EC_PRE_COMP; struct ec_group_st { const EC_METHOD *meth; EC_POINT *generator; /* optional */ BIGNUM *order, *cofactor; int curve_name; /* optional NID for named curve */ int asn1_flag; /* flag to control the asn1 encoding */ point_conversion_form_t asn1_form; unsigned char *seed; /* optional seed for parameters (appears in * ASN1) */ size_t seed_len; /* * The following members are handled by the method functions, even if * they appear generic */ /* * Field specification. For curves over GF(p), this is the modulus; for * curves over GF(2^m), this is the irreducible polynomial defining the * field. */ BIGNUM *field; /* * Field specification for curves over GF(2^m). The irreducible f(t) is * then of the form: t^poly[0] + t^poly[1] + ... + t^poly[k] where m = * poly[0] > poly[1] > ... > poly[k] = 0. The array is terminated with * poly[k+1]=-1. All elliptic curve irreducibles have at most 5 non-zero * terms. */ int poly[6]; /* * Curve coefficients. (Here the assumption is that BIGNUMs can be used * or abused for all kinds of fields, not just GF(p).) For characteristic * > 3, the curve is defined by a Weierstrass equation of the form y^2 = * x^3 + a*x + b. For characteristic 2, the curve is defined by an * equation of the form y^2 + x*y = x^3 + a*x^2 + b. */ BIGNUM *a, *b; /* enable optimized point arithmetics for special case */ int a_is_minus3; /* method-specific (e.g., Montgomery structure) */ void *field_data1; /* method-specific */ void *field_data2; /* method-specific */ int (*field_mod_func) (BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); /* data for ECDSA inverse */ BN_MONT_CTX *mont_data; /* * Precomputed values for speed. The PCT_xxx names match the * pre_comp.xxx union names; see the SETPRECOMP and HAVEPRECOMP * macros, below. */ enum { PCT_none, PCT_nistp224, PCT_nistp256, PCT_nistp521, PCT_nistz256, PCT_ec } pre_comp_type; union { NISTP224_PRE_COMP *nistp224; NISTP256_PRE_COMP *nistp256; NISTP521_PRE_COMP *nistp521; NISTZ256_PRE_COMP *nistz256; EC_PRE_COMP *ec; } pre_comp; }; #define SETPRECOMP(g, type, pre) \ g->pre_comp_type = PCT_##type, g->pre_comp.type = pre #define HAVEPRECOMP(g, type) \ g->pre_comp_type == PCT_##type && g->pre_comp.type != NULL struct ec_key_st { const EC_KEY_METHOD *meth; ENGINE *engine; int version; EC_GROUP *group; EC_POINT *pub_key; BIGNUM *priv_key; unsigned int enc_flag; point_conversion_form_t conv_form; CRYPTO_REF_COUNT references; int flags; CRYPTO_EX_DATA ex_data; CRYPTO_RWLOCK *lock; }; struct ec_point_st { const EC_METHOD *meth; /* NID for the curve if known */ int curve_name; /* * All members except 'meth' are handled by the method functions, even if * they appear generic */ BIGNUM *X; BIGNUM *Y; BIGNUM *Z; /* Jacobian projective coordinates: * (X, Y, * Z) represents (X/Z^2, Y/Z^3) if Z != 0 */ int Z_is_one; /* enable optimized point arithmetics for * special case */ }; static ossl_inline int ec_point_is_compat(const EC_POINT *point, const EC_GROUP *group) { if (group->meth != point->meth || (group->curve_name != 0 && point->curve_name != 0 && group->curve_name != point->curve_name)) return 0; return 1; } NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *); NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *); NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *); NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *); NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *); EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *); void EC_pre_comp_free(EC_GROUP *group); void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *); void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *); void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *); void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *); void EC_ec_pre_comp_free(EC_PRE_COMP *); /* * method functions in ec_mult.c (ec_lib.c uses these as defaults if * group->method->mul is 0) */ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *); int ec_wNAF_have_precompute_mult(const EC_GROUP *group); /* method functions in ecp_smpl.c */ int ec_GFp_simple_group_init(EC_GROUP *); void ec_GFp_simple_group_finish(EC_GROUP *); void ec_GFp_simple_group_clear_finish(EC_GROUP *); int ec_GFp_simple_group_copy(EC_GROUP *, const EC_GROUP *); int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); int ec_GFp_simple_group_get_degree(const EC_GROUP *); int ec_GFp_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *); int ec_GFp_simple_point_init(EC_POINT *); void ec_GFp_simple_point_finish(EC_POINT *); void ec_GFp_simple_point_clear_finish(EC_POINT *); int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *); int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *); int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *); int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *); int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, BN_CTX *); int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BN_CTX *); int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, int y_bit, BN_CTX *); size_t ec_GFp_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *); int ec_GFp_simple_oct2point(const EC_GROUP *, EC_POINT *, const unsigned char *buf, size_t len, BN_CTX *); int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *); int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *); int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_simple_field_inv(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx); int ec_GFp_simple_ladder_pre(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); int ec_GFp_simple_ladder_step(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); int ec_GFp_simple_ladder_post(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); /* method functions in ecp_mont.c */ int ec_GFp_mont_group_init(EC_GROUP *); int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); void ec_GFp_mont_group_finish(EC_GROUP *); void ec_GFp_mont_group_clear_finish(EC_GROUP *); int ec_GFp_mont_group_copy(EC_GROUP *, const EC_GROUP *); int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_mont_field_inv(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_mont_field_set_to_one(const EC_GROUP *, BIGNUM *r, BN_CTX *); /* method functions in ecp_nist.c */ int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src); int ec_GFp_nist_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_nist_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_nist_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); /* method functions in ec2_smpl.c */ int ec_GF2m_simple_group_init(EC_GROUP *); void ec_GF2m_simple_group_finish(EC_GROUP *); void ec_GF2m_simple_group_clear_finish(EC_GROUP *); int ec_GF2m_simple_group_copy(EC_GROUP *, const EC_GROUP *); int ec_GF2m_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GF2m_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); int ec_GF2m_simple_group_get_degree(const EC_GROUP *); int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *); int ec_GF2m_simple_point_init(EC_POINT *); void ec_GF2m_simple_point_finish(EC_POINT *); void ec_GF2m_simple_point_clear_finish(EC_POINT *); int ec_GF2m_simple_point_copy(EC_POINT *, const EC_POINT *); int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *); int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, BN_CTX *); int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BN_CTX *); int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, int y_bit, BN_CTX *); size_t ec_GF2m_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *); int ec_GF2m_simple_oct2point(const EC_GROUP *, EC_POINT *, const unsigned char *buf, size_t len, BN_CTX *); int ec_GF2m_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GF2m_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); int ec_GF2m_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GF2m_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *); int ec_GF2m_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *); int ec_GF2m_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GF2m_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GF2m_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); int ec_GF2m_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GF2m_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GF2m_simple_field_div(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 /* method functions in ecp_nistp224.c */ int ec_GFp_nistp224_group_init(EC_GROUP *group); int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); int ec_GFp_nistp224_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group); /* method functions in ecp_nistp256.c */ int ec_GFp_nistp256_group_init(EC_GROUP *group); int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); int ec_GFp_nistp256_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group); /* method functions in ecp_nistp521.c */ int ec_GFp_nistp521_group_init(EC_GROUP *group); int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); int ec_GFp_nistp521_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group); /* utility functions in ecp_nistputil.c */ void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array, size_t felem_size, void *tmp_felems, void (*felem_one) (void *out), int (*felem_is_zero) (const void *in), void (*felem_assign) (void *out, const void *in), void (*felem_square) (void *out, const void *in), void (*felem_mul) (void *out, const void *in1, const void *in2), void (*felem_inv) (void *out, const void *in), void (*felem_contract) (void *out, const void *in)); void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign, unsigned char *digit, unsigned char in); #endif int ec_group_simple_order_bits(const EC_GROUP *group); #ifdef ECP_NISTZ256_ASM /** Returns GFp methods using montgomery multiplication, with x86-64 optimized * P256. See http://eprint.iacr.org/2013/816. * \return EC_METHOD object */ const EC_METHOD *EC_GFp_nistz256_method(void); #endif size_t ec_key_simple_priv2oct(const EC_KEY *eckey, unsigned char *buf, size_t len); int ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len); int ec_key_simple_generate_key(EC_KEY *eckey); int ec_key_simple_generate_public_key(EC_KEY *eckey); int ec_key_simple_check_key(const EC_KEY *eckey); int ec_curve_nid_from_params(const EC_GROUP *group, BN_CTX *ctx); /* EC_METHOD definitions */ struct ec_key_method_st { const char *name; int32_t flags; int (*init)(EC_KEY *key); void (*finish)(EC_KEY *key); int (*copy)(EC_KEY *dest, const EC_KEY *src); int (*set_group)(EC_KEY *key, const EC_GROUP *grp); int (*set_private)(EC_KEY *key, const BIGNUM *priv_key); int (*set_public)(EC_KEY *key, const EC_POINT *pub_key); int (*keygen)(EC_KEY *key); int (*compute_key)(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); int (*sign)(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey); int (*sign_setup)(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp); ECDSA_SIG *(*sign_sig)(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey); int (*verify)(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey); int (*verify_sig)(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey); }; #define EC_KEY_METHOD_DYNAMIC 1 int ossl_ec_key_gen(EC_KEY *eckey); int ossl_ecdh_compute_key(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); int ecdh_simple_compute_key(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); struct ECDSA_SIG_st { BIGNUM *r; BIGNUM *s; }; int ossl_ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp); int ossl_ecdsa_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey); ECDSA_SIG *ossl_ecdsa_sign_sig(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey); int ossl_ecdsa_verify(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey); int ossl_ecdsa_verify_sig(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey); int ED25519_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len, const uint8_t public_key[32], const uint8_t private_key[32]); int ED25519_verify(const uint8_t *message, size_t message_len, const uint8_t signature[64], const uint8_t public_key[32]); void ED25519_public_from_private(uint8_t out_public_key[32], const uint8_t private_key[32]); int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32], const uint8_t peer_public_value[32]); void X25519_public_from_private(uint8_t out_public_value[32], const uint8_t private_key[32]); /*- * This functions computes a single point multiplication over the EC group, * using, at a high level, a Montgomery ladder with conditional swaps, with * various timing attack defenses. * * It performs either a fixed point multiplication * (scalar * generator) * when point is NULL, or a variable point multiplication * (scalar * point) * when point is not NULL. * * `scalar` cannot be NULL and should be in the range [0,n) otherwise all * constant time bets are off (where n is the cardinality of the EC group). * * This function expects `group->order` and `group->cardinality` to be well * defined and non-zero: it fails with an error code otherwise. * * NB: This says nothing about the constant-timeness of the ladder step * implementation (i.e., the default implementation is based on EC_POINT_add and * EC_POINT_dbl, which of course are not constant time themselves) or the * underlying multiprecision arithmetic. * * The product is stored in `r`. * * This is an internal function: callers are in charge of ensuring that the * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. * * Returns 1 on success, 0 otherwise. */ int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx); int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx); static ossl_inline int ec_point_ladder_pre(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { if (group->meth->ladder_pre != NULL) return group->meth->ladder_pre(group, r, s, p, ctx); if (!EC_POINT_copy(s, p) || !EC_POINT_dbl(group, r, s, ctx)) return 0; return 1; } static ossl_inline int ec_point_ladder_step(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { if (group->meth->ladder_step != NULL) return group->meth->ladder_step(group, r, s, p, ctx); if (!EC_POINT_add(group, s, r, s, ctx) || !EC_POINT_dbl(group, r, r, ctx)) return 0; return 1; } static ossl_inline int ec_point_ladder_post(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { if (group->meth->ladder_post != NULL) return group->meth->ladder_post(group, r, s, p, ctx); return 1; } openssl-1.1.1f/crypto/ec/ec_mult.c000066400000000000000000000742111364063235100170560ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "crypto/bn.h" #include "ec_local.h" #include "internal/refcount.h" /* * This file implements the wNAF-based interleaving multi-exponentiation method * Formerly at: * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp * You might now find it here: * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf * For multiplication with precomputation, we use wNAF splitting, formerly at: * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp */ /* structure for precomputed multiples of the generator */ struct ec_pre_comp_st { const EC_GROUP *group; /* parent EC_GROUP object */ size_t blocksize; /* block size for wNAF splitting */ size_t numblocks; /* max. number of blocks for which we have * precomputation */ size_t w; /* window size */ EC_POINT **points; /* array with pre-calculated multiples of * generator: 'num' pointers to EC_POINT * objects followed by a NULL */ size_t num; /* numblocks * 2^(w-1) */ CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; }; static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) { EC_PRE_COMP *ret = NULL; if (!group) return NULL; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); return ret; } ret->group = group; ret->blocksize = 8; /* default */ ret->w = 4; /* default */ ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre) { int i; if (pre != NULL) CRYPTO_UP_REF(&pre->references, &i, pre->lock); return pre; } void EC_ec_pre_comp_free(EC_PRE_COMP *pre) { int i; if (pre == NULL) return; CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); REF_PRINT_COUNT("EC_ec", pre); if (i > 0) return; REF_ASSERT_ISNT(i < 0); if (pre->points != NULL) { EC_POINT **pts; for (pts = pre->points; *pts != NULL; pts++) EC_POINT_free(*pts); OPENSSL_free(pre->points); } CRYPTO_THREAD_lock_free(pre->lock); OPENSSL_free(pre); } #define EC_POINT_BN_set_flags(P, flags) do { \ BN_set_flags((P)->X, (flags)); \ BN_set_flags((P)->Y, (flags)); \ BN_set_flags((P)->Z, (flags)); \ } while(0) /*- * This functions computes a single point multiplication over the EC group, * using, at a high level, a Montgomery ladder with conditional swaps, with * various timing attack defenses. * * It performs either a fixed point multiplication * (scalar * generator) * when point is NULL, or a variable point multiplication * (scalar * point) * when point is not NULL. * * `scalar` cannot be NULL and should be in the range [0,n) otherwise all * constant time bets are off (where n is the cardinality of the EC group). * * This function expects `group->order` and `group->cardinality` to be well * defined and non-zero: it fails with an error code otherwise. * * NB: This says nothing about the constant-timeness of the ladder step * implementation (i.e., the default implementation is based on EC_POINT_add and * EC_POINT_dbl, which of course are not constant time themselves) or the * underlying multiprecision arithmetic. * * The product is stored in `r`. * * This is an internal function: callers are in charge of ensuring that the * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. * * Returns 1 on success, 0 otherwise. */ int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) { int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; EC_POINT *p = NULL; EC_POINT *s = NULL; BIGNUM *k = NULL; BIGNUM *lambda = NULL; BIGNUM *cardinality = NULL; int ret = 0; /* early exit if the input point is the point at infinity */ if (point != NULL && EC_POINT_is_at_infinity(group, point)) return EC_POINT_set_to_infinity(group, r); if (BN_is_zero(group->order)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER); return 0; } if (BN_is_zero(group->cofactor)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR); return 0; } BN_CTX_start(ctx); if (((p = EC_POINT_new(group)) == NULL) || ((s = EC_POINT_new(group)) == NULL)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); goto err; } if (point == NULL) { if (!EC_POINT_copy(p, group->generator)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); goto err; } } else { if (!EC_POINT_copy(p, point)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); goto err; } } EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME); EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); cardinality = BN_CTX_get(ctx); lambda = BN_CTX_get(ctx); k = BN_CTX_get(ctx); if (k == NULL) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); goto err; } if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); goto err; } /* * Group cardinalities are often on a word boundary. * So when we pad the scalar, some timing diff might * pop if it needs to be expanded due to carries. * So expand ahead of time. */ cardinality_bits = BN_num_bits(cardinality); group_top = bn_get_top(cardinality); if ((bn_wexpand(k, group_top + 2) == NULL) || (bn_wexpand(lambda, group_top + 2) == NULL)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); goto err; } if (!BN_copy(k, scalar)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); goto err; } BN_set_flags(k, BN_FLG_CONSTTIME); if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { /*- * this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(k, k, cardinality, ctx)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); goto err; } } if (!BN_add(lambda, k, cardinality)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); goto err; } BN_set_flags(lambda, BN_FLG_CONSTTIME); if (!BN_add(k, lambda, cardinality)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); goto err; } /* * lambda := scalar + cardinality * k := scalar + 2*cardinality */ kbit = BN_is_bit_set(lambda, cardinality_bits); BN_consttime_swap(kbit, k, lambda, group_top + 2); group_top = bn_get_top(group->field); if ((bn_wexpand(s->X, group_top) == NULL) || (bn_wexpand(s->Y, group_top) == NULL) || (bn_wexpand(s->Z, group_top) == NULL) || (bn_wexpand(r->X, group_top) == NULL) || (bn_wexpand(r->Y, group_top) == NULL) || (bn_wexpand(r->Z, group_top) == NULL) || (bn_wexpand(p->X, group_top) == NULL) || (bn_wexpand(p->Y, group_top) == NULL) || (bn_wexpand(p->Z, group_top) == NULL)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); goto err; } /*- * Apply coordinate blinding for EC_POINT. * * The underlying EC_METHOD can optionally implement this function: * ec_point_blind_coordinates() returns 0 in case of errors or 1 on * success or if coordinate blinding is not implemented for this * group. */ if (!ec_point_blind_coordinates(group, p, ctx)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_POINT_COORDINATES_BLIND_FAILURE); goto err; } /* Initialize the Montgomery ladder */ if (!ec_point_ladder_pre(group, r, s, p, ctx)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE); goto err; } /* top bit is a 1, in a fixed pos */ pbit = 1; #define EC_POINT_CSWAP(c, a, b, w, t) do { \ BN_consttime_swap(c, (a)->X, (b)->X, w); \ BN_consttime_swap(c, (a)->Y, (b)->Y, w); \ BN_consttime_swap(c, (a)->Z, (b)->Z, w); \ t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ (a)->Z_is_one ^= (t); \ (b)->Z_is_one ^= (t); \ } while(0) /*- * The ladder step, with branches, is * * k[i] == 0: S = add(R, S), R = dbl(R) * k[i] == 1: R = add(S, R), S = dbl(S) * * Swapping R, S conditionally on k[i] leaves you with state * * k[i] == 0: T, U = R, S * k[i] == 1: T, U = S, R * * Then perform the ECC ops. * * U = add(T, U) * T = dbl(T) * * Which leaves you with state * * k[i] == 0: U = add(R, S), T = dbl(R) * k[i] == 1: U = add(S, R), T = dbl(S) * * Swapping T, U conditionally on k[i] leaves you with state * * k[i] == 0: R, S = T, U * k[i] == 1: R, S = U, T * * Which leaves you with state * * k[i] == 0: S = add(R, S), R = dbl(R) * k[i] == 1: R = add(S, R), S = dbl(S) * * So we get the same logic, but instead of a branch it's a * conditional swap, followed by ECC ops, then another conditional swap. * * Optimization: The end of iteration i and start of i-1 looks like * * ... * CSWAP(k[i], R, S) * ECC * CSWAP(k[i], R, S) * (next iteration) * CSWAP(k[i-1], R, S) * ECC * CSWAP(k[i-1], R, S) * ... * * So instead of two contiguous swaps, you can merge the condition * bits and do a single swap. * * k[i] k[i-1] Outcome * 0 0 No Swap * 0 1 Swap * 1 0 Swap * 1 1 No Swap * * This is XOR. pbit tracks the previous bit of k. */ for (i = cardinality_bits - 1; i >= 0; i--) { kbit = BN_is_bit_set(k, i) ^ pbit; EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); /* Perform a single step of the Montgomery ladder */ if (!ec_point_ladder_step(group, r, s, p, ctx)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE); goto err; } /* * pbit logic merges this cswap with that of the * next iteration */ pbit ^= kbit; } /* one final cswap to move the right value into r */ EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); #undef EC_POINT_CSWAP /* Finalize ladder (and recover full point coordinates) */ if (!ec_point_ladder_post(group, r, s, p, ctx)) { ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE); goto err; } ret = 1; err: EC_POINT_free(p); EC_POINT_clear_free(s); BN_CTX_end(ctx); return ret; } #undef EC_POINT_BN_set_flags /* * TODO: table should be optimised for the wNAF-based implementation, * sometimes smaller windows will give better performance (thus the * boundaries should be increased) */ #define EC_window_bits_for_scalar_size(b) \ ((size_t) \ ((b) >= 2000 ? 6 : \ (b) >= 800 ? 5 : \ (b) >= 300 ? 4 : \ (b) >= 70 ? 3 : \ (b) >= 20 ? 2 : \ 1)) /*- * Compute * \sum scalars[i]*points[i], * also including * scalar*generator * in the addition if scalar != NULL */ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { const EC_POINT *generator = NULL; EC_POINT *tmp = NULL; size_t totalnum; size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ size_t pre_points_per_block = 0; size_t i, j; int k; int r_is_inverted = 0; int r_is_at_infinity = 1; size_t *wsize = NULL; /* individual window sizes */ signed char **wNAF = NULL; /* individual wNAFs */ size_t *wNAF_len = NULL; size_t max_len = 0; size_t num_val; EC_POINT **val = NULL; /* precomputation */ EC_POINT **v; EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or * 'pre_comp->points' */ const EC_PRE_COMP *pre_comp = NULL; int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be * treated like other scalars, i.e. * precomputation is not available */ int ret = 0; if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) { /*- * Handle the common cases where the scalar is secret, enforcing a * scalar multiplication implementation based on a Montgomery ladder, * with various timing attack defenses. */ if ((scalar != group->order) && (scalar != NULL) && (num == 0)) { /*- * In this case we want to compute scalar * GeneratorPoint: this * codepath is reached most prominently by (ephemeral) key * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup, * ECDH keygen/first half), where the scalar is always secret. This * is why we ignore if BN_FLG_CONSTTIME is actually set and we * always call the ladder version. */ return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); } if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) { /*- * In this case we want to compute scalar * VariablePoint: this * codepath is reached most prominently by the second half of ECDH, * where the secret scalar is multiplied by the peer's public point. * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is * actually set and we always call the ladder version. */ return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); } } if (scalar != NULL) { generator = EC_GROUP_get0_generator(group); if (generator == NULL) { ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); goto err; } /* look if we can use precomputed multiples of generator */ pre_comp = group->pre_comp.ec; if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) { blocksize = pre_comp->blocksize; /* * determine maximum number of blocks that wNAF splitting may * yield (NB: maximum wNAF length is bit length plus one) */ numblocks = (BN_num_bits(scalar) / blocksize) + 1; /* * we cannot use more blocks than we have precomputation for */ if (numblocks > pre_comp->numblocks) numblocks = pre_comp->numblocks; pre_points_per_block = (size_t)1 << (pre_comp->w - 1); /* check that pre_comp looks sane */ if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); goto err; } } else { /* can't use precomputation */ pre_comp = NULL; numblocks = 1; num_scalar = 1; /* treat 'scalar' like 'num'-th element of * 'scalars' */ } } totalnum = num + numblocks; wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0])); wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0])); /* include space for pivot */ wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0])); val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0])); /* Ensure wNAF is initialised in case we end up going to err */ if (wNAF != NULL) wNAF[0] = NULL; /* preliminary pivot */ if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); goto err; } /* * num_val will be the total number of temporarily precomputed points */ num_val = 0; for (i = 0; i < num + num_scalar; i++) { size_t bits; bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); wsize[i] = EC_window_bits_for_scalar_size(bits); num_val += (size_t)1 << (wsize[i] - 1); wNAF[i + 1] = NULL; /* make sure we always have a pivot */ wNAF[i] = bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); if (wNAF[i] == NULL) goto err; if (wNAF_len[i] > max_len) max_len = wNAF_len[i]; } if (numblocks) { /* we go here iff scalar != NULL */ if (pre_comp == NULL) { if (num_scalar != 1) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); goto err; } /* we have already generated a wNAF for 'scalar' */ } else { signed char *tmp_wNAF = NULL; size_t tmp_len = 0; if (num_scalar != 0) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); goto err; } /* * use the window size for which we have precomputation */ wsize[num] = pre_comp->w; tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len); if (!tmp_wNAF) goto err; if (tmp_len <= max_len) { /* * One of the other wNAFs is at least as long as the wNAF * belonging to the generator, so wNAF splitting will not buy * us anything. */ numblocks = 1; totalnum = num + 1; /* don't use wNAF splitting */ wNAF[num] = tmp_wNAF; wNAF[num + 1] = NULL; wNAF_len[num] = tmp_len; /* * pre_comp->points starts with the points that we need here: */ val_sub[num] = pre_comp->points; } else { /* * don't include tmp_wNAF directly into wNAF array - use wNAF * splitting and include the blocks */ signed char *pp; EC_POINT **tmp_points; if (tmp_len < numblocks * blocksize) { /* * possibly we can do with fewer blocks than estimated */ numblocks = (tmp_len + blocksize - 1) / blocksize; if (numblocks > pre_comp->numblocks) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); OPENSSL_free(tmp_wNAF); goto err; } totalnum = num + numblocks; } /* split wNAF in 'numblocks' parts */ pp = tmp_wNAF; tmp_points = pre_comp->points; for (i = num; i < totalnum; i++) { if (i < totalnum - 1) { wNAF_len[i] = blocksize; if (tmp_len < blocksize) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); OPENSSL_free(tmp_wNAF); goto err; } tmp_len -= blocksize; } else /* * last block gets whatever is left (this could be * more or less than 'blocksize'!) */ wNAF_len[i] = tmp_len; wNAF[i + 1] = NULL; wNAF[i] = OPENSSL_malloc(wNAF_len[i]); if (wNAF[i] == NULL) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); OPENSSL_free(tmp_wNAF); goto err; } memcpy(wNAF[i], pp, wNAF_len[i]); if (wNAF_len[i] > max_len) max_len = wNAF_len[i]; if (*tmp_points == NULL) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); OPENSSL_free(tmp_wNAF); goto err; } val_sub[i] = tmp_points; tmp_points += pre_points_per_block; pp += blocksize; } OPENSSL_free(tmp_wNAF); } } } /* * All points we precompute now go into a single array 'val'. * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a * subarray of 'pre_comp->points' if we already have precomputation. */ val = OPENSSL_malloc((num_val + 1) * sizeof(val[0])); if (val == NULL) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); goto err; } val[num_val] = NULL; /* pivot element */ /* allocate points for precomputation */ v = val; for (i = 0; i < num + num_scalar; i++) { val_sub[i] = v; for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { *v = EC_POINT_new(group); if (*v == NULL) goto err; v++; } } if (!(v == val + num_val)) { ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); goto err; } if ((tmp = EC_POINT_new(group)) == NULL) goto err; /*- * prepare precomputed values: * val_sub[i][0] := points[i] * val_sub[i][1] := 3 * points[i] * val_sub[i][2] := 5 * points[i] * ... */ for (i = 0; i < num + num_scalar; i++) { if (i < num) { if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err; } else { if (!EC_POINT_copy(val_sub[i][0], generator)) goto err; } if (wsize[i] > 1) { if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err; for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { if (!EC_POINT_add (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err; } } } if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err; r_is_at_infinity = 1; for (k = max_len - 1; k >= 0; k--) { if (!r_is_at_infinity) { if (!EC_POINT_dbl(group, r, r, ctx)) goto err; } for (i = 0; i < totalnum; i++) { if (wNAF_len[i] > (size_t)k) { int digit = wNAF[i][k]; int is_neg; if (digit) { is_neg = digit < 0; if (is_neg) digit = -digit; if (is_neg != r_is_inverted) { if (!r_is_at_infinity) { if (!EC_POINT_invert(group, r, ctx)) goto err; } r_is_inverted = !r_is_inverted; } /* digit > 0 */ if (r_is_at_infinity) { if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err; r_is_at_infinity = 0; } else { if (!EC_POINT_add (group, r, r, val_sub[i][digit >> 1], ctx)) goto err; } } } } } if (r_is_at_infinity) { if (!EC_POINT_set_to_infinity(group, r)) goto err; } else { if (r_is_inverted) if (!EC_POINT_invert(group, r, ctx)) goto err; } ret = 1; err: EC_POINT_free(tmp); OPENSSL_free(wsize); OPENSSL_free(wNAF_len); if (wNAF != NULL) { signed char **w; for (w = wNAF; *w != NULL; w++) OPENSSL_free(*w); OPENSSL_free(wNAF); } if (val != NULL) { for (v = val; *v != NULL; v++) EC_POINT_clear_free(*v); OPENSSL_free(val); } OPENSSL_free(val_sub); return ret; } /*- * ec_wNAF_precompute_mult() * creates an EC_PRE_COMP object with preprecomputed multiples of the generator * for use with wNAF splitting as implemented in ec_wNAF_mul(). * * 'pre_comp->points' is an array of multiples of the generator * of the following form: * points[0] = generator; * points[1] = 3 * generator; * ... * points[2^(w-1)-1] = (2^(w-1)-1) * generator; * points[2^(w-1)] = 2^blocksize * generator; * points[2^(w-1)+1] = 3 * 2^blocksize * generator; * ... * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator * ... * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator * points[2^(w-1)*numblocks] = NULL */ int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { const EC_POINT *generator; EC_POINT *tmp_point = NULL, *base = NULL, **var; BN_CTX *new_ctx = NULL; const BIGNUM *order; size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; EC_POINT **points = NULL; EC_PRE_COMP *pre_comp; int ret = 0; /* if there is an old EC_PRE_COMP object, throw it away */ EC_pre_comp_free(group); if ((pre_comp = ec_pre_comp_new(group)) == NULL) return 0; generator = EC_GROUP_get0_generator(group); if (generator == NULL) { ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); goto err; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) goto err; } BN_CTX_start(ctx); order = EC_GROUP_get0_order(group); if (order == NULL) goto err; if (BN_is_zero(order)) { ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); goto err; } bits = BN_num_bits(order); /* * The following parameters mean we precompute (approximately) one point * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other * bit lengths, other parameter combinations might provide better * efficiency. */ blocksize = 8; w = 4; if (EC_window_bits_for_scalar_size(bits) > w) { /* let's not make the window too small ... */ w = EC_window_bits_for_scalar_size(bits); } numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks * to use for wNAF * splitting */ pre_points_per_block = (size_t)1 << (w - 1); num = pre_points_per_block * numblocks; /* number of points to compute * and store */ points = OPENSSL_malloc(sizeof(*points) * (num + 1)); if (points == NULL) { ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); goto err; } var = points; var[num] = NULL; /* pivot */ for (i = 0; i < num; i++) { if ((var[i] = EC_POINT_new(group)) == NULL) { ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); goto err; } } if ((tmp_point = EC_POINT_new(group)) == NULL || (base = EC_POINT_new(group)) == NULL) { ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_copy(base, generator)) goto err; /* do the precomputation */ for (i = 0; i < numblocks; i++) { size_t j; if (!EC_POINT_dbl(group, tmp_point, base, ctx)) goto err; if (!EC_POINT_copy(*var++, base)) goto err; for (j = 1; j < pre_points_per_block; j++, var++) { /* * calculate odd multiples of the current base point */ if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) goto err; } if (i < numblocks - 1) { /* * get the next base (multiply current one by 2^blocksize) */ size_t k; if (blocksize <= 2) { ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); goto err; } if (!EC_POINT_dbl(group, base, tmp_point, ctx)) goto err; for (k = 2; k < blocksize; k++) { if (!EC_POINT_dbl(group, base, base, ctx)) goto err; } } } if (!EC_POINTs_make_affine(group, num, points, ctx)) goto err; pre_comp->group = group; pre_comp->blocksize = blocksize; pre_comp->numblocks = numblocks; pre_comp->w = w; pre_comp->points = points; points = NULL; pre_comp->num = num; SETPRECOMP(group, ec, pre_comp); pre_comp = NULL; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); EC_ec_pre_comp_free(pre_comp); if (points) { EC_POINT **p; for (p = points; *p != NULL; p++) EC_POINT_free(*p); OPENSSL_free(points); } EC_POINT_free(tmp_point); EC_POINT_free(base); return ret; } int ec_wNAF_have_precompute_mult(const EC_GROUP *group) { return HAVEPRECOMP(group, ec); } openssl-1.1.1f/crypto/ec/ec_oct.c000066400000000000000000000121351364063235100166570ustar00rootroot00000000000000/* * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "ec_local.h" int EC_POINT_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { if (group->meth->point_set_compressed_coordinates == NULL && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { if (group->meth->field_type == NID_X9_62_prime_field) return ec_GFp_simple_set_compressed_coordinates(group, point, x, y_bit, ctx); else #ifdef OPENSSL_NO_EC2M { ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES, EC_R_GF2M_NOT_SUPPORTED); return 0; } #else return ec_GF2m_simple_set_compressed_coordinates(group, point, x, y_bit, ctx); #endif } return group->meth->point_set_compressed_coordinates(group, point, x, y_bit, ctx); } #if OPENSSL_API_COMPAT < 0x10200000L int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { return EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx); } # ifndef OPENSSL_NO_EC2M int EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { return EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx); } # endif #endif size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *ctx) { if (group->meth->point2oct == 0 && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { ECerr(EC_F_EC_POINT_POINT2OCT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_POINT2OCT, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { if (group->meth->field_type == NID_X9_62_prime_field) return ec_GFp_simple_point2oct(group, point, form, buf, len, ctx); else #ifdef OPENSSL_NO_EC2M { ECerr(EC_F_EC_POINT_POINT2OCT, EC_R_GF2M_NOT_SUPPORTED); return 0; } #else return ec_GF2m_simple_point2oct(group, point, form, buf, len, ctx); #endif } return group->meth->point2oct(group, point, form, buf, len, ctx); } int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, const unsigned char *buf, size_t len, BN_CTX *ctx) { if (group->meth->oct2point == 0 && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { ECerr(EC_F_EC_POINT_OCT2POINT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_OCT2POINT, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { if (group->meth->field_type == NID_X9_62_prime_field) return ec_GFp_simple_oct2point(group, point, buf, len, ctx); else #ifdef OPENSSL_NO_EC2M { ECerr(EC_F_EC_POINT_OCT2POINT, EC_R_GF2M_NOT_SUPPORTED); return 0; } #else return ec_GF2m_simple_oct2point(group, point, buf, len, ctx); #endif } return group->meth->oct2point(group, point, buf, len, ctx); } size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, unsigned char **pbuf, BN_CTX *ctx) { size_t len; unsigned char *buf; len = EC_POINT_point2oct(group, point, form, NULL, 0, NULL); if (len == 0) return 0; if ((buf = OPENSSL_malloc(len)) == NULL) { ECerr(EC_F_EC_POINT_POINT2BUF, ERR_R_MALLOC_FAILURE); return 0; } len = EC_POINT_point2oct(group, point, form, buf, len, ctx); if (len == 0) { OPENSSL_free(buf); return 0; } *pbuf = buf; return len; } openssl-1.1.1f/crypto/ec/ec_pmeth.c000066400000000000000000000305401364063235100172070ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ec_local.h" #include #include "crypto/evp.h" /* EC pkey context structure */ typedef struct { /* Key and paramgen group */ EC_GROUP *gen_group; /* message digest */ const EVP_MD *md; /* Duplicate key if custom cofactor needed */ EC_KEY *co_key; /* Cofactor mode */ signed char cofactor_mode; /* KDF (if any) to use for ECDH */ char kdf_type; /* Message digest to use for key derivation */ const EVP_MD *kdf_md; /* User key material */ unsigned char *kdf_ukm; size_t kdf_ukmlen; /* KDF output length */ size_t kdf_outlen; } EC_PKEY_CTX; static int pkey_ec_init(EVP_PKEY_CTX *ctx) { EC_PKEY_CTX *dctx; if ((dctx = OPENSSL_zalloc(sizeof(*dctx))) == NULL) { ECerr(EC_F_PKEY_EC_INIT, ERR_R_MALLOC_FAILURE); return 0; } dctx->cofactor_mode = -1; dctx->kdf_type = EVP_PKEY_ECDH_KDF_NONE; ctx->data = dctx; return 1; } static int pkey_ec_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { EC_PKEY_CTX *dctx, *sctx; if (!pkey_ec_init(dst)) return 0; sctx = src->data; dctx = dst->data; if (sctx->gen_group) { dctx->gen_group = EC_GROUP_dup(sctx->gen_group); if (!dctx->gen_group) return 0; } dctx->md = sctx->md; if (sctx->co_key) { dctx->co_key = EC_KEY_dup(sctx->co_key); if (!dctx->co_key) return 0; } dctx->kdf_type = sctx->kdf_type; dctx->kdf_md = sctx->kdf_md; dctx->kdf_outlen = sctx->kdf_outlen; if (sctx->kdf_ukm) { dctx->kdf_ukm = OPENSSL_memdup(sctx->kdf_ukm, sctx->kdf_ukmlen); if (!dctx->kdf_ukm) return 0; } else dctx->kdf_ukm = NULL; dctx->kdf_ukmlen = sctx->kdf_ukmlen; return 1; } static void pkey_ec_cleanup(EVP_PKEY_CTX *ctx) { EC_PKEY_CTX *dctx = ctx->data; if (dctx != NULL) { EC_GROUP_free(dctx->gen_group); EC_KEY_free(dctx->co_key); OPENSSL_free(dctx->kdf_ukm); OPENSSL_free(dctx); ctx->data = NULL; } } static int pkey_ec_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) { int ret, type; unsigned int sltmp; EC_PKEY_CTX *dctx = ctx->data; EC_KEY *ec = ctx->pkey->pkey.ec; const int sig_sz = ECDSA_size(ec); /* ensure cast to size_t is safe */ if (!ossl_assert(sig_sz > 0)) return 0; if (sig == NULL) { *siglen = (size_t)sig_sz; return 1; } if (*siglen < (size_t)sig_sz) { ECerr(EC_F_PKEY_EC_SIGN, EC_R_BUFFER_TOO_SMALL); return 0; } type = (dctx->md != NULL) ? EVP_MD_type(dctx->md) : NID_sha1; ret = ECDSA_sign(type, tbs, tbslen, sig, &sltmp, ec); if (ret <= 0) return ret; *siglen = (size_t)sltmp; return 1; } static int pkey_ec_verify(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { int ret, type; EC_PKEY_CTX *dctx = ctx->data; EC_KEY *ec = ctx->pkey->pkey.ec; if (dctx->md) type = EVP_MD_type(dctx->md); else type = NID_sha1; ret = ECDSA_verify(type, tbs, tbslen, sig, siglen, ec); return ret; } #ifndef OPENSSL_NO_EC static int pkey_ec_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { int ret; size_t outlen; const EC_POINT *pubkey = NULL; EC_KEY *eckey; EC_PKEY_CTX *dctx = ctx->data; if (!ctx->pkey || !ctx->peerkey) { ECerr(EC_F_PKEY_EC_DERIVE, EC_R_KEYS_NOT_SET); return 0; } eckey = dctx->co_key ? dctx->co_key : ctx->pkey->pkey.ec; if (!key) { const EC_GROUP *group; group = EC_KEY_get0_group(eckey); *keylen = (EC_GROUP_get_degree(group) + 7) / 8; return 1; } pubkey = EC_KEY_get0_public_key(ctx->peerkey->pkey.ec); /* * NB: unlike PKCS#3 DH, if *outlen is less than maximum size this is not * an error, the result is truncated. */ outlen = *keylen; ret = ECDH_compute_key(key, outlen, pubkey, eckey, 0); if (ret <= 0) return 0; *keylen = ret; return 1; } static int pkey_ec_kdf_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { EC_PKEY_CTX *dctx = ctx->data; unsigned char *ktmp = NULL; size_t ktmplen; int rv = 0; if (dctx->kdf_type == EVP_PKEY_ECDH_KDF_NONE) return pkey_ec_derive(ctx, key, keylen); if (!key) { *keylen = dctx->kdf_outlen; return 1; } if (*keylen != dctx->kdf_outlen) return 0; if (!pkey_ec_derive(ctx, NULL, &ktmplen)) return 0; if ((ktmp = OPENSSL_malloc(ktmplen)) == NULL) { ECerr(EC_F_PKEY_EC_KDF_DERIVE, ERR_R_MALLOC_FAILURE); return 0; } if (!pkey_ec_derive(ctx, ktmp, &ktmplen)) goto err; /* Do KDF stuff */ if (!ecdh_KDF_X9_63(key, *keylen, ktmp, ktmplen, dctx->kdf_ukm, dctx->kdf_ukmlen, dctx->kdf_md)) goto err; rv = 1; err: OPENSSL_clear_free(ktmp, ktmplen); return rv; } #endif static int pkey_ec_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { EC_PKEY_CTX *dctx = ctx->data; EC_GROUP *group; switch (type) { case EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID: group = EC_GROUP_new_by_curve_name(p1); if (group == NULL) { ECerr(EC_F_PKEY_EC_CTRL, EC_R_INVALID_CURVE); return 0; } EC_GROUP_free(dctx->gen_group); dctx->gen_group = group; return 1; case EVP_PKEY_CTRL_EC_PARAM_ENC: if (!dctx->gen_group) { ECerr(EC_F_PKEY_EC_CTRL, EC_R_NO_PARAMETERS_SET); return 0; } EC_GROUP_set_asn1_flag(dctx->gen_group, p1); return 1; #ifndef OPENSSL_NO_EC case EVP_PKEY_CTRL_EC_ECDH_COFACTOR: if (p1 == -2) { if (dctx->cofactor_mode != -1) return dctx->cofactor_mode; else { EC_KEY *ec_key = ctx->pkey->pkey.ec; return EC_KEY_get_flags(ec_key) & EC_FLAG_COFACTOR_ECDH ? 1 : 0; } } else if (p1 < -1 || p1 > 1) return -2; dctx->cofactor_mode = p1; if (p1 != -1) { EC_KEY *ec_key = ctx->pkey->pkey.ec; if (!ec_key->group) return -2; /* If cofactor is 1 cofactor mode does nothing */ if (BN_is_one(ec_key->group->cofactor)) return 1; if (!dctx->co_key) { dctx->co_key = EC_KEY_dup(ec_key); if (!dctx->co_key) return 0; } if (p1) EC_KEY_set_flags(dctx->co_key, EC_FLAG_COFACTOR_ECDH); else EC_KEY_clear_flags(dctx->co_key, EC_FLAG_COFACTOR_ECDH); } else { EC_KEY_free(dctx->co_key); dctx->co_key = NULL; } return 1; #endif case EVP_PKEY_CTRL_EC_KDF_TYPE: if (p1 == -2) return dctx->kdf_type; if (p1 != EVP_PKEY_ECDH_KDF_NONE && p1 != EVP_PKEY_ECDH_KDF_X9_63) return -2; dctx->kdf_type = p1; return 1; case EVP_PKEY_CTRL_EC_KDF_MD: dctx->kdf_md = p2; return 1; case EVP_PKEY_CTRL_GET_EC_KDF_MD: *(const EVP_MD **)p2 = dctx->kdf_md; return 1; case EVP_PKEY_CTRL_EC_KDF_OUTLEN: if (p1 <= 0) return -2; dctx->kdf_outlen = (size_t)p1; return 1; case EVP_PKEY_CTRL_GET_EC_KDF_OUTLEN: *(int *)p2 = dctx->kdf_outlen; return 1; case EVP_PKEY_CTRL_EC_KDF_UKM: OPENSSL_free(dctx->kdf_ukm); dctx->kdf_ukm = p2; if (p2) dctx->kdf_ukmlen = p1; else dctx->kdf_ukmlen = 0; return 1; case EVP_PKEY_CTRL_GET_EC_KDF_UKM: *(unsigned char **)p2 = dctx->kdf_ukm; return dctx->kdf_ukmlen; case EVP_PKEY_CTRL_MD: if (EVP_MD_type((const EVP_MD *)p2) != NID_sha1 && EVP_MD_type((const EVP_MD *)p2) != NID_ecdsa_with_SHA1 && EVP_MD_type((const EVP_MD *)p2) != NID_sha224 && EVP_MD_type((const EVP_MD *)p2) != NID_sha256 && EVP_MD_type((const EVP_MD *)p2) != NID_sha384 && EVP_MD_type((const EVP_MD *)p2) != NID_sha512 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_224 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_256 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_384 && EVP_MD_type((const EVP_MD *)p2) != NID_sha3_512) { ECerr(EC_F_PKEY_EC_CTRL, EC_R_INVALID_DIGEST_TYPE); return 0; } dctx->md = p2; return 1; case EVP_PKEY_CTRL_GET_MD: *(const EVP_MD **)p2 = dctx->md; return 1; case EVP_PKEY_CTRL_PEER_KEY: /* Default behaviour is OK */ case EVP_PKEY_CTRL_DIGESTINIT: case EVP_PKEY_CTRL_PKCS7_SIGN: case EVP_PKEY_CTRL_CMS_SIGN: return 1; default: return -2; } } static int pkey_ec_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (strcmp(type, "ec_paramgen_curve") == 0) { int nid; nid = EC_curve_nist2nid(value); if (nid == NID_undef) nid = OBJ_sn2nid(value); if (nid == NID_undef) nid = OBJ_ln2nid(value); if (nid == NID_undef) { ECerr(EC_F_PKEY_EC_CTRL_STR, EC_R_INVALID_CURVE); return 0; } return EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx, nid); } else if (strcmp(type, "ec_param_enc") == 0) { int param_enc; if (strcmp(value, "explicit") == 0) param_enc = 0; else if (strcmp(value, "named_curve") == 0) param_enc = OPENSSL_EC_NAMED_CURVE; else return -2; return EVP_PKEY_CTX_set_ec_param_enc(ctx, param_enc); } else if (strcmp(type, "ecdh_kdf_md") == 0) { const EVP_MD *md; if ((md = EVP_get_digestbyname(value)) == NULL) { ECerr(EC_F_PKEY_EC_CTRL_STR, EC_R_INVALID_DIGEST); return 0; } return EVP_PKEY_CTX_set_ecdh_kdf_md(ctx, md); } else if (strcmp(type, "ecdh_cofactor_mode") == 0) { int co_mode; co_mode = atoi(value); return EVP_PKEY_CTX_set_ecdh_cofactor_mode(ctx, co_mode); } return -2; } static int pkey_ec_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { EC_KEY *ec = NULL; EC_PKEY_CTX *dctx = ctx->data; int ret; if (dctx->gen_group == NULL) { ECerr(EC_F_PKEY_EC_PARAMGEN, EC_R_NO_PARAMETERS_SET); return 0; } ec = EC_KEY_new(); if (ec == NULL) return 0; if (!(ret = EC_KEY_set_group(ec, dctx->gen_group)) || !ossl_assert(ret = EVP_PKEY_assign_EC_KEY(pkey, ec))) EC_KEY_free(ec); return ret; } static int pkey_ec_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { EC_KEY *ec = NULL; EC_PKEY_CTX *dctx = ctx->data; int ret; if (ctx->pkey == NULL && dctx->gen_group == NULL) { ECerr(EC_F_PKEY_EC_KEYGEN, EC_R_NO_PARAMETERS_SET); return 0; } ec = EC_KEY_new(); if (ec == NULL) return 0; if (!ossl_assert(EVP_PKEY_assign_EC_KEY(pkey, ec))) { EC_KEY_free(ec); return 0; } /* Note: if error is returned, we count on caller to free pkey->pkey.ec */ if (ctx->pkey != NULL) ret = EVP_PKEY_copy_parameters(pkey, ctx->pkey); else ret = EC_KEY_set_group(ec, dctx->gen_group); return ret ? EC_KEY_generate_key(ec) : 0; } const EVP_PKEY_METHOD ec_pkey_meth = { EVP_PKEY_EC, 0, pkey_ec_init, pkey_ec_copy, pkey_ec_cleanup, 0, pkey_ec_paramgen, 0, pkey_ec_keygen, 0, pkey_ec_sign, 0, pkey_ec_verify, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, #ifndef OPENSSL_NO_EC pkey_ec_kdf_derive, #else 0, #endif pkey_ec_ctrl, pkey_ec_ctrl_str }; openssl-1.1.1f/crypto/ec/ec_print.c000066400000000000000000000055651364063235100172370ustar00rootroot00000000000000/* * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "ec_local.h" BIGNUM *EC_POINT_point2bn(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, BIGNUM *ret, BN_CTX *ctx) { size_t buf_len = 0; unsigned char *buf; buf_len = EC_POINT_point2buf(group, point, form, &buf, ctx); if (buf_len == 0) return NULL; ret = BN_bin2bn(buf, buf_len, ret); OPENSSL_free(buf); return ret; } EC_POINT *EC_POINT_bn2point(const EC_GROUP *group, const BIGNUM *bn, EC_POINT *point, BN_CTX *ctx) { size_t buf_len = 0; unsigned char *buf; EC_POINT *ret; if ((buf_len = BN_num_bytes(bn)) == 0) buf_len = 1; if ((buf = OPENSSL_malloc(buf_len)) == NULL) { ECerr(EC_F_EC_POINT_BN2POINT, ERR_R_MALLOC_FAILURE); return NULL; } if (!BN_bn2binpad(bn, buf, buf_len)) { OPENSSL_free(buf); return NULL; } if (point == NULL) { if ((ret = EC_POINT_new(group)) == NULL) { OPENSSL_free(buf); return NULL; } } else ret = point; if (!EC_POINT_oct2point(group, ret, buf, buf_len, ctx)) { if (ret != point) EC_POINT_clear_free(ret); OPENSSL_free(buf); return NULL; } OPENSSL_free(buf); return ret; } static const char *HEX_DIGITS = "0123456789ABCDEF"; /* the return value must be freed (using OPENSSL_free()) */ char *EC_POINT_point2hex(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, BN_CTX *ctx) { char *ret, *p; size_t buf_len = 0, i; unsigned char *buf = NULL, *pbuf; buf_len = EC_POINT_point2buf(group, point, form, &buf, ctx); if (buf_len == 0) return NULL; ret = OPENSSL_malloc(buf_len * 2 + 2); if (ret == NULL) { OPENSSL_free(buf); return NULL; } p = ret; pbuf = buf; for (i = buf_len; i > 0; i--) { int v = (int)*(pbuf++); *(p++) = HEX_DIGITS[v >> 4]; *(p++) = HEX_DIGITS[v & 0x0F]; } *p = '\0'; OPENSSL_free(buf); return ret; } EC_POINT *EC_POINT_hex2point(const EC_GROUP *group, const char *buf, EC_POINT *point, BN_CTX *ctx) { EC_POINT *ret = NULL; BIGNUM *tmp_bn = NULL; if (!BN_hex2bn(&tmp_bn, buf)) return NULL; ret = EC_POINT_bn2point(group, tmp_bn, point, ctx); BN_clear_free(tmp_bn); return ret; } openssl-1.1.1f/crypto/ec/ecdh_kdf.c000066400000000000000000000045561364063235100171620ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "ec_local.h" /* Key derivation function from X9.63/SECG */ /* Way more than we will ever need */ #define ECDH_KDF_MAX (1 << 30) int ecdh_KDF_X9_63(unsigned char *out, size_t outlen, const unsigned char *Z, size_t Zlen, const unsigned char *sinfo, size_t sinfolen, const EVP_MD *md) { EVP_MD_CTX *mctx = NULL; int rv = 0; unsigned int i; size_t mdlen; unsigned char ctr[4]; if (sinfolen > ECDH_KDF_MAX || outlen > ECDH_KDF_MAX || Zlen > ECDH_KDF_MAX) return 0; mctx = EVP_MD_CTX_new(); if (mctx == NULL) return 0; mdlen = EVP_MD_size(md); for (i = 1;; i++) { unsigned char mtmp[EVP_MAX_MD_SIZE]; if (!EVP_DigestInit_ex(mctx, md, NULL)) goto err; ctr[3] = i & 0xFF; ctr[2] = (i >> 8) & 0xFF; ctr[1] = (i >> 16) & 0xFF; ctr[0] = (i >> 24) & 0xFF; if (!EVP_DigestUpdate(mctx, Z, Zlen)) goto err; if (!EVP_DigestUpdate(mctx, ctr, sizeof(ctr))) goto err; if (!EVP_DigestUpdate(mctx, sinfo, sinfolen)) goto err; if (outlen >= mdlen) { if (!EVP_DigestFinal(mctx, out, NULL)) goto err; outlen -= mdlen; if (outlen == 0) break; out += mdlen; } else { if (!EVP_DigestFinal(mctx, mtmp, NULL)) goto err; memcpy(out, mtmp, outlen); OPENSSL_cleanse(mtmp, mdlen); break; } } rv = 1; err: EVP_MD_CTX_free(mctx); return rv; } /*- * The old name for ecdh_KDF_X9_63 * Retained for ABI compatibility */ int ECDH_KDF_X9_62(unsigned char *out, size_t outlen, const unsigned char *Z, size_t Zlen, const unsigned char *sinfo, size_t sinfolen, const EVP_MD *md) { return ecdh_KDF_X9_63(out, outlen, Z, Zlen, sinfo, sinfolen, md); } openssl-1.1.1f/crypto/ec/ecdh_ossl.c000066400000000000000000000064111364063235100173660ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include #include #include "ec_local.h" int ossl_ecdh_compute_key(unsigned char **psec, size_t *pseclen, const EC_POINT *pub_key, const EC_KEY *ecdh) { if (ecdh->group->meth->ecdh_compute_key == NULL) { ECerr(EC_F_OSSL_ECDH_COMPUTE_KEY, EC_R_CURVE_DOES_NOT_SUPPORT_ECDH); return 0; } return ecdh->group->meth->ecdh_compute_key(psec, pseclen, pub_key, ecdh); } /*- * This implementation is based on the following primitives in the IEEE 1363 standard: * - ECKAS-DH1 * - ECSVDP-DH */ int ecdh_simple_compute_key(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh) { BN_CTX *ctx; EC_POINT *tmp = NULL; BIGNUM *x = NULL; const BIGNUM *priv_key; const EC_GROUP *group; int ret = 0; size_t buflen, len; unsigned char *buf = NULL; if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); x = BN_CTX_get(ctx); if (x == NULL) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); goto err; } priv_key = EC_KEY_get0_private_key(ecdh); if (priv_key == NULL) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_MISSING_PRIVATE_KEY); goto err; } group = EC_KEY_get0_group(ecdh); if (EC_KEY_get_flags(ecdh) & EC_FLAG_COFACTOR_ECDH) { if (!EC_GROUP_get_cofactor(group, x, NULL) || !BN_mul(x, x, priv_key, ctx)) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); goto err; } priv_key = x; } if ((tmp = EC_POINT_new(group)) == NULL) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_mul(group, tmp, NULL, pub_key, priv_key, ctx)) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_POINT_ARITHMETIC_FAILURE); goto err; } if (!EC_POINT_get_affine_coordinates(group, tmp, x, NULL, ctx)) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_POINT_ARITHMETIC_FAILURE); goto err; } buflen = (EC_GROUP_get_degree(group) + 7) / 8; len = BN_num_bytes(x); if (len > buflen) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_INTERNAL_ERROR); goto err; } if ((buf = OPENSSL_malloc(buflen)) == NULL) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); goto err; } memset(buf, 0, buflen - len); if (len != (size_t)BN_bn2bin(x, buf + buflen - len)) { ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_BN_LIB); goto err; } *pout = buf; *poutlen = buflen; buf = NULL; ret = 1; err: EC_POINT_clear_free(tmp); BN_CTX_end(ctx); BN_CTX_free(ctx); OPENSSL_free(buf); return ret; } openssl-1.1.1f/crypto/ec/ecdsa_ossl.c000066400000000000000000000310641364063235100175440ustar00rootroot00000000000000/* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "crypto/bn.h" #include "ec_local.h" int ossl_ecdsa_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey) { ECDSA_SIG *s; s = ECDSA_do_sign_ex(dgst, dlen, kinv, r, eckey); if (s == NULL) { *siglen = 0; return 0; } *siglen = i2d_ECDSA_SIG(s, &sig); ECDSA_SIG_free(s); return 1; } static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp, const unsigned char *dgst, int dlen) { BN_CTX *ctx = NULL; BIGNUM *k = NULL, *r = NULL, *X = NULL; const BIGNUM *order; EC_POINT *tmp_point = NULL; const EC_GROUP *group; int ret = 0; int order_bits; const BIGNUM *priv_key; if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((priv_key = EC_KEY_get0_private_key(eckey)) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_MISSING_PRIVATE_KEY); return 0; } if (!EC_KEY_can_sign(eckey)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING); return 0; } if ((ctx = ctx_in) == NULL) { if ((ctx = BN_CTX_new()) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_MALLOC_FAILURE); return 0; } } k = BN_new(); /* this value is later returned in *kinvp */ r = BN_new(); /* this value is later returned in *rp */ X = BN_new(); if (k == NULL || r == NULL || X == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_MALLOC_FAILURE); goto err; } if ((tmp_point = EC_POINT_new(group)) == NULL) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } order = EC_GROUP_get0_order(group); /* Preallocate space */ order_bits = BN_num_bits(order); if (!BN_set_bit(k, order_bits) || !BN_set_bit(r, order_bits) || !BN_set_bit(X, order_bits)) goto err; do { /* get random k */ do { if (dgst != NULL) { if (!BN_generate_dsa_nonce(k, order, priv_key, dgst, dlen, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } } else { if (!BN_priv_rand_range(k, order)) { ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } } } while (BN_is_zero(k)); /* compute r the x-coordinate of generator * k */ if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } if (!EC_POINT_get_affine_coordinates(group, tmp_point, X, NULL, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); goto err; } if (!BN_nnmod(r, X, order, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } } while (BN_is_zero(r)); /* compute the inverse of k */ if (!ec_group_do_inverse_ord(group, k, k, ctx)) { ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); goto err; } /* clear old values if necessary */ BN_clear_free(*rp); BN_clear_free(*kinvp); /* save the pre-computed values */ *rp = r; *kinvp = k; ret = 1; err: if (!ret) { BN_clear_free(k); BN_clear_free(r); } if (ctx != ctx_in) BN_CTX_free(ctx); EC_POINT_free(tmp_point); BN_clear_free(X); return ret; } int ossl_ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) { return ecdsa_sign_setup(eckey, ctx_in, kinvp, rp, NULL, 0); } ECDSA_SIG *ossl_ecdsa_sign_sig(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey) { int ok = 0, i; BIGNUM *kinv = NULL, *s, *m = NULL; const BIGNUM *order, *ckinv; BN_CTX *ctx = NULL; const EC_GROUP *group; ECDSA_SIG *ret; const BIGNUM *priv_key; group = EC_KEY_get0_group(eckey); priv_key = EC_KEY_get0_private_key(eckey); if (group == NULL) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (priv_key == NULL) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, EC_R_MISSING_PRIVATE_KEY); return NULL; } if (!EC_KEY_can_sign(eckey)) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING); return NULL; } ret = ECDSA_SIG_new(); if (ret == NULL) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE); return NULL; } ret->r = BN_new(); ret->s = BN_new(); if (ret->r == NULL || ret->s == NULL) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE); goto err; } s = ret->s; if ((ctx = BN_CTX_new()) == NULL || (m = BN_new()) == NULL) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE); goto err; } order = EC_GROUP_get0_order(group); i = BN_num_bits(order); /* * Need to truncate digest if it is too long: first truncate whole bytes. */ if (8 * dgst_len > i) dgst_len = (i + 7) / 8; if (!BN_bin2bn(dgst, dgst_len, m)) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB); goto err; } /* If still too long, truncate remaining bits with a shift */ if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB); goto err; } do { if (in_kinv == NULL || in_r == NULL) { if (!ecdsa_sign_setup(eckey, ctx, &kinv, &ret->r, dgst, dgst_len)) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_ECDSA_LIB); goto err; } ckinv = kinv; } else { ckinv = in_kinv; if (BN_copy(ret->r, in_r) == NULL) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE); goto err; } } /* * With only one multiplicant being in Montgomery domain * multiplication yields real result without post-conversion. * Also note that all operations but last are performed with * zero-padded vectors. Last operation, BN_mod_mul_montgomery * below, returns user-visible value with removed zero padding. */ if (!bn_to_mont_fixed_top(s, ret->r, group->mont_data, ctx) || !bn_mul_mont_fixed_top(s, s, priv_key, group->mont_data, ctx)) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB); goto err; } if (!bn_mod_add_fixed_top(s, s, m, order)) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB); goto err; } /* * |s| can still be larger than modulus, because |m| can be. In * such case we count on Montgomery reduction to tie it up. */ if (!bn_to_mont_fixed_top(s, s, group->mont_data, ctx) || !BN_mod_mul_montgomery(s, s, ckinv, group->mont_data, ctx)) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB); goto err; } if (BN_is_zero(s)) { /* * if kinv and r have been supplied by the caller, don't * generate new kinv and r values */ if (in_kinv != NULL && in_r != NULL) { ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, EC_R_NEED_NEW_SETUP_VALUES); goto err; } } else { /* s != 0 => we have a valid signature */ break; } } while (1); ok = 1; err: if (!ok) { ECDSA_SIG_free(ret); ret = NULL; } BN_CTX_free(ctx); BN_clear_free(m); BN_clear_free(kinv); return ret; } /*- * returns * 1: correct signature * 0: incorrect signature * -1: error */ int ossl_ecdsa_verify(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey) { ECDSA_SIG *s; const unsigned char *p = sigbuf; unsigned char *der = NULL; int derlen = -1; int ret = -1; s = ECDSA_SIG_new(); if (s == NULL) return ret; if (d2i_ECDSA_SIG(&s, &p, sig_len) == NULL) goto err; /* Ensure signature uses DER and doesn't have trailing garbage */ derlen = i2d_ECDSA_SIG(s, &der); if (derlen != sig_len || memcmp(sigbuf, der, derlen) != 0) goto err; ret = ECDSA_do_verify(dgst, dgst_len, s, eckey); err: OPENSSL_free(der); ECDSA_SIG_free(s); return ret; } int ossl_ecdsa_verify_sig(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey) { int ret = -1, i; BN_CTX *ctx; const BIGNUM *order; BIGNUM *u1, *u2, *m, *X; EC_POINT *point = NULL; const EC_GROUP *group; const EC_POINT *pub_key; /* check input values */ if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL || (pub_key = EC_KEY_get0_public_key(eckey)) == NULL || sig == NULL) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, EC_R_MISSING_PARAMETERS); return -1; } if (!EC_KEY_can_sign(eckey)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING); return -1; } ctx = BN_CTX_new(); if (ctx == NULL) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_MALLOC_FAILURE); return -1; } BN_CTX_start(ctx); u1 = BN_CTX_get(ctx); u2 = BN_CTX_get(ctx); m = BN_CTX_get(ctx); X = BN_CTX_get(ctx); if (X == NULL) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB); goto err; } order = EC_GROUP_get0_order(group); if (order == NULL) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_EC_LIB); goto err; } if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || BN_ucmp(sig->r, order) >= 0 || BN_is_zero(sig->s) || BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, EC_R_BAD_SIGNATURE); ret = 0; /* signature is invalid */ goto err; } /* calculate tmp1 = inv(S) mod order */ if (!ec_group_do_inverse_ord(group, u2, sig->s, ctx)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB); goto err; } /* digest -> m */ i = BN_num_bits(order); /* * Need to truncate digest if it is too long: first truncate whole bytes. */ if (8 * dgst_len > i) dgst_len = (i + 7) / 8; if (!BN_bin2bn(dgst, dgst_len, m)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB); goto err; } /* If still too long truncate remaining bits with a shift */ if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB); goto err; } /* u1 = m * tmp mod order */ if (!BN_mod_mul(u1, m, u2, order, ctx)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB); goto err; } /* u2 = r * w mod q */ if (!BN_mod_mul(u2, sig->r, u2, order, ctx)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB); goto err; } if ((point = EC_POINT_new(group)) == NULL) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_mul(group, point, u1, pub_key, u2, ctx)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_EC_LIB); goto err; } if (!EC_POINT_get_affine_coordinates(group, point, X, NULL, ctx)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_EC_LIB); goto err; } if (!BN_nnmod(u1, X, order, ctx)) { ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB); goto err; } /* if the signature is correct u1 is equal to sig->r */ ret = (BN_ucmp(u1, sig->r) == 0); err: BN_CTX_end(ctx); BN_CTX_free(ctx); EC_POINT_free(point); return ret; } openssl-1.1.1f/crypto/ec/ecdsa_sign.c000066400000000000000000000034231364063235100175220ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" #include ECDSA_SIG *ECDSA_do_sign(const unsigned char *dgst, int dlen, EC_KEY *eckey) { return ECDSA_do_sign_ex(dgst, dlen, NULL, NULL, eckey); } ECDSA_SIG *ECDSA_do_sign_ex(const unsigned char *dgst, int dlen, const BIGNUM *kinv, const BIGNUM *rp, EC_KEY *eckey) { if (eckey->meth->sign_sig != NULL) return eckey->meth->sign_sig(dgst, dlen, kinv, rp, eckey); ECerr(EC_F_ECDSA_DO_SIGN_EX, EC_R_OPERATION_NOT_SUPPORTED); return NULL; } int ECDSA_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, EC_KEY *eckey) { return ECDSA_sign_ex(type, dgst, dlen, sig, siglen, NULL, NULL, eckey); } int ECDSA_sign_ex(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey) { if (eckey->meth->sign != NULL) return eckey->meth->sign(type, dgst, dlen, sig, siglen, kinv, r, eckey); ECerr(EC_F_ECDSA_SIGN_EX, EC_R_OPERATION_NOT_SUPPORTED); return 0; } int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) { if (eckey->meth->sign_setup != NULL) return eckey->meth->sign_setup(eckey, ctx_in, kinvp, rp); ECerr(EC_F_ECDSA_SIGN_SETUP, EC_R_OPERATION_NOT_SUPPORTED); return 0; } openssl-1.1.1f/crypto/ec/ecdsa_vrf.c000066400000000000000000000024031364063235100173540ustar00rootroot00000000000000/* * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" #include /*- * returns * 1: correct signature * 0: incorrect signature * -1: error */ int ECDSA_do_verify(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey) { if (eckey->meth->verify_sig != NULL) return eckey->meth->verify_sig(dgst, dgst_len, sig, eckey); ECerr(EC_F_ECDSA_DO_VERIFY, EC_R_OPERATION_NOT_SUPPORTED); return -1; } /*- * returns * 1: correct signature * 0: incorrect signature * -1: error */ int ECDSA_verify(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey) { if (eckey->meth->verify != NULL) return eckey->meth->verify(type, dgst, dgst_len, sigbuf, sig_len, eckey); ECerr(EC_F_ECDSA_VERIFY, EC_R_OPERATION_NOT_SUPPORTED); return -1; } openssl-1.1.1f/crypto/ec/eck_prn.c000066400000000000000000000165071364063235100170530ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #ifndef OPENSSL_NO_STDIO int ECPKParameters_print_fp(FILE *fp, const EC_GROUP *x, int off) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ECerr(EC_F_ECPKPARAMETERS_PRINT_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = ECPKParameters_print(b, x, off); BIO_free(b); return ret; } int EC_KEY_print_fp(FILE *fp, const EC_KEY *x, int off) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ECerr(EC_F_EC_KEY_PRINT_FP, ERR_R_BIO_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = EC_KEY_print(b, x, off); BIO_free(b); return ret; } int ECParameters_print_fp(FILE *fp, const EC_KEY *x) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ECerr(EC_F_ECPARAMETERS_PRINT_FP, ERR_R_BIO_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = ECParameters_print(b, x); BIO_free(b); return ret; } #endif static int print_bin(BIO *fp, const char *str, const unsigned char *num, size_t len, int off); int ECPKParameters_print(BIO *bp, const EC_GROUP *x, int off) { int ret = 0, reason = ERR_R_BIO_LIB; BN_CTX *ctx = NULL; const EC_POINT *point = NULL; BIGNUM *p = NULL, *a = NULL, *b = NULL, *gen = NULL; const BIGNUM *order = NULL, *cofactor = NULL; const unsigned char *seed; size_t seed_len = 0; static const char *gen_compressed = "Generator (compressed):"; static const char *gen_uncompressed = "Generator (uncompressed):"; static const char *gen_hybrid = "Generator (hybrid):"; if (!x) { reason = ERR_R_PASSED_NULL_PARAMETER; goto err; } ctx = BN_CTX_new(); if (ctx == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } if (EC_GROUP_get_asn1_flag(x)) { /* the curve parameter are given by an asn1 OID */ int nid; const char *nname; if (!BIO_indent(bp, off, 128)) goto err; nid = EC_GROUP_get_curve_name(x); if (nid == 0) goto err; if (BIO_printf(bp, "ASN1 OID: %s", OBJ_nid2sn(nid)) <= 0) goto err; if (BIO_printf(bp, "\n") <= 0) goto err; nname = EC_curve_nid2nist(nid); if (nname) { if (!BIO_indent(bp, off, 128)) goto err; if (BIO_printf(bp, "NIST CURVE: %s\n", nname) <= 0) goto err; } } else { /* explicit parameters */ int is_char_two = 0; point_conversion_form_t form; int tmp_nid = EC_METHOD_get_field_type(EC_GROUP_method_of(x)); if (tmp_nid == NID_X9_62_characteristic_two_field) is_char_two = 1; if ((p = BN_new()) == NULL || (a = BN_new()) == NULL || (b = BN_new()) == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } if (!EC_GROUP_get_curve(x, p, a, b, ctx)) { reason = ERR_R_EC_LIB; goto err; } if ((point = EC_GROUP_get0_generator(x)) == NULL) { reason = ERR_R_EC_LIB; goto err; } order = EC_GROUP_get0_order(x); cofactor = EC_GROUP_get0_cofactor(x); if (order == NULL) { reason = ERR_R_EC_LIB; goto err; } form = EC_GROUP_get_point_conversion_form(x); if ((gen = EC_POINT_point2bn(x, point, form, NULL, ctx)) == NULL) { reason = ERR_R_EC_LIB; goto err; } if ((seed = EC_GROUP_get0_seed(x)) != NULL) seed_len = EC_GROUP_get_seed_len(x); if (!BIO_indent(bp, off, 128)) goto err; /* print the 'short name' of the field type */ if (BIO_printf(bp, "Field Type: %s\n", OBJ_nid2sn(tmp_nid)) <= 0) goto err; if (is_char_two) { /* print the 'short name' of the base type OID */ int basis_type = EC_GROUP_get_basis_type(x); if (basis_type == 0) goto err; if (!BIO_indent(bp, off, 128)) goto err; if (BIO_printf(bp, "Basis Type: %s\n", OBJ_nid2sn(basis_type)) <= 0) goto err; /* print the polynomial */ if ((p != NULL) && !ASN1_bn_print(bp, "Polynomial:", p, NULL, off)) goto err; } else { if ((p != NULL) && !ASN1_bn_print(bp, "Prime:", p, NULL, off)) goto err; } if ((a != NULL) && !ASN1_bn_print(bp, "A: ", a, NULL, off)) goto err; if ((b != NULL) && !ASN1_bn_print(bp, "B: ", b, NULL, off)) goto err; if (form == POINT_CONVERSION_COMPRESSED) { if ((gen != NULL) && !ASN1_bn_print(bp, gen_compressed, gen, NULL, off)) goto err; } else if (form == POINT_CONVERSION_UNCOMPRESSED) { if ((gen != NULL) && !ASN1_bn_print(bp, gen_uncompressed, gen, NULL, off)) goto err; } else { /* form == POINT_CONVERSION_HYBRID */ if ((gen != NULL) && !ASN1_bn_print(bp, gen_hybrid, gen, NULL, off)) goto err; } if ((order != NULL) && !ASN1_bn_print(bp, "Order: ", order, NULL, off)) goto err; if ((cofactor != NULL) && !ASN1_bn_print(bp, "Cofactor: ", cofactor, NULL, off)) goto err; if (seed && !print_bin(bp, "Seed:", seed, seed_len, off)) goto err; } ret = 1; err: if (!ret) ECerr(EC_F_ECPKPARAMETERS_PRINT, reason); BN_free(p); BN_free(a); BN_free(b); BN_free(gen); BN_CTX_free(ctx); return ret; } static int print_bin(BIO *fp, const char *name, const unsigned char *buf, size_t len, int off) { size_t i; char str[128 + 1 + 4]; if (buf == NULL) return 1; if (off > 0) { if (off > 128) off = 128; memset(str, ' ', off); if (BIO_write(fp, str, off) <= 0) return 0; } else { off = 0; } if (BIO_printf(fp, "%s", name) <= 0) return 0; for (i = 0; i < len; i++) { if ((i % 15) == 0) { str[0] = '\n'; memset(&(str[1]), ' ', off + 4); if (BIO_write(fp, str, off + 1 + 4) <= 0) return 0; } if (BIO_printf(fp, "%02x%s", buf[i], ((i + 1) == len) ? "" : ":") <= 0) return 0; } if (BIO_write(fp, "\n", 1) <= 0) return 0; return 1; } openssl-1.1.1f/crypto/ec/ecp_mont.c000066400000000000000000000174731364063235100172410ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ec_local.h" const EC_METHOD *EC_GFp_mont_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_prime_field, ec_GFp_mont_group_init, ec_GFp_mont_group_finish, ec_GFp_mont_group_clear_finish, ec_GFp_mont_group_copy, ec_GFp_mont_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, ec_GFp_simple_point_clear_finish, ec_GFp_simple_point_copy, ec_GFp_simple_point_set_to_infinity, ec_GFp_simple_set_Jprojective_coordinates_GFp, ec_GFp_simple_get_Jprojective_coordinates_GFp, ec_GFp_simple_point_set_affine_coordinates, ec_GFp_simple_point_get_affine_coordinates, 0, 0, 0, ec_GFp_simple_add, ec_GFp_simple_dbl, ec_GFp_simple_invert, ec_GFp_simple_is_at_infinity, ec_GFp_simple_is_on_curve, ec_GFp_simple_cmp, ec_GFp_simple_make_affine, ec_GFp_simple_points_make_affine, 0 /* mul */ , 0 /* precompute_mult */ , 0 /* have_precompute_mult */ , ec_GFp_mont_field_mul, ec_GFp_mont_field_sqr, 0 /* field_div */ , ec_GFp_mont_field_inv, ec_GFp_mont_field_encode, ec_GFp_mont_field_decode, ec_GFp_mont_field_set_to_one, ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, 0, /* field_inverse_mod_ord */ ec_GFp_simple_blind_coordinates, ec_GFp_simple_ladder_pre, ec_GFp_simple_ladder_step, ec_GFp_simple_ladder_post }; return &ret; } int ec_GFp_mont_group_init(EC_GROUP *group) { int ok; ok = ec_GFp_simple_group_init(group); group->field_data1 = NULL; group->field_data2 = NULL; return ok; } void ec_GFp_mont_group_finish(EC_GROUP *group) { BN_MONT_CTX_free(group->field_data1); group->field_data1 = NULL; BN_free(group->field_data2); group->field_data2 = NULL; ec_GFp_simple_group_finish(group); } void ec_GFp_mont_group_clear_finish(EC_GROUP *group) { BN_MONT_CTX_free(group->field_data1); group->field_data1 = NULL; BN_clear_free(group->field_data2); group->field_data2 = NULL; ec_GFp_simple_group_clear_finish(group); } int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src) { BN_MONT_CTX_free(dest->field_data1); dest->field_data1 = NULL; BN_clear_free(dest->field_data2); dest->field_data2 = NULL; if (!ec_GFp_simple_group_copy(dest, src)) return 0; if (src->field_data1 != NULL) { dest->field_data1 = BN_MONT_CTX_new(); if (dest->field_data1 == NULL) return 0; if (!BN_MONT_CTX_copy(dest->field_data1, src->field_data1)) goto err; } if (src->field_data2 != NULL) { dest->field_data2 = BN_dup(src->field_data2); if (dest->field_data2 == NULL) goto err; } return 1; err: BN_MONT_CTX_free(dest->field_data1); dest->field_data1 = NULL; return 0; } int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BN_MONT_CTX *mont = NULL; BIGNUM *one = NULL; int ret = 0; BN_MONT_CTX_free(group->field_data1); group->field_data1 = NULL; BN_free(group->field_data2); group->field_data2 = NULL; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } mont = BN_MONT_CTX_new(); if (mont == NULL) goto err; if (!BN_MONT_CTX_set(mont, p, ctx)) { ECerr(EC_F_EC_GFP_MONT_GROUP_SET_CURVE, ERR_R_BN_LIB); goto err; } one = BN_new(); if (one == NULL) goto err; if (!BN_to_montgomery(one, BN_value_one(), mont, ctx)) goto err; group->field_data1 = mont; mont = NULL; group->field_data2 = one; one = NULL; ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); if (!ret) { BN_MONT_CTX_free(group->field_data1); group->field_data1 = NULL; BN_free(group->field_data2); group->field_data2 = NULL; } err: BN_free(one); BN_CTX_free(new_ctx); BN_MONT_CTX_free(mont); return ret; } int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { if (group->field_data1 == NULL) { ECerr(EC_F_EC_GFP_MONT_FIELD_MUL, EC_R_NOT_INITIALIZED); return 0; } return BN_mod_mul_montgomery(r, a, b, group->field_data1, ctx); } int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { if (group->field_data1 == NULL) { ECerr(EC_F_EC_GFP_MONT_FIELD_SQR, EC_R_NOT_INITIALIZED); return 0; } return BN_mod_mul_montgomery(r, a, a, group->field_data1, ctx); } /*- * Computes the multiplicative inverse of a in GF(p), storing the result in r. * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. * We have a Mont structure, so SCA hardening is FLT inversion. */ int ec_GFp_mont_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { BIGNUM *e = NULL; BN_CTX *new_ctx = NULL; int ret = 0; if (group->field_data1 == NULL) return 0; if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) return 0; BN_CTX_start(ctx); if ((e = BN_CTX_get(ctx)) == NULL) goto err; /* Inverse in constant time with Fermats Little Theorem */ if (!BN_set_word(e, 2)) goto err; if (!BN_sub(e, group->field, e)) goto err; /*- * Exponent e is public. * No need for scatter-gather or BN_FLG_CONSTTIME. */ if (!BN_mod_exp_mont(r, a, e, group->field, ctx, group->field_data1)) goto err; /* throw an error on zero */ if (BN_is_zero(r)) { ECerr(EC_F_EC_GFP_MONT_FIELD_INV, EC_R_CANNOT_INVERT); goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { if (group->field_data1 == NULL) { ECerr(EC_F_EC_GFP_MONT_FIELD_ENCODE, EC_R_NOT_INITIALIZED); return 0; } return BN_to_montgomery(r, a, (BN_MONT_CTX *)group->field_data1, ctx); } int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { if (group->field_data1 == NULL) { ECerr(EC_F_EC_GFP_MONT_FIELD_DECODE, EC_R_NOT_INITIALIZED); return 0; } return BN_from_montgomery(r, a, group->field_data1, ctx); } int ec_GFp_mont_field_set_to_one(const EC_GROUP *group, BIGNUM *r, BN_CTX *ctx) { if (group->field_data2 == NULL) { ECerr(EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE, EC_R_NOT_INITIALIZED); return 0; } if (!BN_copy(r, group->field_data2)) return 0; return 1; } openssl-1.1.1f/crypto/ec/ecp_nist.c000066400000000000000000000114501364063235100172260ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "ec_local.h" const EC_METHOD *EC_GFp_nist_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_prime_field, ec_GFp_simple_group_init, ec_GFp_simple_group_finish, ec_GFp_simple_group_clear_finish, ec_GFp_nist_group_copy, ec_GFp_nist_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, ec_GFp_simple_point_clear_finish, ec_GFp_simple_point_copy, ec_GFp_simple_point_set_to_infinity, ec_GFp_simple_set_Jprojective_coordinates_GFp, ec_GFp_simple_get_Jprojective_coordinates_GFp, ec_GFp_simple_point_set_affine_coordinates, ec_GFp_simple_point_get_affine_coordinates, 0, 0, 0, ec_GFp_simple_add, ec_GFp_simple_dbl, ec_GFp_simple_invert, ec_GFp_simple_is_at_infinity, ec_GFp_simple_is_on_curve, ec_GFp_simple_cmp, ec_GFp_simple_make_affine, ec_GFp_simple_points_make_affine, 0 /* mul */ , 0 /* precompute_mult */ , 0 /* have_precompute_mult */ , ec_GFp_nist_field_mul, ec_GFp_nist_field_sqr, 0 /* field_div */ , ec_GFp_simple_field_inv, 0 /* field_encode */ , 0 /* field_decode */ , 0, /* field_set_to_one */ ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, 0, /* field_inverse_mod_ord */ ec_GFp_simple_blind_coordinates, ec_GFp_simple_ladder_pre, ec_GFp_simple_ladder_step, ec_GFp_simple_ladder_post }; return &ret; } int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src) { dest->field_mod_func = src->field_mod_func; return ec_GFp_simple_group_copy(dest, src); } int ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); if (BN_ucmp(BN_get0_nist_prime_192(), p) == 0) group->field_mod_func = BN_nist_mod_192; else if (BN_ucmp(BN_get0_nist_prime_224(), p) == 0) group->field_mod_func = BN_nist_mod_224; else if (BN_ucmp(BN_get0_nist_prime_256(), p) == 0) group->field_mod_func = BN_nist_mod_256; else if (BN_ucmp(BN_get0_nist_prime_384(), p) == 0) group->field_mod_func = BN_nist_mod_384; else if (BN_ucmp(BN_get0_nist_prime_521(), p) == 0) group->field_mod_func = BN_nist_mod_521; else { ECerr(EC_F_EC_GFP_NIST_GROUP_SET_CURVE, EC_R_NOT_A_NIST_PRIME); goto err; } ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *ctx_new = NULL; if (!group || !r || !a || !b) { ECerr(EC_F_EC_GFP_NIST_FIELD_MUL, ERR_R_PASSED_NULL_PARAMETER); goto err; } if (!ctx) if ((ctx_new = ctx = BN_CTX_new()) == NULL) goto err; if (!BN_mul(r, a, b, ctx)) goto err; if (!group->field_mod_func(r, r, group->field, ctx)) goto err; ret = 1; err: BN_CTX_free(ctx_new); return ret; } int ec_GFp_nist_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { int ret = 0; BN_CTX *ctx_new = NULL; if (!group || !r || !a) { ECerr(EC_F_EC_GFP_NIST_FIELD_SQR, EC_R_PASSED_NULL_PARAMETER); goto err; } if (!ctx) if ((ctx_new = ctx = BN_CTX_new()) == NULL) goto err; if (!BN_sqr(r, a, ctx)) goto err; if (!group->field_mod_func(r, r, group->field, ctx)) goto err; ret = 1; err: BN_CTX_free(ctx_new); return ret; } openssl-1.1.1f/crypto/ec/ecp_nistp224.c000066400000000000000000001664331364063235100176520ustar00rootroot00000000000000/* * Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Copyright 2011 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication * * Inspired by Daniel J. Bernstein's public domain nistp224 implementation * and Adam Langley's public domain 64-bit C implementation of curve25519 */ #include #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include "ec_local.h" # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 /* even with gcc, the typedef won't work for 32-bit platforms */ typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit * platforms */ # else # error "Your compiler doesn't appear to support 128-bit integer types" # endif typedef uint8_t u8; typedef uint64_t u64; /******************************************************************************/ /*- * INTERNAL REPRESENTATION OF FIELD ELEMENTS * * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 * using 64-bit coefficients called 'limbs', * and sometimes (for multiplication results) as * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 * using 128-bit coefficients called 'widelimbs'. * A 4-limb representation is an 'felem'; * a 7-widelimb representation is a 'widefelem'. * Even within felems, bits of adjacent limbs overlap, and we don't always * reduce the representations: we ensure that inputs to each felem * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, * and fit into a 128-bit word without overflow. The coefficients are then * again partially reduced to obtain an felem satisfying a_i < 2^57. * We only reduce to the unique minimal representation at the end of the * computation. */ typedef uint64_t limb; typedef uint128_t widelimb; typedef limb felem[4]; typedef widelimb widefelem[7]; /* * Field element represented as a byte array. 28*8 = 224 bits is also the * group order size for the elliptic curve, and we also use this type for * scalars for point multiplication. */ typedef u8 felem_bytearray[28]; static const felem_bytearray nistp224_curve_params[5] = { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE}, {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4}, {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21}, {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34} }; /*- * Precomputed multiples of the standard generator * Points are given in coordinates (X, Y, Z) where Z normally is 1 * (0 for the point at infinity). * For each field element, slice a_0 is word 0, etc. * * The table has 2 * 16 elements, starting with the following: * index | bits | point * ------+---------+------------------------------ * 0 | 0 0 0 0 | 0G * 1 | 0 0 0 1 | 1G * 2 | 0 0 1 0 | 2^56G * 3 | 0 0 1 1 | (2^56 + 1)G * 4 | 0 1 0 0 | 2^112G * 5 | 0 1 0 1 | (2^112 + 1)G * 6 | 0 1 1 0 | (2^112 + 2^56)G * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G * 8 | 1 0 0 0 | 2^168G * 9 | 1 0 0 1 | (2^168 + 1)G * 10 | 1 0 1 0 | (2^168 + 2^56)G * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G * 12 | 1 1 0 0 | (2^168 + 2^112)G * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G * followed by a copy of this with each element multiplied by 2^28. * * The reason for this is so that we can clock bits into four different * locations when doing simple scalar multiplies against the base point, * and then another four locations using the second 16 elements. */ static const felem gmul[2][16][3] = { {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, {1, 0, 0, 0}}, {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, {1, 0, 0, 0}}, {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, {1, 0, 0, 0}}, {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, {1, 0, 0, 0}}, {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, {1, 0, 0, 0}}, {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, {1, 0, 0, 0}}, {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, {1, 0, 0, 0}}, {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, {1, 0, 0, 0}}, {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, {1, 0, 0, 0}}, {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, {1, 0, 0, 0}}, {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, {1, 0, 0, 0}}, {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, {1, 0, 0, 0}}, {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, {1, 0, 0, 0}}, {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, {1, 0, 0, 0}}, {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, {1, 0, 0, 0}}}, {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, {1, 0, 0, 0}}, {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, {1, 0, 0, 0}}, {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, {1, 0, 0, 0}}, {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, {1, 0, 0, 0}}, {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, {1, 0, 0, 0}}, {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, {1, 0, 0, 0}}, {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, {1, 0, 0, 0}}, {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, {1, 0, 0, 0}}, {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, {1, 0, 0, 0}}, {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, {1, 0, 0, 0}}, {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, {1, 0, 0, 0}}, {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, {1, 0, 0, 0}}, {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, {1, 0, 0, 0}}, {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, {1, 0, 0, 0}}, {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, {1, 0, 0, 0}}} }; /* Precomputation for the group generator. */ struct nistp224_pre_comp_st { felem g_pre_comp[2][16][3]; CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; }; const EC_METHOD *EC_GFp_nistp224_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_prime_field, ec_GFp_nistp224_group_init, ec_GFp_simple_group_finish, ec_GFp_simple_group_clear_finish, ec_GFp_nist_group_copy, ec_GFp_nistp224_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, ec_GFp_simple_point_clear_finish, ec_GFp_simple_point_copy, ec_GFp_simple_point_set_to_infinity, ec_GFp_simple_set_Jprojective_coordinates_GFp, ec_GFp_simple_get_Jprojective_coordinates_GFp, ec_GFp_simple_point_set_affine_coordinates, ec_GFp_nistp224_point_get_affine_coordinates, 0 /* point_set_compressed_coordinates */ , 0 /* point2oct */ , 0 /* oct2point */ , ec_GFp_simple_add, ec_GFp_simple_dbl, ec_GFp_simple_invert, ec_GFp_simple_is_at_infinity, ec_GFp_simple_is_on_curve, ec_GFp_simple_cmp, ec_GFp_simple_make_affine, ec_GFp_simple_points_make_affine, ec_GFp_nistp224_points_mul, ec_GFp_nistp224_precompute_mult, ec_GFp_nistp224_have_precompute_mult, ec_GFp_nist_field_mul, ec_GFp_nist_field_sqr, 0 /* field_div */ , ec_GFp_simple_field_inv, 0 /* field_encode */ , 0 /* field_decode */ , 0, /* field_set_to_one */ ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, 0, /* field_inverse_mod_ord */ 0, /* blind_coordinates */ 0, /* ladder_pre */ 0, /* ladder_step */ 0 /* ladder_post */ }; return &ret; } /* * Helper functions to convert field elements to/from internal representation */ static void bin28_to_felem(felem out, const u8 in[28]) { out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff; out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff; out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff; out[3] = (*((const uint64_t *)(in+20))) >> 8; } static void felem_to_bin28(u8 out[28], const felem in) { unsigned i; for (i = 0; i < 7; ++i) { out[i] = in[0] >> (8 * i); out[i + 7] = in[1] >> (8 * i); out[i + 14] = in[2] >> (8 * i); out[i + 21] = in[3] >> (8 * i); } } /* From OpenSSL BIGNUM to internal representation */ static int BN_to_felem(felem out, const BIGNUM *bn) { felem_bytearray b_out; int num_bytes; if (BN_is_negative(bn)) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); if (num_bytes < 0) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } bin28_to_felem(out, b_out); return 1; } /* From internal representation to OpenSSL BIGNUM */ static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) { felem_bytearray b_out; felem_to_bin28(b_out, in); return BN_lebin2bn(b_out, sizeof(b_out), out); } /******************************************************************************/ /*- * FIELD OPERATIONS * * Field operations, using the internal representation of field elements. * NB! These operations are specific to our point multiplication and cannot be * expected to be correct in general - e.g., multiplication with a large scalar * will cause an overflow. * */ static void felem_one(felem out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; } static void felem_assign(felem out, const felem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } /* Sum two field elements: out += in */ static void felem_sum(felem out, const felem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; } /* Subtract field elements: out -= in */ /* Assumes in[i] < 2^57 */ static void felem_diff(felem out, const felem in) { static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); static const limb two58m42m2 = (((limb) 1) << 58) - (((limb) 1) << 42) - (((limb) 1) << 2); /* Add 0 mod 2^224-2^96+1 to ensure out > in */ out[0] += two58p2; out[1] += two58m42m2; out[2] += two58m2; out[3] += two58m2; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } /* Subtract in unreduced 128-bit mode: out -= in */ /* Assumes in[i] < 2^119 */ static void widefelem_diff(widefelem out, const widefelem in) { static const widelimb two120 = ((widelimb) 1) << 120; static const widelimb two120m64 = (((widelimb) 1) << 120) - (((widelimb) 1) << 64); static const widelimb two120m104m64 = (((widelimb) 1) << 120) - (((widelimb) 1) << 104) - (((widelimb) 1) << 64); /* Add 0 mod 2^224-2^96+1 to ensure out > in */ out[0] += two120; out[1] += two120m64; out[2] += two120m64; out[3] += two120; out[4] += two120m104m64; out[5] += two120m64; out[6] += two120m64; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; out[4] -= in[4]; out[5] -= in[5]; out[6] -= in[6]; } /* Subtract in mixed mode: out128 -= in64 */ /* in[i] < 2^63 */ static void felem_diff_128_64(widefelem out, const felem in) { static const widelimb two64p8 = (((widelimb) 1) << 64) + (((widelimb) 1) << 8); static const widelimb two64m8 = (((widelimb) 1) << 64) - (((widelimb) 1) << 8); static const widelimb two64m48m8 = (((widelimb) 1) << 64) - (((widelimb) 1) << 48) - (((widelimb) 1) << 8); /* Add 0 mod 2^224-2^96+1 to ensure out > in */ out[0] += two64p8; out[1] += two64m48m8; out[2] += two64m8; out[3] += two64m8; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } /* * Multiply a field element by a scalar: out = out * scalar The scalars we * actually use are small, so results fit without overflow */ static void felem_scalar(felem out, const limb scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; } /* * Multiply an unreduced field element by a scalar: out = out * scalar The * scalars we actually use are small, so results fit without overflow */ static void widefelem_scalar(widefelem out, const widelimb scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; } /* Square a field element: out = in^2 */ static void felem_square(widefelem out, const felem in) { limb tmp0, tmp1, tmp2; tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2]; out[0] = ((widelimb) in[0]) * in[0]; out[1] = ((widelimb) in[0]) * tmp1; out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2; out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; out[5] = ((widelimb) in[3]) * tmp2; out[6] = ((widelimb) in[3]) * in[3]; } /* Multiply two field elements: out = in1 * in2 */ static void felem_mul(widefelem out, const felem in1, const felem in2) { out[0] = ((widelimb) in1[0]) * in2[0]; out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + ((widelimb) in1[2]) * in2[0]; out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + ((widelimb) in1[3]) * in2[1]; out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; out[6] = ((widelimb) in1[3]) * in2[3]; } /*- * Reduce seven 128-bit coefficients to four 64-bit coefficients. * Requires in[i] < 2^126, * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ static void felem_reduce(felem out, const widefelem in) { static const widelimb two127p15 = (((widelimb) 1) << 127) + (((widelimb) 1) << 15); static const widelimb two127m71 = (((widelimb) 1) << 127) - (((widelimb) 1) << 71); static const widelimb two127m71m55 = (((widelimb) 1) << 127) - (((widelimb) 1) << 71) - (((widelimb) 1) << 55); widelimb output[5]; /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ output[0] = in[0] + two127p15; output[1] = in[1] + two127m71m55; output[2] = in[2] + two127m71; output[3] = in[3]; output[4] = in[4]; /* Eliminate in[4], in[5], in[6] */ output[4] += in[6] >> 16; output[3] += (in[6] & 0xffff) << 40; output[2] -= in[6]; output[3] += in[5] >> 16; output[2] += (in[5] & 0xffff) << 40; output[1] -= in[5]; output[2] += output[4] >> 16; output[1] += (output[4] & 0xffff) << 40; output[0] -= output[4]; /* Carry 2 -> 3 -> 4 */ output[3] += output[2] >> 56; output[2] &= 0x00ffffffffffffff; output[4] = output[3] >> 56; output[3] &= 0x00ffffffffffffff; /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ /* Eliminate output[4] */ output[2] += output[4] >> 16; /* output[2] < 2^56 + 2^56 = 2^57 */ output[1] += (output[4] & 0xffff) << 40; output[0] -= output[4]; /* Carry 0 -> 1 -> 2 -> 3 */ output[1] += output[0] >> 56; out[0] = output[0] & 0x00ffffffffffffff; output[2] += output[1] >> 56; /* output[2] < 2^57 + 2^72 */ out[1] = output[1] & 0x00ffffffffffffff; output[3] += output[2] >> 56; /* output[3] <= 2^56 + 2^16 */ out[2] = output[2] & 0x00ffffffffffffff; /*- * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, * out[3] <= 2^56 + 2^16 (due to final carry), * so out < 2*p */ out[3] = output[3]; } static void felem_square_reduce(felem out, const felem in) { widefelem tmp; felem_square(tmp, in); felem_reduce(out, tmp); } static void felem_mul_reduce(felem out, const felem in1, const felem in2) { widefelem tmp; felem_mul(tmp, in1, in2); felem_reduce(out, tmp); } /* * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always * call felem_reduce first) */ static void felem_contract(felem out, const felem in) { static const int64_t two56 = ((limb) 1) << 56; /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ int64_t tmp[4], a; tmp[0] = in[0]; tmp[1] = in[1]; tmp[2] = in[2]; tmp[3] = in[3]; /* Case 1: a = 1 iff in >= 2^224 */ a = (in[3] >> 56); tmp[0] -= a; tmp[1] += a << 40; tmp[3] &= 0x00ffffffffffffff; /* * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 * and the lower part is non-zero */ a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); a &= 0x00ffffffffffffff; /* turn a into an all-one mask (if a = 0) or an all-zero mask */ a = (a - 1) >> 63; /* subtract 2^224 - 2^96 + 1 if a is all-one */ tmp[3] &= a ^ 0xffffffffffffffff; tmp[2] &= a ^ 0xffffffffffffffff; tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; tmp[0] -= 1 & a; /* * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be * non-zero, so we only need one step */ a = tmp[0] >> 63; tmp[0] += two56 & a; tmp[1] -= 1 & a; /* carry 1 -> 2 -> 3 */ tmp[2] += tmp[1] >> 56; tmp[1] &= 0x00ffffffffffffff; tmp[3] += tmp[2] >> 56; tmp[2] &= 0x00ffffffffffffff; /* Now 0 <= out < p */ out[0] = tmp[0]; out[1] = tmp[1]; out[2] = tmp[2]; out[3] = tmp[3]; } /* * Get negative value: out = -in * Requires in[i] < 2^63, * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ static void felem_neg(felem out, const felem in) { widefelem tmp = {0}; felem_diff_128_64(tmp, in); felem_reduce(out, tmp); } /* * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field * elements are reduced to in < 2^225, so we only need to check three cases: * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */ static limb felem_is_zero(const felem in) { limb zero, two224m96p1, two225m97p2; zero = in[0] | in[1] | in[2] | in[3]; zero = (((int64_t) (zero) - 1) >> 63) & 1; two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; return (zero | two224m96p1 | two225m97p2); } static int felem_is_zero_int(const void *in) { return (int)(felem_is_zero(in) & ((limb) 1)); } /* Invert a field element */ /* Computation chain copied from djb's code */ static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2, ftmp3, ftmp4; widefelem tmp; unsigned i; felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 1 */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */ felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); } felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); } felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^126 - 1 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^127 - 2 */ felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^127 - 1 */ for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ } /* * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy * out to itself. */ static void copy_conditional(felem out, const felem in, limb icopy) { unsigned i; /* * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ const limb copy = -icopy; for (i = 0; i < 4; ++i) { const limb tmp = copy & (in[i] ^ out[i]); out[i] ^= tmp; } } /******************************************************************************/ /*- * ELLIPTIC CURVE POINT OPERATIONS * * Points are represented in Jacobian projective coordinates: * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), * or to the point at infinity if Z == 0. * */ /*- * Double an elliptic curve point: * (X', Y', Z') = 2 * (X, Y, Z), where * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, * while x_out == y_in is not (maybe this works, but it's not tested). */ static void point_double(felem x_out, felem y_out, felem z_out, const felem x_in, const felem y_in, const felem z_in) { widefelem tmp, tmp2; felem delta, gamma, beta, alpha, ftmp, ftmp2; felem_assign(ftmp, x_in); felem_assign(ftmp2, x_in); /* delta = z^2 */ felem_square(tmp, z_in); felem_reduce(delta, tmp); /* gamma = y^2 */ felem_square(tmp, y_in); felem_reduce(gamma, tmp); /* beta = x*gamma */ felem_mul(tmp, x_in, gamma); felem_reduce(beta, tmp); /* alpha = 3*(x-delta)*(x+delta) */ felem_diff(ftmp, delta); /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ felem_sum(ftmp2, delta); /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ felem_scalar(ftmp2, 3); /* ftmp2[i] < 3 * 2^58 < 2^60 */ felem_mul(tmp, ftmp, ftmp2); /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ felem_reduce(alpha, tmp); /* x' = alpha^2 - 8*beta */ felem_square(tmp, alpha); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ felem_assign(ftmp, beta); felem_scalar(ftmp, 8); /* ftmp[i] < 8 * 2^57 = 2^60 */ felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ felem_reduce(x_out, tmp); /* z' = (y + z)^2 - gamma - delta */ felem_sum(delta, gamma); /* delta[i] < 2^57 + 2^57 = 2^58 */ felem_assign(ftmp, y_in); felem_sum(ftmp, z_in); /* ftmp[i] < 2^57 + 2^57 = 2^58 */ felem_square(tmp, ftmp); /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ felem_diff_128_64(tmp, delta); /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ felem_reduce(z_out, tmp); /* y' = alpha*(4*beta - x') - 8*gamma^2 */ felem_scalar(beta, 4); /* beta[i] < 4 * 2^57 = 2^59 */ felem_diff(beta, x_out); /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ felem_mul(tmp, alpha, beta); /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ felem_square(tmp2, gamma); /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ widefelem_scalar(tmp2, 8); /* tmp2[i] < 8 * 2^116 = 2^119 */ widefelem_diff(tmp, tmp2); /* tmp[i] < 2^119 + 2^120 < 2^121 */ felem_reduce(y_out, tmp); } /*- * Add two elliptic curve points: * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) * * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */ /* * This function is not entirely constant-time: it includes a branch for * checking whether the two input points are equal, (while not equal to the * point at infinity). This case never happens during single point * multiplication, so there is no timing leak for ECDH or ECDSA signing. */ static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const felem x2, const felem y2, const felem z2) { felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; widefelem tmp, tmp2; limb z1_is_zero, z2_is_zero, x_equal, y_equal; limb points_equal; if (!mixed) { /* ftmp2 = z2^2 */ felem_square(tmp, z2); felem_reduce(ftmp2, tmp); /* ftmp4 = z2^3 */ felem_mul(tmp, ftmp2, z2); felem_reduce(ftmp4, tmp); /* ftmp4 = z2^3*y1 */ felem_mul(tmp2, ftmp4, y1); felem_reduce(ftmp4, tmp2); /* ftmp2 = z2^2*x1 */ felem_mul(tmp2, ftmp2, x1); felem_reduce(ftmp2, tmp2); } else { /* * We'll assume z2 = 1 (special case z2 = 0 is handled later) */ /* ftmp4 = z2^3*y1 */ felem_assign(ftmp4, y1); /* ftmp2 = z2^2*x1 */ felem_assign(ftmp2, x1); } /* ftmp = z1^2 */ felem_square(tmp, z1); felem_reduce(ftmp, tmp); /* ftmp3 = z1^3 */ felem_mul(tmp, ftmp, z1); felem_reduce(ftmp3, tmp); /* tmp = z1^3*y2 */ felem_mul(tmp, ftmp3, y2); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ /* ftmp3 = z1^3*y2 - z2^3*y1 */ felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ felem_reduce(ftmp3, tmp); /* tmp = z1^2*x2 */ felem_mul(tmp, ftmp, x2); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ /* ftmp = z1^2*x2 - z2^2*x1 */ felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ felem_reduce(ftmp, tmp); /* * The formulae are incorrect if the points are equal, in affine coordinates * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this * happens. * * We use bitwise operations to avoid potential side-channels introduced by * the short-circuiting behaviour of boolean operators. */ x_equal = felem_is_zero(ftmp); y_equal = felem_is_zero(ftmp3); /* * The special case of either point being the point at infinity (z1 and/or * z2 are zero), is handled separately later on in this function, so we * avoid jumping to point_double here in those special cases. */ z1_is_zero = felem_is_zero(z1); z2_is_zero = felem_is_zero(z2); /* * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this * specific implementation `felem_is_zero()` returns truth as `0x1` * (rather than `0xff..ff`). * * This implies that `~true` in this implementation becomes * `0xff..fe` (rather than `0x0`): for this reason, to be used in * the if expression, we mask out only the last bit in the next * line. */ points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1; if (points_equal) { /* * This is obviously not constant-time but, as mentioned before, this * case never happens during single point multiplication, so there is no * timing leak for ECDH or ECDSA signing. */ point_double(x3, y3, z3, x1, y1, z1); return; } /* ftmp5 = z1*z2 */ if (!mixed) { felem_mul(tmp, z1, z2); felem_reduce(ftmp5, tmp); } else { /* special case z2 = 0 is handled later */ felem_assign(ftmp5, z1); } /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ felem_mul(tmp, ftmp, ftmp5); felem_reduce(z_out, tmp); /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ felem_assign(ftmp5, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ felem_mul(tmp, ftmp, ftmp5); felem_reduce(ftmp5, tmp); /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ felem_mul(tmp, ftmp4, ftmp5); /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ felem_square(tmp2, ftmp3); /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ felem_diff_128_64(tmp2, ftmp5); /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ felem_assign(ftmp5, ftmp2); felem_scalar(ftmp5, 2); /* ftmp5[i] < 2 * 2^57 = 2^58 */ /*- * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ felem_diff_128_64(tmp2, ftmp5); /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ felem_reduce(x_out, tmp2); /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ felem_diff(ftmp2, x_out); /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ /* * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */ felem_mul(tmp2, ftmp3, ftmp2); /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ /*- * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - * z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ widefelem_diff(tmp2, tmp); /* tmp2[i] < 2^118 + 2^120 < 2^121 */ felem_reduce(y_out, tmp2); /* * the result (x_out, y_out, z_out) is incorrect if one of the inputs is * the point at infinity, so we need to check for this separately */ /* * if point 1 is at infinity, copy point 2 to output, and vice versa */ copy_conditional(x_out, x2, z1_is_zero); copy_conditional(x_out, x1, z2_is_zero); copy_conditional(y_out, y2, z1_is_zero); copy_conditional(y_out, y1, z2_is_zero); copy_conditional(z_out, z2, z1_is_zero); copy_conditional(z_out, z1, z2_is_zero); felem_assign(x3, x_out); felem_assign(y3, y_out); felem_assign(z3, z_out); } /* * select_point selects the |idx|th point from a precomputation table and * copies it to out. * The pre_comp array argument should be size of |size| argument */ static void select_point(const u64 idx, unsigned int size, const felem pre_comp[][3], felem out[3]) { unsigned i, j; limb *outlimbs = &out[0][0]; memset(out, 0, sizeof(*out) * 3); for (i = 0; i < size; i++) { const limb *inlimbs = &pre_comp[i][0][0]; u64 mask = i ^ idx; mask |= mask >> 4; mask |= mask >> 2; mask |= mask >> 1; mask &= 1; mask--; for (j = 0; j < 4 * 3; j++) outlimbs[j] |= inlimbs[j] & mask; } } /* get_bit returns the |i|th bit in |in| */ static char get_bit(const felem_bytearray in, unsigned i) { if (i >= 224) return 0; return (in[i >> 3] >> (i & 7)) & 1; } /* * Interleaved point multiplication using precomputed point multiples: The * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the * generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ static void batch_mul(felem x_out, felem y_out, felem z_out, const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3]) { int i, skip; unsigned num; unsigned gen_mul = (g_scalar != NULL); felem nq[3], tmp[4]; u64 bits; u8 sign, digit; /* set nq to the point at infinity */ memset(nq, 0, sizeof(nq)); /* * Loop over all scalars msb-to-lsb, interleaving additions of multiples * of the generator (two in each of the last 28 rounds) and additions of * other points multiples (every 5th round). */ skip = 1; /* save two point operations in the first * round */ for (i = (num_points ? 220 : 27); i >= 0; --i) { /* double */ if (!skip) point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); /* add multiples of the generator */ if (gen_mul && (i <= 27)) { /* first, look 28 bits upwards */ bits = get_bit(g_scalar, i + 196) << 3; bits |= get_bit(g_scalar, i + 140) << 2; bits |= get_bit(g_scalar, i + 84) << 1; bits |= get_bit(g_scalar, i + 28); /* select the point to add, in constant time */ select_point(bits, 16, g_pre_comp[1], tmp); if (!skip) { /* value 1 below is argument for "mixed" */ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); } else { memcpy(nq, tmp, 3 * sizeof(felem)); skip = 0; } /* second, look at the current position */ bits = get_bit(g_scalar, i + 168) << 3; bits |= get_bit(g_scalar, i + 112) << 2; bits |= get_bit(g_scalar, i + 56) << 1; bits |= get_bit(g_scalar, i); /* select the point to add, in constant time */ select_point(bits, 16, g_pre_comp[0], tmp); point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); } /* do other additions every 5 doublings */ if (num_points && (i % 5 == 0)) { /* loop over all scalars */ for (num = 0; num < num_points; ++num) { bits = get_bit(scalars[num], i + 4) << 5; bits |= get_bit(scalars[num], i + 3) << 4; bits |= get_bit(scalars[num], i + 2) << 3; bits |= get_bit(scalars[num], i + 1) << 2; bits |= get_bit(scalars[num], i) << 1; bits |= get_bit(scalars[num], i - 1); ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); /* select the point to add or subtract */ select_point(digit, 17, pre_comp[num], tmp); felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative * point */ copy_conditional(tmp[1], tmp[3], sign); if (!skip) { point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0], tmp[1], tmp[2]); } else { memcpy(nq, tmp, 3 * sizeof(felem)); skip = 0; } } } } felem_assign(x_out, nq[0]); felem_assign(y_out, nq[1]); felem_assign(z_out, nq[2]); } /******************************************************************************/ /* * FUNCTIONS TO MANAGE PRECOMPUTATION */ static NISTP224_PRE_COMP *nistp224_pre_comp_new(void) { NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); if (!ret) { ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); return ret; } ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p) { int i; if (p != NULL) CRYPTO_UP_REF(&p->references, &i, p->lock); return p; } void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p) { int i; if (p == NULL) return; CRYPTO_DOWN_REF(&p->references, &i, p->lock); REF_PRINT_COUNT("EC_nistp224", x); if (i > 0) return; REF_ASSERT_ISNT(i < 0); CRYPTO_THREAD_lock_free(p->lock); OPENSSL_free(p); } /******************************************************************************/ /* * OPENSSL EC_METHOD FUNCTIONS */ int ec_GFp_nistp224_group_init(EC_GROUP *group) { int ret; ret = ec_GFp_simple_group_init(group); group->a_is_minus3 = 1; return ret; } int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *curve_p, *curve_a, *curve_b; if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); curve_p = BN_CTX_get(ctx); curve_a = BN_CTX_get(ctx); curve_b = BN_CTX_get(ctx); if (curve_b == NULL) goto err; BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, EC_R_WRONG_CURVE_PARAMETERS); goto err; } group->field_mod_func = BN_nist_mod_224; ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = * (X/Z^2, Y/Z^3) */ int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { felem z1, z2, x_in, y_in, x_out, y_out; widefelem tmp; if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z))) return 0; felem_inv(z2, z1); felem_square(tmp, z2); felem_reduce(z1, tmp); felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); felem_contract(x_out, x_in); if (x != NULL) { if (!felem_to_BN(x, x_out)) { ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); felem_contract(y_out, y_in); if (y != NULL) { if (!felem_to_BN(y, y_out)) { ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } return 1; } static void make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) { /* * Runs in constant time, unless an input is the point at infinity (which * normally shouldn't happen). */ ec_GFp_nistp_points_make_affine_internal(num, points, sizeof(felem), tmp_felems, (void (*)(void *))felem_one, felem_is_zero_int, (void (*)(void *, const void *)) felem_assign, (void (*)(void *, const void *)) felem_square_reduce, (void (*) (void *, const void *, const void *)) felem_mul_reduce, (void (*)(void *, const void *)) felem_inv, (void (*)(void *, const void *)) felem_contract); } /* * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL * values Result is stored in r (r can equal one of the inputs). */ int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int ret = 0; int j; unsigned i; int mixed = 0; BIGNUM *x, *y, *z, *tmp_scalar; felem_bytearray g_secret; felem_bytearray *secrets = NULL; felem (*pre_comp)[17][3] = NULL; felem *tmp_felems = NULL; int num_bytes; int have_pre_comp = 0; size_t num_points = num; felem x_in, y_in, z_in, x_out, y_out, z_out; NISTP224_PRE_COMP *pre = NULL; const felem(*g_pre_comp)[16][3] = NULL; EC_POINT *generator = NULL; const EC_POINT *p = NULL; const BIGNUM *p_scalar = NULL; BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); z = BN_CTX_get(ctx); tmp_scalar = BN_CTX_get(ctx); if (tmp_scalar == NULL) goto err; if (scalar != NULL) { pre = group->pre_comp.nistp224; if (pre) /* we have precomputation, try to use it */ g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp; else /* try to use the standard precomputation */ g_pre_comp = &gmul[0]; generator = EC_POINT_new(group); if (generator == NULL) goto err; /* get the generator from precomputation */ if (!felem_to_BN(x, g_pre_comp[0][1][0]) || !felem_to_BN(y, g_pre_comp[0][1][1]) || !felem_to_BN(z, g_pre_comp[0][1][2])) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } if (!EC_POINT_set_Jprojective_coordinates_GFp(group, generator, x, y, z, ctx)) goto err; if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) /* precomputation matches generator */ have_pre_comp = 1; else /* * we don't have valid precomputation: treat the generator as a * random point */ num_points = num_points + 1; } if (num_points > 0) { if (num_points >= 3) { /* * unless we precompute multiples for just one or two points, * converting those into affine form is time well spent */ mixed = 1; } secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); if (mixed) tmp_felems = OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1)); if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); goto err; } /* * we treat NULL scalars as 0, and NULL points as points at infinity, * i.e., they contribute nothing to the linear combination */ for (i = 0; i < num_points; ++i) { if (i == num) { /* the generator */ p = EC_GROUP_get0_generator(group); p_scalar = scalar; } else { /* the i^th point */ p = points[i]; p_scalar = scalars[i]; } if ((p_scalar != NULL) && (p != NULL)) { /* reduce scalar to 0 <= scalar < 2^224 */ if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar))) { /* * this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2lebinpad(tmp_scalar, secrets[i], sizeof(secrets[i])); } else { num_bytes = BN_bn2lebinpad(p_scalar, secrets[i], sizeof(secrets[i])); } if (num_bytes < 0) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } /* precompute multiples */ if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z))) goto err; felem_assign(pre_comp[i][1][0], x_out); felem_assign(pre_comp[i][1][1], y_out); felem_assign(pre_comp[i][1][2], z_out); for (j = 2; j <= 16; ++j) { if (j & 1) { point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); } else { point_double(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); } } } } if (mixed) make_points_affine(num_points * 17, pre_comp[0], tmp_felems); } /* the scalar for the generator */ if ((scalar != NULL) && (have_pre_comp)) { memset(g_secret, 0, sizeof(g_secret)); /* reduce scalar to 0 <= scalar < 2^224 */ if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { /* * this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); } else { num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); } /* do the multiplication with generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, g_secret, mixed, (const felem(*)[17][3])pre_comp, g_pre_comp); } else { /* do the multiplication without generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); } /* reduce the output to its unique minimal representation */ felem_contract(x_in, x_out); felem_contract(y_in, y_out); felem_contract(z_in, z_out); if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) { ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); goto err; } ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); err: BN_CTX_end(ctx); EC_POINT_free(generator); OPENSSL_free(secrets); OPENSSL_free(pre_comp); OPENSSL_free(tmp_felems); return ret; } int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { int ret = 0; NISTP224_PRE_COMP *pre = NULL; int i, j; BN_CTX *new_ctx = NULL; BIGNUM *x, *y; EC_POINT *generator = NULL; felem tmp_felems[32]; /* throw away old precomputation */ EC_pre_comp_free(group); if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; /* get the generator */ if (group->generator == NULL) goto err; generator = EC_POINT_new(group); if (generator == NULL) goto err; BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) goto err; if ((pre = nistp224_pre_comp_new()) == NULL) goto err; /* * if the generator is the standard one, use built-in precomputation */ if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); goto done; } if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z))) goto err; /* * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G, * 2^140*G, 2^196*G for the second one */ for (i = 1; i <= 8; i <<= 1) { point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); for (j = 0; j < 27; ++j) { point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); } if (i == 8) break; point_double(pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); for (j = 0; j < 27; ++j) { point_double(pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); } } for (i = 0; i < 2; i++) { /* g_pre_comp[i][0] is the point at infinity */ memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); /* the remaining multiples */ /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]); /* * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */ point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); for (j = 1; j < 8; ++j) { /* odd multiples: add G resp. 2^28*G */ point_add(pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], pre->g_pre_comp[i][2 * j + 1][2], pre->g_pre_comp[i][2 * j][0], pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]); } } make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); done: SETPRECOMP(group, nistp224, pre); pre = NULL; ret = 1; err: BN_CTX_end(ctx); EC_POINT_free(generator); BN_CTX_free(new_ctx); EC_nistp224_pre_comp_free(pre); return ret; } int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) { return HAVEPRECOMP(group, nistp224); } #endif openssl-1.1.1f/crypto/ec/ecp_nistp256.c000066400000000000000000002234321364063235100176500ustar00rootroot00000000000000/* * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Copyright 2011 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication * * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 * work which got its smarts from Daniel J. Bernstein's work on the same. */ #include #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include "ec_local.h" # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 /* even with gcc, the typedef won't work for 32-bit platforms */ typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit * platforms */ typedef __int128_t int128_t; # else # error "Your compiler doesn't appear to support 128-bit integer types" # endif typedef uint8_t u8; typedef uint32_t u32; typedef uint64_t u64; /* * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We * can serialise an element of this field into 32 bytes. We call this an * felem_bytearray. */ typedef u8 felem_bytearray[32]; /* * These are the parameters of P256, taken from FIPS 186-3, page 86. These * values are big-endian. */ static const felem_bytearray nistp256_curve_params[5] = { {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */ 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} }; /*- * The representation of field elements. * ------------------------------------ * * We represent field elements with either four 128-bit values, eight 128-bit * values, or four 64-bit values. The field element represented is: * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) * or: * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p) * * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits * apart, but are 128-bits wide, the most significant bits of each limb overlap * with the least significant bits of the next. * * A field element with four limbs is an 'felem'. One with eight limbs is a * 'longfelem' * * A field element with four, 64-bit values is called a 'smallfelem'. Small * values are used as intermediate values before multiplication. */ # define NLIMBS 4 typedef uint128_t limb; typedef limb felem[NLIMBS]; typedef limb longfelem[NLIMBS * 2]; typedef u64 smallfelem[NLIMBS]; /* This is the value of the prime as four 64-bit words, little-endian. */ static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul }; static const u64 bottom63bits = 0x7ffffffffffffffful; /* * bin32_to_felem takes a little-endian byte array and converts it into felem * form. This assumes that the CPU is little-endian. */ static void bin32_to_felem(felem out, const u8 in[32]) { out[0] = *((u64 *)&in[0]); out[1] = *((u64 *)&in[8]); out[2] = *((u64 *)&in[16]); out[3] = *((u64 *)&in[24]); } /* * smallfelem_to_bin32 takes a smallfelem and serialises into a little * endian, 32 byte array. This assumes that the CPU is little-endian. */ static void smallfelem_to_bin32(u8 out[32], const smallfelem in) { *((u64 *)&out[0]) = in[0]; *((u64 *)&out[8]) = in[1]; *((u64 *)&out[16]) = in[2]; *((u64 *)&out[24]) = in[3]; } /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ static int BN_to_felem(felem out, const BIGNUM *bn) { felem_bytearray b_out; int num_bytes; if (BN_is_negative(bn)) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); if (num_bytes < 0) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } bin32_to_felem(out, b_out); return 1; } /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) { felem_bytearray b_out; smallfelem_to_bin32(b_out, in); return BN_lebin2bn(b_out, sizeof(b_out), out); } /*- * Field operations * ---------------- */ static void smallfelem_one(smallfelem out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; } static void smallfelem_assign(smallfelem out, const smallfelem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } static void felem_assign(felem out, const felem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } /* felem_sum sets out = out + in. */ static void felem_sum(felem out, const felem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; } /* felem_small_sum sets out = out + in. */ static void felem_small_sum(felem out, const smallfelem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; } /* felem_scalar sets out = out * scalar */ static void felem_scalar(felem out, const u64 scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; } /* longfelem_scalar sets out = out * scalar */ static void longfelem_scalar(longfelem out, const u64 scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; out[7] *= scalar; } # define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) # define two105 (((limb)1) << 105) # define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) /* zero105 is 0 mod p */ static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 }; /*- * smallfelem_neg sets |out| to |-small| * On exit: * out[i] < out[i] + 2^105 */ static void smallfelem_neg(felem out, const smallfelem small) { /* In order to prevent underflow, we subtract from 0 mod p. */ out[0] = zero105[0] - small[0]; out[1] = zero105[1] - small[1]; out[2] = zero105[2] - small[2]; out[3] = zero105[3] - small[3]; } /*- * felem_diff subtracts |in| from |out| * On entry: * in[i] < 2^104 * On exit: * out[i] < out[i] + 2^105 */ static void felem_diff(felem out, const felem in) { /* * In order to prevent underflow, we add 0 mod p before subtracting. */ out[0] += zero105[0]; out[1] += zero105[1]; out[2] += zero105[2]; out[3] += zero105[3]; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } # define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) # define two107 (((limb)1) << 107) # define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) /* zero107 is 0 mod p */ static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 }; /*- * An alternative felem_diff for larger inputs |in| * felem_diff_zero107 subtracts |in| from |out| * On entry: * in[i] < 2^106 * On exit: * out[i] < out[i] + 2^107 */ static void felem_diff_zero107(felem out, const felem in) { /* * In order to prevent underflow, we add 0 mod p before subtracting. */ out[0] += zero107[0]; out[1] += zero107[1]; out[2] += zero107[2]; out[3] += zero107[3]; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } /*- * longfelem_diff subtracts |in| from |out| * On entry: * in[i] < 7*2^67 * On exit: * out[i] < out[i] + 2^70 + 2^40 */ static void longfelem_diff(longfelem out, const longfelem in) { static const limb two70m8p6 = (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40); static const limb two70 = (((limb) 1) << 70); static const limb two70m40m38p6 = (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) + (((limb) 1) << 6); static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6); /* add 0 mod p to avoid underflow */ out[0] += two70m8p6; out[1] += two70p40; out[2] += two70; out[3] += two70m40m38p6; out[4] += two70m6; out[5] += two70m6; out[6] += two70m6; out[7] += two70m6; /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; out[4] -= in[4]; out[5] -= in[5]; out[6] -= in[6]; out[7] -= in[7]; } # define two64m0 (((limb)1) << 64) - 1 # define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 # define two64m46 (((limb)1) << 64) - (((limb)1) << 46) # define two64m32 (((limb)1) << 64) - (((limb)1) << 32) /* zero110 is 0 mod p */ static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 }; /*- * felem_shrink converts an felem into a smallfelem. The result isn't quite * minimal as the value may be greater than p. * * On entry: * in[i] < 2^109 * On exit: * out[i] < 2^64 */ static void felem_shrink(smallfelem out, const felem in) { felem tmp; u64 a, b, mask; u64 high, low; static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ /* Carry 2->3 */ tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64)); /* tmp[3] < 2^110 */ tmp[2] = zero110[2] + (u64)in[2]; tmp[0] = zero110[0] + in[0]; tmp[1] = zero110[1] + in[1]; /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ /* * We perform two partial reductions where we eliminate the high-word of * tmp[3]. We don't update the other words till the end. */ a = tmp[3] >> 64; /* a < 2^46 */ tmp[3] = (u64)tmp[3]; tmp[3] -= a; tmp[3] += ((limb) a) << 32; /* tmp[3] < 2^79 */ b = a; a = tmp[3] >> 64; /* a < 2^15 */ b += a; /* b < 2^46 + 2^15 < 2^47 */ tmp[3] = (u64)tmp[3]; tmp[3] -= a; tmp[3] += ((limb) a) << 32; /* tmp[3] < 2^64 + 2^47 */ /* * This adjusts the other two words to complete the two partial * reductions. */ tmp[0] += b; tmp[1] -= (((limb) b) << 32); /* * In order to make space in tmp[3] for the carry from 2 -> 3, we * conditionally subtract kPrime if tmp[3] is large enough. */ high = (u64)(tmp[3] >> 64); /* As tmp[3] < 2^65, high is either 1 or 0 */ high = 0 - high; /*- * high is: * all ones if the high word of tmp[3] is 1 * all zeros if the high word of tmp[3] if 0 */ low = (u64)tmp[3]; mask = 0 - (low >> 63); /*- * mask is: * all ones if the MSB of low is 1 * all zeros if the MSB of low if 0 */ low &= bottom63bits; low -= kPrime3Test; /* if low was greater than kPrime3Test then the MSB is zero */ low = ~low; low = 0 - (low >> 63); /*- * low is: * all ones if low was > kPrime3Test * all zeros if low was <= kPrime3Test */ mask = (mask & low) | high; tmp[0] -= mask & kPrime[0]; tmp[1] -= mask & kPrime[1]; /* kPrime[2] is zero, so omitted */ tmp[3] -= mask & kPrime[3]; /* tmp[3] < 2**64 - 2**32 + 1 */ tmp[1] += ((u64)(tmp[0] >> 64)); tmp[0] = (u64)tmp[0]; tmp[2] += ((u64)(tmp[1] >> 64)); tmp[1] = (u64)tmp[1]; tmp[3] += ((u64)(tmp[2] >> 64)); tmp[2] = (u64)tmp[2]; /* tmp[i] < 2^64 */ out[0] = tmp[0]; out[1] = tmp[1]; out[2] = tmp[2]; out[3] = tmp[3]; } /* smallfelem_expand converts a smallfelem to an felem */ static void smallfelem_expand(felem out, const smallfelem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } /*- * smallfelem_square sets |out| = |small|^2 * On entry: * small[i] < 2^64 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void smallfelem_square(longfelem out, const smallfelem small) { limb a; u64 high, low; a = ((uint128_t) small[0]) * small[0]; low = a; high = a >> 64; out[0] = low; out[1] = high; a = ((uint128_t) small[0]) * small[1]; low = a; high = a >> 64; out[1] += low; out[1] += low; out[2] = high; a = ((uint128_t) small[0]) * small[2]; low = a; high = a >> 64; out[2] += low; out[2] *= 2; out[3] = high; a = ((uint128_t) small[0]) * small[3]; low = a; high = a >> 64; out[3] += low; out[4] = high; a = ((uint128_t) small[1]) * small[2]; low = a; high = a >> 64; out[3] += low; out[3] *= 2; out[4] += high; a = ((uint128_t) small[1]) * small[1]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t) small[1]) * small[3]; low = a; high = a >> 64; out[4] += low; out[4] *= 2; out[5] = high; a = ((uint128_t) small[2]) * small[3]; low = a; high = a >> 64; out[5] += low; out[5] *= 2; out[6] = high; out[6] += high; a = ((uint128_t) small[2]) * small[2]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t) small[3]) * small[3]; low = a; high = a >> 64; out[6] += low; out[7] = high; } /*- * felem_square sets |out| = |in|^2 * On entry: * in[i] < 2^109 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void felem_square(longfelem out, const felem in) { u64 small[4]; felem_shrink(small, in); smallfelem_square(out, small); } /*- * smallfelem_mul sets |out| = |small1| * |small2| * On entry: * small1[i] < 2^64 * small2[i] < 2^64 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) { limb a; u64 high, low; a = ((uint128_t) small1[0]) * small2[0]; low = a; high = a >> 64; out[0] = low; out[1] = high; a = ((uint128_t) small1[0]) * small2[1]; low = a; high = a >> 64; out[1] += low; out[2] = high; a = ((uint128_t) small1[1]) * small2[0]; low = a; high = a >> 64; out[1] += low; out[2] += high; a = ((uint128_t) small1[0]) * small2[2]; low = a; high = a >> 64; out[2] += low; out[3] = high; a = ((uint128_t) small1[1]) * small2[1]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t) small1[2]) * small2[0]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t) small1[0]) * small2[3]; low = a; high = a >> 64; out[3] += low; out[4] = high; a = ((uint128_t) small1[1]) * small2[2]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t) small1[2]) * small2[1]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t) small1[3]) * small2[0]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t) small1[1]) * small2[3]; low = a; high = a >> 64; out[4] += low; out[5] = high; a = ((uint128_t) small1[2]) * small2[2]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t) small1[3]) * small2[1]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t) small1[2]) * small2[3]; low = a; high = a >> 64; out[5] += low; out[6] = high; a = ((uint128_t) small1[3]) * small2[2]; low = a; high = a >> 64; out[5] += low; out[6] += high; a = ((uint128_t) small1[3]) * small2[3]; low = a; high = a >> 64; out[6] += low; out[7] = high; } /*- * felem_mul sets |out| = |in1| * |in2| * On entry: * in1[i] < 2^109 * in2[i] < 2^109 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void felem_mul(longfelem out, const felem in1, const felem in2) { smallfelem small1, small2; felem_shrink(small1, in1); felem_shrink(small2, in2); smallfelem_mul(out, small1, small2); } /*- * felem_small_mul sets |out| = |small1| * |in2| * On entry: * small1[i] < 2^64 * in2[i] < 2^109 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2) { smallfelem small2; felem_shrink(small2, in2); smallfelem_mul(out, small1, small2); } # define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) # define two100 (((limb)1) << 100) # define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) /* zero100 is 0 mod p */ static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 }; /*- * Internal function for the different flavours of felem_reduce. * felem_reduce_ reduces the higher coefficients in[4]-in[7]. * On entry: * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] * out[1] >= in[7] + 2^32*in[4] * out[2] >= in[5] + 2^32*in[5] * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] * On exit: * out[0] <= out[0] + in[4] + 2^32*in[5] * out[1] <= out[1] + in[5] + 2^33*in[6] * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] * out[3] <= out[3] + 2^32*in[4] + 3*in[7] */ static void felem_reduce_(felem out, const longfelem in) { int128_t c; /* combine common terms from below */ c = in[4] + (in[5] << 32); out[0] += c; out[3] -= c; c = in[5] - in[7]; out[1] += c; out[2] -= c; /* the remaining terms */ /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ out[1] -= (in[4] << 32); out[3] += (in[4] << 32); /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ out[2] -= (in[5] << 32); /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ out[0] -= in[6]; out[0] -= (in[6] << 32); out[1] += (in[6] << 33); out[2] += (in[6] * 2); out[3] -= (in[6] << 32); /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ out[0] -= in[7]; out[0] -= (in[7] << 32); out[2] += (in[7] << 33); out[3] += (in[7] * 3); } /*- * felem_reduce converts a longfelem into an felem. * To be called directly after felem_square or felem_mul. * On entry: * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 * On exit: * out[i] < 2^101 */ static void felem_reduce(felem out, const longfelem in) { out[0] = zero100[0] + in[0]; out[1] = zero100[1] + in[1]; out[2] = zero100[2] + in[2]; out[3] = zero100[3] + in[3]; felem_reduce_(out, in); /*- * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 * out[1] > 2^100 - 2^64 - 7*2^96 > 0 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 * * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 */ } /*- * felem_reduce_zero105 converts a larger longfelem into an felem. * On entry: * in[0] < 2^71 * On exit: * out[i] < 2^106 */ static void felem_reduce_zero105(felem out, const longfelem in) { out[0] = zero105[0] + in[0]; out[1] = zero105[1] + in[1]; out[2] = zero105[2] + in[2]; out[3] = zero105[3] + in[3]; felem_reduce_(out, in); /*- * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 * out[1] > 2^105 - 2^71 - 2^103 > 0 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 * * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 */ } /* * subtract_u64 sets *result = *result - v and *carry to one if the * subtraction underflowed. */ static void subtract_u64(u64 *result, u64 *carry, u64 v) { uint128_t r = *result; r -= v; *carry = (r >> 64) & 1; *result = (u64)r; } /* * felem_contract converts |in| to its unique, minimal representation. On * entry: in[i] < 2^109 */ static void felem_contract(smallfelem out, const felem in) { unsigned i; u64 all_equal_so_far = 0, result = 0, carry; felem_shrink(out, in); /* small is minimal except that the value might be > p */ all_equal_so_far--; /* * We are doing a constant time test if out >= kPrime. We need to compare * each u64, from most-significant to least significant. For each one, if * all words so far have been equal (m is all ones) then a non-equal * result is the answer. Otherwise we continue. */ for (i = 3; i < 4; i--) { u64 equal; uint128_t a = ((uint128_t) kPrime[i]) - out[i]; /* * if out[i] > kPrime[i] then a will underflow and the high 64-bits * will all be set. */ result |= all_equal_so_far & ((u64)(a >> 64)); /* * if kPrime[i] == out[i] then |equal| will be all zeros and the * decrement will make it all ones. */ equal = kPrime[i] ^ out[i]; equal--; equal &= equal << 32; equal &= equal << 16; equal &= equal << 8; equal &= equal << 4; equal &= equal << 2; equal &= equal << 1; equal = 0 - (equal >> 63); all_equal_so_far &= equal; } /* * if all_equal_so_far is still all ones then the two values are equal * and so out >= kPrime is true. */ result |= all_equal_so_far; /* if out >= kPrime then we subtract kPrime. */ subtract_u64(&out[0], &carry, result & kPrime[0]); subtract_u64(&out[1], &carry, carry); subtract_u64(&out[2], &carry, carry); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[1], &carry, result & kPrime[1]); subtract_u64(&out[2], &carry, carry); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[2], &carry, result & kPrime[2]); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[3], &carry, result & kPrime[3]); } static void smallfelem_square_contract(smallfelem out, const smallfelem in) { longfelem longtmp; felem tmp; smallfelem_square(longtmp, in); felem_reduce(tmp, longtmp); felem_contract(out, tmp); } static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2) { longfelem longtmp; felem tmp; smallfelem_mul(longtmp, in1, in2); felem_reduce(tmp, longtmp); felem_contract(out, tmp); } /*- * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 * otherwise. * On entry: * small[i] < 2^64 */ static limb smallfelem_is_zero(const smallfelem small) { limb result; u64 is_p; u64 is_zero = small[0] | small[1] | small[2] | small[3]; is_zero--; is_zero &= is_zero << 32; is_zero &= is_zero << 16; is_zero &= is_zero << 8; is_zero &= is_zero << 4; is_zero &= is_zero << 2; is_zero &= is_zero << 1; is_zero = 0 - (is_zero >> 63); is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]); is_p--; is_p &= is_p << 32; is_p &= is_p << 16; is_p &= is_p << 8; is_p &= is_p << 4; is_p &= is_p << 2; is_p &= is_p << 1; is_p = 0 - (is_p >> 63); is_zero |= is_p; result = is_zero; result |= ((limb) is_zero) << 64; return result; } static int smallfelem_is_zero_int(const void *small) { return (int)(smallfelem_is_zero(small) & ((limb) 1)); } /*- * felem_inv calculates |out| = |in|^{-1} * * Based on Fermat's Little Theorem: * a^p = a (mod p) * a^{p-1} = 1 (mod p) * a^{p-2} = a^{-1} (mod p) */ static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2; /* each e_I will hold |in|^{2^I - 1} */ felem e2, e4, e8, e16, e32, e64; longfelem tmp; unsigned i; felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ felem_assign(e2, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */ felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */ felem_assign(e4, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */ felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */ felem_assign(e8, ftmp); for (i = 0; i < 8; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^16 - 2^8 */ felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */ felem_assign(e16, ftmp); for (i = 0; i < 16; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^32 - 2^16 */ felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */ felem_assign(e32, ftmp); for (i = 0; i < 32; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^64 - 2^32 */ felem_assign(e64, ftmp); felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */ for (i = 0; i < 192; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^256 - 2^224 + 2^192 */ felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ for (i = 0; i < 16; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } /* 2^80 - 2^16 */ felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ for (i = 0; i < 8; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } /* 2^88 - 2^8 */ felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ for (i = 0; i < 4; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } /* 2^92 - 2^4 */ felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ } static void smallfelem_inv_contract(smallfelem out, const smallfelem in) { felem tmp; smallfelem_expand(tmp, in); felem_inv(tmp, tmp); felem_contract(out, tmp); } /*- * Group operations * ---------------- * * Building on top of the field operations we have the operations on the * elliptic curve group itself. Points on the curve are represented in Jacobian * coordinates */ /*- * point_double calculates 2*(x_in, y_in, z_in) * * The method is taken from: * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b * * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. * while x_out == y_in is not (maybe this works, but it's not tested). */ static void point_double(felem x_out, felem y_out, felem z_out, const felem x_in, const felem y_in, const felem z_in) { longfelem tmp, tmp2; felem delta, gamma, beta, alpha, ftmp, ftmp2; smallfelem small1, small2; felem_assign(ftmp, x_in); /* ftmp[i] < 2^106 */ felem_assign(ftmp2, x_in); /* ftmp2[i] < 2^106 */ /* delta = z^2 */ felem_square(tmp, z_in); felem_reduce(delta, tmp); /* delta[i] < 2^101 */ /* gamma = y^2 */ felem_square(tmp, y_in); felem_reduce(gamma, tmp); /* gamma[i] < 2^101 */ felem_shrink(small1, gamma); /* beta = x*gamma */ felem_small_mul(tmp, small1, x_in); felem_reduce(beta, tmp); /* beta[i] < 2^101 */ /* alpha = 3*(x-delta)*(x+delta) */ felem_diff(ftmp, delta); /* ftmp[i] < 2^105 + 2^106 < 2^107 */ felem_sum(ftmp2, delta); /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ felem_scalar(ftmp2, 3); /* ftmp2[i] < 3 * 2^107 < 2^109 */ felem_mul(tmp, ftmp, ftmp2); felem_reduce(alpha, tmp); /* alpha[i] < 2^101 */ felem_shrink(small2, alpha); /* x' = alpha^2 - 8*beta */ smallfelem_square(tmp, small2); felem_reduce(x_out, tmp); felem_assign(ftmp, beta); felem_scalar(ftmp, 8); /* ftmp[i] < 8 * 2^101 = 2^104 */ felem_diff(x_out, ftmp); /* x_out[i] < 2^105 + 2^101 < 2^106 */ /* z' = (y + z)^2 - gamma - delta */ felem_sum(delta, gamma); /* delta[i] < 2^101 + 2^101 = 2^102 */ felem_assign(ftmp, y_in); felem_sum(ftmp, z_in); /* ftmp[i] < 2^106 + 2^106 = 2^107 */ felem_square(tmp, ftmp); felem_reduce(z_out, tmp); felem_diff(z_out, delta); /* z_out[i] < 2^105 + 2^101 < 2^106 */ /* y' = alpha*(4*beta - x') - 8*gamma^2 */ felem_scalar(beta, 4); /* beta[i] < 4 * 2^101 = 2^103 */ felem_diff_zero107(beta, x_out); /* beta[i] < 2^107 + 2^103 < 2^108 */ felem_small_mul(tmp, small2, beta); /* tmp[i] < 7 * 2^64 < 2^67 */ smallfelem_square(tmp2, small1); /* tmp2[i] < 7 * 2^64 */ longfelem_scalar(tmp2, 8); /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ longfelem_diff(tmp, tmp2); /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ felem_reduce_zero105(y_out, tmp); /* y_out[i] < 2^106 */ } /* * point_double_small is the same as point_double, except that it operates on * smallfelems */ static void point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, const smallfelem x_in, const smallfelem y_in, const smallfelem z_in) { felem felem_x_out, felem_y_out, felem_z_out; felem felem_x_in, felem_y_in, felem_z_in; smallfelem_expand(felem_x_in, x_in); smallfelem_expand(felem_y_in, y_in); smallfelem_expand(felem_z_in, z_in); point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in, felem_z_in); felem_shrink(x_out, felem_x_out); felem_shrink(y_out, felem_y_out); felem_shrink(z_out, felem_z_out); } /* copy_conditional copies in to out iff mask is all ones. */ static void copy_conditional(felem out, const felem in, limb mask) { unsigned i; for (i = 0; i < NLIMBS; ++i) { const limb tmp = mask & (in[i] ^ out[i]); out[i] ^= tmp; } } /* copy_small_conditional copies in to out iff mask is all ones. */ static void copy_small_conditional(felem out, const smallfelem in, limb mask) { unsigned i; const u64 mask64 = mask; for (i = 0; i < NLIMBS; ++i) { out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); } } /*- * point_add calculates (x1, y1, z1) + (x2, y2, z2) * * The method is taken from: * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). * * This function includes a branch for checking whether the two input points * are equal, (while not equal to the point at infinity). This case never * happens during single point multiplication, so there is no timing leak for * ECDH or ECDSA signing. */ static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) { felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; longfelem tmp, tmp2; smallfelem small1, small2, small3, small4, small5; limb x_equal, y_equal, z1_is_zero, z2_is_zero; limb points_equal; felem_shrink(small3, z1); z1_is_zero = smallfelem_is_zero(small3); z2_is_zero = smallfelem_is_zero(z2); /* ftmp = z1z1 = z1**2 */ smallfelem_square(tmp, small3); felem_reduce(ftmp, tmp); /* ftmp[i] < 2^101 */ felem_shrink(small1, ftmp); if (!mixed) { /* ftmp2 = z2z2 = z2**2 */ smallfelem_square(tmp, z2); felem_reduce(ftmp2, tmp); /* ftmp2[i] < 2^101 */ felem_shrink(small2, ftmp2); felem_shrink(small5, x1); /* u1 = ftmp3 = x1*z2z2 */ smallfelem_mul(tmp, small5, small2); felem_reduce(ftmp3, tmp); /* ftmp3[i] < 2^101 */ /* ftmp5 = z1 + z2 */ felem_assign(ftmp5, z1); felem_small_sum(ftmp5, z2); /* ftmp5[i] < 2^107 */ /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ felem_square(tmp, ftmp5); felem_reduce(ftmp5, tmp); /* ftmp2 = z2z2 + z1z1 */ felem_sum(ftmp2, ftmp); /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ felem_diff(ftmp5, ftmp2); /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ /* ftmp2 = z2 * z2z2 */ smallfelem_mul(tmp, small2, z2); felem_reduce(ftmp2, tmp); /* s1 = ftmp2 = y1 * z2**3 */ felem_mul(tmp, y1, ftmp2); felem_reduce(ftmp6, tmp); /* ftmp6[i] < 2^101 */ } else { /* * We'll assume z2 = 1 (special case z2 = 0 is handled later) */ /* u1 = ftmp3 = x1*z2z2 */ felem_assign(ftmp3, x1); /* ftmp3[i] < 2^106 */ /* ftmp5 = 2z1z2 */ felem_assign(ftmp5, z1); felem_scalar(ftmp5, 2); /* ftmp5[i] < 2*2^106 = 2^107 */ /* s1 = ftmp2 = y1 * z2**3 */ felem_assign(ftmp6, y1); /* ftmp6[i] < 2^106 */ } /* u2 = x2*z1z1 */ smallfelem_mul(tmp, x2, small1); felem_reduce(ftmp4, tmp); /* h = ftmp4 = u2 - u1 */ felem_diff_zero107(ftmp4, ftmp3); /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ felem_shrink(small4, ftmp4); x_equal = smallfelem_is_zero(small4); /* z_out = ftmp5 * h */ felem_small_mul(tmp, small4, ftmp5); felem_reduce(z_out, tmp); /* z_out[i] < 2^101 */ /* ftmp = z1 * z1z1 */ smallfelem_mul(tmp, small1, small3); felem_reduce(ftmp, tmp); /* s2 = tmp = y2 * z1**3 */ felem_small_mul(tmp, y2, ftmp); felem_reduce(ftmp5, tmp); /* r = ftmp5 = (s2 - s1)*2 */ felem_diff_zero107(ftmp5, ftmp6); /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ felem_scalar(ftmp5, 2); /* ftmp5[i] < 2^109 */ felem_shrink(small1, ftmp5); y_equal = smallfelem_is_zero(small1); /* * The formulae are incorrect if the points are equal, in affine coordinates * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this * happens. * * We use bitwise operations to avoid potential side-channels introduced by * the short-circuiting behaviour of boolean operators. * * The special case of either point being the point at infinity (z1 and/or * z2 are zero), is handled separately later on in this function, so we * avoid jumping to point_double here in those special cases. */ points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); if (points_equal) { /* * This is obviously not constant-time but, as mentioned before, this * case never happens during single point multiplication, so there is no * timing leak for ECDH or ECDSA signing. */ point_double(x3, y3, z3, x1, y1, z1); return; } /* I = ftmp = (2h)**2 */ felem_assign(ftmp, ftmp4); felem_scalar(ftmp, 2); /* ftmp[i] < 2*2^108 = 2^109 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* J = ftmp2 = h * I */ felem_mul(tmp, ftmp4, ftmp); felem_reduce(ftmp2, tmp); /* V = ftmp4 = U1 * I */ felem_mul(tmp, ftmp3, ftmp); felem_reduce(ftmp4, tmp); /* x_out = r**2 - J - 2V */ smallfelem_square(tmp, small1); felem_reduce(x_out, tmp); felem_assign(ftmp3, ftmp4); felem_scalar(ftmp4, 2); felem_sum(ftmp4, ftmp2); /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ felem_diff(x_out, ftmp4); /* x_out[i] < 2^105 + 2^101 */ /* y_out = r(V-x_out) - 2 * s1 * J */ felem_diff_zero107(ftmp3, x_out); /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ felem_small_mul(tmp, small1, ftmp3); felem_mul(tmp2, ftmp6, ftmp2); longfelem_scalar(tmp2, 2); /* tmp2[i] < 2*2^67 = 2^68 */ longfelem_diff(tmp, tmp2); /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ felem_reduce_zero105(y_out, tmp); /* y_out[i] < 2^106 */ copy_small_conditional(x_out, x2, z1_is_zero); copy_conditional(x_out, x1, z2_is_zero); copy_small_conditional(y_out, y2, z1_is_zero); copy_conditional(y_out, y1, z2_is_zero); copy_small_conditional(z_out, z2, z1_is_zero); copy_conditional(z_out, z1, z2_is_zero); felem_assign(x3, x_out); felem_assign(y3, y_out); felem_assign(z3, z_out); } /* * point_add_small is the same as point_add, except that it operates on * smallfelems */ static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, smallfelem x1, smallfelem y1, smallfelem z1, smallfelem x2, smallfelem y2, smallfelem z2) { felem felem_x3, felem_y3, felem_z3; felem felem_x1, felem_y1, felem_z1; smallfelem_expand(felem_x1, x1); smallfelem_expand(felem_y1, y1); smallfelem_expand(felem_z1, z1); point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2); felem_shrink(x3, felem_x3); felem_shrink(y3, felem_y3); felem_shrink(z3, felem_z3); } /*- * Base point pre computation * -------------------------- * * Two different sorts of precomputed tables are used in the following code. * Each contain various points on the curve, where each point is three field * elements (x, y, z). * * For the base point table, z is usually 1 (0 for the point at infinity). * This table has 2 * 16 elements, starting with the following: * index | bits | point * ------+---------+------------------------------ * 0 | 0 0 0 0 | 0G * 1 | 0 0 0 1 | 1G * 2 | 0 0 1 0 | 2^64G * 3 | 0 0 1 1 | (2^64 + 1)G * 4 | 0 1 0 0 | 2^128G * 5 | 0 1 0 1 | (2^128 + 1)G * 6 | 0 1 1 0 | (2^128 + 2^64)G * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G * 8 | 1 0 0 0 | 2^192G * 9 | 1 0 0 1 | (2^192 + 1)G * 10 | 1 0 1 0 | (2^192 + 2^64)G * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G * 12 | 1 1 0 0 | (2^192 + 2^128)G * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G * followed by a copy of this with each element multiplied by 2^32. * * The reason for this is so that we can clock bits into four different * locations when doing simple scalar multiplies against the base point, * and then another four locations using the second 16 elements. * * Tables for other points have table[i] = iG for i in 0 .. 16. */ /* gmul is the table of precomputed base points */ static const smallfelem gmul[2][16][3] = { {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247}, {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b}, {1, 0, 0, 0}}, {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5}, {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d}, {1, 0, 0, 0}}, {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f}, {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644}, {1, 0, 0, 0}}, {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67}, {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee}, {1, 0, 0, 0}}, {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff}, {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b}, {1, 0, 0, 0}}, {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8}, {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851}, {1, 0, 0, 0}}, {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea}, {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b}, {1, 0, 0, 0}}, {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276}, {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816}, {1, 0, 0, 0}}, {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad}, {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663}, {1, 0, 0, 0}}, {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d}, {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321}, {1, 0, 0, 0}}, {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287}, {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6}, {1, 0, 0, 0}}, {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466}, {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20}, {1, 0, 0, 0}}, {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9}, {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61}, {1, 0, 0, 0}}, {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a}, {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc}, {1, 0, 0, 0}}, {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c}, {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab}, {1, 0, 0, 0}}}, {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89}, {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624}, {1, 0, 0, 0}}, {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6}, {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1}, {1, 0, 0, 0}}, {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a}, {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593}, {1, 0, 0, 0}}, {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617}, {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7}, {1, 0, 0, 0}}, {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276}, {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a}, {1, 0, 0, 0}}, {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908}, {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e}, {1, 0, 0, 0}}, {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7}, {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec}, {1, 0, 0, 0}}, {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee}, {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6}, {1, 0, 0, 0}}, {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109}, {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5}, {1, 0, 0, 0}}, {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba}, {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44}, {1, 0, 0, 0}}, {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b}, {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc}, {1, 0, 0, 0}}, {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107}, {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387}, {1, 0, 0, 0}}, {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503}, {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be}, {1, 0, 0, 0}}, {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9}, {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a}, {1, 0, 0, 0}}, {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6}, {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81}, {1, 0, 0, 0}}} }; /* * select_point selects the |idx|th point from a precomputation table and * copies it to out. */ static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3]) { unsigned i, j; u64 *outlimbs = &out[0][0]; memset(out, 0, sizeof(*out) * 3); for (i = 0; i < size; i++) { const u64 *inlimbs = (u64 *)&pre_comp[i][0][0]; u64 mask = i ^ idx; mask |= mask >> 4; mask |= mask >> 2; mask |= mask >> 1; mask &= 1; mask--; for (j = 0; j < NLIMBS * 3; j++) outlimbs[j] |= inlimbs[j] & mask; } } /* get_bit returns the |i|th bit in |in| */ static char get_bit(const felem_bytearray in, int i) { if ((i < 0) || (i >= 256)) return 0; return (in[i >> 3] >> (i & 7)) & 1; } /* * Interleaved point multiplication using precomputed point multiples: The * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the * generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ static void batch_mul(felem x_out, felem y_out, felem z_out, const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3]) { int i, skip; unsigned num, gen_mul = (g_scalar != NULL); felem nq[3], ftmp; smallfelem tmp[3]; u64 bits; u8 sign, digit; /* set nq to the point at infinity */ memset(nq, 0, sizeof(nq)); /* * Loop over all scalars msb-to-lsb, interleaving additions of multiples * of the generator (two in each of the last 32 rounds) and additions of * other points multiples (every 5th round). */ skip = 1; /* save two point operations in the first * round */ for (i = (num_points ? 255 : 31); i >= 0; --i) { /* double */ if (!skip) point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); /* add multiples of the generator */ if (gen_mul && (i <= 31)) { /* first, look 32 bits upwards */ bits = get_bit(g_scalar, i + 224) << 3; bits |= get_bit(g_scalar, i + 160) << 2; bits |= get_bit(g_scalar, i + 96) << 1; bits |= get_bit(g_scalar, i + 32); /* select the point to add, in constant time */ select_point(bits, 16, g_pre_comp[1], tmp); if (!skip) { /* Arg 1 below is for "mixed" */ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); } else { smallfelem_expand(nq[0], tmp[0]); smallfelem_expand(nq[1], tmp[1]); smallfelem_expand(nq[2], tmp[2]); skip = 0; } /* second, look at the current position */ bits = get_bit(g_scalar, i + 192) << 3; bits |= get_bit(g_scalar, i + 128) << 2; bits |= get_bit(g_scalar, i + 64) << 1; bits |= get_bit(g_scalar, i); /* select the point to add, in constant time */ select_point(bits, 16, g_pre_comp[0], tmp); /* Arg 1 below is for "mixed" */ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); } /* do other additions every 5 doublings */ if (num_points && (i % 5 == 0)) { /* loop over all scalars */ for (num = 0; num < num_points; ++num) { bits = get_bit(scalars[num], i + 4) << 5; bits |= get_bit(scalars[num], i + 3) << 4; bits |= get_bit(scalars[num], i + 2) << 3; bits |= get_bit(scalars[num], i + 1) << 2; bits |= get_bit(scalars[num], i) << 1; bits |= get_bit(scalars[num], i - 1); ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); /* * select the point to add or subtract, in constant time */ select_point(digit, 17, pre_comp[num], tmp); smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative * point */ copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1)); felem_contract(tmp[1], ftmp); if (!skip) { point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0], tmp[1], tmp[2]); } else { smallfelem_expand(nq[0], tmp[0]); smallfelem_expand(nq[1], tmp[1]); smallfelem_expand(nq[2], tmp[2]); skip = 0; } } } } felem_assign(x_out, nq[0]); felem_assign(y_out, nq[1]); felem_assign(z_out, nq[2]); } /* Precomputation for the group generator. */ struct nistp256_pre_comp_st { smallfelem g_pre_comp[2][16][3]; CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; }; const EC_METHOD *EC_GFp_nistp256_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_prime_field, ec_GFp_nistp256_group_init, ec_GFp_simple_group_finish, ec_GFp_simple_group_clear_finish, ec_GFp_nist_group_copy, ec_GFp_nistp256_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, ec_GFp_simple_point_clear_finish, ec_GFp_simple_point_copy, ec_GFp_simple_point_set_to_infinity, ec_GFp_simple_set_Jprojective_coordinates_GFp, ec_GFp_simple_get_Jprojective_coordinates_GFp, ec_GFp_simple_point_set_affine_coordinates, ec_GFp_nistp256_point_get_affine_coordinates, 0 /* point_set_compressed_coordinates */ , 0 /* point2oct */ , 0 /* oct2point */ , ec_GFp_simple_add, ec_GFp_simple_dbl, ec_GFp_simple_invert, ec_GFp_simple_is_at_infinity, ec_GFp_simple_is_on_curve, ec_GFp_simple_cmp, ec_GFp_simple_make_affine, ec_GFp_simple_points_make_affine, ec_GFp_nistp256_points_mul, ec_GFp_nistp256_precompute_mult, ec_GFp_nistp256_have_precompute_mult, ec_GFp_nist_field_mul, ec_GFp_nist_field_sqr, 0 /* field_div */ , ec_GFp_simple_field_inv, 0 /* field_encode */ , 0 /* field_decode */ , 0, /* field_set_to_one */ ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, 0, /* field_inverse_mod_ord */ 0, /* blind_coordinates */ 0, /* ladder_pre */ 0, /* ladder_step */ 0 /* ladder_post */ }; return &ret; } /******************************************************************************/ /* * FUNCTIONS TO MANAGE PRECOMPUTATION */ static NISTP256_PRE_COMP *nistp256_pre_comp_new(void) { NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); return ret; } ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p) { int i; if (p != NULL) CRYPTO_UP_REF(&p->references, &i, p->lock); return p; } void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre) { int i; if (pre == NULL) return; CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); REF_PRINT_COUNT("EC_nistp256", x); if (i > 0) return; REF_ASSERT_ISNT(i < 0); CRYPTO_THREAD_lock_free(pre->lock); OPENSSL_free(pre); } /******************************************************************************/ /* * OPENSSL EC_METHOD FUNCTIONS */ int ec_GFp_nistp256_group_init(EC_GROUP *group) { int ret; ret = ec_GFp_simple_group_init(group); group->a_is_minus3 = 1; return ret; } int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *curve_p, *curve_a, *curve_b; if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); curve_p = BN_CTX_get(ctx); curve_a = BN_CTX_get(ctx); curve_b = BN_CTX_get(ctx); if (curve_b == NULL) goto err; BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, EC_R_WRONG_CURVE_PARAMETERS); goto err; } group->field_mod_func = BN_nist_mod_256; ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = * (X/Z^2, Y/Z^3) */ int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { felem z1, z2, x_in, y_in; smallfelem x_out, y_out; longfelem tmp; if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z))) return 0; felem_inv(z2, z1); felem_square(tmp, z2); felem_reduce(z1, tmp); felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); felem_contract(x_out, x_in); if (x != NULL) { if (!smallfelem_to_BN(x, x_out)) { ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); felem_contract(y_out, y_in); if (y != NULL) { if (!smallfelem_to_BN(y, y_out)) { ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } return 1; } /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */ static void make_points_affine(size_t num, smallfelem points[][3], smallfelem tmp_smallfelems[]) { /* * Runs in constant time, unless an input is the point at infinity (which * normally shouldn't happen). */ ec_GFp_nistp_points_make_affine_internal(num, points, sizeof(smallfelem), tmp_smallfelems, (void (*)(void *))smallfelem_one, smallfelem_is_zero_int, (void (*)(void *, const void *)) smallfelem_assign, (void (*)(void *, const void *)) smallfelem_square_contract, (void (*) (void *, const void *, const void *)) smallfelem_mul_contract, (void (*)(void *, const void *)) smallfelem_inv_contract, /* nothing to contract */ (void (*)(void *, const void *)) smallfelem_assign); } /* * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL * values Result is stored in r (r can equal one of the inputs). */ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int ret = 0; int j; int mixed = 0; BIGNUM *x, *y, *z, *tmp_scalar; felem_bytearray g_secret; felem_bytearray *secrets = NULL; smallfelem (*pre_comp)[17][3] = NULL; smallfelem *tmp_smallfelems = NULL; unsigned i; int num_bytes; int have_pre_comp = 0; size_t num_points = num; smallfelem x_in, y_in, z_in; felem x_out, y_out, z_out; NISTP256_PRE_COMP *pre = NULL; const smallfelem(*g_pre_comp)[16][3] = NULL; EC_POINT *generator = NULL; const EC_POINT *p = NULL; const BIGNUM *p_scalar = NULL; BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); z = BN_CTX_get(ctx); tmp_scalar = BN_CTX_get(ctx); if (tmp_scalar == NULL) goto err; if (scalar != NULL) { pre = group->pre_comp.nistp256; if (pre) /* we have precomputation, try to use it */ g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp; else /* try to use the standard precomputation */ g_pre_comp = &gmul[0]; generator = EC_POINT_new(group); if (generator == NULL) goto err; /* get the generator from precomputation */ if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || !smallfelem_to_BN(z, g_pre_comp[0][1][2])) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); goto err; } if (!EC_POINT_set_Jprojective_coordinates_GFp(group, generator, x, y, z, ctx)) goto err; if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) /* precomputation matches generator */ have_pre_comp = 1; else /* * we don't have valid precomputation: treat the generator as a * random point */ num_points++; } if (num_points > 0) { if (num_points >= 3) { /* * unless we precompute multiples for just one or two points, * converting those into affine form is time well spent */ mixed = 1; } secrets = OPENSSL_malloc(sizeof(*secrets) * num_points); pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points); if (mixed) tmp_smallfelems = OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1)); if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL))) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); goto err; } /* * we treat NULL scalars as 0, and NULL points as points at infinity, * i.e., they contribute nothing to the linear combination */ memset(secrets, 0, sizeof(*secrets) * num_points); memset(pre_comp, 0, sizeof(*pre_comp) * num_points); for (i = 0; i < num_points; ++i) { if (i == num) { /* * we didn't have a valid precomputation, so we pick the * generator */ p = EC_GROUP_get0_generator(group); p_scalar = scalar; } else { /* the i^th point */ p = points[i]; p_scalar = scalars[i]; } if ((p_scalar != NULL) && (p != NULL)) { /* reduce scalar to 0 <= scalar < 2^256 */ if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar))) { /* * this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2lebinpad(tmp_scalar, secrets[i], sizeof(secrets[i])); } else { num_bytes = BN_bn2lebinpad(p_scalar, secrets[i], sizeof(secrets[i])); } if (num_bytes < 0) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); goto err; } /* precompute multiples */ if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z))) goto err; felem_shrink(pre_comp[i][1][0], x_out); felem_shrink(pre_comp[i][1][1], y_out); felem_shrink(pre_comp[i][1][2], z_out); for (j = 2; j <= 16; ++j) { if (j & 1) { point_add_small(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); } else { point_double_small(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); } } } } if (mixed) make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); } /* the scalar for the generator */ if ((scalar != NULL) && (have_pre_comp)) { memset(g_secret, 0, sizeof(g_secret)); /* reduce scalar to 0 <= scalar < 2^256 */ if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) { /* * this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); } else { num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); } /* do the multiplication with generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, g_secret, mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp); } else { /* do the multiplication without generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL); } /* reduce the output to its unique minimal representation */ felem_contract(x_in, x_out); felem_contract(y_in, y_out); felem_contract(z_in, z_out); if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || (!smallfelem_to_BN(z, z_in))) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); goto err; } ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); err: BN_CTX_end(ctx); EC_POINT_free(generator); OPENSSL_free(secrets); OPENSSL_free(pre_comp); OPENSSL_free(tmp_smallfelems); return ret; } int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { int ret = 0; NISTP256_PRE_COMP *pre = NULL; int i, j; BN_CTX *new_ctx = NULL; BIGNUM *x, *y; EC_POINT *generator = NULL; smallfelem tmp_smallfelems[32]; felem x_tmp, y_tmp, z_tmp; /* throw away old precomputation */ EC_pre_comp_free(group); if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; /* get the generator */ if (group->generator == NULL) goto err; generator = EC_POINT_new(group); if (generator == NULL) goto err; BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) goto err; if ((pre = nistp256_pre_comp_new()) == NULL) goto err; /* * if the generator is the standard one, use built-in precomputation */ if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); goto done; } if ((!BN_to_felem(x_tmp, group->generator->X)) || (!BN_to_felem(y_tmp, group->generator->Y)) || (!BN_to_felem(z_tmp, group->generator->Z))) goto err; felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); /* * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G, * 2^160*G, 2^224*G for the second one */ for (i = 1; i <= 8; i <<= 1) { point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); for (j = 0; j < 31; ++j) { point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); } if (i == 8) break; point_double_small(pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); for (j = 0; j < 31; ++j) { point_double_small(pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); } } for (i = 0; i < 2; i++) { /* g_pre_comp[i][0] is the point at infinity */ memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); /* the remaining multiples */ /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]); /* * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G */ point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); for (j = 1; j < 8; ++j) { /* odd multiples: add G resp. 2^32*G */ point_add_small(pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], pre->g_pre_comp[i][2 * j + 1][2], pre->g_pre_comp[i][2 * j][0], pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]); } } make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); done: SETPRECOMP(group, nistp256, pre); pre = NULL; ret = 1; err: BN_CTX_end(ctx); EC_POINT_free(generator); BN_CTX_free(new_ctx); EC_nistp256_pre_comp_free(pre); return ret; } int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group) { return HAVEPRECOMP(group, nistp256); } #endif openssl-1.1.1f/crypto/ec/ecp_nistp521.c000066400000000000000000002175671364063235100176570ustar00rootroot00000000000000/* * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Copyright 2011 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication * * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 * work which got its smarts from Daniel J. Bernstein's work on the same. */ #include #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 NON_EMPTY_TRANSLATION_UNIT #else # include # include # include "ec_local.h" # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 /* even with gcc, the typedef won't work for 32-bit platforms */ typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit * platforms */ # else # error "Your compiler doesn't appear to support 128-bit integer types" # endif typedef uint8_t u8; typedef uint64_t u64; /* * The underlying field. P521 operates over GF(2^521-1). We can serialise an * element of this field into 66 bytes where the most significant byte * contains only a single bit. We call this an felem_bytearray. */ typedef u8 felem_bytearray[66]; /* * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. * These values are big-endian. */ static const felem_bytearray nistp521_curve_params[5] = { {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, 0x3f, 0x00}, {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66}, {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50} }; /*- * The representation of field elements. * ------------------------------------ * * We represent field elements with nine values. These values are either 64 or * 128 bits and the field element represented is: * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) * Each of the nine values is called a 'limb'. Since the limbs are spaced only * 58 bits apart, but are greater than 58 bits in length, the most significant * bits of each limb overlap with the least significant bits of the next. * * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a * 'largefelem' */ # define NLIMBS 9 typedef uint64_t limb; typedef limb felem[NLIMBS]; typedef uint128_t largefelem[NLIMBS]; static const limb bottom57bits = 0x1ffffffffffffff; static const limb bottom58bits = 0x3ffffffffffffff; /* * bin66_to_felem takes a little-endian byte array and converts it into felem * form. This assumes that the CPU is little-endian. */ static void bin66_to_felem(felem out, const u8 in[66]) { out[0] = (*((limb *) & in[0])) & bottom58bits; out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits; out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits; out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits; out[4] = (*((limb *) & in[29])) & bottom58bits; out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits; out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits; out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits; out[8] = (*((limb *) & in[58])) & bottom57bits; } /* * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte * array. This assumes that the CPU is little-endian. */ static void felem_to_bin66(u8 out[66], const felem in) { memset(out, 0, 66); (*((limb *) & out[0])) = in[0]; (*((limb *) & out[7])) |= in[1] << 2; (*((limb *) & out[14])) |= in[2] << 4; (*((limb *) & out[21])) |= in[3] << 6; (*((limb *) & out[29])) = in[4]; (*((limb *) & out[36])) |= in[5] << 2; (*((limb *) & out[43])) |= in[6] << 4; (*((limb *) & out[50])) |= in[7] << 6; (*((limb *) & out[58])) = in[8]; } /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ static int BN_to_felem(felem out, const BIGNUM *bn) { felem_bytearray b_out; int num_bytes; if (BN_is_negative(bn)) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); if (num_bytes < 0) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } bin66_to_felem(out, b_out); return 1; } /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) { felem_bytearray b_out; felem_to_bin66(b_out, in); return BN_lebin2bn(b_out, sizeof(b_out), out); } /*- * Field operations * ---------------- */ static void felem_one(felem out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 0; } static void felem_assign(felem out, const felem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[4] = in[4]; out[5] = in[5]; out[6] = in[6]; out[7] = in[7]; out[8] = in[8]; } /* felem_sum64 sets out = out + in. */ static void felem_sum64(felem out, const felem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; out[4] += in[4]; out[5] += in[5]; out[6] += in[6]; out[7] += in[7]; out[8] += in[8]; } /* felem_scalar sets out = in * scalar */ static void felem_scalar(felem out, const felem in, limb scalar) { out[0] = in[0] * scalar; out[1] = in[1] * scalar; out[2] = in[2] * scalar; out[3] = in[3] * scalar; out[4] = in[4] * scalar; out[5] = in[5] * scalar; out[6] = in[6] * scalar; out[7] = in[7] * scalar; out[8] = in[8] * scalar; } /* felem_scalar64 sets out = out * scalar */ static void felem_scalar64(felem out, limb scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; out[7] *= scalar; out[8] *= scalar; } /* felem_scalar128 sets out = out * scalar */ static void felem_scalar128(largefelem out, limb scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; out[7] *= scalar; out[8] *= scalar; } /*- * felem_neg sets |out| to |-in| * On entry: * in[i] < 2^59 + 2^14 * On exit: * out[i] < 2^62 */ static void felem_neg(felem out, const felem in) { /* In order to prevent underflow, we subtract from 0 mod p. */ static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); out[0] = two62m3 - in[0]; out[1] = two62m2 - in[1]; out[2] = two62m2 - in[2]; out[3] = two62m2 - in[3]; out[4] = two62m2 - in[4]; out[5] = two62m2 - in[5]; out[6] = two62m2 - in[6]; out[7] = two62m2 - in[7]; out[8] = two62m2 - in[8]; } /*- * felem_diff64 subtracts |in| from |out| * On entry: * in[i] < 2^59 + 2^14 * On exit: * out[i] < out[i] + 2^62 */ static void felem_diff64(felem out, const felem in) { /* * In order to prevent underflow, we add 0 mod p before subtracting. */ static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); out[0] += two62m3 - in[0]; out[1] += two62m2 - in[1]; out[2] += two62m2 - in[2]; out[3] += two62m2 - in[3]; out[4] += two62m2 - in[4]; out[5] += two62m2 - in[5]; out[6] += two62m2 - in[6]; out[7] += two62m2 - in[7]; out[8] += two62m2 - in[8]; } /*- * felem_diff_128_64 subtracts |in| from |out| * On entry: * in[i] < 2^62 + 2^17 * On exit: * out[i] < out[i] + 2^63 */ static void felem_diff_128_64(largefelem out, const felem in) { /* * In order to prevent underflow, we add 64p mod p (which is equivalent * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521 * digit number with all bits set to 1. See "The representation of field * elements" comment above for a description of how limbs are used to * represent a number. 64p is represented with 8 limbs containing a number * with 58 bits set and one limb with a number with 57 bits set. */ static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6); static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5); out[0] += two63m6 - in[0]; out[1] += two63m5 - in[1]; out[2] += two63m5 - in[2]; out[3] += two63m5 - in[3]; out[4] += two63m5 - in[4]; out[5] += two63m5 - in[5]; out[6] += two63m5 - in[6]; out[7] += two63m5 - in[7]; out[8] += two63m5 - in[8]; } /*- * felem_diff_128_64 subtracts |in| from |out| * On entry: * in[i] < 2^126 * On exit: * out[i] < out[i] + 2^127 - 2^69 */ static void felem_diff128(largefelem out, const largefelem in) { /* * In order to prevent underflow, we add 0 mod p before subtracting. */ static const uint128_t two127m70 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); static const uint128_t two127m69 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); out[0] += (two127m70 - in[0]); out[1] += (two127m69 - in[1]); out[2] += (two127m69 - in[2]); out[3] += (two127m69 - in[3]); out[4] += (two127m69 - in[4]); out[5] += (two127m69 - in[5]); out[6] += (two127m69 - in[6]); out[7] += (two127m69 - in[7]); out[8] += (two127m69 - in[8]); } /*- * felem_square sets |out| = |in|^2 * On entry: * in[i] < 2^62 * On exit: * out[i] < 17 * max(in[i]) * max(in[i]) */ static void felem_square(largefelem out, const felem in) { felem inx2, inx4; felem_scalar(inx2, in, 2); felem_scalar(inx4, in, 4); /*- * We have many cases were we want to do * in[x] * in[y] + * in[y] * in[x] * This is obviously just * 2 * in[x] * in[y] * However, rather than do the doubling on the 128 bit result, we * double one of the inputs to the multiplication by reading from * |inx2| */ out[0] = ((uint128_t) in[0]) * in[0]; out[1] = ((uint128_t) in[0]) * inx2[1]; out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1]; out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2]; out[4] = ((uint128_t) in[0]) * inx2[4] + ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2]; out[5] = ((uint128_t) in[0]) * inx2[5] + ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3]; out[6] = ((uint128_t) in[0]) * inx2[6] + ((uint128_t) in[1]) * inx2[5] + ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3]; out[7] = ((uint128_t) in[0]) * inx2[7] + ((uint128_t) in[1]) * inx2[6] + ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4]; out[8] = ((uint128_t) in[0]) * inx2[8] + ((uint128_t) in[1]) * inx2[7] + ((uint128_t) in[2]) * inx2[6] + ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4]; /* * The remaining limbs fall above 2^521, with the first falling at 2^522. * They correspond to locations one bit up from the limbs produced above * so we would have to multiply by two to align them. Again, rather than * operate on the 128-bit result, we double one of the inputs to the * multiplication. If we want to double for both this reason, and the * reason above, then we end up multiplying by four. */ /* 9 */ out[0] += ((uint128_t) in[1]) * inx4[8] + ((uint128_t) in[2]) * inx4[7] + ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5]; /* 10 */ out[1] += ((uint128_t) in[2]) * inx4[8] + ((uint128_t) in[3]) * inx4[7] + ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5]; /* 11 */ out[2] += ((uint128_t) in[3]) * inx4[8] + ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6]; /* 12 */ out[3] += ((uint128_t) in[4]) * inx4[8] + ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6]; /* 13 */ out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7]; /* 14 */ out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7]; /* 15 */ out[6] += ((uint128_t) in[7]) * inx4[8]; /* 16 */ out[7] += ((uint128_t) in[8]) * inx2[8]; } /*- * felem_mul sets |out| = |in1| * |in2| * On entry: * in1[i] < 2^64 * in2[i] < 2^63 * On exit: * out[i] < 17 * max(in1[i]) * max(in2[i]) */ static void felem_mul(largefelem out, const felem in1, const felem in2) { felem in2x2; felem_scalar(in2x2, in2, 2); out[0] = ((uint128_t) in1[0]) * in2[0]; out[1] = ((uint128_t) in1[0]) * in2[1] + ((uint128_t) in1[1]) * in2[0]; out[2] = ((uint128_t) in1[0]) * in2[2] + ((uint128_t) in1[1]) * in2[1] + ((uint128_t) in1[2]) * in2[0]; out[3] = ((uint128_t) in1[0]) * in2[3] + ((uint128_t) in1[1]) * in2[2] + ((uint128_t) in1[2]) * in2[1] + ((uint128_t) in1[3]) * in2[0]; out[4] = ((uint128_t) in1[0]) * in2[4] + ((uint128_t) in1[1]) * in2[3] + ((uint128_t) in1[2]) * in2[2] + ((uint128_t) in1[3]) * in2[1] + ((uint128_t) in1[4]) * in2[0]; out[5] = ((uint128_t) in1[0]) * in2[5] + ((uint128_t) in1[1]) * in2[4] + ((uint128_t) in1[2]) * in2[3] + ((uint128_t) in1[3]) * in2[2] + ((uint128_t) in1[4]) * in2[1] + ((uint128_t) in1[5]) * in2[0]; out[6] = ((uint128_t) in1[0]) * in2[6] + ((uint128_t) in1[1]) * in2[5] + ((uint128_t) in1[2]) * in2[4] + ((uint128_t) in1[3]) * in2[3] + ((uint128_t) in1[4]) * in2[2] + ((uint128_t) in1[5]) * in2[1] + ((uint128_t) in1[6]) * in2[0]; out[7] = ((uint128_t) in1[0]) * in2[7] + ((uint128_t) in1[1]) * in2[6] + ((uint128_t) in1[2]) * in2[5] + ((uint128_t) in1[3]) * in2[4] + ((uint128_t) in1[4]) * in2[3] + ((uint128_t) in1[5]) * in2[2] + ((uint128_t) in1[6]) * in2[1] + ((uint128_t) in1[7]) * in2[0]; out[8] = ((uint128_t) in1[0]) * in2[8] + ((uint128_t) in1[1]) * in2[7] + ((uint128_t) in1[2]) * in2[6] + ((uint128_t) in1[3]) * in2[5] + ((uint128_t) in1[4]) * in2[4] + ((uint128_t) in1[5]) * in2[3] + ((uint128_t) in1[6]) * in2[2] + ((uint128_t) in1[7]) * in2[1] + ((uint128_t) in1[8]) * in2[0]; /* See comment in felem_square about the use of in2x2 here */ out[0] += ((uint128_t) in1[1]) * in2x2[8] + ((uint128_t) in1[2]) * in2x2[7] + ((uint128_t) in1[3]) * in2x2[6] + ((uint128_t) in1[4]) * in2x2[5] + ((uint128_t) in1[5]) * in2x2[4] + ((uint128_t) in1[6]) * in2x2[3] + ((uint128_t) in1[7]) * in2x2[2] + ((uint128_t) in1[8]) * in2x2[1]; out[1] += ((uint128_t) in1[2]) * in2x2[8] + ((uint128_t) in1[3]) * in2x2[7] + ((uint128_t) in1[4]) * in2x2[6] + ((uint128_t) in1[5]) * in2x2[5] + ((uint128_t) in1[6]) * in2x2[4] + ((uint128_t) in1[7]) * in2x2[3] + ((uint128_t) in1[8]) * in2x2[2]; out[2] += ((uint128_t) in1[3]) * in2x2[8] + ((uint128_t) in1[4]) * in2x2[7] + ((uint128_t) in1[5]) * in2x2[6] + ((uint128_t) in1[6]) * in2x2[5] + ((uint128_t) in1[7]) * in2x2[4] + ((uint128_t) in1[8]) * in2x2[3]; out[3] += ((uint128_t) in1[4]) * in2x2[8] + ((uint128_t) in1[5]) * in2x2[7] + ((uint128_t) in1[6]) * in2x2[6] + ((uint128_t) in1[7]) * in2x2[5] + ((uint128_t) in1[8]) * in2x2[4]; out[4] += ((uint128_t) in1[5]) * in2x2[8] + ((uint128_t) in1[6]) * in2x2[7] + ((uint128_t) in1[7]) * in2x2[6] + ((uint128_t) in1[8]) * in2x2[5]; out[5] += ((uint128_t) in1[6]) * in2x2[8] + ((uint128_t) in1[7]) * in2x2[7] + ((uint128_t) in1[8]) * in2x2[6]; out[6] += ((uint128_t) in1[7]) * in2x2[8] + ((uint128_t) in1[8]) * in2x2[7]; out[7] += ((uint128_t) in1[8]) * in2x2[8]; } static const limb bottom52bits = 0xfffffffffffff; /*- * felem_reduce converts a largefelem to an felem. * On entry: * in[i] < 2^128 * On exit: * out[i] < 2^59 + 2^14 */ static void felem_reduce(felem out, const largefelem in) { u64 overflow1, overflow2; out[0] = ((limb) in[0]) & bottom58bits; out[1] = ((limb) in[1]) & bottom58bits; out[2] = ((limb) in[2]) & bottom58bits; out[3] = ((limb) in[3]) & bottom58bits; out[4] = ((limb) in[4]) & bottom58bits; out[5] = ((limb) in[5]) & bottom58bits; out[6] = ((limb) in[6]) & bottom58bits; out[7] = ((limb) in[7]) & bottom58bits; out[8] = ((limb) in[8]) & bottom58bits; /* out[i] < 2^58 */ out[1] += ((limb) in[0]) >> 58; out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; /*- * out[1] < 2^58 + 2^6 + 2^58 * = 2^59 + 2^6 */ out[2] += ((limb) (in[0] >> 64)) >> 52; out[2] += ((limb) in[1]) >> 58; out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; out[3] += ((limb) (in[1] >> 64)) >> 52; out[3] += ((limb) in[2]) >> 58; out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; out[4] += ((limb) (in[2] >> 64)) >> 52; out[4] += ((limb) in[3]) >> 58; out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; out[5] += ((limb) (in[3] >> 64)) >> 52; out[5] += ((limb) in[4]) >> 58; out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; out[6] += ((limb) (in[4] >> 64)) >> 52; out[6] += ((limb) in[5]) >> 58; out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; out[7] += ((limb) (in[5] >> 64)) >> 52; out[7] += ((limb) in[6]) >> 58; out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; out[8] += ((limb) (in[6] >> 64)) >> 52; out[8] += ((limb) in[7]) >> 58; out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; /*- * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 * < 2^59 + 2^13 */ overflow1 = ((limb) (in[7] >> 64)) >> 52; overflow1 += ((limb) in[8]) >> 58; overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; overflow2 = ((limb) (in[8] >> 64)) >> 52; overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ overflow2 <<= 1; /* overflow2 < 2^13 */ out[0] += overflow1; /* out[0] < 2^60 */ out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ out[1] += out[0] >> 58; out[0] &= bottom58bits; /*- * out[0] < 2^58 * out[1] < 2^59 + 2^6 + 2^13 + 2^2 * < 2^59 + 2^14 */ } static void felem_square_reduce(felem out, const felem in) { largefelem tmp; felem_square(tmp, in); felem_reduce(out, tmp); } static void felem_mul_reduce(felem out, const felem in1, const felem in2) { largefelem tmp; felem_mul(tmp, in1, in2); felem_reduce(out, tmp); } /*- * felem_inv calculates |out| = |in|^{-1} * * Based on Fermat's Little Theorem: * a^p = a (mod p) * a^{p-1} = 1 (mod p) * a^{p-2} = a^{-1} (mod p) */ static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2, ftmp3, ftmp4; largefelem tmp; unsigned i; felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ felem_assign(ftmp2, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ felem_assign(ftmp2, ftmp3); felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ felem_assign(ftmp4, ftmp3); felem_mul(tmp, ftmp3, ftmp); felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ felem_assign(ftmp2, ftmp3); for (i = 0; i < 8; i++) { felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ felem_assign(ftmp2, ftmp3); for (i = 0; i < 16; i++) { felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ felem_assign(ftmp2, ftmp3); for (i = 0; i < 32; i++) { felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ felem_assign(ftmp2, ftmp3); for (i = 0; i < 64; i++) { felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ felem_assign(ftmp2, ftmp3); for (i = 0; i < 128; i++) { felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ felem_assign(ftmp2, ftmp3); for (i = 0; i < 256; i++) { felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ } felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ for (i = 0; i < 9; i++) { felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ } felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ felem_mul(tmp, ftmp3, in); felem_reduce(out, tmp); /* 2^512 - 3 */ } /* This is 2^521-1, expressed as an felem */ static const felem kPrime = { 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff }; /*- * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 * otherwise. * On entry: * in[i] < 2^59 + 2^14 */ static limb felem_is_zero(const felem in) { felem ftmp; limb is_zero, is_p; felem_assign(ftmp, in); ftmp[0] += ftmp[8] >> 57; ftmp[8] &= bottom57bits; /* ftmp[8] < 2^57 */ ftmp[1] += ftmp[0] >> 58; ftmp[0] &= bottom58bits; ftmp[2] += ftmp[1] >> 58; ftmp[1] &= bottom58bits; ftmp[3] += ftmp[2] >> 58; ftmp[2] &= bottom58bits; ftmp[4] += ftmp[3] >> 58; ftmp[3] &= bottom58bits; ftmp[5] += ftmp[4] >> 58; ftmp[4] &= bottom58bits; ftmp[6] += ftmp[5] >> 58; ftmp[5] &= bottom58bits; ftmp[7] += ftmp[6] >> 58; ftmp[6] &= bottom58bits; ftmp[8] += ftmp[7] >> 58; ftmp[7] &= bottom58bits; /* ftmp[8] < 2^57 + 4 */ /* * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater * than our bound for ftmp[8]. Therefore we only have to check if the * zero is zero or 2^521-1. */ is_zero = 0; is_zero |= ftmp[0]; is_zero |= ftmp[1]; is_zero |= ftmp[2]; is_zero |= ftmp[3]; is_zero |= ftmp[4]; is_zero |= ftmp[5]; is_zero |= ftmp[6]; is_zero |= ftmp[7]; is_zero |= ftmp[8]; is_zero--; /* * We know that ftmp[i] < 2^63, therefore the only way that the top bit * can be set is if is_zero was 0 before the decrement. */ is_zero = 0 - (is_zero >> 63); is_p = ftmp[0] ^ kPrime[0]; is_p |= ftmp[1] ^ kPrime[1]; is_p |= ftmp[2] ^ kPrime[2]; is_p |= ftmp[3] ^ kPrime[3]; is_p |= ftmp[4] ^ kPrime[4]; is_p |= ftmp[5] ^ kPrime[5]; is_p |= ftmp[6] ^ kPrime[6]; is_p |= ftmp[7] ^ kPrime[7]; is_p |= ftmp[8] ^ kPrime[8]; is_p--; is_p = 0 - (is_p >> 63); is_zero |= is_p; return is_zero; } static int felem_is_zero_int(const void *in) { return (int)(felem_is_zero(in) & ((limb) 1)); } /*- * felem_contract converts |in| to its unique, minimal representation. * On entry: * in[i] < 2^59 + 2^14 */ static void felem_contract(felem out, const felem in) { limb is_p, is_greater, sign; static const limb two58 = ((limb) 1) << 58; felem_assign(out, in); out[0] += out[8] >> 57; out[8] &= bottom57bits; /* out[8] < 2^57 */ out[1] += out[0] >> 58; out[0] &= bottom58bits; out[2] += out[1] >> 58; out[1] &= bottom58bits; out[3] += out[2] >> 58; out[2] &= bottom58bits; out[4] += out[3] >> 58; out[3] &= bottom58bits; out[5] += out[4] >> 58; out[4] &= bottom58bits; out[6] += out[5] >> 58; out[5] &= bottom58bits; out[7] += out[6] >> 58; out[6] &= bottom58bits; out[8] += out[7] >> 58; out[7] &= bottom58bits; /* out[8] < 2^57 + 4 */ /* * If the value is greater than 2^521-1 then we have to subtract 2^521-1 * out. See the comments in felem_is_zero regarding why we don't test for * other multiples of the prime. */ /* * First, if |out| is equal to 2^521-1, we subtract it out to get zero. */ is_p = out[0] ^ kPrime[0]; is_p |= out[1] ^ kPrime[1]; is_p |= out[2] ^ kPrime[2]; is_p |= out[3] ^ kPrime[3]; is_p |= out[4] ^ kPrime[4]; is_p |= out[5] ^ kPrime[5]; is_p |= out[6] ^ kPrime[6]; is_p |= out[7] ^ kPrime[7]; is_p |= out[8] ^ kPrime[8]; is_p--; is_p &= is_p << 32; is_p &= is_p << 16; is_p &= is_p << 8; is_p &= is_p << 4; is_p &= is_p << 2; is_p &= is_p << 1; is_p = 0 - (is_p >> 63); is_p = ~is_p; /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ out[0] &= is_p; out[1] &= is_p; out[2] &= is_p; out[3] &= is_p; out[4] &= is_p; out[5] &= is_p; out[6] &= is_p; out[7] &= is_p; out[8] &= is_p; /* * In order to test that |out| >= 2^521-1 we need only test if out[8] >> * 57 is greater than zero as (2^521-1) + x >= 2^522 */ is_greater = out[8] >> 57; is_greater |= is_greater << 32; is_greater |= is_greater << 16; is_greater |= is_greater << 8; is_greater |= is_greater << 4; is_greater |= is_greater << 2; is_greater |= is_greater << 1; is_greater = 0 - (is_greater >> 63); out[0] -= kPrime[0] & is_greater; out[1] -= kPrime[1] & is_greater; out[2] -= kPrime[2] & is_greater; out[3] -= kPrime[3] & is_greater; out[4] -= kPrime[4] & is_greater; out[5] -= kPrime[5] & is_greater; out[6] -= kPrime[6] & is_greater; out[7] -= kPrime[7] & is_greater; out[8] -= kPrime[8] & is_greater; /* Eliminate negative coefficients */ sign = -(out[0] >> 63); out[0] += (two58 & sign); out[1] -= (1 & sign); sign = -(out[1] >> 63); out[1] += (two58 & sign); out[2] -= (1 & sign); sign = -(out[2] >> 63); out[2] += (two58 & sign); out[3] -= (1 & sign); sign = -(out[3] >> 63); out[3] += (two58 & sign); out[4] -= (1 & sign); sign = -(out[4] >> 63); out[4] += (two58 & sign); out[5] -= (1 & sign); sign = -(out[0] >> 63); out[5] += (two58 & sign); out[6] -= (1 & sign); sign = -(out[6] >> 63); out[6] += (two58 & sign); out[7] -= (1 & sign); sign = -(out[7] >> 63); out[7] += (two58 & sign); out[8] -= (1 & sign); sign = -(out[5] >> 63); out[5] += (two58 & sign); out[6] -= (1 & sign); sign = -(out[6] >> 63); out[6] += (two58 & sign); out[7] -= (1 & sign); sign = -(out[7] >> 63); out[7] += (two58 & sign); out[8] -= (1 & sign); } /*- * Group operations * ---------------- * * Building on top of the field operations we have the operations on the * elliptic curve group itself. Points on the curve are represented in Jacobian * coordinates */ /*- * point_double calculates 2*(x_in, y_in, z_in) * * The method is taken from: * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b * * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. * while x_out == y_in is not (maybe this works, but it's not tested). */ static void point_double(felem x_out, felem y_out, felem z_out, const felem x_in, const felem y_in, const felem z_in) { largefelem tmp, tmp2; felem delta, gamma, beta, alpha, ftmp, ftmp2; felem_assign(ftmp, x_in); felem_assign(ftmp2, x_in); /* delta = z^2 */ felem_square(tmp, z_in); felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ /* gamma = y^2 */ felem_square(tmp, y_in); felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ /* beta = x*gamma */ felem_mul(tmp, x_in, gamma); felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */ /* alpha = 3*(x-delta)*(x+delta) */ felem_diff64(ftmp, delta); /* ftmp[i] < 2^61 */ felem_sum64(ftmp2, delta); /* ftmp2[i] < 2^60 + 2^15 */ felem_scalar64(ftmp2, 3); /* ftmp2[i] < 3*2^60 + 3*2^15 */ felem_mul(tmp, ftmp, ftmp2); /*- * tmp[i] < 17(3*2^121 + 3*2^76) * = 61*2^121 + 61*2^76 * < 64*2^121 + 64*2^76 * = 2^127 + 2^82 * < 2^128 */ felem_reduce(alpha, tmp); /* x' = alpha^2 - 8*beta */ felem_square(tmp, alpha); /* * tmp[i] < 17*2^120 < 2^125 */ felem_assign(ftmp, beta); felem_scalar64(ftmp, 8); /* ftmp[i] < 2^62 + 2^17 */ felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ felem_reduce(x_out, tmp); /* z' = (y + z)^2 - gamma - delta */ felem_sum64(delta, gamma); /* delta[i] < 2^60 + 2^15 */ felem_assign(ftmp, y_in); felem_sum64(ftmp, z_in); /* ftmp[i] < 2^60 + 2^15 */ felem_square(tmp, ftmp); /* * tmp[i] < 17(2^122) < 2^127 */ felem_diff_128_64(tmp, delta); /* tmp[i] < 2^127 + 2^63 */ felem_reduce(z_out, tmp); /* y' = alpha*(4*beta - x') - 8*gamma^2 */ felem_scalar64(beta, 4); /* beta[i] < 2^61 + 2^16 */ felem_diff64(beta, x_out); /* beta[i] < 2^61 + 2^60 + 2^16 */ felem_mul(tmp, alpha, beta); /*- * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30) * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30) * < 2^128 */ felem_square(tmp2, gamma); /*- * tmp2[i] < 17*(2^59 + 2^14)^2 * = 17*(2^118 + 2^74 + 2^28) */ felem_scalar128(tmp2, 8); /*- * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31 * < 2^126 */ felem_diff128(tmp, tmp2); /*- * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + * 2^74 + 2^69 + 2^34 + 2^30 * < 2^128 */ felem_reduce(y_out, tmp); } /* copy_conditional copies in to out iff mask is all ones. */ static void copy_conditional(felem out, const felem in, limb mask) { unsigned i; for (i = 0; i < NLIMBS; ++i) { const limb tmp = mask & (in[i] ^ out[i]); out[i] ^= tmp; } } /*- * point_add calculates (x1, y1, z1) + (x2, y2, z2) * * The method is taken from * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). * * This function includes a branch for checking whether the two input points * are equal (while not equal to the point at infinity). See comment below * on constant-time. */ static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const felem x2, const felem y2, const felem z2) { felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; largefelem tmp, tmp2; limb x_equal, y_equal, z1_is_zero, z2_is_zero; limb points_equal; z1_is_zero = felem_is_zero(z1); z2_is_zero = felem_is_zero(z2); /* ftmp = z1z1 = z1**2 */ felem_square(tmp, z1); felem_reduce(ftmp, tmp); if (!mixed) { /* ftmp2 = z2z2 = z2**2 */ felem_square(tmp, z2); felem_reduce(ftmp2, tmp); /* u1 = ftmp3 = x1*z2z2 */ felem_mul(tmp, x1, ftmp2); felem_reduce(ftmp3, tmp); /* ftmp5 = z1 + z2 */ felem_assign(ftmp5, z1); felem_sum64(ftmp5, z2); /* ftmp5[i] < 2^61 */ /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ felem_square(tmp, ftmp5); /* tmp[i] < 17*2^122 */ felem_diff_128_64(tmp, ftmp); /* tmp[i] < 17*2^122 + 2^63 */ felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 17*2^122 + 2^64 */ felem_reduce(ftmp5, tmp); /* ftmp2 = z2 * z2z2 */ felem_mul(tmp, ftmp2, z2); felem_reduce(ftmp2, tmp); /* s1 = ftmp6 = y1 * z2**3 */ felem_mul(tmp, y1, ftmp2); felem_reduce(ftmp6, tmp); } else { /* * We'll assume z2 = 1 (special case z2 = 0 is handled later) */ /* u1 = ftmp3 = x1*z2z2 */ felem_assign(ftmp3, x1); /* ftmp5 = 2*z1z2 */ felem_scalar(ftmp5, z1, 2); /* s1 = ftmp6 = y1 * z2**3 */ felem_assign(ftmp6, y1); } /* u2 = x2*z1z1 */ felem_mul(tmp, x2, ftmp); /* tmp[i] < 17*2^120 */ /* h = ftmp4 = u2 - u1 */ felem_diff_128_64(tmp, ftmp3); /* tmp[i] < 17*2^120 + 2^63 */ felem_reduce(ftmp4, tmp); x_equal = felem_is_zero(ftmp4); /* z_out = ftmp5 * h */ felem_mul(tmp, ftmp5, ftmp4); felem_reduce(z_out, tmp); /* ftmp = z1 * z1z1 */ felem_mul(tmp, ftmp, z1); felem_reduce(ftmp, tmp); /* s2 = tmp = y2 * z1**3 */ felem_mul(tmp, y2, ftmp); /* tmp[i] < 17*2^120 */ /* r = ftmp5 = (s2 - s1)*2 */ felem_diff_128_64(tmp, ftmp6); /* tmp[i] < 17*2^120 + 2^63 */ felem_reduce(ftmp5, tmp); y_equal = felem_is_zero(ftmp5); felem_scalar64(ftmp5, 2); /* ftmp5[i] < 2^61 */ /* * The formulae are incorrect if the points are equal, in affine coordinates * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this * happens. * * We use bitwise operations to avoid potential side-channels introduced by * the short-circuiting behaviour of boolean operators. * * The special case of either point being the point at infinity (z1 and/or * z2 are zero), is handled separately later on in this function, so we * avoid jumping to point_double here in those special cases. * * Notice the comment below on the implications of this branching for timing * leaks and why it is considered practically irrelevant. */ points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); if (points_equal) { /* * This is obviously not constant-time but it will almost-never happen * for ECDH / ECDSA. The case where it can happen is during scalar-mult * where the intermediate value gets very close to the group order. * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for * the scalar, it's possible for the intermediate value to be a small * negative multiple of the base point, and for the final signed digit * to be the same value. We believe that this only occurs for the scalar * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb * 71e913863f7, in that case the penultimate intermediate is -9G and * the final digit is also -9G. Since this only happens for a single * scalar, the timing leak is irrelevant. (Any attacker who wanted to * check whether a secret scalar was that exact value, can already do * so.) */ point_double(x3, y3, z3, x1, y1, z1); return; } /* I = ftmp = (2h)**2 */ felem_assign(ftmp, ftmp4); felem_scalar64(ftmp, 2); /* ftmp[i] < 2^61 */ felem_square(tmp, ftmp); /* tmp[i] < 17*2^122 */ felem_reduce(ftmp, tmp); /* J = ftmp2 = h * I */ felem_mul(tmp, ftmp4, ftmp); felem_reduce(ftmp2, tmp); /* V = ftmp4 = U1 * I */ felem_mul(tmp, ftmp3, ftmp); felem_reduce(ftmp4, tmp); /* x_out = r**2 - J - 2V */ felem_square(tmp, ftmp5); /* tmp[i] < 17*2^122 */ felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 17*2^122 + 2^63 */ felem_assign(ftmp3, ftmp4); felem_scalar64(ftmp4, 2); /* ftmp4[i] < 2^61 */ felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 17*2^122 + 2^64 */ felem_reduce(x_out, tmp); /* y_out = r(V-x_out) - 2 * s1 * J */ felem_diff64(ftmp3, x_out); /* * ftmp3[i] < 2^60 + 2^60 = 2^61 */ felem_mul(tmp, ftmp5, ftmp3); /* tmp[i] < 17*2^122 */ felem_mul(tmp2, ftmp6, ftmp2); /* tmp2[i] < 17*2^120 */ felem_scalar128(tmp2, 2); /* tmp2[i] < 17*2^121 */ felem_diff128(tmp, tmp2); /*- * tmp[i] < 2^127 - 2^69 + 17*2^122 * = 2^126 - 2^122 - 2^6 - 2^2 - 1 * < 2^127 */ felem_reduce(y_out, tmp); copy_conditional(x_out, x2, z1_is_zero); copy_conditional(x_out, x1, z2_is_zero); copy_conditional(y_out, y2, z1_is_zero); copy_conditional(y_out, y1, z2_is_zero); copy_conditional(z_out, z2, z1_is_zero); copy_conditional(z_out, z1, z2_is_zero); felem_assign(x3, x_out); felem_assign(y3, y_out); felem_assign(z3, z_out); } /*- * Base point pre computation * -------------------------- * * Two different sorts of precomputed tables are used in the following code. * Each contain various points on the curve, where each point is three field * elements (x, y, z). * * For the base point table, z is usually 1 (0 for the point at infinity). * This table has 16 elements: * index | bits | point * ------+---------+------------------------------ * 0 | 0 0 0 0 | 0G * 1 | 0 0 0 1 | 1G * 2 | 0 0 1 0 | 2^130G * 3 | 0 0 1 1 | (2^130 + 1)G * 4 | 0 1 0 0 | 2^260G * 5 | 0 1 0 1 | (2^260 + 1)G * 6 | 0 1 1 0 | (2^260 + 2^130)G * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G * 8 | 1 0 0 0 | 2^390G * 9 | 1 0 0 1 | (2^390 + 1)G * 10 | 1 0 1 0 | (2^390 + 2^130)G * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G * 12 | 1 1 0 0 | (2^390 + 2^260)G * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G * * The reason for this is so that we can clock bits into four different * locations when doing simple scalar multiplies against the base point. * * Tables for other points have table[i] = iG for i in 0 .. 16. */ /* gmul is the table of precomputed base points */ static const felem gmul[16][3] = { {{0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, {1, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, {1, 0, 0, 0, 0, 0, 0, 0, 0}} }; /* * select_point selects the |idx|th point from a precomputation table and * copies it to out. */ /* pre_comp below is of the size provided in |size| */ static void select_point(const limb idx, unsigned int size, const felem pre_comp[][3], felem out[3]) { unsigned i, j; limb *outlimbs = &out[0][0]; memset(out, 0, sizeof(*out) * 3); for (i = 0; i < size; i++) { const limb *inlimbs = &pre_comp[i][0][0]; limb mask = i ^ idx; mask |= mask >> 4; mask |= mask >> 2; mask |= mask >> 1; mask &= 1; mask--; for (j = 0; j < NLIMBS * 3; j++) outlimbs[j] |= inlimbs[j] & mask; } } /* get_bit returns the |i|th bit in |in| */ static char get_bit(const felem_bytearray in, int i) { if (i < 0) return 0; return (in[i >> 3] >> (i & 7)) & 1; } /* * Interleaved point multiplication using precomputed point multiples: The * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the * generator, using certain (large) precomputed multiples in g_pre_comp. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ static void batch_mul(felem x_out, felem y_out, felem z_out, const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3]) { int i, skip; unsigned num, gen_mul = (g_scalar != NULL); felem nq[3], tmp[4]; limb bits; u8 sign, digit; /* set nq to the point at infinity */ memset(nq, 0, sizeof(nq)); /* * Loop over all scalars msb-to-lsb, interleaving additions of multiples * of the generator (last quarter of rounds) and additions of other * points multiples (every 5th round). */ skip = 1; /* save two point operations in the first * round */ for (i = (num_points ? 520 : 130); i >= 0; --i) { /* double */ if (!skip) point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); /* add multiples of the generator */ if (gen_mul && (i <= 130)) { bits = get_bit(g_scalar, i + 390) << 3; if (i < 130) { bits |= get_bit(g_scalar, i + 260) << 2; bits |= get_bit(g_scalar, i + 130) << 1; bits |= get_bit(g_scalar, i); } /* select the point to add, in constant time */ select_point(bits, 16, g_pre_comp, tmp); if (!skip) { /* The 1 argument below is for "mixed" */ point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); } else { memcpy(nq, tmp, 3 * sizeof(felem)); skip = 0; } } /* do other additions every 5 doublings */ if (num_points && (i % 5 == 0)) { /* loop over all scalars */ for (num = 0; num < num_points; ++num) { bits = get_bit(scalars[num], i + 4) << 5; bits |= get_bit(scalars[num], i + 3) << 4; bits |= get_bit(scalars[num], i + 2) << 3; bits |= get_bit(scalars[num], i + 1) << 2; bits |= get_bit(scalars[num], i) << 1; bits |= get_bit(scalars[num], i - 1); ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); /* * select the point to add or subtract, in constant time */ select_point(digit, 17, pre_comp[num], tmp); felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative * point */ copy_conditional(tmp[1], tmp[3], (-(limb) sign)); if (!skip) { point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0], tmp[1], tmp[2]); } else { memcpy(nq, tmp, 3 * sizeof(felem)); skip = 0; } } } } felem_assign(x_out, nq[0]); felem_assign(y_out, nq[1]); felem_assign(z_out, nq[2]); } /* Precomputation for the group generator. */ struct nistp521_pre_comp_st { felem g_pre_comp[16][3]; CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; }; const EC_METHOD *EC_GFp_nistp521_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_prime_field, ec_GFp_nistp521_group_init, ec_GFp_simple_group_finish, ec_GFp_simple_group_clear_finish, ec_GFp_nist_group_copy, ec_GFp_nistp521_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, ec_GFp_simple_point_clear_finish, ec_GFp_simple_point_copy, ec_GFp_simple_point_set_to_infinity, ec_GFp_simple_set_Jprojective_coordinates_GFp, ec_GFp_simple_get_Jprojective_coordinates_GFp, ec_GFp_simple_point_set_affine_coordinates, ec_GFp_nistp521_point_get_affine_coordinates, 0 /* point_set_compressed_coordinates */ , 0 /* point2oct */ , 0 /* oct2point */ , ec_GFp_simple_add, ec_GFp_simple_dbl, ec_GFp_simple_invert, ec_GFp_simple_is_at_infinity, ec_GFp_simple_is_on_curve, ec_GFp_simple_cmp, ec_GFp_simple_make_affine, ec_GFp_simple_points_make_affine, ec_GFp_nistp521_points_mul, ec_GFp_nistp521_precompute_mult, ec_GFp_nistp521_have_precompute_mult, ec_GFp_nist_field_mul, ec_GFp_nist_field_sqr, 0 /* field_div */ , ec_GFp_simple_field_inv, 0 /* field_encode */ , 0 /* field_decode */ , 0, /* field_set_to_one */ ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, 0, /* field_inverse_mod_ord */ 0, /* blind_coordinates */ 0, /* ladder_pre */ 0, /* ladder_step */ 0 /* ladder_post */ }; return &ret; } /******************************************************************************/ /* * FUNCTIONS TO MANAGE PRECOMPUTATION */ static NISTP521_PRE_COMP *nistp521_pre_comp_new(void) { NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); return ret; } ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p) { int i; if (p != NULL) CRYPTO_UP_REF(&p->references, &i, p->lock); return p; } void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p) { int i; if (p == NULL) return; CRYPTO_DOWN_REF(&p->references, &i, p->lock); REF_PRINT_COUNT("EC_nistp521", x); if (i > 0) return; REF_ASSERT_ISNT(i < 0); CRYPTO_THREAD_lock_free(p->lock); OPENSSL_free(p); } /******************************************************************************/ /* * OPENSSL EC_METHOD FUNCTIONS */ int ec_GFp_nistp521_group_init(EC_GROUP *group) { int ret; ret = ec_GFp_simple_group_init(group); group->a_is_minus3 = 1; return ret; } int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *curve_p, *curve_a, *curve_b; if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); curve_p = BN_CTX_get(ctx); curve_a = BN_CTX_get(ctx); curve_b = BN_CTX_get(ctx); if (curve_b == NULL) goto err; BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE, EC_R_WRONG_CURVE_PARAMETERS); goto err; } group->field_mod_func = BN_nist_mod_521; ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /* * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = * (X/Z^2, Y/Z^3) */ int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { felem z1, z2, x_in, y_in, x_out, y_out; largefelem tmp; if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z))) return 0; felem_inv(z2, z1); felem_square(tmp, z2); felem_reduce(z1, tmp); felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); felem_contract(x_out, x_in); if (x != NULL) { if (!felem_to_BN(x, x_out)) { ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); felem_contract(y_out, y_in); if (y != NULL) { if (!felem_to_BN(y, y_out)) { ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); return 0; } } return 1; } /* points below is of size |num|, and tmp_felems is of size |num+1/ */ static void make_points_affine(size_t num, felem points[][3], felem tmp_felems[]) { /* * Runs in constant time, unless an input is the point at infinity (which * normally shouldn't happen). */ ec_GFp_nistp_points_make_affine_internal(num, points, sizeof(felem), tmp_felems, (void (*)(void *))felem_one, felem_is_zero_int, (void (*)(void *, const void *)) felem_assign, (void (*)(void *, const void *)) felem_square_reduce, (void (*) (void *, const void *, const void *)) felem_mul_reduce, (void (*)(void *, const void *)) felem_inv, (void (*)(void *, const void *)) felem_contract); } /* * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL * values Result is stored in r (r can equal one of the inputs). */ int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int ret = 0; int j; int mixed = 0; BIGNUM *x, *y, *z, *tmp_scalar; felem_bytearray g_secret; felem_bytearray *secrets = NULL; felem (*pre_comp)[17][3] = NULL; felem *tmp_felems = NULL; unsigned i; int num_bytes; int have_pre_comp = 0; size_t num_points = num; felem x_in, y_in, z_in, x_out, y_out, z_out; NISTP521_PRE_COMP *pre = NULL; felem(*g_pre_comp)[3] = NULL; EC_POINT *generator = NULL; const EC_POINT *p = NULL; const BIGNUM *p_scalar = NULL; BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); z = BN_CTX_get(ctx); tmp_scalar = BN_CTX_get(ctx); if (tmp_scalar == NULL) goto err; if (scalar != NULL) { pre = group->pre_comp.nistp521; if (pre) /* we have precomputation, try to use it */ g_pre_comp = &pre->g_pre_comp[0]; else /* try to use the standard precomputation */ g_pre_comp = (felem(*)[3]) gmul; generator = EC_POINT_new(group); if (generator == NULL) goto err; /* get the generator from precomputation */ if (!felem_to_BN(x, g_pre_comp[1][0]) || !felem_to_BN(y, g_pre_comp[1][1]) || !felem_to_BN(z, g_pre_comp[1][2])) { ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); goto err; } if (!EC_POINT_set_Jprojective_coordinates_GFp(group, generator, x, y, z, ctx)) goto err; if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) /* precomputation matches generator */ have_pre_comp = 1; else /* * we don't have valid precomputation: treat the generator as a * random point */ num_points++; } if (num_points > 0) { if (num_points >= 2) { /* * unless we precompute multiples for just one point, converting * those into affine form is time well spent */ mixed = 1; } secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); if (mixed) tmp_felems = OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1)); if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE); goto err; } /* * we treat NULL scalars as 0, and NULL points as points at infinity, * i.e., they contribute nothing to the linear combination */ for (i = 0; i < num_points; ++i) { if (i == num) { /* * we didn't have a valid precomputation, so we pick the * generator */ p = EC_GROUP_get0_generator(group); p_scalar = scalar; } else { /* the i^th point */ p = points[i]; p_scalar = scalars[i]; } if ((p_scalar != NULL) && (p != NULL)) { /* reduce scalar to 0 <= scalar < 2^521 */ if ((BN_num_bits(p_scalar) > 521) || (BN_is_negative(p_scalar))) { /* * this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2lebinpad(tmp_scalar, secrets[i], sizeof(secrets[i])); } else { num_bytes = BN_bn2lebinpad(p_scalar, secrets[i], sizeof(secrets[i])); } if (num_bytes < 0) { ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); goto err; } /* precompute multiples */ if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z))) goto err; memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); for (j = 2; j <= 16; ++j) { if (j & 1) { point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); } else { point_double(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); } } } } if (mixed) make_points_affine(num_points * 17, pre_comp[0], tmp_felems); } /* the scalar for the generator */ if ((scalar != NULL) && (have_pre_comp)) { memset(g_secret, 0, sizeof(g_secret)); /* reduce scalar to 0 <= scalar < 2^521 */ if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { /* * this is an unusual input, and we don't guarantee * constant-timeness */ if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); goto err; } num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); } else { num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); } /* do the multiplication with generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, g_secret, mixed, (const felem(*)[17][3])pre_comp, (const felem(*)[3])g_pre_comp); } else { /* do the multiplication without generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); } /* reduce the output to its unique minimal representation */ felem_contract(x_in, x_out); felem_contract(y_in, y_out); felem_contract(z_in, z_out); if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) { ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); goto err; } ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); err: BN_CTX_end(ctx); EC_POINT_free(generator); OPENSSL_free(secrets); OPENSSL_free(pre_comp); OPENSSL_free(tmp_felems); return ret; } int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { int ret = 0; NISTP521_PRE_COMP *pre = NULL; int i, j; BN_CTX *new_ctx = NULL; BIGNUM *x, *y; EC_POINT *generator = NULL; felem tmp_felems[16]; /* throw away old precomputation */ EC_pre_comp_free(group); if (ctx == NULL) if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; /* get the generator */ if (group->generator == NULL) goto err; generator = EC_POINT_new(group); if (generator == NULL) goto err; BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) goto err; if ((pre = nistp521_pre_comp_new()) == NULL) goto err; /* * if the generator is the standard one, use built-in precomputation */ if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); goto done; } if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z))) goto err; /* compute 2^130*G, 2^260*G, 2^390*G */ for (i = 1; i <= 4; i <<= 1) { point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); for (j = 0; j < 129; ++j) { point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2]); } } /* g_pre_comp[0] is the point at infinity */ memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); /* the remaining multiples */ /* 2^130*G + 2^260*G */ point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]); /* 2^130*G + 2^390*G */ point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]); /* 2^260*G + 2^390*G */ point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2]); /* 2^130*G + 2^260*G + 2^390*G */ point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]); for (i = 1; i < 8; ++i) { /* odd multiples: add G */ point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0, pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], pre->g_pre_comp[1][2]); } make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); done: SETPRECOMP(group, nistp521, pre); ret = 1; pre = NULL; err: BN_CTX_end(ctx); EC_POINT_free(generator); BN_CTX_free(new_ctx); EC_nistp521_pre_comp_free(pre); return ret; } int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group) { return HAVEPRECOMP(group, nistp521); } #endif openssl-1.1.1f/crypto/ec/ecp_nistputil.c000066400000000000000000000234701364063235100203110ustar00rootroot00000000000000/* * Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Copyright 2011 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 NON_EMPTY_TRANSLATION_UNIT #else /* * Common utility functions for ecp_nistp224.c, ecp_nistp256.c, ecp_nistp521.c. */ # include # include "ec_local.h" /* * Convert an array of points into affine coordinates. (If the point at * infinity is found (Z = 0), it remains unchanged.) This function is * essentially an equivalent to EC_POINTs_make_affine(), but works with the * internal representation of points as used by ecp_nistp###.c rather than * with (BIGNUM-based) EC_POINT data structures. point_array is the * input/output buffer ('num' points in projective form, i.e. three * coordinates each), based on an internal representation of field elements * of size 'felem_size'. tmp_felems needs to point to a temporary array of * 'num'+1 field elements for storage of intermediate values. */ void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array, size_t felem_size, void *tmp_felems, void (*felem_one) (void *out), int (*felem_is_zero) (const void *in), void (*felem_assign) (void *out, const void *in), void (*felem_square) (void *out, const void *in), void (*felem_mul) (void *out, const void *in1, const void *in2), void (*felem_inv) (void *out, const void *in), void (*felem_contract) (void *out, const void *in)) { int i = 0; # define tmp_felem(I) (&((char *)tmp_felems)[(I) * felem_size]) # define X(I) (&((char *)point_array)[3*(I) * felem_size]) # define Y(I) (&((char *)point_array)[(3*(I) + 1) * felem_size]) # define Z(I) (&((char *)point_array)[(3*(I) + 2) * felem_size]) if (!felem_is_zero(Z(0))) felem_assign(tmp_felem(0), Z(0)); else felem_one(tmp_felem(0)); for (i = 1; i < (int)num; i++) { if (!felem_is_zero(Z(i))) felem_mul(tmp_felem(i), tmp_felem(i - 1), Z(i)); else felem_assign(tmp_felem(i), tmp_felem(i - 1)); } /* * Now each tmp_felem(i) is the product of Z(0) .. Z(i), skipping any * zero-valued factors: if Z(i) = 0, we essentially pretend that Z(i) = 1 */ felem_inv(tmp_felem(num - 1), tmp_felem(num - 1)); for (i = num - 1; i >= 0; i--) { if (i > 0) /* * tmp_felem(i-1) is the product of Z(0) .. Z(i-1), tmp_felem(i) * is the inverse of the product of Z(0) .. Z(i) */ /* 1/Z(i) */ felem_mul(tmp_felem(num), tmp_felem(i - 1), tmp_felem(i)); else felem_assign(tmp_felem(num), tmp_felem(0)); /* 1/Z(0) */ if (!felem_is_zero(Z(i))) { if (i > 0) /* * For next iteration, replace tmp_felem(i-1) by its inverse */ felem_mul(tmp_felem(i - 1), tmp_felem(i), Z(i)); /* * Convert point (X, Y, Z) into affine form (X/(Z^2), Y/(Z^3), 1) */ felem_square(Z(i), tmp_felem(num)); /* 1/(Z^2) */ felem_mul(X(i), X(i), Z(i)); /* X/(Z^2) */ felem_mul(Z(i), Z(i), tmp_felem(num)); /* 1/(Z^3) */ felem_mul(Y(i), Y(i), Z(i)); /* Y/(Z^3) */ felem_contract(X(i), X(i)); felem_contract(Y(i), Y(i)); felem_one(Z(i)); } else { if (i > 0) /* * For next iteration, replace tmp_felem(i-1) by its inverse */ felem_assign(tmp_felem(i - 1), tmp_felem(i)); } } } /*- * This function looks at 5+1 scalar bits (5 current, 1 adjacent less * significant bit), and recodes them into a signed digit for use in fast point * multiplication: the use of signed rather than unsigned digits means that * fewer points need to be precomputed, given that point inversion is easy * (a precomputed point dP makes -dP available as well). * * BACKGROUND: * * Signed digits for multiplication were introduced by Booth ("A signed binary * multiplication technique", Quart. Journ. Mech. and Applied Math., vol. IV, * pt. 2 (1951), pp. 236-240), in that case for multiplication of integers. * Booth's original encoding did not generally improve the density of nonzero * digits over the binary representation, and was merely meant to simplify the * handling of signed factors given in two's complement; but it has since been * shown to be the basis of various signed-digit representations that do have * further advantages, including the wNAF, using the following general approach: * * (1) Given a binary representation * * b_k ... b_2 b_1 b_0, * * of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1 * by using bit-wise subtraction as follows: * * b_k b_(k-1) ... b_2 b_1 b_0 * - b_k ... b_3 b_2 b_1 b_0 * ----------------------------------------- * s_(k+1) s_k ... s_3 s_2 s_1 s_0 * * A left-shift followed by subtraction of the original value yields a new * representation of the same value, using signed bits s_i = b_(i-1) - b_i. * This representation from Booth's paper has since appeared in the * literature under a variety of different names including "reversed binary * form", "alternating greedy expansion", "mutual opposite form", and * "sign-alternating {+-1}-representation". * * An interesting property is that among the nonzero bits, values 1 and -1 * strictly alternate. * * (2) Various window schemes can be applied to the Booth representation of * integers: for example, right-to-left sliding windows yield the wNAF * (a signed-digit encoding independently discovered by various researchers * in the 1990s), and left-to-right sliding windows yield a left-to-right * equivalent of the wNAF (independently discovered by various researchers * around 2004). * * To prevent leaking information through side channels in point multiplication, * we need to recode the given integer into a regular pattern: sliding windows * as in wNAFs won't do, we need their fixed-window equivalent -- which is a few * decades older: we'll be using the so-called "modified Booth encoding" due to * MacSorley ("High-speed arithmetic in binary computers", Proc. IRE, vol. 49 * (1961), pp. 67-91), in a radix-2^5 setting. That is, we always combine five * signed bits into a signed digit: * * s_(5j + 4) s_(5j + 3) s_(5j + 2) s_(5j + 1) s_(5j) * * The sign-alternating property implies that the resulting digit values are * integers from -16 to 16. * * Of course, we don't actually need to compute the signed digits s_i as an * intermediate step (that's just a nice way to see how this scheme relates * to the wNAF): a direct computation obtains the recoded digit from the * six bits b_(5j + 4) ... b_(5j - 1). * * This function takes those six bits as an integer (0 .. 63), writing the * recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute * value, in the range 0 .. 16). Note that this integer essentially provides * the input bits "shifted to the left" by one position: for example, the input * to compute the least significant recoded digit, given that there's no bit * b_-1, has to be b_4 b_3 b_2 b_1 b_0 0. * */ void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign, unsigned char *digit, unsigned char in) { unsigned char s, d; s = ~((in >> 5) - 1); /* sets all bits to MSB(in), 'in' seen as * 6-bit value */ d = (1 << 6) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); *sign = s & 1; *digit = d; } #endif openssl-1.1.1f/crypto/ec/ecp_nistz256.c000066400000000000000000001660471364063235100176720ustar00rootroot00000000000000/* * Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2014, Intel Corporation. All Rights Reserved. * Copyright (c) 2015, CloudFlare, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3) * (1) Intel Corporation, Israel Development Center, Haifa, Israel * (2) University of Haifa, Israel * (3) CloudFlare, Inc. * * Reference: * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with * 256 Bit Primes" */ #include #include "internal/cryptlib.h" #include "crypto/bn.h" #include "ec_local.h" #include "internal/refcount.h" #if BN_BITS2 != 64 # define TOBN(hi,lo) lo,hi #else # define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo) #endif #if defined(__GNUC__) # define ALIGN32 __attribute((aligned(32))) #elif defined(_MSC_VER) # define ALIGN32 __declspec(align(32)) #else # define ALIGN32 #endif #define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N) #define P256_LIMBS (256/BN_BITS2) typedef unsigned short u16; typedef struct { BN_ULONG X[P256_LIMBS]; BN_ULONG Y[P256_LIMBS]; BN_ULONG Z[P256_LIMBS]; } P256_POINT; typedef struct { BN_ULONG X[P256_LIMBS]; BN_ULONG Y[P256_LIMBS]; } P256_POINT_AFFINE; typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; /* structure for precomputed multiples of the generator */ struct nistz256_pre_comp_st { const EC_GROUP *group; /* Parent EC_GROUP object */ size_t w; /* Window size */ /* * Constant time access to the X and Y coordinates of the pre-computed, * generator multiplies, in the Montgomery domain. Pre-calculated * multiplies are stored in affine form. */ PRECOMP256_ROW *precomp; void *precomp_storage; CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; }; /* Functions implemented in assembly */ /* * Most of below mentioned functions *preserve* the property of inputs * being fully reduced, i.e. being in [0, modulus) range. Simply put if * inputs are fully reduced, then output is too. Note that reverse is * not true, in sense that given partially reduced inputs output can be * either, not unlikely reduced. And "most" in first sentence refers to * the fact that given the calculations flow one can tolerate that * addition, 1st function below, produces partially reduced result *if* * multiplications by 2 and 3, which customarily use addition, fully * reduce it. This effectively gives two options: a) addition produces * fully reduced result [as long as inputs are, just like remaining * functions]; b) addition is allowed to produce partially reduced * result, but multiplications by 2 and 3 perform additional reduction * step. Choice between the two can be platform-specific, but it was a) * in all cases so far... */ /* Modular add: res = a+b mod P */ void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); /* Modular mul by 2: res = 2*a mod P */ void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Modular mul by 3: res = 3*a mod P */ void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Modular div by 2: res = a/2 mod P */ void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Modular sub: res = a-b mod P */ void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); /* Modular neg: res = -a mod P */ void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Montgomery mul: res = a*b*2^-256 mod P */ void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); /* Montgomery sqr: res = a*a*2^-256 mod P */ void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); /* Convert a number from Montgomery domain, by multiplying with 1 */ void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG in[P256_LIMBS]); /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/ void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG in[P256_LIMBS]); /* Functions that perform constant time access to the precomputed tables */ void ecp_nistz256_scatter_w5(P256_POINT *val, const P256_POINT *in_t, int idx); void ecp_nistz256_gather_w5(P256_POINT *val, const P256_POINT *in_t, int idx); void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val, const P256_POINT_AFFINE *in_t, int idx); void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val, const P256_POINT_AFFINE *in_t, int idx); /* One converted into the Montgomery domain */ static const BN_ULONG ONE[P256_LIMBS] = { TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe) }; static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group); /* Precomputed tables for the default generator */ extern const PRECOMP256_ROW ecp_nistz256_precomputed[37]; /* Recode window to a signed digit, see ecp_nistputil.c for details */ static unsigned int _booth_recode_w5(unsigned int in) { unsigned int s, d; s = ~((in >> 5) - 1); d = (1 << 6) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } static unsigned int _booth_recode_w7(unsigned int in) { unsigned int s, d; s = ~((in >> 7) - 1); d = (1 << 8) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); return (d << 1) + (s & 1); } static void copy_conditional(BN_ULONG dst[P256_LIMBS], const BN_ULONG src[P256_LIMBS], BN_ULONG move) { BN_ULONG mask1 = 0-move; BN_ULONG mask2 = ~mask1; dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); if (P256_LIMBS == 8) { dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); } } static BN_ULONG is_zero(BN_ULONG in) { in |= (0 - in); in = ~in; in >>= BN_BITS2 - 1; return in; } static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]) { BN_ULONG res; res = a[0] ^ b[0]; res |= a[1] ^ b[1]; res |= a[2] ^ b[2]; res |= a[3] ^ b[3]; if (P256_LIMBS == 8) { res |= a[4] ^ b[4]; res |= a[5] ^ b[5]; res |= a[6] ^ b[6]; res |= a[7] ^ b[7]; } return is_zero(res); } static BN_ULONG is_one(const BIGNUM *z) { BN_ULONG res = 0; BN_ULONG *a = bn_get_words(z); if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) { res = a[0] ^ ONE[0]; res |= a[1] ^ ONE[1]; res |= a[2] ^ ONE[2]; res |= a[3] ^ ONE[3]; if (P256_LIMBS == 8) { res |= a[4] ^ ONE[4]; res |= a[5] ^ ONE[5]; res |= a[6] ^ ONE[6]; /* * no check for a[7] (being zero) on 32-bit platforms, * because value of "one" takes only 7 limbs. */ } res = is_zero(res); } return res; } /* * For reference, this macro is used only when new ecp_nistz256 assembly * module is being developed. For example, configure with * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions * performing simplest arithmetic operations on 256-bit vectors. Then * work on implementation of higher-level functions performing point * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION * and never define it again. (The correct macro denoting presence of * ecp_nistz256 module is ECP_NISTZ256_ASM.) */ #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b); void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a, const P256_POINT_AFFINE *b); #else /* Point double: r = 2*a */ static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a) { BN_ULONG S[P256_LIMBS]; BN_ULONG M[P256_LIMBS]; BN_ULONG Zsqr[P256_LIMBS]; BN_ULONG tmp0[P256_LIMBS]; const BN_ULONG *in_x = a->X; const BN_ULONG *in_y = a->Y; const BN_ULONG *in_z = a->Z; BN_ULONG *res_x = r->X; BN_ULONG *res_y = r->Y; BN_ULONG *res_z = r->Z; ecp_nistz256_mul_by_2(S, in_y); ecp_nistz256_sqr_mont(Zsqr, in_z); ecp_nistz256_sqr_mont(S, S); ecp_nistz256_mul_mont(res_z, in_z, in_y); ecp_nistz256_mul_by_2(res_z, res_z); ecp_nistz256_add(M, in_x, Zsqr); ecp_nistz256_sub(Zsqr, in_x, Zsqr); ecp_nistz256_sqr_mont(res_y, S); ecp_nistz256_div_by_2(res_y, res_y); ecp_nistz256_mul_mont(M, M, Zsqr); ecp_nistz256_mul_by_3(M, M); ecp_nistz256_mul_mont(S, S, in_x); ecp_nistz256_mul_by_2(tmp0, S); ecp_nistz256_sqr_mont(res_x, M); ecp_nistz256_sub(res_x, res_x, tmp0); ecp_nistz256_sub(S, S, res_x); ecp_nistz256_mul_mont(S, S, M); ecp_nistz256_sub(res_y, S, res_y); } /* Point addition: r = a+b */ static void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b) { BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS]; BN_ULONG Z1sqr[P256_LIMBS]; BN_ULONG Z2sqr[P256_LIMBS]; BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; BN_ULONG Hsqr[P256_LIMBS]; BN_ULONG Rsqr[P256_LIMBS]; BN_ULONG Hcub[P256_LIMBS]; BN_ULONG res_x[P256_LIMBS]; BN_ULONG res_y[P256_LIMBS]; BN_ULONG res_z[P256_LIMBS]; BN_ULONG in1infty, in2infty; const BN_ULONG *in1_x = a->X; const BN_ULONG *in1_y = a->Y; const BN_ULONG *in1_z = a->Z; const BN_ULONG *in2_x = b->X; const BN_ULONG *in2_y = b->Y; const BN_ULONG *in2_z = b->Z; /* * Infinity in encoded as (,,0) */ in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); if (P256_LIMBS == 8) in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]); if (P256_LIMBS == 8) in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]); in1infty = is_zero(in1infty); in2infty = is_zero(in2infty); ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */ ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */ ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */ ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */ ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */ ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */ /* * The formulae are incorrect if the points are equal so we check for * this and do doubling if this happens. * * Points here are in Jacobian projective coordinates (Xi, Yi, Zi) * that are bound to the affine coordinates (xi, yi) by the following * equations: * - xi = Xi / (Zi)^2 * - y1 = Yi / (Zi)^3 * * For the sake of optimization, the algorithm operates over * intermediate variables U1, U2 and S1, S2 that are derived from * the projective coordinates: * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2 * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3 * * It is easy to prove that is_equal(U1, U2) implies that the affine * x-coordinates are equal, or either point is at infinity. * Likewise is_equal(S1, S2) implies that the affine y-coordinates are * equal, or either point is at infinity. * * The special case of either point being the point at infinity (Z1 or Z2 * is zero), is handled separately later on in this function, so we avoid * jumping to point_double here in those special cases. * * When both points are inverse of each other, we know that the affine * x-coordinates are equal, and the y-coordinates have different sign. * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2 * will equal 0, thus the result is infinity, if we simply let this * function continue normally. * * We use bitwise operations to avoid potential side-channels introduced by * the short-circuiting behaviour of boolean operators. */ if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) { /* * This is obviously not constant-time but it should never happen during * single point multiplication, so there is no timing leak for ECDH or * ECDSA signing. */ ecp_nistz256_point_double(r, a); return; } ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */ ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */ ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */ ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */ ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */ ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ ecp_nistz256_sub(res_x, Rsqr, Hsqr); ecp_nistz256_sub(res_x, res_x, Hcub); ecp_nistz256_sub(res_y, U2, res_x); ecp_nistz256_mul_mont(S2, S1, Hcub); ecp_nistz256_mul_mont(res_y, R, res_y); ecp_nistz256_sub(res_y, res_y, S2); copy_conditional(res_x, in2_x, in1infty); copy_conditional(res_y, in2_y, in1infty); copy_conditional(res_z, in2_z, in1infty); copy_conditional(res_x, in1_x, in2infty); copy_conditional(res_y, in1_y, in2infty); copy_conditional(res_z, in1_z, in2infty); memcpy(r->X, res_x, sizeof(res_x)); memcpy(r->Y, res_y, sizeof(res_y)); memcpy(r->Z, res_z, sizeof(res_z)); } /* Point addition when b is known to be affine: r = a+b */ static void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a, const P256_POINT_AFFINE *b) { BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; BN_ULONG Z1sqr[P256_LIMBS]; BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; BN_ULONG Hsqr[P256_LIMBS]; BN_ULONG Rsqr[P256_LIMBS]; BN_ULONG Hcub[P256_LIMBS]; BN_ULONG res_x[P256_LIMBS]; BN_ULONG res_y[P256_LIMBS]; BN_ULONG res_z[P256_LIMBS]; BN_ULONG in1infty, in2infty; const BN_ULONG *in1_x = a->X; const BN_ULONG *in1_y = a->Y; const BN_ULONG *in1_z = a->Z; const BN_ULONG *in2_x = b->X; const BN_ULONG *in2_y = b->Y; /* * Infinity in encoded as (,,0) */ in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); if (P256_LIMBS == 8) in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); /* * In affine representation we encode infinity as (0,0), which is * not on the curve, so it is OK */ in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] | in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]); if (P256_LIMBS == 8) in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] | in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]); in1infty = is_zero(in1infty); in2infty = is_zero(in2infty); ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */ ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */ ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */ ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */ ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */ ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */ ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ ecp_nistz256_sub(res_x, Rsqr, Hsqr); ecp_nistz256_sub(res_x, res_x, Hcub); ecp_nistz256_sub(H, U2, res_x); ecp_nistz256_mul_mont(S2, in1_y, Hcub); ecp_nistz256_mul_mont(H, H, R); ecp_nistz256_sub(res_y, H, S2); copy_conditional(res_x, in2_x, in1infty); copy_conditional(res_x, in1_x, in2infty); copy_conditional(res_y, in2_y, in1infty); copy_conditional(res_y, in1_y, in2infty); copy_conditional(res_z, ONE, in1infty); copy_conditional(res_z, in1_z, in2infty); memcpy(r->X, res_x, sizeof(res_x)); memcpy(r->Y, res_y, sizeof(res_y)); memcpy(r->Z, res_z, sizeof(res_z)); } #endif /* r = in^-1 mod p */ static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS], const BN_ULONG in[P256_LIMBS]) { /* * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff * ffffffff ffffffff We use FLT and used poly-2 as exponent */ BN_ULONG p2[P256_LIMBS]; BN_ULONG p4[P256_LIMBS]; BN_ULONG p8[P256_LIMBS]; BN_ULONG p16[P256_LIMBS]; BN_ULONG p32[P256_LIMBS]; BN_ULONG res[P256_LIMBS]; int i; ecp_nistz256_sqr_mont(res, in); ecp_nistz256_mul_mont(p2, res, in); /* 3*p */ ecp_nistz256_sqr_mont(res, p2); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p4, res, p2); /* f*p */ ecp_nistz256_sqr_mont(res, p4); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */ ecp_nistz256_sqr_mont(res, p8); for (i = 0; i < 7; i++) ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */ ecp_nistz256_sqr_mont(res, p16); for (i = 0; i < 15; i++) ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */ ecp_nistz256_sqr_mont(res, p32); for (i = 0; i < 31; i++) ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, in); for (i = 0; i < 32 * 4; i++) ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p32); for (i = 0; i < 32; i++) ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p32); for (i = 0; i < 16; i++) ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p16); for (i = 0; i < 8; i++) ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p8); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p4); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, p2); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_sqr_mont(res, res); ecp_nistz256_mul_mont(res, res, in); memcpy(r, res, sizeof(res)); } /* * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and * returns one if it fits. Otherwise it returns zero. */ __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], const BIGNUM *in) { return bn_copy_words(out, in, P256_LIMBS); } /* r = sum(scalar[i]*point[i]) */ __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r, const BIGNUM **scalar, const EC_POINT **point, size_t num, BN_CTX *ctx) { size_t i; int j, ret = 0; unsigned int idx; unsigned char (*p_str)[33] = NULL; const unsigned int window_size = 5; const unsigned int mask = (1 << (window_size + 1)) - 1; unsigned int wvalue; P256_POINT *temp; /* place for 5 temporary points */ const BIGNUM **scalars = NULL; P256_POINT (*table)[16] = NULL; void *table_storage = NULL; if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT) || (table_storage = OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL || (p_str = OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) { ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE); goto err; } table = (void *)ALIGNPTR(table_storage, 64); temp = (P256_POINT *)(table + num); for (i = 0; i < num; i++) { P256_POINT *row = table[i]; /* This is an unusual input, we don't guarantee constant-timeness. */ if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) { BIGNUM *mod; if ((mod = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_nnmod(mod, scalar[i], group->order, ctx)) { ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB); goto err; } scalars[i] = mod; } else scalars[i] = scalar[i]; for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) { BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES]; p_str[i][j + 0] = (unsigned char)d; p_str[i][j + 1] = (unsigned char)(d >> 8); p_str[i][j + 2] = (unsigned char)(d >> 16); p_str[i][j + 3] = (unsigned char)(d >>= 24); if (BN_BYTES == 8) { d >>= 8; p_str[i][j + 4] = (unsigned char)d; p_str[i][j + 5] = (unsigned char)(d >> 8); p_str[i][j + 6] = (unsigned char)(d >> 16); p_str[i][j + 7] = (unsigned char)(d >> 24); } } for (; j < 33; j++) p_str[i][j] = 0; if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X) || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y) || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) { ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, EC_R_COORDINATES_OUT_OF_RANGE); goto err; } /* * row[0] is implicitly (0,0,0) (the point at infinity), therefore it * is not stored. All other values are actually stored with an offset * of -1 in table. */ ecp_nistz256_scatter_w5 (row, &temp[0], 1); ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */ ecp_nistz256_scatter_w5 (row, &temp[1], 2); ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */ ecp_nistz256_scatter_w5 (row, &temp[2], 3); ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */ ecp_nistz256_scatter_w5 (row, &temp[1], 4); ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */ ecp_nistz256_scatter_w5 (row, &temp[2], 6); ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */ ecp_nistz256_scatter_w5 (row, &temp[3], 5); ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */ ecp_nistz256_scatter_w5 (row, &temp[4], 7); ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */ ecp_nistz256_scatter_w5 (row, &temp[1], 8); ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */ ecp_nistz256_scatter_w5 (row, &temp[2], 12); ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */ ecp_nistz256_scatter_w5 (row, &temp[3], 10); ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */ ecp_nistz256_scatter_w5 (row, &temp[4], 14); ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/ ecp_nistz256_scatter_w5 (row, &temp[2], 13); ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/ ecp_nistz256_scatter_w5 (row, &temp[3], 11); ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/ ecp_nistz256_scatter_w5 (row, &temp[4], 15); ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */ ecp_nistz256_scatter_w5 (row, &temp[2], 9); ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */ ecp_nistz256_scatter_w5 (row, &temp[1], 16); } idx = 255; wvalue = p_str[0][(idx - 1) / 8]; wvalue = (wvalue >> ((idx - 1) % 8)) & mask; /* * We gather to temp[0], because we know it's position relative * to table */ ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1); memcpy(r, &temp[0], sizeof(temp[0])); while (idx >= 5) { for (i = (idx == 255 ? 1 : 0); i < num; i++) { unsigned int off = (idx - 1) / 8; wvalue = p_str[i][off] | p_str[i][off + 1] << 8; wvalue = (wvalue >> ((idx - 1) % 8)) & mask; wvalue = _booth_recode_w5(wvalue); ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); ecp_nistz256_neg(temp[1].Y, temp[0].Y); copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1)); ecp_nistz256_point_add(r, r, &temp[0]); } idx -= window_size; ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); ecp_nistz256_point_double(r, r); } /* Final window */ for (i = 0; i < num; i++) { wvalue = p_str[i][0]; wvalue = (wvalue << 1) & mask; wvalue = _booth_recode_w5(wvalue); ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); ecp_nistz256_neg(temp[1].Y, temp[0].Y); copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1); ecp_nistz256_point_add(r, r, &temp[0]); } ret = 1; err: OPENSSL_free(table_storage); OPENSSL_free(p_str); OPENSSL_free(scalars); return ret; } /* Coordinates of G, for which we have precomputed tables */ static const BN_ULONG def_xG[P256_LIMBS] = { TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601), TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6) }; static const BN_ULONG def_yG[P256_LIMBS] = { TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c), TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85) }; /* * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256 * generator. */ static int ecp_nistz256_is_affine_G(const EC_POINT *generator) { return (bn_get_top(generator->X) == P256_LIMBS) && (bn_get_top(generator->Y) == P256_LIMBS) && is_equal(bn_get_words(generator->X), def_xG) && is_equal(bn_get_words(generator->Y), def_yG) && is_one(generator->Z); } __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx) { /* * We precompute a table for a Booth encoded exponent (wNAF) based * computation. Each table holds 64 values for safe access, with an * implicit value of infinity at index zero. We use window of size 7, and * therefore require ceil(256/7) = 37 tables. */ const BIGNUM *order; EC_POINT *P = NULL, *T = NULL; const EC_POINT *generator; NISTZ256_PRE_COMP *pre_comp; BN_CTX *new_ctx = NULL; int i, j, k, ret = 0; size_t w; PRECOMP256_ROW *preComputedTable = NULL; unsigned char *precomp_storage = NULL; /* if there is an old NISTZ256_PRE_COMP object, throw it away */ EC_pre_comp_free(group); generator = EC_GROUP_get0_generator(group); if (generator == NULL) { ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR); return 0; } if (ecp_nistz256_is_affine_G(generator)) { /* * No need to calculate tables for the standard generator because we * have them statically. */ return 1; } if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL) return 0; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) goto err; } BN_CTX_start(ctx); order = EC_GROUP_get0_order(group); if (order == NULL) goto err; if (BN_is_zero(order)) { ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER); goto err; } w = 7; if ((precomp_storage = OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) { ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE); goto err; } preComputedTable = (void *)ALIGNPTR(precomp_storage, 64); P = EC_POINT_new(group); T = EC_POINT_new(group); if (P == NULL || T == NULL) goto err; /* * The zero entry is implicitly infinity, and we skip it, storing other * values with -1 offset. */ if (!EC_POINT_copy(T, generator)) goto err; for (k = 0; k < 64; k++) { if (!EC_POINT_copy(P, T)) goto err; for (j = 0; j < 37; j++) { P256_POINT_AFFINE temp; /* * It would be faster to use EC_POINTs_make_affine and * make multiple points affine at the same time. */ if (!EC_POINT_make_affine(group, P, ctx)) goto err; if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) || !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) { ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_COORDINATES_OUT_OF_RANGE); goto err; } ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k); for (i = 0; i < 7; i++) { if (!EC_POINT_dbl(group, P, P, ctx)) goto err; } } if (!EC_POINT_add(group, T, T, generator, ctx)) goto err; } pre_comp->group = group; pre_comp->w = w; pre_comp->precomp = preComputedTable; pre_comp->precomp_storage = precomp_storage; precomp_storage = NULL; SETPRECOMP(group, nistz256, pre_comp); pre_comp = NULL; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); EC_nistz256_pre_comp_free(pre_comp); OPENSSL_free(precomp_storage); EC_POINT_free(P); EC_POINT_free(T); return ret; } /* * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great * code processing 4 points in parallel, corresponding serial operation * is several times slower, because it uses 29x29=58-bit multiplication * as opposite to 64x64=128-bit in integer-only scalar case. As result * it doesn't provide *significant* performance improvement. Note that * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work, * you'd need to compile even asm/ecp_nistz256-avx.pl module. */ #if defined(ECP_NISTZ256_AVX2) # if !(defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64)) || \ !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */ # undef ECP_NISTZ256_AVX2 # else /* Constant time access, loading four values, from four consecutive tables */ void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in, int index0, int index1, int index2, int index3); void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in); void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4); void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4, const void *Bx4); void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4, const void *Bx4); void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4); void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4); void ecp_nistz256_avx2_set1(void *RESULTx4); int ecp_nistz_avx2_eligible(void); static void booth_recode_w7(unsigned char *sign, unsigned char *digit, unsigned char in) { unsigned char s, d; s = ~((in >> 7) - 1); d = (1 << 8) - in - 1; d = (d & s) | (in & ~s); d = (d >> 1) + (d & 1); *sign = s & 1; *digit = d; } /* * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the * precomputed table. It does 4 affine point additions in parallel, * significantly speeding up point multiplication for a fixed value. */ static void ecp_nistz256_avx2_mul_g(P256_POINT *r, unsigned char p_str[33], const P256_POINT_AFFINE(*preComputedTable)[64]) { const unsigned int window_size = 7; const unsigned int mask = (1 << (window_size + 1)) - 1; unsigned int wvalue; /* Using 4 windows at a time */ unsigned char sign0, digit0; unsigned char sign1, digit1; unsigned char sign2, digit2; unsigned char sign3, digit3; unsigned int idx = 0; BN_ULONG tmp[P256_LIMBS]; int i; ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 }; ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 }; ALIGN32 P256_POINT_AFFINE point_arr[4]; ALIGN32 P256_POINT res_point_arr[4]; /* Initial four windows */ wvalue = *((u16 *) & p_str[0]); wvalue = (wvalue << 1) & mask; idx += window_size; booth_recode_w7(&sign0, &digit0, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign1, &digit1, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign2, &digit2, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign3, &digit3, wvalue); ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0], digit0, digit1, digit2, digit3); ecp_nistz256_neg(tmp, point_arr[0].Y); copy_conditional(point_arr[0].Y, tmp, sign0); ecp_nistz256_neg(tmp, point_arr[1].Y); copy_conditional(point_arr[1].Y, tmp, sign1); ecp_nistz256_neg(tmp, point_arr[2].Y); copy_conditional(point_arr[2].Y, tmp, sign2); ecp_nistz256_neg(tmp, point_arr[3].Y); copy_conditional(point_arr[3].Y, tmp, sign3); ecp_nistz256_avx2_transpose_convert(aX4, point_arr); ecp_nistz256_avx2_to_mont(aX4, aX4); ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]); ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign0, &digit0, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign1, &digit1, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign2, &digit2, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign3, &digit3, wvalue); ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1], digit0, digit1, digit2, digit3); ecp_nistz256_neg(tmp, point_arr[0].Y); copy_conditional(point_arr[0].Y, tmp, sign0); ecp_nistz256_neg(tmp, point_arr[1].Y); copy_conditional(point_arr[1].Y, tmp, sign1); ecp_nistz256_neg(tmp, point_arr[2].Y); copy_conditional(point_arr[2].Y, tmp, sign2); ecp_nistz256_neg(tmp, point_arr[3].Y); copy_conditional(point_arr[3].Y, tmp, sign3); ecp_nistz256_avx2_transpose_convert(bX4, point_arr); ecp_nistz256_avx2_to_mont(bX4, bX4); ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]); /* Optimized when both inputs are affine */ ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4); for (i = 2; i < 9; i++) { wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign0, &digit0, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign1, &digit1, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign2, &digit2, wvalue); wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; booth_recode_w7(&sign3, &digit3, wvalue); ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * i], digit0, digit1, digit2, digit3); ecp_nistz256_neg(tmp, point_arr[0].Y); copy_conditional(point_arr[0].Y, tmp, sign0); ecp_nistz256_neg(tmp, point_arr[1].Y); copy_conditional(point_arr[1].Y, tmp, sign1); ecp_nistz256_neg(tmp, point_arr[2].Y); copy_conditional(point_arr[2].Y, tmp, sign2); ecp_nistz256_neg(tmp, point_arr[3].Y); copy_conditional(point_arr[3].Y, tmp, sign3); ecp_nistz256_avx2_transpose_convert(bX4, point_arr); ecp_nistz256_avx2_to_mont(bX4, bX4); ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]); ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4); } ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]); ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]); ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]); ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4); /* Last window is performed serially */ wvalue = *((u16 *) & p_str[(idx - 1) / 8]); wvalue = (wvalue >> ((idx - 1) % 8)) & mask; booth_recode_w7(&sign0, &digit0, wvalue); ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r, preComputedTable[36], digit0); ecp_nistz256_neg(tmp, r->Y); copy_conditional(r->Y, tmp, sign0); memcpy(r->Z, ONE, sizeof(ONE)); /* Sum the four windows */ ecp_nistz256_point_add(r, r, &res_point_arr[0]); ecp_nistz256_point_add(r, r, &res_point_arr[1]); ecp_nistz256_point_add(r, r, &res_point_arr[2]); ecp_nistz256_point_add(r, r, &res_point_arr[3]); } # endif #endif __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group, const P256_POINT_AFFINE *in, BN_CTX *ctx) { int ret = 0; if ((ret = bn_set_words(out->X, in->X, P256_LIMBS)) && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS)) && (ret = bn_set_words(out->Z, ONE, P256_LIMBS))) out->Z_is_one = 1; return ret; } /* r = scalar*G + sum(scalars[i]*points[i]) */ __owur static int ecp_nistz256_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0; unsigned char p_str[33] = { 0 }; const PRECOMP256_ROW *preComputedTable = NULL; const NISTZ256_PRE_COMP *pre_comp = NULL; const EC_POINT *generator = NULL; const BIGNUM **new_scalars = NULL; const EC_POINT **new_points = NULL; unsigned int idx = 0; const unsigned int window_size = 7; const unsigned int mask = (1 << (window_size + 1)) - 1; unsigned int wvalue; ALIGN32 union { P256_POINT p; P256_POINT_AFFINE a; } t, p; BIGNUM *tmp_scalar; if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) { ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); return 0; } BN_CTX_start(ctx); if (scalar) { generator = EC_GROUP_get0_generator(group); if (generator == NULL) { ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR); goto err; } /* look if we can use precomputed multiples of generator */ pre_comp = group->pre_comp.nistz256; if (pre_comp) { /* * If there is a precomputed table for the generator, check that * it was generated with the same generator. */ EC_POINT *pre_comp_generator = EC_POINT_new(group); if (pre_comp_generator == NULL) goto err; ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1); if (!ecp_nistz256_set_from_affine(pre_comp_generator, group, &p.a, ctx)) { EC_POINT_free(pre_comp_generator); goto err; } if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx)) preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp; EC_POINT_free(pre_comp_generator); } if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) { /* * If there is no precomputed data, but the generator is the * default, a hardcoded table of precomputed data is used. This * is because applications, such as Apache, do not use * EC_KEY_precompute_mult. */ preComputedTable = ecp_nistz256_precomputed; } if (preComputedTable) { if ((BN_num_bits(scalar) > 256) || BN_is_negative(scalar)) { if ((tmp_scalar = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB); goto err; } scalar = tmp_scalar; } for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) { BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES]; p_str[i + 0] = (unsigned char)d; p_str[i + 1] = (unsigned char)(d >> 8); p_str[i + 2] = (unsigned char)(d >> 16); p_str[i + 3] = (unsigned char)(d >>= 24); if (BN_BYTES == 8) { d >>= 8; p_str[i + 4] = (unsigned char)d; p_str[i + 5] = (unsigned char)(d >> 8); p_str[i + 6] = (unsigned char)(d >> 16); p_str[i + 7] = (unsigned char)(d >> 24); } } for (; i < 33; i++) p_str[i] = 0; #if defined(ECP_NISTZ256_AVX2) if (ecp_nistz_avx2_eligible()) { ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable); } else #endif { BN_ULONG infty; /* First window */ wvalue = (p_str[0] << 1) & mask; idx += window_size; wvalue = _booth_recode_w7(wvalue); ecp_nistz256_gather_w7(&p.a, preComputedTable[0], wvalue >> 1); ecp_nistz256_neg(p.p.Z, p.p.Y); copy_conditional(p.p.Y, p.p.Z, wvalue & 1); /* * Since affine infinity is encoded as (0,0) and * Jacobian ias (,,0), we need to harmonize them * by assigning "one" or zero to Z. */ infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] | p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]); if (P256_LIMBS == 8) infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] | p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]); infty = 0 - is_zero(infty); infty = ~infty; p.p.Z[0] = ONE[0] & infty; p.p.Z[1] = ONE[1] & infty; p.p.Z[2] = ONE[2] & infty; p.p.Z[3] = ONE[3] & infty; if (P256_LIMBS == 8) { p.p.Z[4] = ONE[4] & infty; p.p.Z[5] = ONE[5] & infty; p.p.Z[6] = ONE[6] & infty; p.p.Z[7] = ONE[7] & infty; } for (i = 1; i < 37; i++) { unsigned int off = (idx - 1) / 8; wvalue = p_str[off] | p_str[off + 1] << 8; wvalue = (wvalue >> ((idx - 1) % 8)) & mask; idx += window_size; wvalue = _booth_recode_w7(wvalue); ecp_nistz256_gather_w7(&t.a, preComputedTable[i], wvalue >> 1); ecp_nistz256_neg(t.p.Z, t.a.Y); copy_conditional(t.a.Y, t.p.Z, wvalue & 1); ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); } } } else { p_is_infinity = 1; no_precomp_for_generator = 1; } } else p_is_infinity = 1; if (no_precomp_for_generator) { /* * Without a precomputed table for the generator, it has to be * handled like a normal point. */ new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *)); if (new_scalars == NULL) { ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); goto err; } new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *)); if (new_points == NULL) { ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); goto err; } memcpy(new_scalars, scalars, num * sizeof(BIGNUM *)); new_scalars[num] = scalar; memcpy(new_points, points, num * sizeof(EC_POINT *)); new_points[num] = generator; scalars = new_scalars; points = new_points; num++; } if (num) { P256_POINT *out = &t.p; if (p_is_infinity) out = &p.p; if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx)) goto err; if (!p_is_infinity) ecp_nistz256_point_add(&p.p, &p.p, out); } /* Not constant-time, but we're only operating on the public output. */ if (!bn_set_words(r->X, p.p.X, P256_LIMBS) || !bn_set_words(r->Y, p.p.Y, P256_LIMBS) || !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) { goto err; } r->Z_is_one = is_one(r->Z) & 1; ret = 1; err: BN_CTX_end(ctx); OPENSSL_free(new_points); OPENSSL_free(new_scalars); return ret; } __owur static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { BN_ULONG z_inv2[P256_LIMBS]; BN_ULONG z_inv3[P256_LIMBS]; BN_ULONG x_aff[P256_LIMBS]; BN_ULONG y_aff[P256_LIMBS]; BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS]; BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS]; if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY); return 0; } if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) || !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) || !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) { ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE); return 0; } ecp_nistz256_mod_inverse(z_inv3, point_z); ecp_nistz256_sqr_mont(z_inv2, z_inv3); ecp_nistz256_mul_mont(x_aff, z_inv2, point_x); if (x != NULL) { ecp_nistz256_from_mont(x_ret, x_aff); if (!bn_set_words(x, x_ret, P256_LIMBS)) return 0; } if (y != NULL) { ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); ecp_nistz256_mul_mont(y_aff, z_inv3, point_y); ecp_nistz256_from_mont(y_ret, y_aff); if (!bn_set_words(y, y_ret, P256_LIMBS)) return 0; } return 1; } static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group) { NISTZ256_PRE_COMP *ret = NULL; if (!group) return NULL; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); return ret; } ret->group = group; ret->w = 6; /* default */ ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p) { int i; if (p != NULL) CRYPTO_UP_REF(&p->references, &i, p->lock); return p; } void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre) { int i; if (pre == NULL) return; CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); REF_PRINT_COUNT("EC_nistz256", x); if (i > 0) return; REF_ASSERT_ISNT(i < 0); OPENSSL_free(pre->precomp_storage); CRYPTO_THREAD_lock_free(pre->lock); OPENSSL_free(pre); } static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group) { /* There is a hard-coded table for the default generator. */ const EC_POINT *generator = EC_GROUP_get0_generator(group); if (generator != NULL && ecp_nistz256_is_affine_G(generator)) { /* There is a hard-coded table for the default generator. */ return 1; } return HAVEPRECOMP(group, nistz256); } #if defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__powerpc64__) || defined(_ARCH_PP64) || \ defined(__aarch64__) /* * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P) */ void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]); void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS], int rep); static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r, const BIGNUM *x, BN_CTX *ctx) { /* RR = 2^512 mod ord(p256) */ static const BN_ULONG RR[P256_LIMBS] = { TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6), TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620) }; /* The constant 1 (unlike ONE that is one in Montgomery representation) */ static const BN_ULONG one[P256_LIMBS] = { TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0) }; /* * We don't use entry 0 in the table, so we omit it and address * with -1 offset. */ BN_ULONG table[15][P256_LIMBS]; BN_ULONG out[P256_LIMBS], t[P256_LIMBS]; int i, ret = 0; enum { i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111, i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32 }; /* * Catch allocation failure early. */ if (bn_wexpand(r, P256_LIMBS) == NULL) { ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB); goto err; } if ((BN_num_bits(x) > 256) || BN_is_negative(x)) { BIGNUM *tmp; if ((tmp = BN_CTX_get(ctx)) == NULL || !BN_nnmod(tmp, x, group->order, ctx)) { ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB); goto err; } x = tmp; } if (!ecp_nistz256_bignum_to_field_elem(t, x)) { ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE); goto err; } ecp_nistz256_ord_mul_mont(table[0], t, RR); #if 0 /* * Original sparse-then-fixed-window algorithm, retained for reference. */ for (i = 2; i < 16; i += 2) { ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1); ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]); } /* * The top 128bit of the exponent are highly redudndant, so we * perform an optimized flow */ ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */ ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */ ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */ ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */ ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */ ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */ ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */ ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */ ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */ ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */ /* * The bottom 128 bit of the exponent are processed with fixed 4-bit window */ for(i = 0; i < 32; i++) { /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2), * split into nibbles */ static const unsigned char expLo[32] = { 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4, 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf }; ecp_nistz256_ord_sqr_mont(out, out, 4); /* The exponent is public, no need in constant-time access */ ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]); } #else /* * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion * * Even though this code path spares 12 squarings, 4.5%, and 13 * multiplications, 25%, on grand scale sign operation is not that * much faster, not more that 2%... */ /* pre-calculate powers */ ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); /* calculations */ ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64); ecp_nistz256_ord_mul_mont(out, out, table[i_x32]); for (i = 0; i < 27; i++) { static const struct { unsigned char p, i; } chain[27] = { { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 }, { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 }, { 4, i_101 }, { 3, i_101 }, { 3, i_101 }, { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 }, { 2, i_1 }, { 5, i_1 }, { 6, i_1111 }, { 5, i_111 }, { 4, i_111 }, { 5, i_111 }, { 5, i_101 }, { 3, i_11 }, { 10, i_101111 }, { 2, i_11 }, { 5, i_11 }, { 5, i_11 }, { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 } }; ecp_nistz256_ord_sqr_mont(out, out, chain[i].p); ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]); } #endif ecp_nistz256_ord_mul_mont(out, out, one); /* * Can't fail, but check return code to be consistent anyway. */ if (!bn_set_words(r, out, P256_LIMBS)) goto err; ret = 1; err: return ret; } #else # define ecp_nistz256_inv_mod_ord NULL #endif const EC_METHOD *EC_GFp_nistz256_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_prime_field, ec_GFp_mont_group_init, ec_GFp_mont_group_finish, ec_GFp_mont_group_clear_finish, ec_GFp_mont_group_copy, ec_GFp_mont_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, ec_GFp_simple_point_clear_finish, ec_GFp_simple_point_copy, ec_GFp_simple_point_set_to_infinity, ec_GFp_simple_set_Jprojective_coordinates_GFp, ec_GFp_simple_get_Jprojective_coordinates_GFp, ec_GFp_simple_point_set_affine_coordinates, ecp_nistz256_get_affine, 0, 0, 0, ec_GFp_simple_add, ec_GFp_simple_dbl, ec_GFp_simple_invert, ec_GFp_simple_is_at_infinity, ec_GFp_simple_is_on_curve, ec_GFp_simple_cmp, ec_GFp_simple_make_affine, ec_GFp_simple_points_make_affine, ecp_nistz256_points_mul, /* mul */ ecp_nistz256_mult_precompute, /* precompute_mult */ ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */ ec_GFp_mont_field_mul, ec_GFp_mont_field_sqr, 0, /* field_div */ ec_GFp_mont_field_inv, ec_GFp_mont_field_encode, ec_GFp_mont_field_decode, ec_GFp_mont_field_set_to_one, ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */ 0, /* blind_coordinates */ 0, /* ladder_pre */ 0, /* ladder_step */ 0 /* ladder_post */ }; return &ret; } openssl-1.1.1f/crypto/ec/ecp_nistz256_table.c000066400000000000000000022657501364063235100210440ustar00rootroot00000000000000/* * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This is the precomputed constant time access table for the code in * ecp_montp256.c, for the default generator. The table consists of 37 * subtables, each subtable contains 64 affine points. The affine points are * encoded as eight uint64's, four for the x coordinate and four for the y. * Both values are in little-endian order. There are 37 tables because a * signed, 6-bit wNAF form of the scalar is used and ceil(256/(6 + 1)) = 37. * Within each table there are 64 values because the 6-bit wNAF value can * take 64 values, ignoring the sign bit, which is implemented by performing * a negation of the affine point when required. We would like to align it * to 2MB in order to increase the chances of using a large page but that * appears to lead to invalid ELF files being produced. */ #if defined(__GNUC__) __attribute((aligned(4096))) #elif defined(_MSC_VER) __declspec(align(4096)) #elif defined(__SUNPRO_C) # pragma align 4096(ecp_nistz256_precomputed) #endif static const BN_ULONG ecp_nistz256_precomputed[37][64 * sizeof(P256_POINT_AFFINE) / sizeof(BN_ULONG)] = { {TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601), TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6), TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c), TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85), TOBN(0x850046d4, 0x10ddd64d), TOBN(0xaa6ae3c1, 0xa433827d), TOBN(0x73220503, 0x8d1490d9), TOBN(0xf6bb32e4, 0x3dcf3a3b), TOBN(0x2f3648d3, 0x61bee1a5), TOBN(0x152cd7cb, 0xeb236ff8), TOBN(0x19a8fb0e, 0x92042dbe), TOBN(0x78c57751, 0x0a5b8a3b), TOBN(0xffac3f90, 0x4eebc127), TOBN(0xb027f84a, 0x087d81fb), TOBN(0x66ad77dd, 0x87cbbc98), TOBN(0x26936a3f, 0xb6ff747e), TOBN(0xb04c5c1f, 0xc983a7eb), TOBN(0x583e47ad, 0x0861fe1a), TOBN(0x78820831, 0x1a2ee98e), TOBN(0xd5f06a29, 0xe587cc07), TOBN(0x74b0b50d, 0x46918dcc), TOBN(0x4650a6ed, 0xc623c173), TOBN(0x0cdaacac, 0xe8100af2), TOBN(0x577362f5, 0x41b0176b), TOBN(0x2d96f24c, 0xe4cbaba6), TOBN(0x17628471, 0xfad6f447), TOBN(0x6b6c36de, 0xe5ddd22e), TOBN(0x84b14c39, 0x4c5ab863), TOBN(0xbe1b8aae, 0xc45c61f5), TOBN(0x90ec649a, 0x94b9537d), TOBN(0x941cb5aa, 0xd076c20c), TOBN(0xc9079605, 0x890523c8), TOBN(0xeb309b4a, 0xe7ba4f10), TOBN(0x73c568ef, 0xe5eb882b), TOBN(0x3540a987, 0x7e7a1f68), TOBN(0x73a076bb, 0x2dd1e916), TOBN(0x40394737, 0x3e77664a), TOBN(0x55ae744f, 0x346cee3e), TOBN(0xd50a961a, 0x5b17a3ad), TOBN(0x13074b59, 0x54213673), TOBN(0x93d36220, 0xd377e44b), TOBN(0x299c2b53, 0xadff14b5), TOBN(0xf424d44c, 0xef639f11), TOBN(0xa4c9916d, 0x4a07f75f), TOBN(0x0746354e, 0xa0173b4f), TOBN(0x2bd20213, 0xd23c00f7), TOBN(0xf43eaab5, 0x0c23bb08), TOBN(0x13ba5119, 0xc3123e03), TOBN(0x2847d030, 0x3f5b9d4d), TOBN(0x6742f2f2, 0x5da67bdd), TOBN(0xef933bdc, 0x77c94195), TOBN(0xeaedd915, 0x6e240867), TOBN(0x27f14cd1, 0x9499a78f), TOBN(0x462ab5c5, 0x6f9b3455), TOBN(0x8f90f02a, 0xf02cfc6b), TOBN(0xb763891e, 0xb265230d), TOBN(0xf59da3a9, 0x532d4977), TOBN(0x21e3327d, 0xcf9eba15), TOBN(0x123c7b84, 0xbe60bbf0), TOBN(0x56ec12f2, 0x7706df76), TOBN(0x75c96e8f, 0x264e20e8), TOBN(0xabe6bfed, 0x59a7a841), TOBN(0x2cc09c04, 0x44c8eb00), TOBN(0xe05b3080, 0xf0c4e16b), TOBN(0x1eb7777a, 0xa45f3314), TOBN(0x56af7bed, 0xce5d45e3), TOBN(0x2b6e019a, 0x88b12f1a), TOBN(0x086659cd, 0xfd835f9b), TOBN(0x2c18dbd1, 0x9dc21ec8), TOBN(0x98f9868a, 0x0fcf8139), TOBN(0x737d2cd6, 0x48250b49), TOBN(0xcc61c947, 0x24b3428f), TOBN(0x0c2b4078, 0x80dd9e76), TOBN(0xc43a8991, 0x383fbe08), TOBN(0x5f7d2d65, 0x779be5d2), TOBN(0x78719a54, 0xeb3b4ab5), TOBN(0xea7d260a, 0x6245e404), TOBN(0x9de40795, 0x6e7fdfe0), TOBN(0x1ff3a415, 0x8dac1ab5), TOBN(0x3e7090f1, 0x649c9073), TOBN(0x1a768561, 0x2b944e88), TOBN(0x250f939e, 0xe57f61c8), TOBN(0x0c0daa89, 0x1ead643d), TOBN(0x68930023, 0xe125b88e), TOBN(0x04b71aa7, 0xd2697768), TOBN(0xabdedef5, 0xca345a33), TOBN(0x2409d29d, 0xee37385e), TOBN(0x4ee1df77, 0xcb83e156), TOBN(0x0cac12d9, 0x1cbb5b43), TOBN(0x170ed2f6, 0xca895637), TOBN(0x28228cfa, 0x8ade6d66), TOBN(0x7ff57c95, 0x53238aca), TOBN(0xccc42563, 0x4b2ed709), TOBN(0x0e356769, 0x856fd30d), TOBN(0xbcbcd43f, 0x559e9811), TOBN(0x738477ac, 0x5395b759), TOBN(0x35752b90, 0xc00ee17f), TOBN(0x68748390, 0x742ed2e3), TOBN(0x7cd06422, 0xbd1f5bc1), TOBN(0xfbc08769, 0xc9e7b797), TOBN(0xa242a35b, 0xb0cf664a), TOBN(0x126e48f7, 0x7f9707e3), TOBN(0x1717bf54, 0xc6832660), TOBN(0xfaae7332, 0xfd12c72e), TOBN(0x27b52db7, 0x995d586b), TOBN(0xbe29569e, 0x832237c2), TOBN(0xe8e4193e, 0x2a65e7db), TOBN(0x152706dc, 0x2eaa1bbb), TOBN(0x72bcd8b7, 0xbc60055b), TOBN(0x03cc23ee, 0x56e27e4b), TOBN(0xee337424, 0xe4819370), TOBN(0xe2aa0e43, 0x0ad3da09), TOBN(0x40b8524f, 0x6383c45d), TOBN(0xd7663554, 0x42a41b25), TOBN(0x64efa6de, 0x778a4797), TOBN(0x2042170a, 0x7079adf4), TOBN(0x808b0b65, 0x0bc6fb80), TOBN(0x5882e075, 0x3ffe2e6b), TOBN(0xd5ef2f7c, 0x2c83f549), TOBN(0x54d63c80, 0x9103b723), TOBN(0xf2f11bd6, 0x52a23f9b), TOBN(0x3670c319, 0x4b0b6587), TOBN(0x55c4623b, 0xb1580e9e), TOBN(0x64edf7b2, 0x01efe220), TOBN(0x97091dcb, 0xd53c5c9d), TOBN(0xf17624b6, 0xac0a177b), TOBN(0xb0f13975, 0x2cfe2dff), TOBN(0xc1a35c0a, 0x6c7a574e), TOBN(0x227d3146, 0x93e79987), TOBN(0x0575bf30, 0xe89cb80e), TOBN(0x2f4e247f, 0x0d1883bb), TOBN(0xebd51226, 0x3274c3d0), TOBN(0x5f3e51c8, 0x56ada97a), TOBN(0x4afc964d, 0x8f8b403e), TOBN(0xa6f247ab, 0x412e2979), TOBN(0x675abd1b, 0x6f80ebda), TOBN(0x66a2bd72, 0x5e485a1d), TOBN(0x4b2a5caf, 0x8f4f0b3c), TOBN(0x2626927f, 0x1b847bba), TOBN(0x6c6fc7d9, 0x0502394d), TOBN(0xfea912ba, 0xa5659ae8), TOBN(0x68363aba, 0x25e1a16e), TOBN(0xb8842277, 0x752c41ac), TOBN(0xfe545c28, 0x2897c3fc), TOBN(0x2d36e9e7, 0xdc4c696b), TOBN(0x5806244a, 0xfba977c5), TOBN(0x85665e9b, 0xe39508c1), TOBN(0xf720ee25, 0x6d12597b), TOBN(0x8a979129, 0xd2337a31), TOBN(0x5916868f, 0x0f862bdc), TOBN(0x048099d9, 0x5dd283ba), TOBN(0xe2d1eeb6, 0xfe5bfb4e), TOBN(0x82ef1c41, 0x7884005d), TOBN(0xa2d4ec17, 0xffffcbae), TOBN(0x9161c53f, 0x8aa95e66), TOBN(0x5ee104e1, 0xc5fee0d0), TOBN(0x562e4cec, 0xc135b208), TOBN(0x74e1b265, 0x4783f47d), TOBN(0x6d2a506c, 0x5a3f3b30), TOBN(0xecead9f4, 0xc16762fc), TOBN(0xf29dd4b2, 0xe286e5b9), TOBN(0x1b0fadc0, 0x83bb3c61), TOBN(0x7a75023e, 0x7fac29a4), TOBN(0xc086d5f1, 0xc9477fa3), TOBN(0x0fc61135, 0x2f6f3076), TOBN(0xc99ffa23, 0xe3912a9a), TOBN(0x6a0b0685, 0xd2f8ba3d), TOBN(0xfdc777e8, 0xe93358a4), TOBN(0x94a787bb, 0x35415f04), TOBN(0x640c2d6a, 0x4d23fea4), TOBN(0x9de917da, 0x153a35b5), TOBN(0x793e8d07, 0x5d5cd074), TOBN(0xf4f87653, 0x2de45068), TOBN(0x37c7a7e8, 0x9e2e1f6e), TOBN(0xd0825fa2, 0xa3584069), TOBN(0xaf2cea7c, 0x1727bf42), TOBN(0x0360a4fb, 0x9e4785a9), TOBN(0xe5fda49c, 0x27299f4a), TOBN(0x48068e13, 0x71ac2f71), TOBN(0x83d0687b, 0x9077666f), TOBN(0x6d3883b2, 0x15d02819), TOBN(0x6d0d7550, 0x40dd9a35), TOBN(0x61d7cbf9, 0x1d2b469f), TOBN(0xf97b232f, 0x2efc3115), TOBN(0xa551d750, 0xb24bcbc7), TOBN(0x11ea4949, 0x88a1e356), TOBN(0x7669f031, 0x93cb7501), TOBN(0x595dc55e, 0xca737b8a), TOBN(0xa4a319ac, 0xd837879f), TOBN(0x6fc1b49e, 0xed6b67b0), TOBN(0xe3959933, 0x32f1f3af), TOBN(0x966742eb, 0x65432a2e), TOBN(0x4b8dc9fe, 0xb4966228), TOBN(0x96cc6312, 0x43f43950), TOBN(0x12068859, 0xc9b731ee), TOBN(0x7b948dc3, 0x56f79968), TOBN(0x61e4ad32, 0xed1f8008), TOBN(0xe6c9267a, 0xd8b17538), TOBN(0x1ac7c5eb, 0x857ff6fb), TOBN(0x994baaa8, 0x55f2fb10), TOBN(0x84cf14e1, 0x1d248018), TOBN(0x5a39898b, 0x628ac508), TOBN(0x14fde97b, 0x5fa944f5), TOBN(0xed178030, 0xd12e5ac7), TOBN(0x042c2af4, 0x97e2feb4), TOBN(0xd36a42d7, 0xaebf7313), TOBN(0x49d2c9eb, 0x084ffdd7), TOBN(0x9f8aa54b, 0x2ef7c76a), TOBN(0x9200b7ba, 0x09895e70), TOBN(0x3bd0c66f, 0xddb7fb58), TOBN(0x2d97d108, 0x78eb4cbb), TOBN(0x2d431068, 0xd84bde31), TOBN(0x4b523eb7, 0x172ccd1f), TOBN(0x7323cb28, 0x30a6a892), TOBN(0x97082ec0, 0xcfe153eb), TOBN(0xe97f6b6a, 0xf2aadb97), TOBN(0x1d3d393e, 0xd1a83da1), TOBN(0xa6a7f9c7, 0x804b2a68), TOBN(0x4a688b48, 0x2d0cb71e), TOBN(0xa9b4cc5f, 0x40585278), TOBN(0x5e5db46a, 0xcb66e132), TOBN(0xf1be963a, 0x0d925880), TOBN(0x944a7027, 0x0317b9e2), TOBN(0xe266f959, 0x48603d48), TOBN(0x98db6673, 0x5c208899), TOBN(0x90472447, 0xa2fb18a3), TOBN(0x8a966939, 0x777c619f), TOBN(0x3798142a, 0x2a3be21b), TOBN(0xb4241cb1, 0x3298b343), TOBN(0xa3a14e49, 0xb44f65a1), TOBN(0xc5f4d6cd, 0x3ac77acd), TOBN(0xd0288cb5, 0x52b6fc3c), TOBN(0xd5cc8c2f, 0x1c040abc), TOBN(0xb675511e, 0x06bf9b4a), TOBN(0xd667da37, 0x9b3aa441), TOBN(0x460d45ce, 0x51601f72), TOBN(0xe2f73c69, 0x6755ff89), TOBN(0xdd3cf7e7, 0x473017e6), TOBN(0x8ef5689d, 0x3cf7600d), TOBN(0x948dc4f8, 0xb1fc87b4), TOBN(0xd9e9fe81, 0x4ea53299), TOBN(0x2d921ca2, 0x98eb6028), TOBN(0xfaecedfd, 0x0c9803fc), TOBN(0xf38ae891, 0x4d7b4745), TOBN(0xd8c5fccf, 0xc5e3a3d8), TOBN(0xbefd904c, 0x4079dfbf), TOBN(0xbc6d6a58, 0xfead0197), TOBN(0x39227077, 0x695532a4), TOBN(0x09e23e6d, 0xdbef42f5), TOBN(0x7e449b64, 0x480a9908), TOBN(0x7b969c1a, 0xad9a2e40), TOBN(0x6231d792, 0x9591c2a4), TOBN(0x87151456, 0x0f664534), TOBN(0x85ceae7c, 0x4b68f103), TOBN(0xac09c4ae, 0x65578ab9), TOBN(0x33ec6868, 0xf044b10c), TOBN(0x6ac4832b, 0x3a8ec1f1), TOBN(0x5509d128, 0x5847d5ef), TOBN(0xf909604f, 0x763f1574), TOBN(0xb16c4303, 0xc32f63c4), TOBN(0xb6ab2014, 0x7ca23cd3), TOBN(0xcaa7a5c6, 0xa391849d), TOBN(0x5b0673a3, 0x75678d94), TOBN(0xc982ddd4, 0xdd303e64), TOBN(0xfd7b000b, 0x5db6f971), TOBN(0xbba2cb1f, 0x6f876f92), TOBN(0xc77332a3, 0x3c569426), TOBN(0xa159100c, 0x570d74f8), TOBN(0xfd16847f, 0xdec67ef5), TOBN(0x742ee464, 0x233e76b7), TOBN(0x0b8e4134, 0xefc2b4c8), TOBN(0xca640b86, 0x42a3e521), TOBN(0x653a0190, 0x8ceb6aa9), TOBN(0x313c300c, 0x547852d5), TOBN(0x24e4ab12, 0x6b237af7), TOBN(0x2ba90162, 0x8bb47af8), TOBN(0x3d5e58d6, 0xa8219bb7), TOBN(0xc691d0bd, 0x1b06c57f), TOBN(0x0ae4cb10, 0xd257576e), TOBN(0x3569656c, 0xd54a3dc3), TOBN(0xe5ebaebd, 0x94cda03a), TOBN(0x934e82d3, 0x162bfe13), TOBN(0x450ac0ba, 0xe251a0c6), TOBN(0x480b9e11, 0xdd6da526), TOBN(0x00467bc5, 0x8cce08b5), TOBN(0xb636458c, 0x7f178d55), TOBN(0xc5748bae, 0xa677d806), TOBN(0x2763a387, 0xdfa394eb), TOBN(0xa12b448a, 0x7d3cebb6), TOBN(0xe7adda3e, 0x6f20d850), TOBN(0xf63ebce5, 0x1558462c), TOBN(0x58b36143, 0x620088a8), TOBN(0x8a2cc3ca, 0x4d63c0ee), TOBN(0x51233117, 0x0fe948ce), TOBN(0x7463fd85, 0x222ef33b), TOBN(0xadf0c7dc, 0x7c603d6c), TOBN(0x0ec32d3b, 0xfe7765e5), TOBN(0xccaab359, 0xbf380409), TOBN(0xbdaa84d6, 0x8e59319c), TOBN(0xd9a4c280, 0x9c80c34d), TOBN(0xa9d89488, 0xa059c142), TOBN(0x6f5ae714, 0xff0b9346), TOBN(0x068f237d, 0x16fb3664), TOBN(0x5853e4c4, 0x363186ac), TOBN(0xe2d87d23, 0x63c52f98), TOBN(0x2ec4a766, 0x81828876), TOBN(0x47b864fa, 0xe14e7b1c), TOBN(0x0c0bc0e5, 0x69192408), TOBN(0xe4d7681d, 0xb82e9f3e), TOBN(0x83200f0b, 0xdf25e13c), TOBN(0x8909984c, 0x66f27280), TOBN(0x462d7b00, 0x75f73227), TOBN(0xd90ba188, 0xf2651798), TOBN(0x74c6e18c, 0x36ab1c34), TOBN(0xab256ea3, 0x5ef54359), TOBN(0x03466612, 0xd1aa702f), TOBN(0x624d6049, 0x2ed22e91), TOBN(0x6fdfe0b5, 0x6f072822), TOBN(0xeeca1115, 0x39ce2271), TOBN(0x98100a4f, 0xdb01614f), TOBN(0xb6b0daa2, 0xa35c628f), TOBN(0xb6f94d2e, 0xc87e9a47), TOBN(0xc6773259, 0x1d57d9ce), TOBN(0xf70bfeec, 0x03884a7b), TOBN(0x5fb35ccf, 0xed2bad01), TOBN(0xa155cbe3, 0x1da6a5c7), TOBN(0xc2e2594c, 0x30a92f8f), TOBN(0x649c89ce, 0x5bfafe43), TOBN(0xd158667d, 0xe9ff257a), TOBN(0x9b359611, 0xf32c50ae), TOBN(0x4b00b20b, 0x906014cf), TOBN(0xf3a8cfe3, 0x89bc7d3d), TOBN(0x4ff23ffd, 0x248a7d06), TOBN(0x80c5bfb4, 0x878873fa), TOBN(0xb7d9ad90, 0x05745981), TOBN(0x179c85db, 0x3db01994), TOBN(0xba41b062, 0x61a6966c), TOBN(0x4d82d052, 0xeadce5a8), TOBN(0x9e91cd3b, 0xa5e6a318), TOBN(0x47795f4f, 0x95b2dda0), TOBN(0xecfd7c1f, 0xd55a897c), TOBN(0x009194ab, 0xb29110fb), TOBN(0x5f0e2046, 0xe381d3b0), TOBN(0x5f3425f6, 0xa98dd291), TOBN(0xbfa06687, 0x730d50da), TOBN(0x0423446c, 0x4b083b7f), TOBN(0x397a247d, 0xd69d3417), TOBN(0xeb629f90, 0x387ba42a), TOBN(0x1ee426cc, 0xd5cd79bf), TOBN(0x0032940b, 0x946c6e18), TOBN(0x1b1e8ae0, 0x57477f58), TOBN(0xe94f7d34, 0x6d823278), TOBN(0xc747cb96, 0x782ba21a), TOBN(0xc5254469, 0xf72b33a5), TOBN(0x772ef6de, 0xc7f80c81), TOBN(0xd73acbfe, 0x2cd9e6b5), TOBN(0x4075b5b1, 0x49ee90d9), TOBN(0x785c339a, 0xa06e9eba), TOBN(0xa1030d5b, 0xabf825e0), TOBN(0xcec684c3, 0xa42931dc), TOBN(0x42ab62c9, 0xc1586e63), TOBN(0x45431d66, 0x5ab43f2b), TOBN(0x57c8b2c0, 0x55f7835d), TOBN(0x033da338, 0xc1b7f865), TOBN(0x283c7513, 0xcaa76097), TOBN(0x0a624fa9, 0x36c83906), TOBN(0x6b20afec, 0x715af2c7), TOBN(0x4b969974, 0xeba78bfd), TOBN(0x220755cc, 0xd921d60e), TOBN(0x9b944e10, 0x7baeca13), TOBN(0x04819d51, 0x5ded93d4), TOBN(0x9bbff86e, 0x6dddfd27), TOBN(0x6b344130, 0x77adc612), TOBN(0xa7496529, 0xbbd803a0), TOBN(0x1a1baaa7, 0x6d8805bd), TOBN(0xc8403902, 0x470343ad), TOBN(0x39f59f66, 0x175adff1), TOBN(0x0b26d7fb, 0xb7d8c5b7), TOBN(0xa875f5ce, 0x529d75e3), TOBN(0x85efc7e9, 0x41325cc2), TOBN(0x21950b42, 0x1ff6acd3), TOBN(0xffe70484, 0x53dc6909), TOBN(0xff4cd0b2, 0x28766127), TOBN(0xabdbe608, 0x4fb7db2b), TOBN(0x837c9228, 0x5e1109e8), TOBN(0x26147d27, 0xf4645b5a), TOBN(0x4d78f592, 0xf7818ed8), TOBN(0xd394077e, 0xf247fa36), TOBN(0x0fb9c2d0, 0x488c171a), TOBN(0xa78bfbaa, 0x13685278), TOBN(0xedfbe268, 0xd5b1fa6a), TOBN(0x0dceb8db, 0x2b7eaba7), TOBN(0xbf9e8089, 0x9ae2b710), TOBN(0xefde7ae6, 0xa4449c96), TOBN(0x43b7716b, 0xcc143a46), TOBN(0xd7d34194, 0xc3628c13), TOBN(0x508cec1c, 0x3b3f64c9), TOBN(0xe20bc0ba, 0x1e5edf3f), TOBN(0xda1deb85, 0x2f4318d4), TOBN(0xd20ebe0d, 0x5c3fa443), TOBN(0x370b4ea7, 0x73241ea3), TOBN(0x61f1511c, 0x5e1a5f65), TOBN(0x99a5e23d, 0x82681c62), TOBN(0xd731e383, 0xa2f54c2d), TOBN(0x2692f36e, 0x83445904), TOBN(0x2e0ec469, 0xaf45f9c0), TOBN(0x905a3201, 0xc67528b7), TOBN(0x88f77f34, 0xd0e5e542), TOBN(0xf67a8d29, 0x5864687c), TOBN(0x23b92eae, 0x22df3562), TOBN(0x5c27014b, 0x9bbec39e), TOBN(0x7ef2f226, 0x9c0f0f8d), TOBN(0x97359638, 0x546c4d8d), TOBN(0x5f9c3fc4, 0x92f24679), TOBN(0x912e8bed, 0xa8c8acd9), TOBN(0xec3a318d, 0x306634b0), TOBN(0x80167f41, 0xc31cb264), TOBN(0x3db82f6f, 0x522113f2), TOBN(0xb155bcd2, 0xdcafe197), TOBN(0xfba1da59, 0x43465283), TOBN(0xa0425b8e, 0xb212cf53), TOBN(0x4f2e512e, 0xf8557c5f), TOBN(0xc1286ff9, 0x25c4d56c), TOBN(0xbb8a0fea, 0xee26c851), TOBN(0xc28f70d2, 0xe7d6107e), TOBN(0x7ee0c444, 0xe76265aa), TOBN(0x3df277a4, 0x1d1936b1), TOBN(0x1a556e3f, 0xea9595eb), TOBN(0x258bbbf9, 0xe7305683), TOBN(0x31eea5bf, 0x07ef5be6), TOBN(0x0deb0e4a, 0x46c814c1), TOBN(0x5cee8449, 0xa7b730dd), TOBN(0xeab495c5, 0xa0182bde), TOBN(0xee759f87, 0x9e27a6b4), TOBN(0xc2cf6a68, 0x80e518ca), TOBN(0x25e8013f, 0xf14cf3f4), TOBN(0x8fc44140, 0x7e8d7a14), TOBN(0xbb1ff3ca, 0x9556f36a), TOBN(0x6a844385, 0x14600044), TOBN(0xba3f0c4a, 0x7451ae63), TOBN(0xdfcac25b, 0x1f9af32a), TOBN(0x01e0db86, 0xb1f2214b), TOBN(0x4e9a5bc2, 0xa4b596ac), TOBN(0x83927681, 0x026c2c08), TOBN(0x3ec832e7, 0x7acaca28), TOBN(0x1bfeea57, 0xc7385b29), TOBN(0x068212e3, 0xfd1eaf38), TOBN(0xc1329830, 0x6acf8ccc), TOBN(0xb909f2db, 0x2aac9e59), TOBN(0x5748060d, 0xb661782a), TOBN(0xc5ab2632, 0xc79b7a01), TOBN(0xda44c6c6, 0x00017626), TOBN(0xf26c00e8, 0xa7ea82f0), TOBN(0x99cac80d, 0xe4299aaf), TOBN(0xd66fe3b6, 0x7ed78be1), TOBN(0x305f725f, 0x648d02cd), TOBN(0x33ed1bc4, 0x623fb21b), TOBN(0xfa70533e, 0x7a6319ad), TOBN(0x17ab562d, 0xbe5ffb3e), TOBN(0x06374994, 0x56674741), TOBN(0x69d44ed6, 0x5c46aa8e), TOBN(0x2100d5d3, 0xa8d063d1), TOBN(0xcb9727ea, 0xa2d17c36), TOBN(0x4c2bab1b, 0x8add53b7), TOBN(0xa084e90c, 0x15426704), TOBN(0x778afcd3, 0xa837ebea), TOBN(0x6651f701, 0x7ce477f8), TOBN(0xa0624998, 0x46fb7a8b), TOBN(0xdc1e6828, 0xed8a6e19), TOBN(0x33fc2336, 0x4189d9c7), TOBN(0x026f8fe2, 0x671c39bc), TOBN(0xd40c4ccd, 0xbc6f9915), TOBN(0xafa135bb, 0xf80e75ca), TOBN(0x12c651a0, 0x22adff2c), TOBN(0xc40a04bd, 0x4f51ad96), TOBN(0x04820109, 0xbbe4e832), TOBN(0x3667eb1a, 0x7f4c04cc), TOBN(0x59556621, 0xa9404f84), TOBN(0x71cdf653, 0x7eceb50a), TOBN(0x994a44a6, 0x9b8335fa), TOBN(0xd7faf819, 0xdbeb9b69), TOBN(0x473c5680, 0xeed4350d), TOBN(0xb6658466, 0xda44bba2), TOBN(0x0d1bc780, 0x872bdbf3), TOBN(0xe535f175, 0xa1962f91), TOBN(0x6ed7e061, 0xed58f5a7), TOBN(0x177aa4c0, 0x2089a233), TOBN(0x0dbcb03a, 0xe539b413), TOBN(0xe3dc424e, 0xbb32e38e), TOBN(0x6472e5ef, 0x6806701e), TOBN(0xdd47ff98, 0x814be9ee), TOBN(0x6b60cfff, 0x35ace009), TOBN(0xb8d3d931, 0x9ff91fe5), TOBN(0x039c4800, 0xf0518eed), TOBN(0x95c37632, 0x9182cb26), TOBN(0x0763a434, 0x82fc568d), TOBN(0x707c04d5, 0x383e76ba), TOBN(0xac98b930, 0x824e8197), TOBN(0x92bf7c8f, 0x91230de0), TOBN(0x90876a01, 0x40959b70), TOBN(0xdb6d96f3, 0x05968b80), TOBN(0x380a0913, 0x089f73b9), TOBN(0x7da70b83, 0xc2c61e01), TOBN(0x95fb8394, 0x569b38c7), TOBN(0x9a3c6512, 0x80edfe2f), TOBN(0x8f726bb9, 0x8faeaf82), TOBN(0x8010a4a0, 0x78424bf8), TOBN(0x29672044, 0x0e844970)} , {TOBN(0x63c5cb81, 0x7a2ad62a), TOBN(0x7ef2b6b9, 0xac62ff54), TOBN(0x3749bba4, 0xb3ad9db5), TOBN(0xad311f2c, 0x46d5a617), TOBN(0xb77a8087, 0xc2ff3b6d), TOBN(0xb46feaf3, 0x367834ff), TOBN(0xf8aa266d, 0x75d6b138), TOBN(0xfa38d320, 0xec008188), TOBN(0x486d8ffa, 0x696946fc), TOBN(0x50fbc6d8, 0xb9cba56d), TOBN(0x7e3d423e, 0x90f35a15), TOBN(0x7c3da195, 0xc0dd962c), TOBN(0xe673fdb0, 0x3cfd5d8b), TOBN(0x0704b7c2, 0x889dfca5), TOBN(0xf6ce581f, 0xf52305aa), TOBN(0x399d49eb, 0x914d5e53), TOBN(0x380a496d, 0x6ec293cd), TOBN(0x733dbda7, 0x8e7051f5), TOBN(0x037e388d, 0xb849140a), TOBN(0xee4b32b0, 0x5946dbf6), TOBN(0xb1c4fda9, 0xcae368d1), TOBN(0x5001a7b0, 0xfdb0b2f3), TOBN(0x6df59374, 0x2e3ac46e), TOBN(0x4af675f2, 0x39b3e656), TOBN(0x44e38110, 0x39949296), TOBN(0x5b63827b, 0x361db1b5), TOBN(0x3e5323ed, 0x206eaff5), TOBN(0x942370d2, 0xc21f4290), TOBN(0xf2caaf2e, 0xe0d985a1), TOBN(0x192cc64b, 0x7239846d), TOBN(0x7c0b8f47, 0xae6312f8), TOBN(0x7dc61f91, 0x96620108), TOBN(0xb830fb5b, 0xc2da7de9), TOBN(0xd0e643df, 0x0ff8d3be), TOBN(0x31ee77ba, 0x188a9641), TOBN(0x4e8aa3aa, 0xbcf6d502), TOBN(0xf9fb6532, 0x9a49110f), TOBN(0xd18317f6, 0x2dd6b220), TOBN(0x7e3ced41, 0x52c3ea5a), TOBN(0x0d296a14, 0x7d579c4a), TOBN(0x35d6a53e, 0xed4c3717), TOBN(0x9f8240cf, 0x3d0ed2a3), TOBN(0x8c0d4d05, 0xe5543aa5), TOBN(0x45d5bbfb, 0xdd33b4b4), TOBN(0xfa04cc73, 0x137fd28e), TOBN(0x862ac6ef, 0xc73b3ffd), TOBN(0x403ff9f5, 0x31f51ef2), TOBN(0x34d5e0fc, 0xbc73f5a2), TOBN(0xf2526820, 0x08913f4f), TOBN(0xea20ed61, 0xeac93d95), TOBN(0x51ed38b4, 0x6ca6b26c), TOBN(0x8662dcbc, 0xea4327b0), TOBN(0x6daf295c, 0x725d2aaa), TOBN(0xbad2752f, 0x8e52dcda), TOBN(0x2210e721, 0x0b17dacc), TOBN(0xa37f7912, 0xd51e8232), TOBN(0x4f7081e1, 0x44cc3add), TOBN(0xd5ffa1d6, 0x87be82cf), TOBN(0x89890b6c, 0x0edd6472), TOBN(0xada26e1a, 0x3ed17863), TOBN(0x276f2715, 0x63483caa), TOBN(0xe6924cd9, 0x2f6077fd), TOBN(0x05a7fe98, 0x0a466e3c), TOBN(0xf1c794b0, 0xb1902d1f), TOBN(0xe5213688, 0x82a8042c), TOBN(0xd931cfaf, 0xcd278298), TOBN(0x069a0ae0, 0xf597a740), TOBN(0x0adbb3f3, 0xeb59107c), TOBN(0x983e951e, 0x5eaa8eb8), TOBN(0xe663a8b5, 0x11b48e78), TOBN(0x1631cc0d, 0x8a03f2c5), TOBN(0x7577c11e, 0x11e271e2), TOBN(0x33b2385c, 0x08369a90), TOBN(0x2990c59b, 0x190eb4f8), TOBN(0x819a6145, 0xc68eac80), TOBN(0x7a786d62, 0x2ec4a014), TOBN(0x33faadbe, 0x20ac3a8d), TOBN(0x31a21781, 0x5aba2d30), TOBN(0x209d2742, 0xdba4f565), TOBN(0xdb2ce9e3, 0x55aa0fbb), TOBN(0x8cef334b, 0x168984df), TOBN(0xe81dce17, 0x33879638), TOBN(0xf6e6949c, 0x263720f0), TOBN(0x5c56feaf, 0xf593cbec), TOBN(0x8bff5601, 0xfde58c84), TOBN(0x74e24117, 0x2eccb314), TOBN(0xbcf01b61, 0x4c9a8a78), TOBN(0xa233e35e, 0x544c9868), TOBN(0xb3156bf3, 0x8bd7aff1), TOBN(0x1b5ee4cb, 0x1d81b146), TOBN(0x7ba1ac41, 0xd628a915), TOBN(0x8f3a8f9c, 0xfd89699e), TOBN(0x7329b9c9, 0xa0748be7), TOBN(0x1d391c95, 0xa92e621f), TOBN(0xe51e6b21, 0x4d10a837), TOBN(0xd255f53a, 0x4947b435), TOBN(0x07669e04, 0xf1788ee3), TOBN(0xc14f27af, 0xa86938a2), TOBN(0x8b47a334, 0xe93a01c0), TOBN(0xff627438, 0xd9366808), TOBN(0x7a0985d8, 0xca2a5965), TOBN(0x3d9a5542, 0xd6e9b9b3), TOBN(0xc23eb80b, 0x4cf972e8), TOBN(0x5c1c33bb, 0x4fdf72fd), TOBN(0x0c4a58d4, 0x74a86108), TOBN(0xf8048a8f, 0xee4c5d90), TOBN(0xe3c7c924, 0xe86d4c80), TOBN(0x28c889de, 0x056a1e60), TOBN(0x57e2662e, 0xb214a040), TOBN(0xe8c48e98, 0x37e10347), TOBN(0x87742862, 0x80ac748a), TOBN(0xf1c24022, 0x186b06f2), TOBN(0xac2dd4c3, 0x5f74040a), TOBN(0x409aeb71, 0xfceac957), TOBN(0x4fbad782, 0x55c4ec23), TOBN(0xb359ed61, 0x8a7b76ec), TOBN(0x12744926, 0xed6f4a60), TOBN(0xe21e8d7f, 0x4b912de3), TOBN(0xe2575a59, 0xfc705a59), TOBN(0x72f1d4de, 0xed2dbc0e), TOBN(0x3d2b24b9, 0xeb7926b8), TOBN(0xbff88cb3, 0xcdbe5509), TOBN(0xd0f399af, 0xe4dd640b), TOBN(0x3c5fe130, 0x2f76ed45), TOBN(0x6f3562f4, 0x3764fb3d), TOBN(0x7b5af318, 0x3151b62d), TOBN(0xd5bd0bc7, 0xd79ce5f3), TOBN(0xfdaf6b20, 0xec66890f), TOBN(0x735c67ec, 0x6063540c), TOBN(0x50b259c2, 0xe5f9cb8f), TOBN(0xb8734f9a, 0x3f99c6ab), TOBN(0xf8cc13d5, 0xa3a7bc85), TOBN(0x80c1b305, 0xc5217659), TOBN(0xfe5364d4, 0x4ec12a54), TOBN(0xbd87045e, 0x681345fe), TOBN(0x7f8efeb1, 0x582f897f), TOBN(0xe8cbf1e5, 0xd5923359), TOBN(0xdb0cea9d, 0x539b9fb0), TOBN(0x0c5b34cf, 0x49859b98), TOBN(0x5e583c56, 0xa4403cc6), TOBN(0x11fc1a2d, 0xd48185b7), TOBN(0xc93fbc7e, 0x6e521787), TOBN(0x47e7a058, 0x05105b8b), TOBN(0x7b4d4d58, 0xdb8260c8), TOBN(0xe33930b0, 0x46eb842a), TOBN(0x8e844a9a, 0x7bdae56d), TOBN(0x34ef3a9e, 0x13f7fdfc), TOBN(0xb3768f82, 0x636ca176), TOBN(0x2821f4e0, 0x4e09e61c), TOBN(0x414dc3a1, 0xa0c7cddc), TOBN(0xd5379437, 0x54945fcd), TOBN(0x151b6eef, 0xb3555ff1), TOBN(0xb31bd613, 0x6339c083), TOBN(0x39ff8155, 0xdfb64701), TOBN(0x7c3388d2, 0xe29604ab), TOBN(0x1e19084b, 0xa6b10442), TOBN(0x17cf54c0, 0xeccd47ef), TOBN(0x89693385, 0x4a5dfb30), TOBN(0x69d023fb, 0x47daf9f6), TOBN(0x9222840b, 0x7d91d959), TOBN(0x439108f5, 0x803bac62), TOBN(0x0b7dd91d, 0x379bd45f), TOBN(0xd651e827, 0xca63c581), TOBN(0x5c5d75f6, 0x509c104f), TOBN(0x7d5fc738, 0x1f2dc308), TOBN(0x20faa7bf, 0xd98454be), TOBN(0x95374bee, 0xa517b031), TOBN(0xf036b9b1, 0x642692ac), TOBN(0xc5106109, 0x39842194), TOBN(0xb7e2353e, 0x49d05295), TOBN(0xfc8c1d5c, 0xefb42ee0), TOBN(0xe04884eb, 0x08ce811c), TOBN(0xf1f75d81, 0x7419f40e), TOBN(0x5b0ac162, 0xa995c241), TOBN(0x120921bb, 0xc4c55646), TOBN(0x713520c2, 0x8d33cf97), TOBN(0xb4a65a5c, 0xe98c5100), TOBN(0x6cec871d, 0x2ddd0f5a), TOBN(0x251f0b7f, 0x9ba2e78b), TOBN(0x224a8434, 0xce3a2a5f), TOBN(0x26827f61, 0x25f5c46f), TOBN(0x6a22bedc, 0x48545ec0), TOBN(0x25ae5fa0, 0xb1bb5cdc), TOBN(0xd693682f, 0xfcb9b98f), TOBN(0x32027fe8, 0x91e5d7d3), TOBN(0xf14b7d17, 0x73a07678), TOBN(0xf88497b3, 0xc0dfdd61), TOBN(0xf7c2eec0, 0x2a8c4f48), TOBN(0xaa5573f4, 0x3756e621), TOBN(0xc013a240, 0x1825b948), TOBN(0x1c03b345, 0x63878572), TOBN(0xa0472bea, 0x653a4184), TOBN(0xf4222e27, 0x0ac69a80), TOBN(0x34096d25, 0xf51e54f6), TOBN(0x00a648cb, 0x8fffa591), TOBN(0x4e87acdc, 0x69b6527f), TOBN(0x0575e037, 0xe285ccb4), TOBN(0x188089e4, 0x50ddcf52), TOBN(0xaa96c9a8, 0x870ff719), TOBN(0x74a56cd8, 0x1fc7e369), TOBN(0x41d04ee2, 0x1726931a), TOBN(0x0bbbb2c8, 0x3660ecfd), TOBN(0xa6ef6de5, 0x24818e18), TOBN(0xe421cc51, 0xe7d57887), TOBN(0xf127d208, 0xbea87be6), TOBN(0x16a475d3, 0xb1cdd682), TOBN(0x9db1b684, 0x439b63f7), TOBN(0x5359b3db, 0xf0f113b6), TOBN(0xdfccf1de, 0x8bf06e31), TOBN(0x1fdf8f44, 0xdd383901), TOBN(0x10775cad, 0x5017e7d2), TOBN(0xdfc3a597, 0x58d11eef), TOBN(0x6ec9c8a0, 0xb1ecff10), TOBN(0xee6ed6cc, 0x28400549), TOBN(0xb5ad7bae, 0x1b4f8d73), TOBN(0x61b4f11d, 0xe00aaab9), TOBN(0x7b32d69b, 0xd4eff2d7), TOBN(0x88ae6771, 0x4288b60f), TOBN(0x159461b4, 0x37a1e723), TOBN(0x1f3d4789, 0x570aae8c), TOBN(0x869118c0, 0x7f9871da), TOBN(0x35fbda78, 0xf635e278), TOBN(0x738f3641, 0xe1541dac), TOBN(0x6794b13a, 0xc0dae45f), TOBN(0x065064ac, 0x09cc0917), TOBN(0x27c53729, 0xc68540fd), TOBN(0x0d2d4c8e, 0xef227671), TOBN(0xd23a9f80, 0xa1785a04), TOBN(0x98c59528, 0x52650359), TOBN(0xfa09ad01, 0x74a1acad), TOBN(0x082d5a29, 0x0b55bf5c), TOBN(0xa40f1c67, 0x419b8084), TOBN(0x3a5c752e, 0xdcc18770), TOBN(0x4baf1f2f, 0x8825c3a5), TOBN(0xebd63f74, 0x21b153ed), TOBN(0xa2383e47, 0xb2f64723), TOBN(0xe7bf620a, 0x2646d19a), TOBN(0x56cb44ec, 0x03c83ffd), TOBN(0xaf7267c9, 0x4f6be9f1), TOBN(0x8b2dfd7b, 0xc06bb5e9), TOBN(0xb87072f2, 0xa672c5c7), TOBN(0xeacb11c8, 0x0d53c5e2), TOBN(0x22dac29d, 0xff435932), TOBN(0x37bdb99d, 0x4408693c), TOBN(0xf6e62fb6, 0x2899c20f), TOBN(0x3535d512, 0x447ece24), TOBN(0xfbdc6b88, 0xff577ce3), TOBN(0x726693bd, 0x190575f2), TOBN(0x6772b0e5, 0xab4b35a2), TOBN(0x1d8b6001, 0xf5eeaacf), TOBN(0x728f7ce4, 0x795b9580), TOBN(0x4a20ed2a, 0x41fb81da), TOBN(0x9f685cd4, 0x4fec01e6), TOBN(0x3ed7ddcc, 0xa7ff50ad), TOBN(0x460fd264, 0x0c2d97fd), TOBN(0x3a241426, 0xeb82f4f9), TOBN(0x17d1df2c, 0x6a8ea820), TOBN(0xb2b50d3b, 0xf22cc254), TOBN(0x03856cba, 0xb7291426), TOBN(0x87fd26ae, 0x04f5ee39), TOBN(0x9cb696cc, 0x02bee4ba), TOBN(0x53121804, 0x06820fd6), TOBN(0xa5dfc269, 0x0212e985), TOBN(0x666f7ffa, 0x160f9a09), TOBN(0xc503cd33, 0xbccd9617), TOBN(0x365dede4, 0xba7730a3), TOBN(0x798c6355, 0x5ddb0786), TOBN(0xa6c3200e, 0xfc9cd3bc), TOBN(0x060ffb2c, 0xe5e35efd), TOBN(0x99a4e25b, 0x5555a1c1), TOBN(0x11d95375, 0xf70b3751), TOBN(0x0a57354a, 0x160e1bf6), TOBN(0xecb3ae4b, 0xf8e4b065), TOBN(0x07a834c4, 0x2e53022b), TOBN(0x1cd300b3, 0x8692ed96), TOBN(0x16a6f792, 0x61ee14ec), TOBN(0x8f1063c6, 0x6a8649ed), TOBN(0xfbcdfcfe, 0x869f3e14), TOBN(0x2cfb97c1, 0x00a7b3ec), TOBN(0xcea49b3c, 0x7130c2f1), TOBN(0x462d044f, 0xe9d96488), TOBN(0x4b53d52e, 0x8182a0c1), TOBN(0x84b6ddd3, 0x0391e9e9), TOBN(0x80ab7b48, 0xb1741a09), TOBN(0xec0e15d4, 0x27d3317f), TOBN(0x8dfc1ddb, 0x1a64671e), TOBN(0x93cc5d5f, 0xd49c5b92), TOBN(0xc995d53d, 0x3674a331), TOBN(0x302e41ec, 0x090090ae), TOBN(0x2278a0cc, 0xedb06830), TOBN(0x1d025932, 0xfbc99690), TOBN(0x0c32fbd2, 0xb80d68da), TOBN(0xd79146da, 0xf341a6c1), TOBN(0xae0ba139, 0x1bef68a0), TOBN(0xc6b8a563, 0x8d774b3a), TOBN(0x1cf307bd, 0x880ba4d7), TOBN(0xc033bdc7, 0x19803511), TOBN(0xa9f97b3b, 0x8888c3be), TOBN(0x3d68aebc, 0x85c6d05e), TOBN(0xc3b88a9d, 0x193919eb), TOBN(0x2d300748, 0xc48b0ee3), TOBN(0x7506bc7c, 0x07a746c1), TOBN(0xfc48437c, 0x6e6d57f3), TOBN(0x5bd71587, 0xcfeaa91a), TOBN(0xa4ed0408, 0xc1bc5225), TOBN(0xd0b946db, 0x2719226d), TOBN(0x109ecd62, 0x758d2d43), TOBN(0x75c8485a, 0x2751759b), TOBN(0xb0b75f49, 0x9ce4177a), TOBN(0x4fa61a1e, 0x79c10c3d), TOBN(0xc062d300, 0xa167fcd7), TOBN(0x4df3874c, 0x750f0fa8), TOBN(0x29ae2cf9, 0x83dfedc9), TOBN(0xf8437134, 0x8d87631a), TOBN(0xaf571711, 0x7429c8d2), TOBN(0x18d15867, 0x146d9272), TOBN(0x83053ecf, 0x69769bb7), TOBN(0xc55eb856, 0xc479ab82), TOBN(0x5ef7791c, 0x21b0f4b2), TOBN(0xaa5956ba, 0x3d491525), TOBN(0x407a96c2, 0x9fe20eba), TOBN(0xf27168bb, 0xe52a5ad3), TOBN(0x43b60ab3, 0xbf1d9d89), TOBN(0xe45c51ef, 0x710e727a), TOBN(0xdfca5276, 0x099b4221), TOBN(0x8dc6407c, 0x2557a159), TOBN(0x0ead8335, 0x91035895), TOBN(0x0a9db957, 0x9c55dc32), TOBN(0xe40736d3, 0xdf61bc76), TOBN(0x13a619c0, 0x3f778cdb), TOBN(0x6dd921a4, 0xc56ea28f), TOBN(0x76a52433, 0x2fa647b4), TOBN(0x23591891, 0xac5bdc5d), TOBN(0xff4a1a72, 0xbac7dc01), TOBN(0x9905e261, 0x62df8453), TOBN(0x3ac045df, 0xe63b265f), TOBN(0x8a3f341b, 0xad53dba7), TOBN(0x8ec269cc, 0x837b625a), TOBN(0xd71a2782, 0x3ae31189), TOBN(0x8fb4f9a3, 0x55e96120), TOBN(0x804af823, 0xff9875cf), TOBN(0x23224f57, 0x5d442a9b), TOBN(0x1c4d3b9e, 0xecc62679), TOBN(0x91da22fb, 0xa0e7ddb1), TOBN(0xa370324d, 0x6c04a661), TOBN(0x9710d3b6, 0x5e376d17), TOBN(0xed8c98f0, 0x3044e357), TOBN(0xc364ebbe, 0x6422701c), TOBN(0x347f5d51, 0x7733d61c), TOBN(0xd55644b9, 0xcea826c3), TOBN(0x80c6e0ad, 0x55a25548), TOBN(0x0aa7641d, 0x844220a7), TOBN(0x1438ec81, 0x31810660), TOBN(0x9dfa6507, 0xde4b4043), TOBN(0x10b515d8, 0xcc3e0273), TOBN(0x1b6066dd, 0x28d8cfb2), TOBN(0xd3b04591, 0x9c9efebd), TOBN(0x425d4bdf, 0xa21c1ff4), TOBN(0x5fe5af19, 0xd57607d3), TOBN(0xbbf773f7, 0x54481084), TOBN(0x8435bd69, 0x94b03ed1), TOBN(0xd9ad1de3, 0x634cc546), TOBN(0x2cf423fc, 0x00e420ca), TOBN(0xeed26d80, 0xa03096dd), TOBN(0xd7f60be7, 0xa4db09d2), TOBN(0xf47f569d, 0x960622f7), TOBN(0xe5925fd7, 0x7296c729), TOBN(0xeff2db26, 0x26ca2715), TOBN(0xa6fcd014, 0xb913e759), TOBN(0x53da4786, 0x8ff4de93), TOBN(0x14616d79, 0xc32068e1), TOBN(0xb187d664, 0xccdf352e), TOBN(0xf7afb650, 0x1dc90b59), TOBN(0x8170e943, 0x7daa1b26), TOBN(0xc8e3bdd8, 0x700c0a84), TOBN(0x6e8d345f, 0x6482bdfa), TOBN(0x84cfbfa1, 0xc5c5ea50), TOBN(0xd3baf14c, 0x67960681), TOBN(0x26398403, 0x0dd50942), TOBN(0xe4b7839c, 0x4716a663), TOBN(0xd5f1f794, 0xe7de6dc0), TOBN(0x5cd0f4d4, 0x622aa7ce), TOBN(0x5295f3f1, 0x59acfeec), TOBN(0x8d933552, 0x953e0607), TOBN(0xc7db8ec5, 0x776c5722), TOBN(0xdc467e62, 0x2b5f290c), TOBN(0xd4297e70, 0x4ff425a9), TOBN(0x4be924c1, 0x0cf7bb72), TOBN(0x0d5dc5ae, 0xa1892131), TOBN(0x8bf8a8e3, 0xa705c992), TOBN(0x73a0b064, 0x7a305ac5), TOBN(0x00c9ca4e, 0x9a8c77a8), TOBN(0x5dfee80f, 0x83774bdd), TOBN(0x63131602, 0x85734485), TOBN(0xa1b524ae, 0x914a69a9), TOBN(0xebc2ffaf, 0xd4e300d7), TOBN(0x52c93db7, 0x7cfa46a5), TOBN(0x71e6161f, 0x21653b50), TOBN(0x3574fc57, 0xa4bc580a), TOBN(0xc09015dd, 0xe1bc1253), TOBN(0x4b7b47b2, 0xd174d7aa), TOBN(0x4072d8e8, 0xf3a15d04), TOBN(0xeeb7d47f, 0xd6fa07ed), TOBN(0x6f2b9ff9, 0xedbdafb1), TOBN(0x18c51615, 0x3760fe8a), TOBN(0x7a96e6bf, 0xf06c6c13), TOBN(0x4d7a0410, 0x0ea2d071), TOBN(0xa1914e9b, 0x0be2a5ce), TOBN(0x5726e357, 0xd8a3c5cf), TOBN(0x1197ecc3, 0x2abb2b13), TOBN(0x6c0d7f7f, 0x31ae88dd), TOBN(0x15b20d1a, 0xfdbb3efe), TOBN(0xcd06aa26, 0x70584039), TOBN(0x2277c969, 0xa7dc9747), TOBN(0xbca69587, 0x7855d815), TOBN(0x899ea238, 0x5188b32a), TOBN(0x37d9228b, 0x760c1c9d), TOBN(0xc7efbb11, 0x9b5c18da), TOBN(0x7f0d1bc8, 0x19f6dbc5), TOBN(0x4875384b, 0x07e6905b), TOBN(0xc7c50baa, 0x3ba8cd86), TOBN(0xb0ce40fb, 0xc2905de0), TOBN(0x70840673, 0x7a231952), TOBN(0xa912a262, 0xcf43de26), TOBN(0x9c38ddcc, 0xeb5b76c1), TOBN(0x746f5285, 0x26fc0ab4), TOBN(0x52a63a50, 0xd62c269f), TOBN(0x60049c55, 0x99458621), TOBN(0xe7f48f82, 0x3c2f7c9e), TOBN(0x6bd99043, 0x917d5cf3), TOBN(0xeb1317a8, 0x8701f469), TOBN(0xbd3fe2ed, 0x9a449fe0), TOBN(0x421e79ca, 0x12ef3d36), TOBN(0x9ee3c36c, 0x3e7ea5de), TOBN(0xe48198b5, 0xcdff36f7), TOBN(0xaff4f967, 0xc6b82228), TOBN(0x15e19dd0, 0xc47adb7e), TOBN(0x45699b23, 0x032e7dfa), TOBN(0x40680c8b, 0x1fae026a), TOBN(0x5a347a48, 0x550dbf4d), TOBN(0xe652533b, 0x3cef0d7d), TOBN(0xd94f7b18, 0x2bbb4381), TOBN(0x838752be, 0x0e80f500), TOBN(0x8e6e2488, 0x9e9c9bfb), TOBN(0xc9751697, 0x16caca6a), TOBN(0x866c49d8, 0x38531ad9), TOBN(0xc917e239, 0x7151ade1), TOBN(0x2d016ec1, 0x6037c407), TOBN(0xa407ccc9, 0x00eac3f9), TOBN(0x835f6280, 0xe2ed4748), TOBN(0xcc54c347, 0x1cc98e0d), TOBN(0x0e969937, 0xdcb572eb), TOBN(0x1b16c8e8, 0x8f30c9cb), TOBN(0xa606ae75, 0x373c4661), TOBN(0x47aa689b, 0x35502cab), TOBN(0xf89014ae, 0x4d9bb64f), TOBN(0x202f6a9c, 0x31c71f7b), TOBN(0x01f95aa3, 0x296ffe5c), TOBN(0x5fc06014, 0x53cec3a3), TOBN(0xeb991237, 0x5f498a45), TOBN(0xae9a935e, 0x5d91ba87), TOBN(0xc6ac6281, 0x0b564a19), TOBN(0x8a8fe81c, 0x3bd44e69), TOBN(0x7c8b467f, 0x9dd11d45), TOBN(0xf772251f, 0xea5b8e69), TOBN(0xaeecb3bd, 0xc5b75fbc), TOBN(0x1aca3331, 0x887ff0e5), TOBN(0xbe5d49ff, 0x19f0a131), TOBN(0x582c13aa, 0xe5c8646f), TOBN(0xdbaa12e8, 0x20e19980), TOBN(0x8f40f31a, 0xf7abbd94), TOBN(0x1f13f5a8, 0x1dfc7663), TOBN(0x5d81f1ee, 0xaceb4fc0), TOBN(0x36256002, 0x5e6f0f42), TOBN(0x4b67d6d7, 0x751370c8), TOBN(0x2608b698, 0x03e80589), TOBN(0xcfc0d2fc, 0x05268301), TOBN(0xa6943d39, 0x40309212), TOBN(0x192a90c2, 0x1fd0e1c2), TOBN(0xb209f113, 0x37f1dc76), TOBN(0xefcc5e06, 0x97bf1298), TOBN(0xcbdb6730, 0x219d639e), TOBN(0xd009c116, 0xb81e8c6f), TOBN(0xa3ffdde3, 0x1a7ce2e5), TOBN(0xc53fbaaa, 0xa914d3ba), TOBN(0x836d500f, 0x88df85ee), TOBN(0xd98dc71b, 0x66ee0751), TOBN(0x5a3d7005, 0x714516fd), TOBN(0x21d3634d, 0x39eedbba), TOBN(0x35cd2e68, 0x0455a46d), TOBN(0xc8cafe65, 0xf9d7eb0c), TOBN(0xbda3ce9e, 0x00cefb3e), TOBN(0xddc17a60, 0x2c9cf7a4), TOBN(0x01572ee4, 0x7bcb8773), TOBN(0xa92b2b01, 0x8c7548df), TOBN(0x732fd309, 0xa84600e3), TOBN(0xe22109c7, 0x16543a40), TOBN(0x9acafd36, 0xfede3c6c), TOBN(0xfb206852, 0x6824e614), TOBN(0x2a4544a9, 0xda25dca0), TOBN(0x25985262, 0x91d60b06), TOBN(0x281b7be9, 0x28753545), TOBN(0xec667b1a, 0x90f13b27), TOBN(0x33a83aff, 0x940e2eb4), TOBN(0x80009862, 0xd5d721d5), TOBN(0x0c3357a3, 0x5bd3a182), TOBN(0x27f3a83b, 0x7aa2cda4), TOBN(0xb58ae74e, 0xf6f83085), TOBN(0x2a911a81, 0x2e6dad6b), TOBN(0xde286051, 0xf43d6c5b), TOBN(0x4bdccc41, 0xf996c4d8), TOBN(0xe7312ec0, 0x0ae1e24e)} , {TOBN(0xf8d112e7, 0x6e6485b3), TOBN(0x4d3e24db, 0x771c52f8), TOBN(0x48e3ee41, 0x684a2f6d), TOBN(0x7161957d, 0x21d95551), TOBN(0x19631283, 0xcdb12a6c), TOBN(0xbf3fa882, 0x2e50e164), TOBN(0xf6254b63, 0x3166cc73), TOBN(0x3aefa7ae, 0xaee8cc38), TOBN(0x79b0fe62, 0x3b36f9fd), TOBN(0x26543b23, 0xfde19fc0), TOBN(0x136e64a0, 0x958482ef), TOBN(0x23f63771, 0x9b095825), TOBN(0x14cfd596, 0xb6a1142e), TOBN(0x5ea6aac6, 0x335aac0b), TOBN(0x86a0e8bd, 0xf3081dd5), TOBN(0x5fb89d79, 0x003dc12a), TOBN(0xf615c33a, 0xf72e34d4), TOBN(0x0bd9ea40, 0x110eec35), TOBN(0x1c12bc5b, 0xc1dea34e), TOBN(0x686584c9, 0x49ae4699), TOBN(0x13ad95d3, 0x8c97b942), TOBN(0x4609561a, 0x4e5c7562), TOBN(0x9e94a4ae, 0xf2737f89), TOBN(0xf57594c6, 0x371c78b6), TOBN(0x0f0165fc, 0xe3779ee3), TOBN(0xe00e7f9d, 0xbd495d9e), TOBN(0x1fa4efa2, 0x20284e7a), TOBN(0x4564bade, 0x47ac6219), TOBN(0x90e6312a, 0xc4708e8e), TOBN(0x4f5725fb, 0xa71e9adf), TOBN(0xe95f55ae, 0x3d684b9f), TOBN(0x47f7ccb1, 0x1e94b415), TOBN(0x7322851b, 0x8d946581), TOBN(0xf0d13133, 0xbdf4a012), TOBN(0xa3510f69, 0x6584dae0), TOBN(0x03a7c171, 0x3c9f6c6d), TOBN(0x5be97f38, 0xe475381a), TOBN(0xca1ba422, 0x85823334), TOBN(0xf83cc5c7, 0x0be17dda), TOBN(0x158b1494, 0x0b918c0f), TOBN(0xda3a77e5, 0x522e6b69), TOBN(0x69c908c3, 0xbbcd6c18), TOBN(0x1f1b9e48, 0xd924fd56), TOBN(0x37c64e36, 0xaa4bb3f7), TOBN(0x5a4fdbdf, 0xee478d7d), TOBN(0xba75c8bc, 0x0193f7a0), TOBN(0x84bc1e84, 0x56cd16df), TOBN(0x1fb08f08, 0x46fad151), TOBN(0x8a7cabf9, 0x842e9f30), TOBN(0xa331d4bf, 0x5eab83af), TOBN(0xd272cfba, 0x017f2a6a), TOBN(0x27560abc, 0x83aba0e3), TOBN(0x94b83387, 0x0e3a6b75), TOBN(0x25c6aea2, 0x6b9f50f5), TOBN(0x803d691d, 0xb5fdf6d0), TOBN(0x03b77509, 0xe6333514), TOBN(0x36178903, 0x61a341c1), TOBN(0x3604dc60, 0x0cfd6142), TOBN(0x022295eb, 0x8533316c), TOBN(0x3dbde4ac, 0x44af2922), TOBN(0x898afc5d, 0x1c7eef69), TOBN(0x58896805, 0xd14f4fa1), TOBN(0x05002160, 0x203c21ca), TOBN(0x6f0d1f30, 0x40ef730b), TOBN(0x8e8c44d4, 0x196224f8), TOBN(0x75a4ab95, 0x374d079d), TOBN(0x79085ecc, 0x7d48f123), TOBN(0x56f04d31, 0x1bf65ad8), TOBN(0xe220bf1c, 0xbda602b2), TOBN(0x73ee1742, 0xf9612c69), TOBN(0x76008fc8, 0x084fd06b), TOBN(0x4000ef9f, 0xf11380d1), TOBN(0x48201b4b, 0x12cfe297), TOBN(0x3eee129c, 0x292f74e5), TOBN(0xe1fe114e, 0xc9e874e8), TOBN(0x899b055c, 0x92c5fc41), TOBN(0x4e477a64, 0x3a39c8cf), TOBN(0x82f09efe, 0x78963cc9), TOBN(0x6fd3fd8f, 0xd333f863), TOBN(0x85132b2a, 0xdc949c63), TOBN(0x7e06a3ab, 0x516eb17b), TOBN(0x73bec06f, 0xd2c7372b), TOBN(0xe4f74f55, 0xba896da6), TOBN(0xbb4afef8, 0x8e9eb40f), TOBN(0x2d75bec8, 0xe61d66b0), TOBN(0x02bda4b4, 0xef29300b), TOBN(0x8bbaa8de, 0x026baa5a), TOBN(0xff54befd, 0xa07f4440), TOBN(0xbd9b8b1d, 0xbe7a2af3), TOBN(0xec51caa9, 0x4fb74a72), TOBN(0xb9937a4b, 0x63879697), TOBN(0x7c9a9d20, 0xec2687d5), TOBN(0x1773e44f, 0x6ef5f014), TOBN(0x8abcf412, 0xe90c6900), TOBN(0x387bd022, 0x8142161e), TOBN(0x50393755, 0xfcb6ff2a), TOBN(0x9813fd56, 0xed6def63), TOBN(0x53cf6482, 0x7d53106c), TOBN(0x991a35bd, 0x431f7ac1), TOBN(0xf1e274dd, 0x63e65faf), TOBN(0xf63ffa3c, 0x44cc7880), TOBN(0x411a426b, 0x7c256981), TOBN(0xb698b9fd, 0x93a420e0), TOBN(0x89fdddc0, 0xae53f8fe), TOBN(0x766e0722, 0x32398baa), TOBN(0x205fee42, 0x5cfca031), TOBN(0xa49f5341, 0x7a029cf2), TOBN(0xa88c68b8, 0x4023890d), TOBN(0xbc275041, 0x7337aaa8), TOBN(0x9ed364ad, 0x0eb384f4), TOBN(0xe0816f85, 0x29aba92f), TOBN(0x2e9e1941, 0x04e38a88), TOBN(0x57eef44a, 0x3dafd2d5), TOBN(0x35d1fae5, 0x97ed98d8), TOBN(0x50628c09, 0x2307f9b1), TOBN(0x09d84aae, 0xd6cba5c6), TOBN(0x67071bc7, 0x88aaa691), TOBN(0x2dea57a9, 0xafe6cb03), TOBN(0xdfe11bb4, 0x3d78ac01), TOBN(0x7286418c, 0x7fd7aa51), TOBN(0xfabf7709, 0x77f7195a), TOBN(0x8ec86167, 0xadeb838f), TOBN(0xea1285a8, 0xbb4f012d), TOBN(0xd6883503, 0x9a3eab3f), TOBN(0xee5d24f8, 0x309004c2), TOBN(0xa96e4b76, 0x13ffe95e), TOBN(0x0cdffe12, 0xbd223ea4), TOBN(0x8f5c2ee5, 0xb6739a53), TOBN(0x5cb4aaa5, 0xdd968198), TOBN(0xfa131c52, 0x72413a6c), TOBN(0x53d46a90, 0x9536d903), TOBN(0xb270f0d3, 0x48606d8e), TOBN(0x518c7564, 0xa053a3bc), TOBN(0x088254b7, 0x1a86caef), TOBN(0xb3ba8cb4, 0x0ab5efd0), TOBN(0x5c59900e, 0x4605945d), TOBN(0xecace1dd, 0xa1887395), TOBN(0x40960f36, 0x932a65de), TOBN(0x9611ff5c, 0x3aa95529), TOBN(0xc58215b0, 0x7c1e5a36), TOBN(0xd48c9b58, 0xf0e1a524), TOBN(0xb406856b, 0xf590dfb8), TOBN(0xc7605e04, 0x9cd95662), TOBN(0x0dd036ee, 0xa33ecf82), TOBN(0xa50171ac, 0xc33156b3), TOBN(0xf09d24ea, 0x4a80172e), TOBN(0x4e1f72c6, 0x76dc8eef), TOBN(0xe60caadc, 0x5e3d44ee), TOBN(0x006ef8a6, 0x979b1d8f), TOBN(0x60908a1c, 0x97788d26), TOBN(0x6e08f95b, 0x266feec0), TOBN(0x618427c2, 0x22e8c94e), TOBN(0x3d613339, 0x59145a65), TOBN(0xcd9bc368, 0xfa406337), TOBN(0x82d11be3, 0x2d8a52a0), TOBN(0xf6877b27, 0x97a1c590), TOBN(0x837a819b, 0xf5cbdb25), TOBN(0x2a4fd1d8, 0xde090249), TOBN(0x622a7de7, 0x74990e5f), TOBN(0x840fa5a0, 0x7945511b), TOBN(0x30b974be, 0x6558842d), TOBN(0x70df8c64, 0x17f3d0a6), TOBN(0x7c803520, 0x7542e46d), TOBN(0x7251fe7f, 0xe4ecc823), TOBN(0xe59134cb, 0x5e9aac9a), TOBN(0x11bb0934, 0xf0045d71), TOBN(0x53e5d9b5, 0xdbcb1d4e), TOBN(0x8d97a905, 0x92defc91), TOBN(0xfe289327, 0x7946d3f9), TOBN(0xe132bd24, 0x07472273), TOBN(0xeeeb510c, 0x1eb6ae86), TOBN(0x777708c5, 0xf0595067), TOBN(0x18e2c8cd, 0x1297029e), TOBN(0x2c61095c, 0xbbf9305e), TOBN(0xe466c258, 0x6b85d6d9), TOBN(0x8ac06c36, 0xda1ea530), TOBN(0xa365dc39, 0xa1304668), TOBN(0xe4a9c885, 0x07f89606), TOBN(0x65a4898f, 0xacc7228d), TOBN(0x3e2347ff, 0x84ca8303), TOBN(0xa5f6fb77, 0xea7d23a3), TOBN(0x2fac257d, 0x672a71cd), TOBN(0x6908bef8, 0x7e6a44d3), TOBN(0x8ff87566, 0x891d3d7a), TOBN(0xe58e90b3, 0x6b0cf82e), TOBN(0x6438d246, 0x2615b5e7), TOBN(0x07b1f8fc, 0x669c145a), TOBN(0xb0d8b2da, 0x36f1e1cb), TOBN(0x54d5dadb, 0xd9184c4d), TOBN(0x3dbb18d5, 0xf93d9976), TOBN(0x0a3e0f56, 0xd1147d47), TOBN(0x2afa8c8d, 0xa0a48609), TOBN(0x275353e8, 0xbc36742c), TOBN(0x898f427e, 0xeea0ed90), TOBN(0x26f4947e, 0x3e477b00), TOBN(0x8ad8848a, 0x308741e3), TOBN(0x6c703c38, 0xd74a2a46), TOBN(0x5e3e05a9, 0x9ba17ba2), TOBN(0xc1fa6f66, 0x4ab9a9e4), TOBN(0x474a2d9a, 0x3841d6ec), TOBN(0x871239ad, 0x653ae326), TOBN(0x14bcf72a, 0xa74cbb43), TOBN(0x8737650e, 0x20d4c083), TOBN(0x3df86536, 0x110ed4af), TOBN(0xd2d86fe7, 0xb53ca555), TOBN(0x688cb00d, 0xabd5d538), TOBN(0xcf81bda3, 0x1ad38468), TOBN(0x7ccfe3cc, 0xf01167b6), TOBN(0xcf4f47e0, 0x6c4c1fe6), TOBN(0x557e1f1a, 0x298bbb79), TOBN(0xf93b974f, 0x30d45a14), TOBN(0x174a1d2d, 0x0baf97c4), TOBN(0x7a003b30, 0xc51fbf53), TOBN(0xd8940991, 0xee68b225), TOBN(0x5b0aa7b7, 0x1c0f4173), TOBN(0x975797c9, 0xa20a7153), TOBN(0x26e08c07, 0xe3533d77), TOBN(0xd7222e6a, 0x2e341c99), TOBN(0x9d60ec3d, 0x8d2dc4ed), TOBN(0xbdfe0d8f, 0x7c476cf8), TOBN(0x1fe59ab6, 0x1d056605), TOBN(0xa9ea9df6, 0x86a8551f), TOBN(0x8489941e, 0x47fb8d8c), TOBN(0xfeb874eb, 0x4a7f1b10), TOBN(0xfe5fea86, 0x7ee0d98f), TOBN(0x201ad34b, 0xdbf61864), TOBN(0x45d8fe47, 0x37c031d4), TOBN(0xd5f49fae, 0x795f0822), TOBN(0xdb0fb291, 0xc7f4a40c), TOBN(0x2e69d9c1, 0x730ddd92), TOBN(0x754e1054, 0x49d76987), TOBN(0x8a24911d, 0x7662db87), TOBN(0x61fc1810, 0x60a71676), TOBN(0xe852d1a8, 0xf66a8ad1), TOBN(0x172bbd65, 0x6417231e), TOBN(0x0d6de7bd, 0x3babb11f), TOBN(0x6fde6f88, 0xc8e347f8), TOBN(0x1c587547, 0x9bd99cc3), TOBN(0x78e54ed0, 0x34076950), TOBN(0x97f0f334, 0x796e83ba), TOBN(0xe4dbe1ce, 0x4924867a), TOBN(0xbd5f51b0, 0x60b84917), TOBN(0x37530040, 0x3cb09a79), TOBN(0xdb3fe0f8, 0xff1743d8), TOBN(0xed7894d8, 0x556fa9db), TOBN(0xfa262169, 0x23412fbf), TOBN(0x563be0db, 0xba7b9291), TOBN(0x6ca8b8c0, 0x0c9fb234), TOBN(0xed406aa9, 0xbd763802), TOBN(0xc21486a0, 0x65303da1), TOBN(0x61ae291e, 0xc7e62ec4), TOBN(0x622a0492, 0xdf99333e), TOBN(0x7fd80c9d, 0xbb7a8ee0), TOBN(0xdc2ed3bc, 0x6c01aedb), TOBN(0x35c35a12, 0x08be74ec), TOBN(0xd540cb1a, 0x469f671f), TOBN(0xd16ced4e, 0xcf84f6c7), TOBN(0x8561fb9c, 0x2d090f43), TOBN(0x7e693d79, 0x6f239db4), TOBN(0xa736f928, 0x77bd0d94), TOBN(0x07b4d929, 0x2c1950ee), TOBN(0xda177543, 0x56dc11b3), TOBN(0xa5dfbbaa, 0x7a6a878e), TOBN(0x1c70cb29, 0x4decb08a), TOBN(0xfba28c8b, 0x6f0f7c50), TOBN(0xa8eba2b8, 0x854dcc6d), TOBN(0x5ff8e89a, 0x36b78642), TOBN(0x070c1c8e, 0xf6873adf), TOBN(0xbbd3c371, 0x6484d2e4), TOBN(0xfb78318f, 0x0d414129), TOBN(0x2621a39c, 0x6ad93b0b), TOBN(0x979d74c2, 0xa9e917f7), TOBN(0xfc195647, 0x61fb0428), TOBN(0x4d78954a, 0xbee624d4), TOBN(0xb94896e0, 0xb8ae86fd), TOBN(0x6667ac0c, 0xc91c8b13), TOBN(0x9f180512, 0x43bcf832), TOBN(0xfbadf8b7, 0xa0010137), TOBN(0xc69b4089, 0xb3ba8aa7), TOBN(0xfac4bacd, 0xe687ce85), TOBN(0x9164088d, 0x977eab40), TOBN(0x51f4c5b6, 0x2760b390), TOBN(0xd238238f, 0x340dd553), TOBN(0x358566c3, 0xdb1d31c9), TOBN(0x3a5ad69e, 0x5068f5ff), TOBN(0xf31435fc, 0xdaff6b06), TOBN(0xae549a5b, 0xd6debff0), TOBN(0x59e5f0b7, 0x75e01331), TOBN(0x5d492fb8, 0x98559acf), TOBN(0x96018c2e, 0x4db79b50), TOBN(0x55f4a48f, 0x609f66aa), TOBN(0x1943b3af, 0x4900a14f), TOBN(0xc22496df, 0x15a40d39), TOBN(0xb2a44684, 0x4c20f7c5), TOBN(0x76a35afa, 0x3b98404c), TOBN(0xbec75725, 0xff5d1b77), TOBN(0xb67aa163, 0xbea06444), TOBN(0x27e95bb2, 0xf724b6f2), TOBN(0x3c20e3e9, 0xd238c8ab), TOBN(0x1213754e, 0xddd6ae17), TOBN(0x8c431020, 0x716e0f74), TOBN(0x6679c82e, 0xffc095c2), TOBN(0x2eb3adf4, 0xd0ac2932), TOBN(0x2cc970d3, 0x01bb7a76), TOBN(0x70c71f2f, 0x740f0e66), TOBN(0x545c616b, 0x2b6b23cc), TOBN(0x4528cfcb, 0xb40a8bd7), TOBN(0xff839633, 0x2ab27722), TOBN(0x049127d9, 0x025ac99a), TOBN(0xd314d4a0, 0x2b63e33b), TOBN(0xc8c310e7, 0x28d84519), TOBN(0x0fcb8983, 0xb3bc84ba), TOBN(0x2cc52261, 0x38634818), TOBN(0x501814f4, 0xb44c2e0b), TOBN(0xf7e181aa, 0x54dfdba3), TOBN(0xcfd58ff0, 0xe759718c), TOBN(0xf90cdb14, 0xd3b507a8), TOBN(0x57bd478e, 0xc50bdad8), TOBN(0x29c197e2, 0x50e5f9aa), TOBN(0x4db6eef8, 0xe40bc855), TOBN(0x2cc8f21a, 0xd1fc0654), TOBN(0xc71cc963, 0x81269d73), TOBN(0xecfbb204, 0x077f49f9), TOBN(0xdde92571, 0xca56b793), TOBN(0x9abed6a3, 0xf97ad8f7), TOBN(0xe6c19d3f, 0x924de3bd), TOBN(0x8dce92f4, 0xa140a800), TOBN(0x85f44d1e, 0x1337af07), TOBN(0x5953c08b, 0x09d64c52), TOBN(0xa1b5e49f, 0xf5df9749), TOBN(0x336a8fb8, 0x52735f7d), TOBN(0xb332b6db, 0x9add676b), TOBN(0x558b88a0, 0xb4511aa4), TOBN(0x09788752, 0xdbd5cc55), TOBN(0x16b43b9c, 0xd8cd52bd), TOBN(0x7f0bc5a0, 0xc2a2696b), TOBN(0x146e12d4, 0xc11f61ef), TOBN(0x9ce10754, 0x3a83e79e), TOBN(0x08ec73d9, 0x6cbfca15), TOBN(0x09ff29ad, 0x5b49653f), TOBN(0xe31b72bd, 0xe7da946e), TOBN(0xebf9eb3b, 0xee80a4f2), TOBN(0xd1aabd08, 0x17598ce4), TOBN(0x18b5fef4, 0x53f37e80), TOBN(0xd5d5cdd3, 0x5958cd79), TOBN(0x3580a1b5, 0x1d373114), TOBN(0xa36e4c91, 0xfa935726), TOBN(0xa38c534d, 0xef20d760), TOBN(0x7088e40a, 0x2ff5845b), TOBN(0xe5bb40bd, 0xbd78177f), TOBN(0x4f06a7a8, 0x857f9920), TOBN(0xe3cc3e50, 0xe968f05d), TOBN(0x1d68b7fe, 0xe5682d26), TOBN(0x5206f76f, 0xaec7f87c), TOBN(0x41110530, 0x041951ab), TOBN(0x58ec52c1, 0xd4b5a71a), TOBN(0xf3488f99, 0x0f75cf9a), TOBN(0xf411951f, 0xba82d0d5), TOBN(0x27ee75be, 0x618895ab), TOBN(0xeae060d4, 0x6d8aab14), TOBN(0x9ae1df73, 0x7fb54dc2), TOBN(0x1f3e391b, 0x25963649), TOBN(0x242ec32a, 0xfe055081), TOBN(0x5bd450ef, 0x8491c9bd), TOBN(0x367efc67, 0x981eb389), TOBN(0xed7e1928, 0x3a0550d5), TOBN(0x362e776b, 0xab3ce75c), TOBN(0xe890e308, 0x1f24c523), TOBN(0xb961b682, 0xfeccef76), TOBN(0x8b8e11f5, 0x8bba6d92), TOBN(0x8f2ccc4c, 0x2b2375c4), TOBN(0x0d7f7a52, 0xe2f86cfa), TOBN(0xfd94d30a, 0x9efe5633), TOBN(0x2d8d246b, 0x5451f934), TOBN(0x2234c6e3, 0x244e6a00), TOBN(0xde2b5b0d, 0xddec8c50), TOBN(0x2ce53c5a, 0xbf776f5b), TOBN(0x6f724071, 0x60357b05), TOBN(0xb2593717, 0x71bf3f7a), TOBN(0x87d2501c, 0x440c4a9f), TOBN(0x440552e1, 0x87b05340), TOBN(0xb7bf7cc8, 0x21624c32), TOBN(0x4155a6ce, 0x22facddb), TOBN(0x5a4228cb, 0x889837ef), TOBN(0xef87d6d6, 0xfd4fd671), TOBN(0xa233687e, 0xc2daa10e), TOBN(0x75622244, 0x03c0eb96), TOBN(0x7632d184, 0x8bf19be6), TOBN(0x05d0f8e9, 0x40735ff4), TOBN(0x3a3e6e13, 0xc00931f1), TOBN(0x31ccde6a, 0xdafe3f18), TOBN(0xf381366a, 0xcfe51207), TOBN(0x24c222a9, 0x60167d92), TOBN(0x62f9d6f8, 0x7529f18c), TOBN(0x412397c0, 0x0353b114), TOBN(0x334d89dc, 0xef808043), TOBN(0xd9ec63ba, 0x2a4383ce), TOBN(0xcec8e937, 0x5cf92ba0), TOBN(0xfb8b4288, 0xc8be74c0), TOBN(0x67d6912f, 0x105d4391), TOBN(0x7b996c46, 0x1b913149), TOBN(0x36aae2ef, 0x3a4e02da), TOBN(0xb68aa003, 0x972de594), TOBN(0x284ec70d, 0x4ec6d545), TOBN(0xf3d2b2d0, 0x61391d54), TOBN(0x69c5d5d6, 0xfe114e92), TOBN(0xbe0f00b5, 0xb4482dff), TOBN(0xe1596fa5, 0xf5bf33c5), TOBN(0x10595b56, 0x96a71cba), TOBN(0x944938b2, 0xfdcadeb7), TOBN(0xa282da4c, 0xfccd8471), TOBN(0x98ec05f3, 0x0d37bfe1), TOBN(0xe171ce1b, 0x0698304a), TOBN(0x2d691444, 0x21bdf79b), TOBN(0xd0cd3b74, 0x1b21dec1), TOBN(0x712ecd8b, 0x16a15f71), TOBN(0x8d4c00a7, 0x00fd56e1), TOBN(0x02ec9692, 0xf9527c18), TOBN(0x21c44937, 0x4a3e42e1), TOBN(0x9176fbab, 0x1392ae0a), TOBN(0x8726f1ba, 0x44b7b618), TOBN(0xb4d7aae9, 0xf1de491c), TOBN(0xf91df7b9, 0x07b582c0), TOBN(0x7e116c30, 0xef60aa3a), TOBN(0x99270f81, 0x466265d7), TOBN(0xb15b6fe2, 0x4df7adf0), TOBN(0xfe33b2d3, 0xf9738f7f), TOBN(0x48553ab9, 0xd6d70f95), TOBN(0x2cc72ac8, 0xc21e94db), TOBN(0x795ac38d, 0xbdc0bbee), TOBN(0x0a1be449, 0x2e40478f), TOBN(0x81bd3394, 0x052bde55), TOBN(0x63c8dbe9, 0x56b3c4f2), TOBN(0x017a99cf, 0x904177cc), TOBN(0x947bbddb, 0x4d010fc1), TOBN(0xacf9b00b, 0xbb2c9b21), TOBN(0x2970bc8d, 0x47173611), TOBN(0x1a4cbe08, 0xac7d756f), TOBN(0x06d9f4aa, 0x67d541a2), TOBN(0xa3e8b689, 0x59c2cf44), TOBN(0xaad066da, 0x4d88f1dd), TOBN(0xc604f165, 0x7ad35dea), TOBN(0x7edc0720, 0x4478ca67), TOBN(0xa10dfae0, 0xba02ce06), TOBN(0xeceb1c76, 0xaf36f4e4), TOBN(0x994b2292, 0xaf3f8f48), TOBN(0xbf9ed77b, 0x77c8a68c), TOBN(0x74f544ea, 0x51744c9d), TOBN(0x82d05bb9, 0x8113a757), TOBN(0x4ef2d2b4, 0x8a9885e4), TOBN(0x1e332be5, 0x1aa7865f), TOBN(0x22b76b18, 0x290d1a52), TOBN(0x308a2310, 0x44351683), TOBN(0x9d861896, 0xa3f22840), TOBN(0x5959ddcd, 0x841ed947), TOBN(0x0def0c94, 0x154b73bf), TOBN(0xf0105417, 0x4c7c15e0), TOBN(0x539bfb02, 0x3a277c32), TOBN(0xe699268e, 0xf9dccf5f), TOBN(0x9f5796a5, 0x0247a3bd), TOBN(0x8b839de8, 0x4f157269), TOBN(0xc825c1e5, 0x7a30196b), TOBN(0x6ef0aabc, 0xdc8a5a91), TOBN(0xf4a8ce6c, 0x498b7fe6), TOBN(0x1cce35a7, 0x70cbac78), TOBN(0x83488e9b, 0xf6b23958), TOBN(0x0341a070, 0xd76cb011), TOBN(0xda6c9d06, 0xae1b2658), TOBN(0xb701fb30, 0xdd648c52), TOBN(0x994ca02c, 0x52fb9fd1), TOBN(0x06933117, 0x6f563086), TOBN(0x3d2b8100, 0x17856bab), TOBN(0xe89f48c8, 0x5963a46e), TOBN(0x658ab875, 0xa99e61c7), TOBN(0x6e296f87, 0x4b8517b4), TOBN(0x36c4fcdc, 0xfc1bc656), TOBN(0xde5227a1, 0xa3906def), TOBN(0x9fe95f57, 0x62418945), TOBN(0x20c91e81, 0xfdd96cde), TOBN(0x5adbe47e, 0xda4480de), TOBN(0xa009370f, 0x396de2b6), TOBN(0x98583d4b, 0xf0ecc7bd), TOBN(0xf44f6b57, 0xe51d0672), TOBN(0x03d6b078, 0x556b1984), TOBN(0x27dbdd93, 0xb0b64912), TOBN(0x9b3a3434, 0x15687b09), TOBN(0x0dba6461, 0x51ec20a9), TOBN(0xec93db7f, 0xff28187c), TOBN(0x00ff8c24, 0x66e48bdd), TOBN(0x2514f2f9, 0x11ccd78e), TOBN(0xeba11f4f, 0xe1250603), TOBN(0x8a22cd41, 0x243fa156), TOBN(0xa4e58df4, 0xb283e4c6), TOBN(0x78c29859, 0x8b39783f), TOBN(0x5235aee2, 0xa5259809), TOBN(0xc16284b5, 0x0e0227dd), TOBN(0xa5f57916, 0x1338830d), TOBN(0x6d4b8a6b, 0xd2123fca), TOBN(0x236ea68a, 0xf9c546f8), TOBN(0xc1d36873, 0xfa608d36), TOBN(0xcd76e495, 0x8d436d13), TOBN(0xd4d9c221, 0x8fb080af), TOBN(0x665c1728, 0xe8ad3fb5), TOBN(0xcf1ebe4d, 0xb3d572e0), TOBN(0xa7a8746a, 0x584c5e20), TOBN(0x267e4ea1, 0xb9dc7035), TOBN(0x593a15cf, 0xb9548c9b), TOBN(0x5e6e2135, 0x4bd012f3), TOBN(0xdf31cc6a, 0x8c8f936e), TOBN(0x8af84d04, 0xb5c241dc), TOBN(0x63990a6f, 0x345efb86), TOBN(0x6fef4e61, 0xb9b962cb)} , {TOBN(0xf6368f09, 0x25722608), TOBN(0x131260db, 0x131cf5c6), TOBN(0x40eb353b, 0xfab4f7ac), TOBN(0x85c78880, 0x37eee829), TOBN(0x4c1581ff, 0xc3bdf24e), TOBN(0x5bff75cb, 0xf5c3c5a8), TOBN(0x35e8c83f, 0xa14e6f40), TOBN(0xb81d1c0f, 0x0295e0ca), TOBN(0xfcde7cc8, 0xf43a730f), TOBN(0xe89b6f3c, 0x33ab590e), TOBN(0xc823f529, 0xad03240b), TOBN(0x82b79afe, 0x98bea5db), TOBN(0x568f2856, 0x962fe5de), TOBN(0x0c590adb, 0x60c591f3), TOBN(0x1fc74a14, 0x4a28a858), TOBN(0x3b662498, 0xb3203f4c), TOBN(0x91e3cf0d, 0x6c39765a), TOBN(0xa2db3acd, 0xac3cca0b), TOBN(0x288f2f08, 0xcb953b50), TOBN(0x2414582c, 0xcf43cf1a), TOBN(0x8dec8bbc, 0x60eee9a8), TOBN(0x54c79f02, 0x729aa042), TOBN(0xd81cd5ec, 0x6532f5d5), TOBN(0xa672303a, 0xcf82e15f), TOBN(0x376aafa8, 0x719c0563), TOBN(0xcd8ad2dc, 0xbc5fc79f), TOBN(0x303fdb9f, 0xcb750cd3), TOBN(0x14ff052f, 0x4418b08e), TOBN(0xf75084cf, 0x3e2d6520), TOBN(0x7ebdf0f8, 0x144ed509), TOBN(0xf43bf0f2, 0xd3f25b98), TOBN(0x86ad71cf, 0xa354d837), TOBN(0xb827fe92, 0x26f43572), TOBN(0xdfd3ab5b, 0x5d824758), TOBN(0x315dd23a, 0x539094c1), TOBN(0x85c0e37a, 0x66623d68), TOBN(0x575c7972, 0x7be19ae0), TOBN(0x616a3396, 0xdf0d36b5), TOBN(0xa1ebb3c8, 0x26b1ff7e), TOBN(0x635b9485, 0x140ad453), TOBN(0x92bf3cda, 0xda430c0b), TOBN(0x4702850e, 0x3a96dac6), TOBN(0xc91cf0a5, 0x15ac326a), TOBN(0x95de4f49, 0xab8c25e4), TOBN(0xb01bad09, 0xe265c17c), TOBN(0x24e45464, 0x087b3881), TOBN(0xd43e583c, 0xe1fac5ca), TOBN(0xe17cb318, 0x6ead97a6), TOBN(0x6cc39243, 0x74dcec46), TOBN(0x33cfc02d, 0x54c2b73f), TOBN(0x82917844, 0xf26cd99c), TOBN(0x8819dd95, 0xd1773f89), TOBN(0x09572aa6, 0x0871f427), TOBN(0x8e0cf365, 0xf6f01c34), TOBN(0x7fa52988, 0xbff1f5af), TOBN(0x4eb357ea, 0xe75e8e50), TOBN(0xd9d0c8c4, 0x868af75d), TOBN(0xd7325cff, 0x45c8c7ea), TOBN(0xab471996, 0xcc81ecb0), TOBN(0xff5d55f3, 0x611824ed), TOBN(0xbe314541, 0x1977a0ee), TOBN(0x5085c4c5, 0x722038c6), TOBN(0x2d5335bf, 0xf94bb495), TOBN(0x894ad8a6, 0xc8e2a082), TOBN(0x5c3e2341, 0xada35438), TOBN(0xf4a9fc89, 0x049b8c4e), TOBN(0xbeeb355a, 0x9f17cf34), TOBN(0x3f311e0e, 0x6c91fe10), TOBN(0xc2d20038, 0x92ab9891), TOBN(0x257bdcc1, 0x3e8ce9a9), TOBN(0x1b2d9789, 0x88c53bee), TOBN(0x927ce89a, 0xcdba143a), TOBN(0xb0a32cca, 0x523db280), TOBN(0x5c889f8a, 0x50d43783), TOBN(0x503e04b3, 0x4897d16f), TOBN(0x8cdb6e78, 0x08f5f2e8), TOBN(0x6ab91cf0, 0x179c8e74), TOBN(0xd8874e52, 0x48211d60), TOBN(0xf948d4d5, 0xea851200), TOBN(0x4076d41e, 0xe6f9840a), TOBN(0xc20e263c, 0x47b517ea), TOBN(0x79a448fd, 0x30685e5e), TOBN(0xe55f6f78, 0xf90631a0), TOBN(0x88a790b1, 0xa79e6346), TOBN(0x62160c7d, 0x80969fe8), TOBN(0x54f92fd4, 0x41491bb9), TOBN(0xa6645c23, 0x5c957526), TOBN(0xf44cc5ae, 0xbea3ce7b), TOBN(0xf7628327, 0x8b1e68b7), TOBN(0xc731ad7a, 0x303f29d3), TOBN(0xfe5a9ca9, 0x57d03ecb), TOBN(0x96c0d50c, 0x41bc97a7), TOBN(0xc4669fe7, 0x9b4f7f24), TOBN(0xfdd781d8, 0x3d9967ef), TOBN(0x7892c7c3, 0x5d2c208d), TOBN(0x8bf64f7c, 0xae545cb3), TOBN(0xc01f862c, 0x467be912), TOBN(0xf4c85ee9, 0xc73d30cc), TOBN(0x1fa6f4be, 0x6ab83ec7), TOBN(0xa07a3c1c, 0x4e3e3cf9), TOBN(0x87f8ef45, 0x0c00beb3), TOBN(0x30e2c2b3, 0x000d4c3e), TOBN(0x1aa00b94, 0xfe08bf5b), TOBN(0x32c133aa, 0x9224ef52), TOBN(0x38df16bb, 0x32e5685d), TOBN(0x68a9e069, 0x58e6f544), TOBN(0x495aaff7, 0xcdc5ebc6), TOBN(0xf894a645, 0x378b135f), TOBN(0xf316350a, 0x09e27ecf), TOBN(0xeced201e, 0x58f7179d), TOBN(0x2eec273c, 0xe97861ba), TOBN(0x47ec2cae, 0xd693be2e), TOBN(0xfa4c97c4, 0xf68367ce), TOBN(0xe4f47d0b, 0xbe5a5755), TOBN(0x17de815d, 0xb298a979), TOBN(0xd7eca659, 0xc177dc7d), TOBN(0x20fdbb71, 0x49ded0a3), TOBN(0x4cb2aad4, 0xfb34d3c5), TOBN(0x2cf31d28, 0x60858a33), TOBN(0x3b6873ef, 0xa24aa40f), TOBN(0x540234b2, 0x2c11bb37), TOBN(0x2d0366dd, 0xed4c74a3), TOBN(0xf9a968da, 0xeec5f25d), TOBN(0x36601068, 0x67b63142), TOBN(0x07cd6d2c, 0x68d7b6d4), TOBN(0xa8f74f09, 0x0c842942), TOBN(0xe2751404, 0x7768b1ee), TOBN(0x4b5f7e89, 0xfe62aee4), TOBN(0xc6a77177, 0x89070d26), TOBN(0xa1f28e4e, 0xdd1c8bc7), TOBN(0xea5f4f06, 0x469e1f17), TOBN(0x78fc242a, 0xfbdb78e0), TOBN(0xc9c7c592, 0x8b0588f1), TOBN(0xb6b7a0fd, 0x1535921e), TOBN(0xcc5bdb91, 0xbde5ae35), TOBN(0xb42c485e, 0x12ff1864), TOBN(0xa1113e13, 0xdbab98aa), TOBN(0xde9d469b, 0xa17b1024), TOBN(0x23f48b37, 0xc0462d3a), TOBN(0x3752e537, 0x7c5c078d), TOBN(0xe3a86add, 0x15544eb9), TOBN(0xf013aea7, 0x80fba279), TOBN(0x8b5bb76c, 0xf22001b5), TOBN(0xe617ba14, 0xf02891ab), TOBN(0xd39182a6, 0x936219d3), TOBN(0x5ce1f194, 0xae51cb19), TOBN(0xc78f8598, 0xbf07a74c), TOBN(0x6d7158f2, 0x22cbf1bc), TOBN(0x3b846b21, 0xe300ce18), TOBN(0x35fba630, 0x2d11275d), TOBN(0x5fe25c36, 0xa0239b9b), TOBN(0xd8beb35d, 0xdf05d940), TOBN(0x4db02bb0, 0x1f7e320d), TOBN(0x0641c364, 0x6da320ea), TOBN(0x6d95fa5d, 0x821389a3), TOBN(0x92699748, 0x8fcd8e3d), TOBN(0x316fef17, 0xceb6c143), TOBN(0x67fcb841, 0xd933762b), TOBN(0xbb837e35, 0x118b17f8), TOBN(0x4b92552f, 0x9fd24821), TOBN(0xae6bc70e, 0x46aca793), TOBN(0x1cf0b0e4, 0xe579311b), TOBN(0x8dc631be, 0x5802f716), TOBN(0x099bdc6f, 0xbddbee4d), TOBN(0xcc352bb2, 0x0caf8b05), TOBN(0xf74d505a, 0x72d63df2), TOBN(0xb9876d4b, 0x91c4f408), TOBN(0x1ce18473, 0x9e229b2d), TOBN(0x49507597, 0x83abdb4a), TOBN(0x850fbcb6, 0xdee84b18), TOBN(0x6325236e, 0x609e67dc), TOBN(0x04d831d9, 0x9336c6d8), TOBN(0x8deaae3b, 0xfa12d45d), TOBN(0xe425f8ce, 0x4746e246), TOBN(0x8004c175, 0x24f5f31e), TOBN(0xaca16d8f, 0xad62c3b7), TOBN(0x0dc15a6a, 0x9152f934), TOBN(0xf1235e5d, 0xed0e12c1), TOBN(0xc33c06ec, 0xda477dac), TOBN(0x76be8732, 0xb2ea0006), TOBN(0xcf3f7831, 0x0c0cd313), TOBN(0x3c524553, 0xa614260d), TOBN(0x31a756f8, 0xcab22d15), TOBN(0x03ee10d1, 0x77827a20), TOBN(0xd1e059b2, 0x1994ef20), TOBN(0x2a653b69, 0x638ae318), TOBN(0x70d5eb58, 0x2f699010), TOBN(0x279739f7, 0x09f5f84a), TOBN(0x5da4663c, 0x8b799336), TOBN(0xfdfdf14d, 0x203c37eb), TOBN(0x32d8a9dc, 0xa1dbfb2d), TOBN(0xab40cff0, 0x77d48f9b), TOBN(0xc018b383, 0xd20b42d5), TOBN(0xf9a810ef, 0x9f78845f), TOBN(0x40af3753, 0xbdba9df0), TOBN(0xb90bdcfc, 0x131dfdf9), TOBN(0x18720591, 0xf01ab782), TOBN(0xc823f211, 0x6af12a88), TOBN(0xa51b80f3, 0x0dc14401), TOBN(0xde248f77, 0xfb2dfbe3), TOBN(0xef5a44e5, 0x0cafe751), TOBN(0x73997c9c, 0xd4dcd221), TOBN(0x32fd86d1, 0xde854024), TOBN(0xd5b53adc, 0xa09b84bb), TOBN(0x008d7a11, 0xdcedd8d1), TOBN(0x406bd1c8, 0x74b32c84), TOBN(0x5d4472ff, 0x05dde8b1), TOBN(0x2e25f2cd, 0xfce2b32f), TOBN(0xbec0dd5e, 0x29dfc254), TOBN(0x4455fcf6, 0x2b98b267), TOBN(0x0b4d43a5, 0xc72df2ad), TOBN(0xea70e6be, 0x48a75397), TOBN(0x2aad6169, 0x5820f3bf), TOBN(0xf410d2dd, 0x9e37f68f), TOBN(0x70fb7dba, 0x7be5ac83), TOBN(0x636bb645, 0x36ec3eec), TOBN(0x27104ea3, 0x9754e21c), TOBN(0xbc87a3e6, 0x8d63c373), TOBN(0x483351d7, 0x4109db9a), TOBN(0x0fa724e3, 0x60134da7), TOBN(0x9ff44c29, 0xb0720b16), TOBN(0x2dd0cf13, 0x06aceead), TOBN(0x5942758c, 0xe26929a6), TOBN(0x96c5db92, 0xb766a92b), TOBN(0xcec7d4c0, 0x5f18395e), TOBN(0xd3f22744, 0x1f80d032), TOBN(0x7a68b37a, 0xcb86075b), TOBN(0x074764dd, 0xafef92db), TOBN(0xded1e950, 0x7bc7f389), TOBN(0xc580c850, 0xb9756460), TOBN(0xaeeec2a4, 0x7da48157), TOBN(0x3f0b4e7f, 0x82c587b3), TOBN(0x231c6de8, 0xa9f19c53), TOBN(0x5717bd73, 0x6974e34e), TOBN(0xd9e1d216, 0xf1508fa9), TOBN(0x9f112361, 0xdadaa124), TOBN(0x80145e31, 0x823b7348), TOBN(0x4dd8f0d5, 0xac634069), TOBN(0xe3d82fc7, 0x2297c258), TOBN(0x276fcfee, 0x9cee7431), TOBN(0x8eb61b5e, 0x2bc0aea9), TOBN(0x4f668fd5, 0xde329431), TOBN(0x03a32ab1, 0x38e4b87e), TOBN(0xe1374517, 0x73d0ef0b), TOBN(0x1a46f7e6, 0x853ac983), TOBN(0xc3bdf42e, 0x68e78a57), TOBN(0xacf20785, 0x2ea96dd1), TOBN(0xa10649b9, 0xf1638460), TOBN(0xf2369f0b, 0x879fbbed), TOBN(0x0ff0ae86, 0xda9d1869), TOBN(0x5251d759, 0x56766f45), TOBN(0x4984d8c0, 0x2be8d0fc), TOBN(0x7ecc95a6, 0xd21008f0), TOBN(0x29bd54a0, 0x3a1a1c49), TOBN(0xab9828c5, 0xd26c50f3), TOBN(0x32c0087c, 0x51d0d251), TOBN(0x9bac3ce6, 0x0c1cdb26), TOBN(0xcd94d947, 0x557ca205), TOBN(0x1b1bd598, 0x9db1fdcd), TOBN(0x0eda0108, 0xa3d8b149), TOBN(0x95066610, 0x56152fcc), TOBN(0xc2f037e6, 0xe7192b33), TOBN(0xdeffb41a, 0xc92e05a4), TOBN(0x1105f6c2, 0xc2f6c62e), TOBN(0x68e73500, 0x8733913c), TOBN(0xcce86163, 0x3f3adc40), TOBN(0xf407a942, 0x38a278e9), TOBN(0xd13c1b9d, 0x2ab21292), TOBN(0x93ed7ec7, 0x1c74cf5c), TOBN(0x8887dc48, 0xf1a4c1b4), TOBN(0x3830ff30, 0x4b3a11f1), TOBN(0x358c5a3c, 0x58937cb6), TOBN(0x027dc404, 0x89022829), TOBN(0x40e93977, 0x3b798f79), TOBN(0x90ad3337, 0x38be6ead), TOBN(0x9c23f6bc, 0xf34c0a5d), TOBN(0xd1711a35, 0xfbffd8bb), TOBN(0x60fcfb49, 0x1949d3dd), TOBN(0x09c8ef4b, 0x7825d93a), TOBN(0x24233cff, 0xa0a8c968), TOBN(0x67ade46c, 0xe6d982af), TOBN(0xebb6bf3e, 0xe7544d7c), TOBN(0xd6b9ba76, 0x3d8bd087), TOBN(0x46fe382d, 0x4dc61280), TOBN(0xbd39a7e8, 0xb5bdbd75), TOBN(0xab381331, 0xb8f228fe), TOBN(0x0709a77c, 0xce1c4300), TOBN(0x6a247e56, 0xf337ceac), TOBN(0x8f34f21b, 0x636288be), TOBN(0x9dfdca74, 0xc8a7c305), TOBN(0x6decfd1b, 0xea919e04), TOBN(0xcdf2688d, 0x8e1991f8), TOBN(0xe607df44, 0xd0f8a67e), TOBN(0xd985df4b, 0x0b58d010), TOBN(0x57f834c5, 0x0c24f8f4), TOBN(0xe976ef56, 0xa0bf01ae), TOBN(0x536395ac, 0xa1c32373), TOBN(0x351027aa, 0x734c0a13), TOBN(0xd2f1b5d6, 0x5e6bd5bc), TOBN(0x2b539e24, 0x223debed), TOBN(0xd4994cec, 0x0eaa1d71), TOBN(0x2a83381d, 0x661dcf65), TOBN(0x5f1aed2f, 0x7b54c740), TOBN(0x0bea3fa5, 0xd6dda5ee), TOBN(0x9d4fb684, 0x36cc6134), TOBN(0x8eb9bbf3, 0xc0a443dd), TOBN(0xfc500e2e, 0x383b7d2a), TOBN(0x7aad621c, 0x5b775257), TOBN(0x69284d74, 0x0a8f7cc0), TOBN(0xe820c2ce, 0x07562d65), TOBN(0xbf9531b9, 0x499758ee), TOBN(0x73e95ca5, 0x6ee0cc2d), TOBN(0xf61790ab, 0xfbaf50a5), TOBN(0xdf55e76b, 0x684e0750), TOBN(0xec516da7, 0xf176b005), TOBN(0x575553bb, 0x7a2dddc7), TOBN(0x37c87ca3, 0x553afa73), TOBN(0x315f3ffc, 0x4d55c251), TOBN(0xe846442a, 0xaf3e5d35), TOBN(0x61b91149, 0x6495ff28), TOBN(0x23cc95d3, 0xfa326dc3), TOBN(0x1df4da1f, 0x18fc2cea), TOBN(0x24bf9adc, 0xd0a37d59), TOBN(0xb6710053, 0x320d6e1e), TOBN(0x96f9667e, 0x618344d1), TOBN(0xcc7ce042, 0xa06445af), TOBN(0xa02d8514, 0xd68dbc3a), TOBN(0x4ea109e4, 0x280b5a5b), TOBN(0x5741a7ac, 0xb40961bf), TOBN(0x4ada5937, 0x6aa56bfa), TOBN(0x7feb9145, 0x02b765d1), TOBN(0x561e97be, 0xe6ad1582), TOBN(0xbbc4a5b6, 0xda3982f5), TOBN(0x0c2659ed, 0xb546f468), TOBN(0xb8e7e6aa, 0x59612d20), TOBN(0xd83dfe20, 0xac19e8e0), TOBN(0x8530c45f, 0xb835398c), TOBN(0x6106a8bf, 0xb38a41c2), TOBN(0x21e8f9a6, 0x35f5dcdb), TOBN(0x39707137, 0xcae498ed), TOBN(0x70c23834, 0xd8249f00), TOBN(0x9f14b58f, 0xab2537a0), TOBN(0xd043c365, 0x5f61c0c2), TOBN(0xdc5926d6, 0x09a194a7), TOBN(0xddec0339, 0x8e77738a), TOBN(0xd07a63ef, 0xfba46426), TOBN(0x2e58e79c, 0xee7f6e86), TOBN(0xe59b0459, 0xff32d241), TOBN(0xc5ec84e5, 0x20fa0338), TOBN(0x97939ac8, 0xeaff5ace), TOBN(0x0310a4e3, 0xb4a38313), TOBN(0x9115fba2, 0x8f9d9885), TOBN(0x8dd710c2, 0x5fadf8c3), TOBN(0x66be38a2, 0xce19c0e2), TOBN(0xd42a279c, 0x4cfe5022), TOBN(0x597bb530, 0x0e24e1b8), TOBN(0x3cde86b7, 0xc153ca7f), TOBN(0xa8d30fb3, 0x707d63bd), TOBN(0xac905f92, 0xbd60d21e), TOBN(0x98e7ffb6, 0x7b9a54ab), TOBN(0xd7147df8, 0xe9726a30), TOBN(0xb5e216ff, 0xafce3533), TOBN(0xb550b799, 0x2ff1ec40), TOBN(0x6b613b87, 0xa1e953fd), TOBN(0x87b88dba, 0x792d5610), TOBN(0x2ee1270a, 0xa190fbe1), TOBN(0x02f4e2dc, 0x2ef581da), TOBN(0x016530e4, 0xeff82a95), TOBN(0xcbb93dfd, 0x8fd6ee89), TOBN(0x16d3d986, 0x46848fff), TOBN(0x600eff24, 0x1da47adf), TOBN(0x1b9754a0, 0x0ad47a71), TOBN(0x8f9266df, 0x70c33b98), TOBN(0xaadc87ae, 0xdf34186e), TOBN(0x0d2ce8e1, 0x4ad24132), TOBN(0x8a47cbfc, 0x19946eba), TOBN(0x47feeb66, 0x62b5f3af), TOBN(0xcefab561, 0x0abb3734), TOBN(0x449de60e, 0x19f35cb1), TOBN(0x39f8db14, 0x157f0eb9), TOBN(0xffaecc5b, 0x3c61bfd6), TOBN(0xa5a4d41d, 0x41216703), TOBN(0x7f8fabed, 0x224e1cc2), TOBN(0x0d5a8186, 0x871ad953), TOBN(0xf10774f7, 0xd22da9a9), TOBN(0x45b8a678, 0xcc8a9b0d), TOBN(0xd9c2e722, 0xbdc32cff), TOBN(0xbf71b5f5, 0x337202a5), TOBN(0x95c57f2f, 0x69fc4db9), TOBN(0xb6dad34c, 0x765d01e1), TOBN(0x7e0bd13f, 0xcb904635), TOBN(0x61751253, 0x763a588c), TOBN(0xd85c2997, 0x81af2c2d), TOBN(0xc0f7d9c4, 0x81b9d7da), TOBN(0x838a34ae, 0x08533e8d), TOBN(0x15c4cb08, 0x311d8311), TOBN(0x97f83285, 0x8e121e14), TOBN(0xeea7dc1e, 0x85000a5f), TOBN(0x0c6059b6, 0x5d256274), TOBN(0xec9beace, 0xb95075c0), TOBN(0x173daad7, 0x1df97828), TOBN(0xbf851cb5, 0xa8937877), TOBN(0xb083c594, 0x01646f3c), TOBN(0x3bad30cf, 0x50c6d352), TOBN(0xfeb2b202, 0x496bbcea), TOBN(0x3cf9fd4f, 0x18a1e8ba), TOBN(0xd26de7ff, 0x1c066029), TOBN(0x39c81e9e, 0x4e9ed4f8), TOBN(0xd8be0cb9, 0x7b390d35), TOBN(0x01df2bbd, 0x964aab27), TOBN(0x3e8c1a65, 0xc3ef64f8), TOBN(0x567291d1, 0x716ed1dd), TOBN(0x95499c6c, 0x5f5406d3), TOBN(0x71fdda39, 0x5ba8e23f), TOBN(0xcfeb320e, 0xd5096ece), TOBN(0xbe7ba92b, 0xca66dd16), TOBN(0x4608d36b, 0xc6fb5a7d), TOBN(0xe3eea15a, 0x6d2dd0e0), TOBN(0x75b0a3eb, 0x8f97a36a), TOBN(0xf59814cc, 0x1c83de1e), TOBN(0x56c9c5b0, 0x1c33c23f), TOBN(0xa96c1da4, 0x6faa4136), TOBN(0x46bf2074, 0xde316551), TOBN(0x3b866e7b, 0x1f756c8f), TOBN(0x727727d8, 0x1495ed6b), TOBN(0xb2394243, 0xb682dce7), TOBN(0x8ab8454e, 0x758610f3), TOBN(0xc243ce84, 0x857d72a4), TOBN(0x7b320d71, 0xdbbf370f), TOBN(0xff9afa37, 0x78e0f7ca), TOBN(0x0119d1e0, 0xea7b523f), TOBN(0xb997f8cb, 0x058c7d42), TOBN(0x285bcd2a, 0x37bbb184), TOBN(0x51dcec49, 0xa45d1fa6), TOBN(0x6ade3b64, 0xe29634cb), TOBN(0x080c94a7, 0x26b86ef1), TOBN(0xba583db1, 0x2283fbe3), TOBN(0x902bddc8, 0x5a9315ed), TOBN(0x07c1ccb3, 0x86964bec), TOBN(0x78f4eacf, 0xb6258301), TOBN(0x4bdf3a49, 0x56f90823), TOBN(0xba0f5080, 0x741d777b), TOBN(0x091d71c3, 0xf38bf760), TOBN(0x9633d50f, 0x9b625b02), TOBN(0x03ecb743, 0xb8c9de61), TOBN(0xb4751254, 0x5de74720), TOBN(0x9f9defc9, 0x74ce1cb2), TOBN(0x774a4f6a, 0x00bd32ef), TOBN(0xaca385f7, 0x73848f22), TOBN(0x53dad716, 0xf3f8558e), TOBN(0xab7b34b0, 0x93c471f9), TOBN(0xf530e069, 0x19644bc7), TOBN(0x3d9fb1ff, 0xdd59d31a), TOBN(0x4382e0df, 0x08daa795), TOBN(0x165c6f4b, 0xd5cc88d7), TOBN(0xeaa392d5, 0x4a18c900), TOBN(0x94203c67, 0x648024ee), TOBN(0x188763f2, 0x8c2fabcd), TOBN(0xa80f87ac, 0xbbaec835), TOBN(0x632c96e0, 0xf29d8d54), TOBN(0x29b0a60e, 0x4c00a95e), TOBN(0x2ef17f40, 0xe011e9fa), TOBN(0xf6c0e1d1, 0x15b77223), TOBN(0xaaec2c62, 0x14b04e32), TOBN(0xd35688d8, 0x3d84e58c), TOBN(0x2af5094c, 0x958571db), TOBN(0x4fff7e19, 0x760682a6), TOBN(0x4cb27077, 0xe39a407c), TOBN(0x0f59c547, 0x4ff0e321), TOBN(0x169f34a6, 0x1b34c8ff), TOBN(0x2bff1096, 0x52bc1ba7), TOBN(0xa25423b7, 0x83583544), TOBN(0x5d55d5d5, 0x0ac8b782), TOBN(0xff6622ec, 0x2db3c892), TOBN(0x48fce741, 0x6b8bb642), TOBN(0x31d6998c, 0x69d7e3dc), TOBN(0xdbaf8004, 0xcadcaed0), TOBN(0x801b0142, 0xd81d053c), TOBN(0x94b189fc, 0x59630ec6), TOBN(0x120e9934, 0xaf762c8e), TOBN(0x53a29aa4, 0xfdc6a404), TOBN(0x19d8e01e, 0xa1909948), TOBN(0x3cfcabf1, 0xd7e89681), TOBN(0x3321a50d, 0x4e132d37), TOBN(0xd0496863, 0xe9a86111), TOBN(0x8c0cde61, 0x06a3bc65), TOBN(0xaf866c49, 0xfc9f8eef), TOBN(0x2066350e, 0xff7f5141), TOBN(0x4f8a4689, 0xe56ddfbd), TOBN(0xea1b0c07, 0xfe32983a), TOBN(0x2b317462, 0x873cb8cb), TOBN(0x658deddc, 0x2d93229f), TOBN(0x65efaf4d, 0x0f64ef58), TOBN(0xfe43287d, 0x730cc7a8), TOBN(0xaebc0c72, 0x3d047d70), TOBN(0x92efa539, 0xd92d26c9), TOBN(0x06e78457, 0x94b56526), TOBN(0x415cb80f, 0x0961002d), TOBN(0x89e5c565, 0x76dcb10f), TOBN(0x8bbb6982, 0xff9259fe), TOBN(0x4fe8795b, 0x9abc2668), TOBN(0xb5d4f534, 0x1e678fb1), TOBN(0x6601f3be, 0x7b7da2b9), TOBN(0x98da59e2, 0xa13d6805), TOBN(0x190d8ea6, 0x01799a52), TOBN(0xa20cec41, 0xb86d2952), TOBN(0x3062ffb2, 0x7fff2a7c), TOBN(0x741b32e5, 0x79f19d37), TOBN(0xf80d8181, 0x4eb57d47), TOBN(0x7a2d0ed4, 0x16aef06b), TOBN(0x09735fb0, 0x1cecb588), TOBN(0x1641caaa, 0xc6061f5b)} , {TOBN(0x7f99824f, 0x20151427), TOBN(0x206828b6, 0x92430206), TOBN(0xaa9097d7, 0xe1112357), TOBN(0xacf9a2f2, 0x09e414ec), TOBN(0xdbdac9da, 0x27915356), TOBN(0x7e0734b7, 0x001efee3), TOBN(0x54fab5bb, 0xd2b288e2), TOBN(0x4c630fc4, 0xf62dd09c), TOBN(0x8537107a, 0x1ac2703b), TOBN(0xb49258d8, 0x6bc857b5), TOBN(0x57df14de, 0xbcdaccd1), TOBN(0x24ab68d7, 0xc4ae8529), TOBN(0x7ed8b5d4, 0x734e59d0), TOBN(0x5f8740c8, 0xc495cc80), TOBN(0x84aedd5a, 0x291db9b3), TOBN(0x80b360f8, 0x4fb995be), TOBN(0xae915f5d, 0x5fa067d1), TOBN(0x4134b57f, 0x9668960c), TOBN(0xbd3656d6, 0xa48edaac), TOBN(0xdac1e3e4, 0xfc1d7436), TOBN(0x674ff869, 0xd81fbb26), TOBN(0x449ed3ec, 0xb26c33d4), TOBN(0x85138705, 0xd94203e8), TOBN(0xccde538b, 0xbeeb6f4a), TOBN(0x55d5c68d, 0xa61a76fa), TOBN(0x598b441d, 0xca1554dc), TOBN(0xd39923b9, 0x773b279c), TOBN(0x33331d3c, 0x36bf9efc), TOBN(0x2d4c848e, 0x298de399), TOBN(0xcfdb8e77, 0xa1a27f56), TOBN(0x94c855ea, 0x57b8ab70), TOBN(0xdcdb9dae, 0x6f7879ba), TOBN(0x7bdff8c2, 0x019f2a59), TOBN(0xb3ce5bb3, 0xcb4fbc74), TOBN(0xea907f68, 0x8a9173dd), TOBN(0x6cd3d0d3, 0x95a75439), TOBN(0x92ecc4d6, 0xefed021c), TOBN(0x09a9f9b0, 0x6a77339a), TOBN(0x87ca6b15, 0x7188c64a), TOBN(0x10c29968, 0x44899158), TOBN(0x5859a229, 0xed6e82ef), TOBN(0x16f338e3, 0x65ebaf4e), TOBN(0x0cd31387, 0x5ead67ae), TOBN(0x1c73d228, 0x54ef0bb4), TOBN(0x4cb55131, 0x74a5c8c7), TOBN(0x01cd2970, 0x7f69ad6a), TOBN(0xa04d00dd, 0xe966f87e), TOBN(0xd96fe447, 0x0b7b0321), TOBN(0x342ac06e, 0x88fbd381), TOBN(0x02cd4a84, 0x5c35a493), TOBN(0xe8fa89de, 0x54f1bbcd), TOBN(0x341d6367, 0x2575ed4c), TOBN(0xebe357fb, 0xd238202b), TOBN(0x600b4d1a, 0xa984ead9), TOBN(0xc35c9f44, 0x52436ea0), TOBN(0x96fe0a39, 0xa370751b), TOBN(0x4c4f0736, 0x7f636a38), TOBN(0x9f943fb7, 0x0e76d5cb), TOBN(0xb03510ba, 0xa8b68b8b), TOBN(0xc246780a, 0x9ed07a1f), TOBN(0x3c051415, 0x6d549fc2), TOBN(0xc2953f31, 0x607781ca), TOBN(0x955e2c69, 0xd8d95413), TOBN(0xb300fadc, 0x7bd282e3), TOBN(0x81fe7b50, 0x87e9189f), TOBN(0xdb17375c, 0xf42dda27), TOBN(0x22f7d896, 0xcf0a5904), TOBN(0xa0e57c5a, 0xebe348e6), TOBN(0xa61011d3, 0xf40e3c80), TOBN(0xb1189321, 0x8db705c5), TOBN(0x4ed9309e, 0x50fedec3), TOBN(0xdcf14a10, 0x4d6d5c1d), TOBN(0x056c265b, 0x55691342), TOBN(0xe8e08504, 0x91049dc7), TOBN(0x131329f5, 0xc9bae20a), TOBN(0x96c8b3e8, 0xd9dccdb4), TOBN(0x8c5ff838, 0xfb4ee6b4), TOBN(0xfc5a9aeb, 0x41e8ccf0), TOBN(0x7417b764, 0xfae050c6), TOBN(0x0953c3d7, 0x00452080), TOBN(0x21372682, 0x38dfe7e8), TOBN(0xea417e15, 0x2bb79d4b), TOBN(0x59641f1c, 0x76e7cf2d), TOBN(0x271e3059, 0xea0bcfcc), TOBN(0x624c7dfd, 0x7253ecbd), TOBN(0x2f552e25, 0x4fca6186), TOBN(0xcbf84ecd, 0x4d866e9c), TOBN(0x73967709, 0xf68d4610), TOBN(0xa14b1163, 0xc27901b4), TOBN(0xfd9236e0, 0x899b8bf3), TOBN(0x42b091ec, 0xcbc6da0a), TOBN(0xbb1dac6f, 0x5ad1d297), TOBN(0x80e61d53, 0xa91cf76e), TOBN(0x4110a412, 0xd31f1ee7), TOBN(0x2d87c3ba, 0x13efcf77), TOBN(0x1f374bb4, 0xdf450d76), TOBN(0x5e78e2f2, 0x0d188dab), TOBN(0xe3968ed0, 0xf4b885ef), TOBN(0x46c0568e, 0x7314570f), TOBN(0x31616338, 0x01170521), TOBN(0x18e1e7e2, 0x4f0c8afe), TOBN(0x4caa75ff, 0xdeea78da), TOBN(0x82db67f2, 0x7c5d8a51), TOBN(0x36a44d86, 0x6f505370), TOBN(0xd72c5bda, 0x0333974f), TOBN(0x5db516ae, 0x27a70146), TOBN(0x34705281, 0x210ef921), TOBN(0xbff17a8f, 0x0c9c38e5), TOBN(0x78f4814e, 0x12476da1), TOBN(0xc1e16613, 0x33c16980), TOBN(0x9e5b386f, 0x424d4bca), TOBN(0x4c274e87, 0xc85740de), TOBN(0xb6a9b88d, 0x6c2f5226), TOBN(0x14d1b944, 0x550d7ca8), TOBN(0x580c85fc, 0x1fc41709), TOBN(0xc1da368b, 0x54c6d519), TOBN(0x2b0785ce, 0xd5113cf7), TOBN(0x0670f633, 0x5a34708f), TOBN(0x46e23767, 0x15cc3f88), TOBN(0x1b480cfa, 0x50c72c8f), TOBN(0x20288602, 0x4147519a), TOBN(0xd0981eac, 0x26b372f0), TOBN(0xa9d4a7ca, 0xa785ebc8), TOBN(0xd953c50d, 0xdbdf58e9), TOBN(0x9d6361cc, 0xfd590f8f), TOBN(0x72e9626b, 0x44e6c917), TOBN(0x7fd96110, 0x22eb64cf), TOBN(0x863ebb7e, 0x9eb288f3), TOBN(0x6e6ab761, 0x6aca8ee7), TOBN(0x97d10b39, 0xd7b40358), TOBN(0x1687d377, 0x1e5feb0d), TOBN(0xc83e50e4, 0x8265a27a), TOBN(0x8f75a9fe, 0xc954b313), TOBN(0xcc2e8f47, 0x310d1f61), TOBN(0xf5ba81c5, 0x6557d0e0), TOBN(0x25f9680c, 0x3eaf6207), TOBN(0xf95c6609, 0x4354080b), TOBN(0x5225bfa5, 0x7bf2fe1c), TOBN(0xc5c004e2, 0x5c7d98fa), TOBN(0x3561bf1c, 0x019aaf60), TOBN(0x5e6f9f17, 0xba151474), TOBN(0xdec2f934, 0xb04f6eca), TOBN(0x64e368a1, 0x269acb1e), TOBN(0x1332d9e4, 0x0cdda493), TOBN(0x60d6cf69, 0xdf23de05), TOBN(0x66d17da2, 0x009339a0), TOBN(0x9fcac985, 0x0a693923), TOBN(0xbcf057fc, 0xed7c6a6d), TOBN(0xc3c5c8c5, 0xf0b5662c), TOBN(0x25318dd8, 0xdcba4f24), TOBN(0x60e8cb75, 0x082b69ff), TOBN(0x7c23b3ee, 0x1e728c01), TOBN(0x15e10a0a, 0x097e4403), TOBN(0xcb3d0a86, 0x19854665), TOBN(0x88d8e211, 0xd67d4826), TOBN(0xb39af66e, 0x0b9d2839), TOBN(0xa5f94588, 0xbd475ca8), TOBN(0xe06b7966, 0xc077b80b), TOBN(0xfedb1485, 0xda27c26c), TOBN(0xd290d33a, 0xfe0fd5e0), TOBN(0xa40bcc47, 0xf34fb0fa), TOBN(0xb4760cc8, 0x1fb1ab09), TOBN(0x8fca0993, 0xa273bfe3), TOBN(0x13e4fe07, 0xf70b213c), TOBN(0x3bcdb992, 0xfdb05163), TOBN(0x8c484b11, 0x0c2b19b6), TOBN(0x1acb815f, 0xaaf2e3e2), TOBN(0xc6905935, 0xb89ff1b4), TOBN(0xb2ad6f9d, 0x586e74e1), TOBN(0x488883ad, 0x67b80484), TOBN(0x758aa2c7, 0x369c3ddb), TOBN(0x8ab74e69, 0x9f9afd31), TOBN(0x10fc2d28, 0x5e21beb1), TOBN(0x3484518a, 0x318c42f9), TOBN(0x377427dc, 0x53cf40c3), TOBN(0x9de0781a, 0x391bc1d9), TOBN(0x8faee858, 0x693807e1), TOBN(0xa3865327, 0x4e81ccc7), TOBN(0x02c30ff2, 0x6f835b84), TOBN(0xb604437b, 0x0d3d38d4), TOBN(0xb3fc8a98, 0x5ca1823d), TOBN(0xb82f7ec9, 0x03be0324), TOBN(0xee36d761, 0xcf684a33), TOBN(0x5a01df0e, 0x9f29bf7d), TOBN(0x686202f3, 0x1306583d), TOBN(0x05b10da0, 0x437c622e), TOBN(0xbf9aaa0f, 0x076a7bc8), TOBN(0x25e94efb, 0x8f8f4e43), TOBN(0x8a35c9b7, 0xfa3dc26d), TOBN(0xe0e5fb93, 0x96ff03c5), TOBN(0xa77e3843, 0xebc394ce), TOBN(0xcede6595, 0x8361de60), TOBN(0xd27c22f6, 0xa1993545), TOBN(0xab01cc36, 0x24d671ba), TOBN(0x63fa2877, 0xa169c28e), TOBN(0x925ef904, 0x2eb08376), TOBN(0x3b2fa3cf, 0x53aa0b32), TOBN(0xb27beb5b, 0x71c49d7a), TOBN(0xb60e1834, 0xd105e27f), TOBN(0xd6089788, 0x4f68570d), TOBN(0x23094ce0, 0xd6fbc2ac), TOBN(0x738037a1, 0x815ff551), TOBN(0xda73b1bb, 0x6bef119c), TOBN(0xdcf6c430, 0xeef506ba), TOBN(0x00e4fe7b, 0xe3ef104a), TOBN(0xebdd9a2c, 0x0a065628), TOBN(0x853a81c3, 0x8792043e), TOBN(0x22ad6ece, 0xb3b59108), TOBN(0x9fb813c0, 0x39cd297d), TOBN(0x8ec7e16e, 0x05bda5d9), TOBN(0x2834797c, 0x0d104b96), TOBN(0xcc11a2e7, 0x7c511510), TOBN(0x96ca5a53, 0x96ee6380), TOBN(0x054c8655, 0xcea38742), TOBN(0xb5946852, 0xd54dfa7d), TOBN(0x97c422e7, 0x1f4ab207), TOBN(0xbf907509, 0x0c22b540), TOBN(0x2cde42aa, 0xb7c267d4), TOBN(0xba18f9ed, 0x5ab0d693), TOBN(0x3ba62aa6, 0x6e4660d9), TOBN(0xb24bf97b, 0xab9ea96a), TOBN(0x5d039642, 0xe3b60e32), TOBN(0x4e6a4506, 0x7c4d9bd5), TOBN(0x666c5b9e, 0x7ed4a6a4), TOBN(0xfa3fdcd9, 0x8edbd7cc), TOBN(0x4660bb87, 0xc6ccd753), TOBN(0x9ae90820, 0x21e6b64f), TOBN(0x8a56a713, 0xb36bfb3f), TOBN(0xabfce096, 0x5726d47f), TOBN(0x9eed01b2, 0x0b1a9a7f), TOBN(0x30e9cad4, 0x4eb74a37), TOBN(0x7b2524cc, 0x53e9666d), TOBN(0x6a29683b, 0x8f4b002f), TOBN(0xc2200d7a, 0x41f4fc20), TOBN(0xcf3af47a, 0x3a338acc), TOBN(0x6539a4fb, 0xe7128975), TOBN(0xcec31c14, 0xc33c7fcf), TOBN(0x7eb6799b, 0xc7be322b), TOBN(0x119ef4e9, 0x6646f623), TOBN(0x7b7a26a5, 0x54d7299b), TOBN(0xcb37f08d, 0x403f46f2), TOBN(0x94b8fc43, 0x1a0ec0c7), TOBN(0xbb8514e3, 0xc332142f), TOBN(0xf3ed2c33, 0xe80d2a7a), TOBN(0x8d2080af, 0xb639126c), TOBN(0xf7b6be60, 0xe3553ade), TOBN(0x3950aa9f, 0x1c7e2b09), TOBN(0x847ff958, 0x6410f02b), TOBN(0x877b7cf5, 0x678a31b0), TOBN(0xd50301ae, 0x3998b620), TOBN(0x734257c5, 0xc00fb396), TOBN(0xf9fb18a0, 0x04e672a6), TOBN(0xff8bd8eb, 0xe8758851), TOBN(0x1e64e4c6, 0x5d99ba44), TOBN(0x4b8eaedf, 0x7dfd93b7), TOBN(0xba2f2a98, 0x04e76b8c), TOBN(0x7d790cba, 0xe8053433), TOBN(0xc8e725a0, 0x3d2c9585), TOBN(0x58c5c476, 0xcdd8f5ed), TOBN(0xd106b952, 0xefa9fe1d), TOBN(0x3c5c775b, 0x0eff13a9), TOBN(0x242442ba, 0xe057b930), TOBN(0xe9f458d4, 0xc9b70cbd), TOBN(0x69b71448, 0xa3cdb89a), TOBN(0x41ee46f6, 0x0e2ed742), TOBN(0x573f1045, 0x40067493), TOBN(0xb1e154ff, 0x9d54c304), TOBN(0x2ad0436a, 0x8d3a7502), TOBN(0xee4aaa2d, 0x431a8121), TOBN(0xcd38b3ab, 0x886f11ed), TOBN(0x57d49ea6, 0x034a0eb7), TOBN(0xd2b773bd, 0xf7e85e58), TOBN(0x4a559ac4, 0x9b5c1f14), TOBN(0xc444be1a, 0x3e54df2b), TOBN(0x13aad704, 0xeda41891), TOBN(0xcd927bec, 0x5eb5c788), TOBN(0xeb3c8516, 0xe48c8a34), TOBN(0x1b7ac812, 0x4b546669), TOBN(0x1815f896, 0x594df8ec), TOBN(0x87c6a79c, 0x79227865), TOBN(0xae02a2f0, 0x9b56ddbd), TOBN(0x1339b5ac, 0x8a2f1cf3), TOBN(0xf2b569c7, 0x839dff0d), TOBN(0xb0b9e864, 0xfee9a43d), TOBN(0x4ff8ca41, 0x77bb064e), TOBN(0x145a2812, 0xfd249f63), TOBN(0x3ab7beac, 0xf86f689a), TOBN(0x9bafec27, 0x01d35f5e), TOBN(0x28054c65, 0x4265aa91), TOBN(0xa4b18304, 0x035efe42), TOBN(0x6887b0e6, 0x9639dec7), TOBN(0xf4b8f6ad, 0x3d52aea5), TOBN(0xfb9293cc, 0x971a8a13), TOBN(0x3f159e5d, 0x4c934d07), TOBN(0x2c50e9b1, 0x09acbc29), TOBN(0x08eb65e6, 0x7154d129), TOBN(0x4feff589, 0x30b75c3e), TOBN(0x0bb82fe2, 0x94491c93), TOBN(0xd8ac377a, 0x89af62bb), TOBN(0xd7b51490, 0x9685e49f), TOBN(0xabca9a7b, 0x04497f19), TOBN(0x1b35ed0a, 0x1a7ad13f), TOBN(0x6b601e21, 0x3ec86ed6), TOBN(0xda91fcb9, 0xce0c76f1), TOBN(0x9e28507b, 0xd7ab27e1), TOBN(0x7c19a555, 0x63945b7b), TOBN(0x6b43f0a1, 0xaafc9827), TOBN(0x443b4fbd, 0x3aa55b91), TOBN(0x962b2e65, 0x6962c88f), TOBN(0x139da8d4, 0xce0db0ca), TOBN(0xb93f05dd, 0x1b8d6c4f), TOBN(0x779cdff7, 0x180b9824), TOBN(0xbba23fdd, 0xae57c7b7), TOBN(0x345342f2, 0x1b932522), TOBN(0xfd9c80fe, 0x556d4aa3), TOBN(0xa03907ba, 0x6525bb61), TOBN(0x38b010e1, 0xff218933), TOBN(0xc066b654, 0xaa52117b), TOBN(0x8e141920, 0x94f2e6ea), TOBN(0x66a27dca, 0x0d32f2b2), TOBN(0x69c7f993, 0x048b3717), TOBN(0xbf5a989a, 0xb178ae1c), TOBN(0x49fa9058, 0x564f1d6b), TOBN(0x27ec6e15, 0xd31fde4e), TOBN(0x4cce0373, 0x7276e7fc), TOBN(0x64086d79, 0x89d6bf02), TOBN(0x5a72f046, 0x4ccdd979), TOBN(0x909c3566, 0x47775631), TOBN(0x1c07bc6b, 0x75dd7125), TOBN(0xb4c6bc97, 0x87a0428d), TOBN(0x507ece52, 0xfdeb6b9d), TOBN(0xfca56512, 0xb2c95432), TOBN(0x15d97181, 0xd0e8bd06), TOBN(0x384dd317, 0xc6bb46ea), TOBN(0x5441ea20, 0x3952b624), TOBN(0xbcf70dee, 0x4e7dc2fb), TOBN(0x372b016e, 0x6628e8c3), TOBN(0x07a0d667, 0xb60a7522), TOBN(0xcf05751b, 0x0a344ee2), TOBN(0x0ec09a48, 0x118bdeec), TOBN(0x6e4b3d4e, 0xd83dce46), TOBN(0x43a6316d, 0x99d2fc6e), TOBN(0xa99d8989, 0x56cf044c), TOBN(0x7c7f4454, 0xae3e5fb7), TOBN(0xb2e6b121, 0xfbabbe92), TOBN(0x281850fb, 0xe1330076), TOBN(0x093581ec, 0x97890015), TOBN(0x69b1dded, 0x75ff77f5), TOBN(0x7cf0b18f, 0xab105105), TOBN(0x953ced31, 0xa89ccfef), TOBN(0x3151f85f, 0xeb914009), TOBN(0x3c9f1b87, 0x88ed48ad), TOBN(0xc9aba1a1, 0x4a7eadcb), TOBN(0x928e7501, 0x522e71cf), TOBN(0xeaede727, 0x3a2e4f83), TOBN(0x467e10d1, 0x1ce3bbd3), TOBN(0xf3442ac3, 0xb955dcf0), TOBN(0xba96307d, 0xd3d5e527), TOBN(0xf763a10e, 0xfd77f474), TOBN(0x5d744bd0, 0x6a6e1ff0), TOBN(0xd287282a, 0xa777899e), TOBN(0xe20eda8f, 0xd03f3cde), TOBN(0x6a7e75bb, 0x50b07d31), TOBN(0x0b7e2a94, 0x6f379de4), TOBN(0x31cb64ad, 0x19f593cf), TOBN(0x7b1a9e4f, 0x1e76ef1d), TOBN(0xe18c9c9d, 0xb62d609c), TOBN(0x439bad6d, 0xe779a650), TOBN(0x219d9066, 0xe032f144), TOBN(0x1db632b8, 0xe8b2ec6a), TOBN(0xff0d0fd4, 0xfda12f78), TOBN(0x56fb4c2d, 0x2a25d265), TOBN(0x5f4e2ee1, 0x255a03f1), TOBN(0x61cd6af2, 0xe96af176), TOBN(0xe0317ba8, 0xd068bc97), TOBN(0x927d6bab, 0x264b988e), TOBN(0xa18f07e0, 0xe90fb21e), TOBN(0x00fd2b80, 0xbba7fca1), TOBN(0x20387f27, 0x95cd67b5), TOBN(0x5b89a4e7, 0xd39707f7), TOBN(0x8f83ad3f, 0x894407ce), TOBN(0xa0025b94, 0x6c226132), TOBN(0xc79563c7, 0xf906c13b), TOBN(0x5f548f31, 0x4e7bb025), TOBN(0x2b4c6b8f, 0xeac6d113), TOBN(0xa67e3f9c, 0x0e813c76), TOBN(0x3982717c, 0x3fe1f4b9), TOBN(0x58865819, 0x26d8050e), TOBN(0x99f3640c, 0xf7f06f20), TOBN(0xdc610216, 0x2a66ebc2), TOBN(0x52f2c175, 0x767a1e08), TOBN(0x05660e1a, 0x5999871b), TOBN(0x6b0f1762, 0x6d3c4693), TOBN(0xf0e7d627, 0x37ed7bea), TOBN(0xc51758c7, 0xb75b226d), TOBN(0x40a88628, 0x1f91613b), TOBN(0x889dbaa7, 0xbbb38ce0), TOBN(0xe0404b65, 0xbddcad81), TOBN(0xfebccd3a, 0x8bc9671f), TOBN(0xfbf9a357, 0xee1f5375), TOBN(0x5dc169b0, 0x28f33398), TOBN(0xb07ec11d, 0x72e90f65), TOBN(0xae7f3b4a, 0xfaab1eb1), TOBN(0xd970195e, 0x5f17538a), TOBN(0x52b05cbe, 0x0181e640), TOBN(0xf5debd62, 0x2643313d), TOBN(0x76148154, 0x5df31f82), TOBN(0x23e03b33, 0x3a9e13c5), TOBN(0xff758949, 0x4fde0c1f), TOBN(0xbf8a1abe, 0xe5b6ec20), TOBN(0x702278fb, 0x87e1db6c), TOBN(0xc447ad7a, 0x35ed658f), TOBN(0x48d4aa38, 0x03d0ccf2), TOBN(0x80acb338, 0x819a7c03), TOBN(0x9bc7c89e, 0x6e17cecc), TOBN(0x46736b8b, 0x03be1d82), TOBN(0xd65d7b60, 0xc0432f96), TOBN(0xddebe7a3, 0xdeb5442f), TOBN(0x79a25307, 0x7dff69a2), TOBN(0x37a56d94, 0x02cf3122), TOBN(0x8bab8aed, 0xf2350d0a), TOBN(0x13c3f276, 0x037b0d9a), TOBN(0xc664957c, 0x44c65cae), TOBN(0x88b44089, 0xc2e71a88), TOBN(0xdb88e5a3, 0x5cb02664), TOBN(0x5d4c0bf1, 0x8686c72e), TOBN(0xea3d9b62, 0xa682d53e), TOBN(0x9b605ef4, 0x0b2ad431), TOBN(0x71bac202, 0xc69645d0), TOBN(0xa115f03a, 0x6a1b66e7), TOBN(0xfe2c563a, 0x158f4dc4), TOBN(0xf715b3a0, 0x4d12a78c), TOBN(0x8f7f0a48, 0xd413213a), TOBN(0x2035806d, 0xc04becdb), TOBN(0xecd34a99, 0x5d8587f5), TOBN(0x4d8c3079, 0x9f6d3a71), TOBN(0x1b2a2a67, 0x8d95a8f6), TOBN(0xc58c9d7d, 0xf2110d0d), TOBN(0xdeee81d5, 0xcf8fba3f), TOBN(0xa42be3c0, 0x0c7cdf68), TOBN(0x2126f742, 0xd43b5eaa), TOBN(0x054a0766, 0xdfa59b85), TOBN(0x9d0d5e36, 0x126bfd45), TOBN(0xa1f8fbd7, 0x384f8a8f), TOBN(0x317680f5, 0xd563fccc), TOBN(0x48ca5055, 0xf280a928), TOBN(0xe00b81b2, 0x27b578cf), TOBN(0x10aad918, 0x2994a514), TOBN(0xd9e07b62, 0xb7bdc953), TOBN(0x9f0f6ff2, 0x5bc086dd), TOBN(0x09d1ccff, 0x655eee77), TOBN(0x45475f79, 0x5bef7df1), TOBN(0x3faa28fa, 0x86f702cc), TOBN(0x92e60905, 0x0f021f07), TOBN(0xe9e62968, 0x7f8fa8c6), TOBN(0xbd71419a, 0xf036ea2c), TOBN(0x171ee1cc, 0x6028da9a), TOBN(0x5352fe1a, 0xc251f573), TOBN(0xf8ff236e, 0x3fa997f4), TOBN(0xd831b6c9, 0xa5749d5f), TOBN(0x7c872e1d, 0xe350e2c2), TOBN(0xc56240d9, 0x1e0ce403), TOBN(0xf9deb077, 0x6974f5cb), TOBN(0x7d50ba87, 0x961c3728), TOBN(0xd6f89426, 0x5a3a2518), TOBN(0xcf817799, 0xc6303d43), TOBN(0x510a0471, 0x619e5696), TOBN(0xab049ff6, 0x3a5e307b), TOBN(0xe4cdf9b0, 0xfeb13ec7), TOBN(0xd5e97117, 0x9d8ff90c), TOBN(0xf6f64d06, 0x9afa96af), TOBN(0x00d0bf5e, 0x9d2012a2), TOBN(0xe63f301f, 0x358bcdc0), TOBN(0x07689e99, 0x0a9d47f8), TOBN(0x1f689e2f, 0x4f43d43a), TOBN(0x4d542a16, 0x90920904), TOBN(0xaea293d5, 0x9ca0a707), TOBN(0xd061fe45, 0x8ac68065), TOBN(0x1033bf1b, 0x0090008c), TOBN(0x29749558, 0xc08a6db6), TOBN(0x74b5fc59, 0xc1d5d034), TOBN(0xf712e9f6, 0x67e215e0), TOBN(0xfd520cbd, 0x860200e6), TOBN(0x0229acb4, 0x3ea22588), TOBN(0x9cd1e14c, 0xfff0c82e), TOBN(0x87684b62, 0x59c69e73), TOBN(0xda85e61c, 0x96ccb989), TOBN(0x2d5dbb02, 0xa3d06493), TOBN(0xf22ad33a, 0xe86b173c), TOBN(0xe8e41ea5, 0xa79ff0e3), TOBN(0x01d2d725, 0xdd0d0c10), TOBN(0x31f39088, 0x032d28f9), TOBN(0x7b3f71e1, 0x7829839e), TOBN(0x0cf691b4, 0x4502ae58), TOBN(0xef658dbd, 0xbefc6115), TOBN(0xa5cd6ee5, 0xb3ab5314), TOBN(0x206c8d7b, 0x5f1d2347), TOBN(0x794645ba, 0x4cc2253a), TOBN(0xd517d8ff, 0x58389e08), TOBN(0x4fa20dee, 0x9f847288), TOBN(0xeba072d8, 0xd797770a), TOBN(0x7360c91d, 0xbf429e26), TOBN(0x7200a3b3, 0x80af8279), TOBN(0x6a1c9150, 0x82dadce3), TOBN(0x0ee6d3a7, 0xc35d8794), TOBN(0x042e6558, 0x0356bae5), TOBN(0x9f59698d, 0x643322fd), TOBN(0x9379ae15, 0x50a61967), TOBN(0x64b9ae62, 0xfcc9981e), TOBN(0xaed3d631, 0x6d2934c6), TOBN(0x2454b302, 0x5e4e65eb), TOBN(0xab09f647, 0xf9950428)} , {TOBN(0xb2083a12, 0x22248acc), TOBN(0x1f6ec0ef, 0x3264e366), TOBN(0x5659b704, 0x5afdee28), TOBN(0x7a823a40, 0xe6430bb5), TOBN(0x24592a04, 0xe1900a79), TOBN(0xcde09d4a, 0xc9ee6576), TOBN(0x52b6463f, 0x4b5ea54a), TOBN(0x1efe9ed3, 0xd3ca65a7), TOBN(0xe27a6dbe, 0x305406dd), TOBN(0x8eb7dc7f, 0xdd5d1957), TOBN(0xf54a6876, 0x387d4d8f), TOBN(0x9c479409, 0xc7762de4), TOBN(0xbe4d5b5d, 0x99b30778), TOBN(0x25380c56, 0x6e793682), TOBN(0x602d37f3, 0xdac740e3), TOBN(0x140deabe, 0x1566e4ae), TOBN(0x4481d067, 0xafd32acf), TOBN(0xd8f0fcca, 0xe1f71ccf), TOBN(0xd208dd0c, 0xb596f2da), TOBN(0xd049d730, 0x9aad93f9), TOBN(0xc79f263d, 0x42ab580e), TOBN(0x09411bb1, 0x23f707b4), TOBN(0x8cfde1ff, 0x835e0eda), TOBN(0x72707490, 0x90f03402), TOBN(0xeaee6126, 0xc49a861e), TOBN(0x024f3b65, 0xe14f0d06), TOBN(0x51a3f1e8, 0xc69bfc17), TOBN(0xc3c3a8e9, 0xa7686381), TOBN(0x3400752c, 0xb103d4c8), TOBN(0x02bc4613, 0x9218b36b), TOBN(0xc67f75eb, 0x7651504a), TOBN(0xd6848b56, 0xd02aebfa), TOBN(0xbd9802e6, 0xc30fa92b), TOBN(0x5a70d96d, 0x9a552784), TOBN(0x9085c4ea, 0x3f83169b), TOBN(0xfa9423bb, 0x06908228), TOBN(0x2ffebe12, 0xfe97a5b9), TOBN(0x85da6049, 0x71b99118), TOBN(0x9cbc2f7f, 0x63178846), TOBN(0xfd96bc70, 0x9153218e), TOBN(0x958381db, 0x1782269b), TOBN(0xae34bf79, 0x2597e550), TOBN(0xbb5c6064, 0x5f385153), TOBN(0x6f0e96af, 0xe3088048), TOBN(0xbf6a0215, 0x77884456), TOBN(0xb3b5688c, 0x69310ea7), TOBN(0x17c94295, 0x04fad2de), TOBN(0xe020f0e5, 0x17896d4d), TOBN(0x730ba0ab, 0x0976505f), TOBN(0x567f6813, 0x095e2ec5), TOBN(0x47062010, 0x6331ab71), TOBN(0x72cfa977, 0x41d22b9f), TOBN(0x33e55ead, 0x8a2373da), TOBN(0xa8d0d5f4, 0x7ba45a68), TOBN(0xba1d8f9c, 0x03029d15), TOBN(0x8f34f1cc, 0xfc55b9f3), TOBN(0xcca4428d, 0xbbe5a1a9), TOBN(0x8187fd5f, 0x3126bd67), TOBN(0x0036973a, 0x48105826), TOBN(0xa39b6663, 0xb8bd61a0), TOBN(0x6d42deef, 0x2d65a808), TOBN(0x4969044f, 0x94636b19), TOBN(0xf611ee47, 0xdd5d564c), TOBN(0x7b2f3a49, 0xd2873077), TOBN(0x94157d45, 0x300eb294), TOBN(0x2b2a656e, 0x169c1494), TOBN(0xc000dd76, 0xd3a47aa9), TOBN(0xa2864e4f, 0xa6243ea4), TOBN(0x82716c47, 0xdb89842e), TOBN(0x12dfd7d7, 0x61479fb7), TOBN(0x3b9a2c56, 0xe0b2f6dc), TOBN(0x46be862a, 0xd7f85d67), TOBN(0x03b0d8dd, 0x0f82b214), TOBN(0x460c34f9, 0xf103cbc6), TOBN(0xf32e5c03, 0x18d79e19), TOBN(0x8b8888ba, 0xa84117f8), TOBN(0x8f3c37dc, 0xc0722677), TOBN(0x10d21be9, 0x1c1c0f27), TOBN(0xd47c8468, 0xe0f7a0c6), TOBN(0x9bf02213, 0xadecc0e0), TOBN(0x0baa7d12, 0x42b48b99), TOBN(0x1bcb665d, 0x48424096), TOBN(0x8b847cd6, 0xebfb5cfb), TOBN(0x87c2ae56, 0x9ad4d10d), TOBN(0xf1cbb122, 0x0de36726), TOBN(0xe7043c68, 0x3fdfbd21), TOBN(0x4bd0826a, 0x4e79d460), TOBN(0x11f5e598, 0x4bd1a2cb), TOBN(0x97554160, 0xb7fe7b6e), TOBN(0x7d16189a, 0x400a3fb2), TOBN(0xd73e9bea, 0xe328ca1e), TOBN(0x0dd04b97, 0xe793d8cc), TOBN(0xa9c83c9b, 0x506db8cc), TOBN(0x5cd47aae, 0xcf38814c), TOBN(0x26fc430d, 0xb64b45e6), TOBN(0x079b5499, 0xd818ea84), TOBN(0xebb01102, 0xc1c24a3b), TOBN(0xca24e568, 0x1c161c1a), TOBN(0x103eea69, 0x36f00a4a), TOBN(0x9ad76ee8, 0x76176c7b), TOBN(0x97451fc2, 0x538e0ff7), TOBN(0x94f89809, 0x6604b3b0), TOBN(0x6311436e, 0x3249cfd7), TOBN(0x27b4a7bd, 0x41224f69), TOBN(0x03b5d21a, 0xe0ac2941), TOBN(0x279b0254, 0xc2d31937), TOBN(0x3307c052, 0xcac992d0), TOBN(0x6aa7cb92, 0xefa8b1f3), TOBN(0x5a182580, 0x0d37c7a5), TOBN(0x13380c37, 0x342d5422), TOBN(0x92ac2d66, 0xd5d2ef92), TOBN(0x035a70c9, 0x030c63c6), TOBN(0xc16025dd, 0x4ce4f152), TOBN(0x1f419a71, 0xf9df7c06), TOBN(0x6d5b2214, 0x91e4bb14), TOBN(0xfc43c6cc, 0x839fb4ce), TOBN(0x49f06591, 0x925d6b2d), TOBN(0x4b37d9d3, 0x62186598), TOBN(0x8c54a971, 0xd01b1629), TOBN(0xe1a9c29f, 0x51d50e05), TOBN(0x5109b785, 0x71ba1861), TOBN(0x48b22d5c, 0xd0c8f93d), TOBN(0xe8fa84a7, 0x8633bb93), TOBN(0x53fba6ba, 0x5aebbd08), TOBN(0x7ff27df3, 0xe5eea7d8), TOBN(0x521c8796, 0x68ca7158), TOBN(0xb9d5133b, 0xce6f1a05), TOBN(0x2d50cd53, 0xfd0ebee4), TOBN(0xc82115d6, 0xc5a3ef16), TOBN(0x993eff9d, 0xba079221), TOBN(0xe4da2c5e, 0x4b5da81c), TOBN(0x9a89dbdb, 0x8033fd85), TOBN(0x60819ebf, 0x2b892891), TOBN(0x53902b21, 0x5d14a4d5), TOBN(0x6ac35051, 0xd7fda421), TOBN(0xcc6ab885, 0x61c83284), TOBN(0x14eba133, 0xf74cff17), TOBN(0x240aaa03, 0xecb813f2), TOBN(0xcfbb6540, 0x6f665bee), TOBN(0x084b1fe4, 0xa425ad73), TOBN(0x009d5d16, 0xd081f6a6), TOBN(0x35304fe8, 0xeef82c90), TOBN(0xf20346d5, 0xaa9eaa22), TOBN(0x0ada9f07, 0xac1c91e3), TOBN(0xa6e21678, 0x968a6144), TOBN(0x54c1f77c, 0x07b31a1e), TOBN(0xd6bb787e, 0x5781fbe1), TOBN(0x61bd2ee0, 0xe31f1c4a), TOBN(0xf25aa1e9, 0x781105fc), TOBN(0x9cf2971f, 0x7b2f8e80), TOBN(0x26d15412, 0xcdff919b), TOBN(0x01db4ebe, 0x34bc896e), TOBN(0x7d9b3e23, 0xb40df1cf), TOBN(0x59337373, 0x94e971b4), TOBN(0xbf57bd14, 0x669cf921), TOBN(0x865daedf, 0x0c1a1064), TOBN(0x3eb70bd3, 0x83279125), TOBN(0xbc3d5b9f, 0x34ecdaab), TOBN(0x91e3ed7e, 0x5f755caf), TOBN(0x49699f54, 0xd41e6f02), TOBN(0x185770e1, 0xd4a7a15b), TOBN(0x08f3587a, 0xeaac87e7), TOBN(0x352018db, 0x473133ea), TOBN(0x674ce719, 0x04fd30fc), TOBN(0x7b8d9835, 0x088b3e0e), TOBN(0x7a0356a9, 0x5d0d47a1), TOBN(0x9d9e7659, 0x6474a3c4), TOBN(0x61ea48a7, 0xff66966c), TOBN(0x30417758, 0x0f3e4834), TOBN(0xfdbb21c2, 0x17a9afcb), TOBN(0x756fa17f, 0x2f9a67b3), TOBN(0x2a6b2421, 0xa245c1a8), TOBN(0x64be2794, 0x4af02291), TOBN(0xade465c6, 0x2a5804fe), TOBN(0x8dffbd39, 0xa6f08fd7), TOBN(0xc4efa84c, 0xaa14403b), TOBN(0xa1b91b2a, 0x442b0f5c), TOBN(0xb748e317, 0xcf997736), TOBN(0x8d1b62bf, 0xcee90e16), TOBN(0x907ae271, 0x0b2078c0), TOBN(0xdf31534b, 0x0c9bcddd), TOBN(0x043fb054, 0x39adce83), TOBN(0x99031043, 0xd826846a), TOBN(0x61a9c0d6, 0xb144f393), TOBN(0xdab48046, 0x47718427), TOBN(0xdf17ff9b, 0x6e830f8b), TOBN(0x408d7ee8, 0xe49a1347), TOBN(0x6ac71e23, 0x91c1d4ae), TOBN(0xc8cbb9fd, 0x1defd73c), TOBN(0x19840657, 0xbbbbfec5), TOBN(0x39db1cb5, 0x9e7ef8ea), TOBN(0x78aa8296, 0x64105f30), TOBN(0xa3d9b7f0, 0xa3738c29), TOBN(0x0a2f235a, 0xbc3250a3), TOBN(0x55e506f6, 0x445e4caf), TOBN(0x0974f73d, 0x33475f7a), TOBN(0xd37dbba3, 0x5ba2f5a8), TOBN(0x542c6e63, 0x6af40066), TOBN(0x26d99b53, 0xc5d73e2c), TOBN(0x06060d7d, 0x6c3ca33e), TOBN(0xcdbef1c2, 0x065fef4a), TOBN(0x77e60f7d, 0xfd5b92e3), TOBN(0xd7c549f0, 0x26708350), TOBN(0x201b3ad0, 0x34f121bf), TOBN(0x5fcac2a1, 0x0334fc14), TOBN(0x8a9a9e09, 0x344552f6), TOBN(0x7dd8a1d3, 0x97653082), TOBN(0x5fc0738f, 0x79d4f289), TOBN(0x787d244d, 0x17d2d8c3), TOBN(0xeffc6345, 0x70830684), TOBN(0x5ddb96dd, 0xe4f73ae5), TOBN(0x8efb14b1, 0x172549a5), TOBN(0x6eb73eee, 0x2245ae7a), TOBN(0xbca4061e, 0xea11f13e), TOBN(0xb577421d, 0x30b01f5d), TOBN(0xaa688b24, 0x782e152c), TOBN(0x67608e71, 0xbd3502ba), TOBN(0x4ef41f24, 0xb4de75a0), TOBN(0xb08dde5e, 0xfd6125e5), TOBN(0xde484825, 0xa409543f), TOBN(0x1f198d98, 0x65cc2295), TOBN(0x428a3771, 0x6e0edfa2), TOBN(0x4f9697a2, 0xadf35fc7), TOBN(0x01a43c79, 0xf7cac3c7), TOBN(0xb05d7059, 0x0fd3659a), TOBN(0x8927f30c, 0xbb7f2d9a), TOBN(0x4023d1ac, 0x8cf984d3), TOBN(0x32125ed3, 0x02897a45), TOBN(0xfb572dad, 0x3d414205), TOBN(0x73000ef2, 0xe3fa82a9), TOBN(0x4c0868e9, 0xf10a5581), TOBN(0x5b61fc67, 0x6b0b3ca5), TOBN(0xc1258d5b, 0x7cae440c), TOBN(0x21c08b41, 0x402b7531), TOBN(0xf61a8955, 0xde932321), TOBN(0x3568faf8, 0x2d1408af), TOBN(0x71b15e99, 0x9ecf965b), TOBN(0xf14ed248, 0xe917276f), TOBN(0xc6f4caa1, 0x820cf9e2), TOBN(0x681b20b2, 0x18d83c7e), TOBN(0x6cde738d, 0xc6c01120), TOBN(0x71db0813, 0xae70e0db), TOBN(0x95fc0644, 0x74afe18c), TOBN(0x34619053, 0x129e2be7), TOBN(0x80615cea, 0xdb2a3b15), TOBN(0x0a49a19e, 0xdb4c7073), TOBN(0x0e1b84c8, 0x8fd2d367), TOBN(0xd74bf462, 0x033fb8aa), TOBN(0x889f6d65, 0x533ef217), TOBN(0x7158c7e4, 0xc3ca2e87), TOBN(0xfb670dfb, 0xdc2b4167), TOBN(0x75910a01, 0x844c257f), TOBN(0xf336bf07, 0xcf88577d), TOBN(0x22245250, 0xe45e2ace), TOBN(0x2ed92e8d, 0x7ca23d85), TOBN(0x29f8be4c, 0x2b812f58), TOBN(0xdd9ebaa7, 0x076fe12b), TOBN(0x3f2400cb, 0xae1537f9), TOBN(0x1aa93528, 0x17bdfb46), TOBN(0xc0f98430, 0x67883b41), TOBN(0x5590ede1, 0x0170911d), TOBN(0x7562f5bb, 0x34d4b17f), TOBN(0xe1fa1df2, 0x1826b8d2), TOBN(0xb40b796a, 0x6bd80d59), TOBN(0xd65bf197, 0x3467ba92), TOBN(0x8c9b46db, 0xf70954b0), TOBN(0x97c8a0f3, 0x0e78f15d), TOBN(0xa8f3a69a, 0x85a4c961), TOBN(0x4242660f, 0x61e4ce9b), TOBN(0xbf06aab3, 0x6ea6790c), TOBN(0xc6706f8e, 0xec986416), TOBN(0x9e56dec1, 0x9a9fc225), TOBN(0x527c46f4, 0x9a9898d9), TOBN(0xd799e77b, 0x5633cdef), TOBN(0x24eacc16, 0x7d9e4297), TOBN(0xabb61cea, 0x6b1cb734), TOBN(0xbee2e8a7, 0xf778443c), TOBN(0x3bb42bf1, 0x29de2fe6), TOBN(0xcbed86a1, 0x3003bb6f), TOBN(0xd3918e6c, 0xd781cdf6), TOBN(0x4bee3271, 0x9a5103f1), TOBN(0x5243efc6, 0xf50eac06), TOBN(0xb8e122cb, 0x6adcc119), TOBN(0x1b7faa84, 0xc0b80a08), TOBN(0x32c3d1bd, 0x6dfcd08c), TOBN(0x129dec4e, 0x0be427de), TOBN(0x98ab679c, 0x1d263c83), TOBN(0xafc83cb7, 0xcef64eff), TOBN(0x85eb6088, 0x2fa6be76), TOBN(0x892585fb, 0x1328cbfe), TOBN(0xc154d3ed, 0xcf618dda), TOBN(0xc44f601b, 0x3abaf26e), TOBN(0x7bf57d0b, 0x2be1fdfd), TOBN(0xa833bd2d, 0x21137fee), TOBN(0x9353af36, 0x2db591a8), TOBN(0xc76f26dc, 0x5562a056), TOBN(0x1d87e47d, 0x3fdf5a51), TOBN(0x7afb5f93, 0x55c9cab0), TOBN(0x91bbf58f, 0x89e0586e), TOBN(0x7c72c018, 0x0d843709), TOBN(0xa9a5aafb, 0x99b5c3dc), TOBN(0xa48a0f1d, 0x3844aeb0), TOBN(0x7178b7dd, 0xb667e482), TOBN(0x453985e9, 0x6e23a59a), TOBN(0x4a54c860, 0x01b25dd8), TOBN(0x0dd37f48, 0xfb897c8a), TOBN(0x5f8aa610, 0x0ea90cd9), TOBN(0xc8892c68, 0x16d5830d), TOBN(0xeb4befc0, 0xef514ca5), TOBN(0x478eb679, 0xe72c9ee6), TOBN(0x9bca20da, 0xdbc40d5f), TOBN(0xf015de21, 0xdde4f64a), TOBN(0xaa6a4de0, 0xeaf4b8a5), TOBN(0x68cfd9ca, 0x4bc60e32), TOBN(0x668a4b01, 0x7fd15e70), TOBN(0xd9f0694a, 0xf27dc09d), TOBN(0xf6c3cad5, 0xba708bcd), TOBN(0x5cd2ba69, 0x5bb95c2a), TOBN(0xaa28c1d3, 0x33c0a58f), TOBN(0x23e274e3, 0xabc77870), TOBN(0x44c3692d, 0xdfd20a4a), TOBN(0x091c5fd3, 0x81a66653), TOBN(0x6c0bb691, 0x09a0757d), TOBN(0x9072e8b9, 0x667343ea), TOBN(0x31d40eb0, 0x80848bec), TOBN(0x95bd480a, 0x79fd36cc), TOBN(0x01a77c61, 0x65ed43f5), TOBN(0xafccd127, 0x2e0d40bf), TOBN(0xeccfc82d, 0x1cc1884b), TOBN(0xc85ac201, 0x5d4753b4), TOBN(0xc7a6caac, 0x658e099f), TOBN(0xcf46369e, 0x04b27390), TOBN(0xe2e7d049, 0x506467ea), TOBN(0x481b63a2, 0x37cdeccc), TOBN(0x4029abd8, 0xed80143a), TOBN(0x28bfe3c7, 0xbcb00b88), TOBN(0x3bec1009, 0x0643d84a), TOBN(0x885f3668, 0xabd11041), TOBN(0xdb02432c, 0xf83a34d6), TOBN(0x32f7b360, 0x719ceebe), TOBN(0xf06c7837, 0xdad1fe7a), TOBN(0x60a157a9, 0x5441a0b0), TOBN(0x704970e9, 0xe2d47550), TOBN(0xcd2bd553, 0x271b9020), TOBN(0xff57f82f, 0x33e24a0b), TOBN(0x9cbee23f, 0xf2565079), TOBN(0x16353427, 0xeb5f5825), TOBN(0x276feec4, 0xe948d662), TOBN(0xd1b62bc6, 0xda10032b), TOBN(0x718351dd, 0xf0e72a53), TOBN(0x93452076, 0x2420e7ba), TOBN(0x96368fff, 0x3a00118d), TOBN(0x00ce2d26, 0x150a49e4), TOBN(0x0c28b636, 0x3f04706b), TOBN(0xbad65a46, 0x58b196d0), TOBN(0x6c8455fc, 0xec9f8b7c), TOBN(0xe90c895f, 0x2d71867e), TOBN(0x5c0be31b, 0xedf9f38c), TOBN(0x2a37a15e, 0xd8f6ec04), TOBN(0x239639e7, 0x8cd85251), TOBN(0xd8975315, 0x9c7c4c6b), TOBN(0x603aa3c0, 0xd7409af7), TOBN(0xb8d53d0c, 0x007132fb), TOBN(0x68d12af7, 0xa6849238), TOBN(0xbe0607e7, 0xbf5d9279), TOBN(0x9aa50055, 0xaada74ce), TOBN(0xe81079cb, 0xba7e8ccb), TOBN(0x610c71d1, 0xa5f4ff5e), TOBN(0x9e2ee1a7, 0x5aa07093), TOBN(0xca84004b, 0xa75da47c), TOBN(0x074d3951, 0x3de75401), TOBN(0xf938f756, 0xbb311592), TOBN(0x96197618, 0x00a43421), TOBN(0x39a25362, 0x07bc78c8), TOBN(0x278f710a, 0x0a171276), TOBN(0xb28446ea, 0x8d1a8f08), TOBN(0x184781bf, 0xe3b6a661), TOBN(0x7751cb1d, 0xe6d279f7), TOBN(0xf8ff95d6, 0xc59eb662), TOBN(0x186d90b7, 0x58d3dea7), TOBN(0x0e4bb6c1, 0xdfb4f754), TOBN(0x5c5cf56b, 0x2b2801dc), TOBN(0xc561e452, 0x1f54564d), TOBN(0xb4fb8c60, 0xf0dd7f13), TOBN(0xf8849630, 0x33ff98c7), TOBN(0x9619fffa, 0xcf17769c), TOBN(0xf8090bf6, 0x1bfdd80a), TOBN(0x14d9a149, 0x422cfe63), TOBN(0xb354c360, 0x6f6df9ea), TOBN(0xdbcf770d, 0x218f17ea), TOBN(0x207db7c8, 0x79eb3480), TOBN(0x213dbda8, 0x559b6a26), TOBN(0xac4c200b, 0x29fc81b3), TOBN(0xebc3e09f, 0x171d87c1), TOBN(0x91799530, 0x1481aa9e), TOBN(0x051b92e1, 0x92e114fa), TOBN(0xdf8f92e9, 0xecb5537f), TOBN(0x44b1b2cc, 0x290c7483), TOBN(0xa711455a, 0x2adeb016), TOBN(0x964b6856, 0x81a10c2c), TOBN(0x4f159d99, 0xcec03623), TOBN(0x05532225, 0xef3271ea), TOBN(0xb231bea3, 0xc5ee4849), TOBN(0x57a54f50, 0x7094f103), TOBN(0x3e2d421d, 0x9598b352), TOBN(0xe865a49c, 0x67412ab4), TOBN(0xd2998a25, 0x1cc3a912), TOBN(0x5d092808, 0x0c74d65d), TOBN(0x73f45908, 0x4088567a), TOBN(0xeb6b280e, 0x1f214a61), TOBN(0x8c9adc34, 0xcaf0c13d), TOBN(0x39d12938, 0xf561fb80), TOBN(0xb2dc3a5e, 0xbc6edfb4), TOBN(0x7485b1b1, 0xfe4d210e), TOBN(0x062e0400, 0xe186ae72), TOBN(0x91e32d5c, 0x6eeb3b88), TOBN(0x6df574d7, 0x4be59224), TOBN(0xebc88ccc, 0x716d55f3), TOBN(0x26c2e6d0, 0xcad6ed33), TOBN(0xc6e21e7d, 0x0d3e8b10), TOBN(0x2cc5840e, 0x5bcc36bb), TOBN(0x9292445e, 0x7da74f69), TOBN(0x8be8d321, 0x4e5193a8), TOBN(0x3ec23629, 0x8df06413), TOBN(0xc7e9ae85, 0xb134defa), TOBN(0x6073b1d0, 0x1bb2d475), TOBN(0xb9ad615e, 0x2863c00d), TOBN(0x9e29493d, 0x525f4ac4), TOBN(0xc32b1dea, 0x4e9acf4f), TOBN(0x3e1f01c8, 0xa50db88d), TOBN(0xb05d70ea, 0x04da916c), TOBN(0x714b0d0a, 0xd865803e), TOBN(0x4bd493fc, 0x9920cb5e), TOBN(0x5b44b1f7, 0x92c7a3ac), TOBN(0xa2a77293, 0xbcec9235), TOBN(0x5ee06e87, 0xcd378553), TOBN(0xceff8173, 0xda621607), TOBN(0x2bb03e4c, 0x99f5d290), TOBN(0x2945106a, 0xa6f734ac), TOBN(0xb5056604, 0xd25c4732), TOBN(0x5945920c, 0xe079afee), TOBN(0x686e17a0, 0x6789831f), TOBN(0x5966bee8, 0xb74a5ae5), TOBN(0x38a673a2, 0x1e258d46), TOBN(0xbd1cc1f2, 0x83141c95), TOBN(0x3b2ecf4f, 0x0e96e486), TOBN(0xcd3aa896, 0x74e5fc78), TOBN(0x415ec10c, 0x2482fa7a), TOBN(0x15234419, 0x80503380), TOBN(0x513d917a, 0xd314b392), TOBN(0xb0b52f4e, 0x63caecae), TOBN(0x07bf22ad, 0x2dc7780b), TOBN(0xe761e8a1, 0xe4306839), TOBN(0x1b3be962, 0x5dd7feaa), TOBN(0x4fe728de, 0x74c778f1), TOBN(0xf1fa0bda, 0x5e0070f6), TOBN(0x85205a31, 0x6ec3f510), TOBN(0x2c7e4a14, 0xd2980475), TOBN(0xde3c19c0, 0x6f30ebfd), TOBN(0xdb1c1f38, 0xd4b7e644), TOBN(0xfe291a75, 0x5dce364a), TOBN(0xb7b22a3c, 0x058f5be3), TOBN(0x2cd2c302, 0x37fea38c), TOBN(0x2930967a, 0x2e17be17), TOBN(0x87f009de, 0x0c061c65), TOBN(0xcb014aac, 0xedc6ed44), TOBN(0x49bd1cb4, 0x3bafb1eb), TOBN(0x81bd8b5c, 0x282d3688), TOBN(0x1cdab87e, 0xf01a17af), TOBN(0x21f37ac4, 0xe710063b), TOBN(0x5a6c5676, 0x42fc8193), TOBN(0xf4753e70, 0x56a6015c), TOBN(0x020f795e, 0xa15b0a44), TOBN(0x8f37c8d7, 0x8958a958), TOBN(0x63b7e89b, 0xa4b675b5), TOBN(0xb4fb0c0c, 0x0fc31aea), TOBN(0xed95e639, 0xa7ff1f2e), TOBN(0x9880f5a3, 0x619614fb), TOBN(0xdeb6ff02, 0x947151ab), TOBN(0x5bc5118c, 0xa868dcdb), TOBN(0xd8da2055, 0x4c20cea5), TOBN(0xcac2776e, 0x14c4d69a), TOBN(0xcccb22c1, 0x622d599b), TOBN(0xa4ddb653, 0x68a9bb50), TOBN(0x2c4ff151, 0x1b4941b4), TOBN(0xe1ff19b4, 0x6efba588), TOBN(0x35034363, 0xc48345e0), TOBN(0x45542e3d, 0x1e29dfc4), TOBN(0xf197cb91, 0x349f7aed), TOBN(0x3b2b5a00, 0x8fca8420), TOBN(0x7c175ee8, 0x23aaf6d8), TOBN(0x54dcf421, 0x35af32b6), TOBN(0x0ba14307, 0x27d6561e), TOBN(0x879d5ee4, 0xd175b1e2), TOBN(0xc7c43673, 0x99807db5), TOBN(0x77a54455, 0x9cd55bcd), TOBN(0xe6c2ff13, 0x0105c072), TOBN(0x18f7a99f, 0x8dda7da4), TOBN(0x4c301820, 0x0e2d35c1), TOBN(0x06a53ca0, 0xd9cc6c82), TOBN(0xaa21cc1e, 0xf1aa1d9e), TOBN(0x32414334, 0x4a75b1e8), TOBN(0x2a6d1328, 0x0ebe9fdc), TOBN(0x16bd173f, 0x98a4755a), TOBN(0xfbb9b245, 0x2133ffd9), TOBN(0x39a8b2f1, 0x830f1a20), TOBN(0x484bc97d, 0xd5a1f52a), TOBN(0xd6aebf56, 0xa40eddf8), TOBN(0x32257acb, 0x76ccdac6), TOBN(0xaf4d36ec, 0x1586ff27), TOBN(0x8eaa8863, 0xf8de7dd1), TOBN(0x0045d5cf, 0x88647c16)} , {TOBN(0xa6f3d574, 0xc005979d), TOBN(0xc2072b42, 0x6a40e350), TOBN(0xfca5c156, 0x8de2ecf9), TOBN(0xa8c8bf5b, 0xa515344e), TOBN(0x97aee555, 0x114df14a), TOBN(0xd4374a4d, 0xfdc5ec6b), TOBN(0x754cc28f, 0x2ca85418), TOBN(0x71cb9e27, 0xd3c41f78), TOBN(0x89105079, 0x03605c39), TOBN(0xf0843d9e, 0xa142c96c), TOBN(0xf3744934, 0x16923684), TOBN(0x732caa2f, 0xfa0a2893), TOBN(0xb2e8c270, 0x61160170), TOBN(0xc32788cc, 0x437fbaa3), TOBN(0x39cd818e, 0xa6eda3ac), TOBN(0xe2e94239, 0x9e2b2e07), TOBN(0x6967d39b, 0x0260e52a), TOBN(0xd42585cc, 0x90653325), TOBN(0x0d9bd605, 0x21ca7954), TOBN(0x4fa20877, 0x81ed57b3), TOBN(0x60c1eff8, 0xe34a0bbe), TOBN(0x56b0040c, 0x84f6ef64), TOBN(0x28be2b24, 0xb1af8483), TOBN(0xb2278163, 0xf5531614), TOBN(0x8df27545, 0x5922ac1c), TOBN(0xa7b3ef5c, 0xa52b3f63), TOBN(0x8e77b214, 0x71de57c4), TOBN(0x31682c10, 0x834c008b), TOBN(0xc76824f0, 0x4bd55d31), TOBN(0xb6d1c086, 0x17b61c71), TOBN(0x31db0903, 0xc2a5089d), TOBN(0x9c092172, 0x184e5d3f), TOBN(0xdd7ced5b, 0xc00cc638), TOBN(0x1a2015eb, 0x61278fc2), TOBN(0x2e8e5288, 0x6a37f8d6), TOBN(0xc457786f, 0xe79933ad), TOBN(0xb3fe4cce, 0x2c51211a), TOBN(0xad9b10b2, 0x24c20498), TOBN(0x90d87a4f, 0xd28db5e5), TOBN(0x698cd105, 0x3aca2fc3), TOBN(0x4f112d07, 0xe91b536d), TOBN(0xceb982f2, 0x9eba09d6), TOBN(0x3c157b2c, 0x197c396f), TOBN(0xe23c2d41, 0x7b66eb24), TOBN(0x480c57d9, 0x3f330d37), TOBN(0xb3a4c8a1, 0x79108deb), TOBN(0x702388de, 0xcb199ce5), TOBN(0x0b019211, 0xb944a8d4), TOBN(0x24f2a692, 0x840bb336), TOBN(0x7c353bdc, 0xa669fa7b), TOBN(0xda20d6fc, 0xdec9c300), TOBN(0x625fbe2f, 0xa13a4f17), TOBN(0xa2b1b61a, 0xdbc17328), TOBN(0x008965bf, 0xa9515621), TOBN(0x49690939, 0xc620ff46), TOBN(0x182dd27d, 0x8717e91c), TOBN(0x5ace5035, 0xea6c3997), TOBN(0x54259aaa, 0xc2610bef), TOBN(0xef18bb3f, 0x3c80dd39), TOBN(0x6910b95b, 0x5fc3fa39), TOBN(0xfce2f510, 0x43e09aee), TOBN(0xced56c9f, 0xa7675665), TOBN(0x10e265ac, 0xd872db61), TOBN(0x6982812e, 0xae9fce69), TOBN(0x29be11c6, 0xce800998), TOBN(0x72bb1752, 0xb90360d9), TOBN(0x2c193197, 0x5a4ad590), TOBN(0x2ba2f548, 0x9fc1dbc0), TOBN(0x7fe4eebb, 0xe490ebe0), TOBN(0x12a0a4cd, 0x7fae11c0), TOBN(0x7197cf81, 0xe903ba37), TOBN(0xcf7d4aa8, 0xde1c6dd8), TOBN(0x92af6bf4, 0x3fd5684c), TOBN(0x2b26eecf, 0x80360aa1), TOBN(0xbd960f30, 0x00546a82), TOBN(0x407b3c43, 0xf59ad8fe), TOBN(0x86cae5fe, 0x249c82ba), TOBN(0x9e0faec7, 0x2463744c), TOBN(0x87f551e8, 0x94916272), TOBN(0x033f9344, 0x6ceb0615), TOBN(0x1e5eb0d1, 0x8be82e84), TOBN(0x89967f0e, 0x7a582fef), TOBN(0xbcf687d5, 0xa6e921fa), TOBN(0xdfee4cf3, 0xd37a09ba), TOBN(0x94f06965, 0xb493c465), TOBN(0x638b9a1c, 0x7635c030), TOBN(0x76667864, 0x66f05e9f), TOBN(0xccaf6808, 0xc04da725), TOBN(0xca2eb690, 0x768fccfc), TOBN(0xf402d37d, 0xb835b362), TOBN(0x0efac0d0, 0xe2fdfcce), TOBN(0xefc9cdef, 0xb638d990), TOBN(0x2af12b72, 0xd1669a8b), TOBN(0x33c536bc, 0x5774ccbd), TOBN(0x30b21909, 0xfb34870e), TOBN(0xc38fa2f7, 0x7df25aca), TOBN(0x74c5f02b, 0xbf81f3f5), TOBN(0x0525a5ae, 0xaf7e4581), TOBN(0x88d2aaba, 0x433c54ae), TOBN(0xed9775db, 0x806a56c5), TOBN(0xd320738a, 0xc0edb37d), TOBN(0x25fdb6ee, 0x66cc1f51), TOBN(0xac661d17, 0x10600d76), TOBN(0x931ec1f3, 0xbdd1ed76), TOBN(0x65c11d62, 0x19ee43f1), TOBN(0x5cd57c3e, 0x60829d97), TOBN(0xd26c91a3, 0x984be6e8), TOBN(0xf08d9309, 0x8b0c53bd), TOBN(0x94bc9e5b, 0xc016e4ea), TOBN(0xd3916839, 0x11d43d2b), TOBN(0x886c5ad7, 0x73701155), TOBN(0xe0377626, 0x20b00715), TOBN(0x7f01c9ec, 0xaa80ba59), TOBN(0x3083411a, 0x68538e51), TOBN(0x970370f1, 0xe88128af), TOBN(0x625cc3db, 0x91dec14b), TOBN(0xfef9666c, 0x01ac3107), TOBN(0xb2a8d577, 0xd5057ac3), TOBN(0xb0f26299, 0x92be5df7), TOBN(0xf579c8e5, 0x00353924), TOBN(0xb8fa3d93, 0x1341ed7a), TOBN(0x4223272c, 0xa7b59d49), TOBN(0x3dcb1947, 0x83b8c4a4), TOBN(0x4e413c01, 0xed1302e4), TOBN(0x6d999127, 0xe17e44ce), TOBN(0xee86bf75, 0x33b3adfb), TOBN(0xf6902fe6, 0x25aa96ca), TOBN(0xb73540e4, 0xe5aae47d), TOBN(0x32801d7b, 0x1b4a158c), TOBN(0xe571c99e, 0x27e2a369), TOBN(0x40cb76c0, 0x10d9f197), TOBN(0xc308c289, 0x3167c0ae), TOBN(0xa6ef9dd3, 0xeb7958f2), TOBN(0xa7226dfc, 0x300879b1), TOBN(0x6cd0b362, 0x7edf0636), TOBN(0x4efbce6c, 0x7bc37eed), TOBN(0x75f92a05, 0x8d699021), TOBN(0x586d4c79, 0x772566e3), TOBN(0x378ca5f1, 0x761ad23a), TOBN(0x650d86fc, 0x1465a8ac), TOBN(0x7a4ed457, 0x842ba251), TOBN(0x6b65e3e6, 0x42234933), TOBN(0xaf1543b7, 0x31aad657), TOBN(0xa4cefe98, 0xcbfec369), TOBN(0xb587da90, 0x9f47befb), TOBN(0x6562e9fb, 0x41312d13), TOBN(0xa691ea59, 0xeff1cefe), TOBN(0xcc30477a, 0x05fc4cf6), TOBN(0xa1632461, 0x0b0ffd3d), TOBN(0xa1f16f3b, 0x5b355956), TOBN(0x5b148d53, 0x4224ec24), TOBN(0xdc834e7b, 0xf977012a), TOBN(0x7bfc5e75, 0xb2c69dbc), TOBN(0x3aa77a29, 0x03c3da6c), TOBN(0xde0df03c, 0xca910271), TOBN(0xcbd5ca4a, 0x7806dc55), TOBN(0xe1ca5807, 0x6db476cb), TOBN(0xfde15d62, 0x5f37a31e), TOBN(0xf49af520, 0xf41af416), TOBN(0x96c5c5b1, 0x7d342db5), TOBN(0x155c43b7, 0xeb4ceb9b), TOBN(0x2e993010, 0x4e77371a), TOBN(0x1d2987da, 0x675d43af), TOBN(0xef2bc1c0, 0x8599fd72), TOBN(0x96894b7b, 0x9342f6b2), TOBN(0x201eadf2, 0x7c8e71f0), TOBN(0xf3479d9f, 0x4a1f3efc), TOBN(0xe0f8a742, 0x702a9704), TOBN(0xeafd44b6, 0xb3eba40c), TOBN(0xf9739f29, 0xc1c1e0d0), TOBN(0x0091471a, 0x619d505e), TOBN(0xc15f9c96, 0x9d7c263e), TOBN(0x5be47285, 0x83afbe33), TOBN(0xa3b6d6af, 0x04f1e092), TOBN(0xe76526b9, 0x751a9d11), TOBN(0x2ec5b26d, 0x9a4ae4d2), TOBN(0xeb66f4d9, 0x02f6fb8d), TOBN(0x4063c561, 0x96912164), TOBN(0xeb7050c1, 0x80ef3000), TOBN(0x288d1c33, 0xeaa5b3f0), TOBN(0xe87c68d6, 0x07806fd8), TOBN(0xb2f7f9d5, 0x4bbbf50f), TOBN(0x25972f3a, 0xac8d6627), TOBN(0xf8547774, 0x10e8c13b), TOBN(0xcc50ef6c, 0x872b4a60), TOBN(0xab2a34a4, 0x4613521b), TOBN(0x39c5c190, 0x983e15d1), TOBN(0x61dde5df, 0x59905512), TOBN(0xe417f621, 0x9f2275f3), TOBN(0x0750c8b6, 0x451d894b), TOBN(0x75b04ab9, 0x78b0bdaa), TOBN(0x3bfd9fd4, 0x458589bd), TOBN(0xf1013e30, 0xee9120b6), TOBN(0x2b51af93, 0x23a4743e), TOBN(0xea96ffae, 0x48d14d9e), TOBN(0x71dc0dbe, 0x698a1d32), TOBN(0x914962d2, 0x0180cca4), TOBN(0x1ae60677, 0xc3568963), TOBN(0x8cf227b1, 0x437bc444), TOBN(0xc650c83b, 0xc9962c7a), TOBN(0x23c2c7dd, 0xfe7ccfc4), TOBN(0xf925c89d, 0x1b929d48), TOBN(0x4460f74b, 0x06783c33), TOBN(0xac2c8d49, 0xa590475a), TOBN(0xfb40b407, 0xb807bba0), TOBN(0x9d1e362d, 0x69ff8f3a), TOBN(0xa33e9681, 0xcbef64a4), TOBN(0x67ece5fa, 0x332fb4b2), TOBN(0x6900a99b, 0x739f10e3), TOBN(0xc3341ca9, 0xff525925), TOBN(0xee18a626, 0xa9e2d041), TOBN(0xa5a83685, 0x29580ddd), TOBN(0xf3470c81, 0x9d7de3cd), TOBN(0xedf02586, 0x2062cf9c), TOBN(0xf43522fa, 0xc010edb0), TOBN(0x30314135, 0x13a4b1ae), TOBN(0xc792e02a, 0xdb22b94b), TOBN(0x993d8ae9, 0xa1eaa45b), TOBN(0x8aad6cd3, 0xcd1e1c63), TOBN(0x89529ca7, 0xc5ce688a), TOBN(0x2ccee3aa, 0xe572a253), TOBN(0xe02b6438, 0x02a21efb), TOBN(0xa7091b6e, 0xc9430358), TOBN(0x06d1b1fa, 0x9d7db504), TOBN(0x58846d32, 0xc4744733), TOBN(0x40517c71, 0x379f9e34), TOBN(0x2f65655f, 0x130ef6ca), TOBN(0x526e4488, 0xf1f3503f), TOBN(0x8467bd17, 0x7ee4a976), TOBN(0x1d9dc913, 0x921363d1), TOBN(0xd8d24c33, 0xb069e041), TOBN(0x5eb5da0a, 0x2cdf7f51), TOBN(0x1c0f3cb1, 0x197b994f), TOBN(0x3c95a6c5, 0x2843eae9), TOBN(0x7766ffc9, 0xa6097ea5), TOBN(0x7bea4093, 0xd723b867), TOBN(0xb48e1f73, 0x4db378f9), TOBN(0x70025b00, 0xe37b77ac), TOBN(0x943dc8e7, 0xaf24ad46), TOBN(0xb98a15ac, 0x16d00a85), TOBN(0x3adc38ba, 0x2743b004), TOBN(0xb1c7f4f7, 0x334415ee), TOBN(0xea43df8f, 0x1e62d05a), TOBN(0x32618905, 0x9d76a3b6), TOBN(0x2fbd0bb5, 0xa23a0f46), TOBN(0x5bc971db, 0x6a01918c), TOBN(0x7801d94a, 0xb4743f94), TOBN(0xb94df65e, 0x676ae22b), TOBN(0xaafcbfab, 0xaf95894c), TOBN(0x7b9bdc07, 0x276b2241), TOBN(0xeaf98362, 0x5bdda48b), TOBN(0x5977faf2, 0xa3fcb4df), TOBN(0xbed042ef, 0x052c4b5b), TOBN(0x9fe87f71, 0x067591f0), TOBN(0xc89c73ca, 0x22f24ec7), TOBN(0x7d37fa9e, 0xe64a9f1b), TOBN(0x2710841a, 0x15562627), TOBN(0x2c01a613, 0xc243b034), TOBN(0x1d135c56, 0x2bc68609), TOBN(0xc2ca1715, 0x8b03f1f6), TOBN(0xc9966c2d, 0x3eb81d82), TOBN(0xc02abf4a, 0x8f6df13e), TOBN(0x77b34bd7, 0x8f72b43b), TOBN(0xaff6218f, 0x360c82b0), TOBN(0x0aa5726c, 0x8d55b9d2), TOBN(0xdc0adbe9, 0x99e9bffb), TOBN(0x9097549c, 0xefb9e72a), TOBN(0x16755712, 0x9dfb3111), TOBN(0xdd8bf984, 0xf26847f9), TOBN(0xbcb8e387, 0xdfb30cb7), TOBN(0xc1fd32a7, 0x5171ef9c), TOBN(0x977f3fc7, 0x389b363f), TOBN(0x116eaf2b, 0xf4babda0), TOBN(0xfeab68bd, 0xf7113c8e), TOBN(0xd1e3f064, 0xb7def526), TOBN(0x1ac30885, 0xe0b3fa02), TOBN(0x1c5a6e7b, 0x40142d9d), TOBN(0x839b5603, 0x30921c0b), TOBN(0x48f301fa, 0x36a116a3), TOBN(0x380e1107, 0xcfd9ee6d), TOBN(0x7945ead8, 0x58854be1), TOBN(0x4111c12e, 0xcbd4d49d), TOBN(0xece3b1ec, 0x3a29c2ef), TOBN(0x6356d404, 0x8d3616f5), TOBN(0x9f0d6a8f, 0x594d320e), TOBN(0x0989316d, 0xf651ccd2), TOBN(0x6c32117a, 0x0f8fdde4), TOBN(0x9abe5cc5, 0xa26a9bbc), TOBN(0xcff560fb, 0x9723f671), TOBN(0x21b2a12d, 0x7f3d593c), TOBN(0xe4cb18da, 0x24ba0696), TOBN(0x186e2220, 0xc3543384), TOBN(0x722f64e0, 0x88312c29), TOBN(0x94282a99, 0x17dc7752), TOBN(0x62467bbf, 0x5a85ee89), TOBN(0xf435c650, 0xf10076a0), TOBN(0xc9ff1539, 0x43b3a50b), TOBN(0x7132130c, 0x1a53efbc), TOBN(0x31bfe063, 0xf7b0c5b7), TOBN(0xb0179a7d, 0x4ea994cc), TOBN(0x12d064b3, 0xc85f455b), TOBN(0x47259328, 0x8f6e0062), TOBN(0xf64e590b, 0xb875d6d9), TOBN(0x22dd6225, 0xad92bcc7), TOBN(0xb658038e, 0xb9c3bd6d), TOBN(0x00cdb0d6, 0xfbba27c8), TOBN(0x0c681337, 0x1062c45d), TOBN(0xd8515b8c, 0x2d33407d), TOBN(0xcb8f699e, 0x8cbb5ecf), TOBN(0x8c4347f8, 0xc608d7d8), TOBN(0x2c11850a, 0xbb3e00db), TOBN(0x20a8dafd, 0xecb49d19), TOBN(0xbd781480, 0x45ee2f40), TOBN(0x75e354af, 0x416b60cf), TOBN(0xde0b58a1, 0x8d49a8c4), TOBN(0xe40e94e2, 0xfa359536), TOBN(0xbd4fa59f, 0x62accd76), TOBN(0x05cf466a, 0x8c762837), TOBN(0xb5abda99, 0x448c277b), TOBN(0x5a9e01bf, 0x48b13740), TOBN(0x9d457798, 0x326aad8d), TOBN(0xbdef4954, 0xc396f7e7), TOBN(0x6fb274a2, 0xc253e292), TOBN(0x2800bf0a, 0x1cfe53e7), TOBN(0x22426d31, 0x44438fd4), TOBN(0xef233923, 0x5e259f9a), TOBN(0x4188503c, 0x03f66264), TOBN(0x9e5e7f13, 0x7f9fdfab), TOBN(0x565eb76c, 0x5fcc1aba), TOBN(0xea632548, 0x59b5bff8), TOBN(0x5587c087, 0xaab6d3fa), TOBN(0x92b639ea, 0x6ce39c1b), TOBN(0x0706e782, 0x953b135c), TOBN(0x7308912e, 0x425268ef), TOBN(0x599e92c7, 0x090e7469), TOBN(0x83b90f52, 0x9bc35e75), TOBN(0x4750b3d0, 0x244975b3), TOBN(0xf3a44358, 0x11965d72), TOBN(0x179c6774, 0x9c8dc751), TOBN(0xff18cdfe, 0xd23d9ff0), TOBN(0xc4013833, 0x2028e247), TOBN(0x96e280e2, 0xf3bfbc79), TOBN(0xf60417bd, 0xd0880a84), TOBN(0x263c9f3d, 0x2a568151), TOBN(0x36be15b3, 0x2d2ce811), TOBN(0x846dc0c2, 0xf8291d21), TOBN(0x5cfa0ecb, 0x789fcfdb), TOBN(0x45a0beed, 0xd7535b9a), TOBN(0xec8e9f07, 0x96d69af1), TOBN(0x31a7c5b8, 0x599ab6dc), TOBN(0xd36d45ef, 0xf9e2e09f), TOBN(0x3cf49ef1, 0xdcee954b), TOBN(0x6be34cf3, 0x086cff9b), TOBN(0x88dbd491, 0x39a3360f), TOBN(0x1e96b8cc, 0x0dbfbd1d), TOBN(0xc1e5f7bf, 0xcb7e2552), TOBN(0x0547b214, 0x28819d98), TOBN(0xc770dd9c, 0x7aea9dcb), TOBN(0xaef0d4c7, 0x041d68c8), TOBN(0xcc2b9818, 0x13cb9ba8), TOBN(0x7fc7bc76, 0xfe86c607), TOBN(0x6b7b9337, 0x502a9a95), TOBN(0x1948dc27, 0xd14dab63), TOBN(0x249dd198, 0xdae047be), TOBN(0xe8356584, 0xa981a202), TOBN(0x3531dd18, 0x3a893387), TOBN(0x1be11f90, 0xc85c7209), TOBN(0x93d2fe1e, 0xe2a52b5a), TOBN(0x8225bfe2, 0xec6d6b97), TOBN(0x9cf6d6f4, 0xbd0aa5de), TOBN(0x911459cb, 0x54779f5f), TOBN(0x5649cddb, 0x86aeb1f3), TOBN(0x32133579, 0x3f26ce5a), TOBN(0xc289a102, 0x550f431e), TOBN(0x559dcfda, 0x73b84c6f), TOBN(0x84973819, 0xee3ac4d7), TOBN(0xb51e55e6, 0xf2606a82), TOBN(0xe25f7061, 0x90f2fb57), TOBN(0xacef6c2a, 0xb1a4e37c), TOBN(0x864e359d, 0x5dcf2706), TOBN(0x479e6b18, 0x7ce57316), TOBN(0x2cab2500, 0x3a96b23d), TOBN(0xed489862, 0x8ef16df7), TOBN(0x2056538c, 0xef3758b5), TOBN(0xa7df865e, 0xf15d3101), TOBN(0x80c5533a, 0x61b553d7), TOBN(0x366e1997, 0x4ed14294), TOBN(0x6620741f, 0xb3c0bcd6), TOBN(0x21d1d9c4, 0xedc45418), TOBN(0x005b859e, 0xc1cc4a9d), TOBN(0xdf01f630, 0xa1c462f0), TOBN(0x15d06cf3, 0xf26820c7), TOBN(0x9f7f24ee, 0x3484be47), TOBN(0x2ff33e96, 0x4a0c902f), TOBN(0x00bdf457, 0x5a0bc453), TOBN(0x2378dfaf, 0x1aa238db), TOBN(0x272420ec, 0x856720f2), TOBN(0x2ad9d95b, 0x96797291), TOBN(0xd1242cc6, 0x768a1558), TOBN(0x2e287f8b, 0x5cc86aa8), TOBN(0x796873d0, 0x990cecaa), TOBN(0xade55f81, 0x675d4080), TOBN(0x2645eea3, 0x21f0cd84), TOBN(0x7a1efa0f, 0xb4e17d02), TOBN(0xf6858420, 0x037cc061), TOBN(0x682e05f0, 0xd5d43e12), TOBN(0x59c36994, 0x27218710), TOBN(0x85cbba4d, 0x3f7cd2fc), TOBN(0x726f9729, 0x7a3cd22a), TOBN(0x9f8cd5dc, 0x4a628397), TOBN(0x17b93ab9, 0xc23165ed), TOBN(0xff5f5dbf, 0x122823d4), TOBN(0xc1e4e4b5, 0x654a446d), TOBN(0xd1a9496f, 0x677257ba), TOBN(0x6387ba94, 0xde766a56), TOBN(0x23608bc8, 0x521ec74a), TOBN(0x16a522d7, 0x6688c4d4), TOBN(0x9d6b4282, 0x07373abd), TOBN(0xa62f07ac, 0xb42efaa3), TOBN(0xf73e00f7, 0xe3b90180), TOBN(0x36175fec, 0x49421c3e), TOBN(0xc4e44f9b, 0x3dcf2678), TOBN(0x76df436b, 0x7220f09f), TOBN(0x172755fb, 0x3aa8b6cf), TOBN(0xbab89d57, 0x446139cc), TOBN(0x0a0a6e02, 0x5fe0208f), TOBN(0xcdbb63e2, 0x11e5d399), TOBN(0x33ecaa12, 0xa8977f0b), TOBN(0x59598b21, 0xf7c42664), TOBN(0xb3e91b32, 0xab65d08a), TOBN(0x035822ee, 0xf4502526), TOBN(0x1dcf0176, 0x720a82a9), TOBN(0x50f8598f, 0x3d589e02), TOBN(0xdf0478ff, 0xb1d63d2c), TOBN(0x8b8068bd, 0x1571cd07), TOBN(0x30c3aa4f, 0xd79670cd), TOBN(0x25e8fd4b, 0x941ade7f), TOBN(0x3d1debdc, 0x32790011), TOBN(0x65b6dcbd, 0x3a3f9ff0), TOBN(0x282736a4, 0x793de69c), TOBN(0xef69a0c3, 0xd41d3bd3), TOBN(0xb533b8c9, 0x07a26bde), TOBN(0xe2801d97, 0xdb2edf9f), TOBN(0xdc4a8269, 0xe1877af0), TOBN(0x6c1c5851, 0x3d590dbe), TOBN(0x84632f6b, 0xee4e9357), TOBN(0xd36d36b7, 0x79b33374), TOBN(0xb46833e3, 0x9bbca2e6), TOBN(0x37893913, 0xf7fc0586), TOBN(0x385315f7, 0x66bf4719), TOBN(0x72c56293, 0xb31855dc), TOBN(0xd1416d4e, 0x849061fe), TOBN(0xbeb3ab78, 0x51047213), TOBN(0x447f6e61, 0xf040c996), TOBN(0xd06d310d, 0x638b1d0c), TOBN(0xe28a413f, 0xbad1522e), TOBN(0x685a76cb, 0x82003f86), TOBN(0x610d07f7, 0x0bcdbca3), TOBN(0x6ff66021, 0x9ca4c455), TOBN(0x7df39b87, 0xcea10eec), TOBN(0xb9255f96, 0xe22db218), TOBN(0x8cc6d9eb, 0x08a34c44), TOBN(0xcd4ffb86, 0x859f9276), TOBN(0x8fa15eb2, 0x50d07335), TOBN(0xdf553845, 0xcf2c24b5), TOBN(0x89f66a9f, 0x52f9c3ba), TOBN(0x8f22b5b9, 0xe4a7ceb3), TOBN(0xaffef809, 0x0e134686), TOBN(0x3e53e1c6, 0x8eb8fac2), TOBN(0x93c1e4eb, 0x28aec98e), TOBN(0xb6b91ec5, 0x32a43bcb), TOBN(0x2dbfa947, 0xb2d74a51), TOBN(0xe065d190, 0xca84bad7), TOBN(0xfb13919f, 0xad58e65c), TOBN(0x3c41718b, 0xf1cb6e31), TOBN(0x688969f0, 0x06d05c3f), TOBN(0xd4f94ce7, 0x21264d45), TOBN(0xfdfb65e9, 0x7367532b), TOBN(0x5b1be8b1, 0x0945a39d), TOBN(0x229f789c, 0x2b8baf3b), TOBN(0xd8f41f3e, 0x6f49f15d), TOBN(0x678ce828, 0x907f0792), TOBN(0xc69ace82, 0xfca6e867), TOBN(0x106451ae, 0xd01dcc89), TOBN(0x1bb4f7f0, 0x19fc32d2), TOBN(0x64633dfc, 0xb00c52d2), TOBN(0x8f13549a, 0xad9ea445), TOBN(0x99a3bf50, 0xfb323705), TOBN(0x0c9625a2, 0x534d4dbc), TOBN(0x45b8f1d1, 0xc2a2fea3), TOBN(0x76ec21a1, 0xa530fc1a), TOBN(0x4bac9c2a, 0x9e5bd734), TOBN(0x5996d76a, 0x7b4e3587), TOBN(0x0045cdee, 0x1182d9e3), TOBN(0x1aee24b9, 0x1207f13d), TOBN(0x66452e97, 0x97345a41), TOBN(0x16e5b054, 0x9f950cd0), TOBN(0x9cc72fb1, 0xd7fdd075), TOBN(0x6edd61e7, 0x66249663), TOBN(0xde4caa4d, 0xf043cccb), TOBN(0x11b1f57a, 0x55c7ac17), TOBN(0x779cbd44, 0x1a85e24d), TOBN(0x78030f86, 0xe46081e7), TOBN(0xfd4a6032, 0x8e20f643), TOBN(0xcc7a6488, 0x0a750c0f), TOBN(0x39bacfe3, 0x4e548e83), TOBN(0x3d418c76, 0x0c110f05), TOBN(0x3e4daa4c, 0xb1f11588), TOBN(0x2733e7b5, 0x5ffc69ff), TOBN(0x46f147bc, 0x92053127), TOBN(0x885b2434, 0xd722df94), TOBN(0x6a444f65, 0xe6fc6b7c)} , {TOBN(0x7a1a465a, 0xc3f16ea8), TOBN(0x115a461d, 0xb2f1d11c), TOBN(0x4767dd95, 0x6c68a172), TOBN(0x3392f2eb, 0xd13a4698), TOBN(0xc7a99ccd, 0xe526cdc7), TOBN(0x8e537fdc, 0x22292b81), TOBN(0x76d8cf69, 0xa6d39198), TOBN(0xffc5ff43, 0x2446852d), TOBN(0x97b14f7e, 0xa90567e6), TOBN(0x513257b7, 0xb6ae5cb7), TOBN(0x85454a3c, 0x9f10903d), TOBN(0xd8d2c9ad, 0x69bc3724), TOBN(0x38da9324, 0x6b29cb44), TOBN(0xb540a21d, 0x77c8cbac), TOBN(0x9bbfe435, 0x01918e42), TOBN(0xfffa707a, 0x56c3614e), TOBN(0x0ce4e3f1, 0xd4e353b7), TOBN(0x062d8a14, 0xef46b0a0), TOBN(0x6408d5ab, 0x574b73fd), TOBN(0xbc41d1c9, 0xd3273ffd), TOBN(0x3538e1e7, 0x6be77800), TOBN(0x71fe8b37, 0xc5655031), TOBN(0x1cd91621, 0x6b9b331a), TOBN(0xad825d0b, 0xbb388f73), TOBN(0x56c2e05b, 0x1cb76219), TOBN(0x0ec0bf91, 0x71567e7e), TOBN(0xe7076f86, 0x61c4c910), TOBN(0xd67b085b, 0xbabc04d9), TOBN(0x9fb90459, 0x5e93a96a), TOBN(0x7526c1ea, 0xfbdc249a), TOBN(0x0d44d367, 0xecdd0bb7), TOBN(0x95399917, 0x9dc0d695), TOBN(0x61360ee9, 0x9e240d18), TOBN(0x057cdcac, 0xb4b94466), TOBN(0xe7667cd1, 0x2fe5325c), TOBN(0x1fa297b5, 0x21974e3b), TOBN(0xfa4081e7, 0xdb083d76), TOBN(0x31993be6, 0xf206bd15), TOBN(0x8949269b, 0x14c19f8c), TOBN(0x21468d72, 0xa9d92357), TOBN(0x2ccbc583, 0xa4c506ec), TOBN(0x957ed188, 0xd1acfe97), TOBN(0x8baed833, 0x12f1aea2), TOBN(0xef2a6cb4, 0x8325362d), TOBN(0x130dde42, 0x8e195c43), TOBN(0xc842025a, 0x0e6050c6), TOBN(0x2da972a7, 0x08686a5d), TOBN(0xb52999a1, 0xe508b4a8), TOBN(0xd9f090b9, 0x10a5a8bd), TOBN(0xca91d249, 0x096864da), TOBN(0x8e6a93be, 0x3f67dbc1), TOBN(0xacae6fba, 0xf5f4764c), TOBN(0x1563c6e0, 0xd21411a0), TOBN(0x28fa787f, 0xda0a4ad8), TOBN(0xd524491c, 0x908c8030), TOBN(0x1257ba0e, 0x4c795f07), TOBN(0x83f49167, 0xceca9754), TOBN(0x426d2cf6, 0x4b7939a0), TOBN(0x2555e355, 0x723fd0bf), TOBN(0xa96e6d06, 0xc4f144e2), TOBN(0x4768a8dd, 0x87880e61), TOBN(0x15543815, 0xe508e4d5), TOBN(0x09d7e772, 0xb1b65e15), TOBN(0x63439dd6, 0xac302fa0), TOBN(0xb93f802f, 0xc14e35c2), TOBN(0x71735b7c, 0x4341333c), TOBN(0x03a25104, 0x16d4f362), TOBN(0x3f4d069b, 0xbf433c8e), TOBN(0x0d83ae01, 0xf78f5a7c), TOBN(0x50a8ffbe, 0x7c4eed07), TOBN(0xc74f8906, 0x76e10f83), TOBN(0x7d080966, 0x9ddaf8e1), TOBN(0xb11df8e1, 0x698e04cc), TOBN(0x877be203, 0x169005c8), TOBN(0x32749e8c, 0x4f3c6179), TOBN(0x2dbc9d0a, 0x7853fc05), TOBN(0x187d4f93, 0x9454d937), TOBN(0xe682ce9d, 0xb4800e1b), TOBN(0xa9129ad8, 0x165e68e8), TOBN(0x0fe29735, 0xbe7f785b), TOBN(0x5303f40c, 0x5b9e02b7), TOBN(0xa37c9692, 0x35ee04e8), TOBN(0x5f46cc20, 0x34d6632b), TOBN(0x55ef72b2, 0x96ac545b), TOBN(0xabec5c1f, 0x7b91b062), TOBN(0x0a79e1c7, 0xbb33e821), TOBN(0xbb04b428, 0x3a9f4117), TOBN(0x0de1f28f, 0xfd2a475a), TOBN(0x31019ccf, 0x3a4434b4), TOBN(0xa3458111, 0x1a7954dc), TOBN(0xa9dac80d, 0xe34972a7), TOBN(0xb043d054, 0x74f6b8dd), TOBN(0x021c319e, 0x11137b1a), TOBN(0x00a754ce, 0xed5cc03f), TOBN(0x0aa2c794, 0xcbea5ad4), TOBN(0x093e67f4, 0x70c015b6), TOBN(0x72cdfee9, 0xc97e3f6b), TOBN(0xc10bcab4, 0xb6da7461), TOBN(0x3b02d2fc, 0xb59806b9), TOBN(0x85185e89, 0xa1de6f47), TOBN(0x39e6931f, 0x0eb6c4d4), TOBN(0x4d4440bd, 0xd4fa5b04), TOBN(0x5418786e, 0x34be7eb8), TOBN(0x6380e521, 0x9d7259bc), TOBN(0x20ac0351, 0xd598d710), TOBN(0x272c4166, 0xcb3a4da4), TOBN(0xdb82fe1a, 0xca71de1f), TOBN(0x746e79f2, 0xd8f54b0f), TOBN(0x6e7fc736, 0x4b573e9b), TOBN(0x75d03f46, 0xfd4b5040), TOBN(0x5c1cc36d, 0x0b98d87b), TOBN(0x513ba3f1, 0x1f472da1), TOBN(0x79d0af26, 0xabb177dd), TOBN(0xf82ab568, 0x7891d564), TOBN(0x2b6768a9, 0x72232173), TOBN(0xefbb3bb0, 0x8c1f6619), TOBN(0xb29c11db, 0xa6d18358), TOBN(0x519e2797, 0xb0916d3a), TOBN(0xd4dc18f0, 0x9188e290), TOBN(0x648e86e3, 0x98b0ca7f), TOBN(0x859d3145, 0x983c38b5), TOBN(0xb14f176c, 0x637abc8b), TOBN(0x2793fb9d, 0xcaff7be6), TOBN(0xebe5a55f, 0x35a66a5a), TOBN(0x7cec1dcd, 0x9f87dc59), TOBN(0x7c595cd3, 0xfbdbf560), TOBN(0x5b543b22, 0x26eb3257), TOBN(0x69080646, 0xc4c935fd), TOBN(0x7f2e4403, 0x81e9ede3), TOBN(0x243c3894, 0xcaf6df0a), TOBN(0x7c605bb1, 0x1c073b11), TOBN(0xcd06a541, 0xba6a4a62), TOBN(0x29168949, 0x49d4e2e5), TOBN(0x33649d07, 0x4af66880), TOBN(0xbfc0c885, 0xe9a85035), TOBN(0xb4e52113, 0xfc410f4b), TOBN(0xdca3b706, 0x78a6513b), TOBN(0x92ea4a2a, 0x9edb1943), TOBN(0x02642216, 0xdb6e2dd8), TOBN(0x9b45d0b4, 0x9fd57894), TOBN(0x114e70db, 0xc69d11ae), TOBN(0x1477dd19, 0x4c57595f), TOBN(0xbc2208b4, 0xec77c272), TOBN(0x95c5b4d7, 0xdb68f59c), TOBN(0xb8c4fc63, 0x42e532b7), TOBN(0x386ba422, 0x9ae35290), TOBN(0xfb5dda42, 0xd201ecbc), TOBN(0x2353dc8b, 0xa0e38fd6), TOBN(0x9a0b85ea, 0x68f7e978), TOBN(0x96ec5682, 0x2ad6d11f), TOBN(0x5e279d6c, 0xe5f6886d), TOBN(0xd3fe03cd, 0x3cb1914d), TOBN(0xfe541fa4, 0x7ea67c77), TOBN(0x952bd2af, 0xe3ea810c), TOBN(0x791fef56, 0x8d01d374), TOBN(0xa3a1c621, 0x0f11336e), TOBN(0x5ad0d5a9, 0xc7ec6d79), TOBN(0xff7038af, 0x3225c342), TOBN(0x003c6689, 0xbc69601b), TOBN(0x25059bc7, 0x45e8747d), TOBN(0xfa4965b2, 0xf2086fbf), TOBN(0xf6840ea6, 0x86916078), TOBN(0xd7ac7620, 0x70081d6c), TOBN(0xe600da31, 0xb5328645), TOBN(0x01916f63, 0x529b8a80), TOBN(0xe80e4858, 0x2d7d6f3e), TOBN(0x29eb0fe8, 0xd664ca7c), TOBN(0xf017637b, 0xe7b43b0c), TOBN(0x9a75c806, 0x76cb2566), TOBN(0x8f76acb1, 0xb24892d9), TOBN(0x7ae7b9cc, 0x1f08fe45), TOBN(0x19ef7329, 0x6a4907d8), TOBN(0x2db4ab71, 0x5f228bf0), TOBN(0xf3cdea39, 0x817032d7), TOBN(0x0b1f482e, 0xdcabe3c0), TOBN(0x3baf76b4, 0xbb86325c), TOBN(0xd49065e0, 0x10089465), TOBN(0x3bab5d29, 0x8e77c596), TOBN(0x7636c3a6, 0x193dbd95), TOBN(0xdef5d294, 0xb246e499), TOBN(0xb22c58b9, 0x286b2475), TOBN(0xa0b93939, 0xcd80862b), TOBN(0x3002c83a, 0xf0992388), TOBN(0x6de01f9b, 0xeacbe14c), TOBN(0x6aac688e, 0xadd70482), TOBN(0x708de92a, 0x7b4a4e8a), TOBN(0x75b6dd73, 0x758a6eef), TOBN(0xea4bf352, 0x725b3c43), TOBN(0x10041f2c, 0x87912868), TOBN(0xb1b1be95, 0xef09297a), TOBN(0x19ae23c5, 0xa9f3860a), TOBN(0xc4f0f839, 0x515dcf4b), TOBN(0x3c7ecca3, 0x97f6306a), TOBN(0x744c44ae, 0x68a3a4b0), TOBN(0x69cd13a0, 0xb3a1d8a2), TOBN(0x7cad0a1e, 0x5256b578), TOBN(0xea653fcd, 0x33791d9e), TOBN(0x9cc2a05d, 0x74b2e05f), TOBN(0x73b391dc, 0xfd7affa2), TOBN(0xddb7091e, 0xb6b05442), TOBN(0xc71e27bf, 0x8538a5c6), TOBN(0x195c63dd, 0x89abff17), TOBN(0xfd315285, 0x1b71e3da), TOBN(0x9cbdfda7, 0xfa680fa0), TOBN(0x9db876ca, 0x849d7eab), TOBN(0xebe2764b, 0x3c273271), TOBN(0x663357e3, 0xf208dcea), TOBN(0x8c5bd833, 0x565b1b70), TOBN(0xccc3b4f5, 0x9837fc0d), TOBN(0x9b641ba8, 0xa79cf00f), TOBN(0x7428243d, 0xdfdf3990), TOBN(0x83a594c4, 0x020786b1), TOBN(0xb712451a, 0x526c4502), TOBN(0x9d39438e, 0x6adb3f93), TOBN(0xfdb261e3, 0xe9ff0ccd), TOBN(0x80344e3c, 0xe07af4c3), TOBN(0x75900d7c, 0x2fa4f126), TOBN(0x08a3b865, 0x5c99a232), TOBN(0x2478b6bf, 0xdb25e0c3), TOBN(0x482cc2c2, 0x71db2edf), TOBN(0x37df7e64, 0x5f321bb8), TOBN(0x8a93821b, 0x9a8005b4), TOBN(0x3fa2f10c, 0xcc8c1958), TOBN(0x0d332218, 0x2c269d0a), TOBN(0x20ab8119, 0xe246b0e6), TOBN(0xb39781e4, 0xd349fd17), TOBN(0xd293231e, 0xb31aa100), TOBN(0x4b779c97, 0xbb032168), TOBN(0x4b3f19e1, 0xc8470500), TOBN(0x45b7efe9, 0x0c4c869d), TOBN(0xdb84f38a, 0xa1a6bbcc), TOBN(0x3b59cb15, 0xb2fddbc1), TOBN(0xba5514df, 0x3fd165e8), TOBN(0x499fd6a9, 0x061f8811), TOBN(0x72cd1fe0, 0xbfef9f00), TOBN(0x120a4bb9, 0x79ad7e8a), TOBN(0xf2ffd095, 0x5f4a5ac5), TOBN(0xcfd174f1, 0x95a7a2f0), TOBN(0xd42301ba, 0x9d17baf1), TOBN(0xd2fa487a, 0x77f22089), TOBN(0x9cb09efe, 0xb1dc77e1), TOBN(0xe9566939, 0x21c99682), TOBN(0x8c546901, 0x6c6067bb), TOBN(0xfd378574, 0x61c24456), TOBN(0x2b6a6cbe, 0x81796b33), TOBN(0x62d550f6, 0x58e87f8b), TOBN(0x1b763e1c, 0x7f1b01b4), TOBN(0x4b93cfea, 0x1b1b5e12), TOBN(0xb9345238, 0x1d531696), TOBN(0x57201c00, 0x88cdde69), TOBN(0xdde92251, 0x9a86afc7), TOBN(0xe3043895, 0xbd35cea8), TOBN(0x7608c1e1, 0x8555970d), TOBN(0x8267dfa9, 0x2535935e), TOBN(0xd4c60a57, 0x322ea38b), TOBN(0xe0bf7977, 0x804ef8b5), TOBN(0x1a0dab28, 0xc06fece4), TOBN(0xd405991e, 0x94e7b49d), TOBN(0xc542b6d2, 0x706dab28), TOBN(0xcb228da3, 0xa91618fb), TOBN(0x224e4164, 0x107d1cea), TOBN(0xeb9fdab3, 0xd0f5d8f1), TOBN(0xc02ba386, 0x0d6e41cd), TOBN(0x676a72c5, 0x9b1f7146), TOBN(0xffd6dd98, 0x4d6cb00b), TOBN(0xcef9c5ca, 0xde2e8d7c), TOBN(0xa1bbf5d7, 0x641c7936), TOBN(0x1b95b230, 0xee8f772e), TOBN(0xf765a92e, 0xe8ac25b1), TOBN(0xceb04cfc, 0x3a18b7c6), TOBN(0x27944cef, 0x0acc8966), TOBN(0xcbb3c957, 0x434c1004), TOBN(0x9c9971a1, 0xa43ff93c), TOBN(0x5bc2db17, 0xa1e358a9), TOBN(0x45b4862e, 0xa8d9bc82), TOBN(0x70ebfbfb, 0x2201e052), TOBN(0xafdf64c7, 0x92871591), TOBN(0xea5bcae6, 0xb42d0219), TOBN(0xde536c55, 0x2ad8f03c), TOBN(0xcd6c3f4d, 0xa76aa33c), TOBN(0xbeb5f623, 0x0bca6de3), TOBN(0xdd20dd99, 0xb1e706fd), TOBN(0x90b3ff9d, 0xac9059d4), TOBN(0x2d7b2902, 0x7ccccc4e), TOBN(0x8a090a59, 0xce98840f), TOBN(0xa5d947e0, 0x8410680a), TOBN(0x49ae346a, 0x923379a5), TOBN(0x7dbc84f9, 0xb28a3156), TOBN(0xfd40d916, 0x54a1aff2), TOBN(0xabf318ba, 0x3a78fb9b), TOBN(0x50152ed8, 0x3029f95e), TOBN(0x9fc1dd77, 0xc58ad7fa), TOBN(0x5fa57915, 0x13595c17), TOBN(0xb9504668, 0x8f62b3a9), TOBN(0x907b5b24, 0xff3055b0), TOBN(0x2e995e35, 0x9a84f125), TOBN(0x87dacf69, 0x7e9bbcfb), TOBN(0x95d0c1d6, 0xe86d96e3), TOBN(0x65726e3c, 0x2d95a75c), TOBN(0x2c3c9001, 0xacd27f21), TOBN(0x1deab561, 0x6c973f57), TOBN(0x108b7e2c, 0xa5221643), TOBN(0x5fee9859, 0xc4ef79d4), TOBN(0xbd62b88a, 0x40d4b8c6), TOBN(0xb4dd29c4, 0x197c75d6), TOBN(0x266a6df2, 0xb7076feb), TOBN(0x9512d0ea, 0x4bf2df11), TOBN(0x1320c24f, 0x6b0cc9ec), TOBN(0x6bb1e0e1, 0x01a59596), TOBN(0x8317c5bb, 0xeff9aaac), TOBN(0x65bb405e, 0x385aa6c9), TOBN(0x613439c1, 0x8f07988f), TOBN(0xd730049f, 0x16a66e91), TOBN(0xe97f2820, 0xfa1b0e0d), TOBN(0x4131e003, 0x304c28ea), TOBN(0x820ab732, 0x526bac62), TOBN(0xb2ac9ef9, 0x28714423), TOBN(0x54ecfffa, 0xadb10cb2), TOBN(0x8781476e, 0xf886a4cc), TOBN(0x4b2c87b5, 0xdb2f8d49), TOBN(0xe857cd20, 0x0a44295d), TOBN(0x707d7d21, 0x58c6b044), TOBN(0xae8521f9, 0xf596757c), TOBN(0x87448f03, 0x67b2b714), TOBN(0x13a9bc45, 0x5ebcd58d), TOBN(0x79bcced9, 0x9122d3c1), TOBN(0x3c644247, 0x9e076642), TOBN(0x0cf22778, 0x2df4767d), TOBN(0x5e61aee4, 0x71d444b6), TOBN(0x211236bf, 0xc5084a1d), TOBN(0x7e15bc9a, 0x4fd3eaf6), TOBN(0x68df2c34, 0xab622bf5), TOBN(0x9e674f0f, 0x59bf4f36), TOBN(0xf883669b, 0xd7f34d73), TOBN(0xc48ac1b8, 0x31497b1d), TOBN(0x323b925d, 0x5106703b), TOBN(0x22156f42, 0x74082008), TOBN(0xeffc521a, 0xc8482bcb), TOBN(0x5c6831bf, 0x12173479), TOBN(0xcaa2528f, 0xc4739490), TOBN(0x84d2102a, 0x8f1b3c4d), TOBN(0xcf64dfc1, 0x2d9bec0d), TOBN(0x433febad, 0x78a546ef), TOBN(0x1f621ec3, 0x7b73cef1), TOBN(0x6aecd627, 0x37338615), TOBN(0x162082ab, 0x01d8edf6), TOBN(0x833a8119, 0x19e86b66), TOBN(0x6023a251, 0xd299b5db), TOBN(0xf5bb0c3a, 0xbbf04b89), TOBN(0x6735eb69, 0xae749a44), TOBN(0xd0e058c5, 0x4713de3b), TOBN(0xfdf2593e, 0x2c3d4ccd), TOBN(0x1b8f414e, 0xfdd23667), TOBN(0xdd52aaca, 0xfa2015ee), TOBN(0x3e31b517, 0xbd9625ff), TOBN(0x5ec9322d, 0x8db5918c), TOBN(0xbc73ac85, 0xa96f5294), TOBN(0x82aa5bf3, 0x61a0666a), TOBN(0x49755810, 0xbf08ac42), TOBN(0xd21cdfd5, 0x891cedfc), TOBN(0x918cb57b, 0x67f8be10), TOBN(0x365d1a7c, 0x56ffa726), TOBN(0x2435c504, 0x6532de93), TOBN(0xc0fc5e10, 0x2674cd02), TOBN(0x6e51fcf8, 0x9cbbb142), TOBN(0x1d436e5a, 0xafc50692), TOBN(0x766bffff, 0x3fbcae22), TOBN(0x3148c2fd, 0xfd55d3b8), TOBN(0x52c7fdc9, 0x233222fa), TOBN(0x89ff1092, 0xe419fb6b), TOBN(0x3cd6db99, 0x25254977), TOBN(0x2e85a161, 0x1cf12ca7), TOBN(0xadd2547c, 0xdc810bc9), TOBN(0xea3f458f, 0x9d257c22), TOBN(0x642c1fbe, 0x27d6b19b), TOBN(0xed07e6b5, 0x140481a6), TOBN(0x6ada1d42, 0x86d2e0f8), TOBN(0xe5920122, 0x0e8a9fd5), TOBN(0x02c936af, 0x708c1b49), TOBN(0x60f30fee, 0x2b4bfaff), TOBN(0x6637ad06, 0x858e6a61), TOBN(0xce4c7767, 0x3fd374d0), TOBN(0x39d54b2d, 0x7188defb), TOBN(0xa8c9d250, 0xf56a6b66), TOBN(0x58fc0f5e, 0xb24fe1dc), TOBN(0x9eaf9dee, 0x6b73f24c), TOBN(0xa90d588b, 0x33650705), TOBN(0xde5b62c5, 0xaf2ec729), TOBN(0x5c72cfae, 0xd3c2b36e), TOBN(0x868c19d5, 0x034435da), TOBN(0x88605f93, 0xe17ee145), TOBN(0xaa60c4ee, 0x77a5d5b1), TOBN(0xbcf5bfd2, 0x3b60c472), TOBN(0xaf4ef13c, 0xeb1d3049), TOBN(0x373f44fc, 0xe13895c9), TOBN(0xf29b382f, 0x0cbc9822), TOBN(0x1bfcb853, 0x73efaef6), TOBN(0xcf56ac9c, 0xa8c96f40), TOBN(0xd7adf109, 0x7a191e24), TOBN(0x98035f44, 0xbf8a8dc2), TOBN(0xf40a71b9, 0x1e750c84), TOBN(0xc57f7b0c, 0x5dc6c469), TOBN(0x49a0e79c, 0x6fbc19c1), TOBN(0x6b0f5889, 0xa48ebdb8), TOBN(0x5d3fd084, 0xa07c4e9f), TOBN(0xc3830111, 0xab27de14), TOBN(0x0e4929fe, 0x33e08dcc), TOBN(0xf4a5ad24, 0x40bb73a3), TOBN(0xde86c2bf, 0x490f97ca), TOBN(0x288f09c6, 0x67a1ce18), TOBN(0x364bb886, 0x1844478d), TOBN(0x7840fa42, 0xceedb040), TOBN(0x1269fdd2, 0x5a631b37), TOBN(0x94761f1e, 0xa47c8b7d), TOBN(0xfc0c2e17, 0x481c6266), TOBN(0x85e16ea2, 0x3daa5fa7), TOBN(0xccd86033, 0x92491048), TOBN(0x0c2f6963, 0xf4d402d7), TOBN(0x6336f7df, 0xdf6a865c), TOBN(0x0a2a463c, 0xb5c02a87), TOBN(0xb0e29be7, 0xbf2f12ee), TOBN(0xf0a22002, 0x66bad988), TOBN(0x27f87e03, 0x9123c1d7), TOBN(0x21669c55, 0x328a8c98), TOBN(0x186b9803, 0x92f14529), TOBN(0xd3d056cc, 0x63954df3), TOBN(0x2f03fd58, 0x175a46f6), TOBN(0x63e34ebe, 0x11558558), TOBN(0xe13fedee, 0x5b80cfa5), TOBN(0xe872a120, 0xd401dbd1), TOBN(0x52657616, 0xe8a9d667), TOBN(0xbc8da4b6, 0xe08d6693), TOBN(0x370fb9bb, 0x1b703e75), TOBN(0x6773b186, 0xd4338363), TOBN(0x18dad378, 0xecef7bff), TOBN(0xaac787ed, 0x995677da), TOBN(0x4801ea8b, 0x0437164b), TOBN(0xf430ad20, 0x73fe795e), TOBN(0xb164154d, 0x8ee5eb73), TOBN(0x0884ecd8, 0x108f7c0e), TOBN(0x0e6ec096, 0x5f520698), TOBN(0x640631fe, 0x44f7b8d9), TOBN(0x92fd34fc, 0xa35a68b9), TOBN(0x9c5a4b66, 0x4d40cf4e), TOBN(0x949454bf, 0x80b6783d), TOBN(0x80e701fe, 0x3a320a10), TOBN(0x8d1a564a, 0x1a0a39b2), TOBN(0x1436d53d, 0x320587db), TOBN(0xf5096e6d, 0x6556c362), TOBN(0xbc23a3c0, 0xe2455d7e), TOBN(0x3a7aee54, 0x807230f9), TOBN(0x9ba1cfa6, 0x22ae82fd), TOBN(0x833a057a, 0x99c5d706), TOBN(0x8be85f4b, 0x842315c9), TOBN(0xd083179a, 0x66a72f12), TOBN(0x2fc77d5d, 0xcdcc73cd), TOBN(0x22b88a80, 0x5616ee30), TOBN(0xfb09548f, 0xe7ab1083), TOBN(0x8ad6ab0d, 0x511270cd), TOBN(0x61f6c57a, 0x6924d9ab), TOBN(0xa0f7bf72, 0x90aecb08), TOBN(0x849f87c9, 0x0df784a4), TOBN(0x27c79c15, 0xcfaf1d03), TOBN(0xbbf9f675, 0xc463face), TOBN(0x91502c65, 0x765ba543), TOBN(0x18ce3cac, 0x42ea60dd), TOBN(0xe5cee6ac, 0x6e43ecb3), TOBN(0x63e4e910, 0x68f2aeeb), TOBN(0x26234fa3, 0xc85932ee), TOBN(0x96883e8b, 0x4c90c44d), TOBN(0x29b9e738, 0xa18a50f6), TOBN(0xbfc62b2a, 0x3f0420df), TOBN(0xd22a7d90, 0x6d3e1fa9), TOBN(0x17115618, 0xfe05b8a3), TOBN(0x2a0c9926, 0xbb2b9c01), TOBN(0xc739fcc6, 0xe07e76a2), TOBN(0x540e9157, 0x165e439a), TOBN(0x06353a62, 0x6a9063d8), TOBN(0x84d95594, 0x61e927a3), TOBN(0x013b9b26, 0xe2e0be7f), TOBN(0x4feaec3b, 0x973497f1), TOBN(0x15c0f94e, 0x093ebc2d), TOBN(0x6af5f227, 0x33af0583), TOBN(0x0c2af206, 0xc61f3340), TOBN(0xd25dbdf1, 0x4457397c), TOBN(0x2e8ed017, 0xcabcbae0), TOBN(0xe3010938, 0xc2815306), TOBN(0xbaa99337, 0xe8c6cd68), TOBN(0x08513182, 0x3b0ec7de), TOBN(0x1e1b822b, 0x58df05df), TOBN(0x5c14842f, 0xa5c3b683), TOBN(0x98fe977e, 0x3eba34ce), TOBN(0xfd2316c2, 0x0d5e8873), TOBN(0xe48d839a, 0xbd0d427d), TOBN(0x495b2218, 0x623fc961), TOBN(0x24ee56e7, 0xb46fba5e), TOBN(0x9184a55b, 0x91e4de58), TOBN(0xa7488ca5, 0xdfdea288), TOBN(0xa723862e, 0xa8dcc943), TOBN(0x92d762b2, 0x849dc0fc), TOBN(0x3c444a12, 0x091ff4a9), TOBN(0x581113fa, 0x0cada274), TOBN(0xb9de0a45, 0x30d8eae2), TOBN(0x5e0fcd85, 0xdf6b41ea), TOBN(0x6233ea68, 0xc094dbb5), TOBN(0xb77d062e, 0xd968d410), TOBN(0x3e719bbc, 0x58b3002d), TOBN(0x68e7dd3d, 0x3dc49d58), TOBN(0x8d825740, 0x013a5e58), TOBN(0x21311747, 0x3c9e3c1b), TOBN(0x0cb0a2a7, 0x7c99b6ab), TOBN(0x5c48a3b3, 0xc2f888f2)} , {TOBN(0xc7913e91, 0x991724f3), TOBN(0x5eda799c, 0x39cbd686), TOBN(0xddb595c7, 0x63d4fc1e), TOBN(0x6b63b80b, 0xac4fed54), TOBN(0x6ea0fc69, 0x7e5fb516), TOBN(0x737708ba, 0xd0f1c964), TOBN(0x9628745f, 0x11a92ca5), TOBN(0x61f37958, 0x9a86967a), TOBN(0x9af39b2c, 0xaa665072), TOBN(0x78322fa4, 0xefd324ef), TOBN(0x3d153394, 0xc327bd31), TOBN(0x81d5f271, 0x3129dab0), TOBN(0xc72e0c42, 0xf48027f5), TOBN(0xaa40cdbc, 0x8536e717), TOBN(0xf45a657a, 0x2d369d0f), TOBN(0xb03bbfc4, 0xea7f74e6), TOBN(0x46a8c418, 0x0d738ded), TOBN(0x6f1a5bb0, 0xe0de5729), TOBN(0xf10230b9, 0x8ba81675), TOBN(0x32c6f30c, 0x112b33d4), TOBN(0x7559129d, 0xd8fffb62), TOBN(0x6a281b47, 0xb459bf05), TOBN(0x77c1bd3a, 0xfa3b6776), TOBN(0x0709b380, 0x7829973a), TOBN(0x8c26b232, 0xa3326505), TOBN(0x38d69272, 0xee1d41bf), TOBN(0x0459453e, 0xffe32afa), TOBN(0xce8143ad, 0x7cb3ea87), TOBN(0x932ec1fa, 0x7e6ab666), TOBN(0x6cd2d230, 0x22286264), TOBN(0x459a46fe, 0x6736f8ed), TOBN(0x50bf0d00, 0x9eca85bb), TOBN(0x0b825852, 0x877a21ec), TOBN(0x300414a7, 0x0f537a94), TOBN(0x3f1cba40, 0x21a9a6a2), TOBN(0x50824eee, 0x76943c00), TOBN(0xa0dbfcec, 0xf83cba5d), TOBN(0xf9538148, 0x93b4f3c0), TOBN(0x61744162, 0x48f24dd7), TOBN(0x5322d64d, 0xe4fb09dd), TOBN(0x57447384, 0x3d9325f3), TOBN(0xa9bef2d0, 0xf371cb84), TOBN(0x77d2188b, 0xa61e36c5), TOBN(0xbbd6a7d7, 0xc602df72), TOBN(0xba3aa902, 0x8f61bc0b), TOBN(0xf49085ed, 0x6ed0b6a1), TOBN(0x8bc625d6, 0xae6e8298), TOBN(0x832b0b1d, 0xa2e9c01d), TOBN(0xa337c447, 0xf1f0ced1), TOBN(0x800cc793, 0x9492dd2b), TOBN(0x4b93151d, 0xbea08efa), TOBN(0x820cf3f8, 0xde0a741e), TOBN(0xff1982dc, 0x1c0f7d13), TOBN(0xef921960, 0x84dde6ca), TOBN(0x1ad7d972, 0x45f96ee3), TOBN(0x319c8dbe, 0x29dea0c7), TOBN(0xd3ea3871, 0x7b82b99b), TOBN(0x75922d4d, 0x470eb624), TOBN(0x8f66ec54, 0x3b95d466), TOBN(0x66e673cc, 0xbee1e346), TOBN(0x6afe67c4, 0xb5f2b89a), TOBN(0x3de9c1e6, 0x290e5cd3), TOBN(0x8c278bb6, 0x310a2ada), TOBN(0x420fa384, 0x0bdb323b), TOBN(0x0ae1d63b, 0x0eb919b0), TOBN(0xd74ee51d, 0xa74b9620), TOBN(0x395458d0, 0xa674290c), TOBN(0x324c930f, 0x4620a510), TOBN(0x2d1f4d19, 0xfbac27d4), TOBN(0x4086e8ca, 0x9bedeeac), TOBN(0x0cdd211b, 0x9b679ab8), TOBN(0x5970167d, 0x7090fec4), TOBN(0x3420f2c9, 0xfaf1fc63), TOBN(0x616d333a, 0x328c8bb4), TOBN(0x7d65364c, 0x57f1fe4a), TOBN(0x9343e877, 0x55e5c73a), TOBN(0x5795176b, 0xe970e78c), TOBN(0xa36ccebf, 0x60533627), TOBN(0xfc7c7380, 0x09cdfc1b), TOBN(0xb39a2afe, 0xb3fec326), TOBN(0xb7ff1ba1, 0x6224408a), TOBN(0xcc856e92, 0x247cfc5e), TOBN(0x01f102e7, 0xc18bc493), TOBN(0x4613ab74, 0x2091c727), TOBN(0xaa25e89c, 0xc420bf2b), TOBN(0x00a53176, 0x90337ec2), TOBN(0xd2be9f43, 0x7d025fc7), TOBN(0x3316fb85, 0x6e6fe3dc), TOBN(0x27520af5, 0x9ac50814), TOBN(0xfdf95e78, 0x9a8e4223), TOBN(0xb7e7df2a, 0x56bec5a0), TOBN(0xf7022f7d, 0xdf159e5d), TOBN(0x93eeeab1, 0xcac1fe8f), TOBN(0x8040188c, 0x37451168), TOBN(0x7ee8aa8a, 0xd967dce6), TOBN(0xfa0e79e7, 0x3abc9299), TOBN(0x67332cfc, 0x2064cfd1), TOBN(0x339c31de, 0xb0651934), TOBN(0x719b28d5, 0x2a3bcbea), TOBN(0xee74c82b, 0x9d6ae5c6), TOBN(0x0927d05e, 0xbaf28ee6), TOBN(0x82cecf2c, 0x9d719028), TOBN(0x0b0d353e, 0xddb30289), TOBN(0xfe4bb977, 0xfddb2e29), TOBN(0xbb5bb990, 0x640bfd9e), TOBN(0xd226e277, 0x82f62108), TOBN(0x4bf00985, 0x02ffdd56), TOBN(0x7756758a, 0x2ca1b1b5), TOBN(0xc32b62a3, 0x5285fe91), TOBN(0xedbc546a, 0x8c9cd140), TOBN(0x1e47a013, 0xaf5cb008), TOBN(0xbca7e720, 0x073ce8f2), TOBN(0xe10b2ab8, 0x17a91cae), TOBN(0xb89aab65, 0x08e27f63), TOBN(0x7b3074a7, 0xdba3ddf9), TOBN(0x1c20ce09, 0x330c2972), TOBN(0x6b9917b4, 0x5fcf7e33), TOBN(0xe6793743, 0x945ceb42), TOBN(0x18fc2215, 0x5c633d19), TOBN(0xad1adb3c, 0xc7485474), TOBN(0x646f9679, 0x6424c49b), TOBN(0xf888dfe8, 0x67c241c9), TOBN(0xe12d4b93, 0x24f68b49), TOBN(0x9a6b62d8, 0xa571df20), TOBN(0x81b4b26d, 0x179483cb), TOBN(0x666f9632, 0x9511fae2), TOBN(0xd281b3e4, 0xd53aa51f), TOBN(0x7f96a765, 0x7f3dbd16), TOBN(0xa7f8b5bf, 0x074a30ce), TOBN(0xd7f52107, 0x005a32e6), TOBN(0x6f9e0907, 0x50237ed4), TOBN(0x2f21da47, 0x8096fa2b), TOBN(0xf3e19cb4, 0xeec863a0), TOBN(0xd18f77fd, 0x9527620a), TOBN(0x9505c81c, 0x407c1cf8), TOBN(0x9998db4e, 0x1b6ec284), TOBN(0x7e3389e5, 0xc247d44d), TOBN(0x12507141, 0x3f4f3d80), TOBN(0xd4ba0110, 0x4a78a6c7), TOBN(0x312874a0, 0x767720be), TOBN(0xded059a6, 0x75944370), TOBN(0xd6123d90, 0x3b2c0bdd), TOBN(0xa56b717b, 0x51c108e3), TOBN(0x9bb7940e, 0x070623e9), TOBN(0x794e2d59, 0x84ac066c), TOBN(0xf5954a92, 0xe68c69a0), TOBN(0x28c52458, 0x4fd99dcc), TOBN(0x60e639fc, 0xb1012517), TOBN(0xc2e60125, 0x7de79248), TOBN(0xe9ef6404, 0xf12fc6d7), TOBN(0x4c4f2808, 0x2a3b5d32), TOBN(0x865ad32e, 0xc768eb8a), TOBN(0xac02331b, 0x13fb70b6), TOBN(0x037b44c1, 0x95599b27), TOBN(0x1a860fc4, 0x60bd082c), TOBN(0xa2e25745, 0xc980cd01), TOBN(0xee3387a8, 0x1da0263e), TOBN(0x931bfb95, 0x2d10f3d6), TOBN(0x5b687270, 0xa1f24a32), TOBN(0xf140e65d, 0xca494b86), TOBN(0x4f4ddf91, 0xb2f1ac7a), TOBN(0xf99eaabb, 0x760fee27), TOBN(0x57f4008a, 0x49c228e5), TOBN(0x090be440, 0x1cf713bb), TOBN(0xac91fbe4, 0x5004f022), TOBN(0xd838c2c2, 0x569e1af6), TOBN(0xd6c7d20b, 0x0f1daaa5), TOBN(0xaa063ac1, 0x1bbb02c0), TOBN(0x0938a422, 0x59558a78), TOBN(0x5343c669, 0x8435da2f), TOBN(0x96f67b18, 0x034410dc), TOBN(0x7cc1e424, 0x84510804), TOBN(0x86a1543f, 0x16dfbb7d), TOBN(0x921fa942, 0x5b5bd592), TOBN(0x9dcccb6e, 0xb33dd03c), TOBN(0x8581ddd9, 0xb843f51e), TOBN(0x54935fcb, 0x81d73c9e), TOBN(0x6d07e979, 0x0a5e97ab), TOBN(0x4dc7b30a, 0xcf3a6bab), TOBN(0x147ab1f3, 0x170bee11), TOBN(0x0aaf8e3d, 0x9fafdee4), TOBN(0xfab3dbcb, 0x538a8b95), TOBN(0x405df4b3, 0x6ef13871), TOBN(0xf1f4e9cb, 0x088d5a49), TOBN(0x9bcd24d3, 0x66b33f1d), TOBN(0x3b97b820, 0x5ce445c0), TOBN(0xe2926549, 0xba93ff61), TOBN(0xd9c341ce, 0x4dafe616), TOBN(0xfb30a76e, 0x16efb6f3), TOBN(0xdf24b8ca, 0x605b953c), TOBN(0x8bd52afe, 0xc2fffb9f), TOBN(0xbbac5ff7, 0xe19d0b96), TOBN(0x43c01b87, 0x459afccd), TOBN(0x6bd45143, 0xb7432652), TOBN(0x84734530, 0x55b5d78e), TOBN(0x81088fdb, 0x1554ba7d), TOBN(0xada0a52c, 0x1e269375), TOBN(0xf9f037c4, 0x2dc5ec10), TOBN(0xc0660607, 0x94bfbc11), TOBN(0xc0a630bb, 0xc9c40d2f), TOBN(0x5efc797e, 0xab64c31e), TOBN(0xffdb1dab, 0x74507144), TOBN(0xf6124287, 0x1ca6790c), TOBN(0xe9609d81, 0xe69bf1bf), TOBN(0xdb898595, 0x00d24fc9), TOBN(0x9c750333, 0xe51fb417), TOBN(0x51830a91, 0xfef7bbde), TOBN(0x0ce67dc8, 0x945f585c), TOBN(0x9a730ed4, 0x4763eb50), TOBN(0x24a0e221, 0xc1ab0d66), TOBN(0x643b6393, 0x648748f3), TOBN(0x1982daa1, 0x6d3c6291), TOBN(0x6f00a9f7, 0x8bbc5549), TOBN(0x7a1783e1, 0x7f36384e), TOBN(0xe8346323, 0xde977f50), TOBN(0x91ab688d, 0xb245502a), TOBN(0x331ab6b5, 0x6d0bdd66), TOBN(0x0a6ef32e, 0x64b71229), TOBN(0x1028150e, 0xfe7c352f), TOBN(0x27e04350, 0xce7b39d3), TOBN(0x2a3c8acd, 0xc1070c82), TOBN(0xfb2034d3, 0x80c9feef), TOBN(0x2d729621, 0x709f3729), TOBN(0x8df290bf, 0x62cb4549), TOBN(0x02f99f33, 0xfc2e4326), TOBN(0x3b30076d, 0x5eddf032), TOBN(0xbb21f8cf, 0x0c652fb5), TOBN(0x314fb49e, 0xed91cf7b), TOBN(0xa013eca5, 0x2f700750), TOBN(0x2b9e3c23, 0x712a4575), TOBN(0xe5355557, 0xaf30fbb0), TOBN(0x1ada3516, 0x7c77e771), TOBN(0x45f6ecb2, 0x7b135670), TOBN(0xe85d19df, 0x7cfc202e), TOBN(0x0f1b50c7, 0x58d1be9f), TOBN(0x5ebf2c0a, 0xead2e344), TOBN(0x1531fe4e, 0xabc199c9), TOBN(0xc7032592, 0x56bab0ae), TOBN(0x16ab2e48, 0x6c1fec54), TOBN(0x0f87fda8, 0x04280188), TOBN(0xdc9f46fc, 0x609e4a74), TOBN(0x2a44a143, 0xba667f91), TOBN(0xbc3d8b95, 0xb4d83436), TOBN(0xa01e4bd0, 0xc7bd2958), TOBN(0x7b182932, 0x73483c90), TOBN(0xa79c6aa1, 0xa7c7b598), TOBN(0xbf3983c6, 0xeaaac07e), TOBN(0x8f18181e, 0x96e0d4e6), TOBN(0x8553d37c, 0x051af62b), TOBN(0xe9a998eb, 0x0bf94496), TOBN(0xe0844f9f, 0xb0d59aa1), TOBN(0x983fd558, 0xe6afb813), TOBN(0x9670c0ca, 0x65d69804), TOBN(0x732b22de, 0x6ea5ff2d), TOBN(0xd7640ba9, 0x5fd8623b), TOBN(0x9f619163, 0xa6351782), TOBN(0x0bfc27ee, 0xacee5043), TOBN(0xae419e73, 0x2eb10f02), TOBN(0x19c028d1, 0x8943fb05), TOBN(0x71f01cf7, 0xff13aa2a), TOBN(0x7790737e, 0x8887a132), TOBN(0x67513309, 0x66318410), TOBN(0x9819e8a3, 0x7ddb795e), TOBN(0xfecb8ef5, 0xdad100b2), TOBN(0x59f74a22, 0x3021926a), TOBN(0xb7c28a49, 0x6f9b4c1c), TOBN(0xed1a733f, 0x912ad0ab), TOBN(0x42a910af, 0x01a5659c), TOBN(0x3842c6e0, 0x7bd68cab), TOBN(0x2b57fa38, 0x76d70ac8), TOBN(0x8a6707a8, 0x3c53aaeb), TOBN(0x62c1c510, 0x65b4db18), TOBN(0x8de2c1fb, 0xb2d09dc7), TOBN(0xc3dfed12, 0x266bd23b), TOBN(0x927d039b, 0xd5b27db6), TOBN(0x2fb2f0f1, 0x103243da), TOBN(0xf855a07b, 0x80be7399), TOBN(0xed9327ce, 0x1f9f27a8), TOBN(0xa0bd99c7, 0x729bdef7), TOBN(0x2b67125e, 0x28250d88), TOBN(0x784b26e8, 0x8670ced7), TOBN(0xe3dfe41f, 0xc31bd3b4), TOBN(0x9e353a06, 0xbcc85cbc), TOBN(0x302e2909, 0x60178a9d), TOBN(0x860abf11, 0xa6eac16e), TOBN(0x76447000, 0xaa2b3aac), TOBN(0x46ff9d19, 0x850afdab), TOBN(0x35bdd6a5, 0xfdb2d4c1), TOBN(0xe82594b0, 0x7e5c9ce9), TOBN(0x0f379e53, 0x20af346e), TOBN(0x608b31e3, 0xbc65ad4a), TOBN(0x710c6b12, 0x267c4826), TOBN(0x51c966f9, 0x71954cf1), TOBN(0xb1cec793, 0x0d0aa215), TOBN(0x1f155989, 0x86bd23a8), TOBN(0xae2ff99c, 0xf9452e86), TOBN(0xd8dd953c, 0x340ceaa2), TOBN(0x26355275, 0x2e2e9333), TOBN(0x15d4e5f9, 0x8586f06d), TOBN(0xd6bf94a8, 0xf7cab546), TOBN(0x33c59a0a, 0xb76a9af0), TOBN(0x52740ab3, 0xba095af7), TOBN(0xc444de8a, 0x24389ca0), TOBN(0xcc6f9863, 0x706da0cb), TOBN(0xb5a741a7, 0x6b2515cf), TOBN(0x71c41601, 0x9585c749), TOBN(0x78350d4f, 0xe683de97), TOBN(0x31d61524, 0x63d0b5f5), TOBN(0x7a0cc5e1, 0xfbce090b), TOBN(0xaac927ed, 0xfbcb2a5b), TOBN(0xe920de49, 0x20d84c35), TOBN(0x8c06a0b6, 0x22b4de26), TOBN(0xd34dd58b, 0xafe7ddf3), TOBN(0x55851fed, 0xc1e6e55b), TOBN(0xd1395616, 0x960696e7), TOBN(0x940304b2, 0x5f22705f), TOBN(0x6f43f861, 0xb0a2a860), TOBN(0xcf121282, 0x0e7cc981), TOBN(0x12186212, 0x0ab64a96), TOBN(0x09215b9a, 0xb789383c), TOBN(0x311eb305, 0x37387c09), TOBN(0xc5832fce, 0xf03ee760), TOBN(0x30358f58, 0x32f7ea19), TOBN(0xe01d3c34, 0x91d53551), TOBN(0x1ca5ee41, 0xda48ea80), TOBN(0x34e71e8e, 0xcf4fa4c1), TOBN(0x312abd25, 0x7af1e1c7), TOBN(0xe3afcdeb, 0x2153f4a5), TOBN(0x9d5c84d7, 0x00235e9a), TOBN(0x0308d3f4, 0x8c4c836f), TOBN(0xc0a66b04, 0x89332de5), TOBN(0x610dd399, 0x89e566ef), TOBN(0xf8eea460, 0xd1ac1635), TOBN(0x84cbb3fb, 0x20a2c0df), TOBN(0x40afb488, 0xe74a48c5), TOBN(0x29738198, 0xd326b150), TOBN(0x2a17747f, 0xa6d74081), TOBN(0x60ea4c05, 0x55a26214), TOBN(0x53514bb4, 0x1f88c5fe), TOBN(0xedd64567, 0x7e83426c), TOBN(0xd5d6cbec, 0x96460b25), TOBN(0xa12fd0ce, 0x68dc115e), TOBN(0xc5bc3ed2, 0x697840ea), TOBN(0x969876a8, 0xa6331e31), TOBN(0x60c36217, 0x472ff580), TOBN(0xf4229705, 0x4ad41393), TOBN(0x4bd99ef0, 0xa03b8b92), TOBN(0x501c7317, 0xc144f4f6), TOBN(0x159009b3, 0x18464945), TOBN(0x6d5e594c, 0x74c5c6be), TOBN(0x2d587011, 0x321a3660), TOBN(0xd1e184b1, 0x3898d022), TOBN(0x5ba04752, 0x4c6a7e04), TOBN(0x47fa1e2b, 0x45550b65), TOBN(0x9419daf0, 0x48c0a9a5), TOBN(0x66362953, 0x7c243236), TOBN(0xcd0744b1, 0x5cb12a88), TOBN(0x561b6f9a, 0x2b646188), TOBN(0x599415a5, 0x66c2c0c0), TOBN(0xbe3f0859, 0x0f83f09a), TOBN(0x9141c5be, 0xb92041b8), TOBN(0x01ae38c7, 0x26477d0d), TOBN(0xca8b71f3, 0xd12c7a94), TOBN(0xfab5b31f, 0x765c70db), TOBN(0x76ae7492, 0x487443e9), TOBN(0x8595a310, 0x990d1349), TOBN(0xf8dbeda8, 0x7d460a37), TOBN(0x7f7ad082, 0x1e45a38f), TOBN(0xed1d4db6, 0x1059705a), TOBN(0xa3dd492a, 0xe6b9c697), TOBN(0x4b92ee3a, 0x6eb38bd5), TOBN(0xbab2609d, 0x67cc0bb7), TOBN(0x7fc4fe89, 0x6e70ee82), TOBN(0xeff2c56e, 0x13e6b7e3), TOBN(0x9b18959e, 0x34d26fca), TOBN(0x2517ab66, 0x889d6b45), TOBN(0xf167b4e0, 0xbdefdd4f), TOBN(0x69958465, 0xf366e401), TOBN(0x5aa368ab, 0xa73bbec0), TOBN(0x12148709, 0x7b240c21), TOBN(0x378c3233, 0x18969006), TOBN(0xcb4d73ce, 0xe1fe53d1), TOBN(0x5f50a80e, 0x130c4361), TOBN(0xd67f5951, 0x7ef5212b), TOBN(0xf145e21e, 0x9e70c72e), TOBN(0xb2e52e29, 0x5566d2fb), TOBN(0x44eaba4a, 0x032397f5), TOBN(0x5e56937b, 0x7e31a7de), TOBN(0x68dcf517, 0x456c61e1), TOBN(0xbc2e954a, 0xa8b0a388), TOBN(0xe3552fa7, 0x60a8b755), TOBN(0x03442dae, 0x73ad0cde), TOBN(0x37ffe747, 0xceb26210), TOBN(0x983545e8, 0x787baef9), TOBN(0x8b8c8535, 0x86a3de31), TOBN(0xc621dbcb, 0xfacd46db), TOBN(0x82e442e9, 0x59266fbb), TOBN(0xa3514c37, 0x339d471c), TOBN(0x3a11b771, 0x62cdad96), TOBN(0xf0cb3b3c, 0xecf9bdf0), TOBN(0x3fcbdbce, 0x478e2135), TOBN(0x7547b5cf, 0xbda35342), TOBN(0xa97e81f1, 0x8a677af6), TOBN(0xc8c2bf83, 0x28817987), TOBN(0xdf07eaaf, 0x45580985), TOBN(0xc68d1f05, 0xc93b45cb), TOBN(0x106aa2fe, 0xc77b4cac), TOBN(0x4c1d8afc, 0x04a7ae86), TOBN(0xdb41c3fd, 0x9eb45ab2), TOBN(0x5b234b5b, 0xd4b22e74), TOBN(0xda253dec, 0xf215958a), TOBN(0x67e0606e, 0xa04edfa0), TOBN(0xabbbf070, 0xef751b11), TOBN(0xf352f175, 0xf6f06dce), TOBN(0xdfc4b6af, 0x6839f6b4), TOBN(0x53ddf9a8, 0x9959848e), TOBN(0xda49c379, 0xc21520b0), TOBN(0x90864ff0, 0xdbd5d1b6), TOBN(0x2f055d23, 0x5f49c7f7), TOBN(0xe51e4e6a, 0xa796b2d8), TOBN(0xc361a67f, 0x5c9dc340), TOBN(0x5ad53c37, 0xbca7c620), TOBN(0xda1d6588, 0x32c756d0), TOBN(0xad60d911, 0x8bb67e13), TOBN(0xd6c47bdf, 0x0eeec8c6), TOBN(0x4a27fec1, 0x078a1821), TOBN(0x081f7415, 0xc3099524), TOBN(0x8effdf0b, 0x82cd8060), TOBN(0xdb70ec1c, 0x65842df8), TOBN(0x8821b358, 0xd319a901), TOBN(0x72ee56ee, 0xde42b529), TOBN(0x5bb39592, 0x236e4286), TOBN(0xd1183316, 0xfd6f7140), TOBN(0xf9fadb5b, 0xbd8e81f7), TOBN(0x701d5e0c, 0x5a02d962), TOBN(0xfdee4dbf, 0x1b601324), TOBN(0xbed17407, 0x35d7620e), TOBN(0x04e3c2c3, 0xf48c0012), TOBN(0x9ee29da7, 0x3455449a), TOBN(0x562cdef4, 0x91a836c4), TOBN(0x8f682a5f, 0x47701097), TOBN(0x617125d8, 0xff88d0c2), TOBN(0x948fda24, 0x57bb86dd), TOBN(0x348abb8f, 0x289f7286), TOBN(0xeb10eab5, 0x99d94bbd), TOBN(0xd51ba28e, 0x4684d160), TOBN(0xabe0e51c, 0x30c8f41a), TOBN(0x66588b45, 0x13254f4a), TOBN(0x147ebf01, 0xfad097a5), TOBN(0x49883ea8, 0x610e815d), TOBN(0xe44d60ba, 0x8a11de56), TOBN(0xa970de6e, 0x827a7a6d), TOBN(0x2be41424, 0x5e17fc19), TOBN(0xd833c657, 0x01214057), TOBN(0x1375813b, 0x363e723f), TOBN(0x6820bb88, 0xe6a52e9b), TOBN(0x7e7f6970, 0xd875d56a), TOBN(0xd6a0a9ac, 0x51fbf6bf), TOBN(0x54ba8790, 0xa3083c12), TOBN(0xebaeb23d, 0x6ae7eb64), TOBN(0xa8685c3a, 0xb99a907a), TOBN(0xf1e74550, 0x026bf40b), TOBN(0x7b73a027, 0xc802cd9e), TOBN(0x9a8a927c, 0x4fef4635), TOBN(0xe1b6f60c, 0x08191224), TOBN(0xc4126ebb, 0xde4ec091), TOBN(0xe1dff4dc, 0x4ae38d84), TOBN(0xde3f57db, 0x4f2ef985), TOBN(0x34964337, 0xd446a1dd), TOBN(0x7bf217a0, 0x859e77f6), TOBN(0x8ff10527, 0x8e1d13f5), TOBN(0xa304ef03, 0x74eeae27), TOBN(0xfc6f5e47, 0xd19dfa5a), TOBN(0xdb007de3, 0x7fad982b), TOBN(0x28205ad1, 0x613715f5), TOBN(0x251e6729, 0x7889529e), TOBN(0x72705184, 0x1ae98e78), TOBN(0xf818537d, 0x271cac32), TOBN(0xc8a15b7e, 0xb7f410f5), TOBN(0xc474356f, 0x81f62393), TOBN(0x92dbdc5a, 0xc242316b), TOBN(0xabe060ac, 0xdbf4aff5), TOBN(0x6e8c38fe, 0x909a8ec6), TOBN(0x43e514e5, 0x6116cb94), TOBN(0x2078fa38, 0x07d784f9), TOBN(0x1161a880, 0xf4b5b357), TOBN(0x5283ce79, 0x13adea3d), TOBN(0x0756c3e6, 0xcc6a910b), TOBN(0x60bcfe01, 0xaaa79697), TOBN(0x04a73b29, 0x56391db1), TOBN(0xdd8dad47, 0x189b45a0), TOBN(0xbfac0dd0, 0x48d5b8d9), TOBN(0x34ab3af5, 0x7d3d2ec2), TOBN(0x6fa2fc2d, 0x207bd3af), TOBN(0x9ff40092, 0x66550ded), TOBN(0x719b3e87, 0x1fd5b913), TOBN(0xa573a496, 0x6d17fbc7), TOBN(0x0cd1a70a, 0x73d2b24e), TOBN(0x34e2c5ca, 0xb2676937), TOBN(0xe7050b06, 0xbf669f21), TOBN(0xfbe948b6, 0x1ede9046), TOBN(0xa0530051, 0x97662659), TOBN(0x58cbd4ed, 0xf10124c5), TOBN(0xde2646e4, 0xdd6c06c8), TOBN(0x332f8108, 0x8cad38c0), TOBN(0x471b7e90, 0x6bd68ae2), TOBN(0x56ac3fb2, 0x0d8e27a3), TOBN(0xb54660db, 0x136b4b0d), TOBN(0x123a1e11, 0xa6fd8de4), TOBN(0x44dbffea, 0xa37799ef), TOBN(0x4540b977, 0xce6ac17c), TOBN(0x495173a8, 0xaf60acef)} , {TOBN(0x9ebb284d, 0x391c2a82), TOBN(0xbcdd4863, 0x158308e8), TOBN(0x006f16ec, 0x83f1edca), TOBN(0xa13e2c37, 0x695dc6c8), TOBN(0x2ab756f0, 0x4a057a87), TOBN(0xa8765500, 0xa6b48f98), TOBN(0x4252face, 0x68651c44), TOBN(0xa52b540b, 0xe1765e02), TOBN(0x4f922fc5, 0x16a0d2bb), TOBN(0x0d5cc16c, 0x1a623499), TOBN(0x9241cf3a, 0x57c62c8b), TOBN(0x2f5e6961, 0xfd1b667f), TOBN(0x5c15c70b, 0xf5a01797), TOBN(0x3d20b44d, 0x60956192), TOBN(0x04911b37, 0x071fdb52), TOBN(0xf648f916, 0x8d6f0f7b), TOBN(0x6dc1acaf, 0xe60b7cf7), TOBN(0x25860a50, 0x84a9d869), TOBN(0x56fc6f09, 0xe7ba8ac4), TOBN(0x828c5bd0, 0x6148d29e), TOBN(0xac6b435e, 0xdc55ae5f), TOBN(0xa527f56c, 0xc0117411), TOBN(0x94d5045e, 0xfd24342c), TOBN(0x2c4c0a35, 0x70b67c0d), TOBN(0x027cc8b8, 0xfac61d9a), TOBN(0x7d25e062, 0xe3c6fe8a), TOBN(0xe08805bf, 0xe5bff503), TOBN(0x13271e6c, 0x6ff632f7), TOBN(0x55dca6c0, 0x232f76a5), TOBN(0x8957c32d, 0x701ef426), TOBN(0xee728bcb, 0xa10a5178), TOBN(0x5ea60411, 0xb62c5173), TOBN(0xfc4e964e, 0xd0b8892b), TOBN(0x9ea17683, 0x9301bb74), TOBN(0x6265c5ae, 0xfcc48626), TOBN(0xe60cf82e, 0xbb3e9102), TOBN(0x57adf797, 0xd4df5531), TOBN(0x235b59a1, 0x8deeefe2), TOBN(0x60adcf58, 0x3f306eb1), TOBN(0x105c2753, 0x3d09492d), TOBN(0x4090914b, 0xb5def996), TOBN(0x1cb69c83, 0x233dd1e7), TOBN(0xc1e9c1d3, 0x9b3d5e76), TOBN(0x1f3338ed, 0xfccf6012), TOBN(0xb1e95d0d, 0x2f5378a8), TOBN(0xacf4c2c7, 0x2f00cd21), TOBN(0x6e984240, 0xeb5fe290), TOBN(0xd66c038d, 0x248088ae), TOBN(0x804d264a, 0xf94d70cf), TOBN(0xbdb802ef, 0x7314bf7e), TOBN(0x8fb54de2, 0x4333ed02), TOBN(0x740461e0, 0x285635d9), TOBN(0x4113b2c8, 0x365e9383), TOBN(0xea762c83, 0x3fdef652), TOBN(0x4eec6e2e, 0x47b956c1), TOBN(0xa3d814be, 0x65620fa4), TOBN(0x9ad5462b, 0xb4d8bc50), TOBN(0x181c0b16, 0xa9195770), TOBN(0xebd4fe1c, 0x78412a68), TOBN(0xae0341bc, 0xc0dff48c), TOBN(0xb6bc45cf, 0x7003e866), TOBN(0xf11a6dea, 0x8a24a41b), TOBN(0x5407151a, 0xd04c24c2), TOBN(0x62c9d27d, 0xda5b7b68), TOBN(0x2e964235, 0x88cceff6), TOBN(0x8594c54f, 0x8b07ed69), TOBN(0x1578e73c, 0xc84d0d0d), TOBN(0x7b4e1055, 0xff532868), TOBN(0xa348c0d5, 0xb5ec995a), TOBN(0xbf4b9d55, 0x14289a54), TOBN(0x9ba155a6, 0x58fbd777), TOBN(0x186ed7a8, 0x1a84491d), TOBN(0xd4992b30, 0x614c0900), TOBN(0xda98d121, 0xbd00c24b), TOBN(0x7f534dc8, 0x7ec4bfa1), TOBN(0x4a5ff674, 0x37dc34bc), TOBN(0x68c196b8, 0x1d7ea1d7), TOBN(0x38cf2893, 0x80a6d208), TOBN(0xfd56cd09, 0xe3cbbd6e), TOBN(0xec72e27e, 0x4205a5b6), TOBN(0x15ea68f5, 0xa44f77f7), TOBN(0x7aa5f9fd, 0xb43c52bc), TOBN(0x86ff676f, 0x94f0e609), TOBN(0xa4cde963, 0x2e2d432b), TOBN(0x8cafa0c0, 0xeee470af), TOBN(0x84137d0e, 0x8a3f5ec8), TOBN(0xebb40411, 0xfaa31231), TOBN(0xa239c13f, 0x6f7f7ccf), TOBN(0x32865719, 0xa8afd30b), TOBN(0x86798328, 0x8a826dce), TOBN(0xdf04e891, 0xc4a8fbe0), TOBN(0xbb6b6e1b, 0xebf56ad3), TOBN(0x0a695b11, 0x471f1ff0), TOBN(0xd76c3389, 0xbe15baf0), TOBN(0x018edb95, 0xbe96c43e), TOBN(0xf2beaaf4, 0x90794158), TOBN(0x152db09e, 0xc3076a27), TOBN(0x5e82908e, 0xe416545d), TOBN(0xa2c41272, 0x356d6f2e), TOBN(0xdc9c9642, 0x31fd74e1), TOBN(0x66ceb88d, 0x519bf615), TOBN(0xe29ecd76, 0x05a2274e), TOBN(0x3a0473c4, 0xbf5e2fa0), TOBN(0x6b6eb671, 0x64284e67), TOBN(0xe8b97932, 0xb88756dd), TOBN(0xed4e8652, 0xf17e3e61), TOBN(0xc2dd1499, 0x3ee1c4a4), TOBN(0xc0aaee17, 0x597f8c0e), TOBN(0x15c4edb9, 0x6c168af3), TOBN(0x6563c7bf, 0xb39ae875), TOBN(0xadfadb6f, 0x20adb436), TOBN(0xad55e8c9, 0x9a042ac0), TOBN(0x975a1ed8, 0xb76da1f5), TOBN(0x10dfa466, 0xa58acb94), TOBN(0x8dd7f7e3, 0xac060282), TOBN(0x6813e66a, 0x572a051e), TOBN(0xb4ccae1e, 0x350cb901), TOBN(0xb653d656, 0x50cb7822), TOBN(0x42484710, 0xdfab3b87), TOBN(0xcd7ee537, 0x9b670fd0), TOBN(0x0a50b12e, 0x523b8bf6), TOBN(0x8009eb5b, 0x8f910c1b), TOBN(0xf535af82, 0x4a167588), TOBN(0x0f835f9c, 0xfb2a2abd), TOBN(0xf59b2931, 0x2afceb62), TOBN(0xc797df2a, 0x169d383f), TOBN(0xeb3f5fb0, 0x66ac02b0), TOBN(0x029d4c6f, 0xdaa2d0ca), TOBN(0xd4059bc1, 0xafab4bc5), TOBN(0x833f5c6f, 0x56783247), TOBN(0xb5346630, 0x8d2d3605), TOBN(0x83387891, 0xd34d8433), TOBN(0xd973b30f, 0xadd9419a), TOBN(0xbcca1099, 0xafe3fce8), TOBN(0x08178315, 0x0809aac6), TOBN(0x01b7f21a, 0x540f0f11), TOBN(0x65c29219, 0x909523c8), TOBN(0xa62f648f, 0xa3a1c741), TOBN(0x88598d4f, 0x60c9e55a), TOBN(0xbce9141b, 0x0e4f347a), TOBN(0x9af97d84, 0x35f9b988), TOBN(0x0210da62, 0x320475b6), TOBN(0x3c076e22, 0x9191476c), TOBN(0x7520dbd9, 0x44fc7834), TOBN(0x6a6b2cfe, 0xc1ab1bbd), TOBN(0xef8a65be, 0xdc650938), TOBN(0x72855540, 0x805d7bc4), TOBN(0xda389396, 0xed11fdfd), TOBN(0xa9d5bd36, 0x74660876), TOBN(0x11d67c54, 0xb45dff35), TOBN(0x6af7d148, 0xa4f5da94), TOBN(0xbb8d4c3f, 0xc0bbeb31), TOBN(0x87a7ebd1, 0xe0a1b12a), TOBN(0x1e4ef88d, 0x770ba95f), TOBN(0x8c33345c, 0xdc2ae9cb), TOBN(0xcecf1276, 0x01cc8403), TOBN(0x687c012e, 0x1b39b80f), TOBN(0xfd90d0ad, 0x35c33ba4), TOBN(0xa3ef5a67, 0x5c9661c2), TOBN(0x368fc88e, 0xe017429e), TOBN(0xd30c6761, 0x196a2fa2), TOBN(0x931b9817, 0xbd5b312e), TOBN(0xba01000c, 0x72f54a31), TOBN(0xa203d2c8, 0x66eaa541), TOBN(0xf2abdee0, 0x98939db3), TOBN(0xe37d6c2c, 0x3e606c02), TOBN(0xf2921574, 0x521ff643), TOBN(0x2781b3c4, 0xd7e2fca3), TOBN(0x664300b0, 0x7850ec06), TOBN(0xac5a38b9, 0x7d3a10cf), TOBN(0x9233188d, 0xe34ab39d), TOBN(0xe77057e4, 0x5072cbb9), TOBN(0xbcf0c042, 0xb59e78df), TOBN(0x4cfc91e8, 0x1d97de52), TOBN(0x4661a26c, 0x3ee0ca4a), TOBN(0x5620a4c1, 0xfb8507bc), TOBN(0x4b44d4aa, 0x049f842c), TOBN(0xceabc5d5, 0x1540e82b), TOBN(0x306710fd, 0x15c6f156), TOBN(0xbe5ae52b, 0x63db1d72), TOBN(0x06f1e7e6, 0x334957f1), TOBN(0x57e388f0, 0x31144a70), TOBN(0xfb69bb2f, 0xdf96447b), TOBN(0x0f78ebd3, 0x73e38a12), TOBN(0xb8222605, 0x2b7ce542), TOBN(0xe6d4ce99, 0x7472bde1), TOBN(0x53e16ebe, 0x09d2f4da), TOBN(0x180ff42e, 0x53b92b2e), TOBN(0xc59bcc02, 0x2c34a1c6), TOBN(0x3803d6f9, 0x422c46c2), TOBN(0x18aff74f, 0x5c14a8a2), TOBN(0x55aebf80, 0x10a08b28), TOBN(0x66097d58, 0x7135593f), TOBN(0x32e6eff7, 0x2be570cd), TOBN(0x584e6a10, 0x2a8c860d), TOBN(0xcd185890, 0xa2eb4163), TOBN(0x7ceae99d, 0x6d97e134), TOBN(0xd42c6b70, 0xdd8447ce), TOBN(0x59ddbb4a, 0xb8c50273), TOBN(0x03c612df, 0x3cf34e1e), TOBN(0x84b9ca15, 0x04b6c5a0), TOBN(0x35216f39, 0x18f0e3a3), TOBN(0x3ec2d2bc, 0xbd986c00), TOBN(0x8bf546d9, 0xd19228fe), TOBN(0xd1c655a4, 0x4cd623c3), TOBN(0x366ce718, 0x502b8e5a), TOBN(0x2cfc84b4, 0xeea0bfe7), TOBN(0xe01d5cee, 0xcf443e8e), TOBN(0x8ec045d9, 0x036520f8), TOBN(0xdfb3c3d1, 0x92d40e98), TOBN(0x0bac4cce, 0xcc559a04), TOBN(0x35eccae5, 0x240ea6b1), TOBN(0x180b32db, 0xf8a5a0ac), TOBN(0x547972a5, 0xeb699700), TOBN(0xa3765801, 0xca26bca0), TOBN(0x57e09d0e, 0xa647f25a), TOBN(0xb956970e, 0x2fdd23cc), TOBN(0xb80288bc, 0x5682e971), TOBN(0xe6e6d91e, 0x9ae86ebc), TOBN(0x0564c83f, 0x8c9f1939), TOBN(0x551932a2, 0x39560368), TOBN(0xe893752b, 0x049c28e2), TOBN(0x0b03cee5, 0xa6a158c3), TOBN(0xe12d656b, 0x04964263), TOBN(0x4b47554e, 0x63e3bc1d), TOBN(0xc719b6a2, 0x45044ff7), TOBN(0x4f24d30a, 0xe48daa07), TOBN(0xa3f37556, 0xc8c1edc3), TOBN(0x9a47bf76, 0x0700d360), TOBN(0xbb1a1824, 0x822ae4e2), TOBN(0x22e275a3, 0x89f1fb4c), TOBN(0x72b1aa23, 0x9968c5f5), TOBN(0xa75feaca, 0xbe063f64), TOBN(0x9b392f43, 0xbce47a09), TOBN(0xd4241509, 0x1ad07aca), TOBN(0x4b0c591b, 0x8d26cd0f), TOBN(0x2d42ddfd, 0x92f1169a), TOBN(0x63aeb1ac, 0x4cbf2392), TOBN(0x1de9e877, 0x0691a2af), TOBN(0xebe79af7, 0xd98021da), TOBN(0xcfdf2a4e, 0x40e50acf), TOBN(0xf0a98ad7, 0xaf01d665), TOBN(0xefb640bf, 0x1831be1f), TOBN(0x6fe8bd2f, 0x80e9ada0), TOBN(0x94c103a1, 0x6cafbc91), TOBN(0x170f8759, 0x8308e08c), TOBN(0x5de2d2ab, 0x9780ff4f), TOBN(0x666466bc, 0x45b201f2), TOBN(0x58af2010, 0xf5b343bc), TOBN(0x0f2e400a, 0xf2f142fe), TOBN(0x3483bfde, 0xa85f4bdf), TOBN(0xf0b1d093, 0x03bfeaa9), TOBN(0x2ea01b95, 0xc7081603), TOBN(0xe943e4c9, 0x3dba1097), TOBN(0x47be92ad, 0xb438f3a6), TOBN(0x00bb7742, 0xe5bf6636), TOBN(0x136b7083, 0x824297b4), TOBN(0x9d0e5580, 0x5584455f), TOBN(0xab48cedc, 0xf1c7d69e), TOBN(0x53a9e481, 0x2a256e76), TOBN(0x0402b0e0, 0x65eb2413), TOBN(0xdadbbb84, 0x8fc407a7), TOBN(0xa65cd5a4, 0x8d7f5492), TOBN(0x21d44293, 0x74bae294), TOBN(0x66917ce6, 0x3b5f1cc4), TOBN(0x37ae52ea, 0xce872e62), TOBN(0xbb087b72, 0x2905f244), TOBN(0x12077086, 0x1e6af74f), TOBN(0x4b644e49, 0x1058edea), TOBN(0x827510e3, 0xb638ca1d), TOBN(0x8cf2b704, 0x6038591c), TOBN(0xffc8b47a, 0xfe635063), TOBN(0x3ae220e6, 0x1b4d5e63), TOBN(0xbd864742, 0x9d961b4b), TOBN(0x610c107e, 0x9bd16bed), TOBN(0x4270352a, 0x1127147b), TOBN(0x7d17ffe6, 0x64cfc50e), TOBN(0x50dee01a, 0x1e36cb42), TOBN(0x068a7622, 0x35dc5f9a), TOBN(0x9a08d536, 0xdf53f62c), TOBN(0x4ed71457, 0x6be5f7de), TOBN(0xd93006f8, 0xc2263c9e), TOBN(0xe073694c, 0xcacacb36), TOBN(0x2ff7a5b4, 0x3ae118ab), TOBN(0x3cce53f1, 0xcd871236), TOBN(0xf156a39d, 0xc2aa6d52), TOBN(0x9cc5f271, 0xb198d76d), TOBN(0xbc615b6f, 0x81383d39), TOBN(0xa54538e8, 0xde3eee6b), TOBN(0x58c77538, 0xab910d91), TOBN(0x31e5bdbc, 0x58d278bd), TOBN(0x3cde4adf, 0xb963acae), TOBN(0xb1881fd2, 0x5302169c), TOBN(0x8ca60fa0, 0xa989ed8b), TOBN(0xa1999458, 0xff96a0ee), TOBN(0xc1141f03, 0xac6c283d), TOBN(0x7677408d, 0x6dfafed3), TOBN(0x33a01653, 0x39661588), TOBN(0x3c9c15ec, 0x0b726fa0), TOBN(0x090cfd93, 0x6c9b56da), TOBN(0xe34f4bae, 0xa3c40af5), TOBN(0x3469eadb, 0xd21129f1), TOBN(0xcc51674a, 0x1e207ce8), TOBN(0x1e293b24, 0xc83b1ef9), TOBN(0x17173d13, 0x1e6c0bb4), TOBN(0x19004695, 0x90776d35), TOBN(0xe7980e34, 0x6de6f922), TOBN(0x873554cb, 0xf4dd9a22), TOBN(0x0316c627, 0xcbf18a51), TOBN(0x4d93651b, 0x3032c081), TOBN(0x207f2771, 0x3946834d), TOBN(0x2c08d7b4, 0x30cdbf80), TOBN(0x137a4fb4, 0x86df2a61), TOBN(0xa1ed9c07, 0xecf7b4a2), TOBN(0xb2e460e2, 0x7bd042ff), TOBN(0xb7f5e2fa, 0x5f62f5ec), TOBN(0x7aa6ec6b, 0xcc2423b7), TOBN(0x75ce0a7f, 0xba63eea7), TOBN(0x67a45fb1, 0xf250a6e1), TOBN(0x93bc919c, 0xe53cdc9f), TOBN(0x9271f56f, 0x871942df), TOBN(0x2372ff6f, 0x7859ad66), TOBN(0x5f4c2b96, 0x33cb1a78), TOBN(0xe3e29101, 0x5838aa83), TOBN(0xa7ed1611, 0xe4e8110c), TOBN(0x2a2d70d5, 0x330198ce), TOBN(0xbdf132e8, 0x6720efe0), TOBN(0xe61a8962, 0x66a471bf), TOBN(0x796d3a85, 0x825808bd), TOBN(0x51dc3cb7, 0x3fd6e902), TOBN(0x643c768a, 0x916219d1), TOBN(0x36cd7685, 0xa2ad7d32), TOBN(0xe3db9d05, 0xb22922a4), TOBN(0x6494c87e, 0xdba29660), TOBN(0xf0ac91df, 0xbcd2ebc7), TOBN(0x4deb57a0, 0x45107f8d), TOBN(0x42271f59, 0xc3d12a73), TOBN(0x5f71687c, 0xa5c2c51d), TOBN(0xcb1f50c6, 0x05797bcb), TOBN(0x29ed0ed9, 0xd6d34eb0), TOBN(0xe5fe5b47, 0x4683c2eb), TOBN(0x4956eeb5, 0x97447c46), TOBN(0x5b163a43, 0x71207167), TOBN(0x93fa2fed, 0x0248c5ef), TOBN(0x67930af2, 0x31f63950), TOBN(0xa77797c1, 0x14caa2c9), TOBN(0x526e80ee, 0x27ac7e62), TOBN(0xe1e6e626, 0x58b28aec), TOBN(0x636178b0, 0xb3c9fef0), TOBN(0xaf7752e0, 0x6d5f90be), TOBN(0x94ecaf18, 0xeece51cf), TOBN(0x2864d0ed, 0xca806e1f), TOBN(0x6de2e383, 0x97c69134), TOBN(0x5a42c316, 0xeb291293), TOBN(0xc7779219, 0x6a60bae0), TOBN(0xa24de346, 0x6b7599d1), TOBN(0x49d374aa, 0xb75d4941), TOBN(0x98900586, 0x2d501ff0), TOBN(0x9f16d40e, 0xeb7974cf), TOBN(0x1033860b, 0xcdd8c115), TOBN(0xb6c69ac8, 0x2094cec3), TOBN(0x9976fb88, 0x403b770c), TOBN(0x1dea026c, 0x4859590d), TOBN(0xb6acbb46, 0x8562d1fd), TOBN(0x7cd6c461, 0x44569d85), TOBN(0xc3190a36, 0x97f0891d), TOBN(0xc6f53195, 0x48d5a17d), TOBN(0x7d919966, 0xd749abc8), TOBN(0x65104837, 0xdd1c8a20), TOBN(0x7e5410c8, 0x2f683419), TOBN(0x958c3ca8, 0xbe94022e), TOBN(0x605c3197, 0x6145dac2), TOBN(0x3fc07501, 0x01683d54), TOBN(0x1d7127c5, 0x595b1234), TOBN(0x10b8f87c, 0x9481277f), TOBN(0x677db2a8, 0xe65a1adb), TOBN(0xec2fccaa, 0xddce3345), TOBN(0x2a6811b7, 0x012a4350), TOBN(0x96760ff1, 0xac598bdc), TOBN(0x054d652a, 0xd1bf4128), TOBN(0x0a1151d4, 0x92a21005), TOBN(0xad7f3971, 0x33110fdf), TOBN(0x8c95928c, 0x1960100f), TOBN(0x6c91c825, 0x7bf03362), TOBN(0xc8c8b2a2, 0xce309f06), TOBN(0xfdb27b59, 0xca27204b), TOBN(0xd223eaa5, 0x0848e32e), TOBN(0xb93e4b2e, 0xe7bfaf1e), TOBN(0xc5308ae6, 0x44aa3ded), TOBN(0x317a666a, 0xc015d573), TOBN(0xc888ce23, 0x1a979707), TOBN(0xf141c1e6, 0x0d5c4958), TOBN(0xb53b7de5, 0x61906373), TOBN(0x858dbade, 0xeb999595), TOBN(0x8cbb47b2, 0xa59e5c36), TOBN(0x660318b3, 0xdcf4e842), TOBN(0xbd161ccd, 0x12ba4b7a), TOBN(0xf399daab, 0xf8c8282a), TOBN(0x1587633a, 0xeeb2130d), TOBN(0xa465311a, 0xda38dd7d), TOBN(0x5f75eec8, 0x64d3779b), TOBN(0x3c5d0476, 0xad64c171), TOBN(0x87410371, 0x2a914428), TOBN(0x8096a891, 0x90e2fc29), TOBN(0xd3d2ae9d, 0x23b3ebc2), TOBN(0x90bdd6db, 0xa580cfd6), TOBN(0x52dbb7f3, 0xc5b01f6c), TOBN(0xe68eded4, 0xe102a2dc), TOBN(0x17785b77, 0x99eb6df0), TOBN(0x26c3cc51, 0x7386b779), TOBN(0x345ed988, 0x6417a48e), TOBN(0xe990b4e4, 0x07d6ef31), TOBN(0x0f456b7e, 0x2586abba), TOBN(0x239ca6a5, 0x59c96e9a), TOBN(0xe327459c, 0xe2eb4206), TOBN(0x3a4c3313, 0xa002b90a), TOBN(0x2a114806, 0xf6a3f6fb), TOBN(0xad5cad2f, 0x85c251dd), TOBN(0x92c1f613, 0xf5a784d3), TOBN(0xec7bfacf, 0x349766d5), TOBN(0x04b3cd33, 0x3e23cb3b), TOBN(0x3979fe84, 0xc5a64b2d), TOBN(0x192e2720, 0x7e589106), TOBN(0xa60c43d1, 0xa15b527f), TOBN(0x2dae9082, 0xbe7cf3a6), TOBN(0xcc86ba92, 0xbc967274), TOBN(0xf28a2ce8, 0xaea0a8a9), TOBN(0x404ca6d9, 0x6ee988b3), TOBN(0xfd7e9c5d, 0x005921b8), TOBN(0xf56297f1, 0x44e79bf9), TOBN(0xa163b460, 0x0d75ddc2), TOBN(0x30b23616, 0xa1f2be87), TOBN(0x4b070d21, 0xbfe50e2b), TOBN(0x7ef8cfd0, 0xe1bfede1), TOBN(0xadba0011, 0x2aac4ae0), TOBN(0x2a3e7d01, 0xb9ebd033), TOBN(0x995277ec, 0xe38d9d1c), TOBN(0xb500249e, 0x9c5d2de3), TOBN(0x8912b820, 0xf13ca8c9), TOBN(0xc8798114, 0x877793af), TOBN(0x19e6125d, 0xec3f1dec), TOBN(0x07b1f040, 0x911178da), TOBN(0xd93ededa, 0x904a6738), TOBN(0x55187a5a, 0x0bebedcd), TOBN(0xf7d04722, 0xeb329d41), TOBN(0xf449099e, 0xf170b391), TOBN(0xfd317a69, 0xca99f828), TOBN(0x50c3db2b, 0x34a4976d), TOBN(0xe9ba7784, 0x3757b392), TOBN(0x326caefd, 0xaa3ca05a), TOBN(0x78e5293b, 0xf1e593d4), TOBN(0x7842a937, 0x0d98fd13), TOBN(0xe694bf96, 0x5f96b10d), TOBN(0x373a9df6, 0x06a8cd05), TOBN(0x997d1e51, 0xe8f0c7fc), TOBN(0x1d019790, 0x63fd972e), TOBN(0x0064d858, 0x5499fb32), TOBN(0x7b67bad9, 0x77a8aeb7), TOBN(0x1d3eb977, 0x2d08eec5), TOBN(0x5fc047a6, 0xcbabae1d), TOBN(0x0577d159, 0xe54a64bb), TOBN(0x8862201b, 0xc43497e4), TOBN(0xad6b4e28, 0x2ce0608d), TOBN(0x8b687b7d, 0x0b167aac), TOBN(0x6ed4d367, 0x8b2ecfa9), TOBN(0x24dfe62d, 0xa90c3c38), TOBN(0xa1862e10, 0x3fe5c42b), TOBN(0x1ca73dca, 0xd5732a9f), TOBN(0x35f038b7, 0x76bb87ad), TOBN(0x674976ab, 0xf242b81f), TOBN(0x4f2bde7e, 0xb0fd90cd), TOBN(0x6efc172e, 0xa7fdf092), TOBN(0x3806b69b, 0x92222f1f), TOBN(0x5a2459ca, 0x6cf7ae70), TOBN(0x6789f69c, 0xa85217ee), TOBN(0x5f232b5e, 0xe3dc85ac), TOBN(0x660e3ec5, 0x48e9e516), TOBN(0x124b4e47, 0x3197eb31), TOBN(0x10a0cb13, 0xaafcca23), TOBN(0x7bd63ba4, 0x8213224f), TOBN(0xaffad7cc, 0x290a7f4f), TOBN(0x6b409c9e, 0x0286b461), TOBN(0x58ab809f, 0xffa407af), TOBN(0xc3122eed, 0xc68ac073), TOBN(0x17bf9e50, 0x4ef24d7e), TOBN(0x5d929794, 0x3e2a5811), TOBN(0x519bc867, 0x02902e01), TOBN(0x76bba5da, 0x39c8a851), TOBN(0xe9f9669c, 0xda94951e), TOBN(0x4b6af58d, 0x66b8d418), TOBN(0xfa321074, 0x17d426a4), TOBN(0xc78e66a9, 0x9dde6027), TOBN(0x0516c083, 0x4a53b964), TOBN(0xfc659d38, 0xff602330), TOBN(0x0ab55e5c, 0x58c5c897), TOBN(0x985099b2, 0x838bc5df), TOBN(0x061d9efc, 0xc52fc238), TOBN(0x712b2728, 0x6ac1da3f), TOBN(0xfb658149, 0x9283fe08), TOBN(0x4954ac94, 0xb8aaa2f7), TOBN(0x85c0ada4, 0x7fb2e74f), TOBN(0xee8ba98e, 0xb89926b0), TOBN(0xe4f9d37d, 0x23d1af5b), TOBN(0x14ccdbf9, 0xba9b015e), TOBN(0xb674481b, 0x7bfe7178), TOBN(0x4e1debae, 0x65405868), TOBN(0x061b2821, 0xc48c867d), TOBN(0x69c15b35, 0x513b30ea), TOBN(0x3b4a1666, 0x36871088), TOBN(0xe5e29f5d, 0x1220b1ff), TOBN(0x4b82bb35, 0x233d9f4d), TOBN(0x4e076333, 0x18cdc675)} , {TOBN(0x0d53f5c7, 0xa3e6fced), TOBN(0xe8cbbdd5, 0xf45fbdeb), TOBN(0xf85c01df, 0x13339a70), TOBN(0x0ff71880, 0x142ceb81), TOBN(0x4c4e8774, 0xbd70437a), TOBN(0x5fb32891, 0xba0bda6a), TOBN(0x1cdbebd2, 0xf18bd26e), TOBN(0x2f9526f1, 0x03a9d522), TOBN(0x40ce3051, 0x92c4d684), TOBN(0x8b04d725, 0x7612efcd), TOBN(0xb9dcda36, 0x6f9cae20), TOBN(0x0edc4d24, 0xf058856c), TOBN(0x64f2e6bf, 0x85427900), TOBN(0x3de81295, 0xdc09dfea), TOBN(0xd41b4487, 0x379bf26c), TOBN(0x50b62c6d, 0x6df135a9), TOBN(0xd4f8e3b4, 0xc72dfe67), TOBN(0xc416b0f6, 0x90e19fdf), TOBN(0x18b9098d, 0x4c13bd35), TOBN(0xac11118a, 0x15b8cb9e), TOBN(0xf598a318, 0xf0062841), TOBN(0xbfe0602f, 0x89f356f4), TOBN(0x7ae3637e, 0x30177a0c), TOBN(0x34097747, 0x61136537), TOBN(0x0db2fb5e, 0xd005832a), TOBN(0x5f5efd3b, 0x91042e4f), TOBN(0x8c4ffdc6, 0xed70f8ca), TOBN(0xe4645d0b, 0xb52da9cc), TOBN(0x9596f58b, 0xc9001d1f), TOBN(0x52c8f0bc, 0x4e117205), TOBN(0xfd4aa0d2, 0xe398a084), TOBN(0x815bfe3a, 0x104f49de), TOBN(0x97e5443f, 0x23885e5f), TOBN(0xf72f8f99, 0xe8433aab), TOBN(0xbd00b154, 0xe4d4e604), TOBN(0xd0b35e6a, 0xe5e173ff), TOBN(0x57b2a048, 0x9164722d), TOBN(0x3e3c665b, 0x88761ec8), TOBN(0x6bdd1397, 0x3da83832), TOBN(0x3c8b1a1e, 0x73dafe3b), TOBN(0x4497ace6, 0x54317cac), TOBN(0xbe600ab9, 0x521771b3), TOBN(0xb42e409e, 0xb0dfe8b8), TOBN(0x386a67d7, 0x3942310f), TOBN(0x25548d8d, 0x4431cc28), TOBN(0xa7cff142, 0x985dc524), TOBN(0x4d60f5a1, 0x93c4be32), TOBN(0x83ebd5c8, 0xd071c6e1), TOBN(0xba3a80a7, 0xb1fd2b0b), TOBN(0x9b3ad396, 0x5bec33e8), TOBN(0xb3868d61, 0x79743fb3), TOBN(0xcfd169fc, 0xfdb462fa), TOBN(0xd3b499d7, 0x9ce0a6af), TOBN(0x55dc1cf1, 0xe42d3ff8), TOBN(0x04fb9e6c, 0xc6c3e1b2), TOBN(0x47e6961d, 0x6f69a474), TOBN(0x54eb3acc, 0xe548b37b), TOBN(0xb38e7542, 0x84d40549), TOBN(0x8c3daa51, 0x7b341b4f), TOBN(0x2f6928ec, 0x690bf7fa), TOBN(0x0496b323, 0x86ce6c41), TOBN(0x01be1c55, 0x10adadcd), TOBN(0xc04e67e7, 0x4bb5faf9), TOBN(0x3cbaf678, 0xe15c9985), TOBN(0x8cd12145, 0x50ca4247), TOBN(0xba1aa47a, 0xe7dd30aa), TOBN(0x2f81ddf1, 0xe58fee24), TOBN(0x03452936, 0xeec9b0e8), TOBN(0x8bdc3b81, 0x243aea96), TOBN(0x9a2919af, 0x15c3d0e5), TOBN(0x9ea640ec, 0x10948361), TOBN(0x5ac86d5b, 0x6e0bcccf), TOBN(0xf892d918, 0xc36cf440), TOBN(0xaed3e837, 0xc939719c), TOBN(0xb07b08d2, 0xc0218b64), TOBN(0x6f1bcbba, 0xce9790dd), TOBN(0x4a84d6ed, 0x60919b8e), TOBN(0xd8900791, 0x8ac1f9eb), TOBN(0xf84941aa, 0x0dd5daef), TOBN(0xb22fe40a, 0x67fd62c5), TOBN(0x97e15ba2, 0x157f2db3), TOBN(0xbda2fc8f, 0x8e28ca9c), TOBN(0x5d050da4, 0x37b9f454), TOBN(0x3d57eb57, 0x2379d72e), TOBN(0xe9b5eba2, 0xfb5ee997), TOBN(0x01648ca2, 0xe11538ca), TOBN(0x32bb76f6, 0xf6327974), TOBN(0x338f14b8, 0xff3f4bb7), TOBN(0x524d226a, 0xd7ab9a2d), TOBN(0x9c00090d, 0x7dfae958), TOBN(0x0ba5f539, 0x8751d8c2), TOBN(0x8afcbcdd, 0x3ab8262d), TOBN(0x57392729, 0xe99d043b), TOBN(0xef51263b, 0xaebc943a), TOBN(0x9feace93, 0x20862935), TOBN(0x639efc03, 0xb06c817b), TOBN(0x1fe054b3, 0x66b4be7a), TOBN(0x3f25a9de, 0x84a37a1e), TOBN(0xf39ef1ad, 0x78d75cd9), TOBN(0xd7b58f49, 0x5062c1b5), TOBN(0x6f74f9a9, 0xff563436), TOBN(0xf718ff29, 0xe8af51e7), TOBN(0x5234d313, 0x15e97fec), TOBN(0xb6a8e2b1, 0x292f1c0a), TOBN(0xa7f53aa8, 0x327720c1), TOBN(0x956ca322, 0xba092cc8), TOBN(0x8f03d64a, 0x28746c4d), TOBN(0x51fe1782, 0x66d0d392), TOBN(0xd19b34db, 0x3c832c80), TOBN(0x60dccc5c, 0x6da2e3b4), TOBN(0x245dd62e, 0x0a104ccc), TOBN(0xa7ab1de1, 0x620b21fd), TOBN(0xb293ae0b, 0x3893d123), TOBN(0xf7b75783, 0xb15ee71c), TOBN(0x5aa3c614, 0x42a9468b), TOBN(0xd686123c, 0xdb15d744), TOBN(0x8c616891, 0xa7ab4116), TOBN(0x6fcd72c8, 0xa4e6a459), TOBN(0xac219110, 0x77e5fad7), TOBN(0xfb6a20e7, 0x704fa46b), TOBN(0xe839be7d, 0x341d81dc), TOBN(0xcddb6889, 0x32148379), TOBN(0xda6211a1, 0xf7026ead), TOBN(0xf3b2575f, 0xf4d1cc5e), TOBN(0x40cfc8f6, 0xa7a73ae6), TOBN(0x83879a5e, 0x61d5b483), TOBN(0xc5acb1ed, 0x41a50ebc), TOBN(0x59a60cc8, 0x3c07d8fa), TOBN(0x1b73bdce, 0xb1876262), TOBN(0x2b0d79f0, 0x12af4ee9), TOBN(0x8bcf3b0b, 0xd46e1d07), TOBN(0x17d6af9d, 0xe45d152f), TOBN(0x73520461, 0x6d736451), TOBN(0x43cbbd97, 0x56b0bf5a), TOBN(0xb0833a5b, 0xd5999b9d), TOBN(0x702614f0, 0xeb72e398), TOBN(0x0aadf01a, 0x59c3e9f8), TOBN(0x40200e77, 0xce6b3d16), TOBN(0xda22bdd3, 0xdeddafad), TOBN(0x76dedaf4, 0x310d72e1), TOBN(0x49ef807c, 0x4bc2e88f), TOBN(0x6ba81291, 0x146dd5a5), TOBN(0xa1a4077a, 0x7d8d59e9), TOBN(0x87b6a2e7, 0x802db349), TOBN(0xd5679997, 0x1b4e598e), TOBN(0xf499ef1f, 0x06fe4b1d), TOBN(0x3978d3ae, 0xfcb267c5), TOBN(0xb582b557, 0x235786d0), TOBN(0x32b3b2ca, 0x1715cb07), TOBN(0x4c3de6a2, 0x8480241d), TOBN(0x63b5ffed, 0xcb571ecd), TOBN(0xeaf53900, 0xed2fe9a9), TOBN(0xdec98d4a, 0xc3b81990), TOBN(0x1cb83722, 0x9e0cc8fe), TOBN(0xfe0b0491, 0xd2b427b9), TOBN(0x0f2386ac, 0xe983a66c), TOBN(0x930c4d1e, 0xb3291213), TOBN(0xa2f82b2e, 0x59a62ae4), TOBN(0x77233853, 0xf93e89e3), TOBN(0x7f8063ac, 0x11777c7f), TOBN(0xff0eb567, 0x59ad2877), TOBN(0x6f454642, 0x9865c754), TOBN(0xe6fe701a, 0x236e9a84), TOBN(0xc586ef16, 0x06e40fc3), TOBN(0x3f62b6e0, 0x24bafad9), TOBN(0xc8b42bd2, 0x64da906a), TOBN(0xc98e1eb4, 0xda3276a0), TOBN(0x30d0e5fc, 0x06cbf852), TOBN(0x1b6b2ae1, 0xe8b4dfd4), TOBN(0xd754d5c7, 0x8301cbac), TOBN(0x66097629, 0x112a39ac), TOBN(0xf86b5999, 0x93ba4ab9), TOBN(0x26c9dea7, 0x99f9d581), TOBN(0x0473b1a8, 0xc2fafeaa), TOBN(0x1469af55, 0x3b2505a5), TOBN(0x227d16d7, 0xd6a43323), TOBN(0x3316f73c, 0xad3d97f9), TOBN(0x52bf3bb5, 0x1f137455), TOBN(0x953eafeb, 0x09954e7c), TOBN(0xa721dfed, 0xdd732411), TOBN(0xb4929821, 0x141d4579), TOBN(0x3411321c, 0xaa3bd435), TOBN(0xafb355aa, 0x17fa6015), TOBN(0xb4e7ef4a, 0x18e42f0e), TOBN(0x604ac97c, 0x59371000), TOBN(0xe1c48c70, 0x7f759c18), TOBN(0x3f62ecc5, 0xa5db6b65), TOBN(0x0a78b173, 0x38a21495), TOBN(0x6be1819d, 0xbcc8ad94), TOBN(0x70dc04f6, 0xd89c3400), TOBN(0x462557b4, 0xa6b4840a), TOBN(0x544c6ade, 0x60bd21c0), TOBN(0x6a00f24e, 0x907a544b), TOBN(0xa7520dcb, 0x313da210), TOBN(0xfe939b75, 0x11e4994b), TOBN(0x918b6ba6, 0xbc275d70), TOBN(0xd3e5e0fc, 0x644be892), TOBN(0x707a9816, 0xfdaf6c42), TOBN(0x60145567, 0xf15c13fe), TOBN(0x4818ebaa, 0xe130a54a), TOBN(0x28aad3ad, 0x58d2f767), TOBN(0xdc5267fd, 0xd7e7c773), TOBN(0x4919cc88, 0xc3afcc98), TOBN(0xaa2e6ab0, 0x2db8cd4b), TOBN(0xd46fec04, 0xd0c63eaa), TOBN(0xa1cb92c5, 0x19ffa832), TOBN(0x678dd178, 0xe43a631f), TOBN(0xfb5ae1cd, 0x3dc788b3), TOBN(0x68b4fb90, 0x6e77de04), TOBN(0x7992bcf0, 0xf06dbb97), TOBN(0x896e6a13, 0xc417c01d), TOBN(0x8d96332c, 0xb956be01), TOBN(0x902fc93a, 0x413aa2b9), TOBN(0x99a4d915, 0xfc98c8a5), TOBN(0x52c29407, 0x565f1137), TOBN(0x4072690f, 0x21e4f281), TOBN(0x36e607cf, 0x02ff6072), TOBN(0xa47d2ca9, 0x8ad98cdc), TOBN(0xbf471d1e, 0xf5f56609), TOBN(0xbcf86623, 0xf264ada0), TOBN(0xb70c0687, 0xaa9e5cb6), TOBN(0xc98124f2, 0x17401c6c), TOBN(0x8189635f, 0xd4a61435), TOBN(0xd28fb8af, 0xa9d98ea6), TOBN(0xb9a67c2a, 0x40c251f8), TOBN(0x88cd5d87, 0xa2da44be), TOBN(0x437deb96, 0xe09b5423), TOBN(0x150467db, 0x64287dc1), TOBN(0xe161debb, 0xcdabb839), TOBN(0xa79e9742, 0xf1839a3e), TOBN(0xbb8dd3c2, 0x652d202b), TOBN(0x7b3e67f7, 0xe9f97d96), TOBN(0x5aa5d78f, 0xb1cb6ac9), TOBN(0xffa13e8e, 0xca1d0d45), TOBN(0x369295dd, 0x2ba5bf95), TOBN(0xd68bd1f8, 0x39aff05e), TOBN(0xaf0d86f9, 0x26d783f2), TOBN(0x543a59b3, 0xfc3aafc1), TOBN(0x3fcf81d2, 0x7b7da97c), TOBN(0xc990a056, 0xd25dee46), TOBN(0x3e6775b8, 0x519cce2c), TOBN(0xfc9af71f, 0xae13d863), TOBN(0x774a4a6f, 0x47c1605c), TOBN(0x46ba4245, 0x2fd205e8), TOBN(0xa06feea4, 0xd3fd524d), TOBN(0x1e724641, 0x6de1acc2), TOBN(0xf53816f1, 0x334e2b42), TOBN(0x49e5918e, 0x922f0024), TOBN(0x439530b6, 0x65c7322d), TOBN(0xcf12cc01, 0xb3c1b3fb), TOBN(0xc70b0186, 0x0172f685), TOBN(0xb915ee22, 0x1b58391d), TOBN(0x9afdf03b, 0xa317db24), TOBN(0x87dec659, 0x17b8ffc4), TOBN(0x7f46597b, 0xe4d3d050), TOBN(0x80a1c1ed, 0x006500e7), TOBN(0x84902a96, 0x78bf030e), TOBN(0xfb5e9c9a, 0x50560148), TOBN(0x6dae0a92, 0x63362426), TOBN(0xdcaeecf4, 0xa9e30c40), TOBN(0xc0d887bb, 0x518d0c6b), TOBN(0x99181152, 0xcb985b9d), TOBN(0xad186898, 0xef7bc381), TOBN(0x18168ffb, 0x9ee46201), TOBN(0x9a04cdaa, 0x2502753c), TOBN(0xbb279e26, 0x51407c41), TOBN(0xeacb03aa, 0xf23564e5), TOBN(0x18336582, 0x71e61016), TOBN(0x8684b8c4, 0xeb809877), TOBN(0xb336e18d, 0xea0e672e), TOBN(0xefb601f0, 0x34ee5867), TOBN(0x2733edbe, 0x1341cfd1), TOBN(0xb15e809a, 0x26025c3c), TOBN(0xe6e981a6, 0x9350df88), TOBN(0x92376237, 0x8502fd8e), TOBN(0x4791f216, 0x0c12be9b), TOBN(0xb7256789, 0x25f02425), TOBN(0xec863194, 0x7a974443), TOBN(0x7c0ce882, 0xfb41cc52), TOBN(0xc266ff7e, 0xf25c07f2), TOBN(0x3d4da8c3, 0x017025f3), TOBN(0xefcf628c, 0xfb9579b4), TOBN(0x5c4d0016, 0x1f3716ec), TOBN(0x9c27ebc4, 0x6801116e), TOBN(0x5eba0ea1, 0x1da1767e), TOBN(0xfe151452, 0x47004c57), TOBN(0x3ace6df6, 0x8c2373b7), TOBN(0x75c3dffe, 0x5dbc37ac), TOBN(0x3dc32a73, 0xddc925fc), TOBN(0xb679c841, 0x2f65ee0b), TOBN(0x715a3295, 0x451cbfeb), TOBN(0xd9889768, 0xf76e9a29), TOBN(0xec20ce7f, 0xb28ad247), TOBN(0xe99146c4, 0x00894d79), TOBN(0x71457d7c, 0x9f5e3ea7), TOBN(0x097b2662, 0x38030031), TOBN(0xdb7f6ae6, 0xcf9f82a8), TOBN(0x319decb9, 0x438f473a), TOBN(0xa63ab386, 0x283856c3), TOBN(0x13e3172f, 0xb06a361b), TOBN(0x2959f8dc, 0x7d5a006c), TOBN(0x2dbc27c6, 0x75fba752), TOBN(0xc1227ab2, 0x87c22c9e), TOBN(0x06f61f75, 0x71a268b2), TOBN(0x1b6bb971, 0x04779ce2), TOBN(0xaca83812, 0x0aadcb1d), TOBN(0x297ae0bc, 0xaeaab2d5), TOBN(0xa5c14ee7, 0x5bfb9f13), TOBN(0xaa00c583, 0xf17a62c7), TOBN(0x39eb962c, 0x173759f6), TOBN(0x1eeba1d4, 0x86c9a88f), TOBN(0x0ab6c37a, 0xdf016c5e), TOBN(0xa2a147db, 0xa28a0749), TOBN(0x246c20d6, 0xee519165), TOBN(0x5068d1b1, 0xd3810715), TOBN(0xb1e7018c, 0x748160b9), TOBN(0x03f5b1fa, 0xf380ff62), TOBN(0xef7fb1dd, 0xf3cb2c1e), TOBN(0xeab539a8, 0xfc91a7da), TOBN(0x83ddb707, 0xf3f9b561), TOBN(0xc550e211, 0xfe7df7a4), TOBN(0xa7cd07f2, 0x063f6f40), TOBN(0xb0de3635, 0x2976879c), TOBN(0xb5f83f85, 0xe55741da), TOBN(0x4ea9d25e, 0xf3d8ac3d), TOBN(0x6fe2066f, 0x62819f02), TOBN(0x4ab2b9c2, 0xcef4a564), TOBN(0x1e155d96, 0x5ffa2de3), TOBN(0x0eb0a19b, 0xc3a72d00), TOBN(0x4037665b, 0x8513c31b), TOBN(0x2fb2b6bf, 0x04c64637), TOBN(0x45c34d6e, 0x08cdc639), TOBN(0x56f1e10f, 0xf01fd796), TOBN(0x4dfb8101, 0xfe3667b8), TOBN(0xe0eda253, 0x9021d0c0), TOBN(0x7a94e9ff, 0x8a06c6ab), TOBN(0x2d3bb0d9, 0xbb9aa882), TOBN(0xea20e4e5, 0xec05fd10), TOBN(0xed7eeb5f, 0x1a1ca64e), TOBN(0x2fa6b43c, 0xc6327cbd), TOBN(0xb577e3cf, 0x3aa91121), TOBN(0x8c6bd5ea, 0x3a34079b), TOBN(0xd7e5ba39, 0x60e02fc0), TOBN(0xf16dd2c3, 0x90141bf8), TOBN(0xb57276d9, 0x80101b98), TOBN(0x760883fd, 0xb82f0f66), TOBN(0x89d7de75, 0x4bc3eff3), TOBN(0x03b60643, 0x5dc2ab40), TOBN(0xcd6e53df, 0xe05beeac), TOBN(0xf2f1e862, 0xbc3325cd), TOBN(0xdd0f7921, 0x774f03c3), TOBN(0x97ca7221, 0x4552cc1b), TOBN(0x5a0d6afe, 0x1cd19f72), TOBN(0xa20915dc, 0xf183fbeb), TOBN(0x9fda4b40, 0x832c403c), TOBN(0x32738edd, 0xbe425442), TOBN(0x469a1df6, 0xb5eccf1a), TOBN(0x4b5aff42, 0x28bbe1f0), TOBN(0x31359d7f, 0x570dfc93), TOBN(0xa18be235, 0xf0088628), TOBN(0xa5b30fba, 0xb00ed3a9), TOBN(0x34c61374, 0x73cdf8be), TOBN(0x2c5c5f46, 0xabc56797), TOBN(0x5cecf93d, 0xb82a8ae2), TOBN(0x7d3dbe41, 0xa968fbf0), TOBN(0xd23d4583, 0x1a5c7f3d), TOBN(0xf28f69a0, 0xc087a9c7), TOBN(0xc2d75471, 0x474471ca), TOBN(0x36ec9f4a, 0x4eb732ec), TOBN(0x6c943bbd, 0xb1ca6bed), TOBN(0xd64535e1, 0xf2457892), TOBN(0x8b84a8ea, 0xf7e2ac06), TOBN(0xe0936cd3, 0x2499dd5f), TOBN(0x12053d7e, 0x0ed04e57), TOBN(0x4bdd0076, 0xe4305d9d), TOBN(0x34a527b9, 0x1f67f0a2), TOBN(0xe79a4af0, 0x9cec46ea), TOBN(0xb15347a1, 0x658b9bc7), TOBN(0x6bd2796f, 0x35af2f75), TOBN(0xac957990, 0x4051c435), TOBN(0x2669dda3, 0xc33a655d), TOBN(0x5d503c2e, 0x88514aa3), TOBN(0xdfa11337, 0x3753dd41), TOBN(0x3f054673, 0x0b754f78), TOBN(0xbf185677, 0x496125bd), TOBN(0xfb0023c8, 0x3775006c), TOBN(0xfa0f072f, 0x3a037899), TOBN(0x4222b6eb, 0x0e4aea57), TOBN(0x3dde5e76, 0x7866d25a), TOBN(0xb6eb04f8, 0x4837aa6f), TOBN(0x5315591a, 0x2cf1cdb8), TOBN(0x6dfb4f41, 0x2d4e683c), TOBN(0x7e923ea4, 0x48ee1f3a), TOBN(0x9604d9f7, 0x05a2afd5), TOBN(0xbe1d4a33, 0x40ea4948), TOBN(0x5b45f1f4, 0xb44cbd2f), TOBN(0x5faf8376, 0x4acc757e), TOBN(0xa7cf9ab8, 0x63d68ff7), TOBN(0x8ad62f69, 0xdf0e404b), TOBN(0xd65f33c2, 0x12bdafdf), TOBN(0xc365de15, 0xa377b14e), TOBN(0x6bf5463b, 0x8e39f60c), TOBN(0x62030d2d, 0x2ce68148), TOBN(0xd95867ef, 0xe6f843a8), TOBN(0xd39a0244, 0xef5ab017), TOBN(0x0bd2d8c1, 0x4ab55d12), TOBN(0xc9503db3, 0x41639169), TOBN(0x2d4e25b0, 0xf7660c8a), TOBN(0x760cb3b5, 0xe224c5d7), TOBN(0xfa3baf8c, 0x68616919), TOBN(0x9fbca113, 0x8d142552), TOBN(0x1ab18bf1, 0x7669ebf5), TOBN(0x55e6f53e, 0x9bdf25dd), TOBN(0x04cc0bf3, 0xcb6cd154), TOBN(0x595bef49, 0x95e89080), TOBN(0xfe9459a8, 0x104a9ac1), TOBN(0xad2d89ca, 0xcce9bb32), TOBN(0xddea65e1, 0xf7de8285), TOBN(0x62ed8c35, 0xb351bd4b), TOBN(0x4150ff36, 0x0c0e19a7), TOBN(0x86e3c801, 0x345f4e47), TOBN(0x3bf21f71, 0x203a266c), TOBN(0x7ae110d4, 0x855b1f13), TOBN(0x5d6aaf6a, 0x07262517), TOBN(0x1e0f12e1, 0x813d28f1), TOBN(0x6000e11d, 0x7ad7a523), TOBN(0xc7d8deef, 0xc744a17b), TOBN(0x1e990b48, 0x14c05a00), TOBN(0x68fddaee, 0x93e976d5), TOBN(0x696241d1, 0x46610d63), TOBN(0xb204e7c3, 0x893dda88), TOBN(0x8bccfa65, 0x6a3a6946), TOBN(0xb59425b4, 0xc5cd1411), TOBN(0x701b4042, 0xff3658b1), TOBN(0xe3e56bca, 0x4784cf93), TOBN(0x27de5f15, 0x8fe68d60), TOBN(0x4ab9cfce, 0xf8d53f19), TOBN(0xddb10311, 0xa40a730d), TOBN(0x6fa73cd1, 0x4eee0a8a), TOBN(0xfd548748, 0x5249719d), TOBN(0x49d66316, 0xa8123ef0), TOBN(0x73c32db4, 0xe7f95438), TOBN(0x2e2ed209, 0x0d9e7854), TOBN(0xf98a9329, 0x9d9f0507), TOBN(0xc5d33cf6, 0x0c6aa20a), TOBN(0x9a32ba14, 0x75279bb2), TOBN(0x7e3202cb, 0x774a7307), TOBN(0x64ed4bc4, 0xe8c42dbd), TOBN(0xc20f1a06, 0xd4caed0d), TOBN(0xb8021407, 0x171d22b3), TOBN(0xd426ca04, 0xd13268d7), TOBN(0x92377007, 0x25f4d126), TOBN(0x4204cbc3, 0x71f21a85), TOBN(0x18461b7a, 0xf82369ba), TOBN(0xc0c07d31, 0x3fc858f9), TOBN(0x5deb5a50, 0xe2bab569), TOBN(0xd5959d46, 0xd5eea89e), TOBN(0xfdff8424, 0x08437f4b), TOBN(0xf21071e4, 0x3cfe254f), TOBN(0x72417696, 0x95468321), TOBN(0x5d8288b9, 0x102cae3e), TOBN(0x2d143e3d, 0xf1965dff), TOBN(0x00c9a376, 0xa078d847), TOBN(0x6fc0da31, 0x26028731), TOBN(0xa2baeadf, 0xe45083a2), TOBN(0x66bc7218, 0x5e5b4bcd), TOBN(0x2c826442, 0xd04b8e7f), TOBN(0xc19f5451, 0x6c4b586b), TOBN(0x60182c49, 0x5b7eeed5), TOBN(0xd9954ecd, 0x7aa9dfa1), TOBN(0xa403a8ec, 0xc73884ad), TOBN(0x7fb17de2, 0x9bb39041), TOBN(0x694b64c5, 0xabb020e8), TOBN(0x3d18c184, 0x19c4eec7), TOBN(0x9c4673ef, 0x1c4793e5), TOBN(0xc7b8aeb5, 0x056092e6), TOBN(0x3aa1ca43, 0xf0f8c16b), TOBN(0x224ed5ec, 0xd679b2f6), TOBN(0x0d56eeaf, 0x55a205c9), TOBN(0xbfe115ba, 0x4b8e028b), TOBN(0x97e60849, 0x3927f4fe), TOBN(0xf91fbf94, 0x759aa7c5), TOBN(0x985af769, 0x6be90a51), TOBN(0xc1277b78, 0x78ccb823), TOBN(0x395b656e, 0xe7a75952), TOBN(0x00df7de0, 0x928da5f5), TOBN(0x09c23175, 0x4ca4454f), TOBN(0x4ec971f4, 0x7aa2d3c1), TOBN(0x45c3c507, 0xe75d9ccc), TOBN(0x63b7be8a, 0x3dc90306), TOBN(0x37e09c66, 0x5db44bdc), TOBN(0x50d60da1, 0x6841c6a2), TOBN(0x6f9b65ee, 0x08df1b12), TOBN(0x38734879, 0x7ff089df), TOBN(0x9c331a66, 0x3fe8013d), TOBN(0x017f5de9, 0x5f42fcc8), TOBN(0x43077866, 0xe8e57567), TOBN(0xc9f781ce, 0xf9fcdb18), TOBN(0x38131dda, 0x9b12e174), TOBN(0x25d84aa3, 0x8a03752a), TOBN(0x45e09e09, 0x4d0c0ce2), TOBN(0x1564008b, 0x92bebba5), TOBN(0xf7e8ad31, 0xa87284c7), TOBN(0xb7c4b46c, 0x97e7bbaa), TOBN(0x3e22a7b3, 0x97acf4ec), TOBN(0x0426c400, 0x5ea8b640), TOBN(0x5e3295a6, 0x4e969285), TOBN(0x22aabc59, 0xa6a45670), TOBN(0xb929714c, 0x5f5942bc), TOBN(0x9a6168bd, 0xfa3182ed), TOBN(0x2216a665, 0x104152ba), TOBN(0x46908d03, 0xb6926368)} , {TOBN(0xa9f5d874, 0x5a1251fb), TOBN(0x967747a8, 0xc72725c7), TOBN(0x195c33e5, 0x31ffe89e), TOBN(0x609d210f, 0xe964935e), TOBN(0xcafd6ca8, 0x2fe12227), TOBN(0xaf9b5b96, 0x0426469d), TOBN(0x2e9ee04c, 0x5693183c), TOBN(0x1084a333, 0xc8146fef), TOBN(0x96649933, 0xaed1d1f7), TOBN(0x566eaff3, 0x50563090), TOBN(0x345057f0, 0xad2e39cf), TOBN(0x148ff65b, 0x1f832124), TOBN(0x042e89d4, 0xcf94cf0d), TOBN(0x319bec84, 0x520c58b3), TOBN(0x2a267626, 0x5361aa0d), TOBN(0xc86fa302, 0x8fbc87ad), TOBN(0xfc83d2ab, 0x5c8b06d5), TOBN(0xb1a785a2, 0xfe4eac46), TOBN(0xb99315bc, 0x846f7779), TOBN(0xcf31d816, 0xef9ea505), TOBN(0x2391fe6a, 0x15d7dc85), TOBN(0x2f132b04, 0xb4016b33), TOBN(0x29547fe3, 0x181cb4c7), TOBN(0xdb66d8a6, 0x650155a1), TOBN(0x6b66d7e1, 0xadc1696f), TOBN(0x98ebe593, 0x0acd72d0), TOBN(0x65f24550, 0xcc1b7435), TOBN(0xce231393, 0xb4b9a5ec), TOBN(0x234a22d4, 0xdb067df9), TOBN(0x98dda095, 0xcaff9b00), TOBN(0x1bbc75a0, 0x6100c9c1), TOBN(0x1560a9c8, 0x939cf695), TOBN(0xcf006d3e, 0x99e0925f), TOBN(0x2dd74a96, 0x6322375a), TOBN(0xc58b446a, 0xb56af5ba), TOBN(0x50292683, 0xe0b9b4f1), TOBN(0xe2c34cb4, 0x1aeaffa3), TOBN(0x8b17203f, 0x9b9587c1), TOBN(0x6d559207, 0xead1350c), TOBN(0x2b66a215, 0xfb7f9604), TOBN(0x0850325e, 0xfe51bf74), TOBN(0x9c4f579e, 0x5e460094), TOBN(0x5c87b92a, 0x76da2f25), TOBN(0x889de4e0, 0x6febef33), TOBN(0x6900ec06, 0x646083ce), TOBN(0xbe2a0335, 0xbfe12773), TOBN(0xadd1da35, 0xc5344110), TOBN(0x757568b7, 0xb802cd20), TOBN(0x75559779, 0x00f7e6c8), TOBN(0x38e8b94f, 0x0facd2f0), TOBN(0xfea1f3af, 0x03fde375), TOBN(0x5e11a1d8, 0x75881dfc), TOBN(0xb3a6b02e, 0xc1e2f2ef), TOBN(0x193d2bbb, 0xc605a6c5), TOBN(0x325ffeee, 0x339a0b2d), TOBN(0x27b6a724, 0x9e0c8846), TOBN(0xe4050f1c, 0xf1c367ca), TOBN(0x9bc85a9b, 0xc90fbc7d), TOBN(0xa373c4a2, 0xe1a11032), TOBN(0xb64232b7, 0xad0393a9), TOBN(0xf5577eb0, 0x167dad29), TOBN(0x1604f301, 0x94b78ab2), TOBN(0x0baa94af, 0xe829348b), TOBN(0x77fbd8dd, 0x41654342), TOBN(0xdab50ea5, 0xb964e39a), TOBN(0xd4c29e3c, 0xd0d3c76e), TOBN(0x80dae67c, 0x56d11964), TOBN(0x7307a8bf, 0xe5ffcc2f), TOBN(0x65bbc1aa, 0x91708c3b), TOBN(0xa151e62c, 0x28bf0eeb), TOBN(0x6cb53381, 0x6fa34db7), TOBN(0x5139e05c, 0xa29403a8), TOBN(0x6ff651b4, 0x94a7cd2e), TOBN(0x5671ffd1, 0x0699336c), TOBN(0x6f5fd2cc, 0x979a896a), TOBN(0x11e893a8, 0xd8148cef), TOBN(0x988906a1, 0x65cf7b10), TOBN(0x81b67178, 0xc50d8485), TOBN(0x7c0deb35, 0x8a35b3de), TOBN(0x423ac855, 0xc1d29799), TOBN(0xaf580d87, 0xdac50b74), TOBN(0x28b2b89f, 0x5869734c), TOBN(0x99a3b936, 0x874e28fb), TOBN(0xbb2c9190, 0x25f3f73a), TOBN(0x199f6918, 0x84a9d5b7), TOBN(0x7ebe2325, 0x7e770374), TOBN(0xf442e107, 0x0738efe2), TOBN(0xcf9f3f56, 0xcf9082d2), TOBN(0x719f69e1, 0x09618708), TOBN(0xcc9e8364, 0xc183f9b1), TOBN(0xec203a95, 0x366a21af), TOBN(0x6aec5d6d, 0x068b141f), TOBN(0xee2df78a, 0x994f04e9), TOBN(0xb39ccae8, 0x271245b0), TOBN(0xb875a4a9, 0x97e43f4f), TOBN(0x507dfe11, 0xdb2cea98), TOBN(0x4fbf81cb, 0x489b03e9), TOBN(0xdb86ec5b, 0x6ec414fa), TOBN(0xfad444f9, 0xf51b3ae5), TOBN(0xca7d33d6, 0x1914e3fe), TOBN(0xa9c32f5c, 0x0ae6c4d0), TOBN(0xa9ca1d1e, 0x73969568), TOBN(0x98043c31, 0x1aa7467e), TOBN(0xe832e75c, 0xe21b5ac6), TOBN(0x314b7aea, 0x5232123d), TOBN(0x08307c8c, 0x65ae86db), TOBN(0x06e7165c, 0xaa4668ed), TOBN(0xb170458b, 0xb4d3ec39), TOBN(0x4d2e3ec6, 0xc19bb986), TOBN(0xc5f34846, 0xae0304ed), TOBN(0x917695a0, 0x6c9f9722), TOBN(0x6c7f7317, 0x4cab1c0a), TOBN(0x6295940e, 0x9d6d2e8b), TOBN(0xd318b8c1, 0x549f7c97), TOBN(0x22453204, 0x97713885), TOBN(0x468d834b, 0xa8a440fe), TOBN(0xd81fe5b2, 0xbfba796e), TOBN(0x152364db, 0x6d71f116), TOBN(0xbb8c7c59, 0xb5b66e53), TOBN(0x0b12c61b, 0x2641a192), TOBN(0x31f14802, 0xfcf0a7fd), TOBN(0x42fd0789, 0x5488b01e), TOBN(0x71d78d6d, 0x9952b498), TOBN(0x8eb572d9, 0x07ac5201), TOBN(0xe0a2a44c, 0x4d194a88), TOBN(0xd2b63fd9, 0xba017e66), TOBN(0x78efc6c8, 0xf888aefc), TOBN(0xb76f6bda, 0x4a881a11), TOBN(0x187f314b, 0xb46c2397), TOBN(0x004cf566, 0x5ded2819), TOBN(0xa9ea5704, 0x38764d34), TOBN(0xbba45217, 0x78084709), TOBN(0x06474571, 0x1171121e), TOBN(0xad7b7eb1, 0xe7c9b671), TOBN(0xdacfbc40, 0x730f7507), TOBN(0x178cd8c6, 0xc7ad7bd1), TOBN(0xbf0be101, 0xb2a67238), TOBN(0x3556d367, 0xaf9c14f2), TOBN(0x104b7831, 0xa5662075), TOBN(0x58ca59bb, 0x79d9e60a), TOBN(0x4bc45392, 0xa569a73b), TOBN(0x517a52e8, 0x5698f6c9), TOBN(0x85643da5, 0xaeadd755), TOBN(0x1aed0cd5, 0x2a581b84), TOBN(0xb9b4ff84, 0x80af1372), TOBN(0x244c3113, 0xf1ba5d1f), TOBN(0x2a5dacbe, 0xf5f98d31), TOBN(0x2c3323e8, 0x4375bc2a), TOBN(0x17a3ab4a, 0x5594b1dd), TOBN(0xa1928bfb, 0xceb4797e), TOBN(0xe83af245, 0xe4886a19), TOBN(0x8979d546, 0x72b5a74a), TOBN(0xa0f726bc, 0x19f9e967), TOBN(0xd9d03152, 0xe8fbbf4e), TOBN(0xcfd6f51d, 0xb7707d40), TOBN(0x633084d9, 0x63f6e6e0), TOBN(0xedcd9cdc, 0x55667eaf), TOBN(0x73b7f92b, 0x2e44d56f), TOBN(0xfb2e39b6, 0x4e962b14), TOBN(0x7d408f6e, 0xf671fcbf), TOBN(0xcc634ddc, 0x164a89bb), TOBN(0x74a42bb2, 0x3ef3bd05), TOBN(0x1280dbb2, 0x428decbb), TOBN(0x6103f6bb, 0x402c8596), TOBN(0xfa2bf581, 0x355a5752), TOBN(0x562f96a8, 0x00946674), TOBN(0x4e4ca16d, 0x6da0223b), TOBN(0xfe47819f, 0x28d3aa25), TOBN(0x9eea3075, 0xf8dfcf8a), TOBN(0xa284f0aa, 0x95669825), TOBN(0xb3fca250, 0x867d3fd8), TOBN(0x20757b5f, 0x269d691e), TOBN(0xf2c24020, 0x93b8a5de), TOBN(0xd3f93359, 0xebc06da6), TOBN(0x1178293e, 0xb2739c33), TOBN(0xd2a3e770, 0xbcd686e5), TOBN(0xa76f49f4, 0xcd941534), TOBN(0x0d37406b, 0xe3c71c0e), TOBN(0x172d9397, 0x3b97f7e3), TOBN(0xec17e239, 0xbd7fd0de), TOBN(0xe3290551, 0x6f496ba2), TOBN(0x6a693172, 0x36ad50e7), TOBN(0xc4e539a2, 0x83e7eff5), TOBN(0x752737e7, 0x18e1b4cf), TOBN(0xa2f7932c, 0x68af43ee), TOBN(0x5502468e, 0x703d00bd), TOBN(0xe5dc978f, 0x2fb061f5), TOBN(0xc9a1904a, 0x28c815ad), TOBN(0xd3af538d, 0x470c56a4), TOBN(0x159abc5f, 0x193d8ced), TOBN(0x2a37245f, 0x20108ef3), TOBN(0xfa17081e, 0x223f7178), TOBN(0x27b0fb2b, 0x10c8c0f5), TOBN(0x2102c3ea, 0x40650547), TOBN(0x594564df, 0x8ac3bfa7), TOBN(0x98102033, 0x509dad96), TOBN(0x6989643f, 0xf1d18a13), TOBN(0x35eebd91, 0xd7fc5af0), TOBN(0x078d096a, 0xfaeaafd8), TOBN(0xb7a89341, 0xdef3de98), TOBN(0x2a206e8d, 0xecf2a73a), TOBN(0x066a6397, 0x8e551994), TOBN(0x3a6a088a, 0xb98d53a2), TOBN(0x0ce7c67c, 0x2d1124aa), TOBN(0x48cec671, 0x759a113c), TOBN(0xe3b373d3, 0x4f6f67fa), TOBN(0x5455d479, 0xfd36727b), TOBN(0xe5a428ee, 0xa13c0d81), TOBN(0xb853dbc8, 0x1c86682b), TOBN(0xb78d2727, 0xb8d02b2a), TOBN(0xaaf69bed, 0x8ebc329a), TOBN(0xdb6b40b3, 0x293b2148), TOBN(0xe42ea77d, 0xb8c4961f), TOBN(0xb1a12f7c, 0x20e5e0ab), TOBN(0xa0ec5274, 0x79e8b05e), TOBN(0x68027391, 0xfab60a80), TOBN(0x6bfeea5f, 0x16b1bd5e), TOBN(0xf957e420, 0x4de30ad3), TOBN(0xcbaf664e, 0x6a353b9e), TOBN(0x5c873312, 0x26d14feb), TOBN(0x4e87f98c, 0xb65f57cb), TOBN(0xdb60a621, 0x5e0cdd41), TOBN(0x67c16865, 0xa6881440), TOBN(0x1093ef1a, 0x46ab52aa), TOBN(0xc095afb5, 0x3f4ece64), TOBN(0x6a6bb02e, 0x7604551a), TOBN(0x55d44b4e, 0x0b26b8cd), TOBN(0xe5f9a999, 0xf971268a), TOBN(0xc08ec425, 0x11a7de84), TOBN(0x83568095, 0xfda469dd), TOBN(0x737bfba1, 0x6c6c90a2), TOBN(0x1cb9c4a0, 0xbe229831), TOBN(0x93bccbba, 0xbb2eec64), TOBN(0xa0c23b64, 0xda03adbe), TOBN(0x5f7aa00a, 0xe0e86ac4), TOBN(0x470b941e, 0xfc1401e6), TOBN(0x5ad8d679, 0x9df43574), TOBN(0x4ccfb8a9, 0x0f65d810), TOBN(0x1bce80e3, 0xaa7fbd81), TOBN(0x273291ad, 0x9508d20a), TOBN(0xf5c4b46b, 0x42a92806), TOBN(0x810684ec, 0xa86ab44a), TOBN(0x4591640b, 0xca0bc9f8), TOBN(0xb5efcdfc, 0x5c4b6054), TOBN(0x16fc8907, 0x6e9edd12), TOBN(0xe29d0b50, 0xd4d792f9), TOBN(0xa45fd01c, 0x9b03116d), TOBN(0x85035235, 0xc81765a4), TOBN(0x1fe2a9b2, 0xb4b4b67c), TOBN(0xc1d10df0, 0xe8020604), TOBN(0x9d64abfc, 0xbc8058d8), TOBN(0x8943b9b2, 0x712a0fbb), TOBN(0x90eed914, 0x3b3def04), TOBN(0x85ab3aa2, 0x4ce775ff), TOBN(0x605fd4ca, 0x7bbc9040), TOBN(0x8b34a564, 0xe2c75dfb), TOBN(0x41ffc94a, 0x10358560), TOBN(0x2d8a5072, 0x9e5c28aa), TOBN(0xe915a0fc, 0x4cc7eb15), TOBN(0xe9efab05, 0x8f6d0f5d), TOBN(0xdbab47a9, 0xd19e9b91), TOBN(0x8cfed745, 0x0276154c), TOBN(0x154357ae, 0x2cfede0d), TOBN(0x520630df, 0x19f5a4ef), TOBN(0x25759f7c, 0xe382360f), TOBN(0xb6db05c9, 0x88bf5857), TOBN(0x2917d61d, 0x6c58d46c), TOBN(0x14f8e491, 0xfd20cb7a), TOBN(0xb68a727a, 0x11c20340), TOBN(0x0386f86f, 0xaf7ccbb6), TOBN(0x5c8bc6cc, 0xfee09a20), TOBN(0x7d76ff4a, 0xbb7eea35), TOBN(0xa7bdebe7, 0xdb15be7a), TOBN(0x67a08054, 0xd89f0302), TOBN(0x56bf0ea9, 0xc1193364), TOBN(0xc8244467, 0x62837ebe), TOBN(0x32bd8e8b, 0x20d841b8), TOBN(0x127a0548, 0xdbb8a54f), TOBN(0x83dd4ca6, 0x63b20236), TOBN(0x87714718, 0x203491fa), TOBN(0x4dabcaaa, 0xaa8a5288), TOBN(0x91cc0c8a, 0xaf23a1c9), TOBN(0x34c72c6a, 0x3f220e0c), TOBN(0xbcc20bdf, 0x1232144a), TOBN(0x6e2f42da, 0xa20ede1b), TOBN(0xc441f00c, 0x74a00515), TOBN(0xbf46a5b6, 0x734b8c4b), TOBN(0x57409503, 0x7b56c9a4), TOBN(0x9f735261, 0xe4585d45), TOBN(0x9231faed, 0x6734e642), TOBN(0x1158a176, 0xbe70ee6c), TOBN(0x35f1068d, 0x7c3501bf), TOBN(0x6beef900, 0xa2d26115), TOBN(0x649406f2, 0xef0afee3), TOBN(0x3f43a60a, 0xbc2420a1), TOBN(0x509002a7, 0xd5aee4ac), TOBN(0xb46836a5, 0x3ff3571b), TOBN(0x24f98b78, 0x837927c1), TOBN(0x6254256a, 0x4533c716), TOBN(0xf27abb0b, 0xd07ee196), TOBN(0xd7cf64fc, 0x5c6d5bfd), TOBN(0x6915c751, 0xf0cd7a77), TOBN(0xd9f59012, 0x8798f534), TOBN(0x772b0da8, 0xf81d8b5f), TOBN(0x1244260c, 0x2e03fa69), TOBN(0x36cf0e3a, 0x3be1a374), TOBN(0x6e7c1633, 0xef06b960), TOBN(0xa71a4c55, 0x671f90f6), TOBN(0x7a941251, 0x33c673db), TOBN(0xc0bea510, 0x73e8c131), TOBN(0x61a8a699, 0xd4f6c734), TOBN(0x25e78c88, 0x341ed001), TOBN(0x5c18acf8, 0x8e2f7d90), TOBN(0xfdbf33d7, 0x77be32cd), TOBN(0x0a085cd7, 0xd2eb5ee9), TOBN(0x2d702cfb, 0xb3201115), TOBN(0xb6e0ebdb, 0x85c88ce8), TOBN(0x23a3ce3c, 0x1e01d617), TOBN(0x3041618e, 0x567333ac), TOBN(0x9dd0fd8f, 0x157edb6b), TOBN(0x27f74702, 0xb57872b8), TOBN(0x2ef26b4f, 0x657d5fe1), TOBN(0x95426f0a, 0x57cf3d40), TOBN(0x847e2ad1, 0x65a6067a), TOBN(0xd474d9a0, 0x09996a74), TOBN(0x16a56acd, 0x2a26115c), TOBN(0x02a615c3, 0xd16f4d43), TOBN(0xcc3fc965, 0xaadb85b7), TOBN(0x386bda73, 0xce07d1b0), TOBN(0xd82910c2, 0x58ad4178), TOBN(0x124f82cf, 0xcd2617f4), TOBN(0xcc2f5e8d, 0xef691770), TOBN(0x82702550, 0xb8c30ccc), TOBN(0x7b856aea, 0x1a8e575a), TOBN(0xbb822fef, 0xb1ab9459), TOBN(0x085928bc, 0xec24e38e), TOBN(0x5d0402ec, 0xba8f4b4d), TOBN(0xc07cd4ba, 0x00b4d58b), TOBN(0x5d8dffd5, 0x29227e7a), TOBN(0x61d44d0c, 0x31bf386f), TOBN(0xe486dc2b, 0x135e6f4d), TOBN(0x680962eb, 0xe79410ef), TOBN(0xa61bd343, 0xf10088b5), TOBN(0x6aa76076, 0xe2e28686), TOBN(0x80463d11, 0x8fb98871), TOBN(0xcb26f5c3, 0xbbc76aff), TOBN(0xd4ab8edd, 0xfbe03614), TOBN(0xc8eb579b, 0xc0cf2dee), TOBN(0xcc004c15, 0xc93bae41), TOBN(0x46fbae5d, 0x3aeca3b2), TOBN(0x671235cf, 0x0f1e9ab1), TOBN(0xadfba934, 0x9ec285c1), TOBN(0x88ded013, 0xf216c980), TOBN(0xc8ac4fb8, 0xf79e0bc1), TOBN(0xa29b89c6, 0xfb97a237), TOBN(0xb697b780, 0x9922d8e7), TOBN(0x3142c639, 0xddb945b5), TOBN(0x447b06c7, 0xe094c3a9), TOBN(0xcdcb3642, 0x72266c90), TOBN(0x633aad08, 0xa9385046), TOBN(0xa36c936b, 0xb57c6477), TOBN(0x871f8b64, 0xe94dbcc6), TOBN(0x28d0fb62, 0xa591a67b), TOBN(0x9d40e081, 0xc1d926f5), TOBN(0x3111eaf6, 0xf2d84b5a), TOBN(0x228993f9, 0xa565b644), TOBN(0x0ccbf592, 0x2c83188b), TOBN(0xf87b30ab, 0x3df3e197), TOBN(0xb8658b31, 0x7642bca8), TOBN(0x1a032d7f, 0x52800f17), TOBN(0x051dcae5, 0x79bf9445), TOBN(0xeba6b8ee, 0x54a2e253), TOBN(0x5c8b9cad, 0xd4485692), TOBN(0x84bda40e, 0x8986e9be), TOBN(0xd16d16a4, 0x2f0db448), TOBN(0x8ec80050, 0xa14d4188), TOBN(0xb2b26107, 0x98fa7aaa), TOBN(0x41209ee4, 0xf073aa4e), TOBN(0xf1570359, 0xf2d6b19b), TOBN(0xcbe6868c, 0xfc577caf), TOBN(0x186c4bdc, 0x32c04dd3), TOBN(0xa6c35fae, 0xcfeee397), TOBN(0xb4a1b312, 0xf086c0cf), TOBN(0xe0a5ccc6, 0xd9461fe2), TOBN(0xc32278aa, 0x1536189f), TOBN(0x1126c55f, 0xba6df571), TOBN(0x0f71a602, 0xb194560e), TOBN(0x8b2d7405, 0x324bd6e1), TOBN(0x8481939e, 0x3738be71), TOBN(0xb5090b1a, 0x1a4d97a9), TOBN(0x116c65a3, 0xf05ba915), TOBN(0x21863ad3, 0xaae448aa), TOBN(0xd24e2679, 0xa7aae5d3), TOBN(0x7076013d, 0x0de5c1c4), TOBN(0x2d50f8ba, 0xbb05b629), TOBN(0x73c1abe2, 0x6e66efbb), TOBN(0xefd4b422, 0xf2488af7), TOBN(0xe4105d02, 0x663ba575), TOBN(0x7eb60a8b, 0x53a69457), TOBN(0x62210008, 0xc945973b), TOBN(0xfb255478, 0x77a50ec6), TOBN(0xbf0392f7, 0x0a37a72c), TOBN(0xa0a7a19c, 0x4be18e7a), TOBN(0x90d8ea16, 0x25b1e0af), TOBN(0x7582a293, 0xef953f57), TOBN(0x90a64d05, 0xbdc5465a), TOBN(0xca79c497, 0xe2510717), TOBN(0x560dbb7c, 0x18cb641f), TOBN(0x1d8e3286, 0x4b66abfb), TOBN(0xd26f52e5, 0x59030900), TOBN(0x1ee3f643, 0x5584941a), TOBN(0x6d3b3730, 0x569f5958), TOBN(0x9ff2a62f, 0x4789dba5), TOBN(0x91fcb815, 0x72b5c9b7), TOBN(0xf446cb7d, 0x6c8f9a0e), TOBN(0x48f625c1, 0x39b7ecb5), TOBN(0xbabae801, 0x1c6219b8), TOBN(0xe7a562d9, 0x28ac2f23), TOBN(0xe1b48732, 0x26e20588), TOBN(0x06ee1cad, 0x775af051), TOBN(0xda29ae43, 0xfaff79f7), TOBN(0xc141a412, 0x652ee9e0), TOBN(0x1e127f6f, 0x195f4bd0), TOBN(0x29c6ab4f, 0x072f34f8), TOBN(0x7b7c1477, 0x30448112), TOBN(0x82b51af1, 0xe4a38656), TOBN(0x2bf2028a, 0x2f315010), TOBN(0xc9a4a01f, 0x6ea88cd4), TOBN(0xf63e95d8, 0x257e5818), TOBN(0xdd8efa10, 0xb4519b16), TOBN(0xed8973e0, 0x0da910bf), TOBN(0xed49d077, 0x5c0fe4a9), TOBN(0xac3aac5e, 0xb7caee1e), TOBN(0x1033898d, 0xa7f4da57), TOBN(0x42145c0e, 0x5c6669b9), TOBN(0x42daa688, 0xc1aa2aa0), TOBN(0x629cc15c, 0x1a1d885a), TOBN(0x25572ec0, 0xf4b76817), TOBN(0x8312e435, 0x9c8f8f28), TOBN(0x8107f8cd, 0x81965490), TOBN(0x516ff3a3, 0x6fa6110c), TOBN(0x74fb1eb1, 0xfb93561f), TOBN(0x6c0c9047, 0x8457522b), TOBN(0xcfd32104, 0x6bb8bdc6), TOBN(0x2d6884a2, 0xcc80ad57), TOBN(0x7c27fc35, 0x86a9b637), TOBN(0x3461baed, 0xadf4e8cd), TOBN(0x1d56251a, 0x617242f0), TOBN(0x0b80d209, 0xc955bef4), TOBN(0xdf02cad2, 0x06adb047), TOBN(0xf0d7cb91, 0x5ec74fee), TOBN(0xd2503375, 0x1111ba44), TOBN(0x9671755e, 0xdf53cb36), TOBN(0x54dcb612, 0x3368551b), TOBN(0x66d69aac, 0xc8a025a4), TOBN(0x6be946c6, 0xe77ef445), TOBN(0x719946d1, 0xa995e094), TOBN(0x65e848f6, 0xe51e04d8), TOBN(0xe62f3300, 0x6a1e3113), TOBN(0x1541c7c1, 0x501de503), TOBN(0x4daac9fa, 0xf4acfade), TOBN(0x0e585897, 0x44cd0b71), TOBN(0x544fd869, 0x0a51cd77), TOBN(0x60fc20ed, 0x0031016d), TOBN(0x58b404ec, 0xa4276867), TOBN(0x46f6c3cc, 0x34f34993), TOBN(0x477ca007, 0xc636e5bd), TOBN(0x8018f5e5, 0x7c458b47), TOBN(0xa1202270, 0xe47b668f), TOBN(0xcef48ccd, 0xee14f203), TOBN(0x23f98bae, 0x62ff9b4d), TOBN(0x55acc035, 0xc589eddd), TOBN(0x3fe712af, 0x64db4444), TOBN(0x19e9d634, 0xbecdd480), TOBN(0xe08bc047, 0xa930978a), TOBN(0x2dbf24ec, 0xa1280733), TOBN(0x3c0ae38c, 0x2cd706b2), TOBN(0x5b012a5b, 0x359017b9), TOBN(0x3943c38c, 0x72e0f5ae), TOBN(0x786167ea, 0x57176fa3), TOBN(0xe5f9897d, 0x594881dc), TOBN(0x6b5efad8, 0xcfb820c1), TOBN(0xb2179093, 0xd55018de), TOBN(0x39ad7d32, 0x0bac56ce), TOBN(0xb55122e0, 0x2cfc0e81), TOBN(0x117c4661, 0xf6d89daa), TOBN(0x362d01e1, 0xcb64fa09), TOBN(0x6a309b4e, 0x3e9c4ddd), TOBN(0xfa979fb7, 0xabea49b1), TOBN(0xb4b1d27d, 0x10e2c6c5), TOBN(0xbd61c2c4, 0x23afde7a), TOBN(0xeb6614f8, 0x9786d358), TOBN(0x4a5d816b, 0x7f6f7459), TOBN(0xe431a44f, 0x09360e7b), TOBN(0x8c27a032, 0xc309914c), TOBN(0xcea5d68a, 0xcaede3d8), TOBN(0x3668f665, 0x3a0a3f95), TOBN(0x89369416, 0x7ceba27b), TOBN(0x89981fad, 0xe4728fe9), TOBN(0x7102c8a0, 0x8a093562), TOBN(0xbb80310e, 0x235d21c8), TOBN(0x505e55d1, 0xbefb7f7b), TOBN(0xa0a90811, 0x12958a67), TOBN(0xd67e106a, 0x4d851fef), TOBN(0xb84011a9, 0x431dd80e), TOBN(0xeb7c7cca, 0x73306cd9), TOBN(0x20fadd29, 0xd1b3b730), TOBN(0x83858b5b, 0xfe37b3d3), TOBN(0xbf4cd193, 0xb6251d5c), TOBN(0x1cca1fd3, 0x1352d952), TOBN(0xc66157a4, 0x90fbc051), TOBN(0x7990a638, 0x89b98636),} , {TOBN(0xe5aa692a, 0x87dec0e1), TOBN(0x010ded8d, 0xf7b39d00), TOBN(0x7b1b80c8, 0x54cfa0b5), TOBN(0x66beb876, 0xa0f8ea28), TOBN(0x50d7f531, 0x3476cd0e), TOBN(0xa63d0e65, 0xb08d3949), TOBN(0x1a09eea9, 0x53479fc6), TOBN(0x82ae9891, 0xf499e742), TOBN(0xab58b910, 0x5ca7d866), TOBN(0x582967e2, 0x3adb3b34), TOBN(0x89ae4447, 0xcceac0bc), TOBN(0x919c667c, 0x7bf56af5), TOBN(0x9aec17b1, 0x60f5dcd7), TOBN(0xec697b9f, 0xddcaadbc), TOBN(0x0b98f341, 0x463467f5), TOBN(0xb187f1f7, 0xa967132f), TOBN(0x90fe7a1d, 0x214aeb18), TOBN(0x1506af3c, 0x741432f7), TOBN(0xbb5565f9, 0xe591a0c4), TOBN(0x10d41a77, 0xb44f1bc3), TOBN(0xa09d65e4, 0xa84bde96), TOBN(0x42f060d8, 0xf20a6a1c), TOBN(0x652a3bfd, 0xf27f9ce7), TOBN(0xb6bdb65c, 0x3b3d739f), TOBN(0xeb5ddcb6, 0xec7fae9f), TOBN(0x995f2714, 0xefb66e5a), TOBN(0xdee95d8e, 0x69445d52), TOBN(0x1b6c2d46, 0x09e27620), TOBN(0x32621c31, 0x8129d716), TOBN(0xb03909f1, 0x0958c1aa), TOBN(0x8c468ef9, 0x1af4af63), TOBN(0x162c429f, 0xfba5cdf6), TOBN(0x2f682343, 0x753b9371), TOBN(0x29cab45a, 0x5f1f9cd7), TOBN(0x571623ab, 0xb245db96), TOBN(0xc507db09, 0x3fd79999), TOBN(0x4e2ef652, 0xaf036c32), TOBN(0x86f0cc78, 0x05018e5c), TOBN(0xc10a73d4, 0xab8be350), TOBN(0x6519b397, 0x7e826327), TOBN(0xe8cb5eef, 0x9c053df7), TOBN(0x8de25b37, 0xb300ea6f), TOBN(0xdb03fa92, 0xc849cffb), TOBN(0x242e43a7, 0xe84169bb), TOBN(0xe4fa51f4, 0xdd6f958e), TOBN(0x6925a77f, 0xf4445a8d), TOBN(0xe6e72a50, 0xe90d8949), TOBN(0xc66648e3, 0x2b1f6390), TOBN(0xb2ab1957, 0x173e460c), TOBN(0x1bbbce75, 0x30704590), TOBN(0xc0a90dbd, 0xdb1c7162), TOBN(0x505e399e, 0x15cdd65d), TOBN(0x68434dcb, 0x57797ab7), TOBN(0x60ad35ba, 0x6a2ca8e8), TOBN(0x4bfdb1e0, 0xde3336c1), TOBN(0xbbef99eb, 0xd8b39015), TOBN(0x6c3b96f3, 0x1711ebec), TOBN(0x2da40f1f, 0xce98fdc4), TOBN(0xb99774d3, 0x57b4411f), TOBN(0x87c8bdf4, 0x15b65bb6), TOBN(0xda3a89e3, 0xc2eef12d), TOBN(0xde95bb9b, 0x3c7471f3), TOBN(0x600f225b, 0xd812c594), TOBN(0x54907c5d, 0x2b75a56b), TOBN(0xa93cc5f0, 0x8db60e35), TOBN(0x743e3cd6, 0xfa833319), TOBN(0x7dad5c41, 0xf81683c9), TOBN(0x70c1e7d9, 0x9c34107e), TOBN(0x0edc4a39, 0xa6be0907), TOBN(0x36d47035, 0x86d0b7d3), TOBN(0x8c76da03, 0x272bfa60), TOBN(0x0b4a07ea, 0x0f08a414), TOBN(0x699e4d29, 0x45c1dd53), TOBN(0xcadc5898, 0x231debb5), TOBN(0xdf49fcc7, 0xa77f00e0), TOBN(0x93057bbf, 0xa73e5a0e), TOBN(0x2f8b7ecd, 0x027a4cd1), TOBN(0x114734b3, 0xc614011a), TOBN(0xe7a01db7, 0x67677c68), TOBN(0x89d9be5e, 0x7e273f4f), TOBN(0xd225cb2e, 0x089808ef), TOBN(0xf1f7a27d, 0xd59e4107), TOBN(0x53afc761, 0x8211b9c9), TOBN(0x0361bc67, 0xe6819159), TOBN(0x2a865d0b, 0x7f071426), TOBN(0x6a3c1810, 0xe7072567), TOBN(0x3e3bca1e, 0x0d6bcabd), TOBN(0xa1b02bc1, 0x408591bc), TOBN(0xe0deee59, 0x31fba239), TOBN(0xf47424d3, 0x98bd91d1), TOBN(0x0f8886f4, 0x071a3c1d), TOBN(0x3f7d41e8, 0xa819233b), TOBN(0x708623c2, 0xcf6eb998), TOBN(0x86bb49af, 0x609a287f), TOBN(0x942bb249, 0x63c90762), TOBN(0x0ef6eea5, 0x55a9654b), TOBN(0x5f6d2d72, 0x36f5defe), TOBN(0xfa9922dc, 0x56f99176), TOBN(0x6c8c5ece, 0xf78ce0c7), TOBN(0x7b44589d, 0xbe09b55e), TOBN(0xe11b3bca, 0x9ea83770), TOBN(0xd7fa2c7f, 0x2ab71547), TOBN(0x2a3dd6fa, 0x2a1ddcc0), TOBN(0x09acb430, 0x5a7b7707), TOBN(0x4add4a2e, 0x649d4e57), TOBN(0xcd53a2b0, 0x1917526e), TOBN(0xc5262330, 0x20b44ac4), TOBN(0x4028746a, 0xbaa2c31d), TOBN(0x51318390, 0x64291d4c), TOBN(0xbf48f151, 0xee5ad909), TOBN(0xcce57f59, 0x7b185681), TOBN(0x7c3ac1b0, 0x4854d442), TOBN(0x65587dc3, 0xc093c171), TOBN(0xae7acb24, 0x24f42b65), TOBN(0x5a338adb, 0x955996cb), TOBN(0xc8e65675, 0x6051f91b), TOBN(0x66711fba, 0x28b8d0b1), TOBN(0x15d74137, 0xb6c10a90), TOBN(0x70cdd7eb, 0x3a232a80), TOBN(0xc9e2f07f, 0x6191ed24), TOBN(0xa80d1db6, 0xf79588c0), TOBN(0xfa52fc69, 0xb55768cc), TOBN(0x0b4df1ae, 0x7f54438a), TOBN(0x0cadd1a7, 0xf9b46a4f), TOBN(0xb40ea6b3, 0x1803dd6f), TOBN(0x488e4fa5, 0x55eaae35), TOBN(0x9f047d55, 0x382e4e16), TOBN(0xc9b5b7e0, 0x2f6e0c98), TOBN(0x6b1bd2d3, 0x95762649), TOBN(0xa9604ee7, 0xc7aea3f6), TOBN(0x3646ff27, 0x6dc6f896), TOBN(0x9bf0e7f5, 0x2860bad1), TOBN(0x2d92c821, 0x7cb44b92), TOBN(0xa2f5ce63, 0xaea9c182), TOBN(0xd0a2afb1, 0x9154a5fd), TOBN(0x482e474c, 0x95801da6), TOBN(0xc19972d0, 0xb611c24b), TOBN(0x1d468e65, 0x60a8f351), TOBN(0xeb758069, 0x7bcf6421), TOBN(0xec9dd0ee, 0x88fbc491), TOBN(0x5b59d2bf, 0x956c2e32), TOBN(0x73dc6864, 0xdcddf94e), TOBN(0xfd5e2321, 0xbcee7665), TOBN(0xa7b4f8ef, 0x5e9a06c4), TOBN(0xfba918dd, 0x7280f855), TOBN(0xbbaac260, 0x8baec688), TOBN(0xa3b3f00f, 0x33400f42), TOBN(0x3d2dba29, 0x66f2e6e4), TOBN(0xb6f71a94, 0x98509375), TOBN(0x8f33031f, 0xcea423cc), TOBN(0x009b8dd0, 0x4807e6fb), TOBN(0x5163cfe5, 0x5cdb954c), TOBN(0x03cc8f17, 0xcf41c6e8), TOBN(0xf1f03c2a, 0x037b925c), TOBN(0xc39c19cc, 0x66d2427c), TOBN(0x823d24ba, 0x7b6c18e4), TOBN(0x32ef9013, 0x901f0b4f), TOBN(0x684360f1, 0xf8941c2e), TOBN(0x0ebaff52, 0x2c28092e), TOBN(0x7891e4e3, 0x256c932f), TOBN(0x51264319, 0xac445e3d), TOBN(0x553432e7, 0x8ea74381), TOBN(0xe6eeaa69, 0x67e9c50a), TOBN(0x27ced284, 0x62e628c7), TOBN(0x3f96d375, 0x7a4afa57), TOBN(0xde0a14c3, 0xe484c150), TOBN(0x364a24eb, 0x38bd9923), TOBN(0x1df18da0, 0xe5177422), TOBN(0x174e8f82, 0xd8d38a9b), TOBN(0x2e97c600, 0xe7de1391), TOBN(0xc5709850, 0xa1c175dd), TOBN(0x969041a0, 0x32ae5035), TOBN(0xcbfd533b, 0x76a2086b), TOBN(0xd6bba71b, 0xd7c2e8fe), TOBN(0xb2d58ee6, 0x099dfb67), TOBN(0x3a8b342d, 0x064a85d9), TOBN(0x3bc07649, 0x522f9be3), TOBN(0x690c075b, 0xdf1f49a8), TOBN(0x80e1aee8, 0x3854ec42), TOBN(0x2a7dbf44, 0x17689dc7), TOBN(0xc004fc0e, 0x3faf4078), TOBN(0xb2f02e9e, 0xdf11862c), TOBN(0xf10a5e0f, 0xa0a1b7b3), TOBN(0x30aca623, 0x8936ec80), TOBN(0xf83cbf05, 0x02f40d9a), TOBN(0x4681c468, 0x2c318a4d), TOBN(0x98575618, 0x0e9c2674), TOBN(0xbe79d046, 0x1847092e), TOBN(0xaf1e480a, 0x78bd01e0), TOBN(0x6dd359e4, 0x72a51db9), TOBN(0x62ce3821, 0xe3afbab6), TOBN(0xc5cee5b6, 0x17733199), TOBN(0xe08b30d4, 0x6ffd9fbb), TOBN(0x6e5bc699, 0x36c610b7), TOBN(0xf343cff2, 0x9ce262cf), TOBN(0xca2e4e35, 0x68b914c1), TOBN(0x011d64c0, 0x16de36c5), TOBN(0xe0b10fdd, 0x42e2b829), TOBN(0x78942981, 0x6685aaf8), TOBN(0xe7511708, 0x230ede97), TOBN(0x671ed8fc, 0x3b922bf8), TOBN(0xe4d8c0a0, 0x4c29b133), TOBN(0x87eb1239, 0x3b6e99c4), TOBN(0xaff3974c, 0x8793beba), TOBN(0x03749405, 0x2c18df9b), TOBN(0xc5c3a293, 0x91007139), TOBN(0x6a77234f, 0xe37a0b95), TOBN(0x02c29a21, 0xb661c96b), TOBN(0xc3aaf1d6, 0x141ecf61), TOBN(0x9195509e, 0x3bb22f53), TOBN(0x29597404, 0x22d51357), TOBN(0x1b083822, 0x537bed60), TOBN(0xcd7d6e35, 0xe07289f0), TOBN(0x1f94c48c, 0x6dd86eff), TOBN(0xc8bb1f82, 0xeb0f9cfa), TOBN(0x9ee0b7e6, 0x1b2eb97d), TOBN(0x5a52fe2e, 0x34d74e31), TOBN(0xa352c310, 0x3bf79ab6), TOBN(0x97ff6c5a, 0xabfeeb8f), TOBN(0xbfbe8fef, 0xf5c97305), TOBN(0xd6081ce6, 0xa7904608), TOBN(0x1f812f3a, 0xc4fca249), TOBN(0x9b24bc9a, 0xb9e5e200), TOBN(0x91022c67, 0x38012ee8), TOBN(0xe83d9c5d, 0x30a713a1), TOBN(0x4876e3f0, 0x84ef0f93), TOBN(0xc9777029, 0xc1fbf928), TOBN(0xef7a6bb3, 0xbce7d2a4), TOBN(0xb8067228, 0xdfa2a659), TOBN(0xd5cd3398, 0xd877a48f), TOBN(0xbea4fd8f, 0x025d0f3f), TOBN(0xd67d2e35, 0x2eae7c2b), TOBN(0x184de7d7, 0xcc5f4394), TOBN(0xb5551b5c, 0x4536e142), TOBN(0x2e89b212, 0xd34aa60a), TOBN(0x14a96fea, 0xf50051d5), TOBN(0x4e21ef74, 0x0d12bb0b), TOBN(0xc522f020, 0x60b9677e), TOBN(0x8b12e467, 0x2df7731d), TOBN(0x39f80382, 0x7b326d31), TOBN(0xdfb8630c, 0x39024a94), TOBN(0xaacb96a8, 0x97319452), TOBN(0xd68a3961, 0xeda3867c), TOBN(0x0c58e2b0, 0x77c4ffca), TOBN(0x3d545d63, 0x4da919fa), TOBN(0xef79b69a, 0xf15e2289), TOBN(0x54bc3d3d, 0x808bab10), TOBN(0xc8ab3007, 0x45f82c37), TOBN(0xc12738b6, 0x7c4a658a), TOBN(0xb3c47639, 0x40e72182), TOBN(0x3b77be46, 0x8798e44f), TOBN(0xdc047df2, 0x17a7f85f), TOBN(0x2439d4c5, 0x5e59d92d), TOBN(0xcedca475, 0xe8e64d8d), TOBN(0xa724cd0d, 0x87ca9b16), TOBN(0x35e4fd59, 0xa5540dfe), TOBN(0xf8c1ff18, 0xe4bcf6b1), TOBN(0x856d6285, 0x295018fa), TOBN(0x433f665c, 0x3263c949), TOBN(0xa6a76dd6, 0xa1f21409), TOBN(0x17d32334, 0xcc7b4f79), TOBN(0xa1d03122, 0x06720e4a), TOBN(0xadb6661d, 0x81d9bed5), TOBN(0xf0d6fb02, 0x11db15d1), TOBN(0x7fd11ad5, 0x1fb747d2), TOBN(0xab50f959, 0x3033762b), TOBN(0x2a7e711b, 0xfbefaf5a), TOBN(0xc7393278, 0x3fef2bbf), TOBN(0xe29fa244, 0x0df6f9be), TOBN(0x9092757b, 0x71efd215), TOBN(0xee60e311, 0x4f3d6fd9), TOBN(0x338542d4, 0x0acfb78b), TOBN(0x44a23f08, 0x38961a0f), TOBN(0x1426eade, 0x986987ca), TOBN(0x36e6ee2e, 0x4a863cc6), TOBN(0x48059420, 0x628b8b79), TOBN(0x30303ad8, 0x7396e1de), TOBN(0x5c8bdc48, 0x38c5aad1), TOBN(0x3e40e11f, 0x5c8f5066), TOBN(0xabd6e768, 0x8d246bbd), TOBN(0x68aa40bb, 0x23330a01), TOBN(0xd23f5ee4, 0xc34eafa0), TOBN(0x3bbee315, 0x5de02c21), TOBN(0x18dd4397, 0xd1d8dd06), TOBN(0x3ba1939a, 0x122d7b44), TOBN(0xe6d3b40a, 0xa33870d6), TOBN(0x8e620f70, 0x1c4fe3f8), TOBN(0xf6bba1a5, 0xd3a50cbf), TOBN(0x4a78bde5, 0xcfc0aee0), TOBN(0x847edc46, 0xc08c50bd), TOBN(0xbaa2439c, 0xad63c9b2), TOBN(0xceb4a728, 0x10fc2acb), TOBN(0xa419e40e, 0x26da033d), TOBN(0x6cc3889d, 0x03e02683), TOBN(0x1cd28559, 0xfdccf725), TOBN(0x0fd7e0f1, 0x8d13d208), TOBN(0x01b9733b, 0x1f0df9d4), TOBN(0x8cc2c5f3, 0xa2b5e4f3), TOBN(0x43053bfa, 0x3a304fd4), TOBN(0x8e87665c, 0x0a9f1aa7), TOBN(0x087f29ec, 0xd73dc965), TOBN(0x15ace455, 0x3e9023db), TOBN(0x2370e309, 0x2bce28b4), TOBN(0xf9723442, 0xb6b1e84a), TOBN(0xbeee662e, 0xb72d9f26), TOBN(0xb19396de, 0xf0e47109), TOBN(0x85b1fa73, 0xe13289d0), TOBN(0x436cf77e, 0x54e58e32), TOBN(0x0ec833b3, 0xe990ef77), TOBN(0x7373e3ed, 0x1b11fc25), TOBN(0xbe0eda87, 0x0fc332ce), TOBN(0xced04970, 0x8d7ea856), TOBN(0xf85ff785, 0x7e977ca0), TOBN(0xb66ee8da, 0xdfdd5d2b), TOBN(0xf5e37950, 0x905af461), TOBN(0x587b9090, 0x966d487c), TOBN(0x6a198a1b, 0x32ba0127), TOBN(0xa7720e07, 0x141615ac), TOBN(0xa23f3499, 0x996ef2f2), TOBN(0xef5f64b4, 0x470bcb3d), TOBN(0xa526a962, 0x92b8c559), TOBN(0x0c14aac0, 0x69740a0f), TOBN(0x0d41a9e3, 0xa6bdc0a5), TOBN(0x97d52106, 0x9c48aef4), TOBN(0xcf16bd30, 0x3e7c253b), TOBN(0xcc834b1a, 0x47fdedc1), TOBN(0x7362c6e5, 0x373aab2e), TOBN(0x264ed85e, 0xc5f590ff), TOBN(0x7a46d9c0, 0x66d41870), TOBN(0xa50c20b1, 0x4787ba09), TOBN(0x185e7e51, 0xe3d44635), TOBN(0xb3b3e080, 0x31e2d8dc), TOBN(0xbed1e558, 0xa179e9d9), TOBN(0x2daa3f79, 0x74a76781), TOBN(0x4372baf2, 0x3a40864f), TOBN(0x46900c54, 0x4fe75cb5), TOBN(0xb95f171e, 0xf76765d0), TOBN(0x4ad726d2, 0x95c87502), TOBN(0x2ec769da, 0x4d7c99bd), TOBN(0x5e2ddd19, 0xc36cdfa8), TOBN(0xc22117fc, 0xa93e6dea), TOBN(0xe8a2583b, 0x93771123), TOBN(0xbe2f6089, 0xfa08a3a2), TOBN(0x4809d5ed, 0x8f0e1112), TOBN(0x3b414aa3, 0xda7a095e), TOBN(0x9049acf1, 0x26f5aadd), TOBN(0x78d46a4d, 0x6be8b84a), TOBN(0xd66b1963, 0xb732b9b3), TOBN(0x5c2ac2a0, 0xde6e9555), TOBN(0xcf52d098, 0xb5bd8770), TOBN(0x15a15fa6, 0x0fd28921), TOBN(0x56ccb81e, 0x8b27536d), TOBN(0x0f0d8ab8, 0x9f4ccbb8), TOBN(0xed5f44d2, 0xdb221729), TOBN(0x43141988, 0x00bed10c), TOBN(0xc94348a4, 0x1d735b8b), TOBN(0x79f3e9c4, 0x29ef8479), TOBN(0x4c13a4e3, 0x614c693f), TOBN(0x32c9af56, 0x8e143a14), TOBN(0xbc517799, 0xe29ac5c4), TOBN(0x05e17992, 0x2774856f), TOBN(0x6e52fb05, 0x6c1bf55f), TOBN(0xaeda4225, 0xe4f19e16), TOBN(0x70f4728a, 0xaf5ccb26), TOBN(0x5d2118d1, 0xb2947f22), TOBN(0xc827ea16, 0x281d6fb9), TOBN(0x8412328d, 0x8cf0eabd), TOBN(0x45ee9fb2, 0x03ef9dcf), TOBN(0x8e700421, 0xbb937d63), TOBN(0xdf8ff2d5, 0xcc4b37a6), TOBN(0xa4c0d5b2, 0x5ced7b68), TOBN(0x6537c1ef, 0xc7308f59), TOBN(0x25ce6a26, 0x3b37f8e8), TOBN(0x170e9a9b, 0xdeebc6ce), TOBN(0xdd037952, 0x8728d72c), TOBN(0x445b0e55, 0x850154bc), TOBN(0x4b7d0e06, 0x83a7337b), TOBN(0x1e3416d4, 0xffecf249), TOBN(0x24840eff, 0x66a2b71f), TOBN(0xd0d9a50a, 0xb37cc26d), TOBN(0xe2198150, 0x6fe28ef7), TOBN(0x3cc5ef16, 0x23324c7f), TOBN(0x220f3455, 0x769b5263), TOBN(0xe2ade2f1, 0xa10bf475), TOBN(0x28cd20fa, 0x458d3671), TOBN(0x1549722c, 0x2dc4847b), TOBN(0x6dd01e55, 0x591941e3), TOBN(0x0e6fbcea, 0x27128ccb), TOBN(0xae1a1e6b, 0x3bef0262), TOBN(0xfa8c472c, 0x8f54e103), TOBN(0x7539c0a8, 0x72c052ec), TOBN(0xd7b27369, 0x5a3490e9), TOBN(0x143fe1f1, 0x71684349), TOBN(0x36b4722e, 0x32e19b97), TOBN(0xdc059227, 0x90980aff), TOBN(0x175c9c88, 0x9e13d674), TOBN(0xa7de5b22, 0x6e6bfdb1), TOBN(0x5ea5b7b2, 0xbedb4b46), TOBN(0xd5570191, 0xd34a6e44), TOBN(0xfcf60d2e, 0xa24ff7e6), TOBN(0x614a392d, 0x677819e1), TOBN(0x7be74c7e, 0xaa5a29e8), TOBN(0xab50fece, 0x63c85f3f), TOBN(0xaca2e2a9, 0x46cab337), TOBN(0x7f700388, 0x122a6fe3), TOBN(0xdb69f703, 0x882a04a8), TOBN(0x9a77935d, 0xcf7aed57), TOBN(0xdf16207c, 0x8d91c86f), TOBN(0x2fca49ab, 0x63ed9998), TOBN(0xa3125c44, 0xa77ddf96), TOBN(0x05dd8a86, 0x24344072), TOBN(0xa023dda2, 0xfec3fb56), TOBN(0x421b41fc, 0x0c743032), TOBN(0x4f2120c1, 0x5e438639), TOBN(0xfb7cae51, 0xc83c1b07), TOBN(0xb2370caa, 0xcac2171a), TOBN(0x2eb2d962, 0x6cc820fb), TOBN(0x59feee5c, 0xb85a44bf), TOBN(0x94620fca, 0x5b6598f0), TOBN(0x6b922cae, 0x7e314051), TOBN(0xff8745ad, 0x106bed4e), TOBN(0x546e71f5, 0xdfa1e9ab), TOBN(0x935c1e48, 0x1ec29487), TOBN(0x9509216c, 0x4d936530), TOBN(0xc7ca3067, 0x85c9a2db), TOBN(0xd6ae5152, 0x6be8606f), TOBN(0x09dbcae6, 0xe14c651d), TOBN(0xc9536e23, 0x9bc32f96), TOBN(0xa90535a9, 0x34521b03), TOBN(0xf39c526c, 0x878756ff), TOBN(0x383172ec, 0x8aedf03c), TOBN(0x20a8075e, 0xefe0c034), TOBN(0xf22f9c62, 0x64026422), TOBN(0x8dd10780, 0x24b9d076), TOBN(0x944c742a, 0x3bef2950), TOBN(0x55b9502e, 0x88a2b00b), TOBN(0xa59e14b4, 0x86a09817), TOBN(0xa39dd3ac, 0x47bb4071), TOBN(0x55137f66, 0x3be0592f), TOBN(0x07fcafd4, 0xc9e63f5b), TOBN(0x963652ee, 0x346eb226), TOBN(0x7dfab085, 0xec2facb7), TOBN(0x273bf2b8, 0x691add26), TOBN(0x30d74540, 0xf2b46c44), TOBN(0x05e8e73e, 0xf2c2d065), TOBN(0xff9b8a00, 0xd42eeac9), TOBN(0x2fcbd205, 0x97209d22), TOBN(0xeb740ffa, 0xde14ea2c), TOBN(0xc71ff913, 0xa8aef518), TOBN(0x7bfc74bb, 0xfff4cfa2), TOBN(0x1716680c, 0xb6b36048), TOBN(0x121b2cce, 0x9ef79af1), TOBN(0xbff3c836, 0xa01eb3d3), TOBN(0x50eb1c6a, 0x5f79077b), TOBN(0xa48c32d6, 0xa004bbcf), TOBN(0x47a59316, 0x7d64f61d), TOBN(0x6068147f, 0x93102016), TOBN(0x12c5f654, 0x94d12576), TOBN(0xefb071a7, 0xc9bc6b91), TOBN(0x7c2da0c5, 0x6e23ea95), TOBN(0xf4fd45b6, 0xd4a1dd5d), TOBN(0x3e7ad9b6, 0x9122b13c), TOBN(0x342ca118, 0xe6f57a48), TOBN(0x1c2e94a7, 0x06f8288f), TOBN(0x99e68f07, 0x5a97d231), TOBN(0x7c80de97, 0x4d838758), TOBN(0xbce0f5d0, 0x05872727), TOBN(0xbe5d95c2, 0x19c4d016), TOBN(0x921d5cb1, 0x9c2492ee), TOBN(0x42192dc1, 0x404d6fb3), TOBN(0x4c84dcd1, 0x32f988d3), TOBN(0xde26d61f, 0xa17b8e85), TOBN(0xc466dcb6, 0x137c7408), TOBN(0x9a38d7b6, 0x36a266da), TOBN(0x7ef5cb06, 0x83bebf1b), TOBN(0xe5cdcbbf, 0x0fd014e3), TOBN(0x30aa376d, 0xf65965a0), TOBN(0x60fe88c2, 0xebb3e95e), TOBN(0x33fd0b61, 0x66ee6f20), TOBN(0x8827dcdb, 0x3f41f0a0), TOBN(0xbf8a9d24, 0x0c56c690), TOBN(0x40265dad, 0xddb7641d), TOBN(0x522b05bf, 0x3a6b662b), TOBN(0x466d1dfe, 0xb1478c9b), TOBN(0xaa616962, 0x1484469b), TOBN(0x0db60549, 0x02df8f9f), TOBN(0xc37bca02, 0x3cb8bf51), TOBN(0x5effe346, 0x21371ce8), TOBN(0xe8f65264, 0xff112c32), TOBN(0x8a9c736d, 0x7b971fb2), TOBN(0xa4f19470, 0x7b75080d), TOBN(0xfc3f2c5a, 0x8839c59b), TOBN(0x1d6c777e, 0x5aeb49c2), TOBN(0xf3db034d, 0xda1addfe), TOBN(0xd76fee5a, 0x5535affc), TOBN(0x0853ac70, 0xb92251fd), TOBN(0x37e3d594, 0x8b2a29d5), TOBN(0x28f1f457, 0x4de00ddb), TOBN(0x8083c1b5, 0xf42c328b), TOBN(0xd8ef1d8f, 0xe493c73b), TOBN(0x96fb6260, 0x41dc61bd), TOBN(0xf74e8a9d, 0x27ee2f8a), TOBN(0x7c605a80, 0x2c946a5d), TOBN(0xeed48d65, 0x3839ccfd), TOBN(0x9894344f, 0x3a29467a), TOBN(0xde81e949, 0xc51eba6d), TOBN(0xdaea066b, 0xa5e5c2f2), TOBN(0x3fc8a614, 0x08c8c7b3), TOBN(0x7adff88f, 0x06d0de9f), TOBN(0xbbc11cf5, 0x3b75ce0a), TOBN(0x9fbb7acc, 0xfbbc87d5), TOBN(0xa1458e26, 0x7badfde2)} , {TOBN(0x1cb43668, 0xe039c256), TOBN(0x5f26fb8b, 0x7c17fd5d), TOBN(0xeee426af, 0x79aa062b), TOBN(0x072002d0, 0xd78fbf04), TOBN(0x4c9ca237, 0xe84fb7e3), TOBN(0xb401d8a1, 0x0c82133d), TOBN(0xaaa52592, 0x6d7e4181), TOBN(0xe9430833, 0x73dbb152), TOBN(0xf92dda31, 0xbe24319a), TOBN(0x03f7d28b, 0xe095a8e7), TOBN(0xa52fe840, 0x98782185), TOBN(0x276ddafe, 0x29c24dbc), TOBN(0x80cd5496, 0x1d7a64eb), TOBN(0xe4360889, 0x7f1dbe42), TOBN(0x2f81a877, 0x8438d2d5), TOBN(0x7e4d52a8, 0x85169036), TOBN(0x19e3d5b1, 0x1d59715d), TOBN(0xc7eaa762, 0xd788983e), TOBN(0xe5a730b0, 0xabf1f248), TOBN(0xfbab8084, 0xfae3fd83), TOBN(0x65e50d21, 0x53765b2f), TOBN(0xbdd4e083, 0xfa127f3d), TOBN(0x9cf3c074, 0x397b1b10), TOBN(0x59f8090c, 0xb1b59fd3), TOBN(0x7b15fd9d, 0x615faa8f), TOBN(0x8fa1eb40, 0x968554ed), TOBN(0x7bb4447e, 0x7aa44882), TOBN(0x2bb2d0d1, 0x029fff32), TOBN(0x075e2a64, 0x6caa6d2f), TOBN(0x8eb879de, 0x22e7351b), TOBN(0xbcd5624e, 0x9a506c62), TOBN(0x218eaef0, 0xa87e24dc), TOBN(0x37e56847, 0x44ddfa35), TOBN(0x9ccfc5c5, 0xdab3f747), TOBN(0x9ac1df3f, 0x1ee96cf4), TOBN(0x0c0571a1, 0x3b480b8f), TOBN(0x2fbeb3d5, 0x4b3a7b3c), TOBN(0x35c03669, 0x5dcdbb99), TOBN(0x52a0f5dc, 0xb2415b3a), TOBN(0xd57759b4, 0x4413ed9a), TOBN(0x1fe647d8, 0x3d30a2c5), TOBN(0x0857f77e, 0xf78a81dc), TOBN(0x11d5a334, 0x131a4a9b), TOBN(0xc0a94af9, 0x29d393f5), TOBN(0xbc3a5c0b, 0xdaa6ec1a), TOBN(0xba9fe493, 0x88d2d7ed), TOBN(0xbb4335b4, 0xbb614797), TOBN(0x991c4d68, 0x72f83533), TOBN(0x53258c28, 0xd2f01cb3), TOBN(0x93d6eaa3, 0xd75db0b1), TOBN(0x419a2b0d, 0xe87d0db4), TOBN(0xa1e48f03, 0xd8fe8493), TOBN(0xf747faf6, 0xc508b23a), TOBN(0xf137571a, 0x35d53549), TOBN(0x9f5e58e2, 0xfcf9b838), TOBN(0xc7186cee, 0xa7fd3cf5), TOBN(0x77b868ce, 0xe978a1d3), TOBN(0xe3a68b33, 0x7ab92d04), TOBN(0x51029794, 0x87a5b862), TOBN(0x5f0606c3, 0x3a61d41d), TOBN(0x2814be27, 0x6f9326f1), TOBN(0x2f521c14, 0xc6fe3c2e), TOBN(0x17464d7d, 0xacdf7351), TOBN(0x10f5f9d3, 0x777f7e44), TOBN(0xce8e616b, 0x269fb37d), TOBN(0xaaf73804, 0x7de62de5), TOBN(0xaba11175, 0x4fdd4153), TOBN(0x515759ba, 0x3770b49b), TOBN(0x8b09ebf8, 0xaa423a61), TOBN(0x592245a1, 0xcd41fb92), TOBN(0x1cba8ec1, 0x9b4c8936), TOBN(0xa87e91e3, 0xaf36710e), TOBN(0x1fd84ce4, 0x3d34a2e3), TOBN(0xee3759ce, 0xb43b5d61), TOBN(0x895bc78c, 0x619186c7), TOBN(0xf19c3809, 0xcbb9725a), TOBN(0xc0be21aa, 0xde744b1f), TOBN(0xa7d222b0, 0x60f8056b), TOBN(0x74be6157, 0xb23efe11), TOBN(0x6fab2b4f, 0x0cd68253), TOBN(0xad33ea5f, 0x4bf1d725), TOBN(0x9c1d8ee2, 0x4f6c950f), TOBN(0x544ee78a, 0xa377af06), TOBN(0x54f489bb, 0x94a113e1), TOBN(0x8f11d634, 0x992fb7e8), TOBN(0x0169a7aa, 0xa2a44347), TOBN(0x1d49d4af, 0x95020e00), TOBN(0x95945722, 0xe08e120b), TOBN(0xb6e33878, 0xa4d32282), TOBN(0xe36e029d, 0x48020ae7), TOBN(0xe05847fb, 0x37a9b750), TOBN(0xf876812c, 0xb29e3819), TOBN(0x84ad138e, 0xd23a17f0), TOBN(0x6d7b4480, 0xf0b3950e), TOBN(0xdfa8aef4, 0x2fd67ae0), TOBN(0x8d3eea24, 0x52333af6), TOBN(0x0d052075, 0xb15d5acc), TOBN(0xc6d9c79f, 0xbd815bc4), TOBN(0x8dcafd88, 0xdfa36cf2), TOBN(0x908ccbe2, 0x38aa9070), TOBN(0x638722c4, 0xba35afce), TOBN(0x5a3da8b0, 0xfd6abf0b), TOBN(0x2dce252c, 0xc9c335c1), TOBN(0x84e7f0de, 0x65aa799b), TOBN(0x2101a522, 0xb99a72cb), TOBN(0x06de6e67, 0x87618016), TOBN(0x5ff8c7cd, 0xe6f3653e), TOBN(0x0a821ab5, 0xc7a6754a), TOBN(0x7e3fa52b, 0x7cb0b5a2), TOBN(0xa7fb121c, 0xc9048790), TOBN(0x1a725020, 0x06ce053a), TOBN(0xb490a31f, 0x04e929b0), TOBN(0xe17be47d, 0x62dd61ad), TOBN(0x781a961c, 0x6be01371), TOBN(0x1063bfd3, 0xdae3cbba), TOBN(0x35647406, 0x7f73c9ba), TOBN(0xf50e957b, 0x2736a129), TOBN(0xa6313702, 0xed13f256), TOBN(0x9436ee65, 0x3a19fcc5), TOBN(0xcf2bdb29, 0xe7a4c8b6), TOBN(0xb06b1244, 0xc5f95cd8), TOBN(0xda8c8af0, 0xf4ab95f4), TOBN(0x1bae59c2, 0xb9e5836d), TOBN(0x07d51e7e, 0x3acffffc), TOBN(0x01e15e6a, 0xc2ccbcda), TOBN(0x3bc1923f, 0x8528c3e0), TOBN(0x43324577, 0xa49fead4), TOBN(0x61a1b884, 0x2aa7a711), TOBN(0xf9a86e08, 0x700230ef), TOBN(0x0af585a1, 0xbd19adf8), TOBN(0x7645f361, 0xf55ad8f2), TOBN(0x6e676223, 0x46c3614c), TOBN(0x23cb257c, 0x4e774d3f), TOBN(0x82a38513, 0xac102d1b), TOBN(0x9bcddd88, 0x7b126aa5), TOBN(0xe716998b, 0xeefd3ee4), TOBN(0x4239d571, 0xfb167583), TOBN(0xdd011c78, 0xd16c8f8a), TOBN(0x271c2895, 0x69a27519), TOBN(0x9ce0a3b7, 0xd2d64b6a), TOBN(0x8c977289, 0xd5ec6738), TOBN(0xa3b49f9a, 0x8840ef6b), TOBN(0x808c14c9, 0x9a453419), TOBN(0x5c00295b, 0x0cf0a2d5), TOBN(0x524414fb, 0x1d4bcc76), TOBN(0xb07691d2, 0x459a88f1), TOBN(0x77f43263, 0xf70d110f), TOBN(0x64ada5e0, 0xb7abf9f3), TOBN(0xafd0f94e, 0x5b544cf5), TOBN(0xb4a13a15, 0xfd2713fe), TOBN(0xb99b7d6e, 0x250c74f4), TOBN(0x097f2f73, 0x20324e45), TOBN(0x994b37d8, 0xaffa8208), TOBN(0xc3c31b0b, 0xdc29aafc), TOBN(0x3da74651, 0x7a3a607f), TOBN(0xd8e1b8c1, 0xfe6955d6), TOBN(0x716e1815, 0xc8418682), TOBN(0x541d487f, 0x7dc91d97), TOBN(0x48a04669, 0xc6996982), TOBN(0xf39cab15, 0x83a6502e), TOBN(0x025801a0, 0xe68db055), TOBN(0xf3569758, 0xba3338d5), TOBN(0xb0c8c0aa, 0xee2afa84), TOBN(0x4f6985d3, 0xfb6562d1), TOBN(0x351f1f15, 0x132ed17a), TOBN(0x510ed0b4, 0xc04365fe), TOBN(0xa3f98138, 0xe5b1f066), TOBN(0xbc9d95d6, 0x32df03dc), TOBN(0xa83ccf6e, 0x19abd09e), TOBN(0x0b4097c1, 0x4ff17edb), TOBN(0x58a5c478, 0xd64a06ce), TOBN(0x2ddcc3fd, 0x544a58fd), TOBN(0xd449503d, 0x9e8153b8), TOBN(0x3324fd02, 0x7774179b), TOBN(0xaf5d47c8, 0xdbd9120c), TOBN(0xeb860162, 0x34fa94db), TOBN(0x5817bdd1, 0x972f07f4), TOBN(0xe5579e2e, 0xd27bbceb), TOBN(0x86847a1f, 0x5f11e5a6), TOBN(0xb39ed255, 0x7c3cf048), TOBN(0xe1076417, 0xa2f62e55), TOBN(0x6b9ab38f, 0x1bcf82a2), TOBN(0x4bb7c319, 0x7aeb29f9), TOBN(0xf6d17da3, 0x17227a46), TOBN(0xab53ddbd, 0x0f968c00), TOBN(0xa03da7ec, 0x000c880b), TOBN(0x7b239624, 0x6a9ad24d), TOBN(0x612c0401, 0x01ec60d0), TOBN(0x70d10493, 0x109f5df1), TOBN(0xfbda4030, 0x80af7550), TOBN(0x30b93f95, 0xc6b9a9b3), TOBN(0x0c74ec71, 0x007d9418), TOBN(0x94175564, 0x6edb951f), TOBN(0x5f4a9d78, 0x7f22c282), TOBN(0xb7870895, 0xb38d1196), TOBN(0xbc593df3, 0xa228ce7c), TOBN(0xc78c5bd4, 0x6af3641a), TOBN(0x7802200b, 0x3d9b3dcc), TOBN(0x0dc73f32, 0x8be33304), TOBN(0x847ed87d, 0x61ffb79a), TOBN(0xf85c974e, 0x6d671192), TOBN(0x1e14100a, 0xde16f60f), TOBN(0x45cb0d5a, 0x95c38797), TOBN(0x18923bba, 0x9b022da4), TOBN(0xef2be899, 0xbbe7e86e), TOBN(0x4a1510ee, 0x216067bf), TOBN(0xd98c8154, 0x84d5ce3e), TOBN(0x1af777f0, 0xf92a2b90), TOBN(0x9fbcb400, 0x4ef65724), TOBN(0x3e04a4c9, 0x3c0ca6fe), TOBN(0xfb3e2cb5, 0x55002994), TOBN(0x1f3a93c5, 0x5363ecab), TOBN(0x1fe00efe, 0x3923555b), TOBN(0x744bedd9, 0x1e1751ea), TOBN(0x3fb2db59, 0x6ab69357), TOBN(0x8dbd7365, 0xf5e6618b), TOBN(0x99d53099, 0xdf1ea40e), TOBN(0xb3f24a0b, 0x57d61e64), TOBN(0xd088a198, 0x596eb812), TOBN(0x22c8361b, 0x5762940b), TOBN(0x66f01f97, 0xf9c0d95c), TOBN(0x88461172, 0x8e43cdae), TOBN(0x11599a7f, 0xb72b15c3), TOBN(0x135a7536, 0x420d95cc), TOBN(0x2dcdf0f7, 0x5f7ae2f6), TOBN(0x15fc6e1d, 0xd7fa6da2), TOBN(0x81ca829a, 0xd1d441b6), TOBN(0x84c10cf8, 0x04a106b6), TOBN(0xa9b26c95, 0xa73fbbd0), TOBN(0x7f24e0cb, 0x4d8f6ee8), TOBN(0x48b45937, 0x1e25a043), TOBN(0xf8a74fca, 0x036f3dfe), TOBN(0x1ed46585, 0xc9f84296), TOBN(0x7fbaa8fb, 0x3bc278b0), TOBN(0xa8e96cd4, 0x6c4fcbd0), TOBN(0x940a1202, 0x73b60a5f), TOBN(0x34aae120, 0x55a4aec8), TOBN(0x550e9a74, 0xdbd742f0), TOBN(0x794456d7, 0x228c68ab), TOBN(0x492f8868, 0xa4e25ec6), TOBN(0x682915ad, 0xb2d8f398), TOBN(0xf13b51cc, 0x5b84c953), TOBN(0xcda90ab8, 0x5bb917d6), TOBN(0x4b615560, 0x4ea3dee1), TOBN(0x578b4e85, 0x0a52c1c8), TOBN(0xeab1a695, 0x20b75fc4), TOBN(0x60c14f3c, 0xaa0bb3c6), TOBN(0x220f448a, 0xb8216094), TOBN(0x4fe7ee31, 0xb0e63d34), TOBN(0xf4600572, 0xa9e54fab), TOBN(0xc0493334, 0xd5e7b5a4), TOBN(0x8589fb92, 0x06d54831), TOBN(0xaa70f5cc, 0x6583553a), TOBN(0x0879094a, 0xe25649e5), TOBN(0xcc904507, 0x10044652), TOBN(0xebb0696d, 0x02541c4f), TOBN(0x5a171fde, 0xb9718710), TOBN(0x38f1bed8, 0xf374a9f5), TOBN(0xc8c582e1, 0xba39bdc1), TOBN(0xfc457b0a, 0x908cc0ce), TOBN(0x9a187fd4, 0x883841e2), TOBN(0x8ec25b39, 0x38725381), TOBN(0x2553ed05, 0x96f84395), TOBN(0x095c7661, 0x6f6c6897), TOBN(0x917ac85c, 0x4bdc5610), TOBN(0xb2885fe4, 0x179eb301), TOBN(0x5fc65547, 0x8b78bdcc), TOBN(0x4a9fc893, 0xe59e4699), TOBN(0xbb7ff0cd, 0x3ce299af), TOBN(0x195be9b3, 0xadf38b20), TOBN(0x6a929c87, 0xd38ddb8f), TOBN(0x55fcc99c, 0xb21a51b9), TOBN(0x2b695b4c, 0x721a4593), TOBN(0xed1e9a15, 0x768eaac2), TOBN(0xfb63d71c, 0x7489f914), TOBN(0xf98ba31c, 0x78118910), TOBN(0x80291373, 0x9b128eb4), TOBN(0x7801214e, 0xd448af4a), TOBN(0xdbd2e22b, 0x55418dd3), TOBN(0xeffb3c0d, 0xd3998242), TOBN(0xdfa6077c, 0xc7bf3827), TOBN(0xf2165bcb, 0x47f8238f), TOBN(0xfe37cf68, 0x8564d554), TOBN(0xe5f825c4, 0x0a81fb98), TOBN(0x43cc4f67, 0xffed4d6f), TOBN(0xbc609578, 0xb50a34b0), TOBN(0x8aa8fcf9, 0x5041faf1), TOBN(0x5659f053, 0x651773b6), TOBN(0xe87582c3, 0x6044d63b), TOBN(0xa6089409, 0x0cdb0ca0), TOBN(0x8c993e0f, 0xbfb2bcf6), TOBN(0xfc64a719, 0x45985cfc), TOBN(0x15c4da80, 0x83dbedba), TOBN(0x804ae112, 0x2be67df7), TOBN(0xda4c9658, 0xa23defde), TOBN(0x12002ddd, 0x5156e0d3), TOBN(0xe68eae89, 0x5dd21b96), TOBN(0x8b99f28b, 0xcf44624d), TOBN(0x0ae00808, 0x1ec8897a), TOBN(0xdd0a9303, 0x6712f76e), TOBN(0x96237522, 0x4e233de4), TOBN(0x192445b1, 0x2b36a8a5), TOBN(0xabf9ff74, 0x023993d9), TOBN(0x21f37bf4, 0x2aad4a8f), TOBN(0x340a4349, 0xf8bd2bbd), TOBN(0x1d902cd9, 0x4868195d), TOBN(0x3d27bbf1, 0xe5fdb6f1), TOBN(0x7a5ab088, 0x124f9f1c), TOBN(0xc466ab06, 0xf7a09e03), TOBN(0x2f8a1977, 0x31f2c123), TOBN(0xda355dc7, 0x041b6657), TOBN(0xcb840d12, 0x8ece2a7c), TOBN(0xb600ad9f, 0x7db32675), TOBN(0x78fea133, 0x07a06f1b), TOBN(0x5d032269, 0xb31f6094), TOBN(0x07753ef5, 0x83ec37aa), TOBN(0x03485aed, 0x9c0bea78), TOBN(0x41bb3989, 0xbc3f4524), TOBN(0x09403761, 0x697f726d), TOBN(0x6109beb3, 0xdf394820), TOBN(0x804111ea, 0x3b6d1145), TOBN(0xb6271ea9, 0xa8582654), TOBN(0x619615e6, 0x24e66562), TOBN(0xa2554945, 0xd7b6ad9c), TOBN(0xd9c4985e, 0x99bfe35f), TOBN(0x9770ccc0, 0x7b51cdf6), TOBN(0x7c327013, 0x92881832), TOBN(0x8777d45f, 0x286b26d1), TOBN(0x9bbeda22, 0xd847999d), TOBN(0x03aa33b6, 0xc3525d32), TOBN(0x4b7b96d4, 0x28a959a1), TOBN(0xbb3786e5, 0x31e5d234), TOBN(0xaeb5d3ce, 0x6961f247), TOBN(0x20aa85af, 0x02f93d3f), TOBN(0x9cd1ad3d, 0xd7a7ae4f), TOBN(0xbf6688f0, 0x781adaa8), TOBN(0xb1b40e86, 0x7469cead), TOBN(0x1904c524, 0x309fca48), TOBN(0x9b7312af, 0x4b54bbc7), TOBN(0xbe24bf8f, 0x593affa2), TOBN(0xbe5e0790, 0xbd98764b), TOBN(0xa0f45f17, 0xa26e299e), TOBN(0x4af0d2c2, 0x6b8fe4c7), TOBN(0xef170db1, 0x8ae8a3e6), TOBN(0x0e8d61a0, 0x29e0ccc1), TOBN(0xcd53e87e, 0x60ad36ca), TOBN(0x328c6623, 0xc8173822), TOBN(0x7ee1767d, 0xa496be55), TOBN(0x89f13259, 0x648945af), TOBN(0x9e45a5fd, 0x25c8009c), TOBN(0xaf2febd9, 0x1f61ab8c), TOBN(0x43f6bc86, 0x8a275385), TOBN(0x87792348, 0xf2142e79), TOBN(0x17d89259, 0xc6e6238a), TOBN(0x7536d2f6, 0x4a839d9b), TOBN(0x1f428fce, 0x76a1fbdc), TOBN(0x1c109601, 0x0db06dfe), TOBN(0xbfc16bc1, 0x50a3a3cc), TOBN(0xf9cbd9ec, 0x9b30f41b), TOBN(0x5b5da0d6, 0x00138cce), TOBN(0xec1d0a48, 0x56ef96a7), TOBN(0xb47eb848, 0x982bf842), TOBN(0x66deae32, 0xec3f700d), TOBN(0x4e43c42c, 0xaa1181e0), TOBN(0xa1d72a31, 0xd1a4aa2a), TOBN(0x440d4668, 0xc004f3ce), TOBN(0x0d6a2d3b, 0x45fe8a7a), TOBN(0x820e52e2, 0xfb128365), TOBN(0x29ac5fcf, 0x25e51b09), TOBN(0x180cd2bf, 0x2023d159), TOBN(0xa9892171, 0xa1ebf90e), TOBN(0xf97c4c87, 0x7c132181), TOBN(0x9f1dc724, 0xc03dbb7e), TOBN(0xae043765, 0x018cbbe4), TOBN(0xfb0b2a36, 0x0767d153), TOBN(0xa8e2f4d6, 0x249cbaeb), TOBN(0x172a5247, 0xd95ea168), TOBN(0x1758fada, 0x2970764a), TOBN(0xac803a51, 0x1d978169), TOBN(0x299cfe2e, 0xde77e01b), TOBN(0x652a1e17, 0xb0a98927), TOBN(0x2e26e1d1, 0x20014495), TOBN(0x7ae0af9f, 0x7175b56a), TOBN(0xc2e22a80, 0xd64b9f95), TOBN(0x4d0ff9fb, 0xd90a060a), TOBN(0x496a27db, 0xbaf38085), TOBN(0x32305401, 0xda776bcf), TOBN(0xb8cdcef6, 0x725f209e), TOBN(0x61ba0f37, 0x436a0bba), TOBN(0x263fa108, 0x76860049), TOBN(0x92beb98e, 0xda3542cf), TOBN(0xa2d4d14a, 0xd5849538), TOBN(0x989b9d68, 0x12e9a1bc), TOBN(0x61d9075c, 0x5f6e3268), TOBN(0x352c6aa9, 0x99ace638), TOBN(0xde4e4a55, 0x920f43ff), TOBN(0xe5e4144a, 0xd673c017), TOBN(0x667417ae, 0x6f6e05ea), TOBN(0x613416ae, 0xdcd1bd56), TOBN(0x5eb36201, 0x86693711), TOBN(0x2d7bc504, 0x3a1aa914), TOBN(0x175a1299, 0x76dc5975), TOBN(0xe900e0f2, 0x3fc8125c), TOBN(0x569ef68c, 0x11198875), TOBN(0x9012db63, 0x63a113b4), TOBN(0xe3bd3f56, 0x98835766), TOBN(0xa5c94a52, 0x76412dea), TOBN(0xad9e2a09, 0xaa735e5c), TOBN(0x405a984c, 0x508b65e9), TOBN(0xbde4a1d1, 0x6df1a0d1), TOBN(0x1a9433a1, 0xdfba80da), TOBN(0xe9192ff9, 0x9440ad2e), TOBN(0x9f649696, 0x5099fe92), TOBN(0x25ddb65c, 0x0b27a54a), TOBN(0x178279dd, 0xc590da61), TOBN(0x5479a999, 0xfbde681a), TOBN(0xd0e84e05, 0x013fe162), TOBN(0xbe11dc92, 0x632d471b), TOBN(0xdf0b0c45, 0xfc0e089f), TOBN(0x04fb15b0, 0x4c144025), TOBN(0xa61d5fc2, 0x13c99927), TOBN(0xa033e9e0, 0x3de2eb35), TOBN(0xf8185d5c, 0xb8dacbb4), TOBN(0x9a88e265, 0x8644549d), TOBN(0xf717af62, 0x54671ff6), TOBN(0x4bd4241b, 0x5fa58603), TOBN(0x06fba40b, 0xe67773c0), TOBN(0xc1d933d2, 0x6a2847e9), TOBN(0xf4f5acf3, 0x689e2c70), TOBN(0x92aab0e7, 0x46bafd31), TOBN(0x798d76aa, 0x3473f6e5), TOBN(0xcc6641db, 0x93141934), TOBN(0xcae27757, 0xd31e535e), TOBN(0x04cc43b6, 0x87c2ee11), TOBN(0x8d1f9675, 0x2e029ffa), TOBN(0xc2150672, 0xe4cc7a2c), TOBN(0x3b03c1e0, 0x8d68b013), TOBN(0xa9d6816f, 0xedf298f3), TOBN(0x1bfbb529, 0xa2804464), TOBN(0x95a52fae, 0x5db22125), TOBN(0x55b32160, 0x0e1cb64e), TOBN(0x004828f6, 0x7e7fc9fe), TOBN(0x13394b82, 0x1bb0fb93), TOBN(0xb6293a2d, 0x35f1a920), TOBN(0xde35ef21, 0xd145d2d9), TOBN(0xbe6225b3, 0xbb8fa603), TOBN(0x00fc8f6b, 0x32cf252d), TOBN(0xa28e52e6, 0x117cf8c2), TOBN(0x9d1dc89b, 0x4c371e6d), TOBN(0xcebe0675, 0x36ef0f28), TOBN(0x5de05d09, 0xa4292f81), TOBN(0xa8303593, 0x353e3083), TOBN(0xa1715b0a, 0x7e37a9bb), TOBN(0x8c56f61e, 0x2b8faec3), TOBN(0x52507431, 0x33c9b102), TOBN(0x0130cefc, 0xa44431f0), TOBN(0x56039fa0, 0xbd865cfb), TOBN(0x4b03e578, 0xbc5f1dd7), TOBN(0x40edf2e4, 0xbabe7224), TOBN(0xc752496d, 0x3a1988f6), TOBN(0xd1572d3b, 0x564beb6b), TOBN(0x0db1d110, 0x39a1c608), TOBN(0x568d1934, 0x16f60126), TOBN(0x05ae9668, 0xf354af33), TOBN(0x19de6d37, 0xc92544f2), TOBN(0xcc084353, 0xa35837d5), TOBN(0xcbb6869c, 0x1a514ece), TOBN(0xb633e728, 0x2e1d1066), TOBN(0xf15dd69f, 0x936c581c), TOBN(0x96e7b8ce, 0x7439c4f9), TOBN(0x5e676f48, 0x2e448a5b), TOBN(0xb2ca7d5b, 0xfd916bbb), TOBN(0xd55a2541, 0xf5024025), TOBN(0x47bc5769, 0xe4c2d937), TOBN(0x7d31b92a, 0x0362189f), TOBN(0x83f3086e, 0xef7816f9), TOBN(0xf9f46d94, 0xb587579a), TOBN(0xec2d22d8, 0x30e76c5f), TOBN(0x27d57461, 0xb000ffcf), TOBN(0xbb7e65f9, 0x364ffc2c), TOBN(0x7c7c9477, 0x6652a220), TOBN(0x61618f89, 0xd696c981), TOBN(0x5021701d, 0x89effff3), TOBN(0xf2c8ff8e, 0x7c314163), TOBN(0x2da413ad, 0x8efb4d3e), TOBN(0x937b5adf, 0xce176d95), TOBN(0x22867d34, 0x2a67d51c), TOBN(0x262b9b10, 0x18eb3ac9), TOBN(0x4e314fe4, 0xc43ff28b), TOBN(0x76476627, 0x6a664e7a), TOBN(0x3e90e40b, 0xb7a565c2), TOBN(0x8588993a, 0xc1acf831), TOBN(0xd7b501d6, 0x8f938829), TOBN(0x996627ee, 0x3edd7d4c), TOBN(0x37d44a62, 0x90cd34c7), TOBN(0xa8327499, 0xf3833e8d), TOBN(0x2e18917d, 0x4bf50353), TOBN(0x85dd726b, 0x556765fb), TOBN(0x54fe65d6, 0x93d5ab66), TOBN(0x3ddbaced, 0x915c25fe), TOBN(0xa799d9a4, 0x12f22e85), TOBN(0xe2a24867, 0x6d06f6bc), TOBN(0xf4f1ee56, 0x43ca1637), TOBN(0xfda2828b, 0x61ece30a), TOBN(0x758c1a3e, 0xa2dee7a6), TOBN(0xdcde2f3c, 0x734b2284), TOBN(0xaba445d2, 0x4eaba6ad), TOBN(0x35aaf668, 0x76cee0a7), TOBN(0x7e0b04a9, 0xe5aa049a), TOBN(0xe74083ad, 0x91103e84), TOBN(0xbeb183ce, 0x40afecc3), TOBN(0x6b89de9f, 0xea043f7a),} , {TOBN(0x0e299d23, 0xfe67ba66), TOBN(0x91450760, 0x93cf2f34), TOBN(0xf45b5ea9, 0x97fcf913), TOBN(0x5be00843, 0x8bd7ddda), TOBN(0x358c3e05, 0xd53ff04d), TOBN(0xbf7ccdc3, 0x5de91ef7), TOBN(0xad684dbf, 0xb69ec1a0), TOBN(0x367e7cf2, 0x801fd997), TOBN(0x0ca1f3b7, 0xb0dc8595), TOBN(0x27de4608, 0x9f1d9f2e), TOBN(0x1af3bf39, 0xbadd82a7), TOBN(0x79356a79, 0x65862448), TOBN(0xc0602345, 0xf5f9a052), TOBN(0x1a8b0f89, 0x139a42f9), TOBN(0xb53eee42, 0x844d40fc), TOBN(0x93b0bfe5, 0x4e5b6368), TOBN(0x5434dd02, 0xc024789c), TOBN(0x90dca9ea, 0x41b57bfc), TOBN(0x8aa898e2, 0x243398df), TOBN(0xf607c834, 0x894a94bb), TOBN(0xbb07be97, 0xc2c99b76), TOBN(0x6576ba67, 0x18c29302), TOBN(0x3d79efcc, 0xe703a88c), TOBN(0xf259ced7, 0xb6a0d106), TOBN(0x0f893a5d, 0xc8de610b), TOBN(0xe8c515fb, 0x67e223ce), TOBN(0x7774bfa6, 0x4ead6dc5), TOBN(0x89d20f95, 0x925c728f), TOBN(0x7a1e0966, 0x098583ce), TOBN(0xa2eedb94, 0x93f2a7d7), TOBN(0x1b282097, 0x4c304d4a), TOBN(0x0842e3da, 0xc077282d), TOBN(0xe4d972a3, 0x3b9e2d7b), TOBN(0x7cc60b27, 0xc48218ff), TOBN(0x8fc70838, 0x84149d91), TOBN(0x5c04346f, 0x2f461ecc), TOBN(0xebe9fdf2, 0x614650a9), TOBN(0x5e35b537, 0xc1f666ac), TOBN(0x645613d1, 0x88babc83), TOBN(0x88cace3a, 0xc5e1c93e), TOBN(0x209ca375, 0x3de92e23), TOBN(0xccb03cc8, 0x5fbbb6e3), TOBN(0xccb90f03, 0xd7b1487e), TOBN(0xfa9c2a38, 0xc710941f), TOBN(0x756c3823, 0x6724ceed), TOBN(0x3a902258, 0x192d0323), TOBN(0xb150e519, 0xea5e038e), TOBN(0xdcba2865, 0xc7427591), TOBN(0xe549237f, 0x78890732), TOBN(0xc443bef9, 0x53fcb4d9), TOBN(0x9884d8a6, 0xeb3480d6), TOBN(0x8a35b6a1, 0x3048b186), TOBN(0xb4e44716, 0x65e9a90a), TOBN(0x45bf380d, 0x653006c0), TOBN(0x8f3f820d, 0x4fe9ae3b), TOBN(0x244a35a0, 0x979a3b71), TOBN(0xa1010e9d, 0x74cd06ff), TOBN(0x9c17c7df, 0xaca3eeac), TOBN(0x74c86cd3, 0x8063aa2b), TOBN(0x8595c4b3, 0x734614ff), TOBN(0xa3de00ca, 0x990f62cc), TOBN(0xd9bed213, 0xca0c3be5), TOBN(0x7886078a, 0xdf8ce9f5), TOBN(0xddb27ce3, 0x5cd44444), TOBN(0xed374a66, 0x58926ddd), TOBN(0x138b2d49, 0x908015b8), TOBN(0x886c6579, 0xde1f7ab8), TOBN(0x888b9aa0, 0xc3020b7a), TOBN(0xd3ec034e, 0x3a96e355), TOBN(0xba65b0b8, 0xf30fbe9a), TOBN(0x064c8e50, 0xff21367a), TOBN(0x1f508ea4, 0x0b04b46e), TOBN(0x98561a49, 0x747c866c), TOBN(0xbbb1e5fe, 0x0518a062), TOBN(0x20ff4e8b, 0xecdc3608), TOBN(0x7f55cded, 0x20184027), TOBN(0x8d73ec95, 0xf38c85f0), TOBN(0x5b589fdf, 0x8bc3b8c3), TOBN(0xbe95dd98, 0x0f12b66f), TOBN(0xf5bd1a09, 0x0e338e01), TOBN(0x65163ae5, 0x5e915918), TOBN(0x6158d6d9, 0x86f8a46b), TOBN(0x8466b538, 0xeeebf99c), TOBN(0xca8761f6, 0xbca477ef), TOBN(0xaf3449c2, 0x9ebbc601), TOBN(0xef3b0f41, 0xe0c3ae2f), TOBN(0xaa6c577d, 0x5de63752), TOBN(0xe9166601, 0x64682a51), TOBN(0x5a3097be, 0xfc15aa1e), TOBN(0x40d12548, 0xb54b0745), TOBN(0x5bad4706, 0x519a5f12), TOBN(0xed03f717, 0xa439dee6), TOBN(0x0794bb6c, 0x4a02c499), TOBN(0xf725083d, 0xcffe71d2), TOBN(0x2cad7519, 0x0f3adcaf), TOBN(0x7f68ea1c, 0x43729310), TOBN(0xe747c8c7, 0xb7ffd977), TOBN(0xec104c35, 0x80761a22), TOBN(0x8395ebaf, 0x5a3ffb83), TOBN(0xfb3261f4, 0xe4b63db7), TOBN(0x53544960, 0xd883e544), TOBN(0x13520d70, 0x8cc2eeb8), TOBN(0x08f6337b, 0xd3d65f99), TOBN(0x83997db2, 0x781cf95b), TOBN(0xce6ff106, 0x0dbd2c01), TOBN(0x4f8eea6b, 0x1f9ce934), TOBN(0x546f7c4b, 0x0e993921), TOBN(0x6236a324, 0x5e753fc7), TOBN(0x65a41f84, 0xa16022e9), TOBN(0x0c18d878, 0x43d1dbb2), TOBN(0x73c55640, 0x2d4cef9c), TOBN(0xa0428108, 0x70444c74), TOBN(0x68e4f15e, 0x9afdfb3c), TOBN(0x49a56143, 0x5bdfb6df), TOBN(0xa9bc1bd4, 0x5f823d97), TOBN(0xbceb5970, 0xea111c2a), TOBN(0x366b455f, 0xb269bbc4), TOBN(0x7cd85e1e, 0xe9bc5d62), TOBN(0xc743c41c, 0x4f18b086), TOBN(0xa4b40990, 0x95294fb9), TOBN(0x9c7c581d, 0x26ee8382), TOBN(0xcf17dcc5, 0x359d638e), TOBN(0xee8273ab, 0xb728ae3d), TOBN(0x1d112926, 0xf821f047), TOBN(0x11498477, 0x50491a74), TOBN(0x687fa761, 0xfde0dfb9), TOBN(0x2c258022, 0x7ea435ab), TOBN(0x6b8bdb94, 0x91ce7e3f), TOBN(0x4c5b5dc9, 0x3bf834aa), TOBN(0x04371819, 0x4f6c7e4b), TOBN(0xc284e00a, 0x3736bcad), TOBN(0x0d881118, 0x21ae8f8d), TOBN(0xf9cf0f82, 0xf48c8e33), TOBN(0xa11fd075, 0xa1bf40db), TOBN(0xdceab0de, 0xdc2733e5), TOBN(0xc560a8b5, 0x8e986bd7), TOBN(0x48dd1fe2, 0x3929d097), TOBN(0x3885b290, 0x92f188f1), TOBN(0x0f2ae613, 0xda6fcdac), TOBN(0x9054303e, 0xb662a46c), TOBN(0xb6871e44, 0x0738042a), TOBN(0x98e6a977, 0xbdaf6449), TOBN(0xd8bc0650, 0xd1c9df1b), TOBN(0xef3d6451, 0x36e098f9), TOBN(0x03fbae82, 0xb6d72d28), TOBN(0x77ca9db1, 0xf5d84080), TOBN(0x8a112cff, 0xa58efc1c), TOBN(0x518d761c, 0xc564cb4a), TOBN(0x69b5740e, 0xf0d1b5ce), TOBN(0x717039cc, 0xe9eb1785), TOBN(0x3fe29f90, 0x22f53382), TOBN(0x8e54ba56, 0x6bc7c95c), TOBN(0x9c806d8a, 0xf7f91d0f), TOBN(0x3b61b0f1, 0xa82a5728), TOBN(0x4640032d, 0x94d76754), TOBN(0x273eb5de, 0x47d834c6), TOBN(0x2988abf7, 0x7b4e4d53), TOBN(0xb7ce66bf, 0xde401777), TOBN(0x9fba6b32, 0x715071b3), TOBN(0x82413c24, 0xad3a1a98), TOBN(0x5b7fc8c4, 0xe0e8ad93), TOBN(0xb5679aee, 0x5fab868d), TOBN(0xb1f9d2fa, 0x2b3946f3), TOBN(0x458897dc, 0x5685b50a), TOBN(0x1e98c930, 0x89d0caf3), TOBN(0x39564c5f, 0x78642e92), TOBN(0x1b77729a, 0x0dbdaf18), TOBN(0xf9170722, 0x579e82e6), TOBN(0x680c0317, 0xe4515fa5), TOBN(0xf85cff84, 0xfb0c790f), TOBN(0xc7a82aab, 0x6d2e0765), TOBN(0x7446bca9, 0x35c82b32), TOBN(0x5de607aa, 0x6d63184f), TOBN(0x7c1a46a8, 0x262803a6), TOBN(0xd218313d, 0xaebe8035), TOBN(0x92113ffd, 0xc73c51f8), TOBN(0x4b38e083, 0x12e7e46c), TOBN(0x69d0a37a, 0x56126bd5), TOBN(0xfb3f324b, 0x73c07e04), TOBN(0xa0c22f67, 0x8fda7267), TOBN(0x8f2c0051, 0x4d2c7d8f), TOBN(0xbc45ced3, 0xcbe2cae5), TOBN(0xe1c6cf07, 0xa8f0f277), TOBN(0xbc392312, 0x1eb99a98), TOBN(0x75537b7e, 0x3cc8ac85), TOBN(0x8d725f57, 0xdd02753b), TOBN(0xfd05ff64, 0xb737df2f), TOBN(0x55fe8712, 0xf6d2531d), TOBN(0x57ce04a9, 0x6ab6b01c), TOBN(0x69a02a89, 0x7cd93724), TOBN(0x4f82ac35, 0xcf86699b), TOBN(0x8242d3ad, 0x9cb4b232), TOBN(0x713d0f65, 0xd62105e5), TOBN(0xbb222bfa, 0x2d29be61), TOBN(0xf2f9a79e, 0x6cfbef09), TOBN(0xfc24d8d3, 0xd5d6782f), TOBN(0x5db77085, 0xd4129967), TOBN(0xdb81c3cc, 0xdc3c2a43), TOBN(0x9d655fc0, 0x05d8d9a3), TOBN(0x3f5d057a, 0x54298026), TOBN(0x1157f56d, 0x88c54694), TOBN(0xb26baba5, 0x9b09573e), TOBN(0x2cab03b0, 0x22adffd1), TOBN(0x60a412c8, 0xdd69f383), TOBN(0xed76e98b, 0x54b25039), TOBN(0xd4ee67d3, 0x687e714d), TOBN(0x87739648, 0x7b00b594), TOBN(0xce419775, 0xc9ef709b), TOBN(0x40f76f85, 0x1c203a40), TOBN(0x30d352d6, 0xeafd8f91), TOBN(0xaf196d3d, 0x95578dd2), TOBN(0xea4bb3d7, 0x77cc3f3d), TOBN(0x42a5bd03, 0xb98e782b), TOBN(0xac958c40, 0x0624920d), TOBN(0xb838134c, 0xfc56fcc8), TOBN(0x86ec4ccf, 0x89572e5e), TOBN(0x69c43526, 0x9be47be0), TOBN(0x323b7dd8, 0xcb28fea1), TOBN(0xfa5538ba, 0x3a6c67e5), TOBN(0xef921d70, 0x1d378e46), TOBN(0xf92961fc, 0x3c4b880e), TOBN(0x3f6f914e, 0x98940a67), TOBN(0xa990eb0a, 0xfef0ff39), TOBN(0xa6c2920f, 0xf0eeff9c), TOBN(0xca804166, 0x51b8d9a3), TOBN(0x42531bc9, 0x0ffb0db1), TOBN(0x72ce4718, 0xaa82e7ce), TOBN(0x6e199913, 0xdf574741), TOBN(0xd5f1b13d, 0xd5d36946), TOBN(0x8255dc65, 0xf68f0194), TOBN(0xdc9df4cd, 0x8710d230), TOBN(0x3453c20f, 0x138c1988), TOBN(0x9af98dc0, 0x89a6ef01), TOBN(0x4dbcc3f0, 0x9857df85), TOBN(0x34805601, 0x5c1ad924), TOBN(0x40448da5, 0xd0493046), TOBN(0xf629926d, 0x4ee343e2), TOBN(0x6343f1bd, 0x90e8a301), TOBN(0xefc93491, 0x40815b3f), TOBN(0xf882a423, 0xde8f66fb), TOBN(0x3a12d5f4, 0xe7db9f57), TOBN(0x7dfba38a, 0x3c384c27), TOBN(0x7a904bfd, 0x6fc660b1), TOBN(0xeb6c5db3, 0x2773b21c), TOBN(0xc350ee66, 0x1cdfe049), TOBN(0x9baac0ce, 0x44540f29), TOBN(0xbc57b6ab, 0xa5ec6aad), TOBN(0x167ce8c3, 0x0a7c1baa), TOBN(0xb23a03a5, 0x53fb2b56), TOBN(0x6ce141e7, 0x4e057f78), TOBN(0x796525c3, 0x89e490d9), TOBN(0x0bc95725, 0xa31a7e75), TOBN(0x1ec56791, 0x1220fd06), TOBN(0x716e3a3c, 0x408b0bd6), TOBN(0x31cd6bf7, 0xe8ebeba9), TOBN(0xa7326ca6, 0xbee6b670), TOBN(0x3d9f851c, 0xcd090c43), TOBN(0x561e8f13, 0xf12c3988), TOBN(0x50490b6a, 0x904b7be4), TOBN(0x61690ce1, 0x0410737b), TOBN(0x299e9a37, 0x0f009052), TOBN(0x258758f0, 0xf026092e), TOBN(0x9fa255f3, 0xfdfcdc0f), TOBN(0xdbc9fb1f, 0xc0e1bcd2), TOBN(0x35f9dd6e, 0x24651840), TOBN(0xdca45a84, 0xa5c59abc), TOBN(0x103d396f, 0xecca4938), TOBN(0x4532da0a, 0xb97b3f29), TOBN(0xc4135ea5, 0x1999a6bf), TOBN(0x3aa9505a, 0x5e6bf2ee), TOBN(0xf77cef06, 0x3f5be093), TOBN(0x97d1a0f8, 0xa943152e), TOBN(0x2cb0ebba, 0x2e1c21dd), TOBN(0xf41b29fc, 0x2c6797c4), TOBN(0xc6e17321, 0xb300101f), TOBN(0x4422b0e9, 0xd0d79a89), TOBN(0x49e4901c, 0x92f1bfc4), TOBN(0x06ab1f8f, 0xe1e10ed9), TOBN(0x84d35577, 0xdb2926b8), TOBN(0xca349d39, 0x356e8ec2), TOBN(0x70b63d32, 0x343bf1a9), TOBN(0x8fd3bd28, 0x37d1a6b1), TOBN(0x0454879c, 0x316865b4), TOBN(0xee959ff6, 0xc458efa2), TOBN(0x0461dcf8, 0x9706dc3f), TOBN(0x737db0e2, 0x164e4b2e), TOBN(0x09262680, 0x2f8843c8), TOBN(0x54498bbc, 0x7745e6f6), TOBN(0x359473fa, 0xa29e24af), TOBN(0xfcc3c454, 0x70aa87a1), TOBN(0xfd2c4bf5, 0x00573ace), TOBN(0xb65b514e, 0x28dd1965), TOBN(0xe46ae7cf, 0x2193e393), TOBN(0x60e9a4e1, 0xf5444d97), TOBN(0xe7594e96, 0x00ff38ed), TOBN(0x43d84d2f, 0x0a0e0f02), TOBN(0x8b6db141, 0xee398a21), TOBN(0xb88a56ae, 0xe3bcc5be), TOBN(0x0a1aa52f, 0x373460ea), TOBN(0x20da1a56, 0x160bb19b), TOBN(0xfb54999d, 0x65bf0384), TOBN(0x71a14d24, 0x5d5a180e), TOBN(0xbc44db7b, 0x21737b04), TOBN(0xd84fcb18, 0x01dd8e92), TOBN(0x80de937b, 0xfa44b479), TOBN(0x53505499, 0x5c98fd4f), TOBN(0x1edb12ab, 0x28f08727), TOBN(0x4c58b582, 0xa5f3ef53), TOBN(0xbfb236d8, 0x8327f246), TOBN(0xc3a3bfaa, 0x4d7df320), TOBN(0xecd96c59, 0xb96024f2), TOBN(0xfc293a53, 0x7f4e0433), TOBN(0x5341352b, 0x5acf6e10), TOBN(0xc50343fd, 0xafe652c3), TOBN(0x4af3792d, 0x18577a7f), TOBN(0xe1a4c617, 0xaf16823d), TOBN(0x9b26d0cd, 0x33425d0a), TOBN(0x306399ed, 0x9b7bc47f), TOBN(0x2a792f33, 0x706bb20b), TOBN(0x31219614, 0x98111055), TOBN(0x864ec064, 0x87f5d28b), TOBN(0x11392d91, 0x962277fd), TOBN(0xb5aa7942, 0xbb6aed5f), TOBN(0x080094dc, 0x47e799d9), TOBN(0x4afa588c, 0x208ba19b), TOBN(0xd3e7570f, 0x8512f284), TOBN(0xcbae64e6, 0x02f5799a), TOBN(0xdeebe7ef, 0x514b9492), TOBN(0x30300f98, 0xe5c298ff), TOBN(0x17f561be, 0x3678361f), TOBN(0xf52ff312, 0x98cb9a16), TOBN(0x6233c3bc, 0x5562d490), TOBN(0x7bfa15a1, 0x92e3a2cb), TOBN(0x961bcfd1, 0xe6365119), TOBN(0x3bdd29bf, 0x2c8c53b1), TOBN(0x739704df, 0x822844ba), TOBN(0x7dacfb58, 0x7e7b754b), TOBN(0x23360791, 0xa806c9b9), TOBN(0xe7eb88c9, 0x23504452), TOBN(0x2983e996, 0x852c1783), TOBN(0xdd4ae529, 0x958d881d), TOBN(0x026bae03, 0x262c7b3c), TOBN(0x3a6f9193, 0x960b52d1), TOBN(0xd0980f90, 0x92696cfb), TOBN(0x4c1f428c, 0xd5f30851), TOBN(0x94dfed27, 0x2a4f6630), TOBN(0x4df53772, 0xfc5d48a4), TOBN(0xdd2d5a2f, 0x933260ce), TOBN(0x574115bd, 0xd44cc7a5), TOBN(0x4ba6b20d, 0xbd12533a), TOBN(0x30e93cb8, 0x243057c9), TOBN(0x794c486a, 0x14de320e), TOBN(0xe925d4ce, 0xf21496e4), TOBN(0xf951d198, 0xec696331), TOBN(0x9810e2de, 0x3e8d812f), TOBN(0xd0a47259, 0x389294ab), TOBN(0x513ba2b5, 0x0e3bab66), TOBN(0x462caff5, 0xabad306f), TOBN(0xe2dc6d59, 0xaf04c49e), TOBN(0x1aeb8750, 0xe0b84b0b), TOBN(0xc034f12f, 0x2f7d0ca2), TOBN(0x6d2e8128, 0xe06acf2f), TOBN(0x801f4f83, 0x21facc2f), TOBN(0xa1170c03, 0xf40ef607), TOBN(0xfe0a1d4f, 0x7805a99c), TOBN(0xbde56a36, 0xcc26aba5), TOBN(0x5b1629d0, 0x35531f40), TOBN(0xac212c2b, 0x9afa6108), TOBN(0x30a06bf3, 0x15697be5), TOBN(0x6f0545dc, 0x2c63c7c1), TOBN(0x5d8cb842, 0x7ccdadaf), TOBN(0xd52e379b, 0xac7015bb), TOBN(0xc4f56147, 0xf462c23e), TOBN(0xd44a4298, 0x46bc24b0), TOBN(0xbc73d23a, 0xe2856d4f), TOBN(0x61cedd8c, 0x0832bcdf), TOBN(0x60953556, 0x99f241d7), TOBN(0xee4adbd7, 0x001a349d), TOBN(0x0b35bf6a, 0xaa89e491), TOBN(0x7f0076f4, 0x136f7546), TOBN(0xd19a18ba, 0x9264da3d), TOBN(0x6eb2d2cd, 0x62a7a28b), TOBN(0xcdba941f, 0x8761c971), TOBN(0x1550518b, 0xa3be4a5d), TOBN(0xd0e8e2f0, 0x57d0b70c), TOBN(0xeea8612e, 0xcd133ba3), TOBN(0x814670f0, 0x44416aec), TOBN(0x424db6c3, 0x30775061), TOBN(0xd96039d1, 0x16213fd1), TOBN(0xc61e7fa5, 0x18a3478f), TOBN(0xa805bdcc, 0xcb0c5021), TOBN(0xbdd6f3a8, 0x0cc616dd), TOBN(0x06009667, 0x5d97f7e2), TOBN(0x31db0fc1, 0xaf0bf4b6), TOBN(0x23680ed4, 0x5491627a), TOBN(0xb99a3c66, 0x7d741fb1), TOBN(0xe9bb5f55, 0x36b1ff92), TOBN(0x29738577, 0x512b388d), TOBN(0xdb8a2ce7, 0x50fcf263), TOBN(0x385346d4, 0x6c4f7b47), TOBN(0xbe86c5ef, 0x31631f9e), TOBN(0xbf91da21, 0x03a57a29), TOBN(0xc3b1f796, 0x7b23f821), TOBN(0x0f7d00d2, 0x770db354), TOBN(0x8ffc6c3b, 0xd8fe79da), TOBN(0xcc5e8c40, 0xd525c996), TOBN(0x4640991d, 0xcfff632a), TOBN(0x64d97e8c, 0x67112528), TOBN(0xc232d973, 0x02f1cd1e), TOBN(0xce87eacb, 0x1dd212a4), TOBN(0x6e4c8c73, 0xe69802f7), TOBN(0x12ef0290, 0x1fffddbd), TOBN(0x941ec74e, 0x1bcea6e2), TOBN(0xd0b54024, 0x3cb92cbb), TOBN(0x809fb9d4, 0x7e8f9d05), TOBN(0x3bf16159, 0xf2992aae), TOBN(0xad40f279, 0xf8a7a838), TOBN(0x11aea631, 0x05615660), TOBN(0xbf52e6f1, 0xa01f6fa1), TOBN(0xef046995, 0x3dc2aec9), TOBN(0x785dbec9, 0xd8080711), TOBN(0xe1aec60a, 0x9fdedf76), TOBN(0xece797b5, 0xfa21c126), TOBN(0xc66e898f, 0x05e52732), TOBN(0x39bb69c4, 0x08811fdb), TOBN(0x8bfe1ef8, 0x2fc7f082), TOBN(0xc8e7a393, 0x174f4138), TOBN(0xfba8ad1d, 0xd58d1f98), TOBN(0xbc21d0ce, 0xbfd2fd5b), TOBN(0x0b839a82, 0x6ee60d61), TOBN(0xaacf7658, 0xafd22253), TOBN(0xb526bed8, 0xaae396b3), TOBN(0xccc1bbc2, 0x38564464), TOBN(0x9e3ff947, 0x8c45bc73), TOBN(0xcde9bca3, 0x58188a78), TOBN(0x138b8ee0, 0xd73bf8f7), TOBN(0x5c7e234c, 0x4123c489), TOBN(0x66e69368, 0xfa643297), TOBN(0x0629eeee, 0x39a15fa3), TOBN(0x95fab881, 0xa9e2a927), TOBN(0xb2497007, 0xeafbb1e1), TOBN(0xd75c9ce6, 0xe75b7a93), TOBN(0x3558352d, 0xefb68d78), TOBN(0xa2f26699, 0x223f6396), TOBN(0xeb911ecf, 0xe469b17a), TOBN(0x62545779, 0xe72d3ec2), TOBN(0x8ea47de7, 0x82cb113f), TOBN(0xebe4b086, 0x4e1fa98d), TOBN(0xec2d5ed7, 0x8cdfedb1), TOBN(0xa535c077, 0xfe211a74), TOBN(0x9678109b, 0x11d244c5), TOBN(0xf17c8bfb, 0xbe299a76), TOBN(0xb651412e, 0xfb11fbc4), TOBN(0xea0b5482, 0x94ab3f65), TOBN(0xd8dffd95, 0x0cf78243), TOBN(0x2e719e57, 0xce0361d4), TOBN(0x9007f085, 0x304ddc5b), TOBN(0x095e8c6d, 0x4daba2ea), TOBN(0x5a33cdb4, 0x3f9d28a9), TOBN(0x85b95cd8, 0xe2283003), TOBN(0xbcd6c819, 0xb9744733), TOBN(0x29c5f538, 0xfc7f5783), TOBN(0x6c49b2fa, 0xd59038e4), TOBN(0x68349cc1, 0x3bbe1018), TOBN(0xcc490c1d, 0x21830ee5), TOBN(0x36f9c4ee, 0xe9bfa297), TOBN(0x58fd7294, 0x48de1a94), TOBN(0xaadb13a8, 0x4e8f2cdc), TOBN(0x515eaaa0, 0x81313dba), TOBN(0xc76bb468, 0xc2152dd8), TOBN(0x357f8d75, 0xa653dbf8), TOBN(0xe4d8c4d1, 0xb14ac143), TOBN(0xbdb8e675, 0xb055cb40), TOBN(0x898f8e7b, 0x977b5167), TOBN(0xecc65651, 0xb82fb863), TOBN(0x56544814, 0x6d88f01f), TOBN(0xb0928e95, 0x263a75a9), TOBN(0xcfb6836f, 0x1a22fcda), TOBN(0x651d14db, 0x3f3bd37c), TOBN(0x1d3837fb, 0xb6ad4664), TOBN(0x7c5fb538, 0xff4f94ab), TOBN(0x7243c712, 0x6d7fb8f2), TOBN(0xef13d60c, 0xa85c5287), TOBN(0x18cfb7c7, 0x4bb8dd1b), TOBN(0x82f9bfe6, 0x72908219), TOBN(0x35c4592b, 0x9d5144ab), TOBN(0x52734f37, 0x9cf4b42f), TOBN(0x6bac55e7, 0x8c60ddc4), TOBN(0xb5cd811e, 0x94dea0f6), TOBN(0x259ecae4, 0xe18cc1a3), TOBN(0x6a0e836e, 0x15e660f8), TOBN(0x6c639ea6, 0x0e02bff2), TOBN(0x8721b8cb, 0x7e1026fd), TOBN(0x9e73b50b, 0x63261942), TOBN(0xb8c70974, 0x77f01da3), TOBN(0x1839e6a6, 0x8268f57f), TOBN(0x571b9415, 0x5150b805), TOBN(0x1892389e, 0xf92c7097), TOBN(0x8d69c18e, 0x4a084b95), TOBN(0x7014c512, 0xbe5b495c), TOBN(0x4780db36, 0x1b07523c), TOBN(0x2f6219ce, 0x2c1c64fa), TOBN(0xc38b81b0, 0x602c105a), TOBN(0xab4f4f20, 0x5dc8e360), TOBN(0x20d3c982, 0xcf7d62d2), TOBN(0x1f36e29d, 0x23ba8150), TOBN(0x48ae0bf0, 0x92763f9e), TOBN(0x7a527e6b, 0x1d3a7007), TOBN(0xb4a89097, 0x581a85e3), TOBN(0x1f1a520f, 0xdc158be5), TOBN(0xf98db37d, 0x167d726e), TOBN(0x8802786e, 0x1113e862)} , {TOBN(0xefb2149e, 0x36f09ab0), TOBN(0x03f163ca, 0x4a10bb5b), TOBN(0xd0297045, 0x06e20998), TOBN(0x56f0af00, 0x1b5a3bab), TOBN(0x7af4cfec, 0x70880e0d), TOBN(0x7332a66f, 0xbe3d913f), TOBN(0x32e6c84a, 0x7eceb4bd), TOBN(0xedc4a79a, 0x9c228f55), TOBN(0xc37c7dd0, 0xc55c4496), TOBN(0xa6a96357, 0x25bbabd2), TOBN(0x5b7e63f2, 0xadd7f363), TOBN(0x9dce3782, 0x2e73f1df), TOBN(0xe1e5a16a, 0xb2b91f71), TOBN(0xe4489823, 0x5ba0163c), TOBN(0xf2759c32, 0xf6e515ad), TOBN(0xa5e2f1f8, 0x8615eecf), TOBN(0x74519be7, 0xabded551), TOBN(0x03d358b8, 0xc8b74410), TOBN(0x4d00b10b, 0x0e10d9a9), TOBN(0x6392b0b1, 0x28da52b7), TOBN(0x6744a298, 0x0b75c904), TOBN(0xc305b0ae, 0xa8f7f96c), TOBN(0x042e421d, 0x182cf932), TOBN(0xf6fc5d50, 0x9e4636ca), TOBN(0x795847c9, 0xd64cc78c), TOBN(0x6c50621b, 0x9b6cb27b), TOBN(0x07099bf8, 0xdf8022ab), TOBN(0x48f862eb, 0xc04eda1d), TOBN(0xd12732ed, 0xe1603c16), TOBN(0x19a80e0f, 0x5c9a9450), TOBN(0xe2257f54, 0xb429b4fc), TOBN(0x66d3b2c6, 0x45460515), TOBN(0x6ca4f87e, 0x822e37be), TOBN(0x73f237b4, 0x253bda4e), TOBN(0xf747f3a2, 0x41190aeb), TOBN(0xf06fa36f, 0x804cf284), TOBN(0x0a6bbb6e, 0xfc621c12), TOBN(0x5d624b64, 0x40b80ec6), TOBN(0x4b072425, 0x7ba556f3), TOBN(0x7fa0c354, 0x3e2d20a8), TOBN(0xe921fa31, 0xe3229d41), TOBN(0xa929c652, 0x94531bd4), TOBN(0x84156027, 0xa6d38209), TOBN(0xf3d69f73, 0x6bdb97bd), TOBN(0x8906d19a, 0x16833631), TOBN(0x68a34c2e, 0x03d51be3), TOBN(0xcb59583b, 0x0e511cd8), TOBN(0x99ce6bfd, 0xfdc132a8), TOBN(0x3facdaaa, 0xffcdb463), TOBN(0x658bbc1a, 0x34a38b08), TOBN(0x12a801f8, 0xf1a9078d), TOBN(0x1567bcf9, 0x6ab855de), TOBN(0xe08498e0, 0x3572359b), TOBN(0xcf0353e5, 0x8659e68b), TOBN(0xbb86e9c8, 0x7d23807c), TOBN(0xbc08728d, 0x2198e8a2), TOBN(0x8de2b7bc, 0x453cadd6), TOBN(0x203900a7, 0xbc0bc1f8), TOBN(0xbcd86e47, 0xa6abd3af), TOBN(0x911cac12, 0x8502effb), TOBN(0x2d550242, 0xec965469), TOBN(0x0e9f7692, 0x29e0017e), TOBN(0x633f078f, 0x65979885), TOBN(0xfb87d449, 0x4cf751ef), TOBN(0xe1790e4b, 0xfc25419a), TOBN(0x36467203, 0x4bff3cfd), TOBN(0xc8db6386, 0x25b6e83f), TOBN(0x6cc69f23, 0x6cad6fd2), TOBN(0x0219e45a, 0x6bc68bb9), TOBN(0xe43d79b6, 0x297f7334), TOBN(0x7d445368, 0x465dc97c), TOBN(0x4b9eea32, 0x2a0b949a), TOBN(0x1b96c6ba, 0x6102d021), TOBN(0xeaafac78, 0x2f4461ea), TOBN(0xd4b85c41, 0xc49f19a8), TOBN(0x275c28e4, 0xcf538875), TOBN(0x35451a9d, 0xdd2e54e0), TOBN(0x6991adb5, 0x0605618b), TOBN(0x5b8b4bcd, 0x7b36cd24), TOBN(0x372a4f8c, 0x56f37216), TOBN(0xc890bd73, 0xa6a5da60), TOBN(0x6f083da0, 0xdc4c9ff0), TOBN(0xf4e14d94, 0xf0536e57), TOBN(0xf9ee1eda, 0xaaec8243), TOBN(0x571241ec, 0x8bdcf8e7), TOBN(0xa5db8271, 0x0b041e26), TOBN(0x9a0b9a99, 0xe3fff040), TOBN(0xcaaf21dd, 0x7c271202), TOBN(0xb4e2b2e1, 0x4f0dd2e8), TOBN(0xe77e7c4f, 0x0a377ac7), TOBN(0x69202c3f, 0x0d7a2198), TOBN(0xf759b7ff, 0x28200eb8), TOBN(0xc87526ed, 0xdcfe314e), TOBN(0xeb84c524, 0x53d5cf99), TOBN(0xb1b52ace, 0x515138b6), TOBN(0x5aa7ff8c, 0x23fca3f4), TOBN(0xff0b13c3, 0xb9791a26), TOBN(0x960022da, 0xcdd58b16), TOBN(0xdbd55c92, 0x57aad2de), TOBN(0x3baaaaa3, 0xf30fe619), TOBN(0x9a4b2346, 0x0d881efd), TOBN(0x506416c0, 0x46325e2a), TOBN(0x91381e76, 0x035c18d4), TOBN(0xb3bb68be, 0xf27817b0), TOBN(0x15bfb8bf, 0x5116f937), TOBN(0x7c64a586, 0xc1268943), TOBN(0x71e25cc3, 0x8419a2c8), TOBN(0x9fd6b0c4, 0x8335f463), TOBN(0x4bf0ba3c, 0xe8ee0e0e), TOBN(0x6f6fba60, 0x298c21fa), TOBN(0x57d57b39, 0xae66bee0), TOBN(0x292d5130, 0x22672544), TOBN(0xf451105d, 0xbab093b3), TOBN(0x012f59b9, 0x02839986), TOBN(0x8a915802, 0x3474a89c), TOBN(0x048c919c, 0x2de03e97), TOBN(0xc476a2b5, 0x91071cd5), TOBN(0x791ed89a, 0x034970a5), TOBN(0x89bd9042, 0xe1b7994b), TOBN(0x8eaf5179, 0xa1057ffd), TOBN(0x6066e2a2, 0xd551ee10), TOBN(0x87a8f1d8, 0x727e09a6), TOBN(0x00d08bab, 0x2c01148d), TOBN(0x6da8e4f1, 0x424f33fe), TOBN(0x466d17f0, 0xcf9a4e71), TOBN(0xff502010, 0x3bf5cb19), TOBN(0xdccf97d8, 0xd062ecc0), TOBN(0x80c0d9af, 0x81d80ac4), TOBN(0xe87771d8, 0x033f2876), TOBN(0xb0186ec6, 0x7d5cc3db), TOBN(0x58e8bb80, 0x3bc9bc1d), TOBN(0x4d1395cc, 0x6f6ef60e), TOBN(0xa73c62d6, 0x186244a0), TOBN(0x918e5f23, 0x110a5b53), TOBN(0xed4878ca, 0x741b7eab), TOBN(0x3038d71a, 0xdbe03e51), TOBN(0x840204b7, 0xa93c3246), TOBN(0x21ab6069, 0xa0b9b4cd), TOBN(0xf5fa6e2b, 0xb1d64218), TOBN(0x1de6ad0e, 0xf3d56191), TOBN(0x570aaa88, 0xff1929c7), TOBN(0xc6df4c6b, 0x640e87b5), TOBN(0xde8a74f2, 0xc65f0ccc), TOBN(0x8b972fd5, 0xe6f6cc01), TOBN(0x3fff36b6, 0x0b846531), TOBN(0xba7e45e6, 0x10a5e475), TOBN(0x84a1d10e, 0x4145b6c5), TOBN(0xf1f7f91a, 0x5e046d9d), TOBN(0x0317a692, 0x44de90d7), TOBN(0x951a1d4a, 0xf199c15e), TOBN(0x91f78046, 0xc9d73deb), TOBN(0x74c82828, 0xfab8224f), TOBN(0xaa6778fc, 0xe7560b90), TOBN(0xb4073e61, 0xa7e824ce), TOBN(0xff0d693c, 0xd642eba8), TOBN(0x7ce2e57a, 0x5dccef38), TOBN(0x89c2c789, 0x1df1ad46), TOBN(0x83a06922, 0x098346fd), TOBN(0x2d715d72, 0xda2fc177), TOBN(0x7b6dd71d, 0x85b6cf1d), TOBN(0xc60a6d0a, 0x73fa9cb0), TOBN(0xedd3992e, 0x328bf5a9), TOBN(0xc380ddd0, 0x832c8c82), TOBN(0xd182d410, 0xa2a0bf50), TOBN(0x7d9d7438, 0xd9a528db), TOBN(0xe8b1a0e9, 0xcaf53994), TOBN(0xddd6e5fe, 0x0e19987c), TOBN(0xacb8df03, 0x190b059d), TOBN(0x53703a32, 0x8300129f), TOBN(0x1f637662, 0x68c43bfd), TOBN(0xbcbd1913, 0x00e54051), TOBN(0x812fcc62, 0x7bf5a8c5), TOBN(0x3f969d5f, 0x29fb85da), TOBN(0x72f4e00a, 0x694759e8), TOBN(0x426b6e52, 0x790726b7), TOBN(0x617bbc87, 0x3bdbb209), TOBN(0x511f8bb9, 0x97aee317), TOBN(0x812a4096, 0xe81536a8), TOBN(0x137dfe59, 0x3ac09b9b), TOBN(0x0682238f, 0xba8c9a7a), TOBN(0x7072ead6, 0xaeccb4bd), TOBN(0x6a34e9aa, 0x692ba633), TOBN(0xc82eaec2, 0x6fff9d33), TOBN(0xfb753512, 0x1d4d2b62), TOBN(0x1a0445ff, 0x1d7aadab), TOBN(0x65d38260, 0xd5f6a67c), TOBN(0x6e62fb08, 0x91cfb26f), TOBN(0xef1e0fa5, 0x5c7d91d6), TOBN(0x47e7c7ba, 0x33db72cd), TOBN(0x017cbc09, 0xfa7c74b2), TOBN(0x3c931590, 0xf50a503c), TOBN(0xcac54f60, 0x616baa42), TOBN(0x9b6cd380, 0xb2369f0f), TOBN(0x97d3a70d, 0x23c76151), TOBN(0x5f9dd6fc, 0x9862a9c6), TOBN(0x044c4ab2, 0x12312f51), TOBN(0x035ea0fd, 0x834a2ddc), TOBN(0x49e6b862, 0xcc7b826d), TOBN(0xb03d6883, 0x62fce490), TOBN(0x62f2497a, 0xb37e36e9), TOBN(0x04b005b6, 0xc6458293), TOBN(0x36bb5276, 0xe8d10af7), TOBN(0xacf2dc13, 0x8ee617b8), TOBN(0x470d2d35, 0xb004b3d4), TOBN(0x06790832, 0xfeeb1b77), TOBN(0x2bb75c39, 0x85657f9c), TOBN(0xd70bd4ed, 0xc0f60004), TOBN(0xfe797ecc, 0x219b018b), TOBN(0x9b5bec2a, 0x753aebcc), TOBN(0xdaf9f3dc, 0xc939eca5), TOBN(0xd6bc6833, 0xd095ad09), TOBN(0x98abdd51, 0xdaa4d2fc), TOBN(0xd9840a31, 0x8d168be5), TOBN(0xcf7c10e0, 0x2325a23c), TOBN(0xa5c02aa0, 0x7e6ecfaf), TOBN(0x2462e7e6, 0xb5bfdf18), TOBN(0xab2d8a8b, 0xa0cc3f12), TOBN(0x68dd485d, 0xbc672a29), TOBN(0x72039752, 0x596f2cd3), TOBN(0x5d3eea67, 0xa0cf3d8d), TOBN(0x810a1a81, 0xe6602671), TOBN(0x8f144a40, 0x14026c0c), TOBN(0xbc753a6d, 0x76b50f85), TOBN(0xc4dc21e8, 0x645cd4a4), TOBN(0xc5262dea, 0x521d0378), TOBN(0x802b8e0e, 0x05011c6f), TOBN(0x1ba19cbb, 0x0b4c19ea), TOBN(0x21db64b5, 0xebf0aaec), TOBN(0x1f394ee9, 0x70342f9d), TOBN(0x93a10aee, 0x1bc44a14), TOBN(0xa7eed31b, 0x3efd0baa), TOBN(0x6e7c824e, 0x1d154e65), TOBN(0xee23fa81, 0x9966e7ee), TOBN(0x64ec4aa8, 0x05b7920d), TOBN(0x2d44462d, 0x2d90aad4), TOBN(0xf44dd195, 0xdf277ad5), TOBN(0x8d6471f1, 0xbb46b6a1), TOBN(0x1e65d313, 0xfd885090), TOBN(0x33a800f5, 0x13a977b4), TOBN(0xaca9d721, 0x0797e1ef), TOBN(0x9a5a85a0, 0xfcff6a17), TOBN(0x9970a3f3, 0x1eca7cee), TOBN(0xbb9f0d6b, 0xc9504be3), TOBN(0xe0c504be, 0xadd24ee2), TOBN(0x7e09d956, 0x77fcc2f4), TOBN(0xef1a5227, 0x65bb5fc4), TOBN(0x145d4fb1, 0x8b9286aa), TOBN(0x66fd0c5d, 0x6649028b), TOBN(0x98857ceb, 0x1bf4581c), TOBN(0xe635e186, 0xaca7b166), TOBN(0x278ddd22, 0x659722ac), TOBN(0xa0903c4c, 0x1db68007), TOBN(0x366e4589, 0x48f21402), TOBN(0x31b49c14, 0xb96abda2), TOBN(0x329c4b09, 0xe0403190), TOBN(0x97197ca3, 0xd29f43fe), TOBN(0x8073dd1e, 0x274983d8), TOBN(0xda1a3bde, 0x55717c8f), TOBN(0xfd3d4da2, 0x0361f9d1), TOBN(0x1332d081, 0x4c7de1ce), TOBN(0x9b7ef7a3, 0xaa6d0e10), TOBN(0x17db2e73, 0xf54f1c4a), TOBN(0xaf3dffae, 0x4cd35567), TOBN(0xaaa2f406, 0xe56f4e71), TOBN(0x8966759e, 0x7ace3fc7), TOBN(0x9594eacf, 0x45a8d8c6), TOBN(0x8de3bd8b, 0x91834e0e), TOBN(0xafe4ca53, 0x548c0421), TOBN(0xfdd7e856, 0xe6ee81c6), TOBN(0x8f671beb, 0x6b891a3a), TOBN(0xf7a58f2b, 0xfae63829), TOBN(0x9ab186fb, 0x9c11ac9f), TOBN(0x8d6eb369, 0x10b5be76), TOBN(0x046b7739, 0xfb040bcd), TOBN(0xccb4529f, 0xcb73de88), TOBN(0x1df0fefc, 0xcf26be03), TOBN(0xad7757a6, 0xbcfcd027), TOBN(0xa8786c75, 0xbb3165ca), TOBN(0xe9db1e34, 0x7e99a4d9), TOBN(0x99ee86df, 0xb06c504b), TOBN(0x5b7c2ddd, 0xc15c9f0a), TOBN(0xdf87a734, 0x4295989e), TOBN(0x59ece47c, 0x03d08fda), TOBN(0xb074d3dd, 0xad5fc702), TOBN(0x20407903, 0x51a03776), TOBN(0x2bb1f77b, 0x2a608007), TOBN(0x25c58f4f, 0xe1153185), TOBN(0xe6df62f6, 0x766e6447), TOBN(0xefb3d1be, 0xed51275a), TOBN(0x5de47dc7, 0x2f0f483f), TOBN(0x7932d98e, 0x97c2bedf), TOBN(0xd5c11927, 0x0219f8a1), TOBN(0x9d751200, 0xa73a294e), TOBN(0x5f88434a, 0x9dc20172), TOBN(0xd28d9fd3, 0xa26f506a), TOBN(0xa890cd31, 0x9d1dcd48), TOBN(0x0aebaec1, 0x70f4d3b4), TOBN(0xfd1a1369, 0x0ffc8d00), TOBN(0xb9d9c240, 0x57d57838), TOBN(0x45929d26, 0x68bac361), TOBN(0x5a2cd060, 0x25b15ca6), TOBN(0x4b3c83e1, 0x6e474446), TOBN(0x1aac7578, 0xee1e5134), TOBN(0xa418f5d6, 0xc91e2f41), TOBN(0x6936fc8a, 0x213ed68b), TOBN(0x860ae7ed, 0x510a5224), TOBN(0x63660335, 0xdef09b53), TOBN(0x641b2897, 0xcd79c98d), TOBN(0x29bd38e1, 0x01110f35), TOBN(0x79c26f42, 0x648b1937), TOBN(0x64dae519, 0x9d9164f4), TOBN(0xd85a2310, 0x0265c273), TOBN(0x7173dd5d, 0x4b07e2b1), TOBN(0xd144c4cb, 0x8d9ea221), TOBN(0xe8b04ea4, 0x1105ab14), TOBN(0x92dda542, 0xfe80d8f1), TOBN(0xe9982fa8, 0xcf03dce6), TOBN(0x8b5ea965, 0x1a22cffc), TOBN(0xf7f4ea7f, 0x3fad88c4), TOBN(0x62db773e, 0x6a5ba95c), TOBN(0xd20f02fb, 0x93f24567), TOBN(0xfd46c69a, 0x315257ca), TOBN(0x0ac74cc7, 0x8bcab987), TOBN(0x46f31c01, 0x5ceca2f5), TOBN(0x40aedb59, 0x888b219e), TOBN(0xe50ecc37, 0xe1fccd02), TOBN(0x1bcd9dad, 0x911f816c), TOBN(0x583cc1ec, 0x8db9b00c), TOBN(0xf3cd2e66, 0xa483bf11), TOBN(0xfa08a6f5, 0xb1b2c169), TOBN(0xf375e245, 0x4be9fa28), TOBN(0x99a7ffec, 0x5b6d011f), TOBN(0x6a3ebddb, 0xc4ae62da), TOBN(0x6cea00ae, 0x374aef5d), TOBN(0xab5fb98d, 0x9d4d05bc), TOBN(0x7cba1423, 0xd560f252), TOBN(0x49b2cc21, 0x208490de), TOBN(0x1ca66ec3, 0xbcfb2879), TOBN(0x7f1166b7, 0x1b6fb16f), TOBN(0xfff63e08, 0x65fe5db3), TOBN(0xb8345abe, 0x8b2610be), TOBN(0xb732ed80, 0x39de3df4), TOBN(0x0e24ed50, 0x211c32b4), TOBN(0xd10d8a69, 0x848ff27d), TOBN(0xc1074398, 0xed4de248), TOBN(0xd7cedace, 0x10488927), TOBN(0xa4aa6bf8, 0x85673e13), TOBN(0xb46bae91, 0x6daf30af), TOBN(0x07088472, 0xfcef7ad8), TOBN(0x61151608, 0xd4b35e97), TOBN(0xbcfe8f26, 0xdde29986), TOBN(0xeb84c4c7, 0xd5a34c79), TOBN(0xc1eec55c, 0x164e1214), TOBN(0x891be86d, 0xa147bb03), TOBN(0x9fab4d10, 0x0ba96835), TOBN(0xbf01e9b8, 0xa5c1ae9f), TOBN(0x6b4de139, 0xb186ebc0), TOBN(0xd5c74c26, 0x85b91bca), TOBN(0x5086a99c, 0xc2d93854), TOBN(0xeed62a7b, 0xa7a9dfbc), TOBN(0x8778ed6f, 0x76b7618a), TOBN(0xbff750a5, 0x03b66062), TOBN(0x4cb7be22, 0xb65186db), TOBN(0x369dfbf0, 0xcc3a6d13), TOBN(0xc7dab26c, 0x7191a321), TOBN(0x9edac3f9, 0x40ed718e), TOBN(0xbc142b36, 0xd0cfd183), TOBN(0xc8af82f6, 0x7c991693), TOBN(0xb3d1e4d8, 0x97ce0b2a), TOBN(0xe6d7c87f, 0xc3a55cdf), TOBN(0x35846b95, 0x68b81afe), TOBN(0x018d12af, 0xd3c239d8), TOBN(0x2b2c6208, 0x01206e15), TOBN(0xe0e42453, 0xa3b882c6), TOBN(0x854470a3, 0xa50162d5), TOBN(0x08157478, 0x7017a62a), TOBN(0x18bd3fb4, 0x820357c7), TOBN(0x992039ae, 0x6f1458ad), TOBN(0x9a1df3c5, 0x25b44aa1), TOBN(0x2d780357, 0xed3d5281), TOBN(0x58cf7e4d, 0xc77ad4d4), TOBN(0xd49a7998, 0xf9df4fc4), TOBN(0x4465a8b5, 0x1d71205e), TOBN(0xa0ee0ea6, 0x649254aa), TOBN(0x4b5eeecf, 0xab7bd771), TOBN(0x6c873073, 0x35c262b9), TOBN(0xdc5bd648, 0x3c9d61e7), TOBN(0x233d6d54, 0x321460d2), TOBN(0xd20c5626, 0xfc195bcc), TOBN(0x25445958, 0x04d78b63), TOBN(0xe03fcb3d, 0x17ec8ef3), TOBN(0x54b690d1, 0x46b8f781), TOBN(0x82fa2c8a, 0x21230646), TOBN(0xf51aabb9, 0x084f418c), TOBN(0xff4fbec1, 0x1a30ba43), TOBN(0x6a5acf73, 0x743c9df7), TOBN(0x1da2b357, 0xd635b4d5), TOBN(0xc3de68dd, 0xecd5c1da), TOBN(0xa689080b, 0xd61af0dd), TOBN(0xdea5938a, 0xd665bf99), TOBN(0x0231d71a, 0xfe637294), TOBN(0x01968aa6, 0xa5a81cd8), TOBN(0x11252d50, 0x048e63b5), TOBN(0xc446bc52, 0x6ca007e9), TOBN(0xef8c50a6, 0x96d6134b), TOBN(0x9361fbf5, 0x9e09a05c), TOBN(0xf17f85a6, 0xdca3291a), TOBN(0xb178d548, 0xff251a21), TOBN(0x87f6374b, 0xa4df3915), TOBN(0x566ce1bf, 0x2fd5d608), TOBN(0x425cba4d, 0x7de35102), TOBN(0x6b745f8f, 0x58c5d5e2), TOBN(0x88402af6, 0x63122edf), TOBN(0x3190f9ed, 0x3b989a89), TOBN(0x4ad3d387, 0xebba3156), TOBN(0xef385ad9, 0xc7c469a5), TOBN(0xb08281de, 0x3f642c29), TOBN(0x20be0888, 0x910ffb88), TOBN(0xf353dd4a, 0xd5292546), TOBN(0x3f1627de, 0x8377a262), TOBN(0xa5faa013, 0xeefcd638), TOBN(0x8f3bf626, 0x74cc77c3), TOBN(0x32618f65, 0xa348f55e), TOBN(0x5787c0dc, 0x9fefeb9e), TOBN(0xf1673aa2, 0xd9a23e44), TOBN(0x88dfa993, 0x4e10690d), TOBN(0x1ced1b36, 0x2bf91108), TOBN(0x9193ceca, 0x3af48649), TOBN(0xfb34327d, 0x2d738fc5), TOBN(0x6697b037, 0x975fee6c), TOBN(0x2f485da0, 0xc04079a5), TOBN(0x2cdf5735, 0x2feaa1ac), TOBN(0x76944420, 0xbd55659e), TOBN(0x7973e32b, 0x4376090c), TOBN(0x86bb4fe1, 0x163b591a), TOBN(0x10441aed, 0xc196f0ca), TOBN(0x3b431f4a, 0x045ad915), TOBN(0x6c11b437, 0xa4afacb1), TOBN(0x30b0c7db, 0x71fdbbd8), TOBN(0xb642931f, 0xeda65acd), TOBN(0x4baae6e8, 0x9c92b235), TOBN(0xa73bbd0e, 0x6b3993a1), TOBN(0xd06d60ec, 0x693dd031), TOBN(0x03cab91b, 0x7156881c), TOBN(0xd615862f, 0x1db3574b), TOBN(0x485b0185, 0x64bb061a), TOBN(0x27434988, 0xa0181e06), TOBN(0x2cd61ad4, 0xc1c0c757), TOBN(0x3effed5a, 0x2ff9f403), TOBN(0x8dc98d8b, 0x62239029), TOBN(0x2206021e, 0x1f17b70d), TOBN(0xafbec0ca, 0xbf510015), TOBN(0x9fed7164, 0x80130dfa), TOBN(0x306dc2b5, 0x8a02dcf5), TOBN(0x48f06620, 0xfeb10fc0), TOBN(0x78d1e1d5, 0x5a57cf51), TOBN(0xadef8c5a, 0x192ef710), TOBN(0x88afbd4b, 0x3b7431f9), TOBN(0x7e1f7407, 0x64250c9e), TOBN(0x6e31318d, 0xb58bec07), TOBN(0xfd4fc4b8, 0x24f89b4e), TOBN(0x65a5dd88, 0x48c36a2a), TOBN(0x4f1eccff, 0xf024baa7), TOBN(0x22a21cf2, 0xcba94650), TOBN(0x95d29dee, 0x42a554f7), TOBN(0x828983a5, 0x002ec4ba), TOBN(0x8112a1f7, 0x8badb73d), TOBN(0x79ea8897, 0xa27c1839), TOBN(0x8969a5a7, 0xd065fd83), TOBN(0xf49af791, 0xb262a0bc), TOBN(0xfcdea8b6, 0xaf2b5127), TOBN(0x10e913e1, 0x564c2dbc), TOBN(0x51239d14, 0xbc21ef51), TOBN(0xe51c3ceb, 0x4ce57292), TOBN(0x795ff068, 0x47bbcc3b), TOBN(0x86b46e1e, 0xbd7e11e6), TOBN(0x0ea6ba23, 0x80041ef4), TOBN(0xd72fe505, 0x6262342e), TOBN(0x8abc6dfd, 0x31d294d4), TOBN(0xbbe017a2, 0x1278c2c9), TOBN(0xb1fcfa09, 0xb389328a), TOBN(0x322fbc62, 0xd01771b5), TOBN(0x04c0d063, 0x60b045bf), TOBN(0xdb652edc, 0x10e52d01), TOBN(0x50ef932c, 0x03ec6627), TOBN(0xde1b3b2d, 0xc1ee50e3), TOBN(0x5ab7bdc5, 0xdc37a90d), TOBN(0xfea67213, 0x31e33a96), TOBN(0x6482b5cb, 0x4f2999aa), TOBN(0x38476cc6, 0xb8cbf0dd), TOBN(0x93ebfacb, 0x173405bb), TOBN(0x15cdafe7, 0xe52369ec), TOBN(0xd42d5ba4, 0xd935b7db), TOBN(0x648b6004, 0x1c99a4cd), TOBN(0x785101bd, 0xa3b5545b), TOBN(0x4bf2c38a, 0x9dd67faf), TOBN(0xb1aadc63, 0x4442449c), TOBN(0xe0e9921a, 0x33ad4fb8), TOBN(0x5c552313, 0xaa686d82), TOBN(0xdee635fa, 0x465d866c), TOBN(0xbc3c224a, 0x18ee6e8a), TOBN(0xeed748a6, 0xed42e02f), TOBN(0xe70f930a, 0xd474cd08), TOBN(0x774ea6ec, 0xfff24adf), TOBN(0x03e2de1c, 0xf3480d4a), TOBN(0xf0d8edc7, 0xbc8acf1a), TOBN(0xf23e3303, 0x68295a9c), TOBN(0xfadd5f68, 0xc546a97d), TOBN(0x895597ad, 0x96f8acb1), TOBN(0xbddd49d5, 0x671bdae2), TOBN(0x16fcd528, 0x21dd43f4), TOBN(0xa5a45412, 0x6619141a)} , {TOBN(0x8ce9b6bf, 0xc360e25a), TOBN(0xe6425195, 0x075a1a78), TOBN(0x9dc756a8, 0x481732f4), TOBN(0x83c0440f, 0x5432b57a), TOBN(0xc670b3f1, 0xd720281f), TOBN(0x2205910e, 0xd135e051), TOBN(0xded14b0e, 0xdb052be7), TOBN(0x697b3d27, 0xc568ea39), TOBN(0x2e599b9a, 0xfb3ff9ed), TOBN(0x28c2e0ab, 0x17f6515c), TOBN(0x1cbee4fd, 0x474da449), TOBN(0x071279a4, 0x4f364452), TOBN(0x97abff66, 0x01fbe855), TOBN(0x3ee394e8, 0x5fda51c4), TOBN(0x190385f6, 0x67597c0b), TOBN(0x6e9fccc6, 0xa27ee34b), TOBN(0x0b89de93, 0x14092ebb), TOBN(0xf17256bd, 0x428e240c), TOBN(0xcf89a7f3, 0x93d2f064), TOBN(0x4f57841e, 0xe1ed3b14), TOBN(0x4ee14405, 0xe708d855), TOBN(0x856aae72, 0x03f1c3d0), TOBN(0xc8e5424f, 0xbdd7eed5), TOBN(0x3333e4ef, 0x73ab4270), TOBN(0x3bc77ade, 0xdda492f8), TOBN(0xc11a3aea, 0x78297205), TOBN(0x5e89a3e7, 0x34931b4c), TOBN(0x17512e2e, 0x9f5694bb), TOBN(0x5dc349f3, 0x177bf8b6), TOBN(0x232ea4ba, 0x08c7ff3e), TOBN(0x9c4f9d16, 0xf511145d), TOBN(0xccf109a3, 0x33b379c3), TOBN(0xe75e7a88, 0xa1f25897), TOBN(0x7ac6961f, 0xa1b5d4d8), TOBN(0xe3e10773, 0x08f3ed5c), TOBN(0x208a54ec, 0x0a892dfb), TOBN(0xbe826e19, 0x78660710), TOBN(0x0cf70a97, 0x237df2c8), TOBN(0x418a7340, 0xed704da5), TOBN(0xa3eeb9a9, 0x08ca33fd), TOBN(0x49d96233, 0x169bca96), TOBN(0x04d286d4, 0x2da6aafb), TOBN(0xc09606ec, 0xa0c2fa94), TOBN(0x8869d0d5, 0x23ff0fb3), TOBN(0xa99937e5, 0xd0150d65), TOBN(0xa92e2503, 0x240c14c9), TOBN(0x656bf945, 0x108e2d49), TOBN(0x152a733a, 0xa2f59e2b), TOBN(0xb4323d58, 0x8434a920), TOBN(0xc0af8e93, 0x622103c5), TOBN(0x667518ef, 0x938dbf9a), TOBN(0xa1843073, 0x83a9cdf2), TOBN(0x350a94aa, 0x5447ab80), TOBN(0xe5e5a325, 0xc75a3d61), TOBN(0x74ba507f, 0x68411a9e), TOBN(0x10581fc1, 0x594f70c5), TOBN(0x60e28570, 0x80eb24a9), TOBN(0x7bedfb4d, 0x488e0cfd), TOBN(0x721ebbd7, 0xc259cdb8), TOBN(0x0b0da855, 0xbc6390a9), TOBN(0x2b4d04db, 0xde314c70), TOBN(0xcdbf1fbc, 0x6c32e846), TOBN(0x33833eab, 0xb162fc9e), TOBN(0x9939b48b, 0xb0dd3ab7), TOBN(0x5aaa98a7, 0xcb0c9c8c), TOBN(0x75105f30, 0x81c4375c), TOBN(0xceee5057, 0x5ef1c90f), TOBN(0xb31e065f, 0xc23a17bf), TOBN(0x5364d275, 0xd4b6d45a), TOBN(0xd363f3ad, 0x62ec8996), TOBN(0xb5d21239, 0x4391c65b), TOBN(0x84564765, 0xebb41b47), TOBN(0x20d18ecc, 0x37107c78), TOBN(0xacff3b6b, 0x570c2a66), TOBN(0x22f975d9, 0x9bd0d845), TOBN(0xef0a0c46, 0xba178fa0), TOBN(0x1a419651, 0x76b6028e), TOBN(0xc49ec674, 0x248612d4), TOBN(0x5b6ac4f2, 0x7338af55), TOBN(0x06145e62, 0x7bee5a36), TOBN(0x33e95d07, 0xe75746b5), TOBN(0x1c1e1f6d, 0xc40c78be), TOBN(0x967833ef, 0x222ff8e2), TOBN(0x4bedcf6a, 0xb49180ad), TOBN(0x6b37e9c1, 0x3d7a4c8a), TOBN(0x2748887c, 0x6ddfe760), TOBN(0xf7055123, 0xaa3a5bbc), TOBN(0x954ff225, 0x7bbb8e74), TOBN(0xc42b8ab1, 0x97c3dfb9), TOBN(0x55a549b0, 0xcf168154), TOBN(0xad6748e7, 0xc1b50692), TOBN(0x2775780f, 0x6fc5cbcb), TOBN(0x4eab80b8, 0xe1c9d7c8), TOBN(0x8c69dae1, 0x3fdbcd56), TOBN(0x47e6b4fb, 0x9969eace), TOBN(0x002f1085, 0xa705cb5a), TOBN(0x4e23ca44, 0x6d3fea55), TOBN(0xb4ae9c86, 0xf4810568), TOBN(0x47bfb91b, 0x2a62f27d), TOBN(0x60deb4c9, 0xd9bac28c), TOBN(0xa892d894, 0x7de6c34c), TOBN(0x4ee68259, 0x4494587d), TOBN(0x914ee14e, 0x1a3f8a5b), TOBN(0xbb113eaa, 0x28700385), TOBN(0x81ca03b9, 0x2115b4c9), TOBN(0x7c163d38, 0x8908cad1), TOBN(0xc912a118, 0xaa18179a), TOBN(0xe09ed750, 0x886e3081), TOBN(0xa676e3fa, 0x26f516ca), TOBN(0x753cacf7, 0x8e732f91), TOBN(0x51592aea, 0x833da8b4), TOBN(0xc626f42f, 0x4cbea8aa), TOBN(0xef9dc899, 0xa7b56eaf), TOBN(0x00c0e52c, 0x34ef7316), TOBN(0x5b1e4e24, 0xfe818a86), TOBN(0x9d31e20d, 0xc538be47), TOBN(0x22eb932d, 0x3ed68974), TOBN(0xe44bbc08, 0x7c4e87c4), TOBN(0x4121086e, 0x0dde9aef), TOBN(0x8e6b9cff, 0x134f4345), TOBN(0x96892c1f, 0x711b0eb9), TOBN(0xb905f2c8, 0x780ab954), TOBN(0xace26309, 0xa20792db), TOBN(0xec8ac9b3, 0x0684e126), TOBN(0x486ad8b6, 0xb40a2447), TOBN(0x60121fc1, 0x9fe3fb24), TOBN(0x5626fccf, 0x1a8e3b3f), TOBN(0x4e568622, 0x6ad1f394), TOBN(0xda7aae0d, 0x196aa5a1), TOBN(0xe0df8c77, 0x1041b5fb), TOBN(0x451465d9, 0x26b318b7), TOBN(0xc29b6e55, 0x7ab136e9), TOBN(0x2c2ab48b, 0x71148463), TOBN(0xb5738de3, 0x64454a76), TOBN(0x54ccf9a0, 0x5a03abe4), TOBN(0x377c0296, 0x0427d58e), TOBN(0x73f5f0b9, 0x2bb39c1f), TOBN(0x14373f2c, 0xe608d8c5), TOBN(0xdcbfd314, 0x00fbb805), TOBN(0xdf18fb20, 0x83afdcfb), TOBN(0x81a57f42, 0x42b3523f), TOBN(0xe958532d, 0x87f650fb), TOBN(0xaa8dc8b6, 0x8b0a7d7c), TOBN(0x1b75dfb7, 0x150166be), TOBN(0x90e4f7c9, 0x2d7d1413), TOBN(0x67e2d6b5, 0x9834f597), TOBN(0x4fd4f4f9, 0xa808c3e8), TOBN(0xaf8237e0, 0xd5281ec1), TOBN(0x25ab5fdc, 0x84687cee), TOBN(0xc5ded6b1, 0xa5b26c09), TOBN(0x8e4a5aec, 0xc8ea7650), TOBN(0x23b73e5c, 0x14cc417f), TOBN(0x2bfb4318, 0x3037bf52), TOBN(0xb61e6db5, 0x78c725d7), TOBN(0x8efd4060, 0xbbb3e5d7), TOBN(0x2e014701, 0xdbac488e), TOBN(0xac75cf9a, 0x360aa449), TOBN(0xb70cfd05, 0x79634d08), TOBN(0xa591536d, 0xfffb15ef), TOBN(0xb2c37582, 0xd07c106c), TOBN(0xb4293fdc, 0xf50225f9), TOBN(0xc52e175c, 0xb0e12b03), TOBN(0xf649c3ba, 0xd0a8bf64), TOBN(0x745a8fef, 0xeb8ae3c6), TOBN(0x30d7e5a3, 0x58321bc3), TOBN(0xb1732be7, 0x0bc4df48), TOBN(0x1f217993, 0xe9ea5058), TOBN(0xf7a71cde, 0x3e4fd745), TOBN(0x86cc533e, 0x894c5bbb), TOBN(0x6915c7d9, 0x69d83082), TOBN(0xa6aa2d05, 0x5815c244), TOBN(0xaeeee592, 0x49b22ce5), TOBN(0x89e39d13, 0x78135486), TOBN(0x3a275c1f, 0x16b76f2f), TOBN(0xdb6bcc1b, 0xe036e8f5), TOBN(0x4df69b21, 0x5e4709f5), TOBN(0xa188b250, 0x2d0f39aa), TOBN(0x622118bb, 0x15a85947), TOBN(0x2ebf520f, 0xfde0f4fa), TOBN(0xa40e9f29, 0x4860e539), TOBN(0x7b6a51eb, 0x22b57f0f), TOBN(0x849a33b9, 0x7e80644a), TOBN(0x50e5d16f, 0x1cf095fe), TOBN(0xd754b54e, 0xec55f002), TOBN(0x5cfbbb22, 0x236f4a98), TOBN(0x0b0c59e9, 0x066800bb), TOBN(0x4ac69a8f, 0x5a9a7774), TOBN(0x2b33f804, 0xd6bec948), TOBN(0xb3729295, 0x32e6c466), TOBN(0x68956d0f, 0x4e599c73), TOBN(0xa47a249f, 0x155c31cc), TOBN(0x24d80f0d, 0xe1ce284e), TOBN(0xcd821dfb, 0x988baf01), TOBN(0xe6331a7d, 0xdbb16647), TOBN(0x1eb8ad33, 0x094cb960), TOBN(0x593cca38, 0xc91bbca5), TOBN(0x384aac8d, 0x26567456), TOBN(0x40fa0309, 0xc04b6490), TOBN(0x97834cd6, 0xdab6c8f6), TOBN(0x68a7318d, 0x3f91e55f), TOBN(0xa00fd04e, 0xfc4d3157), TOBN(0xb56f8ab2, 0x2bf3bdea), TOBN(0x014f5648, 0x4fa57172), TOBN(0x948c5860, 0x450abdb3), TOBN(0x342b5df0, 0x0ebd4f08), TOBN(0x3e5168cd, 0x0e82938e), TOBN(0x7aedc1ce, 0xb0df5dd0), TOBN(0x6bbbc6d9, 0xe5732516), TOBN(0xc7bfd486, 0x605daaa6), TOBN(0x46fd72b7, 0xbb9a6c9e), TOBN(0xe4847fb1, 0xa124fb89), TOBN(0x75959cbd, 0xa2d8ffbc), TOBN(0x42579f65, 0xc8a588ee), TOBN(0x368c92e6, 0xb80b499d), TOBN(0xea4ef6cd, 0x999a5df1), TOBN(0xaa73bb7f, 0x936fe604), TOBN(0xf347a70d, 0x6457d188), TOBN(0x86eda86b, 0x8b7a388b), TOBN(0xb7cdff06, 0x0ccd6013), TOBN(0xbeb1b6c7, 0xd0053fb2), TOBN(0x0b022387, 0x99240a9f), TOBN(0x1bbb384f, 0x776189b2), TOBN(0x8695e71e, 0x9066193a), TOBN(0x2eb50097, 0x06ffac7e), TOBN(0x0654a9c0, 0x4a7d2caa), TOBN(0x6f3fb3d1, 0xa5aaa290), TOBN(0x835db041, 0xff476e8f), TOBN(0x540b8b0b, 0xc42295e4), TOBN(0xa5c73ac9, 0x05e214f5), TOBN(0x9a74075a, 0x56a0b638), TOBN(0x2e4b1090, 0xce9e680b), TOBN(0x57a5b479, 0x6b8d9afa), TOBN(0x0dca48e7, 0x26bfe65c), TOBN(0x097e391c, 0x7290c307), TOBN(0x683c462e, 0x6669e72e), TOBN(0xf505be1e, 0x062559ac), TOBN(0x5fbe3ea1, 0xe3a3035a), TOBN(0x6431ebf6, 0x9cd50da8), TOBN(0xfd169d5c, 0x1f6407f2), TOBN(0x8d838a95, 0x60fce6b8), TOBN(0x2a2bfa7f, 0x650006f0), TOBN(0xdfd7dad3, 0x50c0fbb2), TOBN(0x92452495, 0xccf9ad96), TOBN(0x183bf494, 0xd95635f9), TOBN(0x02d5df43, 0x4a7bd989), TOBN(0x505385cc, 0xa5431095), TOBN(0xdd98e67d, 0xfd43f53e), TOBN(0xd61e1a6c, 0x500c34a9), TOBN(0x5a4b46c6, 0x4a8a3d62), TOBN(0x8469c4d0, 0x247743d2), TOBN(0x2bb3a13d, 0x88f7e433), TOBN(0x62b23a10, 0x01be5849), TOBN(0xe83596b4, 0xa63d1a4c), TOBN(0x454e7fea, 0x7d183f3e), TOBN(0x643fce61, 0x17afb01c), TOBN(0x4e65e5e6, 0x1c4c3638), TOBN(0x41d85ea1, 0xef74c45b), TOBN(0x2cfbfa66, 0xae328506), TOBN(0x98b078f5, 0x3ada7da9), TOBN(0xd985fe37, 0xec752fbb), TOBN(0xeece68fe, 0x5a0148b4), TOBN(0x6f9a55c7, 0x2d78136d), TOBN(0x232dccc4, 0xd2b729ce), TOBN(0xa27e0dfd, 0x90aafbc4), TOBN(0x96474452, 0x12b4603e), TOBN(0xa876c551, 0x6b706d14), TOBN(0xdf145fcf, 0x69a9d412), TOBN(0xe2ab75b7, 0x2d479c34), TOBN(0x12df9a76, 0x1a23ff97), TOBN(0xc6138992, 0x5d359d10), TOBN(0x6e51c7ae, 0xfa835f22), TOBN(0x69a79cb1, 0xc0fcc4d9), TOBN(0xf57f350d, 0x594cc7e1), TOBN(0x3079ca63, 0x3350ab79), TOBN(0x226fb614, 0x9aff594a), TOBN(0x35afec02, 0x6d59a62b), TOBN(0x9bee46f4, 0x06ed2c6e), TOBN(0x58da1735, 0x7d939a57), TOBN(0x44c50402, 0x8fd1797e), TOBN(0xd8853e7c, 0x5ccea6ca), TOBN(0x4065508d, 0xa35fcd5f), TOBN(0x8965df8c, 0x495ccaeb), TOBN(0x0f2da850, 0x12e1a962), TOBN(0xee471b94, 0xc1cf1cc4), TOBN(0xcef19bc8, 0x0a08fb75), TOBN(0x704958f5, 0x81de3591), TOBN(0x2867f8b2, 0x3aef4f88), TOBN(0x8d749384, 0xea9f9a5f), TOBN(0x1b385537, 0x8c9049f4), TOBN(0x5be948f3, 0x7b92d8b6), TOBN(0xd96f725d, 0xb6e2bd6b), TOBN(0x37a222bc, 0x958c454d), TOBN(0xe7c61abb, 0x8809bf61), TOBN(0x46f07fbc, 0x1346f18d), TOBN(0xfb567a7a, 0xe87c0d1c), TOBN(0x84a461c8, 0x7ef3d07a), TOBN(0x0a5adce6, 0xd9278d98), TOBN(0x24d94813, 0x9dfc73e1), TOBN(0x4f3528b6, 0x054321c3), TOBN(0x2e03fdde, 0x692ea706), TOBN(0x10e60619, 0x47b533c0), TOBN(0x1a8bc73f, 0x2ca3c055), TOBN(0xae58d4b2, 0x1bb62b8f), TOBN(0xb2045a73, 0x584a24e3), TOBN(0x3ab3d5af, 0xbd76e195), TOBN(0x478dd1ad, 0x6938a810), TOBN(0x6ffab393, 0x6ee3d5cb), TOBN(0xdfb693db, 0x22b361e4), TOBN(0xf9694496, 0x51dbf1a7), TOBN(0xcab4b4ef, 0x08a2e762), TOBN(0xe8c92f25, 0xd39bba9a), TOBN(0x850e61bc, 0xf1464d96), TOBN(0xb7e830e3, 0xdc09508b), TOBN(0xfaf6d2cf, 0x74317655), TOBN(0x72606ceb, 0xdf690355), TOBN(0x48bb92b3, 0xd0c3ded6), TOBN(0x65b75484, 0x5c7cf892), TOBN(0xf6cd7ac9, 0xd5d5f01f), TOBN(0xc2c30a59, 0x96401d69), TOBN(0x91268650, 0xed921878), TOBN(0x380bf913, 0xb78c558f), TOBN(0x43c0baeb, 0xc8afdaa9), TOBN(0x377f61d5, 0x54f169d3), TOBN(0xf8da07e3, 0xae5ff20b), TOBN(0xb676c49d, 0xa8a90ea8), TOBN(0x81c1ff2b, 0x83a29b21), TOBN(0x383297ac, 0x2ad8d276), TOBN(0x3001122f, 0xba89f982), TOBN(0xe1d794be, 0x6718e448), TOBN(0x246c1482, 0x7c3e6e13), TOBN(0x56646ef8, 0x5d26b5ef), TOBN(0x80f5091e, 0x88069cdd), TOBN(0xc5992e2f, 0x724bdd38), TOBN(0x02e915b4, 0x8471e8c7), TOBN(0x96ff320a, 0x0d0ff2a9), TOBN(0xbf886487, 0x4384d1a0), TOBN(0xbbe1e6a6, 0xc93f72d6), TOBN(0xd5f75d12, 0xcad800ea), TOBN(0xfa40a09f, 0xe7acf117), TOBN(0x32c8cdd5, 0x7581a355), TOBN(0x74221992, 0x7023c499), TOBN(0xa8afe5d7, 0x38ec3901), TOBN(0x5691afcb, 0xa90e83f0), TOBN(0x41bcaa03, 0x0b8f8eac), TOBN(0xe38b5ff9, 0x8d2668d5), TOBN(0x0715281a, 0x7ad81965), TOBN(0x1bc8fc7c, 0x03c6ce11), TOBN(0xcbbee6e2, 0x8b650436), TOBN(0x06b00fe8, 0x0cdb9808), TOBN(0x17d6e066, 0xfe3ed315), TOBN(0x2e9d38c6, 0x4d0b5018), TOBN(0xab8bfd56, 0x844dcaef), TOBN(0x42894a59, 0x513aed8b), TOBN(0xf77f3b6d, 0x314bd07a), TOBN(0xbbdecb8f, 0x8e42b582), TOBN(0xf10e2fa8, 0xd2390fe6), TOBN(0xefb95022, 0x62a2f201), TOBN(0x4d59ea50, 0x50ee32b0), TOBN(0xd87f7728, 0x6da789a8), TOBN(0xcf98a2cf, 0xf79492c4), TOBN(0xf9577239, 0x720943c2), TOBN(0xba044cf5, 0x3990b9d0), TOBN(0x5aa8e823, 0x95f2884a), TOBN(0x834de6ed, 0x0278a0af), TOBN(0xc8e1ee9a, 0x5f25bd12), TOBN(0x9259ceaa, 0x6f7ab271), TOBN(0x7e6d97a2, 0x77d00b76), TOBN(0x5c0c6eea, 0xa437832a), TOBN(0x5232c20f, 0x5606b81d), TOBN(0xabd7b375, 0x0d991ee5), TOBN(0x4d2bfe35, 0x8632d951), TOBN(0x78f85146, 0x98ed9364), TOBN(0x951873f0, 0xf30c3282), TOBN(0x0da8ac80, 0xa789230b), TOBN(0x3ac7789c, 0x5398967f), TOBN(0xa69b8f7f, 0xbdda0fb5), TOBN(0xe5db7717, 0x6add8545), TOBN(0x1b71cb66, 0x72c49b66), TOBN(0xd8560739, 0x68421d77), TOBN(0x03840fe8, 0x83e3afea), TOBN(0xb391dad5, 0x1ec69977), TOBN(0xae243fb9, 0x307f6726), TOBN(0xc88ac87b, 0xe8ca160c), TOBN(0x5174cced, 0x4ce355f4), TOBN(0x98a35966, 0xe58ba37d), TOBN(0xfdcc8da2, 0x7817335d), TOBN(0x5b752830, 0x83fbc7bf), TOBN(0x68e419d4, 0xd9c96984), TOBN(0x409a39f4, 0x02a40380), TOBN(0x88940faf, 0x1fe977bc), TOBN(0xc640a94b, 0x8f8edea6), TOBN(0x1e22cd17, 0xed11547d), TOBN(0xe28568ce, 0x59ffc3e2), TOBN(0x60aa1b55, 0xc1dee4e7), TOBN(0xc67497c8, 0x837cb363), TOBN(0x06fb438a, 0x105a2bf2), TOBN(0x30357ec4, 0x500d8e20), TOBN(0x1ad9095d, 0x0670db10), TOBN(0x7f589a05, 0xc73b7cfd), TOBN(0xf544607d, 0x880d6d28), TOBN(0x17ba93b1, 0xa20ef103), TOBN(0xad859130, 0x6ba6577b), TOBN(0x65c91cf6, 0x6fa214a0), TOBN(0xd7d49c6c, 0x27990da5), TOBN(0xecd9ec8d, 0x20bb569d), TOBN(0xbd4b2502, 0xeeffbc33), TOBN(0x2056ca5a, 0x6bed0467), TOBN(0x7916a1f7, 0x5b63728c), TOBN(0xd4f9497d, 0x53a4f566), TOBN(0x89734664, 0x97b56810), TOBN(0xf8e1da74, 0x0494a621), TOBN(0x82546a93, 0x8d011c68), TOBN(0x1f3acb19, 0xc61ac162), TOBN(0x52f8fa9c, 0xabad0d3e), TOBN(0x15356523, 0xb4b7ea43), TOBN(0x5a16ad61, 0xae608125), TOBN(0xb0bcb87f, 0x4faed184), TOBN(0x5f236b1d, 0x5029f45f), TOBN(0xd42c7607, 0x0bc6b1fc), TOBN(0xc644324e, 0x68aefce3), TOBN(0x8e191d59, 0x5c5d8446), TOBN(0xc0208077, 0x13ae1979), TOBN(0xadcaee55, 0x3ba59cc7), TOBN(0x20ed6d6b, 0xa2cb81ba), TOBN(0x0952ba19, 0xb6efcffc), TOBN(0x60f12d68, 0x97c0b87c), TOBN(0x4ee2c7c4, 0x9caa30bc), TOBN(0x767238b7, 0x97fbff4e), TOBN(0xebc73921, 0x501b5d92), TOBN(0x3279e3df, 0xc2a37737), TOBN(0x9fc12bc8, 0x6d197543), TOBN(0xfa94dc6f, 0x0a40db4e), TOBN(0x7392b41a, 0x530ccbbd), TOBN(0x87c82146, 0xea823525), TOBN(0xa52f984c, 0x05d98d0c), TOBN(0x2ae57d73, 0x5ef6974c), TOBN(0x9377f7bf, 0x3042a6dd), TOBN(0xb1a007c0, 0x19647a64), TOBN(0xfaa9079a, 0x0cca9767), TOBN(0x3d81a25b, 0xf68f72d5), TOBN(0x752067f8, 0xff81578e), TOBN(0x78622150, 0x9045447d), TOBN(0xc0c22fcf, 0x0505aa6f), TOBN(0x1030f0a6, 0x6bed1c77), TOBN(0x31f29f15, 0x1f0bd739), TOBN(0x2d7989c7, 0xe6debe85), TOBN(0x5c070e72, 0x8e677e98), TOBN(0x0a817bd3, 0x06e81fd5), TOBN(0xc110d830, 0xb0f2ac95), TOBN(0x48d0995a, 0xab20e64e), TOBN(0x0f3e00e1, 0x7729cd9a), TOBN(0x2a570c20, 0xdd556946), TOBN(0x912dbcfd, 0x4e86214d), TOBN(0x2d014ee2, 0xcf615498), TOBN(0x55e2b1e6, 0x3530d76e), TOBN(0xc5135ae4, 0xfd0fd6d1), TOBN(0x0066273a, 0xd4f3049f), TOBN(0xbb8e9893, 0xe7087477), TOBN(0x2dba1ddb, 0x14c6e5fd), TOBN(0xdba37886, 0x51f57e6c), TOBN(0x5aaee0a6, 0x5a72f2cf), TOBN(0x1208bfbf, 0x7bea5642), TOBN(0xf5c6aa3b, 0x67872c37), TOBN(0xd726e083, 0x43f93224), TOBN(0x1854daa5, 0x061f1658), TOBN(0xc0016df1, 0xdf0cd2b3), TOBN(0xc2a3f23e, 0x833d50de), TOBN(0x73b681d2, 0xbbbd3017), TOBN(0x2f046dc4, 0x3ac343c0), TOBN(0x9c847e7d, 0x85716421), TOBN(0xe1e13c91, 0x0917eed4), TOBN(0x3fc9eebd, 0x63a1b9c6), TOBN(0x0f816a72, 0x7fe02299), TOBN(0x6335ccc2, 0x294f3319), TOBN(0x3820179f, 0x4745c5be), TOBN(0xe647b782, 0x922f066e), TOBN(0xc22e49de, 0x02cafb8a), TOBN(0x299bc2ff, 0xfcc2eccc), TOBN(0x9a8feea2, 0x6e0e8282), TOBN(0xa627278b, 0xfe893205), TOBN(0xa7e19733, 0x7933e47b), TOBN(0xf4ff6b13, 0x2e766402), TOBN(0xa4d8be0a, 0x98440d9f), TOBN(0x658f5c2f, 0x38938808), TOBN(0x90b75677, 0xc95b3b3e), TOBN(0xfa044269, 0x3137b6ff), TOBN(0x077b039b, 0x43c47c29), TOBN(0xcca95dd3, 0x8a6445b2), TOBN(0x0b498ba4, 0x2333fc4c), TOBN(0x274f8e68, 0xf736a1b1), TOBN(0x6ca348fd, 0x5f1d4b2e), TOBN(0x24d3be78, 0xa8f10199), TOBN(0x8535f858, 0xca14f530), TOBN(0xa6e7f163, 0x5b982e51), TOBN(0x847c8512, 0x36e1bf62), TOBN(0xf6a7c58e, 0x03448418), TOBN(0x583f3703, 0xf9374ab6), TOBN(0x864f9195, 0x6e564145), TOBN(0x33bc3f48, 0x22526d50), TOBN(0x9f323c80, 0x1262a496), TOBN(0xaa97a7ae, 0x3f046a9a), TOBN(0x70da183e, 0xdf8a039a), TOBN(0x5b68f71c, 0x52aa0ba6), TOBN(0x9be0fe51, 0x21459c2d), TOBN(0xc1e17eb6, 0xcbc613e5), TOBN(0x33131d55, 0x497ea61c), TOBN(0x2f69d39e, 0xaf7eded5), TOBN(0x73c2f434, 0xde6af11b), TOBN(0x4ca52493, 0xa4a375fa), TOBN(0x5f06787c, 0xb833c5c2), TOBN(0x814e091f, 0x3e6e71cf), TOBN(0x76451f57, 0x8b746666)} , {TOBN(0x80f9bdef, 0x694db7e0), TOBN(0xedca8787, 0xb9fcddc6), TOBN(0x51981c34, 0x03b8dce1), TOBN(0x4274dcf1, 0x70e10ba1), TOBN(0xf72743b8, 0x6def6d1a), TOBN(0xd25b1670, 0xebdb1866), TOBN(0xc4491e8c, 0x050c6f58), TOBN(0x2be2b2ab, 0x87fbd7f5), TOBN(0x3e0e5c9d, 0xd111f8ec), TOBN(0xbcc33f8d, 0xb7c4e760), TOBN(0x702f9a91, 0xbd392a51), TOBN(0x7da4a795, 0xc132e92d), TOBN(0x1a0b0ae3, 0x0bb1151b), TOBN(0x54febac8, 0x02e32251), TOBN(0xea3a5082, 0x694e9e78), TOBN(0xe58ffec1, 0xe4fe40b8), TOBN(0xf85592fc, 0xd1e0cf9e), TOBN(0xdea75f0d, 0xc0e7b2e8), TOBN(0xc04215cf, 0xc135584e), TOBN(0x174fc727, 0x2f57092a), TOBN(0xe7277877, 0xeb930bea), TOBN(0x504caccb, 0x5eb02a5a), TOBN(0xf9fe08f7, 0xf5241b9b), TOBN(0xe7fb62f4, 0x8d5ca954), TOBN(0xfbb8349d, 0x29c4120b), TOBN(0x9f94391f, 0xc0d0d915), TOBN(0xc4074fa7, 0x5410ba51), TOBN(0xa66adbf6, 0x150a5911), TOBN(0xc164543c, 0x34bfca38), TOBN(0xe0f27560, 0xb9e1ccfc), TOBN(0x99da0f53, 0xe820219c), TOBN(0xe8234498, 0xc6b4997a), TOBN(0xcfb88b76, 0x9d4c5423), TOBN(0x9e56eb10, 0xb0521c49), TOBN(0x418e0b5e, 0xbe8700a1), TOBN(0x00cbaad6, 0xf93cb58a), TOBN(0xe923fbde, 0xd92a5e67), TOBN(0xca4979ac, 0x1f347f11), TOBN(0x89162d85, 0x6bc0585b), TOBN(0xdd6254af, 0xac3c70e3), TOBN(0x7b23c513, 0x516e19e4), TOBN(0x56e2e847, 0xc5c4d593), TOBN(0x9f727d73, 0x5ce71ef6), TOBN(0x5b6304a6, 0xf79a44c5), TOBN(0x6638a736, 0x3ab7e433), TOBN(0x1adea470, 0xfe742f83), TOBN(0xe054b854, 0x5b7fc19f), TOBN(0xf935381a, 0xba1d0698), TOBN(0x546eab2d, 0x799e9a74), TOBN(0x96239e0e, 0xa949f729), TOBN(0xca274c6b, 0x7090055a), TOBN(0x835142c3, 0x9020c9b0), TOBN(0xa405667a, 0xa2e8807f), TOBN(0x29f2c085, 0x1aa3d39e), TOBN(0xcc555d64, 0x42fc72f5), TOBN(0xe856e0e7, 0xfbeacb3c), TOBN(0xb5504f9d, 0x918e4936), TOBN(0x65035ef6, 0xb2513982), TOBN(0x0553a0c2, 0x6f4d9cb9), TOBN(0x6cb10d56, 0xbea85509), TOBN(0x48d957b7, 0xa242da11), TOBN(0x16a4d3dd, 0x672b7268), TOBN(0x3d7e637c, 0x8502a96b), TOBN(0x27c7032b, 0x730d463b), TOBN(0xbdc02b18, 0xe4136a14), TOBN(0xbacf969d, 0x678e32bf), TOBN(0xc98d89a3, 0xdd9c3c03), TOBN(0x7b92420a, 0x23becc4f), TOBN(0xd4b41f78, 0xc64d565c), TOBN(0x9f969d00, 0x10f28295), TOBN(0xec7f7f76, 0xb13d051a), TOBN(0x08945e1e, 0xa92da585), TOBN(0x55366b7d, 0x5846426f), TOBN(0xe7d09e89, 0x247d441d), TOBN(0x510b404d, 0x736fbf48), TOBN(0x7fa003d0, 0xe784bd7d), TOBN(0x25f7614f, 0x17fd9596), TOBN(0x49e0e0a1, 0x35cb98db), TOBN(0x2c65957b, 0x2e83a76a), TOBN(0x5d40da8d, 0xcddbe0f8), TOBN(0xf2b8c405, 0x050bad24), TOBN(0x8918426d, 0xc2aa4823), TOBN(0x2aeab3dd, 0xa38365a7), TOBN(0x72031717, 0x7c91b690), TOBN(0x8b00d699, 0x60a94120), TOBN(0x478a255d, 0xe99eaeec), TOBN(0xbf656a5f, 0x6f60aafd), TOBN(0xdfd7cb75, 0x5dee77b3), TOBN(0x37f68bb4, 0xa595939d), TOBN(0x03556479, 0x28740217), TOBN(0x8e740e7c, 0x84ad7612), TOBN(0xd89bc843, 0x9044695f), TOBN(0xf7f3da5d, 0x85a9184d), TOBN(0x562563bb, 0x9fc0b074), TOBN(0x06d2e6aa, 0xf88a888e), TOBN(0x612d8643, 0x161fbe7c), TOBN(0x465edba7, 0xf64085e7), TOBN(0xb230f304, 0x29aa8511), TOBN(0x53388426, 0xcda2d188), TOBN(0x90885735, 0x4b666649), TOBN(0x6f02ff9a, 0x652f54f6), TOBN(0x65c82294, 0x5fae2bf0), TOBN(0x7816ade0, 0x62f5eee3), TOBN(0xdcdbdf43, 0xfcc56d70), TOBN(0x9fb3bba3, 0x54530bb2), TOBN(0xbde3ef77, 0xcb0869ea), TOBN(0x89bc9046, 0x0b431163), TOBN(0x4d03d7d2, 0xe4819a35), TOBN(0x33ae4f9e, 0x43b6a782), TOBN(0x216db307, 0x9c88a686), TOBN(0x91dd88e0, 0x00ffedd9), TOBN(0xb280da9f, 0x12bd4840), TOBN(0x32a7cb8a, 0x1635e741), TOBN(0xfe14008a, 0x78be02a7), TOBN(0x3fafb334, 0x1b7ae030), TOBN(0x7fd508e7, 0x5add0ce9), TOBN(0x72c83219, 0xd607ad51), TOBN(0x0f229c0a, 0x8d40964a), TOBN(0x1be2c336, 0x1c878da2), TOBN(0xe0c96742, 0xeab2ab86), TOBN(0x458f8691, 0x3e538cd7), TOBN(0xa7001f6c, 0x8e08ad53), TOBN(0x52b8c6e6, 0xbf5d15ff), TOBN(0x548234a4, 0x011215dd), TOBN(0xff5a9d2d, 0x3d5b4045), TOBN(0xb0ffeeb6, 0x4a904190), TOBN(0x55a3aca4, 0x48607f8b), TOBN(0x8cbd665c, 0x30a0672a), TOBN(0x87f834e0, 0x42583068), TOBN(0x02da2aeb, 0xf3f6e683), TOBN(0x6b763e5d, 0x05c12248), TOBN(0x7230378f, 0x65a8aefc), TOBN(0x93bd80b5, 0x71e8e5ca), TOBN(0x53ab041c, 0xb3b62524), TOBN(0x1b860513, 0x6c9c552e), TOBN(0xe84d402c, 0xd5524e66), TOBN(0xa37f3573, 0xf37f5937), TOBN(0xeb0f6c7d, 0xd1e4fca5), TOBN(0x2965a554, 0xac8ab0fc), TOBN(0x17fbf56c, 0x274676ac), TOBN(0x2e2f6bd9, 0xacf7d720), TOBN(0x41fc8f88, 0x10224766), TOBN(0x517a14b3, 0x85d53bef), TOBN(0xdae327a5, 0x7d76a7d1), TOBN(0x6ad0a065, 0xc4818267), TOBN(0x33aa189b, 0x37c1bbc1), TOBN(0x64970b52, 0x27392a92), TOBN(0x21699a1c, 0x2d1535ea), TOBN(0xcd20779c, 0xc2d7a7fd), TOBN(0xe3186059, 0x99c83cf2), TOBN(0x9b69440b, 0x72c0b8c7), TOBN(0xa81497d7, 0x7b9e0e4d), TOBN(0x515d5c89, 0x1f5f82dc), TOBN(0x9a7f67d7, 0x6361079e), TOBN(0xa8da81e3, 0x11a35330), TOBN(0xe44990c4, 0x4b18be1b), TOBN(0xc7d5ed95, 0xaf103e59), TOBN(0xece8aba7, 0x8dac9261), TOBN(0xbe82b099, 0x9394b8d3), TOBN(0x6830f09a, 0x16adfe83), TOBN(0x250a29b4, 0x88172d01), TOBN(0x8b20bd65, 0xcaff9e02), TOBN(0xb8a7661e, 0xe8a6329a), TOBN(0x4520304d, 0xd3fce920), TOBN(0xae45da1f, 0x2b47f7ef), TOBN(0xe07f5288, 0x5bffc540), TOBN(0xf7997009, 0x3464f874), TOBN(0x2244c2cd, 0xa6fa1f38), TOBN(0x43c41ac1, 0x94d7d9b1), TOBN(0x5bafdd82, 0xc82e7f17), TOBN(0xdf0614c1, 0x5fda0fca), TOBN(0x74b043a7, 0xa8ae37ad), TOBN(0x3ba6afa1, 0x9e71734c), TOBN(0x15d5437e, 0x9c450f2e), TOBN(0x4a5883fe, 0x67e242b1), TOBN(0x5143bdc2, 0x2c1953c2), TOBN(0x542b8b53, 0xfc5e8920), TOBN(0x363bf9a8, 0x9a9cee08), TOBN(0x02375f10, 0xc3486e08), TOBN(0x2037543b, 0x8c5e70d2), TOBN(0x7109bccc, 0x625640b4), TOBN(0xcbc1051e, 0x8bc62c3b), TOBN(0xf8455fed, 0x803f26ea), TOBN(0x6badceab, 0xeb372424), TOBN(0xa2a9ce7c, 0x6b53f5f9), TOBN(0x64246595, 0x1b176d99), TOBN(0xb1298d36, 0xb95c081b), TOBN(0x53505bb8, 0x1d9a9ee6), TOBN(0x3f6f9e61, 0xf2ba70b0), TOBN(0xd07e16c9, 0x8afad453), TOBN(0x9f1694bb, 0xe7eb4a6a), TOBN(0xdfebced9, 0x3cb0bc8e), TOBN(0x92d3dcdc, 0x53868c8b), TOBN(0x174311a2, 0x386107a6), TOBN(0x4109e07c, 0x689b4e64), TOBN(0x30e4587f, 0x2df3dcb6), TOBN(0x841aea31, 0x0811b3b2), TOBN(0x6144d41d, 0x0cce43ea), TOBN(0x464c4581, 0x2a9a7803), TOBN(0xd03d371f, 0x3e158930), TOBN(0xc676d7f2, 0xb1f3390b), TOBN(0x9f7a1b8c, 0xa5b61272), TOBN(0x4ebebfc9, 0xc2e127a9), TOBN(0x4602500c, 0x5dd997bf), TOBN(0x7f09771c, 0x4711230f), TOBN(0x058eb37c, 0x020f09c1), TOBN(0xab693d4b, 0xfee5e38b), TOBN(0x9289eb1f, 0x4653cbc0), TOBN(0xbecf46ab, 0xd51b9cf5), TOBN(0xd2aa9c02, 0x9f0121af), TOBN(0x36aaf7d2, 0xe90dc274), TOBN(0x909e4ea0, 0x48b95a3c), TOBN(0xe6b70496, 0x6f32dbdb), TOBN(0x672188a0, 0x8b030b3e), TOBN(0xeeffe5b3, 0xcfb617e2), TOBN(0x87e947de, 0x7c82709e), TOBN(0xa44d2b39, 0x1770f5a7), TOBN(0xe4d4d791, 0x0e44eb82), TOBN(0x42e69d1e, 0x3f69712a), TOBN(0xbf11c4d6, 0xac6a820e), TOBN(0xb5e7f3e5, 0x42c4224c), TOBN(0xd6b4e81c, 0x449d941c), TOBN(0x5d72bd16, 0x5450e878), TOBN(0x6a61e28a, 0xee25ac54), TOBN(0x33272094, 0xe6f1cd95), TOBN(0x7512f30d, 0x0d18673f), TOBN(0x32f7a4ca, 0x5afc1464), TOBN(0x2f095656, 0x6bbb977b), TOBN(0x586f47ca, 0xa8226200), TOBN(0x02c868ad, 0x1ac07369), TOBN(0x4ef2b845, 0xc613acbe), TOBN(0x43d7563e, 0x0386054c), TOBN(0x54da9dc7, 0xab952578), TOBN(0xb5423df2, 0x26e84d0b), TOBN(0xa8b64eeb, 0x9b872042), TOBN(0xac205782, 0x5990f6df), TOBN(0x4ff696eb, 0x21f4c77a), TOBN(0x1a79c3e4, 0xaab273af), TOBN(0x29bc922e, 0x9436b3f1), TOBN(0xff807ef8, 0xd6d9a27a), TOBN(0x82acea3d, 0x778f22a0), TOBN(0xfb10b2e8, 0x5b5e7469), TOBN(0xc0b16980, 0x2818ee7d), TOBN(0x011afff4, 0xc91c1a2f), TOBN(0x95a6d126, 0xad124418), TOBN(0x31c081a5, 0xe72e295f), TOBN(0x36bb283a, 0xf2f4db75), TOBN(0xd115540f, 0x7acef462), TOBN(0xc7f3a8f8, 0x33f6746c), TOBN(0x21e46f65, 0xfea990ca), TOBN(0x915fd5c5, 0xcaddb0a9), TOBN(0xbd41f016, 0x78614555), TOBN(0x346f4434, 0x426ffb58), TOBN(0x80559436, 0x14dbc204), TOBN(0xf3dd20fe, 0x5a969b7f), TOBN(0x9d59e956, 0xe899a39a), TOBN(0xf1b0971c, 0x8ad4cf4b), TOBN(0x03448860, 0x2ffb8fb8), TOBN(0xf071ac3c, 0x65340ba4), TOBN(0x408d0596, 0xb27fd758), TOBN(0xe7c78ea4, 0x98c364b0), TOBN(0xa4aac4a5, 0x051e8ab5), TOBN(0xb9e1d560, 0x485d9002), TOBN(0x9acd518a, 0x88844455), TOBN(0xe4ca688f, 0xd06f56c0), TOBN(0xa48af70d, 0xdf027972), TOBN(0x691f0f04, 0x5e9a609d), TOBN(0xa9dd82cd, 0xee61270e), TOBN(0x8903ca63, 0xa0ef18d3), TOBN(0x9fb7ee35, 0x3d6ca3bd), TOBN(0xa7b4a09c, 0xabf47d03), TOBN(0x4cdada01, 0x1c67de8e), TOBN(0x52003749, 0x9355a244), TOBN(0xe77fd2b6, 0x4f2151a9), TOBN(0x695d6cf6, 0x66b4efcb), TOBN(0xc5a0cacf, 0xda2cfe25), TOBN(0x104efe5c, 0xef811865), TOBN(0xf52813e8, 0x9ea5cc3d), TOBN(0x855683dc, 0x40b58dbc), TOBN(0x0338ecde, 0x175fcb11), TOBN(0xf9a05637, 0x74921592), TOBN(0xb4f1261d, 0xb9bb9d31), TOBN(0x551429b7, 0x4e9c5459), TOBN(0xbe182e6f, 0x6ea71f53), TOBN(0xd3a3b07c, 0xdfc50573), TOBN(0x9ba1afda, 0x62be8d44), TOBN(0x9bcfd2cb, 0x52ab65d3), TOBN(0xdf11d547, 0xa9571802), TOBN(0x099403ee, 0x02a2404a), TOBN(0x497406f4, 0x21088a71), TOBN(0x99479409, 0x5004ae71), TOBN(0xbdb42078, 0xa812c362), TOBN(0x2b72a30f, 0xd8828442), TOBN(0x283add27, 0xfcb5ed1c), TOBN(0xf7c0e200, 0x66a40015), TOBN(0x3e3be641, 0x08b295ef), TOBN(0xac127dc1, 0xe038a675), TOBN(0x729deff3, 0x8c5c6320), TOBN(0xb7df8fd4, 0xa90d2c53), TOBN(0x9b74b0ec, 0x681e7cd3), TOBN(0x5cb5a623, 0xdab407e5), TOBN(0xcdbd3615, 0x76b340c6), TOBN(0xa184415a, 0x7d28392c), TOBN(0xc184c1d8, 0xe96f7830), TOBN(0xc3204f19, 0x81d3a80f), TOBN(0xfde0c841, 0xc8e02432), TOBN(0x78203b3e, 0x8149e0c1), TOBN(0x5904bdbb, 0x08053a73), TOBN(0x30fc1dd1, 0x101b6805), TOBN(0x43c223bc, 0x49aa6d49), TOBN(0x9ed67141, 0x7a174087), TOBN(0x311469a0, 0xd5997008), TOBN(0xb189b684, 0x5e43fc61), TOBN(0xf3282375, 0xe0d3ab57), TOBN(0x4fa34b67, 0xb1181da8), TOBN(0x621ed0b2, 0x99ee52b8), TOBN(0x9b178de1, 0xad990676), TOBN(0xd51de67b, 0x56d54065), TOBN(0x2a2c27c4, 0x7538c201), TOBN(0x33856ec8, 0x38a40f5c), TOBN(0x2522fc15, 0xbe6cdcde), TOBN(0x1e603f33, 0x9f0c6f89), TOBN(0x7994edc3, 0x103e30a6), TOBN(0x033a00db, 0x220c853e), TOBN(0xd3cfa409, 0xf7bb7fd7), TOBN(0x70f8781e, 0x462d18f6), TOBN(0xbbd82980, 0x687fe295), TOBN(0x6eef4c32, 0x595669f3), TOBN(0x86a9303b, 0x2f7e85c3), TOBN(0x5fce4621, 0x71988f9b), TOBN(0x5b935bf6, 0xc138acb5), TOBN(0x30ea7d67, 0x25661212), TOBN(0xef1eb5f4, 0xe51ab9a2), TOBN(0x0587c98a, 0xae067c78), TOBN(0xb3ce1b3c, 0x77ca9ca6), TOBN(0x2a553d4d, 0x54b5f057), TOBN(0xc7898236, 0x4da29ec2), TOBN(0xdbdd5d13, 0xb9c57316), TOBN(0xc57d6e6b, 0x2cd80d47), TOBN(0x80b460cf, 0xfe9e7391), TOBN(0x98648cab, 0xf963c31e), TOBN(0x67f9f633, 0xcc4d32fd), TOBN(0x0af42a9d, 0xfdf7c687), TOBN(0x55f292a3, 0x0b015ea7), TOBN(0x89e468b2, 0xcd21ab3d), TOBN(0xe504f022, 0xc393d392), TOBN(0xab21e1d4, 0xa5013af9), TOBN(0xe3283f78, 0xc2c28acb), TOBN(0xf38b35f6, 0x226bf99f), TOBN(0xe8354274, 0x0e291e69), TOBN(0x61673a15, 0xb20c162d), TOBN(0xc101dc75, 0xb04fbdbe), TOBN(0x8323b4c2, 0x255bd617), TOBN(0x6c969693, 0x6c2a9154), TOBN(0xc6e65860, 0x62679387), TOBN(0x8e01db0c, 0xb8c88e23), TOBN(0x33c42873, 0x893a5559), TOBN(0x7630f04b, 0x47a3e149), TOBN(0xb5d80805, 0xddcf35f8), TOBN(0x582ca080, 0x77dfe732), TOBN(0x2c7156e1, 0x0b1894a0), TOBN(0x92034001, 0xd81c68c0), TOBN(0xed225d00, 0xc8b115b5), TOBN(0x237f9c22, 0x83b907f2), TOBN(0x0ea2f32f, 0x4470e2c0), TOBN(0xb725f7c1, 0x58be4e95), TOBN(0x0f1dcafa, 0xb1ae5463), TOBN(0x59ed5187, 0x1ba2fc04), TOBN(0xf6e0f316, 0xd0115d4d), TOBN(0x5180b12f, 0xd3691599), TOBN(0x157e32c9, 0x527f0a41), TOBN(0x7b0b081d, 0xa8e0ecc0), TOBN(0x6dbaaa8a, 0xbf4f0dd0), TOBN(0x99b289c7, 0x4d252696), TOBN(0x79b7755e, 0xdbf864fe), TOBN(0x6974e2b1, 0x76cad3ab), TOBN(0x35dbbee2, 0x06ddd657), TOBN(0xe7cbdd11, 0x2ff3a96d), TOBN(0x88381968, 0x076be758), TOBN(0x2d737e72, 0x08c91f5d), TOBN(0x5f83ab62, 0x86ec3776), TOBN(0x98aa649d, 0x945fa7a1), TOBN(0xf477ec37, 0x72ef0933), TOBN(0x66f52b1e, 0x098c17b1), TOBN(0x9eec58fb, 0xd803738b), TOBN(0x91aaade7, 0xe4e86aa4), TOBN(0x6b1ae617, 0xa5b51492), TOBN(0x63272121, 0xbbc45974), TOBN(0x7e0e28f0, 0x862c5129), TOBN(0x0a8f79a9, 0x3321a4a0), TOBN(0xe26d1664, 0x5041c88f), TOBN(0x0571b805, 0x53233e3a), TOBN(0xd1b0ccde, 0xc9520711), TOBN(0x55a9e4ed, 0x3c8b84bf), TOBN(0x9426bd39, 0xa1fef314), TOBN(0x4f5f638e, 0x6eb93f2b), TOBN(0xba2a1ed3, 0x2bf9341b), TOBN(0xd63c1321, 0x4d42d5a9), TOBN(0xd2964a89, 0x316dc7c5), TOBN(0xd1759606, 0xca511851), TOBN(0xd8a9201f, 0xf9e6ed35), TOBN(0xb7b5ee45, 0x6736925a), TOBN(0x0a83fbbc, 0x99581af7), TOBN(0x3076bc40, 0x64eeb051), TOBN(0x5511c98c, 0x02dec312), TOBN(0x270de898, 0x238dcb78), TOBN(0x2cf4cf9c, 0x539c08c9), TOBN(0xa70cb65e, 0x38d3b06e), TOBN(0xb12ec10e, 0xcfe57bbd), TOBN(0x82c7b656, 0x35a0c2b5), TOBN(0xddc7d5cd, 0x161c67bd), TOBN(0xe32e8985, 0xae3a32cc), TOBN(0x7aba9444, 0xd11a5529), TOBN(0xe964ed02, 0x2427fa1a), TOBN(0x1528392d, 0x24a1770a), TOBN(0xa152ce2c, 0x12c72fcd), TOBN(0x714553a4, 0x8ec07649), TOBN(0x18b4c290, 0x459dd453), TOBN(0xea32b714, 0x7b64b110), TOBN(0xb871bfa5, 0x2e6f07a2), TOBN(0xb67112e5, 0x9e2e3c9b), TOBN(0xfbf250e5, 0x44aa90f6), TOBN(0xf77aedb8, 0xbd539006), TOBN(0x3b0cdf9a, 0xd172a66f), TOBN(0xedf69fea, 0xf8c51187), TOBN(0x05bb67ec, 0x741e4da7), TOBN(0x47df0f32, 0x08114345), TOBN(0x56facb07, 0xbb9792b1), TOBN(0xf3e007e9, 0x8f6229e4), TOBN(0x62d103f4, 0x526fba0f), TOBN(0x4f33bef7, 0xb0339d79), TOBN(0x9841357b, 0xb59bfec1), TOBN(0xfa8dbb59, 0xc34e6705), TOBN(0xc3c7180b, 0x7fdaa84c), TOBN(0xf95872fc, 0xa4108537), TOBN(0x8750cc3b, 0x932a3e5a), TOBN(0xb61cc69d, 0xb7275d7d), TOBN(0xffa0168b, 0x2e59b2e9), TOBN(0xca032abc, 0x6ecbb493), TOBN(0x1d86dbd3, 0x2c9082d8), TOBN(0xae1e0b67, 0xe28ef5ba), TOBN(0x2c9a4699, 0xcb18e169), TOBN(0x0ecd0e33, 0x1e6bbd20), TOBN(0x571b360e, 0xaf5e81d2), TOBN(0xcd9fea58, 0x101c1d45), TOBN(0x6651788e, 0x18880452), TOBN(0xa9972635, 0x1f8dd446), TOBN(0x44bed022, 0xe37281d0), TOBN(0x094b2b2d, 0x33da525d), TOBN(0xf193678e, 0x13144fd8), TOBN(0xb8ab5ba4, 0xf4c1061d), TOBN(0x4343b5fa, 0xdccbe0f4), TOBN(0xa8702371, 0x63812713), TOBN(0x47bf6d2d, 0xf7611d93), TOBN(0x46729b8c, 0xbd21e1d7), TOBN(0x7484d4e0, 0xd629e77d), TOBN(0x830e6eea, 0x60dbac1f), TOBN(0x23d8c484, 0xda06a2f7), TOBN(0x896714b0, 0x50ca535b), TOBN(0xdc8d3644, 0xebd97a9b), TOBN(0x106ef9fa, 0xb12177b4), TOBN(0xf79bf464, 0x534d5d9c), TOBN(0x2537a349, 0xa6ab360b), TOBN(0xc7c54253, 0xa00c744f), TOBN(0xb3c7a047, 0xe5911a76), TOBN(0x61ffa5c8, 0x647f1ee7), TOBN(0x15aed36f, 0x8f56ab42), TOBN(0x6a0d41b0, 0xa3ff9ac9), TOBN(0x68f469f5, 0xcc30d357), TOBN(0xbe9adf81, 0x6b72be96), TOBN(0x1cd926fe, 0x903ad461), TOBN(0x7e89e38f, 0xcaca441b), TOBN(0xf0f82de5, 0xfacf69d4), TOBN(0x363b7e76, 0x4775344c), TOBN(0x6894f312, 0xb2e36d04), TOBN(0x3c6cb4fe, 0x11d1c9a5), TOBN(0x85d9c339, 0x4008e1f2), TOBN(0x5e9a85ea, 0x249f326c), TOBN(0xdc35c60a, 0x678c5e06), TOBN(0xc08b944f, 0x9f86fba9), TOBN(0xde40c02c, 0x89f71f0f), TOBN(0xad8f3e31, 0xff3da3c0), TOBN(0x3ea5096b, 0x42125ded), TOBN(0x13879cbf, 0xa7379183), TOBN(0x6f4714a5, 0x6b306a0b), TOBN(0x359c2ea6, 0x67646c5e), TOBN(0xfacf8943, 0x07726368), TOBN(0x07a58935, 0x65ff431e), TOBN(0x24d661d1, 0x68754ab0), TOBN(0x801fce1d, 0x6f429a76), TOBN(0xc068a85f, 0xa58ce769), TOBN(0xedc35c54, 0x5d5eca2b), TOBN(0xea31276f, 0xa3f660d1), TOBN(0xa0184ebe, 0xb8fc7167), TOBN(0x0f20f21a, 0x1d8db0ae), TOBN(0xd96d095f, 0x56c35e12), TOBN(0xedf402b5, 0xf8c2a25b), TOBN(0x1bb772b9, 0x059204b6), TOBN(0x50cbeae2, 0x19b4e34c), TOBN(0x93109d80, 0x3fa0845a), TOBN(0x54f7ccf7, 0x8ef59fb5), TOBN(0x3b438fe2, 0x88070963), TOBN(0x9e28c659, 0x31f3ba9b), TOBN(0x9cc31b46, 0xead9da92), TOBN(0x3c2f0ba9, 0xb733aa5f), TOBN(0xdece47cb, 0xf05af235), TOBN(0xf8e3f715, 0xa2ac82a5), TOBN(0xc97ba641, 0x2203f18a), TOBN(0xc3af5504, 0x09c11060), TOBN(0x56ea2c05, 0x46af512d), TOBN(0xfac28daf, 0xf3f28146), TOBN(0x87fab43a, 0x959ef494),} , {TOBN(0x09891641, 0xd4c5105f), TOBN(0x1ae80f8e, 0x6d7fbd65), TOBN(0x9d67225f, 0xbee6bdb0), TOBN(0x3b433b59, 0x7fc4d860), TOBN(0x44e66db6, 0x93e85638), TOBN(0xf7b59252, 0xe3e9862f), TOBN(0xdb785157, 0x665c32ec), TOBN(0x702fefd7, 0xae362f50), TOBN(0x3754475d, 0x0fefb0c3), TOBN(0xd48fb56b, 0x46d7c35d), TOBN(0xa070b633, 0x363798a4), TOBN(0xae89f3d2, 0x8fdb98e6), TOBN(0x970b89c8, 0x6363d14c), TOBN(0x89817521, 0x67abd27d), TOBN(0x9bf7d474, 0x44d5a021), TOBN(0xb3083baf, 0xcac72aee), TOBN(0x389741de, 0xbe949a44), TOBN(0x638e9388, 0x546a4fa5), TOBN(0x3fe6419c, 0xa0047bdc), TOBN(0x7047f648, 0xaaea57ca), TOBN(0x54e48a90, 0x41fbab17), TOBN(0xda8e0b28, 0x576bdba2), TOBN(0xe807eebc, 0xc72afddc), TOBN(0x07d3336d, 0xf42577bf), TOBN(0x62a8c244, 0xbfe20925), TOBN(0x91c19ac3, 0x8fdce867), TOBN(0x5a96a5d5, 0xdd387063), TOBN(0x61d587d4, 0x21d324f6), TOBN(0xe87673a2, 0xa37173ea), TOBN(0x23848008, 0x53778b65), TOBN(0x10f8441e, 0x05bab43e), TOBN(0xfa11fe12, 0x4621efbe), TOBN(0x047b772e, 0x81685d7b), TOBN(0x23f27d81, 0xbf34a976), TOBN(0xc27608e2, 0x915f48ef), TOBN(0x3b0b43fa, 0xa521d5c3), TOBN(0x7613fb26, 0x63ca7284), TOBN(0x7f5729b4, 0x1d4db837), TOBN(0x87b14898, 0x583b526b), TOBN(0x00b732a6, 0xbbadd3d1), TOBN(0x8e02f426, 0x2048e396), TOBN(0x436b50b6, 0x383d9de4), TOBN(0xf78d3481, 0x471e85ad), TOBN(0x8b01ea6a, 0xd005c8d6), TOBN(0xd3c7afee, 0x97015c07), TOBN(0x46cdf1a9, 0x4e3ba2ae), TOBN(0x7a42e501, 0x83d3a1d2), TOBN(0xd54b5268, 0xb541dff4), TOBN(0x3f24cf30, 0x4e23e9bc), TOBN(0x4387f816, 0x126e3624), TOBN(0x26a46a03, 0x3b0b6d61), TOBN(0xaf1bc845, 0x8b2d777c), TOBN(0x25c401ba, 0x527de79c), TOBN(0x0e1346d4, 0x4261bbb6), TOBN(0x4b96c44b, 0x287b4bc7), TOBN(0x658493c7, 0x5254562f), TOBN(0x23f949fe, 0xb8a24a20), TOBN(0x17ebfed1, 0xf52ca53f), TOBN(0x9b691bbe, 0xbcfb4853), TOBN(0x5617ff6b, 0x6278a05d), TOBN(0x241b34c5, 0xe3c99ebd), TOBN(0xfc64242e, 0x1784156a), TOBN(0x4206482f, 0x695d67df), TOBN(0xb967ce0e, 0xee27c011), TOBN(0x65db3751, 0x21c80b5d), TOBN(0x2e7a563c, 0xa31ecca0), TOBN(0xe56ffc4e, 0x5238a07e), TOBN(0x3d6c2966, 0x32ced854), TOBN(0xe99d7d1a, 0xaf70b885), TOBN(0xafc3bad9, 0x2d686459), TOBN(0x9c78bf46, 0x0cc8ba5b), TOBN(0x5a439519, 0x18955aa3), TOBN(0xf8b517a8, 0x5fe4e314), TOBN(0xe60234d0, 0xfcb8906f), TOBN(0xffe542ac, 0xf2061b23), TOBN(0x287e191f, 0x6b4cb59c), TOBN(0x21857ddc, 0x09d877d8), TOBN(0x1c23478c, 0x14678941), TOBN(0xbbf0c056, 0xb6e05ea4), TOBN(0x82da4b53, 0xb01594fe), TOBN(0xf7526791, 0xfadb8608), TOBN(0x049e832d, 0x7b74cdf6), TOBN(0xa43581cc, 0xc2b90a34), TOBN(0x73639eb8, 0x9360b10c), TOBN(0x4fba331f, 0xe1e4a71b), TOBN(0x6ffd6b93, 0x8072f919), TOBN(0x6e53271c, 0x65679032), TOBN(0x67206444, 0xf14272ce), TOBN(0xc0f734a3, 0xb2335834), TOBN(0x9526205a, 0x90ef6860), TOBN(0xcb8be717, 0x04e2bb0d), TOBN(0x2418871e, 0x02f383fa), TOBN(0xd7177681, 0x4082c157), TOBN(0xcc914ad0, 0x29c20073), TOBN(0xf186c1eb, 0xe587e728), TOBN(0x6fdb3c22, 0x61bcd5fd), TOBN(0x30d014a6, 0xf2f9f8e9), TOBN(0x963ece23, 0x4fec49d2), TOBN(0x862025c5, 0x9605a8d9), TOBN(0x39874445, 0x19f8929a), TOBN(0x01b6ff65, 0x12bf476a), TOBN(0x598a64d8, 0x09cf7d91), TOBN(0xd7ec7749, 0x93be56ca), TOBN(0x10899785, 0xcbb33615), TOBN(0xb8a092fd, 0x02eee3ad), TOBN(0xa86b3d35, 0x30145270), TOBN(0x323d98c6, 0x8512b675), TOBN(0x4b8bc785, 0x62ebb40f), TOBN(0x7d301f54, 0x413f9cde), TOBN(0xa5e4fb4f, 0x2bab5664), TOBN(0x1d2b252d, 0x1cbfec23), TOBN(0xfcd576bb, 0xe177120d), TOBN(0x04427d3e, 0x83731a34), TOBN(0x2bb9028e, 0xed836e8e), TOBN(0xb36acff8, 0xb612ca7c), TOBN(0xb88fe5ef, 0xd3d9c73a), TOBN(0xbe2a6bc6, 0xedea4eb3), TOBN(0x43b93133, 0x488eec77), TOBN(0xf41ff566, 0xb17106e1), TOBN(0x469e9172, 0x654efa32), TOBN(0xb4480f04, 0x41c23fa3), TOBN(0xb4712eb0, 0xc1989a2e), TOBN(0x3ccbba0f, 0x93a29ca7), TOBN(0x6e205c14, 0xd619428c), TOBN(0x90db7957, 0xb3641686), TOBN(0x0432691d, 0x45ac8b4e), TOBN(0x07a759ac, 0xf64e0350), TOBN(0x0514d89c, 0x9c972517), TOBN(0x1701147f, 0xa8e67fc3), TOBN(0x9e2e0b8b, 0xab2085be), TOBN(0xd5651824, 0xac284e57), TOBN(0x890d4325, 0x74893664), TOBN(0x8a7c5e6e, 0xc55e68a3), TOBN(0xbf12e90b, 0x4339c85a), TOBN(0x31846b85, 0xf922b655), TOBN(0x9a54ce4d, 0x0bf4d700), TOBN(0xd7f4e83a, 0xf1a14295), TOBN(0x916f955c, 0xb285d4f9), TOBN(0xe57bb0e0, 0x99ffdaba), TOBN(0x28a43034, 0xeab0d152), TOBN(0x0a36ffa2, 0xb8a9cef8), TOBN(0x5517407e, 0xb9ec051a), TOBN(0x9c796096, 0xea68e672), TOBN(0x853db5fb, 0xfb3c77fb), TOBN(0x21474ba9, 0xe864a51a), TOBN(0x6c267699, 0x6e8a1b8b), TOBN(0x7c823626, 0x94120a28), TOBN(0xe61e9a48, 0x8383a5db), TOBN(0x7dd75003, 0x9f84216d), TOBN(0xab020d07, 0xad43cd85), TOBN(0x9437ae48, 0xda12c659), TOBN(0x6449c2eb, 0xe65452ad), TOBN(0xcc7c4c1c, 0x2cf9d7c1), TOBN(0x1320886a, 0xee95e5ab), TOBN(0xbb7b9056, 0xbeae170c), TOBN(0xc8a5b250, 0xdbc0d662), TOBN(0x4ed81432, 0xc11d2303), TOBN(0x7da66912, 0x1f03769f), TOBN(0x3ac7a5fd, 0x84539828), TOBN(0x14dada94, 0x3bccdd02), TOBN(0x8b84c321, 0x7ef6b0d1), TOBN(0x52a9477a, 0x7c933f22), TOBN(0x5ef6728a, 0xfd440b82), TOBN(0x5c3bd859, 0x6ce4bd5e), TOBN(0x918b80f5, 0xf22c2d3e), TOBN(0x368d5040, 0xb7bb6cc5), TOBN(0xb66142a1, 0x2695a11c), TOBN(0x60ac583a, 0xeb19ea70), TOBN(0x317cbb98, 0x0eab2437), TOBN(0x8cc08c55, 0x5e2654c8), TOBN(0xfe2d6520, 0xe6d8307f), TOBN(0xe9f147f3, 0x57428993), TOBN(0x5f9c7d14, 0xd2fd6cf1), TOBN(0xa3ecd064, 0x2d4fcbb0), TOBN(0xad83fef0, 0x8e7341f7), TOBN(0x643f23a0, 0x3a63115c), TOBN(0xd38a78ab, 0xe65ab743), TOBN(0xbf7c75b1, 0x35edc89c), TOBN(0x3dd8752e, 0x530df568), TOBN(0xf85c4a76, 0xe308c682), TOBN(0x4c9955b2, 0xe68acf37), TOBN(0xa544df3d, 0xab32af85), TOBN(0x4b8ec3f5, 0xa25cf493), TOBN(0x4d8f2764, 0x1a622feb), TOBN(0x7bb4f7aa, 0xf0dcbc49), TOBN(0x7de551f9, 0x70bbb45b), TOBN(0xcfd0f3e4, 0x9f2ca2e5), TOBN(0xece58709, 0x1f5c76ef), TOBN(0x32920edd, 0x167d79ae), TOBN(0x039df8a2, 0xfa7d7ec1), TOBN(0xf46206c0, 0xbb30af91), TOBN(0x1ff5e2f5, 0x22676b59), TOBN(0x11f4a039, 0x6ea51d66), TOBN(0x506c1445, 0x807d7a26), TOBN(0x60da5705, 0x755a9b24), TOBN(0x8fc8cc32, 0x1f1a319e), TOBN(0x83642d4d, 0x9433d67d), TOBN(0x7fa5cb8f, 0x6a7dd296), TOBN(0x576591db, 0x9b7bde07), TOBN(0x13173d25, 0x419716fb), TOBN(0xea30599d, 0xd5b340ff), TOBN(0xfc6b5297, 0xb0fe76c5), TOBN(0x1c6968c8, 0xab8f5adc), TOBN(0xf723c7f5, 0x901c928d), TOBN(0x4203c321, 0x9773d402), TOBN(0xdf7c6aa3, 0x1b51dd47), TOBN(0x3d49e37a, 0x552be23c), TOBN(0x57febee8, 0x0b5a6e87), TOBN(0xc5ecbee4, 0x7bd8e739), TOBN(0x79d44994, 0xae63bf75), TOBN(0x168bd00f, 0x38fb8923), TOBN(0x75d48ee4, 0xd0533130), TOBN(0x554f77aa, 0xdb5cdf33), TOBN(0x3396e896, 0x3c696769), TOBN(0x2fdddbf2, 0xd3fd674e), TOBN(0xbbb8f6ee, 0x99d0e3e5), TOBN(0x51b90651, 0xcbae2f70), TOBN(0xefc4bc05, 0x93aaa8eb), TOBN(0x8ecd8689, 0xdd1df499), TOBN(0x1aee99a8, 0x22f367a5), TOBN(0x95d485b9, 0xae8274c5), TOBN(0x6c14d445, 0x7d30b39c), TOBN(0xbafea90b, 0xbcc1ef81), TOBN(0x7c5f317a, 0xa459a2ed), TOBN(0x01211075, 0x4ef44227), TOBN(0xa17bed6e, 0xdc20f496), TOBN(0x0cdfe424, 0x819853cd), TOBN(0x13793298, 0xf71e2ce7), TOBN(0x3c1f3078, 0xdbbe307b), TOBN(0x6dd1c20e, 0x76ee9936), TOBN(0x23ee4b57, 0x423caa20), TOBN(0x4ac3793b, 0x8efb840e), TOBN(0x934438eb, 0xed1f8ca0), TOBN(0x3e546658, 0x4ebb25a2), TOBN(0xc415af0e, 0xc069896f), TOBN(0xc13eddb0, 0x9a5aa43d), TOBN(0x7a04204f, 0xd49eb8f6), TOBN(0xd0d5bdfc, 0xd74f1670), TOBN(0x3697e286, 0x56fc0558), TOBN(0x10207371, 0x01cebade), TOBN(0x5f87e690, 0x0647a82b), TOBN(0x908e0ed4, 0x8f40054f), TOBN(0xa9f633d4, 0x79853803), TOBN(0x8ed13c9a, 0x4a28b252), TOBN(0x3e2ef676, 0x1f460f64), TOBN(0x53930b9b, 0x36d06336), TOBN(0x347073ac, 0x8fc4979b), TOBN(0x84380e0e, 0x5ecd5597), TOBN(0xe3b22c6b, 0xc4fe3c39), TOBN(0xba4a8153, 0x6c7bebdf), TOBN(0xf23ab6b7, 0x25693459), TOBN(0x53bc3770, 0x14922b11), TOBN(0x4645c8ab, 0x5afc60db), TOBN(0xaa022355, 0x20b9f2a3), TOBN(0x52a2954c, 0xce0fc507), TOBN(0x8c2731bb, 0x7ce1c2e7), TOBN(0xf39608ab, 0x18a0339d), TOBN(0xac7a658d, 0x3735436c), TOBN(0xb22c2b07, 0xcd992b4f), TOBN(0x4e83daec, 0xf40dcfd4), TOBN(0x8a34c7be, 0x2f39ea3e), TOBN(0xef0c005f, 0xb0a56d2e), TOBN(0x62731f6a, 0x6edd8038), TOBN(0x5721d740, 0x4e3cb075), TOBN(0x1ea41511, 0xfbeeee1b), TOBN(0xd1ef5e73, 0xef1d0c05), TOBN(0x42feefd1, 0x73c07d35), TOBN(0xe530a00a, 0x8a329493), TOBN(0x5d55b7fe, 0xf15ebfb0), TOBN(0x549de03c, 0xd322491a), TOBN(0xf7b5f602, 0x745b3237), TOBN(0x3632a3a2, 0x1ab6e2b6), TOBN(0x0d3bba89, 0x0ef59f78), TOBN(0x0dfc6443, 0xc9e52b9a), TOBN(0x1dc79699, 0x72631447), TOBN(0xef033917, 0xb3be20b1), TOBN(0x0c92735d, 0xb1383948), TOBN(0xc1fc29a2, 0xc0dd7d7d), TOBN(0x6485b697, 0x403ed068), TOBN(0x13bfaab3, 0xaac93bdc), TOBN(0x410dc6a9, 0x0deeaf52), TOBN(0xb003fb02, 0x4c641c15), TOBN(0x1384978c, 0x5bc504c4), TOBN(0x37640487, 0x864a6a77), TOBN(0x05991bc6, 0x222a77da), TOBN(0x62260a57, 0x5e47eb11), TOBN(0xc7af6613, 0xf21b432c), TOBN(0x22f3acc9, 0xab4953e9), TOBN(0x52934922, 0x8e41d155), TOBN(0x4d024568, 0x3ac059ef), TOBN(0xb0201755, 0x4d884411), TOBN(0xce8055cf, 0xa59a178f), TOBN(0xcd77d1af, 0xf6204549), TOBN(0xa0a00a3e, 0xc7066759), TOBN(0x471071ef, 0x0272c229), TOBN(0x009bcf6b, 0xd3c4b6b0), TOBN(0x2a2638a8, 0x22305177), TOBN(0xd51d59df, 0x41645bbf), TOBN(0xa81142fd, 0xc0a7a3c0), TOBN(0xa17eca6d, 0x4c7063ee), TOBN(0x0bb887ed, 0x60d9dcec), TOBN(0xd6d28e51, 0x20ad2455), TOBN(0xebed6308, 0xa67102ba), TOBN(0x042c3114, 0x8bffa408), TOBN(0xfd099ac5, 0x8aa68e30), TOBN(0x7a6a3d7c, 0x1483513e), TOBN(0xffcc6b75, 0xba2d8f0c), TOBN(0x54dacf96, 0x1e78b954), TOBN(0xf645696f, 0xa4a9af89), TOBN(0x3a411940, 0x06ac98ec), TOBN(0x41b8b3f6, 0x22a67a20), TOBN(0x2d0b1e0f, 0x99dec626), TOBN(0x27c89192, 0x40be34e8), TOBN(0xc7162b37, 0x91907f35), TOBN(0x90188ec1, 0xa956702b), TOBN(0xca132f7d, 0xdf93769c), TOBN(0x3ece44f9, 0x0e2025b4), TOBN(0x67aaec69, 0x0c62f14c), TOBN(0xad741418, 0x22e3cc11), TOBN(0xcf9b75c3, 0x7ff9a50e), TOBN(0x02fa2b16, 0x4d348272), TOBN(0xbd99d61a, 0x9959d56d), TOBN(0xbc4f19db, 0x18762916), TOBN(0xcc7cce50, 0x49c1ac80), TOBN(0x4d59ebaa, 0xd846bd83), TOBN(0x8775a9dc, 0xa9202849), TOBN(0x07ec4ae1, 0x6e1f4ca9), TOBN(0x27eb5875, 0xba893f11), TOBN(0x00284d51, 0x662cc565), TOBN(0x82353a6b, 0x0db4138d), TOBN(0xd9c7aaaa, 0xaa32a594), TOBN(0xf5528b5e, 0xa5669c47), TOBN(0xf3220231, 0x2f23c5ff), TOBN(0xe3e8147a, 0x6affa3a1), TOBN(0xfb423d5c, 0x202ddda0), TOBN(0x3d6414ac, 0x6b871bd4), TOBN(0x586f82e1, 0xa51a168a), TOBN(0xb712c671, 0x48ae5448), TOBN(0x9a2e4bd1, 0x76233eb8), TOBN(0x0188223a, 0x78811ca9), TOBN(0x553c5e21, 0xf7c18de1), TOBN(0x7682e451, 0xb27bb286), TOBN(0x3ed036b3, 0x0e51e929), TOBN(0xf487211b, 0xec9cb34f), TOBN(0x0d094277, 0x0c24efc8), TOBN(0x0349fd04, 0xbef737a4), TOBN(0x6d1c9dd2, 0x514cdd28), TOBN(0x29c135ff, 0x30da9521), TOBN(0xea6e4508, 0xf78b0b6f), TOBN(0x176f5dd2, 0x678c143c), TOBN(0x08148418, 0x4be21e65), TOBN(0x27f7525c, 0xe7df38c4), TOBN(0x1fb70e09, 0x748ab1a4), TOBN(0x9cba50a0, 0x5efe4433), TOBN(0x7846c7a6, 0x15f75af2), TOBN(0x2a7c2c57, 0x5ee73ea8), TOBN(0x42e566a4, 0x3f0a449a), TOBN(0x45474c3b, 0xad90fc3d), TOBN(0x7447be3d, 0x8b61d057), TOBN(0x3e9d1cf1, 0x3a4ec092), TOBN(0x1603e453, 0xf380a6e6), TOBN(0x0b86e431, 0x9b1437c2), TOBN(0x7a4173f2, 0xef29610a), TOBN(0x8fa729a7, 0xf03d57f7), TOBN(0x3e186f6e, 0x6c9c217e), TOBN(0xbe1d3079, 0x91919524), TOBN(0x92a62a70, 0x153d4fb1), TOBN(0x32ed3e34, 0xd68c2f71), TOBN(0xd785027f, 0x9eb1a8b7), TOBN(0xbc37eb77, 0xc5b22fe8), TOBN(0x466b34f0, 0xb9d6a191), TOBN(0x008a89af, 0x9a05f816), TOBN(0x19b028fb, 0x7d42c10a), TOBN(0x7fe8c92f, 0x49b3f6b8), TOBN(0x58907cc0, 0xa5a0ade3), TOBN(0xb3154f51, 0x559d1a7c), TOBN(0x5066efb6, 0xd9790ed6), TOBN(0xa77a0cbc, 0xa6aa793b), TOBN(0x1a915f3c, 0x223e042e), TOBN(0x1c5def04, 0x69c5874b), TOBN(0x0e830078, 0x73b6c1da), TOBN(0x55cf85d2, 0xfcd8557a), TOBN(0x0f7c7c76, 0x0460f3b1), TOBN(0x87052acb, 0x46e58063), TOBN(0x09212b80, 0x907eae66), TOBN(0x3cb068e0, 0x4d721c89), TOBN(0xa87941ae, 0xdd45ac1c), TOBN(0xde8d5c0d, 0x0daa0dbb), TOBN(0xda421fdc, 0xe3502e6e), TOBN(0xc8944201, 0x4d89a084), TOBN(0x7307ba5e, 0xf0c24bfb), TOBN(0xda212beb, 0x20bde0ef), TOBN(0xea2da24b, 0xf82ce682), TOBN(0x058d3816, 0x07f71fe4), TOBN(0x35a02462, 0x5ffad8de), TOBN(0xcd7b05dc, 0xaadcefab), TOBN(0xd442f8ed, 0x1d9f54ec), TOBN(0x8be3d618, 0xb2d3b5ca), TOBN(0xe2220ed0, 0xe06b2ce2), TOBN(0x82699a5f, 0x1b0da4c0), TOBN(0x3ff106f5, 0x71c0c3a7), TOBN(0x8f580f5a, 0x0d34180c), TOBN(0x4ebb120e, 0x22d7d375), TOBN(0x5e5782cc, 0xe9513675), TOBN(0x2275580c, 0x99c82a70), TOBN(0xe8359fbf, 0x15ea8c4c), TOBN(0x53b48db8, 0x7b415e70), TOBN(0xaacf2240, 0x100c6014), TOBN(0x9faaccf5, 0xe4652f1d), TOBN(0xbd6fdd2a, 0xd56157b2), TOBN(0xa4f4fb1f, 0x6261ec50), TOBN(0x244e55ad, 0x476bcd52), TOBN(0x881c9305, 0x047d320b), TOBN(0x1ca983d5, 0x6181263f), TOBN(0x354e9a44, 0x278fb8ee), TOBN(0xad2dbc0f, 0x396e4964), TOBN(0x723f3aa2, 0x9268b3de), TOBN(0x0d1ca29a, 0xe6e0609a), TOBN(0x794866aa, 0x6cf44252), TOBN(0x0b59f3e3, 0x01af87ed), TOBN(0xe234e5ff, 0x7f4a6c51), TOBN(0xa8768fd2, 0x61dc2f7e), TOBN(0xdafc7332, 0x0a94d81f), TOBN(0xd7f84282, 0x06938ce1), TOBN(0xae0b3c0e, 0x0546063e), TOBN(0x7fbadcb2, 0x5d61abc6), TOBN(0xd5d7a2c9, 0x369ac400), TOBN(0xa5978d09, 0xae67d10c), TOBN(0x290f211e, 0x4f85eaac), TOBN(0xe61e2ad1, 0xfacac681), TOBN(0xae125225, 0x388384cd), TOBN(0xa7fb68e9, 0xccfde30f), TOBN(0x7a59b936, 0x3daed4c2), TOBN(0x80a9aa40, 0x2606f789), TOBN(0xb40c1ea5, 0xf6a6d90a), TOBN(0x948364d3, 0x514d5885), TOBN(0x062ebc60, 0x70985182), TOBN(0xa6db5b0e, 0x33310895), TOBN(0x64a12175, 0xe329c2f5), TOBN(0xc5f25bd2, 0x90ea237e), TOBN(0x7915c524, 0x2d0a4c23), TOBN(0xeb5d26e4, 0x6bb3cc52), TOBN(0x369a9116, 0xc09e2c92), TOBN(0x0c527f92, 0xcf182cf8), TOBN(0x9e591938, 0x2aede0ac), TOBN(0xb2922208, 0x6cc34939), TOBN(0x3c9d8962, 0x99a34361), TOBN(0x3c81836d, 0xc1905fe6), TOBN(0x4bfeb57f, 0xa001ec5a), TOBN(0xe993f5bb, 0xa0dc5dba), TOBN(0x47884109, 0x724a1380), TOBN(0x8a0369ab, 0x32fe9a04), TOBN(0xea068d60, 0x8c927db8), TOBN(0xbf5f37cf, 0x94655741), TOBN(0x47d402a2, 0x04b6c7ea), TOBN(0x4551c295, 0x6af259cb), TOBN(0x698b71e7, 0xed77ee8b), TOBN(0xbddf7bd0, 0xf309d5c7), TOBN(0x6201c22c, 0x34e780ca), TOBN(0xab04f7d8, 0x4c295ef4), TOBN(0x1c947294, 0x4313a8ce), TOBN(0xe532e4ac, 0x92ca4cfe), TOBN(0x89738f80, 0xd0a7a97a), TOBN(0xec088c88, 0xa580fd5b), TOBN(0x612b1ecc, 0x42ce9e51), TOBN(0x8f9840fd, 0xb25fdd2a), TOBN(0x3cda78c0, 0x01e7f839), TOBN(0x546b3d3a, 0xece05480), TOBN(0x271719a9, 0x80d30916), TOBN(0x45497107, 0x584c20c4), TOBN(0xaf8f9478, 0x5bc78608), TOBN(0x28c7d484, 0x277e2a4c), TOBN(0xfce01767, 0x88a2ffe4), TOBN(0xdc506a35, 0x28e169a5), TOBN(0x0ea10861, 0x7af9c93a), TOBN(0x1ed24361, 0x03fa0e08), TOBN(0x96eaaa92, 0xa3d694e7), TOBN(0xc0f43b4d, 0xef50bc74), TOBN(0xce6aa58c, 0x64114db4), TOBN(0x8218e8ea, 0x7c000fd4), TOBN(0xac815dfb, 0x185f8844), TOBN(0xcd7e90cb, 0x1557abfb), TOBN(0x23d16655, 0xafbfecdf), TOBN(0x80f3271f, 0x085cac4a), TOBN(0x7fc39aa7, 0xd0e62f47), TOBN(0x88d519d1, 0x460a48e5), TOBN(0x59559ac4, 0xd28f101e), TOBN(0x7981d9e9, 0xca9ae816), TOBN(0x5c38652c, 0x9ac38203), TOBN(0x86eaf87f, 0x57657fe5), TOBN(0x568fc472, 0xe21f5416), TOBN(0x2afff39c, 0xe7e597b5), TOBN(0x3adbbb07, 0x256d4eab), TOBN(0x22598692, 0x8285ab89), TOBN(0x35f8112a, 0x041caefe), TOBN(0x95df02e3, 0xa5064c8b), TOBN(0x4d63356e, 0xc7004bf3), TOBN(0x230a08f4, 0xdb83c7de), TOBN(0xca27b270, 0x8709a7b7), TOBN(0x0d1c4cc4, 0xcb9abd2d), TOBN(0x8a0bc66e, 0x7550fee8), TOBN(0x369cd4c7, 0x9cf7247e), TOBN(0x75562e84, 0x92b5b7e7), TOBN(0x8fed0da0, 0x5802af7b), TOBN(0x6a7091c2, 0xe48fb889), TOBN(0x26882c13, 0x7b8a9d06), TOBN(0xa2498663, 0x1b82a0e2), TOBN(0x844ed736, 0x3518152d), TOBN(0x282f476f, 0xd86e27c7), TOBN(0xa04edaca, 0x04afefdc), TOBN(0x8b256ebc, 0x6119e34d), TOBN(0x56a413e9, 0x0787d78b),} , {TOBN(0x82ee061d, 0x5a74be50), TOBN(0xe41781c4, 0xdea16ff5), TOBN(0xe0b0c81e, 0x99bfc8a2), TOBN(0x624f4d69, 0x0b547e2d), TOBN(0x3a83545d, 0xbdcc9ae4), TOBN(0x2573dbb6, 0x409b1e8e), TOBN(0x482960c4, 0xa6c93539), TOBN(0xf01059ad, 0x5ae18798), TOBN(0x715c9f97, 0x3112795f), TOBN(0xe8244437, 0x984e6ee1), TOBN(0x55cb4858, 0xecb66bcd), TOBN(0x7c136735, 0xabaffbee), TOBN(0x54661595, 0x5dbec38e), TOBN(0x51c0782c, 0x388ad153), TOBN(0x9ba4c53a, 0xc6e0952f), TOBN(0x27e6782a, 0x1b21dfa8), TOBN(0x682f903d, 0x4ed2dbc2), TOBN(0x0eba59c8, 0x7c3b2d83), TOBN(0x8e9dc84d, 0x9c7e9335), TOBN(0x5f9b21b0, 0x0eb226d7), TOBN(0xe33bd394, 0xaf267bae), TOBN(0xaa86cc25, 0xbe2e15ae), TOBN(0x4f0bf67d, 0x6a8ec500), TOBN(0x5846aa44, 0xf9630658), TOBN(0xfeb09740, 0xe2c2bf15), TOBN(0x627a2205, 0xa9e99704), TOBN(0xec8d73d0, 0xc2fbc565), TOBN(0x223eed8f, 0xc20c8de8), TOBN(0x1ee32583, 0xa8363b49), TOBN(0x1a0b6cb9, 0xc9c2b0a6), TOBN(0x49f7c3d2, 0x90dbc85c), TOBN(0xa8dfbb97, 0x1ef4c1ac), TOBN(0xafb34d4c, 0x65c7c2ab), TOBN(0x1d4610e7, 0xe2c5ea84), TOBN(0x893f6d1b, 0x973c4ab5), TOBN(0xa3cdd7e9, 0x945ba5c4), TOBN(0x60514983, 0x064417ee), TOBN(0x1459b23c, 0xad6bdf2b), TOBN(0x23b2c341, 0x5cf726c3), TOBN(0x3a829635, 0x32d6354a), TOBN(0x294f901f, 0xab192c18), TOBN(0xec5fcbfe, 0x7030164f), TOBN(0xe2e2fcb7, 0xe2246ba6), TOBN(0x1e7c88b3, 0x221a1a0c), TOBN(0x72c7dd93, 0xc92d88c5), TOBN(0x41c2148e, 0x1106fb59), TOBN(0x547dd4f5, 0xa0f60f14), TOBN(0xed9b52b2, 0x63960f31), TOBN(0x6c8349eb, 0xb0a5b358), TOBN(0xb154c5c2, 0x9e7e2ed6), TOBN(0xcad5eccf, 0xeda462db), TOBN(0xf2d6dbe4, 0x2de66b69), TOBN(0x426aedf3, 0x8665e5b2), TOBN(0x488a8513, 0x7b7f5723), TOBN(0x15cc43b3, 0x8bcbb386), TOBN(0x27ad0af3, 0xd791d879), TOBN(0xc16c236e, 0x846e364f), TOBN(0x7f33527c, 0xdea50ca0), TOBN(0xc4810775, 0x0926b86d), TOBN(0x6c2a3609, 0x0598e70c), TOBN(0xa6755e52, 0xf024e924), TOBN(0xe0fa07a4, 0x9db4afca), TOBN(0x15c3ce7d, 0x66831790), TOBN(0x5b4ef350, 0xa6cbb0d6), TOBN(0x2c4aafc4, 0xb6205969), TOBN(0x42563f02, 0xf6c7854f), TOBN(0x016aced5, 0x1d983b48), TOBN(0xfeb356d8, 0x99949755), TOBN(0x8c2a2c81, 0xd1a39bd7), TOBN(0x8f44340f, 0xe6934ae9), TOBN(0x148cf91c, 0x447904da), TOBN(0x7340185f, 0x0f51a926), TOBN(0x2f8f00fb, 0x7409ab46), TOBN(0x057e78e6, 0x80e289b2), TOBN(0x03e5022c, 0xa888e5d1), TOBN(0x3c87111a, 0x9dede4e2), TOBN(0x5b9b0e1c, 0x7809460b), TOBN(0xe751c852, 0x71c9abc7), TOBN(0x8b944e28, 0xc7cc1dc9), TOBN(0x4f201ffa, 0x1d3cfa08), TOBN(0x02fc905c, 0x3e6721ce), TOBN(0xd52d70da, 0xd0b3674c), TOBN(0x5dc2e5ca, 0x18810da4), TOBN(0xa984b273, 0x5c69dd99), TOBN(0x63b92527, 0x84de5ca4), TOBN(0x2f1c9872, 0xc852dec4), TOBN(0x18b03593, 0xc2e3de09), TOBN(0x19d70b01, 0x9813dc2f), TOBN(0x42806b2d, 0xa6dc1d29), TOBN(0xd3030009, 0xf871e144), TOBN(0xa1feb333, 0xaaf49276), TOBN(0xb5583b9e, 0xc70bc04b), TOBN(0x1db0be78, 0x95695f20), TOBN(0xfc841811, 0x89d012b5), TOBN(0x6409f272, 0x05f61643), TOBN(0x40d34174, 0xd5883128), TOBN(0xd79196f5, 0x67419833), TOBN(0x6059e252, 0x863b7b08), TOBN(0x84da1817, 0x1c56700c), TOBN(0x5758ee56, 0xb28d3ec4), TOBN(0x7da2771d, 0x013b0ea6), TOBN(0xfddf524b, 0x54c5e9b9), TOBN(0x7df4faf8, 0x24305d80), TOBN(0x58f5c1bf, 0x3a97763f), TOBN(0xa5af37f1, 0x7c696042), TOBN(0xd4cba22c, 0x4a2538de), TOBN(0x211cb995, 0x9ea42600), TOBN(0xcd105f41, 0x7b069889), TOBN(0xb1e1cf19, 0xddb81e74), TOBN(0x472f2d89, 0x5157b8ca), TOBN(0x086fb008, 0xee9db885), TOBN(0x365cd570, 0x0f26d131), TOBN(0x284b02bb, 0xa2be7053), TOBN(0xdcbbf7c6, 0x7ab9a6d6), TOBN(0x4425559c, 0x20f7a530), TOBN(0x961f2dfa, 0x188767c8), TOBN(0xe2fd9435, 0x70dc80c4), TOBN(0x104d6b63, 0xf0784120), TOBN(0x7f592bc1, 0x53567122), TOBN(0xf6bc1246, 0xf688ad77), TOBN(0x05214c05, 0x0f15dde9), TOBN(0xa47a76a8, 0x0d5f2b82), TOBN(0xbb254d30, 0x62e82b62), TOBN(0x11a05fe0, 0x3ec955ee), TOBN(0x7eaff46e, 0x9d529b36), TOBN(0x55ab1301, 0x8f9e3df6), TOBN(0xc463e371, 0x99317698), TOBN(0xfd251438, 0xccda47ad), TOBN(0xca9c3547, 0x23d695ea), TOBN(0x48ce626e, 0x16e589b5), TOBN(0x6b5b64c7, 0xb187d086), TOBN(0xd02e1794, 0xb2207948), TOBN(0x8b58e98f, 0x7198111d), TOBN(0x90ca6305, 0xdcf9c3cc), TOBN(0x5691fe72, 0xf34089b0), TOBN(0x60941af1, 0xfc7c80ff), TOBN(0xa09bc0a2, 0x22eb51e5), TOBN(0xc0bb7244, 0xaa9cf09a), TOBN(0x36a8077f, 0x80159f06), TOBN(0x8b5c989e, 0xdddc560e), TOBN(0x19d2f316, 0x512e1f43), TOBN(0x02eac554, 0xad08ff62), TOBN(0x012ab84c, 0x07d20b4e), TOBN(0x37d1e115, 0xd6d4e4e1), TOBN(0xb6443e1a, 0xab7b19a8), TOBN(0xf08d067e, 0xdef8cd45), TOBN(0x63adf3e9, 0x685e03da), TOBN(0xcf15a10e, 0x4792b916), TOBN(0xf44bcce5, 0xb738a425), TOBN(0xebe131d5, 0x9636b2fd), TOBN(0x94068841, 0x7850d605), TOBN(0x09684eaa, 0xb40d749d), TOBN(0x8c3c669c, 0x72ba075b), TOBN(0x89f78b55, 0xba469015), TOBN(0x5706aade, 0x3e9f8ba8), TOBN(0x6d8bd565, 0xb32d7ed7), TOBN(0x25f4e63b, 0x805f08d6), TOBN(0x7f48200d, 0xc3bcc1b5), TOBN(0x4e801968, 0xb025d847), TOBN(0x74afac04, 0x87cbe0a8), TOBN(0x43ed2c2b, 0x7e63d690), TOBN(0xefb6bbf0, 0x0223cdb8), TOBN(0x4fec3cae, 0x2884d3fe), TOBN(0x065ecce6, 0xd75e25a4), TOBN(0x6c2294ce, 0x69f79071), TOBN(0x0d9a8e5f, 0x044b8666), TOBN(0x5009f238, 0x17b69d8f), TOBN(0x3c29f8fe, 0xc5dfdaf7), TOBN(0x9067528f, 0xebae68c4), TOBN(0x5b385632, 0x30c5ba21), TOBN(0x540df119, 0x1fdd1aec), TOBN(0xcf37825b, 0xcfba4c78), TOBN(0x77eff980, 0xbeb11454), TOBN(0x40a1a991, 0x60c1b066), TOBN(0xe8018980, 0xf889a1c7), TOBN(0xb9c52ae9, 0x76c24be0), TOBN(0x05fbbcce, 0x45650ef4), TOBN(0xae000f10, 0x8aa29ac7), TOBN(0x884b7172, 0x4f04c470), TOBN(0x7cd4fde2, 0x19bb5c25), TOBN(0x6477b22a, 0xe8840869), TOBN(0xa8868859, 0x5fbd0686), TOBN(0xf23cc02e, 0x1116dfba), TOBN(0x76cd563f, 0xd87d7776), TOBN(0xe2a37598, 0xa9d82abf), TOBN(0x5f188ccb, 0xe6c170f5), TOBN(0x81682200, 0x5066b087), TOBN(0xda22c212, 0xc7155ada), TOBN(0x151e5d3a, 0xfbddb479), TOBN(0x4b606b84, 0x6d715b99), TOBN(0x4a73b54b, 0xf997cb2e), TOBN(0x9a1bfe43, 0x3ecd8b66), TOBN(0x1c312809, 0x2a67d48a), TOBN(0xcd6a671e, 0x031fa9e2), TOBN(0xbec3312a, 0x0e43a34a), TOBN(0x1d935639, 0x55ef47d3), TOBN(0x5ea02489, 0x8fea73ea), TOBN(0x8247b364, 0xa035afb2), TOBN(0xb58300a6, 0x5265b54c), TOBN(0x3286662f, 0x722c7148), TOBN(0xb77fd76b, 0xb4ec4c20), TOBN(0xf0a12fa7, 0x0f3fe3fd), TOBN(0xf845bbf5, 0x41d8c7e8), TOBN(0xe4d969ca, 0x5ec10aa8), TOBN(0x4c0053b7, 0x43e232a3), TOBN(0xdc7a3fac, 0x37f8a45a), TOBN(0x3c4261c5, 0x20d81c8f), TOBN(0xfd4b3453, 0xb00eab00), TOBN(0x76d48f86, 0xd36e3062), TOBN(0x626c5277, 0xa143ff02), TOBN(0x538174de, 0xaf76f42e), TOBN(0x2267aa86, 0x6407ceac), TOBN(0xfad76351, 0x72e572d5), TOBN(0xab861af7, 0xba7330eb), TOBN(0xa0a1c8c7, 0x418d8657), TOBN(0x988821cb, 0x20289a52), TOBN(0x79732522, 0xcccc18ad), TOBN(0xaadf3f8d, 0xf1a6e027), TOBN(0xf7382c93, 0x17c2354d), TOBN(0x5ce1680c, 0xd818b689), TOBN(0x359ebbfc, 0xd9ecbee9), TOBN(0x4330689c, 0x1cae62ac), TOBN(0xb55ce5b4, 0xc51ac38a), TOBN(0x7921dfea, 0xfe238ee8), TOBN(0x3972bef8, 0x271d1ca5), TOBN(0x3e423bc7, 0xe8aabd18), TOBN(0x57b09f3f, 0x44a3e5e3), TOBN(0x5da886ae, 0x7b444d66), TOBN(0x68206634, 0xa9964375), TOBN(0x356a2fa3, 0x699cd0ff), TOBN(0xaf0faa24, 0xdba515e9), TOBN(0x536e1f5c, 0xb321d79a), TOBN(0xd3b9913a, 0x5c04e4ea), TOBN(0xd549dcfe, 0xd6f11513), TOBN(0xee227bf5, 0x79fd1d94), TOBN(0x9f35afee, 0xb43f2c67), TOBN(0xd2638d24, 0xf1314f53), TOBN(0x62baf948, 0xcabcd822), TOBN(0x5542de29, 0x4ef48db0), TOBN(0xb3eb6a04, 0xfc5f6bb2), TOBN(0x23c110ae, 0x1208e16a), TOBN(0x1a4d15b5, 0xf8363e24), TOBN(0x30716844, 0x164be00b), TOBN(0xa8e24824, 0xf6f4690d), TOBN(0x548773a2, 0x90b170cf), TOBN(0xa1bef331, 0x42f191f4), TOBN(0x70f418d0, 0x9247aa97), TOBN(0xea06028e, 0x48be9147), TOBN(0xe13122f3, 0xdbfb894e), TOBN(0xbe9b79f6, 0xce274b18), TOBN(0x85a49de5, 0xca58aadf), TOBN(0x24957758, 0x11487351), TOBN(0x111def61, 0xbb939099), TOBN(0x1d6a974a, 0x26d13694), TOBN(0x4474b4ce, 0xd3fc253b), TOBN(0x3a1485e6, 0x4c5db15e), TOBN(0xe79667b4, 0x147c15b4), TOBN(0xe34f553b, 0x7bc61301), TOBN(0x032b80f8, 0x17094381), TOBN(0x55d8bafd, 0x723eaa21), TOBN(0x5a987995, 0xf1c0e74e), TOBN(0x5a9b292e, 0xebba289c), TOBN(0x413cd4b2, 0xeb4c8251), TOBN(0x98b5d243, 0xd162db0a), TOBN(0xbb47bf66, 0x68342520), TOBN(0x08d68949, 0xbaa862d1), TOBN(0x11f349c7, 0xe906abcd), TOBN(0x454ce985, 0xed7bf00e), TOBN(0xacab5c9e, 0xb55b803b), TOBN(0xb03468ea, 0x31e3c16d), TOBN(0x5c24213d, 0xd273bf12), TOBN(0x211538eb, 0x71587887), TOBN(0x198e4a2f, 0x731dea2d), TOBN(0xd5856cf2, 0x74ed7b2a), TOBN(0x86a632eb, 0x13a664fe), TOBN(0x932cd909, 0xbda41291), TOBN(0x850e95d4, 0xc0c4ddc0), TOBN(0xc0f422f8, 0x347fc2c9), TOBN(0xe68cbec4, 0x86076bcb), TOBN(0xf9e7c0c0, 0xcd6cd286), TOBN(0x65994ddb, 0x0f5f27ca), TOBN(0xe85461fb, 0xa80d59ff), TOBN(0xff05481a, 0x66601023), TOBN(0xc665427a, 0xfc9ebbfb), TOBN(0xb0571a69, 0x7587fd52), TOBN(0x935289f8, 0x8d49efce), TOBN(0x61becc60, 0xea420688), TOBN(0xb22639d9, 0x13a786af), TOBN(0x1a8e6220, 0x361ecf90), TOBN(0x001f23e0, 0x25506463), TOBN(0xe4ae9b5d, 0x0a5c2b79), TOBN(0xebc9cdad, 0xd8149db5), TOBN(0xb33164a1, 0x934aa728), TOBN(0x750eb00e, 0xae9b60f3), TOBN(0x5a91615b, 0x9b9cfbfd), TOBN(0x97015cbf, 0xef45f7f6), TOBN(0xb462c4a5, 0xbf5151df), TOBN(0x21adcc41, 0xb07118f2), TOBN(0xd60c545b, 0x043fa42c), TOBN(0xfc21aa54, 0xe96be1ab), TOBN(0xe84bc32f, 0x4e51ea80), TOBN(0x3dae45f0, 0x259b5d8d), TOBN(0xbb73c7eb, 0xc38f1b5e), TOBN(0xe405a74a, 0xe8ae617d), TOBN(0xbb1ae9c6, 0x9f1c56bd), TOBN(0x8c176b98, 0x49f196a4), TOBN(0xc448f311, 0x6875092b), TOBN(0xb5afe3de, 0x9f976033), TOBN(0xa8dafd49, 0x145813e5), TOBN(0x687fc4d9, 0xe2b34226), TOBN(0xf2dfc92d, 0x4c7ff57f), TOBN(0x004e3fc1, 0x401f1b46), TOBN(0x5afddab6, 0x1430c9ab), TOBN(0x0bdd41d3, 0x2238e997), TOBN(0xf0947430, 0x418042ae), TOBN(0x71f9adda, 0xcdddc4cb), TOBN(0x7090c016, 0xc52dd907), TOBN(0xd9bdf44d, 0x29e2047f), TOBN(0xe6f1fe80, 0x1b1011a6), TOBN(0xb63accbc, 0xd9acdc78), TOBN(0xcfc7e235, 0x1272a95b), TOBN(0x0c667717, 0xa6276ac8), TOBN(0x3c0d3709, 0xe2d7eef7), TOBN(0x5add2b06, 0x9a685b3e), TOBN(0x363ad32d, 0x14ea5d65), TOBN(0xf8e01f06, 0x8d7dd506), TOBN(0xc9ea2213, 0x75b4aac6), TOBN(0xed2a2bf9, 0x0d353466), TOBN(0x439d79b5, 0xe9d3a7c3), TOBN(0x8e0ee5a6, 0x81b7f34b), TOBN(0xcf3dacf5, 0x1dc4ba75), TOBN(0x1d3d1773, 0xeb3310c7), TOBN(0xa8e67112, 0x7747ae83), TOBN(0x31f43160, 0x197d6b40), TOBN(0x0521ccee, 0xcd961400), TOBN(0x67246f11, 0xf6535768), TOBN(0x702fcc5a, 0xef0c3133), TOBN(0x247cc45d, 0x7e16693b), TOBN(0xfd484e49, 0xc729b749), TOBN(0x522cef7d, 0xb218320f), TOBN(0xe56ef405, 0x59ab93b3), TOBN(0x225fba11, 0x9f181071), TOBN(0x33bd6595, 0x15330ed0), TOBN(0xc4be69d5, 0x1ddb32f7), TOBN(0x264c7668, 0x0448087c), TOBN(0xac30903f, 0x71432dae), TOBN(0x3851b266, 0x00f9bf47), TOBN(0x400ed311, 0x6cdd6d03), TOBN(0x045e79fe, 0xf8fd2424), TOBN(0xfdfd974a, 0xfa6da98b), TOBN(0x45c9f641, 0x0c1e673a), TOBN(0x76f2e733, 0x5b2c5168), TOBN(0x1adaebb5, 0x2a601753), TOBN(0xb286514c, 0xc57c2d49), TOBN(0xd8769670, 0x1e0bfd24), TOBN(0x950c547e, 0x04478922), TOBN(0xd1d41969, 0xe5d32bfe), TOBN(0x30bc1472, 0x750d6c3e), TOBN(0x8f3679fe, 0xe0e27f3a), TOBN(0x8f64a7dc, 0xa4a6ee0c), TOBN(0x2fe59937, 0x633dfb1f), TOBN(0xea82c395, 0x977f2547), TOBN(0xcbdfdf1a, 0x661ea646), TOBN(0xc7ccc591, 0xb9085451), TOBN(0x82177962, 0x81761e13), TOBN(0xda57596f, 0x9196885c), TOBN(0xbc17e849, 0x28ffbd70), TOBN(0x1e6e0a41, 0x2671d36f), TOBN(0x61ae872c, 0x4152fcf5), TOBN(0x441c87b0, 0x9e77e754), TOBN(0xd0799dd5, 0xa34dff09), TOBN(0x766b4e44, 0x88a6b171), TOBN(0xdc06a512, 0x11f1c792), TOBN(0xea02ae93, 0x4be35c3e), TOBN(0xe5ca4d6d, 0xe90c469e), TOBN(0x4df4368e, 0x56e4ff5c), TOBN(0x7817acab, 0x4baef62e), TOBN(0x9f5a2202, 0xa85b91e8), TOBN(0x9666ebe6, 0x6ce57610), TOBN(0x32ad31f3, 0xf73bfe03), TOBN(0x628330a4, 0x25bcf4d6), TOBN(0xea950593, 0x515056e6), TOBN(0x59811c89, 0xe1332156), TOBN(0xc89cf1fe, 0x8c11b2d7), TOBN(0x75b63913, 0x04e60cc0), TOBN(0xce811e8d, 0x4625d375), TOBN(0x030e43fc, 0x2d26e562), TOBN(0xfbb30b4b, 0x608d36a0), TOBN(0x634ff82c, 0x48528118), TOBN(0x7c6fe085, 0xcd285911), TOBN(0x7f2830c0, 0x99358f28), TOBN(0x2e60a95e, 0x665e6c09), TOBN(0x08407d3d, 0x9b785dbf), TOBN(0x530889ab, 0xa759bce7), TOBN(0xf228e0e6, 0x52f61239), TOBN(0x2b6d1461, 0x6879be3c), TOBN(0xe6902c04, 0x51a7bbf7), TOBN(0x30ad99f0, 0x76f24a64), TOBN(0x66d9317a, 0x98bc6da0), TOBN(0xf4f877f3, 0xcb596ac0), TOBN(0xb05ff62d, 0x4c44f119), TOBN(0x4555f536, 0xe9b77416), TOBN(0xc7c0d059, 0x8caed63b), TOBN(0x0cd2b7ce, 0xc358b2a9), TOBN(0x3f33287b, 0x46945fa3), TOBN(0xf8785b20, 0xd67c8791), TOBN(0xc54a7a61, 0x9637bd08), TOBN(0x54d4598c, 0x18be79d7), TOBN(0x889e5acb, 0xc46d7ce1), TOBN(0x9a515bb7, 0x8b085877), TOBN(0xfac1a03d, 0x0b7a5050), TOBN(0x7d3e738a, 0xf2926035), TOBN(0x861cc2ce, 0x2a6cb0eb), TOBN(0x6f2e2955, 0x8f7adc79), TOBN(0x61c4d451, 0x33016376), TOBN(0xd9fd2c80, 0x5ad59090), TOBN(0xe5a83738, 0xb2b836a1), TOBN(0x855b41a0, 0x7c0d6622), TOBN(0x186fe317, 0x7cc19af1), TOBN(0x6465c1ff, 0xfdd99acb), TOBN(0x46e5c23f, 0x6974b99e), TOBN(0x75a7cf8b, 0xa2717cbe), TOBN(0x4d2ebc3f, 0x062be658), TOBN(0x094b4447, 0x5f209c98), TOBN(0x4af285ed, 0xb940cb5a), TOBN(0x6706d792, 0x7cc82f10), TOBN(0xc8c8776c, 0x030526fa), TOBN(0xfa8e6f76, 0xa0da9140), TOBN(0x77ea9d34, 0x591ee4f0), TOBN(0x5f46e337, 0x40274166), TOBN(0x1bdf98bb, 0xea671457), TOBN(0xd7c08b46, 0x862a1fe2), TOBN(0x46cc303c, 0x1c08ad63), TOBN(0x99543440, 0x4c845e7b), TOBN(0x1b8fbdb5, 0x48f36bf7), TOBN(0x5b82c392, 0x8c8273a7), TOBN(0x08f712c4, 0x928435d5), TOBN(0x071cf0f1, 0x79330380), TOBN(0xc74c2d24, 0xa8da054a), TOBN(0xcb0e7201, 0x43c46b5c), TOBN(0x0ad7337a, 0xc0b7eff3), TOBN(0x8552225e, 0xc5e48b3c), TOBN(0xe6f78b0c, 0x73f13a5f), TOBN(0x5e70062e, 0x82349cbe), TOBN(0x6b8d5048, 0xe7073969), TOBN(0x392d2a29, 0xc33cb3d2), TOBN(0xee4f727c, 0x4ecaa20f), TOBN(0xa068c99e, 0x2ccde707), TOBN(0xfcd5651f, 0xb87a2913), TOBN(0xea3e3c15, 0x3cc252f0), TOBN(0x777d92df, 0x3b6cd3e4), TOBN(0x7a414143, 0xc5a732e7), TOBN(0xa895951a, 0xa71ff493), TOBN(0xfe980c92, 0xbbd37cf6), TOBN(0x45bd5e64, 0xdecfeeff), TOBN(0x910dc2a9, 0xa44c43e9), TOBN(0xcb403f26, 0xcca9f54d), TOBN(0x928bbdfb, 0x9303f6db), TOBN(0x3c37951e, 0xa9eee67c), TOBN(0x3bd61a52, 0xf79961c3), TOBN(0x09a238e6, 0x395c9a79), TOBN(0x6940ca2d, 0x61eb352d), TOBN(0x7d1e5c5e, 0xc1875631), TOBN(0x1e19742c, 0x1e1b20d1), TOBN(0x4633d908, 0x23fc2e6e), TOBN(0xa76e29a9, 0x08959149), TOBN(0x61069d9c, 0x84ed7da5), TOBN(0x0baa11cf, 0x5dbcad51), TOBN(0xd01eec64, 0x961849da), TOBN(0x93b75f1f, 0xaf3d8c28), TOBN(0x57bc4f9f, 0x1ca2ee44), TOBN(0x5a26322d, 0x00e00558), TOBN(0x1888d658, 0x61a023ef), TOBN(0x1d72aab4, 0xb9e5246e), TOBN(0xa9a26348, 0xe5563ec0), TOBN(0xa0971963, 0xc3439a43), TOBN(0x567dd54b, 0xadb9b5b7), TOBN(0x73fac1a1, 0xc45a524b), TOBN(0x8fe97ef7, 0xfe38e608), TOBN(0x608748d2, 0x3f384f48), TOBN(0xb0571794, 0xc486094f), TOBN(0x869254a3, 0x8bf3a8d6), TOBN(0x148a8dd1, 0x310b0e25), TOBN(0x99ab9f3f, 0x9aa3f7d8), TOBN(0x0927c68a, 0x6706c02e), TOBN(0x22b5e76c, 0x69790e6c), TOBN(0x6c325260, 0x6c71376c), TOBN(0x53a57690, 0x09ef6657), TOBN(0x8d63f852, 0xedffcf3a), TOBN(0xb4d2ed04, 0x3c0a6f55), TOBN(0xdb3aa8de, 0x12519b9e), TOBN(0x5d38e9c4, 0x1e0a569a), TOBN(0x871528bf, 0x303747e2), TOBN(0xa208e77c, 0xf5b5c18d), TOBN(0x9d129c88, 0xca6bf923), TOBN(0xbcbf197f, 0xbf02839f), TOBN(0x9b9bf030, 0x27323194), TOBN(0x3b055a8b, 0x339ca59d), TOBN(0xb46b2312, 0x0f669520), TOBN(0x19789f1f, 0x497e5f24), TOBN(0x9c499468, 0xaaf01801), TOBN(0x72ee1190, 0x8b69d59c), TOBN(0x8bd39595, 0xacf4c079), TOBN(0x3ee11ece, 0x8e0cd048), TOBN(0xebde86ec, 0x1ed66f18), TOBN(0x225d906b, 0xd61fce43), TOBN(0x5cab07d6, 0xe8bed74d), TOBN(0x16e4617f, 0x27855ab7), TOBN(0x6568aadd, 0xb2fbc3dd), TOBN(0xedb5484f, 0x8aeddf5b), TOBN(0x878f20e8, 0x6dcf2fad), TOBN(0x3516497c, 0x615f5699),} , {TOBN(0xef0a3fec, 0xfa181e69), TOBN(0x9ea02f81, 0x30d69a98), TOBN(0xb2e9cf8e, 0x66eab95d), TOBN(0x520f2beb, 0x24720021), TOBN(0x621c540a, 0x1df84361), TOBN(0x12037721, 0x71fa6d5d), TOBN(0x6e3c7b51, 0x0ff5f6ff), TOBN(0x817a069b, 0xabb2bef3), TOBN(0x83572fb6, 0xb294cda6), TOBN(0x6ce9bf75, 0xb9039f34), TOBN(0x20e012f0, 0x095cbb21), TOBN(0xa0aecc1b, 0xd063f0da), TOBN(0x57c21c3a, 0xf02909e5), TOBN(0xc7d59ecf, 0x48ce9cdc), TOBN(0x2732b844, 0x8ae336f8), TOBN(0x056e3723, 0x3f4f85f4), TOBN(0x8a10b531, 0x89e800ca), TOBN(0x50fe0c17, 0x145208fd), TOBN(0x9e43c0d3, 0xb714ba37), TOBN(0x427d200e, 0x34189acc), TOBN(0x05dee24f, 0xe616e2c0), TOBN(0x9c25f4c8, 0xee1854c1), TOBN(0x4d3222a5, 0x8f342a73), TOBN(0x0807804f, 0xa027c952), TOBN(0xc222653a, 0x4f0d56f3), TOBN(0x961e4047, 0xca28b805), TOBN(0x2c03f8b0, 0x4a73434b), TOBN(0x4c966787, 0xab712a19), TOBN(0xcc196c42, 0x864fee42), TOBN(0xc1be93da, 0x5b0ece5c), TOBN(0xa87d9f22, 0xc131c159), TOBN(0x2bb6d593, 0xdce45655), TOBN(0x22c49ec9, 0xb809b7ce), TOBN(0x8a41486b, 0xe2c72c2c), TOBN(0x813b9420, 0xfea0bf36), TOBN(0xb3d36ee9, 0xa66dac69), TOBN(0x6fddc08a, 0x328cc987), TOBN(0x0a3bcd2c, 0x3a326461), TOBN(0x7103c49d, 0xd810dbba), TOBN(0xf9d81a28, 0x4b78a4c4), TOBN(0x3de865ad, 0xe4d55941), TOBN(0xdedafa5e, 0x30384087), TOBN(0x6f414abb, 0x4ef18b9b), TOBN(0x9ee9ea42, 0xfaee5268), TOBN(0x260faa16, 0x37a55a4a), TOBN(0xeb19a514, 0x015f93b9), TOBN(0x51d7ebd2, 0x9e9c3598), TOBN(0x523fc56d, 0x1932178e), TOBN(0x501d070c, 0xb98fe684), TOBN(0xd60fbe9a, 0x124a1458), TOBN(0xa45761c8, 0x92bc6b3f), TOBN(0xf5384858, 0xfe6f27cb), TOBN(0x4b0271f7, 0xb59e763b), TOBN(0x3d4606a9, 0x5b5a8e5e), TOBN(0x1eda5d9b, 0x05a48292), TOBN(0xda7731d0, 0xe6fec446), TOBN(0xa3e33693, 0x90d45871), TOBN(0xe9764040, 0x06166d8d), TOBN(0xb5c33682, 0x89a90403), TOBN(0x4bd17983, 0x72f1d637), TOBN(0xa616679e, 0xd5d2c53a), TOBN(0x5ec4bcd8, 0xfdcf3b87), TOBN(0xae6d7613, 0xb66a694e), TOBN(0x7460fc76, 0xe3fc27e5), TOBN(0x70469b82, 0x95caabee), TOBN(0xde024ca5, 0x889501e3), TOBN(0x6bdadc06, 0x076ed265), TOBN(0x0cb1236b, 0x5a0ef8b2), TOBN(0x4065ddbf, 0x0972ebf9), TOBN(0xf1dd3875, 0x22aca432), TOBN(0xa88b97cf, 0x744aff76), TOBN(0xd1359afd, 0xfe8e3d24), TOBN(0x52a3ba2b, 0x91502cf3), TOBN(0x2c3832a8, 0x084db75d), TOBN(0x04a12ddd, 0xde30b1c9), TOBN(0x7802eabc, 0xe31fd60c), TOBN(0x33707327, 0xa37fddab), TOBN(0x65d6f2ab, 0xfaafa973), TOBN(0x3525c5b8, 0x11e6f91a), TOBN(0x76aeb0c9, 0x5f46530b), TOBN(0xe8815ff6, 0x2f93a675), TOBN(0xa6ec9684, 0x05f48679), TOBN(0x6dcbb556, 0x358ae884), TOBN(0x0af61472, 0xe19e3873), TOBN(0x72334372, 0xa5f696be), TOBN(0xc65e57ea, 0x6f22fb70), TOBN(0x268da30c, 0x946cea90), TOBN(0x136a8a87, 0x65681b2a), TOBN(0xad5e81dc, 0x0f9f44d4), TOBN(0xf09a6960, 0x2c46585a), TOBN(0xd1649164, 0xc447d1b1), TOBN(0x3b4b36c8, 0x879dc8b1), TOBN(0x20d4177b, 0x3b6b234c), TOBN(0x096a2505, 0x1730d9d0), TOBN(0x0611b9b8, 0xef80531d), TOBN(0xba904b3b, 0x64bb495d), TOBN(0x1192d9d4, 0x93a3147a), TOBN(0x9f30a5dc, 0x9a565545), TOBN(0x90b1f9cb, 0x6ef07212), TOBN(0x29958546, 0x0d87fc13), TOBN(0xd3323eff, 0xc17db9ba), TOBN(0xcb18548c, 0xcb1644a8), TOBN(0x18a306d4, 0x4f49ffbc), TOBN(0x28d658f1, 0x4c2e8684), TOBN(0x44ba60cd, 0xa99f8c71), TOBN(0x67b7abdb, 0x4bf742ff), TOBN(0x66310f9c, 0x914b3f99), TOBN(0xae430a32, 0xf412c161), TOBN(0x1e6776d3, 0x88ace52f), TOBN(0x4bc0fa24, 0x52d7067d), TOBN(0x03c286aa, 0x8f07cd1b), TOBN(0x4cb8f38c, 0xa985b2c1), TOBN(0x83ccbe80, 0x8c3bff36), TOBN(0x005a0bd2, 0x5263e575), TOBN(0x460d7dda, 0x259bdcd1), TOBN(0x4a1c5642, 0xfa5cab6b), TOBN(0x2b7bdbb9, 0x9fe4fc88), TOBN(0x09418e28, 0xcc97bbb5), TOBN(0xd8274fb4, 0xa12321ae), TOBN(0xb137007d, 0x5c87b64e), TOBN(0x80531fe1, 0xc63c4962), TOBN(0x50541e89, 0x981fdb25), TOBN(0xdc1291a1, 0xfd4c2b6b), TOBN(0xc0693a17, 0xa6df4fca), TOBN(0xb2c4604e, 0x0117f203), TOBN(0x245f1963, 0x0a99b8d0), TOBN(0xaedc20aa, 0xc6212c44), TOBN(0xb1ed4e56, 0x520f52a8), TOBN(0xfe48f575, 0xf8547be3), TOBN(0x0a7033cd, 0xa9e45f98), TOBN(0x4b45d3a9, 0x18c50100), TOBN(0xb2a6cd6a, 0xa61d41da), TOBN(0x60bbb4f5, 0x57933c6b), TOBN(0xa7538ebd, 0x2b0d7ffc), TOBN(0x9ea3ab8d, 0x8cd626b6), TOBN(0x8273a484, 0x3601625a), TOBN(0x88859845, 0x0168e508), TOBN(0x8cbc9bb2, 0x99a94abd), TOBN(0x713ac792, 0xfab0a671), TOBN(0xa3995b19, 0x6c9ebffc), TOBN(0xe711668e, 0x1239e152), TOBN(0x56892558, 0xbbb8dff4), TOBN(0x8bfc7dab, 0xdbf17963), TOBN(0x5b59fe5a, 0xb3de1253), TOBN(0x7e3320eb, 0x34a9f7ae), TOBN(0xe5e8cf72, 0xd751efe4), TOBN(0x7ea003bc, 0xd9be2f37), TOBN(0xc0f551a0, 0xb6c08ef7), TOBN(0x56606268, 0x038f6725), TOBN(0x1dd38e35, 0x6d92d3b6), TOBN(0x07dfce7c, 0xc3cbd686), TOBN(0x4e549e04, 0x651c5da8), TOBN(0x4058f93b, 0x08b19340), TOBN(0xc2fae6f4, 0xcac6d89d), TOBN(0x4bad8a8c, 0x8f159cc7), TOBN(0x0ddba4b3, 0xcb0b601c), TOBN(0xda4fc7b5, 0x1dd95f8c), TOBN(0x1d163cd7, 0xcea5c255), TOBN(0x30707d06, 0x274a8c4c), TOBN(0x79d9e008, 0x2802e9ce), TOBN(0x02a29ebf, 0xe6ddd505), TOBN(0x37064e74, 0xb50bed1a), TOBN(0x3f6bae65, 0xa7327d57), TOBN(0x3846f5f1, 0xf83920bc), TOBN(0x87c37491, 0x60df1b9b), TOBN(0x4cfb2895, 0x2d1da29f), TOBN(0x10a478ca, 0x4ed1743c), TOBN(0x390c6030, 0x3edd47c6), TOBN(0x8f3e5312, 0x8c0a78de), TOBN(0xccd02bda, 0x1e85df70), TOBN(0xd6c75c03, 0xa61b6582), TOBN(0x0762921c, 0xfc0eebd1), TOBN(0xd34d0823, 0xd85010c0), TOBN(0xd73aaacb, 0x0044cf1f), TOBN(0xfb4159bb, 0xa3b5e78a), TOBN(0x2287c7f7, 0xe5826f3f), TOBN(0x4aeaf742, 0x580b1a01), TOBN(0xf080415d, 0x60423b79), TOBN(0xe12622cd, 0xa7dea144), TOBN(0x49ea4996, 0x59d62472), TOBN(0xb42991ef, 0x571f3913), TOBN(0x0610f214, 0xf5b25a8a), TOBN(0x47adc585, 0x30b79e8f), TOBN(0xf90e3df6, 0x07a065a2), TOBN(0x5d0a5deb, 0x43e2e034), TOBN(0x53fb5a34, 0x444024aa), TOBN(0xa8628c68, 0x6b0c9f7f), TOBN(0x9c69c29c, 0xac563656), TOBN(0x5a231feb, 0xbace47b6), TOBN(0xbdce0289, 0x9ea5a2ec), TOBN(0x05da1fac, 0x9463853e), TOBN(0x96812c52, 0x509e78aa), TOBN(0xd3fb5771, 0x57151692), TOBN(0xeb2721f8, 0xd98e1c44), TOBN(0xc0506087, 0x32399be1), TOBN(0xda5a5511, 0xd979d8b8), TOBN(0x737ed55d, 0xc6f56780), TOBN(0xe20d3004, 0x0dc7a7f4), TOBN(0x02ce7301, 0xf5941a03), TOBN(0x91ef5215, 0xed30f83a), TOBN(0x28727fc1, 0x4092d85f), TOBN(0x72d223c6, 0x5c49e41a), TOBN(0xa7cf30a2, 0xba6a4d81), TOBN(0x7c086209, 0xb030d87d), TOBN(0x04844c7d, 0xfc588b09), TOBN(0x728cd499, 0x5874bbb0), TOBN(0xcc1281ee, 0xe84c0495), TOBN(0x0769b5ba, 0xec31958f), TOBN(0x665c228b, 0xf99c2471), TOBN(0xf2d8a11b, 0x191eb110), TOBN(0x4594f494, 0xd36d7024), TOBN(0x482ded8b, 0xcdcb25a1), TOBN(0xc958a9d8, 0xdadd4885), TOBN(0x7004477e, 0xf1d2b547), TOBN(0x0a45f6ef, 0x2a0af550), TOBN(0x4fc739d6, 0x2f8d6351), TOBN(0x75cdaf27, 0x786f08a9), TOBN(0x8700bb26, 0x42c2737f), TOBN(0x855a7141, 0x1c4e2670), TOBN(0x810188c1, 0x15076fef), TOBN(0xc251d0c9, 0xabcd3297), TOBN(0xae4c8967, 0xf48108eb), TOBN(0xbd146de7, 0x18ceed30), TOBN(0xf9d4f07a, 0xc986bced), TOBN(0x5ad98ed5, 0x83fa1e08), TOBN(0x7780d33e, 0xbeabd1fb), TOBN(0xe330513c, 0x903b1196), TOBN(0xba11de9e, 0xa47bc8c4), TOBN(0x684334da, 0x02c2d064), TOBN(0x7ecf360d, 0xa48de23b), TOBN(0x57a1b474, 0x0a9089d8), TOBN(0xf28fa439, 0xff36734c), TOBN(0xf2a482cb, 0xea4570b3), TOBN(0xee65d68b, 0xa5ebcee9), TOBN(0x988d0036, 0xb9694cd5), TOBN(0x53edd0e9, 0x37885d32), TOBN(0xe37e3307, 0xbeb9bc6d), TOBN(0xe9abb907, 0x9f5c6768), TOBN(0x4396ccd5, 0x51f2160f), TOBN(0x2500888c, 0x47336da6), TOBN(0x383f9ed9, 0x926fce43), TOBN(0x809dd1c7, 0x04da2930), TOBN(0x30f6f596, 0x8a4cb227), TOBN(0x0d700c7f, 0x73a56b38), TOBN(0x1825ea33, 0xab64a065), TOBN(0xaab9b735, 0x1338df80), TOBN(0x1516100d, 0x9b63f57f), TOBN(0x2574395a, 0x27a6a634), TOBN(0xb5560fb6, 0x700a1acd), TOBN(0xe823fd73, 0xfd999681), TOBN(0xda915d1f, 0x6cb4e1ba), TOBN(0x0d030118, 0x6ebe00a3), TOBN(0x744fb0c9, 0x89fca8cd), TOBN(0x970d01db, 0xf9da0e0b), TOBN(0x0ad8c564, 0x7931d76f), TOBN(0xb15737bf, 0xf659b96a), TOBN(0xdc9933e8, 0xa8b484e7), TOBN(0xb2fdbdf9, 0x7a26dec7), TOBN(0x2349e9a4, 0x9f1f0136), TOBN(0x7860368e, 0x70fddddb), TOBN(0xd93d2c1c, 0xf9ad3e18), TOBN(0x6d6c5f17, 0x689f4e79), TOBN(0x7a544d91, 0xb24ff1b6), TOBN(0x3e12a5eb, 0xfe16cd8c), TOBN(0x543574e9, 0xa56b872f), TOBN(0xa1ad550c, 0xfcf68ea2), TOBN(0x689e37d2, 0x3f560ef7), TOBN(0x8c54b9ca, 0xc9d47a8b), TOBN(0x46d40a4a, 0x088ac342), TOBN(0xec450c7c, 0x1576c6d0), TOBN(0xb589e31c, 0x1f9689e9), TOBN(0xdacf2602, 0xb8781718), TOBN(0xa89237c6, 0xc8cb6b42), TOBN(0x1326fc93, 0xb96ef381), TOBN(0x55d56c6d, 0xb5f07825), TOBN(0xacba2eea, 0x7449e22d), TOBN(0x74e0887a, 0x633c3000), TOBN(0xcb6cd172, 0xd7cbcf71), TOBN(0x309e81de, 0xc36cf1be), TOBN(0x07a18a6d, 0x60ae399b), TOBN(0xb36c2679, 0x9edce57e), TOBN(0x52b892f4, 0xdf001d41), TOBN(0xd884ae5d, 0x16a1f2c6), TOBN(0x9b329424, 0xefcc370a), TOBN(0x3120daf2, 0xbd2e21df), TOBN(0x55298d2d, 0x02470a99), TOBN(0x0b78af6c, 0xa05db32e), TOBN(0x5c76a331, 0x601f5636), TOBN(0xaae861ff, 0xf8a4f29c), TOBN(0x70dc9240, 0xd68f8d49), TOBN(0x960e649f, 0x81b1321c), TOBN(0x3d2c801b, 0x8792e4ce), TOBN(0xf479f772, 0x42521876), TOBN(0x0bed93bc, 0x416c79b1), TOBN(0xa67fbc05, 0x263e5bc9), TOBN(0x01e8e630, 0x521db049), TOBN(0x76f26738, 0xc6f3431e), TOBN(0xe609cb02, 0xe3267541), TOBN(0xb10cff2d, 0x818c877c), TOBN(0x1f0e75ce, 0x786a13cb), TOBN(0xf4fdca64, 0x1158544d), TOBN(0x5d777e89, 0x6cb71ed0), TOBN(0x3c233737, 0xa9aa4755), TOBN(0x7b453192, 0xe527ab40), TOBN(0xdb59f688, 0x39f05ffe), TOBN(0x8f4f4be0, 0x6d82574e), TOBN(0xcce3450c, 0xee292d1b), TOBN(0xaa448a12, 0x61ccd086), TOBN(0xabce91b3, 0xf7914967), TOBN(0x4537f09b, 0x1908a5ed), TOBN(0xa812421e, 0xf51042e7), TOBN(0xfaf5cebc, 0xec0b3a34), TOBN(0x730ffd87, 0x4ca6b39a), TOBN(0x70fb72ed, 0x02efd342), TOBN(0xeb4735f9, 0xd75c8edb), TOBN(0xc11f2157, 0xc278aa51), TOBN(0xc459f635, 0xbf3bfebf), TOBN(0x3a1ff0b4, 0x6bd9601f), TOBN(0xc9d12823, 0xc420cb73), TOBN(0x3e9af3e2, 0x3c2915a3), TOBN(0xe0c82c72, 0xb41c3440), TOBN(0x175239e5, 0xe3039a5f), TOBN(0xe1084b8a, 0x558795a3), TOBN(0x328d0a1d, 0xd01e5c60), TOBN(0x0a495f2e, 0xd3788a04), TOBN(0x25d8ff16, 0x66c11a9f), TOBN(0xf5155f05, 0x9ed692d6), TOBN(0x954fa107, 0x4f425fe4), TOBN(0xd16aabf2, 0xe98aaa99), TOBN(0x90cd8ba0, 0x96b0f88a), TOBN(0x957f4782, 0xc154026a), TOBN(0x54ee0734, 0x52af56d2), TOBN(0xbcf89e54, 0x45b4147a), TOBN(0x3d102f21, 0x9a52816c), TOBN(0x6808517e, 0x39b62e77), TOBN(0x92e25421, 0x69169ad8), TOBN(0xd721d871, 0xbb608558), TOBN(0x60e4ebae, 0xf6d4ff9b), TOBN(0x0ba10819, 0x41f2763e), TOBN(0xca2e45be, 0x51ee3247), TOBN(0x66d172ec, 0x2bfd7a5f), TOBN(0x528a8f2f, 0x74d0b12d), TOBN(0xe17f1e38, 0xdabe70dc), TOBN(0x1d5d7316, 0x9f93983c), TOBN(0x51b2184a, 0xdf423e31), TOBN(0xcb417291, 0xaedb1a10), TOBN(0x2054ca93, 0x625bcab9), TOBN(0x54396860, 0xa98998f0), TOBN(0x4e53f6c4, 0xa54ae57e), TOBN(0x0ffeb590, 0xee648e9d), TOBN(0xfbbdaadc, 0x6afaf6bc), TOBN(0xf88ae796, 0xaa3bfb8a), TOBN(0x209f1d44, 0xd2359ed9), TOBN(0xac68dd03, 0xf3544ce2), TOBN(0xf378da47, 0xfd51e569), TOBN(0xe1abd860, 0x2cc80097), TOBN(0x23ca18d9, 0x343b6e3a), TOBN(0x480797e8, 0xb40a1bae), TOBN(0xd1f0c717, 0x533f3e67), TOBN(0x44896970, 0x06e6cdfc), TOBN(0x8ca21055, 0x52a82e8d), TOBN(0xb2caf785, 0x78460cdc), TOBN(0x4c1b7b62, 0xe9037178), TOBN(0xefc09d2c, 0xdb514b58), TOBN(0x5f2df9ee, 0x9113be5c), TOBN(0x2fbda78f, 0xb3f9271c), TOBN(0xe09a81af, 0x8f83fc54), TOBN(0x06b13866, 0x8afb5141), TOBN(0x38f6480f, 0x43e3865d), TOBN(0x72dd77a8, 0x1ddf47d9), TOBN(0xf2a8e971, 0x4c205ff7), TOBN(0x46d449d8, 0x9d088ad8), TOBN(0x926619ea, 0x185d706f), TOBN(0xe47e02eb, 0xc7dd7f62), TOBN(0xe7f120a7, 0x8cbc2031), TOBN(0xc18bef00, 0x998d4ac9), TOBN(0x18f37a9c, 0x6bdf22da), TOBN(0xefbc432f, 0x90dc82df), TOBN(0xc52cef8e, 0x5d703651), TOBN(0x82887ba0, 0xd99881a5), TOBN(0x7cec9dda, 0xb920ec1d), TOBN(0xd0d7e8c3, 0xec3e8d3b), TOBN(0x445bc395, 0x4ca88747), TOBN(0xedeaa2e0, 0x9fd53535), TOBN(0x461b1d93, 0x6cc87475), TOBN(0xd92a52e2, 0x6d2383bd), TOBN(0xfabccb59, 0xd7903546), TOBN(0x6111a761, 0x3d14b112), TOBN(0x0ae584fe, 0xb3d5f612), TOBN(0x5ea69b8d, 0x60e828ec), TOBN(0x6c078985, 0x54087030), TOBN(0x649cab04, 0xac4821fe), TOBN(0x25ecedcf, 0x8bdce214), TOBN(0xb5622f72, 0x86af7361), TOBN(0x0e1227aa, 0x7038b9e2), TOBN(0xd0efb273, 0xac20fa77), TOBN(0x817ff88b, 0x79df975b), TOBN(0x856bf286, 0x1999503e), TOBN(0xb4d5351f, 0x5038ec46), TOBN(0x740a52c5, 0xfc42af6e), TOBN(0x2e38bb15, 0x2cbb1a3f), TOBN(0xc3eb99fe, 0x17a83429), TOBN(0xca4fcbf1, 0xdd66bb74), TOBN(0x880784d6, 0xcde5e8fc), TOBN(0xddc84c1c, 0xb4e7a0be), TOBN(0x8780510d, 0xbd15a72f), TOBN(0x44bcf1af, 0x81ec30e1), TOBN(0x141e50a8, 0x0a61073e), TOBN(0x0d955718, 0x47be87ae), TOBN(0x68a61417, 0xf76a4372), TOBN(0xf57e7e87, 0xc607c3d3), TOBN(0x043afaf8, 0x5252f332), TOBN(0xcc14e121, 0x1552a4d2), TOBN(0xb6dee692, 0xbb4d4ab4), TOBN(0xb6ab74c8, 0xa03816a4), TOBN(0x84001ae4, 0x6f394a29), TOBN(0x5bed8344, 0xd795fb45), TOBN(0x57326e7d, 0xb79f55a5), TOBN(0xc9533ce0, 0x4accdffc), TOBN(0x53473caf, 0x3993fa04), TOBN(0x7906eb93, 0xa13df4c8), TOBN(0xa73e51f6, 0x97cbe46f), TOBN(0xd1ab3ae1, 0x0ae4ccf8), TOBN(0x25614508, 0x8a5b3dbc), TOBN(0x61eff962, 0x11a71b27), TOBN(0xdf71412b, 0x6bb7fa39), TOBN(0xb31ba6b8, 0x2bd7f3ef), TOBN(0xb0b9c415, 0x69180d29), TOBN(0xeec14552, 0x014cdde5), TOBN(0x702c624b, 0x227b4bbb), TOBN(0x2b15e8c2, 0xd3e988f3), TOBN(0xee3bcc6d, 0xa4f7fd04), TOBN(0x9d00822a, 0x42ac6c85), TOBN(0x2db0cea6, 0x1df9f2b7), TOBN(0xd7cad2ab, 0x42de1e58), TOBN(0x346ed526, 0x2d6fbb61), TOBN(0xb3962995, 0x1a2faf09), TOBN(0x2fa8a580, 0x7c25612e), TOBN(0x30ae04da, 0x7cf56490), TOBN(0x75662908, 0x0eea3961), TOBN(0x3609f5c5, 0x3d080847), TOBN(0xcb081d39, 0x5241d4f6), TOBN(0xb4fb3810, 0x77961a63), TOBN(0xc20c5984, 0x2abb66fc), TOBN(0x3d40aa7c, 0xf902f245), TOBN(0x9cb12736, 0x4e536b1e), TOBN(0x5eda24da, 0x99b3134f), TOBN(0xafbd9c69, 0x5cd011af), TOBN(0x9a16e30a, 0xc7088c7d), TOBN(0x5ab65710, 0x3207389f), TOBN(0x1b09547f, 0xe7407a53), TOBN(0x2322f9d7, 0x4fdc6eab), TOBN(0xc0f2f22d, 0x7430de4d), TOBN(0x19382696, 0xe68ca9a9), TOBN(0x17f1eff1, 0x918e5868), TOBN(0xe3b5b635, 0x586f4204), TOBN(0x146ef980, 0x3fbc4341), TOBN(0x359f2c80, 0x5b5eed4e), TOBN(0x9f35744e, 0x7482e41d), TOBN(0x9a9ac3ec, 0xf3b224c2), TOBN(0x9161a6fe, 0x91fc50ae), TOBN(0x89ccc66b, 0xc613fa7c), TOBN(0x89268b14, 0xc732f15a), TOBN(0x7cd6f4e2, 0xb467ed03), TOBN(0xfbf79869, 0xce56b40e), TOBN(0xf93e094c, 0xc02dde98), TOBN(0xefe0c3a8, 0xedee2cd7), TOBN(0x90f3ffc0, 0xb268fd42), TOBN(0x81a7fd56, 0x08241aed), TOBN(0x95ab7ad8, 0x00b1afe8), TOBN(0x40127056, 0x3e310d52), TOBN(0xd3ffdeb1, 0x09d9fc43), TOBN(0xc8f85c91, 0xd11a8594), TOBN(0x2e74d258, 0x31cf6db8), TOBN(0x829c7ca3, 0x02b5dfd0), TOBN(0xe389cfbe, 0x69143c86), TOBN(0xd01b6405, 0x941768d8), TOBN(0x45103995, 0x03bf825d), TOBN(0xcc4ee166, 0x56cd17e2), TOBN(0xbea3c283, 0xba037e79), TOBN(0x4e1ac06e, 0xd9a47520), TOBN(0xfbfe18aa, 0xaf852404), TOBN(0x5615f8e2, 0x8087648a), TOBN(0x7301e47e, 0xb9d150d9), TOBN(0x79f9f9dd, 0xb299b977), TOBN(0x76697a7b, 0xa5b78314), TOBN(0x10d67468, 0x7d7c90e7), TOBN(0x7afffe03, 0x937210b5), TOBN(0x5aef3e4b, 0x28c22cee), TOBN(0xefb0ecd8, 0x09fd55ae), TOBN(0x4cea7132, 0x0d2a5d6a), TOBN(0x9cfb5fa1, 0x01db6357), TOBN(0x395e0b57, 0xf36e1ac5), TOBN(0x008fa9ad, 0x36cafb7d), TOBN(0x8f6cdf70, 0x5308c4db), TOBN(0x51527a37, 0x95ed2477), TOBN(0xba0dee30, 0x5bd21311), TOBN(0x6ed41b22, 0x909c90d7), TOBN(0xc5f6b758, 0x7c8696d3), TOBN(0x0db8eaa8, 0x3ce83a80), TOBN(0xd297fe37, 0xb24b4b6f), TOBN(0xfe58afe8, 0x522d1f0d), TOBN(0x97358736, 0x8c98dbd9), TOBN(0x6bc226ca, 0x9454a527), TOBN(0xa12b384e, 0xce53c2d0), TOBN(0x779d897d, 0x5e4606da), TOBN(0xa53e47b0, 0x73ec12b0), TOBN(0x462dbbba, 0x5756f1ad), TOBN(0x69fe09f2, 0xcafe37b6), TOBN(0x273d1ebf, 0xecce2e17), TOBN(0x8ac1d538, 0x3cf607fd), TOBN(0x8035f7ff, 0x12e10c25),} , {TOBN(0x854d34c7, 0x7e6c5520), TOBN(0xc27df9ef, 0xdcb9ea58), TOBN(0x405f2369, 0xd686666d), TOBN(0x29d1febf, 0x0417aa85), TOBN(0x9846819e, 0x93470afe), TOBN(0x3e6a9669, 0xe2a27f9e), TOBN(0x24d008a2, 0xe31e6504), TOBN(0xdba7cecf, 0x9cb7680a), TOBN(0xecaff541, 0x338d6e43), TOBN(0x56f7dd73, 0x4541d5cc), TOBN(0xb5d426de, 0x96bc88ca), TOBN(0x48d94f6b, 0x9ed3a2c3), TOBN(0x6354a3bb, 0x2ef8279c), TOBN(0xd575465b, 0x0b1867f2), TOBN(0xef99b0ff, 0x95225151), TOBN(0xf3e19d88, 0xf94500d8), TOBN(0x92a83268, 0xe32dd620), TOBN(0x913ec99f, 0x627849a2), TOBN(0xedd8fdfa, 0x2c378882), TOBN(0xaf96f33e, 0xee6f8cfe), TOBN(0xc06737e5, 0xdc3fa8a5), TOBN(0x236bb531, 0xb0b03a1d), TOBN(0x33e59f29, 0x89f037b0), TOBN(0x13f9b5a7, 0xd9a12a53), TOBN(0x0d0df6ce, 0x51efb310), TOBN(0xcb5b2eb4, 0x958df5be), TOBN(0xd6459e29, 0x36158e59), TOBN(0x82aae2b9, 0x1466e336), TOBN(0xfb658a39, 0x411aa636), TOBN(0x7152ecc5, 0xd4c0a933), TOBN(0xf10c758a, 0x49f026b7), TOBN(0xf4837f97, 0xcb09311f), TOBN(0xddfb02c4, 0xc753c45f), TOBN(0x18ca81b6, 0xf9c840fe), TOBN(0x846fd09a, 0xb0f8a3e6), TOBN(0xb1162add, 0xe7733dbc), TOBN(0x7070ad20, 0x236e3ab6), TOBN(0xf88cdaf5, 0xb2a56326), TOBN(0x05fc8719, 0x997cbc7a), TOBN(0x442cd452, 0x4b665272), TOBN(0x7807f364, 0xb71698f5), TOBN(0x6ba418d2, 0x9f7b605e), TOBN(0xfd20b00f, 0xa03b2cbb), TOBN(0x883eca37, 0xda54386f), TOBN(0xff0be43f, 0xf3437f24), TOBN(0xe910b432, 0xa48bb33c), TOBN(0x4963a128, 0x329df765), TOBN(0xac1dd556, 0xbe2fe6f7), TOBN(0x557610f9, 0x24a0a3fc), TOBN(0x38e17bf4, 0xe881c3f9), TOBN(0x6ba84faf, 0xed0dac99), TOBN(0xd4a222c3, 0x59eeb918), TOBN(0xc79c1dbe, 0x13f542b6), TOBN(0x1fc65e0d, 0xe425d457), TOBN(0xeffb754f, 0x1debb779), TOBN(0x638d8fd0, 0x9e08af60), TOBN(0x994f523a, 0x626332d5), TOBN(0x7bc38833, 0x5561bb44), TOBN(0x005ed4b0, 0x3d845ea2), TOBN(0xd39d3ee1, 0xc2a1f08a), TOBN(0x6561fdd3, 0xe7676b0d), TOBN(0x620e35ff, 0xfb706017), TOBN(0x36ce424f, 0xf264f9a8), TOBN(0xc4c3419f, 0xda2681f7), TOBN(0xfb6afd2f, 0x69beb6e8), TOBN(0x3a50b993, 0x6d700d03), TOBN(0xc840b2ad, 0x0c83a14f), TOBN(0x573207be, 0x54085bef), TOBN(0x5af882e3, 0x09fe7e5b), TOBN(0x957678a4, 0x3b40a7e1), TOBN(0x172d4bdd, 0x543056e2), TOBN(0x9c1b26b4, 0x0df13c0a), TOBN(0x1c30861c, 0xf405ff06), TOBN(0xebac86bd, 0x486e828b), TOBN(0xe791a971, 0x636933fc), TOBN(0x50e7c2be, 0x7aeee947), TOBN(0xc3d4a095, 0xfa90d767), TOBN(0xae60eb7b, 0xe670ab7b), TOBN(0x17633a64, 0x397b056d), TOBN(0x93a21f33, 0x105012aa), TOBN(0x663c370b, 0xabb88643), TOBN(0x91df36d7, 0x22e21599), TOBN(0x183ba835, 0x8b761671), TOBN(0x381eea1d, 0x728f3bf1), TOBN(0xb9b2f1ba, 0x39966e6c), TOBN(0x7c464a28, 0xe7295492), TOBN(0x0fd5f70a, 0x09b26b7f), TOBN(0xa9aba1f9, 0xfbe009df), TOBN(0x857c1f22, 0x369b87ad), TOBN(0x3c00e5d9, 0x32fca556), TOBN(0x1ad74cab, 0x90b06466), TOBN(0xa7112386, 0x550faaf2), TOBN(0x7435e198, 0x6d9bd5f5), TOBN(0x2dcc7e38, 0x59c3463f), TOBN(0xdc7df748, 0xca7bd4b2), TOBN(0x13cd4c08, 0x9dec2f31), TOBN(0x0d3b5df8, 0xe3237710), TOBN(0x0dadb26e, 0xcbd2f7b0), TOBN(0x9f5966ab, 0xe4aa082b), TOBN(0x666ec8de, 0x350e966e), TOBN(0x1bfd1ed5, 0xee524216), TOBN(0xcd93c59b, 0x41dab0b6), TOBN(0x658a8435, 0xd186d6ba), TOBN(0x1b7d34d2, 0x159d1195), TOBN(0x5936e460, 0x22caf46b), TOBN(0x6a45dd8f, 0x9a96fe4f), TOBN(0xf7925434, 0xb98f474e), TOBN(0x41410412, 0x0053ef15), TOBN(0x71cf8d12, 0x41de97bf), TOBN(0xb8547b61, 0xbd80bef4), TOBN(0xb47d3970, 0xc4db0037), TOBN(0xf1bcd328, 0xfef20dff), TOBN(0x31a92e09, 0x10caad67), TOBN(0x1f591960, 0x5531a1e1), TOBN(0x3bb852e0, 0x5f4fc840), TOBN(0x63e297ca, 0x93a72c6c), TOBN(0x3c2b0b2e, 0x49abad67), TOBN(0x6ec405fc, 0xed3db0d9), TOBN(0xdc14a530, 0x7fef1d40), TOBN(0xccd19846, 0x280896fc), TOBN(0x00f83176, 0x9bb81648), TOBN(0xd69eb485, 0x653120d0), TOBN(0xd17d75f4, 0x4ccabc62), TOBN(0x34a07f82, 0xb749fcb1), TOBN(0x2c3af787, 0xbbfb5554), TOBN(0xb06ed4d0, 0x62e283f8), TOBN(0x5722889f, 0xa19213a0), TOBN(0x162b085e, 0xdcf3c7b4), TOBN(0xbcaecb31, 0xe0dd3eca), TOBN(0xc6237fbc, 0xe52f13a5), TOBN(0xcc2b6b03, 0x27bac297), TOBN(0x2ae1cac5, 0xb917f54a), TOBN(0x474807d4, 0x7845ae4f), TOBN(0xfec7dd92, 0xce5972e0), TOBN(0xc3bd2541, 0x1d7915bb), TOBN(0x66f85dc4, 0xd94907ca), TOBN(0xd981b888, 0xbdbcf0ca), TOBN(0xd75f5da6, 0xdf279e9f), TOBN(0x128bbf24, 0x7054e934), TOBN(0x3c6ff6e5, 0x81db134b), TOBN(0x795b7cf4, 0x047d26e4), TOBN(0xf370f7b8, 0x5049ec37), TOBN(0xc6712d4d, 0xced945af), TOBN(0xdf30b5ec, 0x095642bc), TOBN(0x9b034c62, 0x4896246e), TOBN(0x5652c016, 0xee90bbd1), TOBN(0xeb38636f, 0x87fedb73), TOBN(0x5e32f847, 0x0135a613), TOBN(0x0703b312, 0xcf933c83), TOBN(0xd05bb76e, 0x1a7f47e6), TOBN(0x825e4f0c, 0x949c2415), TOBN(0x569e5622, 0x7250d6f8), TOBN(0xbbe9eb3a, 0x6568013e), TOBN(0x8dbd203f, 0x22f243fc), TOBN(0x9dbd7694, 0xb342734a), TOBN(0x8f6d12f8, 0x46afa984), TOBN(0xb98610a2, 0xc9eade29), TOBN(0xbab4f323, 0x47dd0f18), TOBN(0x5779737b, 0x671c0d46), TOBN(0x10b6a7c6, 0xd3e0a42a), TOBN(0xfb19ddf3, 0x3035b41c), TOBN(0xd336343f, 0x99c45895), TOBN(0x61fe4938, 0x54c857e5), TOBN(0xc4d506be, 0xae4e57d5), TOBN(0x3cd8c8cb, 0xbbc33f75), TOBN(0x7281f08a, 0x9262c77d), TOBN(0x083f4ea6, 0xf11a2823), TOBN(0x8895041e, 0x9fba2e33), TOBN(0xfcdfea49, 0x9c438edf), TOBN(0x7678dcc3, 0x91edba44), TOBN(0xf07b3b87, 0xe2ba50f0), TOBN(0xc13888ef, 0x43948c1b), TOBN(0xc2135ad4, 0x1140af42), TOBN(0x8e5104f3, 0x926ed1a7), TOBN(0xf24430cb, 0x88f6695f), TOBN(0x0ce0637b, 0x6d73c120), TOBN(0xb2db01e6, 0xfe631e8f), TOBN(0x1c5563d7, 0xd7bdd24b), TOBN(0x8daea3ba, 0x369ad44f), TOBN(0x000c81b6, 0x8187a9f9), TOBN(0x5f48a951, 0xaae1fd9a), TOBN(0xe35626c7, 0x8d5aed8a), TOBN(0x20952763, 0x0498c622), TOBN(0x76d17634, 0x773aa504), TOBN(0x36d90dda, 0xeb300f7a), TOBN(0x9dcf7dfc, 0xedb5e801), TOBN(0x645cb268, 0x74d5244c), TOBN(0xa127ee79, 0x348e3aa2), TOBN(0x488acc53, 0x575f1dbb), TOBN(0x95037e85, 0x80e6161e), TOBN(0x57e59283, 0x292650d0), TOBN(0xabe67d99, 0x14938216), TOBN(0x3c7f944b, 0x3f8e1065), TOBN(0xed908cb6, 0x330e8924), TOBN(0x08ee8fd5, 0x6f530136), TOBN(0x2227b7d5, 0xd7ffc169), TOBN(0x4f55c893, 0xb5cd6dd5), TOBN(0x82225e11, 0xa62796e8), TOBN(0x5c6cead1, 0xcb18e12c), TOBN(0x4381ae0c, 0x84f5a51a), TOBN(0x345913d3, 0x7fafa4c8), TOBN(0x3d918082, 0x0491aac0), TOBN(0x9347871f, 0x3e69264c), TOBN(0xbea9dd3c, 0xb4f4f0cd), TOBN(0xbda5d067, 0x3eadd3e7), TOBN(0x0033c1b8, 0x0573bcd8), TOBN(0x25589379, 0x5da2486c), TOBN(0xcb89ee5b, 0x86abbee7), TOBN(0x8fe0a8f3, 0x22532e5d), TOBN(0xb6410ff0, 0x727dfc4c), TOBN(0x619b9d58, 0x226726db), TOBN(0x5ec25669, 0x7a2b2dc7), TOBN(0xaf4d2e06, 0x4c3beb01), TOBN(0x852123d0, 0x7acea556), TOBN(0x0e9470fa, 0xf783487a), TOBN(0x75a7ea04, 0x5664b3eb), TOBN(0x4ad78f35, 0x6798e4ba), TOBN(0x9214e6e5, 0xc7d0e091), TOBN(0xc420b488, 0xb1290403), TOBN(0x64049e0a, 0xfc295749), TOBN(0x03ef5af1, 0x3ae9841f), TOBN(0xdbe4ca19, 0xb0b662a6), TOBN(0x46845c5f, 0xfa453458), TOBN(0xf8dabf19, 0x10b66722), TOBN(0xb650f0aa, 0xcce2793b), TOBN(0x71db851e, 0xc5ec47c1), TOBN(0x3eb78f3e, 0x3b234fa9), TOBN(0xb0c60f35, 0xfc0106ce), TOBN(0x05427121, 0x774eadbd), TOBN(0x25367faf, 0xce323863), TOBN(0x7541b5c9, 0xcd086976), TOBN(0x4ff069e2, 0xdc507ad1), TOBN(0x74145256, 0x8776e667), TOBN(0x6e76142c, 0xb23c6bb5), TOBN(0xdbf30712, 0x1b3a8a87), TOBN(0x60e7363e, 0x98450836), TOBN(0x5741450e, 0xb7366d80), TOBN(0xe4ee14ca, 0x4837dbdf), TOBN(0xa765eb9b, 0x69d4316f), TOBN(0x04548dca, 0x8ef43825), TOBN(0x9c9f4e4c, 0x5ae888eb), TOBN(0x733abb51, 0x56e9ac99), TOBN(0xdaad3c20, 0xba6ac029), TOBN(0x9b8dd3d3, 0x2ba3e38e), TOBN(0xa9bb4c92, 0x0bc5d11a), TOBN(0xf20127a7, 0x9c5f88a3), TOBN(0x4f52b06e, 0x161d3cb8), TOBN(0x26c1ff09, 0x6afaf0a6), TOBN(0x32670d2f, 0x7189e71f), TOBN(0xc6438748, 0x5ecf91e7), TOBN(0x15758e57, 0xdb757a21), TOBN(0x427d09f8, 0x290a9ce5), TOBN(0x846a308f, 0x38384a7a), TOBN(0xaac3acb4, 0xb0732b99), TOBN(0x9e941009, 0x17845819), TOBN(0x95cba111, 0xa7ce5e03), TOBN(0x6f3d4f7f, 0xb00009c4), TOBN(0xb8396c27, 0x8ff28b5f), TOBN(0xb1a9ae43, 0x1c97975d), TOBN(0x9d7ba8af, 0xe5d9fed5), TOBN(0x338cf09f, 0x34f485b6), TOBN(0xbc0ddacc, 0x64122516), TOBN(0xa450da12, 0x05d471fe), TOBN(0x4c3a6250, 0x628dd8c9), TOBN(0x69c7d103, 0xd1295837), TOBN(0xa2893e50, 0x3807eb2f), TOBN(0xd6e1e1de, 0xbdb41491), TOBN(0xc630745b, 0x5e138235), TOBN(0xc892109e, 0x48661ae1), TOBN(0x8d17e7eb, 0xea2b2674), TOBN(0x00ec0f87, 0xc328d6b5), TOBN(0x6d858645, 0xf079ff9e), TOBN(0x6cdf243e, 0x19115ead), TOBN(0x1ce1393e, 0x4bac4fcf), TOBN(0x2c960ed0, 0x9c29f25b), TOBN(0x59be4d8e, 0x9d388a05), TOBN(0x0d46e06c, 0xd0def72b), TOBN(0xb923db5d, 0xe0342748), TOBN(0xf7d3aacd, 0x936d4a3d), TOBN(0x558519cc, 0x0b0b099e), TOBN(0x3ea8ebf8, 0x827097ef), TOBN(0x259353db, 0xd054f55d), TOBN(0x84c89abc, 0x6d2ed089), TOBN(0x5c548b69, 0x8e096a7c), TOBN(0xd587f616, 0x994b995d), TOBN(0x4d1531f6, 0xa5845601), TOBN(0x792ab31e, 0x451fd9f0), TOBN(0xc8b57bb2, 0x65adf6ca), TOBN(0x68440fcb, 0x1cd5ad73), TOBN(0xb9c860e6, 0x6144da4f), TOBN(0x2ab286aa, 0x8462beb8), TOBN(0xcc6b8fff, 0xef46797f), TOBN(0xac820da4, 0x20c8a471), TOBN(0x69ae05a1, 0x77ff7faf), TOBN(0xb9163f39, 0xbfb5da77), TOBN(0xbd03e590, 0x2c73ab7a), TOBN(0x7e862b5e, 0xb2940d9e), TOBN(0x3c663d86, 0x4b9af564), TOBN(0xd8309031, 0xbde3033d), TOBN(0x298231b2, 0xd42c5bc6), TOBN(0x42090d2c, 0x552ad093), TOBN(0xa4799d1c, 0xff854695), TOBN(0x0a88b5d6, 0xd31f0d00), TOBN(0xf8b40825, 0xa2f26b46), TOBN(0xec29b1ed, 0xf1bd7218), TOBN(0xd491c53b, 0x4b24c86e), TOBN(0xd2fe588f, 0x3395ea65), TOBN(0x6f3764f7, 0x4456ef15), TOBN(0xdb43116d, 0xcdc34800), TOBN(0xcdbcd456, 0xc1e33955), TOBN(0xefdb5540, 0x74ab286b), TOBN(0x948c7a51, 0xd18c5d7c), TOBN(0xeb81aa37, 0x7378058e), TOBN(0x41c746a1, 0x04411154), TOBN(0xa10c73bc, 0xfb828ac7), TOBN(0x6439be91, 0x9d972b29), TOBN(0x4bf3b4b0, 0x43a2fbad), TOBN(0x39e6dadf, 0x82b5e840), TOBN(0x4f716408, 0x6397bd4c), TOBN(0x0f7de568, 0x7f1eeccb), TOBN(0x5865c5a1, 0xd2ffbfc1), TOBN(0xf74211fa, 0x4ccb6451), TOBN(0x66368a88, 0xc0b32558), TOBN(0x5b539dc2, 0x9ad7812e), TOBN(0x579483d0, 0x2f3af6f6), TOBN(0x52132078, 0x99934ece), TOBN(0x50b9650f, 0xdcc9e983), TOBN(0xca989ec9, 0xaee42b8a), TOBN(0x6a44c829, 0xd6f62f99), TOBN(0x8f06a309, 0x4c2a7c0c), TOBN(0x4ea2b3a0, 0x98a0cb0a), TOBN(0x5c547b70, 0xbeee8364), TOBN(0x461d40e1, 0x682afe11), TOBN(0x9e0fc77a, 0x7b41c0a8), TOBN(0x79e4aefd, 0xe20d5d36), TOBN(0x2916e520, 0x32dd9f63), TOBN(0xf59e52e8, 0x3f883faf), TOBN(0x396f9639, 0x2b868d35), TOBN(0xc902a9df, 0x4ca19881), TOBN(0x0fc96822, 0xdb2401a6), TOBN(0x41237587, 0x66f1c68d), TOBN(0x10fc6de3, 0xfb476c0d), TOBN(0xf8b6b579, 0x841f5d90), TOBN(0x2ba8446c, 0xfa24f44a), TOBN(0xa237b920, 0xef4a9975), TOBN(0x60bb6004, 0x2330435f), TOBN(0xd6f4ab5a, 0xcfb7e7b5), TOBN(0xb2ac5097, 0x83435391), TOBN(0xf036ee2f, 0xb0d1ea67), TOBN(0xae779a6a, 0x74c56230), TOBN(0x59bff8c8, 0xab838ae6), TOBN(0xcd83ca99, 0x9b38e6f0), TOBN(0xbb27bef5, 0xe33deed3), TOBN(0xe6356f6f, 0x001892a8), TOBN(0xbf3be6cc, 0x7adfbd3e), TOBN(0xaecbc81c, 0x33d1ac9d), TOBN(0xe4feb909, 0xe6e861dc), TOBN(0x90a247a4, 0x53f5f801), TOBN(0x01c50acb, 0x27346e57), TOBN(0xce29242e, 0x461acc1b), TOBN(0x04dd214a, 0x2f998a91), TOBN(0x271ee9b1, 0xd4baf27b), TOBN(0x7e3027d1, 0xe8c26722), TOBN(0x21d1645c, 0x1820dce5), TOBN(0x086f242c, 0x7501779c), TOBN(0xf0061407, 0xfa0e8009), TOBN(0xf23ce477, 0x60187129), TOBN(0x05bbdedb, 0x0fde9bd0), TOBN(0x682f4832, 0x25d98473), TOBN(0xf207fe85, 0x5c658427), TOBN(0xb6fdd7ba, 0x4166ffa1), TOBN(0x0c314056, 0x9eed799d), TOBN(0x0db8048f, 0x4107e28f), TOBN(0x74ed3871, 0x41216840), TOBN(0x74489f8f, 0x56a3c06e), TOBN(0x1e1c005b, 0x12777134), TOBN(0xdb332a73, 0xf37ec3c3), TOBN(0xc65259bd, 0xdd59eba0), TOBN(0x2291709c, 0xdb4d3257), TOBN(0x9a793b25, 0xbd389390), TOBN(0xf39fe34b, 0xe43756f0), TOBN(0x2f76bdce, 0x9afb56c9), TOBN(0x9f37867a, 0x61208b27), TOBN(0xea1d4307, 0x089972c3), TOBN(0x8c595330, 0x8bdf623a), TOBN(0x5f5accda, 0x8441fb7d), TOBN(0xfafa9418, 0x32ddfd95), TOBN(0x6ad40c5a, 0x0fde9be7), TOBN(0x43faba89, 0xaeca8709), TOBN(0xc64a7cf1, 0x2c248a9d), TOBN(0x16620252, 0x72637a76), TOBN(0xaee1c791, 0x22b8d1bb), TOBN(0xf0f798fd, 0x21a843b2), TOBN(0x56e4ed4d, 0x8d005cb1), TOBN(0x355f7780, 0x1f0d8abe), TOBN(0x197b04cf, 0x34522326), TOBN(0x41f9b31f, 0xfd42c13f), TOBN(0x5ef7feb2, 0xb40f933d), TOBN(0x27326f42, 0x5d60bad4), TOBN(0x027ecdb2, 0x8c92cf89), TOBN(0x04aae4d1, 0x4e3352fe), TOBN(0x08414d2f, 0x73591b90), TOBN(0x5ed6124e, 0xb7da7d60), TOBN(0xb985b931, 0x4d13d4ec), TOBN(0xa592d3ab, 0x96bf36f9), TOBN(0x012dbed5, 0xbbdf51df), TOBN(0xa57963c0, 0xdf6c177d), TOBN(0x010ec869, 0x87ca29cf), TOBN(0xba1700f6, 0xbf926dff), TOBN(0x7c9fdbd1, 0xf4bf6bc2), TOBN(0xdc18dc8f, 0x64da11f5), TOBN(0xa6074b7a, 0xd938ae75), TOBN(0x14270066, 0xe84f44a4), TOBN(0x99998d38, 0xd27b954e), TOBN(0xc1be8ab2, 0xb4f38e9a), TOBN(0x8bb55bbf, 0x15c01016), TOBN(0xf73472b4, 0x0ea2ab30), TOBN(0xd365a340, 0xf73d68dd), TOBN(0xc01a7168, 0x19c2e1eb), TOBN(0x32f49e37, 0x34061719), TOBN(0xb73c57f1, 0x01d8b4d6), TOBN(0x03c8423c, 0x26b47700), TOBN(0x321d0bc8, 0xa4d8826a), TOBN(0x6004213c, 0x4bc0e638), TOBN(0xf78c64a1, 0xc1c06681), TOBN(0x16e0a16f, 0xef018e50), TOBN(0x31cbdf91, 0xdb42b2b3), TOBN(0xf8f4ffce, 0xe0d36f58), TOBN(0xcdcc71cd, 0x4cc5e3e0), TOBN(0xd55c7cfa, 0xa129e3e0), TOBN(0xccdb6ba0, 0x0fb2cbf1), TOBN(0x6aba0005, 0xc4bce3cb), TOBN(0x501cdb30, 0xd232cfc4), TOBN(0x9ddcf12e, 0xd58a3cef), TOBN(0x02d2cf9c, 0x87e09149), TOBN(0xdc5d7ec7, 0x2c976257), TOBN(0x6447986e, 0x0b50d7dd), TOBN(0x88fdbaf7, 0x807f112a), TOBN(0x58c9822a, 0xb00ae9f6), TOBN(0x6abfb950, 0x6d3d27e0), TOBN(0xd0a74487, 0x8a429f4f), TOBN(0x0649712b, 0xdb516609), TOBN(0xb826ba57, 0xe769b5df), TOBN(0x82335df2, 0x1fc7aaf2), TOBN(0x2389f067, 0x5c93d995), TOBN(0x59ac367a, 0x68677be6), TOBN(0xa77985ff, 0x21d9951b), TOBN(0x038956fb, 0x85011cce), TOBN(0x608e48cb, 0xbb734e37), TOBN(0xc08c0bf2, 0x2be5b26f), TOBN(0x17bbdd3b, 0xf9b1a0d9), TOBN(0xeac7d898, 0x10483319), TOBN(0xc95c4baf, 0xbc1a6dea), TOBN(0xfdd0e2bf, 0x172aafdb), TOBN(0x40373cbc, 0x8235c41a), TOBN(0x14303f21, 0xfb6f41d5), TOBN(0xba063621, 0x0408f237), TOBN(0xcad3b09a, 0xecd2d1ed), TOBN(0x4667855a, 0x52abb6a2), TOBN(0xba9157dc, 0xaa8b417b), TOBN(0xfe7f3507, 0x4f013efb), TOBN(0x1b112c4b, 0xaa38c4a2), TOBN(0xa1406a60, 0x9ba64345), TOBN(0xe53cba33, 0x6993c80b), TOBN(0x45466063, 0xded40d23), TOBN(0x3d5f1f4d, 0x54908e25), TOBN(0x9ebefe62, 0x403c3c31), TOBN(0x274ea0b5, 0x0672a624), TOBN(0xff818d99, 0x451d1b71), TOBN(0x80e82643, 0x8f79cf79), TOBN(0xa165df13, 0x73ce37f5), TOBN(0xa744ef4f, 0xfe3a21fd), TOBN(0x73f1e7f5, 0xcf551396), TOBN(0xc616898e, 0x868c676b), TOBN(0x671c28c7, 0x8c442c36), TOBN(0xcfe5e558, 0x5e0a317d), TOBN(0x1242d818, 0x7051f476), TOBN(0x56fad2a6, 0x14f03442), TOBN(0x262068bc, 0x0a44d0f6), TOBN(0xdfa2cd6e, 0xce6edf4e), TOBN(0x0f43813a, 0xd15d1517), TOBN(0x61214cb2, 0x377d44f5), TOBN(0xd399aa29, 0xc639b35f), TOBN(0x42136d71, 0x54c51c19), TOBN(0x9774711b, 0x08417221), TOBN(0x0a5546b3, 0x52545a57), TOBN(0x80624c41, 0x1150582d), TOBN(0x9ec5c418, 0xfbc555bc), TOBN(0x2c87dcad, 0x771849f1), TOBN(0xb0c932c5, 0x01d7bf6f), TOBN(0x6aa5cd3e, 0x89116eb2), TOBN(0xd378c25a, 0x51ca7bd3), TOBN(0xc612a0da, 0x9e6e3e31), TOBN(0x0417a54d, 0xb68ad5d0), TOBN(0x00451e4a, 0x22c6edb8), TOBN(0x9fbfe019, 0xb42827ce), TOBN(0x2fa92505, 0xba9384a2), TOBN(0x21b8596e, 0x64ad69c1), TOBN(0x8f4fcc49, 0x983b35a6), TOBN(0xde093760, 0x72754672), TOBN(0x2f14ccc8, 0xf7bffe6d), TOBN(0x27566bff, 0x5d94263d), TOBN(0xb5b4e9c6, 0x2df3ec30), TOBN(0x94f1d7d5, 0x3e6ea6ba), TOBN(0x97b7851a, 0xaaca5e9b), TOBN(0x518aa521, 0x56713b97), TOBN(0x3357e8c7, 0x150a61f6), TOBN(0x7842e7e2, 0xec2c2b69), TOBN(0x8dffaf65, 0x6868a548), TOBN(0xd963bd82, 0xe068fc81), TOBN(0x64da5c8b, 0x65917733), TOBN(0x927090ff, 0x7b247328),} , {TOBN(0x214bc9a7, 0xd298c241), TOBN(0xe3b697ba, 0x56807cfd), TOBN(0xef1c7802, 0x4564eadb), TOBN(0xdde8cdcf, 0xb48149c5), TOBN(0x946bf0a7, 0x5a4d2604), TOBN(0x27154d7f, 0x6c1538af), TOBN(0x95cc9230, 0xde5b1fcc), TOBN(0xd88519e9, 0x66864f82), TOBN(0xb828dd1a, 0x7cb1282c), TOBN(0xa08d7626, 0xbe46973a), TOBN(0x6baf8d40, 0xe708d6b2), TOBN(0x72571fa1, 0x4daeb3f3), TOBN(0x85b1732f, 0xf22dfd98), TOBN(0x87ab01a7, 0x0087108d), TOBN(0xaaaafea8, 0x5988207a), TOBN(0xccc832f8, 0x69f00755), TOBN(0x964d950e, 0x36ff3bf0), TOBN(0x8ad20f6f, 0xf0b34638), TOBN(0x4d9177b3, 0xb5d7585f), TOBN(0xcf839760, 0xef3f019f), TOBN(0x582fc5b3, 0x8288c545), TOBN(0x2f8e4e9b, 0x13116bd1), TOBN(0xf91e1b2f, 0x332120ef), TOBN(0xcf568724, 0x2a17dd23), TOBN(0x488f1185, 0xca8d9d1a), TOBN(0xadf2c77d, 0xd987ded2), TOBN(0x5f3039f0, 0x60c46124), TOBN(0xe5d70b75, 0x71e095f4), TOBN(0x82d58650, 0x6260e70f), TOBN(0x39d75ea7, 0xf750d105), TOBN(0x8cf3d0b1, 0x75bac364), TOBN(0xf3a7564d, 0x21d01329), TOBN(0x182f04cd, 0x2f52d2a7), TOBN(0x4fde149a, 0xe2df565a), TOBN(0xb80c5eec, 0xa79fb2f7), TOBN(0xab491d7b, 0x22ddc897), TOBN(0x99d76c18, 0xc6312c7f), TOBN(0xca0d5f3d, 0x6aa41a57), TOBN(0x71207325, 0xd15363a0), TOBN(0xe82aa265, 0xbeb252c2), TOBN(0x94ab4700, 0xec3128c2), TOBN(0x6c76d862, 0x8e383f49), TOBN(0xdc36b150, 0xc03024eb), TOBN(0xfb439477, 0x53daac69), TOBN(0xfc68764a, 0x8dc79623), TOBN(0x5b86995d, 0xb440fbb2), TOBN(0xd66879bf, 0xccc5ee0d), TOBN(0x05228942, 0x95aa8bd3), TOBN(0xb51a40a5, 0x1e6a75c1), TOBN(0x24327c76, 0x0ea7d817), TOBN(0x06630182, 0x07774597), TOBN(0xd6fdbec3, 0x97fa7164), TOBN(0x20c99dfb, 0x13c90f48), TOBN(0xd6ac5273, 0x686ef263), TOBN(0xc6a50bdc, 0xfef64eeb), TOBN(0xcd87b281, 0x86fdfc32), TOBN(0xb24aa43e, 0x3fcd3efc), TOBN(0xdd26c034, 0xb8088e9a), TOBN(0xa5ef4dc9, 0xbd3d46ea), TOBN(0xa2f99d58, 0x8a4c6a6f), TOBN(0xddabd355, 0x2f1da46c), TOBN(0x72c3f8ce, 0x1afacdd1), TOBN(0xd90c4eee, 0x92d40578), TOBN(0xd28bb41f, 0xca623b94), TOBN(0x50fc0711, 0x745edc11), TOBN(0x9dd9ad7d, 0x3dc87558), TOBN(0xce6931fb, 0xb49d1e64), TOBN(0x6c77a0a2, 0xc98bd0f9), TOBN(0x62b9a629, 0x6baf7cb1), TOBN(0xcf065f91, 0xccf72d22), TOBN(0x7203cce9, 0x79639071), TOBN(0x09ae4885, 0xf9cb732f), TOBN(0x5e7c3bec, 0xee8314f3), TOBN(0x1c068aed, 0xdbea298f), TOBN(0x08d381f1, 0x7c80acec), TOBN(0x03b56be8, 0xe330495b), TOBN(0xaeffb8f2, 0x9222882d), TOBN(0x95ff38f6, 0xc4af8bf7), TOBN(0x50e32d35, 0x1fc57d8c), TOBN(0x6635be52, 0x17b444f0), TOBN(0x04d15276, 0xa5177900), TOBN(0x4e1dbb47, 0xf6858752), TOBN(0x5b475622, 0xc615796c), TOBN(0xa6fa0387, 0x691867bf), TOBN(0xed7f5d56, 0x2844c6d0), TOBN(0xc633cf9b, 0x03a2477d), TOBN(0xf6be5c40, 0x2d3721d6), TOBN(0xaf312eb7, 0xe9fd68e6), TOBN(0x242792d2, 0xe7417ce1), TOBN(0xff42bc71, 0x970ee7f5), TOBN(0x1ff4dc6d, 0x5c67a41e), TOBN(0x77709b7b, 0x20882a58), TOBN(0x3554731d, 0xbe217f2c), TOBN(0x2af2a8cd, 0x5bb72177), TOBN(0x58eee769, 0x591dd059), TOBN(0xbb2930c9, 0x4bba6477), TOBN(0x863ee047, 0x7d930cfc), TOBN(0x4c262ad1, 0x396fd1f4), TOBN(0xf4765bc8, 0x039af7e1), TOBN(0x2519834b, 0x5ba104f6), TOBN(0x7cd61b4c, 0xd105f961), TOBN(0xa5415da5, 0xd63bca54), TOBN(0x778280a0, 0x88a1f17c), TOBN(0xc4968949, 0x2329512c), TOBN(0x174a9126, 0xcecdaa7a), TOBN(0xfc8c7e0e, 0x0b13247b), TOBN(0x29c110d2, 0x3484c1c4), TOBN(0xf8eb8757, 0x831dfc3b), TOBN(0x022f0212, 0xc0067452), TOBN(0x3f6f69ee, 0x7b9b926c), TOBN(0x09032da0, 0xef42daf4), TOBN(0x79f00ade, 0x83f80de4), TOBN(0x6210db71, 0x81236c97), TOBN(0x74f7685b, 0x3ee0781f), TOBN(0x4df7da7b, 0xa3e41372), TOBN(0x2aae38b1, 0xb1a1553e), TOBN(0x1688e222, 0xf6dd9d1b), TOBN(0x57695448, 0x5b8b6487), TOBN(0x478d2127, 0x4b2edeaa), TOBN(0xb2818fa5, 0x1e85956a), TOBN(0x1e6addda, 0xf176f2c0), TOBN(0x01ca4604, 0xe2572658), TOBN(0x0a404ded, 0x85342ffb), TOBN(0x8cf60f96, 0x441838d6), TOBN(0x9bbc691c, 0xc9071c4a), TOBN(0xfd588744, 0x34442803), TOBN(0x97101c85, 0x809c0d81), TOBN(0xa7fb754c, 0x8c456f7f), TOBN(0xc95f3c5c, 0xd51805e1), TOBN(0xab4ccd39, 0xb299dca8), TOBN(0x3e03d20b, 0x47eaf500), TOBN(0xfa3165c1, 0xd7b80893), TOBN(0x005e8b54, 0xe160e552), TOBN(0xdc4972ba, 0x9019d11f), TOBN(0x21a6972e, 0x0c9a4a7a), TOBN(0xa52c258f, 0x37840fd7), TOBN(0xf8559ff4, 0xc1e99d81), TOBN(0x08e1a7d6, 0xa3c617c0), TOBN(0xb398fd43, 0x248c6ba7), TOBN(0x6ffedd91, 0xd1283794), TOBN(0x8a6a59d2, 0xd629d208), TOBN(0xa9d141d5, 0x3490530e), TOBN(0x42f6fc18, 0x38505989), TOBN(0x09bf250d, 0x479d94ee), TOBN(0x223ad3b1, 0xb3822790), TOBN(0x6c5926c0, 0x93b8971c), TOBN(0x609efc7e, 0x75f7fa62), TOBN(0x45d66a6d, 0x1ec2d989), TOBN(0x4422d663, 0x987d2792), TOBN(0x4a73caad, 0x3eb31d2b), TOBN(0xf06c2ac1, 0xa32cb9e6), TOBN(0xd9445c5f, 0x91aeba84), TOBN(0x6af7a1d5, 0xaf71013f), TOBN(0xe68216e5, 0x0bedc946), TOBN(0xf4cba30b, 0xd27370a0), TOBN(0x7981afbf, 0x870421cc), TOBN(0x02496a67, 0x9449f0e1), TOBN(0x86cfc4be, 0x0a47edae), TOBN(0x3073c936, 0xb1feca22), TOBN(0xf5694612, 0x03f8f8fb), TOBN(0xd063b723, 0x901515ea), TOBN(0x4c6c77a5, 0x749cf038), TOBN(0x6361e360, 0xab9e5059), TOBN(0x596cf171, 0xa76a37c0), TOBN(0x800f53fa, 0x6530ae7a), TOBN(0x0f5e631e, 0x0792a7a6), TOBN(0x5cc29c24, 0xefdb81c9), TOBN(0xa269e868, 0x3f9c40ba), TOBN(0xec14f9e1, 0x2cb7191e), TOBN(0x78ea1bd8, 0xe5b08ea6), TOBN(0x3c65aa9b, 0x46332bb9), TOBN(0x84cc22b3, 0xbf80ce25), TOBN(0x0098e9e9, 0xd49d5bf1), TOBN(0xcd4ec1c6, 0x19087da4), TOBN(0x3c9d07c5, 0xaef6e357), TOBN(0x839a0268, 0x9f8f64b8), TOBN(0xc5e9eb62, 0xc6d8607f), TOBN(0x759689f5, 0x6aa995e4), TOBN(0x70464669, 0xbbb48317), TOBN(0x921474bf, 0xe402417d), TOBN(0xcabe135b, 0x2a354c8c), TOBN(0xd51e52d2, 0x812fa4b5), TOBN(0xec741096, 0x53311fe8), TOBN(0x4f774535, 0xb864514b), TOBN(0xbcadd671, 0x5bde48f8), TOBN(0xc9703873, 0x2189bc7d), TOBN(0x5d45299e, 0xc709ee8a), TOBN(0xd1287ee2, 0x845aaff8), TOBN(0x7d1f8874, 0xdb1dbf1f), TOBN(0xea46588b, 0x990c88d6), TOBN(0x60ba649a, 0x84368313), TOBN(0xd5fdcbce, 0x60d543ae), TOBN(0x90b46d43, 0x810d5ab0), TOBN(0x6739d8f9, 0x04d7e5cc), TOBN(0x021c1a58, 0x0d337c33), TOBN(0x00a61162, 0x68e67c40), TOBN(0x95ef413b, 0x379f0a1f), TOBN(0xfe126605, 0xe9e2ab95), TOBN(0x67578b85, 0x2f5f199c), TOBN(0xf5c00329, 0x2cb84913), TOBN(0xf7956430, 0x37577dd8), TOBN(0x83b82af4, 0x29c5fe88), TOBN(0x9c1bea26, 0xcdbdc132), TOBN(0x589fa086, 0x9c04339e), TOBN(0x033e9538, 0xb13799df), TOBN(0x85fa8b21, 0xd295d034), TOBN(0xdf17f73f, 0xbd9ddcca), TOBN(0xf32bd122, 0xddb66334), TOBN(0x55ef88a7, 0x858b044c), TOBN(0x1f0d69c2, 0x5aa9e397), TOBN(0x55fd9cc3, 0x40d85559), TOBN(0xc774df72, 0x7785ddb2), TOBN(0x5dcce9f6, 0xd3bd2e1c), TOBN(0xeb30da20, 0xa85dfed0), TOBN(0x5ed7f5bb, 0xd3ed09c4), TOBN(0x7d42a35c, 0x82a9c1bd), TOBN(0xcf3de995, 0x9890272d), TOBN(0x75f3432a, 0x3e713a10), TOBN(0x5e13479f, 0xe28227b8), TOBN(0xb8561ea9, 0xfefacdc8), TOBN(0xa6a297a0, 0x8332aafd), TOBN(0x9b0d8bb5, 0x73809b62), TOBN(0xd2fa1cfd, 0x0c63036f), TOBN(0x7a16eb55, 0xbd64bda8), TOBN(0x3f5cf5f6, 0x78e62ddc), TOBN(0x2267c454, 0x07fd752b), TOBN(0x5e361b6b, 0x5e437bbe), TOBN(0x95c59501, 0x8354e075), TOBN(0xec725f85, 0xf2b254d9), TOBN(0x844b617d, 0x2cb52b4e), TOBN(0xed8554f5, 0xcf425fb5), TOBN(0xab67703e, 0x2af9f312), TOBN(0x4cc34ec1, 0x3cf48283), TOBN(0xb09daa25, 0x9c8a705e), TOBN(0xd1e9d0d0, 0x5b7d4f84), TOBN(0x4df6ef64, 0xdb38929d), TOBN(0xe16b0763, 0xaa21ba46), TOBN(0xc6b1d178, 0xa293f8fb), TOBN(0x0ff5b602, 0xd520aabf), TOBN(0x94d671bd, 0xc339397a), TOBN(0x7c7d98cf, 0x4f5792fa), TOBN(0x7c5e0d67, 0x11215261), TOBN(0x9b19a631, 0xa7c5a6d4), TOBN(0xc8511a62, 0x7a45274d), TOBN(0x0c16621c, 0xa5a60d99), TOBN(0xf7fbab88, 0xcf5e48cb), TOBN(0xab1e6ca2, 0xf7ddee08), TOBN(0x83bd08ce, 0xe7867f3c), TOBN(0xf7e48e8a, 0x2ac13e27), TOBN(0x4494f6df, 0x4eb1a9f5), TOBN(0xedbf84eb, 0x981f0a62), TOBN(0x49badc32, 0x536438f0), TOBN(0x50bea541, 0x004f7571), TOBN(0xbac67d10, 0xdf1c94ee), TOBN(0x253d73a1, 0xb727bc31), TOBN(0xb3d01cf2, 0x30686e28), TOBN(0x51b77b1b, 0x55fd0b8b), TOBN(0xa099d183, 0xfeec3173), TOBN(0x202b1fb7, 0x670e72b7), TOBN(0xadc88b33, 0xa8e1635f), TOBN(0x34e8216a, 0xf989d905), TOBN(0xc2e68d20, 0x29b58d01), TOBN(0x11f81c92, 0x6fe55a93), TOBN(0x15f1462a, 0x8f296f40), TOBN(0x1915d375, 0xea3d62f2), TOBN(0xa17765a3, 0x01c8977d), TOBN(0x7559710a, 0xe47b26f6), TOBN(0xe0bd29c8, 0x535077a5), TOBN(0x615f976d, 0x08d84858), TOBN(0x370dfe85, 0x69ced5c1), TOBN(0xbbc7503c, 0xa734fa56), TOBN(0xfbb9f1ec, 0x91ac4574), TOBN(0x95d7ec53, 0x060dd7ef), TOBN(0xeef2dacd, 0x6e657979), TOBN(0x54511af3, 0xe2a08235), TOBN(0x1e324aa4, 0x1f4aea3d), TOBN(0x550e7e71, 0xe6e67671), TOBN(0xbccd5190, 0xbf52faf7), TOBN(0xf880d316, 0x223cc62a), TOBN(0x0d402c7e, 0x2b32eb5d), TOBN(0xa40bc039, 0x306a5a3b), TOBN(0x4e0a41fd, 0x96783a1b), TOBN(0xa1e8d39a, 0x0253cdd4), TOBN(0x6480be26, 0xc7388638), TOBN(0xee365e1d, 0x2285f382), TOBN(0x188d8d8f, 0xec0b5c36), TOBN(0x34ef1a48, 0x1f0f4d82), TOBN(0x1a8f43e1, 0xa487d29a), TOBN(0x8168226d, 0x77aefb3a), TOBN(0xf69a751e, 0x1e72c253), TOBN(0x8e04359a, 0xe9594df1), TOBN(0x475ffd7d, 0xd14c0467), TOBN(0xb5a2c2b1, 0x3844e95c), TOBN(0x85caf647, 0xdd12ef94), TOBN(0x1ecd2a9f, 0xf1063d00), TOBN(0x1dd2e229, 0x23843311), TOBN(0x38f0e09d, 0x73d17244), TOBN(0x3ede7746, 0x8fc653f1), TOBN(0xae4459f5, 0xdc20e21c), TOBN(0x00db2ffa, 0x6a8599ea), TOBN(0x11682c39, 0x30cfd905), TOBN(0x4934d074, 0xa5c112a6), TOBN(0xbdf063c5, 0x568bfe95), TOBN(0x779a440a, 0x016c441a), TOBN(0x0c23f218, 0x97d6fbdc), TOBN(0xd3a5cd87, 0xe0776aac), TOBN(0xcee37f72, 0xd712e8db), TOBN(0xfb28c70d, 0x26f74e8d), TOBN(0xffe0c728, 0xb61301a0), TOBN(0xa6282168, 0xd3724354), TOBN(0x7ff4cb00, 0x768ffedc), TOBN(0xc51b3088, 0x03b02de9), TOBN(0xa5a8147c, 0x3902dda5), TOBN(0x35d2f706, 0xfe6973b4), TOBN(0x5ac2efcf, 0xc257457e), TOBN(0x933f48d4, 0x8700611b), TOBN(0xc365af88, 0x4912beb2), TOBN(0x7f5a4de6, 0x162edf94), TOBN(0xc646ba7c, 0x0c32f34b), TOBN(0x632c6af3, 0xb2091074), TOBN(0x58d4f2e3, 0x753e43a9), TOBN(0x70e1d217, 0x24d4e23f), TOBN(0xb24bf729, 0xafede6a6), TOBN(0x7f4a94d8, 0x710c8b60), TOBN(0xaad90a96, 0x8d4faa6a), TOBN(0xd9ed0b32, 0xb066b690), TOBN(0x52fcd37b, 0x78b6dbfd), TOBN(0x0b64615e, 0x8bd2b431), TOBN(0x228e2048, 0xcfb9fad5), TOBN(0xbeaa386d, 0x240b76bd), TOBN(0x2d6681c8, 0x90dad7bc), TOBN(0x3e553fc3, 0x06d38f5e), TOBN(0xf27cdb9b, 0x9d5f9750), TOBN(0x3e85c52a, 0xd28c5b0e), TOBN(0x190795af, 0x5247c39b), TOBN(0x547831eb, 0xbddd6828), TOBN(0xf327a227, 0x4a82f424), TOBN(0x36919c78, 0x7e47f89d), TOBN(0xe4783919, 0x43c7392c), TOBN(0xf101b9aa, 0x2316fefe), TOBN(0xbcdc9e9c, 0x1c5009d2), TOBN(0xfb55ea13, 0x9cd18345), TOBN(0xf5b5e231, 0xa3ce77c7), TOBN(0xde6b4527, 0xd2f2cb3d), TOBN(0x10f6a333, 0x9bb26f5f), TOBN(0x1e85db8e, 0x044d85b6), TOBN(0xc3697a08, 0x94197e54), TOBN(0x65e18cc0, 0xa7cb4ea8), TOBN(0xa38c4f50, 0xa471fe6e), TOBN(0xf031747a, 0x2f13439c), TOBN(0x53c4a6ba, 0xc007318b), TOBN(0xa8da3ee5, 0x1deccb3d), TOBN(0x0555b31c, 0x558216b1), TOBN(0x90c7810c, 0x2f79e6c2), TOBN(0x9b669f4d, 0xfe8eed3c), TOBN(0x70398ec8, 0xe0fac126), TOBN(0xa96a449e, 0xf701b235), TOBN(0x0ceecdb3, 0xeb94f395), TOBN(0x285fc368, 0xd0cb7431), TOBN(0x0d37bb52, 0x16a18c64), TOBN(0x05110d38, 0xb880d2dd), TOBN(0xa60f177b, 0x65930d57), TOBN(0x7da34a67, 0xf36235f5), TOBN(0x47f5e17c, 0x183816b9), TOBN(0xc7664b57, 0xdb394af4), TOBN(0x39ba215d, 0x7036f789), TOBN(0x46d2ca0e, 0x2f27b472), TOBN(0xc42647ee, 0xf73a84b7), TOBN(0x44bc7545, 0x64488f1d), TOBN(0xaa922708, 0xf4cf85d5), TOBN(0x721a01d5, 0x53e4df63), TOBN(0x649c0c51, 0x5db46ced), TOBN(0x6bf0d64e, 0x3cffcb6c), TOBN(0xe3bf93fe, 0x50f71d96), TOBN(0x75044558, 0xbcc194a0), TOBN(0x16ae3372, 0x6afdc554), TOBN(0xbfc01adf, 0x5ca48f3f), TOBN(0x64352f06, 0xe22a9b84), TOBN(0xcee54da1, 0xc1099e4a), TOBN(0xbbda54e8, 0xfa1b89c0), TOBN(0x166a3df5, 0x6f6e55fb), TOBN(0x1ca44a24, 0x20176f88), TOBN(0x936afd88, 0xdfb7b5ff), TOBN(0xe34c2437, 0x8611d4a0), TOBN(0x7effbb75, 0x86142103), TOBN(0x6704ba1b, 0x1f34fc4d), TOBN(0x7c2a468f, 0x10c1b122), TOBN(0x36b3a610, 0x8c6aace9), TOBN(0xabfcc0a7, 0x75a0d050), TOBN(0x066f9197, 0x3ce33e32), TOBN(0xce905ef4, 0x29fe09be), TOBN(0x89ee25ba, 0xa8376351), TOBN(0x2a3ede22, 0xfd29dc76), TOBN(0x7fd32ed9, 0x36f17260), TOBN(0x0cadcf68, 0x284b4126), TOBN(0x63422f08, 0xa7951fc8), TOBN(0x562b24f4, 0x0807e199), TOBN(0xfe9ce5d1, 0x22ad4490), TOBN(0xc2f51b10, 0x0db2b1b4), TOBN(0xeb3613ff, 0xe4541d0d), TOBN(0xbd2c4a05, 0x2680813b), TOBN(0x527aa55d, 0x561b08d6), TOBN(0xa9f8a40e, 0xa7205558), TOBN(0xe3eea56f, 0x243d0bec), TOBN(0x7b853817, 0xa0ff58b3), TOBN(0xb67d3f65, 0x1a69e627), TOBN(0x0b76bbb9, 0xa869b5d6), TOBN(0xa3afeb82, 0x546723ed), TOBN(0x5f24416d, 0x3e554892), TOBN(0x8413b53d, 0x430e2a45), TOBN(0x99c56aee, 0x9032a2a0), TOBN(0x09432bf6, 0xeec367b1), TOBN(0x552850c6, 0xdaf0ecc1), TOBN(0x49ebce55, 0x5bc92048), TOBN(0xdfb66ba6, 0x54811307), TOBN(0x1b84f797, 0x6f298597), TOBN(0x79590481, 0x8d1d7a0d), TOBN(0xd9fabe03, 0x3a6fa556), TOBN(0xa40f9c59, 0xba9e5d35), TOBN(0xcb1771c1, 0xf6247577), TOBN(0x542a47ca, 0xe9a6312b), TOBN(0xa34b3560, 0x552dd8c5), TOBN(0xfdf94de0, 0x0d794716), TOBN(0xd46124a9, 0x9c623094), TOBN(0x56b7435d, 0x68afe8b4), TOBN(0x27f20540, 0x6c0d8ea1), TOBN(0x12b77e14, 0x73186898), TOBN(0xdbc3dd46, 0x7479490f), TOBN(0x951a9842, 0xc03b0c05), TOBN(0x8b1b3bb3, 0x7921bc96), TOBN(0xa573b346, 0x2b202e0a), TOBN(0x77e4665d, 0x47254d56), TOBN(0x08b70dfc, 0xd23e3984), TOBN(0xab86e8bc, 0xebd14236), TOBN(0xaa3e07f8, 0x57114ba7), TOBN(0x5ac71689, 0xab0ef4f2), TOBN(0x88fca384, 0x0139d9af), TOBN(0x72733f88, 0x76644af0), TOBN(0xf122f72a, 0x65d74f4a), TOBN(0x13931577, 0xa5626c7a), TOBN(0xd5b5d9eb, 0x70f8d5a4), TOBN(0x375adde7, 0xd7bbb228), TOBN(0x31e88b86, 0x0c1c0b32), TOBN(0xd1f568c4, 0x173edbaa), TOBN(0x1592fc83, 0x5459df02), TOBN(0x2beac0fb, 0x0fcd9a7e), TOBN(0xb0a6fdb8, 0x1b473b0a), TOBN(0xe3224c6f, 0x0fe8fc48), TOBN(0x680bd00e, 0xe87edf5b), TOBN(0x30385f02, 0x20e77cf5), TOBN(0xe9ab98c0, 0x4d42d1b2), TOBN(0x72d191d2, 0xd3816d77), TOBN(0x1564daca, 0x0917d9e5), TOBN(0x394eab59, 0x1f8fed7f), TOBN(0xa209aa8d, 0x7fbb3896), TOBN(0x5564f3b9, 0xbe6ac98e), TOBN(0xead21d05, 0xd73654ef), TOBN(0x68d1a9c4, 0x13d78d74), TOBN(0x61e01708, 0x6d4973a0), TOBN(0x83da3500, 0x46e6d32a), TOBN(0x6a3dfca4, 0x68ae0118), TOBN(0xa1b9a4c9, 0xd02da069), TOBN(0x0b2ff9c7, 0xebab8302), TOBN(0x98af07c3, 0x944ba436), TOBN(0x85997326, 0x995f0f9f), TOBN(0x467fade0, 0x71b58bc6), TOBN(0x47e4495a, 0xbd625a2b), TOBN(0xfdd2d01d, 0x33c3b8cd), TOBN(0x2c38ae28, 0xc693f9fa), TOBN(0x48622329, 0x348f7999), TOBN(0x97bf738e, 0x2161f583), TOBN(0x15ee2fa7, 0x565e8cc9), TOBN(0xa1a5c845, 0x5777e189), TOBN(0xcc10bee0, 0x456f2829), TOBN(0x8ad95c56, 0xda762bd5), TOBN(0x152e2214, 0xe9d91da8), TOBN(0x975b0e72, 0x7cb23c74), TOBN(0xfd5d7670, 0xa90c66df), TOBN(0xb5b5b8ad, 0x225ffc53), TOBN(0xab6dff73, 0xfaded2ae), TOBN(0xebd56781, 0x6f4cbe9d), TOBN(0x0ed8b249, 0x6a574bd7), TOBN(0x41c246fe, 0x81a881fa), TOBN(0x91564805, 0xc3db9c70), TOBN(0xd7c12b08, 0x5b862809), TOBN(0x1facd1f1, 0x55858d7b), TOBN(0x7693747c, 0xaf09e92a), TOBN(0x3b69dcba, 0x189a425f), TOBN(0x0be28e9f, 0x967365ef), TOBN(0x57300eb2, 0xe801f5c9), TOBN(0x93b8ac6a, 0xd583352f), TOBN(0xa2cf1f89, 0xcd05b2b7), TOBN(0x7c0c9b74, 0x4dcc40cc), TOBN(0xfee38c45, 0xada523fb), TOBN(0xb49a4dec, 0x1099cc4d), TOBN(0x325c377f, 0x69f069c6), TOBN(0xe12458ce, 0x476cc9ff), TOBN(0x580e0b6c, 0xc6d4cb63), TOBN(0xd561c8b7, 0x9072289b), TOBN(0x0377f264, 0xa619e6da), TOBN(0x26685362, 0x88e591a5), TOBN(0xa453a7bd, 0x7523ca2b), TOBN(0x8a9536d2, 0xc1df4533), TOBN(0xc8e50f2f, 0xbe972f79), TOBN(0xd433e50f, 0x6d3549cf), TOBN(0x6f33696f, 0xfacd665e), TOBN(0x695bfdac, 0xce11fcb4), TOBN(0x810ee252, 0xaf7c9860), TOBN(0x65450fe1, 0x7159bb2c), TOBN(0xf7dfbebe, 0x758b357b), TOBN(0x2b057e74, 0xd69fea72), TOBN(0xd485717a, 0x92731745),} , {TOBN(0x896c42e8, 0xee36860c), TOBN(0xdaf04dfd, 0x4113c22d), TOBN(0x1adbb7b7, 0x44104213), TOBN(0xe5fd5fa1, 0x1fd394ea), TOBN(0x68235d94, 0x1a4e0551), TOBN(0x6772cfbe, 0x18d10151), TOBN(0x276071e3, 0x09984523), TOBN(0xe4e879de, 0x5a56ba98), TOBN(0xaaafafb0, 0x285b9491), TOBN(0x01a0be88, 0x1e4c705e), TOBN(0xff1d4f5d, 0x2ad9caab), TOBN(0x6e349a4a, 0xc37a233f), TOBN(0xcf1c1246, 0x4a1c6a16), TOBN(0xd99e6b66, 0x29383260), TOBN(0xea3d4366, 0x5f6d5471), TOBN(0x36974d04, 0xff8cc89b), TOBN(0xc26c49a1, 0xcfe89d80), TOBN(0xb42c026d, 0xda9c8371), TOBN(0xca6c013a, 0xdad066d2), TOBN(0xfb8f7228, 0x56a4f3ee), TOBN(0x08b579ec, 0xd850935b), TOBN(0x34c1a74c, 0xd631e1b3), TOBN(0xcb5fe596, 0xac198534), TOBN(0x39ff21f6, 0xe1f24f25), TOBN(0x27f29e14, 0x8f929057), TOBN(0x7a64ae06, 0xc0c853df), TOBN(0x256cd183, 0x58e9c5ce), TOBN(0x9d9cce82, 0xded092a5), TOBN(0xcc6e5979, 0x6e93b7c7), TOBN(0xe1e47092, 0x31bb9e27), TOBN(0xb70b3083, 0xaa9e29a0), TOBN(0xbf181a75, 0x3785e644), TOBN(0xf53f2c65, 0x8ead09f7), TOBN(0x1335e1d5, 0x9780d14d), TOBN(0x69cc20e0, 0xcd1b66bc), TOBN(0x9b670a37, 0xbbe0bfc8), TOBN(0xce53dc81, 0x28efbeed), TOBN(0x0c74e77c, 0x8326a6e5), TOBN(0x3604e0d2, 0xb88e9a63), TOBN(0xbab38fca, 0x13dc2248), TOBN(0x8ed6e8c8, 0x5c0a3f1e), TOBN(0xbcad2492, 0x7c87c37f), TOBN(0xfdfb62bb, 0x9ee3b78d), TOBN(0xeba8e477, 0xcbceba46), TOBN(0x37d38cb0, 0xeeaede4b), TOBN(0x0bc498e8, 0x7976deb6), TOBN(0xb2944c04, 0x6b6147fb), TOBN(0x8b123f35, 0xf71f9609), TOBN(0xa155dcc7, 0xde79dc24), TOBN(0xf1168a32, 0x558f69cd), TOBN(0xbac21595, 0x0d1850df), TOBN(0x15c8295b, 0xb204c848), TOBN(0xf661aa36, 0x7d8184ff), TOBN(0xc396228e, 0x30447bdb), TOBN(0x11cd5143, 0xbde4a59e), TOBN(0xe3a26e3b, 0x6beab5e6), TOBN(0xd3b3a13f, 0x1402b9d0), TOBN(0x573441c3, 0x2c7bc863), TOBN(0x4b301ec4, 0x578c3e6e), TOBN(0xc26fc9c4, 0x0adaf57e), TOBN(0x96e71bfd, 0x7493cea3), TOBN(0xd05d4b3f, 0x1af81456), TOBN(0xdaca2a8a, 0x6a8c608f), TOBN(0x53ef07f6, 0x0725b276), TOBN(0x07a5fbd2, 0x7824fc56), TOBN(0x34675218, 0x13289077), TOBN(0x5bf69fd5, 0xe0c48349), TOBN(0xa613ddd3, 0xb6aa7875), TOBN(0x7f78c19c, 0x5450d866), TOBN(0x46f4409c, 0x8f84a481), TOBN(0x9f1d1928, 0x90fce239), TOBN(0x016c4168, 0xb2ce44b9), TOBN(0xbae023f0, 0xc7435978), TOBN(0xb152c888, 0x20e30e19), TOBN(0x9c241645, 0xe3fa6faf), TOBN(0x735d95c1, 0x84823e60), TOBN(0x03197573, 0x03955317), TOBN(0x0b4b02a9, 0xf03b4995), TOBN(0x076bf559, 0x70274600), TOBN(0x32c5cc53, 0xaaf57508), TOBN(0xe8af6d1f, 0x60624129), TOBN(0xb7bc5d64, 0x9a5e2b5e), TOBN(0x3814b048, 0x5f082d72), TOBN(0x76f267f2, 0xce19677a), TOBN(0x626c630f, 0xb36eed93), TOBN(0x55230cd7, 0x3bf56803), TOBN(0x78837949, 0xce2736a0), TOBN(0x0d792d60, 0xaa6c55f1), TOBN(0x0318dbfd, 0xd5c7c5d2), TOBN(0xb38f8da7, 0x072b342d), TOBN(0x3569bddc, 0x7b8de38a), TOBN(0xf25b5887, 0xa1c94842), TOBN(0xb2d5b284, 0x2946ad60), TOBN(0x854f29ad, 0xe9d1707e), TOBN(0xaa5159dc, 0x2c6a4509), TOBN(0x899f94c0, 0x57189837), TOBN(0xcf6adc51, 0xf4a55b03), TOBN(0x261762de, 0x35e3b2d5), TOBN(0x4cc43012, 0x04827b51), TOBN(0xcd22a113, 0xc6021442), TOBN(0xce2fd61a, 0x247c9569), TOBN(0x59a50973, 0xd152beca), TOBN(0x6c835a11, 0x63a716d4), TOBN(0xc26455ed, 0x187dedcf), TOBN(0x27f536e0, 0x49ce89e7), TOBN(0x18908539, 0xcc890cb5), TOBN(0x308909ab, 0xd83c2aa1), TOBN(0xecd3142b, 0x1ab73bd3), TOBN(0x6a85bf59, 0xb3f5ab84), TOBN(0x3c320a68, 0xf2bea4c6), TOBN(0xad8dc538, 0x6da4541f), TOBN(0xeaf34eb0, 0xb7c41186), TOBN(0x1c780129, 0x977c97c4), TOBN(0x5ff9beeb, 0xc57eb9fa), TOBN(0xa24d0524, 0xc822c478), TOBN(0xfd8eec2a, 0x461cd415), TOBN(0xfbde194e, 0xf027458c), TOBN(0xb4ff5319, 0x1d1be115), TOBN(0x63f874d9, 0x4866d6f4), TOBN(0x35c75015, 0xb21ad0c9), TOBN(0xa6b5c9d6, 0x46ac49d2), TOBN(0x42c77c0b, 0x83137aa9), TOBN(0x24d000fc, 0x68225a38), TOBN(0x0f63cfc8, 0x2fe1e907), TOBN(0x22d1b01b, 0xc6441f95), TOBN(0x7d38f719, 0xec8e448f), TOBN(0x9b33fa5f, 0x787fb1ba), TOBN(0x94dcfda1, 0x190158df), TOBN(0xc47cb339, 0x5f6d4a09), TOBN(0x6b4f355c, 0xee52b826), TOBN(0x3d100f5d, 0xf51b930a), TOBN(0xf4512fac, 0x9f668f69), TOBN(0x546781d5, 0x206c4c74), TOBN(0xd021d4d4, 0xcb4d2e48), TOBN(0x494a54c2, 0xca085c2d), TOBN(0xf1dbaca4, 0x520850a8), TOBN(0x63c79326, 0x490a1aca), TOBN(0xcb64dd9c, 0x41526b02), TOBN(0xbb772591, 0xa2979258), TOBN(0x3f582970, 0x48d97846), TOBN(0xd66b70d1, 0x7c213ba7), TOBN(0xc28febb5, 0xe8a0ced4), TOBN(0x6b911831, 0xc10338c1), TOBN(0x0d54e389, 0xbf0126f3), TOBN(0x7048d460, 0x4af206ee), TOBN(0x786c88f6, 0x77e97cb9), TOBN(0xd4375ae1, 0xac64802e), TOBN(0x469bcfe1, 0xd53ec11c), TOBN(0xfc9b340d, 0x47062230), TOBN(0xe743bb57, 0xc5b4a3ac), TOBN(0xfe00b4aa, 0x59ef45ac), TOBN(0x29a4ef23, 0x59edf188), TOBN(0x40242efe, 0xb483689b), TOBN(0x2575d3f6, 0x513ac262), TOBN(0xf30037c8, 0x0ca6db72), TOBN(0xc9fcce82, 0x98864be2), TOBN(0x84a112ff, 0x0149362d), TOBN(0x95e57582, 0x1c4ae971), TOBN(0x1fa4b1a8, 0x945cf86c), TOBN(0x4525a734, 0x0b024a2f), TOBN(0xe76c8b62, 0x8f338360), TOBN(0x483ff593, 0x28edf32b), TOBN(0x67e8e90a, 0x298b1aec), TOBN(0x9caab338, 0x736d9a21), TOBN(0x5c09d2fd, 0x66892709), TOBN(0x2496b4dc, 0xb55a1d41), TOBN(0x93f5fb1a, 0xe24a4394), TOBN(0x08c75049, 0x6fa8f6c1), TOBN(0xcaead1c2, 0xc905d85f), TOBN(0xe9d7f790, 0x0733ae57), TOBN(0x24c9a65c, 0xf07cdd94), TOBN(0x7389359c, 0xa4b55931), TOBN(0xf58709b7, 0x367e45f7), TOBN(0x1f203067, 0xcb7e7adc), TOBN(0x82444bff, 0xc7b72818), TOBN(0x07303b35, 0xbaac8033), TOBN(0x1e1ee4e4, 0xd13b7ea1), TOBN(0xe6489b24, 0xe0e74180), TOBN(0xa5f2c610, 0x7e70ef70), TOBN(0xa1655412, 0xbdd10894), TOBN(0x555ebefb, 0x7af4194e), TOBN(0x533c1c3c, 0x8e89bd9c), TOBN(0x735b9b57, 0x89895856), TOBN(0x15fb3cd2, 0x567f5c15), TOBN(0x057fed45, 0x526f09fd), TOBN(0xe8a4f10c, 0x8128240a), TOBN(0x9332efc4, 0xff2bfd8d), TOBN(0x214e77a0, 0xbd35aa31), TOBN(0x32896d73, 0x14faa40e), TOBN(0x767867ec, 0x01e5f186), TOBN(0xc9adf8f1, 0x17a1813e), TOBN(0xcb6cda78, 0x54741795), TOBN(0xb7521b6d, 0x349d51aa), TOBN(0xf56b5a9e, 0xe3c7b8e9), TOBN(0xc6f1e5c9, 0x32a096df), TOBN(0x083667c4, 0xa3635024), TOBN(0x365ea135, 0x18087f2f), TOBN(0xf1b8eaac, 0xd136e45d), TOBN(0xc8a0e484, 0x73aec989), TOBN(0xd75a324b, 0x142c9259), TOBN(0xb7b4d001, 0x01dae185), TOBN(0x45434e0b, 0x9b7a94bc), TOBN(0xf54339af, 0xfbd8cb0b), TOBN(0xdcc4569e, 0xe98ef49e), TOBN(0x7789318a, 0x09a51299), TOBN(0x81b4d206, 0xb2b025d8), TOBN(0xf64aa418, 0xfae85792), TOBN(0x3e50258f, 0xacd7baf7), TOBN(0xdce84cdb, 0x2996864b), TOBN(0xa2e67089, 0x1f485fa4), TOBN(0xb28b2bb6, 0x534c6a5a), TOBN(0x31a7ec6b, 0xc94b9d39), TOBN(0x1d217766, 0xd6bc20da), TOBN(0x4acdb5ec, 0x86761190), TOBN(0x68726328, 0x73701063), TOBN(0x4d24ee7c, 0x2128c29b), TOBN(0xc072ebd3, 0xa19fd868), TOBN(0x612e481c, 0xdb8ddd3b), TOBN(0xb4e1d754, 0x1a64d852), TOBN(0x00ef95ac, 0xc4c6c4ab), TOBN(0x1536d2ed, 0xaa0a6c46), TOBN(0x61294086, 0x43774790), TOBN(0x54af25e8, 0x343fda10), TOBN(0x9ff9d98d, 0xfd25d6f2), TOBN(0x0746af7c, 0x468b8835), TOBN(0x977a31cb, 0x730ecea7), TOBN(0xa5096b80, 0xc2cf4a81), TOBN(0xaa986833, 0x6458c37a), TOBN(0x6af29bf3, 0xa6bd9d34), TOBN(0x6a62fe9b, 0x33c5d854), TOBN(0x50e6c304, 0xb7133b5e), TOBN(0x04b60159, 0x7d6e6848), TOBN(0x4cd296df, 0x5579bea4), TOBN(0x10e35ac8, 0x5ceedaf1), TOBN(0x04c4c5fd, 0xe3bcc5b1), TOBN(0x95f9ee8a, 0x89412cf9), TOBN(0x2c9459ee, 0x82b6eb0f), TOBN(0x2e845765, 0x95c2aadd), TOBN(0x774a84ae, 0xd327fcfe), TOBN(0xd8c93722, 0x0368d476), TOBN(0x0dbd5748, 0xf83e8a3b), TOBN(0xa579aa96, 0x8d2495f3), TOBN(0x535996a0, 0xae496e9b), TOBN(0x07afbfe9, 0xb7f9bcc2), TOBN(0x3ac1dc6d, 0x5b7bd293), TOBN(0x3b592cff, 0x7022323d), TOBN(0xba0deb98, 0x9c0a3e76), TOBN(0x18e78e9f, 0x4b197acb), TOBN(0x211cde10, 0x296c36ef), TOBN(0x7ee89672, 0x82c4da77), TOBN(0xb617d270, 0xa57836da), TOBN(0xf0cd9c31, 0x9cb7560b), TOBN(0x01fdcbf7, 0xe455fe90), TOBN(0x3fb53cbb, 0x7e7334f3), TOBN(0x781e2ea4, 0x4e7de4ec), TOBN(0x8adab3ad, 0x0b384fd0), TOBN(0x129eee2f, 0x53d64829), TOBN(0x7a471e17, 0xa261492b), TOBN(0xe4f9adb9, 0xe4cb4a2c), TOBN(0x3d359f6f, 0x97ba2c2d), TOBN(0x346c6786, 0x0aacd697), TOBN(0x92b444c3, 0x75c2f8a8), TOBN(0xc79fa117, 0xd85df44e), TOBN(0x56782372, 0x398ddf31), TOBN(0x60e690f2, 0xbbbab3b8), TOBN(0x4851f8ae, 0x8b04816b), TOBN(0xc72046ab, 0x9c92e4d2), TOBN(0x518c74a1, 0x7cf3136b), TOBN(0xff4eb50a, 0xf9877d4c), TOBN(0x14578d90, 0xa919cabb), TOBN(0x8218f8c4, 0xac5eb2b6), TOBN(0xa3ccc547, 0x542016e4), TOBN(0x025bf48e, 0x327f8349), TOBN(0xf3e97346, 0xf43cb641), TOBN(0xdc2bafdf, 0x500f1085), TOBN(0x57167876, 0x2f063055), TOBN(0x5bd914b9, 0x411925a6), TOBN(0x7c078d48, 0xa1123de5), TOBN(0xee6bf835, 0x182b165d), TOBN(0xb11b5e5b, 0xba519727), TOBN(0xe33ea76c, 0x1eea7b85), TOBN(0x2352b461, 0x92d4f85e), TOBN(0xf101d334, 0xafe115bb), TOBN(0xfabc1294, 0x889175a3), TOBN(0x7f6bcdc0, 0x5233f925), TOBN(0xe0a802db, 0xe77fec55), TOBN(0xbdb47b75, 0x8069b659), TOBN(0x1c5e12de, 0xf98fbd74), TOBN(0x869c58c6, 0x4b8457ee), TOBN(0xa5360f69, 0x4f7ea9f7), TOBN(0xe576c09f, 0xf460b38f), TOBN(0x6b70d548, 0x22b7fb36), TOBN(0x3fd237f1, 0x3bfae315), TOBN(0x33797852, 0xcbdff369), TOBN(0x97df25f5, 0x25b516f9), TOBN(0x46f388f2, 0xba38ad2d), TOBN(0x656c4658, 0x89d8ddbb), TOBN(0x8830b26e, 0x70f38ee8), TOBN(0x4320fd5c, 0xde1212b0), TOBN(0xc34f30cf, 0xe4a2edb2), TOBN(0xabb131a3, 0x56ab64b8), TOBN(0x7f77f0cc, 0xd99c5d26), TOBN(0x66856a37, 0xbf981d94), TOBN(0x19e76d09, 0x738bd76e), TOBN(0xe76c8ac3, 0x96238f39), TOBN(0xc0a482be, 0xa830b366), TOBN(0xb7b8eaff, 0x0b4eb499), TOBN(0x8ecd83bc, 0x4bfb4865), TOBN(0x971b2cb7, 0xa2f3776f), TOBN(0xb42176a4, 0xf4b88adf), TOBN(0xb9617df5, 0xbe1fa446), TOBN(0x8b32d508, 0xcd031bd2), TOBN(0x1c6bd47d, 0x53b618c0), TOBN(0xc424f46c, 0x6a227923), TOBN(0x7303ffde, 0xdd92d964), TOBN(0xe9712878, 0x71b5abf2), TOBN(0x8f48a632, 0xf815561d), TOBN(0x85f48ff5, 0xd3c055d1), TOBN(0x222a1427, 0x7525684f), TOBN(0xd0d841a0, 0x67360cc3), TOBN(0x4245a926, 0x0b9267c6), TOBN(0xc78913f1, 0xcf07f863), TOBN(0xaa844c8e, 0x4d0d9e24), TOBN(0xa42ad522, 0x3d5f9017), TOBN(0xbd371749, 0xa2c989d5), TOBN(0x928292df, 0xe1f5e78e), TOBN(0x493b383e, 0x0a1ea6da), TOBN(0x5136fd8d, 0x13aee529), TOBN(0x860c44b1, 0xf2c34a99), TOBN(0x3b00aca4, 0xbf5855ac), TOBN(0xabf6aaa0, 0xfaaf37be), TOBN(0x65f43682, 0x2a53ec08), TOBN(0x1d9a5801, 0xa11b12e1), TOBN(0x78a7ab2c, 0xe20ed475), TOBN(0x0de1067e, 0x9a41e0d5), TOBN(0x30473f5f, 0x305023ea), TOBN(0xdd3ae09d, 0x169c7d97), TOBN(0x5cd5baa4, 0xcfaef9cd), TOBN(0x5cd7440b, 0x65a44803), TOBN(0xdc13966a, 0x47f364de), TOBN(0x077b2be8, 0x2b8357c1), TOBN(0x0cb1b4c5, 0xe9d57c2a), TOBN(0x7a4ceb32, 0x05ff363e), TOBN(0xf310fa4d, 0xca35a9ef), TOBN(0xdbb7b352, 0xf97f68c6), TOBN(0x0c773b50, 0x0b02cf58), TOBN(0xea2e4821, 0x3c1f96d9), TOBN(0xffb357b0, 0xeee01815), TOBN(0xb9c924cd, 0xe0f28039), TOBN(0x0b36c95a, 0x46a3fbe4), TOBN(0x1faaaea4, 0x5e46db6c), TOBN(0xcae575c3, 0x1928aaff), TOBN(0x7f671302, 0xa70dab86), TOBN(0xfcbd12a9, 0x71c58cfc), TOBN(0xcbef9acf, 0xbee0cb92), TOBN(0x573da0b9, 0xf8c1b583), TOBN(0x4752fcfe, 0x0d41d550), TOBN(0xe7eec0e3, 0x2155cffe), TOBN(0x0fc39fcb, 0x545ae248), TOBN(0x522cb8d1, 0x8065f44e), TOBN(0x263c962a, 0x70cbb96c), TOBN(0xe034362a, 0xbcd124a9), TOBN(0xf120db28, 0x3c2ae58d), TOBN(0xb9a38d49, 0xfef6d507), TOBN(0xb1fd2a82, 0x1ff140fd), TOBN(0xbd162f30, 0x20aee7e0), TOBN(0x4e17a5d4, 0xcb251949), TOBN(0x2aebcb83, 0x4f7e1c3d), TOBN(0x608eb25f, 0x937b0527), TOBN(0xf42e1e47, 0xeb7d9997), TOBN(0xeba699c4, 0xb8a53a29), TOBN(0x1f921c71, 0xe091b536), TOBN(0xcce29e7b, 0x5b26bbd5), TOBN(0x7a8ef5ed, 0x3b61a680), TOBN(0xe5ef8043, 0xba1f1c7e), TOBN(0x16ea8217, 0x18158dda), TOBN(0x01778a2b, 0x599ff0f9), TOBN(0x68a923d7, 0x8104fc6b), TOBN(0x5bfa44df, 0xda694ff3), TOBN(0x4f7199db, 0xf7667f12), TOBN(0xc06d8ff6, 0xe46f2a79), TOBN(0x08b5dead, 0xe9f8131d), TOBN(0x02519a59, 0xabb4ce7c), TOBN(0xc4f710bc, 0xb42aec3e), TOBN(0x3d77b057, 0x78bde41a), TOBN(0x6474bf80, 0xb4186b5a), TOBN(0x048b3f67, 0x88c65741), TOBN(0xc64519de, 0x03c7c154), TOBN(0xdf073846, 0x0edfcc4f), TOBN(0x319aa737, 0x48f1aa6b), TOBN(0x8b9f8a02, 0xca909f77), TOBN(0x90258139, 0x7580bfef), TOBN(0xd8bfd3ca, 0xc0c22719), TOBN(0xc60209e4, 0xc9ca151e), TOBN(0x7a744ab5, 0xd9a1a69c), TOBN(0x6de5048b, 0x14937f8f), TOBN(0x171938d8, 0xe115ac04), TOBN(0x7df70940, 0x1c6b16d2), TOBN(0xa6aeb663, 0x7f8e94e7), TOBN(0xc130388e, 0x2a2cf094), TOBN(0x1850be84, 0x77f54e6e), TOBN(0x9f258a72, 0x65d60fe5), TOBN(0xff7ff0c0, 0x6c9146d6), TOBN(0x039aaf90, 0xe63a830b), TOBN(0x38f27a73, 0x9460342f), TOBN(0x4703148c, 0x3f795f8a), TOBN(0x1bb5467b, 0x9681a97e), TOBN(0x00931ba5, 0xecaeb594), TOBN(0xcdb6719d, 0x786f337c), TOBN(0xd9c01cd2, 0xe704397d), TOBN(0x0f4a3f20, 0x555c2fef), TOBN(0x00452509, 0x7c0af223), TOBN(0x54a58047, 0x84db8e76), TOBN(0x3bacf1aa, 0x93c8aa06), TOBN(0x11ca957c, 0xf7919422), TOBN(0x50641053, 0x78cdaa40), TOBN(0x7a303874, 0x9f7144ae), TOBN(0x170c963f, 0x43d4acfd), TOBN(0x5e148149, 0x58ddd3ef), TOBN(0xa7bde582, 0x9e72dba8), TOBN(0x0769da8b, 0x6fa68750), TOBN(0xfa64e532, 0x572e0249), TOBN(0xfcaadf9d, 0x2619ad31), TOBN(0x87882daa, 0xa7b349cd), TOBN(0x9f6eb731, 0x6c67a775), TOBN(0xcb10471a, 0xefc5d0b1), TOBN(0xb433750c, 0xe1b806b2), TOBN(0x19c5714d, 0x57b1ae7e), TOBN(0xc0dc8b7b, 0xed03fd3f), TOBN(0xdd03344f, 0x31bc194e), TOBN(0xa66c52a7, 0x8c6320b5), TOBN(0x8bc82ce3, 0xd0b6fd93), TOBN(0xf8e13501, 0xb35f1341), TOBN(0xe53156dd, 0x25a43e42), TOBN(0xd3adf27e, 0x4daeb85c), TOBN(0xb81d8379, 0xbbeddeb5), TOBN(0x1b0b546e, 0x2e435867), TOBN(0x9020eb94, 0xeba5dd60), TOBN(0x37d91161, 0x8210cb9d), TOBN(0x4c596b31, 0x5c91f1cf), TOBN(0xb228a90f, 0x0e0b040d), TOBN(0xbaf02d82, 0x45ff897f), TOBN(0x2aac79e6, 0x00fa6122), TOBN(0x24828817, 0x8e36f557), TOBN(0xb9521d31, 0x113ec356), TOBN(0x9e48861e, 0x15eff1f8), TOBN(0x2aa1d412, 0xe0d41715), TOBN(0x71f86203, 0x53f131b8), TOBN(0xf60da8da, 0x3fd19408), TOBN(0x4aa716dc, 0x278d9d99), TOBN(0x394531f7, 0xa8c51c90), TOBN(0xb560b0e8, 0xf59db51c), TOBN(0xa28fc992, 0xfa34bdad), TOBN(0xf024fa14, 0x9cd4f8bd), TOBN(0x5cf530f7, 0x23a9d0d3), TOBN(0x615ca193, 0xe28c9b56), TOBN(0x6d2a483d, 0x6f73c51e), TOBN(0xa4cb2412, 0xea0dc2dd), TOBN(0x50663c41, 0x1eb917ff), TOBN(0x3d3a74cf, 0xeade299e), TOBN(0x29b3990f, 0x4a7a9202), TOBN(0xa9bccf59, 0xa7b15c3d), TOBN(0x66a3ccdc, 0xa5df9208), TOBN(0x48027c14, 0x43f2f929), TOBN(0xd385377c, 0x40b557f0), TOBN(0xe001c366, 0xcd684660), TOBN(0x1b18ed6b, 0xe2183a27), TOBN(0x879738d8, 0x63210329), TOBN(0xa687c74b, 0xbda94882), TOBN(0xd1bbcc48, 0xa684b299), TOBN(0xaf6f1112, 0x863b3724), TOBN(0x6943d1b4, 0x2c8ce9f8), TOBN(0xe044a3bb, 0x098cafb4), TOBN(0x27ed2310, 0x60d48caf), TOBN(0x542b5675, 0x3a31b84d), TOBN(0xcbf3dd50, 0xfcddbed7), TOBN(0x25031f16, 0x41b1d830), TOBN(0xa7ec851d, 0xcb0c1e27), TOBN(0xac1c8fe0, 0xb5ae75db), TOBN(0xb24c7557, 0x08c52120), TOBN(0x57f811dc, 0x1d4636c3), TOBN(0xf8436526, 0x681a9939), TOBN(0x1f6bc6d9, 0x9c81adb3), TOBN(0x840f8ac3, 0x5b7d80d4), TOBN(0x731a9811, 0xf4387f1a), TOBN(0x7c501cd3, 0xb5156880), TOBN(0xa5ca4a07, 0xdfe68867), TOBN(0xf123d8f0, 0x5fcea120), TOBN(0x1fbb0e71, 0xd607039e), TOBN(0x2b70e215, 0xcd3a4546), TOBN(0x32d2f01d, 0x53324091), TOBN(0xb796ff08, 0x180ab19b), TOBN(0x32d87a86, 0x3c57c4aa), TOBN(0x2aed9caf, 0xb7c49a27), TOBN(0x9fb35eac, 0x31630d98), TOBN(0x338e8cdf, 0x5c3e20a3), TOBN(0x80f16182, 0x66cde8db), TOBN(0x4e159980, 0x2d72fd36), TOBN(0xd7b8f13b, 0x9b6e5072), TOBN(0xf5213907, 0x3b7b5dc1), TOBN(0x4d431f1d, 0x8ce4396e), TOBN(0x37a1a680, 0xa7ed2142), TOBN(0xbf375696, 0xd01aaf6b), TOBN(0xaa1c0c54, 0xe63aab66), TOBN(0x3014368b, 0x4ed80940), TOBN(0x67e6d056, 0x7a6fcedd), TOBN(0x7c208c49, 0xca97579f), TOBN(0xfe3d7a81, 0xa23597f6), TOBN(0x5e203202, 0x7e096ae2), TOBN(0xb1f3e1e7, 0x24b39366), TOBN(0x26da26f3, 0x2fdcdffc), TOBN(0x79422f1d, 0x6097be83),} , {TOBN(0x263a2cfb, 0x9db3b381), TOBN(0x9c3a2dee, 0xd4df0a4b), TOBN(0x728d06e9, 0x7d04e61f), TOBN(0x8b1adfbc, 0x42449325), TOBN(0x6ec1d939, 0x7e053a1b), TOBN(0xee2be5c7, 0x66daf707), TOBN(0x80ba1e14, 0x810ac7ab), TOBN(0xdd2ae778, 0xf530f174), TOBN(0x0435d97a, 0x205b9d8b), TOBN(0x6eb8f064, 0x056756d4), TOBN(0xd5e88a8b, 0xb6f8210e), TOBN(0x070ef12d, 0xec9fd9ea), TOBN(0x4d849505, 0x3bcc876a), TOBN(0x12a75338, 0xa7404ce3), TOBN(0xd22b49e1, 0xb8a1db5e), TOBN(0xec1f2051, 0x14bfa5ad), TOBN(0xadbaeb79, 0xb6828f36), TOBN(0x9d7a0258, 0x01bd5b9e), TOBN(0xeda01e0d, 0x1e844b0c), TOBN(0x4b625175, 0x887edfc9), TOBN(0x14109fdd, 0x9669b621), TOBN(0x88a2ca56, 0xf6f87b98), TOBN(0xfe2eb788, 0x170df6bc), TOBN(0x0cea06f4, 0xffa473f9), TOBN(0x43ed81b5, 0xc4e83d33), TOBN(0xd9f35879, 0x5efd488b), TOBN(0x164a620f, 0x9deb4d0f), TOBN(0xc6927bdb, 0xac6a7394), TOBN(0x45c28df7, 0x9f9e0f03), TOBN(0x2868661e, 0xfcd7e1a9), TOBN(0x7cf4e8d0, 0xffa348f1), TOBN(0x6bd4c284, 0x398538e0), TOBN(0x2618a091, 0x289a8619), TOBN(0xef796e60, 0x6671b173), TOBN(0x664e46e5, 0x9090c632), TOBN(0xa38062d4, 0x1e66f8fb), TOBN(0x6c744a20, 0x0573274e), TOBN(0xd07b67e4, 0xa9271394), TOBN(0x391223b2, 0x6bdc0e20), TOBN(0xbe2d93f1, 0xeb0a05a7), TOBN(0xf23e2e53, 0x3f36d141), TOBN(0xe84bb3d4, 0x4dfca442), TOBN(0xb804a48d, 0x6b7c023a), TOBN(0x1e16a8fa, 0x76431c3b), TOBN(0x1b5452ad, 0xddd472e0), TOBN(0x7d405ee7, 0x0d1ee127), TOBN(0x50fc6f1d, 0xffa27599), TOBN(0x351ac53c, 0xbf391b35), TOBN(0x7efa14b8, 0x4444896b), TOBN(0x64974d2f, 0xf94027fb), TOBN(0xefdcd0e8, 0xde84487d), TOBN(0x8c45b260, 0x2b48989b), TOBN(0xa8fcbbc2, 0xd8463487), TOBN(0xd1b2b3f7, 0x3fbc476c), TOBN(0x21d005b7, 0xc8f443c0), TOBN(0x518f2e67, 0x40c0139c), TOBN(0x56036e8c, 0x06d75fc1), TOBN(0x2dcf7bb7, 0x3249a89f), TOBN(0x81dd1d3d, 0xe245e7dd), TOBN(0xf578dc4b, 0xebd6e2a7), TOBN(0x4c028903, 0xdf2ce7a0), TOBN(0xaee36288, 0x9c39afac), TOBN(0xdc847c31, 0x146404ab), TOBN(0x6304c0d8, 0xa4e97818), TOBN(0xae51dca2, 0xa91f6791), TOBN(0x2abe4190, 0x9baa9efc), TOBN(0xd9d2e2f4, 0x559c7ac1), TOBN(0xe82f4b51, 0xfc9f773a), TOBN(0xa7713027, 0x4073e81c), TOBN(0xc0276fac, 0xfbb596fc), TOBN(0x1d819fc9, 0xa684f70c), TOBN(0x29b47fdd, 0xc9f7b1e0), TOBN(0x358de103, 0x459b1940), TOBN(0xec881c59, 0x5b013e93), TOBN(0x51574c93, 0x49532ad3), TOBN(0x2db1d445, 0xb37b46de), TOBN(0xc6445b87, 0xdf239fd8), TOBN(0xc718af75, 0x151d24ee), TOBN(0xaea1c4a4, 0xf43c6259), TOBN(0x40c0e5d7, 0x70be02f7), TOBN(0x6a4590f4, 0x721b33f2), TOBN(0x2124f1fb, 0xfedf04ea), TOBN(0xf8e53cde, 0x9745efe7), TOBN(0xe7e10432, 0x65f046d9), TOBN(0xc3fca28e, 0xe4d0c7e6), TOBN(0x847e339a, 0x87253b1b), TOBN(0x9b595348, 0x3743e643), TOBN(0xcb6a0a0b, 0x4fd12fc5), TOBN(0xfb6836c3, 0x27d02dcc), TOBN(0x5ad00982, 0x7a68bcc2), TOBN(0x1b24b44c, 0x005e912d), TOBN(0xcc83d20f, 0x811fdcfe), TOBN(0x36527ec1, 0x666fba0c), TOBN(0x69948197, 0x14754635), TOBN(0xfcdcb1a8, 0x556da9c2), TOBN(0xa5934267, 0x81a732b2), TOBN(0xec1214ed, 0xa714181d), TOBN(0x609ac13b, 0x6067b341), TOBN(0xff4b4c97, 0xa545df1f), TOBN(0xa1240501, 0x34d2076b), TOBN(0x6efa0c23, 0x1409ca97), TOBN(0x254cc1a8, 0x20638c43), TOBN(0xd4e363af, 0xdcfb46cd), TOBN(0x62c2adc3, 0x03942a27), TOBN(0xc67b9df0, 0x56e46483), TOBN(0xa55abb20, 0x63736356), TOBN(0xab93c098, 0xc551bc52), TOBN(0x382b49f9, 0xb15fe64b), TOBN(0x9ec221ad, 0x4dff8d47), TOBN(0x79caf615, 0x437df4d6), TOBN(0x5f13dc64, 0xbb456509), TOBN(0xe4c589d9, 0x191f0714), TOBN(0x27b6a8ab, 0x3fd40e09), TOBN(0xe455842e, 0x77313ea9), TOBN(0x8b51d1e2, 0x1f55988b), TOBN(0x5716dd73, 0x062bbbfc), TOBN(0x633c11e5, 0x4e8bf3de), TOBN(0x9a0e77b6, 0x1b85be3b), TOBN(0x56510729, 0x0911cca6), TOBN(0x27e76495, 0xefa6590f), TOBN(0xe4ac8b33, 0x070d3aab), TOBN(0x2643672b, 0x9a2cd5e5), TOBN(0x52eff79b, 0x1cfc9173), TOBN(0x665ca49b, 0x90a7c13f), TOBN(0x5a8dda59, 0xb3efb998), TOBN(0x8a5b922d, 0x052f1341), TOBN(0xae9ebbab, 0x3cf9a530), TOBN(0x35986e7b, 0xf56da4d7), TOBN(0x3a636b5c, 0xff3513cc), TOBN(0xbb0cf8ba, 0x3198f7dd), TOBN(0xb8d40522, 0x41f16f86), TOBN(0x760575d8, 0xde13a7bf), TOBN(0x36f74e16, 0x9f7aa181), TOBN(0x163a3ecf, 0xf509ed1c), TOBN(0x6aead61f, 0x3c40a491), TOBN(0x158c95fc, 0xdfe8fcaa), TOBN(0xa3991b6e, 0x13cda46f), TOBN(0x79482415, 0x342faed0), TOBN(0xf3ba5bde, 0x666b5970), TOBN(0x1d52e6bc, 0xb26ab6dd), TOBN(0x768ba1e7, 0x8608dd3d), TOBN(0x4930db2a, 0xea076586), TOBN(0xd9575714, 0xe7dc1afa), TOBN(0x1fc7bf7d, 0xf7c58817), TOBN(0x6b47accd, 0xd9eee96c), TOBN(0x0ca277fb, 0xe58cec37), TOBN(0x113fe413, 0xe702c42a), TOBN(0xdd1764ee, 0xc47cbe51), TOBN(0x041e7cde, 0x7b3ed739), TOBN(0x50cb7459, 0x5ce9e1c0), TOBN(0x35568513, 0x2925b212), TOBN(0x7cff95c4, 0x001b081c), TOBN(0x63ee4cbd, 0x8088b454), TOBN(0xdb7f32f7, 0x9a9e0c8a), TOBN(0xb377d418, 0x6b2447cb), TOBN(0xe3e982aa, 0xd370219b), TOBN(0x06ccc1e4, 0xc2a2a593), TOBN(0x72c36865, 0x0773f24f), TOBN(0xa13b4da7, 0x95859423), TOBN(0x8bbf1d33, 0x75040c8f), TOBN(0x726f0973, 0xda50c991), TOBN(0x48afcd5b, 0x822d6ee2), TOBN(0xe5fc718b, 0x20fd7771), TOBN(0xb9e8e77d, 0xfd0807a1), TOBN(0x7f5e0f44, 0x99a7703d), TOBN(0x6972930e, 0x618e36f3), TOBN(0x2b7c77b8, 0x23807bbe), TOBN(0xe5b82405, 0xcb27ff50), TOBN(0xba8b8be3, 0xbd379062), TOBN(0xd64b7a1d, 0x2dce4a92), TOBN(0x040a73c5, 0xb2952e37), TOBN(0x0a9e252e, 0xd438aeca), TOBN(0xdd43956b, 0xc39d3bcb), TOBN(0x1a31ca00, 0xb32b2d63), TOBN(0xd67133b8, 0x5c417a18), TOBN(0xd08e4790, 0x2ef442c8), TOBN(0x98cb1ae9, 0x255c0980), TOBN(0x4bd86381, 0x2b4a739f), TOBN(0x5a5c31e1, 0x1e4a45a1), TOBN(0x1e5d55fe, 0x9cb0db2f), TOBN(0x74661b06, 0x8ff5cc29), TOBN(0x026b389f, 0x0eb8a4f4), TOBN(0x536b21a4, 0x58848c24), TOBN(0x2e5bf8ec, 0x81dc72b0), TOBN(0x03c187d0, 0xad886aac), TOBN(0x5c16878a, 0xb771b645), TOBN(0xb07dfc6f, 0xc74045ab), TOBN(0x2c6360bf, 0x7800caed), TOBN(0x24295bb5, 0xb9c972a3), TOBN(0xc9e6f88e, 0x7c9a6dba), TOBN(0x90ffbf24, 0x92a79aa6), TOBN(0xde29d50a, 0x41c26ac2), TOBN(0x9f0af483, 0xd309cbe6), TOBN(0x5b020d8a, 0xe0bced4f), TOBN(0x606e986d, 0xb38023e3), TOBN(0xad8f2c9d, 0x1abc6933), TOBN(0x19292e1d, 0xe7400e93), TOBN(0xfe3e18a9, 0x52be5e4d), TOBN(0xe8e9771d, 0x2e0680bf), TOBN(0x8c5bec98, 0xc54db063), TOBN(0x2af9662a, 0x74a55d1f), TOBN(0xe3fbf28f, 0x046f66d8), TOBN(0xa3a72ab4, 0xd4dc4794), TOBN(0x09779f45, 0x5c7c2dd8), TOBN(0xd893bdaf, 0xc3d19d8d), TOBN(0xd5a75094, 0x57d6a6df), TOBN(0x8cf8fef9, 0x952e6255), TOBN(0x3da67cfb, 0xda9a8aff), TOBN(0x4c23f62a, 0x2c160dcd), TOBN(0x34e6c5e3, 0x8f90eaef), TOBN(0x35865519, 0xa9a65d5a), TOBN(0x07c48aae, 0x8fd38a3d), TOBN(0xb7e7aeda, 0x50068527), TOBN(0x2c09ef23, 0x1c90936a), TOBN(0x31ecfeb6, 0xe879324c), TOBN(0xa0871f6b, 0xfb0ec938), TOBN(0xb1f0fb68, 0xd84d835d), TOBN(0xc90caf39, 0x861dc1e6), TOBN(0x12e5b046, 0x7594f8d7), TOBN(0x26897ae2, 0x65012b92), TOBN(0xbcf68a08, 0xa4d6755d), TOBN(0x403ee41c, 0x0991fbda), TOBN(0x733e343e, 0x3bbf17e8), TOBN(0xd2c7980d, 0x679b3d65), TOBN(0x33056232, 0xd2e11305), TOBN(0x966be492, 0xf3c07a6f), TOBN(0x6a8878ff, 0xbb15509d), TOBN(0xff221101, 0x0a9b59a4), TOBN(0x6c9f564a, 0xabe30129), TOBN(0xc6f2c940, 0x336e64cf), TOBN(0x0fe75262, 0x8b0c8022), TOBN(0xbe0267e9, 0x6ae8db87), TOBN(0x22e192f1, 0x93bc042b), TOBN(0xf085b534, 0xb237c458), TOBN(0xa0d192bd, 0x832c4168), TOBN(0x7a76e9e3, 0xbdf6271d), TOBN(0x52a882fa, 0xb88911b5), TOBN(0xc85345e4, 0xb4db0eb5), TOBN(0xa3be02a6, 0x81a7c3ff), TOBN(0x51889c8c, 0xf0ec0469), TOBN(0x9d031369, 0xa5e829e5), TOBN(0xcbb4c6fc, 0x1607aa41), TOBN(0x75ac59a6, 0x241d84c1), TOBN(0xc043f2bf, 0x8829e0ee), TOBN(0x82a38f75, 0x8ea5e185), TOBN(0x8bda40b9, 0xd87cbd9f), TOBN(0x9e65e75e, 0x2d8fc601), TOBN(0x3d515f74, 0xa35690b3), TOBN(0x534acf4f, 0xda79e5ac), TOBN(0x68b83b3a, 0x8630215f), TOBN(0x5c748b2e, 0xd085756e), TOBN(0xb0317258, 0xe5d37cb2), TOBN(0x6735841a, 0xc5ccc2c4), TOBN(0x7d7dc96b, 0x3d9d5069), TOBN(0xa147e410, 0xfd1754bd), TOBN(0x65296e94, 0xd399ddd5), TOBN(0xf6b5b2d0, 0xbc8fa5bc), TOBN(0x8a5ead67, 0x500c277b), TOBN(0x214625e6, 0xdfa08a5d), TOBN(0x51fdfedc, 0x959cf047), TOBN(0x6bc9430b, 0x289fca32), TOBN(0xe36ff0cf, 0x9d9bdc3f), TOBN(0x2fe187cb, 0x58ea0ede), TOBN(0xed66af20, 0x5a900b3f), TOBN(0x00e0968b, 0x5fa9f4d6), TOBN(0x2d4066ce, 0x37a362e7), TOBN(0xa99a9748, 0xbd07e772), TOBN(0x710989c0, 0x06a4f1d0), TOBN(0xd5dedf35, 0xce40cbd8), TOBN(0xab55c5f0, 0x1743293d), TOBN(0x766f1144, 0x8aa24e2c), TOBN(0x94d874f8, 0x605fbcb4), TOBN(0xa365f0e8, 0xa518001b), TOBN(0xee605eb6, 0x9d04ef0f), TOBN(0x5a3915cd, 0xba8d4d25), TOBN(0x44c0e1b8, 0xb5113472), TOBN(0xcbb024e8, 0x8b6740dc), TOBN(0x89087a53, 0xee1d4f0c), TOBN(0xa88fa05c, 0x1fc4e372), TOBN(0x8bf395cb, 0xaf8b3af2), TOBN(0x1e71c9a1, 0xdeb8568b), TOBN(0xa35daea0, 0x80fb3d32), TOBN(0xe8b6f266, 0x2cf8fb81), TOBN(0x6d51afe8, 0x9490696a), TOBN(0x81beac6e, 0x51803a19), TOBN(0xe3d24b7f, 0x86219080), TOBN(0x727cfd9d, 0xdf6f463c), TOBN(0x8c6865ca, 0x72284ee8), TOBN(0x32c88b7d, 0xb743f4ef), TOBN(0x3793909b, 0xe7d11dce), TOBN(0xd398f922, 0x2ff2ebe8), TOBN(0x2c70ca44, 0xe5e49796), TOBN(0xdf4d9929, 0xcb1131b1), TOBN(0x7826f298, 0x25888e79), TOBN(0x4d3a112c, 0xf1d8740a), TOBN(0x00384cb6, 0x270afa8b), TOBN(0xcb64125b, 0x3ab48095), TOBN(0x3451c256, 0x62d05106), TOBN(0xd73d577d, 0xa4955845), TOBN(0x39570c16, 0xbf9f4433), TOBN(0xd7dfaad3, 0xadecf263), TOBN(0xf1c3d8d1, 0xdc76e102), TOBN(0x5e774a58, 0x54c6a836), TOBN(0xdad4b672, 0x3e92d47b), TOBN(0xbe7e990f, 0xf0d796a0), TOBN(0x5fc62478, 0xdf0e8b02), TOBN(0x8aae8bf4, 0x030c00ad), TOBN(0x3d2db93b, 0x9004ba0f), TOBN(0xe48c8a79, 0xd85d5ddc), TOBN(0xe907caa7, 0x6bb07f34), TOBN(0x58db343a, 0xa39eaed5), TOBN(0x0ea6e007, 0xadaf5724), TOBN(0xe00df169, 0xd23233f3), TOBN(0x3e322796, 0x77cb637f), TOBN(0x1f897c0e, 0x1da0cf6c), TOBN(0xa651f5d8, 0x31d6bbdd), TOBN(0xdd61af19, 0x1a230c76), TOBN(0xbd527272, 0xcdaa5e4a), TOBN(0xca753636, 0xd0abcd7e), TOBN(0x78bdd37c, 0x370bd8dc), TOBN(0xc23916c2, 0x17cd93fe), TOBN(0x65b97a4d, 0xdadce6e2), TOBN(0xe04ed4eb, 0x174e42f8), TOBN(0x1491ccaa, 0xbb21480a), TOBN(0x145a8280, 0x23196332), TOBN(0x3c3862d7, 0x587b479a), TOBN(0x9f4a88a3, 0x01dcd0ed), TOBN(0x4da2b7ef, 0x3ea12f1f), TOBN(0xf8e7ae33, 0xb126e48e), TOBN(0x404a0b32, 0xf494e237), TOBN(0x9beac474, 0xc55acadb), TOBN(0x4ee5cf3b, 0xcbec9fd9), TOBN(0x336b33b9, 0x7df3c8c3), TOBN(0xbd905fe3, 0xb76808fd), TOBN(0x8f436981, 0xaa45c16a), TOBN(0x255c5bfa, 0x3dd27b62), TOBN(0x71965cbf, 0xc3dd9b4d), TOBN(0xce23edbf, 0xfc068a87), TOBN(0xb78d4725, 0x745b029b), TOBN(0x74610713, 0xcefdd9bd), TOBN(0x7116f75f, 0x1266bf52), TOBN(0x02046722, 0x18e49bb6), TOBN(0xdf43df9f, 0x3d6f19e3), TOBN(0xef1bc7d0, 0xe685cb2f), TOBN(0xcddb27c1, 0x7078c432), TOBN(0xe1961b9c, 0xb77fedb7), TOBN(0x1edc2f5c, 0xc2290570), TOBN(0x2c3fefca, 0x19cbd886), TOBN(0xcf880a36, 0xc2af389a), TOBN(0x96c610fd, 0xbda71cea), TOBN(0xf03977a9, 0x32aa8463), TOBN(0x8eb7763f, 0x8586d90a), TOBN(0x3f342454, 0x2a296e77), TOBN(0xc8718683, 0x42837a35), TOBN(0x7dc71090, 0x6a09c731), TOBN(0x54778ffb, 0x51b816db), TOBN(0x6b33bfec, 0xaf06defd), TOBN(0xfe3c105f, 0x8592b70b), TOBN(0xf937fda4, 0x61da6114), TOBN(0x3c13e651, 0x4c266ad7), TOBN(0xe363a829, 0x855938e8), TOBN(0x2eeb5d9e, 0x9de54b72), TOBN(0xbeb93b0e, 0x20ccfab9), TOBN(0x3dffbb5f, 0x25e61a25), TOBN(0x7f655e43, 0x1acc093d), TOBN(0x0cb6cc3d, 0x3964ce61), TOBN(0x6ab283a1, 0xe5e9b460), TOBN(0x55d787c5, 0xa1c7e72d), TOBN(0x4d2efd47, 0xdeadbf02), TOBN(0x11e80219, 0xac459068), TOBN(0x810c7626, 0x71f311f0), TOBN(0xfa17ef8d, 0x4ab6ef53), TOBN(0xaf47fd25, 0x93e43bff), TOBN(0x5cb5ff3f, 0x0be40632), TOBN(0x54687106, 0x8ee61da3), TOBN(0x7764196e, 0xb08afd0f), TOBN(0x831ab3ed, 0xf0290a8f), TOBN(0xcae81966, 0xcb47c387), TOBN(0xaad7dece, 0x184efb4f), TOBN(0xdcfc53b3, 0x4749110e), TOBN(0x6698f23c, 0x4cb632f9), TOBN(0xc42a1ad6, 0xb91f8067), TOBN(0xb116a81d, 0x6284180a), TOBN(0xebedf5f8, 0xe901326f), TOBN(0xf2274c9f, 0x97e3e044), TOBN(0x42018520, 0x11d09fc9), TOBN(0x56a65f17, 0xd18e6e23), TOBN(0x2ea61e2a, 0x352b683c), TOBN(0x27d291bc, 0x575eaa94), TOBN(0x9e7bc721, 0xb8ff522d), TOBN(0x5f7268bf, 0xa7f04d6f), TOBN(0x5868c73f, 0xaba41748), TOBN(0x9f85c2db, 0x7be0eead), TOBN(0x511e7842, 0xff719135), TOBN(0x5a06b1e9, 0xc5ea90d7), TOBN(0x0c19e283, 0x26fab631), TOBN(0x8af8f0cf, 0xe9206c55), TOBN(0x89389cb4, 0x3553c06a), TOBN(0x39dbed97, 0xf65f8004), TOBN(0x0621b037, 0xc508991d), TOBN(0x1c52e635, 0x96e78cc4), TOBN(0x5385c8b2, 0x0c06b4a8), TOBN(0xd84ddfdb, 0xb0e87d03), TOBN(0xc49dfb66, 0x934bafad), TOBN(0x7071e170, 0x59f70772), TOBN(0x3a073a84, 0x3a1db56b), TOBN(0x03494903, 0x3b8af190), TOBN(0x7d882de3, 0xd32920f0), TOBN(0x91633f0a, 0xb2cf8940), TOBN(0x72b0b178, 0x6f948f51), TOBN(0x2d28dc30, 0x782653c8), TOBN(0x88829849, 0xdb903a05), TOBN(0xb8095d0c, 0x6a19d2bb), TOBN(0x4b9e7f0c, 0x86f782cb), TOBN(0x7af73988, 0x2d907064), TOBN(0xd12be0fe, 0x8b32643c), TOBN(0x358ed23d, 0x0e165dc3), TOBN(0x3d47ce62, 0x4e2378ce), TOBN(0x7e2bb0b9, 0xfeb8a087), TOBN(0x3246e8ae, 0xe29e10b9), TOBN(0x459f4ec7, 0x03ce2b4d), TOBN(0xe9b4ca1b, 0xbbc077cf), TOBN(0x2613b4f2, 0x0e9940c1), TOBN(0xfc598bb9, 0x047d1eb1), TOBN(0x9744c62b, 0x45036099), TOBN(0xa9dee742, 0x167c65d8), TOBN(0x0c511525, 0xdabe1943), TOBN(0xda110554, 0x93c6c624), TOBN(0xae00a52c, 0x651a3be2), TOBN(0xcda5111d, 0x884449a6), TOBN(0x063c06f4, 0xff33bed1), TOBN(0x73baaf9a, 0x0d3d76b4), TOBN(0x52fb0c9d, 0x7fc63668), TOBN(0x6886c9dd, 0x0c039cde), TOBN(0x602bd599, 0x55b22351), TOBN(0xb00cab02, 0x360c7c13), TOBN(0x8cb616bc, 0x81b69442), TOBN(0x41486700, 0xb55c3cee), TOBN(0x71093281, 0xf49ba278), TOBN(0xad956d9c, 0x64a50710), TOBN(0x9561f28b, 0x638a7e81), TOBN(0x54155cdf, 0x5980ddc3), TOBN(0xb2db4a96, 0xd26f247a), TOBN(0x9d774e4e, 0x4787d100), TOBN(0x1a9e6e2e, 0x078637d2), TOBN(0x1c363e2d, 0x5e0ae06a), TOBN(0x7493483e, 0xe9cfa354), TOBN(0x76843cb3, 0x7f74b98d), TOBN(0xbaca6591, 0xd4b66947), TOBN(0xb452ce98, 0x04460a8c), TOBN(0x6830d246, 0x43768f55), TOBN(0xf4197ed8, 0x7dff12df), TOBN(0x6521b472, 0x400dd0f7), TOBN(0x59f5ca8f, 0x4b1e7093), TOBN(0x6feff11b, 0x080338ae), TOBN(0x0ada31f6, 0xa29ca3c6), TOBN(0x24794eb6, 0x94a2c215), TOBN(0xd83a43ab, 0x05a57ab4), TOBN(0x264a543a, 0x2a6f89fe), TOBN(0x2c2a3868, 0xdd5ec7c2), TOBN(0xd3373940, 0x8439d9b2), TOBN(0x715ea672, 0x0acd1f11), TOBN(0x42c1d235, 0xe7e6cc19), TOBN(0x81ce6e96, 0xb990585c), TOBN(0x04e5dfe0, 0xd809c7bd), TOBN(0xd7b2580c, 0x8f1050ab), TOBN(0x6d91ad78, 0xd8a4176f), TOBN(0x0af556ee, 0x4e2e897c), TOBN(0x162a8b73, 0x921de0ac), TOBN(0x52ac9c22, 0x7ea78400), TOBN(0xee2a4eea, 0xefce2174), TOBN(0xbe61844e, 0x6d637f79), TOBN(0x0491f1bc, 0x789a283b), TOBN(0x72d3ac3d, 0x880836f4), TOBN(0xaa1c5ea3, 0x88e5402d), TOBN(0x1b192421, 0xd5cc473d), TOBN(0x5c0b9998, 0x9dc84cac), TOBN(0xb0a8482d, 0x9c6e75b8), TOBN(0x639961d0, 0x3a191ce2), TOBN(0xda3bc865, 0x6d837930), TOBN(0xca990653, 0x056e6f8f), TOBN(0x84861c41, 0x64d133a7), TOBN(0x8b403276, 0x746abe40), TOBN(0xb7b4d51a, 0xebf8e303), TOBN(0x05b43211, 0x220a255d), TOBN(0xc997152c, 0x02419e6e), TOBN(0x76ff47b6, 0x630c2fea), TOBN(0x50518677, 0x281fdade), TOBN(0x3283b8ba, 0xcf902b0b), TOBN(0x8d4b4eb5, 0x37db303b), TOBN(0xcc89f42d, 0x755011bc), TOBN(0xb43d74bb, 0xdd09d19b), TOBN(0x65746bc9, 0x8adba350), TOBN(0x364eaf8c, 0xb51c1927), TOBN(0x13c76596, 0x10ad72ec), TOBN(0x30045121, 0xf8d40c20), TOBN(0x6d2d99b7, 0xea7b979b), TOBN(0xcd78cd74, 0xe6fb3bcd), TOBN(0x11e45a9e, 0x86cffbfe), TOBN(0x78a61cf4, 0x637024f6), TOBN(0xd06bc872, 0x3d502295), TOBN(0xf1376854, 0x458cb288), TOBN(0xb9db26a1, 0x342f8586), TOBN(0xf33effcf, 0x4beee09e), TOBN(0xd7e0c4cd, 0xb30cfb3a), TOBN(0x6d09b8c1, 0x6c9db4c8), TOBN(0x40ba1a42, 0x07c8d9df), TOBN(0x6fd495f7, 0x1c52c66d), TOBN(0xfb0e169f, 0x275264da), TOBN(0x80c2b746, 0xe57d8362), TOBN(0xedd987f7, 0x49ad7222), TOBN(0xfdc229af, 0x4398ec7b),} , {TOBN(0xb0d1ed84, 0x52666a58), TOBN(0x4bcb6e00, 0xe6a9c3c2), TOBN(0x3c57411c, 0x26906408), TOBN(0xcfc20755, 0x13556400), TOBN(0xa08b1c50, 0x5294dba3), TOBN(0xa30ba286, 0x8b7dd31e), TOBN(0xd70ba90e, 0x991eca74), TOBN(0x094e142c, 0xe762c2b9), TOBN(0xb81d783e, 0x979f3925), TOBN(0x1efd130a, 0xaf4c89a7), TOBN(0x525c2144, 0xfd1bf7fa), TOBN(0x4b296904, 0x1b265a9e), TOBN(0xed8e9634, 0xb9db65b6), TOBN(0x35c82e32, 0x03599d8a), TOBN(0xdaa7a54f, 0x403563f3), TOBN(0x9df088ad, 0x022c38ab), TOBN(0xe5cfb066, 0xbb3fd30a), TOBN(0x429169da, 0xeff0354e), TOBN(0x809cf852, 0x3524e36c), TOBN(0x136f4fb3, 0x0155be1d), TOBN(0x4826af01, 0x1fbba712), TOBN(0x6ef0f0b4, 0x506ba1a1), TOBN(0xd9928b31, 0x77aea73e), TOBN(0xe2bf6af2, 0x5eaa244e), TOBN(0x8d084f12, 0x4237b64b), TOBN(0x688ebe99, 0xe3ecfd07), TOBN(0x57b8a70c, 0xf6845dd8), TOBN(0x808fc59c, 0x5da4a325), TOBN(0xa9032b2b, 0xa3585862), TOBN(0xb66825d5, 0xedf29386), TOBN(0xb5a5a8db, 0x431ec29b), TOBN(0xbb143a98, 0x3a1e8dc8), TOBN(0x35ee94ce, 0x12ae381b), TOBN(0x3a7f176c, 0x86ccda90), TOBN(0xc63a657e, 0x4606eaca), TOBN(0x9ae5a380, 0x43cd04df), TOBN(0x9bec8d15, 0xed251b46), TOBN(0x1f5d6d30, 0xcaca5e64), TOBN(0x347b3b35, 0x9ff20f07), TOBN(0x4d65f034, 0xf7e4b286), TOBN(0x9e93ba24, 0xf111661e), TOBN(0xedced484, 0xb105eb04), TOBN(0x96dc9ba1, 0xf424b578), TOBN(0xbf8f66b7, 0xe83e9069), TOBN(0x872d4df4, 0xd7ed8216), TOBN(0xbf07f377, 0x8e2cbecf), TOBN(0x4281d899, 0x98e73754), TOBN(0xfec85fbb, 0x8aab8708), TOBN(0x9a3c0dee, 0xa5ba5b0b), TOBN(0xe6a116ce, 0x42d05299), TOBN(0xae9775fe, 0xe9b02d42), TOBN(0x72b05200, 0xa1545cb6), TOBN(0xbc506f7d, 0x31a3b4ea), TOBN(0xe5893078, 0x8bbd9b32), TOBN(0xc8bc5f37, 0xe4b12a97), TOBN(0x6b000c06, 0x4a73b671), TOBN(0x13b5bf22, 0x765fa7d0), TOBN(0x59805bf0, 0x1d6a5370), TOBN(0x67a5e29d, 0x4280db98), TOBN(0x4f53916f, 0x776b1ce3), TOBN(0x714ff61f, 0x33ddf626), TOBN(0x4206238e, 0xa085d103), TOBN(0x1c50d4b7, 0xe5809ee3), TOBN(0x999f450d, 0x85f8eb1d), TOBN(0x658a6051, 0xe4c79e9b), TOBN(0x1394cb73, 0xc66a9fea), TOBN(0x27f31ed5, 0xc6be7b23), TOBN(0xf4c88f36, 0x5aa6f8fe), TOBN(0x0fb0721f, 0x4aaa499e), TOBN(0x68b3a7d5, 0xe3fb2a6b), TOBN(0xa788097d, 0x3a92851d), TOBN(0x060e7f8a, 0xe96f4913), TOBN(0x82eebe73, 0x1a3a93bc), TOBN(0x42bbf465, 0xa21adc1a), TOBN(0xc10b6fa4, 0xef030efd), TOBN(0x247aa4c7, 0x87b097bb), TOBN(0x8b8dc632, 0xf60c77da), TOBN(0x6ffbc26a, 0xc223523e), TOBN(0xa4f6ff11, 0x344579cf), TOBN(0x5825653c, 0x980250f6), TOBN(0xb2dd097e, 0xbc1aa2b9), TOBN(0x07889393, 0x37a0333a), TOBN(0x1cf55e71, 0x37a0db38), TOBN(0x2648487f, 0x792c1613), TOBN(0xdad01336, 0x3fcef261), TOBN(0x6239c81d, 0x0eabf129), TOBN(0x8ee761de, 0x9d276be2), TOBN(0x406a7a34, 0x1eda6ad3), TOBN(0x4bf367ba, 0x4a493b31), TOBN(0x54f20a52, 0x9bf7f026), TOBN(0xb696e062, 0x9795914b), TOBN(0xcddab96d, 0x8bf236ac), TOBN(0x4ff2c70a, 0xed25ea13), TOBN(0xfa1d09eb, 0x81cbbbe7), TOBN(0x88fc8c87, 0x468544c5), TOBN(0x847a670d, 0x696b3317), TOBN(0xf133421e, 0x64bcb626), TOBN(0xaea638c8, 0x26dee0b5), TOBN(0xd6e7680b, 0xb310346c), TOBN(0xe06f4097, 0xd5d4ced3), TOBN(0x09961452, 0x7512a30b), TOBN(0xf3d867fd, 0xe589a59a), TOBN(0x2e73254f, 0x52d0c180), TOBN(0x9063d8a3, 0x333c74ac), TOBN(0xeda6c595, 0xd314e7bc), TOBN(0x2ee7464b, 0x467899ed), TOBN(0x1cef423c, 0x0a1ed5d3), TOBN(0x217e76ea, 0x69cc7613), TOBN(0x27ccce1f, 0xe7cda917), TOBN(0x12d8016b, 0x8a893f16), TOBN(0xbcd6de84, 0x9fc74f6b), TOBN(0xfa5817e2, 0xf3144e61), TOBN(0x1f354164, 0x0821ee4c), TOBN(0x1583eab4, 0x0bc61992), TOBN(0x7490caf6, 0x1d72879f), TOBN(0x998ad9f3, 0xf76ae7b2), TOBN(0x1e181950, 0xa41157f7), TOBN(0xa9d7e1e6, 0xe8da3a7e), TOBN(0x963784eb, 0x8426b95f), TOBN(0x0ee4ed6e, 0x542e2a10), TOBN(0xb79d4cc5, 0xac751e7b), TOBN(0x93f96472, 0xfd4211bd), TOBN(0x8c72d3d2, 0xc8de4fc6), TOBN(0x7b69cbf5, 0xdf44f064), TOBN(0x3da90ca2, 0xf4bf94e1), TOBN(0x1a5325f8, 0xf12894e2), TOBN(0x0a437f6c, 0x7917d60b), TOBN(0x9be70486, 0x96c9cb5d), TOBN(0xb4d880bf, 0xe1dc5c05), TOBN(0xd738adda, 0xeebeeb57), TOBN(0x6f0119d3, 0xdf0fe6a3), TOBN(0x5c686e55, 0x66eaaf5a), TOBN(0x9cb10b50, 0xdfd0b7ec), TOBN(0xbdd0264b, 0x6a497c21), TOBN(0xfc093514, 0x8c546c96), TOBN(0x58a947fa, 0x79dbf42a), TOBN(0xc0b48d4e, 0x49ccd6d7), TOBN(0xff8fb02c, 0x88bd5580), TOBN(0xc75235e9, 0x07d473b2), TOBN(0x4fab1ac5, 0xa2188af3), TOBN(0x030fa3bc, 0x97576ec0), TOBN(0xe8c946e8, 0x0b7e7d2f), TOBN(0x40a5c9cc, 0x70305600), TOBN(0x6d8260a9, 0xc8b013b4), TOBN(0x0368304f, 0x70bba85c), TOBN(0xad090da1, 0xa4a0d311), TOBN(0x7170e870, 0x2415eec1), TOBN(0xbfba35fe, 0x8461ea47), TOBN(0x6279019a, 0xc1e91938), TOBN(0xa47638f3, 0x1afc415f), TOBN(0x36c65cbb, 0xbcba0e0f), TOBN(0x02160efb, 0x034e2c48), TOBN(0xe6c51073, 0x615cd9e4), TOBN(0x498ec047, 0xf1243c06), TOBN(0x3e5a8809, 0xb17b3d8c), TOBN(0x5cd99e61, 0x0cc565f1), TOBN(0x81e312df, 0x7851dafe), TOBN(0xf156f5ba, 0xa79061e2), TOBN(0x80d62b71, 0x880c590e), TOBN(0xbec9746f, 0x0a39faa1), TOBN(0x1d98a9c1, 0xc8ed1f7a), TOBN(0x09e43bb5, 0xa81d5ff2), TOBN(0xd5f00f68, 0x0da0794a), TOBN(0x412050d9, 0x661aa836), TOBN(0xa89f7c4e, 0x90747e40), TOBN(0x6dc05ebb, 0xb62a3686), TOBN(0xdf4de847, 0x308e3353), TOBN(0x53868fbb, 0x9fb53bb9), TOBN(0x2b09d2c3, 0xcfdcf7dd), TOBN(0x41a9fce3, 0x723fcab4), TOBN(0x73d905f7, 0x07f57ca3), TOBN(0x080f9fb1, 0xac8e1555), TOBN(0x7c088e84, 0x9ba7a531), TOBN(0x07d35586, 0xed9a147f), TOBN(0x602846ab, 0xaf48c336), TOBN(0x7320fd32, 0x0ccf0e79), TOBN(0xaa780798, 0xb18bd1ff), TOBN(0x52c2e300, 0xafdd2905), TOBN(0xf27ea3d6, 0x434267cd), TOBN(0x8b96d16d, 0x15605b5f), TOBN(0x7bb31049, 0x4b45706b), TOBN(0xe7f58b8e, 0x743d25f8), TOBN(0xe9b5e45b, 0x87f30076), TOBN(0xd19448d6, 0x5d053d5a), TOBN(0x1ecc8cb9, 0xd3210a04), TOBN(0x6bc7d463, 0xdafb5269), TOBN(0x3e59b10a, 0x67c3489f), TOBN(0x1769788c, 0x65641e1b), TOBN(0x8a53b82d, 0xbd6cb838), TOBN(0x7066d6e6, 0x236d5f22), TOBN(0x03aa1c61, 0x6908536e), TOBN(0xc971da0d, 0x66ae9809), TOBN(0x01b3a86b, 0xc49a2fac), TOBN(0x3b8420c0, 0x3092e77a), TOBN(0x02057300, 0x7d6fb556), TOBN(0x6941b2a1, 0xbff40a87), TOBN(0x140b6308, 0x0658ff2a), TOBN(0x87804363, 0x3424ab36), TOBN(0x0253bd51, 0x5751e299), TOBN(0xc75bcd76, 0x449c3e3a), TOBN(0x92eb4090, 0x7f8f875d), TOBN(0x9c9d754e, 0x56c26bbf), TOBN(0x158cea61, 0x8110bbe7), TOBN(0x62a6b802, 0x745f91ea), TOBN(0xa79c41aa, 0xc6e7394b), TOBN(0x445b6a83, 0xad57ef10), TOBN(0x0c5277eb, 0x6ea6f40c), TOBN(0x319fe96b, 0x88633365), TOBN(0x0b0fc61f, 0x385f63cb), TOBN(0x41250c84, 0x22bdd127), TOBN(0x67d153f1, 0x09e942c2), TOBN(0x60920d08, 0xc021ad5d), TOBN(0x229f5746, 0x724d81a5), TOBN(0xb7ffb892, 0x5bba3299), TOBN(0x518c51a1, 0xde413032), TOBN(0x2a9bfe77, 0x3c2fd94c), TOBN(0xcbcde239, 0x3191f4fd), TOBN(0x43093e16, 0xd3d6ada1), TOBN(0x184579f3, 0x58769606), TOBN(0x2c94a8b3, 0xd236625c), TOBN(0x6922b9c0, 0x5c437d8e), TOBN(0x3d4ae423, 0xd8d9f3c8), TOBN(0xf72c31c1, 0x2e7090a2), TOBN(0x4ac3f5f3, 0xd76a55bd), TOBN(0x342508fc, 0x6b6af991), TOBN(0x0d527100, 0x1b5cebbd), TOBN(0xb84740d0, 0xdd440dd7), TOBN(0x748ef841, 0x780162fd), TOBN(0xa8dbfe0e, 0xdfc6fafb), TOBN(0xeadfdf05, 0xf7300f27), TOBN(0x7d06555f, 0xfeba4ec9), TOBN(0x12c56f83, 0x9e25fa97), TOBN(0x77f84203, 0xd39b8c34), TOBN(0xed8b1be6, 0x3125eddb), TOBN(0x5bbf2441, 0xf6e39dc5), TOBN(0xb00f6ee6, 0x6a5d678a), TOBN(0xba456ecf, 0x57d0ea99), TOBN(0xdcae0f58, 0x17e06c43), TOBN(0x01643de4, 0x0f5b4baa), TOBN(0x2c324341, 0xd161b9be), TOBN(0x80177f55, 0xe126d468), TOBN(0xed325f1f, 0x76748e09), TOBN(0x6116004a, 0xcfa9bdc2), TOBN(0x2d8607e6, 0x3a9fb468), TOBN(0x0e573e27, 0x6009d660), TOBN(0x3a525d2e, 0x8d10c5a1), TOBN(0xd26cb45c, 0x3b9009a0), TOBN(0xb6b0cdc0, 0xde9d7448), TOBN(0x949c9976, 0xe1337c26), TOBN(0x6faadebd, 0xd73d68e5), TOBN(0x9e158614, 0xf1b768d9), TOBN(0x22dfa557, 0x9cc4f069), TOBN(0xccd6da17, 0xbe93c6d6), TOBN(0x24866c61, 0xa504f5b9), TOBN(0x2121353c, 0x8d694da1), TOBN(0x1c6ca580, 0x0140b8c6), TOBN(0xc245ad8c, 0xe964021e), TOBN(0xb83bffba, 0x032b82b3), TOBN(0xfaa220c6, 0x47ef9898), TOBN(0x7e8d3ac6, 0x982c948a), TOBN(0x1faa2091, 0xbc2d124a), TOBN(0xbd54c3dd, 0x05b15ff4), TOBN(0x386bf3ab, 0xc87c6fb7), TOBN(0xfb2b0563, 0xfdeb6f66), TOBN(0x4e77c557, 0x5b45afb4), TOBN(0xe9ded649, 0xefb8912d), TOBN(0x7ec9bbf5, 0x42f6e557), TOBN(0x2570dfff, 0x62671f00), TOBN(0x2b3bfb78, 0x88e084bd), TOBN(0xa024b238, 0xf37fe5b4), TOBN(0x44e7dc04, 0x95649aee), TOBN(0x498ca255, 0x5e7ec1d8), TOBN(0x3bc766ea, 0xaaa07e86), TOBN(0x0db6facb, 0xf3608586), TOBN(0xbadd2549, 0xbdc259c8), TOBN(0x95af3c6e, 0x041c649f), TOBN(0xb36a928c, 0x02e30afb), TOBN(0x9b5356ad, 0x008a88b8), TOBN(0x4b67a5f1, 0xcf1d9e9d), TOBN(0xc6542e47, 0xa5d8d8ce), TOBN(0x73061fe8, 0x7adfb6cc), TOBN(0xcc826fd3, 0x98678141), TOBN(0x00e758b1, 0x3c80515a), TOBN(0x6afe3247, 0x41485083), TOBN(0x0fcb08b9, 0xb6ae8a75), TOBN(0xb8cf388d, 0x4acf51e1), TOBN(0x344a5560, 0x6961b9d6), TOBN(0x1a6778b8, 0x6a97fd0c), TOBN(0xd840fdc1, 0xecc4c7e3), TOBN(0xde9fe47d, 0x16db68cc), TOBN(0xe95f89de, 0xa3e216aa), TOBN(0x84f1a6a4, 0x9594a8be), TOBN(0x7ddc7d72, 0x5a7b162b), TOBN(0xc5cfda19, 0xadc817a3), TOBN(0x80a5d350, 0x78b58d46), TOBN(0x93365b13, 0x82978f19), TOBN(0x2e44d225, 0x26a1fc90), TOBN(0x0d6d10d2, 0x4d70705d), TOBN(0xd94b6b10, 0xd70c45f4), TOBN(0x0f201022, 0xb216c079), TOBN(0xcec966c5, 0x658fde41), TOBN(0xa8d2bc7d, 0x7e27601d), TOBN(0xbfcce3e1, 0xff230be7), TOBN(0x3394ff6b, 0x0033ffb5), TOBN(0xd890c509, 0x8132c9af), TOBN(0xaac4b0eb, 0x361e7868), TOBN(0x5194ded3, 0xe82d15aa), TOBN(0x4550bd2e, 0x23ae6b7d), TOBN(0x3fda318e, 0xea5399d4), TOBN(0xd989bffa, 0x91638b80), TOBN(0x5ea124d0, 0xa14aa12d), TOBN(0x1fb1b899, 0x3667b944), TOBN(0x95ec7969, 0x44c44d6a), TOBN(0x91df144a, 0x57e86137), TOBN(0x915fd620, 0x73adac44), TOBN(0x8f01732d, 0x59a83801), TOBN(0xec579d25, 0x3aa0a633), TOBN(0x06de5e7c, 0xc9d6d59c), TOBN(0xc132f958, 0xb1ef8010), TOBN(0x29476f96, 0xe65c1a02), TOBN(0x336a77c0, 0xd34c3565), TOBN(0xef1105b2, 0x1b9f1e9e), TOBN(0x63e6d08b, 0xf9e08002), TOBN(0x9aff2f21, 0xc613809e), TOBN(0xb5754f85, 0x3a80e75d), TOBN(0xde71853e, 0x6bbda681), TOBN(0x86f041df, 0x8197fd7a), TOBN(0x8b332e08, 0x127817fa), TOBN(0x05d99be8, 0xb9c20cda), TOBN(0x89f7aad5, 0xd5cd0c98), TOBN(0x7ef936fe, 0x5bb94183), TOBN(0x92ca0753, 0xb05cd7f2), TOBN(0x9d65db11, 0x74a1e035), TOBN(0x02628cc8, 0x13eaea92), TOBN(0xf2d9e242, 0x49e4fbf2), TOBN(0x94fdfd9b, 0xe384f8b7), TOBN(0x65f56054, 0x63428c6b), TOBN(0x2f7205b2, 0x90b409a5), TOBN(0xf778bb78, 0xff45ae11), TOBN(0xa13045be, 0xc5ee53b2), TOBN(0xe00a14ff, 0x03ef77fe), TOBN(0x689cd59f, 0xffef8bef), TOBN(0x3578f0ed, 0x1e9ade22), TOBN(0xe99f3ec0, 0x6268b6a8), TOBN(0xa2057d91, 0xea1b3c3e), TOBN(0x2d1a7053, 0xb8823a4a), TOBN(0xabbb336a, 0x2cca451e), TOBN(0xcd2466e3, 0x2218bb5d), TOBN(0x3ac1f42f, 0xc8cb762d), TOBN(0x7e312aae, 0x7690211f), TOBN(0xebb9bd73, 0x45d07450), TOBN(0x207c4b82, 0x46c2213f), TOBN(0x99d425c1, 0x375913ec), TOBN(0x94e45e96, 0x67908220), TOBN(0xc08f3087, 0xcd67dbf6), TOBN(0xa5670fbe, 0xc0887056), TOBN(0x6717b64a, 0x66f5b8fc), TOBN(0xd5a56aea, 0x786fec28), TOBN(0xa8c3f55f, 0xc0ff4952), TOBN(0xa77fefae, 0x457ac49b), TOBN(0x29882d7c, 0x98379d44), TOBN(0xd000bdfb, 0x509edc8a), TOBN(0xc6f95979, 0xe66fe464), TOBN(0x504a6115, 0xfa61bde0), TOBN(0x56b3b871, 0xeffea31a), TOBN(0x2d3de26d, 0xf0c21a54), TOBN(0x21dbff31, 0x834753bf), TOBN(0xe67ecf49, 0x69269d86), TOBN(0x7a176952, 0x151fe690), TOBN(0x03515804, 0x7f2adb5f), TOBN(0xee794b15, 0xd1b62a8d), TOBN(0xf004ceec, 0xaae454e6), TOBN(0x0897ea7c, 0xf0386fac), TOBN(0x3b62ff12, 0xd1fca751), TOBN(0x154181df, 0x1b7a04ec), TOBN(0x2008e04a, 0xfb5847ec), TOBN(0xd147148e, 0x41dbd772), TOBN(0x2b419f73, 0x22942654), TOBN(0x669f30d3, 0xe9c544f7), TOBN(0x52a2c223, 0xc8540149), TOBN(0x5da9ee14, 0x634dfb02), TOBN(0x5f074ff0, 0xf47869f3), TOBN(0x74ee878d, 0xa3933acc), TOBN(0xe6510651, 0x4fe35ed1), TOBN(0xb3eb9482, 0xf1012e7a), TOBN(0x51013cc0, 0xa8a566ae), TOBN(0xdd5e9243, 0x47c00d3b), TOBN(0x7fde089d, 0x946bb0e5), TOBN(0x030754fe, 0xc731b4b3), TOBN(0x12a136a4, 0x99fda062), TOBN(0x7c1064b8, 0x5a1a35bc), TOBN(0xbf1f5763, 0x446c84ef), TOBN(0xed29a56d, 0xa16d4b34), TOBN(0x7fba9d09, 0xdca21c4f), TOBN(0x66d7ac00, 0x6d8de486), TOBN(0x60061987, 0x73a2a5e1), TOBN(0x8b400f86, 0x9da28ff0), TOBN(0x3133f708, 0x43c4599c), TOBN(0x9911c9b8, 0xee28cb0d), TOBN(0xcd7e2874, 0x8e0af61d), TOBN(0x5a85f0f2, 0x72ed91fc), TOBN(0x85214f31, 0x9cd4a373), TOBN(0x881fe5be, 0x1925253c), TOBN(0xd8dc98e0, 0x91e8bc76), TOBN(0x7120affe, 0x585cc3a2), TOBN(0x724952ed, 0x735bf97a), TOBN(0x5581e7dc, 0x3eb34581), TOBN(0x5cbff4f2, 0xe52ee57d), TOBN(0x8d320a0e, 0x87d8cc7b), TOBN(0x9beaa7f3, 0xf1d280d0), TOBN(0x7a0b9571, 0x9beec704), TOBN(0x9126332e, 0x5b7f0057), TOBN(0x01fbc1b4, 0x8ed3bd6d), TOBN(0x35bb2c12, 0xd945eb24), TOBN(0x6404694e, 0x9a8ae255), TOBN(0xb6092eec, 0x8d6abfb3), TOBN(0x4d76143f, 0xcc058865), TOBN(0x7b0a5af2, 0x6e249922), TOBN(0x8aef9440, 0x6a50d353), TOBN(0xe11e4bcc, 0x64f0e07a), TOBN(0x4472993a, 0xa14a90fa), TOBN(0x7706e20c, 0xba0c51d4), TOBN(0xf403292f, 0x1532672d), TOBN(0x52573bfa, 0x21829382), TOBN(0x6a7bb6a9, 0x3b5bdb83), TOBN(0x08da65c0, 0xa4a72318), TOBN(0xc58d22aa, 0x63eb065f), TOBN(0x1717596c, 0x1b15d685), TOBN(0x112df0d0, 0xb266d88b), TOBN(0xf688ae97, 0x5941945a), TOBN(0x487386e3, 0x7c292cac), TOBN(0x42f3b50d, 0x57d6985c), TOBN(0x6da4f998, 0x6a90fc34), TOBN(0xc8f257d3, 0x65ca8a8d), TOBN(0xc2feabca, 0x6951f762), TOBN(0xe1bc81d0, 0x74c323ac), TOBN(0x1bc68f67, 0x251a2a12), TOBN(0x10d86587, 0xbe8a70dc), TOBN(0xd648af7f, 0xf0f84d2e), TOBN(0xf0aa9ebc, 0x6a43ac92), TOBN(0x69e3be04, 0x27596893), TOBN(0xb6bb02a6, 0x45bf452b), TOBN(0x0875c11a, 0xf4c698c8), TOBN(0x6652b5c7, 0xbece3794), TOBN(0x7b3755fd, 0x4f5c0499), TOBN(0x6ea16558, 0xb5532b38), TOBN(0xd1c69889, 0xa2e96ef7), TOBN(0x9c773c3a, 0x61ed8f48), TOBN(0x2b653a40, 0x9b323abc), TOBN(0xe26605e1, 0xf0e1d791), TOBN(0x45d41064, 0x4a87157a), TOBN(0x8f9a78b7, 0xcbbce616), TOBN(0xcf1e44aa, 0xc407eddd), TOBN(0x81ddd1d8, 0xa35b964f), TOBN(0x473e339e, 0xfd083999), TOBN(0x6c94bdde, 0x8e796802), TOBN(0x5a304ada, 0x8545d185), TOBN(0x82ae44ea, 0x738bb8cb), TOBN(0x628a35e3, 0xdf87e10e), TOBN(0xd3624f3d, 0xa15b9fe3), TOBN(0xcc44209b, 0x14be4254), TOBN(0x7d0efcbc, 0xbdbc2ea5), TOBN(0x1f603362, 0x04c37bbe), TOBN(0x21f363f5, 0x56a5852c), TOBN(0xa1503d1c, 0xa8501550), TOBN(0x2251e0e1, 0xd8ab10bb), TOBN(0xde129c96, 0x6961c51c), TOBN(0x1f7246a4, 0x81910f68), TOBN(0x2eb744ee, 0x5f2591f2), TOBN(0x3c47d33f, 0x5e627157), TOBN(0x4d6d62c9, 0x22f3bd68), TOBN(0x6120a64b, 0xcb8df856), TOBN(0x3a9ac6c0, 0x7b5d07df), TOBN(0xa92b9558, 0x7ef39783), TOBN(0xe128a134, 0xab3a9b4f), TOBN(0x41c18807, 0xb1252f05), TOBN(0xfc7ed089, 0x80ba9b1c), TOBN(0xac8dc6de, 0xc532a9dd), TOBN(0xbf829cef, 0x55246809), TOBN(0x101b784f, 0x5b4ee80f), TOBN(0xc09945bb, 0xb6f11603), TOBN(0x57b09dbe, 0x41d2801e), TOBN(0xfba5202f, 0xa97534a8), TOBN(0x7fd8ae5f, 0xc17b9614), TOBN(0xa50ba666, 0x78308435), TOBN(0x9572f77c, 0xd3868c4d), TOBN(0x0cef7bfd, 0x2dd7aab0), TOBN(0xe7958e08, 0x2c7c79ff), TOBN(0x81262e42, 0x25346689), TOBN(0x716da290, 0xb07c7004), TOBN(0x35f911ea, 0xb7950ee3), TOBN(0x6fd72969, 0x261d21b5), TOBN(0x52389803, 0x08b640d3), TOBN(0x5b0026ee, 0x887f12a1), TOBN(0x20e21660, 0x742e9311), TOBN(0x0ef6d541, 0x5ff77ff7), TOBN(0x969127f0, 0xf9c41135), TOBN(0xf21d60c9, 0x68a64993), TOBN(0x656e5d0c, 0xe541875c), TOBN(0xf1e0f84e, 0xa1d3c233), TOBN(0x9bcca359, 0x06002d60), TOBN(0xbe2da60c, 0x06191552), TOBN(0x5da8bbae, 0x61181ec3), TOBN(0x9f04b823, 0x65806f19), TOBN(0xf1604a7d, 0xd4b79bb8), TOBN(0xaee806fb, 0x52c878c8), TOBN(0x34144f11, 0x8d47b8e8), TOBN(0x72edf52b, 0x949f9054), TOBN(0xebfca84e, 0x2127015a), TOBN(0x9051d0c0, 0x9cb7cef3), TOBN(0x86e8fe58, 0x296deec8), TOBN(0x33b28188, 0x41010d74),} , {TOBN(0x01079383, 0x171b445f), TOBN(0x9bcf21e3, 0x8131ad4c), TOBN(0x8cdfe205, 0xc93987e8), TOBN(0xe63f4152, 0xc92e8c8f), TOBN(0x729462a9, 0x30add43d), TOBN(0x62ebb143, 0xc980f05a), TOBN(0x4f3954e5, 0x3b06e968), TOBN(0xfe1d75ad, 0x242cf6b1), TOBN(0x5f95c6c7, 0xaf8685c8), TOBN(0xd4c1c8ce, 0x2f8f01aa), TOBN(0xc44bbe32, 0x2574692a), TOBN(0xb8003478, 0xd4a4a068), TOBN(0x7c8fc6e5, 0x2eca3cdb), TOBN(0xea1db16b, 0xec04d399), TOBN(0xb05bc82e, 0x8f2bc5cf), TOBN(0x763d517f, 0xf44793d2), TOBN(0x4451c1b8, 0x08bd98d0), TOBN(0x644b1cd4, 0x6575f240), TOBN(0x6907eb33, 0x7375d270), TOBN(0x56c8bebd, 0xfa2286bd), TOBN(0xc713d2ac, 0xc4632b46), TOBN(0x17da427a, 0xafd60242), TOBN(0x313065b7, 0xc95c7546), TOBN(0xf8239898, 0xbf17a3de), TOBN(0xf3b7963f, 0x4c830320), TOBN(0x842c7aa0, 0x903203e3), TOBN(0xaf22ca0a, 0xe7327afb), TOBN(0x38e13092, 0x967609b6), TOBN(0x73b8fb62, 0x757558f1), TOBN(0x3cc3e831, 0xf7eca8c1), TOBN(0xe4174474, 0xf6331627), TOBN(0xa77989ca, 0xc3c40234), TOBN(0xe5fd17a1, 0x44a081e0), TOBN(0xd797fb7d, 0xb70e296a), TOBN(0x2b472b30, 0x481f719c), TOBN(0x0e632a98, 0xfe6f8c52), TOBN(0x89ccd116, 0xc5f0c284), TOBN(0xf51088af, 0x2d987c62), TOBN(0x2a2bccda, 0x4c2de6cf), TOBN(0x810f9efe, 0xf679f0f9), TOBN(0xb0f394b9, 0x7ffe4b3e), TOBN(0x0b691d21, 0xe5fa5d21), TOBN(0xb0bd7747, 0x9dfbbc75), TOBN(0xd2830fda, 0xfaf78b00), TOBN(0xf78c249c, 0x52434f57), TOBN(0x4b1f7545, 0x98096dab), TOBN(0x73bf6f94, 0x8ff8c0b3), TOBN(0x34aef03d, 0x454e134c), TOBN(0xf8d151f4, 0xb7ac7ec5), TOBN(0xd6ceb95a, 0xe50da7d5), TOBN(0xa1b492b0, 0xdc3a0eb8), TOBN(0x75157b69, 0xb3dd2863), TOBN(0xe2c4c74e, 0xc5413d62), TOBN(0xbe329ff7, 0xbc5fc4c7), TOBN(0x835a2aea, 0x60fa9dda), TOBN(0xf117f5ad, 0x7445cb87), TOBN(0xae8317f4, 0xb0166f7a), TOBN(0xfbd3e3f7, 0xceec74e6), TOBN(0xfdb516ac, 0xe0874bfd), TOBN(0x3d846019, 0xc681f3a3), TOBN(0x0b12ee5c, 0x7c1620b0), TOBN(0xba68b4dd, 0x2b63c501), TOBN(0xac03cd32, 0x6668c51e), TOBN(0x2a6279f7, 0x4e0bcb5b), TOBN(0x17bd69b0, 0x6ae85c10), TOBN(0x72946979, 0x1dfdd3a6), TOBN(0xd9a03268, 0x2c078bec), TOBN(0x41c6a658, 0xbfd68a52), TOBN(0xcdea1024, 0x0e023900), TOBN(0xbaeec121, 0xb10d144d), TOBN(0x5a600e74, 0x058ab8dc), TOBN(0x1333af21, 0xbb89ccdd), TOBN(0xdf25eae0, 0x3aaba1f1), TOBN(0x2cada16e, 0x3b7144cf), TOBN(0x657ee27d, 0x71ab98bc), TOBN(0x99088b4c, 0x7a6fc96e), TOBN(0x05d5c0a0, 0x3549dbd4), TOBN(0x42cbdf8f, 0xf158c3ac), TOBN(0x3fb6b3b0, 0x87edd685), TOBN(0x22071cf6, 0x86f064d0), TOBN(0xd2d6721f, 0xff2811e5), TOBN(0xdb81b703, 0xfe7fae8c), TOBN(0x3cfb74ef, 0xd3f1f7bb), TOBN(0x0cdbcd76, 0x16cdeb5d), TOBN(0x4f39642a, 0x566a808c), TOBN(0x02b74454, 0x340064d6), TOBN(0xfabbadca, 0x0528fa6f), TOBN(0xe4c3074c, 0xd3fc0bb6), TOBN(0xb32cb8b0, 0xb796d219), TOBN(0xc3e95f4f, 0x34741dd9), TOBN(0x87212125, 0x68edf6f5), TOBN(0x7a03aee4, 0xa2b9cb8e), TOBN(0x0cd3c376, 0xf53a89aa), TOBN(0x0d8af9b1, 0x948a28dc), TOBN(0xcf86a3f4, 0x902ab04f), TOBN(0x8aacb62a, 0x7f42002d), TOBN(0x106985eb, 0xf62ffd52), TOBN(0xe670b54e, 0x5797bf10), TOBN(0x4b405209, 0xc5e30aef), TOBN(0x12c97a20, 0x4365b5e9), TOBN(0x104646ce, 0x1fe32093), TOBN(0x13cb4ff6, 0x3907a8c9), TOBN(0x8b9f30d1, 0xd46e726b), TOBN(0xe1985e21, 0xaba0f499), TOBN(0xc573dea9, 0x10a230cd), TOBN(0x24f46a93, 0xcd30f947), TOBN(0xf2623fcf, 0xabe2010a), TOBN(0x3f278cb2, 0x73f00e4f), TOBN(0xed55c67d, 0x50b920eb), TOBN(0xf1cb9a2d, 0x8e760571), TOBN(0x7c50d109, 0x0895b709), TOBN(0x4207cf07, 0x190d4369), TOBN(0x3b027e81, 0xc4127fe1), TOBN(0xa9f8b9ad, 0x3ae9c566), TOBN(0x5ab10851, 0xacbfbba5), TOBN(0xa747d648, 0x569556f5), TOBN(0xcc172b5c, 0x2ba97bf7), TOBN(0x15e0f77d, 0xbcfa3324), TOBN(0xa345b797, 0x7686279d), TOBN(0x5a723480, 0xe38003d3), TOBN(0xfd8e139f, 0x8f5fcda8), TOBN(0xf3e558c4, 0xbdee5bfd), TOBN(0xd76cbaf4, 0xe33f9f77), TOBN(0x3a4c97a4, 0x71771969), TOBN(0xda27e84b, 0xf6dce6a7), TOBN(0xff373d96, 0x13e6c2d1), TOBN(0xf115193c, 0xd759a6e9), TOBN(0x3f9b7025, 0x63d2262c), TOBN(0xd9764a31, 0x317cd062), TOBN(0x30779d8e, 0x199f8332), TOBN(0xd8074106, 0x16b11b0b), TOBN(0x7917ab9f, 0x78aeaed8), TOBN(0xb67a9cbe, 0x28fb1d8e), TOBN(0x2e313563, 0x136eda33), TOBN(0x010b7069, 0xa371a86c), TOBN(0x44d90fa2, 0x6744e6b7), TOBN(0x68190867, 0xd6b3e243), TOBN(0x9fe6cd9d, 0x59048c48), TOBN(0xb900b028, 0x95731538), TOBN(0xa012062f, 0x32cae04f), TOBN(0x8107c8bc, 0x9399d082), TOBN(0x47e8c54a, 0x41df12e2), TOBN(0x14ba5117, 0xb6ef3f73), TOBN(0x22260bea, 0x81362f0b), TOBN(0x90ea261e, 0x1a18cc20), TOBN(0x2192999f, 0x2321d636), TOBN(0xef64d314, 0xe311b6a0), TOBN(0xd7401e4c, 0x3b54a1f5), TOBN(0x19019983, 0x6fbca2ba), TOBN(0x46ad3293, 0x8fbffc4b), TOBN(0xa142d3f6, 0x3786bf40), TOBN(0xeb5cbc26, 0xb67039fc), TOBN(0x9cb0ae6c, 0x252bd479), TOBN(0x05e0f88a, 0x12b5848f), TOBN(0x78f6d2b2, 0xa5c97663), TOBN(0x6f6e149b, 0xc162225c), TOBN(0xe602235c, 0xde601a89), TOBN(0xd17bbe98, 0xf373be1f), TOBN(0xcaf49a5b, 0xa8471827), TOBN(0x7e1a0a85, 0x18aaa116), TOBN(0x6c833196, 0x270580c3), TOBN(0x1e233839, 0xf1c98a14), TOBN(0x67b2f7b4, 0xae34e0a5), TOBN(0x47ac8745, 0xd8ce7289), TOBN(0x2b74779a, 0x100dd467), TOBN(0x274a4337, 0x4ee50d09), TOBN(0x603dcf13, 0x83608bc9), TOBN(0xcd9da6c3, 0xc89e8388), TOBN(0x2660199f, 0x355116ac), TOBN(0xcc38bb59, 0xb6d18eed), TOBN(0x3075f31f, 0x2f4bc071), TOBN(0x9774457f, 0x265dc57e), TOBN(0x06a6a9c8, 0xc6db88bb), TOBN(0x6429d07f, 0x4ec98e04), TOBN(0x8d05e57b, 0x05ecaa8b), TOBN(0x20f140b1, 0x7872ea7b), TOBN(0xdf8c0f09, 0xca494693), TOBN(0x48d3a020, 0xf252e909), TOBN(0x4c5c29af, 0x57b14b12), TOBN(0x7e6fa37d, 0xbf47ad1c), TOBN(0x66e7b506, 0x49a0c938), TOBN(0xb72c0d48, 0x6be5f41f), TOBN(0x6a6242b8, 0xb2359412), TOBN(0xcd35c774, 0x8e859480), TOBN(0x12536fea, 0x87baa627), TOBN(0x58c1fec1, 0xf72aa680), TOBN(0x6c29b637, 0x601e5dc9), TOBN(0x9e3c3c1c, 0xde9e01b9), TOBN(0xefc8127b, 0x2bcfe0b0), TOBN(0x35107102, 0x2a12f50d), TOBN(0x6ccd6cb1, 0x4879b397), TOBN(0xf792f804, 0xf8a82f21), TOBN(0x509d4804, 0xa9b46402), TOBN(0xedddf85d, 0xc10f0850), TOBN(0x928410dc, 0x4b6208aa), TOBN(0xf6229c46, 0x391012dc), TOBN(0xc5a7c41e, 0x7727b9b6), TOBN(0x289e4e4b, 0xaa444842), TOBN(0x049ba1d9, 0xe9a947ea), TOBN(0x44f9e47f, 0x83c8debc), TOBN(0xfa77a1fe, 0x611f8b8e), TOBN(0xfd2e416a, 0xf518f427), TOBN(0xc5fffa70, 0x114ebac3), TOBN(0xfe57c4e9, 0x5d89697b), TOBN(0xfdd053ac, 0xb1aaf613), TOBN(0x31df210f, 0xea585a45), TOBN(0x318cc10e, 0x24985034), TOBN(0x1a38efd1, 0x5f1d6130), TOBN(0xbf86f237, 0x0b1e9e21), TOBN(0xb258514d, 0x1dbe88aa), TOBN(0x1e38a588, 0x90c1baf9), TOBN(0x2936a01e, 0xbdb9b692), TOBN(0xd576de98, 0x6dd5b20c), TOBN(0xb586bf71, 0x70f98ecf), TOBN(0xcccf0f12, 0xc42d2fd7), TOBN(0x8717e61c, 0xfb35bd7b), TOBN(0x8b1e5722, 0x35e6fc06), TOBN(0x3477728f, 0x0b3e13d5), TOBN(0x150c294d, 0xaa8a7372), TOBN(0xc0291d43, 0x3bfa528a), TOBN(0xc6c8bc67, 0xcec5a196), TOBN(0xdeeb31e4, 0x5c2e8a7c), TOBN(0xba93e244, 0xfb6e1c51), TOBN(0xb9f8b71b, 0x2e28e156), TOBN(0xce65a287, 0x968a2ab9), TOBN(0xe3c5ce69, 0x46bbcb1f), TOBN(0xf8c835b9, 0xe7ae3f30), TOBN(0x16bbee26, 0xff72b82b), TOBN(0x665e2017, 0xfd42cd22), TOBN(0x1e139970, 0xf8b1d2a0), TOBN(0x125cda29, 0x79204932), TOBN(0x7aee94a5, 0x49c3bee5), TOBN(0x68c70160, 0x89821a66), TOBN(0xf7c37678, 0x8f981669), TOBN(0xd90829fc, 0x48cc3645), TOBN(0x346af049, 0xd70addfc), TOBN(0x2057b232, 0x370bf29c), TOBN(0xf90c73ce, 0x42e650ee), TOBN(0xe03386ea, 0xa126ab90), TOBN(0x0e266e7e, 0x975a087b), TOBN(0x80578eb9, 0x0fca65d9), TOBN(0x7e2989ea, 0x16af45b8), TOBN(0x7438212d, 0xcac75a4e), TOBN(0x38c7ca39, 0x4fef36b8), TOBN(0x8650c494, 0xd402676a), TOBN(0x26ab5a66, 0xf72c7c48), TOBN(0x4e6cb426, 0xce3a464e), TOBN(0xf8f99896, 0x2b72f841), TOBN(0x8c318491, 0x1a335cc8), TOBN(0x563459ba, 0x6a5913e4), TOBN(0x1b920d61, 0xc7b32919), TOBN(0x805ab8b6, 0xa02425ad), TOBN(0x2ac512da, 0x8d006086), TOBN(0x6ca4846a, 0xbcf5c0fd), TOBN(0xafea51d8, 0xac2138d7), TOBN(0xcb647545, 0x344cd443), TOBN(0x0429ee8f, 0xbd7d9040), TOBN(0xee66a2de, 0x819b9c96), TOBN(0x54f9ec25, 0xdea7d744), TOBN(0x2ffea642, 0x671721bb), TOBN(0x4f19dbd1, 0x114344ea), TOBN(0x04304536, 0xfd0dbc8b), TOBN(0x014b50aa, 0x29ec7f91), TOBN(0xb5fc22fe, 0xbb06014d), TOBN(0x60d963a9, 0x1ee682e0), TOBN(0xdf48abc0, 0xfe85c727), TOBN(0x0cadba13, 0x2e707c2d), TOBN(0xde608d3a, 0xa645aeff), TOBN(0x05f1c28b, 0xedafd883), TOBN(0x3c362ede, 0xbd94de1f), TOBN(0x8dd0629d, 0x13593e41), TOBN(0x0a5e736f, 0x766d6eaf), TOBN(0xbfa92311, 0xf68cf9d1), TOBN(0xa4f9ef87, 0xc1797556), TOBN(0x10d75a1f, 0x5601c209), TOBN(0x651c374c, 0x09b07361), TOBN(0x49950b58, 0x88b5cead), TOBN(0x0ef00058, 0x6fa9dbaa), TOBN(0xf51ddc26, 0x4e15f33a), TOBN(0x1f8b5ca6, 0x2ef46140), TOBN(0x343ac0a3, 0xee9523f0), TOBN(0xbb75eab2, 0x975ea978), TOBN(0x1bccf332, 0x107387f4), TOBN(0x790f9259, 0x9ab0062e), TOBN(0xf1a363ad, 0x1e4f6a5f), TOBN(0x06e08b84, 0x62519a50), TOBN(0x60915187, 0x7265f1ee), TOBN(0x6a80ca34, 0x93ae985e), TOBN(0x81b29768, 0xaaba4864), TOBN(0xb13cabf2, 0x8d52a7d6), TOBN(0xb5c36348, 0x8ead03f1), TOBN(0xc932ad95, 0x81c7c1c0), TOBN(0x5452708e, 0xcae1e27b), TOBN(0x9dac4269, 0x1b0df648), TOBN(0x233e3f0c, 0xdfcdb8bc), TOBN(0xe6ceccdf, 0xec540174), TOBN(0xbd0d845e, 0x95081181), TOBN(0xcc8a7920, 0x699355d5), TOBN(0x111c0f6d, 0xc3b375a8), TOBN(0xfd95bc6b, 0xfd51e0dc), TOBN(0x4a106a26, 0x6888523a), TOBN(0x4d142bd6, 0xcb01a06d), TOBN(0x79bfd289, 0xadb9b397), TOBN(0x0bdbfb94, 0xe9863914), TOBN(0x29d8a229, 0x1660f6a6), TOBN(0x7f6abcd6, 0x551c042d), TOBN(0x13039deb, 0x0ac3ffe8), TOBN(0xa01be628, 0xec8523fb), TOBN(0x6ea34103, 0x0ca1c328), TOBN(0xc74114bd, 0xb903928e), TOBN(0x8aa4ff4e, 0x9e9144b0), TOBN(0x7064091f, 0x7f9a4b17), TOBN(0xa3f4f521, 0xe447f2c4), TOBN(0x81b8da7a, 0x604291f0), TOBN(0xd680bc46, 0x7d5926de), TOBN(0x84f21fd5, 0x34a1202f), TOBN(0x1d1e3181, 0x4e9df3d8), TOBN(0x1ca4861a, 0x39ab8d34), TOBN(0x809ddeec, 0x5b19aa4a), TOBN(0x59f72f7e, 0x4d329366), TOBN(0xa2f93f41, 0x386d5087), TOBN(0x40bf739c, 0xdd67d64f), TOBN(0xb4494205, 0x66702158), TOBN(0xc33c65be, 0x73b1e178), TOBN(0xcdcd657c, 0x38ca6153), TOBN(0x97f4519a, 0xdc791976), TOBN(0xcc7c7f29, 0xcd6e1f39), TOBN(0x38de9cfb, 0x7e3c3932), TOBN(0xe448eba3, 0x7b793f85), TOBN(0xe9f8dbf9, 0xf067e914), TOBN(0xc0390266, 0xf114ae87), TOBN(0x39ed75a7, 0xcd6a8e2a), TOBN(0xadb14848, 0x7ffba390), TOBN(0x67f8cb8b, 0x6af9bc09), TOBN(0x322c3848, 0x9c7476db), TOBN(0xa320fecf, 0x52a538d6), TOBN(0xe0493002, 0xb2aced2b), TOBN(0xdfba1809, 0x616bd430), TOBN(0x531c4644, 0xc331be70), TOBN(0xbc04d32e, 0x90d2e450), TOBN(0x1805a0d1, 0x0f9f142d), TOBN(0x2c44a0c5, 0x47ee5a23), TOBN(0x31875a43, 0x3989b4e3), TOBN(0x6b1949fd, 0x0c063481), TOBN(0x2dfb9e08, 0xbe0f4492), TOBN(0x3ff0da03, 0xe9d5e517), TOBN(0x03dbe9a1, 0xf79466a8), TOBN(0x0b87bcd0, 0x15ea9932), TOBN(0xeb64fc83, 0xab1f58ab), TOBN(0x6d9598da, 0x817edc8a), TOBN(0x699cff66, 0x1d3b67e5), TOBN(0x645c0f29, 0x92635853), TOBN(0x253cdd82, 0xeabaf21c), TOBN(0x82b9602a, 0x2241659e), TOBN(0x2cae07ec, 0x2d9f7091), TOBN(0xbe4c720c, 0x8b48cd9b), TOBN(0x6ce5bc03, 0x6f08d6c9), TOBN(0x36e8a997, 0xaf10bf40), TOBN(0x83422d21, 0x3e10ff12), TOBN(0x7b26d3eb, 0xbcc12494), TOBN(0xb240d2d0, 0xc9469ad6), TOBN(0xc4a11b4d, 0x30afa05b), TOBN(0x4b604ace, 0xdd6ba286), TOBN(0x18486600, 0x3ee2864c), TOBN(0x5869d6ba, 0x8d9ce5be), TOBN(0x0d8f68c5, 0xff4bfb0d), TOBN(0xb69f210b, 0x5700cf73), TOBN(0x61f6653a, 0x6d37c135), TOBN(0xff3d432b, 0x5aff5a48), TOBN(0x0d81c4b9, 0x72ba3a69), TOBN(0xee879ae9, 0xfa1899ef), TOBN(0xbac7e2a0, 0x2d6acafd), TOBN(0xd6d93f6c, 0x1c664399), TOBN(0x4c288de1, 0x5bcb135d), TOBN(0x83031dab, 0x9dab7cbf), TOBN(0xfe23feb0, 0x3abbf5f0), TOBN(0x9f1b2466, 0xcdedca85), TOBN(0x140bb710, 0x1a09538c), TOBN(0xac8ae851, 0x5e11115d), TOBN(0x0d63ff67, 0x6f03f59e), TOBN(0x755e5551, 0x7d234afb), TOBN(0x61c2db4e, 0x7e208fc1), TOBN(0xaa9859ce, 0xf28a4b5d), TOBN(0xbdd6d4fc, 0x34af030f), TOBN(0xd1c4a26d, 0x3be01cb1), TOBN(0x9ba14ffc, 0x243aa07c), TOBN(0xf95cd3a9, 0xb2503502), TOBN(0xe379bc06, 0x7d2a93ab), TOBN(0x3efc18e9, 0xd4ca8d68), TOBN(0x083558ec, 0x80bb412a), TOBN(0xd903b940, 0x9645a968), TOBN(0xa499f0b6, 0x9ba6054f), TOBN(0x208b573c, 0xb8349abe), TOBN(0x3baab3e5, 0x30b4fc1c), TOBN(0x87e978ba, 0xcb524990), TOBN(0x3524194e, 0xccdf0e80), TOBN(0x62711725, 0x7d4bcc42), TOBN(0xe90a3d9b, 0xb90109ba), TOBN(0x3b1bdd57, 0x1323e1e0), TOBN(0xb78e9bd5, 0x5eae1599), TOBN(0x0794b746, 0x9e03d278), TOBN(0x80178605, 0xd70e6297), TOBN(0x171792f8, 0x99c97855), TOBN(0x11b393ee, 0xf5a86b5c), TOBN(0x48ef6582, 0xd8884f27), TOBN(0xbd44737a, 0xbf19ba5f), TOBN(0x8698de4c, 0xa42062c6), TOBN(0x8975eb80, 0x61ce9c54), TOBN(0xd50e57c7, 0xd7fe71f3), TOBN(0x15342190, 0xbc97ce38), TOBN(0x51bda2de, 0x4df07b63), TOBN(0xba12aeae, 0x200eb87d), TOBN(0xabe135d2, 0xa9b4f8f6), TOBN(0x04619d65, 0xfad6d99c), TOBN(0x4a6683a7, 0x7994937c), TOBN(0x7a778c8b, 0x6f94f09a), TOBN(0x8c508623, 0x20a71b89), TOBN(0x241a2aed, 0x1c229165), TOBN(0x352be595, 0xaaf83a99), TOBN(0x9fbfee7f, 0x1562bac8), TOBN(0xeaf658b9, 0x5c4017e3), TOBN(0x1dc7f9e0, 0x15120b86), TOBN(0xd84f13dd, 0x4c034d6f), TOBN(0x283dd737, 0xeaea3038), TOBN(0x197f2609, 0xcd85d6a2), TOBN(0x6ebbc345, 0xfae60177), TOBN(0xb80f031b, 0x4e12fede), TOBN(0xde55d0c2, 0x07a2186b), TOBN(0x1fb3e37f, 0x24dcdd5a), TOBN(0x8d602da5, 0x7ed191fb), TOBN(0x108fb056, 0x76023e0d), TOBN(0x70178c71, 0x459c20c0), TOBN(0xfad5a386, 0x3fe54cf0), TOBN(0xa4a3ec4f, 0x02bbb475), TOBN(0x1aa5ec20, 0x919d94d7), TOBN(0x5d3b63b5, 0xa81e4ab3), TOBN(0x7fa733d8, 0x5ad3d2af), TOBN(0xfbc586dd, 0xd1ac7a37), TOBN(0x282925de, 0x40779614), TOBN(0xfe0ffffb, 0xe74a242a), TOBN(0x3f39e67f, 0x906151e5), TOBN(0xcea27f5f, 0x55e10649), TOBN(0xdca1d4e1, 0xc17cf7b7), TOBN(0x0c326d12, 0x2fe2362d), TOBN(0x05f7ac33, 0x7dd35df3), TOBN(0x0c3b7639, 0xc396dbdf), TOBN(0x0912f5ac, 0x03b7db1c), TOBN(0x9dea4b70, 0x5c9ed4a9), TOBN(0x475e6e53, 0xaae3f639), TOBN(0xfaba0e7c, 0xfc278bac), TOBN(0x16f9e221, 0x9490375f), TOBN(0xaebf9746, 0xa5a7ed0a), TOBN(0x45f9af3f, 0xf41ad5d6), TOBN(0x03c4623c, 0xb2e99224), TOBN(0x82c5bb5c, 0xb3cf56aa), TOBN(0x64311819, 0x34567ed3), TOBN(0xec57f211, 0x8be489ac), TOBN(0x2821895d, 0xb9a1104b), TOBN(0x610dc875, 0x6064e007), TOBN(0x8e526f3f, 0x5b20d0fe), TOBN(0x6e71ca77, 0x5b645aee), TOBN(0x3d1dcb9f, 0x800e10ff), TOBN(0x36b51162, 0x189cf6de), TOBN(0x2c5a3e30, 0x6bb17353), TOBN(0xc186cd3e, 0x2a6c6fbf), TOBN(0xa74516fa, 0x4bf97906), TOBN(0x5b4b8f4b, 0x279d6901), TOBN(0x0c4e57b4, 0x2b573743), TOBN(0x75fdb229, 0xb6e386b6), TOBN(0xb46793fd, 0x99deac27), TOBN(0xeeec47ea, 0xcf712629), TOBN(0xe965f3c4, 0xcbc3b2dd), TOBN(0x8dd1fb83, 0x425c6559), TOBN(0x7fc00ee6, 0x0af06fda), TOBN(0xe98c9225, 0x33d956df), TOBN(0x0f1ef335, 0x4fbdc8a2), TOBN(0x2abb5145, 0xb79b8ea2), TOBN(0x40fd2945, 0xbdbff288), TOBN(0x6a814ac4, 0xd7185db7), TOBN(0xc4329d6f, 0xc084609a), TOBN(0xc9ba7b52, 0xed1be45d), TOBN(0x891dd20d, 0xe4cd2c74), TOBN(0x5a4d4a7f, 0x824139b1), TOBN(0x66c17716, 0xb873c710), TOBN(0x5e5bc141, 0x2843c4e0), TOBN(0xd5ac4817, 0xb97eb5bf), TOBN(0xc0f8af54, 0x450c95c7), TOBN(0xc91b3fa0, 0x318406c5), TOBN(0x360c340a, 0xab9d97f8), TOBN(0xfb57bd07, 0x90a2d611), TOBN(0x4339ae3c, 0xa6a6f7e5), TOBN(0x9c1fcd2a, 0x2feb8a10), TOBN(0x972bcca9, 0xc7ea7432), TOBN(0x1b0b924c, 0x308076f6), TOBN(0x80b2814a, 0x2a5b4ca5), TOBN(0x2f78f55b, 0x61ef3b29), TOBN(0xf838744a, 0xc18a414f), TOBN(0xc611eaae, 0x903d0a86), TOBN(0x94dabc16, 0x2a453f55), TOBN(0xe6f2e3da, 0x14efb279), TOBN(0x5b7a6017, 0x9320dc3c), TOBN(0x692e382f, 0x8df6b5a4), TOBN(0x3f5e15e0, 0x2d40fa90), TOBN(0xc87883ae, 0x643dd318), TOBN(0x511053e4, 0x53544774), TOBN(0x834d0ecc, 0x3adba2bc), TOBN(0x4215d7f7, 0xbae371f5), TOBN(0xfcfd57bf, 0x6c8663bc), TOBN(0xded2383d, 0xd6901b1d), TOBN(0x3b49fbb4, 0xb5587dc3), TOBN(0xfd44a08d, 0x07625f62), TOBN(0x3ee4d65b, 0x9de9b762),} , {TOBN(0x64e5137d, 0x0d63d1fa), TOBN(0x658fc052, 0x02a9d89f), TOBN(0x48894874, 0x50436309), TOBN(0xe9ae30f8, 0xd598da61), TOBN(0x2ed710d1, 0x818baf91), TOBN(0xe27e9e06, 0x8b6a0c20), TOBN(0x1e28dcfb, 0x1c1a6b44), TOBN(0x883acb64, 0xd6ac57dc), TOBN(0x8735728d, 0xc2c6ff70), TOBN(0x79d6122f, 0xc5dc2235), TOBN(0x23f5d003, 0x19e277f9), TOBN(0x7ee84e25, 0xdded8cc7), TOBN(0x91a8afb0, 0x63cd880a), TOBN(0x3f3ea7c6, 0x3574af60), TOBN(0x0cfcdc84, 0x02de7f42), TOBN(0x62d0792f, 0xb31aa152), TOBN(0x8e1b4e43, 0x8a5807ce), TOBN(0xad283893, 0xe4109a7e), TOBN(0xc30cc9cb, 0xafd59dda), TOBN(0xf65f36c6, 0x3d8d8093), TOBN(0xdf31469e, 0xa60d32b2), TOBN(0xee93df4b, 0x3e8191c8), TOBN(0x9c1017c5, 0x355bdeb5), TOBN(0xd2623185, 0x8616aa28), TOBN(0xb02c83f9, 0xdec31a21), TOBN(0x988c8b23, 0x6ad9d573), TOBN(0x53e983ae, 0xa57be365), TOBN(0xe968734d, 0x646f834e), TOBN(0x9137ea8f, 0x5da6309b), TOBN(0x10f3a624, 0xc1f1ce16), TOBN(0x782a9ea2, 0xca440921), TOBN(0xdf94739e, 0x5b46f1b5), TOBN(0x9f9be006, 0xcce85c9b), TOBN(0x360e70d6, 0xa4c7c2d3), TOBN(0x2cd5beea, 0xaefa1e60), TOBN(0x64cf63c0, 0x8c3d2b6d), TOBN(0xfb107fa3, 0xe1cf6f90), TOBN(0xb7e937c6, 0xd5e044e6), TOBN(0x74e8ca78, 0xce34db9f), TOBN(0x4f8b36c1, 0x3e210bd0), TOBN(0x1df165a4, 0x34a35ea8), TOBN(0x3418e0f7, 0x4d4412f6), TOBN(0x5af1f8af, 0x518836c3), TOBN(0x42ceef4d, 0x130e1965), TOBN(0x5560ca0b, 0x543a1957), TOBN(0xc33761e5, 0x886cb123), TOBN(0x66624b1f, 0xfe98ed30), TOBN(0xf772f4bf, 0x1090997d), TOBN(0xf4e540bb, 0x4885d410), TOBN(0x7287f810, 0x9ba5f8d7), TOBN(0x22d0d865, 0xde98dfb1), TOBN(0x49ff51a1, 0xbcfbb8a3), TOBN(0xb6b6fa53, 0x6bc3012e), TOBN(0x3d31fd72, 0x170d541d), TOBN(0x8018724f, 0x4b0f4966), TOBN(0x79e7399f, 0x87dbde07), TOBN(0x56f8410e, 0xf4f8b16a), TOBN(0x97241afe, 0xc47b266a), TOBN(0x0a406b8e, 0x6d9c87c1), TOBN(0x803f3e02, 0xcd42ab1b), TOBN(0x7f0309a8, 0x04dbec69), TOBN(0xa83b85f7, 0x3bbad05f), TOBN(0xc6097273, 0xad8e197f), TOBN(0xc097440e, 0x5067adc1), TOBN(0x730eafb6, 0x3524ff16), TOBN(0xd7f9b51e, 0x823fc6ce), TOBN(0x27bd0d32, 0x443e4ac0), TOBN(0x40c59ad9, 0x4d66f217), TOBN(0x6c33136f, 0x17c387a4), TOBN(0x5043b8d5, 0xeb86804d), TOBN(0x74970312, 0x675a73c9), TOBN(0x838fdb31, 0xf16669b6), TOBN(0xc507b6dd, 0x418e7ddd), TOBN(0x39888d93, 0x472f19d6), TOBN(0x7eae26be, 0x0c27eb4d), TOBN(0x17b53ed3, 0xfbabb884), TOBN(0xfc27021b, 0x2b01ae4f), TOBN(0x88462e87, 0xcf488682), TOBN(0xbee096ec, 0x215e2d87), TOBN(0xeb2fea9a, 0xd242e29b), TOBN(0x5d985b5f, 0xb821fc28), TOBN(0x89d2e197, 0xdc1e2ad2), TOBN(0x55b566b8, 0x9030ba62), TOBN(0xe3fd41b5, 0x4f41b1c6), TOBN(0xb738ac2e, 0xb9a96d61), TOBN(0x7f8567ca, 0x369443f4), TOBN(0x8698622d, 0xf803a440), TOBN(0x2b586236, 0x8fe2f4dc), TOBN(0xbbcc00c7, 0x56b95bce), TOBN(0x5ec03906, 0x616da680), TOBN(0x79162ee6, 0x72214252), TOBN(0x43132b63, 0x86a892d2), TOBN(0x4bdd3ff2, 0x2f3263bf), TOBN(0xd5b3733c, 0x9cd0a142), TOBN(0x592eaa82, 0x44415ccb), TOBN(0x663e8924, 0x8d5474ea), TOBN(0x8058a25e, 0x5236344e), TOBN(0x82e8df9d, 0xbda76ee6), TOBN(0xdcf6efd8, 0x11cc3d22), TOBN(0x00089cda, 0x3b4ab529), TOBN(0x91d3a071, 0xbd38a3db), TOBN(0x4ea97fc0, 0xef72b925), TOBN(0x0c9fc15b, 0xea3edf75), TOBN(0x5a6297cd, 0xa4348ed3), TOBN(0x0d38ab35, 0xce7c42d4), TOBN(0x9fd493ef, 0x82feab10), TOBN(0x46056b6d, 0x82111b45), TOBN(0xda11dae1, 0x73efc5c3), TOBN(0xdc740278, 0x5545a7fb), TOBN(0xbdb2601c, 0x40d507e6), TOBN(0x121dfeeb, 0x7066fa58), TOBN(0x214369a8, 0x39ae8c2a), TOBN(0x195709cb, 0x06e0956c), TOBN(0x4c9d254f, 0x010cd34b), TOBN(0xf51e13f7, 0x0471a532), TOBN(0xe19d6791, 0x1e73054d), TOBN(0xf702a628, 0xdb5c7be3), TOBN(0xc7141218, 0xb24dde05), TOBN(0xdc18233c, 0xf29b2e2e), TOBN(0x3a6bd1e8, 0x85342dba), TOBN(0x3f747fa0, 0xb311898c), TOBN(0xe2a272e4, 0xcd0eac65), TOBN(0x4bba5851, 0xf914d0bc), TOBN(0x7a1a9660, 0xc4a43ee3), TOBN(0xe5a367ce, 0xa1c8cde9), TOBN(0x9d958ba9, 0x7271abe3), TOBN(0xf3ff7eb6, 0x3d1615cd), TOBN(0xa2280dce, 0xf5ae20b0), TOBN(0x56dba5c1, 0xcf640147), TOBN(0xea5a2e3d, 0x5e83d118), TOBN(0x04cd6b6d, 0xda24c511), TOBN(0x1c0f4671, 0xe854d214), TOBN(0x91a6b7a9, 0x69565381), TOBN(0xdc966240, 0xdecf1f5b), TOBN(0x1b22d21c, 0xfcf5d009), TOBN(0x2a05f641, 0x9021dbd5), TOBN(0x8c0ed566, 0xd4312483), TOBN(0x5179a95d, 0x643e216f), TOBN(0xcc185fec, 0x17044493), TOBN(0xb3063339, 0x54991a21), TOBN(0xd801ecdb, 0x0081a726), TOBN(0x0149b0c6, 0x4fa89bbb), TOBN(0xafe9065a, 0x4391b6b9), TOBN(0xedc92786, 0xd633f3a3), TOBN(0xe408c24a, 0xae6a8e13), TOBN(0x85833fde, 0x9f3897ab), TOBN(0x43800e7e, 0xd81a0715), TOBN(0xde08e346, 0xb44ffc5f), TOBN(0x7094184c, 0xcdeff2e0), TOBN(0x49f9387b, 0x165eaed1), TOBN(0x635d6129, 0x777c468a), TOBN(0x8c0dcfd1, 0x538c2dd8), TOBN(0xd6d9d9e3, 0x7a6a308b), TOBN(0x62375830, 0x4c2767d3), TOBN(0x874a8bc6, 0xf38cbeb6), TOBN(0xd94d3f1a, 0xccb6fd9e), TOBN(0x92a9735b, 0xba21f248), TOBN(0x272ad0e5, 0x6cd1efb0), TOBN(0x7437b69c, 0x05b03284), TOBN(0xe7f04702, 0x6948c225), TOBN(0x8a56c04a, 0xcba2ecec), TOBN(0x0c181270, 0xe3a73e41), TOBN(0x6cb34e9d, 0x03e93725), TOBN(0xf77c8713, 0x496521a9), TOBN(0x94569183, 0xfa7f9f90), TOBN(0xf2e7aa4c, 0x8c9707ad), TOBN(0xced2c9ba, 0x26c1c9a3), TOBN(0x9109fe96, 0x40197507), TOBN(0x9ae868a9, 0xe9adfe1c), TOBN(0x3984403d, 0x314e39bb), TOBN(0xb5875720, 0xf2fe378f), TOBN(0x33f901e0, 0xba44a628), TOBN(0xea1125fe, 0x3652438c), TOBN(0xae9ec4e6, 0x9dd1f20b), TOBN(0x1e740d9e, 0xbebf7fbd), TOBN(0x6dbd3ddc, 0x42dbe79c), TOBN(0x62082aec, 0xedd36776), TOBN(0xf612c478, 0xe9859039), TOBN(0xa493b201, 0x032f7065), TOBN(0xebd4d8f2, 0x4ff9b211), TOBN(0x3f23a0aa, 0xaac4cb32), TOBN(0xea3aadb7, 0x15ed4005), TOBN(0xacf17ea4, 0xafa27e63), TOBN(0x56125c1a, 0xc11fd66c), TOBN(0x266344a4, 0x3794f8dc), TOBN(0xdcca923a, 0x483c5c36), TOBN(0x2d6b6bbf, 0x3f9d10a0), TOBN(0xb320c5ca, 0x81d9bdf3), TOBN(0x620e28ff, 0x47b50a95), TOBN(0x933e3b01, 0xcef03371), TOBN(0xf081bf85, 0x99100153), TOBN(0x183be9a0, 0xc3a8c8d6), TOBN(0x4e3ddc5a, 0xd6bbe24d), TOBN(0xc6c74630, 0x53843795), TOBN(0x78193dd7, 0x65ec2d4c), TOBN(0xb8df26cc, 0xcd3c89b2), TOBN(0x98dbe399, 0x5a483f8d), TOBN(0x72d8a957, 0x7dd3313a), TOBN(0x65087294, 0xab0bd375), TOBN(0xfcd89248, 0x7c259d16), TOBN(0x8a9443d7, 0x7613aa81), TOBN(0x80100800, 0x85fe6584), TOBN(0x70fc4dbc, 0x7fb10288), TOBN(0xf58280d3, 0xe86beee8), TOBN(0x14fdd82f, 0x7c978c38), TOBN(0xdf1204c1, 0x0de44d7b), TOBN(0xa08a1c84, 0x4160252f), TOBN(0x591554ca, 0xc17646a5), TOBN(0x214a37d6, 0xa05bd525), TOBN(0x48d5f09b, 0x07957b3c), TOBN(0x0247cdcb, 0xd7109bc9), TOBN(0x40f9e4bb, 0x30599ce7), TOBN(0xc325fa03, 0xf46ad2ec), TOBN(0x00f766cf, 0xc3e3f9ee), TOBN(0xab556668, 0xd43a4577), TOBN(0x68d30a61, 0x3ee03b93), TOBN(0x7ddc81ea, 0x77b46a08), TOBN(0xcf5a6477, 0xc7480699), TOBN(0x43a8cb34, 0x6633f683), TOBN(0x1b867e6b, 0x92363c60), TOBN(0x43921114, 0x1f60558e), TOBN(0xcdbcdd63, 0x2f41450e), TOBN(0x7fc04601, 0xcc630e8b), TOBN(0xea7c66d5, 0x97038b43), TOBN(0x7259b8a5, 0x04e99fd8), TOBN(0x98a8dd12, 0x4785549a), TOBN(0x0e459a7c, 0x840552e1), TOBN(0xcdfcf4d0, 0x4bb0909e), TOBN(0x34a86db2, 0x53758da7), TOBN(0xe643bb83, 0xeac997e1), TOBN(0x96400bd7, 0x530c5b7e), TOBN(0x9f97af87, 0xb41c8b52), TOBN(0x34fc8820, 0xfbeee3f9), TOBN(0x93e53490, 0x49091afd), TOBN(0x764b9be5, 0x9a31f35c), TOBN(0x71f37864, 0x57e3d924), TOBN(0x02fb34e0, 0x943aa75e), TOBN(0xa18c9c58, 0xab8ff6e4), TOBN(0x080f31b1, 0x33cf0d19), TOBN(0x5c9682db, 0x083518a7), TOBN(0x873d4ca6, 0xb709c3de), TOBN(0x64a84262, 0x3575b8f0), TOBN(0x6275da1f, 0x020154bb), TOBN(0x97678caa, 0xd17cf1ab), TOBN(0x8779795f, 0x951a95c3), TOBN(0xdd35b163, 0x50fccc08), TOBN(0x32709627, 0x33d8f031), TOBN(0x3c5ab10a, 0x498dd85c), TOBN(0xb6c185c3, 0x41dca566), TOBN(0x7de7feda, 0xd8622aa3), TOBN(0x99e84d92, 0x901b6dfb), TOBN(0x30a02b0e, 0x7c4ad288), TOBN(0xc7c81daa, 0x2fd3cf36), TOBN(0xd1319547, 0xdf89e59f), TOBN(0xb2be8184, 0xcd496733), TOBN(0xd5f449eb, 0x93d3412b), TOBN(0x7ea41b1b, 0x25fe531d), TOBN(0xf9797432, 0x6a1d5646), TOBN(0x86067f72, 0x2bde501a), TOBN(0xf91481c0, 0x0c85e89c), TOBN(0xca8ee465, 0xf8b05bc6), TOBN(0x1844e1cf, 0x02e83cda), TOBN(0xca82114a, 0xb4dbe33b), TOBN(0x0f9f8769, 0x4eabfde2), TOBN(0x4936b1c0, 0x38b27fe2), TOBN(0x63b6359b, 0xaba402df), TOBN(0x40c0ea2f, 0x656bdbab), TOBN(0x9c992a89, 0x6580c39c), TOBN(0x600e8f15, 0x2a60aed1), TOBN(0xeb089ca4, 0xe0bf49df), TOBN(0x9c233d7d, 0x2d42d99a), TOBN(0x648d3f95, 0x4c6bc2fa), TOBN(0xdcc383a8, 0xe1add3f3), TOBN(0xf42c0c6a, 0x4f64a348), TOBN(0x2abd176f, 0x0030dbdb), TOBN(0x4de501a3, 0x7d6c215e), TOBN(0x4a107c1f, 0x4b9a64bc), TOBN(0xa77f0ad3, 0x2496cd59), TOBN(0xfb78ac62, 0x7688dffb), TOBN(0x7025a2ca, 0x67937d8e), TOBN(0xfde8b2d1, 0xd1a8f4e7), TOBN(0xf5b3da47, 0x7354927c), TOBN(0xe48606a3, 0xd9205735), TOBN(0xac477cc6, 0xe177b917), TOBN(0xfb1f73d2, 0xa883239a), TOBN(0xe12572f6, 0xcc8b8357), TOBN(0x9d355e9c, 0xfb1f4f86), TOBN(0x89b795f8, 0xd9f3ec6e), TOBN(0x27be56f1, 0xb54398dc), TOBN(0x1890efd7, 0x3fedeed5), TOBN(0x62f77f1f, 0x9c6d0140), TOBN(0x7ef0e314, 0x596f0ee4), TOBN(0x50ca6631, 0xcc61dab3), TOBN(0x4a39801d, 0xf4866e4f), TOBN(0x66c8d032, 0xae363b39), TOBN(0x22c591e5, 0x2ead66aa), TOBN(0x954ba308, 0xde02a53e), TOBN(0x2a6c060f, 0xd389f357), TOBN(0xe6cfcde8, 0xfbf40b66), TOBN(0x8e02fc56, 0xc6340ce1), TOBN(0xe4957795, 0x73adb4ba), TOBN(0x7b86122c, 0xa7b03805), TOBN(0x63f83512, 0x0c8e6fa6), TOBN(0x83660ea0, 0x057d7804), TOBN(0xbad79105, 0x21ba473c), TOBN(0xb6c50bee, 0xded5389d), TOBN(0xee2caf4d, 0xaa7c9bc0), TOBN(0xd97b8de4, 0x8c4e98a7), TOBN(0xa9f63e70, 0xab3bbddb), TOBN(0x3898aabf, 0x2597815a), TOBN(0x7659af89, 0xac15b3d9), TOBN(0xedf7725b, 0x703ce784), TOBN(0x25470fab, 0xe085116b), TOBN(0x04a43375, 0x87285310), TOBN(0x4e39187e, 0xe2bfd52f), TOBN(0x36166b44, 0x7d9ebc74), TOBN(0x92ad433c, 0xfd4b322c), TOBN(0x726aa817, 0xba79ab51), TOBN(0xf96eacd8, 0xc1db15eb), TOBN(0xfaf71e91, 0x0476be63), TOBN(0xdd69a640, 0x641fad98), TOBN(0xb7995918, 0x29622559), TOBN(0x03c6daa5, 0xde4199dc), TOBN(0x92cadc97, 0xad545eb4), TOBN(0x1028238b, 0x256534e4), TOBN(0x73e80ce6, 0x8595409a), TOBN(0x690d4c66, 0xd05dc59b), TOBN(0xc95f7b8f, 0x981dee80), TOBN(0xf4337014, 0xd856ac25), TOBN(0x441bd9dd, 0xac524dca), TOBN(0x640b3d85, 0x5f0499f5), TOBN(0x39cf84a9, 0xd5fda182), TOBN(0x04e7b055, 0xb2aa95a0), TOBN(0x29e33f0a, 0x0ddf1860), TOBN(0x082e74b5, 0x423f6b43), TOBN(0x217edeb9, 0x0aaa2b0f), TOBN(0x58b83f35, 0x83cbea55), TOBN(0xc485ee4d, 0xbc185d70), TOBN(0x833ff03b, 0x1e5f6992), TOBN(0xb5b9b9cc, 0xcf0c0dd5), TOBN(0x7caaee8e, 0x4e9e8a50), TOBN(0x462e907b, 0x6269dafd), TOBN(0x6ed5cee9, 0xfbe791c6), TOBN(0x68ca3259, 0xed430790), TOBN(0x2b72bdf2, 0x13b5ba88), TOBN(0x60294c8a, 0x35ef0ac4), TOBN(0x9c3230ed, 0x19b99b08), TOBN(0x560fff17, 0x6c2589aa), TOBN(0x552b8487, 0xd6770374), TOBN(0xa373202d, 0x9a56f685), TOBN(0xd3e7f907, 0x45f175d9), TOBN(0x3c2f315f, 0xd080d810), TOBN(0x1130e9dd, 0x7b9520e8), TOBN(0xc078f9e2, 0x0af037b5), TOBN(0x38cd2ec7, 0x1e9c104c), TOBN(0x0f684368, 0xc472fe92), TOBN(0xd3f1b5ed, 0x6247e7ef), TOBN(0xb32d33a9, 0x396dfe21), TOBN(0x46f59cf4, 0x4a9aa2c2), TOBN(0x69cd5168, 0xff0f7e41), TOBN(0x3f59da0f, 0x4b3234da), TOBN(0xcf0b0235, 0xb4579ebe), TOBN(0x6d1cbb25, 0x6d2476c7), TOBN(0x4f0837e6, 0x9dc30f08), TOBN(0x9a4075bb, 0x906f6e98), TOBN(0x253bb434, 0xc761e7d1), TOBN(0xde2e645f, 0x6e73af10), TOBN(0xb89a4060, 0x0c5f131c), TOBN(0xd12840c5, 0xb8cc037f), TOBN(0x3d093a5b, 0x7405bb47), TOBN(0x6202c253, 0x206348b8), TOBN(0xbf5d57fc, 0xc55a3ca7), TOBN(0x89f6c90c, 0x8c3bef48), TOBN(0x23ac7623, 0x5a0a960a), TOBN(0xdfbd3d6b, 0x552b42ab), TOBN(0x3ef22458, 0x132061f6), TOBN(0xd74e9bda, 0xc97e6516), TOBN(0x88779360, 0xc230f49e), TOBN(0xa6ec1de3, 0x1e74ea49), TOBN(0x581dcee5, 0x3fb645a2), TOBN(0xbaef2391, 0x8f483f14), TOBN(0x6d2dddfc, 0xd137d13b), TOBN(0x54cde50e, 0xd2743a42), TOBN(0x89a34fc5, 0xe4d97e67), TOBN(0x13f1f5b3, 0x12e08ce5), TOBN(0xa80540b8, 0xa7f0b2ca), TOBN(0x854bcf77, 0x01982805), TOBN(0xb8653ffd, 0x233bea04), TOBN(0x8e7b8787, 0x02b0b4c9), TOBN(0x2675261f, 0x9acb170a), TOBN(0x061a9d90, 0x930c14e5), TOBN(0xb59b30e0, 0xdef0abea), TOBN(0x1dc19ea6, 0x0200ec7d), TOBN(0xb6f4a3f9, 0x0bce132b), TOBN(0xb8d5de90, 0xf13e27e0), TOBN(0xbaee5ef0, 0x1fade16f), TOBN(0x6f406aaa, 0xe4c6cf38), TOBN(0xab4cfe06, 0xd1369815), TOBN(0x0dcffe87, 0xefd550c6), TOBN(0x9d4f59c7, 0x75ff7d39), TOBN(0xb02553b1, 0x51deb6ad), TOBN(0x812399a4, 0xb1877749), TOBN(0xce90f71f, 0xca6006e1), TOBN(0xc32363a6, 0xb02b6e77), TOBN(0x02284fbe, 0xdc36c64d), TOBN(0x86c81e31, 0xa7e1ae61), TOBN(0x2576c7e5, 0xb909d94a), TOBN(0x8b6f7d02, 0x818b2bb0), TOBN(0xeca3ed07, 0x56faa38a), TOBN(0xa3790e6c, 0x9305bb54), TOBN(0xd784eeda, 0x7bc73061), TOBN(0xbd56d369, 0x6dd50614), TOBN(0xd6575949, 0x229a8aa9), TOBN(0xdcca8f47, 0x4595ec28), TOBN(0x814305c1, 0x06ab4fe6), TOBN(0xc8c39768, 0x24f43f16), TOBN(0xe2a45f36, 0x523f2b36), TOBN(0x995c6493, 0x920d93bb), TOBN(0xf8afdab7, 0x90f1632b), TOBN(0x79ebbecd, 0x1c295954), TOBN(0xc7bb3ddb, 0x79592f48), TOBN(0x67216a7b, 0x5f88e998), TOBN(0xd91f098b, 0xbc01193e), TOBN(0xf7d928a5, 0xb1db83fc), TOBN(0x55e38417, 0xe991f600), TOBN(0x2a91113e, 0x2981a934), TOBN(0xcbc9d648, 0x06b13bde), TOBN(0xb011b6ac, 0x0755ff44), TOBN(0x6f4cb518, 0x045ec613), TOBN(0x522d2d31, 0xc2f5930a), TOBN(0x5acae1af, 0x382e65de), TOBN(0x57643067, 0x27bc966f), TOBN(0x5e12705d, 0x1c7193f0), TOBN(0xf0f32f47, 0x3be8858e), TOBN(0x785c3d7d, 0x96c6dfc7), TOBN(0xd75b4a20, 0xbf31795d), TOBN(0x91acf17b, 0x342659d4), TOBN(0xe596ea34, 0x44f0378f), TOBN(0x4515708f, 0xce52129d), TOBN(0x17387e1e, 0x79f2f585), TOBN(0x72cfd2e9, 0x49dee168), TOBN(0x1ae05223, 0x3e2af239), TOBN(0x009e75be, 0x1d94066a), TOBN(0x6cca31c7, 0x38abf413), TOBN(0xb50bd61d, 0x9bc49908), TOBN(0x4a9b4a8c, 0xf5e2bc1e), TOBN(0xeb6cc5f7, 0x946f83ac), TOBN(0x27da93fc, 0xebffab28), TOBN(0xea314c96, 0x4821c8c5), TOBN(0x8de49ded, 0xa83c15f4), TOBN(0x7a64cf20, 0x7af33004), TOBN(0x45f1bfeb, 0xc9627e10), TOBN(0x878b0626, 0x54b9df60), TOBN(0x5e4fdc3c, 0xa95c0b33), TOBN(0xe54a37ca, 0xc2035d8e), TOBN(0x9087cda9, 0x80f20b8c), TOBN(0x36f61c23, 0x8319ade4), TOBN(0x766f287a, 0xde8cfdf8), TOBN(0x48821948, 0x346f3705), TOBN(0x49a7b853, 0x16e4f4a2), TOBN(0xb9b3f8a7, 0x5cedadfd), TOBN(0x8f562815, 0x8db2a815), TOBN(0xc0b7d554, 0x01f68f95), TOBN(0x12971e27, 0x688a208e), TOBN(0xc9f8b696, 0xd0ff34fc), TOBN(0x20824de2, 0x1222718c), TOBN(0x7213cf9f, 0x0c95284d), TOBN(0xe2ad741b, 0xdc158240), TOBN(0x0ee3a6df, 0x54043ccf), TOBN(0x16ff479b, 0xd84412b3), TOBN(0xf6c74ee0, 0xdfc98af0), TOBN(0xa78a169f, 0x52fcd2fb), TOBN(0xd8ae8746, 0x99c930e9), TOBN(0x1d33e858, 0x49e117a5), TOBN(0x7581fcb4, 0x6624759f), TOBN(0xde50644f, 0x5bedc01d), TOBN(0xbeec5d00, 0xcaf3155e), TOBN(0x672d66ac, 0xbc73e75f), TOBN(0x86b9d8c6, 0x270b01db), TOBN(0xd249ef83, 0x50f55b79), TOBN(0x6131d6d4, 0x73978fe3), TOBN(0xcc4e4542, 0x754b00a1), TOBN(0x4e05df05, 0x57dfcfe9), TOBN(0x94b29cdd, 0x51ef6bf0), TOBN(0xe4530cff, 0x9bc7edf2), TOBN(0x8ac236fd, 0xd3da65f3), TOBN(0x0faf7d5f, 0xc8eb0b48), TOBN(0x4d2de14c, 0x660eb039), TOBN(0xc006bba7, 0x60430e54), TOBN(0x10a2d0d6, 0xda3289ab), TOBN(0x9c037a5d, 0xd7979c59), TOBN(0x04d1f3d3, 0xa116d944), TOBN(0x9ff22473, 0x8a0983cd), TOBN(0x28e25b38, 0xc883cabb), TOBN(0xe968dba5, 0x47a58995), TOBN(0x2c80b505, 0x774eebdf), TOBN(0xee763b71, 0x4a953beb), TOBN(0x502e223f, 0x1642e7f6), TOBN(0x6fe4b641, 0x61d5e722), TOBN(0x9d37c5b0, 0xdbef5316), TOBN(0x0115ed70, 0xf8330bc7), TOBN(0x139850e6, 0x75a72789), TOBN(0x27d7faec, 0xffceccc2), TOBN(0x3016a860, 0x4fd9f7f6), TOBN(0xc492ec64, 0x4cd8f64c), TOBN(0x58a2d790, 0x279d7b51), TOBN(0x0ced1fc5, 0x1fc75256), TOBN(0x3e658aed, 0x8f433017), TOBN(0x0b61942e, 0x05da59eb), TOBN(0xba3d60a3, 0x0ddc3722), TOBN(0x7c311cd1, 0x742e7f87), TOBN(0x6473ffee, 0xf6b01b6e),} , {TOBN(0x8303604f, 0x692ac542), TOBN(0xf079ffe1, 0x227b91d3), TOBN(0x19f63e63, 0x15aaf9bd), TOBN(0xf99ee565, 0xf1f344fb), TOBN(0x8a1d661f, 0xd6219199), TOBN(0x8c883bc6, 0xd48ce41c), TOBN(0x1065118f, 0x3c74d904), TOBN(0x713889ee, 0x0faf8b1b), TOBN(0x972b3f8f, 0x81a1b3be), TOBN(0x4f3ce145, 0xce2764a0), TOBN(0xe2d0f1cc, 0x28c4f5f7), TOBN(0xdeee0c0d, 0xc7f3985b), TOBN(0x7df4adc0, 0xd39e25c3), TOBN(0x40619820, 0xc467a080), TOBN(0x440ebc93, 0x61cf5a58), TOBN(0x527729a6, 0x422ad600), TOBN(0xca6c0937, 0xb1b76ba6), TOBN(0x1a2eab85, 0x4d2026dc), TOBN(0xb1715e15, 0x19d9ae0a), TOBN(0xf1ad9199, 0xbac4a026), TOBN(0x35b3dfb8, 0x07ea7b0e), TOBN(0xedf5496f, 0x3ed9eb89), TOBN(0x8932e5ff, 0x2d6d08ab), TOBN(0xf314874e, 0x25bd2731), TOBN(0xefb26a75, 0x3f73f449), TOBN(0x1d1c94f8, 0x8d44fc79), TOBN(0x49f0fbc5, 0x3bc0dc4d), TOBN(0xb747ea0b, 0x3698a0d0), TOBN(0x5218c3fe, 0x228d291e), TOBN(0x35b804b5, 0x43c129d6), TOBN(0xfac859b8, 0xd1acc516), TOBN(0x6c10697d, 0x95d6e668), TOBN(0xc38e438f, 0x0876fd4e), TOBN(0x45f0c307, 0x83d2f383), TOBN(0x203cc2ec, 0xb10934cb), TOBN(0x6a8f2439, 0x2c9d46ee), TOBN(0xf16b431b, 0x65ccde7b), TOBN(0x41e2cd18, 0x27e76a6f), TOBN(0xb9c8cf8f, 0x4e3484d7), TOBN(0x64426efd, 0x8315244a), TOBN(0x1c0a8e44, 0xfc94dea3), TOBN(0x34c8cdbf, 0xdad6a0b0), TOBN(0x919c3840, 0x04113cef), TOBN(0xfd32fba4, 0x15490ffa), TOBN(0x58d190f6, 0x795dcfb7), TOBN(0xfef01b03, 0x83588baf), TOBN(0x9e6d1d63, 0xca1fc1c0), TOBN(0x53173f96, 0xf0a41ac9), TOBN(0x2b1d402a, 0xba16f73b), TOBN(0x2fb31014, 0x8cf9b9fc), TOBN(0x2d51e60e, 0x446ef7bf), TOBN(0xc731021b, 0xb91e1745), TOBN(0x9d3b4724, 0x4fee99d4), TOBN(0x4bca48b6, 0xfac5c1ea), TOBN(0x70f5f514, 0xbbea9af7), TOBN(0x751f55a5, 0x974c283a), TOBN(0x6e30251a, 0xcb452fdb), TOBN(0x31ee6965, 0x50f30650), TOBN(0xb0b3e508, 0x933548d9), TOBN(0xb8949a4f, 0xf4b0ef5b), TOBN(0x208b8326, 0x3c88f3bd), TOBN(0xab147c30, 0xdb1d9989), TOBN(0xed6515fd, 0x44d4df03), TOBN(0x17a12f75, 0xe72eb0c5), TOBN(0x3b59796d, 0x36cf69db), TOBN(0x1219eee9, 0x56670c18), TOBN(0xfe3341f7, 0x7a070d8e), TOBN(0x9b70130b, 0xa327f90c), TOBN(0x36a32462, 0x0ae18e0e), TOBN(0x2021a623, 0x46c0a638), TOBN(0x251b5817, 0xc62eb0d4), TOBN(0x87bfbcdf, 0x4c762293), TOBN(0xf78ab505, 0xcdd61d64), TOBN(0x8c7a53fc, 0xc8c18857), TOBN(0xa653ce6f, 0x16147515), TOBN(0x9c923aa5, 0xea7d52d5), TOBN(0xc24709cb, 0x5c18871f), TOBN(0x7d53bec8, 0x73b3cc74), TOBN(0x59264aff, 0xfdd1d4c4), TOBN(0x5555917e, 0x240da582), TOBN(0xcae8bbda, 0x548f5a0e), TOBN(0x1910eaba, 0x3bbfbbe1), TOBN(0xae579685, 0x7677afc3), TOBN(0x49ea61f1, 0x73ff0b5c), TOBN(0x78655478, 0x4f7c3922), TOBN(0x95d337cd, 0x20c68eef), TOBN(0x68f1e1e5, 0xdf779ab9), TOBN(0x14b491b0, 0xb5cf69a8), TOBN(0x7a6cbbe0, 0x28e3fe89), TOBN(0xe7e1fee4, 0xc5aac0eb), TOBN(0x7f47eda5, 0x697e5140), TOBN(0x4f450137, 0xb454921f), TOBN(0xdb625f84, 0x95cd8185), TOBN(0x74be0ba1, 0xcdb2e583), TOBN(0xaee4fd7c, 0xdd5e6de4), TOBN(0x4251437d, 0xe8101739), TOBN(0x686d72a0, 0xac620366), TOBN(0x4be3fb9c, 0xb6d59344), TOBN(0x6e8b44e7, 0xa1eb75b9), TOBN(0x84e39da3, 0x91a5c10c), TOBN(0x37cc1490, 0xb38f0409), TOBN(0x02951943, 0x2c2ade82), TOBN(0x9b688783, 0x1190a2d8), TOBN(0x25627d14, 0x231182ba), TOBN(0x6eb550aa, 0x658a6d87), TOBN(0x1405aaa7, 0xcf9c7325), TOBN(0xd147142e, 0x5c8748c9), TOBN(0x7f637e4f, 0x53ede0e0), TOBN(0xf8ca2776, 0x14ffad2c), TOBN(0xe58fb1bd, 0xbafb6791), TOBN(0x17158c23, 0xbf8f93fc), TOBN(0x7f15b373, 0x0a4a4655), TOBN(0x39d4add2, 0xd842ca72), TOBN(0xa71e4391, 0x3ed96305), TOBN(0x5bb09cbe, 0x6700be14), TOBN(0x68d69d54, 0xd8befcf6), TOBN(0xa45f5367, 0x37183bcf), TOBN(0x7152b7bb, 0x3370dff7), TOBN(0xcf887baa, 0xbf12525b), TOBN(0xe7ac7bdd, 0xd6d1e3cd), TOBN(0x25914f78, 0x81fdad90), TOBN(0xcf638f56, 0x0d2cf6ab), TOBN(0xb90bc03f, 0xcc054de5), TOBN(0x932811a7, 0x18b06350), TOBN(0x2f00b330, 0x9bbd11ff), TOBN(0x76108a6f, 0xb4044974), TOBN(0x801bb9e0, 0xa851d266), TOBN(0x0dd099be, 0xbf8990c1), TOBN(0x58c5aaaa, 0xabe32986), TOBN(0x0fe9dd2a, 0x50d59c27), TOBN(0x84951ff4, 0x8d307305), TOBN(0x6c23f829, 0x86529b78), TOBN(0x50bb2218, 0x0b136a79), TOBN(0x7e2174de, 0x77a20996), TOBN(0x6f00a4b9, 0xc0bb4da6), TOBN(0x89a25a17, 0xefdde8da), TOBN(0xf728a27e, 0xc11ee01d), TOBN(0xf900553a, 0xe5f10dfb), TOBN(0x189a83c8, 0x02ec893c), TOBN(0x3ca5bdc1, 0x23f66d77), TOBN(0x98781537, 0x97eada9f), TOBN(0x59c50ab3, 0x10256230), TOBN(0x346042d9, 0x323c69b3), TOBN(0x1b715a6d, 0x2c460449), TOBN(0xa41dd476, 0x6ae06e0b), TOBN(0xcdd7888e, 0x9d42e25f), TOBN(0x0f395f74, 0x56b25a20), TOBN(0xeadfe0ae, 0x8700e27e), TOBN(0xb09d52a9, 0x69950093), TOBN(0x3525d9cb, 0x327f8d40), TOBN(0xb8235a94, 0x67df886a), TOBN(0x77e4b0dd, 0x035faec2), TOBN(0x115eb20a, 0x517d7061), TOBN(0x77fe3433, 0x6c2df683), TOBN(0x6870ddc7, 0xcdc6fc67), TOBN(0xb1610588, 0x0b87de83), TOBN(0x343584ca, 0xd9c4ddbe), TOBN(0xb3164f1c, 0x3d754be2), TOBN(0x0731ed3a, 0xc1e6c894), TOBN(0x26327dec, 0x4f6b904c), TOBN(0x9d49c6de, 0x97b5cd32), TOBN(0x40835dae, 0xb5eceecd), TOBN(0xc66350ed, 0xd9ded7fe), TOBN(0x8aeebb5c, 0x7a678804), TOBN(0x51d42fb7, 0x5b8ee9ec), TOBN(0xd7a17bdd, 0x8e3ca118), TOBN(0x40d7511a, 0x2ef4400e), TOBN(0xc48990ac, 0x875a66f4), TOBN(0x8de07d2a, 0x2199e347), TOBN(0xbee75556, 0x2a39e051), TOBN(0x56918786, 0x916e51dc), TOBN(0xeb191313, 0x4a2d89ec), TOBN(0x6679610d, 0x37d341ed), TOBN(0x434fbb41, 0x56d51c2b), TOBN(0xe54b7ee7, 0xd7492dba), TOBN(0xaa33a79a, 0x59021493), TOBN(0x49fc5054, 0xe4bd6d3d), TOBN(0x09540f04, 0x5ab551d0), TOBN(0x8acc9085, 0x4942d3a6), TOBN(0x231af02f, 0x2d28323b), TOBN(0x93458cac, 0x0992c163), TOBN(0x1fef8e71, 0x888e3bb4), TOBN(0x27578da5, 0xbe8c268c), TOBN(0xcc8be792, 0xe805ec00), TOBN(0x29267bae, 0xc61c3855), TOBN(0xebff429d, 0x58c1fd3b), TOBN(0x22d886c0, 0x8c0b93b8), TOBN(0xca5e00b2, 0x2ddb8953), TOBN(0xcf330117, 0xc3fed8b7), TOBN(0xd49ac6fa, 0x819c01f6), TOBN(0x6ddaa6bd, 0x3c0fbd54), TOBN(0x91743068, 0x8049a2cf), TOBN(0xd67f981e, 0xaff2ef81), TOBN(0xc3654d35, 0x2818ae80), TOBN(0x81d05044, 0x1b2aa892), TOBN(0x2db067bf, 0x3d099328), TOBN(0xe7c79e86, 0x703dcc97), TOBN(0xe66f9b37, 0xe133e215), TOBN(0xcdf119a6, 0xe39a7a5c), TOBN(0x47c60de3, 0x876f1b61), TOBN(0x6e405939, 0xd860f1b2), TOBN(0x3e9a1dbc, 0xf5ed4d4a), TOBN(0x3f23619e, 0xc9b6bcbd), TOBN(0x5ee790cf, 0x734e4497), TOBN(0xf0a834b1, 0x5bdaf9bb), TOBN(0x02cedda7, 0x4ca295f0), TOBN(0x4619aa2b, 0xcb8e378c), TOBN(0xe5613244, 0xcc987ea4), TOBN(0x0bc022cc, 0x76b23a50), TOBN(0x4a2793ad, 0x0a6c21ce), TOBN(0x38328780, 0x89cac3f5), TOBN(0x29176f1b, 0xcba26d56), TOBN(0x06296187, 0x4f6f59eb), TOBN(0x86e9bca9, 0x8bdc658e), TOBN(0x2ca9c4d3, 0x57e30402), TOBN(0x5438b216, 0x516a09bb), TOBN(0x0a6a063c, 0x7672765a), TOBN(0x37a3ce64, 0x0547b9bf), TOBN(0x42c099c8, 0x98b1a633), TOBN(0xb5ab800d, 0x05ee6961), TOBN(0xf1963f59, 0x11a5acd6), TOBN(0xbaee6157, 0x46201063), TOBN(0x36d9a649, 0xa596210a), TOBN(0xaed04363, 0x1ba7138c), TOBN(0xcf817d1c, 0xa4a82b76), TOBN(0x5586960e, 0xf3806be9), TOBN(0x7ab67c89, 0x09dc6bb5), TOBN(0x52ace7a0, 0x114fe7eb), TOBN(0xcd987618, 0xcbbc9b70), TOBN(0x4f06fd5a, 0x604ca5e1), TOBN(0x90af14ca, 0x6dbde133), TOBN(0x1afe4322, 0x948a3264), TOBN(0xa70d2ca6, 0xc44b2c6c), TOBN(0xab726799, 0x0ef87dfe), TOBN(0x310f64dc, 0x2e696377), TOBN(0x49b42e68, 0x4c8126a0), TOBN(0x0ea444c3, 0xcea0b176), TOBN(0x53a8ddf7, 0xcb269182), TOBN(0xf3e674eb, 0xbbba9dcb), TOBN(0x0d2878a8, 0xd8669d33), TOBN(0x04b935d5, 0xd019b6a3), TOBN(0xbb5cf88e, 0x406f1e46), TOBN(0xa1912d16, 0x5b57c111), TOBN(0x9803fc21, 0x19ebfd78), TOBN(0x4f231c9e, 0xc07764a9), TOBN(0xd93286ee, 0xb75bd055), TOBN(0x83a9457d, 0x8ee6c9de), TOBN(0x04695915, 0x6087ec90), TOBN(0x14c6dd8a, 0x58d6cd46), TOBN(0x9cb633b5, 0x8e6634d2), TOBN(0xc1305047, 0xf81bc328), TOBN(0x12ede0e2, 0x26a177e5), TOBN(0x332cca62, 0x065a6f4f), TOBN(0xc3a47ecd, 0x67be487b), TOBN(0x741eb187, 0x0f47ed1c), TOBN(0x99e66e58, 0xe7598b14), TOBN(0x6f0544ca, 0x63d0ff12), TOBN(0xe5efc784, 0xb610a05f), TOBN(0xf72917b1, 0x7cad7b47), TOBN(0x3ff6ea20, 0xf2cac0c0), TOBN(0xcc23791b, 0xf21db8b7), TOBN(0x7dac70b1, 0xd7d93565), TOBN(0x682cda1d, 0x694bdaad), TOBN(0xeb88bb8c, 0x1023516d), TOBN(0xc4c634b4, 0xdfdbeb1b), TOBN(0x22f5ca72, 0xb4ee4dea), TOBN(0x1045a368, 0xe6524821), TOBN(0xed9e8a3f, 0x052b18b2), TOBN(0x9b7f2cb1, 0xb961f49a), TOBN(0x7fee2ec1, 0x7b009670), TOBN(0x350d8754, 0x22507a6d), TOBN(0x561bd711, 0x4db55f1d), TOBN(0x4c189ccc, 0x320bbcaf), TOBN(0x568434cf, 0xdf1de48c), TOBN(0x6af1b00e, 0x0fa8f128), TOBN(0xf0ba9d02, 0x8907583c), TOBN(0x735a4004, 0x32ff9f60), TOBN(0x3dd8e4b6, 0xc25dcf33), TOBN(0xf2230f16, 0x42c74cef), TOBN(0xd8117623, 0x013fa8ad), TOBN(0x36822876, 0xf51fe76e), TOBN(0x8a6811cc, 0x11d62589), TOBN(0xc3fc7e65, 0x46225718), TOBN(0xb7df2c9f, 0xc82fdbcd), TOBN(0x3b1d4e52, 0xdd7b205b), TOBN(0xb6959478, 0x47a2e414), TOBN(0x05e4d793, 0xefa91148), TOBN(0xb47ed446, 0xfd2e9675), TOBN(0x1a7098b9, 0x04c9d9bf), TOBN(0x661e2881, 0x1b793048), TOBN(0xb1a16966, 0xb01ee461), TOBN(0xbc521308, 0x2954746f), TOBN(0xc909a0fc, 0x2477de50), TOBN(0xd80bb41c, 0x7dbd51ef), TOBN(0xa85be7ec, 0x53294905), TOBN(0x6d465b18, 0x83958f97), TOBN(0x16f6f330, 0xfb6840fd), TOBN(0xfaaeb214, 0x3401e6c8), TOBN(0xaf83d30f, 0xccb5b4f8), TOBN(0x22885739, 0x266dec4b), TOBN(0x51b4367c, 0x7bc467df), TOBN(0x926562e3, 0xd842d27a), TOBN(0xdfcb6614, 0x0fea14a6), TOBN(0xeb394dae, 0xf2734cd9), TOBN(0x3eeae5d2, 0x11c0be98), TOBN(0xb1e6ed11, 0x814e8165), TOBN(0x191086bc, 0xe52bce1c), TOBN(0x14b74cc6, 0xa75a04da), TOBN(0x63cf1186, 0x8c060985), TOBN(0x071047de, 0x2dbd7f7c), TOBN(0x4e433b8b, 0xce0942ca), TOBN(0xecbac447, 0xd8fec61d), TOBN(0x8f0ed0e2, 0xebf3232f), TOBN(0xfff80f9e, 0xc52a2edd), TOBN(0xad9ab433, 0x75b55fdb), TOBN(0x73ca7820, 0xe42e0c11), TOBN(0x6dace0a0, 0xe6251b46), TOBN(0x89bc6b5c, 0x4c0d932d), TOBN(0x3438cd77, 0x095da19a), TOBN(0x2f24a939, 0x8d48bdfb), TOBN(0x99b47e46, 0x766561b7), TOBN(0x736600e6, 0x0ed0322a), TOBN(0x06a47cb1, 0x638e1865), TOBN(0x927c1c2d, 0xcb136000), TOBN(0x29542337, 0x0cc5df69), TOBN(0x99b37c02, 0x09d649a9), TOBN(0xc5f0043c, 0x6aefdb27), TOBN(0x6cdd9987, 0x1be95c27), TOBN(0x69850931, 0x390420d2), TOBN(0x299c40ac, 0x0983efa4), TOBN(0x3a05e778, 0xaf39aead), TOBN(0x84274408, 0x43a45193), TOBN(0x6bcd0fb9, 0x91a711a0), TOBN(0x461592c8, 0x9f52ab17), TOBN(0xb49302b4, 0xda3c6ed6), TOBN(0xc51fddc7, 0x330d7067), TOBN(0x94babeb6, 0xda50d531), TOBN(0x521b840d, 0xa6a7b9da), TOBN(0x5305151e, 0x404bdc89), TOBN(0x1bcde201, 0xd0d07449), TOBN(0xf427a78b, 0x3b76a59a), TOBN(0xf84841ce, 0x07791a1b), TOBN(0xebd314be, 0xbf91ed1c), TOBN(0x8e61d34c, 0xbf172943), TOBN(0x1d5dc451, 0x5541b892), TOBN(0xb186ee41, 0xfc9d9e54), TOBN(0x9d9f345e, 0xd5bf610d), TOBN(0x3e7ba65d, 0xf6acca9f), TOBN(0x9dda787a, 0xa8369486), TOBN(0x09f9dab7, 0x8eb5ba53), TOBN(0x5afb2033, 0xd6481bc3), TOBN(0x76f4ce30, 0xafa62104), TOBN(0xa8fa00cf, 0xf4f066b5), TOBN(0x89ab5143, 0x461dafc2), TOBN(0x44339ed7, 0xa3389998), TOBN(0x2ff862f1, 0xbc214903), TOBN(0x2c88f985, 0xb05556e3), TOBN(0xcd96058e, 0x3467081e), TOBN(0x7d6a4176, 0xedc637ea), TOBN(0xe1743d09, 0x36a5acdc), TOBN(0x66fd72e2, 0x7eb37726), TOBN(0xf7fa264e, 0x1481a037), TOBN(0x9fbd3bde, 0x45f4aa79), TOBN(0xed1e0147, 0x767c3e22), TOBN(0x7621f979, 0x82e7abe2), TOBN(0x19eedc72, 0x45f633f8), TOBN(0xe69b155e, 0x6137bf3a), TOBN(0xa0ad13ce, 0x414ee94e), TOBN(0x93e3d524, 0x1c0e651a), TOBN(0xab1a6e2a, 0x02ce227e), TOBN(0xe7af1797, 0x4ab27eca), TOBN(0x245446de, 0xbd444f39), TOBN(0x59e22a21, 0x56c07613), TOBN(0x43deafce, 0xf4275498), TOBN(0x10834ccb, 0x67fd0946), TOBN(0xa75841e5, 0x47406edf), TOBN(0xebd6a677, 0x7b0ac93d), TOBN(0xa6e37b0d, 0x78f5e0d7), TOBN(0x2516c096, 0x76f5492b), TOBN(0x1e4bf888, 0x9ac05f3a), TOBN(0xcdb42ce0, 0x4df0ba2b), TOBN(0x935d5cfd, 0x5062341b), TOBN(0x8a303333, 0x82acac20), TOBN(0x429438c4, 0x5198b00e), TOBN(0x1d083bc9, 0x049d33fa), TOBN(0x58b82dda, 0x946f67ff), TOBN(0xac3e2db8, 0x67a1d6a3), TOBN(0x62e6bead, 0x1798aac8), TOBN(0xfc85980f, 0xde46c58c), TOBN(0xa7f69379, 0x69c8d7be), TOBN(0x23557927, 0x837b35ec), TOBN(0x06a933d8, 0xe0790c0c), TOBN(0x827c0e9b, 0x077ff55d), TOBN(0x53977798, 0xbb26e680), TOBN(0x59530874, 0x1d9cb54f), TOBN(0xcca3f449, 0x4aac53ef), TOBN(0x11dc5c87, 0xa07eda0f), TOBN(0xc138bccf, 0xfd6400c8), TOBN(0x549680d3, 0x13e5da72), TOBN(0xc93eed82, 0x4540617e), TOBN(0xfd3db157, 0x4d0b75c0), TOBN(0x9716eb42, 0x6386075b), TOBN(0x0639605c, 0x817b2c16), TOBN(0x09915109, 0xf1e4f201), TOBN(0x35c9a928, 0x5cca6c3b), TOBN(0xb25f7d1a, 0x3505c900), TOBN(0xeb9f7d20, 0x630480c4), TOBN(0xc3c7b8c6, 0x2a1a501c), TOBN(0x3f99183c, 0x5a1f8e24), TOBN(0xfdb118fa, 0x9dd255f0), TOBN(0xb9b18b90, 0xc27f62a6), TOBN(0xe8f732f7, 0x396ec191), TOBN(0x524a2d91, 0x0be786ab), TOBN(0x5d32adef, 0x0ac5a0f5), TOBN(0x9b53d4d6, 0x9725f694), TOBN(0x032a76c6, 0x0510ba89), TOBN(0x840391a3, 0xebeb1544), TOBN(0x44b7b88c, 0x3ed73ac3), TOBN(0xd24bae7a, 0x256cb8b3), TOBN(0x7ceb151a, 0xe394cb12), TOBN(0xbd6b66d0, 0x5bc1e6a8), TOBN(0xec70cecb, 0x090f07bf), TOBN(0x270644ed, 0x7d937589), TOBN(0xee9e1a3d, 0x5f1dccfe), TOBN(0xb0d40a84, 0x745b98d2), TOBN(0xda429a21, 0x2556ed40), TOBN(0xf676eced, 0x85148cb9), TOBN(0x5a22d40c, 0xded18936), TOBN(0x3bc4b9e5, 0x70e8a4ce), TOBN(0xbfd1445b, 0x9eae0379), TOBN(0xf23f2c0c, 0x1a0bd47e), TOBN(0xa9c0bb31, 0xe1845531), TOBN(0x9ddc4d60, 0x0a4c3f6b), TOBN(0xbdfaad79, 0x2c15ef44), TOBN(0xce55a236, 0x7f484acc), TOBN(0x08653ca7, 0x055b1f15), TOBN(0x2efa8724, 0x538873a3), TOBN(0x09299e5d, 0xace1c7e7), TOBN(0x07afab66, 0xade332ba), TOBN(0x9be1fdf6, 0x92dd71b7), TOBN(0xa49b5d59, 0x5758b11c), TOBN(0x0b852893, 0xc8654f40), TOBN(0xb63ef6f4, 0x52379447), TOBN(0xd4957d29, 0x105e690c), TOBN(0x7d484363, 0x646559b0), TOBN(0xf4a8273c, 0x49788a8e), TOBN(0xee406cb8, 0x34ce54a9), TOBN(0x1e1c260f, 0xf86fda9b), TOBN(0xe150e228, 0xcf6a4a81), TOBN(0x1fa3b6a3, 0x1b488772), TOBN(0x1e6ff110, 0xc5a9c15b), TOBN(0xc6133b91, 0x8ad6aa47), TOBN(0x8ac5d55c, 0x9dffa978), TOBN(0xba1d1c1d, 0x5f3965f2), TOBN(0xf969f4e0, 0x7732b52f), TOBN(0xfceecdb5, 0xa5172a07), TOBN(0xb0120a5f, 0x10f2b8f5), TOBN(0xc83a6cdf, 0x5c4c2f63), TOBN(0x4d47a491, 0xf8f9c213), TOBN(0xd9e1cce5, 0xd3f1bbd5), TOBN(0x0d91bc7c, 0xaba7e372), TOBN(0xfcdc74c8, 0xdfd1a2db), TOBN(0x05efa800, 0x374618e5), TOBN(0x11216969, 0x15a7925e), TOBN(0xd4c89823, 0xf6021c5d), TOBN(0x880d5e84, 0xeff14423), TOBN(0x6523bc5a, 0x6dcd1396), TOBN(0xd1acfdfc, 0x113c978b), TOBN(0xb0c164e8, 0xbbb66840), TOBN(0xf7f4301e, 0x72b58459), TOBN(0xc29ad4a6, 0xa638e8ec), TOBN(0xf5ab8961, 0x46b78699), TOBN(0x9dbd7974, 0x0e954750), TOBN(0x0121de88, 0x64f9d2c6), TOBN(0x2e597b42, 0xd985232e), TOBN(0x55b6c3c5, 0x53451777), TOBN(0xbb53e547, 0x519cb9fb), TOBN(0xf134019f, 0x8428600d), TOBN(0x5a473176, 0xe081791a), TOBN(0x2f3e2263, 0x35fb0c08), TOBN(0xb28c3017, 0x73d273b0), TOBN(0xccd21076, 0x7721ef9a), TOBN(0x054cc292, 0xb650dc39), TOBN(0x662246de, 0x6188045e), TOBN(0x904b52fa, 0x6b83c0d1), TOBN(0xa72df267, 0x97e9cd46), TOBN(0x886b43cd, 0x899725e4), TOBN(0x2b651688, 0xd849ff22), TOBN(0x60479b79, 0x02f34533), TOBN(0x5e354c14, 0x0c77c148), TOBN(0xb4bb7581, 0xa8537c78), TOBN(0x188043d7, 0xefe1495f), TOBN(0x9ba12f42, 0x8c1d5026), TOBN(0x2e0c8a26, 0x93d4aaab), TOBN(0xbdba7b8b, 0xaa57c450), TOBN(0x140c9ad6, 0x9bbdafef), TOBN(0x2067aa42, 0x25ac0f18), TOBN(0xf7b1295b, 0x04d1fbf3), TOBN(0x14829111, 0xa4b04824), TOBN(0x2ce3f192, 0x33bd5e91), TOBN(0x9c7a1d55, 0x8f2e1b72), TOBN(0xfe932286, 0x302aa243), TOBN(0x497ca7b4, 0xd4be9554), TOBN(0xb8e821b8, 0xe0547a6e), TOBN(0xfb2838be, 0x67e573e0), TOBN(0x05891db9, 0x4084c44b), TOBN(0x91311373, 0x96c1c2c5), TOBN(0x6aebfa3f, 0xd958444b), TOBN(0xac9cdce9, 0xe56e55c1), TOBN(0x7148ced3, 0x2caa46d0), TOBN(0x2e10c7ef, 0xb61fe8eb), TOBN(0x9fd835da, 0xff97cf4d),} , {TOBN(0xa36da109, 0x081e9387), TOBN(0xfb9780d7, 0x8c935828), TOBN(0xd5940332, 0xe540b015), TOBN(0xc9d7b51b, 0xe0f466fa), TOBN(0xfaadcd41, 0xd6d9f671), TOBN(0xba6c1e28, 0xb1a2ac17), TOBN(0x066a7833, 0xed201e5f), TOBN(0x19d99719, 0xf90f462b), TOBN(0xf431f462, 0x060b5f61), TOBN(0xa56f46b4, 0x7bd057c2), TOBN(0x348dca6c, 0x47e1bf65), TOBN(0x9a38783e, 0x41bcf1ff), TOBN(0x7a5d33a9, 0xda710718), TOBN(0x5a779987, 0x2e0aeaf6), TOBN(0xca87314d, 0x2d29d187), TOBN(0xfa0edc3e, 0xc687d733), TOBN(0x9df33621, 0x6a31e09b), TOBN(0xde89e44d, 0xc1350e35), TOBN(0x29214871, 0x4ca0cf52), TOBN(0xdf379672, 0x0b88a538), TOBN(0xc92a510a, 0x2591d61b), TOBN(0x79aa87d7, 0x585b447b), TOBN(0xf67db604, 0xe5287f77), TOBN(0x1697c8bf, 0x5efe7a80), TOBN(0x1c894849, 0xcb198ac7), TOBN(0xa884a93d, 0x0f264665), TOBN(0x2da964ef, 0x9b200678), TOBN(0x3c351b87, 0x009834e6), TOBN(0xafb2ef9f, 0xe2c4b44b), TOBN(0x580f6c47, 0x3326790c), TOBN(0xb8480521, 0x0b02264a), TOBN(0x8ba6f9e2, 0x42a194e2), TOBN(0xfc87975f, 0x8fb54738), TOBN(0x35160788, 0x27c3ead3), TOBN(0x834116d2, 0xb74a085a), TOBN(0x53c99a73, 0xa62fe996), TOBN(0x87585be0, 0x5b81c51b), TOBN(0x925bafa8, 0xbe0852b7), TOBN(0x76a4fafd, 0xa84d19a7), TOBN(0x39a45982, 0x585206d4), TOBN(0x499b6ab6, 0x5eb03c0e), TOBN(0xf19b7954, 0x72bc3fde), TOBN(0xa86b5b9c, 0x6e3a80d2), TOBN(0xe4377508, 0x6d42819f), TOBN(0xc1663650, 0xbb3ee8a3), TOBN(0x75eb14fc, 0xb132075f), TOBN(0xa8ccc906, 0x7ad834f6), TOBN(0xea6a2474, 0xe6e92ffd), TOBN(0x9d72fd95, 0x0f8d6758), TOBN(0xcb84e101, 0x408c07dd), TOBN(0xb9114bfd, 0xa5e23221), TOBN(0x358b5fe2, 0xe94e742c), TOBN(0x1c0577ec, 0x95f40e75), TOBN(0xf0155451, 0x3d73f3d6), TOBN(0x9d55cd67, 0xbd1b9b66), TOBN(0x63e86e78, 0xaf8d63c7), TOBN(0x39d934ab, 0xd3c095f1), TOBN(0x04b261be, 0xe4b76d71), TOBN(0x1d2e6970, 0xe73e6984), TOBN(0x879fb23b, 0x5e5fcb11), TOBN(0x11506c72, 0xdfd75490), TOBN(0x3a97d085, 0x61bcf1c1), TOBN(0x43201d82, 0xbf5e7007), TOBN(0x7f0ac52f, 0x798232a7), TOBN(0x2715cbc4, 0x6eb564d4), TOBN(0x8d6c752c, 0x9e570e29), TOBN(0xf80247c8, 0x9ef5fd5d), TOBN(0xc3c66b46, 0xd53eb514), TOBN(0x9666b401, 0x0f87de56), TOBN(0xce62c06f, 0xc6c603b5), TOBN(0xae7b4c60, 0x7e4fc942), TOBN(0x38ac0b77, 0x663a9c19), TOBN(0xcb4d20ee, 0x4b049136), TOBN(0x8b63bf12, 0x356a4613), TOBN(0x1221aef6, 0x70e08128), TOBN(0xe62d8c51, 0x4acb6b16), TOBN(0x71f64a67, 0x379e7896), TOBN(0xb25237a2, 0xcafd7fa5), TOBN(0xf077bd98, 0x3841ba6a), TOBN(0xc4ac0244, 0x3cd16e7e), TOBN(0x548ba869, 0x21fea4ca), TOBN(0xd36d0817, 0xf3dfdac1), TOBN(0x09d8d71f, 0xf4685faf), TOBN(0x8eff66be, 0xc52c459a), TOBN(0x182faee7, 0x0b57235e), TOBN(0xee3c39b1, 0x0106712b), TOBN(0x5107331f, 0xc0fcdcb0), TOBN(0x669fb9dc, 0xa51054ba), TOBN(0xb25101fb, 0x319d7682), TOBN(0xb0293129, 0x0a982fee), TOBN(0x51c1c9b9, 0x0261b344), TOBN(0x0e008c5b, 0xbfd371fa), TOBN(0xd866dd1c, 0x0278ca33), TOBN(0x666f76a6, 0xe5aa53b1), TOBN(0xe5cfb779, 0x6013a2cf), TOBN(0x1d3a1aad, 0xa3521836), TOBN(0xcedd2531, 0x73faa485), TOBN(0xc8ee6c4f, 0xc0a76878), TOBN(0xddbccfc9, 0x2a11667d), TOBN(0x1a418ea9, 0x1c2f695a), TOBN(0xdb11bd92, 0x51f73971), TOBN(0x3e4b3c82, 0xda2ed89f), TOBN(0x9a44f3f4, 0xe73e0319), TOBN(0xd1e3de0f, 0x303431af), TOBN(0x3c5604ff, 0x50f75f9c), TOBN(0x1d8eddf3, 0x7e752b22), TOBN(0x0ef074dd, 0x3c9a1118), TOBN(0xd0ffc172, 0xccb86d7b), TOBN(0xabd1ece3, 0x037d90f2), TOBN(0xe3f307d6, 0x6055856c), TOBN(0x422f9328, 0x7e4c6daf), TOBN(0x902aac66, 0x334879a0), TOBN(0xb6a1e7bf, 0x94cdfade), TOBN(0x6c97e1ed, 0x7fc6d634), TOBN(0x662ad24d, 0xa2fb63f8), TOBN(0xf81be1b9, 0xa5928405), TOBN(0x86d765e4, 0xd14b4206), TOBN(0xbecc2e0e, 0x8fa0db65), TOBN(0xa28838e0, 0xb17fc76c), TOBN(0xe49a602a, 0xe37cf24e), TOBN(0x76b4131a, 0x567193ec), TOBN(0xaf3c305a, 0xe5f6e70b), TOBN(0x9587bd39, 0x031eebdd), TOBN(0x5709def8, 0x71bbe831), TOBN(0x57059983, 0x0eb2b669), TOBN(0x4d80ce1b, 0x875b7029), TOBN(0x838a7da8, 0x0364ac16), TOBN(0x2f431d23, 0xbe1c83ab), TOBN(0xe56812a6, 0xf9294dd3), TOBN(0xb448d01f, 0x9b4b0d77), TOBN(0xf3ae6061, 0x04e8305c), TOBN(0x2bead645, 0x94d8c63e), TOBN(0x0a85434d, 0x84fd8b07), TOBN(0x537b983f, 0xf7a9dee5), TOBN(0xedcc5f18, 0xef55bd85), TOBN(0x2041af62, 0x21c6cf8b), TOBN(0x8e52874c, 0xb940c71e), TOBN(0x211935a9, 0xdb5f4b3a), TOBN(0x94350492, 0x301b1dc3), TOBN(0x33d2646d, 0x29958620), TOBN(0x16b0d64b, 0xef911404), TOBN(0x9d1f25ea, 0x9a3c5ef4), TOBN(0x20f200eb, 0x4a352c78), TOBN(0x43929f2c, 0x4bd0b428), TOBN(0xa5656667, 0xc7196e29), TOBN(0x7992c2f0, 0x9391be48), TOBN(0xaaa97cbd, 0x9ee0cd6e), TOBN(0x51b0310c, 0x3dc8c9bf), TOBN(0x237f8acf, 0xdd9f22cb), TOBN(0xbb1d81a1, 0xb585d584), TOBN(0x8d5d85f5, 0x8c416388), TOBN(0x0d6e5a5a, 0x42fe474f), TOBN(0xe7812766, 0x38235d4e), TOBN(0x1c62bd67, 0x496e3298), TOBN(0x8378660c, 0x3f175bc8), TOBN(0x4d04e189, 0x17afdd4d), TOBN(0x32a81601, 0x85a8068c), TOBN(0xdb58e4e1, 0x92b29a85), TOBN(0xe8a65b86, 0xc70d8a3b), TOBN(0x5f0e6f4e, 0x98a0403b), TOBN(0x08129684, 0x69ed2370), TOBN(0x34dc30bd, 0x0871ee26), TOBN(0x3a5ce948, 0x7c9c5b05), TOBN(0x7d487b80, 0x43a90c87), TOBN(0x4089ba37, 0xdd0e7179), TOBN(0x45f80191, 0xb4041811), TOBN(0x1c3e1058, 0x98747ba5), TOBN(0x98c4e13a, 0x6e1ae592), TOBN(0xd44636e6, 0xe82c9f9e), TOBN(0x711db87c, 0xc33a1043), TOBN(0x6f431263, 0xaa8aec05), TOBN(0x43ff120d, 0x2744a4aa), TOBN(0xd3bd892f, 0xae77779b), TOBN(0xf0fe0cc9, 0x8cdc9f82), TOBN(0xca5f7fe6, 0xf1c5b1bc), TOBN(0xcc63a682, 0x44929a72), TOBN(0xc7eaba0c, 0x09dbe19a), TOBN(0x2f3585ad, 0x6b5c73c2), TOBN(0x8ab8924b, 0x0ae50c30), TOBN(0x17fcd27a, 0x638b30ba), TOBN(0xaf414d34, 0x10b3d5a5), TOBN(0x09c107d2, 0x2a9accf1), TOBN(0x15dac49f, 0x946a6242), TOBN(0xaec3df2a, 0xd707d642), TOBN(0x2c2492b7, 0x3f894ae0), TOBN(0xf59df3e5, 0xb75f18ce), TOBN(0x7cb740d2, 0x8f53cad0), TOBN(0x3eb585fb, 0xc4f01294), TOBN(0x17da0c86, 0x32c7f717), TOBN(0xeb8c795b, 0xaf943f4c), TOBN(0x4ee23fb5, 0xf67c51d2), TOBN(0xef187575, 0x68889949), TOBN(0xa6b4bdb2, 0x0389168b), TOBN(0xc4ecd258, 0xea577d03), TOBN(0x3a63782b, 0x55743082), TOBN(0x6f678f4c, 0xc72f08cd), TOBN(0x553511cf, 0x65e58dd8), TOBN(0xd53b4e3e, 0xd402c0cd), TOBN(0x37de3e29, 0xa037c14c), TOBN(0x86b6c516, 0xc05712aa), TOBN(0x2834da3e, 0xb38dff6f), TOBN(0xbe012c52, 0xea636be8), TOBN(0x292d238c, 0x61dd37f8), TOBN(0x0e54523f, 0x8f8142db), TOBN(0xe31eb436, 0x036a05d8), TOBN(0x83e3cdff, 0x1e93c0ff), TOBN(0x3fd2fe0f, 0x50821ddf), TOBN(0xc8e19b0d, 0xff9eb33b), TOBN(0xc8cc943f, 0xb569a5fe), TOBN(0xad0090d4, 0xd4342d75), TOBN(0x82090b4b, 0xcaeca000), TOBN(0xca39687f, 0x1bd410eb), TOBN(0xe7bb0df7, 0x65959d77), TOBN(0x39d78218, 0x9c964999), TOBN(0xd87f62e8, 0xb2415451), TOBN(0xe5efb774, 0xbed76108), TOBN(0x3ea011a4, 0xe822f0d0), TOBN(0xbc647ad1, 0x5a8704f8), TOBN(0xbb315b35, 0x50c6820f), TOBN(0x863dec3d, 0xb7e76bec), TOBN(0x01ff5d3a, 0xf017bfc7), TOBN(0x20054439, 0x976b8229), TOBN(0x067fca37, 0x0bbd0d3b), TOBN(0xf63dde64, 0x7f5e3d0f), TOBN(0x22dbefb3, 0x2a4c94e9), TOBN(0xafbff0fe, 0x96f8278a), TOBN(0x80aea0b1, 0x3503793d), TOBN(0xb2238029, 0x5f06cd29), TOBN(0x65703e57, 0x8ec3feca), TOBN(0x06c38314, 0x393e7053), TOBN(0xa0b751eb, 0x7c6734c4), TOBN(0xd2e8a435, 0xc59f0f1e), TOBN(0x147d9052, 0x5e9ca895), TOBN(0x2f4dd31e, 0x972072df), TOBN(0xa16fda8e, 0xe6c6755c), TOBN(0xc66826ff, 0xcf196558), TOBN(0x1f1a76a3, 0x0cf43895), TOBN(0xa9d604e0, 0x83c3097b), TOBN(0xe1908309, 0x66390e0e), TOBN(0xa50bf753, 0xb3c85eff), TOBN(0x0696bdde, 0xf6a70251), TOBN(0x548b801b, 0x3c6ab16a), TOBN(0x37fcf704, 0xa4d08762), TOBN(0x090b3def, 0xdff76c4e), TOBN(0x87e8cb89, 0x69cb9158), TOBN(0x44a90744, 0x995ece43), TOBN(0xf85395f4, 0x0ad9fbf5), TOBN(0x49b0f6c5, 0x4fb0c82d), TOBN(0x75d9bc15, 0xadf7cccf), TOBN(0x81a3e5d6, 0xdfa1e1b0), TOBN(0x8c39e444, 0x249bc17e), TOBN(0xf37dccb2, 0x8ea7fd43), TOBN(0xda654873, 0x907fba12), TOBN(0x35daa6da, 0x4a372904), TOBN(0x0564cfc6, 0x6283a6c5), TOBN(0xd09fa4f6, 0x4a9395bf), TOBN(0x688e9ec9, 0xaeb19a36), TOBN(0xd913f1ce, 0xc7bfbfb4), TOBN(0x797b9a3c, 0x61c2faa6), TOBN(0x2f979bec, 0x6a0a9c12), TOBN(0xb5969d0f, 0x359679ec), TOBN(0xebcf523d, 0x079b0460), TOBN(0xfd6b0008, 0x10fab870), TOBN(0x3f2edcda, 0x9373a39c), TOBN(0x0d64f9a7, 0x6f568431), TOBN(0xf848c27c, 0x02f8898c), TOBN(0xf418ade1, 0x260b5bd5), TOBN(0xc1f3e323, 0x6973dee8), TOBN(0x46e9319c, 0x26c185dd), TOBN(0x6d85b7d8, 0x546f0ac4), TOBN(0x427965f2, 0x247f9d57), TOBN(0xb519b636, 0xb0035f48), TOBN(0x6b6163a9, 0xab87d59c), TOBN(0xff9f58c3, 0x39caaa11), TOBN(0x4ac39cde, 0x3177387b), TOBN(0x5f6557c2, 0x873e77f9), TOBN(0x67504006, 0x36a83041), TOBN(0x9b1c96ca, 0x75ef196c), TOBN(0xf34283de, 0xb08c7940), TOBN(0x7ea09644, 0x1128c316), TOBN(0xb510b3b5, 0x6aa39dff), TOBN(0x59b43da2, 0x9f8e4d8c), TOBN(0xa8ce31fd, 0x9e4c4b9f), TOBN(0x0e20be26, 0xc1303c01), TOBN(0x18187182, 0xe8ee47c9), TOBN(0xd9687cdb, 0x7db98101), TOBN(0x7a520e4d, 0xa1e14ff6), TOBN(0x429808ba, 0x8836d572), TOBN(0xa37ca60d, 0x4944b663), TOBN(0xf901f7a9, 0xa3f91ae5), TOBN(0xe4e3e76e, 0x9e36e3b1), TOBN(0x9aa219cf, 0x29d93250), TOBN(0x347fe275, 0x056a2512), TOBN(0xa4d643d9, 0xde65d95c), TOBN(0x9669d396, 0x699fc3ed), TOBN(0xb598dee2, 0xcf8c6bbe), TOBN(0x682ac1e5, 0xdda9e5c6), TOBN(0x4e0d3c72, 0xcaa9fc95), TOBN(0x17faaade, 0x772bea44), TOBN(0x5ef8428c, 0xab0009c8), TOBN(0xcc4ce47a, 0x460ff016), TOBN(0xda6d12bf, 0x725281cb), TOBN(0x44c67848, 0x0223aad2), TOBN(0x6e342afa, 0x36256e28), TOBN(0x1400bb0b, 0x93a37c04), TOBN(0x62b1bc9b, 0xdd10bd96), TOBN(0x7251adeb, 0x0dac46b7), TOBN(0x7d33b92e, 0x7be4ef51), TOBN(0x28b2a94b, 0xe61fa29a), TOBN(0x4b2be13f, 0x06422233), TOBN(0x36d6d062, 0x330d8d37), TOBN(0x5ef80e1e, 0xb28ca005), TOBN(0x174d4699, 0x6d16768e), TOBN(0x9fc4ff6a, 0x628bf217), TOBN(0x77705a94, 0x154e490d), TOBN(0x9d96dd28, 0x8d2d997a), TOBN(0x77e2d9d8, 0xce5d72c4), TOBN(0x9d06c5a4, 0xc11c714f), TOBN(0x02aa5136, 0x79e4a03e), TOBN(0x1386b3c2, 0x030ff28b), TOBN(0xfe82e8a6, 0xfb283f61), TOBN(0x7df203e5, 0xf3abc3fb), TOBN(0xeec7c351, 0x3a4d3622), TOBN(0xf7d17dbf, 0xdf762761), TOBN(0xc3956e44, 0x522055f0), TOBN(0xde3012db, 0x8fa748db), TOBN(0xca9fcb63, 0xbf1dcc14), TOBN(0xa56d9dcf, 0xbe4e2f3a), TOBN(0xb86186b6, 0x8bcec9c2), TOBN(0x7cf24df9, 0x680b9f06), TOBN(0xc46b45ea, 0xc0d29281), TOBN(0xfff42bc5, 0x07b10e12), TOBN(0x12263c40, 0x4d289427), TOBN(0x3d5f1899, 0xb4848ec4), TOBN(0x11f97010, 0xd040800c), TOBN(0xb4c5f529, 0x300feb20), TOBN(0xcc543f8f, 0xde94fdcb), TOBN(0xe96af739, 0xc7c2f05e), TOBN(0xaa5e0036, 0x882692e1), TOBN(0x09c75b68, 0x950d4ae9), TOBN(0x62f63df2, 0xb5932a7a), TOBN(0x2658252e, 0xde0979ad), TOBN(0x2a19343f, 0xb5e69631), TOBN(0x718c7501, 0x525b666b), TOBN(0x26a42d69, 0xea40dc3a), TOBN(0xdc84ad22, 0xaecc018f), TOBN(0x25c36c7b, 0x3270f04a), TOBN(0x46ba6d47, 0x50fa72ed), TOBN(0x6c37d1c5, 0x93e58a8e), TOBN(0xa2394731, 0x120c088c), TOBN(0xc3be4263, 0xcb6e86da), TOBN(0x2c417d36, 0x7126d038), TOBN(0x5b70f9c5, 0x8b6f8efa), TOBN(0x671a2faa, 0x37718536), TOBN(0xd3ced3c6, 0xb539c92b), TOBN(0xe56f1bd9, 0xa31203c2), TOBN(0x8b096ec4, 0x9ff3c8eb), TOBN(0x2deae432, 0x43491cea), TOBN(0x2465c6eb, 0x17943794), TOBN(0x5d267e66, 0x20586843), TOBN(0x9d3d116d, 0xb07159d0), TOBN(0xae07a67f, 0xc1896210), TOBN(0x8fc84d87, 0xbb961579), TOBN(0x30009e49, 0x1c1f8dd6), TOBN(0x8a8caf22, 0xe3132819), TOBN(0xcffa197c, 0xf23ab4ff), TOBN(0x58103a44, 0x205dd687), TOBN(0x57b796c3, 0x0ded67a2), TOBN(0x0b9c3a6c, 0xa1779ad7), TOBN(0xa33cfe2e, 0x357c09c5), TOBN(0x2ea29315, 0x3db4a57e), TOBN(0x91959695, 0x8ebeb52e), TOBN(0x118db9a6, 0xe546c879), TOBN(0x8e996df4, 0x6295c8d6), TOBN(0xdd990484, 0x55ec806b), TOBN(0x24f291ca, 0x165c1035), TOBN(0xcca523bb, 0x440e2229), TOBN(0x324673a2, 0x73ef4d04), TOBN(0xaf3adf34, 0x3e11ec39), TOBN(0x6136d7f1, 0xdc5968d3), TOBN(0x7a7b2899, 0xb053a927), TOBN(0x3eaa2661, 0xae067ecd), TOBN(0x8549b9c8, 0x02779cd9), TOBN(0x061d7940, 0xc53385ea), TOBN(0x3e0ba883, 0xf06d18bd), TOBN(0x4ba6de53, 0xb2700843), TOBN(0xb966b668, 0x591a9e4d), TOBN(0x93f67567, 0x7f4fa0ed), TOBN(0x5a02711b, 0x4347237b), TOBN(0xbc041e2f, 0xe794608e), TOBN(0x55af10f5, 0x70f73d8c), TOBN(0xd2d4d4f7, 0xbb7564f7), TOBN(0xd7d27a89, 0xb3e93ce7), TOBN(0xf7b5a875, 0x5d3a2c1b), TOBN(0xb29e68a0, 0x255b218a), TOBN(0xb533837e, 0x8af76754), TOBN(0xd1b05a73, 0x579fab2e), TOBN(0xb41055a1, 0xecd74385), TOBN(0xb2369274, 0x445e9115), TOBN(0x2972a7c4, 0xf520274e), TOBN(0x6c08334e, 0xf678e68a), TOBN(0x4e4160f0, 0x99b057ed), TOBN(0x3cfe11b8, 0x52ccb69a), TOBN(0x2fd1823a, 0x21c8f772), TOBN(0xdf7f072f, 0x3298f055), TOBN(0x8c0566f9, 0xfec74a6e), TOBN(0xe549e019, 0x5bb4d041), TOBN(0x7c3930ba, 0x9208d850), TOBN(0xe07141fc, 0xaaa2902b), TOBN(0x539ad799, 0xe4f69ad3), TOBN(0xa6453f94, 0x813f9ffd), TOBN(0xc58d3c48, 0x375bc2f7), TOBN(0xb3326fad, 0x5dc64e96), TOBN(0x3aafcaa9, 0xb240e354), TOBN(0x1d1b0903, 0xaca1e7a9), TOBN(0x4ceb9767, 0x1211b8a0), TOBN(0xeca83e49, 0xe32a858e), TOBN(0x4c32892e, 0xae907bad), TOBN(0xd5b42ab6, 0x2eb9b494), TOBN(0x7fde3ee2, 0x1eabae1b), TOBN(0x13b5ab09, 0xcaf54957), TOBN(0xbfb028be, 0xe5f5d5d5), TOBN(0x928a0650, 0x2003e2c0), TOBN(0x90793aac, 0x67476843), TOBN(0x5e942e79, 0xc81710a0), TOBN(0x557e4a36, 0x27ccadd4), TOBN(0x72a2bc56, 0x4bcf6d0c), TOBN(0x09ee5f43, 0x26d7b80c), TOBN(0x6b70dbe9, 0xd4292f19), TOBN(0x56f74c26, 0x63f16b18), TOBN(0xc23db0f7, 0x35fbb42a), TOBN(0xb606bdf6, 0x6ae10040), TOBN(0x1eb15d4d, 0x044573ac), TOBN(0x7dc3cf86, 0x556b0ba4), TOBN(0x97af9a33, 0xc60df6f7), TOBN(0x0b1ef85c, 0xa716ce8c), TOBN(0x2922f884, 0xc96958be), TOBN(0x7c32fa94, 0x35690963), TOBN(0x2d7f667c, 0xeaa00061), TOBN(0xeaaf7c17, 0x3547365c), TOBN(0x1eb4de46, 0x87032d58), TOBN(0xc54f3d83, 0x5e2c79e0), TOBN(0x07818df4, 0x5d04ef23), TOBN(0x55faa9c8, 0x673d41b4), TOBN(0xced64f6f, 0x89b95355), TOBN(0x4860d2ea, 0xb7415c84), TOBN(0x5fdb9bd2, 0x050ebad3), TOBN(0xdb53e0cc, 0x6685a5bf), TOBN(0xb830c031, 0x9feb6593), TOBN(0xdd87f310, 0x6accff17), TOBN(0x2303ebab, 0x9f555c10), TOBN(0x94603695, 0x287e7065), TOBN(0xf88311c3, 0x2e83358c), TOBN(0x508dd9b4, 0xeefb0178), TOBN(0x7ca23706, 0x2dba8652), TOBN(0x62aac5a3, 0x0047abe5), TOBN(0x9a61d2a0, 0x8b1ea7b3), TOBN(0xd495ab63, 0xae8b1485), TOBN(0x38740f84, 0x87052f99), TOBN(0x178ebe5b, 0xb2974eea), TOBN(0x030bbcca, 0x5b36d17f), TOBN(0xb5e4cce3, 0xaaf86eea), TOBN(0xb51a0220, 0x68f8e9e0), TOBN(0xa4348796, 0x09eb3e75), TOBN(0xbe592309, 0xeef1a752), TOBN(0x5d7162d7, 0x6f2aa1ed), TOBN(0xaebfb5ed, 0x0f007dd2), TOBN(0x255e14b2, 0xc89edd22), TOBN(0xba85e072, 0x0303b697), TOBN(0xc5d17e25, 0xf05720ff), TOBN(0x02b58d6e, 0x5128ebb6), TOBN(0x2c80242d, 0xd754e113), TOBN(0x919fca5f, 0xabfae1ca), TOBN(0x937afaac, 0x1a21459b), TOBN(0x9e0ca91c, 0x1f66a4d2), TOBN(0x194cc7f3, 0x23ec1331), TOBN(0xad25143a, 0x8aa11690), TOBN(0xbe40ad8d, 0x09b59e08), TOBN(0x37d60d9b, 0xe750860a), TOBN(0x6c53b008, 0xc6bf434c), TOBN(0xb572415d, 0x1356eb80), TOBN(0xb8bf9da3, 0x9578ded8), TOBN(0x22658e36, 0x5e8fb38b), TOBN(0x9b70ce22, 0x5af8cb22), TOBN(0x7c00018a, 0x829a8180), TOBN(0x84329f93, 0xb81ed295), TOBN(0x7c343ea2, 0x5f3cea83), TOBN(0x38f8655f, 0x67586536), TOBN(0xa661a0d0, 0x1d3ec517), TOBN(0x98744652, 0x512321ae), TOBN(0x084ca591, 0xeca92598), TOBN(0xa9bb9dc9, 0x1dcb3feb), TOBN(0x14c54355, 0x78b4c240), TOBN(0x5ed62a3b, 0x610cafdc), TOBN(0x07512f37, 0x1b38846b), TOBN(0x571bb70a, 0xb0e38161), TOBN(0xb556b95b, 0x2da705d2), TOBN(0x3ef8ada6, 0xb1a08f98), TOBN(0x85302ca7, 0xddecfbe5), TOBN(0x0e530573, 0x943105cd), TOBN(0x60554d55, 0x21a9255d), TOBN(0x63a32fa1, 0xf2f3802a), TOBN(0x35c8c5b0, 0xcd477875), TOBN(0x97f458ea, 0x6ad42da1), TOBN(0x832d7080, 0xeb6b242d), TOBN(0xd30bd023, 0x3b71e246), TOBN(0x7027991b, 0xbe31139d), TOBN(0x68797e91, 0x462e4e53), TOBN(0x423fe20a, 0x6b4e185a), TOBN(0x82f2c67e, 0x42d9b707), TOBN(0x25c81768, 0x4cf7811b), TOBN(0xbd53005e, 0x045bb95d),} , {TOBN(0xe5f649be, 0x9d8e68fd), TOBN(0xdb0f0533, 0x1b044320), TOBN(0xf6fde9b3, 0xe0c33398), TOBN(0x92f4209b, 0x66c8cfae), TOBN(0xe9d1afcc, 0x1a739d4b), TOBN(0x09aea75f, 0xa28ab8de), TOBN(0x14375fb5, 0xeac6f1d0), TOBN(0x6420b560, 0x708f7aa5), TOBN(0x9eae499c, 0x6254dc41), TOBN(0x7e293924, 0x7a837e7e), TOBN(0x74aec08c, 0x090524a7), TOBN(0xf82b9219, 0x8d6f55f2), TOBN(0x493c962e, 0x1402cec5), TOBN(0x9f17ca17, 0xfa2f30e7), TOBN(0xbcd783e8, 0xe9b879cb), TOBN(0xea3d8c14, 0x5a6f145f), TOBN(0xdede15e7, 0x5e0dee6e), TOBN(0x74f24872, 0xdc628aa2), TOBN(0xd3e9c4fe, 0x7861bb93), TOBN(0x56d4822a, 0x6187b2e0), TOBN(0xb66417cf, 0xc59826f9), TOBN(0xca260969, 0x2408169e), TOBN(0xedf69d06, 0xc79ef885), TOBN(0x00031f8a, 0xdc7d138f), TOBN(0x103c46e6, 0x0ebcf726), TOBN(0x4482b831, 0x6231470e), TOBN(0x6f6dfaca, 0x487c2109), TOBN(0x2e0ace97, 0x62e666ef), TOBN(0x3246a9d3, 0x1f8d1f42), TOBN(0x1b1e83f1, 0x574944d2), TOBN(0x13dfa63a, 0xa57f334b), TOBN(0x0cf8daed, 0x9f025d81), TOBN(0x30d78ea8, 0x00ee11c1), TOBN(0xeb053cd4, 0xb5e3dd75), TOBN(0x9b65b13e, 0xd58c43c5), TOBN(0xc3ad49bd, 0xbd151663), TOBN(0x99fd8e41, 0xb6427990), TOBN(0x12cf15bd, 0x707eae1e), TOBN(0x29ad4f1b, 0x1aabb71e), TOBN(0x5143e74d, 0x07545d0e), TOBN(0x30266336, 0xc88bdee1), TOBN(0x25f29306, 0x5876767c), TOBN(0x9c078571, 0xc6731996), TOBN(0xc88690b2, 0xed552951), TOBN(0x274f2c2d, 0x852705b4), TOBN(0xb0bf8d44, 0x4e09552d), TOBN(0x7628beeb, 0x986575d1), TOBN(0x407be238, 0x7f864651), TOBN(0x0e5e3049, 0xa639fc6b), TOBN(0xe75c35d9, 0x86003625), TOBN(0x0cf35bd8, 0x5dcc1646), TOBN(0x8bcaced2, 0x6c26273a), TOBN(0xe22ecf1d, 0xb5536742), TOBN(0x013dd897, 0x1a9e068b), TOBN(0x17f411cb, 0x8a7909c5), TOBN(0x5757ac98, 0x861dd506), TOBN(0x85de1f0d, 0x1e935abb), TOBN(0xdefd10b4, 0x154de37a), TOBN(0xb8d9e392, 0x369cebb5), TOBN(0x54d5ef9b, 0x761324be), TOBN(0x4d6341ba, 0x74f17e26), TOBN(0xc0a0e3c8, 0x78c1dde4), TOBN(0xa6d77581, 0x87d918fd), TOBN(0x66876015, 0x02ca3a13), TOBN(0xc7313e9c, 0xf36658f0), TOBN(0xc433ef1c, 0x71f8057e), TOBN(0x85326246, 0x1b6a835a), TOBN(0xc8f05398, 0x7c86394c), TOBN(0xff398cdf, 0xe983c4a1), TOBN(0xbf5e8162, 0x03b7b931), TOBN(0x93193c46, 0xb7b9045b), TOBN(0x1e4ebf5d, 0xa4a6e46b), TOBN(0xf9942a60, 0x43a24fe7), TOBN(0x29c1191e, 0xffb3492b), TOBN(0x9f662449, 0x902fde05), TOBN(0xc792a7ac, 0x6713c32d), TOBN(0x2fd88ad8, 0xb737982c), TOBN(0x7e3a0319, 0xa21e60e3), TOBN(0x09b0de44, 0x7383591a), TOBN(0x6df141ee, 0x8310a456), TOBN(0xaec1a039, 0xe6d6f471), TOBN(0x14b2ba0f, 0x1198d12e), TOBN(0xebc1a160, 0x3aeee5ac), TOBN(0x401f4836, 0xe0b964ce), TOBN(0x2ee43796, 0x4fd03f66), TOBN(0x3fdb4e49, 0xdd8f3f12), TOBN(0x6ef267f6, 0x29380f18), TOBN(0x3e8e9670, 0x8da64d16), TOBN(0xbc19180c, 0x207674f1), TOBN(0x112e09a7, 0x33ae8fdb), TOBN(0x99667554, 0x6aaeb71e), TOBN(0x79432af1, 0xe101b1c7), TOBN(0xd5eb558f, 0xde2ddec6), TOBN(0x81392d1f, 0x5357753f), TOBN(0xa7a76b97, 0x3ae1158a), TOBN(0x416fbbff, 0x4a899991), TOBN(0x9e65fdfd, 0x0d4a9dcf), TOBN(0x7bc29e48, 0x944ddf12), TOBN(0xbc1a92d9, 0x3c856866), TOBN(0x273c6905, 0x6e98dfe2), TOBN(0x69fce418, 0xcdfaa6b8), TOBN(0x606bd823, 0x5061c69f), TOBN(0x42d495a0, 0x6af75e27), TOBN(0x8ed3d505, 0x6d873a1f), TOBN(0xaf552841, 0x6ab25b6a), TOBN(0xc6c0ffc7, 0x2b1a4523), TOBN(0xab18827b, 0x21c99e03), TOBN(0x060e8648, 0x9034691b), TOBN(0x5207f90f, 0x93c7f398), TOBN(0x9f4a96cb, 0x82f8d10b), TOBN(0xdd71cd79, 0x3ad0f9e3), TOBN(0x84f435d2, 0xfc3a54f5), TOBN(0x4b03c55b, 0x8e33787f), TOBN(0xef42f975, 0xa6384673), TOBN(0xff7304f7, 0x5051b9f0), TOBN(0x18aca1dc, 0x741c87c2), TOBN(0x56f120a7, 0x2d4bfe80), TOBN(0xfd823b3d, 0x053e732c), TOBN(0x11bccfe4, 0x7537ca16), TOBN(0xdf6c9c74, 0x1b5a996b), TOBN(0xee7332c7, 0x904fc3fa), TOBN(0x14a23f45, 0xc7e3636a), TOBN(0xc38659c3, 0xf091d9aa), TOBN(0x4a995e5d, 0xb12d8540), TOBN(0x20a53bec, 0xf3a5598a), TOBN(0x56534b17, 0xb1eaa995), TOBN(0x9ed3dca4, 0xbf04e03c), TOBN(0x716c563a, 0xd8d56268), TOBN(0x27ba77a4, 0x1d6178e7), TOBN(0xe4c80c40, 0x68a1ff8e), TOBN(0x75011099, 0x0a13f63d), TOBN(0x7bf33521, 0xa61d46f3), TOBN(0x0aff218e, 0x10b365bb), TOBN(0x81021804, 0x0fd7ea75), TOBN(0x05a3fd8a, 0xa4b3a925), TOBN(0xb829e75f, 0x9b3db4e6), TOBN(0x6bdc75a5, 0x4d53e5fb), TOBN(0x04a5dc02, 0xd52717e3), TOBN(0x86af502f, 0xe9a42ec2), TOBN(0x8867e8fb, 0x2630e382), TOBN(0xbf845c6e, 0xbec9889b), TOBN(0x54f491f2, 0xcb47c98d), TOBN(0xa3091fba, 0x790c2a12), TOBN(0xd7f6fd78, 0xc20f708b), TOBN(0xa569ac30, 0xacde5e17), TOBN(0xd0f996d0, 0x6852b4d7), TOBN(0xe51d4bb5, 0x4609ae54), TOBN(0x3fa37d17, 0x0daed061), TOBN(0x62a88684, 0x34b8fb41), TOBN(0x99a2acbd, 0x9efb64f1), TOBN(0xb75c1a5e, 0x6448e1f2), TOBN(0xfa99951a, 0x42b5a069), TOBN(0x6d956e89, 0x2f3b26e7), TOBN(0xf4709860, 0xda875247), TOBN(0x3ad15179, 0x2482dda3), TOBN(0xd64110e3, 0x017d82f0), TOBN(0x14928d2c, 0xfad414e4), TOBN(0x2b155f58, 0x2ed02b24), TOBN(0x481a141b, 0xcb821bf1), TOBN(0x12e3c770, 0x4f81f5da), TOBN(0xe49c5de5, 0x9fff8381), TOBN(0x11053232, 0x5bbec894), TOBN(0xa0d051cc, 0x454d88c4), TOBN(0x4f6db89c, 0x1f8e531b), TOBN(0x34fe3fd6, 0xca563a44), TOBN(0x7f5c2215, 0x58da8ab9), TOBN(0x8445016d, 0x9474f0a1), TOBN(0x17d34d61, 0xcb7d8a0a), TOBN(0x8e9d3910, 0x1c474019), TOBN(0xcaff2629, 0xd52ceefb), TOBN(0xf9cf3e32, 0xc1622c2b), TOBN(0xd4b95e3c, 0xe9071a05), TOBN(0xfbbca61f, 0x1594438c), TOBN(0x1eb6e6a6, 0x04aadedf), TOBN(0x853027f4, 0x68e14940), TOBN(0x221d322a, 0xdfabda9c), TOBN(0xed8ea9f6, 0xb7cb179a), TOBN(0xdc7b764d, 0xb7934dcc), TOBN(0xfcb13940, 0x5e09180d), TOBN(0x6629a6bf, 0xb47dc2dd), TOBN(0xbfc55e4e, 0x9f5a915e), TOBN(0xb1db9d37, 0x6204441e), TOBN(0xf82d68cf, 0x930c5f53), TOBN(0x17d3a142, 0xcbb605b1), TOBN(0xdd5944ea, 0x308780f2), TOBN(0xdc8de761, 0x3845f5e4), TOBN(0x6beaba7d, 0x7624d7a3), TOBN(0x1e709afd, 0x304df11e), TOBN(0x95364376, 0x02170456), TOBN(0xbf204b3a, 0xc8f94b64), TOBN(0x4e53af7c, 0x5680ca68), TOBN(0x0526074a, 0xe0c67574), TOBN(0x95d8cef8, 0xecd92af6), TOBN(0xe6b9fa7a, 0x6cd1745a), TOBN(0x3d546d3d, 0xa325c3e4), TOBN(0x1f57691d, 0x9ae93aae), TOBN(0xe891f3fe, 0x9d2e1a33), TOBN(0xd430093f, 0xac063d35), TOBN(0xeda59b12, 0x5513a327), TOBN(0xdc2134f3, 0x5536f18f), TOBN(0xaa51fe2c, 0x5c210286), TOBN(0x3f68aaee, 0x1cab658c), TOBN(0x5a23a00b, 0xf9357292), TOBN(0x9a626f39, 0x7efdabed), TOBN(0xfe2b3bf3, 0x199d78e3), TOBN(0xb7a2af77, 0x71bbc345), TOBN(0x3d19827a, 0x1e59802c), TOBN(0x823bbc15, 0xb487a51c), TOBN(0x856139f2, 0x99d0a422), TOBN(0x9ac3df65, 0xf456c6fb), TOBN(0xaddf65c6, 0x701f8bd6), TOBN(0x149f321e, 0x3758df87), TOBN(0xb1ecf714, 0x721b7eba), TOBN(0xe17df098, 0x31a3312a), TOBN(0xdb2fd6ec, 0xd5c4d581), TOBN(0xfd02996f, 0x8fcea1b3), TOBN(0xe29fa63e, 0x7882f14f), TOBN(0xc9f6dc35, 0x07c6cadc), TOBN(0x46f22d6f, 0xb882bed0), TOBN(0x1a45755b, 0xd118e52c), TOBN(0x9f2c7c27, 0x7c4608cf), TOBN(0x7ccbdf32, 0x568012c2), TOBN(0xfcb0aedd, 0x61729b0e), TOBN(0x7ca2ca9e, 0xf7d75dbf), TOBN(0xf58fecb1, 0x6f640f62), TOBN(0xe274b92b, 0x39f51946), TOBN(0x7f4dfc04, 0x6288af44), TOBN(0x0a91f32a, 0xeac329e5), TOBN(0x43ad274b, 0xd6aaba31), TOBN(0x719a1640, 0x0f6884f9), TOBN(0x685d29f6, 0xdaf91e20), TOBN(0x5ec1cc33, 0x27e49d52), TOBN(0x38f4de96, 0x3b54a059), TOBN(0x0e0015e5, 0xefbcfdb3), TOBN(0x177d23d9, 0x4dbb8da6), TOBN(0x98724aa2, 0x97a617ad), TOBN(0x30f0885b, 0xfdb6558e), TOBN(0xf9f7a28a, 0xc7899a96), TOBN(0xd2ae8ac8, 0x872dc112), TOBN(0xfa0642ca, 0x73c3c459), TOBN(0x15296981, 0xe7dfc8d6), TOBN(0x67cd4450, 0x1fb5b94a), TOBN(0x0ec71cf1, 0x0eddfd37), TOBN(0xc7e5eeb3, 0x9a8eddc7), TOBN(0x02ac8e3d, 0x81d95028), TOBN(0x0088f172, 0x70b0e35d), TOBN(0xec041fab, 0xe1881fe3), TOBN(0x62cf71b8, 0xd99e7faa), TOBN(0x5043dea7, 0xe0f222c2), TOBN(0x309d42ac, 0x72e65142), TOBN(0x94fe9ddd, 0x9216cd30), TOBN(0xd6539c7d, 0x0f87feec), TOBN(0x03c5a57c, 0x432ac7d7), TOBN(0x72692cf0, 0x327fda10), TOBN(0xec28c85f, 0x280698de), TOBN(0x2331fb46, 0x7ec283b1), TOBN(0xd34bfa32, 0x2867e633), TOBN(0x78709a82, 0x0a9cc815), TOBN(0xb7fe6964, 0x875e2fa5), TOBN(0x25cc064f, 0x9e98bfb5), TOBN(0x9eb0151c, 0x493a65c5), TOBN(0x5fb5d941, 0x53182464), TOBN(0x69e6f130, 0xf04618e2), TOBN(0xa8ecec22, 0xf89c8ab6), TOBN(0xcd6ac88b, 0xb96209bd), TOBN(0x65fa8cdb, 0xb3e1c9e0), TOBN(0xa47d22f5, 0x4a8d8eac), TOBN(0x83895cdf, 0x8d33f963), TOBN(0xa8adca59, 0xb56cd3d1), TOBN(0x10c8350b, 0xdaf38232), TOBN(0x2b161fb3, 0xa5080a9f), TOBN(0xbe7f5c64, 0x3af65b3a), TOBN(0x2c754039, 0x97403a11), TOBN(0x94626cf7, 0x121b96af), TOBN(0x431de7c4, 0x6a983ec2), TOBN(0x3780dd3a, 0x52cc3df7), TOBN(0xe28a0e46, 0x2baf8e3b), TOBN(0xabe68aad, 0x51d299ae), TOBN(0x603eb8f9, 0x647a2408), TOBN(0x14c61ed6, 0x5c750981), TOBN(0x88b34414, 0xc53352e7), TOBN(0x5a34889c, 0x1337d46e), TOBN(0x612c1560, 0xf95f2bc8), TOBN(0x8a3f8441, 0xd4807a3a), TOBN(0x680d9e97, 0x5224da68), TOBN(0x60cd6e88, 0xc3eb00e9), TOBN(0x3875a98e, 0x9a6bc375), TOBN(0xdc80f924, 0x4fd554c2), TOBN(0x6c4b3415, 0x6ac77407), TOBN(0xa1e5ea8f, 0x25420681), TOBN(0x541bfa14, 0x4607a458), TOBN(0x5dbc7e7a, 0x96d7fbf9), TOBN(0x646a851b, 0x31590a47), TOBN(0x039e85ba, 0x15ee6df8), TOBN(0xd19fa231, 0xd7b43fc0), TOBN(0x84bc8be8, 0x299a0e04), TOBN(0x2b9d2936, 0xf20df03a), TOBN(0x24054382, 0x8608d472), TOBN(0x76b6ba04, 0x9149202a), TOBN(0xb21c3831, 0x3670e7b7), TOBN(0xddd93059, 0xd6fdee10), TOBN(0x9da47ad3, 0x78488e71), TOBN(0x99cc1dfd, 0xa0fcfb25), TOBN(0x42abde10, 0x64696954), TOBN(0x14cc15fc, 0x17eab9fe), TOBN(0xd6e863e4, 0xd3e70972), TOBN(0x29a7765c, 0x6432112c), TOBN(0x88660001, 0x5b0774d8), TOBN(0x3729175a, 0x2c088eae), TOBN(0x13afbcae, 0x8230b8d4), TOBN(0x44768151, 0x915f4379), TOBN(0xf086431a, 0xd8d22812), TOBN(0x37461955, 0xc298b974), TOBN(0x905fb5f0, 0xf8711e04), TOBN(0x787abf3a, 0xfe969d18), TOBN(0x392167c2, 0x6f6a494e), TOBN(0xfc7a0d2d, 0x28c511da), TOBN(0xf127c7dc, 0xb66a262d), TOBN(0xf9c4bb95, 0xfd63fdf0), TOBN(0x90016589, 0x3913ef46), TOBN(0x74d2a73c, 0x11aa600d), TOBN(0x2f5379bd, 0x9fb5ab52), TOBN(0xe49e53a4, 0x7fb70068), TOBN(0x68dd39e5, 0x404aa9a7), TOBN(0xb9b0cf57, 0x2ecaa9c3), TOBN(0xba0e103b, 0xe824826b), TOBN(0x60c2198b, 0x4631a3c4), TOBN(0xc5ff84ab, 0xfa8966a2), TOBN(0x2d6ebe22, 0xac95aff8), TOBN(0x1c9bb6db, 0xb5a46d09), TOBN(0x419062da, 0x53ee4f8d), TOBN(0x7b9042d0, 0xbb97efef), TOBN(0x0f87f080, 0x830cf6bd), TOBN(0x4861d19a, 0x6ec8a6c6), TOBN(0xd3a0daa1, 0x202f01aa), TOBN(0xb0111674, 0xf25afbd5), TOBN(0x6d00d6cf, 0x1afb20d9), TOBN(0x13695000, 0x40671bc5), TOBN(0x913ab0dc, 0x2485ea9b), TOBN(0x1f2bed06, 0x9eef61ac), TOBN(0x850c8217, 0x6d799e20), TOBN(0x93415f37, 0x3271c2de), TOBN(0x5afb06e9, 0x6c4f5910), TOBN(0x688a52df, 0xc4e9e421), TOBN(0x30495ba3, 0xe2a9a6db), TOBN(0x4601303d, 0x58f9268b), TOBN(0xbe3b0dad, 0x7eb0f04f), TOBN(0x4ea47250, 0x4456936d), TOBN(0x8caf8798, 0xd33fd3e7), TOBN(0x1ccd8a89, 0xeb433708), TOBN(0x9effe3e8, 0x87fd50ad), TOBN(0xbe240a56, 0x6b29c4df), TOBN(0xec4ffd98, 0xca0e7ebd), TOBN(0xf586783a, 0xe748616e), TOBN(0xa5b00d8f, 0xc77baa99), TOBN(0x0acada29, 0xb4f34c9c), TOBN(0x36dad67d, 0x0fe723ac), TOBN(0x1d8e53a5, 0x39c36c1e), TOBN(0xe4dd342d, 0x1f4bea41), TOBN(0x64fd5e35, 0xebc9e4e0), TOBN(0x96f01f90, 0x57908805), TOBN(0xb5b9ea3d, 0x5ed480dd), TOBN(0x366c5dc2, 0x3efd2dd0), TOBN(0xed2fe305, 0x6e9dfa27), TOBN(0x4575e892, 0x6e9197e2), TOBN(0x11719c09, 0xab502a5d), TOBN(0x264c7bec, 0xe81f213f), TOBN(0x741b9241, 0x55f5c457), TOBN(0x78ac7b68, 0x49a5f4f4), TOBN(0xf91d70a2, 0x9fc45b7d), TOBN(0x39b05544, 0xb0f5f355), TOBN(0x11f06bce, 0xeef930d9), TOBN(0xdb84d25d, 0x038d05e1), TOBN(0x04838ee5, 0xbacc1d51), TOBN(0x9da3ce86, 0x9e8ee00b), TOBN(0xc3412057, 0xc36eda1f), TOBN(0xae80b913, 0x64d9c2f4), TOBN(0x7468bac3, 0xa010a8ff), TOBN(0xdfd20037, 0x37359d41), TOBN(0x1a0f5ab8, 0x15efeacc), TOBN(0x7c25ad2f, 0x659d0ce0), TOBN(0x4011bcbb, 0x6785cff1), TOBN(0x128b9912, 0x7e2192c7), TOBN(0xa549d8e1, 0x13ccb0e8), TOBN(0x805588d8, 0xc85438b1), TOBN(0x5680332d, 0xbc25cb27), TOBN(0xdcd1bc96, 0x1a4bfdf4), TOBN(0x779ff428, 0x706f6566), TOBN(0x8bbee998, 0xf059987a), TOBN(0xf6ce8cf2, 0xcc686de7), TOBN(0xf8ad3c4a, 0x953cfdb2), TOBN(0xd1d426d9, 0x2205da36), TOBN(0xb3c0f13f, 0xc781a241), TOBN(0x3e89360e, 0xd75362a8), TOBN(0xccd05863, 0xc8a91184), TOBN(0x9bd0c9b7, 0xefa8a7f4), TOBN(0x97ee4d53, 0x8a912a4b), TOBN(0xde5e15f8, 0xbcf518fd), TOBN(0x6a055bf8, 0xc467e1e0), TOBN(0x10be4b4b, 0x1587e256), TOBN(0xd90c14f2, 0x668621c9), TOBN(0xd5518f51, 0xab9c92c1), TOBN(0x8e6a0100, 0xd6d47b3c), TOBN(0xcbe980dd, 0x66716175), TOBN(0x500d3f10, 0xddd83683), TOBN(0x3b6cb35d, 0x99cac73c), TOBN(0x53730c8b, 0x6083d550), TOBN(0xcf159767, 0xdf0a1987), TOBN(0x84bfcf53, 0x43ad73b3), TOBN(0x1b528c20, 0x4f035a94), TOBN(0x4294edf7, 0x33eeac69), TOBN(0xb6283e83, 0x817f3240), TOBN(0xc3fdc959, 0x0a5f25b1), TOBN(0xefaf8aa5, 0x5844ee22), TOBN(0xde269ba5, 0xdbdde4de), TOBN(0xe3347160, 0xc56133bf), TOBN(0xc1184219, 0x8d9ea9f8), TOBN(0x090de5db, 0xf3fc1ab5), TOBN(0x404c37b1, 0x0bf22cda), TOBN(0x7de20ec8, 0xf5618894), TOBN(0x754c588e, 0xecdaecab), TOBN(0x6ca4b0ed, 0x88342743), TOBN(0x76f08bdd, 0xf4a938ec), TOBN(0xd182de89, 0x91493ccb), TOBN(0xd652c53e, 0xc8a4186a), TOBN(0xb3e878db, 0x946d8e33), TOBN(0x088453c0, 0x5f37663c), TOBN(0x5cd9daaa, 0xb407748b), TOBN(0xa1f5197f, 0x586d5e72), TOBN(0x47500be8, 0xc443ca59), TOBN(0x78ef35b2, 0xe2652424), TOBN(0x09c5d26f, 0x6dd7767d), TOBN(0x7175a79a, 0xa74d3f7b), TOBN(0x0428fd8d, 0xcf5ea459), TOBN(0x511cb97c, 0xa5d1746d), TOBN(0x36363939, 0xe71d1278), TOBN(0xcf2df955, 0x10350bf4), TOBN(0xb3817439, 0x60aae782), TOBN(0xa748c0e4, 0x3e688809), TOBN(0x98021fbf, 0xd7a5a006), TOBN(0x9076a70c, 0x0e367a98), TOBN(0xbea1bc15, 0x0f62b7c2), TOBN(0x2645a68c, 0x30fe0343), TOBN(0xacaffa78, 0x699dc14f), TOBN(0xf4469964, 0x457bf9c4), TOBN(0x0db6407b, 0x0d2ead83), TOBN(0x68d56cad, 0xb2c6f3eb), TOBN(0x3b512e73, 0xf376356c), TOBN(0xe43b0e1f, 0xfce10408), TOBN(0x89ddc003, 0x5a5e257d), TOBN(0xb0ae0d12, 0x0362e5b3), TOBN(0x07f983c7, 0xb0519161), TOBN(0xc2e94d15, 0x5d5231e7), TOBN(0xcff22aed, 0x0b4f9513), TOBN(0xb02588dd, 0x6ad0b0b5), TOBN(0xb967d1ac, 0x11d0dcd5), TOBN(0x8dac6bc6, 0xcf777b6c), TOBN(0x0062bdbd, 0x4c6d1959), TOBN(0x53da71b5, 0x0ef5cc85), TOBN(0x07012c7d, 0x4006f14f), TOBN(0x4617f962, 0xac47800d), TOBN(0x53365f2b, 0xc102ed75), TOBN(0xb422efcb, 0x4ab8c9d3), TOBN(0x195cb26b, 0x34af31c9), TOBN(0x3a926e29, 0x05f2c4ce), TOBN(0xbd2bdecb, 0x9856966c), TOBN(0x5d16ab3a, 0x85527015), TOBN(0x9f81609e, 0x4486c231), TOBN(0xd8b96b2c, 0xda350002), TOBN(0xbd054690, 0xfa1b7d36), TOBN(0xdc90ebf5, 0xe71d79bc), TOBN(0xf241b6f9, 0x08964e4e), TOBN(0x7c838643, 0x2fe3cd4c), TOBN(0xe0f33acb, 0xb4bc633c), TOBN(0xb4a9ecec, 0x3d139f1f), TOBN(0x05ce69cd, 0xdc4a1f49), TOBN(0xa19d1b16, 0xf5f98aaf), TOBN(0x45bb71d6, 0x6f23e0ef), TOBN(0x33789fcd, 0x46cdfdd3), TOBN(0x9b8e2978, 0xcee040ca), TOBN(0x9c69b246, 0xae0a6828), TOBN(0xba533d24, 0x7078d5aa), TOBN(0x7a2e42c0, 0x7bb4fbdb), TOBN(0xcfb4879a, 0x7035385c), TOBN(0x8c3dd30b, 0x3281705b), TOBN(0x7e361c6c, 0x404fe081), TOBN(0x7b21649c, 0x3f604edf), TOBN(0x5dbf6a3f, 0xe52ffe47), TOBN(0xc41b7c23, 0x4b54d9bf), TOBN(0x1374e681, 0x3511c3d9), TOBN(0x1863bf16, 0xc1b2b758), TOBN(0x90e78507, 0x1e9e6a96), TOBN(0xab4bf98d, 0x5d86f174), TOBN(0xd74e0bd3, 0x85e96fe4), TOBN(0x8afde39f, 0xcac5d344), TOBN(0x90946dbc, 0xbd91b847), TOBN(0xf5b42358, 0xfe1a838c), TOBN(0x05aae6c5, 0x620ac9d8), TOBN(0x8e193bd8, 0xa1ce5a0b), TOBN(0x8f710571, 0x4dabfd72), TOBN(0x8d8fdd48, 0x182caaac), TOBN(0x8c4aeefa, 0x040745cf), TOBN(0x73c6c30a, 0xf3b93e6d), TOBN(0x991241f3, 0x16f42011), TOBN(0xa0158eea, 0xe457a477), TOBN(0xd19857db, 0xee6ddc05), TOBN(0xb3265224, 0x18c41671), TOBN(0x3ffdfc7e, 0x3c2c0d58), TOBN(0x3a3a5254, 0x26ee7cda), TOBN(0x341b0869, 0xdf02c3a8), TOBN(0xa023bf42, 0x723bbfc8), TOBN(0x3d15002a, 0x14452691),} , {TOBN(0x5ef7324c, 0x85edfa30), TOBN(0x25976554, 0x87d4f3da), TOBN(0x352f5bc0, 0xdcb50c86), TOBN(0x8f6927b0, 0x4832a96c), TOBN(0xd08ee1ba, 0x55f2f94c), TOBN(0x6a996f99, 0x344b45fa), TOBN(0xe133cb8d, 0xa8aa455d), TOBN(0x5d0721ec, 0x758dc1f7), TOBN(0x6ba7a920, 0x79e5fb67), TOBN(0xe1331feb, 0x70aa725e), TOBN(0x5080ccf5, 0x7df5d837), TOBN(0xe4cae01d, 0x7ff72e21), TOBN(0xd9243ee6, 0x0412a77d), TOBN(0x06ff7cac, 0xdf449025), TOBN(0xbe75f7cd, 0x23ef5a31), TOBN(0xbc957822, 0x0ddef7a8), TOBN(0x8cf7230c, 0xb0ce1c55), TOBN(0x5b534d05, 0x0bbfb607), TOBN(0xee1ef113, 0x0e16363b), TOBN(0x27e0aa7a, 0xb4999e82), TOBN(0xce1dac2d, 0x79362c41), TOBN(0x67920c90, 0x91bb6cb0), TOBN(0x1e648d63, 0x2223df24), TOBN(0x0f7d9eef, 0xe32e8f28), TOBN(0x6943f39a, 0xfa833834), TOBN(0x22951722, 0xa6328562), TOBN(0x81d63dd5, 0x4170fc10), TOBN(0x9f5fa58f, 0xaecc2e6d), TOBN(0xb66c8725, 0xe77d9a3b), TOBN(0x11235cea, 0x6384ebe0), TOBN(0x06a8c118, 0x5845e24a), TOBN(0x0137b286, 0xebd093b1), TOBN(0xc589e1ce, 0x44ace150), TOBN(0xe0f8d3d9, 0x4381e97c), TOBN(0x59e99b11, 0x62c5a4b8), TOBN(0x90d262f7, 0xfd0ec9f9), TOBN(0xfbc854c9, 0x283e13c9), TOBN(0x2d04fde7, 0xaedc7085), TOBN(0x057d7765, 0x47dcbecb), TOBN(0x8dbdf591, 0x9a76fa5f), TOBN(0xd0150695, 0x0de1e578), TOBN(0x2e1463e7, 0xe9f72bc6), TOBN(0xffa68441, 0x1b39eca5), TOBN(0x673c8530, 0x7c037f2f), TOBN(0xd0d6a600, 0x747f91da), TOBN(0xb08d43e1, 0xc9cb78e9), TOBN(0x0fc0c644, 0x27b5cef5), TOBN(0x5c1d160a, 0xa60a2fd6), TOBN(0xf98cae53, 0x28c8e13b), TOBN(0x375f10c4, 0xb2eddcd1), TOBN(0xd4eb8b7f, 0x5cce06ad), TOBN(0xb4669f45, 0x80a2e1ef), TOBN(0xd593f9d0, 0x5bbd8699), TOBN(0x5528a4c9, 0xe7976d13), TOBN(0x3923e095, 0x1c7e28d3), TOBN(0xb9293790, 0x3f6bb577), TOBN(0xdb567d6a, 0xc42bd6d2), TOBN(0x6df86468, 0xbb1f96ae), TOBN(0x0efe5b1a, 0x4843b28e), TOBN(0x961bbb05, 0x6379b240), TOBN(0xb6caf5f0, 0x70a6a26b), TOBN(0x70686c0d, 0x328e6e39), TOBN(0x80da06cf, 0x895fc8d3), TOBN(0x804d8810, 0xb363fdc9), TOBN(0xbe22877b, 0x207f1670), TOBN(0x9b0dd188, 0x4e615291), TOBN(0x625ae8dc, 0x97a3c2bf), TOBN(0x08584ef7, 0x439b86e8), TOBN(0xde7190a5, 0xdcd898ff), TOBN(0x26286c40, 0x2058ee3d), TOBN(0x3db0b217, 0x5f87b1c1), TOBN(0xcc334771, 0x102a6db5), TOBN(0xd99de954, 0x2f770fb1), TOBN(0x97c1c620, 0x4cd7535e), TOBN(0xd3b6c448, 0x3f09cefc), TOBN(0xd725af15, 0x5a63b4f8), TOBN(0x0c95d24f, 0xc01e20ec), TOBN(0xdfd37494, 0x9ae7121f), TOBN(0x7d6ddb72, 0xec77b7ec), TOBN(0xfe079d3b, 0x0353a4ae), TOBN(0x3066e70a, 0x2e6ac8d2), TOBN(0x9c6b5a43, 0x106e5c05), TOBN(0x52d3c6f5, 0xede59b8c), TOBN(0x30d6a5c3, 0xfccec9ae), TOBN(0xedec7c22, 0x4fc0a9ef), TOBN(0x190ff083, 0x95c16ced), TOBN(0xbe12ec8f, 0x94de0fde), TOBN(0x0d131ab8, 0x852d3433), TOBN(0x42ace07e, 0x85701291), TOBN(0x94793ed9, 0x194061a8), TOBN(0x30e83ed6, 0xd7f4a485), TOBN(0x9eec7269, 0xf9eeff4d), TOBN(0x90acba59, 0x0c9d8005), TOBN(0x5feca458, 0x1e79b9d1), TOBN(0x8fbe5427, 0x1d506a1e), TOBN(0xa32b2c8e, 0x2439cfa7), TOBN(0x1671c173, 0x73dd0b4e), TOBN(0x37a28214, 0x44a054c6), TOBN(0x81760a1b, 0x4e8b53f1), TOBN(0xa6c04224, 0xf9f93b9e), TOBN(0x18784b34, 0xcf671e3c), TOBN(0x81bbecd2, 0xcda9b994), TOBN(0x38831979, 0xb2ab3848), TOBN(0xef54feb7, 0xf2e03c2d), TOBN(0xcf197ca7, 0xfb8088fa), TOBN(0x01427247, 0x4ddc96c5), TOBN(0xa2d2550a, 0x30777176), TOBN(0x53469898, 0x4d0cf71d), TOBN(0x6ce937b8, 0x3a2aaac6), TOBN(0xe9f91dc3, 0x5af38d9b), TOBN(0x2598ad83, 0xc8bf2899), TOBN(0x8e706ac9, 0xb5536c16), TOBN(0x40dc7495, 0xf688dc98), TOBN(0x26490cd7, 0x124c4afc), TOBN(0xe651ec84, 0x1f18775c), TOBN(0x393ea6c3, 0xb4fdaf4a), TOBN(0x1e1f3343, 0x7f338e0d), TOBN(0x39fb832b, 0x6053e7b5), TOBN(0x46e702da, 0x619e14d5), TOBN(0x859cacd1, 0xcdeef6e0), TOBN(0x63b99ce7, 0x4462007d), TOBN(0xb8ab48a5, 0x4cb5f5b7), TOBN(0x9ec673d2, 0xf55edde7), TOBN(0xd1567f74, 0x8cfaefda), TOBN(0x46381b6b, 0x0887bcec), TOBN(0x694497ce, 0xe178f3c2), TOBN(0x5e6525e3, 0x1e6266cb), TOBN(0x5931de26, 0x697d6413), TOBN(0x87f8df7c, 0x0e58d493), TOBN(0xb1ae5ed0, 0x58b73f12), TOBN(0xc368f784, 0xdea0c34d), TOBN(0x9bd0a120, 0x859a91a0), TOBN(0xb00d88b7, 0xcc863c68), TOBN(0x3a1cc11e, 0x3d1f4d65), TOBN(0xea38e0e7, 0x0aa85593), TOBN(0x37f13e98, 0x7dc4aee8), TOBN(0x10d38667, 0xbc947bad), TOBN(0x738e07ce, 0x2a36ee2e), TOBN(0xc93470cd, 0xc577fcac), TOBN(0xdee1b616, 0x2782470d), TOBN(0x36a25e67, 0x2e793d12), TOBN(0xd6aa6cae, 0xe0f186da), TOBN(0x474d0fd9, 0x80e07af7), TOBN(0xf7cdc47d, 0xba8a5cd4), TOBN(0x28af6d9d, 0xab15247f), TOBN(0x7c789c10, 0x493a537f), TOBN(0x7ac9b110, 0x23a334e7), TOBN(0x0236ac09, 0x12c9c277), TOBN(0xa7e5bd25, 0x1d7a5144), TOBN(0x098b9c2a, 0xf13ec4ec), TOBN(0x3639daca, 0xd3f0abca), TOBN(0x642da81a, 0xa23960f9), TOBN(0x7d2e5c05, 0x4f7269b1), TOBN(0xfcf30777, 0xe287c385), TOBN(0x10edc84f, 0xf2a46f21), TOBN(0x35441757, 0x4f43fa36), TOBN(0xf1327899, 0xfd703431), TOBN(0xa438d7a6, 0x16dd587a), TOBN(0x65c34c57, 0xe9c8352d), TOBN(0xa728edab, 0x5cc5a24e), TOBN(0xaed78abc, 0x42531689), TOBN(0x0a51a0e8, 0x010963ef), TOBN(0x5776fa0a, 0xd717d9b3), TOBN(0xf356c239, 0x7dd3428b), TOBN(0x29903fff, 0x8d3a3dac), TOBN(0x409597fa, 0x3d94491f), TOBN(0x4cd7a5ff, 0xbf4a56a4), TOBN(0xe5096474, 0x8adab462), TOBN(0xa97b5126, 0x5c3427b0), TOBN(0x6401405c, 0xd282c9bd), TOBN(0x3629f8d7, 0x222c5c45), TOBN(0xb1c02c16, 0xe8d50aed), TOBN(0xbea2ed75, 0xd9635bc9), TOBN(0x226790c7, 0x6e24552f), TOBN(0x3c33f2a3, 0x65f1d066), TOBN(0x2a43463e, 0x6dfccc2e), TOBN(0x8cc3453a, 0xdb483761), TOBN(0xe7cc6085, 0x65d5672b), TOBN(0x277ed6cb, 0xde3efc87), TOBN(0x19f2f368, 0x69234eaf), TOBN(0x9aaf4317, 0x5c0b800b), TOBN(0x1f1e7c89, 0x8b6da6e2), TOBN(0x6cfb4715, 0xb94ec75e), TOBN(0xd590dd5f, 0x453118c2), TOBN(0x14e49da1, 0x1f17a34c), TOBN(0x5420ab39, 0x235a1456), TOBN(0xb7637241, 0x2f50363b), TOBN(0x7b15d623, 0xc3fabb6e), TOBN(0xa0ef40b1, 0xe274e49c), TOBN(0x5cf50744, 0x96b1860a), TOBN(0xd6583fbf, 0x66afe5a4), TOBN(0x44240510, 0xf47e3e9a), TOBN(0x99254343, 0x11b2d595), TOBN(0xf1367499, 0xeec8df57), TOBN(0x3cb12c61, 0x3e73dd05), TOBN(0xd248c033, 0x7dac102a), TOBN(0xcf154f13, 0xa77739f5), TOBN(0xbf4288cb, 0x23d2af42), TOBN(0xaa64c9b6, 0x32e4a1cf), TOBN(0xee8c07a8, 0xc8a208f3), TOBN(0xe10d4999, 0x6fe8393f), TOBN(0x0f809a3f, 0xe91f3a32), TOBN(0x61096d1c, 0x802f63c8), TOBN(0x289e1462, 0x57750d3d), TOBN(0xed06167e, 0x9889feea), TOBN(0xd5c9c0e2, 0xe0993909), TOBN(0x46fca0d8, 0x56508ac6), TOBN(0x91826047, 0x4f1b8e83), TOBN(0x4f2c877a, 0x9a4a2751), TOBN(0x71bd0072, 0xcae6fead), TOBN(0x38df8dcc, 0x06aa1941), TOBN(0x5a074b4c, 0x63beeaa8), TOBN(0xd6d65934, 0xc1cec8ed), TOBN(0xa6ecb49e, 0xaabc03bd), TOBN(0xaade91c2, 0xde8a8415), TOBN(0xcfb0efdf, 0x691136e0), TOBN(0x11af45ee, 0x23ab3495), TOBN(0xa132df88, 0x0b77463d), TOBN(0x8923c15c, 0x815d06f4), TOBN(0xc3ceb3f5, 0x0d61a436), TOBN(0xaf52291d, 0xe88fb1da), TOBN(0xea057974, 0x1da12179), TOBN(0xb0d7218c, 0xd2fef720), TOBN(0x6c0899c9, 0x8e1d8845), TOBN(0x98157504, 0x752ddad7), TOBN(0xd60bd74f, 0xa1a68a97), TOBN(0x7047a3a9, 0xf658fb99), TOBN(0x1f5d86d6, 0x5f8511e4), TOBN(0xb8a4bc42, 0x4b5a6d88), TOBN(0x69eb2c33, 0x1abefa7d), TOBN(0x95bf39e8, 0x13c9c510), TOBN(0xf571960a, 0xd48aab43), TOBN(0x7e8cfbcf, 0x704e23c6), TOBN(0xc71b7d22, 0x28aaa65b), TOBN(0xa041b2bd, 0x245e3c83), TOBN(0x69b98834, 0xd21854ff), TOBN(0x89d227a3, 0x963bfeec), TOBN(0x99947aaa, 0xde7da7cb), TOBN(0x1d9ee9db, 0xee68a9b1), TOBN(0x0a08f003, 0x698ec368), TOBN(0xe9ea4094, 0x78ef2487), TOBN(0xc8d2d415, 0x02cfec26), TOBN(0xc52f9a6e, 0xb7dcf328), TOBN(0x0ed489e3, 0x85b6a937), TOBN(0x9b94986b, 0xbef3366e), TOBN(0x0de59c70, 0xedddddb8), TOBN(0xffdb748c, 0xeadddbe2), TOBN(0x9b9784bb, 0x8266ea40), TOBN(0x142b5502, 0x1a93507a), TOBN(0xb4cd1187, 0x8d3c06cf), TOBN(0xdf70e76a, 0x91ec3f40), TOBN(0x484e81ad, 0x4e7553c2), TOBN(0x830f87b5, 0x272e9d6e), TOBN(0xea1c93e5, 0xc6ff514a), TOBN(0x67cc2adc, 0xc4192a8e), TOBN(0xc77e27e2, 0x42f4535a), TOBN(0x9cdbab36, 0xd2b713c5), TOBN(0x86274ea0, 0xcf7b0cd3), TOBN(0x784680f3, 0x09af826b), TOBN(0xbfcc837a, 0x0c72dea3), TOBN(0xa8bdfe9d, 0xd6529b73), TOBN(0x708aa228, 0x63a88002), TOBN(0x6c7a9a54, 0xc91d45b9), TOBN(0xdf1a38bb, 0xfd004f56), TOBN(0x2e8c9a26, 0xb8bad853), TOBN(0x2d52cea3, 0x3723eae7), TOBN(0x054d6d81, 0x56ca2830), TOBN(0xa3317d14, 0x9a8dc411), TOBN(0xa08662fe, 0xfd4ddeda), TOBN(0xed2a153a, 0xb55d792b), TOBN(0x7035c16a, 0xbfc6e944), TOBN(0xb6bc5834, 0x00171cf3), TOBN(0xe27152b3, 0x83d102b6), TOBN(0xfe695a47, 0x0646b848), TOBN(0xa5bb09d8, 0x916e6d37), TOBN(0xb4269d64, 0x0d17015e), TOBN(0x8d8156a1, 0x0a1d2285), TOBN(0xfeef6c51, 0x46d26d72), TOBN(0x9dac57c8, 0x4c5434a7), TOBN(0x0282e5be, 0x59d39e31), TOBN(0xedfff181, 0x721c486d), TOBN(0x301baf10, 0xbc58824e), TOBN(0x8136a6aa, 0x00570031), TOBN(0x55aaf78c, 0x1cddde68), TOBN(0x26829371, 0x59c63952), TOBN(0x3a3bd274, 0x8bc25baf), TOBN(0xecdf8657, 0xb7e52dc3), TOBN(0x2dd8c087, 0xfd78e6c8), TOBN(0x20553274, 0xf5531461), TOBN(0x8b4a1281, 0x5d95499b), TOBN(0xe2c8763a, 0x1a80f9d2), TOBN(0xd1dbe32b, 0x4ddec758), TOBN(0xaf12210d, 0x30c34169), TOBN(0xba74a953, 0x78baa533), TOBN(0x3d133c6e, 0xa438f254), TOBN(0xa431531a, 0x201bef5b), TOBN(0x15295e22, 0xf669d7ec), TOBN(0xca374f64, 0x357fb515), TOBN(0x8a8406ff, 0xeaa3fdb3), TOBN(0x106ae448, 0xdf3f2da8), TOBN(0x8f9b0a90, 0x33c8e9a1), TOBN(0x234645e2, 0x71ad5885), TOBN(0x3d083224, 0x1c0aed14), TOBN(0xf10a7d3e, 0x7a942d46), TOBN(0x7c11deee, 0x40d5c9be), TOBN(0xb2bae7ff, 0xba84ed98), TOBN(0x93e97139, 0xaad58ddd), TOBN(0x3d872796, 0x3f6d1fa3), TOBN(0x483aca81, 0x8569ff13), TOBN(0x8b89a5fb, 0x9a600f72), TOBN(0x4cbc27c3, 0xc06f2b86), TOBN(0x22130713, 0x63ad9c0b), TOBN(0xb5358b1e, 0x48ac2840), TOBN(0x18311294, 0xecba9477), TOBN(0xda58f990, 0xa6946b43), TOBN(0x3098baf9, 0x9ab41819), TOBN(0x66c4c158, 0x4198da52), TOBN(0xab4fc17c, 0x146bfd1b), TOBN(0x2f0a4c3c, 0xbf36a908), TOBN(0x2ae9e34b, 0x58cf7838), TOBN(0xf411529e, 0x3fa11b1f), TOBN(0x21e43677, 0x974af2b4), TOBN(0x7c20958e, 0xc230793b), TOBN(0x710ea885, 0x16e840f3), TOBN(0xfc0b21fc, 0xc5dc67cf), TOBN(0x08d51647, 0x88405718), TOBN(0xd955c21f, 0xcfe49eb7), TOBN(0x9722a5d5, 0x56dd4a1f), TOBN(0xc9ef50e2, 0xc861baa5), TOBN(0xc0c21a5d, 0x9505ac3e), TOBN(0xaf6b9a33, 0x8b7c063f), TOBN(0xc6370339, 0x2f4779c1), TOBN(0x22df99c7, 0x638167c3), TOBN(0xfe6ffe76, 0x795db30c), TOBN(0x2b822d33, 0xa4854989), TOBN(0xfef031dd, 0x30563aa5), TOBN(0x16b09f82, 0xd57c667f), TOBN(0xc70312ce, 0xcc0b76f1), TOBN(0xbf04a9e6, 0xc9118aec), TOBN(0x82fcb419, 0x3409d133), TOBN(0x1a8ab385, 0xab45d44d), TOBN(0xfba07222, 0x617b83a3), TOBN(0xb05f50dd, 0x58e81b52), TOBN(0x1d8db553, 0x21ce5aff), TOBN(0x3097b8d4, 0xe344a873), TOBN(0x7d8d116d, 0xfe36d53e), TOBN(0x6db22f58, 0x7875e750), TOBN(0x2dc5e373, 0x43e144ea), TOBN(0xc05f32e6, 0xe799eb95), TOBN(0xe9e5f4df, 0x6899e6ec), TOBN(0xbdc3bd68, 0x1fab23d5), TOBN(0xb72b8ab7, 0x73af60e6), TOBN(0x8db27ae0, 0x2cecc84a), TOBN(0x600016d8, 0x7bdb871c), TOBN(0x42a44b13, 0xd7c46f58), TOBN(0xb8919727, 0xc3a77d39), TOBN(0xcfc6bbbd, 0xdafd6088), TOBN(0x1a740146, 0x6bd20d39), TOBN(0x8c747abd, 0x98c41072), TOBN(0x4c91e765, 0xbdf68ea1), TOBN(0x7c95e5ca, 0x08819a78), TOBN(0xcf48b729, 0xc9587921), TOBN(0x091c7c5f, 0xdebbcc7d), TOBN(0x6f287404, 0xf0e05149), TOBN(0xf83b5ac2, 0x26cd44ec), TOBN(0x88ae32a6, 0xcfea250e), TOBN(0x6ac5047a, 0x1d06ebc5), TOBN(0xc7e550b4, 0xd434f781), TOBN(0x61ab1cf2, 0x5c727bd2), TOBN(0x2e4badb1, 0x1cf915b0), TOBN(0x1b4dadec, 0xf69d3920), TOBN(0xe61b1ca6, 0xf14c1dfe), TOBN(0x90b479cc, 0xbd6bd51f), TOBN(0x8024e401, 0x8045ec30), TOBN(0xcab29ca3, 0x25ef0e62), TOBN(0x4f2e9416, 0x49e4ebc0), TOBN(0x45eb40ec, 0x0ccced58), TOBN(0x25cd4b9c, 0x0da44f98), TOBN(0x43e06458, 0x871812c6), TOBN(0x99f80d55, 0x16cef651), TOBN(0x571340c9, 0xce6dc153), TOBN(0x138d5117, 0xd8665521), TOBN(0xacdb45bc, 0x4e07014d), TOBN(0x2f34bb38, 0x84b60b91), TOBN(0xf44a4fd2, 0x2ae8921e), TOBN(0xb039288e, 0x892ba1e2), TOBN(0x9da50174, 0xb1c180b2), TOBN(0x6b70ab66, 0x1693dc87), TOBN(0x7e9babc9, 0xe7057481), TOBN(0x4581ddef, 0x9c80dc41), TOBN(0x0c890da9, 0x51294682), TOBN(0x0b5629d3, 0x3f4736e5), TOBN(0x2340c79e, 0xb06f5b41), TOBN(0xa42e84ce, 0x4e243469), TOBN(0xf9a20135, 0x045a71a9), TOBN(0xefbfb415, 0xd27b6fb6), TOBN(0x25ebea23, 0x9d33cd6f), TOBN(0x9caedb88, 0xaa6c0af8), TOBN(0x53dc7e9a, 0xd9ce6f96), TOBN(0x3897f9fd, 0x51e0b15a), TOBN(0xf51cb1f8, 0x8e5d788e), TOBN(0x1aec7ba8, 0xe1d490ee), TOBN(0x265991e0, 0xcc58cb3c), TOBN(0x9f306e8c, 0x9fc3ad31), TOBN(0x5fed006e, 0x5040a0ac), TOBN(0xca9d5043, 0xfb476f2e), TOBN(0xa19c06e8, 0xbeea7a23), TOBN(0xd2865801, 0x0edabb63), TOBN(0xdb92293f, 0x6967469a), TOBN(0x2894d839, 0x8d8a8ed8), TOBN(0x87c9e406, 0xbbc77122), TOBN(0x8671c6f1, 0x2ea3a26a), TOBN(0xe42df8d6, 0xd7de9853), TOBN(0x2e3ce346, 0xb1f2bcc7), TOBN(0xda601dfc, 0x899d50cf), TOBN(0xbfc913de, 0xfb1b598f), TOBN(0x81c4909f, 0xe61f7908), TOBN(0x192e304f, 0x9bbc7b29), TOBN(0xc3ed8738, 0xc104b338), TOBN(0xedbe9e47, 0x783f5d61), TOBN(0x0c06e9be, 0x2db30660), TOBN(0xda3e613f, 0xc0eb7d8e), TOBN(0xd8fa3e97, 0x322e096e), TOBN(0xfebd91e8, 0xd336e247), TOBN(0x8f13ccc4, 0xdf655a49), TOBN(0xa9e00dfc, 0x5eb20210), TOBN(0x84631d0f, 0xc656b6ea), TOBN(0x93a058cd, 0xd8c0d947), TOBN(0x6846904a, 0x67bd3448), TOBN(0x4a3d4e1a, 0xf394fd5c), TOBN(0xc102c1a5, 0xdb225f52), TOBN(0xe3455bba, 0xfc4f5e9a), TOBN(0x6b36985b, 0x4b9ad1ce), TOBN(0xa9818536, 0x5bb7f793), TOBN(0x6c25e1d0, 0x48b1a416), TOBN(0x1381dd53, 0x3c81bee7), TOBN(0xd2a30d61, 0x7a4a7620), TOBN(0xc8412926, 0x39b8944c), TOBN(0x3c1c6fbe, 0x7a97c33a), TOBN(0x941e541d, 0x938664e7), TOBN(0x417499e8, 0x4a34f239), TOBN(0x15fdb83c, 0xb90402d5), TOBN(0xb75f46bf, 0x433aa832), TOBN(0xb61e15af, 0x63215db1), TOBN(0xaabe59d4, 0xa127f89a), TOBN(0x5d541e0c, 0x07e816da), TOBN(0xaaba0659, 0xa618b692), TOBN(0x55327733, 0x17266026), TOBN(0xaf53a0fc, 0x95f57552), TOBN(0x32947650, 0x6cacb0c9), TOBN(0x253ff58d, 0xc821be01), TOBN(0xb0309531, 0xa06f1146), TOBN(0x59bbbdf5, 0x05c2e54d), TOBN(0x158f27ad, 0x26e8dd22), TOBN(0xcc5b7ffb, 0x397e1e53), TOBN(0xae03f65b, 0x7fc1e50d), TOBN(0xa9784ebd, 0x9c95f0f9), TOBN(0x5ed9deb2, 0x24640771), TOBN(0x31244af7, 0x035561c4), TOBN(0x87332f3a, 0x7ee857de), TOBN(0x09e16e9e, 0x2b9e0d88), TOBN(0x52d910f4, 0x56a06049), TOBN(0x507ed477, 0xa9592f48), TOBN(0x85cb917b, 0x2365d678), TOBN(0xf8511c93, 0x4c8998d1), TOBN(0x2186a3f1, 0x730ea58f), TOBN(0x50189626, 0xb2029db0), TOBN(0x9137a6d9, 0x02ceb75a), TOBN(0x2fe17f37, 0x748bc82c), TOBN(0x87c2e931, 0x80469f8c), TOBN(0x850f71cd, 0xbf891aa2), TOBN(0x0ca1b89b, 0x75ec3d8d), TOBN(0x516c43aa, 0x5e1cd3cd), TOBN(0x89397808, 0x9a887c28), TOBN(0x0059c699, 0xddea1f9f), TOBN(0x7737d6fa, 0x8e6868f7), TOBN(0x6d93746a, 0x60f1524b), TOBN(0x36985e55, 0xba052aa7), TOBN(0x41b1d322, 0xed923ea5), TOBN(0x3429759f, 0x25852a11), TOBN(0xbeca6ec3, 0x092e9f41), TOBN(0x3a238c66, 0x62256bbd), TOBN(0xd82958ea, 0x70ad487d), TOBN(0x4ac8aaf9, 0x65610d93), TOBN(0x3fa101b1, 0x5e4ccab0), TOBN(0x9bf430f2, 0x9de14bfb), TOBN(0xa10f5cc6, 0x6531899d), TOBN(0x590005fb, 0xea8ce17d), TOBN(0xc437912f, 0x24544cb6), TOBN(0x9987b71a, 0xd79ac2e3), TOBN(0x13e3d9dd, 0xc058a212), TOBN(0x00075aac, 0xd2de9606), TOBN(0x80ab508b, 0x6cac8369), TOBN(0x87842be7, 0xf54f6c89), TOBN(0xa7ad663d, 0x6bc532a4), TOBN(0x67813de7, 0x78a91bc8), TOBN(0x5dcb61ce, 0xc3427239), TOBN(0x5f3c7cf0, 0xc56934d9), TOBN(0xc079e0fb, 0xe3191591), TOBN(0xe40896bd, 0xb01aada7), TOBN(0x8d466791, 0x0492d25f), TOBN(0x8aeb30c9, 0xe7408276), TOBN(0xe9437495, 0x9287aacc), TOBN(0x23d4708d, 0x79fe03d4), TOBN(0x8cda9cf2, 0xd0c05199), TOBN(0x502fbc22, 0xfae78454), TOBN(0xc0bda9df, 0xf572a182), TOBN(0x5f9b71b8, 0x6158b372), TOBN(0xe0f33a59, 0x2b82dd07), TOBN(0x76302735, 0x9523032e), TOBN(0x7fe1a721, 0xc4505a32), TOBN(0x7b6e3e82, 0xf796409f),} , {TOBN(0xe3417bc0, 0x35d0b34a), TOBN(0x440b386b, 0x8327c0a7), TOBN(0x8fb7262d, 0xac0362d1), TOBN(0x2c41114c, 0xe0cdf943), TOBN(0x2ba5cef1, 0xad95a0b1), TOBN(0xc09b37a8, 0x67d54362), TOBN(0x26d6cdd2, 0x01e486c9), TOBN(0x20477abf, 0x42ff9297), TOBN(0xa004dcb3, 0x292a9287), TOBN(0xddc15cf6, 0x77b092c7), TOBN(0x083a8464, 0x806c0605), TOBN(0x4a68df70, 0x3db997b0), TOBN(0x9c134e45, 0x05bf7dd0), TOBN(0xa4e63d39, 0x8ccf7f8c), TOBN(0xa6e6517f, 0x41b5f8af), TOBN(0xaa8b9342, 0xad7bc1cc), TOBN(0x126f35b5, 0x1e706ad9), TOBN(0xb99cebb4, 0xc3a9ebdf), TOBN(0xa75389af, 0xbf608d90), TOBN(0x76113c4f, 0xc6c89858), TOBN(0x80de8eb0, 0x97e2b5aa), TOBN(0x7e1022cc, 0x63b91304), TOBN(0x3bdab605, 0x6ccc066c), TOBN(0x33cbb144, 0xb2edf900), TOBN(0xc4176471, 0x7af715d2), TOBN(0xe2f7f594, 0xd0134a96), TOBN(0x2c1873ef, 0xa41ec956), TOBN(0xe4e7b4f6, 0x77821304), TOBN(0xe5c8ff97, 0x88d5374a), TOBN(0x2b915e63, 0x80823d5b), TOBN(0xea6bc755, 0xb2ee8fe2), TOBN(0x6657624c, 0xe7112651), TOBN(0x157af101, 0xdace5aca), TOBN(0xc4fdbcf2, 0x11a6a267), TOBN(0xdaddf340, 0xc49c8609), TOBN(0x97e49f52, 0xe9604a65), TOBN(0x9be8e790, 0x937e2ad5), TOBN(0x846e2508, 0x326e17f1), TOBN(0x3f38007a, 0x0bbbc0dc), TOBN(0xcf03603f, 0xb11e16d6), TOBN(0xd6f800e0, 0x7442f1d5), TOBN(0x475607d1, 0x66e0e3ab), TOBN(0x82807f16, 0xb7c64047), TOBN(0x8858e1e3, 0xa749883d), TOBN(0x5859120b, 0x8231ee10), TOBN(0x1b80e7eb, 0x638a1ece), TOBN(0xcb72525a, 0xc6aa73a4), TOBN(0xa7cdea3d, 0x844423ac), TOBN(0x5ed0c007, 0xf8ae7c38), TOBN(0x6db07a5c, 0x3d740192), TOBN(0xbe5e9c2a, 0x5fe36db3), TOBN(0xd5b9d57a, 0x76e95046), TOBN(0x54ac32e7, 0x8eba20f2), TOBN(0xef11ca8f, 0x71b9a352), TOBN(0x305e373e, 0xff98a658), TOBN(0xffe5a100, 0x823eb667), TOBN(0x57477b11, 0xe51732d2), TOBN(0xdfd6eb28, 0x2538fc0e), TOBN(0x5c43b0cc, 0x3b39eec5), TOBN(0x6af12778, 0xcb36cc57), TOBN(0x70b0852d, 0x06c425ae), TOBN(0x6df92f8c, 0x5c221b9b), TOBN(0x6c8d4f9e, 0xce826d9c), TOBN(0xf59aba7b, 0xb49359c3), TOBN(0x5c8ed8d5, 0xda64309d), TOBN(0x61a6de56, 0x91b30704), TOBN(0xd6b52f6a, 0x2f9b5808), TOBN(0x0eee4194, 0x98c958a7), TOBN(0xcddd9aab, 0x771e4caa), TOBN(0x83965dfd, 0x78bc21be), TOBN(0x02affce3, 0xb3b504f5), TOBN(0x30847a21, 0x561c8291), TOBN(0xd2eb2cf1, 0x52bfda05), TOBN(0xe0e4c4e9, 0x6197b98c), TOBN(0x1d35076c, 0xf8a1726f), TOBN(0x6c06085b, 0x2db11e3d), TOBN(0x15c0c4d7, 0x4463ba14), TOBN(0x9d292f83, 0x0030238c), TOBN(0x1311ee8b, 0x3727536d), TOBN(0xfeea86ef, 0xbeaedc1e), TOBN(0xb9d18cd3, 0x66131e2e), TOBN(0xf31d974f, 0x80fe2682), TOBN(0xb6e49e0f, 0xe4160289), TOBN(0x7c48ec0b, 0x08e92799), TOBN(0x818111d8, 0xd1989aa7), TOBN(0xb34fa0aa, 0xebf926f9), TOBN(0xdb5fe2f5, 0xa245474a), TOBN(0xf80a6ebb, 0x3c7ca756), TOBN(0xa7f96054, 0xafa05dd8), TOBN(0x26dfcf21, 0xfcaf119e), TOBN(0xe20ef2e3, 0x0564bb59), TOBN(0xef4dca50, 0x61cb02b8), TOBN(0xcda7838a, 0x65d30672), TOBN(0x8b08d534, 0xfd657e86), TOBN(0x4c5b4395, 0x46d595c8), TOBN(0x39b58725, 0x425cb836), TOBN(0x8ea61059, 0x3de9abe3), TOBN(0x40434881, 0x9cdc03be), TOBN(0x9b261245, 0xcfedce8c), TOBN(0x78c318b4, 0xcf5234a1), TOBN(0x510bcf16, 0xfde24c99), TOBN(0x2a77cb75, 0xa2c2ff5d), TOBN(0x9c895c2b, 0x27960fb4), TOBN(0xd30ce975, 0xb0eda42b), TOBN(0xfda85393, 0x1a62cc26), TOBN(0x23c69b96, 0x50c0e052), TOBN(0xa227df15, 0xbfc633f3), TOBN(0x2ac78848, 0x1bae7d48), TOBN(0x487878f9, 0x187d073d), TOBN(0x6c2be919, 0x967f807d), TOBN(0x765861d8, 0x336e6d8f), TOBN(0x88b8974c, 0xce528a43), TOBN(0x09521177, 0xff57d051), TOBN(0x2ff38037, 0xfb6a1961), TOBN(0xfc0aba74, 0xa3d76ad4), TOBN(0x7c764803, 0x25a7ec17), TOBN(0x7532d75f, 0x48879bc8), TOBN(0xea7eacc0, 0x58ce6bc1), TOBN(0xc82176b4, 0x8e896c16), TOBN(0x9a30e0b2, 0x2c750fed), TOBN(0xc37e2c2e, 0x421d3aa4), TOBN(0xf926407c, 0xe84fa840), TOBN(0x18abc03d, 0x1454e41c), TOBN(0x26605ecd, 0x3f7af644), TOBN(0x242341a6, 0xd6a5eabf), TOBN(0x1edb84f4, 0x216b668e), TOBN(0xd836edb8, 0x04010102), TOBN(0x5b337ce7, 0x945e1d8c), TOBN(0xd2075c77, 0xc055dc14), TOBN(0x2a0ffa25, 0x81d89cdf), TOBN(0x8ce815ea, 0x6ffdcbaf), TOBN(0xa3428878, 0xfb648867), TOBN(0x277699cf, 0x884655fb), TOBN(0xfa5b5bd6, 0x364d3e41), TOBN(0x01f680c6, 0x441e1cb7), TOBN(0x3fd61e66, 0xb70a7d67), TOBN(0x666ba2dc, 0xcc78cf66), TOBN(0xb3018174, 0x6fdbff77), TOBN(0x8d4dd0db, 0x168d4668), TOBN(0x259455d0, 0x1dab3a2a), TOBN(0xf58564c5, 0xcde3acec), TOBN(0x77141925, 0x13adb276), TOBN(0x527d725d, 0x8a303f65), TOBN(0x55deb6c9, 0xe6f38f7b), TOBN(0xfd5bb657, 0xb1fa70fb), TOBN(0xfa07f50f, 0xd8073a00), TOBN(0xf72e3aa7, 0xbca02500), TOBN(0xf68f895d, 0x9975740d), TOBN(0x30112060, 0x5cae2a6a), TOBN(0x01bd7218, 0x02874842), TOBN(0x3d423891, 0x7ce47bd3), TOBN(0xa66663c1, 0x789544f6), TOBN(0x864d05d7, 0x3272d838), TOBN(0xe22924f9, 0xfa6295c5), TOBN(0x8189593f, 0x6c2fda32), TOBN(0x330d7189, 0xb184b544), TOBN(0x79efa62c, 0xbde1f714), TOBN(0x35771c94, 0xe5cb1a63), TOBN(0x2f4826b8, 0x641c8332), TOBN(0x00a894fb, 0xc8cee854), TOBN(0xb4b9a39b, 0x36194d40), TOBN(0xe857a7c5, 0x77612601), TOBN(0xf4209dd2, 0x4ecf2f58), TOBN(0x82b9e66d, 0x5a033487), TOBN(0xc1e36934, 0xe4e8b9dd), TOBN(0xd2372c9d, 0xa42377d7), TOBN(0x51dc94c7, 0x0e3ae43b), TOBN(0x4c57761e, 0x04474f6f), TOBN(0xdcdacd0a, 0x1058a318), TOBN(0x369cf3f5, 0x78053a9a), TOBN(0xc6c3de50, 0x31c68de2), TOBN(0x4653a576, 0x3c4b6d9f), TOBN(0x1688dd5a, 0xaa4e5c97), TOBN(0x5be80aa1, 0xb7ab3c74), TOBN(0x70cefe7c, 0xbc65c283), TOBN(0x57f95f13, 0x06867091), TOBN(0xa39114e2, 0x4415503b), TOBN(0xc08ff7c6, 0x4cbb17e9), TOBN(0x1eff674d, 0xd7dec966), TOBN(0x6d4690af, 0x53376f63), TOBN(0xff6fe32e, 0xea74237b), TOBN(0xc436d17e, 0xcd57508e), TOBN(0x15aa28e1, 0xedcc40fe), TOBN(0x0d769c04, 0x581bbb44), TOBN(0xc240b6de, 0x34eaacda), TOBN(0xd9e116e8, 0x2ba0f1de), TOBN(0xcbe45ec7, 0x79438e55), TOBN(0x91787c9d, 0x96f752d7), TOBN(0x897f532b, 0xf129ac2f), TOBN(0xd307b7c8, 0x5a36e22c), TOBN(0x91940675, 0x749fb8f3), TOBN(0xd14f95d0, 0x157fdb28), TOBN(0xfe51d029, 0x6ae55043), TOBN(0x8931e98f, 0x44a87de1), TOBN(0xe57f1cc6, 0x09e4fee2), TOBN(0x0d063b67, 0x4e072d92), TOBN(0x70a998b9, 0xed0e4316), TOBN(0xe74a736b, 0x306aca46), TOBN(0xecf0fbf2, 0x4fda97c7), TOBN(0xa40f65cb, 0x3e178d93), TOBN(0x16253604, 0x16df4285), TOBN(0xb0c9babb, 0xd0c56ae2), TOBN(0x73032b19, 0xcfc5cfc3), TOBN(0xe497e5c3, 0x09752056), TOBN(0x12096bb4, 0x164bda96), TOBN(0x1ee42419, 0xa0b74da1), TOBN(0x8fc36243, 0x403826ba), TOBN(0x0c8f0069, 0xdc09e660), TOBN(0x8667e981, 0xc27253c9), TOBN(0x05a6aefb, 0x92b36a45), TOBN(0xa62c4b36, 0x9cb7bb46), TOBN(0x8394f375, 0x11f7027b), TOBN(0x747bc79c, 0x5f109d0f), TOBN(0xcad88a76, 0x5b8cc60a), TOBN(0x80c5a66b, 0x58f09e68), TOBN(0xe753d451, 0xf6127eac), TOBN(0xc44b74a1, 0x5b0ec6f5), TOBN(0x47989fe4, 0x5289b2b8), TOBN(0x745f8484, 0x58d6fc73), TOBN(0xec362a6f, 0xf61c70ab), TOBN(0x070c98a7, 0xb3a8ad41), TOBN(0x73a20fc0, 0x7b63db51), TOBN(0xed2c2173, 0xf44c35f4), TOBN(0x8a56149d, 0x9acc9dca), TOBN(0x98f17881, 0x9ac6e0f4), TOBN(0x360fdeaf, 0xa413b5ed), TOBN(0x0625b8f4, 0xa300b0fd), TOBN(0xf1f4d76a, 0x5b3222d3), TOBN(0x9d6f5109, 0x587f76b8), TOBN(0x8b4ee08d, 0x2317fdb5), TOBN(0x88089bb7, 0x8c68b095), TOBN(0x95570e9a, 0x5808d9b9), TOBN(0xa395c36f, 0x35d33ae7), TOBN(0x200ea123, 0x50bb5a94), TOBN(0x20c789bd, 0x0bafe84b), TOBN(0x243ef52d, 0x0919276a), TOBN(0x3934c577, 0xe23ae233), TOBN(0xb93807af, 0xa460d1ec), TOBN(0xb72a53b1, 0xf8fa76a4), TOBN(0xd8914cb0, 0xc3ca4491), TOBN(0x2e128494, 0x3fb42622), TOBN(0x3b2700ac, 0x500907d5), TOBN(0xf370fb09, 0x1a95ec63), TOBN(0xf8f30be2, 0x31b6dfbd), TOBN(0xf2b2f8d2, 0x69e55f15), TOBN(0x1fead851, 0xcc1323e9), TOBN(0xfa366010, 0xd9e5eef6), TOBN(0x64d487b0, 0xe316107e), TOBN(0x4c076b86, 0xd23ddc82), TOBN(0x03fd344c, 0x7e0143f0), TOBN(0xa95362ff, 0x317af2c5), TOBN(0x0add3db7, 0xe18b7a4f), TOBN(0x9c673e3f, 0x8260e01b), TOBN(0xfbeb49e5, 0x54a1cc91), TOBN(0x91351bf2, 0x92f2e433), TOBN(0xc755e7ec, 0x851141eb), TOBN(0xc9a95139, 0x29607745), TOBN(0x0ca07420, 0xa26f2b28), TOBN(0xcb2790e7, 0x4bc6f9dd), TOBN(0x345bbb58, 0xadcaffc0), TOBN(0xc65ea38c, 0xbe0f27a2), TOBN(0x67c24d7c, 0x641fcb56), TOBN(0x2c25f0a7, 0xa9e2c757), TOBN(0x93f5cdb0, 0x16f16c49), TOBN(0x2ca5a9d7, 0xc5ee30a1), TOBN(0xd1593635, 0xb909b729), TOBN(0x804ce9f3, 0xdadeff48), TOBN(0xec464751, 0xb07c30c3), TOBN(0x89d65ff3, 0x9e49af6a), TOBN(0xf2d6238a, 0x6f3d01bc), TOBN(0x1095561e, 0x0bced843), TOBN(0x51789e12, 0xc8a13fd8), TOBN(0xd633f929, 0x763231df), TOBN(0x46df9f7d, 0xe7cbddef), TOBN(0x01c889c0, 0xcb265da8), TOBN(0xfce1ad10, 0xaf4336d2), TOBN(0x8d110df6, 0xfc6a0a7e), TOBN(0xdd431b98, 0x6da425dc), TOBN(0xcdc4aeab, 0x1834aabe), TOBN(0x84deb124, 0x8439b7fc), TOBN(0x8796f169, 0x3c2a5998), TOBN(0x9b9247b4, 0x7947190d), TOBN(0x55b9d9a5, 0x11597014), TOBN(0x7e9dd70d, 0x7b1566ee), TOBN(0x94ad78f7, 0xcbcd5e64), TOBN(0x0359ac17, 0x9bd4c032), TOBN(0x3b11baaf, 0x7cc222ae), TOBN(0xa6a6e284, 0xba78e812), TOBN(0x8392053f, 0x24cea1a0), TOBN(0xc97bce4a, 0x33621491), TOBN(0x7eb1db34, 0x35399ee9), TOBN(0x473f78ef, 0xece81ad1), TOBN(0x41d72fe0, 0xf63d3d0d), TOBN(0xe620b880, 0xafab62fc), TOBN(0x92096bc9, 0x93158383), TOBN(0x41a21357, 0x8f896f6c), TOBN(0x1b5ee2fa, 0xc7dcfcab), TOBN(0x650acfde, 0x9546e007), TOBN(0xc081b749, 0xb1b02e07), TOBN(0xda9e41a0, 0xf9eca03d), TOBN(0x013ba727, 0x175a54ab), TOBN(0xca0cd190, 0xea5d8d10), TOBN(0x85ea52c0, 0x95fd96a9), TOBN(0x2c591b9f, 0xbc5c3940), TOBN(0x6fb4d4e4, 0x2bad4d5f), TOBN(0xfa4c3590, 0xfef0059b), TOBN(0x6a10218a, 0xf5122294), TOBN(0x9a78a81a, 0xa85751d1), TOBN(0x04f20579, 0xa98e84e7), TOBN(0xfe1242c0, 0x4997e5b5), TOBN(0xe77a273b, 0xca21e1e4), TOBN(0xfcc8b1ef, 0x9411939d), TOBN(0xe20ea302, 0x92d0487a), TOBN(0x1442dbec, 0x294b91fe), TOBN(0x1f7a4afe, 0xbb6b0e8f), TOBN(0x1700ef74, 0x6889c318), TOBN(0xf5bbffc3, 0x70f1fc62), TOBN(0x3b31d4b6, 0x69c79cca), TOBN(0xe8bc2aab, 0xa7f6340d), TOBN(0xb0b08ab4, 0xa725e10a), TOBN(0x44f05701, 0xae340050), TOBN(0xba4b3016, 0x1cf0c569), TOBN(0x5aa29f83, 0xfbe19a51), TOBN(0x1b9ed428, 0xb71d752e), TOBN(0x1666e54e, 0xeb4819f5), TOBN(0x616cdfed, 0x9e18b75b), TOBN(0x112ed5be, 0x3ee27b0b), TOBN(0xfbf28319, 0x44c7de4d), TOBN(0xd685ec85, 0xe0e60d84), TOBN(0x68037e30, 0x1db7ee78), TOBN(0x5b65bdcd, 0x003c4d6e), TOBN(0x33e7363a, 0x93e29a6a), TOBN(0x995b3a61, 0x08d0756c), TOBN(0xd727f85c, 0x2faf134b), TOBN(0xfac6edf7, 0x1d337823), TOBN(0x99b9aa50, 0x0439b8b4), TOBN(0x722eb104, 0xe2b4e075), TOBN(0x49987295, 0x437c4926), TOBN(0xb1e4c0e4, 0x46a9b82d), TOBN(0xd0cb3197, 0x57a006f5), TOBN(0xf3de0f7d, 0xd7808c56), TOBN(0xb5c54d8f, 0x51f89772), TOBN(0x500a114a, 0xadbd31aa), TOBN(0x9afaaaa6, 0x295f6cab), TOBN(0x94705e21, 0x04cf667a), TOBN(0xfc2a811b, 0x9d3935d7), TOBN(0x560b0280, 0x6d09267c), TOBN(0xf19ed119, 0xf780e53b), TOBN(0xf0227c09, 0x067b6269), TOBN(0x967b8533, 0x5caef599), TOBN(0x155b9243, 0x68efeebc), TOBN(0xcd6d34f5, 0xc497bae6), TOBN(0x1dd8d5d3, 0x6cceb370), TOBN(0x2aeac579, 0xa78d7bf9), TOBN(0x5d65017d, 0x70b67a62), TOBN(0x70c8e44f, 0x17c53f67), TOBN(0xd1fc0950, 0x86a34d09), TOBN(0xe0fca256, 0xe7134907), TOBN(0xe24fa29c, 0x80fdd315), TOBN(0x2c4acd03, 0xd87499ad), TOBN(0xbaaf7517, 0x3b5a9ba6), TOBN(0xb9cbe1f6, 0x12e51a51), TOBN(0xd88edae3, 0x5e154897), TOBN(0xe4309c3c, 0x77b66ca0), TOBN(0xf5555805, 0xf67f3746), TOBN(0x85fc37ba, 0xa36401ff), TOBN(0xdf86e2ca, 0xd9499a53), TOBN(0x6270b2a3, 0xecbc955b), TOBN(0xafae64f5, 0x974ad33b), TOBN(0x04d85977, 0xfe7b2df1), TOBN(0x2a3db3ff, 0x4ab03f73), TOBN(0x0b87878a, 0x8702740a), TOBN(0x6d263f01, 0x5a061732), TOBN(0xc25430ce, 0xa32a1901), TOBN(0xf7ebab3d, 0xdb155018), TOBN(0x3a86f693, 0x63a9b78e), TOBN(0x349ae368, 0xda9f3804), TOBN(0x470f07fe, 0xa164349c), TOBN(0xd52f4cc9, 0x8562baa5), TOBN(0xc74a9e86, 0x2b290df3), TOBN(0xd3a1aa35, 0x43471a24), TOBN(0x239446be, 0xb8194511), TOBN(0xbec2dd00, 0x81dcd44d), TOBN(0xca3d7f0f, 0xc42ac82d), TOBN(0x1f3db085, 0xfdaf4520), TOBN(0xbb6d3e80, 0x4549daf2), TOBN(0xf5969d8a, 0x19ad5c42), TOBN(0x7052b13d, 0xdbfd1511), TOBN(0x11890d1b, 0x682b9060), TOBN(0xa71d3883, 0xac34452c), TOBN(0xa438055b, 0x783805b4), TOBN(0x43241277, 0x4725b23e), TOBN(0xf20cf96e, 0x4901bbed), TOBN(0x6419c710, 0xf432a2bb), TOBN(0x57a0fbb9, 0xdfa9cd7d), TOBN(0x589111e4, 0x00daa249), TOBN(0x19809a33, 0x7b60554e), TOBN(0xea5f8887, 0xede283a4), TOBN(0x2d713802, 0x503bfd35), TOBN(0x151bb0af, 0x585d2a53), TOBN(0x40b08f74, 0x43b30ca8), TOBN(0xe10b5bba, 0xd9934583), TOBN(0xe8a546d6, 0xb51110ad), TOBN(0x1dd50e66, 0x28e0b6c5), TOBN(0x292e9d54, 0xcff2b821), TOBN(0x3882555d, 0x47281760), TOBN(0x134838f8, 0x3724d6e3), TOBN(0xf2c679e0, 0x22ddcda1), TOBN(0x40ee8815, 0x6d2a5768), TOBN(0x7f227bd2, 0x1c1e7e2d), TOBN(0x487ba134, 0xd04ff443), TOBN(0x76e2ff3d, 0xc614e54b), TOBN(0x36b88d6f, 0xa3177ec7), TOBN(0xbf731d51, 0x2328fff5), TOBN(0x758caea2, 0x49ba158e), TOBN(0x5ab8ff4c, 0x02938188), TOBN(0x33e16056, 0x35edc56d), TOBN(0x5a69d349, 0x7e940d79), TOBN(0x6c4fd001, 0x03866dcb), TOBN(0x20a38f57, 0x4893cdef), TOBN(0xfbf3e790, 0xfac3a15b), TOBN(0x6ed7ea2e, 0x7a4f8e6b), TOBN(0xa663eb4f, 0xbc3aca86), TOBN(0x22061ea5, 0x080d53f7), TOBN(0x2480dfe6, 0xf546783f), TOBN(0xd38bc6da, 0x5a0a641e), TOBN(0xfb093cd1, 0x2ede8965), TOBN(0x89654db4, 0xacb455cf), TOBN(0x413cbf9a, 0x26e1adee), TOBN(0x291f3764, 0x373294d4), TOBN(0x00797257, 0x648083fe), TOBN(0x25f504d3, 0x208cc341), TOBN(0x635a8e5e, 0xc3a0ee43), TOBN(0x70aaebca, 0x679898ff), TOBN(0x9ee9f547, 0x5dc63d56), TOBN(0xce987966, 0xffb34d00), TOBN(0xf9f86b19, 0x5e26310a), TOBN(0x9e435484, 0x382a8ca8), TOBN(0x253bcb81, 0xc2352fe4), TOBN(0xa4eac8b0, 0x4474b571), TOBN(0xc1b97512, 0xc1ad8cf8), TOBN(0x193b4e9e, 0x99e0b697), TOBN(0x939d2716, 0x01e85df0), TOBN(0x4fb265b3, 0xcd44eafd), TOBN(0x321e7dcd, 0xe51e1ae2), TOBN(0x8e3a8ca6, 0xe3d8b096), TOBN(0x8de46cb0, 0x52604998), TOBN(0x91099ad8, 0x39072aa7), TOBN(0x2617f91c, 0x93aa96b8), TOBN(0x0fc8716b, 0x7fca2e13), TOBN(0xa7106f5e, 0x95328723), TOBN(0xd1c9c40b, 0x262e6522), TOBN(0xb9bafe86, 0x42b7c094), TOBN(0x1873439d, 0x1543c021), TOBN(0xe1baa5de, 0x5cbefd5d), TOBN(0xa363fc5e, 0x521e8aff), TOBN(0xefe6320d, 0xf862eaac), TOBN(0x14419c63, 0x22c647dc), TOBN(0x0e06707c, 0x4e46d428), TOBN(0xcb6c834f, 0x4a178f8f), TOBN(0x0f993a45, 0xd30f917c), TOBN(0xd4c4b049, 0x9879afee), TOBN(0xb6142a1e, 0x70500063), TOBN(0x7c9b41c3, 0xa5d9d605), TOBN(0xbc00fc2f, 0x2f8ba2c7), TOBN(0x0966eb2f, 0x7c67aa28), TOBN(0x13f7b516, 0x5a786972), TOBN(0x3bfb7557, 0x8a2fbba0), TOBN(0x131c4f23, 0x5a2b9620), TOBN(0xbff3ed27, 0x6faf46be), TOBN(0x9b4473d1, 0x7e172323), TOBN(0x421e8878, 0x339f6246), TOBN(0x0fa8587a, 0x25a41632), TOBN(0xc0814124, 0xa35b6c93), TOBN(0x2b18a9f5, 0x59ebb8db), TOBN(0x264e3357, 0x76edb29c), TOBN(0xaf245ccd, 0xc87c51e2), TOBN(0x16b3015b, 0x501e6214), TOBN(0xbb31c560, 0x0a3882ce), TOBN(0x6961bb94, 0xfec11e04), TOBN(0x3b825b8d, 0xeff7a3a0), TOBN(0xbec33738, 0xb1df7326), TOBN(0x68ad747c, 0x99604a1f), TOBN(0xd154c934, 0x9a3bd499), TOBN(0xac33506f, 0x1cc7a906), TOBN(0x73bb5392, 0x6c560e8f), TOBN(0x6428fcbe, 0x263e3944), TOBN(0xc11828d5, 0x1c387434), TOBN(0x3cd04be1, 0x3e4b12ff), TOBN(0xc3aad9f9, 0x2d88667c), TOBN(0xc52ddcf8, 0x248120cf), TOBN(0x985a892e, 0x2a389532), TOBN(0xfbb4b21b, 0x3bb85fa0), TOBN(0xf95375e0, 0x8dfc6269), TOBN(0xfb4fb06c, 0x7ee2acea), TOBN(0x6785426e, 0x309c4d1f), TOBN(0x659b17c8, 0xd8ceb147), TOBN(0x9b649eee, 0xb70a5554), TOBN(0x6b7fa0b5, 0xac6bc634), TOBN(0xd99fe2c7, 0x1d6e732f), TOBN(0x30e6e762, 0x8d3abba2), TOBN(0x18fee6e7, 0xa797b799), TOBN(0x5c9d360d, 0xc696464d), TOBN(0xe3baeb48, 0x27bfde12), TOBN(0x2bf5db47, 0xf23206d5), TOBN(0x2f6d3420, 0x1d260152), TOBN(0x17b87653, 0x3f8ff89a), TOBN(0x5157c30c, 0x378fa458), TOBN(0x7517c5c5, 0x2d4fb936), TOBN(0xef22f7ac, 0xe6518cdc), TOBN(0xdeb483e6, 0xbf847a64), TOBN(0xf5084558, 0x92e0fa89),} , {TOBN(0xab9659d8, 0xdf7304d4), TOBN(0xb71bcf1b, 0xff210e8e), TOBN(0xa9a2438b, 0xd73fbd60), TOBN(0x4595cd1f, 0x5d11b4de), TOBN(0x9c0d329a, 0x4835859d), TOBN(0x4a0f0d2d, 0x7dbb6e56), TOBN(0xc6038e5e, 0xdf928a4e), TOBN(0xc9429621, 0x8f5ad154), TOBN(0x91213462, 0xf23f2d92), TOBN(0x6cab71bd, 0x60b94078), TOBN(0x6bdd0a63, 0x176cde20), TOBN(0x54c9b20c, 0xee4d54bc), TOBN(0x3cd2d8aa, 0x9f2ac02f), TOBN(0x03f8e617, 0x206eedb0), TOBN(0xc7f68e16, 0x93086434), TOBN(0x831469c5, 0x92dd3db9), TOBN(0x8521df24, 0x8f981354), TOBN(0x587e23ec, 0x3588a259), TOBN(0xcbedf281, 0xd7a0992c), TOBN(0x06930a55, 0x38961407), TOBN(0x09320deb, 0xbe5bbe21), TOBN(0xa7ffa5b5, 0x2491817f), TOBN(0xe6c8b4d9, 0x09065160), TOBN(0xac4f3992, 0xfff6d2a9), TOBN(0x7aa7a158, 0x3ae9c1bd), TOBN(0xe0af6d98, 0xe37ce240), TOBN(0xe54342d9, 0x28ab38b4), TOBN(0xe8b75007, 0x0a1c98ca), TOBN(0xefce86af, 0xe02358f2), TOBN(0x31b8b856, 0xea921228), TOBN(0x052a1912, 0x0a1c67fc), TOBN(0xb4069ea4, 0xe3aead59), TOBN(0x3232d6e2, 0x7fa03cb3), TOBN(0xdb938e5b, 0x0fdd7d88), TOBN(0x04c1d2cd, 0x2ccbfc5d), TOBN(0xd2f45c12, 0xaf3a580f), TOBN(0x592620b5, 0x7883e614), TOBN(0x5fd27e68, 0xbe7c5f26), TOBN(0x139e45a9, 0x1567e1e3), TOBN(0x2cc71d2d, 0x44d8aaaf), TOBN(0x4a9090cd, 0xe36d0757), TOBN(0xf722d7b1, 0xd9a29382), TOBN(0xfb7fb04c, 0x04b48ddf), TOBN(0x628ad2a7, 0xebe16f43), TOBN(0xcd3fbfb5, 0x20226040), TOBN(0x6c34ecb1, 0x5104b6c4), TOBN(0x30c0754e, 0xc903c188), TOBN(0xec336b08, 0x2d23cab0), TOBN(0x473d62a2, 0x1e206ee5), TOBN(0xf1e27480, 0x8c49a633), TOBN(0x87ab956c, 0xe9f6b2c3), TOBN(0x61830b48, 0x62b606ea), TOBN(0x67cd6846, 0xe78e815f), TOBN(0xfe40139f, 0x4c02082a), TOBN(0x52bbbfcb, 0x952ec365), TOBN(0x74c11642, 0x6b9836ab), TOBN(0x9f51439e, 0x558df019), TOBN(0x230da4ba, 0xac712b27), TOBN(0x518919e3, 0x55185a24), TOBN(0x4dcefcdd, 0x84b78f50), TOBN(0xa7d90fb2, 0xa47d4c5a), TOBN(0x55ac9abf, 0xb30e009e), TOBN(0xfd2fc359, 0x74eed273), TOBN(0xb72d824c, 0xdbea8faf), TOBN(0xce721a74, 0x4513e2ca), TOBN(0x0b418612, 0x38240b2c), TOBN(0x05199968, 0xd5baa450), TOBN(0xeb1757ed, 0x2b0e8c25), TOBN(0x6ebc3e28, 0x3dfac6d5), TOBN(0xb2431e2e, 0x48a237f5), TOBN(0x2acb5e23, 0x52f61499), TOBN(0x5558a2a7, 0xe06c936b), TOBN(0xd213f923, 0xcbb13d1b), TOBN(0x98799f42, 0x5bfb9bfe), TOBN(0x1ae8ddc9, 0x701144a9), TOBN(0x0b8b3bb6, 0x4c5595ee), TOBN(0x0ea9ef2e, 0x3ecebb21), TOBN(0x17cb6c4b, 0x3671f9a7), TOBN(0x47ef464f, 0x726f1d1f), TOBN(0x171b9484, 0x6943a276), TOBN(0x51a4ae2d, 0x7ef0329c), TOBN(0x08509222, 0x91c4402a), TOBN(0x64a61d35, 0xafd45bbc), TOBN(0x38f096fe, 0x3035a851), TOBN(0xc7468b74, 0xa1dec027), TOBN(0xe8cf10e7, 0x4fc7dcba), TOBN(0xea35ff40, 0xf4a06353), TOBN(0x0b4c0dfa, 0x8b77dd66), TOBN(0x779b8552, 0xde7e5c19), TOBN(0xfab28609, 0xc1c0256c), TOBN(0x64f58eee, 0xabd4743d), TOBN(0x4e8ef838, 0x7b6cc93b), TOBN(0xee650d26, 0x4cb1bf3d), TOBN(0x4c1f9d09, 0x73dedf61), TOBN(0xaef7c9d7, 0xbfb70ced), TOBN(0x1ec0507e, 0x1641de1e), TOBN(0xcd7e5cc7, 0xcde45079), TOBN(0xde173c9a, 0x516ac9e4), TOBN(0x517a8494, 0xc170315c), TOBN(0x438fd905, 0x91d8e8fb), TOBN(0x5145c506, 0xc7d9630b), TOBN(0x6457a87b, 0xf47d4d75), TOBN(0xd31646bf, 0x0d9a80e8), TOBN(0x453add2b, 0xcef3aabe), TOBN(0xc9941109, 0xa607419d), TOBN(0xfaa71e62, 0xbb6bca80), TOBN(0x34158c13, 0x07c431f3), TOBN(0x594abebc, 0x992bc47a), TOBN(0x6dfea691, 0xeb78399f), TOBN(0x48aafb35, 0x3f42cba4), TOBN(0xedcd65af, 0x077c04f0), TOBN(0x1a29a366, 0xe884491a), TOBN(0x023a40e5, 0x1c21f2bf), TOBN(0xf99a513c, 0xa5057aee), TOBN(0xa3fe7e25, 0xbcab072e), TOBN(0x8568d2e1, 0x40e32bcf), TOBN(0x904594eb, 0xd3f69d9f), TOBN(0x181a9733, 0x07affab1), TOBN(0xe4d68d76, 0xb6e330f4), TOBN(0x87a6dafb, 0xc75a7fc1), TOBN(0x549db2b5, 0xef7d9289), TOBN(0x2480d4a8, 0x197f015a), TOBN(0x61d5590b, 0xc40493b6), TOBN(0x3a55b52e, 0x6f780331), TOBN(0x40eb8115, 0x309eadb0), TOBN(0xdea7de5a, 0x92e5c625), TOBN(0x64d631f0, 0xcc6a3d5a), TOBN(0x9d5e9d7c, 0x93e8dd61), TOBN(0xf297bef5, 0x206d3ffc), TOBN(0x23d5e033, 0x7d808bd4), TOBN(0x4a4f6912, 0xd24cf5ba), TOBN(0xe4d8163b, 0x09cdaa8a), TOBN(0x0e0de9ef, 0xd3082e8e), TOBN(0x4fe1246c, 0x0192f360), TOBN(0x1f900150, 0x4b8eee0a), TOBN(0x5219da81, 0xf1da391b), TOBN(0x7bf6a5c1, 0xf7ea25aa), TOBN(0xd165e6bf, 0xfbb07d5f), TOBN(0xe3539361, 0x89e78671), TOBN(0xa3fcac89, 0x2bac4219), TOBN(0xdfab6fd4, 0xf0baa8ab), TOBN(0x5a4adac1, 0xe2c1c2e5), TOBN(0x6cd75e31, 0x40d85849), TOBN(0xce263fea, 0x19b39181), TOBN(0xcb6803d3, 0x07032c72), TOBN(0x7f40d5ce, 0x790968c8), TOBN(0xa6de86bd, 0xdce978f0), TOBN(0x25547c4f, 0x368f751c), TOBN(0xb1e685fd, 0x65fb2a9e), TOBN(0xce69336f, 0x1eb9179c), TOBN(0xb15d1c27, 0x12504442), TOBN(0xb7df465c, 0xb911a06b), TOBN(0xb8d804a3, 0x315980cd), TOBN(0x693bc492, 0xfa3bebf7), TOBN(0x3578aeee, 0x2253c504), TOBN(0x158de498, 0xcd2474a2), TOBN(0x1331f5c7, 0xcfda8368), TOBN(0xd2d7bbb3, 0x78d7177e), TOBN(0xdf61133a, 0xf3c1e46e), TOBN(0x5836ce7d, 0xd30e7be8), TOBN(0x83084f19, 0x94f834cb), TOBN(0xd35653d4, 0x429ed782), TOBN(0xa542f16f, 0x59e58243), TOBN(0xc2b52f65, 0x0470a22d), TOBN(0xe3b6221b, 0x18f23d96), TOBN(0xcb05abac, 0x3f5252b4), TOBN(0xca00938b, 0x87d61402), TOBN(0x2f186cdd, 0x411933e4), TOBN(0xe042ece5, 0x9a29a5c5), TOBN(0xb19b3c07, 0x3b6c8402), TOBN(0xc97667c7, 0x19d92684), TOBN(0xb5624622, 0xebc66372), TOBN(0x0cb96e65, 0x3c04fa02), TOBN(0x83a7176c, 0x8eaa39aa), TOBN(0x2033561d, 0xeaa1633f), TOBN(0x45a9d086, 0x4533df73), TOBN(0xe0542c1d, 0x3dc090bc), TOBN(0x82c996ef, 0xaa59c167), TOBN(0xe3f735e8, 0x0ee7fc4d), TOBN(0x7b179393, 0x7c35db79), TOBN(0xb6419e25, 0xf8c5dbfd), TOBN(0x4d9d7a1e, 0x1f327b04), TOBN(0x979f6f9b, 0x298dfca8), TOBN(0xc7c5dff1, 0x8de9366a), TOBN(0x1b7a588d, 0x04c82bdd), TOBN(0x68005534, 0xf8319dfd), TOBN(0xde8a55b5, 0xd8eb9580), TOBN(0x5ea886da, 0x8d5bca81), TOBN(0xe8530a01, 0x252a0b4d), TOBN(0x1bffb4fe, 0x35eaa0a1), TOBN(0x2ad828b1, 0xd8e99563), TOBN(0x7de96ef5, 0x95f9cd87), TOBN(0x4abb2d0c, 0xd77d970c), TOBN(0x03cfb933, 0xd33ef9cb), TOBN(0xb0547c01, 0x8b211fe9), TOBN(0x2fe64809, 0xa56ed1c6), TOBN(0xcb7d5624, 0xc2ac98cc), TOBN(0x2a1372c0, 0x1a393e33), TOBN(0xc8d1ec1c, 0x29660521), TOBN(0xf3d31b04, 0xb37ac3e9), TOBN(0xa29ae9df, 0x5ece6e7c), TOBN(0x0603ac8f, 0x0facfb55), TOBN(0xcfe85b7a, 0xdda233a5), TOBN(0xe618919f, 0xbd75f0b8), TOBN(0xf555a3d2, 0x99bf1603), TOBN(0x1f43afc9, 0xf184255a), TOBN(0xdcdaf341, 0x319a3e02), TOBN(0xd3b117ef, 0x03903a39), TOBN(0xe095da13, 0x65d1d131), TOBN(0x86f16367, 0xc37ad03e), TOBN(0x5f37389e, 0x462cd8dd), TOBN(0xc103fa04, 0xd67a60e6), TOBN(0x57c34344, 0xf4b478f0), TOBN(0xce91edd8, 0xe117c98d), TOBN(0x001777b0, 0x231fc12e), TOBN(0x11ae47f2, 0xb207bccb), TOBN(0xd983cf8d, 0x20f8a242), TOBN(0x7aff5b1d, 0xf22e1ad8), TOBN(0x68fd11d0, 0x7fc4feb3), TOBN(0x5d53ae90, 0xb0f1c3e1), TOBN(0x50fb7905, 0xec041803), TOBN(0x85e3c977, 0x14404888), TOBN(0x0e67faed, 0xac628d8f), TOBN(0x2e865150, 0x6668532c), TOBN(0x15acaaa4, 0x6a67a6b0), TOBN(0xf4cdee25, 0xb25cec41), TOBN(0x49ee565a, 0xe4c6701e), TOBN(0x2a04ca66, 0xfc7d63d8), TOBN(0xeb105018, 0xef0543fb), TOBN(0xf709a4f5, 0xd1b0d81d), TOBN(0x5b906ee6, 0x2915d333), TOBN(0xf4a87412, 0x96f1f0ab), TOBN(0xb6b82fa7, 0x4d82f4c2), TOBN(0x90725a60, 0x6804efb3), TOBN(0xbc82ec46, 0xadc3425e), TOBN(0xb7b80581, 0x2787843e), TOBN(0xdf46d91c, 0xdd1fc74c), TOBN(0xdc1c62cb, 0xe783a6c4), TOBN(0x59d1b9f3, 0x1a04cbba), TOBN(0xd87f6f72, 0x95e40764), TOBN(0x02b4cfc1, 0x317f4a76), TOBN(0x8d2703eb, 0x91036bce), TOBN(0x98206cc6, 0xa5e72a56), TOBN(0x57be9ed1, 0xcf53fb0f), TOBN(0x09374571, 0xef0b17ac), TOBN(0x74b2655e, 0xd9181b38), TOBN(0xc8f80ea8, 0x89935d0e), TOBN(0xc0d9e942, 0x91529936), TOBN(0x19686041, 0x1e84e0e5), TOBN(0xa5db84d3, 0xaea34c93), TOBN(0xf9d5bb19, 0x7073a732), TOBN(0xb8d2fe56, 0x6bcfd7c0), TOBN(0x45775f36, 0xf3eb82fa), TOBN(0x8cb20ccc, 0xfdff8b58), TOBN(0x1659b65f, 0x8374c110), TOBN(0xb8b4a422, 0x330c789a), TOBN(0x75e3c3ea, 0x6fe8208b), TOBN(0xbd74b9e4, 0x286e78fe), TOBN(0x0be2e81b, 0xd7d93a1a), TOBN(0x7ed06e27, 0xdd0a5aae), TOBN(0x721f5a58, 0x6be8b800), TOBN(0x428299d1, 0xd846db28), TOBN(0x95cb8e6b, 0x5be88ed3), TOBN(0xc3186b23, 0x1c034e11), TOBN(0xa6312c9e, 0x8977d99b), TOBN(0xbe944331, 0x83f531e7), TOBN(0x8232c0c2, 0x18d3b1d4), TOBN(0x617aae8b, 0xe1247b73), TOBN(0x40153fc4, 0x282aec3b), TOBN(0xc6063d2f, 0xf7b8f823), TOBN(0x68f10e58, 0x3304f94c), TOBN(0x31efae74, 0xee676346), TOBN(0xbadb6c6d, 0x40a9b97c), TOBN(0x14702c63, 0x4f666256), TOBN(0xdeb954f1, 0x5184b2e3), TOBN(0x5184a526, 0x94b6ca40), TOBN(0xfff05337, 0x003c32ea), TOBN(0x5aa374dd, 0x205974c7), TOBN(0x9a763854, 0x4b0dd71a), TOBN(0x459cd27f, 0xdeb947ec), TOBN(0xa6e28161, 0x459c2b92), TOBN(0x2f020fa8, 0x75ee8ef5), TOBN(0xb132ec2d, 0x30b06310), TOBN(0xc3e15899, 0xbc6a4530), TOBN(0xdc5f53fe, 0xaa3f451a), TOBN(0x3a3c7f23, 0xc2d9acac), TOBN(0x2ec2f892, 0x6b27e58b), TOBN(0x68466ee7, 0xd742799f), TOBN(0x98324dd4, 0x1fa26613), TOBN(0xa2dc6dab, 0xbdc29d63), TOBN(0xf9675faa, 0xd712d657), TOBN(0x813994be, 0x21fd8d15), TOBN(0x5ccbb722, 0xfd4f7553), TOBN(0x5135ff8b, 0xf3a36b20), TOBN(0x44be28af, 0x69559df5), TOBN(0x40b65bed, 0x9d41bf30), TOBN(0xd98bf2a4, 0x3734e520), TOBN(0x5e3abbe3, 0x209bdcba), TOBN(0x77c76553, 0xbc945b35), TOBN(0x5331c093, 0xc6ef14aa), TOBN(0x518ffe29, 0x76b60c80), TOBN(0x2285593b, 0x7ace16f8), TOBN(0xab1f64cc, 0xbe2b9784), TOBN(0xe8f2c0d9, 0xab2421b6), TOBN(0x617d7174, 0xc1df065c), TOBN(0xafeeb5ab, 0x5f6578fa), TOBN(0x16ff1329, 0x263b54a8), TOBN(0x45c55808, 0xc990dce3), TOBN(0x42eab6c0, 0xecc8c177), TOBN(0x799ea9b5, 0x5982ecaa), TOBN(0xf65da244, 0xb607ef8e), TOBN(0x8ab226ce, 0x32a3fc2c), TOBN(0x745741e5, 0x7ea973dc), TOBN(0x5c00ca70, 0x20888f2e), TOBN(0x7cdce3cf, 0x45fd9cf1), TOBN(0x8a741ef1, 0x5507f872), TOBN(0x47c51c2f, 0x196b4cec), TOBN(0x70d08e43, 0xc97ea618), TOBN(0x930da15c, 0x15b18a2b), TOBN(0x33b6c678, 0x2f610514), TOBN(0xc662e4f8, 0x07ac9794), TOBN(0x1eccf050, 0xba06cb79), TOBN(0x1ff08623, 0xe7d954e5), TOBN(0x6ef2c5fb, 0x24cf71c3), TOBN(0xb2c063d2, 0x67978453), TOBN(0xa0cf3796, 0x1d654af8), TOBN(0x7cb242ea, 0x7ebdaa37), TOBN(0x206e0b10, 0xb86747e0), TOBN(0x481dae5f, 0xd5ecfefc), TOBN(0x07084fd8, 0xc2bff8fc), TOBN(0x8040a01a, 0xea324596), TOBN(0x4c646980, 0xd4de4036), TOBN(0x9eb8ab4e, 0xd65abfc3), TOBN(0xe01cb91f, 0x13541ec7), TOBN(0x8f029adb, 0xfd695012), TOBN(0x9ae28483, 0x3c7569ec), TOBN(0xa5614c9e, 0xa66d80a1), TOBN(0x680a3e44, 0x75f5f911), TOBN(0x0c07b14d, 0xceba4fc1), TOBN(0x891c285b, 0xa13071c1), TOBN(0xcac67ceb, 0x799ece3c), TOBN(0x29b910a9, 0x41e07e27), TOBN(0x66bdb409, 0xf2e43123), TOBN(0x06f8b137, 0x7ac9ecbe), TOBN(0x5981fafd, 0x38547090), TOBN(0x19ab8b9f, 0x85e3415d), TOBN(0xfc28c194, 0xc7e31b27), TOBN(0x843be0aa, 0x6fbcbb42), TOBN(0xf3b1ed43, 0xa6db836c), TOBN(0x2a1330e4, 0x01a45c05), TOBN(0x4f19f3c5, 0x95c1a377), TOBN(0xa85f39d0, 0x44b5ee33), TOBN(0x3da18e6d, 0x4ae52834), TOBN(0x5a403b39, 0x7423dcb0), TOBN(0xbb555e0a, 0xf2374aef), TOBN(0x2ad599c4, 0x1e8ca111), TOBN(0x1b3a2fb9, 0x014b3bf8), TOBN(0x73092684, 0xf66d5007), TOBN(0x079f1426, 0xc4340102), TOBN(0x1827cf81, 0x8fddf4de), TOBN(0xc83605f6, 0xf10ff927), TOBN(0xd3871451, 0x23739fc6), TOBN(0x6d163450, 0xcac1c2cc), TOBN(0x6b521296, 0xa2ec1ac5), TOBN(0x0606c4f9, 0x6e3cb4a5), TOBN(0xe47d3f41, 0x778abff7), TOBN(0x425a8d5e, 0xbe8e3a45), TOBN(0x53ea9e97, 0xa6102160), TOBN(0x477a106e, 0x39cbb688), TOBN(0x532401d2, 0xf3386d32), TOBN(0x8e564f64, 0xb1b9b421), TOBN(0xca9b8388, 0x81dad33f), TOBN(0xb1422b4e, 0x2093913e), TOBN(0x533d2f92, 0x69bc8112), TOBN(0x3fa017be, 0xebe7b2c7), TOBN(0xb2767c4a, 0xcaf197c6), TOBN(0xc925ff87, 0xaedbae9f), TOBN(0x7daf0eb9, 0x36880a54), TOBN(0x9284ddf5, 0x9c4d0e71), TOBN(0x1581cf93, 0x316f8cf5), TOBN(0x3eeca887, 0x3ac1f452), TOBN(0xb417fce9, 0xfb6aeffe), TOBN(0xa5918046, 0xeefb8dc3), TOBN(0x73d318ac, 0x02209400), TOBN(0xe800400f, 0x728693e5), TOBN(0xe87d814b, 0x339927ed), TOBN(0x93e94d3b, 0x57ea9910), TOBN(0xff8a35b6, 0x2245fb69), TOBN(0x043853d7, 0x7f200d34), TOBN(0x470f1e68, 0x0f653ce1), TOBN(0x81ac05bd, 0x59a06379), TOBN(0xa14052c2, 0x03930c29), TOBN(0x6b72fab5, 0x26bc2797), TOBN(0x13670d16, 0x99f16771), TOBN(0x00170052, 0x1e3e48d1), TOBN(0x978fe401, 0xb7adf678), TOBN(0x55ecfb92, 0xd41c5dd4), TOBN(0x5ff8e247, 0xc7b27da5), TOBN(0xe7518272, 0x013fb606), TOBN(0x5768d7e5, 0x2f547a3c), TOBN(0xbb24eaa3, 0x60017a5f), TOBN(0x6b18e6e4, 0x9c64ce9b), TOBN(0xc225c655, 0x103dde07), TOBN(0xfc3672ae, 0x7592f7ea), TOBN(0x9606ad77, 0xd06283a1), TOBN(0x542fc650, 0xe4d59d99), TOBN(0xabb57c49, 0x2a40e7c2), TOBN(0xac948f13, 0xa8db9f55), TOBN(0x6d4c9682, 0xb04465c3), TOBN(0xe3d062fa, 0x6468bd15), TOBN(0xa51729ac, 0x5f318d7e), TOBN(0x1fc87df6, 0x9eb6fc95), TOBN(0x63d146a8, 0x0591f652), TOBN(0xa861b8f7, 0x589621aa), TOBN(0x59f5f15a, 0xce31348c), TOBN(0x8f663391, 0x440da6da), TOBN(0xcfa778ac, 0xb591ffa3), TOBN(0x027ca9c5, 0x4cdfebce), TOBN(0xbe8e05a5, 0x444ea6b3), TOBN(0x8aab4e69, 0xa78d8254), TOBN(0x2437f04f, 0xb474d6b8), TOBN(0x6597ffd4, 0x045b3855), TOBN(0xbb0aea4e, 0xca47ecaa), TOBN(0x568aae83, 0x85c7ebfc), TOBN(0x0e966e64, 0xc73b2383), TOBN(0x49eb3447, 0xd17d8762), TOBN(0xde107821, 0x8da05dab), TOBN(0x443d8baa, 0x016b7236), TOBN(0x163b63a5, 0xea7610d6), TOBN(0xe47e4185, 0xce1ca979), TOBN(0xae648b65, 0x80baa132), TOBN(0xebf53de2, 0x0e0d5b64), TOBN(0x8d3bfcb4, 0xd3c8c1ca), TOBN(0x0d914ef3, 0x5d04b309), TOBN(0x55ef6415, 0x3de7d395), TOBN(0xbde1666f, 0x26b850e8), TOBN(0xdbe1ca6e, 0xd449ab19), TOBN(0x8902b322, 0xe89a2672), TOBN(0xb1674b7e, 0xdacb7a53), TOBN(0x8e9faf6e, 0xf52523ff), TOBN(0x6ba535da, 0x9a85788b), TOBN(0xd21f03ae, 0xbd0626d4), TOBN(0x099f8c47, 0xe873dc64), TOBN(0xcda8564d, 0x018ec97e), TOBN(0x3e8d7a5c, 0xde92c68c), TOBN(0x78e035a1, 0x73323cc4), TOBN(0x3ef26275, 0xf880ff7c), TOBN(0xa4ee3dff, 0x273eedaa), TOBN(0x58823507, 0xaf4e18f8), TOBN(0x967ec9b5, 0x0672f328), TOBN(0x9ded19d9, 0x559d3186), TOBN(0x5e2ab3de, 0x6cdce39c), TOBN(0xabad6e4d, 0x11c226df), TOBN(0xf9783f43, 0x87723014), TOBN(0x9a49a0cf, 0x1a885719), TOBN(0xfc0c1a5a, 0x90da9dbf), TOBN(0x8bbaec49, 0x571d92ac), TOBN(0x569e85fe, 0x4692517f), TOBN(0x8333b014, 0xa14ea4af), TOBN(0x32f2a62f, 0x12e5c5ad), TOBN(0x98c2ce3a, 0x06d89b85), TOBN(0xb90741aa, 0x2ff77a08), TOBN(0x2530defc, 0x01f795a2), TOBN(0xd6e5ba0b, 0x84b3c199), TOBN(0x7d8e8451, 0x12e4c936), TOBN(0xae419f7d, 0xbd0be17b), TOBN(0xa583fc8c, 0x22262bc9), TOBN(0x6b842ac7, 0x91bfe2bd), TOBN(0x33cef4e9, 0x440d6827), TOBN(0x5f69f4de, 0xef81fb14), TOBN(0xf16cf6f6, 0x234fbb92), TOBN(0x76ae3fc3, 0xd9e7e158), TOBN(0x4e89f6c2, 0xe9740b33), TOBN(0x677bc85d, 0x4962d6a1), TOBN(0x6c6d8a7f, 0x68d10d15), TOBN(0x5f9a7224, 0x0257b1cd), TOBN(0x7096b916, 0x4ad85961), TOBN(0x5f8c47f7, 0xe657ab4a), TOBN(0xde57d7d0, 0xf7461d7e), TOBN(0x7eb6094d, 0x80ce5ee2), TOBN(0x0b1e1dfd, 0x34190547), TOBN(0x8a394f43, 0xf05dd150), TOBN(0x0a9eb24d, 0x97df44e6), TOBN(0x78ca06bf, 0x87675719), TOBN(0x6f0b3462, 0x6ffeec22), TOBN(0x9d91bcea, 0x36cdd8fb), TOBN(0xac83363c, 0xa105be47), TOBN(0x81ba76c1, 0x069710e3), TOBN(0x3d1b24cb, 0x28c682c6), TOBN(0x27f25228, 0x8612575b), TOBN(0xb587c779, 0xe8e66e98), TOBN(0x7b0c03e9, 0x405eb1fe), TOBN(0xfdf0d030, 0x15b548e7), TOBN(0xa8be76e0, 0x38b36af7), TOBN(0x4cdab04a, 0x4f310c40), TOBN(0x6287223e, 0xf47ecaec), TOBN(0x678e6055, 0x8b399320), TOBN(0x61fe3fa6, 0xc01e4646), TOBN(0xc482866b, 0x03261a5e), TOBN(0xdfcf45b8, 0x5c2f244a), TOBN(0x8fab9a51, 0x2f684b43), TOBN(0xf796c654, 0xc7220a66), TOBN(0x1d90707e, 0xf5afa58f), TOBN(0x2c421d97, 0x4fdbe0de), TOBN(0xc4f4cda3, 0xaf2ebc2f), TOBN(0xa0af843d, 0xcb4efe24), TOBN(0x53b857c1, 0x9ccd10b1), TOBN(0xddc9d1eb, 0x914d3e04), TOBN(0x7bdec8bb, 0x62771deb), TOBN(0x829277aa, 0x91c5aa81), TOBN(0x7af18dd6, 0x832391ae), TOBN(0x1740f316, 0xc71a84ca),} , {TOBN(0x8928e99a, 0xeeaf8c49), TOBN(0xee7aa73d, 0x6e24d728), TOBN(0x4c5007c2, 0xe72b156c), TOBN(0x5fcf57c5, 0xed408a1d), TOBN(0x9f719e39, 0xb6057604), TOBN(0x7d343c01, 0xc2868bbf), TOBN(0x2cca254b, 0x7e103e2d), TOBN(0xe6eb38a9, 0xf131bea2), TOBN(0xb33e624f, 0x8be762b4), TOBN(0x2a9ee4d1, 0x058e3413), TOBN(0x968e6369, 0x67d805fa), TOBN(0x9848949b, 0x7db8bfd7), TOBN(0x5308d7e5, 0xd23a8417), TOBN(0x892f3b1d, 0xf3e29da5), TOBN(0xc95c139e, 0x3dee471f), TOBN(0x8631594d, 0xd757e089), TOBN(0xe0c82a3c, 0xde918dcc), TOBN(0x2e7b5994, 0x26fdcf4b), TOBN(0x82c50249, 0x32cb1b2d), TOBN(0xea613a9d, 0x7657ae07), TOBN(0xc2eb5f6c, 0xf1fdc9f7), TOBN(0xb6eae8b8, 0x879fe682), TOBN(0x253dfee0, 0x591cbc7f), TOBN(0x000da713, 0x3e1290e6), TOBN(0x1083e2ea, 0x1f095615), TOBN(0x0a28ad77, 0x14e68c33), TOBN(0x6bfc0252, 0x3d8818be), TOBN(0xb585113a, 0xf35850cd), TOBN(0x7d935f0b, 0x30df8aa1), TOBN(0xaddda07c, 0x4ab7e3ac), TOBN(0x92c34299, 0x552f00cb), TOBN(0xc33ed1de, 0x2909df6c), TOBN(0x22c2195d, 0x80e87766), TOBN(0x9e99e6d8, 0x9ddf4ac0), TOBN(0x09642e4e, 0x65e74934), TOBN(0x2610ffa2, 0xff1ff241), TOBN(0x4d1d47d4, 0x751c8159), TOBN(0x697b4985, 0xaf3a9363), TOBN(0x0318ca46, 0x87477c33), TOBN(0xa90cb565, 0x9441eff3), TOBN(0x58bb3848, 0x36f024cb), TOBN(0x85be1f77, 0x36016168), TOBN(0x6c59587c, 0xdc7e07f1), TOBN(0x191be071, 0xaf1d8f02), TOBN(0xbf169fa5, 0xcca5e55c), TOBN(0x3864ba3c, 0xf7d04eac), TOBN(0x915e367f, 0x8d7d05db), TOBN(0xb48a876d, 0xa6549e5d), TOBN(0xef89c656, 0x580e40a2), TOBN(0xf194ed8c, 0x728068bc), TOBN(0x74528045, 0xa47990c9), TOBN(0xf53fc7d7, 0x5e1a4649), TOBN(0xbec5ae9b, 0x78593e7d), TOBN(0x2cac4ee3, 0x41db65d7), TOBN(0xa8c1eb24, 0x04a3d39b), TOBN(0x53b7d634, 0x03f8f3ef), TOBN(0x2dc40d48, 0x3e07113c), TOBN(0x6e4a5d39, 0x7d8b63ae), TOBN(0x5582a94b, 0x79684c2b), TOBN(0x932b33d4, 0x622da26c), TOBN(0xf534f651, 0x0dbbf08d), TOBN(0x211d07c9, 0x64c23a52), TOBN(0x0eeece0f, 0xee5bdc9b), TOBN(0xdf178168, 0xf7015558), TOBN(0xd4294635, 0x0a712229), TOBN(0x93cbe448, 0x09273f8c), TOBN(0x00b095ef, 0x8f13bc83), TOBN(0xbb741972, 0x8798978c), TOBN(0x9d7309a2, 0x56dbe6e7), TOBN(0xe578ec56, 0x5a5d39ec), TOBN(0x3961151b, 0x851f9a31), TOBN(0x2da7715d, 0xe5709eb4), TOBN(0x867f3017, 0x53dfabf0), TOBN(0x728d2078, 0xb8e39259), TOBN(0x5c75a0cd, 0x815d9958), TOBN(0xf84867a6, 0x16603be1), TOBN(0xc865b13d, 0x70e35b1c), TOBN(0x02414468, 0x19b03e2c), TOBN(0xe46041da, 0xac1f3121), TOBN(0x7c9017ad, 0x6f028a7c), TOBN(0xabc96de9, 0x0a482873), TOBN(0x4265d6b1, 0xb77e54d4), TOBN(0x68c38e79, 0xa57d88e7), TOBN(0xd461d766, 0x9ce82de3), TOBN(0x817a9ec5, 0x64a7e489), TOBN(0xcc5675cd, 0xa0def5f2), TOBN(0x9a00e785, 0x985d494e), TOBN(0xc626833f, 0x1b03514a), TOBN(0xabe7905a, 0x83cdd60e), TOBN(0x50602fb5, 0xa1170184), TOBN(0x689886cd, 0xb023642a), TOBN(0xd568d090, 0xa6e1fb00), TOBN(0x5b1922c7, 0x0259217f), TOBN(0x93831cd9, 0xc43141e4), TOBN(0xdfca3587, 0x0c95f86e), TOBN(0xdec2057a, 0x568ae828), TOBN(0xc44ea599, 0xf98a759a), TOBN(0x55a0a7a2, 0xf7c23c1d), TOBN(0xd5ffb6e6, 0x94c4f687), TOBN(0x3563cce2, 0x12848478), TOBN(0x812b3517, 0xe7b1fbe1), TOBN(0x8a7dc979, 0x4f7338e0), TOBN(0x211ecee9, 0x52d048db), TOBN(0x2eea4056, 0xc86ea3b8), TOBN(0xd8cb68a7, 0xba772b34), TOBN(0xe16ed341, 0x5f4e2541), TOBN(0x9b32f6a6, 0x0fec14db), TOBN(0xeee376f7, 0x391698be), TOBN(0xe9a7aa17, 0x83674c02), TOBN(0x65832f97, 0x5843022a), TOBN(0x29f3a8da, 0x5ba4990f), TOBN(0x79a59c3a, 0xfb8e3216), TOBN(0x9cdc4d2e, 0xbd19bb16), TOBN(0xc6c7cfd0, 0xb3262d86), TOBN(0xd4ce14d0, 0x969c0b47), TOBN(0x1fa352b7, 0x13e56128), TOBN(0x383d55b8, 0x973db6d3), TOBN(0x71836850, 0xe8e5b7bf), TOBN(0xc7714596, 0xe6bb571f), TOBN(0x259df31f, 0x2d5b2dd2), TOBN(0x568f8925, 0x913cc16d), TOBN(0x18bc5b6d, 0xe1a26f5a), TOBN(0xdfa413be, 0xf5f499ae), TOBN(0xf8835dec, 0xc3f0ae84), TOBN(0xb6e60bd8, 0x65a40ab0), TOBN(0x65596439, 0x194b377e), TOBN(0xbcd85625, 0x92084a69), TOBN(0x5ce433b9, 0x4f23ede0), TOBN(0xe8e8f04f, 0x6ad65143), TOBN(0x11511827, 0xd6e14af6), TOBN(0x3d390a10, 0x8295c0c7), TOBN(0x71e29ee4, 0x621eba16), TOBN(0xa588fc09, 0x63717b46), TOBN(0x02be02fe, 0xe06ad4a2), TOBN(0x931558c6, 0x04c22b22), TOBN(0xbb4d4bd6, 0x12f3c849), TOBN(0x54a4f496, 0x20efd662), TOBN(0x92ba6d20, 0xc5952d14), TOBN(0x2db8ea1e, 0xcc9784c2), TOBN(0x81cc10ca, 0x4b353644), TOBN(0x40b570ad, 0x4b4d7f6c), TOBN(0x5c9f1d96, 0x84a1dcd2), TOBN(0x01379f81, 0x3147e797), TOBN(0xe5c6097b, 0x2bd499f5), TOBN(0x40dcafa6, 0x328e5e20), TOBN(0xf7b5244a, 0x54815550), TOBN(0xb9a4f118, 0x47bfc978), TOBN(0x0ea0e79f, 0xd25825b1), TOBN(0xa50f96eb, 0x646c7ecf), TOBN(0xeb811493, 0x446dea9d), TOBN(0x2af04677, 0xdfabcf69), TOBN(0xbe3a068f, 0xc713f6e8), TOBN(0x860d523d, 0x42e06189), TOBN(0xbf077941, 0x4e3aff13), TOBN(0x0b616dca, 0xc1b20650), TOBN(0xe66dd6d1, 0x2131300d), TOBN(0xd4a0fd67, 0xff99abde), TOBN(0xc9903550, 0xc7aac50d), TOBN(0x022ecf8b, 0x7c46b2d7), TOBN(0x3333b1e8, 0x3abf92af), TOBN(0x11cc113c, 0x6c491c14), TOBN(0x05976688, 0x80dd3f88), TOBN(0xf5b4d9e7, 0x29d932ed), TOBN(0xe982aad8, 0xa2c38b6d), TOBN(0x6f925347, 0x8be0dcf0), TOBN(0x700080ae, 0x65ca53f2), TOBN(0xd8131156, 0x443ca77f), TOBN(0xe92d6942, 0xec51f984), TOBN(0xd2a08af8, 0x85dfe9ae), TOBN(0xd825d9a5, 0x4d2a86ca), TOBN(0x2c53988d, 0x39dff020), TOBN(0xf38b135a, 0x430cdc40), TOBN(0x0c918ae0, 0x62a7150b), TOBN(0xf31fd8de, 0x0c340e9b), TOBN(0xafa0e7ae, 0x4dbbf02e), TOBN(0x5847fb2a, 0x5eba6239), TOBN(0x6b1647dc, 0xdccbac8b), TOBN(0xb642aa78, 0x06f485c8), TOBN(0x873f3765, 0x7038ecdf), TOBN(0x2ce5e865, 0xfa49d3fe), TOBN(0xea223788, 0xc98c4400), TOBN(0x8104a8cd, 0xf1fa5279), TOBN(0xbcf7cc7a, 0x06becfd7), TOBN(0x49424316, 0xc8f974ae), TOBN(0xc0da65e7, 0x84d6365d), TOBN(0xbcb7443f, 0x8f759fb8), TOBN(0x35c712b1, 0x7ae81930), TOBN(0x80428dff, 0x4c6e08ab), TOBN(0xf19dafef, 0xa4faf843), TOBN(0xced8538d, 0xffa9855f), TOBN(0x20ac409c, 0xbe3ac7ce), TOBN(0x358c1fb6, 0x882da71e), TOBN(0xafa9c0e5, 0xfd349961), TOBN(0x2b2cfa51, 0x8421c2fc), TOBN(0x2a80db17, 0xf3a28d38), TOBN(0xa8aba539, 0x5d138e7e), TOBN(0x52012d1d, 0x6e96eb8d), TOBN(0x65d8dea0, 0xcbaf9622), TOBN(0x57735447, 0xb264f56c), TOBN(0xbeebef3f, 0x1b6c8da2), TOBN(0xfc346d98, 0xce785254), TOBN(0xd50e8d72, 0xbb64a161), TOBN(0xc03567c7, 0x49794add), TOBN(0x15a76065, 0x752c7ef6), TOBN(0x59f3a222, 0x961f23d6), TOBN(0x378e4438, 0x73ecc0b0), TOBN(0xc74be434, 0x5a82fde4), TOBN(0xae509af2, 0xd8b9cf34), TOBN(0x4a61ee46, 0x577f44a1), TOBN(0xe09b748c, 0xb611deeb), TOBN(0xc0481b2c, 0xf5f7b884), TOBN(0x35626678, 0x61acfa6b), TOBN(0x37f4c518, 0xbf8d21e6), TOBN(0x22d96531, 0xb205a76d), TOBN(0x37fb85e1, 0x954073c0), TOBN(0xbceafe4f, 0x65b3a567), TOBN(0xefecdef7, 0xbe42a582), TOBN(0xd3fc6080, 0x65046be6), TOBN(0xc9af13c8, 0x09e8dba9), TOBN(0x1e6c9847, 0x641491ff), TOBN(0x3b574925, 0xd30c31f7), TOBN(0xb7eb72ba, 0xac2a2122), TOBN(0x776a0dac, 0xef0859e7), TOBN(0x06fec314, 0x21900942), TOBN(0x2464bc10, 0xf8c22049), TOBN(0x9bfbcce7, 0x875ebf69), TOBN(0xd7a88e2a, 0x4336326b), TOBN(0xda05261c, 0x5bc2acfa), TOBN(0xc29f5bdc, 0xeba7efc8), TOBN(0x471237ca, 0x25dbbf2e), TOBN(0xa72773f2, 0x2975f127), TOBN(0xdc744e8e, 0x04d0b326), TOBN(0x38a7ed16, 0xa56edb73), TOBN(0x64357e37, 0x2c007e70), TOBN(0xa167d15b, 0x5080b400), TOBN(0x07b41164, 0x23de4be1), TOBN(0xb2d91e32, 0x74c89883), TOBN(0x3c162821, 0x2882e7ed), TOBN(0xad6b36ba, 0x7503e482), TOBN(0x48434e8e, 0x0ea34331), TOBN(0x79f4f24f, 0x2c7ae0b9), TOBN(0xc46fbf81, 0x1939b44a), TOBN(0x76fefae8, 0x56595eb1), TOBN(0x417b66ab, 0xcd5f29c7), TOBN(0x5f2332b2, 0xc5ceec20), TOBN(0xd69661ff, 0xe1a1cae2), TOBN(0x5ede7e52, 0x9b0286e6), TOBN(0x9d062529, 0xe276b993), TOBN(0x324794b0, 0x7e50122b), TOBN(0xdd744f8b, 0x4af07ca5), TOBN(0x30a12f08, 0xd63fc97b), TOBN(0x39650f1a, 0x76626d9d), TOBN(0x101b47f7, 0x1fa38477), TOBN(0x3d815f19, 0xd4dc124f), TOBN(0x1569ae95, 0xb26eb58a), TOBN(0xc3cde188, 0x95fb1887), TOBN(0x54e9f37b, 0xf9539a48), TOBN(0xb0100e06, 0x7408c1a5), TOBN(0x821d9811, 0xea580cbb), TOBN(0x8af52d35, 0x86e50c56), TOBN(0xdfbd9d47, 0xdbbf698b), TOBN(0x2961a1ea, 0x03dc1c73), TOBN(0x203d38f8, 0xe76a5df8), TOBN(0x08a53a68, 0x6def707a), TOBN(0x26eefb48, 0x1bee45d4), TOBN(0xb3cee346, 0x3c688036), TOBN(0x463c5315, 0xc42f2469), TOBN(0x19d84d2e, 0x81378162), TOBN(0x22d7c3c5, 0x1c4d349f), TOBN(0x65965844, 0x163d59c5), TOBN(0xcf198c56, 0xb8abceae), TOBN(0x6fb1fb1b, 0x628559d5), TOBN(0x8bbffd06, 0x07bf8fe3), TOBN(0x46259c58, 0x3467734b), TOBN(0xd8953cea, 0x35f7f0d3), TOBN(0x1f0bece2, 0xd65b0ff1), TOBN(0xf7d5b4b3, 0xf3c72914), TOBN(0x29e8ea95, 0x3cb53389), TOBN(0x4a365626, 0x836b6d46), TOBN(0xe849f910, 0xea174fde), TOBN(0x7ec62fbb, 0xf4737f21), TOBN(0xd8dba5ab, 0x6209f5ac), TOBN(0x24b5d7a9, 0xa5f9adbe), TOBN(0x707d28f7, 0xa61dc768), TOBN(0x7711460b, 0xcaa999ea), TOBN(0xba7b174d, 0x1c92e4cc), TOBN(0x3c4bab66, 0x18d4bf2d), TOBN(0xb8f0c980, 0xeb8bd279), TOBN(0x024bea9a, 0x324b4737), TOBN(0xfba9e423, 0x32a83bca), TOBN(0x6e635643, 0xa232dced), TOBN(0x99619367, 0x2571c8ba), TOBN(0xe8c9f357, 0x54b7032b), TOBN(0xf936b3ba, 0x2442d54a), TOBN(0x2263f0f0, 0x8290c65a), TOBN(0x48989780, 0xee2c7fdb), TOBN(0xadc5d55a, 0x13d4f95e), TOBN(0x737cff85, 0xad9b8500), TOBN(0x271c557b, 0x8a73f43d), TOBN(0xbed617a4, 0xe18bc476), TOBN(0x66245401, 0x7dfd8ab2), TOBN(0xae7b89ae, 0x3a2870aa), TOBN(0x1b555f53, 0x23a7e545), TOBN(0x6791e247, 0xbe057e4c), TOBN(0x860136ad, 0x324fa34d), TOBN(0xea111447, 0x4cbeae28), TOBN(0x023a4270, 0xbedd3299), TOBN(0x3d5c3a7f, 0xc1c35c34), TOBN(0xb0f6db67, 0x8d0412d2), TOBN(0xd92625e2, 0xfcdc6b9a), TOBN(0x92ae5ccc, 0x4e28a982), TOBN(0xea251c36, 0x47a3ce7e), TOBN(0x9d658932, 0x790691bf), TOBN(0xed610589, 0x06b736ae), TOBN(0x712c2f04, 0xc0d63b6e), TOBN(0x5cf06fd5, 0xc63d488f), TOBN(0x97363fac, 0xd9588e41), TOBN(0x1f9bf762, 0x2b93257e), TOBN(0xa9d1ffc4, 0x667acace), TOBN(0x1cf4a1aa, 0x0a061ecf), TOBN(0x40e48a49, 0xdc1818d0), TOBN(0x0643ff39, 0xa3621ab0), TOBN(0x5768640c, 0xe39ef639), TOBN(0x1fc099ea, 0x04d86854), TOBN(0x9130b9c3, 0xeccd28fd), TOBN(0xd743cbd2, 0x7eec54ab), TOBN(0x052b146f, 0xe5b475b6), TOBN(0x058d9a82, 0x900a7d1f), TOBN(0x65e02292, 0x91262b72), TOBN(0x96f924f9, 0xbb0edf03), TOBN(0x5cfa59c8, 0xfe206842), TOBN(0xf6037004, 0x5eafa720), TOBN(0x5f30699e, 0x18d7dd96), TOBN(0x381e8782, 0xcbab2495), TOBN(0x91669b46, 0xdd8be949), TOBN(0xb40606f5, 0x26aae8ef), TOBN(0x2812b839, 0xfc6751a4), TOBN(0x16196214, 0xfba800ef), TOBN(0x4398d5ca, 0x4c1a2875), TOBN(0x720c00ee, 0x653d8349), TOBN(0xc2699eb0, 0xd820007c), TOBN(0x880ee660, 0xa39b5825), TOBN(0x70694694, 0x471f6984), TOBN(0xf7d16ea8, 0xe3dda99a), TOBN(0x28d675b2, 0xc0519a23), TOBN(0x9ebf94fe, 0x4f6952e3), TOBN(0xf28bb767, 0xa2294a8a), TOBN(0x85512b4d, 0xfe0af3f5), TOBN(0x18958ba8, 0x99b16a0d), TOBN(0x95c2430c, 0xba7548a7), TOBN(0xb30d1b10, 0xa16be615), TOBN(0xe3ebbb97, 0x85bfb74c), TOBN(0xa3273cfe, 0x18549fdb), TOBN(0xf6e200bf, 0x4fcdb792), TOBN(0x54a76e18, 0x83aba56c), TOBN(0x73ec66f6, 0x89ef6aa2), TOBN(0x8d17add7, 0xd1b9a305), TOBN(0xa959c5b9, 0xb7ae1b9d), TOBN(0x88643522, 0x6bcc094a), TOBN(0xcc5616c4, 0xd7d429b9), TOBN(0xa6dada01, 0xe6a33f7c), TOBN(0xc6217a07, 0x9d4e70ad), TOBN(0xd619a818, 0x09c15b7c), TOBN(0xea06b329, 0x0e80c854), TOBN(0x174811ce, 0xa5f5e7b9), TOBN(0x66dfc310, 0x787c65f4), TOBN(0x4ea7bd69, 0x3316ab54), TOBN(0xc12c4acb, 0x1dcc0f70), TOBN(0xe4308d1a, 0x1e407dd9), TOBN(0xe8a3587c, 0x91afa997), TOBN(0xea296c12, 0xab77b7a5), TOBN(0xb5ad49e4, 0x673c0d52), TOBN(0x40f9b2b2, 0x7006085a), TOBN(0xa88ff340, 0x87bf6ec2), TOBN(0x978603b1, 0x4e3066a6), TOBN(0xb3f99fc2, 0xb5e486e2), TOBN(0x07b53f5e, 0xb2e63645), TOBN(0xbe57e547, 0x84c84232), TOBN(0xd779c216, 0x7214d5cf), TOBN(0x617969cd, 0x029a3aca), TOBN(0xd17668cd, 0x8a7017a0), TOBN(0x77b4d19a, 0xbe9b7ee8), TOBN(0x58fd0e93, 0x9c161776), TOBN(0xa8c4f4ef, 0xd5968a72), TOBN(0x296071cc, 0x67b3de77), TOBN(0xae3c0b8e, 0x634f7905), TOBN(0x67e440c2, 0x8a7100c9), TOBN(0xbb8c3c1b, 0xeb4b9b42), TOBN(0x6d71e8ea, 0xc51b3583), TOBN(0x7591f5af, 0x9525e642), TOBN(0xf73a2f7b, 0x13f509f3), TOBN(0x618487aa, 0x5619ac9b), TOBN(0x3a72e5f7, 0x9d61718a), TOBN(0x00413bcc, 0x7592d28c), TOBN(0x7d9b11d3, 0x963c35cf), TOBN(0x77623bcf, 0xb90a46ed), TOBN(0xdeef273b, 0xdcdd2a50), TOBN(0x4a741f9b, 0x0601846e), TOBN(0x33b89e51, 0x0ec6e929), TOBN(0xcb02319f, 0x8b7f22cd), TOBN(0xbbe1500d, 0x084bae24), TOBN(0x2f0ae8d7, 0x343d2693), TOBN(0xacffb5f2, 0x7cdef811), TOBN(0xaa0c030a, 0x263fb94f), TOBN(0x6eef0d61, 0xa0f442de), TOBN(0xf92e1817, 0x27b139d3), TOBN(0x1ae6deb7, 0x0ad8bc28), TOBN(0xa89e38dc, 0xc0514130), TOBN(0x81eeb865, 0xd2fdca23), TOBN(0x5a15ee08, 0xcc8ef895), TOBN(0x768fa10a, 0x01905614), TOBN(0xeff5b8ef, 0x880ee19b), TOBN(0xf0c0cabb, 0xcb1c8a0e), TOBN(0x2e1ee9cd, 0xb8c838f9), TOBN(0x0587d8b8, 0x8a4a14c0), TOBN(0xf6f27896, 0x2ff698e5), TOBN(0xed38ef1c, 0x89ee6256), TOBN(0xf44ee1fe, 0x6b353b45), TOBN(0x9115c0c7, 0x70e903b3), TOBN(0xc78ec0a1, 0x818f31df), TOBN(0x6c003324, 0xb7dccbc6), TOBN(0xd96dd1f3, 0x163bbc25), TOBN(0x33aa82dd, 0x5cedd805), TOBN(0x123aae4f, 0x7f7eb2f1), TOBN(0x1723fcf5, 0xa26262cd), TOBN(0x1f7f4d5d, 0x0060ebd5), TOBN(0xf19c5c01, 0xb2eaa3af), TOBN(0x2ccb9b14, 0x9790accf), TOBN(0x1f9c1cad, 0x52324aa6), TOBN(0x63200526, 0x7247df54), TOBN(0x5732fe42, 0xbac96f82), TOBN(0x52fe771f, 0x01a1c384), TOBN(0x546ca13d, 0xb1001684), TOBN(0xb56b4eee, 0xa1709f75), TOBN(0x266545a9, 0xd5db8672), TOBN(0xed971c90, 0x1e8f3cfb), TOBN(0x4e7d8691, 0xe3a07b29), TOBN(0x7570d9ec, 0xe4b696b9), TOBN(0xdc5fa067, 0x7bc7e9ae), TOBN(0x68b44caf, 0xc82c4844), TOBN(0x519d34b3, 0xbf44da80), TOBN(0x283834f9, 0x5ab32e66), TOBN(0x6e608797, 0x6278a000), TOBN(0x1e62960e, 0x627312f6), TOBN(0x9b87b27b, 0xe6901c55), TOBN(0x80e78538, 0x24fdbc1f), TOBN(0xbbbc0951, 0x2facc27d), TOBN(0x06394239, 0xac143b5a), TOBN(0x35bb4a40, 0x376c1944), TOBN(0x7cb62694, 0x63da1511), TOBN(0xafd29161, 0xb7148a3b), TOBN(0xa6f9d9ed, 0x4e2ea2ee), TOBN(0x15dc2ca2, 0x880dd212), TOBN(0x903c3813, 0xa61139a9), TOBN(0x2aa7b46d, 0x6c0f8785), TOBN(0x36ce2871, 0x901c60ff), TOBN(0xc683b028, 0xe10d9c12), TOBN(0x7573baa2, 0x032f33d3), TOBN(0x87a9b1f6, 0x67a31b58), TOBN(0xfd3ed11a, 0xf4ffae12), TOBN(0x83dcaa9a, 0x0cb2748e), TOBN(0x8239f018, 0x5d6fdf16), TOBN(0xba67b49c, 0x72753941), TOBN(0x2beec455, 0xc321cb36), TOBN(0x88015606, 0x3f8b84ce), TOBN(0x76417083, 0x8d38c86f), TOBN(0x054f1ca7, 0x598953dd), TOBN(0xc939e110, 0x4e8e7429), TOBN(0x9b1ac2b3, 0x5a914f2f), TOBN(0x39e35ed3, 0xe74b8f9c), TOBN(0xd0debdb2, 0x781b2fb0), TOBN(0x1585638f, 0x2d997ba2), TOBN(0x9c4b646e, 0x9e2fce99), TOBN(0x68a21081, 0x1e80857f), TOBN(0x06d54e44, 0x3643b52a), TOBN(0xde8d6d63, 0x0d8eb843), TOBN(0x70321563, 0x42146a0a), TOBN(0x8ba826f2, 0x5eaa3622), TOBN(0x227a58bd, 0x86138787), TOBN(0x43b6c03c, 0x10281d37), TOBN(0x6326afbb, 0xb54dde39), TOBN(0x744e5e8a, 0xdb6f2d5f), TOBN(0x48b2a99a, 0xcff158e1), TOBN(0xa93c8fa0, 0xef87918f), TOBN(0x2182f956, 0xde058c5c), TOBN(0x216235d2, 0x936f9e7a), TOBN(0xace0c0db, 0xd2e31e67), TOBN(0xc96449bf, 0xf23ac3e7), TOBN(0x7e9a2874, 0x170693bd), TOBN(0xa28e14fd, 0xa45e6335), TOBN(0x5757f6b3, 0x56427344), TOBN(0x822e4556, 0xacf8edf9), TOBN(0x2b7a6ee2, 0xe6a285cd), TOBN(0x5866f211, 0xa9df3af0), TOBN(0x40dde2dd, 0xf845b844), TOBN(0x986c3726, 0x110e5e49), TOBN(0x73680c2a, 0xf7172277), TOBN(0x57b94f0f, 0x0cccb244), TOBN(0xbdff7267, 0x2d438ca7), TOBN(0xbad1ce11, 0xcf4663fd), TOBN(0x9813ed9d, 0xd8f71cae), TOBN(0xf43272a6, 0x961fdaa6), TOBN(0xbeff0119, 0xbd6d1637), TOBN(0xfebc4f91, 0x30361978), TOBN(0x02b37a95, 0x2f41deff), TOBN(0x0e44a59a, 0xe63b89b7), TOBN(0x673257dc, 0x143ff951), TOBN(0x19c02205, 0xd752baf4), TOBN(0x46c23069, 0xc4b7d692), TOBN(0x2e6392c3, 0xfd1502ac), TOBN(0x6057b1a2, 0x1b220846), TOBN(0xe51ff946, 0x0c1b5b63),} , {TOBN(0x6e85cb51, 0x566c5c43), TOBN(0xcff9c919, 0x3597f046), TOBN(0x9354e90c, 0x4994d94a), TOBN(0xe0a39332, 0x2147927d), TOBN(0x8427fac1, 0x0dc1eb2b), TOBN(0x88cfd8c2, 0x2ff319fa), TOBN(0xe2d4e684, 0x01965274), TOBN(0xfa2e067d, 0x67aaa746), TOBN(0xb6d92a7f, 0x3e5f9f11), TOBN(0x9afe153a, 0xd6cb3b8e), TOBN(0x4d1a6dd7, 0xddf800bd), TOBN(0xf6c13cc0, 0xcaf17e19), TOBN(0x15f6c58e, 0x325fc3ee), TOBN(0x71095400, 0xa31dc3b2), TOBN(0x168e7c07, 0xafa3d3e7), TOBN(0x3f8417a1, 0x94c7ae2d), TOBN(0xec234772, 0x813b230d), TOBN(0x634d0f5f, 0x17344427), TOBN(0x11548ab1, 0xd77fc56a), TOBN(0x7fab1750, 0xce06af77), TOBN(0xb62c10a7, 0x4f7c4f83), TOBN(0xa7d2edc4, 0x220a67d9), TOBN(0x1c404170, 0x921209a0), TOBN(0x0b9815a0, 0xface59f0), TOBN(0x2842589b, 0x319540c3), TOBN(0x18490f59, 0xa283d6f8), TOBN(0xa2731f84, 0xdaae9fcb), TOBN(0x3db6d960, 0xc3683ba0), TOBN(0xc85c63bb, 0x14611069), TOBN(0xb19436af, 0x0788bf05), TOBN(0x905459df, 0x347460d2), TOBN(0x73f6e094, 0xe11a7db1), TOBN(0xdc7f938e, 0xb6357f37), TOBN(0xc5d00f79, 0x2bd8aa62), TOBN(0xc878dcb9, 0x2ca979fc), TOBN(0x37e83ed9, 0xeb023a99), TOBN(0x6b23e273, 0x1560bf3d), TOBN(0x1086e459, 0x1d0fae61), TOBN(0x78248316, 0x9a9414bd), TOBN(0x1b956bc0, 0xf0ea9ea1), TOBN(0x7b85bb91, 0xc31b9c38), TOBN(0x0c5aa90b, 0x48ef57b5), TOBN(0xdedeb169, 0xaf3bab6f), TOBN(0xe610ad73, 0x2d373685), TOBN(0xf13870df, 0x02ba8e15), TOBN(0x0337edb6, 0x8ca7f771), TOBN(0xe4acf747, 0xb62c036c), TOBN(0xd921d576, 0xb6b94e81), TOBN(0xdbc86439, 0x2c422f7a), TOBN(0xfb635362, 0xed348898), TOBN(0x83084668, 0xc45bfcd1), TOBN(0xc357c9e3, 0x2b315e11), TOBN(0xb173b540, 0x5b2e5b8c), TOBN(0x7e946931, 0xe102b9a4), TOBN(0x17c890eb, 0x7b0fb199), TOBN(0xec225a83, 0xd61b662b), TOBN(0xf306a3c8, 0xee3c76cb), TOBN(0x3cf11623, 0xd32a1f6e), TOBN(0xe6d5ab64, 0x6863e956), TOBN(0x3b8a4cbe, 0x5c005c26), TOBN(0xdcd529a5, 0x9ce6bb27), TOBN(0xc4afaa52, 0x04d4b16f), TOBN(0xb0624a26, 0x7923798d), TOBN(0x85e56df6, 0x6b307fab), TOBN(0x0281893c, 0x2bf29698), TOBN(0x91fc19a4, 0xd7ce7603), TOBN(0x75a5dca3, 0xad9a558f), TOBN(0x40ceb3fa, 0x4d50bf77), TOBN(0x1baf6060, 0xbc9ba369), TOBN(0x927e1037, 0x597888c2), TOBN(0xd936bf19, 0x86a34c07), TOBN(0xd4cf10c1, 0xc34ae980), TOBN(0x3a3e5334, 0x859dd614), TOBN(0x9c475b5b, 0x18d0c8ee), TOBN(0x63080d1f, 0x07cd51d5), TOBN(0xc9c0d0a6, 0xb88b4326), TOBN(0x1ac98691, 0xc234296f), TOBN(0x2a0a83a4, 0x94887fb6), TOBN(0x56511427, 0x0cea9cf2), TOBN(0x5230a6e8, 0xa24802f5), TOBN(0xf7a2bf0f, 0x72e3d5c1), TOBN(0x37717446, 0x4f21439e), TOBN(0xfedcbf25, 0x9ce30334), TOBN(0xe0030a78, 0x7ce202f9), TOBN(0x6f2d9ebf, 0x1202e9ca), TOBN(0xe79dde6c, 0x75e6e591), TOBN(0xf52072af, 0xf1dac4f8), TOBN(0x6c8d087e, 0xbb9b404d), TOBN(0xad0fc73d, 0xbce913af), TOBN(0x909e587b, 0x458a07cb), TOBN(0x1300da84, 0xd4f00c8a), TOBN(0x425cd048, 0xb54466ac), TOBN(0xb59cb9be, 0x90e9d8bf), TOBN(0x991616db, 0x3e431b0e), TOBN(0xd3aa117a, 0x531aecff), TOBN(0x91af92d3, 0x59f4dc3b), TOBN(0x9b1ec292, 0xe93fda29), TOBN(0x76bb6c17, 0xe97d91bc), TOBN(0x7509d95f, 0xaface1e6), TOBN(0x3653fe47, 0xbe855ae3), TOBN(0x73180b28, 0x0f680e75), TOBN(0x75eefd1b, 0xeeb6c26c), TOBN(0xa4cdf29f, 0xb66d4236), TOBN(0x2d70a997, 0x6b5821d8), TOBN(0x7a3ee207, 0x20445c36), TOBN(0x71d1ac82, 0x59877174), TOBN(0x0fc539f7, 0x949f73e9), TOBN(0xd05cf3d7, 0x982e3081), TOBN(0x8758e20b, 0x7b1c7129), TOBN(0xffadcc20, 0x569e61f2), TOBN(0xb05d3a2f, 0x59544c2d), TOBN(0xbe16f5c1, 0x9fff5e53), TOBN(0x73cf65b8, 0xaad58135), TOBN(0x622c2119, 0x037aa5be), TOBN(0x79373b3f, 0x646fd6a0), TOBN(0x0e029db5, 0x0d3978cf), TOBN(0x8bdfc437, 0x94fba037), TOBN(0xaefbd687, 0x620797a6), TOBN(0x3fa5382b, 0xbd30d38e), TOBN(0x7627cfbf, 0x585d7464), TOBN(0xb2330fef, 0x4e4ca463), TOBN(0xbcef7287, 0x3566cc63), TOBN(0xd161d2ca, 0xcf780900), TOBN(0x135dc539, 0x5b54827d), TOBN(0x638f052e, 0x27bf1bc6), TOBN(0x10a224f0, 0x07dfa06c), TOBN(0xe973586d, 0x6d3321da), TOBN(0x8b0c5738, 0x26152c8f), TOBN(0x07ef4f2a, 0x34606074), TOBN(0x80fe7fe8, 0xa0f7047a), TOBN(0x3d1a8152, 0xe1a0e306), TOBN(0x32cf43d8, 0x88da5222), TOBN(0xbf89a95f, 0x5f02ffe6), TOBN(0x3d9eb9a4, 0x806ad3ea), TOBN(0x012c17bb, 0x79c8e55e), TOBN(0xfdcd1a74, 0x99c81dac), TOBN(0x7043178b, 0xb9556098), TOBN(0x4090a1df, 0x801c3886), TOBN(0x759800ff, 0x9b67b912), TOBN(0x3e5c0304, 0x232620c8), TOBN(0x4b9d3c4b, 0x70dceeca), TOBN(0xbb2d3c15, 0x181f648e), TOBN(0xf981d837, 0x6e33345c), TOBN(0xb626289b, 0x0cf2297a), TOBN(0x766ac659, 0x8baebdcf), TOBN(0x1a28ae09, 0x75df01e5), TOBN(0xb71283da, 0x375876d8), TOBN(0x4865a96d, 0x607b9800), TOBN(0x25dd1bcd, 0x237936b2), TOBN(0x332f4f4b, 0x60417494), TOBN(0xd0923d68, 0x370a2147), TOBN(0x497f5dfb, 0xdc842203), TOBN(0x9dc74cbd, 0x32be5e0f), TOBN(0x7475bcb7, 0x17a01375), TOBN(0x438477c9, 0x50d872b1), TOBN(0xcec67879, 0xffe1d63d), TOBN(0x9b006014, 0xd8578c70), TOBN(0xc9ad99a8, 0x78bb6b8b), TOBN(0x6799008e, 0x11fb3806), TOBN(0xcfe81435, 0xcd44cab3), TOBN(0xa2ee1582, 0x2f4fb344), TOBN(0xb8823450, 0x483fa6eb), TOBN(0x622d323d, 0x652c7749), TOBN(0xd8474a98, 0xbeb0a15b), TOBN(0xe43c154d, 0x5d1c00d0), TOBN(0x7fd581d9, 0x0e3e7aac), TOBN(0x2b44c619, 0x2525ddf8), TOBN(0x67a033eb, 0xb8ae9739), TOBN(0x113ffec1, 0x9ef2d2e4), TOBN(0x1bf6767e, 0xd5a0ea7f), TOBN(0x57fff75e, 0x03714c0a), TOBN(0xa23c422e, 0x0a23e9ee), TOBN(0xdd5f6b2d, 0x540f83af), TOBN(0xc2c2c27e, 0x55ea46a7), TOBN(0xeb6b4246, 0x672a1208), TOBN(0xd13599f7, 0xae634f7a), TOBN(0xcf914b5c, 0xd7b32c6e), TOBN(0x61a5a640, 0xeaf61814), TOBN(0x8dc3df8b, 0x208a1bbb), TOBN(0xef627fd6, 0xb6d79aa5), TOBN(0x44232ffc, 0xc4c86bc8), TOBN(0xe6f9231b, 0x061539fe), TOBN(0x1d04f25a, 0x958b9533), TOBN(0x180cf934, 0x49e8c885), TOBN(0x89689595, 0x9884aaf7), TOBN(0xb1959be3, 0x07b348a6), TOBN(0x96250e57, 0x3c147c87), TOBN(0xae0efb3a, 0xdd0c61f8), TOBN(0xed00745e, 0xca8c325e), TOBN(0x3c911696, 0xecff3f70), TOBN(0x73acbc65, 0x319ad41d), TOBN(0x7b01a020, 0xf0b1c7ef), TOBN(0xea32b293, 0x63a1483f), TOBN(0x89eabe71, 0x7a248f96), TOBN(0x9c6231d3, 0x343157e5), TOBN(0x93a375e5, 0xdf3c546d), TOBN(0xe76e9343, 0x6a2afe69), TOBN(0xc4f89100, 0xe166c88e), TOBN(0x248efd0d, 0x4f872093), TOBN(0xae0eb3ea, 0x8fe0ea61), TOBN(0xaf89790d, 0x9d79046e), TOBN(0x4d650f2d, 0x6cee0976), TOBN(0xa3935d9a, 0x43071eca), TOBN(0x66fcd2c9, 0x283b0bfe), TOBN(0x0e665eb5, 0x696605f1), TOBN(0xe77e5d07, 0xa54cd38d), TOBN(0x90ee050a, 0x43d950cf), TOBN(0x86ddebda, 0xd32e69b5), TOBN(0x6ad94a3d, 0xfddf7415), TOBN(0xf7fa1309, 0x3f6e8d5a), TOBN(0xc4831d1d, 0xe9957f75), TOBN(0x7de28501, 0xd5817447), TOBN(0x6f1d7078, 0x9e2aeb6b), TOBN(0xba2b9ff4, 0xf67a53c2), TOBN(0x36963767, 0xdf9defc3), TOBN(0x479deed3, 0x0d38022c), TOBN(0xd2edb89b, 0x3a8631e8), TOBN(0x8de855de, 0x7a213746), TOBN(0xb2056cb7, 0xb00c5f11), TOBN(0xdeaefbd0, 0x2c9b85e4), TOBN(0x03f39a8d, 0xd150892d), TOBN(0x37b84686, 0x218b7985), TOBN(0x36296dd8, 0xb7375f1a), TOBN(0x472cd4b1, 0xb78e898e), TOBN(0x15dff651, 0xe9f05de9), TOBN(0xd4045069, 0x2ce98ba9), TOBN(0x8466a7ae, 0x9b38024c), TOBN(0xb910e700, 0xe5a6b5ef), TOBN(0xae1c56ea, 0xb3aa8f0d), TOBN(0xbab2a507, 0x7eee74a6), TOBN(0x0dca11e2, 0x4b4c4620), TOBN(0xfd896e2e, 0x4c47d1f4), TOBN(0xeb45ae53, 0x308fbd93), TOBN(0x46cd5a2e, 0x02c36fda), TOBN(0x6a3d4e90, 0xbaa48385), TOBN(0xdd55e62e, 0x9dbe9960), TOBN(0xa1406aa0, 0x2a81ede7), TOBN(0x6860dd14, 0xf9274ea7), TOBN(0xcfdcb0c2, 0x80414f86), TOBN(0xff410b10, 0x22f94327), TOBN(0x5a33cc38, 0x49ad467b), TOBN(0xefb48b6c, 0x0a7335f1), TOBN(0x14fb54a4, 0xb153a360), TOBN(0x604aa9d2, 0xb52469cc), TOBN(0x5e9dc486, 0x754e48e9), TOBN(0x693cb455, 0x37471e8e), TOBN(0xfb2fd7cd, 0x8d3b37b6), TOBN(0x63345e16, 0xcf09ff07), TOBN(0x9910ba6b, 0x23a5d896), TOBN(0x1fe19e35, 0x7fe4364e), TOBN(0x6e1da8c3, 0x9a33c677), TOBN(0x15b4488b, 0x29fd9fd0), TOBN(0x1f439254, 0x1a1f22bf), TOBN(0x920a8a70, 0xab8163e8), TOBN(0x3fd1b249, 0x07e5658e), TOBN(0xf2c4f79c, 0xb6ec839b), TOBN(0x1abbc3d0, 0x4aa38d1b), TOBN(0x3b0db35c, 0xb5d9510e), TOBN(0x1754ac78, 0x3e60dec0), TOBN(0x53272fd7, 0xea099b33), TOBN(0x5fb0494f, 0x07a8e107), TOBN(0x4a89e137, 0x6a8191fa), TOBN(0xa113b7f6, 0x3c4ad544), TOBN(0x88a2e909, 0x6cb9897b), TOBN(0x17d55de3, 0xb44a3f84), TOBN(0xacb2f344, 0x17c6c690), TOBN(0x32088168, 0x10232390), TOBN(0xf2e8a61f, 0x6c733bf7), TOBN(0xa774aab6, 0x9c2d7652), TOBN(0xfb5307e3, 0xed95c5bc), TOBN(0xa05c73c2, 0x4981f110), TOBN(0x1baae31c, 0xa39458c9), TOBN(0x1def185b, 0xcbea62e7), TOBN(0xe8ac9eae, 0xeaf63059), TOBN(0x098a8cfd, 0x9921851c), TOBN(0xd959c3f1, 0x3abe2f5b), TOBN(0xa4f19525, 0x20e40ae5), TOBN(0x320789e3, 0x07a24aa1), TOBN(0x259e6927, 0x7392b2bc), TOBN(0x58f6c667, 0x1918668b), TOBN(0xce1db2bb, 0xc55d2d8b), TOBN(0x41d58bb7, 0xf4f6ca56), TOBN(0x7650b680, 0x8f877614), TOBN(0x905e16ba, 0xf4c349ed), TOBN(0xed415140, 0xf661acac), TOBN(0x3b8784f0, 0xcb2270af), TOBN(0x3bc280ac, 0x8a402cba), TOBN(0xd53f7146, 0x0937921a), TOBN(0xc03c8ee5, 0xe5681e83), TOBN(0x62126105, 0xf6ac9e4a), TOBN(0x9503a53f, 0x936b1a38), TOBN(0x3d45e2d4, 0x782fecbd), TOBN(0x69a5c439, 0x76e8ae98), TOBN(0xb53b2eeb, 0xbfb4b00e), TOBN(0xf1674712, 0x72386c89), TOBN(0x30ca34a2, 0x4268bce4), TOBN(0x7f1ed86c, 0x78341730), TOBN(0x8ef5beb8, 0xb525e248), TOBN(0xbbc489fd, 0xb74fbf38), TOBN(0x38a92a0e, 0x91a0b382), TOBN(0x7a77ba3f, 0x22433ccf), TOBN(0xde8362d6, 0xa29f05a9), TOBN(0x7f6a30ea, 0x61189afc), TOBN(0x693b5505, 0x59ef114f), TOBN(0x50266bc0, 0xcd1797a1), TOBN(0xea17b47e, 0xf4b7af2d), TOBN(0xd6c4025c, 0x3df9483e), TOBN(0x8cbb9d9f, 0xa37b18c9), TOBN(0x91cbfd9c, 0x4d8424cf), TOBN(0xdb7048f1, 0xab1c3506), TOBN(0x9eaf641f, 0x028206a3), TOBN(0xf986f3f9, 0x25bdf6ce), TOBN(0x262143b5, 0x224c08dc), TOBN(0x2bbb09b4, 0x81b50c91), TOBN(0xc16ed709, 0xaca8c84f), TOBN(0xa6210d9d, 0xb2850ca8), TOBN(0x6d8df67a, 0x09cb54d6), TOBN(0x91eef6e0, 0x500919a4), TOBN(0x90f61381, 0x0f132857), TOBN(0x9acede47, 0xf8d5028b), TOBN(0x844d1b71, 0x90b771c3), TOBN(0x563b71e4, 0xba6426be), TOBN(0x2efa2e83, 0xbdb802ff), TOBN(0x3410cbab, 0xab5b4a41), TOBN(0x555b2d26, 0x30da84dd), TOBN(0xd0711ae9, 0xee1cc29a), TOBN(0xcf3e8c60, 0x2f547792), TOBN(0x03d7d5de, 0xdc678b35), TOBN(0x071a2fa8, 0xced806b8), TOBN(0x222e6134, 0x697f1478), TOBN(0xdc16fd5d, 0xabfcdbbf), TOBN(0x44912ebf, 0x121b53b8), TOBN(0xac943674, 0x2496c27c), TOBN(0x8ea3176c, 0x1ffc26b0), TOBN(0xb6e224ac, 0x13debf2c), TOBN(0x524cc235, 0xf372a832), TOBN(0xd706e1d8, 0x9f6f1b18), TOBN(0x2552f005, 0x44cce35b), TOBN(0x8c8326c2, 0xa88e31fc), TOBN(0xb5468b2c, 0xf9552047), TOBN(0xce683e88, 0x3ff90f2b), TOBN(0x77947bdf, 0x2f0a5423), TOBN(0xd0a1b28b, 0xed56e328), TOBN(0xaee35253, 0xc20134ac), TOBN(0x7e98367d, 0x3567962f), TOBN(0x379ed61f, 0x8188bffb), TOBN(0x73bba348, 0xfaf130a1), TOBN(0x6c1f75e1, 0x904ed734), TOBN(0x18956642, 0x3b4a79fc), TOBN(0xf20bc83d, 0x54ef4493), TOBN(0x836d425d, 0x9111eca1), TOBN(0xe5b5c318, 0x009a8dcf), TOBN(0x3360b25d, 0x13221bc5), TOBN(0x707baad2, 0x6b3eeaf7), TOBN(0xd7279ed8, 0x743a95a1), TOBN(0x7450a875, 0x969e809f), TOBN(0x32b6bd53, 0xe5d0338f), TOBN(0x1e77f7af, 0x2b883bbc), TOBN(0x90da12cc, 0x1063ecd0), TOBN(0xe2697b58, 0xc315be47), TOBN(0x2771a5bd, 0xda85d534), TOBN(0x53e78c1f, 0xff980eea), TOBN(0xadf1cf84, 0x900385e7), TOBN(0x7d3b14f6, 0xc9387b62), TOBN(0x170e74b0, 0xcb8f2bd2), TOBN(0x2d50b486, 0x827fa993), TOBN(0xcdbe8c9a, 0xf6f32bab), TOBN(0x55e906b0, 0xc3b93ab8), TOBN(0x747f22fc, 0x8fe280d1), TOBN(0xcd8e0de5, 0xb2e114ab), TOBN(0x5ab7dbeb, 0xe10b68b0), TOBN(0x9dc63a9c, 0xa480d4b2), TOBN(0x78d4bc3b, 0x4be1495f), TOBN(0x25eb3db8, 0x9359122d), TOBN(0x3f8ac05b, 0x0809cbdc), TOBN(0xbf4187bb, 0xd37c702f), TOBN(0x84cea069, 0x1416a6a5), TOBN(0x8f860c79, 0x43ef881c), TOBN(0x41311f8a, 0x38038a5d), TOBN(0xe78c2ec0, 0xfc612067), TOBN(0x494d2e81, 0x5ad73581), TOBN(0xb4cc9e00, 0x59604097), TOBN(0xff558aec, 0xf3612cba), TOBN(0x35beef7a, 0x9e36c39e), TOBN(0x1845c7cf, 0xdbcf41b9), TOBN(0x5703662a, 0xaea997c0), TOBN(0x8b925afe, 0xe402f6d8), TOBN(0xd0a1b1ae, 0x4dd72162), TOBN(0x9f47b375, 0x03c41c4b), TOBN(0xa023829b, 0x0391d042), TOBN(0x5f5045c3, 0x503b8b0a), TOBN(0x123c2688, 0x98c010e5), TOBN(0x324ec0cc, 0x36ba06ee), TOBN(0xface3115, 0x3dd2cc0c), TOBN(0xb364f3be, 0xf333e91f), TOBN(0xef8aff73, 0x28e832b0), TOBN(0x1e9bad04, 0x2d05841b), TOBN(0x42f0e3df, 0x356a21e2), TOBN(0xa3270bcb, 0x4add627e), TOBN(0xb09a8158, 0xd322e711), TOBN(0x86e326a1, 0x0fee104a), TOBN(0xad7788f8, 0x3703f65d), TOBN(0x7e765430, 0x47bc4833), TOBN(0x6cee582b, 0x2b9b893a), TOBN(0x9cd2a167, 0xe8f55a7b), TOBN(0xefbee3c6, 0xd9e4190d), TOBN(0x33ee7185, 0xd40c2e9d), TOBN(0x844cc9c5, 0xa380b548), TOBN(0x323f8ecd, 0x66926e04), TOBN(0x0001e38f, 0x8110c1ba), TOBN(0x8dbcac12, 0xfc6a7f07), TOBN(0xd65e1d58, 0x0cec0827), TOBN(0xd2cd4141, 0xbe76ca2d), TOBN(0x7895cf5c, 0xe892f33a), TOBN(0x956d230d, 0x367139d2), TOBN(0xa91abd3e, 0xd012c4c1), TOBN(0x34fa4883, 0x87eb36bf), TOBN(0xc5f07102, 0x914b8fb4), TOBN(0x90f0e579, 0xadb9c95f), TOBN(0xfe6ea8cb, 0x28888195), TOBN(0x7b9b5065, 0xedfa9284), TOBN(0x6c510bd2, 0x2b8c8d65), TOBN(0xd7b8ebef, 0xcbe8aafd), TOBN(0xedb3af98, 0x96b1da07), TOBN(0x28ff779d, 0x6295d426), TOBN(0x0c4f6ac7, 0x3fa3ad7b), TOBN(0xec44d054, 0x8b8e2604), TOBN(0x9b32a66d, 0x8b0050e1), TOBN(0x1f943366, 0xf0476ce2), TOBN(0x7554d953, 0xa602c7b4), TOBN(0xbe35aca6, 0x524f2809), TOBN(0xb6881229, 0xfd4edbea), TOBN(0xe8cd0c8f, 0x508efb63), TOBN(0x9eb5b5c8, 0x6abcefc7), TOBN(0xf5621f5f, 0xb441ab4f), TOBN(0x79e6c046, 0xb76a2b22), TOBN(0x74a4792c, 0xe37a1f69), TOBN(0xcbd252cb, 0x03542b60), TOBN(0x785f65d5, 0xb3c20bd3), TOBN(0x8dea6143, 0x4fabc60c), TOBN(0x45e21446, 0xde673629), TOBN(0x57f7aa1e, 0x703c2d21), TOBN(0xa0e99b7f, 0x98c868c7), TOBN(0x4e42f66d, 0x8b641676), TOBN(0x602884dc, 0x91077896), TOBN(0xa0d690cf, 0xc2c9885b), TOBN(0xfeb4da33, 0x3b9a5187), TOBN(0x5f789598, 0x153c87ee), TOBN(0x2192dd47, 0x52b16dba), TOBN(0xdeefc0e6, 0x3524c1b1), TOBN(0x465ea76e, 0xe4383693), TOBN(0x79401711, 0x361b8d98), TOBN(0xa5f9ace9, 0xf21a15cb), TOBN(0x73d26163, 0xefee9aeb), TOBN(0xcca844b3, 0xe677016c), TOBN(0x6c122b07, 0x57eaee06), TOBN(0xb782dce7, 0x15f09690), TOBN(0x508b9b12, 0x2dfc0fc9), TOBN(0x9015ab4b, 0x65d89fc6), TOBN(0x5e79dab7, 0xd6d5bb0f), TOBN(0x64f021f0, 0x6c775aa2), TOBN(0xdf09d8cc, 0x37c7eca1), TOBN(0x9a761367, 0xef2fa506), TOBN(0xed4ca476, 0x5b81eec6), TOBN(0x262ede36, 0x10bbb8b5), TOBN(0x0737ce83, 0x0641ada3), TOBN(0x4c94288a, 0xe9831ccc), TOBN(0x487fc1ce, 0x8065e635), TOBN(0xb13d7ab3, 0xb8bb3659), TOBN(0xdea5df3e, 0x855e4120), TOBN(0xb9a18573, 0x85eb0244), TOBN(0x1a1b8ea3, 0xa7cfe0a3), TOBN(0x3b837119, 0x67b0867c), TOBN(0x8d5e0d08, 0x9d364520), TOBN(0x52dccc1e, 0xd930f0e3), TOBN(0xefbbcec7, 0xbf20bbaf), TOBN(0x99cffcab, 0x0263ad10), TOBN(0xd8199e6d, 0xfcd18f8a), TOBN(0x64e2773f, 0xe9f10617), TOBN(0x0079e8e1, 0x08704848), TOBN(0x1169989f, 0x8a342283), TOBN(0x8097799c, 0xa83012e6), TOBN(0xece966cb, 0x8a6a9001), TOBN(0x93b3afef, 0x072ac7fc), TOBN(0xe6893a2a, 0x2db3d5ba), TOBN(0x263dc462, 0x89bf4fdc), TOBN(0x8852dfc9, 0xe0396673), TOBN(0x7ac70895, 0x3af362b6), TOBN(0xbb9cce4d, 0x5c2f342b), TOBN(0xbf80907a, 0xb52d7aae), TOBN(0x97f3d3cd, 0x2161bcd0), TOBN(0xb25b0834, 0x0962744d), TOBN(0xc5b18ea5, 0x6c3a1dda), TOBN(0xfe4ec7eb, 0x06c92317), TOBN(0xb787b890, 0xad1c4afe), TOBN(0xdccd9a92, 0x0ede801a), TOBN(0x9ac6ddda, 0xdb58da1f), TOBN(0x22bbc12f, 0xb8cae6ee), TOBN(0xc6f8bced, 0x815c4a43), TOBN(0x8105a92c, 0xf96480c7), TOBN(0x0dc3dbf3, 0x7a859d51), TOBN(0xe3ec7ce6, 0x3041196b), TOBN(0xd9f64b25, 0x0d1067c9), TOBN(0xf2321321, 0x3d1f8dd8), TOBN(0x8b5c619c, 0x76497ee8), TOBN(0x5d2b0ac6, 0xc717370e), TOBN(0x98204cb6, 0x4fcf68e1), TOBN(0x0bdec211, 0x62bc6792), TOBN(0x6973ccef, 0xa63b1011), TOBN(0xf9e3fa97, 0xe0de1ac5), TOBN(0x5efb693e, 0x3d0e0c8b), TOBN(0x037248e9, 0xd2d4fcb4),} , {TOBN(0x80802dc9, 0x1ec34f9e), TOBN(0xd8772d35, 0x33810603), TOBN(0x3f06d66c, 0x530cb4f3), TOBN(0x7be5ed0d, 0xc475c129), TOBN(0xcb9e3c19, 0x31e82b10), TOBN(0xc63d2857, 0xc9ff6b4c), TOBN(0xb92118c6, 0x92a1b45e), TOBN(0x0aec4414, 0x7285bbca), TOBN(0xfc189ae7, 0x1e29a3ef), TOBN(0xcbe906f0, 0x4c93302e), TOBN(0xd0107914, 0xceaae10e), TOBN(0xb7a23f34, 0xb68e19f8), TOBN(0xe9d875c2, 0xefd2119d), TOBN(0x03198c6e, 0xfcadc9c8), TOBN(0x65591bf6, 0x4da17113), TOBN(0x3cf0bbf8, 0x3d443038), TOBN(0xae485bb7, 0x2b724759), TOBN(0x945353e1, 0xb2d4c63a), TOBN(0x82159d07, 0xde7d6f2c), TOBN(0x389caef3, 0x4ec5b109), TOBN(0x4a8ebb53, 0xdb65ef14), TOBN(0x2dc2cb7e, 0xdd99de43), TOBN(0x816fa3ed, 0x83f2405f), TOBN(0x73429bb9, 0xc14208a3), TOBN(0xb618d590, 0xb01e6e27), TOBN(0x047e2ccd, 0xe180b2dc), TOBN(0xd1b299b5, 0x04aea4a9), TOBN(0x412c9e1e, 0x9fa403a4), TOBN(0x88d28a36, 0x79407552), TOBN(0x49c50136, 0xf332b8e3), TOBN(0x3a1b6fcc, 0xe668de19), TOBN(0x178851bc, 0x75122b97), TOBN(0xb1e13752, 0xfb85fa4c), TOBN(0xd61257ce, 0x383c8ce9), TOBN(0xd43da670, 0xd2f74dae), TOBN(0xa35aa23f, 0xbf846bbb), TOBN(0x5e74235d, 0x4421fc83), TOBN(0xf6df8ee0, 0xc363473b), TOBN(0x34d7f52a, 0x3c4aa158), TOBN(0x50d05aab, 0x9bc6d22e), TOBN(0x8c56e735, 0xa64785f4), TOBN(0xbc56637b, 0x5f29cd07), TOBN(0x53b2bb80, 0x3ee35067), TOBN(0x50235a0f, 0xdc919270), TOBN(0x191ab6d8, 0xf2c4aa65), TOBN(0xc3475831, 0x8396023b), TOBN(0x80400ba5, 0xf0f805ba), TOBN(0x8881065b, 0x5ec0f80f), TOBN(0xc370e522, 0xcc1b5e83), TOBN(0xde2d4ad1, 0x860b8bfb), TOBN(0xad364df0, 0x67b256df), TOBN(0x8f12502e, 0xe0138997), TOBN(0x503fa0dc, 0x7783920a), TOBN(0xe80014ad, 0xc0bc866a), TOBN(0x3f89b744, 0xd3064ba6), TOBN(0x03511dcd, 0xcba5dba5), TOBN(0x197dd46d, 0x95a7b1a2), TOBN(0x9c4e7ad6, 0x3c6341fb), TOBN(0x426eca29, 0x484c2ece), TOBN(0x9211e489, 0xde7f4f8a), TOBN(0x14997f6e, 0xc78ef1f4), TOBN(0x2b2c0910, 0x06574586), TOBN(0x17286a6e, 0x1c3eede8), TOBN(0x25f92e47, 0x0f60e018), TOBN(0x805c5646, 0x31890a36), TOBN(0x703ef600, 0x57feea5b), TOBN(0x389f747c, 0xaf3c3030), TOBN(0xe0e5daeb, 0x54dd3739), TOBN(0xfe24a4c3, 0xc9c9f155), TOBN(0x7e4bf176, 0xb5393962), TOBN(0x37183de2, 0xaf20bf29), TOBN(0x4a1bd7b5, 0xf95a8c3b), TOBN(0xa83b9699, 0x46191d3d), TOBN(0x281fc8dd, 0x7b87f257), TOBN(0xb18e2c13, 0x54107588), TOBN(0x6372def7, 0x9b2bafe8), TOBN(0xdaf4bb48, 0x0d8972ca), TOBN(0x3f2dd4b7, 0x56167a3f), TOBN(0x1eace32d, 0x84310cf4), TOBN(0xe3bcefaf, 0xe42700aa), TOBN(0x5fe5691e, 0xd785e73d), TOBN(0xa5db5ab6, 0x2ea60467), TOBN(0x02e23d41, 0xdfc6514a), TOBN(0x35e8048e, 0xe03c3665), TOBN(0x3f8b118f, 0x1adaa0f8), TOBN(0x28ec3b45, 0x84ce1a5a), TOBN(0xe8cacc6e, 0x2c6646b8), TOBN(0x1343d185, 0xdbd0e40f), TOBN(0xe5d7f844, 0xcaaa358c), TOBN(0x1a1db7e4, 0x9924182a), TOBN(0xd64cd42d, 0x9c875d9a), TOBN(0xb37b515f, 0x042eeec8), TOBN(0x4d4dd409, 0x7b165fbe), TOBN(0xfc322ed9, 0xe206eff3), TOBN(0x7dee4102, 0x59b7e17e), TOBN(0x55a481c0, 0x8236ca00), TOBN(0x8c885312, 0xc23fc975), TOBN(0x15715806, 0x05d6297b), TOBN(0xa078868e, 0xf78edd39), TOBN(0x956b31e0, 0x03c45e52), TOBN(0x470275d5, 0xff7b33a6), TOBN(0xc8d5dc3a, 0x0c7e673f), TOBN(0x419227b4, 0x7e2f2598), TOBN(0x8b37b634, 0x4c14a975), TOBN(0xd0667ed6, 0x8b11888c), TOBN(0x5e0e8c3e, 0x803e25dc), TOBN(0x34e5d0dc, 0xb987a24a), TOBN(0x9f40ac3b, 0xae920323), TOBN(0x5463de95, 0x34e0f63a), TOBN(0xa128bf92, 0x6b6328f9), TOBN(0x491ccd7c, 0xda64f1b7), TOBN(0x7ef1ec27, 0xc47bde35), TOBN(0xa857240f, 0xa36a2737), TOBN(0x35dc1366, 0x63621bc1), TOBN(0x7a3a6453, 0xd4fb6897), TOBN(0x80f1a439, 0xc929319d), TOBN(0xfc18274b, 0xf8cb0ba0), TOBN(0xb0b53766, 0x8078c5eb), TOBN(0xfb0d4924, 0x1e01d0ef), TOBN(0x50d7c67d, 0x372ab09c), TOBN(0xb4e370af, 0x3aeac968), TOBN(0xe4f7fee9, 0xc4b63266), TOBN(0xb4acd4c2, 0xe3ac5664), TOBN(0xf8910bd2, 0xceb38cbf), TOBN(0x1c3ae50c, 0xc9c0726e), TOBN(0x15309569, 0xd97b40bf), TOBN(0x70884b7f, 0xfd5a5a1b), TOBN(0x3890896a, 0xef8314cd), TOBN(0x58e1515c, 0xa5618c93), TOBN(0xe665432b, 0x77d942d1), TOBN(0xb32181bf, 0xb6f767a8), TOBN(0x753794e8, 0x3a604110), TOBN(0x09afeb7c, 0xe8c0dbcc), TOBN(0x31e02613, 0x598673a3), TOBN(0x5d98e557, 0x7d46db00), TOBN(0xfc21fb8c, 0x9d985b28), TOBN(0xc9040116, 0xb0843e0b), TOBN(0x53b1b3a8, 0x69b04531), TOBN(0xdd1649f0, 0x85d7d830), TOBN(0xbb3bcc87, 0xcb7427e8), TOBN(0x77261100, 0xc93dce83), TOBN(0x7e79da61, 0xa1922a2a), TOBN(0x587a2b02, 0xf3149ce8), TOBN(0x147e1384, 0xde92ec83), TOBN(0x484c83d3, 0xaf077f30), TOBN(0xea78f844, 0x0658b53a), TOBN(0x912076c2, 0x027aec53), TOBN(0xf34714e3, 0x93c8177d), TOBN(0x37ef5d15, 0xc2376c84), TOBN(0x8315b659, 0x3d1aa783), TOBN(0x3a75c484, 0xef852a90), TOBN(0x0ba0c58a, 0x16086bd4), TOBN(0x29688d7a, 0x529a6d48), TOBN(0x9c7f250d, 0xc2f19203), TOBN(0x123042fb, 0x682e2df9), TOBN(0x2b7587e7, 0xad8121bc), TOBN(0x30fc0233, 0xe0182a65), TOBN(0xb82ecf87, 0xe3e1128a), TOBN(0x71682861, 0x93fb098f), TOBN(0x043e21ae, 0x85e9e6a7), TOBN(0xab5b49d6, 0x66c834ea), TOBN(0x3be43e18, 0x47414287), TOBN(0xf40fb859, 0x219a2a47), TOBN(0x0e6559e9, 0xcc58df3c), TOBN(0xfe1dfe8e, 0x0c6615b4), TOBN(0x14abc8fd, 0x56459d70), TOBN(0x7be0fa8e, 0x05de0386), TOBN(0x8e63ef68, 0xe9035c7c), TOBN(0x116401b4, 0x53b31e91), TOBN(0x0cba7ad4, 0x4436b4d8), TOBN(0x9151f9a0, 0x107afd66), TOBN(0xafaca8d0, 0x1f0ee4c4), TOBN(0x75fe5c1d, 0x9ee9761c), TOBN(0x3497a16b, 0xf0c0588f), TOBN(0x3ee2bebd, 0x0304804c), TOBN(0xa8fb9a60, 0xc2c990b9), TOBN(0xd14d32fe, 0x39251114), TOBN(0x36bf25bc, 0xcac73366), TOBN(0xc9562c66, 0xdba7495c), TOBN(0x324d301b, 0x46ad348b), TOBN(0x9f46620c, 0xd670407e), TOBN(0x0ea8d4f1, 0xe3733a01), TOBN(0xd396d532, 0xb0c324e0), TOBN(0x5b211a0e, 0x03c317cd), TOBN(0x090d7d20, 0x5ffe7b37), TOBN(0x3b7f3efb, 0x1747d2da), TOBN(0xa2cb525f, 0xb54fc519), TOBN(0x6e220932, 0xf66a971e), TOBN(0xddc160df, 0xb486d440), TOBN(0x7fcfec46, 0x3fe13465), TOBN(0x83da7e4e, 0x76e4c151), TOBN(0xd6fa48a1, 0xd8d302b5), TOBN(0xc6304f26, 0x5872cd88), TOBN(0x806c1d3c, 0x278b90a1), TOBN(0x3553e725, 0xcaf0bc1c), TOBN(0xff59e603, 0xbb9d8d5c), TOBN(0xa4550f32, 0x7a0b85dd), TOBN(0xdec5720a, 0x93ecc217), TOBN(0x0b88b741, 0x69d62213), TOBN(0x7212f245, 0x5b365955), TOBN(0x20764111, 0xb5cae787), TOBN(0x13cb7f58, 0x1dfd3124), TOBN(0x2dca77da, 0x1175aefb), TOBN(0xeb75466b, 0xffaae775), TOBN(0x74d76f3b, 0xdb6cff32), TOBN(0x7440f37a, 0x61fcda9a), TOBN(0x1bb3ac92, 0xb525028b), TOBN(0x20fbf8f7, 0xa1975f29), TOBN(0x982692e1, 0xdf83097f), TOBN(0x28738f6c, 0x554b0800), TOBN(0xdc703717, 0xa2ce2f2f), TOBN(0x7913b93c, 0x40814194), TOBN(0x04924593, 0x1fe89636), TOBN(0x7b98443f, 0xf78834a6), TOBN(0x11c6ab01, 0x5114a5a1), TOBN(0x60deb383, 0xffba5f4c), TOBN(0x4caa54c6, 0x01a982e6), TOBN(0x1dd35e11, 0x3491cd26), TOBN(0x973c315f, 0x7cbd6b05), TOBN(0xcab00775, 0x52494724), TOBN(0x04659b1f, 0x6565e15a), TOBN(0xbf30f529, 0x8c8fb026), TOBN(0xfc21641b, 0xa8a0de37), TOBN(0xe9c7a366, 0xfa5e5114), TOBN(0xdb849ca5, 0x52f03ad8), TOBN(0xc7e8dbe9, 0x024e35c0), TOBN(0xa1a2bbac, 0xcfc3c789), TOBN(0xbf733e7d, 0x9c26f262), TOBN(0x882ffbf5, 0xb8444823), TOBN(0xb7224e88, 0x6bf8483b), TOBN(0x53023b8b, 0x65bef640), TOBN(0xaabfec91, 0xd4d5f8cd), TOBN(0xa40e1510, 0x079ea1bd), TOBN(0x1ad9addc, 0xd05d5d26), TOBN(0xdb3f2eab, 0x13e68d4f), TOBN(0x1cff1ae2, 0x640f803f), TOBN(0xe0e7b749, 0xd4cee117), TOBN(0x8e9f275b, 0x4036d909), TOBN(0xce34e31d, 0x8f4d4c38), TOBN(0x22b37f69, 0xd75130fc), TOBN(0x83e0f1fd, 0xb4014604), TOBN(0xa8ce9919, 0x89415078), TOBN(0x82375b75, 0x41792efe), TOBN(0x4f59bf5c, 0x97d4515b), TOBN(0xac4f324f, 0x923a277d), TOBN(0xd9bc9b7d, 0x650f3406), TOBN(0xc6fa87d1, 0x8a39bc51), TOBN(0x82588530, 0x5ccc108f), TOBN(0x5ced3c9f, 0x82e4c634), TOBN(0x8efb8314, 0x3a4464f8), TOBN(0xe706381b, 0x7a1dca25), TOBN(0x6cd15a3c, 0x5a2a412b), TOBN(0x9347a8fd, 0xbfcd8fb5), TOBN(0x31db2eef, 0x6e54cd22), TOBN(0xc4aeb11e, 0xf8d8932f), TOBN(0x11e7c1ed, 0x344411af), TOBN(0x2653050c, 0xdc9a151e), TOBN(0x9edbfc08, 0x3bb0a859), TOBN(0x926c81c7, 0xfd5691e7), TOBN(0x9c1b2342, 0x6f39019a), TOBN(0x64a81c8b, 0x7f8474b9), TOBN(0x90657c07, 0x01761819), TOBN(0x390b3331, 0x55e0375a), TOBN(0xc676c626, 0xb6ebc47d), TOBN(0x51623247, 0xb7d6dee8), TOBN(0x0948d927, 0x79659313), TOBN(0x99700161, 0xe9ab35ed), TOBN(0x06cc32b4, 0x8ddde408), TOBN(0x6f2fd664, 0x061ef338), TOBN(0x1606fa02, 0xc202e9ed), TOBN(0x55388bc1, 0x929ba99b), TOBN(0xc4428c5e, 0x1e81df69), TOBN(0xce2028ae, 0xf91b0b2a), TOBN(0xce870a23, 0xf03dfd3f), TOBN(0x66ec2c87, 0x0affe8ed), TOBN(0xb205fb46, 0x284d0c00), TOBN(0xbf5dffe7, 0x44cefa48), TOBN(0xb6fc37a8, 0xa19876d7), TOBN(0xbecfa84c, 0x08b72863), TOBN(0xd7205ff5, 0x2576374f), TOBN(0x80330d32, 0x8887de41), TOBN(0x5de0df0c, 0x869ea534), TOBN(0x13f42753, 0x3c56ea17), TOBN(0xeb1f6069, 0x452b1a78), TOBN(0x50474396, 0xe30ea15c), TOBN(0x575816a1, 0xc1494125), TOBN(0xbe1ce55b, 0xfe6bb38f), TOBN(0xb901a948, 0x96ae30f7), TOBN(0xe5af0f08, 0xd8fc3548), TOBN(0x5010b5d0, 0xd73bfd08), TOBN(0x993d2880, 0x53fe655a), TOBN(0x99f2630b, 0x1c1309fd), TOBN(0xd8677baf, 0xb4e3b76f), TOBN(0x14e51ddc, 0xb840784b), TOBN(0x326c750c, 0xbf0092ce), TOBN(0xc83d306b, 0xf528320f), TOBN(0xc4456715, 0x77d4715c), TOBN(0xd30019f9, 0x6b703235), TOBN(0x207ccb2e, 0xd669e986), TOBN(0x57c824af, 0xf6dbfc28), TOBN(0xf0eb532f, 0xd8f92a23), TOBN(0x4a557fd4, 0x9bb98fd2), TOBN(0xa57acea7, 0xc1e6199a), TOBN(0x0c663820, 0x8b94b1ed), TOBN(0x9b42be8f, 0xf83a9266), TOBN(0xc7741c97, 0x0101bd45), TOBN(0x95770c11, 0x07bd9ceb), TOBN(0x1f50250a, 0x8b2e0744), TOBN(0xf762eec8, 0x1477b654), TOBN(0xc65b900e, 0x15efe59a), TOBN(0x88c96148, 0x9546a897), TOBN(0x7e8025b3, 0xc30b4d7c), TOBN(0xae4065ef, 0x12045cf9), TOBN(0x6fcb2caf, 0x9ccce8bd), TOBN(0x1fa0ba4e, 0xf2cf6525), TOBN(0xf683125d, 0xcb72c312), TOBN(0xa01da4ea, 0xe312410e), TOBN(0x67e28677, 0x6cd8e830), TOBN(0xabd95752, 0x98fb3f07), TOBN(0x05f11e11, 0xeef649a5), TOBN(0xba47faef, 0x9d3472c2), TOBN(0x3adff697, 0xc77d1345), TOBN(0x4761fa04, 0xdd15afee), TOBN(0x64f1f61a, 0xb9e69462), TOBN(0xfa691fab, 0x9bfb9093), TOBN(0x3df8ae8f, 0xa1133dfe), TOBN(0xcd5f8967, 0x58cc710d), TOBN(0xfbb88d50, 0x16c7fe79), TOBN(0x8e011b4c, 0xe88c50d1), TOBN(0x7532e807, 0xa8771c4f), TOBN(0x64c78a48, 0xe2278ee4), TOBN(0x0b283e83, 0x3845072a), TOBN(0x98a6f291, 0x49e69274), TOBN(0xb96e9668, 0x1868b21c), TOBN(0x38f0adc2, 0xb1a8908e), TOBN(0x90afcff7, 0x1feb829d), TOBN(0x9915a383, 0x210b0856), TOBN(0xa5a80602, 0xdef04889), TOBN(0x800e9af9, 0x7c64d509), TOBN(0x81382d0b, 0xb8996f6f), TOBN(0x490eba53, 0x81927e27), TOBN(0x46c63b32, 0x4af50182), TOBN(0x784c5fd9, 0xd3ad62ce), TOBN(0xe4fa1870, 0xf8ae8736), TOBN(0x4ec9d0bc, 0xd7466b25), TOBN(0x84ddbe1a, 0xdb235c65), TOBN(0x5e2645ee, 0x163c1688), TOBN(0x570bd00e, 0x00eba747), TOBN(0xfa51b629, 0x128bfa0f), TOBN(0x92fce1bd, 0x6c1d3b68), TOBN(0x3e7361dc, 0xb66778b1), TOBN(0x9c7d249d, 0x5561d2bb), TOBN(0xa40b28bf, 0x0bbc6229), TOBN(0x1c83c05e, 0xdfd91497), TOBN(0x5f9f5154, 0xf083df05), TOBN(0xbac38b3c, 0xeee66c9d), TOBN(0xf71db7e3, 0xec0dfcfd), TOBN(0xf2ecda8e, 0x8b0a8416), TOBN(0x52fddd86, 0x7812aa66), TOBN(0x2896ef10, 0x4e6f4272), TOBN(0xff27186a, 0x0fe9a745), TOBN(0x08249fcd, 0x49ca70db), TOBN(0x7425a2e6, 0x441cac49), TOBN(0xf4a0885a, 0xece5ff57), TOBN(0x6e2cb731, 0x7d7ead58), TOBN(0xf96cf7d6, 0x1898d104), TOBN(0xafe67c9d, 0x4f2c9a89), TOBN(0x89895a50, 0x1c7bf5bc), TOBN(0xdc7cb8e5, 0x573cecfa), TOBN(0x66497eae, 0xd15f03e6), TOBN(0x6bc0de69, 0x3f084420), TOBN(0x323b9b36, 0xacd532b0), TOBN(0xcfed390a, 0x0115a3c1), TOBN(0x9414c40b, 0x2d65ca0e), TOBN(0x641406bd, 0x2f530c78), TOBN(0x29369a44, 0x833438f2), TOBN(0x996884f5, 0x903fa271), TOBN(0xe6da0fd2, 0xb9da921e), TOBN(0xa6f2f269, 0x5db01e54), TOBN(0x1ee3e9bd, 0x6876214e), TOBN(0xa26e181c, 0xe27a9497), TOBN(0x36d254e4, 0x8e215e04), TOBN(0x42f32a6c, 0x252cabca), TOBN(0x99481487, 0x80b57614), TOBN(0x4c4dfe69, 0x40d9cae1), TOBN(0x05869580, 0x11a10f09), TOBN(0xca287b57, 0x3491b64b), TOBN(0x77862d5d, 0x3fd4a53b), TOBN(0xbf94856e, 0x50349126), TOBN(0x2be30bd1, 0x71c5268f), TOBN(0x10393f19, 0xcbb650a6), TOBN(0x639531fe, 0x778cf9fd), TOBN(0x02556a11, 0xb2935359), TOBN(0xda38aa96, 0xaf8c126e), TOBN(0x47dbe6c2, 0x0960167f), TOBN(0x37bbabb6, 0x501901cd), TOBN(0xb6e979e0, 0x2c947778), TOBN(0xd69a5175, 0x7a1a1dc6), TOBN(0xc3ed5095, 0x9d9faf0c), TOBN(0x4dd9c096, 0x1d5fa5f0), TOBN(0xa0c4304d, 0x64f16ea8), TOBN(0x8b1cac16, 0x7e718623), TOBN(0x0b576546, 0x7c67f03e), TOBN(0x559cf5ad, 0xcbd88c01), TOBN(0x074877bb, 0x0e2af19a), TOBN(0x1f717ec1, 0xa1228c92), TOBN(0x70bcb800, 0x326e8920), TOBN(0xec6e2c5c, 0x4f312804), TOBN(0x426aea7d, 0x3fca4752), TOBN(0xf12c0949, 0x2211f62a), TOBN(0x24beecd8, 0x7be7b6b5), TOBN(0xb77eaf4c, 0x36d7a27d), TOBN(0x154c2781, 0xfda78fd3), TOBN(0x848a83b0, 0x264eeabe), TOBN(0x81287ef0, 0x4ffe2bc4), TOBN(0x7b6d88c6, 0xb6b6fc2a), TOBN(0x805fb947, 0xce417d99), TOBN(0x4b93dcc3, 0x8b916cc4), TOBN(0x72e65bb3, 0x21273323), TOBN(0xbcc1badd, 0x6ea9886e), TOBN(0x0e223011, 0x4bc5ee85), TOBN(0xa561be74, 0xc18ee1e4), TOBN(0x762fd2d4, 0xa6bcf1f1), TOBN(0x50e6a5a4, 0x95231489), TOBN(0xca96001f, 0xa00b500b), TOBN(0x5c098cfc, 0x5d7dcdf5), TOBN(0xa64e2d2e, 0x8c446a85), TOBN(0xbae9bcf1, 0x971f3c62), TOBN(0x4ec22683, 0x8435a2c5), TOBN(0x8ceaed6c, 0x4bad4643), TOBN(0xe9f8fb47, 0xccccf4e3), TOBN(0xbd4f3fa4, 0x1ce3b21e), TOBN(0xd79fb110, 0xa3db3292), TOBN(0xe28a37da, 0xb536c66a), TOBN(0x279ce87b, 0x8e49e6a9), TOBN(0x70ccfe8d, 0xfdcec8e3), TOBN(0x2193e4e0, 0x3ba464b2), TOBN(0x0f39d60e, 0xaca9a398), TOBN(0x7d7932af, 0xf82c12ab), TOBN(0xd8ff50ed, 0x91e7e0f7), TOBN(0xea961058, 0xfa28a7e0), TOBN(0xc726cf25, 0x0bf5ec74), TOBN(0xe74d55c8, 0xdb229666), TOBN(0x0bd9abbf, 0xa57f5799), TOBN(0x7479ef07, 0x4dfc47b3), TOBN(0xd9c65fc3, 0x0c52f91d), TOBN(0x8e0283fe, 0x36a8bde2), TOBN(0xa32a8b5e, 0x7d4b7280), TOBN(0x6a677c61, 0x12e83233), TOBN(0x0fbb3512, 0xdcc9bf28), TOBN(0x562e8ea5, 0x0d780f61), TOBN(0x0db8b22b, 0x1dc4e89c), TOBN(0x0a6fd1fb, 0x89be0144), TOBN(0x8c77d246, 0xca57113b), TOBN(0x4639075d, 0xff09c91c), TOBN(0x5b47b17f, 0x5060824c), TOBN(0x58aea2b0, 0x16287b52), TOBN(0xa1343520, 0xd0cd8eb0), TOBN(0x6148b4d0, 0xc5d58573), TOBN(0xdd2b6170, 0x291c68ae), TOBN(0xa61b3929, 0x1da3b3b7), TOBN(0x5f946d79, 0x08c4ac10), TOBN(0x4105d4a5, 0x7217d583), TOBN(0x5061da3d, 0x25e6de5e), TOBN(0x3113940d, 0xec1b4991), TOBN(0xf12195e1, 0x36f485ae), TOBN(0xa7507fb2, 0x731a2ee0), TOBN(0x95057a8e, 0x6e9e196e), TOBN(0xa3c2c911, 0x2e130136), TOBN(0x97dfbb36, 0x33c60d15), TOBN(0xcaf3c581, 0xb300ee2b), TOBN(0x77f25d90, 0xf4bac8b8), TOBN(0xdb1c4f98, 0x6d840cd6), TOBN(0x471d62c0, 0xe634288c), TOBN(0x8ec2f85e, 0xcec8a161), TOBN(0x41f37cbc, 0xfa6f4ae2), TOBN(0x6793a20f, 0x4b709985), TOBN(0x7a7bd33b, 0xefa8985b), TOBN(0x2c6a3fbd, 0x938e6446), TOBN(0x19042619, 0x2a8d47c1), TOBN(0x16848667, 0xcc36975f), TOBN(0x02acf168, 0x9d5f1dfb), TOBN(0x62d41ad4, 0x613baa94), TOBN(0xb56fbb92, 0x9f684670), TOBN(0xce610d0d, 0xe9e40569), TOBN(0x7b99c65f, 0x35489fef), TOBN(0x0c88ad1b, 0x3df18b97), TOBN(0x81b7d9be, 0x5d0e9edb), TOBN(0xd85218c0, 0xc716cc0a), TOBN(0xf4b5ff90, 0x85691c49), TOBN(0xa4fd666b, 0xce356ac6), TOBN(0x17c72895, 0x4b327a7a), TOBN(0xf93d5085, 0xda6be7de), TOBN(0xff71530e, 0x3301d34e), TOBN(0x4cd96442, 0xd8f448e8), TOBN(0x9283d331, 0x2ed18ffa), TOBN(0x4d33dd99, 0x2a849870), TOBN(0xa716964b, 0x41576335), TOBN(0xff5e3a9b, 0x179be0e5), TOBN(0x5b9d6b1b, 0x83b13632), TOBN(0x3b8bd7d4, 0xa52f313b), TOBN(0xc9dd95a0, 0x637a4660), TOBN(0x30035962, 0x0b3e218f), TOBN(0xce1481a3, 0xc7b28a3c), TOBN(0xab41b43a, 0x43228d83), TOBN(0x24ae1c30, 0x4ad63f99), TOBN(0x8e525f1a, 0x46a51229), TOBN(0x14af860f, 0xcd26d2b4), TOBN(0xd6baef61, 0x3f714aa1), TOBN(0xf51865ad, 0xeb78795e), TOBN(0xd3e21fce, 0xe6a9d694), TOBN(0x82ceb1dd, 0x8a37b527)} }; openssl-1.1.1f/crypto/ec/ecp_oct.c000066400000000000000000000242601364063235100170410ustar00rootroot00000000000000/* * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "ec_local.h" int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x_, int y_bit, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp1, *tmp2, *x, *y; int ret = 0; /* clear error queue */ ERR_clear_error(); if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } y_bit = (y_bit != 0); BN_CTX_start(ctx); tmp1 = BN_CTX_get(ctx); tmp2 = BN_CTX_get(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; /*- * Recover y. We have a Weierstrass equation * y^2 = x^3 + a*x + b, * so y is one of the square roots of x^3 + a*x + b. */ /* tmp1 := x^3 */ if (!BN_nnmod(x, x_, group->field, ctx)) goto err; if (group->meth->field_decode == 0) { /* field_{sqr,mul} work on standard representation */ if (!group->meth->field_sqr(group, tmp2, x_, ctx)) goto err; if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) goto err; } else { if (!BN_mod_sqr(tmp2, x_, group->field, ctx)) goto err; if (!BN_mod_mul(tmp1, tmp2, x_, group->field, ctx)) goto err; } /* tmp1 := tmp1 + a*x */ if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(tmp2, x, group->field)) goto err; if (!BN_mod_add_quick(tmp2, tmp2, x, group->field)) goto err; if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, group->field)) goto err; } else { if (group->meth->field_decode) { if (!group->meth->field_decode(group, tmp2, group->a, ctx)) goto err; if (!BN_mod_mul(tmp2, tmp2, x, group->field, ctx)) goto err; } else { /* field_mul works on standard representation */ if (!group->meth->field_mul(group, tmp2, group->a, x, ctx)) goto err; } if (!BN_mod_add_quick(tmp1, tmp1, tmp2, group->field)) goto err; } /* tmp1 := tmp1 + b */ if (group->meth->field_decode) { if (!group->meth->field_decode(group, tmp2, group->b, ctx)) goto err; if (!BN_mod_add_quick(tmp1, tmp1, tmp2, group->field)) goto err; } else { if (!BN_mod_add_quick(tmp1, tmp1, group->b, group->field)) goto err; } if (!BN_mod_sqrt(y, tmp1, group->field, ctx)) { unsigned long err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { ERR_clear_error(); ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); } else ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB); goto err; } if (y_bit != BN_is_odd(y)) { if (BN_is_zero(y)) { int kron; kron = BN_kronecker(x, group->field, ctx); if (kron == -2) goto err; if (kron == 1) ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSION_BIT); else /* * BN_mod_sqrt() should have caught this error (not a square) */ ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); goto err; } if (!BN_usub(y, group->field, y)) goto err; } if (y_bit != BN_is_odd(y)) { ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_INTERNAL_ERROR); goto err; } if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } size_t ec_GFp_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *ctx) { size_t ret; BN_CTX *new_ctx = NULL; int used_ctx = 0; BIGNUM *x, *y; size_t field_len, i, skip; if ((form != POINT_CONVERSION_COMPRESSED) && (form != POINT_CONVERSION_UNCOMPRESSED) && (form != POINT_CONVERSION_HYBRID)) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); goto err; } if (EC_POINT_is_at_infinity(group, point)) { /* encodes to a single 0 octet */ if (buf != NULL) { if (len < 1) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); return 0; } buf[0] = 0; } return 1; } /* ret := required output buffer length */ field_len = BN_num_bytes(group->field); ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; /* if 'buf' is NULL, just return required length */ if (buf != NULL) { if (len < ret) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); goto err; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); used_ctx = 1; x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) goto err; if ((form == POINT_CONVERSION_COMPRESSED || form == POINT_CONVERSION_HYBRID) && BN_is_odd(y)) buf[0] = form + 1; else buf[0] = form; i = 1; skip = field_len - BN_num_bytes(x); if (skip > field_len) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } while (skip > 0) { buf[i++] = 0; skip--; } skip = BN_bn2bin(x, buf + i); i += skip; if (i != 1 + field_len) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) { skip = field_len - BN_num_bytes(y); if (skip > field_len) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } while (skip > 0) { buf[i++] = 0; skip--; } skip = BN_bn2bin(y, buf + i); i += skip; } if (i != ret) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } } if (used_ctx) BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; err: if (used_ctx) BN_CTX_end(ctx); BN_CTX_free(new_ctx); return 0; } int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, const unsigned char *buf, size_t len, BN_CTX *ctx) { point_conversion_form_t form; int y_bit; BN_CTX *new_ctx = NULL; BIGNUM *x, *y; size_t field_len, enc_len; int ret = 0; if (len == 0) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); return 0; } form = buf[0]; y_bit = form & 1; form = form & ~1U; if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) && (form != POINT_CONVERSION_UNCOMPRESSED) && (form != POINT_CONVERSION_HYBRID)) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if (form == 0) { if (len != 1) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } return EC_POINT_set_to_infinity(group, point); } field_len = BN_num_bytes(group->field); enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; if (len != enc_len) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; if (!BN_bin2bn(buf + 1, field_len, x)) goto err; if (BN_ucmp(x, group->field) >= 0) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_COMPRESSED) { if (!EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx)) goto err; } else { if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; if (BN_ucmp(y, group->field) >= 0) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_HYBRID) { if (y_bit != BN_is_odd(y)) { ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } } /* * EC_POINT_set_affine_coordinates is responsible for checking that * the point is on the curve. */ if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } openssl-1.1.1f/crypto/ec/ecp_smpl.c000066400000000000000000001370301364063235100172270ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "ec_local.h" const EC_METHOD *EC_GFp_simple_method(void) { static const EC_METHOD ret = { EC_FLAGS_DEFAULT_OCT, NID_X9_62_prime_field, ec_GFp_simple_group_init, ec_GFp_simple_group_finish, ec_GFp_simple_group_clear_finish, ec_GFp_simple_group_copy, ec_GFp_simple_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, ec_GFp_simple_point_clear_finish, ec_GFp_simple_point_copy, ec_GFp_simple_point_set_to_infinity, ec_GFp_simple_set_Jprojective_coordinates_GFp, ec_GFp_simple_get_Jprojective_coordinates_GFp, ec_GFp_simple_point_set_affine_coordinates, ec_GFp_simple_point_get_affine_coordinates, 0, 0, 0, ec_GFp_simple_add, ec_GFp_simple_dbl, ec_GFp_simple_invert, ec_GFp_simple_is_at_infinity, ec_GFp_simple_is_on_curve, ec_GFp_simple_cmp, ec_GFp_simple_make_affine, ec_GFp_simple_points_make_affine, 0 /* mul */ , 0 /* precompute_mult */ , 0 /* have_precompute_mult */ , ec_GFp_simple_field_mul, ec_GFp_simple_field_sqr, 0 /* field_div */ , ec_GFp_simple_field_inv, 0 /* field_encode */ , 0 /* field_decode */ , 0, /* field_set_to_one */ ec_key_simple_priv2oct, ec_key_simple_oct2priv, 0, /* set private */ ec_key_simple_generate_key, ec_key_simple_check_key, ec_key_simple_generate_public_key, 0, /* keycopy */ 0, /* keyfinish */ ecdh_simple_compute_key, 0, /* field_inverse_mod_ord */ ec_GFp_simple_blind_coordinates, ec_GFp_simple_ladder_pre, ec_GFp_simple_ladder_step, ec_GFp_simple_ladder_post }; return &ret; } /* * Most method functions in this file are designed to work with * non-trivial representations of field elements if necessary * (see ecp_mont.c): while standard modular addition and subtraction * are used, the field_mul and field_sqr methods will be used for * multiplication, and field_encode and field_decode (if defined) * will be used for converting between representations. * * Functions ec_GFp_simple_points_make_affine() and * ec_GFp_simple_point_get_affine_coordinates() specifically assume * that if a non-trivial representation is used, it is a Montgomery * representation (i.e. 'encoding' means multiplying by some factor R). */ int ec_GFp_simple_group_init(EC_GROUP *group) { group->field = BN_new(); group->a = BN_new(); group->b = BN_new(); if (group->field == NULL || group->a == NULL || group->b == NULL) { BN_free(group->field); BN_free(group->a); BN_free(group->b); return 0; } group->a_is_minus3 = 0; return 1; } void ec_GFp_simple_group_finish(EC_GROUP *group) { BN_free(group->field); BN_free(group->a); BN_free(group->b); } void ec_GFp_simple_group_clear_finish(EC_GROUP *group) { BN_clear_free(group->field); BN_clear_free(group->a); BN_clear_free(group->b); } int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) { if (!BN_copy(dest->field, src->field)) return 0; if (!BN_copy(dest->a, src->a)) return 0; if (!BN_copy(dest->b, src->b)) return 0; dest->a_is_minus3 = src->a_is_minus3; return 1; } int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; BIGNUM *tmp_a; /* p must be a prime > 3 */ if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); tmp_a = BN_CTX_get(ctx); if (tmp_a == NULL) goto err; /* group->field */ if (!BN_copy(group->field, p)) goto err; BN_set_negative(group->field, 0); /* group->a */ if (!BN_nnmod(tmp_a, a, p, ctx)) goto err; if (group->meth->field_encode) { if (!group->meth->field_encode(group, group->a, tmp_a, ctx)) goto err; } else if (!BN_copy(group->a, tmp_a)) goto err; /* group->b */ if (!BN_nnmod(group->b, b, p, ctx)) goto err; if (group->meth->field_encode) if (!group->meth->field_encode(group, group->b, group->b, ctx)) goto err; /* group->a_is_minus3 */ if (!BN_add_word(tmp_a, 3)) goto err; group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field)); ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { int ret = 0; BN_CTX *new_ctx = NULL; if (p != NULL) { if (!BN_copy(p, group->field)) return 0; } if (a != NULL || b != NULL) { if (group->meth->field_decode) { if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } if (a != NULL) { if (!group->meth->field_decode(group, a, group->a, ctx)) goto err; } if (b != NULL) { if (!group->meth->field_decode(group, b, group->b, ctx)) goto err; } } else { if (a != NULL) { if (!BN_copy(a, group->a)) goto err; } if (b != NULL) { if (!BN_copy(b, group->b)) goto err; } } } ret = 1; err: BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_group_get_degree(const EC_GROUP *group) { return BN_num_bits(group->field); } int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) { int ret = 0; BIGNUM *a, *b, *order, *tmp_1, *tmp_2; const BIGNUM *p = group->field; BN_CTX *new_ctx = NULL; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); goto err; } } BN_CTX_start(ctx); a = BN_CTX_get(ctx); b = BN_CTX_get(ctx); tmp_1 = BN_CTX_get(ctx); tmp_2 = BN_CTX_get(ctx); order = BN_CTX_get(ctx); if (order == NULL) goto err; if (group->meth->field_decode) { if (!group->meth->field_decode(group, a, group->a, ctx)) goto err; if (!group->meth->field_decode(group, b, group->b, ctx)) goto err; } else { if (!BN_copy(a, group->a)) goto err; if (!BN_copy(b, group->b)) goto err; } /*- * check the discriminant: * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) * 0 =< a, b < p */ if (BN_is_zero(a)) { if (BN_is_zero(b)) goto err; } else if (!BN_is_zero(b)) { if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err; if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err; if (!BN_lshift(tmp_1, tmp_2, 2)) goto err; /* tmp_1 = 4*a^3 */ if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err; if (!BN_mul_word(tmp_2, 27)) goto err; /* tmp_2 = 27*b^2 */ if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err; if (BN_is_zero(a)) goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_point_init(EC_POINT *point) { point->X = BN_new(); point->Y = BN_new(); point->Z = BN_new(); point->Z_is_one = 0; if (point->X == NULL || point->Y == NULL || point->Z == NULL) { BN_free(point->X); BN_free(point->Y); BN_free(point->Z); return 0; } return 1; } void ec_GFp_simple_point_finish(EC_POINT *point) { BN_free(point->X); BN_free(point->Y); BN_free(point->Z); } void ec_GFp_simple_point_clear_finish(EC_POINT *point) { BN_clear_free(point->X); BN_clear_free(point->Y); BN_clear_free(point->Z); point->Z_is_one = 0; } int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) { if (!BN_copy(dest->X, src->X)) return 0; if (!BN_copy(dest->Y, src->Y)) return 0; if (!BN_copy(dest->Z, src->Z)) return 0; dest->Z_is_one = src->Z_is_one; dest->curve_name = src->curve_name; return 1; } int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { point->Z_is_one = 0; BN_zero(point->Z); return 1; } int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; int ret = 0; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } if (x != NULL) { if (!BN_nnmod(point->X, x, group->field, ctx)) goto err; if (group->meth->field_encode) { if (!group->meth->field_encode(group, point->X, point->X, ctx)) goto err; } } if (y != NULL) { if (!BN_nnmod(point->Y, y, group->field, ctx)) goto err; if (group->meth->field_encode) { if (!group->meth->field_encode(group, point->Y, point->Y, ctx)) goto err; } } if (z != NULL) { int Z_is_one; if (!BN_nnmod(point->Z, z, group->field, ctx)) goto err; Z_is_one = BN_is_one(point->Z); if (group->meth->field_encode) { if (Z_is_one && (group->meth->field_set_to_one != 0)) { if (!group->meth->field_set_to_one(group, point->Z, ctx)) goto err; } else { if (!group-> meth->field_encode(group, point->Z, point->Z, ctx)) goto err; } } point->Z_is_one = Z_is_one; } ret = 1; err: BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; int ret = 0; if (group->meth->field_decode != 0) { if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } if (x != NULL) { if (!group->meth->field_decode(group, x, point->X, ctx)) goto err; } if (y != NULL) { if (!group->meth->field_decode(group, y, point->Y, ctx)) goto err; } if (z != NULL) { if (!group->meth->field_decode(group, z, point->Z, ctx)) goto err; } } else { if (x != NULL) { if (!BN_copy(x, point->X)) goto err; } if (y != NULL) { if (!BN_copy(y, point->Y)) goto err; } if (z != NULL) { if (!BN_copy(z, point->Z)) goto err; } } ret = 1; err: BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { if (x == NULL || y == NULL) { /* * unlike for projective coordinates, we do not tolerate this */ ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); return 0; } return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); } int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *Z, *Z_1, *Z_2, *Z_3; const BIGNUM *Z_; int ret = 0; if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); Z = BN_CTX_get(ctx); Z_1 = BN_CTX_get(ctx); Z_2 = BN_CTX_get(ctx); Z_3 = BN_CTX_get(ctx); if (Z_3 == NULL) goto err; /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ if (group->meth->field_decode) { if (!group->meth->field_decode(group, Z, point->Z, ctx)) goto err; Z_ = Z; } else { Z_ = point->Z; } if (BN_is_one(Z_)) { if (group->meth->field_decode) { if (x != NULL) { if (!group->meth->field_decode(group, x, point->X, ctx)) goto err; } if (y != NULL) { if (!group->meth->field_decode(group, y, point->Y, ctx)) goto err; } } else { if (x != NULL) { if (!BN_copy(x, point->X)) goto err; } if (y != NULL) { if (!BN_copy(y, point->Y)) goto err; } } } else { if (!group->meth->field_inv(group, Z_1, Z_, ctx)) { ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); goto err; } if (group->meth->field_encode == 0) { /* field_sqr works on standard representation */ if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err; } else { if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx)) goto err; } if (x != NULL) { /* * in the Montgomery case, field_mul will cancel out Montgomery * factor in X: */ if (!group->meth->field_mul(group, x, point->X, Z_2, ctx)) goto err; } if (y != NULL) { if (group->meth->field_encode == 0) { /* * field_mul works on standard representation */ if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err; } else { if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx)) goto err; } /* * in the Montgomery case, field_mul will cancel out Montgomery * factor in Y: */ if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx)) goto err; } } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; int ret = 0; if (a == b) return EC_POINT_dbl(group, r, a, ctx); if (EC_POINT_is_at_infinity(group, a)) return EC_POINT_copy(r, b); if (EC_POINT_is_at_infinity(group, b)) return EC_POINT_copy(r, a); field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); n4 = BN_CTX_get(ctx); n5 = BN_CTX_get(ctx); n6 = BN_CTX_get(ctx); if (n6 == NULL) goto end; /* * Note that in this function we must not read components of 'a' or 'b' * once we have written the corresponding components of 'r'. ('r' might * be one of 'a' or 'b'.) */ /* n1, n2 */ if (b->Z_is_one) { if (!BN_copy(n1, a->X)) goto end; if (!BN_copy(n2, a->Y)) goto end; /* n1 = X_a */ /* n2 = Y_a */ } else { if (!field_sqr(group, n0, b->Z, ctx)) goto end; if (!field_mul(group, n1, a->X, n0, ctx)) goto end; /* n1 = X_a * Z_b^2 */ if (!field_mul(group, n0, n0, b->Z, ctx)) goto end; if (!field_mul(group, n2, a->Y, n0, ctx)) goto end; /* n2 = Y_a * Z_b^3 */ } /* n3, n4 */ if (a->Z_is_one) { if (!BN_copy(n3, b->X)) goto end; if (!BN_copy(n4, b->Y)) goto end; /* n3 = X_b */ /* n4 = Y_b */ } else { if (!field_sqr(group, n0, a->Z, ctx)) goto end; if (!field_mul(group, n3, b->X, n0, ctx)) goto end; /* n3 = X_b * Z_a^2 */ if (!field_mul(group, n0, n0, a->Z, ctx)) goto end; if (!field_mul(group, n4, b->Y, n0, ctx)) goto end; /* n4 = Y_b * Z_a^3 */ } /* n5, n6 */ if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end; if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end; /* n5 = n1 - n3 */ /* n6 = n2 - n4 */ if (BN_is_zero(n5)) { if (BN_is_zero(n6)) { /* a is the same point as b */ BN_CTX_end(ctx); ret = EC_POINT_dbl(group, r, a, ctx); ctx = NULL; goto end; } else { /* a is the inverse of b */ BN_zero(r->Z); r->Z_is_one = 0; ret = 1; goto end; } } /* 'n7', 'n8' */ if (!BN_mod_add_quick(n1, n1, n3, p)) goto end; if (!BN_mod_add_quick(n2, n2, n4, p)) goto end; /* 'n7' = n1 + n3 */ /* 'n8' = n2 + n4 */ /* Z_r */ if (a->Z_is_one && b->Z_is_one) { if (!BN_copy(r->Z, n5)) goto end; } else { if (a->Z_is_one) { if (!BN_copy(n0, b->Z)) goto end; } else if (b->Z_is_one) { if (!BN_copy(n0, a->Z)) goto end; } else { if (!field_mul(group, n0, a->Z, b->Z, ctx)) goto end; } if (!field_mul(group, r->Z, n0, n5, ctx)) goto end; } r->Z_is_one = 0; /* Z_r = Z_a * Z_b * n5 */ /* X_r */ if (!field_sqr(group, n0, n6, ctx)) goto end; if (!field_sqr(group, n4, n5, ctx)) goto end; if (!field_mul(group, n3, n1, n4, ctx)) goto end; if (!BN_mod_sub_quick(r->X, n0, n3, p)) goto end; /* X_r = n6^2 - n5^2 * 'n7' */ /* 'n9' */ if (!BN_mod_lshift1_quick(n0, r->X, p)) goto end; if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end; /* n9 = n5^2 * 'n7' - 2 * X_r */ /* Y_r */ if (!field_mul(group, n0, n0, n6, ctx)) goto end; if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */ if (!field_mul(group, n1, n2, n5, ctx)) goto end; if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end; if (BN_is_odd(n0)) if (!BN_add(n0, n0, p)) goto end; /* now 0 <= n0 < 2*p, and n0 is even */ if (!BN_rshift1(r->Y, n0)) goto end; /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ ret = 1; end: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3; int ret = 0; if (EC_POINT_is_at_infinity(group, a)) { BN_zero(r->Z); r->Z_is_one = 0; return 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); if (n3 == NULL) goto err; /* * Note that in this function we must not read components of 'a' once we * have written the corresponding components of 'r'. ('r' might the same * as 'a'.) */ /* n1 */ if (a->Z_is_one) { if (!field_sqr(group, n0, a->X, ctx)) goto err; if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; if (!BN_mod_add_quick(n1, n0, group->a, p)) goto err; /* n1 = 3 * X_a^2 + a_curve */ } else if (group->a_is_minus3) { if (!field_sqr(group, n1, a->Z, ctx)) goto err; if (!BN_mod_add_quick(n0, a->X, n1, p)) goto err; if (!BN_mod_sub_quick(n2, a->X, n1, p)) goto err; if (!field_mul(group, n1, n0, n2, ctx)) goto err; if (!BN_mod_lshift1_quick(n0, n1, p)) goto err; if (!BN_mod_add_quick(n1, n0, n1, p)) goto err; /*- * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) * = 3 * X_a^2 - 3 * Z_a^4 */ } else { if (!field_sqr(group, n0, a->X, ctx)) goto err; if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; if (!field_sqr(group, n1, a->Z, ctx)) goto err; if (!field_sqr(group, n1, n1, ctx)) goto err; if (!field_mul(group, n1, n1, group->a, ctx)) goto err; if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ } /* Z_r */ if (a->Z_is_one) { if (!BN_copy(n0, a->Y)) goto err; } else { if (!field_mul(group, n0, a->Y, a->Z, ctx)) goto err; } if (!BN_mod_lshift1_quick(r->Z, n0, p)) goto err; r->Z_is_one = 0; /* Z_r = 2 * Y_a * Z_a */ /* n2 */ if (!field_sqr(group, n3, a->Y, ctx)) goto err; if (!field_mul(group, n2, a->X, n3, ctx)) goto err; if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; /* n2 = 4 * X_a * Y_a^2 */ /* X_r */ if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; if (!field_sqr(group, r->X, n1, ctx)) goto err; if (!BN_mod_sub_quick(r->X, r->X, n0, p)) goto err; /* X_r = n1^2 - 2 * n2 */ /* n3 */ if (!field_sqr(group, n0, n3, ctx)) goto err; if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; /* n3 = 8 * Y_a^4 */ /* Y_r */ if (!BN_mod_sub_quick(n0, n2, r->X, p)) goto err; if (!field_mul(group, n0, n1, n0, ctx)) goto err; if (!BN_mod_sub_quick(r->Y, n0, n3, p)) goto err; /* Y_r = n1 * (n2 - X_r) - n3 */ ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) /* point is its own inverse */ return 1; return BN_usub(point->Y, group->field, point->Y); } int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { return BN_is_zero(point->Z); } int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *rh, *tmp, *Z4, *Z6; int ret = -1; if (EC_POINT_is_at_infinity(group, point)) return 1; field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); rh = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); Z4 = BN_CTX_get(ctx); Z6 = BN_CTX_get(ctx); if (Z6 == NULL) goto err; /*- * We have a curve defined by a Weierstrass equation * y^2 = x^3 + a*x + b. * The point to consider is given in Jacobian projective coordinates * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). * Substituting this and multiplying by Z^6 transforms the above equation into * Y^2 = X^3 + a*X*Z^4 + b*Z^6. * To test this, we add up the right-hand side in 'rh'. */ /* rh := X^2 */ if (!field_sqr(group, rh, point->X, ctx)) goto err; if (!point->Z_is_one) { if (!field_sqr(group, tmp, point->Z, ctx)) goto err; if (!field_sqr(group, Z4, tmp, ctx)) goto err; if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err; /* rh := (rh + a*Z^4)*X */ if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err; if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err; if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err; if (!field_mul(group, rh, rh, point->X, ctx)) goto err; } else { if (!field_mul(group, tmp, Z4, group->a, ctx)) goto err; if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; if (!field_mul(group, rh, rh, point->X, ctx)) goto err; } /* rh := rh + b*Z^6 */ if (!field_mul(group, tmp, group->b, Z6, ctx)) goto err; if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; } else { /* point->Z_is_one */ /* rh := (rh + a)*X */ if (!BN_mod_add_quick(rh, rh, group->a, p)) goto err; if (!field_mul(group, rh, rh, point->X, ctx)) goto err; /* rh := rh + b */ if (!BN_mod_add_quick(rh, rh, group->b, p)) goto err; } /* 'lh' := Y^2 */ if (!field_sqr(group, tmp, point->Y, ctx)) goto err; ret = (0 == BN_ucmp(tmp, rh)); err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { /*- * return values: * -1 error * 0 equal (in affine coordinates) * 1 not equal */ int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); BN_CTX *new_ctx = NULL; BIGNUM *tmp1, *tmp2, *Za23, *Zb23; const BIGNUM *tmp1_, *tmp2_; int ret = -1; if (EC_POINT_is_at_infinity(group, a)) { return EC_POINT_is_at_infinity(group, b) ? 0 : 1; } if (EC_POINT_is_at_infinity(group, b)) return 1; if (a->Z_is_one && b->Z_is_one) { return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); tmp1 = BN_CTX_get(ctx); tmp2 = BN_CTX_get(ctx); Za23 = BN_CTX_get(ctx); Zb23 = BN_CTX_get(ctx); if (Zb23 == NULL) goto end; /*- * We have to decide whether * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), * or equivalently, whether * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). */ if (!b->Z_is_one) { if (!field_sqr(group, Zb23, b->Z, ctx)) goto end; if (!field_mul(group, tmp1, a->X, Zb23, ctx)) goto end; tmp1_ = tmp1; } else tmp1_ = a->X; if (!a->Z_is_one) { if (!field_sqr(group, Za23, a->Z, ctx)) goto end; if (!field_mul(group, tmp2, b->X, Za23, ctx)) goto end; tmp2_ = tmp2; } else tmp2_ = b->X; /* compare X_a*Z_b^2 with X_b*Z_a^2 */ if (BN_cmp(tmp1_, tmp2_) != 0) { ret = 1; /* points differ */ goto end; } if (!b->Z_is_one) { if (!field_mul(group, Zb23, Zb23, b->Z, ctx)) goto end; if (!field_mul(group, tmp1, a->Y, Zb23, ctx)) goto end; /* tmp1_ = tmp1 */ } else tmp1_ = a->Y; if (!a->Z_is_one) { if (!field_mul(group, Za23, Za23, a->Z, ctx)) goto end; if (!field_mul(group, tmp2, b->Y, Za23, ctx)) goto end; /* tmp2_ = tmp2 */ } else tmp2_ = b->Y; /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ if (BN_cmp(tmp1_, tmp2_) != 0) { ret = 1; /* points differ */ goto end; } /* points are equal */ ret = 0; end: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *x, *y; int ret = 0; if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) goto err; if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) goto err; if (!point->Z_is_one) { ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); goto err; } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp, *tmp_Z; BIGNUM **prod_Z = NULL; size_t i; int ret = 0; if (num == 0) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); tmp_Z = BN_CTX_get(ctx); if (tmp_Z == NULL) goto err; prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0])); if (prod_Z == NULL) goto err; for (i = 0; i < num; i++) { prod_Z[i] = BN_new(); if (prod_Z[i] == NULL) goto err; } /* * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, * skipping any zero-valued inputs (pretend that they're 1). */ if (!BN_is_zero(points[0]->Z)) { if (!BN_copy(prod_Z[0], points[0]->Z)) goto err; } else { if (group->meth->field_set_to_one != 0) { if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) goto err; } else { if (!BN_one(prod_Z[0])) goto err; } } for (i = 1; i < num; i++) { if (!BN_is_zero(points[i]->Z)) { if (!group-> meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z, ctx)) goto err; } else { if (!BN_copy(prod_Z[i], prod_Z[i - 1])) goto err; } } /* * Now use a single explicit inversion to replace every non-zero * points[i]->Z by its inverse. */ if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) { ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); goto err; } if (group->meth->field_encode != 0) { /* * In the Montgomery case, we just turned R*H (representing H) into * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to * multiply by the Montgomery factor twice. */ if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err; if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err; } for (i = num - 1; i > 0; --i) { /* * Loop invariant: tmp is the product of the inverses of points[0]->Z * .. points[i]->Z (zero-valued inputs skipped). */ if (!BN_is_zero(points[i]->Z)) { /* * Set tmp_Z to the inverse of points[i]->Z (as product of Z * inverses 0 .. i, Z values 0 .. i - 1). */ if (!group-> meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) goto err; /* * Update tmp to satisfy the loop invariant for i - 1. */ if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx)) goto err; /* Replace points[i]->Z by its inverse. */ if (!BN_copy(points[i]->Z, tmp_Z)) goto err; } } if (!BN_is_zero(points[0]->Z)) { /* Replace points[0]->Z by its inverse. */ if (!BN_copy(points[0]->Z, tmp)) goto err; } /* Finally, fix up the X and Y coordinates for all points. */ for (i = 0; i < num; i++) { EC_POINT *p = points[i]; if (!BN_is_zero(p->Z)) { /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ if (!group->meth->field_sqr(group, tmp, p->Z, ctx)) goto err; if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx)) goto err; if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx)) goto err; if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx)) goto err; if (group->meth->field_set_to_one != 0) { if (!group->meth->field_set_to_one(group, p->Z, ctx)) goto err; } else { if (!BN_one(p->Z)) goto err; } p->Z_is_one = 1; } } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); if (prod_Z != NULL) { for (i = 0; i < num; i++) { if (prod_Z[i] == NULL) break; BN_clear_free(prod_Z[i]); } OPENSSL_free(prod_Z); } return ret; } int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return BN_mod_mul(r, a, b, group->field, ctx); } int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { return BN_mod_sqr(r, a, group->field, ctx); } /*- * Computes the multiplicative inverse of a in GF(p), storing the result in r. * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. * Since we don't have a Mont structure here, SCA hardening is with blinding. */ int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { BIGNUM *e = NULL; BN_CTX *new_ctx = NULL; int ret = 0; if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) return 0; BN_CTX_start(ctx); if ((e = BN_CTX_get(ctx)) == NULL) goto err; do { if (!BN_priv_rand_range(e, group->field)) goto err; } while (BN_is_zero(e)); /* r := a * e */ if (!group->meth->field_mul(group, r, a, e, ctx)) goto err; /* r := 1/(a * e) */ if (!BN_mod_inverse(r, r, group->field, ctx)) { ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT); goto err; } /* r := e/(a * e) = 1/a */ if (!group->meth->field_mul(group, r, r, e, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /*- * Apply randomization of EC point projective coordinates: * * (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z) * lambda = [1,group->field) * */ int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) { int ret = 0; BIGNUM *lambda = NULL; BIGNUM *temp = NULL; BN_CTX_start(ctx); lambda = BN_CTX_get(ctx); temp = BN_CTX_get(ctx); if (temp == NULL) { ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE); goto err; } /* make sure lambda is not zero */ do { if (!BN_priv_rand_range(lambda, group->field)) { ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_BN_LIB); goto err; } } while (BN_is_zero(lambda)); /* if field_encode defined convert between representations */ if (group->meth->field_encode != NULL && !group->meth->field_encode(group, lambda, lambda, ctx)) goto err; if (!group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)) goto err; if (!group->meth->field_sqr(group, temp, lambda, ctx)) goto err; if (!group->meth->field_mul(group, p->X, p->X, temp, ctx)) goto err; if (!group->meth->field_mul(group, temp, temp, lambda, ctx)) goto err; if (!group->meth->field_mul(group, p->Y, p->Y, temp, ctx)) goto err; p->Z_is_one = 0; ret = 1; err: BN_CTX_end(ctx); return ret; } /*- * Set s := p, r := 2p. * * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve * multiplication resistant against side channel attacks" appendix, as described * at * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2 * * The input point p will be in randomized Jacobian projective coords: * x = X/Z**2, y=Y/Z**3 * * The output points p, s, and r are converted to standard (homogeneous) * projective coords: * x = X/Z, y=Y/Z */ int ec_GFp_simple_ladder_pre(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL; t1 = r->Z; t2 = r->Y; t3 = s->X; t4 = r->X; t5 = s->Y; t6 = s->Z; /* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */ if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx) || !group->meth->field_sqr(group, t1, p->Z, ctx) || !group->meth->field_mul(group, p->Z, p->Z, t1, ctx) /* r := 2p */ || !group->meth->field_sqr(group, t2, p->X, ctx) || !group->meth->field_sqr(group, t3, p->Z, ctx) || !group->meth->field_mul(group, t4, t3, group->a, ctx) || !BN_mod_sub_quick(t5, t2, t4, group->field) || !BN_mod_add_quick(t2, t2, t4, group->field) || !group->meth->field_sqr(group, t5, t5, ctx) || !group->meth->field_mul(group, t6, t3, group->b, ctx) || !group->meth->field_mul(group, t1, p->X, p->Z, ctx) || !group->meth->field_mul(group, t4, t1, t6, ctx) || !BN_mod_lshift_quick(t4, t4, 3, group->field) /* r->X coord output */ || !BN_mod_sub_quick(r->X, t5, t4, group->field) || !group->meth->field_mul(group, t1, t1, t2, ctx) || !group->meth->field_mul(group, t2, t3, t6, ctx) || !BN_mod_add_quick(t1, t1, t2, group->field) /* r->Z coord output */ || !BN_mod_lshift_quick(r->Z, t1, 2, group->field) || !EC_POINT_copy(s, p)) return 0; r->Z_is_one = 0; s->Z_is_one = 0; p->Z_is_one = 0; return 1; } /*- * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi * "A fast parallel elliptic curve multiplication resistant against side channel * attacks", as described at * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4 */ int ec_GFp_simple_ladder_step(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { int ret = 0; BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL; BN_CTX_start(ctx); t0 = BN_CTX_get(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); t3 = BN_CTX_get(ctx); t4 = BN_CTX_get(ctx); t5 = BN_CTX_get(ctx); t6 = BN_CTX_get(ctx); t7 = BN_CTX_get(ctx); if (t7 == NULL || !group->meth->field_mul(group, t0, r->X, s->X, ctx) || !group->meth->field_mul(group, t1, r->Z, s->Z, ctx) || !group->meth->field_mul(group, t2, r->X, s->Z, ctx) || !group->meth->field_mul(group, t3, r->Z, s->X, ctx) || !group->meth->field_mul(group, t4, group->a, t1, ctx) || !BN_mod_add_quick(t0, t0, t4, group->field) || !BN_mod_add_quick(t4, t3, t2, group->field) || !group->meth->field_mul(group, t0, t4, t0, ctx) || !group->meth->field_sqr(group, t1, t1, ctx) || !BN_mod_lshift_quick(t7, group->b, 2, group->field) || !group->meth->field_mul(group, t1, t7, t1, ctx) || !BN_mod_lshift1_quick(t0, t0, group->field) || !BN_mod_add_quick(t0, t1, t0, group->field) || !BN_mod_sub_quick(t1, t2, t3, group->field) || !group->meth->field_sqr(group, t1, t1, ctx) || !group->meth->field_mul(group, t3, t1, p->X, ctx) || !group->meth->field_mul(group, t0, p->Z, t0, ctx) /* s->X coord output */ || !BN_mod_sub_quick(s->X, t0, t3, group->field) /* s->Z coord output */ || !group->meth->field_mul(group, s->Z, p->Z, t1, ctx) || !group->meth->field_sqr(group, t3, r->X, ctx) || !group->meth->field_sqr(group, t2, r->Z, ctx) || !group->meth->field_mul(group, t4, t2, group->a, ctx) || !BN_mod_add_quick(t5, r->X, r->Z, group->field) || !group->meth->field_sqr(group, t5, t5, ctx) || !BN_mod_sub_quick(t5, t5, t3, group->field) || !BN_mod_sub_quick(t5, t5, t2, group->field) || !BN_mod_sub_quick(t6, t3, t4, group->field) || !group->meth->field_sqr(group, t6, t6, ctx) || !group->meth->field_mul(group, t0, t2, t5, ctx) || !group->meth->field_mul(group, t0, t7, t0, ctx) /* r->X coord output */ || !BN_mod_sub_quick(r->X, t6, t0, group->field) || !BN_mod_add_quick(t6, t3, t4, group->field) || !group->meth->field_sqr(group, t3, t2, ctx) || !group->meth->field_mul(group, t7, t3, t7, ctx) || !group->meth->field_mul(group, t5, t5, t6, ctx) || !BN_mod_lshift1_quick(t5, t5, group->field) /* r->Z coord output */ || !BN_mod_add_quick(r->Z, t7, t5, group->field)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } /*- * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass * Elliptic Curves and Side-Channel Attacks", modified to work in projective * coordinates and return r in Jacobian projective coordinates. * * X4 = two*Y1*X2*Z3*Z2*Z1; * Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1); * Z4 = two*Y1*Z3*SQR(Z2)*Z1; * * Z4 != 0 because: * - Z1==0 implies p is at infinity, which would have caused an early exit in * the caller; * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch); * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch); * - Y1==0 implies p has order 2, so either r or s are infinity and handled by * one of the BN_is_zero(...) branches. */ int ec_GFp_simple_ladder_post(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { int ret = 0; BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL; if (BN_is_zero(r->Z)) return EC_POINT_set_to_infinity(group, r); if (BN_is_zero(s->Z)) { /* (X,Y,Z) -> (XZ,YZ**2,Z) */ if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx) || !group->meth->field_sqr(group, r->Z, p->Z, ctx) || !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx) || !BN_copy(r->Z, p->Z) || !EC_POINT_invert(group, r, ctx)) return 0; return 1; } BN_CTX_start(ctx); t0 = BN_CTX_get(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); t3 = BN_CTX_get(ctx); t4 = BN_CTX_get(ctx); t5 = BN_CTX_get(ctx); t6 = BN_CTX_get(ctx); if (t6 == NULL || !BN_mod_lshift1_quick(t0, p->Y, group->field) || !group->meth->field_mul(group, t1, r->X, p->Z, ctx) || !group->meth->field_mul(group, t2, r->Z, s->Z, ctx) || !group->meth->field_mul(group, t2, t1, t2, ctx) || !group->meth->field_mul(group, t3, t2, t0, ctx) || !group->meth->field_mul(group, t2, r->Z, p->Z, ctx) || !group->meth->field_sqr(group, t4, t2, ctx) || !BN_mod_lshift1_quick(t5, group->b, group->field) || !group->meth->field_mul(group, t4, t4, t5, ctx) || !group->meth->field_mul(group, t6, t2, group->a, ctx) || !group->meth->field_mul(group, t5, r->X, p->X, ctx) || !BN_mod_add_quick(t5, t6, t5, group->field) || !group->meth->field_mul(group, t6, r->Z, p->X, ctx) || !BN_mod_add_quick(t2, t6, t1, group->field) || !group->meth->field_mul(group, t5, t5, t2, ctx) || !BN_mod_sub_quick(t6, t6, t1, group->field) || !group->meth->field_sqr(group, t6, t6, ctx) || !group->meth->field_mul(group, t6, t6, s->X, ctx) || !BN_mod_add_quick(t4, t5, t4, group->field) || !group->meth->field_mul(group, t4, t4, s->Z, ctx) || !BN_mod_sub_quick(t4, t4, t6, group->field) || !group->meth->field_sqr(group, t5, r->Z, ctx) || !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx) || !group->meth->field_mul(group, r->Z, t5, r->Z, ctx) || !group->meth->field_mul(group, r->Z, r->Z, t0, ctx) /* t3 := X, t4 := Y */ /* (X,Y,Z) -> (XZ,YZ**2,Z) */ || !group->meth->field_mul(group, r->X, t3, r->Z, ctx) || !group->meth->field_sqr(group, t3, r->Z, ctx) || !group->meth->field_mul(group, r->Y, t4, t3, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } openssl-1.1.1f/crypto/ec/ecx_meth.c000066400000000000000000000512311364063235100172170ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "ec_local.h" #include "curve448/curve448_local.h" #define X25519_BITS 253 #define X25519_SECURITY_BITS 128 #define ED25519_SIGSIZE 64 #define X448_BITS 448 #define ED448_BITS 456 #define X448_SECURITY_BITS 224 #define ED448_SIGSIZE 114 #define ISX448(id) ((id) == EVP_PKEY_X448) #define IS25519(id) ((id) == EVP_PKEY_X25519 || (id) == EVP_PKEY_ED25519) #define KEYLENID(id) (IS25519(id) ? X25519_KEYLEN \ : ((id) == EVP_PKEY_X448 ? X448_KEYLEN \ : ED448_KEYLEN)) #define KEYLEN(p) KEYLENID((p)->ameth->pkey_id) typedef enum { KEY_OP_PUBLIC, KEY_OP_PRIVATE, KEY_OP_KEYGEN } ecx_key_op_t; /* Setup EVP_PKEY using public, private or generation */ static int ecx_key_op(EVP_PKEY *pkey, int id, const X509_ALGOR *palg, const unsigned char *p, int plen, ecx_key_op_t op) { ECX_KEY *key = NULL; unsigned char *privkey, *pubkey; if (op != KEY_OP_KEYGEN) { if (palg != NULL) { int ptype; /* Algorithm parameters must be absent */ X509_ALGOR_get0(NULL, &ptype, NULL, palg); if (ptype != V_ASN1_UNDEF) { ECerr(EC_F_ECX_KEY_OP, EC_R_INVALID_ENCODING); return 0; } } if (p == NULL || plen != KEYLENID(id)) { ECerr(EC_F_ECX_KEY_OP, EC_R_INVALID_ENCODING); return 0; } } key = OPENSSL_zalloc(sizeof(*key)); if (key == NULL) { ECerr(EC_F_ECX_KEY_OP, ERR_R_MALLOC_FAILURE); return 0; } pubkey = key->pubkey; if (op == KEY_OP_PUBLIC) { memcpy(pubkey, p, plen); } else { privkey = key->privkey = OPENSSL_secure_malloc(KEYLENID(id)); if (privkey == NULL) { ECerr(EC_F_ECX_KEY_OP, ERR_R_MALLOC_FAILURE); goto err; } if (op == KEY_OP_KEYGEN) { if (RAND_priv_bytes(privkey, KEYLENID(id)) <= 0) { OPENSSL_secure_free(privkey); key->privkey = NULL; goto err; } if (id == EVP_PKEY_X25519) { privkey[0] &= 248; privkey[X25519_KEYLEN - 1] &= 127; privkey[X25519_KEYLEN - 1] |= 64; } else if (id == EVP_PKEY_X448) { privkey[0] &= 252; privkey[X448_KEYLEN - 1] |= 128; } } else { memcpy(privkey, p, KEYLENID(id)); } switch (id) { case EVP_PKEY_X25519: X25519_public_from_private(pubkey, privkey); break; case EVP_PKEY_ED25519: ED25519_public_from_private(pubkey, privkey); break; case EVP_PKEY_X448: X448_public_from_private(pubkey, privkey); break; case EVP_PKEY_ED448: ED448_public_from_private(pubkey, privkey); break; } } EVP_PKEY_assign(pkey, id, key); return 1; err: OPENSSL_free(key); return 0; } static int ecx_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) { const ECX_KEY *ecxkey = pkey->pkey.ecx; unsigned char *penc; if (ecxkey == NULL) { ECerr(EC_F_ECX_PUB_ENCODE, EC_R_INVALID_KEY); return 0; } penc = OPENSSL_memdup(ecxkey->pubkey, KEYLEN(pkey)); if (penc == NULL) { ECerr(EC_F_ECX_PUB_ENCODE, ERR_R_MALLOC_FAILURE); return 0; } if (!X509_PUBKEY_set0_param(pk, OBJ_nid2obj(pkey->ameth->pkey_id), V_ASN1_UNDEF, NULL, penc, KEYLEN(pkey))) { OPENSSL_free(penc); ECerr(EC_F_ECX_PUB_ENCODE, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static int ecx_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) { const unsigned char *p; int pklen; X509_ALGOR *palg; if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey)) return 0; return ecx_key_op(pkey, pkey->ameth->pkey_id, palg, p, pklen, KEY_OP_PUBLIC); } static int ecx_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { const ECX_KEY *akey = a->pkey.ecx; const ECX_KEY *bkey = b->pkey.ecx; if (akey == NULL || bkey == NULL) return -2; return CRYPTO_memcmp(akey->pubkey, bkey->pubkey, KEYLEN(a)) == 0; } static int ecx_priv_decode(EVP_PKEY *pkey, const PKCS8_PRIV_KEY_INFO *p8) { const unsigned char *p; int plen; ASN1_OCTET_STRING *oct = NULL; const X509_ALGOR *palg; int rv; if (!PKCS8_pkey_get0(NULL, &p, &plen, &palg, p8)) return 0; oct = d2i_ASN1_OCTET_STRING(NULL, &p, plen); if (oct == NULL) { p = NULL; plen = 0; } else { p = ASN1_STRING_get0_data(oct); plen = ASN1_STRING_length(oct); } rv = ecx_key_op(pkey, pkey->ameth->pkey_id, palg, p, plen, KEY_OP_PRIVATE); ASN1_STRING_clear_free(oct); return rv; } static int ecx_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { const ECX_KEY *ecxkey = pkey->pkey.ecx; ASN1_OCTET_STRING oct; unsigned char *penc = NULL; int penclen; if (ecxkey == NULL || ecxkey->privkey == NULL) { ECerr(EC_F_ECX_PRIV_ENCODE, EC_R_INVALID_PRIVATE_KEY); return 0; } oct.data = ecxkey->privkey; oct.length = KEYLEN(pkey); oct.flags = 0; penclen = i2d_ASN1_OCTET_STRING(&oct, &penc); if (penclen < 0) { ECerr(EC_F_ECX_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); return 0; } if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(pkey->ameth->pkey_id), 0, V_ASN1_UNDEF, NULL, penc, penclen)) { OPENSSL_clear_free(penc, penclen); ECerr(EC_F_ECX_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static int ecx_size(const EVP_PKEY *pkey) { return KEYLEN(pkey); } static int ecx_bits(const EVP_PKEY *pkey) { if (IS25519(pkey->ameth->pkey_id)) { return X25519_BITS; } else if(ISX448(pkey->ameth->pkey_id)) { return X448_BITS; } else { return ED448_BITS; } } static int ecx_security_bits(const EVP_PKEY *pkey) { if (IS25519(pkey->ameth->pkey_id)) { return X25519_SECURITY_BITS; } else { return X448_SECURITY_BITS; } } static void ecx_free(EVP_PKEY *pkey) { if (pkey->pkey.ecx != NULL) OPENSSL_secure_clear_free(pkey->pkey.ecx->privkey, KEYLEN(pkey)); OPENSSL_free(pkey->pkey.ecx); } /* "parameters" are always equal */ static int ecx_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) { return 1; } static int ecx_key_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx, ecx_key_op_t op) { const ECX_KEY *ecxkey = pkey->pkey.ecx; const char *nm = OBJ_nid2ln(pkey->ameth->pkey_id); if (op == KEY_OP_PRIVATE) { if (ecxkey == NULL || ecxkey->privkey == NULL) { if (BIO_printf(bp, "%*s\n", indent, "") <= 0) return 0; return 1; } if (BIO_printf(bp, "%*s%s Private-Key:\n", indent, "", nm) <= 0) return 0; if (BIO_printf(bp, "%*spriv:\n", indent, "") <= 0) return 0; if (ASN1_buf_print(bp, ecxkey->privkey, KEYLEN(pkey), indent + 4) == 0) return 0; } else { if (ecxkey == NULL) { if (BIO_printf(bp, "%*s\n", indent, "") <= 0) return 0; return 1; } if (BIO_printf(bp, "%*s%s Public-Key:\n", indent, "", nm) <= 0) return 0; } if (BIO_printf(bp, "%*spub:\n", indent, "") <= 0) return 0; if (ASN1_buf_print(bp, ecxkey->pubkey, KEYLEN(pkey), indent + 4) == 0) return 0; return 1; } static int ecx_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return ecx_key_print(bp, pkey, indent, ctx, KEY_OP_PRIVATE); } static int ecx_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return ecx_key_print(bp, pkey, indent, ctx, KEY_OP_PUBLIC); } static int ecx_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { switch (op) { case ASN1_PKEY_CTRL_SET1_TLS_ENCPT: return ecx_key_op(pkey, pkey->ameth->pkey_id, NULL, arg2, arg1, KEY_OP_PUBLIC); case ASN1_PKEY_CTRL_GET1_TLS_ENCPT: if (pkey->pkey.ecx != NULL) { unsigned char **ppt = arg2; *ppt = OPENSSL_memdup(pkey->pkey.ecx->pubkey, KEYLEN(pkey)); if (*ppt != NULL) return KEYLEN(pkey); } return 0; default: return -2; } } static int ecd_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { switch (op) { case ASN1_PKEY_CTRL_DEFAULT_MD_NID: /* We currently only support Pure EdDSA which takes no digest */ *(int *)arg2 = NID_undef; return 2; default: return -2; } } static int ecx_set_priv_key(EVP_PKEY *pkey, const unsigned char *priv, size_t len) { return ecx_key_op(pkey, pkey->ameth->pkey_id, NULL, priv, len, KEY_OP_PRIVATE); } static int ecx_set_pub_key(EVP_PKEY *pkey, const unsigned char *pub, size_t len) { return ecx_key_op(pkey, pkey->ameth->pkey_id, NULL, pub, len, KEY_OP_PUBLIC); } static int ecx_get_priv_key(const EVP_PKEY *pkey, unsigned char *priv, size_t *len) { const ECX_KEY *key = pkey->pkey.ecx; if (priv == NULL) { *len = KEYLENID(pkey->ameth->pkey_id); return 1; } if (key == NULL || key->privkey == NULL || *len < (size_t)KEYLENID(pkey->ameth->pkey_id)) return 0; *len = KEYLENID(pkey->ameth->pkey_id); memcpy(priv, key->privkey, *len); return 1; } static int ecx_get_pub_key(const EVP_PKEY *pkey, unsigned char *pub, size_t *len) { const ECX_KEY *key = pkey->pkey.ecx; if (pub == NULL) { *len = KEYLENID(pkey->ameth->pkey_id); return 1; } if (key == NULL || *len < (size_t)KEYLENID(pkey->ameth->pkey_id)) return 0; *len = KEYLENID(pkey->ameth->pkey_id); memcpy(pub, key->pubkey, *len); return 1; } const EVP_PKEY_ASN1_METHOD ecx25519_asn1_meth = { EVP_PKEY_X25519, EVP_PKEY_X25519, 0, "X25519", "OpenSSL X25519 algorithm", ecx_pub_decode, ecx_pub_encode, ecx_pub_cmp, ecx_pub_print, ecx_priv_decode, ecx_priv_encode, ecx_priv_print, ecx_size, ecx_bits, ecx_security_bits, 0, 0, 0, 0, ecx_cmp_parameters, 0, 0, ecx_free, ecx_ctrl, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, ecx_set_priv_key, ecx_set_pub_key, ecx_get_priv_key, ecx_get_pub_key, }; const EVP_PKEY_ASN1_METHOD ecx448_asn1_meth = { EVP_PKEY_X448, EVP_PKEY_X448, 0, "X448", "OpenSSL X448 algorithm", ecx_pub_decode, ecx_pub_encode, ecx_pub_cmp, ecx_pub_print, ecx_priv_decode, ecx_priv_encode, ecx_priv_print, ecx_size, ecx_bits, ecx_security_bits, 0, 0, 0, 0, ecx_cmp_parameters, 0, 0, ecx_free, ecx_ctrl, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, ecx_set_priv_key, ecx_set_pub_key, ecx_get_priv_key, ecx_get_pub_key, }; static int ecd_size25519(const EVP_PKEY *pkey) { return ED25519_SIGSIZE; } static int ecd_size448(const EVP_PKEY *pkey) { return ED448_SIGSIZE; } static int ecd_item_verify(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, X509_ALGOR *sigalg, ASN1_BIT_STRING *str, EVP_PKEY *pkey) { const ASN1_OBJECT *obj; int ptype; int nid; /* Sanity check: make sure it is ED25519/ED448 with absent parameters */ X509_ALGOR_get0(&obj, &ptype, NULL, sigalg); nid = OBJ_obj2nid(obj); if ((nid != NID_ED25519 && nid != NID_ED448) || ptype != V_ASN1_UNDEF) { ECerr(EC_F_ECD_ITEM_VERIFY, EC_R_INVALID_ENCODING); return 0; } if (!EVP_DigestVerifyInit(ctx, NULL, NULL, NULL, pkey)) return 0; return 2; } static int ecd_item_sign25519(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, X509_ALGOR *alg1, X509_ALGOR *alg2, ASN1_BIT_STRING *str) { /* Set algorithms identifiers */ X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_ED25519), V_ASN1_UNDEF, NULL); if (alg2) X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_ED25519), V_ASN1_UNDEF, NULL); /* Algorithm identifiers set: carry on as normal */ return 3; } static int ecd_sig_info_set25519(X509_SIG_INFO *siginf, const X509_ALGOR *alg, const ASN1_STRING *sig) { X509_SIG_INFO_set(siginf, NID_undef, NID_ED25519, X25519_SECURITY_BITS, X509_SIG_INFO_TLS); return 1; } static int ecd_item_sign448(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, X509_ALGOR *alg1, X509_ALGOR *alg2, ASN1_BIT_STRING *str) { /* Set algorithm identifier */ X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_ED448), V_ASN1_UNDEF, NULL); if (alg2 != NULL) X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_ED448), V_ASN1_UNDEF, NULL); /* Algorithm identifier set: carry on as normal */ return 3; } static int ecd_sig_info_set448(X509_SIG_INFO *siginf, const X509_ALGOR *alg, const ASN1_STRING *sig) { X509_SIG_INFO_set(siginf, NID_undef, NID_ED448, X448_SECURITY_BITS, X509_SIG_INFO_TLS); return 1; } const EVP_PKEY_ASN1_METHOD ed25519_asn1_meth = { EVP_PKEY_ED25519, EVP_PKEY_ED25519, 0, "ED25519", "OpenSSL ED25519 algorithm", ecx_pub_decode, ecx_pub_encode, ecx_pub_cmp, ecx_pub_print, ecx_priv_decode, ecx_priv_encode, ecx_priv_print, ecd_size25519, ecx_bits, ecx_security_bits, 0, 0, 0, 0, ecx_cmp_parameters, 0, 0, ecx_free, ecd_ctrl, NULL, NULL, ecd_item_verify, ecd_item_sign25519, ecd_sig_info_set25519, NULL, NULL, NULL, ecx_set_priv_key, ecx_set_pub_key, ecx_get_priv_key, ecx_get_pub_key, }; const EVP_PKEY_ASN1_METHOD ed448_asn1_meth = { EVP_PKEY_ED448, EVP_PKEY_ED448, 0, "ED448", "OpenSSL ED448 algorithm", ecx_pub_decode, ecx_pub_encode, ecx_pub_cmp, ecx_pub_print, ecx_priv_decode, ecx_priv_encode, ecx_priv_print, ecd_size448, ecx_bits, ecx_security_bits, 0, 0, 0, 0, ecx_cmp_parameters, 0, 0, ecx_free, ecd_ctrl, NULL, NULL, ecd_item_verify, ecd_item_sign448, ecd_sig_info_set448, NULL, NULL, NULL, ecx_set_priv_key, ecx_set_pub_key, ecx_get_priv_key, ecx_get_pub_key, }; static int pkey_ecx_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { return ecx_key_op(pkey, ctx->pmeth->pkey_id, NULL, NULL, 0, KEY_OP_KEYGEN); } static int validate_ecx_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen, const unsigned char **privkey, const unsigned char **pubkey) { const ECX_KEY *ecxkey, *peerkey; if (ctx->pkey == NULL || ctx->peerkey == NULL) { ECerr(EC_F_VALIDATE_ECX_DERIVE, EC_R_KEYS_NOT_SET); return 0; } ecxkey = ctx->pkey->pkey.ecx; peerkey = ctx->peerkey->pkey.ecx; if (ecxkey == NULL || ecxkey->privkey == NULL) { ECerr(EC_F_VALIDATE_ECX_DERIVE, EC_R_INVALID_PRIVATE_KEY); return 0; } if (peerkey == NULL) { ECerr(EC_F_VALIDATE_ECX_DERIVE, EC_R_INVALID_PEER_KEY); return 0; } *privkey = ecxkey->privkey; *pubkey = peerkey->pubkey; return 1; } static int pkey_ecx_derive25519(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { const unsigned char *privkey, *pubkey; if (!validate_ecx_derive(ctx, key, keylen, &privkey, &pubkey) || (key != NULL && X25519(key, privkey, pubkey) == 0)) return 0; *keylen = X25519_KEYLEN; return 1; } static int pkey_ecx_derive448(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { const unsigned char *privkey, *pubkey; if (!validate_ecx_derive(ctx, key, keylen, &privkey, &pubkey) || (key != NULL && X448(key, privkey, pubkey) == 0)) return 0; *keylen = X448_KEYLEN; return 1; } static int pkey_ecx_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { /* Only need to handle peer key for derivation */ if (type == EVP_PKEY_CTRL_PEER_KEY) return 1; return -2; } const EVP_PKEY_METHOD ecx25519_pkey_meth = { EVP_PKEY_X25519, 0, 0, 0, 0, 0, 0, 0, pkey_ecx_keygen, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_ecx_derive25519, pkey_ecx_ctrl, 0 }; const EVP_PKEY_METHOD ecx448_pkey_meth = { EVP_PKEY_X448, 0, 0, 0, 0, 0, 0, 0, pkey_ecx_keygen, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_ecx_derive448, pkey_ecx_ctrl, 0 }; static int pkey_ecd_digestsign25519(EVP_MD_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) { const ECX_KEY *edkey = EVP_MD_CTX_pkey_ctx(ctx)->pkey->pkey.ecx; if (sig == NULL) { *siglen = ED25519_SIGSIZE; return 1; } if (*siglen < ED25519_SIGSIZE) { ECerr(EC_F_PKEY_ECD_DIGESTSIGN25519, EC_R_BUFFER_TOO_SMALL); return 0; } if (ED25519_sign(sig, tbs, tbslen, edkey->pubkey, edkey->privkey) == 0) return 0; *siglen = ED25519_SIGSIZE; return 1; } static int pkey_ecd_digestsign448(EVP_MD_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) { const ECX_KEY *edkey = EVP_MD_CTX_pkey_ctx(ctx)->pkey->pkey.ecx; if (sig == NULL) { *siglen = ED448_SIGSIZE; return 1; } if (*siglen < ED448_SIGSIZE) { ECerr(EC_F_PKEY_ECD_DIGESTSIGN448, EC_R_BUFFER_TOO_SMALL); return 0; } if (ED448_sign(sig, tbs, tbslen, edkey->pubkey, edkey->privkey, NULL, 0) == 0) return 0; *siglen = ED448_SIGSIZE; return 1; } static int pkey_ecd_digestverify25519(EVP_MD_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { const ECX_KEY *edkey = EVP_MD_CTX_pkey_ctx(ctx)->pkey->pkey.ecx; if (siglen != ED25519_SIGSIZE) return 0; return ED25519_verify(tbs, tbslen, sig, edkey->pubkey); } static int pkey_ecd_digestverify448(EVP_MD_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { const ECX_KEY *edkey = EVP_MD_CTX_pkey_ctx(ctx)->pkey->pkey.ecx; if (siglen != ED448_SIGSIZE) return 0; return ED448_verify(tbs, tbslen, sig, edkey->pubkey, NULL, 0); } static int pkey_ecd_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { switch (type) { case EVP_PKEY_CTRL_MD: /* Only NULL allowed as digest */ if (p2 == NULL || (const EVP_MD *)p2 == EVP_md_null()) return 1; ECerr(EC_F_PKEY_ECD_CTRL, EC_R_INVALID_DIGEST_TYPE); return 0; case EVP_PKEY_CTRL_DIGESTINIT: return 1; } return -2; } const EVP_PKEY_METHOD ed25519_pkey_meth = { EVP_PKEY_ED25519, EVP_PKEY_FLAG_SIGCTX_CUSTOM, 0, 0, 0, 0, 0, 0, pkey_ecx_keygen, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_ecd_ctrl, 0, pkey_ecd_digestsign25519, pkey_ecd_digestverify25519 }; const EVP_PKEY_METHOD ed448_pkey_meth = { EVP_PKEY_ED448, EVP_PKEY_FLAG_SIGCTX_CUSTOM, 0, 0, 0, 0, 0, 0, pkey_ecx_keygen, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_ecd_ctrl, 0, pkey_ecd_digestsign448, pkey_ecd_digestverify448 }; openssl-1.1.1f/crypto/engine/000077500000000000000000000000001364063235100161335ustar00rootroot00000000000000openssl-1.1.1f/crypto/engine/README000066400000000000000000000331641364063235100170220ustar00rootroot00000000000000Notes: 2001-09-24 ----------------- This "description" (if one chooses to call it that) needed some major updating so here goes. This update addresses a change being made at the same time to OpenSSL, and it pretty much completely restructures the underlying mechanics of the "ENGINE" code. So it serves a double purpose of being a "ENGINE internals for masochists" document *and* a rather extensive commit log message. (I'd get lynched for sticking all this in CHANGES or the commit mails :-). ENGINE_TABLE underlies this restructuring, as described in the internal header "eng_local.h", implemented in eng_table.c, and used in each of the "class" files; tb_rsa.c, tb_dsa.c, etc. However, "EVP_CIPHER" underlies the motivation and design of ENGINE_TABLE so I'll mention a bit about that first. EVP_CIPHER (and most of this applies equally to EVP_MD for digests) is both a "method" and a algorithm/mode identifier that, in the current API, "lingers". These cipher description + implementation structures can be defined or obtained directly by applications, or can be loaded "en masse" into EVP storage so that they can be catalogued and searched in various ways, ie. two ways of encrypting with the "des_cbc" algorithm/mode pair are; (i) directly; const EVP_CIPHER *cipher = EVP_des_cbc(); EVP_EncryptInit(&ctx, cipher, key, iv); [ ... use EVP_EncryptUpdate() and EVP_EncryptFinal() ...] (ii) indirectly; OpenSSL_add_all_ciphers(); cipher = EVP_get_cipherbyname("des_cbc"); EVP_EncryptInit(&ctx, cipher, key, iv); [ ... etc ... ] The latter is more generally used because it also allows ciphers/digests to be looked up based on other identifiers which can be useful for automatic cipher selection, eg. in SSL/TLS, or by user-controllable configuration. The important point about this is that EVP_CIPHER definitions and structures are passed around with impunity and there is no safe way, without requiring massive rewrites of many applications, to assume that EVP_CIPHERs can be reference counted. One an EVP_CIPHER is exposed to the caller, neither it nor anything it comes from can "safely" be destroyed. Unless of course the way of getting to such ciphers is via entirely distinct API calls that didn't exist before. However existing API usage cannot be made to understand when an EVP_CIPHER pointer, that has been passed to the caller, is no longer being used. The other problem with the existing API w.r.t. to hooking EVP_CIPHER support into ENGINE is storage - the OBJ_NAME-based storage used by EVP to register ciphers simultaneously registers cipher *types* and cipher *implementations* - they are effectively the same thing, an "EVP_CIPHER" pointer. The problem with hooking in ENGINEs is that multiple ENGINEs may implement the same ciphers. The solution is necessarily that ENGINE-provided ciphers simply are not registered, stored, or exposed to the caller in the same manner as existing ciphers. This is especially necessary considering the fact ENGINE uses reference counts to allow for cleanup, modularity, and DSO support - yet EVP_CIPHERs, as exposed to callers in the current API, support no such controls. Another sticking point for integrating cipher support into ENGINE is linkage. Already there is a problem with the way ENGINE supports RSA, DSA, etc whereby they are available *because* they're part of a giant ENGINE called "openssl". Ie. all implementations *have* to come from an ENGINE, but we get round that by having a giant ENGINE with all the software support encapsulated. This creates linker hassles if nothing else - linking a 1-line application that calls 2 basic RSA functions (eg. "RSA_free(RSA_new());") will result in large quantities of ENGINE code being linked in *and* because of that DSA, DH, and RAND also. If we continue with this approach for EVP_CIPHER support (even if it *was* possible) we would lose our ability to link selectively by selectively loading certain implementations of certain functionality. Touching any part of any kind of crypto would result in massive static linkage of everything else. So the solution is to change the way ENGINE feeds existing "classes", ie. how the hooking to ENGINE works from RSA, DSA, DH, RAND, as well as adding new hooking for EVP_CIPHER, and EVP_MD. The way this is now being done is by mostly reverting back to how things used to work prior to ENGINE :-). Ie. RSA now has a "RSA_METHOD" pointer again - this was previously replaced by an "ENGINE" pointer and all RSA code that required the RSA_METHOD would call ENGINE_get_RSA() each time on its ENGINE handle to temporarily get and use the ENGINE's RSA implementation. Apart from being more efficient, switching back to each RSA having an RSA_METHOD pointer also allows us to conceivably operate with *no* ENGINE. As we'll see, this removes any need for a fallback ENGINE that encapsulates default implementations - we can simply have our RSA structure pointing its RSA_METHOD pointer to the software implementation and have its ENGINE pointer set to NULL. A look at the EVP_CIPHER hooking is most explanatory, the RSA, DSA (etc) cases turn out to be degenerate forms of the same thing. The EVP storage of ciphers, and the existing EVP API functions that return "software" implementations and descriptions remain untouched. However, the storage takes more meaning in terms of "cipher description" and less meaning in terms of "implementation". When an EVP_CIPHER_CTX is actually initialised with an EVP_CIPHER method and is about to begin en/decryption, the hooking to ENGINE comes into play. What happens is that cipher-specific ENGINE code is asked for an ENGINE pointer (a functional reference) for any ENGINE that is registered to perform the algo/mode that the provided EVP_CIPHER structure represents. Under normal circumstances, that ENGINE code will return NULL because no ENGINEs will have had any cipher implementations *registered*. As such, a NULL ENGINE pointer is stored in the EVP_CIPHER_CTX context, and the EVP_CIPHER structure is left hooked into the context and so is used as the implementation. Pretty much how things work now except we'd have a redundant ENGINE pointer set to NULL and doing nothing. Conversely, if an ENGINE *has* been registered to perform the algorithm/mode combination represented by the provided EVP_CIPHER, then a functional reference to that ENGINE will be returned to the EVP_CIPHER_CTX during initialisation. That functional reference will be stored in the context (and released on cleanup) - and having that reference provides a *safe* way to use an EVP_CIPHER definition that is private to the ENGINE. Ie. the EVP_CIPHER provided by the application will actually be replaced by an EVP_CIPHER from the registered ENGINE - it will support the same algorithm/mode as the original but will be a completely different implementation. Because this EVP_CIPHER isn't stored in the EVP storage, nor is it returned to applications from traditional API functions, there is no associated problem with it not having reference counts. And of course, when one of these "private" cipher implementations is hooked into EVP_CIPHER_CTX, it is done whilst the EVP_CIPHER_CTX holds a functional reference to the ENGINE that owns it, thus the use of the ENGINE's EVP_CIPHER is safe. The "cipher-specific ENGINE code" I mentioned is implemented in tb_cipher.c but in essence it is simply an instantiation of "ENGINE_TABLE" code for use by EVP_CIPHER code. tb_digest.c is virtually identical but, of course, it is for use by EVP_MD code. Ditto for tb_rsa.c, tb_dsa.c, etc. These instantiations of ENGINE_TABLE essentially provide linker-separation of the classes so that even if ENGINEs implement *all* possible algorithms, an application using only EVP_CIPHER code will link at most code relating to EVP_CIPHER, tb_cipher.c, core ENGINE code that is independent of class, and of course the ENGINE implementation that the application loaded. It will *not* however link any class-specific ENGINE code for digests, RSA, etc nor will it bleed over into other APIs, such as the RSA/DSA/etc library code. ENGINE_TABLE is a little more complicated than may seem necessary but this is mostly to avoid a lot of "init()"-thrashing on ENGINEs (that may have to load DSOs, and other expensive setup that shouldn't be thrashed unnecessarily) *and* to duplicate "default" behaviour. Basically an ENGINE_TABLE instantiation, for example tb_cipher.c, implements a hash-table keyed by integer "nid" values. These nids provide the uniquenness of an algorithm/mode - and each nid will hash to a potentially NULL "ENGINE_PILE". An ENGINE_PILE is essentially a list of pointers to ENGINEs that implement that particular 'nid'. Each "pile" uses some caching tricks such that requests on that 'nid' will be cached and all future requests will return immediately (well, at least with minimal operation) unless a change is made to the pile, eg. perhaps an ENGINE was unloaded. The reason is that an application could have support for 10 ENGINEs statically linked in, and the machine in question may not have any of the hardware those 10 ENGINEs support. If each of those ENGINEs has a "des_cbc" implementation, we want to avoid every EVP_CIPHER_CTX setup from trying (and failing) to initialise each of those 10 ENGINEs. Instead, the first such request will try to do that and will either return (and cache) a NULL ENGINE pointer or will return a functional reference to the first that successfully initialised. In the latter case it will also cache an extra functional reference to the ENGINE as a "default" for that 'nid'. The caching is acknowledged by a 'uptodate' variable that is unset only if un/registration takes place on that pile. Ie. if implementations of "des_cbc" are added or removed. This behaviour can be tweaked; the ENGINE_TABLE_FLAG_NOINIT value can be passed to ENGINE_set_table_flags(), in which case the only ENGINEs that tb_cipher.c will try to initialise from the "pile" will be those that are already initialised (ie. it's simply an increment of the functional reference count, and no real "initialisation" will take place). RSA, DSA, DH, and RAND all have their own ENGINE_TABLE code as well, and the difference is that they all use an implicit 'nid' of 1. Whereas EVP_CIPHERs are actually qualitatively different depending on 'nid' (the "des_cbc" EVP_CIPHER is not an interoperable implementation of "aes_256_cbc"), RSA_METHODs are necessarily interoperable and don't have different flavours, only different implementations. In other words, the ENGINE_TABLE for RSA will either be empty, or will have a single ENGINE_PILE hashed to by the 'nid' 1 and that pile represents ENGINEs that implement the single "type" of RSA there is. Cleanup - the registration and unregistration may pose questions about how cleanup works with the ENGINE_PILE doing all this caching nonsense (ie. when the application or EVP_CIPHER code releases its last reference to an ENGINE, the ENGINE_PILE code may still have references and thus those ENGINEs will stay hooked in forever). The way this is handled is via "unregistration". With these new ENGINE changes, an abstract ENGINE can be loaded and initialised, but that is an algorithm-agnostic process. Even if initialised, it will not have registered any of its implementations (to do so would link all class "table" code despite the fact the application may use only ciphers, for example). This is deliberately a distinct step. Moreover, registration and unregistration has nothing to do with whether an ENGINE is *functional* or not (ie. you can even register an ENGINE and its implementations without it being operational, you may not even have the drivers to make it operate). What actually happens with respect to cleanup is managed inside eng_lib.c with the "engine_cleanup_***" functions. These functions are internal-only and each part of ENGINE code that could require cleanup will, upon performing its first allocation, register a callback with the "engine_cleanup" code. The other part of this that makes it tick is that the ENGINE_TABLE instantiations (tb_***.c) use NULL as their initialised state. So if RSA code asks for an ENGINE and no ENGINE has registered an implementation, the code will simply return NULL and the tb_rsa.c state will be unchanged. Thus, no cleanup is required unless registration takes place. ENGINE_cleanup() will simply iterate across a list of registered cleanup callbacks calling each in turn, and will then internally delete its own storage (a STACK). When a cleanup callback is next registered (eg. if the cleanup() is part of a graceful restart and the application wants to cleanup all state then start again), the internal STACK storage will be freshly allocated. This is much the same as the situation in the ENGINE_TABLE instantiations ... NULL is the initialised state, so only modification operations (not queries) will cause that code to have to register a cleanup. What else? The bignum callbacks and associated ENGINE functions have been removed for two obvious reasons; (i) there was no way to generalise them to the mechanism now used by RSA/DSA/..., because there's no such thing as a BIGNUM method, and (ii) because of (i), there was no meaningful way for library or application code to automatically hook and use ENGINE supplied bignum functions anyway. Also, ENGINE_cpy() has been removed (although an internal-only version exists) - the idea of providing an ENGINE_cpy() function probably wasn't a good one and now certainly doesn't make sense in any generalised way. Some of the RSA, DSA, DH, and RAND functions that were fiddled during the original ENGINE changes have now, as a consequence, been reverted back. This is because the hooking of ENGINE is now automatic (and passive, it can internally use a NULL ENGINE pointer to simply ignore ENGINE from then on). Hell, that should be enough for now ... comments welcome. openssl-1.1.1f/crypto/engine/build.info000066400000000000000000000006521364063235100201120ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ eng_err.c eng_lib.c eng_list.c eng_init.c eng_ctrl.c \ eng_table.c eng_pkey.c eng_fat.c eng_all.c \ tb_rsa.c tb_dsa.c tb_dh.c tb_rand.c \ tb_cipher.c tb_digest.c tb_pkmeth.c tb_asnmth.c tb_eckey.c \ eng_openssl.c eng_cnf.c eng_dyn.c \ eng_rdrand.c IF[{- !$disabled{devcryptoeng} -}] SOURCE[../../libcrypto]=eng_devcrypto.c ENDIF openssl-1.1.1f/crypto/engine/eng_all.c000066400000000000000000000013201364063235100176740ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "eng_local.h" void ENGINE_load_builtin_engines(void) { /* Some ENGINEs need this */ OPENSSL_cpuid_setup(); OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_ALL_BUILTIN, NULL); } #if (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)) && OPENSSL_API_COMPAT < 0x10100000L void ENGINE_setup_bsd_cryptodev(void) { } #endif openssl-1.1.1f/crypto/engine/eng_cnf.c000066400000000000000000000130731364063235100177020ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" #include /* #define ENGINE_CONF_DEBUG */ /* ENGINE config module */ static const char *skip_dot(const char *name) { const char *p = strchr(name, '.'); if (p != NULL) return p + 1; return name; } static STACK_OF(ENGINE) *initialized_engines = NULL; static int int_engine_init(ENGINE *e) { if (!ENGINE_init(e)) return 0; if (!initialized_engines) initialized_engines = sk_ENGINE_new_null(); if (!initialized_engines || !sk_ENGINE_push(initialized_engines, e)) { ENGINE_finish(e); return 0; } return 1; } static int int_engine_configure(const char *name, const char *value, const CONF *cnf) { int i; int ret = 0; long do_init = -1; STACK_OF(CONF_VALUE) *ecmds; CONF_VALUE *ecmd = NULL; const char *ctrlname, *ctrlvalue; ENGINE *e = NULL; int soft = 0; name = skip_dot(name); #ifdef ENGINE_CONF_DEBUG fprintf(stderr, "Configuring engine %s\n", name); #endif /* Value is a section containing ENGINE commands */ ecmds = NCONF_get_section(cnf, value); if (!ecmds) { ENGINEerr(ENGINE_F_INT_ENGINE_CONFIGURE, ENGINE_R_ENGINE_SECTION_ERROR); return 0; } for (i = 0; i < sk_CONF_VALUE_num(ecmds); i++) { ecmd = sk_CONF_VALUE_value(ecmds, i); ctrlname = skip_dot(ecmd->name); ctrlvalue = ecmd->value; #ifdef ENGINE_CONF_DEBUG fprintf(stderr, "ENGINE conf: doing ctrl(%s,%s)\n", ctrlname, ctrlvalue); #endif /* First handle some special pseudo ctrls */ /* Override engine name to use */ if (strcmp(ctrlname, "engine_id") == 0) name = ctrlvalue; else if (strcmp(ctrlname, "soft_load") == 0) soft = 1; /* Load a dynamic ENGINE */ else if (strcmp(ctrlname, "dynamic_path") == 0) { e = ENGINE_by_id("dynamic"); if (!e) goto err; if (!ENGINE_ctrl_cmd_string(e, "SO_PATH", ctrlvalue, 0)) goto err; if (!ENGINE_ctrl_cmd_string(e, "LIST_ADD", "2", 0)) goto err; if (!ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) goto err; } /* ... add other pseudos here ... */ else { /* * At this point we need an ENGINE structural reference if we * don't already have one. */ if (!e) { e = ENGINE_by_id(name); if (!e && soft) { ERR_clear_error(); return 1; } if (!e) goto err; } /* * Allow "EMPTY" to mean no value: this allows a valid "value" to * be passed to ctrls of type NO_INPUT */ if (strcmp(ctrlvalue, "EMPTY") == 0) ctrlvalue = NULL; if (strcmp(ctrlname, "init") == 0) { if (!NCONF_get_number_e(cnf, value, "init", &do_init)) goto err; if (do_init == 1) { if (!int_engine_init(e)) goto err; } else if (do_init != 0) { ENGINEerr(ENGINE_F_INT_ENGINE_CONFIGURE, ENGINE_R_INVALID_INIT_VALUE); goto err; } } else if (strcmp(ctrlname, "default_algorithms") == 0) { if (!ENGINE_set_default_string(e, ctrlvalue)) goto err; } else if (!ENGINE_ctrl_cmd_string(e, ctrlname, ctrlvalue, 0)) goto err; } } if (e && (do_init == -1) && !int_engine_init(e)) { ecmd = NULL; goto err; } ret = 1; err: if (ret != 1) { ENGINEerr(ENGINE_F_INT_ENGINE_CONFIGURE, ENGINE_R_ENGINE_CONFIGURATION_ERROR); if (ecmd) ERR_add_error_data(6, "section=", ecmd->section, ", name=", ecmd->name, ", value=", ecmd->value); } ENGINE_free(e); return ret; } static int int_engine_module_init(CONF_IMODULE *md, const CONF *cnf) { STACK_OF(CONF_VALUE) *elist; CONF_VALUE *cval; int i; #ifdef ENGINE_CONF_DEBUG fprintf(stderr, "Called engine module: name %s, value %s\n", CONF_imodule_get_name(md), CONF_imodule_get_value(md)); #endif /* Value is a section containing ENGINEs to configure */ elist = NCONF_get_section(cnf, CONF_imodule_get_value(md)); if (!elist) { ENGINEerr(ENGINE_F_INT_ENGINE_MODULE_INIT, ENGINE_R_ENGINES_SECTION_ERROR); return 0; } for (i = 0; i < sk_CONF_VALUE_num(elist); i++) { cval = sk_CONF_VALUE_value(elist, i); if (!int_engine_configure(cval->name, cval->value, cnf)) return 0; } return 1; } static void int_engine_module_finish(CONF_IMODULE *md) { ENGINE *e; while ((e = sk_ENGINE_pop(initialized_engines))) ENGINE_finish(e); sk_ENGINE_free(initialized_engines); initialized_engines = NULL; } void ENGINE_add_conf_module(void) { CONF_module_add("engines", int_engine_module_init, int_engine_module_finish); } openssl-1.1.1f/crypto/engine/eng_ctrl.c000066400000000000000000000256741364063235100201120ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" /* * When querying a ENGINE-specific control command's 'description', this * string is used if the ENGINE_CMD_DEFN has cmd_desc set to NULL. */ static const char *int_no_description = ""; /* * These internal functions handle 'CMD'-related control commands when the * ENGINE in question has asked us to take care of it (ie. the ENGINE did not * set the ENGINE_FLAGS_MANUAL_CMD_CTRL flag. */ static int int_ctrl_cmd_is_null(const ENGINE_CMD_DEFN *defn) { if ((defn->cmd_num == 0) || (defn->cmd_name == NULL)) return 1; return 0; } static int int_ctrl_cmd_by_name(const ENGINE_CMD_DEFN *defn, const char *s) { int idx = 0; while (!int_ctrl_cmd_is_null(defn) && (strcmp(defn->cmd_name, s) != 0)) { idx++; defn++; } if (int_ctrl_cmd_is_null(defn)) /* The given name wasn't found */ return -1; return idx; } static int int_ctrl_cmd_by_num(const ENGINE_CMD_DEFN *defn, unsigned int num) { int idx = 0; /* * NB: It is stipulated that 'cmd_defn' lists are ordered by cmd_num. So * our searches don't need to take any longer than necessary. */ while (!int_ctrl_cmd_is_null(defn) && (defn->cmd_num < num)) { idx++; defn++; } if (defn->cmd_num == num) return idx; /* The given cmd_num wasn't found */ return -1; } static int int_ctrl_helper(ENGINE *e, int cmd, long i, void *p, void (*f) (void)) { int idx; char *s = (char *)p; const ENGINE_CMD_DEFN *cdp; /* Take care of the easy one first (eg. it requires no searches) */ if (cmd == ENGINE_CTRL_GET_FIRST_CMD_TYPE) { if ((e->cmd_defns == NULL) || int_ctrl_cmd_is_null(e->cmd_defns)) return 0; return e->cmd_defns->cmd_num; } /* One or two commands require that "p" be a valid string buffer */ if ((cmd == ENGINE_CTRL_GET_CMD_FROM_NAME) || (cmd == ENGINE_CTRL_GET_NAME_FROM_CMD) || (cmd == ENGINE_CTRL_GET_DESC_FROM_CMD)) { if (s == NULL) { ENGINEerr(ENGINE_F_INT_CTRL_HELPER, ERR_R_PASSED_NULL_PARAMETER); return -1; } } /* Now handle cmd_name -> cmd_num conversion */ if (cmd == ENGINE_CTRL_GET_CMD_FROM_NAME) { if ((e->cmd_defns == NULL) || ((idx = int_ctrl_cmd_by_name(e->cmd_defns, s)) < 0)) { ENGINEerr(ENGINE_F_INT_CTRL_HELPER, ENGINE_R_INVALID_CMD_NAME); return -1; } return e->cmd_defns[idx].cmd_num; } /* * For the rest of the commands, the 'long' argument must specify a valid * command number - so we need to conduct a search. */ if ((e->cmd_defns == NULL) || ((idx = int_ctrl_cmd_by_num(e->cmd_defns, (unsigned int)i)) < 0)) { ENGINEerr(ENGINE_F_INT_CTRL_HELPER, ENGINE_R_INVALID_CMD_NUMBER); return -1; } /* Now the logic splits depending on command type */ cdp = &e->cmd_defns[idx]; switch (cmd) { case ENGINE_CTRL_GET_NEXT_CMD_TYPE: cdp++; return int_ctrl_cmd_is_null(cdp) ? 0 : cdp->cmd_num; case ENGINE_CTRL_GET_NAME_LEN_FROM_CMD: return strlen(cdp->cmd_name); case ENGINE_CTRL_GET_NAME_FROM_CMD: return strlen(strcpy(s, cdp->cmd_name)); case ENGINE_CTRL_GET_DESC_LEN_FROM_CMD: return strlen(cdp->cmd_desc == NULL ? int_no_description : cdp->cmd_desc); case ENGINE_CTRL_GET_DESC_FROM_CMD: return strlen(strcpy(s, cdp->cmd_desc == NULL ? int_no_description : cdp->cmd_desc)); case ENGINE_CTRL_GET_CMD_FLAGS: return cdp->cmd_flags; } /* Shouldn't really be here ... */ ENGINEerr(ENGINE_F_INT_CTRL_HELPER, ENGINE_R_INTERNAL_LIST_ERROR); return -1; } int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)) { int ctrl_exists, ref_exists; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_CTRL, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); ref_exists = ((e->struct_ref > 0) ? 1 : 0); CRYPTO_THREAD_unlock(global_engine_lock); ctrl_exists = ((e->ctrl == NULL) ? 0 : 1); if (!ref_exists) { ENGINEerr(ENGINE_F_ENGINE_CTRL, ENGINE_R_NO_REFERENCE); return 0; } /* * Intercept any "root-level" commands before trying to hand them on to * ctrl() handlers. */ switch (cmd) { case ENGINE_CTRL_HAS_CTRL_FUNCTION: return ctrl_exists; case ENGINE_CTRL_GET_FIRST_CMD_TYPE: case ENGINE_CTRL_GET_NEXT_CMD_TYPE: case ENGINE_CTRL_GET_CMD_FROM_NAME: case ENGINE_CTRL_GET_NAME_LEN_FROM_CMD: case ENGINE_CTRL_GET_NAME_FROM_CMD: case ENGINE_CTRL_GET_DESC_LEN_FROM_CMD: case ENGINE_CTRL_GET_DESC_FROM_CMD: case ENGINE_CTRL_GET_CMD_FLAGS: if (ctrl_exists && !(e->flags & ENGINE_FLAGS_MANUAL_CMD_CTRL)) return int_ctrl_helper(e, cmd, i, p, f); if (!ctrl_exists) { ENGINEerr(ENGINE_F_ENGINE_CTRL, ENGINE_R_NO_CONTROL_FUNCTION); /* * For these cmd-related functions, failure is indicated by a -1 * return value (because 0 is used as a valid return in some * places). */ return -1; } default: break; } /* Anything else requires a ctrl() handler to exist. */ if (!ctrl_exists) { ENGINEerr(ENGINE_F_ENGINE_CTRL, ENGINE_R_NO_CONTROL_FUNCTION); return 0; } return e->ctrl(e, cmd, i, p, f); } int ENGINE_cmd_is_executable(ENGINE *e, int cmd) { int flags; if ((flags = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FLAGS, cmd, NULL, NULL)) < 0) { ENGINEerr(ENGINE_F_ENGINE_CMD_IS_EXECUTABLE, ENGINE_R_INVALID_CMD_NUMBER); return 0; } if (!(flags & ENGINE_CMD_FLAG_NO_INPUT) && !(flags & ENGINE_CMD_FLAG_NUMERIC) && !(flags & ENGINE_CMD_FLAG_STRING)) return 0; return 1; } int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name, long i, void *p, void (*f) (void), int cmd_optional) { int num; if (e == NULL || cmd_name == NULL) { ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (e->ctrl == NULL || (num = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FROM_NAME, 0, (void *)cmd_name, NULL)) <= 0) { /* * If the command didn't *have* to be supported, we fake success. * This allows certain settings to be specified for multiple ENGINEs * and only require a change of ENGINE id (without having to * selectively apply settings). Eg. changing from a hardware device * back to the regular software ENGINE without editing the config * file, etc. */ if (cmd_optional) { ERR_clear_error(); return 1; } ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD, ENGINE_R_INVALID_CMD_NAME); return 0; } /* * Force the result of the control command to 0 or 1, for the reasons * mentioned before. */ if (ENGINE_ctrl(e, num, i, p, f) > 0) return 1; return 0; } int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg, int cmd_optional) { int num, flags; long l; char *ptr; if (e == NULL || cmd_name == NULL) { ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (e->ctrl == NULL || (num = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FROM_NAME, 0, (void *)cmd_name, NULL)) <= 0) { /* * If the command didn't *have* to be supported, we fake success. * This allows certain settings to be specified for multiple ENGINEs * and only require a change of ENGINE id (without having to * selectively apply settings). Eg. changing from a hardware device * back to the regular software ENGINE without editing the config * file, etc. */ if (cmd_optional) { ERR_clear_error(); return 1; } ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ENGINE_R_INVALID_CMD_NAME); return 0; } if (!ENGINE_cmd_is_executable(e, num)) { ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ENGINE_R_CMD_NOT_EXECUTABLE); return 0; } flags = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FLAGS, num, NULL, NULL); if (flags < 0) { /* * Shouldn't happen, given that ENGINE_cmd_is_executable() returned * success. */ ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ENGINE_R_INTERNAL_LIST_ERROR); return 0; } /* * If the command takes no input, there must be no input. And vice versa. */ if (flags & ENGINE_CMD_FLAG_NO_INPUT) { if (arg != NULL) { ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ENGINE_R_COMMAND_TAKES_NO_INPUT); return 0; } /* * We deliberately force the result of ENGINE_ctrl() to 0 or 1 rather * than returning it as "return data". This is to ensure usage of * these commands is consistent across applications and that certain * applications don't understand it one way, and others another. */ if (ENGINE_ctrl(e, num, 0, (void *)arg, NULL) > 0) return 1; return 0; } /* So, we require input */ if (arg == NULL) { ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ENGINE_R_COMMAND_TAKES_INPUT); return 0; } /* If it takes string input, that's easy */ if (flags & ENGINE_CMD_FLAG_STRING) { /* Same explanation as above */ if (ENGINE_ctrl(e, num, 0, (void *)arg, NULL) > 0) return 1; return 0; } /* * If it doesn't take numeric either, then it is unsupported for use in a * config-setting situation, which is what this function is for. This * should never happen though, because ENGINE_cmd_is_executable() was * used. */ if (!(flags & ENGINE_CMD_FLAG_NUMERIC)) { ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ENGINE_R_INTERNAL_LIST_ERROR); return 0; } l = strtol(arg, &ptr, 10); if ((arg == ptr) || (*ptr != '\0')) { ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING, ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER); return 0; } /* * Force the result of the control command to 0 or 1, for the reasons * mentioned before. */ if (ENGINE_ctrl(e, num, l, NULL, NULL) > 0) return 1; return 0; } openssl-1.1.1f/crypto/engine/eng_devcrypto.c000066400000000000000000000613161364063235100211560ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto/engine.h" /* #define ENGINE_DEVCRYPTO_DEBUG */ #if CRYPTO_ALGORITHM_MIN < CRYPTO_ALGORITHM_MAX # define CHECK_BSD_STYLE_MACROS #endif /* * ONE global file descriptor for all sessions. This allows operations * such as digest session data copying (see digest_copy()), but is also * saner... why re-open /dev/crypto for every session? */ static int cfd; static int clean_devcrypto_session(struct session_op *sess) { if (ioctl(cfd, CIOCFSESSION, &sess->ses) < 0) { SYSerr(SYS_F_IOCTL, errno); return 0; } memset(sess, 0, sizeof(struct session_op)); return 1; } /****************************************************************************** * * Ciphers * * Because they all do the same basic operation, we have only one set of * method functions for them all to share, and a mapping table between * NIDs and cryptodev IDs, with all the necessary size data. * *****/ struct cipher_ctx { struct session_op sess; int op; /* COP_ENCRYPT or COP_DECRYPT */ unsigned long mode; /* EVP_CIPH_*_MODE */ /* to handle ctr mode being a stream cipher */ unsigned char partial[EVP_MAX_BLOCK_LENGTH]; unsigned int blocksize, num; }; static const struct cipher_data_st { int nid; int blocksize; int keylen; int ivlen; int flags; int devcryptoid; } cipher_data[] = { #ifndef OPENSSL_NO_DES { NID_des_cbc, 8, 8, 8, EVP_CIPH_CBC_MODE, CRYPTO_DES_CBC }, { NID_des_ede3_cbc, 8, 24, 8, EVP_CIPH_CBC_MODE, CRYPTO_3DES_CBC }, #endif #ifndef OPENSSL_NO_BF { NID_bf_cbc, 8, 16, 8, EVP_CIPH_CBC_MODE, CRYPTO_BLF_CBC }, #endif #ifndef OPENSSL_NO_CAST { NID_cast5_cbc, 8, 16, 8, EVP_CIPH_CBC_MODE, CRYPTO_CAST_CBC }, #endif { NID_aes_128_cbc, 16, 128 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_AES_CBC }, { NID_aes_192_cbc, 16, 192 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_AES_CBC }, { NID_aes_256_cbc, 16, 256 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_AES_CBC }, #ifndef OPENSSL_NO_RC4 { NID_rc4, 1, 16, 0, EVP_CIPH_STREAM_CIPHER, CRYPTO_ARC4 }, #endif #if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_AES_CTR) { NID_aes_128_ctr, 16, 128 / 8, 16, EVP_CIPH_CTR_MODE, CRYPTO_AES_CTR }, { NID_aes_192_ctr, 16, 192 / 8, 16, EVP_CIPH_CTR_MODE, CRYPTO_AES_CTR }, { NID_aes_256_ctr, 16, 256 / 8, 16, EVP_CIPH_CTR_MODE, CRYPTO_AES_CTR }, #endif #if 0 /* Not yet supported */ { NID_aes_128_xts, 16, 128 / 8 * 2, 16, EVP_CIPH_XTS_MODE, CRYPTO_AES_XTS }, { NID_aes_256_xts, 16, 256 / 8 * 2, 16, EVP_CIPH_XTS_MODE, CRYPTO_AES_XTS }, #endif #if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_AES_ECB) { NID_aes_128_ecb, 16, 128 / 8, 0, EVP_CIPH_ECB_MODE, CRYPTO_AES_ECB }, { NID_aes_192_ecb, 16, 192 / 8, 0, EVP_CIPH_ECB_MODE, CRYPTO_AES_ECB }, { NID_aes_256_ecb, 16, 256 / 8, 0, EVP_CIPH_ECB_MODE, CRYPTO_AES_ECB }, #endif #if 0 /* Not yet supported */ { NID_aes_128_gcm, 16, 128 / 8, 16, EVP_CIPH_GCM_MODE, CRYPTO_AES_GCM }, { NID_aes_192_gcm, 16, 192 / 8, 16, EVP_CIPH_GCM_MODE, CRYPTO_AES_GCM }, { NID_aes_256_gcm, 16, 256 / 8, 16, EVP_CIPH_GCM_MODE, CRYPTO_AES_GCM }, #endif #ifndef OPENSSL_NO_CAMELLIA { NID_camellia_128_cbc, 16, 128 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_CAMELLIA_CBC }, { NID_camellia_192_cbc, 16, 192 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_CAMELLIA_CBC }, { NID_camellia_256_cbc, 16, 256 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_CAMELLIA_CBC }, #endif }; static size_t get_cipher_data_index(int nid) { size_t i; for (i = 0; i < OSSL_NELEM(cipher_data); i++) if (nid == cipher_data[i].nid) return i; /* * Code further down must make sure that only NIDs in the table above * are used. If any other NID reaches this function, there's a grave * coding error further down. */ assert("Code that never should be reached" == NULL); return -1; } static const struct cipher_data_st *get_cipher_data(int nid) { return &cipher_data[get_cipher_data_index(nid)]; } /* * Following are the three necessary functions to map OpenSSL functionality * with cryptodev. */ static int cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { struct cipher_ctx *cipher_ctx = (struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx); const struct cipher_data_st *cipher_d = get_cipher_data(EVP_CIPHER_CTX_nid(ctx)); /* cleanup a previous session */ if (cipher_ctx->sess.ses != 0 && clean_devcrypto_session(&cipher_ctx->sess) == 0) return 0; cipher_ctx->sess.cipher = cipher_d->devcryptoid; cipher_ctx->sess.keylen = cipher_d->keylen; cipher_ctx->sess.key = (void *)key; cipher_ctx->op = enc ? COP_ENCRYPT : COP_DECRYPT; cipher_ctx->mode = cipher_d->flags & EVP_CIPH_MODE; cipher_ctx->blocksize = cipher_d->blocksize; if (ioctl(cfd, CIOCGSESSION, &cipher_ctx->sess) < 0) { SYSerr(SYS_F_IOCTL, errno); return 0; } return 1; } static int cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { struct cipher_ctx *cipher_ctx = (struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx); struct crypt_op cryp; unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); #if !defined(COP_FLAG_WRITE_IV) unsigned char saved_iv[EVP_MAX_IV_LENGTH]; const unsigned char *ivptr; size_t nblocks, ivlen; #endif memset(&cryp, 0, sizeof(cryp)); cryp.ses = cipher_ctx->sess.ses; cryp.len = inl; cryp.src = (void *)in; cryp.dst = (void *)out; cryp.iv = (void *)iv; cryp.op = cipher_ctx->op; #if !defined(COP_FLAG_WRITE_IV) cryp.flags = 0; ivlen = EVP_CIPHER_CTX_iv_length(ctx); if (ivlen > 0) switch (cipher_ctx->mode) { case EVP_CIPH_CBC_MODE: assert(inl >= ivlen); if (!EVP_CIPHER_CTX_encrypting(ctx)) { ivptr = in + inl - ivlen; memcpy(saved_iv, ivptr, ivlen); } break; case EVP_CIPH_CTR_MODE: break; default: /* should not happen */ return 0; } #else cryp.flags = COP_FLAG_WRITE_IV; #endif if (ioctl(cfd, CIOCCRYPT, &cryp) < 0) { SYSerr(SYS_F_IOCTL, errno); return 0; } #if !defined(COP_FLAG_WRITE_IV) if (ivlen > 0) switch (cipher_ctx->mode) { case EVP_CIPH_CBC_MODE: assert(inl >= ivlen); if (EVP_CIPHER_CTX_encrypting(ctx)) ivptr = out + inl - ivlen; else ivptr = saved_iv; memcpy(iv, ivptr, ivlen); break; case EVP_CIPH_CTR_MODE: nblocks = (inl + cipher_ctx->blocksize - 1) / cipher_ctx->blocksize; do { ivlen--; nblocks += iv[ivlen]; iv[ivlen] = (uint8_t) nblocks; nblocks >>= 8; } while (ivlen); break; default: /* should not happen */ return 0; } #endif return 1; } static int ctr_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { struct cipher_ctx *cipher_ctx = (struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx); size_t nblocks, len; /* initial partial block */ while (cipher_ctx->num && inl) { (*out++) = *(in++) ^ cipher_ctx->partial[cipher_ctx->num]; --inl; cipher_ctx->num = (cipher_ctx->num + 1) % cipher_ctx->blocksize; } /* full blocks */ if (inl > (unsigned int) cipher_ctx->blocksize) { nblocks = inl/cipher_ctx->blocksize; len = nblocks * cipher_ctx->blocksize; if (cipher_do_cipher(ctx, out, in, len) < 1) return 0; inl -= len; out += len; in += len; } /* final partial block */ if (inl) { memset(cipher_ctx->partial, 0, cipher_ctx->blocksize); if (cipher_do_cipher(ctx, cipher_ctx->partial, cipher_ctx->partial, cipher_ctx->blocksize) < 1) return 0; while (inl--) { out[cipher_ctx->num] = in[cipher_ctx->num] ^ cipher_ctx->partial[cipher_ctx->num]; cipher_ctx->num++; } } return 1; } static int cipher_ctrl(EVP_CIPHER_CTX *ctx, int type, int p1, void* p2) { struct cipher_ctx *cipher_ctx = (struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx); EVP_CIPHER_CTX *to_ctx = (EVP_CIPHER_CTX *)p2; struct cipher_ctx *to_cipher_ctx; switch (type) { case EVP_CTRL_COPY: if (cipher_ctx == NULL) return 1; /* when copying the context, a new session needs to be initialized */ to_cipher_ctx = (struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(to_ctx); memset(&to_cipher_ctx->sess, 0, sizeof(to_cipher_ctx->sess)); return cipher_init(to_ctx, cipher_ctx->sess.key, EVP_CIPHER_CTX_iv(ctx), (cipher_ctx->op == COP_ENCRYPT)); case EVP_CTRL_INIT: memset(&cipher_ctx->sess, 0, sizeof(cipher_ctx->sess)); return 1; default: break; } return -1; } static int cipher_cleanup(EVP_CIPHER_CTX *ctx) { struct cipher_ctx *cipher_ctx = (struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx); return clean_devcrypto_session(&cipher_ctx->sess); } /* * Keep a table of known nids and associated methods. * Note that known_cipher_nids[] isn't necessarily indexed the same way as * cipher_data[] above, which known_cipher_methods[] is. */ static int known_cipher_nids[OSSL_NELEM(cipher_data)]; static int known_cipher_nids_amount = -1; /* -1 indicates not yet initialised */ static EVP_CIPHER *known_cipher_methods[OSSL_NELEM(cipher_data)] = { NULL, }; static void prepare_cipher_methods(void) { size_t i; struct session_op sess; unsigned long cipher_mode; memset(&sess, 0, sizeof(sess)); sess.key = (void *)"01234567890123456789012345678901234567890123456789"; for (i = 0, known_cipher_nids_amount = 0; i < OSSL_NELEM(cipher_data); i++) { /* * Check that the algo is really availably by trying to open and close * a session. */ sess.cipher = cipher_data[i].devcryptoid; sess.keylen = cipher_data[i].keylen; if (ioctl(cfd, CIOCGSESSION, &sess) < 0 || ioctl(cfd, CIOCFSESSION, &sess.ses) < 0) continue; cipher_mode = cipher_data[i].flags & EVP_CIPH_MODE; if ((known_cipher_methods[i] = EVP_CIPHER_meth_new(cipher_data[i].nid, cipher_mode == EVP_CIPH_CTR_MODE ? 1 : cipher_data[i].blocksize, cipher_data[i].keylen)) == NULL || !EVP_CIPHER_meth_set_iv_length(known_cipher_methods[i], cipher_data[i].ivlen) || !EVP_CIPHER_meth_set_flags(known_cipher_methods[i], cipher_data[i].flags | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) || !EVP_CIPHER_meth_set_init(known_cipher_methods[i], cipher_init) || !EVP_CIPHER_meth_set_do_cipher(known_cipher_methods[i], cipher_mode == EVP_CIPH_CTR_MODE ? ctr_do_cipher : cipher_do_cipher) || !EVP_CIPHER_meth_set_ctrl(known_cipher_methods[i], cipher_ctrl) || !EVP_CIPHER_meth_set_cleanup(known_cipher_methods[i], cipher_cleanup) || !EVP_CIPHER_meth_set_impl_ctx_size(known_cipher_methods[i], sizeof(struct cipher_ctx))) { EVP_CIPHER_meth_free(known_cipher_methods[i]); known_cipher_methods[i] = NULL; } else { known_cipher_nids[known_cipher_nids_amount++] = cipher_data[i].nid; } } } static const EVP_CIPHER *get_cipher_method(int nid) { size_t i = get_cipher_data_index(nid); if (i == (size_t)-1) return NULL; return known_cipher_methods[i]; } static int get_cipher_nids(const int **nids) { *nids = known_cipher_nids; return known_cipher_nids_amount; } static void destroy_cipher_method(int nid) { size_t i = get_cipher_data_index(nid); EVP_CIPHER_meth_free(known_cipher_methods[i]); known_cipher_methods[i] = NULL; } static void destroy_all_cipher_methods(void) { size_t i; for (i = 0; i < OSSL_NELEM(cipher_data); i++) destroy_cipher_method(cipher_data[i].nid); } static int devcrypto_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) { if (cipher == NULL) return get_cipher_nids(nids); *cipher = get_cipher_method(nid); return *cipher != NULL; } /* * We only support digests if the cryptodev implementation supports multiple * data updates and session copying. Otherwise, we would be forced to maintain * a cache, which is perilous if there's a lot of data coming in (if someone * wants to checksum an OpenSSL tarball, for example). */ #if defined(CIOCCPHASH) && defined(COP_FLAG_UPDATE) && defined(COP_FLAG_FINAL) #define IMPLEMENT_DIGEST /****************************************************************************** * * Digests * * Because they all do the same basic operation, we have only one set of * method functions for them all to share, and a mapping table between * NIDs and cryptodev IDs, with all the necessary size data. * *****/ struct digest_ctx { struct session_op sess; /* This signals that the init function was called, not that it succeeded. */ int init_called; }; static const struct digest_data_st { int nid; int blocksize; int digestlen; int devcryptoid; } digest_data[] = { #ifndef OPENSSL_NO_MD5 { NID_md5, /* MD5_CBLOCK */ 64, 16, CRYPTO_MD5 }, #endif { NID_sha1, SHA_CBLOCK, 20, CRYPTO_SHA1 }, #ifndef OPENSSL_NO_RMD160 # if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_RIPEMD160) { NID_ripemd160, /* RIPEMD160_CBLOCK */ 64, 20, CRYPTO_RIPEMD160 }, # endif #endif #if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_224) { NID_sha224, SHA256_CBLOCK, 224 / 8, CRYPTO_SHA2_224 }, #endif #if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_256) { NID_sha256, SHA256_CBLOCK, 256 / 8, CRYPTO_SHA2_256 }, #endif #if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_384) { NID_sha384, SHA512_CBLOCK, 384 / 8, CRYPTO_SHA2_384 }, #endif #if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_512) { NID_sha512, SHA512_CBLOCK, 512 / 8, CRYPTO_SHA2_512 }, #endif }; static size_t get_digest_data_index(int nid) { size_t i; for (i = 0; i < OSSL_NELEM(digest_data); i++) if (nid == digest_data[i].nid) return i; /* * Code further down must make sure that only NIDs in the table above * are used. If any other NID reaches this function, there's a grave * coding error further down. */ assert("Code that never should be reached" == NULL); return -1; } static const struct digest_data_st *get_digest_data(int nid) { return &digest_data[get_digest_data_index(nid)]; } /* * Following are the four necessary functions to map OpenSSL functionality * with cryptodev. */ static int digest_init(EVP_MD_CTX *ctx) { struct digest_ctx *digest_ctx = (struct digest_ctx *)EVP_MD_CTX_md_data(ctx); const struct digest_data_st *digest_d = get_digest_data(EVP_MD_CTX_type(ctx)); digest_ctx->init_called = 1; memset(&digest_ctx->sess, 0, sizeof(digest_ctx->sess)); digest_ctx->sess.mac = digest_d->devcryptoid; if (ioctl(cfd, CIOCGSESSION, &digest_ctx->sess) < 0) { SYSerr(SYS_F_IOCTL, errno); return 0; } return 1; } static int digest_op(struct digest_ctx *ctx, const void *src, size_t srclen, void *res, unsigned int flags) { struct crypt_op cryp; memset(&cryp, 0, sizeof(cryp)); cryp.ses = ctx->sess.ses; cryp.len = srclen; cryp.src = (void *)src; cryp.dst = NULL; cryp.mac = res; cryp.flags = flags; return ioctl(cfd, CIOCCRYPT, &cryp); } static int digest_update(EVP_MD_CTX *ctx, const void *data, size_t count) { struct digest_ctx *digest_ctx = (struct digest_ctx *)EVP_MD_CTX_md_data(ctx); if (count == 0) return 1; if (digest_ctx == NULL) return 0; if (digest_op(digest_ctx, data, count, NULL, COP_FLAG_UPDATE) < 0) { SYSerr(SYS_F_IOCTL, errno); return 0; } return 1; } static int digest_final(EVP_MD_CTX *ctx, unsigned char *md) { struct digest_ctx *digest_ctx = (struct digest_ctx *)EVP_MD_CTX_md_data(ctx); if (md == NULL || digest_ctx == NULL) return 0; if (digest_op(digest_ctx, NULL, 0, md, COP_FLAG_FINAL) < 0) { SYSerr(SYS_F_IOCTL, errno); return 0; } return 1; } static int digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from) { struct digest_ctx *digest_from = (struct digest_ctx *)EVP_MD_CTX_md_data(from); struct digest_ctx *digest_to = (struct digest_ctx *)EVP_MD_CTX_md_data(to); struct cphash_op cphash; if (digest_from == NULL || digest_from->init_called != 1) return 1; if (!digest_init(to)) { SYSerr(SYS_F_IOCTL, errno); return 0; } cphash.src_ses = digest_from->sess.ses; cphash.dst_ses = digest_to->sess.ses; if (ioctl(cfd, CIOCCPHASH, &cphash) < 0) { SYSerr(SYS_F_IOCTL, errno); return 0; } return 1; } static int digest_cleanup(EVP_MD_CTX *ctx) { struct digest_ctx *digest_ctx = (struct digest_ctx *)EVP_MD_CTX_md_data(ctx); if (digest_ctx == NULL) return 1; return clean_devcrypto_session(&digest_ctx->sess); } static int devcrypto_test_digest(size_t digest_data_index) { struct session_op sess1, sess2; struct cphash_op cphash; int ret=0; memset(&sess1, 0, sizeof(sess1)); memset(&sess2, 0, sizeof(sess2)); sess1.mac = digest_data[digest_data_index].devcryptoid; if (ioctl(cfd, CIOCGSESSION, &sess1) < 0) return 0; /* Make sure the driver is capable of hash state copy */ sess2.mac = sess1.mac; if (ioctl(cfd, CIOCGSESSION, &sess2) >= 0) { cphash.src_ses = sess1.ses; cphash.dst_ses = sess2.ses; if (ioctl(cfd, CIOCCPHASH, &cphash) >= 0) ret = 1; ioctl(cfd, CIOCFSESSION, &sess2.ses); } ioctl(cfd, CIOCFSESSION, &sess1.ses); return ret; } /* * Keep a table of known nids and associated methods. * Note that known_digest_nids[] isn't necessarily indexed the same way as * digest_data[] above, which known_digest_methods[] is. */ static int known_digest_nids[OSSL_NELEM(digest_data)]; static int known_digest_nids_amount = -1; /* -1 indicates not yet initialised */ static EVP_MD *known_digest_methods[OSSL_NELEM(digest_data)] = { NULL, }; static void prepare_digest_methods(void) { size_t i; for (i = 0, known_digest_nids_amount = 0; i < OSSL_NELEM(digest_data); i++) { /* * Check that the algo is usable */ if (!devcrypto_test_digest(i)) continue; if ((known_digest_methods[i] = EVP_MD_meth_new(digest_data[i].nid, NID_undef)) == NULL || !EVP_MD_meth_set_input_blocksize(known_digest_methods[i], digest_data[i].blocksize) || !EVP_MD_meth_set_result_size(known_digest_methods[i], digest_data[i].digestlen) || !EVP_MD_meth_set_init(known_digest_methods[i], digest_init) || !EVP_MD_meth_set_update(known_digest_methods[i], digest_update) || !EVP_MD_meth_set_final(known_digest_methods[i], digest_final) || !EVP_MD_meth_set_copy(known_digest_methods[i], digest_copy) || !EVP_MD_meth_set_cleanup(known_digest_methods[i], digest_cleanup) || !EVP_MD_meth_set_app_datasize(known_digest_methods[i], sizeof(struct digest_ctx))) { EVP_MD_meth_free(known_digest_methods[i]); known_digest_methods[i] = NULL; } else { known_digest_nids[known_digest_nids_amount++] = digest_data[i].nid; } } } static const EVP_MD *get_digest_method(int nid) { size_t i = get_digest_data_index(nid); if (i == (size_t)-1) return NULL; return known_digest_methods[i]; } static int get_digest_nids(const int **nids) { *nids = known_digest_nids; return known_digest_nids_amount; } static void destroy_digest_method(int nid) { size_t i = get_digest_data_index(nid); EVP_MD_meth_free(known_digest_methods[i]); known_digest_methods[i] = NULL; } static void destroy_all_digest_methods(void) { size_t i; for (i = 0; i < OSSL_NELEM(digest_data); i++) destroy_digest_method(digest_data[i].nid); } static int devcrypto_digests(ENGINE *e, const EVP_MD **digest, const int **nids, int nid) { if (digest == NULL) return get_digest_nids(nids); *digest = get_digest_method(nid); return *digest != NULL; } #endif /****************************************************************************** * * LOAD / UNLOAD * *****/ static int devcrypto_unload(ENGINE *e) { destroy_all_cipher_methods(); #ifdef IMPLEMENT_DIGEST destroy_all_digest_methods(); #endif close(cfd); return 1; } /* * This engine is always built into libcrypto, so it doesn't offer any * ability to be dynamically loadable. */ void engine_load_devcrypto_int() { ENGINE *e = NULL; if ((cfd = open("/dev/crypto", O_RDWR, 0)) < 0) { #ifndef ENGINE_DEVCRYPTO_DEBUG if (errno != ENOENT) #endif fprintf(stderr, "Could not open /dev/crypto: %s\n", strerror(errno)); return; } if ((e = ENGINE_new()) == NULL || !ENGINE_set_destroy_function(e, devcrypto_unload)) { ENGINE_free(e); /* * We know that devcrypto_unload() won't be called when one of the * above two calls have failed, so we close cfd explicitly here to * avoid leaking resources. */ close(cfd); return; } prepare_cipher_methods(); #ifdef IMPLEMENT_DIGEST prepare_digest_methods(); #endif if (!ENGINE_set_id(e, "devcrypto") || !ENGINE_set_name(e, "/dev/crypto engine") /* * Asymmetric ciphers aren't well supported with /dev/crypto. Among the BSD * implementations, it seems to only exist in FreeBSD, and regarding the * parameters in its crypt_kop, the manual crypto(4) has this to say: * * The semantics of these arguments are currently undocumented. * * Reading through the FreeBSD source code doesn't give much more than * their CRK_MOD_EXP implementation for ubsec. * * It doesn't look much better with cryptodev-linux. They have the crypt_kop * structure as well as the command (CRK_*) in cryptodev.h, but no support * seems to be implemented at all for the moment. * * At the time of writing, it seems impossible to write proper support for * FreeBSD's asym features without some very deep knowledge and access to * specific kernel modules. * * /Richard Levitte, 2017-05-11 */ #if 0 # ifndef OPENSSL_NO_RSA || !ENGINE_set_RSA(e, devcrypto_rsa) # endif # ifndef OPENSSL_NO_DSA || !ENGINE_set_DSA(e, devcrypto_dsa) # endif # ifndef OPENSSL_NO_DH || !ENGINE_set_DH(e, devcrypto_dh) # endif # ifndef OPENSSL_NO_EC || !ENGINE_set_EC(e, devcrypto_ec) # endif #endif || !ENGINE_set_ciphers(e, devcrypto_ciphers) #ifdef IMPLEMENT_DIGEST || !ENGINE_set_digests(e, devcrypto_digests) #endif ) { ENGINE_free(e); return; } ENGINE_add(e); ENGINE_free(e); /* Loose our local reference */ ERR_clear_error(); } openssl-1.1.1f/crypto/engine/eng_dyn.c000066400000000000000000000422701364063235100177270ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" #include "internal/dso.h" #include /* * Shared libraries implementing ENGINEs for use by the "dynamic" ENGINE * loader should implement the hook-up functions with the following * prototypes. */ /* Our ENGINE handlers */ static int dynamic_init(ENGINE *e); static int dynamic_finish(ENGINE *e); static int dynamic_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)); /* Predeclare our context type */ typedef struct st_dynamic_data_ctx dynamic_data_ctx; /* The implementation for the important control command */ static int dynamic_load(ENGINE *e, dynamic_data_ctx *ctx); #define DYNAMIC_CMD_SO_PATH ENGINE_CMD_BASE #define DYNAMIC_CMD_NO_VCHECK (ENGINE_CMD_BASE + 1) #define DYNAMIC_CMD_ID (ENGINE_CMD_BASE + 2) #define DYNAMIC_CMD_LIST_ADD (ENGINE_CMD_BASE + 3) #define DYNAMIC_CMD_DIR_LOAD (ENGINE_CMD_BASE + 4) #define DYNAMIC_CMD_DIR_ADD (ENGINE_CMD_BASE + 5) #define DYNAMIC_CMD_LOAD (ENGINE_CMD_BASE + 6) /* The constants used when creating the ENGINE */ static const char *engine_dynamic_id = "dynamic"; static const char *engine_dynamic_name = "Dynamic engine loading support"; static const ENGINE_CMD_DEFN dynamic_cmd_defns[] = { {DYNAMIC_CMD_SO_PATH, "SO_PATH", "Specifies the path to the new ENGINE shared library", ENGINE_CMD_FLAG_STRING}, {DYNAMIC_CMD_NO_VCHECK, "NO_VCHECK", "Specifies to continue even if version checking fails (boolean)", ENGINE_CMD_FLAG_NUMERIC}, {DYNAMIC_CMD_ID, "ID", "Specifies an ENGINE id name for loading", ENGINE_CMD_FLAG_STRING}, {DYNAMIC_CMD_LIST_ADD, "LIST_ADD", "Whether to add a loaded ENGINE to the internal list (0=no,1=yes,2=mandatory)", ENGINE_CMD_FLAG_NUMERIC}, {DYNAMIC_CMD_DIR_LOAD, "DIR_LOAD", "Specifies whether to load from 'DIR_ADD' directories (0=no,1=yes,2=mandatory)", ENGINE_CMD_FLAG_NUMERIC}, {DYNAMIC_CMD_DIR_ADD, "DIR_ADD", "Adds a directory from which ENGINEs can be loaded", ENGINE_CMD_FLAG_STRING}, {DYNAMIC_CMD_LOAD, "LOAD", "Load up the ENGINE specified by other settings", ENGINE_CMD_FLAG_NO_INPUT}, {0, NULL, NULL, 0} }; /* * Loading code stores state inside the ENGINE structure via the "ex_data" * element. We load all our state into a single structure and use that as a * single context in the "ex_data" stack. */ struct st_dynamic_data_ctx { /* The DSO object we load that supplies the ENGINE code */ DSO *dynamic_dso; /* * The function pointer to the version checking shared library function */ dynamic_v_check_fn v_check; /* * The function pointer to the engine-binding shared library function */ dynamic_bind_engine bind_engine; /* The default name/path for loading the shared library */ char *DYNAMIC_LIBNAME; /* Whether to continue loading on a version check failure */ int no_vcheck; /* If non-NULL, stipulates the 'id' of the ENGINE to be loaded */ char *engine_id; /* * If non-zero, a successfully loaded ENGINE should be added to the * internal ENGINE list. If 2, the add must succeed or the entire load * should fail. */ int list_add_value; /* The symbol name for the version checking function */ const char *DYNAMIC_F1; /* The symbol name for the "initialise ENGINE structure" function */ const char *DYNAMIC_F2; /* * Whether to never use 'dirs', use 'dirs' as a fallback, or only use * 'dirs' for loading. Default is to use 'dirs' as a fallback. */ int dir_load; /* A stack of directories from which ENGINEs could be loaded */ STACK_OF(OPENSSL_STRING) *dirs; }; /* * This is the "ex_data" index we obtain and reserve for use with our context * structure. */ static int dynamic_ex_data_idx = -1; static void int_free_str(char *s) { OPENSSL_free(s); } /* * Because our ex_data element may or may not get allocated depending on * whether a "first-use" occurs before the ENGINE is freed, we have a memory * leak problem to solve. We can't declare a "new" handler for the ex_data as * we don't want a dynamic_data_ctx in *all* ENGINE structures of all types * (this is a bug in the design of CRYPTO_EX_DATA). As such, we just declare * a "free" handler and that will get called if an ENGINE is being destroyed * and there was an ex_data element corresponding to our context type. */ static void dynamic_data_ctx_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { if (ptr) { dynamic_data_ctx *ctx = (dynamic_data_ctx *)ptr; DSO_free(ctx->dynamic_dso); OPENSSL_free(ctx->DYNAMIC_LIBNAME); OPENSSL_free(ctx->engine_id); sk_OPENSSL_STRING_pop_free(ctx->dirs, int_free_str); OPENSSL_free(ctx); } } /* * Construct the per-ENGINE context. We create it blindly and then use a lock * to check for a race - if so, all but one of the threads "racing" will have * wasted their time. The alternative involves creating everything inside the * lock which is far worse. */ static int dynamic_set_data_ctx(ENGINE *e, dynamic_data_ctx **ctx) { dynamic_data_ctx *c = OPENSSL_zalloc(sizeof(*c)); int ret = 1; if (c == NULL) { ENGINEerr(ENGINE_F_DYNAMIC_SET_DATA_CTX, ERR_R_MALLOC_FAILURE); return 0; } c->dirs = sk_OPENSSL_STRING_new_null(); if (c->dirs == NULL) { ENGINEerr(ENGINE_F_DYNAMIC_SET_DATA_CTX, ERR_R_MALLOC_FAILURE); OPENSSL_free(c); return 0; } c->DYNAMIC_F1 = "v_check"; c->DYNAMIC_F2 = "bind_engine"; c->dir_load = 1; CRYPTO_THREAD_write_lock(global_engine_lock); if ((*ctx = (dynamic_data_ctx *)ENGINE_get_ex_data(e, dynamic_ex_data_idx)) == NULL) { /* Good, we're the first */ ret = ENGINE_set_ex_data(e, dynamic_ex_data_idx, c); if (ret) { *ctx = c; c = NULL; } } CRYPTO_THREAD_unlock(global_engine_lock); /* * If we lost the race to set the context, c is non-NULL and *ctx is the * context of the thread that won. */ if (c) sk_OPENSSL_STRING_free(c->dirs); OPENSSL_free(c); return ret; } /* * This function retrieves the context structure from an ENGINE's "ex_data", * or if it doesn't exist yet, sets it up. */ static dynamic_data_ctx *dynamic_get_data_ctx(ENGINE *e) { dynamic_data_ctx *ctx; if (dynamic_ex_data_idx < 0) { /* * Create and register the ENGINE ex_data, and associate our "free" * function with it to ensure any allocated contexts get freed when * an ENGINE goes underground. */ int new_idx = ENGINE_get_ex_new_index(0, NULL, NULL, NULL, dynamic_data_ctx_free_func); if (new_idx == -1) { ENGINEerr(ENGINE_F_DYNAMIC_GET_DATA_CTX, ENGINE_R_NO_INDEX); return NULL; } CRYPTO_THREAD_write_lock(global_engine_lock); /* Avoid a race by checking again inside this lock */ if (dynamic_ex_data_idx < 0) { /* Good, someone didn't beat us to it */ dynamic_ex_data_idx = new_idx; new_idx = -1; } CRYPTO_THREAD_unlock(global_engine_lock); /* * In theory we could "give back" the index here if (new_idx>-1), but * it's not possible and wouldn't gain us much if it were. */ } ctx = (dynamic_data_ctx *)ENGINE_get_ex_data(e, dynamic_ex_data_idx); /* Check if the context needs to be created */ if ((ctx == NULL) && !dynamic_set_data_ctx(e, &ctx)) /* "set_data" will set errors if necessary */ return NULL; return ctx; } static ENGINE *engine_dynamic(void) { ENGINE *ret = ENGINE_new(); if (ret == NULL) return NULL; if (!ENGINE_set_id(ret, engine_dynamic_id) || !ENGINE_set_name(ret, engine_dynamic_name) || !ENGINE_set_init_function(ret, dynamic_init) || !ENGINE_set_finish_function(ret, dynamic_finish) || !ENGINE_set_ctrl_function(ret, dynamic_ctrl) || !ENGINE_set_flags(ret, ENGINE_FLAGS_BY_ID_COPY) || !ENGINE_set_cmd_defns(ret, dynamic_cmd_defns)) { ENGINE_free(ret); return NULL; } return ret; } void engine_load_dynamic_int(void) { ENGINE *toadd = engine_dynamic(); if (!toadd) return; ENGINE_add(toadd); /* * If the "add" worked, it gets a structural reference. So either way, we * release our just-created reference. */ ENGINE_free(toadd); /* * If the "add" didn't work, it was probably a conflict because it was * already added (eg. someone calling ENGINE_load_blah then calling * ENGINE_load_builtin_engines() perhaps). */ ERR_clear_error(); } static int dynamic_init(ENGINE *e) { /* * We always return failure - the "dynamic" engine itself can't be used * for anything. */ return 0; } static int dynamic_finish(ENGINE *e) { /* * This should never be called on account of "dynamic_init" always * failing. */ return 0; } static int dynamic_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)) { dynamic_data_ctx *ctx = dynamic_get_data_ctx(e); int initialised; if (!ctx) { ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_NOT_LOADED); return 0; } initialised = ((ctx->dynamic_dso == NULL) ? 0 : 1); /* All our control commands require the ENGINE to be uninitialised */ if (initialised) { ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_ALREADY_LOADED); return 0; } switch (cmd) { case DYNAMIC_CMD_SO_PATH: /* a NULL 'p' or a string of zero-length is the same thing */ if (p && (strlen((const char *)p) < 1)) p = NULL; OPENSSL_free(ctx->DYNAMIC_LIBNAME); if (p) ctx->DYNAMIC_LIBNAME = OPENSSL_strdup(p); else ctx->DYNAMIC_LIBNAME = NULL; return (ctx->DYNAMIC_LIBNAME ? 1 : 0); case DYNAMIC_CMD_NO_VCHECK: ctx->no_vcheck = ((i == 0) ? 0 : 1); return 1; case DYNAMIC_CMD_ID: /* a NULL 'p' or a string of zero-length is the same thing */ if (p && (strlen((const char *)p) < 1)) p = NULL; OPENSSL_free(ctx->engine_id); if (p) ctx->engine_id = OPENSSL_strdup(p); else ctx->engine_id = NULL; return (ctx->engine_id ? 1 : 0); case DYNAMIC_CMD_LIST_ADD: if ((i < 0) || (i > 2)) { ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_INVALID_ARGUMENT); return 0; } ctx->list_add_value = (int)i; return 1; case DYNAMIC_CMD_LOAD: return dynamic_load(e, ctx); case DYNAMIC_CMD_DIR_LOAD: if ((i < 0) || (i > 2)) { ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_INVALID_ARGUMENT); return 0; } ctx->dir_load = (int)i; return 1; case DYNAMIC_CMD_DIR_ADD: /* a NULL 'p' or a string of zero-length is the same thing */ if (!p || (strlen((const char *)p) < 1)) { ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_INVALID_ARGUMENT); return 0; } { char *tmp_str = OPENSSL_strdup(p); if (tmp_str == NULL) { ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ERR_R_MALLOC_FAILURE); return 0; } if (!sk_OPENSSL_STRING_push(ctx->dirs, tmp_str)) { OPENSSL_free(tmp_str); ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ERR_R_MALLOC_FAILURE); return 0; } } return 1; default: break; } ENGINEerr(ENGINE_F_DYNAMIC_CTRL, ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED); return 0; } static int int_load(dynamic_data_ctx *ctx) { int num, loop; /* Unless told not to, try a direct load */ if ((ctx->dir_load != 2) && (DSO_load(ctx->dynamic_dso, ctx->DYNAMIC_LIBNAME, NULL, 0)) != NULL) return 1; /* If we're not allowed to use 'dirs' or we have none, fail */ if (!ctx->dir_load || (num = sk_OPENSSL_STRING_num(ctx->dirs)) < 1) return 0; for (loop = 0; loop < num; loop++) { const char *s = sk_OPENSSL_STRING_value(ctx->dirs, loop); char *merge = DSO_merge(ctx->dynamic_dso, ctx->DYNAMIC_LIBNAME, s); if (!merge) return 0; if (DSO_load(ctx->dynamic_dso, merge, NULL, 0)) { /* Found what we're looking for */ OPENSSL_free(merge); return 1; } OPENSSL_free(merge); } return 0; } static int dynamic_load(ENGINE *e, dynamic_data_ctx *ctx) { ENGINE cpy; dynamic_fns fns; if (ctx->dynamic_dso == NULL) ctx->dynamic_dso = DSO_new(); if (ctx->dynamic_dso == NULL) return 0; if (!ctx->DYNAMIC_LIBNAME) { if (!ctx->engine_id) return 0; DSO_ctrl(ctx->dynamic_dso, DSO_CTRL_SET_FLAGS, DSO_FLAG_NAME_TRANSLATION_EXT_ONLY, NULL); ctx->DYNAMIC_LIBNAME = DSO_convert_filename(ctx->dynamic_dso, ctx->engine_id); } if (!int_load(ctx)) { ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_DSO_NOT_FOUND); DSO_free(ctx->dynamic_dso); ctx->dynamic_dso = NULL; return 0; } /* We have to find a bind function otherwise it'll always end badly */ if (! (ctx->bind_engine = (dynamic_bind_engine) DSO_bind_func(ctx->dynamic_dso, ctx->DYNAMIC_F2))) { ctx->bind_engine = NULL; DSO_free(ctx->dynamic_dso); ctx->dynamic_dso = NULL; ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_DSO_FAILURE); return 0; } /* Do we perform version checking? */ if (!ctx->no_vcheck) { unsigned long vcheck_res = 0; /* * Now we try to find a version checking function and decide how to * cope with failure if/when it fails. */ ctx->v_check = (dynamic_v_check_fn) DSO_bind_func(ctx->dynamic_dso, ctx->DYNAMIC_F1); if (ctx->v_check) vcheck_res = ctx->v_check(OSSL_DYNAMIC_VERSION); /* * We fail if the version checker veto'd the load *or* if it is * deferring to us (by returning its version) and we think it is too * old. */ if (vcheck_res < OSSL_DYNAMIC_OLDEST) { /* Fail */ ctx->bind_engine = NULL; ctx->v_check = NULL; DSO_free(ctx->dynamic_dso); ctx->dynamic_dso = NULL; ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_VERSION_INCOMPATIBILITY); return 0; } } /* * First binary copy the ENGINE structure so that we can roll back if the * hand-over fails */ memcpy(&cpy, e, sizeof(ENGINE)); /* * Provide the ERR, "ex_data", memory, and locking callbacks so the * loaded library uses our state rather than its own. FIXME: As noted in * engine.h, much of this would be simplified if each area of code * provided its own "summary" structure of all related callbacks. It * would also increase opaqueness. */ fns.static_state = ENGINE_get_static_state(); CRYPTO_get_mem_functions(&fns.mem_fns.malloc_fn, &fns.mem_fns.realloc_fn, &fns.mem_fns.free_fn); /* * Now that we've loaded the dynamic engine, make sure no "dynamic" * ENGINE elements will show through. */ engine_set_all_null(e); /* Try to bind the ENGINE onto our own ENGINE structure */ if (!ctx->bind_engine(e, ctx->engine_id, &fns)) { ctx->bind_engine = NULL; ctx->v_check = NULL; DSO_free(ctx->dynamic_dso); ctx->dynamic_dso = NULL; ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_INIT_FAILED); /* Copy the original ENGINE structure back */ memcpy(e, &cpy, sizeof(ENGINE)); return 0; } /* Do we try to add this ENGINE to the internal list too? */ if (ctx->list_add_value > 0) { if (!ENGINE_add(e)) { /* Do we tolerate this or fail? */ if (ctx->list_add_value > 1) { /* * Fail - NB: By this time, it's too late to rollback, and * trying to do so allows the bind_engine() code to have * created leaks. We just have to fail where we are, after * the ENGINE has changed. */ ENGINEerr(ENGINE_F_DYNAMIC_LOAD, ENGINE_R_CONFLICTING_ENGINE_ID); return 0; } /* Tolerate */ ERR_clear_error(); } } return 1; } openssl-1.1.1f/crypto/engine/eng_err.c000066400000000000000000000164561364063235100177340ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA ENGINE_str_functs[] = { {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_DIGEST_UPDATE, 0), "digest_update"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_DYNAMIC_CTRL, 0), "dynamic_ctrl"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_DYNAMIC_GET_DATA_CTX, 0), "dynamic_get_data_ctx"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_DYNAMIC_LOAD, 0), "dynamic_load"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_DYNAMIC_SET_DATA_CTX, 0), "dynamic_set_data_ctx"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_ADD, 0), "ENGINE_add"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_BY_ID, 0), "ENGINE_by_id"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_CMD_IS_EXECUTABLE, 0), "ENGINE_cmd_is_executable"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_CTRL, 0), "ENGINE_ctrl"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_CTRL_CMD, 0), "ENGINE_ctrl_cmd"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_CTRL_CMD_STRING, 0), "ENGINE_ctrl_cmd_string"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_FINISH, 0), "ENGINE_finish"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_CIPHER, 0), "ENGINE_get_cipher"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_DIGEST, 0), "ENGINE_get_digest"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_FIRST, 0), "ENGINE_get_first"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_LAST, 0), "ENGINE_get_last"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_NEXT, 0), "ENGINE_get_next"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_PKEY_ASN1_METH, 0), "ENGINE_get_pkey_asn1_meth"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_PKEY_METH, 0), "ENGINE_get_pkey_meth"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_GET_PREV, 0), "ENGINE_get_prev"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_INIT, 0), "ENGINE_init"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_LIST_ADD, 0), "engine_list_add"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_LIST_REMOVE, 0), "engine_list_remove"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_LOAD_PRIVATE_KEY, 0), "ENGINE_load_private_key"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_LOAD_PUBLIC_KEY, 0), "ENGINE_load_public_key"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT, 0), "ENGINE_load_ssl_client_cert"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_NEW, 0), "ENGINE_new"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_PKEY_ASN1_FIND_STR, 0), "ENGINE_pkey_asn1_find_str"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_REMOVE, 0), "ENGINE_remove"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_SET_DEFAULT_STRING, 0), "ENGINE_set_default_string"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_SET_ID, 0), "ENGINE_set_id"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_SET_NAME, 0), "ENGINE_set_name"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_TABLE_REGISTER, 0), "engine_table_register"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_UNLOCKED_FINISH, 0), "engine_unlocked_finish"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_ENGINE_UP_REF, 0), "ENGINE_up_ref"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_INT_CLEANUP_ITEM, 0), "int_cleanup_item"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_INT_CTRL_HELPER, 0), "int_ctrl_helper"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_INT_ENGINE_CONFIGURE, 0), "int_engine_configure"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_INT_ENGINE_MODULE_INIT, 0), "int_engine_module_init"}, {ERR_PACK(ERR_LIB_ENGINE, ENGINE_F_OSSL_HMAC_INIT, 0), "ossl_hmac_init"}, {0, NULL} }; static const ERR_STRING_DATA ENGINE_str_reasons[] = { {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_ALREADY_LOADED), "already loaded"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER), "argument is not a number"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_CMD_NOT_EXECUTABLE), "cmd not executable"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_COMMAND_TAKES_INPUT), "command takes input"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_COMMAND_TAKES_NO_INPUT), "command takes no input"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_CONFLICTING_ENGINE_ID), "conflicting engine id"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED), "ctrl command not implemented"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_DSO_FAILURE), "DSO failure"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_DSO_NOT_FOUND), "dso not found"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_ENGINES_SECTION_ERROR), "engines section error"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_ENGINE_CONFIGURATION_ERROR), "engine configuration error"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_ENGINE_IS_NOT_IN_LIST), "engine is not in the list"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_ENGINE_SECTION_ERROR), "engine section error"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_FAILED_LOADING_PRIVATE_KEY), "failed loading private key"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_FAILED_LOADING_PUBLIC_KEY), "failed loading public key"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_FINISH_FAILED), "finish failed"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_ID_OR_NAME_MISSING), "'id' or 'name' missing"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_INIT_FAILED), "init failed"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_INTERNAL_LIST_ERROR), "internal list error"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_INVALID_ARGUMENT), "invalid argument"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_INVALID_CMD_NAME), "invalid cmd name"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_INVALID_CMD_NUMBER), "invalid cmd number"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_INVALID_INIT_VALUE), "invalid init value"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_INVALID_STRING), "invalid string"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_NOT_INITIALISED), "not initialised"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_NOT_LOADED), "not loaded"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_NO_CONTROL_FUNCTION), "no control function"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_NO_INDEX), "no index"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_NO_LOAD_FUNCTION), "no load function"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_NO_REFERENCE), "no reference"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_NO_SUCH_ENGINE), "no such engine"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_UNIMPLEMENTED_CIPHER), "unimplemented cipher"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_UNIMPLEMENTED_DIGEST), "unimplemented digest"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD), "unimplemented public key method"}, {ERR_PACK(ERR_LIB_ENGINE, 0, ENGINE_R_VERSION_INCOMPATIBILITY), "version incompatibility"}, {0, NULL} }; #endif int ERR_load_ENGINE_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(ENGINE_str_functs[0].error) == NULL) { ERR_load_strings_const(ENGINE_str_functs); ERR_load_strings_const(ENGINE_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/engine/eng_fat.c000066400000000000000000000072411364063235100177060ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" #include int ENGINE_set_default(ENGINE *e, unsigned int flags) { if ((flags & ENGINE_METHOD_CIPHERS) && !ENGINE_set_default_ciphers(e)) return 0; if ((flags & ENGINE_METHOD_DIGESTS) && !ENGINE_set_default_digests(e)) return 0; #ifndef OPENSSL_NO_RSA if ((flags & ENGINE_METHOD_RSA) && !ENGINE_set_default_RSA(e)) return 0; #endif #ifndef OPENSSL_NO_DSA if ((flags & ENGINE_METHOD_DSA) && !ENGINE_set_default_DSA(e)) return 0; #endif #ifndef OPENSSL_NO_DH if ((flags & ENGINE_METHOD_DH) && !ENGINE_set_default_DH(e)) return 0; #endif #ifndef OPENSSL_NO_EC if ((flags & ENGINE_METHOD_EC) && !ENGINE_set_default_EC(e)) return 0; #endif if ((flags & ENGINE_METHOD_RAND) && !ENGINE_set_default_RAND(e)) return 0; if ((flags & ENGINE_METHOD_PKEY_METHS) && !ENGINE_set_default_pkey_meths(e)) return 0; if ((flags & ENGINE_METHOD_PKEY_ASN1_METHS) && !ENGINE_set_default_pkey_asn1_meths(e)) return 0; return 1; } /* Set default algorithms using a string */ static int int_def_cb(const char *alg, int len, void *arg) { unsigned int *pflags = arg; if (alg == NULL) return 0; if (strncmp(alg, "ALL", len) == 0) *pflags |= ENGINE_METHOD_ALL; else if (strncmp(alg, "RSA", len) == 0) *pflags |= ENGINE_METHOD_RSA; else if (strncmp(alg, "DSA", len) == 0) *pflags |= ENGINE_METHOD_DSA; else if (strncmp(alg, "DH", len) == 0) *pflags |= ENGINE_METHOD_DH; else if (strncmp(alg, "EC", len) == 0) *pflags |= ENGINE_METHOD_EC; else if (strncmp(alg, "RAND", len) == 0) *pflags |= ENGINE_METHOD_RAND; else if (strncmp(alg, "CIPHERS", len) == 0) *pflags |= ENGINE_METHOD_CIPHERS; else if (strncmp(alg, "DIGESTS", len) == 0) *pflags |= ENGINE_METHOD_DIGESTS; else if (strncmp(alg, "PKEY", len) == 0) *pflags |= ENGINE_METHOD_PKEY_METHS | ENGINE_METHOD_PKEY_ASN1_METHS; else if (strncmp(alg, "PKEY_CRYPTO", len) == 0) *pflags |= ENGINE_METHOD_PKEY_METHS; else if (strncmp(alg, "PKEY_ASN1", len) == 0) *pflags |= ENGINE_METHOD_PKEY_ASN1_METHS; else return 0; return 1; } int ENGINE_set_default_string(ENGINE *e, const char *def_list) { unsigned int flags = 0; if (!CONF_parse_list(def_list, ',', 1, int_def_cb, &flags)) { ENGINEerr(ENGINE_F_ENGINE_SET_DEFAULT_STRING, ENGINE_R_INVALID_STRING); ERR_add_error_data(2, "str=", def_list); return 0; } return ENGINE_set_default(e, flags); } int ENGINE_register_complete(ENGINE *e) { ENGINE_register_ciphers(e); ENGINE_register_digests(e); #ifndef OPENSSL_NO_RSA ENGINE_register_RSA(e); #endif #ifndef OPENSSL_NO_DSA ENGINE_register_DSA(e); #endif #ifndef OPENSSL_NO_DH ENGINE_register_DH(e); #endif #ifndef OPENSSL_NO_EC ENGINE_register_EC(e); #endif ENGINE_register_RAND(e); ENGINE_register_pkey_meths(e); ENGINE_register_pkey_asn1_meths(e); return 1; } int ENGINE_register_all_complete(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) if (!(e->flags & ENGINE_FLAGS_NO_REGISTER_ALL)) ENGINE_register_complete(e); return 1; } openssl-1.1.1f/crypto/engine/eng_init.c000066400000000000000000000062271364063235100201020ustar00rootroot00000000000000/* * Copyright 2001-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "eng_local.h" /* * Initialise a engine type for use (or up its functional reference count if * it's already in use). This version is only used internally. */ int engine_unlocked_init(ENGINE *e) { int to_return = 1; if ((e->funct_ref == 0) && e->init) /* * This is the first functional reference and the engine requires * initialisation so we do it now. */ to_return = e->init(e); if (to_return) { /* * OK, we return a functional reference which is also a structural * reference. */ e->struct_ref++; e->funct_ref++; engine_ref_debug(e, 0, 1); engine_ref_debug(e, 1, 1); } return to_return; } /* * Free a functional reference to a engine type. This version is only used * internally. */ int engine_unlocked_finish(ENGINE *e, int unlock_for_handlers) { int to_return = 1; /* * Reduce the functional reference count here so if it's the terminating * case, we can release the lock safely and call the finish() handler * without risk of a race. We get a race if we leave the count until * after and something else is calling "finish" at the same time - * there's a chance that both threads will together take the count from 2 * to 0 without either calling finish(). */ e->funct_ref--; engine_ref_debug(e, 1, -1); if ((e->funct_ref == 0) && e->finish) { if (unlock_for_handlers) CRYPTO_THREAD_unlock(global_engine_lock); to_return = e->finish(e); if (unlock_for_handlers) CRYPTO_THREAD_write_lock(global_engine_lock); if (!to_return) return 0; } REF_ASSERT_ISNT(e->funct_ref < 0); /* Release the structural reference too */ if (!engine_free_util(e, 0)) { ENGINEerr(ENGINE_F_ENGINE_UNLOCKED_FINISH, ENGINE_R_FINISH_FAILED); return 0; } return to_return; } /* The API (locked) version of "init" */ int ENGINE_init(ENGINE *e) { int ret; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_INIT, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!RUN_ONCE(&engine_lock_init, do_engine_lock_init)) { ENGINEerr(ENGINE_F_ENGINE_INIT, ERR_R_MALLOC_FAILURE); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); ret = engine_unlocked_init(e); CRYPTO_THREAD_unlock(global_engine_lock); return ret; } /* The API (locked) version of "finish" */ int ENGINE_finish(ENGINE *e) { int to_return = 1; if (e == NULL) return 1; CRYPTO_THREAD_write_lock(global_engine_lock); to_return = engine_unlocked_finish(e, 1); CRYPTO_THREAD_unlock(global_engine_lock); if (!to_return) { ENGINEerr(ENGINE_F_ENGINE_FINISH, ENGINE_R_FINISH_FAILED); return 0; } return to_return; } openssl-1.1.1f/crypto/engine/eng_lib.c000066400000000000000000000152311364063235100177000ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "eng_local.h" #include #include "internal/refcount.h" CRYPTO_RWLOCK *global_engine_lock; CRYPTO_ONCE engine_lock_init = CRYPTO_ONCE_STATIC_INIT; /* The "new"/"free" stuff first */ DEFINE_RUN_ONCE(do_engine_lock_init) { if (!OPENSSL_init_crypto(0, NULL)) return 0; global_engine_lock = CRYPTO_THREAD_lock_new(); return global_engine_lock != NULL; } ENGINE *ENGINE_new(void) { ENGINE *ret; if (!RUN_ONCE(&engine_lock_init, do_engine_lock_init) || (ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { ENGINEerr(ENGINE_F_ENGINE_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->struct_ref = 1; engine_ref_debug(ret, 0, 1); if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_ENGINE, ret, &ret->ex_data)) { OPENSSL_free(ret); return NULL; } return ret; } /* * Placed here (close proximity to ENGINE_new) so that modifications to the * elements of the ENGINE structure are more likely to be caught and changed * here. */ void engine_set_all_null(ENGINE *e) { e->id = NULL; e->name = NULL; e->rsa_meth = NULL; e->dsa_meth = NULL; e->dh_meth = NULL; e->rand_meth = NULL; e->ciphers = NULL; e->digests = NULL; e->destroy = NULL; e->init = NULL; e->finish = NULL; e->ctrl = NULL; e->load_privkey = NULL; e->load_pubkey = NULL; e->cmd_defns = NULL; e->flags = 0; } int engine_free_util(ENGINE *e, int not_locked) { int i; if (e == NULL) return 1; if (not_locked) CRYPTO_DOWN_REF(&e->struct_ref, &i, global_engine_lock); else i = --e->struct_ref; engine_ref_debug(e, 0, -1); if (i > 0) return 1; REF_ASSERT_ISNT(i < 0); /* Free up any dynamically allocated public key methods */ engine_pkey_meths_free(e); engine_pkey_asn1_meths_free(e); /* * Give the ENGINE a chance to do any structural cleanup corresponding to * allocation it did in its constructor (eg. unload error strings) */ if (e->destroy) e->destroy(e); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_ENGINE, e, &e->ex_data); OPENSSL_free(e); return 1; } int ENGINE_free(ENGINE *e) { return engine_free_util(e, 1); } /* Cleanup stuff */ /* * engine_cleanup_int() is coded such that anything that does work that will * need cleanup can register a "cleanup" callback here. That way we don't get * linker bloat by referring to all *possible* cleanups, but any linker bloat * into code "X" will cause X's cleanup function to end up here. */ static STACK_OF(ENGINE_CLEANUP_ITEM) *cleanup_stack = NULL; static int int_cleanup_check(int create) { if (cleanup_stack) return 1; if (!create) return 0; cleanup_stack = sk_ENGINE_CLEANUP_ITEM_new_null(); return (cleanup_stack ? 1 : 0); } static ENGINE_CLEANUP_ITEM *int_cleanup_item(ENGINE_CLEANUP_CB *cb) { ENGINE_CLEANUP_ITEM *item; if ((item = OPENSSL_malloc(sizeof(*item))) == NULL) { ENGINEerr(ENGINE_F_INT_CLEANUP_ITEM, ERR_R_MALLOC_FAILURE); return NULL; } item->cb = cb; return item; } void engine_cleanup_add_first(ENGINE_CLEANUP_CB *cb) { ENGINE_CLEANUP_ITEM *item; if (!int_cleanup_check(1)) return; item = int_cleanup_item(cb); if (item) sk_ENGINE_CLEANUP_ITEM_insert(cleanup_stack, item, 0); } void engine_cleanup_add_last(ENGINE_CLEANUP_CB *cb) { ENGINE_CLEANUP_ITEM *item; if (!int_cleanup_check(1)) return; item = int_cleanup_item(cb); if (item != NULL) { if (sk_ENGINE_CLEANUP_ITEM_push(cleanup_stack, item) <= 0) OPENSSL_free(item); } } /* The API function that performs all cleanup */ static void engine_cleanup_cb_free(ENGINE_CLEANUP_ITEM *item) { (*(item->cb)) (); OPENSSL_free(item); } void engine_cleanup_int(void) { if (int_cleanup_check(0)) { sk_ENGINE_CLEANUP_ITEM_pop_free(cleanup_stack, engine_cleanup_cb_free); cleanup_stack = NULL; } CRYPTO_THREAD_lock_free(global_engine_lock); } /* Now the "ex_data" support */ int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg) { return CRYPTO_set_ex_data(&e->ex_data, idx, arg); } void *ENGINE_get_ex_data(const ENGINE *e, int idx) { return CRYPTO_get_ex_data(&e->ex_data, idx); } /* * Functions to get/set an ENGINE's elements - mainly to avoid exposing the * ENGINE structure itself. */ int ENGINE_set_id(ENGINE *e, const char *id) { if (id == NULL) { ENGINEerr(ENGINE_F_ENGINE_SET_ID, ERR_R_PASSED_NULL_PARAMETER); return 0; } e->id = id; return 1; } int ENGINE_set_name(ENGINE *e, const char *name) { if (name == NULL) { ENGINEerr(ENGINE_F_ENGINE_SET_NAME, ERR_R_PASSED_NULL_PARAMETER); return 0; } e->name = name; return 1; } int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f) { e->destroy = destroy_f; return 1; } int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f) { e->init = init_f; return 1; } int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f) { e->finish = finish_f; return 1; } int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f) { e->ctrl = ctrl_f; return 1; } int ENGINE_set_flags(ENGINE *e, int flags) { e->flags = flags; return 1; } int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns) { e->cmd_defns = defns; return 1; } const char *ENGINE_get_id(const ENGINE *e) { return e->id; } const char *ENGINE_get_name(const ENGINE *e) { return e->name; } ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e) { return e->destroy; } ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e) { return e->init; } ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e) { return e->finish; } ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e) { return e->ctrl; } int ENGINE_get_flags(const ENGINE *e) { return e->flags; } const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e) { return e->cmd_defns; } /* * eng_lib.o is pretty much linked into anything that touches ENGINE already, * so put the "static_state" hack here. */ static int internal_static_hack = 0; void *ENGINE_get_static_state(void) { return &internal_static_hack; } openssl-1.1.1f/crypto/engine/eng_list.c000066400000000000000000000243221364063235100201060ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" /* * The linked-list of pointers to engine types. engine_list_head incorporates * an implicit structural reference but engine_list_tail does not - the * latter is a computational optimization and only points to something that * is already pointed to by its predecessor in the list (or engine_list_head * itself). In the same way, the use of the "prev" pointer in each ENGINE is * to save excessive list iteration, it doesn't correspond to an extra * structural reference. Hence, engine_list_head, and each non-null "next" * pointer account for the list itself assuming exactly 1 structural * reference on each list member. */ static ENGINE *engine_list_head = NULL; static ENGINE *engine_list_tail = NULL; /* * This cleanup function is only needed internally. If it should be called, * we register it with the "engine_cleanup_int()" stack to be called during * cleanup. */ static void engine_list_cleanup(void) { ENGINE *iterator = engine_list_head; while (iterator != NULL) { ENGINE_remove(iterator); iterator = engine_list_head; } return; } /* * These static functions starting with a lower case "engine_" always take * place when global_engine_lock has been locked up. */ static int engine_list_add(ENGINE *e) { int conflict = 0; ENGINE *iterator = NULL; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ERR_R_PASSED_NULL_PARAMETER); return 0; } iterator = engine_list_head; while (iterator && !conflict) { conflict = (strcmp(iterator->id, e->id) == 0); iterator = iterator->next; } if (conflict) { ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ENGINE_R_CONFLICTING_ENGINE_ID); return 0; } if (engine_list_head == NULL) { /* We are adding to an empty list. */ if (engine_list_tail) { ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ENGINE_R_INTERNAL_LIST_ERROR); return 0; } engine_list_head = e; e->prev = NULL; /* * The first time the list allocates, we should register the cleanup. */ engine_cleanup_add_last(engine_list_cleanup); } else { /* We are adding to the tail of an existing list. */ if ((engine_list_tail == NULL) || (engine_list_tail->next != NULL)) { ENGINEerr(ENGINE_F_ENGINE_LIST_ADD, ENGINE_R_INTERNAL_LIST_ERROR); return 0; } engine_list_tail->next = e; e->prev = engine_list_tail; } /* * Having the engine in the list assumes a structural reference. */ e->struct_ref++; engine_ref_debug(e, 0, 1); /* However it came to be, e is the last item in the list. */ engine_list_tail = e; e->next = NULL; return 1; } static int engine_list_remove(ENGINE *e) { ENGINE *iterator; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_LIST_REMOVE, ERR_R_PASSED_NULL_PARAMETER); return 0; } /* We need to check that e is in our linked list! */ iterator = engine_list_head; while (iterator && (iterator != e)) iterator = iterator->next; if (iterator == NULL) { ENGINEerr(ENGINE_F_ENGINE_LIST_REMOVE, ENGINE_R_ENGINE_IS_NOT_IN_LIST); return 0; } /* un-link e from the chain. */ if (e->next) e->next->prev = e->prev; if (e->prev) e->prev->next = e->next; /* Correct our head/tail if necessary. */ if (engine_list_head == e) engine_list_head = e->next; if (engine_list_tail == e) engine_list_tail = e->prev; engine_free_util(e, 0); return 1; } /* Get the first/last "ENGINE" type available. */ ENGINE *ENGINE_get_first(void) { ENGINE *ret; if (!RUN_ONCE(&engine_lock_init, do_engine_lock_init)) { ENGINEerr(ENGINE_F_ENGINE_GET_FIRST, ERR_R_MALLOC_FAILURE); return NULL; } CRYPTO_THREAD_write_lock(global_engine_lock); ret = engine_list_head; if (ret) { ret->struct_ref++; engine_ref_debug(ret, 0, 1); } CRYPTO_THREAD_unlock(global_engine_lock); return ret; } ENGINE *ENGINE_get_last(void) { ENGINE *ret; if (!RUN_ONCE(&engine_lock_init, do_engine_lock_init)) { ENGINEerr(ENGINE_F_ENGINE_GET_LAST, ERR_R_MALLOC_FAILURE); return NULL; } CRYPTO_THREAD_write_lock(global_engine_lock); ret = engine_list_tail; if (ret) { ret->struct_ref++; engine_ref_debug(ret, 0, 1); } CRYPTO_THREAD_unlock(global_engine_lock); return ret; } /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */ ENGINE *ENGINE_get_next(ENGINE *e) { ENGINE *ret = NULL; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_GET_NEXT, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); ret = e->next; if (ret) { /* Return a valid structural reference to the next ENGINE */ ret->struct_ref++; engine_ref_debug(ret, 0, 1); } CRYPTO_THREAD_unlock(global_engine_lock); /* Release the structural reference to the previous ENGINE */ ENGINE_free(e); return ret; } ENGINE *ENGINE_get_prev(ENGINE *e) { ENGINE *ret = NULL; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_GET_PREV, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); ret = e->prev; if (ret) { /* Return a valid structural reference to the next ENGINE */ ret->struct_ref++; engine_ref_debug(ret, 0, 1); } CRYPTO_THREAD_unlock(global_engine_lock); /* Release the structural reference to the previous ENGINE */ ENGINE_free(e); return ret; } /* Add another "ENGINE" type into the list. */ int ENGINE_add(ENGINE *e) { int to_return = 1; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_ADD, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((e->id == NULL) || (e->name == NULL)) { ENGINEerr(ENGINE_F_ENGINE_ADD, ENGINE_R_ID_OR_NAME_MISSING); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); if (!engine_list_add(e)) { ENGINEerr(ENGINE_F_ENGINE_ADD, ENGINE_R_INTERNAL_LIST_ERROR); to_return = 0; } CRYPTO_THREAD_unlock(global_engine_lock); return to_return; } /* Remove an existing "ENGINE" type from the array. */ int ENGINE_remove(ENGINE *e) { int to_return = 1; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_REMOVE, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); if (!engine_list_remove(e)) { ENGINEerr(ENGINE_F_ENGINE_REMOVE, ENGINE_R_INTERNAL_LIST_ERROR); to_return = 0; } CRYPTO_THREAD_unlock(global_engine_lock); return to_return; } static void engine_cpy(ENGINE *dest, const ENGINE *src) { dest->id = src->id; dest->name = src->name; #ifndef OPENSSL_NO_RSA dest->rsa_meth = src->rsa_meth; #endif #ifndef OPENSSL_NO_DSA dest->dsa_meth = src->dsa_meth; #endif #ifndef OPENSSL_NO_DH dest->dh_meth = src->dh_meth; #endif #ifndef OPENSSL_NO_EC dest->ec_meth = src->ec_meth; #endif dest->rand_meth = src->rand_meth; dest->ciphers = src->ciphers; dest->digests = src->digests; dest->pkey_meths = src->pkey_meths; dest->destroy = src->destroy; dest->init = src->init; dest->finish = src->finish; dest->ctrl = src->ctrl; dest->load_privkey = src->load_privkey; dest->load_pubkey = src->load_pubkey; dest->cmd_defns = src->cmd_defns; dest->flags = src->flags; } ENGINE *ENGINE_by_id(const char *id) { ENGINE *iterator; char *load_dir = NULL; if (id == NULL) { ENGINEerr(ENGINE_F_ENGINE_BY_ID, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (!RUN_ONCE(&engine_lock_init, do_engine_lock_init)) { ENGINEerr(ENGINE_F_ENGINE_BY_ID, ERR_R_MALLOC_FAILURE); return NULL; } CRYPTO_THREAD_write_lock(global_engine_lock); iterator = engine_list_head; while (iterator && (strcmp(id, iterator->id) != 0)) iterator = iterator->next; if (iterator != NULL) { /* * We need to return a structural reference. If this is an ENGINE * type that returns copies, make a duplicate - otherwise increment * the existing ENGINE's reference count. */ if (iterator->flags & ENGINE_FLAGS_BY_ID_COPY) { ENGINE *cp = ENGINE_new(); if (cp == NULL) iterator = NULL; else { engine_cpy(cp, iterator); iterator = cp; } } else { iterator->struct_ref++; engine_ref_debug(iterator, 0, 1); } } CRYPTO_THREAD_unlock(global_engine_lock); if (iterator != NULL) return iterator; /* * Prevent infinite recursion if we're looking for the dynamic engine. */ if (strcmp(id, "dynamic")) { if ((load_dir = ossl_safe_getenv("OPENSSL_ENGINES")) == NULL) load_dir = ENGINESDIR; iterator = ENGINE_by_id("dynamic"); if (!iterator || !ENGINE_ctrl_cmd_string(iterator, "ID", id, 0) || !ENGINE_ctrl_cmd_string(iterator, "DIR_LOAD", "2", 0) || !ENGINE_ctrl_cmd_string(iterator, "DIR_ADD", load_dir, 0) || !ENGINE_ctrl_cmd_string(iterator, "LIST_ADD", "1", 0) || !ENGINE_ctrl_cmd_string(iterator, "LOAD", NULL, 0)) goto notfound; return iterator; } notfound: ENGINE_free(iterator); ENGINEerr(ENGINE_F_ENGINE_BY_ID, ENGINE_R_NO_SUCH_ENGINE); ERR_add_error_data(2, "id=", id); return NULL; /* EEK! Experimental code ends */ } int ENGINE_up_ref(ENGINE *e) { int i; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_UP_REF, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_UP_REF(&e->struct_ref, &i, global_engine_lock); return 1; } openssl-1.1.1f/crypto/engine/eng_local.h000066400000000000000000000142011364063235100202250ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_ENGINE_ENG_LOCAL_H # define OSSL_CRYPTO_ENGINE_ENG_LOCAL_H # include "internal/cryptlib.h" # include "crypto/engine.h" # include "internal/thread_once.h" # include "internal/refcount.h" extern CRYPTO_RWLOCK *global_engine_lock; /* * If we compile with this symbol defined, then both reference counts in the * ENGINE structure will be monitored with a line of output on stderr for * each change. This prints the engine's pointer address (truncated to * unsigned int), "struct" or "funct" to indicate the reference type, the * before and after reference count, and the file:line-number pair. The * "engine_ref_debug" statements must come *after* the change. */ # ifdef ENGINE_REF_COUNT_DEBUG # define engine_ref_debug(e, isfunct, diff) \ fprintf(stderr, "engine: %08x %s from %d to %d (%s:%d)\n", \ (unsigned int)(e), (isfunct ? "funct" : "struct"), \ ((isfunct) ? ((e)->funct_ref - (diff)) : ((e)->struct_ref - (diff))), \ ((isfunct) ? (e)->funct_ref : (e)->struct_ref), \ (OPENSSL_FILE), (OPENSSL_LINE)) # else # define engine_ref_debug(e, isfunct, diff) # endif /* * Any code that will need cleanup operations should use these functions to * register callbacks. engine_cleanup_int() will call all registered * callbacks in order. NB: both the "add" functions assume the engine lock to * already be held (in "write" mode). */ typedef void (ENGINE_CLEANUP_CB) (void); typedef struct st_engine_cleanup_item { ENGINE_CLEANUP_CB *cb; } ENGINE_CLEANUP_ITEM; DEFINE_STACK_OF(ENGINE_CLEANUP_ITEM) void engine_cleanup_add_first(ENGINE_CLEANUP_CB *cb); void engine_cleanup_add_last(ENGINE_CLEANUP_CB *cb); /* We need stacks of ENGINEs for use in eng_table.c */ DEFINE_STACK_OF(ENGINE) /* * If this symbol is defined then engine_table_select(), the function that is * used by RSA, DSA (etc) code to select registered ENGINEs, cache defaults * and functional references (etc), will display debugging summaries to * stderr. */ /* #define ENGINE_TABLE_DEBUG */ /* * This represents an implementation table. Dependent code should instantiate * it as a (ENGINE_TABLE *) pointer value set initially to NULL. */ typedef struct st_engine_table ENGINE_TABLE; int engine_table_register(ENGINE_TABLE **table, ENGINE_CLEANUP_CB *cleanup, ENGINE *e, const int *nids, int num_nids, int setdefault); void engine_table_unregister(ENGINE_TABLE **table, ENGINE *e); void engine_table_cleanup(ENGINE_TABLE **table); # ifndef ENGINE_TABLE_DEBUG ENGINE *engine_table_select(ENGINE_TABLE **table, int nid); # else ENGINE *engine_table_select_tmp(ENGINE_TABLE **table, int nid, const char *f, int l); # define engine_table_select(t,n) engine_table_select_tmp(t,n,OPENSSL_FILE,OPENSSL_LINE) # endif typedef void (engine_table_doall_cb) (int nid, STACK_OF(ENGINE) *sk, ENGINE *def, void *arg); void engine_table_doall(ENGINE_TABLE *table, engine_table_doall_cb *cb, void *arg); /* * Internal versions of API functions that have control over locking. These * are used between C files when functionality needs to be shared but the * caller may already be controlling of the engine lock. */ int engine_unlocked_init(ENGINE *e); int engine_unlocked_finish(ENGINE *e, int unlock_for_handlers); int engine_free_util(ENGINE *e, int not_locked); /* * This function will reset all "set"able values in an ENGINE to NULL. This * won't touch reference counts or ex_data, but is equivalent to calling all * the ENGINE_set_***() functions with a NULL value. */ void engine_set_all_null(ENGINE *e); /* * NB: Bitwise OR-able values for the "flags" variable in ENGINE are now * exposed in engine.h. */ /* Free up dynamically allocated public key methods associated with ENGINE */ void engine_pkey_meths_free(ENGINE *e); void engine_pkey_asn1_meths_free(ENGINE *e); /* Once initialisation function */ extern CRYPTO_ONCE engine_lock_init; DECLARE_RUN_ONCE(do_engine_lock_init) /* * This is a structure for storing implementations of various crypto * algorithms and functions. */ struct engine_st { const char *id; const char *name; const RSA_METHOD *rsa_meth; const DSA_METHOD *dsa_meth; const DH_METHOD *dh_meth; const EC_KEY_METHOD *ec_meth; const RAND_METHOD *rand_meth; /* Cipher handling is via this callback */ ENGINE_CIPHERS_PTR ciphers; /* Digest handling is via this callback */ ENGINE_DIGESTS_PTR digests; /* Public key handling via this callback */ ENGINE_PKEY_METHS_PTR pkey_meths; /* ASN1 public key handling via this callback */ ENGINE_PKEY_ASN1_METHS_PTR pkey_asn1_meths; ENGINE_GEN_INT_FUNC_PTR destroy; ENGINE_GEN_INT_FUNC_PTR init; ENGINE_GEN_INT_FUNC_PTR finish; ENGINE_CTRL_FUNC_PTR ctrl; ENGINE_LOAD_KEY_PTR load_privkey; ENGINE_LOAD_KEY_PTR load_pubkey; ENGINE_SSL_CLIENT_CERT_PTR load_ssl_client_cert; const ENGINE_CMD_DEFN *cmd_defns; int flags; /* reference count on the structure itself */ CRYPTO_REF_COUNT struct_ref; /* * reference count on usability of the engine type. NB: This controls the * loading and initialisation of any functionality required by this * engine, whereas the previous count is simply to cope with * (de)allocation of this structure. Hence, running_ref <= struct_ref at * all times. */ int funct_ref; /* A place to store per-ENGINE data */ CRYPTO_EX_DATA ex_data; /* Used to maintain the linked-list of engines. */ struct engine_st *prev; struct engine_st *next; }; typedef struct st_engine_pile ENGINE_PILE; DEFINE_LHASH_OF(ENGINE_PILE); #endif /* OSSL_CRYPTO_ENGINE_ENG_LOCAL_H */ openssl-1.1.1f/crypto/engine/eng_openssl.c000066400000000000000000000440261364063235100206210ustar00rootroot00000000000000/* * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "crypto/engine.h" #include #include #include #include #include #include #include #include /* * This testing gunk is implemented (and explained) lower down. It also * assumes the application explicitly calls "ENGINE_load_openssl()" because * this is no longer automatic in ENGINE_load_builtin_engines(). */ #define TEST_ENG_OPENSSL_RC4 #ifndef OPENSSL_NO_STDIO # define TEST_ENG_OPENSSL_PKEY #endif /* #define TEST_ENG_OPENSSL_HMAC */ /* #define TEST_ENG_OPENSSL_HMAC_INIT */ /* #define TEST_ENG_OPENSSL_RC4_OTHERS */ #ifndef OPENSSL_NO_STDIO # define TEST_ENG_OPENSSL_RC4_P_INIT #endif /* #define TEST_ENG_OPENSSL_RC4_P_CIPHER */ #define TEST_ENG_OPENSSL_SHA /* #define TEST_ENG_OPENSSL_SHA_OTHERS */ /* #define TEST_ENG_OPENSSL_SHA_P_INIT */ /* #define TEST_ENG_OPENSSL_SHA_P_UPDATE */ /* #define TEST_ENG_OPENSSL_SHA_P_FINAL */ /* Now check what of those algorithms are actually enabled */ #ifdef OPENSSL_NO_RC4 # undef TEST_ENG_OPENSSL_RC4 # undef TEST_ENG_OPENSSL_RC4_OTHERS # undef TEST_ENG_OPENSSL_RC4_P_INIT # undef TEST_ENG_OPENSSL_RC4_P_CIPHER #endif static int openssl_destroy(ENGINE *e); #ifdef TEST_ENG_OPENSSL_RC4 static int openssl_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); #endif #ifdef TEST_ENG_OPENSSL_SHA static int openssl_digests(ENGINE *e, const EVP_MD **digest, const int **nids, int nid); #endif #ifdef TEST_ENG_OPENSSL_PKEY static EVP_PKEY *openssl_load_privkey(ENGINE *eng, const char *key_id, UI_METHOD *ui_method, void *callback_data); #endif #ifdef TEST_ENG_OPENSSL_HMAC static int ossl_register_hmac_meth(void); static int ossl_pkey_meths(ENGINE *e, EVP_PKEY_METHOD **pmeth, const int **nids, int nid); #endif /* The constants used when creating the ENGINE */ static const char *engine_openssl_id = "openssl"; static const char *engine_openssl_name = "Software engine support"; /* * This internal function is used by ENGINE_openssl() and possibly by the * "dynamic" ENGINE support too */ static int bind_helper(ENGINE *e) { if (!ENGINE_set_id(e, engine_openssl_id) || !ENGINE_set_name(e, engine_openssl_name) || !ENGINE_set_destroy_function(e, openssl_destroy) #ifndef TEST_ENG_OPENSSL_NO_ALGORITHMS # ifndef OPENSSL_NO_RSA || !ENGINE_set_RSA(e, RSA_get_default_method()) # endif # ifndef OPENSSL_NO_DSA || !ENGINE_set_DSA(e, DSA_get_default_method()) # endif # ifndef OPENSSL_NO_EC || !ENGINE_set_EC(e, EC_KEY_OpenSSL()) # endif # ifndef OPENSSL_NO_DH || !ENGINE_set_DH(e, DH_get_default_method()) # endif || !ENGINE_set_RAND(e, RAND_OpenSSL()) # ifdef TEST_ENG_OPENSSL_RC4 || !ENGINE_set_ciphers(e, openssl_ciphers) # endif # ifdef TEST_ENG_OPENSSL_SHA || !ENGINE_set_digests(e, openssl_digests) # endif #endif #ifdef TEST_ENG_OPENSSL_PKEY || !ENGINE_set_load_privkey_function(e, openssl_load_privkey) #endif #ifdef TEST_ENG_OPENSSL_HMAC || !ossl_register_hmac_meth() || !ENGINE_set_pkey_meths(e, ossl_pkey_meths) #endif ) return 0; /* * If we add errors to this ENGINE, ensure the error handling is setup * here */ /* openssl_load_error_strings(); */ return 1; } static ENGINE *engine_openssl(void) { ENGINE *ret = ENGINE_new(); if (ret == NULL) return NULL; if (!bind_helper(ret)) { ENGINE_free(ret); return NULL; } return ret; } void engine_load_openssl_int(void) { ENGINE *toadd = engine_openssl(); if (!toadd) return; ENGINE_add(toadd); /* * If the "add" worked, it gets a structural reference. So either way, we * release our just-created reference. */ ENGINE_free(toadd); ERR_clear_error(); } /* * This stuff is needed if this ENGINE is being compiled into a * self-contained shared-library. */ #ifdef ENGINE_DYNAMIC_SUPPORT static int bind_fn(ENGINE *e, const char *id) { if (id && (strcmp(id, engine_openssl_id) != 0)) return 0; if (!bind_helper(e)) return 0; return 1; } IMPLEMENT_DYNAMIC_CHECK_FN() IMPLEMENT_DYNAMIC_BIND_FN(bind_fn) #endif /* ENGINE_DYNAMIC_SUPPORT */ #ifdef TEST_ENG_OPENSSL_RC4 /*- * This section of code compiles an "alternative implementation" of two modes of * RC4 into this ENGINE. The result is that EVP_CIPHER operation for "rc4" * should under normal circumstances go via this support rather than the default * EVP support. There are other symbols to tweak the testing; * TEST_ENC_OPENSSL_RC4_OTHERS - print a one line message to stderr each time * we're asked for a cipher we don't support (should not happen). * TEST_ENG_OPENSSL_RC4_P_INIT - print a one line message to stderr each time * the "init_key" handler is called. * TEST_ENG_OPENSSL_RC4_P_CIPHER - ditto for the "cipher" handler. */ # include # define TEST_RC4_KEY_SIZE 16 typedef struct { unsigned char key[TEST_RC4_KEY_SIZE]; RC4_KEY ks; } TEST_RC4_KEY; # define test(ctx) ((TEST_RC4_KEY *)EVP_CIPHER_CTX_get_cipher_data(ctx)) static int test_rc4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { # ifdef TEST_ENG_OPENSSL_RC4_P_INIT fprintf(stderr, "(TEST_ENG_OPENSSL_RC4) test_init_key() called\n"); # endif memcpy(&test(ctx)->key[0], key, EVP_CIPHER_CTX_key_length(ctx)); RC4_set_key(&test(ctx)->ks, EVP_CIPHER_CTX_key_length(ctx), test(ctx)->key); return 1; } static int test_rc4_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { # ifdef TEST_ENG_OPENSSL_RC4_P_CIPHER fprintf(stderr, "(TEST_ENG_OPENSSL_RC4) test_cipher() called\n"); # endif RC4(&test(ctx)->ks, inl, in, out); return 1; } static EVP_CIPHER *r4_cipher = NULL; static const EVP_CIPHER *test_r4_cipher(void) { if (r4_cipher == NULL) { EVP_CIPHER *cipher; if ((cipher = EVP_CIPHER_meth_new(NID_rc4, 1, TEST_RC4_KEY_SIZE)) == NULL || !EVP_CIPHER_meth_set_iv_length(cipher, 0) || !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_VARIABLE_LENGTH) || !EVP_CIPHER_meth_set_init(cipher, test_rc4_init_key) || !EVP_CIPHER_meth_set_do_cipher(cipher, test_rc4_cipher) || !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(TEST_RC4_KEY))) { EVP_CIPHER_meth_free(cipher); cipher = NULL; } r4_cipher = cipher; } return r4_cipher; } static void test_r4_cipher_destroy(void) { EVP_CIPHER_meth_free(r4_cipher); r4_cipher = NULL; } static EVP_CIPHER *r4_40_cipher = NULL; static const EVP_CIPHER *test_r4_40_cipher(void) { if (r4_40_cipher == NULL) { EVP_CIPHER *cipher; if ((cipher = EVP_CIPHER_meth_new(NID_rc4, 1, 5 /* 40 bits */)) == NULL || !EVP_CIPHER_meth_set_iv_length(cipher, 0) || !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_VARIABLE_LENGTH) || !EVP_CIPHER_meth_set_init(cipher, test_rc4_init_key) || !EVP_CIPHER_meth_set_do_cipher(cipher, test_rc4_cipher) || !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(TEST_RC4_KEY))) { EVP_CIPHER_meth_free(cipher); cipher = NULL; } r4_40_cipher = cipher; } return r4_40_cipher; } static void test_r4_40_cipher_destroy(void) { EVP_CIPHER_meth_free(r4_40_cipher); r4_40_cipher = NULL; } static int test_cipher_nids(const int **nids) { static int cipher_nids[4] = { 0, 0, 0, 0 }; static int pos = 0; static int init = 0; if (!init) { const EVP_CIPHER *cipher; if ((cipher = test_r4_cipher()) != NULL) cipher_nids[pos++] = EVP_CIPHER_nid(cipher); if ((cipher = test_r4_40_cipher()) != NULL) cipher_nids[pos++] = EVP_CIPHER_nid(cipher); cipher_nids[pos] = 0; init = 1; } *nids = cipher_nids; return pos; } static int openssl_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) { if (!cipher) { /* We are returning a list of supported nids */ return test_cipher_nids(nids); } /* We are being asked for a specific cipher */ if (nid == NID_rc4) *cipher = test_r4_cipher(); else if (nid == NID_rc4_40) *cipher = test_r4_40_cipher(); else { # ifdef TEST_ENG_OPENSSL_RC4_OTHERS fprintf(stderr, "(TEST_ENG_OPENSSL_RC4) returning NULL for " "nid %d\n", nid); # endif *cipher = NULL; return 0; } return 1; } #endif #ifdef TEST_ENG_OPENSSL_SHA /* Much the same sort of comment as for TEST_ENG_OPENSSL_RC4 */ # include static int test_sha1_init(EVP_MD_CTX *ctx) { # ifdef TEST_ENG_OPENSSL_SHA_P_INIT fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) test_sha1_init() called\n"); # endif return SHA1_Init(EVP_MD_CTX_md_data(ctx)); } static int test_sha1_update(EVP_MD_CTX *ctx, const void *data, size_t count) { # ifdef TEST_ENG_OPENSSL_SHA_P_UPDATE fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) test_sha1_update() called\n"); # endif return SHA1_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int test_sha1_final(EVP_MD_CTX *ctx, unsigned char *md) { # ifdef TEST_ENG_OPENSSL_SHA_P_FINAL fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) test_sha1_final() called\n"); # endif return SHA1_Final(md, EVP_MD_CTX_md_data(ctx)); } static EVP_MD *sha1_md = NULL; static const EVP_MD *test_sha_md(void) { if (sha1_md == NULL) { EVP_MD *md; if ((md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption)) == NULL || !EVP_MD_meth_set_result_size(md, SHA_DIGEST_LENGTH) || !EVP_MD_meth_set_input_blocksize(md, SHA_CBLOCK) || !EVP_MD_meth_set_app_datasize(md, sizeof(EVP_MD *) + sizeof(SHA_CTX)) || !EVP_MD_meth_set_flags(md, 0) || !EVP_MD_meth_set_init(md, test_sha1_init) || !EVP_MD_meth_set_update(md, test_sha1_update) || !EVP_MD_meth_set_final(md, test_sha1_final)) { EVP_MD_meth_free(md); md = NULL; } sha1_md = md; } return sha1_md; } static void test_sha_md_destroy(void) { EVP_MD_meth_free(sha1_md); sha1_md = NULL; } static int test_digest_nids(const int **nids) { static int digest_nids[2] = { 0, 0 }; static int pos = 0; static int init = 0; if (!init) { const EVP_MD *md; if ((md = test_sha_md()) != NULL) digest_nids[pos++] = EVP_MD_type(md); digest_nids[pos] = 0; init = 1; } *nids = digest_nids; return pos; } static int openssl_digests(ENGINE *e, const EVP_MD **digest, const int **nids, int nid) { if (!digest) { /* We are returning a list of supported nids */ return test_digest_nids(nids); } /* We are being asked for a specific digest */ if (nid == NID_sha1) *digest = test_sha_md(); else { # ifdef TEST_ENG_OPENSSL_SHA_OTHERS fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) returning NULL for " "nid %d\n", nid); # endif *digest = NULL; return 0; } return 1; } #endif #ifdef TEST_ENG_OPENSSL_PKEY static EVP_PKEY *openssl_load_privkey(ENGINE *eng, const char *key_id, UI_METHOD *ui_method, void *callback_data) { BIO *in; EVP_PKEY *key; fprintf(stderr, "(TEST_ENG_OPENSSL_PKEY)Loading Private key %s\n", key_id); in = BIO_new_file(key_id, "r"); if (!in) return NULL; key = PEM_read_bio_PrivateKey(in, NULL, 0, NULL); BIO_free(in); return key; } #endif #ifdef TEST_ENG_OPENSSL_HMAC /* * Experimental HMAC redirection implementation: mainly copied from * hm_pmeth.c */ /* HMAC pkey context structure */ typedef struct { const EVP_MD *md; /* MD for HMAC use */ ASN1_OCTET_STRING ktmp; /* Temp storage for key */ HMAC_CTX *ctx; } OSSL_HMAC_PKEY_CTX; static int ossl_hmac_init(EVP_PKEY_CTX *ctx) { OSSL_HMAC_PKEY_CTX *hctx; if ((hctx = OPENSSL_zalloc(sizeof(*hctx))) == NULL) { ENGINEerr(ENGINE_F_OSSL_HMAC_INIT, ERR_R_MALLOC_FAILURE); return 0; } hctx->ktmp.type = V_ASN1_OCTET_STRING; hctx->ctx = HMAC_CTX_new(); if (hctx->ctx == NULL) { OPENSSL_free(hctx); return 0; } EVP_PKEY_CTX_set_data(ctx, hctx); EVP_PKEY_CTX_set0_keygen_info(ctx, NULL, 0); # ifdef TEST_ENG_OPENSSL_HMAC_INIT fprintf(stderr, "(TEST_ENG_OPENSSL_HMAC) ossl_hmac_init() called\n"); # endif return 1; } static void ossl_hmac_cleanup(EVP_PKEY_CTX *ctx); static int ossl_hmac_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { OSSL_HMAC_PKEY_CTX *sctx, *dctx; /* allocate memory for dst->data and a new HMAC_CTX in dst->data->ctx */ if (!ossl_hmac_init(dst)) return 0; sctx = EVP_PKEY_CTX_get_data(src); dctx = EVP_PKEY_CTX_get_data(dst); dctx->md = sctx->md; if (!HMAC_CTX_copy(dctx->ctx, sctx->ctx)) goto err; if (sctx->ktmp.data) { if (!ASN1_OCTET_STRING_set(&dctx->ktmp, sctx->ktmp.data, sctx->ktmp.length)) goto err; } return 1; err: /* release HMAC_CTX in dst->data->ctx and memory allocated for dst->data */ ossl_hmac_cleanup(dst); return 0; } static void ossl_hmac_cleanup(EVP_PKEY_CTX *ctx) { OSSL_HMAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); if (hctx) { HMAC_CTX_free(hctx->ctx); OPENSSL_clear_free(hctx->ktmp.data, hctx->ktmp.length); OPENSSL_free(hctx); EVP_PKEY_CTX_set_data(ctx, NULL); } } static int ossl_hmac_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { ASN1_OCTET_STRING *hkey = NULL; OSSL_HMAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); if (!hctx->ktmp.data) return 0; hkey = ASN1_OCTET_STRING_dup(&hctx->ktmp); if (!hkey) return 0; EVP_PKEY_assign(pkey, EVP_PKEY_HMAC, hkey); return 1; } static int ossl_int_update(EVP_MD_CTX *ctx, const void *data, size_t count) { OSSL_HMAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(EVP_MD_CTX_pkey_ctx(ctx)); if (!HMAC_Update(hctx->ctx, data, count)) return 0; return 1; } static int ossl_hmac_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) { EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT); EVP_MD_CTX_set_update_fn(mctx, ossl_int_update); return 1; } static int ossl_hmac_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx) { unsigned int hlen; OSSL_HMAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); int l = EVP_MD_CTX_size(mctx); if (l < 0) return 0; *siglen = l; if (!sig) return 1; if (!HMAC_Final(hctx->ctx, sig, &hlen)) return 0; *siglen = (size_t)hlen; return 1; } static int ossl_hmac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { OSSL_HMAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); EVP_PKEY *pk; ASN1_OCTET_STRING *key; switch (type) { case EVP_PKEY_CTRL_SET_MAC_KEY: if ((!p2 && p1 > 0) || (p1 < -1)) return 0; if (!ASN1_OCTET_STRING_set(&hctx->ktmp, p2, p1)) return 0; break; case EVP_PKEY_CTRL_MD: hctx->md = p2; break; case EVP_PKEY_CTRL_DIGESTINIT: pk = EVP_PKEY_CTX_get0_pkey(ctx); key = EVP_PKEY_get0(pk); if (!HMAC_Init_ex(hctx->ctx, key->data, key->length, hctx->md, NULL)) return 0; break; default: return -2; } return 1; } static int ossl_hmac_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (!value) { return 0; } if (strcmp(type, "key") == 0) { void *p = (void *)value; return ossl_hmac_ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, -1, p); } if (strcmp(type, "hexkey") == 0) { unsigned char *key; int r; long keylen; key = OPENSSL_hexstr2buf(value, &keylen); if (!key) return 0; r = ossl_hmac_ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, keylen, key); OPENSSL_free(key); return r; } return -2; } static EVP_PKEY_METHOD *ossl_hmac_meth; static int ossl_register_hmac_meth(void) { EVP_PKEY_METHOD *meth; meth = EVP_PKEY_meth_new(EVP_PKEY_HMAC, 0); if (meth == NULL) return 0; EVP_PKEY_meth_set_init(meth, ossl_hmac_init); EVP_PKEY_meth_set_copy(meth, ossl_hmac_copy); EVP_PKEY_meth_set_cleanup(meth, ossl_hmac_cleanup); EVP_PKEY_meth_set_keygen(meth, 0, ossl_hmac_keygen); EVP_PKEY_meth_set_signctx(meth, ossl_hmac_signctx_init, ossl_hmac_signctx); EVP_PKEY_meth_set_ctrl(meth, ossl_hmac_ctrl, ossl_hmac_ctrl_str); ossl_hmac_meth = meth; return 1; } static int ossl_pkey_meths(ENGINE *e, EVP_PKEY_METHOD **pmeth, const int **nids, int nid) { static int ossl_pkey_nids[] = { EVP_PKEY_HMAC, 0 }; if (!pmeth) { *nids = ossl_pkey_nids; return 1; } if (nid == EVP_PKEY_HMAC) { *pmeth = ossl_hmac_meth; return 1; } *pmeth = NULL; return 0; } #endif int openssl_destroy(ENGINE *e) { test_sha_md_destroy(); #ifdef TEST_ENG_OPENSSL_RC4 test_r4_cipher_destroy(); test_r4_40_cipher_destroy(); #endif return 1; } openssl-1.1.1f/crypto/engine/eng_pkey.c000066400000000000000000000103211364063235100200750ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" /* Basic get/set stuff */ int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f) { e->load_privkey = loadpriv_f; return 1; } int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f) { e->load_pubkey = loadpub_f; return 1; } int ENGINE_set_load_ssl_client_cert_function(ENGINE *e, ENGINE_SSL_CLIENT_CERT_PTR loadssl_f) { e->load_ssl_client_cert = loadssl_f; return 1; } ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e) { return e->load_privkey; } ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e) { return e->load_pubkey; } ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE *e) { return e->load_ssl_client_cert; } /* API functions to load public/private keys */ EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id, UI_METHOD *ui_method, void *callback_data) { EVP_PKEY *pkey; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); if (e->funct_ref == 0) { CRYPTO_THREAD_unlock(global_engine_lock); ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY, ENGINE_R_NOT_INITIALISED); return 0; } CRYPTO_THREAD_unlock(global_engine_lock); if (!e->load_privkey) { ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY, ENGINE_R_NO_LOAD_FUNCTION); return 0; } pkey = e->load_privkey(e, key_id, ui_method, callback_data); if (!pkey) { ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY, ENGINE_R_FAILED_LOADING_PRIVATE_KEY); return 0; } return pkey; } EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id, UI_METHOD *ui_method, void *callback_data) { EVP_PKEY *pkey; if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); if (e->funct_ref == 0) { CRYPTO_THREAD_unlock(global_engine_lock); ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY, ENGINE_R_NOT_INITIALISED); return 0; } CRYPTO_THREAD_unlock(global_engine_lock); if (!e->load_pubkey) { ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY, ENGINE_R_NO_LOAD_FUNCTION); return 0; } pkey = e->load_pubkey(e, key_id, ui_method, callback_data); if (!pkey) { ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY, ENGINE_R_FAILED_LOADING_PUBLIC_KEY); return 0; } return pkey; } int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s, STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **ppkey, STACK_OF(X509) **pother, UI_METHOD *ui_method, void *callback_data) { if (e == NULL) { ENGINEerr(ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT, ERR_R_PASSED_NULL_PARAMETER); return 0; } CRYPTO_THREAD_write_lock(global_engine_lock); if (e->funct_ref == 0) { CRYPTO_THREAD_unlock(global_engine_lock); ENGINEerr(ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT, ENGINE_R_NOT_INITIALISED); return 0; } CRYPTO_THREAD_unlock(global_engine_lock); if (!e->load_ssl_client_cert) { ENGINEerr(ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT, ENGINE_R_NO_LOAD_FUNCTION); return 0; } return e->load_ssl_client_cert(e, s, ca_dn, pcert, ppkey, pother, ui_method, callback_data); } openssl-1.1.1f/crypto/engine/eng_rdrand.c000066400000000000000000000044021364063235100204020ustar00rootroot00000000000000/* * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "crypto/engine.h" #include #include #include #if (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ) size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len); static int get_random_bytes(unsigned char *buf, int num) { if (num < 0) { return 0; } return (size_t)num == OPENSSL_ia32_rdrand_bytes(buf, (size_t)num); } static int random_status(void) { return 1; } static RAND_METHOD rdrand_meth = { NULL, /* seed */ get_random_bytes, NULL, /* cleanup */ NULL, /* add */ get_random_bytes, random_status, }; static int rdrand_init(ENGINE *e) { return 1; } static const char *engine_e_rdrand_id = "rdrand"; static const char *engine_e_rdrand_name = "Intel RDRAND engine"; static int bind_helper(ENGINE *e) { if (!ENGINE_set_id(e, engine_e_rdrand_id) || !ENGINE_set_name(e, engine_e_rdrand_name) || !ENGINE_set_flags(e, ENGINE_FLAGS_NO_REGISTER_ALL) || !ENGINE_set_init_function(e, rdrand_init) || !ENGINE_set_RAND(e, &rdrand_meth)) return 0; return 1; } static ENGINE *ENGINE_rdrand(void) { ENGINE *ret = ENGINE_new(); if (ret == NULL) return NULL; if (!bind_helper(ret)) { ENGINE_free(ret); return NULL; } return ret; } void engine_load_rdrand_int(void) { extern unsigned int OPENSSL_ia32cap_P[]; if (OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) { ENGINE *toadd = ENGINE_rdrand(); if (!toadd) return; ENGINE_add(toadd); ENGINE_free(toadd); ERR_clear_error(); } } #else void engine_load_rdrand_int(void) { } #endif openssl-1.1.1f/crypto/engine/eng_table.c000066400000000000000000000213311364063235100202170ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include "eng_local.h" /* The type of the items in the table */ struct st_engine_pile { /* The 'nid' of this algorithm/mode */ int nid; /* ENGINEs that implement this algorithm/mode. */ STACK_OF(ENGINE) *sk; /* The default ENGINE to perform this algorithm/mode. */ ENGINE *funct; /* * Zero if 'sk' is newer than the cached 'funct', non-zero otherwise */ int uptodate; }; /* The type exposed in eng_local.h */ struct st_engine_table { LHASH_OF(ENGINE_PILE) piles; }; /* ENGINE_TABLE */ typedef struct st_engine_pile_doall { engine_table_doall_cb *cb; void *arg; } ENGINE_PILE_DOALL; /* Global flags (ENGINE_TABLE_FLAG_***). */ static unsigned int table_flags = 0; /* API function manipulating 'table_flags' */ unsigned int ENGINE_get_table_flags(void) { return table_flags; } void ENGINE_set_table_flags(unsigned int flags) { table_flags = flags; } /* Internal functions for the "piles" hash table */ static unsigned long engine_pile_hash(const ENGINE_PILE *c) { return c->nid; } static int engine_pile_cmp(const ENGINE_PILE *a, const ENGINE_PILE *b) { return a->nid - b->nid; } static int int_table_check(ENGINE_TABLE **t, int create) { LHASH_OF(ENGINE_PILE) *lh; if (*t) return 1; if (!create) return 0; if ((lh = lh_ENGINE_PILE_new(engine_pile_hash, engine_pile_cmp)) == NULL) return 0; *t = (ENGINE_TABLE *)lh; return 1; } /* * Privately exposed (via eng_local.h) functions for adding and/or removing * ENGINEs from the implementation table */ int engine_table_register(ENGINE_TABLE **table, ENGINE_CLEANUP_CB *cleanup, ENGINE *e, const int *nids, int num_nids, int setdefault) { int ret = 0, added = 0; ENGINE_PILE tmplate, *fnd; CRYPTO_THREAD_write_lock(global_engine_lock); if (!(*table)) added = 1; if (!int_table_check(table, 1)) goto end; if (added) /* The cleanup callback needs to be added */ engine_cleanup_add_first(cleanup); while (num_nids--) { tmplate.nid = *nids; fnd = lh_ENGINE_PILE_retrieve(&(*table)->piles, &tmplate); if (!fnd) { fnd = OPENSSL_malloc(sizeof(*fnd)); if (fnd == NULL) goto end; fnd->uptodate = 1; fnd->nid = *nids; fnd->sk = sk_ENGINE_new_null(); if (!fnd->sk) { OPENSSL_free(fnd); goto end; } fnd->funct = NULL; (void)lh_ENGINE_PILE_insert(&(*table)->piles, fnd); if (lh_ENGINE_PILE_retrieve(&(*table)->piles, &tmplate) != fnd) { sk_ENGINE_free(fnd->sk); OPENSSL_free(fnd); goto end; } } /* A registration shouldn't add duplicate entries */ (void)sk_ENGINE_delete_ptr(fnd->sk, e); /* * if 'setdefault', this ENGINE goes to the head of the list */ if (!sk_ENGINE_push(fnd->sk, e)) goto end; /* "touch" this ENGINE_PILE */ fnd->uptodate = 0; if (setdefault) { if (!engine_unlocked_init(e)) { ENGINEerr(ENGINE_F_ENGINE_TABLE_REGISTER, ENGINE_R_INIT_FAILED); goto end; } if (fnd->funct) engine_unlocked_finish(fnd->funct, 0); fnd->funct = e; fnd->uptodate = 1; } nids++; } ret = 1; end: CRYPTO_THREAD_unlock(global_engine_lock); return ret; } static void int_unregister_cb(ENGINE_PILE *pile, ENGINE *e) { int n; /* Iterate the 'c->sk' stack removing any occurrence of 'e' */ while ((n = sk_ENGINE_find(pile->sk, e)) >= 0) { (void)sk_ENGINE_delete(pile->sk, n); pile->uptodate = 0; } if (pile->funct == e) { engine_unlocked_finish(e, 0); pile->funct = NULL; } } IMPLEMENT_LHASH_DOALL_ARG(ENGINE_PILE, ENGINE); void engine_table_unregister(ENGINE_TABLE **table, ENGINE *e) { CRYPTO_THREAD_write_lock(global_engine_lock); if (int_table_check(table, 0)) lh_ENGINE_PILE_doall_ENGINE(&(*table)->piles, int_unregister_cb, e); CRYPTO_THREAD_unlock(global_engine_lock); } static void int_cleanup_cb_doall(ENGINE_PILE *p) { if (!p) return; sk_ENGINE_free(p->sk); if (p->funct) engine_unlocked_finish(p->funct, 0); OPENSSL_free(p); } void engine_table_cleanup(ENGINE_TABLE **table) { CRYPTO_THREAD_write_lock(global_engine_lock); if (*table) { lh_ENGINE_PILE_doall(&(*table)->piles, int_cleanup_cb_doall); lh_ENGINE_PILE_free(&(*table)->piles); *table = NULL; } CRYPTO_THREAD_unlock(global_engine_lock); } /* return a functional reference for a given 'nid' */ #ifndef ENGINE_TABLE_DEBUG ENGINE *engine_table_select(ENGINE_TABLE **table, int nid) #else ENGINE *engine_table_select_tmp(ENGINE_TABLE **table, int nid, const char *f, int l) #endif { ENGINE *ret = NULL; ENGINE_PILE tmplate, *fnd = NULL; int initres, loop = 0; if (!(*table)) { #ifdef ENGINE_TABLE_DEBUG fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, nothing " "registered!\n", f, l, nid); #endif return NULL; } ERR_set_mark(); CRYPTO_THREAD_write_lock(global_engine_lock); /* * Check again inside the lock otherwise we could race against cleanup * operations. But don't worry about a fprintf(stderr). */ if (!int_table_check(table, 0)) goto end; tmplate.nid = nid; fnd = lh_ENGINE_PILE_retrieve(&(*table)->piles, &tmplate); if (!fnd) goto end; if (fnd->funct && engine_unlocked_init(fnd->funct)) { #ifdef ENGINE_TABLE_DEBUG fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, using " "ENGINE '%s' cached\n", f, l, nid, fnd->funct->id); #endif ret = fnd->funct; goto end; } if (fnd->uptodate) { ret = fnd->funct; goto end; } trynext: ret = sk_ENGINE_value(fnd->sk, loop++); if (!ret) { #ifdef ENGINE_TABLE_DEBUG fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, no " "registered implementations would initialise\n", f, l, nid); #endif goto end; } /* Try to initialise the ENGINE? */ if ((ret->funct_ref > 0) || !(table_flags & ENGINE_TABLE_FLAG_NOINIT)) initres = engine_unlocked_init(ret); else initres = 0; if (initres) { /* Update 'funct' */ if ((fnd->funct != ret) && engine_unlocked_init(ret)) { /* If there was a previous default we release it. */ if (fnd->funct) engine_unlocked_finish(fnd->funct, 0); fnd->funct = ret; #ifdef ENGINE_TABLE_DEBUG fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, " "setting default to '%s'\n", f, l, nid, ret->id); #endif } #ifdef ENGINE_TABLE_DEBUG fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, using " "newly initialised '%s'\n", f, l, nid, ret->id); #endif goto end; } goto trynext; end: /* * If it failed, it is unlikely to succeed again until some future * registrations have taken place. In all cases, we cache. */ if (fnd) fnd->uptodate = 1; #ifdef ENGINE_TABLE_DEBUG if (ret) fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, caching " "ENGINE '%s'\n", f, l, nid, ret->id); else fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, caching " "'no matching ENGINE'\n", f, l, nid); #endif CRYPTO_THREAD_unlock(global_engine_lock); /* * Whatever happened, any failed init()s are not failures in this * context, so clear our error state. */ ERR_pop_to_mark(); return ret; } /* Table enumeration */ static void int_dall(const ENGINE_PILE *pile, ENGINE_PILE_DOALL *dall) { dall->cb(pile->nid, pile->sk, pile->funct, dall->arg); } IMPLEMENT_LHASH_DOALL_ARG_CONST(ENGINE_PILE, ENGINE_PILE_DOALL); void engine_table_doall(ENGINE_TABLE *table, engine_table_doall_cb *cb, void *arg) { ENGINE_PILE_DOALL dall; dall.cb = cb; dall.arg = arg; if (table) lh_ENGINE_PILE_doall_ENGINE_PILE_DOALL(&table->piles, int_dall, &dall); } openssl-1.1.1f/crypto/engine/tb_asnmth.c000066400000000000000000000140551364063235100202630ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "eng_local.h" #include #include "crypto/asn1.h" /* * If this symbol is defined then ENGINE_get_pkey_asn1_meth_engine(), the * function that is used by EVP to hook in pkey_asn1_meth code and cache * defaults (etc), will display brief debugging summaries to stderr with the * 'nid'. */ /* #define ENGINE_PKEY_ASN1_METH_DEBUG */ static ENGINE_TABLE *pkey_asn1_meth_table = NULL; void ENGINE_unregister_pkey_asn1_meths(ENGINE *e) { engine_table_unregister(&pkey_asn1_meth_table, e); } static void engine_unregister_all_pkey_asn1_meths(void) { engine_table_cleanup(&pkey_asn1_meth_table); } int ENGINE_register_pkey_asn1_meths(ENGINE *e) { if (e->pkey_asn1_meths) { const int *nids; int num_nids = e->pkey_asn1_meths(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&pkey_asn1_meth_table, engine_unregister_all_pkey_asn1_meths, e, nids, num_nids, 0); } return 1; } void ENGINE_register_all_pkey_asn1_meths(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_pkey_asn1_meths(e); } int ENGINE_set_default_pkey_asn1_meths(ENGINE *e) { if (e->pkey_asn1_meths) { const int *nids; int num_nids = e->pkey_asn1_meths(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&pkey_asn1_meth_table, engine_unregister_all_pkey_asn1_meths, e, nids, num_nids, 1); } return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references) for a given pkey_asn1_meth 'nid' */ ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid) { return engine_table_select(&pkey_asn1_meth_table, nid); } /* * Obtains a pkey_asn1_meth implementation from an ENGINE functional * reference */ const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid) { EVP_PKEY_ASN1_METHOD *ret; ENGINE_PKEY_ASN1_METHS_PTR fn = ENGINE_get_pkey_asn1_meths(e); if (!fn || !fn(e, &ret, NULL, nid)) { ENGINEerr(ENGINE_F_ENGINE_GET_PKEY_ASN1_METH, ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD); return NULL; } return ret; } /* Gets the pkey_asn1_meth callback from an ENGINE structure */ ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e) { return e->pkey_asn1_meths; } /* Sets the pkey_asn1_meth callback in an ENGINE structure */ int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f) { e->pkey_asn1_meths = f; return 1; } /* * Internal function to free up EVP_PKEY_ASN1_METHOD structures before an * ENGINE is destroyed */ void engine_pkey_asn1_meths_free(ENGINE *e) { int i; EVP_PKEY_ASN1_METHOD *pkm; if (e->pkey_asn1_meths) { const int *pknids; int npknids; npknids = e->pkey_asn1_meths(e, NULL, &pknids, 0); for (i = 0; i < npknids; i++) { if (e->pkey_asn1_meths(e, &pkm, NULL, pknids[i])) { EVP_PKEY_asn1_free(pkm); } } } } /* * Find a method based on a string. This does a linear search through all * implemented algorithms. This is OK in practice because only a small number * of algorithms are likely to be implemented in an engine and it is not used * for speed critical operations. */ const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e, const char *str, int len) { int i, nidcount; const int *nids; EVP_PKEY_ASN1_METHOD *ameth; if (!e->pkey_asn1_meths) return NULL; if (len == -1) len = strlen(str); nidcount = e->pkey_asn1_meths(e, NULL, &nids, 0); for (i = 0; i < nidcount; i++) { e->pkey_asn1_meths(e, &ameth, NULL, nids[i]); if (ameth != NULL && ((int)strlen(ameth->pem_str) == len) && strncasecmp(ameth->pem_str, str, len) == 0) return ameth; } return NULL; } typedef struct { ENGINE *e; const EVP_PKEY_ASN1_METHOD *ameth; const char *str; int len; } ENGINE_FIND_STR; static void look_str_cb(int nid, STACK_OF(ENGINE) *sk, ENGINE *def, void *arg) { ENGINE_FIND_STR *lk = arg; int i; if (lk->ameth) return; for (i = 0; i < sk_ENGINE_num(sk); i++) { ENGINE *e = sk_ENGINE_value(sk, i); EVP_PKEY_ASN1_METHOD *ameth; e->pkey_asn1_meths(e, &ameth, NULL, nid); if (ameth != NULL && ((int)strlen(ameth->pem_str) == lk->len) && strncasecmp(ameth->pem_str, lk->str, lk->len) == 0) { lk->e = e; lk->ameth = ameth; return; } } } const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe, const char *str, int len) { ENGINE_FIND_STR fstr; fstr.e = NULL; fstr.ameth = NULL; fstr.str = str; fstr.len = len; if (!RUN_ONCE(&engine_lock_init, do_engine_lock_init)) { ENGINEerr(ENGINE_F_ENGINE_PKEY_ASN1_FIND_STR, ERR_R_MALLOC_FAILURE); return NULL; } CRYPTO_THREAD_write_lock(global_engine_lock); engine_table_doall(pkey_asn1_meth_table, look_str_cb, &fstr); /* If found obtain a structural reference to engine */ if (fstr.e) { fstr.e->struct_ref++; engine_ref_debug(fstr.e, 0, 1); } *pe = fstr.e; CRYPTO_THREAD_unlock(global_engine_lock); return fstr.ameth; } openssl-1.1.1f/crypto/engine/tb_cipher.c000066400000000000000000000046541364063235100202470ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" static ENGINE_TABLE *cipher_table = NULL; void ENGINE_unregister_ciphers(ENGINE *e) { engine_table_unregister(&cipher_table, e); } static void engine_unregister_all_ciphers(void) { engine_table_cleanup(&cipher_table); } int ENGINE_register_ciphers(ENGINE *e) { if (e->ciphers) { const int *nids; int num_nids = e->ciphers(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&cipher_table, engine_unregister_all_ciphers, e, nids, num_nids, 0); } return 1; } void ENGINE_register_all_ciphers(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_ciphers(e); } int ENGINE_set_default_ciphers(ENGINE *e) { if (e->ciphers) { const int *nids; int num_nids = e->ciphers(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&cipher_table, engine_unregister_all_ciphers, e, nids, num_nids, 1); } return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references) for a given cipher 'nid' */ ENGINE *ENGINE_get_cipher_engine(int nid) { return engine_table_select(&cipher_table, nid); } /* Obtains a cipher implementation from an ENGINE functional reference */ const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid) { const EVP_CIPHER *ret; ENGINE_CIPHERS_PTR fn = ENGINE_get_ciphers(e); if (!fn || !fn(e, &ret, NULL, nid)) { ENGINEerr(ENGINE_F_ENGINE_GET_CIPHER, ENGINE_R_UNIMPLEMENTED_CIPHER); return NULL; } return ret; } /* Gets the cipher callback from an ENGINE structure */ ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e) { return e->ciphers; } /* Sets the cipher callback in an ENGINE structure */ int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f) { e->ciphers = f; return 1; } openssl-1.1.1f/crypto/engine/tb_dh.c000066400000000000000000000034161364063235100173630ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" static ENGINE_TABLE *dh_table = NULL; static const int dummy_nid = 1; void ENGINE_unregister_DH(ENGINE *e) { engine_table_unregister(&dh_table, e); } static void engine_unregister_all_DH(void) { engine_table_cleanup(&dh_table); } int ENGINE_register_DH(ENGINE *e) { if (e->dh_meth) return engine_table_register(&dh_table, engine_unregister_all_DH, e, &dummy_nid, 1, 0); return 1; } void ENGINE_register_all_DH(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_DH(e); } int ENGINE_set_default_DH(ENGINE *e) { if (e->dh_meth) return engine_table_register(&dh_table, engine_unregister_all_DH, e, &dummy_nid, 1, 1); return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references). */ ENGINE *ENGINE_get_default_DH(void) { return engine_table_select(&dh_table, dummy_nid); } /* Obtains an DH implementation from an ENGINE functional reference */ const DH_METHOD *ENGINE_get_DH(const ENGINE *e) { return e->dh_meth; } /* Sets an DH implementation in an ENGINE structure */ int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth) { e->dh_meth = dh_meth; return 1; } openssl-1.1.1f/crypto/engine/tb_digest.c000066400000000000000000000046441364063235100202530ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" static ENGINE_TABLE *digest_table = NULL; void ENGINE_unregister_digests(ENGINE *e) { engine_table_unregister(&digest_table, e); } static void engine_unregister_all_digests(void) { engine_table_cleanup(&digest_table); } int ENGINE_register_digests(ENGINE *e) { if (e->digests) { const int *nids; int num_nids = e->digests(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&digest_table, engine_unregister_all_digests, e, nids, num_nids, 0); } return 1; } void ENGINE_register_all_digests(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_digests(e); } int ENGINE_set_default_digests(ENGINE *e) { if (e->digests) { const int *nids; int num_nids = e->digests(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&digest_table, engine_unregister_all_digests, e, nids, num_nids, 1); } return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references) for a given digest 'nid' */ ENGINE *ENGINE_get_digest_engine(int nid) { return engine_table_select(&digest_table, nid); } /* Obtains a digest implementation from an ENGINE functional reference */ const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid) { const EVP_MD *ret; ENGINE_DIGESTS_PTR fn = ENGINE_get_digests(e); if (!fn || !fn(e, &ret, NULL, nid)) { ENGINEerr(ENGINE_F_ENGINE_GET_DIGEST, ENGINE_R_UNIMPLEMENTED_DIGEST); return NULL; } return ret; } /* Gets the digest callback from an ENGINE structure */ ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e) { return e->digests; } /* Sets the digest callback in an ENGINE structure */ int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f) { e->digests = f; return 1; } openssl-1.1.1f/crypto/engine/tb_dsa.c000066400000000000000000000034511364063235100175360ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" static ENGINE_TABLE *dsa_table = NULL; static const int dummy_nid = 1; void ENGINE_unregister_DSA(ENGINE *e) { engine_table_unregister(&dsa_table, e); } static void engine_unregister_all_DSA(void) { engine_table_cleanup(&dsa_table); } int ENGINE_register_DSA(ENGINE *e) { if (e->dsa_meth) return engine_table_register(&dsa_table, engine_unregister_all_DSA, e, &dummy_nid, 1, 0); return 1; } void ENGINE_register_all_DSA(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_DSA(e); } int ENGINE_set_default_DSA(ENGINE *e) { if (e->dsa_meth) return engine_table_register(&dsa_table, engine_unregister_all_DSA, e, &dummy_nid, 1, 1); return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references). */ ENGINE *ENGINE_get_default_DSA(void) { return engine_table_select(&dsa_table, dummy_nid); } /* Obtains an DSA implementation from an ENGINE functional reference */ const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e) { return e->dsa_meth; } /* Sets an DSA implementation in an ENGINE structure */ int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth) { e->dsa_meth = dsa_meth; return 1; } openssl-1.1.1f/crypto/engine/tb_eckey.c000066400000000000000000000034561364063235100200740ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" static ENGINE_TABLE *dh_table = NULL; static const int dummy_nid = 1; void ENGINE_unregister_EC(ENGINE *e) { engine_table_unregister(&dh_table, e); } static void engine_unregister_all_EC(void) { engine_table_cleanup(&dh_table); } int ENGINE_register_EC(ENGINE *e) { if (e->ec_meth != NULL) return engine_table_register(&dh_table, engine_unregister_all_EC, e, &dummy_nid, 1, 0); return 1; } void ENGINE_register_all_EC(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_EC(e); } int ENGINE_set_default_EC(ENGINE *e) { if (e->ec_meth != NULL) return engine_table_register(&dh_table, engine_unregister_all_EC, e, &dummy_nid, 1, 1); return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references). */ ENGINE *ENGINE_get_default_EC(void) { return engine_table_select(&dh_table, dummy_nid); } /* Obtains an EC_KEY implementation from an ENGINE functional reference */ const EC_KEY_METHOD *ENGINE_get_EC(const ENGINE *e) { return e->ec_meth; } /* Sets an EC_KEY implementation in an ENGINE structure */ int ENGINE_set_EC(ENGINE *e, const EC_KEY_METHOD *ec_meth) { e->ec_meth = ec_meth; return 1; } openssl-1.1.1f/crypto/engine/tb_pkmeth.c000066400000000000000000000060471364063235100202630ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" #include static ENGINE_TABLE *pkey_meth_table = NULL; void ENGINE_unregister_pkey_meths(ENGINE *e) { engine_table_unregister(&pkey_meth_table, e); } static void engine_unregister_all_pkey_meths(void) { engine_table_cleanup(&pkey_meth_table); } int ENGINE_register_pkey_meths(ENGINE *e) { if (e->pkey_meths) { const int *nids; int num_nids = e->pkey_meths(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&pkey_meth_table, engine_unregister_all_pkey_meths, e, nids, num_nids, 0); } return 1; } void ENGINE_register_all_pkey_meths(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_pkey_meths(e); } int ENGINE_set_default_pkey_meths(ENGINE *e) { if (e->pkey_meths) { const int *nids; int num_nids = e->pkey_meths(e, NULL, &nids, 0); if (num_nids > 0) return engine_table_register(&pkey_meth_table, engine_unregister_all_pkey_meths, e, nids, num_nids, 1); } return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references) for a given pkey_meth 'nid' */ ENGINE *ENGINE_get_pkey_meth_engine(int nid) { return engine_table_select(&pkey_meth_table, nid); } /* Obtains a pkey_meth implementation from an ENGINE functional reference */ const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid) { EVP_PKEY_METHOD *ret; ENGINE_PKEY_METHS_PTR fn = ENGINE_get_pkey_meths(e); if (!fn || !fn(e, &ret, NULL, nid)) { ENGINEerr(ENGINE_F_ENGINE_GET_PKEY_METH, ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD); return NULL; } return ret; } /* Gets the pkey_meth callback from an ENGINE structure */ ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e) { return e->pkey_meths; } /* Sets the pkey_meth callback in an ENGINE structure */ int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f) { e->pkey_meths = f; return 1; } /* * Internal function to free up EVP_PKEY_METHOD structures before an ENGINE * is destroyed */ void engine_pkey_meths_free(ENGINE *e) { int i; EVP_PKEY_METHOD *pkm; if (e->pkey_meths) { const int *pknids; int npknids; npknids = e->pkey_meths(e, NULL, &pknids, 0); for (i = 0; i < npknids; i++) { if (e->pkey_meths(e, &pkm, NULL, pknids[i])) { EVP_PKEY_meth_free(pkm); } } } } openssl-1.1.1f/crypto/engine/tb_rand.c000066400000000000000000000035041364063235100177120ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" static ENGINE_TABLE *rand_table = NULL; static const int dummy_nid = 1; void ENGINE_unregister_RAND(ENGINE *e) { engine_table_unregister(&rand_table, e); } static void engine_unregister_all_RAND(void) { engine_table_cleanup(&rand_table); } int ENGINE_register_RAND(ENGINE *e) { if (e->rand_meth) return engine_table_register(&rand_table, engine_unregister_all_RAND, e, &dummy_nid, 1, 0); return 1; } void ENGINE_register_all_RAND(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_RAND(e); } int ENGINE_set_default_RAND(ENGINE *e) { if (e->rand_meth) return engine_table_register(&rand_table, engine_unregister_all_RAND, e, &dummy_nid, 1, 1); return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references). */ ENGINE *ENGINE_get_default_RAND(void) { return engine_table_select(&rand_table, dummy_nid); } /* Obtains an RAND implementation from an ENGINE functional reference */ const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e) { return e->rand_meth; } /* Sets an RAND implementation in an ENGINE structure */ int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth) { e->rand_meth = rand_meth; return 1; } openssl-1.1.1f/crypto/engine/tb_rsa.c000066400000000000000000000034511364063235100175540ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "eng_local.h" static ENGINE_TABLE *rsa_table = NULL; static const int dummy_nid = 1; void ENGINE_unregister_RSA(ENGINE *e) { engine_table_unregister(&rsa_table, e); } static void engine_unregister_all_RSA(void) { engine_table_cleanup(&rsa_table); } int ENGINE_register_RSA(ENGINE *e) { if (e->rsa_meth) return engine_table_register(&rsa_table, engine_unregister_all_RSA, e, &dummy_nid, 1, 0); return 1; } void ENGINE_register_all_RSA(void) { ENGINE *e; for (e = ENGINE_get_first(); e; e = ENGINE_get_next(e)) ENGINE_register_RSA(e); } int ENGINE_set_default_RSA(ENGINE *e) { if (e->rsa_meth) return engine_table_register(&rsa_table, engine_unregister_all_RSA, e, &dummy_nid, 1, 1); return 1; } /* * Exposed API function to get a functional reference from the implementation * table (ie. try to get a functional reference from the tabled structural * references). */ ENGINE *ENGINE_get_default_RSA(void) { return engine_table_select(&rsa_table, dummy_nid); } /* Obtains an RSA implementation from an ENGINE functional reference */ const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e) { return e->rsa_meth; } /* Sets an RSA implementation in an ENGINE structure */ int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth) { e->rsa_meth = rsa_meth; return 1; } openssl-1.1.1f/crypto/err/000077500000000000000000000000001364063235100154565ustar00rootroot00000000000000openssl-1.1.1f/crypto/err/README000066400000000000000000000025641364063235100163450ustar00rootroot00000000000000Adding new libraries -------------------- When adding a new sub-library to OpenSSL, assign it a library number ERR_LIB_XXX, define a macro XXXerr() (both in err.h), add its name to ERR_str_libraries[] (in crypto/err/err.c), and add ERR_load_XXX_strings() to the ERR_load_crypto_strings() function (in crypto/err/err_all.c). Finally, add an entry: L XXX xxx.h xxx_err.c to crypto/err/openssl.ec, and add xxx_err.c to the Makefile. Running make errors will then generate a file xxx_err.c, and add all error codes used in the library to xxx.h. Additionally the library include file must have a certain form. Typically it will initially look like this: #ifndef HEADER_XXX_H #define HEADER_XXX_H #ifdef __cplusplus extern "C" { #endif /* Include files */ #include #include /* Macros, structures and function prototypes */ /* BEGIN ERROR CODES */ The BEGIN ERROR CODES sequence is used by the error code generation script as the point to place new error codes, any text after this point will be overwritten when make errors is run. The closing #endif etc will be automatically added by the script. The generated C error code file xxx_err.c will load the header files stdio.h, openssl/err.h and openssl/xxx.h so the header file must load any additional header files containing any definitions it uses. openssl-1.1.1f/crypto/err/build.info000066400000000000000000000001211364063235100174240ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ err.c err_all.c err_prn.c openssl-1.1.1f/crypto/err/err.c000066400000000000000000000626551364063235100164300ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "crypto/cryptlib.h" #include "internal/err.h" #include "crypto/err.h" #include #include #include #include #include #include "internal/thread_once.h" #include "crypto/ctype.h" #include "internal/constant_time.h" #include "e_os.h" static int err_load_strings(const ERR_STRING_DATA *str); static void ERR_STATE_free(ERR_STATE *s); #ifndef OPENSSL_NO_ERR static ERR_STRING_DATA ERR_str_libraries[] = { {ERR_PACK(ERR_LIB_NONE, 0, 0), "unknown library"}, {ERR_PACK(ERR_LIB_SYS, 0, 0), "system library"}, {ERR_PACK(ERR_LIB_BN, 0, 0), "bignum routines"}, {ERR_PACK(ERR_LIB_RSA, 0, 0), "rsa routines"}, {ERR_PACK(ERR_LIB_DH, 0, 0), "Diffie-Hellman routines"}, {ERR_PACK(ERR_LIB_EVP, 0, 0), "digital envelope routines"}, {ERR_PACK(ERR_LIB_BUF, 0, 0), "memory buffer routines"}, {ERR_PACK(ERR_LIB_OBJ, 0, 0), "object identifier routines"}, {ERR_PACK(ERR_LIB_PEM, 0, 0), "PEM routines"}, {ERR_PACK(ERR_LIB_DSA, 0, 0), "dsa routines"}, {ERR_PACK(ERR_LIB_X509, 0, 0), "x509 certificate routines"}, {ERR_PACK(ERR_LIB_ASN1, 0, 0), "asn1 encoding routines"}, {ERR_PACK(ERR_LIB_CONF, 0, 0), "configuration file routines"}, {ERR_PACK(ERR_LIB_CRYPTO, 0, 0), "common libcrypto routines"}, {ERR_PACK(ERR_LIB_EC, 0, 0), "elliptic curve routines"}, {ERR_PACK(ERR_LIB_ECDSA, 0, 0), "ECDSA routines"}, {ERR_PACK(ERR_LIB_ECDH, 0, 0), "ECDH routines"}, {ERR_PACK(ERR_LIB_SSL, 0, 0), "SSL routines"}, {ERR_PACK(ERR_LIB_BIO, 0, 0), "BIO routines"}, {ERR_PACK(ERR_LIB_PKCS7, 0, 0), "PKCS7 routines"}, {ERR_PACK(ERR_LIB_X509V3, 0, 0), "X509 V3 routines"}, {ERR_PACK(ERR_LIB_PKCS12, 0, 0), "PKCS12 routines"}, {ERR_PACK(ERR_LIB_RAND, 0, 0), "random number generator"}, {ERR_PACK(ERR_LIB_DSO, 0, 0), "DSO support routines"}, {ERR_PACK(ERR_LIB_TS, 0, 0), "time stamp routines"}, {ERR_PACK(ERR_LIB_ENGINE, 0, 0), "engine routines"}, {ERR_PACK(ERR_LIB_OCSP, 0, 0), "OCSP routines"}, {ERR_PACK(ERR_LIB_UI, 0, 0), "UI routines"}, {ERR_PACK(ERR_LIB_FIPS, 0, 0), "FIPS routines"}, {ERR_PACK(ERR_LIB_CMS, 0, 0), "CMS routines"}, {ERR_PACK(ERR_LIB_HMAC, 0, 0), "HMAC routines"}, {ERR_PACK(ERR_LIB_CT, 0, 0), "CT routines"}, {ERR_PACK(ERR_LIB_ASYNC, 0, 0), "ASYNC routines"}, {ERR_PACK(ERR_LIB_KDF, 0, 0), "KDF routines"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, 0), "STORE routines"}, {ERR_PACK(ERR_LIB_SM2, 0, 0), "SM2 routines"}, {0, NULL}, }; static ERR_STRING_DATA ERR_str_functs[] = { {ERR_PACK(0, SYS_F_FOPEN, 0), "fopen"}, {ERR_PACK(0, SYS_F_CONNECT, 0), "connect"}, {ERR_PACK(0, SYS_F_GETSERVBYNAME, 0), "getservbyname"}, {ERR_PACK(0, SYS_F_SOCKET, 0), "socket"}, {ERR_PACK(0, SYS_F_IOCTLSOCKET, 0), "ioctlsocket"}, {ERR_PACK(0, SYS_F_BIND, 0), "bind"}, {ERR_PACK(0, SYS_F_LISTEN, 0), "listen"}, {ERR_PACK(0, SYS_F_ACCEPT, 0), "accept"}, # ifdef OPENSSL_SYS_WINDOWS {ERR_PACK(0, SYS_F_WSASTARTUP, 0), "WSAstartup"}, # endif {ERR_PACK(0, SYS_F_OPENDIR, 0), "opendir"}, {ERR_PACK(0, SYS_F_FREAD, 0), "fread"}, {ERR_PACK(0, SYS_F_GETADDRINFO, 0), "getaddrinfo"}, {ERR_PACK(0, SYS_F_GETNAMEINFO, 0), "getnameinfo"}, {ERR_PACK(0, SYS_F_SETSOCKOPT, 0), "setsockopt"}, {ERR_PACK(0, SYS_F_GETSOCKOPT, 0), "getsockopt"}, {ERR_PACK(0, SYS_F_GETSOCKNAME, 0), "getsockname"}, {ERR_PACK(0, SYS_F_GETHOSTBYNAME, 0), "gethostbyname"}, {ERR_PACK(0, SYS_F_FFLUSH, 0), "fflush"}, {ERR_PACK(0, SYS_F_OPEN, 0), "open"}, {ERR_PACK(0, SYS_F_CLOSE, 0), "close"}, {ERR_PACK(0, SYS_F_IOCTL, 0), "ioctl"}, {ERR_PACK(0, SYS_F_STAT, 0), "stat"}, {ERR_PACK(0, SYS_F_FCNTL, 0), "fcntl"}, {ERR_PACK(0, SYS_F_FSTAT, 0), "fstat"}, {0, NULL}, }; static ERR_STRING_DATA ERR_str_reasons[] = { {ERR_R_SYS_LIB, "system lib"}, {ERR_R_BN_LIB, "BN lib"}, {ERR_R_RSA_LIB, "RSA lib"}, {ERR_R_DH_LIB, "DH lib"}, {ERR_R_EVP_LIB, "EVP lib"}, {ERR_R_BUF_LIB, "BUF lib"}, {ERR_R_OBJ_LIB, "OBJ lib"}, {ERR_R_PEM_LIB, "PEM lib"}, {ERR_R_DSA_LIB, "DSA lib"}, {ERR_R_X509_LIB, "X509 lib"}, {ERR_R_ASN1_LIB, "ASN1 lib"}, {ERR_R_EC_LIB, "EC lib"}, {ERR_R_BIO_LIB, "BIO lib"}, {ERR_R_PKCS7_LIB, "PKCS7 lib"}, {ERR_R_X509V3_LIB, "X509V3 lib"}, {ERR_R_ENGINE_LIB, "ENGINE lib"}, {ERR_R_UI_LIB, "UI lib"}, {ERR_R_OSSL_STORE_LIB, "STORE lib"}, {ERR_R_ECDSA_LIB, "ECDSA lib"}, {ERR_R_NESTED_ASN1_ERROR, "nested asn1 error"}, {ERR_R_MISSING_ASN1_EOS, "missing asn1 eos"}, {ERR_R_FATAL, "fatal"}, {ERR_R_MALLOC_FAILURE, "malloc failure"}, {ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, "called a function you should not call"}, {ERR_R_PASSED_NULL_PARAMETER, "passed a null parameter"}, {ERR_R_INTERNAL_ERROR, "internal error"}, {ERR_R_DISABLED, "called a function that was disabled at compile-time"}, {ERR_R_INIT_FAIL, "init fail"}, {ERR_R_OPERATION_FAIL, "operation fail"}, {0, NULL}, }; #endif static CRYPTO_ONCE err_init = CRYPTO_ONCE_STATIC_INIT; static int set_err_thread_local; static CRYPTO_THREAD_LOCAL err_thread_local; static CRYPTO_ONCE err_string_init = CRYPTO_ONCE_STATIC_INIT; static CRYPTO_RWLOCK *err_string_lock; static ERR_STRING_DATA *int_err_get_item(const ERR_STRING_DATA *); /* * The internal state */ static LHASH_OF(ERR_STRING_DATA) *int_error_hash = NULL; static int int_err_library_number = ERR_LIB_USER; static unsigned long get_error_values(int inc, int top, const char **file, int *line, const char **data, int *flags); static unsigned long err_string_data_hash(const ERR_STRING_DATA *a) { unsigned long ret, l; l = a->error; ret = l ^ ERR_GET_LIB(l) ^ ERR_GET_FUNC(l); return (ret ^ ret % 19 * 13); } static int err_string_data_cmp(const ERR_STRING_DATA *a, const ERR_STRING_DATA *b) { if (a->error == b->error) return 0; return a->error > b->error ? 1 : -1; } static ERR_STRING_DATA *int_err_get_item(const ERR_STRING_DATA *d) { ERR_STRING_DATA *p = NULL; CRYPTO_THREAD_read_lock(err_string_lock); p = lh_ERR_STRING_DATA_retrieve(int_error_hash, d); CRYPTO_THREAD_unlock(err_string_lock); return p; } #ifndef OPENSSL_NO_ERR /* 2019-05-21: Russian and Ukrainian locales on Linux require more than 6,5 kB */ # define SPACE_SYS_STR_REASONS 8 * 1024 # define NUM_SYS_STR_REASONS 127 static ERR_STRING_DATA SYS_str_reasons[NUM_SYS_STR_REASONS + 1]; /* * SYS_str_reasons is filled with copies of strerror() results at * initialization. 'errno' values up to 127 should cover all usual errors, * others will be displayed numerically by ERR_error_string. It is crucial * that we have something for each reason code that occurs in * ERR_str_reasons, or bogus reason strings will be returned for SYSerr(), * which always gets an errno value and never one of those 'standard' reason * codes. */ static void build_SYS_str_reasons(void) { /* OPENSSL_malloc cannot be used here, use static storage instead */ static char strerror_pool[SPACE_SYS_STR_REASONS]; char *cur = strerror_pool; size_t cnt = 0; static int init = 1; int i; int saveerrno = get_last_sys_error(); CRYPTO_THREAD_write_lock(err_string_lock); if (!init) { CRYPTO_THREAD_unlock(err_string_lock); return; } for (i = 1; i <= NUM_SYS_STR_REASONS; i++) { ERR_STRING_DATA *str = &SYS_str_reasons[i - 1]; str->error = ERR_PACK(ERR_LIB_SYS, 0, i); /* * If we have used up all the space in strerror_pool, * there's no point in calling openssl_strerror_r() */ if (str->string == NULL && cnt < sizeof(strerror_pool)) { if (openssl_strerror_r(i, cur, sizeof(strerror_pool) - cnt)) { size_t l = strlen(cur); str->string = cur; cnt += l; cur += l; /* * VMS has an unusual quirk of adding spaces at the end of * some (most? all?) messages. Lets trim them off. */ while (cur > strerror_pool && ossl_isspace(cur[-1])) { cur--; cnt--; } *cur++ = '\0'; cnt++; } } if (str->string == NULL) str->string = "unknown"; } /* * Now we still have SYS_str_reasons[NUM_SYS_STR_REASONS] = {0, NULL}, as * required by ERR_load_strings. */ init = 0; CRYPTO_THREAD_unlock(err_string_lock); /* openssl_strerror_r could change errno, but we want to preserve it */ set_sys_error(saveerrno); err_load_strings(SYS_str_reasons); } #endif #define err_clear_data(p, i) \ do { \ if ((p)->err_data_flags[i] & ERR_TXT_MALLOCED) {\ OPENSSL_free((p)->err_data[i]); \ (p)->err_data[i] = NULL; \ } \ (p)->err_data_flags[i] = 0; \ } while (0) #define err_clear(p, i) \ do { \ err_clear_data(p, i); \ (p)->err_flags[i] = 0; \ (p)->err_buffer[i] = 0; \ (p)->err_file[i] = NULL; \ (p)->err_line[i] = -1; \ } while (0) static void ERR_STATE_free(ERR_STATE *s) { int i; if (s == NULL) return; for (i = 0; i < ERR_NUM_ERRORS; i++) { err_clear_data(s, i); } OPENSSL_free(s); } DEFINE_RUN_ONCE_STATIC(do_err_strings_init) { if (!OPENSSL_init_crypto(0, NULL)) return 0; err_string_lock = CRYPTO_THREAD_lock_new(); if (err_string_lock == NULL) return 0; int_error_hash = lh_ERR_STRING_DATA_new(err_string_data_hash, err_string_data_cmp); if (int_error_hash == NULL) { CRYPTO_THREAD_lock_free(err_string_lock); err_string_lock = NULL; return 0; } return 1; } void err_cleanup(void) { if (set_err_thread_local != 0) CRYPTO_THREAD_cleanup_local(&err_thread_local); CRYPTO_THREAD_lock_free(err_string_lock); err_string_lock = NULL; lh_ERR_STRING_DATA_free(int_error_hash); int_error_hash = NULL; } /* * Legacy; pack in the library. */ static void err_patch(int lib, ERR_STRING_DATA *str) { unsigned long plib = ERR_PACK(lib, 0, 0); for (; str->error != 0; str++) str->error |= plib; } /* * Hash in |str| error strings. Assumes the URN_ONCE was done. */ static int err_load_strings(const ERR_STRING_DATA *str) { CRYPTO_THREAD_write_lock(err_string_lock); for (; str->error; str++) (void)lh_ERR_STRING_DATA_insert(int_error_hash, (ERR_STRING_DATA *)str); CRYPTO_THREAD_unlock(err_string_lock); return 1; } int ERR_load_ERR_strings(void) { #ifndef OPENSSL_NO_ERR if (!RUN_ONCE(&err_string_init, do_err_strings_init)) return 0; err_load_strings(ERR_str_libraries); err_load_strings(ERR_str_reasons); err_patch(ERR_LIB_SYS, ERR_str_functs); err_load_strings(ERR_str_functs); build_SYS_str_reasons(); #endif return 1; } int ERR_load_strings(int lib, ERR_STRING_DATA *str) { if (ERR_load_ERR_strings() == 0) return 0; err_patch(lib, str); err_load_strings(str); return 1; } int ERR_load_strings_const(const ERR_STRING_DATA *str) { if (ERR_load_ERR_strings() == 0) return 0; err_load_strings(str); return 1; } int ERR_unload_strings(int lib, ERR_STRING_DATA *str) { if (!RUN_ONCE(&err_string_init, do_err_strings_init)) return 0; CRYPTO_THREAD_write_lock(err_string_lock); /* * We don't need to ERR_PACK the lib, since that was done (to * the table) when it was loaded. */ for (; str->error; str++) (void)lh_ERR_STRING_DATA_delete(int_error_hash, str); CRYPTO_THREAD_unlock(err_string_lock); return 1; } void err_free_strings_int(void) { if (!RUN_ONCE(&err_string_init, do_err_strings_init)) return; } /********************************************************/ void ERR_put_error(int lib, int func, int reason, const char *file, int line) { ERR_STATE *es; #ifdef _OSD_POSIX /* * In the BS2000-OSD POSIX subsystem, the compiler generates path names * in the form "*POSIX(/etc/passwd)". This dirty hack strips them to * something sensible. @@@ We shouldn't modify a const string, though. */ if (strncmp(file, "*POSIX(", sizeof("*POSIX(") - 1) == 0) { char *end; /* Skip the "*POSIX(" prefix */ file += sizeof("*POSIX(") - 1; end = &file[strlen(file) - 1]; if (*end == ')') *end = '\0'; /* Optional: use the basename of the path only. */ if ((end = strrchr(file, '/')) != NULL) file = &end[1]; } #endif es = ERR_get_state(); if (es == NULL) return; es->top = (es->top + 1) % ERR_NUM_ERRORS; if (es->top == es->bottom) es->bottom = (es->bottom + 1) % ERR_NUM_ERRORS; es->err_flags[es->top] = 0; es->err_buffer[es->top] = ERR_PACK(lib, func, reason); es->err_file[es->top] = file; es->err_line[es->top] = line; err_clear_data(es, es->top); } void ERR_clear_error(void) { int i; ERR_STATE *es; es = ERR_get_state(); if (es == NULL) return; for (i = 0; i < ERR_NUM_ERRORS; i++) { err_clear(es, i); } es->top = es->bottom = 0; } unsigned long ERR_get_error(void) { return get_error_values(1, 0, NULL, NULL, NULL, NULL); } unsigned long ERR_get_error_line(const char **file, int *line) { return get_error_values(1, 0, file, line, NULL, NULL); } unsigned long ERR_get_error_line_data(const char **file, int *line, const char **data, int *flags) { return get_error_values(1, 0, file, line, data, flags); } unsigned long ERR_peek_error(void) { return get_error_values(0, 0, NULL, NULL, NULL, NULL); } unsigned long ERR_peek_error_line(const char **file, int *line) { return get_error_values(0, 0, file, line, NULL, NULL); } unsigned long ERR_peek_error_line_data(const char **file, int *line, const char **data, int *flags) { return get_error_values(0, 0, file, line, data, flags); } unsigned long ERR_peek_last_error(void) { return get_error_values(0, 1, NULL, NULL, NULL, NULL); } unsigned long ERR_peek_last_error_line(const char **file, int *line) { return get_error_values(0, 1, file, line, NULL, NULL); } unsigned long ERR_peek_last_error_line_data(const char **file, int *line, const char **data, int *flags) { return get_error_values(0, 1, file, line, data, flags); } static unsigned long get_error_values(int inc, int top, const char **file, int *line, const char **data, int *flags) { int i = 0; ERR_STATE *es; unsigned long ret; es = ERR_get_state(); if (es == NULL) return 0; if (inc && top) { if (file) *file = ""; if (line) *line = 0; if (data) *data = ""; if (flags) *flags = 0; return ERR_R_INTERNAL_ERROR; } while (es->bottom != es->top) { if (es->err_flags[es->top] & ERR_FLAG_CLEAR) { err_clear(es, es->top); es->top = es->top > 0 ? es->top - 1 : ERR_NUM_ERRORS - 1; continue; } i = (es->bottom + 1) % ERR_NUM_ERRORS; if (es->err_flags[i] & ERR_FLAG_CLEAR) { es->bottom = i; err_clear(es, es->bottom); continue; } break; } if (es->bottom == es->top) return 0; if (top) i = es->top; /* last error */ else i = (es->bottom + 1) % ERR_NUM_ERRORS; /* first error */ ret = es->err_buffer[i]; if (inc) { es->bottom = i; es->err_buffer[i] = 0; } if (file != NULL && line != NULL) { if (es->err_file[i] == NULL) { *file = "NA"; *line = 0; } else { *file = es->err_file[i]; *line = es->err_line[i]; } } if (data == NULL) { if (inc) { err_clear_data(es, i); } } else { if (es->err_data[i] == NULL) { *data = ""; if (flags != NULL) *flags = 0; } else { *data = es->err_data[i]; if (flags != NULL) *flags = es->err_data_flags[i]; } } return ret; } void ERR_error_string_n(unsigned long e, char *buf, size_t len) { char lsbuf[64], fsbuf[64], rsbuf[64]; const char *ls, *fs, *rs; unsigned long l, f, r; if (len == 0) return; l = ERR_GET_LIB(e); ls = ERR_lib_error_string(e); if (ls == NULL) { BIO_snprintf(lsbuf, sizeof(lsbuf), "lib(%lu)", l); ls = lsbuf; } fs = ERR_func_error_string(e); f = ERR_GET_FUNC(e); if (fs == NULL) { BIO_snprintf(fsbuf, sizeof(fsbuf), "func(%lu)", f); fs = fsbuf; } rs = ERR_reason_error_string(e); r = ERR_GET_REASON(e); if (rs == NULL) { BIO_snprintf(rsbuf, sizeof(rsbuf), "reason(%lu)", r); rs = rsbuf; } BIO_snprintf(buf, len, "error:%08lX:%s:%s:%s", e, ls, fs, rs); if (strlen(buf) == len - 1) { /* Didn't fit; use a minimal format. */ BIO_snprintf(buf, len, "err:%lx:%lx:%lx:%lx", e, l, f, r); } } /* * ERR_error_string_n should be used instead for ret != NULL as * ERR_error_string cannot know how large the buffer is */ char *ERR_error_string(unsigned long e, char *ret) { static char buf[256]; if (ret == NULL) ret = buf; ERR_error_string_n(e, ret, (int)sizeof(buf)); return ret; } const char *ERR_lib_error_string(unsigned long e) { ERR_STRING_DATA d, *p; unsigned long l; if (!RUN_ONCE(&err_string_init, do_err_strings_init)) { return NULL; } l = ERR_GET_LIB(e); d.error = ERR_PACK(l, 0, 0); p = int_err_get_item(&d); return ((p == NULL) ? NULL : p->string); } const char *ERR_func_error_string(unsigned long e) { ERR_STRING_DATA d, *p; unsigned long l, f; if (!RUN_ONCE(&err_string_init, do_err_strings_init)) { return NULL; } l = ERR_GET_LIB(e); f = ERR_GET_FUNC(e); d.error = ERR_PACK(l, f, 0); p = int_err_get_item(&d); return ((p == NULL) ? NULL : p->string); } const char *ERR_reason_error_string(unsigned long e) { ERR_STRING_DATA d, *p = NULL; unsigned long l, r; if (!RUN_ONCE(&err_string_init, do_err_strings_init)) { return NULL; } l = ERR_GET_LIB(e); r = ERR_GET_REASON(e); d.error = ERR_PACK(l, 0, r); p = int_err_get_item(&d); if (!p) { d.error = ERR_PACK(0, 0, r); p = int_err_get_item(&d); } return ((p == NULL) ? NULL : p->string); } void err_delete_thread_state(void) { ERR_STATE *state = CRYPTO_THREAD_get_local(&err_thread_local); if (state == NULL) return; CRYPTO_THREAD_set_local(&err_thread_local, NULL); ERR_STATE_free(state); } #if OPENSSL_API_COMPAT < 0x10100000L void ERR_remove_thread_state(void *dummy) { } #endif #if OPENSSL_API_COMPAT < 0x10000000L void ERR_remove_state(unsigned long pid) { } #endif DEFINE_RUN_ONCE_STATIC(err_do_init) { set_err_thread_local = 1; return CRYPTO_THREAD_init_local(&err_thread_local, NULL); } ERR_STATE *ERR_get_state(void) { ERR_STATE *state; int saveerrno = get_last_sys_error(); if (!OPENSSL_init_crypto(OPENSSL_INIT_BASE_ONLY, NULL)) return NULL; if (!RUN_ONCE(&err_init, err_do_init)) return NULL; state = CRYPTO_THREAD_get_local(&err_thread_local); if (state == (ERR_STATE*)-1) return NULL; if (state == NULL) { if (!CRYPTO_THREAD_set_local(&err_thread_local, (ERR_STATE*)-1)) return NULL; if ((state = OPENSSL_zalloc(sizeof(*state))) == NULL) { CRYPTO_THREAD_set_local(&err_thread_local, NULL); return NULL; } if (!ossl_init_thread_start(OPENSSL_INIT_THREAD_ERR_STATE) || !CRYPTO_THREAD_set_local(&err_thread_local, state)) { ERR_STATE_free(state); CRYPTO_THREAD_set_local(&err_thread_local, NULL); return NULL; } /* Ignore failures from these */ OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, NULL); } set_sys_error(saveerrno); return state; } /* * err_shelve_state returns the current thread local error state * and freezes the error module until err_unshelve_state is called. */ int err_shelve_state(void **state) { int saveerrno = get_last_sys_error(); /* * Note, at present our only caller is OPENSSL_init_crypto(), indirectly * via ossl_init_load_crypto_nodelete(), by which point the requested * "base" initialization has already been performed, so the below call is a * NOOP, that re-enters OPENSSL_init_crypto() only to quickly return. * * If are no other valid callers of this function, the call below can be * removed, avoiding the re-entry into OPENSSL_init_crypto(). If there are * potential uses that are not from inside OPENSSL_init_crypto(), then this * call is needed, but some care is required to make sure that the re-entry * remains a NOOP. */ if (!OPENSSL_init_crypto(OPENSSL_INIT_BASE_ONLY, NULL)) return 0; if (!RUN_ONCE(&err_init, err_do_init)) return 0; *state = CRYPTO_THREAD_get_local(&err_thread_local); if (!CRYPTO_THREAD_set_local(&err_thread_local, (ERR_STATE*)-1)) return 0; set_sys_error(saveerrno); return 1; } /* * err_unshelve_state restores the error state that was returned * by err_shelve_state previously. */ void err_unshelve_state(void* state) { if (state != (void*)-1) CRYPTO_THREAD_set_local(&err_thread_local, (ERR_STATE*)state); } int ERR_get_next_error_library(void) { int ret; if (!RUN_ONCE(&err_string_init, do_err_strings_init)) return 0; CRYPTO_THREAD_write_lock(err_string_lock); ret = int_err_library_number++; CRYPTO_THREAD_unlock(err_string_lock); return ret; } static int err_set_error_data_int(char *data, int flags) { ERR_STATE *es; int i; es = ERR_get_state(); if (es == NULL) return 0; i = es->top; err_clear_data(es, i); es->err_data[i] = data; es->err_data_flags[i] = flags; return 1; } void ERR_set_error_data(char *data, int flags) { /* * This function is void so we cannot propagate the error return. Since it * is also in the public API we can't change the return type. */ err_set_error_data_int(data, flags); } void ERR_add_error_data(int num, ...) { va_list args; va_start(args, num); ERR_add_error_vdata(num, args); va_end(args); } void ERR_add_error_vdata(int num, va_list args) { int i, n, s; char *str, *p, *a; s = 80; if ((str = OPENSSL_malloc(s + 1)) == NULL) { /* ERRerr(ERR_F_ERR_ADD_ERROR_VDATA, ERR_R_MALLOC_FAILURE); */ return; } str[0] = '\0'; n = 0; for (i = 0; i < num; i++) { a = va_arg(args, char *); if (a == NULL) a = ""; n += strlen(a); if (n > s) { s = n + 20; p = OPENSSL_realloc(str, s + 1); if (p == NULL) { OPENSSL_free(str); return; } str = p; } OPENSSL_strlcat(str, a, (size_t)s + 1); } if (!err_set_error_data_int(str, ERR_TXT_MALLOCED | ERR_TXT_STRING)) OPENSSL_free(str); } int ERR_set_mark(void) { ERR_STATE *es; es = ERR_get_state(); if (es == NULL) return 0; if (es->bottom == es->top) return 0; es->err_flags[es->top] |= ERR_FLAG_MARK; return 1; } int ERR_pop_to_mark(void) { ERR_STATE *es; es = ERR_get_state(); if (es == NULL) return 0; while (es->bottom != es->top && (es->err_flags[es->top] & ERR_FLAG_MARK) == 0) { err_clear(es, es->top); es->top = es->top > 0 ? es->top - 1 : ERR_NUM_ERRORS - 1; } if (es->bottom == es->top) return 0; es->err_flags[es->top] &= ~ERR_FLAG_MARK; return 1; } int ERR_clear_last_mark(void) { ERR_STATE *es; int top; es = ERR_get_state(); if (es == NULL) return 0; top = es->top; while (es->bottom != top && (es->err_flags[top] & ERR_FLAG_MARK) == 0) { top = top > 0 ? top - 1 : ERR_NUM_ERRORS - 1; } if (es->bottom == top) return 0; es->err_flags[top] &= ~ERR_FLAG_MARK; return 1; } void err_clear_last_constant_time(int clear) { ERR_STATE *es; int top; es = ERR_get_state(); if (es == NULL) return; top = es->top; /* * Flag error as cleared but remove it elsewhere to avoid two errors * accessing the same error stack location, revealing timing information. */ clear = constant_time_select_int(constant_time_eq_int(clear, 0), 0, ERR_FLAG_CLEAR); es->err_flags[top] |= clear; } openssl-1.1.1f/crypto/err/err_all.c000066400000000000000000000056071364063235100172520ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/err.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal/dso.h" #include #include #include #include #include #include #include #include #include #include int err_load_crypto_strings_int(void) { if ( #ifndef OPENSSL_NO_ERR ERR_load_ERR_strings() == 0 || /* include error strings for SYSerr */ ERR_load_BN_strings() == 0 || # ifndef OPENSSL_NO_RSA ERR_load_RSA_strings() == 0 || # endif # ifndef OPENSSL_NO_DH ERR_load_DH_strings() == 0 || # endif ERR_load_EVP_strings() == 0 || ERR_load_BUF_strings() == 0 || ERR_load_OBJ_strings() == 0 || ERR_load_PEM_strings() == 0 || # ifndef OPENSSL_NO_DSA ERR_load_DSA_strings() == 0 || # endif ERR_load_X509_strings() == 0 || ERR_load_ASN1_strings() == 0 || ERR_load_CONF_strings() == 0 || ERR_load_CRYPTO_strings() == 0 || # ifndef OPENSSL_NO_COMP ERR_load_COMP_strings() == 0 || # endif # ifndef OPENSSL_NO_EC ERR_load_EC_strings() == 0 || # endif /* skip ERR_load_SSL_strings() because it is not in this library */ ERR_load_BIO_strings() == 0 || ERR_load_PKCS7_strings() == 0 || ERR_load_X509V3_strings() == 0 || ERR_load_PKCS12_strings() == 0 || ERR_load_RAND_strings() == 0 || ERR_load_DSO_strings() == 0 || # ifndef OPENSSL_NO_TS ERR_load_TS_strings() == 0 || # endif # ifndef OPENSSL_NO_ENGINE ERR_load_ENGINE_strings() == 0 || # endif # ifndef OPENSSL_NO_OCSP ERR_load_OCSP_strings() == 0 || # endif ERR_load_UI_strings() == 0 || # ifndef OPENSSL_NO_CMS ERR_load_CMS_strings() == 0 || # endif # ifndef OPENSSL_NO_CT ERR_load_CT_strings() == 0 || # endif ERR_load_ASYNC_strings() == 0 || #endif ERR_load_KDF_strings() == 0 || ERR_load_OSSL_STORE_strings() == 0) return 0; return 1; } openssl-1.1.1f/crypto/err/err_prn.c000066400000000000000000000033701364063235100172740ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include void ERR_print_errors_cb(int (*cb) (const char *str, size_t len, void *u), void *u) { unsigned long l; char buf[256]; char buf2[4096]; const char *file, *data; int line, flags; /* * We don't know what kind of thing CRYPTO_THREAD_ID is. Here is our best * attempt to convert it into something we can print. */ union { CRYPTO_THREAD_ID tid; unsigned long ltid; } tid; tid.ltid = 0; tid.tid = CRYPTO_THREAD_get_current_id(); while ((l = ERR_get_error_line_data(&file, &line, &data, &flags)) != 0) { ERR_error_string_n(l, buf, sizeof(buf)); BIO_snprintf(buf2, sizeof(buf2), "%lu:%s:%s:%d:%s\n", tid.ltid, buf, file, line, (flags & ERR_TXT_STRING) ? data : ""); if (cb(buf2, strlen(buf2), u) <= 0) break; /* abort outputting the error report */ } } static int print_bio(const char *str, size_t len, void *bp) { return BIO_write((BIO *)bp, str, len); } void ERR_print_errors(BIO *bp) { ERR_print_errors_cb(print_bio, bp); } #ifndef OPENSSL_NO_STDIO void ERR_print_errors_fp(FILE *fp) { BIO *bio = BIO_new_fp(fp, BIO_NOCLOSE); if (bio == NULL) return; ERR_print_errors_cb(print_bio, bio); BIO_free(bio); } #endif openssl-1.1.1f/crypto/err/openssl.ec000066400000000000000000000105501364063235100174530ustar00rootroot00000000000000# configuration file for util/mkerr.pl # The INPUT HEADER is scanned for declarations # LIBNAME INPUT HEADER ERROR-TABLE FILE L ERR NONE NONE L BN include/openssl/bn.h crypto/bn/bn_err.c L RSA include/openssl/rsa.h crypto/rsa/rsa_err.c L DH include/openssl/dh.h crypto/dh/dh_err.c L EVP include/openssl/evp.h crypto/evp/evp_err.c L BUF include/openssl/buffer.h crypto/buffer/buf_err.c L OBJ include/openssl/objects.h crypto/objects/obj_err.c L PEM include/openssl/pem.h crypto/pem/pem_err.c L DSA include/openssl/dsa.h crypto/dsa/dsa_err.c L X509 include/openssl/x509.h crypto/x509/x509_err.c L ASN1 include/openssl/asn1.h crypto/asn1/asn1_err.c L CONF include/openssl/conf.h crypto/conf/conf_err.c L CRYPTO include/openssl/crypto.h crypto/cpt_err.c L EC include/openssl/ec.h crypto/ec/ec_err.c L SSL include/openssl/ssl.h ssl/ssl_err.c L BIO include/openssl/bio.h crypto/bio/bio_err.c L PKCS7 include/openssl/pkcs7.h crypto/pkcs7/pkcs7err.c L X509V3 include/openssl/x509v3.h crypto/x509v3/v3err.c L PKCS12 include/openssl/pkcs12.h crypto/pkcs12/pk12err.c L RAND include/openssl/rand.h crypto/rand/rand_err.c L DSO include/internal/dso.h crypto/dso/dso_err.c L ENGINE include/openssl/engine.h crypto/engine/eng_err.c L OCSP include/openssl/ocsp.h crypto/ocsp/ocsp_err.c L UI include/openssl/ui.h crypto/ui/ui_err.c L COMP include/openssl/comp.h crypto/comp/comp_err.c L TS include/openssl/ts.h crypto/ts/ts_err.c L CMS include/openssl/cms.h crypto/cms/cms_err.c L CT include/openssl/ct.h crypto/ct/ct_err.c L ASYNC include/openssl/async.h crypto/async/async_err.c L KDF include/openssl/kdf.h crypto/kdf/kdf_err.c L SM2 include/crypto/sm2.h crypto/sm2/sm2_err.c L OSSL_STORE include/openssl/store.h crypto/store/store_err.c # additional header files to be scanned for function names L NONE include/openssl/x509_vfy.h NONE L NONE crypto/ec/ec_local.h NONE L NONE crypto/cms/cms_local.h NONE L NONE crypto/ct/ct_local.h NONE L NONE ssl/ssl_local.h NONE # SSL/TLS alerts R SSL_R_SSLV3_ALERT_UNEXPECTED_MESSAGE 1010 R SSL_R_SSLV3_ALERT_BAD_RECORD_MAC 1020 R SSL_R_TLSV1_ALERT_DECRYPTION_FAILED 1021 R SSL_R_TLSV1_ALERT_RECORD_OVERFLOW 1022 R SSL_R_SSLV3_ALERT_DECOMPRESSION_FAILURE 1030 R SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE 1040 R SSL_R_SSLV3_ALERT_NO_CERTIFICATE 1041 R SSL_R_SSLV3_ALERT_BAD_CERTIFICATE 1042 R SSL_R_SSLV3_ALERT_UNSUPPORTED_CERTIFICATE 1043 R SSL_R_SSLV3_ALERT_CERTIFICATE_REVOKED 1044 R SSL_R_SSLV3_ALERT_CERTIFICATE_EXPIRED 1045 R SSL_R_SSLV3_ALERT_CERTIFICATE_UNKNOWN 1046 R SSL_R_SSLV3_ALERT_ILLEGAL_PARAMETER 1047 R SSL_R_TLSV1_ALERT_UNKNOWN_CA 1048 R SSL_R_TLSV1_ALERT_ACCESS_DENIED 1049 R SSL_R_TLSV1_ALERT_DECODE_ERROR 1050 R SSL_R_TLSV1_ALERT_DECRYPT_ERROR 1051 R SSL_R_TLSV1_ALERT_EXPORT_RESTRICTION 1060 R SSL_R_TLSV1_ALERT_PROTOCOL_VERSION 1070 R SSL_R_TLSV1_ALERT_INSUFFICIENT_SECURITY 1071 R SSL_R_TLSV1_ALERT_INTERNAL_ERROR 1080 R SSL_R_TLSV1_ALERT_INAPPROPRIATE_FALLBACK 1086 R SSL_R_TLSV1_ALERT_USER_CANCELLED 1090 R SSL_R_TLSV1_ALERT_NO_RENEGOTIATION 1100 R SSL_R_TLSV13_ALERT_MISSING_EXTENSION 1109 R SSL_R_TLSV1_UNSUPPORTED_EXTENSION 1110 R SSL_R_TLSV1_CERTIFICATE_UNOBTAINABLE 1111 R SSL_R_TLSV1_UNRECOGNIZED_NAME 1112 R SSL_R_TLSV1_BAD_CERTIFICATE_STATUS_RESPONSE 1113 R SSL_R_TLSV1_BAD_CERTIFICATE_HASH_VALUE 1114 R TLS1_AD_UNKNOWN_PSK_IDENTITY 1115 R SSL_R_TLSV13_ALERT_CERTIFICATE_REQUIRED 1116 R TLS1_AD_NO_APPLICATION_PROTOCOL 1120 openssl-1.1.1f/crypto/err/openssl.txt000066400000000000000000004472241364063235100177170ustar00rootroot00000000000000# Copyright 1999-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Function codes ASN1_F_A2D_ASN1_OBJECT:100:a2d_ASN1_OBJECT ASN1_F_A2I_ASN1_INTEGER:102:a2i_ASN1_INTEGER ASN1_F_A2I_ASN1_STRING:103:a2i_ASN1_STRING ASN1_F_APPEND_EXP:176:append_exp ASN1_F_ASN1_BIO_INIT:113:asn1_bio_init ASN1_F_ASN1_BIT_STRING_SET_BIT:183:ASN1_BIT_STRING_set_bit ASN1_F_ASN1_CB:177:asn1_cb ASN1_F_ASN1_CHECK_TLEN:104:asn1_check_tlen ASN1_F_ASN1_COLLECT:106:asn1_collect ASN1_F_ASN1_D2I_EX_PRIMITIVE:108:asn1_d2i_ex_primitive ASN1_F_ASN1_D2I_FP:109:ASN1_d2i_fp ASN1_F_ASN1_D2I_READ_BIO:107:asn1_d2i_read_bio ASN1_F_ASN1_DIGEST:184:ASN1_digest ASN1_F_ASN1_DO_ADB:110:asn1_do_adb ASN1_F_ASN1_DO_LOCK:233:asn1_do_lock ASN1_F_ASN1_DUP:111:ASN1_dup ASN1_F_ASN1_ENC_SAVE:115:asn1_enc_save ASN1_F_ASN1_EX_C2I:204:asn1_ex_c2i ASN1_F_ASN1_FIND_END:190:asn1_find_end ASN1_F_ASN1_GENERALIZEDTIME_ADJ:216:ASN1_GENERALIZEDTIME_adj ASN1_F_ASN1_GENERATE_V3:178:ASN1_generate_v3 ASN1_F_ASN1_GET_INT64:224:asn1_get_int64 ASN1_F_ASN1_GET_OBJECT:114:ASN1_get_object ASN1_F_ASN1_GET_UINT64:225:asn1_get_uint64 ASN1_F_ASN1_I2D_BIO:116:ASN1_i2d_bio ASN1_F_ASN1_I2D_FP:117:ASN1_i2d_fp ASN1_F_ASN1_ITEM_D2I_FP:206:ASN1_item_d2i_fp ASN1_F_ASN1_ITEM_DUP:191:ASN1_item_dup ASN1_F_ASN1_ITEM_EMBED_D2I:120:asn1_item_embed_d2i ASN1_F_ASN1_ITEM_EMBED_NEW:121:asn1_item_embed_new ASN1_F_ASN1_ITEM_FLAGS_I2D:118:asn1_item_flags_i2d ASN1_F_ASN1_ITEM_I2D_BIO:192:ASN1_item_i2d_bio ASN1_F_ASN1_ITEM_I2D_FP:193:ASN1_item_i2d_fp ASN1_F_ASN1_ITEM_PACK:198:ASN1_item_pack ASN1_F_ASN1_ITEM_SIGN:195:ASN1_item_sign ASN1_F_ASN1_ITEM_SIGN_CTX:220:ASN1_item_sign_ctx ASN1_F_ASN1_ITEM_UNPACK:199:ASN1_item_unpack ASN1_F_ASN1_ITEM_VERIFY:197:ASN1_item_verify ASN1_F_ASN1_MBSTRING_NCOPY:122:ASN1_mbstring_ncopy ASN1_F_ASN1_OBJECT_NEW:123:ASN1_OBJECT_new ASN1_F_ASN1_OUTPUT_DATA:214:asn1_output_data ASN1_F_ASN1_PCTX_NEW:205:ASN1_PCTX_new ASN1_F_ASN1_PRIMITIVE_NEW:119:asn1_primitive_new ASN1_F_ASN1_SCTX_NEW:221:ASN1_SCTX_new ASN1_F_ASN1_SIGN:128:ASN1_sign ASN1_F_ASN1_STR2TYPE:179:asn1_str2type ASN1_F_ASN1_STRING_GET_INT64:227:asn1_string_get_int64 ASN1_F_ASN1_STRING_GET_UINT64:230:asn1_string_get_uint64 ASN1_F_ASN1_STRING_SET:186:ASN1_STRING_set ASN1_F_ASN1_STRING_TABLE_ADD:129:ASN1_STRING_TABLE_add ASN1_F_ASN1_STRING_TO_BN:228:asn1_string_to_bn ASN1_F_ASN1_STRING_TYPE_NEW:130:ASN1_STRING_type_new ASN1_F_ASN1_TEMPLATE_EX_D2I:132:asn1_template_ex_d2i ASN1_F_ASN1_TEMPLATE_NEW:133:asn1_template_new ASN1_F_ASN1_TEMPLATE_NOEXP_D2I:131:asn1_template_noexp_d2i ASN1_F_ASN1_TIME_ADJ:217:ASN1_TIME_adj ASN1_F_ASN1_TYPE_GET_INT_OCTETSTRING:134:ASN1_TYPE_get_int_octetstring ASN1_F_ASN1_TYPE_GET_OCTETSTRING:135:ASN1_TYPE_get_octetstring ASN1_F_ASN1_UTCTIME_ADJ:218:ASN1_UTCTIME_adj ASN1_F_ASN1_VERIFY:137:ASN1_verify ASN1_F_B64_READ_ASN1:209:b64_read_asn1 ASN1_F_B64_WRITE_ASN1:210:B64_write_ASN1 ASN1_F_BIO_NEW_NDEF:208:BIO_new_NDEF ASN1_F_BITSTR_CB:180:bitstr_cb ASN1_F_BN_TO_ASN1_STRING:229:bn_to_asn1_string ASN1_F_C2I_ASN1_BIT_STRING:189:c2i_ASN1_BIT_STRING ASN1_F_C2I_ASN1_INTEGER:194:c2i_ASN1_INTEGER ASN1_F_C2I_ASN1_OBJECT:196:c2i_ASN1_OBJECT ASN1_F_C2I_IBUF:226:c2i_ibuf ASN1_F_C2I_UINT64_INT:101:c2i_uint64_int ASN1_F_COLLECT_DATA:140:collect_data ASN1_F_D2I_ASN1_OBJECT:147:d2i_ASN1_OBJECT ASN1_F_D2I_ASN1_UINTEGER:150:d2i_ASN1_UINTEGER ASN1_F_D2I_AUTOPRIVATEKEY:207:d2i_AutoPrivateKey ASN1_F_D2I_PRIVATEKEY:154:d2i_PrivateKey ASN1_F_D2I_PUBLICKEY:155:d2i_PublicKey ASN1_F_DO_BUF:142:do_buf ASN1_F_DO_CREATE:124:do_create ASN1_F_DO_DUMP:125:do_dump ASN1_F_DO_TCREATE:222:do_tcreate ASN1_F_I2A_ASN1_OBJECT:126:i2a_ASN1_OBJECT ASN1_F_I2D_ASN1_BIO_STREAM:211:i2d_ASN1_bio_stream ASN1_F_I2D_ASN1_OBJECT:143:i2d_ASN1_OBJECT ASN1_F_I2D_DSA_PUBKEY:161:i2d_DSA_PUBKEY ASN1_F_I2D_EC_PUBKEY:181:i2d_EC_PUBKEY ASN1_F_I2D_PRIVATEKEY:163:i2d_PrivateKey ASN1_F_I2D_PUBLICKEY:164:i2d_PublicKey ASN1_F_I2D_RSA_PUBKEY:165:i2d_RSA_PUBKEY ASN1_F_LONG_C2I:166:long_c2i ASN1_F_NDEF_PREFIX:127:ndef_prefix ASN1_F_NDEF_SUFFIX:136:ndef_suffix ASN1_F_OID_MODULE_INIT:174:oid_module_init ASN1_F_PARSE_TAGGING:182:parse_tagging ASN1_F_PKCS5_PBE2_SET_IV:167:PKCS5_pbe2_set_iv ASN1_F_PKCS5_PBE2_SET_SCRYPT:231:PKCS5_pbe2_set_scrypt ASN1_F_PKCS5_PBE_SET:202:PKCS5_pbe_set ASN1_F_PKCS5_PBE_SET0_ALGOR:215:PKCS5_pbe_set0_algor ASN1_F_PKCS5_PBKDF2_SET:219:PKCS5_pbkdf2_set ASN1_F_PKCS5_SCRYPT_SET:232:pkcs5_scrypt_set ASN1_F_SMIME_READ_ASN1:212:SMIME_read_ASN1 ASN1_F_SMIME_TEXT:213:SMIME_text ASN1_F_STABLE_GET:138:stable_get ASN1_F_STBL_MODULE_INIT:223:stbl_module_init ASN1_F_UINT32_C2I:105:uint32_c2i ASN1_F_UINT32_NEW:139:uint32_new ASN1_F_UINT64_C2I:112:uint64_c2i ASN1_F_UINT64_NEW:141:uint64_new ASN1_F_X509_CRL_ADD0_REVOKED:169:X509_CRL_add0_revoked ASN1_F_X509_INFO_NEW:170:X509_INFO_new ASN1_F_X509_NAME_ENCODE:203:x509_name_encode ASN1_F_X509_NAME_EX_D2I:158:x509_name_ex_d2i ASN1_F_X509_NAME_EX_NEW:171:x509_name_ex_new ASN1_F_X509_PKEY_NEW:173:X509_PKEY_new ASYNC_F_ASYNC_CTX_NEW:100:async_ctx_new ASYNC_F_ASYNC_INIT_THREAD:101:ASYNC_init_thread ASYNC_F_ASYNC_JOB_NEW:102:async_job_new ASYNC_F_ASYNC_PAUSE_JOB:103:ASYNC_pause_job ASYNC_F_ASYNC_START_FUNC:104:async_start_func ASYNC_F_ASYNC_START_JOB:105:ASYNC_start_job ASYNC_F_ASYNC_WAIT_CTX_SET_WAIT_FD:106:ASYNC_WAIT_CTX_set_wait_fd BIO_F_ACPT_STATE:100:acpt_state BIO_F_ADDRINFO_WRAP:148:addrinfo_wrap BIO_F_ADDR_STRINGS:134:addr_strings BIO_F_BIO_ACCEPT:101:BIO_accept BIO_F_BIO_ACCEPT_EX:137:BIO_accept_ex BIO_F_BIO_ACCEPT_NEW:152:BIO_ACCEPT_new BIO_F_BIO_ADDR_NEW:144:BIO_ADDR_new BIO_F_BIO_BIND:147:BIO_bind BIO_F_BIO_CALLBACK_CTRL:131:BIO_callback_ctrl BIO_F_BIO_CONNECT:138:BIO_connect BIO_F_BIO_CONNECT_NEW:153:BIO_CONNECT_new BIO_F_BIO_CTRL:103:BIO_ctrl BIO_F_BIO_GETS:104:BIO_gets BIO_F_BIO_GET_HOST_IP:106:BIO_get_host_ip BIO_F_BIO_GET_NEW_INDEX:102:BIO_get_new_index BIO_F_BIO_GET_PORT:107:BIO_get_port BIO_F_BIO_LISTEN:139:BIO_listen BIO_F_BIO_LOOKUP:135:BIO_lookup BIO_F_BIO_LOOKUP_EX:143:BIO_lookup_ex BIO_F_BIO_MAKE_PAIR:121:bio_make_pair BIO_F_BIO_METH_NEW:146:BIO_meth_new BIO_F_BIO_NEW:108:BIO_new BIO_F_BIO_NEW_DGRAM_SCTP:145:BIO_new_dgram_sctp BIO_F_BIO_NEW_FILE:109:BIO_new_file BIO_F_BIO_NEW_MEM_BUF:126:BIO_new_mem_buf BIO_F_BIO_NREAD:123:BIO_nread BIO_F_BIO_NREAD0:124:BIO_nread0 BIO_F_BIO_NWRITE:125:BIO_nwrite BIO_F_BIO_NWRITE0:122:BIO_nwrite0 BIO_F_BIO_PARSE_HOSTSERV:136:BIO_parse_hostserv BIO_F_BIO_PUTS:110:BIO_puts BIO_F_BIO_READ:111:BIO_read BIO_F_BIO_READ_EX:105:BIO_read_ex BIO_F_BIO_READ_INTERN:120:bio_read_intern BIO_F_BIO_SOCKET:140:BIO_socket BIO_F_BIO_SOCKET_NBIO:142:BIO_socket_nbio BIO_F_BIO_SOCK_INFO:141:BIO_sock_info BIO_F_BIO_SOCK_INIT:112:BIO_sock_init BIO_F_BIO_WRITE:113:BIO_write BIO_F_BIO_WRITE_EX:119:BIO_write_ex BIO_F_BIO_WRITE_INTERN:128:bio_write_intern BIO_F_BUFFER_CTRL:114:buffer_ctrl BIO_F_CONN_CTRL:127:conn_ctrl BIO_F_CONN_STATE:115:conn_state BIO_F_DGRAM_SCTP_NEW:149:dgram_sctp_new BIO_F_DGRAM_SCTP_READ:132:dgram_sctp_read BIO_F_DGRAM_SCTP_WRITE:133:dgram_sctp_write BIO_F_DOAPR_OUTCH:150:doapr_outch BIO_F_FILE_CTRL:116:file_ctrl BIO_F_FILE_READ:130:file_read BIO_F_LINEBUFFER_CTRL:129:linebuffer_ctrl BIO_F_LINEBUFFER_NEW:151:linebuffer_new BIO_F_MEM_WRITE:117:mem_write BIO_F_NBIOF_NEW:154:nbiof_new BIO_F_SLG_WRITE:155:slg_write BIO_F_SSL_NEW:118:SSL_new BN_F_BNRAND:127:bnrand BN_F_BNRAND_RANGE:138:bnrand_range BN_F_BN_BLINDING_CONVERT_EX:100:BN_BLINDING_convert_ex BN_F_BN_BLINDING_CREATE_PARAM:128:BN_BLINDING_create_param BN_F_BN_BLINDING_INVERT_EX:101:BN_BLINDING_invert_ex BN_F_BN_BLINDING_NEW:102:BN_BLINDING_new BN_F_BN_BLINDING_UPDATE:103:BN_BLINDING_update BN_F_BN_BN2DEC:104:BN_bn2dec BN_F_BN_BN2HEX:105:BN_bn2hex BN_F_BN_COMPUTE_WNAF:142:bn_compute_wNAF BN_F_BN_CTX_GET:116:BN_CTX_get BN_F_BN_CTX_NEW:106:BN_CTX_new BN_F_BN_CTX_START:129:BN_CTX_start BN_F_BN_DIV:107:BN_div BN_F_BN_DIV_RECP:130:BN_div_recp BN_F_BN_EXP:123:BN_exp BN_F_BN_EXPAND_INTERNAL:120:bn_expand_internal BN_F_BN_GENCB_NEW:143:BN_GENCB_new BN_F_BN_GENERATE_DSA_NONCE:140:BN_generate_dsa_nonce BN_F_BN_GENERATE_PRIME_EX:141:BN_generate_prime_ex BN_F_BN_GF2M_MOD:131:BN_GF2m_mod BN_F_BN_GF2M_MOD_EXP:132:BN_GF2m_mod_exp BN_F_BN_GF2M_MOD_MUL:133:BN_GF2m_mod_mul BN_F_BN_GF2M_MOD_SOLVE_QUAD:134:BN_GF2m_mod_solve_quad BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR:135:BN_GF2m_mod_solve_quad_arr BN_F_BN_GF2M_MOD_SQR:136:BN_GF2m_mod_sqr BN_F_BN_GF2M_MOD_SQRT:137:BN_GF2m_mod_sqrt BN_F_BN_LSHIFT:145:BN_lshift BN_F_BN_MOD_EXP2_MONT:118:BN_mod_exp2_mont BN_F_BN_MOD_EXP_MONT:109:BN_mod_exp_mont BN_F_BN_MOD_EXP_MONT_CONSTTIME:124:BN_mod_exp_mont_consttime BN_F_BN_MOD_EXP_MONT_WORD:117:BN_mod_exp_mont_word BN_F_BN_MOD_EXP_RECP:125:BN_mod_exp_recp BN_F_BN_MOD_EXP_SIMPLE:126:BN_mod_exp_simple BN_F_BN_MOD_INVERSE:110:BN_mod_inverse BN_F_BN_MOD_INVERSE_NO_BRANCH:139:BN_mod_inverse_no_branch BN_F_BN_MOD_LSHIFT_QUICK:119:BN_mod_lshift_quick BN_F_BN_MOD_SQRT:121:BN_mod_sqrt BN_F_BN_MONT_CTX_NEW:149:BN_MONT_CTX_new BN_F_BN_MPI2BN:112:BN_mpi2bn BN_F_BN_NEW:113:BN_new BN_F_BN_POOL_GET:147:BN_POOL_get BN_F_BN_RAND:114:BN_rand BN_F_BN_RAND_RANGE:122:BN_rand_range BN_F_BN_RECP_CTX_NEW:150:BN_RECP_CTX_new BN_F_BN_RSHIFT:146:BN_rshift BN_F_BN_SET_WORDS:144:bn_set_words BN_F_BN_STACK_PUSH:148:BN_STACK_push BN_F_BN_USUB:115:BN_usub BUF_F_BUF_MEM_GROW:100:BUF_MEM_grow BUF_F_BUF_MEM_GROW_CLEAN:105:BUF_MEM_grow_clean BUF_F_BUF_MEM_NEW:101:BUF_MEM_new CMS_F_CHECK_CONTENT:99:check_content CMS_F_CMS_ADD0_CERT:164:CMS_add0_cert CMS_F_CMS_ADD0_RECIPIENT_KEY:100:CMS_add0_recipient_key CMS_F_CMS_ADD0_RECIPIENT_PASSWORD:165:CMS_add0_recipient_password CMS_F_CMS_ADD1_RECEIPTREQUEST:158:CMS_add1_ReceiptRequest CMS_F_CMS_ADD1_RECIPIENT_CERT:101:CMS_add1_recipient_cert CMS_F_CMS_ADD1_SIGNER:102:CMS_add1_signer CMS_F_CMS_ADD1_SIGNINGTIME:103:cms_add1_signingTime CMS_F_CMS_COMPRESS:104:CMS_compress CMS_F_CMS_COMPRESSEDDATA_CREATE:105:cms_CompressedData_create CMS_F_CMS_COMPRESSEDDATA_INIT_BIO:106:cms_CompressedData_init_bio CMS_F_CMS_COPY_CONTENT:107:cms_copy_content CMS_F_CMS_COPY_MESSAGEDIGEST:108:cms_copy_messageDigest CMS_F_CMS_DATA:109:CMS_data CMS_F_CMS_DATAFINAL:110:CMS_dataFinal CMS_F_CMS_DATAINIT:111:CMS_dataInit CMS_F_CMS_DECRYPT:112:CMS_decrypt CMS_F_CMS_DECRYPT_SET1_KEY:113:CMS_decrypt_set1_key CMS_F_CMS_DECRYPT_SET1_PASSWORD:166:CMS_decrypt_set1_password CMS_F_CMS_DECRYPT_SET1_PKEY:114:CMS_decrypt_set1_pkey CMS_F_CMS_DIGESTALGORITHM_FIND_CTX:115:cms_DigestAlgorithm_find_ctx CMS_F_CMS_DIGESTALGORITHM_INIT_BIO:116:cms_DigestAlgorithm_init_bio CMS_F_CMS_DIGESTEDDATA_DO_FINAL:117:cms_DigestedData_do_final CMS_F_CMS_DIGEST_VERIFY:118:CMS_digest_verify CMS_F_CMS_ENCODE_RECEIPT:161:cms_encode_Receipt CMS_F_CMS_ENCRYPT:119:CMS_encrypt CMS_F_CMS_ENCRYPTEDCONTENT_INIT:179:cms_EncryptedContent_init CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO:120:cms_EncryptedContent_init_bio CMS_F_CMS_ENCRYPTEDDATA_DECRYPT:121:CMS_EncryptedData_decrypt CMS_F_CMS_ENCRYPTEDDATA_ENCRYPT:122:CMS_EncryptedData_encrypt CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY:123:CMS_EncryptedData_set1_key CMS_F_CMS_ENVELOPEDDATA_CREATE:124:CMS_EnvelopedData_create CMS_F_CMS_ENVELOPEDDATA_INIT_BIO:125:cms_EnvelopedData_init_bio CMS_F_CMS_ENVELOPED_DATA_INIT:126:cms_enveloped_data_init CMS_F_CMS_ENV_ASN1_CTRL:171:cms_env_asn1_ctrl CMS_F_CMS_FINAL:127:CMS_final CMS_F_CMS_GET0_CERTIFICATE_CHOICES:128:cms_get0_certificate_choices CMS_F_CMS_GET0_CONTENT:129:CMS_get0_content CMS_F_CMS_GET0_ECONTENT_TYPE:130:cms_get0_econtent_type CMS_F_CMS_GET0_ENVELOPED:131:cms_get0_enveloped CMS_F_CMS_GET0_REVOCATION_CHOICES:132:cms_get0_revocation_choices CMS_F_CMS_GET0_SIGNED:133:cms_get0_signed CMS_F_CMS_MSGSIGDIGEST_ADD1:162:cms_msgSigDigest_add1 CMS_F_CMS_RECEIPTREQUEST_CREATE0:159:CMS_ReceiptRequest_create0 CMS_F_CMS_RECEIPT_VERIFY:160:cms_Receipt_verify CMS_F_CMS_RECIPIENTINFO_DECRYPT:134:CMS_RecipientInfo_decrypt CMS_F_CMS_RECIPIENTINFO_ENCRYPT:169:CMS_RecipientInfo_encrypt CMS_F_CMS_RECIPIENTINFO_KARI_ENCRYPT:178:cms_RecipientInfo_kari_encrypt CMS_F_CMS_RECIPIENTINFO_KARI_GET0_ALG:175:CMS_RecipientInfo_kari_get0_alg CMS_F_CMS_RECIPIENTINFO_KARI_GET0_ORIG_ID:173:\ CMS_RecipientInfo_kari_get0_orig_id CMS_F_CMS_RECIPIENTINFO_KARI_GET0_REKS:172:CMS_RecipientInfo_kari_get0_reks CMS_F_CMS_RECIPIENTINFO_KARI_ORIG_ID_CMP:174:CMS_RecipientInfo_kari_orig_id_cmp CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT:135:cms_RecipientInfo_kekri_decrypt CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT:136:cms_RecipientInfo_kekri_encrypt CMS_F_CMS_RECIPIENTINFO_KEKRI_GET0_ID:137:CMS_RecipientInfo_kekri_get0_id CMS_F_CMS_RECIPIENTINFO_KEKRI_ID_CMP:138:CMS_RecipientInfo_kekri_id_cmp CMS_F_CMS_RECIPIENTINFO_KTRI_CERT_CMP:139:CMS_RecipientInfo_ktri_cert_cmp CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT:140:cms_RecipientInfo_ktri_decrypt CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT:141:cms_RecipientInfo_ktri_encrypt CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_ALGS:142:CMS_RecipientInfo_ktri_get0_algs CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_SIGNER_ID:143:\ CMS_RecipientInfo_ktri_get0_signer_id CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT:167:cms_RecipientInfo_pwri_crypt CMS_F_CMS_RECIPIENTINFO_SET0_KEY:144:CMS_RecipientInfo_set0_key CMS_F_CMS_RECIPIENTINFO_SET0_PASSWORD:168:CMS_RecipientInfo_set0_password CMS_F_CMS_RECIPIENTINFO_SET0_PKEY:145:CMS_RecipientInfo_set0_pkey CMS_F_CMS_SD_ASN1_CTRL:170:cms_sd_asn1_ctrl CMS_F_CMS_SET1_IAS:176:cms_set1_ias CMS_F_CMS_SET1_KEYID:177:cms_set1_keyid CMS_F_CMS_SET1_SIGNERIDENTIFIER:146:cms_set1_SignerIdentifier CMS_F_CMS_SET_DETACHED:147:CMS_set_detached CMS_F_CMS_SIGN:148:CMS_sign CMS_F_CMS_SIGNED_DATA_INIT:149:cms_signed_data_init CMS_F_CMS_SIGNERINFO_CONTENT_SIGN:150:cms_SignerInfo_content_sign CMS_F_CMS_SIGNERINFO_SIGN:151:CMS_SignerInfo_sign CMS_F_CMS_SIGNERINFO_VERIFY:152:CMS_SignerInfo_verify CMS_F_CMS_SIGNERINFO_VERIFY_CERT:153:cms_signerinfo_verify_cert CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT:154:CMS_SignerInfo_verify_content CMS_F_CMS_SIGN_RECEIPT:163:CMS_sign_receipt CMS_F_CMS_SI_CHECK_ATTRIBUTES:183:CMS_si_check_attributes CMS_F_CMS_STREAM:155:CMS_stream CMS_F_CMS_UNCOMPRESS:156:CMS_uncompress CMS_F_CMS_VERIFY:157:CMS_verify CMS_F_KEK_UNWRAP_KEY:180:kek_unwrap_key COMP_F_BIO_ZLIB_FLUSH:99:bio_zlib_flush COMP_F_BIO_ZLIB_NEW:100:bio_zlib_new COMP_F_BIO_ZLIB_READ:101:bio_zlib_read COMP_F_BIO_ZLIB_WRITE:102:bio_zlib_write COMP_F_COMP_CTX_NEW:103:COMP_CTX_new CONF_F_CONF_DUMP_FP:104:CONF_dump_fp CONF_F_CONF_LOAD:100:CONF_load CONF_F_CONF_LOAD_FP:103:CONF_load_fp CONF_F_CONF_PARSE_LIST:119:CONF_parse_list CONF_F_DEF_LOAD:120:def_load CONF_F_DEF_LOAD_BIO:121:def_load_bio CONF_F_GET_NEXT_FILE:107:get_next_file CONF_F_MODULE_ADD:122:module_add CONF_F_MODULE_INIT:115:module_init CONF_F_MODULE_LOAD_DSO:117:module_load_dso CONF_F_MODULE_RUN:118:module_run CONF_F_NCONF_DUMP_BIO:105:NCONF_dump_bio CONF_F_NCONF_DUMP_FP:106:NCONF_dump_fp CONF_F_NCONF_GET_NUMBER_E:112:NCONF_get_number_e CONF_F_NCONF_GET_SECTION:108:NCONF_get_section CONF_F_NCONF_GET_STRING:109:NCONF_get_string CONF_F_NCONF_LOAD:113:NCONF_load CONF_F_NCONF_LOAD_BIO:110:NCONF_load_bio CONF_F_NCONF_LOAD_FP:114:NCONF_load_fp CONF_F_NCONF_NEW:111:NCONF_new CONF_F_PROCESS_INCLUDE:116:process_include CONF_F_SSL_MODULE_INIT:123:ssl_module_init CONF_F_STR_COPY:101:str_copy CRYPTO_F_CMAC_CTX_NEW:120:CMAC_CTX_new CRYPTO_F_CRYPTO_DUP_EX_DATA:110:CRYPTO_dup_ex_data CRYPTO_F_CRYPTO_FREE_EX_DATA:111:CRYPTO_free_ex_data CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX:100:CRYPTO_get_ex_new_index CRYPTO_F_CRYPTO_MEMDUP:115:CRYPTO_memdup CRYPTO_F_CRYPTO_NEW_EX_DATA:112:CRYPTO_new_ex_data CRYPTO_F_CRYPTO_OCB128_COPY_CTX:121:CRYPTO_ocb128_copy_ctx CRYPTO_F_CRYPTO_OCB128_INIT:122:CRYPTO_ocb128_init CRYPTO_F_CRYPTO_SET_EX_DATA:102:CRYPTO_set_ex_data CRYPTO_F_FIPS_MODE_SET:109:FIPS_mode_set CRYPTO_F_GET_AND_LOCK:113:get_and_lock CRYPTO_F_OPENSSL_ATEXIT:114:OPENSSL_atexit CRYPTO_F_OPENSSL_BUF2HEXSTR:117:OPENSSL_buf2hexstr CRYPTO_F_OPENSSL_FOPEN:119:openssl_fopen CRYPTO_F_OPENSSL_HEXSTR2BUF:118:OPENSSL_hexstr2buf CRYPTO_F_OPENSSL_INIT_CRYPTO:116:OPENSSL_init_crypto CRYPTO_F_OPENSSL_LH_NEW:126:OPENSSL_LH_new CRYPTO_F_OPENSSL_SK_DEEP_COPY:127:OPENSSL_sk_deep_copy CRYPTO_F_OPENSSL_SK_DUP:128:OPENSSL_sk_dup CRYPTO_F_PKEY_HMAC_INIT:123:pkey_hmac_init CRYPTO_F_PKEY_POLY1305_INIT:124:pkey_poly1305_init CRYPTO_F_PKEY_SIPHASH_INIT:125:pkey_siphash_init CRYPTO_F_SK_RESERVE:129:sk_reserve CT_F_CTLOG_NEW:117:CTLOG_new CT_F_CTLOG_NEW_FROM_BASE64:118:CTLOG_new_from_base64 CT_F_CTLOG_NEW_FROM_CONF:119:ctlog_new_from_conf CT_F_CTLOG_STORE_LOAD_CTX_NEW:122:ctlog_store_load_ctx_new CT_F_CTLOG_STORE_LOAD_FILE:123:CTLOG_STORE_load_file CT_F_CTLOG_STORE_LOAD_LOG:130:ctlog_store_load_log CT_F_CTLOG_STORE_NEW:131:CTLOG_STORE_new CT_F_CT_BASE64_DECODE:124:ct_base64_decode CT_F_CT_POLICY_EVAL_CTX_NEW:133:CT_POLICY_EVAL_CTX_new CT_F_CT_V1_LOG_ID_FROM_PKEY:125:ct_v1_log_id_from_pkey CT_F_I2O_SCT:107:i2o_SCT CT_F_I2O_SCT_LIST:108:i2o_SCT_LIST CT_F_I2O_SCT_SIGNATURE:109:i2o_SCT_signature CT_F_O2I_SCT:110:o2i_SCT CT_F_O2I_SCT_LIST:111:o2i_SCT_LIST CT_F_O2I_SCT_SIGNATURE:112:o2i_SCT_signature CT_F_SCT_CTX_NEW:126:SCT_CTX_new CT_F_SCT_CTX_VERIFY:128:SCT_CTX_verify CT_F_SCT_NEW:100:SCT_new CT_F_SCT_NEW_FROM_BASE64:127:SCT_new_from_base64 CT_F_SCT_SET0_LOG_ID:101:SCT_set0_log_id CT_F_SCT_SET1_EXTENSIONS:114:SCT_set1_extensions CT_F_SCT_SET1_LOG_ID:115:SCT_set1_log_id CT_F_SCT_SET1_SIGNATURE:116:SCT_set1_signature CT_F_SCT_SET_LOG_ENTRY_TYPE:102:SCT_set_log_entry_type CT_F_SCT_SET_SIGNATURE_NID:103:SCT_set_signature_nid CT_F_SCT_SET_VERSION:104:SCT_set_version DH_F_COMPUTE_KEY:102:compute_key DH_F_DHPARAMS_PRINT_FP:101:DHparams_print_fp DH_F_DH_BUILTIN_GENPARAMS:106:dh_builtin_genparams DH_F_DH_CHECK_EX:121:DH_check_ex DH_F_DH_CHECK_PARAMS_EX:122:DH_check_params_ex DH_F_DH_CHECK_PUB_KEY_EX:123:DH_check_pub_key_ex DH_F_DH_CMS_DECRYPT:114:dh_cms_decrypt DH_F_DH_CMS_SET_PEERKEY:115:dh_cms_set_peerkey DH_F_DH_CMS_SET_SHARED_INFO:116:dh_cms_set_shared_info DH_F_DH_METH_DUP:117:DH_meth_dup DH_F_DH_METH_NEW:118:DH_meth_new DH_F_DH_METH_SET1_NAME:119:DH_meth_set1_name DH_F_DH_NEW_BY_NID:104:DH_new_by_nid DH_F_DH_NEW_METHOD:105:DH_new_method DH_F_DH_PARAM_DECODE:107:dh_param_decode DH_F_DH_PKEY_PUBLIC_CHECK:124:dh_pkey_public_check DH_F_DH_PRIV_DECODE:110:dh_priv_decode DH_F_DH_PRIV_ENCODE:111:dh_priv_encode DH_F_DH_PUB_DECODE:108:dh_pub_decode DH_F_DH_PUB_ENCODE:109:dh_pub_encode DH_F_DO_DH_PRINT:100:do_dh_print DH_F_GENERATE_KEY:103:generate_key DH_F_PKEY_DH_CTRL_STR:120:pkey_dh_ctrl_str DH_F_PKEY_DH_DERIVE:112:pkey_dh_derive DH_F_PKEY_DH_INIT:125:pkey_dh_init DH_F_PKEY_DH_KEYGEN:113:pkey_dh_keygen DSA_F_DSAPARAMS_PRINT:100:DSAparams_print DSA_F_DSAPARAMS_PRINT_FP:101:DSAparams_print_fp DSA_F_DSA_BUILTIN_PARAMGEN:125:dsa_builtin_paramgen DSA_F_DSA_BUILTIN_PARAMGEN2:126:dsa_builtin_paramgen2 DSA_F_DSA_DO_SIGN:112:DSA_do_sign DSA_F_DSA_DO_VERIFY:113:DSA_do_verify DSA_F_DSA_METH_DUP:127:DSA_meth_dup DSA_F_DSA_METH_NEW:128:DSA_meth_new DSA_F_DSA_METH_SET1_NAME:129:DSA_meth_set1_name DSA_F_DSA_NEW_METHOD:103:DSA_new_method DSA_F_DSA_PARAM_DECODE:119:dsa_param_decode DSA_F_DSA_PRINT_FP:105:DSA_print_fp DSA_F_DSA_PRIV_DECODE:115:dsa_priv_decode DSA_F_DSA_PRIV_ENCODE:116:dsa_priv_encode DSA_F_DSA_PUB_DECODE:117:dsa_pub_decode DSA_F_DSA_PUB_ENCODE:118:dsa_pub_encode DSA_F_DSA_SIGN:106:DSA_sign DSA_F_DSA_SIGN_SETUP:107:DSA_sign_setup DSA_F_DSA_SIG_NEW:102:DSA_SIG_new DSA_F_OLD_DSA_PRIV_DECODE:122:old_dsa_priv_decode DSA_F_PKEY_DSA_CTRL:120:pkey_dsa_ctrl DSA_F_PKEY_DSA_CTRL_STR:104:pkey_dsa_ctrl_str DSA_F_PKEY_DSA_KEYGEN:121:pkey_dsa_keygen DSO_F_DLFCN_BIND_FUNC:100:dlfcn_bind_func DSO_F_DLFCN_LOAD:102:dlfcn_load DSO_F_DLFCN_MERGER:130:dlfcn_merger DSO_F_DLFCN_NAME_CONVERTER:123:dlfcn_name_converter DSO_F_DLFCN_UNLOAD:103:dlfcn_unload DSO_F_DL_BIND_FUNC:104:dl_bind_func DSO_F_DL_LOAD:106:dl_load DSO_F_DL_MERGER:131:dl_merger DSO_F_DL_NAME_CONVERTER:124:dl_name_converter DSO_F_DL_UNLOAD:107:dl_unload DSO_F_DSO_BIND_FUNC:108:DSO_bind_func DSO_F_DSO_CONVERT_FILENAME:126:DSO_convert_filename DSO_F_DSO_CTRL:110:DSO_ctrl DSO_F_DSO_FREE:111:DSO_free DSO_F_DSO_GET_FILENAME:127:DSO_get_filename DSO_F_DSO_GLOBAL_LOOKUP:139:DSO_global_lookup DSO_F_DSO_LOAD:112:DSO_load DSO_F_DSO_MERGE:132:DSO_merge DSO_F_DSO_NEW_METHOD:113:DSO_new_method DSO_F_DSO_PATHBYADDR:105:DSO_pathbyaddr DSO_F_DSO_SET_FILENAME:129:DSO_set_filename DSO_F_DSO_UP_REF:114:DSO_up_ref DSO_F_VMS_BIND_SYM:115:vms_bind_sym DSO_F_VMS_LOAD:116:vms_load DSO_F_VMS_MERGER:133:vms_merger DSO_F_VMS_UNLOAD:117:vms_unload DSO_F_WIN32_BIND_FUNC:101:win32_bind_func DSO_F_WIN32_GLOBALLOOKUP:142:win32_globallookup DSO_F_WIN32_JOINER:135:win32_joiner DSO_F_WIN32_LOAD:120:win32_load DSO_F_WIN32_MERGER:134:win32_merger DSO_F_WIN32_NAME_CONVERTER:125:win32_name_converter DSO_F_WIN32_PATHBYADDR:109:* DSO_F_WIN32_SPLITTER:136:win32_splitter DSO_F_WIN32_UNLOAD:121:win32_unload EC_F_BN_TO_FELEM:224:BN_to_felem EC_F_D2I_ECPARAMETERS:144:d2i_ECParameters EC_F_D2I_ECPKPARAMETERS:145:d2i_ECPKParameters EC_F_D2I_ECPRIVATEKEY:146:d2i_ECPrivateKey EC_F_DO_EC_KEY_PRINT:221:do_EC_KEY_print EC_F_ECDH_CMS_DECRYPT:238:ecdh_cms_decrypt EC_F_ECDH_CMS_SET_SHARED_INFO:239:ecdh_cms_set_shared_info EC_F_ECDH_COMPUTE_KEY:246:ECDH_compute_key EC_F_ECDH_SIMPLE_COMPUTE_KEY:257:ecdh_simple_compute_key EC_F_ECDSA_DO_SIGN_EX:251:ECDSA_do_sign_ex EC_F_ECDSA_DO_VERIFY:252:ECDSA_do_verify EC_F_ECDSA_SIGN_EX:254:ECDSA_sign_ex EC_F_ECDSA_SIGN_SETUP:248:ECDSA_sign_setup EC_F_ECDSA_SIG_NEW:265:ECDSA_SIG_new EC_F_ECDSA_VERIFY:253:ECDSA_verify EC_F_ECD_ITEM_VERIFY:270:ecd_item_verify EC_F_ECKEY_PARAM2TYPE:223:eckey_param2type EC_F_ECKEY_PARAM_DECODE:212:eckey_param_decode EC_F_ECKEY_PRIV_DECODE:213:eckey_priv_decode EC_F_ECKEY_PRIV_ENCODE:214:eckey_priv_encode EC_F_ECKEY_PUB_DECODE:215:eckey_pub_decode EC_F_ECKEY_PUB_ENCODE:216:eckey_pub_encode EC_F_ECKEY_TYPE2PARAM:220:eckey_type2param EC_F_ECPARAMETERS_PRINT:147:ECParameters_print EC_F_ECPARAMETERS_PRINT_FP:148:ECParameters_print_fp EC_F_ECPKPARAMETERS_PRINT:149:ECPKParameters_print EC_F_ECPKPARAMETERS_PRINT_FP:150:ECPKParameters_print_fp EC_F_ECP_NISTZ256_GET_AFFINE:240:ecp_nistz256_get_affine EC_F_ECP_NISTZ256_INV_MOD_ORD:275:ecp_nistz256_inv_mod_ord EC_F_ECP_NISTZ256_MULT_PRECOMPUTE:243:ecp_nistz256_mult_precompute EC_F_ECP_NISTZ256_POINTS_MUL:241:ecp_nistz256_points_mul EC_F_ECP_NISTZ256_PRE_COMP_NEW:244:ecp_nistz256_pre_comp_new EC_F_ECP_NISTZ256_WINDOWED_MUL:242:ecp_nistz256_windowed_mul EC_F_ECX_KEY_OP:266:ecx_key_op EC_F_ECX_PRIV_ENCODE:267:ecx_priv_encode EC_F_ECX_PUB_ENCODE:268:ecx_pub_encode EC_F_EC_ASN1_GROUP2CURVE:153:ec_asn1_group2curve EC_F_EC_ASN1_GROUP2FIELDID:154:ec_asn1_group2fieldid EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY:208:ec_GF2m_montgomery_point_multiply EC_F_EC_GF2M_SIMPLE_FIELD_INV:296:ec_GF2m_simple_field_inv EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT:159:\ ec_GF2m_simple_group_check_discriminant EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE:195:ec_GF2m_simple_group_set_curve EC_F_EC_GF2M_SIMPLE_LADDER_POST:285:ec_GF2m_simple_ladder_post EC_F_EC_GF2M_SIMPLE_LADDER_PRE:288:ec_GF2m_simple_ladder_pre EC_F_EC_GF2M_SIMPLE_OCT2POINT:160:ec_GF2m_simple_oct2point EC_F_EC_GF2M_SIMPLE_POINT2OCT:161:ec_GF2m_simple_point2oct EC_F_EC_GF2M_SIMPLE_POINTS_MUL:289:ec_GF2m_simple_points_mul EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES:162:\ ec_GF2m_simple_point_get_affine_coordinates EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES:163:\ ec_GF2m_simple_point_set_affine_coordinates EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES:164:\ ec_GF2m_simple_set_compressed_coordinates EC_F_EC_GFP_MONT_FIELD_DECODE:133:ec_GFp_mont_field_decode EC_F_EC_GFP_MONT_FIELD_ENCODE:134:ec_GFp_mont_field_encode EC_F_EC_GFP_MONT_FIELD_INV:297:ec_GFp_mont_field_inv EC_F_EC_GFP_MONT_FIELD_MUL:131:ec_GFp_mont_field_mul EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE:209:ec_GFp_mont_field_set_to_one EC_F_EC_GFP_MONT_FIELD_SQR:132:ec_GFp_mont_field_sqr EC_F_EC_GFP_MONT_GROUP_SET_CURVE:189:ec_GFp_mont_group_set_curve EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE:225:ec_GFp_nistp224_group_set_curve EC_F_EC_GFP_NISTP224_POINTS_MUL:228:ec_GFp_nistp224_points_mul EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES:226:\ ec_GFp_nistp224_point_get_affine_coordinates EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE:230:ec_GFp_nistp256_group_set_curve EC_F_EC_GFP_NISTP256_POINTS_MUL:231:ec_GFp_nistp256_points_mul EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES:232:\ ec_GFp_nistp256_point_get_affine_coordinates EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE:233:ec_GFp_nistp521_group_set_curve EC_F_EC_GFP_NISTP521_POINTS_MUL:234:ec_GFp_nistp521_points_mul EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES:235:\ ec_GFp_nistp521_point_get_affine_coordinates EC_F_EC_GFP_NIST_FIELD_MUL:200:ec_GFp_nist_field_mul EC_F_EC_GFP_NIST_FIELD_SQR:201:ec_GFp_nist_field_sqr EC_F_EC_GFP_NIST_GROUP_SET_CURVE:202:ec_GFp_nist_group_set_curve EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES:287:ec_GFp_simple_blind_coordinates EC_F_EC_GFP_SIMPLE_FIELD_INV:298:ec_GFp_simple_field_inv EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT:165:\ ec_GFp_simple_group_check_discriminant EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE:166:ec_GFp_simple_group_set_curve EC_F_EC_GFP_SIMPLE_MAKE_AFFINE:102:ec_GFp_simple_make_affine EC_F_EC_GFP_SIMPLE_OCT2POINT:103:ec_GFp_simple_oct2point EC_F_EC_GFP_SIMPLE_POINT2OCT:104:ec_GFp_simple_point2oct EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE:137:ec_GFp_simple_points_make_affine EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES:167:\ ec_GFp_simple_point_get_affine_coordinates EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES:168:\ ec_GFp_simple_point_set_affine_coordinates EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES:169:\ ec_GFp_simple_set_compressed_coordinates EC_F_EC_GROUP_CHECK:170:EC_GROUP_check EC_F_EC_GROUP_CHECK_DISCRIMINANT:171:EC_GROUP_check_discriminant EC_F_EC_GROUP_COPY:106:EC_GROUP_copy EC_F_EC_GROUP_GET_CURVE:291:EC_GROUP_get_curve EC_F_EC_GROUP_GET_CURVE_GF2M:172:EC_GROUP_get_curve_GF2m EC_F_EC_GROUP_GET_CURVE_GFP:130:EC_GROUP_get_curve_GFp EC_F_EC_GROUP_GET_DEGREE:173:EC_GROUP_get_degree EC_F_EC_GROUP_GET_ECPARAMETERS:261:EC_GROUP_get_ecparameters EC_F_EC_GROUP_GET_ECPKPARAMETERS:262:EC_GROUP_get_ecpkparameters EC_F_EC_GROUP_GET_PENTANOMIAL_BASIS:193:EC_GROUP_get_pentanomial_basis EC_F_EC_GROUP_GET_TRINOMIAL_BASIS:194:EC_GROUP_get_trinomial_basis EC_F_EC_GROUP_NEW:108:EC_GROUP_new EC_F_EC_GROUP_NEW_BY_CURVE_NAME:174:EC_GROUP_new_by_curve_name EC_F_EC_GROUP_NEW_FROM_DATA:175:ec_group_new_from_data EC_F_EC_GROUP_NEW_FROM_ECPARAMETERS:263:EC_GROUP_new_from_ecparameters EC_F_EC_GROUP_NEW_FROM_ECPKPARAMETERS:264:EC_GROUP_new_from_ecpkparameters EC_F_EC_GROUP_SET_CURVE:292:EC_GROUP_set_curve EC_F_EC_GROUP_SET_CURVE_GF2M:176:EC_GROUP_set_curve_GF2m EC_F_EC_GROUP_SET_CURVE_GFP:109:EC_GROUP_set_curve_GFp EC_F_EC_GROUP_SET_GENERATOR:111:EC_GROUP_set_generator EC_F_EC_GROUP_SET_SEED:286:EC_GROUP_set_seed EC_F_EC_KEY_CHECK_KEY:177:EC_KEY_check_key EC_F_EC_KEY_COPY:178:EC_KEY_copy EC_F_EC_KEY_GENERATE_KEY:179:EC_KEY_generate_key EC_F_EC_KEY_NEW:182:EC_KEY_new EC_F_EC_KEY_NEW_METHOD:245:EC_KEY_new_method EC_F_EC_KEY_OCT2PRIV:255:EC_KEY_oct2priv EC_F_EC_KEY_PRINT:180:EC_KEY_print EC_F_EC_KEY_PRINT_FP:181:EC_KEY_print_fp EC_F_EC_KEY_PRIV2BUF:279:EC_KEY_priv2buf EC_F_EC_KEY_PRIV2OCT:256:EC_KEY_priv2oct EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES:229:\ EC_KEY_set_public_key_affine_coordinates EC_F_EC_KEY_SIMPLE_CHECK_KEY:258:ec_key_simple_check_key EC_F_EC_KEY_SIMPLE_OCT2PRIV:259:ec_key_simple_oct2priv EC_F_EC_KEY_SIMPLE_PRIV2OCT:260:ec_key_simple_priv2oct EC_F_EC_PKEY_CHECK:273:ec_pkey_check EC_F_EC_PKEY_PARAM_CHECK:274:ec_pkey_param_check EC_F_EC_POINTS_MAKE_AFFINE:136:EC_POINTs_make_affine EC_F_EC_POINTS_MUL:290:EC_POINTs_mul EC_F_EC_POINT_ADD:112:EC_POINT_add EC_F_EC_POINT_BN2POINT:280:EC_POINT_bn2point EC_F_EC_POINT_CMP:113:EC_POINT_cmp EC_F_EC_POINT_COPY:114:EC_POINT_copy EC_F_EC_POINT_DBL:115:EC_POINT_dbl EC_F_EC_POINT_GET_AFFINE_COORDINATES:293:EC_POINT_get_affine_coordinates EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M:183:\ EC_POINT_get_affine_coordinates_GF2m EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP:116:EC_POINT_get_affine_coordinates_GFp EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP:117:\ EC_POINT_get_Jprojective_coordinates_GFp EC_F_EC_POINT_INVERT:210:EC_POINT_invert EC_F_EC_POINT_IS_AT_INFINITY:118:EC_POINT_is_at_infinity EC_F_EC_POINT_IS_ON_CURVE:119:EC_POINT_is_on_curve EC_F_EC_POINT_MAKE_AFFINE:120:EC_POINT_make_affine EC_F_EC_POINT_NEW:121:EC_POINT_new EC_F_EC_POINT_OCT2POINT:122:EC_POINT_oct2point EC_F_EC_POINT_POINT2BUF:281:EC_POINT_point2buf EC_F_EC_POINT_POINT2OCT:123:EC_POINT_point2oct EC_F_EC_POINT_SET_AFFINE_COORDINATES:294:EC_POINT_set_affine_coordinates EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M:185:\ EC_POINT_set_affine_coordinates_GF2m EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP:124:EC_POINT_set_affine_coordinates_GFp EC_F_EC_POINT_SET_COMPRESSED_COORDINATES:295:EC_POINT_set_compressed_coordinates EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M:186:\ EC_POINT_set_compressed_coordinates_GF2m EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP:125:\ EC_POINT_set_compressed_coordinates_GFp EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP:126:\ EC_POINT_set_Jprojective_coordinates_GFp EC_F_EC_POINT_SET_TO_INFINITY:127:EC_POINT_set_to_infinity EC_F_EC_PRE_COMP_NEW:196:ec_pre_comp_new EC_F_EC_SCALAR_MUL_LADDER:284:ec_scalar_mul_ladder EC_F_EC_WNAF_MUL:187:ec_wNAF_mul EC_F_EC_WNAF_PRECOMPUTE_MULT:188:ec_wNAF_precompute_mult EC_F_I2D_ECPARAMETERS:190:i2d_ECParameters EC_F_I2D_ECPKPARAMETERS:191:i2d_ECPKParameters EC_F_I2D_ECPRIVATEKEY:192:i2d_ECPrivateKey EC_F_I2O_ECPUBLICKEY:151:i2o_ECPublicKey EC_F_NISTP224_PRE_COMP_NEW:227:nistp224_pre_comp_new EC_F_NISTP256_PRE_COMP_NEW:236:nistp256_pre_comp_new EC_F_NISTP521_PRE_COMP_NEW:237:nistp521_pre_comp_new EC_F_O2I_ECPUBLICKEY:152:o2i_ECPublicKey EC_F_OLD_EC_PRIV_DECODE:222:old_ec_priv_decode EC_F_OSSL_ECDH_COMPUTE_KEY:247:ossl_ecdh_compute_key EC_F_OSSL_ECDSA_SIGN_SIG:249:ossl_ecdsa_sign_sig EC_F_OSSL_ECDSA_VERIFY_SIG:250:ossl_ecdsa_verify_sig EC_F_PKEY_ECD_CTRL:271:pkey_ecd_ctrl EC_F_PKEY_ECD_DIGESTSIGN:272:pkey_ecd_digestsign EC_F_PKEY_ECD_DIGESTSIGN25519:276:pkey_ecd_digestsign25519 EC_F_PKEY_ECD_DIGESTSIGN448:277:pkey_ecd_digestsign448 EC_F_PKEY_ECX_DERIVE:269:pkey_ecx_derive EC_F_PKEY_EC_CTRL:197:pkey_ec_ctrl EC_F_PKEY_EC_CTRL_STR:198:pkey_ec_ctrl_str EC_F_PKEY_EC_DERIVE:217:pkey_ec_derive EC_F_PKEY_EC_INIT:282:pkey_ec_init EC_F_PKEY_EC_KDF_DERIVE:283:pkey_ec_kdf_derive EC_F_PKEY_EC_KEYGEN:199:pkey_ec_keygen EC_F_PKEY_EC_PARAMGEN:219:pkey_ec_paramgen EC_F_PKEY_EC_SIGN:218:pkey_ec_sign EC_F_VALIDATE_ECX_DERIVE:278:validate_ecx_derive ENGINE_F_DIGEST_UPDATE:198:digest_update ENGINE_F_DYNAMIC_CTRL:180:dynamic_ctrl ENGINE_F_DYNAMIC_GET_DATA_CTX:181:dynamic_get_data_ctx ENGINE_F_DYNAMIC_LOAD:182:dynamic_load ENGINE_F_DYNAMIC_SET_DATA_CTX:183:dynamic_set_data_ctx ENGINE_F_ENGINE_ADD:105:ENGINE_add ENGINE_F_ENGINE_BY_ID:106:ENGINE_by_id ENGINE_F_ENGINE_CMD_IS_EXECUTABLE:170:ENGINE_cmd_is_executable ENGINE_F_ENGINE_CTRL:142:ENGINE_ctrl ENGINE_F_ENGINE_CTRL_CMD:178:ENGINE_ctrl_cmd ENGINE_F_ENGINE_CTRL_CMD_STRING:171:ENGINE_ctrl_cmd_string ENGINE_F_ENGINE_FINISH:107:ENGINE_finish ENGINE_F_ENGINE_GET_CIPHER:185:ENGINE_get_cipher ENGINE_F_ENGINE_GET_DIGEST:186:ENGINE_get_digest ENGINE_F_ENGINE_GET_FIRST:195:ENGINE_get_first ENGINE_F_ENGINE_GET_LAST:196:ENGINE_get_last ENGINE_F_ENGINE_GET_NEXT:115:ENGINE_get_next ENGINE_F_ENGINE_GET_PKEY_ASN1_METH:193:ENGINE_get_pkey_asn1_meth ENGINE_F_ENGINE_GET_PKEY_METH:192:ENGINE_get_pkey_meth ENGINE_F_ENGINE_GET_PREV:116:ENGINE_get_prev ENGINE_F_ENGINE_INIT:119:ENGINE_init ENGINE_F_ENGINE_LIST_ADD:120:engine_list_add ENGINE_F_ENGINE_LIST_REMOVE:121:engine_list_remove ENGINE_F_ENGINE_LOAD_PRIVATE_KEY:150:ENGINE_load_private_key ENGINE_F_ENGINE_LOAD_PUBLIC_KEY:151:ENGINE_load_public_key ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT:194:ENGINE_load_ssl_client_cert ENGINE_F_ENGINE_NEW:122:ENGINE_new ENGINE_F_ENGINE_PKEY_ASN1_FIND_STR:197:ENGINE_pkey_asn1_find_str ENGINE_F_ENGINE_REMOVE:123:ENGINE_remove ENGINE_F_ENGINE_SET_DEFAULT_STRING:189:ENGINE_set_default_string ENGINE_F_ENGINE_SET_ID:129:ENGINE_set_id ENGINE_F_ENGINE_SET_NAME:130:ENGINE_set_name ENGINE_F_ENGINE_TABLE_REGISTER:184:engine_table_register ENGINE_F_ENGINE_UNLOCKED_FINISH:191:engine_unlocked_finish ENGINE_F_ENGINE_UP_REF:190:ENGINE_up_ref ENGINE_F_INT_CLEANUP_ITEM:199:int_cleanup_item ENGINE_F_INT_CTRL_HELPER:172:int_ctrl_helper ENGINE_F_INT_ENGINE_CONFIGURE:188:int_engine_configure ENGINE_F_INT_ENGINE_MODULE_INIT:187:int_engine_module_init ENGINE_F_OSSL_HMAC_INIT:200:ossl_hmac_init EVP_F_AESNI_INIT_KEY:165:aesni_init_key EVP_F_AESNI_XTS_INIT_KEY:207:aesni_xts_init_key EVP_F_AES_GCM_CTRL:196:aes_gcm_ctrl EVP_F_AES_INIT_KEY:133:aes_init_key EVP_F_AES_OCB_CIPHER:169:aes_ocb_cipher EVP_F_AES_T4_INIT_KEY:178:aes_t4_init_key EVP_F_AES_T4_XTS_INIT_KEY:208:aes_t4_xts_init_key EVP_F_AES_WRAP_CIPHER:170:aes_wrap_cipher EVP_F_AES_XTS_INIT_KEY:209:aes_xts_init_key EVP_F_ALG_MODULE_INIT:177:alg_module_init EVP_F_ARIA_CCM_INIT_KEY:175:aria_ccm_init_key EVP_F_ARIA_GCM_CTRL:197:aria_gcm_ctrl EVP_F_ARIA_GCM_INIT_KEY:176:aria_gcm_init_key EVP_F_ARIA_INIT_KEY:185:aria_init_key EVP_F_B64_NEW:198:b64_new EVP_F_CAMELLIA_INIT_KEY:159:camellia_init_key EVP_F_CHACHA20_POLY1305_CTRL:182:chacha20_poly1305_ctrl EVP_F_CMLL_T4_INIT_KEY:179:cmll_t4_init_key EVP_F_DES_EDE3_WRAP_CIPHER:171:des_ede3_wrap_cipher EVP_F_DO_SIGVER_INIT:161:do_sigver_init EVP_F_ENC_NEW:199:enc_new EVP_F_EVP_CIPHERINIT_EX:123:EVP_CipherInit_ex EVP_F_EVP_CIPHER_ASN1_TO_PARAM:204:EVP_CIPHER_asn1_to_param EVP_F_EVP_CIPHER_CTX_COPY:163:EVP_CIPHER_CTX_copy EVP_F_EVP_CIPHER_CTX_CTRL:124:EVP_CIPHER_CTX_ctrl EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH:122:EVP_CIPHER_CTX_set_key_length EVP_F_EVP_CIPHER_PARAM_TO_ASN1:205:EVP_CIPHER_param_to_asn1 EVP_F_EVP_DECRYPTFINAL_EX:101:EVP_DecryptFinal_ex EVP_F_EVP_DECRYPTUPDATE:166:EVP_DecryptUpdate EVP_F_EVP_DIGESTFINALXOF:174:EVP_DigestFinalXOF EVP_F_EVP_DIGESTINIT_EX:128:EVP_DigestInit_ex EVP_F_EVP_ENCRYPTDECRYPTUPDATE:219:evp_EncryptDecryptUpdate EVP_F_EVP_ENCRYPTFINAL_EX:127:EVP_EncryptFinal_ex EVP_F_EVP_ENCRYPTUPDATE:167:EVP_EncryptUpdate EVP_F_EVP_MD_CTX_COPY_EX:110:EVP_MD_CTX_copy_ex EVP_F_EVP_MD_SIZE:162:EVP_MD_size EVP_F_EVP_OPENINIT:102:EVP_OpenInit EVP_F_EVP_PBE_ALG_ADD:115:EVP_PBE_alg_add EVP_F_EVP_PBE_ALG_ADD_TYPE:160:EVP_PBE_alg_add_type EVP_F_EVP_PBE_CIPHERINIT:116:EVP_PBE_CipherInit EVP_F_EVP_PBE_SCRYPT:181:EVP_PBE_scrypt EVP_F_EVP_PKCS82PKEY:111:EVP_PKCS82PKEY EVP_F_EVP_PKEY2PKCS8:113:EVP_PKEY2PKCS8 EVP_F_EVP_PKEY_ASN1_ADD0:188:EVP_PKEY_asn1_add0 EVP_F_EVP_PKEY_CHECK:186:EVP_PKEY_check EVP_F_EVP_PKEY_COPY_PARAMETERS:103:EVP_PKEY_copy_parameters EVP_F_EVP_PKEY_CTX_CTRL:137:EVP_PKEY_CTX_ctrl EVP_F_EVP_PKEY_CTX_CTRL_STR:150:EVP_PKEY_CTX_ctrl_str EVP_F_EVP_PKEY_CTX_DUP:156:EVP_PKEY_CTX_dup EVP_F_EVP_PKEY_CTX_MD:168:EVP_PKEY_CTX_md EVP_F_EVP_PKEY_DECRYPT:104:EVP_PKEY_decrypt EVP_F_EVP_PKEY_DECRYPT_INIT:138:EVP_PKEY_decrypt_init EVP_F_EVP_PKEY_DECRYPT_OLD:151:EVP_PKEY_decrypt_old EVP_F_EVP_PKEY_DERIVE:153:EVP_PKEY_derive EVP_F_EVP_PKEY_DERIVE_INIT:154:EVP_PKEY_derive_init EVP_F_EVP_PKEY_DERIVE_SET_PEER:155:EVP_PKEY_derive_set_peer EVP_F_EVP_PKEY_ENCRYPT:105:EVP_PKEY_encrypt EVP_F_EVP_PKEY_ENCRYPT_INIT:139:EVP_PKEY_encrypt_init EVP_F_EVP_PKEY_ENCRYPT_OLD:152:EVP_PKEY_encrypt_old EVP_F_EVP_PKEY_GET0_DH:119:EVP_PKEY_get0_DH EVP_F_EVP_PKEY_GET0_DSA:120:EVP_PKEY_get0_DSA EVP_F_EVP_PKEY_GET0_EC_KEY:131:EVP_PKEY_get0_EC_KEY EVP_F_EVP_PKEY_GET0_HMAC:183:EVP_PKEY_get0_hmac EVP_F_EVP_PKEY_GET0_POLY1305:184:EVP_PKEY_get0_poly1305 EVP_F_EVP_PKEY_GET0_RSA:121:EVP_PKEY_get0_RSA EVP_F_EVP_PKEY_GET0_SIPHASH:172:EVP_PKEY_get0_siphash EVP_F_EVP_PKEY_GET_RAW_PRIVATE_KEY:202:EVP_PKEY_get_raw_private_key EVP_F_EVP_PKEY_GET_RAW_PUBLIC_KEY:203:EVP_PKEY_get_raw_public_key EVP_F_EVP_PKEY_KEYGEN:146:EVP_PKEY_keygen EVP_F_EVP_PKEY_KEYGEN_INIT:147:EVP_PKEY_keygen_init EVP_F_EVP_PKEY_METH_ADD0:194:EVP_PKEY_meth_add0 EVP_F_EVP_PKEY_METH_NEW:195:EVP_PKEY_meth_new EVP_F_EVP_PKEY_NEW:106:EVP_PKEY_new EVP_F_EVP_PKEY_NEW_CMAC_KEY:193:EVP_PKEY_new_CMAC_key EVP_F_EVP_PKEY_NEW_RAW_PRIVATE_KEY:191:EVP_PKEY_new_raw_private_key EVP_F_EVP_PKEY_NEW_RAW_PUBLIC_KEY:192:EVP_PKEY_new_raw_public_key EVP_F_EVP_PKEY_PARAMGEN:148:EVP_PKEY_paramgen EVP_F_EVP_PKEY_PARAMGEN_INIT:149:EVP_PKEY_paramgen_init EVP_F_EVP_PKEY_PARAM_CHECK:189:EVP_PKEY_param_check EVP_F_EVP_PKEY_PUBLIC_CHECK:190:EVP_PKEY_public_check EVP_F_EVP_PKEY_SET1_ENGINE:187:EVP_PKEY_set1_engine EVP_F_EVP_PKEY_SET_ALIAS_TYPE:206:EVP_PKEY_set_alias_type EVP_F_EVP_PKEY_SIGN:140:EVP_PKEY_sign EVP_F_EVP_PKEY_SIGN_INIT:141:EVP_PKEY_sign_init EVP_F_EVP_PKEY_VERIFY:142:EVP_PKEY_verify EVP_F_EVP_PKEY_VERIFY_INIT:143:EVP_PKEY_verify_init EVP_F_EVP_PKEY_VERIFY_RECOVER:144:EVP_PKEY_verify_recover EVP_F_EVP_PKEY_VERIFY_RECOVER_INIT:145:EVP_PKEY_verify_recover_init EVP_F_EVP_SIGNFINAL:107:EVP_SignFinal EVP_F_EVP_VERIFYFINAL:108:EVP_VerifyFinal EVP_F_INT_CTX_NEW:157:int_ctx_new EVP_F_OK_NEW:200:ok_new EVP_F_PKCS5_PBE_KEYIVGEN:117:PKCS5_PBE_keyivgen EVP_F_PKCS5_V2_PBE_KEYIVGEN:118:PKCS5_v2_PBE_keyivgen EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN:164:PKCS5_v2_PBKDF2_keyivgen EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN:180:PKCS5_v2_scrypt_keyivgen EVP_F_PKEY_SET_TYPE:158:pkey_set_type EVP_F_RC2_MAGIC_TO_METH:109:rc2_magic_to_meth EVP_F_RC5_CTRL:125:rc5_ctrl EVP_F_R_32_12_16_INIT_KEY:242:r_32_12_16_init_key EVP_F_S390X_AES_GCM_CTRL:201:s390x_aes_gcm_ctrl EVP_F_UPDATE:173:update KDF_F_PKEY_HKDF_CTRL_STR:103:pkey_hkdf_ctrl_str KDF_F_PKEY_HKDF_DERIVE:102:pkey_hkdf_derive KDF_F_PKEY_HKDF_INIT:108:pkey_hkdf_init KDF_F_PKEY_SCRYPT_CTRL_STR:104:pkey_scrypt_ctrl_str KDF_F_PKEY_SCRYPT_CTRL_UINT64:105:pkey_scrypt_ctrl_uint64 KDF_F_PKEY_SCRYPT_DERIVE:109:pkey_scrypt_derive KDF_F_PKEY_SCRYPT_INIT:106:pkey_scrypt_init KDF_F_PKEY_SCRYPT_SET_MEMBUF:107:pkey_scrypt_set_membuf KDF_F_PKEY_TLS1_PRF_CTRL_STR:100:pkey_tls1_prf_ctrl_str KDF_F_PKEY_TLS1_PRF_DERIVE:101:pkey_tls1_prf_derive KDF_F_PKEY_TLS1_PRF_INIT:110:pkey_tls1_prf_init KDF_F_TLS1_PRF_ALG:111:tls1_prf_alg OBJ_F_OBJ_ADD_OBJECT:105:OBJ_add_object OBJ_F_OBJ_ADD_SIGID:107:OBJ_add_sigid OBJ_F_OBJ_CREATE:100:OBJ_create OBJ_F_OBJ_DUP:101:OBJ_dup OBJ_F_OBJ_NAME_NEW_INDEX:106:OBJ_NAME_new_index OBJ_F_OBJ_NID2LN:102:OBJ_nid2ln OBJ_F_OBJ_NID2OBJ:103:OBJ_nid2obj OBJ_F_OBJ_NID2SN:104:OBJ_nid2sn OBJ_F_OBJ_TXT2OBJ:108:OBJ_txt2obj OCSP_F_D2I_OCSP_NONCE:102:d2i_ocsp_nonce OCSP_F_OCSP_BASIC_ADD1_STATUS:103:OCSP_basic_add1_status OCSP_F_OCSP_BASIC_SIGN:104:OCSP_basic_sign OCSP_F_OCSP_BASIC_SIGN_CTX:119:OCSP_basic_sign_ctx OCSP_F_OCSP_BASIC_VERIFY:105:OCSP_basic_verify OCSP_F_OCSP_CERT_ID_NEW:101:OCSP_cert_id_new OCSP_F_OCSP_CHECK_DELEGATED:106:ocsp_check_delegated OCSP_F_OCSP_CHECK_IDS:107:ocsp_check_ids OCSP_F_OCSP_CHECK_ISSUER:108:ocsp_check_issuer OCSP_F_OCSP_CHECK_VALIDITY:115:OCSP_check_validity OCSP_F_OCSP_MATCH_ISSUERID:109:ocsp_match_issuerid OCSP_F_OCSP_PARSE_URL:114:OCSP_parse_url OCSP_F_OCSP_REQUEST_SIGN:110:OCSP_request_sign OCSP_F_OCSP_REQUEST_VERIFY:116:OCSP_request_verify OCSP_F_OCSP_RESPONSE_GET1_BASIC:111:OCSP_response_get1_basic OCSP_F_PARSE_HTTP_LINE1:118:parse_http_line1 OSSL_STORE_F_FILE_CTRL:129:file_ctrl OSSL_STORE_F_FILE_FIND:138:file_find OSSL_STORE_F_FILE_GET_PASS:118:file_get_pass OSSL_STORE_F_FILE_LOAD:119:file_load OSSL_STORE_F_FILE_LOAD_TRY_DECODE:124:file_load_try_decode OSSL_STORE_F_FILE_NAME_TO_URI:126:file_name_to_uri OSSL_STORE_F_FILE_OPEN:120:file_open OSSL_STORE_F_OSSL_STORE_ATTACH_PEM_BIO:127:ossl_store_attach_pem_bio OSSL_STORE_F_OSSL_STORE_EXPECT:130:OSSL_STORE_expect OSSL_STORE_F_OSSL_STORE_FILE_ATTACH_PEM_BIO_INT:128:\ ossl_store_file_attach_pem_bio_int OSSL_STORE_F_OSSL_STORE_FIND:131:OSSL_STORE_find OSSL_STORE_F_OSSL_STORE_GET0_LOADER_INT:100:ossl_store_get0_loader_int OSSL_STORE_F_OSSL_STORE_INFO_GET1_CERT:101:OSSL_STORE_INFO_get1_CERT OSSL_STORE_F_OSSL_STORE_INFO_GET1_CRL:102:OSSL_STORE_INFO_get1_CRL OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME:103:OSSL_STORE_INFO_get1_NAME OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME_DESCRIPTION:135:\ OSSL_STORE_INFO_get1_NAME_description OSSL_STORE_F_OSSL_STORE_INFO_GET1_PARAMS:104:OSSL_STORE_INFO_get1_PARAMS OSSL_STORE_F_OSSL_STORE_INFO_GET1_PKEY:105:OSSL_STORE_INFO_get1_PKEY OSSL_STORE_F_OSSL_STORE_INFO_NEW_CERT:106:OSSL_STORE_INFO_new_CERT OSSL_STORE_F_OSSL_STORE_INFO_NEW_CRL:107:OSSL_STORE_INFO_new_CRL OSSL_STORE_F_OSSL_STORE_INFO_NEW_EMBEDDED:123:ossl_store_info_new_EMBEDDED OSSL_STORE_F_OSSL_STORE_INFO_NEW_NAME:109:OSSL_STORE_INFO_new_NAME OSSL_STORE_F_OSSL_STORE_INFO_NEW_PARAMS:110:OSSL_STORE_INFO_new_PARAMS OSSL_STORE_F_OSSL_STORE_INFO_NEW_PKEY:111:OSSL_STORE_INFO_new_PKEY OSSL_STORE_F_OSSL_STORE_INFO_SET0_NAME_DESCRIPTION:134:\ OSSL_STORE_INFO_set0_NAME_description OSSL_STORE_F_OSSL_STORE_INIT_ONCE:112:ossl_store_init_once OSSL_STORE_F_OSSL_STORE_LOADER_NEW:113:OSSL_STORE_LOADER_new OSSL_STORE_F_OSSL_STORE_OPEN:114:OSSL_STORE_open OSSL_STORE_F_OSSL_STORE_OPEN_INT:115:* OSSL_STORE_F_OSSL_STORE_REGISTER_LOADER_INT:117:ossl_store_register_loader_int OSSL_STORE_F_OSSL_STORE_SEARCH_BY_ALIAS:132:OSSL_STORE_SEARCH_by_alias OSSL_STORE_F_OSSL_STORE_SEARCH_BY_ISSUER_SERIAL:133:\ OSSL_STORE_SEARCH_by_issuer_serial OSSL_STORE_F_OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT:136:\ OSSL_STORE_SEARCH_by_key_fingerprint OSSL_STORE_F_OSSL_STORE_SEARCH_BY_NAME:137:OSSL_STORE_SEARCH_by_name OSSL_STORE_F_OSSL_STORE_UNREGISTER_LOADER_INT:116:\ ossl_store_unregister_loader_int OSSL_STORE_F_TRY_DECODE_PARAMS:121:try_decode_params OSSL_STORE_F_TRY_DECODE_PKCS12:122:try_decode_PKCS12 OSSL_STORE_F_TRY_DECODE_PKCS8ENCRYPTED:125:try_decode_PKCS8Encrypted PEM_F_B2I_DSS:127:b2i_dss PEM_F_B2I_PVK_BIO:128:b2i_PVK_bio PEM_F_B2I_RSA:129:b2i_rsa PEM_F_CHECK_BITLEN_DSA:130:check_bitlen_dsa PEM_F_CHECK_BITLEN_RSA:131:check_bitlen_rsa PEM_F_D2I_PKCS8PRIVATEKEY_BIO:120:d2i_PKCS8PrivateKey_bio PEM_F_D2I_PKCS8PRIVATEKEY_FP:121:d2i_PKCS8PrivateKey_fp PEM_F_DO_B2I:132:do_b2i PEM_F_DO_B2I_BIO:133:do_b2i_bio PEM_F_DO_BLOB_HEADER:134:do_blob_header PEM_F_DO_I2B:146:do_i2b PEM_F_DO_PK8PKEY:126:do_pk8pkey PEM_F_DO_PK8PKEY_FP:125:do_pk8pkey_fp PEM_F_DO_PVK_BODY:135:do_PVK_body PEM_F_DO_PVK_HEADER:136:do_PVK_header PEM_F_GET_HEADER_AND_DATA:143:get_header_and_data PEM_F_GET_NAME:144:get_name PEM_F_I2B_PVK:137:i2b_PVK PEM_F_I2B_PVK_BIO:138:i2b_PVK_bio PEM_F_LOAD_IV:101:load_iv PEM_F_PEM_ASN1_READ:102:PEM_ASN1_read PEM_F_PEM_ASN1_READ_BIO:103:PEM_ASN1_read_bio PEM_F_PEM_ASN1_WRITE:104:PEM_ASN1_write PEM_F_PEM_ASN1_WRITE_BIO:105:PEM_ASN1_write_bio PEM_F_PEM_DEF_CALLBACK:100:PEM_def_callback PEM_F_PEM_DO_HEADER:106:PEM_do_header PEM_F_PEM_GET_EVP_CIPHER_INFO:107:PEM_get_EVP_CIPHER_INFO PEM_F_PEM_READ:108:PEM_read PEM_F_PEM_READ_BIO:109:PEM_read_bio PEM_F_PEM_READ_BIO_DHPARAMS:141:PEM_read_bio_DHparams PEM_F_PEM_READ_BIO_EX:145:PEM_read_bio_ex PEM_F_PEM_READ_BIO_PARAMETERS:140:PEM_read_bio_Parameters PEM_F_PEM_READ_BIO_PRIVATEKEY:123:PEM_read_bio_PrivateKey PEM_F_PEM_READ_DHPARAMS:142:PEM_read_DHparams PEM_F_PEM_READ_PRIVATEKEY:124:PEM_read_PrivateKey PEM_F_PEM_SIGNFINAL:112:PEM_SignFinal PEM_F_PEM_WRITE:113:PEM_write PEM_F_PEM_WRITE_BIO:114:PEM_write_bio PEM_F_PEM_WRITE_PRIVATEKEY:139:PEM_write_PrivateKey PEM_F_PEM_X509_INFO_READ:115:PEM_X509_INFO_read PEM_F_PEM_X509_INFO_READ_BIO:116:PEM_X509_INFO_read_bio PEM_F_PEM_X509_INFO_WRITE_BIO:117:PEM_X509_INFO_write_bio PKCS12_F_OPENSSL_ASC2UNI:121:OPENSSL_asc2uni PKCS12_F_OPENSSL_UNI2ASC:124:OPENSSL_uni2asc PKCS12_F_OPENSSL_UNI2UTF8:127:OPENSSL_uni2utf8 PKCS12_F_OPENSSL_UTF82UNI:129:OPENSSL_utf82uni PKCS12_F_PKCS12_CREATE:105:PKCS12_create PKCS12_F_PKCS12_GEN_MAC:107:PKCS12_gen_mac PKCS12_F_PKCS12_INIT:109:PKCS12_init PKCS12_F_PKCS12_ITEM_DECRYPT_D2I:106:PKCS12_item_decrypt_d2i PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT:108:PKCS12_item_i2d_encrypt PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG:117:PKCS12_item_pack_safebag PKCS12_F_PKCS12_KEY_GEN_ASC:110:PKCS12_key_gen_asc PKCS12_F_PKCS12_KEY_GEN_UNI:111:PKCS12_key_gen_uni PKCS12_F_PKCS12_KEY_GEN_UTF8:116:PKCS12_key_gen_utf8 PKCS12_F_PKCS12_NEWPASS:128:PKCS12_newpass PKCS12_F_PKCS12_PACK_P7DATA:114:PKCS12_pack_p7data PKCS12_F_PKCS12_PACK_P7ENCDATA:115:PKCS12_pack_p7encdata PKCS12_F_PKCS12_PARSE:118:PKCS12_parse PKCS12_F_PKCS12_PBE_CRYPT:119:PKCS12_pbe_crypt PKCS12_F_PKCS12_PBE_KEYIVGEN:120:PKCS12_PBE_keyivgen PKCS12_F_PKCS12_SAFEBAG_CREATE0_P8INF:112:PKCS12_SAFEBAG_create0_p8inf PKCS12_F_PKCS12_SAFEBAG_CREATE0_PKCS8:113:PKCS12_SAFEBAG_create0_pkcs8 PKCS12_F_PKCS12_SAFEBAG_CREATE_PKCS8_ENCRYPT:133:\ PKCS12_SAFEBAG_create_pkcs8_encrypt PKCS12_F_PKCS12_SETUP_MAC:122:PKCS12_setup_mac PKCS12_F_PKCS12_SET_MAC:123:PKCS12_set_mac PKCS12_F_PKCS12_UNPACK_AUTHSAFES:130:PKCS12_unpack_authsafes PKCS12_F_PKCS12_UNPACK_P7DATA:131:PKCS12_unpack_p7data PKCS12_F_PKCS12_VERIFY_MAC:126:PKCS12_verify_mac PKCS12_F_PKCS8_ENCRYPT:125:PKCS8_encrypt PKCS12_F_PKCS8_SET0_PBE:132:PKCS8_set0_pbe PKCS7_F_DO_PKCS7_SIGNED_ATTRIB:136:do_pkcs7_signed_attrib PKCS7_F_PKCS7_ADD0_ATTRIB_SIGNING_TIME:135:PKCS7_add0_attrib_signing_time PKCS7_F_PKCS7_ADD_ATTRIB_SMIMECAP:118:PKCS7_add_attrib_smimecap PKCS7_F_PKCS7_ADD_CERTIFICATE:100:PKCS7_add_certificate PKCS7_F_PKCS7_ADD_CRL:101:PKCS7_add_crl PKCS7_F_PKCS7_ADD_RECIPIENT_INFO:102:PKCS7_add_recipient_info PKCS7_F_PKCS7_ADD_SIGNATURE:131:PKCS7_add_signature PKCS7_F_PKCS7_ADD_SIGNER:103:PKCS7_add_signer PKCS7_F_PKCS7_BIO_ADD_DIGEST:125:PKCS7_bio_add_digest PKCS7_F_PKCS7_COPY_EXISTING_DIGEST:138:pkcs7_copy_existing_digest PKCS7_F_PKCS7_CTRL:104:PKCS7_ctrl PKCS7_F_PKCS7_DATADECODE:112:PKCS7_dataDecode PKCS7_F_PKCS7_DATAFINAL:128:PKCS7_dataFinal PKCS7_F_PKCS7_DATAINIT:105:PKCS7_dataInit PKCS7_F_PKCS7_DATAVERIFY:107:PKCS7_dataVerify PKCS7_F_PKCS7_DECRYPT:114:PKCS7_decrypt PKCS7_F_PKCS7_DECRYPT_RINFO:133:pkcs7_decrypt_rinfo PKCS7_F_PKCS7_ENCODE_RINFO:132:pkcs7_encode_rinfo PKCS7_F_PKCS7_ENCRYPT:115:PKCS7_encrypt PKCS7_F_PKCS7_FINAL:134:PKCS7_final PKCS7_F_PKCS7_FIND_DIGEST:127:PKCS7_find_digest PKCS7_F_PKCS7_GET0_SIGNERS:124:PKCS7_get0_signers PKCS7_F_PKCS7_RECIP_INFO_SET:130:PKCS7_RECIP_INFO_set PKCS7_F_PKCS7_SET_CIPHER:108:PKCS7_set_cipher PKCS7_F_PKCS7_SET_CONTENT:109:PKCS7_set_content PKCS7_F_PKCS7_SET_DIGEST:126:PKCS7_set_digest PKCS7_F_PKCS7_SET_TYPE:110:PKCS7_set_type PKCS7_F_PKCS7_SIGN:116:PKCS7_sign PKCS7_F_PKCS7_SIGNATUREVERIFY:113:PKCS7_signatureVerify PKCS7_F_PKCS7_SIGNER_INFO_SET:129:PKCS7_SIGNER_INFO_set PKCS7_F_PKCS7_SIGNER_INFO_SIGN:139:PKCS7_SIGNER_INFO_sign PKCS7_F_PKCS7_SIGN_ADD_SIGNER:137:PKCS7_sign_add_signer PKCS7_F_PKCS7_SIMPLE_SMIMECAP:119:PKCS7_simple_smimecap PKCS7_F_PKCS7_VERIFY:117:PKCS7_verify RAND_F_DATA_COLLECT_METHOD:127:data_collect_method RAND_F_DRBG_BYTES:101:drbg_bytes RAND_F_DRBG_GET_ENTROPY:105:drbg_get_entropy RAND_F_DRBG_SETUP:117:drbg_setup RAND_F_GET_ENTROPY:106:get_entropy RAND_F_RAND_BYTES:100:RAND_bytes RAND_F_RAND_DRBG_ENABLE_LOCKING:119:rand_drbg_enable_locking RAND_F_RAND_DRBG_GENERATE:107:RAND_DRBG_generate RAND_F_RAND_DRBG_GET_ENTROPY:120:rand_drbg_get_entropy RAND_F_RAND_DRBG_GET_NONCE:123:rand_drbg_get_nonce RAND_F_RAND_DRBG_INSTANTIATE:108:RAND_DRBG_instantiate RAND_F_RAND_DRBG_NEW:109:RAND_DRBG_new RAND_F_RAND_DRBG_RESEED:110:RAND_DRBG_reseed RAND_F_RAND_DRBG_RESTART:102:rand_drbg_restart RAND_F_RAND_DRBG_SET:104:RAND_DRBG_set RAND_F_RAND_DRBG_SET_DEFAULTS:121:RAND_DRBG_set_defaults RAND_F_RAND_DRBG_UNINSTANTIATE:118:RAND_DRBG_uninstantiate RAND_F_RAND_LOAD_FILE:111:RAND_load_file RAND_F_RAND_POOL_ACQUIRE_ENTROPY:122:rand_pool_acquire_entropy RAND_F_RAND_POOL_ADD:103:rand_pool_add RAND_F_RAND_POOL_ADD_BEGIN:113:rand_pool_add_begin RAND_F_RAND_POOL_ADD_END:114:rand_pool_add_end RAND_F_RAND_POOL_ATTACH:124:rand_pool_attach RAND_F_RAND_POOL_BYTES_NEEDED:115:rand_pool_bytes_needed RAND_F_RAND_POOL_GROW:125:rand_pool_grow RAND_F_RAND_POOL_NEW:116:rand_pool_new RAND_F_RAND_PSEUDO_BYTES:126:RAND_pseudo_bytes RAND_F_RAND_WRITE_FILE:112:RAND_write_file RSA_F_CHECK_PADDING_MD:140:check_padding_md RSA_F_ENCODE_PKCS1:146:encode_pkcs1 RSA_F_INT_RSA_VERIFY:145:int_rsa_verify RSA_F_OLD_RSA_PRIV_DECODE:147:old_rsa_priv_decode RSA_F_PKEY_PSS_INIT:165:pkey_pss_init RSA_F_PKEY_RSA_CTRL:143:pkey_rsa_ctrl RSA_F_PKEY_RSA_CTRL_STR:144:pkey_rsa_ctrl_str RSA_F_PKEY_RSA_SIGN:142:pkey_rsa_sign RSA_F_PKEY_RSA_VERIFY:149:pkey_rsa_verify RSA_F_PKEY_RSA_VERIFYRECOVER:141:pkey_rsa_verifyrecover RSA_F_RSA_ALGOR_TO_MD:156:rsa_algor_to_md RSA_F_RSA_BUILTIN_KEYGEN:129:rsa_builtin_keygen RSA_F_RSA_CHECK_KEY:123:RSA_check_key RSA_F_RSA_CHECK_KEY_EX:160:RSA_check_key_ex RSA_F_RSA_CMS_DECRYPT:159:rsa_cms_decrypt RSA_F_RSA_CMS_VERIFY:158:rsa_cms_verify RSA_F_RSA_ITEM_VERIFY:148:rsa_item_verify RSA_F_RSA_METH_DUP:161:RSA_meth_dup RSA_F_RSA_METH_NEW:162:RSA_meth_new RSA_F_RSA_METH_SET1_NAME:163:RSA_meth_set1_name RSA_F_RSA_MGF1_TO_MD:157:* RSA_F_RSA_MULTIP_INFO_NEW:166:rsa_multip_info_new RSA_F_RSA_NEW_METHOD:106:RSA_new_method RSA_F_RSA_NULL:124:* RSA_F_RSA_NULL_PRIVATE_DECRYPT:132:* RSA_F_RSA_NULL_PRIVATE_ENCRYPT:133:* RSA_F_RSA_NULL_PUBLIC_DECRYPT:134:* RSA_F_RSA_NULL_PUBLIC_ENCRYPT:135:* RSA_F_RSA_OSSL_PRIVATE_DECRYPT:101:rsa_ossl_private_decrypt RSA_F_RSA_OSSL_PRIVATE_ENCRYPT:102:rsa_ossl_private_encrypt RSA_F_RSA_OSSL_PUBLIC_DECRYPT:103:rsa_ossl_public_decrypt RSA_F_RSA_OSSL_PUBLIC_ENCRYPT:104:rsa_ossl_public_encrypt RSA_F_RSA_PADDING_ADD_NONE:107:RSA_padding_add_none RSA_F_RSA_PADDING_ADD_PKCS1_OAEP:121:RSA_padding_add_PKCS1_OAEP RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1:154:RSA_padding_add_PKCS1_OAEP_mgf1 RSA_F_RSA_PADDING_ADD_PKCS1_PSS:125:RSA_padding_add_PKCS1_PSS RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1:152:RSA_padding_add_PKCS1_PSS_mgf1 RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1:108:RSA_padding_add_PKCS1_type_1 RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2:109:RSA_padding_add_PKCS1_type_2 RSA_F_RSA_PADDING_ADD_SSLV23:110:RSA_padding_add_SSLv23 RSA_F_RSA_PADDING_ADD_X931:127:RSA_padding_add_X931 RSA_F_RSA_PADDING_CHECK_NONE:111:RSA_padding_check_none RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP:122:RSA_padding_check_PKCS1_OAEP RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1:153:RSA_padding_check_PKCS1_OAEP_mgf1 RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1:112:RSA_padding_check_PKCS1_type_1 RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2:113:RSA_padding_check_PKCS1_type_2 RSA_F_RSA_PADDING_CHECK_SSLV23:114:RSA_padding_check_SSLv23 RSA_F_RSA_PADDING_CHECK_X931:128:RSA_padding_check_X931 RSA_F_RSA_PARAM_DECODE:164:rsa_param_decode RSA_F_RSA_PRINT:115:RSA_print RSA_F_RSA_PRINT_FP:116:RSA_print_fp RSA_F_RSA_PRIV_DECODE:150:rsa_priv_decode RSA_F_RSA_PRIV_ENCODE:138:rsa_priv_encode RSA_F_RSA_PSS_GET_PARAM:151:rsa_pss_get_param RSA_F_RSA_PSS_TO_CTX:155:rsa_pss_to_ctx RSA_F_RSA_PUB_DECODE:139:rsa_pub_decode RSA_F_RSA_SETUP_BLINDING:136:RSA_setup_blinding RSA_F_RSA_SIGN:117:RSA_sign RSA_F_RSA_SIGN_ASN1_OCTET_STRING:118:RSA_sign_ASN1_OCTET_STRING RSA_F_RSA_VERIFY:119:RSA_verify RSA_F_RSA_VERIFY_ASN1_OCTET_STRING:120:RSA_verify_ASN1_OCTET_STRING RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1:126:RSA_verify_PKCS1_PSS_mgf1 RSA_F_SETUP_TBUF:167:setup_tbuf SM2_F_PKEY_SM2_COPY:115:pkey_sm2_copy SM2_F_PKEY_SM2_CTRL:109:pkey_sm2_ctrl SM2_F_PKEY_SM2_CTRL_STR:110:pkey_sm2_ctrl_str SM2_F_PKEY_SM2_DIGEST_CUSTOM:114:pkey_sm2_digest_custom SM2_F_PKEY_SM2_INIT:111:pkey_sm2_init SM2_F_PKEY_SM2_SIGN:112:pkey_sm2_sign SM2_F_SM2_COMPUTE_MSG_HASH:100:sm2_compute_msg_hash SM2_F_SM2_COMPUTE_USERID_DIGEST:101:sm2_compute_userid_digest SM2_F_SM2_COMPUTE_Z_DIGEST:113:sm2_compute_z_digest SM2_F_SM2_DECRYPT:102:sm2_decrypt SM2_F_SM2_ENCRYPT:103:sm2_encrypt SM2_F_SM2_PLAINTEXT_SIZE:104:sm2_plaintext_size SM2_F_SM2_SIGN:105:sm2_sign SM2_F_SM2_SIG_GEN:106:sm2_sig_gen SM2_F_SM2_SIG_VERIFY:107:sm2_sig_verify SM2_F_SM2_VERIFY:108:sm2_verify SSL_F_ADD_CLIENT_KEY_SHARE_EXT:438:* SSL_F_ADD_KEY_SHARE:512:add_key_share SSL_F_BYTES_TO_CIPHER_LIST:519:bytes_to_cipher_list SSL_F_CHECK_SUITEB_CIPHER_LIST:331:check_suiteb_cipher_list SSL_F_CIPHERSUITE_CB:622:ciphersuite_cb SSL_F_CONSTRUCT_CA_NAMES:552:construct_ca_names SSL_F_CONSTRUCT_KEY_EXCHANGE_TBS:553:construct_key_exchange_tbs SSL_F_CONSTRUCT_STATEFUL_TICKET:636:construct_stateful_ticket SSL_F_CONSTRUCT_STATELESS_TICKET:637:construct_stateless_ticket SSL_F_CREATE_SYNTHETIC_MESSAGE_HASH:539:create_synthetic_message_hash SSL_F_CREATE_TICKET_PREQUEL:638:create_ticket_prequel SSL_F_CT_MOVE_SCTS:345:ct_move_scts SSL_F_CT_STRICT:349:ct_strict SSL_F_CUSTOM_EXT_ADD:554:custom_ext_add SSL_F_CUSTOM_EXT_PARSE:555:custom_ext_parse SSL_F_D2I_SSL_SESSION:103:d2i_SSL_SESSION SSL_F_DANE_CTX_ENABLE:347:dane_ctx_enable SSL_F_DANE_MTYPE_SET:393:dane_mtype_set SSL_F_DANE_TLSA_ADD:394:dane_tlsa_add SSL_F_DERIVE_SECRET_KEY_AND_IV:514:derive_secret_key_and_iv SSL_F_DO_DTLS1_WRITE:245:do_dtls1_write SSL_F_DO_SSL3_WRITE:104:do_ssl3_write SSL_F_DTLS1_BUFFER_RECORD:247:dtls1_buffer_record SSL_F_DTLS1_CHECK_TIMEOUT_NUM:318:dtls1_check_timeout_num SSL_F_DTLS1_HEARTBEAT:305:* SSL_F_DTLS1_HM_FRAGMENT_NEW:623:dtls1_hm_fragment_new SSL_F_DTLS1_PREPROCESS_FRAGMENT:288:dtls1_preprocess_fragment SSL_F_DTLS1_PROCESS_BUFFERED_RECORDS:424:dtls1_process_buffered_records SSL_F_DTLS1_PROCESS_RECORD:257:dtls1_process_record SSL_F_DTLS1_READ_BYTES:258:dtls1_read_bytes SSL_F_DTLS1_READ_FAILED:339:dtls1_read_failed SSL_F_DTLS1_RETRANSMIT_MESSAGE:390:dtls1_retransmit_message SSL_F_DTLS1_WRITE_APP_DATA_BYTES:268:dtls1_write_app_data_bytes SSL_F_DTLS1_WRITE_BYTES:545:dtls1_write_bytes SSL_F_DTLSV1_LISTEN:350:DTLSv1_listen SSL_F_DTLS_CONSTRUCT_CHANGE_CIPHER_SPEC:371:dtls_construct_change_cipher_spec SSL_F_DTLS_CONSTRUCT_HELLO_VERIFY_REQUEST:385:\ dtls_construct_hello_verify_request SSL_F_DTLS_GET_REASSEMBLED_MESSAGE:370:dtls_get_reassembled_message SSL_F_DTLS_PROCESS_HELLO_VERIFY:386:dtls_process_hello_verify SSL_F_DTLS_RECORD_LAYER_NEW:635:DTLS_RECORD_LAYER_new SSL_F_DTLS_WAIT_FOR_DRY:592:dtls_wait_for_dry SSL_F_EARLY_DATA_COUNT_OK:532:early_data_count_ok SSL_F_FINAL_EARLY_DATA:556:final_early_data SSL_F_FINAL_EC_PT_FORMATS:485:final_ec_pt_formats SSL_F_FINAL_EMS:486:final_ems SSL_F_FINAL_KEY_SHARE:503:final_key_share SSL_F_FINAL_MAXFRAGMENTLEN:557:final_maxfragmentlen SSL_F_FINAL_RENEGOTIATE:483:final_renegotiate SSL_F_FINAL_SERVER_NAME:558:final_server_name SSL_F_FINAL_SIG_ALGS:497:final_sig_algs SSL_F_GET_CERT_VERIFY_TBS_DATA:588:get_cert_verify_tbs_data SSL_F_NSS_KEYLOG_INT:500:nss_keylog_int SSL_F_OPENSSL_INIT_SSL:342:OPENSSL_init_ssl SSL_F_OSSL_STATEM_CLIENT13_READ_TRANSITION:436:* SSL_F_OSSL_STATEM_CLIENT13_WRITE_TRANSITION:598:\ ossl_statem_client13_write_transition SSL_F_OSSL_STATEM_CLIENT_CONSTRUCT_MESSAGE:430:* SSL_F_OSSL_STATEM_CLIENT_POST_PROCESS_MESSAGE:593:\ ossl_statem_client_post_process_message SSL_F_OSSL_STATEM_CLIENT_PROCESS_MESSAGE:594:ossl_statem_client_process_message SSL_F_OSSL_STATEM_CLIENT_READ_TRANSITION:417:ossl_statem_client_read_transition SSL_F_OSSL_STATEM_CLIENT_WRITE_TRANSITION:599:\ ossl_statem_client_write_transition SSL_F_OSSL_STATEM_SERVER13_READ_TRANSITION:437:* SSL_F_OSSL_STATEM_SERVER13_WRITE_TRANSITION:600:\ ossl_statem_server13_write_transition SSL_F_OSSL_STATEM_SERVER_CONSTRUCT_MESSAGE:431:* SSL_F_OSSL_STATEM_SERVER_POST_PROCESS_MESSAGE:601:\ ossl_statem_server_post_process_message SSL_F_OSSL_STATEM_SERVER_POST_WORK:602:ossl_statem_server_post_work SSL_F_OSSL_STATEM_SERVER_PRE_WORK:640: SSL_F_OSSL_STATEM_SERVER_PROCESS_MESSAGE:603:ossl_statem_server_process_message SSL_F_OSSL_STATEM_SERVER_READ_TRANSITION:418:ossl_statem_server_read_transition SSL_F_OSSL_STATEM_SERVER_WRITE_TRANSITION:604:\ ossl_statem_server_write_transition SSL_F_PARSE_CA_NAMES:541:parse_ca_names SSL_F_PITEM_NEW:624:pitem_new SSL_F_PQUEUE_NEW:625:pqueue_new SSL_F_PROCESS_KEY_SHARE_EXT:439:* SSL_F_READ_STATE_MACHINE:352:read_state_machine SSL_F_SET_CLIENT_CIPHERSUITE:540:set_client_ciphersuite SSL_F_SRP_GENERATE_CLIENT_MASTER_SECRET:595:srp_generate_client_master_secret SSL_F_SRP_GENERATE_SERVER_MASTER_SECRET:589:srp_generate_server_master_secret SSL_F_SRP_VERIFY_SERVER_PARAM:596:srp_verify_server_param SSL_F_SSL3_CHANGE_CIPHER_STATE:129:ssl3_change_cipher_state SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM:130:ssl3_check_cert_and_algorithm SSL_F_SSL3_CTRL:213:ssl3_ctrl SSL_F_SSL3_CTX_CTRL:133:ssl3_ctx_ctrl SSL_F_SSL3_DIGEST_CACHED_RECORDS:293:ssl3_digest_cached_records SSL_F_SSL3_DO_CHANGE_CIPHER_SPEC:292:ssl3_do_change_cipher_spec SSL_F_SSL3_ENC:608:ssl3_enc SSL_F_SSL3_FINAL_FINISH_MAC:285:ssl3_final_finish_mac SSL_F_SSL3_FINISH_MAC:587:ssl3_finish_mac SSL_F_SSL3_GENERATE_KEY_BLOCK:238:ssl3_generate_key_block SSL_F_SSL3_GENERATE_MASTER_SECRET:388:ssl3_generate_master_secret SSL_F_SSL3_GET_RECORD:143:ssl3_get_record SSL_F_SSL3_INIT_FINISHED_MAC:397:ssl3_init_finished_mac SSL_F_SSL3_OUTPUT_CERT_CHAIN:147:ssl3_output_cert_chain SSL_F_SSL3_READ_BYTES:148:ssl3_read_bytes SSL_F_SSL3_READ_N:149:ssl3_read_n SSL_F_SSL3_SETUP_KEY_BLOCK:157:ssl3_setup_key_block SSL_F_SSL3_SETUP_READ_BUFFER:156:ssl3_setup_read_buffer SSL_F_SSL3_SETUP_WRITE_BUFFER:291:ssl3_setup_write_buffer SSL_F_SSL3_WRITE_BYTES:158:ssl3_write_bytes SSL_F_SSL3_WRITE_PENDING:159:ssl3_write_pending SSL_F_SSL_ADD_CERT_CHAIN:316:ssl_add_cert_chain SSL_F_SSL_ADD_CERT_TO_BUF:319:* SSL_F_SSL_ADD_CERT_TO_WPACKET:493:ssl_add_cert_to_wpacket SSL_F_SSL_ADD_CLIENTHELLO_RENEGOTIATE_EXT:298:* SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT:277:* SSL_F_SSL_ADD_CLIENTHELLO_USE_SRTP_EXT:307:* SSL_F_SSL_ADD_DIR_CERT_SUBJECTS_TO_STACK:215:SSL_add_dir_cert_subjects_to_stack SSL_F_SSL_ADD_FILE_CERT_SUBJECTS_TO_STACK:216:\ SSL_add_file_cert_subjects_to_stack SSL_F_SSL_ADD_SERVERHELLO_RENEGOTIATE_EXT:299:* SSL_F_SSL_ADD_SERVERHELLO_TLSEXT:278:* SSL_F_SSL_ADD_SERVERHELLO_USE_SRTP_EXT:308:* SSL_F_SSL_BAD_METHOD:160:ssl_bad_method SSL_F_SSL_BUILD_CERT_CHAIN:332:ssl_build_cert_chain SSL_F_SSL_BYTES_TO_CIPHER_LIST:161:SSL_bytes_to_cipher_list SSL_F_SSL_CACHE_CIPHERLIST:520:ssl_cache_cipherlist SSL_F_SSL_CERT_ADD0_CHAIN_CERT:346:ssl_cert_add0_chain_cert SSL_F_SSL_CERT_DUP:221:ssl_cert_dup SSL_F_SSL_CERT_NEW:162:ssl_cert_new SSL_F_SSL_CERT_SET0_CHAIN:340:ssl_cert_set0_chain SSL_F_SSL_CHECK_PRIVATE_KEY:163:SSL_check_private_key SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT:280:* SSL_F_SSL_CHECK_SRP_EXT_CLIENTHELLO:606:ssl_check_srp_ext_ClientHello SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG:279:ssl_check_srvr_ecc_cert_and_alg SSL_F_SSL_CHOOSE_CLIENT_VERSION:607:ssl_choose_client_version SSL_F_SSL_CIPHER_DESCRIPTION:626:SSL_CIPHER_description SSL_F_SSL_CIPHER_LIST_TO_BYTES:425:ssl_cipher_list_to_bytes SSL_F_SSL_CIPHER_PROCESS_RULESTR:230:ssl_cipher_process_rulestr SSL_F_SSL_CIPHER_STRENGTH_SORT:231:ssl_cipher_strength_sort SSL_F_SSL_CLEAR:164:SSL_clear SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT:627:\ SSL_client_hello_get1_extensions_present SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD:165:SSL_COMP_add_compression_method SSL_F_SSL_CONF_CMD:334:SSL_CONF_cmd SSL_F_SSL_CREATE_CIPHER_LIST:166:ssl_create_cipher_list SSL_F_SSL_CTRL:232:SSL_ctrl SSL_F_SSL_CTX_CHECK_PRIVATE_KEY:168:SSL_CTX_check_private_key SSL_F_SSL_CTX_ENABLE_CT:398:SSL_CTX_enable_ct SSL_F_SSL_CTX_MAKE_PROFILES:309:ssl_ctx_make_profiles SSL_F_SSL_CTX_NEW:169:SSL_CTX_new SSL_F_SSL_CTX_SET_ALPN_PROTOS:343:SSL_CTX_set_alpn_protos SSL_F_SSL_CTX_SET_CIPHER_LIST:269:SSL_CTX_set_cipher_list SSL_F_SSL_CTX_SET_CLIENT_CERT_ENGINE:290:SSL_CTX_set_client_cert_engine SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK:396:SSL_CTX_set_ct_validation_callback SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT:219:SSL_CTX_set_session_id_context SSL_F_SSL_CTX_SET_SSL_VERSION:170:SSL_CTX_set_ssl_version SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH:551:\ SSL_CTX_set_tlsext_max_fragment_length SSL_F_SSL_CTX_USE_CERTIFICATE:171:SSL_CTX_use_certificate SSL_F_SSL_CTX_USE_CERTIFICATE_ASN1:172:SSL_CTX_use_certificate_ASN1 SSL_F_SSL_CTX_USE_CERTIFICATE_FILE:173:SSL_CTX_use_certificate_file SSL_F_SSL_CTX_USE_PRIVATEKEY:174:SSL_CTX_use_PrivateKey SSL_F_SSL_CTX_USE_PRIVATEKEY_ASN1:175:SSL_CTX_use_PrivateKey_ASN1 SSL_F_SSL_CTX_USE_PRIVATEKEY_FILE:176:SSL_CTX_use_PrivateKey_file SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT:272:SSL_CTX_use_psk_identity_hint SSL_F_SSL_CTX_USE_RSAPRIVATEKEY:177:SSL_CTX_use_RSAPrivateKey SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_ASN1:178:SSL_CTX_use_RSAPrivateKey_ASN1 SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_FILE:179:SSL_CTX_use_RSAPrivateKey_file SSL_F_SSL_CTX_USE_SERVERINFO:336:SSL_CTX_use_serverinfo SSL_F_SSL_CTX_USE_SERVERINFO_EX:543:SSL_CTX_use_serverinfo_ex SSL_F_SSL_CTX_USE_SERVERINFO_FILE:337:SSL_CTX_use_serverinfo_file SSL_F_SSL_DANE_DUP:403:ssl_dane_dup SSL_F_SSL_DANE_ENABLE:395:SSL_dane_enable SSL_F_SSL_DERIVE:590:ssl_derive SSL_F_SSL_DO_CONFIG:391:ssl_do_config SSL_F_SSL_DO_HANDSHAKE:180:SSL_do_handshake SSL_F_SSL_DUP_CA_LIST:408:SSL_dup_CA_list SSL_F_SSL_ENABLE_CT:402:SSL_enable_ct SSL_F_SSL_GENERATE_PKEY_GROUP:559:ssl_generate_pkey_group SSL_F_SSL_GENERATE_SESSION_ID:547:ssl_generate_session_id SSL_F_SSL_GET_NEW_SESSION:181:ssl_get_new_session SSL_F_SSL_GET_PREV_SESSION:217:ssl_get_prev_session SSL_F_SSL_GET_SERVER_CERT_INDEX:322:* SSL_F_SSL_GET_SIGN_PKEY:183:* SSL_F_SSL_HANDSHAKE_HASH:560:ssl_handshake_hash SSL_F_SSL_INIT_WBIO_BUFFER:184:ssl_init_wbio_buffer SSL_F_SSL_KEY_UPDATE:515:SSL_key_update SSL_F_SSL_LOAD_CLIENT_CA_FILE:185:SSL_load_client_CA_file SSL_F_SSL_LOG_MASTER_SECRET:498:* SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE:499:ssl_log_rsa_client_key_exchange SSL_F_SSL_MODULE_INIT:392:ssl_module_init SSL_F_SSL_NEW:186:SSL_new SSL_F_SSL_NEXT_PROTO_VALIDATE:565:ssl_next_proto_validate SSL_F_SSL_PARSE_CLIENTHELLO_RENEGOTIATE_EXT:300:* SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT:302:* SSL_F_SSL_PARSE_CLIENTHELLO_USE_SRTP_EXT:310:* SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT:301:* SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT:303:* SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT:311:* SSL_F_SSL_PEEK:270:SSL_peek SSL_F_SSL_PEEK_EX:432:SSL_peek_ex SSL_F_SSL_PEEK_INTERNAL:522:ssl_peek_internal SSL_F_SSL_READ:223:SSL_read SSL_F_SSL_READ_EARLY_DATA:529:SSL_read_early_data SSL_F_SSL_READ_EX:434:SSL_read_ex SSL_F_SSL_READ_INTERNAL:523:ssl_read_internal SSL_F_SSL_RENEGOTIATE:516:SSL_renegotiate SSL_F_SSL_RENEGOTIATE_ABBREVIATED:546:SSL_renegotiate_abbreviated SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT:320:* SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT:321:* SSL_F_SSL_SESSION_DUP:348:ssl_session_dup SSL_F_SSL_SESSION_NEW:189:SSL_SESSION_new SSL_F_SSL_SESSION_PRINT_FP:190:SSL_SESSION_print_fp SSL_F_SSL_SESSION_SET1_ID:423:SSL_SESSION_set1_id SSL_F_SSL_SESSION_SET1_ID_CONTEXT:312:SSL_SESSION_set1_id_context SSL_F_SSL_SET_ALPN_PROTOS:344:SSL_set_alpn_protos SSL_F_SSL_SET_CERT:191:ssl_set_cert SSL_F_SSL_SET_CERT_AND_KEY:621:ssl_set_cert_and_key SSL_F_SSL_SET_CIPHER_LIST:271:SSL_set_cipher_list SSL_F_SSL_SET_CT_VALIDATION_CALLBACK:399:SSL_set_ct_validation_callback SSL_F_SSL_SET_FD:192:SSL_set_fd SSL_F_SSL_SET_PKEY:193:ssl_set_pkey SSL_F_SSL_SET_RFD:194:SSL_set_rfd SSL_F_SSL_SET_SESSION:195:SSL_set_session SSL_F_SSL_SET_SESSION_ID_CONTEXT:218:SSL_set_session_id_context SSL_F_SSL_SET_SESSION_TICKET_EXT:294:SSL_set_session_ticket_ext SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH:550:SSL_set_tlsext_max_fragment_length SSL_F_SSL_SET_WFD:196:SSL_set_wfd SSL_F_SSL_SHUTDOWN:224:SSL_shutdown SSL_F_SSL_SRP_CTX_INIT:313:SSL_SRP_CTX_init SSL_F_SSL_START_ASYNC_JOB:389:ssl_start_async_job SSL_F_SSL_UNDEFINED_FUNCTION:197:ssl_undefined_function SSL_F_SSL_UNDEFINED_VOID_FUNCTION:244:ssl_undefined_void_function SSL_F_SSL_USE_CERTIFICATE:198:SSL_use_certificate SSL_F_SSL_USE_CERTIFICATE_ASN1:199:SSL_use_certificate_ASN1 SSL_F_SSL_USE_CERTIFICATE_FILE:200:SSL_use_certificate_file SSL_F_SSL_USE_PRIVATEKEY:201:SSL_use_PrivateKey SSL_F_SSL_USE_PRIVATEKEY_ASN1:202:SSL_use_PrivateKey_ASN1 SSL_F_SSL_USE_PRIVATEKEY_FILE:203:SSL_use_PrivateKey_file SSL_F_SSL_USE_PSK_IDENTITY_HINT:273:SSL_use_psk_identity_hint SSL_F_SSL_USE_RSAPRIVATEKEY:204:SSL_use_RSAPrivateKey SSL_F_SSL_USE_RSAPRIVATEKEY_ASN1:205:SSL_use_RSAPrivateKey_ASN1 SSL_F_SSL_USE_RSAPRIVATEKEY_FILE:206:SSL_use_RSAPrivateKey_file SSL_F_SSL_VALIDATE_CT:400:ssl_validate_ct SSL_F_SSL_VERIFY_CERT_CHAIN:207:ssl_verify_cert_chain SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE:616:SSL_verify_client_post_handshake SSL_F_SSL_WRITE:208:SSL_write SSL_F_SSL_WRITE_EARLY_DATA:526:SSL_write_early_data SSL_F_SSL_WRITE_EARLY_FINISH:527:* SSL_F_SSL_WRITE_EX:433:SSL_write_ex SSL_F_SSL_WRITE_INTERNAL:524:ssl_write_internal SSL_F_STATE_MACHINE:353:state_machine SSL_F_TLS12_CHECK_PEER_SIGALG:333:tls12_check_peer_sigalg SSL_F_TLS12_COPY_SIGALGS:533:tls12_copy_sigalgs SSL_F_TLS13_CHANGE_CIPHER_STATE:440:tls13_change_cipher_state SSL_F_TLS13_ENC:609:tls13_enc SSL_F_TLS13_FINAL_FINISH_MAC:605:tls13_final_finish_mac SSL_F_TLS13_GENERATE_SECRET:591:tls13_generate_secret SSL_F_TLS13_HKDF_EXPAND:561:tls13_hkdf_expand SSL_F_TLS13_RESTORE_HANDSHAKE_DIGEST_FOR_PHA:617:\ tls13_restore_handshake_digest_for_pha SSL_F_TLS13_SAVE_HANDSHAKE_DIGEST_FOR_PHA:618:\ tls13_save_handshake_digest_for_pha SSL_F_TLS13_SETUP_KEY_BLOCK:441:tls13_setup_key_block SSL_F_TLS1_CHANGE_CIPHER_STATE:209:tls1_change_cipher_state SSL_F_TLS1_CHECK_DUPLICATE_EXTENSIONS:341:* SSL_F_TLS1_ENC:401:tls1_enc SSL_F_TLS1_EXPORT_KEYING_MATERIAL:314:tls1_export_keying_material SSL_F_TLS1_GET_CURVELIST:338:tls1_get_curvelist SSL_F_TLS1_PRF:284:tls1_PRF SSL_F_TLS1_SAVE_U16:628:tls1_save_u16 SSL_F_TLS1_SETUP_KEY_BLOCK:211:tls1_setup_key_block SSL_F_TLS1_SET_GROUPS:629:tls1_set_groups SSL_F_TLS1_SET_RAW_SIGALGS:630:tls1_set_raw_sigalgs SSL_F_TLS1_SET_SERVER_SIGALGS:335:tls1_set_server_sigalgs SSL_F_TLS1_SET_SHARED_SIGALGS:631:tls1_set_shared_sigalgs SSL_F_TLS1_SET_SIGALGS:632:tls1_set_sigalgs SSL_F_TLS_CHOOSE_SIGALG:513:tls_choose_sigalg SSL_F_TLS_CLIENT_KEY_EXCHANGE_POST_WORK:354:tls_client_key_exchange_post_work SSL_F_TLS_COLLECT_EXTENSIONS:435:tls_collect_extensions SSL_F_TLS_CONSTRUCT_CERTIFICATE_AUTHORITIES:542:\ tls_construct_certificate_authorities SSL_F_TLS_CONSTRUCT_CERTIFICATE_REQUEST:372:tls_construct_certificate_request SSL_F_TLS_CONSTRUCT_CERT_STATUS:429:* SSL_F_TLS_CONSTRUCT_CERT_STATUS_BODY:494:tls_construct_cert_status_body SSL_F_TLS_CONSTRUCT_CERT_VERIFY:496:tls_construct_cert_verify SSL_F_TLS_CONSTRUCT_CHANGE_CIPHER_SPEC:427:tls_construct_change_cipher_spec SSL_F_TLS_CONSTRUCT_CKE_DHE:404:tls_construct_cke_dhe SSL_F_TLS_CONSTRUCT_CKE_ECDHE:405:tls_construct_cke_ecdhe SSL_F_TLS_CONSTRUCT_CKE_GOST:406:tls_construct_cke_gost SSL_F_TLS_CONSTRUCT_CKE_PSK_PREAMBLE:407:tls_construct_cke_psk_preamble SSL_F_TLS_CONSTRUCT_CKE_RSA:409:tls_construct_cke_rsa SSL_F_TLS_CONSTRUCT_CKE_SRP:410:tls_construct_cke_srp SSL_F_TLS_CONSTRUCT_CLIENT_CERTIFICATE:484:tls_construct_client_certificate SSL_F_TLS_CONSTRUCT_CLIENT_HELLO:487:tls_construct_client_hello SSL_F_TLS_CONSTRUCT_CLIENT_KEY_EXCHANGE:488:tls_construct_client_key_exchange SSL_F_TLS_CONSTRUCT_CLIENT_VERIFY:489:* SSL_F_TLS_CONSTRUCT_CTOS_ALPN:466:tls_construct_ctos_alpn SSL_F_TLS_CONSTRUCT_CTOS_CERTIFICATE:355:* SSL_F_TLS_CONSTRUCT_CTOS_COOKIE:535:tls_construct_ctos_cookie SSL_F_TLS_CONSTRUCT_CTOS_EARLY_DATA:530:tls_construct_ctos_early_data SSL_F_TLS_CONSTRUCT_CTOS_EC_PT_FORMATS:467:tls_construct_ctos_ec_pt_formats SSL_F_TLS_CONSTRUCT_CTOS_EMS:468:tls_construct_ctos_ems SSL_F_TLS_CONSTRUCT_CTOS_ETM:469:tls_construct_ctos_etm SSL_F_TLS_CONSTRUCT_CTOS_HELLO:356:* SSL_F_TLS_CONSTRUCT_CTOS_KEY_EXCHANGE:357:* SSL_F_TLS_CONSTRUCT_CTOS_KEY_SHARE:470:tls_construct_ctos_key_share SSL_F_TLS_CONSTRUCT_CTOS_MAXFRAGMENTLEN:549:tls_construct_ctos_maxfragmentlen SSL_F_TLS_CONSTRUCT_CTOS_NPN:471:tls_construct_ctos_npn SSL_F_TLS_CONSTRUCT_CTOS_PADDING:472:tls_construct_ctos_padding SSL_F_TLS_CONSTRUCT_CTOS_POST_HANDSHAKE_AUTH:619:\ tls_construct_ctos_post_handshake_auth SSL_F_TLS_CONSTRUCT_CTOS_PSK:501:tls_construct_ctos_psk SSL_F_TLS_CONSTRUCT_CTOS_PSK_KEX_MODES:509:tls_construct_ctos_psk_kex_modes SSL_F_TLS_CONSTRUCT_CTOS_RENEGOTIATE:473:tls_construct_ctos_renegotiate SSL_F_TLS_CONSTRUCT_CTOS_SCT:474:tls_construct_ctos_sct SSL_F_TLS_CONSTRUCT_CTOS_SERVER_NAME:475:tls_construct_ctos_server_name SSL_F_TLS_CONSTRUCT_CTOS_SESSION_TICKET:476:tls_construct_ctos_session_ticket SSL_F_TLS_CONSTRUCT_CTOS_SIG_ALGS:477:tls_construct_ctos_sig_algs SSL_F_TLS_CONSTRUCT_CTOS_SRP:478:tls_construct_ctos_srp SSL_F_TLS_CONSTRUCT_CTOS_STATUS_REQUEST:479:tls_construct_ctos_status_request SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_GROUPS:480:\ tls_construct_ctos_supported_groups SSL_F_TLS_CONSTRUCT_CTOS_SUPPORTED_VERSIONS:481:\ tls_construct_ctos_supported_versions SSL_F_TLS_CONSTRUCT_CTOS_USE_SRTP:482:tls_construct_ctos_use_srtp SSL_F_TLS_CONSTRUCT_CTOS_VERIFY:358:* SSL_F_TLS_CONSTRUCT_ENCRYPTED_EXTENSIONS:443:tls_construct_encrypted_extensions SSL_F_TLS_CONSTRUCT_END_OF_EARLY_DATA:536:tls_construct_end_of_early_data SSL_F_TLS_CONSTRUCT_EXTENSIONS:447:tls_construct_extensions SSL_F_TLS_CONSTRUCT_FINISHED:359:tls_construct_finished SSL_F_TLS_CONSTRUCT_HELLO_REQUEST:373:* SSL_F_TLS_CONSTRUCT_HELLO_RETRY_REQUEST:510:tls_construct_hello_retry_request SSL_F_TLS_CONSTRUCT_KEY_UPDATE:517:tls_construct_key_update SSL_F_TLS_CONSTRUCT_NEW_SESSION_TICKET:428:tls_construct_new_session_ticket SSL_F_TLS_CONSTRUCT_NEXT_PROTO:426:tls_construct_next_proto SSL_F_TLS_CONSTRUCT_SERVER_CERTIFICATE:490:tls_construct_server_certificate SSL_F_TLS_CONSTRUCT_SERVER_HELLO:491:tls_construct_server_hello SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE:492:tls_construct_server_key_exchange SSL_F_TLS_CONSTRUCT_STOC_ALPN:451:tls_construct_stoc_alpn SSL_F_TLS_CONSTRUCT_STOC_CERTIFICATE:374:* SSL_F_TLS_CONSTRUCT_STOC_COOKIE:613:tls_construct_stoc_cookie SSL_F_TLS_CONSTRUCT_STOC_CRYPTOPRO_BUG:452:tls_construct_stoc_cryptopro_bug SSL_F_TLS_CONSTRUCT_STOC_DONE:375:* SSL_F_TLS_CONSTRUCT_STOC_EARLY_DATA:531:tls_construct_stoc_early_data SSL_F_TLS_CONSTRUCT_STOC_EARLY_DATA_INFO:525:* SSL_F_TLS_CONSTRUCT_STOC_EC_PT_FORMATS:453:tls_construct_stoc_ec_pt_formats SSL_F_TLS_CONSTRUCT_STOC_EMS:454:tls_construct_stoc_ems SSL_F_TLS_CONSTRUCT_STOC_ETM:455:tls_construct_stoc_etm SSL_F_TLS_CONSTRUCT_STOC_HELLO:376:* SSL_F_TLS_CONSTRUCT_STOC_KEY_EXCHANGE:377:* SSL_F_TLS_CONSTRUCT_STOC_KEY_SHARE:456:tls_construct_stoc_key_share SSL_F_TLS_CONSTRUCT_STOC_MAXFRAGMENTLEN:548:tls_construct_stoc_maxfragmentlen SSL_F_TLS_CONSTRUCT_STOC_NEXT_PROTO_NEG:457:tls_construct_stoc_next_proto_neg SSL_F_TLS_CONSTRUCT_STOC_PSK:504:tls_construct_stoc_psk SSL_F_TLS_CONSTRUCT_STOC_RENEGOTIATE:458:tls_construct_stoc_renegotiate SSL_F_TLS_CONSTRUCT_STOC_SERVER_NAME:459:tls_construct_stoc_server_name SSL_F_TLS_CONSTRUCT_STOC_SESSION_TICKET:460:tls_construct_stoc_session_ticket SSL_F_TLS_CONSTRUCT_STOC_STATUS_REQUEST:461:tls_construct_stoc_status_request SSL_F_TLS_CONSTRUCT_STOC_SUPPORTED_GROUPS:544:\ tls_construct_stoc_supported_groups SSL_F_TLS_CONSTRUCT_STOC_SUPPORTED_VERSIONS:611:\ tls_construct_stoc_supported_versions SSL_F_TLS_CONSTRUCT_STOC_USE_SRTP:462:tls_construct_stoc_use_srtp SSL_F_TLS_EARLY_POST_PROCESS_CLIENT_HELLO:521:\ tls_early_post_process_client_hello SSL_F_TLS_FINISH_HANDSHAKE:597:tls_finish_handshake SSL_F_TLS_GET_MESSAGE_BODY:351:tls_get_message_body SSL_F_TLS_GET_MESSAGE_HEADER:387:tls_get_message_header SSL_F_TLS_HANDLE_ALPN:562:tls_handle_alpn SSL_F_TLS_HANDLE_STATUS_REQUEST:563:tls_handle_status_request SSL_F_TLS_PARSE_CERTIFICATE_AUTHORITIES:566:tls_parse_certificate_authorities SSL_F_TLS_PARSE_CLIENTHELLO_TLSEXT:449:* SSL_F_TLS_PARSE_CTOS_ALPN:567:tls_parse_ctos_alpn SSL_F_TLS_PARSE_CTOS_COOKIE:614:tls_parse_ctos_cookie SSL_F_TLS_PARSE_CTOS_EARLY_DATA:568:tls_parse_ctos_early_data SSL_F_TLS_PARSE_CTOS_EC_PT_FORMATS:569:tls_parse_ctos_ec_pt_formats SSL_F_TLS_PARSE_CTOS_EMS:570:tls_parse_ctos_ems SSL_F_TLS_PARSE_CTOS_KEY_SHARE:463:tls_parse_ctos_key_share SSL_F_TLS_PARSE_CTOS_MAXFRAGMENTLEN:571:tls_parse_ctos_maxfragmentlen SSL_F_TLS_PARSE_CTOS_POST_HANDSHAKE_AUTH:620:tls_parse_ctos_post_handshake_auth SSL_F_TLS_PARSE_CTOS_PSK:505:tls_parse_ctos_psk SSL_F_TLS_PARSE_CTOS_PSK_KEX_MODES:572:tls_parse_ctos_psk_kex_modes SSL_F_TLS_PARSE_CTOS_RENEGOTIATE:464:tls_parse_ctos_renegotiate SSL_F_TLS_PARSE_CTOS_SERVER_NAME:573:tls_parse_ctos_server_name SSL_F_TLS_PARSE_CTOS_SESSION_TICKET:574:tls_parse_ctos_session_ticket SSL_F_TLS_PARSE_CTOS_SIG_ALGS:575:tls_parse_ctos_sig_algs SSL_F_TLS_PARSE_CTOS_SIG_ALGS_CERT:615:tls_parse_ctos_sig_algs_cert SSL_F_TLS_PARSE_CTOS_SRP:576:tls_parse_ctos_srp SSL_F_TLS_PARSE_CTOS_STATUS_REQUEST:577:tls_parse_ctos_status_request SSL_F_TLS_PARSE_CTOS_SUPPORTED_GROUPS:578:tls_parse_ctos_supported_groups SSL_F_TLS_PARSE_CTOS_USE_SRTP:465:tls_parse_ctos_use_srtp SSL_F_TLS_PARSE_STOC_ALPN:579:tls_parse_stoc_alpn SSL_F_TLS_PARSE_STOC_COOKIE:534:tls_parse_stoc_cookie SSL_F_TLS_PARSE_STOC_EARLY_DATA:538:tls_parse_stoc_early_data SSL_F_TLS_PARSE_STOC_EARLY_DATA_INFO:528:* SSL_F_TLS_PARSE_STOC_EC_PT_FORMATS:580:tls_parse_stoc_ec_pt_formats SSL_F_TLS_PARSE_STOC_KEY_SHARE:445:tls_parse_stoc_key_share SSL_F_TLS_PARSE_STOC_MAXFRAGMENTLEN:581:tls_parse_stoc_maxfragmentlen SSL_F_TLS_PARSE_STOC_NPN:582:tls_parse_stoc_npn SSL_F_TLS_PARSE_STOC_PSK:502:tls_parse_stoc_psk SSL_F_TLS_PARSE_STOC_RENEGOTIATE:448:tls_parse_stoc_renegotiate SSL_F_TLS_PARSE_STOC_SCT:564:tls_parse_stoc_sct SSL_F_TLS_PARSE_STOC_SERVER_NAME:583:tls_parse_stoc_server_name SSL_F_TLS_PARSE_STOC_SESSION_TICKET:584:tls_parse_stoc_session_ticket SSL_F_TLS_PARSE_STOC_STATUS_REQUEST:585:tls_parse_stoc_status_request SSL_F_TLS_PARSE_STOC_SUPPORTED_VERSIONS:612:tls_parse_stoc_supported_versions SSL_F_TLS_PARSE_STOC_USE_SRTP:446:tls_parse_stoc_use_srtp SSL_F_TLS_POST_PROCESS_CLIENT_HELLO:378:tls_post_process_client_hello SSL_F_TLS_POST_PROCESS_CLIENT_KEY_EXCHANGE:384:\ tls_post_process_client_key_exchange SSL_F_TLS_PREPARE_CLIENT_CERTIFICATE:360:tls_prepare_client_certificate SSL_F_TLS_PROCESS_AS_HELLO_RETRY_REQUEST:610:tls_process_as_hello_retry_request SSL_F_TLS_PROCESS_CERTIFICATE_REQUEST:361:tls_process_certificate_request SSL_F_TLS_PROCESS_CERT_STATUS:362:* SSL_F_TLS_PROCESS_CERT_STATUS_BODY:495:tls_process_cert_status_body SSL_F_TLS_PROCESS_CERT_VERIFY:379:tls_process_cert_verify SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC:363:tls_process_change_cipher_spec SSL_F_TLS_PROCESS_CKE_DHE:411:tls_process_cke_dhe SSL_F_TLS_PROCESS_CKE_ECDHE:412:tls_process_cke_ecdhe SSL_F_TLS_PROCESS_CKE_GOST:413:tls_process_cke_gost SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE:414:tls_process_cke_psk_preamble SSL_F_TLS_PROCESS_CKE_RSA:415:tls_process_cke_rsa SSL_F_TLS_PROCESS_CKE_SRP:416:tls_process_cke_srp SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE:380:tls_process_client_certificate SSL_F_TLS_PROCESS_CLIENT_HELLO:381:tls_process_client_hello SSL_F_TLS_PROCESS_CLIENT_KEY_EXCHANGE:382:tls_process_client_key_exchange SSL_F_TLS_PROCESS_ENCRYPTED_EXTENSIONS:444:tls_process_encrypted_extensions SSL_F_TLS_PROCESS_END_OF_EARLY_DATA:537:tls_process_end_of_early_data SSL_F_TLS_PROCESS_FINISHED:364:tls_process_finished SSL_F_TLS_PROCESS_HELLO_REQ:507:tls_process_hello_req SSL_F_TLS_PROCESS_HELLO_RETRY_REQUEST:511:tls_process_hello_retry_request SSL_F_TLS_PROCESS_INITIAL_SERVER_FLIGHT:442:tls_process_initial_server_flight SSL_F_TLS_PROCESS_KEY_EXCHANGE:365:tls_process_key_exchange SSL_F_TLS_PROCESS_KEY_UPDATE:518:tls_process_key_update SSL_F_TLS_PROCESS_NEW_SESSION_TICKET:366:tls_process_new_session_ticket SSL_F_TLS_PROCESS_NEXT_PROTO:383:tls_process_next_proto SSL_F_TLS_PROCESS_SERVER_CERTIFICATE:367:tls_process_server_certificate SSL_F_TLS_PROCESS_SERVER_DONE:368:tls_process_server_done SSL_F_TLS_PROCESS_SERVER_HELLO:369:tls_process_server_hello SSL_F_TLS_PROCESS_SKE_DHE:419:tls_process_ske_dhe SSL_F_TLS_PROCESS_SKE_ECDHE:420:tls_process_ske_ecdhe SSL_F_TLS_PROCESS_SKE_PSK_PREAMBLE:421:tls_process_ske_psk_preamble SSL_F_TLS_PROCESS_SKE_SRP:422:tls_process_ske_srp SSL_F_TLS_PSK_DO_BINDER:506:tls_psk_do_binder SSL_F_TLS_SCAN_CLIENTHELLO_TLSEXT:450:* SSL_F_TLS_SETUP_HANDSHAKE:508:tls_setup_handshake SSL_F_USE_CERTIFICATE_CHAIN_FILE:220:use_certificate_chain_file SSL_F_WPACKET_INTERN_INIT_LEN:633:wpacket_intern_init_len SSL_F_WPACKET_START_SUB_PACKET_LEN__:634:WPACKET_start_sub_packet_len__ SSL_F_WRITE_STATE_MACHINE:586:write_state_machine TS_F_DEF_SERIAL_CB:110:def_serial_cb TS_F_DEF_TIME_CB:111:def_time_cb TS_F_ESS_ADD_SIGNING_CERT:112:ess_add_signing_cert TS_F_ESS_ADD_SIGNING_CERT_V2:147:ess_add_signing_cert_v2 TS_F_ESS_CERT_ID_NEW_INIT:113:ess_CERT_ID_new_init TS_F_ESS_CERT_ID_V2_NEW_INIT:156:ess_cert_id_v2_new_init TS_F_ESS_SIGNING_CERT_NEW_INIT:114:ess_SIGNING_CERT_new_init TS_F_ESS_SIGNING_CERT_V2_NEW_INIT:157:ess_signing_cert_v2_new_init TS_F_INT_TS_RESP_VERIFY_TOKEN:149:int_ts_RESP_verify_token TS_F_PKCS7_TO_TS_TST_INFO:148:PKCS7_to_TS_TST_INFO TS_F_TS_ACCURACY_SET_MICROS:115:TS_ACCURACY_set_micros TS_F_TS_ACCURACY_SET_MILLIS:116:TS_ACCURACY_set_millis TS_F_TS_ACCURACY_SET_SECONDS:117:TS_ACCURACY_set_seconds TS_F_TS_CHECK_IMPRINTS:100:ts_check_imprints TS_F_TS_CHECK_NONCES:101:ts_check_nonces TS_F_TS_CHECK_POLICY:102:ts_check_policy TS_F_TS_CHECK_SIGNING_CERTS:103:ts_check_signing_certs TS_F_TS_CHECK_STATUS_INFO:104:ts_check_status_info TS_F_TS_COMPUTE_IMPRINT:145:ts_compute_imprint TS_F_TS_CONF_INVALID:151:ts_CONF_invalid TS_F_TS_CONF_LOAD_CERT:153:TS_CONF_load_cert TS_F_TS_CONF_LOAD_CERTS:154:TS_CONF_load_certs TS_F_TS_CONF_LOAD_KEY:155:TS_CONF_load_key TS_F_TS_CONF_LOOKUP_FAIL:152:ts_CONF_lookup_fail TS_F_TS_CONF_SET_DEFAULT_ENGINE:146:TS_CONF_set_default_engine TS_F_TS_GET_STATUS_TEXT:105:ts_get_status_text TS_F_TS_MSG_IMPRINT_SET_ALGO:118:TS_MSG_IMPRINT_set_algo TS_F_TS_REQ_SET_MSG_IMPRINT:119:TS_REQ_set_msg_imprint TS_F_TS_REQ_SET_NONCE:120:TS_REQ_set_nonce TS_F_TS_REQ_SET_POLICY_ID:121:TS_REQ_set_policy_id TS_F_TS_RESP_CREATE_RESPONSE:122:TS_RESP_create_response TS_F_TS_RESP_CREATE_TST_INFO:123:ts_RESP_create_tst_info TS_F_TS_RESP_CTX_ADD_FAILURE_INFO:124:TS_RESP_CTX_add_failure_info TS_F_TS_RESP_CTX_ADD_MD:125:TS_RESP_CTX_add_md TS_F_TS_RESP_CTX_ADD_POLICY:126:TS_RESP_CTX_add_policy TS_F_TS_RESP_CTX_NEW:127:TS_RESP_CTX_new TS_F_TS_RESP_CTX_SET_ACCURACY:128:TS_RESP_CTX_set_accuracy TS_F_TS_RESP_CTX_SET_CERTS:129:TS_RESP_CTX_set_certs TS_F_TS_RESP_CTX_SET_DEF_POLICY:130:TS_RESP_CTX_set_def_policy TS_F_TS_RESP_CTX_SET_SIGNER_CERT:131:TS_RESP_CTX_set_signer_cert TS_F_TS_RESP_CTX_SET_STATUS_INFO:132:TS_RESP_CTX_set_status_info TS_F_TS_RESP_GET_POLICY:133:ts_RESP_get_policy TS_F_TS_RESP_SET_GENTIME_WITH_PRECISION:134:TS_RESP_set_genTime_with_precision TS_F_TS_RESP_SET_STATUS_INFO:135:TS_RESP_set_status_info TS_F_TS_RESP_SET_TST_INFO:150:TS_RESP_set_tst_info TS_F_TS_RESP_SIGN:136:ts_RESP_sign TS_F_TS_RESP_VERIFY_SIGNATURE:106:TS_RESP_verify_signature TS_F_TS_TST_INFO_SET_ACCURACY:137:TS_TST_INFO_set_accuracy TS_F_TS_TST_INFO_SET_MSG_IMPRINT:138:TS_TST_INFO_set_msg_imprint TS_F_TS_TST_INFO_SET_NONCE:139:TS_TST_INFO_set_nonce TS_F_TS_TST_INFO_SET_POLICY_ID:140:TS_TST_INFO_set_policy_id TS_F_TS_TST_INFO_SET_SERIAL:141:TS_TST_INFO_set_serial TS_F_TS_TST_INFO_SET_TIME:142:TS_TST_INFO_set_time TS_F_TS_TST_INFO_SET_TSA:143:TS_TST_INFO_set_tsa TS_F_TS_VERIFY:108:* TS_F_TS_VERIFY_CERT:109:ts_verify_cert TS_F_TS_VERIFY_CTX_NEW:144:TS_VERIFY_CTX_new UI_F_CLOSE_CONSOLE:115:close_console UI_F_ECHO_CONSOLE:116:echo_console UI_F_GENERAL_ALLOCATE_BOOLEAN:108:general_allocate_boolean UI_F_GENERAL_ALLOCATE_PROMPT:109:general_allocate_prompt UI_F_NOECHO_CONSOLE:117:noecho_console UI_F_OPEN_CONSOLE:114:open_console UI_F_UI_CONSTRUCT_PROMPT:121:UI_construct_prompt UI_F_UI_CREATE_METHOD:112:UI_create_method UI_F_UI_CTRL:111:UI_ctrl UI_F_UI_DUP_ERROR_STRING:101:UI_dup_error_string UI_F_UI_DUP_INFO_STRING:102:UI_dup_info_string UI_F_UI_DUP_INPUT_BOOLEAN:110:UI_dup_input_boolean UI_F_UI_DUP_INPUT_STRING:103:UI_dup_input_string UI_F_UI_DUP_USER_DATA:118:UI_dup_user_data UI_F_UI_DUP_VERIFY_STRING:106:UI_dup_verify_string UI_F_UI_GET0_RESULT:107:UI_get0_result UI_F_UI_GET_RESULT_LENGTH:119:UI_get_result_length UI_F_UI_NEW_METHOD:104:UI_new_method UI_F_UI_PROCESS:113:UI_process UI_F_UI_SET_RESULT:105:UI_set_result UI_F_UI_SET_RESULT_EX:120:UI_set_result_ex X509V3_F_A2I_GENERAL_NAME:164:a2i_GENERAL_NAME X509V3_F_ADDR_VALIDATE_PATH_INTERNAL:166:addr_validate_path_internal X509V3_F_ASIDENTIFIERCHOICE_CANONIZE:161:ASIdentifierChoice_canonize X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL:162:ASIdentifierChoice_is_canonical X509V3_F_BIGNUM_TO_STRING:167:bignum_to_string X509V3_F_COPY_EMAIL:122:copy_email X509V3_F_COPY_ISSUER:123:copy_issuer X509V3_F_DO_DIRNAME:144:do_dirname X509V3_F_DO_EXT_I2D:135:do_ext_i2d X509V3_F_DO_EXT_NCONF:151:do_ext_nconf X509V3_F_GNAMES_FROM_SECTNAME:156:gnames_from_sectname X509V3_F_I2S_ASN1_ENUMERATED:121:i2s_ASN1_ENUMERATED X509V3_F_I2S_ASN1_IA5STRING:149:i2s_ASN1_IA5STRING X509V3_F_I2S_ASN1_INTEGER:120:i2s_ASN1_INTEGER X509V3_F_I2V_AUTHORITY_INFO_ACCESS:138:i2v_AUTHORITY_INFO_ACCESS X509V3_F_LEVEL_ADD_NODE:168:level_add_node X509V3_F_NOTICE_SECTION:132:notice_section X509V3_F_NREF_NOS:133:nref_nos X509V3_F_POLICY_CACHE_CREATE:169:policy_cache_create X509V3_F_POLICY_CACHE_NEW:170:policy_cache_new X509V3_F_POLICY_DATA_NEW:171:policy_data_new X509V3_F_POLICY_SECTION:131:policy_section X509V3_F_PROCESS_PCI_VALUE:150:process_pci_value X509V3_F_R2I_CERTPOL:130:r2i_certpol X509V3_F_R2I_PCI:155:r2i_pci X509V3_F_S2I_ASN1_IA5STRING:100:s2i_ASN1_IA5STRING X509V3_F_S2I_ASN1_INTEGER:108:s2i_ASN1_INTEGER X509V3_F_S2I_ASN1_OCTET_STRING:112:s2i_ASN1_OCTET_STRING X509V3_F_S2I_SKEY_ID:115:s2i_skey_id X509V3_F_SET_DIST_POINT_NAME:158:set_dist_point_name X509V3_F_SXNET_ADD_ID_ASC:125:SXNET_add_id_asc X509V3_F_SXNET_ADD_ID_INTEGER:126:SXNET_add_id_INTEGER X509V3_F_SXNET_ADD_ID_ULONG:127:SXNET_add_id_ulong X509V3_F_SXNET_GET_ID_ASC:128:SXNET_get_id_asc X509V3_F_SXNET_GET_ID_ULONG:129:SXNET_get_id_ulong X509V3_F_TREE_INIT:172:tree_init X509V3_F_V2I_ASIDENTIFIERS:163:v2i_ASIdentifiers X509V3_F_V2I_ASN1_BIT_STRING:101:v2i_ASN1_BIT_STRING X509V3_F_V2I_AUTHORITY_INFO_ACCESS:139:v2i_AUTHORITY_INFO_ACCESS X509V3_F_V2I_AUTHORITY_KEYID:119:v2i_AUTHORITY_KEYID X509V3_F_V2I_BASIC_CONSTRAINTS:102:v2i_BASIC_CONSTRAINTS X509V3_F_V2I_CRLD:134:v2i_crld X509V3_F_V2I_EXTENDED_KEY_USAGE:103:v2i_EXTENDED_KEY_USAGE X509V3_F_V2I_GENERAL_NAMES:118:v2i_GENERAL_NAMES X509V3_F_V2I_GENERAL_NAME_EX:117:v2i_GENERAL_NAME_ex X509V3_F_V2I_IDP:157:v2i_idp X509V3_F_V2I_IPADDRBLOCKS:159:v2i_IPAddrBlocks X509V3_F_V2I_ISSUER_ALT:153:v2i_issuer_alt X509V3_F_V2I_NAME_CONSTRAINTS:147:v2i_NAME_CONSTRAINTS X509V3_F_V2I_POLICY_CONSTRAINTS:146:v2i_POLICY_CONSTRAINTS X509V3_F_V2I_POLICY_MAPPINGS:145:v2i_POLICY_MAPPINGS X509V3_F_V2I_SUBJECT_ALT:154:v2i_subject_alt X509V3_F_V2I_TLS_FEATURE:165:v2i_TLS_FEATURE X509V3_F_V3_GENERIC_EXTENSION:116:v3_generic_extension X509V3_F_X509V3_ADD1_I2D:140:X509V3_add1_i2d X509V3_F_X509V3_ADD_VALUE:105:X509V3_add_value X509V3_F_X509V3_EXT_ADD:104:X509V3_EXT_add X509V3_F_X509V3_EXT_ADD_ALIAS:106:X509V3_EXT_add_alias X509V3_F_X509V3_EXT_I2D:136:X509V3_EXT_i2d X509V3_F_X509V3_EXT_NCONF:152:X509V3_EXT_nconf X509V3_F_X509V3_GET_SECTION:142:X509V3_get_section X509V3_F_X509V3_GET_STRING:143:X509V3_get_string X509V3_F_X509V3_GET_VALUE_BOOL:110:X509V3_get_value_bool X509V3_F_X509V3_PARSE_LIST:109:X509V3_parse_list X509V3_F_X509_PURPOSE_ADD:137:X509_PURPOSE_add X509V3_F_X509_PURPOSE_SET:141:X509_PURPOSE_set X509_F_ADD_CERT_DIR:100:add_cert_dir X509_F_BUILD_CHAIN:106:build_chain X509_F_BY_FILE_CTRL:101:by_file_ctrl X509_F_CHECK_NAME_CONSTRAINTS:149:check_name_constraints X509_F_CHECK_POLICY:145:check_policy X509_F_DANE_I2D:107:dane_i2d X509_F_DIR_CTRL:102:dir_ctrl X509_F_GET_CERT_BY_SUBJECT:103:get_cert_by_subject X509_F_I2D_X509_AUX:151:i2d_X509_AUX X509_F_LOOKUP_CERTS_SK:152:lookup_certs_sk X509_F_NETSCAPE_SPKI_B64_DECODE:129:NETSCAPE_SPKI_b64_decode X509_F_NETSCAPE_SPKI_B64_ENCODE:130:NETSCAPE_SPKI_b64_encode X509_F_NEW_DIR:153:new_dir X509_F_X509AT_ADD1_ATTR:135:X509at_add1_attr X509_F_X509V3_ADD_EXT:104:X509v3_add_ext X509_F_X509_ATTRIBUTE_CREATE_BY_NID:136:X509_ATTRIBUTE_create_by_NID X509_F_X509_ATTRIBUTE_CREATE_BY_OBJ:137:X509_ATTRIBUTE_create_by_OBJ X509_F_X509_ATTRIBUTE_CREATE_BY_TXT:140:X509_ATTRIBUTE_create_by_txt X509_F_X509_ATTRIBUTE_GET0_DATA:139:X509_ATTRIBUTE_get0_data X509_F_X509_ATTRIBUTE_SET1_DATA:138:X509_ATTRIBUTE_set1_data X509_F_X509_CHECK_PRIVATE_KEY:128:X509_check_private_key X509_F_X509_CRL_DIFF:105:X509_CRL_diff X509_F_X509_CRL_METHOD_NEW:154:X509_CRL_METHOD_new X509_F_X509_CRL_PRINT_FP:147:X509_CRL_print_fp X509_F_X509_EXTENSION_CREATE_BY_NID:108:X509_EXTENSION_create_by_NID X509_F_X509_EXTENSION_CREATE_BY_OBJ:109:X509_EXTENSION_create_by_OBJ X509_F_X509_GET_PUBKEY_PARAMETERS:110:X509_get_pubkey_parameters X509_F_X509_LOAD_CERT_CRL_FILE:132:X509_load_cert_crl_file X509_F_X509_LOAD_CERT_FILE:111:X509_load_cert_file X509_F_X509_LOAD_CRL_FILE:112:X509_load_crl_file X509_F_X509_LOOKUP_METH_NEW:160:X509_LOOKUP_meth_new X509_F_X509_LOOKUP_NEW:155:X509_LOOKUP_new X509_F_X509_NAME_ADD_ENTRY:113:X509_NAME_add_entry X509_F_X509_NAME_CANON:156:x509_name_canon X509_F_X509_NAME_ENTRY_CREATE_BY_NID:114:X509_NAME_ENTRY_create_by_NID X509_F_X509_NAME_ENTRY_CREATE_BY_TXT:131:X509_NAME_ENTRY_create_by_txt X509_F_X509_NAME_ENTRY_SET_OBJECT:115:X509_NAME_ENTRY_set_object X509_F_X509_NAME_ONELINE:116:X509_NAME_oneline X509_F_X509_NAME_PRINT:117:X509_NAME_print X509_F_X509_OBJECT_NEW:150:X509_OBJECT_new X509_F_X509_PRINT_EX_FP:118:X509_print_ex_fp X509_F_X509_PUBKEY_DECODE:148:x509_pubkey_decode X509_F_X509_PUBKEY_GET0:119:X509_PUBKEY_get0 X509_F_X509_PUBKEY_SET:120:X509_PUBKEY_set X509_F_X509_REQ_CHECK_PRIVATE_KEY:144:X509_REQ_check_private_key X509_F_X509_REQ_PRINT_EX:121:X509_REQ_print_ex X509_F_X509_REQ_PRINT_FP:122:X509_REQ_print_fp X509_F_X509_REQ_TO_X509:123:X509_REQ_to_X509 X509_F_X509_STORE_ADD_CERT:124:X509_STORE_add_cert X509_F_X509_STORE_ADD_CRL:125:X509_STORE_add_crl X509_F_X509_STORE_ADD_LOOKUP:157:X509_STORE_add_lookup X509_F_X509_STORE_CTX_GET1_ISSUER:146:X509_STORE_CTX_get1_issuer X509_F_X509_STORE_CTX_INIT:143:X509_STORE_CTX_init X509_F_X509_STORE_CTX_NEW:142:X509_STORE_CTX_new X509_F_X509_STORE_CTX_PURPOSE_INHERIT:134:X509_STORE_CTX_purpose_inherit X509_F_X509_STORE_NEW:158:X509_STORE_new X509_F_X509_TO_X509_REQ:126:X509_to_X509_REQ X509_F_X509_TRUST_ADD:133:X509_TRUST_add X509_F_X509_TRUST_SET:141:X509_TRUST_set X509_F_X509_VERIFY_CERT:127:X509_verify_cert X509_F_X509_VERIFY_PARAM_NEW:159:X509_VERIFY_PARAM_new #Reason codes ASN1_R_ADDING_OBJECT:171:adding object ASN1_R_ASN1_PARSE_ERROR:203:asn1 parse error ASN1_R_ASN1_SIG_PARSE_ERROR:204:asn1 sig parse error ASN1_R_AUX_ERROR:100:aux error ASN1_R_BAD_OBJECT_HEADER:102:bad object header ASN1_R_BMPSTRING_IS_WRONG_LENGTH:214:bmpstring is wrong length ASN1_R_BN_LIB:105:bn lib ASN1_R_BOOLEAN_IS_WRONG_LENGTH:106:boolean is wrong length ASN1_R_BUFFER_TOO_SMALL:107:buffer too small ASN1_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER:108:cipher has no object identifier ASN1_R_CONTEXT_NOT_INITIALISED:217:context not initialised ASN1_R_DATA_IS_WRONG:109:data is wrong ASN1_R_DECODE_ERROR:110:decode error ASN1_R_DEPTH_EXCEEDED:174:depth exceeded ASN1_R_DIGEST_AND_KEY_TYPE_NOT_SUPPORTED:198:digest and key type not supported ASN1_R_ENCODE_ERROR:112:encode error ASN1_R_ERROR_GETTING_TIME:173:error getting time ASN1_R_ERROR_LOADING_SECTION:172:error loading section ASN1_R_ERROR_SETTING_CIPHER_PARAMS:114:error setting cipher params ASN1_R_EXPECTING_AN_INTEGER:115:expecting an integer ASN1_R_EXPECTING_AN_OBJECT:116:expecting an object ASN1_R_EXPLICIT_LENGTH_MISMATCH:119:explicit length mismatch ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED:120:explicit tag not constructed ASN1_R_FIELD_MISSING:121:field missing ASN1_R_FIRST_NUM_TOO_LARGE:122:first num too large ASN1_R_HEADER_TOO_LONG:123:header too long ASN1_R_ILLEGAL_BITSTRING_FORMAT:175:illegal bitstring format ASN1_R_ILLEGAL_BOOLEAN:176:illegal boolean ASN1_R_ILLEGAL_CHARACTERS:124:illegal characters ASN1_R_ILLEGAL_FORMAT:177:illegal format ASN1_R_ILLEGAL_HEX:178:illegal hex ASN1_R_ILLEGAL_IMPLICIT_TAG:179:illegal implicit tag ASN1_R_ILLEGAL_INTEGER:180:illegal integer ASN1_R_ILLEGAL_NEGATIVE_VALUE:226:illegal negative value ASN1_R_ILLEGAL_NESTED_TAGGING:181:illegal nested tagging ASN1_R_ILLEGAL_NULL:125:illegal null ASN1_R_ILLEGAL_NULL_VALUE:182:illegal null value ASN1_R_ILLEGAL_OBJECT:183:illegal object ASN1_R_ILLEGAL_OPTIONAL_ANY:126:illegal optional any ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE:170:illegal options on item template ASN1_R_ILLEGAL_PADDING:221:illegal padding ASN1_R_ILLEGAL_TAGGED_ANY:127:illegal tagged any ASN1_R_ILLEGAL_TIME_VALUE:184:illegal time value ASN1_R_ILLEGAL_ZERO_CONTENT:222:illegal zero content ASN1_R_INTEGER_NOT_ASCII_FORMAT:185:integer not ascii format ASN1_R_INTEGER_TOO_LARGE_FOR_LONG:128:integer too large for long ASN1_R_INVALID_BIT_STRING_BITS_LEFT:220:invalid bit string bits left ASN1_R_INVALID_BMPSTRING_LENGTH:129:invalid bmpstring length ASN1_R_INVALID_DIGIT:130:invalid digit ASN1_R_INVALID_MIME_TYPE:205:invalid mime type ASN1_R_INVALID_MODIFIER:186:invalid modifier ASN1_R_INVALID_NUMBER:187:invalid number ASN1_R_INVALID_OBJECT_ENCODING:216:invalid object encoding ASN1_R_INVALID_SCRYPT_PARAMETERS:227:invalid scrypt parameters ASN1_R_INVALID_SEPARATOR:131:invalid separator ASN1_R_INVALID_STRING_TABLE_VALUE:218:invalid string table value ASN1_R_INVALID_UNIVERSALSTRING_LENGTH:133:invalid universalstring length ASN1_R_INVALID_UTF8STRING:134:invalid utf8string ASN1_R_INVALID_VALUE:219:invalid value ASN1_R_LIST_ERROR:188:list error ASN1_R_MIME_NO_CONTENT_TYPE:206:mime no content type ASN1_R_MIME_PARSE_ERROR:207:mime parse error ASN1_R_MIME_SIG_PARSE_ERROR:208:mime sig parse error ASN1_R_MISSING_EOC:137:missing eoc ASN1_R_MISSING_SECOND_NUMBER:138:missing second number ASN1_R_MISSING_VALUE:189:missing value ASN1_R_MSTRING_NOT_UNIVERSAL:139:mstring not universal ASN1_R_MSTRING_WRONG_TAG:140:mstring wrong tag ASN1_R_NESTED_ASN1_STRING:197:nested asn1 string ASN1_R_NESTED_TOO_DEEP:201:nested too deep ASN1_R_NON_HEX_CHARACTERS:141:non hex characters ASN1_R_NOT_ASCII_FORMAT:190:not ascii format ASN1_R_NOT_ENOUGH_DATA:142:not enough data ASN1_R_NO_CONTENT_TYPE:209:no content type ASN1_R_NO_MATCHING_CHOICE_TYPE:143:no matching choice type ASN1_R_NO_MULTIPART_BODY_FAILURE:210:no multipart body failure ASN1_R_NO_MULTIPART_BOUNDARY:211:no multipart boundary ASN1_R_NO_SIG_CONTENT_TYPE:212:no sig content type ASN1_R_NULL_IS_WRONG_LENGTH:144:null is wrong length ASN1_R_OBJECT_NOT_ASCII_FORMAT:191:object not ascii format ASN1_R_ODD_NUMBER_OF_CHARS:145:odd number of chars ASN1_R_SECOND_NUMBER_TOO_LARGE:147:second number too large ASN1_R_SEQUENCE_LENGTH_MISMATCH:148:sequence length mismatch ASN1_R_SEQUENCE_NOT_CONSTRUCTED:149:sequence not constructed ASN1_R_SEQUENCE_OR_SET_NEEDS_CONFIG:192:sequence or set needs config ASN1_R_SHORT_LINE:150:short line ASN1_R_SIG_INVALID_MIME_TYPE:213:sig invalid mime type ASN1_R_STREAMING_NOT_SUPPORTED:202:streaming not supported ASN1_R_STRING_TOO_LONG:151:string too long ASN1_R_STRING_TOO_SHORT:152:string too short ASN1_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD:154:\ the asn1 object identifier is not known for this md ASN1_R_TIME_NOT_ASCII_FORMAT:193:time not ascii format ASN1_R_TOO_LARGE:223:too large ASN1_R_TOO_LONG:155:too long ASN1_R_TOO_SMALL:224:too small ASN1_R_TYPE_NOT_CONSTRUCTED:156:type not constructed ASN1_R_TYPE_NOT_PRIMITIVE:195:type not primitive ASN1_R_UNEXPECTED_EOC:159:unexpected eoc ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH:215:universalstring is wrong length ASN1_R_UNKNOWN_FORMAT:160:unknown format ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM:161:unknown message digest algorithm ASN1_R_UNKNOWN_OBJECT_TYPE:162:unknown object type ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE:163:unknown public key type ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM:199:unknown signature algorithm ASN1_R_UNKNOWN_TAG:194:unknown tag ASN1_R_UNSUPPORTED_ANY_DEFINED_BY_TYPE:164:unsupported any defined by type ASN1_R_UNSUPPORTED_CIPHER:228:unsupported cipher ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE:167:unsupported public key type ASN1_R_UNSUPPORTED_TYPE:196:unsupported type ASN1_R_WRONG_INTEGER_TYPE:225:wrong integer type ASN1_R_WRONG_PUBLIC_KEY_TYPE:200:wrong public key type ASN1_R_WRONG_TAG:168:wrong tag ASYNC_R_FAILED_TO_SET_POOL:101:failed to set pool ASYNC_R_FAILED_TO_SWAP_CONTEXT:102:failed to swap context ASYNC_R_INIT_FAILED:105:init failed ASYNC_R_INVALID_POOL_SIZE:103:invalid pool size BIO_R_ACCEPT_ERROR:100:accept error BIO_R_ADDRINFO_ADDR_IS_NOT_AF_INET:141:addrinfo addr is not af inet BIO_R_AMBIGUOUS_HOST_OR_SERVICE:129:ambiguous host or service BIO_R_BAD_FOPEN_MODE:101:bad fopen mode BIO_R_BROKEN_PIPE:124:broken pipe BIO_R_CONNECT_ERROR:103:connect error BIO_R_GETHOSTBYNAME_ADDR_IS_NOT_AF_INET:107:gethostbyname addr is not af inet BIO_R_GETSOCKNAME_ERROR:132:getsockname error BIO_R_GETSOCKNAME_TRUNCATED_ADDRESS:133:getsockname truncated address BIO_R_GETTING_SOCKTYPE:134:getting socktype BIO_R_INVALID_ARGUMENT:125:invalid argument BIO_R_INVALID_SOCKET:135:invalid socket BIO_R_IN_USE:123:in use BIO_R_LENGTH_TOO_LONG:102:length too long BIO_R_LISTEN_V6_ONLY:136:listen v6 only BIO_R_LOOKUP_RETURNED_NOTHING:142:lookup returned nothing BIO_R_MALFORMED_HOST_OR_SERVICE:130:malformed host or service BIO_R_NBIO_CONNECT_ERROR:110:nbio connect error BIO_R_NO_ACCEPT_ADDR_OR_SERVICE_SPECIFIED:143:\ no accept addr or service specified BIO_R_NO_HOSTNAME_OR_SERVICE_SPECIFIED:144:no hostname or service specified BIO_R_NO_PORT_DEFINED:113:no port defined BIO_R_NO_SUCH_FILE:128:no such file BIO_R_NULL_PARAMETER:115:null parameter BIO_R_UNABLE_TO_BIND_SOCKET:117:unable to bind socket BIO_R_UNABLE_TO_CREATE_SOCKET:118:unable to create socket BIO_R_UNABLE_TO_KEEPALIVE:137:unable to keepalive BIO_R_UNABLE_TO_LISTEN_SOCKET:119:unable to listen socket BIO_R_UNABLE_TO_NODELAY:138:unable to nodelay BIO_R_UNABLE_TO_REUSEADDR:139:unable to reuseaddr BIO_R_UNAVAILABLE_IP_FAMILY:145:unavailable ip family BIO_R_UNINITIALIZED:120:uninitialized BIO_R_UNKNOWN_INFO_TYPE:140:unknown info type BIO_R_UNSUPPORTED_IP_FAMILY:146:unsupported ip family BIO_R_UNSUPPORTED_METHOD:121:unsupported method BIO_R_UNSUPPORTED_PROTOCOL_FAMILY:131:unsupported protocol family BIO_R_WRITE_TO_READ_ONLY_BIO:126:write to read only BIO BIO_R_WSASTARTUP:122:WSAStartup BN_R_ARG2_LT_ARG3:100:arg2 lt arg3 BN_R_BAD_RECIPROCAL:101:bad reciprocal BN_R_BIGNUM_TOO_LONG:114:bignum too long BN_R_BITS_TOO_SMALL:118:bits too small BN_R_CALLED_WITH_EVEN_MODULUS:102:called with even modulus BN_R_DIV_BY_ZERO:103:div by zero BN_R_ENCODING_ERROR:104:encoding error BN_R_EXPAND_ON_STATIC_BIGNUM_DATA:105:expand on static bignum data BN_R_INPUT_NOT_REDUCED:110:input not reduced BN_R_INVALID_LENGTH:106:invalid length BN_R_INVALID_RANGE:115:invalid range BN_R_INVALID_SHIFT:119:invalid shift BN_R_NOT_A_SQUARE:111:not a square BN_R_NOT_INITIALIZED:107:not initialized BN_R_NO_INVERSE:108:no inverse BN_R_NO_SOLUTION:116:no solution BN_R_PRIVATE_KEY_TOO_LARGE:117:private key too large BN_R_P_IS_NOT_PRIME:112:p is not prime BN_R_TOO_MANY_ITERATIONS:113:too many iterations BN_R_TOO_MANY_TEMPORARY_VARIABLES:109:too many temporary variables CMS_R_ADD_SIGNER_ERROR:99:add signer error CMS_R_ATTRIBUTE_ERROR:161:attribute error CMS_R_CERTIFICATE_ALREADY_PRESENT:175:certificate already present CMS_R_CERTIFICATE_HAS_NO_KEYID:160:certificate has no keyid CMS_R_CERTIFICATE_VERIFY_ERROR:100:certificate verify error CMS_R_CIPHER_INITIALISATION_ERROR:101:cipher initialisation error CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR:102:\ cipher parameter initialisation error CMS_R_CMS_DATAFINAL_ERROR:103:cms datafinal error CMS_R_CMS_LIB:104:cms lib CMS_R_CONTENTIDENTIFIER_MISMATCH:170:contentidentifier mismatch CMS_R_CONTENT_NOT_FOUND:105:content not found CMS_R_CONTENT_TYPE_MISMATCH:171:content type mismatch CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA:106:content type not compressed data CMS_R_CONTENT_TYPE_NOT_ENVELOPED_DATA:107:content type not enveloped data CMS_R_CONTENT_TYPE_NOT_SIGNED_DATA:108:content type not signed data CMS_R_CONTENT_VERIFY_ERROR:109:content verify error CMS_R_CTRL_ERROR:110:ctrl error CMS_R_CTRL_FAILURE:111:ctrl failure CMS_R_DECRYPT_ERROR:112:decrypt error CMS_R_ERROR_GETTING_PUBLIC_KEY:113:error getting public key CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE:114:\ error reading messagedigest attribute CMS_R_ERROR_SETTING_KEY:115:error setting key CMS_R_ERROR_SETTING_RECIPIENTINFO:116:error setting recipientinfo CMS_R_INVALID_ENCRYPTED_KEY_LENGTH:117:invalid encrypted key length CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER:176:invalid key encryption parameter CMS_R_INVALID_KEY_LENGTH:118:invalid key length CMS_R_MD_BIO_INIT_ERROR:119:md bio init error CMS_R_MESSAGEDIGEST_ATTRIBUTE_WRONG_LENGTH:120:\ messagedigest attribute wrong length CMS_R_MESSAGEDIGEST_WRONG_LENGTH:121:messagedigest wrong length CMS_R_MSGSIGDIGEST_ERROR:172:msgsigdigest error CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE:162:msgsigdigest verification failure CMS_R_MSGSIGDIGEST_WRONG_LENGTH:163:msgsigdigest wrong length CMS_R_NEED_ONE_SIGNER:164:need one signer CMS_R_NOT_A_SIGNED_RECEIPT:165:not a signed receipt CMS_R_NOT_ENCRYPTED_DATA:122:not encrypted data CMS_R_NOT_KEK:123:not kek CMS_R_NOT_KEY_AGREEMENT:181:not key agreement CMS_R_NOT_KEY_TRANSPORT:124:not key transport CMS_R_NOT_PWRI:177:not pwri CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE:125:not supported for this key type CMS_R_NO_CIPHER:126:no cipher CMS_R_NO_CONTENT:127:no content CMS_R_NO_CONTENT_TYPE:173:no content type CMS_R_NO_DEFAULT_DIGEST:128:no default digest CMS_R_NO_DIGEST_SET:129:no digest set CMS_R_NO_KEY:130:no key CMS_R_NO_KEY_OR_CERT:174:no key or cert CMS_R_NO_MATCHING_DIGEST:131:no matching digest CMS_R_NO_MATCHING_RECIPIENT:132:no matching recipient CMS_R_NO_MATCHING_SIGNATURE:166:no matching signature CMS_R_NO_MSGSIGDIGEST:167:no msgsigdigest CMS_R_NO_PASSWORD:178:no password CMS_R_NO_PRIVATE_KEY:133:no private key CMS_R_NO_PUBLIC_KEY:134:no public key CMS_R_NO_RECEIPT_REQUEST:168:no receipt request CMS_R_NO_SIGNERS:135:no signers CMS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE:136:\ private key does not match certificate CMS_R_RECEIPT_DECODE_ERROR:169:receipt decode error CMS_R_RECIPIENT_ERROR:137:recipient error CMS_R_SIGNER_CERTIFICATE_NOT_FOUND:138:signer certificate not found CMS_R_SIGNFINAL_ERROR:139:signfinal error CMS_R_SMIME_TEXT_ERROR:140:smime text error CMS_R_STORE_INIT_ERROR:141:store init error CMS_R_TYPE_NOT_COMPRESSED_DATA:142:type not compressed data CMS_R_TYPE_NOT_DATA:143:type not data CMS_R_TYPE_NOT_DIGESTED_DATA:144:type not digested data CMS_R_TYPE_NOT_ENCRYPTED_DATA:145:type not encrypted data CMS_R_TYPE_NOT_ENVELOPED_DATA:146:type not enveloped data CMS_R_UNABLE_TO_FINALIZE_CONTEXT:147:unable to finalize context CMS_R_UNKNOWN_CIPHER:148:unknown cipher CMS_R_UNKNOWN_DIGEST_ALGORITHM:149:unknown digest algorithm CMS_R_UNKNOWN_ID:150:unknown id CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM:151:unsupported compression algorithm CMS_R_UNSUPPORTED_CONTENT_TYPE:152:unsupported content type CMS_R_UNSUPPORTED_KEK_ALGORITHM:153:unsupported kek algorithm CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM:179:\ unsupported key encryption algorithm CMS_R_UNSUPPORTED_RECIPIENTINFO_TYPE:155:unsupported recipientinfo type CMS_R_UNSUPPORTED_RECIPIENT_TYPE:154:unsupported recipient type CMS_R_UNSUPPORTED_TYPE:156:unsupported type CMS_R_UNWRAP_ERROR:157:unwrap error CMS_R_UNWRAP_FAILURE:180:unwrap failure CMS_R_VERIFICATION_FAILURE:158:verification failure CMS_R_WRAP_ERROR:159:wrap error COMP_R_ZLIB_DEFLATE_ERROR:99:zlib deflate error COMP_R_ZLIB_INFLATE_ERROR:100:zlib inflate error COMP_R_ZLIB_NOT_SUPPORTED:101:zlib not supported CONF_R_ERROR_LOADING_DSO:110:error loading dso CONF_R_LIST_CANNOT_BE_NULL:115:list cannot be null CONF_R_MISSING_CLOSE_SQUARE_BRACKET:100:missing close square bracket CONF_R_MISSING_EQUAL_SIGN:101:missing equal sign CONF_R_MISSING_INIT_FUNCTION:112:missing init function CONF_R_MODULE_INITIALIZATION_ERROR:109:module initialization error CONF_R_NO_CLOSE_BRACE:102:no close brace CONF_R_NO_CONF:105:no conf CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE:106:no conf or environment variable CONF_R_NO_SECTION:107:no section CONF_R_NO_SUCH_FILE:114:no such file CONF_R_NO_VALUE:108:no value CONF_R_NUMBER_TOO_LARGE:121:number too large CONF_R_RECURSIVE_DIRECTORY_INCLUDE:111:recursive directory include CONF_R_SSL_COMMAND_SECTION_EMPTY:117:ssl command section empty CONF_R_SSL_COMMAND_SECTION_NOT_FOUND:118:ssl command section not found CONF_R_SSL_SECTION_EMPTY:119:ssl section empty CONF_R_SSL_SECTION_NOT_FOUND:120:ssl section not found CONF_R_UNABLE_TO_CREATE_NEW_SECTION:103:unable to create new section CONF_R_UNKNOWN_MODULE_NAME:113:unknown module name CONF_R_VARIABLE_EXPANSION_TOO_LONG:116:variable expansion too long CONF_R_VARIABLE_HAS_NO_VALUE:104:variable has no value CRYPTO_R_FIPS_MODE_NOT_SUPPORTED:101:fips mode not supported CRYPTO_R_ILLEGAL_HEX_DIGIT:102:illegal hex digit CRYPTO_R_ODD_NUMBER_OF_DIGITS:103:odd number of digits CT_R_BASE64_DECODE_ERROR:108:base64 decode error CT_R_INVALID_LOG_ID_LENGTH:100:invalid log id length CT_R_LOG_CONF_INVALID:109:log conf invalid CT_R_LOG_CONF_INVALID_KEY:110:log conf invalid key CT_R_LOG_CONF_MISSING_DESCRIPTION:111:log conf missing description CT_R_LOG_CONF_MISSING_KEY:112:log conf missing key CT_R_LOG_KEY_INVALID:113:log key invalid CT_R_SCT_FUTURE_TIMESTAMP:116:sct future timestamp CT_R_SCT_INVALID:104:sct invalid CT_R_SCT_INVALID_SIGNATURE:107:sct invalid signature CT_R_SCT_LIST_INVALID:105:sct list invalid CT_R_SCT_LOG_ID_MISMATCH:114:sct log id mismatch CT_R_SCT_NOT_SET:106:sct not set CT_R_SCT_UNSUPPORTED_VERSION:115:sct unsupported version CT_R_UNRECOGNIZED_SIGNATURE_NID:101:unrecognized signature nid CT_R_UNSUPPORTED_ENTRY_TYPE:102:unsupported entry type CT_R_UNSUPPORTED_VERSION:103:unsupported version DH_R_BAD_GENERATOR:101:bad generator DH_R_BN_DECODE_ERROR:109:bn decode error DH_R_BN_ERROR:106:bn error DH_R_CHECK_INVALID_J_VALUE:115:check invalid j value DH_R_CHECK_INVALID_Q_VALUE:116:check invalid q value DH_R_CHECK_PUBKEY_INVALID:122:check pubkey invalid DH_R_CHECK_PUBKEY_TOO_LARGE:123:check pubkey too large DH_R_CHECK_PUBKEY_TOO_SMALL:124:check pubkey too small DH_R_CHECK_P_NOT_PRIME:117:check p not prime DH_R_CHECK_P_NOT_SAFE_PRIME:118:check p not safe prime DH_R_CHECK_Q_NOT_PRIME:119:check q not prime DH_R_DECODE_ERROR:104:decode error DH_R_INVALID_PARAMETER_NAME:110:invalid parameter name DH_R_INVALID_PARAMETER_NID:114:invalid parameter nid DH_R_INVALID_PUBKEY:102:invalid public key DH_R_KDF_PARAMETER_ERROR:112:kdf parameter error DH_R_KEYS_NOT_SET:108:keys not set DH_R_MISSING_PUBKEY:125:missing pubkey DH_R_MODULUS_TOO_LARGE:103:modulus too large DH_R_NOT_SUITABLE_GENERATOR:120:not suitable generator DH_R_NO_PARAMETERS_SET:107:no parameters set DH_R_NO_PRIVATE_VALUE:100:no private value DH_R_PARAMETER_ENCODING_ERROR:105:parameter encoding error DH_R_PEER_KEY_ERROR:111:peer key error DH_R_SHARED_INFO_ERROR:113:shared info error DH_R_UNABLE_TO_CHECK_GENERATOR:121:unable to check generator DSA_R_BAD_Q_VALUE:102:bad q value DSA_R_BN_DECODE_ERROR:108:bn decode error DSA_R_BN_ERROR:109:bn error DSA_R_DECODE_ERROR:104:decode error DSA_R_INVALID_DIGEST_TYPE:106:invalid digest type DSA_R_INVALID_PARAMETERS:112:invalid parameters DSA_R_MISSING_PARAMETERS:101:missing parameters DSA_R_MISSING_PRIVATE_KEY:111:missing private key DSA_R_MODULUS_TOO_LARGE:103:modulus too large DSA_R_NO_PARAMETERS_SET:107:no parameters set DSA_R_PARAMETER_ENCODING_ERROR:105:parameter encoding error DSA_R_Q_NOT_PRIME:113:q not prime DSA_R_SEED_LEN_SMALL:110:seed_len is less than the length of q DSO_R_CTRL_FAILED:100:control command failed DSO_R_DSO_ALREADY_LOADED:110:dso already loaded DSO_R_EMPTY_FILE_STRUCTURE:113:empty file structure DSO_R_FAILURE:114:failure DSO_R_FILENAME_TOO_BIG:101:filename too big DSO_R_FINISH_FAILED:102:cleanup method function failed DSO_R_INCORRECT_FILE_SYNTAX:115:incorrect file syntax DSO_R_LOAD_FAILED:103:could not load the shared library DSO_R_NAME_TRANSLATION_FAILED:109:name translation failed DSO_R_NO_FILENAME:111:no filename DSO_R_NULL_HANDLE:104:a null shared library handle was used DSO_R_SET_FILENAME_FAILED:112:set filename failed DSO_R_STACK_ERROR:105:the meth_data stack is corrupt DSO_R_SYM_FAILURE:106:could not bind to the requested symbol name DSO_R_UNLOAD_FAILED:107:could not unload the shared library DSO_R_UNSUPPORTED:108:functionality not supported EC_R_ASN1_ERROR:115:asn1 error EC_R_BAD_SIGNATURE:156:bad signature EC_R_BIGNUM_OUT_OF_RANGE:144:bignum out of range EC_R_BUFFER_TOO_SMALL:100:buffer too small EC_R_CANNOT_INVERT:165:cannot invert EC_R_COORDINATES_OUT_OF_RANGE:146:coordinates out of range EC_R_CURVE_DOES_NOT_SUPPORT_ECDH:160:curve does not support ecdh EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING:159:curve does not support signing EC_R_D2I_ECPKPARAMETERS_FAILURE:117:d2i ecpkparameters failure EC_R_DECODE_ERROR:142:decode error EC_R_DISCRIMINANT_IS_ZERO:118:discriminant is zero EC_R_EC_GROUP_NEW_BY_NAME_FAILURE:119:ec group new by name failure EC_R_FIELD_TOO_LARGE:143:field too large EC_R_GF2M_NOT_SUPPORTED:147:gf2m not supported EC_R_GROUP2PKPARAMETERS_FAILURE:120:group2pkparameters failure EC_R_I2D_ECPKPARAMETERS_FAILURE:121:i2d ecpkparameters failure EC_R_INCOMPATIBLE_OBJECTS:101:incompatible objects EC_R_INVALID_ARGUMENT:112:invalid argument EC_R_INVALID_COMPRESSED_POINT:110:invalid compressed point EC_R_INVALID_COMPRESSION_BIT:109:invalid compression bit EC_R_INVALID_CURVE:141:invalid curve EC_R_INVALID_DIGEST:151:invalid digest EC_R_INVALID_DIGEST_TYPE:138:invalid digest type EC_R_INVALID_ENCODING:102:invalid encoding EC_R_INVALID_FIELD:103:invalid field EC_R_INVALID_FORM:104:invalid form EC_R_INVALID_GROUP_ORDER:122:invalid group order EC_R_INVALID_KEY:116:invalid key EC_R_INVALID_OUTPUT_LENGTH:161:invalid output length EC_R_INVALID_PEER_KEY:133:invalid peer key EC_R_INVALID_PENTANOMIAL_BASIS:132:invalid pentanomial basis EC_R_INVALID_PRIVATE_KEY:123:invalid private key EC_R_INVALID_TRINOMIAL_BASIS:137:invalid trinomial basis EC_R_KDF_PARAMETER_ERROR:148:kdf parameter error EC_R_KEYS_NOT_SET:140:keys not set EC_R_LADDER_POST_FAILURE:136:ladder post failure EC_R_LADDER_PRE_FAILURE:153:ladder pre failure EC_R_LADDER_STEP_FAILURE:162:ladder step failure EC_R_MISSING_PARAMETERS:124:missing parameters EC_R_MISSING_PRIVATE_KEY:125:missing private key EC_R_NEED_NEW_SETUP_VALUES:157:need new setup values EC_R_NOT_A_NIST_PRIME:135:not a NIST prime EC_R_NOT_IMPLEMENTED:126:not implemented EC_R_NOT_INITIALIZED:111:not initialized EC_R_NO_PARAMETERS_SET:139:no parameters set EC_R_NO_PRIVATE_VALUE:154:no private value EC_R_OPERATION_NOT_SUPPORTED:152:operation not supported EC_R_PASSED_NULL_PARAMETER:134:passed null parameter EC_R_PEER_KEY_ERROR:149:peer key error EC_R_PKPARAMETERS2GROUP_FAILURE:127:pkparameters2group failure EC_R_POINT_ARITHMETIC_FAILURE:155:point arithmetic failure EC_R_POINT_AT_INFINITY:106:point at infinity EC_R_POINT_COORDINATES_BLIND_FAILURE:163:point coordinates blind failure EC_R_POINT_IS_NOT_ON_CURVE:107:point is not on curve EC_R_RANDOM_NUMBER_GENERATION_FAILED:158:random number generation failed EC_R_SHARED_INFO_ERROR:150:shared info error EC_R_SLOT_FULL:108:slot full EC_R_UNDEFINED_GENERATOR:113:undefined generator EC_R_UNDEFINED_ORDER:128:undefined order EC_R_UNKNOWN_COFACTOR:164:unknown cofactor EC_R_UNKNOWN_GROUP:129:unknown group EC_R_UNKNOWN_ORDER:114:unknown order EC_R_UNSUPPORTED_FIELD:131:unsupported field EC_R_WRONG_CURVE_PARAMETERS:145:wrong curve parameters EC_R_WRONG_ORDER:130:wrong order ENGINE_R_ALREADY_LOADED:100:already loaded ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER:133:argument is not a number ENGINE_R_CMD_NOT_EXECUTABLE:134:cmd not executable ENGINE_R_COMMAND_TAKES_INPUT:135:command takes input ENGINE_R_COMMAND_TAKES_NO_INPUT:136:command takes no input ENGINE_R_CONFLICTING_ENGINE_ID:103:conflicting engine id ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED:119:ctrl command not implemented ENGINE_R_DSO_FAILURE:104:DSO failure ENGINE_R_DSO_NOT_FOUND:132:dso not found ENGINE_R_ENGINES_SECTION_ERROR:148:engines section error ENGINE_R_ENGINE_CONFIGURATION_ERROR:102:engine configuration error ENGINE_R_ENGINE_IS_NOT_IN_LIST:105:engine is not in the list ENGINE_R_ENGINE_SECTION_ERROR:149:engine section error ENGINE_R_FAILED_LOADING_PRIVATE_KEY:128:failed loading private key ENGINE_R_FAILED_LOADING_PUBLIC_KEY:129:failed loading public key ENGINE_R_FINISH_FAILED:106:finish failed ENGINE_R_ID_OR_NAME_MISSING:108:'id' or 'name' missing ENGINE_R_INIT_FAILED:109:init failed ENGINE_R_INTERNAL_LIST_ERROR:110:internal list error ENGINE_R_INVALID_ARGUMENT:143:invalid argument ENGINE_R_INVALID_CMD_NAME:137:invalid cmd name ENGINE_R_INVALID_CMD_NUMBER:138:invalid cmd number ENGINE_R_INVALID_INIT_VALUE:151:invalid init value ENGINE_R_INVALID_STRING:150:invalid string ENGINE_R_NOT_INITIALISED:117:not initialised ENGINE_R_NOT_LOADED:112:not loaded ENGINE_R_NO_CONTROL_FUNCTION:120:no control function ENGINE_R_NO_INDEX:144:no index ENGINE_R_NO_LOAD_FUNCTION:125:no load function ENGINE_R_NO_REFERENCE:130:no reference ENGINE_R_NO_SUCH_ENGINE:116:no such engine ENGINE_R_UNIMPLEMENTED_CIPHER:146:unimplemented cipher ENGINE_R_UNIMPLEMENTED_DIGEST:147:unimplemented digest ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD:101:unimplemented public key method ENGINE_R_VERSION_INCOMPATIBILITY:145:version incompatibility EVP_R_AES_KEY_SETUP_FAILED:143:aes key setup failed EVP_R_ARIA_KEY_SETUP_FAILED:176:aria key setup failed EVP_R_BAD_DECRYPT:100:bad decrypt EVP_R_BAD_KEY_LENGTH:195:bad key length EVP_R_BUFFER_TOO_SMALL:155:buffer too small EVP_R_CAMELLIA_KEY_SETUP_FAILED:157:camellia key setup failed EVP_R_CIPHER_PARAMETER_ERROR:122:cipher parameter error EVP_R_COMMAND_NOT_SUPPORTED:147:command not supported EVP_R_COPY_ERROR:173:copy error EVP_R_CTRL_NOT_IMPLEMENTED:132:ctrl not implemented EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED:133:ctrl operation not implemented EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH:138:data not multiple of block length EVP_R_DECODE_ERROR:114:decode error EVP_R_DIFFERENT_KEY_TYPES:101:different key types EVP_R_DIFFERENT_PARAMETERS:153:different parameters EVP_R_ERROR_LOADING_SECTION:165:error loading section EVP_R_ERROR_SETTING_FIPS_MODE:166:error setting fips mode EVP_R_EXPECTING_AN_HMAC_KEY:174:expecting an hmac key EVP_R_EXPECTING_AN_RSA_KEY:127:expecting an rsa key EVP_R_EXPECTING_A_DH_KEY:128:expecting a dh key EVP_R_EXPECTING_A_DSA_KEY:129:expecting a dsa key EVP_R_EXPECTING_A_EC_KEY:142:expecting a ec key EVP_R_EXPECTING_A_POLY1305_KEY:164:expecting a poly1305 key EVP_R_EXPECTING_A_SIPHASH_KEY:175:expecting a siphash key EVP_R_FIPS_MODE_NOT_SUPPORTED:167:fips mode not supported EVP_R_GET_RAW_KEY_FAILED:182:get raw key failed EVP_R_ILLEGAL_SCRYPT_PARAMETERS:171:illegal scrypt parameters EVP_R_INITIALIZATION_ERROR:134:initialization error EVP_R_INPUT_NOT_INITIALIZED:111:input not initialized EVP_R_INVALID_DIGEST:152:invalid digest EVP_R_INVALID_FIPS_MODE:168:invalid fips mode EVP_R_INVALID_IV_LENGTH:194:invalid iv length EVP_R_INVALID_KEY:163:invalid key EVP_R_INVALID_KEY_LENGTH:130:invalid key length EVP_R_INVALID_OPERATION:148:invalid operation EVP_R_KEYGEN_FAILURE:120:keygen failure EVP_R_KEY_SETUP_FAILED:180:key setup failed EVP_R_MEMORY_LIMIT_EXCEEDED:172:memory limit exceeded EVP_R_MESSAGE_DIGEST_IS_NULL:159:message digest is null EVP_R_METHOD_NOT_SUPPORTED:144:method not supported EVP_R_MISSING_PARAMETERS:103:missing parameters EVP_R_NOT_XOF_OR_INVALID_LENGTH:178:not XOF or invalid length EVP_R_NO_CIPHER_SET:131:no cipher set EVP_R_NO_DEFAULT_DIGEST:158:no default digest EVP_R_NO_DIGEST_SET:139:no digest set EVP_R_NO_KEY_SET:154:no key set EVP_R_NO_OPERATION_SET:149:no operation set EVP_R_ONLY_ONESHOT_SUPPORTED:177:only oneshot supported EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE:150:\ operation not supported for this keytype EVP_R_OPERATON_NOT_INITIALIZED:151:operaton not initialized EVP_R_PARTIALLY_OVERLAPPING:162:partially overlapping buffers EVP_R_PBKDF2_ERROR:181:pbkdf2 error EVP_R_PKEY_APPLICATION_ASN1_METHOD_ALREADY_REGISTERED:179:\ pkey application asn1 method already registered EVP_R_PRIVATE_KEY_DECODE_ERROR:145:private key decode error EVP_R_PRIVATE_KEY_ENCODE_ERROR:146:private key encode error EVP_R_PUBLIC_KEY_NOT_RSA:106:public key not rsa EVP_R_UNKNOWN_CIPHER:160:unknown cipher EVP_R_UNKNOWN_DIGEST:161:unknown digest EVP_R_UNKNOWN_OPTION:169:unknown option EVP_R_UNKNOWN_PBE_ALGORITHM:121:unknown pbe algorithm EVP_R_UNSUPPORTED_ALGORITHM:156:unsupported algorithm EVP_R_UNSUPPORTED_CIPHER:107:unsupported cipher EVP_R_UNSUPPORTED_KEYLENGTH:123:unsupported keylength EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION:124:\ unsupported key derivation function EVP_R_UNSUPPORTED_KEY_SIZE:108:unsupported key size EVP_R_UNSUPPORTED_NUMBER_OF_ROUNDS:135:unsupported number of rounds EVP_R_UNSUPPORTED_PRF:125:unsupported prf EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM:118:unsupported private key algorithm EVP_R_UNSUPPORTED_SALT_TYPE:126:unsupported salt type EVP_R_WRAP_MODE_NOT_ALLOWED:170:wrap mode not allowed EVP_R_WRONG_FINAL_BLOCK_LENGTH:109:wrong final block length EVP_R_XTS_DUPLICATED_KEYS:183:xts duplicated keys KDF_R_INVALID_DIGEST:100:invalid digest KDF_R_MISSING_ITERATION_COUNT:109:missing iteration count KDF_R_MISSING_KEY:104:missing key KDF_R_MISSING_MESSAGE_DIGEST:105:missing message digest KDF_R_MISSING_PARAMETER:101:missing parameter KDF_R_MISSING_PASS:110:missing pass KDF_R_MISSING_SALT:111:missing salt KDF_R_MISSING_SECRET:107:missing secret KDF_R_MISSING_SEED:106:missing seed KDF_R_UNKNOWN_PARAMETER_TYPE:103:unknown parameter type KDF_R_VALUE_ERROR:108:value error KDF_R_VALUE_MISSING:102:value missing OBJ_R_OID_EXISTS:102:oid exists OBJ_R_UNKNOWN_NID:101:unknown nid OCSP_R_CERTIFICATE_VERIFY_ERROR:101:certificate verify error OCSP_R_DIGEST_ERR:102:digest err OCSP_R_ERROR_IN_NEXTUPDATE_FIELD:122:error in nextupdate field OCSP_R_ERROR_IN_THISUPDATE_FIELD:123:error in thisupdate field OCSP_R_ERROR_PARSING_URL:121:error parsing url OCSP_R_MISSING_OCSPSIGNING_USAGE:103:missing ocspsigning usage OCSP_R_NEXTUPDATE_BEFORE_THISUPDATE:124:nextupdate before thisupdate OCSP_R_NOT_BASIC_RESPONSE:104:not basic response OCSP_R_NO_CERTIFICATES_IN_CHAIN:105:no certificates in chain OCSP_R_NO_RESPONSE_DATA:108:no response data OCSP_R_NO_REVOKED_TIME:109:no revoked time OCSP_R_NO_SIGNER_KEY:130:no signer key OCSP_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE:110:\ private key does not match certificate OCSP_R_REQUEST_NOT_SIGNED:128:request not signed OCSP_R_RESPONSE_CONTAINS_NO_REVOCATION_DATA:111:\ response contains no revocation data OCSP_R_ROOT_CA_NOT_TRUSTED:112:root ca not trusted OCSP_R_SERVER_RESPONSE_ERROR:114:server response error OCSP_R_SERVER_RESPONSE_PARSE_ERROR:115:server response parse error OCSP_R_SIGNATURE_FAILURE:117:signature failure OCSP_R_SIGNER_CERTIFICATE_NOT_FOUND:118:signer certificate not found OCSP_R_STATUS_EXPIRED:125:status expired OCSP_R_STATUS_NOT_YET_VALID:126:status not yet valid OCSP_R_STATUS_TOO_OLD:127:status too old OCSP_R_UNKNOWN_MESSAGE_DIGEST:119:unknown message digest OCSP_R_UNKNOWN_NID:120:unknown nid OCSP_R_UNSUPPORTED_REQUESTORNAME_TYPE:129:unsupported requestorname type OSSL_STORE_R_AMBIGUOUS_CONTENT_TYPE:107:ambiguous content type OSSL_STORE_R_BAD_PASSWORD_READ:115:bad password read OSSL_STORE_R_ERROR_VERIFYING_PKCS12_MAC:113:error verifying pkcs12 mac OSSL_STORE_R_FINGERPRINT_SIZE_DOES_NOT_MATCH_DIGEST:121:\ fingerprint size does not match digest OSSL_STORE_R_INVALID_SCHEME:106:invalid scheme OSSL_STORE_R_IS_NOT_A:112:is not a OSSL_STORE_R_LOADER_INCOMPLETE:116:loader incomplete OSSL_STORE_R_LOADING_STARTED:117:loading started OSSL_STORE_R_NOT_A_CERTIFICATE:100:not a certificate OSSL_STORE_R_NOT_A_CRL:101:not a crl OSSL_STORE_R_NOT_A_KEY:102:not a key OSSL_STORE_R_NOT_A_NAME:103:not a name OSSL_STORE_R_NOT_PARAMETERS:104:not parameters OSSL_STORE_R_PASSPHRASE_CALLBACK_ERROR:114:passphrase callback error OSSL_STORE_R_PATH_MUST_BE_ABSOLUTE:108:path must be absolute OSSL_STORE_R_SEARCH_ONLY_SUPPORTED_FOR_DIRECTORIES:119:\ search only supported for directories OSSL_STORE_R_UI_PROCESS_INTERRUPTED_OR_CANCELLED:109:\ ui process interrupted or cancelled OSSL_STORE_R_UNREGISTERED_SCHEME:105:unregistered scheme OSSL_STORE_R_UNSUPPORTED_CONTENT_TYPE:110:unsupported content type OSSL_STORE_R_UNSUPPORTED_OPERATION:118:unsupported operation OSSL_STORE_R_UNSUPPORTED_SEARCH_TYPE:120:unsupported search type OSSL_STORE_R_URI_AUTHORITY_UNSUPPORTED:111:uri authority unsupported PEM_R_BAD_BASE64_DECODE:100:bad base64 decode PEM_R_BAD_DECRYPT:101:bad decrypt PEM_R_BAD_END_LINE:102:bad end line PEM_R_BAD_IV_CHARS:103:bad iv chars PEM_R_BAD_MAGIC_NUMBER:116:bad magic number PEM_R_BAD_PASSWORD_READ:104:bad password read PEM_R_BAD_VERSION_NUMBER:117:bad version number PEM_R_BIO_WRITE_FAILURE:118:bio write failure PEM_R_CIPHER_IS_NULL:127:cipher is null PEM_R_ERROR_CONVERTING_PRIVATE_KEY:115:error converting private key PEM_R_EXPECTING_PRIVATE_KEY_BLOB:119:expecting private key blob PEM_R_EXPECTING_PUBLIC_KEY_BLOB:120:expecting public key blob PEM_R_HEADER_TOO_LONG:128:header too long PEM_R_INCONSISTENT_HEADER:121:inconsistent header PEM_R_KEYBLOB_HEADER_PARSE_ERROR:122:keyblob header parse error PEM_R_KEYBLOB_TOO_SHORT:123:keyblob too short PEM_R_MISSING_DEK_IV:129:missing dek iv PEM_R_NOT_DEK_INFO:105:not dek info PEM_R_NOT_ENCRYPTED:106:not encrypted PEM_R_NOT_PROC_TYPE:107:not proc type PEM_R_NO_START_LINE:108:no start line PEM_R_PROBLEMS_GETTING_PASSWORD:109:problems getting password PEM_R_PVK_DATA_TOO_SHORT:124:pvk data too short PEM_R_PVK_TOO_SHORT:125:pvk too short PEM_R_READ_KEY:111:read key PEM_R_SHORT_HEADER:112:short header PEM_R_UNEXPECTED_DEK_IV:130:unexpected dek iv PEM_R_UNSUPPORTED_CIPHER:113:unsupported cipher PEM_R_UNSUPPORTED_ENCRYPTION:114:unsupported encryption PEM_R_UNSUPPORTED_KEY_COMPONENTS:126:unsupported key components PKCS12_R_CANT_PACK_STRUCTURE:100:cant pack structure PKCS12_R_CONTENT_TYPE_NOT_DATA:121:content type not data PKCS12_R_DECODE_ERROR:101:decode error PKCS12_R_ENCODE_ERROR:102:encode error PKCS12_R_ENCRYPT_ERROR:103:encrypt error PKCS12_R_ERROR_SETTING_ENCRYPTED_DATA_TYPE:120:error setting encrypted data type PKCS12_R_INVALID_NULL_ARGUMENT:104:invalid null argument PKCS12_R_INVALID_NULL_PKCS12_POINTER:105:invalid null pkcs12 pointer PKCS12_R_IV_GEN_ERROR:106:iv gen error PKCS12_R_KEY_GEN_ERROR:107:key gen error PKCS12_R_MAC_ABSENT:108:mac absent PKCS12_R_MAC_GENERATION_ERROR:109:mac generation error PKCS12_R_MAC_SETUP_ERROR:110:mac setup error PKCS12_R_MAC_STRING_SET_ERROR:111:mac string set error PKCS12_R_MAC_VERIFY_FAILURE:113:mac verify failure PKCS12_R_PARSE_ERROR:114:parse error PKCS12_R_PKCS12_ALGOR_CIPHERINIT_ERROR:115:pkcs12 algor cipherinit error PKCS12_R_PKCS12_CIPHERFINAL_ERROR:116:pkcs12 cipherfinal error PKCS12_R_PKCS12_PBE_CRYPT_ERROR:117:pkcs12 pbe crypt error PKCS12_R_UNKNOWN_DIGEST_ALGORITHM:118:unknown digest algorithm PKCS12_R_UNSUPPORTED_PKCS12_MODE:119:unsupported pkcs12 mode PKCS7_R_CERTIFICATE_VERIFY_ERROR:117:certificate verify error PKCS7_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER:144:cipher has no object identifier PKCS7_R_CIPHER_NOT_INITIALIZED:116:cipher not initialized PKCS7_R_CONTENT_AND_DATA_PRESENT:118:content and data present PKCS7_R_CTRL_ERROR:152:ctrl error PKCS7_R_DECRYPT_ERROR:119:decrypt error PKCS7_R_DIGEST_FAILURE:101:digest failure PKCS7_R_ENCRYPTION_CTRL_FAILURE:149:encryption ctrl failure PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE:150:\ encryption not supported for this key type PKCS7_R_ERROR_ADDING_RECIPIENT:120:error adding recipient PKCS7_R_ERROR_SETTING_CIPHER:121:error setting cipher PKCS7_R_INVALID_NULL_POINTER:143:invalid null pointer PKCS7_R_INVALID_SIGNED_DATA_TYPE:155:invalid signed data type PKCS7_R_NO_CONTENT:122:no content PKCS7_R_NO_DEFAULT_DIGEST:151:no default digest PKCS7_R_NO_MATCHING_DIGEST_TYPE_FOUND:154:no matching digest type found PKCS7_R_NO_RECIPIENT_MATCHES_CERTIFICATE:115:no recipient matches certificate PKCS7_R_NO_SIGNATURES_ON_DATA:123:no signatures on data PKCS7_R_NO_SIGNERS:142:no signers PKCS7_R_OPERATION_NOT_SUPPORTED_ON_THIS_TYPE:104:\ operation not supported on this type PKCS7_R_PKCS7_ADD_SIGNATURE_ERROR:124:pkcs7 add signature error PKCS7_R_PKCS7_ADD_SIGNER_ERROR:153:pkcs7 add signer error PKCS7_R_PKCS7_DATASIGN:145:pkcs7 datasign PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE:127:\ private key does not match certificate PKCS7_R_SIGNATURE_FAILURE:105:signature failure PKCS7_R_SIGNER_CERTIFICATE_NOT_FOUND:128:signer certificate not found PKCS7_R_SIGNING_CTRL_FAILURE:147:signing ctrl failure PKCS7_R_SIGNING_NOT_SUPPORTED_FOR_THIS_KEY_TYPE:148:\ signing not supported for this key type PKCS7_R_SMIME_TEXT_ERROR:129:smime text error PKCS7_R_UNABLE_TO_FIND_CERTIFICATE:106:unable to find certificate PKCS7_R_UNABLE_TO_FIND_MEM_BIO:107:unable to find mem bio PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST:108:unable to find message digest PKCS7_R_UNKNOWN_DIGEST_TYPE:109:unknown digest type PKCS7_R_UNKNOWN_OPERATION:110:unknown operation PKCS7_R_UNSUPPORTED_CIPHER_TYPE:111:unsupported cipher type PKCS7_R_UNSUPPORTED_CONTENT_TYPE:112:unsupported content type PKCS7_R_WRONG_CONTENT_TYPE:113:wrong content type PKCS7_R_WRONG_PKCS7_TYPE:114:wrong pkcs7 type RAND_R_ADDITIONAL_INPUT_TOO_LONG:102:additional input too long RAND_R_ALREADY_INSTANTIATED:103:already instantiated RAND_R_ARGUMENT_OUT_OF_RANGE:105:argument out of range RAND_R_CANNOT_OPEN_FILE:121:Cannot open file RAND_R_DRBG_ALREADY_INITIALIZED:129:drbg already initialized RAND_R_DRBG_NOT_INITIALISED:104:drbg not initialised RAND_R_ENTROPY_INPUT_TOO_LONG:106:entropy input too long RAND_R_ENTROPY_OUT_OF_RANGE:124:entropy out of range RAND_R_ERROR_ENTROPY_POOL_WAS_IGNORED:127:error entropy pool was ignored RAND_R_ERROR_INITIALISING_DRBG:107:error initialising drbg RAND_R_ERROR_INSTANTIATING_DRBG:108:error instantiating drbg RAND_R_ERROR_RETRIEVING_ADDITIONAL_INPUT:109:error retrieving additional input RAND_R_ERROR_RETRIEVING_ENTROPY:110:error retrieving entropy RAND_R_ERROR_RETRIEVING_NONCE:111:error retrieving nonce RAND_R_FAILED_TO_CREATE_LOCK:126:failed to create lock RAND_R_FUNC_NOT_IMPLEMENTED:101:Function not implemented RAND_R_FWRITE_ERROR:123:Error writing file RAND_R_GENERATE_ERROR:112:generate error RAND_R_INTERNAL_ERROR:113:internal error RAND_R_IN_ERROR_STATE:114:in error state RAND_R_NOT_A_REGULAR_FILE:122:Not a regular file RAND_R_NOT_INSTANTIATED:115:not instantiated RAND_R_NO_DRBG_IMPLEMENTATION_SELECTED:128:no drbg implementation selected RAND_R_PARENT_LOCKING_NOT_ENABLED:130:parent locking not enabled RAND_R_PARENT_STRENGTH_TOO_WEAK:131:parent strength too weak RAND_R_PERSONALISATION_STRING_TOO_LONG:116:personalisation string too long RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED:133:\ prediction resistance not supported RAND_R_PRNG_NOT_SEEDED:100:PRNG not seeded RAND_R_RANDOM_POOL_OVERFLOW:125:random pool overflow RAND_R_RANDOM_POOL_UNDERFLOW:134:random pool underflow RAND_R_REQUEST_TOO_LARGE_FOR_DRBG:117:request too large for drbg RAND_R_RESEED_ERROR:118:reseed error RAND_R_SELFTEST_FAILURE:119:selftest failure RAND_R_TOO_LITTLE_NONCE_REQUESTED:135:too little nonce requested RAND_R_TOO_MUCH_NONCE_REQUESTED:136:too much nonce requested RAND_R_UNSUPPORTED_DRBG_FLAGS:132:unsupported drbg flags RAND_R_UNSUPPORTED_DRBG_TYPE:120:unsupported drbg type RSA_R_ALGORITHM_MISMATCH:100:algorithm mismatch RSA_R_BAD_E_VALUE:101:bad e value RSA_R_BAD_FIXED_HEADER_DECRYPT:102:bad fixed header decrypt RSA_R_BAD_PAD_BYTE_COUNT:103:bad pad byte count RSA_R_BAD_SIGNATURE:104:bad signature RSA_R_BLOCK_TYPE_IS_NOT_01:106:block type is not 01 RSA_R_BLOCK_TYPE_IS_NOT_02:107:block type is not 02 RSA_R_DATA_GREATER_THAN_MOD_LEN:108:data greater than mod len RSA_R_DATA_TOO_LARGE:109:data too large RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE:110:data too large for key size RSA_R_DATA_TOO_LARGE_FOR_MODULUS:132:data too large for modulus RSA_R_DATA_TOO_SMALL:111:data too small RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE:122:data too small for key size RSA_R_DIGEST_DOES_NOT_MATCH:158:digest does not match RSA_R_DIGEST_NOT_ALLOWED:145:digest not allowed RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY:112:digest too big for rsa key RSA_R_DMP1_NOT_CONGRUENT_TO_D:124:dmp1 not congruent to d RSA_R_DMQ1_NOT_CONGRUENT_TO_D:125:dmq1 not congruent to d RSA_R_D_E_NOT_CONGRUENT_TO_1:123:d e not congruent to 1 RSA_R_FIRST_OCTET_INVALID:133:first octet invalid RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE:144:\ illegal or unsupported padding mode RSA_R_INVALID_DIGEST:157:invalid digest RSA_R_INVALID_DIGEST_LENGTH:143:invalid digest length RSA_R_INVALID_HEADER:137:invalid header RSA_R_INVALID_LABEL:160:invalid label RSA_R_INVALID_MESSAGE_LENGTH:131:invalid message length RSA_R_INVALID_MGF1_MD:156:invalid mgf1 md RSA_R_INVALID_MULTI_PRIME_KEY:167:invalid multi prime key RSA_R_INVALID_OAEP_PARAMETERS:161:invalid oaep parameters RSA_R_INVALID_PADDING:138:invalid padding RSA_R_INVALID_PADDING_MODE:141:invalid padding mode RSA_R_INVALID_PSS_PARAMETERS:149:invalid pss parameters RSA_R_INVALID_PSS_SALTLEN:146:invalid pss saltlen RSA_R_INVALID_SALT_LENGTH:150:invalid salt length RSA_R_INVALID_TRAILER:139:invalid trailer RSA_R_INVALID_X931_DIGEST:142:invalid x931 digest RSA_R_IQMP_NOT_INVERSE_OF_Q:126:iqmp not inverse of q RSA_R_KEY_PRIME_NUM_INVALID:165:key prime num invalid RSA_R_KEY_SIZE_TOO_SMALL:120:key size too small RSA_R_LAST_OCTET_INVALID:134:last octet invalid RSA_R_MGF1_DIGEST_NOT_ALLOWED:152:mgf1 digest not allowed RSA_R_MISSING_PRIVATE_KEY:179:missing private key RSA_R_MODULUS_TOO_LARGE:105:modulus too large RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R:168:mp coefficient not inverse of r RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D:169:mp exponent not congruent to d RSA_R_MP_R_NOT_PRIME:170:mp r not prime RSA_R_NO_PUBLIC_EXPONENT:140:no public exponent RSA_R_NULL_BEFORE_BLOCK_MISSING:113:null before block missing RSA_R_N_DOES_NOT_EQUAL_PRODUCT_OF_PRIMES:172:n does not equal product of primes RSA_R_N_DOES_NOT_EQUAL_P_Q:127:n does not equal p q RSA_R_OAEP_DECODING_ERROR:121:oaep decoding error RSA_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE:148:\ operation not supported for this keytype RSA_R_PADDING_CHECK_FAILED:114:padding check failed RSA_R_PKCS_DECODING_ERROR:159:pkcs decoding error RSA_R_PSS_SALTLEN_TOO_SMALL:164:pss saltlen too small RSA_R_P_NOT_PRIME:128:p not prime RSA_R_Q_NOT_PRIME:129:q not prime RSA_R_RSA_OPERATIONS_NOT_SUPPORTED:130:rsa operations not supported RSA_R_SLEN_CHECK_FAILED:136:salt length check failed RSA_R_SLEN_RECOVERY_FAILED:135:salt length recovery failed RSA_R_SSLV3_ROLLBACK_ATTACK:115:sslv3 rollback attack RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD:116:\ the asn1 object identifier is not known for this md RSA_R_UNKNOWN_ALGORITHM_TYPE:117:unknown algorithm type RSA_R_UNKNOWN_DIGEST:166:unknown digest RSA_R_UNKNOWN_MASK_DIGEST:151:unknown mask digest RSA_R_UNKNOWN_PADDING_TYPE:118:unknown padding type RSA_R_UNSUPPORTED_ENCRYPTION_TYPE:162:unsupported encryption type RSA_R_UNSUPPORTED_LABEL_SOURCE:163:unsupported label source RSA_R_UNSUPPORTED_MASK_ALGORITHM:153:unsupported mask algorithm RSA_R_UNSUPPORTED_MASK_PARAMETER:154:unsupported mask parameter RSA_R_UNSUPPORTED_SIGNATURE_TYPE:155:unsupported signature type RSA_R_VALUE_MISSING:147:value missing RSA_R_WRONG_SIGNATURE_LENGTH:119:wrong signature length SM2_R_ASN1_ERROR:100:asn1 error SM2_R_BAD_SIGNATURE:101:bad signature SM2_R_BUFFER_TOO_SMALL:107:buffer too small SM2_R_DIST_ID_TOO_LARGE:110:dist id too large SM2_R_ID_NOT_SET:112:id not set SM2_R_ID_TOO_LARGE:111:id too large SM2_R_INVALID_CURVE:108:invalid curve SM2_R_INVALID_DIGEST:102:invalid digest SM2_R_INVALID_DIGEST_TYPE:103:invalid digest type SM2_R_INVALID_ENCODING:104:invalid encoding SM2_R_INVALID_FIELD:105:invalid field SM2_R_NO_PARAMETERS_SET:109:no parameters set SM2_R_USER_ID_TOO_LARGE:106:user id too large SSL_R_APPLICATION_DATA_AFTER_CLOSE_NOTIFY:291:\ application data after close notify SSL_R_APP_DATA_IN_HANDSHAKE:100:app data in handshake SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT:272:\ attempt to reuse session in different context SSL_R_AT_LEAST_TLS_1_0_NEEDED_IN_FIPS_MODE:143:\ at least TLS 1.0 needed in FIPS mode SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE:158:\ at least (D)TLS 1.2 needed in Suite B mode SSL_R_BAD_CHANGE_CIPHER_SPEC:103:bad change cipher spec SSL_R_BAD_CIPHER:186:bad cipher SSL_R_BAD_DATA:390:bad data SSL_R_BAD_DATA_RETURNED_BY_CALLBACK:106:bad data returned by callback SSL_R_BAD_DECOMPRESSION:107:bad decompression SSL_R_BAD_DH_VALUE:102:bad dh value SSL_R_BAD_DIGEST_LENGTH:111:bad digest length SSL_R_BAD_EARLY_DATA:233:bad early data SSL_R_BAD_ECC_CERT:304:bad ecc cert SSL_R_BAD_ECPOINT:306:bad ecpoint SSL_R_BAD_EXTENSION:110:bad extension SSL_R_BAD_HANDSHAKE_LENGTH:332:bad handshake length SSL_R_BAD_HANDSHAKE_STATE:236:bad handshake state SSL_R_BAD_HELLO_REQUEST:105:bad hello request SSL_R_BAD_HRR_VERSION:263:bad hrr version SSL_R_BAD_KEY_SHARE:108:bad key share SSL_R_BAD_KEY_UPDATE:122:bad key update SSL_R_BAD_LEGACY_VERSION:292:bad legacy version SSL_R_BAD_LENGTH:271:bad length SSL_R_BAD_PACKET:240:bad packet SSL_R_BAD_PACKET_LENGTH:115:bad packet length SSL_R_BAD_PROTOCOL_VERSION_NUMBER:116:bad protocol version number SSL_R_BAD_PSK:219:bad psk SSL_R_BAD_PSK_IDENTITY:114:bad psk identity SSL_R_BAD_RECORD_TYPE:443:bad record type SSL_R_BAD_RSA_ENCRYPT:119:bad rsa encrypt SSL_R_BAD_SIGNATURE:123:bad signature SSL_R_BAD_SRP_A_LENGTH:347:bad srp a length SSL_R_BAD_SRP_PARAMETERS:371:bad srp parameters SSL_R_BAD_SRTP_MKI_VALUE:352:bad srtp mki value SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST:353:bad srtp protection profile list SSL_R_BAD_SSL_FILETYPE:124:bad ssl filetype SSL_R_BAD_VALUE:384:bad value SSL_R_BAD_WRITE_RETRY:127:bad write retry SSL_R_BINDER_DOES_NOT_VERIFY:253:binder does not verify SSL_R_BIO_NOT_SET:128:bio not set SSL_R_BLOCK_CIPHER_PAD_IS_WRONG:129:block cipher pad is wrong SSL_R_BN_LIB:130:bn lib SSL_R_CALLBACK_FAILED:234:callback failed SSL_R_CANNOT_CHANGE_CIPHER:109:cannot change cipher SSL_R_CA_DN_LENGTH_MISMATCH:131:ca dn length mismatch SSL_R_CA_KEY_TOO_SMALL:397:ca key too small SSL_R_CA_MD_TOO_WEAK:398:ca md too weak SSL_R_CCS_RECEIVED_EARLY:133:ccs received early SSL_R_CERTIFICATE_VERIFY_FAILED:134:certificate verify failed SSL_R_CERT_CB_ERROR:377:cert cb error SSL_R_CERT_LENGTH_MISMATCH:135:cert length mismatch SSL_R_CIPHERSUITE_DIGEST_HAS_CHANGED:218:ciphersuite digest has changed SSL_R_CIPHER_CODE_WRONG_LENGTH:137:cipher code wrong length SSL_R_CIPHER_OR_HASH_UNAVAILABLE:138:cipher or hash unavailable SSL_R_CLIENTHELLO_TLSEXT:226:clienthello tlsext SSL_R_COMPRESSED_LENGTH_TOO_LONG:140:compressed length too long SSL_R_COMPRESSION_DISABLED:343:compression disabled SSL_R_COMPRESSION_FAILURE:141:compression failure SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE:307:\ compression id not within private range SSL_R_COMPRESSION_LIBRARY_ERROR:142:compression library error SSL_R_CONNECTION_TYPE_NOT_SET:144:connection type not set SSL_R_CONTEXT_NOT_DANE_ENABLED:167:context not dane enabled SSL_R_COOKIE_GEN_CALLBACK_FAILURE:400:cookie gen callback failure SSL_R_COOKIE_MISMATCH:308:cookie mismatch SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED:206:\ custom ext handler already installed SSL_R_DANE_ALREADY_ENABLED:172:dane already enabled SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL:173:dane cannot override mtype full SSL_R_DANE_NOT_ENABLED:175:dane not enabled SSL_R_DANE_TLSA_BAD_CERTIFICATE:180:dane tlsa bad certificate SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE:184:dane tlsa bad certificate usage SSL_R_DANE_TLSA_BAD_DATA_LENGTH:189:dane tlsa bad data length SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH:192:dane tlsa bad digest length SSL_R_DANE_TLSA_BAD_MATCHING_TYPE:200:dane tlsa bad matching type SSL_R_DANE_TLSA_BAD_PUBLIC_KEY:201:dane tlsa bad public key SSL_R_DANE_TLSA_BAD_SELECTOR:202:dane tlsa bad selector SSL_R_DANE_TLSA_NULL_DATA:203:dane tlsa null data SSL_R_DATA_BETWEEN_CCS_AND_FINISHED:145:data between ccs and finished SSL_R_DATA_LENGTH_TOO_LONG:146:data length too long SSL_R_DECRYPTION_FAILED:147:decryption failed SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC:281:\ decryption failed or bad record mac SSL_R_DH_KEY_TOO_SMALL:394:dh key too small SSL_R_DH_PUBLIC_VALUE_LENGTH_IS_WRONG:148:dh public value length is wrong SSL_R_DIGEST_CHECK_FAILED:149:digest check failed SSL_R_DTLS_MESSAGE_TOO_BIG:334:dtls message too big SSL_R_DUPLICATE_COMPRESSION_ID:309:duplicate compression id SSL_R_ECC_CERT_NOT_FOR_SIGNING:318:ecc cert not for signing SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE:374:ecdh required for suiteb mode SSL_R_EE_KEY_TOO_SMALL:399:ee key too small SSL_R_EMPTY_SRTP_PROTECTION_PROFILE_LIST:354:empty srtp protection profile list SSL_R_ENCRYPTED_LENGTH_TOO_LONG:150:encrypted length too long SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST:151:error in received cipher list SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN:204:error setting tlsa base domain SSL_R_EXCEEDS_MAX_FRAGMENT_SIZE:194:exceeds max fragment size SSL_R_EXCESSIVE_MESSAGE_SIZE:152:excessive message size SSL_R_EXTENSION_NOT_RECEIVED:279:extension not received SSL_R_EXTRA_DATA_IN_MESSAGE:153:extra data in message SSL_R_EXT_LENGTH_MISMATCH:163:ext length mismatch SSL_R_FAILED_TO_INIT_ASYNC:405:failed to init async SSL_R_FRAGMENTED_CLIENT_HELLO:401:fragmented client hello SSL_R_GOT_A_FIN_BEFORE_A_CCS:154:got a fin before a ccs SSL_R_HTTPS_PROXY_REQUEST:155:https proxy request SSL_R_HTTP_REQUEST:156:http request SSL_R_ILLEGAL_POINT_COMPRESSION:162:illegal point compression SSL_R_ILLEGAL_SUITEB_DIGEST:380:illegal Suite B digest SSL_R_INAPPROPRIATE_FALLBACK:373:inappropriate fallback SSL_R_INCONSISTENT_COMPRESSION:340:inconsistent compression SSL_R_INCONSISTENT_EARLY_DATA_ALPN:222:inconsistent early data alpn SSL_R_INCONSISTENT_EARLY_DATA_SNI:231:inconsistent early data sni SSL_R_INCONSISTENT_EXTMS:104:inconsistent extms SSL_R_INSUFFICIENT_SECURITY:241:insufficient security SSL_R_INVALID_ALERT:205:invalid alert SSL_R_INVALID_CCS_MESSAGE:260:invalid ccs message SSL_R_INVALID_CERTIFICATE_OR_ALG:238:invalid certificate or alg SSL_R_INVALID_COMMAND:280:invalid command SSL_R_INVALID_COMPRESSION_ALGORITHM:341:invalid compression algorithm SSL_R_INVALID_CONFIG:283:invalid config SSL_R_INVALID_CONFIGURATION_NAME:113:invalid configuration name SSL_R_INVALID_CONTEXT:282:invalid context SSL_R_INVALID_CT_VALIDATION_TYPE:212:invalid ct validation type SSL_R_INVALID_KEY_UPDATE_TYPE:120:invalid key update type SSL_R_INVALID_MAX_EARLY_DATA:174:invalid max early data SSL_R_INVALID_NULL_CMD_NAME:385:invalid null cmd name SSL_R_INVALID_SEQUENCE_NUMBER:402:invalid sequence number SSL_R_INVALID_SERVERINFO_DATA:388:invalid serverinfo data SSL_R_INVALID_SESSION_ID:999:invalid session id SSL_R_INVALID_SRP_USERNAME:357:invalid srp username SSL_R_INVALID_STATUS_RESPONSE:328:invalid status response SSL_R_INVALID_TICKET_KEYS_LENGTH:325:invalid ticket keys length SSL_R_LENGTH_MISMATCH:159:length mismatch SSL_R_LENGTH_TOO_LONG:404:length too long SSL_R_LENGTH_TOO_SHORT:160:length too short SSL_R_LIBRARY_BUG:274:library bug SSL_R_LIBRARY_HAS_NO_CIPHERS:161:library has no ciphers SSL_R_MISSING_DSA_SIGNING_CERT:165:missing dsa signing cert SSL_R_MISSING_ECDSA_SIGNING_CERT:381:missing ecdsa signing cert SSL_R_MISSING_FATAL:256:missing fatal SSL_R_MISSING_PARAMETERS:290:missing parameters SSL_R_MISSING_RSA_CERTIFICATE:168:missing rsa certificate SSL_R_MISSING_RSA_ENCRYPTING_CERT:169:missing rsa encrypting cert SSL_R_MISSING_RSA_SIGNING_CERT:170:missing rsa signing cert SSL_R_MISSING_SIGALGS_EXTENSION:112:missing sigalgs extension SSL_R_MISSING_SIGNING_CERT:221:missing signing cert SSL_R_MISSING_SRP_PARAM:358:can't find SRP server param SSL_R_MISSING_SUPPORTED_GROUPS_EXTENSION:209:missing supported groups extension SSL_R_MISSING_TMP_DH_KEY:171:missing tmp dh key SSL_R_MISSING_TMP_ECDH_KEY:311:missing tmp ecdh key SSL_R_MIXED_HANDSHAKE_AND_NON_HANDSHAKE_DATA:293:\ mixed handshake and non handshake data SSL_R_NOT_ON_RECORD_BOUNDARY:182:not on record boundary SSL_R_NOT_REPLACING_CERTIFICATE:289:not replacing certificate SSL_R_NOT_SERVER:284:not server SSL_R_NO_APPLICATION_PROTOCOL:235:no application protocol SSL_R_NO_CERTIFICATES_RETURNED:176:no certificates returned SSL_R_NO_CERTIFICATE_ASSIGNED:177:no certificate assigned SSL_R_NO_CERTIFICATE_SET:179:no certificate set SSL_R_NO_CHANGE_FOLLOWING_HRR:214:no change following hrr SSL_R_NO_CIPHERS_AVAILABLE:181:no ciphers available SSL_R_NO_CIPHERS_SPECIFIED:183:no ciphers specified SSL_R_NO_CIPHER_MATCH:185:no cipher match SSL_R_NO_CLIENT_CERT_METHOD:331:no client cert method SSL_R_NO_COMPRESSION_SPECIFIED:187:no compression specified SSL_R_NO_COOKIE_CALLBACK_SET:287:no cookie callback set SSL_R_NO_GOST_CERTIFICATE_SENT_BY_PEER:330:\ Peer haven't sent GOST certificate, required for selected ciphersuite SSL_R_NO_METHOD_SPECIFIED:188:no method specified SSL_R_NO_PEM_EXTENSIONS:389:no pem extensions SSL_R_NO_PRIVATE_KEY_ASSIGNED:190:no private key assigned SSL_R_NO_PROTOCOLS_AVAILABLE:191:no protocols available SSL_R_NO_RENEGOTIATION:339:no renegotiation SSL_R_NO_REQUIRED_DIGEST:324:no required digest SSL_R_NO_SHARED_CIPHER:193:no shared cipher SSL_R_NO_SHARED_GROUPS:410:no shared groups SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS:376:no shared signature algorithms SSL_R_NO_SRTP_PROFILES:359:no srtp profiles SSL_R_NO_SUITABLE_KEY_SHARE:101:no suitable key share SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM:118:no suitable signature algorithm SSL_R_NO_VALID_SCTS:216:no valid scts SSL_R_NO_VERIFY_COOKIE_CALLBACK:403:no verify cookie callback SSL_R_NULL_SSL_CTX:195:null ssl ctx SSL_R_NULL_SSL_METHOD_PASSED:196:null ssl method passed SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED:197:old session cipher not returned SSL_R_OLD_SESSION_COMPRESSION_ALGORITHM_NOT_RETURNED:344:\ old session compression algorithm not returned SSL_R_OVERFLOW_ERROR:237:overflow error SSL_R_PACKET_LENGTH_TOO_LONG:198:packet length too long SSL_R_PARSE_TLSEXT:227:parse tlsext SSL_R_PATH_TOO_LONG:270:path too long SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE:199:peer did not return a certificate SSL_R_PEM_NAME_BAD_PREFIX:391:pem name bad prefix SSL_R_PEM_NAME_TOO_SHORT:392:pem name too short SSL_R_PIPELINE_FAILURE:406:pipeline failure SSL_R_POST_HANDSHAKE_AUTH_ENCODING_ERR:278:post handshake auth encoding err SSL_R_PRIVATE_KEY_MISMATCH:288:private key mismatch SSL_R_PROTOCOL_IS_SHUTDOWN:207:protocol is shutdown SSL_R_PSK_IDENTITY_NOT_FOUND:223:psk identity not found SSL_R_PSK_NO_CLIENT_CB:224:psk no client cb SSL_R_PSK_NO_SERVER_CB:225:psk no server cb SSL_R_READ_BIO_NOT_SET:211:read bio not set SSL_R_READ_TIMEOUT_EXPIRED:312:read timeout expired SSL_R_RECORD_LENGTH_MISMATCH:213:record length mismatch SSL_R_RECORD_TOO_SMALL:298:record too small SSL_R_RENEGOTIATE_EXT_TOO_LONG:335:renegotiate ext too long SSL_R_RENEGOTIATION_ENCODING_ERR:336:renegotiation encoding err SSL_R_RENEGOTIATION_MISMATCH:337:renegotiation mismatch SSL_R_REQUEST_PENDING:285:request pending SSL_R_REQUEST_SENT:286:request sent SSL_R_REQUIRED_CIPHER_MISSING:215:required cipher missing SSL_R_REQUIRED_COMPRESSION_ALGORITHM_MISSING:342:\ required compression algorithm missing SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING:345:scsv received when renegotiating SSL_R_SCT_VERIFICATION_FAILED:208:sct verification failed SSL_R_SERVERHELLO_TLSEXT:275:serverhello tlsext SSL_R_SESSION_ID_CONTEXT_UNINITIALIZED:277:session id context uninitialized SSL_R_SHUTDOWN_WHILE_IN_INIT:407:shutdown while in init SSL_R_SIGNATURE_ALGORITHMS_ERROR:360:signature algorithms error SSL_R_SIGNATURE_FOR_NON_SIGNING_CERTIFICATE:220:\ signature for non signing certificate SSL_R_SRP_A_CALC:361:error with the srp params SSL_R_SRTP_COULD_NOT_ALLOCATE_PROFILES:362:srtp could not allocate profiles SSL_R_SRTP_PROTECTION_PROFILE_LIST_TOO_LONG:363:\ srtp protection profile list too long SSL_R_SRTP_UNKNOWN_PROTECTION_PROFILE:364:srtp unknown protection profile SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH:232:\ ssl3 ext invalid max fragment length SSL_R_SSL3_EXT_INVALID_SERVERNAME:319:ssl3 ext invalid servername SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE:320:ssl3 ext invalid servername type SSL_R_SSL3_SESSION_ID_TOO_LONG:300:ssl3 session id too long SSL_R_SSL_COMMAND_SECTION_EMPTY:117:ssl command section empty SSL_R_SSL_COMMAND_SECTION_NOT_FOUND:125:ssl command section not found SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION:228:ssl ctx has no default ssl version SSL_R_SSL_HANDSHAKE_FAILURE:229:ssl handshake failure SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS:230:ssl library has no ciphers SSL_R_SSL_NEGATIVE_LENGTH:372:ssl negative length SSL_R_SSL_SECTION_EMPTY:126:ssl section empty SSL_R_SSL_SECTION_NOT_FOUND:136:ssl section not found SSL_R_SSL_SESSION_ID_CALLBACK_FAILED:301:ssl session id callback failed SSL_R_SSL_SESSION_ID_CONFLICT:302:ssl session id conflict SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG:273:ssl session id context too long SSL_R_SSL_SESSION_ID_HAS_BAD_LENGTH:303:ssl session id has bad length SSL_R_SSL_SESSION_ID_TOO_LONG:408:ssl session id too long SSL_R_SSL_SESSION_VERSION_MISMATCH:210:ssl session version mismatch SSL_R_STILL_IN_INIT:121:still in init SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT:365:peer does not accept heartbeats SSL_R_TLS_HEARTBEAT_PENDING:366:heartbeat request already pending SSL_R_TLS_ILLEGAL_EXPORTER_LABEL:367:tls illegal exporter label SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST:157:tls invalid ecpointformat list SSL_R_TOO_MANY_KEY_UPDATES:132:too many key updates SSL_R_TOO_MANY_WARN_ALERTS:409:too many warn alerts SSL_R_TOO_MUCH_EARLY_DATA:164:too much early data SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS:314:unable to find ecdh parameters SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS:239:\ unable to find public key parameters SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES:242:unable to load ssl3 md5 routines SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES:243:unable to load ssl3 sha1 routines SSL_R_UNEXPECTED_CCS_MESSAGE:262:unexpected ccs message SSL_R_UNEXPECTED_END_OF_EARLY_DATA:178:unexpected end of early data SSL_R_UNEXPECTED_MESSAGE:244:unexpected message SSL_R_UNEXPECTED_RECORD:245:unexpected record SSL_R_UNINITIALIZED:276:uninitialized SSL_R_UNKNOWN_ALERT_TYPE:246:unknown alert type SSL_R_UNKNOWN_CERTIFICATE_TYPE:247:unknown certificate type SSL_R_UNKNOWN_CIPHER_RETURNED:248:unknown cipher returned SSL_R_UNKNOWN_CIPHER_TYPE:249:unknown cipher type SSL_R_UNKNOWN_CMD_NAME:386:unknown cmd name SSL_R_UNKNOWN_COMMAND:139:unknown command SSL_R_UNKNOWN_DIGEST:368:unknown digest SSL_R_UNKNOWN_KEY_EXCHANGE_TYPE:250:unknown key exchange type SSL_R_UNKNOWN_PKEY_TYPE:251:unknown pkey type SSL_R_UNKNOWN_PROTOCOL:252:unknown protocol SSL_R_UNKNOWN_SSL_VERSION:254:unknown ssl version SSL_R_UNKNOWN_STATE:255:unknown state SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED:338:\ unsafe legacy renegotiation disabled SSL_R_UNSOLICITED_EXTENSION:217:unsolicited extension SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM:257:unsupported compression algorithm SSL_R_UNSUPPORTED_ELLIPTIC_CURVE:315:unsupported elliptic curve SSL_R_UNSUPPORTED_PROTOCOL:258:unsupported protocol SSL_R_UNSUPPORTED_SSL_VERSION:259:unsupported ssl version SSL_R_UNSUPPORTED_STATUS_TYPE:329:unsupported status type SSL_R_USE_SRTP_NOT_NEGOTIATED:369:use srtp not negotiated SSL_R_VERSION_TOO_HIGH:166:version too high SSL_R_VERSION_TOO_LOW:396:version too low SSL_R_WRONG_CERTIFICATE_TYPE:383:wrong certificate type SSL_R_WRONG_CIPHER_RETURNED:261:wrong cipher returned SSL_R_WRONG_CURVE:378:wrong curve SSL_R_WRONG_SIGNATURE_LENGTH:264:wrong signature length SSL_R_WRONG_SIGNATURE_SIZE:265:wrong signature size SSL_R_WRONG_SIGNATURE_TYPE:370:wrong signature type SSL_R_WRONG_SSL_VERSION:266:wrong ssl version SSL_R_WRONG_VERSION_NUMBER:267:wrong version number SSL_R_X509_LIB:268:x509 lib SSL_R_X509_VERIFICATION_SETUP_PROBLEMS:269:x509 verification setup problems TS_R_BAD_PKCS7_TYPE:132:bad pkcs7 type TS_R_BAD_TYPE:133:bad type TS_R_CANNOT_LOAD_CERT:137:cannot load certificate TS_R_CANNOT_LOAD_KEY:138:cannot load private key TS_R_CERTIFICATE_VERIFY_ERROR:100:certificate verify error TS_R_COULD_NOT_SET_ENGINE:127:could not set engine TS_R_COULD_NOT_SET_TIME:115:could not set time TS_R_DETACHED_CONTENT:134:detached content TS_R_ESS_ADD_SIGNING_CERT_ERROR:116:ess add signing cert error TS_R_ESS_ADD_SIGNING_CERT_V2_ERROR:139:ess add signing cert v2 error TS_R_ESS_SIGNING_CERTIFICATE_ERROR:101:ess signing certificate error TS_R_INVALID_NULL_POINTER:102:invalid null pointer TS_R_INVALID_SIGNER_CERTIFICATE_PURPOSE:117:invalid signer certificate purpose TS_R_MESSAGE_IMPRINT_MISMATCH:103:message imprint mismatch TS_R_NONCE_MISMATCH:104:nonce mismatch TS_R_NONCE_NOT_RETURNED:105:nonce not returned TS_R_NO_CONTENT:106:no content TS_R_NO_TIME_STAMP_TOKEN:107:no time stamp token TS_R_PKCS7_ADD_SIGNATURE_ERROR:118:pkcs7 add signature error TS_R_PKCS7_ADD_SIGNED_ATTR_ERROR:119:pkcs7 add signed attr error TS_R_PKCS7_TO_TS_TST_INFO_FAILED:129:pkcs7 to ts tst info failed TS_R_POLICY_MISMATCH:108:policy mismatch TS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE:120:\ private key does not match certificate TS_R_RESPONSE_SETUP_ERROR:121:response setup error TS_R_SIGNATURE_FAILURE:109:signature failure TS_R_THERE_MUST_BE_ONE_SIGNER:110:there must be one signer TS_R_TIME_SYSCALL_ERROR:122:time syscall error TS_R_TOKEN_NOT_PRESENT:130:token not present TS_R_TOKEN_PRESENT:131:token present TS_R_TSA_NAME_MISMATCH:111:tsa name mismatch TS_R_TSA_UNTRUSTED:112:tsa untrusted TS_R_TST_INFO_SETUP_ERROR:123:tst info setup error TS_R_TS_DATASIGN:124:ts datasign TS_R_UNACCEPTABLE_POLICY:125:unacceptable policy TS_R_UNSUPPORTED_MD_ALGORITHM:126:unsupported md algorithm TS_R_UNSUPPORTED_VERSION:113:unsupported version TS_R_VAR_BAD_VALUE:135:var bad value TS_R_VAR_LOOKUP_FAILURE:136:cannot find config variable TS_R_WRONG_CONTENT_TYPE:114:wrong content type UI_R_COMMON_OK_AND_CANCEL_CHARACTERS:104:common ok and cancel characters UI_R_INDEX_TOO_LARGE:102:index too large UI_R_INDEX_TOO_SMALL:103:index too small UI_R_NO_RESULT_BUFFER:105:no result buffer UI_R_PROCESSING_ERROR:107:processing error UI_R_RESULT_TOO_LARGE:100:result too large UI_R_RESULT_TOO_SMALL:101:result too small UI_R_SYSASSIGN_ERROR:109:sys$assign error UI_R_SYSDASSGN_ERROR:110:sys$dassgn error UI_R_SYSQIOW_ERROR:111:sys$qiow error UI_R_UNKNOWN_CONTROL_COMMAND:106:unknown control command UI_R_UNKNOWN_TTYGET_ERRNO_VALUE:108:unknown ttyget errno value UI_R_USER_DATA_DUPLICATION_UNSUPPORTED:112:user data duplication unsupported X509V3_R_BAD_IP_ADDRESS:118:bad ip address X509V3_R_BAD_OBJECT:119:bad object X509V3_R_BN_DEC2BN_ERROR:100:bn dec2bn error X509V3_R_BN_TO_ASN1_INTEGER_ERROR:101:bn to asn1 integer error X509V3_R_DIRNAME_ERROR:149:dirname error X509V3_R_DISTPOINT_ALREADY_SET:160:distpoint already set X509V3_R_DUPLICATE_ZONE_ID:133:duplicate zone id X509V3_R_ERROR_CONVERTING_ZONE:131:error converting zone X509V3_R_ERROR_CREATING_EXTENSION:144:error creating extension X509V3_R_ERROR_IN_EXTENSION:128:error in extension X509V3_R_EXPECTED_A_SECTION_NAME:137:expected a section name X509V3_R_EXTENSION_EXISTS:145:extension exists X509V3_R_EXTENSION_NAME_ERROR:115:extension name error X509V3_R_EXTENSION_NOT_FOUND:102:extension not found X509V3_R_EXTENSION_SETTING_NOT_SUPPORTED:103:extension setting not supported X509V3_R_EXTENSION_VALUE_ERROR:116:extension value error X509V3_R_ILLEGAL_EMPTY_EXTENSION:151:illegal empty extension X509V3_R_INCORRECT_POLICY_SYNTAX_TAG:152:incorrect policy syntax tag X509V3_R_INVALID_ASNUMBER:162:invalid asnumber X509V3_R_INVALID_ASRANGE:163:invalid asrange X509V3_R_INVALID_BOOLEAN_STRING:104:invalid boolean string X509V3_R_INVALID_EXTENSION_STRING:105:invalid extension string X509V3_R_INVALID_INHERITANCE:165:invalid inheritance X509V3_R_INVALID_IPADDRESS:166:invalid ipaddress X509V3_R_INVALID_MULTIPLE_RDNS:161:invalid multiple rdns X509V3_R_INVALID_NAME:106:invalid name X509V3_R_INVALID_NULL_ARGUMENT:107:invalid null argument X509V3_R_INVALID_NULL_NAME:108:invalid null name X509V3_R_INVALID_NULL_VALUE:109:invalid null value X509V3_R_INVALID_NUMBER:140:invalid number X509V3_R_INVALID_NUMBERS:141:invalid numbers X509V3_R_INVALID_OBJECT_IDENTIFIER:110:invalid object identifier X509V3_R_INVALID_OPTION:138:invalid option X509V3_R_INVALID_POLICY_IDENTIFIER:134:invalid policy identifier X509V3_R_INVALID_PROXY_POLICY_SETTING:153:invalid proxy policy setting X509V3_R_INVALID_PURPOSE:146:invalid purpose X509V3_R_INVALID_SAFI:164:invalid safi X509V3_R_INVALID_SECTION:135:invalid section X509V3_R_INVALID_SYNTAX:143:invalid syntax X509V3_R_ISSUER_DECODE_ERROR:126:issuer decode error X509V3_R_MISSING_VALUE:124:missing value X509V3_R_NEED_ORGANIZATION_AND_NUMBERS:142:need organization and numbers X509V3_R_NO_CONFIG_DATABASE:136:no config database X509V3_R_NO_ISSUER_CERTIFICATE:121:no issuer certificate X509V3_R_NO_ISSUER_DETAILS:127:no issuer details X509V3_R_NO_POLICY_IDENTIFIER:139:no policy identifier X509V3_R_NO_PROXY_CERT_POLICY_LANGUAGE_DEFINED:154:\ no proxy cert policy language defined X509V3_R_NO_PUBLIC_KEY:114:no public key X509V3_R_NO_SUBJECT_DETAILS:125:no subject details X509V3_R_OPERATION_NOT_DEFINED:148:operation not defined X509V3_R_OTHERNAME_ERROR:147:othername error X509V3_R_POLICY_LANGUAGE_ALREADY_DEFINED:155:policy language already defined X509V3_R_POLICY_PATH_LENGTH:156:policy path length X509V3_R_POLICY_PATH_LENGTH_ALREADY_DEFINED:157:\ policy path length already defined X509V3_R_POLICY_WHEN_PROXY_LANGUAGE_REQUIRES_NO_POLICY:159:\ policy when proxy language requires no policy X509V3_R_SECTION_NOT_FOUND:150:section not found X509V3_R_UNABLE_TO_GET_ISSUER_DETAILS:122:unable to get issuer details X509V3_R_UNABLE_TO_GET_ISSUER_KEYID:123:unable to get issuer keyid X509V3_R_UNKNOWN_BIT_STRING_ARGUMENT:111:unknown bit string argument X509V3_R_UNKNOWN_EXTENSION:129:unknown extension X509V3_R_UNKNOWN_EXTENSION_NAME:130:unknown extension name X509V3_R_UNKNOWN_OPTION:120:unknown option X509V3_R_UNSUPPORTED_OPTION:117:unsupported option X509V3_R_UNSUPPORTED_TYPE:167:unsupported type X509V3_R_USER_TOO_LONG:132:user too long X509_R_AKID_MISMATCH:110:akid mismatch X509_R_BAD_SELECTOR:133:bad selector X509_R_BAD_X509_FILETYPE:100:bad x509 filetype X509_R_BASE64_DECODE_ERROR:118:base64 decode error X509_R_CANT_CHECK_DH_KEY:114:cant check dh key X509_R_CERT_ALREADY_IN_HASH_TABLE:101:cert already in hash table X509_R_CRL_ALREADY_DELTA:127:crl already delta X509_R_CRL_VERIFY_FAILURE:131:crl verify failure X509_R_IDP_MISMATCH:128:idp mismatch X509_R_INVALID_ATTRIBUTES:138:invalid attributes X509_R_INVALID_DIRECTORY:113:invalid directory X509_R_INVALID_FIELD_NAME:119:invalid field name X509_R_INVALID_TRUST:123:invalid trust X509_R_ISSUER_MISMATCH:129:issuer mismatch X509_R_KEY_TYPE_MISMATCH:115:key type mismatch X509_R_KEY_VALUES_MISMATCH:116:key values mismatch X509_R_LOADING_CERT_DIR:103:loading cert dir X509_R_LOADING_DEFAULTS:104:loading defaults X509_R_METHOD_NOT_SUPPORTED:124:method not supported X509_R_NAME_TOO_LONG:134:name too long X509_R_NEWER_CRL_NOT_NEWER:132:newer crl not newer X509_R_NO_CERTIFICATE_FOUND:135:no certificate found X509_R_NO_CERTIFICATE_OR_CRL_FOUND:136:no certificate or crl found X509_R_NO_CERT_SET_FOR_US_TO_VERIFY:105:no cert set for us to verify X509_R_NO_CRL_FOUND:137:no crl found X509_R_NO_CRL_NUMBER:130:no crl number X509_R_PUBLIC_KEY_DECODE_ERROR:125:public key decode error X509_R_PUBLIC_KEY_ENCODE_ERROR:126:public key encode error X509_R_SHOULD_RETRY:106:should retry X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN:107:unable to find parameters in chain X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY:108:unable to get certs public key X509_R_UNKNOWN_KEY_TYPE:117:unknown key type X509_R_UNKNOWN_NID:109:unknown nid X509_R_UNKNOWN_PURPOSE_ID:121:unknown purpose id X509_R_UNKNOWN_TRUST_ID:120:unknown trust id X509_R_UNSUPPORTED_ALGORITHM:111:unsupported algorithm X509_R_WRONG_LOOKUP_TYPE:112:wrong lookup type X509_R_WRONG_TYPE:122:wrong type openssl-1.1.1f/crypto/evp/000077500000000000000000000000001364063235100154605ustar00rootroot00000000000000openssl-1.1.1f/crypto/evp/bio_b64.c000066400000000000000000000375241364063235100170630ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include "internal/bio.h" static int b64_write(BIO *h, const char *buf, int num); static int b64_read(BIO *h, char *buf, int size); static int b64_puts(BIO *h, const char *str); static long b64_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int b64_new(BIO *h); static int b64_free(BIO *data); static long b64_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); #define B64_BLOCK_SIZE 1024 #define B64_BLOCK_SIZE2 768 #define B64_NONE 0 #define B64_ENCODE 1 #define B64_DECODE 2 typedef struct b64_struct { /* * BIO *bio; moved to the BIO structure */ int buf_len; int buf_off; int tmp_len; /* used to find the start when decoding */ int tmp_nl; /* If true, scan until '\n' */ int encode; int start; /* have we started decoding yet? */ int cont; /* <= 0 when finished */ EVP_ENCODE_CTX *base64; char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10]; char tmp[B64_BLOCK_SIZE]; } BIO_B64_CTX; static const BIO_METHOD methods_b64 = { BIO_TYPE_BASE64, "base64 encoding", /* TODO: Convert to new style write function */ bwrite_conv, b64_write, /* TODO: Convert to new style read function */ bread_conv, b64_read, b64_puts, NULL, /* b64_gets, */ b64_ctrl, b64_new, b64_free, b64_callback_ctrl, }; const BIO_METHOD *BIO_f_base64(void) { return &methods_b64; } static int b64_new(BIO *bi) { BIO_B64_CTX *ctx; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) { EVPerr(EVP_F_B64_NEW, ERR_R_MALLOC_FAILURE); return 0; } ctx->cont = 1; ctx->start = 1; ctx->base64 = EVP_ENCODE_CTX_new(); if (ctx->base64 == NULL) { OPENSSL_free(ctx); return 0; } BIO_set_data(bi, ctx); BIO_set_init(bi, 1); return 1; } static int b64_free(BIO *a) { BIO_B64_CTX *ctx; if (a == NULL) return 0; ctx = BIO_get_data(a); if (ctx == NULL) return 0; EVP_ENCODE_CTX_free(ctx->base64); OPENSSL_free(ctx); BIO_set_data(a, NULL); BIO_set_init(a, 0); return 1; } static int b64_read(BIO *b, char *out, int outl) { int ret = 0, i, ii, j, k, x, n, num, ret_code = 0; BIO_B64_CTX *ctx; unsigned char *p, *q; BIO *next; if (out == NULL) return 0; ctx = (BIO_B64_CTX *)BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; BIO_clear_retry_flags(b); if (ctx->encode != B64_DECODE) { ctx->encode = B64_DECODE; ctx->buf_len = 0; ctx->buf_off = 0; ctx->tmp_len = 0; EVP_DecodeInit(ctx->base64); } /* First check if there are bytes decoded/encoded */ if (ctx->buf_len > 0) { OPENSSL_assert(ctx->buf_len >= ctx->buf_off); i = ctx->buf_len - ctx->buf_off; if (i > outl) i = outl; OPENSSL_assert(ctx->buf_off + i < (int)sizeof(ctx->buf)); memcpy(out, &(ctx->buf[ctx->buf_off]), i); ret = i; out += i; outl -= i; ctx->buf_off += i; if (ctx->buf_len == ctx->buf_off) { ctx->buf_len = 0; ctx->buf_off = 0; } } /* * At this point, we have room of outl bytes and an empty buffer, so we * should read in some more. */ ret_code = 0; while (outl > 0) { if (ctx->cont <= 0) break; i = BIO_read(next, &(ctx->tmp[ctx->tmp_len]), B64_BLOCK_SIZE - ctx->tmp_len); if (i <= 0) { ret_code = i; /* Should we continue next time we are called? */ if (!BIO_should_retry(next)) { ctx->cont = i; /* If buffer empty break */ if (ctx->tmp_len == 0) break; /* Fall through and process what we have */ else i = 0; } /* else we retry and add more data to buffer */ else break; } i += ctx->tmp_len; ctx->tmp_len = i; /* * We need to scan, a line at a time until we have a valid line if we * are starting. */ if (ctx->start && (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL)) { /* ctx->start=1; */ ctx->tmp_len = 0; } else if (ctx->start) { q = p = (unsigned char *)ctx->tmp; num = 0; for (j = 0; j < i; j++) { if (*(q++) != '\n') continue; /* * due to a previous very long line, we need to keep on * scanning for a '\n' before we even start looking for * base64 encoded stuff. */ if (ctx->tmp_nl) { p = q; ctx->tmp_nl = 0; continue; } k = EVP_DecodeUpdate(ctx->base64, (unsigned char *)ctx->buf, &num, p, q - p); if ((k <= 0) && (num == 0) && (ctx->start)) EVP_DecodeInit(ctx->base64); else { if (p != (unsigned char *) &(ctx->tmp[0])) { i -= (p - (unsigned char *) &(ctx->tmp[0])); for (x = 0; x < i; x++) ctx->tmp[x] = p[x]; } EVP_DecodeInit(ctx->base64); ctx->start = 0; break; } p = q; } /* we fell off the end without starting */ if ((j == i) && (num == 0)) { /* * Is this is one long chunk?, if so, keep on reading until a * new line. */ if (p == (unsigned char *)&(ctx->tmp[0])) { /* Check buffer full */ if (i == B64_BLOCK_SIZE) { ctx->tmp_nl = 1; ctx->tmp_len = 0; } } else if (p != q) { /* finished on a '\n' */ n = q - p; for (ii = 0; ii < n; ii++) ctx->tmp[ii] = p[ii]; ctx->tmp_len = n; } /* else finished on a '\n' */ continue; } else { ctx->tmp_len = 0; } } else if ((i < B64_BLOCK_SIZE) && (ctx->cont > 0)) { /* * If buffer isn't full and we can retry then restart to read in * more data. */ continue; } if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { int z, jj; jj = i & ~3; /* process per 4 */ z = EVP_DecodeBlock((unsigned char *)ctx->buf, (unsigned char *)ctx->tmp, jj); if (jj > 2) { if (ctx->tmp[jj - 1] == '=') { z--; if (ctx->tmp[jj - 2] == '=') z--; } } /* * z is now number of output bytes and jj is the number consumed */ if (jj != i) { memmove(ctx->tmp, &ctx->tmp[jj], i - jj); ctx->tmp_len = i - jj; } ctx->buf_len = 0; if (z > 0) { ctx->buf_len = z; } i = z; } else { i = EVP_DecodeUpdate(ctx->base64, (unsigned char *)ctx->buf, &ctx->buf_len, (unsigned char *)ctx->tmp, i); ctx->tmp_len = 0; } /* * If eof or an error was signalled, then the condition * 'ctx->cont <= 0' will prevent b64_read() from reading * more data on subsequent calls. This assignment was * deleted accidentally in commit 5562cfaca4f3. */ ctx->cont = i; ctx->buf_off = 0; if (i < 0) { ret_code = 0; ctx->buf_len = 0; break; } if (ctx->buf_len <= outl) i = ctx->buf_len; else i = outl; memcpy(out, ctx->buf, i); ret += i; ctx->buf_off = i; if (ctx->buf_off == ctx->buf_len) { ctx->buf_len = 0; ctx->buf_off = 0; } outl -= i; out += i; } /* BIO_clear_retry_flags(b); */ BIO_copy_next_retry(b); return ((ret == 0) ? ret_code : ret); } static int b64_write(BIO *b, const char *in, int inl) { int ret = 0; int n; int i; BIO_B64_CTX *ctx; BIO *next; ctx = (BIO_B64_CTX *)BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; BIO_clear_retry_flags(b); if (ctx->encode != B64_ENCODE) { ctx->encode = B64_ENCODE; ctx->buf_len = 0; ctx->buf_off = 0; ctx->tmp_len = 0; EVP_EncodeInit(ctx->base64); } OPENSSL_assert(ctx->buf_off < (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); n = ctx->buf_len - ctx->buf_off; while (n > 0) { i = BIO_write(next, &(ctx->buf[ctx->buf_off]), n); if (i <= 0) { BIO_copy_next_retry(b); return i; } OPENSSL_assert(i <= n); ctx->buf_off += i; OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); n -= i; } /* at this point all pending data has been written */ ctx->buf_off = 0; ctx->buf_len = 0; if ((in == NULL) || (inl <= 0)) return 0; while (inl > 0) { n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl; if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { if (ctx->tmp_len > 0) { OPENSSL_assert(ctx->tmp_len <= 3); n = 3 - ctx->tmp_len; /* * There's a theoretical possibility for this */ if (n > inl) n = inl; memcpy(&(ctx->tmp[ctx->tmp_len]), in, n); ctx->tmp_len += n; ret += n; if (ctx->tmp_len < 3) break; ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf, (unsigned char *)ctx->tmp, ctx->tmp_len); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); /* * Since we're now done using the temporary buffer, the * length should be 0'd */ ctx->tmp_len = 0; } else { if (n < 3) { memcpy(ctx->tmp, in, n); ctx->tmp_len = n; ret += n; break; } n -= n % 3; ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf, (const unsigned char *)in, n); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret += n; } } else { if (!EVP_EncodeUpdate(ctx->base64, (unsigned char *)ctx->buf, &ctx->buf_len, (unsigned char *)in, n)) return ((ret == 0) ? -1 : ret); OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret += n; } inl -= n; in += n; ctx->buf_off = 0; n = ctx->buf_len; while (n > 0) { i = BIO_write(next, &(ctx->buf[ctx->buf_off]), n); if (i <= 0) { BIO_copy_next_retry(b); return ((ret == 0) ? i : ret); } OPENSSL_assert(i <= n); n -= i; ctx->buf_off += i; OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf)); OPENSSL_assert(ctx->buf_len >= ctx->buf_off); } ctx->buf_len = 0; ctx->buf_off = 0; } return ret; } static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO_B64_CTX *ctx; long ret = 1; int i; BIO *next; ctx = (BIO_B64_CTX *)BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; switch (cmd) { case BIO_CTRL_RESET: ctx->cont = 1; ctx->start = 1; ctx->encode = B64_NONE; ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_EOF: /* More to read */ if (ctx->cont <= 0) ret = 1; else ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_WPENDING: /* More to write in buffer */ OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret = ctx->buf_len - ctx->buf_off; if ((ret == 0) && (ctx->encode != B64_NONE) && (EVP_ENCODE_CTX_num(ctx->base64) != 0)) ret = 1; else if (ret <= 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_PENDING: /* More to read in buffer */ OPENSSL_assert(ctx->buf_len >= ctx->buf_off); ret = ctx->buf_len - ctx->buf_off; if (ret <= 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_FLUSH: /* do a final write */ again: while (ctx->buf_len != ctx->buf_off) { i = b64_write(b, NULL, 0); if (i < 0) return i; } if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { if (ctx->tmp_len != 0) { ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf, (unsigned char *)ctx->tmp, ctx->tmp_len); ctx->buf_off = 0; ctx->tmp_len = 0; goto again; } } else if (ctx->encode != B64_NONE && EVP_ENCODE_CTX_num(ctx->base64) != 0) { ctx->buf_off = 0; EVP_EncodeFinal(ctx->base64, (unsigned char *)ctx->buf, &(ctx->buf_len)); /* push out the bytes */ goto again; } /* Finally flush the underlying BIO */ ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(next, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_DUP: break; case BIO_CTRL_INFO: case BIO_CTRL_GET: case BIO_CTRL_SET: default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static long b64_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; BIO *next = BIO_next(b); if (next == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(next, cmd, fp); break; } return ret; } static int b64_puts(BIO *b, const char *str) { return b64_write(b, str, strlen(str)); } openssl-1.1.1f/crypto/evp/bio_enc.c000066400000000000000000000264341364063235100172330ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include "internal/bio.h" static int enc_write(BIO *h, const char *buf, int num); static int enc_read(BIO *h, char *buf, int size); static long enc_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int enc_new(BIO *h); static int enc_free(BIO *data); static long enc_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fps); #define ENC_BLOCK_SIZE (1024*4) #define ENC_MIN_CHUNK (256) #define BUF_OFFSET (ENC_MIN_CHUNK + EVP_MAX_BLOCK_LENGTH) typedef struct enc_struct { int buf_len; int buf_off; int cont; /* <= 0 when finished */ int finished; int ok; /* bad decrypt */ EVP_CIPHER_CTX *cipher; unsigned char *read_start, *read_end; /* * buf is larger than ENC_BLOCK_SIZE because EVP_DecryptUpdate can return * up to a block more data than is presented to it */ unsigned char buf[BUF_OFFSET + ENC_BLOCK_SIZE]; } BIO_ENC_CTX; static const BIO_METHOD methods_enc = { BIO_TYPE_CIPHER, "cipher", /* TODO: Convert to new style write function */ bwrite_conv, enc_write, /* TODO: Convert to new style read function */ bread_conv, enc_read, NULL, /* enc_puts, */ NULL, /* enc_gets, */ enc_ctrl, enc_new, enc_free, enc_callback_ctrl, }; const BIO_METHOD *BIO_f_cipher(void) { return &methods_enc; } static int enc_new(BIO *bi) { BIO_ENC_CTX *ctx; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) { EVPerr(EVP_F_ENC_NEW, ERR_R_MALLOC_FAILURE); return 0; } ctx->cipher = EVP_CIPHER_CTX_new(); if (ctx->cipher == NULL) { OPENSSL_free(ctx); return 0; } ctx->cont = 1; ctx->ok = 1; ctx->read_end = ctx->read_start = &(ctx->buf[BUF_OFFSET]); BIO_set_data(bi, ctx); BIO_set_init(bi, 1); return 1; } static int enc_free(BIO *a) { BIO_ENC_CTX *b; if (a == NULL) return 0; b = BIO_get_data(a); if (b == NULL) return 0; EVP_CIPHER_CTX_free(b->cipher); OPENSSL_clear_free(b, sizeof(BIO_ENC_CTX)); BIO_set_data(a, NULL); BIO_set_init(a, 0); return 1; } static int enc_read(BIO *b, char *out, int outl) { int ret = 0, i, blocksize; BIO_ENC_CTX *ctx; BIO *next; if (out == NULL) return 0; ctx = BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; /* First check if there are bytes decoded/encoded */ if (ctx->buf_len > 0) { i = ctx->buf_len - ctx->buf_off; if (i > outl) i = outl; memcpy(out, &(ctx->buf[ctx->buf_off]), i); ret = i; out += i; outl -= i; ctx->buf_off += i; if (ctx->buf_len == ctx->buf_off) { ctx->buf_len = 0; ctx->buf_off = 0; } } blocksize = EVP_CIPHER_CTX_block_size(ctx->cipher); if (blocksize == 1) blocksize = 0; /* * At this point, we have room of outl bytes and an empty buffer, so we * should read in some more. */ while (outl > 0) { if (ctx->cont <= 0) break; if (ctx->read_start == ctx->read_end) { /* time to read more data */ ctx->read_end = ctx->read_start = &(ctx->buf[BUF_OFFSET]); i = BIO_read(next, ctx->read_start, ENC_BLOCK_SIZE); if (i > 0) ctx->read_end += i; } else { i = ctx->read_end - ctx->read_start; } if (i <= 0) { /* Should be continue next time we are called? */ if (!BIO_should_retry(next)) { ctx->cont = i; i = EVP_CipherFinal_ex(ctx->cipher, ctx->buf, &(ctx->buf_len)); ctx->ok = i; ctx->buf_off = 0; } else { ret = (ret == 0) ? i : ret; break; } } else { if (outl > ENC_MIN_CHUNK) { /* * Depending on flags block cipher decrypt can write * one extra block and then back off, i.e. output buffer * has to accommodate extra block... */ int j = outl - blocksize, buf_len; if (!EVP_CipherUpdate(ctx->cipher, (unsigned char *)out, &buf_len, ctx->read_start, i > j ? j : i)) { BIO_clear_retry_flags(b); return 0; } ret += buf_len; out += buf_len; outl -= buf_len; if ((i -= j) <= 0) { ctx->read_start = ctx->read_end; continue; } ctx->read_start += j; } if (i > ENC_MIN_CHUNK) i = ENC_MIN_CHUNK; if (!EVP_CipherUpdate(ctx->cipher, ctx->buf, &ctx->buf_len, ctx->read_start, i)) { BIO_clear_retry_flags(b); ctx->ok = 0; return 0; } ctx->read_start += i; ctx->cont = 1; /* * Note: it is possible for EVP_CipherUpdate to decrypt zero * bytes because this is or looks like the final block: if this * happens we should retry and either read more data or decrypt * the final block */ if (ctx->buf_len == 0) continue; } if (ctx->buf_len <= outl) i = ctx->buf_len; else i = outl; if (i <= 0) break; memcpy(out, ctx->buf, i); ret += i; ctx->buf_off = i; outl -= i; out += i; } BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return ((ret == 0) ? ctx->cont : ret); } static int enc_write(BIO *b, const char *in, int inl) { int ret = 0, n, i; BIO_ENC_CTX *ctx; BIO *next; ctx = BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; ret = inl; BIO_clear_retry_flags(b); n = ctx->buf_len - ctx->buf_off; while (n > 0) { i = BIO_write(next, &(ctx->buf[ctx->buf_off]), n); if (i <= 0) { BIO_copy_next_retry(b); return i; } ctx->buf_off += i; n -= i; } /* at this point all pending data has been written */ if ((in == NULL) || (inl <= 0)) return 0; ctx->buf_off = 0; while (inl > 0) { n = (inl > ENC_BLOCK_SIZE) ? ENC_BLOCK_SIZE : inl; if (!EVP_CipherUpdate(ctx->cipher, ctx->buf, &ctx->buf_len, (const unsigned char *)in, n)) { BIO_clear_retry_flags(b); ctx->ok = 0; return 0; } inl -= n; in += n; ctx->buf_off = 0; n = ctx->buf_len; while (n > 0) { i = BIO_write(next, &(ctx->buf[ctx->buf_off]), n); if (i <= 0) { BIO_copy_next_retry(b); return (ret == inl) ? i : ret - inl; } n -= i; ctx->buf_off += i; } ctx->buf_len = 0; ctx->buf_off = 0; } BIO_copy_next_retry(b); return ret; } static long enc_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO *dbio; BIO_ENC_CTX *ctx, *dctx; long ret = 1; int i; EVP_CIPHER_CTX **c_ctx; BIO *next; ctx = BIO_get_data(b); next = BIO_next(b); if (ctx == NULL) return 0; switch (cmd) { case BIO_CTRL_RESET: ctx->ok = 1; ctx->finished = 0; if (!EVP_CipherInit_ex(ctx->cipher, NULL, NULL, NULL, NULL, EVP_CIPHER_CTX_encrypting(ctx->cipher))) return 0; ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_EOF: /* More to read */ if (ctx->cont <= 0) ret = 1; else ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_WPENDING: ret = ctx->buf_len - ctx->buf_off; if (ret <= 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_PENDING: /* More to read in buffer */ ret = ctx->buf_len - ctx->buf_off; if (ret <= 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_FLUSH: /* do a final write */ again: while (ctx->buf_len != ctx->buf_off) { i = enc_write(b, NULL, 0); if (i < 0) return i; } if (!ctx->finished) { ctx->finished = 1; ctx->buf_off = 0; ret = EVP_CipherFinal_ex(ctx->cipher, (unsigned char *)ctx->buf, &(ctx->buf_len)); ctx->ok = (int)ret; if (ret <= 0) break; /* push out the bytes */ goto again; } /* Finally flush the underlying BIO */ ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_C_GET_CIPHER_STATUS: ret = (long)ctx->ok; break; case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(next, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_C_GET_CIPHER_CTX: c_ctx = (EVP_CIPHER_CTX **)ptr; *c_ctx = ctx->cipher; BIO_set_init(b, 1); break; case BIO_CTRL_DUP: dbio = (BIO *)ptr; dctx = BIO_get_data(dbio); dctx->cipher = EVP_CIPHER_CTX_new(); if (dctx->cipher == NULL) return 0; ret = EVP_CIPHER_CTX_copy(dctx->cipher, ctx->cipher); if (ret) BIO_set_init(dbio, 1); break; default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static long enc_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; BIO *next = BIO_next(b); if (next == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(next, cmd, fp); break; } return ret; } int BIO_set_cipher(BIO *b, const EVP_CIPHER *c, const unsigned char *k, const unsigned char *i, int e) { BIO_ENC_CTX *ctx; long (*callback) (struct bio_st *, int, const char *, int, long, long); ctx = BIO_get_data(b); if (ctx == NULL) return 0; callback = BIO_get_callback(b); if ((callback != NULL) && (callback(b, BIO_CB_CTRL, (const char *)c, BIO_CTRL_SET, e, 0L) <= 0)) return 0; BIO_set_init(b, 1); if (!EVP_CipherInit_ex(ctx->cipher, c, NULL, k, i, e)) return 0; if (callback != NULL) return callback(b, BIO_CB_CTRL, (const char *)c, BIO_CTRL_SET, e, 1L); return 1; } openssl-1.1.1f/crypto/evp/bio_md.c000066400000000000000000000117221364063235100170600ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include "crypto/evp.h" #include "evp_local.h" #include "internal/bio.h" /* * BIO_put and BIO_get both add to the digest, BIO_gets returns the digest */ static int md_write(BIO *h, char const *buf, int num); static int md_read(BIO *h, char *buf, int size); static int md_gets(BIO *h, char *str, int size); static long md_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int md_new(BIO *h); static int md_free(BIO *data); static long md_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); static const BIO_METHOD methods_md = { BIO_TYPE_MD, "message digest", /* TODO: Convert to new style write function */ bwrite_conv, md_write, /* TODO: Convert to new style read function */ bread_conv, md_read, NULL, /* md_puts, */ md_gets, md_ctrl, md_new, md_free, md_callback_ctrl, }; const BIO_METHOD *BIO_f_md(void) { return &methods_md; } static int md_new(BIO *bi) { EVP_MD_CTX *ctx; ctx = EVP_MD_CTX_new(); if (ctx == NULL) return 0; BIO_set_init(bi, 1); BIO_set_data(bi, ctx); return 1; } static int md_free(BIO *a) { if (a == NULL) return 0; EVP_MD_CTX_free(BIO_get_data(a)); BIO_set_data(a, NULL); BIO_set_init(a, 0); return 1; } static int md_read(BIO *b, char *out, int outl) { int ret = 0; EVP_MD_CTX *ctx; BIO *next; if (out == NULL) return 0; ctx = BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL)) return 0; ret = BIO_read(next, out, outl); if (BIO_get_init(b)) { if (ret > 0) { if (EVP_DigestUpdate(ctx, (unsigned char *)out, (unsigned int)ret) <= 0) return -1; } } BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return ret; } static int md_write(BIO *b, const char *in, int inl) { int ret = 0; EVP_MD_CTX *ctx; BIO *next; if ((in == NULL) || (inl <= 0)) return 0; ctx = BIO_get_data(b); next = BIO_next(b); if ((ctx != NULL) && (next != NULL)) ret = BIO_write(next, in, inl); if (BIO_get_init(b)) { if (ret > 0) { if (!EVP_DigestUpdate(ctx, (const unsigned char *)in, (unsigned int)ret)) { BIO_clear_retry_flags(b); return 0; } } } if (next != NULL) { BIO_clear_retry_flags(b); BIO_copy_next_retry(b); } return ret; } static long md_ctrl(BIO *b, int cmd, long num, void *ptr) { EVP_MD_CTX *ctx, *dctx, **pctx; const EVP_MD **ppmd; EVP_MD *md; long ret = 1; BIO *dbio, *next; ctx = BIO_get_data(b); next = BIO_next(b); switch (cmd) { case BIO_CTRL_RESET: if (BIO_get_init(b)) ret = EVP_DigestInit_ex(ctx, ctx->digest, NULL); else ret = 0; if (ret > 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_C_GET_MD: if (BIO_get_init(b)) { ppmd = ptr; *ppmd = ctx->digest; } else ret = 0; break; case BIO_C_GET_MD_CTX: pctx = ptr; *pctx = ctx; BIO_set_init(b, 1); break; case BIO_C_SET_MD_CTX: if (BIO_get_init(b)) BIO_set_data(b, ptr); else ret = 0; break; case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(next, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_C_SET_MD: md = ptr; ret = EVP_DigestInit_ex(ctx, md, NULL); if (ret > 0) BIO_set_init(b, 1); break; case BIO_CTRL_DUP: dbio = ptr; dctx = BIO_get_data(dbio); if (!EVP_MD_CTX_copy_ex(dctx, ctx)) return 0; BIO_set_init(b, 1); break; default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static long md_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; BIO *next; next = BIO_next(b); if (next == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(next, cmd, fp); break; } return ret; } static int md_gets(BIO *bp, char *buf, int size) { EVP_MD_CTX *ctx; unsigned int ret; ctx = BIO_get_data(bp); if (size < ctx->digest->md_size) return 0; if (EVP_DigestFinal_ex(ctx, (unsigned char *)buf, &ret) <= 0) return -1; return (int)ret; } openssl-1.1.1f/crypto/evp/bio_ok.c000066400000000000000000000376041364063235100171000ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- From: Arne Ansper Why BIO_f_reliable? I wrote function which took BIO* as argument, read data from it and processed it. Then I wanted to store the input file in encrypted form. OK I pushed BIO_f_cipher to the BIO stack and everything was OK. BUT if user types wrong password BIO_f_cipher outputs only garbage and my function crashes. Yes I can and I should fix my function, but BIO_f_cipher is easy way to add encryption support to many existing applications and it's hard to debug and fix them all. So I wanted another BIO which would catch the incorrect passwords and file damages which cause garbage on BIO_f_cipher's output. The easy way is to push the BIO_f_md and save the checksum at the end of the file. However there are several problems with this approach: 1) you must somehow separate checksum from actual data. 2) you need lot's of memory when reading the file, because you must read to the end of the file and verify the checksum before letting the application to read the data. BIO_f_reliable tries to solve both problems, so that you can read and write arbitrary long streams using only fixed amount of memory. BIO_f_reliable splits data stream into blocks. Each block is prefixed with its length and suffixed with its digest. So you need only several Kbytes of memory to buffer single block before verifying its digest. BIO_f_reliable goes further and adds several important capabilities: 1) the digest of the block is computed over the whole stream -- so nobody can rearrange the blocks or remove or replace them. 2) to detect invalid passwords right at the start BIO_f_reliable adds special prefix to the stream. In order to avoid known plain-text attacks this prefix is generated as follows: *) digest is initialized with random seed instead of standardized one. *) same seed is written to output *) well-known text is then hashed and the output of the digest is also written to output. reader can now read the seed from stream, hash the same string and then compare the digest output. Bad things: BIO_f_reliable knows what's going on in EVP_Digest. I initially wrote and tested this code on x86 machine and wrote the digests out in machine-dependent order :( There are people using this code and I cannot change this easily without making existing data files unreadable. */ #include #include #include #include "internal/cryptlib.h" #include #include "internal/bio.h" #include #include #include "crypto/evp.h" static int ok_write(BIO *h, const char *buf, int num); static int ok_read(BIO *h, char *buf, int size); static long ok_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int ok_new(BIO *h); static int ok_free(BIO *data); static long ok_callback_ctrl(BIO *h, int cmd, BIO_info_cb *fp); static __owur int sig_out(BIO *b); static __owur int sig_in(BIO *b); static __owur int block_out(BIO *b); static __owur int block_in(BIO *b); #define OK_BLOCK_SIZE (1024*4) #define OK_BLOCK_BLOCK 4 #define IOBS (OK_BLOCK_SIZE+ OK_BLOCK_BLOCK+ 3*EVP_MAX_MD_SIZE) #define WELLKNOWN "The quick brown fox jumped over the lazy dog's back." typedef struct ok_struct { size_t buf_len; size_t buf_off; size_t buf_len_save; size_t buf_off_save; int cont; /* <= 0 when finished */ int finished; EVP_MD_CTX *md; int blockout; /* output block is ready */ int sigio; /* must process signature */ unsigned char buf[IOBS]; } BIO_OK_CTX; static const BIO_METHOD methods_ok = { BIO_TYPE_CIPHER, "reliable", /* TODO: Convert to new style write function */ bwrite_conv, ok_write, /* TODO: Convert to new style read function */ bread_conv, ok_read, NULL, /* ok_puts, */ NULL, /* ok_gets, */ ok_ctrl, ok_new, ok_free, ok_callback_ctrl, }; const BIO_METHOD *BIO_f_reliable(void) { return &methods_ok; } static int ok_new(BIO *bi) { BIO_OK_CTX *ctx; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) { EVPerr(EVP_F_OK_NEW, ERR_R_MALLOC_FAILURE); return 0; } ctx->cont = 1; ctx->sigio = 1; ctx->md = EVP_MD_CTX_new(); if (ctx->md == NULL) { OPENSSL_free(ctx); return 0; } BIO_set_init(bi, 0); BIO_set_data(bi, ctx); return 1; } static int ok_free(BIO *a) { BIO_OK_CTX *ctx; if (a == NULL) return 0; ctx = BIO_get_data(a); EVP_MD_CTX_free(ctx->md); OPENSSL_clear_free(ctx, sizeof(BIO_OK_CTX)); BIO_set_data(a, NULL); BIO_set_init(a, 0); return 1; } static int ok_read(BIO *b, char *out, int outl) { int ret = 0, i, n; BIO_OK_CTX *ctx; BIO *next; if (out == NULL) return 0; ctx = BIO_get_data(b); next = BIO_next(b); if ((ctx == NULL) || (next == NULL) || (BIO_get_init(b) == 0)) return 0; while (outl > 0) { /* copy clean bytes to output buffer */ if (ctx->blockout) { i = ctx->buf_len - ctx->buf_off; if (i > outl) i = outl; memcpy(out, &(ctx->buf[ctx->buf_off]), i); ret += i; out += i; outl -= i; ctx->buf_off += i; /* all clean bytes are out */ if (ctx->buf_len == ctx->buf_off) { ctx->buf_off = 0; /* * copy start of the next block into proper place */ if (ctx->buf_len_save - ctx->buf_off_save > 0) { ctx->buf_len = ctx->buf_len_save - ctx->buf_off_save; memmove(ctx->buf, &(ctx->buf[ctx->buf_off_save]), ctx->buf_len); } else { ctx->buf_len = 0; } ctx->blockout = 0; } } /* output buffer full -- cancel */ if (outl == 0) break; /* no clean bytes in buffer -- fill it */ n = IOBS - ctx->buf_len; i = BIO_read(next, &(ctx->buf[ctx->buf_len]), n); if (i <= 0) break; /* nothing new */ ctx->buf_len += i; /* no signature yet -- check if we got one */ if (ctx->sigio == 1) { if (!sig_in(b)) { BIO_clear_retry_flags(b); return 0; } } /* signature ok -- check if we got block */ if (ctx->sigio == 0) { if (!block_in(b)) { BIO_clear_retry_flags(b); return 0; } } /* invalid block -- cancel */ if (ctx->cont <= 0) break; } BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return ret; } static int ok_write(BIO *b, const char *in, int inl) { int ret = 0, n, i; BIO_OK_CTX *ctx; BIO *next; if (inl <= 0) return inl; ctx = BIO_get_data(b); next = BIO_next(b); ret = inl; if ((ctx == NULL) || (next == NULL) || (BIO_get_init(b) == 0)) return 0; if (ctx->sigio && !sig_out(b)) return 0; do { BIO_clear_retry_flags(b); n = ctx->buf_len - ctx->buf_off; while (ctx->blockout && n > 0) { i = BIO_write(next, &(ctx->buf[ctx->buf_off]), n); if (i <= 0) { BIO_copy_next_retry(b); if (!BIO_should_retry(b)) ctx->cont = 0; return i; } ctx->buf_off += i; n -= i; } /* at this point all pending data has been written */ ctx->blockout = 0; if (ctx->buf_len == ctx->buf_off) { ctx->buf_len = OK_BLOCK_BLOCK; ctx->buf_off = 0; } if ((in == NULL) || (inl <= 0)) return 0; n = (inl + ctx->buf_len > OK_BLOCK_SIZE + OK_BLOCK_BLOCK) ? (int)(OK_BLOCK_SIZE + OK_BLOCK_BLOCK - ctx->buf_len) : inl; memcpy(&ctx->buf[ctx->buf_len], in, n); ctx->buf_len += n; inl -= n; in += n; if (ctx->buf_len >= OK_BLOCK_SIZE + OK_BLOCK_BLOCK) { if (!block_out(b)) { BIO_clear_retry_flags(b); return 0; } } } while (inl > 0); BIO_clear_retry_flags(b); BIO_copy_next_retry(b); return ret; } static long ok_ctrl(BIO *b, int cmd, long num, void *ptr) { BIO_OK_CTX *ctx; EVP_MD *md; const EVP_MD **ppmd; long ret = 1; int i; BIO *next; ctx = BIO_get_data(b); next = BIO_next(b); switch (cmd) { case BIO_CTRL_RESET: ctx->buf_len = 0; ctx->buf_off = 0; ctx->buf_len_save = 0; ctx->buf_off_save = 0; ctx->cont = 1; ctx->finished = 0; ctx->blockout = 0; ctx->sigio = 1; ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_EOF: /* More to read */ if (ctx->cont <= 0) ret = 1; else ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_PENDING: /* More to read in buffer */ case BIO_CTRL_WPENDING: /* More to read in buffer */ ret = ctx->blockout ? ctx->buf_len - ctx->buf_off : 0; if (ret <= 0) ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_CTRL_FLUSH: /* do a final write */ if (ctx->blockout == 0) if (!block_out(b)) return 0; while (ctx->blockout) { i = ok_write(b, NULL, 0); if (i < 0) { ret = i; break; } } ctx->finished = 1; ctx->buf_off = ctx->buf_len = 0; ctx->cont = (int)ret; /* Finally flush the underlying BIO */ ret = BIO_ctrl(next, cmd, num, ptr); break; case BIO_C_DO_STATE_MACHINE: BIO_clear_retry_flags(b); ret = BIO_ctrl(next, cmd, num, ptr); BIO_copy_next_retry(b); break; case BIO_CTRL_INFO: ret = (long)ctx->cont; break; case BIO_C_SET_MD: md = ptr; if (!EVP_DigestInit_ex(ctx->md, md, NULL)) return 0; BIO_set_init(b, 1); break; case BIO_C_GET_MD: if (BIO_get_init(b)) { ppmd = ptr; *ppmd = EVP_MD_CTX_md(ctx->md); } else ret = 0; break; default: ret = BIO_ctrl(next, cmd, num, ptr); break; } return ret; } static long ok_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp) { long ret = 1; BIO *next; next = BIO_next(b); if (next == NULL) return 0; switch (cmd) { default: ret = BIO_callback_ctrl(next, cmd, fp); break; } return ret; } static void longswap(void *_ptr, size_t len) { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) { size_t i; unsigned char *p = _ptr, c; for (i = 0; i < len; i += 4) { c = p[0], p[0] = p[3], p[3] = c; c = p[1], p[1] = p[2], p[2] = c; } } } static int sig_out(BIO *b) { BIO_OK_CTX *ctx; EVP_MD_CTX *md; const EVP_MD *digest; int md_size; void *md_data; ctx = BIO_get_data(b); md = ctx->md; digest = EVP_MD_CTX_md(md); md_size = EVP_MD_size(digest); md_data = EVP_MD_CTX_md_data(md); if (ctx->buf_len + 2 * md_size > OK_BLOCK_SIZE) return 1; if (!EVP_DigestInit_ex(md, digest, NULL)) goto berr; /* * FIXME: there's absolutely no guarantee this makes any sense at all, * particularly now EVP_MD_CTX has been restructured. */ if (RAND_bytes(md_data, md_size) <= 0) goto berr; memcpy(&(ctx->buf[ctx->buf_len]), md_data, md_size); longswap(&(ctx->buf[ctx->buf_len]), md_size); ctx->buf_len += md_size; if (!EVP_DigestUpdate(md, WELLKNOWN, strlen(WELLKNOWN))) goto berr; if (!EVP_DigestFinal_ex(md, &(ctx->buf[ctx->buf_len]), NULL)) goto berr; ctx->buf_len += md_size; ctx->blockout = 1; ctx->sigio = 0; return 1; berr: BIO_clear_retry_flags(b); return 0; } static int sig_in(BIO *b) { BIO_OK_CTX *ctx; EVP_MD_CTX *md; unsigned char tmp[EVP_MAX_MD_SIZE]; int ret = 0; const EVP_MD *digest; int md_size; void *md_data; ctx = BIO_get_data(b); md = ctx->md; digest = EVP_MD_CTX_md(md); md_size = EVP_MD_size(digest); md_data = EVP_MD_CTX_md_data(md); if ((int)(ctx->buf_len - ctx->buf_off) < 2 * md_size) return 1; if (!EVP_DigestInit_ex(md, digest, NULL)) goto berr; memcpy(md_data, &(ctx->buf[ctx->buf_off]), md_size); longswap(md_data, md_size); ctx->buf_off += md_size; if (!EVP_DigestUpdate(md, WELLKNOWN, strlen(WELLKNOWN))) goto berr; if (!EVP_DigestFinal_ex(md, tmp, NULL)) goto berr; ret = memcmp(&(ctx->buf[ctx->buf_off]), tmp, md_size) == 0; ctx->buf_off += md_size; if (ret == 1) { ctx->sigio = 0; if (ctx->buf_len != ctx->buf_off) { memmove(ctx->buf, &(ctx->buf[ctx->buf_off]), ctx->buf_len - ctx->buf_off); } ctx->buf_len -= ctx->buf_off; ctx->buf_off = 0; } else { ctx->cont = 0; } return 1; berr: BIO_clear_retry_flags(b); return 0; } static int block_out(BIO *b) { BIO_OK_CTX *ctx; EVP_MD_CTX *md; unsigned long tl; const EVP_MD *digest; int md_size; ctx = BIO_get_data(b); md = ctx->md; digest = EVP_MD_CTX_md(md); md_size = EVP_MD_size(digest); tl = ctx->buf_len - OK_BLOCK_BLOCK; ctx->buf[0] = (unsigned char)(tl >> 24); ctx->buf[1] = (unsigned char)(tl >> 16); ctx->buf[2] = (unsigned char)(tl >> 8); ctx->buf[3] = (unsigned char)(tl); if (!EVP_DigestUpdate(md, (unsigned char *)&(ctx->buf[OK_BLOCK_BLOCK]), tl)) goto berr; if (!EVP_DigestFinal_ex(md, &(ctx->buf[ctx->buf_len]), NULL)) goto berr; ctx->buf_len += md_size; ctx->blockout = 1; return 1; berr: BIO_clear_retry_flags(b); return 0; } static int block_in(BIO *b) { BIO_OK_CTX *ctx; EVP_MD_CTX *md; unsigned long tl = 0; unsigned char tmp[EVP_MAX_MD_SIZE]; int md_size; ctx = BIO_get_data(b); md = ctx->md; md_size = EVP_MD_size(EVP_MD_CTX_md(md)); assert(sizeof(tl) >= OK_BLOCK_BLOCK); /* always true */ tl = ctx->buf[0]; tl <<= 8; tl |= ctx->buf[1]; tl <<= 8; tl |= ctx->buf[2]; tl <<= 8; tl |= ctx->buf[3]; if (ctx->buf_len < tl + OK_BLOCK_BLOCK + md_size) return 1; if (!EVP_DigestUpdate(md, (unsigned char *)&(ctx->buf[OK_BLOCK_BLOCK]), tl)) goto berr; if (!EVP_DigestFinal_ex(md, tmp, NULL)) goto berr; if (memcmp(&(ctx->buf[tl + OK_BLOCK_BLOCK]), tmp, md_size) == 0) { /* there might be parts from next block lurking around ! */ ctx->buf_off_save = tl + OK_BLOCK_BLOCK + md_size; ctx->buf_len_save = ctx->buf_len; ctx->buf_off = OK_BLOCK_BLOCK; ctx->buf_len = tl + OK_BLOCK_BLOCK; ctx->blockout = 1; } else { ctx->cont = 0; } return 1; berr: BIO_clear_retry_flags(b); return 0; } openssl-1.1.1f/crypto/evp/build.info000066400000000000000000000020501364063235100174310ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ encode.c digest.c evp_enc.c evp_key.c evp_cnf.c \ e_des.c e_bf.c e_idea.c e_des3.c e_camellia.c\ e_rc4.c e_aes.c names.c e_seed.c e_aria.c e_sm4.c \ e_xcbc_d.c e_rc2.c e_cast.c e_rc5.c \ m_null.c m_md2.c m_md4.c m_md5.c m_sha1.c m_wp.c \ m_md5_sha1.c m_mdc2.c m_ripemd.c m_sha3.c \ p_open.c p_seal.c p_sign.c p_verify.c p_lib.c p_enc.c p_dec.c \ bio_md.c bio_b64.c bio_enc.c evp_err.c e_null.c \ c_allc.c c_alld.c evp_lib.c bio_ok.c \ evp_pkey.c evp_pbe.c p5_crpt.c p5_crpt2.c pbe_scrypt.c \ e_old.c pmeth_lib.c pmeth_fn.c pmeth_gn.c m_sigver.c \ e_aes_cbc_hmac_sha1.c e_aes_cbc_hmac_sha256.c e_rc4_hmac_md5.c \ e_chacha20_poly1305.c cmeth_lib.c INCLUDE[e_aes.o]=.. ../modes INCLUDE[e_aes_cbc_hmac_sha1.o]=../modes INCLUDE[e_aes_cbc_hmac_sha256.o]=../modes INCLUDE[e_aria.o]=.. ../modes INCLUDE[e_camellia.o]=.. ../modes INCLUDE[e_sm4.o]=.. ../modes INCLUDE[e_des.o]=.. INCLUDE[e_des3.o]=.. INCLUDE[m_sha3.o]=.. openssl-1.1.1f/crypto/evp/c_allc.c000066400000000000000000000224651364063235100170520ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/evp.h" #include #include void openssl_add_all_ciphers_int(void) { #ifndef OPENSSL_NO_DES EVP_add_cipher(EVP_des_cfb()); EVP_add_cipher(EVP_des_cfb1()); EVP_add_cipher(EVP_des_cfb8()); EVP_add_cipher(EVP_des_ede_cfb()); EVP_add_cipher(EVP_des_ede3_cfb()); EVP_add_cipher(EVP_des_ede3_cfb1()); EVP_add_cipher(EVP_des_ede3_cfb8()); EVP_add_cipher(EVP_des_ofb()); EVP_add_cipher(EVP_des_ede_ofb()); EVP_add_cipher(EVP_des_ede3_ofb()); EVP_add_cipher(EVP_desx_cbc()); EVP_add_cipher_alias(SN_desx_cbc, "DESX"); EVP_add_cipher_alias(SN_desx_cbc, "desx"); EVP_add_cipher(EVP_des_cbc()); EVP_add_cipher_alias(SN_des_cbc, "DES"); EVP_add_cipher_alias(SN_des_cbc, "des"); EVP_add_cipher(EVP_des_ede_cbc()); EVP_add_cipher(EVP_des_ede3_cbc()); EVP_add_cipher_alias(SN_des_ede3_cbc, "DES3"); EVP_add_cipher_alias(SN_des_ede3_cbc, "des3"); EVP_add_cipher(EVP_des_ecb()); EVP_add_cipher(EVP_des_ede()); EVP_add_cipher_alias(SN_des_ede_ecb, "DES-EDE-ECB"); EVP_add_cipher_alias(SN_des_ede_ecb, "des-ede-ecb"); EVP_add_cipher(EVP_des_ede3()); EVP_add_cipher_alias(SN_des_ede3_ecb, "DES-EDE3-ECB"); EVP_add_cipher_alias(SN_des_ede3_ecb, "des-ede3-ecb"); EVP_add_cipher(EVP_des_ede3_wrap()); EVP_add_cipher_alias(SN_id_smime_alg_CMS3DESwrap, "des3-wrap"); #endif #ifndef OPENSSL_NO_RC4 EVP_add_cipher(EVP_rc4()); EVP_add_cipher(EVP_rc4_40()); # ifndef OPENSSL_NO_MD5 EVP_add_cipher(EVP_rc4_hmac_md5()); # endif #endif #ifndef OPENSSL_NO_IDEA EVP_add_cipher(EVP_idea_ecb()); EVP_add_cipher(EVP_idea_cfb()); EVP_add_cipher(EVP_idea_ofb()); EVP_add_cipher(EVP_idea_cbc()); EVP_add_cipher_alias(SN_idea_cbc, "IDEA"); EVP_add_cipher_alias(SN_idea_cbc, "idea"); #endif #ifndef OPENSSL_NO_SEED EVP_add_cipher(EVP_seed_ecb()); EVP_add_cipher(EVP_seed_cfb()); EVP_add_cipher(EVP_seed_ofb()); EVP_add_cipher(EVP_seed_cbc()); EVP_add_cipher_alias(SN_seed_cbc, "SEED"); EVP_add_cipher_alias(SN_seed_cbc, "seed"); #endif #ifndef OPENSSL_NO_SM4 EVP_add_cipher(EVP_sm4_ecb()); EVP_add_cipher(EVP_sm4_cbc()); EVP_add_cipher(EVP_sm4_cfb()); EVP_add_cipher(EVP_sm4_ofb()); EVP_add_cipher(EVP_sm4_ctr()); EVP_add_cipher_alias(SN_sm4_cbc, "SM4"); EVP_add_cipher_alias(SN_sm4_cbc, "sm4"); #endif #ifndef OPENSSL_NO_RC2 EVP_add_cipher(EVP_rc2_ecb()); EVP_add_cipher(EVP_rc2_cfb()); EVP_add_cipher(EVP_rc2_ofb()); EVP_add_cipher(EVP_rc2_cbc()); EVP_add_cipher(EVP_rc2_40_cbc()); EVP_add_cipher(EVP_rc2_64_cbc()); EVP_add_cipher_alias(SN_rc2_cbc, "RC2"); EVP_add_cipher_alias(SN_rc2_cbc, "rc2"); EVP_add_cipher_alias(SN_rc2_cbc, "rc2-128"); EVP_add_cipher_alias(SN_rc2_64_cbc, "rc2-64"); EVP_add_cipher_alias(SN_rc2_40_cbc, "rc2-40"); #endif #ifndef OPENSSL_NO_BF EVP_add_cipher(EVP_bf_ecb()); EVP_add_cipher(EVP_bf_cfb()); EVP_add_cipher(EVP_bf_ofb()); EVP_add_cipher(EVP_bf_cbc()); EVP_add_cipher_alias(SN_bf_cbc, "BF"); EVP_add_cipher_alias(SN_bf_cbc, "bf"); EVP_add_cipher_alias(SN_bf_cbc, "blowfish"); #endif #ifndef OPENSSL_NO_CAST EVP_add_cipher(EVP_cast5_ecb()); EVP_add_cipher(EVP_cast5_cfb()); EVP_add_cipher(EVP_cast5_ofb()); EVP_add_cipher(EVP_cast5_cbc()); EVP_add_cipher_alias(SN_cast5_cbc, "CAST"); EVP_add_cipher_alias(SN_cast5_cbc, "cast"); EVP_add_cipher_alias(SN_cast5_cbc, "CAST-cbc"); EVP_add_cipher_alias(SN_cast5_cbc, "cast-cbc"); #endif #ifndef OPENSSL_NO_RC5 EVP_add_cipher(EVP_rc5_32_12_16_ecb()); EVP_add_cipher(EVP_rc5_32_12_16_cfb()); EVP_add_cipher(EVP_rc5_32_12_16_ofb()); EVP_add_cipher(EVP_rc5_32_12_16_cbc()); EVP_add_cipher_alias(SN_rc5_cbc, "rc5"); EVP_add_cipher_alias(SN_rc5_cbc, "RC5"); #endif EVP_add_cipher(EVP_aes_128_ecb()); EVP_add_cipher(EVP_aes_128_cbc()); EVP_add_cipher(EVP_aes_128_cfb()); EVP_add_cipher(EVP_aes_128_cfb1()); EVP_add_cipher(EVP_aes_128_cfb8()); EVP_add_cipher(EVP_aes_128_ofb()); EVP_add_cipher(EVP_aes_128_ctr()); EVP_add_cipher(EVP_aes_128_gcm()); #ifndef OPENSSL_NO_OCB EVP_add_cipher(EVP_aes_128_ocb()); #endif EVP_add_cipher(EVP_aes_128_xts()); EVP_add_cipher(EVP_aes_128_ccm()); EVP_add_cipher(EVP_aes_128_wrap()); EVP_add_cipher_alias(SN_id_aes128_wrap, "aes128-wrap"); EVP_add_cipher(EVP_aes_128_wrap_pad()); EVP_add_cipher_alias(SN_aes_128_cbc, "AES128"); EVP_add_cipher_alias(SN_aes_128_cbc, "aes128"); EVP_add_cipher(EVP_aes_192_ecb()); EVP_add_cipher(EVP_aes_192_cbc()); EVP_add_cipher(EVP_aes_192_cfb()); EVP_add_cipher(EVP_aes_192_cfb1()); EVP_add_cipher(EVP_aes_192_cfb8()); EVP_add_cipher(EVP_aes_192_ofb()); EVP_add_cipher(EVP_aes_192_ctr()); EVP_add_cipher(EVP_aes_192_gcm()); #ifndef OPENSSL_NO_OCB EVP_add_cipher(EVP_aes_192_ocb()); #endif EVP_add_cipher(EVP_aes_192_ccm()); EVP_add_cipher(EVP_aes_192_wrap()); EVP_add_cipher_alias(SN_id_aes192_wrap, "aes192-wrap"); EVP_add_cipher(EVP_aes_192_wrap_pad()); EVP_add_cipher_alias(SN_aes_192_cbc, "AES192"); EVP_add_cipher_alias(SN_aes_192_cbc, "aes192"); EVP_add_cipher(EVP_aes_256_ecb()); EVP_add_cipher(EVP_aes_256_cbc()); EVP_add_cipher(EVP_aes_256_cfb()); EVP_add_cipher(EVP_aes_256_cfb1()); EVP_add_cipher(EVP_aes_256_cfb8()); EVP_add_cipher(EVP_aes_256_ofb()); EVP_add_cipher(EVP_aes_256_ctr()); EVP_add_cipher(EVP_aes_256_gcm()); #ifndef OPENSSL_NO_OCB EVP_add_cipher(EVP_aes_256_ocb()); #endif EVP_add_cipher(EVP_aes_256_xts()); EVP_add_cipher(EVP_aes_256_ccm()); EVP_add_cipher(EVP_aes_256_wrap()); EVP_add_cipher_alias(SN_id_aes256_wrap, "aes256-wrap"); EVP_add_cipher(EVP_aes_256_wrap_pad()); EVP_add_cipher_alias(SN_aes_256_cbc, "AES256"); EVP_add_cipher_alias(SN_aes_256_cbc, "aes256"); EVP_add_cipher(EVP_aes_128_cbc_hmac_sha1()); EVP_add_cipher(EVP_aes_256_cbc_hmac_sha1()); EVP_add_cipher(EVP_aes_128_cbc_hmac_sha256()); EVP_add_cipher(EVP_aes_256_cbc_hmac_sha256()); #ifndef OPENSSL_NO_ARIA EVP_add_cipher(EVP_aria_128_ecb()); EVP_add_cipher(EVP_aria_128_cbc()); EVP_add_cipher(EVP_aria_128_cfb()); EVP_add_cipher(EVP_aria_128_cfb1()); EVP_add_cipher(EVP_aria_128_cfb8()); EVP_add_cipher(EVP_aria_128_ctr()); EVP_add_cipher(EVP_aria_128_ofb()); EVP_add_cipher(EVP_aria_128_gcm()); EVP_add_cipher(EVP_aria_128_ccm()); EVP_add_cipher_alias(SN_aria_128_cbc, "ARIA128"); EVP_add_cipher_alias(SN_aria_128_cbc, "aria128"); EVP_add_cipher(EVP_aria_192_ecb()); EVP_add_cipher(EVP_aria_192_cbc()); EVP_add_cipher(EVP_aria_192_cfb()); EVP_add_cipher(EVP_aria_192_cfb1()); EVP_add_cipher(EVP_aria_192_cfb8()); EVP_add_cipher(EVP_aria_192_ctr()); EVP_add_cipher(EVP_aria_192_ofb()); EVP_add_cipher(EVP_aria_192_gcm()); EVP_add_cipher(EVP_aria_192_ccm()); EVP_add_cipher_alias(SN_aria_192_cbc, "ARIA192"); EVP_add_cipher_alias(SN_aria_192_cbc, "aria192"); EVP_add_cipher(EVP_aria_256_ecb()); EVP_add_cipher(EVP_aria_256_cbc()); EVP_add_cipher(EVP_aria_256_cfb()); EVP_add_cipher(EVP_aria_256_cfb1()); EVP_add_cipher(EVP_aria_256_cfb8()); EVP_add_cipher(EVP_aria_256_ctr()); EVP_add_cipher(EVP_aria_256_ofb()); EVP_add_cipher(EVP_aria_256_gcm()); EVP_add_cipher(EVP_aria_256_ccm()); EVP_add_cipher_alias(SN_aria_256_cbc, "ARIA256"); EVP_add_cipher_alias(SN_aria_256_cbc, "aria256"); #endif #ifndef OPENSSL_NO_CAMELLIA EVP_add_cipher(EVP_camellia_128_ecb()); EVP_add_cipher(EVP_camellia_128_cbc()); EVP_add_cipher(EVP_camellia_128_cfb()); EVP_add_cipher(EVP_camellia_128_cfb1()); EVP_add_cipher(EVP_camellia_128_cfb8()); EVP_add_cipher(EVP_camellia_128_ofb()); EVP_add_cipher_alias(SN_camellia_128_cbc, "CAMELLIA128"); EVP_add_cipher_alias(SN_camellia_128_cbc, "camellia128"); EVP_add_cipher(EVP_camellia_192_ecb()); EVP_add_cipher(EVP_camellia_192_cbc()); EVP_add_cipher(EVP_camellia_192_cfb()); EVP_add_cipher(EVP_camellia_192_cfb1()); EVP_add_cipher(EVP_camellia_192_cfb8()); EVP_add_cipher(EVP_camellia_192_ofb()); EVP_add_cipher_alias(SN_camellia_192_cbc, "CAMELLIA192"); EVP_add_cipher_alias(SN_camellia_192_cbc, "camellia192"); EVP_add_cipher(EVP_camellia_256_ecb()); EVP_add_cipher(EVP_camellia_256_cbc()); EVP_add_cipher(EVP_camellia_256_cfb()); EVP_add_cipher(EVP_camellia_256_cfb1()); EVP_add_cipher(EVP_camellia_256_cfb8()); EVP_add_cipher(EVP_camellia_256_ofb()); EVP_add_cipher_alias(SN_camellia_256_cbc, "CAMELLIA256"); EVP_add_cipher_alias(SN_camellia_256_cbc, "camellia256"); EVP_add_cipher(EVP_camellia_128_ctr()); EVP_add_cipher(EVP_camellia_192_ctr()); EVP_add_cipher(EVP_camellia_256_ctr()); #endif #ifndef OPENSSL_NO_CHACHA EVP_add_cipher(EVP_chacha20()); # ifndef OPENSSL_NO_POLY1305 EVP_add_cipher(EVP_chacha20_poly1305()); # endif #endif } openssl-1.1.1f/crypto/evp/c_alld.c000066400000000000000000000034401364063235100170430ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/evp.h" #include #include void openssl_add_all_digests_int(void) { #ifndef OPENSSL_NO_MD4 EVP_add_digest(EVP_md4()); #endif #ifndef OPENSSL_NO_MD5 EVP_add_digest(EVP_md5()); EVP_add_digest_alias(SN_md5, "ssl3-md5"); EVP_add_digest(EVP_md5_sha1()); #endif EVP_add_digest(EVP_sha1()); EVP_add_digest_alias(SN_sha1, "ssl3-sha1"); EVP_add_digest_alias(SN_sha1WithRSAEncryption, SN_sha1WithRSA); #if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DES) EVP_add_digest(EVP_mdc2()); #endif #ifndef OPENSSL_NO_RMD160 EVP_add_digest(EVP_ripemd160()); EVP_add_digest_alias(SN_ripemd160, "ripemd"); EVP_add_digest_alias(SN_ripemd160, "rmd160"); #endif EVP_add_digest(EVP_sha224()); EVP_add_digest(EVP_sha256()); EVP_add_digest(EVP_sha384()); EVP_add_digest(EVP_sha512()); EVP_add_digest(EVP_sha512_224()); EVP_add_digest(EVP_sha512_256()); #ifndef OPENSSL_NO_WHIRLPOOL EVP_add_digest(EVP_whirlpool()); #endif #ifndef OPENSSL_NO_SM3 EVP_add_digest(EVP_sm3()); #endif #ifndef OPENSSL_NO_BLAKE2 EVP_add_digest(EVP_blake2b512()); EVP_add_digest(EVP_blake2s256()); #endif EVP_add_digest(EVP_sha3_224()); EVP_add_digest(EVP_sha3_256()); EVP_add_digest(EVP_sha3_384()); EVP_add_digest(EVP_sha3_512()); EVP_add_digest(EVP_shake128()); EVP_add_digest(EVP_shake256()); } openssl-1.1.1f/crypto/evp/cmeth_lib.c000066400000000000000000000110771364063235100175600ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "crypto/evp.h" #include "evp_local.h" EVP_CIPHER *EVP_CIPHER_meth_new(int cipher_type, int block_size, int key_len) { EVP_CIPHER *cipher = OPENSSL_zalloc(sizeof(EVP_CIPHER)); if (cipher != NULL) { cipher->nid = cipher_type; cipher->block_size = block_size; cipher->key_len = key_len; } return cipher; } EVP_CIPHER *EVP_CIPHER_meth_dup(const EVP_CIPHER *cipher) { EVP_CIPHER *to = EVP_CIPHER_meth_new(cipher->nid, cipher->block_size, cipher->key_len); if (to != NULL) memcpy(to, cipher, sizeof(*to)); return to; } void EVP_CIPHER_meth_free(EVP_CIPHER *cipher) { OPENSSL_free(cipher); } int EVP_CIPHER_meth_set_iv_length(EVP_CIPHER *cipher, int iv_len) { cipher->iv_len = iv_len; return 1; } int EVP_CIPHER_meth_set_flags(EVP_CIPHER *cipher, unsigned long flags) { cipher->flags = flags; return 1; } int EVP_CIPHER_meth_set_impl_ctx_size(EVP_CIPHER *cipher, int ctx_size) { cipher->ctx_size = ctx_size; return 1; } int EVP_CIPHER_meth_set_init(EVP_CIPHER *cipher, int (*init) (EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc)) { cipher->init = init; return 1; } int EVP_CIPHER_meth_set_do_cipher(EVP_CIPHER *cipher, int (*do_cipher) (EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl)) { cipher->do_cipher = do_cipher; return 1; } int EVP_CIPHER_meth_set_cleanup(EVP_CIPHER *cipher, int (*cleanup) (EVP_CIPHER_CTX *)) { cipher->cleanup = cleanup; return 1; } int EVP_CIPHER_meth_set_set_asn1_params(EVP_CIPHER *cipher, int (*set_asn1_parameters) (EVP_CIPHER_CTX *, ASN1_TYPE *)) { cipher->set_asn1_parameters = set_asn1_parameters; return 1; } int EVP_CIPHER_meth_set_get_asn1_params(EVP_CIPHER *cipher, int (*get_asn1_parameters) (EVP_CIPHER_CTX *, ASN1_TYPE *)) { cipher->get_asn1_parameters = get_asn1_parameters; return 1; } int EVP_CIPHER_meth_set_ctrl(EVP_CIPHER *cipher, int (*ctrl) (EVP_CIPHER_CTX *, int type, int arg, void *ptr)) { cipher->ctrl = ctrl; return 1; } int (*EVP_CIPHER_meth_get_init(const EVP_CIPHER *cipher))(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { return cipher->init; } int (*EVP_CIPHER_meth_get_do_cipher(const EVP_CIPHER *cipher))(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { return cipher->do_cipher; } int (*EVP_CIPHER_meth_get_cleanup(const EVP_CIPHER *cipher))(EVP_CIPHER_CTX *) { return cipher->cleanup; } int (*EVP_CIPHER_meth_get_set_asn1_params(const EVP_CIPHER *cipher))(EVP_CIPHER_CTX *, ASN1_TYPE *) { return cipher->set_asn1_parameters; } int (*EVP_CIPHER_meth_get_get_asn1_params(const EVP_CIPHER *cipher))(EVP_CIPHER_CTX *, ASN1_TYPE *) { return cipher->get_asn1_parameters; } int (*EVP_CIPHER_meth_get_ctrl(const EVP_CIPHER *cipher))(EVP_CIPHER_CTX *, int type, int arg, void *ptr) { return cipher->ctrl; } openssl-1.1.1f/crypto/evp/digest.c000066400000000000000000000214551364063235100171120ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/evp.h" #include "evp_local.h" /* This call frees resources associated with the context */ int EVP_MD_CTX_reset(EVP_MD_CTX *ctx) { if (ctx == NULL) return 1; /* * Don't assume ctx->md_data was cleaned in EVP_Digest_Final, because * sometimes only copies of the context are ever finalised. */ if (ctx->digest && ctx->digest->cleanup && !EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_CLEANED)) ctx->digest->cleanup(ctx); if (ctx->digest && ctx->digest->ctx_size && ctx->md_data && !EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_REUSE)) { OPENSSL_clear_free(ctx->md_data, ctx->digest->ctx_size); } /* * pctx should be freed by the user of EVP_MD_CTX * if EVP_MD_CTX_FLAG_KEEP_PKEY_CTX is set */ if (!EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX)) EVP_PKEY_CTX_free(ctx->pctx); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(ctx->engine); #endif OPENSSL_cleanse(ctx, sizeof(*ctx)); return 1; } EVP_MD_CTX *EVP_MD_CTX_new(void) { return OPENSSL_zalloc(sizeof(EVP_MD_CTX)); } void EVP_MD_CTX_free(EVP_MD_CTX *ctx) { EVP_MD_CTX_reset(ctx); OPENSSL_free(ctx); } int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type) { EVP_MD_CTX_reset(ctx); return EVP_DigestInit_ex(ctx, type, NULL); } int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl) { EVP_MD_CTX_clear_flags(ctx, EVP_MD_CTX_FLAG_CLEANED); #ifndef OPENSSL_NO_ENGINE /* * Whether it's nice or not, "Inits" can be used on "Final"'d contexts so * this context may already have an ENGINE! Try to avoid releasing the * previous handle, re-querying for an ENGINE, and having a * reinitialisation, when it may all be unnecessary. */ if (ctx->engine && ctx->digest && (type == NULL || (type->type == ctx->digest->type))) goto skip_to_init; if (type) { /* * Ensure an ENGINE left lying around from last time is cleared (the * previous check attempted to avoid this if the same ENGINE and * EVP_MD could be used). */ ENGINE_finish(ctx->engine); if (impl != NULL) { if (!ENGINE_init(impl)) { EVPerr(EVP_F_EVP_DIGESTINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } } else { /* Ask if an ENGINE is reserved for this job */ impl = ENGINE_get_digest_engine(type->type); } if (impl != NULL) { /* There's an ENGINE for this job ... (apparently) */ const EVP_MD *d = ENGINE_get_digest(impl, type->type); if (d == NULL) { EVPerr(EVP_F_EVP_DIGESTINIT_EX, EVP_R_INITIALIZATION_ERROR); ENGINE_finish(impl); return 0; } /* We'll use the ENGINE's private digest definition */ type = d; /* * Store the ENGINE functional reference so we know 'type' came * from an ENGINE and we need to release it when done. */ ctx->engine = impl; } else ctx->engine = NULL; } else { if (!ctx->digest) { EVPerr(EVP_F_EVP_DIGESTINIT_EX, EVP_R_NO_DIGEST_SET); return 0; } type = ctx->digest; } #endif if (ctx->digest != type) { if (ctx->digest && ctx->digest->ctx_size) { OPENSSL_clear_free(ctx->md_data, ctx->digest->ctx_size); ctx->md_data = NULL; } ctx->digest = type; if (!(ctx->flags & EVP_MD_CTX_FLAG_NO_INIT) && type->ctx_size) { ctx->update = type->update; ctx->md_data = OPENSSL_zalloc(type->ctx_size); if (ctx->md_data == NULL) { EVPerr(EVP_F_EVP_DIGESTINIT_EX, ERR_R_MALLOC_FAILURE); return 0; } } } #ifndef OPENSSL_NO_ENGINE skip_to_init: #endif if (ctx->pctx) { int r; r = EVP_PKEY_CTX_ctrl(ctx->pctx, -1, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_DIGESTINIT, 0, ctx); if (r <= 0 && (r != -2)) return 0; } if (ctx->flags & EVP_MD_CTX_FLAG_NO_INIT) return 1; return ctx->digest->init(ctx); } int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data, size_t count) { if (count == 0) return 1; return ctx->update(ctx, data, count); } /* The caller can assume that this removes any secret data from the context */ int EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md, unsigned int *size) { int ret; ret = EVP_DigestFinal_ex(ctx, md, size); EVP_MD_CTX_reset(ctx); return ret; } /* The caller can assume that this removes any secret data from the context */ int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md, unsigned int *size) { int ret; OPENSSL_assert(ctx->digest->md_size <= EVP_MAX_MD_SIZE); ret = ctx->digest->final(ctx, md); if (size != NULL) *size = ctx->digest->md_size; if (ctx->digest->cleanup) { ctx->digest->cleanup(ctx); EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_CLEANED); } OPENSSL_cleanse(ctx->md_data, ctx->digest->ctx_size); return ret; } int EVP_DigestFinalXOF(EVP_MD_CTX *ctx, unsigned char *md, size_t size) { int ret = 0; if (ctx->digest->flags & EVP_MD_FLAG_XOF && size <= INT_MAX && ctx->digest->md_ctrl(ctx, EVP_MD_CTRL_XOF_LEN, (int)size, NULL)) { ret = ctx->digest->final(ctx, md); if (ctx->digest->cleanup != NULL) { ctx->digest->cleanup(ctx); EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_CLEANED); } OPENSSL_cleanse(ctx->md_data, ctx->digest->ctx_size); } else { EVPerr(EVP_F_EVP_DIGESTFINALXOF, EVP_R_NOT_XOF_OR_INVALID_LENGTH); } return ret; } int EVP_MD_CTX_copy(EVP_MD_CTX *out, const EVP_MD_CTX *in) { EVP_MD_CTX_reset(out); return EVP_MD_CTX_copy_ex(out, in); } int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out, const EVP_MD_CTX *in) { unsigned char *tmp_buf; if ((in == NULL) || (in->digest == NULL)) { EVPerr(EVP_F_EVP_MD_CTX_COPY_EX, EVP_R_INPUT_NOT_INITIALIZED); return 0; } #ifndef OPENSSL_NO_ENGINE /* Make sure it's safe to copy a digest context using an ENGINE */ if (in->engine && !ENGINE_init(in->engine)) { EVPerr(EVP_F_EVP_MD_CTX_COPY_EX, ERR_R_ENGINE_LIB); return 0; } #endif if (out->digest == in->digest) { tmp_buf = out->md_data; EVP_MD_CTX_set_flags(out, EVP_MD_CTX_FLAG_REUSE); } else tmp_buf = NULL; EVP_MD_CTX_reset(out); memcpy(out, in, sizeof(*out)); /* copied EVP_MD_CTX should free the copied EVP_PKEY_CTX */ EVP_MD_CTX_clear_flags(out, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX); /* Null these variables, since they are getting fixed up * properly below. Anything else may cause a memleak and/or * double free if any of the memory allocations below fail */ out->md_data = NULL; out->pctx = NULL; if (in->md_data && out->digest->ctx_size) { if (tmp_buf) out->md_data = tmp_buf; else { out->md_data = OPENSSL_malloc(out->digest->ctx_size); if (out->md_data == NULL) { EVPerr(EVP_F_EVP_MD_CTX_COPY_EX, ERR_R_MALLOC_FAILURE); return 0; } } memcpy(out->md_data, in->md_data, out->digest->ctx_size); } out->update = in->update; if (in->pctx) { out->pctx = EVP_PKEY_CTX_dup(in->pctx); if (!out->pctx) { EVP_MD_CTX_reset(out); return 0; } } if (out->digest->copy) return out->digest->copy(out, in); return 1; } int EVP_Digest(const void *data, size_t count, unsigned char *md, unsigned int *size, const EVP_MD *type, ENGINE *impl) { EVP_MD_CTX *ctx = EVP_MD_CTX_new(); int ret; if (ctx == NULL) return 0; EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_ONESHOT); ret = EVP_DigestInit_ex(ctx, type, impl) && EVP_DigestUpdate(ctx, data, count) && EVP_DigestFinal_ex(ctx, md, size); EVP_MD_CTX_free(ctx); return ret; } int EVP_MD_CTX_ctrl(EVP_MD_CTX *ctx, int cmd, int p1, void *p2) { if (ctx->digest && ctx->digest->md_ctrl) { int ret = ctx->digest->md_ctrl(ctx, cmd, p1, p2); if (ret <= 0) return 0; return 1; } return 0; } openssl-1.1.1f/crypto/evp/e_aes.c000066400000000000000000004352611364063235100167130ustar00rootroot00000000000000/* * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "crypto/evp.h" #include "modes_local.h" #include #include "evp_local.h" typedef struct { union { double align; AES_KEY ks; } ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; unsigned char *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ int tls_aad_len; /* TLS AAD length */ ctr128_f ctr; } EVP_AES_GCM_CTX; typedef struct { union { double align; AES_KEY ks; } ks1, ks2; /* AES key schedules to use */ XTS128_CONTEXT xts; void (*stream) (const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); } EVP_AES_XTS_CTX; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ int tag_set; /* Set if tag is valid */ int len_set; /* Set if message length set */ int L, M; /* L and M parameters from RFC3610 */ int tls_aad_len; /* TLS AAD length */ CCM128_CONTEXT ccm; ccm128_f str; } EVP_AES_CCM_CTX; #ifndef OPENSSL_NO_OCB typedef struct { union { double align; AES_KEY ks; } ksenc; /* AES key schedule to use for encryption */ union { double align; AES_KEY ks; } ksdec; /* AES key schedule to use for decryption */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ OCB128_CONTEXT ocb; unsigned char *iv; /* Temporary IV store */ unsigned char tag[16]; unsigned char data_buf[16]; /* Store partial data blocks */ unsigned char aad_buf[16]; /* Store partial AAD blocks */ int data_buf_len; int aad_buf_len; int ivlen; /* IV length */ int taglen; } EVP_AES_OCB_CTX; #endif #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) #ifdef VPAES_ASM int vpaes_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int vpaes_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void vpaes_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); #endif #ifdef BSAES_ASM void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char ivec[16], int enc); void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, const unsigned char ivec[16]); void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); #endif #ifdef AES_CTR_ASM void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, const unsigned char ivec[AES_BLOCK_SIZE]); #endif #ifdef AES_XTS_ASM void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); #endif /* increment counter (64-bit int) by 1 */ static void ctr64_inc(unsigned char *counter) { int n = 8; unsigned char c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) # include "ppc_arch.h" # ifdef VPAES_ASM # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC) # endif # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207) # define HWAES_set_encrypt_key aes_p8_set_encrypt_key # define HWAES_set_decrypt_key aes_p8_set_decrypt_key # define HWAES_encrypt aes_p8_encrypt # define HWAES_decrypt aes_p8_decrypt # define HWAES_cbc_encrypt aes_p8_cbc_encrypt # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks # define HWAES_xts_encrypt aes_p8_xts_encrypt # define HWAES_xts_decrypt aes_p8_xts_decrypt #endif #if defined(OPENSSL_CPUID_OBJ) && ( \ ((defined(__i386) || defined(__i386__) || \ defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) ) extern unsigned int OPENSSL_ia32cap_P[]; # ifdef VPAES_ASM # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) # endif # ifdef BSAES_ASM # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) # endif /* * AES-NI section */ # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32))) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, int enc); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char *ivec); void aesni_xts_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_xts_decrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_ccm64_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); void aesni_ccm64_decrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) size_t aesni_gcm_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], u64 *Xi); # define AES_gcm_encrypt aesni_gcm_encrypt size_t aesni_gcm_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], u64 *Xi); # define AES_gcm_decrypt aesni_gcm_decrypt void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in, size_t len); # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \ gctx->gcm.ghash==gcm_ghash_avx) # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \ gctx->gcm.ghash==gcm_ghash_avx) # undef AES_GCM_ASM2 /* minor size optimization */ # endif static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); mode = EVP_CIPHER_CTX_mode(ctx); if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) aesni_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aesni_cbc_encrypt : NULL; } else { ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) aesni_encrypt; if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; else dat->stream.cbc = NULL; } if (ret < 0) { EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); return 1; } static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = EVP_CIPHER_CTX_block_size(ctx); if (len < bl) return 1; aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, EVP_CIPHER_CTX_encrypting(ctx)); return 1; } # define aesni_ofb_cipher aes_ofb_cipher static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb_cipher aes_cfb_cipher static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb8_cipher aes_cfb8_cipher static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb1_cipher aes_cfb1_cipher static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_ctr_cipher aes_ctr_cipher static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } # define aesni_gcm_cipher aes_gcm_cipher static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (!iv && !key) return 1; if (key) { /* The key is two half length keys in reality */ const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; /* * Verify that the two keys are different. * * This addresses Rogaway's vulnerability. * See comment in aes_xts_init_key() below. */ if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); return 0; } /* key_len is two AES keys */ if (enc) { aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aesni_encrypt; xctx->stream = aesni_xts_encrypt; } else { aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aesni_decrypt; xctx->stream = aesni_xts_decrypt; } aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) aesni_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); } return 1; } # define aesni_xts_cipher aes_xts_cipher static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) aesni_encrypt); cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : (ccm128_f) aesni_ccm64_decrypt_blocks; cctx->key_set = 1; } if (iv) { memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } # define aesni_ccm_cipher aes_ccm_cipher static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # ifndef OPENSSL_NO_OCB void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, size_t start_block_num, unsigned char offset_i[16], const unsigned char L_[][16], unsigned char checksum[16]); void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, size_t start_block_num, unsigned char offset_i[16], const unsigned char L_[][16], unsigned char checksum[16]); static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) aesni_encrypt, (block128_f) aesni_decrypt, enc ? aesni_ocb_encrypt : aesni_ocb_decrypt)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } # define aesni_ocb_cipher aes_ocb_cipher static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # endif /* OPENSSL_NO_OCB */ # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_init_key, \ aesni_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_##mode##_init_key, \ aesni_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } #elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; /* * Initial Fujitsu SPARC64 X support */ # define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX) # define HWAES_set_encrypt_key aes_fx_set_encrypt_key # define HWAES_set_decrypt_key aes_fx_set_decrypt_key # define HWAES_encrypt aes_fx_encrypt # define HWAES_decrypt aes_fx_decrypt # define HWAES_cbc_encrypt aes_fx_cbc_encrypt # define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES) void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks); void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks); void aes_t4_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aes_t4_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); /* * Key-length specific subroutines were chosen for following reason. * Each SPARC T4 core can execute up to 8 threads which share core's * resources. Loading as much key material to registers allows to * minimize references to shared memory interface, as well as amount * of instructions in inner loops [much needed on T4]. But then having * non-key-length specific routines would require conditional branches * either in inner loops or on subroutines' entries. Former is hardly * acceptable, while latter means code size increase to size occupied * by multiple key-length specific subroutines, so why fight? */ void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode, bits; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); mode = EVP_CIPHER_CTX_mode(ctx); bits = EVP_CIPHER_CTX_key_length(ctx) * 8; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = 0; aes_t4_set_decrypt_key(key, bits, &dat->ks.ks); dat->block = (block128_f) aes_t4_decrypt; switch (bits) { case 128: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes128_t4_cbc_decrypt : NULL; break; case 192: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes192_t4_cbc_decrypt : NULL; break; case 256: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes256_t4_cbc_decrypt : NULL; break; default: ret = -1; } } else { ret = 0; aes_t4_set_encrypt_key(key, bits, &dat->ks.ks); dat->block = (block128_f) aes_t4_encrypt; switch (bits) { case 128: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 192: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 256: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; default: ret = -1; } } if (ret < 0) { EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } # define aes_t4_cbc_cipher aes_cbc_cipher static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ecb_cipher aes_ecb_cipher static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ofb_cipher aes_ofb_cipher static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb_cipher aes_cfb_cipher static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb8_cipher aes_cfb8_cipher static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb1_cipher aes_cfb1_cipher static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ctr_cipher aes_ctr_cipher static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); if (!iv && !key) return 1; if (key) { int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aes_t4_encrypt); switch (bits) { case 128: gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt; break; case 192: gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt; break; case 256: gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt; break; default: return 0; } /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } # define aes_t4_gcm_cipher aes_gcm_cipher static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (!iv && !key) return 1; if (key) { /* The key is two half length keys in reality */ const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; const int bits = bytes * 8; /* * Verify that the two keys are different. * * This addresses Rogaway's vulnerability. * See comment in aes_xts_init_key() below. */ if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); return 0; } xctx->stream = NULL; /* key_len is two AES keys */ if (enc) { aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aes_t4_encrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_encrypt; break; case 256: xctx->stream = aes256_t4_xts_encrypt; break; default: return 0; } } else { aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aes_t4_decrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_decrypt; break; case 256: xctx->stream = aes256_t4_xts_decrypt; break; default: return 0; } } aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) aes_t4_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); } return 1; } # define aes_t4_xts_cipher aes_xts_cipher static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); if (!iv && !key) return 1; if (key) { int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) aes_t4_encrypt); cctx->str = NULL; cctx->key_set = 1; } if (iv) { memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } # define aes_t4_ccm_cipher aes_ccm_cipher static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # ifndef OPENSSL_NO_OCB static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) aes_t4_encrypt, (block128_f) aes_t4_decrypt, NULL)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } # define aes_t4_ocb_cipher aes_ocb_cipher static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # endif /* OPENSSL_NO_OCB */ # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_init_key, \ aes_t4_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_##mode##_init_key, \ aes_t4_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } #elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__) /* * IBM S390X support */ # include "s390x_arch.h" typedef struct { union { double align; /*- * KM-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-06) */ struct { unsigned char k[32]; } param; /* KM-AES parameter block - end */ } km; unsigned int fc; } S390X_AES_ECB_CTX; typedef struct { union { double align; /*- * KMO-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-08) */ struct { unsigned char cv[16]; unsigned char k[32]; } param; /* KMO-AES parameter block - end */ } kmo; unsigned int fc; int res; } S390X_AES_OFB_CTX; typedef struct { union { double align; /*- * KMF-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-08) */ struct { unsigned char cv[16]; unsigned char k[32]; } param; /* KMF-AES parameter block - end */ } kmf; unsigned int fc; int res; } S390X_AES_CFB_CTX; typedef struct { union { double align; /*- * KMA-GCM-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-11) */ struct { unsigned char reserved[12]; union { unsigned int w; unsigned char b[4]; } cv; union { unsigned long long g[2]; unsigned char b[16]; } t; unsigned char h[16]; unsigned long long taadl; unsigned long long tpcl; union { unsigned long long g[2]; unsigned int w[4]; } j0; unsigned char k[32]; } param; /* KMA-GCM-AES parameter block - end */ } kma; unsigned int fc; int key_set; unsigned char *iv; int ivlen; int iv_set; int iv_gen; int taglen; unsigned char ares[16]; unsigned char mres[16]; unsigned char kres[16]; int areslen; int mreslen; int kreslen; int tls_aad_len; } S390X_AES_GCM_CTX; typedef struct { union { double align; /*- * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's * rounds field is used to store the function code and that the key * schedule is not stored (if aes hardware support is detected). */ struct { unsigned char pad[16]; AES_KEY k; } key; struct { /*- * KMAC-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-08) */ struct { union { unsigned long long g[2]; unsigned char b[16]; } icv; unsigned char k[32]; } kmac_param; /* KMAC-AES parameter block - end */ union { unsigned long long g[2]; unsigned char b[16]; } nonce; union { unsigned long long g[2]; unsigned char b[16]; } buf; unsigned long long blocks; int l; int m; int tls_aad_len; int iv_set; int tag_set; int len_set; int key_set; unsigned char pad[140]; unsigned int fc; } ccm; } aes; } S390X_AES_CCM_CTX; /* Convert key size to function code: [16,24,32] -> [18,19,20]. */ # define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6)) /* Most modes of operation need km for partial block processing. */ # define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \ S390X_CAPBIT(S390X_AES_128)) # define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \ S390X_CAPBIT(S390X_AES_192)) # define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \ S390X_CAPBIT(S390X_AES_256)) # define s390x_aes_init_key aes_init_key static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); # define S390X_aes_128_cbc_CAPABLE 1 /* checked by callee */ # define S390X_aes_192_cbc_CAPABLE 1 # define S390X_aes_256_cbc_CAPABLE 1 # define S390X_AES_CBC_CTX EVP_AES_KEY # define s390x_aes_cbc_init_key aes_init_key # define s390x_aes_cbc_cipher aes_cbc_cipher static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE # define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE # define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); const int keylen = EVP_CIPHER_CTX_key_length(ctx); cctx->fc = S390X_AES_FC(keylen); if (!enc) cctx->fc |= S390X_DECRYPT; memcpy(cctx->km.param.k, key, keylen); return 1; } static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); s390x_km(in, len, out, cctx->fc, &cctx->km.param); return 1; } # define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \ (OPENSSL_s390xcap_P.kmo[0] & \ S390X_CAPBIT(S390X_AES_128))) # define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \ (OPENSSL_s390xcap_P.kmo[0] & \ S390X_CAPBIT(S390X_AES_192))) # define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \ (OPENSSL_s390xcap_P.kmo[0] & \ S390X_CAPBIT(S390X_AES_256))) static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *ivec, int enc) { S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx); const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); memcpy(cctx->kmo.param.cv, iv, ivlen); memcpy(cctx->kmo.param.k, key, keylen); cctx->fc = S390X_AES_FC(keylen); cctx->res = 0; return 1; } static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); int n = cctx->res; int rem; while (n && len) { *out = *in ^ cctx->kmo.param.cv[n]; n = (n + 1) & 0xf; --len; ++in; ++out; } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param); out += len; in += len; } if (rem) { s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc, cctx->kmo.param.k); while (rem--) { out[n] = in[n] ^ cctx->kmo.param.cv[n]; ++n; } } cctx->res = n; return 1; } # define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \ (OPENSSL_s390xcap_P.kmf[0] & \ S390X_CAPBIT(S390X_AES_128))) # define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \ (OPENSSL_s390xcap_P.kmf[0] & \ S390X_CAPBIT(S390X_AES_192))) # define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \ (OPENSSL_s390xcap_P.kmf[0] & \ S390X_CAPBIT(S390X_AES_256))) static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *ivec, int enc) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx); const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); cctx->fc = S390X_AES_FC(keylen); cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */ if (!enc) cctx->fc |= S390X_DECRYPT; cctx->res = 0; memcpy(cctx->kmf.param.cv, iv, ivlen); memcpy(cctx->kmf.param.k, key, keylen); return 1; } static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); int n = cctx->res; int rem; unsigned char tmp; while (n && len) { tmp = *in; *out = cctx->kmf.param.cv[n] ^ tmp; cctx->kmf.param.cv[n] = enc ? *out : tmp; n = (n + 1) & 0xf; --len; ++in; ++out; } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); out += len; in += len; } if (rem) { s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv, S390X_AES_FC(keylen), cctx->kmf.param.k); while (rem--) { tmp = in[n]; out[n] = cctx->kmf.param.cv[n] ^ tmp; cctx->kmf.param.cv[n] = enc ? out[n] : tmp; ++n; } } cctx->res = n; return 1; } # define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \ S390X_CAPBIT(S390X_AES_128)) # define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \ S390X_CAPBIT(S390X_AES_192)) # define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \ S390X_CAPBIT(S390X_AES_256)) static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *ivec, int enc) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx); const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); cctx->fc = S390X_AES_FC(keylen); cctx->fc |= 1 << 24; /* 1 byte cipher feedback */ if (!enc) cctx->fc |= S390X_DECRYPT; memcpy(cctx->kmf.param.cv, iv, ivlen); memcpy(cctx->kmf.param.k, key, keylen); return 1; } static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); return 1; } # define S390X_aes_128_cfb1_CAPABLE 0 # define S390X_aes_192_cfb1_CAPABLE 0 # define S390X_aes_256_cfb1_CAPABLE 0 # define s390x_aes_cfb1_init_key aes_init_key # define s390x_aes_cfb1_cipher aes_cfb1_cipher static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define S390X_aes_128_ctr_CAPABLE 1 /* checked by callee */ # define S390X_aes_192_ctr_CAPABLE 1 # define S390X_aes_256_ctr_CAPABLE 1 # define S390X_AES_CTR_CTX EVP_AES_KEY # define s390x_aes_ctr_init_key aes_init_key # define s390x_aes_ctr_cipher aes_ctr_cipher static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \ (OPENSSL_s390xcap_P.kma[0] & \ S390X_CAPBIT(S390X_AES_128))) # define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \ (OPENSSL_s390xcap_P.kma[0] & \ S390X_CAPBIT(S390X_AES_192))) # define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \ (OPENSSL_s390xcap_P.kma[0] & \ S390X_CAPBIT(S390X_AES_256))) /* iv + padding length for iv lengths != 12 */ # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16) /*- * Process additional authenticated data. Returns 0 on success. Code is * big-endian. */ static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad, size_t len) { unsigned long long alen; int n, rem; if (ctx->kma.param.tpcl) return -2; alen = ctx->kma.param.taadl + len; if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) return -1; ctx->kma.param.taadl = alen; n = ctx->areslen; if (n) { while (n && len) { ctx->ares[n] = *aad; n = (n + 1) & 0xf; ++aad; --len; } /* ctx->ares contains a complete block if offset has wrapped around */ if (!n) { s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param); ctx->fc |= S390X_KMA_HS; } ctx->areslen = n; } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param); aad += len; ctx->fc |= S390X_KMA_HS; } if (rem) { ctx->areslen = rem; do { --rem; ctx->ares[rem] = aad[rem]; } while (rem); } return 0; } /*- * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for * success. Code is big-endian. */ static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in, unsigned char *out, size_t len) { const unsigned char *inptr; unsigned long long mlen; union { unsigned int w[4]; unsigned char b[16]; } buf; size_t inlen; int n, rem, i; mlen = ctx->kma.param.tpcl + len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->kma.param.tpcl = mlen; n = ctx->mreslen; if (n) { inptr = in; inlen = len; while (n && inlen) { ctx->mres[n] = *inptr; n = (n + 1) & 0xf; ++inptr; --inlen; } /* ctx->mres contains a complete block if offset has wrapped around */ if (!n) { s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b, ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); ctx->fc |= S390X_KMA_HS; ctx->areslen = 0; /* previous call already encrypted/decrypted its remainder, * see comment below */ n = ctx->mreslen; while (n) { *out = buf.b[n]; n = (n + 1) & 0xf; ++out; ++in; --len; } ctx->mreslen = 0; } } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kma(ctx->ares, ctx->areslen, in, len, out, ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); in += len; out += len; ctx->fc |= S390X_KMA_HS; ctx->areslen = 0; } /*- * If there is a remainder, it has to be saved such that it can be * processed by kma later. However, we also have to do the for-now * unauthenticated encryption/decryption part here and now... */ if (rem) { if (!ctx->mreslen) { buf.w[0] = ctx->kma.param.j0.w[0]; buf.w[1] = ctx->kma.param.j0.w[1]; buf.w[2] = ctx->kma.param.j0.w[2]; buf.w[3] = ctx->kma.param.cv.w + 1; s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k); } n = ctx->mreslen; for (i = 0; i < rem; i++) { ctx->mres[n + i] = in[i]; out[i] = in[i] ^ ctx->kres[n + i]; } ctx->mreslen += rem; } return 0; } /*- * Initialize context structure. Code is big-endian. */ static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx, const unsigned char *iv) { ctx->kma.param.t.g[0] = 0; ctx->kma.param.t.g[1] = 0; ctx->kma.param.tpcl = 0; ctx->kma.param.taadl = 0; ctx->mreslen = 0; ctx->areslen = 0; ctx->kreslen = 0; if (ctx->ivlen == 12) { memcpy(&ctx->kma.param.j0, iv, ctx->ivlen); ctx->kma.param.j0.w[3] = 1; ctx->kma.param.cv.w = 1; } else { /* ctx->iv has the right size and is already padded. */ memcpy(ctx->iv, iv, ctx->ivlen); s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL, ctx->fc, &ctx->kma.param); ctx->fc |= S390X_KMA_HS; ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0]; ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1]; ctx->kma.param.cv.w = ctx->kma.param.j0.w[3]; ctx->kma.param.t.g[0] = 0; ctx->kma.param.t.g[1] = 0; } } /*- * Performs various operations on the context structure depending on control * type. Returns 1 for success, 0 for failure and -1 for unknown control type. * Code is big-endian. */ static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); S390X_AES_GCM_CTX *gctx_out; EVP_CIPHER_CTX *out; unsigned char *buf, *iv; int ivlen, enc, len; switch (type) { case EVP_CTRL_INIT: ivlen = EVP_CIPHER_iv_length(c->cipher); iv = EVP_CIPHER_CTX_iv_noconst(c); gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = ivlen; gctx->iv = iv; gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = gctx->ivlen; return 1; case EVP_CTRL_AEAD_SET_IVLEN: if (arg <= 0) return 0; if (arg != 12) { iv = EVP_CIPHER_CTX_iv_noconst(c); len = S390X_gcm_ivpadlen(arg); /* Allocate memory for iv if needed. */ if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) { if (gctx->iv != iv) OPENSSL_free(gctx->iv); if ((gctx->iv = OPENSSL_malloc(len)) == NULL) { EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } } /* Add padding. */ memset(gctx->iv + arg, 0, len - arg - 8); *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3; } gctx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: buf = EVP_CIPHER_CTX_buf_noconst(c); enc = EVP_CIPHER_CTX_encrypting(c); if (arg <= 0 || arg > 16 || enc) return 0; memcpy(buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: enc = EVP_CIPHER_CTX_encrypting(c); if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0) return 0; memcpy(ptr, gctx->kma.param.t.b, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole iv */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* * Fixed field must be at least 4 bytes and invocation field at least * 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); enc = EVP_CIPHER_CTX_encrypting(c); if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; s390x_aes_gcm_setiv(gctx, gctx->iv); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* * Invocation field will be at least 8 bytes in size and so no need * to check wrap around or increment more than last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: enc = EVP_CIPHER_CTX_encrypting(c); if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); s390x_aes_gcm_setiv(gctx, gctx->iv); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the aad for later use. */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; buf = EVP_CIPHER_CTX_buf_noconst(c); memcpy(buf, ptr, arg); gctx->tls_aad_len = arg; len = buf[arg - 2] << 8 | buf[arg - 1]; /* Correct length for explicit iv. */ if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too. */ enc = EVP_CIPHER_CTX_encrypting(c); if (!enc) { if (len < EVP_GCM_TLS_TAG_LEN) return 0; len -= EVP_GCM_TLS_TAG_LEN; } buf[arg - 2] = len >> 8; buf[arg - 1] = len & 0xff; /* Extra padding: tag appended to record. */ return EVP_GCM_TLS_TAG_LEN; case EVP_CTRL_COPY: out = ptr; gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out); iv = EVP_CIPHER_CTX_iv_noconst(c); if (gctx->iv == iv) { gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out); } else { len = S390X_gcm_ivpadlen(gctx->ivlen); if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) { EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(gctx_out->iv, gctx->iv, len); } return 1; default: return -1; } } /*- * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned. */ static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); int keylen; if (iv == NULL && key == NULL) return 1; if (key != NULL) { keylen = EVP_CIPHER_CTX_key_length(ctx); memcpy(&gctx->kma.param.k, key, keylen); gctx->fc = S390X_AES_FC(keylen); if (!enc) gctx->fc |= S390X_DECRYPT; if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv != NULL) { s390x_aes_gcm_setiv(gctx, iv); gctx->iv_set = 1; } gctx->key_set = 1; } else { if (gctx->key_set) s390x_aes_gcm_setiv(gctx, iv); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } /*- * En/de-crypt and authenticate TLS packet. Returns the number of bytes written * if successful. Otherwise -1 is returned. Code is big-endian. */ static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); int rv = -1; if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) return -1; if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; gctx->kma.param.taadl = gctx->tls_aad_len << 3; gctx->kma.param.tpcl = len << 3; s390x_kma(buf, gctx->tls_aad_len, in, len, out, gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); if (enc) { memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } /*- * Called from EVP layer to initialize context, process additional * authenticated data, en/de-crypt plain/cipher-text and authenticate * ciphertext or process a TLS packet, depending on context. Returns bytes * written on success. Otherwise -1 is returned. Code is big-endian. */ static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); unsigned char *buf, tmp[16]; int enc; if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return s390x_aes_gcm_tls_cipher(ctx, out, in, len); if (!gctx->iv_set) return -1; if (in != NULL) { if (out == NULL) { if (s390x_aes_gcm_aad(gctx, in, len)) return -1; } else { if (s390x_aes_gcm(gctx, in, out, len)) return -1; } return len; } else { gctx->kma.param.taadl <<= 3; gctx->kma.param.tpcl <<= 3; s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp, gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); /* recall that we already did en-/decrypt gctx->mres * and returned it to caller... */ OPENSSL_cleanse(tmp, gctx->mreslen); gctx->iv_set = 0; enc = EVP_CIPHER_CTX_encrypting(ctx); if (enc) { gctx->taglen = 16; } else { if (gctx->taglen < 0) return -1; buf = EVP_CIPHER_CTX_buf_noconst(ctx); if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen)) return -1; } return 0; } } static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); const unsigned char *iv; if (gctx == NULL) return 0; iv = EVP_CIPHER_CTX_iv(c); if (iv != gctx->iv) OPENSSL_free(gctx->iv); OPENSSL_cleanse(gctx, sizeof(*gctx)); return 1; } # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX # define S390X_aes_128_xts_CAPABLE 1 /* checked by callee */ # define S390X_aes_256_xts_CAPABLE 1 # define s390x_aes_xts_init_key aes_xts_init_key static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); # define s390x_aes_xts_cipher aes_xts_cipher static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define s390x_aes_xts_ctrl aes_xts_ctrl static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); # define s390x_aes_xts_cleanup aes_xts_cleanup # define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \ (OPENSSL_s390xcap_P.kmac[0] & \ S390X_CAPBIT(S390X_AES_128))) # define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \ (OPENSSL_s390xcap_P.kmac[0] & \ S390X_CAPBIT(S390X_AES_192))) # define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \ (OPENSSL_s390xcap_P.kmac[0] & \ S390X_CAPBIT(S390X_AES_256))) # define S390X_CCM_AAD_FLAG 0x40 /*- * Set nonce and length fields. Code is big-endian. */ static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx, const unsigned char *nonce, size_t mlen) { ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG; ctx->aes.ccm.nonce.g[1] = mlen; memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l); } /*- * Process additional authenticated data. Code is big-endian. */ static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad, size_t alen) { unsigned char *ptr; int i, rem; if (!alen) return; ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG; /* Suppress 'type-punned pointer dereference' warning. */ ptr = ctx->aes.ccm.buf.b; if (alen < ((1 << 16) - (1 << 8))) { *(uint16_t *)ptr = alen; i = 2; } else if (sizeof(alen) == 8 && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { *(uint16_t *)ptr = 0xffff; *(uint64_t *)(ptr + 2) = alen; i = 10; } else { *(uint16_t *)ptr = 0xfffe; *(uint32_t *)(ptr + 2) = alen; i = 6; } while (i < 16 && alen) { ctx->aes.ccm.buf.b[i] = *aad; ++aad; --alen; ++i; } while (i < 16) { ctx->aes.ccm.buf.b[i] = 0; ++i; } ctx->aes.ccm.kmac_param.icv.g[0] = 0; ctx->aes.ccm.kmac_param.icv.g[1] = 0; s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); ctx->aes.ccm.blocks += 2; rem = alen & 0xf; alen &= ~(size_t)0xf; if (alen) { s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); ctx->aes.ccm.blocks += alen >> 4; aad += alen; } if (rem) { for (i = 0; i < rem; i++) ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i]; s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); ctx->aes.ccm.blocks++; } } /*- * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for * success. */ static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in, unsigned char *out, size_t len, int enc) { size_t n, rem; unsigned int i, l, num; unsigned char flags; flags = ctx->aes.ccm.nonce.b[0]; if (!(flags & S390X_CCM_AAD_FLAG)) { s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); ctx->aes.ccm.blocks++; } l = flags & 0x7; ctx->aes.ccm.nonce.b[0] = l; /*- * Reconstruct length from encoded length field * and initialize it with counter value. */ n = 0; for (i = 15 - l; i < 15; i++) { n |= ctx->aes.ccm.nonce.b[i]; ctx->aes.ccm.nonce.b[i] = 0; n <<= 8; } n |= ctx->aes.ccm.nonce.b[15]; ctx->aes.ccm.nonce.b[15] = 1; if (n != len) return -1; /* length mismatch */ if (enc) { /* Two operations per block plus one for tag encryption */ ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1; if (ctx->aes.ccm.blocks > (1ULL << 61)) return -2; /* too much data */ } num = 0; rem = len & 0xf; len &= ~(size_t)0xf; if (enc) { /* mac-then-encrypt */ if (len) s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); if (rem) { for (i = 0; i < rem; i++) ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i]; s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); } CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, &num, (ctr128_f)AES_ctr32_encrypt); } else { /* decrypt-then-mac */ CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, &num, (ctr128_f)AES_ctr32_encrypt); if (len) s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); if (rem) { for (i = 0; i < rem; i++) ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i]; s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); } } /* encrypt tag */ for (i = 15 - l; i < 16; i++) ctx->aes.ccm.nonce.b[i] = 0; s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0]; ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1]; ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */ return 0; } /*- * En/de-crypt and authenticate TLS packet. Returns the number of bytes written * if successful. Otherwise -1 is returned. */ static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx); unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m)) return -1; if (enc) { /* Set explicit iv (sequence number). */ memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN); } len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; /*- * Get explicit iv (sequence number). We already have fixed iv * (server/client_write_iv) here. */ memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); s390x_aes_ccm_setiv(cctx, ivec, len); /* Process aad (sequence number|type|version|length) */ s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len); in += EVP_CCM_TLS_EXPLICIT_IV_LEN; out += EVP_CCM_TLS_EXPLICIT_IV_LEN; if (enc) { if (s390x_aes_ccm(cctx, in, out, len, enc)) return -1; memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; } else { if (!s390x_aes_ccm(cctx, in, out, len, enc)) { if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len, cctx->aes.ccm.m)) return len; } OPENSSL_cleanse(out, len); return -1; } } /*- * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is * returned. */ static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); unsigned char *ivec; int keylen; if (iv == NULL && key == NULL) return 1; if (key != NULL) { keylen = EVP_CIPHER_CTX_key_length(ctx); cctx->aes.ccm.fc = S390X_AES_FC(keylen); memcpy(cctx->aes.ccm.kmac_param.k, key, keylen); /* Store encoded m and l. */ cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7) | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3; memset(cctx->aes.ccm.nonce.b + 1, 0, sizeof(cctx->aes.ccm.nonce.b)); cctx->aes.ccm.blocks = 0; cctx->aes.ccm.key_set = 1; } if (iv != NULL) { ivec = EVP_CIPHER_CTX_iv_noconst(ctx); memcpy(ivec, iv, 15 - cctx->aes.ccm.l); cctx->aes.ccm.iv_set = 1; } return 1; } /*- * Called from EVP layer to initialize context, process additional * authenticated data, en/de-crypt plain/cipher-text and authenticate * plaintext or process a TLS packet, depending on context. Returns bytes * written on success. Otherwise -1 is returned. */ static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); int rv; unsigned char *buf, *ivec; if (!cctx->aes.ccm.key_set) return -1; if (cctx->aes.ccm.tls_aad_len >= 0) return s390x_aes_ccm_tls_cipher(ctx, out, in, len); /*- * Final(): Does not return any data. Recall that ccm is mac-then-encrypt * so integrity must be checked already at Update() i.e., before * potentially corrupted data is output. */ if (in == NULL && out != NULL) return 0; if (!cctx->aes.ccm.iv_set) return -1; if (out == NULL) { /* Update(): Pass message length. */ if (in == NULL) { ivec = EVP_CIPHER_CTX_iv_noconst(ctx); s390x_aes_ccm_setiv(cctx, ivec, len); cctx->aes.ccm.len_set = 1; return len; } /* Update(): Process aad. */ if (!cctx->aes.ccm.len_set && len) return -1; s390x_aes_ccm_aad(cctx, in, len); return len; } /* The tag must be set before actually decrypting data */ if (!enc && !cctx->aes.ccm.tag_set) return -1; /* Update(): Process message. */ if (!cctx->aes.ccm.len_set) { /*- * In case message length was not previously set explicitly via * Update(), set it now. */ ivec = EVP_CIPHER_CTX_iv_noconst(ctx); s390x_aes_ccm_setiv(cctx, ivec, len); cctx->aes.ccm.len_set = 1; } if (enc) { if (s390x_aes_ccm(cctx, in, out, len, enc)) return -1; cctx->aes.ccm.tag_set = 1; return len; } else { rv = -1; if (!s390x_aes_ccm(cctx, in, out, len, enc)) { buf = EVP_CIPHER_CTX_buf_noconst(ctx); if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf, cctx->aes.ccm.m)) rv = len; } if (rv == -1) OPENSSL_cleanse(out, len); cctx->aes.ccm.iv_set = 0; cctx->aes.ccm.tag_set = 0; cctx->aes.ccm.len_set = 0; return rv; } } /*- * Performs various operations on the context structure depending on control * type. Returns 1 for success, 0 for failure and -1 for unknown control type. * Code is big-endian. */ static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c); unsigned char *buf, *iv; int enc, len; switch (type) { case EVP_CTRL_INIT: cctx->aes.ccm.key_set = 0; cctx->aes.ccm.iv_set = 0; cctx->aes.ccm.l = 8; cctx->aes.ccm.m = 12; cctx->aes.ccm.tag_set = 0; cctx->aes.ccm.len_set = 0; cctx->aes.ccm.tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = 15 - cctx->aes.ccm.l; return 1; case EVP_CTRL_AEAD_TLS1_AAD: if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; /* Save the aad for later use. */ buf = EVP_CIPHER_CTX_buf_noconst(c); memcpy(buf, ptr, arg); cctx->aes.ccm.tls_aad_len = arg; len = buf[arg - 2] << 8 | buf[arg - 1]; if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) return 0; /* Correct length for explicit iv. */ len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; enc = EVP_CIPHER_CTX_encrypting(c); if (!enc) { if (len < cctx->aes.ccm.m) return 0; /* Correct length for tag. */ len -= cctx->aes.ccm.m; } buf[arg - 2] = len >> 8; buf[arg - 1] = len & 0xff; /* Extra padding: tag appended to record. */ return cctx->aes.ccm.m; case EVP_CTRL_CCM_SET_IV_FIXED: if (arg != EVP_CCM_TLS_FIXED_IV_LEN) return 0; /* Copy to first part of the iv. */ iv = EVP_CIPHER_CTX_iv_noconst(c); memcpy(iv, ptr, arg); return 1; case EVP_CTRL_AEAD_SET_IVLEN: arg = 15 - arg; /* fall-through */ case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->aes.ccm.l = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; enc = EVP_CIPHER_CTX_encrypting(c); if (enc && ptr) return 0; if (ptr) { cctx->aes.ccm.tag_set = 1; buf = EVP_CIPHER_CTX_buf_noconst(c); memcpy(buf, ptr, arg); } cctx->aes.ccm.m = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: enc = EVP_CIPHER_CTX_encrypting(c); if (!enc || !cctx->aes.ccm.tag_set) return 0; if(arg < cctx->aes.ccm.m) return 0; memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); cctx->aes.ccm.tag_set = 0; cctx->aes.ccm.iv_set = 0; cctx->aes.ccm.len_set = 0; return 1; case EVP_CTRL_COPY: return 1; default: return -1; } } # define s390x_aes_ccm_cleanup aes_ccm_cleanup # ifndef OPENSSL_NO_OCB # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX # define S390X_aes_128_ocb_CAPABLE 0 # define S390X_aes_192_ocb_CAPABLE 0 # define S390X_aes_256_ocb_CAPABLE 0 # define s390x_aes_ocb_init_key aes_ocb_init_key static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); # define s390x_aes_ocb_cipher aes_ocb_cipher static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define s390x_aes_ocb_cleanup aes_ocb_cleanup static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *); # define s390x_aes_ocb_ctrl aes_ocb_ctrl static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); # endif # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \ MODE,flags) \ static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ s390x_aes_##mode##_init_key, \ s390x_aes_##mode##_cipher, \ NULL, \ sizeof(S390X_AES_##MODE##_CTX), \ NULL, \ NULL, \ NULL, \ NULL \ }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode, \ blocksize, \ keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL, \ NULL, \ NULL, \ NULL \ }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { \ return S390X_aes_##keylen##_##mode##_CAPABLE ? \ &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\ static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ nid##_##keylen##_##mode, \ blocksize, \ (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ s390x_aes_##mode##_init_key, \ s390x_aes_##mode##_cipher, \ s390x_aes_##mode##_cleanup, \ sizeof(S390X_AES_##MODE##_CTX), \ NULL, \ NULL, \ s390x_aes_##mode##_ctrl, \ NULL \ }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL, \ NULL, \ aes_##mode##_ctrl, \ NULL \ }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { \ return S390X_aes_##keylen##_##mode##_CAPABLE ? \ &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ } #else # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } #endif #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__)) # include "arm_arch.h" # if __ARM_MAX_ARCH__>=7 # if defined(BSAES_ASM) # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif # if defined(VPAES_ASM) # define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES) # define HWAES_set_encrypt_key aes_v8_set_encrypt_key # define HWAES_set_decrypt_key aes_v8_set_decrypt_key # define HWAES_encrypt aes_v8_encrypt # define HWAES_decrypt aes_v8_decrypt # define HWAES_cbc_encrypt aes_v8_cbc_encrypt # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks # endif #endif #if defined(HWAES_CAPABLE) int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); void HWAES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void HWAES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, const int enc); void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, const unsigned char ivec[16]); void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); #endif #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); mode = EVP_CIPHER_CTX_mode(ctx); if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) HWAES_decrypt; dat->stream.cbc = NULL; # ifdef HWAES_cbc_encrypt if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; # endif } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_decrypt; dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) vpaes_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) AES_cbc_encrypt : NULL; } } else #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) HWAES_encrypt; dat->stream.cbc = NULL; # ifdef HWAES_cbc_encrypt if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; else # endif # ifdef HWAES_ctr32_encrypt_blocks if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; else # endif (void)0; /* terminate potentially open 'else' */ } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_encrypt; dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) vpaes_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) AES_cbc_encrypt : NULL; #ifdef AES_CTR_ASM if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt; #endif } if (ret < 0) { EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (dat->stream.cbc) (*dat->stream.cbc) (in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); else if (EVP_CIPHER_CTX_encrypting(ctx)) CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); else CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = EVP_CIPHER_CTX_block_size(ctx); size_t i; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (len < bl) return 1; for (i = 0, len -= bl; i <= len; i += bl) (*dat->block) (in + i, out + i, &dat->ks); return 1; } static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } while (len >= MAXBITCHUNK) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); len -= MAXBITCHUNK; out += MAXBITCHUNK; in += MAXBITCHUNK; } if (len) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); } return 1; } static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = EVP_CIPHER_CTX_num(ctx); EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (dat->stream.ctr) CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_buf_noconst(ctx), &num, dat->stream.ctr); else CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_buf_noconst(ctx), &num, dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); if (gctx == NULL) return 0; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c)) OPENSSL_free(gctx->iv); return 1; } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = EVP_CIPHER_iv_length(c->cipher); gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = gctx->ivlen; return 1; case EVP_CTRL_AEAD_SET_IVLEN: if (arg <= 0) return 0; /* Allocate memory for IV if needed */ if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) { EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } } gctx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) return 0; memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) return 0; memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* * Fixed field must be at least 4 bytes and invocation field at least * 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* * Invocation field will be at least 8 bytes in size and so no need * to check wrap around or increment more than last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(c->buf, ptr, arg); gctx->tls_aad_len = arg; { unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; /* Correct length for explicit IV */ if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!c->encrypt) { if (len < EVP_GCM_TLS_TAG_LEN) return 0; len -= EVP_GCM_TLS_TAG_LEN; } c->buf[arg - 2] = len >> 8; c->buf[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return EVP_GCM_TLS_TAG_LEN; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out); if (gctx->gcm.key) { if (gctx->gcm.key != &gctx->ks) return 0; gctx_out->gcm.key = &gctx_out->ks; } if (gctx->iv == c->iv) gctx_out->iv = out->iv; else { if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) { EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); } return 1; } default: return -1; } } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); if (!iv && !key) return 1; if (key) { do { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) HWAES_encrypt); # ifdef HWAES_ctr32_encrypt_blocks gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; # else gctx->ctr = NULL; # endif break; } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) { AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) AES_encrypt); gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; break; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) vpaes_encrypt); gctx->ctr = NULL; break; } else #endif (void)0; /* terminate potentially open 'else' */ AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) AES_encrypt); #ifdef AES_CTR_ASM gctx->ctr = (ctr128_f) AES_ctr32_encrypt; #else gctx->ctr = NULL; #endif } while (0); /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } /* * Handle TLS GCM packet format. This consists of the last portion of the IV * followed by the payload and finally the tag. On encrypt generate IV, * encrypt payload and write the tag. On verify retrieve IV, decrypt payload * and verify tag. */ static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); int rv = -1; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) return -1; /* * Set IV from start of buffer or generate IV and write to start of * buffer. */ if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; /* Use saved AAD */ if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) goto err; /* Fix buffer and length to point to payload */ in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; if (ctx->encrypt) { /* Encrypt payload */ if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 32 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_encrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) goto err; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 32 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_encrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) goto err; } out += len; /* Finally write tag */ CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { /* Decrypt */ if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 16 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_decrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) goto err; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 16 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_decrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) goto err; } /* Retrieve tag */ CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); /* If tag mismatch wipe buffer */ if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); /* If not set up, return error */ if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return aes_gcm_tls_cipher(ctx, out, in, len); if (!gctx->iv_set) return -1; if (in) { if (out == NULL) { if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) return -1; } else if (ctx->encrypt) { if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 32 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) return -1; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 32 && AES_GCM_ASM2(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) return -1; } } else { if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 16 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) return -1; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 16 && AES_GCM_ASM2(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) return -1; } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0) return -1; if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) return -1; gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH) BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c); if (type == EVP_CTRL_COPY) { EVP_CIPHER_CTX *out = ptr; EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out); if (xctx->xts.key1) { if (xctx->xts.key1 != &xctx->ks1) return 0; xctx_out->xts.key1 = &xctx_out->ks1; } if (xctx->xts.key2) { if (xctx->xts.key2 != &xctx->ks2) return 0; xctx_out->xts.key2 = &xctx_out->ks2; } return 1; } else if (type != EVP_CTRL_INIT) return -1; /* key1 and key2 are used as an indicator both key and IV are set */ xctx->xts.key1 = NULL; xctx->xts.key2 = NULL; return 1; } static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (!iv && !key) return 1; if (key) do { /* The key is two half length keys in reality */ const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; /* * Verify that the two keys are different. * * This addresses the vulnerability described in Rogaway's * September 2004 paper: * * "Efficient Instantiations of Tweakable Blockciphers and * Refinements to Modes OCB and PMAC". * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf) * * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states * that: * "The check for Key_1 != Key_2 shall be done at any place * BEFORE using the keys in the XTS-AES algorithm to process * data with them." */ if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); return 0; } #ifdef AES_XTS_ASM xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; #else xctx->stream = NULL; #endif /* key_len is two AES keys */ #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { if (enc) { HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) HWAES_encrypt; # ifdef HWAES_xts_encrypt xctx->stream = HWAES_xts_encrypt; # endif } else { HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) HWAES_decrypt; # ifdef HWAES_xts_decrypt xctx->stream = HWAES_xts_decrypt; #endif } HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) HWAES_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { if (enc) { vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) vpaes_encrypt; } else { vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) vpaes_decrypt; } vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) vpaes_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else #endif (void)0; /* terminate potentially open 'else' */ if (enc) { AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) AES_encrypt; } else { AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) AES_decrypt; } AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, EVP_CIPHER_CTX_key_length(ctx) * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) AES_encrypt; xctx->xts.key1 = &xctx->ks1; } while (0); if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); } return 1; } static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (!xctx->xts.key1 || !xctx->xts.key2) return 0; if (!out || !in || len < AES_BLOCK_SIZE) return 0; if (xctx->stream) (*xctx->stream) (in, out, len, xctx->xts.key1, xctx->xts.key2, EVP_CIPHER_CTX_iv_noconst(ctx)); else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx), in, out, len, EVP_CIPHER_CTX_encrypting(ctx))) return 0; return 1; } #define aes_xts_cleanup NULL #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY) BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c); switch (type) { case EVP_CTRL_INIT: cctx->key_set = 0; cctx->iv_set = 0; cctx->L = 8; cctx->M = 12; cctx->tag_set = 0; cctx->len_set = 0; cctx->tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = 15 - cctx->L; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); cctx->tls_aad_len = arg; { uint16_t len = EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; /* Correct length for explicit IV */ if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!EVP_CIPHER_CTX_encrypting(c)) { if (len < cctx->M) return 0; len -= cctx->M; } EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return cctx->M; case EVP_CTRL_CCM_SET_IV_FIXED: /* Sanity check length */ if (arg != EVP_CCM_TLS_FIXED_IV_LEN) return 0; /* Just copy to first part of IV */ memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg); return 1; case EVP_CTRL_AEAD_SET_IVLEN: arg = 15 - arg; /* fall thru */ case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->L = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; if (EVP_CIPHER_CTX_encrypting(c) && ptr) return 0; if (ptr) { cctx->tag_set = 1; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); } cctx->M = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set) return 0; if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) return 0; cctx->tag_set = 0; cctx->iv_set = 0; cctx->len_set = 0; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out); if (cctx->ccm.key) { if (cctx->ccm.key != &cctx->ks) return 0; cctx_out->ccm.key = &cctx_out->ks; } return 1; } default: return -1; } } static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); if (!iv && !key) return 1; if (key) do { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) HWAES_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) vpaes_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } #endif AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) AES_encrypt); cctx->str = NULL; cctx->key_set = 1; } while (0); if (iv) { memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); CCM128_CONTEXT *ccm = &cctx->ccm; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) return -1; /* If encrypting set explicit IV from sequence number (start of AAD) */ if (EVP_CIPHER_CTX_encrypting(ctx)) memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx), EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Get rest of IV from explicit IV */ memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Correct length value */ len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, len)) return -1; /* Use saved AAD */ CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len); /* Fix buffer to point to payload */ in += EVP_CCM_TLS_EXPLICIT_IV_LEN; out += EVP_CCM_TLS_EXPLICIT_IV_LEN; if (EVP_CIPHER_CTX_encrypting(ctx)) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) return -1; return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; } else { if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, in + len, cctx->M)) return len; } } OPENSSL_cleanse(out, len); return -1; } } static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); CCM128_CONTEXT *ccm = &cctx->ccm; /* If not set up, return error */ if (!cctx->key_set) return -1; if (cctx->tls_aad_len >= 0) return aes_ccm_tls_cipher(ctx, out, in, len); /* EVP_*Final() doesn't return any data */ if (in == NULL && out != NULL) return 0; if (!cctx->iv_set) return -1; if (!out) { if (!in) { if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, len)) return -1; cctx->len_set = 1; return len; } /* If have AAD need message length */ if (!cctx->len_set && len) return -1; CRYPTO_ccm128_aad(ccm, in, len); return len; } /* The tag must be set before actually decrypting data */ if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set) return -1; /* If not set length yet do it */ if (!cctx->len_set) { if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, len)) return -1; cctx->len_set = 1; } if (EVP_CIPHER_CTX_encrypting(ctx)) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; cctx->tag_set = 1; return len; } else { int rv = -1; if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->M)) rv = len; } } if (rv == -1) OPENSSL_cleanse(out, len); cctx->iv_set = 0; cctx->tag_set = 0; cctx->len_set = 0; return rv; } } #define aes_ccm_cleanup NULL BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) typedef struct { union { double align; AES_KEY ks; } ks; /* Indicates if IV has been set */ unsigned char *iv; } EVP_AES_WRAP_CTX; static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); if (!iv && !key) return 1; if (key) { if (EVP_CIPHER_CTX_encrypting(ctx)) AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &wctx->ks.ks); else AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &wctx->ks.ks); if (!iv) wctx->iv = NULL; } if (iv) { memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx)); wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx); } return 1; } static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inlen) { EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); size_t rv; /* AES wrap with padding has IV length of 4, without padding 8 */ int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4; /* No final operation so always return zero length */ if (!in) return 0; /* Input length must always be non-zero */ if (!inlen) return -1; /* If decrypting need at least 16 bytes and multiple of 8 */ if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7)) return -1; /* If not padding input must be multiple of 8 */ if (!pad && inlen & 0x7) return -1; if (is_partially_overlapping(out, in, inlen)) { EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); return 0; } if (!out) { if (EVP_CIPHER_CTX_encrypting(ctx)) { /* If padding round up to multiple of 8 */ if (pad) inlen = (inlen + 7) / 8 * 8; /* 8 byte prefix */ return inlen + 8; } else { /* * If not padding output will be exactly 8 bytes smaller than * input. If padding it will be at least 8 bytes smaller but we * don't know how much. */ return inlen - 8; } } if (pad) { if (EVP_CIPHER_CTX_encrypting(ctx)) rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_encrypt); else rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_decrypt); } else { if (EVP_CIPHER_CTX_encrypting(ctx)) rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_encrypt); else rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_decrypt); } return rv ? (int)rv : -1; } #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) static const EVP_CIPHER aes_128_wrap = { NID_id_aes128_wrap, 8, 16, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_128_wrap(void) { return &aes_128_wrap; } static const EVP_CIPHER aes_192_wrap = { NID_id_aes192_wrap, 8, 24, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_192_wrap(void) { return &aes_192_wrap; } static const EVP_CIPHER aes_256_wrap = { NID_id_aes256_wrap, 8, 32, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_256_wrap(void) { return &aes_256_wrap; } static const EVP_CIPHER aes_128_wrap_pad = { NID_id_aes128_wrap_pad, 8, 16, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_128_wrap_pad(void) { return &aes_128_wrap_pad; } static const EVP_CIPHER aes_192_wrap_pad = { NID_id_aes192_wrap_pad, 8, 24, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_192_wrap_pad(void) { return &aes_192_wrap_pad; } static const EVP_CIPHER aes_256_wrap_pad = { NID_id_aes256_wrap_pad, 8, 32, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_256_wrap_pad(void) { return &aes_256_wrap_pad; } #ifndef OPENSSL_NO_OCB static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); EVP_CIPHER_CTX *newc; EVP_AES_OCB_CTX *new_octx; switch (type) { case EVP_CTRL_INIT: octx->key_set = 0; octx->iv_set = 0; octx->ivlen = EVP_CIPHER_iv_length(c->cipher); octx->iv = EVP_CIPHER_CTX_iv_noconst(c); octx->taglen = 16; octx->data_buf_len = 0; octx->aad_buf_len = 0; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = octx->ivlen; return 1; case EVP_CTRL_AEAD_SET_IVLEN: /* IV len must be 1 to 15 */ if (arg <= 0 || arg > 15) return 0; octx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if (!ptr) { /* Tag len must be 0 to 16 */ if (arg < 0 || arg > 16) return 0; octx->taglen = arg; return 1; } if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c)) return 0; memcpy(octx->tag, ptr, arg); return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c)) return 0; memcpy(ptr, octx->tag, arg); return 1; case EVP_CTRL_COPY: newc = (EVP_CIPHER_CTX *)ptr; new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc); return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, &new_octx->ksenc.ks, &new_octx->ksdec.ks); default: return -1; } } # ifdef HWAES_CAPABLE # ifdef HWAES_ocb_encrypt void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, size_t start_block_num, unsigned char offset_i[16], const unsigned char L_[][16], unsigned char checksum[16]); # else # define HWAES_ocb_encrypt ((ocb128_f)NULL) # endif # ifdef HWAES_ocb_decrypt void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, size_t start_block_num, unsigned char offset_i[16], const unsigned char L_[][16], unsigned char checksum[16]); # else # define HWAES_ocb_decrypt ((ocb128_f)NULL) # endif # endif static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ # ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) HWAES_encrypt, (block128_f) HWAES_decrypt, enc ? HWAES_ocb_encrypt : HWAES_ocb_decrypt)) return 0; break; } # endif # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) vpaes_encrypt, (block128_f) vpaes_decrypt, NULL)) return 0; break; } # endif AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) AES_encrypt, (block128_f) AES_decrypt, NULL)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned char *buf; int *buf_len; int written_len = 0; size_t trailing_len; EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); /* If IV or Key not set then return error */ if (!octx->iv_set) return -1; if (!octx->key_set) return -1; if (in != NULL) { /* * Need to ensure we are only passing full blocks to low level OCB * routines. We do it here rather than in EVP_EncryptUpdate/ * EVP_DecryptUpdate because we need to pass full blocks of AAD too * and those routines don't support that */ /* Are we dealing with AAD or normal data here? */ if (out == NULL) { buf = octx->aad_buf; buf_len = &(octx->aad_buf_len); } else { buf = octx->data_buf; buf_len = &(octx->data_buf_len); if (is_partially_overlapping(out + *buf_len, in, len)) { EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); return 0; } } /* * If we've got a partially filled buffer from a previous call then * use that data first */ if (*buf_len > 0) { unsigned int remaining; remaining = AES_BLOCK_SIZE - (*buf_len); if (remaining > len) { memcpy(buf + (*buf_len), in, len); *(buf_len) += len; return 0; } memcpy(buf + (*buf_len), in, remaining); /* * If we get here we've filled the buffer, so process it */ len -= remaining; in += remaining; if (out == NULL) { if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE)) return -1; } else if (EVP_CIPHER_CTX_encrypting(ctx)) { if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, AES_BLOCK_SIZE)) return -1; } else { if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, AES_BLOCK_SIZE)) return -1; } written_len = AES_BLOCK_SIZE; *buf_len = 0; if (out != NULL) out += AES_BLOCK_SIZE; } /* Do we have a partial block to handle at the end? */ trailing_len = len % AES_BLOCK_SIZE; /* * If we've got some full blocks to handle, then process these first */ if (len != trailing_len) { if (out == NULL) { if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) return -1; } else if (EVP_CIPHER_CTX_encrypting(ctx)) { if (!CRYPTO_ocb128_encrypt (&octx->ocb, in, out, len - trailing_len)) return -1; } else { if (!CRYPTO_ocb128_decrypt (&octx->ocb, in, out, len - trailing_len)) return -1; } written_len += len - trailing_len; in += len - trailing_len; } /* Handle any trailing partial block */ if (trailing_len > 0) { memcpy(buf, in, trailing_len); *buf_len = trailing_len; } return written_len; } else { /* * First of all empty the buffer of any partial block that we might * have been provided - both for data and AAD */ if (octx->data_buf_len > 0) { if (EVP_CIPHER_CTX_encrypting(ctx)) { if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, octx->data_buf_len)) return -1; } else { if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, octx->data_buf_len)) return -1; } written_len = octx->data_buf_len; octx->data_buf_len = 0; } if (octx->aad_buf_len > 0) { if (!CRYPTO_ocb128_aad (&octx->ocb, octx->aad_buf, octx->aad_buf_len)) return -1; octx->aad_buf_len = 0; } /* If decrypting then verify */ if (!EVP_CIPHER_CTX_encrypting(ctx)) { if (octx->taglen < 0) return -1; if (CRYPTO_ocb128_finish(&octx->ocb, octx->tag, octx->taglen) != 0) return -1; octx->iv_set = 0; return written_len; } /* If encrypting then just get the tag */ if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) return -1; /* Don't reuse the IV */ octx->iv_set = 0; return written_len; } } static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); CRYPTO_ocb128_cleanup(&octx->ocb); return 1; } BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) #endif /* OPENSSL_NO_OCB */ openssl-1.1.1f/crypto/evp/e_aes_cbc_hmac_sha1.c000066400000000000000000000763761364063235100214360ustar00rootroot00000000000000/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include "modes_local.h" #include "crypto/evp.h" #include "internal/constant_time.h" typedef struct { AES_KEY ks; SHA_CTX head, tail, md; size_t payload_length; /* AAD length in decrypt case */ union { unsigned int tls_ver; unsigned char tls_aad[16]; /* 13 used */ } aux; } EVP_AES_HMAC_SHA1; #define NO_PAYLOAD_LENGTH ((size_t)-1) #if defined(AESNI_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) ) extern unsigned int OPENSSL_ia32cap_P[]; # define AESNI_CAPABLE (1<<(57-32)) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks, const AES_KEY *key, unsigned char iv[16], SHA_CTX *ctx, const void *in0); void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks, const AES_KEY *key, unsigned char iv[16], SHA_CTX *ctx, const void *in0); # define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx)) static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey, const unsigned char *iv, int enc) { EVP_AES_HMAC_SHA1 *key = data(ctx); int ret; if (enc) ret = aesni_set_encrypt_key(inkey, EVP_CIPHER_CTX_key_length(ctx) * 8, &key->ks); else ret = aesni_set_decrypt_key(inkey, EVP_CIPHER_CTX_key_length(ctx) * 8, &key->ks); SHA1_Init(&key->head); /* handy when benchmarking */ key->tail = key->head; key->md = key->head; key->payload_length = NO_PAYLOAD_LENGTH; return ret < 0 ? 0 : 1; } # define STITCHED_CALL # undef STITCHED_DECRYPT_CALL # if !defined(STITCHED_CALL) # define aes_off 0 # endif void sha1_block_data_order(void *c, const void *p, size_t len); static void sha1_update(SHA_CTX *c, const void *data, size_t len) { const unsigned char *ptr = data; size_t res; if ((res = c->num)) { res = SHA_CBLOCK - res; if (len < res) res = len; SHA1_Update(c, ptr, res); ptr += res; len -= res; } res = len % SHA_CBLOCK; len -= res; if (len) { sha1_block_data_order(c, ptr, len / SHA_CBLOCK); ptr += len; c->Nh += len >> 29; c->Nl += len <<= 3; if (c->Nl < (unsigned int)len) c->Nh++; } if (res) SHA1_Update(c, ptr, res); } # ifdef SHA1_Update # undef SHA1_Update # endif # define SHA1_Update sha1_update # if !defined(OPENSSL_NO_MULTIBLOCK) typedef struct { unsigned int A[8], B[8], C[8], D[8], E[8]; } SHA1_MB_CTX; typedef struct { const unsigned char *ptr; int blocks; } HASH_DESC; void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int); typedef struct { const unsigned char *inp; unsigned char *out; int blocks; u64 iv[2]; } CIPH_DESC; void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int); static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key, unsigned char *out, const unsigned char *inp, size_t inp_len, int n4x) { /* n4x is 1 or 2 */ HASH_DESC hash_d[8], edges[8]; CIPH_DESC ciph_d[8]; unsigned char storage[sizeof(SHA1_MB_CTX) + 32]; union { u64 q[16]; u32 d[32]; u8 c[128]; } blocks[8]; SHA1_MB_CTX *ctx; unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed = 0; size_t ret = 0; u8 *IVs; # if defined(BSWAP8) u64 seqnum; # endif /* ask for IVs in bulk */ if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0) return 0; ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */ frag = (unsigned int)inp_len >> (1 + n4x); last = (unsigned int)inp_len + frag - (frag << (1 + n4x)); if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) { frag++; last -= x4 - 1; } packlen = 5 + 16 + ((frag + 20 + 16) & -16); /* populate descriptors with pointers and IVs */ hash_d[0].ptr = inp; ciph_d[0].inp = inp; /* 5+16 is place for header and explicit IV */ ciph_d[0].out = out + 5 + 16; memcpy(ciph_d[0].out - 16, IVs, 16); memcpy(ciph_d[0].iv, IVs, 16); IVs += 16; for (i = 1; i < x4; i++) { ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag; ciph_d[i].out = ciph_d[i - 1].out + packlen; memcpy(ciph_d[i].out - 16, IVs, 16); memcpy(ciph_d[i].iv, IVs, 16); IVs += 16; } # if defined(BSWAP8) memcpy(blocks[0].c, key->md.data, 8); seqnum = BSWAP8(blocks[0].q[0]); # endif for (i = 0; i < x4; i++) { unsigned int len = (i == (x4 - 1) ? last : frag); # if !defined(BSWAP8) unsigned int carry, j; # endif ctx->A[i] = key->md.h0; ctx->B[i] = key->md.h1; ctx->C[i] = key->md.h2; ctx->D[i] = key->md.h3; ctx->E[i] = key->md.h4; /* fix seqnum */ # if defined(BSWAP8) blocks[i].q[0] = BSWAP8(seqnum + i); # else for (carry = i, j = 8; j--;) { blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry; carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1); } # endif blocks[i].c[8] = ((u8 *)key->md.data)[8]; blocks[i].c[9] = ((u8 *)key->md.data)[9]; blocks[i].c[10] = ((u8 *)key->md.data)[10]; /* fix length */ blocks[i].c[11] = (u8)(len >> 8); blocks[i].c[12] = (u8)(len); memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13); hash_d[i].ptr += 64 - 13; hash_d[i].blocks = (len - (64 - 13)) / 64; edges[i].ptr = blocks[i].c; edges[i].blocks = 1; } /* hash 13-byte headers and first 64-13 bytes of inputs */ sha1_multi_block(ctx, edges, n4x); /* hash bulk inputs */ # define MAXCHUNKSIZE 2048 # if MAXCHUNKSIZE%64 # error "MAXCHUNKSIZE is not divisible by 64" # elif MAXCHUNKSIZE /* * goal is to minimize pressure on L1 cache by moving in shorter steps, * so that hashed data is still in the cache by the time we encrypt it */ minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64; if (minblocks > MAXCHUNKSIZE / 64) { for (i = 0; i < x4; i++) { edges[i].ptr = hash_d[i].ptr; edges[i].blocks = MAXCHUNKSIZE / 64; ciph_d[i].blocks = MAXCHUNKSIZE / 16; } do { sha1_multi_block(ctx, edges, n4x); aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); for (i = 0; i < x4; i++) { edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE; hash_d[i].blocks -= MAXCHUNKSIZE / 64; edges[i].blocks = MAXCHUNKSIZE / 64; ciph_d[i].inp += MAXCHUNKSIZE; ciph_d[i].out += MAXCHUNKSIZE; ciph_d[i].blocks = MAXCHUNKSIZE / 16; memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16); } processed += MAXCHUNKSIZE; minblocks -= MAXCHUNKSIZE / 64; } while (minblocks > MAXCHUNKSIZE / 64); } # endif # undef MAXCHUNKSIZE sha1_multi_block(ctx, hash_d, n4x); memset(blocks, 0, sizeof(blocks)); for (i = 0; i < x4; i++) { unsigned int len = (i == (x4 - 1) ? last : frag), off = hash_d[i].blocks * 64; const unsigned char *ptr = hash_d[i].ptr + off; off = (len - processed) - (64 - 13) - off; /* remainder actually */ memcpy(blocks[i].c, ptr, off); blocks[i].c[off] = 0x80; len += 64 + 13; /* 64 is HMAC header */ len *= 8; /* convert to bits */ if (off < (64 - 8)) { # ifdef BSWAP4 blocks[i].d[15] = BSWAP4(len); # else PUTU32(blocks[i].c + 60, len); # endif edges[i].blocks = 1; } else { # ifdef BSWAP4 blocks[i].d[31] = BSWAP4(len); # else PUTU32(blocks[i].c + 124, len); # endif edges[i].blocks = 2; } edges[i].ptr = blocks[i].c; } /* hash input tails and finalize */ sha1_multi_block(ctx, edges, n4x); memset(blocks, 0, sizeof(blocks)); for (i = 0; i < x4; i++) { # ifdef BSWAP4 blocks[i].d[0] = BSWAP4(ctx->A[i]); ctx->A[i] = key->tail.h0; blocks[i].d[1] = BSWAP4(ctx->B[i]); ctx->B[i] = key->tail.h1; blocks[i].d[2] = BSWAP4(ctx->C[i]); ctx->C[i] = key->tail.h2; blocks[i].d[3] = BSWAP4(ctx->D[i]); ctx->D[i] = key->tail.h3; blocks[i].d[4] = BSWAP4(ctx->E[i]); ctx->E[i] = key->tail.h4; blocks[i].c[20] = 0x80; blocks[i].d[15] = BSWAP4((64 + 20) * 8); # else PUTU32(blocks[i].c + 0, ctx->A[i]); ctx->A[i] = key->tail.h0; PUTU32(blocks[i].c + 4, ctx->B[i]); ctx->B[i] = key->tail.h1; PUTU32(blocks[i].c + 8, ctx->C[i]); ctx->C[i] = key->tail.h2; PUTU32(blocks[i].c + 12, ctx->D[i]); ctx->D[i] = key->tail.h3; PUTU32(blocks[i].c + 16, ctx->E[i]); ctx->E[i] = key->tail.h4; blocks[i].c[20] = 0x80; PUTU32(blocks[i].c + 60, (64 + 20) * 8); # endif edges[i].ptr = blocks[i].c; edges[i].blocks = 1; } /* finalize MACs */ sha1_multi_block(ctx, edges, n4x); for (i = 0; i < x4; i++) { unsigned int len = (i == (x4 - 1) ? last : frag), pad, j; unsigned char *out0 = out; memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed); ciph_d[i].inp = ciph_d[i].out; out += 5 + 16 + len; /* write MAC */ PUTU32(out + 0, ctx->A[i]); PUTU32(out + 4, ctx->B[i]); PUTU32(out + 8, ctx->C[i]); PUTU32(out + 12, ctx->D[i]); PUTU32(out + 16, ctx->E[i]); out += 20; len += 20; /* pad */ pad = 15 - len % 16; for (j = 0; j <= pad; j++) *(out++) = pad; len += pad + 1; ciph_d[i].blocks = (len - processed) / 16; len += 16; /* account for explicit iv */ /* arrange header */ out0[0] = ((u8 *)key->md.data)[8]; out0[1] = ((u8 *)key->md.data)[9]; out0[2] = ((u8 *)key->md.data)[10]; out0[3] = (u8)(len >> 8); out0[4] = (u8)(len); ret += len + 5; inp += frag; } aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); OPENSSL_cleanse(blocks, sizeof(blocks)); OPENSSL_cleanse(ctx, sizeof(*ctx)); return ret; } # endif static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_HMAC_SHA1 *key = data(ctx); unsigned int l; size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and * later */ sha_off = 0; # if defined(STITCHED_CALL) size_t aes_off = 0, blocks; sha_off = SHA_CBLOCK - key->md.num; # endif key->payload_length = NO_PAYLOAD_LENGTH; if (len % AES_BLOCK_SIZE) return 0; if (EVP_CIPHER_CTX_encrypting(ctx)) { if (plen == NO_PAYLOAD_LENGTH) plen = len; else if (len != ((plen + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)) return 0; else if (key->aux.tls_ver >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; # if defined(STITCHED_CALL) if (plen > (sha_off + iv) && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) { SHA1_Update(&key->md, in + iv, sha_off); aesni_cbc_sha1_enc(in, out, blocks, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &key->md, in + iv + sha_off); blocks *= SHA_CBLOCK; aes_off += blocks; sha_off += blocks; key->md.Nh += blocks >> 29; key->md.Nl += blocks <<= 3; if (key->md.Nl < (unsigned int)blocks) key->md.Nh++; } else { sha_off = 0; } # endif sha_off += iv; SHA1_Update(&key->md, in + sha_off, plen - sha_off); if (plen != len) { /* "TLS" mode of operation */ if (in != out) memcpy(out + aes_off, in + aes_off, plen - aes_off); /* calculate HMAC and append it to payload */ SHA1_Final(out + plen, &key->md); key->md = key->tail; SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH); SHA1_Final(out + plen, &key->md); /* pad the payload|hmac */ plen += SHA_DIGEST_LENGTH; for (l = len - plen - 1; plen < len; plen++) out[plen] = l; /* encrypt HMAC|padding at once */ aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1); } else { aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1); } } else { union { unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)]; unsigned char c[32 + SHA_DIGEST_LENGTH]; } mac, *pmac; /* arrange cache line alignment */ pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32)); if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ size_t inp_len, mask, j, i; unsigned int res, maxpad, pad, bitlen; int ret = 1; union { unsigned int u[SHA_LBLOCK]; unsigned char c[SHA_CBLOCK]; } *data = (void *)key->md.data; # if defined(STITCHED_DECRYPT_CALL) unsigned char tail_iv[AES_BLOCK_SIZE]; int stitch = 0; # endif if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3]) >= TLS1_1_VERSION) { if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1)) return 0; /* omit explicit iv */ memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), in, AES_BLOCK_SIZE); in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; len -= AES_BLOCK_SIZE; } else if (len < (SHA_DIGEST_LENGTH + 1)) return 0; # if defined(STITCHED_DECRYPT_CALL) if (len >= 1024 && ctx->key_len == 32) { /* decrypt last block */ memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE, AES_BLOCK_SIZE); aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE, out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE, &key->ks, tail_iv, 0); stitch = 1; } else # endif /* decrypt HMAC|padding at once */ aesni_cbc_encrypt(in, out, len, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 0); /* figure out payload length */ pad = out[len - 1]; maxpad = len - (SHA_DIGEST_LENGTH + 1); maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8); maxpad &= 255; mask = constant_time_ge(maxpad, pad); ret &= mask; /* * If pad is invalid then we will fail the above test but we must * continue anyway because we are in constant time code. However, * we'll use the maxpad value instead of the supplied pad to make * sure we perform well defined pointer arithmetic. */ pad = constant_time_select(mask, pad, maxpad); inp_len = len - (SHA_DIGEST_LENGTH + pad + 1); key->aux.tls_aad[plen - 2] = inp_len >> 8; key->aux.tls_aad[plen - 1] = inp_len; /* calculate HMAC */ key->md = key->head; SHA1_Update(&key->md, key->aux.tls_aad, plen); # if defined(STITCHED_DECRYPT_CALL) if (stitch) { blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK; aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK; sha_off = SHA_CBLOCK - plen; aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0); SHA1_Update(&key->md, out, sha_off); aesni256_cbc_sha1_dec(in + aes_off, out + aes_off, blocks, &key->ks, ctx->iv, &key->md, out + sha_off); sha_off += blocks *= SHA_CBLOCK; out += sha_off; len -= sha_off; inp_len -= sha_off; key->md.Nl += (blocks << 3); /* at most 18 bits */ memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE); } # endif # if 1 /* see original reference version in #else */ len -= SHA_DIGEST_LENGTH; /* amend mac */ if (len >= (256 + SHA_CBLOCK)) { j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK); j += SHA_CBLOCK - key->md.num; SHA1_Update(&key->md, out, j); out += j; len -= j; inp_len -= j; } /* but pretend as if we hashed padded payload */ bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */ # ifdef BSWAP4 bitlen = BSWAP4(bitlen); # else mac.c[0] = 0; mac.c[1] = (unsigned char)(bitlen >> 16); mac.c[2] = (unsigned char)(bitlen >> 8); mac.c[3] = (unsigned char)bitlen; bitlen = mac.u[0]; # endif pmac->u[0] = 0; pmac->u[1] = 0; pmac->u[2] = 0; pmac->u[3] = 0; pmac->u[4] = 0; for (res = key->md.num, j = 0; j < len; j++) { size_t c = out[j]; mask = (j - inp_len) >> (sizeof(j) * 8 - 8); c &= mask; c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8)); data->c[res++] = (unsigned char)c; if (res != SHA_CBLOCK) continue; /* j is not incremented yet */ mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1)); data->u[SHA_LBLOCK - 1] |= bitlen & mask; sha1_block_data_order(&key->md, data, 1); mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h0 & mask; pmac->u[1] |= key->md.h1 & mask; pmac->u[2] |= key->md.h2 & mask; pmac->u[3] |= key->md.h3 & mask; pmac->u[4] |= key->md.h4 & mask; res = 0; } for (i = res; i < SHA_CBLOCK; i++, j++) data->c[i] = 0; if (res > SHA_CBLOCK - 8) { mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1)); data->u[SHA_LBLOCK - 1] |= bitlen & mask; sha1_block_data_order(&key->md, data, 1); mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h0 & mask; pmac->u[1] |= key->md.h1 & mask; pmac->u[2] |= key->md.h2 & mask; pmac->u[3] |= key->md.h3 & mask; pmac->u[4] |= key->md.h4 & mask; memset(data, 0, SHA_CBLOCK); j += 64; } data->u[SHA_LBLOCK - 1] = bitlen; sha1_block_data_order(&key->md, data, 1); mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h0 & mask; pmac->u[1] |= key->md.h1 & mask; pmac->u[2] |= key->md.h2 & mask; pmac->u[3] |= key->md.h3 & mask; pmac->u[4] |= key->md.h4 & mask; # ifdef BSWAP4 pmac->u[0] = BSWAP4(pmac->u[0]); pmac->u[1] = BSWAP4(pmac->u[1]); pmac->u[2] = BSWAP4(pmac->u[2]); pmac->u[3] = BSWAP4(pmac->u[3]); pmac->u[4] = BSWAP4(pmac->u[4]); # else for (i = 0; i < 5; i++) { res = pmac->u[i]; pmac->c[4 * i + 0] = (unsigned char)(res >> 24); pmac->c[4 * i + 1] = (unsigned char)(res >> 16); pmac->c[4 * i + 2] = (unsigned char)(res >> 8); pmac->c[4 * i + 3] = (unsigned char)res; } # endif len += SHA_DIGEST_LENGTH; # else /* pre-lucky-13 reference version of above */ SHA1_Update(&key->md, out, inp_len); res = key->md.num; SHA1_Final(pmac->c, &key->md); { unsigned int inp_blocks, pad_blocks; /* but pretend as if we hashed padded payload */ inp_blocks = 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); res += (unsigned int)(len - inp_len); pad_blocks = res / SHA_CBLOCK; res %= SHA_CBLOCK; pad_blocks += 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); for (; inp_blocks < pad_blocks; inp_blocks++) sha1_block_data_order(&key->md, data, 1); } # endif key->md = key->tail; SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH); SHA1_Final(pmac->c, &key->md); /* verify HMAC */ out += inp_len; len -= inp_len; # if 1 /* see original reference version in #else */ { unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH; size_t off = out - p; unsigned int c, cmask; maxpad += SHA_DIGEST_LENGTH; for (res = 0, i = 0, j = 0; j < maxpad; j++) { c = p[j]; cmask = ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) * 8 - 1); res |= (c ^ pad) & ~cmask; /* ... and padding */ cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1); res |= (c ^ pmac->c[i]) & cmask; i += 1 & cmask; } maxpad -= SHA_DIGEST_LENGTH; res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); ret &= (int)~res; } # else /* pre-lucky-13 reference version of above */ for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++) res |= out[i] ^ pmac->c[i]; res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); ret &= (int)~res; /* verify padding */ pad = (pad & ~res) | (maxpad & res); out = out + len - 1 - pad; for (res = 0, i = 0; i < pad; i++) res |= out[i] ^ pad; res = (0 - res) >> (sizeof(res) * 8 - 1); ret &= (int)~res; # endif return ret; } else { # if defined(STITCHED_DECRYPT_CALL) if (len >= 1024 && ctx->key_len == 32) { if (sha_off %= SHA_CBLOCK) blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK; else blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK; aes_off = len - blocks * SHA_CBLOCK; aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0); SHA1_Update(&key->md, out, sha_off); aesni256_cbc_sha1_dec(in + aes_off, out + aes_off, blocks, &key->ks, ctx->iv, &key->md, out + sha_off); sha_off += blocks *= SHA_CBLOCK; out += sha_off; len -= sha_off; key->md.Nh += blocks >> 29; key->md.Nl += blocks <<= 3; if (key->md.Nl < (unsigned int)blocks) key->md.Nh++; } else # endif /* decrypt HMAC|padding at once */ aesni_cbc_encrypt(in, out, len, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 0); SHA1_Update(&key->md, out, len); } } return 1; } static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_AES_HMAC_SHA1 *key = data(ctx); switch (type) { case EVP_CTRL_AEAD_SET_MAC_KEY: { unsigned int i; unsigned char hmac_key[64]; memset(hmac_key, 0, sizeof(hmac_key)); if (arg > (int)sizeof(hmac_key)) { SHA1_Init(&key->head); SHA1_Update(&key->head, ptr, arg); SHA1_Final(hmac_key, &key->head); } else { memcpy(hmac_key, ptr, arg); } for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36; /* ipad */ SHA1_Init(&key->head); SHA1_Update(&key->head, hmac_key, sizeof(hmac_key)); for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */ SHA1_Init(&key->tail); SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key)); OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); return 1; } case EVP_CTRL_AEAD_TLS1_AAD: { unsigned char *p = ptr; unsigned int len; if (arg != EVP_AEAD_TLS1_AAD_LEN) return -1; len = p[arg - 2] << 8 | p[arg - 1]; if (EVP_CIPHER_CTX_encrypting(ctx)) { key->payload_length = len; if ((key->aux.tls_ver = p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) { if (len < AES_BLOCK_SIZE) return 0; len -= AES_BLOCK_SIZE; p[arg - 2] = len >> 8; p[arg - 1] = len; } key->md = key->head; SHA1_Update(&key->md, p, arg); return (int)(((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE) - len); } else { memcpy(key->aux.tls_aad, ptr, arg); key->payload_length = arg; return SHA_DIGEST_LENGTH; } } # if !defined(OPENSSL_NO_MULTIBLOCK) case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE: return (int)(5 + 16 + ((arg + 20 + 16) & -16)); case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD: { EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; unsigned int n4x = 1, x4; unsigned int frag, last, packlen, inp_len; if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) return -1; inp_len = param->inp[11] << 8 | param->inp[12]; if (EVP_CIPHER_CTX_encrypting(ctx)) { if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION) return -1; if (inp_len) { if (inp_len < 4096) return 0; /* too short */ if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5)) n4x = 2; /* AVX2 */ } else if ((n4x = param->interleave / 4) && n4x <= 2) inp_len = param->len; else return -1; key->md = key->head; SHA1_Update(&key->md, param->inp, 13); x4 = 4 * n4x; n4x += 1; frag = inp_len >> n4x; last = inp_len + frag - (frag << n4x); if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) { frag++; last -= x4 - 1; } packlen = 5 + 16 + ((frag + 20 + 16) & -16); packlen = (packlen << n4x) - packlen; packlen += 5 + 16 + ((last + 20 + 16) & -16); param->interleave = x4; return (int)packlen; } else return -1; /* not yet */ } case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT: { EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; return (int)tls1_1_multi_block_encrypt(key, param->out, param->inp, param->len, param->interleave / 4); } case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT: # endif default: return -1; } } static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = { # ifdef NID_aes_128_cbc_hmac_sha1 NID_aes_128_cbc_hmac_sha1, # else NID_undef, # endif AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE, EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, aesni_cbc_hmac_sha1_init_key, aesni_cbc_hmac_sha1_cipher, NULL, sizeof(EVP_AES_HMAC_SHA1), EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha1_ctrl, NULL }; static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = { # ifdef NID_aes_256_cbc_hmac_sha1 NID_aes_256_cbc_hmac_sha1, # else NID_undef, # endif AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE, EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, aesni_cbc_hmac_sha1_init_key, aesni_cbc_hmac_sha1_cipher, NULL, sizeof(EVP_AES_HMAC_SHA1), EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha1_ctrl, NULL }; const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void) { return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ? &aesni_128_cbc_hmac_sha1_cipher : NULL); } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void) { return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ? &aesni_256_cbc_hmac_sha1_cipher : NULL); } #else const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void) { return NULL; } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void) { return NULL; } #endif openssl-1.1.1f/crypto/evp/e_aes_cbc_hmac_sha256.c000066400000000000000000000761101364063235100215740ustar00rootroot00000000000000/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include "modes_local.h" #include "internal/constant_time.h" #include "crypto/evp.h" typedef struct { AES_KEY ks; SHA256_CTX head, tail, md; size_t payload_length; /* AAD length in decrypt case */ union { unsigned int tls_ver; unsigned char tls_aad[16]; /* 13 used */ } aux; } EVP_AES_HMAC_SHA256; # define NO_PAYLOAD_LENGTH ((size_t)-1) #if defined(AESNI_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) ) extern unsigned int OPENSSL_ia32cap_P[]; # define AESNI_CAPABLE (1<<(57-32)) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks, const AES_KEY *key, unsigned char iv[16], SHA256_CTX *ctx, const void *in0); # define data(ctx) ((EVP_AES_HMAC_SHA256 *)EVP_CIPHER_CTX_get_cipher_data(ctx)) static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey, const unsigned char *iv, int enc) { EVP_AES_HMAC_SHA256 *key = data(ctx); int ret; if (enc) ret = aesni_set_encrypt_key(inkey, EVP_CIPHER_CTX_key_length(ctx) * 8, &key->ks); else ret = aesni_set_decrypt_key(inkey, EVP_CIPHER_CTX_key_length(ctx) * 8, &key->ks); SHA256_Init(&key->head); /* handy when benchmarking */ key->tail = key->head; key->md = key->head; key->payload_length = NO_PAYLOAD_LENGTH; return ret < 0 ? 0 : 1; } # define STITCHED_CALL # if !defined(STITCHED_CALL) # define aes_off 0 # endif void sha256_block_data_order(void *c, const void *p, size_t len); static void sha256_update(SHA256_CTX *c, const void *data, size_t len) { const unsigned char *ptr = data; size_t res; if ((res = c->num)) { res = SHA256_CBLOCK - res; if (len < res) res = len; SHA256_Update(c, ptr, res); ptr += res; len -= res; } res = len % SHA256_CBLOCK; len -= res; if (len) { sha256_block_data_order(c, ptr, len / SHA256_CBLOCK); ptr += len; c->Nh += len >> 29; c->Nl += len <<= 3; if (c->Nl < (unsigned int)len) c->Nh++; } if (res) SHA256_Update(c, ptr, res); } # ifdef SHA256_Update # undef SHA256_Update # endif # define SHA256_Update sha256_update # if !defined(OPENSSL_NO_MULTIBLOCK) typedef struct { unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8]; } SHA256_MB_CTX; typedef struct { const unsigned char *ptr; int blocks; } HASH_DESC; void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int); typedef struct { const unsigned char *inp; unsigned char *out; int blocks; u64 iv[2]; } CIPH_DESC; void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int); static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key, unsigned char *out, const unsigned char *inp, size_t inp_len, int n4x) { /* n4x is 1 or 2 */ HASH_DESC hash_d[8], edges[8]; CIPH_DESC ciph_d[8]; unsigned char storage[sizeof(SHA256_MB_CTX) + 32]; union { u64 q[16]; u32 d[32]; u8 c[128]; } blocks[8]; SHA256_MB_CTX *ctx; unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed = 0; size_t ret = 0; u8 *IVs; # if defined(BSWAP8) u64 seqnum; # endif /* ask for IVs in bulk */ if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0) return 0; /* align */ ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); frag = (unsigned int)inp_len >> (1 + n4x); last = (unsigned int)inp_len + frag - (frag << (1 + n4x)); if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) { frag++; last -= x4 - 1; } packlen = 5 + 16 + ((frag + 32 + 16) & -16); /* populate descriptors with pointers and IVs */ hash_d[0].ptr = inp; ciph_d[0].inp = inp; /* 5+16 is place for header and explicit IV */ ciph_d[0].out = out + 5 + 16; memcpy(ciph_d[0].out - 16, IVs, 16); memcpy(ciph_d[0].iv, IVs, 16); IVs += 16; for (i = 1; i < x4; i++) { ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag; ciph_d[i].out = ciph_d[i - 1].out + packlen; memcpy(ciph_d[i].out - 16, IVs, 16); memcpy(ciph_d[i].iv, IVs, 16); IVs += 16; } # if defined(BSWAP8) memcpy(blocks[0].c, key->md.data, 8); seqnum = BSWAP8(blocks[0].q[0]); # endif for (i = 0; i < x4; i++) { unsigned int len = (i == (x4 - 1) ? last : frag); # if !defined(BSWAP8) unsigned int carry, j; # endif ctx->A[i] = key->md.h[0]; ctx->B[i] = key->md.h[1]; ctx->C[i] = key->md.h[2]; ctx->D[i] = key->md.h[3]; ctx->E[i] = key->md.h[4]; ctx->F[i] = key->md.h[5]; ctx->G[i] = key->md.h[6]; ctx->H[i] = key->md.h[7]; /* fix seqnum */ # if defined(BSWAP8) blocks[i].q[0] = BSWAP8(seqnum + i); # else for (carry = i, j = 8; j--;) { blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry; carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1); } # endif blocks[i].c[8] = ((u8 *)key->md.data)[8]; blocks[i].c[9] = ((u8 *)key->md.data)[9]; blocks[i].c[10] = ((u8 *)key->md.data)[10]; /* fix length */ blocks[i].c[11] = (u8)(len >> 8); blocks[i].c[12] = (u8)(len); memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13); hash_d[i].ptr += 64 - 13; hash_d[i].blocks = (len - (64 - 13)) / 64; edges[i].ptr = blocks[i].c; edges[i].blocks = 1; } /* hash 13-byte headers and first 64-13 bytes of inputs */ sha256_multi_block(ctx, edges, n4x); /* hash bulk inputs */ # define MAXCHUNKSIZE 2048 # if MAXCHUNKSIZE%64 # error "MAXCHUNKSIZE is not divisible by 64" # elif MAXCHUNKSIZE /* * goal is to minimize pressure on L1 cache by moving in shorter steps, * so that hashed data is still in the cache by the time we encrypt it */ minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64; if (minblocks > MAXCHUNKSIZE / 64) { for (i = 0; i < x4; i++) { edges[i].ptr = hash_d[i].ptr; edges[i].blocks = MAXCHUNKSIZE / 64; ciph_d[i].blocks = MAXCHUNKSIZE / 16; } do { sha256_multi_block(ctx, edges, n4x); aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); for (i = 0; i < x4; i++) { edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE; hash_d[i].blocks -= MAXCHUNKSIZE / 64; edges[i].blocks = MAXCHUNKSIZE / 64; ciph_d[i].inp += MAXCHUNKSIZE; ciph_d[i].out += MAXCHUNKSIZE; ciph_d[i].blocks = MAXCHUNKSIZE / 16; memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16); } processed += MAXCHUNKSIZE; minblocks -= MAXCHUNKSIZE / 64; } while (minblocks > MAXCHUNKSIZE / 64); } # endif # undef MAXCHUNKSIZE sha256_multi_block(ctx, hash_d, n4x); memset(blocks, 0, sizeof(blocks)); for (i = 0; i < x4; i++) { unsigned int len = (i == (x4 - 1) ? last : frag), off = hash_d[i].blocks * 64; const unsigned char *ptr = hash_d[i].ptr + off; off = (len - processed) - (64 - 13) - off; /* remainder actually */ memcpy(blocks[i].c, ptr, off); blocks[i].c[off] = 0x80; len += 64 + 13; /* 64 is HMAC header */ len *= 8; /* convert to bits */ if (off < (64 - 8)) { # ifdef BSWAP4 blocks[i].d[15] = BSWAP4(len); # else PUTU32(blocks[i].c + 60, len); # endif edges[i].blocks = 1; } else { # ifdef BSWAP4 blocks[i].d[31] = BSWAP4(len); # else PUTU32(blocks[i].c + 124, len); # endif edges[i].blocks = 2; } edges[i].ptr = blocks[i].c; } /* hash input tails and finalize */ sha256_multi_block(ctx, edges, n4x); memset(blocks, 0, sizeof(blocks)); for (i = 0; i < x4; i++) { # ifdef BSWAP4 blocks[i].d[0] = BSWAP4(ctx->A[i]); ctx->A[i] = key->tail.h[0]; blocks[i].d[1] = BSWAP4(ctx->B[i]); ctx->B[i] = key->tail.h[1]; blocks[i].d[2] = BSWAP4(ctx->C[i]); ctx->C[i] = key->tail.h[2]; blocks[i].d[3] = BSWAP4(ctx->D[i]); ctx->D[i] = key->tail.h[3]; blocks[i].d[4] = BSWAP4(ctx->E[i]); ctx->E[i] = key->tail.h[4]; blocks[i].d[5] = BSWAP4(ctx->F[i]); ctx->F[i] = key->tail.h[5]; blocks[i].d[6] = BSWAP4(ctx->G[i]); ctx->G[i] = key->tail.h[6]; blocks[i].d[7] = BSWAP4(ctx->H[i]); ctx->H[i] = key->tail.h[7]; blocks[i].c[32] = 0x80; blocks[i].d[15] = BSWAP4((64 + 32) * 8); # else PUTU32(blocks[i].c + 0, ctx->A[i]); ctx->A[i] = key->tail.h[0]; PUTU32(blocks[i].c + 4, ctx->B[i]); ctx->B[i] = key->tail.h[1]; PUTU32(blocks[i].c + 8, ctx->C[i]); ctx->C[i] = key->tail.h[2]; PUTU32(blocks[i].c + 12, ctx->D[i]); ctx->D[i] = key->tail.h[3]; PUTU32(blocks[i].c + 16, ctx->E[i]); ctx->E[i] = key->tail.h[4]; PUTU32(blocks[i].c + 20, ctx->F[i]); ctx->F[i] = key->tail.h[5]; PUTU32(blocks[i].c + 24, ctx->G[i]); ctx->G[i] = key->tail.h[6]; PUTU32(blocks[i].c + 28, ctx->H[i]); ctx->H[i] = key->tail.h[7]; blocks[i].c[32] = 0x80; PUTU32(blocks[i].c + 60, (64 + 32) * 8); # endif edges[i].ptr = blocks[i].c; edges[i].blocks = 1; } /* finalize MACs */ sha256_multi_block(ctx, edges, n4x); for (i = 0; i < x4; i++) { unsigned int len = (i == (x4 - 1) ? last : frag), pad, j; unsigned char *out0 = out; memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed); ciph_d[i].inp = ciph_d[i].out; out += 5 + 16 + len; /* write MAC */ PUTU32(out + 0, ctx->A[i]); PUTU32(out + 4, ctx->B[i]); PUTU32(out + 8, ctx->C[i]); PUTU32(out + 12, ctx->D[i]); PUTU32(out + 16, ctx->E[i]); PUTU32(out + 20, ctx->F[i]); PUTU32(out + 24, ctx->G[i]); PUTU32(out + 28, ctx->H[i]); out += 32; len += 32; /* pad */ pad = 15 - len % 16; for (j = 0; j <= pad; j++) *(out++) = pad; len += pad + 1; ciph_d[i].blocks = (len - processed) / 16; len += 16; /* account for explicit iv */ /* arrange header */ out0[0] = ((u8 *)key->md.data)[8]; out0[1] = ((u8 *)key->md.data)[9]; out0[2] = ((u8 *)key->md.data)[10]; out0[3] = (u8)(len >> 8); out0[4] = (u8)(len); ret += len + 5; inp += frag; } aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); OPENSSL_cleanse(blocks, sizeof(blocks)); OPENSSL_cleanse(ctx, sizeof(*ctx)); return ret; } # endif static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_HMAC_SHA256 *key = data(ctx); unsigned int l; size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and * later */ sha_off = 0; # if defined(STITCHED_CALL) size_t aes_off = 0, blocks; sha_off = SHA256_CBLOCK - key->md.num; # endif key->payload_length = NO_PAYLOAD_LENGTH; if (len % AES_BLOCK_SIZE) return 0; if (EVP_CIPHER_CTX_encrypting(ctx)) { if (plen == NO_PAYLOAD_LENGTH) plen = len; else if (len != ((plen + SHA256_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)) return 0; else if (key->aux.tls_ver >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; # if defined(STITCHED_CALL) /* * Assembly stitch handles AVX-capable processors, but its * performance is not optimal on AMD Jaguar, ~40% worse, for * unknown reasons. Incidentally processor in question supports * AVX, but not AMD-specific XOP extension, which can be used * to identify it and avoid stitch invocation. So that after we * establish that current CPU supports AVX, we even see if it's * either even XOP-capable Bulldozer-based or GenuineIntel one. * But SHAEXT-capable go ahead... */ if (((OPENSSL_ia32cap_P[2] & (1 << 29)) || /* SHAEXT? */ ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */ ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32))) /* XOP? */ | (OPENSSL_ia32cap_P[0] & (1 << 30))))) && /* "Intel CPU"? */ plen > (sha_off + iv) && (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) { SHA256_Update(&key->md, in + iv, sha_off); (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &key->md, in + iv + sha_off); blocks *= SHA256_CBLOCK; aes_off += blocks; sha_off += blocks; key->md.Nh += blocks >> 29; key->md.Nl += blocks <<= 3; if (key->md.Nl < (unsigned int)blocks) key->md.Nh++; } else { sha_off = 0; } # endif sha_off += iv; SHA256_Update(&key->md, in + sha_off, plen - sha_off); if (plen != len) { /* "TLS" mode of operation */ if (in != out) memcpy(out + aes_off, in + aes_off, plen - aes_off); /* calculate HMAC and append it to payload */ SHA256_Final(out + plen, &key->md); key->md = key->tail; SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH); SHA256_Final(out + plen, &key->md); /* pad the payload|hmac */ plen += SHA256_DIGEST_LENGTH; for (l = len - plen - 1; plen < len; plen++) out[plen] = l; /* encrypt HMAC|padding at once */ aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1); } else { aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1); } } else { union { unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)]; unsigned char c[64 + SHA256_DIGEST_LENGTH]; } mac, *pmac; /* arrange cache line alignment */ pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64)); /* decrypt HMAC|padding at once */ aesni_cbc_encrypt(in, out, len, &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 0); if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ size_t inp_len, mask, j, i; unsigned int res, maxpad, pad, bitlen; int ret = 1; union { unsigned int u[SHA_LBLOCK]; unsigned char c[SHA256_CBLOCK]; } *data = (void *)key->md.data; if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3]) >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; if (len < (iv + SHA256_DIGEST_LENGTH + 1)) return 0; /* omit explicit iv */ out += iv; len -= iv; /* figure out payload length */ pad = out[len - 1]; maxpad = len - (SHA256_DIGEST_LENGTH + 1); maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8); maxpad &= 255; mask = constant_time_ge(maxpad, pad); ret &= mask; /* * If pad is invalid then we will fail the above test but we must * continue anyway because we are in constant time code. However, * we'll use the maxpad value instead of the supplied pad to make * sure we perform well defined pointer arithmetic. */ pad = constant_time_select(mask, pad, maxpad); inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1); key->aux.tls_aad[plen - 2] = inp_len >> 8; key->aux.tls_aad[plen - 1] = inp_len; /* calculate HMAC */ key->md = key->head; SHA256_Update(&key->md, key->aux.tls_aad, plen); # if 1 /* see original reference version in #else */ len -= SHA256_DIGEST_LENGTH; /* amend mac */ if (len >= (256 + SHA256_CBLOCK)) { j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK); j += SHA256_CBLOCK - key->md.num; SHA256_Update(&key->md, out, j); out += j; len -= j; inp_len -= j; } /* but pretend as if we hashed padded payload */ bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */ # ifdef BSWAP4 bitlen = BSWAP4(bitlen); # else mac.c[0] = 0; mac.c[1] = (unsigned char)(bitlen >> 16); mac.c[2] = (unsigned char)(bitlen >> 8); mac.c[3] = (unsigned char)bitlen; bitlen = mac.u[0]; # endif pmac->u[0] = 0; pmac->u[1] = 0; pmac->u[2] = 0; pmac->u[3] = 0; pmac->u[4] = 0; pmac->u[5] = 0; pmac->u[6] = 0; pmac->u[7] = 0; for (res = key->md.num, j = 0; j < len; j++) { size_t c = out[j]; mask = (j - inp_len) >> (sizeof(j) * 8 - 8); c &= mask; c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8)); data->c[res++] = (unsigned char)c; if (res != SHA256_CBLOCK) continue; /* j is not incremented yet */ mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1)); data->u[SHA_LBLOCK - 1] |= bitlen & mask; sha256_block_data_order(&key->md, data, 1); mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h[0] & mask; pmac->u[1] |= key->md.h[1] & mask; pmac->u[2] |= key->md.h[2] & mask; pmac->u[3] |= key->md.h[3] & mask; pmac->u[4] |= key->md.h[4] & mask; pmac->u[5] |= key->md.h[5] & mask; pmac->u[6] |= key->md.h[6] & mask; pmac->u[7] |= key->md.h[7] & mask; res = 0; } for (i = res; i < SHA256_CBLOCK; i++, j++) data->c[i] = 0; if (res > SHA256_CBLOCK - 8) { mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1)); data->u[SHA_LBLOCK - 1] |= bitlen & mask; sha256_block_data_order(&key->md, data, 1); mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h[0] & mask; pmac->u[1] |= key->md.h[1] & mask; pmac->u[2] |= key->md.h[2] & mask; pmac->u[3] |= key->md.h[3] & mask; pmac->u[4] |= key->md.h[4] & mask; pmac->u[5] |= key->md.h[5] & mask; pmac->u[6] |= key->md.h[6] & mask; pmac->u[7] |= key->md.h[7] & mask; memset(data, 0, SHA256_CBLOCK); j += 64; } data->u[SHA_LBLOCK - 1] = bitlen; sha256_block_data_order(&key->md, data, 1); mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h[0] & mask; pmac->u[1] |= key->md.h[1] & mask; pmac->u[2] |= key->md.h[2] & mask; pmac->u[3] |= key->md.h[3] & mask; pmac->u[4] |= key->md.h[4] & mask; pmac->u[5] |= key->md.h[5] & mask; pmac->u[6] |= key->md.h[6] & mask; pmac->u[7] |= key->md.h[7] & mask; # ifdef BSWAP4 pmac->u[0] = BSWAP4(pmac->u[0]); pmac->u[1] = BSWAP4(pmac->u[1]); pmac->u[2] = BSWAP4(pmac->u[2]); pmac->u[3] = BSWAP4(pmac->u[3]); pmac->u[4] = BSWAP4(pmac->u[4]); pmac->u[5] = BSWAP4(pmac->u[5]); pmac->u[6] = BSWAP4(pmac->u[6]); pmac->u[7] = BSWAP4(pmac->u[7]); # else for (i = 0; i < 8; i++) { res = pmac->u[i]; pmac->c[4 * i + 0] = (unsigned char)(res >> 24); pmac->c[4 * i + 1] = (unsigned char)(res >> 16); pmac->c[4 * i + 2] = (unsigned char)(res >> 8); pmac->c[4 * i + 3] = (unsigned char)res; } # endif len += SHA256_DIGEST_LENGTH; # else SHA256_Update(&key->md, out, inp_len); res = key->md.num; SHA256_Final(pmac->c, &key->md); { unsigned int inp_blocks, pad_blocks; /* but pretend as if we hashed padded payload */ inp_blocks = 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); res += (unsigned int)(len - inp_len); pad_blocks = res / SHA256_CBLOCK; res %= SHA256_CBLOCK; pad_blocks += 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); for (; inp_blocks < pad_blocks; inp_blocks++) sha1_block_data_order(&key->md, data, 1); } # endif /* pre-lucky-13 reference version of above */ key->md = key->tail; SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH); SHA256_Final(pmac->c, &key->md); /* verify HMAC */ out += inp_len; len -= inp_len; # if 1 /* see original reference version in #else */ { unsigned char *p = out + len - 1 - maxpad - SHA256_DIGEST_LENGTH; size_t off = out - p; unsigned int c, cmask; maxpad += SHA256_DIGEST_LENGTH; for (res = 0, i = 0, j = 0; j < maxpad; j++) { c = p[j]; cmask = ((int)(j - off - SHA256_DIGEST_LENGTH)) >> (sizeof(int) * 8 - 1); res |= (c ^ pad) & ~cmask; /* ... and padding */ cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1); res |= (c ^ pmac->c[i]) & cmask; i += 1 & cmask; } maxpad -= SHA256_DIGEST_LENGTH; res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); ret &= (int)~res; } # else /* pre-lucky-13 reference version of above */ for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++) res |= out[i] ^ pmac->c[i]; res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); ret &= (int)~res; /* verify padding */ pad = (pad & ~res) | (maxpad & res); out = out + len - 1 - pad; for (res = 0, i = 0; i < pad; i++) res |= out[i] ^ pad; res = (0 - res) >> (sizeof(res) * 8 - 1); ret &= (int)~res; # endif return ret; } else { SHA256_Update(&key->md, out, len); } } return 1; } static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_AES_HMAC_SHA256 *key = data(ctx); unsigned int u_arg = (unsigned int)arg; switch (type) { case EVP_CTRL_AEAD_SET_MAC_KEY: { unsigned int i; unsigned char hmac_key[64]; memset(hmac_key, 0, sizeof(hmac_key)); if (arg < 0) return -1; if (u_arg > sizeof(hmac_key)) { SHA256_Init(&key->head); SHA256_Update(&key->head, ptr, arg); SHA256_Final(hmac_key, &key->head); } else { memcpy(hmac_key, ptr, arg); } for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36; /* ipad */ SHA256_Init(&key->head); SHA256_Update(&key->head, hmac_key, sizeof(hmac_key)); for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */ SHA256_Init(&key->tail); SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key)); OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); return 1; } case EVP_CTRL_AEAD_TLS1_AAD: { unsigned char *p = ptr; unsigned int len; if (arg != EVP_AEAD_TLS1_AAD_LEN) return -1; len = p[arg - 2] << 8 | p[arg - 1]; if (EVP_CIPHER_CTX_encrypting(ctx)) { key->payload_length = len; if ((key->aux.tls_ver = p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) { if (len < AES_BLOCK_SIZE) return 0; len -= AES_BLOCK_SIZE; p[arg - 2] = len >> 8; p[arg - 1] = len; } key->md = key->head; SHA256_Update(&key->md, p, arg); return (int)(((len + SHA256_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE) - len); } else { memcpy(key->aux.tls_aad, ptr, arg); key->payload_length = arg; return SHA256_DIGEST_LENGTH; } } # if !defined(OPENSSL_NO_MULTIBLOCK) case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE: return (int)(5 + 16 + ((arg + 32 + 16) & -16)); case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD: { EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; unsigned int n4x = 1, x4; unsigned int frag, last, packlen, inp_len; if (arg < 0) return -1; if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) return -1; inp_len = param->inp[11] << 8 | param->inp[12]; if (EVP_CIPHER_CTX_encrypting(ctx)) { if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION) return -1; if (inp_len) { if (inp_len < 4096) return 0; /* too short */ if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5)) n4x = 2; /* AVX2 */ } else if ((n4x = param->interleave / 4) && n4x <= 2) inp_len = param->len; else return -1; key->md = key->head; SHA256_Update(&key->md, param->inp, 13); x4 = 4 * n4x; n4x += 1; frag = inp_len >> n4x; last = inp_len + frag - (frag << n4x); if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) { frag++; last -= x4 - 1; } packlen = 5 + 16 + ((frag + 32 + 16) & -16); packlen = (packlen << n4x) - packlen; packlen += 5 + 16 + ((last + 32 + 16) & -16); param->interleave = x4; return (int)packlen; } else return -1; /* not yet */ } case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT: { EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; return (int)tls1_1_multi_block_encrypt(key, param->out, param->inp, param->len, param->interleave / 4); } case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT: # endif default: return -1; } } static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = { # ifdef NID_aes_128_cbc_hmac_sha256 NID_aes_128_cbc_hmac_sha256, # else NID_undef, # endif AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE, EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, aesni_cbc_hmac_sha256_init_key, aesni_cbc_hmac_sha256_cipher, NULL, sizeof(EVP_AES_HMAC_SHA256), EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha256_ctrl, NULL }; static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = { # ifdef NID_aes_256_cbc_hmac_sha256 NID_aes_256_cbc_hmac_sha256, # else NID_undef, # endif AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE, EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, aesni_cbc_hmac_sha256_init_key, aesni_cbc_hmac_sha256_cipher, NULL, sizeof(EVP_AES_HMAC_SHA256), EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha256_ctrl, NULL }; const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) { return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ? &aesni_128_cbc_hmac_sha256_cipher : NULL); } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) { return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ? &aesni_256_cbc_hmac_sha256_cipher : NULL); } #else const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) { return NULL; } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) { return NULL; } #endif /* AESNI_ASM */ openssl-1.1.1f/crypto/evp/e_aria.c000066400000000000000000000634151364063235100170550ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #ifndef OPENSSL_NO_ARIA # include # include # include # include # include "crypto/aria.h" # include "crypto/evp.h" # include "modes_local.h" # include "evp_local.h" /* ARIA subkey Structure */ typedef struct { ARIA_KEY ks; } EVP_ARIA_KEY; /* ARIA GCM context */ typedef struct { union { double align; ARIA_KEY ks; } ks; /* ARIA subkey to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; unsigned char *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ int tls_aad_len; /* TLS AAD length */ } EVP_ARIA_GCM_CTX; /* ARIA CCM context */ typedef struct { union { double align; ARIA_KEY ks; } ks; /* ARIA key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ int tag_set; /* Set if tag is valid */ int len_set; /* Set if message length set */ int L, M; /* L and M parameters from RFC3610 */ int tls_aad_len; /* TLS AAD length */ CCM128_CONTEXT ccm; ccm128_f str; } EVP_ARIA_CCM_CTX; /* The subkey for ARIA is generated. */ static int aria_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret; int mode = EVP_CIPHER_CTX_mode(ctx); if (enc || (mode != EVP_CIPH_ECB_MODE && mode != EVP_CIPH_CBC_MODE)) ret = aria_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, EVP_CIPHER_CTX_get_cipher_data(ctx)); else ret = aria_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, EVP_CIPHER_CTX_get_cipher_data(ctx)); if (ret < 0) { EVPerr(EVP_F_ARIA_INIT_KEY,EVP_R_ARIA_KEY_SETUP_FAILED); return 0; } return 1; } static void aria_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const ARIA_KEY *key, unsigned char *ivec, const int enc) { if (enc) CRYPTO_cbc128_encrypt(in, out, len, key, ivec, (block128_f) aria_encrypt); else CRYPTO_cbc128_decrypt(in, out, len, key, ivec, (block128_f) aria_encrypt); } static void aria_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const ARIA_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_encrypt(in, out, length, key, ivec, num, enc, (block128_f) aria_encrypt); } static void aria_cfb1_encrypt(const unsigned char *in, unsigned char *out, size_t length, const ARIA_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_1_encrypt(in, out, length, key, ivec, num, enc, (block128_f) aria_encrypt); } static void aria_cfb8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const ARIA_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_8_encrypt(in, out, length, key, ivec, num, enc, (block128_f) aria_encrypt); } static void aria_ecb_encrypt(const unsigned char *in, unsigned char *out, const ARIA_KEY *key, const int enc) { aria_encrypt(in, out, key); } static void aria_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const ARIA_KEY *key, unsigned char *ivec, int *num) { CRYPTO_ofb128_encrypt(in, out, length, key, ivec, num, (block128_f) aria_encrypt); } IMPLEMENT_BLOCK_CIPHER(aria_128, ks, aria, EVP_ARIA_KEY, NID_aria_128, 16, 16, 16, 128, 0, aria_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL) IMPLEMENT_BLOCK_CIPHER(aria_192, ks, aria, EVP_ARIA_KEY, NID_aria_192, 16, 24, 16, 128, 0, aria_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL) IMPLEMENT_BLOCK_CIPHER(aria_256, ks, aria, EVP_ARIA_KEY, NID_aria_256, 16, 32, 16, 128, 0, aria_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL) # define IMPLEMENT_ARIA_CFBR(ksize,cbits) \ IMPLEMENT_CFBR(aria,aria,EVP_ARIA_KEY,ks,ksize,cbits,16,0) IMPLEMENT_ARIA_CFBR(128,1) IMPLEMENT_ARIA_CFBR(192,1) IMPLEMENT_ARIA_CFBR(256,1) IMPLEMENT_ARIA_CFBR(128,8) IMPLEMENT_ARIA_CFBR(192,8) IMPLEMENT_ARIA_CFBR(256,8) # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aria_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aria_init_key, \ aria_##mode##_cipher, \ NULL, \ sizeof(EVP_ARIA_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aria_##keylen##_##mode(void) \ { return &aria_##keylen##_##mode; } static int aria_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = EVP_CIPHER_CTX_num(ctx); EVP_ARIA_KEY *dat = EVP_C_DATA(EVP_ARIA_KEY,ctx); CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_buf_noconst(ctx), &num, (block128_f) aria_encrypt); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } BLOCK_CIPHER_generic(NID_aria, 128, 1, 16, ctr, ctr, CTR, 0) BLOCK_CIPHER_generic(NID_aria, 192, 1, 16, ctr, ctr, CTR, 0) BLOCK_CIPHER_generic(NID_aria, 256, 1, 16, ctr, ctr, CTR, 0) /* Authenticated cipher modes (GCM/CCM) */ /* increment counter (64-bit int) by 1 */ static void ctr64_inc(unsigned char *counter) { int n = 8; unsigned char c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } static int aria_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret; EVP_ARIA_GCM_CTX *gctx = EVP_C_DATA(EVP_ARIA_GCM_CTX,ctx); if (!iv && !key) return 1; if (key) { ret = aria_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aria_encrypt); if (ret < 0) { EVPerr(EVP_F_ARIA_GCM_INIT_KEY,EVP_R_ARIA_KEY_SETUP_FAILED); return 0; } /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } static int aria_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_ARIA_GCM_CTX *gctx = EVP_C_DATA(EVP_ARIA_GCM_CTX,c); switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = EVP_CIPHER_iv_length(c->cipher); gctx->iv = EVP_CIPHER_CTX_iv_noconst(c); gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_AEAD_SET_IVLEN: if (arg <= 0) return 0; /* Allocate memory for IV if needed */ if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c)) OPENSSL_free(gctx->iv); if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) { EVPerr(EVP_F_ARIA_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } } gctx->ivlen = arg; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = gctx->ivlen; return 1; case EVP_CTRL_AEAD_SET_TAG: if (arg <= 0 || arg > 16 || EVP_CIPHER_CTX_encrypting(c)) return 0; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg <= 0 || arg > 16 || !EVP_CIPHER_CTX_encrypting(c) || gctx->taglen < 0) return 0; memcpy(ptr, EVP_CIPHER_CTX_buf_noconst(c), arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* * Fixed field must be at least 4 bytes and invocation field at least * 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); if (EVP_CIPHER_CTX_encrypting(c) && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* * Invocation field will be at least 8 bytes in size and so no need * to check wrap around or increment more than last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || EVP_CIPHER_CTX_encrypting(c)) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); gctx->tls_aad_len = arg; { unsigned int len = EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; /* Correct length for explicit IV */ if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!EVP_CIPHER_CTX_encrypting(c)) { if (len < EVP_GCM_TLS_TAG_LEN) return 0; len -= EVP_GCM_TLS_TAG_LEN; } EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return EVP_GCM_TLS_TAG_LEN; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_ARIA_GCM_CTX *gctx_out = EVP_C_DATA(EVP_ARIA_GCM_CTX,out); if (gctx->gcm.key) { if (gctx->gcm.key != &gctx->ks) return 0; gctx_out->gcm.key = &gctx_out->ks; } if (gctx->iv == EVP_CIPHER_CTX_iv_noconst(c)) gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out); else { if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) { EVPerr(EVP_F_ARIA_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); } return 1; } default: return -1; } } static int aria_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_ARIA_GCM_CTX *gctx = EVP_C_DATA(EVP_ARIA_GCM_CTX,ctx); int rv = -1; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) return -1; /* * Set IV from start of buffer or generate IV and write to start of * buffer. */ if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CIPHER_CTX_encrypting(ctx) ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; /* Use saved AAD */ if (CRYPTO_gcm128_aad(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), gctx->tls_aad_len)) goto err; /* Fix buffer and length to point to payload */ in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; if (EVP_CIPHER_CTX_encrypting(ctx)) { /* Encrypt payload */ if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len)) goto err; out += len; /* Finally write tag */ CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { /* Decrypt */ if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len)) goto err; /* Retrieve tag */ CRYPTO_gcm128_tag(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), EVP_GCM_TLS_TAG_LEN); /* If tag mismatch wipe buffer */ if (CRYPTO_memcmp(EVP_CIPHER_CTX_buf_noconst(ctx), in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } static int aria_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_ARIA_GCM_CTX *gctx = EVP_C_DATA(EVP_ARIA_GCM_CTX,ctx); /* If not set up, return error */ if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return aria_gcm_tls_cipher(ctx, out, in, len); if (!gctx->iv_set) return -1; if (in) { if (out == NULL) { if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) return -1; } else if (EVP_CIPHER_CTX_encrypting(ctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len)) return -1; } else { if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len)) return -1; } return len; } if (!EVP_CIPHER_CTX_encrypting(ctx)) { if (gctx->taglen < 0) return -1; if (CRYPTO_gcm128_finish(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), gctx->taglen) != 0) return -1; gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, EVP_CIPHER_CTX_buf_noconst(ctx), 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } static int aria_gcm_cleanup(EVP_CIPHER_CTX *ctx) { EVP_ARIA_GCM_CTX *gctx = EVP_C_DATA(EVP_ARIA_GCM_CTX, ctx); if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(ctx)) OPENSSL_free(gctx->iv); return 1; } static int aria_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret; EVP_ARIA_CCM_CTX *cctx = EVP_C_DATA(EVP_ARIA_CCM_CTX,ctx); if (!iv && !key) return 1; if (key) { ret = aria_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) aria_encrypt); if (ret < 0) { EVPerr(EVP_F_ARIA_CCM_INIT_KEY,EVP_R_ARIA_KEY_SETUP_FAILED); return 0; } cctx->str = NULL; cctx->key_set = 1; } if (iv) { memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } static int aria_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_ARIA_CCM_CTX *cctx = EVP_C_DATA(EVP_ARIA_CCM_CTX,c); switch (type) { case EVP_CTRL_INIT: cctx->key_set = 0; cctx->iv_set = 0; cctx->L = 8; cctx->M = 12; cctx->tag_set = 0; cctx->len_set = 0; cctx->tls_aad_len = -1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); cctx->tls_aad_len = arg; { uint16_t len = EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; /* Correct length for explicit IV */ if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!EVP_CIPHER_CTX_encrypting(c)) { if (len < cctx->M) return 0; len -= cctx->M; } EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return cctx->M; case EVP_CTRL_CCM_SET_IV_FIXED: /* Sanity check length */ if (arg != EVP_CCM_TLS_FIXED_IV_LEN) return 0; /* Just copy to first part of IV */ memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg); return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = 15 - cctx->L; return 1; case EVP_CTRL_AEAD_SET_IVLEN: arg = 15 - arg; /* fall thru */ case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->L = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; if (EVP_CIPHER_CTX_encrypting(c) && ptr) return 0; if (ptr) { cctx->tag_set = 1; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); } cctx->M = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set) return 0; if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) return 0; cctx->tag_set = 0; cctx->iv_set = 0; cctx->len_set = 0; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_ARIA_CCM_CTX *cctx_out = EVP_C_DATA(EVP_ARIA_CCM_CTX,out); if (cctx->ccm.key) { if (cctx->ccm.key != &cctx->ks) return 0; cctx_out->ccm.key = &cctx_out->ks; } return 1; } default: return -1; } } static int aria_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_ARIA_CCM_CTX *cctx = EVP_C_DATA(EVP_ARIA_CCM_CTX,ctx); CCM128_CONTEXT *ccm = &cctx->ccm; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) return -1; /* If encrypting set explicit IV from sequence number (start of AAD) */ if (EVP_CIPHER_CTX_encrypting(ctx)) memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx), EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Get rest of IV from explicit IV */ memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Correct length value */ len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, len)) return -1; /* Use saved AAD */ CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len); /* Fix buffer to point to payload */ in += EVP_CCM_TLS_EXPLICIT_IV_LEN; out += EVP_CCM_TLS_EXPLICIT_IV_LEN; if (EVP_CIPHER_CTX_encrypting(ctx)) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) return -1; return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; } else { if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, in + len, cctx->M)) return len; } } OPENSSL_cleanse(out, len); return -1; } } static int aria_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_ARIA_CCM_CTX *cctx = EVP_C_DATA(EVP_ARIA_CCM_CTX,ctx); CCM128_CONTEXT *ccm = &cctx->ccm; /* If not set up, return error */ if (!cctx->key_set) return -1; if (cctx->tls_aad_len >= 0) return aria_ccm_tls_cipher(ctx, out, in, len); /* EVP_*Final() doesn't return any data */ if (in == NULL && out != NULL) return 0; if (!cctx->iv_set) return -1; if (!out) { if (!in) { if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, len)) return -1; cctx->len_set = 1; return len; } /* If have AAD need message length */ if (!cctx->len_set && len) return -1; CRYPTO_ccm128_aad(ccm, in, len); return len; } /* The tag must be set before actually decrypting data */ if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set) return -1; /* If not set length yet do it */ if (!cctx->len_set) { if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, len)) return -1; cctx->len_set = 1; } if (EVP_CIPHER_CTX_encrypting(ctx)) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; cctx->tag_set = 1; return len; } else { int rv = -1; if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->M)) rv = len; } } if (rv == -1) OPENSSL_cleanse(out, len); cctx->iv_set = 0; cctx->tag_set = 0; cctx->len_set = 0; return rv; } } #define aria_ccm_cleanup NULL #define ARIA_AUTH_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_FLAG_AEAD_CIPHER \ | EVP_CIPH_CUSTOM_IV_LENGTH) #define BLOCK_CIPHER_aead(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aria_##keylen##_##mode = { \ nid##_##keylen##_##nmode, \ blocksize, keylen/8, ivlen, \ ARIA_AUTH_FLAGS|EVP_CIPH_##MODE##_MODE, \ aria_##mode##_init_key, \ aria_##mode##_cipher, \ aria_##mode##_cleanup, \ sizeof(EVP_ARIA_##MODE##_CTX), \ NULL,NULL,aria_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aria_##keylen##_##mode(void) \ { return (EVP_CIPHER*)&aria_##keylen##_##mode; } BLOCK_CIPHER_aead(NID_aria, 128, 1, 12, gcm, gcm, GCM, 0) BLOCK_CIPHER_aead(NID_aria, 192, 1, 12, gcm, gcm, GCM, 0) BLOCK_CIPHER_aead(NID_aria, 256, 1, 12, gcm, gcm, GCM, 0) BLOCK_CIPHER_aead(NID_aria, 128, 1, 12, ccm, ccm, CCM, 0) BLOCK_CIPHER_aead(NID_aria, 192, 1, 12, ccm, ccm, CCM, 0) BLOCK_CIPHER_aead(NID_aria, 256, 1, 12, ccm, ccm, CCM, 0) #endif openssl-1.1.1f/crypto/evp/e_bf.c000066400000000000000000000022411364063235100165160ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_BF # include # include "crypto/evp.h" # include # include static int bf_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); typedef struct { BF_KEY ks; } EVP_BF_KEY; # define data(ctx) EVP_C_DATA(EVP_BF_KEY,ctx) IMPLEMENT_BLOCK_CIPHER(bf, ks, BF, EVP_BF_KEY, NID_bf, 8, 16, 8, 64, EVP_CIPH_VARIABLE_LENGTH, bf_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL) static int bf_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { BF_set_key(&data(ctx)->ks, EVP_CIPHER_CTX_key_length(ctx), key); return 1; } #endif openssl-1.1.1f/crypto/evp/e_camellia.c000066400000000000000000000332161364063235100177040ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_CAMELLIA NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include # include "crypto/evp.h" # include "modes_local.h" static int camellia_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); /* Camellia subkey Structure */ typedef struct { CAMELLIA_KEY ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_CAMELLIA_KEY; # define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) /* Attribute operation for Camellia */ # define data(ctx) EVP_C_DATA(EVP_CAMELLIA_KEY,ctx) # if defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) /* ---------^^^ this is not a typo, just a way to detect that * assembler support was in general requested... */ # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_CMLL_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_CAMELLIA) void cmll_t4_set_key(const unsigned char *key, int bits, CAMELLIA_KEY *ks); void cmll_t4_encrypt(const unsigned char *in, unsigned char *out, const CAMELLIA_KEY *key); void cmll_t4_decrypt(const unsigned char *in, unsigned char *out, const CAMELLIA_KEY *key); void cmll128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const CAMELLIA_KEY *key, unsigned char *ivec); void cmll128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const CAMELLIA_KEY *key, unsigned char *ivec); void cmll256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const CAMELLIA_KEY *key, unsigned char *ivec); void cmll256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const CAMELLIA_KEY *key, unsigned char *ivec); void cmll128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const CAMELLIA_KEY *key, unsigned char *ivec); void cmll256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const CAMELLIA_KEY *key, unsigned char *ivec); static int cmll_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode, bits; EVP_CAMELLIA_KEY *dat = (EVP_CAMELLIA_KEY *)EVP_CIPHER_CTX_get_cipher_data(ctx); mode = EVP_CIPHER_CTX_mode(ctx); bits = EVP_CIPHER_CTX_key_length(ctx) * 8; cmll_t4_set_key(key, bits, &dat->ks); if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = 0; dat->block = (block128_f) cmll_t4_decrypt; switch (bits) { case 128: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) cmll128_t4_cbc_decrypt : NULL; break; case 192: case 256: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) cmll256_t4_cbc_decrypt : NULL; break; default: ret = -1; } } else { ret = 0; dat->block = (block128_f) cmll_t4_encrypt; switch (bits) { case 128: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) cmll128_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) cmll128_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 192: case 256: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) cmll256_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) cmll256_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; default: ret = -1; } } if (ret < 0) { EVPerr(EVP_F_CMLL_T4_INIT_KEY, EVP_R_CAMELLIA_KEY_SETUP_FAILED); return 0; } return 1; } # define cmll_t4_cbc_cipher camellia_cbc_cipher static int cmll_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define cmll_t4_ecb_cipher camellia_ecb_cipher static int cmll_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define cmll_t4_ofb_cipher camellia_ofb_cipher static int cmll_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define cmll_t4_cfb_cipher camellia_cfb_cipher static int cmll_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define cmll_t4_cfb8_cipher camellia_cfb8_cipher static int cmll_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define cmll_t4_cfb1_cipher camellia_cfb1_cipher static int cmll_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define cmll_t4_ctr_cipher camellia_ctr_cipher static int cmll_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER cmll_t4_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ cmll_t4_init_key, \ cmll_t4_##mode##_cipher, \ NULL, \ sizeof(EVP_CAMELLIA_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER camellia_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ camellia_init_key, \ camellia_##mode##_cipher, \ NULL, \ sizeof(EVP_CAMELLIA_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_camellia_##keylen##_##mode(void) \ { return SPARC_CMLL_CAPABLE?&cmll_t4_##keylen##_##mode:&camellia_##keylen##_##mode; } # else # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER camellia_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ camellia_init_key, \ camellia_##mode##_cipher, \ NULL, \ sizeof(EVP_CAMELLIA_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_camellia_##keylen##_##mode(void) \ { return &camellia_##keylen##_##mode; } # endif # define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ BLOCK_CIPHER_generic(nid, keylen, 1, 16, ctr, ctr, CTR, flags) /* The subkey for Camellia is generated. */ static int camellia_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); ret = Camellia_set_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks); if (ret < 0) { EVPerr(EVP_F_CAMELLIA_INIT_KEY, EVP_R_CAMELLIA_KEY_SETUP_FAILED); return 0; } mode = EVP_CIPHER_CTX_mode(ctx); if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { dat->block = (block128_f) Camellia_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) Camellia_cbc_encrypt : NULL; } else { dat->block = (block128_f) Camellia_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) Camellia_cbc_encrypt : NULL; } return 1; } static int camellia_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); if (dat->stream.cbc) (*dat->stream.cbc) (in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); else if (EVP_CIPHER_CTX_encrypting(ctx)) CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); else CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); return 1; } static int camellia_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = EVP_CIPHER_CTX_block_size(ctx); size_t i; EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); if (len < bl) return 1; for (i = 0, len -= bl; i <= len; i += bl) (*dat->block) (in + i, out + i, &dat->ks); return 1; } static int camellia_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int camellia_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int camellia_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int camellia_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } while (len >= MAXBITCHUNK) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); len -= MAXBITCHUNK; out += MAXBITCHUNK; in += MAXBITCHUNK; } if (len) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); } return 1; } static int camellia_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = EVP_CIPHER_CTX_num(ctx); EVP_CAMELLIA_KEY *dat = EVP_C_DATA(EVP_CAMELLIA_KEY,ctx); if (dat->stream.ctr) CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_buf_noconst(ctx), &num, dat->stream.ctr); else CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_buf_noconst(ctx), &num, dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } BLOCK_CIPHER_generic_pack(NID_camellia, 128, 0) BLOCK_CIPHER_generic_pack(NID_camellia, 192, 0) BLOCK_CIPHER_generic_pack(NID_camellia, 256, 0) #endif openssl-1.1.1f/crypto/evp/e_cast.c000066400000000000000000000023401364063235100170610ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_CAST # include # include # include "crypto/evp.h" # include static int cast_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); typedef struct { CAST_KEY ks; } EVP_CAST_KEY; # define data(ctx) EVP_C_DATA(EVP_CAST_KEY,ctx) IMPLEMENT_BLOCK_CIPHER(cast5, ks, CAST, EVP_CAST_KEY, NID_cast5, 8, CAST_KEY_LENGTH, 8, 64, EVP_CIPH_VARIABLE_LENGTH, cast_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL) static int cast_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { CAST_set_key(&data(ctx)->ks, EVP_CIPHER_CTX_key_length(ctx), key); return 1; } #endif openssl-1.1.1f/crypto/evp/e_chacha20_poly1305.c000066400000000000000000000511561364063235100210650ustar00rootroot00000000000000/* * Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_CHACHA # include # include # include "evp_local.h" # include "crypto/evp.h" # include "crypto/chacha.h" typedef struct { union { double align; /* this ensures even sizeof(EVP_CHACHA_KEY)%8==0 */ unsigned int d[CHACHA_KEY_SIZE / 4]; } key; unsigned int counter[CHACHA_CTR_SIZE / 4]; unsigned char buf[CHACHA_BLK_SIZE]; unsigned int partial_len; } EVP_CHACHA_KEY; #define data(ctx) ((EVP_CHACHA_KEY *)(ctx)->cipher_data) #define CHACHA20_POLY1305_MAX_IVLEN 12 static int chacha_init_key(EVP_CIPHER_CTX *ctx, const unsigned char user_key[CHACHA_KEY_SIZE], const unsigned char iv[CHACHA_CTR_SIZE], int enc) { EVP_CHACHA_KEY *key = data(ctx); unsigned int i; if (user_key) for (i = 0; i < CHACHA_KEY_SIZE; i+=4) { key->key.d[i/4] = CHACHA_U8TOU32(user_key+i); } if (iv) for (i = 0; i < CHACHA_CTR_SIZE; i+=4) { key->counter[i/4] = CHACHA_U8TOU32(iv+i); } key->partial_len = 0; return 1; } static int chacha_cipher(EVP_CIPHER_CTX * ctx, unsigned char *out, const unsigned char *inp, size_t len) { EVP_CHACHA_KEY *key = data(ctx); unsigned int n, rem, ctr32; if ((n = key->partial_len)) { while (len && n < CHACHA_BLK_SIZE) { *out++ = *inp++ ^ key->buf[n++]; len--; } key->partial_len = n; if (len == 0) return 1; if (n == CHACHA_BLK_SIZE) { key->partial_len = 0; key->counter[0]++; if (key->counter[0] == 0) key->counter[1]++; } } rem = (unsigned int)(len % CHACHA_BLK_SIZE); len -= rem; ctr32 = key->counter[0]; while (len >= CHACHA_BLK_SIZE) { size_t blocks = len / CHACHA_BLK_SIZE; /* * 1<<28 is just a not-so-small yet not-so-large number... * Below condition is practically never met, but it has to * be checked for code correctness. */ if (sizeof(size_t)>sizeof(unsigned int) && blocks>(1U<<28)) blocks = (1U<<28); /* * As ChaCha20_ctr32 operates on 32-bit counter, caller * has to handle overflow. 'if' below detects the * overflow, which is then handled by limiting the * amount of blocks to the exact overflow point... */ ctr32 += (unsigned int)blocks; if (ctr32 < blocks) { blocks -= ctr32; ctr32 = 0; } blocks *= CHACHA_BLK_SIZE; ChaCha20_ctr32(out, inp, blocks, key->key.d, key->counter); len -= blocks; inp += blocks; out += blocks; key->counter[0] = ctr32; if (ctr32 == 0) key->counter[1]++; } if (rem) { memset(key->buf, 0, sizeof(key->buf)); ChaCha20_ctr32(key->buf, key->buf, CHACHA_BLK_SIZE, key->key.d, key->counter); for (n = 0; n < rem; n++) out[n] = inp[n] ^ key->buf[n]; key->partial_len = rem; } return 1; } static const EVP_CIPHER chacha20 = { NID_chacha20, 1, /* block_size */ CHACHA_KEY_SIZE, /* key_len */ CHACHA_CTR_SIZE, /* iv_len, 128-bit counter in the context */ EVP_CIPH_CUSTOM_IV | EVP_CIPH_ALWAYS_CALL_INIT, chacha_init_key, chacha_cipher, NULL, sizeof(EVP_CHACHA_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_chacha20(void) { return &chacha20; } # ifndef OPENSSL_NO_POLY1305 # include "crypto/poly1305.h" typedef struct { EVP_CHACHA_KEY key; unsigned int nonce[12/4]; unsigned char tag[POLY1305_BLOCK_SIZE]; unsigned char tls_aad[POLY1305_BLOCK_SIZE]; struct { uint64_t aad, text; } len; int aad, mac_inited, tag_len, nonce_len; size_t tls_payload_length; } EVP_CHACHA_AEAD_CTX; # define NO_TLS_PAYLOAD_LENGTH ((size_t)-1) # define aead_data(ctx) ((EVP_CHACHA_AEAD_CTX *)(ctx)->cipher_data) # define POLY1305_ctx(actx) ((POLY1305 *)(actx + 1)) static int chacha20_poly1305_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey, const unsigned char *iv, int enc) { EVP_CHACHA_AEAD_CTX *actx = aead_data(ctx); if (!inkey && !iv) return 1; actx->len.aad = 0; actx->len.text = 0; actx->aad = 0; actx->mac_inited = 0; actx->tls_payload_length = NO_TLS_PAYLOAD_LENGTH; if (iv != NULL) { unsigned char temp[CHACHA_CTR_SIZE] = { 0 }; /* pad on the left */ if (actx->nonce_len <= CHACHA_CTR_SIZE) memcpy(temp + CHACHA_CTR_SIZE - actx->nonce_len, iv, actx->nonce_len); chacha_init_key(ctx, inkey, temp, enc); actx->nonce[0] = actx->key.counter[1]; actx->nonce[1] = actx->key.counter[2]; actx->nonce[2] = actx->key.counter[3]; } else { chacha_init_key(ctx, inkey, NULL, enc); } return 1; } # if !defined(OPENSSL_SMALL_FOOTPRINT) # if defined(POLY1305_ASM) && (defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64)) # define XOR128_HELPERS void *xor128_encrypt_n_pad(void *out, const void *inp, void *otp, size_t len); void *xor128_decrypt_n_pad(void *out, const void *inp, void *otp, size_t len); static const unsigned char zero[4 * CHACHA_BLK_SIZE] = { 0 }; # else static const unsigned char zero[2 * CHACHA_BLK_SIZE] = { 0 }; # endif static int chacha20_poly1305_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_CHACHA_AEAD_CTX *actx = aead_data(ctx); size_t tail, tohash_len, buf_len, plen = actx->tls_payload_length; unsigned char *buf, *tohash, *ctr, storage[sizeof(zero) + 32]; if (len != plen + POLY1305_BLOCK_SIZE) return -1; buf = storage + ((0 - (size_t)storage) & 15); /* align */ ctr = buf + CHACHA_BLK_SIZE; tohash = buf + CHACHA_BLK_SIZE - POLY1305_BLOCK_SIZE; # ifdef XOR128_HELPERS if (plen <= 3 * CHACHA_BLK_SIZE) { actx->key.counter[0] = 0; buf_len = (plen + 2 * CHACHA_BLK_SIZE - 1) & (0 - CHACHA_BLK_SIZE); ChaCha20_ctr32(buf, zero, buf_len, actx->key.key.d, actx->key.counter); Poly1305_Init(POLY1305_ctx(actx), buf); actx->key.partial_len = 0; memcpy(tohash, actx->tls_aad, POLY1305_BLOCK_SIZE); tohash_len = POLY1305_BLOCK_SIZE; actx->len.aad = EVP_AEAD_TLS1_AAD_LEN; actx->len.text = plen; if (plen) { if (ctx->encrypt) ctr = xor128_encrypt_n_pad(out, in, ctr, plen); else ctr = xor128_decrypt_n_pad(out, in, ctr, plen); in += plen; out += plen; tohash_len = (size_t)(ctr - tohash); } } # else if (plen <= CHACHA_BLK_SIZE) { size_t i; actx->key.counter[0] = 0; ChaCha20_ctr32(buf, zero, (buf_len = 2 * CHACHA_BLK_SIZE), actx->key.key.d, actx->key.counter); Poly1305_Init(POLY1305_ctx(actx), buf); actx->key.partial_len = 0; memcpy(tohash, actx->tls_aad, POLY1305_BLOCK_SIZE); tohash_len = POLY1305_BLOCK_SIZE; actx->len.aad = EVP_AEAD_TLS1_AAD_LEN; actx->len.text = plen; if (ctx->encrypt) { for (i = 0; i < plen; i++) { out[i] = ctr[i] ^= in[i]; } } else { for (i = 0; i < plen; i++) { unsigned char c = in[i]; out[i] = ctr[i] ^ c; ctr[i] = c; } } in += i; out += i; tail = (0 - i) & (POLY1305_BLOCK_SIZE - 1); memset(ctr + i, 0, tail); ctr += i + tail; tohash_len += i + tail; } # endif else { actx->key.counter[0] = 0; ChaCha20_ctr32(buf, zero, (buf_len = CHACHA_BLK_SIZE), actx->key.key.d, actx->key.counter); Poly1305_Init(POLY1305_ctx(actx), buf); actx->key.counter[0] = 1; actx->key.partial_len = 0; Poly1305_Update(POLY1305_ctx(actx), actx->tls_aad, POLY1305_BLOCK_SIZE); tohash = ctr; tohash_len = 0; actx->len.aad = EVP_AEAD_TLS1_AAD_LEN; actx->len.text = plen; if (ctx->encrypt) { ChaCha20_ctr32(out, in, plen, actx->key.key.d, actx->key.counter); Poly1305_Update(POLY1305_ctx(actx), out, plen); } else { Poly1305_Update(POLY1305_ctx(actx), in, plen); ChaCha20_ctr32(out, in, plen, actx->key.key.d, actx->key.counter); } in += plen; out += plen; tail = (0 - plen) & (POLY1305_BLOCK_SIZE - 1); Poly1305_Update(POLY1305_ctx(actx), zero, tail); } { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) { memcpy(ctr, (unsigned char *)&actx->len, POLY1305_BLOCK_SIZE); } else { ctr[0] = (unsigned char)(actx->len.aad); ctr[1] = (unsigned char)(actx->len.aad>>8); ctr[2] = (unsigned char)(actx->len.aad>>16); ctr[3] = (unsigned char)(actx->len.aad>>24); ctr[4] = (unsigned char)(actx->len.aad>>32); ctr[5] = (unsigned char)(actx->len.aad>>40); ctr[6] = (unsigned char)(actx->len.aad>>48); ctr[7] = (unsigned char)(actx->len.aad>>56); ctr[8] = (unsigned char)(actx->len.text); ctr[9] = (unsigned char)(actx->len.text>>8); ctr[10] = (unsigned char)(actx->len.text>>16); ctr[11] = (unsigned char)(actx->len.text>>24); ctr[12] = (unsigned char)(actx->len.text>>32); ctr[13] = (unsigned char)(actx->len.text>>40); ctr[14] = (unsigned char)(actx->len.text>>48); ctr[15] = (unsigned char)(actx->len.text>>56); } tohash_len += POLY1305_BLOCK_SIZE; } Poly1305_Update(POLY1305_ctx(actx), tohash, tohash_len); OPENSSL_cleanse(buf, buf_len); Poly1305_Final(POLY1305_ctx(actx), ctx->encrypt ? actx->tag : tohash); actx->tls_payload_length = NO_TLS_PAYLOAD_LENGTH; if (ctx->encrypt) { memcpy(out, actx->tag, POLY1305_BLOCK_SIZE); } else { if (CRYPTO_memcmp(tohash, in, POLY1305_BLOCK_SIZE)) { memset(out - (len - POLY1305_BLOCK_SIZE), 0, len - POLY1305_BLOCK_SIZE); return -1; } } return len; } # else static const unsigned char zero[CHACHA_BLK_SIZE] = { 0 }; # endif static int chacha20_poly1305_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_CHACHA_AEAD_CTX *actx = aead_data(ctx); size_t rem, plen = actx->tls_payload_length; if (!actx->mac_inited) { # if !defined(OPENSSL_SMALL_FOOTPRINT) if (plen != NO_TLS_PAYLOAD_LENGTH && out != NULL) return chacha20_poly1305_tls_cipher(ctx, out, in, len); # endif actx->key.counter[0] = 0; ChaCha20_ctr32(actx->key.buf, zero, CHACHA_BLK_SIZE, actx->key.key.d, actx->key.counter); Poly1305_Init(POLY1305_ctx(actx), actx->key.buf); actx->key.counter[0] = 1; actx->key.partial_len = 0; actx->len.aad = actx->len.text = 0; actx->mac_inited = 1; if (plen != NO_TLS_PAYLOAD_LENGTH) { Poly1305_Update(POLY1305_ctx(actx), actx->tls_aad, EVP_AEAD_TLS1_AAD_LEN); actx->len.aad = EVP_AEAD_TLS1_AAD_LEN; actx->aad = 1; } } if (in) { /* aad or text */ if (out == NULL) { /* aad */ Poly1305_Update(POLY1305_ctx(actx), in, len); actx->len.aad += len; actx->aad = 1; return len; } else { /* plain- or ciphertext */ if (actx->aad) { /* wrap up aad */ if ((rem = (size_t)actx->len.aad % POLY1305_BLOCK_SIZE)) Poly1305_Update(POLY1305_ctx(actx), zero, POLY1305_BLOCK_SIZE - rem); actx->aad = 0; } actx->tls_payload_length = NO_TLS_PAYLOAD_LENGTH; if (plen == NO_TLS_PAYLOAD_LENGTH) plen = len; else if (len != plen + POLY1305_BLOCK_SIZE) return -1; if (ctx->encrypt) { /* plaintext */ chacha_cipher(ctx, out, in, plen); Poly1305_Update(POLY1305_ctx(actx), out, plen); in += plen; out += plen; actx->len.text += plen; } else { /* ciphertext */ Poly1305_Update(POLY1305_ctx(actx), in, plen); chacha_cipher(ctx, out, in, plen); in += plen; out += plen; actx->len.text += plen; } } } if (in == NULL /* explicit final */ || plen != len) { /* or tls mode */ const union { long one; char little; } is_endian = { 1 }; unsigned char temp[POLY1305_BLOCK_SIZE]; if (actx->aad) { /* wrap up aad */ if ((rem = (size_t)actx->len.aad % POLY1305_BLOCK_SIZE)) Poly1305_Update(POLY1305_ctx(actx), zero, POLY1305_BLOCK_SIZE - rem); actx->aad = 0; } if ((rem = (size_t)actx->len.text % POLY1305_BLOCK_SIZE)) Poly1305_Update(POLY1305_ctx(actx), zero, POLY1305_BLOCK_SIZE - rem); if (is_endian.little) { Poly1305_Update(POLY1305_ctx(actx), (unsigned char *)&actx->len, POLY1305_BLOCK_SIZE); } else { temp[0] = (unsigned char)(actx->len.aad); temp[1] = (unsigned char)(actx->len.aad>>8); temp[2] = (unsigned char)(actx->len.aad>>16); temp[3] = (unsigned char)(actx->len.aad>>24); temp[4] = (unsigned char)(actx->len.aad>>32); temp[5] = (unsigned char)(actx->len.aad>>40); temp[6] = (unsigned char)(actx->len.aad>>48); temp[7] = (unsigned char)(actx->len.aad>>56); temp[8] = (unsigned char)(actx->len.text); temp[9] = (unsigned char)(actx->len.text>>8); temp[10] = (unsigned char)(actx->len.text>>16); temp[11] = (unsigned char)(actx->len.text>>24); temp[12] = (unsigned char)(actx->len.text>>32); temp[13] = (unsigned char)(actx->len.text>>40); temp[14] = (unsigned char)(actx->len.text>>48); temp[15] = (unsigned char)(actx->len.text>>56); Poly1305_Update(POLY1305_ctx(actx), temp, POLY1305_BLOCK_SIZE); } Poly1305_Final(POLY1305_ctx(actx), ctx->encrypt ? actx->tag : temp); actx->mac_inited = 0; if (in != NULL && len != plen) { /* tls mode */ if (ctx->encrypt) { memcpy(out, actx->tag, POLY1305_BLOCK_SIZE); } else { if (CRYPTO_memcmp(temp, in, POLY1305_BLOCK_SIZE)) { memset(out - plen, 0, plen); return -1; } } } else if (!ctx->encrypt) { if (CRYPTO_memcmp(temp, actx->tag, actx->tag_len)) return -1; } } return len; } static int chacha20_poly1305_cleanup(EVP_CIPHER_CTX *ctx) { EVP_CHACHA_AEAD_CTX *actx = aead_data(ctx); if (actx) OPENSSL_cleanse(ctx->cipher_data, sizeof(*actx) + Poly1305_ctx_size()); return 1; } static int chacha20_poly1305_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_CHACHA_AEAD_CTX *actx = aead_data(ctx); switch(type) { case EVP_CTRL_INIT: if (actx == NULL) actx = ctx->cipher_data = OPENSSL_zalloc(sizeof(*actx) + Poly1305_ctx_size()); if (actx == NULL) { EVPerr(EVP_F_CHACHA20_POLY1305_CTRL, EVP_R_INITIALIZATION_ERROR); return 0; } actx->len.aad = 0; actx->len.text = 0; actx->aad = 0; actx->mac_inited = 0; actx->tag_len = 0; actx->nonce_len = 12; actx->tls_payload_length = NO_TLS_PAYLOAD_LENGTH; memset(actx->tls_aad, 0, POLY1305_BLOCK_SIZE); return 1; case EVP_CTRL_COPY: if (actx) { EVP_CIPHER_CTX *dst = (EVP_CIPHER_CTX *)ptr; dst->cipher_data = OPENSSL_memdup(actx, sizeof(*actx) + Poly1305_ctx_size()); if (dst->cipher_data == NULL) { EVPerr(EVP_F_CHACHA20_POLY1305_CTRL, EVP_R_COPY_ERROR); return 0; } } return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = actx->nonce_len; return 1; case EVP_CTRL_AEAD_SET_IVLEN: if (arg <= 0 || arg > CHACHA20_POLY1305_MAX_IVLEN) return 0; actx->nonce_len = arg; return 1; case EVP_CTRL_AEAD_SET_IV_FIXED: if (arg != 12) return 0; actx->nonce[0] = actx->key.counter[1] = CHACHA_U8TOU32((unsigned char *)ptr); actx->nonce[1] = actx->key.counter[2] = CHACHA_U8TOU32((unsigned char *)ptr+4); actx->nonce[2] = actx->key.counter[3] = CHACHA_U8TOU32((unsigned char *)ptr+8); return 1; case EVP_CTRL_AEAD_SET_TAG: if (arg <= 0 || arg > POLY1305_BLOCK_SIZE) return 0; if (ptr != NULL) { memcpy(actx->tag, ptr, arg); actx->tag_len = arg; } return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg <= 0 || arg > POLY1305_BLOCK_SIZE || !ctx->encrypt) return 0; memcpy(ptr, actx->tag, arg); return 1; case EVP_CTRL_AEAD_TLS1_AAD: if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; { unsigned int len; unsigned char *aad = ptr; memcpy(actx->tls_aad, ptr, EVP_AEAD_TLS1_AAD_LEN); len = aad[EVP_AEAD_TLS1_AAD_LEN - 2] << 8 | aad[EVP_AEAD_TLS1_AAD_LEN - 1]; aad = actx->tls_aad; if (!ctx->encrypt) { if (len < POLY1305_BLOCK_SIZE) return 0; len -= POLY1305_BLOCK_SIZE; /* discount attached tag */ aad[EVP_AEAD_TLS1_AAD_LEN - 2] = (unsigned char)(len >> 8); aad[EVP_AEAD_TLS1_AAD_LEN - 1] = (unsigned char)len; } actx->tls_payload_length = len; /* * merge record sequence number as per RFC7905 */ actx->key.counter[1] = actx->nonce[0]; actx->key.counter[2] = actx->nonce[1] ^ CHACHA_U8TOU32(aad); actx->key.counter[3] = actx->nonce[2] ^ CHACHA_U8TOU32(aad+4); actx->mac_inited = 0; return POLY1305_BLOCK_SIZE; /* tag length */ } case EVP_CTRL_AEAD_SET_MAC_KEY: /* no-op */ return 1; default: return -1; } } static EVP_CIPHER chacha20_poly1305 = { NID_chacha20_poly1305, 1, /* block_size */ CHACHA_KEY_SIZE, /* key_len */ 12, /* iv_len, 96-bit nonce in the context */ EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_CUSTOM_IV | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_CUSTOM_IV_LENGTH, chacha20_poly1305_init_key, chacha20_poly1305_cipher, chacha20_poly1305_cleanup, 0, /* 0 moves context-specific structure allocation to ctrl */ NULL, /* set_asn1_parameters */ NULL, /* get_asn1_parameters */ chacha20_poly1305_ctrl, NULL /* app_data */ }; const EVP_CIPHER *EVP_chacha20_poly1305(void) { return(&chacha20_poly1305); } # endif #endif openssl-1.1.1f/crypto/evp/e_des.c000066400000000000000000000202031364063235100167000ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_DES # include # include # include "crypto/evp.h" # include # include typedef struct { union { double align; DES_key_schedule ks; } ks; union { void (*cbc) (const void *, void *, size_t, const DES_key_schedule *, unsigned char *); } stream; } EVP_DES_KEY; # if defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) /* ----------^^^ this is not a typo, just a way to detect that * assembler support was in general requested... */ # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_DES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_DES) void des_t4_key_expand(const void *key, DES_key_schedule *ks); void des_t4_cbc_encrypt(const void *inp, void *out, size_t len, const DES_key_schedule *ks, unsigned char iv[8]); void des_t4_cbc_decrypt(const void *inp, void *out, size_t len, const DES_key_schedule *ks, unsigned char iv[8]); # endif static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr); /* * Because of various casts and different names can't use * IMPLEMENT_BLOCK_CIPHER */ static int des_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { BLOCK_CIPHER_ecb_loop() DES_ecb_encrypt((DES_cblock *)(in + i), (DES_cblock *)(out + i), EVP_CIPHER_CTX_get_cipher_data(ctx), EVP_CIPHER_CTX_encrypting(ctx)); return 1; } static int des_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { int num = EVP_CIPHER_CTX_num(ctx); DES_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num); EVP_CIPHER_CTX_set_num(ctx, num); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) { int num = EVP_CIPHER_CTX_num(ctx); DES_ofb64_encrypt(in, out, (long)inl, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num); EVP_CIPHER_CTX_set_num(ctx, num); } return 1; } static int des_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { EVP_DES_KEY *dat = (EVP_DES_KEY *) EVP_CIPHER_CTX_get_cipher_data(ctx); if (dat->stream.cbc != NULL) { (*dat->stream.cbc) (in, out, inl, &dat->ks.ks, EVP_CIPHER_CTX_iv_noconst(ctx)); return 1; } while (inl >= EVP_MAXCHUNK) { DES_ncbc_encrypt(in, out, (long)EVP_MAXCHUNK, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ncbc_encrypt(in, out, (long)inl, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); return 1; } static int des_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { int num = EVP_CIPHER_CTX_num(ctx); DES_cfb64_encrypt(in, out, (long)EVP_MAXCHUNK, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx)); EVP_CIPHER_CTX_set_num(ctx, num); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) { int num = EVP_CIPHER_CTX_num(ctx); DES_cfb64_encrypt(in, out, (long)inl, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx)); EVP_CIPHER_CTX_set_num(ctx, num); } return 1; } /* * Although we have a CFB-r implementation for DES, it doesn't pack the right * way, so wrap it here */ static int des_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { size_t n, chunk = EVP_MAXCHUNK / 8; unsigned char c[1], d[1]; if (inl < chunk) chunk = inl; while (inl && inl >= chunk) { for (n = 0; n < chunk * 8; ++n) { c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; DES_cfb_encrypt(c, d, 1, 1, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); out[n / 8] = (out[n / 8] & ~(0x80 >> (unsigned int)(n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8)); } inl -= chunk; in += chunk; out += chunk; if (inl < chunk) chunk = inl; } return 1; } static int des_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_cfb_encrypt(in, out, 8, (long)EVP_MAXCHUNK, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_cfb_encrypt(in, out, 8, (long)inl, EVP_CIPHER_CTX_get_cipher_data(ctx), (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); return 1; } BLOCK_CIPHER_defs(des, EVP_DES_KEY, NID_des, 8, 8, 8, 64, EVP_CIPH_RAND_KEY, des_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, des_ctrl) BLOCK_CIPHER_def_cfb(des, EVP_DES_KEY, NID_des, 8, 8, 1, EVP_CIPH_RAND_KEY, des_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, des_ctrl) BLOCK_CIPHER_def_cfb(des, EVP_DES_KEY, NID_des, 8, 8, 8, EVP_CIPH_RAND_KEY, des_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, des_ctrl) static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { DES_cblock *deskey = (DES_cblock *)key; EVP_DES_KEY *dat = (EVP_DES_KEY *) EVP_CIPHER_CTX_get_cipher_data(ctx); dat->stream.cbc = NULL; # if defined(SPARC_DES_CAPABLE) if (SPARC_DES_CAPABLE) { int mode = EVP_CIPHER_CTX_mode(ctx); if (mode == EVP_CIPH_CBC_MODE) { des_t4_key_expand(key, &dat->ks.ks); dat->stream.cbc = enc ? des_t4_cbc_encrypt : des_t4_cbc_decrypt; return 1; } } # endif DES_set_key_unchecked(deskey, EVP_CIPHER_CTX_get_cipher_data(ctx)); return 1; } static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { switch (type) { case EVP_CTRL_RAND_KEY: if (RAND_priv_bytes(ptr, 8) <= 0) return 0; DES_set_odd_parity((DES_cblock *)ptr); return 1; default: return -1; } } #endif openssl-1.1.1f/crypto/evp/e_des3.c000066400000000000000000000342761364063235100170020ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_DES # include # include # include "crypto/evp.h" # include # include # include "evp_local.h" typedef struct { union { double align; DES_key_schedule ks[3]; } ks; union { void (*cbc) (const void *, void *, size_t, const DES_key_schedule *, unsigned char *); } stream; } DES_EDE_KEY; # define ks1 ks.ks[0] # define ks2 ks.ks[1] # define ks3 ks.ks[2] # if defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) /* ---------^^^ this is not a typo, just a way to detect that * assembler support was in general requested... */ # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_DES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_DES) void des_t4_key_expand(const void *key, DES_key_schedule *ks); void des_t4_ede3_cbc_encrypt(const void *inp, void *out, size_t len, const DES_key_schedule ks[3], unsigned char iv[8]); void des_t4_ede3_cbc_decrypt(const void *inp, void *out, size_t len, const DES_key_schedule ks[3], unsigned char iv[8]); # endif static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr); # define data(ctx) EVP_C_DATA(DES_EDE_KEY,ctx) /* * Because of various casts and different args can't use * IMPLEMENT_BLOCK_CIPHER */ static int des_ede_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { BLOCK_CIPHER_ecb_loop() DES_ecb3_encrypt((const_DES_cblock *)(in + i), (DES_cblock *)(out + i), &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, EVP_CIPHER_CTX_encrypting(ctx)); return 1; } static int des_ede_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { int num = EVP_CIPHER_CTX_num(ctx); DES_ede3_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num); EVP_CIPHER_CTX_set_num(ctx, num); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) { int num = EVP_CIPHER_CTX_num(ctx); DES_ede3_ofb64_encrypt(in, out, (long)inl, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num); EVP_CIPHER_CTX_set_num(ctx, num); } return 1; } static int des_ede_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { DES_EDE_KEY *dat = data(ctx); if (dat->stream.cbc != NULL) { (*dat->stream.cbc) (in, out, inl, dat->ks.ks, EVP_CIPHER_CTX_iv_noconst(ctx)); return 1; } while (inl >= EVP_MAXCHUNK) { DES_ede3_cbc_encrypt(in, out, (long)EVP_MAXCHUNK, &dat->ks1, &dat->ks2, &dat->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ede3_cbc_encrypt(in, out, (long)inl, &dat->ks1, &dat->ks2, &dat->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); return 1; } static int des_ede_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { int num = EVP_CIPHER_CTX_num(ctx); DES_ede3_cfb64_encrypt(in, out, (long)EVP_MAXCHUNK, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx)); EVP_CIPHER_CTX_set_num(ctx, num); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) { int num = EVP_CIPHER_CTX_num(ctx); DES_ede3_cfb64_encrypt(in, out, (long)inl, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &num, EVP_CIPHER_CTX_encrypting(ctx)); EVP_CIPHER_CTX_set_num(ctx, num); } return 1; } /* * Although we have a CFB-r implementation for 3-DES, it doesn't pack the * right way, so wrap it here */ static int des_ede3_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { size_t n; unsigned char c[1], d[1]; if (!EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) inl *= 8; for (n = 0; n < inl; ++n) { c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; DES_ede3_cfb_encrypt(c, d, 1, 1, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); out[n / 8] = (out[n / 8] & ~(0x80 >> (unsigned int)(n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8)); } return 1; } static int des_ede3_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_ede3_cfb_encrypt(in, out, 8, (long)EVP_MAXCHUNK, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ede3_cfb_encrypt(in, out, 8, (long)inl, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_encrypting(ctx)); return 1; } BLOCK_CIPHER_defs(des_ede, DES_EDE_KEY, NID_des_ede, 8, 16, 8, 64, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede_init_key, NULL, NULL, NULL, des3_ctrl) # define des_ede3_cfb64_cipher des_ede_cfb64_cipher # define des_ede3_ofb_cipher des_ede_ofb_cipher # define des_ede3_cbc_cipher des_ede_cbc_cipher # define des_ede3_ecb_cipher des_ede_ecb_cipher BLOCK_CIPHER_defs(des_ede3, DES_EDE_KEY, NID_des_ede3, 8, 24, 8, 64, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 1, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 8, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { DES_cblock *deskey = (DES_cblock *)key; DES_EDE_KEY *dat = data(ctx); dat->stream.cbc = NULL; # if defined(SPARC_DES_CAPABLE) if (SPARC_DES_CAPABLE) { int mode = EVP_CIPHER_CTX_mode(ctx); if (mode == EVP_CIPH_CBC_MODE) { des_t4_key_expand(&deskey[0], &dat->ks1); des_t4_key_expand(&deskey[1], &dat->ks2); memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1)); dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt : des_t4_ede3_cbc_decrypt; return 1; } } # endif DES_set_key_unchecked(&deskey[0], &dat->ks1); DES_set_key_unchecked(&deskey[1], &dat->ks2); memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1)); return 1; } static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { DES_cblock *deskey = (DES_cblock *)key; DES_EDE_KEY *dat = data(ctx); dat->stream.cbc = NULL; # if defined(SPARC_DES_CAPABLE) if (SPARC_DES_CAPABLE) { int mode = EVP_CIPHER_CTX_mode(ctx); if (mode == EVP_CIPH_CBC_MODE) { des_t4_key_expand(&deskey[0], &dat->ks1); des_t4_key_expand(&deskey[1], &dat->ks2); des_t4_key_expand(&deskey[2], &dat->ks3); dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt : des_t4_ede3_cbc_decrypt; return 1; } } # endif DES_set_key_unchecked(&deskey[0], &dat->ks1); DES_set_key_unchecked(&deskey[1], &dat->ks2); DES_set_key_unchecked(&deskey[2], &dat->ks3); return 1; } static int des3_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { DES_cblock *deskey = ptr; switch (type) { case EVP_CTRL_RAND_KEY: if (RAND_priv_bytes(ptr, EVP_CIPHER_CTX_key_length(ctx)) <= 0) return 0; DES_set_odd_parity(deskey); if (EVP_CIPHER_CTX_key_length(ctx) >= 16) DES_set_odd_parity(deskey + 1); if (EVP_CIPHER_CTX_key_length(ctx) >= 24) DES_set_odd_parity(deskey + 2); return 1; default: return -1; } } const EVP_CIPHER *EVP_des_ede(void) { return &des_ede_ecb; } const EVP_CIPHER *EVP_des_ede3(void) { return &des_ede3_ecb; } # include static const unsigned char wrap_iv[8] = { 0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05 }; static int des_ede3_unwrap(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { unsigned char icv[8], iv[8], sha1tmp[SHA_DIGEST_LENGTH]; int rv = -1; if (inl < 24) return -1; if (out == NULL) return inl - 16; memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), wrap_iv, 8); /* Decrypt first block which will end up as icv */ des_ede_cbc_cipher(ctx, icv, in, 8); /* Decrypt central blocks */ /* * If decrypting in place move whole output along a block so the next * des_ede_cbc_cipher is in place. */ if (out == in) { memmove(out, out + 8, inl - 8); in -= 8; } des_ede_cbc_cipher(ctx, out, in + 8, inl - 16); /* Decrypt final block which will be IV */ des_ede_cbc_cipher(ctx, iv, in + inl - 8, 8); /* Reverse order of everything */ BUF_reverse(icv, NULL, 8); BUF_reverse(out, NULL, inl - 16); BUF_reverse(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 8); /* Decrypt again using new IV */ des_ede_cbc_cipher(ctx, out, out, inl - 16); des_ede_cbc_cipher(ctx, icv, icv, 8); /* Work out SHA1 hash of first portion */ SHA1(out, inl - 16, sha1tmp); if (!CRYPTO_memcmp(sha1tmp, icv, 8)) rv = inl - 16; OPENSSL_cleanse(icv, 8); OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH); OPENSSL_cleanse(iv, 8); OPENSSL_cleanse(EVP_CIPHER_CTX_iv_noconst(ctx), 8); if (rv == -1) OPENSSL_cleanse(out, inl - 16); return rv; } static int des_ede3_wrap(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { unsigned char sha1tmp[SHA_DIGEST_LENGTH]; if (out == NULL) return inl + 16; /* Copy input to output buffer + 8 so we have space for IV */ memmove(out + 8, in, inl); /* Work out ICV */ SHA1(in, inl, sha1tmp); memcpy(out + inl + 8, sha1tmp, 8); OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH); /* Generate random IV */ if (RAND_bytes(EVP_CIPHER_CTX_iv_noconst(ctx), 8) <= 0) return -1; memcpy(out, EVP_CIPHER_CTX_iv_noconst(ctx), 8); /* Encrypt everything after IV in place */ des_ede_cbc_cipher(ctx, out + 8, out + 8, inl + 8); BUF_reverse(out, NULL, inl + 16); memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), wrap_iv, 8); des_ede_cbc_cipher(ctx, out, out, inl + 16); return inl + 16; } static int des_ede3_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { /* * Sanity check input length: we typically only wrap keys so EVP_MAXCHUNK * is more than will ever be needed. Also input length must be a multiple * of 8 bits. */ if (inl >= EVP_MAXCHUNK || inl % 8) return -1; if (is_partially_overlapping(out, in, inl)) { EVPerr(EVP_F_DES_EDE3_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); return 0; } if (EVP_CIPHER_CTX_encrypting(ctx)) return des_ede3_wrap(ctx, out, in, inl); else return des_ede3_unwrap(ctx, out, in, inl); } static const EVP_CIPHER des3_wrap = { NID_id_smime_alg_CMS3DESwrap, 8, 24, 0, EVP_CIPH_WRAP_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, des_ede3_wrap_cipher, NULL, sizeof(DES_EDE_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_des_ede3_wrap(void) { return &des3_wrap; } #endif openssl-1.1.1f/crypto/evp/e_idea.c000066400000000000000000000041561364063235100170400ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_IDEA # include # include # include "crypto/evp.h" # include /* Can't use IMPLEMENT_BLOCK_CIPHER because IDEA_ecb_encrypt is different */ typedef struct { IDEA_KEY_SCHEDULE ks; } EVP_IDEA_KEY; static int idea_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); /* * NB IDEA_ecb_encrypt doesn't take an 'encrypt' argument so we treat it as a * special case */ static int idea_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { BLOCK_CIPHER_ecb_loop() IDEA_ecb_encrypt(in + i, out + i, &EVP_C_DATA(EVP_IDEA_KEY,ctx)->ks); return 1; } BLOCK_CIPHER_func_cbc(idea, IDEA, EVP_IDEA_KEY, ks) BLOCK_CIPHER_func_ofb(idea, IDEA, 64, EVP_IDEA_KEY, ks) BLOCK_CIPHER_func_cfb(idea, IDEA, 64, EVP_IDEA_KEY, ks) BLOCK_CIPHER_defs(idea, IDEA_KEY_SCHEDULE, NID_idea, 8, 16, 8, 64, 0, idea_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL) static int idea_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { if (!enc) { if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE) enc = 1; else if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_CFB_MODE) enc = 1; } if (enc) IDEA_set_encrypt_key(key, &EVP_C_DATA(EVP_IDEA_KEY,ctx)->ks); else { IDEA_KEY_SCHEDULE tmp; IDEA_set_encrypt_key(key, &tmp); IDEA_set_decrypt_key(&tmp, &EVP_C_DATA(EVP_IDEA_KEY,ctx)->ks); OPENSSL_cleanse((unsigned char *)&tmp, sizeof(IDEA_KEY_SCHEDULE)); } return 1; } #endif openssl-1.1.1f/crypto/evp/e_null.c000066400000000000000000000024111364063235100171000ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/evp.h" static int null_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int null_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl); static const EVP_CIPHER n_cipher = { NID_undef, 1, 0, 0, 0, null_init_key, null_cipher, NULL, 0, NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_enc_null(void) { return &n_cipher; } static int null_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { return 1; } static int null_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { if (in != out) memcpy(out, in, inl); return 1; } openssl-1.1.1f/crypto/evp/e_old.c000066400000000000000000000046151364063235100167140ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #if OPENSSL_API_COMPAT >= 0x00908000L NON_EMPTY_TRANSLATION_UNIT #else # include /* * Define some deprecated functions, so older programs don't crash and burn * too quickly. On Windows and VMS, these will never be used, since * functions and variables in shared libraries are selected by entry point * location, not by name. */ # ifndef OPENSSL_NO_BF # undef EVP_bf_cfb const EVP_CIPHER *EVP_bf_cfb(void); const EVP_CIPHER *EVP_bf_cfb(void) { return EVP_bf_cfb64(); } # endif # ifndef OPENSSL_NO_DES # undef EVP_des_cfb const EVP_CIPHER *EVP_des_cfb(void); const EVP_CIPHER *EVP_des_cfb(void) { return EVP_des_cfb64(); } # undef EVP_des_ede3_cfb const EVP_CIPHER *EVP_des_ede3_cfb(void); const EVP_CIPHER *EVP_des_ede3_cfb(void) { return EVP_des_ede3_cfb64(); } # undef EVP_des_ede_cfb const EVP_CIPHER *EVP_des_ede_cfb(void); const EVP_CIPHER *EVP_des_ede_cfb(void) { return EVP_des_ede_cfb64(); } # endif # ifndef OPENSSL_NO_IDEA # undef EVP_idea_cfb const EVP_CIPHER *EVP_idea_cfb(void); const EVP_CIPHER *EVP_idea_cfb(void) { return EVP_idea_cfb64(); } # endif # ifndef OPENSSL_NO_RC2 # undef EVP_rc2_cfb const EVP_CIPHER *EVP_rc2_cfb(void); const EVP_CIPHER *EVP_rc2_cfb(void) { return EVP_rc2_cfb64(); } # endif # ifndef OPENSSL_NO_CAST # undef EVP_cast5_cfb const EVP_CIPHER *EVP_cast5_cfb(void); const EVP_CIPHER *EVP_cast5_cfb(void) { return EVP_cast5_cfb64(); } # endif # ifndef OPENSSL_NO_RC5 # undef EVP_rc5_32_12_16_cfb const EVP_CIPHER *EVP_rc5_32_12_16_cfb(void); const EVP_CIPHER *EVP_rc5_32_12_16_cfb(void) { return EVP_rc5_32_12_16_cfb64(); } # endif # undef EVP_aes_128_cfb const EVP_CIPHER *EVP_aes_128_cfb(void); const EVP_CIPHER *EVP_aes_128_cfb(void) { return EVP_aes_128_cfb128(); } # undef EVP_aes_192_cfb const EVP_CIPHER *EVP_aes_192_cfb(void); const EVP_CIPHER *EVP_aes_192_cfb(void) { return EVP_aes_192_cfb128(); } # undef EVP_aes_256_cfb const EVP_CIPHER *EVP_aes_256_cfb(void); const EVP_CIPHER *EVP_aes_256_cfb(void) { return EVP_aes_256_cfb128(); } #endif openssl-1.1.1f/crypto/evp/e_rc2.c000066400000000000000000000117671364063235100166320ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_RC2 # include # include # include "crypto/evp.h" # include static int rc2_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int rc2_meth_to_magic(EVP_CIPHER_CTX *ctx); static int rc2_magic_to_meth(int i); static int rc2_set_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type); static int rc2_get_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type); static int rc2_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr); typedef struct { int key_bits; /* effective key bits */ RC2_KEY ks; /* key schedule */ } EVP_RC2_KEY; # define data(ctx) EVP_C_DATA(EVP_RC2_KEY,ctx) IMPLEMENT_BLOCK_CIPHER(rc2, ks, RC2, EVP_RC2_KEY, NID_rc2, 8, RC2_KEY_LENGTH, 8, 64, EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, rc2_init_key, NULL, rc2_set_asn1_type_and_iv, rc2_get_asn1_type_and_iv, rc2_ctrl) # define RC2_40_MAGIC 0xa0 # define RC2_64_MAGIC 0x78 # define RC2_128_MAGIC 0x3a static const EVP_CIPHER r2_64_cbc_cipher = { NID_rc2_64_cbc, 8, 8 /* 64 bit */ , 8, EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, rc2_init_key, rc2_cbc_cipher, NULL, sizeof(EVP_RC2_KEY), rc2_set_asn1_type_and_iv, rc2_get_asn1_type_and_iv, rc2_ctrl, NULL }; static const EVP_CIPHER r2_40_cbc_cipher = { NID_rc2_40_cbc, 8, 5 /* 40 bit */ , 8, EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, rc2_init_key, rc2_cbc_cipher, NULL, sizeof(EVP_RC2_KEY), rc2_set_asn1_type_and_iv, rc2_get_asn1_type_and_iv, rc2_ctrl, NULL }; const EVP_CIPHER *EVP_rc2_64_cbc(void) { return &r2_64_cbc_cipher; } const EVP_CIPHER *EVP_rc2_40_cbc(void) { return &r2_40_cbc_cipher; } static int rc2_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { RC2_set_key(&data(ctx)->ks, EVP_CIPHER_CTX_key_length(ctx), key, data(ctx)->key_bits); return 1; } static int rc2_meth_to_magic(EVP_CIPHER_CTX *e) { int i; if (EVP_CIPHER_CTX_ctrl(e, EVP_CTRL_GET_RC2_KEY_BITS, 0, &i) <= 0) return 0; if (i == 128) return RC2_128_MAGIC; else if (i == 64) return RC2_64_MAGIC; else if (i == 40) return RC2_40_MAGIC; else return 0; } static int rc2_magic_to_meth(int i) { if (i == RC2_128_MAGIC) return 128; else if (i == RC2_64_MAGIC) return 64; else if (i == RC2_40_MAGIC) return 40; else { EVPerr(EVP_F_RC2_MAGIC_TO_METH, EVP_R_UNSUPPORTED_KEY_SIZE); return 0; } } static int rc2_get_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { long num = 0; int i = 0; int key_bits; unsigned int l; unsigned char iv[EVP_MAX_IV_LENGTH]; if (type != NULL) { l = EVP_CIPHER_CTX_iv_length(c); OPENSSL_assert(l <= sizeof(iv)); i = ASN1_TYPE_get_int_octetstring(type, &num, iv, l); if (i != (int)l) return -1; key_bits = rc2_magic_to_meth((int)num); if (!key_bits) return -1; if (i > 0 && !EVP_CipherInit_ex(c, NULL, NULL, NULL, iv, -1)) return -1; if (EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL) <= 0 || EVP_CIPHER_CTX_set_key_length(c, key_bits / 8) <= 0) return -1; } return i; } static int rc2_set_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { long num; int i = 0, j; if (type != NULL) { num = rc2_meth_to_magic(c); j = EVP_CIPHER_CTX_iv_length(c); i = ASN1_TYPE_set_int_octetstring(type, num, (unsigned char *)EVP_CIPHER_CTX_original_iv(c), j); } return i; } static int rc2_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { switch (type) { case EVP_CTRL_INIT: data(c)->key_bits = EVP_CIPHER_CTX_key_length(c) * 8; return 1; case EVP_CTRL_GET_RC2_KEY_BITS: *(int *)ptr = data(c)->key_bits; return 1; case EVP_CTRL_SET_RC2_KEY_BITS: if (arg > 0) { data(c)->key_bits = arg; return 1; } return 0; # ifdef PBE_PRF_TEST case EVP_CTRL_PBE_PRF_NID: *(int *)ptr = NID_hmacWithMD5; return 1; # endif default: return -1; } } #endif openssl-1.1.1f/crypto/evp/e_rc4.c000066400000000000000000000035601364063235100166240ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_RC4 # include # include # include # include "crypto/evp.h" typedef struct { RC4_KEY ks; /* working key */ } EVP_RC4_KEY; # define data(ctx) ((EVP_RC4_KEY *)EVP_CIPHER_CTX_get_cipher_data(ctx)) static int rc4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int rc4_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl); static const EVP_CIPHER r4_cipher = { NID_rc4, 1, EVP_RC4_KEY_SIZE, 0, EVP_CIPH_VARIABLE_LENGTH, rc4_init_key, rc4_cipher, NULL, sizeof(EVP_RC4_KEY), NULL, NULL, NULL, NULL }; static const EVP_CIPHER r4_40_cipher = { NID_rc4_40, 1, 5 /* 40 bit */ , 0, EVP_CIPH_VARIABLE_LENGTH, rc4_init_key, rc4_cipher, NULL, sizeof(EVP_RC4_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_rc4(void) { return &r4_cipher; } const EVP_CIPHER *EVP_rc4_40(void) { return &r4_40_cipher; } static int rc4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { RC4_set_key(&data(ctx)->ks, EVP_CIPHER_CTX_key_length(ctx), key); return 1; } static int rc4_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { RC4(&data(ctx)->ks, inl, in, out); return 1; } #endif openssl-1.1.1f/crypto/evp/e_rc4_hmac_md5.c000066400000000000000000000173211364063235100203610ustar00rootroot00000000000000/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_MD5) # include # include # include # include # include # include "crypto/evp.h" typedef struct { RC4_KEY ks; MD5_CTX head, tail, md; size_t payload_length; } EVP_RC4_HMAC_MD5; # define NO_PAYLOAD_LENGTH ((size_t)-1) void rc4_md5_enc(RC4_KEY *key, const void *in0, void *out, MD5_CTX *ctx, const void *inp, size_t blocks); # define data(ctx) ((EVP_RC4_HMAC_MD5 *)EVP_CIPHER_CTX_get_cipher_data(ctx)) static int rc4_hmac_md5_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey, const unsigned char *iv, int enc) { EVP_RC4_HMAC_MD5 *key = data(ctx); RC4_set_key(&key->ks, EVP_CIPHER_CTX_key_length(ctx), inkey); MD5_Init(&key->head); /* handy when benchmarking */ key->tail = key->head; key->md = key->head; key->payload_length = NO_PAYLOAD_LENGTH; return 1; } # if defined(RC4_ASM) && defined(MD5_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) ) # define STITCHED_CALL # endif # if !defined(STITCHED_CALL) # define rc4_off 0 # define md5_off 0 # endif static int rc4_hmac_md5_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_RC4_HMAC_MD5 *key = data(ctx); # if defined(STITCHED_CALL) size_t rc4_off = 32 - 1 - (key->ks.x & (32 - 1)), /* 32 is $MOD from * rc4_md5-x86_64.pl */ md5_off = MD5_CBLOCK - key->md.num, blocks; unsigned int l; extern unsigned int OPENSSL_ia32cap_P[]; # endif size_t plen = key->payload_length; if (plen != NO_PAYLOAD_LENGTH && len != (plen + MD5_DIGEST_LENGTH)) return 0; if (EVP_CIPHER_CTX_encrypting(ctx)) { if (plen == NO_PAYLOAD_LENGTH) plen = len; # if defined(STITCHED_CALL) /* cipher has to "fall behind" */ if (rc4_off > md5_off) md5_off += MD5_CBLOCK; if (plen > md5_off && (blocks = (plen - md5_off) / MD5_CBLOCK) && (OPENSSL_ia32cap_P[0] & (1 << 20)) == 0) { MD5_Update(&key->md, in, md5_off); RC4(&key->ks, rc4_off, in, out); rc4_md5_enc(&key->ks, in + rc4_off, out + rc4_off, &key->md, in + md5_off, blocks); blocks *= MD5_CBLOCK; rc4_off += blocks; md5_off += blocks; key->md.Nh += blocks >> 29; key->md.Nl += blocks <<= 3; if (key->md.Nl < (unsigned int)blocks) key->md.Nh++; } else { rc4_off = 0; md5_off = 0; } # endif MD5_Update(&key->md, in + md5_off, plen - md5_off); if (plen != len) { /* "TLS" mode of operation */ if (in != out) memcpy(out + rc4_off, in + rc4_off, plen - rc4_off); /* calculate HMAC and append it to payload */ MD5_Final(out + plen, &key->md); key->md = key->tail; MD5_Update(&key->md, out + plen, MD5_DIGEST_LENGTH); MD5_Final(out + plen, &key->md); /* encrypt HMAC at once */ RC4(&key->ks, len - rc4_off, out + rc4_off, out + rc4_off); } else { RC4(&key->ks, len - rc4_off, in + rc4_off, out + rc4_off); } } else { unsigned char mac[MD5_DIGEST_LENGTH]; # if defined(STITCHED_CALL) /* digest has to "fall behind" */ if (md5_off > rc4_off) rc4_off += 2 * MD5_CBLOCK; else rc4_off += MD5_CBLOCK; if (len > rc4_off && (blocks = (len - rc4_off) / MD5_CBLOCK) && (OPENSSL_ia32cap_P[0] & (1 << 20)) == 0) { RC4(&key->ks, rc4_off, in, out); MD5_Update(&key->md, out, md5_off); rc4_md5_enc(&key->ks, in + rc4_off, out + rc4_off, &key->md, out + md5_off, blocks); blocks *= MD5_CBLOCK; rc4_off += blocks; md5_off += blocks; l = (key->md.Nl + (blocks << 3)) & 0xffffffffU; if (l < key->md.Nl) key->md.Nh++; key->md.Nl = l; key->md.Nh += blocks >> 29; } else { md5_off = 0; rc4_off = 0; } # endif /* decrypt HMAC at once */ RC4(&key->ks, len - rc4_off, in + rc4_off, out + rc4_off); if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ MD5_Update(&key->md, out + md5_off, plen - md5_off); /* calculate HMAC and verify it */ MD5_Final(mac, &key->md); key->md = key->tail; MD5_Update(&key->md, mac, MD5_DIGEST_LENGTH); MD5_Final(mac, &key->md); if (CRYPTO_memcmp(out + plen, mac, MD5_DIGEST_LENGTH)) return 0; } else { MD5_Update(&key->md, out + md5_off, len - md5_off); } } key->payload_length = NO_PAYLOAD_LENGTH; return 1; } static int rc4_hmac_md5_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_RC4_HMAC_MD5 *key = data(ctx); switch (type) { case EVP_CTRL_AEAD_SET_MAC_KEY: { unsigned int i; unsigned char hmac_key[64]; memset(hmac_key, 0, sizeof(hmac_key)); if (arg > (int)sizeof(hmac_key)) { MD5_Init(&key->head); MD5_Update(&key->head, ptr, arg); MD5_Final(hmac_key, &key->head); } else { memcpy(hmac_key, ptr, arg); } for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36; /* ipad */ MD5_Init(&key->head); MD5_Update(&key->head, hmac_key, sizeof(hmac_key)); for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */ MD5_Init(&key->tail); MD5_Update(&key->tail, hmac_key, sizeof(hmac_key)); OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); return 1; } case EVP_CTRL_AEAD_TLS1_AAD: { unsigned char *p = ptr; unsigned int len; if (arg != EVP_AEAD_TLS1_AAD_LEN) return -1; len = p[arg - 2] << 8 | p[arg - 1]; if (!EVP_CIPHER_CTX_encrypting(ctx)) { if (len < MD5_DIGEST_LENGTH) return -1; len -= MD5_DIGEST_LENGTH; p[arg - 2] = len >> 8; p[arg - 1] = len; } key->payload_length = len; key->md = key->head; MD5_Update(&key->md, p, arg); return MD5_DIGEST_LENGTH; } default: return -1; } } static EVP_CIPHER r4_hmac_md5_cipher = { # ifdef NID_rc4_hmac_md5 NID_rc4_hmac_md5, # else NID_undef, # endif 1, EVP_RC4_KEY_SIZE, 0, EVP_CIPH_STREAM_CIPHER | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_FLAG_AEAD_CIPHER, rc4_hmac_md5_init_key, rc4_hmac_md5_cipher, NULL, sizeof(EVP_RC4_HMAC_MD5), NULL, NULL, rc4_hmac_md5_ctrl, NULL }; const EVP_CIPHER *EVP_rc4_hmac_md5(void) { return &r4_hmac_md5_cipher; } #endif openssl-1.1.1f/crypto/evp/e_rc5.c000066400000000000000000000043241364063235100166240ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_RC5 # include # include "crypto/evp.h" # include # include "evp_local.h" # include static int r_32_12_16_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int rc5_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr); typedef struct { int rounds; /* number of rounds */ RC5_32_KEY ks; /* key schedule */ } EVP_RC5_KEY; # define data(ctx) EVP_C_DATA(EVP_RC5_KEY,ctx) IMPLEMENT_BLOCK_CIPHER(rc5_32_12_16, ks, RC5_32, EVP_RC5_KEY, NID_rc5, 8, RC5_32_KEY_LENGTH, 8, 64, EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, r_32_12_16_init_key, NULL, NULL, NULL, rc5_ctrl) static int rc5_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { switch (type) { case EVP_CTRL_INIT: data(c)->rounds = RC5_12_ROUNDS; return 1; case EVP_CTRL_GET_RC5_ROUNDS: *(int *)ptr = data(c)->rounds; return 1; case EVP_CTRL_SET_RC5_ROUNDS: switch (arg) { case RC5_8_ROUNDS: case RC5_12_ROUNDS: case RC5_16_ROUNDS: data(c)->rounds = arg; return 1; default: EVPerr(EVP_F_RC5_CTRL, EVP_R_UNSUPPORTED_NUMBER_OF_ROUNDS); return 0; } default: return -1; } } static int r_32_12_16_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { if (EVP_CIPHER_CTX_key_length(ctx) > 255) { EVPerr(EVP_F_R_32_12_16_INIT_KEY, EVP_R_BAD_KEY_LENGTH); return 0; } RC5_32_set_key(&data(ctx)->ks, EVP_CIPHER_CTX_key_length(ctx), key, data(ctx)->rounds); return 1; } #endif openssl-1.1.1f/crypto/evp/e_seed.c000066400000000000000000000022101364063235100170430ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_SEED NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include # include "crypto/evp.h" static int seed_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); typedef struct { SEED_KEY_SCHEDULE ks; } EVP_SEED_KEY; IMPLEMENT_BLOCK_CIPHER(seed, ks, SEED, EVP_SEED_KEY, NID_seed, 16, 16, 16, 128, EVP_CIPH_FLAG_DEFAULT_ASN1, seed_init_key, 0, 0, 0, 0) static int seed_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { SEED_set_key(key, &EVP_C_DATA(EVP_SEED_KEY,ctx)->ks); return 1; } #endif openssl-1.1.1f/crypto/evp/e_sm4.c000066400000000000000000000061071364063235100166370ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * Ported from Ribose contributions from Botan. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #ifndef OPENSSL_NO_SM4 # include # include # include "crypto/sm4.h" # include "crypto/evp.h" typedef struct { SM4_KEY ks; } EVP_SM4_KEY; static int sm4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { SM4_set_key(key, EVP_CIPHER_CTX_get_cipher_data(ctx)); return 1; } static void sm4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const SM4_KEY *key, unsigned char *ivec, const int enc) { if (enc) CRYPTO_cbc128_encrypt(in, out, len, key, ivec, (block128_f)SM4_encrypt); else CRYPTO_cbc128_decrypt(in, out, len, key, ivec, (block128_f)SM4_decrypt); } static void sm4_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const SM4_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_encrypt(in, out, length, key, ivec, num, enc, (block128_f)SM4_encrypt); } static void sm4_ecb_encrypt(const unsigned char *in, unsigned char *out, const SM4_KEY *key, const int enc) { if (enc) SM4_encrypt(in, out, key); else SM4_decrypt(in, out, key); } static void sm4_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const SM4_KEY *key, unsigned char *ivec, int *num) { CRYPTO_ofb128_encrypt(in, out, length, key, ivec, num, (block128_f)SM4_encrypt); } IMPLEMENT_BLOCK_CIPHER(sm4, ks, sm4, EVP_SM4_KEY, NID_sm4, 16, 16, 16, 128, EVP_CIPH_FLAG_DEFAULT_ASN1, sm4_init_key, 0, 0, 0, 0) static int sm4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = EVP_CIPHER_CTX_num(ctx); EVP_SM4_KEY *dat = EVP_C_DATA(EVP_SM4_KEY, ctx); CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, EVP_CIPHER_CTX_iv_noconst(ctx), EVP_CIPHER_CTX_buf_noconst(ctx), &num, (block128_f)SM4_encrypt); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static const EVP_CIPHER sm4_ctr_mode = { NID_sm4_ctr, 1, 16, 16, EVP_CIPH_CTR_MODE, sm4_init_key, sm4_ctr_cipher, NULL, sizeof(EVP_SM4_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_sm4_ctr(void) { return &sm4_ctr_mode; } #endif openssl-1.1.1f/crypto/evp/e_xcbc_d.c000066400000000000000000000046111364063235100173540ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_DES # include # include # include "crypto/evp.h" # include static int desx_cbc_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int desx_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl); typedef struct { DES_key_schedule ks; /* key schedule */ DES_cblock inw; DES_cblock outw; } DESX_CBC_KEY; # define data(ctx) EVP_C_DATA(DESX_CBC_KEY,ctx) static const EVP_CIPHER d_xcbc_cipher = { NID_desx_cbc, 8, 24, 8, EVP_CIPH_CBC_MODE, desx_cbc_init_key, desx_cbc_cipher, NULL, sizeof(DESX_CBC_KEY), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL, NULL }; const EVP_CIPHER *EVP_desx_cbc(void) { return &d_xcbc_cipher; } static int desx_cbc_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { DES_cblock *deskey = (DES_cblock *)key; DES_set_key_unchecked(deskey, &data(ctx)->ks); memcpy(&data(ctx)->inw[0], &key[8], 8); memcpy(&data(ctx)->outw[0], &key[16], 8); return 1; } static int desx_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_xcbc_encrypt(in, out, (long)EVP_MAXCHUNK, &data(ctx)->ks, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &data(ctx)->inw, &data(ctx)->outw, EVP_CIPHER_CTX_encrypting(ctx)); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_xcbc_encrypt(in, out, (long)inl, &data(ctx)->ks, (DES_cblock *)EVP_CIPHER_CTX_iv_noconst(ctx), &data(ctx)->inw, &data(ctx)->outw, EVP_CIPHER_CTX_encrypting(ctx)); return 1; } #endif openssl-1.1.1f/crypto/evp/encode.c000066400000000000000000000332121364063235100170620ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include "evp_local.h" #include "crypto/evp.h" static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table); static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t, const unsigned char *f, int dlen); static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t, const unsigned char *f, int n); #ifndef CHARSET_EBCDIC # define conv_bin2ascii(a, table) ((table)[(a)&0x3f]) #else /* * We assume that PEM encoded files are EBCDIC files (i.e., printable text * files). Convert them here while decoding. When encoding, output is EBCDIC * (text) format again. (No need for conversion in the conv_bin2ascii macro, * as the underlying textstring data_bin2ascii[] is already EBCDIC) */ # define conv_bin2ascii(a, table) ((table)[(a)&0x3f]) #endif /*- * 64 char lines * pad input with 0 * left over chars are set to = * 1 byte => xx== * 2 bytes => xxx= * 3 bytes => xxxx */ #define BIN_PER_LINE (64/4*3) #define CHUNKS_PER_LINE (64/4) #define CHAR_PER_LINE (64+1) static const unsigned char data_bin2ascii[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /* SRP uses a different base64 alphabet */ static const unsigned char srpdata_bin2ascii[65] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./"; /*- * 0xF0 is a EOLN * 0xF1 is ignore but next needs to be 0xF0 (for \r\n processing). * 0xF2 is EOF * 0xE0 is ignore at start of line. * 0xFF is error */ #define B64_EOLN 0xF0 #define B64_CR 0xF1 #define B64_EOF 0xF2 #define B64_WS 0xE0 #define B64_ERROR 0xFF #define B64_NOT_BASE64(a) (((a)|0x13) == 0xF3) #define B64_BASE64(a) (!B64_NOT_BASE64(a)) static const unsigned char data_ascii2bin[128] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xF2, 0xFF, 0x3F, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; static const unsigned char srpdata_ascii2bin[128] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF2, 0x3E, 0x3F, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF, 0xFF, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; #ifndef CHARSET_EBCDIC static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table) { if (a & 0x80) return B64_ERROR; return table[a]; } #else static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table) { a = os_toascii[a]; if (a & 0x80) return B64_ERROR; return table[a]; } #endif EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) { return OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX)); } void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) { OPENSSL_free(ctx); } int EVP_ENCODE_CTX_copy(EVP_ENCODE_CTX *dctx, EVP_ENCODE_CTX *sctx) { memcpy(dctx, sctx, sizeof(EVP_ENCODE_CTX)); return 1; } int EVP_ENCODE_CTX_num(EVP_ENCODE_CTX *ctx) { return ctx->num; } void evp_encode_ctx_set_flags(EVP_ENCODE_CTX *ctx, unsigned int flags) { ctx->flags = flags; } void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { ctx->length = 48; ctx->num = 0; ctx->line_num = 0; ctx->flags = 0; } int EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { int i, j; size_t total = 0; *outl = 0; if (inl <= 0) return 0; OPENSSL_assert(ctx->length <= (int)sizeof(ctx->enc_data)); if (ctx->length - ctx->num > inl) { memcpy(&(ctx->enc_data[ctx->num]), in, inl); ctx->num += inl; return 1; } if (ctx->num != 0) { i = ctx->length - ctx->num; memcpy(&(ctx->enc_data[ctx->num]), in, i); in += i; inl -= i; j = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->length); ctx->num = 0; out += j; total = j; if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) { *(out++) = '\n'; total++; } *out = '\0'; } while (inl >= ctx->length && total <= INT_MAX) { j = evp_encodeblock_int(ctx, out, in, ctx->length); in += ctx->length; inl -= ctx->length; out += j; total += j; if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) { *(out++) = '\n'; total++; } *out = '\0'; } if (total > INT_MAX) { /* Too much output data! */ *outl = 0; return 0; } if (inl != 0) memcpy(&(ctx->enc_data[0]), in, inl); ctx->num = inl; *outl = total; return 1; } void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl) { unsigned int ret = 0; if (ctx->num != 0) { ret = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->num); if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) out[ret++] = '\n'; out[ret] = '\0'; ctx->num = 0; } *outl = ret; } static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t, const unsigned char *f, int dlen) { int i, ret = 0; unsigned long l; const unsigned char *table; if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0) table = srpdata_bin2ascii; else table = data_bin2ascii; for (i = dlen; i > 0; i -= 3) { if (i >= 3) { l = (((unsigned long)f[0]) << 16L) | (((unsigned long)f[1]) << 8L) | f[2]; *(t++) = conv_bin2ascii(l >> 18L, table); *(t++) = conv_bin2ascii(l >> 12L, table); *(t++) = conv_bin2ascii(l >> 6L, table); *(t++) = conv_bin2ascii(l, table); } else { l = ((unsigned long)f[0]) << 16L; if (i == 2) l |= ((unsigned long)f[1] << 8L); *(t++) = conv_bin2ascii(l >> 18L, table); *(t++) = conv_bin2ascii(l >> 12L, table); *(t++) = (i == 1) ? '=' : conv_bin2ascii(l >> 6L, table); *(t++) = '='; } ret += 4; f += 3; } *t = '\0'; return ret; } int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int dlen) { return evp_encodeblock_int(NULL, t, f, dlen); } void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { /* Only ctx->num and ctx->flags are used during decoding. */ ctx->num = 0; ctx->length = 0; ctx->line_num = 0; ctx->flags = 0; } /*- * -1 for error * 0 for last line * 1 for full line * * Note: even though EVP_DecodeUpdate attempts to detect and report end of * content, the context doesn't currently remember it and will accept more data * in the next call. Therefore, the caller is responsible for checking and * rejecting a 0 return value in the middle of content. * * Note: even though EVP_DecodeUpdate has historically tried to detect end of * content based on line length, this has never worked properly. Therefore, * we now return 0 when one of the following is true: * - Padding or B64_EOF was detected and the last block is complete. * - Input has zero-length. * -1 is returned if: * - Invalid characters are detected. * - There is extra trailing padding, or data after padding. * - B64_EOF is detected after an incomplete base64 block. */ int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { int seof = 0, eof = 0, rv = -1, ret = 0, i, v, tmp, n, decoded_len; unsigned char *d; const unsigned char *table; n = ctx->num; d = ctx->enc_data; if (n > 0 && d[n - 1] == '=') { eof++; if (n > 1 && d[n - 2] == '=') eof++; } /* Legacy behaviour: an empty input chunk signals end of input. */ if (inl == 0) { rv = 0; goto end; } if ((ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0) table = srpdata_ascii2bin; else table = data_ascii2bin; for (i = 0; i < inl; i++) { tmp = *(in++); v = conv_ascii2bin(tmp, table); if (v == B64_ERROR) { rv = -1; goto end; } if (tmp == '=') { eof++; } else if (eof > 0 && B64_BASE64(v)) { /* More data after padding. */ rv = -1; goto end; } if (eof > 2) { rv = -1; goto end; } if (v == B64_EOF) { seof = 1; goto tail; } /* Only save valid base64 characters. */ if (B64_BASE64(v)) { if (n >= 64) { /* * We increment n once per loop, and empty the buffer as soon as * we reach 64 characters, so this can only happen if someone's * manually messed with the ctx. Refuse to write any more data. */ rv = -1; goto end; } OPENSSL_assert(n < (int)sizeof(ctx->enc_data)); d[n++] = tmp; } if (n == 64) { decoded_len = evp_decodeblock_int(ctx, out, d, n); n = 0; if (decoded_len < 0 || eof > decoded_len) { rv = -1; goto end; } ret += decoded_len - eof; out += decoded_len - eof; } } /* * Legacy behaviour: if the current line is a full base64-block (i.e., has * 0 mod 4 base64 characters), it is processed immediately. We keep this * behaviour as applications may not be calling EVP_DecodeFinal properly. */ tail: if (n > 0) { if ((n & 3) == 0) { decoded_len = evp_decodeblock_int(ctx, out, d, n); n = 0; if (decoded_len < 0 || eof > decoded_len) { rv = -1; goto end; } ret += (decoded_len - eof); } else if (seof) { /* EOF in the middle of a base64 block. */ rv = -1; goto end; } } rv = seof || (n == 0 && eof) ? 0 : 1; end: /* Legacy behaviour. This should probably rather be zeroed on error. */ *outl = ret; ctx->num = n; return rv; } static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t, const unsigned char *f, int n) { int i, ret = 0, a, b, c, d; unsigned long l; const unsigned char *table; if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0) table = srpdata_ascii2bin; else table = data_ascii2bin; /* trim white space from the start of the line. */ while ((conv_ascii2bin(*f, table) == B64_WS) && (n > 0)) { f++; n--; } /* * strip off stuff at the end of the line ascii2bin values B64_WS, * B64_EOLN, B64_EOLN and B64_EOF */ while ((n > 3) && (B64_NOT_BASE64(conv_ascii2bin(f[n - 1], table)))) n--; if (n % 4 != 0) return -1; for (i = 0; i < n; i += 4) { a = conv_ascii2bin(*(f++), table); b = conv_ascii2bin(*(f++), table); c = conv_ascii2bin(*(f++), table); d = conv_ascii2bin(*(f++), table); if ((a & 0x80) || (b & 0x80) || (c & 0x80) || (d & 0x80)) return -1; l = ((((unsigned long)a) << 18L) | (((unsigned long)b) << 12L) | (((unsigned long)c) << 6L) | (((unsigned long)d))); *(t++) = (unsigned char)(l >> 16L) & 0xff; *(t++) = (unsigned char)(l >> 8L) & 0xff; *(t++) = (unsigned char)(l) & 0xff; ret += 3; } return ret; } int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n) { return evp_decodeblock_int(NULL, t, f, n); } int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl) { int i; *outl = 0; if (ctx->num != 0) { i = evp_decodeblock_int(ctx, out, ctx->enc_data, ctx->num); if (i < 0) return -1; ctx->num = 0; *outl = i; return 1; } else return 1; } openssl-1.1.1f/crypto/evp/evp_cnf.c000066400000000000000000000032321364063235100172440ustar00rootroot00000000000000/* * Copyright 2012-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include /* Algorithm configuration module. */ static int alg_module_init(CONF_IMODULE *md, const CONF *cnf) { int i; const char *oid_section; STACK_OF(CONF_VALUE) *sktmp; CONF_VALUE *oval; oid_section = CONF_imodule_get_value(md); if ((sktmp = NCONF_get_section(cnf, oid_section)) == NULL) { EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_ERROR_LOADING_SECTION); return 0; } for (i = 0; i < sk_CONF_VALUE_num(sktmp); i++) { oval = sk_CONF_VALUE_value(sktmp, i); if (strcmp(oval->name, "fips_mode") == 0) { int m; if (!X509V3_get_value_bool(oval, &m)) { EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_INVALID_FIPS_MODE); return 0; } if (m > 0) { EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_FIPS_MODE_NOT_SUPPORTED); return 0; } } else { EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_UNKNOWN_OPTION); ERR_add_error_data(4, "name=", oval->name, ", value=", oval->value); } } return 1; } void EVP_add_alg_module(void) { CONF_module_add("alg_section", alg_module_init, 0); } openssl-1.1.1f/crypto/evp/evp_enc.c000066400000000000000000000474511364063235100172560ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/evp.h" #include "evp_local.h" int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *c) { if (c == NULL) return 1; if (c->cipher != NULL) { if (c->cipher->cleanup && !c->cipher->cleanup(c)) return 0; /* Cleanse cipher context data */ if (c->cipher_data && c->cipher->ctx_size) OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size); } OPENSSL_free(c->cipher_data); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(c->engine); #endif memset(c, 0, sizeof(*c)); return 1; } EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) { return OPENSSL_zalloc(sizeof(EVP_CIPHER_CTX)); } void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { EVP_CIPHER_CTX_reset(ctx); OPENSSL_free(ctx); } int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv, int enc) { if (cipher != NULL) EVP_CIPHER_CTX_reset(ctx); return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); } int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc) { if (enc == -1) enc = ctx->encrypt; else { if (enc) enc = 1; ctx->encrypt = enc; } #ifndef OPENSSL_NO_ENGINE /* * Whether it's nice or not, "Inits" can be used on "Final"'d contexts so * this context may already have an ENGINE! Try to avoid releasing the * previous handle, re-querying for an ENGINE, and having a * reinitialisation, when it may all be unnecessary. */ if (ctx->engine && ctx->cipher && (cipher == NULL || cipher->nid == ctx->cipher->nid)) goto skip_to_init; #endif if (cipher) { /* * Ensure a context left lying around from last time is cleared (the * previous check attempted to avoid this if the same ENGINE and * EVP_CIPHER could be used). */ if (ctx->cipher) { unsigned long flags = ctx->flags; EVP_CIPHER_CTX_reset(ctx); /* Restore encrypt and flags */ ctx->encrypt = enc; ctx->flags = flags; } #ifndef OPENSSL_NO_ENGINE if (impl) { if (!ENGINE_init(impl)) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } } else /* Ask if an ENGINE is reserved for this job */ impl = ENGINE_get_cipher_engine(cipher->nid); if (impl) { /* There's an ENGINE for this job ... (apparently) */ const EVP_CIPHER *c = ENGINE_get_cipher(impl, cipher->nid); if (!c) { /* * One positive side-effect of US's export control history, * is that we should at least be able to avoid using US * misspellings of "initialisation"? */ EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } /* We'll use the ENGINE's private cipher definition */ cipher = c; /* * Store the ENGINE functional reference so we know 'cipher' came * from an ENGINE and we need to release it when done. */ ctx->engine = impl; } else ctx->engine = NULL; #endif ctx->cipher = cipher; if (ctx->cipher->ctx_size) { ctx->cipher_data = OPENSSL_zalloc(ctx->cipher->ctx_size); if (ctx->cipher_data == NULL) { ctx->cipher = NULL; EVPerr(EVP_F_EVP_CIPHERINIT_EX, ERR_R_MALLOC_FAILURE); return 0; } } else { ctx->cipher_data = NULL; } ctx->key_len = cipher->key_len; /* Preserve wrap enable flag, zero everything else */ ctx->flags &= EVP_CIPHER_CTX_FLAG_WRAP_ALLOW; if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { ctx->cipher = NULL; EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } } } else if (!ctx->cipher) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_NO_CIPHER_SET); return 0; } #ifndef OPENSSL_NO_ENGINE skip_to_init: #endif /* we assume block size is a power of 2 in *cryptUpdate */ OPENSSL_assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 || ctx->cipher->block_size == 16); if (!(ctx->flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW) && EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_WRAP_MODE) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_WRAP_MODE_NOT_ALLOWED); return 0; } if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_CUSTOM_IV)) { switch (EVP_CIPHER_CTX_mode(ctx)) { case EVP_CIPH_STREAM_CIPHER: case EVP_CIPH_ECB_MODE: break; case EVP_CIPH_CFB_MODE: case EVP_CIPH_OFB_MODE: ctx->num = 0; /* fall-through */ case EVP_CIPH_CBC_MODE: OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) <= (int)sizeof(ctx->iv)); if (iv) memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); break; case EVP_CIPH_CTR_MODE: ctx->num = 0; /* Don't reuse IV for CTR mode */ if (iv) memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); break; default: return 0; } } if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { if (!ctx->cipher->init(ctx, key, iv, enc)) return 0; } ctx->buf_len = 0; ctx->final_used = 0; ctx->block_mask = ctx->cipher->block_size - 1; return 1; } int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { if (ctx->encrypt) return EVP_EncryptUpdate(ctx, out, outl, in, inl); else return EVP_DecryptUpdate(ctx, out, outl, in, inl); } int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { if (ctx->encrypt) return EVP_EncryptFinal_ex(ctx, out, outl); else return EVP_DecryptFinal_ex(ctx, out, outl); } int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { if (ctx->encrypt) return EVP_EncryptFinal(ctx, out, outl); else return EVP_DecryptFinal(ctx, out, outl); } int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit(ctx, cipher, key, iv, 1); } int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); } int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit(ctx, cipher, key, iv, 0); } int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); } /* * According to the letter of standard difference between pointers * is specified to be valid only within same object. This makes * it formally challenging to determine if input and output buffers * are not partially overlapping with standard pointer arithmetic. */ #ifdef PTRDIFF_T # undef PTRDIFF_T #endif #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE==64 /* * Then we have VMS that distinguishes itself by adhering to * sizeof(size_t)==4 even in 64-bit builds, which means that * difference between two pointers might be truncated to 32 bits. * In the context one can even wonder how comparison for * equality is implemented. To be on the safe side we adhere to * PTRDIFF_T even for comparison for equality. */ # define PTRDIFF_T uint64_t #else # define PTRDIFF_T size_t #endif int is_partially_overlapping(const void *ptr1, const void *ptr2, int len) { PTRDIFF_T diff = (PTRDIFF_T)ptr1-(PTRDIFF_T)ptr2; /* * Check for partially overlapping buffers. [Binary logical * operations are used instead of boolean to minimize number * of conditional branches.] */ int overlapped = (len > 0) & (diff != 0) & ((diff < (PTRDIFF_T)len) | (diff > (0 - (PTRDIFF_T)len))); return overlapped; } static int evp_EncryptDecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { int i, j, bl, cmpl = inl; if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) cmpl = (cmpl + 7) / 8; bl = ctx->cipher->block_size; /* * CCM mode needs to know about the case where inl == 0 && in == NULL - it * means the plaintext/ciphertext length is 0 */ if (inl < 0 || (inl == 0 && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)) { *outl = 0; return inl == 0; } if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { /* If block size > 1 then the cipher will have to do this check */ if (bl == 1 && is_partially_overlapping(out, in, cmpl)) { EVPerr(EVP_F_EVP_ENCRYPTDECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } i = ctx->cipher->do_cipher(ctx, out, in, inl); if (i < 0) return 0; else *outl = i; return 1; } if (is_partially_overlapping(out + ctx->buf_len, in, cmpl)) { EVPerr(EVP_F_EVP_ENCRYPTDECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } if (ctx->buf_len == 0 && (inl & (ctx->block_mask)) == 0) { if (ctx->cipher->do_cipher(ctx, out, in, inl)) { *outl = inl; return 1; } else { *outl = 0; return 0; } } i = ctx->buf_len; OPENSSL_assert(bl <= (int)sizeof(ctx->buf)); if (i != 0) { if (bl - i > inl) { memcpy(&(ctx->buf[i]), in, inl); ctx->buf_len += inl; *outl = 0; return 1; } else { j = bl - i; memcpy(&(ctx->buf[i]), in, j); inl -= j; in += j; if (!ctx->cipher->do_cipher(ctx, out, ctx->buf, bl)) return 0; out += bl; *outl = bl; } } else *outl = 0; i = inl & (bl - 1); inl -= i; if (inl > 0) { if (!ctx->cipher->do_cipher(ctx, out, in, inl)) return 0; *outl += inl; } if (i != 0) memcpy(ctx->buf, &(in[inl]), i); ctx->buf_len = i; return 1; } int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { /* Prevent accidental use of decryption context when encrypting */ if (!ctx->encrypt) { EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_INVALID_OPERATION); return 0; } return evp_EncryptDecryptUpdate(ctx, out, outl, in, inl); } int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int ret; ret = EVP_EncryptFinal_ex(ctx, out, outl); return ret; } int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int n, ret; unsigned int i, b, bl; /* Prevent accidental use of decryption context when encrypting */ if (!ctx->encrypt) { EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, EVP_R_INVALID_OPERATION); return 0; } if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { ret = ctx->cipher->do_cipher(ctx, out, NULL, 0); if (ret < 0) return 0; else *outl = ret; return 1; } b = ctx->cipher->block_size; OPENSSL_assert(b <= sizeof(ctx->buf)); if (b == 1) { *outl = 0; return 1; } bl = ctx->buf_len; if (ctx->flags & EVP_CIPH_NO_PADDING) { if (bl) { EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); return 0; } *outl = 0; return 1; } n = b - bl; for (i = bl; i < b; i++) ctx->buf[i] = n; ret = ctx->cipher->do_cipher(ctx, out, ctx->buf, b); if (ret) *outl = b; return ret; } int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { int fix_len, cmpl = inl; unsigned int b; /* Prevent accidental use of encryption context when decrypting */ if (ctx->encrypt) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_INVALID_OPERATION); return 0; } b = ctx->cipher->block_size; if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) cmpl = (cmpl + 7) / 8; /* * CCM mode needs to know about the case where inl == 0 - it means the * plaintext/ciphertext length is 0 */ if (inl < 0 || (inl == 0 && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)) { *outl = 0; return inl == 0; } if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { if (b == 1 && is_partially_overlapping(out, in, cmpl)) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } fix_len = ctx->cipher->do_cipher(ctx, out, in, inl); if (fix_len < 0) { *outl = 0; return 0; } else *outl = fix_len; return 1; } if (ctx->flags & EVP_CIPH_NO_PADDING) return evp_EncryptDecryptUpdate(ctx, out, outl, in, inl); OPENSSL_assert(b <= sizeof(ctx->final)); if (ctx->final_used) { /* see comment about PTRDIFF_T comparison above */ if (((PTRDIFF_T)out == (PTRDIFF_T)in) || is_partially_overlapping(out, in, b)) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } memcpy(out, ctx->final, b); out += b; fix_len = 1; } else fix_len = 0; if (!evp_EncryptDecryptUpdate(ctx, out, outl, in, inl)) return 0; /* * if we have 'decrypted' a multiple of block size, make sure we have a * copy of this last block */ if (b > 1 && !ctx->buf_len) { *outl -= b; ctx->final_used = 1; memcpy(ctx->final, &out[*outl], b); } else ctx->final_used = 0; if (fix_len) *outl += b; return 1; } int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int ret; ret = EVP_DecryptFinal_ex(ctx, out, outl); return ret; } int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int i, n; unsigned int b; /* Prevent accidental use of encryption context when decrypting */ if (ctx->encrypt) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_INVALID_OPERATION); return 0; } *outl = 0; if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { i = ctx->cipher->do_cipher(ctx, out, NULL, 0); if (i < 0) return 0; else *outl = i; return 1; } b = ctx->cipher->block_size; if (ctx->flags & EVP_CIPH_NO_PADDING) { if (ctx->buf_len) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); return 0; } *outl = 0; return 1; } if (b > 1) { if (ctx->buf_len || !ctx->final_used) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_WRONG_FINAL_BLOCK_LENGTH); return 0; } OPENSSL_assert(b <= sizeof(ctx->final)); /* * The following assumes that the ciphertext has been authenticated. * Otherwise it provides a padding oracle. */ n = ctx->final[b - 1]; if (n == 0 || n > (int)b) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); return 0; } for (i = 0; i < n; i++) { if (ctx->final[--b] != n) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); return 0; } } n = ctx->cipher->block_size - n; for (i = 0; i < n; i++) out[i] = ctx->final[i]; *outl = n; } else *outl = 0; return 1; } int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int keylen) { if (c->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH) return EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_KEY_LENGTH, keylen, NULL); if (c->key_len == keylen) return 1; if ((keylen > 0) && (c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { c->key_len = keylen; return 1; } EVPerr(EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH, EVP_R_INVALID_KEY_LENGTH); return 0; } int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) { if (pad) ctx->flags &= ~EVP_CIPH_NO_PADDING; else ctx->flags |= EVP_CIPH_NO_PADDING; return 1; } int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { int ret; if (!ctx->cipher) { EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_NO_CIPHER_SET); return 0; } if (!ctx->cipher->ctrl) { EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_NOT_IMPLEMENTED); return 0; } ret = ctx->cipher->ctrl(ctx, type, arg, ptr); if (ret == -1) { EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED); return 0; } return ret; } int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key) { if (ctx->cipher->flags & EVP_CIPH_RAND_KEY) return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key); if (RAND_priv_bytes(key, ctx->key_len) <= 0) return 0; return 1; } int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) { if ((in == NULL) || (in->cipher == NULL)) { EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INPUT_NOT_INITIALIZED); return 0; } #ifndef OPENSSL_NO_ENGINE /* Make sure it's safe to copy a cipher context using an ENGINE */ if (in->engine && !ENGINE_init(in->engine)) { EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_ENGINE_LIB); return 0; } #endif EVP_CIPHER_CTX_reset(out); memcpy(out, in, sizeof(*out)); if (in->cipher_data && in->cipher->ctx_size) { out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size); if (out->cipher_data == NULL) { out->cipher = NULL; EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_MALLOC_FAILURE); return 0; } memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size); } if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { out->cipher = NULL; EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INITIALIZATION_ERROR); return 0; } return 1; } openssl-1.1.1f/crypto/evp/evp_err.c000066400000000000000000000360721364063235100172760ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA EVP_str_functs[] = { {ERR_PACK(ERR_LIB_EVP, EVP_F_AESNI_INIT_KEY, 0), "aesni_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AESNI_XTS_INIT_KEY, 0), "aesni_xts_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AES_GCM_CTRL, 0), "aes_gcm_ctrl"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AES_INIT_KEY, 0), "aes_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AES_OCB_CIPHER, 0), "aes_ocb_cipher"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AES_T4_INIT_KEY, 0), "aes_t4_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AES_T4_XTS_INIT_KEY, 0), "aes_t4_xts_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AES_WRAP_CIPHER, 0), "aes_wrap_cipher"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_AES_XTS_INIT_KEY, 0), "aes_xts_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_ALG_MODULE_INIT, 0), "alg_module_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_ARIA_CCM_INIT_KEY, 0), "aria_ccm_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_ARIA_GCM_CTRL, 0), "aria_gcm_ctrl"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_ARIA_GCM_INIT_KEY, 0), "aria_gcm_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_ARIA_INIT_KEY, 0), "aria_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_B64_NEW, 0), "b64_new"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_CAMELLIA_INIT_KEY, 0), "camellia_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_CHACHA20_POLY1305_CTRL, 0), "chacha20_poly1305_ctrl"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_CMLL_T4_INIT_KEY, 0), "cmll_t4_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_DES_EDE3_WRAP_CIPHER, 0), "des_ede3_wrap_cipher"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_DO_SIGVER_INIT, 0), "do_sigver_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_ENC_NEW, 0), "enc_new"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_CIPHERINIT_EX, 0), "EVP_CipherInit_ex"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_CIPHER_ASN1_TO_PARAM, 0), "EVP_CIPHER_asn1_to_param"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_CIPHER_CTX_COPY, 0), "EVP_CIPHER_CTX_copy"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_CIPHER_CTX_CTRL, 0), "EVP_CIPHER_CTX_ctrl"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH, 0), "EVP_CIPHER_CTX_set_key_length"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_CIPHER_PARAM_TO_ASN1, 0), "EVP_CIPHER_param_to_asn1"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_DECRYPTFINAL_EX, 0), "EVP_DecryptFinal_ex"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_DECRYPTUPDATE, 0), "EVP_DecryptUpdate"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_DIGESTFINALXOF, 0), "EVP_DigestFinalXOF"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_DIGESTINIT_EX, 0), "EVP_DigestInit_ex"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_ENCRYPTDECRYPTUPDATE, 0), "evp_EncryptDecryptUpdate"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_ENCRYPTFINAL_EX, 0), "EVP_EncryptFinal_ex"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_ENCRYPTUPDATE, 0), "EVP_EncryptUpdate"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_MD_CTX_COPY_EX, 0), "EVP_MD_CTX_copy_ex"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_MD_SIZE, 0), "EVP_MD_size"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_OPENINIT, 0), "EVP_OpenInit"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PBE_ALG_ADD, 0), "EVP_PBE_alg_add"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PBE_ALG_ADD_TYPE, 0), "EVP_PBE_alg_add_type"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PBE_CIPHERINIT, 0), "EVP_PBE_CipherInit"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PBE_SCRYPT, 0), "EVP_PBE_scrypt"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKCS82PKEY, 0), "EVP_PKCS82PKEY"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY2PKCS8, 0), "EVP_PKEY2PKCS8"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_ASN1_ADD0, 0), "EVP_PKEY_asn1_add0"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_CHECK, 0), "EVP_PKEY_check"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_COPY_PARAMETERS, 0), "EVP_PKEY_copy_parameters"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_CTX_CTRL, 0), "EVP_PKEY_CTX_ctrl"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_CTX_CTRL_STR, 0), "EVP_PKEY_CTX_ctrl_str"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_CTX_DUP, 0), "EVP_PKEY_CTX_dup"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_CTX_MD, 0), "EVP_PKEY_CTX_md"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_DECRYPT, 0), "EVP_PKEY_decrypt"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_DECRYPT_INIT, 0), "EVP_PKEY_decrypt_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_DECRYPT_OLD, 0), "EVP_PKEY_decrypt_old"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_DERIVE, 0), "EVP_PKEY_derive"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_DERIVE_INIT, 0), "EVP_PKEY_derive_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_DERIVE_SET_PEER, 0), "EVP_PKEY_derive_set_peer"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_ENCRYPT, 0), "EVP_PKEY_encrypt"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_ENCRYPT_INIT, 0), "EVP_PKEY_encrypt_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_ENCRYPT_OLD, 0), "EVP_PKEY_encrypt_old"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET0_DH, 0), "EVP_PKEY_get0_DH"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET0_DSA, 0), "EVP_PKEY_get0_DSA"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET0_EC_KEY, 0), "EVP_PKEY_get0_EC_KEY"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET0_HMAC, 0), "EVP_PKEY_get0_hmac"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET0_POLY1305, 0), "EVP_PKEY_get0_poly1305"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET0_RSA, 0), "EVP_PKEY_get0_RSA"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET0_SIPHASH, 0), "EVP_PKEY_get0_siphash"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET_RAW_PRIVATE_KEY, 0), "EVP_PKEY_get_raw_private_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_GET_RAW_PUBLIC_KEY, 0), "EVP_PKEY_get_raw_public_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_KEYGEN, 0), "EVP_PKEY_keygen"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_KEYGEN_INIT, 0), "EVP_PKEY_keygen_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_METH_ADD0, 0), "EVP_PKEY_meth_add0"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_METH_NEW, 0), "EVP_PKEY_meth_new"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_NEW, 0), "EVP_PKEY_new"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_NEW_CMAC_KEY, 0), "EVP_PKEY_new_CMAC_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_NEW_RAW_PRIVATE_KEY, 0), "EVP_PKEY_new_raw_private_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_NEW_RAW_PUBLIC_KEY, 0), "EVP_PKEY_new_raw_public_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_PARAMGEN, 0), "EVP_PKEY_paramgen"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_PARAMGEN_INIT, 0), "EVP_PKEY_paramgen_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_PARAM_CHECK, 0), "EVP_PKEY_param_check"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_PUBLIC_CHECK, 0), "EVP_PKEY_public_check"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_SET1_ENGINE, 0), "EVP_PKEY_set1_engine"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_SET_ALIAS_TYPE, 0), "EVP_PKEY_set_alias_type"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_SIGN, 0), "EVP_PKEY_sign"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_SIGN_INIT, 0), "EVP_PKEY_sign_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_VERIFY, 0), "EVP_PKEY_verify"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_VERIFY_INIT, 0), "EVP_PKEY_verify_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_VERIFY_RECOVER, 0), "EVP_PKEY_verify_recover"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_PKEY_VERIFY_RECOVER_INIT, 0), "EVP_PKEY_verify_recover_init"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_SIGNFINAL, 0), "EVP_SignFinal"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_EVP_VERIFYFINAL, 0), "EVP_VerifyFinal"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_INT_CTX_NEW, 0), "int_ctx_new"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_OK_NEW, 0), "ok_new"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_PKCS5_PBE_KEYIVGEN, 0), "PKCS5_PBE_keyivgen"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_PKCS5_V2_PBE_KEYIVGEN, 0), "PKCS5_v2_PBE_keyivgen"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, 0), "PKCS5_v2_PBKDF2_keyivgen"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_PKCS5_V2_SCRYPT_KEYIVGEN, 0), "PKCS5_v2_scrypt_keyivgen"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_PKEY_SET_TYPE, 0), "pkey_set_type"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_RC2_MAGIC_TO_METH, 0), "rc2_magic_to_meth"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_RC5_CTRL, 0), "rc5_ctrl"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_R_32_12_16_INIT_KEY, 0), "r_32_12_16_init_key"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_S390X_AES_GCM_CTRL, 0), "s390x_aes_gcm_ctrl"}, {ERR_PACK(ERR_LIB_EVP, EVP_F_UPDATE, 0), "update"}, {0, NULL} }; static const ERR_STRING_DATA EVP_str_reasons[] = { {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_AES_KEY_SETUP_FAILED), "aes key setup failed"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_ARIA_KEY_SETUP_FAILED), "aria key setup failed"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_BAD_DECRYPT), "bad decrypt"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_BAD_KEY_LENGTH), "bad key length"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_BUFFER_TOO_SMALL), "buffer too small"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_CAMELLIA_KEY_SETUP_FAILED), "camellia key setup failed"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_CIPHER_PARAMETER_ERROR), "cipher parameter error"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_COMMAND_NOT_SUPPORTED), "command not supported"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_COPY_ERROR), "copy error"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_CTRL_NOT_IMPLEMENTED), "ctrl not implemented"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED), "ctrl operation not implemented"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH), "data not multiple of block length"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_DECODE_ERROR), "decode error"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_DIFFERENT_KEY_TYPES), "different key types"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_DIFFERENT_PARAMETERS), "different parameters"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_ERROR_LOADING_SECTION), "error loading section"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_ERROR_SETTING_FIPS_MODE), "error setting fips mode"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_AN_HMAC_KEY), "expecting an hmac key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_AN_RSA_KEY), "expecting an rsa key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_A_DH_KEY), "expecting a dh key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_A_DSA_KEY), "expecting a dsa key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_A_EC_KEY), "expecting a ec key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_A_POLY1305_KEY), "expecting a poly1305 key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_EXPECTING_A_SIPHASH_KEY), "expecting a siphash key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_FIPS_MODE_NOT_SUPPORTED), "fips mode not supported"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_GET_RAW_KEY_FAILED), "get raw key failed"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_ILLEGAL_SCRYPT_PARAMETERS), "illegal scrypt parameters"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INITIALIZATION_ERROR), "initialization error"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INPUT_NOT_INITIALIZED), "input not initialized"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INVALID_DIGEST), "invalid digest"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INVALID_FIPS_MODE), "invalid fips mode"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INVALID_IV_LENGTH), "invalid iv length"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INVALID_KEY), "invalid key"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INVALID_KEY_LENGTH), "invalid key length"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_INVALID_OPERATION), "invalid operation"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_KEYGEN_FAILURE), "keygen failure"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_KEY_SETUP_FAILED), "key setup failed"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_MEMORY_LIMIT_EXCEEDED), "memory limit exceeded"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_MESSAGE_DIGEST_IS_NULL), "message digest is null"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_METHOD_NOT_SUPPORTED), "method not supported"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_MISSING_PARAMETERS), "missing parameters"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_NOT_XOF_OR_INVALID_LENGTH), "not XOF or invalid length"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_NO_CIPHER_SET), "no cipher set"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_NO_DEFAULT_DIGEST), "no default digest"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_NO_DIGEST_SET), "no digest set"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_NO_KEY_SET), "no key set"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_NO_OPERATION_SET), "no operation set"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_ONLY_ONESHOT_SUPPORTED), "only oneshot supported"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE), "operation not supported for this keytype"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_OPERATON_NOT_INITIALIZED), "operaton not initialized"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PARTIALLY_OVERLAPPING), "partially overlapping buffers"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PBKDF2_ERROR), "pbkdf2 error"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PKEY_APPLICATION_ASN1_METHOD_ALREADY_REGISTERED), "pkey application asn1 method already registered"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PRIVATE_KEY_DECODE_ERROR), "private key decode error"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PRIVATE_KEY_ENCODE_ERROR), "private key encode error"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_PUBLIC_KEY_NOT_RSA), "public key not rsa"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNKNOWN_CIPHER), "unknown cipher"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNKNOWN_DIGEST), "unknown digest"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNKNOWN_OPTION), "unknown option"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNKNOWN_PBE_ALGORITHM), "unknown pbe algorithm"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_ALGORITHM), "unsupported algorithm"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_CIPHER), "unsupported cipher"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_KEYLENGTH), "unsupported keylength"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION), "unsupported key derivation function"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_KEY_SIZE), "unsupported key size"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_NUMBER_OF_ROUNDS), "unsupported number of rounds"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_PRF), "unsupported prf"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM), "unsupported private key algorithm"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_UNSUPPORTED_SALT_TYPE), "unsupported salt type"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_WRAP_MODE_NOT_ALLOWED), "wrap mode not allowed"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_WRONG_FINAL_BLOCK_LENGTH), "wrong final block length"}, {ERR_PACK(ERR_LIB_EVP, 0, EVP_R_XTS_DUPLICATED_KEYS), "xts duplicated keys"}, {0, NULL} }; #endif int ERR_load_EVP_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(EVP_str_functs[0].error) == NULL) { ERR_load_strings_const(EVP_str_functs); ERR_load_strings_const(EVP_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/evp/evp_key.c000066400000000000000000000101261364063235100172660ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include /* should be init to zeros. */ static char prompt_string[80]; void EVP_set_pw_prompt(const char *prompt) { if (prompt == NULL) prompt_string[0] = '\0'; else { strncpy(prompt_string, prompt, 79); prompt_string[79] = '\0'; } } char *EVP_get_pw_prompt(void) { if (prompt_string[0] == '\0') return NULL; else return prompt_string; } /* * For historical reasons, the standard function for reading passwords is in * the DES library -- if someone ever wants to disable DES, this function * will fail */ int EVP_read_pw_string(char *buf, int len, const char *prompt, int verify) { return EVP_read_pw_string_min(buf, 0, len, prompt, verify); } int EVP_read_pw_string_min(char *buf, int min, int len, const char *prompt, int verify) { int ret = -1; char buff[BUFSIZ]; UI *ui; if ((prompt == NULL) && (prompt_string[0] != '\0')) prompt = prompt_string; ui = UI_new(); if (ui == NULL) return ret; if (UI_add_input_string(ui, prompt, 0, buf, min, (len >= BUFSIZ) ? BUFSIZ - 1 : len) < 0 || (verify && UI_add_verify_string(ui, prompt, 0, buff, min, (len >= BUFSIZ) ? BUFSIZ - 1 : len, buf) < 0)) goto end; ret = UI_process(ui); OPENSSL_cleanse(buff, BUFSIZ); end: UI_free(ui); return ret; } int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md, const unsigned char *salt, const unsigned char *data, int datal, int count, unsigned char *key, unsigned char *iv) { EVP_MD_CTX *c; unsigned char md_buf[EVP_MAX_MD_SIZE]; int niv, nkey, addmd = 0; unsigned int mds = 0, i; int rv = 0; nkey = EVP_CIPHER_key_length(type); niv = EVP_CIPHER_iv_length(type); OPENSSL_assert(nkey <= EVP_MAX_KEY_LENGTH); OPENSSL_assert(niv <= EVP_MAX_IV_LENGTH); if (data == NULL) return nkey; c = EVP_MD_CTX_new(); if (c == NULL) goto err; for (;;) { if (!EVP_DigestInit_ex(c, md, NULL)) goto err; if (addmd++) if (!EVP_DigestUpdate(c, &(md_buf[0]), mds)) goto err; if (!EVP_DigestUpdate(c, data, datal)) goto err; if (salt != NULL) if (!EVP_DigestUpdate(c, salt, PKCS5_SALT_LEN)) goto err; if (!EVP_DigestFinal_ex(c, &(md_buf[0]), &mds)) goto err; for (i = 1; i < (unsigned int)count; i++) { if (!EVP_DigestInit_ex(c, md, NULL)) goto err; if (!EVP_DigestUpdate(c, &(md_buf[0]), mds)) goto err; if (!EVP_DigestFinal_ex(c, &(md_buf[0]), &mds)) goto err; } i = 0; if (nkey) { for (;;) { if (nkey == 0) break; if (i == mds) break; if (key != NULL) *(key++) = md_buf[i]; nkey--; i++; } } if (niv && (i != mds)) { for (;;) { if (niv == 0) break; if (i == mds) break; if (iv != NULL) *(iv++) = md_buf[i]; niv--; i++; } } if ((nkey == 0) && (niv == 0)) break; } rv = EVP_CIPHER_key_length(type); err: EVP_MD_CTX_free(c); OPENSSL_cleanse(md_buf, sizeof(md_buf)); return rv; } openssl-1.1.1f/crypto/evp/evp_lib.c000066400000000000000000000274171364063235100172570ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/evp.h" #include "evp_local.h" int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int ret; if (c->cipher->set_asn1_parameters != NULL) ret = c->cipher->set_asn1_parameters(c, type); else if (c->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1) { switch (EVP_CIPHER_CTX_mode(c)) { case EVP_CIPH_WRAP_MODE: if (EVP_CIPHER_CTX_nid(c) == NID_id_smime_alg_CMS3DESwrap) ASN1_TYPE_set(type, V_ASN1_NULL, NULL); ret = 1; break; case EVP_CIPH_GCM_MODE: case EVP_CIPH_CCM_MODE: case EVP_CIPH_XTS_MODE: case EVP_CIPH_OCB_MODE: ret = -2; break; default: ret = EVP_CIPHER_set_asn1_iv(c, type); } } else ret = -1; if (ret <= 0) EVPerr(EVP_F_EVP_CIPHER_PARAM_TO_ASN1, ret == -2 ? ASN1_R_UNSUPPORTED_CIPHER : EVP_R_CIPHER_PARAMETER_ERROR); if (ret < -1) ret = -1; return ret; } int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int ret; if (c->cipher->get_asn1_parameters != NULL) ret = c->cipher->get_asn1_parameters(c, type); else if (c->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1) { switch (EVP_CIPHER_CTX_mode(c)) { case EVP_CIPH_WRAP_MODE: ret = 1; break; case EVP_CIPH_GCM_MODE: case EVP_CIPH_CCM_MODE: case EVP_CIPH_XTS_MODE: case EVP_CIPH_OCB_MODE: ret = -2; break; default: ret = EVP_CIPHER_get_asn1_iv(c, type); break; } } else ret = -1; if (ret <= 0) EVPerr(EVP_F_EVP_CIPHER_ASN1_TO_PARAM, ret == -2 ? EVP_R_UNSUPPORTED_CIPHER : EVP_R_CIPHER_PARAMETER_ERROR); if (ret < -1) ret = -1; return ret; } int EVP_CIPHER_get_asn1_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int i = 0; unsigned int l; if (type != NULL) { l = EVP_CIPHER_CTX_iv_length(c); OPENSSL_assert(l <= sizeof(c->iv)); i = ASN1_TYPE_get_octetstring(type, c->oiv, l); if (i != (int)l) return -1; else if (i > 0) memcpy(c->iv, c->oiv, l); } return i; } int EVP_CIPHER_set_asn1_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int i = 0; unsigned int j; if (type != NULL) { j = EVP_CIPHER_CTX_iv_length(c); OPENSSL_assert(j <= sizeof(c->iv)); i = ASN1_TYPE_set_octetstring(type, c->oiv, j); } return i; } /* Convert the various cipher NIDs and dummies to a proper OID NID */ int EVP_CIPHER_type(const EVP_CIPHER *ctx) { int nid; ASN1_OBJECT *otmp; nid = EVP_CIPHER_nid(ctx); switch (nid) { case NID_rc2_cbc: case NID_rc2_64_cbc: case NID_rc2_40_cbc: return NID_rc2_cbc; case NID_rc4: case NID_rc4_40: return NID_rc4; case NID_aes_128_cfb128: case NID_aes_128_cfb8: case NID_aes_128_cfb1: return NID_aes_128_cfb128; case NID_aes_192_cfb128: case NID_aes_192_cfb8: case NID_aes_192_cfb1: return NID_aes_192_cfb128; case NID_aes_256_cfb128: case NID_aes_256_cfb8: case NID_aes_256_cfb1: return NID_aes_256_cfb128; case NID_des_cfb64: case NID_des_cfb8: case NID_des_cfb1: return NID_des_cfb64; case NID_des_ede3_cfb64: case NID_des_ede3_cfb8: case NID_des_ede3_cfb1: return NID_des_cfb64; default: /* Check it has an OID and it is valid */ otmp = OBJ_nid2obj(nid); if (OBJ_get0_data(otmp) == NULL) nid = NID_undef; ASN1_OBJECT_free(otmp); return nid; } } int EVP_CIPHER_block_size(const EVP_CIPHER *e) { return e->block_size; } int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->block_size; } int EVP_CIPHER_impl_ctx_size(const EVP_CIPHER *e) { return e->ctx_size; } int EVP_Cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, unsigned int inl) { return ctx->cipher->do_cipher(ctx, out, in, inl); } const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) { return ctx->cipher; } int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) { return ctx->encrypt; } unsigned long EVP_CIPHER_flags(const EVP_CIPHER *cipher) { return cipher->flags; } void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) { return ctx->app_data; } void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { ctx->app_data = data; } void *EVP_CIPHER_CTX_get_cipher_data(const EVP_CIPHER_CTX *ctx) { return ctx->cipher_data; } void *EVP_CIPHER_CTX_set_cipher_data(EVP_CIPHER_CTX *ctx, void *cipher_data) { void *old_cipher_data; old_cipher_data = ctx->cipher_data; ctx->cipher_data = cipher_data; return old_cipher_data; } int EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) { return cipher->iv_len; } int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { int i, rv; if ((EVP_CIPHER_flags(ctx->cipher) & EVP_CIPH_CUSTOM_IV_LENGTH) != 0) { rv = EVP_CIPHER_CTX_ctrl((EVP_CIPHER_CTX *)ctx, EVP_CTRL_GET_IVLEN, 0, &i); return (rv == 1) ? i : -1; } return ctx->cipher->iv_len; } const unsigned char *EVP_CIPHER_CTX_original_iv(const EVP_CIPHER_CTX *ctx) { return ctx->oiv; } const unsigned char *EVP_CIPHER_CTX_iv(const EVP_CIPHER_CTX *ctx) { return ctx->iv; } unsigned char *EVP_CIPHER_CTX_iv_noconst(EVP_CIPHER_CTX *ctx) { return ctx->iv; } unsigned char *EVP_CIPHER_CTX_buf_noconst(EVP_CIPHER_CTX *ctx) { return ctx->buf; } int EVP_CIPHER_CTX_num(const EVP_CIPHER_CTX *ctx) { return ctx->num; } void EVP_CIPHER_CTX_set_num(EVP_CIPHER_CTX *ctx, int num) { ctx->num = num; } int EVP_CIPHER_key_length(const EVP_CIPHER *cipher) { return cipher->key_len; } int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { return ctx->key_len; } int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; } int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->nid; } int EVP_MD_block_size(const EVP_MD *md) { return md->block_size; } int EVP_MD_type(const EVP_MD *md) { return md->type; } int EVP_MD_pkey_type(const EVP_MD *md) { return md->pkey_type; } int EVP_MD_size(const EVP_MD *md) { if (!md) { EVPerr(EVP_F_EVP_MD_SIZE, EVP_R_MESSAGE_DIGEST_IS_NULL); return -1; } return md->md_size; } unsigned long EVP_MD_flags(const EVP_MD *md) { return md->flags; } EVP_MD *EVP_MD_meth_new(int md_type, int pkey_type) { EVP_MD *md = OPENSSL_zalloc(sizeof(*md)); if (md != NULL) { md->type = md_type; md->pkey_type = pkey_type; } return md; } EVP_MD *EVP_MD_meth_dup(const EVP_MD *md) { EVP_MD *to = EVP_MD_meth_new(md->type, md->pkey_type); if (to != NULL) memcpy(to, md, sizeof(*to)); return to; } void EVP_MD_meth_free(EVP_MD *md) { OPENSSL_free(md); } int EVP_MD_meth_set_input_blocksize(EVP_MD *md, int blocksize) { md->block_size = blocksize; return 1; } int EVP_MD_meth_set_result_size(EVP_MD *md, int resultsize) { md->md_size = resultsize; return 1; } int EVP_MD_meth_set_app_datasize(EVP_MD *md, int datasize) { md->ctx_size = datasize; return 1; } int EVP_MD_meth_set_flags(EVP_MD *md, unsigned long flags) { md->flags = flags; return 1; } int EVP_MD_meth_set_init(EVP_MD *md, int (*init)(EVP_MD_CTX *ctx)) { md->init = init; return 1; } int EVP_MD_meth_set_update(EVP_MD *md, int (*update)(EVP_MD_CTX *ctx, const void *data, size_t count)) { md->update = update; return 1; } int EVP_MD_meth_set_final(EVP_MD *md, int (*final)(EVP_MD_CTX *ctx, unsigned char *md)) { md->final = final; return 1; } int EVP_MD_meth_set_copy(EVP_MD *md, int (*copy)(EVP_MD_CTX *to, const EVP_MD_CTX *from)) { md->copy = copy; return 1; } int EVP_MD_meth_set_cleanup(EVP_MD *md, int (*cleanup)(EVP_MD_CTX *ctx)) { md->cleanup = cleanup; return 1; } int EVP_MD_meth_set_ctrl(EVP_MD *md, int (*ctrl)(EVP_MD_CTX *ctx, int cmd, int p1, void *p2)) { md->md_ctrl = ctrl; return 1; } int EVP_MD_meth_get_input_blocksize(const EVP_MD *md) { return md->block_size; } int EVP_MD_meth_get_result_size(const EVP_MD *md) { return md->md_size; } int EVP_MD_meth_get_app_datasize(const EVP_MD *md) { return md->ctx_size; } unsigned long EVP_MD_meth_get_flags(const EVP_MD *md) { return md->flags; } int (*EVP_MD_meth_get_init(const EVP_MD *md))(EVP_MD_CTX *ctx) { return md->init; } int (*EVP_MD_meth_get_update(const EVP_MD *md))(EVP_MD_CTX *ctx, const void *data, size_t count) { return md->update; } int (*EVP_MD_meth_get_final(const EVP_MD *md))(EVP_MD_CTX *ctx, unsigned char *md) { return md->final; } int (*EVP_MD_meth_get_copy(const EVP_MD *md))(EVP_MD_CTX *to, const EVP_MD_CTX *from) { return md->copy; } int (*EVP_MD_meth_get_cleanup(const EVP_MD *md))(EVP_MD_CTX *ctx) { return md->cleanup; } int (*EVP_MD_meth_get_ctrl(const EVP_MD *md))(EVP_MD_CTX *ctx, int cmd, int p1, void *p2) { return md->md_ctrl; } const EVP_MD *EVP_MD_CTX_md(const EVP_MD_CTX *ctx) { if (!ctx) return NULL; return ctx->digest; } EVP_PKEY_CTX *EVP_MD_CTX_pkey_ctx(const EVP_MD_CTX *ctx) { return ctx->pctx; } void EVP_MD_CTX_set_pkey_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pctx) { /* * it's reasonable to set NULL pctx (a.k.a clear the ctx->pctx), so * we have to deal with the cleanup job here. */ if (!EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX)) EVP_PKEY_CTX_free(ctx->pctx); ctx->pctx = pctx; if (pctx != NULL) { /* make sure pctx is not freed when destroying EVP_MD_CTX */ EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX); } else { EVP_MD_CTX_clear_flags(ctx, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX); } } void *EVP_MD_CTX_md_data(const EVP_MD_CTX *ctx) { return ctx->md_data; } int (*EVP_MD_CTX_update_fn(EVP_MD_CTX *ctx))(EVP_MD_CTX *ctx, const void *data, size_t count) { return ctx->update; } void EVP_MD_CTX_set_update_fn(EVP_MD_CTX *ctx, int (*update) (EVP_MD_CTX *ctx, const void *data, size_t count)) { ctx->update = update; } void EVP_MD_CTX_set_flags(EVP_MD_CTX *ctx, int flags) { ctx->flags |= flags; } void EVP_MD_CTX_clear_flags(EVP_MD_CTX *ctx, int flags) { ctx->flags &= ~flags; } int EVP_MD_CTX_test_flags(const EVP_MD_CTX *ctx, int flags) { return (ctx->flags & flags); } void EVP_CIPHER_CTX_set_flags(EVP_CIPHER_CTX *ctx, int flags) { ctx->flags |= flags; } void EVP_CIPHER_CTX_clear_flags(EVP_CIPHER_CTX *ctx, int flags) { ctx->flags &= ~flags; } int EVP_CIPHER_CTX_test_flags(const EVP_CIPHER_CTX *ctx, int flags) { return (ctx->flags & flags); } openssl-1.1.1f/crypto/evp/evp_local.h000066400000000000000000000051151364063235100175770ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* EVP_MD_CTX related stuff */ struct evp_md_ctx_st { const EVP_MD *digest; ENGINE *engine; /* functional reference if 'digest' is * ENGINE-provided */ unsigned long flags; void *md_data; /* Public key context for sign/verify */ EVP_PKEY_CTX *pctx; /* Update function: usually copied from EVP_MD */ int (*update) (EVP_MD_CTX *ctx, const void *data, size_t count); } /* EVP_MD_CTX */ ; struct evp_cipher_ctx_st { const EVP_CIPHER *cipher; ENGINE *engine; /* functional reference if 'cipher' is * ENGINE-provided */ int encrypt; /* encrypt or decrypt */ int buf_len; /* number we have left */ unsigned char oiv[EVP_MAX_IV_LENGTH]; /* original iv */ unsigned char iv[EVP_MAX_IV_LENGTH]; /* working iv */ unsigned char buf[EVP_MAX_BLOCK_LENGTH]; /* saved partial block */ int num; /* used by cfb/ofb/ctr mode */ /* FIXME: Should this even exist? It appears unused */ void *app_data; /* application stuff */ int key_len; /* May change for variable length cipher */ unsigned long flags; /* Various flags */ void *cipher_data; /* per EVP data */ int final_used; int block_mask; unsigned char final[EVP_MAX_BLOCK_LENGTH]; /* possible final block */ } /* EVP_CIPHER_CTX */ ; int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de); struct evp_Encode_Ctx_st { /* number saved in a partial encode/decode */ int num; /* * The length is either the output line length (in input bytes) or the * shortest input line length that is ok. Once decoding begins, the * length is adjusted up each time a longer line is decoded */ int length; /* data to encode */ unsigned char enc_data[80]; /* number read on current line */ int line_num; unsigned int flags; }; typedef struct evp_pbe_st EVP_PBE_CTL; DEFINE_STACK_OF(EVP_PBE_CTL) int is_partially_overlapping(const void *ptr1, const void *ptr2, int len); openssl-1.1.1f/crypto/evp/evp_pbe.c000066400000000000000000000170231364063235100172470ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "evp_local.h" /* Password based encryption (PBE) functions */ /* Setup a cipher context from a PBE algorithm */ struct evp_pbe_st { int pbe_type; int pbe_nid; int cipher_nid; int md_nid; EVP_PBE_KEYGEN *keygen; }; static STACK_OF(EVP_PBE_CTL) *pbe_algs; static const EVP_PBE_CTL builtin_pbe[] = { {EVP_PBE_TYPE_OUTER, NID_pbeWithMD2AndDES_CBC, NID_des_cbc, NID_md2, PKCS5_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbeWithMD5AndDES_CBC, NID_des_cbc, NID_md5, PKCS5_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbeWithSHA1AndRC2_CBC, NID_rc2_64_cbc, NID_sha1, PKCS5_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_id_pbkdf2, -1, -1, PKCS5_v2_PBKDF2_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And128BitRC4, NID_rc4, NID_sha1, PKCS12_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And40BitRC4, NID_rc4_40, NID_sha1, PKCS12_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And3_Key_TripleDES_CBC, NID_des_ede3_cbc, NID_sha1, PKCS12_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And2_Key_TripleDES_CBC, NID_des_ede_cbc, NID_sha1, PKCS12_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And128BitRC2_CBC, NID_rc2_cbc, NID_sha1, PKCS12_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And40BitRC2_CBC, NID_rc2_40_cbc, NID_sha1, PKCS12_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbes2, -1, -1, PKCS5_v2_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbeWithMD2AndRC2_CBC, NID_rc2_64_cbc, NID_md2, PKCS5_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbeWithMD5AndRC2_CBC, NID_rc2_64_cbc, NID_md5, PKCS5_PBE_keyivgen}, {EVP_PBE_TYPE_OUTER, NID_pbeWithSHA1AndDES_CBC, NID_des_cbc, NID_sha1, PKCS5_PBE_keyivgen}, {EVP_PBE_TYPE_PRF, NID_hmacWithSHA1, -1, NID_sha1, 0}, {EVP_PBE_TYPE_PRF, NID_hmac_md5, -1, NID_md5, 0}, {EVP_PBE_TYPE_PRF, NID_hmac_sha1, -1, NID_sha1, 0}, {EVP_PBE_TYPE_PRF, NID_hmacWithMD5, -1, NID_md5, 0}, {EVP_PBE_TYPE_PRF, NID_hmacWithSHA224, -1, NID_sha224, 0}, {EVP_PBE_TYPE_PRF, NID_hmacWithSHA256, -1, NID_sha256, 0}, {EVP_PBE_TYPE_PRF, NID_hmacWithSHA384, -1, NID_sha384, 0}, {EVP_PBE_TYPE_PRF, NID_hmacWithSHA512, -1, NID_sha512, 0}, {EVP_PBE_TYPE_PRF, NID_id_HMACGostR3411_94, -1, NID_id_GostR3411_94, 0}, {EVP_PBE_TYPE_PRF, NID_id_tc26_hmac_gost_3411_2012_256, -1, NID_id_GostR3411_2012_256, 0}, {EVP_PBE_TYPE_PRF, NID_id_tc26_hmac_gost_3411_2012_512, -1, NID_id_GostR3411_2012_512, 0}, {EVP_PBE_TYPE_PRF, NID_hmacWithSHA512_224, -1, NID_sha512_224, 0}, {EVP_PBE_TYPE_PRF, NID_hmacWithSHA512_256, -1, NID_sha512_256, 0}, {EVP_PBE_TYPE_KDF, NID_id_pbkdf2, -1, -1, PKCS5_v2_PBKDF2_keyivgen}, #ifndef OPENSSL_NO_SCRYPT {EVP_PBE_TYPE_KDF, NID_id_scrypt, -1, -1, PKCS5_v2_scrypt_keyivgen} #endif }; int EVP_PBE_CipherInit(ASN1_OBJECT *pbe_obj, const char *pass, int passlen, ASN1_TYPE *param, EVP_CIPHER_CTX *ctx, int en_de) { const EVP_CIPHER *cipher; const EVP_MD *md; int cipher_nid, md_nid; EVP_PBE_KEYGEN *keygen; if (!EVP_PBE_find(EVP_PBE_TYPE_OUTER, OBJ_obj2nid(pbe_obj), &cipher_nid, &md_nid, &keygen)) { char obj_tmp[80]; EVPerr(EVP_F_EVP_PBE_CIPHERINIT, EVP_R_UNKNOWN_PBE_ALGORITHM); if (!pbe_obj) OPENSSL_strlcpy(obj_tmp, "NULL", sizeof(obj_tmp)); else i2t_ASN1_OBJECT(obj_tmp, sizeof(obj_tmp), pbe_obj); ERR_add_error_data(2, "TYPE=", obj_tmp); return 0; } if (!pass) passlen = 0; else if (passlen == -1) passlen = strlen(pass); if (cipher_nid == -1) cipher = NULL; else { cipher = EVP_get_cipherbynid(cipher_nid); if (!cipher) { EVPerr(EVP_F_EVP_PBE_CIPHERINIT, EVP_R_UNKNOWN_CIPHER); return 0; } } if (md_nid == -1) md = NULL; else { md = EVP_get_digestbynid(md_nid); if (!md) { EVPerr(EVP_F_EVP_PBE_CIPHERINIT, EVP_R_UNKNOWN_DIGEST); return 0; } } if (!keygen(ctx, pass, passlen, param, cipher, md, en_de)) { EVPerr(EVP_F_EVP_PBE_CIPHERINIT, EVP_R_KEYGEN_FAILURE); return 0; } return 1; } DECLARE_OBJ_BSEARCH_CMP_FN(EVP_PBE_CTL, EVP_PBE_CTL, pbe2); static int pbe2_cmp(const EVP_PBE_CTL *pbe1, const EVP_PBE_CTL *pbe2) { int ret = pbe1->pbe_type - pbe2->pbe_type; if (ret) return ret; else return pbe1->pbe_nid - pbe2->pbe_nid; } IMPLEMENT_OBJ_BSEARCH_CMP_FN(EVP_PBE_CTL, EVP_PBE_CTL, pbe2); static int pbe_cmp(const EVP_PBE_CTL *const *a, const EVP_PBE_CTL *const *b) { int ret = (*a)->pbe_type - (*b)->pbe_type; if (ret) return ret; else return (*a)->pbe_nid - (*b)->pbe_nid; } /* Add a PBE algorithm */ int EVP_PBE_alg_add_type(int pbe_type, int pbe_nid, int cipher_nid, int md_nid, EVP_PBE_KEYGEN *keygen) { EVP_PBE_CTL *pbe_tmp; if (pbe_algs == NULL) { pbe_algs = sk_EVP_PBE_CTL_new(pbe_cmp); if (pbe_algs == NULL) goto err; } if ((pbe_tmp = OPENSSL_malloc(sizeof(*pbe_tmp))) == NULL) goto err; pbe_tmp->pbe_type = pbe_type; pbe_tmp->pbe_nid = pbe_nid; pbe_tmp->cipher_nid = cipher_nid; pbe_tmp->md_nid = md_nid; pbe_tmp->keygen = keygen; if (!sk_EVP_PBE_CTL_push(pbe_algs, pbe_tmp)) { OPENSSL_free(pbe_tmp); goto err; } return 1; err: EVPerr(EVP_F_EVP_PBE_ALG_ADD_TYPE, ERR_R_MALLOC_FAILURE); return 0; } int EVP_PBE_alg_add(int nid, const EVP_CIPHER *cipher, const EVP_MD *md, EVP_PBE_KEYGEN *keygen) { int cipher_nid, md_nid; if (cipher) cipher_nid = EVP_CIPHER_nid(cipher); else cipher_nid = -1; if (md) md_nid = EVP_MD_type(md); else md_nid = -1; return EVP_PBE_alg_add_type(EVP_PBE_TYPE_OUTER, nid, cipher_nid, md_nid, keygen); } int EVP_PBE_find(int type, int pbe_nid, int *pcnid, int *pmnid, EVP_PBE_KEYGEN **pkeygen) { EVP_PBE_CTL *pbetmp = NULL, pbelu; int i; if (pbe_nid == NID_undef) return 0; pbelu.pbe_type = type; pbelu.pbe_nid = pbe_nid; if (pbe_algs != NULL) { i = sk_EVP_PBE_CTL_find(pbe_algs, &pbelu); pbetmp = sk_EVP_PBE_CTL_value(pbe_algs, i); } if (pbetmp == NULL) { pbetmp = OBJ_bsearch_pbe2(&pbelu, builtin_pbe, OSSL_NELEM(builtin_pbe)); } if (pbetmp == NULL) return 0; if (pcnid) *pcnid = pbetmp->cipher_nid; if (pmnid) *pmnid = pbetmp->md_nid; if (pkeygen) *pkeygen = pbetmp->keygen; return 1; } static void free_evp_pbe_ctl(EVP_PBE_CTL *pbe) { OPENSSL_free(pbe); } void EVP_PBE_cleanup(void) { sk_EVP_PBE_CTL_pop_free(pbe_algs, free_evp_pbe_ctl); pbe_algs = NULL; } int EVP_PBE_get(int *ptype, int *ppbe_nid, size_t num) { const EVP_PBE_CTL *tpbe; if (num >= OSSL_NELEM(builtin_pbe)) return 0; tpbe = builtin_pbe + num; if (ptype) *ptype = tpbe->pbe_type; if (ppbe_nid) *ppbe_nid = tpbe->pbe_nid; return 1; } openssl-1.1.1f/crypto/evp/evp_pkey.c000066400000000000000000000077731364063235100174640ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "crypto/x509.h" /* Extract a private key from a PKCS8 structure */ EVP_PKEY *EVP_PKCS82PKEY(const PKCS8_PRIV_KEY_INFO *p8) { EVP_PKEY *pkey = NULL; const ASN1_OBJECT *algoid; char obj_tmp[80]; if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8)) return NULL; if ((pkey = EVP_PKEY_new()) == NULL) { EVPerr(EVP_F_EVP_PKCS82PKEY, ERR_R_MALLOC_FAILURE); return NULL; } if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid))) { EVPerr(EVP_F_EVP_PKCS82PKEY, EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); i2t_ASN1_OBJECT(obj_tmp, 80, algoid); ERR_add_error_data(2, "TYPE=", obj_tmp); goto error; } if (pkey->ameth->priv_decode) { if (!pkey->ameth->priv_decode(pkey, p8)) { EVPerr(EVP_F_EVP_PKCS82PKEY, EVP_R_PRIVATE_KEY_DECODE_ERROR); goto error; } } else { EVPerr(EVP_F_EVP_PKCS82PKEY, EVP_R_METHOD_NOT_SUPPORTED); goto error; } return pkey; error: EVP_PKEY_free(pkey); return NULL; } /* Turn a private key into a PKCS8 structure */ PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { PKCS8_PRIV_KEY_INFO *p8 = PKCS8_PRIV_KEY_INFO_new(); if (p8 == NULL) { EVPerr(EVP_F_EVP_PKEY2PKCS8, ERR_R_MALLOC_FAILURE); return NULL; } if (pkey->ameth) { if (pkey->ameth->priv_encode) { if (!pkey->ameth->priv_encode(p8, pkey)) { EVPerr(EVP_F_EVP_PKEY2PKCS8, EVP_R_PRIVATE_KEY_ENCODE_ERROR); goto error; } } else { EVPerr(EVP_F_EVP_PKEY2PKCS8, EVP_R_METHOD_NOT_SUPPORTED); goto error; } } else { EVPerr(EVP_F_EVP_PKEY2PKCS8, EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); goto error; } return p8; error: PKCS8_PRIV_KEY_INFO_free(p8); return NULL; } /* EVP_PKEY attribute functions */ int EVP_PKEY_get_attr_count(const EVP_PKEY *key) { return X509at_get_attr_count(key->attributes); } int EVP_PKEY_get_attr_by_NID(const EVP_PKEY *key, int nid, int lastpos) { return X509at_get_attr_by_NID(key->attributes, nid, lastpos); } int EVP_PKEY_get_attr_by_OBJ(const EVP_PKEY *key, const ASN1_OBJECT *obj, int lastpos) { return X509at_get_attr_by_OBJ(key->attributes, obj, lastpos); } X509_ATTRIBUTE *EVP_PKEY_get_attr(const EVP_PKEY *key, int loc) { return X509at_get_attr(key->attributes, loc); } X509_ATTRIBUTE *EVP_PKEY_delete_attr(EVP_PKEY *key, int loc) { return X509at_delete_attr(key->attributes, loc); } int EVP_PKEY_add1_attr(EVP_PKEY *key, X509_ATTRIBUTE *attr) { if (X509at_add1_attr(&key->attributes, attr)) return 1; return 0; } int EVP_PKEY_add1_attr_by_OBJ(EVP_PKEY *key, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len) { if (X509at_add1_attr_by_OBJ(&key->attributes, obj, type, bytes, len)) return 1; return 0; } int EVP_PKEY_add1_attr_by_NID(EVP_PKEY *key, int nid, int type, const unsigned char *bytes, int len) { if (X509at_add1_attr_by_NID(&key->attributes, nid, type, bytes, len)) return 1; return 0; } int EVP_PKEY_add1_attr_by_txt(EVP_PKEY *key, const char *attrname, int type, const unsigned char *bytes, int len) { if (X509at_add1_attr_by_txt(&key->attributes, attrname, type, bytes, len)) return 1; return 0; } openssl-1.1.1f/crypto/evp/m_md2.c000066400000000000000000000022231364063235100166210ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_MD2 # include # include # include # include # include #include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return MD2_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return MD2_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return MD2_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD md2_md = { NID_md2, NID_md2WithRSAEncryption, MD2_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, MD2_BLOCK, sizeof(EVP_MD *) + sizeof(MD2_CTX), }; const EVP_MD *EVP_md2(void) { return &md2_md; } #endif openssl-1.1.1f/crypto/evp/m_md4.c000066400000000000000000000022241364063235100166240ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_MD4 # include # include # include # include # include # include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return MD4_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return MD4_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return MD4_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD md4_md = { NID_md4, NID_md4WithRSAEncryption, MD4_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, MD4_CBLOCK, sizeof(EVP_MD *) + sizeof(MD4_CTX), }; const EVP_MD *EVP_md4(void) { return &md4_md; } #endif openssl-1.1.1f/crypto/evp/m_md5.c000066400000000000000000000022241364063235100166250ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_MD5 # include # include # include # include # include # include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return MD5_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return MD5_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return MD5_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD md5_md = { NID_md5, NID_md5WithRSAEncryption, MD5_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, MD5_CBLOCK, sizeof(EVP_MD *) + sizeof(MD5_CTX), }; const EVP_MD *EVP_md5(void) { return &md5_md; } #endif openssl-1.1.1f/crypto/evp/m_md5_sha1.c000066400000000000000000000063131364063235100175440ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #if !defined(OPENSSL_NO_MD5) # include # include # include # include # include # include "internal/cryptlib.h" # include "crypto/evp.h" # include struct md5_sha1_ctx { MD5_CTX md5; SHA_CTX sha1; }; static int init(EVP_MD_CTX *ctx) { struct md5_sha1_ctx *mctx = EVP_MD_CTX_md_data(ctx); if (!MD5_Init(&mctx->md5)) return 0; return SHA1_Init(&mctx->sha1); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { struct md5_sha1_ctx *mctx = EVP_MD_CTX_md_data(ctx); if (!MD5_Update(&mctx->md5, data, count)) return 0; return SHA1_Update(&mctx->sha1, data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { struct md5_sha1_ctx *mctx = EVP_MD_CTX_md_data(ctx); if (!MD5_Final(md, &mctx->md5)) return 0; return SHA1_Final(md + MD5_DIGEST_LENGTH, &mctx->sha1); } static int ctrl(EVP_MD_CTX *ctx, int cmd, int mslen, void *ms) { unsigned char padtmp[48]; unsigned char md5tmp[MD5_DIGEST_LENGTH]; unsigned char sha1tmp[SHA_DIGEST_LENGTH]; struct md5_sha1_ctx *mctx; if (cmd != EVP_CTRL_SSL3_MASTER_SECRET) return -2; if (ctx == NULL) return 0; mctx = EVP_MD_CTX_md_data(ctx); /* SSLv3 client auth handling: see RFC-6101 5.6.8 */ if (mslen != 48) return 0; /* At this point hash contains all handshake messages, update * with master secret and pad_1. */ if (update(ctx, ms, mslen) <= 0) return 0; /* Set padtmp to pad_1 value */ memset(padtmp, 0x36, sizeof(padtmp)); if (!MD5_Update(&mctx->md5, padtmp, sizeof(padtmp))) return 0; if (!MD5_Final(md5tmp, &mctx->md5)) return 0; if (!SHA1_Update(&mctx->sha1, padtmp, 40)) return 0; if (!SHA1_Final(sha1tmp, &mctx->sha1)) return 0; /* Reinitialise context */ if (!init(ctx)) return 0; if (update(ctx, ms, mslen) <= 0) return 0; /* Set padtmp to pad_2 value */ memset(padtmp, 0x5c, sizeof(padtmp)); if (!MD5_Update(&mctx->md5, padtmp, sizeof(padtmp))) return 0; if (!MD5_Update(&mctx->md5, md5tmp, sizeof(md5tmp))) return 0; if (!SHA1_Update(&mctx->sha1, padtmp, 40)) return 0; if (!SHA1_Update(&mctx->sha1, sha1tmp, sizeof(sha1tmp))) return 0; /* Now when ctx is finalised it will return the SSL v3 hash value */ OPENSSL_cleanse(md5tmp, sizeof(md5tmp)); OPENSSL_cleanse(sha1tmp, sizeof(sha1tmp)); return 1; } static const EVP_MD md5_sha1_md = { NID_md5_sha1, NID_md5_sha1, MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, MD5_CBLOCK, sizeof(EVP_MD *) + sizeof(struct md5_sha1_ctx), ctrl }; const EVP_MD *EVP_md5_sha1(void) { return &md5_sha1_md; } #endif openssl-1.1.1f/crypto/evp/m_mdc2.c000066400000000000000000000022261364063235100167670ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_MDC2 # include # include # include # include # include # include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return MDC2_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return MDC2_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return MDC2_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD mdc2_md = { NID_mdc2, NID_mdc2WithRSA, MDC2_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, MDC2_BLOCK, sizeof(EVP_MD *) + sizeof(MDC2_CTX), }; const EVP_MD *EVP_mdc2(void) { return &mdc2_md; } #endif openssl-1.1.1f/crypto/evp/m_null.c000066400000000000000000000016261364063235100171170ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return 1; } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return 1; } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return 1; } static const EVP_MD null_md = { NID_undef, NID_undef, 0, 0, init, update, final, NULL, NULL, 0, sizeof(EVP_MD *), }; const EVP_MD *EVP_md_null(void) { return &null_md; } openssl-1.1.1f/crypto/evp/m_ripemd.c000066400000000000000000000023221364063235100174170ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_RMD160 # include # include # include # include # include # include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return RIPEMD160_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return RIPEMD160_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return RIPEMD160_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD ripemd160_md = { NID_ripemd160, NID_ripemd160WithRSA, RIPEMD160_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, RIPEMD160_CBLOCK, sizeof(EVP_MD *) + sizeof(RIPEMD160_CTX), }; const EVP_MD *EVP_ripemd160(void) { return &ripemd160_md; } #endif openssl-1.1.1f/crypto/evp/m_sha1.c000066400000000000000000000137121364063235100170000ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/evp.h" #include "crypto/sha.h" static int init(EVP_MD_CTX *ctx) { return SHA1_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return SHA1_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return SHA1_Final(md, EVP_MD_CTX_md_data(ctx)); } static int ctrl(EVP_MD_CTX *ctx, int cmd, int mslen, void *ms) { unsigned char padtmp[40]; unsigned char sha1tmp[SHA_DIGEST_LENGTH]; SHA_CTX *sha1; if (cmd != EVP_CTRL_SSL3_MASTER_SECRET) return -2; if (ctx == NULL) return 0; sha1 = EVP_MD_CTX_md_data(ctx); /* SSLv3 client auth handling: see RFC-6101 5.6.8 */ if (mslen != 48) return 0; /* At this point hash contains all handshake messages, update * with master secret and pad_1. */ if (SHA1_Update(sha1, ms, mslen) <= 0) return 0; /* Set padtmp to pad_1 value */ memset(padtmp, 0x36, sizeof(padtmp)); if (!SHA1_Update(sha1, padtmp, sizeof(padtmp))) return 0; if (!SHA1_Final(sha1tmp, sha1)) return 0; /* Reinitialise context */ if (!SHA1_Init(sha1)) return 0; if (SHA1_Update(sha1, ms, mslen) <= 0) return 0; /* Set padtmp to pad_2 value */ memset(padtmp, 0x5c, sizeof(padtmp)); if (!SHA1_Update(sha1, padtmp, sizeof(padtmp))) return 0; if (!SHA1_Update(sha1, sha1tmp, sizeof(sha1tmp))) return 0; /* Now when ctx is finalised it will return the SSL v3 hash value */ OPENSSL_cleanse(sha1tmp, sizeof(sha1tmp)); return 1; } static const EVP_MD sha1_md = { NID_sha1, NID_sha1WithRSAEncryption, SHA_DIGEST_LENGTH, EVP_MD_FLAG_DIGALGID_ABSENT, init, update, final, NULL, NULL, SHA_CBLOCK, sizeof(EVP_MD *) + sizeof(SHA_CTX), ctrl }; const EVP_MD *EVP_sha1(void) { return &sha1_md; } static int init224(EVP_MD_CTX *ctx) { return SHA224_Init(EVP_MD_CTX_md_data(ctx)); } static int update224(EVP_MD_CTX *ctx, const void *data, size_t count) { return SHA224_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final224(EVP_MD_CTX *ctx, unsigned char *md) { return SHA224_Final(md, EVP_MD_CTX_md_data(ctx)); } static int init256(EVP_MD_CTX *ctx) { return SHA256_Init(EVP_MD_CTX_md_data(ctx)); } static int update256(EVP_MD_CTX *ctx, const void *data, size_t count) { return SHA256_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final256(EVP_MD_CTX *ctx, unsigned char *md) { return SHA256_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD sha224_md = { NID_sha224, NID_sha224WithRSAEncryption, SHA224_DIGEST_LENGTH, EVP_MD_FLAG_DIGALGID_ABSENT, init224, update224, final224, NULL, NULL, SHA256_CBLOCK, sizeof(EVP_MD *) + sizeof(SHA256_CTX), }; const EVP_MD *EVP_sha224(void) { return &sha224_md; } static const EVP_MD sha256_md = { NID_sha256, NID_sha256WithRSAEncryption, SHA256_DIGEST_LENGTH, EVP_MD_FLAG_DIGALGID_ABSENT, init256, update256, final256, NULL, NULL, SHA256_CBLOCK, sizeof(EVP_MD *) + sizeof(SHA256_CTX), }; const EVP_MD *EVP_sha256(void) { return &sha256_md; } static int init512_224(EVP_MD_CTX *ctx) { return sha512_224_init(EVP_MD_CTX_md_data(ctx)); } static int init512_256(EVP_MD_CTX *ctx) { return sha512_256_init(EVP_MD_CTX_md_data(ctx)); } static int init384(EVP_MD_CTX *ctx) { return SHA384_Init(EVP_MD_CTX_md_data(ctx)); } static int update384(EVP_MD_CTX *ctx, const void *data, size_t count) { return SHA384_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final384(EVP_MD_CTX *ctx, unsigned char *md) { return SHA384_Final(md, EVP_MD_CTX_md_data(ctx)); } static int init512(EVP_MD_CTX *ctx) { return SHA512_Init(EVP_MD_CTX_md_data(ctx)); } /* See comment in SHA224/256 section */ static int update512(EVP_MD_CTX *ctx, const void *data, size_t count) { return SHA512_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final512(EVP_MD_CTX *ctx, unsigned char *md) { return SHA512_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD sha512_224_md = { NID_sha512_224, NID_sha512_224WithRSAEncryption, SHA224_DIGEST_LENGTH, EVP_MD_FLAG_DIGALGID_ABSENT, init512_224, update512, final512, NULL, NULL, SHA512_CBLOCK, sizeof(EVP_MD *) + sizeof(SHA512_CTX), }; const EVP_MD *EVP_sha512_224(void) { return &sha512_224_md; } static const EVP_MD sha512_256_md = { NID_sha512_256, NID_sha512_256WithRSAEncryption, SHA256_DIGEST_LENGTH, EVP_MD_FLAG_DIGALGID_ABSENT, init512_256, update512, final512, NULL, NULL, SHA512_CBLOCK, sizeof(EVP_MD *) + sizeof(SHA512_CTX), }; const EVP_MD *EVP_sha512_256(void) { return &sha512_256_md; } static const EVP_MD sha384_md = { NID_sha384, NID_sha384WithRSAEncryption, SHA384_DIGEST_LENGTH, EVP_MD_FLAG_DIGALGID_ABSENT, init384, update384, final384, NULL, NULL, SHA512_CBLOCK, sizeof(EVP_MD *) + sizeof(SHA512_CTX), }; const EVP_MD *EVP_sha384(void) { return &sha384_md; } static const EVP_MD sha512_md = { NID_sha512, NID_sha512WithRSAEncryption, SHA512_DIGEST_LENGTH, EVP_MD_FLAG_DIGALGID_ABSENT, init512, update512, final512, NULL, NULL, SHA512_CBLOCK, sizeof(EVP_MD *) + sizeof(SHA512_CTX), }; const EVP_MD *EVP_sha512(void) { return &sha512_md; } openssl-1.1.1f/crypto/evp/m_sha3.c000066400000000000000000000326111364063235100170010ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "crypto/evp.h" #include "evp_local.h" size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, size_t r); void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); #define KECCAK1600_WIDTH 1600 typedef struct { uint64_t A[5][5]; size_t block_size; /* cached ctx->digest->block_size */ size_t md_size; /* output length, variable in XOF */ size_t num; /* used bytes in below buffer */ unsigned char buf[KECCAK1600_WIDTH / 8 - 32]; unsigned char pad; } KECCAK1600_CTX; static int init(EVP_MD_CTX *evp_ctx, unsigned char pad) { KECCAK1600_CTX *ctx = evp_ctx->md_data; size_t bsz = evp_ctx->digest->block_size; if (bsz <= sizeof(ctx->buf)) { memset(ctx->A, 0, sizeof(ctx->A)); ctx->num = 0; ctx->block_size = bsz; ctx->md_size = evp_ctx->digest->md_size; ctx->pad = pad; return 1; } return 0; } static int sha3_init(EVP_MD_CTX *evp_ctx) { return init(evp_ctx, '\x06'); } static int shake_init(EVP_MD_CTX *evp_ctx) { return init(evp_ctx, '\x1f'); } static int sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const unsigned char *inp = _inp; size_t bsz = ctx->block_size; size_t num, rem; if (len == 0) return 1; if ((num = ctx->num) != 0) { /* process intermediate buffer? */ rem = bsz - num; if (len < rem) { memcpy(ctx->buf + num, inp, len); ctx->num += len; return 1; } /* * We have enough data to fill or overflow the intermediate * buffer. So we append |rem| bytes and process the block, * leaving the rest for later processing... */ memcpy(ctx->buf + num, inp, rem); inp += rem, len -= rem; (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz); ctx->num = 0; /* ctx->buf is processed, ctx->num is guaranteed to be zero */ } if (len >= bsz) rem = SHA3_absorb(ctx->A, inp, len, bsz); else rem = len; if (rem) { memcpy(ctx->buf, inp + len - rem, rem); ctx->num = rem; } return 1; } static int sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md) { KECCAK1600_CTX *ctx = evp_ctx->md_data; size_t bsz = ctx->block_size; size_t num = ctx->num; if (ctx->md_size == 0) return 1; /* * Pad the data with 10*1. Note that |num| can be |bsz - 1| * in which case both byte operations below are performed on * same byte... */ memset(ctx->buf + num, 0, bsz - num); ctx->buf[num] = ctx->pad; ctx->buf[bsz - 1] |= 0x80; (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz); SHA3_squeeze(ctx->A, md, ctx->md_size, bsz); return 1; } static int shake_ctrl(EVP_MD_CTX *evp_ctx, int cmd, int p1, void *p2) { KECCAK1600_CTX *ctx = evp_ctx->md_data; switch (cmd) { case EVP_MD_CTRL_XOF_LEN: ctx->md_size = p1; return 1; default: return 0; } } #if defined(OPENSSL_CPUID_OBJ) && defined(__s390__) && defined(KECCAK1600_ASM) /* * IBM S390X support */ # include "s390x_arch.h" # define S390X_SHA3_FC(ctx) ((ctx)->pad) # define S390X_sha3_224_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_224)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_224))) # define S390X_sha3_256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_256)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_256))) # define S390X_sha3_384_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_384)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_384))) # define S390X_sha3_512_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_512)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_512))) # define S390X_shake128_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHAKE_128)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHAKE_128))) # define S390X_shake256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHAKE_256)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHAKE_256))) /* Convert md-size to block-size. */ # define S390X_KECCAK1600_BSZ(n) ((KECCAK1600_WIDTH - ((n) << 1)) >> 3) static int s390x_sha3_init(EVP_MD_CTX *evp_ctx) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const size_t bsz = evp_ctx->digest->block_size; /*- * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD * function code. */ switch (bsz) { case S390X_KECCAK1600_BSZ(224): ctx->pad = S390X_SHA3_224; break; case S390X_KECCAK1600_BSZ(256): ctx->pad = S390X_SHA3_256; break; case S390X_KECCAK1600_BSZ(384): ctx->pad = S390X_SHA3_384; break; case S390X_KECCAK1600_BSZ(512): ctx->pad = S390X_SHA3_512; break; default: return 0; } memset(ctx->A, 0, sizeof(ctx->A)); ctx->num = 0; ctx->block_size = bsz; ctx->md_size = evp_ctx->digest->md_size; return 1; } static int s390x_shake_init(EVP_MD_CTX *evp_ctx) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const size_t bsz = evp_ctx->digest->block_size; /*- * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD * function code. */ switch (bsz) { case S390X_KECCAK1600_BSZ(128): ctx->pad = S390X_SHAKE_128; break; case S390X_KECCAK1600_BSZ(256): ctx->pad = S390X_SHAKE_256; break; default: return 0; } memset(ctx->A, 0, sizeof(ctx->A)); ctx->num = 0; ctx->block_size = bsz; ctx->md_size = evp_ctx->digest->md_size; return 1; } static int s390x_sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const unsigned char *inp = _inp; const size_t bsz = ctx->block_size; size_t num, rem; if (len == 0) return 1; if ((num = ctx->num) != 0) { rem = bsz - num; if (len < rem) { memcpy(ctx->buf + num, inp, len); ctx->num += len; return 1; } memcpy(ctx->buf + num, inp, rem); inp += rem; len -= rem; s390x_kimd(ctx->buf, bsz, ctx->pad, ctx->A); ctx->num = 0; } rem = len % bsz; s390x_kimd(inp, len - rem, ctx->pad, ctx->A); if (rem) { memcpy(ctx->buf, inp + len - rem, rem); ctx->num = rem; } return 1; } static int s390x_sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md) { KECCAK1600_CTX *ctx = evp_ctx->md_data; s390x_klmd(ctx->buf, ctx->num, NULL, 0, ctx->pad, ctx->A); memcpy(md, ctx->A, ctx->md_size); return 1; } static int s390x_shake_final(EVP_MD_CTX *evp_ctx, unsigned char *md) { KECCAK1600_CTX *ctx = evp_ctx->md_data; s390x_klmd(ctx->buf, ctx->num, md, ctx->md_size, ctx->pad, ctx->A); return 1; } # define EVP_MD_SHA3(bitlen) \ const EVP_MD *EVP_sha3_##bitlen(void) \ { \ static const EVP_MD s390x_sha3_##bitlen##_md = { \ NID_sha3_##bitlen, \ NID_RSA_SHA3_##bitlen, \ bitlen / 8, \ EVP_MD_FLAG_DIGALGID_ABSENT, \ s390x_sha3_init, \ s390x_sha3_update, \ s390x_sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ }; \ static const EVP_MD sha3_##bitlen##_md = { \ NID_sha3_##bitlen, \ NID_RSA_SHA3_##bitlen, \ bitlen / 8, \ EVP_MD_FLAG_DIGALGID_ABSENT, \ sha3_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ }; \ return S390X_sha3_##bitlen##_CAPABLE ? \ &s390x_sha3_##bitlen##_md : \ &sha3_##bitlen##_md; \ } # define EVP_MD_SHAKE(bitlen) \ const EVP_MD *EVP_shake##bitlen(void) \ { \ static const EVP_MD s390x_shake##bitlen##_md = { \ NID_shake##bitlen, \ 0, \ bitlen / 8, \ EVP_MD_FLAG_XOF, \ s390x_shake_init, \ s390x_sha3_update, \ s390x_shake_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ shake_ctrl \ }; \ static const EVP_MD shake##bitlen##_md = { \ NID_shake##bitlen, \ 0, \ bitlen / 8, \ EVP_MD_FLAG_XOF, \ shake_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ shake_ctrl \ }; \ return S390X_shake##bitlen##_CAPABLE ? \ &s390x_shake##bitlen##_md : \ &shake##bitlen##_md; \ } #else # define EVP_MD_SHA3(bitlen) \ const EVP_MD *EVP_sha3_##bitlen(void) \ { \ static const EVP_MD sha3_##bitlen##_md = { \ NID_sha3_##bitlen, \ NID_RSA_SHA3_##bitlen, \ bitlen / 8, \ EVP_MD_FLAG_DIGALGID_ABSENT, \ sha3_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ }; \ return &sha3_##bitlen##_md; \ } # define EVP_MD_SHAKE(bitlen) \ const EVP_MD *EVP_shake##bitlen(void) \ { \ static const EVP_MD shake##bitlen##_md = { \ NID_shake##bitlen, \ 0, \ bitlen / 8, \ EVP_MD_FLAG_XOF, \ shake_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ shake_ctrl \ }; \ return &shake##bitlen##_md; \ } #endif EVP_MD_SHA3(224) EVP_MD_SHA3(256) EVP_MD_SHA3(384) EVP_MD_SHA3(512) EVP_MD_SHAKE(128) EVP_MD_SHAKE(256) openssl-1.1.1f/crypto/evp/m_sigver.c000066400000000000000000000160011364063235100174350ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/evp.h" #include "evp_local.h" static int update(EVP_MD_CTX *ctx, const void *data, size_t datalen) { EVPerr(EVP_F_UPDATE, EVP_R_ONLY_ONESHOT_SUPPORTED); return 0; } static int do_sigver_init(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey, int ver) { if (ctx->pctx == NULL) ctx->pctx = EVP_PKEY_CTX_new(pkey, e); if (ctx->pctx == NULL) return 0; if (!(ctx->pctx->pmeth->flags & EVP_PKEY_FLAG_SIGCTX_CUSTOM)) { if (type == NULL) { int def_nid; if (EVP_PKEY_get_default_digest_nid(pkey, &def_nid) > 0) type = EVP_get_digestbynid(def_nid); } if (type == NULL) { EVPerr(EVP_F_DO_SIGVER_INIT, EVP_R_NO_DEFAULT_DIGEST); return 0; } } if (ver) { if (ctx->pctx->pmeth->verifyctx_init) { if (ctx->pctx->pmeth->verifyctx_init(ctx->pctx, ctx) <= 0) return 0; ctx->pctx->operation = EVP_PKEY_OP_VERIFYCTX; } else if (ctx->pctx->pmeth->digestverify != 0) { ctx->pctx->operation = EVP_PKEY_OP_VERIFY; ctx->update = update; } else if (EVP_PKEY_verify_init(ctx->pctx) <= 0) { return 0; } } else { if (ctx->pctx->pmeth->signctx_init) { if (ctx->pctx->pmeth->signctx_init(ctx->pctx, ctx) <= 0) return 0; ctx->pctx->operation = EVP_PKEY_OP_SIGNCTX; } else if (ctx->pctx->pmeth->digestsign != 0) { ctx->pctx->operation = EVP_PKEY_OP_SIGN; ctx->update = update; } else if (EVP_PKEY_sign_init(ctx->pctx) <= 0) { return 0; } } if (EVP_PKEY_CTX_set_signature_md(ctx->pctx, type) <= 0) return 0; if (pctx) *pctx = ctx->pctx; if (ctx->pctx->pmeth->flags & EVP_PKEY_FLAG_SIGCTX_CUSTOM) return 1; if (!EVP_DigestInit_ex(ctx, type, e)) return 0; /* * This indicates the current algorithm requires * special treatment before hashing the tbs-message. */ if (ctx->pctx->pmeth->digest_custom != NULL) return ctx->pctx->pmeth->digest_custom(ctx->pctx, ctx); return 1; } int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey) { return do_sigver_init(ctx, pctx, type, e, pkey, 0); } int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey) { return do_sigver_init(ctx, pctx, type, e, pkey, 1); } int EVP_DigestSignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, size_t *siglen) { int sctx = 0, r = 0; EVP_PKEY_CTX *pctx = ctx->pctx; if (pctx->pmeth->flags & EVP_PKEY_FLAG_SIGCTX_CUSTOM) { if (!sigret) return pctx->pmeth->signctx(pctx, sigret, siglen, ctx); if (ctx->flags & EVP_MD_CTX_FLAG_FINALISE) r = pctx->pmeth->signctx(pctx, sigret, siglen, ctx); else { EVP_PKEY_CTX *dctx = EVP_PKEY_CTX_dup(ctx->pctx); if (!dctx) return 0; r = dctx->pmeth->signctx(dctx, sigret, siglen, ctx); EVP_PKEY_CTX_free(dctx); } return r; } if (pctx->pmeth->signctx) sctx = 1; else sctx = 0; if (sigret) { unsigned char md[EVP_MAX_MD_SIZE]; unsigned int mdlen = 0; if (ctx->flags & EVP_MD_CTX_FLAG_FINALISE) { if (sctx) r = ctx->pctx->pmeth->signctx(ctx->pctx, sigret, siglen, ctx); else r = EVP_DigestFinal_ex(ctx, md, &mdlen); } else { EVP_MD_CTX *tmp_ctx = EVP_MD_CTX_new(); if (tmp_ctx == NULL) return 0; if (!EVP_MD_CTX_copy_ex(tmp_ctx, ctx)) { EVP_MD_CTX_free(tmp_ctx); return 0; } if (sctx) r = tmp_ctx->pctx->pmeth->signctx(tmp_ctx->pctx, sigret, siglen, tmp_ctx); else r = EVP_DigestFinal_ex(tmp_ctx, md, &mdlen); EVP_MD_CTX_free(tmp_ctx); } if (sctx || !r) return r; if (EVP_PKEY_sign(ctx->pctx, sigret, siglen, md, mdlen) <= 0) return 0; } else { if (sctx) { if (pctx->pmeth->signctx(pctx, sigret, siglen, ctx) <= 0) return 0; } else { int s = EVP_MD_size(ctx->digest); if (s < 0 || EVP_PKEY_sign(pctx, sigret, siglen, NULL, s) <= 0) return 0; } } return 1; } int EVP_DigestSign(EVP_MD_CTX *ctx, unsigned char *sigret, size_t *siglen, const unsigned char *tbs, size_t tbslen) { if (ctx->pctx->pmeth->digestsign != NULL) return ctx->pctx->pmeth->digestsign(ctx, sigret, siglen, tbs, tbslen); if (sigret != NULL && EVP_DigestSignUpdate(ctx, tbs, tbslen) <= 0) return 0; return EVP_DigestSignFinal(ctx, sigret, siglen); } int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const unsigned char *sig, size_t siglen) { unsigned char md[EVP_MAX_MD_SIZE]; int r = 0; unsigned int mdlen = 0; int vctx = 0; if (ctx->pctx->pmeth->verifyctx) vctx = 1; else vctx = 0; if (ctx->flags & EVP_MD_CTX_FLAG_FINALISE) { if (vctx) r = ctx->pctx->pmeth->verifyctx(ctx->pctx, sig, siglen, ctx); else r = EVP_DigestFinal_ex(ctx, md, &mdlen); } else { EVP_MD_CTX *tmp_ctx = EVP_MD_CTX_new(); if (tmp_ctx == NULL) return -1; if (!EVP_MD_CTX_copy_ex(tmp_ctx, ctx)) { EVP_MD_CTX_free(tmp_ctx); return -1; } if (vctx) r = tmp_ctx->pctx->pmeth->verifyctx(tmp_ctx->pctx, sig, siglen, tmp_ctx); else r = EVP_DigestFinal_ex(tmp_ctx, md, &mdlen); EVP_MD_CTX_free(tmp_ctx); } if (vctx || !r) return r; return EVP_PKEY_verify(ctx->pctx, sig, siglen, md, mdlen); } int EVP_DigestVerify(EVP_MD_CTX *ctx, const unsigned char *sigret, size_t siglen, const unsigned char *tbs, size_t tbslen) { if (ctx->pctx->pmeth->digestverify != NULL) return ctx->pctx->pmeth->digestverify(ctx, sigret, siglen, tbs, tbslen); if (EVP_DigestVerifyUpdate(ctx, tbs, tbslen) <= 0) return -1; return EVP_DigestVerifyFinal(ctx, sigret, siglen); } openssl-1.1.1f/crypto/evp/m_wp.c000066400000000000000000000022561364063235100165730ustar00rootroot00000000000000/* * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_WHIRLPOOL # include # include # include # include # include "crypto/evp.h" static int init(EVP_MD_CTX *ctx) { return WHIRLPOOL_Init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return WHIRLPOOL_Update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return WHIRLPOOL_Final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD whirlpool_md = { NID_whirlpool, 0, WHIRLPOOL_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, WHIRLPOOL_BBLOCK / 8, sizeof(EVP_MD *) + sizeof(WHIRLPOOL_CTX), }; const EVP_MD *EVP_whirlpool(void) { return &whirlpool_md; } #endif openssl-1.1.1f/crypto/evp/names.c000066400000000000000000000113651364063235100167350ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/objects.h" #include #include "crypto/evp.h" int EVP_add_cipher(const EVP_CIPHER *c) { int r; if (c == NULL) return 0; r = OBJ_NAME_add(OBJ_nid2sn(c->nid), OBJ_NAME_TYPE_CIPHER_METH, (const char *)c); if (r == 0) return 0; r = OBJ_NAME_add(OBJ_nid2ln(c->nid), OBJ_NAME_TYPE_CIPHER_METH, (const char *)c); return r; } int EVP_add_digest(const EVP_MD *md) { int r; const char *name; name = OBJ_nid2sn(md->type); r = OBJ_NAME_add(name, OBJ_NAME_TYPE_MD_METH, (const char *)md); if (r == 0) return 0; r = OBJ_NAME_add(OBJ_nid2ln(md->type), OBJ_NAME_TYPE_MD_METH, (const char *)md); if (r == 0) return 0; if (md->pkey_type && md->type != md->pkey_type) { r = OBJ_NAME_add(OBJ_nid2sn(md->pkey_type), OBJ_NAME_TYPE_MD_METH | OBJ_NAME_ALIAS, name); if (r == 0) return 0; r = OBJ_NAME_add(OBJ_nid2ln(md->pkey_type), OBJ_NAME_TYPE_MD_METH | OBJ_NAME_ALIAS, name); } return r; } const EVP_CIPHER *EVP_get_cipherbyname(const char *name) { const EVP_CIPHER *cp; if (!OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_CIPHERS, NULL)) return NULL; cp = (const EVP_CIPHER *)OBJ_NAME_get(name, OBJ_NAME_TYPE_CIPHER_METH); return cp; } const EVP_MD *EVP_get_digestbyname(const char *name) { const EVP_MD *cp; if (!OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_DIGESTS, NULL)) return NULL; cp = (const EVP_MD *)OBJ_NAME_get(name, OBJ_NAME_TYPE_MD_METH); return cp; } void evp_cleanup_int(void) { OBJ_NAME_cleanup(OBJ_NAME_TYPE_CIPHER_METH); OBJ_NAME_cleanup(OBJ_NAME_TYPE_MD_METH); /* * The above calls will only clean out the contents of the name hash * table, but not the hash table itself. The following line does that * part. -- Richard Levitte */ OBJ_NAME_cleanup(-1); EVP_PBE_cleanup(); OBJ_sigid_free(); evp_app_cleanup_int(); } struct doall_cipher { void *arg; void (*fn) (const EVP_CIPHER *ciph, const char *from, const char *to, void *arg); }; static void do_all_cipher_fn(const OBJ_NAME *nm, void *arg) { struct doall_cipher *dc = arg; if (nm->alias) dc->fn(NULL, nm->name, nm->data, dc->arg); else dc->fn((const EVP_CIPHER *)nm->data, nm->name, NULL, dc->arg); } void EVP_CIPHER_do_all(void (*fn) (const EVP_CIPHER *ciph, const char *from, const char *to, void *x), void *arg) { struct doall_cipher dc; /* Ignore errors */ OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_CIPHERS, NULL); dc.fn = fn; dc.arg = arg; OBJ_NAME_do_all(OBJ_NAME_TYPE_CIPHER_METH, do_all_cipher_fn, &dc); } void EVP_CIPHER_do_all_sorted(void (*fn) (const EVP_CIPHER *ciph, const char *from, const char *to, void *x), void *arg) { struct doall_cipher dc; /* Ignore errors */ OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_CIPHERS, NULL); dc.fn = fn; dc.arg = arg; OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_CIPHER_METH, do_all_cipher_fn, &dc); } struct doall_md { void *arg; void (*fn) (const EVP_MD *ciph, const char *from, const char *to, void *arg); }; static void do_all_md_fn(const OBJ_NAME *nm, void *arg) { struct doall_md *dc = arg; if (nm->alias) dc->fn(NULL, nm->name, nm->data, dc->arg); else dc->fn((const EVP_MD *)nm->data, nm->name, NULL, dc->arg); } void EVP_MD_do_all(void (*fn) (const EVP_MD *md, const char *from, const char *to, void *x), void *arg) { struct doall_md dc; /* Ignore errors */ OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_DIGESTS, NULL); dc.fn = fn; dc.arg = arg; OBJ_NAME_do_all(OBJ_NAME_TYPE_MD_METH, do_all_md_fn, &dc); } void EVP_MD_do_all_sorted(void (*fn) (const EVP_MD *md, const char *from, const char *to, void *x), void *arg) { struct doall_md dc; OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_DIGESTS, NULL); dc.fn = fn; dc.arg = arg; OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_MD_METH, do_all_md_fn, &dc); } openssl-1.1.1f/crypto/evp/p5_crpt.c000066400000000000000000000062031364063235100172010ustar00rootroot00000000000000/* * Copyright 1999-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include /* * Doesn't do anything now: Builtin PBE algorithms in static table. */ void PKCS5_PBE_add(void) { } int PKCS5_PBE_keyivgen(EVP_CIPHER_CTX *cctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, int en_de) { EVP_MD_CTX *ctx; unsigned char md_tmp[EVP_MAX_MD_SIZE]; unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; int i, ivl, kl; PBEPARAM *pbe; int saltlen, iter; unsigned char *salt; int mdsize; int rv = 0; /* Extract useful info from parameter */ if (param == NULL || param->type != V_ASN1_SEQUENCE || param->value.sequence == NULL) { EVPerr(EVP_F_PKCS5_PBE_KEYIVGEN, EVP_R_DECODE_ERROR); return 0; } pbe = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBEPARAM), param); if (pbe == NULL) { EVPerr(EVP_F_PKCS5_PBE_KEYIVGEN, EVP_R_DECODE_ERROR); return 0; } ivl = EVP_CIPHER_iv_length(cipher); if (ivl < 0 || ivl > 16) { EVPerr(EVP_F_PKCS5_PBE_KEYIVGEN, EVP_R_INVALID_IV_LENGTH); PBEPARAM_free(pbe); return 0; } kl = EVP_CIPHER_key_length(cipher); if (kl < 0 || kl > (int)sizeof(md_tmp)) { EVPerr(EVP_F_PKCS5_PBE_KEYIVGEN, EVP_R_INVALID_KEY_LENGTH); PBEPARAM_free(pbe); return 0; } if (!pbe->iter) iter = 1; else iter = ASN1_INTEGER_get(pbe->iter); salt = pbe->salt->data; saltlen = pbe->salt->length; if (!pass) passlen = 0; else if (passlen == -1) passlen = strlen(pass); ctx = EVP_MD_CTX_new(); if (ctx == NULL) { EVPerr(EVP_F_PKCS5_PBE_KEYIVGEN, ERR_R_MALLOC_FAILURE); goto err; } if (!EVP_DigestInit_ex(ctx, md, NULL)) goto err; if (!EVP_DigestUpdate(ctx, pass, passlen)) goto err; if (!EVP_DigestUpdate(ctx, salt, saltlen)) goto err; PBEPARAM_free(pbe); pbe = NULL; if (!EVP_DigestFinal_ex(ctx, md_tmp, NULL)) goto err; mdsize = EVP_MD_size(md); if (mdsize < 0) return 0; for (i = 1; i < iter; i++) { if (!EVP_DigestInit_ex(ctx, md, NULL)) goto err; if (!EVP_DigestUpdate(ctx, md_tmp, mdsize)) goto err; if (!EVP_DigestFinal_ex(ctx, md_tmp, NULL)) goto err; } memcpy(key, md_tmp, kl); memcpy(iv, md_tmp + (16 - ivl), ivl); if (!EVP_CipherInit_ex(cctx, cipher, NULL, key, iv, en_de)) goto err; OPENSSL_cleanse(md_tmp, EVP_MAX_MD_SIZE); OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); rv = 1; err: PBEPARAM_free(pbe); EVP_MD_CTX_free(ctx); return rv; } openssl-1.1.1f/crypto/evp/p5_crpt2.c000066400000000000000000000174721364063235100172750ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" # include # include # include # include "evp_local.h" /* set this to print out info about the keygen algorithm */ /* #define OPENSSL_DEBUG_PKCS5V2 */ # ifdef OPENSSL_DEBUG_PKCS5V2 static void h__dump(const unsigned char *p, int len); # endif /* * This is an implementation of PKCS#5 v2.0 password based encryption key * derivation function PBKDF2. SHA1 version verified against test vectors * posted by Peter Gutmann to the PKCS-TNG mailing list. */ int PKCS5_PBKDF2_HMAC(const char *pass, int passlen, const unsigned char *salt, int saltlen, int iter, const EVP_MD *digest, int keylen, unsigned char *out) { const char *empty = ""; unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; int cplen, j, k, tkeylen, mdlen; unsigned long i = 1; HMAC_CTX *hctx_tpl = NULL, *hctx = NULL; mdlen = EVP_MD_size(digest); if (mdlen < 0) return 0; hctx_tpl = HMAC_CTX_new(); if (hctx_tpl == NULL) return 0; p = out; tkeylen = keylen; if (pass == NULL) { pass = empty; passlen = 0; } else if (passlen == -1) { passlen = strlen(pass); } if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL)) { HMAC_CTX_free(hctx_tpl); return 0; } hctx = HMAC_CTX_new(); if (hctx == NULL) { HMAC_CTX_free(hctx_tpl); return 0; } while (tkeylen) { if (tkeylen > mdlen) cplen = mdlen; else cplen = tkeylen; /* * We are unlikely to ever use more than 256 blocks (5120 bits!) but * just in case... */ itmp[0] = (unsigned char)((i >> 24) & 0xff); itmp[1] = (unsigned char)((i >> 16) & 0xff); itmp[2] = (unsigned char)((i >> 8) & 0xff); itmp[3] = (unsigned char)(i & 0xff); if (!HMAC_CTX_copy(hctx, hctx_tpl)) { HMAC_CTX_free(hctx); HMAC_CTX_free(hctx_tpl); return 0; } if (!HMAC_Update(hctx, salt, saltlen) || !HMAC_Update(hctx, itmp, 4) || !HMAC_Final(hctx, digtmp, NULL)) { HMAC_CTX_free(hctx); HMAC_CTX_free(hctx_tpl); return 0; } memcpy(p, digtmp, cplen); for (j = 1; j < iter; j++) { if (!HMAC_CTX_copy(hctx, hctx_tpl)) { HMAC_CTX_free(hctx); HMAC_CTX_free(hctx_tpl); return 0; } if (!HMAC_Update(hctx, digtmp, mdlen) || !HMAC_Final(hctx, digtmp, NULL)) { HMAC_CTX_free(hctx); HMAC_CTX_free(hctx_tpl); return 0; } for (k = 0; k < cplen; k++) p[k] ^= digtmp[k]; } tkeylen -= cplen; i++; p += cplen; } HMAC_CTX_free(hctx); HMAC_CTX_free(hctx_tpl); # ifdef OPENSSL_DEBUG_PKCS5V2 fprintf(stderr, "Password:\n"); h__dump(pass, passlen); fprintf(stderr, "Salt:\n"); h__dump(salt, saltlen); fprintf(stderr, "Iteration count %d\n", iter); fprintf(stderr, "Key:\n"); h__dump(out, keylen); # endif return 1; } int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen, const unsigned char *salt, int saltlen, int iter, int keylen, unsigned char *out) { return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(), keylen, out); } /* * Now the key derivation function itself. This is a bit evil because it has * to check the ASN1 parameters are valid: and there are quite a few of * them... */ int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de) { PBE2PARAM *pbe2 = NULL; const EVP_CIPHER *cipher; EVP_PBE_KEYGEN *kdf; int rv = 0; pbe2 = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBE2PARAM), param); if (pbe2 == NULL) { EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_DECODE_ERROR); goto err; } /* See if we recognise the key derivation function */ if (!EVP_PBE_find(EVP_PBE_TYPE_KDF, OBJ_obj2nid(pbe2->keyfunc->algorithm), NULL, NULL, &kdf)) { EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); goto err; } /* * lets see if we recognise the encryption algorithm. */ cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm); if (!cipher) { EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_UNSUPPORTED_CIPHER); goto err; } /* Fixup cipher based on AlgorithmIdentifier */ if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de)) goto err; if (EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) { EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_CIPHER_PARAMETER_ERROR); goto err; } rv = kdf(ctx, pass, passlen, pbe2->keyfunc->parameter, NULL, NULL, en_de); err: PBE2PARAM_free(pbe2); return rv; } int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, int en_de) { unsigned char *salt, key[EVP_MAX_KEY_LENGTH]; int saltlen, iter; int rv = 0; unsigned int keylen = 0; int prf_nid, hmac_md_nid; PBKDF2PARAM *kdf = NULL; const EVP_MD *prfmd; if (EVP_CIPHER_CTX_cipher(ctx) == NULL) { EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_NO_CIPHER_SET); goto err; } keylen = EVP_CIPHER_CTX_key_length(ctx); OPENSSL_assert(keylen <= sizeof(key)); /* Decode parameter */ kdf = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBKDF2PARAM), param); if (kdf == NULL) { EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_DECODE_ERROR); goto err; } keylen = EVP_CIPHER_CTX_key_length(ctx); /* Now check the parameters of the kdf */ if (kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)) { EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_KEYLENGTH); goto err; } if (kdf->prf) prf_nid = OBJ_obj2nid(kdf->prf->algorithm); else prf_nid = NID_hmacWithSHA1; if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0)) { EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); goto err; } prfmd = EVP_get_digestbynid(hmac_md_nid); if (prfmd == NULL) { EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); goto err; } if (kdf->salt->type != V_ASN1_OCTET_STRING) { EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_SALT_TYPE); goto err; } /* it seems that its all OK */ salt = kdf->salt->value.octet_string->data; saltlen = kdf->salt->value.octet_string->length; iter = ASN1_INTEGER_get(kdf->iter); if (!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd, keylen, key)) goto err; rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de); err: OPENSSL_cleanse(key, keylen); PBKDF2PARAM_free(kdf); return rv; } # ifdef OPENSSL_DEBUG_PKCS5V2 static void h__dump(const unsigned char *p, int len) { for (; len--; p++) fprintf(stderr, "%02X ", *p); fprintf(stderr, "\n"); } # endif openssl-1.1.1f/crypto/evp/p_dec.c000066400000000000000000000017241364063235100167020ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include int EVP_PKEY_decrypt_old(unsigned char *key, const unsigned char *ek, int ekl, EVP_PKEY *priv) { int ret = -1; #ifndef OPENSSL_NO_RSA if (EVP_PKEY_id(priv) != EVP_PKEY_RSA) { #endif EVPerr(EVP_F_EVP_PKEY_DECRYPT_OLD, EVP_R_PUBLIC_KEY_NOT_RSA); #ifndef OPENSSL_NO_RSA goto err; } ret = RSA_private_decrypt(ekl, ek, key, EVP_PKEY_get0_RSA(priv), RSA_PKCS1_PADDING); err: #endif return ret; } openssl-1.1.1f/crypto/evp/p_enc.c000066400000000000000000000017301364063235100167110ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include int EVP_PKEY_encrypt_old(unsigned char *ek, const unsigned char *key, int key_len, EVP_PKEY *pubk) { int ret = 0; #ifndef OPENSSL_NO_RSA if (EVP_PKEY_id(pubk) != EVP_PKEY_RSA) { #endif EVPerr(EVP_F_EVP_PKEY_ENCRYPT_OLD, EVP_R_PUBLIC_KEY_NOT_RSA); #ifndef OPENSSL_NO_RSA goto err; } ret = RSA_public_encrypt(key_len, key, ek, EVP_PKEY_get0_RSA(pubk), RSA_PKCS1_PADDING); err: #endif return ret; } openssl-1.1.1f/crypto/evp/p_lib.c000066400000000000000000000411361364063235100167160ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include #include #include #include #include #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" static void EVP_PKEY_free_it(EVP_PKEY *x); int EVP_PKEY_bits(const EVP_PKEY *pkey) { if (pkey && pkey->ameth && pkey->ameth->pkey_bits) return pkey->ameth->pkey_bits(pkey); return 0; } int EVP_PKEY_security_bits(const EVP_PKEY *pkey) { if (pkey == NULL) return 0; if (!pkey->ameth || !pkey->ameth->pkey_security_bits) return -2; return pkey->ameth->pkey_security_bits(pkey); } int EVP_PKEY_size(const EVP_PKEY *pkey) { if (pkey && pkey->ameth && pkey->ameth->pkey_size) return pkey->ameth->pkey_size(pkey); return 0; } int EVP_PKEY_save_parameters(EVP_PKEY *pkey, int mode) { #ifndef OPENSSL_NO_DSA if (pkey->type == EVP_PKEY_DSA) { int ret = pkey->save_parameters; if (mode >= 0) pkey->save_parameters = mode; return ret; } #endif #ifndef OPENSSL_NO_EC if (pkey->type == EVP_PKEY_EC) { int ret = pkey->save_parameters; if (mode >= 0) pkey->save_parameters = mode; return ret; } #endif return 0; } int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from) { if (to->type == EVP_PKEY_NONE) { if (EVP_PKEY_set_type(to, from->type) == 0) return 0; } else if (to->type != from->type) { EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS, EVP_R_DIFFERENT_KEY_TYPES); goto err; } if (EVP_PKEY_missing_parameters(from)) { EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS, EVP_R_MISSING_PARAMETERS); goto err; } if (!EVP_PKEY_missing_parameters(to)) { if (EVP_PKEY_cmp_parameters(to, from) == 1) return 1; EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS, EVP_R_DIFFERENT_PARAMETERS); return 0; } if (from->ameth && from->ameth->param_copy) return from->ameth->param_copy(to, from); err: return 0; } int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey) { if (pkey != NULL && pkey->ameth && pkey->ameth->param_missing) return pkey->ameth->param_missing(pkey); return 0; } int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) { if (a->type != b->type) return -1; if (a->ameth && a->ameth->param_cmp) return a->ameth->param_cmp(a, b); return -2; } int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { if (a->type != b->type) return -1; if (a->ameth) { int ret; /* Compare parameters if the algorithm has them */ if (a->ameth->param_cmp) { ret = a->ameth->param_cmp(a, b); if (ret <= 0) return ret; } if (a->ameth->pub_cmp) return a->ameth->pub_cmp(a, b); } return -2; } EVP_PKEY *EVP_PKEY_new(void) { EVP_PKEY *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { EVPerr(EVP_F_EVP_PKEY_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->type = EVP_PKEY_NONE; ret->save_type = EVP_PKEY_NONE; ret->references = 1; ret->save_parameters = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { EVPerr(EVP_F_EVP_PKEY_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } int EVP_PKEY_up_ref(EVP_PKEY *pkey) { int i; if (CRYPTO_UP_REF(&pkey->references, &i, pkey->lock) <= 0) return 0; REF_PRINT_COUNT("EVP_PKEY", pkey); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } /* * Setup a public key ASN1 method and ENGINE from a NID or a string. If pkey * is NULL just return 1 or 0 if the algorithm exists. */ static int pkey_set_type(EVP_PKEY *pkey, ENGINE *e, int type, const char *str, int len) { const EVP_PKEY_ASN1_METHOD *ameth; ENGINE **eptr = (e == NULL) ? &e : NULL; if (pkey) { if (pkey->pkey.ptr) EVP_PKEY_free_it(pkey); /* * If key type matches and a method exists then this lookup has * succeeded once so just indicate success. */ if ((type == pkey->save_type) && pkey->ameth) return 1; #ifndef OPENSSL_NO_ENGINE /* If we have ENGINEs release them */ ENGINE_finish(pkey->engine); pkey->engine = NULL; ENGINE_finish(pkey->pmeth_engine); pkey->pmeth_engine = NULL; #endif } if (str) ameth = EVP_PKEY_asn1_find_str(eptr, str, len); else ameth = EVP_PKEY_asn1_find(eptr, type); #ifndef OPENSSL_NO_ENGINE if (pkey == NULL && eptr != NULL) ENGINE_finish(e); #endif if (ameth == NULL) { EVPerr(EVP_F_PKEY_SET_TYPE, EVP_R_UNSUPPORTED_ALGORITHM); return 0; } if (pkey) { pkey->ameth = ameth; pkey->engine = e; pkey->type = pkey->ameth->pkey_id; pkey->save_type = type; } return 1; } EVP_PKEY *EVP_PKEY_new_raw_private_key(int type, ENGINE *e, const unsigned char *priv, size_t len) { EVP_PKEY *ret = EVP_PKEY_new(); if (ret == NULL || !pkey_set_type(ret, e, type, NULL, -1)) { /* EVPerr already called */ goto err; } if (ret->ameth->set_priv_key == NULL) { EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PRIVATE_KEY, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); goto err; } if (!ret->ameth->set_priv_key(ret, priv, len)) { EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PRIVATE_KEY, EVP_R_KEY_SETUP_FAILED); goto err; } return ret; err: EVP_PKEY_free(ret); return NULL; } EVP_PKEY *EVP_PKEY_new_raw_public_key(int type, ENGINE *e, const unsigned char *pub, size_t len) { EVP_PKEY *ret = EVP_PKEY_new(); if (ret == NULL || !pkey_set_type(ret, e, type, NULL, -1)) { /* EVPerr already called */ goto err; } if (ret->ameth->set_pub_key == NULL) { EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PUBLIC_KEY, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); goto err; } if (!ret->ameth->set_pub_key(ret, pub, len)) { EVPerr(EVP_F_EVP_PKEY_NEW_RAW_PUBLIC_KEY, EVP_R_KEY_SETUP_FAILED); goto err; } return ret; err: EVP_PKEY_free(ret); return NULL; } int EVP_PKEY_get_raw_private_key(const EVP_PKEY *pkey, unsigned char *priv, size_t *len) { if (pkey->ameth->get_priv_key == NULL) { EVPerr(EVP_F_EVP_PKEY_GET_RAW_PRIVATE_KEY, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return 0; } if (!pkey->ameth->get_priv_key(pkey, priv, len)) { EVPerr(EVP_F_EVP_PKEY_GET_RAW_PRIVATE_KEY, EVP_R_GET_RAW_KEY_FAILED); return 0; } return 1; } int EVP_PKEY_get_raw_public_key(const EVP_PKEY *pkey, unsigned char *pub, size_t *len) { if (pkey->ameth->get_pub_key == NULL) { EVPerr(EVP_F_EVP_PKEY_GET_RAW_PUBLIC_KEY, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return 0; } if (!pkey->ameth->get_pub_key(pkey, pub, len)) { EVPerr(EVP_F_EVP_PKEY_GET_RAW_PUBLIC_KEY, EVP_R_GET_RAW_KEY_FAILED); return 0; } return 1; } EVP_PKEY *EVP_PKEY_new_CMAC_key(ENGINE *e, const unsigned char *priv, size_t len, const EVP_CIPHER *cipher) { #ifndef OPENSSL_NO_CMAC EVP_PKEY *ret = EVP_PKEY_new(); CMAC_CTX *cmctx = CMAC_CTX_new(); if (ret == NULL || cmctx == NULL || !pkey_set_type(ret, e, EVP_PKEY_CMAC, NULL, -1)) { /* EVPerr already called */ goto err; } if (!CMAC_Init(cmctx, priv, len, cipher, e)) { EVPerr(EVP_F_EVP_PKEY_NEW_CMAC_KEY, EVP_R_KEY_SETUP_FAILED); goto err; } ret->pkey.ptr = cmctx; return ret; err: EVP_PKEY_free(ret); CMAC_CTX_free(cmctx); return NULL; #else EVPerr(EVP_F_EVP_PKEY_NEW_CMAC_KEY, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return NULL; #endif } int EVP_PKEY_set_type(EVP_PKEY *pkey, int type) { return pkey_set_type(pkey, NULL, type, NULL, -1); } int EVP_PKEY_set_type_str(EVP_PKEY *pkey, const char *str, int len) { return pkey_set_type(pkey, NULL, EVP_PKEY_NONE, str, len); } int EVP_PKEY_set_alias_type(EVP_PKEY *pkey, int type) { if (pkey->type == type) { return 1; /* it already is that type */ } /* * The application is requesting to alias this to a different pkey type, * but not one that resolves to the base type. */ if (EVP_PKEY_type(type) != EVP_PKEY_base_id(pkey)) { EVPerr(EVP_F_EVP_PKEY_SET_ALIAS_TYPE, EVP_R_UNSUPPORTED_ALGORITHM); return 0; } pkey->type = type; return 1; } #ifndef OPENSSL_NO_ENGINE int EVP_PKEY_set1_engine(EVP_PKEY *pkey, ENGINE *e) { if (e != NULL) { if (!ENGINE_init(e)) { EVPerr(EVP_F_EVP_PKEY_SET1_ENGINE, ERR_R_ENGINE_LIB); return 0; } if (ENGINE_get_pkey_meth(e, pkey->type) == NULL) { ENGINE_finish(e); EVPerr(EVP_F_EVP_PKEY_SET1_ENGINE, EVP_R_UNSUPPORTED_ALGORITHM); return 0; } } ENGINE_finish(pkey->pmeth_engine); pkey->pmeth_engine = e; return 1; } ENGINE *EVP_PKEY_get0_engine(const EVP_PKEY *pkey) { return pkey->engine; } #endif int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key) { if (pkey == NULL || !EVP_PKEY_set_type(pkey, type)) return 0; pkey->pkey.ptr = key; return (key != NULL); } void *EVP_PKEY_get0(const EVP_PKEY *pkey) { return pkey->pkey.ptr; } const unsigned char *EVP_PKEY_get0_hmac(const EVP_PKEY *pkey, size_t *len) { ASN1_OCTET_STRING *os = NULL; if (pkey->type != EVP_PKEY_HMAC) { EVPerr(EVP_F_EVP_PKEY_GET0_HMAC, EVP_R_EXPECTING_AN_HMAC_KEY); return NULL; } os = EVP_PKEY_get0(pkey); *len = os->length; return os->data; } #ifndef OPENSSL_NO_POLY1305 const unsigned char *EVP_PKEY_get0_poly1305(const EVP_PKEY *pkey, size_t *len) { ASN1_OCTET_STRING *os = NULL; if (pkey->type != EVP_PKEY_POLY1305) { EVPerr(EVP_F_EVP_PKEY_GET0_POLY1305, EVP_R_EXPECTING_A_POLY1305_KEY); return NULL; } os = EVP_PKEY_get0(pkey); *len = os->length; return os->data; } #endif #ifndef OPENSSL_NO_SIPHASH const unsigned char *EVP_PKEY_get0_siphash(const EVP_PKEY *pkey, size_t *len) { ASN1_OCTET_STRING *os = NULL; if (pkey->type != EVP_PKEY_SIPHASH) { EVPerr(EVP_F_EVP_PKEY_GET0_SIPHASH, EVP_R_EXPECTING_A_SIPHASH_KEY); return NULL; } os = EVP_PKEY_get0(pkey); *len = os->length; return os->data; } #endif #ifndef OPENSSL_NO_RSA int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key) { int ret = EVP_PKEY_assign_RSA(pkey, key); if (ret) RSA_up_ref(key); return ret; } RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey) { if (pkey->type != EVP_PKEY_RSA && pkey->type != EVP_PKEY_RSA_PSS) { EVPerr(EVP_F_EVP_PKEY_GET0_RSA, EVP_R_EXPECTING_AN_RSA_KEY); return NULL; } return pkey->pkey.rsa; } RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey) { RSA *ret = EVP_PKEY_get0_RSA(pkey); if (ret != NULL) RSA_up_ref(ret); return ret; } #endif #ifndef OPENSSL_NO_DSA int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key) { int ret = EVP_PKEY_assign_DSA(pkey, key); if (ret) DSA_up_ref(key); return ret; } DSA *EVP_PKEY_get0_DSA(EVP_PKEY *pkey) { if (pkey->type != EVP_PKEY_DSA) { EVPerr(EVP_F_EVP_PKEY_GET0_DSA, EVP_R_EXPECTING_A_DSA_KEY); return NULL; } return pkey->pkey.dsa; } DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey) { DSA *ret = EVP_PKEY_get0_DSA(pkey); if (ret != NULL) DSA_up_ref(ret); return ret; } #endif #ifndef OPENSSL_NO_EC int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key) { int ret = EVP_PKEY_assign_EC_KEY(pkey, key); if (ret) EC_KEY_up_ref(key); return ret; } EC_KEY *EVP_PKEY_get0_EC_KEY(EVP_PKEY *pkey) { if (pkey->type != EVP_PKEY_EC) { EVPerr(EVP_F_EVP_PKEY_GET0_EC_KEY, EVP_R_EXPECTING_A_EC_KEY); return NULL; } return pkey->pkey.ec; } EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey) { EC_KEY *ret = EVP_PKEY_get0_EC_KEY(pkey); if (ret != NULL) EC_KEY_up_ref(ret); return ret; } #endif #ifndef OPENSSL_NO_DH int EVP_PKEY_set1_DH(EVP_PKEY *pkey, DH *key) { int type = DH_get0_q(key) == NULL ? EVP_PKEY_DH : EVP_PKEY_DHX; int ret = EVP_PKEY_assign(pkey, type, key); if (ret) DH_up_ref(key); return ret; } DH *EVP_PKEY_get0_DH(EVP_PKEY *pkey) { if (pkey->type != EVP_PKEY_DH && pkey->type != EVP_PKEY_DHX) { EVPerr(EVP_F_EVP_PKEY_GET0_DH, EVP_R_EXPECTING_A_DH_KEY); return NULL; } return pkey->pkey.dh; } DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey) { DH *ret = EVP_PKEY_get0_DH(pkey); if (ret != NULL) DH_up_ref(ret); return ret; } #endif int EVP_PKEY_type(int type) { int ret; const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *e; ameth = EVP_PKEY_asn1_find(&e, type); if (ameth) ret = ameth->pkey_id; else ret = NID_undef; #ifndef OPENSSL_NO_ENGINE ENGINE_finish(e); #endif return ret; } int EVP_PKEY_id(const EVP_PKEY *pkey) { return pkey->type; } int EVP_PKEY_base_id(const EVP_PKEY *pkey) { return EVP_PKEY_type(pkey->type); } void EVP_PKEY_free(EVP_PKEY *x) { int i; if (x == NULL) return; CRYPTO_DOWN_REF(&x->references, &i, x->lock); REF_PRINT_COUNT("EVP_PKEY", x); if (i > 0) return; REF_ASSERT_ISNT(i < 0); EVP_PKEY_free_it(x); CRYPTO_THREAD_lock_free(x->lock); sk_X509_ATTRIBUTE_pop_free(x->attributes, X509_ATTRIBUTE_free); OPENSSL_free(x); } static void EVP_PKEY_free_it(EVP_PKEY *x) { /* internal function; x is never NULL */ if (x->ameth && x->ameth->pkey_free) { x->ameth->pkey_free(x); x->pkey.ptr = NULL; } #ifndef OPENSSL_NO_ENGINE ENGINE_finish(x->engine); x->engine = NULL; ENGINE_finish(x->pmeth_engine); x->pmeth_engine = NULL; #endif } static int unsup_alg(BIO *out, const EVP_PKEY *pkey, int indent, const char *kstr) { BIO_indent(out, indent, 128); BIO_printf(out, "%s algorithm \"%s\" unsupported\n", kstr, OBJ_nid2ln(pkey->type)); return 1; } int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { if (pkey->ameth && pkey->ameth->pub_print) return pkey->ameth->pub_print(out, pkey, indent, pctx); return unsup_alg(out, pkey, indent, "Public Key"); } int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { if (pkey->ameth && pkey->ameth->priv_print) return pkey->ameth->priv_print(out, pkey, indent, pctx); return unsup_alg(out, pkey, indent, "Private Key"); } int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx) { if (pkey->ameth && pkey->ameth->param_print) return pkey->ameth->param_print(out, pkey, indent, pctx); return unsup_alg(out, pkey, indent, "Parameters"); } static int evp_pkey_asn1_ctrl(EVP_PKEY *pkey, int op, int arg1, void *arg2) { if (pkey->ameth == NULL || pkey->ameth->pkey_ctrl == NULL) return -2; return pkey->ameth->pkey_ctrl(pkey, op, arg1, arg2); } int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid) { return evp_pkey_asn1_ctrl(pkey, ASN1_PKEY_CTRL_DEFAULT_MD_NID, 0, pnid); } int EVP_PKEY_set1_tls_encodedpoint(EVP_PKEY *pkey, const unsigned char *pt, size_t ptlen) { if (ptlen > INT_MAX) return 0; if (evp_pkey_asn1_ctrl(pkey, ASN1_PKEY_CTRL_SET1_TLS_ENCPT, ptlen, (void *)pt) <= 0) return 0; return 1; } size_t EVP_PKEY_get1_tls_encodedpoint(EVP_PKEY *pkey, unsigned char **ppt) { int rv; rv = evp_pkey_asn1_ctrl(pkey, ASN1_PKEY_CTRL_GET1_TLS_ENCPT, 0, ppt); if (rv <= 0) return 0; return rv; } openssl-1.1.1f/crypto/evp/p_open.c000066400000000000000000000034231364063235100171060ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #ifdef OPENSSL_NO_RSA NON_EMPTY_TRANSLATION_UNIT #else # include # include # include # include # include int EVP_OpenInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, const unsigned char *ek, int ekl, const unsigned char *iv, EVP_PKEY *priv) { unsigned char *key = NULL; int i, size = 0, ret = 0; if (type) { EVP_CIPHER_CTX_reset(ctx); if (!EVP_DecryptInit_ex(ctx, type, NULL, NULL, NULL)) return 0; } if (!priv) return 1; if (EVP_PKEY_id(priv) != EVP_PKEY_RSA) { EVPerr(EVP_F_EVP_OPENINIT, EVP_R_PUBLIC_KEY_NOT_RSA); goto err; } size = EVP_PKEY_size(priv); key = OPENSSL_malloc(size); if (key == NULL) { /* ERROR */ EVPerr(EVP_F_EVP_OPENINIT, ERR_R_MALLOC_FAILURE); goto err; } i = EVP_PKEY_decrypt_old(key, ek, ekl, priv); if ((i <= 0) || !EVP_CIPHER_CTX_set_key_length(ctx, i)) { /* ERROR */ goto err; } if (!EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv)) goto err; ret = 1; err: OPENSSL_clear_free(key, size); return ret; } int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int i; i = EVP_DecryptFinal_ex(ctx, out, outl); if (i) i = EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, NULL); return i; } #endif openssl-1.1.1f/crypto/evp/p_seal.c000066400000000000000000000033501364063235100170700ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, unsigned char **ek, int *ekl, unsigned char *iv, EVP_PKEY **pubk, int npubk) { unsigned char key[EVP_MAX_KEY_LENGTH]; int i; int rv = 0; if (type) { EVP_CIPHER_CTX_reset(ctx); if (!EVP_EncryptInit_ex(ctx, type, NULL, NULL, NULL)) return 0; } if ((npubk <= 0) || !pubk) return 1; if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0) return 0; if (EVP_CIPHER_CTX_iv_length(ctx) && RAND_bytes(iv, EVP_CIPHER_CTX_iv_length(ctx)) <= 0) goto err; if (!EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv)) goto err; for (i = 0; i < npubk; i++) { ekl[i] = EVP_PKEY_encrypt_old(ek[i], key, EVP_CIPHER_CTX_key_length(ctx), pubk[i]); if (ekl[i] <= 0) { rv = -1; goto err; } } rv = npubk; err: OPENSSL_cleanse(key, sizeof(key)); return rv; } int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int i; i = EVP_EncryptFinal_ex(ctx, out, outl); if (i) i = EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, NULL); return i; } openssl-1.1.1f/crypto/evp/p_sign.c000066400000000000000000000033151364063235100171050ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/evp.h" int EVP_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen, EVP_PKEY *pkey) { unsigned char m[EVP_MAX_MD_SIZE]; unsigned int m_len = 0; int i = 0; size_t sltmp; EVP_PKEY_CTX *pkctx = NULL; *siglen = 0; if (EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_FINALISE)) { if (!EVP_DigestFinal_ex(ctx, m, &m_len)) goto err; } else { int rv = 0; EVP_MD_CTX *tmp_ctx = EVP_MD_CTX_new(); if (tmp_ctx == NULL) { EVPerr(EVP_F_EVP_SIGNFINAL, ERR_R_MALLOC_FAILURE); return 0; } rv = EVP_MD_CTX_copy_ex(tmp_ctx, ctx); if (rv) rv = EVP_DigestFinal_ex(tmp_ctx, m, &m_len); EVP_MD_CTX_free(tmp_ctx); if (!rv) return 0; } sltmp = (size_t)EVP_PKEY_size(pkey); i = 0; pkctx = EVP_PKEY_CTX_new(pkey, NULL); if (pkctx == NULL) goto err; if (EVP_PKEY_sign_init(pkctx) <= 0) goto err; if (EVP_PKEY_CTX_set_signature_md(pkctx, EVP_MD_CTX_md(ctx)) <= 0) goto err; if (EVP_PKEY_sign(pkctx, sigret, &sltmp, m, m_len) <= 0) goto err; *siglen = sltmp; i = 1; err: EVP_PKEY_CTX_free(pkctx); return i; } openssl-1.1.1f/crypto/evp/p_verify.c000066400000000000000000000031321364063235100174460ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/evp.h" int EVP_VerifyFinal(EVP_MD_CTX *ctx, const unsigned char *sigbuf, unsigned int siglen, EVP_PKEY *pkey) { unsigned char m[EVP_MAX_MD_SIZE]; unsigned int m_len = 0; int i = 0; EVP_PKEY_CTX *pkctx = NULL; if (EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_FINALISE)) { if (!EVP_DigestFinal_ex(ctx, m, &m_len)) goto err; } else { int rv = 0; EVP_MD_CTX *tmp_ctx = EVP_MD_CTX_new(); if (tmp_ctx == NULL) { EVPerr(EVP_F_EVP_VERIFYFINAL, ERR_R_MALLOC_FAILURE); return 0; } rv = EVP_MD_CTX_copy_ex(tmp_ctx, ctx); if (rv) rv = EVP_DigestFinal_ex(tmp_ctx, m, &m_len); EVP_MD_CTX_free(tmp_ctx); if (!rv) return 0; } i = -1; pkctx = EVP_PKEY_CTX_new(pkey, NULL); if (pkctx == NULL) goto err; if (EVP_PKEY_verify_init(pkctx) <= 0) goto err; if (EVP_PKEY_CTX_set_signature_md(pkctx, EVP_MD_CTX_md(ctx)) <= 0) goto err; i = EVP_PKEY_verify(pkctx, sigbuf, siglen, m, m_len); err: EVP_PKEY_CTX_free(pkctx); return i; } openssl-1.1.1f/crypto/evp/pbe_scrypt.c000066400000000000000000000166061364063235100200070ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "internal/numbers.h" #ifndef OPENSSL_NO_SCRYPT #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) static void salsa208_word_specification(uint32_t inout[16]) { int i; uint32_t x[16]; memcpy(x, inout, sizeof(x)); for (i = 8; i > 0; i -= 2) { x[4] ^= R(x[0] + x[12], 7); x[8] ^= R(x[4] + x[0], 9); x[12] ^= R(x[8] + x[4], 13); x[0] ^= R(x[12] + x[8], 18); x[9] ^= R(x[5] + x[1], 7); x[13] ^= R(x[9] + x[5], 9); x[1] ^= R(x[13] + x[9], 13); x[5] ^= R(x[1] + x[13], 18); x[14] ^= R(x[10] + x[6], 7); x[2] ^= R(x[14] + x[10], 9); x[6] ^= R(x[2] + x[14], 13); x[10] ^= R(x[6] + x[2], 18); x[3] ^= R(x[15] + x[11], 7); x[7] ^= R(x[3] + x[15], 9); x[11] ^= R(x[7] + x[3], 13); x[15] ^= R(x[11] + x[7], 18); x[1] ^= R(x[0] + x[3], 7); x[2] ^= R(x[1] + x[0], 9); x[3] ^= R(x[2] + x[1], 13); x[0] ^= R(x[3] + x[2], 18); x[6] ^= R(x[5] + x[4], 7); x[7] ^= R(x[6] + x[5], 9); x[4] ^= R(x[7] + x[6], 13); x[5] ^= R(x[4] + x[7], 18); x[11] ^= R(x[10] + x[9], 7); x[8] ^= R(x[11] + x[10], 9); x[9] ^= R(x[8] + x[11], 13); x[10] ^= R(x[9] + x[8], 18); x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9); x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18); } for (i = 0; i < 16; ++i) inout[i] += x[i]; OPENSSL_cleanse(x, sizeof(x)); } static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) { uint64_t i, j; uint32_t X[16], *pB; memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); pB = B; for (i = 0; i < r * 2; i++) { for (j = 0; j < 16; j++) X[j] ^= *pB++; salsa208_word_specification(X); memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); } OPENSSL_cleanse(X, sizeof(X)); } static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, uint32_t *X, uint32_t *T, uint32_t *V) { unsigned char *pB; uint32_t *pV; uint64_t i, k; /* Convert from little endian input */ for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { *pV = *pB++; *pV |= *pB++ << 8; *pV |= *pB++ << 16; *pV |= (uint32_t)*pB++ << 24; } for (i = 1; i < N; i++, pV += 32 * r) scryptBlockMix(pV, pV - 32 * r, r); scryptBlockMix(X, V + (N - 1) * 32 * r, r); for (i = 0; i < N; i++) { uint32_t j; j = X[16 * (2 * r - 1)] % N; pV = V + 32 * r * j; for (k = 0; k < 32 * r; k++) T[k] = X[k] ^ *pV++; scryptBlockMix(X, T, r); } /* Convert output to little endian */ for (i = 0, pB = B; i < 32 * r; i++) { uint32_t xtmp = X[i]; *pB++ = xtmp & 0xff; *pB++ = (xtmp >> 8) & 0xff; *pB++ = (xtmp >> 16) & 0xff; *pB++ = (xtmp >> 24) & 0xff; } } #ifndef SIZE_MAX # define SIZE_MAX ((size_t)-1) #endif /* * Maximum power of two that will fit in uint64_t: this should work on * most (all?) platforms. */ #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) /* * Maximum value of p * r: * p <= ((2^32-1) * hLen) / MFLen => * p <= ((2^32-1) * 32) / (128 * r) => * p * r <= (2^30-1) * */ #define SCRYPT_PR_MAX ((1 << 30) - 1) /* * Maximum permitted memory allow this to be overridden with Configuration * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible. */ #ifdef SCRYPT_MAX_MEM # if SCRYPT_MAX_MEM == 0 # undef SCRYPT_MAX_MEM /* * Although we could theoretically allocate SIZE_MAX memory that would leave * no memory available for anything else so set limit as half that. */ # define SCRYPT_MAX_MEM (SIZE_MAX/2) # endif #else /* Default memory limit: 32 MB */ # define SCRYPT_MAX_MEM (1024 * 1024 * 32) #endif int EVP_PBE_scrypt(const char *pass, size_t passlen, const unsigned char *salt, size_t saltlen, uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, unsigned char *key, size_t keylen) { int rv = 0; unsigned char *B; uint32_t *X, *V, *T; uint64_t i, Blen, Vlen; /* Sanity check parameters */ /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) return 0; /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ if (p > SCRYPT_PR_MAX / r) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Need to check N: if 2^(128 * r / 8) overflows limit this is * automatically satisfied since N <= UINT64_MAX. */ if (16 * r <= LOG2_UINT64_MAX) { if (N >= (((uint64_t)1) << (16 * r))) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } } /* Memory checks: check total allocated buffer size fits in uint64_t */ /* * B size in section 5 step 1.S * Note: we know p * 128 * r < UINT64_MAX because we already checked * p * r < SCRYPT_PR_MAX */ Blen = p * 128 * r; /* * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] */ if (Blen > INT_MAX) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t * This is combined size V, X and T (section 4) */ i = UINT64_MAX / (32 * sizeof(uint32_t)); if (N + 2 > i / r) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } Vlen = 32 * r * (N + 2) * sizeof(uint32_t); /* check total allocated size fits in uint64_t */ if (Blen > UINT64_MAX - Vlen) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } if (maxmem == 0) maxmem = SCRYPT_MAX_MEM; /* Check that the maximum memory doesn't exceed a size_t limits */ if (maxmem > SIZE_MAX) maxmem = SIZE_MAX; if (Blen + Vlen > maxmem) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* If no key return to indicate parameters are OK */ if (key == NULL) return 1; B = OPENSSL_malloc((size_t)(Blen + Vlen)); if (B == NULL) { EVPerr(EVP_F_EVP_PBE_SCRYPT, ERR_R_MALLOC_FAILURE); return 0; } X = (uint32_t *)(B + Blen); T = X + 32 * r; V = T + 32 * r; if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), (int)Blen, B) == 0) goto err; for (i = 0; i < p; i++) scryptROMix(B + 128 * r * i, r, N, X, T, V); if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(), keylen, key) == 0) goto err; rv = 1; err: if (rv == 0) EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PBKDF2_ERROR); OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); return rv; } #endif openssl-1.1.1f/crypto/evp/pmeth_fn.c000066400000000000000000000231401364063235100174240ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include "crypto/evp.h" #define M_check_autoarg(ctx, arg, arglen, err) \ if (ctx->pmeth->flags & EVP_PKEY_FLAG_AUTOARGLEN) { \ size_t pksize = (size_t)EVP_PKEY_size(ctx->pkey); \ \ if (pksize == 0) { \ EVPerr(err, EVP_R_INVALID_KEY); /*ckerr_ignore*/ \ return 0; \ } \ if (!arg) { \ *arglen = pksize; \ return 1; \ } \ if (*arglen < pksize) { \ EVPerr(err, EVP_R_BUFFER_TOO_SMALL); /*ckerr_ignore*/ \ return 0; \ } \ } int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->sign) { EVPerr(EVP_F_EVP_PKEY_SIGN_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_SIGN; if (!ctx->pmeth->sign_init) return 1; ret = ctx->pmeth->sign_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) { if (!ctx || !ctx->pmeth || !ctx->pmeth->sign) { EVPerr(EVP_F_EVP_PKEY_SIGN, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_SIGN) { EVPerr(EVP_F_EVP_PKEY_SIGN, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } M_check_autoarg(ctx, sig, siglen, EVP_F_EVP_PKEY_SIGN) return ctx->pmeth->sign(ctx, sig, siglen, tbs, tbslen); } int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->verify) { EVPerr(EVP_F_EVP_PKEY_VERIFY_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_VERIFY; if (!ctx->pmeth->verify_init) return 1; ret = ctx->pmeth->verify_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { if (!ctx || !ctx->pmeth || !ctx->pmeth->verify) { EVPerr(EVP_F_EVP_PKEY_VERIFY, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_VERIFY) { EVPerr(EVP_F_EVP_PKEY_VERIFY, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } return ctx->pmeth->verify(ctx, sig, siglen, tbs, tbslen); } int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->verify_recover) { EVPerr(EVP_F_EVP_PKEY_VERIFY_RECOVER_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_VERIFYRECOVER; if (!ctx->pmeth->verify_recover_init) return 1; ret = ctx->pmeth->verify_recover_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, unsigned char *rout, size_t *routlen, const unsigned char *sig, size_t siglen) { if (!ctx || !ctx->pmeth || !ctx->pmeth->verify_recover) { EVPerr(EVP_F_EVP_PKEY_VERIFY_RECOVER, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_VERIFYRECOVER) { EVPerr(EVP_F_EVP_PKEY_VERIFY_RECOVER, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } M_check_autoarg(ctx, rout, routlen, EVP_F_EVP_PKEY_VERIFY_RECOVER) return ctx->pmeth->verify_recover(ctx, rout, routlen, sig, siglen); } int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->encrypt) { EVPerr(EVP_F_EVP_PKEY_ENCRYPT_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_ENCRYPT; if (!ctx->pmeth->encrypt_init) return 1; ret = ctx->pmeth->encrypt_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen) { if (!ctx || !ctx->pmeth || !ctx->pmeth->encrypt) { EVPerr(EVP_F_EVP_PKEY_ENCRYPT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_ENCRYPT) { EVPerr(EVP_F_EVP_PKEY_ENCRYPT, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } M_check_autoarg(ctx, out, outlen, EVP_F_EVP_PKEY_ENCRYPT) return ctx->pmeth->encrypt(ctx, out, outlen, in, inlen); } int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->decrypt) { EVPerr(EVP_F_EVP_PKEY_DECRYPT_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_DECRYPT; if (!ctx->pmeth->decrypt_init) return 1; ret = ctx->pmeth->decrypt_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen) { if (!ctx || !ctx->pmeth || !ctx->pmeth->decrypt) { EVPerr(EVP_F_EVP_PKEY_DECRYPT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_DECRYPT) { EVPerr(EVP_F_EVP_PKEY_DECRYPT, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } M_check_autoarg(ctx, out, outlen, EVP_F_EVP_PKEY_DECRYPT) return ctx->pmeth->decrypt(ctx, out, outlen, in, inlen); } int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->derive) { EVPerr(EVP_F_EVP_PKEY_DERIVE_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_DERIVE; if (!ctx->pmeth->derive_init) return 1; ret = ctx->pmeth->derive_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer) { int ret; if (!ctx || !ctx->pmeth || !(ctx->pmeth->derive || ctx->pmeth->encrypt || ctx->pmeth->decrypt) || !ctx->pmeth->ctrl) { EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_DERIVE && ctx->operation != EVP_PKEY_OP_ENCRYPT && ctx->operation != EVP_PKEY_OP_DECRYPT) { EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } ret = ctx->pmeth->ctrl(ctx, EVP_PKEY_CTRL_PEER_KEY, 0, peer); if (ret <= 0) return ret; if (ret == 2) return 1; if (!ctx->pkey) { EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER, EVP_R_NO_KEY_SET); return -1; } if (ctx->pkey->type != peer->type) { EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER, EVP_R_DIFFERENT_KEY_TYPES); return -1; } /* * For clarity. The error is if parameters in peer are * present (!missing) but don't match. EVP_PKEY_cmp_parameters may return * 1 (match), 0 (don't match) and -2 (comparison is not defined). -1 * (different key types) is impossible here because it is checked earlier. * -2 is OK for us here, as well as 1, so we can check for 0 only. */ if (!EVP_PKEY_missing_parameters(peer) && !EVP_PKEY_cmp_parameters(ctx->pkey, peer)) { EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER, EVP_R_DIFFERENT_PARAMETERS); return -1; } EVP_PKEY_free(ctx->peerkey); ctx->peerkey = peer; ret = ctx->pmeth->ctrl(ctx, EVP_PKEY_CTRL_PEER_KEY, 1, peer); if (ret <= 0) { ctx->peerkey = NULL; return ret; } EVP_PKEY_up_ref(peer); return 1; } int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *pkeylen) { if (!ctx || !ctx->pmeth || !ctx->pmeth->derive) { EVPerr(EVP_F_EVP_PKEY_DERIVE, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_DERIVE) { EVPerr(EVP_F_EVP_PKEY_DERIVE, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } M_check_autoarg(ctx, key, pkeylen, EVP_F_EVP_PKEY_DERIVE) return ctx->pmeth->derive(ctx, key, pkeylen); } openssl-1.1.1f/crypto/evp/pmeth_gn.c000066400000000000000000000140111364063235100174220ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include "crypto/bn.h" #include "crypto/asn1.h" #include "crypto/evp.h" int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->paramgen) { EVPerr(EVP_F_EVP_PKEY_PARAMGEN_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_PARAMGEN; if (!ctx->pmeth->paramgen_init) return 1; ret = ctx->pmeth->paramgen_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->paramgen) { EVPerr(EVP_F_EVP_PKEY_PARAMGEN, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_PARAMGEN) { EVPerr(EVP_F_EVP_PKEY_PARAMGEN, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } if (ppkey == NULL) return -1; if (*ppkey == NULL) *ppkey = EVP_PKEY_new(); if (*ppkey == NULL) { EVPerr(EVP_F_EVP_PKEY_PARAMGEN, ERR_R_MALLOC_FAILURE); return -1; } ret = ctx->pmeth->paramgen(ctx, *ppkey); if (ret <= 0) { EVP_PKEY_free(*ppkey); *ppkey = NULL; } return ret; } int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->keygen) { EVPerr(EVP_F_EVP_PKEY_KEYGEN_INIT, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } ctx->operation = EVP_PKEY_OP_KEYGEN; if (!ctx->pmeth->keygen_init) return 1; ret = ctx->pmeth->keygen_init(ctx); if (ret <= 0) ctx->operation = EVP_PKEY_OP_UNDEFINED; return ret; } int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->keygen) { EVPerr(EVP_F_EVP_PKEY_KEYGEN, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (ctx->operation != EVP_PKEY_OP_KEYGEN) { EVPerr(EVP_F_EVP_PKEY_KEYGEN, EVP_R_OPERATON_NOT_INITIALIZED); return -1; } if (ppkey == NULL) return -1; if (*ppkey == NULL) *ppkey = EVP_PKEY_new(); if (*ppkey == NULL) return -1; ret = ctx->pmeth->keygen(ctx, *ppkey); if (ret <= 0) { EVP_PKEY_free(*ppkey); *ppkey = NULL; } return ret; } void EVP_PKEY_CTX_set_cb(EVP_PKEY_CTX *ctx, EVP_PKEY_gen_cb *cb) { ctx->pkey_gencb = cb; } EVP_PKEY_gen_cb *EVP_PKEY_CTX_get_cb(EVP_PKEY_CTX *ctx) { return ctx->pkey_gencb; } /* * "translation callback" to call EVP_PKEY_CTX callbacks using BN_GENCB style * callbacks. */ static int trans_cb(int a, int b, BN_GENCB *gcb) { EVP_PKEY_CTX *ctx = BN_GENCB_get_arg(gcb); ctx->keygen_info[0] = a; ctx->keygen_info[1] = b; return ctx->pkey_gencb(ctx); } void evp_pkey_set_cb_translate(BN_GENCB *cb, EVP_PKEY_CTX *ctx) { BN_GENCB_set(cb, trans_cb, ctx); } int EVP_PKEY_CTX_get_keygen_info(EVP_PKEY_CTX *ctx, int idx) { if (idx == -1) return ctx->keygen_info_count; if (idx < 0 || idx > ctx->keygen_info_count) return 0; return ctx->keygen_info[idx]; } EVP_PKEY *EVP_PKEY_new_mac_key(int type, ENGINE *e, const unsigned char *key, int keylen) { EVP_PKEY_CTX *mac_ctx = NULL; EVP_PKEY *mac_key = NULL; mac_ctx = EVP_PKEY_CTX_new_id(type, e); if (!mac_ctx) return NULL; if (EVP_PKEY_keygen_init(mac_ctx) <= 0) goto merr; if (EVP_PKEY_CTX_set_mac_key(mac_ctx, key, keylen) <= 0) goto merr; if (EVP_PKEY_keygen(mac_ctx, &mac_key) <= 0) goto merr; merr: EVP_PKEY_CTX_free(mac_ctx); return mac_key; } int EVP_PKEY_check(EVP_PKEY_CTX *ctx) { EVP_PKEY *pkey = ctx->pkey; if (pkey == NULL) { EVPerr(EVP_F_EVP_PKEY_CHECK, EVP_R_NO_KEY_SET); return 0; } /* call customized check function first */ if (ctx->pmeth->check != NULL) return ctx->pmeth->check(pkey); /* use default check function in ameth */ if (pkey->ameth == NULL || pkey->ameth->pkey_check == NULL) { EVPerr(EVP_F_EVP_PKEY_CHECK, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } return pkey->ameth->pkey_check(pkey); } int EVP_PKEY_public_check(EVP_PKEY_CTX *ctx) { EVP_PKEY *pkey = ctx->pkey; if (pkey == NULL) { EVPerr(EVP_F_EVP_PKEY_PUBLIC_CHECK, EVP_R_NO_KEY_SET); return 0; } /* call customized public key check function first */ if (ctx->pmeth->public_check != NULL) return ctx->pmeth->public_check(pkey); /* use default public key check function in ameth */ if (pkey->ameth == NULL || pkey->ameth->pkey_public_check == NULL) { EVPerr(EVP_F_EVP_PKEY_PUBLIC_CHECK, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } return pkey->ameth->pkey_public_check(pkey); } int EVP_PKEY_param_check(EVP_PKEY_CTX *ctx) { EVP_PKEY *pkey = ctx->pkey; if (pkey == NULL) { EVPerr(EVP_F_EVP_PKEY_PARAM_CHECK, EVP_R_NO_KEY_SET); return 0; } /* call customized param check function first */ if (ctx->pmeth->param_check != NULL) return ctx->pmeth->param_check(pkey); /* use default param check function in ameth */ if (pkey->ameth == NULL || pkey->ameth->pkey_param_check == NULL) { EVPerr(EVP_F_EVP_PKEY_PARAM_CHECK, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } return pkey->ameth->pkey_param_check(pkey); } openssl-1.1.1f/crypto/evp/pmeth_lib.c000066400000000000000000000661771364063235100176100ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "internal/numbers.h" typedef int sk_cmp_fn_type(const char *const *a, const char *const *b); static STACK_OF(EVP_PKEY_METHOD) *app_pkey_methods = NULL; /* This array needs to be in order of NIDs */ static const EVP_PKEY_METHOD *standard_methods[] = { #ifndef OPENSSL_NO_RSA &rsa_pkey_meth, #endif #ifndef OPENSSL_NO_DH &dh_pkey_meth, #endif #ifndef OPENSSL_NO_DSA &dsa_pkey_meth, #endif #ifndef OPENSSL_NO_EC &ec_pkey_meth, #endif &hmac_pkey_meth, #ifndef OPENSSL_NO_CMAC &cmac_pkey_meth, #endif #ifndef OPENSSL_NO_RSA &rsa_pss_pkey_meth, #endif #ifndef OPENSSL_NO_DH &dhx_pkey_meth, #endif #ifndef OPENSSL_NO_SCRYPT &scrypt_pkey_meth, #endif &tls1_prf_pkey_meth, #ifndef OPENSSL_NO_EC &ecx25519_pkey_meth, &ecx448_pkey_meth, #endif &hkdf_pkey_meth, #ifndef OPENSSL_NO_POLY1305 &poly1305_pkey_meth, #endif #ifndef OPENSSL_NO_SIPHASH &siphash_pkey_meth, #endif #ifndef OPENSSL_NO_EC &ed25519_pkey_meth, &ed448_pkey_meth, #endif #ifndef OPENSSL_NO_SM2 &sm2_pkey_meth, #endif }; DECLARE_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_METHOD *, const EVP_PKEY_METHOD *, pmeth); static int pmeth_cmp(const EVP_PKEY_METHOD *const *a, const EVP_PKEY_METHOD *const *b) { return ((*a)->pkey_id - (*b)->pkey_id); } IMPLEMENT_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_METHOD *, const EVP_PKEY_METHOD *, pmeth); const EVP_PKEY_METHOD *EVP_PKEY_meth_find(int type) { EVP_PKEY_METHOD tmp; const EVP_PKEY_METHOD *t = &tmp, **ret; tmp.pkey_id = type; if (app_pkey_methods) { int idx; idx = sk_EVP_PKEY_METHOD_find(app_pkey_methods, &tmp); if (idx >= 0) return sk_EVP_PKEY_METHOD_value(app_pkey_methods, idx); } ret = OBJ_bsearch_pmeth(&t, standard_methods, sizeof(standard_methods) / sizeof(EVP_PKEY_METHOD *)); if (!ret || !*ret) return NULL; return *ret; } static EVP_PKEY_CTX *int_ctx_new(EVP_PKEY *pkey, ENGINE *e, int id) { EVP_PKEY_CTX *ret; const EVP_PKEY_METHOD *pmeth; if (id == -1) { if (pkey == NULL) return 0; id = pkey->type; } #ifndef OPENSSL_NO_ENGINE if (e == NULL && pkey != NULL) e = pkey->pmeth_engine != NULL ? pkey->pmeth_engine : pkey->engine; /* Try to find an ENGINE which implements this method */ if (e) { if (!ENGINE_init(e)) { EVPerr(EVP_F_INT_CTX_NEW, ERR_R_ENGINE_LIB); return NULL; } } else { e = ENGINE_get_pkey_meth_engine(id); } /* * If an ENGINE handled this method look it up. Otherwise use internal * tables. */ if (e) pmeth = ENGINE_get_pkey_meth(e, id); else #endif pmeth = EVP_PKEY_meth_find(id); if (pmeth == NULL) { #ifndef OPENSSL_NO_ENGINE ENGINE_finish(e); #endif EVPerr(EVP_F_INT_CTX_NEW, EVP_R_UNSUPPORTED_ALGORITHM); return NULL; } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { #ifndef OPENSSL_NO_ENGINE ENGINE_finish(e); #endif EVPerr(EVP_F_INT_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->engine = e; ret->pmeth = pmeth; ret->operation = EVP_PKEY_OP_UNDEFINED; ret->pkey = pkey; if (pkey != NULL) EVP_PKEY_up_ref(pkey); if (pmeth->init) { if (pmeth->init(ret) <= 0) { ret->pmeth = NULL; EVP_PKEY_CTX_free(ret); return NULL; } } return ret; } EVP_PKEY_METHOD *EVP_PKEY_meth_new(int id, int flags) { EVP_PKEY_METHOD *pmeth; pmeth = OPENSSL_zalloc(sizeof(*pmeth)); if (pmeth == NULL) { EVPerr(EVP_F_EVP_PKEY_METH_NEW, ERR_R_MALLOC_FAILURE); return NULL; } pmeth->pkey_id = id; pmeth->flags = flags | EVP_PKEY_FLAG_DYNAMIC; return pmeth; } void EVP_PKEY_meth_get0_info(int *ppkey_id, int *pflags, const EVP_PKEY_METHOD *meth) { if (ppkey_id) *ppkey_id = meth->pkey_id; if (pflags) *pflags = meth->flags; } void EVP_PKEY_meth_copy(EVP_PKEY_METHOD *dst, const EVP_PKEY_METHOD *src) { dst->init = src->init; dst->copy = src->copy; dst->cleanup = src->cleanup; dst->paramgen_init = src->paramgen_init; dst->paramgen = src->paramgen; dst->keygen_init = src->keygen_init; dst->keygen = src->keygen; dst->sign_init = src->sign_init; dst->sign = src->sign; dst->verify_init = src->verify_init; dst->verify = src->verify; dst->verify_recover_init = src->verify_recover_init; dst->verify_recover = src->verify_recover; dst->signctx_init = src->signctx_init; dst->signctx = src->signctx; dst->verifyctx_init = src->verifyctx_init; dst->verifyctx = src->verifyctx; dst->encrypt_init = src->encrypt_init; dst->encrypt = src->encrypt; dst->decrypt_init = src->decrypt_init; dst->decrypt = src->decrypt; dst->derive_init = src->derive_init; dst->derive = src->derive; dst->ctrl = src->ctrl; dst->ctrl_str = src->ctrl_str; dst->check = src->check; } void EVP_PKEY_meth_free(EVP_PKEY_METHOD *pmeth) { if (pmeth && (pmeth->flags & EVP_PKEY_FLAG_DYNAMIC)) OPENSSL_free(pmeth); } EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e) { return int_ctx_new(pkey, e, -1); } EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e) { return int_ctx_new(NULL, e, id); } EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *pctx) { EVP_PKEY_CTX *rctx; if (!pctx->pmeth || !pctx->pmeth->copy) return NULL; #ifndef OPENSSL_NO_ENGINE /* Make sure it's safe to copy a pkey context using an ENGINE */ if (pctx->engine && !ENGINE_init(pctx->engine)) { EVPerr(EVP_F_EVP_PKEY_CTX_DUP, ERR_R_ENGINE_LIB); return 0; } #endif rctx = OPENSSL_malloc(sizeof(*rctx)); if (rctx == NULL) { EVPerr(EVP_F_EVP_PKEY_CTX_DUP, ERR_R_MALLOC_FAILURE); return NULL; } rctx->pmeth = pctx->pmeth; #ifndef OPENSSL_NO_ENGINE rctx->engine = pctx->engine; #endif if (pctx->pkey) EVP_PKEY_up_ref(pctx->pkey); rctx->pkey = pctx->pkey; if (pctx->peerkey) EVP_PKEY_up_ref(pctx->peerkey); rctx->peerkey = pctx->peerkey; rctx->data = NULL; rctx->app_data = NULL; rctx->operation = pctx->operation; if (pctx->pmeth->copy(rctx, pctx) > 0) return rctx; rctx->pmeth = NULL; EVP_PKEY_CTX_free(rctx); return NULL; } int EVP_PKEY_meth_add0(const EVP_PKEY_METHOD *pmeth) { if (app_pkey_methods == NULL) { app_pkey_methods = sk_EVP_PKEY_METHOD_new(pmeth_cmp); if (app_pkey_methods == NULL){ EVPerr(EVP_F_EVP_PKEY_METH_ADD0, ERR_R_MALLOC_FAILURE); return 0; } } if (!sk_EVP_PKEY_METHOD_push(app_pkey_methods, pmeth)) { EVPerr(EVP_F_EVP_PKEY_METH_ADD0, ERR_R_MALLOC_FAILURE); return 0; } sk_EVP_PKEY_METHOD_sort(app_pkey_methods); return 1; } void evp_app_cleanup_int(void) { if (app_pkey_methods != NULL) sk_EVP_PKEY_METHOD_pop_free(app_pkey_methods, EVP_PKEY_meth_free); } int EVP_PKEY_meth_remove(const EVP_PKEY_METHOD *pmeth) { const EVP_PKEY_METHOD *ret; ret = sk_EVP_PKEY_METHOD_delete_ptr(app_pkey_methods, pmeth); return ret == NULL ? 0 : 1; } size_t EVP_PKEY_meth_get_count(void) { size_t rv = OSSL_NELEM(standard_methods); if (app_pkey_methods) rv += sk_EVP_PKEY_METHOD_num(app_pkey_methods); return rv; } const EVP_PKEY_METHOD *EVP_PKEY_meth_get0(size_t idx) { if (idx < OSSL_NELEM(standard_methods)) return standard_methods[idx]; if (app_pkey_methods == NULL) return NULL; idx -= OSSL_NELEM(standard_methods); if (idx >= (size_t)sk_EVP_PKEY_METHOD_num(app_pkey_methods)) return NULL; return sk_EVP_PKEY_METHOD_value(app_pkey_methods, idx); } void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx) { if (ctx == NULL) return; if (ctx->pmeth && ctx->pmeth->cleanup) ctx->pmeth->cleanup(ctx); EVP_PKEY_free(ctx->pkey); EVP_PKEY_free(ctx->peerkey); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(ctx->engine); #endif OPENSSL_free(ctx); } int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype, int cmd, int p1, void *p2) { int ret; if (!ctx || !ctx->pmeth || !ctx->pmeth->ctrl) { EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_COMMAND_NOT_SUPPORTED); return -2; } if ((keytype != -1) && (ctx->pmeth->pkey_id != keytype)) return -1; /* Skip the operation checks since this is called in a very early stage */ if (ctx->pmeth->digest_custom != NULL) goto doit; if (ctx->operation == EVP_PKEY_OP_UNDEFINED) { EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_NO_OPERATION_SET); return -1; } if ((optype != -1) && !(ctx->operation & optype)) { EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_INVALID_OPERATION); return -1; } doit: ret = ctx->pmeth->ctrl(ctx, cmd, p1, p2); if (ret == -2) EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_COMMAND_NOT_SUPPORTED); return ret; } int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype, int cmd, uint64_t value) { return EVP_PKEY_CTX_ctrl(ctx, keytype, optype, cmd, 0, &value); } int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *name, const char *value) { if (!ctx || !ctx->pmeth || !ctx->pmeth->ctrl_str) { EVPerr(EVP_F_EVP_PKEY_CTX_CTRL_STR, EVP_R_COMMAND_NOT_SUPPORTED); return -2; } if (strcmp(name, "digest") == 0) return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_MD, value); return ctx->pmeth->ctrl_str(ctx, name, value); } /* Utility functions to send a string of hex string to a ctrl */ int EVP_PKEY_CTX_str2ctrl(EVP_PKEY_CTX *ctx, int cmd, const char *str) { size_t len; len = strlen(str); if (len > INT_MAX) return -1; return ctx->pmeth->ctrl(ctx, cmd, len, (void *)str); } int EVP_PKEY_CTX_hex2ctrl(EVP_PKEY_CTX *ctx, int cmd, const char *hex) { unsigned char *bin; long binlen; int rv = -1; bin = OPENSSL_hexstr2buf(hex, &binlen); if (bin == NULL) return 0; if (binlen <= INT_MAX) rv = ctx->pmeth->ctrl(ctx, cmd, binlen, bin); OPENSSL_free(bin); return rv; } /* Pass a message digest to a ctrl */ int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md) { const EVP_MD *m; if (md == NULL || (m = EVP_get_digestbyname(md)) == NULL) { EVPerr(EVP_F_EVP_PKEY_CTX_MD, EVP_R_INVALID_DIGEST); return 0; } return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, 0, (void *)m); } int EVP_PKEY_CTX_get_operation(EVP_PKEY_CTX *ctx) { return ctx->operation; } void EVP_PKEY_CTX_set0_keygen_info(EVP_PKEY_CTX *ctx, int *dat, int datlen) { ctx->keygen_info = dat; ctx->keygen_info_count = datlen; } void EVP_PKEY_CTX_set_data(EVP_PKEY_CTX *ctx, void *data) { ctx->data = data; } void *EVP_PKEY_CTX_get_data(EVP_PKEY_CTX *ctx) { return ctx->data; } EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx) { return ctx->pkey; } EVP_PKEY *EVP_PKEY_CTX_get0_peerkey(EVP_PKEY_CTX *ctx) { return ctx->peerkey; } void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data) { ctx->app_data = data; } void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx) { return ctx->app_data; } void EVP_PKEY_meth_set_init(EVP_PKEY_METHOD *pmeth, int (*init) (EVP_PKEY_CTX *ctx)) { pmeth->init = init; } void EVP_PKEY_meth_set_copy(EVP_PKEY_METHOD *pmeth, int (*copy) (EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)) { pmeth->copy = copy; } void EVP_PKEY_meth_set_cleanup(EVP_PKEY_METHOD *pmeth, void (*cleanup) (EVP_PKEY_CTX *ctx)) { pmeth->cleanup = cleanup; } void EVP_PKEY_meth_set_paramgen(EVP_PKEY_METHOD *pmeth, int (*paramgen_init) (EVP_PKEY_CTX *ctx), int (*paramgen) (EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)) { pmeth->paramgen_init = paramgen_init; pmeth->paramgen = paramgen; } void EVP_PKEY_meth_set_keygen(EVP_PKEY_METHOD *pmeth, int (*keygen_init) (EVP_PKEY_CTX *ctx), int (*keygen) (EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)) { pmeth->keygen_init = keygen_init; pmeth->keygen = keygen; } void EVP_PKEY_meth_set_sign(EVP_PKEY_METHOD *pmeth, int (*sign_init) (EVP_PKEY_CTX *ctx), int (*sign) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen)) { pmeth->sign_init = sign_init; pmeth->sign = sign; } void EVP_PKEY_meth_set_verify(EVP_PKEY_METHOD *pmeth, int (*verify_init) (EVP_PKEY_CTX *ctx), int (*verify) (EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen)) { pmeth->verify_init = verify_init; pmeth->verify = verify; } void EVP_PKEY_meth_set_verify_recover(EVP_PKEY_METHOD *pmeth, int (*verify_recover_init) (EVP_PKEY_CTX *ctx), int (*verify_recover) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen)) { pmeth->verify_recover_init = verify_recover_init; pmeth->verify_recover = verify_recover; } void EVP_PKEY_meth_set_signctx(EVP_PKEY_METHOD *pmeth, int (*signctx_init) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx), int (*signctx) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx)) { pmeth->signctx_init = signctx_init; pmeth->signctx = signctx; } void EVP_PKEY_meth_set_verifyctx(EVP_PKEY_METHOD *pmeth, int (*verifyctx_init) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx), int (*verifyctx) (EVP_PKEY_CTX *ctx, const unsigned char *sig, int siglen, EVP_MD_CTX *mctx)) { pmeth->verifyctx_init = verifyctx_init; pmeth->verifyctx = verifyctx; } void EVP_PKEY_meth_set_encrypt(EVP_PKEY_METHOD *pmeth, int (*encrypt_init) (EVP_PKEY_CTX *ctx), int (*encryptfn) (EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen)) { pmeth->encrypt_init = encrypt_init; pmeth->encrypt = encryptfn; } void EVP_PKEY_meth_set_decrypt(EVP_PKEY_METHOD *pmeth, int (*decrypt_init) (EVP_PKEY_CTX *ctx), int (*decrypt) (EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen)) { pmeth->decrypt_init = decrypt_init; pmeth->decrypt = decrypt; } void EVP_PKEY_meth_set_derive(EVP_PKEY_METHOD *pmeth, int (*derive_init) (EVP_PKEY_CTX *ctx), int (*derive) (EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen)) { pmeth->derive_init = derive_init; pmeth->derive = derive; } void EVP_PKEY_meth_set_ctrl(EVP_PKEY_METHOD *pmeth, int (*ctrl) (EVP_PKEY_CTX *ctx, int type, int p1, void *p2), int (*ctrl_str) (EVP_PKEY_CTX *ctx, const char *type, const char *value)) { pmeth->ctrl = ctrl; pmeth->ctrl_str = ctrl_str; } void EVP_PKEY_meth_set_digestsign(EVP_PKEY_METHOD *pmeth, int (*digestsign) (EVP_MD_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen)) { pmeth->digestsign = digestsign; } void EVP_PKEY_meth_set_digestverify(EVP_PKEY_METHOD *pmeth, int (*digestverify) (EVP_MD_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen)) { pmeth->digestverify = digestverify; } void EVP_PKEY_meth_set_check(EVP_PKEY_METHOD *pmeth, int (*check) (EVP_PKEY *pkey)) { pmeth->check = check; } void EVP_PKEY_meth_set_public_check(EVP_PKEY_METHOD *pmeth, int (*check) (EVP_PKEY *pkey)) { pmeth->public_check = check; } void EVP_PKEY_meth_set_param_check(EVP_PKEY_METHOD *pmeth, int (*check) (EVP_PKEY *pkey)) { pmeth->param_check = check; } void EVP_PKEY_meth_set_digest_custom(EVP_PKEY_METHOD *pmeth, int (*digest_custom) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx)) { pmeth->digest_custom = digest_custom; } void EVP_PKEY_meth_get_init(const EVP_PKEY_METHOD *pmeth, int (**pinit) (EVP_PKEY_CTX *ctx)) { *pinit = pmeth->init; } void EVP_PKEY_meth_get_copy(const EVP_PKEY_METHOD *pmeth, int (**pcopy) (EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)) { *pcopy = pmeth->copy; } void EVP_PKEY_meth_get_cleanup(const EVP_PKEY_METHOD *pmeth, void (**pcleanup) (EVP_PKEY_CTX *ctx)) { *pcleanup = pmeth->cleanup; } void EVP_PKEY_meth_get_paramgen(const EVP_PKEY_METHOD *pmeth, int (**pparamgen_init) (EVP_PKEY_CTX *ctx), int (**pparamgen) (EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)) { if (pparamgen_init) *pparamgen_init = pmeth->paramgen_init; if (pparamgen) *pparamgen = pmeth->paramgen; } void EVP_PKEY_meth_get_keygen(const EVP_PKEY_METHOD *pmeth, int (**pkeygen_init) (EVP_PKEY_CTX *ctx), int (**pkeygen) (EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)) { if (pkeygen_init) *pkeygen_init = pmeth->keygen_init; if (pkeygen) *pkeygen = pmeth->keygen; } void EVP_PKEY_meth_get_sign(const EVP_PKEY_METHOD *pmeth, int (**psign_init) (EVP_PKEY_CTX *ctx), int (**psign) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen)) { if (psign_init) *psign_init = pmeth->sign_init; if (psign) *psign = pmeth->sign; } void EVP_PKEY_meth_get_verify(const EVP_PKEY_METHOD *pmeth, int (**pverify_init) (EVP_PKEY_CTX *ctx), int (**pverify) (EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen)) { if (pverify_init) *pverify_init = pmeth->verify_init; if (pverify) *pverify = pmeth->verify; } void EVP_PKEY_meth_get_verify_recover(const EVP_PKEY_METHOD *pmeth, int (**pverify_recover_init) (EVP_PKEY_CTX *ctx), int (**pverify_recover) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen)) { if (pverify_recover_init) *pverify_recover_init = pmeth->verify_recover_init; if (pverify_recover) *pverify_recover = pmeth->verify_recover; } void EVP_PKEY_meth_get_signctx(const EVP_PKEY_METHOD *pmeth, int (**psignctx_init) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx), int (**psignctx) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx)) { if (psignctx_init) *psignctx_init = pmeth->signctx_init; if (psignctx) *psignctx = pmeth->signctx; } void EVP_PKEY_meth_get_verifyctx(const EVP_PKEY_METHOD *pmeth, int (**pverifyctx_init) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx), int (**pverifyctx) (EVP_PKEY_CTX *ctx, const unsigned char *sig, int siglen, EVP_MD_CTX *mctx)) { if (pverifyctx_init) *pverifyctx_init = pmeth->verifyctx_init; if (pverifyctx) *pverifyctx = pmeth->verifyctx; } void EVP_PKEY_meth_get_encrypt(const EVP_PKEY_METHOD *pmeth, int (**pencrypt_init) (EVP_PKEY_CTX *ctx), int (**pencryptfn) (EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen)) { if (pencrypt_init) *pencrypt_init = pmeth->encrypt_init; if (pencryptfn) *pencryptfn = pmeth->encrypt; } void EVP_PKEY_meth_get_decrypt(const EVP_PKEY_METHOD *pmeth, int (**pdecrypt_init) (EVP_PKEY_CTX *ctx), int (**pdecrypt) (EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen)) { if (pdecrypt_init) *pdecrypt_init = pmeth->decrypt_init; if (pdecrypt) *pdecrypt = pmeth->decrypt; } void EVP_PKEY_meth_get_derive(const EVP_PKEY_METHOD *pmeth, int (**pderive_init) (EVP_PKEY_CTX *ctx), int (**pderive) (EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen)) { if (pderive_init) *pderive_init = pmeth->derive_init; if (pderive) *pderive = pmeth->derive; } void EVP_PKEY_meth_get_ctrl(const EVP_PKEY_METHOD *pmeth, int (**pctrl) (EVP_PKEY_CTX *ctx, int type, int p1, void *p2), int (**pctrl_str) (EVP_PKEY_CTX *ctx, const char *type, const char *value)) { if (pctrl) *pctrl = pmeth->ctrl; if (pctrl_str) *pctrl_str = pmeth->ctrl_str; } void EVP_PKEY_meth_get_digestsign(EVP_PKEY_METHOD *pmeth, int (**digestsign) (EVP_MD_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen)) { if (digestsign) *digestsign = pmeth->digestsign; } void EVP_PKEY_meth_get_digestverify(EVP_PKEY_METHOD *pmeth, int (**digestverify) (EVP_MD_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen)) { if (digestverify) *digestverify = pmeth->digestverify; } void EVP_PKEY_meth_get_check(const EVP_PKEY_METHOD *pmeth, int (**pcheck) (EVP_PKEY *pkey)) { if (pcheck != NULL) *pcheck = pmeth->check; } void EVP_PKEY_meth_get_public_check(const EVP_PKEY_METHOD *pmeth, int (**pcheck) (EVP_PKEY *pkey)) { if (pcheck != NULL) *pcheck = pmeth->public_check; } void EVP_PKEY_meth_get_param_check(const EVP_PKEY_METHOD *pmeth, int (**pcheck) (EVP_PKEY *pkey)) { if (pcheck != NULL) *pcheck = pmeth->param_check; } void EVP_PKEY_meth_get_digest_custom(EVP_PKEY_METHOD *pmeth, int (**pdigest_custom) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx)) { if (pdigest_custom != NULL) *pdigest_custom = pmeth->digest_custom; } openssl-1.1.1f/crypto/ex_data.c000066400000000000000000000262171364063235100164470ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "crypto/cryptlib.h" #include "internal/thread_once.h" /* * Each structure type (sometimes called a class), that supports * exdata has a stack of callbacks for each instance. */ struct ex_callback_st { long argl; /* Arbitrary long */ void *argp; /* Arbitrary void * */ CRYPTO_EX_new *new_func; CRYPTO_EX_free *free_func; CRYPTO_EX_dup *dup_func; }; /* * The state for each class. This could just be a typedef, but * a structure allows future changes. */ typedef struct ex_callbacks_st { STACK_OF(EX_CALLBACK) *meth; } EX_CALLBACKS; static EX_CALLBACKS ex_data[CRYPTO_EX_INDEX__COUNT]; static CRYPTO_RWLOCK *ex_data_lock = NULL; static CRYPTO_ONCE ex_data_init = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(do_ex_data_init) { if (!OPENSSL_init_crypto(0, NULL)) return 0; ex_data_lock = CRYPTO_THREAD_lock_new(); return ex_data_lock != NULL; } /* * Return the EX_CALLBACKS from the |ex_data| array that corresponds to * a given class. On success, *holds the lock.* */ static EX_CALLBACKS *get_and_lock(int class_index) { EX_CALLBACKS *ip; if (class_index < 0 || class_index >= CRYPTO_EX_INDEX__COUNT) { CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_PASSED_INVALID_ARGUMENT); return NULL; } if (!RUN_ONCE(&ex_data_init, do_ex_data_init)) { CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_MALLOC_FAILURE); return NULL; } if (ex_data_lock == NULL) { /* * This can happen in normal operation when using CRYPTO_mem_leaks(). * The CRYPTO_mem_leaks() function calls OPENSSL_cleanup() which cleans * up the locks. Subsequently the BIO that CRYPTO_mem_leaks() uses gets * freed, which also attempts to free the ex_data. However * CRYPTO_mem_leaks() ensures that the ex_data is freed early (i.e. * before OPENSSL_cleanup() is called), so if we get here we can safely * ignore this operation. We just treat it as an error. */ return NULL; } ip = &ex_data[class_index]; CRYPTO_THREAD_write_lock(ex_data_lock); return ip; } static void cleanup_cb(EX_CALLBACK *funcs) { OPENSSL_free(funcs); } /* * Release all "ex_data" state to prevent memory leaks. This can't be made * thread-safe without overhauling a lot of stuff, and shouldn't really be * called under potential race-conditions anyway (it's for program shutdown * after all). */ void crypto_cleanup_all_ex_data_int(void) { int i; for (i = 0; i < CRYPTO_EX_INDEX__COUNT; ++i) { EX_CALLBACKS *ip = &ex_data[i]; sk_EX_CALLBACK_pop_free(ip->meth, cleanup_cb); ip->meth = NULL; } CRYPTO_THREAD_lock_free(ex_data_lock); ex_data_lock = NULL; } /* * Unregister a new index by replacing the callbacks with no-ops. * Any in-use instances are leaked. */ static void dummy_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { } static void dummy_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { } static int dummy_dup(CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from, void *from_d, int idx, long argl, void *argp) { return 1; } int CRYPTO_free_ex_index(int class_index, int idx) { EX_CALLBACKS *ip = get_and_lock(class_index); EX_CALLBACK *a; int toret = 0; if (ip == NULL) return 0; if (idx < 0 || idx >= sk_EX_CALLBACK_num(ip->meth)) goto err; a = sk_EX_CALLBACK_value(ip->meth, idx); if (a == NULL) goto err; a->new_func = dummy_new; a->dup_func = dummy_dup; a->free_func = dummy_free; toret = 1; err: CRYPTO_THREAD_unlock(ex_data_lock); return toret; } /* * Register a new index. */ int CRYPTO_get_ex_new_index(int class_index, long argl, void *argp, CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { int toret = -1; EX_CALLBACK *a; EX_CALLBACKS *ip = get_and_lock(class_index); if (ip == NULL) return -1; if (ip->meth == NULL) { ip->meth = sk_EX_CALLBACK_new_null(); /* We push an initial value on the stack because the SSL * "app_data" routines use ex_data index zero. See RT 3710. */ if (ip->meth == NULL || !sk_EX_CALLBACK_push(ip->meth, NULL)) { CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); goto err; } } a = (EX_CALLBACK *)OPENSSL_malloc(sizeof(*a)); if (a == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); goto err; } a->argl = argl; a->argp = argp; a->new_func = new_func; a->dup_func = dup_func; a->free_func = free_func; if (!sk_EX_CALLBACK_push(ip->meth, NULL)) { CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); OPENSSL_free(a); goto err; } toret = sk_EX_CALLBACK_num(ip->meth) - 1; (void)sk_EX_CALLBACK_set(ip->meth, toret, a); err: CRYPTO_THREAD_unlock(ex_data_lock); return toret; } /* * Initialise a new CRYPTO_EX_DATA for use in a particular class - including * calling new() callbacks for each index in the class used by this variable * Thread-safe by copying a class's array of "EX_CALLBACK" entries * in the lock, then using them outside the lock. Note this only applies * to the global "ex_data" state (ie. class definitions), not 'ad' itself. */ int CRYPTO_new_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) { int mx, i; void *ptr; EX_CALLBACK **storage = NULL; EX_CALLBACK *stack[10]; EX_CALLBACKS *ip = get_and_lock(class_index); if (ip == NULL) return 0; ad->sk = NULL; mx = sk_EX_CALLBACK_num(ip->meth); if (mx > 0) { if (mx < (int)OSSL_NELEM(stack)) storage = stack; else storage = OPENSSL_malloc(sizeof(*storage) * mx); if (storage != NULL) for (i = 0; i < mx; i++) storage[i] = sk_EX_CALLBACK_value(ip->meth, i); } CRYPTO_THREAD_unlock(ex_data_lock); if (mx > 0 && storage == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_NEW_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0; i < mx; i++) { if (storage[i] != NULL && storage[i]->new_func != NULL) { ptr = CRYPTO_get_ex_data(ad, i); storage[i]->new_func(obj, ptr, ad, i, storage[i]->argl, storage[i]->argp); } } if (storage != stack) OPENSSL_free(storage); return 1; } /* * Duplicate a CRYPTO_EX_DATA variable - including calling dup() callbacks * for each index in the class used by this variable */ int CRYPTO_dup_ex_data(int class_index, CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from) { int mx, j, i; void *ptr; EX_CALLBACK *stack[10]; EX_CALLBACK **storage = NULL; EX_CALLBACKS *ip; int toret = 0; if (from->sk == NULL) /* Nothing to copy over */ return 1; if ((ip = get_and_lock(class_index)) == NULL) return 0; mx = sk_EX_CALLBACK_num(ip->meth); j = sk_void_num(from->sk); if (j < mx) mx = j; if (mx > 0) { if (mx < (int)OSSL_NELEM(stack)) storage = stack; else storage = OPENSSL_malloc(sizeof(*storage) * mx); if (storage != NULL) for (i = 0; i < mx; i++) storage[i] = sk_EX_CALLBACK_value(ip->meth, i); } CRYPTO_THREAD_unlock(ex_data_lock); if (mx == 0) return 1; if (storage == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_DUP_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } /* * Make sure the ex_data stack is at least |mx| elements long to avoid * issues in the for loop that follows; so go get the |mx|'th element * (if it does not exist CRYPTO_get_ex_data() returns NULL), and assign * to itself. This is normally a no-op; but ensures the stack is the * proper size */ if (!CRYPTO_set_ex_data(to, mx - 1, CRYPTO_get_ex_data(to, mx - 1))) goto err; for (i = 0; i < mx; i++) { ptr = CRYPTO_get_ex_data(from, i); if (storage[i] != NULL && storage[i]->dup_func != NULL) if (!storage[i]->dup_func(to, from, &ptr, i, storage[i]->argl, storage[i]->argp)) goto err; CRYPTO_set_ex_data(to, i, ptr); } toret = 1; err: if (storage != stack) OPENSSL_free(storage); return toret; } /* * Cleanup a CRYPTO_EX_DATA variable - including calling free() callbacks for * each index in the class used by this variable */ void CRYPTO_free_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) { int mx, i; EX_CALLBACKS *ip; void *ptr; EX_CALLBACK *f; EX_CALLBACK *stack[10]; EX_CALLBACK **storage = NULL; if ((ip = get_and_lock(class_index)) == NULL) goto err; mx = sk_EX_CALLBACK_num(ip->meth); if (mx > 0) { if (mx < (int)OSSL_NELEM(stack)) storage = stack; else storage = OPENSSL_malloc(sizeof(*storage) * mx); if (storage != NULL) for (i = 0; i < mx; i++) storage[i] = sk_EX_CALLBACK_value(ip->meth, i); } CRYPTO_THREAD_unlock(ex_data_lock); for (i = 0; i < mx; i++) { if (storage != NULL) f = storage[i]; else { CRYPTO_THREAD_write_lock(ex_data_lock); f = sk_EX_CALLBACK_value(ip->meth, i); CRYPTO_THREAD_unlock(ex_data_lock); } if (f != NULL && f->free_func != NULL) { ptr = CRYPTO_get_ex_data(ad, i); f->free_func(obj, ptr, ad, i, f->argl, f->argp); } } if (storage != stack) OPENSSL_free(storage); err: sk_void_free(ad->sk); ad->sk = NULL; } /* * For a given CRYPTO_EX_DATA variable, set the value corresponding to a * particular index in the class used by this variable */ int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int idx, void *val) { int i; if (ad->sk == NULL) { if ((ad->sk = sk_void_new_null()) == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } } for (i = sk_void_num(ad->sk); i <= idx; ++i) { if (!sk_void_push(ad->sk, NULL)) { CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } } sk_void_set(ad->sk, idx, val); return 1; } /* * For a given CRYPTO_EX_DATA_ variable, get the value corresponding to a * particular index in the class used by this variable */ void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int idx) { if (ad->sk == NULL || idx >= sk_void_num(ad->sk)) return NULL; return sk_void_value(ad->sk, idx); } openssl-1.1.1f/crypto/getenv.c000066400000000000000000000013301364063235100163170ustar00rootroot00000000000000/* * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include "internal/cryptlib.h" char *ossl_safe_getenv(const char *name) { #if defined(__GLIBC__) && defined(__GLIBC_PREREQ) # if __GLIBC_PREREQ(2, 17) # define SECURE_GETENV return secure_getenv(name); # endif #endif #ifndef SECURE_GETENV if (OPENSSL_issetugid()) return NULL; return getenv(name); #endif } openssl-1.1.1f/crypto/hmac/000077500000000000000000000000001364063235100155765ustar00rootroot00000000000000openssl-1.1.1f/crypto/hmac/build.info000066400000000000000000000001241364063235100175470ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ hmac.c hm_ameth.c hm_pmeth.c openssl-1.1.1f/crypto/hmac/hm_ameth.c000066400000000000000000000047721364063235100175360ustar00rootroot00000000000000/* * Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/asn1.h" #include "crypto/evp.h" /* * HMAC "ASN1" method. This is just here to indicate the maximum HMAC output * length and to free up an HMAC key. */ static int hmac_size(const EVP_PKEY *pkey) { return EVP_MAX_MD_SIZE; } static void hmac_key_free(EVP_PKEY *pkey) { ASN1_OCTET_STRING *os = EVP_PKEY_get0(pkey); if (os) { if (os->data) OPENSSL_cleanse(os->data, os->length); ASN1_OCTET_STRING_free(os); } } static int hmac_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { switch (op) { case ASN1_PKEY_CTRL_DEFAULT_MD_NID: *(int *)arg2 = NID_sha256; return 1; default: return -2; } } static int hmac_pkey_public_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { return ASN1_OCTET_STRING_cmp(EVP_PKEY_get0(a), EVP_PKEY_get0(b)); } static int hmac_set_priv_key(EVP_PKEY *pkey, const unsigned char *priv, size_t len) { ASN1_OCTET_STRING *os; if (pkey->pkey.ptr != NULL) return 0; os = ASN1_OCTET_STRING_new(); if (os == NULL) return 0; if (!ASN1_OCTET_STRING_set(os, priv, len)) { ASN1_OCTET_STRING_free(os); return 0; } pkey->pkey.ptr = os; return 1; } static int hmac_get_priv_key(const EVP_PKEY *pkey, unsigned char *priv, size_t *len) { ASN1_OCTET_STRING *os = (ASN1_OCTET_STRING *)pkey->pkey.ptr; if (priv == NULL) { *len = ASN1_STRING_length(os); return 1; } if (os == NULL || *len < (size_t)ASN1_STRING_length(os)) return 0; *len = ASN1_STRING_length(os); memcpy(priv, ASN1_STRING_get0_data(os), *len); return 1; } const EVP_PKEY_ASN1_METHOD hmac_asn1_meth = { EVP_PKEY_HMAC, EVP_PKEY_HMAC, 0, "HMAC", "OpenSSL HMAC method", 0, 0, hmac_pkey_public_cmp, 0, 0, 0, 0, hmac_size, 0, 0, 0, 0, 0, 0, 0, 0, 0, hmac_key_free, hmac_pkey_ctrl, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, hmac_set_priv_key, NULL, hmac_get_priv_key, NULL, }; openssl-1.1.1f/crypto/hmac/hm_pmeth.c000066400000000000000000000116171364063235100175510ustar00rootroot00000000000000/* * Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/evp.h" /* HMAC pkey context structure */ typedef struct { const EVP_MD *md; /* MD for HMAC use */ ASN1_OCTET_STRING ktmp; /* Temp storage for key */ HMAC_CTX *ctx; } HMAC_PKEY_CTX; static int pkey_hmac_init(EVP_PKEY_CTX *ctx) { HMAC_PKEY_CTX *hctx; if ((hctx = OPENSSL_zalloc(sizeof(*hctx))) == NULL) { CRYPTOerr(CRYPTO_F_PKEY_HMAC_INIT, ERR_R_MALLOC_FAILURE); return 0; } hctx->ktmp.type = V_ASN1_OCTET_STRING; hctx->ctx = HMAC_CTX_new(); if (hctx->ctx == NULL) { OPENSSL_free(hctx); return 0; } ctx->data = hctx; ctx->keygen_info_count = 0; return 1; } static void pkey_hmac_cleanup(EVP_PKEY_CTX *ctx); static int pkey_hmac_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { HMAC_PKEY_CTX *sctx, *dctx; /* allocate memory for dst->data and a new HMAC_CTX in dst->data->ctx */ if (!pkey_hmac_init(dst)) return 0; sctx = EVP_PKEY_CTX_get_data(src); dctx = EVP_PKEY_CTX_get_data(dst); dctx->md = sctx->md; if (!HMAC_CTX_copy(dctx->ctx, sctx->ctx)) goto err; if (sctx->ktmp.data) { if (!ASN1_OCTET_STRING_set(&dctx->ktmp, sctx->ktmp.data, sctx->ktmp.length)) goto err; } return 1; err: /* release HMAC_CTX in dst->data->ctx and memory allocated for dst->data */ pkey_hmac_cleanup (dst); return 0; } static void pkey_hmac_cleanup(EVP_PKEY_CTX *ctx) { HMAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); if (hctx != NULL) { HMAC_CTX_free(hctx->ctx); OPENSSL_clear_free(hctx->ktmp.data, hctx->ktmp.length); OPENSSL_free(hctx); EVP_PKEY_CTX_set_data(ctx, NULL); } } static int pkey_hmac_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { ASN1_OCTET_STRING *hkey = NULL; HMAC_PKEY_CTX *hctx = ctx->data; if (!hctx->ktmp.data) return 0; hkey = ASN1_OCTET_STRING_dup(&hctx->ktmp); if (!hkey) return 0; EVP_PKEY_assign(pkey, EVP_PKEY_HMAC, hkey); return 1; } static int int_update(EVP_MD_CTX *ctx, const void *data, size_t count) { HMAC_PKEY_CTX *hctx = EVP_MD_CTX_pkey_ctx(ctx)->data; if (!HMAC_Update(hctx->ctx, data, count)) return 0; return 1; } static int hmac_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) { HMAC_PKEY_CTX *hctx = ctx->data; HMAC_CTX_set_flags(hctx->ctx, EVP_MD_CTX_test_flags(mctx, ~EVP_MD_CTX_FLAG_NO_INIT)); EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT); EVP_MD_CTX_set_update_fn(mctx, int_update); return 1; } static int hmac_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx) { unsigned int hlen; HMAC_PKEY_CTX *hctx = ctx->data; int l = EVP_MD_CTX_size(mctx); if (l < 0) return 0; *siglen = l; if (!sig) return 1; if (!HMAC_Final(hctx->ctx, sig, &hlen)) return 0; *siglen = (size_t)hlen; return 1; } static int pkey_hmac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { HMAC_PKEY_CTX *hctx = ctx->data; ASN1_OCTET_STRING *key; switch (type) { case EVP_PKEY_CTRL_SET_MAC_KEY: if ((!p2 && p1 > 0) || (p1 < -1)) return 0; if (!ASN1_OCTET_STRING_set(&hctx->ktmp, p2, p1)) return 0; break; case EVP_PKEY_CTRL_MD: hctx->md = p2; break; case EVP_PKEY_CTRL_DIGESTINIT: key = (ASN1_OCTET_STRING *)ctx->pkey->pkey.ptr; if (!HMAC_Init_ex(hctx->ctx, key->data, key->length, hctx->md, ctx->engine)) return 0; break; default: return -2; } return 1; } static int pkey_hmac_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (!value) { return 0; } if (strcmp(type, "key") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); if (strcmp(type, "hexkey") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); return -2; } const EVP_PKEY_METHOD hmac_pkey_meth = { EVP_PKEY_HMAC, 0, pkey_hmac_init, pkey_hmac_copy, pkey_hmac_cleanup, 0, 0, 0, pkey_hmac_keygen, 0, 0, 0, 0, 0, 0, hmac_signctx_init, hmac_signctx, 0, 0, 0, 0, 0, 0, 0, 0, pkey_hmac_ctrl, pkey_hmac_ctrl_str }; openssl-1.1.1f/crypto/hmac/hmac.c000066400000000000000000000145171364063235100166620ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #include "hmac_local.h" int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md, ENGINE *impl) { int rv = 0, reset = 0; int i, j; unsigned char pad[HMAC_MAX_MD_CBLOCK_SIZE]; unsigned int keytmp_length; unsigned char keytmp[HMAC_MAX_MD_CBLOCK_SIZE]; /* If we are changing MD then we must have a key */ if (md != NULL && md != ctx->md && (key == NULL || len < 0)) return 0; if (md != NULL) { ctx->md = md; } else if (ctx->md) { md = ctx->md; } else { return 0; } /* * The HMAC construction is not allowed to be used with the * extendable-output functions (XOF) shake128 and shake256. */ if ((EVP_MD_meth_get_flags(md) & EVP_MD_FLAG_XOF) != 0) return 0; if (key != NULL) { reset = 1; j = EVP_MD_block_size(md); if (!ossl_assert(j <= (int)sizeof(keytmp))) return 0; if (j < len) { if (!EVP_DigestInit_ex(ctx->md_ctx, md, impl) || !EVP_DigestUpdate(ctx->md_ctx, key, len) || !EVP_DigestFinal_ex(ctx->md_ctx, keytmp, &keytmp_length)) return 0; } else { if (len < 0 || len > (int)sizeof(keytmp)) return 0; memcpy(keytmp, key, len); keytmp_length = len; } if (keytmp_length != HMAC_MAX_MD_CBLOCK_SIZE) memset(&keytmp[keytmp_length], 0, HMAC_MAX_MD_CBLOCK_SIZE - keytmp_length); for (i = 0; i < HMAC_MAX_MD_CBLOCK_SIZE; i++) pad[i] = 0x36 ^ keytmp[i]; if (!EVP_DigestInit_ex(ctx->i_ctx, md, impl) || !EVP_DigestUpdate(ctx->i_ctx, pad, EVP_MD_block_size(md))) goto err; for (i = 0; i < HMAC_MAX_MD_CBLOCK_SIZE; i++) pad[i] = 0x5c ^ keytmp[i]; if (!EVP_DigestInit_ex(ctx->o_ctx, md, impl) || !EVP_DigestUpdate(ctx->o_ctx, pad, EVP_MD_block_size(md))) goto err; } if (!EVP_MD_CTX_copy_ex(ctx->md_ctx, ctx->i_ctx)) goto err; rv = 1; err: if (reset) { OPENSSL_cleanse(keytmp, sizeof(keytmp)); OPENSSL_cleanse(pad, sizeof(pad)); } return rv; } #if OPENSSL_API_COMPAT < 0x10100000L int HMAC_Init(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md) { if (key && md) HMAC_CTX_reset(ctx); return HMAC_Init_ex(ctx, key, len, md, NULL); } #endif int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, size_t len) { if (!ctx->md) return 0; return EVP_DigestUpdate(ctx->md_ctx, data, len); } int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len) { unsigned int i; unsigned char buf[EVP_MAX_MD_SIZE]; if (!ctx->md) goto err; if (!EVP_DigestFinal_ex(ctx->md_ctx, buf, &i)) goto err; if (!EVP_MD_CTX_copy_ex(ctx->md_ctx, ctx->o_ctx)) goto err; if (!EVP_DigestUpdate(ctx->md_ctx, buf, i)) goto err; if (!EVP_DigestFinal_ex(ctx->md_ctx, md, len)) goto err; return 1; err: return 0; } size_t HMAC_size(const HMAC_CTX *ctx) { int size = EVP_MD_size((ctx)->md); return (size < 0) ? 0 : size; } HMAC_CTX *HMAC_CTX_new(void) { HMAC_CTX *ctx = OPENSSL_zalloc(sizeof(HMAC_CTX)); if (ctx != NULL) { if (!HMAC_CTX_reset(ctx)) { HMAC_CTX_free(ctx); return NULL; } } return ctx; } static void hmac_ctx_cleanup(HMAC_CTX *ctx) { EVP_MD_CTX_reset(ctx->i_ctx); EVP_MD_CTX_reset(ctx->o_ctx); EVP_MD_CTX_reset(ctx->md_ctx); ctx->md = NULL; } void HMAC_CTX_free(HMAC_CTX *ctx) { if (ctx != NULL) { hmac_ctx_cleanup(ctx); EVP_MD_CTX_free(ctx->i_ctx); EVP_MD_CTX_free(ctx->o_ctx); EVP_MD_CTX_free(ctx->md_ctx); OPENSSL_free(ctx); } } static int hmac_ctx_alloc_mds(HMAC_CTX *ctx) { if (ctx->i_ctx == NULL) ctx->i_ctx = EVP_MD_CTX_new(); if (ctx->i_ctx == NULL) return 0; if (ctx->o_ctx == NULL) ctx->o_ctx = EVP_MD_CTX_new(); if (ctx->o_ctx == NULL) return 0; if (ctx->md_ctx == NULL) ctx->md_ctx = EVP_MD_CTX_new(); if (ctx->md_ctx == NULL) return 0; return 1; } int HMAC_CTX_reset(HMAC_CTX *ctx) { hmac_ctx_cleanup(ctx); if (!hmac_ctx_alloc_mds(ctx)) { hmac_ctx_cleanup(ctx); return 0; } return 1; } int HMAC_CTX_copy(HMAC_CTX *dctx, HMAC_CTX *sctx) { if (!hmac_ctx_alloc_mds(dctx)) goto err; if (!EVP_MD_CTX_copy_ex(dctx->i_ctx, sctx->i_ctx)) goto err; if (!EVP_MD_CTX_copy_ex(dctx->o_ctx, sctx->o_ctx)) goto err; if (!EVP_MD_CTX_copy_ex(dctx->md_ctx, sctx->md_ctx)) goto err; dctx->md = sctx->md; return 1; err: hmac_ctx_cleanup(dctx); return 0; } unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len, const unsigned char *d, size_t n, unsigned char *md, unsigned int *md_len) { HMAC_CTX *c = NULL; static unsigned char m[EVP_MAX_MD_SIZE]; static const unsigned char dummy_key[1] = {'\0'}; if (md == NULL) md = m; if ((c = HMAC_CTX_new()) == NULL) goto err; /* For HMAC_Init_ex, NULL key signals reuse. */ if (key == NULL && key_len == 0) { key = dummy_key; } if (!HMAC_Init_ex(c, key, key_len, evp_md, NULL)) goto err; if (!HMAC_Update(c, d, n)) goto err; if (!HMAC_Final(c, md, md_len)) goto err; HMAC_CTX_free(c); return md; err: HMAC_CTX_free(c); return NULL; } void HMAC_CTX_set_flags(HMAC_CTX *ctx, unsigned long flags) { EVP_MD_CTX_set_flags(ctx->i_ctx, flags); EVP_MD_CTX_set_flags(ctx->o_ctx, flags); EVP_MD_CTX_set_flags(ctx->md_ctx, flags); } const EVP_MD *HMAC_CTX_get_md(const HMAC_CTX *ctx) { return ctx->md; } openssl-1.1.1f/crypto/hmac/hmac_local.h000066400000000000000000000011461364063235100200330ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_HMAC_LOCAL_H # define OSSL_CRYPTO_HMAC_LOCAL_H /* The current largest case is for SHA3-224 */ #define HMAC_MAX_MD_CBLOCK_SIZE 144 struct hmac_ctx_st { const EVP_MD *md; EVP_MD_CTX *md_ctx; EVP_MD_CTX *i_ctx; EVP_MD_CTX *o_ctx; }; #endif openssl-1.1.1f/crypto/ia64cpuid.S000066400000000000000000000145351364063235100166120ustar00rootroot00000000000000// Copyright 2004-2017 The OpenSSL Project Authors. All Rights Reserved. // // Licensed under the OpenSSL license (the "License"). You may not use // this file except in compliance with the License. You can obtain a copy // in the file LICENSE in the source distribution or at // https://www.openssl.org/source/license.html // Works on all IA-64 platforms: Linux, HP-UX, Win64i... // On Win64i compile with ias.exe. .text #if defined(_HPUX_SOURCE) && !defined(_LP64) #define ADDP addp4 #else #define ADDP add #endif .global OPENSSL_cpuid_setup# .proc OPENSSL_cpuid_setup# OPENSSL_cpuid_setup: { .mib; br.ret.sptk.many b0 };; .endp OPENSSL_cpuid_setup# .global OPENSSL_rdtsc# .proc OPENSSL_rdtsc# OPENSSL_rdtsc: { .mib; mov r8=ar.itc br.ret.sptk.many b0 };; .endp OPENSSL_rdtsc# .global OPENSSL_atomic_add# .proc OPENSSL_atomic_add# .align 32 OPENSSL_atomic_add: { .mii; ld4 r2=[r32] nop.i 0 nop.i 0 };; .Lspin: { .mii; mov ar.ccv=r2 add r8=r2,r33 mov r3=r2 };; { .mmi; mf;; cmpxchg4.acq r2=[r32],r8,ar.ccv nop.i 0 };; { .mib; cmp.ne p6,p0=r2,r3 nop.i 0 (p6) br.dpnt .Lspin };; { .mib; nop.m 0 sxt4 r8=r8 br.ret.sptk.many b0 };; .endp OPENSSL_atomic_add# // Returns a structure comprising pointer to the top of stack of // the caller and pointer beyond backing storage for the current // register frame. The latter is required, because it might be // insufficient to wipe backing storage for the current frame // (as this procedure does), one might have to go further, toward // higher addresses to reach for whole "retroactively" saved // context... .global OPENSSL_wipe_cpu# .proc OPENSSL_wipe_cpu# .align 32 OPENSSL_wipe_cpu: .prologue .fframe 0 .save ar.pfs,r2 .save ar.lc,r3 { .mib; alloc r2=ar.pfs,0,96,0,96 mov r3=ar.lc brp.loop.imp .L_wipe_top,.L_wipe_end-16 };; { .mii; mov r9=ar.bsp mov r8=pr mov ar.lc=96 };; .body { .mii; add r9=96*8-8,r9 mov ar.ec=1 };; // One can sweep double as fast, but then we can't guarantee // that backing storage is wiped... .L_wipe_top: { .mfi; st8 [r9]=r0,-8 mov f127=f0 mov r127=r0 } { .mfb; nop.m 0 nop.f 0 br.ctop.sptk .L_wipe_top };; .L_wipe_end: { .mfi; mov r11=r0 mov f6=f0 mov r14=r0 } { .mfi; mov r15=r0 mov f7=f0 mov r16=r0 } { .mfi; mov r17=r0 mov f8=f0 mov r18=r0 } { .mfi; mov r19=r0 mov f9=f0 mov r20=r0 } { .mfi; mov r21=r0 mov f10=f0 mov r22=r0 } { .mfi; mov r23=r0 mov f11=f0 mov r24=r0 } { .mfi; mov r25=r0 mov f12=f0 mov r26=r0 } { .mfi; mov r27=r0 mov f13=f0 mov r28=r0 } { .mfi; mov r29=r0 mov f14=f0 mov r30=r0 } { .mfi; mov r31=r0 mov f15=f0 nop.i 0 } { .mfi; mov f16=f0 } { .mfi; mov f17=f0 } { .mfi; mov f18=f0 } { .mfi; mov f19=f0 } { .mfi; mov f20=f0 } { .mfi; mov f21=f0 } { .mfi; mov f22=f0 } { .mfi; mov f23=f0 } { .mfi; mov f24=f0 } { .mfi; mov f25=f0 } { .mfi; mov f26=f0 } { .mfi; mov f27=f0 } { .mfi; mov f28=f0 } { .mfi; mov f29=f0 } { .mfi; mov f30=f0 } { .mfi; add r9=96*8+8,r9 mov f31=f0 mov pr=r8,0x1ffff } { .mib; mov r8=sp mov ar.lc=r3 br.ret.sptk b0 };; .endp OPENSSL_wipe_cpu# .global OPENSSL_cleanse# .proc OPENSSL_cleanse# OPENSSL_cleanse: { .mib; cmp.eq p6,p0=0,r33 // len==0 ADDP r32=0,r32 (p6) br.ret.spnt b0 };; { .mib; and r2=7,r32 cmp.leu p6,p0=15,r33 // len>=15 (p6) br.cond.dptk .Lot };; .Little: { .mib; st1 [r32]=r0,1 cmp.ltu p6,p7=1,r33 } // len>1 { .mbb; add r33=-1,r33 // len-- (p6) br.cond.dptk .Little (p7) br.ret.sptk.many b0 };; .Lot: { .mib; cmp.eq p6,p0=0,r2 (p6) br.cond.dptk .Laligned };; { .mmi; st1 [r32]=r0,1;; and r2=7,r32 } { .mib; add r33=-1,r33 br .Lot };; .Laligned: { .mmi; st8 [r32]=r0,8 and r2=-8,r33 // len&~7 add r33=-8,r33 };; // len-=8 { .mib; cmp.ltu p6,p0=8,r2 // ((len+8)&~7)>8 (p6) br.cond.dptk .Laligned };; { .mbb; cmp.eq p6,p7=r0,r33 (p7) br.cond.dpnt .Little (p6) br.ret.sptk.many b0 };; .endp OPENSSL_cleanse# .global CRYPTO_memcmp# .proc CRYPTO_memcmp# .align 32 .skip 16 CRYPTO_memcmp: .prologue { .mib; mov r8=0 cmp.eq p6,p0=0,r34 // len==0? (p6) br.ret.spnt b0 };; .save ar.pfs,r2 { .mib; alloc r2=ar.pfs,3,5,0,8 .save ar.lc,r3 mov r3=ar.lc brp.loop.imp .Loop_cmp_ctop,.Loop_cmp_cend-16 } { .mib; sub r10=r34,r0,1 .save pr,r9 mov r9=pr };; { .mii; ADDP r16=0,r32 mov ar.lc=r10 mov ar.ec=4 } { .mib; ADDP r17=0,r33 mov pr.rot=1<<16 };; .Loop_cmp_ctop: { .mib; (p16) ld1 r32=[r16],1 (p18) xor r34=r34,r38 } { .mib; (p16) ld1 r36=[r17],1 (p19) or r8=r8,r35 br.ctop.sptk .Loop_cmp_ctop };; .Loop_cmp_cend: { .mib; cmp.ne p6,p0=0,r8 mov ar.lc=r3 };; { .mib; (p6) mov r8=1 mov pr=r9,0x1ffff br.ret.sptk.many b0 };; .endp CRYPTO_memcmp# .global OPENSSL_instrument_bus# .proc OPENSSL_instrument_bus# OPENSSL_instrument_bus: { .mmi; mov r2=r33 ADDP r32=0,r32 } { .mmi; mov r8=ar.itc;; mov r10=r0 mov r9=r8 };; { .mmi; fc r32;; ld4 r8=[r32] };; { .mmi; mf mov ar.ccv=r8 add r8=r8,r10 };; { .mmi; cmpxchg4.acq r3=[r32],r8,ar.ccv };; .Loop: { .mmi; mov r8=ar.itc;; sub r10=r8,r9 // diff=tick-lasttick mov r9=r8 };; // lasttick=tick { .mmi; fc r32;; ld4 r8=[r32] };; { .mmi; mf mov ar.ccv=r8 add r8=r8,r10 };; { .mmi; cmpxchg4.acq r3=[r32],r8,ar.ccv add r33=-1,r33 add r32=4,r32 };; { .mib; cmp4.ne p6,p0=0,r33 (p6) br.cond.dptk .Loop };; { .mib; sub r8=r2,r33 br.ret.sptk.many b0 };; .endp OPENSSL_instrument_bus# .global OPENSSL_instrument_bus2# .proc OPENSSL_instrument_bus2# OPENSSL_instrument_bus2: { .mmi; mov r2=r33 // put aside cnt ADDP r32=0,r32 } { .mmi; mov r8=ar.itc;; mov r10=r0 mov r9=r8 };; { .mmi; fc r32;; ld4 r8=[r32] };; { .mmi; mf mov ar.ccv=r8 add r8=r8,r10 };; { .mmi; cmpxchg4.acq r3=[r32],r8,ar.ccv };; { .mmi; mov r8=ar.itc;; sub r10=r8,r9 mov r9=r8 };; .Loop2: { .mmi; mov r11=r10 // lastdiff=diff add r34=-1,r34 };; // --max { .mmi; fc r32;; ld4 r8=[r32] cmp4.eq p6,p0=0,r34 };; { .mmi; mf mov ar.ccv=r8 add r8=r8,r10 };; { .mmb; cmpxchg4.acq r3=[r32],r8,ar.ccv (p6) br.cond.spnt .Ldone2 };; { .mmi; mov r8=ar.itc;; sub r10=r8,r9 // diff=tick-lasttick mov r9=r8 };; // lasttick=tick { .mmi; cmp.ne p6,p0=r10,r11;; // diff!=lastdiff (p6) add r33=-1,r33 };; // conditional --cnt { .mib; cmp4.ne p7,p0=0,r33 (p6) add r32=4,r32 // conditional ++out (p7) br.cond.dptk .Loop2 };; .Ldone2: { .mib; sub r8=r2,r33 br.ret.sptk.many b0 };; .endp OPENSSL_instrument_bus2# openssl-1.1.1f/crypto/idea/000077500000000000000000000000001364063235100155705ustar00rootroot00000000000000openssl-1.1.1f/crypto/idea/build.info000066400000000000000000000001441364063235100175430ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ i_cbc.c i_cfb64.c i_ofb64.c i_ecb.c i_skey.c openssl-1.1.1f/crypto/idea/i_cbc.c000066400000000000000000000060041364063235100167730ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "idea_local.h" void IDEA_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, IDEA_KEY_SCHEDULE *ks, unsigned char *iv, int encrypt) { register unsigned long tin0, tin1; register unsigned long tout0, tout1, xor0, xor1; register long l = length; unsigned long tin[2]; if (encrypt) { n2l(iv, tout0); n2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); n2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; IDEA_encrypt(tin, ks); tout0 = tin[0]; l2n(tout0, out); tout1 = tin[1]; l2n(tout1, out); } if (l != -8) { n2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; IDEA_encrypt(tin, ks); tout0 = tin[0]; l2n(tout0, out); tout1 = tin[1]; l2n(tout1, out); } l2n(tout0, iv); l2n(tout1, iv); } else { n2l(iv, xor0); n2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { n2l(in, tin0); tin[0] = tin0; n2l(in, tin1); tin[1] = tin1; IDEA_encrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2n(tout0, out); l2n(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { n2l(in, tin0); tin[0] = tin0; n2l(in, tin1); tin[1] = tin1; IDEA_encrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2nn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2n(xor0, iv); l2n(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } void IDEA_encrypt(unsigned long *d, IDEA_KEY_SCHEDULE *key) { register IDEA_INT *p; register unsigned long x1, x2, x3, x4, t0, t1, ul; x2 = d[0]; x1 = (x2 >> 16); x4 = d[1]; x3 = (x4 >> 16); p = &(key->data[0][0]); E_IDEA(0); E_IDEA(1); E_IDEA(2); E_IDEA(3); E_IDEA(4); E_IDEA(5); E_IDEA(6); E_IDEA(7); x1 &= 0xffff; idea_mul(x1, x1, *p, ul); p++; t0 = x3 + *(p++); t1 = x2 + *(p++); x4 &= 0xffff; idea_mul(x4, x4, *p, ul); d[0] = (t0 & 0xffff) | ((x1 & 0xffff) << 16); d[1] = (x4 & 0xffff) | ((t1 & 0xffff) << 16); } openssl-1.1.1f/crypto/idea/i_cfb64.c000066400000000000000000000042321364063235100171510ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "idea_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void IDEA_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, IDEA_KEY_SCHEDULE *schedule, unsigned char *ivec, int *num, int encrypt) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned long ti[2]; unsigned char *iv, c, cc; iv = (unsigned char *)ivec; if (encrypt) { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; IDEA_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = (unsigned char *)ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { n2l(iv, v0); ti[0] = v0; n2l(iv, v1); ti[1] = v1; IDEA_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2n(t, iv); t = ti[1]; l2n(t, iv); iv = (unsigned char *)ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; } openssl-1.1.1f/crypto/idea/i_ecb.c000066400000000000000000000014521364063235100167770ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "idea_local.h" #include const char *IDEA_options(void) { return "idea(int)"; } void IDEA_ecb_encrypt(const unsigned char *in, unsigned char *out, IDEA_KEY_SCHEDULE *ks) { unsigned long l0, l1, d[2]; n2l(in, l0); d[0] = l0; n2l(in, l1); d[1] = l1; IDEA_encrypt(d, ks); l0 = d[0]; l2n(l0, out); l1 = d[1]; l2n(l1, out); l0 = l1 = d[0] = d[1] = 0; } openssl-1.1.1f/crypto/idea/i_ofb64.c000066400000000000000000000031451364063235100171670ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "idea_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void IDEA_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, IDEA_KEY_SCHEDULE *schedule, unsigned char *ivec, int *num) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned char d[8]; register char *dp; unsigned long ti[2]; unsigned char *iv; int save = 0; iv = (unsigned char *)ivec; n2l(iv, v0); n2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2n(v0, dp); l2n(v1, dp); while (l--) { if (n == 0) { IDEA_encrypt((unsigned long *)ti, schedule); dp = (char *)d; t = ti[0]; l2n(t, dp); t = ti[1]; l2n(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = (unsigned char *)ivec; l2n(v0, iv); l2n(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; } openssl-1.1.1f/crypto/idea/i_skey.c000066400000000000000000000052621364063235100172240ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "idea_local.h" static IDEA_INT inverse(unsigned int xin); void IDEA_set_encrypt_key(const unsigned char *key, IDEA_KEY_SCHEDULE *ks) { int i; register IDEA_INT *kt, *kf, r0, r1, r2; kt = &(ks->data[0][0]); n2s(key, kt[0]); n2s(key, kt[1]); n2s(key, kt[2]); n2s(key, kt[3]); n2s(key, kt[4]); n2s(key, kt[5]); n2s(key, kt[6]); n2s(key, kt[7]); kf = kt; kt += 8; for (i = 0; i < 6; i++) { r2 = kf[1]; r1 = kf[2]; *(kt++) = ((r2 << 9) | (r1 >> 7)) & 0xffff; r0 = kf[3]; *(kt++) = ((r1 << 9) | (r0 >> 7)) & 0xffff; r1 = kf[4]; *(kt++) = ((r0 << 9) | (r1 >> 7)) & 0xffff; r0 = kf[5]; *(kt++) = ((r1 << 9) | (r0 >> 7)) & 0xffff; r1 = kf[6]; *(kt++) = ((r0 << 9) | (r1 >> 7)) & 0xffff; r0 = kf[7]; *(kt++) = ((r1 << 9) | (r0 >> 7)) & 0xffff; r1 = kf[0]; if (i >= 5) break; *(kt++) = ((r0 << 9) | (r1 >> 7)) & 0xffff; *(kt++) = ((r1 << 9) | (r2 >> 7)) & 0xffff; kf += 8; } } void IDEA_set_decrypt_key(IDEA_KEY_SCHEDULE *ek, IDEA_KEY_SCHEDULE *dk) { int r; register IDEA_INT *fp, *tp, t; tp = &(dk->data[0][0]); fp = &(ek->data[8][0]); for (r = 0; r < 9; r++) { *(tp++) = inverse(fp[0]); *(tp++) = ((int)(0x10000L - fp[2]) & 0xffff); *(tp++) = ((int)(0x10000L - fp[1]) & 0xffff); *(tp++) = inverse(fp[3]); if (r == 8) break; fp -= 6; *(tp++) = fp[4]; *(tp++) = fp[5]; } tp = &(dk->data[0][0]); t = tp[1]; tp[1] = tp[2]; tp[2] = t; t = tp[49]; tp[49] = tp[50]; tp[50] = t; } /* taken directly from the 'paper' I'll have a look at it later */ static IDEA_INT inverse(unsigned int xin) { long n1, n2, q, r, b1, b2, t; if (xin == 0) b2 = 0; else { n1 = 0x10001; n2 = xin; b2 = 1; b1 = 0; do { r = (n1 % n2); q = (n1 - r) / n2; if (r == 0) { if (b2 < 0) b2 = 0x10001 + b2; } else { n1 = n2; n2 = r; t = b2; b2 = b1 - q * b2; b1 = t; } } while (r != 0); } return (IDEA_INT)b2; } openssl-1.1.1f/crypto/idea/idea_local.h000066400000000000000000000106551364063235100200240ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define idea_mul(r,a,b,ul) \ ul=(unsigned long)a*b; \ if (ul != 0) \ { \ r=(ul&0xffff)-(ul>>16); \ r-=((r)>>16); \ } \ else \ r=(-(int)a-b+1); /* assuming a or b is 0 and in range */ /* NOTE - c is not incremented as per n2l */ #define n2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 7: l2|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 6: l2|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 5: l2|=((unsigned long)(*(--(c))))<<24; \ /* fall thru */ \ case 4: l1 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 3: l1|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 2: l1|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 1: l1|=((unsigned long)(*(--(c))))<<24; \ } \ } /* NOTE - c is not incremented as per l2n */ #define l2nn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1) )&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \ } \ } #undef n2l #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))) #undef l2n #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) #undef s2n #define s2n(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff)) #undef n2s #define n2s(c,l) (l =((IDEA_INT)(*((c)++)))<< 8L, \ l|=((IDEA_INT)(*((c)++))) ) #define E_IDEA(num) \ x1&=0xffff; \ idea_mul(x1,x1,*p,ul); p++; \ x2+= *(p++); \ x3+= *(p++); \ x4&=0xffff; \ idea_mul(x4,x4,*p,ul); p++; \ t0=(x1^x3)&0xffff; \ idea_mul(t0,t0,*p,ul); p++; \ t1=(t0+(x2^x4))&0xffff; \ idea_mul(t1,t1,*p,ul); p++; \ t0+=t1; \ x1^=t1; \ x4^=t0; \ ul=x2^t0; /* do the swap to x3 */ \ x2=x3^t1; \ x3=ul; openssl-1.1.1f/crypto/init.c000066400000000000000000000607051364063235100160050ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "crypto/cryptlib.h" #include #include "crypto/rand.h" #include "internal/bio.h" #include #include "crypto/evp.h" #include "internal/conf.h" #include "crypto/async.h" #include "crypto/engine.h" #include "internal/comp.h" #include "internal/err.h" #include "crypto/err.h" #include "crypto/objects.h" #include #include #include "internal/thread_once.h" #include "crypto/dso_conf.h" #include "internal/dso.h" #include "crypto/store.h" static int stopped = 0; /* * Since per-thread-specific-data destructors are not universally * available, i.e. not on Windows, only below CRYPTO_THREAD_LOCAL key * is assumed to have destructor associated. And then an effort is made * to call this single destructor on non-pthread platform[s]. * * Initial value is "impossible". It is used as guard value to shortcut * destructor for threads terminating before libcrypto is initialized or * after it's de-initialized. Access to the key doesn't have to be * serialized for the said threads, because they didn't use libcrypto * and it doesn't matter if they pick "impossible" or dereference real * key value and pull NULL past initialization in the first thread that * intends to use libcrypto. */ static union { long sane; CRYPTO_THREAD_LOCAL value; } destructor_key = { -1 }; static void ossl_init_thread_stop(struct thread_local_inits_st *locals); static void ossl_init_thread_destructor(void *local) { ossl_init_thread_stop((struct thread_local_inits_st *)local); } static struct thread_local_inits_st *ossl_init_get_thread_local(int alloc) { struct thread_local_inits_st *local = CRYPTO_THREAD_get_local(&destructor_key.value); if (alloc) { if (local == NULL && (local = OPENSSL_zalloc(sizeof(*local))) != NULL && !CRYPTO_THREAD_set_local(&destructor_key.value, local)) { OPENSSL_free(local); return NULL; } } else { CRYPTO_THREAD_set_local(&destructor_key.value, NULL); } return local; } typedef struct ossl_init_stop_st OPENSSL_INIT_STOP; struct ossl_init_stop_st { void (*handler)(void); OPENSSL_INIT_STOP *next; }; static OPENSSL_INIT_STOP *stop_handlers = NULL; static CRYPTO_RWLOCK *init_lock = NULL; static CRYPTO_ONCE base = CRYPTO_ONCE_STATIC_INIT; static int base_inited = 0; DEFINE_RUN_ONCE_STATIC(ossl_init_base) { CRYPTO_THREAD_LOCAL key; #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_base: Setting up stop handlers\n"); #endif #ifndef OPENSSL_NO_CRYPTO_MDEBUG ossl_malloc_setup_failures(); #endif if (!CRYPTO_THREAD_init_local(&key, ossl_init_thread_destructor)) return 0; if ((init_lock = CRYPTO_THREAD_lock_new()) == NULL) goto err; OPENSSL_cpuid_setup(); destructor_key.value = key; base_inited = 1; return 1; err: #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_base not ok!\n"); #endif CRYPTO_THREAD_lock_free(init_lock); init_lock = NULL; CRYPTO_THREAD_cleanup_local(&key); return 0; } static CRYPTO_ONCE register_atexit = CRYPTO_ONCE_STATIC_INIT; #if !defined(OPENSSL_SYS_UEFI) && defined(_WIN32) static int win32atexit(void) { OPENSSL_cleanup(); return 0; } #endif DEFINE_RUN_ONCE_STATIC(ossl_init_register_atexit) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_register_atexit()\n"); #endif #ifndef OPENSSL_SYS_UEFI # ifdef _WIN32 /* We use _onexit() in preference because it gets called on DLL unload */ if (_onexit(win32atexit) == NULL) return 0; # else if (atexit(OPENSSL_cleanup) != 0) return 0; # endif #endif return 1; } DEFINE_RUN_ONCE_STATIC_ALT(ossl_init_no_register_atexit, ossl_init_register_atexit) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_no_register_atexit ok!\n"); #endif /* Do nothing in this case */ return 1; } static CRYPTO_ONCE load_crypto_nodelete = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_load_crypto_nodelete) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_load_crypto_nodelete()\n"); #endif #if !defined(OPENSSL_USE_NODELETE) \ && !defined(OPENSSL_NO_PINSHARED) # if defined(DSO_WIN32) && !defined(_WIN32_WCE) { HMODULE handle = NULL; BOOL ret; /* We don't use the DSO route for WIN32 because there is a better way */ ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_PIN, (void *)&base_inited, &handle); # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: obtained DSO reference? %s\n", (ret == TRUE ? "No!" : "Yes.")); # endif return (ret == TRUE) ? 1 : 0; } # elif !defined(DSO_NONE) /* * Deliberately leak a reference to ourselves. This will force the library * to remain loaded until the atexit() handler is run at process exit. */ { DSO *dso; void *err; if (!err_shelve_state(&err)) return 0; dso = DSO_dsobyaddr(&base_inited, DSO_FLAG_NO_UNLOAD_ON_FREE); # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: obtained DSO reference? %s\n", (dso == NULL ? "No!" : "Yes.")); /* * In case of No!, it is uncertain our exit()-handlers can still be * called. After dlclose() the whole library might have been unloaded * already. */ # endif DSO_free(dso); err_unshelve_state(err); } # endif #endif return 1; } static CRYPTO_ONCE load_crypto_strings = CRYPTO_ONCE_STATIC_INIT; static int load_crypto_strings_inited = 0; DEFINE_RUN_ONCE_STATIC(ossl_init_load_crypto_strings) { int ret = 1; /* * OPENSSL_NO_AUTOERRINIT is provided here to prevent at compile time * pulling in all the error strings during static linking */ #if !defined(OPENSSL_NO_ERR) && !defined(OPENSSL_NO_AUTOERRINIT) # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_load_crypto_strings: " "err_load_crypto_strings_int()\n"); # endif ret = err_load_crypto_strings_int(); load_crypto_strings_inited = 1; #endif return ret; } DEFINE_RUN_ONCE_STATIC_ALT(ossl_init_no_load_crypto_strings, ossl_init_load_crypto_strings) { /* Do nothing in this case */ return 1; } static CRYPTO_ONCE add_all_ciphers = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_add_all_ciphers) { /* * OPENSSL_NO_AUTOALGINIT is provided here to prevent at compile time * pulling in all the ciphers during static linking */ #ifndef OPENSSL_NO_AUTOALGINIT # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_add_all_ciphers: " "openssl_add_all_ciphers_int()\n"); # endif openssl_add_all_ciphers_int(); #endif return 1; } DEFINE_RUN_ONCE_STATIC_ALT(ossl_init_no_add_all_ciphers, ossl_init_add_all_ciphers) { /* Do nothing */ return 1; } static CRYPTO_ONCE add_all_digests = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_add_all_digests) { /* * OPENSSL_NO_AUTOALGINIT is provided here to prevent at compile time * pulling in all the ciphers during static linking */ #ifndef OPENSSL_NO_AUTOALGINIT # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_add_all_digests: " "openssl_add_all_digests()\n"); # endif openssl_add_all_digests_int(); #endif return 1; } DEFINE_RUN_ONCE_STATIC_ALT(ossl_init_no_add_all_digests, ossl_init_add_all_digests) { /* Do nothing */ return 1; } static CRYPTO_ONCE config = CRYPTO_ONCE_STATIC_INIT; static int config_inited = 0; static const OPENSSL_INIT_SETTINGS *conf_settings = NULL; DEFINE_RUN_ONCE_STATIC(ossl_init_config) { int ret = openssl_config_int(conf_settings); config_inited = 1; return ret; } DEFINE_RUN_ONCE_STATIC_ALT(ossl_init_no_config, ossl_init_config) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_config: openssl_no_config_int()\n"); #endif openssl_no_config_int(); config_inited = 1; return 1; } static CRYPTO_ONCE async = CRYPTO_ONCE_STATIC_INIT; static int async_inited = 0; DEFINE_RUN_ONCE_STATIC(ossl_init_async) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_async: async_init()\n"); #endif if (!async_init()) return 0; async_inited = 1; return 1; } #ifndef OPENSSL_NO_ENGINE static CRYPTO_ONCE engine_openssl = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_engine_openssl) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_engine_openssl: " "engine_load_openssl_int()\n"); # endif engine_load_openssl_int(); return 1; } # ifndef OPENSSL_NO_DEVCRYPTOENG static CRYPTO_ONCE engine_devcrypto = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_engine_devcrypto) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_engine_devcrypto: " "engine_load_devcrypto_int()\n"); # endif engine_load_devcrypto_int(); return 1; } # endif # ifndef OPENSSL_NO_RDRAND static CRYPTO_ONCE engine_rdrand = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_engine_rdrand) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_engine_rdrand: " "engine_load_rdrand_int()\n"); # endif engine_load_rdrand_int(); return 1; } # endif static CRYPTO_ONCE engine_dynamic = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_engine_dynamic) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_engine_dynamic: " "engine_load_dynamic_int()\n"); # endif engine_load_dynamic_int(); return 1; } # ifndef OPENSSL_NO_STATIC_ENGINE # if !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_PADLOCK) static CRYPTO_ONCE engine_padlock = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_engine_padlock) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_engine_padlock: " "engine_load_padlock_int()\n"); # endif engine_load_padlock_int(); return 1; } # endif # if defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_NO_CAPIENG) static CRYPTO_ONCE engine_capi = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_engine_capi) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_engine_capi: " "engine_load_capi_int()\n"); # endif engine_load_capi_int(); return 1; } # endif # if !defined(OPENSSL_NO_AFALGENG) static CRYPTO_ONCE engine_afalg = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(ossl_init_engine_afalg) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_engine_afalg: " "engine_load_afalg_int()\n"); # endif engine_load_afalg_int(); return 1; } # endif # endif #endif #ifndef OPENSSL_NO_COMP static CRYPTO_ONCE zlib = CRYPTO_ONCE_STATIC_INIT; static int zlib_inited = 0; DEFINE_RUN_ONCE_STATIC(ossl_init_zlib) { /* Do nothing - we need to know about this for the later cleanup */ zlib_inited = 1; return 1; } #endif static void ossl_init_thread_stop(struct thread_local_inits_st *locals) { /* Can't do much about this */ if (locals == NULL) return; if (locals->async) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_thread_stop: " "async_delete_thread_state()\n"); #endif async_delete_thread_state(); } if (locals->err_state) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_thread_stop: " "err_delete_thread_state()\n"); #endif err_delete_thread_state(); } if (locals->rand) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_thread_stop: " "drbg_delete_thread_state()\n"); #endif drbg_delete_thread_state(); } OPENSSL_free(locals); } void OPENSSL_thread_stop(void) { if (destructor_key.sane != -1) ossl_init_thread_stop(ossl_init_get_thread_local(0)); } int ossl_init_thread_start(uint64_t opts) { struct thread_local_inits_st *locals; if (!OPENSSL_init_crypto(0, NULL)) return 0; locals = ossl_init_get_thread_local(1); if (locals == NULL) return 0; if (opts & OPENSSL_INIT_THREAD_ASYNC) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_thread_start: " "marking thread for async\n"); #endif locals->async = 1; } if (opts & OPENSSL_INIT_THREAD_ERR_STATE) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_thread_start: " "marking thread for err_state\n"); #endif locals->err_state = 1; } if (opts & OPENSSL_INIT_THREAD_RAND) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: ossl_init_thread_start: " "marking thread for rand\n"); #endif locals->rand = 1; } return 1; } void OPENSSL_cleanup(void) { OPENSSL_INIT_STOP *currhandler, *lasthandler; CRYPTO_THREAD_LOCAL key; /* If we've not been inited then no need to deinit */ if (!base_inited) return; /* Might be explicitly called and also by atexit */ if (stopped) return; stopped = 1; /* * Thread stop may not get automatically called by the thread library for * the very last thread in some situations, so call it directly. */ ossl_init_thread_stop(ossl_init_get_thread_local(0)); currhandler = stop_handlers; while (currhandler != NULL) { currhandler->handler(); lasthandler = currhandler; currhandler = currhandler->next; OPENSSL_free(lasthandler); } stop_handlers = NULL; CRYPTO_THREAD_lock_free(init_lock); init_lock = NULL; /* * We assume we are single-threaded for this function, i.e. no race * conditions for the various "*_inited" vars below. */ #ifndef OPENSSL_NO_COMP if (zlib_inited) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "comp_zlib_cleanup_int()\n"); #endif comp_zlib_cleanup_int(); } #endif if (async_inited) { # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "async_deinit()\n"); # endif async_deinit(); } if (load_crypto_strings_inited) { #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "err_free_strings_int()\n"); #endif err_free_strings_int(); } key = destructor_key.value; destructor_key.sane = -1; CRYPTO_THREAD_cleanup_local(&key); #ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "rand_cleanup_int()\n"); fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "conf_modules_free_int()\n"); #ifndef OPENSSL_NO_ENGINE fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "engine_cleanup_int()\n"); #endif fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "crypto_cleanup_all_ex_data_int()\n"); fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "bio_sock_cleanup_int()\n"); fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "bio_cleanup()\n"); fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "evp_cleanup_int()\n"); fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "obj_cleanup_int()\n"); fprintf(stderr, "OPENSSL_INIT: OPENSSL_cleanup: " "err_cleanup()\n"); #endif /* * Note that cleanup order is important: * - rand_cleanup_int could call an ENGINE's RAND cleanup function so * must be called before engine_cleanup_int() * - ENGINEs use CRYPTO_EX_DATA and therefore, must be cleaned up * before the ex data handlers are wiped in CRYPTO_cleanup_all_ex_data(). * - conf_modules_free_int() can end up in ENGINE code so must be called * before engine_cleanup_int() * - ENGINEs and additional EVP algorithms might use added OIDs names so * obj_cleanup_int() must be called last */ rand_cleanup_int(); rand_drbg_cleanup_int(); conf_modules_free_int(); #ifndef OPENSSL_NO_ENGINE engine_cleanup_int(); #endif ossl_store_cleanup_int(); crypto_cleanup_all_ex_data_int(); bio_cleanup(); evp_cleanup_int(); obj_cleanup_int(); err_cleanup(); CRYPTO_secure_malloc_done(); base_inited = 0; } /* * If this function is called with a non NULL settings value then it must be * called prior to any threads making calls to any OpenSSL functions, * i.e. passing a non-null settings value is assumed to be single-threaded. */ int OPENSSL_init_crypto(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings) { if (stopped) { if (!(opts & OPENSSL_INIT_BASE_ONLY)) CRYPTOerr(CRYPTO_F_OPENSSL_INIT_CRYPTO, ERR_R_INIT_FAIL); return 0; } /* * When the caller specifies OPENSSL_INIT_BASE_ONLY, that should be the * *only* option specified. With that option we return immediately after * doing the requested limited initialization. Note that * err_shelve_state() called by us via ossl_init_load_crypto_nodelete() * re-enters OPENSSL_init_crypto() with OPENSSL_INIT_BASE_ONLY, but with * base already initialized this is a harmless NOOP. * * If we remain the only caller of err_shelve_state() the recursion should * perhaps be removed, but if in doubt, it can be left in place. */ if (!RUN_ONCE(&base, ossl_init_base)) return 0; if (opts & OPENSSL_INIT_BASE_ONLY) return 1; /* * Now we don't always set up exit handlers, the INIT_BASE_ONLY calls * should not have the side-effect of setting up exit handlers, and * therefore, this code block is below the INIT_BASE_ONLY-conditioned early * return above. */ if ((opts & OPENSSL_INIT_NO_ATEXIT) != 0) { if (!RUN_ONCE_ALT(®ister_atexit, ossl_init_no_register_atexit, ossl_init_register_atexit)) return 0; } else if (!RUN_ONCE(®ister_atexit, ossl_init_register_atexit)) { return 0; } if (!RUN_ONCE(&load_crypto_nodelete, ossl_init_load_crypto_nodelete)) return 0; if ((opts & OPENSSL_INIT_NO_LOAD_CRYPTO_STRINGS) && !RUN_ONCE_ALT(&load_crypto_strings, ossl_init_no_load_crypto_strings, ossl_init_load_crypto_strings)) return 0; if ((opts & OPENSSL_INIT_LOAD_CRYPTO_STRINGS) && !RUN_ONCE(&load_crypto_strings, ossl_init_load_crypto_strings)) return 0; if ((opts & OPENSSL_INIT_NO_ADD_ALL_CIPHERS) && !RUN_ONCE_ALT(&add_all_ciphers, ossl_init_no_add_all_ciphers, ossl_init_add_all_ciphers)) return 0; if ((opts & OPENSSL_INIT_ADD_ALL_CIPHERS) && !RUN_ONCE(&add_all_ciphers, ossl_init_add_all_ciphers)) return 0; if ((opts & OPENSSL_INIT_NO_ADD_ALL_DIGESTS) && !RUN_ONCE_ALT(&add_all_digests, ossl_init_no_add_all_digests, ossl_init_add_all_digests)) return 0; if ((opts & OPENSSL_INIT_ADD_ALL_DIGESTS) && !RUN_ONCE(&add_all_digests, ossl_init_add_all_digests)) return 0; if ((opts & OPENSSL_INIT_ATFORK) && !openssl_init_fork_handlers()) return 0; if ((opts & OPENSSL_INIT_NO_LOAD_CONFIG) && !RUN_ONCE_ALT(&config, ossl_init_no_config, ossl_init_config)) return 0; if (opts & OPENSSL_INIT_LOAD_CONFIG) { int ret; CRYPTO_THREAD_write_lock(init_lock); conf_settings = settings; ret = RUN_ONCE(&config, ossl_init_config); conf_settings = NULL; CRYPTO_THREAD_unlock(init_lock); if (ret <= 0) return 0; } if ((opts & OPENSSL_INIT_ASYNC) && !RUN_ONCE(&async, ossl_init_async)) return 0; #ifndef OPENSSL_NO_ENGINE if ((opts & OPENSSL_INIT_ENGINE_OPENSSL) && !RUN_ONCE(&engine_openssl, ossl_init_engine_openssl)) return 0; # if !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_DEVCRYPTOENG) if ((opts & OPENSSL_INIT_ENGINE_CRYPTODEV) && !RUN_ONCE(&engine_devcrypto, ossl_init_engine_devcrypto)) return 0; # endif # ifndef OPENSSL_NO_RDRAND if ((opts & OPENSSL_INIT_ENGINE_RDRAND) && !RUN_ONCE(&engine_rdrand, ossl_init_engine_rdrand)) return 0; # endif if ((opts & OPENSSL_INIT_ENGINE_DYNAMIC) && !RUN_ONCE(&engine_dynamic, ossl_init_engine_dynamic)) return 0; # ifndef OPENSSL_NO_STATIC_ENGINE # if !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_PADLOCK) if ((opts & OPENSSL_INIT_ENGINE_PADLOCK) && !RUN_ONCE(&engine_padlock, ossl_init_engine_padlock)) return 0; # endif # if defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_NO_CAPIENG) if ((opts & OPENSSL_INIT_ENGINE_CAPI) && !RUN_ONCE(&engine_capi, ossl_init_engine_capi)) return 0; # endif # if !defined(OPENSSL_NO_AFALGENG) if ((opts & OPENSSL_INIT_ENGINE_AFALG) && !RUN_ONCE(&engine_afalg, ossl_init_engine_afalg)) return 0; # endif # endif if (opts & (OPENSSL_INIT_ENGINE_ALL_BUILTIN | OPENSSL_INIT_ENGINE_OPENSSL | OPENSSL_INIT_ENGINE_AFALG)) { ENGINE_register_all_complete(); } #endif #ifndef OPENSSL_NO_COMP if ((opts & OPENSSL_INIT_ZLIB) && !RUN_ONCE(&zlib, ossl_init_zlib)) return 0; #endif return 1; } int OPENSSL_atexit(void (*handler)(void)) { OPENSSL_INIT_STOP *newhand; #if !defined(OPENSSL_USE_NODELETE)\ && !defined(OPENSSL_NO_PINSHARED) { union { void *sym; void (*func)(void); } handlersym; handlersym.func = handler; # if defined(DSO_WIN32) && !defined(_WIN32_WCE) { HMODULE handle = NULL; BOOL ret; /* * We don't use the DSO route for WIN32 because there is a better * way */ ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_PIN, handlersym.sym, &handle); if (!ret) return 0; } # elif !defined(DSO_NONE) /* * Deliberately leak a reference to the handler. This will force the * library/code containing the handler to remain loaded until we run the * atexit handler. If -znodelete has been used then this is * unnecessary. */ { DSO *dso = NULL; ERR_set_mark(); dso = DSO_dsobyaddr(handlersym.sym, DSO_FLAG_NO_UNLOAD_ON_FREE); # ifdef OPENSSL_INIT_DEBUG fprintf(stderr, "OPENSSL_INIT: OPENSSL_atexit: obtained DSO reference? %s\n", (dso == NULL ? "No!" : "Yes.")); /* See same code above in ossl_init_base() for an explanation. */ # endif DSO_free(dso); ERR_pop_to_mark(); } # endif } #endif if ((newhand = OPENSSL_malloc(sizeof(*newhand))) == NULL) { CRYPTOerr(CRYPTO_F_OPENSSL_ATEXIT, ERR_R_MALLOC_FAILURE); return 0; } newhand->handler = handler; newhand->next = stop_handlers; stop_handlers = newhand; return 1; } #ifdef OPENSSL_SYS_UNIX /* * The following three functions are for OpenSSL developers. This is * where we set/reset state across fork (called via pthread_atfork when * it exists, or manually by the application when it doesn't). * * WARNING! If you put code in either OPENSSL_fork_parent or * OPENSSL_fork_child, you MUST MAKE SURE that they are async-signal- * safe. See this link, for example: * http://man7.org/linux/man-pages/man7/signal-safety.7.html */ void OPENSSL_fork_prepare(void) { } void OPENSSL_fork_parent(void) { } void OPENSSL_fork_child(void) { } #endif openssl-1.1.1f/crypto/kdf/000077500000000000000000000000001364063235100154325ustar00rootroot00000000000000openssl-1.1.1f/crypto/kdf/build.info000066400000000000000000000001341364063235100174040ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ tls1_prf.c kdf_err.c hkdf.c scrypt.c openssl-1.1.1f/crypto/kdf/hkdf.c000066400000000000000000000222601364063235100165140ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "internal/cryptlib.h" #include "crypto/evp.h" #define HKDF_MAXBUF 1024 static unsigned char *HKDF(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *key, size_t key_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len); static unsigned char *HKDF_Extract(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *key, size_t key_len, unsigned char *prk, size_t *prk_len); static unsigned char *HKDF_Expand(const EVP_MD *evp_md, const unsigned char *prk, size_t prk_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len); typedef struct { int mode; const EVP_MD *md; unsigned char *salt; size_t salt_len; unsigned char *key; size_t key_len; unsigned char info[HKDF_MAXBUF]; size_t info_len; } HKDF_PKEY_CTX; static int pkey_hkdf_init(EVP_PKEY_CTX *ctx) { HKDF_PKEY_CTX *kctx; if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL) { KDFerr(KDF_F_PKEY_HKDF_INIT, ERR_R_MALLOC_FAILURE); return 0; } ctx->data = kctx; return 1; } static void pkey_hkdf_cleanup(EVP_PKEY_CTX *ctx) { HKDF_PKEY_CTX *kctx = ctx->data; OPENSSL_clear_free(kctx->salt, kctx->salt_len); OPENSSL_clear_free(kctx->key, kctx->key_len); OPENSSL_cleanse(kctx->info, kctx->info_len); OPENSSL_free(kctx); } static int pkey_hkdf_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { HKDF_PKEY_CTX *kctx = ctx->data; switch (type) { case EVP_PKEY_CTRL_HKDF_MD: if (p2 == NULL) return 0; kctx->md = p2; return 1; case EVP_PKEY_CTRL_HKDF_MODE: kctx->mode = p1; return 1; case EVP_PKEY_CTRL_HKDF_SALT: if (p1 == 0 || p2 == NULL) return 1; if (p1 < 0) return 0; if (kctx->salt != NULL) OPENSSL_clear_free(kctx->salt, kctx->salt_len); kctx->salt = OPENSSL_memdup(p2, p1); if (kctx->salt == NULL) return 0; kctx->salt_len = p1; return 1; case EVP_PKEY_CTRL_HKDF_KEY: if (p1 < 0) return 0; if (kctx->key != NULL) OPENSSL_clear_free(kctx->key, kctx->key_len); kctx->key = OPENSSL_memdup(p2, p1); if (kctx->key == NULL) return 0; kctx->key_len = p1; return 1; case EVP_PKEY_CTRL_HKDF_INFO: if (p1 == 0 || p2 == NULL) return 1; if (p1 < 0 || p1 > (int)(HKDF_MAXBUF - kctx->info_len)) return 0; memcpy(kctx->info + kctx->info_len, p2, p1); kctx->info_len += p1; return 1; default: return -2; } } static int pkey_hkdf_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (strcmp(type, "mode") == 0) { int mode; if (strcmp(value, "EXTRACT_AND_EXPAND") == 0) mode = EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND; else if (strcmp(value, "EXTRACT_ONLY") == 0) mode = EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY; else if (strcmp(value, "EXPAND_ONLY") == 0) mode = EVP_PKEY_HKDEF_MODE_EXPAND_ONLY; else return 0; return EVP_PKEY_CTX_hkdf_mode(ctx, mode); } if (strcmp(type, "md") == 0) return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_HKDF_MD, value); if (strcmp(type, "salt") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_HKDF_SALT, value); if (strcmp(type, "hexsalt") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_HKDF_SALT, value); if (strcmp(type, "key") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_HKDF_KEY, value); if (strcmp(type, "hexkey") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_HKDF_KEY, value); if (strcmp(type, "info") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_HKDF_INFO, value); if (strcmp(type, "hexinfo") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_HKDF_INFO, value); KDFerr(KDF_F_PKEY_HKDF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); return -2; } static int pkey_hkdf_derive_init(EVP_PKEY_CTX *ctx) { HKDF_PKEY_CTX *kctx = ctx->data; OPENSSL_clear_free(kctx->key, kctx->key_len); OPENSSL_clear_free(kctx->salt, kctx->salt_len); OPENSSL_cleanse(kctx->info, kctx->info_len); memset(kctx, 0, sizeof(*kctx)); return 1; } static int pkey_hkdf_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { HKDF_PKEY_CTX *kctx = ctx->data; if (kctx->md == NULL) { KDFerr(KDF_F_PKEY_HKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); return 0; } if (kctx->key == NULL) { KDFerr(KDF_F_PKEY_HKDF_DERIVE, KDF_R_MISSING_KEY); return 0; } switch (kctx->mode) { case EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND: return HKDF(kctx->md, kctx->salt, kctx->salt_len, kctx->key, kctx->key_len, kctx->info, kctx->info_len, key, *keylen) != NULL; case EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY: if (key == NULL) { *keylen = EVP_MD_size(kctx->md); return 1; } return HKDF_Extract(kctx->md, kctx->salt, kctx->salt_len, kctx->key, kctx->key_len, key, keylen) != NULL; case EVP_PKEY_HKDEF_MODE_EXPAND_ONLY: return HKDF_Expand(kctx->md, kctx->key, kctx->key_len, kctx->info, kctx->info_len, key, *keylen) != NULL; default: return 0; } } const EVP_PKEY_METHOD hkdf_pkey_meth = { EVP_PKEY_HKDF, 0, pkey_hkdf_init, 0, pkey_hkdf_cleanup, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_hkdf_derive_init, pkey_hkdf_derive, pkey_hkdf_ctrl, pkey_hkdf_ctrl_str }; static unsigned char *HKDF(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *key, size_t key_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len) { unsigned char prk[EVP_MAX_MD_SIZE]; unsigned char *ret; size_t prk_len; if (!HKDF_Extract(evp_md, salt, salt_len, key, key_len, prk, &prk_len)) return NULL; ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len); OPENSSL_cleanse(prk, sizeof(prk)); return ret; } static unsigned char *HKDF_Extract(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *key, size_t key_len, unsigned char *prk, size_t *prk_len) { unsigned int tmp_len; if (!HMAC(evp_md, salt, salt_len, key, key_len, prk, &tmp_len)) return NULL; *prk_len = tmp_len; return prk; } static unsigned char *HKDF_Expand(const EVP_MD *evp_md, const unsigned char *prk, size_t prk_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len) { HMAC_CTX *hmac; unsigned char *ret = NULL; unsigned int i; unsigned char prev[EVP_MAX_MD_SIZE]; size_t done_len = 0, dig_len = EVP_MD_size(evp_md); size_t n = okm_len / dig_len; if (okm_len % dig_len) n++; if (n > 255 || okm == NULL) return NULL; if ((hmac = HMAC_CTX_new()) == NULL) return NULL; if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL)) goto err; for (i = 1; i <= n; i++) { size_t copy_len; const unsigned char ctr = i; if (i > 1) { if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL)) goto err; if (!HMAC_Update(hmac, prev, dig_len)) goto err; } if (!HMAC_Update(hmac, info, info_len)) goto err; if (!HMAC_Update(hmac, &ctr, 1)) goto err; if (!HMAC_Final(hmac, prev, NULL)) goto err; copy_len = (done_len + dig_len > okm_len) ? okm_len - done_len : dig_len; memcpy(okm + done_len, prev, copy_len); done_len += copy_len; } ret = okm; err: OPENSSL_cleanse(prev, sizeof(prev)); HMAC_CTX_free(hmac); return ret; } openssl-1.1.1f/crypto/kdf/kdf_err.c000066400000000000000000000052701364063235100172160ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA KDF_str_functs[] = { {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_HKDF_CTRL_STR, 0), "pkey_hkdf_ctrl_str"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_HKDF_DERIVE, 0), "pkey_hkdf_derive"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_HKDF_INIT, 0), "pkey_hkdf_init"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_SCRYPT_CTRL_STR, 0), "pkey_scrypt_ctrl_str"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_SCRYPT_CTRL_UINT64, 0), "pkey_scrypt_ctrl_uint64"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_SCRYPT_DERIVE, 0), "pkey_scrypt_derive"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_SCRYPT_INIT, 0), "pkey_scrypt_init"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_SCRYPT_SET_MEMBUF, 0), "pkey_scrypt_set_membuf"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_TLS1_PRF_CTRL_STR, 0), "pkey_tls1_prf_ctrl_str"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_TLS1_PRF_DERIVE, 0), "pkey_tls1_prf_derive"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_TLS1_PRF_INIT, 0), "pkey_tls1_prf_init"}, {ERR_PACK(ERR_LIB_KDF, KDF_F_TLS1_PRF_ALG, 0), "tls1_prf_alg"}, {0, NULL} }; static const ERR_STRING_DATA KDF_str_reasons[] = { {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_INVALID_DIGEST), "invalid digest"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_ITERATION_COUNT), "missing iteration count"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_KEY), "missing key"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_MESSAGE_DIGEST), "missing message digest"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_PARAMETER), "missing parameter"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_PASS), "missing pass"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_SALT), "missing salt"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_SECRET), "missing secret"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_SEED), "missing seed"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_UNKNOWN_PARAMETER_TYPE), "unknown parameter type"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_VALUE_ERROR), "value error"}, {ERR_PACK(ERR_LIB_KDF, 0, KDF_R_VALUE_MISSING), "value missing"}, {0, NULL} }; #endif int ERR_load_KDF_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(KDF_str_functs[0].error) == NULL) { ERR_load_strings_const(KDF_str_functs); ERR_load_strings_const(KDF_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/kdf/scrypt.c000066400000000000000000000147501364063235100171310ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "internal/cryptlib.h" #include "crypto/evp.h" #ifndef OPENSSL_NO_SCRYPT static int atou64(const char *nptr, uint64_t *result); typedef struct { unsigned char *pass; size_t pass_len; unsigned char *salt; size_t salt_len; uint64_t N, r, p; uint64_t maxmem_bytes; } SCRYPT_PKEY_CTX; /* Custom uint64_t parser since we do not have strtoull */ static int atou64(const char *nptr, uint64_t *result) { uint64_t value = 0; while (*nptr) { unsigned int digit; uint64_t new_value; if ((*nptr < '0') || (*nptr > '9')) { return 0; } digit = (unsigned int)(*nptr - '0'); new_value = (value * 10) + digit; if ((new_value < digit) || ((new_value - digit) / 10 != value)) { /* Overflow */ return 0; } value = new_value; nptr++; } *result = value; return 1; } static int pkey_scrypt_init(EVP_PKEY_CTX *ctx) { SCRYPT_PKEY_CTX *kctx; kctx = OPENSSL_zalloc(sizeof(*kctx)); if (kctx == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_INIT, ERR_R_MALLOC_FAILURE); return 0; } /* Default values are the most conservative recommendation given in the * original paper of C. Percival. Derivation uses roughly 1 GiB of memory * for this parameter choice (approx. 128 * r * (N + p) bytes). */ kctx->N = 1 << 20; kctx->r = 8; kctx->p = 1; kctx->maxmem_bytes = 1025 * 1024 * 1024; ctx->data = kctx; return 1; } static void pkey_scrypt_cleanup(EVP_PKEY_CTX *ctx) { SCRYPT_PKEY_CTX *kctx = ctx->data; OPENSSL_clear_free(kctx->salt, kctx->salt_len); OPENSSL_clear_free(kctx->pass, kctx->pass_len); OPENSSL_free(kctx); } static int pkey_scrypt_set_membuf(unsigned char **buffer, size_t *buflen, const unsigned char *new_buffer, const int new_buflen) { if (new_buffer == NULL) return 1; if (new_buflen < 0) return 0; if (*buffer != NULL) OPENSSL_clear_free(*buffer, *buflen); if (new_buflen > 0) { *buffer = OPENSSL_memdup(new_buffer, new_buflen); } else { *buffer = OPENSSL_malloc(1); } if (*buffer == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE); return 0; } *buflen = new_buflen; return 1; } static int is_power_of_two(uint64_t value) { return (value != 0) && ((value & (value - 1)) == 0); } static int pkey_scrypt_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { SCRYPT_PKEY_CTX *kctx = ctx->data; uint64_t u64_value; switch (type) { case EVP_PKEY_CTRL_PASS: return pkey_scrypt_set_membuf(&kctx->pass, &kctx->pass_len, p2, p1); case EVP_PKEY_CTRL_SCRYPT_SALT: return pkey_scrypt_set_membuf(&kctx->salt, &kctx->salt_len, p2, p1); case EVP_PKEY_CTRL_SCRYPT_N: u64_value = *((uint64_t *)p2); if ((u64_value <= 1) || !is_power_of_two(u64_value)) return 0; kctx->N = u64_value; return 1; case EVP_PKEY_CTRL_SCRYPT_R: u64_value = *((uint64_t *)p2); if (u64_value < 1) return 0; kctx->r = u64_value; return 1; case EVP_PKEY_CTRL_SCRYPT_P: u64_value = *((uint64_t *)p2); if (u64_value < 1) return 0; kctx->p = u64_value; return 1; case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES: u64_value = *((uint64_t *)p2); if (u64_value < 1) return 0; kctx->maxmem_bytes = u64_value; return 1; default: return -2; } } static int pkey_scrypt_ctrl_uint64(EVP_PKEY_CTX *ctx, int type, const char *value) { uint64_t int_value; if (!atou64(value, &int_value)) { KDFerr(KDF_F_PKEY_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR); return 0; } return pkey_scrypt_ctrl(ctx, type, 0, &int_value); } static int pkey_scrypt_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (value == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING); return 0; } if (strcmp(type, "pass") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); if (strcmp(type, "hexpass") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); if (strcmp(type, "salt") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); if (strcmp(type, "hexsalt") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); if (strcmp(type, "N") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_N, value); if (strcmp(type, "r") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_R, value); if (strcmp(type, "p") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_P, value); if (strcmp(type, "maxmem_bytes") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, value); KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); return -2; } static int pkey_scrypt_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { SCRYPT_PKEY_CTX *kctx = ctx->data; if (kctx->pass == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_PASS); return 0; } if (kctx->salt == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_SALT); return 0; } return EVP_PBE_scrypt((char *)kctx->pass, kctx->pass_len, kctx->salt, kctx->salt_len, kctx->N, kctx->r, kctx->p, kctx->maxmem_bytes, key, *keylen); } const EVP_PKEY_METHOD scrypt_pkey_meth = { EVP_PKEY_SCRYPT, 0, pkey_scrypt_init, 0, pkey_scrypt_cleanup, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_scrypt_derive, pkey_scrypt_ctrl, pkey_scrypt_ctrl_str }; #endif openssl-1.1.1f/crypto/kdf/tls1_prf.c000066400000000000000000000172571364063235100173440ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/evp.h" static int tls1_prf_alg(const EVP_MD *md, const unsigned char *sec, size_t slen, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen); #define TLS1_PRF_MAXBUF 1024 /* TLS KDF pkey context structure */ typedef struct { /* Digest to use for PRF */ const EVP_MD *md; /* Secret value to use for PRF */ unsigned char *sec; size_t seclen; /* Buffer of concatenated seed data */ unsigned char seed[TLS1_PRF_MAXBUF]; size_t seedlen; } TLS1_PRF_PKEY_CTX; static int pkey_tls1_prf_init(EVP_PKEY_CTX *ctx) { TLS1_PRF_PKEY_CTX *kctx; if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL) { KDFerr(KDF_F_PKEY_TLS1_PRF_INIT, ERR_R_MALLOC_FAILURE); return 0; } ctx->data = kctx; return 1; } static void pkey_tls1_prf_cleanup(EVP_PKEY_CTX *ctx) { TLS1_PRF_PKEY_CTX *kctx = ctx->data; OPENSSL_clear_free(kctx->sec, kctx->seclen); OPENSSL_cleanse(kctx->seed, kctx->seedlen); OPENSSL_free(kctx); } static int pkey_tls1_prf_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { TLS1_PRF_PKEY_CTX *kctx = ctx->data; switch (type) { case EVP_PKEY_CTRL_TLS_MD: kctx->md = p2; return 1; case EVP_PKEY_CTRL_TLS_SECRET: if (p1 < 0) return 0; if (kctx->sec != NULL) OPENSSL_clear_free(kctx->sec, kctx->seclen); OPENSSL_cleanse(kctx->seed, kctx->seedlen); kctx->seedlen = 0; kctx->sec = OPENSSL_memdup(p2, p1); if (kctx->sec == NULL) return 0; kctx->seclen = p1; return 1; case EVP_PKEY_CTRL_TLS_SEED: if (p1 == 0 || p2 == NULL) return 1; if (p1 < 0 || p1 > (int)(TLS1_PRF_MAXBUF - kctx->seedlen)) return 0; memcpy(kctx->seed + kctx->seedlen, p2, p1); kctx->seedlen += p1; return 1; default: return -2; } } static int pkey_tls1_prf_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (value == NULL) { KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING); return 0; } if (strcmp(type, "md") == 0) { TLS1_PRF_PKEY_CTX *kctx = ctx->data; const EVP_MD *md = EVP_get_digestbyname(value); if (md == NULL) { KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_INVALID_DIGEST); return 0; } kctx->md = md; return 1; } if (strcmp(type, "secret") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_TLS_SECRET, value); if (strcmp(type, "hexsecret") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_TLS_SECRET, value); if (strcmp(type, "seed") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_TLS_SEED, value); if (strcmp(type, "hexseed") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_TLS_SEED, value); KDFerr(KDF_F_PKEY_TLS1_PRF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); return -2; } static int pkey_tls1_prf_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { TLS1_PRF_PKEY_CTX *kctx = ctx->data; if (kctx->md == NULL) { KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); return 0; } if (kctx->sec == NULL) { KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET); return 0; } if (kctx->seedlen == 0) { KDFerr(KDF_F_PKEY_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED); return 0; } return tls1_prf_alg(kctx->md, kctx->sec, kctx->seclen, kctx->seed, kctx->seedlen, key, *keylen); } const EVP_PKEY_METHOD tls1_prf_pkey_meth = { EVP_PKEY_TLS1_PRF, 0, pkey_tls1_prf_init, 0, pkey_tls1_prf_cleanup, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_tls1_prf_derive, pkey_tls1_prf_ctrl, pkey_tls1_prf_ctrl_str }; static int tls1_prf_P_hash(const EVP_MD *md, const unsigned char *sec, size_t sec_len, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen) { int chunk; EVP_MD_CTX *ctx = NULL, *ctx_tmp = NULL, *ctx_init = NULL; EVP_PKEY *mac_key = NULL; unsigned char A1[EVP_MAX_MD_SIZE]; size_t A1_len; int ret = 0; chunk = EVP_MD_size(md); if (!ossl_assert(chunk > 0)) goto err; ctx = EVP_MD_CTX_new(); ctx_tmp = EVP_MD_CTX_new(); ctx_init = EVP_MD_CTX_new(); if (ctx == NULL || ctx_tmp == NULL || ctx_init == NULL) goto err; EVP_MD_CTX_set_flags(ctx_init, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); mac_key = EVP_PKEY_new_raw_private_key(EVP_PKEY_HMAC, NULL, sec, sec_len); if (mac_key == NULL) goto err; if (!EVP_DigestSignInit(ctx_init, NULL, md, NULL, mac_key)) goto err; if (!EVP_MD_CTX_copy_ex(ctx, ctx_init)) goto err; if (seed != NULL && !EVP_DigestSignUpdate(ctx, seed, seed_len)) goto err; if (!EVP_DigestSignFinal(ctx, A1, &A1_len)) goto err; for (;;) { /* Reinit mac contexts */ if (!EVP_MD_CTX_copy_ex(ctx, ctx_init)) goto err; if (!EVP_DigestSignUpdate(ctx, A1, A1_len)) goto err; if (olen > (size_t)chunk && !EVP_MD_CTX_copy_ex(ctx_tmp, ctx)) goto err; if (seed && !EVP_DigestSignUpdate(ctx, seed, seed_len)) goto err; if (olen > (size_t)chunk) { size_t mac_len; if (!EVP_DigestSignFinal(ctx, out, &mac_len)) goto err; out += mac_len; olen -= mac_len; /* calc the next A1 value */ if (!EVP_DigestSignFinal(ctx_tmp, A1, &A1_len)) goto err; } else { /* last one */ if (!EVP_DigestSignFinal(ctx, A1, &A1_len)) goto err; memcpy(out, A1, olen); break; } } ret = 1; err: EVP_PKEY_free(mac_key); EVP_MD_CTX_free(ctx); EVP_MD_CTX_free(ctx_tmp); EVP_MD_CTX_free(ctx_init); OPENSSL_cleanse(A1, sizeof(A1)); return ret; } static int tls1_prf_alg(const EVP_MD *md, const unsigned char *sec, size_t slen, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen) { if (EVP_MD_type(md) == NID_md5_sha1) { size_t i; unsigned char *tmp; if (!tls1_prf_P_hash(EVP_md5(), sec, slen/2 + (slen & 1), seed, seed_len, out, olen)) return 0; if ((tmp = OPENSSL_malloc(olen)) == NULL) { KDFerr(KDF_F_TLS1_PRF_ALG, ERR_R_MALLOC_FAILURE); return 0; } if (!tls1_prf_P_hash(EVP_sha1(), sec + slen/2, slen/2 + (slen & 1), seed, seed_len, tmp, olen)) { OPENSSL_clear_free(tmp, olen); return 0; } for (i = 0; i < olen; i++) out[i] ^= tmp[i]; OPENSSL_clear_free(tmp, olen); return 1; } if (!tls1_prf_P_hash(md, sec, slen, seed, seed_len, out, olen)) return 0; return 1; } openssl-1.1.1f/crypto/lhash/000077500000000000000000000000001364063235100157655ustar00rootroot00000000000000openssl-1.1.1f/crypto/lhash/build.info000066400000000000000000000001121364063235100177330ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ lhash.c lh_stats.c openssl-1.1.1f/crypto/lhash/lh_stats.c000066400000000000000000000072221364063235100177550ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include /* * If you wish to build this outside of OpenSSL, remove the following lines * and things should work as expected */ #include "internal/cryptlib.h" #include #include #include "lhash_local.h" # ifndef OPENSSL_NO_STDIO void OPENSSL_LH_stats(const OPENSSL_LHASH *lh, FILE *fp) { BIO *bp; bp = BIO_new(BIO_s_file()); if (bp == NULL) return; BIO_set_fp(bp, fp, BIO_NOCLOSE); OPENSSL_LH_stats_bio(lh, bp); BIO_free(bp); } void OPENSSL_LH_node_stats(const OPENSSL_LHASH *lh, FILE *fp) { BIO *bp; bp = BIO_new(BIO_s_file()); if (bp == NULL) return; BIO_set_fp(bp, fp, BIO_NOCLOSE); OPENSSL_LH_node_stats_bio(lh, bp); BIO_free(bp); } void OPENSSL_LH_node_usage_stats(const OPENSSL_LHASH *lh, FILE *fp) { BIO *bp; bp = BIO_new(BIO_s_file()); if (bp == NULL) return; BIO_set_fp(bp, fp, BIO_NOCLOSE); OPENSSL_LH_node_usage_stats_bio(lh, bp); BIO_free(bp); } # endif void OPENSSL_LH_stats_bio(const OPENSSL_LHASH *lh, BIO *out) { BIO_printf(out, "num_items = %lu\n", lh->num_items); BIO_printf(out, "num_nodes = %u\n", lh->num_nodes); BIO_printf(out, "num_alloc_nodes = %u\n", lh->num_alloc_nodes); BIO_printf(out, "num_expands = %lu\n", lh->num_expands); BIO_printf(out, "num_expand_reallocs = %lu\n", lh->num_expand_reallocs); BIO_printf(out, "num_contracts = %lu\n", lh->num_contracts); BIO_printf(out, "num_contract_reallocs = %lu\n", lh->num_contract_reallocs); BIO_printf(out, "num_hash_calls = %lu\n", lh->num_hash_calls); BIO_printf(out, "num_comp_calls = %lu\n", lh->num_comp_calls); BIO_printf(out, "num_insert = %lu\n", lh->num_insert); BIO_printf(out, "num_replace = %lu\n", lh->num_replace); BIO_printf(out, "num_delete = %lu\n", lh->num_delete); BIO_printf(out, "num_no_delete = %lu\n", lh->num_no_delete); BIO_printf(out, "num_retrieve = %lu\n", lh->num_retrieve); BIO_printf(out, "num_retrieve_miss = %lu\n", lh->num_retrieve_miss); BIO_printf(out, "num_hash_comps = %lu\n", lh->num_hash_comps); } void OPENSSL_LH_node_stats_bio(const OPENSSL_LHASH *lh, BIO *out) { OPENSSL_LH_NODE *n; unsigned int i, num; for (i = 0; i < lh->num_nodes; i++) { for (n = lh->b[i], num = 0; n != NULL; n = n->next) num++; BIO_printf(out, "node %6u -> %3u\n", i, num); } } void OPENSSL_LH_node_usage_stats_bio(const OPENSSL_LHASH *lh, BIO *out) { OPENSSL_LH_NODE *n; unsigned long num; unsigned int i; unsigned long total = 0, n_used = 0; for (i = 0; i < lh->num_nodes; i++) { for (n = lh->b[i], num = 0; n != NULL; n = n->next) num++; if (num != 0) { n_used++; total += num; } } BIO_printf(out, "%lu nodes used out of %u\n", n_used, lh->num_nodes); BIO_printf(out, "%lu items\n", total); if (n_used == 0) return; BIO_printf(out, "load %d.%02d actual load %d.%02d\n", (int)(total / lh->num_nodes), (int)((total % lh->num_nodes) * 100 / lh->num_nodes), (int)(total / n_used), (int)((total % n_used) * 100 / n_used)); } openssl-1.1.1f/crypto/lhash/lhash.c000066400000000000000000000231021364063235100172260ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "crypto/ctype.h" #include "crypto/lhash.h" #include "lhash_local.h" /* * A hashing implementation that appears to be based on the linear hashing * algorithm: * https://en.wikipedia.org/wiki/Linear_hashing * * Litwin, Witold (1980), "Linear hashing: A new tool for file and table * addressing", Proc. 6th Conference on Very Large Databases: 212-223 * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf * * From the Wikipedia article "Linear hashing is used in the BDB Berkeley * database system, which in turn is used by many software systems such as * OpenLDAP, using a C implementation derived from the CACM article and first * published on the Usenet in 1988 by Esmond Pitt." * * The CACM paper is available here: * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf */ #undef MIN_NODES #define MIN_NODES 16 #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */ #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */ static int expand(OPENSSL_LHASH *lh); static void contract(OPENSSL_LHASH *lh); static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash); OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c) { OPENSSL_LHASH *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { /* * Do not set the error code, because the ERR code uses LHASH * and we want to avoid possible endless error loop. * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE); */ return NULL; } if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL) goto err; ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c); ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h); ret->num_nodes = MIN_NODES / 2; ret->num_alloc_nodes = MIN_NODES; ret->pmax = MIN_NODES / 2; ret->up_load = UP_LOAD; ret->down_load = DOWN_LOAD; return ret; err: OPENSSL_free(ret->b); OPENSSL_free(ret); return NULL; } void OPENSSL_LH_free(OPENSSL_LHASH *lh) { unsigned int i; OPENSSL_LH_NODE *n, *nn; if (lh == NULL) return; for (i = 0; i < lh->num_nodes; i++) { n = lh->b[i]; while (n != NULL) { nn = n->next; OPENSSL_free(n); n = nn; } } OPENSSL_free(lh->b); OPENSSL_free(lh); } void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data) { unsigned long hash; OPENSSL_LH_NODE *nn, **rn; void *ret; lh->error = 0; if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh)) return NULL; /* 'lh->error++' already done in 'expand' */ rn = getrn(lh, data, &hash); if (*rn == NULL) { if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) { lh->error++; return NULL; } nn->data = data; nn->next = NULL; nn->hash = hash; *rn = nn; ret = NULL; lh->num_insert++; lh->num_items++; } else { /* replace same key */ ret = (*rn)->data; (*rn)->data = data; lh->num_replace++; } return ret; } void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data) { unsigned long hash; OPENSSL_LH_NODE *nn, **rn; void *ret; lh->error = 0; rn = getrn(lh, data, &hash); if (*rn == NULL) { lh->num_no_delete++; return NULL; } else { nn = *rn; *rn = nn->next; ret = nn->data; OPENSSL_free(nn); lh->num_delete++; } lh->num_items--; if ((lh->num_nodes > MIN_NODES) && (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes))) contract(lh); return ret; } void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data) { unsigned long hash; OPENSSL_LH_NODE **rn; void *ret; tsan_store((TSAN_QUALIFIER int *)&lh->error, 0); rn = getrn(lh, data, &hash); if (*rn == NULL) { tsan_counter(&lh->num_retrieve_miss); return NULL; } else { ret = (*rn)->data; tsan_counter(&lh->num_retrieve); } return ret; } static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg, OPENSSL_LH_DOALL_FUNC func, OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg) { int i; OPENSSL_LH_NODE *a, *n; if (lh == NULL) return; /* * reverse the order so we search from 'top to bottom' We were having * memory leaks otherwise */ for (i = lh->num_nodes - 1; i >= 0; i--) { a = lh->b[i]; while (a != NULL) { n = a->next; if (use_arg) func_arg(a->data, arg); else func(a->data); a = n; } } } void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func) { doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL); } void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg) { doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg); } static int expand(OPENSSL_LHASH *lh) { OPENSSL_LH_NODE **n, **n1, **n2, *np; unsigned int p, pmax, nni, j; unsigned long hash; nni = lh->num_alloc_nodes; p = lh->p; pmax = lh->pmax; if (p + 1 >= pmax) { j = nni * 2; n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j); if (n == NULL) { lh->error++; return 0; } lh->b = n; memset(n + nni, 0, sizeof(*n) * (j - nni)); lh->pmax = nni; lh->num_alloc_nodes = j; lh->num_expand_reallocs++; lh->p = 0; } else { lh->p++; } lh->num_nodes++; lh->num_expands++; n1 = &(lh->b[p]); n2 = &(lh->b[p + pmax]); *n2 = NULL; for (np = *n1; np != NULL;) { hash = np->hash; if ((hash % nni) != p) { /* move it */ *n1 = (*n1)->next; np->next = *n2; *n2 = np; } else n1 = &((*n1)->next); np = *n1; } return 1; } static void contract(OPENSSL_LHASH *lh) { OPENSSL_LH_NODE **n, *n1, *np; np = lh->b[lh->p + lh->pmax - 1]; lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */ if (lh->p == 0) { n = OPENSSL_realloc(lh->b, (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax)); if (n == NULL) { /* fputs("realloc error in lhash",stderr); */ lh->error++; return; } lh->num_contract_reallocs++; lh->num_alloc_nodes /= 2; lh->pmax /= 2; lh->p = lh->pmax - 1; lh->b = n; } else lh->p--; lh->num_nodes--; lh->num_contracts++; n1 = lh->b[(int)lh->p]; if (n1 == NULL) lh->b[(int)lh->p] = np; else { while (n1->next != NULL) n1 = n1->next; n1->next = np; } } static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash) { OPENSSL_LH_NODE **ret, *n1; unsigned long hash, nn; OPENSSL_LH_COMPFUNC cf; hash = (*(lh->hash)) (data); tsan_counter(&lh->num_hash_calls); *rhash = hash; nn = hash % lh->pmax; if (nn < lh->p) nn = hash % lh->num_alloc_nodes; cf = lh->comp; ret = &(lh->b[(int)nn]); for (n1 = *ret; n1 != NULL; n1 = n1->next) { tsan_counter(&lh->num_hash_comps); if (n1->hash != hash) { ret = &(n1->next); continue; } tsan_counter(&lh->num_comp_calls); if (cf(n1->data, data) == 0) break; ret = &(n1->next); } return ret; } /* * The following hash seems to work very well on normal text strings no * collisions on /usr/dict/words and it distributes on %2^n quite well, not * as good as MD5, but still good. */ unsigned long OPENSSL_LH_strhash(const char *c) { unsigned long ret = 0; long n; unsigned long v; int r; if ((c == NULL) || (*c == '\0')) return ret; n = 0x100; while (*c) { v = n | (*c); n += 0x100; r = (int)((v >> 2) ^ v) & 0x0f; ret = (ret << r) | (ret >> (32 - r)); ret &= 0xFFFFFFFFL; ret ^= v * v; c++; } return (ret >> 16) ^ ret; } unsigned long openssl_lh_strcasehash(const char *c) { unsigned long ret = 0; long n; unsigned long v; int r; if (c == NULL || *c == '\0') return ret; for (n = 0x100; *c != '\0'; n += 0x100) { v = n | ossl_tolower(*c); r = (int)((v >> 2) ^ v) & 0x0f; ret = (ret << r) | (ret >> (32 - r)); ret &= 0xFFFFFFFFL; ret ^= v * v; c++; } return (ret >> 16) ^ ret; } unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh) { return lh ? lh->num_items : 0; } unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh) { return lh->down_load; } void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load) { lh->down_load = down_load; } int OPENSSL_LH_error(OPENSSL_LHASH *lh) { return lh->error; } openssl-1.1.1f/crypto/lhash/lhash_local.h000066400000000000000000000025331364063235100204120ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/tsan_assist.h" struct lhash_node_st { void *data; struct lhash_node_st *next; unsigned long hash; }; struct lhash_st { OPENSSL_LH_NODE **b; OPENSSL_LH_COMPFUNC comp; OPENSSL_LH_HASHFUNC hash; unsigned int num_nodes; unsigned int num_alloc_nodes; unsigned int p; unsigned int pmax; unsigned long up_load; /* load times 256 */ unsigned long down_load; /* load times 256 */ unsigned long num_items; unsigned long num_expands; unsigned long num_expand_reallocs; unsigned long num_contracts; unsigned long num_contract_reallocs; TSAN_QUALIFIER unsigned long num_hash_calls; TSAN_QUALIFIER unsigned long num_comp_calls; unsigned long num_insert; unsigned long num_replace; unsigned long num_delete; unsigned long num_no_delete; TSAN_QUALIFIER unsigned long num_retrieve; TSAN_QUALIFIER unsigned long num_retrieve_miss; TSAN_QUALIFIER unsigned long num_hash_comps; int error; }; openssl-1.1.1f/crypto/md2/000077500000000000000000000000001364063235100153505ustar00rootroot00000000000000openssl-1.1.1f/crypto/md2/build.info000066400000000000000000000001141364063235100173200ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ md2_dgst.c md2_one.c openssl-1.1.1f/crypto/md2/md2_dgst.c000066400000000000000000000117541364063235100172270ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include /* * Implemented from RFC1319 The MD2 Message-Digest Algorithm */ #define UCHAR unsigned char static void md2_block(MD2_CTX *c, const unsigned char *d); /* * The magic S table - I have converted it to hex since it is basically just * a random byte string. */ static const MD2_INT S[256] = { 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01, 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13, 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C, 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA, 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16, 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12, 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49, 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A, 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F, 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21, 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27, 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03, 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1, 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6, 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6, 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1, 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20, 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02, 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6, 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F, 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A, 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26, 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09, 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52, 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA, 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A, 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D, 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39, 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4, 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A, 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A, 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14, }; const char *MD2_options(void) { if (sizeof(MD2_INT) == 1) return "md2(char)"; else return "md2(int)"; } int MD2_Init(MD2_CTX *c) { c->num = 0; memset(c->state, 0, sizeof(c->state)); memset(c->cksm, 0, sizeof(c->cksm)); memset(c->data, 0, sizeof(c->data)); return 1; } int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len) { register UCHAR *p; if (len == 0) return 1; p = c->data; if (c->num != 0) { if ((c->num + len) >= MD2_BLOCK) { memcpy(&(p[c->num]), data, MD2_BLOCK - c->num); md2_block(c, c->data); data += (MD2_BLOCK - c->num); len -= (MD2_BLOCK - c->num); c->num = 0; /* drop through and do the rest */ } else { memcpy(&(p[c->num]), data, len); /* data+=len; */ c->num += (int)len; return 1; } } /* * we now can process the input data in blocks of MD2_BLOCK chars and * save the leftovers to c->data. */ while (len >= MD2_BLOCK) { md2_block(c, data); data += MD2_BLOCK; len -= MD2_BLOCK; } memcpy(p, data, len); c->num = (int)len; return 1; } static void md2_block(MD2_CTX *c, const unsigned char *d) { register MD2_INT t, *sp1, *sp2; register int i, j; MD2_INT state[48]; sp1 = c->state; sp2 = c->cksm; j = sp2[MD2_BLOCK - 1]; for (i = 0; i < 16; i++) { state[i] = sp1[i]; state[i + 16] = t = d[i]; state[i + 32] = (t ^ sp1[i]); j = sp2[i] ^= S[t ^ j]; } t = 0; for (i = 0; i < 18; i++) { for (j = 0; j < 48; j += 8) { t = state[j + 0] ^= S[t]; t = state[j + 1] ^= S[t]; t = state[j + 2] ^= S[t]; t = state[j + 3] ^= S[t]; t = state[j + 4] ^= S[t]; t = state[j + 5] ^= S[t]; t = state[j + 6] ^= S[t]; t = state[j + 7] ^= S[t]; } t = (t + i) & 0xff; } memcpy(sp1, state, 16 * sizeof(MD2_INT)); OPENSSL_cleanse(state, 48 * sizeof(MD2_INT)); } int MD2_Final(unsigned char *md, MD2_CTX *c) { int i, v; register UCHAR *cp; register MD2_INT *p1, *p2; cp = c->data; p1 = c->state; p2 = c->cksm; v = MD2_BLOCK - c->num; for (i = c->num; i < MD2_BLOCK; i++) cp[i] = (UCHAR) v; md2_block(c, cp); for (i = 0; i < MD2_BLOCK; i++) cp[i] = (UCHAR) p2[i]; md2_block(c, cp); for (i = 0; i < 16; i++) md[i] = (UCHAR) (p1[i] & 0xff); OPENSSL_cleanse(c, sizeof(*c)); return 1; } openssl-1.1.1f/crypto/md2/md2_one.c000066400000000000000000000022551364063235100170430ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* * This is a separate file so that #defines in cryptlib.h can map my MD * functions to different names */ unsigned char *MD2(const unsigned char *d, size_t n, unsigned char *md) { MD2_CTX c; static unsigned char m[MD2_DIGEST_LENGTH]; if (md == NULL) md = m; if (!MD2_Init(&c)) return NULL; #ifndef CHARSET_EBCDIC MD2_Update(&c, d, n); #else { char temp[1024]; unsigned long chunk; while (n > 0) { chunk = (n > sizeof(temp)) ? sizeof(temp) : n; ebcdic2ascii(temp, d, chunk); MD2_Update(&c, temp, chunk); n -= chunk; d += chunk; } } #endif MD2_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); /* Security consideration */ return md; } openssl-1.1.1f/crypto/md4/000077500000000000000000000000001364063235100153525ustar00rootroot00000000000000openssl-1.1.1f/crypto/md4/build.info000066400000000000000000000001141364063235100173220ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ md4_dgst.c md4_one.c openssl-1.1.1f/crypto/md4/md4_dgst.c000066400000000000000000000106261364063235100172300ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "md4_local.h" /* * Implemented from RFC1186 The MD4 Message-Digest Algorithm */ #define INIT_DATA_A (unsigned long)0x67452301L #define INIT_DATA_B (unsigned long)0xefcdab89L #define INIT_DATA_C (unsigned long)0x98badcfeL #define INIT_DATA_D (unsigned long)0x10325476L int MD4_Init(MD4_CTX *c) { memset(c, 0, sizeof(*c)); c->A = INIT_DATA_A; c->B = INIT_DATA_B; c->C = INIT_DATA_C; c->D = INIT_DATA_D; return 1; } #ifndef md4_block_data_order # ifdef X # undef X # endif void md4_block_data_order(MD4_CTX *c, const void *data_, size_t num) { const unsigned char *data = data_; register unsigned MD32_REG_T A, B, C, D, l; # ifndef MD32_XARRAY /* See comment in crypto/sha/sha_local.h for details. */ unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15; # define X(i) XX##i # else MD4_LONG XX[MD4_LBLOCK]; # define X(i) XX[i] # endif A = c->A; B = c->B; C = c->C; D = c->D; for (; num--;) { (void)HOST_c2l(data, l); X(0) = l; (void)HOST_c2l(data, l); X(1) = l; /* Round 0 */ R0(A, B, C, D, X(0), 3, 0); (void)HOST_c2l(data, l); X(2) = l; R0(D, A, B, C, X(1), 7, 0); (void)HOST_c2l(data, l); X(3) = l; R0(C, D, A, B, X(2), 11, 0); (void)HOST_c2l(data, l); X(4) = l; R0(B, C, D, A, X(3), 19, 0); (void)HOST_c2l(data, l); X(5) = l; R0(A, B, C, D, X(4), 3, 0); (void)HOST_c2l(data, l); X(6) = l; R0(D, A, B, C, X(5), 7, 0); (void)HOST_c2l(data, l); X(7) = l; R0(C, D, A, B, X(6), 11, 0); (void)HOST_c2l(data, l); X(8) = l; R0(B, C, D, A, X(7), 19, 0); (void)HOST_c2l(data, l); X(9) = l; R0(A, B, C, D, X(8), 3, 0); (void)HOST_c2l(data, l); X(10) = l; R0(D, A, B, C, X(9), 7, 0); (void)HOST_c2l(data, l); X(11) = l; R0(C, D, A, B, X(10), 11, 0); (void)HOST_c2l(data, l); X(12) = l; R0(B, C, D, A, X(11), 19, 0); (void)HOST_c2l(data, l); X(13) = l; R0(A, B, C, D, X(12), 3, 0); (void)HOST_c2l(data, l); X(14) = l; R0(D, A, B, C, X(13), 7, 0); (void)HOST_c2l(data, l); X(15) = l; R0(C, D, A, B, X(14), 11, 0); R0(B, C, D, A, X(15), 19, 0); /* Round 1 */ R1(A, B, C, D, X(0), 3, 0x5A827999L); R1(D, A, B, C, X(4), 5, 0x5A827999L); R1(C, D, A, B, X(8), 9, 0x5A827999L); R1(B, C, D, A, X(12), 13, 0x5A827999L); R1(A, B, C, D, X(1), 3, 0x5A827999L); R1(D, A, B, C, X(5), 5, 0x5A827999L); R1(C, D, A, B, X(9), 9, 0x5A827999L); R1(B, C, D, A, X(13), 13, 0x5A827999L); R1(A, B, C, D, X(2), 3, 0x5A827999L); R1(D, A, B, C, X(6), 5, 0x5A827999L); R1(C, D, A, B, X(10), 9, 0x5A827999L); R1(B, C, D, A, X(14), 13, 0x5A827999L); R1(A, B, C, D, X(3), 3, 0x5A827999L); R1(D, A, B, C, X(7), 5, 0x5A827999L); R1(C, D, A, B, X(11), 9, 0x5A827999L); R1(B, C, D, A, X(15), 13, 0x5A827999L); /* Round 2 */ R2(A, B, C, D, X(0), 3, 0x6ED9EBA1L); R2(D, A, B, C, X(8), 9, 0x6ED9EBA1L); R2(C, D, A, B, X(4), 11, 0x6ED9EBA1L); R2(B, C, D, A, X(12), 15, 0x6ED9EBA1L); R2(A, B, C, D, X(2), 3, 0x6ED9EBA1L); R2(D, A, B, C, X(10), 9, 0x6ED9EBA1L); R2(C, D, A, B, X(6), 11, 0x6ED9EBA1L); R2(B, C, D, A, X(14), 15, 0x6ED9EBA1L); R2(A, B, C, D, X(1), 3, 0x6ED9EBA1L); R2(D, A, B, C, X(9), 9, 0x6ED9EBA1L); R2(C, D, A, B, X(5), 11, 0x6ED9EBA1L); R2(B, C, D, A, X(13), 15, 0x6ED9EBA1L); R2(A, B, C, D, X(3), 3, 0x6ED9EBA1L); R2(D, A, B, C, X(11), 9, 0x6ED9EBA1L); R2(C, D, A, B, X(7), 11, 0x6ED9EBA1L); R2(B, C, D, A, X(15), 15, 0x6ED9EBA1L); A = c->A += A; B = c->B += B; C = c->C += C; D = c->D += D; } } #endif openssl-1.1.1f/crypto/md4/md4_local.h000066400000000000000000000036541364063235100173710ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include void md4_block_data_order(MD4_CTX *c, const void *p, size_t num); #define DATA_ORDER_IS_LITTLE_ENDIAN #define HASH_LONG MD4_LONG #define HASH_CTX MD4_CTX #define HASH_CBLOCK MD4_CBLOCK #define HASH_UPDATE MD4_Update #define HASH_TRANSFORM MD4_Transform #define HASH_FINAL MD4_Final #define HASH_MAKE_STRING(c,s) do { \ unsigned long ll; \ ll=(c)->A; (void)HOST_l2c(ll,(s)); \ ll=(c)->B; (void)HOST_l2c(ll,(s)); \ ll=(c)->C; (void)HOST_l2c(ll,(s)); \ ll=(c)->D; (void)HOST_l2c(ll,(s)); \ } while (0) #define HASH_BLOCK_DATA_ORDER md4_block_data_order #include "crypto/md32_common.h" /*- #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) #define G(x,y,z) (((x) & (y)) | ((x) & ((z))) | ((y) & ((z)))) */ /* * As pointed out by Wei Dai, the above can be simplified to the code * below. Wei attributes these optimizations to Peter Gutmann's SHS code, * and he attributes it to Rich Schroeppel. */ #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) #define G(b,c,d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) #define H(b,c,d) ((b) ^ (c) ^ (d)) #define R0(a,b,c,d,k,s,t) { \ a+=((k)+(t)+F((b),(c),(d))); \ a=ROTATE(a,s); }; #define R1(a,b,c,d,k,s,t) { \ a+=((k)+(t)+G((b),(c),(d))); \ a=ROTATE(a,s); }; #define R2(a,b,c,d,k,s,t) { \ a+=((k)+(t)+H((b),(c),(d))); \ a=ROTATE(a,s); }; openssl-1.1.1f/crypto/md4/md4_one.c000066400000000000000000000022111364063235100170370ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #ifdef CHARSET_EBCDIC # include #endif unsigned char *MD4(const unsigned char *d, size_t n, unsigned char *md) { MD4_CTX c; static unsigned char m[MD4_DIGEST_LENGTH]; if (md == NULL) md = m; if (!MD4_Init(&c)) return NULL; #ifndef CHARSET_EBCDIC MD4_Update(&c, d, n); #else { char temp[1024]; unsigned long chunk; while (n > 0) { chunk = (n > sizeof(temp)) ? sizeof(temp) : n; ebcdic2ascii(temp, d, chunk); MD4_Update(&c, temp, chunk); n -= chunk; d += chunk; } } #endif MD4_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); /* security consideration */ return md; } openssl-1.1.1f/crypto/md5/000077500000000000000000000000001364063235100153535ustar00rootroot00000000000000openssl-1.1.1f/crypto/md5/asm/000077500000000000000000000000001364063235100161335ustar00rootroot00000000000000openssl-1.1.1f/crypto/md5/asm/md5-586.pl000066400000000000000000000175161364063235100175070ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Normal is the # md5_block_x86(MD5_CTX *c, ULONG *X); # version, non-normal is the # md5_block_x86(MD5_CTX *c, ULONG *X,int blocks); $normal=0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $A="eax"; $B="ebx"; $C="ecx"; $D="edx"; $tmp1="edi"; $tmp2="ebp"; $X="esi"; # What we need to load into $tmp for the next round %Ltmp1=("R0",&Np($C), "R1",&Np($C), "R2",&Np($C), "R3",&Np($D)); @xo=( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, # R0 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, # R1 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, # R2 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9, # R3 ); &md5_block("md5_block_asm_data_order"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub Np { local($p)=@_; local(%n)=($A,$D,$B,$A,$C,$B,$D,$C); return($n{$p}); } sub R0 { local($pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_; &mov($tmp1,$C) if $pos < 0; &mov($tmp2,&DWP($xo[$ki]*4,$K,"",0)) if $pos < 0; # very first one # body proper &comment("R0 $ki"); &xor($tmp1,$d); # F function - part 2 &and($tmp1,$b); # F function - part 3 &lea($a,&DWP($t,$a,$tmp2,1)); &xor($tmp1,$d); # F function - part 4 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if ($pos != 2); &add($a,$tmp1); &rotl($a,$s); &mov($tmp1,&Np($c)) if $pos < 1; # next tmp1 for R0 &mov($tmp1,&Np($c)) if $pos == 1; # next tmp1 for R1 &add($a,$b); } sub R1 { local($pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_; &comment("R1 $ki"); &xor($tmp1,$b); # G function - part 2 &and($tmp1,$d); # G function - part 3 &lea($a,&DWP($t,$a,$tmp2,1)); &xor($tmp1,$c); # G function - part 4 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if ($pos != 2); &add($a,$tmp1); &mov($tmp1,&Np($c)) if $pos < 1; # G function - part 1 &mov($tmp1,&Np($c)) if $pos == 1; # G function - part 1 &rotl($a,$s); &add($a,$b); } sub R2 { local($n,$pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_; # This one is different, only 3 logical operations if (($n & 1) == 0) { &comment("R2 $ki"); # make sure to do 'D' first, not 'B', else we clash with # the last add from the previous round. &xor($tmp1,$d); # H function - part 2 &xor($tmp1,$b); # H function - part 3 &lea($a,&DWP($t,$a,$tmp2,1)); &add($a,$tmp1); &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)); &rotl($a,$s); &mov($tmp1,&Np($c)); } else { &comment("R2 $ki"); # make sure to do 'D' first, not 'B', else we clash with # the last add from the previous round. &add($b,$c); # MOVED FORWARD &xor($tmp1,$d); # H function - part 2 &lea($a,&DWP($t,$a,$tmp2,1)); &xor($tmp1,$b); # H function - part 3 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if ($pos != 2); &add($a,$tmp1); &mov($tmp1,&Np($c)) if $pos < 1; # H function - part 1 &mov($tmp1,-1) if $pos == 1; # I function - part 1 &rotl($a,$s); &add($a,$b); } } sub R3 { local($pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_; &comment("R3 $ki"); # ¬($tmp1) &xor($tmp1,$d) if $pos < 0; # I function - part 2 &or($tmp1,$b); # I function - part 3 &lea($a,&DWP($t,$a,$tmp2,1)); &xor($tmp1,$c); # I function - part 4 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if $pos != 2; # load X/k value &mov($tmp2,&wparam(0)) if $pos == 2; &add($a,$tmp1); &mov($tmp1,-1) if $pos < 1; # H function - part 1 &add($K,64) if $pos >=1 && !$normal; &rotl($a,$s); &xor($tmp1,&Np($d)) if $pos <= 0; # I function - part = first time &mov($tmp1,&DWP( 0,$tmp2,"",0)) if $pos > 0; &add($a,$b); } sub md5_block { local($name)=@_; &function_begin_B($name,"",3); # parameter 1 is the MD5_CTX structure. # A 0 # B 4 # C 8 # D 12 &push("esi"); &push("edi"); &mov($tmp1, &wparam(0)); # edi &mov($X, &wparam(1)); # esi &mov($C, &wparam(2)); &push("ebp"); &shl($C, 6); &push("ebx"); &add($C, $X); # offset we end at &sub($C, 64); &mov($A, &DWP( 0,$tmp1,"",0)); &push($C); # Put on the TOS &mov($B, &DWP( 4,$tmp1,"",0)); &mov($C, &DWP( 8,$tmp1,"",0)); &mov($D, &DWP(12,$tmp1,"",0)); &set_label("start") unless $normal; &comment(""); &comment("R0 section"); &R0(-2,$A,$B,$C,$D,$X, 0, 7,0xd76aa478); &R0( 0,$D,$A,$B,$C,$X, 1,12,0xe8c7b756); &R0( 0,$C,$D,$A,$B,$X, 2,17,0x242070db); &R0( 0,$B,$C,$D,$A,$X, 3,22,0xc1bdceee); &R0( 0,$A,$B,$C,$D,$X, 4, 7,0xf57c0faf); &R0( 0,$D,$A,$B,$C,$X, 5,12,0x4787c62a); &R0( 0,$C,$D,$A,$B,$X, 6,17,0xa8304613); &R0( 0,$B,$C,$D,$A,$X, 7,22,0xfd469501); &R0( 0,$A,$B,$C,$D,$X, 8, 7,0x698098d8); &R0( 0,$D,$A,$B,$C,$X, 9,12,0x8b44f7af); &R0( 0,$C,$D,$A,$B,$X,10,17,0xffff5bb1); &R0( 0,$B,$C,$D,$A,$X,11,22,0x895cd7be); &R0( 0,$A,$B,$C,$D,$X,12, 7,0x6b901122); &R0( 0,$D,$A,$B,$C,$X,13,12,0xfd987193); &R0( 0,$C,$D,$A,$B,$X,14,17,0xa679438e); &R0( 1,$B,$C,$D,$A,$X,15,22,0x49b40821); &comment(""); &comment("R1 section"); &R1(-1,$A,$B,$C,$D,$X,16, 5,0xf61e2562); &R1( 0,$D,$A,$B,$C,$X,17, 9,0xc040b340); &R1( 0,$C,$D,$A,$B,$X,18,14,0x265e5a51); &R1( 0,$B,$C,$D,$A,$X,19,20,0xe9b6c7aa); &R1( 0,$A,$B,$C,$D,$X,20, 5,0xd62f105d); &R1( 0,$D,$A,$B,$C,$X,21, 9,0x02441453); &R1( 0,$C,$D,$A,$B,$X,22,14,0xd8a1e681); &R1( 0,$B,$C,$D,$A,$X,23,20,0xe7d3fbc8); &R1( 0,$A,$B,$C,$D,$X,24, 5,0x21e1cde6); &R1( 0,$D,$A,$B,$C,$X,25, 9,0xc33707d6); &R1( 0,$C,$D,$A,$B,$X,26,14,0xf4d50d87); &R1( 0,$B,$C,$D,$A,$X,27,20,0x455a14ed); &R1( 0,$A,$B,$C,$D,$X,28, 5,0xa9e3e905); &R1( 0,$D,$A,$B,$C,$X,29, 9,0xfcefa3f8); &R1( 0,$C,$D,$A,$B,$X,30,14,0x676f02d9); &R1( 1,$B,$C,$D,$A,$X,31,20,0x8d2a4c8a); &comment(""); &comment("R2 section"); &R2( 0,-1,$A,$B,$C,$D,$X,32, 4,0xfffa3942); &R2( 1, 0,$D,$A,$B,$C,$X,33,11,0x8771f681); &R2( 2, 0,$C,$D,$A,$B,$X,34,16,0x6d9d6122); &R2( 3, 0,$B,$C,$D,$A,$X,35,23,0xfde5380c); &R2( 4, 0,$A,$B,$C,$D,$X,36, 4,0xa4beea44); &R2( 5, 0,$D,$A,$B,$C,$X,37,11,0x4bdecfa9); &R2( 6, 0,$C,$D,$A,$B,$X,38,16,0xf6bb4b60); &R2( 7, 0,$B,$C,$D,$A,$X,39,23,0xbebfbc70); &R2( 8, 0,$A,$B,$C,$D,$X,40, 4,0x289b7ec6); &R2( 9, 0,$D,$A,$B,$C,$X,41,11,0xeaa127fa); &R2(10, 0,$C,$D,$A,$B,$X,42,16,0xd4ef3085); &R2(11, 0,$B,$C,$D,$A,$X,43,23,0x04881d05); &R2(12, 0,$A,$B,$C,$D,$X,44, 4,0xd9d4d039); &R2(13, 0,$D,$A,$B,$C,$X,45,11,0xe6db99e5); &R2(14, 0,$C,$D,$A,$B,$X,46,16,0x1fa27cf8); &R2(15, 1,$B,$C,$D,$A,$X,47,23,0xc4ac5665); &comment(""); &comment("R3 section"); &R3(-1,$A,$B,$C,$D,$X,48, 6,0xf4292244); &R3( 0,$D,$A,$B,$C,$X,49,10,0x432aff97); &R3( 0,$C,$D,$A,$B,$X,50,15,0xab9423a7); &R3( 0,$B,$C,$D,$A,$X,51,21,0xfc93a039); &R3( 0,$A,$B,$C,$D,$X,52, 6,0x655b59c3); &R3( 0,$D,$A,$B,$C,$X,53,10,0x8f0ccc92); &R3( 0,$C,$D,$A,$B,$X,54,15,0xffeff47d); &R3( 0,$B,$C,$D,$A,$X,55,21,0x85845dd1); &R3( 0,$A,$B,$C,$D,$X,56, 6,0x6fa87e4f); &R3( 0,$D,$A,$B,$C,$X,57,10,0xfe2ce6e0); &R3( 0,$C,$D,$A,$B,$X,58,15,0xa3014314); &R3( 0,$B,$C,$D,$A,$X,59,21,0x4e0811a1); &R3( 0,$A,$B,$C,$D,$X,60, 6,0xf7537e82); &R3( 0,$D,$A,$B,$C,$X,61,10,0xbd3af235); &R3( 0,$C,$D,$A,$B,$X,62,15,0x2ad7d2bb); &R3( 2,$B,$C,$D,$A,$X,63,21,0xeb86d391); # &mov($tmp2,&wparam(0)); # done in the last R3 # &mov($tmp1, &DWP( 0,$tmp2,"",0)); # done is the last R3 &add($A,$tmp1); &mov($tmp1, &DWP( 4,$tmp2,"",0)); &add($B,$tmp1); &mov($tmp1, &DWP( 8,$tmp2,"",0)); &add($C,$tmp1); &mov($tmp1, &DWP(12,$tmp2,"",0)); &add($D,$tmp1); &mov(&DWP( 0,$tmp2,"",0),$A); &mov(&DWP( 4,$tmp2,"",0),$B); &mov($tmp1,&swtmp(0)) unless $normal; &mov(&DWP( 8,$tmp2,"",0),$C); &mov(&DWP(12,$tmp2,"",0),$D); &cmp($tmp1,$X) unless $normal; # check count &jae(&label("start")) unless $normal; &pop("eax"); # pop the temp variable off the stack &pop("ebx"); &pop("ebp"); &pop("edi"); &pop("esi"); &ret(); &function_end_B($name); } openssl-1.1.1f/crypto/md5/asm/md5-sparcv9.pl000066400000000000000000000236211364063235100205460ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Hardware SPARC T4 support by David S. Miller. # ==================================================================== # MD5 for SPARCv9, 6.9 cycles per byte on UltraSPARC, >40% faster than # code generated by Sun C 5.2. # SPARC T4 MD5 hardware achieves 3.20 cycles per byte, which is 2.1x # faster than software. Multi-process benchmark saturates at 12x # single-process result on 8-core processor, or ~11GBps per 2.85GHz # socket. $output=pop; open STDOUT,">$output"; use integer; ($ctx,$inp,$len)=("%i0","%i1","%i2"); # input arguments # 64-bit values @X=("%o0","%o1","%o2","%o3","%o4","%o5","%o7","%g1","%g2"); $tx="%g3"; ($AB,$CD)=("%g4","%g5"); # 32-bit values @V=($A,$B,$C,$D)=map("%l$_",(0..3)); ($t1,$t2,$t3,$saved_asi)=map("%l$_",(4..7)); ($shr,$shl1,$shl2)=("%i3","%i4","%i5"); my @K=( 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee, 0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501, 0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be, 0x6b901122,0xfd987193,0xa679438e,0x49b40821, 0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa, 0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8, 0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed, 0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a, 0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c, 0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70, 0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05, 0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665, 0xf4292244,0x432aff97,0xab9423a7,0xfc93a039, 0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1, 0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1, 0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391, 0 ); sub R0 { my ($i,$a,$b,$c,$d) = @_; my $rot = (7,12,17,22)[$i%4]; my $j = ($i+1)/2; if ($i&1) { $code.=<<___; srlx @X[$j],$shr,@X[$j] ! align X[`$i+1`] and $b,$t1,$t1 ! round $i sllx @X[$j+1],$shl1,$tx add $t2,$a,$a sllx $tx,$shl2,$tx xor $d,$t1,$t1 or $tx,@X[$j],@X[$j] sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add @X[$j],$t2,$t2 ! X[`$i+1`]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 xor $b,$c,$t1 add $t3,$a,$a ___ } else { $code.=<<___; srlx @X[$j],32,$tx ! extract X[`2*$j+1`] and $b,$t1,$t1 ! round $i add $t2,$a,$a xor $d,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $tx,$t2,$t2 ! X[`2*$j+1`]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 xor $b,$c,$t1 add $t3,$a,$a ___ } } sub R0_1 { my ($i,$a,$b,$c,$d) = @_; my $rot = (7,12,17,22)[$i%4]; $code.=<<___; srlx @X[0],32,$tx ! extract X[1] and $b,$t1,$t1 ! round $i add $t2,$a,$a xor $d,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $tx,$t2,$t2 ! X[1]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 andn $b,$c,$t1 add $t3,$a,$a ___ } sub R1 { my ($i,$a,$b,$c,$d) = @_; my $rot = (5,9,14,20)[$i%4]; my $j = $i<31 ? (1+5*($i+1))%16 : (5+3*($i+1))%16; my $xi = @X[$j/2]; $code.=<<___ if ($j&1 && ($xi=$tx)); srlx @X[$j/2],32,$xi ! extract X[$j] ___ $code.=<<___; and $b,$d,$t3 ! round $i add $t2,$a,$a or $t3,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $xi,$t2,$t2 ! X[$j]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 `$i<31?"andn":"xor"` $b,$c,$t1 add $t3,$a,$a ___ } sub R2 { my ($i,$a,$b,$c,$d) = @_; my $rot = (4,11,16,23)[$i%4]; my $j = $i<47 ? (5+3*($i+1))%16 : (0+7*($i+1))%16; my $xi = @X[$j/2]; $code.=<<___ if ($j&1 && ($xi=$tx)); srlx @X[$j/2],32,$xi ! extract X[$j] ___ $code.=<<___; add $t2,$a,$a ! round $i xor $b,$t1,$t1 sethi %hi(@K[$i+1]),$t2 add $t1,$a,$a or $t2,%lo(@K[$i+1]),$t2 sll $a,$rot,$t3 add $xi,$t2,$t2 ! X[$j]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 xor $b,$c,$t1 add $t3,$a,$a ___ } sub R3 { my ($i,$a,$b,$c,$d) = @_; my $rot = (6,10,15,21)[$i%4]; my $j = (0+7*($i+1))%16; my $xi = @X[$j/2]; $code.=<<___; add $t2,$a,$a ! round $i ___ $code.=<<___ if ($j&1 && ($xi=$tx)); srlx @X[$j/2],32,$xi ! extract X[$j] ___ $code.=<<___; orn $b,$d,$t1 sethi %hi(@K[$i+1]),$t2 xor $c,$t1,$t1 or $t2,%lo(@K[$i+1]),$t2 add $t1,$a,$a sll $a,$rot,$t3 add $xi,$t2,$t2 ! X[$j]+K[`$i+1`] srl $a,32-$rot,$a add $b,$t3,$t3 add $t3,$a,$a ___ } $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .globl md5_block_asm_data_order .align 32 md5_block_asm_data_order: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1] andcc %g1, CFR_MD5, %g0 be .Lsoftware nop mov 4, %g1 andcc %o1, 0x7, %g0 lda [%o0 + %g0]0x88, %f0 ! load context lda [%o0 + %g1]0x88, %f1 add %o0, 8, %o0 lda [%o0 + %g0]0x88, %f2 lda [%o0 + %g1]0x88, %f3 bne,pn %icc, .Lhwunaligned sub %o0, 8, %o0 .Lhw_loop: ldd [%o1 + 0x00], %f8 ldd [%o1 + 0x08], %f10 ldd [%o1 + 0x10], %f12 ldd [%o1 + 0x18], %f14 ldd [%o1 + 0x20], %f16 ldd [%o1 + 0x28], %f18 ldd [%o1 + 0x30], %f20 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x38], %f22 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 .word 0x81b02800 ! MD5 bne,pt SIZE_T_CC, .Lhw_loop nop .Lhwfinish: sta %f0, [%o0 + %g0]0x88 ! store context sta %f1, [%o0 + %g1]0x88 add %o0, 8, %o0 sta %f2, [%o0 + %g0]0x88 sta %f3, [%o0 + %g1]0x88 retl nop .align 8 .Lhwunaligned: alignaddr %o1, %g0, %o1 ldd [%o1 + 0x00], %f10 .Lhwunaligned_loop: ldd [%o1 + 0x08], %f12 ldd [%o1 + 0x10], %f14 ldd [%o1 + 0x18], %f16 ldd [%o1 + 0x20], %f18 ldd [%o1 + 0x28], %f20 ldd [%o1 + 0x30], %f22 ldd [%o1 + 0x38], %f24 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x40], %f26 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 faligndata %f10, %f12, %f8 faligndata %f12, %f14, %f10 faligndata %f14, %f16, %f12 faligndata %f16, %f18, %f14 faligndata %f18, %f20, %f16 faligndata %f20, %f22, %f18 faligndata %f22, %f24, %f20 faligndata %f24, %f26, %f22 .word 0x81b02800 ! MD5 bne,pt SIZE_T_CC, .Lhwunaligned_loop for %f26, %f26, %f10 ! %f10=%f26 ba .Lhwfinish nop .align 16 .Lsoftware: save %sp,-STACK_FRAME,%sp rd %asi,$saved_asi wr %g0,0x88,%asi ! ASI_PRIMARY_LITTLE and $inp,7,$shr andn $inp,7,$inp sll $shr,3,$shr ! *=8 mov 56,$shl2 ld [$ctx+0],$A sub $shl2,$shr,$shl2 ld [$ctx+4],$B and $shl2,32,$shl1 add $shl2,8,$shl2 ld [$ctx+8],$C sub $shl2,$shl1,$shl2 ! shr+shl1+shl2==64 ld [$ctx+12],$D nop .Loop: cmp $shr,0 ! was inp aligned? ldxa [$inp+0]%asi,@X[0] ! load little-endian input ldxa [$inp+8]%asi,@X[1] ldxa [$inp+16]%asi,@X[2] ldxa [$inp+24]%asi,@X[3] ldxa [$inp+32]%asi,@X[4] sllx $A,32,$AB ! pack A,B ldxa [$inp+40]%asi,@X[5] sllx $C,32,$CD ! pack C,D ldxa [$inp+48]%asi,@X[6] or $B,$AB,$AB ldxa [$inp+56]%asi,@X[7] or $D,$CD,$CD bnz,a,pn %icc,.+8 ldxa [$inp+64]%asi,@X[8] srlx @X[0],$shr,@X[0] ! align X[0] sllx @X[1],$shl1,$tx sethi %hi(@K[0]),$t2 sllx $tx,$shl2,$tx or $t2,%lo(@K[0]),$t2 or $tx,@X[0],@X[0] xor $C,$D,$t1 add @X[0],$t2,$t2 ! X[0]+K[0] ___ for ($i=0;$i<15;$i++) { &R0($i,@V); unshift(@V,pop(@V)); } for (;$i<16;$i++) { &R0_1($i,@V); unshift(@V,pop(@V)); } for (;$i<32;$i++) { &R1($i,@V); unshift(@V,pop(@V)); } for (;$i<48;$i++) { &R2($i,@V); unshift(@V,pop(@V)); } for (;$i<64;$i++) { &R3($i,@V); unshift(@V,pop(@V)); } $code.=<<___; srlx $AB,32,$t1 ! unpack A,B,C,D and accumulate add $inp,64,$inp ! advance inp srlx $CD,32,$t2 add $t1,$A,$A subcc $len,1,$len ! done yet? add $AB,$B,$B add $t2,$C,$C add $CD,$D,$D srl $B,0,$B ! clruw $B bne SIZE_T_CC,.Loop srl $D,0,$D ! clruw $D st $A,[$ctx+0] ! write out ctx st $B,[$ctx+4] st $C,[$ctx+8] st $D,[$ctx+12] wr %g0,$saved_asi,%asi ret restore .type md5_block_asm_data_order,#function .size md5_block_asm_data_order,(.-md5_block_asm_data_order) .asciz "MD5 block transform for SPARCv9, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my $ref,$opf; my %visopf = ( "faligndata" => 0x048, "for" => 0x07c ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unalignaddr { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my $ref="$mnemonic\t$rs1,$rs2,$rd"; foreach ($rs1,$rs2,$rd) { if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } else { return $ref; } } return sprintf ".word\t0x%08x !%s", 0x81b00300|$rd<<25|$rs1<<14|$rs2, $ref; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /ge; s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unalignaddr($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/md5/asm/md5-x86_64.pl000077500000000000000000000312001364063235100201100ustar00rootroot00000000000000#! /usr/bin/env perl # Author: Marc Bevand # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # MD5 optimized for AMD64. use strict; my $code; # round1_step() does: # dst = x + ((dst + F(x,y,z) + X[k] + T_i) <<< s) # %r10d = X[k_next] # %r11d = z' (copy of z for the next step) # Each round1_step() takes about 5.3 clocks (9 instructions, 1.7 IPC) sub round1_step { my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_; $code .= " mov 0*4(%rsi), %r10d /* (NEXT STEP) X[0] */\n" if ($pos == -1); $code .= " mov %edx, %r11d /* (NEXT STEP) z' = %edx */\n" if ($pos == -1); $code .= <A mov 1*4(%rbp), %ebx # ebx = ctx->B mov 2*4(%rbp), %ecx # ecx = ctx->C mov 3*4(%rbp), %edx # edx = ctx->D # end is 'rdi' # ptr is 'rsi' # A is 'eax' # B is 'ebx' # C is 'ecx' # D is 'edx' cmp %rdi, %rsi # cmp end with ptr je .Lend # jmp if ptr == end # BEGIN of loop over 16-word blocks .Lloop: # save old values of A, B, C, D mov %eax, %r8d mov %ebx, %r9d mov %ecx, %r14d mov %edx, %r15d EOF round1_step(-1,'%eax','%ebx','%ecx','%edx', '1','0xd76aa478', '7'); round1_step( 0,'%edx','%eax','%ebx','%ecx', '2','0xe8c7b756','12'); round1_step( 0,'%ecx','%edx','%eax','%ebx', '3','0x242070db','17'); round1_step( 0,'%ebx','%ecx','%edx','%eax', '4','0xc1bdceee','22'); round1_step( 0,'%eax','%ebx','%ecx','%edx', '5','0xf57c0faf', '7'); round1_step( 0,'%edx','%eax','%ebx','%ecx', '6','0x4787c62a','12'); round1_step( 0,'%ecx','%edx','%eax','%ebx', '7','0xa8304613','17'); round1_step( 0,'%ebx','%ecx','%edx','%eax', '8','0xfd469501','22'); round1_step( 0,'%eax','%ebx','%ecx','%edx', '9','0x698098d8', '7'); round1_step( 0,'%edx','%eax','%ebx','%ecx','10','0x8b44f7af','12'); round1_step( 0,'%ecx','%edx','%eax','%ebx','11','0xffff5bb1','17'); round1_step( 0,'%ebx','%ecx','%edx','%eax','12','0x895cd7be','22'); round1_step( 0,'%eax','%ebx','%ecx','%edx','13','0x6b901122', '7'); round1_step( 0,'%edx','%eax','%ebx','%ecx','14','0xfd987193','12'); round1_step( 0,'%ecx','%edx','%eax','%ebx','15','0xa679438e','17'); round1_step( 1,'%ebx','%ecx','%edx','%eax', '1','0x49b40821','22'); round2_step(-1,'%eax','%ebx','%ecx','%edx', '6','0xf61e2562', '5'); round2_step( 0,'%edx','%eax','%ebx','%ecx','11','0xc040b340', '9'); round2_step( 0,'%ecx','%edx','%eax','%ebx', '0','0x265e5a51','14'); round2_step( 0,'%ebx','%ecx','%edx','%eax', '5','0xe9b6c7aa','20'); round2_step( 0,'%eax','%ebx','%ecx','%edx','10','0xd62f105d', '5'); round2_step( 0,'%edx','%eax','%ebx','%ecx','15', '0x2441453', '9'); round2_step( 0,'%ecx','%edx','%eax','%ebx', '4','0xd8a1e681','14'); round2_step( 0,'%ebx','%ecx','%edx','%eax', '9','0xe7d3fbc8','20'); round2_step( 0,'%eax','%ebx','%ecx','%edx','14','0x21e1cde6', '5'); round2_step( 0,'%edx','%eax','%ebx','%ecx', '3','0xc33707d6', '9'); round2_step( 0,'%ecx','%edx','%eax','%ebx', '8','0xf4d50d87','14'); round2_step( 0,'%ebx','%ecx','%edx','%eax','13','0x455a14ed','20'); round2_step( 0,'%eax','%ebx','%ecx','%edx', '2','0xa9e3e905', '5'); round2_step( 0,'%edx','%eax','%ebx','%ecx', '7','0xfcefa3f8', '9'); round2_step( 0,'%ecx','%edx','%eax','%ebx','12','0x676f02d9','14'); round2_step( 1,'%ebx','%ecx','%edx','%eax', '5','0x8d2a4c8a','20'); round3_step(-1,'%eax','%ebx','%ecx','%edx', '8','0xfffa3942', '4'); round3_step( 0,'%edx','%eax','%ebx','%ecx','11','0x8771f681','11'); round3_step( 0,'%ecx','%edx','%eax','%ebx','14','0x6d9d6122','16'); round3_step( 0,'%ebx','%ecx','%edx','%eax', '1','0xfde5380c','23'); round3_step( 0,'%eax','%ebx','%ecx','%edx', '4','0xa4beea44', '4'); round3_step( 0,'%edx','%eax','%ebx','%ecx', '7','0x4bdecfa9','11'); round3_step( 0,'%ecx','%edx','%eax','%ebx','10','0xf6bb4b60','16'); round3_step( 0,'%ebx','%ecx','%edx','%eax','13','0xbebfbc70','23'); round3_step( 0,'%eax','%ebx','%ecx','%edx', '0','0x289b7ec6', '4'); round3_step( 0,'%edx','%eax','%ebx','%ecx', '3','0xeaa127fa','11'); round3_step( 0,'%ecx','%edx','%eax','%ebx', '6','0xd4ef3085','16'); round3_step( 0,'%ebx','%ecx','%edx','%eax', '9', '0x4881d05','23'); round3_step( 0,'%eax','%ebx','%ecx','%edx','12','0xd9d4d039', '4'); round3_step( 0,'%edx','%eax','%ebx','%ecx','15','0xe6db99e5','11'); round3_step( 0,'%ecx','%edx','%eax','%ebx', '2','0x1fa27cf8','16'); round3_step( 1,'%ebx','%ecx','%edx','%eax', '0','0xc4ac5665','23'); round4_step(-1,'%eax','%ebx','%ecx','%edx', '7','0xf4292244', '6'); round4_step( 0,'%edx','%eax','%ebx','%ecx','14','0x432aff97','10'); round4_step( 0,'%ecx','%edx','%eax','%ebx', '5','0xab9423a7','15'); round4_step( 0,'%ebx','%ecx','%edx','%eax','12','0xfc93a039','21'); round4_step( 0,'%eax','%ebx','%ecx','%edx', '3','0x655b59c3', '6'); round4_step( 0,'%edx','%eax','%ebx','%ecx','10','0x8f0ccc92','10'); round4_step( 0,'%ecx','%edx','%eax','%ebx', '1','0xffeff47d','15'); round4_step( 0,'%ebx','%ecx','%edx','%eax', '8','0x85845dd1','21'); round4_step( 0,'%eax','%ebx','%ecx','%edx','15','0x6fa87e4f', '6'); round4_step( 0,'%edx','%eax','%ebx','%ecx', '6','0xfe2ce6e0','10'); round4_step( 0,'%ecx','%edx','%eax','%ebx','13','0xa3014314','15'); round4_step( 0,'%ebx','%ecx','%edx','%eax', '4','0x4e0811a1','21'); round4_step( 0,'%eax','%ebx','%ecx','%edx','11','0xf7537e82', '6'); round4_step( 0,'%edx','%eax','%ebx','%ecx', '2','0xbd3af235','10'); round4_step( 0,'%ecx','%edx','%eax','%ebx', '9','0x2ad7d2bb','15'); round4_step( 1,'%ebx','%ecx','%edx','%eax', '0','0xeb86d391','21'); $code .= <A = A mov %ebx, 1*4(%rbp) # ctx->B = B mov %ecx, 2*4(%rbp) # ctx->C = C mov %edx, 3*4(%rbp) # ctx->D = D mov (%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r12 .cfi_restore %r12 mov 24(%rsp),%rbx .cfi_restore %rbx mov 32(%rsp),%rbp .cfi_restore %rbp add \$40,%rsp .cfi_adjust_cfa_offset -40 .Lepilogue: ret .cfi_endproc .size md5_block_asm_data_order,.-md5_block_asm_data_order EOF # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { my $rec="%rcx"; my $frame="%rdx"; my $context="%r8"; my $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lprologue(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lprologue jb .Lin_prologue mov 152($context),%rax # pull context->Rsp lea .Lepilogue(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lin_prologue lea 40(%rax),%rax mov -8(%rax),%rbp mov -16(%rax),%rbx mov -24(%rax),%r12 mov -32(%rax),%r14 mov -40(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_md5_block_asm_data_order .rva .LSEH_end_md5_block_asm_data_order .rva .LSEH_info_md5_block_asm_data_order .section .xdata .align 8 .LSEH_info_md5_block_asm_data_order: .byte 9,0,0,0 .rva se_handler ___ } print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/md5/build.info000066400000000000000000000005311364063235100173260ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ md5_dgst.c md5_one.c {- $target{md5_asm_src} -} GENERATE[md5-586.s]=asm/md5-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) GENERATE[md5-x86_64.s]=asm/md5-x86_64.pl $(PERLASM_SCHEME) GENERATE[md5-sparcv9.S]=asm/md5-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[md5-sparcv9.o]=.. openssl-1.1.1f/crypto/md5/md5_dgst.c000066400000000000000000000125121364063235100172260ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "md5_local.h" #include /* * Implemented from RFC1321 The MD5 Message-Digest Algorithm */ #define INIT_DATA_A (unsigned long)0x67452301L #define INIT_DATA_B (unsigned long)0xefcdab89L #define INIT_DATA_C (unsigned long)0x98badcfeL #define INIT_DATA_D (unsigned long)0x10325476L int MD5_Init(MD5_CTX *c) { memset(c, 0, sizeof(*c)); c->A = INIT_DATA_A; c->B = INIT_DATA_B; c->C = INIT_DATA_C; c->D = INIT_DATA_D; return 1; } #ifndef md5_block_data_order # ifdef X # undef X # endif void md5_block_data_order(MD5_CTX *c, const void *data_, size_t num) { const unsigned char *data = data_; register unsigned MD32_REG_T A, B, C, D, l; # ifndef MD32_XARRAY /* See comment in crypto/sha/sha_local.h for details. */ unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15; # define X(i) XX##i # else MD5_LONG XX[MD5_LBLOCK]; # define X(i) XX[i] # endif A = c->A; B = c->B; C = c->C; D = c->D; for (; num--;) { (void)HOST_c2l(data, l); X(0) = l; (void)HOST_c2l(data, l); X(1) = l; /* Round 0 */ R0(A, B, C, D, X(0), 7, 0xd76aa478L); (void)HOST_c2l(data, l); X(2) = l; R0(D, A, B, C, X(1), 12, 0xe8c7b756L); (void)HOST_c2l(data, l); X(3) = l; R0(C, D, A, B, X(2), 17, 0x242070dbL); (void)HOST_c2l(data, l); X(4) = l; R0(B, C, D, A, X(3), 22, 0xc1bdceeeL); (void)HOST_c2l(data, l); X(5) = l; R0(A, B, C, D, X(4), 7, 0xf57c0fafL); (void)HOST_c2l(data, l); X(6) = l; R0(D, A, B, C, X(5), 12, 0x4787c62aL); (void)HOST_c2l(data, l); X(7) = l; R0(C, D, A, B, X(6), 17, 0xa8304613L); (void)HOST_c2l(data, l); X(8) = l; R0(B, C, D, A, X(7), 22, 0xfd469501L); (void)HOST_c2l(data, l); X(9) = l; R0(A, B, C, D, X(8), 7, 0x698098d8L); (void)HOST_c2l(data, l); X(10) = l; R0(D, A, B, C, X(9), 12, 0x8b44f7afL); (void)HOST_c2l(data, l); X(11) = l; R0(C, D, A, B, X(10), 17, 0xffff5bb1L); (void)HOST_c2l(data, l); X(12) = l; R0(B, C, D, A, X(11), 22, 0x895cd7beL); (void)HOST_c2l(data, l); X(13) = l; R0(A, B, C, D, X(12), 7, 0x6b901122L); (void)HOST_c2l(data, l); X(14) = l; R0(D, A, B, C, X(13), 12, 0xfd987193L); (void)HOST_c2l(data, l); X(15) = l; R0(C, D, A, B, X(14), 17, 0xa679438eL); R0(B, C, D, A, X(15), 22, 0x49b40821L); /* Round 1 */ R1(A, B, C, D, X(1), 5, 0xf61e2562L); R1(D, A, B, C, X(6), 9, 0xc040b340L); R1(C, D, A, B, X(11), 14, 0x265e5a51L); R1(B, C, D, A, X(0), 20, 0xe9b6c7aaL); R1(A, B, C, D, X(5), 5, 0xd62f105dL); R1(D, A, B, C, X(10), 9, 0x02441453L); R1(C, D, A, B, X(15), 14, 0xd8a1e681L); R1(B, C, D, A, X(4), 20, 0xe7d3fbc8L); R1(A, B, C, D, X(9), 5, 0x21e1cde6L); R1(D, A, B, C, X(14), 9, 0xc33707d6L); R1(C, D, A, B, X(3), 14, 0xf4d50d87L); R1(B, C, D, A, X(8), 20, 0x455a14edL); R1(A, B, C, D, X(13), 5, 0xa9e3e905L); R1(D, A, B, C, X(2), 9, 0xfcefa3f8L); R1(C, D, A, B, X(7), 14, 0x676f02d9L); R1(B, C, D, A, X(12), 20, 0x8d2a4c8aL); /* Round 2 */ R2(A, B, C, D, X(5), 4, 0xfffa3942L); R2(D, A, B, C, X(8), 11, 0x8771f681L); R2(C, D, A, B, X(11), 16, 0x6d9d6122L); R2(B, C, D, A, X(14), 23, 0xfde5380cL); R2(A, B, C, D, X(1), 4, 0xa4beea44L); R2(D, A, B, C, X(4), 11, 0x4bdecfa9L); R2(C, D, A, B, X(7), 16, 0xf6bb4b60L); R2(B, C, D, A, X(10), 23, 0xbebfbc70L); R2(A, B, C, D, X(13), 4, 0x289b7ec6L); R2(D, A, B, C, X(0), 11, 0xeaa127faL); R2(C, D, A, B, X(3), 16, 0xd4ef3085L); R2(B, C, D, A, X(6), 23, 0x04881d05L); R2(A, B, C, D, X(9), 4, 0xd9d4d039L); R2(D, A, B, C, X(12), 11, 0xe6db99e5L); R2(C, D, A, B, X(15), 16, 0x1fa27cf8L); R2(B, C, D, A, X(2), 23, 0xc4ac5665L); /* Round 3 */ R3(A, B, C, D, X(0), 6, 0xf4292244L); R3(D, A, B, C, X(7), 10, 0x432aff97L); R3(C, D, A, B, X(14), 15, 0xab9423a7L); R3(B, C, D, A, X(5), 21, 0xfc93a039L); R3(A, B, C, D, X(12), 6, 0x655b59c3L); R3(D, A, B, C, X(3), 10, 0x8f0ccc92L); R3(C, D, A, B, X(10), 15, 0xffeff47dL); R3(B, C, D, A, X(1), 21, 0x85845dd1L); R3(A, B, C, D, X(8), 6, 0x6fa87e4fL); R3(D, A, B, C, X(15), 10, 0xfe2ce6e0L); R3(C, D, A, B, X(6), 15, 0xa3014314L); R3(B, C, D, A, X(13), 21, 0x4e0811a1L); R3(A, B, C, D, X(4), 6, 0xf7537e82L); R3(D, A, B, C, X(11), 10, 0xbd3af235L); R3(C, D, A, B, X(2), 15, 0x2ad7d2bbL); R3(B, C, D, A, X(9), 21, 0xeb86d391L); A = c->A += A; B = c->B += B; C = c->C += C; D = c->D += D; } } #endif openssl-1.1.1f/crypto/md5/md5_local.h000066400000000000000000000050461364063235100173700ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #ifdef MD5_ASM # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) # define md5_block_data_order md5_block_asm_data_order # elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64) # define md5_block_data_order md5_block_asm_data_order # elif defined(__sparc) || defined(__sparc__) # define md5_block_data_order md5_block_asm_data_order # endif #endif void md5_block_data_order(MD5_CTX *c, const void *p, size_t num); #define DATA_ORDER_IS_LITTLE_ENDIAN #define HASH_LONG MD5_LONG #define HASH_CTX MD5_CTX #define HASH_CBLOCK MD5_CBLOCK #define HASH_UPDATE MD5_Update #define HASH_TRANSFORM MD5_Transform #define HASH_FINAL MD5_Final #define HASH_MAKE_STRING(c,s) do { \ unsigned long ll; \ ll=(c)->A; (void)HOST_l2c(ll,(s)); \ ll=(c)->B; (void)HOST_l2c(ll,(s)); \ ll=(c)->C; (void)HOST_l2c(ll,(s)); \ ll=(c)->D; (void)HOST_l2c(ll,(s)); \ } while (0) #define HASH_BLOCK_DATA_ORDER md5_block_data_order #include "crypto/md32_common.h" /*- #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) #define G(x,y,z) (((x) & (z)) | ((y) & (~(z)))) */ /* * As pointed out by Wei Dai, the above can be simplified to the code * below. Wei attributes these optimizations to Peter Gutmann's * SHS code, and he attributes it to Rich Schroeppel. */ #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c)) #define H(b,c,d) ((b) ^ (c) ^ (d)) #define I(b,c,d) (((~(d)) | (b)) ^ (c)) #define R0(a,b,c,d,k,s,t) { \ a+=((k)+(t)+F((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; }; #define R1(a,b,c,d,k,s,t) { \ a+=((k)+(t)+G((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; }; #define R2(a,b,c,d,k,s,t) { \ a+=((k)+(t)+H((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; }; #define R3(a,b,c,d,k,s,t) { \ a+=((k)+(t)+I((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; }; openssl-1.1.1f/crypto/md5/md5_one.c000066400000000000000000000022111364063235100170410ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #ifdef CHARSET_EBCDIC # include #endif unsigned char *MD5(const unsigned char *d, size_t n, unsigned char *md) { MD5_CTX c; static unsigned char m[MD5_DIGEST_LENGTH]; if (md == NULL) md = m; if (!MD5_Init(&c)) return NULL; #ifndef CHARSET_EBCDIC MD5_Update(&c, d, n); #else { char temp[1024]; unsigned long chunk; while (n > 0) { chunk = (n > sizeof(temp)) ? sizeof(temp) : n; ebcdic2ascii(temp, d, chunk); MD5_Update(&c, temp, chunk); n -= chunk; d += chunk; } } #endif MD5_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); /* security consideration */ return md; } openssl-1.1.1f/crypto/mdc2/000077500000000000000000000000001364063235100155135ustar00rootroot00000000000000openssl-1.1.1f/crypto/mdc2/build.info000066400000000000000000000001151364063235100174640ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ mdc2dgst.c mdc2_one.c openssl-1.1.1f/crypto/mdc2/mdc2_one.c000066400000000000000000000013751364063235100173530ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include unsigned char *MDC2(const unsigned char *d, size_t n, unsigned char *md) { MDC2_CTX c; static unsigned char m[MDC2_DIGEST_LENGTH]; if (md == NULL) md = m; if (!MDC2_Init(&c)) return NULL; MDC2_Update(&c, d, n); MDC2_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); /* security consideration */ return md; } openssl-1.1.1f/crypto/mdc2/mdc2dgst.c000066400000000000000000000064131364063235100173720ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #undef c2l #define c2l(c,l) (l =((DES_LONG)(*((c)++))) , \ l|=((DES_LONG)(*((c)++)))<< 8L, \ l|=((DES_LONG)(*((c)++)))<<16L, \ l|=((DES_LONG)(*((c)++)))<<24L) #undef l2c #define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>>24L)&0xff)) static void mdc2_body(MDC2_CTX *c, const unsigned char *in, size_t len); int MDC2_Init(MDC2_CTX *c) { c->num = 0; c->pad_type = 1; memset(&(c->h[0]), 0x52, MDC2_BLOCK); memset(&(c->hh[0]), 0x25, MDC2_BLOCK); return 1; } int MDC2_Update(MDC2_CTX *c, const unsigned char *in, size_t len) { size_t i, j; i = c->num; if (i != 0) { if (len < MDC2_BLOCK - i) { /* partial block */ memcpy(&(c->data[i]), in, len); c->num += (int)len; return 1; } else { /* filled one */ j = MDC2_BLOCK - i; memcpy(&(c->data[i]), in, j); len -= j; in += j; c->num = 0; mdc2_body(c, &(c->data[0]), MDC2_BLOCK); } } i = len & ~((size_t)MDC2_BLOCK - 1); if (i > 0) mdc2_body(c, in, i); j = len - i; if (j > 0) { memcpy(&(c->data[0]), &(in[i]), j); c->num = (int)j; } return 1; } static void mdc2_body(MDC2_CTX *c, const unsigned char *in, size_t len) { register DES_LONG tin0, tin1; register DES_LONG ttin0, ttin1; DES_LONG d[2], dd[2]; DES_key_schedule k; unsigned char *p; size_t i; for (i = 0; i < len; i += 8) { c2l(in, tin0); d[0] = dd[0] = tin0; c2l(in, tin1); d[1] = dd[1] = tin1; c->h[0] = (c->h[0] & 0x9f) | 0x40; c->hh[0] = (c->hh[0] & 0x9f) | 0x20; DES_set_odd_parity(&c->h); DES_set_key_unchecked(&c->h, &k); DES_encrypt1(d, &k, 1); DES_set_odd_parity(&c->hh); DES_set_key_unchecked(&c->hh, &k); DES_encrypt1(dd, &k, 1); ttin0 = tin0 ^ dd[0]; ttin1 = tin1 ^ dd[1]; tin0 ^= d[0]; tin1 ^= d[1]; p = c->h; l2c(tin0, p); l2c(ttin1, p); p = c->hh; l2c(ttin0, p); l2c(tin1, p); } } int MDC2_Final(unsigned char *md, MDC2_CTX *c) { unsigned int i; int j; i = c->num; j = c->pad_type; if ((i > 0) || (j == 2)) { if (j == 2) c->data[i++] = 0x80; memset(&(c->data[i]), 0, MDC2_BLOCK - i); mdc2_body(c, c->data, MDC2_BLOCK); } memcpy(md, (char *)c->h, MDC2_BLOCK); memcpy(&(md[MDC2_BLOCK]), (char *)c->hh, MDC2_BLOCK); return 1; } openssl-1.1.1f/crypto/mem.c000066400000000000000000000175441364063235100156230ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "internal/cryptlib.h" #include "crypto/cryptlib.h" #include #include #include #include #ifndef OPENSSL_NO_CRYPTO_MDEBUG_BACKTRACE # include #endif /* * the following pointers may be changed as long as 'allow_customize' is set */ static int allow_customize = 1; static void *(*malloc_impl)(size_t, const char *, int) = CRYPTO_malloc; static void *(*realloc_impl)(void *, size_t, const char *, int) = CRYPTO_realloc; static void (*free_impl)(void *, const char *, int) = CRYPTO_free; #ifndef OPENSSL_NO_CRYPTO_MDEBUG # include "internal/tsan_assist.h" static TSAN_QUALIFIER int malloc_count; static TSAN_QUALIFIER int realloc_count; static TSAN_QUALIFIER int free_count; # define INCREMENT(x) tsan_counter(&(x)) static char *md_failstring; static long md_count; static int md_fail_percent = 0; static int md_tracefd = -1; static int call_malloc_debug = 1; static void parseit(void); static int shouldfail(void); # define FAILTEST() if (shouldfail()) return NULL #else static int call_malloc_debug = 0; # define INCREMENT(x) /* empty */ # define FAILTEST() /* empty */ #endif int CRYPTO_set_mem_functions( void *(*m)(size_t, const char *, int), void *(*r)(void *, size_t, const char *, int), void (*f)(void *, const char *, int)) { if (!allow_customize) return 0; if (m) malloc_impl = m; if (r) realloc_impl = r; if (f) free_impl = f; return 1; } int CRYPTO_set_mem_debug(int flag) { if (!allow_customize) return 0; call_malloc_debug = flag; return 1; } void CRYPTO_get_mem_functions( void *(**m)(size_t, const char *, int), void *(**r)(void *, size_t, const char *, int), void (**f)(void *, const char *, int)) { if (m != NULL) *m = malloc_impl; if (r != NULL) *r = realloc_impl; if (f != NULL) *f = free_impl; } #ifndef OPENSSL_NO_CRYPTO_MDEBUG void CRYPTO_get_alloc_counts(int *mcount, int *rcount, int *fcount) { if (mcount != NULL) *mcount = tsan_load(&malloc_count); if (rcount != NULL) *rcount = tsan_load(&realloc_count); if (fcount != NULL) *fcount = tsan_load(&free_count); } /* * Parse a "malloc failure spec" string. This likes like a set of fields * separated by semicolons. Each field has a count and an optional failure * percentage. For example: * 100@0;100@25;0@0 * or 100;100@25;0 * This means 100 mallocs succeed, then next 100 fail 25% of the time, and * all remaining (count is zero) succeed. */ static void parseit(void) { char *semi = strchr(md_failstring, ';'); char *atsign; if (semi != NULL) *semi++ = '\0'; /* Get the count (atol will stop at the @ if there), and percentage */ md_count = atol(md_failstring); atsign = strchr(md_failstring, '@'); md_fail_percent = atsign == NULL ? 0 : atoi(atsign + 1); if (semi != NULL) md_failstring = semi; } /* * Windows doesn't have random(), but it has rand() * Some rand() implementations aren't good, but we're not * dealing with secure randomness here. */ # ifdef _WIN32 # define random() rand() # endif /* * See if the current malloc should fail. */ static int shouldfail(void) { int roll = (int)(random() % 100); int shoulditfail = roll < md_fail_percent; # ifndef _WIN32 /* suppressed on Windows as POSIX-like file descriptors are non-inheritable */ int len; char buff[80]; if (md_tracefd > 0) { BIO_snprintf(buff, sizeof(buff), "%c C%ld %%%d R%d\n", shoulditfail ? '-' : '+', md_count, md_fail_percent, roll); len = strlen(buff); if (write(md_tracefd, buff, len) != len) perror("shouldfail write failed"); # ifndef OPENSSL_NO_CRYPTO_MDEBUG_BACKTRACE if (shoulditfail) { void *addrs[30]; int num = backtrace(addrs, OSSL_NELEM(addrs)); backtrace_symbols_fd(addrs, num, md_tracefd); } # endif } # endif if (md_count) { /* If we used up this one, go to the next. */ if (--md_count == 0) parseit(); } return shoulditfail; } void ossl_malloc_setup_failures(void) { const char *cp = getenv("OPENSSL_MALLOC_FAILURES"); if (cp != NULL && (md_failstring = strdup(cp)) != NULL) parseit(); if ((cp = getenv("OPENSSL_MALLOC_FD")) != NULL) md_tracefd = atoi(cp); } #endif void *CRYPTO_malloc(size_t num, const char *file, int line) { void *ret = NULL; INCREMENT(malloc_count); if (malloc_impl != NULL && malloc_impl != CRYPTO_malloc) return malloc_impl(num, file, line); if (num == 0) return NULL; FAILTEST(); if (allow_customize) { /* * Disallow customization after the first allocation. We only set this * if necessary to avoid a store to the same cache line on every * allocation. */ allow_customize = 0; } #ifndef OPENSSL_NO_CRYPTO_MDEBUG if (call_malloc_debug) { CRYPTO_mem_debug_malloc(NULL, num, 0, file, line); ret = malloc(num); CRYPTO_mem_debug_malloc(ret, num, 1, file, line); } else { ret = malloc(num); } #else (void)(file); (void)(line); ret = malloc(num); #endif return ret; } void *CRYPTO_zalloc(size_t num, const char *file, int line) { void *ret = CRYPTO_malloc(num, file, line); FAILTEST(); if (ret != NULL) memset(ret, 0, num); return ret; } void *CRYPTO_realloc(void *str, size_t num, const char *file, int line) { INCREMENT(realloc_count); if (realloc_impl != NULL && realloc_impl != &CRYPTO_realloc) return realloc_impl(str, num, file, line); FAILTEST(); if (str == NULL) return CRYPTO_malloc(num, file, line); if (num == 0) { CRYPTO_free(str, file, line); return NULL; } #ifndef OPENSSL_NO_CRYPTO_MDEBUG if (call_malloc_debug) { void *ret; CRYPTO_mem_debug_realloc(str, NULL, num, 0, file, line); ret = realloc(str, num); CRYPTO_mem_debug_realloc(str, ret, num, 1, file, line); return ret; } #else (void)(file); (void)(line); #endif return realloc(str, num); } void *CRYPTO_clear_realloc(void *str, size_t old_len, size_t num, const char *file, int line) { void *ret = NULL; if (str == NULL) return CRYPTO_malloc(num, file, line); if (num == 0) { CRYPTO_clear_free(str, old_len, file, line); return NULL; } /* Can't shrink the buffer since memcpy below copies |old_len| bytes. */ if (num < old_len) { OPENSSL_cleanse((char*)str + num, old_len - num); return str; } ret = CRYPTO_malloc(num, file, line); if (ret != NULL) { memcpy(ret, str, old_len); CRYPTO_clear_free(str, old_len, file, line); } return ret; } void CRYPTO_free(void *str, const char *file, int line) { INCREMENT(free_count); if (free_impl != NULL && free_impl != &CRYPTO_free) { free_impl(str, file, line); return; } #ifndef OPENSSL_NO_CRYPTO_MDEBUG if (call_malloc_debug) { CRYPTO_mem_debug_free(str, 0, file, line); free(str); CRYPTO_mem_debug_free(str, 1, file, line); } else { free(str); } #else free(str); #endif } void CRYPTO_clear_free(void *str, size_t num, const char *file, int line) { if (str == NULL) return; if (num) OPENSSL_cleanse(str, num); CRYPTO_free(str, file, line); } openssl-1.1.1f/crypto/mem_clr.c000066400000000000000000000014021364063235100164450ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include /* * Pointer to memset is volatile so that compiler must de-reference * the pointer and can't assume that it points to any function in * particular (such as memset, which it then might further "optimize") */ typedef void *(*memset_t)(void *, int, size_t); static volatile memset_t memset_func = memset; void OPENSSL_cleanse(void *ptr, size_t len) { memset_func(ptr, 0, len); } openssl-1.1.1f/crypto/mem_dbg.c000066400000000000000000000432271364063235100164340ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include "internal/thread_once.h" #include #include #include "internal/bio.h" #include #ifndef OPENSSL_NO_CRYPTO_MDEBUG_BACKTRACE # include #endif /* * The state changes to CRYPTO_MEM_CHECK_ON | CRYPTO_MEM_CHECK_ENABLE when * the application asks for it (usually after library initialisation for * which no book-keeping is desired). State CRYPTO_MEM_CHECK_ON exists only * temporarily when the library thinks that certain allocations should not be * checked (e.g. the data structures used for memory checking). It is not * suitable as an initial state: the library will unexpectedly enable memory * checking when it executes one of those sections that want to disable * checking temporarily. State CRYPTO_MEM_CHECK_ENABLE without ..._ON makes * no sense whatsoever. */ #ifndef OPENSSL_NO_CRYPTO_MDEBUG static int mh_mode = CRYPTO_MEM_CHECK_OFF; #endif #ifndef OPENSSL_NO_CRYPTO_MDEBUG static unsigned long order = 0; /* number of memory requests */ /*- * For application-defined information (static C-string `info') * to be displayed in memory leak list. * Each thread has its own stack. For applications, there is * OPENSSL_mem_debug_push("...") to push an entry, * OPENSSL_mem_debug_pop() to pop an entry, */ struct app_mem_info_st { CRYPTO_THREAD_ID threadid; const char *file; int line; const char *info; struct app_mem_info_st *next; /* tail of thread's stack */ int references; }; static CRYPTO_ONCE memdbg_init = CRYPTO_ONCE_STATIC_INIT; CRYPTO_RWLOCK *memdbg_lock; static CRYPTO_RWLOCK *long_memdbg_lock; static CRYPTO_THREAD_LOCAL appinfokey; /* memory-block description */ struct mem_st { void *addr; int num; const char *file; int line; CRYPTO_THREAD_ID threadid; unsigned long order; time_t time; APP_INFO *app_info; #ifndef OPENSSL_NO_CRYPTO_MDEBUG_BACKTRACE void *array[30]; size_t array_siz; #endif }; /* * hash-table of memory requests (address as * key); access requires * long_memdbg_lock lock */ static LHASH_OF(MEM) *mh = NULL; /* num_disable > 0 iff mh_mode == CRYPTO_MEM_CHECK_ON (w/o ..._ENABLE) */ static unsigned int num_disable = 0; /* * Valid iff num_disable > 0. long_memdbg_lock is locked exactly in this * case (by the thread named in disabling_thread). */ static CRYPTO_THREAD_ID disabling_threadid; DEFINE_RUN_ONCE_STATIC(do_memdbg_init) { memdbg_lock = CRYPTO_THREAD_lock_new(); long_memdbg_lock = CRYPTO_THREAD_lock_new(); if (memdbg_lock == NULL || long_memdbg_lock == NULL || !CRYPTO_THREAD_init_local(&appinfokey, NULL)) { CRYPTO_THREAD_lock_free(memdbg_lock); memdbg_lock = NULL; CRYPTO_THREAD_lock_free(long_memdbg_lock); long_memdbg_lock = NULL; return 0; } return 1; } static void app_info_free(APP_INFO *inf) { if (inf == NULL) return; if (--(inf->references) <= 0) { app_info_free(inf->next); OPENSSL_free(inf); } } #endif int CRYPTO_mem_ctrl(int mode) { #ifdef OPENSSL_NO_CRYPTO_MDEBUG return mode - mode; #else int ret = mh_mode; if (!RUN_ONCE(&memdbg_init, do_memdbg_init)) return -1; CRYPTO_THREAD_write_lock(memdbg_lock); switch (mode) { default: break; case CRYPTO_MEM_CHECK_ON: mh_mode = CRYPTO_MEM_CHECK_ON | CRYPTO_MEM_CHECK_ENABLE; num_disable = 0; break; case CRYPTO_MEM_CHECK_OFF: mh_mode = 0; num_disable = 0; break; /* switch off temporarily (for library-internal use): */ case CRYPTO_MEM_CHECK_DISABLE: if (mh_mode & CRYPTO_MEM_CHECK_ON) { CRYPTO_THREAD_ID cur = CRYPTO_THREAD_get_current_id(); /* see if we don't have long_memdbg_lock already */ if (!num_disable || !CRYPTO_THREAD_compare_id(disabling_threadid, cur)) { /* * Long-time lock long_memdbg_lock must not be claimed * while we're holding memdbg_lock, or we'll deadlock * if somebody else holds long_memdbg_lock (and cannot * release it because we block entry to this function). Give * them a chance, first, and then claim the locks in * appropriate order (long-time lock first). */ CRYPTO_THREAD_unlock(memdbg_lock); /* * Note that after we have waited for long_memdbg_lock and * memdbg_lock, we'll still be in the right "case" and * "if" branch because MemCheck_start and MemCheck_stop may * never be used while there are multiple OpenSSL threads. */ CRYPTO_THREAD_write_lock(long_memdbg_lock); CRYPTO_THREAD_write_lock(memdbg_lock); mh_mode &= ~CRYPTO_MEM_CHECK_ENABLE; disabling_threadid = cur; } num_disable++; } break; case CRYPTO_MEM_CHECK_ENABLE: if (mh_mode & CRYPTO_MEM_CHECK_ON) { if (num_disable) { /* always true, or something is going wrong */ num_disable--; if (num_disable == 0) { mh_mode |= CRYPTO_MEM_CHECK_ENABLE; CRYPTO_THREAD_unlock(long_memdbg_lock); } } } break; } CRYPTO_THREAD_unlock(memdbg_lock); return ret; #endif } #ifndef OPENSSL_NO_CRYPTO_MDEBUG static int mem_check_on(void) { int ret = 0; CRYPTO_THREAD_ID cur; if (mh_mode & CRYPTO_MEM_CHECK_ON) { if (!RUN_ONCE(&memdbg_init, do_memdbg_init)) return 0; cur = CRYPTO_THREAD_get_current_id(); CRYPTO_THREAD_read_lock(memdbg_lock); ret = (mh_mode & CRYPTO_MEM_CHECK_ENABLE) || !CRYPTO_THREAD_compare_id(disabling_threadid, cur); CRYPTO_THREAD_unlock(memdbg_lock); } return ret; } static int mem_cmp(const MEM *a, const MEM *b) { #ifdef _WIN64 const char *ap = (const char *)a->addr, *bp = (const char *)b->addr; if (ap == bp) return 0; else if (ap > bp) return 1; else return -1; #else return (const char *)a->addr - (const char *)b->addr; #endif } static unsigned long mem_hash(const MEM *a) { size_t ret; ret = (size_t)a->addr; ret = ret * 17851 + (ret >> 14) * 7 + (ret >> 4) * 251; return ret; } /* returns 1 if there was an info to pop, 0 if the stack was empty. */ static int pop_info(void) { APP_INFO *current = NULL; if (!RUN_ONCE(&memdbg_init, do_memdbg_init)) return 0; current = (APP_INFO *)CRYPTO_THREAD_get_local(&appinfokey); if (current != NULL) { APP_INFO *next = current->next; if (next != NULL) { next->references++; CRYPTO_THREAD_set_local(&appinfokey, next); } else { CRYPTO_THREAD_set_local(&appinfokey, NULL); } if (--(current->references) <= 0) { current->next = NULL; if (next != NULL) next->references--; OPENSSL_free(current); } return 1; } return 0; } int CRYPTO_mem_debug_push(const char *info, const char *file, int line) { APP_INFO *ami, *amim; int ret = 0; if (mem_check_on()) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); if (!RUN_ONCE(&memdbg_init, do_memdbg_init) || (ami = OPENSSL_malloc(sizeof(*ami))) == NULL) goto err; ami->threadid = CRYPTO_THREAD_get_current_id(); ami->file = file; ami->line = line; ami->info = info; ami->references = 1; ami->next = NULL; amim = (APP_INFO *)CRYPTO_THREAD_get_local(&appinfokey); CRYPTO_THREAD_set_local(&appinfokey, ami); if (amim != NULL) ami->next = amim; ret = 1; err: CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); } return ret; } int CRYPTO_mem_debug_pop(void) { int ret = 0; if (mem_check_on()) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); ret = pop_info(); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); } return ret; } static unsigned long break_order_num = 0; void CRYPTO_mem_debug_malloc(void *addr, size_t num, int before_p, const char *file, int line) { MEM *m, *mm; APP_INFO *amim; switch (before_p & 127) { case 0: break; case 1: if (addr == NULL) break; if (mem_check_on()) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); if (!RUN_ONCE(&memdbg_init, do_memdbg_init) || (m = OPENSSL_malloc(sizeof(*m))) == NULL) { OPENSSL_free(addr); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); return; } if (mh == NULL) { if ((mh = lh_MEM_new(mem_hash, mem_cmp)) == NULL) { OPENSSL_free(addr); OPENSSL_free(m); addr = NULL; goto err; } } m->addr = addr; m->file = file; m->line = line; m->num = num; m->threadid = CRYPTO_THREAD_get_current_id(); if (order == break_order_num) { /* BREAK HERE */ m->order = order; } m->order = order++; # ifndef OPENSSL_NO_CRYPTO_MDEBUG_BACKTRACE m->array_siz = backtrace(m->array, OSSL_NELEM(m->array)); # endif m->time = time(NULL); amim = (APP_INFO *)CRYPTO_THREAD_get_local(&appinfokey); m->app_info = amim; if (amim != NULL) amim->references++; if ((mm = lh_MEM_insert(mh, m)) != NULL) { /* Not good, but don't sweat it */ if (mm->app_info != NULL) { mm->app_info->references--; } OPENSSL_free(mm); } err: CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); } break; } return; } void CRYPTO_mem_debug_free(void *addr, int before_p, const char *file, int line) { MEM m, *mp; switch (before_p) { case 0: if (addr == NULL) break; if (mem_check_on() && (mh != NULL)) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); m.addr = addr; mp = lh_MEM_delete(mh, &m); if (mp != NULL) { app_info_free(mp->app_info); OPENSSL_free(mp); } CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); } break; case 1: break; } } void CRYPTO_mem_debug_realloc(void *addr1, void *addr2, size_t num, int before_p, const char *file, int line) { MEM m, *mp; switch (before_p) { case 0: break; case 1: if (addr2 == NULL) break; if (addr1 == NULL) { CRYPTO_mem_debug_malloc(addr2, num, 128 | before_p, file, line); break; } if (mem_check_on()) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); m.addr = addr1; mp = lh_MEM_delete(mh, &m); if (mp != NULL) { mp->addr = addr2; mp->num = num; #ifndef OPENSSL_NO_CRYPTO_MDEBUG_BACKTRACE mp->array_siz = backtrace(mp->array, OSSL_NELEM(mp->array)); #endif (void)lh_MEM_insert(mh, mp); } CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); } break; } return; } typedef struct mem_leak_st { int (*print_cb) (const char *str, size_t len, void *u); void *print_cb_arg; int chunks; long bytes; } MEM_LEAK; static void print_leak(const MEM *m, MEM_LEAK *l) { char buf[1024]; char *bufp = buf; size_t len = sizeof(buf), ami_cnt; APP_INFO *amip; int n; struct tm *lcl = NULL; /* * Convert between CRYPTO_THREAD_ID (which could be anything at all) and * a long. This may not be meaningful depending on what CRYPTO_THREAD_ID is * but hopefully should give something sensible on most platforms */ union { CRYPTO_THREAD_ID tid; unsigned long ltid; } tid; CRYPTO_THREAD_ID ti; lcl = localtime(&m->time); n = BIO_snprintf(bufp, len, "[%02d:%02d:%02d] ", lcl->tm_hour, lcl->tm_min, lcl->tm_sec); if (n <= 0) { bufp[0] = '\0'; return; } bufp += n; len -= n; n = BIO_snprintf(bufp, len, "%5lu file=%s, line=%d, ", m->order, m->file, m->line); if (n <= 0) return; bufp += n; len -= n; tid.ltid = 0; tid.tid = m->threadid; n = BIO_snprintf(bufp, len, "thread=%lu, ", tid.ltid); if (n <= 0) return; bufp += n; len -= n; n = BIO_snprintf(bufp, len, "number=%d, address=%p\n", m->num, m->addr); if (n <= 0) return; bufp += n; len -= n; l->print_cb(buf, (size_t)(bufp - buf), l->print_cb_arg); l->chunks++; l->bytes += m->num; amip = m->app_info; ami_cnt = 0; if (amip) { ti = amip->threadid; do { int buf_len; int info_len; ami_cnt++; if (ami_cnt >= sizeof(buf) - 1) break; memset(buf, '>', ami_cnt); buf[ami_cnt] = '\0'; tid.ltid = 0; tid.tid = amip->threadid; n = BIO_snprintf(buf + ami_cnt, sizeof(buf) - ami_cnt, " thread=%lu, file=%s, line=%d, info=\"", tid.ltid, amip->file, amip->line); if (n <= 0) break; buf_len = ami_cnt + n; info_len = strlen(amip->info); if (128 - buf_len - 3 < info_len) { memcpy(buf + buf_len, amip->info, 128 - buf_len - 3); buf_len = 128 - 3; } else { n = BIO_snprintf(buf + buf_len, sizeof(buf) - buf_len, "%s", amip->info); if (n < 0) break; buf_len += n; } n = BIO_snprintf(buf + buf_len, sizeof(buf) - buf_len, "\"\n"); if (n <= 0) break; l->print_cb(buf, buf_len + n, l->print_cb_arg); amip = amip->next; } while (amip && CRYPTO_THREAD_compare_id(amip->threadid, ti)); } #ifndef OPENSSL_NO_CRYPTO_MDEBUG_BACKTRACE { size_t i; char **strings = backtrace_symbols(m->array, m->array_siz); for (i = 0; i < m->array_siz; i++) fprintf(stderr, "##> %s\n", strings[i]); free(strings); } #endif } IMPLEMENT_LHASH_DOALL_ARG_CONST(MEM, MEM_LEAK); int CRYPTO_mem_leaks_cb(int (*cb) (const char *str, size_t len, void *u), void *u) { MEM_LEAK ml; /* Ensure all resources are released */ OPENSSL_cleanup(); if (!RUN_ONCE(&memdbg_init, do_memdbg_init)) return -1; CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); ml.print_cb = cb; ml.print_cb_arg = u; ml.bytes = 0; ml.chunks = 0; if (mh != NULL) lh_MEM_doall_MEM_LEAK(mh, print_leak, &ml); if (ml.chunks != 0) { char buf[256]; BIO_snprintf(buf, sizeof(buf), "%ld bytes leaked in %d chunks\n", ml.bytes, ml.chunks); cb(buf, strlen(buf), u); } else { /* * Make sure that, if we found no leaks, memory-leak debugging itself * does not introduce memory leaks (which might irritate external * debugging tools). (When someone enables leak checking, but does not * call this function, we declare it to be their fault.) */ int old_mh_mode; CRYPTO_THREAD_write_lock(memdbg_lock); /* * avoid deadlock when lh_free() uses CRYPTO_mem_debug_free(), which uses * mem_check_on */ old_mh_mode = mh_mode; mh_mode = CRYPTO_MEM_CHECK_OFF; lh_MEM_free(mh); mh = NULL; mh_mode = old_mh_mode; CRYPTO_THREAD_unlock(memdbg_lock); } CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_OFF); /* Clean up locks etc */ CRYPTO_THREAD_cleanup_local(&appinfokey); CRYPTO_THREAD_lock_free(memdbg_lock); CRYPTO_THREAD_lock_free(long_memdbg_lock); memdbg_lock = NULL; long_memdbg_lock = NULL; return ml.chunks == 0 ? 1 : 0; } static int print_bio(const char *str, size_t len, void *b) { return BIO_write((BIO *)b, str, len); } int CRYPTO_mem_leaks(BIO *b) { /* * OPENSSL_cleanup() will free the ex_data locks so we can't have any * ex_data hanging around */ bio_free_ex_data(b); return CRYPTO_mem_leaks_cb(print_bio, b); } # ifndef OPENSSL_NO_STDIO int CRYPTO_mem_leaks_fp(FILE *fp) { BIO *b; int ret; /* * Need to turn off memory checking when allocated BIOs ... especially as * we're creating them at a time when we're trying to check we've not * left anything un-free()'d!! */ CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); b = BIO_new(BIO_s_file()); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); if (b == NULL) return -1; BIO_set_fp(b, fp, BIO_NOCLOSE); ret = CRYPTO_mem_leaks_cb(print_bio, b); BIO_free(b); return ret; } # endif #endif openssl-1.1.1f/crypto/mem_sec.c000066400000000000000000000415641364063235100164540ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2004-2014, Akamai Technologies. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is in two halves. The first half implements the public API * to be used by external consumers, and to be used by OpenSSL to store * data in a "secure arena." The second half implements the secure arena. * For details on that implementation, see below (look for uppercase * "SECURE HEAP IMPLEMENTATION"). */ #include "e_os.h" #include #include /* e_os.h defines OPENSSL_SECURE_MEMORY if secure memory can be implemented */ #ifdef OPENSSL_SECURE_MEMORY # include # include # include # include # include # if defined(OPENSSL_SYS_LINUX) # include # if defined(SYS_mlock2) # include # include # endif # endif # include # include # include #endif #define CLEAR(p, s) OPENSSL_cleanse(p, s) #ifndef PAGE_SIZE # define PAGE_SIZE 4096 #endif #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS) # define MAP_ANON MAP_ANONYMOUS #endif #ifdef OPENSSL_SECURE_MEMORY static size_t secure_mem_used; static int secure_mem_initialized; static CRYPTO_RWLOCK *sec_malloc_lock = NULL; /* * These are the functions that must be implemented by a secure heap (sh). */ static int sh_init(size_t size, int minsize); static void *sh_malloc(size_t size); static void sh_free(void *ptr); static void sh_done(void); static size_t sh_actual_size(char *ptr); static int sh_allocated(const char *ptr); #endif int CRYPTO_secure_malloc_init(size_t size, int minsize) { #ifdef OPENSSL_SECURE_MEMORY int ret = 0; if (!secure_mem_initialized) { sec_malloc_lock = CRYPTO_THREAD_lock_new(); if (sec_malloc_lock == NULL) return 0; if ((ret = sh_init(size, minsize)) != 0) { secure_mem_initialized = 1; } else { CRYPTO_THREAD_lock_free(sec_malloc_lock); sec_malloc_lock = NULL; } } return ret; #else return 0; #endif /* OPENSSL_SECURE_MEMORY */ } int CRYPTO_secure_malloc_done(void) { #ifdef OPENSSL_SECURE_MEMORY if (secure_mem_used == 0) { sh_done(); secure_mem_initialized = 0; CRYPTO_THREAD_lock_free(sec_malloc_lock); sec_malloc_lock = NULL; return 1; } #endif /* OPENSSL_SECURE_MEMORY */ return 0; } int CRYPTO_secure_malloc_initialized(void) { #ifdef OPENSSL_SECURE_MEMORY return secure_mem_initialized; #else return 0; #endif /* OPENSSL_SECURE_MEMORY */ } void *CRYPTO_secure_malloc(size_t num, const char *file, int line) { #ifdef OPENSSL_SECURE_MEMORY void *ret; size_t actual_size; if (!secure_mem_initialized) { return CRYPTO_malloc(num, file, line); } CRYPTO_THREAD_write_lock(sec_malloc_lock); ret = sh_malloc(num); actual_size = ret ? sh_actual_size(ret) : 0; secure_mem_used += actual_size; CRYPTO_THREAD_unlock(sec_malloc_lock); return ret; #else return CRYPTO_malloc(num, file, line); #endif /* OPENSSL_SECURE_MEMORY */ } void *CRYPTO_secure_zalloc(size_t num, const char *file, int line) { #ifdef OPENSSL_SECURE_MEMORY if (secure_mem_initialized) /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */ return CRYPTO_secure_malloc(num, file, line); #endif return CRYPTO_zalloc(num, file, line); } void CRYPTO_secure_free(void *ptr, const char *file, int line) { #ifdef OPENSSL_SECURE_MEMORY size_t actual_size; if (ptr == NULL) return; if (!CRYPTO_secure_allocated(ptr)) { CRYPTO_free(ptr, file, line); return; } CRYPTO_THREAD_write_lock(sec_malloc_lock); actual_size = sh_actual_size(ptr); CLEAR(ptr, actual_size); secure_mem_used -= actual_size; sh_free(ptr); CRYPTO_THREAD_unlock(sec_malloc_lock); #else CRYPTO_free(ptr, file, line); #endif /* OPENSSL_SECURE_MEMORY */ } void CRYPTO_secure_clear_free(void *ptr, size_t num, const char *file, int line) { #ifdef OPENSSL_SECURE_MEMORY size_t actual_size; if (ptr == NULL) return; if (!CRYPTO_secure_allocated(ptr)) { OPENSSL_cleanse(ptr, num); CRYPTO_free(ptr, file, line); return; } CRYPTO_THREAD_write_lock(sec_malloc_lock); actual_size = sh_actual_size(ptr); CLEAR(ptr, actual_size); secure_mem_used -= actual_size; sh_free(ptr); CRYPTO_THREAD_unlock(sec_malloc_lock); #else if (ptr == NULL) return; OPENSSL_cleanse(ptr, num); CRYPTO_free(ptr, file, line); #endif /* OPENSSL_SECURE_MEMORY */ } int CRYPTO_secure_allocated(const void *ptr) { #ifdef OPENSSL_SECURE_MEMORY int ret; if (!secure_mem_initialized) return 0; CRYPTO_THREAD_write_lock(sec_malloc_lock); ret = sh_allocated(ptr); CRYPTO_THREAD_unlock(sec_malloc_lock); return ret; #else return 0; #endif /* OPENSSL_SECURE_MEMORY */ } size_t CRYPTO_secure_used(void) { #ifdef OPENSSL_SECURE_MEMORY return secure_mem_used; #else return 0; #endif /* OPENSSL_SECURE_MEMORY */ } size_t CRYPTO_secure_actual_size(void *ptr) { #ifdef OPENSSL_SECURE_MEMORY size_t actual_size; CRYPTO_THREAD_write_lock(sec_malloc_lock); actual_size = sh_actual_size(ptr); CRYPTO_THREAD_unlock(sec_malloc_lock); return actual_size; #else return 0; #endif } /* END OF PAGE ... ... START OF PAGE */ /* * SECURE HEAP IMPLEMENTATION */ #ifdef OPENSSL_SECURE_MEMORY /* * The implementation provided here uses a fixed-sized mmap() heap, * which is locked into memory, not written to core files, and protected * on either side by an unmapped page, which will catch pointer overruns * (or underruns) and an attempt to read data out of the secure heap. * Free'd memory is zero'd or otherwise cleansed. * * This is a pretty standard buddy allocator. We keep areas in a multiple * of "sh.minsize" units. The freelist and bitmaps are kept separately, * so all (and only) data is kept in the mmap'd heap. * * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the * place. */ #define ONE ((size_t)1) # define TESTBIT(t, b) (t[(b) >> 3] & (ONE << ((b) & 7))) # define SETBIT(t, b) (t[(b) >> 3] |= (ONE << ((b) & 7))) # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7)))) #define WITHIN_ARENA(p) \ ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size]) #define WITHIN_FREELIST(p) \ ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size]) typedef struct sh_list_st { struct sh_list_st *next; struct sh_list_st **p_next; } SH_LIST; typedef struct sh_st { char* map_result; size_t map_size; char *arena; size_t arena_size; char **freelist; ossl_ssize_t freelist_size; size_t minsize; unsigned char *bittable; unsigned char *bitmalloc; size_t bittable_size; /* size in bits */ } SH; static SH sh; static size_t sh_getlist(char *ptr) { ossl_ssize_t list = sh.freelist_size - 1; size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize; for (; bit; bit >>= 1, list--) { if (TESTBIT(sh.bittable, bit)) break; OPENSSL_assert((bit & 1) == 0); } return list; } static int sh_testbit(char *ptr, int list, unsigned char *table) { size_t bit; OPENSSL_assert(list >= 0 && list < sh.freelist_size); OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); OPENSSL_assert(bit > 0 && bit < sh.bittable_size); return TESTBIT(table, bit); } static void sh_clearbit(char *ptr, int list, unsigned char *table) { size_t bit; OPENSSL_assert(list >= 0 && list < sh.freelist_size); OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); OPENSSL_assert(bit > 0 && bit < sh.bittable_size); OPENSSL_assert(TESTBIT(table, bit)); CLEARBIT(table, bit); } static void sh_setbit(char *ptr, int list, unsigned char *table) { size_t bit; OPENSSL_assert(list >= 0 && list < sh.freelist_size); OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); OPENSSL_assert(bit > 0 && bit < sh.bittable_size); OPENSSL_assert(!TESTBIT(table, bit)); SETBIT(table, bit); } static void sh_add_to_list(char **list, char *ptr) { SH_LIST *temp; OPENSSL_assert(WITHIN_FREELIST(list)); OPENSSL_assert(WITHIN_ARENA(ptr)); temp = (SH_LIST *)ptr; temp->next = *(SH_LIST **)list; OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next)); temp->p_next = (SH_LIST **)list; if (temp->next != NULL) { OPENSSL_assert((char **)temp->next->p_next == list); temp->next->p_next = &(temp->next); } *list = ptr; } static void sh_remove_from_list(char *ptr) { SH_LIST *temp, *temp2; temp = (SH_LIST *)ptr; if (temp->next != NULL) temp->next->p_next = temp->p_next; *temp->p_next = temp->next; if (temp->next == NULL) return; temp2 = temp->next; OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next)); } static int sh_init(size_t size, int minsize) { int ret; size_t i; size_t pgsize; size_t aligned; memset(&sh, 0, sizeof(sh)); /* make sure size and minsize are powers of 2 */ OPENSSL_assert(size > 0); OPENSSL_assert((size & (size - 1)) == 0); OPENSSL_assert(minsize > 0); OPENSSL_assert((minsize & (minsize - 1)) == 0); if (size <= 0 || (size & (size - 1)) != 0) goto err; if (minsize <= 0 || (minsize & (minsize - 1)) != 0) goto err; while (minsize < (int)sizeof(SH_LIST)) minsize *= 2; sh.arena_size = size; sh.minsize = minsize; sh.bittable_size = (sh.arena_size / sh.minsize) * 2; /* Prevent allocations of size 0 later on */ if (sh.bittable_size >> 3 == 0) goto err; sh.freelist_size = -1; for (i = sh.bittable_size; i; i >>= 1) sh.freelist_size++; sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *)); OPENSSL_assert(sh.freelist != NULL); if (sh.freelist == NULL) goto err; sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3); OPENSSL_assert(sh.bittable != NULL); if (sh.bittable == NULL) goto err; sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3); OPENSSL_assert(sh.bitmalloc != NULL); if (sh.bitmalloc == NULL) goto err; /* Allocate space for heap, and two extra pages as guards */ #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE) { # if defined(_SC_PAGE_SIZE) long tmppgsize = sysconf(_SC_PAGE_SIZE); # else long tmppgsize = sysconf(_SC_PAGESIZE); # endif if (tmppgsize < 1) pgsize = PAGE_SIZE; else pgsize = (size_t)tmppgsize; } #else pgsize = PAGE_SIZE; #endif sh.map_size = pgsize + sh.arena_size + pgsize; if (1) { #ifdef MAP_ANON sh.map_result = mmap(NULL, sh.map_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); } else { #endif int fd; sh.map_result = MAP_FAILED; if ((fd = open("/dev/zero", O_RDWR)) >= 0) { sh.map_result = mmap(NULL, sh.map_size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); close(fd); } } if (sh.map_result == MAP_FAILED) goto err; sh.arena = (char *)(sh.map_result + pgsize); sh_setbit(sh.arena, 0, sh.bittable); sh_add_to_list(&sh.freelist[0], sh.arena); /* Now try to add guard pages and lock into memory. */ ret = 1; /* Starting guard is already aligned from mmap. */ if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0) ret = 2; /* Ending guard page - need to round up to page boundary */ aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1); if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0) ret = 2; #if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2) if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) { if (errno == ENOSYS) { if (mlock(sh.arena, sh.arena_size) < 0) ret = 2; } else { ret = 2; } } #else if (mlock(sh.arena, sh.arena_size) < 0) ret = 2; #endif #ifdef MADV_DONTDUMP if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0) ret = 2; #endif return ret; err: sh_done(); return 0; } static void sh_done(void) { OPENSSL_free(sh.freelist); OPENSSL_free(sh.bittable); OPENSSL_free(sh.bitmalloc); if (sh.map_result != NULL && sh.map_size) munmap(sh.map_result, sh.map_size); memset(&sh, 0, sizeof(sh)); } static int sh_allocated(const char *ptr) { return WITHIN_ARENA(ptr) ? 1 : 0; } static char *sh_find_my_buddy(char *ptr, int list) { size_t bit; char *chunk = NULL; bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list); bit ^= 1; if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit)) chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list)); return chunk; } static void *sh_malloc(size_t size) { ossl_ssize_t list, slist; size_t i; char *chunk; if (size > sh.arena_size) return NULL; list = sh.freelist_size - 1; for (i = sh.minsize; i < size; i <<= 1) list--; if (list < 0) return NULL; /* try to find a larger entry to split */ for (slist = list; slist >= 0; slist--) if (sh.freelist[slist] != NULL) break; if (slist < 0) return NULL; /* split larger entry */ while (slist != list) { char *temp = sh.freelist[slist]; /* remove from bigger list */ OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); sh_clearbit(temp, slist, sh.bittable); sh_remove_from_list(temp); OPENSSL_assert(temp != sh.freelist[slist]); /* done with bigger list */ slist++; /* add to smaller list */ OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); sh_setbit(temp, slist, sh.bittable); sh_add_to_list(&sh.freelist[slist], temp); OPENSSL_assert(sh.freelist[slist] == temp); /* split in 2 */ temp += sh.arena_size >> slist; OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); sh_setbit(temp, slist, sh.bittable); sh_add_to_list(&sh.freelist[slist], temp); OPENSSL_assert(sh.freelist[slist] == temp); OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist)); } /* peel off memory to hand back */ chunk = sh.freelist[list]; OPENSSL_assert(sh_testbit(chunk, list, sh.bittable)); sh_setbit(chunk, list, sh.bitmalloc); sh_remove_from_list(chunk); OPENSSL_assert(WITHIN_ARENA(chunk)); /* zero the free list header as a precaution against information leakage */ memset(chunk, 0, sizeof(SH_LIST)); return chunk; } static void sh_free(void *ptr) { size_t list; void *buddy; if (ptr == NULL) return; OPENSSL_assert(WITHIN_ARENA(ptr)); if (!WITHIN_ARENA(ptr)) return; list = sh_getlist(ptr); OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); sh_clearbit(ptr, list, sh.bitmalloc); sh_add_to_list(&sh.freelist[list], ptr); /* Try to coalesce two adjacent free areas. */ while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) { OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list)); OPENSSL_assert(ptr != NULL); OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); sh_clearbit(ptr, list, sh.bittable); sh_remove_from_list(ptr); OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); sh_clearbit(buddy, list, sh.bittable); sh_remove_from_list(buddy); list--; /* Zero the higher addressed block's free list pointers */ memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST)); if (ptr > buddy) ptr = buddy; OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); sh_setbit(ptr, list, sh.bittable); sh_add_to_list(&sh.freelist[list], ptr); OPENSSL_assert(sh.freelist[list] == ptr); } } static size_t sh_actual_size(char *ptr) { int list; OPENSSL_assert(WITHIN_ARENA(ptr)); if (!WITHIN_ARENA(ptr)) return 0; list = sh_getlist(ptr); OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); return sh.arena_size / (ONE << list); } #endif /* OPENSSL_SECURE_MEMORY */ openssl-1.1.1f/crypto/mips_arch.h000066400000000000000000000023331364063235100170050ustar00rootroot00000000000000/* * Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_MIPS_ARCH_H # define OSSL_CRYPTO_MIPS_ARCH_H # if (defined(__mips_smartmips) || defined(_MIPS_ARCH_MIPS32R3) || \ defined(_MIPS_ARCH_MIPS32R5) || defined(_MIPS_ARCH_MIPS32R6)) \ && !defined(_MIPS_ARCH_MIPS32R2) # define _MIPS_ARCH_MIPS32R2 # endif # if (defined(_MIPS_ARCH_MIPS64R3) || defined(_MIPS_ARCH_MIPS64R5) || \ defined(_MIPS_ARCH_MIPS64R6)) \ && !defined(_MIPS_ARCH_MIPS64R2) # define _MIPS_ARCH_MIPS64R2 # endif # if defined(_MIPS_ARCH_MIPS64R6) # define dmultu(rs,rt) # define mflo(rd,rs,rt) dmulu rd,rs,rt # define mfhi(rd,rs,rt) dmuhu rd,rs,rt # elif defined(_MIPS_ARCH_MIPS32R6) # define multu(rs,rt) # define mflo(rd,rs,rt) mulu rd,rs,rt # define mfhi(rd,rs,rt) muhu rd,rs,rt # else # define dmultu(rs,rt) dmultu rs,rt # define multu(rs,rt) multu rs,rt # define mflo(rd,rs,rt) mflo rd # define mfhi(rd,rs,rt) mfhi rd # endif #endif openssl-1.1.1f/crypto/modes/000077500000000000000000000000001364063235100157755ustar00rootroot00000000000000openssl-1.1.1f/crypto/modes/asm/000077500000000000000000000000001364063235100165555ustar00rootroot00000000000000openssl-1.1.1f/crypto/modes/asm/aesni-gcm-x86_64.pl000066400000000000000000000716221364063235100217210ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # # AES-NI-CTR+GHASH stitch. # # February 2013 # # OpenSSL GCM implementation is organized in such way that its # performance is rather close to the sum of its streamed components, # in the context parallelized AES-NI CTR and modulo-scheduled # PCLMULQDQ-enabled GHASH. Unfortunately, as no stitch implementation # was observed to perform significantly better than the sum of the # components on contemporary CPUs, the effort was deemed impossible to # justify. This module is based on combination of Intel submissions, # [1] and [2], with MOVBE twist suggested by Ilya Albrekht and Max # Locktyukhin of Intel Corp. who verified that it reduces shuffles # pressure with notable relative improvement, achieving 1.0 cycle per # byte processed with 128-bit key on Haswell processor, 0.74 - on # Broadwell, 0.63 - on Skylake... [Mentioned results are raw profiled # measurements for favourable packet size, one divisible by 96. # Applications using the EVP interface will observe a few percent # worse performance.] # # Knights Landing processes 1 byte in 1.25 cycles (measured with EVP). # # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest # [2] http://www.intel.com/content/dam/www/public/us/en/documents/software-support/enabling-high-performance-gcm.pdf $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.20) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if ($avx>1) {{{ ($inp,$out,$len,$key,$ivp,$Xip)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9"); ($Ii,$T1,$T2,$Hkey, $Z0,$Z1,$Z2,$Z3,$Xi) = map("%xmm$_",(0..8)); ($inout0,$inout1,$inout2,$inout3,$inout4,$inout5,$rndkey) = map("%xmm$_",(9..15)); ($counter,$rounds,$ret,$const,$in0,$end0)=("%ebx","%ebp","%r10","%r11","%r14","%r15"); $code=<<___; .text .type _aesni_ctr32_ghash_6x,\@abi-omnipotent .align 32 _aesni_ctr32_ghash_6x: .cfi_startproc vmovdqu 0x20($const),$T2 # borrow $T2, .Lone_msb sub \$6,$len vpxor $Z0,$Z0,$Z0 # $Z0 = 0 vmovdqu 0x00-0x80($key),$rndkey vpaddb $T2,$T1,$inout1 vpaddb $T2,$inout1,$inout2 vpaddb $T2,$inout2,$inout3 vpaddb $T2,$inout3,$inout4 vpaddb $T2,$inout4,$inout5 vpxor $rndkey,$T1,$inout0 vmovdqu $Z0,16+8(%rsp) # "$Z3" = 0 jmp .Loop6x .align 32 .Loop6x: add \$`6<<24`,$counter jc .Lhandle_ctr32 # discard $inout[1-5]? vmovdqu 0x00-0x20($Xip),$Hkey # $Hkey^1 vpaddb $T2,$inout5,$T1 # next counter value vpxor $rndkey,$inout1,$inout1 vpxor $rndkey,$inout2,$inout2 .Lresume_ctr32: vmovdqu $T1,($ivp) # save next counter value vpclmulqdq \$0x10,$Hkey,$Z3,$Z1 vpxor $rndkey,$inout3,$inout3 vmovups 0x10-0x80($key),$T2 # borrow $T2 for $rndkey vpclmulqdq \$0x01,$Hkey,$Z3,$Z2 xor %r12,%r12 cmp $in0,$end0 vaesenc $T2,$inout0,$inout0 vmovdqu 0x30+8(%rsp),$Ii # I[4] vpxor $rndkey,$inout4,$inout4 vpclmulqdq \$0x00,$Hkey,$Z3,$T1 vaesenc $T2,$inout1,$inout1 vpxor $rndkey,$inout5,$inout5 setnc %r12b vpclmulqdq \$0x11,$Hkey,$Z3,$Z3 vaesenc $T2,$inout2,$inout2 vmovdqu 0x10-0x20($Xip),$Hkey # $Hkey^2 neg %r12 vaesenc $T2,$inout3,$inout3 vpxor $Z1,$Z2,$Z2 vpclmulqdq \$0x00,$Hkey,$Ii,$Z1 vpxor $Z0,$Xi,$Xi # modulo-scheduled vaesenc $T2,$inout4,$inout4 vpxor $Z1,$T1,$Z0 and \$0x60,%r12 vmovups 0x20-0x80($key),$rndkey vpclmulqdq \$0x10,$Hkey,$Ii,$T1 vaesenc $T2,$inout5,$inout5 vpclmulqdq \$0x01,$Hkey,$Ii,$T2 lea ($in0,%r12),$in0 vaesenc $rndkey,$inout0,$inout0 vpxor 16+8(%rsp),$Xi,$Xi # modulo-scheduled [vpxor $Z3,$Xi,$Xi] vpclmulqdq \$0x11,$Hkey,$Ii,$Hkey vmovdqu 0x40+8(%rsp),$Ii # I[3] vaesenc $rndkey,$inout1,$inout1 movbe 0x58($in0),%r13 vaesenc $rndkey,$inout2,$inout2 movbe 0x50($in0),%r12 vaesenc $rndkey,$inout3,$inout3 mov %r13,0x20+8(%rsp) vaesenc $rndkey,$inout4,$inout4 mov %r12,0x28+8(%rsp) vmovdqu 0x30-0x20($Xip),$Z1 # borrow $Z1 for $Hkey^3 vaesenc $rndkey,$inout5,$inout5 vmovups 0x30-0x80($key),$rndkey vpxor $T1,$Z2,$Z2 vpclmulqdq \$0x00,$Z1,$Ii,$T1 vaesenc $rndkey,$inout0,$inout0 vpxor $T2,$Z2,$Z2 vpclmulqdq \$0x10,$Z1,$Ii,$T2 vaesenc $rndkey,$inout1,$inout1 vpxor $Hkey,$Z3,$Z3 vpclmulqdq \$0x01,$Z1,$Ii,$Hkey vaesenc $rndkey,$inout2,$inout2 vpclmulqdq \$0x11,$Z1,$Ii,$Z1 vmovdqu 0x50+8(%rsp),$Ii # I[2] vaesenc $rndkey,$inout3,$inout3 vaesenc $rndkey,$inout4,$inout4 vpxor $T1,$Z0,$Z0 vmovdqu 0x40-0x20($Xip),$T1 # borrow $T1 for $Hkey^4 vaesenc $rndkey,$inout5,$inout5 vmovups 0x40-0x80($key),$rndkey vpxor $T2,$Z2,$Z2 vpclmulqdq \$0x00,$T1,$Ii,$T2 vaesenc $rndkey,$inout0,$inout0 vpxor $Hkey,$Z2,$Z2 vpclmulqdq \$0x10,$T1,$Ii,$Hkey vaesenc $rndkey,$inout1,$inout1 movbe 0x48($in0),%r13 vpxor $Z1,$Z3,$Z3 vpclmulqdq \$0x01,$T1,$Ii,$Z1 vaesenc $rndkey,$inout2,$inout2 movbe 0x40($in0),%r12 vpclmulqdq \$0x11,$T1,$Ii,$T1 vmovdqu 0x60+8(%rsp),$Ii # I[1] vaesenc $rndkey,$inout3,$inout3 mov %r13,0x30+8(%rsp) vaesenc $rndkey,$inout4,$inout4 mov %r12,0x38+8(%rsp) vpxor $T2,$Z0,$Z0 vmovdqu 0x60-0x20($Xip),$T2 # borrow $T2 for $Hkey^5 vaesenc $rndkey,$inout5,$inout5 vmovups 0x50-0x80($key),$rndkey vpxor $Hkey,$Z2,$Z2 vpclmulqdq \$0x00,$T2,$Ii,$Hkey vaesenc $rndkey,$inout0,$inout0 vpxor $Z1,$Z2,$Z2 vpclmulqdq \$0x10,$T2,$Ii,$Z1 vaesenc $rndkey,$inout1,$inout1 movbe 0x38($in0),%r13 vpxor $T1,$Z3,$Z3 vpclmulqdq \$0x01,$T2,$Ii,$T1 vpxor 0x70+8(%rsp),$Xi,$Xi # accumulate I[0] vaesenc $rndkey,$inout2,$inout2 movbe 0x30($in0),%r12 vpclmulqdq \$0x11,$T2,$Ii,$T2 vaesenc $rndkey,$inout3,$inout3 mov %r13,0x40+8(%rsp) vaesenc $rndkey,$inout4,$inout4 mov %r12,0x48+8(%rsp) vpxor $Hkey,$Z0,$Z0 vmovdqu 0x70-0x20($Xip),$Hkey # $Hkey^6 vaesenc $rndkey,$inout5,$inout5 vmovups 0x60-0x80($key),$rndkey vpxor $Z1,$Z2,$Z2 vpclmulqdq \$0x10,$Hkey,$Xi,$Z1 vaesenc $rndkey,$inout0,$inout0 vpxor $T1,$Z2,$Z2 vpclmulqdq \$0x01,$Hkey,$Xi,$T1 vaesenc $rndkey,$inout1,$inout1 movbe 0x28($in0),%r13 vpxor $T2,$Z3,$Z3 vpclmulqdq \$0x00,$Hkey,$Xi,$T2 vaesenc $rndkey,$inout2,$inout2 movbe 0x20($in0),%r12 vpclmulqdq \$0x11,$Hkey,$Xi,$Xi vaesenc $rndkey,$inout3,$inout3 mov %r13,0x50+8(%rsp) vaesenc $rndkey,$inout4,$inout4 mov %r12,0x58+8(%rsp) vpxor $Z1,$Z2,$Z2 vaesenc $rndkey,$inout5,$inout5 vpxor $T1,$Z2,$Z2 vmovups 0x70-0x80($key),$rndkey vpslldq \$8,$Z2,$Z1 vpxor $T2,$Z0,$Z0 vmovdqu 0x10($const),$Hkey # .Lpoly vaesenc $rndkey,$inout0,$inout0 vpxor $Xi,$Z3,$Z3 vaesenc $rndkey,$inout1,$inout1 vpxor $Z1,$Z0,$Z0 movbe 0x18($in0),%r13 vaesenc $rndkey,$inout2,$inout2 movbe 0x10($in0),%r12 vpalignr \$8,$Z0,$Z0,$Ii # 1st phase vpclmulqdq \$0x10,$Hkey,$Z0,$Z0 mov %r13,0x60+8(%rsp) vaesenc $rndkey,$inout3,$inout3 mov %r12,0x68+8(%rsp) vaesenc $rndkey,$inout4,$inout4 vmovups 0x80-0x80($key),$T1 # borrow $T1 for $rndkey vaesenc $rndkey,$inout5,$inout5 vaesenc $T1,$inout0,$inout0 vmovups 0x90-0x80($key),$rndkey vaesenc $T1,$inout1,$inout1 vpsrldq \$8,$Z2,$Z2 vaesenc $T1,$inout2,$inout2 vpxor $Z2,$Z3,$Z3 vaesenc $T1,$inout3,$inout3 vpxor $Ii,$Z0,$Z0 movbe 0x08($in0),%r13 vaesenc $T1,$inout4,$inout4 movbe 0x00($in0),%r12 vaesenc $T1,$inout5,$inout5 vmovups 0xa0-0x80($key),$T1 cmp \$11,$rounds jb .Lenc_tail # 128-bit key vaesenc $rndkey,$inout0,$inout0 vaesenc $rndkey,$inout1,$inout1 vaesenc $rndkey,$inout2,$inout2 vaesenc $rndkey,$inout3,$inout3 vaesenc $rndkey,$inout4,$inout4 vaesenc $rndkey,$inout5,$inout5 vaesenc $T1,$inout0,$inout0 vaesenc $T1,$inout1,$inout1 vaesenc $T1,$inout2,$inout2 vaesenc $T1,$inout3,$inout3 vaesenc $T1,$inout4,$inout4 vmovups 0xb0-0x80($key),$rndkey vaesenc $T1,$inout5,$inout5 vmovups 0xc0-0x80($key),$T1 je .Lenc_tail # 192-bit key vaesenc $rndkey,$inout0,$inout0 vaesenc $rndkey,$inout1,$inout1 vaesenc $rndkey,$inout2,$inout2 vaesenc $rndkey,$inout3,$inout3 vaesenc $rndkey,$inout4,$inout4 vaesenc $rndkey,$inout5,$inout5 vaesenc $T1,$inout0,$inout0 vaesenc $T1,$inout1,$inout1 vaesenc $T1,$inout2,$inout2 vaesenc $T1,$inout3,$inout3 vaesenc $T1,$inout4,$inout4 vmovups 0xd0-0x80($key),$rndkey vaesenc $T1,$inout5,$inout5 vmovups 0xe0-0x80($key),$T1 jmp .Lenc_tail # 256-bit key .align 32 .Lhandle_ctr32: vmovdqu ($const),$Ii # borrow $Ii for .Lbswap_mask vpshufb $Ii,$T1,$Z2 # byte-swap counter vmovdqu 0x30($const),$Z1 # borrow $Z1, .Ltwo_lsb vpaddd 0x40($const),$Z2,$inout1 # .Lone_lsb vpaddd $Z1,$Z2,$inout2 vmovdqu 0x00-0x20($Xip),$Hkey # $Hkey^1 vpaddd $Z1,$inout1,$inout3 vpshufb $Ii,$inout1,$inout1 vpaddd $Z1,$inout2,$inout4 vpshufb $Ii,$inout2,$inout2 vpxor $rndkey,$inout1,$inout1 vpaddd $Z1,$inout3,$inout5 vpshufb $Ii,$inout3,$inout3 vpxor $rndkey,$inout2,$inout2 vpaddd $Z1,$inout4,$T1 # byte-swapped next counter value vpshufb $Ii,$inout4,$inout4 vpshufb $Ii,$inout5,$inout5 vpshufb $Ii,$T1,$T1 # next counter value jmp .Lresume_ctr32 .align 32 .Lenc_tail: vaesenc $rndkey,$inout0,$inout0 vmovdqu $Z3,16+8(%rsp) # postpone vpxor $Z3,$Xi,$Xi vpalignr \$8,$Z0,$Z0,$Xi # 2nd phase vaesenc $rndkey,$inout1,$inout1 vpclmulqdq \$0x10,$Hkey,$Z0,$Z0 vpxor 0x00($inp),$T1,$T2 vaesenc $rndkey,$inout2,$inout2 vpxor 0x10($inp),$T1,$Ii vaesenc $rndkey,$inout3,$inout3 vpxor 0x20($inp),$T1,$Z1 vaesenc $rndkey,$inout4,$inout4 vpxor 0x30($inp),$T1,$Z2 vaesenc $rndkey,$inout5,$inout5 vpxor 0x40($inp),$T1,$Z3 vpxor 0x50($inp),$T1,$Hkey vmovdqu ($ivp),$T1 # load next counter value vaesenclast $T2,$inout0,$inout0 vmovdqu 0x20($const),$T2 # borrow $T2, .Lone_msb vaesenclast $Ii,$inout1,$inout1 vpaddb $T2,$T1,$Ii mov %r13,0x70+8(%rsp) lea 0x60($inp),$inp vaesenclast $Z1,$inout2,$inout2 vpaddb $T2,$Ii,$Z1 mov %r12,0x78+8(%rsp) lea 0x60($out),$out vmovdqu 0x00-0x80($key),$rndkey vaesenclast $Z2,$inout3,$inout3 vpaddb $T2,$Z1,$Z2 vaesenclast $Z3, $inout4,$inout4 vpaddb $T2,$Z2,$Z3 vaesenclast $Hkey,$inout5,$inout5 vpaddb $T2,$Z3,$Hkey add \$0x60,$ret sub \$0x6,$len jc .L6x_done vmovups $inout0,-0x60($out) # save output vpxor $rndkey,$T1,$inout0 vmovups $inout1,-0x50($out) vmovdqa $Ii,$inout1 # 0 latency vmovups $inout2,-0x40($out) vmovdqa $Z1,$inout2 # 0 latency vmovups $inout3,-0x30($out) vmovdqa $Z2,$inout3 # 0 latency vmovups $inout4,-0x20($out) vmovdqa $Z3,$inout4 # 0 latency vmovups $inout5,-0x10($out) vmovdqa $Hkey,$inout5 # 0 latency vmovdqu 0x20+8(%rsp),$Z3 # I[5] jmp .Loop6x .L6x_done: vpxor 16+8(%rsp),$Xi,$Xi # modulo-scheduled vpxor $Z0,$Xi,$Xi # modulo-scheduled ret .cfi_endproc .size _aesni_ctr32_ghash_6x,.-_aesni_ctr32_ghash_6x ___ ###################################################################### # # size_t aesni_gcm_[en|de]crypt(const void *inp, void *out, size_t len, # const AES_KEY *key, unsigned char iv[16], # struct { u128 Xi,H,Htbl[9]; } *Xip); $code.=<<___; .globl aesni_gcm_decrypt .type aesni_gcm_decrypt,\@function,6 .align 32 aesni_gcm_decrypt: .cfi_startproc xor $ret,$ret cmp \$0x60,$len # minimal accepted length jb .Lgcm_dec_abort lea (%rsp),%rax # save stack pointer .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,-0xd8(%rax) movaps %xmm7,-0xc8(%rax) movaps %xmm8,-0xb8(%rax) movaps %xmm9,-0xa8(%rax) movaps %xmm10,-0x98(%rax) movaps %xmm11,-0x88(%rax) movaps %xmm12,-0x78(%rax) movaps %xmm13,-0x68(%rax) movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) .Lgcm_dec_body: ___ $code.=<<___; vzeroupper vmovdqu ($ivp),$T1 # input counter value add \$-128,%rsp mov 12($ivp),$counter lea .Lbswap_mask(%rip),$const lea -0x80($key),$in0 # borrow $in0 mov \$0xf80,$end0 # borrow $end0 vmovdqu ($Xip),$Xi # load Xi and \$-128,%rsp # ensure stack alignment vmovdqu ($const),$Ii # borrow $Ii for .Lbswap_mask lea 0x80($key),$key # size optimization lea 0x20+0x20($Xip),$Xip # size optimization mov 0xf0-0x80($key),$rounds vpshufb $Ii,$Xi,$Xi and $end0,$in0 and %rsp,$end0 sub $in0,$end0 jc .Ldec_no_key_aliasing cmp \$768,$end0 jnc .Ldec_no_key_aliasing sub $end0,%rsp # avoid aliasing with key .Ldec_no_key_aliasing: vmovdqu 0x50($inp),$Z3 # I[5] lea ($inp),$in0 vmovdqu 0x40($inp),$Z0 lea -0xc0($inp,$len),$end0 vmovdqu 0x30($inp),$Z1 shr \$4,$len xor $ret,$ret vmovdqu 0x20($inp),$Z2 vpshufb $Ii,$Z3,$Z3 # passed to _aesni_ctr32_ghash_6x vmovdqu 0x10($inp),$T2 vpshufb $Ii,$Z0,$Z0 vmovdqu ($inp),$Hkey vpshufb $Ii,$Z1,$Z1 vmovdqu $Z0,0x30(%rsp) vpshufb $Ii,$Z2,$Z2 vmovdqu $Z1,0x40(%rsp) vpshufb $Ii,$T2,$T2 vmovdqu $Z2,0x50(%rsp) vpshufb $Ii,$Hkey,$Hkey vmovdqu $T2,0x60(%rsp) vmovdqu $Hkey,0x70(%rsp) call _aesni_ctr32_ghash_6x vmovups $inout0,-0x60($out) # save output vmovups $inout1,-0x50($out) vmovups $inout2,-0x40($out) vmovups $inout3,-0x30($out) vmovups $inout4,-0x20($out) vmovups $inout5,-0x10($out) vpshufb ($const),$Xi,$Xi # .Lbswap_mask vmovdqu $Xi,-0x40($Xip) # output Xi vzeroupper ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp # restore %rsp .cfi_def_cfa_register %rsp .Lgcm_dec_abort: mov $ret,%rax # return value ret .cfi_endproc .size aesni_gcm_decrypt,.-aesni_gcm_decrypt ___ $code.=<<___; .type _aesni_ctr32_6x,\@abi-omnipotent .align 32 _aesni_ctr32_6x: .cfi_startproc vmovdqu 0x00-0x80($key),$Z0 # borrow $Z0 for $rndkey vmovdqu 0x20($const),$T2 # borrow $T2, .Lone_msb lea -1($rounds),%r13 vmovups 0x10-0x80($key),$rndkey lea 0x20-0x80($key),%r12 vpxor $Z0,$T1,$inout0 add \$`6<<24`,$counter jc .Lhandle_ctr32_2 vpaddb $T2,$T1,$inout1 vpaddb $T2,$inout1,$inout2 vpxor $Z0,$inout1,$inout1 vpaddb $T2,$inout2,$inout3 vpxor $Z0,$inout2,$inout2 vpaddb $T2,$inout3,$inout4 vpxor $Z0,$inout3,$inout3 vpaddb $T2,$inout4,$inout5 vpxor $Z0,$inout4,$inout4 vpaddb $T2,$inout5,$T1 vpxor $Z0,$inout5,$inout5 jmp .Loop_ctr32 .align 16 .Loop_ctr32: vaesenc $rndkey,$inout0,$inout0 vaesenc $rndkey,$inout1,$inout1 vaesenc $rndkey,$inout2,$inout2 vaesenc $rndkey,$inout3,$inout3 vaesenc $rndkey,$inout4,$inout4 vaesenc $rndkey,$inout5,$inout5 vmovups (%r12),$rndkey lea 0x10(%r12),%r12 dec %r13d jnz .Loop_ctr32 vmovdqu (%r12),$Hkey # last round key vaesenc $rndkey,$inout0,$inout0 vpxor 0x00($inp),$Hkey,$Z0 vaesenc $rndkey,$inout1,$inout1 vpxor 0x10($inp),$Hkey,$Z1 vaesenc $rndkey,$inout2,$inout2 vpxor 0x20($inp),$Hkey,$Z2 vaesenc $rndkey,$inout3,$inout3 vpxor 0x30($inp),$Hkey,$Xi vaesenc $rndkey,$inout4,$inout4 vpxor 0x40($inp),$Hkey,$T2 vaesenc $rndkey,$inout5,$inout5 vpxor 0x50($inp),$Hkey,$Hkey lea 0x60($inp),$inp vaesenclast $Z0,$inout0,$inout0 vaesenclast $Z1,$inout1,$inout1 vaesenclast $Z2,$inout2,$inout2 vaesenclast $Xi,$inout3,$inout3 vaesenclast $T2,$inout4,$inout4 vaesenclast $Hkey,$inout5,$inout5 vmovups $inout0,0x00($out) vmovups $inout1,0x10($out) vmovups $inout2,0x20($out) vmovups $inout3,0x30($out) vmovups $inout4,0x40($out) vmovups $inout5,0x50($out) lea 0x60($out),$out ret .align 32 .Lhandle_ctr32_2: vpshufb $Ii,$T1,$Z2 # byte-swap counter vmovdqu 0x30($const),$Z1 # borrow $Z1, .Ltwo_lsb vpaddd 0x40($const),$Z2,$inout1 # .Lone_lsb vpaddd $Z1,$Z2,$inout2 vpaddd $Z1,$inout1,$inout3 vpshufb $Ii,$inout1,$inout1 vpaddd $Z1,$inout2,$inout4 vpshufb $Ii,$inout2,$inout2 vpxor $Z0,$inout1,$inout1 vpaddd $Z1,$inout3,$inout5 vpshufb $Ii,$inout3,$inout3 vpxor $Z0,$inout2,$inout2 vpaddd $Z1,$inout4,$T1 # byte-swapped next counter value vpshufb $Ii,$inout4,$inout4 vpxor $Z0,$inout3,$inout3 vpshufb $Ii,$inout5,$inout5 vpxor $Z0,$inout4,$inout4 vpshufb $Ii,$T1,$T1 # next counter value vpxor $Z0,$inout5,$inout5 jmp .Loop_ctr32 .cfi_endproc .size _aesni_ctr32_6x,.-_aesni_ctr32_6x .globl aesni_gcm_encrypt .type aesni_gcm_encrypt,\@function,6 .align 32 aesni_gcm_encrypt: .cfi_startproc xor $ret,$ret cmp \$0x60*3,$len # minimal accepted length jb .Lgcm_enc_abort lea (%rsp),%rax # save stack pointer .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,-0xd8(%rax) movaps %xmm7,-0xc8(%rax) movaps %xmm8,-0xb8(%rax) movaps %xmm9,-0xa8(%rax) movaps %xmm10,-0x98(%rax) movaps %xmm11,-0x88(%rax) movaps %xmm12,-0x78(%rax) movaps %xmm13,-0x68(%rax) movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) .Lgcm_enc_body: ___ $code.=<<___; vzeroupper vmovdqu ($ivp),$T1 # input counter value add \$-128,%rsp mov 12($ivp),$counter lea .Lbswap_mask(%rip),$const lea -0x80($key),$in0 # borrow $in0 mov \$0xf80,$end0 # borrow $end0 lea 0x80($key),$key # size optimization vmovdqu ($const),$Ii # borrow $Ii for .Lbswap_mask and \$-128,%rsp # ensure stack alignment mov 0xf0-0x80($key),$rounds and $end0,$in0 and %rsp,$end0 sub $in0,$end0 jc .Lenc_no_key_aliasing cmp \$768,$end0 jnc .Lenc_no_key_aliasing sub $end0,%rsp # avoid aliasing with key .Lenc_no_key_aliasing: lea ($out),$in0 lea -0xc0($out,$len),$end0 shr \$4,$len call _aesni_ctr32_6x vpshufb $Ii,$inout0,$Xi # save bswapped output on stack vpshufb $Ii,$inout1,$T2 vmovdqu $Xi,0x70(%rsp) vpshufb $Ii,$inout2,$Z0 vmovdqu $T2,0x60(%rsp) vpshufb $Ii,$inout3,$Z1 vmovdqu $Z0,0x50(%rsp) vpshufb $Ii,$inout4,$Z2 vmovdqu $Z1,0x40(%rsp) vpshufb $Ii,$inout5,$Z3 # passed to _aesni_ctr32_ghash_6x vmovdqu $Z2,0x30(%rsp) call _aesni_ctr32_6x vmovdqu ($Xip),$Xi # load Xi lea 0x20+0x20($Xip),$Xip # size optimization sub \$12,$len mov \$0x60*2,$ret vpshufb $Ii,$Xi,$Xi call _aesni_ctr32_ghash_6x vmovdqu 0x20(%rsp),$Z3 # I[5] vmovdqu ($const),$Ii # borrow $Ii for .Lbswap_mask vmovdqu 0x00-0x20($Xip),$Hkey # $Hkey^1 vpunpckhqdq $Z3,$Z3,$T1 vmovdqu 0x20-0x20($Xip),$rndkey # borrow $rndkey for $HK vmovups $inout0,-0x60($out) # save output vpshufb $Ii,$inout0,$inout0 # but keep bswapped copy vpxor $Z3,$T1,$T1 vmovups $inout1,-0x50($out) vpshufb $Ii,$inout1,$inout1 vmovups $inout2,-0x40($out) vpshufb $Ii,$inout2,$inout2 vmovups $inout3,-0x30($out) vpshufb $Ii,$inout3,$inout3 vmovups $inout4,-0x20($out) vpshufb $Ii,$inout4,$inout4 vmovups $inout5,-0x10($out) vpshufb $Ii,$inout5,$inout5 vmovdqu $inout0,0x10(%rsp) # free $inout0 ___ { my ($HK,$T3)=($rndkey,$inout0); $code.=<<___; vmovdqu 0x30(%rsp),$Z2 # I[4] vmovdqu 0x10-0x20($Xip),$Ii # borrow $Ii for $Hkey^2 vpunpckhqdq $Z2,$Z2,$T2 vpclmulqdq \$0x00,$Hkey,$Z3,$Z1 vpxor $Z2,$T2,$T2 vpclmulqdq \$0x11,$Hkey,$Z3,$Z3 vpclmulqdq \$0x00,$HK,$T1,$T1 vmovdqu 0x40(%rsp),$T3 # I[3] vpclmulqdq \$0x00,$Ii,$Z2,$Z0 vmovdqu 0x30-0x20($Xip),$Hkey # $Hkey^3 vpxor $Z1,$Z0,$Z0 vpunpckhqdq $T3,$T3,$Z1 vpclmulqdq \$0x11,$Ii,$Z2,$Z2 vpxor $T3,$Z1,$Z1 vpxor $Z3,$Z2,$Z2 vpclmulqdq \$0x10,$HK,$T2,$T2 vmovdqu 0x50-0x20($Xip),$HK vpxor $T1,$T2,$T2 vmovdqu 0x50(%rsp),$T1 # I[2] vpclmulqdq \$0x00,$Hkey,$T3,$Z3 vmovdqu 0x40-0x20($Xip),$Ii # borrow $Ii for $Hkey^4 vpxor $Z0,$Z3,$Z3 vpunpckhqdq $T1,$T1,$Z0 vpclmulqdq \$0x11,$Hkey,$T3,$T3 vpxor $T1,$Z0,$Z0 vpxor $Z2,$T3,$T3 vpclmulqdq \$0x00,$HK,$Z1,$Z1 vpxor $T2,$Z1,$Z1 vmovdqu 0x60(%rsp),$T2 # I[1] vpclmulqdq \$0x00,$Ii,$T1,$Z2 vmovdqu 0x60-0x20($Xip),$Hkey # $Hkey^5 vpxor $Z3,$Z2,$Z2 vpunpckhqdq $T2,$T2,$Z3 vpclmulqdq \$0x11,$Ii,$T1,$T1 vpxor $T2,$Z3,$Z3 vpxor $T3,$T1,$T1 vpclmulqdq \$0x10,$HK,$Z0,$Z0 vmovdqu 0x80-0x20($Xip),$HK vpxor $Z1,$Z0,$Z0 vpxor 0x70(%rsp),$Xi,$Xi # accumulate I[0] vpclmulqdq \$0x00,$Hkey,$T2,$Z1 vmovdqu 0x70-0x20($Xip),$Ii # borrow $Ii for $Hkey^6 vpunpckhqdq $Xi,$Xi,$T3 vpxor $Z2,$Z1,$Z1 vpclmulqdq \$0x11,$Hkey,$T2,$T2 vpxor $Xi,$T3,$T3 vpxor $T1,$T2,$T2 vpclmulqdq \$0x00,$HK,$Z3,$Z3 vpxor $Z0,$Z3,$Z0 vpclmulqdq \$0x00,$Ii,$Xi,$Z2 vmovdqu 0x00-0x20($Xip),$Hkey # $Hkey^1 vpunpckhqdq $inout5,$inout5,$T1 vpclmulqdq \$0x11,$Ii,$Xi,$Xi vpxor $inout5,$T1,$T1 vpxor $Z1,$Z2,$Z1 vpclmulqdq \$0x10,$HK,$T3,$T3 vmovdqu 0x20-0x20($Xip),$HK vpxor $T2,$Xi,$Z3 vpxor $Z0,$T3,$Z2 vmovdqu 0x10-0x20($Xip),$Ii # borrow $Ii for $Hkey^2 vpxor $Z1,$Z3,$T3 # aggregated Karatsuba post-processing vpclmulqdq \$0x00,$Hkey,$inout5,$Z0 vpxor $T3,$Z2,$Z2 vpunpckhqdq $inout4,$inout4,$T2 vpclmulqdq \$0x11,$Hkey,$inout5,$inout5 vpxor $inout4,$T2,$T2 vpslldq \$8,$Z2,$T3 vpclmulqdq \$0x00,$HK,$T1,$T1 vpxor $T3,$Z1,$Xi vpsrldq \$8,$Z2,$Z2 vpxor $Z2,$Z3,$Z3 vpclmulqdq \$0x00,$Ii,$inout4,$Z1 vmovdqu 0x30-0x20($Xip),$Hkey # $Hkey^3 vpxor $Z0,$Z1,$Z1 vpunpckhqdq $inout3,$inout3,$T3 vpclmulqdq \$0x11,$Ii,$inout4,$inout4 vpxor $inout3,$T3,$T3 vpxor $inout5,$inout4,$inout4 vpalignr \$8,$Xi,$Xi,$inout5 # 1st phase vpclmulqdq \$0x10,$HK,$T2,$T2 vmovdqu 0x50-0x20($Xip),$HK vpxor $T1,$T2,$T2 vpclmulqdq \$0x00,$Hkey,$inout3,$Z0 vmovdqu 0x40-0x20($Xip),$Ii # borrow $Ii for $Hkey^4 vpxor $Z1,$Z0,$Z0 vpunpckhqdq $inout2,$inout2,$T1 vpclmulqdq \$0x11,$Hkey,$inout3,$inout3 vpxor $inout2,$T1,$T1 vpxor $inout4,$inout3,$inout3 vxorps 0x10(%rsp),$Z3,$Z3 # accumulate $inout0 vpclmulqdq \$0x00,$HK,$T3,$T3 vpxor $T2,$T3,$T3 vpclmulqdq \$0x10,0x10($const),$Xi,$Xi vxorps $inout5,$Xi,$Xi vpclmulqdq \$0x00,$Ii,$inout2,$Z1 vmovdqu 0x60-0x20($Xip),$Hkey # $Hkey^5 vpxor $Z0,$Z1,$Z1 vpunpckhqdq $inout1,$inout1,$T2 vpclmulqdq \$0x11,$Ii,$inout2,$inout2 vpxor $inout1,$T2,$T2 vpalignr \$8,$Xi,$Xi,$inout5 # 2nd phase vpxor $inout3,$inout2,$inout2 vpclmulqdq \$0x10,$HK,$T1,$T1 vmovdqu 0x80-0x20($Xip),$HK vpxor $T3,$T1,$T1 vxorps $Z3,$inout5,$inout5 vpclmulqdq \$0x10,0x10($const),$Xi,$Xi vxorps $inout5,$Xi,$Xi vpclmulqdq \$0x00,$Hkey,$inout1,$Z0 vmovdqu 0x70-0x20($Xip),$Ii # borrow $Ii for $Hkey^6 vpxor $Z1,$Z0,$Z0 vpunpckhqdq $Xi,$Xi,$T3 vpclmulqdq \$0x11,$Hkey,$inout1,$inout1 vpxor $Xi,$T3,$T3 vpxor $inout2,$inout1,$inout1 vpclmulqdq \$0x00,$HK,$T2,$T2 vpxor $T1,$T2,$T2 vpclmulqdq \$0x00,$Ii,$Xi,$Z1 vpclmulqdq \$0x11,$Ii,$Xi,$Z3 vpxor $Z0,$Z1,$Z1 vpclmulqdq \$0x10,$HK,$T3,$Z2 vpxor $inout1,$Z3,$Z3 vpxor $T2,$Z2,$Z2 vpxor $Z1,$Z3,$Z0 # aggregated Karatsuba post-processing vpxor $Z0,$Z2,$Z2 vpslldq \$8,$Z2,$T1 vmovdqu 0x10($const),$Hkey # .Lpoly vpsrldq \$8,$Z2,$Z2 vpxor $T1,$Z1,$Xi vpxor $Z2,$Z3,$Z3 vpalignr \$8,$Xi,$Xi,$T2 # 1st phase vpclmulqdq \$0x10,$Hkey,$Xi,$Xi vpxor $T2,$Xi,$Xi vpalignr \$8,$Xi,$Xi,$T2 # 2nd phase vpclmulqdq \$0x10,$Hkey,$Xi,$Xi vpxor $Z3,$T2,$T2 vpxor $T2,$Xi,$Xi ___ } $code.=<<___; vpshufb ($const),$Xi,$Xi # .Lbswap_mask vmovdqu $Xi,-0x40($Xip) # output Xi vzeroupper ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp # restore %rsp .cfi_def_cfa_register %rsp .Lgcm_enc_abort: mov $ret,%rax # return value ret .cfi_endproc .size aesni_gcm_encrypt,.-aesni_gcm_encrypt ___ $code.=<<___; .align 64 .Lbswap_mask: .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 .Lpoly: .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 .Lone_msb: .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 .Ltwo_lsb: .byte 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 .Lone_lsb: .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 .asciz "AES-NI GCM module for x86_64, CRYPTOGAMS by " .align 64 ___ if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___ .extern __imp_RtlVirtualUnwind .type gcm_se_handler,\@abi-omnipotent .align 16 gcm_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 120($context),%rax # pull context->Rax mov -48(%rax),%r15 mov -40(%rax),%r14 mov -32(%rax),%r13 mov -24(%rax),%r12 mov -16(%rax),%rbp mov -8(%rax),%rbx mov %r15,240($context) mov %r14,232($context) mov %r13,224($context) mov %r12,216($context) mov %rbp,160($context) mov %rbx,144($context) lea -0xd8(%rax),%rsi # %xmm save area lea 512($context),%rdi # & context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size gcm_se_handler,.-gcm_se_handler .section .pdata .align 4 .rva .LSEH_begin_aesni_gcm_decrypt .rva .LSEH_end_aesni_gcm_decrypt .rva .LSEH_gcm_dec_info .rva .LSEH_begin_aesni_gcm_encrypt .rva .LSEH_end_aesni_gcm_encrypt .rva .LSEH_gcm_enc_info .section .xdata .align 8 .LSEH_gcm_dec_info: .byte 9,0,0,0 .rva gcm_se_handler .rva .Lgcm_dec_body,.Lgcm_dec_abort .LSEH_gcm_enc_info: .byte 9,0,0,0 .rva gcm_se_handler .rva .Lgcm_enc_body,.Lgcm_enc_abort ___ } }}} else {{{ $code=<<___; # assembler is too old .text .globl aesni_gcm_encrypt .type aesni_gcm_encrypt,\@abi-omnipotent aesni_gcm_encrypt: .cfi_startproc xor %eax,%eax ret .cfi_endproc .size aesni_gcm_encrypt,.-aesni_gcm_encrypt .globl aesni_gcm_decrypt .type aesni_gcm_decrypt,\@abi-omnipotent aesni_gcm_decrypt: .cfi_startproc xor %eax,%eax ret .cfi_endproc .size aesni_gcm_decrypt,.-aesni_gcm_decrypt ___ }}} $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghash-alpha.pl000066400000000000000000000175041364063235100212760ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # March 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+128 bytes shared table]. Even though # loops are aggressively modulo-scheduled in respect to references to # Htbl and Z.hi updates for 8 cycles per byte, measured performance is # ~12 cycles per processed byte on 21264 CPU. It seems to be a dynamic # scheduling "glitch," because uprofile(1) indicates uniform sample # distribution, as if all instruction bundles execute in 1.5 cycles. # Meaning that it could have been even faster, yet 12 cycles is ~60% # better than gcc-generated code and ~80% than code generated by vendor # compiler. $cnt="v0"; # $0 $t0="t0"; $t1="t1"; $t2="t2"; $Thi0="t3"; # $4 $Tlo0="t4"; $Thi1="t5"; $Tlo1="t6"; $rem="t7"; # $8 ################# $Xi="a0"; # $16, input argument block $Htbl="a1"; $inp="a2"; $len="a3"; $nlo="a4"; # $20 $nhi="a5"; $Zhi="t8"; $Zlo="t9"; $Xhi="t10"; # $24 $Xlo="t11"; $remp="t12"; $rem_4bit="AT"; # $28 { my $N; sub loop() { $N++; $code.=<<___; .align 4 extbl $Xlo,7,$nlo and $nlo,0xf0,$nhi sll $nlo,4,$nlo and $nlo,0xf0,$nlo addq $nlo,$Htbl,$nlo ldq $Zlo,8($nlo) addq $nhi,$Htbl,$nhi ldq $Zhi,0($nlo) and $Zlo,0x0f,$remp sll $Zhi,60,$t0 lda $cnt,6(zero) extbl $Xlo,6,$nlo ldq $Tlo1,8($nhi) s8addq $remp,$rem_4bit,$remp ldq $Thi1,0($nhi) srl $Zlo,4,$Zlo ldq $rem,0($remp) srl $Zhi,4,$Zhi xor $t0,$Zlo,$Zlo and $nlo,0xf0,$nhi xor $Tlo1,$Zlo,$Zlo sll $nlo,4,$nlo xor $Thi1,$Zhi,$Zhi and $nlo,0xf0,$nlo addq $nlo,$Htbl,$nlo ldq $Tlo0,8($nlo) addq $nhi,$Htbl,$nhi ldq $Thi0,0($nlo) .Looplo$N: and $Zlo,0x0f,$remp sll $Zhi,60,$t0 subq $cnt,1,$cnt srl $Zlo,4,$Zlo ldq $Tlo1,8($nhi) xor $rem,$Zhi,$Zhi ldq $Thi1,0($nhi) s8addq $remp,$rem_4bit,$remp ldq $rem,0($remp) srl $Zhi,4,$Zhi xor $t0,$Zlo,$Zlo extbl $Xlo,$cnt,$nlo and $nlo,0xf0,$nhi xor $Thi0,$Zhi,$Zhi xor $Tlo0,$Zlo,$Zlo sll $nlo,4,$nlo and $Zlo,0x0f,$remp sll $Zhi,60,$t0 and $nlo,0xf0,$nlo srl $Zlo,4,$Zlo s8addq $remp,$rem_4bit,$remp xor $rem,$Zhi,$Zhi addq $nlo,$Htbl,$nlo addq $nhi,$Htbl,$nhi ldq $rem,0($remp) srl $Zhi,4,$Zhi ldq $Tlo0,8($nlo) xor $t0,$Zlo,$Zlo xor $Tlo1,$Zlo,$Zlo xor $Thi1,$Zhi,$Zhi ldq $Thi0,0($nlo) bne $cnt,.Looplo$N and $Zlo,0x0f,$remp sll $Zhi,60,$t0 lda $cnt,7(zero) srl $Zlo,4,$Zlo ldq $Tlo1,8($nhi) xor $rem,$Zhi,$Zhi ldq $Thi1,0($nhi) s8addq $remp,$rem_4bit,$remp ldq $rem,0($remp) srl $Zhi,4,$Zhi xor $t0,$Zlo,$Zlo extbl $Xhi,$cnt,$nlo and $nlo,0xf0,$nhi xor $Thi0,$Zhi,$Zhi xor $Tlo0,$Zlo,$Zlo sll $nlo,4,$nlo and $Zlo,0x0f,$remp sll $Zhi,60,$t0 and $nlo,0xf0,$nlo srl $Zlo,4,$Zlo s8addq $remp,$rem_4bit,$remp xor $rem,$Zhi,$Zhi addq $nlo,$Htbl,$nlo addq $nhi,$Htbl,$nhi ldq $rem,0($remp) srl $Zhi,4,$Zhi ldq $Tlo0,8($nlo) xor $t0,$Zlo,$Zlo xor $Tlo1,$Zlo,$Zlo xor $Thi1,$Zhi,$Zhi ldq $Thi0,0($nlo) unop .Loophi$N: and $Zlo,0x0f,$remp sll $Zhi,60,$t0 subq $cnt,1,$cnt srl $Zlo,4,$Zlo ldq $Tlo1,8($nhi) xor $rem,$Zhi,$Zhi ldq $Thi1,0($nhi) s8addq $remp,$rem_4bit,$remp ldq $rem,0($remp) srl $Zhi,4,$Zhi xor $t0,$Zlo,$Zlo extbl $Xhi,$cnt,$nlo and $nlo,0xf0,$nhi xor $Thi0,$Zhi,$Zhi xor $Tlo0,$Zlo,$Zlo sll $nlo,4,$nlo and $Zlo,0x0f,$remp sll $Zhi,60,$t0 and $nlo,0xf0,$nlo srl $Zlo,4,$Zlo s8addq $remp,$rem_4bit,$remp xor $rem,$Zhi,$Zhi addq $nlo,$Htbl,$nlo addq $nhi,$Htbl,$nhi ldq $rem,0($remp) srl $Zhi,4,$Zhi ldq $Tlo0,8($nlo) xor $t0,$Zlo,$Zlo xor $Tlo1,$Zlo,$Zlo xor $Thi1,$Zhi,$Zhi ldq $Thi0,0($nlo) bne $cnt,.Loophi$N and $Zlo,0x0f,$remp sll $Zhi,60,$t0 srl $Zlo,4,$Zlo ldq $Tlo1,8($nhi) xor $rem,$Zhi,$Zhi ldq $Thi1,0($nhi) s8addq $remp,$rem_4bit,$remp ldq $rem,0($remp) srl $Zhi,4,$Zhi xor $t0,$Zlo,$Zlo xor $Tlo0,$Zlo,$Zlo xor $Thi0,$Zhi,$Zhi and $Zlo,0x0f,$remp sll $Zhi,60,$t0 srl $Zlo,4,$Zlo s8addq $remp,$rem_4bit,$remp xor $rem,$Zhi,$Zhi ldq $rem,0($remp) srl $Zhi,4,$Zhi xor $Tlo1,$Zlo,$Zlo xor $Thi1,$Zhi,$Zhi xor $t0,$Zlo,$Zlo xor $rem,$Zhi,$Zhi ___ }} $code=<<___; #ifdef __linux__ #include #else #include #include #endif .text .set noat .set noreorder .globl gcm_gmult_4bit .align 4 .ent gcm_gmult_4bit gcm_gmult_4bit: .frame sp,0,ra .prologue 0 ldq $Xlo,8($Xi) ldq $Xhi,0($Xi) bsr $t0,picmeup nop ___ &loop(); $code.=<<___; srl $Zlo,24,$t0 # byte swap srl $Zlo,8,$t1 sll $Zlo,8,$t2 sll $Zlo,24,$Zlo zapnot $t0,0x11,$t0 zapnot $t1,0x22,$t1 zapnot $Zlo,0x88,$Zlo or $t0,$t1,$t0 zapnot $t2,0x44,$t2 or $Zlo,$t0,$Zlo srl $Zhi,24,$t0 srl $Zhi,8,$t1 or $Zlo,$t2,$Zlo sll $Zhi,8,$t2 sll $Zhi,24,$Zhi srl $Zlo,32,$Xlo sll $Zlo,32,$Zlo zapnot $t0,0x11,$t0 zapnot $t1,0x22,$t1 or $Zlo,$Xlo,$Xlo zapnot $Zhi,0x88,$Zhi or $t0,$t1,$t0 zapnot $t2,0x44,$t2 or $Zhi,$t0,$Zhi or $Zhi,$t2,$Zhi srl $Zhi,32,$Xhi sll $Zhi,32,$Zhi or $Zhi,$Xhi,$Xhi stq $Xlo,8($Xi) stq $Xhi,0($Xi) ret (ra) .end gcm_gmult_4bit ___ $inhi="s0"; $inlo="s1"; $code.=<<___; .globl gcm_ghash_4bit .align 4 .ent gcm_ghash_4bit gcm_ghash_4bit: lda sp,-32(sp) stq ra,0(sp) stq s0,8(sp) stq s1,16(sp) .mask 0x04000600,-32 .frame sp,32,ra .prologue 0 ldq_u $inhi,0($inp) ldq_u $Thi0,7($inp) ldq_u $inlo,8($inp) ldq_u $Tlo0,15($inp) ldq $Xhi,0($Xi) ldq $Xlo,8($Xi) bsr $t0,picmeup nop .Louter: extql $inhi,$inp,$inhi extqh $Thi0,$inp,$Thi0 or $inhi,$Thi0,$inhi lda $inp,16($inp) extql $inlo,$inp,$inlo extqh $Tlo0,$inp,$Tlo0 or $inlo,$Tlo0,$inlo subq $len,16,$len xor $Xlo,$inlo,$Xlo xor $Xhi,$inhi,$Xhi ___ &loop(); $code.=<<___; srl $Zlo,24,$t0 # byte swap srl $Zlo,8,$t1 sll $Zlo,8,$t2 sll $Zlo,24,$Zlo zapnot $t0,0x11,$t0 zapnot $t1,0x22,$t1 zapnot $Zlo,0x88,$Zlo or $t0,$t1,$t0 zapnot $t2,0x44,$t2 or $Zlo,$t0,$Zlo srl $Zhi,24,$t0 srl $Zhi,8,$t1 or $Zlo,$t2,$Zlo sll $Zhi,8,$t2 sll $Zhi,24,$Zhi srl $Zlo,32,$Xlo sll $Zlo,32,$Zlo beq $len,.Ldone zapnot $t0,0x11,$t0 zapnot $t1,0x22,$t1 or $Zlo,$Xlo,$Xlo ldq_u $inhi,0($inp) zapnot $Zhi,0x88,$Zhi or $t0,$t1,$t0 zapnot $t2,0x44,$t2 ldq_u $Thi0,7($inp) or $Zhi,$t0,$Zhi or $Zhi,$t2,$Zhi ldq_u $inlo,8($inp) ldq_u $Tlo0,15($inp) srl $Zhi,32,$Xhi sll $Zhi,32,$Zhi or $Zhi,$Xhi,$Xhi br zero,.Louter .Ldone: zapnot $t0,0x11,$t0 zapnot $t1,0x22,$t1 or $Zlo,$Xlo,$Xlo zapnot $Zhi,0x88,$Zhi or $t0,$t1,$t0 zapnot $t2,0x44,$t2 or $Zhi,$t0,$Zhi or $Zhi,$t2,$Zhi srl $Zhi,32,$Xhi sll $Zhi,32,$Zhi or $Zhi,$Xhi,$Xhi stq $Xlo,8($Xi) stq $Xhi,0($Xi) .set noreorder /*ldq ra,0(sp)*/ ldq s0,8(sp) ldq s1,16(sp) lda sp,32(sp) ret (ra) .end gcm_ghash_4bit .align 4 .ent picmeup picmeup: .frame sp,0,$t0 .prologue 0 br $rem_4bit,.Lpic .Lpic: lda $rem_4bit,12($rem_4bit) ret ($t0) .end picmeup nop rem_4bit: .long 0,0x0000<<16, 0,0x1C20<<16, 0,0x3840<<16, 0,0x2460<<16 .long 0,0x7080<<16, 0,0x6CA0<<16, 0,0x48C0<<16, 0,0x54E0<<16 .long 0,0xE100<<16, 0,0xFD20<<16, 0,0xD940<<16, 0,0xC560<<16 .long 0,0x9180<<16, 0,0x8DA0<<16, 0,0xA9C0<<16, 0,0xB5E0<<16 .ascii "GHASH for Alpha, CRYPTOGAMS by " .align 4 ___ $output=pop and open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghash-armv4.pl000066400000000000000000000336161364063235100212440ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # April 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+32 bytes shared table]. There is no # experimental performance data available yet. The only approximation # that can be made at this point is based on code size. Inner loop is # 32 instructions long and on single-issue core should execute in <40 # cycles. Having verified that gcc 3.4 didn't unroll corresponding # loop, this assembler loop body was found to be ~3x smaller than # compiler-generated one... # # July 2010 # # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on # Cortex A8 core and ~25 cycles per processed byte (which was observed # to be ~3 times faster than gcc-generated code:-) # # February 2011 # # Profiler-assisted and platform-specific optimization resulted in 7% # improvement on Cortex A8 core and ~23.5 cycles per byte. # # March 2011 # # Add NEON implementation featuring polynomial multiplication, i.e. no # lookup tables involved. On Cortex A8 it was measured to process one # byte in 15 cycles or 55% faster than integer-only code. # # April 2014 # # Switch to multiplication algorithm suggested in paper referred # below and combine it with reduction algorithm from x86 module. # Performance improvement over previous version varies from 65% on # Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8 # processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63, # Snapdragon S4 - in 9.33. # # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software # Polynomial Multiplication on ARM Processors using the NEON Engine. # # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf # ==================================================================== # Note about "528B" variant. In ARM case it makes lesser sense to # implement it for following reasons: # # - performance improvement won't be anywhere near 50%, because 128- # bit shift operation is neatly fused with 128-bit xor here, and # "538B" variant would eliminate only 4-5 instructions out of 32 # in the inner loop (meaning that estimated improvement is ~15%); # - ARM-based systems are often embedded ones and extra memory # consumption might be unappreciated (for so little improvement); # # Byte order [in]dependence. ========================================= # # Caller is expected to maintain specific *dword* order in Htable, # namely with *least* significant dword of 128-bit value at *lower* # address. This differs completely from C code and has everything to # do with ldm instruction and order in which dwords are "consumed" by # algorithm. *Byte* order within these dwords in turn is whatever # *native* byte order on current platform. See gcm128.c for working # example... $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $Xi="r0"; # argument block $Htbl="r1"; $inp="r2"; $len="r3"; $Zll="r4"; # variables $Zlh="r5"; $Zhl="r6"; $Zhh="r7"; $Tll="r8"; $Tlh="r9"; $Thl="r10"; $Thh="r11"; $nlo="r12"; ################# r13 is stack pointer $nhi="r14"; ################# r15 is program counter $rem_4bit=$inp; # used in gcm_gmult_4bit $cnt=$len; sub Zsmash() { my $i=12; my @args=@_; for ($Zll,$Zlh,$Zhl,$Zhh) { $code.=<<___; #if __ARM_ARCH__>=7 && defined(__ARMEL__) rev $_,$_ str $_,[$Xi,#$i] #elif defined(__ARMEB__) str $_,[$Xi,#$i] #else mov $Tlh,$_,lsr#8 strb $_,[$Xi,#$i+3] mov $Thl,$_,lsr#16 strb $Tlh,[$Xi,#$i+2] mov $Thh,$_,lsr#24 strb $Thl,[$Xi,#$i+1] strb $Thh,[$Xi,#$i] #endif ___ $code.="\t".shift(@args)."\n"; $i-=4; } } $code=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) || defined(__clang__) .syntax unified #define ldrplb ldrbpl #define ldrneb ldrbne #endif #if defined(__thumb2__) .thumb #else .code 32 #endif .type rem_4bit,%object .align 5 rem_4bit: .short 0x0000,0x1C20,0x3840,0x2460 .short 0x7080,0x6CA0,0x48C0,0x54E0 .short 0xE100,0xFD20,0xD940,0xC560 .short 0x9180,0x8DA0,0xA9C0,0xB5E0 .size rem_4bit,.-rem_4bit .type rem_4bit_get,%function rem_4bit_get: #if defined(__thumb2__) adr $rem_4bit,rem_4bit #else sub $rem_4bit,pc,#8+32 @ &rem_4bit #endif b .Lrem_4bit_got nop nop .size rem_4bit_get,.-rem_4bit_get .global gcm_ghash_4bit .type gcm_ghash_4bit,%function .align 4 gcm_ghash_4bit: #if defined(__thumb2__) adr r12,rem_4bit #else sub r12,pc,#8+48 @ &rem_4bit #endif add $len,$inp,$len @ $len to point at the end stmdb sp!,{r3-r11,lr} @ save $len/end too ldmia r12,{r4-r11} @ copy rem_4bit ... stmdb sp!,{r4-r11} @ ... to stack ldrb $nlo,[$inp,#15] ldrb $nhi,[$Xi,#15] .Louter: eor $nlo,$nlo,$nhi and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f mov $cnt,#14 add $Zhh,$Htbl,$nlo,lsl#4 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] add $Thh,$Htbl,$nhi ldrb $nlo,[$inp,#14] and $nhi,$Zll,#0xf @ rem ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] add $nhi,$nhi,$nhi eor $Zll,$Tll,$Zll,lsr#4 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] eor $Zll,$Zll,$Zlh,lsl#28 ldrb $nhi,[$Xi,#14] eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 eor $nlo,$nlo,$nhi and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tll,lsl#16 .Linner: add $Thh,$Htbl,$nlo,lsl#4 and $nlo,$Zll,#0xf @ rem subs $cnt,$cnt,#1 add $nlo,$nlo,$nlo ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] eor $Zhl,$Thl,$Zhl,lsr#4 #ifdef __thumb2__ it pl #endif ldrplb $nlo,[$inp,$cnt] eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] add $nhi,$nhi,$nhi ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] eor $Zll,$Tll,$Zll,lsr#4 #ifdef __thumb2__ it pl #endif ldrplb $Tll,[$Xi,$cnt] eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 ldrh $Tlh,[sp,$nhi] eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 #ifdef __thumb2__ it pl #endif eorpl $nlo,$nlo,$Tll eor $Zhh,$Thh,$Zhh,lsr#4 #ifdef __thumb2__ itt pl #endif andpl $nhi,$nlo,#0xf0 andpl $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] bpl .Linner ldr $len,[sp,#32] @ re-load $len/end add $inp,$inp,#16 mov $nhi,$Zll ___ &Zsmash("cmp\t$inp,$len","\n". "#ifdef __thumb2__\n". " it ne\n". "#endif\n". " ldrneb $nlo,[$inp,#15]"); $code.=<<___; bne .Louter add sp,sp,#36 #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size gcm_ghash_4bit,.-gcm_ghash_4bit .global gcm_gmult_4bit .type gcm_gmult_4bit,%function gcm_gmult_4bit: stmdb sp!,{r4-r11,lr} ldrb $nlo,[$Xi,#15] b rem_4bit_get .Lrem_4bit_got: and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f mov $cnt,#14 add $Zhh,$Htbl,$nlo,lsl#4 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] ldrb $nlo,[$Xi,#14] add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] add $nhi,$nhi,$nhi eor $Zll,$Tll,$Zll,lsr#4 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 and $nhi,$nlo,#0xf0 eor $Zhh,$Zhh,$Tll,lsl#16 and $nlo,$nlo,#0x0f .Loop: add $Thh,$Htbl,$nlo,lsl#4 and $nlo,$Zll,#0xf @ rem subs $cnt,$cnt,#1 add $nlo,$nlo,$nlo ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] eor $Zhl,$Thl,$Zhl,lsr#4 #ifdef __thumb2__ it pl #endif ldrplb $nlo,[$Xi,$cnt] eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] add $nhi,$nhi,$nhi ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 #ifdef __thumb2__ itt pl #endif andpl $nhi,$nlo,#0xf0 andpl $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] bpl .Loop ___ &Zsmash(); $code.=<<___; #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size gcm_gmult_4bit,.-gcm_gmult_4bit ___ { my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); my ($t0,$t1,$t2,$t3)=map("q$_",(8..12)); my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31)); sub clmul64x64 { my ($r,$a,$b)=@_; $code.=<<___; vext.8 $t0#lo, $a, $a, #1 @ A1 vmull.p8 $t0, $t0#lo, $b @ F = A1*B vext.8 $r#lo, $b, $b, #1 @ B1 vmull.p8 $r, $a, $r#lo @ E = A*B1 vext.8 $t1#lo, $a, $a, #2 @ A2 vmull.p8 $t1, $t1#lo, $b @ H = A2*B vext.8 $t3#lo, $b, $b, #2 @ B2 vmull.p8 $t3, $a, $t3#lo @ G = A*B2 vext.8 $t2#lo, $a, $a, #3 @ A3 veor $t0, $t0, $r @ L = E + F vmull.p8 $t2, $t2#lo, $b @ J = A3*B vext.8 $r#lo, $b, $b, #3 @ B3 veor $t1, $t1, $t3 @ M = G + H vmull.p8 $r, $a, $r#lo @ I = A*B3 veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8 vand $t0#hi, $t0#hi, $k48 vext.8 $t3#lo, $b, $b, #4 @ B4 veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16 vand $t1#hi, $t1#hi, $k32 vmull.p8 $t3, $a, $t3#lo @ K = A*B4 veor $t2, $t2, $r @ N = I + J veor $t0#lo, $t0#lo, $t0#hi veor $t1#lo, $t1#lo, $t1#hi veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24 vand $t2#hi, $t2#hi, $k16 vext.8 $t0, $t0, $t0, #15 veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32 vmov.i64 $t3#hi, #0 vext.8 $t1, $t1, $t1, #14 veor $t2#lo, $t2#lo, $t2#hi vmull.p8 $r, $a, $b @ D = A*B vext.8 $t3, $t3, $t3, #12 vext.8 $t2, $t2, $t2, #13 veor $t0, $t0, $t1 veor $t2, $t2, $t3 veor $r, $r, $t0 veor $r, $r, $t2 ___ } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .global gcm_init_neon .type gcm_init_neon,%function .align 4 gcm_init_neon: vld1.64 $IN#hi,[r1]! @ load H vmov.i8 $t0,#0xe1 vld1.64 $IN#lo,[r1] vshl.i64 $t0#hi,#57 vshr.u64 $t0#lo,#63 @ t0=0xc2....01 vdup.8 $t1,$IN#hi[7] vshr.u64 $Hlo,$IN#lo,#63 vshr.s8 $t1,#7 @ broadcast carry bit vshl.i64 $IN,$IN,#1 vand $t0,$t0,$t1 vorr $IN#hi,$Hlo @ H<<<=1 veor $IN,$IN,$t0 @ twisted H vstmia r0,{$IN} ret @ bx lr .size gcm_init_neon,.-gcm_init_neon .global gcm_gmult_neon .type gcm_gmult_neon,%function .align 4 gcm_gmult_neon: vld1.64 $IN#hi,[$Xi]! @ load Xi vld1.64 $IN#lo,[$Xi]! vmov.i64 $k48,#0x0000ffffffffffff vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H vmov.i64 $k32,#0x00000000ffffffff #ifdef __ARMEL__ vrev64.8 $IN,$IN #endif vmov.i64 $k16,#0x000000000000ffff veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing mov $len,#16 b .Lgmult_neon .size gcm_gmult_neon,.-gcm_gmult_neon .global gcm_ghash_neon .type gcm_ghash_neon,%function .align 4 gcm_ghash_neon: vld1.64 $Xl#hi,[$Xi]! @ load Xi vld1.64 $Xl#lo,[$Xi]! vmov.i64 $k48,#0x0000ffffffffffff vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H vmov.i64 $k32,#0x00000000ffffffff #ifdef __ARMEL__ vrev64.8 $Xl,$Xl #endif vmov.i64 $k16,#0x000000000000ffff veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing .Loop_neon: vld1.64 $IN#hi,[$inp]! @ load inp vld1.64 $IN#lo,[$inp]! #ifdef __ARMEL__ vrev64.8 $IN,$IN #endif veor $IN,$Xl @ inp^=Xi .Lgmult_neon: ___ &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo $code.=<<___; veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing ___ &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi) &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi $code.=<<___; veor $Xm,$Xm,$Xl @ Karatsuba post-processing veor $Xm,$Xm,$Xh veor $Xl#hi,$Xl#hi,$Xm#lo veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result @ equivalent of reduction_avx from ghash-x86_64.pl vshl.i64 $t1,$Xl,#57 @ 1st phase vshl.i64 $t2,$Xl,#62 veor $t2,$t2,$t1 @ vshl.i64 $t1,$Xl,#63 veor $t2, $t2, $t1 @ veor $Xl#hi,$Xl#hi,$t2#lo @ veor $Xh#lo,$Xh#lo,$t2#hi vshr.u64 $t2,$Xl,#1 @ 2nd phase veor $Xh,$Xh,$Xl veor $Xl,$Xl,$t2 @ vshr.u64 $t2,$t2,#6 vshr.u64 $Xl,$Xl,#1 @ veor $Xl,$Xl,$Xh @ veor $Xl,$Xl,$t2 @ subs $len,#16 bne .Loop_neon #ifdef __ARMEL__ vrev64.8 $Xl,$Xl #endif sub $Xi,#16 vst1.64 $Xl#hi,[$Xi]! @ write out Xi vst1.64 $Xl#lo,[$Xi] ret @ bx lr .size gcm_ghash_neon,.-gcm_ghash_neon #endif ___ } $code.=<<___; .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by " .align 2 ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or s/\bret\b/bx lr/go or s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/modes/asm/ghash-c64xplus.pl000066400000000000000000000164751364063235100217070ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # December 2011 # # The module implements GCM GHASH function and underlying single # multiplication operation in GF(2^128). Even though subroutines # have _4bit suffix, they are not using any tables, but rely on # hardware Galois Field Multiply support. Streamed GHASH processes # byte in ~7 cycles, which is >6x faster than "4-bit" table-driven # code compiled with TI's cl6x 6.0 with -mv6400+ -o2 flags. We are # comparing apples vs. oranges, but compiler surely could have done # better, because theoretical [though not necessarily achievable] # estimate for "4-bit" table-driven implementation is ~12 cycles. while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; ($Xip,$Htable,$inp,$len)=("A4","B4","A6","B6"); # arguments ($Z0,$Z1,$Z2,$Z3, $H0, $H1, $H2, $H3, $H0x,$H1x,$H2x,$H3x)=map("A$_",(16..27)); ($H01u,$H01y,$H2u,$H3u, $H0y,$H1y,$H2y,$H3y, $H0z,$H1z,$H2z,$H3z)=map("B$_",(16..27)); ($FF000000,$E10000)=("B30","B31"); ($xip,$x0,$x1,$xib)=map("B$_",(6..9)); # $xip zaps $len $xia="A9"; ($rem,$res)=("B4","B5"); # $rem zaps $Htable $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .asg gcm_gmult_1bit,_gcm_gmult_1bit .asg gcm_gmult_4bit,_gcm_gmult_4bit .asg gcm_ghash_4bit,_gcm_ghash_4bit .endif .asg B3,RA .if 0 .global _gcm_gmult_1bit _gcm_gmult_1bit: ADDAD $Htable,2,$Htable .endif .global _gcm_gmult_4bit _gcm_gmult_4bit: .asmfunc LDDW *${Htable}[-1],$H1:$H0 ; H.lo LDDW *${Htable}[-2],$H3:$H2 ; H.hi || MV $Xip,${xip} ; reassign Xi || MVK 15,B1 ; SPLOOPD constant MVK 0xE1,$E10000 || LDBU *++${xip}[15],$x1 ; Xi[15] MVK 0xFF,$FF000000 || LDBU *--${xip},$x0 ; Xi[14] SHL $E10000,16,$E10000 ; [pre-shifted] reduction polynomial SHL $FF000000,24,$FF000000 ; upper byte mask || BNOP ghash_loop? || MVK 1,B0 ; take a single spin PACKH2 $H0,$H1,$xia ; pack H0' and H1's upper bytes AND $H2,$FF000000,$H2u ; H2's upper byte AND $H3,$FF000000,$H3u ; H3's upper byte || SHRU $H2u,8,$H2u SHRU $H3u,8,$H3u || ZERO $Z1:$Z0 SHRU2 $xia,8,$H01u || ZERO $Z3:$Z2 .endasmfunc .global _gcm_ghash_4bit _gcm_ghash_4bit: .asmfunc LDDW *${Htable}[-1],$H1:$H0 ; H.lo || SHRU $len,4,B0 ; reassign len LDDW *${Htable}[-2],$H3:$H2 ; H.hi || MV $Xip,${xip} ; reassign Xi || MVK 15,B1 ; SPLOOPD constant MVK 0xE1,$E10000 || [B0] LDNDW *${inp}[1],$H1x:$H0x MVK 0xFF,$FF000000 || [B0] LDNDW *${inp}++[2],$H3x:$H2x SHL $E10000,16,$E10000 ; [pre-shifted] reduction polynomial || LDDW *${xip}[1],$Z1:$Z0 SHL $FF000000,24,$FF000000 ; upper byte mask || LDDW *${xip}[0],$Z3:$Z2 PACKH2 $H0,$H1,$xia ; pack H0' and H1's upper bytes AND $H2,$FF000000,$H2u ; H2's upper byte AND $H3,$FF000000,$H3u ; H3's upper byte || SHRU $H2u,8,$H2u SHRU $H3u,8,$H3u SHRU2 $xia,8,$H01u || [B0] XOR $H0x,$Z0,$Z0 ; Xi^=inp || [B0] XOR $H1x,$Z1,$Z1 .if .LITTLE_ENDIAN [B0] XOR $H2x,$Z2,$Z2 || [B0] XOR $H3x,$Z3,$Z3 || [B0] SHRU $Z1,24,$xia ; Xi[15], avoid cross-path stall STDW $Z1:$Z0,*${xip}[1] || [B0] SHRU $Z1,16,$x0 ; Xi[14] || [B0] ZERO $Z1:$Z0 .else [B0] XOR $H2x,$Z2,$Z2 || [B0] XOR $H3x,$Z3,$Z3 || [B0] MV $Z0,$xia ; Xi[15], avoid cross-path stall STDW $Z1:$Z0,*${xip}[1] || [B0] SHRU $Z0,8,$x0 ; Xi[14] || [B0] ZERO $Z1:$Z0 .endif STDW $Z3:$Z2,*${xip}[0] || [B0] ZERO $Z3:$Z2 || [B0] MV $xia,$x1 [B0] ADDK 14,${xip} ghash_loop?: SPLOOPD 6 ; 6*16+7 || MVC B1,ILC || [B0] SUB B0,1,B0 || ZERO A0 || ADD $x1,$x1,$xib ; SHL $x1,1,$xib || SHL $x1,1,$xia ___ ########____________________________ # 0 D2. M1 M2 | # 1 M1 | # 2 M1 M2 | # 3 D1. M1 M2 | # 4 S1. L1 | # 5 S2 S1x L1 D2 L2 |____________________________ # 6/0 L1 S1 L2 S2x |D2. M1 M2 | # 7/1 L1 S1 D1x S2 M2 | M1 | # 8/2 S1 L1x S2 | M1 M2 | # 9/3 S1 L1x | D1. M1 M2 | # 10/4 D1x | S1. L1 | # 11/5 |S2 S1x L1 D2 L2 |____________ # 12/6/0 D1x __| L1 S1 L2 S2x |D2. .... # 7/1 L1 S1 D1x S2 M2 | .... # 8/2 S1 L1x S2 | .... #####... ................|............ $code.=<<___; XORMPY $H0,$xia,$H0x ; 0 ; H·(Xi[i]<<1) || XORMPY $H01u,$xib,$H01y || [A0] LDBU *--${xip},$x0 XORMPY $H1,$xia,$H1x ; 1 XORMPY $H2,$xia,$H2x ; 2 || XORMPY $H2u,$xib,$H2y XORMPY $H3,$xia,$H3x ; 3 || XORMPY $H3u,$xib,$H3y ||[!A0] MVK.D 15,A0 ; *--${xip} counter XOR.L $H0x,$Z0,$Z0 ; 4 ; Z^=H·(Xi[i]<<1) || [A0] SUB.S A0,1,A0 XOR.L $H1x,$Z1,$Z1 ; 5 || AND.D $H01y,$FF000000,$H0z || SWAP2.L $H01y,$H1y ; ; SHL $H01y,16,$H1y || SHL $x0,1,$xib || SHL $x0,1,$xia XOR.L $H2x,$Z2,$Z2 ; 6/0 ; [0,0] in epilogue || SHL $Z0,1,$rem ; ; rem=Z<<1 || SHRMB.S $Z1,$Z0,$Z0 ; ; Z>>=8 || AND.L $H1y,$FF000000,$H1z XOR.L $H3x,$Z3,$Z3 ; 7/1 || SHRMB.S $Z2,$Z1,$Z1 || XOR.D $H0z,$Z0,$Z0 ; merge upper byte products || AND.S $H2y,$FF000000,$H2z || XORMPY $E10000,$rem,$res ; ; implicit rem&0x1FE XOR.L $H1z,$Z1,$Z1 ; 8/2 || SHRMB.S $Z3,$Z2,$Z2 || AND.S $H3y,$FF000000,$H3z XOR.L $H2z,$Z2,$Z2 ; 9/3 || SHRU $Z3,8,$Z3 XOR.D $H3z,$Z3,$Z3 ; 10/4 NOP ; 11/5 SPKERNEL 0,2 || XOR.D $res,$Z3,$Z3 ; 12/6/0; Z^=res ; input pre-fetch is possible where D1 slot is available... [B0] LDNDW *${inp}[1],$H1x:$H0x ; 8/- [B0] LDNDW *${inp}++[2],$H3x:$H2x ; 9/- NOP ; 10/- .if .LITTLE_ENDIAN SWAP2 $Z0,$Z1 ; 11/- || SWAP4 $Z1,$Z0 SWAP4 $Z1,$Z1 ; 12/- || SWAP2 $Z0,$Z0 SWAP2 $Z2,$Z3 || SWAP4 $Z3,$Z2 ||[!B0] BNOP RA SWAP4 $Z3,$Z3 || SWAP2 $Z2,$Z2 || [B0] BNOP ghash_loop? [B0] XOR $H0x,$Z0,$Z0 ; Xi^=inp || [B0] XOR $H1x,$Z1,$Z1 [B0] XOR $H2x,$Z2,$Z2 || [B0] XOR $H3x,$Z3,$Z3 || [B0] SHRU $Z1,24,$xia ; Xi[15], avoid cross-path stall STDW $Z1:$Z0,*${xip}[1] || [B0] SHRU $Z1,16,$x0 ; Xi[14] || [B0] ZERO $Z1:$Z0 .else [!B0] BNOP RA ; 11/- [B0] BNOP ghash_loop? ; 12/- [B0] XOR $H0x,$Z0,$Z0 ; Xi^=inp || [B0] XOR $H1x,$Z1,$Z1 [B0] XOR $H2x,$Z2,$Z2 || [B0] XOR $H3x,$Z3,$Z3 || [B0] MV $Z0,$xia ; Xi[15], avoid cross-path stall STDW $Z1:$Z0,*${xip}[1] || [B0] SHRU $Z0,8,$x0 ; Xi[14] || [B0] ZERO $Z1:$Z0 .endif STDW $Z3:$Z2,*${xip}[0] || [B0] ZERO $Z3:$Z2 || [B0] MV $xia,$x1 [B0] ADDK 14,${xip} .endasmfunc .sect .const .cstring "GHASH for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghash-ia64.pl000077500000000000000000000437231364063235100207610ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # March 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+128 bytes shared table]. Streamed # GHASH performance was measured to be 6.67 cycles per processed byte # on Itanium 2, which is >90% better than Microsoft compiler generated # code. To anchor to something else sha1-ia64.pl module processes one # byte in 5.7 cycles. On Itanium GHASH should run at ~8.5 cycles per # byte. # September 2010 # # It was originally thought that it makes lesser sense to implement # "528B" variant on Itanium 2 for following reason. Because number of # functional units is naturally limited, it appeared impossible to # implement "528B" loop in 4 cycles, only in 5. This would mean that # theoretically performance improvement couldn't be more than 20%. # But occasionally you prove yourself wrong:-) I figured out a way to # fold couple of instructions and having freed yet another instruction # slot by unrolling the loop... Resulting performance is 4.45 cycles # per processed byte and 50% better than "256B" version. On original # Itanium performance should remain the same as the "256B" version, # i.e. ~8.5 cycles. $output=pop and (open STDOUT,">$output" or die "can't open $output: $!"); if ($^O eq "hpux") { $ADDP="addp4"; for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); } } else { $ADDP="add"; } for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/); $big_endian=0 if (/\-DL_ENDIAN/); } if (!defined($big_endian)) { $big_endian=(unpack('L',pack('N',1))==1); } sub loop() { my $label=shift; my ($p16,$p17)=(shift)?("p63","p63"):("p16","p17"); # mask references to inp # Loop is scheduled for 6 ticks on Itanium 2 and 8 on Itanium, i.e. # in scalable manner;-) Naturally assuming data in L1 cache... # Special note about 'dep' instruction, which is used to construct # &rem_4bit[Zlo&0xf]. It works, because rem_4bit is aligned at 128 # bytes boundary and lower 7 bits of its address are guaranteed to # be zero. $code.=<<___; $label: { .mfi; (p18) ld8 Hlo=[Hi[1]],-8 (p19) dep rem=Zlo,rem_4bitp,3,4 } { .mfi; (p19) xor Zhi=Zhi,Hhi ($p17) xor xi[1]=xi[1],in[1] };; { .mfi; (p18) ld8 Hhi=[Hi[1]] (p19) shrp Zlo=Zhi,Zlo,4 } { .mfi; (p19) ld8 rem=[rem] (p18) and Hi[1]=mask0xf0,xi[2] };; { .mmi; ($p16) ld1 in[0]=[inp],-1 (p18) xor Zlo=Zlo,Hlo (p19) shr.u Zhi=Zhi,4 } { .mib; (p19) xor Hhi=Hhi,rem (p18) add Hi[1]=Htbl,Hi[1] };; { .mfi; (p18) ld8 Hlo=[Hi[1]],-8 (p18) dep rem=Zlo,rem_4bitp,3,4 } { .mfi; (p17) shladd Hi[0]=xi[1],4,r0 (p18) xor Zhi=Zhi,Hhi };; { .mfi; (p18) ld8 Hhi=[Hi[1]] (p18) shrp Zlo=Zhi,Zlo,4 } { .mfi; (p18) ld8 rem=[rem] (p17) and Hi[0]=mask0xf0,Hi[0] };; { .mmi; (p16) ld1 xi[0]=[Xi],-1 (p18) xor Zlo=Zlo,Hlo (p18) shr.u Zhi=Zhi,4 } { .mib; (p18) xor Hhi=Hhi,rem (p17) add Hi[0]=Htbl,Hi[0] br.ctop.sptk $label };; ___ } $code=<<___; .explicit .text prevfs=r2; prevlc=r3; prevpr=r8; mask0xf0=r21; rem=r22; rem_4bitp=r23; Xi=r24; Htbl=r25; inp=r26; end=r27; Hhi=r28; Hlo=r29; Zhi=r30; Zlo=r31; .align 128 .skip 16 // aligns loop body .global gcm_gmult_4bit# .proc gcm_gmult_4bit# gcm_gmult_4bit: .prologue { .mmi; .save ar.pfs,prevfs alloc prevfs=ar.pfs,2,6,0,8 $ADDP Xi=15,in0 // &Xi[15] mov rem_4bitp=ip } { .mii; $ADDP Htbl=8,in1 // &Htbl[0].lo .save ar.lc,prevlc mov prevlc=ar.lc .save pr,prevpr mov prevpr=pr };; .body .rotr in[3],xi[3],Hi[2] { .mib; ld1 xi[2]=[Xi],-1 // Xi[15] mov mask0xf0=0xf0 brp.loop.imp .Loop1,.Lend1-16};; { .mmi; ld1 xi[1]=[Xi],-1 // Xi[14] };; { .mii; shladd Hi[1]=xi[2],4,r0 mov pr.rot=0x7<<16 mov ar.lc=13 };; { .mii; and Hi[1]=mask0xf0,Hi[1] mov ar.ec=3 xor Zlo=Zlo,Zlo };; { .mii; add Hi[1]=Htbl,Hi[1] // &Htbl[nlo].lo add rem_4bitp=rem_4bit#-gcm_gmult_4bit#,rem_4bitp xor Zhi=Zhi,Zhi };; ___ &loop (".Loop1",1); $code.=<<___; .Lend1: { .mib; xor Zhi=Zhi,Hhi };; // modulo-scheduling artefact { .mib; mux1 Zlo=Zlo,\@rev };; { .mib; mux1 Zhi=Zhi,\@rev };; { .mmi; add Hlo=9,Xi;; // ;; is here to prevent add Hhi=1,Xi };; // pipeline flush on Itanium { .mib; st8 [Hlo]=Zlo mov pr=prevpr,0x1ffff };; { .mib; st8 [Hhi]=Zhi mov ar.lc=prevlc br.ret.sptk.many b0 };; .endp gcm_gmult_4bit# ___ ###################################################################### # "528B" (well, "512B" actually) streamed GHASH # $Xip="in0"; $Htbl="in1"; $inp="in2"; $len="in3"; $rem_8bit="loc0"; $mask0xff="loc1"; ($sum,$rum) = $big_endian ? ("nop.m","nop.m") : ("sum","rum"); sub load_htable() { for (my $i=0;$i<8;$i++) { $code.=<<___; { .mmi; ld8 r`16+2*$i+1`=[r8],16 // Htable[$i].hi ld8 r`16+2*$i`=[r9],16 } // Htable[$i].lo { .mmi; ldf8 f`32+2*$i+1`=[r10],16 // Htable[`8+$i`].hi ldf8 f`32+2*$i`=[r11],16 // Htable[`8+$i`].lo ___ $code.=shift if (($i+$#_)==7); $code.="\t};;\n" } } $code.=<<___; prevsp=r3; .align 32 .skip 16 // aligns loop body .global gcm_ghash_4bit# .proc gcm_ghash_4bit# gcm_ghash_4bit: .prologue { .mmi; .save ar.pfs,prevfs alloc prevfs=ar.pfs,4,2,0,0 .vframe prevsp mov prevsp=sp mov $rem_8bit=ip };; .body { .mfi; $ADDP r8=0+0,$Htbl $ADDP r9=0+8,$Htbl } { .mfi; $ADDP r10=128+0,$Htbl $ADDP r11=128+8,$Htbl };; ___ &load_htable( " $ADDP $Xip=15,$Xip", # &Xi[15] " $ADDP $len=$len,$inp", # &inp[len] " $ADDP $inp=15,$inp", # &inp[15] " mov $mask0xff=0xff", " add sp=-512,sp", " andcm sp=sp,$mask0xff", # align stack frame " add r14=0,sp", " add r15=8,sp"); $code.=<<___; { .mmi; $sum 1<<1 // go big-endian add r8=256+0,sp add r9=256+8,sp } { .mmi; add r10=256+128+0,sp add r11=256+128+8,sp add $len=-17,$len };; ___ for($i=0;$i<8;$i++) { # generate first half of Hshr4[] my ($rlo,$rhi)=("r".eval(16+2*$i),"r".eval(16+2*$i+1)); $code.=<<___; { .mmi; st8 [r8]=$rlo,16 // Htable[$i].lo st8 [r9]=$rhi,16 // Htable[$i].hi shrp $rlo=$rhi,$rlo,4 }//;; { .mmi; stf8 [r10]=f`32+2*$i`,16 // Htable[`8+$i`].lo stf8 [r11]=f`32+2*$i+1`,16 // Htable[`8+$i`].hi shr.u $rhi=$rhi,4 };; { .mmi; st8 [r14]=$rlo,16 // Htable[$i].lo>>4 st8 [r15]=$rhi,16 }//;; // Htable[$i].hi>>4 ___ } $code.=<<___; { .mmi; ld8 r16=[r8],16 // Htable[8].lo ld8 r17=[r9],16 };; // Htable[8].hi { .mmi; ld8 r18=[r8],16 // Htable[9].lo ld8 r19=[r9],16 } // Htable[9].hi { .mmi; rum 1<<5 // clear um.mfh shrp r16=r17,r16,4 };; ___ for($i=0;$i<6;$i++) { # generate second half of Hshr4[] $code.=<<___; { .mmi; ld8 r`20+2*$i`=[r8],16 // Htable[`10+$i`].lo ld8 r`20+2*$i+1`=[r9],16 // Htable[`10+$i`].hi shr.u r`16+2*$i+1`=r`16+2*$i+1`,4 };; { .mmi; st8 [r14]=r`16+2*$i`,16 // Htable[`8+$i`].lo>>4 st8 [r15]=r`16+2*$i+1`,16 // Htable[`8+$i`].hi>>4 shrp r`18+2*$i`=r`18+2*$i+1`,r`18+2*$i`,4 } ___ } $code.=<<___; { .mmi; shr.u r`16+2*$i+1`=r`16+2*$i+1`,4 };; { .mmi; st8 [r14]=r`16+2*$i`,16 // Htable[`8+$i`].lo>>4 st8 [r15]=r`16+2*$i+1`,16 // Htable[`8+$i`].hi>>4 shrp r`18+2*$i`=r`18+2*$i+1`,r`18+2*$i`,4 } { .mmi; add $Htbl=256,sp // &Htable[0] add $rem_8bit=rem_8bit#-gcm_ghash_4bit#,$rem_8bit shr.u r`18+2*$i+1`=r`18+2*$i+1`,4 };; { .mmi; st8 [r14]=r`18+2*$i` // Htable[`8+$i`].lo>>4 st8 [r15]=r`18+2*$i+1` } // Htable[`8+$i`].hi>>4 ___ $in="r15"; @xi=("r16","r17"); @rem=("r18","r19"); ($Alo,$Ahi,$Blo,$Bhi,$Zlo,$Zhi)=("r20","r21","r22","r23","r24","r25"); ($Atbl,$Btbl)=("r26","r27"); $code.=<<___; # (p16) { .mmi; ld1 $in=[$inp],-1 //(p16) *inp-- ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- cmp.eq p0,p6=r0,r0 };; // clear p6 ___ push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers $code.=<<___; # (p16),(p17) { .mmi; ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] { .mii; ld1 $in=[$inp],-1 //(p16) *inp-- dep $Atbl=$xi[1],$Htbl,4,4 //(p17) &Htable[nlo].lo and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 .align 32 .LOOP: { .mmi; (p6) st8 [$Xip]=$Zhi,13 xor $Zlo=$Zlo,$Zlo add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi].lo ___ push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers $code.=<<___; # (p16),(p17),(p18) { .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] { .mfi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi dep $Atbl=$xi[1],$Htbl,4,4 } //(p17) &Htable[nlo].lo { .mfi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4 xor $Zlo=$Zlo,$Alo };; //(p18) Z.lo^=Htable[nlo].lo { .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi ld1 $in=[$inp],-1 } //(p16) *inp-- { .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4) mov $Zhi=$Ahi //(p18) Z.hi^=Htable[nlo].hi and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 { .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8) { .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi] ___ push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers for ($i=1;$i<14;$i++) { # Above and below fragments are derived from this one by removing # unsuitable (p??) instructions. $code.=<<___; # (p16),(p17),(p18),(p19) { .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8 { .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] { .mmi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] dep $Atbl=$xi[1],$Htbl,4,4 } //(p17) &Htable[nlo].lo { .mmi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4 xor $Zlo=$Zlo,$Alo //(p18) Z.lo^=Htable[nlo].lo xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi { .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi ld1 $in=[$inp],-1 //(p16) *inp-- shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48 { .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4) xor $Zhi=$Zhi,$Ahi //(p18) Z.hi^=Htable[nlo].hi and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 { .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8) { .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48 add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi] ___ push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers } $code.=<<___; # (p17),(p18),(p19) { .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8 { .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] { .mmi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] dep $Atbl=$xi[1],$Htbl,4,4 };; //(p17) &Htable[nlo].lo { .mmi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4 xor $Zlo=$Zlo,$Alo //(p18) Z.lo^=Htable[nlo].lo xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi { .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48 { .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4) xor $Zhi=$Zhi,$Ahi //(p18) Z.hi^=Htable[nlo].hi and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 { .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8) { .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48 add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi] ___ push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers $code.=<<___; # (p18),(p19) { .mfi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8 { .mfi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] xor $Zlo=$Zlo,$Blo };; //(p19) Z.lo^=Hshr4[nhi].lo { .mfi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi xor $Zlo=$Zlo,$Alo } //(p18) Z.lo^=Htable[nlo].lo { .mfi; ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi { .mfi; ld8 $Blo=[$Btbl],8 //(p18) Htable[nhi].lo,&Htable[nhi].hi shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48 { .mfi; shladd $rem[0]=$Zlo,4,r0 //(p18) Z.lo<<4 xor $Zhi=$Zhi,$Ahi };; //(p18) Z.hi^=Htable[nlo].hi { .mfi; ld8 $Bhi=[$Btbl] //(p18) Htable[nhi].hi shrp $Zlo=$Zhi,$Zlo,4 } //(p18) Z.lo=(Z.hi<<60)|(Z.lo>>4) { .mfi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff xor $Zhi=$Zhi,$rem[1] };; //(p19) Z.hi^=rem_8bit[rem]<<48 ___ push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers $code.=<<___; # (p19) { .mmi; cmp.ltu p6,p0=$inp,$len add $inp=32,$inp shr.u $Zhi=$Zhi,4 } //(p19) Z.hi>>=4 { .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo add $Xip=9,$Xip };; // &Xi.lo { .mmi; ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] (p6) ld1 $in=[$inp],-1 //[p16] *inp-- (p6) extr.u $xi[1]=$Zlo,8,8 } //[p17] Xi[14] { .mmi; xor $Zhi=$Zhi,$Bhi //(p19) Z.hi^=Hshr4[nhi].hi (p6) and $xi[0]=$Zlo,$mask0xff };; //[p16] Xi[15] { .mmi; st8 [$Xip]=$Zlo,-8 (p6) xor $xi[0]=$xi[0],$in //[p17] xi=$xi[i]^inp[i] shl $rem[1]=$rem[1],48 };; //(p19) rem_8bit[rem]<<48 { .mmi; (p6) ld1 $in=[$inp],-1 //[p16] *inp-- xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48 (p6) dep $Atbl=$xi[0],$Htbl,4,4 } //[p17] &Htable[nlo].lo { .mib; (p6) and $xi[0]=-16,$xi[0] //[p17] nhi=xi&0xf0 (p6) br.cond.dptk.many .LOOP };; { .mib; st8 [$Xip]=$Zhi };; { .mib; $rum 1<<1 // return to little-endian .restore sp mov sp=prevsp br.ret.sptk.many b0 };; .endp gcm_ghash_4bit# ___ $code.=<<___; .align 128 .type rem_4bit#,\@object rem_4bit: data8 0x0000<<48, 0x1C20<<48, 0x3840<<48, 0x2460<<48 data8 0x7080<<48, 0x6CA0<<48, 0x48C0<<48, 0x54E0<<48 data8 0xE100<<48, 0xFD20<<48, 0xD940<<48, 0xC560<<48 data8 0x9180<<48, 0x8DA0<<48, 0xA9C0<<48, 0xB5E0<<48 .size rem_4bit#,128 .type rem_8bit#,\@object rem_8bit: data1 0x00,0x00, 0x01,0xC2, 0x03,0x84, 0x02,0x46, 0x07,0x08, 0x06,0xCA, 0x04,0x8C, 0x05,0x4E data1 0x0E,0x10, 0x0F,0xD2, 0x0D,0x94, 0x0C,0x56, 0x09,0x18, 0x08,0xDA, 0x0A,0x9C, 0x0B,0x5E data1 0x1C,0x20, 0x1D,0xE2, 0x1F,0xA4, 0x1E,0x66, 0x1B,0x28, 0x1A,0xEA, 0x18,0xAC, 0x19,0x6E data1 0x12,0x30, 0x13,0xF2, 0x11,0xB4, 0x10,0x76, 0x15,0x38, 0x14,0xFA, 0x16,0xBC, 0x17,0x7E data1 0x38,0x40, 0x39,0x82, 0x3B,0xC4, 0x3A,0x06, 0x3F,0x48, 0x3E,0x8A, 0x3C,0xCC, 0x3D,0x0E data1 0x36,0x50, 0x37,0x92, 0x35,0xD4, 0x34,0x16, 0x31,0x58, 0x30,0x9A, 0x32,0xDC, 0x33,0x1E data1 0x24,0x60, 0x25,0xA2, 0x27,0xE4, 0x26,0x26, 0x23,0x68, 0x22,0xAA, 0x20,0xEC, 0x21,0x2E data1 0x2A,0x70, 0x2B,0xB2, 0x29,0xF4, 0x28,0x36, 0x2D,0x78, 0x2C,0xBA, 0x2E,0xFC, 0x2F,0x3E data1 0x70,0x80, 0x71,0x42, 0x73,0x04, 0x72,0xC6, 0x77,0x88, 0x76,0x4A, 0x74,0x0C, 0x75,0xCE data1 0x7E,0x90, 0x7F,0x52, 0x7D,0x14, 0x7C,0xD6, 0x79,0x98, 0x78,0x5A, 0x7A,0x1C, 0x7B,0xDE data1 0x6C,0xA0, 0x6D,0x62, 0x6F,0x24, 0x6E,0xE6, 0x6B,0xA8, 0x6A,0x6A, 0x68,0x2C, 0x69,0xEE data1 0x62,0xB0, 0x63,0x72, 0x61,0x34, 0x60,0xF6, 0x65,0xB8, 0x64,0x7A, 0x66,0x3C, 0x67,0xFE data1 0x48,0xC0, 0x49,0x02, 0x4B,0x44, 0x4A,0x86, 0x4F,0xC8, 0x4E,0x0A, 0x4C,0x4C, 0x4D,0x8E data1 0x46,0xD0, 0x47,0x12, 0x45,0x54, 0x44,0x96, 0x41,0xD8, 0x40,0x1A, 0x42,0x5C, 0x43,0x9E data1 0x54,0xE0, 0x55,0x22, 0x57,0x64, 0x56,0xA6, 0x53,0xE8, 0x52,0x2A, 0x50,0x6C, 0x51,0xAE data1 0x5A,0xF0, 0x5B,0x32, 0x59,0x74, 0x58,0xB6, 0x5D,0xF8, 0x5C,0x3A, 0x5E,0x7C, 0x5F,0xBE data1 0xE1,0x00, 0xE0,0xC2, 0xE2,0x84, 0xE3,0x46, 0xE6,0x08, 0xE7,0xCA, 0xE5,0x8C, 0xE4,0x4E data1 0xEF,0x10, 0xEE,0xD2, 0xEC,0x94, 0xED,0x56, 0xE8,0x18, 0xE9,0xDA, 0xEB,0x9C, 0xEA,0x5E data1 0xFD,0x20, 0xFC,0xE2, 0xFE,0xA4, 0xFF,0x66, 0xFA,0x28, 0xFB,0xEA, 0xF9,0xAC, 0xF8,0x6E data1 0xF3,0x30, 0xF2,0xF2, 0xF0,0xB4, 0xF1,0x76, 0xF4,0x38, 0xF5,0xFA, 0xF7,0xBC, 0xF6,0x7E data1 0xD9,0x40, 0xD8,0x82, 0xDA,0xC4, 0xDB,0x06, 0xDE,0x48, 0xDF,0x8A, 0xDD,0xCC, 0xDC,0x0E data1 0xD7,0x50, 0xD6,0x92, 0xD4,0xD4, 0xD5,0x16, 0xD0,0x58, 0xD1,0x9A, 0xD3,0xDC, 0xD2,0x1E data1 0xC5,0x60, 0xC4,0xA2, 0xC6,0xE4, 0xC7,0x26, 0xC2,0x68, 0xC3,0xAA, 0xC1,0xEC, 0xC0,0x2E data1 0xCB,0x70, 0xCA,0xB2, 0xC8,0xF4, 0xC9,0x36, 0xCC,0x78, 0xCD,0xBA, 0xCF,0xFC, 0xCE,0x3E data1 0x91,0x80, 0x90,0x42, 0x92,0x04, 0x93,0xC6, 0x96,0x88, 0x97,0x4A, 0x95,0x0C, 0x94,0xCE data1 0x9F,0x90, 0x9E,0x52, 0x9C,0x14, 0x9D,0xD6, 0x98,0x98, 0x99,0x5A, 0x9B,0x1C, 0x9A,0xDE data1 0x8D,0xA0, 0x8C,0x62, 0x8E,0x24, 0x8F,0xE6, 0x8A,0xA8, 0x8B,0x6A, 0x89,0x2C, 0x88,0xEE data1 0x83,0xB0, 0x82,0x72, 0x80,0x34, 0x81,0xF6, 0x84,0xB8, 0x85,0x7A, 0x87,0x3C, 0x86,0xFE data1 0xA9,0xC0, 0xA8,0x02, 0xAA,0x44, 0xAB,0x86, 0xAE,0xC8, 0xAF,0x0A, 0xAD,0x4C, 0xAC,0x8E data1 0xA7,0xD0, 0xA6,0x12, 0xA4,0x54, 0xA5,0x96, 0xA0,0xD8, 0xA1,0x1A, 0xA3,0x5C, 0xA2,0x9E data1 0xB5,0xE0, 0xB4,0x22, 0xB6,0x64, 0xB7,0xA6, 0xB2,0xE8, 0xB3,0x2A, 0xB1,0x6C, 0xB0,0xAE data1 0xBB,0xF0, 0xBA,0x32, 0xB8,0x74, 0xB9,0xB6, 0xBC,0xF8, 0xBD,0x3A, 0xBF,0x7C, 0xBE,0xBE .size rem_8bit#,512 stringz "GHASH for IA64, CRYPTOGAMS by " ___ $code =~ s/mux1(\s+)\S+\@rev/nop.i$1 0x0/gm if ($big_endian); $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghash-parisc.pl000066400000000000000000000412521364063235100214670ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # April 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+128 bytes shared table]. On PA-7100LC # it processes one byte in 19.6 cycles, which is more than twice as # fast as code generated by gcc 3.2. PA-RISC 2.0 loop is scheduled for # 8 cycles, but measured performance on PA-8600 system is ~9 cycles per # processed byte. This is ~2.2x faster than 64-bit code generated by # vendor compiler (which used to be very hard to beat:-). # # Special thanks to polarhome.com for providing HP-UX account. $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $FRAME_MARKER =80; $SAVED_RP =16; $PUSH ="std"; $PUSHMA ="std,ma"; $POP ="ldd"; $POPMB ="ldd,mb"; $NREGS =6; } else { $LEVEL ="1.0"; #"\n\t.ALLOW\t2.0"; $SIZE_T =4; $FRAME_MARKER =48; $SAVED_RP =20; $PUSH ="stw"; $PUSHMA ="stwm"; $POP ="ldw"; $POPMB ="ldwm"; $NREGS =11; } $FRAME=10*$SIZE_T+$FRAME_MARKER;# NREGS saved regs + frame marker # [+ argument transfer] ################# volatile registers $Xi="%r26"; # argument block $Htbl="%r25"; $inp="%r24"; $len="%r23"; $Hhh=$Htbl; # variables $Hll="%r22"; $Zhh="%r21"; $Zll="%r20"; $cnt="%r19"; $rem_4bit="%r28"; $rem="%r29"; $mask0xf0="%r31"; ################# preserved registers $Thh="%r1"; $Tll="%r2"; $nlo="%r3"; $nhi="%r4"; $byte="%r5"; if ($SIZE_T==4) { $Zhl="%r6"; $Zlh="%r7"; $Hhl="%r8"; $Hlh="%r9"; $Thl="%r10"; $Tlh="%r11"; } $rem2="%r6"; # used in PA-RISC 2.0 code $code.=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT gcm_gmult_4bit,ENTRY,ARGW0=GR,ARGW1=GR .ALIGN 64 gcm_gmult_4bit .PROC .CALLINFO FRAME=`$FRAME-10*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=$NREGS .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) ___ $code.=<<___ if ($SIZE_T==4); $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) ___ $code.=<<___; blr %r0,$rem_4bit ldi 3,$rem L\$pic_gmult andcm $rem_4bit,$rem,$rem_4bit addl $inp,$len,$len ldo L\$rem_4bit-L\$pic_gmult($rem_4bit),$rem_4bit ldi 0xf0,$mask0xf0 ___ $code.=<<___ if ($SIZE_T==4); ldi 31,$rem mtctl $rem,%cr11 extrd,u,*= $rem,%sar,1,$rem ; executes on PA-RISC 1.0 b L\$parisc1_gmult nop ___ $code.=<<___; ldb 15($Xi),$nlo ldo 8($Htbl),$Hll and $mask0xf0,$nlo,$nhi depd,z $nlo,59,4,$nlo ldd $nlo($Hll),$Zll ldd $nlo($Hhh),$Zhh depd,z $Zll,60,4,$rem shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldb 14($Xi),$nlo ldd $nhi($Hll),$Tll ldd $nhi($Hhh),$Thh and $mask0xf0,$nlo,$nhi depd,z $nlo,59,4,$nlo xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh ldd $rem($rem_4bit),$rem b L\$oop_gmult_pa2 ldi 13,$cnt .ALIGN 8 L\$oop_gmult_pa2 xor $rem,$Zhh,$Zhh ; moved here to work around gas bug depd,z $Zll,60,4,$rem shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldd $nlo($Hll),$Tll ldd $nlo($Hhh),$Thh xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh ldd $rem($rem_4bit),$rem xor $rem,$Zhh,$Zhh depd,z $Zll,60,4,$rem ldbx $cnt($Xi),$nlo shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldd $nhi($Hll),$Tll ldd $nhi($Hhh),$Thh and $mask0xf0,$nlo,$nhi depd,z $nlo,59,4,$nlo ldd $rem($rem_4bit),$rem xor $Tll,$Zll,$Zll addib,uv -1,$cnt,L\$oop_gmult_pa2 xor $Thh,$Zhh,$Zhh xor $rem,$Zhh,$Zhh depd,z $Zll,60,4,$rem shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldd $nlo($Hll),$Tll ldd $nlo($Hhh),$Thh xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh ldd $rem($rem_4bit),$rem xor $rem,$Zhh,$Zhh depd,z $Zll,60,4,$rem shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldd $nhi($Hll),$Tll ldd $nhi($Hhh),$Thh xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh ldd $rem($rem_4bit),$rem xor $rem,$Zhh,$Zhh std $Zll,8($Xi) std $Zhh,0($Xi) ___ $code.=<<___ if ($SIZE_T==4); b L\$done_gmult nop L\$parisc1_gmult ldb 15($Xi),$nlo ldo 12($Htbl),$Hll ldo 8($Htbl),$Hlh ldo 4($Htbl),$Hhl and $mask0xf0,$nlo,$nhi zdep $nlo,27,4,$nlo ldwx $nlo($Hll),$Zll ldwx $nlo($Hlh),$Zlh ldwx $nlo($Hhl),$Zhl ldwx $nlo($Hhh),$Zhh zdep $Zll,28,4,$rem ldb 14($Xi),$nlo ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll ldwx $nhi($Hll),$Tll shrpw $Zhl,$Zlh,4,$Zlh ldwx $nhi($Hlh),$Tlh shrpw $Zhh,$Zhl,4,$Zhl ldwx $nhi($Hhl),$Thl extru $Zhh,27,28,$Zhh ldwx $nhi($Hhh),$Thh xor $rem,$Zhh,$Zhh and $mask0xf0,$nlo,$nhi zdep $nlo,27,4,$nlo xor $Tll,$Zll,$Zll ldwx $nlo($Hll),$Tll xor $Tlh,$Zlh,$Zlh ldwx $nlo($Hlh),$Tlh xor $Thl,$Zhl,$Zhl b L\$oop_gmult_pa1 ldi 13,$cnt .ALIGN 8 L\$oop_gmult_pa1 zdep $Zll,28,4,$rem ldwx $nlo($Hhl),$Thl xor $Thh,$Zhh,$Zhh ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll ldwx $nlo($Hhh),$Thh shrpw $Zhl,$Zlh,4,$Zlh ldbx $cnt($Xi),$nlo xor $Tll,$Zll,$Zll ldwx $nhi($Hll),$Tll shrpw $Zhh,$Zhl,4,$Zhl xor $Tlh,$Zlh,$Zlh ldwx $nhi($Hlh),$Tlh extru $Zhh,27,28,$Zhh xor $Thl,$Zhl,$Zhl ldwx $nhi($Hhl),$Thl xor $rem,$Zhh,$Zhh zdep $Zll,28,4,$rem xor $Thh,$Zhh,$Zhh ldwx $nhi($Hhh),$Thh shrpw $Zlh,$Zll,4,$Zll ldwx $rem($rem_4bit),$rem shrpw $Zhl,$Zlh,4,$Zlh shrpw $Zhh,$Zhl,4,$Zhl and $mask0xf0,$nlo,$nhi extru $Zhh,27,28,$Zhh zdep $nlo,27,4,$nlo xor $Tll,$Zll,$Zll ldwx $nlo($Hll),$Tll xor $Tlh,$Zlh,$Zlh ldwx $nlo($Hlh),$Tlh xor $rem,$Zhh,$Zhh addib,uv -1,$cnt,L\$oop_gmult_pa1 xor $Thl,$Zhl,$Zhl zdep $Zll,28,4,$rem ldwx $nlo($Hhl),$Thl xor $Thh,$Zhh,$Zhh ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll ldwx $nlo($Hhh),$Thh shrpw $Zhl,$Zlh,4,$Zlh xor $Tll,$Zll,$Zll ldwx $nhi($Hll),$Tll shrpw $Zhh,$Zhl,4,$Zhl xor $Tlh,$Zlh,$Zlh ldwx $nhi($Hlh),$Tlh extru $Zhh,27,28,$Zhh xor $rem,$Zhh,$Zhh xor $Thl,$Zhl,$Zhl ldwx $nhi($Hhl),$Thl xor $Thh,$Zhh,$Zhh ldwx $nhi($Hhh),$Thh zdep $Zll,28,4,$rem ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll shrpw $Zhl,$Zlh,4,$Zlh shrpw $Zhh,$Zhl,4,$Zhl extru $Zhh,27,28,$Zhh xor $Tll,$Zll,$Zll xor $Tlh,$Zlh,$Zlh xor $rem,$Zhh,$Zhh stw $Zll,12($Xi) xor $Thl,$Zhl,$Zhl stw $Zlh,8($Xi) xor $Thh,$Zhh,$Zhh stw $Zhl,4($Xi) stw $Zhh,0($Xi) ___ $code.=<<___; L\$done_gmult $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 ___ $code.=<<___ if ($SIZE_T==4); $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 ___ $code.=<<___; bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .EXPORT gcm_ghash_4bit,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR .ALIGN 64 gcm_ghash_4bit .PROC .CALLINFO FRAME=`$FRAME-10*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=11 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) ___ $code.=<<___ if ($SIZE_T==4); $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) ___ $code.=<<___; blr %r0,$rem_4bit ldi 3,$rem L\$pic_ghash andcm $rem_4bit,$rem,$rem_4bit addl $inp,$len,$len ldo L\$rem_4bit-L\$pic_ghash($rem_4bit),$rem_4bit ldi 0xf0,$mask0xf0 ___ $code.=<<___ if ($SIZE_T==4); ldi 31,$rem mtctl $rem,%cr11 extrd,u,*= $rem,%sar,1,$rem ; executes on PA-RISC 1.0 b L\$parisc1_ghash nop ___ $code.=<<___; ldb 15($Xi),$nlo ldo 8($Htbl),$Hll L\$outer_ghash_pa2 ldb 15($inp),$nhi xor $nhi,$nlo,$nlo and $mask0xf0,$nlo,$nhi depd,z $nlo,59,4,$nlo ldd $nlo($Hll),$Zll ldd $nlo($Hhh),$Zhh depd,z $Zll,60,4,$rem shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldb 14($Xi),$nlo ldb 14($inp),$byte ldd $nhi($Hll),$Tll ldd $nhi($Hhh),$Thh xor $byte,$nlo,$nlo and $mask0xf0,$nlo,$nhi depd,z $nlo,59,4,$nlo xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh ldd $rem($rem_4bit),$rem b L\$oop_ghash_pa2 ldi 13,$cnt .ALIGN 8 L\$oop_ghash_pa2 xor $rem,$Zhh,$Zhh ; moved here to work around gas bug depd,z $Zll,60,4,$rem2 shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldd $nlo($Hll),$Tll ldd $nlo($Hhh),$Thh xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh ldbx $cnt($Xi),$nlo ldbx $cnt($inp),$byte depd,z $Zll,60,4,$rem shrpd $Zhh,$Zll,4,$Zll ldd $rem2($rem_4bit),$rem2 xor $rem2,$Zhh,$Zhh xor $byte,$nlo,$nlo ldd $nhi($Hll),$Tll ldd $nhi($Hhh),$Thh and $mask0xf0,$nlo,$nhi depd,z $nlo,59,4,$nlo extrd,u $Zhh,59,60,$Zhh xor $Tll,$Zll,$Zll ldd $rem($rem_4bit),$rem addib,uv -1,$cnt,L\$oop_ghash_pa2 xor $Thh,$Zhh,$Zhh xor $rem,$Zhh,$Zhh depd,z $Zll,60,4,$rem2 shrpd $Zhh,$Zll,4,$Zll extrd,u $Zhh,59,60,$Zhh ldd $nlo($Hll),$Tll ldd $nlo($Hhh),$Thh xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh depd,z $Zll,60,4,$rem shrpd $Zhh,$Zll,4,$Zll ldd $rem2($rem_4bit),$rem2 xor $rem2,$Zhh,$Zhh ldd $nhi($Hll),$Tll ldd $nhi($Hhh),$Thh extrd,u $Zhh,59,60,$Zhh xor $Tll,$Zll,$Zll xor $Thh,$Zhh,$Zhh ldd $rem($rem_4bit),$rem xor $rem,$Zhh,$Zhh std $Zll,8($Xi) ldo 16($inp),$inp std $Zhh,0($Xi) cmpb,*<> $inp,$len,L\$outer_ghash_pa2 copy $Zll,$nlo ___ $code.=<<___ if ($SIZE_T==4); b L\$done_ghash nop L\$parisc1_ghash ldb 15($Xi),$nlo ldo 12($Htbl),$Hll ldo 8($Htbl),$Hlh ldo 4($Htbl),$Hhl L\$outer_ghash_pa1 ldb 15($inp),$byte xor $byte,$nlo,$nlo and $mask0xf0,$nlo,$nhi zdep $nlo,27,4,$nlo ldwx $nlo($Hll),$Zll ldwx $nlo($Hlh),$Zlh ldwx $nlo($Hhl),$Zhl ldwx $nlo($Hhh),$Zhh zdep $Zll,28,4,$rem ldb 14($Xi),$nlo ldb 14($inp),$byte ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll ldwx $nhi($Hll),$Tll shrpw $Zhl,$Zlh,4,$Zlh ldwx $nhi($Hlh),$Tlh shrpw $Zhh,$Zhl,4,$Zhl ldwx $nhi($Hhl),$Thl extru $Zhh,27,28,$Zhh ldwx $nhi($Hhh),$Thh xor $byte,$nlo,$nlo xor $rem,$Zhh,$Zhh and $mask0xf0,$nlo,$nhi zdep $nlo,27,4,$nlo xor $Tll,$Zll,$Zll ldwx $nlo($Hll),$Tll xor $Tlh,$Zlh,$Zlh ldwx $nlo($Hlh),$Tlh xor $Thl,$Zhl,$Zhl b L\$oop_ghash_pa1 ldi 13,$cnt .ALIGN 8 L\$oop_ghash_pa1 zdep $Zll,28,4,$rem ldwx $nlo($Hhl),$Thl xor $Thh,$Zhh,$Zhh ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll ldwx $nlo($Hhh),$Thh shrpw $Zhl,$Zlh,4,$Zlh ldbx $cnt($Xi),$nlo xor $Tll,$Zll,$Zll ldwx $nhi($Hll),$Tll shrpw $Zhh,$Zhl,4,$Zhl ldbx $cnt($inp),$byte xor $Tlh,$Zlh,$Zlh ldwx $nhi($Hlh),$Tlh extru $Zhh,27,28,$Zhh xor $Thl,$Zhl,$Zhl ldwx $nhi($Hhl),$Thl xor $rem,$Zhh,$Zhh zdep $Zll,28,4,$rem xor $Thh,$Zhh,$Zhh ldwx $nhi($Hhh),$Thh shrpw $Zlh,$Zll,4,$Zll ldwx $rem($rem_4bit),$rem shrpw $Zhl,$Zlh,4,$Zlh xor $byte,$nlo,$nlo shrpw $Zhh,$Zhl,4,$Zhl and $mask0xf0,$nlo,$nhi extru $Zhh,27,28,$Zhh zdep $nlo,27,4,$nlo xor $Tll,$Zll,$Zll ldwx $nlo($Hll),$Tll xor $Tlh,$Zlh,$Zlh ldwx $nlo($Hlh),$Tlh xor $rem,$Zhh,$Zhh addib,uv -1,$cnt,L\$oop_ghash_pa1 xor $Thl,$Zhl,$Zhl zdep $Zll,28,4,$rem ldwx $nlo($Hhl),$Thl xor $Thh,$Zhh,$Zhh ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll ldwx $nlo($Hhh),$Thh shrpw $Zhl,$Zlh,4,$Zlh xor $Tll,$Zll,$Zll ldwx $nhi($Hll),$Tll shrpw $Zhh,$Zhl,4,$Zhl xor $Tlh,$Zlh,$Zlh ldwx $nhi($Hlh),$Tlh extru $Zhh,27,28,$Zhh xor $rem,$Zhh,$Zhh xor $Thl,$Zhl,$Zhl ldwx $nhi($Hhl),$Thl xor $Thh,$Zhh,$Zhh ldwx $nhi($Hhh),$Thh zdep $Zll,28,4,$rem ldwx $rem($rem_4bit),$rem shrpw $Zlh,$Zll,4,$Zll shrpw $Zhl,$Zlh,4,$Zlh shrpw $Zhh,$Zhl,4,$Zhl extru $Zhh,27,28,$Zhh xor $Tll,$Zll,$Zll xor $Tlh,$Zlh,$Zlh xor $rem,$Zhh,$Zhh stw $Zll,12($Xi) xor $Thl,$Zhl,$Zhl stw $Zlh,8($Xi) xor $Thh,$Zhh,$Zhh stw $Zhl,4($Xi) ldo 16($inp),$inp stw $Zhh,0($Xi) comb,<> $inp,$len,L\$outer_ghash_pa1 copy $Zll,$nlo ___ $code.=<<___; L\$done_ghash $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 ___ $code.=<<___ if ($SIZE_T==4); $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 ___ $code.=<<___; bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .ALIGN 64 L\$rem_4bit .WORD `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0 .WORD `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0 .WORD `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0 .WORD `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0 .STRINGZ "GHASH for PA-RISC, GRYPTOGAMS by " .ALIGN 64 ___ # Explicitly encode PA-RISC 2.0 instructions used in this module, so # that it can be compiled with .LEVEL 1.0. It should be noted that I # wouldn't have to do this, if GNU assembler understood .ALLOW 2.0 # directive... my $ldd = sub { my ($mod,$args) = @_; my $orig = "ldd$mod\t$args"; if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4 { my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3; sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5 { my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3; $opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset $opcode|=(1<<5) if ($mod =~ /^,m/); $opcode|=(1<<13) if ($mod =~ /^,mb/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $std = sub { my ($mod,$args) = @_; my $orig = "std$mod\t$args"; if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 3 suffices { my $opcode=(0x1c<<26)|($3<<21)|($1<<16)|(($2&0x1FF8)<<1)|(($2>>13)&1); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $extrd = sub { my ($mod,$args) = @_; my $orig = "extrd$mod\t$args"; # I only have ",u" completer, it's implicitly encoded... if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15 { my $opcode=(0x36<<26)|($1<<21)|($4<<16); my $len=32-$3; $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12 { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9); my $len=32-$2; $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len $opcode |= (1<<13) if ($mod =~ /,\**=/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $shrpd = sub { my ($mod,$args) = @_; my $orig = "shrpd$mod\t$args"; if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14 { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4; my $cpos=63-$3; $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /%r([0-9]+),%r([0-9]+),%sar,%r([0-9]+)/) # format 11 { sprintf "\t.WORD\t0x%08x\t; %s", (0x34<<26)|($2<<21)|($1<<16)|(1<<9)|$3,$orig; } else { "\t".$orig; } }; my $depd = sub { my ($mod,$args) = @_; my $orig = "depd$mod\t$args"; # I only have ",z" completer, it's implicitly encoded... if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 16 { my $opcode=(0x3c<<26)|($4<<21)|($1<<16); my $cpos=63-$2; my $len=32-$3; $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode pos $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; sub assemble { my ($mnemonic,$mod,$args)=@_; my $opcode = eval("\$$mnemonic"); ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args"; } if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler/) { $gnuas = 1; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; if ($SIZE_T==4) { s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e; s/cmpb,\*/comb,/; s/,\*/,/; } s/(\.LEVEL\s+2\.0)W/$1w/ if ($gnuas && $SIZE_T==8); s/\.SPACE\s+\$TEXT\$/.text/ if ($gnuas && $SIZE_T==8); s/\.SUBSPA.*// if ($gnuas && $SIZE_T==8); s/\bbv\b/bve/ if ($SIZE_T==8); print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghash-s390x.pl000066400000000000000000000143641364063235100211000ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # September 2010. # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+128 bytes shared table]. Performance # was measured to be ~18 cycles per processed byte on z10, which is # almost 40% better than gcc-generated code. It should be noted that # 18 cycles is worse result than expected: loop is scheduled for 12 # and the result should be close to 12. In the lack of instruction- # level profiling data it's impossible to tell why... # November 2010. # # Adapt for -m31 build. If kernel supports what's called "highgprs" # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit # instructions and achieve "64-bit" performance even in 31-bit legacy # application context. The feature is not specific to any particular # processor, as long as it's "z-CPU". Latter implies that the code # remains z/Architecture specific. On z990 it was measured to perform # 2.8x better than 32-bit code generated by gcc 4.3. # March 2011. # # Support for hardware KIMD-GHASH is verified to produce correct # result and therefore is engaged. On z196 it was measured to process # 8KB buffer ~7 faster than software implementation. It's not as # impressive for smaller buffer sizes and for smallest 16-bytes buffer # it's actually almost 2 times slower. Which is the reason why # KIMD-GHASH is not used in gcm_gmult_4bit. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $softonly=0; $Zhi="%r0"; $Zlo="%r1"; $Xi="%r2"; # argument block $Htbl="%r3"; $inp="%r4"; $len="%r5"; $rem0="%r6"; # variables $rem1="%r7"; $nlo="%r8"; $nhi="%r9"; $xi="%r10"; $cnt="%r11"; $tmp="%r12"; $x78="%r13"; $rem_4bit="%r14"; $sp="%r15"; $code.=<<___; #include "s390x_arch.h" .text .globl gcm_gmult_4bit .align 32 gcm_gmult_4bit: ___ $code.=<<___ if(!$softonly && 0); # hardware is slow for single block... larl %r1,OPENSSL_s390xcap_P lghi %r0,0 lg %r1,S390X_KIMD+8(%r1) # load second word of kimd capabilities # vector tmhh %r1,0x4000 # check for function 65 jz .Lsoft_gmult stg %r0,16($sp) # arrange 16 bytes of zero input stg %r0,24($sp) lghi %r0,S390X_GHASH # function 65 la %r1,0($Xi) # H lies right after Xi in gcm128_context la $inp,16($sp) lghi $len,16 .long 0xb93e0004 # kimd %r0,$inp brc 1,.-4 # pay attention to "partial completion" br %r14 .align 32 .Lsoft_gmult: ___ $code.=<<___; stm${g} %r6,%r14,6*$SIZE_T($sp) aghi $Xi,-1 lghi $len,1 lghi $x78,`0xf<<3` larl $rem_4bit,rem_4bit lg $Zlo,8+1($Xi) # Xi j .Lgmult_shortcut .type gcm_gmult_4bit,\@function .size gcm_gmult_4bit,(.-gcm_gmult_4bit) .globl gcm_ghash_4bit .align 32 gcm_ghash_4bit: ___ $code.=<<___ if(!$softonly); larl %r1,OPENSSL_s390xcap_P lg %r0,S390X_KIMD+8(%r1) # load second word of kimd capabilities # vector tmhh %r0,0x4000 # check for function 65 jz .Lsoft_ghash lghi %r0,S390X_GHASH # function 65 la %r1,0($Xi) # H lies right after Xi in gcm128_context .long 0xb93e0004 # kimd %r0,$inp brc 1,.-4 # pay attention to "partial completion" br %r14 .align 32 .Lsoft_ghash: ___ $code.=<<___ if ($flavour =~ /3[12]/); llgfr $len,$len ___ $code.=<<___; stm${g} %r6,%r14,6*$SIZE_T($sp) aghi $Xi,-1 srlg $len,$len,4 lghi $x78,`0xf<<3` larl $rem_4bit,rem_4bit lg $Zlo,8+1($Xi) # Xi lg $Zhi,0+1($Xi) lghi $tmp,0 .Louter: xg $Zhi,0($inp) # Xi ^= inp xg $Zlo,8($inp) xgr $Zhi,$tmp stg $Zlo,8+1($Xi) stg $Zhi,0+1($Xi) .Lgmult_shortcut: lghi $tmp,0xf0 sllg $nlo,$Zlo,4 srlg $xi,$Zlo,8 # extract second byte ngr $nlo,$tmp lgr $nhi,$Zlo lghi $cnt,14 ngr $nhi,$tmp lg $Zlo,8($nlo,$Htbl) lg $Zhi,0($nlo,$Htbl) sllg $nlo,$xi,4 sllg $rem0,$Zlo,3 ngr $nlo,$tmp ngr $rem0,$x78 ngr $xi,$tmp sllg $tmp,$Zhi,60 srlg $Zlo,$Zlo,4 srlg $Zhi,$Zhi,4 xg $Zlo,8($nhi,$Htbl) xg $Zhi,0($nhi,$Htbl) lgr $nhi,$xi sllg $rem1,$Zlo,3 xgr $Zlo,$tmp ngr $rem1,$x78 sllg $tmp,$Zhi,60 j .Lghash_inner .align 16 .Lghash_inner: srlg $Zlo,$Zlo,4 srlg $Zhi,$Zhi,4 xg $Zlo,8($nlo,$Htbl) llgc $xi,0($cnt,$Xi) xg $Zhi,0($nlo,$Htbl) sllg $nlo,$xi,4 xg $Zhi,0($rem0,$rem_4bit) nill $nlo,0xf0 sllg $rem0,$Zlo,3 xgr $Zlo,$tmp ngr $rem0,$x78 nill $xi,0xf0 sllg $tmp,$Zhi,60 srlg $Zlo,$Zlo,4 srlg $Zhi,$Zhi,4 xg $Zlo,8($nhi,$Htbl) xg $Zhi,0($nhi,$Htbl) lgr $nhi,$xi xg $Zhi,0($rem1,$rem_4bit) sllg $rem1,$Zlo,3 xgr $Zlo,$tmp ngr $rem1,$x78 sllg $tmp,$Zhi,60 brct $cnt,.Lghash_inner srlg $Zlo,$Zlo,4 srlg $Zhi,$Zhi,4 xg $Zlo,8($nlo,$Htbl) xg $Zhi,0($nlo,$Htbl) sllg $xi,$Zlo,3 xg $Zhi,0($rem0,$rem_4bit) xgr $Zlo,$tmp ngr $xi,$x78 sllg $tmp,$Zhi,60 srlg $Zlo,$Zlo,4 srlg $Zhi,$Zhi,4 xg $Zlo,8($nhi,$Htbl) xg $Zhi,0($nhi,$Htbl) xgr $Zlo,$tmp xg $Zhi,0($rem1,$rem_4bit) lg $tmp,0($xi,$rem_4bit) la $inp,16($inp) sllg $tmp,$tmp,4 # correct last rem_4bit[rem] brctg $len,.Louter xgr $Zhi,$tmp stg $Zlo,8+1($Xi) stg $Zhi,0+1($Xi) lm${g} %r6,%r14,6*$SIZE_T($sp) br %r14 .type gcm_ghash_4bit,\@function .size gcm_ghash_4bit,(.-gcm_ghash_4bit) .align 64 rem_4bit: .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0 .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0 .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0 .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0 .type rem_4bit,\@object .size rem_4bit,(.-rem_4bit) .string "GHASH for s390x, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghash-sparcv9.pl000066400000000000000000000313201364063235100215700ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # March 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+128 bytes shared table]. Performance # results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU # and are expressed in cycles per processed byte, less is better: # # gcc 3.3.x cc 5.2 this assembler # # 32-bit build 81.4 43.3 12.6 (+546%/+244%) # 64-bit build 20.2 21.2 12.6 (+60%/+68%) # # Here is data collected on UltraSPARC T1 system running Linux: # # gcc 4.4.1 this assembler # # 32-bit build 566 50 (+1000%) # 64-bit build 56 50 (+12%) # # I don't quite understand why difference between 32-bit and 64-bit # compiler-generated code is so big. Compilers *were* instructed to # generate code for UltraSPARC and should have used 64-bit registers # for Z vector (see C code) even in 32-bit build... Oh well, it only # means more impressive improvement coefficients for this assembler # module;-) Loops are aggressively modulo-scheduled in respect to # references to input data and Z.hi updates to achieve 12 cycles # timing. To anchor to something else, sha1-sparcv9.pl spends 11.6 # cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1. # # October 2012 # # Add VIS3 lookup-table-free implementation using polynomial # multiplication xmulx[hi] and extended addition addxc[cc] # instructions. 4.52/7.63x improvement on T3/T4 or in absolute # terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark # saturates at ~15.5x single-process result on 8-core processor, # or ~20.5GBps per 2.85GHz socket. $output=pop; open STDOUT,">$output"; $frame="STACK_FRAME"; $bias="STACK_BIAS"; $Zhi="%o0"; # 64-bit values $Zlo="%o1"; $Thi="%o2"; $Tlo="%o3"; $rem="%o4"; $tmp="%o5"; $nhi="%l0"; # small values and pointers $nlo="%l1"; $xi0="%l2"; $xi1="%l3"; $rem_4bit="%l4"; $remi="%l5"; $Htblo="%l6"; $cnt="%l7"; $Xi="%i0"; # input argument block $Htbl="%i1"; $inp="%i2"; $len="%i3"; $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr .align 64 rem_4bit: .long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0 .long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0 .long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0 .long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0 .type rem_4bit,#object .size rem_4bit,(.-rem_4bit) .globl gcm_ghash_4bit .align 32 gcm_ghash_4bit: save %sp,-$frame,%sp ldub [$inp+15],$nlo ldub [$Xi+15],$xi0 ldub [$Xi+14],$xi1 add $len,$inp,$len add $Htbl,8,$Htblo 1: call .+8 add %o7,rem_4bit-1b,$rem_4bit .Louter: xor $xi0,$nlo,$nlo and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo sll $nlo,4,$nlo ldx [$Htblo+$nlo],$Zlo ldx [$Htbl+$nlo],$Zhi ldub [$inp+14],$nlo ldx [$Htblo+$nhi],$Tlo and $Zlo,0xf,$remi ldx [$Htbl+$nhi],$Thi sll $remi,3,$remi ldx [$rem_4bit+$remi],$rem srlx $Zlo,4,$Zlo mov 13,$cnt sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $xi1,$nlo,$nlo and $Zlo,0xf,$remi and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo ba .Lghash_inner sll $nlo,4,$nlo .align 32 .Lghash_inner: ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$inp+$cnt],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo ldub [$Xi+$cnt],$xi1 xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $xi1,$nlo,$nlo srlx $Zhi,4,$Zhi and $nlo,0xf0,$nhi addcc $cnt,-1,$cnt xor $Zlo,$tmp,$Zlo and $nlo,0x0f,$nlo xor $Tlo,$Zlo,$Zlo sll $nlo,4,$nlo blu .Lghash_inner and $Zlo,0xf,$remi ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi add $inp,16,$inp cmp $inp,$len be,pn SIZE_T_CC,.Ldone and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$inp+15],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] srl $Zlo,8,$xi1 and $Zlo,0xff,$xi0 ba .Louter and $xi1,0xff,$xi1 .align 32 .Ldone: ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] ret restore .type gcm_ghash_4bit,#function .size gcm_ghash_4bit,(.-gcm_ghash_4bit) ___ undef $inp; undef $len; $code.=<<___; .globl gcm_gmult_4bit .align 32 gcm_gmult_4bit: save %sp,-$frame,%sp ldub [$Xi+15],$nlo add $Htbl,8,$Htblo 1: call .+8 add %o7,rem_4bit-1b,$rem_4bit and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo sll $nlo,4,$nlo ldx [$Htblo+$nlo],$Zlo ldx [$Htbl+$nlo],$Zhi ldub [$Xi+14],$nlo ldx [$Htblo+$nhi],$Tlo and $Zlo,0xf,$remi ldx [$Htbl+$nhi],$Thi sll $remi,3,$remi ldx [$rem_4bit+$remi],$rem srlx $Zlo,4,$Zlo mov 13,$cnt sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo and $Zlo,0xf,$remi and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo ba .Lgmult_inner sll $nlo,4,$nlo .align 32 .Lgmult_inner: ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$Xi+$cnt],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp srlx $Zhi,4,$Zhi and $nlo,0xf0,$nhi addcc $cnt,-1,$cnt xor $Zlo,$tmp,$Zlo and $nlo,0x0f,$nlo xor $Tlo,$Zlo,$Zlo sll $nlo,4,$nlo blu .Lgmult_inner and $Zlo,0xf,$remi ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] ret restore .type gcm_gmult_4bit,#function .size gcm_gmult_4bit,(.-gcm_gmult_4bit) ___ {{{ # Straightforward 128x128-bit multiplication using Karatsuba algorithm # followed by pair of 64-bit reductions [with a shortcut in first one, # which allowed to break dependency between reductions and remove one # multiplication from critical path]. While it might be suboptimal # with regard to sheer number of multiplications, other methods [such # as aggregate reduction] would require more 64-bit registers, which # we don't have in 32-bit application context. ($Xip,$Htable,$inp,$len)=map("%i$_",(0..3)); ($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)= (map("%o$_",(0..5,7)),map("%g$_",(1..5))); ($shl,$shr)=map("%l$_",(0..7)); # For details regarding "twisted H" see ghash-x86.pl. $code.=<<___; .globl gcm_init_vis3 .align 32 gcm_init_vis3: save %sp,-$frame,%sp ldx [%i1+0],$Hhi ldx [%i1+8],$Hlo mov 0xE1,$Xhi mov 1,$Xlo sllx $Xhi,57,$Xhi srax $Hhi,63,$C0 ! broadcast carry addcc $Hlo,$Hlo,$Hlo ! H<<=1 addxc $Hhi,$Hhi,$Hhi and $C0,$Xlo,$Xlo and $C0,$Xhi,$Xhi xor $Xlo,$Hlo,$Hlo xor $Xhi,$Hhi,$Hhi stx $Hlo,[%i0+8] ! save twisted H stx $Hhi,[%i0+0] sethi %hi(0xA0406080),$V sethi %hi(0x20C0E000),%l0 or $V,%lo(0xA0406080),$V or %l0,%lo(0x20C0E000),%l0 sllx $V,32,$V or %l0,$V,$V ! (0xE0·i)&0xff=0xA040608020C0E000 stx $V,[%i0+16] ret restore .type gcm_init_vis3,#function .size gcm_init_vis3,.-gcm_init_vis3 .globl gcm_gmult_vis3 .align 32 gcm_gmult_vis3: save %sp,-$frame,%sp ldx [$Xip+8],$Xlo ! load Xi ldx [$Xip+0],$Xhi ldx [$Htable+8],$Hlo ! load twisted H ldx [$Htable+0],$Hhi mov 0xE1,%l7 sllx %l7,57,$xE1 ! 57 is not a typo ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000 xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing xmulx $Xlo,$Hlo,$C0 xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing xmulx $C2,$Hhl,$C1 xmulxhi $Xlo,$Hlo,$Xlo xmulxhi $C2,$Hhl,$C2 xmulxhi $Xhi,$Hhi,$C3 xmulx $Xhi,$Hhi,$Xhi sll $C0,3,$sqr srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)] xor $C0,$sqr,$sqr sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f] xor $C0,$C1,$C1 ! Karatsuba post-processing xor $Xlo,$C2,$C2 xor $sqr,$Xlo,$Xlo ! real destination is $C1 xor $C3,$C2,$C2 xor $Xlo,$C1,$C1 xor $Xhi,$C2,$C2 xor $Xhi,$C1,$C1 xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56 xor $C0,$C2,$C2 xmulx $C1,$xE1,$C0 xor $C1,$C3,$C3 xmulxhi $C1,$xE1,$C1 xor $Xlo,$C2,$C2 xor $C0,$C2,$C2 xor $C1,$C3,$C3 stx $C2,[$Xip+8] ! save Xi stx $C3,[$Xip+0] ret restore .type gcm_gmult_vis3,#function .size gcm_gmult_vis3,.-gcm_gmult_vis3 .globl gcm_ghash_vis3 .align 32 gcm_ghash_vis3: save %sp,-$frame,%sp nop srln $len,0,$len ! needed on v8+, "nop" on v9 ldx [$Xip+8],$C2 ! load Xi ldx [$Xip+0],$C3 ldx [$Htable+8],$Hlo ! load twisted H ldx [$Htable+0],$Hhi mov 0xE1,%l7 sllx %l7,57,$xE1 ! 57 is not a typo ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000 and $inp,7,$shl andn $inp,7,$inp sll $shl,3,$shl prefetch [$inp+63], 20 sub %g0,$shl,$shr xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing .Loop: ldx [$inp+8],$Xlo brz,pt $shl,1f ldx [$inp+0],$Xhi ldx [$inp+16],$C1 ! align data srlx $Xlo,$shr,$C0 sllx $Xlo,$shl,$Xlo sllx $Xhi,$shl,$Xhi srlx $C1,$shr,$C1 or $C0,$Xhi,$Xhi or $C1,$Xlo,$Xlo 1: add $inp,16,$inp sub $len,16,$len xor $C2,$Xlo,$Xlo xor $C3,$Xhi,$Xhi prefetch [$inp+63], 20 xmulx $Xlo,$Hlo,$C0 xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing xmulx $C2,$Hhl,$C1 xmulxhi $Xlo,$Hlo,$Xlo xmulxhi $C2,$Hhl,$C2 xmulxhi $Xhi,$Hhi,$C3 xmulx $Xhi,$Hhi,$Xhi sll $C0,3,$sqr srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)] xor $C0,$sqr,$sqr sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f] xor $C0,$C1,$C1 ! Karatsuba post-processing xor $Xlo,$C2,$C2 xor $sqr,$Xlo,$Xlo ! real destination is $C1 xor $C3,$C2,$C2 xor $Xlo,$C1,$C1 xor $Xhi,$C2,$C2 xor $Xhi,$C1,$C1 xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56 xor $C0,$C2,$C2 xmulx $C1,$xE1,$C0 xor $C1,$C3,$C3 xmulxhi $C1,$xE1,$C1 xor $Xlo,$C2,$C2 xor $C0,$C2,$C2 brnz,pt $len,.Loop xor $C1,$C3,$C3 stx $C2,[$Xip+8] ! save Xi stx $C3,[$Xip+0] ret restore .type gcm_ghash_vis3,#function .size gcm_ghash_vis3,.-gcm_ghash_vis3 ___ }}} $code.=<<___; .asciz "GHASH for SPARCv9/VIS3, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "addxc" => 0x011, "addxccc" => 0x013, "xmulx" => 0x115, "xmulxhi" => 0x116 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghash-x86.pl000066400000000000000000001212231364063235100206300ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # March, May, June 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two # code paths: vanilla x86 and vanilla SSE. Former will be executed on # 486 and Pentium, latter on all others. SSE GHASH features so called # "528B" variant of "4-bit" method utilizing additional 256+16 bytes # of per-key storage [+512 bytes shared table]. Performance results # are for streamed GHASH subroutine and are expressed in cycles per # processed byte, less is better: # # gcc 2.95.3(*) SSE assembler x86 assembler # # Pentium 105/111(**) - 50 # PIII 68 /75 12.2 24 # P4 125/125 17.8 84(***) # Opteron 66 /70 10.1 30 # Core2 54 /67 8.4 18 # Atom 105/105 16.8 53 # VIA Nano 69 /71 13.0 27 # # (*) gcc 3.4.x was observed to generate few percent slower code, # which is one of reasons why 2.95.3 results were chosen, # another reason is lack of 3.4.x results for older CPUs; # comparison with SSE results is not completely fair, because C # results are for vanilla "256B" implementation, while # assembler results are for "528B";-) # (**) second number is result for code compiled with -fPIC flag, # which is actually more relevant, because assembler code is # position-independent; # (***) see comment in non-MMX routine for further details; # # To summarize, it's >2-5 times faster than gcc-generated code. To # anchor it to something else SHA1 assembler processes one byte in # ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE # in particular, see comment at the end of the file... # May 2010 # # Add PCLMULQDQ version performing at 2.10 cycles per processed byte. # The question is how close is it to theoretical limit? The pclmulqdq # instruction latency appears to be 14 cycles and there can't be more # than 2 of them executing at any given time. This means that single # Karatsuba multiplication would take 28 cycles *plus* few cycles for # pre- and post-processing. Then multiplication has to be followed by # modulo-reduction. Given that aggregated reduction method [see # "Carry-less Multiplication and Its Usage for Computing the GCM Mode" # white paper by Intel] allows you to perform reduction only once in # a while we can assume that asymptotic performance can be estimated # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction # and Naggr is the aggregation factor. # # Before we proceed to this implementation let's have closer look at # the best-performing code suggested by Intel in their white paper. # By tracing inter-register dependencies Tmod is estimated as ~19 # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per # processed byte. As implied, this is quite optimistic estimate, # because it does not account for Karatsuba pre- and post-processing, # which for a single multiplication is ~5 cycles. Unfortunately Intel # does not provide performance data for GHASH alone. But benchmarking # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that # the result accounts even for pre-computing of degrees of the hash # key H, but its portion is negligible at 16KB buffer size. # # Moving on to the implementation in question. Tmod is estimated as # ~13 cycles and Naggr is 2, giving asymptotic performance of ... # 2.16. How is it possible that measured performance is better than # optimistic theoretical estimate? There is one thing Intel failed # to recognize. By serializing GHASH with CTR in same subroutine # former's performance is really limited to above (Tmul + Tmod/Naggr) # equation. But if GHASH procedure is detached, the modulo-reduction # can be interleaved with Naggr-1 multiplications at instruction level # and under ideal conditions even disappear from the equation. So that # optimistic theoretical estimate for this implementation is ... # 28/16=1.75, and not 2.16. Well, it's probably way too optimistic, # at least for such small Naggr. I'd argue that (28+Tproc/Naggr), # where Tproc is time required for Karatsuba pre- and post-processing, # is more realistic estimate. In this case it gives ... 1.91 cycles. # Or in other words, depending on how well we can interleave reduction # and one of the two multiplications the performance should be between # 1.91 and 2.16. As already mentioned, this implementation processes # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart # - in 2.02. x86_64 performance is better, because larger register # bank allows to interleave reduction and multiplication better. # # Does it make sense to increase Naggr? To start with it's virtually # impossible in 32-bit mode, because of limited register bank # capacity. Otherwise improvement has to be weighed against slower # setup, as well as code size and complexity increase. As even # optimistic estimate doesn't promise 30% performance improvement, # there are currently no plans to increase Naggr. # # Special thanks to David Woodhouse for providing access to a # Westmere-based system on behalf of Intel Open Source Technology Centre. # January 2010 # # Tweaked to optimize transitions between integer and FP operations # on same XMM register, PCLMULQDQ subroutine was measured to process # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere. # The minor regression on Westmere is outweighed by ~15% improvement # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in # similar manner resulted in almost 20% degradation on Sandy Bridge, # where original 64-bit code processes one byte in 1.95 cycles. ##################################################################### # For reference, AMD Bulldozer processes one byte in 1.98 cycles in # 32-bit mode and 1.89 in 64-bit. # February 2013 # # Overhaul: aggregate Karatsuba post-processing, improve ILP in # reduction_alg9. Resulting performance is 1.96 cycles per byte on # Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx"); $inp = "edi"; $Htbl = "esi"; $unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse # than unrolled, which has to be weighted against # 2.5x x86-specific code size reduction. sub x86_loop { my $off = shift; my $rem = "eax"; &mov ($Zhh,&DWP(4,$Htbl,$Zll)); &mov ($Zhl,&DWP(0,$Htbl,$Zll)); &mov ($Zlh,&DWP(12,$Htbl,$Zll)); &mov ($Zll,&DWP(8,$Htbl,$Zll)); &xor ($rem,$rem); # avoid partial register stalls on PIII # shrd practically kills P4, 2.5x deterioration, but P4 has # MMX code-path to execute. shrd runs tad faster [than twice # the shifts, move's and or's] on pre-MMX Pentium (as well as # PIII and Core2), *but* minimizes code size, spares register # and thus allows to fold the loop... if (!$unroll) { my $cnt = $inp; &mov ($cnt,15); &jmp (&label("x86_loop")); &set_label("x86_loop",16); for($i=1;$i<=2;$i++) { &mov (&LB($rem),&LB($Zll)); &shrd ($Zll,$Zlh,4); &and (&LB($rem),0xf); &shrd ($Zlh,$Zhl,4); &shrd ($Zhl,$Zhh,4); &shr ($Zhh,4); &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); &mov (&LB($rem),&BP($off,"esp",$cnt)); if ($i&1) { &and (&LB($rem),0xf0); } else { &shl (&LB($rem),4); } &xor ($Zll,&DWP(8,$Htbl,$rem)); &xor ($Zlh,&DWP(12,$Htbl,$rem)); &xor ($Zhl,&DWP(0,$Htbl,$rem)); &xor ($Zhh,&DWP(4,$Htbl,$rem)); if ($i&1) { &dec ($cnt); &js (&label("x86_break")); } else { &jmp (&label("x86_loop")); } } &set_label("x86_break",16); } else { for($i=1;$i<32;$i++) { &comment($i); &mov (&LB($rem),&LB($Zll)); &shrd ($Zll,$Zlh,4); &and (&LB($rem),0xf); &shrd ($Zlh,$Zhl,4); &shrd ($Zhl,$Zhh,4); &shr ($Zhh,4); &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); if ($i&1) { &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); &and (&LB($rem),0xf0); } else { &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); &shl (&LB($rem),4); } &xor ($Zll,&DWP(8,$Htbl,$rem)); &xor ($Zlh,&DWP(12,$Htbl,$rem)); &xor ($Zhl,&DWP(0,$Htbl,$rem)); &xor ($Zhh,&DWP(4,$Htbl,$rem)); } } &bswap ($Zll); &bswap ($Zlh); &bswap ($Zhl); if (!$x86only) { &bswap ($Zhh); } else { &mov ("eax",$Zhh); &bswap ("eax"); &mov ($Zhh,"eax"); } } if ($unroll) { &function_begin_B("_x86_gmult_4bit_inner"); &x86_loop(4); &ret (); &function_end_B("_x86_gmult_4bit_inner"); } sub deposit_rem_4bit { my $bias = shift; &mov (&DWP($bias+0, "esp"),0x0000<<16); &mov (&DWP($bias+4, "esp"),0x1C20<<16); &mov (&DWP($bias+8, "esp"),0x3840<<16); &mov (&DWP($bias+12,"esp"),0x2460<<16); &mov (&DWP($bias+16,"esp"),0x7080<<16); &mov (&DWP($bias+20,"esp"),0x6CA0<<16); &mov (&DWP($bias+24,"esp"),0x48C0<<16); &mov (&DWP($bias+28,"esp"),0x54E0<<16); &mov (&DWP($bias+32,"esp"),0xE100<<16); &mov (&DWP($bias+36,"esp"),0xFD20<<16); &mov (&DWP($bias+40,"esp"),0xD940<<16); &mov (&DWP($bias+44,"esp"),0xC560<<16); &mov (&DWP($bias+48,"esp"),0x9180<<16); &mov (&DWP($bias+52,"esp"),0x8DA0<<16); &mov (&DWP($bias+56,"esp"),0xA9C0<<16); &mov (&DWP($bias+60,"esp"),0xB5E0<<16); } $suffix = $x86only ? "" : "_x86"; &function_begin("gcm_gmult_4bit".$suffix); &stack_push(16+4+1); # +1 for stack alignment &mov ($inp,&wparam(0)); # load Xi &mov ($Htbl,&wparam(1)); # load Htable &mov ($Zhh,&DWP(0,$inp)); # load Xi[16] &mov ($Zhl,&DWP(4,$inp)); &mov ($Zlh,&DWP(8,$inp)); &mov ($Zll,&DWP(12,$inp)); &deposit_rem_4bit(16); &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack &mov (&DWP(4,"esp"),$Zhl); &mov (&DWP(8,"esp"),$Zlh); &mov (&DWP(12,"esp"),$Zll); &shr ($Zll,20); &and ($Zll,0xf0); if ($unroll) { &call ("_x86_gmult_4bit_inner"); } else { &x86_loop(0); &mov ($inp,&wparam(0)); } &mov (&DWP(12,$inp),$Zll); &mov (&DWP(8,$inp),$Zlh); &mov (&DWP(4,$inp),$Zhl); &mov (&DWP(0,$inp),$Zhh); &stack_pop(16+4+1); &function_end("gcm_gmult_4bit".$suffix); &function_begin("gcm_ghash_4bit".$suffix); &stack_push(16+4+1); # +1 for 64-bit alignment &mov ($Zll,&wparam(0)); # load Xi &mov ($Htbl,&wparam(1)); # load Htable &mov ($inp,&wparam(2)); # load in &mov ("ecx",&wparam(3)); # load len &add ("ecx",$inp); &mov (&wparam(3),"ecx"); &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16] &mov ($Zhl,&DWP(4,$Zll)); &mov ($Zlh,&DWP(8,$Zll)); &mov ($Zll,&DWP(12,$Zll)); &deposit_rem_4bit(16); &set_label("x86_outer_loop",16); &xor ($Zll,&DWP(12,$inp)); # xor with input &xor ($Zlh,&DWP(8,$inp)); &xor ($Zhl,&DWP(4,$inp)); &xor ($Zhh,&DWP(0,$inp)); &mov (&DWP(12,"esp"),$Zll); # dump it on stack &mov (&DWP(8,"esp"),$Zlh); &mov (&DWP(4,"esp"),$Zhl); &mov (&DWP(0,"esp"),$Zhh); &shr ($Zll,20); &and ($Zll,0xf0); if ($unroll) { &call ("_x86_gmult_4bit_inner"); } else { &x86_loop(0); &mov ($inp,&wparam(2)); } &lea ($inp,&DWP(16,$inp)); &cmp ($inp,&wparam(3)); &mov (&wparam(2),$inp) if (!$unroll); &jb (&label("x86_outer_loop")); &mov ($inp,&wparam(0)); # load Xi &mov (&DWP(12,$inp),$Zll); &mov (&DWP(8,$inp),$Zlh); &mov (&DWP(4,$inp),$Zhl); &mov (&DWP(0,$inp),$Zhh); &stack_pop(16+4+1); &function_end("gcm_ghash_4bit".$suffix); if (!$x86only) {{{ &static_label("rem_4bit"); if (!$sse2) {{ # pure-MMX "May" version... $S=12; # shift factor for rem_4bit &function_begin_B("_mmx_gmult_4bit_inner"); # MMX version performs 3.5 times better on P4 (see comment in non-MMX # routine for further details), 100% better on Opteron, ~70% better # on Core2 and PIII... In other words effort is considered to be well # spent... Since initial release the loop was unrolled in order to # "liberate" register previously used as loop counter. Instead it's # used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'. # The path involves move of Z.lo from MMX to integer register, # effective address calculation and finally merge of value to Z.hi. # Reference to rem_4bit is scheduled so late that I had to >>4 # rem_4bit elements. This resulted in 20-45% procent improvement # on contemporary µ-archs. { my $cnt; my $rem_4bit = "eax"; my @rem = ($Zhh,$Zll); my $nhi = $Zhl; my $nlo = $Zlh; my ($Zlo,$Zhi) = ("mm0","mm1"); my $tmp = "mm2"; &xor ($nlo,$nlo); # avoid partial register stalls on PIII &mov ($nhi,$Zll); &mov (&LB($nlo),&LB($nhi)); &shl (&LB($nlo),4); &and ($nhi,0xf0); &movq ($Zlo,&QWP(8,$Htbl,$nlo)); &movq ($Zhi,&QWP(0,$Htbl,$nlo)); &movd ($rem[0],$Zlo); for ($cnt=28;$cnt>=-2;$cnt--) { my $odd = $cnt&1; my $nix = $odd ? $nlo : $nhi; &shl (&LB($nlo),4) if ($odd); &psrlq ($Zlo,4); &movq ($tmp,$Zhi); &psrlq ($Zhi,4); &pxor ($Zlo,&QWP(8,$Htbl,$nix)); &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0); &psllq ($tmp,60); &and ($nhi,0xf0) if ($odd); &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28); &and ($rem[0],0xf); &pxor ($Zhi,&QWP(0,$Htbl,$nix)); &mov ($nhi,$nlo) if (!$odd && $cnt>=0); &movd ($rem[1],$Zlo); &pxor ($Zlo,$tmp); push (@rem,shift(@rem)); # "rotate" registers } &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem] &psrlq ($Zlo,32); # lower part of Zlo is already there &movd ($Zhl,$Zhi); &psrlq ($Zhi,32); &movd ($Zlh,$Zlo); &movd ($Zhh,$Zhi); &shl ($inp,4); # compensate for rem_4bit[i] being >>4 &bswap ($Zll); &bswap ($Zhl); &bswap ($Zlh); &xor ($Zhh,$inp); &bswap ($Zhh); &ret (); } &function_end_B("_mmx_gmult_4bit_inner"); &function_begin("gcm_gmult_4bit_mmx"); &mov ($inp,&wparam(0)); # load Xi &mov ($Htbl,&wparam(1)); # load Htable &call (&label("pic_point")); &set_label("pic_point"); &blindpop("eax"); &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); &movz ($Zll,&BP(15,$inp)); &call ("_mmx_gmult_4bit_inner"); &mov ($inp,&wparam(0)); # load Xi &emms (); &mov (&DWP(12,$inp),$Zll); &mov (&DWP(4,$inp),$Zhl); &mov (&DWP(8,$inp),$Zlh); &mov (&DWP(0,$inp),$Zhh); &function_end("gcm_gmult_4bit_mmx"); # Streamed version performs 20% better on P4, 7% on Opteron, # 10% on Core2 and PIII... &function_begin("gcm_ghash_4bit_mmx"); &mov ($Zhh,&wparam(0)); # load Xi &mov ($Htbl,&wparam(1)); # load Htable &mov ($inp,&wparam(2)); # load in &mov ($Zlh,&wparam(3)); # load len &call (&label("pic_point")); &set_label("pic_point"); &blindpop("eax"); &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); &add ($Zlh,$inp); &mov (&wparam(3),$Zlh); # len to point at the end of input &stack_push(4+1); # +1 for stack alignment &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16] &mov ($Zhl,&DWP(4,$Zhh)); &mov ($Zlh,&DWP(8,$Zhh)); &mov ($Zhh,&DWP(0,$Zhh)); &jmp (&label("mmx_outer_loop")); &set_label("mmx_outer_loop",16); &xor ($Zll,&DWP(12,$inp)); &xor ($Zhl,&DWP(4,$inp)); &xor ($Zlh,&DWP(8,$inp)); &xor ($Zhh,&DWP(0,$inp)); &mov (&wparam(2),$inp); &mov (&DWP(12,"esp"),$Zll); &mov (&DWP(4,"esp"),$Zhl); &mov (&DWP(8,"esp"),$Zlh); &mov (&DWP(0,"esp"),$Zhh); &mov ($inp,"esp"); &shr ($Zll,24); &call ("_mmx_gmult_4bit_inner"); &mov ($inp,&wparam(2)); &lea ($inp,&DWP(16,$inp)); &cmp ($inp,&wparam(3)); &jb (&label("mmx_outer_loop")); &mov ($inp,&wparam(0)); # load Xi &emms (); &mov (&DWP(12,$inp),$Zll); &mov (&DWP(4,$inp),$Zhl); &mov (&DWP(8,$inp),$Zlh); &mov (&DWP(0,$inp),$Zhh); &stack_pop(4+1); &function_end("gcm_ghash_4bit_mmx"); }} else {{ # "June" MMX version... # ... has slower "April" gcm_gmult_4bit_mmx with folded # loop. This is done to conserve code size... $S=16; # shift factor for rem_4bit sub mmx_loop() { # MMX version performs 2.8 times better on P4 (see comment in non-MMX # routine for further details), 40% better on Opteron and Core2, 50% # better on PIII... In other words effort is considered to be well # spent... my $inp = shift; my $rem_4bit = shift; my $cnt = $Zhh; my $nhi = $Zhl; my $nlo = $Zlh; my $rem = $Zll; my ($Zlo,$Zhi) = ("mm0","mm1"); my $tmp = "mm2"; &xor ($nlo,$nlo); # avoid partial register stalls on PIII &mov ($nhi,$Zll); &mov (&LB($nlo),&LB($nhi)); &mov ($cnt,14); &shl (&LB($nlo),4); &and ($nhi,0xf0); &movq ($Zlo,&QWP(8,$Htbl,$nlo)); &movq ($Zhi,&QWP(0,$Htbl,$nlo)); &movd ($rem,$Zlo); &jmp (&label("mmx_loop")); &set_label("mmx_loop",16); &psrlq ($Zlo,4); &and ($rem,0xf); &movq ($tmp,$Zhi); &psrlq ($Zhi,4); &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); &mov (&LB($nlo),&BP(0,$inp,$cnt)); &psllq ($tmp,60); &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); &dec ($cnt); &movd ($rem,$Zlo); &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); &mov ($nhi,$nlo); &pxor ($Zlo,$tmp); &js (&label("mmx_break")); &shl (&LB($nlo),4); &and ($rem,0xf); &psrlq ($Zlo,4); &and ($nhi,0xf0); &movq ($tmp,$Zhi); &psrlq ($Zhi,4); &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); &psllq ($tmp,60); &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); &movd ($rem,$Zlo); &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); &pxor ($Zlo,$tmp); &jmp (&label("mmx_loop")); &set_label("mmx_break",16); &shl (&LB($nlo),4); &and ($rem,0xf); &psrlq ($Zlo,4); &and ($nhi,0xf0); &movq ($tmp,$Zhi); &psrlq ($Zhi,4); &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); &psllq ($tmp,60); &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); &movd ($rem,$Zlo); &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); &pxor ($Zlo,$tmp); &psrlq ($Zlo,4); &and ($rem,0xf); &movq ($tmp,$Zhi); &psrlq ($Zhi,4); &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); &psllq ($tmp,60); &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); &movd ($rem,$Zlo); &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); &pxor ($Zlo,$tmp); &psrlq ($Zlo,32); # lower part of Zlo is already there &movd ($Zhl,$Zhi); &psrlq ($Zhi,32); &movd ($Zlh,$Zlo); &movd ($Zhh,$Zhi); &bswap ($Zll); &bswap ($Zhl); &bswap ($Zlh); &bswap ($Zhh); } &function_begin("gcm_gmult_4bit_mmx"); &mov ($inp,&wparam(0)); # load Xi &mov ($Htbl,&wparam(1)); # load Htable &call (&label("pic_point")); &set_label("pic_point"); &blindpop("eax"); &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); &movz ($Zll,&BP(15,$inp)); &mmx_loop($inp,"eax"); &emms (); &mov (&DWP(12,$inp),$Zll); &mov (&DWP(4,$inp),$Zhl); &mov (&DWP(8,$inp),$Zlh); &mov (&DWP(0,$inp),$Zhh); &function_end("gcm_gmult_4bit_mmx"); ###################################################################### # Below subroutine is "528B" variant of "4-bit" GCM GHASH function # (see gcm128.c for details). It provides further 20-40% performance # improvement over above mentioned "May" version. &static_label("rem_8bit"); &function_begin("gcm_ghash_4bit_mmx"); { my ($Zlo,$Zhi) = ("mm7","mm6"); my $rem_8bit = "esi"; my $Htbl = "ebx"; # parameter block &mov ("eax",&wparam(0)); # Xi &mov ("ebx",&wparam(1)); # Htable &mov ("ecx",&wparam(2)); # inp &mov ("edx",&wparam(3)); # len &mov ("ebp","esp"); # original %esp &call (&label("pic_point")); &set_label ("pic_point"); &blindpop ($rem_8bit); &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit)); &sub ("esp",512+16+16); # allocate stack frame... &and ("esp",-64); # ...and align it &sub ("esp",16); # place for (u8)(H[]<<4) &add ("edx","ecx"); # pointer to the end of input &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp { my @lo = ("mm0","mm1","mm2"); my @hi = ("mm3","mm4","mm5"); my @tmp = ("mm6","mm7"); my ($off1,$off2,$i) = (0,0,); &add ($Htbl,128); # optimize for size &lea ("edi",&DWP(16+128,"esp")); &lea ("ebp",&DWP(16+256+128,"esp")); # decompose Htable (low and high parts are kept separately), # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack... for ($i=0;$i<18;$i++) { &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16); &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16); &psllq ($tmp[1],60) if ($i>1); &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16); &por ($lo[2],$tmp[1]) if ($i>1); &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17); &psrlq ($lo[1],4) if ($i>0 && $i<17); &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17); &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17); &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1); &psrlq ($hi[1],4) if ($i>0 && $i<17); &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1); &shl ("edx",4) if ($i<16); &mov (&BP($i,"esp"),&LB("edx")) if ($i<16); unshift (@lo,pop(@lo)); # "rotate" registers unshift (@hi,pop(@hi)); unshift (@tmp,pop(@tmp)); $off1 += 8 if ($i>0); $off2 += 8 if ($i>1); } } &movq ($Zhi,&QWP(0,"eax")); &mov ("ebx",&DWP(8,"eax")); &mov ("edx",&DWP(12,"eax")); # load Xi &set_label("outer",16); { my $nlo = "eax"; my $dat = "edx"; my @nhi = ("edi","ebp"); my @rem = ("ebx","ecx"); my @red = ("mm0","mm1","mm2"); my $tmp = "mm3"; &xor ($dat,&DWP(12,"ecx")); # merge input data &xor ("ebx",&DWP(8,"ecx")); &pxor ($Zhi,&QWP(0,"ecx")); &lea ("ecx",&DWP(16,"ecx")); # inp+=16 #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi &mov (&DWP(528+8,"esp"),"ebx"); &movq (&QWP(528+0,"esp"),$Zhi); &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp &xor ($nlo,$nlo); &rol ($dat,8); &mov (&LB($nlo),&LB($dat)); &mov ($nhi[1],$nlo); &and (&LB($nlo),0x0f); &shr ($nhi[1],4); &pxor ($red[0],$red[0]); &rol ($dat,8); # next byte &pxor ($red[1],$red[1]); &pxor ($red[2],$red[2]); # Just like in "May" version modulo-schedule for critical path in # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor' # is scheduled so late that rem_8bit[] has to be shifted *right* # by 16, which is why last argument to pinsrw is 2, which # corresponds to <<32=<<48>>16... for ($j=11,$i=0;$i<15;$i++) { if ($i>0) { &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] &rol ($dat,8); # next byte &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); &pxor ($Zlo,$tmp); &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) } else { &movq ($Zlo,&QWP(16,"esp",$nlo,8)); &movq ($Zhi,&QWP(16+128,"esp",$nlo,8)); } &mov (&LB($nlo),&LB($dat)); &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0); &movd ($rem[0],$Zlo); &movz ($rem[1],&LB($rem[1])) if ($i>0); &psrlq ($Zlo,8); # Z>>=8 &movq ($tmp,$Zhi); &mov ($nhi[0],$nlo); &psrlq ($Zhi,8); &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4 &and (&LB($nlo),0x0f); &psllq ($tmp,56); &pxor ($Zhi,$red[1]) if ($i>1); &shr ($nhi[0],4); &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0); unshift (@red,pop(@red)); # "rotate" registers unshift (@rem,pop(@rem)); unshift (@nhi,pop(@nhi)); } &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) &pxor ($Zlo,$tmp); &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); &movz ($rem[1],&LB($rem[1])); &pxor ($red[2],$red[2]); # clear 2nd word &psllq ($red[1],4); &movd ($rem[0],$Zlo); &psrlq ($Zlo,4); # Z>>=4 &movq ($tmp,$Zhi); &psrlq ($Zhi,4); &shl ($rem[0],4); # rem<<4 &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi] &psllq ($tmp,60); &movz ($rem[0],&LB($rem[0])); &pxor ($Zlo,$tmp); &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8)); &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2); &pxor ($Zhi,$red[1]); &movd ($dat,$Zlo); &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48 &psllq ($red[0],12); # correct by <<16>>4 &pxor ($Zhi,$red[0]); &psrlq ($Zlo,32); &pxor ($Zhi,$red[2]); &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp &movd ("ebx",$Zlo); &movq ($tmp,$Zhi); # 01234567 &psllw ($Zhi,8); # 1.3.5.7. &psrlw ($tmp,8); # .0.2.4.6 &por ($Zhi,$tmp); # 10325476 &bswap ($dat); &pshufw ($Zhi,$Zhi,0b00011011); # 76543210 &bswap ("ebx"); &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done? &jne (&label("outer")); } &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi &mov (&DWP(12,"eax"),"edx"); &mov (&DWP(8,"eax"),"ebx"); &movq (&QWP(0,"eax"),$Zhi); &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp &emms (); } &function_end("gcm_ghash_4bit_mmx"); }} if ($sse2) {{ ###################################################################### # PCLMULQDQ version. $Xip="eax"; $Htbl="edx"; $const="ecx"; $inp="esi"; $len="ebx"; ($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2"; ($T1,$T2,$T3)=("xmm3","xmm4","xmm5"); ($Xn,$Xhn)=("xmm6","xmm7"); &static_label("bswap"); sub clmul64x64_T2 { # minimal "register" pressure my ($Xhi,$Xi,$Hkey,$HK)=@_; &movdqa ($Xhi,$Xi); # &pshufd ($T1,$Xi,0b01001110); &pshufd ($T2,$Hkey,0b01001110) if (!defined($HK)); &pxor ($T1,$Xi); # &pxor ($T2,$Hkey) if (!defined($HK)); $HK=$T2 if (!defined($HK)); &pclmulqdq ($Xi,$Hkey,0x00); ####### &pclmulqdq ($Xhi,$Hkey,0x11); ####### &pclmulqdq ($T1,$HK,0x00); ####### &xorps ($T1,$Xi); # &xorps ($T1,$Xhi); # &movdqa ($T2,$T1); # &psrldq ($T1,8); &pslldq ($T2,8); # &pxor ($Xhi,$T1); &pxor ($Xi,$T2); # } sub clmul64x64_T3 { # Even though this subroutine offers visually better ILP, it # was empirically found to be a tad slower than above version. # At least in gcm_ghash_clmul context. But it's just as well, # because loop modulo-scheduling is possible only thanks to # minimized "register" pressure... my ($Xhi,$Xi,$Hkey)=@_; &movdqa ($T1,$Xi); # &movdqa ($Xhi,$Xi); &pclmulqdq ($Xi,$Hkey,0x00); ####### &pclmulqdq ($Xhi,$Hkey,0x11); ####### &pshufd ($T2,$T1,0b01001110); # &pshufd ($T3,$Hkey,0b01001110); &pxor ($T2,$T1); # &pxor ($T3,$Hkey); &pclmulqdq ($T2,$T3,0x00); ####### &pxor ($T2,$Xi); # &pxor ($T2,$Xhi); # &movdqa ($T3,$T2); # &psrldq ($T2,8); &pslldq ($T3,8); # &pxor ($Xhi,$T2); &pxor ($Xi,$T3); # } if (1) { # Algorithm 9 with <<1 twist. # Reduction is shorter and uses only two # temporary registers, which makes it better # candidate for interleaving with 64x64 # multiplication. Pre-modulo-scheduled loop # was found to be ~20% faster than Algorithm 5 # below. Algorithm 9 was therefore chosen for # further optimization... sub reduction_alg9 { # 17/11 times faster than Intel version my ($Xhi,$Xi) = @_; # 1st phase &movdqa ($T2,$Xi); # &movdqa ($T1,$Xi); &psllq ($Xi,5); &pxor ($T1,$Xi); # &psllq ($Xi,1); &pxor ($Xi,$T1); # &psllq ($Xi,57); # &movdqa ($T1,$Xi); # &pslldq ($Xi,8); &psrldq ($T1,8); # &pxor ($Xi,$T2); &pxor ($Xhi,$T1); # # 2nd phase &movdqa ($T2,$Xi); &psrlq ($Xi,1); &pxor ($Xhi,$T2); # &pxor ($T2,$Xi); &psrlq ($Xi,5); &pxor ($Xi,$T2); # &psrlq ($Xi,1); # &pxor ($Xi,$Xhi) # } &function_begin_B("gcm_init_clmul"); &mov ($Htbl,&wparam(0)); &mov ($Xip,&wparam(1)); &call (&label("pic")); &set_label("pic"); &blindpop ($const); &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); &movdqu ($Hkey,&QWP(0,$Xip)); &pshufd ($Hkey,$Hkey,0b01001110);# dword swap # <<1 twist &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword &movdqa ($T1,$Hkey); &psllq ($Hkey,1); &pxor ($T3,$T3); # &psrlq ($T1,63); &pcmpgtd ($T3,$T2); # broadcast carry bit &pslldq ($T1,8); &por ($Hkey,$T1); # H<<=1 # magic reduction &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial # calculate H^2 &movdqa ($Xi,$Hkey); &clmul64x64_T2 ($Xhi,$Xi,$Hkey); &reduction_alg9 ($Xhi,$Xi); &pshufd ($T1,$Hkey,0b01001110); &pshufd ($T2,$Xi,0b01001110); &pxor ($T1,$Hkey); # Karatsuba pre-processing &movdqu (&QWP(0,$Htbl),$Hkey); # save H &pxor ($T2,$Xi); # Karatsuba pre-processing &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 &palignr ($T2,$T1,8); # low part is H.lo^H.hi &movdqu (&QWP(32,$Htbl),$T2); # save Karatsuba "salt" &ret (); &function_end_B("gcm_init_clmul"); &function_begin_B("gcm_gmult_clmul"); &mov ($Xip,&wparam(0)); &mov ($Htbl,&wparam(1)); &call (&label("pic")); &set_label("pic"); &blindpop ($const); &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); &movdqu ($Xi,&QWP(0,$Xip)); &movdqa ($T3,&QWP(0,$const)); &movups ($Hkey,&QWP(0,$Htbl)); &pshufb ($Xi,$T3); &movups ($T2,&QWP(32,$Htbl)); &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2); &reduction_alg9 ($Xhi,$Xi); &pshufb ($Xi,$T3); &movdqu (&QWP(0,$Xip),$Xi); &ret (); &function_end_B("gcm_gmult_clmul"); &function_begin("gcm_ghash_clmul"); &mov ($Xip,&wparam(0)); &mov ($Htbl,&wparam(1)); &mov ($inp,&wparam(2)); &mov ($len,&wparam(3)); &call (&label("pic")); &set_label("pic"); &blindpop ($const); &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); &movdqu ($Xi,&QWP(0,$Xip)); &movdqa ($T3,&QWP(0,$const)); &movdqu ($Hkey,&QWP(0,$Htbl)); &pshufb ($Xi,$T3); &sub ($len,0x10); &jz (&label("odd_tail")); ####### # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = # [(H*Ii+1) + (H*Xi+1)] mod P = # [(H*Ii+1) + H^2*(Ii+Xi)] mod P # &movdqu ($T1,&QWP(0,$inp)); # Ii &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 &pshufb ($T1,$T3); &pshufb ($Xn,$T3); &movdqu ($T3,&QWP(32,$Htbl)); &pxor ($Xi,$T1); # Ii+Xi &pshufd ($T1,$Xn,0b01001110); # H*Ii+1 &movdqa ($Xhn,$Xn); &pxor ($T1,$Xn); # &lea ($inp,&DWP(32,$inp)); # i+=2 &pclmulqdq ($Xn,$Hkey,0x00); ####### &pclmulqdq ($Xhn,$Hkey,0x11); ####### &pclmulqdq ($T1,$T3,0x00); ####### &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 &nop (); &sub ($len,0x20); &jbe (&label("even_tail")); &jmp (&label("mod_loop")); &set_label("mod_loop",32); &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi) &movdqa ($Xhi,$Xi); &pxor ($T2,$Xi); # &nop (); &pclmulqdq ($Xi,$Hkey,0x00); ####### &pclmulqdq ($Xhi,$Hkey,0x11); ####### &pclmulqdq ($T2,$T3,0x10); ####### &movups ($Hkey,&QWP(0,$Htbl)); # load H &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) &movdqa ($T3,&QWP(0,$const)); &xorps ($Xhi,$Xhn); &movdqu ($Xhn,&QWP(0,$inp)); # Ii &pxor ($T1,$Xi); # aggregated Karatsuba post-processing &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 &pxor ($T1,$Xhi); # &pshufb ($Xhn,$T3); &pxor ($T2,$T1); # &movdqa ($T1,$T2); # &psrldq ($T2,8); &pslldq ($T1,8); # &pxor ($Xhi,$T2); &pxor ($Xi,$T1); # &pshufb ($Xn,$T3); &pxor ($Xhi,$Xhn); # "Ii+Xi", consume early &movdqa ($Xhn,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1 &movdqa ($T2,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase &movdqa ($T1,$Xi); &psllq ($Xi,5); &pxor ($T1,$Xi); # &psllq ($Xi,1); &pxor ($Xi,$T1); # &pclmulqdq ($Xn,$Hkey,0x00); ####### &movups ($T3,&QWP(32,$Htbl)); &psllq ($Xi,57); # &movdqa ($T1,$Xi); # &pslldq ($Xi,8); &psrldq ($T1,8); # &pxor ($Xi,$T2); &pxor ($Xhi,$T1); # &pshufd ($T1,$Xhn,0b01001110); &movdqa ($T2,$Xi); # 2nd phase &psrlq ($Xi,1); &pxor ($T1,$Xhn); &pxor ($Xhi,$T2); # &pclmulqdq ($Xhn,$Hkey,0x11); ####### &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 &pxor ($T2,$Xi); &psrlq ($Xi,5); &pxor ($Xi,$T2); # &psrlq ($Xi,1); # &pxor ($Xi,$Xhi) # &pclmulqdq ($T1,$T3,0x00); ####### &lea ($inp,&DWP(32,$inp)); &sub ($len,0x20); &ja (&label("mod_loop")); &set_label("even_tail"); &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi) &movdqa ($Xhi,$Xi); &pxor ($T2,$Xi); # &pclmulqdq ($Xi,$Hkey,0x00); ####### &pclmulqdq ($Xhi,$Hkey,0x11); ####### &pclmulqdq ($T2,$T3,0x10); ####### &movdqa ($T3,&QWP(0,$const)); &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) &xorps ($Xhi,$Xhn); &pxor ($T1,$Xi); # aggregated Karatsuba post-processing &pxor ($T1,$Xhi); # &pxor ($T2,$T1); # &movdqa ($T1,$T2); # &psrldq ($T2,8); &pslldq ($T1,8); # &pxor ($Xhi,$T2); &pxor ($Xi,$T1); # &reduction_alg9 ($Xhi,$Xi); &test ($len,$len); &jnz (&label("done")); &movups ($Hkey,&QWP(0,$Htbl)); # load H &set_label("odd_tail"); &movdqu ($T1,&QWP(0,$inp)); # Ii &pshufb ($T1,$T3); &pxor ($Xi,$T1); # Ii+Xi &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) &reduction_alg9 ($Xhi,$Xi); &set_label("done"); &pshufb ($Xi,$T3); &movdqu (&QWP(0,$Xip),$Xi); &function_end("gcm_ghash_clmul"); } else { # Algorithm 5. Kept for reference purposes. sub reduction_alg5 { # 19/16 times faster than Intel version my ($Xhi,$Xi)=@_; # <<1 &movdqa ($T1,$Xi); # &movdqa ($T2,$Xhi); &pslld ($Xi,1); &pslld ($Xhi,1); # &psrld ($T1,31); &psrld ($T2,31); # &movdqa ($T3,$T1); &pslldq ($T1,4); &psrldq ($T3,12); # &pslldq ($T2,4); &por ($Xhi,$T3); # &por ($Xi,$T1); &por ($Xhi,$T2); # # 1st phase &movdqa ($T1,$Xi); &movdqa ($T2,$Xi); &movdqa ($T3,$Xi); # &pslld ($T1,31); &pslld ($T2,30); &pslld ($Xi,25); # &pxor ($T1,$T2); &pxor ($T1,$Xi); # &movdqa ($T2,$T1); # &pslldq ($T1,12); &psrldq ($T2,4); # &pxor ($T3,$T1); # 2nd phase &pxor ($Xhi,$T3); # &movdqa ($Xi,$T3); &movdqa ($T1,$T3); &psrld ($Xi,1); # &psrld ($T1,2); &psrld ($T3,7); # &pxor ($Xi,$T1); &pxor ($Xhi,$T2); &pxor ($Xi,$T3); # &pxor ($Xi,$Xhi); # } &function_begin_B("gcm_init_clmul"); &mov ($Htbl,&wparam(0)); &mov ($Xip,&wparam(1)); &call (&label("pic")); &set_label("pic"); &blindpop ($const); &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); &movdqu ($Hkey,&QWP(0,$Xip)); &pshufd ($Hkey,$Hkey,0b01001110);# dword swap # calculate H^2 &movdqa ($Xi,$Hkey); &clmul64x64_T3 ($Xhi,$Xi,$Hkey); &reduction_alg5 ($Xhi,$Xi); &movdqu (&QWP(0,$Htbl),$Hkey); # save H &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 &ret (); &function_end_B("gcm_init_clmul"); &function_begin_B("gcm_gmult_clmul"); &mov ($Xip,&wparam(0)); &mov ($Htbl,&wparam(1)); &call (&label("pic")); &set_label("pic"); &blindpop ($const); &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); &movdqu ($Xi,&QWP(0,$Xip)); &movdqa ($Xn,&QWP(0,$const)); &movdqu ($Hkey,&QWP(0,$Htbl)); &pshufb ($Xi,$Xn); &clmul64x64_T3 ($Xhi,$Xi,$Hkey); &reduction_alg5 ($Xhi,$Xi); &pshufb ($Xi,$Xn); &movdqu (&QWP(0,$Xip),$Xi); &ret (); &function_end_B("gcm_gmult_clmul"); &function_begin("gcm_ghash_clmul"); &mov ($Xip,&wparam(0)); &mov ($Htbl,&wparam(1)); &mov ($inp,&wparam(2)); &mov ($len,&wparam(3)); &call (&label("pic")); &set_label("pic"); &blindpop ($const); &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); &movdqu ($Xi,&QWP(0,$Xip)); &movdqa ($T3,&QWP(0,$const)); &movdqu ($Hkey,&QWP(0,$Htbl)); &pshufb ($Xi,$T3); &sub ($len,0x10); &jz (&label("odd_tail")); ####### # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = # [(H*Ii+1) + (H*Xi+1)] mod P = # [(H*Ii+1) + H^2*(Ii+Xi)] mod P # &movdqu ($T1,&QWP(0,$inp)); # Ii &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 &pshufb ($T1,$T3); &pshufb ($Xn,$T3); &pxor ($Xi,$T1); # Ii+Xi &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 &sub ($len,0x20); &lea ($inp,&DWP(32,$inp)); # i+=2 &jbe (&label("even_tail")); &set_label("mod_loop"); &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) &movdqu ($Hkey,&QWP(0,$Htbl)); # load H &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) &pxor ($Xhi,$Xhn); &reduction_alg5 ($Xhi,$Xi); ####### &movdqa ($T3,&QWP(0,$const)); &movdqu ($T1,&QWP(0,$inp)); # Ii &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 &pshufb ($T1,$T3); &pshufb ($Xn,$T3); &pxor ($Xi,$T1); # Ii+Xi &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 &sub ($len,0x20); &lea ($inp,&DWP(32,$inp)); &ja (&label("mod_loop")); &set_label("even_tail"); &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) &pxor ($Xhi,$Xhn); &reduction_alg5 ($Xhi,$Xi); &movdqa ($T3,&QWP(0,$const)); &test ($len,$len); &jnz (&label("done")); &movdqu ($Hkey,&QWP(0,$Htbl)); # load H &set_label("odd_tail"); &movdqu ($T1,&QWP(0,$inp)); # Ii &pshufb ($T1,$T3); &pxor ($Xi,$T1); # Ii+Xi &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) &reduction_alg5 ($Xhi,$Xi); &movdqa ($T3,&QWP(0,$const)); &set_label("done"); &pshufb ($Xi,$T3); &movdqu (&QWP(0,$Xip),$Xi); &function_end("gcm_ghash_clmul"); } &set_label("bswap",64); &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0); &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial &set_label("rem_8bit",64); &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E); &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E); &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E); &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E); &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E); &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E); &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E); &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E); &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE); &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE); &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE); &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE); &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E); &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E); &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE); &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE); &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E); &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E); &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E); &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E); &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E); &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E); &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E); &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E); &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE); &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE); &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE); &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE); &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E); &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E); &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE); &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE); }} # $sse2 &set_label("rem_4bit",64); &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S); &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S); &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S); &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S); }}} # !$x86only &asciz("GHASH for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; # A question was risen about choice of vanilla MMX. Or rather why wasn't # SSE2 chosen instead? In addition to the fact that MMX runs on legacy # CPUs such as PIII, "4-bit" MMX version was observed to provide better # performance than *corresponding* SSE2 one even on contemporary CPUs. # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2 # implementation featuring full range of lookup-table sizes, but with # per-invocation lookup table setup. Latter means that table size is # chosen depending on how much data is to be hashed in every given call, # more data - larger table. Best reported result for Core2 is ~4 cycles # per processed byte out of 64KB block. This number accounts even for # 64KB table setup overhead. As discussed in gcm128.c we choose to be # more conservative in respect to lookup table sizes, but how do the # results compare? Minimalistic "256B" MMX version delivers ~11 cycles # on same platform. As also discussed in gcm128.c, next in line "8-bit # Shoup's" or "4KB" method should deliver twice the performance of # "256B" one, in other words not worse than ~6 cycles per byte. It # should be also be noted that in SSE2 case improvement can be "super- # linear," i.e. more than twice, mostly because >>8 maps to single # instruction on SSE2 register. This is unlike "4-bit" case when >>4 # maps to same amount of instructions in both MMX and SSE2 cases. # Bottom line is that switch to SSE2 is considered to be justifiable # only in case we choose to implement "8-bit" method... openssl-1.1.1f/crypto/modes/asm/ghash-x86_64.pl000066400000000000000000001264651364063235100211560ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # March, June 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH # function features so called "528B" variant utilizing additional # 256+16 bytes of per-key storage [+512 bytes shared table]. # Performance results are for this streamed GHASH subroutine and are # expressed in cycles per processed byte, less is better: # # gcc 3.4.x(*) assembler # # P4 28.6 14.0 +100% # Opteron 19.3 7.7 +150% # Core2 17.8 8.1(**) +120% # Atom 31.6 16.8 +88% # VIA Nano 21.8 10.1 +115% # # (*) comparison is not completely fair, because C results are # for vanilla "256B" implementation, while assembler results # are for "528B";-) # (**) it's mystery [to me] why Core2 result is not same as for # Opteron; # May 2010 # # Add PCLMULQDQ version performing at 2.02 cycles per processed byte. # See ghash-x86.pl for background information and details about coding # techniques. # # Special thanks to David Woodhouse for providing access to a # Westmere-based system on behalf of Intel Open Source Technology Centre. # December 2012 # # Overhaul: aggregate Karatsuba post-processing, improve ILP in # reduction_alg9, increase reduction aggregate factor to 4x. As for # the latter. ghash-x86.pl discusses that it makes lesser sense to # increase aggregate factor. Then why increase here? Critical path # consists of 3 independent pclmulqdq instructions, Karatsuba post- # processing and reduction. "On top" of this we lay down aggregated # multiplication operations, triplets of independent pclmulqdq's. As # issue rate for pclmulqdq is limited, it makes lesser sense to # aggregate more multiplications than it takes to perform remaining # non-multiplication operations. 2x is near-optimal coefficient for # contemporary Intel CPUs (therefore modest improvement coefficient), # but not for Bulldozer. Latter is because logical SIMD operations # are twice as slow in comparison to Intel, so that critical path is # longer. A CPU with higher pclmulqdq issue rate would also benefit # from higher aggregate factor... # # Westmere 1.78(+13%) # Sandy Bridge 1.80(+8%) # Ivy Bridge 1.80(+7%) # Haswell 0.55(+93%) (if system doesn't support AVX) # Broadwell 0.45(+110%)(if system doesn't support AVX) # Skylake 0.44(+110%)(if system doesn't support AVX) # Bulldozer 1.49(+27%) # Silvermont 2.88(+13%) # Knights L 2.12(-) (if system doesn't support AVX) # Goldmont 1.08(+24%) # March 2013 # # ... 8x aggregate factor AVX code path is using reduction algorithm # suggested by Shay Gueron[1]. Even though contemporary AVX-capable # CPUs such as Sandy and Ivy Bridge can execute it, the code performs # sub-optimally in comparison to above mentioned version. But thanks # to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that # it performs in 0.41 cycles per byte on Haswell processor, in # 0.29 on Broadwell, and in 0.36 on Skylake. # # Knights Landing achieves 1.09 cpb. # # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.20) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $do4xaggr=1; # common register layout $nlo="%rax"; $nhi="%rbx"; $Zlo="%r8"; $Zhi="%r9"; $tmp="%r10"; $rem_4bit = "%r11"; $Xi="%rdi"; $Htbl="%rsi"; # per-function register layout $cnt="%rcx"; $rem="%rdx"; sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or $r =~ s/%[er]([sd]i)/%\1l/ or $r =~ s/%[er](bp)/%\1l/ or $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; my $arg = pop; $arg = "\$$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; } { my $N; sub loop() { my $inp = shift; $N++; $code.=<<___; xor $nlo,$nlo xor $nhi,$nhi mov `&LB("$Zlo")`,`&LB("$nlo")` mov `&LB("$Zlo")`,`&LB("$nhi")` shl \$4,`&LB("$nlo")` mov \$14,$cnt mov 8($Htbl,$nlo),$Zlo mov ($Htbl,$nlo),$Zhi and \$0xf0,`&LB("$nhi")` mov $Zlo,$rem jmp .Loop$N .align 16 .Loop$N: shr \$4,$Zlo and \$0xf,$rem mov $Zhi,$tmp mov ($inp,$cnt),`&LB("$nlo")` shr \$4,$Zhi xor 8($Htbl,$nhi),$Zlo shl \$60,$tmp xor ($Htbl,$nhi),$Zhi mov `&LB("$nlo")`,`&LB("$nhi")` xor ($rem_4bit,$rem,8),$Zhi mov $Zlo,$rem shl \$4,`&LB("$nlo")` xor $tmp,$Zlo dec $cnt js .Lbreak$N shr \$4,$Zlo and \$0xf,$rem mov $Zhi,$tmp shr \$4,$Zhi xor 8($Htbl,$nlo),$Zlo shl \$60,$tmp xor ($Htbl,$nlo),$Zhi and \$0xf0,`&LB("$nhi")` xor ($rem_4bit,$rem,8),$Zhi mov $Zlo,$rem xor $tmp,$Zlo jmp .Loop$N .align 16 .Lbreak$N: shr \$4,$Zlo and \$0xf,$rem mov $Zhi,$tmp shr \$4,$Zhi xor 8($Htbl,$nlo),$Zlo shl \$60,$tmp xor ($Htbl,$nlo),$Zhi and \$0xf0,`&LB("$nhi")` xor ($rem_4bit,$rem,8),$Zhi mov $Zlo,$rem xor $tmp,$Zlo shr \$4,$Zlo and \$0xf,$rem mov $Zhi,$tmp shr \$4,$Zhi xor 8($Htbl,$nhi),$Zlo shl \$60,$tmp xor ($Htbl,$nhi),$Zhi xor $tmp,$Zlo xor ($rem_4bit,$rem,8),$Zhi bswap $Zlo bswap $Zhi ___ }} $code=<<___; .text .extern OPENSSL_ia32cap_P .globl gcm_gmult_4bit .type gcm_gmult_4bit,\@function,2 .align 16 gcm_gmult_4bit: .cfi_startproc push %rbx .cfi_push %rbx push %rbp # %rbp and others are pushed exclusively in .cfi_push %rbp push %r12 # order to reuse Win64 exception handler... .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$280,%rsp .cfi_adjust_cfa_offset 280 .Lgmult_prologue: movzb 15($Xi),$Zlo lea .Lrem_4bit(%rip),$rem_4bit ___ &loop ($Xi); $code.=<<___; mov $Zlo,8($Xi) mov $Zhi,($Xi) lea 280+48(%rsp),%rsi .cfi_def_cfa %rsi,8 mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lgmult_epilogue: ret .cfi_endproc .size gcm_gmult_4bit,.-gcm_gmult_4bit ___ # per-function register layout $inp="%rdx"; $len="%rcx"; $rem_8bit=$rem_4bit; $code.=<<___; .globl gcm_ghash_4bit .type gcm_ghash_4bit,\@function,4 .align 16 gcm_ghash_4bit: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$280,%rsp .cfi_adjust_cfa_offset 280 .Lghash_prologue: mov $inp,%r14 # reassign couple of args mov $len,%r15 ___ { my $inp="%r14"; my $dat="%edx"; my $len="%r15"; my @nhi=("%ebx","%ecx"); my @rem=("%r12","%r13"); my $Hshr4="%rbp"; &sub ($Htbl,-128); # size optimization &lea ($Hshr4,"16+128(%rsp)"); { my @lo =($nlo,$nhi); my @hi =($Zlo,$Zhi); &xor ($dat,$dat); for ($i=0,$j=-2;$i<18;$i++,$j++) { &mov ("$j(%rsp)",&LB($dat)) if ($i>1); &or ($lo[0],$tmp) if ($i>1); &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17); &shr ($lo[1],4) if ($i>0 && $i<17); &mov ($tmp,$hi[1]) if ($i>0 && $i<17); &shr ($hi[1],4) if ($i>0 && $i<17); &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1); &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16); &shl (&LB($dat),4) if ($i>0 && $i<17); &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1); &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16); &shl ($tmp,60) if ($i>0 && $i<17); push (@lo,shift(@lo)); push (@hi,shift(@hi)); } } &add ($Htbl,-128); &mov ($Zlo,"8($Xi)"); &mov ($Zhi,"0($Xi)"); &add ($len,$inp); # pointer to the end of data &lea ($rem_8bit,".Lrem_8bit(%rip)"); &jmp (".Louter_loop"); $code.=".align 16\n.Louter_loop:\n"; &xor ($Zhi,"($inp)"); &mov ("%rdx","8($inp)"); &lea ($inp,"16($inp)"); &xor ("%rdx",$Zlo); &mov ("($Xi)",$Zhi); &mov ("8($Xi)","%rdx"); &shr ("%rdx",32); &xor ($nlo,$nlo); &rol ($dat,8); &mov (&LB($nlo),&LB($dat)); &movz ($nhi[0],&LB($dat)); &shl (&LB($nlo),4); &shr ($nhi[0],4); for ($j=11,$i=0;$i<15;$i++) { &rol ($dat,8); &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0); &xor ($Zhi,"($Htbl,$nlo)") if ($i>0); &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0); &mov ($Zhi,"($Htbl,$nlo)") if ($i==0); &mov (&LB($nlo),&LB($dat)); &xor ($Zlo,$tmp) if ($i>0); &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0); &movz ($nhi[1],&LB($dat)); &shl (&LB($nlo),4); &movzb ($rem[0],"(%rsp,$nhi[0])"); &shr ($nhi[1],4) if ($i<14); &and ($nhi[1],0xf0) if ($i==14); &shl ($rem[1],48) if ($i>0); &xor ($rem[0],$Zlo); &mov ($tmp,$Zhi); &xor ($Zhi,$rem[1]) if ($i>0); &shr ($Zlo,8); &movz ($rem[0],&LB($rem[0])); &mov ($dat,"$j($Xi)") if (--$j%4==0); &shr ($Zhi,8); &xor ($Zlo,"-128($Hshr4,$nhi[0],8)"); &shl ($tmp,56); &xor ($Zhi,"($Hshr4,$nhi[0],8)"); unshift (@nhi,pop(@nhi)); # "rotate" registers unshift (@rem,pop(@rem)); } &movzw ($rem[1],"($rem_8bit,$rem[1],2)"); &xor ($Zlo,"8($Htbl,$nlo)"); &xor ($Zhi,"($Htbl,$nlo)"); &shl ($rem[1],48); &xor ($Zlo,$tmp); &xor ($Zhi,$rem[1]); &movz ($rem[0],&LB($Zlo)); &shr ($Zlo,4); &mov ($tmp,$Zhi); &shl (&LB($rem[0]),4); &shr ($Zhi,4); &xor ($Zlo,"8($Htbl,$nhi[0])"); &movzw ($rem[0],"($rem_8bit,$rem[0],2)"); &shl ($tmp,60); &xor ($Zhi,"($Htbl,$nhi[0])"); &xor ($Zlo,$tmp); &shl ($rem[0],48); &bswap ($Zlo); &xor ($Zhi,$rem[0]); &bswap ($Zhi); &cmp ($inp,$len); &jb (".Louter_loop"); } $code.=<<___; mov $Zlo,8($Xi) mov $Zhi,($Xi) lea 280+48(%rsp),%rsi .cfi_def_cfa %rsi,8 mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea 0(%rsi),%rsp .cfi_def_cfa_register %rsp .Lghash_epilogue: ret .cfi_endproc .size gcm_ghash_4bit,.-gcm_ghash_4bit ___ ###################################################################### # PCLMULQDQ version. @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order ("%rdi","%rsi","%rdx","%rcx"); # Unix order ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2"; ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5"); sub clmul64x64_T2 { # minimal register pressure my ($Xhi,$Xi,$Hkey,$HK)=@_; if (!defined($HK)) { $HK = $T2; $code.=<<___; movdqa $Xi,$Xhi # pshufd \$0b01001110,$Xi,$T1 pshufd \$0b01001110,$Hkey,$T2 pxor $Xi,$T1 # pxor $Hkey,$T2 ___ } else { $code.=<<___; movdqa $Xi,$Xhi # pshufd \$0b01001110,$Xi,$T1 pxor $Xi,$T1 # ___ } $code.=<<___; pclmulqdq \$0x00,$Hkey,$Xi ####### pclmulqdq \$0x11,$Hkey,$Xhi ####### pclmulqdq \$0x00,$HK,$T1 ####### pxor $Xi,$T1 # pxor $Xhi,$T1 # movdqa $T1,$T2 # psrldq \$8,$T1 pslldq \$8,$T2 # pxor $T1,$Xhi pxor $T2,$Xi # ___ } sub reduction_alg9 { # 17/11 times faster than Intel version my ($Xhi,$Xi) = @_; $code.=<<___; # 1st phase movdqa $Xi,$T2 # movdqa $Xi,$T1 psllq \$5,$Xi pxor $Xi,$T1 # psllq \$1,$Xi pxor $T1,$Xi # psllq \$57,$Xi # movdqa $Xi,$T1 # pslldq \$8,$Xi psrldq \$8,$T1 # pxor $T2,$Xi pxor $T1,$Xhi # # 2nd phase movdqa $Xi,$T2 psrlq \$1,$Xi pxor $T2,$Xhi # pxor $Xi,$T2 psrlq \$5,$Xi pxor $T2,$Xi # psrlq \$1,$Xi # pxor $Xhi,$Xi # ___ } { my ($Htbl,$Xip)=@_4args; my $HK="%xmm6"; $code.=<<___; .globl gcm_init_clmul .type gcm_init_clmul,\@abi-omnipotent .align 16 gcm_init_clmul: .cfi_startproc .L_init_clmul: ___ $code.=<<___ if ($win64); .LSEH_begin_gcm_init_clmul: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) ___ $code.=<<___; movdqu ($Xip),$Hkey pshufd \$0b01001110,$Hkey,$Hkey # dword swap # <<1 twist pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword movdqa $Hkey,$T1 psllq \$1,$Hkey pxor $T3,$T3 # psrlq \$63,$T1 pcmpgtd $T2,$T3 # broadcast carry bit pslldq \$8,$T1 por $T1,$Hkey # H<<=1 # magic reduction pand .L0x1c2_polynomial(%rip),$T3 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial # calculate H^2 pshufd \$0b01001110,$Hkey,$HK movdqa $Hkey,$Xi pxor $Hkey,$HK ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); &reduction_alg9 ($Xhi,$Xi); $code.=<<___; pshufd \$0b01001110,$Hkey,$T1 pshufd \$0b01001110,$Xi,$T2 pxor $Hkey,$T1 # Karatsuba pre-processing movdqu $Hkey,0x00($Htbl) # save H pxor $Xi,$T2 # Karatsuba pre-processing movdqu $Xi,0x10($Htbl) # save H^2 palignr \$8,$T1,$T2 # low part is H.lo^H.hi... movdqu $T2,0x20($Htbl) # save Karatsuba "salt" ___ if ($do4xaggr) { &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^3 &reduction_alg9 ($Xhi,$Xi); $code.=<<___; movdqa $Xi,$T3 ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^4 &reduction_alg9 ($Xhi,$Xi); $code.=<<___; pshufd \$0b01001110,$T3,$T1 pshufd \$0b01001110,$Xi,$T2 pxor $T3,$T1 # Karatsuba pre-processing movdqu $T3,0x30($Htbl) # save H^3 pxor $Xi,$T2 # Karatsuba pre-processing movdqu $Xi,0x40($Htbl) # save H^4 palignr \$8,$T1,$T2 # low part is H^3.lo^H^3.hi... movdqu $T2,0x50($Htbl) # save Karatsuba "salt" ___ } $code.=<<___ if ($win64); movaps (%rsp),%xmm6 lea 0x18(%rsp),%rsp .LSEH_end_gcm_init_clmul: ___ $code.=<<___; ret .cfi_endproc .size gcm_init_clmul,.-gcm_init_clmul ___ } { my ($Xip,$Htbl)=@_4args; $code.=<<___; .globl gcm_gmult_clmul .type gcm_gmult_clmul,\@abi-omnipotent .align 16 gcm_gmult_clmul: .cfi_startproc .L_gmult_clmul: movdqu ($Xip),$Xi movdqa .Lbswap_mask(%rip),$T3 movdqu ($Htbl),$Hkey movdqu 0x20($Htbl),$T2 pshufb $T3,$Xi ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2); $code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0)); # experimental alternative. special thing about is that there # no dependency between the two multiplications... mov \$`0xE1<<1`,%eax mov \$0xA040608020C0E000,%r10 # ((7..0)·0xE0)&0xff mov \$0x07,%r11d movq %rax,$T1 movq %r10,$T2 movq %r11,$T3 # borrow $T3 pand $Xi,$T3 pshufb $T3,$T2 # ($Xi&7)·0xE0 movq %rax,$T3 pclmulqdq \$0x00,$Xi,$T1 # ·(0xE1<<1) pxor $Xi,$T2 pslldq \$15,$T2 paddd $T2,$T2 # <<(64+56+1) pxor $T2,$Xi pclmulqdq \$0x01,$T3,$Xi movdqa .Lbswap_mask(%rip),$T3 # reload $T3 psrldq \$1,$T1 pxor $T1,$Xhi pslldq \$7,$Xi pxor $Xhi,$Xi ___ $code.=<<___; pshufb $T3,$Xi movdqu $Xi,($Xip) ret .cfi_endproc .size gcm_gmult_clmul,.-gcm_gmult_clmul ___ } { my ($Xip,$Htbl,$inp,$len)=@_4args; my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7)); my ($T1,$T2,$T3)=map("%xmm$_",(8..10)); $code.=<<___; .globl gcm_ghash_clmul .type gcm_ghash_clmul,\@abi-omnipotent .align 32 gcm_ghash_clmul: .cfi_startproc .L_ghash_clmul: ___ $code.=<<___ if ($win64); lea -0x88(%rsp),%rax .LSEH_begin_gcm_ghash_clmul: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax) ___ $code.=<<___; movdqa .Lbswap_mask(%rip),$T3 movdqu ($Xip),$Xi movdqu ($Htbl),$Hkey movdqu 0x20($Htbl),$HK pshufb $T3,$Xi sub \$0x10,$len jz .Lodd_tail movdqu 0x10($Htbl),$Hkey2 ___ if ($do4xaggr) { my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15)); $code.=<<___; mov OPENSSL_ia32cap_P+4(%rip),%eax cmp \$0x30,$len jb .Lskip4x and \$`1<<26|1<<22`,%eax # isolate MOVBE+XSAVE cmp \$`1<<22`,%eax # check for MOVBE without XSAVE je .Lskip4x sub \$0x30,$len mov \$0xA040608020C0E000,%rax # ((7..0)·0xE0)&0xff movdqu 0x30($Htbl),$Hkey3 movdqu 0x40($Htbl),$Hkey4 ####### # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P # movdqu 0x30($inp),$Xln movdqu 0x20($inp),$Xl pshufb $T3,$Xln pshufb $T3,$Xl movdqa $Xln,$Xhn pshufd \$0b01001110,$Xln,$Xmn pxor $Xln,$Xmn pclmulqdq \$0x00,$Hkey,$Xln pclmulqdq \$0x11,$Hkey,$Xhn pclmulqdq \$0x00,$HK,$Xmn movdqa $Xl,$Xh pshufd \$0b01001110,$Xl,$Xm pxor $Xl,$Xm pclmulqdq \$0x00,$Hkey2,$Xl pclmulqdq \$0x11,$Hkey2,$Xh pclmulqdq \$0x10,$HK,$Xm xorps $Xl,$Xln xorps $Xh,$Xhn movups 0x50($Htbl),$HK xorps $Xm,$Xmn movdqu 0x10($inp),$Xl movdqu 0($inp),$T1 pshufb $T3,$Xl pshufb $T3,$T1 movdqa $Xl,$Xh pshufd \$0b01001110,$Xl,$Xm pxor $T1,$Xi pxor $Xl,$Xm pclmulqdq \$0x00,$Hkey3,$Xl movdqa $Xi,$Xhi pshufd \$0b01001110,$Xi,$T1 pxor $Xi,$T1 pclmulqdq \$0x11,$Hkey3,$Xh pclmulqdq \$0x00,$HK,$Xm xorps $Xl,$Xln xorps $Xh,$Xhn lea 0x40($inp),$inp sub \$0x40,$len jc .Ltail4x jmp .Lmod4_loop .align 32 .Lmod4_loop: pclmulqdq \$0x00,$Hkey4,$Xi xorps $Xm,$Xmn movdqu 0x30($inp),$Xl pshufb $T3,$Xl pclmulqdq \$0x11,$Hkey4,$Xhi xorps $Xln,$Xi movdqu 0x20($inp),$Xln movdqa $Xl,$Xh pclmulqdq \$0x10,$HK,$T1 pshufd \$0b01001110,$Xl,$Xm xorps $Xhn,$Xhi pxor $Xl,$Xm pshufb $T3,$Xln movups 0x20($Htbl),$HK xorps $Xmn,$T1 pclmulqdq \$0x00,$Hkey,$Xl pshufd \$0b01001110,$Xln,$Xmn pxor $Xi,$T1 # aggregated Karatsuba post-processing movdqa $Xln,$Xhn pxor $Xhi,$T1 # pxor $Xln,$Xmn movdqa $T1,$T2 # pclmulqdq \$0x11,$Hkey,$Xh pslldq \$8,$T1 psrldq \$8,$T2 # pxor $T1,$Xi movdqa .L7_mask(%rip),$T1 pxor $T2,$Xhi # movq %rax,$T2 pand $Xi,$T1 # 1st phase pshufb $T1,$T2 # pxor $Xi,$T2 # pclmulqdq \$0x00,$HK,$Xm psllq \$57,$T2 # movdqa $T2,$T1 # pslldq \$8,$T2 pclmulqdq \$0x00,$Hkey2,$Xln psrldq \$8,$T1 # pxor $T2,$Xi pxor $T1,$Xhi # movdqu 0($inp),$T1 movdqa $Xi,$T2 # 2nd phase psrlq \$1,$Xi pclmulqdq \$0x11,$Hkey2,$Xhn xorps $Xl,$Xln movdqu 0x10($inp),$Xl pshufb $T3,$Xl pclmulqdq \$0x10,$HK,$Xmn xorps $Xh,$Xhn movups 0x50($Htbl),$HK pshufb $T3,$T1 pxor $T2,$Xhi # pxor $Xi,$T2 psrlq \$5,$Xi movdqa $Xl,$Xh pxor $Xm,$Xmn pshufd \$0b01001110,$Xl,$Xm pxor $T2,$Xi # pxor $T1,$Xhi pxor $Xl,$Xm pclmulqdq \$0x00,$Hkey3,$Xl psrlq \$1,$Xi # pxor $Xhi,$Xi # movdqa $Xi,$Xhi pclmulqdq \$0x11,$Hkey3,$Xh xorps $Xl,$Xln pshufd \$0b01001110,$Xi,$T1 pxor $Xi,$T1 pclmulqdq \$0x00,$HK,$Xm xorps $Xh,$Xhn lea 0x40($inp),$inp sub \$0x40,$len jnc .Lmod4_loop .Ltail4x: pclmulqdq \$0x00,$Hkey4,$Xi pclmulqdq \$0x11,$Hkey4,$Xhi pclmulqdq \$0x10,$HK,$T1 xorps $Xm,$Xmn xorps $Xln,$Xi xorps $Xhn,$Xhi pxor $Xi,$Xhi # aggregated Karatsuba post-processing pxor $Xmn,$T1 pxor $Xhi,$T1 # pxor $Xi,$Xhi movdqa $T1,$T2 # psrldq \$8,$T1 pslldq \$8,$T2 # pxor $T1,$Xhi pxor $T2,$Xi # ___ &reduction_alg9($Xhi,$Xi); $code.=<<___; add \$0x40,$len jz .Ldone movdqu 0x20($Htbl),$HK sub \$0x10,$len jz .Lodd_tail .Lskip4x: ___ } $code.=<<___; ####### # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = # [(H*Ii+1) + (H*Xi+1)] mod P = # [(H*Ii+1) + H^2*(Ii+Xi)] mod P # movdqu ($inp),$T1 # Ii movdqu 16($inp),$Xln # Ii+1 pshufb $T3,$T1 pshufb $T3,$Xln pxor $T1,$Xi # Ii+Xi movdqa $Xln,$Xhn pshufd \$0b01001110,$Xln,$Xmn pxor $Xln,$Xmn pclmulqdq \$0x00,$Hkey,$Xln pclmulqdq \$0x11,$Hkey,$Xhn pclmulqdq \$0x00,$HK,$Xmn lea 32($inp),$inp # i+=2 nop sub \$0x20,$len jbe .Leven_tail nop jmp .Lmod_loop .align 32 .Lmod_loop: movdqa $Xi,$Xhi movdqa $Xmn,$T1 pshufd \$0b01001110,$Xi,$Xmn # pxor $Xi,$Xmn # pclmulqdq \$0x00,$Hkey2,$Xi pclmulqdq \$0x11,$Hkey2,$Xhi pclmulqdq \$0x10,$HK,$Xmn pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi) pxor $Xhn,$Xhi movdqu ($inp),$T2 # Ii pxor $Xi,$T1 # aggregated Karatsuba post-processing pshufb $T3,$T2 movdqu 16($inp),$Xln # Ii+1 pxor $Xhi,$T1 pxor $T2,$Xhi # "Ii+Xi", consume early pxor $T1,$Xmn pshufb $T3,$Xln movdqa $Xmn,$T1 # psrldq \$8,$T1 pslldq \$8,$Xmn # pxor $T1,$Xhi pxor $Xmn,$Xi # movdqa $Xln,$Xhn # movdqa $Xi,$T2 # 1st phase movdqa $Xi,$T1 psllq \$5,$Xi pxor $Xi,$T1 # pclmulqdq \$0x00,$Hkey,$Xln ####### psllq \$1,$Xi pxor $T1,$Xi # psllq \$57,$Xi # movdqa $Xi,$T1 # pslldq \$8,$Xi psrldq \$8,$T1 # pxor $T2,$Xi pshufd \$0b01001110,$Xhn,$Xmn pxor $T1,$Xhi # pxor $Xhn,$Xmn # movdqa $Xi,$T2 # 2nd phase psrlq \$1,$Xi pclmulqdq \$0x11,$Hkey,$Xhn ####### pxor $T2,$Xhi # pxor $Xi,$T2 psrlq \$5,$Xi pxor $T2,$Xi # lea 32($inp),$inp psrlq \$1,$Xi # pclmulqdq \$0x00,$HK,$Xmn ####### pxor $Xhi,$Xi # sub \$0x20,$len ja .Lmod_loop .Leven_tail: movdqa $Xi,$Xhi movdqa $Xmn,$T1 pshufd \$0b01001110,$Xi,$Xmn # pxor $Xi,$Xmn # pclmulqdq \$0x00,$Hkey2,$Xi pclmulqdq \$0x11,$Hkey2,$Xhi pclmulqdq \$0x10,$HK,$Xmn pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi) pxor $Xhn,$Xhi pxor $Xi,$T1 pxor $Xhi,$T1 pxor $T1,$Xmn movdqa $Xmn,$T1 # psrldq \$8,$T1 pslldq \$8,$Xmn # pxor $T1,$Xhi pxor $Xmn,$Xi # ___ &reduction_alg9 ($Xhi,$Xi); $code.=<<___; test $len,$len jnz .Ldone .Lodd_tail: movdqu ($inp),$T1 # Ii pshufb $T3,$T1 pxor $T1,$Xi # Ii+Xi ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H*(Ii+Xi) &reduction_alg9 ($Xhi,$Xi); $code.=<<___; .Ldone: pshufb $T3,$Xi movdqu $Xi,($Xip) ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps 0x10(%rsp),%xmm7 movaps 0x20(%rsp),%xmm8 movaps 0x30(%rsp),%xmm9 movaps 0x40(%rsp),%xmm10 movaps 0x50(%rsp),%xmm11 movaps 0x60(%rsp),%xmm12 movaps 0x70(%rsp),%xmm13 movaps 0x80(%rsp),%xmm14 movaps 0x90(%rsp),%xmm15 lea 0xa8(%rsp),%rsp .LSEH_end_gcm_ghash_clmul: ___ $code.=<<___; ret .cfi_endproc .size gcm_ghash_clmul,.-gcm_ghash_clmul ___ } $code.=<<___; .globl gcm_init_avx .type gcm_init_avx,\@abi-omnipotent .align 32 gcm_init_avx: .cfi_startproc ___ if ($avx) { my ($Htbl,$Xip)=@_4args; my $HK="%xmm6"; $code.=<<___ if ($win64); .LSEH_begin_gcm_init_avx: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) ___ $code.=<<___; vzeroupper vmovdqu ($Xip),$Hkey vpshufd \$0b01001110,$Hkey,$Hkey # dword swap # <<1 twist vpshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword vpsrlq \$63,$Hkey,$T1 vpsllq \$1,$Hkey,$Hkey vpxor $T3,$T3,$T3 # vpcmpgtd $T2,$T3,$T3 # broadcast carry bit vpslldq \$8,$T1,$T1 vpor $T1,$Hkey,$Hkey # H<<=1 # magic reduction vpand .L0x1c2_polynomial(%rip),$T3,$T3 vpxor $T3,$Hkey,$Hkey # if(carry) H^=0x1c2_polynomial vpunpckhqdq $Hkey,$Hkey,$HK vmovdqa $Hkey,$Xi vpxor $Hkey,$HK,$HK mov \$4,%r10 # up to H^8 jmp .Linit_start_avx ___ sub clmul64x64_avx { my ($Xhi,$Xi,$Hkey,$HK)=@_; if (!defined($HK)) { $HK = $T2; $code.=<<___; vpunpckhqdq $Xi,$Xi,$T1 vpunpckhqdq $Hkey,$Hkey,$T2 vpxor $Xi,$T1,$T1 # vpxor $Hkey,$T2,$T2 ___ } else { $code.=<<___; vpunpckhqdq $Xi,$Xi,$T1 vpxor $Xi,$T1,$T1 # ___ } $code.=<<___; vpclmulqdq \$0x11,$Hkey,$Xi,$Xhi ####### vpclmulqdq \$0x00,$Hkey,$Xi,$Xi ####### vpclmulqdq \$0x00,$HK,$T1,$T1 ####### vpxor $Xi,$Xhi,$T2 # vpxor $T2,$T1,$T1 # vpslldq \$8,$T1,$T2 # vpsrldq \$8,$T1,$T1 vpxor $T2,$Xi,$Xi # vpxor $T1,$Xhi,$Xhi ___ } sub reduction_avx { my ($Xhi,$Xi) = @_; $code.=<<___; vpsllq \$57,$Xi,$T1 # 1st phase vpsllq \$62,$Xi,$T2 vpxor $T1,$T2,$T2 # vpsllq \$63,$Xi,$T1 vpxor $T1,$T2,$T2 # vpslldq \$8,$T2,$T1 # vpsrldq \$8,$T2,$T2 vpxor $T1,$Xi,$Xi # vpxor $T2,$Xhi,$Xhi vpsrlq \$1,$Xi,$T2 # 2nd phase vpxor $Xi,$Xhi,$Xhi vpxor $T2,$Xi,$Xi # vpsrlq \$5,$T2,$T2 vpxor $T2,$Xi,$Xi # vpsrlq \$1,$Xi,$Xi # vpxor $Xhi,$Xi,$Xi # ___ } $code.=<<___; .align 32 .Linit_loop_avx: vpalignr \$8,$T1,$T2,$T3 # low part is H.lo^H.hi... vmovdqu $T3,-0x10($Htbl) # save Karatsuba "salt" ___ &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^3,5,7 &reduction_avx ($Xhi,$Xi); $code.=<<___; .Linit_start_avx: vmovdqa $Xi,$T3 ___ &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^2,4,6,8 &reduction_avx ($Xhi,$Xi); $code.=<<___; vpshufd \$0b01001110,$T3,$T1 vpshufd \$0b01001110,$Xi,$T2 vpxor $T3,$T1,$T1 # Karatsuba pre-processing vmovdqu $T3,0x00($Htbl) # save H^1,3,5,7 vpxor $Xi,$T2,$T2 # Karatsuba pre-processing vmovdqu $Xi,0x10($Htbl) # save H^2,4,6,8 lea 0x30($Htbl),$Htbl sub \$1,%r10 jnz .Linit_loop_avx vpalignr \$8,$T2,$T1,$T3 # last "salt" is flipped vmovdqu $T3,-0x10($Htbl) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 lea 0x18(%rsp),%rsp .LSEH_end_gcm_init_avx: ___ $code.=<<___; ret .cfi_endproc .size gcm_init_avx,.-gcm_init_avx ___ } else { $code.=<<___; jmp .L_init_clmul .cfi_endproc .size gcm_init_avx,.-gcm_init_avx ___ } $code.=<<___; .globl gcm_gmult_avx .type gcm_gmult_avx,\@abi-omnipotent .align 32 gcm_gmult_avx: .cfi_startproc jmp .L_gmult_clmul .cfi_endproc .size gcm_gmult_avx,.-gcm_gmult_avx ___ $code.=<<___; .globl gcm_ghash_avx .type gcm_ghash_avx,\@abi-omnipotent .align 32 gcm_ghash_avx: .cfi_startproc ___ if ($avx) { my ($Xip,$Htbl,$inp,$len)=@_4args; my ($Xlo,$Xhi,$Xmi, $Zlo,$Zhi,$Zmi, $Hkey,$HK,$T1,$T2, $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15)); $code.=<<___ if ($win64); lea -0x88(%rsp),%rax .LSEH_begin_gcm_ghash_avx: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax) ___ $code.=<<___; vzeroupper vmovdqu ($Xip),$Xi # load $Xi lea .L0x1c2_polynomial(%rip),%r10 lea 0x40($Htbl),$Htbl # size optimization vmovdqu .Lbswap_mask(%rip),$bswap vpshufb $bswap,$Xi,$Xi cmp \$0x80,$len jb .Lshort_avx sub \$0x80,$len vmovdqu 0x70($inp),$Ii # I[7] vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 vpshufb $bswap,$Ii,$Ii vmovdqu 0x20-0x40($Htbl),$HK vpunpckhqdq $Ii,$Ii,$T2 vmovdqu 0x60($inp),$Ij # I[6] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Ii,$T2,$T2 vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 vpunpckhqdq $Ij,$Ij,$T1 vmovdqu 0x50($inp),$Ii # I[5] vpclmulqdq \$0x00,$HK,$T2,$Xmi vpxor $Ij,$T1,$T1 vpshufb $bswap,$Ii,$Ii vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 vpxor $Ii,$T2,$T2 vmovdqu 0x40($inp),$Ij # I[4] vpclmulqdq \$0x10,$HK,$T1,$Zmi vmovdqu 0x50-0x40($Htbl),$HK vpshufb $bswap,$Ij,$Ij vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Xhi,$Zhi,$Zhi vpunpckhqdq $Ij,$Ij,$T1 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T2,$Xmi vpxor $Ij,$T1,$T1 vmovdqu 0x30($inp),$Ii # I[3] vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpxor $Zhi,$Xhi,$Xhi vpshufb $bswap,$Ii,$Ii vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 vpxor $Zmi,$Xmi,$Xmi vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x10,$HK,$T1,$Zmi vmovdqu 0x80-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vmovdqu 0x20($inp),$Ij # I[2] vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Xhi,$Zhi,$Zhi vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 vpxor $Xmi,$Zmi,$Zmi vpunpckhqdq $Ij,$Ij,$T1 vpclmulqdq \$0x00,$HK,$T2,$Xmi vpxor $Ij,$T1,$T1 vmovdqu 0x10($inp),$Ii # I[1] vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpxor $Zhi,$Xhi,$Xhi vpshufb $bswap,$Ii,$Ii vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 vpxor $Zmi,$Xmi,$Xmi vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x10,$HK,$T1,$Zmi vmovdqu 0xb0-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vmovdqu ($inp),$Ij # I[0] vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Xhi,$Zhi,$Zhi vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8 vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x10,$HK,$T2,$Xmi lea 0x80($inp),$inp cmp \$0x80,$len jb .Ltail_avx vpxor $Xi,$Ij,$Ij # accumulate $Xi sub \$0x80,$len jmp .Loop8x_avx .align 32 .Loop8x_avx: vpunpckhqdq $Ij,$Ij,$T1 vmovdqu 0x70($inp),$Ii # I[7] vpxor $Xlo,$Zlo,$Zlo vpxor $Ij,$T1,$T1 vpclmulqdq \$0x00,$Hkey,$Ij,$Xi vpshufb $bswap,$Ii,$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xo vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 vpunpckhqdq $Ii,$Ii,$T2 vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Tred vmovdqu 0x20-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vmovdqu 0x60($inp),$Ij # I[6] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Zlo,$Xi,$Xi # collect result vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vxorps $Zhi,$Xo,$Xo vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 vpunpckhqdq $Ij,$Ij,$T1 vpclmulqdq \$0x00,$HK, $T2,$Xmi vpxor $Zmi,$Tred,$Tred vxorps $Ij,$T1,$T1 vmovdqu 0x50($inp),$Ii # I[5] vpxor $Xi,$Tred,$Tred # aggregated Karatsuba post-processing vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpxor $Xo,$Tred,$Tred vpslldq \$8,$Tred,$T2 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vpsrldq \$8,$Tred,$Tred vpxor $T2, $Xi, $Xi vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 vpshufb $bswap,$Ii,$Ii vxorps $Tred,$Xo, $Xo vpxor $Xhi,$Zhi,$Zhi vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x10,$HK, $T1,$Zmi vmovdqu 0x50-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vpxor $Xmi,$Zmi,$Zmi vmovdqu 0x40($inp),$Ij # I[4] vpalignr \$8,$Xi,$Xi,$Tred # 1st phase vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpshufb $bswap,$Ij,$Ij vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 vpunpckhqdq $Ij,$Ij,$T1 vpxor $Zhi,$Xhi,$Xhi vpclmulqdq \$0x00,$HK, $T2,$Xmi vxorps $Ij,$T1,$T1 vpxor $Zmi,$Xmi,$Xmi vmovdqu 0x30($inp),$Ii # I[3] vpclmulqdq \$0x10,(%r10),$Xi,$Xi vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpshufb $bswap,$Ii,$Ii vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 vpunpckhqdq $Ii,$Ii,$T2 vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x10,$HK, $T1,$Zmi vmovdqu 0x80-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vpxor $Xmi,$Zmi,$Zmi vmovdqu 0x20($inp),$Ij # I[2] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpshufb $bswap,$Ij,$Ij vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 vpunpckhqdq $Ij,$Ij,$T1 vpxor $Zhi,$Xhi,$Xhi vpclmulqdq \$0x00,$HK, $T2,$Xmi vpxor $Ij,$T1,$T1 vpxor $Zmi,$Xmi,$Xmi vxorps $Tred,$Xi,$Xi vmovdqu 0x10($inp),$Ii # I[1] vpalignr \$8,$Xi,$Xi,$Tred # 2nd phase vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpshufb $bswap,$Ii,$Ii vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 vpclmulqdq \$0x10,(%r10),$Xi,$Xi vxorps $Xo,$Tred,$Tred vpunpckhqdq $Ii,$Ii,$T2 vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x10,$HK, $T1,$Zmi vmovdqu 0xb0-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vpxor $Xmi,$Zmi,$Zmi vmovdqu ($inp),$Ij # I[0] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8 vpxor $Tred,$Ij,$Ij vpclmulqdq \$0x10,$HK, $T2,$Xmi vpxor $Xi,$Ij,$Ij # accumulate $Xi lea 0x80($inp),$inp sub \$0x80,$len jnc .Loop8x_avx add \$0x80,$len jmp .Ltail_no_xor_avx .align 32 .Lshort_avx: vmovdqu -0x10($inp,$len),$Ii # very last word lea ($inp,$len),$inp vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 vmovdqu 0x20-0x40($Htbl),$HK vpshufb $bswap,$Ii,$Ij vmovdqa $Xlo,$Zlo # subtle way to zero $Zlo, vmovdqa $Xhi,$Zhi # $Zhi and vmovdqa $Xmi,$Zmi # $Zmi sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x20($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vpsrldq \$8,$HK,$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x30($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovdqu 0x50-0x40($Htbl),$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x40($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vpsrldq \$8,$HK,$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x50($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovdqu 0x80-0x40($Htbl),$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x60($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vpsrldq \$8,$HK,$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x70($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovq 0xb8-0x40($Htbl),$HK sub \$0x10,$len jmp .Ltail_avx .align 32 .Ltail_avx: vpxor $Xi,$Ij,$Ij # accumulate $Xi .Ltail_no_xor_avx: vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovdqu (%r10),$Tred vpxor $Xlo,$Zlo,$Xi vpxor $Xhi,$Zhi,$Xo vpxor $Xmi,$Zmi,$Zmi vpxor $Xi, $Zmi,$Zmi # aggregated Karatsuba post-processing vpxor $Xo, $Zmi,$Zmi vpslldq \$8, $Zmi,$T2 vpsrldq \$8, $Zmi,$Zmi vpxor $T2, $Xi, $Xi vpxor $Zmi,$Xo, $Xo vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 1st phase vpalignr \$8,$Xi,$Xi,$Xi vpxor $T2,$Xi,$Xi vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 2nd phase vpalignr \$8,$Xi,$Xi,$Xi vpxor $Xo,$Xi,$Xi vpxor $T2,$Xi,$Xi cmp \$0,$len jne .Lshort_avx vpshufb $bswap,$Xi,$Xi vmovdqu $Xi,($Xip) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps 0x10(%rsp),%xmm7 movaps 0x20(%rsp),%xmm8 movaps 0x30(%rsp),%xmm9 movaps 0x40(%rsp),%xmm10 movaps 0x50(%rsp),%xmm11 movaps 0x60(%rsp),%xmm12 movaps 0x70(%rsp),%xmm13 movaps 0x80(%rsp),%xmm14 movaps 0x90(%rsp),%xmm15 lea 0xa8(%rsp),%rsp .LSEH_end_gcm_ghash_avx: ___ $code.=<<___; ret .cfi_endproc .size gcm_ghash_avx,.-gcm_ghash_avx ___ } else { $code.=<<___; jmp .L_ghash_clmul .cfi_endproc .size gcm_ghash_avx,.-gcm_ghash_avx ___ } $code.=<<___; .align 64 .Lbswap_mask: .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 .L0x1c2_polynomial: .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 .L7_mask: .long 7,0,7,0 .L7_mask_poly: .long 7,0,`0xE1<<1`,0 .align 64 .type .Lrem_4bit,\@object .Lrem_4bit: .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16` .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16` .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16` .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16` .type .Lrem_8bit,\@object .Lrem_8bit: .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE .asciz "GHASH for x86_64, CRYPTOGAMS by " .align 64 ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue lea 48+280(%rax),%rax # adjust "rsp" mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$`1232/8`,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_gcm_gmult_4bit .rva .LSEH_end_gcm_gmult_4bit .rva .LSEH_info_gcm_gmult_4bit .rva .LSEH_begin_gcm_ghash_4bit .rva .LSEH_end_gcm_ghash_4bit .rva .LSEH_info_gcm_ghash_4bit .rva .LSEH_begin_gcm_init_clmul .rva .LSEH_end_gcm_init_clmul .rva .LSEH_info_gcm_init_clmul .rva .LSEH_begin_gcm_ghash_clmul .rva .LSEH_end_gcm_ghash_clmul .rva .LSEH_info_gcm_ghash_clmul ___ $code.=<<___ if ($avx); .rva .LSEH_begin_gcm_init_avx .rva .LSEH_end_gcm_init_avx .rva .LSEH_info_gcm_init_clmul .rva .LSEH_begin_gcm_ghash_avx .rva .LSEH_end_gcm_ghash_avx .rva .LSEH_info_gcm_ghash_clmul ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_gcm_gmult_4bit: .byte 9,0,0,0 .rva se_handler .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData .LSEH_info_gcm_ghash_4bit: .byte 9,0,0,0 .rva se_handler .rva .Lghash_prologue,.Lghash_epilogue # HandlerData .LSEH_info_gcm_init_clmul: .byte 0x01,0x08,0x03,0x00 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6 .byte 0x04,0x22,0x00,0x00 #sub rsp,0x18 .LSEH_info_gcm_ghash_clmul: .byte 0x01,0x33,0x16,0x00 .byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15 .byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14 .byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13 .byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12 .byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11 .byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 .byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 .byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 .byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8 ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/modes/asm/ghashp8-ppc.pl000077500000000000000000000350031364063235100212400ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # GHASH for for PowerISA v2.07. # # July 2014 # # Accurate performance measurements are problematic, because it's # always virtualized setup with possibly throttled processor. # Relative comparison is therefore more informative. This initial # version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x # faster than "4-bit" integer-only compiler-generated 64-bit code. # "Initial version" means that there is room for further improvement. # May 2016 # # 2x aggregated reduction improves performance by 50% (resulting # performance on POWER8 is 1 cycle per processed byte), and 4x # aggregated reduction - by 170% or 2.7x (resulting in 0.55 cpb). # POWER9 delivers 0.51 cpb. $flavour=shift; $output =shift; if ($flavour =~ /64/) { $SIZE_T=8; $LRSAVE=2*$SIZE_T; $STU="stdu"; $POP="ld"; $PUSH="std"; $UCMP="cmpld"; $SHRI="srdi"; } elsif ($flavour =~ /32/) { $SIZE_T=4; $LRSAVE=$SIZE_T; $STU="stwu"; $POP="lwz"; $PUSH="stw"; $UCMP="cmplw"; $SHRI="srwi"; } else { die "nonsense $flavour"; } $sp="r1"; $FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!"; my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6)); # argument block my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3)); my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12)); my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19)); my $vrsave="r12"; $code=<<___; .machine "any" .text .globl .gcm_init_p8 .align 5 .gcm_init_p8: li r0,-4096 li r8,0x10 mfspr $vrsave,256 li r9,0x20 mtspr 256,r0 li r10,0x30 lvx_u $H,0,r4 # load H vspltisb $xC2,-16 # 0xf0 vspltisb $t0,1 # one vaddubm $xC2,$xC2,$xC2 # 0xe0 vxor $zero,$zero,$zero vor $xC2,$xC2,$t0 # 0xe1 vsldoi $xC2,$xC2,$zero,15 # 0xe1... vsldoi $t1,$zero,$t0,1 # ...1 vaddubm $xC2,$xC2,$xC2 # 0xc2... vspltisb $t2,7 vor $xC2,$xC2,$t1 # 0xc2....01 vspltb $t1,$H,0 # most significant byte vsl $H,$H,$t0 # H<<=1 vsrab $t1,$t1,$t2 # broadcast carry bit vand $t1,$t1,$xC2 vxor $IN,$H,$t1 # twisted H vsldoi $H,$IN,$IN,8 # twist even more ... vsldoi $xC2,$zero,$xC2,8 # 0xc2.0 vsldoi $Hl,$zero,$H,8 # ... and split vsldoi $Hh,$H,$zero,8 stvx_u $xC2,0,r3 # save pre-computed table stvx_u $Hl,r8,r3 li r8,0x40 stvx_u $H, r9,r3 li r9,0x50 stvx_u $Hh,r10,r3 li r10,0x60 vpmsumd $Xl,$IN,$Hl # H.lo·H.lo vpmsumd $Xm,$IN,$H # H.hi·H.lo+H.lo·H.hi vpmsumd $Xh,$IN,$Hh # H.hi·H.hi vpmsumd $t2,$Xl,$xC2 # 1st reduction phase vsldoi $t0,$Xm,$zero,8 vsldoi $t1,$zero,$Xm,8 vxor $Xl,$Xl,$t0 vxor $Xh,$Xh,$t1 vsldoi $Xl,$Xl,$Xl,8 vxor $Xl,$Xl,$t2 vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase vpmsumd $Xl,$Xl,$xC2 vxor $t1,$t1,$Xh vxor $IN1,$Xl,$t1 vsldoi $H2,$IN1,$IN1,8 vsldoi $H2l,$zero,$H2,8 vsldoi $H2h,$H2,$zero,8 stvx_u $H2l,r8,r3 # save H^2 li r8,0x70 stvx_u $H2,r9,r3 li r9,0x80 stvx_u $H2h,r10,r3 li r10,0x90 ___ { my ($t4,$t5,$t6) = ($Hl,$H,$Hh); $code.=<<___; vpmsumd $Xl,$IN,$H2l # H.lo·H^2.lo vpmsumd $Xl1,$IN1,$H2l # H^2.lo·H^2.lo vpmsumd $Xm,$IN,$H2 # H.hi·H^2.lo+H.lo·H^2.hi vpmsumd $Xm1,$IN1,$H2 # H^2.hi·H^2.lo+H^2.lo·H^2.hi vpmsumd $Xh,$IN,$H2h # H.hi·H^2.hi vpmsumd $Xh1,$IN1,$H2h # H^2.hi·H^2.hi vpmsumd $t2,$Xl,$xC2 # 1st reduction phase vpmsumd $t6,$Xl1,$xC2 # 1st reduction phase vsldoi $t0,$Xm,$zero,8 vsldoi $t1,$zero,$Xm,8 vsldoi $t4,$Xm1,$zero,8 vsldoi $t5,$zero,$Xm1,8 vxor $Xl,$Xl,$t0 vxor $Xh,$Xh,$t1 vxor $Xl1,$Xl1,$t4 vxor $Xh1,$Xh1,$t5 vsldoi $Xl,$Xl,$Xl,8 vsldoi $Xl1,$Xl1,$Xl1,8 vxor $Xl,$Xl,$t2 vxor $Xl1,$Xl1,$t6 vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase vsldoi $t5,$Xl1,$Xl1,8 # 2nd reduction phase vpmsumd $Xl,$Xl,$xC2 vpmsumd $Xl1,$Xl1,$xC2 vxor $t1,$t1,$Xh vxor $t5,$t5,$Xh1 vxor $Xl,$Xl,$t1 vxor $Xl1,$Xl1,$t5 vsldoi $H,$Xl,$Xl,8 vsldoi $H2,$Xl1,$Xl1,8 vsldoi $Hl,$zero,$H,8 vsldoi $Hh,$H,$zero,8 vsldoi $H2l,$zero,$H2,8 vsldoi $H2h,$H2,$zero,8 stvx_u $Hl,r8,r3 # save H^3 li r8,0xa0 stvx_u $H,r9,r3 li r9,0xb0 stvx_u $Hh,r10,r3 li r10,0xc0 stvx_u $H2l,r8,r3 # save H^4 stvx_u $H2,r9,r3 stvx_u $H2h,r10,r3 mtspr 256,$vrsave blr .long 0 .byte 0,12,0x14,0,0,0,2,0 .long 0 .size .gcm_init_p8,.-.gcm_init_p8 ___ } $code.=<<___; .globl .gcm_gmult_p8 .align 5 .gcm_gmult_p8: lis r0,0xfff8 li r8,0x10 mfspr $vrsave,256 li r9,0x20 mtspr 256,r0 li r10,0x30 lvx_u $IN,0,$Xip # load Xi lvx_u $Hl,r8,$Htbl # load pre-computed table le?lvsl $lemask,r0,r0 lvx_u $H, r9,$Htbl le?vspltisb $t0,0x07 lvx_u $Hh,r10,$Htbl le?vxor $lemask,$lemask,$t0 lvx_u $xC2,0,$Htbl le?vperm $IN,$IN,$IN,$lemask vxor $zero,$zero,$zero vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi vpmsumd $t2,$Xl,$xC2 # 1st reduction phase vsldoi $t0,$Xm,$zero,8 vsldoi $t1,$zero,$Xm,8 vxor $Xl,$Xl,$t0 vxor $Xh,$Xh,$t1 vsldoi $Xl,$Xl,$Xl,8 vxor $Xl,$Xl,$t2 vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase vpmsumd $Xl,$Xl,$xC2 vxor $t1,$t1,$Xh vxor $Xl,$Xl,$t1 le?vperm $Xl,$Xl,$Xl,$lemask stvx_u $Xl,0,$Xip # write out Xi mtspr 256,$vrsave blr .long 0 .byte 0,12,0x14,0,0,0,2,0 .long 0 .size .gcm_gmult_p8,.-.gcm_gmult_p8 .globl .gcm_ghash_p8 .align 5 .gcm_ghash_p8: li r0,-4096 li r8,0x10 mfspr $vrsave,256 li r9,0x20 mtspr 256,r0 li r10,0x30 lvx_u $Xl,0,$Xip # load Xi lvx_u $Hl,r8,$Htbl # load pre-computed table li r8,0x40 le?lvsl $lemask,r0,r0 lvx_u $H, r9,$Htbl li r9,0x50 le?vspltisb $t0,0x07 lvx_u $Hh,r10,$Htbl li r10,0x60 le?vxor $lemask,$lemask,$t0 lvx_u $xC2,0,$Htbl le?vperm $Xl,$Xl,$Xl,$lemask vxor $zero,$zero,$zero ${UCMP}i $len,64 bge Lgcm_ghash_p8_4x lvx_u $IN,0,$inp addi $inp,$inp,16 subic. $len,$len,16 le?vperm $IN,$IN,$IN,$lemask vxor $IN,$IN,$Xl beq Lshort lvx_u $H2l,r8,$Htbl # load H^2 li r8,16 lvx_u $H2, r9,$Htbl add r9,$inp,$len # end of input lvx_u $H2h,r10,$Htbl be?b Loop_2x .align 5 Loop_2x: lvx_u $IN1,0,$inp le?vperm $IN1,$IN1,$IN1,$lemask subic $len,$len,32 vpmsumd $Xl,$IN,$H2l # H^2.lo·Xi.lo vpmsumd $Xl1,$IN1,$Hl # H.lo·Xi+1.lo subfe r0,r0,r0 # borrow?-1:0 vpmsumd $Xm,$IN,$H2 # H^2.hi·Xi.lo+H^2.lo·Xi.hi vpmsumd $Xm1,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+1.hi and r0,r0,$len vpmsumd $Xh,$IN,$H2h # H^2.hi·Xi.hi vpmsumd $Xh1,$IN1,$Hh # H.hi·Xi+1.hi add $inp,$inp,r0 vxor $Xl,$Xl,$Xl1 vxor $Xm,$Xm,$Xm1 vpmsumd $t2,$Xl,$xC2 # 1st reduction phase vsldoi $t0,$Xm,$zero,8 vsldoi $t1,$zero,$Xm,8 vxor $Xh,$Xh,$Xh1 vxor $Xl,$Xl,$t0 vxor $Xh,$Xh,$t1 vsldoi $Xl,$Xl,$Xl,8 vxor $Xl,$Xl,$t2 lvx_u $IN,r8,$inp addi $inp,$inp,32 vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase vpmsumd $Xl,$Xl,$xC2 le?vperm $IN,$IN,$IN,$lemask vxor $t1,$t1,$Xh vxor $IN,$IN,$t1 vxor $IN,$IN,$Xl $UCMP r9,$inp bgt Loop_2x # done yet? cmplwi $len,0 bne Leven Lshort: vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi vpmsumd $t2,$Xl,$xC2 # 1st reduction phase vsldoi $t0,$Xm,$zero,8 vsldoi $t1,$zero,$Xm,8 vxor $Xl,$Xl,$t0 vxor $Xh,$Xh,$t1 vsldoi $Xl,$Xl,$Xl,8 vxor $Xl,$Xl,$t2 vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase vpmsumd $Xl,$Xl,$xC2 vxor $t1,$t1,$Xh Leven: vxor $Xl,$Xl,$t1 le?vperm $Xl,$Xl,$Xl,$lemask stvx_u $Xl,0,$Xip # write out Xi mtspr 256,$vrsave blr .long 0 .byte 0,12,0x14,0,0,0,4,0 .long 0 ___ { my ($Xl3,$Xm2,$IN2,$H3l,$H3,$H3h, $Xh3,$Xm3,$IN3,$H4l,$H4,$H4h) = map("v$_",(20..31)); my $IN0=$IN; my ($H21l,$H21h,$loperm,$hiperm) = ($Hl,$Hh,$H2l,$H2h); $code.=<<___; .align 5 .gcm_ghash_p8_4x: Lgcm_ghash_p8_4x: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp li r10,0x60 stvx v31,r11,$sp li r0,-1 stw $vrsave,`$FRAME-4`($sp) # save vrsave mtspr 256,r0 # preserve all AltiVec registers lvsl $t0,0,r8 # 0x0001..0e0f #lvx_u $H2l,r8,$Htbl # load H^2 li r8,0x70 lvx_u $H2, r9,$Htbl li r9,0x80 vspltisb $t1,8 # 0x0808..0808 #lvx_u $H2h,r10,$Htbl li r10,0x90 lvx_u $H3l,r8,$Htbl # load H^3 li r8,0xa0 lvx_u $H3, r9,$Htbl li r9,0xb0 lvx_u $H3h,r10,$Htbl li r10,0xc0 lvx_u $H4l,r8,$Htbl # load H^4 li r8,0x10 lvx_u $H4, r9,$Htbl li r9,0x20 lvx_u $H4h,r10,$Htbl li r10,0x30 vsldoi $t2,$zero,$t1,8 # 0x0000..0808 vaddubm $hiperm,$t0,$t2 # 0x0001..1617 vaddubm $loperm,$t1,$hiperm # 0x0809..1e1f $SHRI $len,$len,4 # this allows to use sign bit # as carry lvx_u $IN0,0,$inp # load input lvx_u $IN1,r8,$inp subic. $len,$len,8 lvx_u $IN2,r9,$inp lvx_u $IN3,r10,$inp addi $inp,$inp,0x40 le?vperm $IN0,$IN0,$IN0,$lemask le?vperm $IN1,$IN1,$IN1,$lemask le?vperm $IN2,$IN2,$IN2,$lemask le?vperm $IN3,$IN3,$IN3,$lemask vxor $Xh,$IN0,$Xl vpmsumd $Xl1,$IN1,$H3l vpmsumd $Xm1,$IN1,$H3 vpmsumd $Xh1,$IN1,$H3h vperm $H21l,$H2,$H,$hiperm vperm $t0,$IN2,$IN3,$loperm vperm $H21h,$H2,$H,$loperm vperm $t1,$IN2,$IN3,$hiperm vpmsumd $Xm2,$IN2,$H2 # H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+2.lo+H.lo·Xi+3.lo vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+2.hi+H.hi·Xi+3.hi vxor $Xm2,$Xm2,$Xm1 vxor $Xl3,$Xl3,$Xl1 vxor $Xm3,$Xm3,$Xm2 vxor $Xh3,$Xh3,$Xh1 blt Ltail_4x Loop_4x: lvx_u $IN0,0,$inp lvx_u $IN1,r8,$inp subic. $len,$len,4 lvx_u $IN2,r9,$inp lvx_u $IN3,r10,$inp addi $inp,$inp,0x40 le?vperm $IN1,$IN1,$IN1,$lemask le?vperm $IN2,$IN2,$IN2,$lemask le?vperm $IN3,$IN3,$IN3,$lemask le?vperm $IN0,$IN0,$IN0,$lemask vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi vpmsumd $Xl1,$IN1,$H3l vpmsumd $Xm1,$IN1,$H3 vpmsumd $Xh1,$IN1,$H3h vxor $Xl,$Xl,$Xl3 vxor $Xm,$Xm,$Xm3 vxor $Xh,$Xh,$Xh3 vperm $t0,$IN2,$IN3,$loperm vperm $t1,$IN2,$IN3,$hiperm vpmsumd $t2,$Xl,$xC2 # 1st reduction phase vpmsumd $Xl3,$t0,$H21l # H.lo·Xi+3.lo +H^2.lo·Xi+2.lo vpmsumd $Xh3,$t1,$H21h # H.hi·Xi+3.hi +H^2.hi·Xi+2.hi vsldoi $t0,$Xm,$zero,8 vsldoi $t1,$zero,$Xm,8 vxor $Xl,$Xl,$t0 vxor $Xh,$Xh,$t1 vsldoi $Xl,$Xl,$Xl,8 vxor $Xl,$Xl,$t2 vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase vpmsumd $Xm2,$IN2,$H2 # H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi vpmsumd $Xl,$Xl,$xC2 vxor $Xl3,$Xl3,$Xl1 vxor $Xh3,$Xh3,$Xh1 vxor $Xh,$Xh,$IN0 vxor $Xm2,$Xm2,$Xm1 vxor $Xh,$Xh,$t1 vxor $Xm3,$Xm3,$Xm2 vxor $Xh,$Xh,$Xl bge Loop_4x Ltail_4x: vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi vxor $Xl,$Xl,$Xl3 vxor $Xm,$Xm,$Xm3 vpmsumd $t2,$Xl,$xC2 # 1st reduction phase vsldoi $t0,$Xm,$zero,8 vsldoi $t1,$zero,$Xm,8 vxor $Xh,$Xh,$Xh3 vxor $Xl,$Xl,$t0 vxor $Xh,$Xh,$t1 vsldoi $Xl,$Xl,$Xl,8 vxor $Xl,$Xl,$t2 vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase vpmsumd $Xl,$Xl,$xC2 vxor $t1,$t1,$Xh vxor $Xl,$Xl,$t1 addic. $len,$len,4 beq Ldone_4x lvx_u $IN0,0,$inp ${UCMP}i $len,2 li $len,-4 blt Lone lvx_u $IN1,r8,$inp beq Ltwo Lthree: lvx_u $IN2,r9,$inp le?vperm $IN0,$IN0,$IN0,$lemask le?vperm $IN1,$IN1,$IN1,$lemask le?vperm $IN2,$IN2,$IN2,$lemask vxor $Xh,$IN0,$Xl vmr $H4l,$H3l vmr $H4, $H3 vmr $H4h,$H3h vperm $t0,$IN1,$IN2,$loperm vperm $t1,$IN1,$IN2,$hiperm vpmsumd $Xm2,$IN1,$H2 # H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo vpmsumd $Xm3,$IN2,$H # H.hi·Xi+2.lo +H.lo·Xi+2.hi vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+1.lo+H.lo·Xi+2.lo vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+1.hi+H.hi·Xi+2.hi vxor $Xm3,$Xm3,$Xm2 b Ltail_4x .align 4 Ltwo: le?vperm $IN0,$IN0,$IN0,$lemask le?vperm $IN1,$IN1,$IN1,$lemask vxor $Xh,$IN0,$Xl vperm $t0,$zero,$IN1,$loperm vperm $t1,$zero,$IN1,$hiperm vsldoi $H4l,$zero,$H2,8 vmr $H4, $H2 vsldoi $H4h,$H2,$zero,8 vpmsumd $Xl3,$t0, $H21l # H.lo·Xi+1.lo vpmsumd $Xm3,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+2.hi vpmsumd $Xh3,$t1, $H21h # H.hi·Xi+1.hi b Ltail_4x .align 4 Lone: le?vperm $IN0,$IN0,$IN0,$lemask vsldoi $H4l,$zero,$H,8 vmr $H4, $H vsldoi $H4h,$H,$zero,8 vxor $Xh,$IN0,$Xl vxor $Xl3,$Xl3,$Xl3 vxor $Xm3,$Xm3,$Xm3 vxor $Xh3,$Xh3,$Xh3 b Ltail_4x Ldone_4x: le?vperm $Xl,$Xl,$Xl,$lemask stvx_u $Xl,0,$Xip # write out Xi li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtspr 256,$vrsave lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,0,0x80,0,4,0 .long 0 ___ } $code.=<<___; .size .gcm_ghash_p8,.-.gcm_ghash_p8 .asciz "GHASH for PowerISA 2.07, CRYPTOGAMS by " .align 2 ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; if ($flavour =~ /le$/o) { # little-endian s/le\?//o or s/be\?/#be#/o; } else { s/le\?/#le#/o or s/be\?//o; } print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/modes/asm/ghashv8-armx.pl000066400000000000000000000455411364063235100214400ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication. # # June 2014 # # Initial version was developed in tight cooperation with Ard # Biesheuvel of Linaro from bits-n-pieces from other assembly modules. # Just like aesv8-armx.pl this module supports both AArch32 and # AArch64 execution modes. # # July 2014 # # Implement 2x aggregated reduction [see ghash-x86.pl for background # information]. # # November 2017 # # AArch64 register bank to "accommodate" 4x aggregated reduction and # improve performance by 20-70% depending on processor. # # Current performance in cycles per processed byte: # # 64-bit PMULL 32-bit PMULL 32-bit NEON(*) # Apple A7 0.58 0.92 5.62 # Cortex-A53 0.85 1.01 8.39 # Cortex-A57 0.73 1.17 7.61 # Denver 0.51 0.65 6.02 # Mongoose 0.65 1.10 8.06 # Kryo 0.76 1.16 8.00 # # (*) presented for reference/comparison purposes; $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; $Xi="x0"; # argument block $Htbl="x1"; $inp="x2"; $len="x3"; $inc="x12"; { my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14)); $code=<<___; #include "arm_arch.h" #if __ARM_MAX_ARCH__>=7 .text ___ $code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/); $code.=<<___ if ($flavour !~ /64/); .fpu neon .code 32 #undef __thumb2__ ___ ################################################################################ # void gcm_init_v8(u128 Htable[16],const u64 H[2]); # # input: 128-bit H - secret parameter E(K,0^128) # output: precomputed table filled with degrees of twisted H; # H is twisted to handle reverse bitness of GHASH; # only few of 16 slots of Htable[16] are used; # data is opaque to outside world (which allows to # optimize the code independently); # $code.=<<___; .global gcm_init_v8 .type gcm_init_v8,%function .align 4 gcm_init_v8: vld1.64 {$t1},[x1] @ load input H vmov.i8 $xC2,#0xe1 vshl.i64 $xC2,$xC2,#57 @ 0xc2.0 vext.8 $IN,$t1,$t1,#8 vshr.u64 $t2,$xC2,#63 vdup.32 $t1,${t1}[1] vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01 vshr.u64 $t2,$IN,#63 vshr.s32 $t1,$t1,#31 @ broadcast carry bit vand $t2,$t2,$t0 vshl.i64 $IN,$IN,#1 vext.8 $t2,$t2,$t2,#8 vand $t0,$t0,$t1 vorr $IN,$IN,$t2 @ H<<<=1 veor $H,$IN,$t0 @ twisted H vst1.64 {$H},[x0],#16 @ store Htable[0] @ calculate H^2 vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing vpmull.p64 $Xl,$H,$H veor $t0,$t0,$H vpmull2.p64 $Xh,$H,$H vpmull.p64 $Xm,$t0,$t0 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $H2,$Xl,$t2 vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing veor $t1,$t1,$H2 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed vst1.64 {$Hhl-$H2},[x0],#32 @ store Htable[1..2] ___ if ($flavour =~ /64/) { my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7)); $code.=<<___; @ calculate H^3 and H^4 vpmull.p64 $Xl,$H, $H2 vpmull.p64 $Yl,$H2,$H2 vpmull2.p64 $Xh,$H, $H2 vpmull2.p64 $Yh,$H2,$H2 vpmull.p64 $Xm,$t0,$t1 vpmull.p64 $Ym,$t1,$t1 vext.8 $t0,$Xl,$Xh,#8 @ Karatsuba post-processing vext.8 $t1,$Yl,$Yh,#8 veor $t2,$Xl,$Xh veor $Xm,$Xm,$t0 veor $t3,$Yl,$Yh veor $Ym,$Ym,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase veor $Ym,$Ym,$t3 vpmull.p64 $t3,$Yl,$xC2 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Yh#lo,$Ym#hi vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vmov $Ym#hi,$Yl#lo veor $Xl,$Xm,$t2 veor $Yl,$Ym,$t3 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase vext.8 $t3,$Yl,$Yl,#8 vpmull.p64 $Xl,$Xl,$xC2 vpmull.p64 $Yl,$Yl,$xC2 veor $t2,$t2,$Xh veor $t3,$t3,$Yh veor $H, $Xl,$t2 @ H^3 veor $H2,$Yl,$t3 @ H^4 vext.8 $t0,$H, $H,#8 @ Karatsuba pre-processing vext.8 $t1,$H2,$H2,#8 veor $t0,$t0,$H veor $t1,$t1,$H2 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed vst1.64 {$H-$H2},[x0] @ store Htable[3..5] ___ } $code.=<<___; ret .size gcm_init_v8,.-gcm_init_v8 ___ ################################################################################ # void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]); # # input: Xi - current hash value; # Htable - table precomputed in gcm_init_v8; # output: Xi - next hash value Xi; # $code.=<<___; .global gcm_gmult_v8 .type gcm_gmult_v8,%function .align 4 gcm_gmult_v8: vld1.64 {$t1},[$Xi] @ load Xi vmov.i8 $xC2,#0xe1 vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ... vshl.u64 $xC2,$xC2,#57 #ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif vext.8 $IN,$t1,$t1,#8 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo veor $t1,$t1,$IN @ Karatsuba pre-processing vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 #ifndef __ARMEB__ vrev64.8 $Xl,$Xl #endif vext.8 $Xl,$Xl,$Xl,#8 vst1.64 {$Xl},[$Xi] @ write out Xi ret .size gcm_gmult_v8,.-gcm_gmult_v8 ___ ################################################################################ # void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); # # input: table precomputed in gcm_init_v8; # current hash value Xi; # pointer to input data; # length of input data in bytes, but divisible by block size; # output: next hash value Xi; # $code.=<<___; .global gcm_ghash_v8 .type gcm_ghash_v8,%function .align 4 gcm_ghash_v8: ___ $code.=<<___ if ($flavour =~ /64/); cmp $len,#64 b.hs .Lgcm_ghash_v8_4x ___ $code.=<<___ if ($flavour !~ /64/); vstmdb sp!,{d8-d15} @ 32-bit ABI says so ___ $code.=<<___; vld1.64 {$Xl},[$Xi] @ load [rotated] Xi @ "[rotated]" means that @ loaded value would have @ to be rotated in order to @ make it appear as in @ algorithm specification subs $len,$len,#32 @ see if $len is 32 or larger mov $inc,#16 @ $inc is used as post- @ increment for input pointer; @ as loop is modulo-scheduled @ $inc is zeroed just in time @ to preclude overstepping @ inp[len], which means that @ last block[s] are actually @ loaded twice, but last @ copy is not processed vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2 vmov.i8 $xC2,#0xe1 vld1.64 {$H2},[$Htbl] cclr $inc,eq @ is it time to zero $inc? vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0] vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant #ifndef __ARMEB__ vrev64.8 $t0,$t0 vrev64.8 $Xl,$Xl #endif vext.8 $IN,$t0,$t0,#8 @ rotate I[0] b.lo .Lodd_tail_v8 @ $len was less than 32 ___ { my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7)); ####### # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = # [(H*Ii+1) + (H*Xi+1)] mod P = # [(H*Ii+1) + H^2*(Ii+Xi)] mod P # $code.=<<___; vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1] #ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif vext.8 $In,$t1,$t1,#8 veor $IN,$IN,$Xl @ I[i]^=Xi vpmull.p64 $Xln,$H,$In @ H·Ii+1 veor $t1,$t1,$In @ Karatsuba pre-processing vpmull2.p64 $Xhn,$H,$In b .Loop_mod2x_v8 .align 4 .Loop_mod2x_v8: vext.8 $t2,$IN,$IN,#8 subs $len,$len,#32 @ is there more data? vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo cclr $inc,lo @ is it time to zero $inc? vpmull.p64 $Xmn,$Hhl,$t1 veor $t2,$t2,$IN @ Karatsuba pre-processing vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi veor $Xl,$Xl,$Xln @ accumulate vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi) vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2] veor $Xh,$Xh,$Xhn cclr $inc,eq @ is it time to zero $inc? veor $Xm,$Xm,$Xmn vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3] #ifndef __ARMEB__ vrev64.8 $t0,$t0 #endif veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction #ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vext.8 $In,$t1,$t1,#8 vext.8 $IN,$t0,$t0,#8 veor $Xl,$Xm,$t2 vpmull.p64 $Xln,$H,$In @ H·Ii+1 veor $IN,$IN,$Xh @ accumulate $IN early vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $IN,$IN,$t2 veor $t1,$t1,$In @ Karatsuba pre-processing veor $IN,$IN,$Xl vpmull2.p64 $Xhn,$H,$In b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes veor $Xh,$Xh,$t2 vext.8 $IN,$t0,$t0,#8 @ re-construct $IN adds $len,$len,#32 @ re-construct $len veor $Xl,$Xl,$Xh @ re-construct $Xl b.eq .Ldone_v8 @ is $len zero? ___ } $code.=<<___; .Lodd_tail_v8: vext.8 $t2,$Xl,$Xl,#8 veor $IN,$IN,$Xl @ inp^=Xi veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo veor $t1,$t1,$IN @ Karatsuba pre-processing vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 .Ldone_v8: #ifndef __ARMEB__ vrev64.8 $Xl,$Xl #endif vext.8 $Xl,$Xl,$Xl,#8 vst1.64 {$Xl},[$Xi] @ write out Xi ___ $code.=<<___ if ($flavour !~ /64/); vldmia sp!,{d8-d15} @ 32-bit ABI says so ___ $code.=<<___; ret .size gcm_ghash_v8,.-gcm_ghash_v8 ___ if ($flavour =~ /64/) { # 4x subroutine my ($I0,$j1,$j2,$j3, $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23)); $code.=<<___; .type gcm_ghash_v8_4x,%function .align 4 gcm_ghash_v8_4x: .Lgcm_ghash_v8_4x: vld1.64 {$Xl},[$Xi] @ load [rotated] Xi vld1.64 {$H-$H2},[$Htbl],#48 @ load twisted H, ..., H^2 vmov.i8 $xC2,#0xe1 vld1.64 {$H3-$H4},[$Htbl] @ load twisted H^3, ..., H^4 vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant vld1.64 {$I0-$j3},[$inp],#64 #ifndef __ARMEB__ vrev64.8 $Xl,$Xl vrev64.8 $j1,$j1 vrev64.8 $j2,$j2 vrev64.8 $j3,$j3 vrev64.8 $I0,$I0 #endif vext.8 $I3,$j3,$j3,#8 vext.8 $I2,$j2,$j2,#8 vext.8 $I1,$j1,$j1,#8 vpmull.p64 $Yl,$H,$I3 @ H·Ii+3 veor $j3,$j3,$I3 vpmull2.p64 $Yh,$H,$I3 vpmull.p64 $Ym,$Hhl,$j3 vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2 veor $j2,$j2,$I2 vpmull2.p64 $I2,$H2,$I2 vpmull2.p64 $j2,$Hhl,$j2 veor $Yl,$Yl,$t0 veor $Yh,$Yh,$I2 veor $Ym,$Ym,$j2 vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1 veor $j1,$j1,$I1 vpmull2.p64 $I1,$H3,$I1 vpmull.p64 $j1,$H34,$j1 veor $Yl,$Yl,$j3 veor $Yh,$Yh,$I1 veor $Ym,$Ym,$j1 subs $len,$len,#128 b.lo .Ltail4x b .Loop4x .align 4 .Loop4x: veor $t0,$I0,$Xl vld1.64 {$I0-$j3},[$inp],#64 vext.8 $IN,$t0,$t0,#8 #ifndef __ARMEB__ vrev64.8 $j1,$j1 vrev64.8 $j2,$j2 vrev64.8 $j3,$j3 vrev64.8 $I0,$I0 #endif vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H4,$IN vext.8 $I3,$j3,$j3,#8 vpmull2.p64 $Xm,$H34,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh vext.8 $I2,$j2,$j2,#8 veor $Xm,$Xm,$Ym vext.8 $I1,$j1,$j1,#8 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh vpmull.p64 $Yl,$H,$I3 @ H·Ii+3 veor $j3,$j3,$I3 veor $Xm,$Xm,$t1 vpmull2.p64 $Yh,$H,$I3 veor $Xm,$Xm,$t2 vpmull.p64 $Ym,$Hhl,$j3 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2 veor $j2,$j2,$I2 vpmull2.p64 $I2,$H2,$I2 veor $Xl,$Xm,$t2 vpmull2.p64 $j2,$Hhl,$j2 veor $Yl,$Yl,$t0 veor $Yh,$Yh,$I2 veor $Ym,$Ym,$j2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1 veor $j1,$j1,$I1 veor $t2,$t2,$Xh vpmull2.p64 $I1,$H3,$I1 vpmull.p64 $j1,$H34,$j1 veor $Xl,$Xl,$t2 veor $Yl,$Yl,$j3 veor $Yh,$Yh,$I1 vext.8 $Xl,$Xl,$Xl,#8 veor $Ym,$Ym,$j1 subs $len,$len,#64 b.hs .Loop4x .Ltail4x: veor $t0,$I0,$Xl vext.8 $IN,$t0,$t0,#8 vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H4,$IN vpmull2.p64 $Xm,$H34,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh veor $Xm,$Xm,$Ym adds $len,$len,#64 b.eq .Ldone4x cmp $len,#32 b.lo .Lone b.eq .Ltwo .Lthree: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$I0-$j2},[$inp] veor $Xm,$Xm,$t2 #ifndef __ARMEB__ vrev64.8 $j1,$j1 vrev64.8 $j2,$j2 vrev64.8 $I0,$I0 #endif vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vext.8 $I2,$j2,$j2,#8 vext.8 $I1,$j1,$j1,#8 veor $Xl,$Xm,$t2 vpmull.p64 $Yl,$H,$I2 @ H·Ii+2 veor $j2,$j2,$I2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh vpmull2.p64 $Yh,$H,$I2 vpmull.p64 $Ym,$Hhl,$j2 veor $Xl,$Xl,$t2 vpmull.p64 $j3,$H2,$I1 @ H^2·Ii+1 veor $j1,$j1,$I1 vext.8 $Xl,$Xl,$Xl,#8 vpmull2.p64 $I1,$H2,$I1 veor $t0,$I0,$Xl vpmull2.p64 $j1,$Hhl,$j1 vext.8 $IN,$t0,$t0,#8 veor $Yl,$Yl,$j3 veor $Yh,$Yh,$I1 veor $Ym,$Ym,$j1 vpmull.p64 $Xl,$H3,$IN @ H^3·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H3,$IN vpmull.p64 $Xm,$H34,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh veor $Xm,$Xm,$Ym b .Ldone4x .align 4 .Ltwo: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$I0-$j1},[$inp] veor $Xm,$Xm,$t2 #ifndef __ARMEB__ vrev64.8 $j1,$j1 vrev64.8 $I0,$I0 #endif vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vext.8 $I1,$j1,$j1,#8 veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 vext.8 $Xl,$Xl,$Xl,#8 vpmull.p64 $Yl,$H,$I1 @ H·Ii+1 veor $j1,$j1,$I1 veor $t0,$I0,$Xl vext.8 $IN,$t0,$t0,#8 vpmull2.p64 $Yh,$H,$I1 vpmull.p64 $Ym,$Hhl,$j1 vpmull.p64 $Xl,$H2,$IN @ H^2·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H2,$IN vpmull2.p64 $Xm,$Hhl,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh veor $Xm,$Xm,$Ym b .Ldone4x .align 4 .Lone: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$I0},[$inp] veor $Xm,$Xm,$t2 #ifndef __ARMEB__ vrev64.8 $I0,$I0 #endif vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 vext.8 $Xl,$Xl,$Xl,#8 veor $t0,$I0,$Xl vext.8 $IN,$t0,$t0,#8 vpmull.p64 $Xl,$H,$IN veor $t0,$t0,$IN vpmull2.p64 $Xh,$H,$IN vpmull.p64 $Xm,$Hhl,$t0 .Ldone4x: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 vext.8 $Xl,$Xl,$Xl,#8 #ifndef __ARMEB__ vrev64.8 $Xl,$Xl #endif vst1.64 {$Xl},[$Xi] @ write out Xi ret .size gcm_ghash_v8_4x,.-gcm_ghash_v8_4x ___ } } $code.=<<___; .asciz "GHASH for ARMv8, CRYPTOGAMS by " .align 2 #endif ___ if ($flavour =~ /64/) { ######## 64-bit code sub unvmov { my $arg=shift; $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o && sprintf "ins v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1, $3<8?$3:$3+8,($4 eq "lo")?0:1; } foreach(split("\n",$code)) { s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or s/vmov\.i8/movi/o or # fix up legacy mnemonics s/vmov\s+(.*)/unvmov($1)/geo or s/vext\.8/ext/o or s/vshr\.s/sshr\.s/o or s/vshr/ushr/o or s/^(\s+)v/$1/o or # strip off v prefix s/\bbx\s+lr\b/ret/o; s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers s/@\s/\/\//o; # old->new style commentary # fix up remaining legacy suffixes s/\.[ui]?8(\s)/$1/o; s/\.[uis]?32//o and s/\.16b/\.4s/go; m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments s/\.[uisp]?64//o and s/\.16b/\.2d/go; s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o; print $_,"\n"; } } else { ######## 32-bit code sub unvdup32 { my $arg=shift; $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o && sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1; } sub unvpmullp64 { my ($mnemonic,$arg)=@_; if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) { my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19) |(($2&7)<<17)|(($2&8)<<4) |(($3&7)<<1) |(($3&8)<<2); $word |= 0x00010001 if ($mnemonic =~ "2"); # since ARMv7 instructions are always encoded little-endian. # correct solution is to use .inst directive, but older # assemblers don't implement it:-( sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s", $word&0xff,($word>>8)&0xff, ($word>>16)&0xff,($word>>24)&0xff, $mnemonic,$arg; } } foreach(split("\n",$code)) { s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers s/\/\/\s?/@ /o; # new->old style commentary # fix up remaining new-style suffixes s/\],#[0-9]+/]!/o; s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or s/vdup\.32\s+(.*)/unvdup32($1)/geo or s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or s/^(\s+)b\./$1b/o or s/^(\s+)ret/$1bx\tlr/o; print $_,"\n"; } } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/modes/build.info000066400000000000000000000023261364063235100177540ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ cbc128.c ctr128.c cts128.c cfb128.c ofb128.c gcm128.c \ ccm128.c xts128.c wrap128.c ocb128.c \ {- $target{modes_asm_src} -} INCLUDE[gcm128.o]=.. GENERATE[ghash-ia64.s]=asm/ghash-ia64.pl $(LIB_CFLAGS) $(LIB_CPPFLAGS) GENERATE[ghash-x86.s]=asm/ghash-x86.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) GENERATE[ghash-x86_64.s]=asm/ghash-x86_64.pl $(PERLASM_SCHEME) GENERATE[aesni-gcm-x86_64.s]=asm/aesni-gcm-x86_64.pl $(PERLASM_SCHEME) GENERATE[ghash-sparcv9.S]=asm/ghash-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[ghash-sparcv9.o]=.. GENERATE[ghash-alpha.S]=asm/ghash-alpha.pl $(PERLASM_SCHEME) GENERATE[ghash-parisc.s]=asm/ghash-parisc.pl $(PERLASM_SCHEME) GENERATE[ghashp8-ppc.s]=asm/ghashp8-ppc.pl $(PERLASM_SCHEME) GENERATE[ghash-armv4.S]=asm/ghash-armv4.pl $(PERLASM_SCHEME) INCLUDE[ghash-armv4.o]=.. GENERATE[ghashv8-armx.S]=asm/ghashv8-armx.pl $(PERLASM_SCHEME) INCLUDE[ghashv8-armx.o]=.. GENERATE[ghash-s390x.S]=asm/ghash-s390x.pl $(PERLASM_SCHEME) INCLUDE[ghash-s390x.o]=.. BEGINRAW[Makefile] # GNU make "catch all" {- $builddir -}/ghash-%.S: {- $sourcedir -}/asm/ghash-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ ENDRAW[Makefile] openssl-1.1.1f/crypto/modes/cbc128.c000066400000000000000000000110271364063235100171240ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include #if !defined(STRICT_ALIGNMENT) && !defined(PEDANTIC) # define STRICT_ALIGNMENT 0 #endif void CRYPTO_cbc128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t n; const unsigned char *iv = ivec; if (len == 0) return; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) { while (len >= 16) { for (n = 0; n < 16; ++n) out[n] = in[n] ^ iv[n]; (*block) (out, out, key); iv = out; len -= 16; in += 16; out += 16; } } else { while (len >= 16) { for (n = 0; n < 16; n += sizeof(size_t)) *(size_t *)(out + n) = *(size_t *)(in + n) ^ *(size_t *)(iv + n); (*block) (out, out, key); iv = out; len -= 16; in += 16; out += 16; } } #endif while (len) { for (n = 0; n < 16 && n < len; ++n) out[n] = in[n] ^ iv[n]; for (; n < 16; ++n) out[n] = iv[n]; (*block) (out, out, key); iv = out; if (len <= 16) break; len -= 16; in += 16; out += 16; } memcpy(ivec, iv, 16); } void CRYPTO_cbc128_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t n; union { size_t t[16 / sizeof(size_t)]; unsigned char c[16]; } tmp; if (len == 0) return; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (in != out) { const unsigned char *iv = ivec; if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) { while (len >= 16) { (*block) (in, out, key); for (n = 0; n < 16; ++n) out[n] ^= iv[n]; iv = in; len -= 16; in += 16; out += 16; } } else if (16 % sizeof(size_t) == 0) { /* always true */ while (len >= 16) { size_t *out_t = (size_t *)out, *iv_t = (size_t *)iv; (*block) (in, out, key); for (n = 0; n < 16 / sizeof(size_t); n++) out_t[n] ^= iv_t[n]; iv = in; len -= 16; in += 16; out += 16; } } memcpy(ivec, iv, 16); } else { if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) { unsigned char c; while (len >= 16) { (*block) (in, tmp.c, key); for (n = 0; n < 16; ++n) { c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = c; } len -= 16; in += 16; out += 16; } } else if (16 % sizeof(size_t) == 0) { /* always true */ while (len >= 16) { size_t c, *out_t = (size_t *)out, *ivec_t = (size_t *)ivec; const size_t *in_t = (const size_t *)in; (*block) (in, tmp.c, key); for (n = 0; n < 16 / sizeof(size_t); n++) { c = in_t[n]; out_t[n] = tmp.t[n] ^ ivec_t[n]; ivec_t[n] = c; } len -= 16; in += 16; out += 16; } } } #endif while (len) { unsigned char c; (*block) (in, tmp.c, key); for (n = 0; n < 16 && n < len; ++n) { c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = c; } if (len <= 16) { for (; n < 16; ++n) ivec[n] = in[n]; break; } len -= 16; in += 16; out += 16; } } openssl-1.1.1f/crypto/modes/ccm128.c000066400000000000000000000267201364063235100171450ustar00rootroot00000000000000/* * Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include /* * First you setup M and L parameters and pass the key schedule. This is * called once per session setup... */ void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, unsigned int M, unsigned int L, void *key, block128_f block) { memset(ctx->nonce.c, 0, sizeof(ctx->nonce.c)); ctx->nonce.c[0] = ((u8)(L - 1) & 7) | (u8)(((M - 2) / 2) & 7) << 3; ctx->blocks = 0; ctx->block = block; ctx->key = key; } /* !!! Following interfaces are to be called *once* per packet !!! */ /* Then you setup per-message nonce and pass the length of the message */ int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx, const unsigned char *nonce, size_t nlen, size_t mlen) { unsigned int L = ctx->nonce.c[0] & 7; /* the L parameter */ if (nlen < (14 - L)) return -1; /* nonce is too short */ if (sizeof(mlen) == 8 && L >= 3) { ctx->nonce.c[8] = (u8)(mlen >> (56 % (sizeof(mlen) * 8))); ctx->nonce.c[9] = (u8)(mlen >> (48 % (sizeof(mlen) * 8))); ctx->nonce.c[10] = (u8)(mlen >> (40 % (sizeof(mlen) * 8))); ctx->nonce.c[11] = (u8)(mlen >> (32 % (sizeof(mlen) * 8))); } else ctx->nonce.u[1] = 0; ctx->nonce.c[12] = (u8)(mlen >> 24); ctx->nonce.c[13] = (u8)(mlen >> 16); ctx->nonce.c[14] = (u8)(mlen >> 8); ctx->nonce.c[15] = (u8)mlen; ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */ memcpy(&ctx->nonce.c[1], nonce, 14 - L); return 0; } /* Then you pass additional authentication data, this is optional */ void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx, const unsigned char *aad, size_t alen) { unsigned int i; block128_f block = ctx->block; if (alen == 0) return; ctx->nonce.c[0] |= 0x40; /* set Adata flag */ (*block) (ctx->nonce.c, ctx->cmac.c, ctx->key), ctx->blocks++; if (alen < (0x10000 - 0x100)) { ctx->cmac.c[0] ^= (u8)(alen >> 8); ctx->cmac.c[1] ^= (u8)alen; i = 2; } else if (sizeof(alen) == 8 && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFF; ctx->cmac.c[2] ^= (u8)(alen >> (56 % (sizeof(alen) * 8))); ctx->cmac.c[3] ^= (u8)(alen >> (48 % (sizeof(alen) * 8))); ctx->cmac.c[4] ^= (u8)(alen >> (40 % (sizeof(alen) * 8))); ctx->cmac.c[5] ^= (u8)(alen >> (32 % (sizeof(alen) * 8))); ctx->cmac.c[6] ^= (u8)(alen >> 24); ctx->cmac.c[7] ^= (u8)(alen >> 16); ctx->cmac.c[8] ^= (u8)(alen >> 8); ctx->cmac.c[9] ^= (u8)alen; i = 10; } else { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFE; ctx->cmac.c[2] ^= (u8)(alen >> 24); ctx->cmac.c[3] ^= (u8)(alen >> 16); ctx->cmac.c[4] ^= (u8)(alen >> 8); ctx->cmac.c[5] ^= (u8)alen; i = 6; } do { for (; i < 16 && alen; ++i, ++aad, --alen) ctx->cmac.c[i] ^= *aad; (*block) (ctx->cmac.c, ctx->cmac.c, ctx->key), ctx->blocks++; i = 0; } while (alen); } /* Finally you encrypt or decrypt the message */ /* * counter part of nonce may not be larger than L*8 bits, L is not larger * than 8, therefore 64-bit counter... */ static void ctr64_inc(unsigned char *counter) { unsigned int n = 8; u8 c; counter += 8; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++; ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; /* length mismatch */ ctx->blocks += ((len + 15) >> 3) | 1; if (ctx->blocks > (U64(1) << 61)) return -2; /* too much data */ while (len >= 16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; memcpy(temp.c, inp, 16); ctx->cmac.u[0] ^= temp.u[0]; ctx->cmac.u[1] ^= temp.u[1]; #else ctx->cmac.u[0] ^= ((u64 *)inp)[0]; ctx->cmac.u[1] ^= ((u64 *)inp)[1]; #endif (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) temp.u[0] ^= scratch.u[0]; temp.u[1] ^= scratch.u[1]; memcpy(out, temp.c, 16); #else ((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0]; ((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1]; #endif inp += 16; out += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= inp[i]; (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) out[i] = scratch.c[i] ^ inp[i]; } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key); ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; while (len >= 16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; #endif (*block) (ctx->nonce.c, scratch.c, key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) memcpy(temp.c, inp, 16); ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]); ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]); memcpy(out, scratch.c, 16); #else ctx->cmac.u[0] ^= (((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0]); ctx->cmac.u[1] ^= (((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1]); #endif (*block) (ctx->cmac.c, ctx->cmac.c, key); inp += 16; out += 16; len -= 16; } if (len) { (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]); (*block) (ctx->cmac.c, ctx->cmac.c, key); } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } static void ctr64_add(unsigned char *counter, size_t inc) { size_t n = 8, val = 0; counter += 8; do { --n; val += counter[n] + (inc & 0xff); counter[n] = (unsigned char)val; val >>= 8; /* carry bit */ inc >>= 8; } while (n && (inc || val)); } int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len, ccm128_f stream) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++; ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; /* length mismatch */ ctx->blocks += ((len + 15) >> 3) | 1; if (ctx->blocks > (U64(1) << 61)) return -2; /* too much data */ if ((n = len / 16)) { (*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; if (len) ctr64_add(ctx->nonce.c, n / 16); } if (len) { for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= inp[i]; (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) out[i] = scratch.c[i] ^ inp[i]; } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len, ccm128_f stream) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key); ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; if ((n = len / 16)) { (*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; if (len) ctr64_add(ctx->nonce.c, n / 16); } if (len) { (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]); (*block) (ctx->cmac.c, ctx->cmac.c, key); } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { unsigned int M = (ctx->nonce.c[0] >> 3) & 7; /* the M parameter */ M *= 2; M += 2; if (len != M) return 0; memcpy(tag, ctx->cmac.c, M); return M; } openssl-1.1.1f/crypto/modes/cfb128.c000066400000000000000000000147601364063235100171360ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include /* * The input and output encrypted as though 128bit cfb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { unsigned int n; size_t l = 0; n = *num; if (enc) { #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { *(out++) = ivec[n] ^= *(in++); --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) { *(size_t *)(out + n) = *(size_t *)(ivec + n) ^= *(size_t *)(in + n); } len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { out[n] = ivec[n] ^= in[n]; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { if (n == 0) { (*block) (ivec, ivec, key); } out[l] = ivec[n] ^= in[l]; ++l; n = (n + 1) % 16; } *num = n; } else { #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { unsigned char c; *(out++) = ivec[n] ^ (c = *(in++)); ivec[n] = c; --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) { size_t t = *(size_t *)(in + n); *(size_t *)(out + n) = *(size_t *)(ivec + n) ^ t; *(size_t *)(ivec + n) = t; } len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { unsigned char c; out[n] = ivec[n] ^ (c = in[n]); ivec[n] = c; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { unsigned char c; if (n == 0) { (*block) (ivec, ivec, key); } out[l] = ivec[n] ^ (c = in[l]); ivec[n] = c; ++l; n = (n + 1) % 16; } *num = n; } } /* * This expects a single block of size nbits for both in and out. Note that * it corrupts any extra bits in the last byte of out */ static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out, int nbits, const void *key, unsigned char ivec[16], int enc, block128_f block) { int n, rem, num; unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't * use) one byte off the end */ if (nbits <= 0 || nbits > 128) return; /* fill in the first half of the new IV with the current IV */ memcpy(ovec, ivec, 16); /* construct the new IV */ (*block) (ivec, ivec, key); num = (nbits + 7) / 8; if (enc) /* encrypt the input */ for (n = 0; n < num; ++n) out[n] = (ovec[16 + n] = in[n] ^ ivec[n]); else /* decrypt the input */ for (n = 0; n < num; ++n) out[n] = (ovec[16 + n] = in[n]) ^ ivec[n]; /* shift ovec left... */ rem = nbits % 8; num = nbits / 8; if (rem == 0) memcpy(ivec, ovec + num, 16); else for (n = 0; n < 16; ++n) ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem); /* it is not necessary to cleanse ovec, since the IV is not secret */ } /* N.B. This expects the input to be packed, MS bit first */ void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out, size_t bits, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; unsigned char c[1], d[1]; for (n = 0; n < bits; ++n) { c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; cfbr_encrypt_block(c, d, 1, key, ivec, enc, block); out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8)); } } void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; for (n = 0; n < length; ++n) cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block); } openssl-1.1.1f/crypto/modes/ctr128.c000066400000000000000000000135161364063235100171720ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include /* * NOTE: the IV/counter CTR mode is big-endian. The code itself is * endian-neutral. */ /* increment counter (128-bit int) by 1 */ static void ctr128_inc(unsigned char *counter) { u32 n = 16, c = 1; do { --n; c += counter[n]; counter[n] = (u8)c; c >>= 8; } while (n); } #if !defined(OPENSSL_SMALL_FOOTPRINT) static void ctr128_inc_aligned(unsigned char *counter) { size_t *data, c, d, n; const union { long one; char little; } is_endian = { 1 }; if (is_endian.little || ((size_t)counter % sizeof(size_t)) != 0) { ctr128_inc(counter); return; } data = (size_t *)counter; c = 1; n = 16 / sizeof(size_t); do { --n; d = data[n] += c; /* did addition carry? */ c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1); } while (n); } #endif /* * The input encrypted as though 128bit counter mode is being used. The * extra state information to record how much of the 128bit block we have * used is contained in *num, and the encrypted counter is kept in * ecount_buf. Both *num and ecount_buf must be initialised with zeros * before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes * that the counter is in the x lower bits of the IV (ivec), and that the * application has full control over overflow and the rest of the IV. This * implementation takes NO responsibility for checking that the counter * doesn't overflow into the rest of the IV when incremented. */ void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], unsigned char ecount_buf[16], unsigned int *num, block128_f block) { unsigned int n; size_t l = 0; n = *num; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { *(out++) = *(in++) ^ ecount_buf[n]; --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ecount_buf) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ecount_buf, key); ctr128_inc_aligned(ivec); for (n = 0; n < 16; n += sizeof(size_t)) *(size_t *)(out + n) = *(size_t *)(in + n) ^ *(size_t *)(ecount_buf + n); len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ecount_buf, key); ctr128_inc_aligned(ivec); while (len--) { out[n] = in[n] ^ ecount_buf[n]; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { if (n == 0) { (*block) (ivec, ecount_buf, key); ctr128_inc(ivec); } out[l] = in[l] ^ ecount_buf[n]; ++l; n = (n + 1) % 16; } *num = n; } /* increment upper 96 bits of 128-bit counter by 1 */ static void ctr96_inc(unsigned char *counter) { u32 n = 12, c = 1; do { --n; c += counter[n]; counter[n] = (u8)c; c >>= 8; } while (n); } void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], unsigned char ecount_buf[16], unsigned int *num, ctr128_f func) { unsigned int n, ctr32; n = *num; while (n && len) { *(out++) = *(in++) ^ ecount_buf[n]; --len; n = (n + 1) % 16; } ctr32 = GETU32(ivec + 12); while (len >= 16) { size_t blocks = len / 16; /* * 1<<28 is just a not-so-small yet not-so-large number... * Below condition is practically never met, but it has to * be checked for code correctness. */ if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28)) blocks = (1U << 28); /* * As (*func) operates on 32-bit counter, caller * has to handle overflow. 'if' below detects the * overflow, which is then handled by limiting the * amount of blocks to the exact overflow point... */ ctr32 += (u32)blocks; if (ctr32 < blocks) { blocks -= ctr32; ctr32 = 0; } (*func) (in, out, blocks, key, ivec); /* (*ctr) does not update ivec, caller does: */ PUTU32(ivec + 12, ctr32); /* ... overflow was detected, propagate carry. */ if (ctr32 == 0) ctr96_inc(ivec); blocks *= 16; len -= blocks; out += blocks; in += blocks; } if (len) { memset(ecount_buf, 0, 16); (*func) (ecount_buf, ecount_buf, 1, key, ivec); ++ctr32; PUTU32(ivec + 12, ctr32); if (ctr32 == 0) ctr96_inc(ivec); while (len--) { out[n] = in[n] ^ ecount_buf[n]; ++n; } } *num = n; } openssl-1.1.1f/crypto/modes/cts128.c000066400000000000000000000200431364063235100171640ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include /* * Trouble with Ciphertext Stealing, CTS, mode is that there is no * common official specification, but couple of cipher/application * specific ones: RFC2040 and RFC3962. Then there is 'Proposal to * Extend CBC Mode By "Ciphertext Stealing"' at NIST site, which * deviates from mentioned RFCs. Most notably it allows input to be * of block length and it doesn't flip the order of the last two * blocks. CTS is being discussed even in ECB context, but it's not * adopted for any known application. This implementation provides * two interfaces: one compliant with above mentioned RFCs and one * compliant with the NIST proposal, both extending CBC mode. */ size_t CRYPTO_cts128_encrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= residue; CRYPTO_cbc128_encrypt(in, out, len, key, ivec, block); in += len; out += len; for (n = 0; n < residue; ++n) ivec[n] ^= in[n]; (*block) (ivec, ivec, key); memcpy(out, out - 16, residue); memcpy(out - 16, ivec, 16); return len + residue; } size_t CRYPTO_nistcts128_encrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; if (len < 16) return 0; residue = len % 16; len -= residue; CRYPTO_cbc128_encrypt(in, out, len, key, ivec, block); if (residue == 0) return len; in += len; out += len; for (n = 0; n < residue; ++n) ivec[n] ^= in[n]; (*block) (ivec, ivec, key); memcpy(out - 16 + residue, ivec, 16); return len + residue; } size_t CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[16]; } tmp; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= residue; (*cbc) (in, out, len, key, ivec, 1); in += len; out += len; #if defined(CBC_HANDLES_TRUNCATED_IO) memcpy(tmp.c, out - 16, 16); (*cbc) (in, out - 16, residue, key, ivec, 1); memcpy(out, tmp.c, residue); #else memset(tmp.c, 0, sizeof(tmp)); memcpy(tmp.c, in, residue); memcpy(out, out - 16, residue); (*cbc) (tmp.c, out - 16, 16, key, ivec, 1); #endif return len + residue; } size_t CRYPTO_nistcts128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[16]; } tmp; if (len < 16) return 0; residue = len % 16; len -= residue; (*cbc) (in, out, len, key, ivec, 1); if (residue == 0) return len; in += len; out += len; #if defined(CBC_HANDLES_TRUNCATED_IO) (*cbc) (in, out - 16 + residue, residue, key, ivec, 1); #else memset(tmp.c, 0, sizeof(tmp)); memcpy(tmp.c, in, residue); (*cbc) (tmp.c, out - 16 + residue, 16, key, ivec, 1); #endif return len + residue; } size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; union { size_t align; unsigned char c[32]; } tmp; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= 16 + residue; if (len) { CRYPTO_cbc128_decrypt(in, out, len, key, ivec, block); in += len; out += len; } (*block) (in, tmp.c + 16, key); memcpy(tmp.c, tmp.c + 16, 16); memcpy(tmp.c, in + 16, residue); (*block) (tmp.c, tmp.c, key); for (n = 0; n < 16; ++n) { unsigned char c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = c; } for (residue += 16; n < residue; ++n) out[n] = tmp.c[n] ^ in[n]; return 16 + len + residue; } size_t CRYPTO_nistcts128_decrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; union { size_t align; unsigned char c[32]; } tmp; if (len < 16) return 0; residue = len % 16; if (residue == 0) { CRYPTO_cbc128_decrypt(in, out, len, key, ivec, block); return len; } len -= 16 + residue; if (len) { CRYPTO_cbc128_decrypt(in, out, len, key, ivec, block); in += len; out += len; } (*block) (in + residue, tmp.c + 16, key); memcpy(tmp.c, tmp.c + 16, 16); memcpy(tmp.c, in, residue); (*block) (tmp.c, tmp.c, key); for (n = 0; n < 16; ++n) { unsigned char c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = in[n + residue]; tmp.c[n] = c; } for (residue += 16; n < residue; ++n) out[n] = tmp.c[n] ^ tmp.c[n - 16]; return 16 + len + residue; } size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[32]; } tmp; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= 16 + residue; if (len) { (*cbc) (in, out, len, key, ivec, 0); in += len; out += len; } memset(tmp.c, 0, sizeof(tmp)); /* * this places in[16] at &tmp.c[16] and decrypted block at &tmp.c[0] */ (*cbc) (in, tmp.c, 16, key, tmp.c + 16, 0); memcpy(tmp.c, in + 16, residue); #if defined(CBC_HANDLES_TRUNCATED_IO) (*cbc) (tmp.c, out, 16 + residue, key, ivec, 0); #else (*cbc) (tmp.c, tmp.c, 32, key, ivec, 0); memcpy(out, tmp.c, 16 + residue); #endif return 16 + len + residue; } size_t CRYPTO_nistcts128_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[32]; } tmp; if (len < 16) return 0; residue = len % 16; if (residue == 0) { (*cbc) (in, out, len, key, ivec, 0); return len; } len -= 16 + residue; if (len) { (*cbc) (in, out, len, key, ivec, 0); in += len; out += len; } memset(tmp.c, 0, sizeof(tmp)); /* * this places in[16] at &tmp.c[16] and decrypted block at &tmp.c[0] */ (*cbc) (in + residue, tmp.c, 16, key, tmp.c + 16, 0); memcpy(tmp.c, in, residue); #if defined(CBC_HANDLES_TRUNCATED_IO) (*cbc) (tmp.c, out, 16 + residue, key, ivec, 0); #else (*cbc) (tmp.c, tmp.c, 32, key, ivec, 0); memcpy(out, tmp.c, 16 + residue); #endif return 16 + len + residue; } openssl-1.1.1f/crypto/modes/gcm128.c000066400000000000000000001546651364063235100171630ustar00rootroot00000000000000/* * Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) /* redefine, because alignment is ensured */ # undef GETU32 # define GETU32(p) BSWAP4(*(const u32 *)(p)) # undef PUTU32 # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) #endif #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) #define REDUCE1BIT(V) do { \ if (sizeof(size_t)==8) { \ u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^T; \ } \ else { \ u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^((u64)T<<32); \ } \ } while(0) /*- * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should * never be set to 8. 8 is effectively reserved for testing purposes. * TABLE_BITS>1 are lookup-table-driven implementations referred to as * "Shoup's" in GCM specification. In other words OpenSSL does not cover * whole spectrum of possible table driven implementations. Why? In * non-"Shoup's" case memory access pattern is segmented in such manner, * that it's trivial to see that cache timing information can reveal * fair portion of intermediate hash value. Given that ciphertext is * always available to attacker, it's possible for him to attempt to * deduce secret parameter H and if successful, tamper with messages * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's * not as trivial, but there is no reason to believe that it's resistant * to cache-timing attack. And the thing about "8-bit" implementation is * that it consumes 16 (sixteen) times more memory, 4KB per individual * key + 1KB shared. Well, on pros side it should be twice as fast as * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version * was observed to run ~75% faster, closer to 100% for commercial * compilers... Yet "4-bit" procedure is preferred, because it's * believed to provide better security-performance balance and adequate * all-round performance. "All-round" refers to things like: * * - shorter setup time effectively improves overall timing for * handling short messages; * - larger table allocation can become unbearable because of VM * subsystem penalties (for example on Windows large enough free * results in VM working set trimming, meaning that consequent * malloc would immediately incur working set expansion); * - larger table has larger cache footprint, which can affect * performance of other code paths (not necessarily even from same * thread in Hyper-Threading world); * * Value of 1 is not appropriate for performance reasons. */ #if TABLE_BITS==8 static void gcm_init_8bit(u128 Htable[256], u64 H[2]) { int i, j; u128 V; Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; for (Htable[128] = V, i = 64; i > 0; i >>= 1) { REDUCE1BIT(V); Htable[i] = V; } for (i = 2; i < 256; i <<= 1) { u128 *Hi = Htable + i, H0 = *Hi; for (j = 1; j < i; ++j) { Hi[j].hi = H0.hi ^ Htable[j].hi; Hi[j].lo = H0.lo ^ Htable[j].lo; } } } static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) { u128 Z = { 0, 0 }; const u8 *xi = (const u8 *)Xi + 15; size_t rem, n = *xi; const union { long one; char little; } is_endian = { 1 }; static const size_t rem_8bit[256] = { PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) }; while (1) { Z.hi ^= Htable[n].hi; Z.lo ^= Htable[n].lo; if ((u8 *)Xi == xi) break; n = *(--xi); rem = (size_t)Z.lo & 0xff; Z.lo = (Z.hi << 56) | (Z.lo >> 8); Z.hi = (Z.hi >> 8); if (sizeof(size_t) == 8) Z.hi ^= rem_8bit[rem]; else Z.hi ^= (u64)rem_8bit[rem] << 32; } if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # define GCM_MUL(ctx) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) #elif TABLE_BITS==4 static void gcm_init_4bit(u128 Htable[16], u64 H[2]) { u128 V; # if defined(OPENSSL_SMALL_FOOTPRINT) int i; # endif Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; # if defined(OPENSSL_SMALL_FOOTPRINT) for (Htable[8] = V, i = 4; i > 0; i >>= 1) { REDUCE1BIT(V); Htable[i] = V; } for (i = 2; i < 16; i <<= 1) { u128 *Hi = Htable + i; int j; for (V = *Hi, j = 1; j < i; ++j) { Hi[j].hi = V.hi ^ Htable[j].hi; Hi[j].lo = V.lo ^ Htable[j].lo; } } # else Htable[8] = V; REDUCE1BIT(V); Htable[4] = V; REDUCE1BIT(V); Htable[2] = V; REDUCE1BIT(V); Htable[1] = V; Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; V = Htable[4]; Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; V = Htable[8]; Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; # endif # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) /* * ARM assembler expects specific dword order in Htable. */ { int j; const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo; Htable[j].lo = V.hi; } else for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo << 32 | V.lo >> 32; Htable[j].lo = V.hi << 32 | V.hi >> 32; } } # endif } # ifndef GHASH_ASM static const size_t rem_4bit[16] = { PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) { u128 Z; int cnt = 15; size_t rem, nlo, nhi; const union { long one; char little; } is_endian = { 1 }; nlo = ((const u8 *)Xi)[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # if !defined(OPENSSL_SMALL_FOOTPRINT) /* * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for * details... Compiler-generated code doesn't seem to give any * performance improvement, at least not on x86[_64]. It's here * mostly as reference and a placeholder for possible future * non-trivial optimization[s]... */ static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) { u128 Z; int cnt; size_t rem, nlo, nhi; const union { long one; char little; } is_endian = { 1 }; # if 1 do { cnt = 15; nlo = ((const u8 *)Xi)[15]; nlo ^= inp[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } # else /* * Extra 256+16 bytes per-key plus 512 bytes shared tables * [should] give ~50% improvement... One could have PACK()-ed * the rem_8bit even here, but the priority is to minimize * cache footprint... */ u128 Hshr4[16]; /* Htable shifted right by 4 bits */ u8 Hshl4[16]; /* Htable shifted left by 4 bits */ static const unsigned short rem_8bit[256] = { 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; /* * This pre-processing phase slows down procedure by approximately * same time as it makes each loop spin faster. In other words * single block performance is approximately same as straightforward * "4-bit" implementation, and then it goes only faster... */ for (cnt = 0; cnt < 16; ++cnt) { Z.hi = Htable[cnt].hi; Z.lo = Htable[cnt].lo; Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4); Hshr4[cnt].hi = (Z.hi >> 4); Hshl4[cnt] = (u8)(Z.lo << 4); } do { for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; rem = (size_t)Z.lo & 0xff; Z.lo = (Z.hi << 56) | (Z.lo >> 8); Z.hi = (Z.hi >> 8); Z.hi ^= Hshr4[nhi].hi; Z.lo ^= Hshr4[nhi].lo; Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; } nlo = ((const u8 *)Xi)[0]; nlo ^= inp[0]; nhi = nlo >> 4; nlo &= 0xf; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; # endif if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } while (inp += 16, len -= 16); } # endif # else void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # define GCM_MUL(ctx) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) # define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) /* * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing * effect. In other words idea is to hash data while it's still in L1 cache * after encryption pass... */ # define GHASH_CHUNK (3*1024) # endif #else /* TABLE_BITS */ static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) { u128 V, Z = { 0, 0 }; long X; int i, j; const long *xi = (const long *)Xi; const union { long one; char little; } is_endian = { 1 }; V.hi = H[0]; /* H is in host byte order, no byte swapping */ V.lo = H[1]; for (j = 0; j < 16 / sizeof(long); ++j) { if (is_endian.little) { if (sizeof(long) == 8) { # ifdef BSWAP8 X = (long)(BSWAP8(xi[j])); # else const u8 *p = (const u8 *)(xi + j); X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4)); # endif } else { const u8 *p = (const u8 *)(xi + j); X = (long)GETU32(p); } } else X = xi[j]; for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) { u64 M = (u64)(X >> (8 * sizeof(long) - 1)); Z.hi ^= V.hi & M; Z.lo ^= V.lo & M; REDUCE1BIT(V); } } if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # define GCM_MUL(ctx) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) #endif #if TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) # if !defined(I386_ONLY) && \ (defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define GHASH_ASM_X86_OR_64 # define GCM_FUNCREF_4BIT extern unsigned int OPENSSL_ia32cap_P[]; void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define gcm_init_avx gcm_init_clmul # define gcm_gmult_avx gcm_gmult_clmul # define gcm_ghash_avx gcm_ghash_clmul # else void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define GHASH_ASM_X86 void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) # include "arm_arch.h" # if __ARM_MAX_ARCH__>=7 # define GHASH_ASM_ARM # define GCM_FUNCREF_4BIT # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL) # if defined(__arm__) || defined(__arm) # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__sparc__) || defined(__sparc) # include "sparc_arch.h" # define GHASH_ASM_SPARC # define GCM_FUNCREF_4BIT extern unsigned int OPENSSL_sparcv9cap_P[]; void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) # include "ppc_arch.h" # define GHASH_ASM_PPC # define GCM_FUNCREF_4BIT void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif #endif #ifdef GCM_FUNCREF_4BIT # undef GCM_MUL # define GCM_MUL(ctx) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) # ifdef GHASH # undef GHASH # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) # endif #endif void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) { const union { long one; char little; } is_endian = { 1 }; memset(ctx, 0, sizeof(*ctx)); ctx->block = block; ctx->key = key; (*block) (ctx->H.c, ctx->H.c, key); if (is_endian.little) { /* H is stored in host byte order */ #ifdef BSWAP8 ctx->H.u[0] = BSWAP8(ctx->H.u[0]); ctx->H.u[1] = BSWAP8(ctx->H.u[1]); #else u8 *p = ctx->H.c; u64 hi, lo; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); ctx->H.u[0] = hi; ctx->H.u[1] = lo; #endif } #if TABLE_BITS==8 gcm_init_8bit(ctx->Htable, ctx->H.u); #elif TABLE_BITS==4 # if defined(GHASH) # define CTX__GHASH(f) (ctx->ghash = (f)) # else # define CTX__GHASH(f) (ctx->ghash = NULL) # endif # if defined(GHASH_ASM_X86_OR_64) # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ gcm_init_avx(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_avx; CTX__GHASH(gcm_ghash_avx); } else { gcm_init_clmul(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_clmul; CTX__GHASH(gcm_ghash_clmul); } return; } # endif gcm_init_4bit(ctx->Htable, ctx->H.u); # if defined(GHASH_ASM_X86) /* x86 only */ # if defined(OPENSSL_IA32_SSE2) if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ # else if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ # endif ctx->gmult = gcm_gmult_4bit_mmx; CTX__GHASH(gcm_ghash_4bit_mmx); } else { ctx->gmult = gcm_gmult_4bit_x86; CTX__GHASH(gcm_ghash_4bit_x86); } # else ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); # endif # elif defined(GHASH_ASM_ARM) # ifdef PMULL_CAPABLE if (PMULL_CAPABLE) { gcm_init_v8(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_v8; CTX__GHASH(gcm_ghash_v8); } else # endif # ifdef NEON_CAPABLE if (NEON_CAPABLE) { gcm_init_neon(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_neon; CTX__GHASH(gcm_ghash_neon); } else # endif { gcm_init_4bit(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); } # elif defined(GHASH_ASM_SPARC) if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { gcm_init_vis3(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_vis3; CTX__GHASH(gcm_ghash_vis3); } else { gcm_init_4bit(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); } # elif defined(GHASH_ASM_PPC) if (OPENSSL_ppccap_P & PPC_CRYPTO207) { gcm_init_p8(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_p8; CTX__GHASH(gcm_ghash_p8); } else { gcm_init_4bit(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); } # else gcm_init_4bit(ctx->Htable, ctx->H.u); # endif # undef CTX__GHASH #endif } void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, size_t len) { const union { long one; char little; } is_endian = { 1 }; unsigned int ctr; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; #endif ctx->len.u[0] = 0; /* AAD length */ ctx->len.u[1] = 0; /* message length */ ctx->ares = 0; ctx->mres = 0; if (len == 12) { memcpy(ctx->Yi.c, iv, 12); ctx->Yi.c[12] = 0; ctx->Yi.c[13] = 0; ctx->Yi.c[14] = 0; ctx->Yi.c[15] = 1; ctr = 1; } else { size_t i; u64 len0 = len; /* Borrow ctx->Xi to calculate initial Yi */ ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= iv[i]; GCM_MUL(ctx); iv += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= iv[i]; GCM_MUL(ctx); } len0 <<= 3; if (is_endian.little) { #ifdef BSWAP8 ctx->Xi.u[1] ^= BSWAP8(len0); #else ctx->Xi.c[8] ^= (u8)(len0 >> 56); ctx->Xi.c[9] ^= (u8)(len0 >> 48); ctx->Xi.c[10] ^= (u8)(len0 >> 40); ctx->Xi.c[11] ^= (u8)(len0 >> 32); ctx->Xi.c[12] ^= (u8)(len0 >> 24); ctx->Xi.c[13] ^= (u8)(len0 >> 16); ctx->Xi.c[14] ^= (u8)(len0 >> 8); ctx->Xi.c[15] ^= (u8)(len0); #endif } else { ctx->Xi.u[1] ^= len0; } GCM_MUL(ctx); if (is_endian.little) #ifdef BSWAP4 ctr = BSWAP4(ctx->Xi.d[3]); #else ctr = GETU32(ctx->Xi.c + 12); #endif else ctr = ctx->Xi.d[3]; /* Copy borrowed Xi to Yi */ ctx->Yi.u[0] = ctx->Xi.u[0]; ctx->Yi.u[1] = ctx->Xi.u[1]; } ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); ++ctr; if (is_endian.little) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, size_t len) { size_t i; unsigned int n; u64 alen = ctx->len.u[0]; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # ifdef GHASH void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif #endif if (ctx->len.u[1]) return -2; alen += len; if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) return -1; ctx->len.u[0] = alen; n = ctx->ares; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(aad++); --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx); else { ctx->ares = n; return 0; } } #ifdef GHASH if ((i = (len & (size_t)-16))) { GHASH(ctx, aad, i); aad += i; len -= i; } #else while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= aad[i]; GCM_MUL(ctx); aad += 16; len -= 16; } #endif if (len) { n = (unsigned int)len; for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= aad[i]; } ctx->ares = n; return 0; } int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif #endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (is_endian.little) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = mres % 16; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { # if defined(GHASH) while (n && len) { ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; while (j) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { size_t j = i; while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } GHASH(ctx, out - j, j); } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; GCM_MUL(ctx); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; # if defined(GHASH) while (len--) { ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } # else while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } mres = n; # endif } ctx->mres = mres; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (mres == sizeof(ctx->Xn)) { GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); mres = 0; } #else ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; mres = n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx); #endif } ctx->mres = mres; return 0; } int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif #endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (is_endian.little) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = mres % 16; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { # if defined(GHASH) while (n && len) { *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; GHASH(ctx, in, GHASH_CHUNK); while (j) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { GHASH(ctx, in, i); while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) { size_t c = in[i]; out[i] = c ^ ctx->EKi.t[i]; ctx->Xi.t[i] ^= c; } GCM_MUL(ctx); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; # if defined(GHASH) while (len--) { out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; ++n; } # else while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } mres = n; # endif } ctx->mres = mres; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { u8 c; if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (mres == sizeof(ctx->Xn)) { GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); mres = 0; } #else c = in[i]; out[i] = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; mres = n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx); #endif } ctx->mres = mres; return 0; } int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_encrypt(ctx, in, out, len); #else const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; # ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # ifdef GHASH void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif # endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ #if defined(GHASH) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (is_endian.little) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = mres % 16; if (n) { # if defined(GHASH) while (n && len) { ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; GHASH(ctx, out, GHASH_CHUNK); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; in += i; len -= i; # if defined(GHASH) GHASH(ctx, out, i); out += i; # else while (j--) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= out[i]; GCM_MUL(ctx); out += 16; } # endif } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { # if defined(GHASH) ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; # else ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n]; # endif ++n; } } ctx->mres = mres; return 0; #endif } int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_decrypt(ctx, in, out, len); #else const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; # ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # ifdef GHASH void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif # endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ # if defined(GHASH) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); # else GCM_MUL(ctx); # endif ctx->ares = 0; } if (is_endian.little) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = mres % 16; if (n) { # if defined(GHASH) while (n && len) { *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { GHASH(ctx, in, GHASH_CHUNK); (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; # if defined(GHASH) GHASH(ctx, in, i); # else while (j--) { size_t k; for (k = 0; k < 16; ++k) ctx->Xi.c[k] ^= in[k]; GCM_MUL(ctx); in += 16; } j = i / 16; in -= i; # endif (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += i; in += i; len -= i; } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { # if defined(GHASH) out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; # else u8 c = in[n]; ctx->Xi.c[mres++] ^= c; out[n] = c ^ ctx->EKi.c[n]; # endif ++n; } } ctx->mres = mres; return 0; #endif } int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, size_t len) { const union { long one; char little; } is_endian = { 1 }; u64 alen = ctx->len.u[0] << 3; u64 clen = ctx->len.u[1] << 3; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif #endif #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) u128 bitlen; unsigned int mres = ctx->mres; if (mres) { unsigned blocks = (mres + 15) & -16; memset(ctx->Xn + mres, 0, blocks - mres); mres = blocks; if (mres == sizeof(ctx->Xn)) { GHASH(ctx, ctx->Xn, mres); mres = 0; } } else if (ctx->ares) { GCM_MUL(ctx); } #else if (ctx->mres || ctx->ares) GCM_MUL(ctx); #endif if (is_endian.little) { #ifdef BSWAP8 alen = BSWAP8(alen); clen = BSWAP8(clen); #else u8 *p = ctx->len.c; ctx->len.u[0] = alen; ctx->len.u[1] = clen; alen = (u64)GETU32(p) << 32 | GETU32(p + 4); clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) bitlen.hi = alen; bitlen.lo = clen; memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen)); mres += sizeof(bitlen); GHASH(ctx, ctx->Xn, mres); #else ctx->Xi.u[0] ^= alen; ctx->Xi.u[1] ^= clen; GCM_MUL(ctx); #endif ctx->Xi.u[0] ^= ctx->EK0.u[0]; ctx->Xi.u[1] ^= ctx->EK0.u[1]; if (tag && len <= sizeof(ctx->Xi)) return CRYPTO_memcmp(ctx->Xi.c, tag, len); else return -1; } void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { CRYPTO_gcm128_finish(ctx, NULL, 0); memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); } GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) { GCM128_CONTEXT *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) CRYPTO_gcm128_init(ret, key, block); return ret; } void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) { OPENSSL_clear_free(ctx, sizeof(*ctx)); } openssl-1.1.1f/crypto/modes/modes_local.h000066400000000000000000000137411364063235100204350ustar00rootroot00000000000000/* * Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__) typedef __int64 i64; typedef unsigned __int64 u64; # define U64(C) C##UI64 #elif defined(__arch64__) typedef long i64; typedef unsigned long u64; # define U64(C) C##UL #else typedef long long i64; typedef unsigned long long u64; # define U64(C) C##ULL #endif typedef unsigned int u32; typedef unsigned char u8; #define STRICT_ALIGNMENT 1 #ifndef PEDANTIC # if defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ defined(__aarch64__) || \ defined(__s390__) || defined(__s390x__) # undef STRICT_ALIGNMENT # endif #endif #if !defined(PEDANTIC) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) # if defined(__GNUC__) && __GNUC__>=2 # if defined(__x86_64) || defined(__x86_64__) # define BSWAP8(x) ({ u64 ret_=(x); \ asm ("bswapq %0" \ : "+r"(ret_)); ret_; }) # define BSWAP4(x) ({ u32 ret_=(x); \ asm ("bswapl %0" \ : "+r"(ret_)); ret_; }) # elif (defined(__i386) || defined(__i386__)) && !defined(I386_ONLY) # define BSWAP8(x) ({ u32 lo_=(u64)(x)>>32,hi_=(x); \ asm ("bswapl %0; bswapl %1" \ : "+r"(hi_),"+r"(lo_)); \ (u64)hi_<<32|lo_; }) # define BSWAP4(x) ({ u32 ret_=(x); \ asm ("bswapl %0" \ : "+r"(ret_)); ret_; }) # elif defined(__aarch64__) # define BSWAP8(x) ({ u64 ret_; \ asm ("rev %0,%1" \ : "=r"(ret_) : "r"(x)); ret_; }) # define BSWAP4(x) ({ u32 ret_; \ asm ("rev %w0,%w1" \ : "=r"(ret_) : "r"(x)); ret_; }) # elif (defined(__arm__) || defined(__arm)) && !defined(STRICT_ALIGNMENT) # define BSWAP8(x) ({ u32 lo_=(u64)(x)>>32,hi_=(x); \ asm ("rev %0,%0; rev %1,%1" \ : "+r"(hi_),"+r"(lo_)); \ (u64)hi_<<32|lo_; }) # define BSWAP4(x) ({ u32 ret_; \ asm ("rev %0,%1" \ : "=r"(ret_) : "r"((u32)(x))); \ ret_; }) # endif # elif defined(_MSC_VER) # if _MSC_VER>=1300 # include # pragma intrinsic(_byteswap_uint64,_byteswap_ulong) # define BSWAP8(x) _byteswap_uint64((u64)(x)) # define BSWAP4(x) _byteswap_ulong((u32)(x)) # elif defined(_M_IX86) __inline u32 _bswap4(u32 val) { _asm mov eax, val _asm bswap eax} # define BSWAP4(x) _bswap4(x) # endif # endif #endif #if defined(BSWAP4) && !defined(STRICT_ALIGNMENT) # define GETU32(p) BSWAP4(*(const u32 *)(p)) # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) #else # define GETU32(p) ((u32)(p)[0]<<24|(u32)(p)[1]<<16|(u32)(p)[2]<<8|(u32)(p)[3]) # define PUTU32(p,v) ((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((v)>>8),(p)[3]=(u8)(v)) #endif /*- GCM definitions */ typedef struct { u64 hi, lo; } u128; #ifdef TABLE_BITS # undef TABLE_BITS #endif /* * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should * never be set to 8 [or 1]. For further information see gcm128.c. */ #define TABLE_BITS 4 struct gcm128_context { /* Following 6 names follow names in GCM specification */ union { u64 u[2]; u32 d[4]; u8 c[16]; size_t t[16 / sizeof(size_t)]; } Yi, EKi, EK0, len, Xi, H; /* * Relative position of Xi, H and pre-computed Htable is used in some * assembler modules, i.e. don't change the order! */ #if TABLE_BITS==8 u128 Htable[256]; #else u128 Htable[16]; void (*gmult) (u64 Xi[2], const u128 Htable[16]); void (*ghash) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); #endif unsigned int mres, ares; block128_f block; void *key; #if !defined(OPENSSL_SMALL_FOOTPRINT) unsigned char Xn[48]; #endif }; struct xts128_context { void *key1, *key2; block128_f block1, block2; }; struct ccm128_context { union { u64 u[2]; u8 c[16]; } nonce, cmac; u64 blocks; block128_f block; void *key; }; #ifndef OPENSSL_NO_OCB typedef union { u64 a[2]; unsigned char c[16]; } OCB_BLOCK; # define ocb_block16_xor(in1,in2,out) \ ( (out)->a[0]=(in1)->a[0]^(in2)->a[0], \ (out)->a[1]=(in1)->a[1]^(in2)->a[1] ) # if STRICT_ALIGNMENT # define ocb_block16_xor_misaligned(in1,in2,out) \ ocb_block_xor((in1)->c,(in2)->c,16,(out)->c) # else # define ocb_block16_xor_misaligned ocb_block16_xor # endif struct ocb128_context { /* Need both encrypt and decrypt key schedules for decryption */ block128_f encrypt; block128_f decrypt; void *keyenc; void *keydec; ocb128_f stream; /* direction dependent */ /* Key dependent variables. Can be reused if key remains the same */ size_t l_index; size_t max_l_index; OCB_BLOCK l_star; OCB_BLOCK l_dollar; OCB_BLOCK *l; /* Must be reset for each session */ struct { u64 blocks_hashed; u64 blocks_processed; OCB_BLOCK offset_aad; OCB_BLOCK sum; OCB_BLOCK offset; OCB_BLOCK checksum; } sess; }; #endif /* OPENSSL_NO_OCB */ openssl-1.1.1f/crypto/modes/ocb128.c000066400000000000000000000405761364063235100171530ustar00rootroot00000000000000/* * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "modes_local.h" #ifndef OPENSSL_NO_OCB /* * Calculate the number of binary trailing zero's in any given number */ static u32 ocb_ntz(u64 n) { u32 cnt = 0; /* * We do a right-to-left simple sequential search. This is surprisingly * efficient as the distribution of trailing zeros is not uniform, * e.g. the number of possible inputs with no trailing zeros is equal to * the number with 1 or more; the number with exactly 1 is equal to the * number with 2 or more, etc. Checking the last two bits covers 75% of * all numbers. Checking the last three covers 87.5% */ while (!(n & 1)) { n >>= 1; cnt++; } return cnt; } /* * Shift a block of 16 bytes left by shift bits */ static void ocb_block_lshift(const unsigned char *in, size_t shift, unsigned char *out) { int i; unsigned char carry = 0, carry_next; for (i = 15; i >= 0; i--) { carry_next = in[i] >> (8 - shift); out[i] = (in[i] << shift) | carry; carry = carry_next; } } /* * Perform a "double" operation as per OCB spec */ static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) { unsigned char mask; /* * Calculate the mask based on the most significant bit. There are more * efficient ways to do this - but this way is constant time */ mask = in->c[0] & 0x80; mask >>= 7; mask = (0 - mask) & 0x87; ocb_block_lshift(in->c, 1, out->c); out->c[15] ^= mask; } /* * Perform an xor on in1 and in2 - each of len bytes. Store result in out */ static void ocb_block_xor(const unsigned char *in1, const unsigned char *in2, size_t len, unsigned char *out) { size_t i; for (i = 0; i < len; i++) { out[i] = in1[i] ^ in2[i]; } } /* * Lookup L_index in our lookup table. If we haven't already got it we need to * calculate it */ static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) { size_t l_index = ctx->l_index; if (idx <= l_index) { return ctx->l + idx; } /* We don't have it - so calculate it */ if (idx >= ctx->max_l_index) { void *tmp_ptr; /* * Each additional entry allows to process almost double as * much data, so that in linear world the table will need to * be expanded with smaller and smaller increments. Originally * it was doubling in size, which was a waste. Growing it * linearly is not formally optimal, but is simpler to implement. * We grow table by minimally required 4*n that would accommodate * the index. */ ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ return NULL; ctx->l = tmp_ptr; } while (l_index < idx) { ocb_double(ctx->l + l_index, ctx->l + l_index + 1); l_index++; } ctx->l_index = l_index; return ctx->l + idx; } /* * Create a new OCB128_CONTEXT */ OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, block128_f encrypt, block128_f decrypt, ocb128_f stream) { OCB128_CONTEXT *octx; int ret; if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, stream); if (ret) return octx; OPENSSL_free(octx); } return NULL; } /* * Initialise an existing OCB128_CONTEXT */ int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, block128_f encrypt, block128_f decrypt, ocb128_f stream) { memset(ctx, 0, sizeof(*ctx)); ctx->l_index = 0; ctx->max_l_index = 5; if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_INIT, ERR_R_MALLOC_FAILURE); return 0; } /* * We set both the encryption and decryption key schedules - decryption * needs both. Don't really need decryption schedule if only doing * encryption - but it simplifies things to take it anyway */ ctx->encrypt = encrypt; ctx->decrypt = decrypt; ctx->stream = stream; ctx->keyenc = keyenc; ctx->keydec = keydec; /* L_* = ENCIPHER(K, zeros(128)) */ ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); /* L_$ = double(L_*) */ ocb_double(&ctx->l_star, &ctx->l_dollar); /* L_0 = double(L_$) */ ocb_double(&ctx->l_dollar, ctx->l); /* L_{i} = double(L_{i-1}) */ ocb_double(ctx->l, ctx->l+1); ocb_double(ctx->l+1, ctx->l+2); ocb_double(ctx->l+2, ctx->l+3); ocb_double(ctx->l+3, ctx->l+4); ctx->l_index = 4; /* enough to process up to 496 bytes */ return 1; } /* * Copy an OCB128_CONTEXT object */ int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, void *keyenc, void *keydec) { memcpy(dest, src, sizeof(OCB128_CONTEXT)); if (keyenc) dest->keyenc = keyenc; if (keydec) dest->keydec = keydec; if (src->l) { if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_COPY_CTX, ERR_R_MALLOC_FAILURE); return 0; } memcpy(dest->l, src->l, (src->l_index + 1) * 16); } return 1; } /* * Set the IV to be used for this operation. Must be 1 - 15 bytes. */ int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, size_t len, size_t taglen) { unsigned char ktop[16], tmp[16], mask; unsigned char stretch[24], nonce[16]; size_t bottom, shift; /* * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. * We don't support this at this stage */ if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { return -1; } /* Reset nonce-dependent variables */ memset(&ctx->sess, 0, sizeof(ctx->sess)); /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ nonce[0] = ((taglen * 8) % 128) << 1; memset(nonce + 1, 0, 15); memcpy(nonce + 16 - len, iv, len); nonce[15 - len] |= 1; /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ memcpy(tmp, nonce, 16); tmp[15] &= 0xc0; ctx->encrypt(tmp, ktop, ctx->keyenc); /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ memcpy(stretch, ktop, 16); ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); /* bottom = str2num(Nonce[123..128]) */ bottom = nonce[15] & 0x3f; /* Offset_0 = Stretch[1+bottom..128+bottom] */ shift = bottom % 8; ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c); mask = 0xff; mask <<= 8 - shift; ctx->sess.offset.c[15] |= (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); return 1; } /* * Provide any AAD. This can be called multiple times. Only the final time can * have a partial block */ int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, size_t len) { u64 i, all_num_blocks; size_t num_blocks, last_len; OCB_BLOCK tmp; /* Calculate the number of blocks of AAD provided now, and so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->sess.blocks_hashed; /* Loop through all full blocks of AAD */ for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) { OCB_BLOCK *lookup; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (lookup == NULL) return 0; ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad); memcpy(tmp.c, aad, 16); aad += 16; /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star, &ctx->sess.offset_aad); /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ memset(tmp.c, 0, 16); memcpy(tmp.c, aad, last_len); tmp.c[last_len] = 0x80; ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); } ctx->sess.blocks_hashed = all_num_blocks; return 1; } /* * Provide any data to be encrypted. This can be called multiple times. Only * the final time can have a partial block */ int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { u64 i, all_num_blocks; size_t num_blocks, last_len; /* * Calculate the number of blocks of data to be encrypted provided now, and * so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->sess.blocks_processed; if (num_blocks && all_num_blocks == (size_t)all_num_blocks && ctx->stream != NULL) { size_t max_idx = 0, top = (size_t)all_num_blocks; /* * See how many L_{i} entries we need to process data at hand * and pre-compute missing entries in the table [if any]... */ while (top >>= 1) max_idx++; if (ocb_lookup_l(ctx, max_idx) == NULL) return 0; ctx->stream(in, out, num_blocks, ctx->keyenc, (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); } else { /* Loop through all full blocks to be encrypted */ for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { OCB_BLOCK *lookup; OCB_BLOCK tmp; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (lookup == NULL) return 0; ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); memcpy(tmp.c, in, 16); in += 16; /* Checksum_i = Checksum_{i-1} xor P_i */ ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); memcpy(out, tmp.c, 16); out += 16; } } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { OCB_BLOCK pad; /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); /* Pad = ENCIPHER(K, Offset_*) */ ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); /* C_* = P_* xor Pad[1..bitlen(P_*)] */ ocb_block_xor(in, pad.c, last_len, out); /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ memset(pad.c, 0, 16); /* borrow pad */ memcpy(pad.c, in, last_len); pad.c[last_len] = 0x80; ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); } ctx->sess.blocks_processed = all_num_blocks; return 1; } /* * Provide any data to be decrypted. This can be called multiple times. Only * the final time can have a partial block */ int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { u64 i, all_num_blocks; size_t num_blocks, last_len; /* * Calculate the number of blocks of data to be decrypted provided now, and * so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->sess.blocks_processed; if (num_blocks && all_num_blocks == (size_t)all_num_blocks && ctx->stream != NULL) { size_t max_idx = 0, top = (size_t)all_num_blocks; /* * See how many L_{i} entries we need to process data at hand * and pre-compute missing entries in the table [if any]... */ while (top >>= 1) max_idx++; if (ocb_lookup_l(ctx, max_idx) == NULL) return 0; ctx->stream(in, out, num_blocks, ctx->keydec, (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); } else { OCB_BLOCK tmp; /* Loop through all full blocks to be decrypted */ for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (lookup == NULL) return 0; ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); memcpy(tmp.c, in, 16); in += 16; /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); ctx->decrypt(tmp.c, tmp.c, ctx->keydec); ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); /* Checksum_i = Checksum_{i-1} xor P_i */ ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); memcpy(out, tmp.c, 16); out += 16; } } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { OCB_BLOCK pad; /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); /* Pad = ENCIPHER(K, Offset_*) */ ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); /* P_* = C_* xor Pad[1..bitlen(C_*)] */ ocb_block_xor(in, pad.c, last_len, out); /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ memset(pad.c, 0, 16); /* borrow pad */ memcpy(pad.c, out, last_len); pad.c[last_len] = 0x80; ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); } ctx->sess.blocks_processed = all_num_blocks; return 1; } static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len, int write) { OCB_BLOCK tmp; if (len > 16 || len < 1) { return -1; } /* * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) */ ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp); ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp); ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp); if (write) { memcpy(tag, &tmp, len); return 1; } else { return CRYPTO_memcmp(&tmp, tag, len); } } /* * Calculate the tag and verify it against the supplied tag */ int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, size_t len) { return ocb_finish(ctx, (unsigned char*)tag, len, 0); } /* * Retrieve the calculated tag */ int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) { return ocb_finish(ctx, tag, len, 1); } /* * Release all resources */ void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) { if (ctx) { OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); OPENSSL_cleanse(ctx, sizeof(*ctx)); } } #endif /* OPENSSL_NO_OCB */ openssl-1.1.1f/crypto/modes/ofb128.c000066400000000000000000000041741364063235100171500ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include /* * The input and output encrypted as though 128bit ofb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void CRYPTO_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], int *num, block128_f block) { unsigned int n; size_t l = 0; n = *num; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { *(out++) = *(in++) ^ ivec[n]; --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) *(size_t *)(out + n) = *(size_t *)(in + n) ^ *(size_t *)(ivec + n); len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { out[n] = in[n] ^ ivec[n]; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { if (n == 0) { (*block) (ivec, ivec, key); } out[l] = in[l] ^ ivec[n]; ++l; n = (n + 1) % 16; } *num = n; } openssl-1.1.1f/crypto/modes/wrap128.c000066400000000000000000000272011364063235100173470ustar00rootroot00000000000000/* * Copyright 2013-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /** Beware! * * Following wrapping modes were designed for AES but this implementation * allows you to use them for any 128 bit block cipher. */ #include "internal/cryptlib.h" #include /** RFC 3394 section 2.2.3.1 Default Initial Value */ static const unsigned char default_iv[] = { 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, }; /** RFC 5649 section 3 Alternative Initial Value 32-bit constant */ static const unsigned char default_aiv[] = { 0xA6, 0x59, 0x59, 0xA6 }; /** Input size limit: lower than maximum of standards but far larger than * anything that will be used in practice. */ #define CRYPTO128_WRAP_MAX (1UL << 31) /** Wrapping according to RFC 3394 section 2.2.1. * * @param[in] key Key value. * @param[in] iv IV value. Length = 8 bytes. NULL = use default_iv. * @param[in] in Plaintext as n 64-bit blocks, n >= 2. * @param[in] inlen Length of in. * @param[out] out Ciphertext. Minimal buffer length = (inlen + 8) bytes. * Input and output buffers can overlap if block function * supports that. * @param[in] block Block processing function. * @return 0 if inlen does not consist of n 64-bit blocks, n >= 2. * or if inlen > CRYPTO128_WRAP_MAX. * Output length if wrapping succeeded. */ size_t CRYPTO_128_wrap(void *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, size_t inlen, block128_f block) { unsigned char *A, B[16], *R; size_t i, j, t; if ((inlen & 0x7) || (inlen < 16) || (inlen > CRYPTO128_WRAP_MAX)) return 0; A = B; t = 1; memmove(out + 8, in, inlen); if (!iv) iv = default_iv; memcpy(A, iv, 8); for (j = 0; j < 6; j++) { R = out + 8; for (i = 0; i < inlen; i += 8, t++, R += 8) { memcpy(B + 8, R, 8); block(B, B, key); A[7] ^= (unsigned char)(t & 0xff); if (t > 0xff) { A[6] ^= (unsigned char)((t >> 8) & 0xff); A[5] ^= (unsigned char)((t >> 16) & 0xff); A[4] ^= (unsigned char)((t >> 24) & 0xff); } memcpy(R, B + 8, 8); } } memcpy(out, A, 8); return inlen + 8; } /** Unwrapping according to RFC 3394 section 2.2.2 steps 1-2. * The IV check (step 3) is responsibility of the caller. * * @param[in] key Key value. * @param[out] iv Unchecked IV value. Minimal buffer length = 8 bytes. * @param[out] out Plaintext without IV. * Minimal buffer length = (inlen - 8) bytes. * Input and output buffers can overlap if block function * supports that. * @param[in] in Ciphertext as n 64-bit blocks. * @param[in] inlen Length of in. * @param[in] block Block processing function. * @return 0 if inlen is out of range [24, CRYPTO128_WRAP_MAX] * or if inlen is not a multiple of 8. * Output length otherwise. */ static size_t crypto_128_unwrap_raw(void *key, unsigned char *iv, unsigned char *out, const unsigned char *in, size_t inlen, block128_f block) { unsigned char *A, B[16], *R; size_t i, j, t; inlen -= 8; if ((inlen & 0x7) || (inlen < 16) || (inlen > CRYPTO128_WRAP_MAX)) return 0; A = B; t = 6 * (inlen >> 3); memcpy(A, in, 8); memmove(out, in + 8, inlen); for (j = 0; j < 6; j++) { R = out + inlen - 8; for (i = 0; i < inlen; i += 8, t--, R -= 8) { A[7] ^= (unsigned char)(t & 0xff); if (t > 0xff) { A[6] ^= (unsigned char)((t >> 8) & 0xff); A[5] ^= (unsigned char)((t >> 16) & 0xff); A[4] ^= (unsigned char)((t >> 24) & 0xff); } memcpy(B + 8, R, 8); block(B, B, key); memcpy(R, B + 8, 8); } } memcpy(iv, A, 8); return inlen; } /** Unwrapping according to RFC 3394 section 2.2.2, including the IV check. * The first block of plaintext has to match the supplied IV, otherwise an * error is returned. * * @param[in] key Key value. * @param[out] iv IV value to match against. Length = 8 bytes. * NULL = use default_iv. * @param[out] out Plaintext without IV. * Minimal buffer length = (inlen - 8) bytes. * Input and output buffers can overlap if block function * supports that. * @param[in] in Ciphertext as n 64-bit blocks. * @param[in] inlen Length of in. * @param[in] block Block processing function. * @return 0 if inlen is out of range [24, CRYPTO128_WRAP_MAX] * or if inlen is not a multiple of 8 * or if IV doesn't match expected value. * Output length otherwise. */ size_t CRYPTO_128_unwrap(void *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, size_t inlen, block128_f block) { size_t ret; unsigned char got_iv[8]; ret = crypto_128_unwrap_raw(key, got_iv, out, in, inlen, block); if (ret == 0) return 0; if (!iv) iv = default_iv; if (CRYPTO_memcmp(got_iv, iv, 8)) { OPENSSL_cleanse(out, ret); return 0; } return ret; } /** Wrapping according to RFC 5649 section 4.1. * * @param[in] key Key value. * @param[in] icv (Non-standard) IV, 4 bytes. NULL = use default_aiv. * @param[out] out Ciphertext. Minimal buffer length = (inlen + 15) bytes. * Input and output buffers can overlap if block function * supports that. * @param[in] in Plaintext as n 64-bit blocks, n >= 2. * @param[in] inlen Length of in. * @param[in] block Block processing function. * @return 0 if inlen is out of range [1, CRYPTO128_WRAP_MAX]. * Output length if wrapping succeeded. */ size_t CRYPTO_128_wrap_pad(void *key, const unsigned char *icv, unsigned char *out, const unsigned char *in, size_t inlen, block128_f block) { /* n: number of 64-bit blocks in the padded key data * * If length of plain text is not a multiple of 8, pad the plain text octet * string on the right with octets of zeros, where final length is the * smallest multiple of 8 that is greater than length of plain text. * If length of plain text is a multiple of 8, then there is no padding. */ const size_t blocks_padded = (inlen + 7) / 8; /* CEILING(m/8) */ const size_t padded_len = blocks_padded * 8; const size_t padding_len = padded_len - inlen; /* RFC 5649 section 3: Alternative Initial Value */ unsigned char aiv[8]; int ret; /* Section 1: use 32-bit fixed field for plaintext octet length */ if (inlen == 0 || inlen >= CRYPTO128_WRAP_MAX) return 0; /* Section 3: Alternative Initial Value */ if (!icv) memcpy(aiv, default_aiv, 4); else memcpy(aiv, icv, 4); /* Standard doesn't mention this. */ aiv[4] = (inlen >> 24) & 0xFF; aiv[5] = (inlen >> 16) & 0xFF; aiv[6] = (inlen >> 8) & 0xFF; aiv[7] = inlen & 0xFF; if (padded_len == 8) { /* * Section 4.1 - special case in step 2: If the padded plaintext * contains exactly eight octets, then prepend the AIV and encrypt * the resulting 128-bit block using AES in ECB mode. */ memmove(out + 8, in, inlen); memcpy(out, aiv, 8); memset(out + 8 + inlen, 0, padding_len); block(out, out, key); ret = 16; /* AIV + padded input */ } else { memmove(out, in, inlen); memset(out + inlen, 0, padding_len); /* Section 4.1 step 1 */ ret = CRYPTO_128_wrap(key, aiv, out, out, padded_len, block); } return ret; } /** Unwrapping according to RFC 5649 section 4.2. * * @param[in] key Key value. * @param[in] icv (Non-standard) IV, 4 bytes. NULL = use default_aiv. * @param[out] out Plaintext. Minimal buffer length = (inlen - 8) bytes. * Input and output buffers can overlap if block function * supports that. * @param[in] in Ciphertext as n 64-bit blocks. * @param[in] inlen Length of in. * @param[in] block Block processing function. * @return 0 if inlen is out of range [16, CRYPTO128_WRAP_MAX], * or if inlen is not a multiple of 8 * or if IV and message length indicator doesn't match. * Output length if unwrapping succeeded and IV matches. */ size_t CRYPTO_128_unwrap_pad(void *key, const unsigned char *icv, unsigned char *out, const unsigned char *in, size_t inlen, block128_f block) { /* n: number of 64-bit blocks in the padded key data */ size_t n = inlen / 8 - 1; size_t padded_len; size_t padding_len; size_t ptext_len; /* RFC 5649 section 3: Alternative Initial Value */ unsigned char aiv[8]; static unsigned char zeros[8] = { 0x0 }; size_t ret; /* Section 4.2: Ciphertext length has to be (n+1) 64-bit blocks. */ if ((inlen & 0x7) != 0 || inlen < 16 || inlen >= CRYPTO128_WRAP_MAX) return 0; if (inlen == 16) { /* * Section 4.2 - special case in step 1: When n=1, the ciphertext * contains exactly two 64-bit blocks and they are decrypted as a * single AES block using AES in ECB mode: AIV | P[1] = DEC(K, C[0] | * C[1]) */ unsigned char buff[16]; block(in, buff, key); memcpy(aiv, buff, 8); /* Remove AIV */ memcpy(out, buff + 8, 8); padded_len = 8; OPENSSL_cleanse(buff, inlen); } else { padded_len = inlen - 8; ret = crypto_128_unwrap_raw(key, aiv, out, in, inlen, block); if (padded_len != ret) { OPENSSL_cleanse(out, inlen); return 0; } } /* * Section 3: AIV checks: Check that MSB(32,A) = A65959A6. Optionally a * user-supplied value can be used (even if standard doesn't mention * this). */ if ((!icv && CRYPTO_memcmp(aiv, default_aiv, 4)) || (icv && CRYPTO_memcmp(aiv, icv, 4))) { OPENSSL_cleanse(out, inlen); return 0; } /* * Check that 8*(n-1) < LSB(32,AIV) <= 8*n. If so, let ptext_len = * LSB(32,AIV). */ ptext_len = ((unsigned int)aiv[4] << 24) | ((unsigned int)aiv[5] << 16) | ((unsigned int)aiv[6] << 8) | (unsigned int)aiv[7]; if (8 * (n - 1) >= ptext_len || ptext_len > 8 * n) { OPENSSL_cleanse(out, inlen); return 0; } /* * Check that the rightmost padding_len octets of the output data are * zero. */ padding_len = padded_len - ptext_len; if (CRYPTO_memcmp(out + ptext_len, zeros, padding_len) != 0) { OPENSSL_cleanse(out, inlen); return 0; } /* Section 4.2 step 3: Remove padding */ return ptext_len; } openssl-1.1.1f/crypto/modes/xts128.c000066400000000000000000000105411364063235100172130ustar00rootroot00000000000000/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx, const unsigned char iv[16], const unsigned char *inp, unsigned char *out, size_t len, int enc) { const union { long one; char little; } is_endian = { 1 }; union { u64 u[2]; u32 d[4]; u8 c[16]; } tweak, scratch; unsigned int i; if (len < 16) return -1; memcpy(tweak.c, iv, 16); (*ctx->block2) (tweak.c, tweak.c, ctx->key2); if (!enc && (len % 16)) len -= 16; while (len >= 16) { #if defined(STRICT_ALIGNMENT) memcpy(scratch.c, inp, 16); scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; #else scratch.u[0] = ((u64 *)inp)[0] ^ tweak.u[0]; scratch.u[1] = ((u64 *)inp)[1] ^ tweak.u[1]; #endif (*ctx->block1) (scratch.c, scratch.c, ctx->key1); #if defined(STRICT_ALIGNMENT) scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out, scratch.c, 16); #else ((u64 *)out)[0] = scratch.u[0] ^= tweak.u[0]; ((u64 *)out)[1] = scratch.u[1] ^= tweak.u[1]; #endif inp += 16; out += 16; len -= 16; if (len == 0) return 0; if (is_endian.little) { unsigned int carry, res; res = 0x87 & (((int)tweak.d[3]) >> 31); carry = (unsigned int)(tweak.u[0] >> 63); tweak.u[0] = (tweak.u[0] << 1) ^ res; tweak.u[1] = (tweak.u[1] << 1) | carry; } else { size_t c; for (c = 0, i = 0; i < 16; ++i) { /* * + substitutes for |, because c is 1 bit */ c += ((size_t)tweak.c[i]) << 1; tweak.c[i] = (u8)c; c = c >> 8; } tweak.c[0] ^= (u8)(0x87 & (0 - c)); } } if (enc) { for (i = 0; i < len; ++i) { u8 c = inp[i]; out[i] = scratch.c[i]; scratch.c[i] = c; } scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; (*ctx->block1) (scratch.c, scratch.c, ctx->key1); scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out - 16, scratch.c, 16); } else { union { u64 u[2]; u8 c[16]; } tweak1; if (is_endian.little) { unsigned int carry, res; res = 0x87 & (((int)tweak.d[3]) >> 31); carry = (unsigned int)(tweak.u[0] >> 63); tweak1.u[0] = (tweak.u[0] << 1) ^ res; tweak1.u[1] = (tweak.u[1] << 1) | carry; } else { size_t c; for (c = 0, i = 0; i < 16; ++i) { /* * + substitutes for |, because c is 1 bit */ c += ((size_t)tweak.c[i]) << 1; tweak1.c[i] = (u8)c; c = c >> 8; } tweak1.c[0] ^= (u8)(0x87 & (0 - c)); } #if defined(STRICT_ALIGNMENT) memcpy(scratch.c, inp, 16); scratch.u[0] ^= tweak1.u[0]; scratch.u[1] ^= tweak1.u[1]; #else scratch.u[0] = ((u64 *)inp)[0] ^ tweak1.u[0]; scratch.u[1] = ((u64 *)inp)[1] ^ tweak1.u[1]; #endif (*ctx->block1) (scratch.c, scratch.c, ctx->key1); scratch.u[0] ^= tweak1.u[0]; scratch.u[1] ^= tweak1.u[1]; for (i = 0; i < len; ++i) { u8 c = inp[16 + i]; out[16 + i] = scratch.c[i]; scratch.c[i] = c; } scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; (*ctx->block1) (scratch.c, scratch.c, ctx->key1); #if defined(STRICT_ALIGNMENT) scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out, scratch.c, 16); #else ((u64 *)out)[0] = scratch.u[0] ^ tweak.u[0]; ((u64 *)out)[1] = scratch.u[1] ^ tweak.u[1]; #endif } return 0; } openssl-1.1.1f/crypto/o_dir.c000066400000000000000000000020701364063235100161250ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include /* * The routines really come from the Levitte Programming, so to make life * simple, let's just use the raw files and hack the symbols to fit our * namespace. */ #define LP_DIR_CTX OPENSSL_DIR_CTX #define LP_dir_context_st OPENSSL_dir_context_st #define LP_find_file OPENSSL_DIR_read #define LP_find_file_end OPENSSL_DIR_end #include "internal/o_dir.h" #define LPDIR_H #if defined OPENSSL_SYS_UNIX || defined DJGPP \ || (defined __VMS_VER && __VMS_VER >= 70000000) # include "LPdir_unix.c" #elif defined OPENSSL_SYS_VMS # include "LPdir_vms.c" #elif defined OPENSSL_SYS_WIN32 # include "LPdir_win32.c" #elif defined OPENSSL_SYS_WINCE # include "LPdir_wince.c" #else # include "LPdir_nyi.c" #endif openssl-1.1.1f/crypto/o_fips.c000066400000000000000000000011551364063235100163130ustar00rootroot00000000000000/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" int FIPS_mode(void) { /* This version of the library does not support FIPS mode. */ return 0; } int FIPS_mode_set(int r) { if (r == 0) return 1; CRYPTOerr(CRYPTO_F_FIPS_MODE_SET, CRYPTO_R_FIPS_MODE_NOT_SUPPORTED); return 0; } openssl-1.1.1f/crypto/o_fopen.c000066400000000000000000000104141364063235100164570ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ # if defined(__linux) || defined(__sun) || defined(__hpux) /* * Following definition aliases fopen to fopen64 on above mentioned * platforms. This makes it possible to open and sequentially access files * larger than 2GB from 32-bit application. It does not allow to traverse * them beyond 2GB with fseek/ftell, but on the other hand *no* 32-bit * platform permits that, not with fseek/ftell. Not to mention that breaking * 2GB limit for seeking would require surgery to *our* API. But sequential * access suffices for practical cases when you can run into large files, * such as fingerprinting, so we can let API alone. For reference, the list * of 32-bit platforms which allow for sequential access of large files * without extra "magic" comprise *BSD, Darwin, IRIX... */ # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # endif #include "e_os.h" #include "internal/cryptlib.h" #if !defined(OPENSSL_NO_STDIO) # include # ifdef __DJGPP__ # include # endif FILE *openssl_fopen(const char *filename, const char *mode) { FILE *file = NULL; # if defined(_WIN32) && defined(CP_UTF8) int sz, len_0 = (int)strlen(filename) + 1; DWORD flags; /* * Basically there are three cases to cover: a) filename is * pure ASCII string; b) actual UTF-8 encoded string and * c) locale-ized string, i.e. one containing 8-bit * characters that are meaningful in current system locale. * If filename is pure ASCII or real UTF-8 encoded string, * MultiByteToWideChar succeeds and _wfopen works. If * filename is locale-ized string, chances are that * MultiByteToWideChar fails reporting * ERROR_NO_UNICODE_TRANSLATION, in which case we fall * back to fopen... */ if ((sz = MultiByteToWideChar(CP_UTF8, (flags = MB_ERR_INVALID_CHARS), filename, len_0, NULL, 0)) > 0 || (GetLastError() == ERROR_INVALID_FLAGS && (sz = MultiByteToWideChar(CP_UTF8, (flags = 0), filename, len_0, NULL, 0)) > 0) ) { WCHAR wmode[8]; WCHAR *wfilename = _alloca(sz * sizeof(WCHAR)); if (MultiByteToWideChar(CP_UTF8, flags, filename, len_0, wfilename, sz) && MultiByteToWideChar(CP_UTF8, 0, mode, strlen(mode) + 1, wmode, OSSL_NELEM(wmode)) && (file = _wfopen(wfilename, wmode)) == NULL && (errno == ENOENT || errno == EBADF) ) { /* * UTF-8 decode succeeded, but no file, filename * could still have been locale-ized... */ file = fopen(filename, mode); } } else if (GetLastError() == ERROR_NO_UNICODE_TRANSLATION) { file = fopen(filename, mode); } # elif defined(__DJGPP__) { char *newname = NULL; if (pathconf(filename, _PC_NAME_MAX) <= 12) { /* 8.3 file system? */ char *iterator; char lastchar; if ((newname = OPENSSL_malloc(strlen(filename) + 1)) == NULL) { CRYPTOerr(CRYPTO_F_OPENSSL_FOPEN, ERR_R_MALLOC_FAILURE); return NULL; } for (iterator = newname, lastchar = '\0'; *filename; filename++, iterator++) { if (lastchar == '/' && filename[0] == '.' && filename[1] != '.' && filename[1] != '/') { /* Leading dots are not permitted in plain DOS. */ *iterator = '_'; } else { *iterator = *filename; } lastchar = *filename; } *iterator = '\0'; filename = newname; } file = fopen(filename, mode); OPENSSL_free(newname); } # else file = fopen(filename, mode); # endif return file; } #else void *openssl_fopen(const char *filename, const char *mode) { return NULL; } #endif openssl-1.1.1f/crypto/o_init.c000066400000000000000000000010011364063235100163030ustar00rootroot00000000000000/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include /* * Perform any essential OpenSSL initialization operations. Currently does * nothing. */ void OPENSSL_init(void) { return; } openssl-1.1.1f/crypto/o_str.c000066400000000000000000000145351364063235100161700ustar00rootroot00000000000000/* * Copyright 2003-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include "internal/cryptlib.h" #include "internal/o_str.h" int OPENSSL_memcmp(const void *v1, const void *v2, size_t n) { const unsigned char *c1 = v1, *c2 = v2; int ret = 0; while (n && (ret = *c1 - *c2) == 0) n--, c1++, c2++; return ret; } char *CRYPTO_strdup(const char *str, const char* file, int line) { char *ret; if (str == NULL) return NULL; ret = CRYPTO_malloc(strlen(str) + 1, file, line); if (ret != NULL) strcpy(ret, str); return ret; } char *CRYPTO_strndup(const char *str, size_t s, const char* file, int line) { size_t maxlen; char *ret; if (str == NULL) return NULL; maxlen = OPENSSL_strnlen(str, s); ret = CRYPTO_malloc(maxlen + 1, file, line); if (ret) { memcpy(ret, str, maxlen); ret[maxlen] = '\0'; } return ret; } void *CRYPTO_memdup(const void *data, size_t siz, const char* file, int line) { void *ret; if (data == NULL || siz >= INT_MAX) return NULL; ret = CRYPTO_malloc(siz, file, line); if (ret == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_MEMDUP, ERR_R_MALLOC_FAILURE); return NULL; } return memcpy(ret, data, siz); } size_t OPENSSL_strnlen(const char *str, size_t maxlen) { const char *p; for (p = str; maxlen-- != 0 && *p != '\0'; ++p) ; return p - str; } size_t OPENSSL_strlcpy(char *dst, const char *src, size_t size) { size_t l = 0; for (; size > 1 && *src; size--) { *dst++ = *src++; l++; } if (size) *dst = '\0'; return l + strlen(src); } size_t OPENSSL_strlcat(char *dst, const char *src, size_t size) { size_t l = 0; for (; size > 0 && *dst; size--, dst++) l++; return l + OPENSSL_strlcpy(dst, src, size); } int OPENSSL_hexchar2int(unsigned char c) { #ifdef CHARSET_EBCDIC c = os_toebcdic[c]; #endif switch (c) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'a': case 'A': return 0x0A; case 'b': case 'B': return 0x0B; case 'c': case 'C': return 0x0C; case 'd': case 'D': return 0x0D; case 'e': case 'E': return 0x0E; case 'f': case 'F': return 0x0F; } return -1; } /* * Give a string of hex digits convert to a buffer */ unsigned char *OPENSSL_hexstr2buf(const char *str, long *len) { unsigned char *hexbuf, *q; unsigned char ch, cl; int chi, cli; const unsigned char *p; size_t s; s = strlen(str); if ((hexbuf = OPENSSL_malloc(s >> 1)) == NULL) { CRYPTOerr(CRYPTO_F_OPENSSL_HEXSTR2BUF, ERR_R_MALLOC_FAILURE); return NULL; } for (p = (const unsigned char *)str, q = hexbuf; *p; ) { ch = *p++; if (ch == ':') continue; cl = *p++; if (!cl) { CRYPTOerr(CRYPTO_F_OPENSSL_HEXSTR2BUF, CRYPTO_R_ODD_NUMBER_OF_DIGITS); OPENSSL_free(hexbuf); return NULL; } cli = OPENSSL_hexchar2int(cl); chi = OPENSSL_hexchar2int(ch); if (cli < 0 || chi < 0) { OPENSSL_free(hexbuf); CRYPTOerr(CRYPTO_F_OPENSSL_HEXSTR2BUF, CRYPTO_R_ILLEGAL_HEX_DIGIT); return NULL; } *q++ = (unsigned char)((chi << 4) | cli); } if (len) *len = q - hexbuf; return hexbuf; } /* * Given a buffer of length 'len' return a OPENSSL_malloc'ed string with its * hex representation @@@ (Contents of buffer are always kept in ASCII, also * on EBCDIC machines) */ char *OPENSSL_buf2hexstr(const unsigned char *buffer, long len) { static const char hexdig[] = "0123456789ABCDEF"; char *tmp, *q; const unsigned char *p; int i; if (len == 0) { return OPENSSL_zalloc(1); } if ((tmp = OPENSSL_malloc(len * 3)) == NULL) { CRYPTOerr(CRYPTO_F_OPENSSL_BUF2HEXSTR, ERR_R_MALLOC_FAILURE); return NULL; } q = tmp; for (i = 0, p = buffer; i < len; i++, p++) { *q++ = hexdig[(*p >> 4) & 0xf]; *q++ = hexdig[*p & 0xf]; *q++ = ':'; } q[-1] = 0; #ifdef CHARSET_EBCDIC ebcdic2ascii(tmp, tmp, q - tmp - 1); #endif return tmp; } int openssl_strerror_r(int errnum, char *buf, size_t buflen) { #if defined(_MSC_VER) && _MSC_VER>=1400 return !strerror_s(buf, buflen, errnum); #elif defined(_GNU_SOURCE) char *err; /* * GNU strerror_r may not actually set buf. * It can return a pointer to some (immutable) static string in which case * buf is left unused. */ err = strerror_r(errnum, buf, buflen); if (err == NULL || buflen == 0) return 0; /* * If err is statically allocated, err != buf and we need to copy the data. * If err points somewhere inside buf, OPENSSL_strlcpy can handle this, * since src and dest are not annotated with __restrict and the function * reads src byte for byte and writes to dest. * If err == buf we do not have to copy anything. */ if (err != buf) OPENSSL_strlcpy(buf, err, buflen); return 1; #elif (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) || \ (defined(_XOPEN_SOURCE) && _XOPEN_SOURCE >= 600) /* * We can use "real" strerror_r. The OpenSSL version differs in that it * gives 1 on success and 0 on failure for consistency with other OpenSSL * functions. Real strerror_r does it the other way around */ return !strerror_r(errnum, buf, buflen); #else char *err; /* Fall back to non-thread safe strerror()...its all we can do */ if (buflen < 2) return 0; err = strerror(errnum); /* Can this ever happen? */ if (err == NULL) return 0; OPENSSL_strlcpy(buf, err, buflen); return 1; #endif } openssl-1.1.1f/crypto/o_time.c000066400000000000000000000127701364063235100163150ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result) { struct tm *ts = NULL; #if defined(OPENSSL_THREADS) && defined(OPENSSL_SYS_VMS) { /* * On VMS, gmtime_r() takes a 32-bit pointer as second argument. * Since we can't know that |result| is in a space that can easily * translate to a 32-bit pointer, we must store temporarily on stack * and copy the result. The stack is always reachable with 32-bit * pointers. */ #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE # pragma pointer_size save # pragma pointer_size 32 #endif struct tm data, *ts2 = &data; #if defined OPENSSL_SYS_VMS && __INITIAL_POINTER_SIZE # pragma pointer_size restore #endif if (gmtime_r(timer, ts2) == NULL) return NULL; memcpy(result, ts2, sizeof(struct tm)); ts = result; } #elif defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_SYS_MACOSX) if (gmtime_r(timer, result) == NULL) return NULL; ts = result; #elif defined (OPENSSL_SYS_WINDOWS) && defined(_MSC_VER) && _MSC_VER >= 1400 if (gmtime_s(result, timer)) return NULL; ts = result; #else ts = gmtime(timer); if (ts == NULL) return NULL; memcpy(result, ts, sizeof(struct tm)); ts = result; #endif return ts; } /* * Take a tm structure and add an offset to it. This avoids any OS issues * with restricted date types and overflows which cause the year 2038 * problem. */ #define SECS_PER_DAY (24 * 60 * 60) static long date_to_julian(int y, int m, int d); static void julian_to_date(long jd, int *y, int *m, int *d); static int julian_adj(const struct tm *tm, int off_day, long offset_sec, long *pday, int *psec); int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec) { int time_sec, time_year, time_month, time_day; long time_jd; /* Convert time and offset into Julian day and seconds */ if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec)) return 0; /* Convert Julian day back to date */ julian_to_date(time_jd, &time_year, &time_month, &time_day); if (time_year < 1900 || time_year > 9999) return 0; /* Update tm structure */ tm->tm_year = time_year - 1900; tm->tm_mon = time_month - 1; tm->tm_mday = time_day; tm->tm_hour = time_sec / 3600; tm->tm_min = (time_sec / 60) % 60; tm->tm_sec = time_sec % 60; return 1; } int OPENSSL_gmtime_diff(int *pday, int *psec, const struct tm *from, const struct tm *to) { int from_sec, to_sec, diff_sec; long from_jd, to_jd, diff_day; if (!julian_adj(from, 0, 0, &from_jd, &from_sec)) return 0; if (!julian_adj(to, 0, 0, &to_jd, &to_sec)) return 0; diff_day = to_jd - from_jd; diff_sec = to_sec - from_sec; /* Adjust differences so both positive or both negative */ if (diff_day > 0 && diff_sec < 0) { diff_day--; diff_sec += SECS_PER_DAY; } if (diff_day < 0 && diff_sec > 0) { diff_day++; diff_sec -= SECS_PER_DAY; } if (pday) *pday = (int)diff_day; if (psec) *psec = diff_sec; return 1; } /* Convert tm structure and offset into julian day and seconds */ static int julian_adj(const struct tm *tm, int off_day, long offset_sec, long *pday, int *psec) { int offset_hms, offset_day; long time_jd; int time_year, time_month, time_day; /* split offset into days and day seconds */ offset_day = offset_sec / SECS_PER_DAY; /* Avoid sign issues with % operator */ offset_hms = offset_sec - (offset_day * SECS_PER_DAY); offset_day += off_day; /* Add current time seconds to offset */ offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec; /* Adjust day seconds if overflow */ if (offset_hms >= SECS_PER_DAY) { offset_day++; offset_hms -= SECS_PER_DAY; } else if (offset_hms < 0) { offset_day--; offset_hms += SECS_PER_DAY; } /* * Convert date of time structure into a Julian day number. */ time_year = tm->tm_year + 1900; time_month = tm->tm_mon + 1; time_day = tm->tm_mday; time_jd = date_to_julian(time_year, time_month, time_day); /* Work out Julian day of new date */ time_jd += offset_day; if (time_jd < 0) return 0; *pday = time_jd; *psec = offset_hms; return 1; } /* * Convert date to and from julian day Uses Fliegel & Van Flandern algorithm */ static long date_to_julian(int y, int m, int d) { return (1461 * (y + 4800 + (m - 14) / 12)) / 4 + (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 - (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075; } static void julian_to_date(long jd, int *y, int *m, int *d) { long L = jd + 68569; long n = (4 * L) / 146097; long i, j; L = L - (146097 * n + 3) / 4; i = (4000 * (L + 1)) / 1461001; L = L - (1461 * i) / 4 + 31; j = (80 * L) / 2447; *d = L - (2447 * j) / 80; L = j / 11; *m = j + 2 - (12 * L); *y = 100 * (n - 49) + i + L; } openssl-1.1.1f/crypto/objects/000077500000000000000000000000001364063235100163175ustar00rootroot00000000000000openssl-1.1.1f/crypto/objects/README000066400000000000000000000023711364063235100172020ustar00rootroot00000000000000objects.txt syntax ------------------ To cover all the naming hacks that were previously in objects.h needed some kind of hacks in objects.txt. The basic syntax for adding an object is as follows: 1 2 3 4 : shortName : Long Name If Long Name contains only word characters and hyphen-minus (0x2D) or full stop (0x2E) then Long Name is used as basis for the base name in C. Otherwise, the shortName is used. The base name (let's call it 'base') will then be used to create the C macros SN_base, LN_base, NID_base and OBJ_base. Note that if the base name contains spaces, dashes or periods, those will be converted to underscore. Then there are some extra commands: !Alias foo 1 2 3 4 This just makes a name foo for an OID. The C macro OBJ_foo will be created as a result. !Cname foo This makes sure that the name foo will be used as base name in C. !module foo 1 2 3 4 : shortName : Long Name !global The !module command was meant to define a kind of modularity. What it does is to make sure the module name is prepended to the base name. !global turns this off. This construction is not recursive. Lines starting with # are treated as comments, as well as any line starting with ! and not matching the commands above. openssl-1.1.1f/crypto/objects/build.info000066400000000000000000000001521364063235100202710ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ o_names.c obj_dat.c obj_lib.c obj_err.c obj_xref.c openssl-1.1.1f/crypto/objects/o_names.c000066400000000000000000000246601364063235100201140ustar00rootroot00000000000000/* * Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include "internal/thread_once.h" #include "crypto/lhash.h" #include "obj_local.h" #include "e_os.h" /* * We define this wrapper for two reasons. Firstly, later versions of * DEC C add linkage information to certain functions, which makes it * tricky to use them as values to regular function pointers. * Secondly, in the EDK2 build environment, the strcasecmp function is * actually an external function with the Microsoft ABI, so we can't * transparently assign function pointers to it. */ #if defined(OPENSSL_SYS_VMS_DECC) || defined(OPENSSL_SYS_UEFI) static int obj_strcasecmp(const char *a, const char *b) { return strcasecmp(a, b); } #else #define obj_strcasecmp strcasecmp #endif /* * I use the ex_data stuff to manage the identifiers for the obj_name_types * that applications may define. I only really use the free function field. */ static LHASH_OF(OBJ_NAME) *names_lh = NULL; static int names_type_num = OBJ_NAME_TYPE_NUM; static CRYPTO_RWLOCK *obj_lock = NULL; struct name_funcs_st { unsigned long (*hash_func) (const char *name); int (*cmp_func) (const char *a, const char *b); void (*free_func) (const char *, int, const char *); }; static STACK_OF(NAME_FUNCS) *name_funcs_stack; /* * The LHASH callbacks now use the raw "void *" prototypes and do * per-variable casting in the functions. This prevents function pointer * casting without the need for macro-generated wrapper functions. */ static unsigned long obj_name_hash(const OBJ_NAME *a); static int obj_name_cmp(const OBJ_NAME *a, const OBJ_NAME *b); static CRYPTO_ONCE init = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(o_names_init) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); names_lh = lh_OBJ_NAME_new(obj_name_hash, obj_name_cmp); obj_lock = CRYPTO_THREAD_lock_new(); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); return names_lh != NULL && obj_lock != NULL; } int OBJ_NAME_init(void) { return RUN_ONCE(&init, o_names_init); } int OBJ_NAME_new_index(unsigned long (*hash_func) (const char *), int (*cmp_func) (const char *, const char *), void (*free_func) (const char *, int, const char *)) { int ret = 0, i, push; NAME_FUNCS *name_funcs; if (!OBJ_NAME_init()) return 0; CRYPTO_THREAD_write_lock(obj_lock); if (name_funcs_stack == NULL) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); name_funcs_stack = sk_NAME_FUNCS_new_null(); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); } if (name_funcs_stack == NULL) { /* ERROR */ goto out; } ret = names_type_num; names_type_num++; for (i = sk_NAME_FUNCS_num(name_funcs_stack); i < names_type_num; i++) { CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); name_funcs = OPENSSL_zalloc(sizeof(*name_funcs)); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); if (name_funcs == NULL) { OBJerr(OBJ_F_OBJ_NAME_NEW_INDEX, ERR_R_MALLOC_FAILURE); ret = 0; goto out; } name_funcs->hash_func = openssl_lh_strcasehash; name_funcs->cmp_func = obj_strcasecmp; CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); push = sk_NAME_FUNCS_push(name_funcs_stack, name_funcs); CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); if (!push) { OBJerr(OBJ_F_OBJ_NAME_NEW_INDEX, ERR_R_MALLOC_FAILURE); OPENSSL_free(name_funcs); ret = 0; goto out; } } name_funcs = sk_NAME_FUNCS_value(name_funcs_stack, ret); if (hash_func != NULL) name_funcs->hash_func = hash_func; if (cmp_func != NULL) name_funcs->cmp_func = cmp_func; if (free_func != NULL) name_funcs->free_func = free_func; out: CRYPTO_THREAD_unlock(obj_lock); return ret; } static int obj_name_cmp(const OBJ_NAME *a, const OBJ_NAME *b) { int ret; ret = a->type - b->type; if (ret == 0) { if ((name_funcs_stack != NULL) && (sk_NAME_FUNCS_num(name_funcs_stack) > a->type)) { ret = sk_NAME_FUNCS_value(name_funcs_stack, a->type)->cmp_func(a->name, b->name); } else ret = strcasecmp(a->name, b->name); } return ret; } static unsigned long obj_name_hash(const OBJ_NAME *a) { unsigned long ret; if ((name_funcs_stack != NULL) && (sk_NAME_FUNCS_num(name_funcs_stack) > a->type)) { ret = sk_NAME_FUNCS_value(name_funcs_stack, a->type)->hash_func(a->name); } else { ret = openssl_lh_strcasehash(a->name); } ret ^= a->type; return ret; } const char *OBJ_NAME_get(const char *name, int type) { OBJ_NAME on, *ret; int num = 0, alias; const char *value = NULL; if (name == NULL) return NULL; if (!OBJ_NAME_init()) return NULL; CRYPTO_THREAD_read_lock(obj_lock); alias = type & OBJ_NAME_ALIAS; type &= ~OBJ_NAME_ALIAS; on.name = name; on.type = type; for (;;) { ret = lh_OBJ_NAME_retrieve(names_lh, &on); if (ret == NULL) break; if ((ret->alias) && !alias) { if (++num > 10) break; on.name = ret->data; } else { value = ret->data; break; } } CRYPTO_THREAD_unlock(obj_lock); return value; } int OBJ_NAME_add(const char *name, int type, const char *data) { OBJ_NAME *onp, *ret; int alias, ok = 0; if (!OBJ_NAME_init()) return 0; alias = type & OBJ_NAME_ALIAS; type &= ~OBJ_NAME_ALIAS; onp = OPENSSL_malloc(sizeof(*onp)); if (onp == NULL) { /* ERROR */ goto unlock; } onp->name = name; onp->alias = alias; onp->type = type; onp->data = data; CRYPTO_THREAD_write_lock(obj_lock); ret = lh_OBJ_NAME_insert(names_lh, onp); if (ret != NULL) { /* free things */ if ((name_funcs_stack != NULL) && (sk_NAME_FUNCS_num(name_funcs_stack) > ret->type)) { /* * XXX: I'm not sure I understand why the free function should * get three arguments... -- Richard Levitte */ sk_NAME_FUNCS_value(name_funcs_stack, ret->type)->free_func(ret->name, ret->type, ret->data); } OPENSSL_free(ret); } else { if (lh_OBJ_NAME_error(names_lh)) { /* ERROR */ OPENSSL_free(onp); goto unlock; } } ok = 1; unlock: CRYPTO_THREAD_unlock(obj_lock); return ok; } int OBJ_NAME_remove(const char *name, int type) { OBJ_NAME on, *ret; int ok = 0; if (!OBJ_NAME_init()) return 0; CRYPTO_THREAD_write_lock(obj_lock); type &= ~OBJ_NAME_ALIAS; on.name = name; on.type = type; ret = lh_OBJ_NAME_delete(names_lh, &on); if (ret != NULL) { /* free things */ if ((name_funcs_stack != NULL) && (sk_NAME_FUNCS_num(name_funcs_stack) > ret->type)) { /* * XXX: I'm not sure I understand why the free function should * get three arguments... -- Richard Levitte */ sk_NAME_FUNCS_value(name_funcs_stack, ret->type)->free_func(ret->name, ret->type, ret->data); } OPENSSL_free(ret); ok = 1; } CRYPTO_THREAD_unlock(obj_lock); return ok; } typedef struct { int type; void (*fn) (const OBJ_NAME *, void *arg); void *arg; } OBJ_DOALL; static void do_all_fn(const OBJ_NAME *name, OBJ_DOALL *d) { if (name->type == d->type) d->fn(name, d->arg); } IMPLEMENT_LHASH_DOALL_ARG_CONST(OBJ_NAME, OBJ_DOALL); void OBJ_NAME_do_all(int type, void (*fn) (const OBJ_NAME *, void *arg), void *arg) { OBJ_DOALL d; d.type = type; d.fn = fn; d.arg = arg; lh_OBJ_NAME_doall_OBJ_DOALL(names_lh, do_all_fn, &d); } struct doall_sorted { int type; int n; const OBJ_NAME **names; }; static void do_all_sorted_fn(const OBJ_NAME *name, void *d_) { struct doall_sorted *d = d_; if (name->type != d->type) return; d->names[d->n++] = name; } static int do_all_sorted_cmp(const void *n1_, const void *n2_) { const OBJ_NAME *const *n1 = n1_; const OBJ_NAME *const *n2 = n2_; return strcmp((*n1)->name, (*n2)->name); } void OBJ_NAME_do_all_sorted(int type, void (*fn) (const OBJ_NAME *, void *arg), void *arg) { struct doall_sorted d; int n; d.type = type; d.names = OPENSSL_malloc(sizeof(*d.names) * lh_OBJ_NAME_num_items(names_lh)); /* Really should return an error if !d.names...but its a void function! */ if (d.names != NULL) { d.n = 0; OBJ_NAME_do_all(type, do_all_sorted_fn, &d); qsort((void *)d.names, d.n, sizeof(*d.names), do_all_sorted_cmp); for (n = 0; n < d.n; ++n) fn(d.names[n], arg); OPENSSL_free((void *)d.names); } } static int free_type; static void names_lh_free_doall(OBJ_NAME *onp) { if (onp == NULL) return; if (free_type < 0 || free_type == onp->type) OBJ_NAME_remove(onp->name, onp->type); } static void name_funcs_free(NAME_FUNCS *ptr) { OPENSSL_free(ptr); } void OBJ_NAME_cleanup(int type) { unsigned long down_load; if (names_lh == NULL) return; free_type = type; down_load = lh_OBJ_NAME_get_down_load(names_lh); lh_OBJ_NAME_set_down_load(names_lh, 0); lh_OBJ_NAME_doall(names_lh, names_lh_free_doall); if (type < 0) { lh_OBJ_NAME_free(names_lh); sk_NAME_FUNCS_pop_free(name_funcs_stack, name_funcs_free); CRYPTO_THREAD_lock_free(obj_lock); names_lh = NULL; name_funcs_stack = NULL; obj_lock = NULL; } else lh_OBJ_NAME_set_down_load(names_lh, down_load); } openssl-1.1.1f/crypto/objects/obj_dat.c000066400000000000000000000435721364063235100201000ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include #include "internal/cryptlib.h" #include #include #include "crypto/objects.h" #include #include "crypto/asn1.h" #include "obj_local.h" /* obj_dat.h is generated from objects.h by obj_dat.pl */ #include "obj_dat.h" DECLARE_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, sn); DECLARE_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, ln); DECLARE_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, obj); #define ADDED_DATA 0 #define ADDED_SNAME 1 #define ADDED_LNAME 2 #define ADDED_NID 3 struct added_obj_st { int type; ASN1_OBJECT *obj; }; static int new_nid = NUM_NID; static LHASH_OF(ADDED_OBJ) *added = NULL; static int sn_cmp(const ASN1_OBJECT *const *a, const unsigned int *b) { return strcmp((*a)->sn, nid_objs[*b].sn); } IMPLEMENT_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, sn); static int ln_cmp(const ASN1_OBJECT *const *a, const unsigned int *b) { return strcmp((*a)->ln, nid_objs[*b].ln); } IMPLEMENT_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, ln); static unsigned long added_obj_hash(const ADDED_OBJ *ca) { const ASN1_OBJECT *a; int i; unsigned long ret = 0; unsigned char *p; a = ca->obj; switch (ca->type) { case ADDED_DATA: ret = a->length << 20L; p = (unsigned char *)a->data; for (i = 0; i < a->length; i++) ret ^= p[i] << ((i * 3) % 24); break; case ADDED_SNAME: ret = OPENSSL_LH_strhash(a->sn); break; case ADDED_LNAME: ret = OPENSSL_LH_strhash(a->ln); break; case ADDED_NID: ret = a->nid; break; default: /* abort(); */ return 0; } ret &= 0x3fffffffL; ret |= ((unsigned long)ca->type) << 30L; return ret; } static int added_obj_cmp(const ADDED_OBJ *ca, const ADDED_OBJ *cb) { ASN1_OBJECT *a, *b; int i; i = ca->type - cb->type; if (i) return i; a = ca->obj; b = cb->obj; switch (ca->type) { case ADDED_DATA: i = (a->length - b->length); if (i) return i; return memcmp(a->data, b->data, (size_t)a->length); case ADDED_SNAME: if (a->sn == NULL) return -1; else if (b->sn == NULL) return 1; else return strcmp(a->sn, b->sn); case ADDED_LNAME: if (a->ln == NULL) return -1; else if (b->ln == NULL) return 1; else return strcmp(a->ln, b->ln); case ADDED_NID: return a->nid - b->nid; default: /* abort(); */ return 0; } } static int init_added(void) { if (added != NULL) return 1; added = lh_ADDED_OBJ_new(added_obj_hash, added_obj_cmp); return added != NULL; } static void cleanup1_doall(ADDED_OBJ *a) { a->obj->nid = 0; a->obj->flags |= ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | ASN1_OBJECT_FLAG_DYNAMIC_DATA; } static void cleanup2_doall(ADDED_OBJ *a) { a->obj->nid++; } static void cleanup3_doall(ADDED_OBJ *a) { if (--a->obj->nid == 0) ASN1_OBJECT_free(a->obj); OPENSSL_free(a); } void obj_cleanup_int(void) { if (added == NULL) return; lh_ADDED_OBJ_set_down_load(added, 0); lh_ADDED_OBJ_doall(added, cleanup1_doall); /* zero counters */ lh_ADDED_OBJ_doall(added, cleanup2_doall); /* set counters */ lh_ADDED_OBJ_doall(added, cleanup3_doall); /* free objects */ lh_ADDED_OBJ_free(added); added = NULL; } int OBJ_new_nid(int num) { int i; i = new_nid; new_nid += num; return i; } int OBJ_add_object(const ASN1_OBJECT *obj) { ASN1_OBJECT *o; ADDED_OBJ *ao[4] = { NULL, NULL, NULL, NULL }, *aop; int i; if (added == NULL) if (!init_added()) return 0; if ((o = OBJ_dup(obj)) == NULL) goto err; if ((ao[ADDED_NID] = OPENSSL_malloc(sizeof(*ao[0]))) == NULL) goto err2; if ((o->length != 0) && (obj->data != NULL)) if ((ao[ADDED_DATA] = OPENSSL_malloc(sizeof(*ao[0]))) == NULL) goto err2; if (o->sn != NULL) if ((ao[ADDED_SNAME] = OPENSSL_malloc(sizeof(*ao[0]))) == NULL) goto err2; if (o->ln != NULL) if ((ao[ADDED_LNAME] = OPENSSL_malloc(sizeof(*ao[0]))) == NULL) goto err2; for (i = ADDED_DATA; i <= ADDED_NID; i++) { if (ao[i] != NULL) { ao[i]->type = i; ao[i]->obj = o; aop = lh_ADDED_OBJ_insert(added, ao[i]); /* memory leak, but should not normally matter */ OPENSSL_free(aop); } } o->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | ASN1_OBJECT_FLAG_DYNAMIC_DATA); return o->nid; err2: OBJerr(OBJ_F_OBJ_ADD_OBJECT, ERR_R_MALLOC_FAILURE); err: for (i = ADDED_DATA; i <= ADDED_NID; i++) OPENSSL_free(ao[i]); ASN1_OBJECT_free(o); return NID_undef; } ASN1_OBJECT *OBJ_nid2obj(int n) { ADDED_OBJ ad, *adp; ASN1_OBJECT ob; if ((n >= 0) && (n < NUM_NID)) { if ((n != NID_undef) && (nid_objs[n].nid == NID_undef)) { OBJerr(OBJ_F_OBJ_NID2OBJ, OBJ_R_UNKNOWN_NID); return NULL; } return (ASN1_OBJECT *)&(nid_objs[n]); } else if (added == NULL) return NULL; else { ad.type = ADDED_NID; ad.obj = &ob; ob.nid = n; adp = lh_ADDED_OBJ_retrieve(added, &ad); if (adp != NULL) return adp->obj; else { OBJerr(OBJ_F_OBJ_NID2OBJ, OBJ_R_UNKNOWN_NID); return NULL; } } } const char *OBJ_nid2sn(int n) { ADDED_OBJ ad, *adp; ASN1_OBJECT ob; if ((n >= 0) && (n < NUM_NID)) { if ((n != NID_undef) && (nid_objs[n].nid == NID_undef)) { OBJerr(OBJ_F_OBJ_NID2SN, OBJ_R_UNKNOWN_NID); return NULL; } return nid_objs[n].sn; } else if (added == NULL) return NULL; else { ad.type = ADDED_NID; ad.obj = &ob; ob.nid = n; adp = lh_ADDED_OBJ_retrieve(added, &ad); if (adp != NULL) return adp->obj->sn; else { OBJerr(OBJ_F_OBJ_NID2SN, OBJ_R_UNKNOWN_NID); return NULL; } } } const char *OBJ_nid2ln(int n) { ADDED_OBJ ad, *adp; ASN1_OBJECT ob; if ((n >= 0) && (n < NUM_NID)) { if ((n != NID_undef) && (nid_objs[n].nid == NID_undef)) { OBJerr(OBJ_F_OBJ_NID2LN, OBJ_R_UNKNOWN_NID); return NULL; } return nid_objs[n].ln; } else if (added == NULL) return NULL; else { ad.type = ADDED_NID; ad.obj = &ob; ob.nid = n; adp = lh_ADDED_OBJ_retrieve(added, &ad); if (adp != NULL) return adp->obj->ln; else { OBJerr(OBJ_F_OBJ_NID2LN, OBJ_R_UNKNOWN_NID); return NULL; } } } static int obj_cmp(const ASN1_OBJECT *const *ap, const unsigned int *bp) { int j; const ASN1_OBJECT *a = *ap; const ASN1_OBJECT *b = &nid_objs[*bp]; j = (a->length - b->length); if (j) return j; if (a->length == 0) return 0; return memcmp(a->data, b->data, a->length); } IMPLEMENT_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, obj); int OBJ_obj2nid(const ASN1_OBJECT *a) { const unsigned int *op; ADDED_OBJ ad, *adp; if (a == NULL) return NID_undef; if (a->nid != 0) return a->nid; if (a->length == 0) return NID_undef; if (added != NULL) { ad.type = ADDED_DATA; ad.obj = (ASN1_OBJECT *)a; /* XXX: ugly but harmless */ adp = lh_ADDED_OBJ_retrieve(added, &ad); if (adp != NULL) return adp->obj->nid; } op = OBJ_bsearch_obj(&a, obj_objs, NUM_OBJ); if (op == NULL) return NID_undef; return nid_objs[*op].nid; } /* * Convert an object name into an ASN1_OBJECT if "noname" is not set then * search for short and long names first. This will convert the "dotted" form * into an object: unlike OBJ_txt2nid it can be used with any objects, not * just registered ones. */ ASN1_OBJECT *OBJ_txt2obj(const char *s, int no_name) { int nid = NID_undef; ASN1_OBJECT *op; unsigned char *buf; unsigned char *p; const unsigned char *cp; int i, j; if (!no_name) { if (((nid = OBJ_sn2nid(s)) != NID_undef) || ((nid = OBJ_ln2nid(s)) != NID_undef)) return OBJ_nid2obj(nid); } /* Work out size of content octets */ i = a2d_ASN1_OBJECT(NULL, 0, s, -1); if (i <= 0) { /* Don't clear the error */ /* * ERR_clear_error(); */ return NULL; } /* Work out total size */ j = ASN1_object_size(0, i, V_ASN1_OBJECT); if (j < 0) return NULL; if ((buf = OPENSSL_malloc(j)) == NULL) { OBJerr(OBJ_F_OBJ_TXT2OBJ, ERR_R_MALLOC_FAILURE); return NULL; } p = buf; /* Write out tag+length */ ASN1_put_object(&p, 0, i, V_ASN1_OBJECT, V_ASN1_UNIVERSAL); /* Write out contents */ a2d_ASN1_OBJECT(p, i, s, -1); cp = buf; op = d2i_ASN1_OBJECT(NULL, &cp, j); OPENSSL_free(buf); return op; } int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name) { int i, n = 0, len, nid, first, use_bn; BIGNUM *bl; unsigned long l; const unsigned char *p; char tbuf[DECIMAL_SIZE(i) + DECIMAL_SIZE(l) + 2]; /* Ensure that, at every state, |buf| is NUL-terminated. */ if (buf && buf_len > 0) buf[0] = '\0'; if ((a == NULL) || (a->data == NULL)) return 0; if (!no_name && (nid = OBJ_obj2nid(a)) != NID_undef) { const char *s; s = OBJ_nid2ln(nid); if (s == NULL) s = OBJ_nid2sn(nid); if (s) { if (buf) OPENSSL_strlcpy(buf, s, buf_len); n = strlen(s); return n; } } len = a->length; p = a->data; first = 1; bl = NULL; while (len > 0) { l = 0; use_bn = 0; for (;;) { unsigned char c = *p++; len--; if ((len == 0) && (c & 0x80)) goto err; if (use_bn) { if (!BN_add_word(bl, c & 0x7f)) goto err; } else l |= c & 0x7f; if (!(c & 0x80)) break; if (!use_bn && (l > (ULONG_MAX >> 7L))) { if (bl == NULL && (bl = BN_new()) == NULL) goto err; if (!BN_set_word(bl, l)) goto err; use_bn = 1; } if (use_bn) { if (!BN_lshift(bl, bl, 7)) goto err; } else l <<= 7L; } if (first) { first = 0; if (l >= 80) { i = 2; if (use_bn) { if (!BN_sub_word(bl, 80)) goto err; } else l -= 80; } else { i = (int)(l / 40); l -= (long)(i * 40); } if (buf && (buf_len > 1)) { *buf++ = i + '0'; *buf = '\0'; buf_len--; } n++; } if (use_bn) { char *bndec; bndec = BN_bn2dec(bl); if (!bndec) goto err; i = strlen(bndec); if (buf) { if (buf_len > 1) { *buf++ = '.'; *buf = '\0'; buf_len--; } OPENSSL_strlcpy(buf, bndec, buf_len); if (i > buf_len) { buf += buf_len; buf_len = 0; } else { buf += i; buf_len -= i; } } n++; n += i; OPENSSL_free(bndec); } else { BIO_snprintf(tbuf, sizeof(tbuf), ".%lu", l); i = strlen(tbuf); if (buf && (buf_len > 0)) { OPENSSL_strlcpy(buf, tbuf, buf_len); if (i > buf_len) { buf += buf_len; buf_len = 0; } else { buf += i; buf_len -= i; } } n += i; l = 0; } } BN_free(bl); return n; err: BN_free(bl); return -1; } int OBJ_txt2nid(const char *s) { ASN1_OBJECT *obj; int nid; obj = OBJ_txt2obj(s, 0); nid = OBJ_obj2nid(obj); ASN1_OBJECT_free(obj); return nid; } int OBJ_ln2nid(const char *s) { ASN1_OBJECT o; const ASN1_OBJECT *oo = &o; ADDED_OBJ ad, *adp; const unsigned int *op; o.ln = s; if (added != NULL) { ad.type = ADDED_LNAME; ad.obj = &o; adp = lh_ADDED_OBJ_retrieve(added, &ad); if (adp != NULL) return adp->obj->nid; } op = OBJ_bsearch_ln(&oo, ln_objs, NUM_LN); if (op == NULL) return NID_undef; return nid_objs[*op].nid; } int OBJ_sn2nid(const char *s) { ASN1_OBJECT o; const ASN1_OBJECT *oo = &o; ADDED_OBJ ad, *adp; const unsigned int *op; o.sn = s; if (added != NULL) { ad.type = ADDED_SNAME; ad.obj = &o; adp = lh_ADDED_OBJ_retrieve(added, &ad); if (adp != NULL) return adp->obj->nid; } op = OBJ_bsearch_sn(&oo, sn_objs, NUM_SN); if (op == NULL) return NID_undef; return nid_objs[*op].nid; } const void *OBJ_bsearch_(const void *key, const void *base, int num, int size, int (*cmp) (const void *, const void *)) { return OBJ_bsearch_ex_(key, base, num, size, cmp, 0); } const void *OBJ_bsearch_ex_(const void *key, const void *base_, int num, int size, int (*cmp) (const void *, const void *), int flags) { const char *base = base_; int l, h, i = 0, c = 0; const char *p = NULL; if (num == 0) return NULL; l = 0; h = num; while (l < h) { i = (l + h) / 2; p = &(base[i * size]); c = (*cmp) (key, p); if (c < 0) h = i; else if (c > 0) l = i + 1; else break; } #ifdef CHARSET_EBCDIC /* * THIS IS A KLUDGE - Because the *_obj is sorted in ASCII order, and I * don't have perl (yet), we revert to a *LINEAR* search when the object * wasn't found in the binary search. */ if (c != 0) { for (i = 0; i < num; ++i) { p = &(base[i * size]); c = (*cmp) (key, p); if (c == 0 || (c < 0 && (flags & OBJ_BSEARCH_VALUE_ON_NOMATCH))) return p; } } #endif if (c != 0 && !(flags & OBJ_BSEARCH_VALUE_ON_NOMATCH)) p = NULL; else if (c == 0 && (flags & OBJ_BSEARCH_FIRST_VALUE_ON_MATCH)) { while (i > 0 && (*cmp) (key, &(base[(i - 1) * size])) == 0) i--; p = &(base[i * size]); } return p; } /* * Parse a BIO sink to create some extra oid's objects. * Line format: */ int OBJ_create_objects(BIO *in) { char buf[512]; int i, num = 0; char *o, *s, *l = NULL; for (;;) { s = o = NULL; i = BIO_gets(in, buf, 512); if (i <= 0) return num; buf[i - 1] = '\0'; if (!ossl_isalnum(buf[0])) return num; o = s = buf; while (ossl_isdigit(*s) || *s == '.') s++; if (*s != '\0') { *(s++) = '\0'; while (ossl_isspace(*s)) s++; if (*s == '\0') { s = NULL; } else { l = s; while (*l != '\0' && !ossl_isspace(*l)) l++; if (*l != '\0') { *(l++) = '\0'; while (ossl_isspace(*l)) l++; if (*l == '\0') { l = NULL; } } else { l = NULL; } } } else { s = NULL; } if (*o == '\0') return num; if (!OBJ_create(o, s, l)) return num; num++; } } int OBJ_create(const char *oid, const char *sn, const char *ln) { ASN1_OBJECT *tmpoid = NULL; int ok = 0; /* Check to see if short or long name already present */ if ((sn != NULL && OBJ_sn2nid(sn) != NID_undef) || (ln != NULL && OBJ_ln2nid(ln) != NID_undef)) { OBJerr(OBJ_F_OBJ_CREATE, OBJ_R_OID_EXISTS); return 0; } /* Convert numerical OID string to an ASN1_OBJECT structure */ tmpoid = OBJ_txt2obj(oid, 1); if (tmpoid == NULL) return 0; /* If NID is not NID_undef then object already exists */ if (OBJ_obj2nid(tmpoid) != NID_undef) { OBJerr(OBJ_F_OBJ_CREATE, OBJ_R_OID_EXISTS); goto err; } tmpoid->nid = OBJ_new_nid(1); tmpoid->sn = (char *)sn; tmpoid->ln = (char *)ln; ok = OBJ_add_object(tmpoid); tmpoid->sn = NULL; tmpoid->ln = NULL; err: ASN1_OBJECT_free(tmpoid); return ok; } size_t OBJ_length(const ASN1_OBJECT *obj) { if (obj == NULL) return 0; return obj->length; } const unsigned char *OBJ_get0_data(const ASN1_OBJECT *obj) { if (obj == NULL) return NULL; return obj->data; } openssl-1.1.1f/crypto/objects/obj_dat.h000066400000000000000000012702751364063235100201100ustar00rootroot00000000000000/* * WARNING: do not edit! * Generated by crypto/objects/obj_dat.pl * * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Serialized OID's */ static const unsigned char so[7762] = { 0x2A,0x86,0x48,0x86,0xF7,0x0D, /* [ 0] OBJ_rsadsi */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01, /* [ 6] OBJ_pkcs */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x02, /* [ 13] OBJ_md2 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x05, /* [ 21] OBJ_md5 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x04, /* [ 29] OBJ_rc4 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x01, /* [ 37] OBJ_rsaEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x02, /* [ 46] OBJ_md2WithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x04, /* [ 55] OBJ_md5WithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x01, /* [ 64] OBJ_pbeWithMD2AndDES_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x03, /* [ 73] OBJ_pbeWithMD5AndDES_CBC */ 0x55, /* [ 82] OBJ_X500 */ 0x55,0x04, /* [ 83] OBJ_X509 */ 0x55,0x04,0x03, /* [ 85] OBJ_commonName */ 0x55,0x04,0x06, /* [ 88] OBJ_countryName */ 0x55,0x04,0x07, /* [ 91] OBJ_localityName */ 0x55,0x04,0x08, /* [ 94] OBJ_stateOrProvinceName */ 0x55,0x04,0x0A, /* [ 97] OBJ_organizationName */ 0x55,0x04,0x0B, /* [ 100] OBJ_organizationalUnitName */ 0x55,0x08,0x01,0x01, /* [ 103] OBJ_rsa */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07, /* [ 107] OBJ_pkcs7 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x01, /* [ 115] OBJ_pkcs7_data */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x02, /* [ 124] OBJ_pkcs7_signed */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x03, /* [ 133] OBJ_pkcs7_enveloped */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x04, /* [ 142] OBJ_pkcs7_signedAndEnveloped */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x05, /* [ 151] OBJ_pkcs7_digest */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x06, /* [ 160] OBJ_pkcs7_encrypted */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x03, /* [ 169] OBJ_pkcs3 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x03,0x01, /* [ 177] OBJ_dhKeyAgreement */ 0x2B,0x0E,0x03,0x02,0x06, /* [ 186] OBJ_des_ecb */ 0x2B,0x0E,0x03,0x02,0x09, /* [ 191] OBJ_des_cfb64 */ 0x2B,0x0E,0x03,0x02,0x07, /* [ 196] OBJ_des_cbc */ 0x2B,0x0E,0x03,0x02,0x11, /* [ 201] OBJ_des_ede_ecb */ 0x2B,0x06,0x01,0x04,0x01,0x81,0x3C,0x07,0x01,0x01,0x02, /* [ 206] OBJ_idea_cbc */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x02, /* [ 217] OBJ_rc2_cbc */ 0x2B,0x0E,0x03,0x02,0x12, /* [ 225] OBJ_sha */ 0x2B,0x0E,0x03,0x02,0x0F, /* [ 230] OBJ_shaWithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x07, /* [ 235] OBJ_des_ede3_cbc */ 0x2B,0x0E,0x03,0x02,0x08, /* [ 243] OBJ_des_ofb64 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09, /* [ 248] OBJ_pkcs9 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x01, /* [ 256] OBJ_pkcs9_emailAddress */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x02, /* [ 265] OBJ_pkcs9_unstructuredName */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x03, /* [ 274] OBJ_pkcs9_contentType */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x04, /* [ 283] OBJ_pkcs9_messageDigest */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x05, /* [ 292] OBJ_pkcs9_signingTime */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x06, /* [ 301] OBJ_pkcs9_countersignature */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x07, /* [ 310] OBJ_pkcs9_challengePassword */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x08, /* [ 319] OBJ_pkcs9_unstructuredAddress */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x09, /* [ 328] OBJ_pkcs9_extCertAttributes */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42, /* [ 337] OBJ_netscape */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01, /* [ 344] OBJ_netscape_cert_extension */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x02, /* [ 352] OBJ_netscape_data_type */ 0x2B,0x0E,0x03,0x02,0x1A, /* [ 360] OBJ_sha1 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x05, /* [ 365] OBJ_sha1WithRSAEncryption */ 0x2B,0x0E,0x03,0x02,0x0D, /* [ 374] OBJ_dsaWithSHA */ 0x2B,0x0E,0x03,0x02,0x0C, /* [ 379] OBJ_dsa_2 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0B, /* [ 384] OBJ_pbeWithSHA1AndRC2_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0C, /* [ 393] OBJ_id_pbkdf2 */ 0x2B,0x0E,0x03,0x02,0x1B, /* [ 402] OBJ_dsaWithSHA1_2 */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x01, /* [ 407] OBJ_netscape_cert_type */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x02, /* [ 416] OBJ_netscape_base_url */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x03, /* [ 425] OBJ_netscape_revocation_url */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x04, /* [ 434] OBJ_netscape_ca_revocation_url */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x07, /* [ 443] OBJ_netscape_renewal_url */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x08, /* [ 452] OBJ_netscape_ca_policy_url */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x0C, /* [ 461] OBJ_netscape_ssl_server_name */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x0D, /* [ 470] OBJ_netscape_comment */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x02,0x05, /* [ 479] OBJ_netscape_cert_sequence */ 0x55,0x1D, /* [ 488] OBJ_id_ce */ 0x55,0x1D,0x0E, /* [ 490] OBJ_subject_key_identifier */ 0x55,0x1D,0x0F, /* [ 493] OBJ_key_usage */ 0x55,0x1D,0x10, /* [ 496] OBJ_private_key_usage_period */ 0x55,0x1D,0x11, /* [ 499] OBJ_subject_alt_name */ 0x55,0x1D,0x12, /* [ 502] OBJ_issuer_alt_name */ 0x55,0x1D,0x13, /* [ 505] OBJ_basic_constraints */ 0x55,0x1D,0x14, /* [ 508] OBJ_crl_number */ 0x55,0x1D,0x20, /* [ 511] OBJ_certificate_policies */ 0x55,0x1D,0x23, /* [ 514] OBJ_authority_key_identifier */ 0x2B,0x06,0x01,0x04,0x01,0x97,0x55,0x01,0x02, /* [ 517] OBJ_bf_cbc */ 0x55,0x08,0x03,0x65, /* [ 526] OBJ_mdc2 */ 0x55,0x08,0x03,0x64, /* [ 530] OBJ_mdc2WithRSA */ 0x55,0x04,0x2A, /* [ 534] OBJ_givenName */ 0x55,0x04,0x04, /* [ 537] OBJ_surname */ 0x55,0x04,0x2B, /* [ 540] OBJ_initials */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2C, /* [ 543] OBJ_uniqueIdentifier */ 0x55,0x1D,0x1F, /* [ 553] OBJ_crl_distribution_points */ 0x2B,0x0E,0x03,0x02,0x03, /* [ 556] OBJ_md5WithRSA */ 0x55,0x04,0x05, /* [ 561] OBJ_serialNumber */ 0x55,0x04,0x0C, /* [ 564] OBJ_title */ 0x55,0x04,0x0D, /* [ 567] OBJ_description */ 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x0A, /* [ 570] OBJ_cast5_cbc */ 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x0C, /* [ 579] OBJ_pbeWithMD5AndCast5_CBC */ 0x2A,0x86,0x48,0xCE,0x38,0x04,0x03, /* [ 588] OBJ_dsaWithSHA1 */ 0x2B,0x0E,0x03,0x02,0x1D, /* [ 595] OBJ_sha1WithRSA */ 0x2A,0x86,0x48,0xCE,0x38,0x04,0x01, /* [ 600] OBJ_dsa */ 0x2B,0x24,0x03,0x02,0x01, /* [ 607] OBJ_ripemd160 */ 0x2B,0x24,0x03,0x03,0x01,0x02, /* [ 612] OBJ_ripemd160WithRSA */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x08, /* [ 618] OBJ_rc5_cbc */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x08, /* [ 626] OBJ_zlib_compression */ 0x55,0x1D,0x25, /* [ 637] OBJ_ext_key_usage */ 0x2B,0x06,0x01,0x05,0x05,0x07, /* [ 640] OBJ_id_pkix */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03, /* [ 646] OBJ_id_kp */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x01, /* [ 653] OBJ_server_auth */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x02, /* [ 661] OBJ_client_auth */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x03, /* [ 669] OBJ_code_sign */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x04, /* [ 677] OBJ_email_protect */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x08, /* [ 685] OBJ_time_stamp */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x02,0x01,0x15, /* [ 693] OBJ_ms_code_ind */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x02,0x01,0x16, /* [ 703] OBJ_ms_code_com */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x0A,0x03,0x01, /* [ 713] OBJ_ms_ctl_sign */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x0A,0x03,0x03, /* [ 723] OBJ_ms_sgc */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x0A,0x03,0x04, /* [ 733] OBJ_ms_efs */ 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x04,0x01, /* [ 743] OBJ_ns_sgc */ 0x55,0x1D,0x1B, /* [ 752] OBJ_delta_crl */ 0x55,0x1D,0x15, /* [ 755] OBJ_crl_reason */ 0x55,0x1D,0x18, /* [ 758] OBJ_invalidity_date */ 0x2B,0x65,0x01,0x04,0x01, /* [ 761] OBJ_sxnet */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x01, /* [ 766] OBJ_pbe_WithSHA1And128BitRC4 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x02, /* [ 776] OBJ_pbe_WithSHA1And40BitRC4 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x03, /* [ 786] OBJ_pbe_WithSHA1And3_Key_TripleDES_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x04, /* [ 796] OBJ_pbe_WithSHA1And2_Key_TripleDES_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x05, /* [ 806] OBJ_pbe_WithSHA1And128BitRC2_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x06, /* [ 816] OBJ_pbe_WithSHA1And40BitRC2_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x01, /* [ 826] OBJ_keyBag */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x02, /* [ 837] OBJ_pkcs8ShroudedKeyBag */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x03, /* [ 848] OBJ_certBag */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x04, /* [ 859] OBJ_crlBag */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x05, /* [ 870] OBJ_secretBag */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x06, /* [ 881] OBJ_safeContentsBag */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x14, /* [ 892] OBJ_friendlyName */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x15, /* [ 901] OBJ_localKeyID */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x16,0x01, /* [ 910] OBJ_x509Certificate */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x16,0x02, /* [ 920] OBJ_sdsiCertificate */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x17,0x01, /* [ 930] OBJ_x509Crl */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0D, /* [ 940] OBJ_pbes2 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0E, /* [ 949] OBJ_pbmac1 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x07, /* [ 958] OBJ_hmacWithSHA1 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x02,0x01, /* [ 966] OBJ_id_qt_cps */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x02,0x02, /* [ 974] OBJ_id_qt_unotice */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x0F, /* [ 982] OBJ_SMIMECapabilities */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x04, /* [ 991] OBJ_pbeWithMD2AndRC2_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x06, /* [ 1000] OBJ_pbeWithMD5AndRC2_CBC */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0A, /* [ 1009] OBJ_pbeWithSHA1AndDES_CBC */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x02,0x01,0x0E, /* [ 1018] OBJ_ms_ext_req */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x0E, /* [ 1028] OBJ_ext_req */ 0x55,0x04,0x29, /* [ 1037] OBJ_name */ 0x55,0x04,0x2E, /* [ 1040] OBJ_dnQualifier */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01, /* [ 1043] OBJ_id_pe */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30, /* [ 1050] OBJ_id_ad */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x01, /* [ 1057] OBJ_info_access */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01, /* [ 1065] OBJ_ad_OCSP */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x02, /* [ 1073] OBJ_ad_ca_issuers */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x09, /* [ 1081] OBJ_OCSP_sign */ 0x2A, /* [ 1089] OBJ_member_body */ 0x2A,0x86,0x48, /* [ 1090] OBJ_ISO_US */ 0x2A,0x86,0x48,0xCE,0x38, /* [ 1093] OBJ_X9_57 */ 0x2A,0x86,0x48,0xCE,0x38,0x04, /* [ 1098] OBJ_X9cm */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01, /* [ 1104] OBJ_pkcs1 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05, /* [ 1112] OBJ_pkcs5 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10, /* [ 1120] OBJ_SMIME */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00, /* [ 1129] OBJ_id_smime_mod */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01, /* [ 1139] OBJ_id_smime_ct */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02, /* [ 1149] OBJ_id_smime_aa */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03, /* [ 1159] OBJ_id_smime_alg */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x04, /* [ 1169] OBJ_id_smime_cd */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x05, /* [ 1179] OBJ_id_smime_spq */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06, /* [ 1189] OBJ_id_smime_cti */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x01, /* [ 1199] OBJ_id_smime_mod_cms */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x02, /* [ 1210] OBJ_id_smime_mod_ess */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x03, /* [ 1221] OBJ_id_smime_mod_oid */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x04, /* [ 1232] OBJ_id_smime_mod_msg_v3 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x05, /* [ 1243] OBJ_id_smime_mod_ets_eSignature_88 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x06, /* [ 1254] OBJ_id_smime_mod_ets_eSignature_97 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x07, /* [ 1265] OBJ_id_smime_mod_ets_eSigPolicy_88 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x08, /* [ 1276] OBJ_id_smime_mod_ets_eSigPolicy_97 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x01, /* [ 1287] OBJ_id_smime_ct_receipt */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x02, /* [ 1298] OBJ_id_smime_ct_authData */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x03, /* [ 1309] OBJ_id_smime_ct_publishCert */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x04, /* [ 1320] OBJ_id_smime_ct_TSTInfo */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x05, /* [ 1331] OBJ_id_smime_ct_TDTInfo */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x06, /* [ 1342] OBJ_id_smime_ct_contentInfo */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x07, /* [ 1353] OBJ_id_smime_ct_DVCSRequestData */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x08, /* [ 1364] OBJ_id_smime_ct_DVCSResponseData */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x01, /* [ 1375] OBJ_id_smime_aa_receiptRequest */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x02, /* [ 1386] OBJ_id_smime_aa_securityLabel */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x03, /* [ 1397] OBJ_id_smime_aa_mlExpandHistory */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x04, /* [ 1408] OBJ_id_smime_aa_contentHint */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x05, /* [ 1419] OBJ_id_smime_aa_msgSigDigest */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x06, /* [ 1430] OBJ_id_smime_aa_encapContentType */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x07, /* [ 1441] OBJ_id_smime_aa_contentIdentifier */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x08, /* [ 1452] OBJ_id_smime_aa_macValue */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x09, /* [ 1463] OBJ_id_smime_aa_equivalentLabels */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0A, /* [ 1474] OBJ_id_smime_aa_contentReference */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0B, /* [ 1485] OBJ_id_smime_aa_encrypKeyPref */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0C, /* [ 1496] OBJ_id_smime_aa_signingCertificate */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0D, /* [ 1507] OBJ_id_smime_aa_smimeEncryptCerts */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0E, /* [ 1518] OBJ_id_smime_aa_timeStampToken */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0F, /* [ 1529] OBJ_id_smime_aa_ets_sigPolicyId */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x10, /* [ 1540] OBJ_id_smime_aa_ets_commitmentType */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x11, /* [ 1551] OBJ_id_smime_aa_ets_signerLocation */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x12, /* [ 1562] OBJ_id_smime_aa_ets_signerAttr */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x13, /* [ 1573] OBJ_id_smime_aa_ets_otherSigCert */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x14, /* [ 1584] OBJ_id_smime_aa_ets_contentTimestamp */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x15, /* [ 1595] OBJ_id_smime_aa_ets_CertificateRefs */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x16, /* [ 1606] OBJ_id_smime_aa_ets_RevocationRefs */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x17, /* [ 1617] OBJ_id_smime_aa_ets_certValues */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x18, /* [ 1628] OBJ_id_smime_aa_ets_revocationValues */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x19, /* [ 1639] OBJ_id_smime_aa_ets_escTimeStamp */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1A, /* [ 1650] OBJ_id_smime_aa_ets_certCRLTimestamp */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1B, /* [ 1661] OBJ_id_smime_aa_ets_archiveTimeStamp */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1C, /* [ 1672] OBJ_id_smime_aa_signatureType */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1D, /* [ 1683] OBJ_id_smime_aa_dvcs_dvc */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x01, /* [ 1694] OBJ_id_smime_alg_ESDHwith3DES */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x02, /* [ 1705] OBJ_id_smime_alg_ESDHwithRC2 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x03, /* [ 1716] OBJ_id_smime_alg_3DESwrap */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x04, /* [ 1727] OBJ_id_smime_alg_RC2wrap */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x05, /* [ 1738] OBJ_id_smime_alg_ESDH */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x06, /* [ 1749] OBJ_id_smime_alg_CMS3DESwrap */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x07, /* [ 1760] OBJ_id_smime_alg_CMSRC2wrap */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x04,0x01, /* [ 1771] OBJ_id_smime_cd_ldap */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x05,0x01, /* [ 1782] OBJ_id_smime_spq_ets_sqt_uri */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x05,0x02, /* [ 1793] OBJ_id_smime_spq_ets_sqt_unotice */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x01, /* [ 1804] OBJ_id_smime_cti_ets_proofOfOrigin */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x02, /* [ 1815] OBJ_id_smime_cti_ets_proofOfReceipt */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x03, /* [ 1826] OBJ_id_smime_cti_ets_proofOfDelivery */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x04, /* [ 1837] OBJ_id_smime_cti_ets_proofOfSender */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x05, /* [ 1848] OBJ_id_smime_cti_ets_proofOfApproval */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x06, /* [ 1859] OBJ_id_smime_cti_ets_proofOfCreation */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x04, /* [ 1870] OBJ_md4 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00, /* [ 1878] OBJ_id_pkix_mod */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x02, /* [ 1885] OBJ_id_qt */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04, /* [ 1892] OBJ_id_it */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05, /* [ 1899] OBJ_id_pkip */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x06, /* [ 1906] OBJ_id_alg */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07, /* [ 1913] OBJ_id_cmc */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x08, /* [ 1920] OBJ_id_on */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x09, /* [ 1927] OBJ_id_pda */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A, /* [ 1934] OBJ_id_aca */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0B, /* [ 1941] OBJ_id_qcs */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C, /* [ 1948] OBJ_id_cct */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x01, /* [ 1955] OBJ_id_pkix1_explicit_88 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x02, /* [ 1963] OBJ_id_pkix1_implicit_88 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x03, /* [ 1971] OBJ_id_pkix1_explicit_93 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x04, /* [ 1979] OBJ_id_pkix1_implicit_93 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x05, /* [ 1987] OBJ_id_mod_crmf */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x06, /* [ 1995] OBJ_id_mod_cmc */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x07, /* [ 2003] OBJ_id_mod_kea_profile_88 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x08, /* [ 2011] OBJ_id_mod_kea_profile_93 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x09, /* [ 2019] OBJ_id_mod_cmp */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0A, /* [ 2027] OBJ_id_mod_qualified_cert_88 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0B, /* [ 2035] OBJ_id_mod_qualified_cert_93 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0C, /* [ 2043] OBJ_id_mod_attribute_cert */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0D, /* [ 2051] OBJ_id_mod_timestamp_protocol */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0E, /* [ 2059] OBJ_id_mod_ocsp */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0F, /* [ 2067] OBJ_id_mod_dvcs */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x10, /* [ 2075] OBJ_id_mod_cmp2000 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x02, /* [ 2083] OBJ_biometricInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x03, /* [ 2091] OBJ_qcStatements */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x04, /* [ 2099] OBJ_ac_auditEntity */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x05, /* [ 2107] OBJ_ac_targeting */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x06, /* [ 2115] OBJ_aaControls */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x07, /* [ 2123] OBJ_sbgp_ipAddrBlock */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x08, /* [ 2131] OBJ_sbgp_autonomousSysNum */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x09, /* [ 2139] OBJ_sbgp_routerIdentifier */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x02,0x03, /* [ 2147] OBJ_textNotice */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x05, /* [ 2155] OBJ_ipsecEndSystem */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x06, /* [ 2163] OBJ_ipsecTunnel */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x07, /* [ 2171] OBJ_ipsecUser */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x0A, /* [ 2179] OBJ_dvcs */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x01, /* [ 2187] OBJ_id_it_caProtEncCert */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x02, /* [ 2195] OBJ_id_it_signKeyPairTypes */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x03, /* [ 2203] OBJ_id_it_encKeyPairTypes */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x04, /* [ 2211] OBJ_id_it_preferredSymmAlg */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x05, /* [ 2219] OBJ_id_it_caKeyUpdateInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x06, /* [ 2227] OBJ_id_it_currentCRL */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x07, /* [ 2235] OBJ_id_it_unsupportedOIDs */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x08, /* [ 2243] OBJ_id_it_subscriptionRequest */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x09, /* [ 2251] OBJ_id_it_subscriptionResponse */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0A, /* [ 2259] OBJ_id_it_keyPairParamReq */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0B, /* [ 2267] OBJ_id_it_keyPairParamRep */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0C, /* [ 2275] OBJ_id_it_revPassphrase */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0D, /* [ 2283] OBJ_id_it_implicitConfirm */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0E, /* [ 2291] OBJ_id_it_confirmWaitTime */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0F, /* [ 2299] OBJ_id_it_origPKIMessage */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01, /* [ 2307] OBJ_id_regCtrl */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x02, /* [ 2315] OBJ_id_regInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x01, /* [ 2323] OBJ_id_regCtrl_regToken */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x02, /* [ 2332] OBJ_id_regCtrl_authenticator */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x03, /* [ 2341] OBJ_id_regCtrl_pkiPublicationInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x04, /* [ 2350] OBJ_id_regCtrl_pkiArchiveOptions */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x05, /* [ 2359] OBJ_id_regCtrl_oldCertID */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x06, /* [ 2368] OBJ_id_regCtrl_protocolEncrKey */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x02,0x01, /* [ 2377] OBJ_id_regInfo_utf8Pairs */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x02,0x02, /* [ 2386] OBJ_id_regInfo_certReq */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x01, /* [ 2395] OBJ_id_alg_des40 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x02, /* [ 2403] OBJ_id_alg_noSignature */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x03, /* [ 2411] OBJ_id_alg_dh_sig_hmac_sha1 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x04, /* [ 2419] OBJ_id_alg_dh_pop */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x01, /* [ 2427] OBJ_id_cmc_statusInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x02, /* [ 2435] OBJ_id_cmc_identification */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x03, /* [ 2443] OBJ_id_cmc_identityProof */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x04, /* [ 2451] OBJ_id_cmc_dataReturn */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x05, /* [ 2459] OBJ_id_cmc_transactionId */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x06, /* [ 2467] OBJ_id_cmc_senderNonce */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x07, /* [ 2475] OBJ_id_cmc_recipientNonce */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x08, /* [ 2483] OBJ_id_cmc_addExtensions */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x09, /* [ 2491] OBJ_id_cmc_encryptedPOP */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x0A, /* [ 2499] OBJ_id_cmc_decryptedPOP */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x0B, /* [ 2507] OBJ_id_cmc_lraPOPWitness */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x0F, /* [ 2515] OBJ_id_cmc_getCert */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x10, /* [ 2523] OBJ_id_cmc_getCRL */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x11, /* [ 2531] OBJ_id_cmc_revokeRequest */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x12, /* [ 2539] OBJ_id_cmc_regInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x13, /* [ 2547] OBJ_id_cmc_responseInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x15, /* [ 2555] OBJ_id_cmc_queryPending */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x16, /* [ 2563] OBJ_id_cmc_popLinkRandom */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x17, /* [ 2571] OBJ_id_cmc_popLinkWitness */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x18, /* [ 2579] OBJ_id_cmc_confirmCertAcceptance */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x08,0x01, /* [ 2587] OBJ_id_on_personalData */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x01, /* [ 2595] OBJ_id_pda_dateOfBirth */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x02, /* [ 2603] OBJ_id_pda_placeOfBirth */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x03, /* [ 2611] OBJ_id_pda_gender */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x04, /* [ 2619] OBJ_id_pda_countryOfCitizenship */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x05, /* [ 2627] OBJ_id_pda_countryOfResidence */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x01, /* [ 2635] OBJ_id_aca_authenticationInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x02, /* [ 2643] OBJ_id_aca_accessIdentity */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x03, /* [ 2651] OBJ_id_aca_chargingIdentity */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x04, /* [ 2659] OBJ_id_aca_group */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x05, /* [ 2667] OBJ_id_aca_role */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0B,0x01, /* [ 2675] OBJ_id_qcs_pkixQCSyntax_v1 */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C,0x01, /* [ 2683] OBJ_id_cct_crs */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C,0x02, /* [ 2691] OBJ_id_cct_PKIData */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C,0x03, /* [ 2699] OBJ_id_cct_PKIResponse */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x03, /* [ 2707] OBJ_ad_timeStamping */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x04, /* [ 2715] OBJ_ad_dvcs */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x01, /* [ 2723] OBJ_id_pkix_OCSP_basic */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x02, /* [ 2732] OBJ_id_pkix_OCSP_Nonce */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x03, /* [ 2741] OBJ_id_pkix_OCSP_CrlID */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x04, /* [ 2750] OBJ_id_pkix_OCSP_acceptableResponses */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x05, /* [ 2759] OBJ_id_pkix_OCSP_noCheck */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x06, /* [ 2768] OBJ_id_pkix_OCSP_archiveCutoff */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x07, /* [ 2777] OBJ_id_pkix_OCSP_serviceLocator */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x08, /* [ 2786] OBJ_id_pkix_OCSP_extendedStatus */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x09, /* [ 2795] OBJ_id_pkix_OCSP_valid */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x0A, /* [ 2804] OBJ_id_pkix_OCSP_path */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x0B, /* [ 2813] OBJ_id_pkix_OCSP_trustRoot */ 0x2B,0x0E,0x03,0x02, /* [ 2822] OBJ_algorithm */ 0x2B,0x0E,0x03,0x02,0x0B, /* [ 2826] OBJ_rsaSignature */ 0x55,0x08, /* [ 2831] OBJ_X500algorithms */ 0x2B, /* [ 2833] OBJ_org */ 0x2B,0x06, /* [ 2834] OBJ_dod */ 0x2B,0x06,0x01, /* [ 2836] OBJ_iana */ 0x2B,0x06,0x01,0x01, /* [ 2839] OBJ_Directory */ 0x2B,0x06,0x01,0x02, /* [ 2843] OBJ_Management */ 0x2B,0x06,0x01,0x03, /* [ 2847] OBJ_Experimental */ 0x2B,0x06,0x01,0x04, /* [ 2851] OBJ_Private */ 0x2B,0x06,0x01,0x05, /* [ 2855] OBJ_Security */ 0x2B,0x06,0x01,0x06, /* [ 2859] OBJ_SNMPv2 */ 0x2B,0x06,0x01,0x07, /* [ 2863] OBJ_Mail */ 0x2B,0x06,0x01,0x04,0x01, /* [ 2867] OBJ_Enterprises */ 0x2B,0x06,0x01,0x04,0x01,0x8B,0x3A,0x82,0x58, /* [ 2872] OBJ_dcObject */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x19, /* [ 2881] OBJ_domainComponent */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x0D, /* [ 2891] OBJ_Domain */ 0x55,0x01,0x05, /* [ 2901] OBJ_selected_attribute_types */ 0x55,0x01,0x05,0x37, /* [ 2904] OBJ_clearance */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x03, /* [ 2908] OBJ_md4WithRSAEncryption */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x0A, /* [ 2917] OBJ_ac_proxying */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x0B, /* [ 2925] OBJ_sinfo_access */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x06, /* [ 2933] OBJ_id_aca_encAttrs */ 0x55,0x04,0x48, /* [ 2941] OBJ_role */ 0x55,0x1D,0x24, /* [ 2944] OBJ_policy_constraints */ 0x55,0x1D,0x37, /* [ 2947] OBJ_target_information */ 0x55,0x1D,0x38, /* [ 2950] OBJ_no_rev_avail */ 0x2A,0x86,0x48,0xCE,0x3D, /* [ 2953] OBJ_ansi_X9_62 */ 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x01, /* [ 2958] OBJ_X9_62_prime_field */ 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02, /* [ 2965] OBJ_X9_62_characteristic_two_field */ 0x2A,0x86,0x48,0xCE,0x3D,0x02,0x01, /* [ 2972] OBJ_X9_62_id_ecPublicKey */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x01, /* [ 2979] OBJ_X9_62_prime192v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x02, /* [ 2987] OBJ_X9_62_prime192v2 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x03, /* [ 2995] OBJ_X9_62_prime192v3 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x04, /* [ 3003] OBJ_X9_62_prime239v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x05, /* [ 3011] OBJ_X9_62_prime239v2 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x06, /* [ 3019] OBJ_X9_62_prime239v3 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x07, /* [ 3027] OBJ_X9_62_prime256v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x01, /* [ 3035] OBJ_ecdsa_with_SHA1 */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x11,0x01, /* [ 3042] OBJ_ms_csp_name */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x01, /* [ 3051] OBJ_aes_128_ecb */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x02, /* [ 3060] OBJ_aes_128_cbc */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x03, /* [ 3069] OBJ_aes_128_ofb128 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x04, /* [ 3078] OBJ_aes_128_cfb128 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x15, /* [ 3087] OBJ_aes_192_ecb */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x16, /* [ 3096] OBJ_aes_192_cbc */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x17, /* [ 3105] OBJ_aes_192_ofb128 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x18, /* [ 3114] OBJ_aes_192_cfb128 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x29, /* [ 3123] OBJ_aes_256_ecb */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2A, /* [ 3132] OBJ_aes_256_cbc */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2B, /* [ 3141] OBJ_aes_256_ofb128 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2C, /* [ 3150] OBJ_aes_256_cfb128 */ 0x55,0x1D,0x17, /* [ 3159] OBJ_hold_instruction_code */ 0x2A,0x86,0x48,0xCE,0x38,0x02,0x01, /* [ 3162] OBJ_hold_instruction_none */ 0x2A,0x86,0x48,0xCE,0x38,0x02,0x02, /* [ 3169] OBJ_hold_instruction_call_issuer */ 0x2A,0x86,0x48,0xCE,0x38,0x02,0x03, /* [ 3176] OBJ_hold_instruction_reject */ 0x09, /* [ 3183] OBJ_data */ 0x09,0x92,0x26, /* [ 3184] OBJ_pss */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C, /* [ 3187] OBJ_ucl */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64, /* [ 3194] OBJ_pilot */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01, /* [ 3202] OBJ_pilotAttributeType */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x03, /* [ 3211] OBJ_pilotAttributeSyntax */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04, /* [ 3220] OBJ_pilotObjectClass */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x0A, /* [ 3229] OBJ_pilotGroups */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x03,0x04, /* [ 3238] OBJ_iA5StringSyntax */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x03,0x05, /* [ 3248] OBJ_caseIgnoreIA5StringSyntax */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x03, /* [ 3258] OBJ_pilotObject */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x04, /* [ 3268] OBJ_pilotPerson */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x05, /* [ 3278] OBJ_account */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x06, /* [ 3288] OBJ_document */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x07, /* [ 3298] OBJ_room */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x09, /* [ 3308] OBJ_documentSeries */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x0E, /* [ 3318] OBJ_rFC822localPart */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x0F, /* [ 3328] OBJ_dNSDomain */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x11, /* [ 3338] OBJ_domainRelatedObject */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x12, /* [ 3348] OBJ_friendlyCountry */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x13, /* [ 3358] OBJ_simpleSecurityObject */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x14, /* [ 3368] OBJ_pilotOrganization */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x15, /* [ 3378] OBJ_pilotDSA */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x16, /* [ 3388] OBJ_qualityLabelledData */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x01, /* [ 3398] OBJ_userId */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x02, /* [ 3408] OBJ_textEncodedORAddress */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x03, /* [ 3418] OBJ_rfc822Mailbox */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x04, /* [ 3428] OBJ_info */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x05, /* [ 3438] OBJ_favouriteDrink */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x06, /* [ 3448] OBJ_roomNumber */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x07, /* [ 3458] OBJ_photo */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x08, /* [ 3468] OBJ_userClass */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x09, /* [ 3478] OBJ_host */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0A, /* [ 3488] OBJ_manager */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0B, /* [ 3498] OBJ_documentIdentifier */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0C, /* [ 3508] OBJ_documentTitle */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0D, /* [ 3518] OBJ_documentVersion */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0E, /* [ 3528] OBJ_documentAuthor */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0F, /* [ 3538] OBJ_documentLocation */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x14, /* [ 3548] OBJ_homeTelephoneNumber */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x15, /* [ 3558] OBJ_secretary */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x16, /* [ 3568] OBJ_otherMailbox */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x17, /* [ 3578] OBJ_lastModifiedTime */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x18, /* [ 3588] OBJ_lastModifiedBy */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1A, /* [ 3598] OBJ_aRecord */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1B, /* [ 3608] OBJ_pilotAttributeType27 */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1C, /* [ 3618] OBJ_mXRecord */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1D, /* [ 3628] OBJ_nSRecord */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1E, /* [ 3638] OBJ_sOARecord */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1F, /* [ 3648] OBJ_cNAMERecord */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x25, /* [ 3658] OBJ_associatedDomain */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x26, /* [ 3668] OBJ_associatedName */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x27, /* [ 3678] OBJ_homePostalAddress */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x28, /* [ 3688] OBJ_personalTitle */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x29, /* [ 3698] OBJ_mobileTelephoneNumber */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2A, /* [ 3708] OBJ_pagerTelephoneNumber */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2B, /* [ 3718] OBJ_friendlyCountryName */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2D, /* [ 3728] OBJ_organizationalStatus */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2E, /* [ 3738] OBJ_janetMailbox */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2F, /* [ 3748] OBJ_mailPreferenceOption */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x30, /* [ 3758] OBJ_buildingName */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x31, /* [ 3768] OBJ_dSAQuality */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x32, /* [ 3778] OBJ_singleLevelQuality */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x33, /* [ 3788] OBJ_subtreeMinimumQuality */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x34, /* [ 3798] OBJ_subtreeMaximumQuality */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x35, /* [ 3808] OBJ_personalSignature */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x36, /* [ 3818] OBJ_dITRedirect */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x37, /* [ 3828] OBJ_audio */ 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x38, /* [ 3838] OBJ_documentPublisher */ 0x55,0x04,0x2D, /* [ 3848] OBJ_x500UniqueIdentifier */ 0x2B,0x06,0x01,0x07,0x01, /* [ 3851] OBJ_mime_mhs */ 0x2B,0x06,0x01,0x07,0x01,0x01, /* [ 3856] OBJ_mime_mhs_headings */ 0x2B,0x06,0x01,0x07,0x01,0x02, /* [ 3862] OBJ_mime_mhs_bodies */ 0x2B,0x06,0x01,0x07,0x01,0x01,0x01, /* [ 3868] OBJ_id_hex_partial_message */ 0x2B,0x06,0x01,0x07,0x01,0x01,0x02, /* [ 3875] OBJ_id_hex_multipart_message */ 0x55,0x04,0x2C, /* [ 3882] OBJ_generationQualifier */ 0x55,0x04,0x41, /* [ 3885] OBJ_pseudonym */ 0x67,0x2A, /* [ 3888] OBJ_id_set */ 0x67,0x2A,0x00, /* [ 3890] OBJ_set_ctype */ 0x67,0x2A,0x01, /* [ 3893] OBJ_set_msgExt */ 0x67,0x2A,0x03, /* [ 3896] OBJ_set_attr */ 0x67,0x2A,0x05, /* [ 3899] OBJ_set_policy */ 0x67,0x2A,0x07, /* [ 3902] OBJ_set_certExt */ 0x67,0x2A,0x08, /* [ 3905] OBJ_set_brand */ 0x67,0x2A,0x00,0x00, /* [ 3908] OBJ_setct_PANData */ 0x67,0x2A,0x00,0x01, /* [ 3912] OBJ_setct_PANToken */ 0x67,0x2A,0x00,0x02, /* [ 3916] OBJ_setct_PANOnly */ 0x67,0x2A,0x00,0x03, /* [ 3920] OBJ_setct_OIData */ 0x67,0x2A,0x00,0x04, /* [ 3924] OBJ_setct_PI */ 0x67,0x2A,0x00,0x05, /* [ 3928] OBJ_setct_PIData */ 0x67,0x2A,0x00,0x06, /* [ 3932] OBJ_setct_PIDataUnsigned */ 0x67,0x2A,0x00,0x07, /* [ 3936] OBJ_setct_HODInput */ 0x67,0x2A,0x00,0x08, /* [ 3940] OBJ_setct_AuthResBaggage */ 0x67,0x2A,0x00,0x09, /* [ 3944] OBJ_setct_AuthRevReqBaggage */ 0x67,0x2A,0x00,0x0A, /* [ 3948] OBJ_setct_AuthRevResBaggage */ 0x67,0x2A,0x00,0x0B, /* [ 3952] OBJ_setct_CapTokenSeq */ 0x67,0x2A,0x00,0x0C, /* [ 3956] OBJ_setct_PInitResData */ 0x67,0x2A,0x00,0x0D, /* [ 3960] OBJ_setct_PI_TBS */ 0x67,0x2A,0x00,0x0E, /* [ 3964] OBJ_setct_PResData */ 0x67,0x2A,0x00,0x10, /* [ 3968] OBJ_setct_AuthReqTBS */ 0x67,0x2A,0x00,0x11, /* [ 3972] OBJ_setct_AuthResTBS */ 0x67,0x2A,0x00,0x12, /* [ 3976] OBJ_setct_AuthResTBSX */ 0x67,0x2A,0x00,0x13, /* [ 3980] OBJ_setct_AuthTokenTBS */ 0x67,0x2A,0x00,0x14, /* [ 3984] OBJ_setct_CapTokenData */ 0x67,0x2A,0x00,0x15, /* [ 3988] OBJ_setct_CapTokenTBS */ 0x67,0x2A,0x00,0x16, /* [ 3992] OBJ_setct_AcqCardCodeMsg */ 0x67,0x2A,0x00,0x17, /* [ 3996] OBJ_setct_AuthRevReqTBS */ 0x67,0x2A,0x00,0x18, /* [ 4000] OBJ_setct_AuthRevResData */ 0x67,0x2A,0x00,0x19, /* [ 4004] OBJ_setct_AuthRevResTBS */ 0x67,0x2A,0x00,0x1A, /* [ 4008] OBJ_setct_CapReqTBS */ 0x67,0x2A,0x00,0x1B, /* [ 4012] OBJ_setct_CapReqTBSX */ 0x67,0x2A,0x00,0x1C, /* [ 4016] OBJ_setct_CapResData */ 0x67,0x2A,0x00,0x1D, /* [ 4020] OBJ_setct_CapRevReqTBS */ 0x67,0x2A,0x00,0x1E, /* [ 4024] OBJ_setct_CapRevReqTBSX */ 0x67,0x2A,0x00,0x1F, /* [ 4028] OBJ_setct_CapRevResData */ 0x67,0x2A,0x00,0x20, /* [ 4032] OBJ_setct_CredReqTBS */ 0x67,0x2A,0x00,0x21, /* [ 4036] OBJ_setct_CredReqTBSX */ 0x67,0x2A,0x00,0x22, /* [ 4040] OBJ_setct_CredResData */ 0x67,0x2A,0x00,0x23, /* [ 4044] OBJ_setct_CredRevReqTBS */ 0x67,0x2A,0x00,0x24, /* [ 4048] OBJ_setct_CredRevReqTBSX */ 0x67,0x2A,0x00,0x25, /* [ 4052] OBJ_setct_CredRevResData */ 0x67,0x2A,0x00,0x26, /* [ 4056] OBJ_setct_PCertReqData */ 0x67,0x2A,0x00,0x27, /* [ 4060] OBJ_setct_PCertResTBS */ 0x67,0x2A,0x00,0x28, /* [ 4064] OBJ_setct_BatchAdminReqData */ 0x67,0x2A,0x00,0x29, /* [ 4068] OBJ_setct_BatchAdminResData */ 0x67,0x2A,0x00,0x2A, /* [ 4072] OBJ_setct_CardCInitResTBS */ 0x67,0x2A,0x00,0x2B, /* [ 4076] OBJ_setct_MeAqCInitResTBS */ 0x67,0x2A,0x00,0x2C, /* [ 4080] OBJ_setct_RegFormResTBS */ 0x67,0x2A,0x00,0x2D, /* [ 4084] OBJ_setct_CertReqData */ 0x67,0x2A,0x00,0x2E, /* [ 4088] OBJ_setct_CertReqTBS */ 0x67,0x2A,0x00,0x2F, /* [ 4092] OBJ_setct_CertResData */ 0x67,0x2A,0x00,0x30, /* [ 4096] OBJ_setct_CertInqReqTBS */ 0x67,0x2A,0x00,0x31, /* [ 4100] OBJ_setct_ErrorTBS */ 0x67,0x2A,0x00,0x32, /* [ 4104] OBJ_setct_PIDualSignedTBE */ 0x67,0x2A,0x00,0x33, /* [ 4108] OBJ_setct_PIUnsignedTBE */ 0x67,0x2A,0x00,0x34, /* [ 4112] OBJ_setct_AuthReqTBE */ 0x67,0x2A,0x00,0x35, /* [ 4116] OBJ_setct_AuthResTBE */ 0x67,0x2A,0x00,0x36, /* [ 4120] OBJ_setct_AuthResTBEX */ 0x67,0x2A,0x00,0x37, /* [ 4124] OBJ_setct_AuthTokenTBE */ 0x67,0x2A,0x00,0x38, /* [ 4128] OBJ_setct_CapTokenTBE */ 0x67,0x2A,0x00,0x39, /* [ 4132] OBJ_setct_CapTokenTBEX */ 0x67,0x2A,0x00,0x3A, /* [ 4136] OBJ_setct_AcqCardCodeMsgTBE */ 0x67,0x2A,0x00,0x3B, /* [ 4140] OBJ_setct_AuthRevReqTBE */ 0x67,0x2A,0x00,0x3C, /* [ 4144] OBJ_setct_AuthRevResTBE */ 0x67,0x2A,0x00,0x3D, /* [ 4148] OBJ_setct_AuthRevResTBEB */ 0x67,0x2A,0x00,0x3E, /* [ 4152] OBJ_setct_CapReqTBE */ 0x67,0x2A,0x00,0x3F, /* [ 4156] OBJ_setct_CapReqTBEX */ 0x67,0x2A,0x00,0x40, /* [ 4160] OBJ_setct_CapResTBE */ 0x67,0x2A,0x00,0x41, /* [ 4164] OBJ_setct_CapRevReqTBE */ 0x67,0x2A,0x00,0x42, /* [ 4168] OBJ_setct_CapRevReqTBEX */ 0x67,0x2A,0x00,0x43, /* [ 4172] OBJ_setct_CapRevResTBE */ 0x67,0x2A,0x00,0x44, /* [ 4176] OBJ_setct_CredReqTBE */ 0x67,0x2A,0x00,0x45, /* [ 4180] OBJ_setct_CredReqTBEX */ 0x67,0x2A,0x00,0x46, /* [ 4184] OBJ_setct_CredResTBE */ 0x67,0x2A,0x00,0x47, /* [ 4188] OBJ_setct_CredRevReqTBE */ 0x67,0x2A,0x00,0x48, /* [ 4192] OBJ_setct_CredRevReqTBEX */ 0x67,0x2A,0x00,0x49, /* [ 4196] OBJ_setct_CredRevResTBE */ 0x67,0x2A,0x00,0x4A, /* [ 4200] OBJ_setct_BatchAdminReqTBE */ 0x67,0x2A,0x00,0x4B, /* [ 4204] OBJ_setct_BatchAdminResTBE */ 0x67,0x2A,0x00,0x4C, /* [ 4208] OBJ_setct_RegFormReqTBE */ 0x67,0x2A,0x00,0x4D, /* [ 4212] OBJ_setct_CertReqTBE */ 0x67,0x2A,0x00,0x4E, /* [ 4216] OBJ_setct_CertReqTBEX */ 0x67,0x2A,0x00,0x4F, /* [ 4220] OBJ_setct_CertResTBE */ 0x67,0x2A,0x00,0x50, /* [ 4224] OBJ_setct_CRLNotificationTBS */ 0x67,0x2A,0x00,0x51, /* [ 4228] OBJ_setct_CRLNotificationResTBS */ 0x67,0x2A,0x00,0x52, /* [ 4232] OBJ_setct_BCIDistributionTBS */ 0x67,0x2A,0x01,0x01, /* [ 4236] OBJ_setext_genCrypt */ 0x67,0x2A,0x01,0x03, /* [ 4240] OBJ_setext_miAuth */ 0x67,0x2A,0x01,0x04, /* [ 4244] OBJ_setext_pinSecure */ 0x67,0x2A,0x01,0x05, /* [ 4248] OBJ_setext_pinAny */ 0x67,0x2A,0x01,0x07, /* [ 4252] OBJ_setext_track2 */ 0x67,0x2A,0x01,0x08, /* [ 4256] OBJ_setext_cv */ 0x67,0x2A,0x05,0x00, /* [ 4260] OBJ_set_policy_root */ 0x67,0x2A,0x07,0x00, /* [ 4264] OBJ_setCext_hashedRoot */ 0x67,0x2A,0x07,0x01, /* [ 4268] OBJ_setCext_certType */ 0x67,0x2A,0x07,0x02, /* [ 4272] OBJ_setCext_merchData */ 0x67,0x2A,0x07,0x03, /* [ 4276] OBJ_setCext_cCertRequired */ 0x67,0x2A,0x07,0x04, /* [ 4280] OBJ_setCext_tunneling */ 0x67,0x2A,0x07,0x05, /* [ 4284] OBJ_setCext_setExt */ 0x67,0x2A,0x07,0x06, /* [ 4288] OBJ_setCext_setQualf */ 0x67,0x2A,0x07,0x07, /* [ 4292] OBJ_setCext_PGWYcapabilities */ 0x67,0x2A,0x07,0x08, /* [ 4296] OBJ_setCext_TokenIdentifier */ 0x67,0x2A,0x07,0x09, /* [ 4300] OBJ_setCext_Track2Data */ 0x67,0x2A,0x07,0x0A, /* [ 4304] OBJ_setCext_TokenType */ 0x67,0x2A,0x07,0x0B, /* [ 4308] OBJ_setCext_IssuerCapabilities */ 0x67,0x2A,0x03,0x00, /* [ 4312] OBJ_setAttr_Cert */ 0x67,0x2A,0x03,0x01, /* [ 4316] OBJ_setAttr_PGWYcap */ 0x67,0x2A,0x03,0x02, /* [ 4320] OBJ_setAttr_TokenType */ 0x67,0x2A,0x03,0x03, /* [ 4324] OBJ_setAttr_IssCap */ 0x67,0x2A,0x03,0x00,0x00, /* [ 4328] OBJ_set_rootKeyThumb */ 0x67,0x2A,0x03,0x00,0x01, /* [ 4333] OBJ_set_addPolicy */ 0x67,0x2A,0x03,0x02,0x01, /* [ 4338] OBJ_setAttr_Token_EMV */ 0x67,0x2A,0x03,0x02,0x02, /* [ 4343] OBJ_setAttr_Token_B0Prime */ 0x67,0x2A,0x03,0x03,0x03, /* [ 4348] OBJ_setAttr_IssCap_CVM */ 0x67,0x2A,0x03,0x03,0x04, /* [ 4353] OBJ_setAttr_IssCap_T2 */ 0x67,0x2A,0x03,0x03,0x05, /* [ 4358] OBJ_setAttr_IssCap_Sig */ 0x67,0x2A,0x03,0x03,0x03,0x01, /* [ 4363] OBJ_setAttr_GenCryptgrm */ 0x67,0x2A,0x03,0x03,0x04,0x01, /* [ 4369] OBJ_setAttr_T2Enc */ 0x67,0x2A,0x03,0x03,0x04,0x02, /* [ 4375] OBJ_setAttr_T2cleartxt */ 0x67,0x2A,0x03,0x03,0x05,0x01, /* [ 4381] OBJ_setAttr_TokICCsig */ 0x67,0x2A,0x03,0x03,0x05,0x02, /* [ 4387] OBJ_setAttr_SecDevSig */ 0x67,0x2A,0x08,0x01, /* [ 4393] OBJ_set_brand_IATA_ATA */ 0x67,0x2A,0x08,0x1E, /* [ 4397] OBJ_set_brand_Diners */ 0x67,0x2A,0x08,0x22, /* [ 4401] OBJ_set_brand_AmericanExpress */ 0x67,0x2A,0x08,0x23, /* [ 4405] OBJ_set_brand_JCB */ 0x67,0x2A,0x08,0x04, /* [ 4409] OBJ_set_brand_Visa */ 0x67,0x2A,0x08,0x05, /* [ 4413] OBJ_set_brand_MasterCard */ 0x67,0x2A,0x08,0xAE,0x7B, /* [ 4417] OBJ_set_brand_Novus */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x0A, /* [ 4422] OBJ_des_cdmf */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x06, /* [ 4430] OBJ_rsaOAEPEncryptionSET */ 0x67, /* [ 4439] OBJ_international_organizations */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x14,0x02,0x02, /* [ 4440] OBJ_ms_smartcard_login */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x14,0x02,0x03, /* [ 4450] OBJ_ms_upn */ 0x55,0x04,0x09, /* [ 4460] OBJ_streetAddress */ 0x55,0x04,0x11, /* [ 4463] OBJ_postalCode */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x15, /* [ 4466] OBJ_id_ppl */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x0E, /* [ 4473] OBJ_proxyCertInfo */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x15,0x00, /* [ 4481] OBJ_id_ppl_anyLanguage */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x15,0x01, /* [ 4489] OBJ_id_ppl_inheritAll */ 0x55,0x1D,0x1E, /* [ 4497] OBJ_name_constraints */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x15,0x02, /* [ 4500] OBJ_Independent */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0B, /* [ 4508] OBJ_sha256WithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0C, /* [ 4517] OBJ_sha384WithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0D, /* [ 4526] OBJ_sha512WithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0E, /* [ 4535] OBJ_sha224WithRSAEncryption */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01, /* [ 4544] OBJ_sha256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x02, /* [ 4553] OBJ_sha384 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03, /* [ 4562] OBJ_sha512 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x04, /* [ 4571] OBJ_sha224 */ 0x2B, /* [ 4580] OBJ_identified_organization */ 0x2B,0x81,0x04, /* [ 4581] OBJ_certicom_arc */ 0x67,0x2B, /* [ 4584] OBJ_wap */ 0x67,0x2B,0x01, /* [ 4586] OBJ_wap_wsg */ 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03, /* [ 4589] OBJ_X9_62_id_characteristic_two_basis */ 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03,0x01, /* [ 4597] OBJ_X9_62_onBasis */ 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03,0x02, /* [ 4606] OBJ_X9_62_tpBasis */ 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03,0x03, /* [ 4615] OBJ_X9_62_ppBasis */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x01, /* [ 4624] OBJ_X9_62_c2pnb163v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x02, /* [ 4632] OBJ_X9_62_c2pnb163v2 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x03, /* [ 4640] OBJ_X9_62_c2pnb163v3 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x04, /* [ 4648] OBJ_X9_62_c2pnb176v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x05, /* [ 4656] OBJ_X9_62_c2tnb191v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x06, /* [ 4664] OBJ_X9_62_c2tnb191v2 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x07, /* [ 4672] OBJ_X9_62_c2tnb191v3 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x08, /* [ 4680] OBJ_X9_62_c2onb191v4 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x09, /* [ 4688] OBJ_X9_62_c2onb191v5 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0A, /* [ 4696] OBJ_X9_62_c2pnb208w1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0B, /* [ 4704] OBJ_X9_62_c2tnb239v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0C, /* [ 4712] OBJ_X9_62_c2tnb239v2 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0D, /* [ 4720] OBJ_X9_62_c2tnb239v3 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0E, /* [ 4728] OBJ_X9_62_c2onb239v4 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0F, /* [ 4736] OBJ_X9_62_c2onb239v5 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x10, /* [ 4744] OBJ_X9_62_c2pnb272w1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x11, /* [ 4752] OBJ_X9_62_c2pnb304w1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x12, /* [ 4760] OBJ_X9_62_c2tnb359v1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x13, /* [ 4768] OBJ_X9_62_c2pnb368w1 */ 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x14, /* [ 4776] OBJ_X9_62_c2tnb431r1 */ 0x2B,0x81,0x04,0x00,0x06, /* [ 4784] OBJ_secp112r1 */ 0x2B,0x81,0x04,0x00,0x07, /* [ 4789] OBJ_secp112r2 */ 0x2B,0x81,0x04,0x00,0x1C, /* [ 4794] OBJ_secp128r1 */ 0x2B,0x81,0x04,0x00,0x1D, /* [ 4799] OBJ_secp128r2 */ 0x2B,0x81,0x04,0x00,0x09, /* [ 4804] OBJ_secp160k1 */ 0x2B,0x81,0x04,0x00,0x08, /* [ 4809] OBJ_secp160r1 */ 0x2B,0x81,0x04,0x00,0x1E, /* [ 4814] OBJ_secp160r2 */ 0x2B,0x81,0x04,0x00,0x1F, /* [ 4819] OBJ_secp192k1 */ 0x2B,0x81,0x04,0x00,0x20, /* [ 4824] OBJ_secp224k1 */ 0x2B,0x81,0x04,0x00,0x21, /* [ 4829] OBJ_secp224r1 */ 0x2B,0x81,0x04,0x00,0x0A, /* [ 4834] OBJ_secp256k1 */ 0x2B,0x81,0x04,0x00,0x22, /* [ 4839] OBJ_secp384r1 */ 0x2B,0x81,0x04,0x00,0x23, /* [ 4844] OBJ_secp521r1 */ 0x2B,0x81,0x04,0x00,0x04, /* [ 4849] OBJ_sect113r1 */ 0x2B,0x81,0x04,0x00,0x05, /* [ 4854] OBJ_sect113r2 */ 0x2B,0x81,0x04,0x00,0x16, /* [ 4859] OBJ_sect131r1 */ 0x2B,0x81,0x04,0x00,0x17, /* [ 4864] OBJ_sect131r2 */ 0x2B,0x81,0x04,0x00,0x01, /* [ 4869] OBJ_sect163k1 */ 0x2B,0x81,0x04,0x00,0x02, /* [ 4874] OBJ_sect163r1 */ 0x2B,0x81,0x04,0x00,0x0F, /* [ 4879] OBJ_sect163r2 */ 0x2B,0x81,0x04,0x00,0x18, /* [ 4884] OBJ_sect193r1 */ 0x2B,0x81,0x04,0x00,0x19, /* [ 4889] OBJ_sect193r2 */ 0x2B,0x81,0x04,0x00,0x1A, /* [ 4894] OBJ_sect233k1 */ 0x2B,0x81,0x04,0x00,0x1B, /* [ 4899] OBJ_sect233r1 */ 0x2B,0x81,0x04,0x00,0x03, /* [ 4904] OBJ_sect239k1 */ 0x2B,0x81,0x04,0x00,0x10, /* [ 4909] OBJ_sect283k1 */ 0x2B,0x81,0x04,0x00,0x11, /* [ 4914] OBJ_sect283r1 */ 0x2B,0x81,0x04,0x00,0x24, /* [ 4919] OBJ_sect409k1 */ 0x2B,0x81,0x04,0x00,0x25, /* [ 4924] OBJ_sect409r1 */ 0x2B,0x81,0x04,0x00,0x26, /* [ 4929] OBJ_sect571k1 */ 0x2B,0x81,0x04,0x00,0x27, /* [ 4934] OBJ_sect571r1 */ 0x67,0x2B,0x01,0x04,0x01, /* [ 4939] OBJ_wap_wsg_idm_ecid_wtls1 */ 0x67,0x2B,0x01,0x04,0x03, /* [ 4944] OBJ_wap_wsg_idm_ecid_wtls3 */ 0x67,0x2B,0x01,0x04,0x04, /* [ 4949] OBJ_wap_wsg_idm_ecid_wtls4 */ 0x67,0x2B,0x01,0x04,0x05, /* [ 4954] OBJ_wap_wsg_idm_ecid_wtls5 */ 0x67,0x2B,0x01,0x04,0x06, /* [ 4959] OBJ_wap_wsg_idm_ecid_wtls6 */ 0x67,0x2B,0x01,0x04,0x07, /* [ 4964] OBJ_wap_wsg_idm_ecid_wtls7 */ 0x67,0x2B,0x01,0x04,0x08, /* [ 4969] OBJ_wap_wsg_idm_ecid_wtls8 */ 0x67,0x2B,0x01,0x04,0x09, /* [ 4974] OBJ_wap_wsg_idm_ecid_wtls9 */ 0x67,0x2B,0x01,0x04,0x0A, /* [ 4979] OBJ_wap_wsg_idm_ecid_wtls10 */ 0x67,0x2B,0x01,0x04,0x0B, /* [ 4984] OBJ_wap_wsg_idm_ecid_wtls11 */ 0x67,0x2B,0x01,0x04,0x0C, /* [ 4989] OBJ_wap_wsg_idm_ecid_wtls12 */ 0x55,0x1D,0x20,0x00, /* [ 4994] OBJ_any_policy */ 0x55,0x1D,0x21, /* [ 4998] OBJ_policy_mappings */ 0x55,0x1D,0x36, /* [ 5001] OBJ_inhibit_any_policy */ 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x01,0x02, /* [ 5004] OBJ_camellia_128_cbc */ 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x01,0x03, /* [ 5015] OBJ_camellia_192_cbc */ 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x01,0x04, /* [ 5026] OBJ_camellia_256_cbc */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x01, /* [ 5037] OBJ_camellia_128_ecb */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x15, /* [ 5045] OBJ_camellia_192_ecb */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x29, /* [ 5053] OBJ_camellia_256_ecb */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x04, /* [ 5061] OBJ_camellia_128_cfb128 */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x18, /* [ 5069] OBJ_camellia_192_cfb128 */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x2C, /* [ 5077] OBJ_camellia_256_cfb128 */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x03, /* [ 5085] OBJ_camellia_128_ofb128 */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x17, /* [ 5093] OBJ_camellia_192_ofb128 */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x2B, /* [ 5101] OBJ_camellia_256_ofb128 */ 0x55,0x1D,0x09, /* [ 5109] OBJ_subject_directory_attributes */ 0x55,0x1D,0x1C, /* [ 5112] OBJ_issuing_distribution_point */ 0x55,0x1D,0x1D, /* [ 5115] OBJ_certificate_issuer */ 0x2A,0x83,0x1A,0x8C,0x9A,0x44, /* [ 5118] OBJ_kisa */ 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x03, /* [ 5124] OBJ_seed_ecb */ 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x04, /* [ 5132] OBJ_seed_cbc */ 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x06, /* [ 5140] OBJ_seed_ofb128 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x05, /* [ 5148] OBJ_seed_cfb128 */ 0x2B,0x06,0x01,0x05,0x05,0x08,0x01,0x01, /* [ 5156] OBJ_hmac_md5 */ 0x2B,0x06,0x01,0x05,0x05,0x08,0x01,0x02, /* [ 5164] OBJ_hmac_sha1 */ 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x0D, /* [ 5172] OBJ_id_PasswordBasedMAC */ 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x1E, /* [ 5181] OBJ_id_DHBasedMac */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x10, /* [ 5190] OBJ_id_it_suppLangTags */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x05, /* [ 5198] OBJ_caRepository */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x09, /* [ 5206] OBJ_id_smime_ct_compressedData */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x1B, /* [ 5217] OBJ_id_ct_asciiTextWithCRLF */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x05, /* [ 5228] OBJ_id_aes128_wrap */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x19, /* [ 5237] OBJ_id_aes192_wrap */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2D, /* [ 5246] OBJ_id_aes256_wrap */ 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x02, /* [ 5255] OBJ_ecdsa_with_Recommended */ 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03, /* [ 5262] OBJ_ecdsa_with_Specified */ 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x01, /* [ 5269] OBJ_ecdsa_with_SHA224 */ 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x02, /* [ 5277] OBJ_ecdsa_with_SHA256 */ 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x03, /* [ 5285] OBJ_ecdsa_with_SHA384 */ 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x04, /* [ 5293] OBJ_ecdsa_with_SHA512 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x06, /* [ 5301] OBJ_hmacWithMD5 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x08, /* [ 5309] OBJ_hmacWithSHA224 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x09, /* [ 5317] OBJ_hmacWithSHA256 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x0A, /* [ 5325] OBJ_hmacWithSHA384 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x0B, /* [ 5333] OBJ_hmacWithSHA512 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x01, /* [ 5341] OBJ_dsa_with_SHA224 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x02, /* [ 5350] OBJ_dsa_with_SHA256 */ 0x28,0xCF,0x06,0x03,0x00,0x37, /* [ 5359] OBJ_whirlpool */ 0x2A,0x85,0x03,0x02,0x02, /* [ 5365] OBJ_cryptopro */ 0x2A,0x85,0x03,0x02,0x09, /* [ 5370] OBJ_cryptocom */ 0x2A,0x85,0x03,0x02,0x02,0x03, /* [ 5375] OBJ_id_GostR3411_94_with_GostR3410_2001 */ 0x2A,0x85,0x03,0x02,0x02,0x04, /* [ 5381] OBJ_id_GostR3411_94_with_GostR3410_94 */ 0x2A,0x85,0x03,0x02,0x02,0x09, /* [ 5387] OBJ_id_GostR3411_94 */ 0x2A,0x85,0x03,0x02,0x02,0x0A, /* [ 5393] OBJ_id_HMACGostR3411_94 */ 0x2A,0x85,0x03,0x02,0x02,0x13, /* [ 5399] OBJ_id_GostR3410_2001 */ 0x2A,0x85,0x03,0x02,0x02,0x14, /* [ 5405] OBJ_id_GostR3410_94 */ 0x2A,0x85,0x03,0x02,0x02,0x15, /* [ 5411] OBJ_id_Gost28147_89 */ 0x2A,0x85,0x03,0x02,0x02,0x16, /* [ 5417] OBJ_id_Gost28147_89_MAC */ 0x2A,0x85,0x03,0x02,0x02,0x17, /* [ 5423] OBJ_id_GostR3411_94_prf */ 0x2A,0x85,0x03,0x02,0x02,0x62, /* [ 5429] OBJ_id_GostR3410_2001DH */ 0x2A,0x85,0x03,0x02,0x02,0x63, /* [ 5435] OBJ_id_GostR3410_94DH */ 0x2A,0x85,0x03,0x02,0x02,0x0E,0x01, /* [ 5441] OBJ_id_Gost28147_89_CryptoPro_KeyMeshing */ 0x2A,0x85,0x03,0x02,0x02,0x0E,0x00, /* [ 5448] OBJ_id_Gost28147_89_None_KeyMeshing */ 0x2A,0x85,0x03,0x02,0x02,0x1E,0x00, /* [ 5455] OBJ_id_GostR3411_94_TestParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1E,0x01, /* [ 5462] OBJ_id_GostR3411_94_CryptoProParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x00, /* [ 5469] OBJ_id_Gost28147_89_TestParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x01, /* [ 5476] OBJ_id_Gost28147_89_CryptoPro_A_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x02, /* [ 5483] OBJ_id_Gost28147_89_CryptoPro_B_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x03, /* [ 5490] OBJ_id_Gost28147_89_CryptoPro_C_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x04, /* [ 5497] OBJ_id_Gost28147_89_CryptoPro_D_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x05, /* [ 5504] OBJ_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x06, /* [ 5511] OBJ_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x1F,0x07, /* [ 5518] OBJ_id_Gost28147_89_CryptoPro_RIC_1_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x20,0x00, /* [ 5525] OBJ_id_GostR3410_94_TestParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x20,0x02, /* [ 5532] OBJ_id_GostR3410_94_CryptoPro_A_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x20,0x03, /* [ 5539] OBJ_id_GostR3410_94_CryptoPro_B_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x20,0x04, /* [ 5546] OBJ_id_GostR3410_94_CryptoPro_C_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x20,0x05, /* [ 5553] OBJ_id_GostR3410_94_CryptoPro_D_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x21,0x01, /* [ 5560] OBJ_id_GostR3410_94_CryptoPro_XchA_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x21,0x02, /* [ 5567] OBJ_id_GostR3410_94_CryptoPro_XchB_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x21,0x03, /* [ 5574] OBJ_id_GostR3410_94_CryptoPro_XchC_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x23,0x00, /* [ 5581] OBJ_id_GostR3410_2001_TestParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x23,0x01, /* [ 5588] OBJ_id_GostR3410_2001_CryptoPro_A_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x23,0x02, /* [ 5595] OBJ_id_GostR3410_2001_CryptoPro_B_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x23,0x03, /* [ 5602] OBJ_id_GostR3410_2001_CryptoPro_C_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x24,0x00, /* [ 5609] OBJ_id_GostR3410_2001_CryptoPro_XchA_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x24,0x01, /* [ 5616] OBJ_id_GostR3410_2001_CryptoPro_XchB_ParamSet */ 0x2A,0x85,0x03,0x02,0x02,0x14,0x01, /* [ 5623] OBJ_id_GostR3410_94_a */ 0x2A,0x85,0x03,0x02,0x02,0x14,0x02, /* [ 5630] OBJ_id_GostR3410_94_aBis */ 0x2A,0x85,0x03,0x02,0x02,0x14,0x03, /* [ 5637] OBJ_id_GostR3410_94_b */ 0x2A,0x85,0x03,0x02,0x02,0x14,0x04, /* [ 5644] OBJ_id_GostR3410_94_bBis */ 0x2A,0x85,0x03,0x02,0x09,0x01,0x06,0x01, /* [ 5651] OBJ_id_Gost28147_89_cc */ 0x2A,0x85,0x03,0x02,0x09,0x01,0x05,0x03, /* [ 5659] OBJ_id_GostR3410_94_cc */ 0x2A,0x85,0x03,0x02,0x09,0x01,0x05,0x04, /* [ 5667] OBJ_id_GostR3410_2001_cc */ 0x2A,0x85,0x03,0x02,0x09,0x01,0x03,0x03, /* [ 5675] OBJ_id_GostR3411_94_with_GostR3410_94_cc */ 0x2A,0x85,0x03,0x02,0x09,0x01,0x03,0x04, /* [ 5683] OBJ_id_GostR3411_94_with_GostR3410_2001_cc */ 0x2A,0x85,0x03,0x02,0x09,0x01,0x08,0x01, /* [ 5691] OBJ_id_GostR3410_2001_ParamSet_cc */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x11,0x02, /* [ 5699] OBJ_LocalKeySet */ 0x55,0x1D,0x2E, /* [ 5708] OBJ_freshest_crl */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x08,0x03, /* [ 5711] OBJ_id_on_permanentIdentifier */ 0x55,0x04,0x0E, /* [ 5719] OBJ_searchGuide */ 0x55,0x04,0x0F, /* [ 5722] OBJ_businessCategory */ 0x55,0x04,0x10, /* [ 5725] OBJ_postalAddress */ 0x55,0x04,0x12, /* [ 5728] OBJ_postOfficeBox */ 0x55,0x04,0x13, /* [ 5731] OBJ_physicalDeliveryOfficeName */ 0x55,0x04,0x14, /* [ 5734] OBJ_telephoneNumber */ 0x55,0x04,0x15, /* [ 5737] OBJ_telexNumber */ 0x55,0x04,0x16, /* [ 5740] OBJ_teletexTerminalIdentifier */ 0x55,0x04,0x17, /* [ 5743] OBJ_facsimileTelephoneNumber */ 0x55,0x04,0x18, /* [ 5746] OBJ_x121Address */ 0x55,0x04,0x19, /* [ 5749] OBJ_internationaliSDNNumber */ 0x55,0x04,0x1A, /* [ 5752] OBJ_registeredAddress */ 0x55,0x04,0x1B, /* [ 5755] OBJ_destinationIndicator */ 0x55,0x04,0x1C, /* [ 5758] OBJ_preferredDeliveryMethod */ 0x55,0x04,0x1D, /* [ 5761] OBJ_presentationAddress */ 0x55,0x04,0x1E, /* [ 5764] OBJ_supportedApplicationContext */ 0x55,0x04,0x1F, /* [ 5767] OBJ_member */ 0x55,0x04,0x20, /* [ 5770] OBJ_owner */ 0x55,0x04,0x21, /* [ 5773] OBJ_roleOccupant */ 0x55,0x04,0x22, /* [ 5776] OBJ_seeAlso */ 0x55,0x04,0x23, /* [ 5779] OBJ_userPassword */ 0x55,0x04,0x24, /* [ 5782] OBJ_userCertificate */ 0x55,0x04,0x25, /* [ 5785] OBJ_cACertificate */ 0x55,0x04,0x26, /* [ 5788] OBJ_authorityRevocationList */ 0x55,0x04,0x27, /* [ 5791] OBJ_certificateRevocationList */ 0x55,0x04,0x28, /* [ 5794] OBJ_crossCertificatePair */ 0x55,0x04,0x2F, /* [ 5797] OBJ_enhancedSearchGuide */ 0x55,0x04,0x30, /* [ 5800] OBJ_protocolInformation */ 0x55,0x04,0x31, /* [ 5803] OBJ_distinguishedName */ 0x55,0x04,0x32, /* [ 5806] OBJ_uniqueMember */ 0x55,0x04,0x33, /* [ 5809] OBJ_houseIdentifier */ 0x55,0x04,0x34, /* [ 5812] OBJ_supportedAlgorithms */ 0x55,0x04,0x35, /* [ 5815] OBJ_deltaRevocationList */ 0x55,0x04,0x36, /* [ 5818] OBJ_dmdName */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x09, /* [ 5821] OBJ_id_alg_PWRI_KEK */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x06, /* [ 5832] OBJ_aes_128_gcm */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x07, /* [ 5841] OBJ_aes_128_ccm */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x08, /* [ 5850] OBJ_id_aes128_wrap_pad */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x1A, /* [ 5859] OBJ_aes_192_gcm */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x1B, /* [ 5868] OBJ_aes_192_ccm */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x1C, /* [ 5877] OBJ_id_aes192_wrap_pad */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2E, /* [ 5886] OBJ_aes_256_gcm */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2F, /* [ 5895] OBJ_aes_256_ccm */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x30, /* [ 5904] OBJ_id_aes256_wrap_pad */ 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x03,0x02, /* [ 5913] OBJ_id_camellia128_wrap */ 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x03,0x03, /* [ 5924] OBJ_id_camellia192_wrap */ 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x03,0x04, /* [ 5935] OBJ_id_camellia256_wrap */ 0x55,0x1D,0x25,0x00, /* [ 5946] OBJ_anyExtendedKeyUsage */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x08, /* [ 5950] OBJ_mgf1 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0A, /* [ 5959] OBJ_rsassaPss */ 0x2B,0x6F,0x02,0x8C,0x53,0x00,0x01,0x01, /* [ 5968] OBJ_aes_128_xts */ 0x2B,0x6F,0x02,0x8C,0x53,0x00,0x01,0x02, /* [ 5976] OBJ_aes_256_xts */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x07, /* [ 5984] OBJ_rsaesOaep */ 0x2A,0x86,0x48,0xCE,0x3E,0x02,0x01, /* [ 5993] OBJ_dhpublicnumber */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x01, /* [ 6000] OBJ_brainpoolP160r1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x02, /* [ 6009] OBJ_brainpoolP160t1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x03, /* [ 6018] OBJ_brainpoolP192r1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x04, /* [ 6027] OBJ_brainpoolP192t1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x05, /* [ 6036] OBJ_brainpoolP224r1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x06, /* [ 6045] OBJ_brainpoolP224t1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x07, /* [ 6054] OBJ_brainpoolP256r1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x08, /* [ 6063] OBJ_brainpoolP256t1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x09, /* [ 6072] OBJ_brainpoolP320r1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x0A, /* [ 6081] OBJ_brainpoolP320t1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x0B, /* [ 6090] OBJ_brainpoolP384r1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x0C, /* [ 6099] OBJ_brainpoolP384t1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x0D, /* [ 6108] OBJ_brainpoolP512r1 */ 0x2B,0x24,0x03,0x03,0x02,0x08,0x01,0x01,0x0E, /* [ 6117] OBJ_brainpoolP512t1 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x09, /* [ 6126] OBJ_pSpecified */ 0x2B,0x81,0x05,0x10,0x86,0x48,0x3F,0x00,0x02, /* [ 6135] OBJ_dhSinglePass_stdDH_sha1kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0B,0x00, /* [ 6144] OBJ_dhSinglePass_stdDH_sha224kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0B,0x01, /* [ 6150] OBJ_dhSinglePass_stdDH_sha256kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0B,0x02, /* [ 6156] OBJ_dhSinglePass_stdDH_sha384kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0B,0x03, /* [ 6162] OBJ_dhSinglePass_stdDH_sha512kdf_scheme */ 0x2B,0x81,0x05,0x10,0x86,0x48,0x3F,0x00,0x03, /* [ 6168] OBJ_dhSinglePass_cofactorDH_sha1kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0E,0x00, /* [ 6177] OBJ_dhSinglePass_cofactorDH_sha224kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0E,0x01, /* [ 6183] OBJ_dhSinglePass_cofactorDH_sha256kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0E,0x02, /* [ 6189] OBJ_dhSinglePass_cofactorDH_sha384kdf_scheme */ 0x2B,0x81,0x04,0x01,0x0E,0x03, /* [ 6195] OBJ_dhSinglePass_cofactorDH_sha512kdf_scheme */ 0x2B,0x06,0x01,0x04,0x01,0xD6,0x79,0x02,0x04,0x02, /* [ 6201] OBJ_ct_precert_scts */ 0x2B,0x06,0x01,0x04,0x01,0xD6,0x79,0x02,0x04,0x03, /* [ 6211] OBJ_ct_precert_poison */ 0x2B,0x06,0x01,0x04,0x01,0xD6,0x79,0x02,0x04,0x04, /* [ 6221] OBJ_ct_precert_signer */ 0x2B,0x06,0x01,0x04,0x01,0xD6,0x79,0x02,0x04,0x05, /* [ 6231] OBJ_ct_cert_scts */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x3C,0x02,0x01,0x01, /* [ 6241] OBJ_jurisdictionLocalityName */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x3C,0x02,0x01,0x02, /* [ 6252] OBJ_jurisdictionStateOrProvinceName */ 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x3C,0x02,0x01,0x03, /* [ 6263] OBJ_jurisdictionCountryName */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x06, /* [ 6274] OBJ_camellia_128_gcm */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x07, /* [ 6282] OBJ_camellia_128_ccm */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x09, /* [ 6290] OBJ_camellia_128_ctr */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x0A, /* [ 6298] OBJ_camellia_128_cmac */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x1A, /* [ 6306] OBJ_camellia_192_gcm */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x1B, /* [ 6314] OBJ_camellia_192_ccm */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x1D, /* [ 6322] OBJ_camellia_192_ctr */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x1E, /* [ 6330] OBJ_camellia_192_cmac */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x2E, /* [ 6338] OBJ_camellia_256_gcm */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x2F, /* [ 6346] OBJ_camellia_256_ccm */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x31, /* [ 6354] OBJ_camellia_256_ctr */ 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x32, /* [ 6362] OBJ_camellia_256_cmac */ 0x2B,0x06,0x01,0x04,0x01,0xDA,0x47,0x04,0x0B, /* [ 6370] OBJ_id_scrypt */ 0x2A,0x85,0x03,0x07,0x01, /* [ 6379] OBJ_id_tc26 */ 0x2A,0x85,0x03,0x07,0x01,0x01, /* [ 6384] OBJ_id_tc26_algorithms */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x01, /* [ 6390] OBJ_id_tc26_sign */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x01,0x01, /* [ 6397] OBJ_id_GostR3410_2012_256 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x01,0x02, /* [ 6405] OBJ_id_GostR3410_2012_512 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x02, /* [ 6413] OBJ_id_tc26_digest */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x02,0x02, /* [ 6420] OBJ_id_GostR3411_2012_256 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x02,0x03, /* [ 6428] OBJ_id_GostR3411_2012_512 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x03, /* [ 6436] OBJ_id_tc26_signwithdigest */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x03,0x02, /* [ 6443] OBJ_id_tc26_signwithdigest_gost3410_2012_256 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x03,0x03, /* [ 6451] OBJ_id_tc26_signwithdigest_gost3410_2012_512 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x04, /* [ 6459] OBJ_id_tc26_mac */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x04,0x01, /* [ 6466] OBJ_id_tc26_hmac_gost_3411_2012_256 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x04,0x02, /* [ 6474] OBJ_id_tc26_hmac_gost_3411_2012_512 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x05, /* [ 6482] OBJ_id_tc26_cipher */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x06, /* [ 6489] OBJ_id_tc26_agreement */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x06,0x01, /* [ 6496] OBJ_id_tc26_agreement_gost_3410_2012_256 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x06,0x02, /* [ 6504] OBJ_id_tc26_agreement_gost_3410_2012_512 */ 0x2A,0x85,0x03,0x07,0x01,0x02, /* [ 6512] OBJ_id_tc26_constants */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01, /* [ 6518] OBJ_id_tc26_sign_constants */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x02, /* [ 6525] OBJ_id_tc26_gost_3410_2012_512_constants */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x02,0x00, /* [ 6533] OBJ_id_tc26_gost_3410_2012_512_paramSetTest */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x02,0x01, /* [ 6542] OBJ_id_tc26_gost_3410_2012_512_paramSetA */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x02,0x02, /* [ 6551] OBJ_id_tc26_gost_3410_2012_512_paramSetB */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x02, /* [ 6560] OBJ_id_tc26_digest_constants */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x05, /* [ 6567] OBJ_id_tc26_cipher_constants */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x05,0x01, /* [ 6574] OBJ_id_tc26_gost_28147_constants */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x05,0x01,0x01, /* [ 6582] OBJ_id_tc26_gost_28147_param_Z */ 0x2A,0x85,0x03,0x03,0x81,0x03,0x01,0x01, /* [ 6591] OBJ_INN */ 0x2A,0x85,0x03,0x64,0x01, /* [ 6599] OBJ_OGRN */ 0x2A,0x85,0x03,0x64,0x03, /* [ 6604] OBJ_SNILS */ 0x2A,0x85,0x03,0x64,0x6F, /* [ 6609] OBJ_subjectSignTool */ 0x2A,0x85,0x03,0x64,0x70, /* [ 6614] OBJ_issuerSignTool */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x18, /* [ 6619] OBJ_tlsfeature */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x11, /* [ 6627] OBJ_ipsec_IKE */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x12, /* [ 6635] OBJ_capwapAC */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x13, /* [ 6643] OBJ_capwapWTP */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x15, /* [ 6651] OBJ_sshClient */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x16, /* [ 6659] OBJ_sshServer */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x17, /* [ 6667] OBJ_sendRouter */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x18, /* [ 6675] OBJ_sendProxiedRouter */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x19, /* [ 6683] OBJ_sendOwner */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x1A, /* [ 6691] OBJ_sendProxiedOwner */ 0x2B,0x06,0x01,0x05,0x02,0x03, /* [ 6699] OBJ_id_pkinit */ 0x2B,0x06,0x01,0x05,0x02,0x03,0x04, /* [ 6705] OBJ_pkInitClientAuth */ 0x2B,0x06,0x01,0x05,0x02,0x03,0x05, /* [ 6712] OBJ_pkInitKDC */ 0x2B,0x65,0x6E, /* [ 6719] OBJ_X25519 */ 0x2B,0x65,0x6F, /* [ 6722] OBJ_X448 */ 0x2B,0x06,0x01,0x04,0x01,0x8D,0x3A,0x0C,0x02,0x01,0x10, /* [ 6725] OBJ_blake2b512 */ 0x2B,0x06,0x01,0x04,0x01,0x8D,0x3A,0x0C,0x02,0x02,0x08, /* [ 6736] OBJ_blake2s256 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x13, /* [ 6747] OBJ_id_smime_ct_contentCollection */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x17, /* [ 6758] OBJ_id_smime_ct_authEnvelopedData */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x1C, /* [ 6769] OBJ_id_ct_xml */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x01, /* [ 6780] OBJ_aria_128_ecb */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x02, /* [ 6789] OBJ_aria_128_cbc */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x03, /* [ 6798] OBJ_aria_128_cfb128 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x04, /* [ 6807] OBJ_aria_128_ofb128 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x05, /* [ 6816] OBJ_aria_128_ctr */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x06, /* [ 6825] OBJ_aria_192_ecb */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x07, /* [ 6834] OBJ_aria_192_cbc */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x08, /* [ 6843] OBJ_aria_192_cfb128 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x09, /* [ 6852] OBJ_aria_192_ofb128 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x0A, /* [ 6861] OBJ_aria_192_ctr */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x0B, /* [ 6870] OBJ_aria_256_ecb */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x0C, /* [ 6879] OBJ_aria_256_cbc */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x0D, /* [ 6888] OBJ_aria_256_cfb128 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x0E, /* [ 6897] OBJ_aria_256_ofb128 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x0F, /* [ 6906] OBJ_aria_256_ctr */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x2F, /* [ 6915] OBJ_id_smime_aa_signingCertificateV2 */ 0x2B,0x65,0x70, /* [ 6926] OBJ_ED25519 */ 0x2B,0x65,0x71, /* [ 6929] OBJ_ED448 */ 0x55,0x04,0x61, /* [ 6932] OBJ_organizationIdentifier */ 0x55,0x04,0x62, /* [ 6935] OBJ_countryCode3c */ 0x55,0x04,0x63, /* [ 6938] OBJ_countryCode3n */ 0x55,0x04,0x64, /* [ 6941] OBJ_dnsName */ 0x2B,0x24,0x08,0x03,0x03, /* [ 6944] OBJ_x509ExtAdmission */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x05, /* [ 6949] OBJ_sha512_224 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x06, /* [ 6958] OBJ_sha512_256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x07, /* [ 6967] OBJ_sha3_224 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x08, /* [ 6976] OBJ_sha3_256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x09, /* [ 6985] OBJ_sha3_384 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x0A, /* [ 6994] OBJ_sha3_512 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x0B, /* [ 7003] OBJ_shake128 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x0C, /* [ 7012] OBJ_shake256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x0D, /* [ 7021] OBJ_hmac_sha3_224 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x0E, /* [ 7030] OBJ_hmac_sha3_256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x0F, /* [ 7039] OBJ_hmac_sha3_384 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x10, /* [ 7048] OBJ_hmac_sha3_512 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x03, /* [ 7057] OBJ_dsa_with_SHA384 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x04, /* [ 7066] OBJ_dsa_with_SHA512 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x05, /* [ 7075] OBJ_dsa_with_SHA3_224 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x06, /* [ 7084] OBJ_dsa_with_SHA3_256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x07, /* [ 7093] OBJ_dsa_with_SHA3_384 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x08, /* [ 7102] OBJ_dsa_with_SHA3_512 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x09, /* [ 7111] OBJ_ecdsa_with_SHA3_224 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x0A, /* [ 7120] OBJ_ecdsa_with_SHA3_256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x0B, /* [ 7129] OBJ_ecdsa_with_SHA3_384 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x0C, /* [ 7138] OBJ_ecdsa_with_SHA3_512 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x0D, /* [ 7147] OBJ_RSA_SHA3_224 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x0E, /* [ 7156] OBJ_RSA_SHA3_256 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x0F, /* [ 7165] OBJ_RSA_SHA3_384 */ 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x10, /* [ 7174] OBJ_RSA_SHA3_512 */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x25, /* [ 7183] OBJ_aria_128_ccm */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x26, /* [ 7192] OBJ_aria_192_ccm */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x27, /* [ 7201] OBJ_aria_256_ccm */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x22, /* [ 7210] OBJ_aria_128_gcm */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x23, /* [ 7219] OBJ_aria_192_gcm */ 0x2A,0x83,0x1A,0x8C,0x9A,0x6E,0x01,0x01,0x24, /* [ 7228] OBJ_aria_256_gcm */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x1B, /* [ 7237] OBJ_cmcCA */ 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x1C, /* [ 7245] OBJ_cmcRA */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x68,0x01, /* [ 7253] OBJ_sm4_ecb */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x68,0x02, /* [ 7261] OBJ_sm4_cbc */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x68,0x03, /* [ 7269] OBJ_sm4_ofb128 */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x68,0x05, /* [ 7277] OBJ_sm4_cfb1 */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x68,0x04, /* [ 7285] OBJ_sm4_cfb128 */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x68,0x06, /* [ 7293] OBJ_sm4_cfb8 */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x68,0x07, /* [ 7301] OBJ_sm4_ctr */ 0x2A,0x81,0x1C, /* [ 7309] OBJ_ISO_CN */ 0x2A,0x81,0x1C,0xCF,0x55, /* [ 7312] OBJ_oscca */ 0x2A,0x81,0x1C,0xCF,0x55,0x01, /* [ 7317] OBJ_sm_scheme */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x83,0x11, /* [ 7323] OBJ_sm3 */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x83,0x78, /* [ 7331] OBJ_sm3WithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0F, /* [ 7339] OBJ_sha512_224WithRSAEncryption */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x10, /* [ 7348] OBJ_sha512_256WithRSAEncryption */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x01, /* [ 7357] OBJ_id_tc26_gost_3410_2012_256_constants */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x01,0x01, /* [ 7365] OBJ_id_tc26_gost_3410_2012_256_paramSetA */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x02,0x03, /* [ 7374] OBJ_id_tc26_gost_3410_2012_512_paramSetC */ 0x2A,0x86,0x24, /* [ 7383] OBJ_ISO_UA */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01, /* [ 7386] OBJ_ua_pki */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x01,0x01, /* [ 7393] OBJ_dstu28147 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x01,0x01,0x02, /* [ 7403] OBJ_dstu28147_ofb */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x01,0x01,0x03, /* [ 7414] OBJ_dstu28147_cfb */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x01,0x01,0x05, /* [ 7425] OBJ_dstu28147_wrap */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x01,0x02, /* [ 7436] OBJ_hmacWithDstu34311 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x02,0x01, /* [ 7446] OBJ_dstu34311 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01, /* [ 7456] OBJ_dstu4145le */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x01,0x01, /* [ 7467] OBJ_dstu4145be */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x00, /* [ 7480] OBJ_uacurve0 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x01, /* [ 7493] OBJ_uacurve1 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x02, /* [ 7506] OBJ_uacurve2 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x03, /* [ 7519] OBJ_uacurve3 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x04, /* [ 7532] OBJ_uacurve4 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x05, /* [ 7545] OBJ_uacurve5 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x06, /* [ 7558] OBJ_uacurve6 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x07, /* [ 7571] OBJ_uacurve7 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x08, /* [ 7584] OBJ_uacurve8 */ 0x2A,0x86,0x24,0x02,0x01,0x01,0x01,0x01,0x03,0x01,0x01,0x02,0x09, /* [ 7597] OBJ_uacurve9 */ 0x2B,0x6F, /* [ 7610] OBJ_ieee */ 0x2B,0x6F,0x02,0x8C,0x53, /* [ 7612] OBJ_ieee_siswg */ 0x2A,0x81,0x1C,0xCF,0x55,0x01,0x82,0x2D, /* [ 7617] OBJ_sm2 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x05,0x01, /* [ 7625] OBJ_id_tc26_cipher_gostr3412_2015_magma */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x05,0x01,0x01, /* [ 7633] OBJ_id_tc26_cipher_gostr3412_2015_magma_ctracpkm */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x05,0x01,0x02, /* [ 7642] OBJ_id_tc26_cipher_gostr3412_2015_magma_ctracpkm_omac */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x05,0x02, /* [ 7651] OBJ_id_tc26_cipher_gostr3412_2015_kuznyechik */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x05,0x02,0x01, /* [ 7659] OBJ_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x05,0x02,0x02, /* [ 7668] OBJ_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm_omac */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x07, /* [ 7677] OBJ_id_tc26_wrap */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x07,0x01, /* [ 7684] OBJ_id_tc26_wrap_gostr3412_2015_magma */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x07,0x01,0x01, /* [ 7692] OBJ_id_tc26_wrap_gostr3412_2015_magma_kexp15 */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x07,0x02, /* [ 7701] OBJ_id_tc26_wrap_gostr3412_2015_kuznyechik */ 0x2A,0x85,0x03,0x07,0x01,0x01,0x07,0x02,0x01, /* [ 7709] OBJ_id_tc26_wrap_gostr3412_2015_kuznyechik_kexp15 */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x01,0x02, /* [ 7718] OBJ_id_tc26_gost_3410_2012_256_paramSetB */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x01,0x03, /* [ 7727] OBJ_id_tc26_gost_3410_2012_256_paramSetC */ 0x2A,0x85,0x03,0x07,0x01,0x02,0x01,0x01,0x04, /* [ 7736] OBJ_id_tc26_gost_3410_2012_256_paramSetD */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x0C, /* [ 7745] OBJ_hmacWithSHA512_224 */ 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x0D, /* [ 7753] OBJ_hmacWithSHA512_256 */ }; #define NUM_NID 1195 static const ASN1_OBJECT nid_objs[NUM_NID] = { {"UNDEF", "undefined", NID_undef}, {"rsadsi", "RSA Data Security, Inc.", NID_rsadsi, 6, &so[0]}, {"pkcs", "RSA Data Security, Inc. PKCS", NID_pkcs, 7, &so[6]}, {"MD2", "md2", NID_md2, 8, &so[13]}, {"MD5", "md5", NID_md5, 8, &so[21]}, {"RC4", "rc4", NID_rc4, 8, &so[29]}, {"rsaEncryption", "rsaEncryption", NID_rsaEncryption, 9, &so[37]}, {"RSA-MD2", "md2WithRSAEncryption", NID_md2WithRSAEncryption, 9, &so[46]}, {"RSA-MD5", "md5WithRSAEncryption", NID_md5WithRSAEncryption, 9, &so[55]}, {"PBE-MD2-DES", "pbeWithMD2AndDES-CBC", NID_pbeWithMD2AndDES_CBC, 9, &so[64]}, {"PBE-MD5-DES", "pbeWithMD5AndDES-CBC", NID_pbeWithMD5AndDES_CBC, 9, &so[73]}, {"X500", "directory services (X.500)", NID_X500, 1, &so[82]}, {"X509", "X509", NID_X509, 2, &so[83]}, {"CN", "commonName", NID_commonName, 3, &so[85]}, {"C", "countryName", NID_countryName, 3, &so[88]}, {"L", "localityName", NID_localityName, 3, &so[91]}, {"ST", "stateOrProvinceName", NID_stateOrProvinceName, 3, &so[94]}, {"O", "organizationName", NID_organizationName, 3, &so[97]}, {"OU", "organizationalUnitName", NID_organizationalUnitName, 3, &so[100]}, {"RSA", "rsa", NID_rsa, 4, &so[103]}, {"pkcs7", "pkcs7", NID_pkcs7, 8, &so[107]}, {"pkcs7-data", "pkcs7-data", NID_pkcs7_data, 9, &so[115]}, {"pkcs7-signedData", "pkcs7-signedData", NID_pkcs7_signed, 9, &so[124]}, {"pkcs7-envelopedData", "pkcs7-envelopedData", NID_pkcs7_enveloped, 9, &so[133]}, {"pkcs7-signedAndEnvelopedData", "pkcs7-signedAndEnvelopedData", NID_pkcs7_signedAndEnveloped, 9, &so[142]}, {"pkcs7-digestData", "pkcs7-digestData", NID_pkcs7_digest, 9, &so[151]}, {"pkcs7-encryptedData", "pkcs7-encryptedData", NID_pkcs7_encrypted, 9, &so[160]}, {"pkcs3", "pkcs3", NID_pkcs3, 8, &so[169]}, {"dhKeyAgreement", "dhKeyAgreement", NID_dhKeyAgreement, 9, &so[177]}, {"DES-ECB", "des-ecb", NID_des_ecb, 5, &so[186]}, {"DES-CFB", "des-cfb", NID_des_cfb64, 5, &so[191]}, {"DES-CBC", "des-cbc", NID_des_cbc, 5, &so[196]}, {"DES-EDE", "des-ede", NID_des_ede_ecb, 5, &so[201]}, {"DES-EDE3", "des-ede3", NID_des_ede3_ecb}, {"IDEA-CBC", "idea-cbc", NID_idea_cbc, 11, &so[206]}, {"IDEA-CFB", "idea-cfb", NID_idea_cfb64}, {"IDEA-ECB", "idea-ecb", NID_idea_ecb}, {"RC2-CBC", "rc2-cbc", NID_rc2_cbc, 8, &so[217]}, {"RC2-ECB", "rc2-ecb", NID_rc2_ecb}, {"RC2-CFB", "rc2-cfb", NID_rc2_cfb64}, {"RC2-OFB", "rc2-ofb", NID_rc2_ofb64}, {"SHA", "sha", NID_sha, 5, &so[225]}, {"RSA-SHA", "shaWithRSAEncryption", NID_shaWithRSAEncryption, 5, &so[230]}, {"DES-EDE-CBC", "des-ede-cbc", NID_des_ede_cbc}, {"DES-EDE3-CBC", "des-ede3-cbc", NID_des_ede3_cbc, 8, &so[235]}, {"DES-OFB", "des-ofb", NID_des_ofb64, 5, &so[243]}, {"IDEA-OFB", "idea-ofb", NID_idea_ofb64}, {"pkcs9", "pkcs9", NID_pkcs9, 8, &so[248]}, {"emailAddress", "emailAddress", NID_pkcs9_emailAddress, 9, &so[256]}, {"unstructuredName", "unstructuredName", NID_pkcs9_unstructuredName, 9, &so[265]}, {"contentType", "contentType", NID_pkcs9_contentType, 9, &so[274]}, {"messageDigest", "messageDigest", NID_pkcs9_messageDigest, 9, &so[283]}, {"signingTime", "signingTime", NID_pkcs9_signingTime, 9, &so[292]}, {"countersignature", "countersignature", NID_pkcs9_countersignature, 9, &so[301]}, {"challengePassword", "challengePassword", NID_pkcs9_challengePassword, 9, &so[310]}, {"unstructuredAddress", "unstructuredAddress", NID_pkcs9_unstructuredAddress, 9, &so[319]}, {"extendedCertificateAttributes", "extendedCertificateAttributes", NID_pkcs9_extCertAttributes, 9, &so[328]}, {"Netscape", "Netscape Communications Corp.", NID_netscape, 7, &so[337]}, {"nsCertExt", "Netscape Certificate Extension", NID_netscape_cert_extension, 8, &so[344]}, {"nsDataType", "Netscape Data Type", NID_netscape_data_type, 8, &so[352]}, {"DES-EDE-CFB", "des-ede-cfb", NID_des_ede_cfb64}, {"DES-EDE3-CFB", "des-ede3-cfb", NID_des_ede3_cfb64}, {"DES-EDE-OFB", "des-ede-ofb", NID_des_ede_ofb64}, {"DES-EDE3-OFB", "des-ede3-ofb", NID_des_ede3_ofb64}, {"SHA1", "sha1", NID_sha1, 5, &so[360]}, {"RSA-SHA1", "sha1WithRSAEncryption", NID_sha1WithRSAEncryption, 9, &so[365]}, {"DSA-SHA", "dsaWithSHA", NID_dsaWithSHA, 5, &so[374]}, {"DSA-old", "dsaEncryption-old", NID_dsa_2, 5, &so[379]}, {"PBE-SHA1-RC2-64", "pbeWithSHA1AndRC2-CBC", NID_pbeWithSHA1AndRC2_CBC, 9, &so[384]}, {"PBKDF2", "PBKDF2", NID_id_pbkdf2, 9, &so[393]}, {"DSA-SHA1-old", "dsaWithSHA1-old", NID_dsaWithSHA1_2, 5, &so[402]}, {"nsCertType", "Netscape Cert Type", NID_netscape_cert_type, 9, &so[407]}, {"nsBaseUrl", "Netscape Base Url", NID_netscape_base_url, 9, &so[416]}, {"nsRevocationUrl", "Netscape Revocation Url", NID_netscape_revocation_url, 9, &so[425]}, {"nsCaRevocationUrl", "Netscape CA Revocation Url", NID_netscape_ca_revocation_url, 9, &so[434]}, {"nsRenewalUrl", "Netscape Renewal Url", NID_netscape_renewal_url, 9, &so[443]}, {"nsCaPolicyUrl", "Netscape CA Policy Url", NID_netscape_ca_policy_url, 9, &so[452]}, {"nsSslServerName", "Netscape SSL Server Name", NID_netscape_ssl_server_name, 9, &so[461]}, {"nsComment", "Netscape Comment", NID_netscape_comment, 9, &so[470]}, {"nsCertSequence", "Netscape Certificate Sequence", NID_netscape_cert_sequence, 9, &so[479]}, {"DESX-CBC", "desx-cbc", NID_desx_cbc}, {"id-ce", "id-ce", NID_id_ce, 2, &so[488]}, {"subjectKeyIdentifier", "X509v3 Subject Key Identifier", NID_subject_key_identifier, 3, &so[490]}, {"keyUsage", "X509v3 Key Usage", NID_key_usage, 3, &so[493]}, {"privateKeyUsagePeriod", "X509v3 Private Key Usage Period", NID_private_key_usage_period, 3, &so[496]}, {"subjectAltName", "X509v3 Subject Alternative Name", NID_subject_alt_name, 3, &so[499]}, {"issuerAltName", "X509v3 Issuer Alternative Name", NID_issuer_alt_name, 3, &so[502]}, {"basicConstraints", "X509v3 Basic Constraints", NID_basic_constraints, 3, &so[505]}, {"crlNumber", "X509v3 CRL Number", NID_crl_number, 3, &so[508]}, {"certificatePolicies", "X509v3 Certificate Policies", NID_certificate_policies, 3, &so[511]}, {"authorityKeyIdentifier", "X509v3 Authority Key Identifier", NID_authority_key_identifier, 3, &so[514]}, {"BF-CBC", "bf-cbc", NID_bf_cbc, 9, &so[517]}, {"BF-ECB", "bf-ecb", NID_bf_ecb}, {"BF-CFB", "bf-cfb", NID_bf_cfb64}, {"BF-OFB", "bf-ofb", NID_bf_ofb64}, {"MDC2", "mdc2", NID_mdc2, 4, &so[526]}, {"RSA-MDC2", "mdc2WithRSA", NID_mdc2WithRSA, 4, &so[530]}, {"RC4-40", "rc4-40", NID_rc4_40}, {"RC2-40-CBC", "rc2-40-cbc", NID_rc2_40_cbc}, {"GN", "givenName", NID_givenName, 3, &so[534]}, {"SN", "surname", NID_surname, 3, &so[537]}, {"initials", "initials", NID_initials, 3, &so[540]}, {"uid", "uniqueIdentifier", NID_uniqueIdentifier, 10, &so[543]}, {"crlDistributionPoints", "X509v3 CRL Distribution Points", NID_crl_distribution_points, 3, &so[553]}, {"RSA-NP-MD5", "md5WithRSA", NID_md5WithRSA, 5, &so[556]}, {"serialNumber", "serialNumber", NID_serialNumber, 3, &so[561]}, {"title", "title", NID_title, 3, &so[564]}, {"description", "description", NID_description, 3, &so[567]}, {"CAST5-CBC", "cast5-cbc", NID_cast5_cbc, 9, &so[570]}, {"CAST5-ECB", "cast5-ecb", NID_cast5_ecb}, {"CAST5-CFB", "cast5-cfb", NID_cast5_cfb64}, {"CAST5-OFB", "cast5-ofb", NID_cast5_ofb64}, {"pbeWithMD5AndCast5CBC", "pbeWithMD5AndCast5CBC", NID_pbeWithMD5AndCast5_CBC, 9, &so[579]}, {"DSA-SHA1", "dsaWithSHA1", NID_dsaWithSHA1, 7, &so[588]}, {"MD5-SHA1", "md5-sha1", NID_md5_sha1}, {"RSA-SHA1-2", "sha1WithRSA", NID_sha1WithRSA, 5, &so[595]}, {"DSA", "dsaEncryption", NID_dsa, 7, &so[600]}, {"RIPEMD160", "ripemd160", NID_ripemd160, 5, &so[607]}, { NULL, NULL, NID_undef }, {"RSA-RIPEMD160", "ripemd160WithRSA", NID_ripemd160WithRSA, 6, &so[612]}, {"RC5-CBC", "rc5-cbc", NID_rc5_cbc, 8, &so[618]}, {"RC5-ECB", "rc5-ecb", NID_rc5_ecb}, {"RC5-CFB", "rc5-cfb", NID_rc5_cfb64}, {"RC5-OFB", "rc5-ofb", NID_rc5_ofb64}, { NULL, NULL, NID_undef }, {"ZLIB", "zlib compression", NID_zlib_compression, 11, &so[626]}, {"extendedKeyUsage", "X509v3 Extended Key Usage", NID_ext_key_usage, 3, &so[637]}, {"PKIX", "PKIX", NID_id_pkix, 6, &so[640]}, {"id-kp", "id-kp", NID_id_kp, 7, &so[646]}, {"serverAuth", "TLS Web Server Authentication", NID_server_auth, 8, &so[653]}, {"clientAuth", "TLS Web Client Authentication", NID_client_auth, 8, &so[661]}, {"codeSigning", "Code Signing", NID_code_sign, 8, &so[669]}, {"emailProtection", "E-mail Protection", NID_email_protect, 8, &so[677]}, {"timeStamping", "Time Stamping", NID_time_stamp, 8, &so[685]}, {"msCodeInd", "Microsoft Individual Code Signing", NID_ms_code_ind, 10, &so[693]}, {"msCodeCom", "Microsoft Commercial Code Signing", NID_ms_code_com, 10, &so[703]}, {"msCTLSign", "Microsoft Trust List Signing", NID_ms_ctl_sign, 10, &so[713]}, {"msSGC", "Microsoft Server Gated Crypto", NID_ms_sgc, 10, &so[723]}, {"msEFS", "Microsoft Encrypted File System", NID_ms_efs, 10, &so[733]}, {"nsSGC", "Netscape Server Gated Crypto", NID_ns_sgc, 9, &so[743]}, {"deltaCRL", "X509v3 Delta CRL Indicator", NID_delta_crl, 3, &so[752]}, {"CRLReason", "X509v3 CRL Reason Code", NID_crl_reason, 3, &so[755]}, {"invalidityDate", "Invalidity Date", NID_invalidity_date, 3, &so[758]}, {"SXNetID", "Strong Extranet ID", NID_sxnet, 5, &so[761]}, {"PBE-SHA1-RC4-128", "pbeWithSHA1And128BitRC4", NID_pbe_WithSHA1And128BitRC4, 10, &so[766]}, {"PBE-SHA1-RC4-40", "pbeWithSHA1And40BitRC4", NID_pbe_WithSHA1And40BitRC4, 10, &so[776]}, {"PBE-SHA1-3DES", "pbeWithSHA1And3-KeyTripleDES-CBC", NID_pbe_WithSHA1And3_Key_TripleDES_CBC, 10, &so[786]}, {"PBE-SHA1-2DES", "pbeWithSHA1And2-KeyTripleDES-CBC", NID_pbe_WithSHA1And2_Key_TripleDES_CBC, 10, &so[796]}, {"PBE-SHA1-RC2-128", "pbeWithSHA1And128BitRC2-CBC", NID_pbe_WithSHA1And128BitRC2_CBC, 10, &so[806]}, {"PBE-SHA1-RC2-40", "pbeWithSHA1And40BitRC2-CBC", NID_pbe_WithSHA1And40BitRC2_CBC, 10, &so[816]}, {"keyBag", "keyBag", NID_keyBag, 11, &so[826]}, {"pkcs8ShroudedKeyBag", "pkcs8ShroudedKeyBag", NID_pkcs8ShroudedKeyBag, 11, &so[837]}, {"certBag", "certBag", NID_certBag, 11, &so[848]}, {"crlBag", "crlBag", NID_crlBag, 11, &so[859]}, {"secretBag", "secretBag", NID_secretBag, 11, &so[870]}, {"safeContentsBag", "safeContentsBag", NID_safeContentsBag, 11, &so[881]}, {"friendlyName", "friendlyName", NID_friendlyName, 9, &so[892]}, {"localKeyID", "localKeyID", NID_localKeyID, 9, &so[901]}, {"x509Certificate", "x509Certificate", NID_x509Certificate, 10, &so[910]}, {"sdsiCertificate", "sdsiCertificate", NID_sdsiCertificate, 10, &so[920]}, {"x509Crl", "x509Crl", NID_x509Crl, 10, &so[930]}, {"PBES2", "PBES2", NID_pbes2, 9, &so[940]}, {"PBMAC1", "PBMAC1", NID_pbmac1, 9, &so[949]}, {"hmacWithSHA1", "hmacWithSHA1", NID_hmacWithSHA1, 8, &so[958]}, {"id-qt-cps", "Policy Qualifier CPS", NID_id_qt_cps, 8, &so[966]}, {"id-qt-unotice", "Policy Qualifier User Notice", NID_id_qt_unotice, 8, &so[974]}, {"RC2-64-CBC", "rc2-64-cbc", NID_rc2_64_cbc}, {"SMIME-CAPS", "S/MIME Capabilities", NID_SMIMECapabilities, 9, &so[982]}, {"PBE-MD2-RC2-64", "pbeWithMD2AndRC2-CBC", NID_pbeWithMD2AndRC2_CBC, 9, &so[991]}, {"PBE-MD5-RC2-64", "pbeWithMD5AndRC2-CBC", NID_pbeWithMD5AndRC2_CBC, 9, &so[1000]}, {"PBE-SHA1-DES", "pbeWithSHA1AndDES-CBC", NID_pbeWithSHA1AndDES_CBC, 9, &so[1009]}, {"msExtReq", "Microsoft Extension Request", NID_ms_ext_req, 10, &so[1018]}, {"extReq", "Extension Request", NID_ext_req, 9, &so[1028]}, {"name", "name", NID_name, 3, &so[1037]}, {"dnQualifier", "dnQualifier", NID_dnQualifier, 3, &so[1040]}, {"id-pe", "id-pe", NID_id_pe, 7, &so[1043]}, {"id-ad", "id-ad", NID_id_ad, 7, &so[1050]}, {"authorityInfoAccess", "Authority Information Access", NID_info_access, 8, &so[1057]}, {"OCSP", "OCSP", NID_ad_OCSP, 8, &so[1065]}, {"caIssuers", "CA Issuers", NID_ad_ca_issuers, 8, &so[1073]}, {"OCSPSigning", "OCSP Signing", NID_OCSP_sign, 8, &so[1081]}, {"ISO", "iso", NID_iso}, {"member-body", "ISO Member Body", NID_member_body, 1, &so[1089]}, {"ISO-US", "ISO US Member Body", NID_ISO_US, 3, &so[1090]}, {"X9-57", "X9.57", NID_X9_57, 5, &so[1093]}, {"X9cm", "X9.57 CM ?", NID_X9cm, 6, &so[1098]}, {"pkcs1", "pkcs1", NID_pkcs1, 8, &so[1104]}, {"pkcs5", "pkcs5", NID_pkcs5, 8, &so[1112]}, {"SMIME", "S/MIME", NID_SMIME, 9, &so[1120]}, {"id-smime-mod", "id-smime-mod", NID_id_smime_mod, 10, &so[1129]}, {"id-smime-ct", "id-smime-ct", NID_id_smime_ct, 10, &so[1139]}, {"id-smime-aa", "id-smime-aa", NID_id_smime_aa, 10, &so[1149]}, {"id-smime-alg", "id-smime-alg", NID_id_smime_alg, 10, &so[1159]}, {"id-smime-cd", "id-smime-cd", NID_id_smime_cd, 10, &so[1169]}, {"id-smime-spq", "id-smime-spq", NID_id_smime_spq, 10, &so[1179]}, {"id-smime-cti", "id-smime-cti", NID_id_smime_cti, 10, &so[1189]}, {"id-smime-mod-cms", "id-smime-mod-cms", NID_id_smime_mod_cms, 11, &so[1199]}, {"id-smime-mod-ess", "id-smime-mod-ess", NID_id_smime_mod_ess, 11, &so[1210]}, {"id-smime-mod-oid", "id-smime-mod-oid", NID_id_smime_mod_oid, 11, &so[1221]}, {"id-smime-mod-msg-v3", "id-smime-mod-msg-v3", NID_id_smime_mod_msg_v3, 11, &so[1232]}, {"id-smime-mod-ets-eSignature-88", "id-smime-mod-ets-eSignature-88", NID_id_smime_mod_ets_eSignature_88, 11, &so[1243]}, {"id-smime-mod-ets-eSignature-97", "id-smime-mod-ets-eSignature-97", NID_id_smime_mod_ets_eSignature_97, 11, &so[1254]}, {"id-smime-mod-ets-eSigPolicy-88", "id-smime-mod-ets-eSigPolicy-88", NID_id_smime_mod_ets_eSigPolicy_88, 11, &so[1265]}, {"id-smime-mod-ets-eSigPolicy-97", "id-smime-mod-ets-eSigPolicy-97", NID_id_smime_mod_ets_eSigPolicy_97, 11, &so[1276]}, {"id-smime-ct-receipt", "id-smime-ct-receipt", NID_id_smime_ct_receipt, 11, &so[1287]}, {"id-smime-ct-authData", "id-smime-ct-authData", NID_id_smime_ct_authData, 11, &so[1298]}, {"id-smime-ct-publishCert", "id-smime-ct-publishCert", NID_id_smime_ct_publishCert, 11, &so[1309]}, {"id-smime-ct-TSTInfo", "id-smime-ct-TSTInfo", NID_id_smime_ct_TSTInfo, 11, &so[1320]}, {"id-smime-ct-TDTInfo", "id-smime-ct-TDTInfo", NID_id_smime_ct_TDTInfo, 11, &so[1331]}, {"id-smime-ct-contentInfo", "id-smime-ct-contentInfo", NID_id_smime_ct_contentInfo, 11, &so[1342]}, {"id-smime-ct-DVCSRequestData", "id-smime-ct-DVCSRequestData", NID_id_smime_ct_DVCSRequestData, 11, &so[1353]}, {"id-smime-ct-DVCSResponseData", "id-smime-ct-DVCSResponseData", NID_id_smime_ct_DVCSResponseData, 11, &so[1364]}, {"id-smime-aa-receiptRequest", "id-smime-aa-receiptRequest", NID_id_smime_aa_receiptRequest, 11, &so[1375]}, {"id-smime-aa-securityLabel", "id-smime-aa-securityLabel", NID_id_smime_aa_securityLabel, 11, &so[1386]}, {"id-smime-aa-mlExpandHistory", "id-smime-aa-mlExpandHistory", NID_id_smime_aa_mlExpandHistory, 11, &so[1397]}, {"id-smime-aa-contentHint", "id-smime-aa-contentHint", NID_id_smime_aa_contentHint, 11, &so[1408]}, {"id-smime-aa-msgSigDigest", "id-smime-aa-msgSigDigest", NID_id_smime_aa_msgSigDigest, 11, &so[1419]}, {"id-smime-aa-encapContentType", "id-smime-aa-encapContentType", NID_id_smime_aa_encapContentType, 11, &so[1430]}, {"id-smime-aa-contentIdentifier", "id-smime-aa-contentIdentifier", NID_id_smime_aa_contentIdentifier, 11, &so[1441]}, {"id-smime-aa-macValue", "id-smime-aa-macValue", NID_id_smime_aa_macValue, 11, &so[1452]}, {"id-smime-aa-equivalentLabels", "id-smime-aa-equivalentLabels", NID_id_smime_aa_equivalentLabels, 11, &so[1463]}, {"id-smime-aa-contentReference", "id-smime-aa-contentReference", NID_id_smime_aa_contentReference, 11, &so[1474]}, {"id-smime-aa-encrypKeyPref", "id-smime-aa-encrypKeyPref", NID_id_smime_aa_encrypKeyPref, 11, &so[1485]}, {"id-smime-aa-signingCertificate", "id-smime-aa-signingCertificate", NID_id_smime_aa_signingCertificate, 11, &so[1496]}, {"id-smime-aa-smimeEncryptCerts", "id-smime-aa-smimeEncryptCerts", NID_id_smime_aa_smimeEncryptCerts, 11, &so[1507]}, {"id-smime-aa-timeStampToken", "id-smime-aa-timeStampToken", NID_id_smime_aa_timeStampToken, 11, &so[1518]}, {"id-smime-aa-ets-sigPolicyId", "id-smime-aa-ets-sigPolicyId", NID_id_smime_aa_ets_sigPolicyId, 11, &so[1529]}, {"id-smime-aa-ets-commitmentType", "id-smime-aa-ets-commitmentType", NID_id_smime_aa_ets_commitmentType, 11, &so[1540]}, {"id-smime-aa-ets-signerLocation", "id-smime-aa-ets-signerLocation", NID_id_smime_aa_ets_signerLocation, 11, &so[1551]}, {"id-smime-aa-ets-signerAttr", "id-smime-aa-ets-signerAttr", NID_id_smime_aa_ets_signerAttr, 11, &so[1562]}, {"id-smime-aa-ets-otherSigCert", "id-smime-aa-ets-otherSigCert", NID_id_smime_aa_ets_otherSigCert, 11, &so[1573]}, {"id-smime-aa-ets-contentTimestamp", "id-smime-aa-ets-contentTimestamp", NID_id_smime_aa_ets_contentTimestamp, 11, &so[1584]}, {"id-smime-aa-ets-CertificateRefs", "id-smime-aa-ets-CertificateRefs", NID_id_smime_aa_ets_CertificateRefs, 11, &so[1595]}, {"id-smime-aa-ets-RevocationRefs", "id-smime-aa-ets-RevocationRefs", NID_id_smime_aa_ets_RevocationRefs, 11, &so[1606]}, {"id-smime-aa-ets-certValues", "id-smime-aa-ets-certValues", NID_id_smime_aa_ets_certValues, 11, &so[1617]}, {"id-smime-aa-ets-revocationValues", "id-smime-aa-ets-revocationValues", NID_id_smime_aa_ets_revocationValues, 11, &so[1628]}, {"id-smime-aa-ets-escTimeStamp", "id-smime-aa-ets-escTimeStamp", NID_id_smime_aa_ets_escTimeStamp, 11, &so[1639]}, {"id-smime-aa-ets-certCRLTimestamp", "id-smime-aa-ets-certCRLTimestamp", NID_id_smime_aa_ets_certCRLTimestamp, 11, &so[1650]}, {"id-smime-aa-ets-archiveTimeStamp", "id-smime-aa-ets-archiveTimeStamp", NID_id_smime_aa_ets_archiveTimeStamp, 11, &so[1661]}, {"id-smime-aa-signatureType", "id-smime-aa-signatureType", NID_id_smime_aa_signatureType, 11, &so[1672]}, {"id-smime-aa-dvcs-dvc", "id-smime-aa-dvcs-dvc", NID_id_smime_aa_dvcs_dvc, 11, &so[1683]}, {"id-smime-alg-ESDHwith3DES", "id-smime-alg-ESDHwith3DES", NID_id_smime_alg_ESDHwith3DES, 11, &so[1694]}, {"id-smime-alg-ESDHwithRC2", "id-smime-alg-ESDHwithRC2", NID_id_smime_alg_ESDHwithRC2, 11, &so[1705]}, {"id-smime-alg-3DESwrap", "id-smime-alg-3DESwrap", NID_id_smime_alg_3DESwrap, 11, &so[1716]}, {"id-smime-alg-RC2wrap", "id-smime-alg-RC2wrap", NID_id_smime_alg_RC2wrap, 11, &so[1727]}, {"id-smime-alg-ESDH", "id-smime-alg-ESDH", NID_id_smime_alg_ESDH, 11, &so[1738]}, {"id-smime-alg-CMS3DESwrap", "id-smime-alg-CMS3DESwrap", NID_id_smime_alg_CMS3DESwrap, 11, &so[1749]}, {"id-smime-alg-CMSRC2wrap", "id-smime-alg-CMSRC2wrap", NID_id_smime_alg_CMSRC2wrap, 11, &so[1760]}, {"id-smime-cd-ldap", "id-smime-cd-ldap", NID_id_smime_cd_ldap, 11, &so[1771]}, {"id-smime-spq-ets-sqt-uri", "id-smime-spq-ets-sqt-uri", NID_id_smime_spq_ets_sqt_uri, 11, &so[1782]}, {"id-smime-spq-ets-sqt-unotice", "id-smime-spq-ets-sqt-unotice", NID_id_smime_spq_ets_sqt_unotice, 11, &so[1793]}, {"id-smime-cti-ets-proofOfOrigin", "id-smime-cti-ets-proofOfOrigin", NID_id_smime_cti_ets_proofOfOrigin, 11, &so[1804]}, {"id-smime-cti-ets-proofOfReceipt", "id-smime-cti-ets-proofOfReceipt", NID_id_smime_cti_ets_proofOfReceipt, 11, &so[1815]}, {"id-smime-cti-ets-proofOfDelivery", "id-smime-cti-ets-proofOfDelivery", NID_id_smime_cti_ets_proofOfDelivery, 11, &so[1826]}, {"id-smime-cti-ets-proofOfSender", "id-smime-cti-ets-proofOfSender", NID_id_smime_cti_ets_proofOfSender, 11, &so[1837]}, {"id-smime-cti-ets-proofOfApproval", "id-smime-cti-ets-proofOfApproval", NID_id_smime_cti_ets_proofOfApproval, 11, &so[1848]}, {"id-smime-cti-ets-proofOfCreation", "id-smime-cti-ets-proofOfCreation", NID_id_smime_cti_ets_proofOfCreation, 11, &so[1859]}, {"MD4", "md4", NID_md4, 8, &so[1870]}, {"id-pkix-mod", "id-pkix-mod", NID_id_pkix_mod, 7, &so[1878]}, {"id-qt", "id-qt", NID_id_qt, 7, &so[1885]}, {"id-it", "id-it", NID_id_it, 7, &so[1892]}, {"id-pkip", "id-pkip", NID_id_pkip, 7, &so[1899]}, {"id-alg", "id-alg", NID_id_alg, 7, &so[1906]}, {"id-cmc", "id-cmc", NID_id_cmc, 7, &so[1913]}, {"id-on", "id-on", NID_id_on, 7, &so[1920]}, {"id-pda", "id-pda", NID_id_pda, 7, &so[1927]}, {"id-aca", "id-aca", NID_id_aca, 7, &so[1934]}, {"id-qcs", "id-qcs", NID_id_qcs, 7, &so[1941]}, {"id-cct", "id-cct", NID_id_cct, 7, &so[1948]}, {"id-pkix1-explicit-88", "id-pkix1-explicit-88", NID_id_pkix1_explicit_88, 8, &so[1955]}, {"id-pkix1-implicit-88", "id-pkix1-implicit-88", NID_id_pkix1_implicit_88, 8, &so[1963]}, {"id-pkix1-explicit-93", "id-pkix1-explicit-93", NID_id_pkix1_explicit_93, 8, &so[1971]}, {"id-pkix1-implicit-93", "id-pkix1-implicit-93", NID_id_pkix1_implicit_93, 8, &so[1979]}, {"id-mod-crmf", "id-mod-crmf", NID_id_mod_crmf, 8, &so[1987]}, {"id-mod-cmc", "id-mod-cmc", NID_id_mod_cmc, 8, &so[1995]}, {"id-mod-kea-profile-88", "id-mod-kea-profile-88", NID_id_mod_kea_profile_88, 8, &so[2003]}, {"id-mod-kea-profile-93", "id-mod-kea-profile-93", NID_id_mod_kea_profile_93, 8, &so[2011]}, {"id-mod-cmp", "id-mod-cmp", NID_id_mod_cmp, 8, &so[2019]}, {"id-mod-qualified-cert-88", "id-mod-qualified-cert-88", NID_id_mod_qualified_cert_88, 8, &so[2027]}, {"id-mod-qualified-cert-93", "id-mod-qualified-cert-93", NID_id_mod_qualified_cert_93, 8, &so[2035]}, {"id-mod-attribute-cert", "id-mod-attribute-cert", NID_id_mod_attribute_cert, 8, &so[2043]}, {"id-mod-timestamp-protocol", "id-mod-timestamp-protocol", NID_id_mod_timestamp_protocol, 8, &so[2051]}, {"id-mod-ocsp", "id-mod-ocsp", NID_id_mod_ocsp, 8, &so[2059]}, {"id-mod-dvcs", "id-mod-dvcs", NID_id_mod_dvcs, 8, &so[2067]}, {"id-mod-cmp2000", "id-mod-cmp2000", NID_id_mod_cmp2000, 8, &so[2075]}, {"biometricInfo", "Biometric Info", NID_biometricInfo, 8, &so[2083]}, {"qcStatements", "qcStatements", NID_qcStatements, 8, &so[2091]}, {"ac-auditEntity", "ac-auditEntity", NID_ac_auditEntity, 8, &so[2099]}, {"ac-targeting", "ac-targeting", NID_ac_targeting, 8, &so[2107]}, {"aaControls", "aaControls", NID_aaControls, 8, &so[2115]}, {"sbgp-ipAddrBlock", "sbgp-ipAddrBlock", NID_sbgp_ipAddrBlock, 8, &so[2123]}, {"sbgp-autonomousSysNum", "sbgp-autonomousSysNum", NID_sbgp_autonomousSysNum, 8, &so[2131]}, {"sbgp-routerIdentifier", "sbgp-routerIdentifier", NID_sbgp_routerIdentifier, 8, &so[2139]}, {"textNotice", "textNotice", NID_textNotice, 8, &so[2147]}, {"ipsecEndSystem", "IPSec End System", NID_ipsecEndSystem, 8, &so[2155]}, {"ipsecTunnel", "IPSec Tunnel", NID_ipsecTunnel, 8, &so[2163]}, {"ipsecUser", "IPSec User", NID_ipsecUser, 8, &so[2171]}, {"DVCS", "dvcs", NID_dvcs, 8, &so[2179]}, {"id-it-caProtEncCert", "id-it-caProtEncCert", NID_id_it_caProtEncCert, 8, &so[2187]}, {"id-it-signKeyPairTypes", "id-it-signKeyPairTypes", NID_id_it_signKeyPairTypes, 8, &so[2195]}, {"id-it-encKeyPairTypes", "id-it-encKeyPairTypes", NID_id_it_encKeyPairTypes, 8, &so[2203]}, {"id-it-preferredSymmAlg", "id-it-preferredSymmAlg", NID_id_it_preferredSymmAlg, 8, &so[2211]}, {"id-it-caKeyUpdateInfo", "id-it-caKeyUpdateInfo", NID_id_it_caKeyUpdateInfo, 8, &so[2219]}, {"id-it-currentCRL", "id-it-currentCRL", NID_id_it_currentCRL, 8, &so[2227]}, {"id-it-unsupportedOIDs", "id-it-unsupportedOIDs", NID_id_it_unsupportedOIDs, 8, &so[2235]}, {"id-it-subscriptionRequest", "id-it-subscriptionRequest", NID_id_it_subscriptionRequest, 8, &so[2243]}, {"id-it-subscriptionResponse", "id-it-subscriptionResponse", NID_id_it_subscriptionResponse, 8, &so[2251]}, {"id-it-keyPairParamReq", "id-it-keyPairParamReq", NID_id_it_keyPairParamReq, 8, &so[2259]}, {"id-it-keyPairParamRep", "id-it-keyPairParamRep", NID_id_it_keyPairParamRep, 8, &so[2267]}, {"id-it-revPassphrase", "id-it-revPassphrase", NID_id_it_revPassphrase, 8, &so[2275]}, {"id-it-implicitConfirm", "id-it-implicitConfirm", NID_id_it_implicitConfirm, 8, &so[2283]}, {"id-it-confirmWaitTime", "id-it-confirmWaitTime", NID_id_it_confirmWaitTime, 8, &so[2291]}, {"id-it-origPKIMessage", "id-it-origPKIMessage", NID_id_it_origPKIMessage, 8, &so[2299]}, {"id-regCtrl", "id-regCtrl", NID_id_regCtrl, 8, &so[2307]}, {"id-regInfo", "id-regInfo", NID_id_regInfo, 8, &so[2315]}, {"id-regCtrl-regToken", "id-regCtrl-regToken", NID_id_regCtrl_regToken, 9, &so[2323]}, {"id-regCtrl-authenticator", "id-regCtrl-authenticator", NID_id_regCtrl_authenticator, 9, &so[2332]}, {"id-regCtrl-pkiPublicationInfo", "id-regCtrl-pkiPublicationInfo", NID_id_regCtrl_pkiPublicationInfo, 9, &so[2341]}, {"id-regCtrl-pkiArchiveOptions", "id-regCtrl-pkiArchiveOptions", NID_id_regCtrl_pkiArchiveOptions, 9, &so[2350]}, {"id-regCtrl-oldCertID", "id-regCtrl-oldCertID", NID_id_regCtrl_oldCertID, 9, &so[2359]}, {"id-regCtrl-protocolEncrKey", "id-regCtrl-protocolEncrKey", NID_id_regCtrl_protocolEncrKey, 9, &so[2368]}, {"id-regInfo-utf8Pairs", "id-regInfo-utf8Pairs", NID_id_regInfo_utf8Pairs, 9, &so[2377]}, {"id-regInfo-certReq", "id-regInfo-certReq", NID_id_regInfo_certReq, 9, &so[2386]}, {"id-alg-des40", "id-alg-des40", NID_id_alg_des40, 8, &so[2395]}, {"id-alg-noSignature", "id-alg-noSignature", NID_id_alg_noSignature, 8, &so[2403]}, {"id-alg-dh-sig-hmac-sha1", "id-alg-dh-sig-hmac-sha1", NID_id_alg_dh_sig_hmac_sha1, 8, &so[2411]}, {"id-alg-dh-pop", "id-alg-dh-pop", NID_id_alg_dh_pop, 8, &so[2419]}, {"id-cmc-statusInfo", "id-cmc-statusInfo", NID_id_cmc_statusInfo, 8, &so[2427]}, {"id-cmc-identification", "id-cmc-identification", NID_id_cmc_identification, 8, &so[2435]}, {"id-cmc-identityProof", "id-cmc-identityProof", NID_id_cmc_identityProof, 8, &so[2443]}, {"id-cmc-dataReturn", "id-cmc-dataReturn", NID_id_cmc_dataReturn, 8, &so[2451]}, {"id-cmc-transactionId", "id-cmc-transactionId", NID_id_cmc_transactionId, 8, &so[2459]}, {"id-cmc-senderNonce", "id-cmc-senderNonce", NID_id_cmc_senderNonce, 8, &so[2467]}, {"id-cmc-recipientNonce", "id-cmc-recipientNonce", NID_id_cmc_recipientNonce, 8, &so[2475]}, {"id-cmc-addExtensions", "id-cmc-addExtensions", NID_id_cmc_addExtensions, 8, &so[2483]}, {"id-cmc-encryptedPOP", "id-cmc-encryptedPOP", NID_id_cmc_encryptedPOP, 8, &so[2491]}, {"id-cmc-decryptedPOP", "id-cmc-decryptedPOP", NID_id_cmc_decryptedPOP, 8, &so[2499]}, {"id-cmc-lraPOPWitness", "id-cmc-lraPOPWitness", NID_id_cmc_lraPOPWitness, 8, &so[2507]}, {"id-cmc-getCert", "id-cmc-getCert", NID_id_cmc_getCert, 8, &so[2515]}, {"id-cmc-getCRL", "id-cmc-getCRL", NID_id_cmc_getCRL, 8, &so[2523]}, {"id-cmc-revokeRequest", "id-cmc-revokeRequest", NID_id_cmc_revokeRequest, 8, &so[2531]}, {"id-cmc-regInfo", "id-cmc-regInfo", NID_id_cmc_regInfo, 8, &so[2539]}, {"id-cmc-responseInfo", "id-cmc-responseInfo", NID_id_cmc_responseInfo, 8, &so[2547]}, {"id-cmc-queryPending", "id-cmc-queryPending", NID_id_cmc_queryPending, 8, &so[2555]}, {"id-cmc-popLinkRandom", "id-cmc-popLinkRandom", NID_id_cmc_popLinkRandom, 8, &so[2563]}, {"id-cmc-popLinkWitness", "id-cmc-popLinkWitness", NID_id_cmc_popLinkWitness, 8, &so[2571]}, {"id-cmc-confirmCertAcceptance", "id-cmc-confirmCertAcceptance", NID_id_cmc_confirmCertAcceptance, 8, &so[2579]}, {"id-on-personalData", "id-on-personalData", NID_id_on_personalData, 8, &so[2587]}, {"id-pda-dateOfBirth", "id-pda-dateOfBirth", NID_id_pda_dateOfBirth, 8, &so[2595]}, {"id-pda-placeOfBirth", "id-pda-placeOfBirth", NID_id_pda_placeOfBirth, 8, &so[2603]}, { NULL, NULL, NID_undef }, {"id-pda-gender", "id-pda-gender", NID_id_pda_gender, 8, &so[2611]}, {"id-pda-countryOfCitizenship", "id-pda-countryOfCitizenship", NID_id_pda_countryOfCitizenship, 8, &so[2619]}, {"id-pda-countryOfResidence", "id-pda-countryOfResidence", NID_id_pda_countryOfResidence, 8, &so[2627]}, {"id-aca-authenticationInfo", "id-aca-authenticationInfo", NID_id_aca_authenticationInfo, 8, &so[2635]}, {"id-aca-accessIdentity", "id-aca-accessIdentity", NID_id_aca_accessIdentity, 8, &so[2643]}, {"id-aca-chargingIdentity", "id-aca-chargingIdentity", NID_id_aca_chargingIdentity, 8, &so[2651]}, {"id-aca-group", "id-aca-group", NID_id_aca_group, 8, &so[2659]}, {"id-aca-role", "id-aca-role", NID_id_aca_role, 8, &so[2667]}, {"id-qcs-pkixQCSyntax-v1", "id-qcs-pkixQCSyntax-v1", NID_id_qcs_pkixQCSyntax_v1, 8, &so[2675]}, {"id-cct-crs", "id-cct-crs", NID_id_cct_crs, 8, &so[2683]}, {"id-cct-PKIData", "id-cct-PKIData", NID_id_cct_PKIData, 8, &so[2691]}, {"id-cct-PKIResponse", "id-cct-PKIResponse", NID_id_cct_PKIResponse, 8, &so[2699]}, {"ad_timestamping", "AD Time Stamping", NID_ad_timeStamping, 8, &so[2707]}, {"AD_DVCS", "ad dvcs", NID_ad_dvcs, 8, &so[2715]}, {"basicOCSPResponse", "Basic OCSP Response", NID_id_pkix_OCSP_basic, 9, &so[2723]}, {"Nonce", "OCSP Nonce", NID_id_pkix_OCSP_Nonce, 9, &so[2732]}, {"CrlID", "OCSP CRL ID", NID_id_pkix_OCSP_CrlID, 9, &so[2741]}, {"acceptableResponses", "Acceptable OCSP Responses", NID_id_pkix_OCSP_acceptableResponses, 9, &so[2750]}, {"noCheck", "OCSP No Check", NID_id_pkix_OCSP_noCheck, 9, &so[2759]}, {"archiveCutoff", "OCSP Archive Cutoff", NID_id_pkix_OCSP_archiveCutoff, 9, &so[2768]}, {"serviceLocator", "OCSP Service Locator", NID_id_pkix_OCSP_serviceLocator, 9, &so[2777]}, {"extendedStatus", "Extended OCSP Status", NID_id_pkix_OCSP_extendedStatus, 9, &so[2786]}, {"valid", "valid", NID_id_pkix_OCSP_valid, 9, &so[2795]}, {"path", "path", NID_id_pkix_OCSP_path, 9, &so[2804]}, {"trustRoot", "Trust Root", NID_id_pkix_OCSP_trustRoot, 9, &so[2813]}, {"algorithm", "algorithm", NID_algorithm, 4, &so[2822]}, {"rsaSignature", "rsaSignature", NID_rsaSignature, 5, &so[2826]}, {"X500algorithms", "directory services - algorithms", NID_X500algorithms, 2, &so[2831]}, {"ORG", "org", NID_org, 1, &so[2833]}, {"DOD", "dod", NID_dod, 2, &so[2834]}, {"IANA", "iana", NID_iana, 3, &so[2836]}, {"directory", "Directory", NID_Directory, 4, &so[2839]}, {"mgmt", "Management", NID_Management, 4, &so[2843]}, {"experimental", "Experimental", NID_Experimental, 4, &so[2847]}, {"private", "Private", NID_Private, 4, &so[2851]}, {"security", "Security", NID_Security, 4, &so[2855]}, {"snmpv2", "SNMPv2", NID_SNMPv2, 4, &so[2859]}, {"Mail", "Mail", NID_Mail, 4, &so[2863]}, {"enterprises", "Enterprises", NID_Enterprises, 5, &so[2867]}, {"dcobject", "dcObject", NID_dcObject, 9, &so[2872]}, {"DC", "domainComponent", NID_domainComponent, 10, &so[2881]}, {"domain", "Domain", NID_Domain, 10, &so[2891]}, {"NULL", "NULL", NID_joint_iso_ccitt}, {"selected-attribute-types", "Selected Attribute Types", NID_selected_attribute_types, 3, &so[2901]}, {"clearance", "clearance", NID_clearance, 4, &so[2904]}, {"RSA-MD4", "md4WithRSAEncryption", NID_md4WithRSAEncryption, 9, &so[2908]}, {"ac-proxying", "ac-proxying", NID_ac_proxying, 8, &so[2917]}, {"subjectInfoAccess", "Subject Information Access", NID_sinfo_access, 8, &so[2925]}, {"id-aca-encAttrs", "id-aca-encAttrs", NID_id_aca_encAttrs, 8, &so[2933]}, {"role", "role", NID_role, 3, &so[2941]}, {"policyConstraints", "X509v3 Policy Constraints", NID_policy_constraints, 3, &so[2944]}, {"targetInformation", "X509v3 AC Targeting", NID_target_information, 3, &so[2947]}, {"noRevAvail", "X509v3 No Revocation Available", NID_no_rev_avail, 3, &so[2950]}, {"NULL", "NULL", NID_ccitt}, {"ansi-X9-62", "ANSI X9.62", NID_ansi_X9_62, 5, &so[2953]}, {"prime-field", "prime-field", NID_X9_62_prime_field, 7, &so[2958]}, {"characteristic-two-field", "characteristic-two-field", NID_X9_62_characteristic_two_field, 7, &so[2965]}, {"id-ecPublicKey", "id-ecPublicKey", NID_X9_62_id_ecPublicKey, 7, &so[2972]}, {"prime192v1", "prime192v1", NID_X9_62_prime192v1, 8, &so[2979]}, {"prime192v2", "prime192v2", NID_X9_62_prime192v2, 8, &so[2987]}, {"prime192v3", "prime192v3", NID_X9_62_prime192v3, 8, &so[2995]}, {"prime239v1", "prime239v1", NID_X9_62_prime239v1, 8, &so[3003]}, {"prime239v2", "prime239v2", NID_X9_62_prime239v2, 8, &so[3011]}, {"prime239v3", "prime239v3", NID_X9_62_prime239v3, 8, &so[3019]}, {"prime256v1", "prime256v1", NID_X9_62_prime256v1, 8, &so[3027]}, {"ecdsa-with-SHA1", "ecdsa-with-SHA1", NID_ecdsa_with_SHA1, 7, &so[3035]}, {"CSPName", "Microsoft CSP Name", NID_ms_csp_name, 9, &so[3042]}, {"AES-128-ECB", "aes-128-ecb", NID_aes_128_ecb, 9, &so[3051]}, {"AES-128-CBC", "aes-128-cbc", NID_aes_128_cbc, 9, &so[3060]}, {"AES-128-OFB", "aes-128-ofb", NID_aes_128_ofb128, 9, &so[3069]}, {"AES-128-CFB", "aes-128-cfb", NID_aes_128_cfb128, 9, &so[3078]}, {"AES-192-ECB", "aes-192-ecb", NID_aes_192_ecb, 9, &so[3087]}, {"AES-192-CBC", "aes-192-cbc", NID_aes_192_cbc, 9, &so[3096]}, {"AES-192-OFB", "aes-192-ofb", NID_aes_192_ofb128, 9, &so[3105]}, {"AES-192-CFB", "aes-192-cfb", NID_aes_192_cfb128, 9, &so[3114]}, {"AES-256-ECB", "aes-256-ecb", NID_aes_256_ecb, 9, &so[3123]}, {"AES-256-CBC", "aes-256-cbc", NID_aes_256_cbc, 9, &so[3132]}, {"AES-256-OFB", "aes-256-ofb", NID_aes_256_ofb128, 9, &so[3141]}, {"AES-256-CFB", "aes-256-cfb", NID_aes_256_cfb128, 9, &so[3150]}, {"holdInstructionCode", "Hold Instruction Code", NID_hold_instruction_code, 3, &so[3159]}, {"holdInstructionNone", "Hold Instruction None", NID_hold_instruction_none, 7, &so[3162]}, {"holdInstructionCallIssuer", "Hold Instruction Call Issuer", NID_hold_instruction_call_issuer, 7, &so[3169]}, {"holdInstructionReject", "Hold Instruction Reject", NID_hold_instruction_reject, 7, &so[3176]}, {"data", "data", NID_data, 1, &so[3183]}, {"pss", "pss", NID_pss, 3, &so[3184]}, {"ucl", "ucl", NID_ucl, 7, &so[3187]}, {"pilot", "pilot", NID_pilot, 8, &so[3194]}, {"pilotAttributeType", "pilotAttributeType", NID_pilotAttributeType, 9, &so[3202]}, {"pilotAttributeSyntax", "pilotAttributeSyntax", NID_pilotAttributeSyntax, 9, &so[3211]}, {"pilotObjectClass", "pilotObjectClass", NID_pilotObjectClass, 9, &so[3220]}, {"pilotGroups", "pilotGroups", NID_pilotGroups, 9, &so[3229]}, {"iA5StringSyntax", "iA5StringSyntax", NID_iA5StringSyntax, 10, &so[3238]}, {"caseIgnoreIA5StringSyntax", "caseIgnoreIA5StringSyntax", NID_caseIgnoreIA5StringSyntax, 10, &so[3248]}, {"pilotObject", "pilotObject", NID_pilotObject, 10, &so[3258]}, {"pilotPerson", "pilotPerson", NID_pilotPerson, 10, &so[3268]}, {"account", "account", NID_account, 10, &so[3278]}, {"document", "document", NID_document, 10, &so[3288]}, {"room", "room", NID_room, 10, &so[3298]}, {"documentSeries", "documentSeries", NID_documentSeries, 10, &so[3308]}, {"rFC822localPart", "rFC822localPart", NID_rFC822localPart, 10, &so[3318]}, {"dNSDomain", "dNSDomain", NID_dNSDomain, 10, &so[3328]}, {"domainRelatedObject", "domainRelatedObject", NID_domainRelatedObject, 10, &so[3338]}, {"friendlyCountry", "friendlyCountry", NID_friendlyCountry, 10, &so[3348]}, {"simpleSecurityObject", "simpleSecurityObject", NID_simpleSecurityObject, 10, &so[3358]}, {"pilotOrganization", "pilotOrganization", NID_pilotOrganization, 10, &so[3368]}, {"pilotDSA", "pilotDSA", NID_pilotDSA, 10, &so[3378]}, {"qualityLabelledData", "qualityLabelledData", NID_qualityLabelledData, 10, &so[3388]}, {"UID", "userId", NID_userId, 10, &so[3398]}, {"textEncodedORAddress", "textEncodedORAddress", NID_textEncodedORAddress, 10, &so[3408]}, {"mail", "rfc822Mailbox", NID_rfc822Mailbox, 10, &so[3418]}, {"info", "info", NID_info, 10, &so[3428]}, {"favouriteDrink", "favouriteDrink", NID_favouriteDrink, 10, &so[3438]}, {"roomNumber", "roomNumber", NID_roomNumber, 10, &so[3448]}, {"photo", "photo", NID_photo, 10, &so[3458]}, {"userClass", "userClass", NID_userClass, 10, &so[3468]}, {"host", "host", NID_host, 10, &so[3478]}, {"manager", "manager", NID_manager, 10, &so[3488]}, {"documentIdentifier", "documentIdentifier", NID_documentIdentifier, 10, &so[3498]}, {"documentTitle", "documentTitle", NID_documentTitle, 10, &so[3508]}, {"documentVersion", "documentVersion", NID_documentVersion, 10, &so[3518]}, {"documentAuthor", "documentAuthor", NID_documentAuthor, 10, &so[3528]}, {"documentLocation", "documentLocation", NID_documentLocation, 10, &so[3538]}, {"homeTelephoneNumber", "homeTelephoneNumber", NID_homeTelephoneNumber, 10, &so[3548]}, {"secretary", "secretary", NID_secretary, 10, &so[3558]}, {"otherMailbox", "otherMailbox", NID_otherMailbox, 10, &so[3568]}, {"lastModifiedTime", "lastModifiedTime", NID_lastModifiedTime, 10, &so[3578]}, {"lastModifiedBy", "lastModifiedBy", NID_lastModifiedBy, 10, &so[3588]}, {"aRecord", "aRecord", NID_aRecord, 10, &so[3598]}, {"pilotAttributeType27", "pilotAttributeType27", NID_pilotAttributeType27, 10, &so[3608]}, {"mXRecord", "mXRecord", NID_mXRecord, 10, &so[3618]}, {"nSRecord", "nSRecord", NID_nSRecord, 10, &so[3628]}, {"sOARecord", "sOARecord", NID_sOARecord, 10, &so[3638]}, {"cNAMERecord", "cNAMERecord", NID_cNAMERecord, 10, &so[3648]}, {"associatedDomain", "associatedDomain", NID_associatedDomain, 10, &so[3658]}, {"associatedName", "associatedName", NID_associatedName, 10, &so[3668]}, {"homePostalAddress", "homePostalAddress", NID_homePostalAddress, 10, &so[3678]}, {"personalTitle", "personalTitle", NID_personalTitle, 10, &so[3688]}, {"mobileTelephoneNumber", "mobileTelephoneNumber", NID_mobileTelephoneNumber, 10, &so[3698]}, {"pagerTelephoneNumber", "pagerTelephoneNumber", NID_pagerTelephoneNumber, 10, &so[3708]}, {"friendlyCountryName", "friendlyCountryName", NID_friendlyCountryName, 10, &so[3718]}, {"organizationalStatus", "organizationalStatus", NID_organizationalStatus, 10, &so[3728]}, {"janetMailbox", "janetMailbox", NID_janetMailbox, 10, &so[3738]}, {"mailPreferenceOption", "mailPreferenceOption", NID_mailPreferenceOption, 10, &so[3748]}, {"buildingName", "buildingName", NID_buildingName, 10, &so[3758]}, {"dSAQuality", "dSAQuality", NID_dSAQuality, 10, &so[3768]}, {"singleLevelQuality", "singleLevelQuality", NID_singleLevelQuality, 10, &so[3778]}, {"subtreeMinimumQuality", "subtreeMinimumQuality", NID_subtreeMinimumQuality, 10, &so[3788]}, {"subtreeMaximumQuality", "subtreeMaximumQuality", NID_subtreeMaximumQuality, 10, &so[3798]}, {"personalSignature", "personalSignature", NID_personalSignature, 10, &so[3808]}, {"dITRedirect", "dITRedirect", NID_dITRedirect, 10, &so[3818]}, {"audio", "audio", NID_audio, 10, &so[3828]}, {"documentPublisher", "documentPublisher", NID_documentPublisher, 10, &so[3838]}, {"x500UniqueIdentifier", "x500UniqueIdentifier", NID_x500UniqueIdentifier, 3, &so[3848]}, {"mime-mhs", "MIME MHS", NID_mime_mhs, 5, &so[3851]}, {"mime-mhs-headings", "mime-mhs-headings", NID_mime_mhs_headings, 6, &so[3856]}, {"mime-mhs-bodies", "mime-mhs-bodies", NID_mime_mhs_bodies, 6, &so[3862]}, {"id-hex-partial-message", "id-hex-partial-message", NID_id_hex_partial_message, 7, &so[3868]}, {"id-hex-multipart-message", "id-hex-multipart-message", NID_id_hex_multipart_message, 7, &so[3875]}, {"generationQualifier", "generationQualifier", NID_generationQualifier, 3, &so[3882]}, {"pseudonym", "pseudonym", NID_pseudonym, 3, &so[3885]}, { NULL, NULL, NID_undef }, {"id-set", "Secure Electronic Transactions", NID_id_set, 2, &so[3888]}, {"set-ctype", "content types", NID_set_ctype, 3, &so[3890]}, {"set-msgExt", "message extensions", NID_set_msgExt, 3, &so[3893]}, {"set-attr", "set-attr", NID_set_attr, 3, &so[3896]}, {"set-policy", "set-policy", NID_set_policy, 3, &so[3899]}, {"set-certExt", "certificate extensions", NID_set_certExt, 3, &so[3902]}, {"set-brand", "set-brand", NID_set_brand, 3, &so[3905]}, {"setct-PANData", "setct-PANData", NID_setct_PANData, 4, &so[3908]}, {"setct-PANToken", "setct-PANToken", NID_setct_PANToken, 4, &so[3912]}, {"setct-PANOnly", "setct-PANOnly", NID_setct_PANOnly, 4, &so[3916]}, {"setct-OIData", "setct-OIData", NID_setct_OIData, 4, &so[3920]}, {"setct-PI", "setct-PI", NID_setct_PI, 4, &so[3924]}, {"setct-PIData", "setct-PIData", NID_setct_PIData, 4, &so[3928]}, {"setct-PIDataUnsigned", "setct-PIDataUnsigned", NID_setct_PIDataUnsigned, 4, &so[3932]}, {"setct-HODInput", "setct-HODInput", NID_setct_HODInput, 4, &so[3936]}, {"setct-AuthResBaggage", "setct-AuthResBaggage", NID_setct_AuthResBaggage, 4, &so[3940]}, {"setct-AuthRevReqBaggage", "setct-AuthRevReqBaggage", NID_setct_AuthRevReqBaggage, 4, &so[3944]}, {"setct-AuthRevResBaggage", "setct-AuthRevResBaggage", NID_setct_AuthRevResBaggage, 4, &so[3948]}, {"setct-CapTokenSeq", "setct-CapTokenSeq", NID_setct_CapTokenSeq, 4, &so[3952]}, {"setct-PInitResData", "setct-PInitResData", NID_setct_PInitResData, 4, &so[3956]}, {"setct-PI-TBS", "setct-PI-TBS", NID_setct_PI_TBS, 4, &so[3960]}, {"setct-PResData", "setct-PResData", NID_setct_PResData, 4, &so[3964]}, {"setct-AuthReqTBS", "setct-AuthReqTBS", NID_setct_AuthReqTBS, 4, &so[3968]}, {"setct-AuthResTBS", "setct-AuthResTBS", NID_setct_AuthResTBS, 4, &so[3972]}, {"setct-AuthResTBSX", "setct-AuthResTBSX", NID_setct_AuthResTBSX, 4, &so[3976]}, {"setct-AuthTokenTBS", "setct-AuthTokenTBS", NID_setct_AuthTokenTBS, 4, &so[3980]}, {"setct-CapTokenData", "setct-CapTokenData", NID_setct_CapTokenData, 4, &so[3984]}, {"setct-CapTokenTBS", "setct-CapTokenTBS", NID_setct_CapTokenTBS, 4, &so[3988]}, {"setct-AcqCardCodeMsg", "setct-AcqCardCodeMsg", NID_setct_AcqCardCodeMsg, 4, &so[3992]}, {"setct-AuthRevReqTBS", "setct-AuthRevReqTBS", NID_setct_AuthRevReqTBS, 4, &so[3996]}, {"setct-AuthRevResData", "setct-AuthRevResData", NID_setct_AuthRevResData, 4, &so[4000]}, {"setct-AuthRevResTBS", "setct-AuthRevResTBS", NID_setct_AuthRevResTBS, 4, &so[4004]}, {"setct-CapReqTBS", "setct-CapReqTBS", NID_setct_CapReqTBS, 4, &so[4008]}, {"setct-CapReqTBSX", "setct-CapReqTBSX", NID_setct_CapReqTBSX, 4, &so[4012]}, {"setct-CapResData", "setct-CapResData", NID_setct_CapResData, 4, &so[4016]}, {"setct-CapRevReqTBS", "setct-CapRevReqTBS", NID_setct_CapRevReqTBS, 4, &so[4020]}, {"setct-CapRevReqTBSX", "setct-CapRevReqTBSX", NID_setct_CapRevReqTBSX, 4, &so[4024]}, {"setct-CapRevResData", "setct-CapRevResData", NID_setct_CapRevResData, 4, &so[4028]}, {"setct-CredReqTBS", "setct-CredReqTBS", NID_setct_CredReqTBS, 4, &so[4032]}, {"setct-CredReqTBSX", "setct-CredReqTBSX", NID_setct_CredReqTBSX, 4, &so[4036]}, {"setct-CredResData", "setct-CredResData", NID_setct_CredResData, 4, &so[4040]}, {"setct-CredRevReqTBS", "setct-CredRevReqTBS", NID_setct_CredRevReqTBS, 4, &so[4044]}, {"setct-CredRevReqTBSX", "setct-CredRevReqTBSX", NID_setct_CredRevReqTBSX, 4, &so[4048]}, {"setct-CredRevResData", "setct-CredRevResData", NID_setct_CredRevResData, 4, &so[4052]}, {"setct-PCertReqData", "setct-PCertReqData", NID_setct_PCertReqData, 4, &so[4056]}, {"setct-PCertResTBS", "setct-PCertResTBS", NID_setct_PCertResTBS, 4, &so[4060]}, {"setct-BatchAdminReqData", "setct-BatchAdminReqData", NID_setct_BatchAdminReqData, 4, &so[4064]}, {"setct-BatchAdminResData", "setct-BatchAdminResData", NID_setct_BatchAdminResData, 4, &so[4068]}, {"setct-CardCInitResTBS", "setct-CardCInitResTBS", NID_setct_CardCInitResTBS, 4, &so[4072]}, {"setct-MeAqCInitResTBS", "setct-MeAqCInitResTBS", NID_setct_MeAqCInitResTBS, 4, &so[4076]}, {"setct-RegFormResTBS", "setct-RegFormResTBS", NID_setct_RegFormResTBS, 4, &so[4080]}, {"setct-CertReqData", "setct-CertReqData", NID_setct_CertReqData, 4, &so[4084]}, {"setct-CertReqTBS", "setct-CertReqTBS", NID_setct_CertReqTBS, 4, &so[4088]}, {"setct-CertResData", "setct-CertResData", NID_setct_CertResData, 4, &so[4092]}, {"setct-CertInqReqTBS", "setct-CertInqReqTBS", NID_setct_CertInqReqTBS, 4, &so[4096]}, {"setct-ErrorTBS", "setct-ErrorTBS", NID_setct_ErrorTBS, 4, &so[4100]}, {"setct-PIDualSignedTBE", "setct-PIDualSignedTBE", NID_setct_PIDualSignedTBE, 4, &so[4104]}, {"setct-PIUnsignedTBE", "setct-PIUnsignedTBE", NID_setct_PIUnsignedTBE, 4, &so[4108]}, {"setct-AuthReqTBE", "setct-AuthReqTBE", NID_setct_AuthReqTBE, 4, &so[4112]}, {"setct-AuthResTBE", "setct-AuthResTBE", NID_setct_AuthResTBE, 4, &so[4116]}, {"setct-AuthResTBEX", "setct-AuthResTBEX", NID_setct_AuthResTBEX, 4, &so[4120]}, {"setct-AuthTokenTBE", "setct-AuthTokenTBE", NID_setct_AuthTokenTBE, 4, &so[4124]}, {"setct-CapTokenTBE", "setct-CapTokenTBE", NID_setct_CapTokenTBE, 4, &so[4128]}, {"setct-CapTokenTBEX", "setct-CapTokenTBEX", NID_setct_CapTokenTBEX, 4, &so[4132]}, {"setct-AcqCardCodeMsgTBE", "setct-AcqCardCodeMsgTBE", NID_setct_AcqCardCodeMsgTBE, 4, &so[4136]}, {"setct-AuthRevReqTBE", "setct-AuthRevReqTBE", NID_setct_AuthRevReqTBE, 4, &so[4140]}, {"setct-AuthRevResTBE", "setct-AuthRevResTBE", NID_setct_AuthRevResTBE, 4, &so[4144]}, {"setct-AuthRevResTBEB", "setct-AuthRevResTBEB", NID_setct_AuthRevResTBEB, 4, &so[4148]}, {"setct-CapReqTBE", "setct-CapReqTBE", NID_setct_CapReqTBE, 4, &so[4152]}, {"setct-CapReqTBEX", "setct-CapReqTBEX", NID_setct_CapReqTBEX, 4, &so[4156]}, {"setct-CapResTBE", "setct-CapResTBE", NID_setct_CapResTBE, 4, &so[4160]}, {"setct-CapRevReqTBE", "setct-CapRevReqTBE", NID_setct_CapRevReqTBE, 4, &so[4164]}, {"setct-CapRevReqTBEX", "setct-CapRevReqTBEX", NID_setct_CapRevReqTBEX, 4, &so[4168]}, {"setct-CapRevResTBE", "setct-CapRevResTBE", NID_setct_CapRevResTBE, 4, &so[4172]}, {"setct-CredReqTBE", "setct-CredReqTBE", NID_setct_CredReqTBE, 4, &so[4176]}, {"setct-CredReqTBEX", "setct-CredReqTBEX", NID_setct_CredReqTBEX, 4, &so[4180]}, {"setct-CredResTBE", "setct-CredResTBE", NID_setct_CredResTBE, 4, &so[4184]}, {"setct-CredRevReqTBE", "setct-CredRevReqTBE", NID_setct_CredRevReqTBE, 4, &so[4188]}, {"setct-CredRevReqTBEX", "setct-CredRevReqTBEX", NID_setct_CredRevReqTBEX, 4, &so[4192]}, {"setct-CredRevResTBE", "setct-CredRevResTBE", NID_setct_CredRevResTBE, 4, &so[4196]}, {"setct-BatchAdminReqTBE", "setct-BatchAdminReqTBE", NID_setct_BatchAdminReqTBE, 4, &so[4200]}, {"setct-BatchAdminResTBE", "setct-BatchAdminResTBE", NID_setct_BatchAdminResTBE, 4, &so[4204]}, {"setct-RegFormReqTBE", "setct-RegFormReqTBE", NID_setct_RegFormReqTBE, 4, &so[4208]}, {"setct-CertReqTBE", "setct-CertReqTBE", NID_setct_CertReqTBE, 4, &so[4212]}, {"setct-CertReqTBEX", "setct-CertReqTBEX", NID_setct_CertReqTBEX, 4, &so[4216]}, {"setct-CertResTBE", "setct-CertResTBE", NID_setct_CertResTBE, 4, &so[4220]}, {"setct-CRLNotificationTBS", "setct-CRLNotificationTBS", NID_setct_CRLNotificationTBS, 4, &so[4224]}, {"setct-CRLNotificationResTBS", "setct-CRLNotificationResTBS", NID_setct_CRLNotificationResTBS, 4, &so[4228]}, {"setct-BCIDistributionTBS", "setct-BCIDistributionTBS", NID_setct_BCIDistributionTBS, 4, &so[4232]}, {"setext-genCrypt", "generic cryptogram", NID_setext_genCrypt, 4, &so[4236]}, {"setext-miAuth", "merchant initiated auth", NID_setext_miAuth, 4, &so[4240]}, {"setext-pinSecure", "setext-pinSecure", NID_setext_pinSecure, 4, &so[4244]}, {"setext-pinAny", "setext-pinAny", NID_setext_pinAny, 4, &so[4248]}, {"setext-track2", "setext-track2", NID_setext_track2, 4, &so[4252]}, {"setext-cv", "additional verification", NID_setext_cv, 4, &so[4256]}, {"set-policy-root", "set-policy-root", NID_set_policy_root, 4, &so[4260]}, {"setCext-hashedRoot", "setCext-hashedRoot", NID_setCext_hashedRoot, 4, &so[4264]}, {"setCext-certType", "setCext-certType", NID_setCext_certType, 4, &so[4268]}, {"setCext-merchData", "setCext-merchData", NID_setCext_merchData, 4, &so[4272]}, {"setCext-cCertRequired", "setCext-cCertRequired", NID_setCext_cCertRequired, 4, &so[4276]}, {"setCext-tunneling", "setCext-tunneling", NID_setCext_tunneling, 4, &so[4280]}, {"setCext-setExt", "setCext-setExt", NID_setCext_setExt, 4, &so[4284]}, {"setCext-setQualf", "setCext-setQualf", NID_setCext_setQualf, 4, &so[4288]}, {"setCext-PGWYcapabilities", "setCext-PGWYcapabilities", NID_setCext_PGWYcapabilities, 4, &so[4292]}, {"setCext-TokenIdentifier", "setCext-TokenIdentifier", NID_setCext_TokenIdentifier, 4, &so[4296]}, {"setCext-Track2Data", "setCext-Track2Data", NID_setCext_Track2Data, 4, &so[4300]}, {"setCext-TokenType", "setCext-TokenType", NID_setCext_TokenType, 4, &so[4304]}, {"setCext-IssuerCapabilities", "setCext-IssuerCapabilities", NID_setCext_IssuerCapabilities, 4, &so[4308]}, {"setAttr-Cert", "setAttr-Cert", NID_setAttr_Cert, 4, &so[4312]}, {"setAttr-PGWYcap", "payment gateway capabilities", NID_setAttr_PGWYcap, 4, &so[4316]}, {"setAttr-TokenType", "setAttr-TokenType", NID_setAttr_TokenType, 4, &so[4320]}, {"setAttr-IssCap", "issuer capabilities", NID_setAttr_IssCap, 4, &so[4324]}, {"set-rootKeyThumb", "set-rootKeyThumb", NID_set_rootKeyThumb, 5, &so[4328]}, {"set-addPolicy", "set-addPolicy", NID_set_addPolicy, 5, &so[4333]}, {"setAttr-Token-EMV", "setAttr-Token-EMV", NID_setAttr_Token_EMV, 5, &so[4338]}, {"setAttr-Token-B0Prime", "setAttr-Token-B0Prime", NID_setAttr_Token_B0Prime, 5, &so[4343]}, {"setAttr-IssCap-CVM", "setAttr-IssCap-CVM", NID_setAttr_IssCap_CVM, 5, &so[4348]}, {"setAttr-IssCap-T2", "setAttr-IssCap-T2", NID_setAttr_IssCap_T2, 5, &so[4353]}, {"setAttr-IssCap-Sig", "setAttr-IssCap-Sig", NID_setAttr_IssCap_Sig, 5, &so[4358]}, {"setAttr-GenCryptgrm", "generate cryptogram", NID_setAttr_GenCryptgrm, 6, &so[4363]}, {"setAttr-T2Enc", "encrypted track 2", NID_setAttr_T2Enc, 6, &so[4369]}, {"setAttr-T2cleartxt", "cleartext track 2", NID_setAttr_T2cleartxt, 6, &so[4375]}, {"setAttr-TokICCsig", "ICC or token signature", NID_setAttr_TokICCsig, 6, &so[4381]}, {"setAttr-SecDevSig", "secure device signature", NID_setAttr_SecDevSig, 6, &so[4387]}, {"set-brand-IATA-ATA", "set-brand-IATA-ATA", NID_set_brand_IATA_ATA, 4, &so[4393]}, {"set-brand-Diners", "set-brand-Diners", NID_set_brand_Diners, 4, &so[4397]}, {"set-brand-AmericanExpress", "set-brand-AmericanExpress", NID_set_brand_AmericanExpress, 4, &so[4401]}, {"set-brand-JCB", "set-brand-JCB", NID_set_brand_JCB, 4, &so[4405]}, {"set-brand-Visa", "set-brand-Visa", NID_set_brand_Visa, 4, &so[4409]}, {"set-brand-MasterCard", "set-brand-MasterCard", NID_set_brand_MasterCard, 4, &so[4413]}, {"set-brand-Novus", "set-brand-Novus", NID_set_brand_Novus, 5, &so[4417]}, {"DES-CDMF", "des-cdmf", NID_des_cdmf, 8, &so[4422]}, {"rsaOAEPEncryptionSET", "rsaOAEPEncryptionSET", NID_rsaOAEPEncryptionSET, 9, &so[4430]}, {"ITU-T", "itu-t", NID_itu_t}, {"JOINT-ISO-ITU-T", "joint-iso-itu-t", NID_joint_iso_itu_t}, {"international-organizations", "International Organizations", NID_international_organizations, 1, &so[4439]}, {"msSmartcardLogin", "Microsoft Smartcard Login", NID_ms_smartcard_login, 10, &so[4440]}, {"msUPN", "Microsoft User Principal Name", NID_ms_upn, 10, &so[4450]}, {"AES-128-CFB1", "aes-128-cfb1", NID_aes_128_cfb1}, {"AES-192-CFB1", "aes-192-cfb1", NID_aes_192_cfb1}, {"AES-256-CFB1", "aes-256-cfb1", NID_aes_256_cfb1}, {"AES-128-CFB8", "aes-128-cfb8", NID_aes_128_cfb8}, {"AES-192-CFB8", "aes-192-cfb8", NID_aes_192_cfb8}, {"AES-256-CFB8", "aes-256-cfb8", NID_aes_256_cfb8}, {"DES-CFB1", "des-cfb1", NID_des_cfb1}, {"DES-CFB8", "des-cfb8", NID_des_cfb8}, {"DES-EDE3-CFB1", "des-ede3-cfb1", NID_des_ede3_cfb1}, {"DES-EDE3-CFB8", "des-ede3-cfb8", NID_des_ede3_cfb8}, {"street", "streetAddress", NID_streetAddress, 3, &so[4460]}, {"postalCode", "postalCode", NID_postalCode, 3, &so[4463]}, {"id-ppl", "id-ppl", NID_id_ppl, 7, &so[4466]}, {"proxyCertInfo", "Proxy Certificate Information", NID_proxyCertInfo, 8, &so[4473]}, {"id-ppl-anyLanguage", "Any language", NID_id_ppl_anyLanguage, 8, &so[4481]}, {"id-ppl-inheritAll", "Inherit all", NID_id_ppl_inheritAll, 8, &so[4489]}, {"nameConstraints", "X509v3 Name Constraints", NID_name_constraints, 3, &so[4497]}, {"id-ppl-independent", "Independent", NID_Independent, 8, &so[4500]}, {"RSA-SHA256", "sha256WithRSAEncryption", NID_sha256WithRSAEncryption, 9, &so[4508]}, {"RSA-SHA384", "sha384WithRSAEncryption", NID_sha384WithRSAEncryption, 9, &so[4517]}, {"RSA-SHA512", "sha512WithRSAEncryption", NID_sha512WithRSAEncryption, 9, &so[4526]}, {"RSA-SHA224", "sha224WithRSAEncryption", NID_sha224WithRSAEncryption, 9, &so[4535]}, {"SHA256", "sha256", NID_sha256, 9, &so[4544]}, {"SHA384", "sha384", NID_sha384, 9, &so[4553]}, {"SHA512", "sha512", NID_sha512, 9, &so[4562]}, {"SHA224", "sha224", NID_sha224, 9, &so[4571]}, {"identified-organization", "identified-organization", NID_identified_organization, 1, &so[4580]}, {"certicom-arc", "certicom-arc", NID_certicom_arc, 3, &so[4581]}, {"wap", "wap", NID_wap, 2, &so[4584]}, {"wap-wsg", "wap-wsg", NID_wap_wsg, 3, &so[4586]}, {"id-characteristic-two-basis", "id-characteristic-two-basis", NID_X9_62_id_characteristic_two_basis, 8, &so[4589]}, {"onBasis", "onBasis", NID_X9_62_onBasis, 9, &so[4597]}, {"tpBasis", "tpBasis", NID_X9_62_tpBasis, 9, &so[4606]}, {"ppBasis", "ppBasis", NID_X9_62_ppBasis, 9, &so[4615]}, {"c2pnb163v1", "c2pnb163v1", NID_X9_62_c2pnb163v1, 8, &so[4624]}, {"c2pnb163v2", "c2pnb163v2", NID_X9_62_c2pnb163v2, 8, &so[4632]}, {"c2pnb163v3", "c2pnb163v3", NID_X9_62_c2pnb163v3, 8, &so[4640]}, {"c2pnb176v1", "c2pnb176v1", NID_X9_62_c2pnb176v1, 8, &so[4648]}, {"c2tnb191v1", "c2tnb191v1", NID_X9_62_c2tnb191v1, 8, &so[4656]}, {"c2tnb191v2", "c2tnb191v2", NID_X9_62_c2tnb191v2, 8, &so[4664]}, {"c2tnb191v3", "c2tnb191v3", NID_X9_62_c2tnb191v3, 8, &so[4672]}, {"c2onb191v4", "c2onb191v4", NID_X9_62_c2onb191v4, 8, &so[4680]}, {"c2onb191v5", "c2onb191v5", NID_X9_62_c2onb191v5, 8, &so[4688]}, {"c2pnb208w1", "c2pnb208w1", NID_X9_62_c2pnb208w1, 8, &so[4696]}, {"c2tnb239v1", "c2tnb239v1", NID_X9_62_c2tnb239v1, 8, &so[4704]}, {"c2tnb239v2", "c2tnb239v2", NID_X9_62_c2tnb239v2, 8, &so[4712]}, {"c2tnb239v3", "c2tnb239v3", NID_X9_62_c2tnb239v3, 8, &so[4720]}, {"c2onb239v4", "c2onb239v4", NID_X9_62_c2onb239v4, 8, &so[4728]}, {"c2onb239v5", "c2onb239v5", NID_X9_62_c2onb239v5, 8, &so[4736]}, {"c2pnb272w1", "c2pnb272w1", NID_X9_62_c2pnb272w1, 8, &so[4744]}, {"c2pnb304w1", "c2pnb304w1", NID_X9_62_c2pnb304w1, 8, &so[4752]}, {"c2tnb359v1", "c2tnb359v1", NID_X9_62_c2tnb359v1, 8, &so[4760]}, {"c2pnb368w1", "c2pnb368w1", NID_X9_62_c2pnb368w1, 8, &so[4768]}, {"c2tnb431r1", "c2tnb431r1", NID_X9_62_c2tnb431r1, 8, &so[4776]}, {"secp112r1", "secp112r1", NID_secp112r1, 5, &so[4784]}, {"secp112r2", "secp112r2", NID_secp112r2, 5, &so[4789]}, {"secp128r1", "secp128r1", NID_secp128r1, 5, &so[4794]}, {"secp128r2", "secp128r2", NID_secp128r2, 5, &so[4799]}, {"secp160k1", "secp160k1", NID_secp160k1, 5, &so[4804]}, {"secp160r1", "secp160r1", NID_secp160r1, 5, &so[4809]}, {"secp160r2", "secp160r2", NID_secp160r2, 5, &so[4814]}, {"secp192k1", "secp192k1", NID_secp192k1, 5, &so[4819]}, {"secp224k1", "secp224k1", NID_secp224k1, 5, &so[4824]}, {"secp224r1", "secp224r1", NID_secp224r1, 5, &so[4829]}, {"secp256k1", "secp256k1", NID_secp256k1, 5, &so[4834]}, {"secp384r1", "secp384r1", NID_secp384r1, 5, &so[4839]}, {"secp521r1", "secp521r1", NID_secp521r1, 5, &so[4844]}, {"sect113r1", "sect113r1", NID_sect113r1, 5, &so[4849]}, {"sect113r2", "sect113r2", NID_sect113r2, 5, &so[4854]}, {"sect131r1", "sect131r1", NID_sect131r1, 5, &so[4859]}, {"sect131r2", "sect131r2", NID_sect131r2, 5, &so[4864]}, {"sect163k1", "sect163k1", NID_sect163k1, 5, &so[4869]}, {"sect163r1", "sect163r1", NID_sect163r1, 5, &so[4874]}, {"sect163r2", "sect163r2", NID_sect163r2, 5, &so[4879]}, {"sect193r1", "sect193r1", NID_sect193r1, 5, &so[4884]}, {"sect193r2", "sect193r2", NID_sect193r2, 5, &so[4889]}, {"sect233k1", "sect233k1", NID_sect233k1, 5, &so[4894]}, {"sect233r1", "sect233r1", NID_sect233r1, 5, &so[4899]}, {"sect239k1", "sect239k1", NID_sect239k1, 5, &so[4904]}, {"sect283k1", "sect283k1", NID_sect283k1, 5, &so[4909]}, {"sect283r1", "sect283r1", NID_sect283r1, 5, &so[4914]}, {"sect409k1", "sect409k1", NID_sect409k1, 5, &so[4919]}, {"sect409r1", "sect409r1", NID_sect409r1, 5, &so[4924]}, {"sect571k1", "sect571k1", NID_sect571k1, 5, &so[4929]}, {"sect571r1", "sect571r1", NID_sect571r1, 5, &so[4934]}, {"wap-wsg-idm-ecid-wtls1", "wap-wsg-idm-ecid-wtls1", NID_wap_wsg_idm_ecid_wtls1, 5, &so[4939]}, {"wap-wsg-idm-ecid-wtls3", "wap-wsg-idm-ecid-wtls3", NID_wap_wsg_idm_ecid_wtls3, 5, &so[4944]}, {"wap-wsg-idm-ecid-wtls4", "wap-wsg-idm-ecid-wtls4", NID_wap_wsg_idm_ecid_wtls4, 5, &so[4949]}, {"wap-wsg-idm-ecid-wtls5", "wap-wsg-idm-ecid-wtls5", NID_wap_wsg_idm_ecid_wtls5, 5, &so[4954]}, {"wap-wsg-idm-ecid-wtls6", "wap-wsg-idm-ecid-wtls6", NID_wap_wsg_idm_ecid_wtls6, 5, &so[4959]}, {"wap-wsg-idm-ecid-wtls7", "wap-wsg-idm-ecid-wtls7", NID_wap_wsg_idm_ecid_wtls7, 5, &so[4964]}, {"wap-wsg-idm-ecid-wtls8", "wap-wsg-idm-ecid-wtls8", NID_wap_wsg_idm_ecid_wtls8, 5, &so[4969]}, {"wap-wsg-idm-ecid-wtls9", "wap-wsg-idm-ecid-wtls9", NID_wap_wsg_idm_ecid_wtls9, 5, &so[4974]}, {"wap-wsg-idm-ecid-wtls10", "wap-wsg-idm-ecid-wtls10", NID_wap_wsg_idm_ecid_wtls10, 5, &so[4979]}, {"wap-wsg-idm-ecid-wtls11", "wap-wsg-idm-ecid-wtls11", NID_wap_wsg_idm_ecid_wtls11, 5, &so[4984]}, {"wap-wsg-idm-ecid-wtls12", "wap-wsg-idm-ecid-wtls12", NID_wap_wsg_idm_ecid_wtls12, 5, &so[4989]}, {"anyPolicy", "X509v3 Any Policy", NID_any_policy, 4, &so[4994]}, {"policyMappings", "X509v3 Policy Mappings", NID_policy_mappings, 3, &so[4998]}, {"inhibitAnyPolicy", "X509v3 Inhibit Any Policy", NID_inhibit_any_policy, 3, &so[5001]}, {"Oakley-EC2N-3", "ipsec3", NID_ipsec3}, {"Oakley-EC2N-4", "ipsec4", NID_ipsec4}, {"CAMELLIA-128-CBC", "camellia-128-cbc", NID_camellia_128_cbc, 11, &so[5004]}, {"CAMELLIA-192-CBC", "camellia-192-cbc", NID_camellia_192_cbc, 11, &so[5015]}, {"CAMELLIA-256-CBC", "camellia-256-cbc", NID_camellia_256_cbc, 11, &so[5026]}, {"CAMELLIA-128-ECB", "camellia-128-ecb", NID_camellia_128_ecb, 8, &so[5037]}, {"CAMELLIA-192-ECB", "camellia-192-ecb", NID_camellia_192_ecb, 8, &so[5045]}, {"CAMELLIA-256-ECB", "camellia-256-ecb", NID_camellia_256_ecb, 8, &so[5053]}, {"CAMELLIA-128-CFB", "camellia-128-cfb", NID_camellia_128_cfb128, 8, &so[5061]}, {"CAMELLIA-192-CFB", "camellia-192-cfb", NID_camellia_192_cfb128, 8, &so[5069]}, {"CAMELLIA-256-CFB", "camellia-256-cfb", NID_camellia_256_cfb128, 8, &so[5077]}, {"CAMELLIA-128-CFB1", "camellia-128-cfb1", NID_camellia_128_cfb1}, {"CAMELLIA-192-CFB1", "camellia-192-cfb1", NID_camellia_192_cfb1}, {"CAMELLIA-256-CFB1", "camellia-256-cfb1", NID_camellia_256_cfb1}, {"CAMELLIA-128-CFB8", "camellia-128-cfb8", NID_camellia_128_cfb8}, {"CAMELLIA-192-CFB8", "camellia-192-cfb8", NID_camellia_192_cfb8}, {"CAMELLIA-256-CFB8", "camellia-256-cfb8", NID_camellia_256_cfb8}, {"CAMELLIA-128-OFB", "camellia-128-ofb", NID_camellia_128_ofb128, 8, &so[5085]}, {"CAMELLIA-192-OFB", "camellia-192-ofb", NID_camellia_192_ofb128, 8, &so[5093]}, {"CAMELLIA-256-OFB", "camellia-256-ofb", NID_camellia_256_ofb128, 8, &so[5101]}, {"subjectDirectoryAttributes", "X509v3 Subject Directory Attributes", NID_subject_directory_attributes, 3, &so[5109]}, {"issuingDistributionPoint", "X509v3 Issuing Distribution Point", NID_issuing_distribution_point, 3, &so[5112]}, {"certificateIssuer", "X509v3 Certificate Issuer", NID_certificate_issuer, 3, &so[5115]}, { NULL, NULL, NID_undef }, {"KISA", "kisa", NID_kisa, 6, &so[5118]}, { NULL, NULL, NID_undef }, { NULL, NULL, NID_undef }, {"SEED-ECB", "seed-ecb", NID_seed_ecb, 8, &so[5124]}, {"SEED-CBC", "seed-cbc", NID_seed_cbc, 8, &so[5132]}, {"SEED-OFB", "seed-ofb", NID_seed_ofb128, 8, &so[5140]}, {"SEED-CFB", "seed-cfb", NID_seed_cfb128, 8, &so[5148]}, {"HMAC-MD5", "hmac-md5", NID_hmac_md5, 8, &so[5156]}, {"HMAC-SHA1", "hmac-sha1", NID_hmac_sha1, 8, &so[5164]}, {"id-PasswordBasedMAC", "password based MAC", NID_id_PasswordBasedMAC, 9, &so[5172]}, {"id-DHBasedMac", "Diffie-Hellman based MAC", NID_id_DHBasedMac, 9, &so[5181]}, {"id-it-suppLangTags", "id-it-suppLangTags", NID_id_it_suppLangTags, 8, &so[5190]}, {"caRepository", "CA Repository", NID_caRepository, 8, &so[5198]}, {"id-smime-ct-compressedData", "id-smime-ct-compressedData", NID_id_smime_ct_compressedData, 11, &so[5206]}, {"id-ct-asciiTextWithCRLF", "id-ct-asciiTextWithCRLF", NID_id_ct_asciiTextWithCRLF, 11, &so[5217]}, {"id-aes128-wrap", "id-aes128-wrap", NID_id_aes128_wrap, 9, &so[5228]}, {"id-aes192-wrap", "id-aes192-wrap", NID_id_aes192_wrap, 9, &so[5237]}, {"id-aes256-wrap", "id-aes256-wrap", NID_id_aes256_wrap, 9, &so[5246]}, {"ecdsa-with-Recommended", "ecdsa-with-Recommended", NID_ecdsa_with_Recommended, 7, &so[5255]}, {"ecdsa-with-Specified", "ecdsa-with-Specified", NID_ecdsa_with_Specified, 7, &so[5262]}, {"ecdsa-with-SHA224", "ecdsa-with-SHA224", NID_ecdsa_with_SHA224, 8, &so[5269]}, {"ecdsa-with-SHA256", "ecdsa-with-SHA256", NID_ecdsa_with_SHA256, 8, &so[5277]}, {"ecdsa-with-SHA384", "ecdsa-with-SHA384", NID_ecdsa_with_SHA384, 8, &so[5285]}, {"ecdsa-with-SHA512", "ecdsa-with-SHA512", NID_ecdsa_with_SHA512, 8, &so[5293]}, {"hmacWithMD5", "hmacWithMD5", NID_hmacWithMD5, 8, &so[5301]}, {"hmacWithSHA224", "hmacWithSHA224", NID_hmacWithSHA224, 8, &so[5309]}, {"hmacWithSHA256", "hmacWithSHA256", NID_hmacWithSHA256, 8, &so[5317]}, {"hmacWithSHA384", "hmacWithSHA384", NID_hmacWithSHA384, 8, &so[5325]}, {"hmacWithSHA512", "hmacWithSHA512", NID_hmacWithSHA512, 8, &so[5333]}, {"dsa_with_SHA224", "dsa_with_SHA224", NID_dsa_with_SHA224, 9, &so[5341]}, {"dsa_with_SHA256", "dsa_with_SHA256", NID_dsa_with_SHA256, 9, &so[5350]}, {"whirlpool", "whirlpool", NID_whirlpool, 6, &so[5359]}, {"cryptopro", "cryptopro", NID_cryptopro, 5, &so[5365]}, {"cryptocom", "cryptocom", NID_cryptocom, 5, &so[5370]}, {"id-GostR3411-94-with-GostR3410-2001", "GOST R 34.11-94 with GOST R 34.10-2001", NID_id_GostR3411_94_with_GostR3410_2001, 6, &so[5375]}, {"id-GostR3411-94-with-GostR3410-94", "GOST R 34.11-94 with GOST R 34.10-94", NID_id_GostR3411_94_with_GostR3410_94, 6, &so[5381]}, {"md_gost94", "GOST R 34.11-94", NID_id_GostR3411_94, 6, &so[5387]}, {"id-HMACGostR3411-94", "HMAC GOST 34.11-94", NID_id_HMACGostR3411_94, 6, &so[5393]}, {"gost2001", "GOST R 34.10-2001", NID_id_GostR3410_2001, 6, &so[5399]}, {"gost94", "GOST R 34.10-94", NID_id_GostR3410_94, 6, &so[5405]}, {"gost89", "GOST 28147-89", NID_id_Gost28147_89, 6, &so[5411]}, {"gost89-cnt", "gost89-cnt", NID_gost89_cnt}, {"gost-mac", "GOST 28147-89 MAC", NID_id_Gost28147_89_MAC, 6, &so[5417]}, {"prf-gostr3411-94", "GOST R 34.11-94 PRF", NID_id_GostR3411_94_prf, 6, &so[5423]}, {"id-GostR3410-2001DH", "GOST R 34.10-2001 DH", NID_id_GostR3410_2001DH, 6, &so[5429]}, {"id-GostR3410-94DH", "GOST R 34.10-94 DH", NID_id_GostR3410_94DH, 6, &so[5435]}, {"id-Gost28147-89-CryptoPro-KeyMeshing", "id-Gost28147-89-CryptoPro-KeyMeshing", NID_id_Gost28147_89_CryptoPro_KeyMeshing, 7, &so[5441]}, {"id-Gost28147-89-None-KeyMeshing", "id-Gost28147-89-None-KeyMeshing", NID_id_Gost28147_89_None_KeyMeshing, 7, &so[5448]}, {"id-GostR3411-94-TestParamSet", "id-GostR3411-94-TestParamSet", NID_id_GostR3411_94_TestParamSet, 7, &so[5455]}, {"id-GostR3411-94-CryptoProParamSet", "id-GostR3411-94-CryptoProParamSet", NID_id_GostR3411_94_CryptoProParamSet, 7, &so[5462]}, {"id-Gost28147-89-TestParamSet", "id-Gost28147-89-TestParamSet", NID_id_Gost28147_89_TestParamSet, 7, &so[5469]}, {"id-Gost28147-89-CryptoPro-A-ParamSet", "id-Gost28147-89-CryptoPro-A-ParamSet", NID_id_Gost28147_89_CryptoPro_A_ParamSet, 7, &so[5476]}, {"id-Gost28147-89-CryptoPro-B-ParamSet", "id-Gost28147-89-CryptoPro-B-ParamSet", NID_id_Gost28147_89_CryptoPro_B_ParamSet, 7, &so[5483]}, {"id-Gost28147-89-CryptoPro-C-ParamSet", "id-Gost28147-89-CryptoPro-C-ParamSet", NID_id_Gost28147_89_CryptoPro_C_ParamSet, 7, &so[5490]}, {"id-Gost28147-89-CryptoPro-D-ParamSet", "id-Gost28147-89-CryptoPro-D-ParamSet", NID_id_Gost28147_89_CryptoPro_D_ParamSet, 7, &so[5497]}, {"id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet", "id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet", NID_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet, 7, &so[5504]}, {"id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet", "id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet", NID_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet, 7, &so[5511]}, {"id-Gost28147-89-CryptoPro-RIC-1-ParamSet", "id-Gost28147-89-CryptoPro-RIC-1-ParamSet", NID_id_Gost28147_89_CryptoPro_RIC_1_ParamSet, 7, &so[5518]}, {"id-GostR3410-94-TestParamSet", "id-GostR3410-94-TestParamSet", NID_id_GostR3410_94_TestParamSet, 7, &so[5525]}, {"id-GostR3410-94-CryptoPro-A-ParamSet", "id-GostR3410-94-CryptoPro-A-ParamSet", NID_id_GostR3410_94_CryptoPro_A_ParamSet, 7, &so[5532]}, {"id-GostR3410-94-CryptoPro-B-ParamSet", "id-GostR3410-94-CryptoPro-B-ParamSet", NID_id_GostR3410_94_CryptoPro_B_ParamSet, 7, &so[5539]}, {"id-GostR3410-94-CryptoPro-C-ParamSet", "id-GostR3410-94-CryptoPro-C-ParamSet", NID_id_GostR3410_94_CryptoPro_C_ParamSet, 7, &so[5546]}, {"id-GostR3410-94-CryptoPro-D-ParamSet", "id-GostR3410-94-CryptoPro-D-ParamSet", NID_id_GostR3410_94_CryptoPro_D_ParamSet, 7, &so[5553]}, {"id-GostR3410-94-CryptoPro-XchA-ParamSet", "id-GostR3410-94-CryptoPro-XchA-ParamSet", NID_id_GostR3410_94_CryptoPro_XchA_ParamSet, 7, &so[5560]}, {"id-GostR3410-94-CryptoPro-XchB-ParamSet", "id-GostR3410-94-CryptoPro-XchB-ParamSet", NID_id_GostR3410_94_CryptoPro_XchB_ParamSet, 7, &so[5567]}, {"id-GostR3410-94-CryptoPro-XchC-ParamSet", "id-GostR3410-94-CryptoPro-XchC-ParamSet", NID_id_GostR3410_94_CryptoPro_XchC_ParamSet, 7, &so[5574]}, {"id-GostR3410-2001-TestParamSet", "id-GostR3410-2001-TestParamSet", NID_id_GostR3410_2001_TestParamSet, 7, &so[5581]}, {"id-GostR3410-2001-CryptoPro-A-ParamSet", "id-GostR3410-2001-CryptoPro-A-ParamSet", NID_id_GostR3410_2001_CryptoPro_A_ParamSet, 7, &so[5588]}, {"id-GostR3410-2001-CryptoPro-B-ParamSet", "id-GostR3410-2001-CryptoPro-B-ParamSet", NID_id_GostR3410_2001_CryptoPro_B_ParamSet, 7, &so[5595]}, {"id-GostR3410-2001-CryptoPro-C-ParamSet", "id-GostR3410-2001-CryptoPro-C-ParamSet", NID_id_GostR3410_2001_CryptoPro_C_ParamSet, 7, &so[5602]}, {"id-GostR3410-2001-CryptoPro-XchA-ParamSet", "id-GostR3410-2001-CryptoPro-XchA-ParamSet", NID_id_GostR3410_2001_CryptoPro_XchA_ParamSet, 7, &so[5609]}, {"id-GostR3410-2001-CryptoPro-XchB-ParamSet", "id-GostR3410-2001-CryptoPro-XchB-ParamSet", NID_id_GostR3410_2001_CryptoPro_XchB_ParamSet, 7, &so[5616]}, {"id-GostR3410-94-a", "id-GostR3410-94-a", NID_id_GostR3410_94_a, 7, &so[5623]}, {"id-GostR3410-94-aBis", "id-GostR3410-94-aBis", NID_id_GostR3410_94_aBis, 7, &so[5630]}, {"id-GostR3410-94-b", "id-GostR3410-94-b", NID_id_GostR3410_94_b, 7, &so[5637]}, {"id-GostR3410-94-bBis", "id-GostR3410-94-bBis", NID_id_GostR3410_94_bBis, 7, &so[5644]}, {"id-Gost28147-89-cc", "GOST 28147-89 Cryptocom ParamSet", NID_id_Gost28147_89_cc, 8, &so[5651]}, {"gost94cc", "GOST 34.10-94 Cryptocom", NID_id_GostR3410_94_cc, 8, &so[5659]}, {"gost2001cc", "GOST 34.10-2001 Cryptocom", NID_id_GostR3410_2001_cc, 8, &so[5667]}, {"id-GostR3411-94-with-GostR3410-94-cc", "GOST R 34.11-94 with GOST R 34.10-94 Cryptocom", NID_id_GostR3411_94_with_GostR3410_94_cc, 8, &so[5675]}, {"id-GostR3411-94-with-GostR3410-2001-cc", "GOST R 34.11-94 with GOST R 34.10-2001 Cryptocom", NID_id_GostR3411_94_with_GostR3410_2001_cc, 8, &so[5683]}, {"id-GostR3410-2001-ParamSet-cc", "GOST R 3410-2001 Parameter Set Cryptocom", NID_id_GostR3410_2001_ParamSet_cc, 8, &so[5691]}, {"HMAC", "hmac", NID_hmac}, {"LocalKeySet", "Microsoft Local Key set", NID_LocalKeySet, 9, &so[5699]}, {"freshestCRL", "X509v3 Freshest CRL", NID_freshest_crl, 3, &so[5708]}, {"id-on-permanentIdentifier", "Permanent Identifier", NID_id_on_permanentIdentifier, 8, &so[5711]}, {"searchGuide", "searchGuide", NID_searchGuide, 3, &so[5719]}, {"businessCategory", "businessCategory", NID_businessCategory, 3, &so[5722]}, {"postalAddress", "postalAddress", NID_postalAddress, 3, &so[5725]}, {"postOfficeBox", "postOfficeBox", NID_postOfficeBox, 3, &so[5728]}, {"physicalDeliveryOfficeName", "physicalDeliveryOfficeName", NID_physicalDeliveryOfficeName, 3, &so[5731]}, {"telephoneNumber", "telephoneNumber", NID_telephoneNumber, 3, &so[5734]}, {"telexNumber", "telexNumber", NID_telexNumber, 3, &so[5737]}, {"teletexTerminalIdentifier", "teletexTerminalIdentifier", NID_teletexTerminalIdentifier, 3, &so[5740]}, {"facsimileTelephoneNumber", "facsimileTelephoneNumber", NID_facsimileTelephoneNumber, 3, &so[5743]}, {"x121Address", "x121Address", NID_x121Address, 3, &so[5746]}, {"internationaliSDNNumber", "internationaliSDNNumber", NID_internationaliSDNNumber, 3, &so[5749]}, {"registeredAddress", "registeredAddress", NID_registeredAddress, 3, &so[5752]}, {"destinationIndicator", "destinationIndicator", NID_destinationIndicator, 3, &so[5755]}, {"preferredDeliveryMethod", "preferredDeliveryMethod", NID_preferredDeliveryMethod, 3, &so[5758]}, {"presentationAddress", "presentationAddress", NID_presentationAddress, 3, &so[5761]}, {"supportedApplicationContext", "supportedApplicationContext", NID_supportedApplicationContext, 3, &so[5764]}, {"member", "member", NID_member, 3, &so[5767]}, {"owner", "owner", NID_owner, 3, &so[5770]}, {"roleOccupant", "roleOccupant", NID_roleOccupant, 3, &so[5773]}, {"seeAlso", "seeAlso", NID_seeAlso, 3, &so[5776]}, {"userPassword", "userPassword", NID_userPassword, 3, &so[5779]}, {"userCertificate", "userCertificate", NID_userCertificate, 3, &so[5782]}, {"cACertificate", "cACertificate", NID_cACertificate, 3, &so[5785]}, {"authorityRevocationList", "authorityRevocationList", NID_authorityRevocationList, 3, &so[5788]}, {"certificateRevocationList", "certificateRevocationList", NID_certificateRevocationList, 3, &so[5791]}, {"crossCertificatePair", "crossCertificatePair", NID_crossCertificatePair, 3, &so[5794]}, {"enhancedSearchGuide", "enhancedSearchGuide", NID_enhancedSearchGuide, 3, &so[5797]}, {"protocolInformation", "protocolInformation", NID_protocolInformation, 3, &so[5800]}, {"distinguishedName", "distinguishedName", NID_distinguishedName, 3, &so[5803]}, {"uniqueMember", "uniqueMember", NID_uniqueMember, 3, &so[5806]}, {"houseIdentifier", "houseIdentifier", NID_houseIdentifier, 3, &so[5809]}, {"supportedAlgorithms", "supportedAlgorithms", NID_supportedAlgorithms, 3, &so[5812]}, {"deltaRevocationList", "deltaRevocationList", NID_deltaRevocationList, 3, &so[5815]}, {"dmdName", "dmdName", NID_dmdName, 3, &so[5818]}, {"id-alg-PWRI-KEK", "id-alg-PWRI-KEK", NID_id_alg_PWRI_KEK, 11, &so[5821]}, {"CMAC", "cmac", NID_cmac}, {"id-aes128-GCM", "aes-128-gcm", NID_aes_128_gcm, 9, &so[5832]}, {"id-aes128-CCM", "aes-128-ccm", NID_aes_128_ccm, 9, &so[5841]}, {"id-aes128-wrap-pad", "id-aes128-wrap-pad", NID_id_aes128_wrap_pad, 9, &so[5850]}, {"id-aes192-GCM", "aes-192-gcm", NID_aes_192_gcm, 9, &so[5859]}, {"id-aes192-CCM", "aes-192-ccm", NID_aes_192_ccm, 9, &so[5868]}, {"id-aes192-wrap-pad", "id-aes192-wrap-pad", NID_id_aes192_wrap_pad, 9, &so[5877]}, {"id-aes256-GCM", "aes-256-gcm", NID_aes_256_gcm, 9, &so[5886]}, {"id-aes256-CCM", "aes-256-ccm", NID_aes_256_ccm, 9, &so[5895]}, {"id-aes256-wrap-pad", "id-aes256-wrap-pad", NID_id_aes256_wrap_pad, 9, &so[5904]}, {"AES-128-CTR", "aes-128-ctr", NID_aes_128_ctr}, {"AES-192-CTR", "aes-192-ctr", NID_aes_192_ctr}, {"AES-256-CTR", "aes-256-ctr", NID_aes_256_ctr}, {"id-camellia128-wrap", "id-camellia128-wrap", NID_id_camellia128_wrap, 11, &so[5913]}, {"id-camellia192-wrap", "id-camellia192-wrap", NID_id_camellia192_wrap, 11, &so[5924]}, {"id-camellia256-wrap", "id-camellia256-wrap", NID_id_camellia256_wrap, 11, &so[5935]}, {"anyExtendedKeyUsage", "Any Extended Key Usage", NID_anyExtendedKeyUsage, 4, &so[5946]}, {"MGF1", "mgf1", NID_mgf1, 9, &so[5950]}, {"RSASSA-PSS", "rsassaPss", NID_rsassaPss, 9, &so[5959]}, {"AES-128-XTS", "aes-128-xts", NID_aes_128_xts, 8, &so[5968]}, {"AES-256-XTS", "aes-256-xts", NID_aes_256_xts, 8, &so[5976]}, {"RC4-HMAC-MD5", "rc4-hmac-md5", NID_rc4_hmac_md5}, {"AES-128-CBC-HMAC-SHA1", "aes-128-cbc-hmac-sha1", NID_aes_128_cbc_hmac_sha1}, {"AES-192-CBC-HMAC-SHA1", "aes-192-cbc-hmac-sha1", NID_aes_192_cbc_hmac_sha1}, {"AES-256-CBC-HMAC-SHA1", "aes-256-cbc-hmac-sha1", NID_aes_256_cbc_hmac_sha1}, {"RSAES-OAEP", "rsaesOaep", NID_rsaesOaep, 9, &so[5984]}, {"dhpublicnumber", "X9.42 DH", NID_dhpublicnumber, 7, &so[5993]}, {"brainpoolP160r1", "brainpoolP160r1", NID_brainpoolP160r1, 9, &so[6000]}, {"brainpoolP160t1", "brainpoolP160t1", NID_brainpoolP160t1, 9, &so[6009]}, {"brainpoolP192r1", "brainpoolP192r1", NID_brainpoolP192r1, 9, &so[6018]}, {"brainpoolP192t1", "brainpoolP192t1", NID_brainpoolP192t1, 9, &so[6027]}, {"brainpoolP224r1", "brainpoolP224r1", NID_brainpoolP224r1, 9, &so[6036]}, {"brainpoolP224t1", "brainpoolP224t1", NID_brainpoolP224t1, 9, &so[6045]}, {"brainpoolP256r1", "brainpoolP256r1", NID_brainpoolP256r1, 9, &so[6054]}, {"brainpoolP256t1", "brainpoolP256t1", NID_brainpoolP256t1, 9, &so[6063]}, {"brainpoolP320r1", "brainpoolP320r1", NID_brainpoolP320r1, 9, &so[6072]}, {"brainpoolP320t1", "brainpoolP320t1", NID_brainpoolP320t1, 9, &so[6081]}, {"brainpoolP384r1", "brainpoolP384r1", NID_brainpoolP384r1, 9, &so[6090]}, {"brainpoolP384t1", "brainpoolP384t1", NID_brainpoolP384t1, 9, &so[6099]}, {"brainpoolP512r1", "brainpoolP512r1", NID_brainpoolP512r1, 9, &so[6108]}, {"brainpoolP512t1", "brainpoolP512t1", NID_brainpoolP512t1, 9, &so[6117]}, {"PSPECIFIED", "pSpecified", NID_pSpecified, 9, &so[6126]}, {"dhSinglePass-stdDH-sha1kdf-scheme", "dhSinglePass-stdDH-sha1kdf-scheme", NID_dhSinglePass_stdDH_sha1kdf_scheme, 9, &so[6135]}, {"dhSinglePass-stdDH-sha224kdf-scheme", "dhSinglePass-stdDH-sha224kdf-scheme", NID_dhSinglePass_stdDH_sha224kdf_scheme, 6, &so[6144]}, {"dhSinglePass-stdDH-sha256kdf-scheme", "dhSinglePass-stdDH-sha256kdf-scheme", NID_dhSinglePass_stdDH_sha256kdf_scheme, 6, &so[6150]}, {"dhSinglePass-stdDH-sha384kdf-scheme", "dhSinglePass-stdDH-sha384kdf-scheme", NID_dhSinglePass_stdDH_sha384kdf_scheme, 6, &so[6156]}, {"dhSinglePass-stdDH-sha512kdf-scheme", "dhSinglePass-stdDH-sha512kdf-scheme", NID_dhSinglePass_stdDH_sha512kdf_scheme, 6, &so[6162]}, {"dhSinglePass-cofactorDH-sha1kdf-scheme", "dhSinglePass-cofactorDH-sha1kdf-scheme", NID_dhSinglePass_cofactorDH_sha1kdf_scheme, 9, &so[6168]}, {"dhSinglePass-cofactorDH-sha224kdf-scheme", "dhSinglePass-cofactorDH-sha224kdf-scheme", NID_dhSinglePass_cofactorDH_sha224kdf_scheme, 6, &so[6177]}, {"dhSinglePass-cofactorDH-sha256kdf-scheme", "dhSinglePass-cofactorDH-sha256kdf-scheme", NID_dhSinglePass_cofactorDH_sha256kdf_scheme, 6, &so[6183]}, {"dhSinglePass-cofactorDH-sha384kdf-scheme", "dhSinglePass-cofactorDH-sha384kdf-scheme", NID_dhSinglePass_cofactorDH_sha384kdf_scheme, 6, &so[6189]}, {"dhSinglePass-cofactorDH-sha512kdf-scheme", "dhSinglePass-cofactorDH-sha512kdf-scheme", NID_dhSinglePass_cofactorDH_sha512kdf_scheme, 6, &so[6195]}, {"dh-std-kdf", "dh-std-kdf", NID_dh_std_kdf}, {"dh-cofactor-kdf", "dh-cofactor-kdf", NID_dh_cofactor_kdf}, {"AES-128-CBC-HMAC-SHA256", "aes-128-cbc-hmac-sha256", NID_aes_128_cbc_hmac_sha256}, {"AES-192-CBC-HMAC-SHA256", "aes-192-cbc-hmac-sha256", NID_aes_192_cbc_hmac_sha256}, {"AES-256-CBC-HMAC-SHA256", "aes-256-cbc-hmac-sha256", NID_aes_256_cbc_hmac_sha256}, {"ct_precert_scts", "CT Precertificate SCTs", NID_ct_precert_scts, 10, &so[6201]}, {"ct_precert_poison", "CT Precertificate Poison", NID_ct_precert_poison, 10, &so[6211]}, {"ct_precert_signer", "CT Precertificate Signer", NID_ct_precert_signer, 10, &so[6221]}, {"ct_cert_scts", "CT Certificate SCTs", NID_ct_cert_scts, 10, &so[6231]}, {"jurisdictionL", "jurisdictionLocalityName", NID_jurisdictionLocalityName, 11, &so[6241]}, {"jurisdictionST", "jurisdictionStateOrProvinceName", NID_jurisdictionStateOrProvinceName, 11, &so[6252]}, {"jurisdictionC", "jurisdictionCountryName", NID_jurisdictionCountryName, 11, &so[6263]}, {"AES-128-OCB", "aes-128-ocb", NID_aes_128_ocb}, {"AES-192-OCB", "aes-192-ocb", NID_aes_192_ocb}, {"AES-256-OCB", "aes-256-ocb", NID_aes_256_ocb}, {"CAMELLIA-128-GCM", "camellia-128-gcm", NID_camellia_128_gcm, 8, &so[6274]}, {"CAMELLIA-128-CCM", "camellia-128-ccm", NID_camellia_128_ccm, 8, &so[6282]}, {"CAMELLIA-128-CTR", "camellia-128-ctr", NID_camellia_128_ctr, 8, &so[6290]}, {"CAMELLIA-128-CMAC", "camellia-128-cmac", NID_camellia_128_cmac, 8, &so[6298]}, {"CAMELLIA-192-GCM", "camellia-192-gcm", NID_camellia_192_gcm, 8, &so[6306]}, {"CAMELLIA-192-CCM", "camellia-192-ccm", NID_camellia_192_ccm, 8, &so[6314]}, {"CAMELLIA-192-CTR", "camellia-192-ctr", NID_camellia_192_ctr, 8, &so[6322]}, {"CAMELLIA-192-CMAC", "camellia-192-cmac", NID_camellia_192_cmac, 8, &so[6330]}, {"CAMELLIA-256-GCM", "camellia-256-gcm", NID_camellia_256_gcm, 8, &so[6338]}, {"CAMELLIA-256-CCM", "camellia-256-ccm", NID_camellia_256_ccm, 8, &so[6346]}, {"CAMELLIA-256-CTR", "camellia-256-ctr", NID_camellia_256_ctr, 8, &so[6354]}, {"CAMELLIA-256-CMAC", "camellia-256-cmac", NID_camellia_256_cmac, 8, &so[6362]}, {"id-scrypt", "scrypt", NID_id_scrypt, 9, &so[6370]}, {"id-tc26", "id-tc26", NID_id_tc26, 5, &so[6379]}, {"gost89-cnt-12", "gost89-cnt-12", NID_gost89_cnt_12}, {"gost-mac-12", "gost-mac-12", NID_gost_mac_12}, {"id-tc26-algorithms", "id-tc26-algorithms", NID_id_tc26_algorithms, 6, &so[6384]}, {"id-tc26-sign", "id-tc26-sign", NID_id_tc26_sign, 7, &so[6390]}, {"gost2012_256", "GOST R 34.10-2012 with 256 bit modulus", NID_id_GostR3410_2012_256, 8, &so[6397]}, {"gost2012_512", "GOST R 34.10-2012 with 512 bit modulus", NID_id_GostR3410_2012_512, 8, &so[6405]}, {"id-tc26-digest", "id-tc26-digest", NID_id_tc26_digest, 7, &so[6413]}, {"md_gost12_256", "GOST R 34.11-2012 with 256 bit hash", NID_id_GostR3411_2012_256, 8, &so[6420]}, {"md_gost12_512", "GOST R 34.11-2012 with 512 bit hash", NID_id_GostR3411_2012_512, 8, &so[6428]}, {"id-tc26-signwithdigest", "id-tc26-signwithdigest", NID_id_tc26_signwithdigest, 7, &so[6436]}, {"id-tc26-signwithdigest-gost3410-2012-256", "GOST R 34.10-2012 with GOST R 34.11-2012 (256 bit)", NID_id_tc26_signwithdigest_gost3410_2012_256, 8, &so[6443]}, {"id-tc26-signwithdigest-gost3410-2012-512", "GOST R 34.10-2012 with GOST R 34.11-2012 (512 bit)", NID_id_tc26_signwithdigest_gost3410_2012_512, 8, &so[6451]}, {"id-tc26-mac", "id-tc26-mac", NID_id_tc26_mac, 7, &so[6459]}, {"id-tc26-hmac-gost-3411-2012-256", "HMAC GOST 34.11-2012 256 bit", NID_id_tc26_hmac_gost_3411_2012_256, 8, &so[6466]}, {"id-tc26-hmac-gost-3411-2012-512", "HMAC GOST 34.11-2012 512 bit", NID_id_tc26_hmac_gost_3411_2012_512, 8, &so[6474]}, {"id-tc26-cipher", "id-tc26-cipher", NID_id_tc26_cipher, 7, &so[6482]}, {"id-tc26-agreement", "id-tc26-agreement", NID_id_tc26_agreement, 7, &so[6489]}, {"id-tc26-agreement-gost-3410-2012-256", "id-tc26-agreement-gost-3410-2012-256", NID_id_tc26_agreement_gost_3410_2012_256, 8, &so[6496]}, {"id-tc26-agreement-gost-3410-2012-512", "id-tc26-agreement-gost-3410-2012-512", NID_id_tc26_agreement_gost_3410_2012_512, 8, &so[6504]}, {"id-tc26-constants", "id-tc26-constants", NID_id_tc26_constants, 6, &so[6512]}, {"id-tc26-sign-constants", "id-tc26-sign-constants", NID_id_tc26_sign_constants, 7, &so[6518]}, {"id-tc26-gost-3410-2012-512-constants", "id-tc26-gost-3410-2012-512-constants", NID_id_tc26_gost_3410_2012_512_constants, 8, &so[6525]}, {"id-tc26-gost-3410-2012-512-paramSetTest", "GOST R 34.10-2012 (512 bit) testing parameter set", NID_id_tc26_gost_3410_2012_512_paramSetTest, 9, &so[6533]}, {"id-tc26-gost-3410-2012-512-paramSetA", "GOST R 34.10-2012 (512 bit) ParamSet A", NID_id_tc26_gost_3410_2012_512_paramSetA, 9, &so[6542]}, {"id-tc26-gost-3410-2012-512-paramSetB", "GOST R 34.10-2012 (512 bit) ParamSet B", NID_id_tc26_gost_3410_2012_512_paramSetB, 9, &so[6551]}, {"id-tc26-digest-constants", "id-tc26-digest-constants", NID_id_tc26_digest_constants, 7, &so[6560]}, {"id-tc26-cipher-constants", "id-tc26-cipher-constants", NID_id_tc26_cipher_constants, 7, &so[6567]}, {"id-tc26-gost-28147-constants", "id-tc26-gost-28147-constants", NID_id_tc26_gost_28147_constants, 8, &so[6574]}, {"id-tc26-gost-28147-param-Z", "GOST 28147-89 TC26 parameter set", NID_id_tc26_gost_28147_param_Z, 9, &so[6582]}, {"INN", "INN", NID_INN, 8, &so[6591]}, {"OGRN", "OGRN", NID_OGRN, 5, &so[6599]}, {"SNILS", "SNILS", NID_SNILS, 5, &so[6604]}, {"subjectSignTool", "Signing Tool of Subject", NID_subjectSignTool, 5, &so[6609]}, {"issuerSignTool", "Signing Tool of Issuer", NID_issuerSignTool, 5, &so[6614]}, {"gost89-cbc", "gost89-cbc", NID_gost89_cbc}, {"gost89-ecb", "gost89-ecb", NID_gost89_ecb}, {"gost89-ctr", "gost89-ctr", NID_gost89_ctr}, {"grasshopper-ecb", "grasshopper-ecb", NID_grasshopper_ecb}, {"grasshopper-ctr", "grasshopper-ctr", NID_grasshopper_ctr}, {"grasshopper-ofb", "grasshopper-ofb", NID_grasshopper_ofb}, {"grasshopper-cbc", "grasshopper-cbc", NID_grasshopper_cbc}, {"grasshopper-cfb", "grasshopper-cfb", NID_grasshopper_cfb}, {"grasshopper-mac", "grasshopper-mac", NID_grasshopper_mac}, {"ChaCha20-Poly1305", "chacha20-poly1305", NID_chacha20_poly1305}, {"ChaCha20", "chacha20", NID_chacha20}, {"tlsfeature", "TLS Feature", NID_tlsfeature, 8, &so[6619]}, {"TLS1-PRF", "tls1-prf", NID_tls1_prf}, {"ipsecIKE", "ipsec Internet Key Exchange", NID_ipsec_IKE, 8, &so[6627]}, {"capwapAC", "Ctrl/provision WAP Access", NID_capwapAC, 8, &so[6635]}, {"capwapWTP", "Ctrl/Provision WAP Termination", NID_capwapWTP, 8, &so[6643]}, {"secureShellClient", "SSH Client", NID_sshClient, 8, &so[6651]}, {"secureShellServer", "SSH Server", NID_sshServer, 8, &so[6659]}, {"sendRouter", "Send Router", NID_sendRouter, 8, &so[6667]}, {"sendProxiedRouter", "Send Proxied Router", NID_sendProxiedRouter, 8, &so[6675]}, {"sendOwner", "Send Owner", NID_sendOwner, 8, &so[6683]}, {"sendProxiedOwner", "Send Proxied Owner", NID_sendProxiedOwner, 8, &so[6691]}, {"id-pkinit", "id-pkinit", NID_id_pkinit, 6, &so[6699]}, {"pkInitClientAuth", "PKINIT Client Auth", NID_pkInitClientAuth, 7, &so[6705]}, {"pkInitKDC", "Signing KDC Response", NID_pkInitKDC, 7, &so[6712]}, {"X25519", "X25519", NID_X25519, 3, &so[6719]}, {"X448", "X448", NID_X448, 3, &so[6722]}, {"HKDF", "hkdf", NID_hkdf}, {"KxRSA", "kx-rsa", NID_kx_rsa}, {"KxECDHE", "kx-ecdhe", NID_kx_ecdhe}, {"KxDHE", "kx-dhe", NID_kx_dhe}, {"KxECDHE-PSK", "kx-ecdhe-psk", NID_kx_ecdhe_psk}, {"KxDHE-PSK", "kx-dhe-psk", NID_kx_dhe_psk}, {"KxRSA_PSK", "kx-rsa-psk", NID_kx_rsa_psk}, {"KxPSK", "kx-psk", NID_kx_psk}, {"KxSRP", "kx-srp", NID_kx_srp}, {"KxGOST", "kx-gost", NID_kx_gost}, {"AuthRSA", "auth-rsa", NID_auth_rsa}, {"AuthECDSA", "auth-ecdsa", NID_auth_ecdsa}, {"AuthPSK", "auth-psk", NID_auth_psk}, {"AuthDSS", "auth-dss", NID_auth_dss}, {"AuthGOST01", "auth-gost01", NID_auth_gost01}, {"AuthGOST12", "auth-gost12", NID_auth_gost12}, {"AuthSRP", "auth-srp", NID_auth_srp}, {"AuthNULL", "auth-null", NID_auth_null}, { NULL, NULL, NID_undef }, { NULL, NULL, NID_undef }, {"BLAKE2b512", "blake2b512", NID_blake2b512, 11, &so[6725]}, {"BLAKE2s256", "blake2s256", NID_blake2s256, 11, &so[6736]}, {"id-smime-ct-contentCollection", "id-smime-ct-contentCollection", NID_id_smime_ct_contentCollection, 11, &so[6747]}, {"id-smime-ct-authEnvelopedData", "id-smime-ct-authEnvelopedData", NID_id_smime_ct_authEnvelopedData, 11, &so[6758]}, {"id-ct-xml", "id-ct-xml", NID_id_ct_xml, 11, &so[6769]}, {"Poly1305", "poly1305", NID_poly1305}, {"SipHash", "siphash", NID_siphash}, {"KxANY", "kx-any", NID_kx_any}, {"AuthANY", "auth-any", NID_auth_any}, {"ARIA-128-ECB", "aria-128-ecb", NID_aria_128_ecb, 9, &so[6780]}, {"ARIA-128-CBC", "aria-128-cbc", NID_aria_128_cbc, 9, &so[6789]}, {"ARIA-128-CFB", "aria-128-cfb", NID_aria_128_cfb128, 9, &so[6798]}, {"ARIA-128-OFB", "aria-128-ofb", NID_aria_128_ofb128, 9, &so[6807]}, {"ARIA-128-CTR", "aria-128-ctr", NID_aria_128_ctr, 9, &so[6816]}, {"ARIA-192-ECB", "aria-192-ecb", NID_aria_192_ecb, 9, &so[6825]}, {"ARIA-192-CBC", "aria-192-cbc", NID_aria_192_cbc, 9, &so[6834]}, {"ARIA-192-CFB", "aria-192-cfb", NID_aria_192_cfb128, 9, &so[6843]}, {"ARIA-192-OFB", "aria-192-ofb", NID_aria_192_ofb128, 9, &so[6852]}, {"ARIA-192-CTR", "aria-192-ctr", NID_aria_192_ctr, 9, &so[6861]}, {"ARIA-256-ECB", "aria-256-ecb", NID_aria_256_ecb, 9, &so[6870]}, {"ARIA-256-CBC", "aria-256-cbc", NID_aria_256_cbc, 9, &so[6879]}, {"ARIA-256-CFB", "aria-256-cfb", NID_aria_256_cfb128, 9, &so[6888]}, {"ARIA-256-OFB", "aria-256-ofb", NID_aria_256_ofb128, 9, &so[6897]}, {"ARIA-256-CTR", "aria-256-ctr", NID_aria_256_ctr, 9, &so[6906]}, {"ARIA-128-CFB1", "aria-128-cfb1", NID_aria_128_cfb1}, {"ARIA-192-CFB1", "aria-192-cfb1", NID_aria_192_cfb1}, {"ARIA-256-CFB1", "aria-256-cfb1", NID_aria_256_cfb1}, {"ARIA-128-CFB8", "aria-128-cfb8", NID_aria_128_cfb8}, {"ARIA-192-CFB8", "aria-192-cfb8", NID_aria_192_cfb8}, {"ARIA-256-CFB8", "aria-256-cfb8", NID_aria_256_cfb8}, {"id-smime-aa-signingCertificateV2", "id-smime-aa-signingCertificateV2", NID_id_smime_aa_signingCertificateV2, 11, &so[6915]}, {"ED25519", "ED25519", NID_ED25519, 3, &so[6926]}, {"ED448", "ED448", NID_ED448, 3, &so[6929]}, {"organizationIdentifier", "organizationIdentifier", NID_organizationIdentifier, 3, &so[6932]}, {"c3", "countryCode3c", NID_countryCode3c, 3, &so[6935]}, {"n3", "countryCode3n", NID_countryCode3n, 3, &so[6938]}, {"dnsName", "dnsName", NID_dnsName, 3, &so[6941]}, {"x509ExtAdmission", "Professional Information or basis for Admission", NID_x509ExtAdmission, 5, &so[6944]}, {"SHA512-224", "sha512-224", NID_sha512_224, 9, &so[6949]}, {"SHA512-256", "sha512-256", NID_sha512_256, 9, &so[6958]}, {"SHA3-224", "sha3-224", NID_sha3_224, 9, &so[6967]}, {"SHA3-256", "sha3-256", NID_sha3_256, 9, &so[6976]}, {"SHA3-384", "sha3-384", NID_sha3_384, 9, &so[6985]}, {"SHA3-512", "sha3-512", NID_sha3_512, 9, &so[6994]}, {"SHAKE128", "shake128", NID_shake128, 9, &so[7003]}, {"SHAKE256", "shake256", NID_shake256, 9, &so[7012]}, {"id-hmacWithSHA3-224", "hmac-sha3-224", NID_hmac_sha3_224, 9, &so[7021]}, {"id-hmacWithSHA3-256", "hmac-sha3-256", NID_hmac_sha3_256, 9, &so[7030]}, {"id-hmacWithSHA3-384", "hmac-sha3-384", NID_hmac_sha3_384, 9, &so[7039]}, {"id-hmacWithSHA3-512", "hmac-sha3-512", NID_hmac_sha3_512, 9, &so[7048]}, {"id-dsa-with-sha384", "dsa_with_SHA384", NID_dsa_with_SHA384, 9, &so[7057]}, {"id-dsa-with-sha512", "dsa_with_SHA512", NID_dsa_with_SHA512, 9, &so[7066]}, {"id-dsa-with-sha3-224", "dsa_with_SHA3-224", NID_dsa_with_SHA3_224, 9, &so[7075]}, {"id-dsa-with-sha3-256", "dsa_with_SHA3-256", NID_dsa_with_SHA3_256, 9, &so[7084]}, {"id-dsa-with-sha3-384", "dsa_with_SHA3-384", NID_dsa_with_SHA3_384, 9, &so[7093]}, {"id-dsa-with-sha3-512", "dsa_with_SHA3-512", NID_dsa_with_SHA3_512, 9, &so[7102]}, {"id-ecdsa-with-sha3-224", "ecdsa_with_SHA3-224", NID_ecdsa_with_SHA3_224, 9, &so[7111]}, {"id-ecdsa-with-sha3-256", "ecdsa_with_SHA3-256", NID_ecdsa_with_SHA3_256, 9, &so[7120]}, {"id-ecdsa-with-sha3-384", "ecdsa_with_SHA3-384", NID_ecdsa_with_SHA3_384, 9, &so[7129]}, {"id-ecdsa-with-sha3-512", "ecdsa_with_SHA3-512", NID_ecdsa_with_SHA3_512, 9, &so[7138]}, {"id-rsassa-pkcs1-v1_5-with-sha3-224", "RSA-SHA3-224", NID_RSA_SHA3_224, 9, &so[7147]}, {"id-rsassa-pkcs1-v1_5-with-sha3-256", "RSA-SHA3-256", NID_RSA_SHA3_256, 9, &so[7156]}, {"id-rsassa-pkcs1-v1_5-with-sha3-384", "RSA-SHA3-384", NID_RSA_SHA3_384, 9, &so[7165]}, {"id-rsassa-pkcs1-v1_5-with-sha3-512", "RSA-SHA3-512", NID_RSA_SHA3_512, 9, &so[7174]}, {"ARIA-128-CCM", "aria-128-ccm", NID_aria_128_ccm, 9, &so[7183]}, {"ARIA-192-CCM", "aria-192-ccm", NID_aria_192_ccm, 9, &so[7192]}, {"ARIA-256-CCM", "aria-256-ccm", NID_aria_256_ccm, 9, &so[7201]}, {"ARIA-128-GCM", "aria-128-gcm", NID_aria_128_gcm, 9, &so[7210]}, {"ARIA-192-GCM", "aria-192-gcm", NID_aria_192_gcm, 9, &so[7219]}, {"ARIA-256-GCM", "aria-256-gcm", NID_aria_256_gcm, 9, &so[7228]}, {"ffdhe2048", "ffdhe2048", NID_ffdhe2048}, {"ffdhe3072", "ffdhe3072", NID_ffdhe3072}, {"ffdhe4096", "ffdhe4096", NID_ffdhe4096}, {"ffdhe6144", "ffdhe6144", NID_ffdhe6144}, {"ffdhe8192", "ffdhe8192", NID_ffdhe8192}, {"cmcCA", "CMC Certificate Authority", NID_cmcCA, 8, &so[7237]}, {"cmcRA", "CMC Registration Authority", NID_cmcRA, 8, &so[7245]}, {"SM4-ECB", "sm4-ecb", NID_sm4_ecb, 8, &so[7253]}, {"SM4-CBC", "sm4-cbc", NID_sm4_cbc, 8, &so[7261]}, {"SM4-OFB", "sm4-ofb", NID_sm4_ofb128, 8, &so[7269]}, {"SM4-CFB1", "sm4-cfb1", NID_sm4_cfb1, 8, &so[7277]}, {"SM4-CFB", "sm4-cfb", NID_sm4_cfb128, 8, &so[7285]}, {"SM4-CFB8", "sm4-cfb8", NID_sm4_cfb8, 8, &so[7293]}, {"SM4-CTR", "sm4-ctr", NID_sm4_ctr, 8, &so[7301]}, {"ISO-CN", "ISO CN Member Body", NID_ISO_CN, 3, &so[7309]}, {"oscca", "oscca", NID_oscca, 5, &so[7312]}, {"sm-scheme", "sm-scheme", NID_sm_scheme, 6, &so[7317]}, {"SM3", "sm3", NID_sm3, 8, &so[7323]}, {"RSA-SM3", "sm3WithRSAEncryption", NID_sm3WithRSAEncryption, 8, &so[7331]}, {"RSA-SHA512/224", "sha512-224WithRSAEncryption", NID_sha512_224WithRSAEncryption, 9, &so[7339]}, {"RSA-SHA512/256", "sha512-256WithRSAEncryption", NID_sha512_256WithRSAEncryption, 9, &so[7348]}, {"id-tc26-gost-3410-2012-256-constants", "id-tc26-gost-3410-2012-256-constants", NID_id_tc26_gost_3410_2012_256_constants, 8, &so[7357]}, {"id-tc26-gost-3410-2012-256-paramSetA", "GOST R 34.10-2012 (256 bit) ParamSet A", NID_id_tc26_gost_3410_2012_256_paramSetA, 9, &so[7365]}, {"id-tc26-gost-3410-2012-512-paramSetC", "GOST R 34.10-2012 (512 bit) ParamSet C", NID_id_tc26_gost_3410_2012_512_paramSetC, 9, &so[7374]}, {"ISO-UA", "ISO-UA", NID_ISO_UA, 3, &so[7383]}, {"ua-pki", "ua-pki", NID_ua_pki, 7, &so[7386]}, {"dstu28147", "DSTU Gost 28147-2009", NID_dstu28147, 10, &so[7393]}, {"dstu28147-ofb", "DSTU Gost 28147-2009 OFB mode", NID_dstu28147_ofb, 11, &so[7403]}, {"dstu28147-cfb", "DSTU Gost 28147-2009 CFB mode", NID_dstu28147_cfb, 11, &so[7414]}, {"dstu28147-wrap", "DSTU Gost 28147-2009 key wrap", NID_dstu28147_wrap, 11, &so[7425]}, {"hmacWithDstu34311", "HMAC DSTU Gost 34311-95", NID_hmacWithDstu34311, 10, &so[7436]}, {"dstu34311", "DSTU Gost 34311-95", NID_dstu34311, 10, &so[7446]}, {"dstu4145le", "DSTU 4145-2002 little endian", NID_dstu4145le, 11, &so[7456]}, {"dstu4145be", "DSTU 4145-2002 big endian", NID_dstu4145be, 13, &so[7467]}, {"uacurve0", "DSTU curve 0", NID_uacurve0, 13, &so[7480]}, {"uacurve1", "DSTU curve 1", NID_uacurve1, 13, &so[7493]}, {"uacurve2", "DSTU curve 2", NID_uacurve2, 13, &so[7506]}, {"uacurve3", "DSTU curve 3", NID_uacurve3, 13, &so[7519]}, {"uacurve4", "DSTU curve 4", NID_uacurve4, 13, &so[7532]}, {"uacurve5", "DSTU curve 5", NID_uacurve5, 13, &so[7545]}, {"uacurve6", "DSTU curve 6", NID_uacurve6, 13, &so[7558]}, {"uacurve7", "DSTU curve 7", NID_uacurve7, 13, &so[7571]}, {"uacurve8", "DSTU curve 8", NID_uacurve8, 13, &so[7584]}, {"uacurve9", "DSTU curve 9", NID_uacurve9, 13, &so[7597]}, {"ieee", "ieee", NID_ieee, 2, &so[7610]}, {"ieee-siswg", "IEEE Security in Storage Working Group", NID_ieee_siswg, 5, &so[7612]}, {"SM2", "sm2", NID_sm2, 8, &so[7617]}, {"id-tc26-cipher-gostr3412-2015-magma", "id-tc26-cipher-gostr3412-2015-magma", NID_id_tc26_cipher_gostr3412_2015_magma, 8, &so[7625]}, {"id-tc26-cipher-gostr3412-2015-magma-ctracpkm", "id-tc26-cipher-gostr3412-2015-magma-ctracpkm", NID_id_tc26_cipher_gostr3412_2015_magma_ctracpkm, 9, &so[7633]}, {"id-tc26-cipher-gostr3412-2015-magma-ctracpkm-omac", "id-tc26-cipher-gostr3412-2015-magma-ctracpkm-omac", NID_id_tc26_cipher_gostr3412_2015_magma_ctracpkm_omac, 9, &so[7642]}, {"id-tc26-cipher-gostr3412-2015-kuznyechik", "id-tc26-cipher-gostr3412-2015-kuznyechik", NID_id_tc26_cipher_gostr3412_2015_kuznyechik, 8, &so[7651]}, {"id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm", "id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm", NID_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm, 9, &so[7659]}, {"id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm-omac", "id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm-omac", NID_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm_omac, 9, &so[7668]}, {"id-tc26-wrap", "id-tc26-wrap", NID_id_tc26_wrap, 7, &so[7677]}, {"id-tc26-wrap-gostr3412-2015-magma", "id-tc26-wrap-gostr3412-2015-magma", NID_id_tc26_wrap_gostr3412_2015_magma, 8, &so[7684]}, {"id-tc26-wrap-gostr3412-2015-magma-kexp15", "id-tc26-wrap-gostr3412-2015-magma-kexp15", NID_id_tc26_wrap_gostr3412_2015_magma_kexp15, 9, &so[7692]}, {"id-tc26-wrap-gostr3412-2015-kuznyechik", "id-tc26-wrap-gostr3412-2015-kuznyechik", NID_id_tc26_wrap_gostr3412_2015_kuznyechik, 8, &so[7701]}, {"id-tc26-wrap-gostr3412-2015-kuznyechik-kexp15", "id-tc26-wrap-gostr3412-2015-kuznyechik-kexp15", NID_id_tc26_wrap_gostr3412_2015_kuznyechik_kexp15, 9, &so[7709]}, {"id-tc26-gost-3410-2012-256-paramSetB", "GOST R 34.10-2012 (256 bit) ParamSet B", NID_id_tc26_gost_3410_2012_256_paramSetB, 9, &so[7718]}, {"id-tc26-gost-3410-2012-256-paramSetC", "GOST R 34.10-2012 (256 bit) ParamSet C", NID_id_tc26_gost_3410_2012_256_paramSetC, 9, &so[7727]}, {"id-tc26-gost-3410-2012-256-paramSetD", "GOST R 34.10-2012 (256 bit) ParamSet D", NID_id_tc26_gost_3410_2012_256_paramSetD, 9, &so[7736]}, {"magma-ecb", "magma-ecb", NID_magma_ecb}, {"magma-ctr", "magma-ctr", NID_magma_ctr}, {"magma-ofb", "magma-ofb", NID_magma_ofb}, {"magma-cbc", "magma-cbc", NID_magma_cbc}, {"magma-cfb", "magma-cfb", NID_magma_cfb}, {"magma-mac", "magma-mac", NID_magma_mac}, {"hmacWithSHA512-224", "hmacWithSHA512-224", NID_hmacWithSHA512_224, 8, &so[7745]}, {"hmacWithSHA512-256", "hmacWithSHA512-256", NID_hmacWithSHA512_256, 8, &so[7753]}, }; #define NUM_SN 1186 static const unsigned int sn_objs[NUM_SN] = { 364, /* "AD_DVCS" */ 419, /* "AES-128-CBC" */ 916, /* "AES-128-CBC-HMAC-SHA1" */ 948, /* "AES-128-CBC-HMAC-SHA256" */ 421, /* "AES-128-CFB" */ 650, /* "AES-128-CFB1" */ 653, /* "AES-128-CFB8" */ 904, /* "AES-128-CTR" */ 418, /* "AES-128-ECB" */ 958, /* "AES-128-OCB" */ 420, /* "AES-128-OFB" */ 913, /* "AES-128-XTS" */ 423, /* "AES-192-CBC" */ 917, /* "AES-192-CBC-HMAC-SHA1" */ 949, /* "AES-192-CBC-HMAC-SHA256" */ 425, /* "AES-192-CFB" */ 651, /* "AES-192-CFB1" */ 654, /* "AES-192-CFB8" */ 905, /* "AES-192-CTR" */ 422, /* "AES-192-ECB" */ 959, /* "AES-192-OCB" */ 424, /* "AES-192-OFB" */ 427, /* "AES-256-CBC" */ 918, /* "AES-256-CBC-HMAC-SHA1" */ 950, /* "AES-256-CBC-HMAC-SHA256" */ 429, /* "AES-256-CFB" */ 652, /* "AES-256-CFB1" */ 655, /* "AES-256-CFB8" */ 906, /* "AES-256-CTR" */ 426, /* "AES-256-ECB" */ 960, /* "AES-256-OCB" */ 428, /* "AES-256-OFB" */ 914, /* "AES-256-XTS" */ 1066, /* "ARIA-128-CBC" */ 1120, /* "ARIA-128-CCM" */ 1067, /* "ARIA-128-CFB" */ 1080, /* "ARIA-128-CFB1" */ 1083, /* "ARIA-128-CFB8" */ 1069, /* "ARIA-128-CTR" */ 1065, /* "ARIA-128-ECB" */ 1123, /* "ARIA-128-GCM" */ 1068, /* "ARIA-128-OFB" */ 1071, /* "ARIA-192-CBC" */ 1121, /* "ARIA-192-CCM" */ 1072, /* "ARIA-192-CFB" */ 1081, /* "ARIA-192-CFB1" */ 1084, /* "ARIA-192-CFB8" */ 1074, /* "ARIA-192-CTR" */ 1070, /* "ARIA-192-ECB" */ 1124, /* "ARIA-192-GCM" */ 1073, /* "ARIA-192-OFB" */ 1076, /* "ARIA-256-CBC" */ 1122, /* "ARIA-256-CCM" */ 1077, /* "ARIA-256-CFB" */ 1082, /* "ARIA-256-CFB1" */ 1085, /* "ARIA-256-CFB8" */ 1079, /* "ARIA-256-CTR" */ 1075, /* "ARIA-256-ECB" */ 1125, /* "ARIA-256-GCM" */ 1078, /* "ARIA-256-OFB" */ 1064, /* "AuthANY" */ 1049, /* "AuthDSS" */ 1047, /* "AuthECDSA" */ 1050, /* "AuthGOST01" */ 1051, /* "AuthGOST12" */ 1053, /* "AuthNULL" */ 1048, /* "AuthPSK" */ 1046, /* "AuthRSA" */ 1052, /* "AuthSRP" */ 91, /* "BF-CBC" */ 93, /* "BF-CFB" */ 92, /* "BF-ECB" */ 94, /* "BF-OFB" */ 1056, /* "BLAKE2b512" */ 1057, /* "BLAKE2s256" */ 14, /* "C" */ 751, /* "CAMELLIA-128-CBC" */ 962, /* "CAMELLIA-128-CCM" */ 757, /* "CAMELLIA-128-CFB" */ 760, /* "CAMELLIA-128-CFB1" */ 763, /* "CAMELLIA-128-CFB8" */ 964, /* "CAMELLIA-128-CMAC" */ 963, /* "CAMELLIA-128-CTR" */ 754, /* "CAMELLIA-128-ECB" */ 961, /* "CAMELLIA-128-GCM" */ 766, /* "CAMELLIA-128-OFB" */ 752, /* "CAMELLIA-192-CBC" */ 966, /* "CAMELLIA-192-CCM" */ 758, /* "CAMELLIA-192-CFB" */ 761, /* "CAMELLIA-192-CFB1" */ 764, /* "CAMELLIA-192-CFB8" */ 968, /* "CAMELLIA-192-CMAC" */ 967, /* "CAMELLIA-192-CTR" */ 755, /* "CAMELLIA-192-ECB" */ 965, /* "CAMELLIA-192-GCM" */ 767, /* "CAMELLIA-192-OFB" */ 753, /* "CAMELLIA-256-CBC" */ 970, /* "CAMELLIA-256-CCM" */ 759, /* "CAMELLIA-256-CFB" */ 762, /* "CAMELLIA-256-CFB1" */ 765, /* "CAMELLIA-256-CFB8" */ 972, /* "CAMELLIA-256-CMAC" */ 971, /* "CAMELLIA-256-CTR" */ 756, /* "CAMELLIA-256-ECB" */ 969, /* "CAMELLIA-256-GCM" */ 768, /* "CAMELLIA-256-OFB" */ 108, /* "CAST5-CBC" */ 110, /* "CAST5-CFB" */ 109, /* "CAST5-ECB" */ 111, /* "CAST5-OFB" */ 894, /* "CMAC" */ 13, /* "CN" */ 141, /* "CRLReason" */ 417, /* "CSPName" */ 1019, /* "ChaCha20" */ 1018, /* "ChaCha20-Poly1305" */ 367, /* "CrlID" */ 391, /* "DC" */ 31, /* "DES-CBC" */ 643, /* "DES-CDMF" */ 30, /* "DES-CFB" */ 656, /* "DES-CFB1" */ 657, /* "DES-CFB8" */ 29, /* "DES-ECB" */ 32, /* "DES-EDE" */ 43, /* "DES-EDE-CBC" */ 60, /* "DES-EDE-CFB" */ 62, /* "DES-EDE-OFB" */ 33, /* "DES-EDE3" */ 44, /* "DES-EDE3-CBC" */ 61, /* "DES-EDE3-CFB" */ 658, /* "DES-EDE3-CFB1" */ 659, /* "DES-EDE3-CFB8" */ 63, /* "DES-EDE3-OFB" */ 45, /* "DES-OFB" */ 80, /* "DESX-CBC" */ 380, /* "DOD" */ 116, /* "DSA" */ 66, /* "DSA-SHA" */ 113, /* "DSA-SHA1" */ 70, /* "DSA-SHA1-old" */ 67, /* "DSA-old" */ 297, /* "DVCS" */ 1087, /* "ED25519" */ 1088, /* "ED448" */ 99, /* "GN" */ 1036, /* "HKDF" */ 855, /* "HMAC" */ 780, /* "HMAC-MD5" */ 781, /* "HMAC-SHA1" */ 381, /* "IANA" */ 34, /* "IDEA-CBC" */ 35, /* "IDEA-CFB" */ 36, /* "IDEA-ECB" */ 46, /* "IDEA-OFB" */ 1004, /* "INN" */ 181, /* "ISO" */ 1140, /* "ISO-CN" */ 1150, /* "ISO-UA" */ 183, /* "ISO-US" */ 645, /* "ITU-T" */ 646, /* "JOINT-ISO-ITU-T" */ 773, /* "KISA" */ 1063, /* "KxANY" */ 1039, /* "KxDHE" */ 1041, /* "KxDHE-PSK" */ 1038, /* "KxECDHE" */ 1040, /* "KxECDHE-PSK" */ 1045, /* "KxGOST" */ 1043, /* "KxPSK" */ 1037, /* "KxRSA" */ 1042, /* "KxRSA_PSK" */ 1044, /* "KxSRP" */ 15, /* "L" */ 856, /* "LocalKeySet" */ 3, /* "MD2" */ 257, /* "MD4" */ 4, /* "MD5" */ 114, /* "MD5-SHA1" */ 95, /* "MDC2" */ 911, /* "MGF1" */ 388, /* "Mail" */ 393, /* "NULL" */ 404, /* "NULL" */ 57, /* "Netscape" */ 366, /* "Nonce" */ 17, /* "O" */ 178, /* "OCSP" */ 180, /* "OCSPSigning" */ 1005, /* "OGRN" */ 379, /* "ORG" */ 18, /* "OU" */ 749, /* "Oakley-EC2N-3" */ 750, /* "Oakley-EC2N-4" */ 9, /* "PBE-MD2-DES" */ 168, /* "PBE-MD2-RC2-64" */ 10, /* "PBE-MD5-DES" */ 169, /* "PBE-MD5-RC2-64" */ 147, /* "PBE-SHA1-2DES" */ 146, /* "PBE-SHA1-3DES" */ 170, /* "PBE-SHA1-DES" */ 148, /* "PBE-SHA1-RC2-128" */ 149, /* "PBE-SHA1-RC2-40" */ 68, /* "PBE-SHA1-RC2-64" */ 144, /* "PBE-SHA1-RC4-128" */ 145, /* "PBE-SHA1-RC4-40" */ 161, /* "PBES2" */ 69, /* "PBKDF2" */ 162, /* "PBMAC1" */ 127, /* "PKIX" */ 935, /* "PSPECIFIED" */ 1061, /* "Poly1305" */ 98, /* "RC2-40-CBC" */ 166, /* "RC2-64-CBC" */ 37, /* "RC2-CBC" */ 39, /* "RC2-CFB" */ 38, /* "RC2-ECB" */ 40, /* "RC2-OFB" */ 5, /* "RC4" */ 97, /* "RC4-40" */ 915, /* "RC4-HMAC-MD5" */ 120, /* "RC5-CBC" */ 122, /* "RC5-CFB" */ 121, /* "RC5-ECB" */ 123, /* "RC5-OFB" */ 117, /* "RIPEMD160" */ 19, /* "RSA" */ 7, /* "RSA-MD2" */ 396, /* "RSA-MD4" */ 8, /* "RSA-MD5" */ 96, /* "RSA-MDC2" */ 104, /* "RSA-NP-MD5" */ 119, /* "RSA-RIPEMD160" */ 42, /* "RSA-SHA" */ 65, /* "RSA-SHA1" */ 115, /* "RSA-SHA1-2" */ 671, /* "RSA-SHA224" */ 668, /* "RSA-SHA256" */ 669, /* "RSA-SHA384" */ 670, /* "RSA-SHA512" */ 1145, /* "RSA-SHA512/224" */ 1146, /* "RSA-SHA512/256" */ 1144, /* "RSA-SM3" */ 919, /* "RSAES-OAEP" */ 912, /* "RSASSA-PSS" */ 777, /* "SEED-CBC" */ 779, /* "SEED-CFB" */ 776, /* "SEED-ECB" */ 778, /* "SEED-OFB" */ 41, /* "SHA" */ 64, /* "SHA1" */ 675, /* "SHA224" */ 672, /* "SHA256" */ 1096, /* "SHA3-224" */ 1097, /* "SHA3-256" */ 1098, /* "SHA3-384" */ 1099, /* "SHA3-512" */ 673, /* "SHA384" */ 674, /* "SHA512" */ 1094, /* "SHA512-224" */ 1095, /* "SHA512-256" */ 1100, /* "SHAKE128" */ 1101, /* "SHAKE256" */ 1172, /* "SM2" */ 1143, /* "SM3" */ 1134, /* "SM4-CBC" */ 1137, /* "SM4-CFB" */ 1136, /* "SM4-CFB1" */ 1138, /* "SM4-CFB8" */ 1139, /* "SM4-CTR" */ 1133, /* "SM4-ECB" */ 1135, /* "SM4-OFB" */ 188, /* "SMIME" */ 167, /* "SMIME-CAPS" */ 100, /* "SN" */ 1006, /* "SNILS" */ 16, /* "ST" */ 143, /* "SXNetID" */ 1062, /* "SipHash" */ 1021, /* "TLS1-PRF" */ 458, /* "UID" */ 0, /* "UNDEF" */ 1034, /* "X25519" */ 1035, /* "X448" */ 11, /* "X500" */ 378, /* "X500algorithms" */ 12, /* "X509" */ 184, /* "X9-57" */ 185, /* "X9cm" */ 125, /* "ZLIB" */ 478, /* "aRecord" */ 289, /* "aaControls" */ 287, /* "ac-auditEntity" */ 397, /* "ac-proxying" */ 288, /* "ac-targeting" */ 368, /* "acceptableResponses" */ 446, /* "account" */ 363, /* "ad_timestamping" */ 376, /* "algorithm" */ 405, /* "ansi-X9-62" */ 910, /* "anyExtendedKeyUsage" */ 746, /* "anyPolicy" */ 370, /* "archiveCutoff" */ 484, /* "associatedDomain" */ 485, /* "associatedName" */ 501, /* "audio" */ 177, /* "authorityInfoAccess" */ 90, /* "authorityKeyIdentifier" */ 882, /* "authorityRevocationList" */ 87, /* "basicConstraints" */ 365, /* "basicOCSPResponse" */ 285, /* "biometricInfo" */ 921, /* "brainpoolP160r1" */ 922, /* "brainpoolP160t1" */ 923, /* "brainpoolP192r1" */ 924, /* "brainpoolP192t1" */ 925, /* "brainpoolP224r1" */ 926, /* "brainpoolP224t1" */ 927, /* "brainpoolP256r1" */ 928, /* "brainpoolP256t1" */ 929, /* "brainpoolP320r1" */ 930, /* "brainpoolP320t1" */ 931, /* "brainpoolP384r1" */ 932, /* "brainpoolP384t1" */ 933, /* "brainpoolP512r1" */ 934, /* "brainpoolP512t1" */ 494, /* "buildingName" */ 860, /* "businessCategory" */ 691, /* "c2onb191v4" */ 692, /* "c2onb191v5" */ 697, /* "c2onb239v4" */ 698, /* "c2onb239v5" */ 684, /* "c2pnb163v1" */ 685, /* "c2pnb163v2" */ 686, /* "c2pnb163v3" */ 687, /* "c2pnb176v1" */ 693, /* "c2pnb208w1" */ 699, /* "c2pnb272w1" */ 700, /* "c2pnb304w1" */ 702, /* "c2pnb368w1" */ 688, /* "c2tnb191v1" */ 689, /* "c2tnb191v2" */ 690, /* "c2tnb191v3" */ 694, /* "c2tnb239v1" */ 695, /* "c2tnb239v2" */ 696, /* "c2tnb239v3" */ 701, /* "c2tnb359v1" */ 703, /* "c2tnb431r1" */ 1090, /* "c3" */ 881, /* "cACertificate" */ 483, /* "cNAMERecord" */ 179, /* "caIssuers" */ 785, /* "caRepository" */ 1023, /* "capwapAC" */ 1024, /* "capwapWTP" */ 443, /* "caseIgnoreIA5StringSyntax" */ 152, /* "certBag" */ 677, /* "certicom-arc" */ 771, /* "certificateIssuer" */ 89, /* "certificatePolicies" */ 883, /* "certificateRevocationList" */ 54, /* "challengePassword" */ 407, /* "characteristic-two-field" */ 395, /* "clearance" */ 130, /* "clientAuth" */ 1131, /* "cmcCA" */ 1132, /* "cmcRA" */ 131, /* "codeSigning" */ 50, /* "contentType" */ 53, /* "countersignature" */ 153, /* "crlBag" */ 103, /* "crlDistributionPoints" */ 88, /* "crlNumber" */ 884, /* "crossCertificatePair" */ 806, /* "cryptocom" */ 805, /* "cryptopro" */ 954, /* "ct_cert_scts" */ 952, /* "ct_precert_poison" */ 951, /* "ct_precert_scts" */ 953, /* "ct_precert_signer" */ 500, /* "dITRedirect" */ 451, /* "dNSDomain" */ 495, /* "dSAQuality" */ 434, /* "data" */ 390, /* "dcobject" */ 140, /* "deltaCRL" */ 891, /* "deltaRevocationList" */ 107, /* "description" */ 871, /* "destinationIndicator" */ 947, /* "dh-cofactor-kdf" */ 946, /* "dh-std-kdf" */ 28, /* "dhKeyAgreement" */ 941, /* "dhSinglePass-cofactorDH-sha1kdf-scheme" */ 942, /* "dhSinglePass-cofactorDH-sha224kdf-scheme" */ 943, /* "dhSinglePass-cofactorDH-sha256kdf-scheme" */ 944, /* "dhSinglePass-cofactorDH-sha384kdf-scheme" */ 945, /* "dhSinglePass-cofactorDH-sha512kdf-scheme" */ 936, /* "dhSinglePass-stdDH-sha1kdf-scheme" */ 937, /* "dhSinglePass-stdDH-sha224kdf-scheme" */ 938, /* "dhSinglePass-stdDH-sha256kdf-scheme" */ 939, /* "dhSinglePass-stdDH-sha384kdf-scheme" */ 940, /* "dhSinglePass-stdDH-sha512kdf-scheme" */ 920, /* "dhpublicnumber" */ 382, /* "directory" */ 887, /* "distinguishedName" */ 892, /* "dmdName" */ 174, /* "dnQualifier" */ 1092, /* "dnsName" */ 447, /* "document" */ 471, /* "documentAuthor" */ 468, /* "documentIdentifier" */ 472, /* "documentLocation" */ 502, /* "documentPublisher" */ 449, /* "documentSeries" */ 469, /* "documentTitle" */ 470, /* "documentVersion" */ 392, /* "domain" */ 452, /* "domainRelatedObject" */ 802, /* "dsa_with_SHA224" */ 803, /* "dsa_with_SHA256" */ 1152, /* "dstu28147" */ 1154, /* "dstu28147-cfb" */ 1153, /* "dstu28147-ofb" */ 1155, /* "dstu28147-wrap" */ 1157, /* "dstu34311" */ 1159, /* "dstu4145be" */ 1158, /* "dstu4145le" */ 791, /* "ecdsa-with-Recommended" */ 416, /* "ecdsa-with-SHA1" */ 793, /* "ecdsa-with-SHA224" */ 794, /* "ecdsa-with-SHA256" */ 795, /* "ecdsa-with-SHA384" */ 796, /* "ecdsa-with-SHA512" */ 792, /* "ecdsa-with-Specified" */ 48, /* "emailAddress" */ 132, /* "emailProtection" */ 885, /* "enhancedSearchGuide" */ 389, /* "enterprises" */ 384, /* "experimental" */ 172, /* "extReq" */ 56, /* "extendedCertificateAttributes" */ 126, /* "extendedKeyUsage" */ 372, /* "extendedStatus" */ 867, /* "facsimileTelephoneNumber" */ 462, /* "favouriteDrink" */ 1126, /* "ffdhe2048" */ 1127, /* "ffdhe3072" */ 1128, /* "ffdhe4096" */ 1129, /* "ffdhe6144" */ 1130, /* "ffdhe8192" */ 857, /* "freshestCRL" */ 453, /* "friendlyCountry" */ 490, /* "friendlyCountryName" */ 156, /* "friendlyName" */ 509, /* "generationQualifier" */ 815, /* "gost-mac" */ 976, /* "gost-mac-12" */ 811, /* "gost2001" */ 851, /* "gost2001cc" */ 979, /* "gost2012_256" */ 980, /* "gost2012_512" */ 813, /* "gost89" */ 1009, /* "gost89-cbc" */ 814, /* "gost89-cnt" */ 975, /* "gost89-cnt-12" */ 1011, /* "gost89-ctr" */ 1010, /* "gost89-ecb" */ 812, /* "gost94" */ 850, /* "gost94cc" */ 1015, /* "grasshopper-cbc" */ 1016, /* "grasshopper-cfb" */ 1013, /* "grasshopper-ctr" */ 1012, /* "grasshopper-ecb" */ 1017, /* "grasshopper-mac" */ 1014, /* "grasshopper-ofb" */ 1156, /* "hmacWithDstu34311" */ 797, /* "hmacWithMD5" */ 163, /* "hmacWithSHA1" */ 798, /* "hmacWithSHA224" */ 799, /* "hmacWithSHA256" */ 800, /* "hmacWithSHA384" */ 801, /* "hmacWithSHA512" */ 1193, /* "hmacWithSHA512-224" */ 1194, /* "hmacWithSHA512-256" */ 432, /* "holdInstructionCallIssuer" */ 430, /* "holdInstructionCode" */ 431, /* "holdInstructionNone" */ 433, /* "holdInstructionReject" */ 486, /* "homePostalAddress" */ 473, /* "homeTelephoneNumber" */ 466, /* "host" */ 889, /* "houseIdentifier" */ 442, /* "iA5StringSyntax" */ 783, /* "id-DHBasedMac" */ 824, /* "id-Gost28147-89-CryptoPro-A-ParamSet" */ 825, /* "id-Gost28147-89-CryptoPro-B-ParamSet" */ 826, /* "id-Gost28147-89-CryptoPro-C-ParamSet" */ 827, /* "id-Gost28147-89-CryptoPro-D-ParamSet" */ 819, /* "id-Gost28147-89-CryptoPro-KeyMeshing" */ 829, /* "id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet" */ 828, /* "id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet" */ 830, /* "id-Gost28147-89-CryptoPro-RIC-1-ParamSet" */ 820, /* "id-Gost28147-89-None-KeyMeshing" */ 823, /* "id-Gost28147-89-TestParamSet" */ 849, /* "id-Gost28147-89-cc" */ 840, /* "id-GostR3410-2001-CryptoPro-A-ParamSet" */ 841, /* "id-GostR3410-2001-CryptoPro-B-ParamSet" */ 842, /* "id-GostR3410-2001-CryptoPro-C-ParamSet" */ 843, /* "id-GostR3410-2001-CryptoPro-XchA-ParamSet" */ 844, /* "id-GostR3410-2001-CryptoPro-XchB-ParamSet" */ 854, /* "id-GostR3410-2001-ParamSet-cc" */ 839, /* "id-GostR3410-2001-TestParamSet" */ 817, /* "id-GostR3410-2001DH" */ 832, /* "id-GostR3410-94-CryptoPro-A-ParamSet" */ 833, /* "id-GostR3410-94-CryptoPro-B-ParamSet" */ 834, /* "id-GostR3410-94-CryptoPro-C-ParamSet" */ 835, /* "id-GostR3410-94-CryptoPro-D-ParamSet" */ 836, /* "id-GostR3410-94-CryptoPro-XchA-ParamSet" */ 837, /* "id-GostR3410-94-CryptoPro-XchB-ParamSet" */ 838, /* "id-GostR3410-94-CryptoPro-XchC-ParamSet" */ 831, /* "id-GostR3410-94-TestParamSet" */ 845, /* "id-GostR3410-94-a" */ 846, /* "id-GostR3410-94-aBis" */ 847, /* "id-GostR3410-94-b" */ 848, /* "id-GostR3410-94-bBis" */ 818, /* "id-GostR3410-94DH" */ 822, /* "id-GostR3411-94-CryptoProParamSet" */ 821, /* "id-GostR3411-94-TestParamSet" */ 807, /* "id-GostR3411-94-with-GostR3410-2001" */ 853, /* "id-GostR3411-94-with-GostR3410-2001-cc" */ 808, /* "id-GostR3411-94-with-GostR3410-94" */ 852, /* "id-GostR3411-94-with-GostR3410-94-cc" */ 810, /* "id-HMACGostR3411-94" */ 782, /* "id-PasswordBasedMAC" */ 266, /* "id-aca" */ 355, /* "id-aca-accessIdentity" */ 354, /* "id-aca-authenticationInfo" */ 356, /* "id-aca-chargingIdentity" */ 399, /* "id-aca-encAttrs" */ 357, /* "id-aca-group" */ 358, /* "id-aca-role" */ 176, /* "id-ad" */ 896, /* "id-aes128-CCM" */ 895, /* "id-aes128-GCM" */ 788, /* "id-aes128-wrap" */ 897, /* "id-aes128-wrap-pad" */ 899, /* "id-aes192-CCM" */ 898, /* "id-aes192-GCM" */ 789, /* "id-aes192-wrap" */ 900, /* "id-aes192-wrap-pad" */ 902, /* "id-aes256-CCM" */ 901, /* "id-aes256-GCM" */ 790, /* "id-aes256-wrap" */ 903, /* "id-aes256-wrap-pad" */ 262, /* "id-alg" */ 893, /* "id-alg-PWRI-KEK" */ 323, /* "id-alg-des40" */ 326, /* "id-alg-dh-pop" */ 325, /* "id-alg-dh-sig-hmac-sha1" */ 324, /* "id-alg-noSignature" */ 907, /* "id-camellia128-wrap" */ 908, /* "id-camellia192-wrap" */ 909, /* "id-camellia256-wrap" */ 268, /* "id-cct" */ 361, /* "id-cct-PKIData" */ 362, /* "id-cct-PKIResponse" */ 360, /* "id-cct-crs" */ 81, /* "id-ce" */ 680, /* "id-characteristic-two-basis" */ 263, /* "id-cmc" */ 334, /* "id-cmc-addExtensions" */ 346, /* "id-cmc-confirmCertAcceptance" */ 330, /* "id-cmc-dataReturn" */ 336, /* "id-cmc-decryptedPOP" */ 335, /* "id-cmc-encryptedPOP" */ 339, /* "id-cmc-getCRL" */ 338, /* "id-cmc-getCert" */ 328, /* "id-cmc-identification" */ 329, /* "id-cmc-identityProof" */ 337, /* "id-cmc-lraPOPWitness" */ 344, /* "id-cmc-popLinkRandom" */ 345, /* "id-cmc-popLinkWitness" */ 343, /* "id-cmc-queryPending" */ 333, /* "id-cmc-recipientNonce" */ 341, /* "id-cmc-regInfo" */ 342, /* "id-cmc-responseInfo" */ 340, /* "id-cmc-revokeRequest" */ 332, /* "id-cmc-senderNonce" */ 327, /* "id-cmc-statusInfo" */ 331, /* "id-cmc-transactionId" */ 787, /* "id-ct-asciiTextWithCRLF" */ 1060, /* "id-ct-xml" */ 1108, /* "id-dsa-with-sha3-224" */ 1109, /* "id-dsa-with-sha3-256" */ 1110, /* "id-dsa-with-sha3-384" */ 1111, /* "id-dsa-with-sha3-512" */ 1106, /* "id-dsa-with-sha384" */ 1107, /* "id-dsa-with-sha512" */ 408, /* "id-ecPublicKey" */ 1112, /* "id-ecdsa-with-sha3-224" */ 1113, /* "id-ecdsa-with-sha3-256" */ 1114, /* "id-ecdsa-with-sha3-384" */ 1115, /* "id-ecdsa-with-sha3-512" */ 508, /* "id-hex-multipart-message" */ 507, /* "id-hex-partial-message" */ 1102, /* "id-hmacWithSHA3-224" */ 1103, /* "id-hmacWithSHA3-256" */ 1104, /* "id-hmacWithSHA3-384" */ 1105, /* "id-hmacWithSHA3-512" */ 260, /* "id-it" */ 302, /* "id-it-caKeyUpdateInfo" */ 298, /* "id-it-caProtEncCert" */ 311, /* "id-it-confirmWaitTime" */ 303, /* "id-it-currentCRL" */ 300, /* "id-it-encKeyPairTypes" */ 310, /* "id-it-implicitConfirm" */ 308, /* "id-it-keyPairParamRep" */ 307, /* "id-it-keyPairParamReq" */ 312, /* "id-it-origPKIMessage" */ 301, /* "id-it-preferredSymmAlg" */ 309, /* "id-it-revPassphrase" */ 299, /* "id-it-signKeyPairTypes" */ 305, /* "id-it-subscriptionRequest" */ 306, /* "id-it-subscriptionResponse" */ 784, /* "id-it-suppLangTags" */ 304, /* "id-it-unsupportedOIDs" */ 128, /* "id-kp" */ 280, /* "id-mod-attribute-cert" */ 274, /* "id-mod-cmc" */ 277, /* "id-mod-cmp" */ 284, /* "id-mod-cmp2000" */ 273, /* "id-mod-crmf" */ 283, /* "id-mod-dvcs" */ 275, /* "id-mod-kea-profile-88" */ 276, /* "id-mod-kea-profile-93" */ 282, /* "id-mod-ocsp" */ 278, /* "id-mod-qualified-cert-88" */ 279, /* "id-mod-qualified-cert-93" */ 281, /* "id-mod-timestamp-protocol" */ 264, /* "id-on" */ 858, /* "id-on-permanentIdentifier" */ 347, /* "id-on-personalData" */ 265, /* "id-pda" */ 352, /* "id-pda-countryOfCitizenship" */ 353, /* "id-pda-countryOfResidence" */ 348, /* "id-pda-dateOfBirth" */ 351, /* "id-pda-gender" */ 349, /* "id-pda-placeOfBirth" */ 175, /* "id-pe" */ 1031, /* "id-pkinit" */ 261, /* "id-pkip" */ 258, /* "id-pkix-mod" */ 269, /* "id-pkix1-explicit-88" */ 271, /* "id-pkix1-explicit-93" */ 270, /* "id-pkix1-implicit-88" */ 272, /* "id-pkix1-implicit-93" */ 662, /* "id-ppl" */ 664, /* "id-ppl-anyLanguage" */ 667, /* "id-ppl-independent" */ 665, /* "id-ppl-inheritAll" */ 267, /* "id-qcs" */ 359, /* "id-qcs-pkixQCSyntax-v1" */ 259, /* "id-qt" */ 164, /* "id-qt-cps" */ 165, /* "id-qt-unotice" */ 313, /* "id-regCtrl" */ 316, /* "id-regCtrl-authenticator" */ 319, /* "id-regCtrl-oldCertID" */ 318, /* "id-regCtrl-pkiArchiveOptions" */ 317, /* "id-regCtrl-pkiPublicationInfo" */ 320, /* "id-regCtrl-protocolEncrKey" */ 315, /* "id-regCtrl-regToken" */ 314, /* "id-regInfo" */ 322, /* "id-regInfo-certReq" */ 321, /* "id-regInfo-utf8Pairs" */ 1116, /* "id-rsassa-pkcs1-v1_5-with-sha3-224" */ 1117, /* "id-rsassa-pkcs1-v1_5-with-sha3-256" */ 1118, /* "id-rsassa-pkcs1-v1_5-with-sha3-384" */ 1119, /* "id-rsassa-pkcs1-v1_5-with-sha3-512" */ 973, /* "id-scrypt" */ 512, /* "id-set" */ 191, /* "id-smime-aa" */ 215, /* "id-smime-aa-contentHint" */ 218, /* "id-smime-aa-contentIdentifier" */ 221, /* "id-smime-aa-contentReference" */ 240, /* "id-smime-aa-dvcs-dvc" */ 217, /* "id-smime-aa-encapContentType" */ 222, /* "id-smime-aa-encrypKeyPref" */ 220, /* "id-smime-aa-equivalentLabels" */ 232, /* "id-smime-aa-ets-CertificateRefs" */ 233, /* "id-smime-aa-ets-RevocationRefs" */ 238, /* "id-smime-aa-ets-archiveTimeStamp" */ 237, /* "id-smime-aa-ets-certCRLTimestamp" */ 234, /* "id-smime-aa-ets-certValues" */ 227, /* "id-smime-aa-ets-commitmentType" */ 231, /* "id-smime-aa-ets-contentTimestamp" */ 236, /* "id-smime-aa-ets-escTimeStamp" */ 230, /* "id-smime-aa-ets-otherSigCert" */ 235, /* "id-smime-aa-ets-revocationValues" */ 226, /* "id-smime-aa-ets-sigPolicyId" */ 229, /* "id-smime-aa-ets-signerAttr" */ 228, /* "id-smime-aa-ets-signerLocation" */ 219, /* "id-smime-aa-macValue" */ 214, /* "id-smime-aa-mlExpandHistory" */ 216, /* "id-smime-aa-msgSigDigest" */ 212, /* "id-smime-aa-receiptRequest" */ 213, /* "id-smime-aa-securityLabel" */ 239, /* "id-smime-aa-signatureType" */ 223, /* "id-smime-aa-signingCertificate" */ 1086, /* "id-smime-aa-signingCertificateV2" */ 224, /* "id-smime-aa-smimeEncryptCerts" */ 225, /* "id-smime-aa-timeStampToken" */ 192, /* "id-smime-alg" */ 243, /* "id-smime-alg-3DESwrap" */ 246, /* "id-smime-alg-CMS3DESwrap" */ 247, /* "id-smime-alg-CMSRC2wrap" */ 245, /* "id-smime-alg-ESDH" */ 241, /* "id-smime-alg-ESDHwith3DES" */ 242, /* "id-smime-alg-ESDHwithRC2" */ 244, /* "id-smime-alg-RC2wrap" */ 193, /* "id-smime-cd" */ 248, /* "id-smime-cd-ldap" */ 190, /* "id-smime-ct" */ 210, /* "id-smime-ct-DVCSRequestData" */ 211, /* "id-smime-ct-DVCSResponseData" */ 208, /* "id-smime-ct-TDTInfo" */ 207, /* "id-smime-ct-TSTInfo" */ 205, /* "id-smime-ct-authData" */ 1059, /* "id-smime-ct-authEnvelopedData" */ 786, /* "id-smime-ct-compressedData" */ 1058, /* "id-smime-ct-contentCollection" */ 209, /* "id-smime-ct-contentInfo" */ 206, /* "id-smime-ct-publishCert" */ 204, /* "id-smime-ct-receipt" */ 195, /* "id-smime-cti" */ 255, /* "id-smime-cti-ets-proofOfApproval" */ 256, /* "id-smime-cti-ets-proofOfCreation" */ 253, /* "id-smime-cti-ets-proofOfDelivery" */ 251, /* "id-smime-cti-ets-proofOfOrigin" */ 252, /* "id-smime-cti-ets-proofOfReceipt" */ 254, /* "id-smime-cti-ets-proofOfSender" */ 189, /* "id-smime-mod" */ 196, /* "id-smime-mod-cms" */ 197, /* "id-smime-mod-ess" */ 202, /* "id-smime-mod-ets-eSigPolicy-88" */ 203, /* "id-smime-mod-ets-eSigPolicy-97" */ 200, /* "id-smime-mod-ets-eSignature-88" */ 201, /* "id-smime-mod-ets-eSignature-97" */ 199, /* "id-smime-mod-msg-v3" */ 198, /* "id-smime-mod-oid" */ 194, /* "id-smime-spq" */ 250, /* "id-smime-spq-ets-sqt-unotice" */ 249, /* "id-smime-spq-ets-sqt-uri" */ 974, /* "id-tc26" */ 991, /* "id-tc26-agreement" */ 992, /* "id-tc26-agreement-gost-3410-2012-256" */ 993, /* "id-tc26-agreement-gost-3410-2012-512" */ 977, /* "id-tc26-algorithms" */ 990, /* "id-tc26-cipher" */ 1001, /* "id-tc26-cipher-constants" */ 1176, /* "id-tc26-cipher-gostr3412-2015-kuznyechik" */ 1177, /* "id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm" */ 1178, /* "id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm-omac" */ 1173, /* "id-tc26-cipher-gostr3412-2015-magma" */ 1174, /* "id-tc26-cipher-gostr3412-2015-magma-ctracpkm" */ 1175, /* "id-tc26-cipher-gostr3412-2015-magma-ctracpkm-omac" */ 994, /* "id-tc26-constants" */ 981, /* "id-tc26-digest" */ 1000, /* "id-tc26-digest-constants" */ 1002, /* "id-tc26-gost-28147-constants" */ 1003, /* "id-tc26-gost-28147-param-Z" */ 1147, /* "id-tc26-gost-3410-2012-256-constants" */ 1148, /* "id-tc26-gost-3410-2012-256-paramSetA" */ 1184, /* "id-tc26-gost-3410-2012-256-paramSetB" */ 1185, /* "id-tc26-gost-3410-2012-256-paramSetC" */ 1186, /* "id-tc26-gost-3410-2012-256-paramSetD" */ 996, /* "id-tc26-gost-3410-2012-512-constants" */ 998, /* "id-tc26-gost-3410-2012-512-paramSetA" */ 999, /* "id-tc26-gost-3410-2012-512-paramSetB" */ 1149, /* "id-tc26-gost-3410-2012-512-paramSetC" */ 997, /* "id-tc26-gost-3410-2012-512-paramSetTest" */ 988, /* "id-tc26-hmac-gost-3411-2012-256" */ 989, /* "id-tc26-hmac-gost-3411-2012-512" */ 987, /* "id-tc26-mac" */ 978, /* "id-tc26-sign" */ 995, /* "id-tc26-sign-constants" */ 984, /* "id-tc26-signwithdigest" */ 985, /* "id-tc26-signwithdigest-gost3410-2012-256" */ 986, /* "id-tc26-signwithdigest-gost3410-2012-512" */ 1179, /* "id-tc26-wrap" */ 1182, /* "id-tc26-wrap-gostr3412-2015-kuznyechik" */ 1183, /* "id-tc26-wrap-gostr3412-2015-kuznyechik-kexp15" */ 1180, /* "id-tc26-wrap-gostr3412-2015-magma" */ 1181, /* "id-tc26-wrap-gostr3412-2015-magma-kexp15" */ 676, /* "identified-organization" */ 1170, /* "ieee" */ 1171, /* "ieee-siswg" */ 461, /* "info" */ 748, /* "inhibitAnyPolicy" */ 101, /* "initials" */ 647, /* "international-organizations" */ 869, /* "internationaliSDNNumber" */ 142, /* "invalidityDate" */ 294, /* "ipsecEndSystem" */ 1022, /* "ipsecIKE" */ 295, /* "ipsecTunnel" */ 296, /* "ipsecUser" */ 86, /* "issuerAltName" */ 1008, /* "issuerSignTool" */ 770, /* "issuingDistributionPoint" */ 492, /* "janetMailbox" */ 957, /* "jurisdictionC" */ 955, /* "jurisdictionL" */ 956, /* "jurisdictionST" */ 150, /* "keyBag" */ 83, /* "keyUsage" */ 477, /* "lastModifiedBy" */ 476, /* "lastModifiedTime" */ 157, /* "localKeyID" */ 480, /* "mXRecord" */ 1190, /* "magma-cbc" */ 1191, /* "magma-cfb" */ 1188, /* "magma-ctr" */ 1187, /* "magma-ecb" */ 1192, /* "magma-mac" */ 1189, /* "magma-ofb" */ 460, /* "mail" */ 493, /* "mailPreferenceOption" */ 467, /* "manager" */ 982, /* "md_gost12_256" */ 983, /* "md_gost12_512" */ 809, /* "md_gost94" */ 875, /* "member" */ 182, /* "member-body" */ 51, /* "messageDigest" */ 383, /* "mgmt" */ 504, /* "mime-mhs" */ 506, /* "mime-mhs-bodies" */ 505, /* "mime-mhs-headings" */ 488, /* "mobileTelephoneNumber" */ 136, /* "msCTLSign" */ 135, /* "msCodeCom" */ 134, /* "msCodeInd" */ 138, /* "msEFS" */ 171, /* "msExtReq" */ 137, /* "msSGC" */ 648, /* "msSmartcardLogin" */ 649, /* "msUPN" */ 1091, /* "n3" */ 481, /* "nSRecord" */ 173, /* "name" */ 666, /* "nameConstraints" */ 369, /* "noCheck" */ 403, /* "noRevAvail" */ 72, /* "nsBaseUrl" */ 76, /* "nsCaPolicyUrl" */ 74, /* "nsCaRevocationUrl" */ 58, /* "nsCertExt" */ 79, /* "nsCertSequence" */ 71, /* "nsCertType" */ 78, /* "nsComment" */ 59, /* "nsDataType" */ 75, /* "nsRenewalUrl" */ 73, /* "nsRevocationUrl" */ 139, /* "nsSGC" */ 77, /* "nsSslServerName" */ 681, /* "onBasis" */ 1089, /* "organizationIdentifier" */ 491, /* "organizationalStatus" */ 1141, /* "oscca" */ 475, /* "otherMailbox" */ 876, /* "owner" */ 489, /* "pagerTelephoneNumber" */ 374, /* "path" */ 112, /* "pbeWithMD5AndCast5CBC" */ 499, /* "personalSignature" */ 487, /* "personalTitle" */ 464, /* "photo" */ 863, /* "physicalDeliveryOfficeName" */ 437, /* "pilot" */ 439, /* "pilotAttributeSyntax" */ 438, /* "pilotAttributeType" */ 479, /* "pilotAttributeType27" */ 456, /* "pilotDSA" */ 441, /* "pilotGroups" */ 444, /* "pilotObject" */ 440, /* "pilotObjectClass" */ 455, /* "pilotOrganization" */ 445, /* "pilotPerson" */ 1032, /* "pkInitClientAuth" */ 1033, /* "pkInitKDC" */ 2, /* "pkcs" */ 186, /* "pkcs1" */ 27, /* "pkcs3" */ 187, /* "pkcs5" */ 20, /* "pkcs7" */ 21, /* "pkcs7-data" */ 25, /* "pkcs7-digestData" */ 26, /* "pkcs7-encryptedData" */ 23, /* "pkcs7-envelopedData" */ 24, /* "pkcs7-signedAndEnvelopedData" */ 22, /* "pkcs7-signedData" */ 151, /* "pkcs8ShroudedKeyBag" */ 47, /* "pkcs9" */ 401, /* "policyConstraints" */ 747, /* "policyMappings" */ 862, /* "postOfficeBox" */ 861, /* "postalAddress" */ 661, /* "postalCode" */ 683, /* "ppBasis" */ 872, /* "preferredDeliveryMethod" */ 873, /* "presentationAddress" */ 816, /* "prf-gostr3411-94" */ 406, /* "prime-field" */ 409, /* "prime192v1" */ 410, /* "prime192v2" */ 411, /* "prime192v3" */ 412, /* "prime239v1" */ 413, /* "prime239v2" */ 414, /* "prime239v3" */ 415, /* "prime256v1" */ 385, /* "private" */ 84, /* "privateKeyUsagePeriod" */ 886, /* "protocolInformation" */ 663, /* "proxyCertInfo" */ 510, /* "pseudonym" */ 435, /* "pss" */ 286, /* "qcStatements" */ 457, /* "qualityLabelledData" */ 450, /* "rFC822localPart" */ 870, /* "registeredAddress" */ 400, /* "role" */ 877, /* "roleOccupant" */ 448, /* "room" */ 463, /* "roomNumber" */ 6, /* "rsaEncryption" */ 644, /* "rsaOAEPEncryptionSET" */ 377, /* "rsaSignature" */ 1, /* "rsadsi" */ 482, /* "sOARecord" */ 155, /* "safeContentsBag" */ 291, /* "sbgp-autonomousSysNum" */ 290, /* "sbgp-ipAddrBlock" */ 292, /* "sbgp-routerIdentifier" */ 159, /* "sdsiCertificate" */ 859, /* "searchGuide" */ 704, /* "secp112r1" */ 705, /* "secp112r2" */ 706, /* "secp128r1" */ 707, /* "secp128r2" */ 708, /* "secp160k1" */ 709, /* "secp160r1" */ 710, /* "secp160r2" */ 711, /* "secp192k1" */ 712, /* "secp224k1" */ 713, /* "secp224r1" */ 714, /* "secp256k1" */ 715, /* "secp384r1" */ 716, /* "secp521r1" */ 154, /* "secretBag" */ 474, /* "secretary" */ 717, /* "sect113r1" */ 718, /* "sect113r2" */ 719, /* "sect131r1" */ 720, /* "sect131r2" */ 721, /* "sect163k1" */ 722, /* "sect163r1" */ 723, /* "sect163r2" */ 724, /* "sect193r1" */ 725, /* "sect193r2" */ 726, /* "sect233k1" */ 727, /* "sect233r1" */ 728, /* "sect239k1" */ 729, /* "sect283k1" */ 730, /* "sect283r1" */ 731, /* "sect409k1" */ 732, /* "sect409r1" */ 733, /* "sect571k1" */ 734, /* "sect571r1" */ 1025, /* "secureShellClient" */ 1026, /* "secureShellServer" */ 386, /* "security" */ 878, /* "seeAlso" */ 394, /* "selected-attribute-types" */ 1029, /* "sendOwner" */ 1030, /* "sendProxiedOwner" */ 1028, /* "sendProxiedRouter" */ 1027, /* "sendRouter" */ 105, /* "serialNumber" */ 129, /* "serverAuth" */ 371, /* "serviceLocator" */ 625, /* "set-addPolicy" */ 515, /* "set-attr" */ 518, /* "set-brand" */ 638, /* "set-brand-AmericanExpress" */ 637, /* "set-brand-Diners" */ 636, /* "set-brand-IATA-ATA" */ 639, /* "set-brand-JCB" */ 641, /* "set-brand-MasterCard" */ 642, /* "set-brand-Novus" */ 640, /* "set-brand-Visa" */ 517, /* "set-certExt" */ 513, /* "set-ctype" */ 514, /* "set-msgExt" */ 516, /* "set-policy" */ 607, /* "set-policy-root" */ 624, /* "set-rootKeyThumb" */ 620, /* "setAttr-Cert" */ 631, /* "setAttr-GenCryptgrm" */ 623, /* "setAttr-IssCap" */ 628, /* "setAttr-IssCap-CVM" */ 630, /* "setAttr-IssCap-Sig" */ 629, /* "setAttr-IssCap-T2" */ 621, /* "setAttr-PGWYcap" */ 635, /* "setAttr-SecDevSig" */ 632, /* "setAttr-T2Enc" */ 633, /* "setAttr-T2cleartxt" */ 634, /* "setAttr-TokICCsig" */ 627, /* "setAttr-Token-B0Prime" */ 626, /* "setAttr-Token-EMV" */ 622, /* "setAttr-TokenType" */ 619, /* "setCext-IssuerCapabilities" */ 615, /* "setCext-PGWYcapabilities" */ 616, /* "setCext-TokenIdentifier" */ 618, /* "setCext-TokenType" */ 617, /* "setCext-Track2Data" */ 611, /* "setCext-cCertRequired" */ 609, /* "setCext-certType" */ 608, /* "setCext-hashedRoot" */ 610, /* "setCext-merchData" */ 613, /* "setCext-setExt" */ 614, /* "setCext-setQualf" */ 612, /* "setCext-tunneling" */ 540, /* "setct-AcqCardCodeMsg" */ 576, /* "setct-AcqCardCodeMsgTBE" */ 570, /* "setct-AuthReqTBE" */ 534, /* "setct-AuthReqTBS" */ 527, /* "setct-AuthResBaggage" */ 571, /* "setct-AuthResTBE" */ 572, /* "setct-AuthResTBEX" */ 535, /* "setct-AuthResTBS" */ 536, /* "setct-AuthResTBSX" */ 528, /* "setct-AuthRevReqBaggage" */ 577, /* "setct-AuthRevReqTBE" */ 541, /* "setct-AuthRevReqTBS" */ 529, /* "setct-AuthRevResBaggage" */ 542, /* "setct-AuthRevResData" */ 578, /* "setct-AuthRevResTBE" */ 579, /* "setct-AuthRevResTBEB" */ 543, /* "setct-AuthRevResTBS" */ 573, /* "setct-AuthTokenTBE" */ 537, /* "setct-AuthTokenTBS" */ 600, /* "setct-BCIDistributionTBS" */ 558, /* "setct-BatchAdminReqData" */ 592, /* "setct-BatchAdminReqTBE" */ 559, /* "setct-BatchAdminResData" */ 593, /* "setct-BatchAdminResTBE" */ 599, /* "setct-CRLNotificationResTBS" */ 598, /* "setct-CRLNotificationTBS" */ 580, /* "setct-CapReqTBE" */ 581, /* "setct-CapReqTBEX" */ 544, /* "setct-CapReqTBS" */ 545, /* "setct-CapReqTBSX" */ 546, /* "setct-CapResData" */ 582, /* "setct-CapResTBE" */ 583, /* "setct-CapRevReqTBE" */ 584, /* "setct-CapRevReqTBEX" */ 547, /* "setct-CapRevReqTBS" */ 548, /* "setct-CapRevReqTBSX" */ 549, /* "setct-CapRevResData" */ 585, /* "setct-CapRevResTBE" */ 538, /* "setct-CapTokenData" */ 530, /* "setct-CapTokenSeq" */ 574, /* "setct-CapTokenTBE" */ 575, /* "setct-CapTokenTBEX" */ 539, /* "setct-CapTokenTBS" */ 560, /* "setct-CardCInitResTBS" */ 566, /* "setct-CertInqReqTBS" */ 563, /* "setct-CertReqData" */ 595, /* "setct-CertReqTBE" */ 596, /* "setct-CertReqTBEX" */ 564, /* "setct-CertReqTBS" */ 565, /* "setct-CertResData" */ 597, /* "setct-CertResTBE" */ 586, /* "setct-CredReqTBE" */ 587, /* "setct-CredReqTBEX" */ 550, /* "setct-CredReqTBS" */ 551, /* "setct-CredReqTBSX" */ 552, /* "setct-CredResData" */ 588, /* "setct-CredResTBE" */ 589, /* "setct-CredRevReqTBE" */ 590, /* "setct-CredRevReqTBEX" */ 553, /* "setct-CredRevReqTBS" */ 554, /* "setct-CredRevReqTBSX" */ 555, /* "setct-CredRevResData" */ 591, /* "setct-CredRevResTBE" */ 567, /* "setct-ErrorTBS" */ 526, /* "setct-HODInput" */ 561, /* "setct-MeAqCInitResTBS" */ 522, /* "setct-OIData" */ 519, /* "setct-PANData" */ 521, /* "setct-PANOnly" */ 520, /* "setct-PANToken" */ 556, /* "setct-PCertReqData" */ 557, /* "setct-PCertResTBS" */ 523, /* "setct-PI" */ 532, /* "setct-PI-TBS" */ 524, /* "setct-PIData" */ 525, /* "setct-PIDataUnsigned" */ 568, /* "setct-PIDualSignedTBE" */ 569, /* "setct-PIUnsignedTBE" */ 531, /* "setct-PInitResData" */ 533, /* "setct-PResData" */ 594, /* "setct-RegFormReqTBE" */ 562, /* "setct-RegFormResTBS" */ 606, /* "setext-cv" */ 601, /* "setext-genCrypt" */ 602, /* "setext-miAuth" */ 604, /* "setext-pinAny" */ 603, /* "setext-pinSecure" */ 605, /* "setext-track2" */ 52, /* "signingTime" */ 454, /* "simpleSecurityObject" */ 496, /* "singleLevelQuality" */ 1142, /* "sm-scheme" */ 387, /* "snmpv2" */ 660, /* "street" */ 85, /* "subjectAltName" */ 769, /* "subjectDirectoryAttributes" */ 398, /* "subjectInfoAccess" */ 82, /* "subjectKeyIdentifier" */ 1007, /* "subjectSignTool" */ 498, /* "subtreeMaximumQuality" */ 497, /* "subtreeMinimumQuality" */ 890, /* "supportedAlgorithms" */ 874, /* "supportedApplicationContext" */ 402, /* "targetInformation" */ 864, /* "telephoneNumber" */ 866, /* "teletexTerminalIdentifier" */ 865, /* "telexNumber" */ 459, /* "textEncodedORAddress" */ 293, /* "textNotice" */ 133, /* "timeStamping" */ 106, /* "title" */ 1020, /* "tlsfeature" */ 682, /* "tpBasis" */ 375, /* "trustRoot" */ 1151, /* "ua-pki" */ 1160, /* "uacurve0" */ 1161, /* "uacurve1" */ 1162, /* "uacurve2" */ 1163, /* "uacurve3" */ 1164, /* "uacurve4" */ 1165, /* "uacurve5" */ 1166, /* "uacurve6" */ 1167, /* "uacurve7" */ 1168, /* "uacurve8" */ 1169, /* "uacurve9" */ 436, /* "ucl" */ 102, /* "uid" */ 888, /* "uniqueMember" */ 55, /* "unstructuredAddress" */ 49, /* "unstructuredName" */ 880, /* "userCertificate" */ 465, /* "userClass" */ 879, /* "userPassword" */ 373, /* "valid" */ 678, /* "wap" */ 679, /* "wap-wsg" */ 735, /* "wap-wsg-idm-ecid-wtls1" */ 743, /* "wap-wsg-idm-ecid-wtls10" */ 744, /* "wap-wsg-idm-ecid-wtls11" */ 745, /* "wap-wsg-idm-ecid-wtls12" */ 736, /* "wap-wsg-idm-ecid-wtls3" */ 737, /* "wap-wsg-idm-ecid-wtls4" */ 738, /* "wap-wsg-idm-ecid-wtls5" */ 739, /* "wap-wsg-idm-ecid-wtls6" */ 740, /* "wap-wsg-idm-ecid-wtls7" */ 741, /* "wap-wsg-idm-ecid-wtls8" */ 742, /* "wap-wsg-idm-ecid-wtls9" */ 804, /* "whirlpool" */ 868, /* "x121Address" */ 503, /* "x500UniqueIdentifier" */ 158, /* "x509Certificate" */ 160, /* "x509Crl" */ 1093, /* "x509ExtAdmission" */ }; #define NUM_LN 1186 static const unsigned int ln_objs[NUM_LN] = { 363, /* "AD Time Stamping" */ 405, /* "ANSI X9.62" */ 368, /* "Acceptable OCSP Responses" */ 910, /* "Any Extended Key Usage" */ 664, /* "Any language" */ 177, /* "Authority Information Access" */ 365, /* "Basic OCSP Response" */ 285, /* "Biometric Info" */ 179, /* "CA Issuers" */ 785, /* "CA Repository" */ 1131, /* "CMC Certificate Authority" */ 1132, /* "CMC Registration Authority" */ 954, /* "CT Certificate SCTs" */ 952, /* "CT Precertificate Poison" */ 951, /* "CT Precertificate SCTs" */ 953, /* "CT Precertificate Signer" */ 131, /* "Code Signing" */ 1024, /* "Ctrl/Provision WAP Termination" */ 1023, /* "Ctrl/provision WAP Access" */ 1159, /* "DSTU 4145-2002 big endian" */ 1158, /* "DSTU 4145-2002 little endian" */ 1152, /* "DSTU Gost 28147-2009" */ 1154, /* "DSTU Gost 28147-2009 CFB mode" */ 1153, /* "DSTU Gost 28147-2009 OFB mode" */ 1155, /* "DSTU Gost 28147-2009 key wrap" */ 1157, /* "DSTU Gost 34311-95" */ 1160, /* "DSTU curve 0" */ 1161, /* "DSTU curve 1" */ 1162, /* "DSTU curve 2" */ 1163, /* "DSTU curve 3" */ 1164, /* "DSTU curve 4" */ 1165, /* "DSTU curve 5" */ 1166, /* "DSTU curve 6" */ 1167, /* "DSTU curve 7" */ 1168, /* "DSTU curve 8" */ 1169, /* "DSTU curve 9" */ 783, /* "Diffie-Hellman based MAC" */ 382, /* "Directory" */ 392, /* "Domain" */ 132, /* "E-mail Protection" */ 1087, /* "ED25519" */ 1088, /* "ED448" */ 389, /* "Enterprises" */ 384, /* "Experimental" */ 372, /* "Extended OCSP Status" */ 172, /* "Extension Request" */ 813, /* "GOST 28147-89" */ 849, /* "GOST 28147-89 Cryptocom ParamSet" */ 815, /* "GOST 28147-89 MAC" */ 1003, /* "GOST 28147-89 TC26 parameter set" */ 851, /* "GOST 34.10-2001 Cryptocom" */ 850, /* "GOST 34.10-94 Cryptocom" */ 811, /* "GOST R 34.10-2001" */ 817, /* "GOST R 34.10-2001 DH" */ 1148, /* "GOST R 34.10-2012 (256 bit) ParamSet A" */ 1184, /* "GOST R 34.10-2012 (256 bit) ParamSet B" */ 1185, /* "GOST R 34.10-2012 (256 bit) ParamSet C" */ 1186, /* "GOST R 34.10-2012 (256 bit) ParamSet D" */ 998, /* "GOST R 34.10-2012 (512 bit) ParamSet A" */ 999, /* "GOST R 34.10-2012 (512 bit) ParamSet B" */ 1149, /* "GOST R 34.10-2012 (512 bit) ParamSet C" */ 997, /* "GOST R 34.10-2012 (512 bit) testing parameter set" */ 979, /* "GOST R 34.10-2012 with 256 bit modulus" */ 980, /* "GOST R 34.10-2012 with 512 bit modulus" */ 985, /* "GOST R 34.10-2012 with GOST R 34.11-2012 (256 bit)" */ 986, /* "GOST R 34.10-2012 with GOST R 34.11-2012 (512 bit)" */ 812, /* "GOST R 34.10-94" */ 818, /* "GOST R 34.10-94 DH" */ 982, /* "GOST R 34.11-2012 with 256 bit hash" */ 983, /* "GOST R 34.11-2012 with 512 bit hash" */ 809, /* "GOST R 34.11-94" */ 816, /* "GOST R 34.11-94 PRF" */ 807, /* "GOST R 34.11-94 with GOST R 34.10-2001" */ 853, /* "GOST R 34.11-94 with GOST R 34.10-2001 Cryptocom" */ 808, /* "GOST R 34.11-94 with GOST R 34.10-94" */ 852, /* "GOST R 34.11-94 with GOST R 34.10-94 Cryptocom" */ 854, /* "GOST R 3410-2001 Parameter Set Cryptocom" */ 1156, /* "HMAC DSTU Gost 34311-95" */ 988, /* "HMAC GOST 34.11-2012 256 bit" */ 989, /* "HMAC GOST 34.11-2012 512 bit" */ 810, /* "HMAC GOST 34.11-94" */ 432, /* "Hold Instruction Call Issuer" */ 430, /* "Hold Instruction Code" */ 431, /* "Hold Instruction None" */ 433, /* "Hold Instruction Reject" */ 634, /* "ICC or token signature" */ 1171, /* "IEEE Security in Storage Working Group" */ 1004, /* "INN" */ 294, /* "IPSec End System" */ 295, /* "IPSec Tunnel" */ 296, /* "IPSec User" */ 1140, /* "ISO CN Member Body" */ 182, /* "ISO Member Body" */ 183, /* "ISO US Member Body" */ 1150, /* "ISO-UA" */ 667, /* "Independent" */ 665, /* "Inherit all" */ 647, /* "International Organizations" */ 142, /* "Invalidity Date" */ 504, /* "MIME MHS" */ 388, /* "Mail" */ 383, /* "Management" */ 417, /* "Microsoft CSP Name" */ 135, /* "Microsoft Commercial Code Signing" */ 138, /* "Microsoft Encrypted File System" */ 171, /* "Microsoft Extension Request" */ 134, /* "Microsoft Individual Code Signing" */ 856, /* "Microsoft Local Key set" */ 137, /* "Microsoft Server Gated Crypto" */ 648, /* "Microsoft Smartcard Login" */ 136, /* "Microsoft Trust List Signing" */ 649, /* "Microsoft User Principal Name" */ 393, /* "NULL" */ 404, /* "NULL" */ 72, /* "Netscape Base Url" */ 76, /* "Netscape CA Policy Url" */ 74, /* "Netscape CA Revocation Url" */ 71, /* "Netscape Cert Type" */ 58, /* "Netscape Certificate Extension" */ 79, /* "Netscape Certificate Sequence" */ 78, /* "Netscape Comment" */ 57, /* "Netscape Communications Corp." */ 59, /* "Netscape Data Type" */ 75, /* "Netscape Renewal Url" */ 73, /* "Netscape Revocation Url" */ 77, /* "Netscape SSL Server Name" */ 139, /* "Netscape Server Gated Crypto" */ 178, /* "OCSP" */ 370, /* "OCSP Archive Cutoff" */ 367, /* "OCSP CRL ID" */ 369, /* "OCSP No Check" */ 366, /* "OCSP Nonce" */ 371, /* "OCSP Service Locator" */ 180, /* "OCSP Signing" */ 1005, /* "OGRN" */ 161, /* "PBES2" */ 69, /* "PBKDF2" */ 162, /* "PBMAC1" */ 1032, /* "PKINIT Client Auth" */ 127, /* "PKIX" */ 858, /* "Permanent Identifier" */ 164, /* "Policy Qualifier CPS" */ 165, /* "Policy Qualifier User Notice" */ 385, /* "Private" */ 1093, /* "Professional Information or basis for Admission" */ 663, /* "Proxy Certificate Information" */ 1, /* "RSA Data Security, Inc." */ 2, /* "RSA Data Security, Inc. PKCS" */ 1116, /* "RSA-SHA3-224" */ 1117, /* "RSA-SHA3-256" */ 1118, /* "RSA-SHA3-384" */ 1119, /* "RSA-SHA3-512" */ 188, /* "S/MIME" */ 167, /* "S/MIME Capabilities" */ 1006, /* "SNILS" */ 387, /* "SNMPv2" */ 1025, /* "SSH Client" */ 1026, /* "SSH Server" */ 512, /* "Secure Electronic Transactions" */ 386, /* "Security" */ 394, /* "Selected Attribute Types" */ 1029, /* "Send Owner" */ 1030, /* "Send Proxied Owner" */ 1028, /* "Send Proxied Router" */ 1027, /* "Send Router" */ 1033, /* "Signing KDC Response" */ 1008, /* "Signing Tool of Issuer" */ 1007, /* "Signing Tool of Subject" */ 143, /* "Strong Extranet ID" */ 398, /* "Subject Information Access" */ 1020, /* "TLS Feature" */ 130, /* "TLS Web Client Authentication" */ 129, /* "TLS Web Server Authentication" */ 133, /* "Time Stamping" */ 375, /* "Trust Root" */ 1034, /* "X25519" */ 1035, /* "X448" */ 12, /* "X509" */ 402, /* "X509v3 AC Targeting" */ 746, /* "X509v3 Any Policy" */ 90, /* "X509v3 Authority Key Identifier" */ 87, /* "X509v3 Basic Constraints" */ 103, /* "X509v3 CRL Distribution Points" */ 88, /* "X509v3 CRL Number" */ 141, /* "X509v3 CRL Reason Code" */ 771, /* "X509v3 Certificate Issuer" */ 89, /* "X509v3 Certificate Policies" */ 140, /* "X509v3 Delta CRL Indicator" */ 126, /* "X509v3 Extended Key Usage" */ 857, /* "X509v3 Freshest CRL" */ 748, /* "X509v3 Inhibit Any Policy" */ 86, /* "X509v3 Issuer Alternative Name" */ 770, /* "X509v3 Issuing Distribution Point" */ 83, /* "X509v3 Key Usage" */ 666, /* "X509v3 Name Constraints" */ 403, /* "X509v3 No Revocation Available" */ 401, /* "X509v3 Policy Constraints" */ 747, /* "X509v3 Policy Mappings" */ 84, /* "X509v3 Private Key Usage Period" */ 85, /* "X509v3 Subject Alternative Name" */ 769, /* "X509v3 Subject Directory Attributes" */ 82, /* "X509v3 Subject Key Identifier" */ 920, /* "X9.42 DH" */ 184, /* "X9.57" */ 185, /* "X9.57 CM ?" */ 478, /* "aRecord" */ 289, /* "aaControls" */ 287, /* "ac-auditEntity" */ 397, /* "ac-proxying" */ 288, /* "ac-targeting" */ 446, /* "account" */ 364, /* "ad dvcs" */ 606, /* "additional verification" */ 419, /* "aes-128-cbc" */ 916, /* "aes-128-cbc-hmac-sha1" */ 948, /* "aes-128-cbc-hmac-sha256" */ 896, /* "aes-128-ccm" */ 421, /* "aes-128-cfb" */ 650, /* "aes-128-cfb1" */ 653, /* "aes-128-cfb8" */ 904, /* "aes-128-ctr" */ 418, /* "aes-128-ecb" */ 895, /* "aes-128-gcm" */ 958, /* "aes-128-ocb" */ 420, /* "aes-128-ofb" */ 913, /* "aes-128-xts" */ 423, /* "aes-192-cbc" */ 917, /* "aes-192-cbc-hmac-sha1" */ 949, /* "aes-192-cbc-hmac-sha256" */ 899, /* "aes-192-ccm" */ 425, /* "aes-192-cfb" */ 651, /* "aes-192-cfb1" */ 654, /* "aes-192-cfb8" */ 905, /* "aes-192-ctr" */ 422, /* "aes-192-ecb" */ 898, /* "aes-192-gcm" */ 959, /* "aes-192-ocb" */ 424, /* "aes-192-ofb" */ 427, /* "aes-256-cbc" */ 918, /* "aes-256-cbc-hmac-sha1" */ 950, /* "aes-256-cbc-hmac-sha256" */ 902, /* "aes-256-ccm" */ 429, /* "aes-256-cfb" */ 652, /* "aes-256-cfb1" */ 655, /* "aes-256-cfb8" */ 906, /* "aes-256-ctr" */ 426, /* "aes-256-ecb" */ 901, /* "aes-256-gcm" */ 960, /* "aes-256-ocb" */ 428, /* "aes-256-ofb" */ 914, /* "aes-256-xts" */ 376, /* "algorithm" */ 1066, /* "aria-128-cbc" */ 1120, /* "aria-128-ccm" */ 1067, /* "aria-128-cfb" */ 1080, /* "aria-128-cfb1" */ 1083, /* "aria-128-cfb8" */ 1069, /* "aria-128-ctr" */ 1065, /* "aria-128-ecb" */ 1123, /* "aria-128-gcm" */ 1068, /* "aria-128-ofb" */ 1071, /* "aria-192-cbc" */ 1121, /* "aria-192-ccm" */ 1072, /* "aria-192-cfb" */ 1081, /* "aria-192-cfb1" */ 1084, /* "aria-192-cfb8" */ 1074, /* "aria-192-ctr" */ 1070, /* "aria-192-ecb" */ 1124, /* "aria-192-gcm" */ 1073, /* "aria-192-ofb" */ 1076, /* "aria-256-cbc" */ 1122, /* "aria-256-ccm" */ 1077, /* "aria-256-cfb" */ 1082, /* "aria-256-cfb1" */ 1085, /* "aria-256-cfb8" */ 1079, /* "aria-256-ctr" */ 1075, /* "aria-256-ecb" */ 1125, /* "aria-256-gcm" */ 1078, /* "aria-256-ofb" */ 484, /* "associatedDomain" */ 485, /* "associatedName" */ 501, /* "audio" */ 1064, /* "auth-any" */ 1049, /* "auth-dss" */ 1047, /* "auth-ecdsa" */ 1050, /* "auth-gost01" */ 1051, /* "auth-gost12" */ 1053, /* "auth-null" */ 1048, /* "auth-psk" */ 1046, /* "auth-rsa" */ 1052, /* "auth-srp" */ 882, /* "authorityRevocationList" */ 91, /* "bf-cbc" */ 93, /* "bf-cfb" */ 92, /* "bf-ecb" */ 94, /* "bf-ofb" */ 1056, /* "blake2b512" */ 1057, /* "blake2s256" */ 921, /* "brainpoolP160r1" */ 922, /* "brainpoolP160t1" */ 923, /* "brainpoolP192r1" */ 924, /* "brainpoolP192t1" */ 925, /* "brainpoolP224r1" */ 926, /* "brainpoolP224t1" */ 927, /* "brainpoolP256r1" */ 928, /* "brainpoolP256t1" */ 929, /* "brainpoolP320r1" */ 930, /* "brainpoolP320t1" */ 931, /* "brainpoolP384r1" */ 932, /* "brainpoolP384t1" */ 933, /* "brainpoolP512r1" */ 934, /* "brainpoolP512t1" */ 494, /* "buildingName" */ 860, /* "businessCategory" */ 691, /* "c2onb191v4" */ 692, /* "c2onb191v5" */ 697, /* "c2onb239v4" */ 698, /* "c2onb239v5" */ 684, /* "c2pnb163v1" */ 685, /* "c2pnb163v2" */ 686, /* "c2pnb163v3" */ 687, /* "c2pnb176v1" */ 693, /* "c2pnb208w1" */ 699, /* "c2pnb272w1" */ 700, /* "c2pnb304w1" */ 702, /* "c2pnb368w1" */ 688, /* "c2tnb191v1" */ 689, /* "c2tnb191v2" */ 690, /* "c2tnb191v3" */ 694, /* "c2tnb239v1" */ 695, /* "c2tnb239v2" */ 696, /* "c2tnb239v3" */ 701, /* "c2tnb359v1" */ 703, /* "c2tnb431r1" */ 881, /* "cACertificate" */ 483, /* "cNAMERecord" */ 751, /* "camellia-128-cbc" */ 962, /* "camellia-128-ccm" */ 757, /* "camellia-128-cfb" */ 760, /* "camellia-128-cfb1" */ 763, /* "camellia-128-cfb8" */ 964, /* "camellia-128-cmac" */ 963, /* "camellia-128-ctr" */ 754, /* "camellia-128-ecb" */ 961, /* "camellia-128-gcm" */ 766, /* "camellia-128-ofb" */ 752, /* "camellia-192-cbc" */ 966, /* "camellia-192-ccm" */ 758, /* "camellia-192-cfb" */ 761, /* "camellia-192-cfb1" */ 764, /* "camellia-192-cfb8" */ 968, /* "camellia-192-cmac" */ 967, /* "camellia-192-ctr" */ 755, /* "camellia-192-ecb" */ 965, /* "camellia-192-gcm" */ 767, /* "camellia-192-ofb" */ 753, /* "camellia-256-cbc" */ 970, /* "camellia-256-ccm" */ 759, /* "camellia-256-cfb" */ 762, /* "camellia-256-cfb1" */ 765, /* "camellia-256-cfb8" */ 972, /* "camellia-256-cmac" */ 971, /* "camellia-256-ctr" */ 756, /* "camellia-256-ecb" */ 969, /* "camellia-256-gcm" */ 768, /* "camellia-256-ofb" */ 443, /* "caseIgnoreIA5StringSyntax" */ 108, /* "cast5-cbc" */ 110, /* "cast5-cfb" */ 109, /* "cast5-ecb" */ 111, /* "cast5-ofb" */ 152, /* "certBag" */ 677, /* "certicom-arc" */ 517, /* "certificate extensions" */ 883, /* "certificateRevocationList" */ 1019, /* "chacha20" */ 1018, /* "chacha20-poly1305" */ 54, /* "challengePassword" */ 407, /* "characteristic-two-field" */ 395, /* "clearance" */ 633, /* "cleartext track 2" */ 894, /* "cmac" */ 13, /* "commonName" */ 513, /* "content types" */ 50, /* "contentType" */ 53, /* "countersignature" */ 1090, /* "countryCode3c" */ 1091, /* "countryCode3n" */ 14, /* "countryName" */ 153, /* "crlBag" */ 884, /* "crossCertificatePair" */ 806, /* "cryptocom" */ 805, /* "cryptopro" */ 500, /* "dITRedirect" */ 451, /* "dNSDomain" */ 495, /* "dSAQuality" */ 434, /* "data" */ 390, /* "dcObject" */ 891, /* "deltaRevocationList" */ 31, /* "des-cbc" */ 643, /* "des-cdmf" */ 30, /* "des-cfb" */ 656, /* "des-cfb1" */ 657, /* "des-cfb8" */ 29, /* "des-ecb" */ 32, /* "des-ede" */ 43, /* "des-ede-cbc" */ 60, /* "des-ede-cfb" */ 62, /* "des-ede-ofb" */ 33, /* "des-ede3" */ 44, /* "des-ede3-cbc" */ 61, /* "des-ede3-cfb" */ 658, /* "des-ede3-cfb1" */ 659, /* "des-ede3-cfb8" */ 63, /* "des-ede3-ofb" */ 45, /* "des-ofb" */ 107, /* "description" */ 871, /* "destinationIndicator" */ 80, /* "desx-cbc" */ 947, /* "dh-cofactor-kdf" */ 946, /* "dh-std-kdf" */ 28, /* "dhKeyAgreement" */ 941, /* "dhSinglePass-cofactorDH-sha1kdf-scheme" */ 942, /* "dhSinglePass-cofactorDH-sha224kdf-scheme" */ 943, /* "dhSinglePass-cofactorDH-sha256kdf-scheme" */ 944, /* "dhSinglePass-cofactorDH-sha384kdf-scheme" */ 945, /* "dhSinglePass-cofactorDH-sha512kdf-scheme" */ 936, /* "dhSinglePass-stdDH-sha1kdf-scheme" */ 937, /* "dhSinglePass-stdDH-sha224kdf-scheme" */ 938, /* "dhSinglePass-stdDH-sha256kdf-scheme" */ 939, /* "dhSinglePass-stdDH-sha384kdf-scheme" */ 940, /* "dhSinglePass-stdDH-sha512kdf-scheme" */ 11, /* "directory services (X.500)" */ 378, /* "directory services - algorithms" */ 887, /* "distinguishedName" */ 892, /* "dmdName" */ 174, /* "dnQualifier" */ 1092, /* "dnsName" */ 447, /* "document" */ 471, /* "documentAuthor" */ 468, /* "documentIdentifier" */ 472, /* "documentLocation" */ 502, /* "documentPublisher" */ 449, /* "documentSeries" */ 469, /* "documentTitle" */ 470, /* "documentVersion" */ 380, /* "dod" */ 391, /* "domainComponent" */ 452, /* "domainRelatedObject" */ 116, /* "dsaEncryption" */ 67, /* "dsaEncryption-old" */ 66, /* "dsaWithSHA" */ 113, /* "dsaWithSHA1" */ 70, /* "dsaWithSHA1-old" */ 802, /* "dsa_with_SHA224" */ 803, /* "dsa_with_SHA256" */ 1108, /* "dsa_with_SHA3-224" */ 1109, /* "dsa_with_SHA3-256" */ 1110, /* "dsa_with_SHA3-384" */ 1111, /* "dsa_with_SHA3-512" */ 1106, /* "dsa_with_SHA384" */ 1107, /* "dsa_with_SHA512" */ 297, /* "dvcs" */ 791, /* "ecdsa-with-Recommended" */ 416, /* "ecdsa-with-SHA1" */ 793, /* "ecdsa-with-SHA224" */ 794, /* "ecdsa-with-SHA256" */ 795, /* "ecdsa-with-SHA384" */ 796, /* "ecdsa-with-SHA512" */ 792, /* "ecdsa-with-Specified" */ 1112, /* "ecdsa_with_SHA3-224" */ 1113, /* "ecdsa_with_SHA3-256" */ 1114, /* "ecdsa_with_SHA3-384" */ 1115, /* "ecdsa_with_SHA3-512" */ 48, /* "emailAddress" */ 632, /* "encrypted track 2" */ 885, /* "enhancedSearchGuide" */ 56, /* "extendedCertificateAttributes" */ 867, /* "facsimileTelephoneNumber" */ 462, /* "favouriteDrink" */ 1126, /* "ffdhe2048" */ 1127, /* "ffdhe3072" */ 1128, /* "ffdhe4096" */ 1129, /* "ffdhe6144" */ 1130, /* "ffdhe8192" */ 453, /* "friendlyCountry" */ 490, /* "friendlyCountryName" */ 156, /* "friendlyName" */ 631, /* "generate cryptogram" */ 509, /* "generationQualifier" */ 601, /* "generic cryptogram" */ 99, /* "givenName" */ 976, /* "gost-mac-12" */ 1009, /* "gost89-cbc" */ 814, /* "gost89-cnt" */ 975, /* "gost89-cnt-12" */ 1011, /* "gost89-ctr" */ 1010, /* "gost89-ecb" */ 1015, /* "grasshopper-cbc" */ 1016, /* "grasshopper-cfb" */ 1013, /* "grasshopper-ctr" */ 1012, /* "grasshopper-ecb" */ 1017, /* "grasshopper-mac" */ 1014, /* "grasshopper-ofb" */ 1036, /* "hkdf" */ 855, /* "hmac" */ 780, /* "hmac-md5" */ 781, /* "hmac-sha1" */ 1102, /* "hmac-sha3-224" */ 1103, /* "hmac-sha3-256" */ 1104, /* "hmac-sha3-384" */ 1105, /* "hmac-sha3-512" */ 797, /* "hmacWithMD5" */ 163, /* "hmacWithSHA1" */ 798, /* "hmacWithSHA224" */ 799, /* "hmacWithSHA256" */ 800, /* "hmacWithSHA384" */ 801, /* "hmacWithSHA512" */ 1193, /* "hmacWithSHA512-224" */ 1194, /* "hmacWithSHA512-256" */ 486, /* "homePostalAddress" */ 473, /* "homeTelephoneNumber" */ 466, /* "host" */ 889, /* "houseIdentifier" */ 442, /* "iA5StringSyntax" */ 381, /* "iana" */ 824, /* "id-Gost28147-89-CryptoPro-A-ParamSet" */ 825, /* "id-Gost28147-89-CryptoPro-B-ParamSet" */ 826, /* "id-Gost28147-89-CryptoPro-C-ParamSet" */ 827, /* "id-Gost28147-89-CryptoPro-D-ParamSet" */ 819, /* "id-Gost28147-89-CryptoPro-KeyMeshing" */ 829, /* "id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet" */ 828, /* "id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet" */ 830, /* "id-Gost28147-89-CryptoPro-RIC-1-ParamSet" */ 820, /* "id-Gost28147-89-None-KeyMeshing" */ 823, /* "id-Gost28147-89-TestParamSet" */ 840, /* "id-GostR3410-2001-CryptoPro-A-ParamSet" */ 841, /* "id-GostR3410-2001-CryptoPro-B-ParamSet" */ 842, /* "id-GostR3410-2001-CryptoPro-C-ParamSet" */ 843, /* "id-GostR3410-2001-CryptoPro-XchA-ParamSet" */ 844, /* "id-GostR3410-2001-CryptoPro-XchB-ParamSet" */ 839, /* "id-GostR3410-2001-TestParamSet" */ 832, /* "id-GostR3410-94-CryptoPro-A-ParamSet" */ 833, /* "id-GostR3410-94-CryptoPro-B-ParamSet" */ 834, /* "id-GostR3410-94-CryptoPro-C-ParamSet" */ 835, /* "id-GostR3410-94-CryptoPro-D-ParamSet" */ 836, /* "id-GostR3410-94-CryptoPro-XchA-ParamSet" */ 837, /* "id-GostR3410-94-CryptoPro-XchB-ParamSet" */ 838, /* "id-GostR3410-94-CryptoPro-XchC-ParamSet" */ 831, /* "id-GostR3410-94-TestParamSet" */ 845, /* "id-GostR3410-94-a" */ 846, /* "id-GostR3410-94-aBis" */ 847, /* "id-GostR3410-94-b" */ 848, /* "id-GostR3410-94-bBis" */ 822, /* "id-GostR3411-94-CryptoProParamSet" */ 821, /* "id-GostR3411-94-TestParamSet" */ 266, /* "id-aca" */ 355, /* "id-aca-accessIdentity" */ 354, /* "id-aca-authenticationInfo" */ 356, /* "id-aca-chargingIdentity" */ 399, /* "id-aca-encAttrs" */ 357, /* "id-aca-group" */ 358, /* "id-aca-role" */ 176, /* "id-ad" */ 788, /* "id-aes128-wrap" */ 897, /* "id-aes128-wrap-pad" */ 789, /* "id-aes192-wrap" */ 900, /* "id-aes192-wrap-pad" */ 790, /* "id-aes256-wrap" */ 903, /* "id-aes256-wrap-pad" */ 262, /* "id-alg" */ 893, /* "id-alg-PWRI-KEK" */ 323, /* "id-alg-des40" */ 326, /* "id-alg-dh-pop" */ 325, /* "id-alg-dh-sig-hmac-sha1" */ 324, /* "id-alg-noSignature" */ 907, /* "id-camellia128-wrap" */ 908, /* "id-camellia192-wrap" */ 909, /* "id-camellia256-wrap" */ 268, /* "id-cct" */ 361, /* "id-cct-PKIData" */ 362, /* "id-cct-PKIResponse" */ 360, /* "id-cct-crs" */ 81, /* "id-ce" */ 680, /* "id-characteristic-two-basis" */ 263, /* "id-cmc" */ 334, /* "id-cmc-addExtensions" */ 346, /* "id-cmc-confirmCertAcceptance" */ 330, /* "id-cmc-dataReturn" */ 336, /* "id-cmc-decryptedPOP" */ 335, /* "id-cmc-encryptedPOP" */ 339, /* "id-cmc-getCRL" */ 338, /* "id-cmc-getCert" */ 328, /* "id-cmc-identification" */ 329, /* "id-cmc-identityProof" */ 337, /* "id-cmc-lraPOPWitness" */ 344, /* "id-cmc-popLinkRandom" */ 345, /* "id-cmc-popLinkWitness" */ 343, /* "id-cmc-queryPending" */ 333, /* "id-cmc-recipientNonce" */ 341, /* "id-cmc-regInfo" */ 342, /* "id-cmc-responseInfo" */ 340, /* "id-cmc-revokeRequest" */ 332, /* "id-cmc-senderNonce" */ 327, /* "id-cmc-statusInfo" */ 331, /* "id-cmc-transactionId" */ 787, /* "id-ct-asciiTextWithCRLF" */ 1060, /* "id-ct-xml" */ 408, /* "id-ecPublicKey" */ 508, /* "id-hex-multipart-message" */ 507, /* "id-hex-partial-message" */ 260, /* "id-it" */ 302, /* "id-it-caKeyUpdateInfo" */ 298, /* "id-it-caProtEncCert" */ 311, /* "id-it-confirmWaitTime" */ 303, /* "id-it-currentCRL" */ 300, /* "id-it-encKeyPairTypes" */ 310, /* "id-it-implicitConfirm" */ 308, /* "id-it-keyPairParamRep" */ 307, /* "id-it-keyPairParamReq" */ 312, /* "id-it-origPKIMessage" */ 301, /* "id-it-preferredSymmAlg" */ 309, /* "id-it-revPassphrase" */ 299, /* "id-it-signKeyPairTypes" */ 305, /* "id-it-subscriptionRequest" */ 306, /* "id-it-subscriptionResponse" */ 784, /* "id-it-suppLangTags" */ 304, /* "id-it-unsupportedOIDs" */ 128, /* "id-kp" */ 280, /* "id-mod-attribute-cert" */ 274, /* "id-mod-cmc" */ 277, /* "id-mod-cmp" */ 284, /* "id-mod-cmp2000" */ 273, /* "id-mod-crmf" */ 283, /* "id-mod-dvcs" */ 275, /* "id-mod-kea-profile-88" */ 276, /* "id-mod-kea-profile-93" */ 282, /* "id-mod-ocsp" */ 278, /* "id-mod-qualified-cert-88" */ 279, /* "id-mod-qualified-cert-93" */ 281, /* "id-mod-timestamp-protocol" */ 264, /* "id-on" */ 347, /* "id-on-personalData" */ 265, /* "id-pda" */ 352, /* "id-pda-countryOfCitizenship" */ 353, /* "id-pda-countryOfResidence" */ 348, /* "id-pda-dateOfBirth" */ 351, /* "id-pda-gender" */ 349, /* "id-pda-placeOfBirth" */ 175, /* "id-pe" */ 1031, /* "id-pkinit" */ 261, /* "id-pkip" */ 258, /* "id-pkix-mod" */ 269, /* "id-pkix1-explicit-88" */ 271, /* "id-pkix1-explicit-93" */ 270, /* "id-pkix1-implicit-88" */ 272, /* "id-pkix1-implicit-93" */ 662, /* "id-ppl" */ 267, /* "id-qcs" */ 359, /* "id-qcs-pkixQCSyntax-v1" */ 259, /* "id-qt" */ 313, /* "id-regCtrl" */ 316, /* "id-regCtrl-authenticator" */ 319, /* "id-regCtrl-oldCertID" */ 318, /* "id-regCtrl-pkiArchiveOptions" */ 317, /* "id-regCtrl-pkiPublicationInfo" */ 320, /* "id-regCtrl-protocolEncrKey" */ 315, /* "id-regCtrl-regToken" */ 314, /* "id-regInfo" */ 322, /* "id-regInfo-certReq" */ 321, /* "id-regInfo-utf8Pairs" */ 191, /* "id-smime-aa" */ 215, /* "id-smime-aa-contentHint" */ 218, /* "id-smime-aa-contentIdentifier" */ 221, /* "id-smime-aa-contentReference" */ 240, /* "id-smime-aa-dvcs-dvc" */ 217, /* "id-smime-aa-encapContentType" */ 222, /* "id-smime-aa-encrypKeyPref" */ 220, /* "id-smime-aa-equivalentLabels" */ 232, /* "id-smime-aa-ets-CertificateRefs" */ 233, /* "id-smime-aa-ets-RevocationRefs" */ 238, /* "id-smime-aa-ets-archiveTimeStamp" */ 237, /* "id-smime-aa-ets-certCRLTimestamp" */ 234, /* "id-smime-aa-ets-certValues" */ 227, /* "id-smime-aa-ets-commitmentType" */ 231, /* "id-smime-aa-ets-contentTimestamp" */ 236, /* "id-smime-aa-ets-escTimeStamp" */ 230, /* "id-smime-aa-ets-otherSigCert" */ 235, /* "id-smime-aa-ets-revocationValues" */ 226, /* "id-smime-aa-ets-sigPolicyId" */ 229, /* "id-smime-aa-ets-signerAttr" */ 228, /* "id-smime-aa-ets-signerLocation" */ 219, /* "id-smime-aa-macValue" */ 214, /* "id-smime-aa-mlExpandHistory" */ 216, /* "id-smime-aa-msgSigDigest" */ 212, /* "id-smime-aa-receiptRequest" */ 213, /* "id-smime-aa-securityLabel" */ 239, /* "id-smime-aa-signatureType" */ 223, /* "id-smime-aa-signingCertificate" */ 1086, /* "id-smime-aa-signingCertificateV2" */ 224, /* "id-smime-aa-smimeEncryptCerts" */ 225, /* "id-smime-aa-timeStampToken" */ 192, /* "id-smime-alg" */ 243, /* "id-smime-alg-3DESwrap" */ 246, /* "id-smime-alg-CMS3DESwrap" */ 247, /* "id-smime-alg-CMSRC2wrap" */ 245, /* "id-smime-alg-ESDH" */ 241, /* "id-smime-alg-ESDHwith3DES" */ 242, /* "id-smime-alg-ESDHwithRC2" */ 244, /* "id-smime-alg-RC2wrap" */ 193, /* "id-smime-cd" */ 248, /* "id-smime-cd-ldap" */ 190, /* "id-smime-ct" */ 210, /* "id-smime-ct-DVCSRequestData" */ 211, /* "id-smime-ct-DVCSResponseData" */ 208, /* "id-smime-ct-TDTInfo" */ 207, /* "id-smime-ct-TSTInfo" */ 205, /* "id-smime-ct-authData" */ 1059, /* "id-smime-ct-authEnvelopedData" */ 786, /* "id-smime-ct-compressedData" */ 1058, /* "id-smime-ct-contentCollection" */ 209, /* "id-smime-ct-contentInfo" */ 206, /* "id-smime-ct-publishCert" */ 204, /* "id-smime-ct-receipt" */ 195, /* "id-smime-cti" */ 255, /* "id-smime-cti-ets-proofOfApproval" */ 256, /* "id-smime-cti-ets-proofOfCreation" */ 253, /* "id-smime-cti-ets-proofOfDelivery" */ 251, /* "id-smime-cti-ets-proofOfOrigin" */ 252, /* "id-smime-cti-ets-proofOfReceipt" */ 254, /* "id-smime-cti-ets-proofOfSender" */ 189, /* "id-smime-mod" */ 196, /* "id-smime-mod-cms" */ 197, /* "id-smime-mod-ess" */ 202, /* "id-smime-mod-ets-eSigPolicy-88" */ 203, /* "id-smime-mod-ets-eSigPolicy-97" */ 200, /* "id-smime-mod-ets-eSignature-88" */ 201, /* "id-smime-mod-ets-eSignature-97" */ 199, /* "id-smime-mod-msg-v3" */ 198, /* "id-smime-mod-oid" */ 194, /* "id-smime-spq" */ 250, /* "id-smime-spq-ets-sqt-unotice" */ 249, /* "id-smime-spq-ets-sqt-uri" */ 974, /* "id-tc26" */ 991, /* "id-tc26-agreement" */ 992, /* "id-tc26-agreement-gost-3410-2012-256" */ 993, /* "id-tc26-agreement-gost-3410-2012-512" */ 977, /* "id-tc26-algorithms" */ 990, /* "id-tc26-cipher" */ 1001, /* "id-tc26-cipher-constants" */ 1176, /* "id-tc26-cipher-gostr3412-2015-kuznyechik" */ 1177, /* "id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm" */ 1178, /* "id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm-omac" */ 1173, /* "id-tc26-cipher-gostr3412-2015-magma" */ 1174, /* "id-tc26-cipher-gostr3412-2015-magma-ctracpkm" */ 1175, /* "id-tc26-cipher-gostr3412-2015-magma-ctracpkm-omac" */ 994, /* "id-tc26-constants" */ 981, /* "id-tc26-digest" */ 1000, /* "id-tc26-digest-constants" */ 1002, /* "id-tc26-gost-28147-constants" */ 1147, /* "id-tc26-gost-3410-2012-256-constants" */ 996, /* "id-tc26-gost-3410-2012-512-constants" */ 987, /* "id-tc26-mac" */ 978, /* "id-tc26-sign" */ 995, /* "id-tc26-sign-constants" */ 984, /* "id-tc26-signwithdigest" */ 1179, /* "id-tc26-wrap" */ 1182, /* "id-tc26-wrap-gostr3412-2015-kuznyechik" */ 1183, /* "id-tc26-wrap-gostr3412-2015-kuznyechik-kexp15" */ 1180, /* "id-tc26-wrap-gostr3412-2015-magma" */ 1181, /* "id-tc26-wrap-gostr3412-2015-magma-kexp15" */ 34, /* "idea-cbc" */ 35, /* "idea-cfb" */ 36, /* "idea-ecb" */ 46, /* "idea-ofb" */ 676, /* "identified-organization" */ 1170, /* "ieee" */ 461, /* "info" */ 101, /* "initials" */ 869, /* "internationaliSDNNumber" */ 1022, /* "ipsec Internet Key Exchange" */ 749, /* "ipsec3" */ 750, /* "ipsec4" */ 181, /* "iso" */ 623, /* "issuer capabilities" */ 645, /* "itu-t" */ 492, /* "janetMailbox" */ 646, /* "joint-iso-itu-t" */ 957, /* "jurisdictionCountryName" */ 955, /* "jurisdictionLocalityName" */ 956, /* "jurisdictionStateOrProvinceName" */ 150, /* "keyBag" */ 773, /* "kisa" */ 1063, /* "kx-any" */ 1039, /* "kx-dhe" */ 1041, /* "kx-dhe-psk" */ 1038, /* "kx-ecdhe" */ 1040, /* "kx-ecdhe-psk" */ 1045, /* "kx-gost" */ 1043, /* "kx-psk" */ 1037, /* "kx-rsa" */ 1042, /* "kx-rsa-psk" */ 1044, /* "kx-srp" */ 477, /* "lastModifiedBy" */ 476, /* "lastModifiedTime" */ 157, /* "localKeyID" */ 15, /* "localityName" */ 480, /* "mXRecord" */ 1190, /* "magma-cbc" */ 1191, /* "magma-cfb" */ 1188, /* "magma-ctr" */ 1187, /* "magma-ecb" */ 1192, /* "magma-mac" */ 1189, /* "magma-ofb" */ 493, /* "mailPreferenceOption" */ 467, /* "manager" */ 3, /* "md2" */ 7, /* "md2WithRSAEncryption" */ 257, /* "md4" */ 396, /* "md4WithRSAEncryption" */ 4, /* "md5" */ 114, /* "md5-sha1" */ 104, /* "md5WithRSA" */ 8, /* "md5WithRSAEncryption" */ 95, /* "mdc2" */ 96, /* "mdc2WithRSA" */ 875, /* "member" */ 602, /* "merchant initiated auth" */ 514, /* "message extensions" */ 51, /* "messageDigest" */ 911, /* "mgf1" */ 506, /* "mime-mhs-bodies" */ 505, /* "mime-mhs-headings" */ 488, /* "mobileTelephoneNumber" */ 481, /* "nSRecord" */ 173, /* "name" */ 681, /* "onBasis" */ 379, /* "org" */ 1089, /* "organizationIdentifier" */ 17, /* "organizationName" */ 491, /* "organizationalStatus" */ 18, /* "organizationalUnitName" */ 1141, /* "oscca" */ 475, /* "otherMailbox" */ 876, /* "owner" */ 935, /* "pSpecified" */ 489, /* "pagerTelephoneNumber" */ 782, /* "password based MAC" */ 374, /* "path" */ 621, /* "payment gateway capabilities" */ 9, /* "pbeWithMD2AndDES-CBC" */ 168, /* "pbeWithMD2AndRC2-CBC" */ 112, /* "pbeWithMD5AndCast5CBC" */ 10, /* "pbeWithMD5AndDES-CBC" */ 169, /* "pbeWithMD5AndRC2-CBC" */ 148, /* "pbeWithSHA1And128BitRC2-CBC" */ 144, /* "pbeWithSHA1And128BitRC4" */ 147, /* "pbeWithSHA1And2-KeyTripleDES-CBC" */ 146, /* "pbeWithSHA1And3-KeyTripleDES-CBC" */ 149, /* "pbeWithSHA1And40BitRC2-CBC" */ 145, /* "pbeWithSHA1And40BitRC4" */ 170, /* "pbeWithSHA1AndDES-CBC" */ 68, /* "pbeWithSHA1AndRC2-CBC" */ 499, /* "personalSignature" */ 487, /* "personalTitle" */ 464, /* "photo" */ 863, /* "physicalDeliveryOfficeName" */ 437, /* "pilot" */ 439, /* "pilotAttributeSyntax" */ 438, /* "pilotAttributeType" */ 479, /* "pilotAttributeType27" */ 456, /* "pilotDSA" */ 441, /* "pilotGroups" */ 444, /* "pilotObject" */ 440, /* "pilotObjectClass" */ 455, /* "pilotOrganization" */ 445, /* "pilotPerson" */ 186, /* "pkcs1" */ 27, /* "pkcs3" */ 187, /* "pkcs5" */ 20, /* "pkcs7" */ 21, /* "pkcs7-data" */ 25, /* "pkcs7-digestData" */ 26, /* "pkcs7-encryptedData" */ 23, /* "pkcs7-envelopedData" */ 24, /* "pkcs7-signedAndEnvelopedData" */ 22, /* "pkcs7-signedData" */ 151, /* "pkcs8ShroudedKeyBag" */ 47, /* "pkcs9" */ 1061, /* "poly1305" */ 862, /* "postOfficeBox" */ 861, /* "postalAddress" */ 661, /* "postalCode" */ 683, /* "ppBasis" */ 872, /* "preferredDeliveryMethod" */ 873, /* "presentationAddress" */ 406, /* "prime-field" */ 409, /* "prime192v1" */ 410, /* "prime192v2" */ 411, /* "prime192v3" */ 412, /* "prime239v1" */ 413, /* "prime239v2" */ 414, /* "prime239v3" */ 415, /* "prime256v1" */ 886, /* "protocolInformation" */ 510, /* "pseudonym" */ 435, /* "pss" */ 286, /* "qcStatements" */ 457, /* "qualityLabelledData" */ 450, /* "rFC822localPart" */ 98, /* "rc2-40-cbc" */ 166, /* "rc2-64-cbc" */ 37, /* "rc2-cbc" */ 39, /* "rc2-cfb" */ 38, /* "rc2-ecb" */ 40, /* "rc2-ofb" */ 5, /* "rc4" */ 97, /* "rc4-40" */ 915, /* "rc4-hmac-md5" */ 120, /* "rc5-cbc" */ 122, /* "rc5-cfb" */ 121, /* "rc5-ecb" */ 123, /* "rc5-ofb" */ 870, /* "registeredAddress" */ 460, /* "rfc822Mailbox" */ 117, /* "ripemd160" */ 119, /* "ripemd160WithRSA" */ 400, /* "role" */ 877, /* "roleOccupant" */ 448, /* "room" */ 463, /* "roomNumber" */ 19, /* "rsa" */ 6, /* "rsaEncryption" */ 644, /* "rsaOAEPEncryptionSET" */ 377, /* "rsaSignature" */ 919, /* "rsaesOaep" */ 912, /* "rsassaPss" */ 482, /* "sOARecord" */ 155, /* "safeContentsBag" */ 291, /* "sbgp-autonomousSysNum" */ 290, /* "sbgp-ipAddrBlock" */ 292, /* "sbgp-routerIdentifier" */ 973, /* "scrypt" */ 159, /* "sdsiCertificate" */ 859, /* "searchGuide" */ 704, /* "secp112r1" */ 705, /* "secp112r2" */ 706, /* "secp128r1" */ 707, /* "secp128r2" */ 708, /* "secp160k1" */ 709, /* "secp160r1" */ 710, /* "secp160r2" */ 711, /* "secp192k1" */ 712, /* "secp224k1" */ 713, /* "secp224r1" */ 714, /* "secp256k1" */ 715, /* "secp384r1" */ 716, /* "secp521r1" */ 154, /* "secretBag" */ 474, /* "secretary" */ 717, /* "sect113r1" */ 718, /* "sect113r2" */ 719, /* "sect131r1" */ 720, /* "sect131r2" */ 721, /* "sect163k1" */ 722, /* "sect163r1" */ 723, /* "sect163r2" */ 724, /* "sect193r1" */ 725, /* "sect193r2" */ 726, /* "sect233k1" */ 727, /* "sect233r1" */ 728, /* "sect239k1" */ 729, /* "sect283k1" */ 730, /* "sect283r1" */ 731, /* "sect409k1" */ 732, /* "sect409r1" */ 733, /* "sect571k1" */ 734, /* "sect571r1" */ 635, /* "secure device signature" */ 878, /* "seeAlso" */ 777, /* "seed-cbc" */ 779, /* "seed-cfb" */ 776, /* "seed-ecb" */ 778, /* "seed-ofb" */ 105, /* "serialNumber" */ 625, /* "set-addPolicy" */ 515, /* "set-attr" */ 518, /* "set-brand" */ 638, /* "set-brand-AmericanExpress" */ 637, /* "set-brand-Diners" */ 636, /* "set-brand-IATA-ATA" */ 639, /* "set-brand-JCB" */ 641, /* "set-brand-MasterCard" */ 642, /* "set-brand-Novus" */ 640, /* "set-brand-Visa" */ 516, /* "set-policy" */ 607, /* "set-policy-root" */ 624, /* "set-rootKeyThumb" */ 620, /* "setAttr-Cert" */ 628, /* "setAttr-IssCap-CVM" */ 630, /* "setAttr-IssCap-Sig" */ 629, /* "setAttr-IssCap-T2" */ 627, /* "setAttr-Token-B0Prime" */ 626, /* "setAttr-Token-EMV" */ 622, /* "setAttr-TokenType" */ 619, /* "setCext-IssuerCapabilities" */ 615, /* "setCext-PGWYcapabilities" */ 616, /* "setCext-TokenIdentifier" */ 618, /* "setCext-TokenType" */ 617, /* "setCext-Track2Data" */ 611, /* "setCext-cCertRequired" */ 609, /* "setCext-certType" */ 608, /* "setCext-hashedRoot" */ 610, /* "setCext-merchData" */ 613, /* "setCext-setExt" */ 614, /* "setCext-setQualf" */ 612, /* "setCext-tunneling" */ 540, /* "setct-AcqCardCodeMsg" */ 576, /* "setct-AcqCardCodeMsgTBE" */ 570, /* "setct-AuthReqTBE" */ 534, /* "setct-AuthReqTBS" */ 527, /* "setct-AuthResBaggage" */ 571, /* "setct-AuthResTBE" */ 572, /* "setct-AuthResTBEX" */ 535, /* "setct-AuthResTBS" */ 536, /* "setct-AuthResTBSX" */ 528, /* "setct-AuthRevReqBaggage" */ 577, /* "setct-AuthRevReqTBE" */ 541, /* "setct-AuthRevReqTBS" */ 529, /* "setct-AuthRevResBaggage" */ 542, /* "setct-AuthRevResData" */ 578, /* "setct-AuthRevResTBE" */ 579, /* "setct-AuthRevResTBEB" */ 543, /* "setct-AuthRevResTBS" */ 573, /* "setct-AuthTokenTBE" */ 537, /* "setct-AuthTokenTBS" */ 600, /* "setct-BCIDistributionTBS" */ 558, /* "setct-BatchAdminReqData" */ 592, /* "setct-BatchAdminReqTBE" */ 559, /* "setct-BatchAdminResData" */ 593, /* "setct-BatchAdminResTBE" */ 599, /* "setct-CRLNotificationResTBS" */ 598, /* "setct-CRLNotificationTBS" */ 580, /* "setct-CapReqTBE" */ 581, /* "setct-CapReqTBEX" */ 544, /* "setct-CapReqTBS" */ 545, /* "setct-CapReqTBSX" */ 546, /* "setct-CapResData" */ 582, /* "setct-CapResTBE" */ 583, /* "setct-CapRevReqTBE" */ 584, /* "setct-CapRevReqTBEX" */ 547, /* "setct-CapRevReqTBS" */ 548, /* "setct-CapRevReqTBSX" */ 549, /* "setct-CapRevResData" */ 585, /* "setct-CapRevResTBE" */ 538, /* "setct-CapTokenData" */ 530, /* "setct-CapTokenSeq" */ 574, /* "setct-CapTokenTBE" */ 575, /* "setct-CapTokenTBEX" */ 539, /* "setct-CapTokenTBS" */ 560, /* "setct-CardCInitResTBS" */ 566, /* "setct-CertInqReqTBS" */ 563, /* "setct-CertReqData" */ 595, /* "setct-CertReqTBE" */ 596, /* "setct-CertReqTBEX" */ 564, /* "setct-CertReqTBS" */ 565, /* "setct-CertResData" */ 597, /* "setct-CertResTBE" */ 586, /* "setct-CredReqTBE" */ 587, /* "setct-CredReqTBEX" */ 550, /* "setct-CredReqTBS" */ 551, /* "setct-CredReqTBSX" */ 552, /* "setct-CredResData" */ 588, /* "setct-CredResTBE" */ 589, /* "setct-CredRevReqTBE" */ 590, /* "setct-CredRevReqTBEX" */ 553, /* "setct-CredRevReqTBS" */ 554, /* "setct-CredRevReqTBSX" */ 555, /* "setct-CredRevResData" */ 591, /* "setct-CredRevResTBE" */ 567, /* "setct-ErrorTBS" */ 526, /* "setct-HODInput" */ 561, /* "setct-MeAqCInitResTBS" */ 522, /* "setct-OIData" */ 519, /* "setct-PANData" */ 521, /* "setct-PANOnly" */ 520, /* "setct-PANToken" */ 556, /* "setct-PCertReqData" */ 557, /* "setct-PCertResTBS" */ 523, /* "setct-PI" */ 532, /* "setct-PI-TBS" */ 524, /* "setct-PIData" */ 525, /* "setct-PIDataUnsigned" */ 568, /* "setct-PIDualSignedTBE" */ 569, /* "setct-PIUnsignedTBE" */ 531, /* "setct-PInitResData" */ 533, /* "setct-PResData" */ 594, /* "setct-RegFormReqTBE" */ 562, /* "setct-RegFormResTBS" */ 604, /* "setext-pinAny" */ 603, /* "setext-pinSecure" */ 605, /* "setext-track2" */ 41, /* "sha" */ 64, /* "sha1" */ 115, /* "sha1WithRSA" */ 65, /* "sha1WithRSAEncryption" */ 675, /* "sha224" */ 671, /* "sha224WithRSAEncryption" */ 672, /* "sha256" */ 668, /* "sha256WithRSAEncryption" */ 1096, /* "sha3-224" */ 1097, /* "sha3-256" */ 1098, /* "sha3-384" */ 1099, /* "sha3-512" */ 673, /* "sha384" */ 669, /* "sha384WithRSAEncryption" */ 674, /* "sha512" */ 1094, /* "sha512-224" */ 1145, /* "sha512-224WithRSAEncryption" */ 1095, /* "sha512-256" */ 1146, /* "sha512-256WithRSAEncryption" */ 670, /* "sha512WithRSAEncryption" */ 42, /* "shaWithRSAEncryption" */ 1100, /* "shake128" */ 1101, /* "shake256" */ 52, /* "signingTime" */ 454, /* "simpleSecurityObject" */ 496, /* "singleLevelQuality" */ 1062, /* "siphash" */ 1142, /* "sm-scheme" */ 1172, /* "sm2" */ 1143, /* "sm3" */ 1144, /* "sm3WithRSAEncryption" */ 1134, /* "sm4-cbc" */ 1137, /* "sm4-cfb" */ 1136, /* "sm4-cfb1" */ 1138, /* "sm4-cfb8" */ 1139, /* "sm4-ctr" */ 1133, /* "sm4-ecb" */ 1135, /* "sm4-ofb" */ 16, /* "stateOrProvinceName" */ 660, /* "streetAddress" */ 498, /* "subtreeMaximumQuality" */ 497, /* "subtreeMinimumQuality" */ 890, /* "supportedAlgorithms" */ 874, /* "supportedApplicationContext" */ 100, /* "surname" */ 864, /* "telephoneNumber" */ 866, /* "teletexTerminalIdentifier" */ 865, /* "telexNumber" */ 459, /* "textEncodedORAddress" */ 293, /* "textNotice" */ 106, /* "title" */ 1021, /* "tls1-prf" */ 682, /* "tpBasis" */ 1151, /* "ua-pki" */ 436, /* "ucl" */ 0, /* "undefined" */ 102, /* "uniqueIdentifier" */ 888, /* "uniqueMember" */ 55, /* "unstructuredAddress" */ 49, /* "unstructuredName" */ 880, /* "userCertificate" */ 465, /* "userClass" */ 458, /* "userId" */ 879, /* "userPassword" */ 373, /* "valid" */ 678, /* "wap" */ 679, /* "wap-wsg" */ 735, /* "wap-wsg-idm-ecid-wtls1" */ 743, /* "wap-wsg-idm-ecid-wtls10" */ 744, /* "wap-wsg-idm-ecid-wtls11" */ 745, /* "wap-wsg-idm-ecid-wtls12" */ 736, /* "wap-wsg-idm-ecid-wtls3" */ 737, /* "wap-wsg-idm-ecid-wtls4" */ 738, /* "wap-wsg-idm-ecid-wtls5" */ 739, /* "wap-wsg-idm-ecid-wtls6" */ 740, /* "wap-wsg-idm-ecid-wtls7" */ 741, /* "wap-wsg-idm-ecid-wtls8" */ 742, /* "wap-wsg-idm-ecid-wtls9" */ 804, /* "whirlpool" */ 868, /* "x121Address" */ 503, /* "x500UniqueIdentifier" */ 158, /* "x509Certificate" */ 160, /* "x509Crl" */ 125, /* "zlib compression" */ }; #define NUM_OBJ 1071 static const unsigned int obj_objs[NUM_OBJ] = { 0, /* OBJ_undef 0 */ 181, /* OBJ_iso 1 */ 393, /* OBJ_joint_iso_ccitt OBJ_joint_iso_itu_t */ 404, /* OBJ_ccitt OBJ_itu_t */ 645, /* OBJ_itu_t 0 */ 646, /* OBJ_joint_iso_itu_t 2 */ 434, /* OBJ_data 0 9 */ 182, /* OBJ_member_body 1 2 */ 379, /* OBJ_org 1 3 */ 676, /* OBJ_identified_organization 1 3 */ 11, /* OBJ_X500 2 5 */ 647, /* OBJ_international_organizations 2 23 */ 380, /* OBJ_dod 1 3 6 */ 1170, /* OBJ_ieee 1 3 111 */ 12, /* OBJ_X509 2 5 4 */ 378, /* OBJ_X500algorithms 2 5 8 */ 81, /* OBJ_id_ce 2 5 29 */ 512, /* OBJ_id_set 2 23 42 */ 678, /* OBJ_wap 2 23 43 */ 435, /* OBJ_pss 0 9 2342 */ 1140, /* OBJ_ISO_CN 1 2 156 */ 1150, /* OBJ_ISO_UA 1 2 804 */ 183, /* OBJ_ISO_US 1 2 840 */ 381, /* OBJ_iana 1 3 6 1 */ 1034, /* OBJ_X25519 1 3 101 110 */ 1035, /* OBJ_X448 1 3 101 111 */ 1087, /* OBJ_ED25519 1 3 101 112 */ 1088, /* OBJ_ED448 1 3 101 113 */ 677, /* OBJ_certicom_arc 1 3 132 */ 394, /* OBJ_selected_attribute_types 2 5 1 5 */ 13, /* OBJ_commonName 2 5 4 3 */ 100, /* OBJ_surname 2 5 4 4 */ 105, /* OBJ_serialNumber 2 5 4 5 */ 14, /* OBJ_countryName 2 5 4 6 */ 15, /* OBJ_localityName 2 5 4 7 */ 16, /* OBJ_stateOrProvinceName 2 5 4 8 */ 660, /* OBJ_streetAddress 2 5 4 9 */ 17, /* OBJ_organizationName 2 5 4 10 */ 18, /* OBJ_organizationalUnitName 2 5 4 11 */ 106, /* OBJ_title 2 5 4 12 */ 107, /* OBJ_description 2 5 4 13 */ 859, /* OBJ_searchGuide 2 5 4 14 */ 860, /* OBJ_businessCategory 2 5 4 15 */ 861, /* OBJ_postalAddress 2 5 4 16 */ 661, /* OBJ_postalCode 2 5 4 17 */ 862, /* OBJ_postOfficeBox 2 5 4 18 */ 863, /* OBJ_physicalDeliveryOfficeName 2 5 4 19 */ 864, /* OBJ_telephoneNumber 2 5 4 20 */ 865, /* OBJ_telexNumber 2 5 4 21 */ 866, /* OBJ_teletexTerminalIdentifier 2 5 4 22 */ 867, /* OBJ_facsimileTelephoneNumber 2 5 4 23 */ 868, /* OBJ_x121Address 2 5 4 24 */ 869, /* OBJ_internationaliSDNNumber 2 5 4 25 */ 870, /* OBJ_registeredAddress 2 5 4 26 */ 871, /* OBJ_destinationIndicator 2 5 4 27 */ 872, /* OBJ_preferredDeliveryMethod 2 5 4 28 */ 873, /* OBJ_presentationAddress 2 5 4 29 */ 874, /* OBJ_supportedApplicationContext 2 5 4 30 */ 875, /* OBJ_member 2 5 4 31 */ 876, /* OBJ_owner 2 5 4 32 */ 877, /* OBJ_roleOccupant 2 5 4 33 */ 878, /* OBJ_seeAlso 2 5 4 34 */ 879, /* OBJ_userPassword 2 5 4 35 */ 880, /* OBJ_userCertificate 2 5 4 36 */ 881, /* OBJ_cACertificate 2 5 4 37 */ 882, /* OBJ_authorityRevocationList 2 5 4 38 */ 883, /* OBJ_certificateRevocationList 2 5 4 39 */ 884, /* OBJ_crossCertificatePair 2 5 4 40 */ 173, /* OBJ_name 2 5 4 41 */ 99, /* OBJ_givenName 2 5 4 42 */ 101, /* OBJ_initials 2 5 4 43 */ 509, /* OBJ_generationQualifier 2 5 4 44 */ 503, /* OBJ_x500UniqueIdentifier 2 5 4 45 */ 174, /* OBJ_dnQualifier 2 5 4 46 */ 885, /* OBJ_enhancedSearchGuide 2 5 4 47 */ 886, /* OBJ_protocolInformation 2 5 4 48 */ 887, /* OBJ_distinguishedName 2 5 4 49 */ 888, /* OBJ_uniqueMember 2 5 4 50 */ 889, /* OBJ_houseIdentifier 2 5 4 51 */ 890, /* OBJ_supportedAlgorithms 2 5 4 52 */ 891, /* OBJ_deltaRevocationList 2 5 4 53 */ 892, /* OBJ_dmdName 2 5 4 54 */ 510, /* OBJ_pseudonym 2 5 4 65 */ 400, /* OBJ_role 2 5 4 72 */ 1089, /* OBJ_organizationIdentifier 2 5 4 97 */ 1090, /* OBJ_countryCode3c 2 5 4 98 */ 1091, /* OBJ_countryCode3n 2 5 4 99 */ 1092, /* OBJ_dnsName 2 5 4 100 */ 769, /* OBJ_subject_directory_attributes 2 5 29 9 */ 82, /* OBJ_subject_key_identifier 2 5 29 14 */ 83, /* OBJ_key_usage 2 5 29 15 */ 84, /* OBJ_private_key_usage_period 2 5 29 16 */ 85, /* OBJ_subject_alt_name 2 5 29 17 */ 86, /* OBJ_issuer_alt_name 2 5 29 18 */ 87, /* OBJ_basic_constraints 2 5 29 19 */ 88, /* OBJ_crl_number 2 5 29 20 */ 141, /* OBJ_crl_reason 2 5 29 21 */ 430, /* OBJ_hold_instruction_code 2 5 29 23 */ 142, /* OBJ_invalidity_date 2 5 29 24 */ 140, /* OBJ_delta_crl 2 5 29 27 */ 770, /* OBJ_issuing_distribution_point 2 5 29 28 */ 771, /* OBJ_certificate_issuer 2 5 29 29 */ 666, /* OBJ_name_constraints 2 5 29 30 */ 103, /* OBJ_crl_distribution_points 2 5 29 31 */ 89, /* OBJ_certificate_policies 2 5 29 32 */ 747, /* OBJ_policy_mappings 2 5 29 33 */ 90, /* OBJ_authority_key_identifier 2 5 29 35 */ 401, /* OBJ_policy_constraints 2 5 29 36 */ 126, /* OBJ_ext_key_usage 2 5 29 37 */ 857, /* OBJ_freshest_crl 2 5 29 46 */ 748, /* OBJ_inhibit_any_policy 2 5 29 54 */ 402, /* OBJ_target_information 2 5 29 55 */ 403, /* OBJ_no_rev_avail 2 5 29 56 */ 513, /* OBJ_set_ctype 2 23 42 0 */ 514, /* OBJ_set_msgExt 2 23 42 1 */ 515, /* OBJ_set_attr 2 23 42 3 */ 516, /* OBJ_set_policy 2 23 42 5 */ 517, /* OBJ_set_certExt 2 23 42 7 */ 518, /* OBJ_set_brand 2 23 42 8 */ 679, /* OBJ_wap_wsg 2 23 43 1 */ 382, /* OBJ_Directory 1 3 6 1 1 */ 383, /* OBJ_Management 1 3 6 1 2 */ 384, /* OBJ_Experimental 1 3 6 1 3 */ 385, /* OBJ_Private 1 3 6 1 4 */ 386, /* OBJ_Security 1 3 6 1 5 */ 387, /* OBJ_SNMPv2 1 3 6 1 6 */ 388, /* OBJ_Mail 1 3 6 1 7 */ 376, /* OBJ_algorithm 1 3 14 3 2 */ 395, /* OBJ_clearance 2 5 1 5 55 */ 19, /* OBJ_rsa 2 5 8 1 1 */ 96, /* OBJ_mdc2WithRSA 2 5 8 3 100 */ 95, /* OBJ_mdc2 2 5 8 3 101 */ 746, /* OBJ_any_policy 2 5 29 32 0 */ 910, /* OBJ_anyExtendedKeyUsage 2 5 29 37 0 */ 519, /* OBJ_setct_PANData 2 23 42 0 0 */ 520, /* OBJ_setct_PANToken 2 23 42 0 1 */ 521, /* OBJ_setct_PANOnly 2 23 42 0 2 */ 522, /* OBJ_setct_OIData 2 23 42 0 3 */ 523, /* OBJ_setct_PI 2 23 42 0 4 */ 524, /* OBJ_setct_PIData 2 23 42 0 5 */ 525, /* OBJ_setct_PIDataUnsigned 2 23 42 0 6 */ 526, /* OBJ_setct_HODInput 2 23 42 0 7 */ 527, /* OBJ_setct_AuthResBaggage 2 23 42 0 8 */ 528, /* OBJ_setct_AuthRevReqBaggage 2 23 42 0 9 */ 529, /* OBJ_setct_AuthRevResBaggage 2 23 42 0 10 */ 530, /* OBJ_setct_CapTokenSeq 2 23 42 0 11 */ 531, /* OBJ_setct_PInitResData 2 23 42 0 12 */ 532, /* OBJ_setct_PI_TBS 2 23 42 0 13 */ 533, /* OBJ_setct_PResData 2 23 42 0 14 */ 534, /* OBJ_setct_AuthReqTBS 2 23 42 0 16 */ 535, /* OBJ_setct_AuthResTBS 2 23 42 0 17 */ 536, /* OBJ_setct_AuthResTBSX 2 23 42 0 18 */ 537, /* OBJ_setct_AuthTokenTBS 2 23 42 0 19 */ 538, /* OBJ_setct_CapTokenData 2 23 42 0 20 */ 539, /* OBJ_setct_CapTokenTBS 2 23 42 0 21 */ 540, /* OBJ_setct_AcqCardCodeMsg 2 23 42 0 22 */ 541, /* OBJ_setct_AuthRevReqTBS 2 23 42 0 23 */ 542, /* OBJ_setct_AuthRevResData 2 23 42 0 24 */ 543, /* OBJ_setct_AuthRevResTBS 2 23 42 0 25 */ 544, /* OBJ_setct_CapReqTBS 2 23 42 0 26 */ 545, /* OBJ_setct_CapReqTBSX 2 23 42 0 27 */ 546, /* OBJ_setct_CapResData 2 23 42 0 28 */ 547, /* OBJ_setct_CapRevReqTBS 2 23 42 0 29 */ 548, /* OBJ_setct_CapRevReqTBSX 2 23 42 0 30 */ 549, /* OBJ_setct_CapRevResData 2 23 42 0 31 */ 550, /* OBJ_setct_CredReqTBS 2 23 42 0 32 */ 551, /* OBJ_setct_CredReqTBSX 2 23 42 0 33 */ 552, /* OBJ_setct_CredResData 2 23 42 0 34 */ 553, /* OBJ_setct_CredRevReqTBS 2 23 42 0 35 */ 554, /* OBJ_setct_CredRevReqTBSX 2 23 42 0 36 */ 555, /* OBJ_setct_CredRevResData 2 23 42 0 37 */ 556, /* OBJ_setct_PCertReqData 2 23 42 0 38 */ 557, /* OBJ_setct_PCertResTBS 2 23 42 0 39 */ 558, /* OBJ_setct_BatchAdminReqData 2 23 42 0 40 */ 559, /* OBJ_setct_BatchAdminResData 2 23 42 0 41 */ 560, /* OBJ_setct_CardCInitResTBS 2 23 42 0 42 */ 561, /* OBJ_setct_MeAqCInitResTBS 2 23 42 0 43 */ 562, /* OBJ_setct_RegFormResTBS 2 23 42 0 44 */ 563, /* OBJ_setct_CertReqData 2 23 42 0 45 */ 564, /* OBJ_setct_CertReqTBS 2 23 42 0 46 */ 565, /* OBJ_setct_CertResData 2 23 42 0 47 */ 566, /* OBJ_setct_CertInqReqTBS 2 23 42 0 48 */ 567, /* OBJ_setct_ErrorTBS 2 23 42 0 49 */ 568, /* OBJ_setct_PIDualSignedTBE 2 23 42 0 50 */ 569, /* OBJ_setct_PIUnsignedTBE 2 23 42 0 51 */ 570, /* OBJ_setct_AuthReqTBE 2 23 42 0 52 */ 571, /* OBJ_setct_AuthResTBE 2 23 42 0 53 */ 572, /* OBJ_setct_AuthResTBEX 2 23 42 0 54 */ 573, /* OBJ_setct_AuthTokenTBE 2 23 42 0 55 */ 574, /* OBJ_setct_CapTokenTBE 2 23 42 0 56 */ 575, /* OBJ_setct_CapTokenTBEX 2 23 42 0 57 */ 576, /* OBJ_setct_AcqCardCodeMsgTBE 2 23 42 0 58 */ 577, /* OBJ_setct_AuthRevReqTBE 2 23 42 0 59 */ 578, /* OBJ_setct_AuthRevResTBE 2 23 42 0 60 */ 579, /* OBJ_setct_AuthRevResTBEB 2 23 42 0 61 */ 580, /* OBJ_setct_CapReqTBE 2 23 42 0 62 */ 581, /* OBJ_setct_CapReqTBEX 2 23 42 0 63 */ 582, /* OBJ_setct_CapResTBE 2 23 42 0 64 */ 583, /* OBJ_setct_CapRevReqTBE 2 23 42 0 65 */ 584, /* OBJ_setct_CapRevReqTBEX 2 23 42 0 66 */ 585, /* OBJ_setct_CapRevResTBE 2 23 42 0 67 */ 586, /* OBJ_setct_CredReqTBE 2 23 42 0 68 */ 587, /* OBJ_setct_CredReqTBEX 2 23 42 0 69 */ 588, /* OBJ_setct_CredResTBE 2 23 42 0 70 */ 589, /* OBJ_setct_CredRevReqTBE 2 23 42 0 71 */ 590, /* OBJ_setct_CredRevReqTBEX 2 23 42 0 72 */ 591, /* OBJ_setct_CredRevResTBE 2 23 42 0 73 */ 592, /* OBJ_setct_BatchAdminReqTBE 2 23 42 0 74 */ 593, /* OBJ_setct_BatchAdminResTBE 2 23 42 0 75 */ 594, /* OBJ_setct_RegFormReqTBE 2 23 42 0 76 */ 595, /* OBJ_setct_CertReqTBE 2 23 42 0 77 */ 596, /* OBJ_setct_CertReqTBEX 2 23 42 0 78 */ 597, /* OBJ_setct_CertResTBE 2 23 42 0 79 */ 598, /* OBJ_setct_CRLNotificationTBS 2 23 42 0 80 */ 599, /* OBJ_setct_CRLNotificationResTBS 2 23 42 0 81 */ 600, /* OBJ_setct_BCIDistributionTBS 2 23 42 0 82 */ 601, /* OBJ_setext_genCrypt 2 23 42 1 1 */ 602, /* OBJ_setext_miAuth 2 23 42 1 3 */ 603, /* OBJ_setext_pinSecure 2 23 42 1 4 */ 604, /* OBJ_setext_pinAny 2 23 42 1 5 */ 605, /* OBJ_setext_track2 2 23 42 1 7 */ 606, /* OBJ_setext_cv 2 23 42 1 8 */ 620, /* OBJ_setAttr_Cert 2 23 42 3 0 */ 621, /* OBJ_setAttr_PGWYcap 2 23 42 3 1 */ 622, /* OBJ_setAttr_TokenType 2 23 42 3 2 */ 623, /* OBJ_setAttr_IssCap 2 23 42 3 3 */ 607, /* OBJ_set_policy_root 2 23 42 5 0 */ 608, /* OBJ_setCext_hashedRoot 2 23 42 7 0 */ 609, /* OBJ_setCext_certType 2 23 42 7 1 */ 610, /* OBJ_setCext_merchData 2 23 42 7 2 */ 611, /* OBJ_setCext_cCertRequired 2 23 42 7 3 */ 612, /* OBJ_setCext_tunneling 2 23 42 7 4 */ 613, /* OBJ_setCext_setExt 2 23 42 7 5 */ 614, /* OBJ_setCext_setQualf 2 23 42 7 6 */ 615, /* OBJ_setCext_PGWYcapabilities 2 23 42 7 7 */ 616, /* OBJ_setCext_TokenIdentifier 2 23 42 7 8 */ 617, /* OBJ_setCext_Track2Data 2 23 42 7 9 */ 618, /* OBJ_setCext_TokenType 2 23 42 7 10 */ 619, /* OBJ_setCext_IssuerCapabilities 2 23 42 7 11 */ 636, /* OBJ_set_brand_IATA_ATA 2 23 42 8 1 */ 640, /* OBJ_set_brand_Visa 2 23 42 8 4 */ 641, /* OBJ_set_brand_MasterCard 2 23 42 8 5 */ 637, /* OBJ_set_brand_Diners 2 23 42 8 30 */ 638, /* OBJ_set_brand_AmericanExpress 2 23 42 8 34 */ 639, /* OBJ_set_brand_JCB 2 23 42 8 35 */ 1141, /* OBJ_oscca 1 2 156 10197 */ 805, /* OBJ_cryptopro 1 2 643 2 2 */ 806, /* OBJ_cryptocom 1 2 643 2 9 */ 974, /* OBJ_id_tc26 1 2 643 7 1 */ 1005, /* OBJ_OGRN 1 2 643 100 1 */ 1006, /* OBJ_SNILS 1 2 643 100 3 */ 1007, /* OBJ_subjectSignTool 1 2 643 100 111 */ 1008, /* OBJ_issuerSignTool 1 2 643 100 112 */ 184, /* OBJ_X9_57 1 2 840 10040 */ 405, /* OBJ_ansi_X9_62 1 2 840 10045 */ 389, /* OBJ_Enterprises 1 3 6 1 4 1 */ 504, /* OBJ_mime_mhs 1 3 6 1 7 1 */ 104, /* OBJ_md5WithRSA 1 3 14 3 2 3 */ 29, /* OBJ_des_ecb 1 3 14 3 2 6 */ 31, /* OBJ_des_cbc 1 3 14 3 2 7 */ 45, /* OBJ_des_ofb64 1 3 14 3 2 8 */ 30, /* OBJ_des_cfb64 1 3 14 3 2 9 */ 377, /* OBJ_rsaSignature 1 3 14 3 2 11 */ 67, /* OBJ_dsa_2 1 3 14 3 2 12 */ 66, /* OBJ_dsaWithSHA 1 3 14 3 2 13 */ 42, /* OBJ_shaWithRSAEncryption 1 3 14 3 2 15 */ 32, /* OBJ_des_ede_ecb 1 3 14 3 2 17 */ 41, /* OBJ_sha 1 3 14 3 2 18 */ 64, /* OBJ_sha1 1 3 14 3 2 26 */ 70, /* OBJ_dsaWithSHA1_2 1 3 14 3 2 27 */ 115, /* OBJ_sha1WithRSA 1 3 14 3 2 29 */ 117, /* OBJ_ripemd160 1 3 36 3 2 1 */ 1093, /* OBJ_x509ExtAdmission 1 3 36 8 3 3 */ 143, /* OBJ_sxnet 1 3 101 1 4 1 */ 1171, /* OBJ_ieee_siswg 1 3 111 2 1619 */ 721, /* OBJ_sect163k1 1 3 132 0 1 */ 722, /* OBJ_sect163r1 1 3 132 0 2 */ 728, /* OBJ_sect239k1 1 3 132 0 3 */ 717, /* OBJ_sect113r1 1 3 132 0 4 */ 718, /* OBJ_sect113r2 1 3 132 0 5 */ 704, /* OBJ_secp112r1 1 3 132 0 6 */ 705, /* OBJ_secp112r2 1 3 132 0 7 */ 709, /* OBJ_secp160r1 1 3 132 0 8 */ 708, /* OBJ_secp160k1 1 3 132 0 9 */ 714, /* OBJ_secp256k1 1 3 132 0 10 */ 723, /* OBJ_sect163r2 1 3 132 0 15 */ 729, /* OBJ_sect283k1 1 3 132 0 16 */ 730, /* OBJ_sect283r1 1 3 132 0 17 */ 719, /* OBJ_sect131r1 1 3 132 0 22 */ 720, /* OBJ_sect131r2 1 3 132 0 23 */ 724, /* OBJ_sect193r1 1 3 132 0 24 */ 725, /* OBJ_sect193r2 1 3 132 0 25 */ 726, /* OBJ_sect233k1 1 3 132 0 26 */ 727, /* OBJ_sect233r1 1 3 132 0 27 */ 706, /* OBJ_secp128r1 1 3 132 0 28 */ 707, /* OBJ_secp128r2 1 3 132 0 29 */ 710, /* OBJ_secp160r2 1 3 132 0 30 */ 711, /* OBJ_secp192k1 1 3 132 0 31 */ 712, /* OBJ_secp224k1 1 3 132 0 32 */ 713, /* OBJ_secp224r1 1 3 132 0 33 */ 715, /* OBJ_secp384r1 1 3 132 0 34 */ 716, /* OBJ_secp521r1 1 3 132 0 35 */ 731, /* OBJ_sect409k1 1 3 132 0 36 */ 732, /* OBJ_sect409r1 1 3 132 0 37 */ 733, /* OBJ_sect571k1 1 3 132 0 38 */ 734, /* OBJ_sect571r1 1 3 132 0 39 */ 624, /* OBJ_set_rootKeyThumb 2 23 42 3 0 0 */ 625, /* OBJ_set_addPolicy 2 23 42 3 0 1 */ 626, /* OBJ_setAttr_Token_EMV 2 23 42 3 2 1 */ 627, /* OBJ_setAttr_Token_B0Prime 2 23 42 3 2 2 */ 628, /* OBJ_setAttr_IssCap_CVM 2 23 42 3 3 3 */ 629, /* OBJ_setAttr_IssCap_T2 2 23 42 3 3 4 */ 630, /* OBJ_setAttr_IssCap_Sig 2 23 42 3 3 5 */ 642, /* OBJ_set_brand_Novus 2 23 42 8 6011 */ 735, /* OBJ_wap_wsg_idm_ecid_wtls1 2 23 43 1 4 1 */ 736, /* OBJ_wap_wsg_idm_ecid_wtls3 2 23 43 1 4 3 */ 737, /* OBJ_wap_wsg_idm_ecid_wtls4 2 23 43 1 4 4 */ 738, /* OBJ_wap_wsg_idm_ecid_wtls5 2 23 43 1 4 5 */ 739, /* OBJ_wap_wsg_idm_ecid_wtls6 2 23 43 1 4 6 */ 740, /* OBJ_wap_wsg_idm_ecid_wtls7 2 23 43 1 4 7 */ 741, /* OBJ_wap_wsg_idm_ecid_wtls8 2 23 43 1 4 8 */ 742, /* OBJ_wap_wsg_idm_ecid_wtls9 2 23 43 1 4 9 */ 743, /* OBJ_wap_wsg_idm_ecid_wtls10 2 23 43 1 4 10 */ 744, /* OBJ_wap_wsg_idm_ecid_wtls11 2 23 43 1 4 11 */ 745, /* OBJ_wap_wsg_idm_ecid_wtls12 2 23 43 1 4 12 */ 804, /* OBJ_whirlpool 1 0 10118 3 0 55 */ 1142, /* OBJ_sm_scheme 1 2 156 10197 1 */ 773, /* OBJ_kisa 1 2 410 200004 */ 807, /* OBJ_id_GostR3411_94_with_GostR3410_2001 1 2 643 2 2 3 */ 808, /* OBJ_id_GostR3411_94_with_GostR3410_94 1 2 643 2 2 4 */ 809, /* OBJ_id_GostR3411_94 1 2 643 2 2 9 */ 810, /* OBJ_id_HMACGostR3411_94 1 2 643 2 2 10 */ 811, /* OBJ_id_GostR3410_2001 1 2 643 2 2 19 */ 812, /* OBJ_id_GostR3410_94 1 2 643 2 2 20 */ 813, /* OBJ_id_Gost28147_89 1 2 643 2 2 21 */ 815, /* OBJ_id_Gost28147_89_MAC 1 2 643 2 2 22 */ 816, /* OBJ_id_GostR3411_94_prf 1 2 643 2 2 23 */ 817, /* OBJ_id_GostR3410_2001DH 1 2 643 2 2 98 */ 818, /* OBJ_id_GostR3410_94DH 1 2 643 2 2 99 */ 977, /* OBJ_id_tc26_algorithms 1 2 643 7 1 1 */ 994, /* OBJ_id_tc26_constants 1 2 643 7 1 2 */ 1, /* OBJ_rsadsi 1 2 840 113549 */ 185, /* OBJ_X9cm 1 2 840 10040 4 */ 1031, /* OBJ_id_pkinit 1 3 6 1 5 2 3 */ 127, /* OBJ_id_pkix 1 3 6 1 5 5 7 */ 505, /* OBJ_mime_mhs_headings 1 3 6 1 7 1 1 */ 506, /* OBJ_mime_mhs_bodies 1 3 6 1 7 1 2 */ 119, /* OBJ_ripemd160WithRSA 1 3 36 3 3 1 2 */ 937, /* OBJ_dhSinglePass_stdDH_sha224kdf_scheme 1 3 132 1 11 0 */ 938, /* OBJ_dhSinglePass_stdDH_sha256kdf_scheme 1 3 132 1 11 1 */ 939, /* OBJ_dhSinglePass_stdDH_sha384kdf_scheme 1 3 132 1 11 2 */ 940, /* OBJ_dhSinglePass_stdDH_sha512kdf_scheme 1 3 132 1 11 3 */ 942, /* OBJ_dhSinglePass_cofactorDH_sha224kdf_scheme 1 3 132 1 14 0 */ 943, /* OBJ_dhSinglePass_cofactorDH_sha256kdf_scheme 1 3 132 1 14 1 */ 944, /* OBJ_dhSinglePass_cofactorDH_sha384kdf_scheme 1 3 132 1 14 2 */ 945, /* OBJ_dhSinglePass_cofactorDH_sha512kdf_scheme 1 3 132 1 14 3 */ 631, /* OBJ_setAttr_GenCryptgrm 2 23 42 3 3 3 1 */ 632, /* OBJ_setAttr_T2Enc 2 23 42 3 3 4 1 */ 633, /* OBJ_setAttr_T2cleartxt 2 23 42 3 3 4 2 */ 634, /* OBJ_setAttr_TokICCsig 2 23 42 3 3 5 1 */ 635, /* OBJ_setAttr_SecDevSig 2 23 42 3 3 5 2 */ 436, /* OBJ_ucl 0 9 2342 19200300 */ 820, /* OBJ_id_Gost28147_89_None_KeyMeshing 1 2 643 2 2 14 0 */ 819, /* OBJ_id_Gost28147_89_CryptoPro_KeyMeshing 1 2 643 2 2 14 1 */ 845, /* OBJ_id_GostR3410_94_a 1 2 643 2 2 20 1 */ 846, /* OBJ_id_GostR3410_94_aBis 1 2 643 2 2 20 2 */ 847, /* OBJ_id_GostR3410_94_b 1 2 643 2 2 20 3 */ 848, /* OBJ_id_GostR3410_94_bBis 1 2 643 2 2 20 4 */ 821, /* OBJ_id_GostR3411_94_TestParamSet 1 2 643 2 2 30 0 */ 822, /* OBJ_id_GostR3411_94_CryptoProParamSet 1 2 643 2 2 30 1 */ 823, /* OBJ_id_Gost28147_89_TestParamSet 1 2 643 2 2 31 0 */ 824, /* OBJ_id_Gost28147_89_CryptoPro_A_ParamSet 1 2 643 2 2 31 1 */ 825, /* OBJ_id_Gost28147_89_CryptoPro_B_ParamSet 1 2 643 2 2 31 2 */ 826, /* OBJ_id_Gost28147_89_CryptoPro_C_ParamSet 1 2 643 2 2 31 3 */ 827, /* OBJ_id_Gost28147_89_CryptoPro_D_ParamSet 1 2 643 2 2 31 4 */ 828, /* OBJ_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet 1 2 643 2 2 31 5 */ 829, /* OBJ_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet 1 2 643 2 2 31 6 */ 830, /* OBJ_id_Gost28147_89_CryptoPro_RIC_1_ParamSet 1 2 643 2 2 31 7 */ 831, /* OBJ_id_GostR3410_94_TestParamSet 1 2 643 2 2 32 0 */ 832, /* OBJ_id_GostR3410_94_CryptoPro_A_ParamSet 1 2 643 2 2 32 2 */ 833, /* OBJ_id_GostR3410_94_CryptoPro_B_ParamSet 1 2 643 2 2 32 3 */ 834, /* OBJ_id_GostR3410_94_CryptoPro_C_ParamSet 1 2 643 2 2 32 4 */ 835, /* OBJ_id_GostR3410_94_CryptoPro_D_ParamSet 1 2 643 2 2 32 5 */ 836, /* OBJ_id_GostR3410_94_CryptoPro_XchA_ParamSet 1 2 643 2 2 33 1 */ 837, /* OBJ_id_GostR3410_94_CryptoPro_XchB_ParamSet 1 2 643 2 2 33 2 */ 838, /* OBJ_id_GostR3410_94_CryptoPro_XchC_ParamSet 1 2 643 2 2 33 3 */ 839, /* OBJ_id_GostR3410_2001_TestParamSet 1 2 643 2 2 35 0 */ 840, /* OBJ_id_GostR3410_2001_CryptoPro_A_ParamSet 1 2 643 2 2 35 1 */ 841, /* OBJ_id_GostR3410_2001_CryptoPro_B_ParamSet 1 2 643 2 2 35 2 */ 842, /* OBJ_id_GostR3410_2001_CryptoPro_C_ParamSet 1 2 643 2 2 35 3 */ 843, /* OBJ_id_GostR3410_2001_CryptoPro_XchA_ParamSet 1 2 643 2 2 36 0 */ 844, /* OBJ_id_GostR3410_2001_CryptoPro_XchB_ParamSet 1 2 643 2 2 36 1 */ 978, /* OBJ_id_tc26_sign 1 2 643 7 1 1 1 */ 981, /* OBJ_id_tc26_digest 1 2 643 7 1 1 2 */ 984, /* OBJ_id_tc26_signwithdigest 1 2 643 7 1 1 3 */ 987, /* OBJ_id_tc26_mac 1 2 643 7 1 1 4 */ 990, /* OBJ_id_tc26_cipher 1 2 643 7 1 1 5 */ 991, /* OBJ_id_tc26_agreement 1 2 643 7 1 1 6 */ 1179, /* OBJ_id_tc26_wrap 1 2 643 7 1 1 7 */ 995, /* OBJ_id_tc26_sign_constants 1 2 643 7 1 2 1 */ 1000, /* OBJ_id_tc26_digest_constants 1 2 643 7 1 2 2 */ 1001, /* OBJ_id_tc26_cipher_constants 1 2 643 7 1 2 5 */ 1151, /* OBJ_ua_pki 1 2 804 2 1 1 1 */ 2, /* OBJ_pkcs 1 2 840 113549 1 */ 431, /* OBJ_hold_instruction_none 1 2 840 10040 2 1 */ 432, /* OBJ_hold_instruction_call_issuer 1 2 840 10040 2 2 */ 433, /* OBJ_hold_instruction_reject 1 2 840 10040 2 3 */ 116, /* OBJ_dsa 1 2 840 10040 4 1 */ 113, /* OBJ_dsaWithSHA1 1 2 840 10040 4 3 */ 406, /* OBJ_X9_62_prime_field 1 2 840 10045 1 1 */ 407, /* OBJ_X9_62_characteristic_two_field 1 2 840 10045 1 2 */ 408, /* OBJ_X9_62_id_ecPublicKey 1 2 840 10045 2 1 */ 416, /* OBJ_ecdsa_with_SHA1 1 2 840 10045 4 1 */ 791, /* OBJ_ecdsa_with_Recommended 1 2 840 10045 4 2 */ 792, /* OBJ_ecdsa_with_Specified 1 2 840 10045 4 3 */ 920, /* OBJ_dhpublicnumber 1 2 840 10046 2 1 */ 1032, /* OBJ_pkInitClientAuth 1 3 6 1 5 2 3 4 */ 1033, /* OBJ_pkInitKDC 1 3 6 1 5 2 3 5 */ 258, /* OBJ_id_pkix_mod 1 3 6 1 5 5 7 0 */ 175, /* OBJ_id_pe 1 3 6 1 5 5 7 1 */ 259, /* OBJ_id_qt 1 3 6 1 5 5 7 2 */ 128, /* OBJ_id_kp 1 3 6 1 5 5 7 3 */ 260, /* OBJ_id_it 1 3 6 1 5 5 7 4 */ 261, /* OBJ_id_pkip 1 3 6 1 5 5 7 5 */ 262, /* OBJ_id_alg 1 3 6 1 5 5 7 6 */ 263, /* OBJ_id_cmc 1 3 6 1 5 5 7 7 */ 264, /* OBJ_id_on 1 3 6 1 5 5 7 8 */ 265, /* OBJ_id_pda 1 3 6 1 5 5 7 9 */ 266, /* OBJ_id_aca 1 3 6 1 5 5 7 10 */ 267, /* OBJ_id_qcs 1 3 6 1 5 5 7 11 */ 268, /* OBJ_id_cct 1 3 6 1 5 5 7 12 */ 662, /* OBJ_id_ppl 1 3 6 1 5 5 7 21 */ 176, /* OBJ_id_ad 1 3 6 1 5 5 7 48 */ 507, /* OBJ_id_hex_partial_message 1 3 6 1 7 1 1 1 */ 508, /* OBJ_id_hex_multipart_message 1 3 6 1 7 1 1 2 */ 57, /* OBJ_netscape 2 16 840 1 113730 */ 754, /* OBJ_camellia_128_ecb 0 3 4401 5 3 1 9 1 */ 766, /* OBJ_camellia_128_ofb128 0 3 4401 5 3 1 9 3 */ 757, /* OBJ_camellia_128_cfb128 0 3 4401 5 3 1 9 4 */ 961, /* OBJ_camellia_128_gcm 0 3 4401 5 3 1 9 6 */ 962, /* OBJ_camellia_128_ccm 0 3 4401 5 3 1 9 7 */ 963, /* OBJ_camellia_128_ctr 0 3 4401 5 3 1 9 9 */ 964, /* OBJ_camellia_128_cmac 0 3 4401 5 3 1 9 10 */ 755, /* OBJ_camellia_192_ecb 0 3 4401 5 3 1 9 21 */ 767, /* OBJ_camellia_192_ofb128 0 3 4401 5 3 1 9 23 */ 758, /* OBJ_camellia_192_cfb128 0 3 4401 5 3 1 9 24 */ 965, /* OBJ_camellia_192_gcm 0 3 4401 5 3 1 9 26 */ 966, /* OBJ_camellia_192_ccm 0 3 4401 5 3 1 9 27 */ 967, /* OBJ_camellia_192_ctr 0 3 4401 5 3 1 9 29 */ 968, /* OBJ_camellia_192_cmac 0 3 4401 5 3 1 9 30 */ 756, /* OBJ_camellia_256_ecb 0 3 4401 5 3 1 9 41 */ 768, /* OBJ_camellia_256_ofb128 0 3 4401 5 3 1 9 43 */ 759, /* OBJ_camellia_256_cfb128 0 3 4401 5 3 1 9 44 */ 969, /* OBJ_camellia_256_gcm 0 3 4401 5 3 1 9 46 */ 970, /* OBJ_camellia_256_ccm 0 3 4401 5 3 1 9 47 */ 971, /* OBJ_camellia_256_ctr 0 3 4401 5 3 1 9 49 */ 972, /* OBJ_camellia_256_cmac 0 3 4401 5 3 1 9 50 */ 437, /* OBJ_pilot 0 9 2342 19200300 100 */ 1133, /* OBJ_sm4_ecb 1 2 156 10197 1 104 1 */ 1134, /* OBJ_sm4_cbc 1 2 156 10197 1 104 2 */ 1135, /* OBJ_sm4_ofb128 1 2 156 10197 1 104 3 */ 1137, /* OBJ_sm4_cfb128 1 2 156 10197 1 104 4 */ 1136, /* OBJ_sm4_cfb1 1 2 156 10197 1 104 5 */ 1138, /* OBJ_sm4_cfb8 1 2 156 10197 1 104 6 */ 1139, /* OBJ_sm4_ctr 1 2 156 10197 1 104 7 */ 1172, /* OBJ_sm2 1 2 156 10197 1 301 */ 1143, /* OBJ_sm3 1 2 156 10197 1 401 */ 1144, /* OBJ_sm3WithRSAEncryption 1 2 156 10197 1 504 */ 776, /* OBJ_seed_ecb 1 2 410 200004 1 3 */ 777, /* OBJ_seed_cbc 1 2 410 200004 1 4 */ 779, /* OBJ_seed_cfb128 1 2 410 200004 1 5 */ 778, /* OBJ_seed_ofb128 1 2 410 200004 1 6 */ 852, /* OBJ_id_GostR3411_94_with_GostR3410_94_cc 1 2 643 2 9 1 3 3 */ 853, /* OBJ_id_GostR3411_94_with_GostR3410_2001_cc 1 2 643 2 9 1 3 4 */ 850, /* OBJ_id_GostR3410_94_cc 1 2 643 2 9 1 5 3 */ 851, /* OBJ_id_GostR3410_2001_cc 1 2 643 2 9 1 5 4 */ 849, /* OBJ_id_Gost28147_89_cc 1 2 643 2 9 1 6 1 */ 854, /* OBJ_id_GostR3410_2001_ParamSet_cc 1 2 643 2 9 1 8 1 */ 1004, /* OBJ_INN 1 2 643 3 131 1 1 */ 979, /* OBJ_id_GostR3410_2012_256 1 2 643 7 1 1 1 1 */ 980, /* OBJ_id_GostR3410_2012_512 1 2 643 7 1 1 1 2 */ 982, /* OBJ_id_GostR3411_2012_256 1 2 643 7 1 1 2 2 */ 983, /* OBJ_id_GostR3411_2012_512 1 2 643 7 1 1 2 3 */ 985, /* OBJ_id_tc26_signwithdigest_gost3410_2012_256 1 2 643 7 1 1 3 2 */ 986, /* OBJ_id_tc26_signwithdigest_gost3410_2012_512 1 2 643 7 1 1 3 3 */ 988, /* OBJ_id_tc26_hmac_gost_3411_2012_256 1 2 643 7 1 1 4 1 */ 989, /* OBJ_id_tc26_hmac_gost_3411_2012_512 1 2 643 7 1 1 4 2 */ 1173, /* OBJ_id_tc26_cipher_gostr3412_2015_magma 1 2 643 7 1 1 5 1 */ 1176, /* OBJ_id_tc26_cipher_gostr3412_2015_kuznyechik 1 2 643 7 1 1 5 2 */ 992, /* OBJ_id_tc26_agreement_gost_3410_2012_256 1 2 643 7 1 1 6 1 */ 993, /* OBJ_id_tc26_agreement_gost_3410_2012_512 1 2 643 7 1 1 6 2 */ 1180, /* OBJ_id_tc26_wrap_gostr3412_2015_magma 1 2 643 7 1 1 7 1 */ 1182, /* OBJ_id_tc26_wrap_gostr3412_2015_kuznyechik 1 2 643 7 1 1 7 2 */ 1147, /* OBJ_id_tc26_gost_3410_2012_256_constants 1 2 643 7 1 2 1 1 */ 996, /* OBJ_id_tc26_gost_3410_2012_512_constants 1 2 643 7 1 2 1 2 */ 1002, /* OBJ_id_tc26_gost_28147_constants 1 2 643 7 1 2 5 1 */ 186, /* OBJ_pkcs1 1 2 840 113549 1 1 */ 27, /* OBJ_pkcs3 1 2 840 113549 1 3 */ 187, /* OBJ_pkcs5 1 2 840 113549 1 5 */ 20, /* OBJ_pkcs7 1 2 840 113549 1 7 */ 47, /* OBJ_pkcs9 1 2 840 113549 1 9 */ 3, /* OBJ_md2 1 2 840 113549 2 2 */ 257, /* OBJ_md4 1 2 840 113549 2 4 */ 4, /* OBJ_md5 1 2 840 113549 2 5 */ 797, /* OBJ_hmacWithMD5 1 2 840 113549 2 6 */ 163, /* OBJ_hmacWithSHA1 1 2 840 113549 2 7 */ 798, /* OBJ_hmacWithSHA224 1 2 840 113549 2 8 */ 799, /* OBJ_hmacWithSHA256 1 2 840 113549 2 9 */ 800, /* OBJ_hmacWithSHA384 1 2 840 113549 2 10 */ 801, /* OBJ_hmacWithSHA512 1 2 840 113549 2 11 */ 1193, /* OBJ_hmacWithSHA512_224 1 2 840 113549 2 12 */ 1194, /* OBJ_hmacWithSHA512_256 1 2 840 113549 2 13 */ 37, /* OBJ_rc2_cbc 1 2 840 113549 3 2 */ 5, /* OBJ_rc4 1 2 840 113549 3 4 */ 44, /* OBJ_des_ede3_cbc 1 2 840 113549 3 7 */ 120, /* OBJ_rc5_cbc 1 2 840 113549 3 8 */ 643, /* OBJ_des_cdmf 1 2 840 113549 3 10 */ 680, /* OBJ_X9_62_id_characteristic_two_basis 1 2 840 10045 1 2 3 */ 684, /* OBJ_X9_62_c2pnb163v1 1 2 840 10045 3 0 1 */ 685, /* OBJ_X9_62_c2pnb163v2 1 2 840 10045 3 0 2 */ 686, /* OBJ_X9_62_c2pnb163v3 1 2 840 10045 3 0 3 */ 687, /* OBJ_X9_62_c2pnb176v1 1 2 840 10045 3 0 4 */ 688, /* OBJ_X9_62_c2tnb191v1 1 2 840 10045 3 0 5 */ 689, /* OBJ_X9_62_c2tnb191v2 1 2 840 10045 3 0 6 */ 690, /* OBJ_X9_62_c2tnb191v3 1 2 840 10045 3 0 7 */ 691, /* OBJ_X9_62_c2onb191v4 1 2 840 10045 3 0 8 */ 692, /* OBJ_X9_62_c2onb191v5 1 2 840 10045 3 0 9 */ 693, /* OBJ_X9_62_c2pnb208w1 1 2 840 10045 3 0 10 */ 694, /* OBJ_X9_62_c2tnb239v1 1 2 840 10045 3 0 11 */ 695, /* OBJ_X9_62_c2tnb239v2 1 2 840 10045 3 0 12 */ 696, /* OBJ_X9_62_c2tnb239v3 1 2 840 10045 3 0 13 */ 697, /* OBJ_X9_62_c2onb239v4 1 2 840 10045 3 0 14 */ 698, /* OBJ_X9_62_c2onb239v5 1 2 840 10045 3 0 15 */ 699, /* OBJ_X9_62_c2pnb272w1 1 2 840 10045 3 0 16 */ 700, /* OBJ_X9_62_c2pnb304w1 1 2 840 10045 3 0 17 */ 701, /* OBJ_X9_62_c2tnb359v1 1 2 840 10045 3 0 18 */ 702, /* OBJ_X9_62_c2pnb368w1 1 2 840 10045 3 0 19 */ 703, /* OBJ_X9_62_c2tnb431r1 1 2 840 10045 3 0 20 */ 409, /* OBJ_X9_62_prime192v1 1 2 840 10045 3 1 1 */ 410, /* OBJ_X9_62_prime192v2 1 2 840 10045 3 1 2 */ 411, /* OBJ_X9_62_prime192v3 1 2 840 10045 3 1 3 */ 412, /* OBJ_X9_62_prime239v1 1 2 840 10045 3 1 4 */ 413, /* OBJ_X9_62_prime239v2 1 2 840 10045 3 1 5 */ 414, /* OBJ_X9_62_prime239v3 1 2 840 10045 3 1 6 */ 415, /* OBJ_X9_62_prime256v1 1 2 840 10045 3 1 7 */ 793, /* OBJ_ecdsa_with_SHA224 1 2 840 10045 4 3 1 */ 794, /* OBJ_ecdsa_with_SHA256 1 2 840 10045 4 3 2 */ 795, /* OBJ_ecdsa_with_SHA384 1 2 840 10045 4 3 3 */ 796, /* OBJ_ecdsa_with_SHA512 1 2 840 10045 4 3 4 */ 269, /* OBJ_id_pkix1_explicit_88 1 3 6 1 5 5 7 0 1 */ 270, /* OBJ_id_pkix1_implicit_88 1 3 6 1 5 5 7 0 2 */ 271, /* OBJ_id_pkix1_explicit_93 1 3 6 1 5 5 7 0 3 */ 272, /* OBJ_id_pkix1_implicit_93 1 3 6 1 5 5 7 0 4 */ 273, /* OBJ_id_mod_crmf 1 3 6 1 5 5 7 0 5 */ 274, /* OBJ_id_mod_cmc 1 3 6 1 5 5 7 0 6 */ 275, /* OBJ_id_mod_kea_profile_88 1 3 6 1 5 5 7 0 7 */ 276, /* OBJ_id_mod_kea_profile_93 1 3 6 1 5 5 7 0 8 */ 277, /* OBJ_id_mod_cmp 1 3 6 1 5 5 7 0 9 */ 278, /* OBJ_id_mod_qualified_cert_88 1 3 6 1 5 5 7 0 10 */ 279, /* OBJ_id_mod_qualified_cert_93 1 3 6 1 5 5 7 0 11 */ 280, /* OBJ_id_mod_attribute_cert 1 3 6 1 5 5 7 0 12 */ 281, /* OBJ_id_mod_timestamp_protocol 1 3 6 1 5 5 7 0 13 */ 282, /* OBJ_id_mod_ocsp 1 3 6 1 5 5 7 0 14 */ 283, /* OBJ_id_mod_dvcs 1 3 6 1 5 5 7 0 15 */ 284, /* OBJ_id_mod_cmp2000 1 3 6 1 5 5 7 0 16 */ 177, /* OBJ_info_access 1 3 6 1 5 5 7 1 1 */ 285, /* OBJ_biometricInfo 1 3 6 1 5 5 7 1 2 */ 286, /* OBJ_qcStatements 1 3 6 1 5 5 7 1 3 */ 287, /* OBJ_ac_auditEntity 1 3 6 1 5 5 7 1 4 */ 288, /* OBJ_ac_targeting 1 3 6 1 5 5 7 1 5 */ 289, /* OBJ_aaControls 1 3 6 1 5 5 7 1 6 */ 290, /* OBJ_sbgp_ipAddrBlock 1 3 6 1 5 5 7 1 7 */ 291, /* OBJ_sbgp_autonomousSysNum 1 3 6 1 5 5 7 1 8 */ 292, /* OBJ_sbgp_routerIdentifier 1 3 6 1 5 5 7 1 9 */ 397, /* OBJ_ac_proxying 1 3 6 1 5 5 7 1 10 */ 398, /* OBJ_sinfo_access 1 3 6 1 5 5 7 1 11 */ 663, /* OBJ_proxyCertInfo 1 3 6 1 5 5 7 1 14 */ 1020, /* OBJ_tlsfeature 1 3 6 1 5 5 7 1 24 */ 164, /* OBJ_id_qt_cps 1 3 6 1 5 5 7 2 1 */ 165, /* OBJ_id_qt_unotice 1 3 6 1 5 5 7 2 2 */ 293, /* OBJ_textNotice 1 3 6 1 5 5 7 2 3 */ 129, /* OBJ_server_auth 1 3 6 1 5 5 7 3 1 */ 130, /* OBJ_client_auth 1 3 6 1 5 5 7 3 2 */ 131, /* OBJ_code_sign 1 3 6 1 5 5 7 3 3 */ 132, /* OBJ_email_protect 1 3 6 1 5 5 7 3 4 */ 294, /* OBJ_ipsecEndSystem 1 3 6 1 5 5 7 3 5 */ 295, /* OBJ_ipsecTunnel 1 3 6 1 5 5 7 3 6 */ 296, /* OBJ_ipsecUser 1 3 6 1 5 5 7 3 7 */ 133, /* OBJ_time_stamp 1 3 6 1 5 5 7 3 8 */ 180, /* OBJ_OCSP_sign 1 3 6 1 5 5 7 3 9 */ 297, /* OBJ_dvcs 1 3 6 1 5 5 7 3 10 */ 1022, /* OBJ_ipsec_IKE 1 3 6 1 5 5 7 3 17 */ 1023, /* OBJ_capwapAC 1 3 6 1 5 5 7 3 18 */ 1024, /* OBJ_capwapWTP 1 3 6 1 5 5 7 3 19 */ 1025, /* OBJ_sshClient 1 3 6 1 5 5 7 3 21 */ 1026, /* OBJ_sshServer 1 3 6 1 5 5 7 3 22 */ 1027, /* OBJ_sendRouter 1 3 6 1 5 5 7 3 23 */ 1028, /* OBJ_sendProxiedRouter 1 3 6 1 5 5 7 3 24 */ 1029, /* OBJ_sendOwner 1 3 6 1 5 5 7 3 25 */ 1030, /* OBJ_sendProxiedOwner 1 3 6 1 5 5 7 3 26 */ 1131, /* OBJ_cmcCA 1 3 6 1 5 5 7 3 27 */ 1132, /* OBJ_cmcRA 1 3 6 1 5 5 7 3 28 */ 298, /* OBJ_id_it_caProtEncCert 1 3 6 1 5 5 7 4 1 */ 299, /* OBJ_id_it_signKeyPairTypes 1 3 6 1 5 5 7 4 2 */ 300, /* OBJ_id_it_encKeyPairTypes 1 3 6 1 5 5 7 4 3 */ 301, /* OBJ_id_it_preferredSymmAlg 1 3 6 1 5 5 7 4 4 */ 302, /* OBJ_id_it_caKeyUpdateInfo 1 3 6 1 5 5 7 4 5 */ 303, /* OBJ_id_it_currentCRL 1 3 6 1 5 5 7 4 6 */ 304, /* OBJ_id_it_unsupportedOIDs 1 3 6 1 5 5 7 4 7 */ 305, /* OBJ_id_it_subscriptionRequest 1 3 6 1 5 5 7 4 8 */ 306, /* OBJ_id_it_subscriptionResponse 1 3 6 1 5 5 7 4 9 */ 307, /* OBJ_id_it_keyPairParamReq 1 3 6 1 5 5 7 4 10 */ 308, /* OBJ_id_it_keyPairParamRep 1 3 6 1 5 5 7 4 11 */ 309, /* OBJ_id_it_revPassphrase 1 3 6 1 5 5 7 4 12 */ 310, /* OBJ_id_it_implicitConfirm 1 3 6 1 5 5 7 4 13 */ 311, /* OBJ_id_it_confirmWaitTime 1 3 6 1 5 5 7 4 14 */ 312, /* OBJ_id_it_origPKIMessage 1 3 6 1 5 5 7 4 15 */ 784, /* OBJ_id_it_suppLangTags 1 3 6 1 5 5 7 4 16 */ 313, /* OBJ_id_regCtrl 1 3 6 1 5 5 7 5 1 */ 314, /* OBJ_id_regInfo 1 3 6 1 5 5 7 5 2 */ 323, /* OBJ_id_alg_des40 1 3 6 1 5 5 7 6 1 */ 324, /* OBJ_id_alg_noSignature 1 3 6 1 5 5 7 6 2 */ 325, /* OBJ_id_alg_dh_sig_hmac_sha1 1 3 6 1 5 5 7 6 3 */ 326, /* OBJ_id_alg_dh_pop 1 3 6 1 5 5 7 6 4 */ 327, /* OBJ_id_cmc_statusInfo 1 3 6 1 5 5 7 7 1 */ 328, /* OBJ_id_cmc_identification 1 3 6 1 5 5 7 7 2 */ 329, /* OBJ_id_cmc_identityProof 1 3 6 1 5 5 7 7 3 */ 330, /* OBJ_id_cmc_dataReturn 1 3 6 1 5 5 7 7 4 */ 331, /* OBJ_id_cmc_transactionId 1 3 6 1 5 5 7 7 5 */ 332, /* OBJ_id_cmc_senderNonce 1 3 6 1 5 5 7 7 6 */ 333, /* OBJ_id_cmc_recipientNonce 1 3 6 1 5 5 7 7 7 */ 334, /* OBJ_id_cmc_addExtensions 1 3 6 1 5 5 7 7 8 */ 335, /* OBJ_id_cmc_encryptedPOP 1 3 6 1 5 5 7 7 9 */ 336, /* OBJ_id_cmc_decryptedPOP 1 3 6 1 5 5 7 7 10 */ 337, /* OBJ_id_cmc_lraPOPWitness 1 3 6 1 5 5 7 7 11 */ 338, /* OBJ_id_cmc_getCert 1 3 6 1 5 5 7 7 15 */ 339, /* OBJ_id_cmc_getCRL 1 3 6 1 5 5 7 7 16 */ 340, /* OBJ_id_cmc_revokeRequest 1 3 6 1 5 5 7 7 17 */ 341, /* OBJ_id_cmc_regInfo 1 3 6 1 5 5 7 7 18 */ 342, /* OBJ_id_cmc_responseInfo 1 3 6 1 5 5 7 7 19 */ 343, /* OBJ_id_cmc_queryPending 1 3 6 1 5 5 7 7 21 */ 344, /* OBJ_id_cmc_popLinkRandom 1 3 6 1 5 5 7 7 22 */ 345, /* OBJ_id_cmc_popLinkWitness 1 3 6 1 5 5 7 7 23 */ 346, /* OBJ_id_cmc_confirmCertAcceptance 1 3 6 1 5 5 7 7 24 */ 347, /* OBJ_id_on_personalData 1 3 6 1 5 5 7 8 1 */ 858, /* OBJ_id_on_permanentIdentifier 1 3 6 1 5 5 7 8 3 */ 348, /* OBJ_id_pda_dateOfBirth 1 3 6 1 5 5 7 9 1 */ 349, /* OBJ_id_pda_placeOfBirth 1 3 6 1 5 5 7 9 2 */ 351, /* OBJ_id_pda_gender 1 3 6 1 5 5 7 9 3 */ 352, /* OBJ_id_pda_countryOfCitizenship 1 3 6 1 5 5 7 9 4 */ 353, /* OBJ_id_pda_countryOfResidence 1 3 6 1 5 5 7 9 5 */ 354, /* OBJ_id_aca_authenticationInfo 1 3 6 1 5 5 7 10 1 */ 355, /* OBJ_id_aca_accessIdentity 1 3 6 1 5 5 7 10 2 */ 356, /* OBJ_id_aca_chargingIdentity 1 3 6 1 5 5 7 10 3 */ 357, /* OBJ_id_aca_group 1 3 6 1 5 5 7 10 4 */ 358, /* OBJ_id_aca_role 1 3 6 1 5 5 7 10 5 */ 399, /* OBJ_id_aca_encAttrs 1 3 6 1 5 5 7 10 6 */ 359, /* OBJ_id_qcs_pkixQCSyntax_v1 1 3 6 1 5 5 7 11 1 */ 360, /* OBJ_id_cct_crs 1 3 6 1 5 5 7 12 1 */ 361, /* OBJ_id_cct_PKIData 1 3 6 1 5 5 7 12 2 */ 362, /* OBJ_id_cct_PKIResponse 1 3 6 1 5 5 7 12 3 */ 664, /* OBJ_id_ppl_anyLanguage 1 3 6 1 5 5 7 21 0 */ 665, /* OBJ_id_ppl_inheritAll 1 3 6 1 5 5 7 21 1 */ 667, /* OBJ_Independent 1 3 6 1 5 5 7 21 2 */ 178, /* OBJ_ad_OCSP 1 3 6 1 5 5 7 48 1 */ 179, /* OBJ_ad_ca_issuers 1 3 6 1 5 5 7 48 2 */ 363, /* OBJ_ad_timeStamping 1 3 6 1 5 5 7 48 3 */ 364, /* OBJ_ad_dvcs 1 3 6 1 5 5 7 48 4 */ 785, /* OBJ_caRepository 1 3 6 1 5 5 7 48 5 */ 780, /* OBJ_hmac_md5 1 3 6 1 5 5 8 1 1 */ 781, /* OBJ_hmac_sha1 1 3 6 1 5 5 8 1 2 */ 913, /* OBJ_aes_128_xts 1 3 111 2 1619 0 1 1 */ 914, /* OBJ_aes_256_xts 1 3 111 2 1619 0 1 2 */ 58, /* OBJ_netscape_cert_extension 2 16 840 1 113730 1 */ 59, /* OBJ_netscape_data_type 2 16 840 1 113730 2 */ 438, /* OBJ_pilotAttributeType 0 9 2342 19200300 100 1 */ 439, /* OBJ_pilotAttributeSyntax 0 9 2342 19200300 100 3 */ 440, /* OBJ_pilotObjectClass 0 9 2342 19200300 100 4 */ 441, /* OBJ_pilotGroups 0 9 2342 19200300 100 10 */ 1065, /* OBJ_aria_128_ecb 1 2 410 200046 1 1 1 */ 1066, /* OBJ_aria_128_cbc 1 2 410 200046 1 1 2 */ 1067, /* OBJ_aria_128_cfb128 1 2 410 200046 1 1 3 */ 1068, /* OBJ_aria_128_ofb128 1 2 410 200046 1 1 4 */ 1069, /* OBJ_aria_128_ctr 1 2 410 200046 1 1 5 */ 1070, /* OBJ_aria_192_ecb 1 2 410 200046 1 1 6 */ 1071, /* OBJ_aria_192_cbc 1 2 410 200046 1 1 7 */ 1072, /* OBJ_aria_192_cfb128 1 2 410 200046 1 1 8 */ 1073, /* OBJ_aria_192_ofb128 1 2 410 200046 1 1 9 */ 1074, /* OBJ_aria_192_ctr 1 2 410 200046 1 1 10 */ 1075, /* OBJ_aria_256_ecb 1 2 410 200046 1 1 11 */ 1076, /* OBJ_aria_256_cbc 1 2 410 200046 1 1 12 */ 1077, /* OBJ_aria_256_cfb128 1 2 410 200046 1 1 13 */ 1078, /* OBJ_aria_256_ofb128 1 2 410 200046 1 1 14 */ 1079, /* OBJ_aria_256_ctr 1 2 410 200046 1 1 15 */ 1123, /* OBJ_aria_128_gcm 1 2 410 200046 1 1 34 */ 1124, /* OBJ_aria_192_gcm 1 2 410 200046 1 1 35 */ 1125, /* OBJ_aria_256_gcm 1 2 410 200046 1 1 36 */ 1120, /* OBJ_aria_128_ccm 1 2 410 200046 1 1 37 */ 1121, /* OBJ_aria_192_ccm 1 2 410 200046 1 1 38 */ 1122, /* OBJ_aria_256_ccm 1 2 410 200046 1 1 39 */ 1174, /* OBJ_id_tc26_cipher_gostr3412_2015_magma_ctracpkm 1 2 643 7 1 1 5 1 1 */ 1175, /* OBJ_id_tc26_cipher_gostr3412_2015_magma_ctracpkm_omac 1 2 643 7 1 1 5 1 2 */ 1177, /* OBJ_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm 1 2 643 7 1 1 5 2 1 */ 1178, /* OBJ_id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm_omac 1 2 643 7 1 1 5 2 2 */ 1181, /* OBJ_id_tc26_wrap_gostr3412_2015_magma_kexp15 1 2 643 7 1 1 7 1 1 */ 1183, /* OBJ_id_tc26_wrap_gostr3412_2015_kuznyechik_kexp15 1 2 643 7 1 1 7 2 1 */ 1148, /* OBJ_id_tc26_gost_3410_2012_256_paramSetA 1 2 643 7 1 2 1 1 1 */ 1184, /* OBJ_id_tc26_gost_3410_2012_256_paramSetB 1 2 643 7 1 2 1 1 2 */ 1185, /* OBJ_id_tc26_gost_3410_2012_256_paramSetC 1 2 643 7 1 2 1 1 3 */ 1186, /* OBJ_id_tc26_gost_3410_2012_256_paramSetD 1 2 643 7 1 2 1 1 4 */ 997, /* OBJ_id_tc26_gost_3410_2012_512_paramSetTest 1 2 643 7 1 2 1 2 0 */ 998, /* OBJ_id_tc26_gost_3410_2012_512_paramSetA 1 2 643 7 1 2 1 2 1 */ 999, /* OBJ_id_tc26_gost_3410_2012_512_paramSetB 1 2 643 7 1 2 1 2 2 */ 1149, /* OBJ_id_tc26_gost_3410_2012_512_paramSetC 1 2 643 7 1 2 1 2 3 */ 1003, /* OBJ_id_tc26_gost_28147_param_Z 1 2 643 7 1 2 5 1 1 */ 108, /* OBJ_cast5_cbc 1 2 840 113533 7 66 10 */ 112, /* OBJ_pbeWithMD5AndCast5_CBC 1 2 840 113533 7 66 12 */ 782, /* OBJ_id_PasswordBasedMAC 1 2 840 113533 7 66 13 */ 783, /* OBJ_id_DHBasedMac 1 2 840 113533 7 66 30 */ 6, /* OBJ_rsaEncryption 1 2 840 113549 1 1 1 */ 7, /* OBJ_md2WithRSAEncryption 1 2 840 113549 1 1 2 */ 396, /* OBJ_md4WithRSAEncryption 1 2 840 113549 1 1 3 */ 8, /* OBJ_md5WithRSAEncryption 1 2 840 113549 1 1 4 */ 65, /* OBJ_sha1WithRSAEncryption 1 2 840 113549 1 1 5 */ 644, /* OBJ_rsaOAEPEncryptionSET 1 2 840 113549 1 1 6 */ 919, /* OBJ_rsaesOaep 1 2 840 113549 1 1 7 */ 911, /* OBJ_mgf1 1 2 840 113549 1 1 8 */ 935, /* OBJ_pSpecified 1 2 840 113549 1 1 9 */ 912, /* OBJ_rsassaPss 1 2 840 113549 1 1 10 */ 668, /* OBJ_sha256WithRSAEncryption 1 2 840 113549 1 1 11 */ 669, /* OBJ_sha384WithRSAEncryption 1 2 840 113549 1 1 12 */ 670, /* OBJ_sha512WithRSAEncryption 1 2 840 113549 1 1 13 */ 671, /* OBJ_sha224WithRSAEncryption 1 2 840 113549 1 1 14 */ 1145, /* OBJ_sha512_224WithRSAEncryption 1 2 840 113549 1 1 15 */ 1146, /* OBJ_sha512_256WithRSAEncryption 1 2 840 113549 1 1 16 */ 28, /* OBJ_dhKeyAgreement 1 2 840 113549 1 3 1 */ 9, /* OBJ_pbeWithMD2AndDES_CBC 1 2 840 113549 1 5 1 */ 10, /* OBJ_pbeWithMD5AndDES_CBC 1 2 840 113549 1 5 3 */ 168, /* OBJ_pbeWithMD2AndRC2_CBC 1 2 840 113549 1 5 4 */ 169, /* OBJ_pbeWithMD5AndRC2_CBC 1 2 840 113549 1 5 6 */ 170, /* OBJ_pbeWithSHA1AndDES_CBC 1 2 840 113549 1 5 10 */ 68, /* OBJ_pbeWithSHA1AndRC2_CBC 1 2 840 113549 1 5 11 */ 69, /* OBJ_id_pbkdf2 1 2 840 113549 1 5 12 */ 161, /* OBJ_pbes2 1 2 840 113549 1 5 13 */ 162, /* OBJ_pbmac1 1 2 840 113549 1 5 14 */ 21, /* OBJ_pkcs7_data 1 2 840 113549 1 7 1 */ 22, /* OBJ_pkcs7_signed 1 2 840 113549 1 7 2 */ 23, /* OBJ_pkcs7_enveloped 1 2 840 113549 1 7 3 */ 24, /* OBJ_pkcs7_signedAndEnveloped 1 2 840 113549 1 7 4 */ 25, /* OBJ_pkcs7_digest 1 2 840 113549 1 7 5 */ 26, /* OBJ_pkcs7_encrypted 1 2 840 113549 1 7 6 */ 48, /* OBJ_pkcs9_emailAddress 1 2 840 113549 1 9 1 */ 49, /* OBJ_pkcs9_unstructuredName 1 2 840 113549 1 9 2 */ 50, /* OBJ_pkcs9_contentType 1 2 840 113549 1 9 3 */ 51, /* OBJ_pkcs9_messageDigest 1 2 840 113549 1 9 4 */ 52, /* OBJ_pkcs9_signingTime 1 2 840 113549 1 9 5 */ 53, /* OBJ_pkcs9_countersignature 1 2 840 113549 1 9 6 */ 54, /* OBJ_pkcs9_challengePassword 1 2 840 113549 1 9 7 */ 55, /* OBJ_pkcs9_unstructuredAddress 1 2 840 113549 1 9 8 */ 56, /* OBJ_pkcs9_extCertAttributes 1 2 840 113549 1 9 9 */ 172, /* OBJ_ext_req 1 2 840 113549 1 9 14 */ 167, /* OBJ_SMIMECapabilities 1 2 840 113549 1 9 15 */ 188, /* OBJ_SMIME 1 2 840 113549 1 9 16 */ 156, /* OBJ_friendlyName 1 2 840 113549 1 9 20 */ 157, /* OBJ_localKeyID 1 2 840 113549 1 9 21 */ 681, /* OBJ_X9_62_onBasis 1 2 840 10045 1 2 3 1 */ 682, /* OBJ_X9_62_tpBasis 1 2 840 10045 1 2 3 2 */ 683, /* OBJ_X9_62_ppBasis 1 2 840 10045 1 2 3 3 */ 417, /* OBJ_ms_csp_name 1 3 6 1 4 1 311 17 1 */ 856, /* OBJ_LocalKeySet 1 3 6 1 4 1 311 17 2 */ 390, /* OBJ_dcObject 1 3 6 1 4 1 1466 344 */ 91, /* OBJ_bf_cbc 1 3 6 1 4 1 3029 1 2 */ 973, /* OBJ_id_scrypt 1 3 6 1 4 1 11591 4 11 */ 315, /* OBJ_id_regCtrl_regToken 1 3 6 1 5 5 7 5 1 1 */ 316, /* OBJ_id_regCtrl_authenticator 1 3 6 1 5 5 7 5 1 2 */ 317, /* OBJ_id_regCtrl_pkiPublicationInfo 1 3 6 1 5 5 7 5 1 3 */ 318, /* OBJ_id_regCtrl_pkiArchiveOptions 1 3 6 1 5 5 7 5 1 4 */ 319, /* OBJ_id_regCtrl_oldCertID 1 3 6 1 5 5 7 5 1 5 */ 320, /* OBJ_id_regCtrl_protocolEncrKey 1 3 6 1 5 5 7 5 1 6 */ 321, /* OBJ_id_regInfo_utf8Pairs 1 3 6 1 5 5 7 5 2 1 */ 322, /* OBJ_id_regInfo_certReq 1 3 6 1 5 5 7 5 2 2 */ 365, /* OBJ_id_pkix_OCSP_basic 1 3 6 1 5 5 7 48 1 1 */ 366, /* OBJ_id_pkix_OCSP_Nonce 1 3 6 1 5 5 7 48 1 2 */ 367, /* OBJ_id_pkix_OCSP_CrlID 1 3 6 1 5 5 7 48 1 3 */ 368, /* OBJ_id_pkix_OCSP_acceptableResponses 1 3 6 1 5 5 7 48 1 4 */ 369, /* OBJ_id_pkix_OCSP_noCheck 1 3 6 1 5 5 7 48 1 5 */ 370, /* OBJ_id_pkix_OCSP_archiveCutoff 1 3 6 1 5 5 7 48 1 6 */ 371, /* OBJ_id_pkix_OCSP_serviceLocator 1 3 6 1 5 5 7 48 1 7 */ 372, /* OBJ_id_pkix_OCSP_extendedStatus 1 3 6 1 5 5 7 48 1 8 */ 373, /* OBJ_id_pkix_OCSP_valid 1 3 6 1 5 5 7 48 1 9 */ 374, /* OBJ_id_pkix_OCSP_path 1 3 6 1 5 5 7 48 1 10 */ 375, /* OBJ_id_pkix_OCSP_trustRoot 1 3 6 1 5 5 7 48 1 11 */ 921, /* OBJ_brainpoolP160r1 1 3 36 3 3 2 8 1 1 1 */ 922, /* OBJ_brainpoolP160t1 1 3 36 3 3 2 8 1 1 2 */ 923, /* OBJ_brainpoolP192r1 1 3 36 3 3 2 8 1 1 3 */ 924, /* OBJ_brainpoolP192t1 1 3 36 3 3 2 8 1 1 4 */ 925, /* OBJ_brainpoolP224r1 1 3 36 3 3 2 8 1 1 5 */ 926, /* OBJ_brainpoolP224t1 1 3 36 3 3 2 8 1 1 6 */ 927, /* OBJ_brainpoolP256r1 1 3 36 3 3 2 8 1 1 7 */ 928, /* OBJ_brainpoolP256t1 1 3 36 3 3 2 8 1 1 8 */ 929, /* OBJ_brainpoolP320r1 1 3 36 3 3 2 8 1 1 9 */ 930, /* OBJ_brainpoolP320t1 1 3 36 3 3 2 8 1 1 10 */ 931, /* OBJ_brainpoolP384r1 1 3 36 3 3 2 8 1 1 11 */ 932, /* OBJ_brainpoolP384t1 1 3 36 3 3 2 8 1 1 12 */ 933, /* OBJ_brainpoolP512r1 1 3 36 3 3 2 8 1 1 13 */ 934, /* OBJ_brainpoolP512t1 1 3 36 3 3 2 8 1 1 14 */ 936, /* OBJ_dhSinglePass_stdDH_sha1kdf_scheme 1 3 133 16 840 63 0 2 */ 941, /* OBJ_dhSinglePass_cofactorDH_sha1kdf_scheme 1 3 133 16 840 63 0 3 */ 418, /* OBJ_aes_128_ecb 2 16 840 1 101 3 4 1 1 */ 419, /* OBJ_aes_128_cbc 2 16 840 1 101 3 4 1 2 */ 420, /* OBJ_aes_128_ofb128 2 16 840 1 101 3 4 1 3 */ 421, /* OBJ_aes_128_cfb128 2 16 840 1 101 3 4 1 4 */ 788, /* OBJ_id_aes128_wrap 2 16 840 1 101 3 4 1 5 */ 895, /* OBJ_aes_128_gcm 2 16 840 1 101 3 4 1 6 */ 896, /* OBJ_aes_128_ccm 2 16 840 1 101 3 4 1 7 */ 897, /* OBJ_id_aes128_wrap_pad 2 16 840 1 101 3 4 1 8 */ 422, /* OBJ_aes_192_ecb 2 16 840 1 101 3 4 1 21 */ 423, /* OBJ_aes_192_cbc 2 16 840 1 101 3 4 1 22 */ 424, /* OBJ_aes_192_ofb128 2 16 840 1 101 3 4 1 23 */ 425, /* OBJ_aes_192_cfb128 2 16 840 1 101 3 4 1 24 */ 789, /* OBJ_id_aes192_wrap 2 16 840 1 101 3 4 1 25 */ 898, /* OBJ_aes_192_gcm 2 16 840 1 101 3 4 1 26 */ 899, /* OBJ_aes_192_ccm 2 16 840 1 101 3 4 1 27 */ 900, /* OBJ_id_aes192_wrap_pad 2 16 840 1 101 3 4 1 28 */ 426, /* OBJ_aes_256_ecb 2 16 840 1 101 3 4 1 41 */ 427, /* OBJ_aes_256_cbc 2 16 840 1 101 3 4 1 42 */ 428, /* OBJ_aes_256_ofb128 2 16 840 1 101 3 4 1 43 */ 429, /* OBJ_aes_256_cfb128 2 16 840 1 101 3 4 1 44 */ 790, /* OBJ_id_aes256_wrap 2 16 840 1 101 3 4 1 45 */ 901, /* OBJ_aes_256_gcm 2 16 840 1 101 3 4 1 46 */ 902, /* OBJ_aes_256_ccm 2 16 840 1 101 3 4 1 47 */ 903, /* OBJ_id_aes256_wrap_pad 2 16 840 1 101 3 4 1 48 */ 672, /* OBJ_sha256 2 16 840 1 101 3 4 2 1 */ 673, /* OBJ_sha384 2 16 840 1 101 3 4 2 2 */ 674, /* OBJ_sha512 2 16 840 1 101 3 4 2 3 */ 675, /* OBJ_sha224 2 16 840 1 101 3 4 2 4 */ 1094, /* OBJ_sha512_224 2 16 840 1 101 3 4 2 5 */ 1095, /* OBJ_sha512_256 2 16 840 1 101 3 4 2 6 */ 1096, /* OBJ_sha3_224 2 16 840 1 101 3 4 2 7 */ 1097, /* OBJ_sha3_256 2 16 840 1 101 3 4 2 8 */ 1098, /* OBJ_sha3_384 2 16 840 1 101 3 4 2 9 */ 1099, /* OBJ_sha3_512 2 16 840 1 101 3 4 2 10 */ 1100, /* OBJ_shake128 2 16 840 1 101 3 4 2 11 */ 1101, /* OBJ_shake256 2 16 840 1 101 3 4 2 12 */ 1102, /* OBJ_hmac_sha3_224 2 16 840 1 101 3 4 2 13 */ 1103, /* OBJ_hmac_sha3_256 2 16 840 1 101 3 4 2 14 */ 1104, /* OBJ_hmac_sha3_384 2 16 840 1 101 3 4 2 15 */ 1105, /* OBJ_hmac_sha3_512 2 16 840 1 101 3 4 2 16 */ 802, /* OBJ_dsa_with_SHA224 2 16 840 1 101 3 4 3 1 */ 803, /* OBJ_dsa_with_SHA256 2 16 840 1 101 3 4 3 2 */ 1106, /* OBJ_dsa_with_SHA384 2 16 840 1 101 3 4 3 3 */ 1107, /* OBJ_dsa_with_SHA512 2 16 840 1 101 3 4 3 4 */ 1108, /* OBJ_dsa_with_SHA3_224 2 16 840 1 101 3 4 3 5 */ 1109, /* OBJ_dsa_with_SHA3_256 2 16 840 1 101 3 4 3 6 */ 1110, /* OBJ_dsa_with_SHA3_384 2 16 840 1 101 3 4 3 7 */ 1111, /* OBJ_dsa_with_SHA3_512 2 16 840 1 101 3 4 3 8 */ 1112, /* OBJ_ecdsa_with_SHA3_224 2 16 840 1 101 3 4 3 9 */ 1113, /* OBJ_ecdsa_with_SHA3_256 2 16 840 1 101 3 4 3 10 */ 1114, /* OBJ_ecdsa_with_SHA3_384 2 16 840 1 101 3 4 3 11 */ 1115, /* OBJ_ecdsa_with_SHA3_512 2 16 840 1 101 3 4 3 12 */ 1116, /* OBJ_RSA_SHA3_224 2 16 840 1 101 3 4 3 13 */ 1117, /* OBJ_RSA_SHA3_256 2 16 840 1 101 3 4 3 14 */ 1118, /* OBJ_RSA_SHA3_384 2 16 840 1 101 3 4 3 15 */ 1119, /* OBJ_RSA_SHA3_512 2 16 840 1 101 3 4 3 16 */ 71, /* OBJ_netscape_cert_type 2 16 840 1 113730 1 1 */ 72, /* OBJ_netscape_base_url 2 16 840 1 113730 1 2 */ 73, /* OBJ_netscape_revocation_url 2 16 840 1 113730 1 3 */ 74, /* OBJ_netscape_ca_revocation_url 2 16 840 1 113730 1 4 */ 75, /* OBJ_netscape_renewal_url 2 16 840 1 113730 1 7 */ 76, /* OBJ_netscape_ca_policy_url 2 16 840 1 113730 1 8 */ 77, /* OBJ_netscape_ssl_server_name 2 16 840 1 113730 1 12 */ 78, /* OBJ_netscape_comment 2 16 840 1 113730 1 13 */ 79, /* OBJ_netscape_cert_sequence 2 16 840 1 113730 2 5 */ 139, /* OBJ_ns_sgc 2 16 840 1 113730 4 1 */ 458, /* OBJ_userId 0 9 2342 19200300 100 1 1 */ 459, /* OBJ_textEncodedORAddress 0 9 2342 19200300 100 1 2 */ 460, /* OBJ_rfc822Mailbox 0 9 2342 19200300 100 1 3 */ 461, /* OBJ_info 0 9 2342 19200300 100 1 4 */ 462, /* OBJ_favouriteDrink 0 9 2342 19200300 100 1 5 */ 463, /* OBJ_roomNumber 0 9 2342 19200300 100 1 6 */ 464, /* OBJ_photo 0 9 2342 19200300 100 1 7 */ 465, /* OBJ_userClass 0 9 2342 19200300 100 1 8 */ 466, /* OBJ_host 0 9 2342 19200300 100 1 9 */ 467, /* OBJ_manager 0 9 2342 19200300 100 1 10 */ 468, /* OBJ_documentIdentifier 0 9 2342 19200300 100 1 11 */ 469, /* OBJ_documentTitle 0 9 2342 19200300 100 1 12 */ 470, /* OBJ_documentVersion 0 9 2342 19200300 100 1 13 */ 471, /* OBJ_documentAuthor 0 9 2342 19200300 100 1 14 */ 472, /* OBJ_documentLocation 0 9 2342 19200300 100 1 15 */ 473, /* OBJ_homeTelephoneNumber 0 9 2342 19200300 100 1 20 */ 474, /* OBJ_secretary 0 9 2342 19200300 100 1 21 */ 475, /* OBJ_otherMailbox 0 9 2342 19200300 100 1 22 */ 476, /* OBJ_lastModifiedTime 0 9 2342 19200300 100 1 23 */ 477, /* OBJ_lastModifiedBy 0 9 2342 19200300 100 1 24 */ 391, /* OBJ_domainComponent 0 9 2342 19200300 100 1 25 */ 478, /* OBJ_aRecord 0 9 2342 19200300 100 1 26 */ 479, /* OBJ_pilotAttributeType27 0 9 2342 19200300 100 1 27 */ 480, /* OBJ_mXRecord 0 9 2342 19200300 100 1 28 */ 481, /* OBJ_nSRecord 0 9 2342 19200300 100 1 29 */ 482, /* OBJ_sOARecord 0 9 2342 19200300 100 1 30 */ 483, /* OBJ_cNAMERecord 0 9 2342 19200300 100 1 31 */ 484, /* OBJ_associatedDomain 0 9 2342 19200300 100 1 37 */ 485, /* OBJ_associatedName 0 9 2342 19200300 100 1 38 */ 486, /* OBJ_homePostalAddress 0 9 2342 19200300 100 1 39 */ 487, /* OBJ_personalTitle 0 9 2342 19200300 100 1 40 */ 488, /* OBJ_mobileTelephoneNumber 0 9 2342 19200300 100 1 41 */ 489, /* OBJ_pagerTelephoneNumber 0 9 2342 19200300 100 1 42 */ 490, /* OBJ_friendlyCountryName 0 9 2342 19200300 100 1 43 */ 102, /* OBJ_uniqueIdentifier 0 9 2342 19200300 100 1 44 */ 491, /* OBJ_organizationalStatus 0 9 2342 19200300 100 1 45 */ 492, /* OBJ_janetMailbox 0 9 2342 19200300 100 1 46 */ 493, /* OBJ_mailPreferenceOption 0 9 2342 19200300 100 1 47 */ 494, /* OBJ_buildingName 0 9 2342 19200300 100 1 48 */ 495, /* OBJ_dSAQuality 0 9 2342 19200300 100 1 49 */ 496, /* OBJ_singleLevelQuality 0 9 2342 19200300 100 1 50 */ 497, /* OBJ_subtreeMinimumQuality 0 9 2342 19200300 100 1 51 */ 498, /* OBJ_subtreeMaximumQuality 0 9 2342 19200300 100 1 52 */ 499, /* OBJ_personalSignature 0 9 2342 19200300 100 1 53 */ 500, /* OBJ_dITRedirect 0 9 2342 19200300 100 1 54 */ 501, /* OBJ_audio 0 9 2342 19200300 100 1 55 */ 502, /* OBJ_documentPublisher 0 9 2342 19200300 100 1 56 */ 442, /* OBJ_iA5StringSyntax 0 9 2342 19200300 100 3 4 */ 443, /* OBJ_caseIgnoreIA5StringSyntax 0 9 2342 19200300 100 3 5 */ 444, /* OBJ_pilotObject 0 9 2342 19200300 100 4 3 */ 445, /* OBJ_pilotPerson 0 9 2342 19200300 100 4 4 */ 446, /* OBJ_account 0 9 2342 19200300 100 4 5 */ 447, /* OBJ_document 0 9 2342 19200300 100 4 6 */ 448, /* OBJ_room 0 9 2342 19200300 100 4 7 */ 449, /* OBJ_documentSeries 0 9 2342 19200300 100 4 9 */ 392, /* OBJ_Domain 0 9 2342 19200300 100 4 13 */ 450, /* OBJ_rFC822localPart 0 9 2342 19200300 100 4 14 */ 451, /* OBJ_dNSDomain 0 9 2342 19200300 100 4 15 */ 452, /* OBJ_domainRelatedObject 0 9 2342 19200300 100 4 17 */ 453, /* OBJ_friendlyCountry 0 9 2342 19200300 100 4 18 */ 454, /* OBJ_simpleSecurityObject 0 9 2342 19200300 100 4 19 */ 455, /* OBJ_pilotOrganization 0 9 2342 19200300 100 4 20 */ 456, /* OBJ_pilotDSA 0 9 2342 19200300 100 4 21 */ 457, /* OBJ_qualityLabelledData 0 9 2342 19200300 100 4 22 */ 1152, /* OBJ_dstu28147 1 2 804 2 1 1 1 1 1 1 */ 1156, /* OBJ_hmacWithDstu34311 1 2 804 2 1 1 1 1 1 2 */ 1157, /* OBJ_dstu34311 1 2 804 2 1 1 1 1 2 1 */ 189, /* OBJ_id_smime_mod 1 2 840 113549 1 9 16 0 */ 190, /* OBJ_id_smime_ct 1 2 840 113549 1 9 16 1 */ 191, /* OBJ_id_smime_aa 1 2 840 113549 1 9 16 2 */ 192, /* OBJ_id_smime_alg 1 2 840 113549 1 9 16 3 */ 193, /* OBJ_id_smime_cd 1 2 840 113549 1 9 16 4 */ 194, /* OBJ_id_smime_spq 1 2 840 113549 1 9 16 5 */ 195, /* OBJ_id_smime_cti 1 2 840 113549 1 9 16 6 */ 158, /* OBJ_x509Certificate 1 2 840 113549 1 9 22 1 */ 159, /* OBJ_sdsiCertificate 1 2 840 113549 1 9 22 2 */ 160, /* OBJ_x509Crl 1 2 840 113549 1 9 23 1 */ 144, /* OBJ_pbe_WithSHA1And128BitRC4 1 2 840 113549 1 12 1 1 */ 145, /* OBJ_pbe_WithSHA1And40BitRC4 1 2 840 113549 1 12 1 2 */ 146, /* OBJ_pbe_WithSHA1And3_Key_TripleDES_CBC 1 2 840 113549 1 12 1 3 */ 147, /* OBJ_pbe_WithSHA1And2_Key_TripleDES_CBC 1 2 840 113549 1 12 1 4 */ 148, /* OBJ_pbe_WithSHA1And128BitRC2_CBC 1 2 840 113549 1 12 1 5 */ 149, /* OBJ_pbe_WithSHA1And40BitRC2_CBC 1 2 840 113549 1 12 1 6 */ 171, /* OBJ_ms_ext_req 1 3 6 1 4 1 311 2 1 14 */ 134, /* OBJ_ms_code_ind 1 3 6 1 4 1 311 2 1 21 */ 135, /* OBJ_ms_code_com 1 3 6 1 4 1 311 2 1 22 */ 136, /* OBJ_ms_ctl_sign 1 3 6 1 4 1 311 10 3 1 */ 137, /* OBJ_ms_sgc 1 3 6 1 4 1 311 10 3 3 */ 138, /* OBJ_ms_efs 1 3 6 1 4 1 311 10 3 4 */ 648, /* OBJ_ms_smartcard_login 1 3 6 1 4 1 311 20 2 2 */ 649, /* OBJ_ms_upn 1 3 6 1 4 1 311 20 2 3 */ 951, /* OBJ_ct_precert_scts 1 3 6 1 4 1 11129 2 4 2 */ 952, /* OBJ_ct_precert_poison 1 3 6 1 4 1 11129 2 4 3 */ 953, /* OBJ_ct_precert_signer 1 3 6 1 4 1 11129 2 4 4 */ 954, /* OBJ_ct_cert_scts 1 3 6 1 4 1 11129 2 4 5 */ 751, /* OBJ_camellia_128_cbc 1 2 392 200011 61 1 1 1 2 */ 752, /* OBJ_camellia_192_cbc 1 2 392 200011 61 1 1 1 3 */ 753, /* OBJ_camellia_256_cbc 1 2 392 200011 61 1 1 1 4 */ 907, /* OBJ_id_camellia128_wrap 1 2 392 200011 61 1 1 3 2 */ 908, /* OBJ_id_camellia192_wrap 1 2 392 200011 61 1 1 3 3 */ 909, /* OBJ_id_camellia256_wrap 1 2 392 200011 61 1 1 3 4 */ 1153, /* OBJ_dstu28147_ofb 1 2 804 2 1 1 1 1 1 1 2 */ 1154, /* OBJ_dstu28147_cfb 1 2 804 2 1 1 1 1 1 1 3 */ 1155, /* OBJ_dstu28147_wrap 1 2 804 2 1 1 1 1 1 1 5 */ 1158, /* OBJ_dstu4145le 1 2 804 2 1 1 1 1 3 1 1 */ 196, /* OBJ_id_smime_mod_cms 1 2 840 113549 1 9 16 0 1 */ 197, /* OBJ_id_smime_mod_ess 1 2 840 113549 1 9 16 0 2 */ 198, /* OBJ_id_smime_mod_oid 1 2 840 113549 1 9 16 0 3 */ 199, /* OBJ_id_smime_mod_msg_v3 1 2 840 113549 1 9 16 0 4 */ 200, /* OBJ_id_smime_mod_ets_eSignature_88 1 2 840 113549 1 9 16 0 5 */ 201, /* OBJ_id_smime_mod_ets_eSignature_97 1 2 840 113549 1 9 16 0 6 */ 202, /* OBJ_id_smime_mod_ets_eSigPolicy_88 1 2 840 113549 1 9 16 0 7 */ 203, /* OBJ_id_smime_mod_ets_eSigPolicy_97 1 2 840 113549 1 9 16 0 8 */ 204, /* OBJ_id_smime_ct_receipt 1 2 840 113549 1 9 16 1 1 */ 205, /* OBJ_id_smime_ct_authData 1 2 840 113549 1 9 16 1 2 */ 206, /* OBJ_id_smime_ct_publishCert 1 2 840 113549 1 9 16 1 3 */ 207, /* OBJ_id_smime_ct_TSTInfo 1 2 840 113549 1 9 16 1 4 */ 208, /* OBJ_id_smime_ct_TDTInfo 1 2 840 113549 1 9 16 1 5 */ 209, /* OBJ_id_smime_ct_contentInfo 1 2 840 113549 1 9 16 1 6 */ 210, /* OBJ_id_smime_ct_DVCSRequestData 1 2 840 113549 1 9 16 1 7 */ 211, /* OBJ_id_smime_ct_DVCSResponseData 1 2 840 113549 1 9 16 1 8 */ 786, /* OBJ_id_smime_ct_compressedData 1 2 840 113549 1 9 16 1 9 */ 1058, /* OBJ_id_smime_ct_contentCollection 1 2 840 113549 1 9 16 1 19 */ 1059, /* OBJ_id_smime_ct_authEnvelopedData 1 2 840 113549 1 9 16 1 23 */ 787, /* OBJ_id_ct_asciiTextWithCRLF 1 2 840 113549 1 9 16 1 27 */ 1060, /* OBJ_id_ct_xml 1 2 840 113549 1 9 16 1 28 */ 212, /* OBJ_id_smime_aa_receiptRequest 1 2 840 113549 1 9 16 2 1 */ 213, /* OBJ_id_smime_aa_securityLabel 1 2 840 113549 1 9 16 2 2 */ 214, /* OBJ_id_smime_aa_mlExpandHistory 1 2 840 113549 1 9 16 2 3 */ 215, /* OBJ_id_smime_aa_contentHint 1 2 840 113549 1 9 16 2 4 */ 216, /* OBJ_id_smime_aa_msgSigDigest 1 2 840 113549 1 9 16 2 5 */ 217, /* OBJ_id_smime_aa_encapContentType 1 2 840 113549 1 9 16 2 6 */ 218, /* OBJ_id_smime_aa_contentIdentifier 1 2 840 113549 1 9 16 2 7 */ 219, /* OBJ_id_smime_aa_macValue 1 2 840 113549 1 9 16 2 8 */ 220, /* OBJ_id_smime_aa_equivalentLabels 1 2 840 113549 1 9 16 2 9 */ 221, /* OBJ_id_smime_aa_contentReference 1 2 840 113549 1 9 16 2 10 */ 222, /* OBJ_id_smime_aa_encrypKeyPref 1 2 840 113549 1 9 16 2 11 */ 223, /* OBJ_id_smime_aa_signingCertificate 1 2 840 113549 1 9 16 2 12 */ 224, /* OBJ_id_smime_aa_smimeEncryptCerts 1 2 840 113549 1 9 16 2 13 */ 225, /* OBJ_id_smime_aa_timeStampToken 1 2 840 113549 1 9 16 2 14 */ 226, /* OBJ_id_smime_aa_ets_sigPolicyId 1 2 840 113549 1 9 16 2 15 */ 227, /* OBJ_id_smime_aa_ets_commitmentType 1 2 840 113549 1 9 16 2 16 */ 228, /* OBJ_id_smime_aa_ets_signerLocation 1 2 840 113549 1 9 16 2 17 */ 229, /* OBJ_id_smime_aa_ets_signerAttr 1 2 840 113549 1 9 16 2 18 */ 230, /* OBJ_id_smime_aa_ets_otherSigCert 1 2 840 113549 1 9 16 2 19 */ 231, /* OBJ_id_smime_aa_ets_contentTimestamp 1 2 840 113549 1 9 16 2 20 */ 232, /* OBJ_id_smime_aa_ets_CertificateRefs 1 2 840 113549 1 9 16 2 21 */ 233, /* OBJ_id_smime_aa_ets_RevocationRefs 1 2 840 113549 1 9 16 2 22 */ 234, /* OBJ_id_smime_aa_ets_certValues 1 2 840 113549 1 9 16 2 23 */ 235, /* OBJ_id_smime_aa_ets_revocationValues 1 2 840 113549 1 9 16 2 24 */ 236, /* OBJ_id_smime_aa_ets_escTimeStamp 1 2 840 113549 1 9 16 2 25 */ 237, /* OBJ_id_smime_aa_ets_certCRLTimestamp 1 2 840 113549 1 9 16 2 26 */ 238, /* OBJ_id_smime_aa_ets_archiveTimeStamp 1 2 840 113549 1 9 16 2 27 */ 239, /* OBJ_id_smime_aa_signatureType 1 2 840 113549 1 9 16 2 28 */ 240, /* OBJ_id_smime_aa_dvcs_dvc 1 2 840 113549 1 9 16 2 29 */ 1086, /* OBJ_id_smime_aa_signingCertificateV2 1 2 840 113549 1 9 16 2 47 */ 241, /* OBJ_id_smime_alg_ESDHwith3DES 1 2 840 113549 1 9 16 3 1 */ 242, /* OBJ_id_smime_alg_ESDHwithRC2 1 2 840 113549 1 9 16 3 2 */ 243, /* OBJ_id_smime_alg_3DESwrap 1 2 840 113549 1 9 16 3 3 */ 244, /* OBJ_id_smime_alg_RC2wrap 1 2 840 113549 1 9 16 3 4 */ 245, /* OBJ_id_smime_alg_ESDH 1 2 840 113549 1 9 16 3 5 */ 246, /* OBJ_id_smime_alg_CMS3DESwrap 1 2 840 113549 1 9 16 3 6 */ 247, /* OBJ_id_smime_alg_CMSRC2wrap 1 2 840 113549 1 9 16 3 7 */ 125, /* OBJ_zlib_compression 1 2 840 113549 1 9 16 3 8 */ 893, /* OBJ_id_alg_PWRI_KEK 1 2 840 113549 1 9 16 3 9 */ 248, /* OBJ_id_smime_cd_ldap 1 2 840 113549 1 9 16 4 1 */ 249, /* OBJ_id_smime_spq_ets_sqt_uri 1 2 840 113549 1 9 16 5 1 */ 250, /* OBJ_id_smime_spq_ets_sqt_unotice 1 2 840 113549 1 9 16 5 2 */ 251, /* OBJ_id_smime_cti_ets_proofOfOrigin 1 2 840 113549 1 9 16 6 1 */ 252, /* OBJ_id_smime_cti_ets_proofOfReceipt 1 2 840 113549 1 9 16 6 2 */ 253, /* OBJ_id_smime_cti_ets_proofOfDelivery 1 2 840 113549 1 9 16 6 3 */ 254, /* OBJ_id_smime_cti_ets_proofOfSender 1 2 840 113549 1 9 16 6 4 */ 255, /* OBJ_id_smime_cti_ets_proofOfApproval 1 2 840 113549 1 9 16 6 5 */ 256, /* OBJ_id_smime_cti_ets_proofOfCreation 1 2 840 113549 1 9 16 6 6 */ 150, /* OBJ_keyBag 1 2 840 113549 1 12 10 1 1 */ 151, /* OBJ_pkcs8ShroudedKeyBag 1 2 840 113549 1 12 10 1 2 */ 152, /* OBJ_certBag 1 2 840 113549 1 12 10 1 3 */ 153, /* OBJ_crlBag 1 2 840 113549 1 12 10 1 4 */ 154, /* OBJ_secretBag 1 2 840 113549 1 12 10 1 5 */ 155, /* OBJ_safeContentsBag 1 2 840 113549 1 12 10 1 6 */ 34, /* OBJ_idea_cbc 1 3 6 1 4 1 188 7 1 1 2 */ 955, /* OBJ_jurisdictionLocalityName 1 3 6 1 4 1 311 60 2 1 1 */ 956, /* OBJ_jurisdictionStateOrProvinceName 1 3 6 1 4 1 311 60 2 1 2 */ 957, /* OBJ_jurisdictionCountryName 1 3 6 1 4 1 311 60 2 1 3 */ 1056, /* OBJ_blake2b512 1 3 6 1 4 1 1722 12 2 1 16 */ 1057, /* OBJ_blake2s256 1 3 6 1 4 1 1722 12 2 2 8 */ 1159, /* OBJ_dstu4145be 1 2 804 2 1 1 1 1 3 1 1 1 1 */ 1160, /* OBJ_uacurve0 1 2 804 2 1 1 1 1 3 1 1 2 0 */ 1161, /* OBJ_uacurve1 1 2 804 2 1 1 1 1 3 1 1 2 1 */ 1162, /* OBJ_uacurve2 1 2 804 2 1 1 1 1 3 1 1 2 2 */ 1163, /* OBJ_uacurve3 1 2 804 2 1 1 1 1 3 1 1 2 3 */ 1164, /* OBJ_uacurve4 1 2 804 2 1 1 1 1 3 1 1 2 4 */ 1165, /* OBJ_uacurve5 1 2 804 2 1 1 1 1 3 1 1 2 5 */ 1166, /* OBJ_uacurve6 1 2 804 2 1 1 1 1 3 1 1 2 6 */ 1167, /* OBJ_uacurve7 1 2 804 2 1 1 1 1 3 1 1 2 7 */ 1168, /* OBJ_uacurve8 1 2 804 2 1 1 1 1 3 1 1 2 8 */ 1169, /* OBJ_uacurve9 1 2 804 2 1 1 1 1 3 1 1 2 9 */ }; openssl-1.1.1f/crypto/objects/obj_dat.pl000066400000000000000000000140021364063235100202530ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html use integer; use strict; use warnings; # Generate the DER encoding for the given OID. sub der_it { # Prologue my ($v) = @_; my @a = split(/\s+/, $v); my $ret = pack("C*", $a[0] * 40 + $a[1]); shift @a; shift @a; # Loop over rest of bytes; or in 0x80 for multi-byte numbers. my $t; foreach (@a) { my @r = (); $t = 0; while ($_ >= 128) { my $x = $_ % 128; $_ /= 128; push(@r, ($t++ ? 0x80 : 0) | $x); } push(@r, ($t++ ? 0x80 : 0) | $_); $ret .= pack("C*", reverse(@r)); } return $ret; } # Output year depends on the year of the script and the input file. my $YEAR = [localtime([stat($0)]->[9])]->[5] + 1900; my $iYEAR = [localtime([stat($ARGV[0])]->[9])]->[5] + 1900; $YEAR = $iYEAR if $iYEAR > $YEAR; # Read input, parse all #define's into OID name and value. # Populate %ln and %sn with long and short names (%dupln and %dupsn) # are used to watch for duplicates. Also %nid and %obj get the # NID and OBJ entries. my %ln; my %sn; my %dupln; my %dupsn; my %nid; my %obj; my %objd; open(IN, "$ARGV[0]") || die "Can't open input file $ARGV[0], $!"; while () { next unless /^\#define\s+(\S+)\s+(.*)$/; my $v = $1; my $d = $2; $d =~ s/^\"//; $d =~ s/\"$//; if ($v =~ /^SN_(.*)$/) { if (defined $dupsn{$d}) { print "WARNING: Duplicate short name \"$d\"\n"; } else { $dupsn{$d} = 1; } $sn{$1} = $d; } elsif ($v =~ /^LN_(.*)$/) { if (defined $dupln{$d}) { print "WARNING: Duplicate long name \"$d\"\n"; } else { $dupln{$d} = 1; } $ln{$1} = $d; } elsif ($v =~ /^NID_(.*)$/) { $nid{$d} = $1; } elsif ($v =~ /^OBJ_(.*)$/) { $obj{$1} = $v; $objd{$v} = $d; } } close IN; # For every value in %obj, recursively expand OBJ_xxx values. That is: # #define OBJ_iso 1L # #define OBJ_identified_organization OBJ_iso,3L # Modify %objd values in-place. Create an %objn array that has my $changed; do { $changed = 0; foreach my $k (keys %objd) { $changed = 1 if $objd{$k} =~ s/(OBJ_[^,]+),/$objd{$1},/; } } while ($changed); my @a = sort { $a <=> $b } keys %nid; my $n = $a[$#a] + 1; my @lvalues = (); my $lvalues = 0; # Scan all defined objects, building up the @out array. # %obj_der holds the DER encoding as an array of bytes, and %obj_len # holds the length in bytes. my @out; my %obj_der; my %obj_len; for (my $i = 0; $i < $n; $i++) { if (!defined $nid{$i}) { push(@out, " { NULL, NULL, NID_undef },\n"); next; } my $sn = defined $sn{$nid{$i}} ? "$sn{$nid{$i}}" : "NULL"; my $ln = defined $ln{$nid{$i}} ? "$ln{$nid{$i}}" : "NULL"; if ($sn eq "NULL") { $sn = $ln; $sn{$nid{$i}} = $ln; } if ($ln eq "NULL") { $ln = $sn; $ln{$nid{$i}} = $sn; } my $out = " {\"$sn\", \"$ln\", NID_$nid{$i}"; if (defined $obj{$nid{$i}} && $objd{$obj{$nid{$i}}} =~ /,/) { my $v = $objd{$obj{$nid{$i}}}; $v =~ s/L//g; $v =~ s/,/ /g; my $r = &der_it($v); my $z = ""; my $length = 0; # Format using fixed-with because we use strcmp later. foreach (unpack("C*",$r)) { $z .= sprintf("0x%02X,", $_); $length++; } $obj_der{$obj{$nid{$i}}} = $z; $obj_len{$obj{$nid{$i}}} = $length; push(@lvalues, sprintf(" %-45s /* [%5d] %s */\n", $z, $lvalues, $obj{$nid{$i}})); $out .= ", $length, &so[$lvalues]"; $lvalues += $length; } $out .= "},\n"; push(@out, $out); } # Finally ready to generate the output. print <<"EOF"; /* * WARNING: do not edit! * Generated by crypto/objects/obj_dat.pl * * Copyright 1995-$YEAR The OpenSSL Project Authors. All Rights Reserved. * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ EOF print "/* Serialized OID's */\n"; printf "static const unsigned char so[%d] = {\n", $lvalues + 1; print @lvalues; print "};\n\n"; printf "#define NUM_NID %d\n", $n; printf "static const ASN1_OBJECT nid_objs[NUM_NID] = {\n"; print @out; print "};\n\n"; { no warnings "uninitialized"; @a = grep(defined $sn{$nid{$_}}, 0 .. $n); } printf "#define NUM_SN %d\n", $#a + 1; printf "static const unsigned int sn_objs[NUM_SN] = {\n"; foreach (sort { $sn{$nid{$a}} cmp $sn{$nid{$b}} } @a) { printf " %4d, /* \"$sn{$nid{$_}}\" */\n", $_; } print "};\n\n"; { no warnings "uninitialized"; @a = grep(defined $ln{$nid{$_}}, 0 .. $n); } printf "#define NUM_LN %d\n", $#a + 1; printf "static const unsigned int ln_objs[NUM_LN] = {\n"; foreach (sort { $ln{$nid{$a}} cmp $ln{$nid{$b}} } @a) { printf " %4d, /* \"$ln{$nid{$_}}\" */\n", $_; } print "};\n\n"; { no warnings "uninitialized"; @a = grep(defined $obj{$nid{$_}}, 0 .. $n); } printf "#define NUM_OBJ %d\n", $#a + 1; printf "static const unsigned int obj_objs[NUM_OBJ] = {\n"; # Compare DER; prefer shorter; if some length, use the "smaller" encoding. sub obj_cmp { no warnings "uninitialized"; my $A = $obj_len{$obj{$nid{$a}}}; my $B = $obj_len{$obj{$nid{$b}}}; my $r = $A - $B; return $r if $r != 0; $A = $obj_der{$obj{$nid{$a}}}; $B = $obj_der{$obj{$nid{$b}}}; return $A cmp $B; } foreach (sort obj_cmp @a) { my $m = $obj{$nid{$_}}; my $v = $objd{$m}; $v =~ s/L//g; $v =~ s/,/ /g; printf " %4d, /* %-32s %s */\n", $_, $m, $v; } print "};\n"; openssl-1.1.1f/crypto/objects/obj_err.c000066400000000000000000000030611364063235100201050ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA OBJ_str_functs[] = { {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_ADD_OBJECT, 0), "OBJ_add_object"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_ADD_SIGID, 0), "OBJ_add_sigid"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_CREATE, 0), "OBJ_create"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_DUP, 0), "OBJ_dup"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_NAME_NEW_INDEX, 0), "OBJ_NAME_new_index"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_NID2LN, 0), "OBJ_nid2ln"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_NID2OBJ, 0), "OBJ_nid2obj"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_NID2SN, 0), "OBJ_nid2sn"}, {ERR_PACK(ERR_LIB_OBJ, OBJ_F_OBJ_TXT2OBJ, 0), "OBJ_txt2obj"}, {0, NULL} }; static const ERR_STRING_DATA OBJ_str_reasons[] = { {ERR_PACK(ERR_LIB_OBJ, 0, OBJ_R_OID_EXISTS), "oid exists"}, {ERR_PACK(ERR_LIB_OBJ, 0, OBJ_R_UNKNOWN_NID), "unknown nid"}, {0, NULL} }; #endif int ERR_load_OBJ_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(OBJ_str_functs[0].error) == NULL) { ERR_load_strings_const(OBJ_str_functs); ERR_load_strings_const(OBJ_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/objects/obj_lib.c000066400000000000000000000032671364063235100200730ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) { ASN1_OBJECT *r; if (o == NULL) return NULL; /* If object isn't dynamic it's an internal OID which is never freed */ if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) return (ASN1_OBJECT *)o; r = ASN1_OBJECT_new(); if (r == NULL) { OBJerr(OBJ_F_OBJ_DUP, ERR_R_ASN1_LIB); return NULL; } /* Set dynamic flags so everything gets freed up on error */ r->flags = o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | ASN1_OBJECT_FLAG_DYNAMIC_DATA); if (o->length > 0 && (r->data = OPENSSL_memdup(o->data, o->length)) == NULL) goto err; r->length = o->length; r->nid = o->nid; if (o->ln != NULL && (r->ln = OPENSSL_strdup(o->ln)) == NULL) goto err; if (o->sn != NULL && (r->sn = OPENSSL_strdup(o->sn)) == NULL) goto err; return r; err: ASN1_OBJECT_free(r); OBJerr(OBJ_F_OBJ_DUP, ERR_R_MALLOC_FAILURE); return NULL; } int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { int ret; ret = (a->length - b->length); if (ret) return ret; return memcmp(a->data, b->data, a->length); } openssl-1.1.1f/crypto/objects/obj_local.h000066400000000000000000000007541364063235100204220ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ typedef struct name_funcs_st NAME_FUNCS; DEFINE_STACK_OF(NAME_FUNCS) DEFINE_LHASH_OF(OBJ_NAME); typedef struct added_obj_st ADDED_OBJ; DEFINE_LHASH_OF(ADDED_OBJ); openssl-1.1.1f/crypto/objects/obj_mac.num000066400000000000000000000633731364063235100204460ustar00rootroot00000000000000undef 0 rsadsi 1 pkcs 2 md2 3 md5 4 rc4 5 rsaEncryption 6 md2WithRSAEncryption 7 md5WithRSAEncryption 8 pbeWithMD2AndDES_CBC 9 pbeWithMD5AndDES_CBC 10 X500 11 X509 12 commonName 13 countryName 14 localityName 15 stateOrProvinceName 16 organizationName 17 organizationalUnitName 18 rsa 19 pkcs7 20 pkcs7_data 21 pkcs7_signed 22 pkcs7_enveloped 23 pkcs7_signedAndEnveloped 24 pkcs7_digest 25 pkcs7_encrypted 26 pkcs3 27 dhKeyAgreement 28 des_ecb 29 des_cfb64 30 des_cbc 31 des_ede_ecb 32 des_ede3_ecb 33 idea_cbc 34 idea_cfb64 35 idea_ecb 36 rc2_cbc 37 rc2_ecb 38 rc2_cfb64 39 rc2_ofb64 40 sha 41 shaWithRSAEncryption 42 des_ede_cbc 43 des_ede3_cbc 44 des_ofb64 45 idea_ofb64 46 pkcs9 47 pkcs9_emailAddress 48 pkcs9_unstructuredName 49 pkcs9_contentType 50 pkcs9_messageDigest 51 pkcs9_signingTime 52 pkcs9_countersignature 53 pkcs9_challengePassword 54 pkcs9_unstructuredAddress 55 pkcs9_extCertAttributes 56 netscape 57 netscape_cert_extension 58 netscape_data_type 59 des_ede_cfb64 60 des_ede3_cfb64 61 des_ede_ofb64 62 des_ede3_ofb64 63 sha1 64 sha1WithRSAEncryption 65 dsaWithSHA 66 dsa_2 67 pbeWithSHA1AndRC2_CBC 68 id_pbkdf2 69 dsaWithSHA1_2 70 netscape_cert_type 71 netscape_base_url 72 netscape_revocation_url 73 netscape_ca_revocation_url 74 netscape_renewal_url 75 netscape_ca_policy_url 76 netscape_ssl_server_name 77 netscape_comment 78 netscape_cert_sequence 79 desx_cbc 80 id_ce 81 subject_key_identifier 82 key_usage 83 private_key_usage_period 84 subject_alt_name 85 issuer_alt_name 86 basic_constraints 87 crl_number 88 certificate_policies 89 authority_key_identifier 90 bf_cbc 91 bf_ecb 92 bf_cfb64 93 bf_ofb64 94 mdc2 95 mdc2WithRSA 96 rc4_40 97 rc2_40_cbc 98 givenName 99 surname 100 initials 101 uniqueIdentifier 102 crl_distribution_points 103 md5WithRSA 104 serialNumber 105 title 106 description 107 cast5_cbc 108 cast5_ecb 109 cast5_cfb64 110 cast5_ofb64 111 pbeWithMD5AndCast5_CBC 112 dsaWithSHA1 113 md5_sha1 114 sha1WithRSA 115 dsa 116 ripemd160 117 ripemd160WithRSA 119 rc5_cbc 120 rc5_ecb 121 rc5_cfb64 122 rc5_ofb64 123 rle_compression 124 zlib_compression 125 ext_key_usage 126 id_pkix 127 id_kp 128 server_auth 129 client_auth 130 code_sign 131 email_protect 132 time_stamp 133 ms_code_ind 134 ms_code_com 135 ms_ctl_sign 136 ms_sgc 137 ms_efs 138 ns_sgc 139 delta_crl 140 crl_reason 141 invalidity_date 142 sxnet 143 pbe_WithSHA1And128BitRC4 144 pbe_WithSHA1And40BitRC4 145 pbe_WithSHA1And3_Key_TripleDES_CBC 146 pbe_WithSHA1And2_Key_TripleDES_CBC 147 pbe_WithSHA1And128BitRC2_CBC 148 pbe_WithSHA1And40BitRC2_CBC 149 keyBag 150 pkcs8ShroudedKeyBag 151 certBag 152 crlBag 153 secretBag 154 safeContentsBag 155 friendlyName 156 localKeyID 157 x509Certificate 158 sdsiCertificate 159 x509Crl 160 pbes2 161 pbmac1 162 hmacWithSHA1 163 id_qt_cps 164 id_qt_unotice 165 rc2_64_cbc 166 SMIMECapabilities 167 pbeWithMD2AndRC2_CBC 168 pbeWithMD5AndRC2_CBC 169 pbeWithSHA1AndDES_CBC 170 ms_ext_req 171 ext_req 172 name 173 dnQualifier 174 id_pe 175 id_ad 176 info_access 177 ad_OCSP 178 ad_ca_issuers 179 OCSP_sign 180 iso 181 member_body 182 ISO_US 183 X9_57 184 X9cm 185 pkcs1 186 pkcs5 187 SMIME 188 id_smime_mod 189 id_smime_ct 190 id_smime_aa 191 id_smime_alg 192 id_smime_cd 193 id_smime_spq 194 id_smime_cti 195 id_smime_mod_cms 196 id_smime_mod_ess 197 id_smime_mod_oid 198 id_smime_mod_msg_v3 199 id_smime_mod_ets_eSignature_88 200 id_smime_mod_ets_eSignature_97 201 id_smime_mod_ets_eSigPolicy_88 202 id_smime_mod_ets_eSigPolicy_97 203 id_smime_ct_receipt 204 id_smime_ct_authData 205 id_smime_ct_publishCert 206 id_smime_ct_TSTInfo 207 id_smime_ct_TDTInfo 208 id_smime_ct_contentInfo 209 id_smime_ct_DVCSRequestData 210 id_smime_ct_DVCSResponseData 211 id_smime_aa_receiptRequest 212 id_smime_aa_securityLabel 213 id_smime_aa_mlExpandHistory 214 id_smime_aa_contentHint 215 id_smime_aa_msgSigDigest 216 id_smime_aa_encapContentType 217 id_smime_aa_contentIdentifier 218 id_smime_aa_macValue 219 id_smime_aa_equivalentLabels 220 id_smime_aa_contentReference 221 id_smime_aa_encrypKeyPref 222 id_smime_aa_signingCertificate 223 id_smime_aa_smimeEncryptCerts 224 id_smime_aa_timeStampToken 225 id_smime_aa_ets_sigPolicyId 226 id_smime_aa_ets_commitmentType 227 id_smime_aa_ets_signerLocation 228 id_smime_aa_ets_signerAttr 229 id_smime_aa_ets_otherSigCert 230 id_smime_aa_ets_contentTimestamp 231 id_smime_aa_ets_CertificateRefs 232 id_smime_aa_ets_RevocationRefs 233 id_smime_aa_ets_certValues 234 id_smime_aa_ets_revocationValues 235 id_smime_aa_ets_escTimeStamp 236 id_smime_aa_ets_certCRLTimestamp 237 id_smime_aa_ets_archiveTimeStamp 238 id_smime_aa_signatureType 239 id_smime_aa_dvcs_dvc 240 id_smime_alg_ESDHwith3DES 241 id_smime_alg_ESDHwithRC2 242 id_smime_alg_3DESwrap 243 id_smime_alg_RC2wrap 244 id_smime_alg_ESDH 245 id_smime_alg_CMS3DESwrap 246 id_smime_alg_CMSRC2wrap 247 id_smime_cd_ldap 248 id_smime_spq_ets_sqt_uri 249 id_smime_spq_ets_sqt_unotice 250 id_smime_cti_ets_proofOfOrigin 251 id_smime_cti_ets_proofOfReceipt 252 id_smime_cti_ets_proofOfDelivery 253 id_smime_cti_ets_proofOfSender 254 id_smime_cti_ets_proofOfApproval 255 id_smime_cti_ets_proofOfCreation 256 md4 257 id_pkix_mod 258 id_qt 259 id_it 260 id_pkip 261 id_alg 262 id_cmc 263 id_on 264 id_pda 265 id_aca 266 id_qcs 267 id_cct 268 id_pkix1_explicit_88 269 id_pkix1_implicit_88 270 id_pkix1_explicit_93 271 id_pkix1_implicit_93 272 id_mod_crmf 273 id_mod_cmc 274 id_mod_kea_profile_88 275 id_mod_kea_profile_93 276 id_mod_cmp 277 id_mod_qualified_cert_88 278 id_mod_qualified_cert_93 279 id_mod_attribute_cert 280 id_mod_timestamp_protocol 281 id_mod_ocsp 282 id_mod_dvcs 283 id_mod_cmp2000 284 biometricInfo 285 qcStatements 286 ac_auditEntity 287 ac_targeting 288 aaControls 289 sbgp_ipAddrBlock 290 sbgp_autonomousSysNum 291 sbgp_routerIdentifier 292 textNotice 293 ipsecEndSystem 294 ipsecTunnel 295 ipsecUser 296 dvcs 297 id_it_caProtEncCert 298 id_it_signKeyPairTypes 299 id_it_encKeyPairTypes 300 id_it_preferredSymmAlg 301 id_it_caKeyUpdateInfo 302 id_it_currentCRL 303 id_it_unsupportedOIDs 304 id_it_subscriptionRequest 305 id_it_subscriptionResponse 306 id_it_keyPairParamReq 307 id_it_keyPairParamRep 308 id_it_revPassphrase 309 id_it_implicitConfirm 310 id_it_confirmWaitTime 311 id_it_origPKIMessage 312 id_regCtrl 313 id_regInfo 314 id_regCtrl_regToken 315 id_regCtrl_authenticator 316 id_regCtrl_pkiPublicationInfo 317 id_regCtrl_pkiArchiveOptions 318 id_regCtrl_oldCertID 319 id_regCtrl_protocolEncrKey 320 id_regInfo_utf8Pairs 321 id_regInfo_certReq 322 id_alg_des40 323 id_alg_noSignature 324 id_alg_dh_sig_hmac_sha1 325 id_alg_dh_pop 326 id_cmc_statusInfo 327 id_cmc_identification 328 id_cmc_identityProof 329 id_cmc_dataReturn 330 id_cmc_transactionId 331 id_cmc_senderNonce 332 id_cmc_recipientNonce 333 id_cmc_addExtensions 334 id_cmc_encryptedPOP 335 id_cmc_decryptedPOP 336 id_cmc_lraPOPWitness 337 id_cmc_getCert 338 id_cmc_getCRL 339 id_cmc_revokeRequest 340 id_cmc_regInfo 341 id_cmc_responseInfo 342 id_cmc_queryPending 343 id_cmc_popLinkRandom 344 id_cmc_popLinkWitness 345 id_cmc_confirmCertAcceptance 346 id_on_personalData 347 id_pda_dateOfBirth 348 id_pda_placeOfBirth 349 id_pda_pseudonym 350 id_pda_gender 351 id_pda_countryOfCitizenship 352 id_pda_countryOfResidence 353 id_aca_authenticationInfo 354 id_aca_accessIdentity 355 id_aca_chargingIdentity 356 id_aca_group 357 id_aca_role 358 id_qcs_pkixQCSyntax_v1 359 id_cct_crs 360 id_cct_PKIData 361 id_cct_PKIResponse 362 ad_timeStamping 363 ad_dvcs 364 id_pkix_OCSP_basic 365 id_pkix_OCSP_Nonce 366 id_pkix_OCSP_CrlID 367 id_pkix_OCSP_acceptableResponses 368 id_pkix_OCSP_noCheck 369 id_pkix_OCSP_archiveCutoff 370 id_pkix_OCSP_serviceLocator 371 id_pkix_OCSP_extendedStatus 372 id_pkix_OCSP_valid 373 id_pkix_OCSP_path 374 id_pkix_OCSP_trustRoot 375 algorithm 376 rsaSignature 377 X500algorithms 378 org 379 dod 380 iana 381 Directory 382 Management 383 Experimental 384 Private 385 Security 386 SNMPv2 387 Mail 388 Enterprises 389 dcObject 390 domainComponent 391 Domain 392 joint_iso_ccitt 393 selected_attribute_types 394 clearance 395 md4WithRSAEncryption 396 ac_proxying 397 sinfo_access 398 id_aca_encAttrs 399 role 400 policy_constraints 401 target_information 402 no_rev_avail 403 ccitt 404 ansi_X9_62 405 X9_62_prime_field 406 X9_62_characteristic_two_field 407 X9_62_id_ecPublicKey 408 X9_62_prime192v1 409 X9_62_prime192v2 410 X9_62_prime192v3 411 X9_62_prime239v1 412 X9_62_prime239v2 413 X9_62_prime239v3 414 X9_62_prime256v1 415 ecdsa_with_SHA1 416 ms_csp_name 417 aes_128_ecb 418 aes_128_cbc 419 aes_128_ofb128 420 aes_128_cfb128 421 aes_192_ecb 422 aes_192_cbc 423 aes_192_ofb128 424 aes_192_cfb128 425 aes_256_ecb 426 aes_256_cbc 427 aes_256_ofb128 428 aes_256_cfb128 429 hold_instruction_code 430 hold_instruction_none 431 hold_instruction_call_issuer 432 hold_instruction_reject 433 data 434 pss 435 ucl 436 pilot 437 pilotAttributeType 438 pilotAttributeSyntax 439 pilotObjectClass 440 pilotGroups 441 iA5StringSyntax 442 caseIgnoreIA5StringSyntax 443 pilotObject 444 pilotPerson 445 account 446 document 447 room 448 documentSeries 449 rFC822localPart 450 dNSDomain 451 domainRelatedObject 452 friendlyCountry 453 simpleSecurityObject 454 pilotOrganization 455 pilotDSA 456 qualityLabelledData 457 userId 458 textEncodedORAddress 459 rfc822Mailbox 460 info 461 favouriteDrink 462 roomNumber 463 photo 464 userClass 465 host 466 manager 467 documentIdentifier 468 documentTitle 469 documentVersion 470 documentAuthor 471 documentLocation 472 homeTelephoneNumber 473 secretary 474 otherMailbox 475 lastModifiedTime 476 lastModifiedBy 477 aRecord 478 pilotAttributeType27 479 mXRecord 480 nSRecord 481 sOARecord 482 cNAMERecord 483 associatedDomain 484 associatedName 485 homePostalAddress 486 personalTitle 487 mobileTelephoneNumber 488 pagerTelephoneNumber 489 friendlyCountryName 490 organizationalStatus 491 janetMailbox 492 mailPreferenceOption 493 buildingName 494 dSAQuality 495 singleLevelQuality 496 subtreeMinimumQuality 497 subtreeMaximumQuality 498 personalSignature 499 dITRedirect 500 audio 501 documentPublisher 502 x500UniqueIdentifier 503 mime_mhs 504 mime_mhs_headings 505 mime_mhs_bodies 506 id_hex_partial_message 507 id_hex_multipart_message 508 generationQualifier 509 pseudonym 510 InternationalRA 511 id_set 512 set_ctype 513 set_msgExt 514 set_attr 515 set_policy 516 set_certExt 517 set_brand 518 setct_PANData 519 setct_PANToken 520 setct_PANOnly 521 setct_OIData 522 setct_PI 523 setct_PIData 524 setct_PIDataUnsigned 525 setct_HODInput 526 setct_AuthResBaggage 527 setct_AuthRevReqBaggage 528 setct_AuthRevResBaggage 529 setct_CapTokenSeq 530 setct_PInitResData 531 setct_PI_TBS 532 setct_PResData 533 setct_AuthReqTBS 534 setct_AuthResTBS 535 setct_AuthResTBSX 536 setct_AuthTokenTBS 537 setct_CapTokenData 538 setct_CapTokenTBS 539 setct_AcqCardCodeMsg 540 setct_AuthRevReqTBS 541 setct_AuthRevResData 542 setct_AuthRevResTBS 543 setct_CapReqTBS 544 setct_CapReqTBSX 545 setct_CapResData 546 setct_CapRevReqTBS 547 setct_CapRevReqTBSX 548 setct_CapRevResData 549 setct_CredReqTBS 550 setct_CredReqTBSX 551 setct_CredResData 552 setct_CredRevReqTBS 553 setct_CredRevReqTBSX 554 setct_CredRevResData 555 setct_PCertReqData 556 setct_PCertResTBS 557 setct_BatchAdminReqData 558 setct_BatchAdminResData 559 setct_CardCInitResTBS 560 setct_MeAqCInitResTBS 561 setct_RegFormResTBS 562 setct_CertReqData 563 setct_CertReqTBS 564 setct_CertResData 565 setct_CertInqReqTBS 566 setct_ErrorTBS 567 setct_PIDualSignedTBE 568 setct_PIUnsignedTBE 569 setct_AuthReqTBE 570 setct_AuthResTBE 571 setct_AuthResTBEX 572 setct_AuthTokenTBE 573 setct_CapTokenTBE 574 setct_CapTokenTBEX 575 setct_AcqCardCodeMsgTBE 576 setct_AuthRevReqTBE 577 setct_AuthRevResTBE 578 setct_AuthRevResTBEB 579 setct_CapReqTBE 580 setct_CapReqTBEX 581 setct_CapResTBE 582 setct_CapRevReqTBE 583 setct_CapRevReqTBEX 584 setct_CapRevResTBE 585 setct_CredReqTBE 586 setct_CredReqTBEX 587 setct_CredResTBE 588 setct_CredRevReqTBE 589 setct_CredRevReqTBEX 590 setct_CredRevResTBE 591 setct_BatchAdminReqTBE 592 setct_BatchAdminResTBE 593 setct_RegFormReqTBE 594 setct_CertReqTBE 595 setct_CertReqTBEX 596 setct_CertResTBE 597 setct_CRLNotificationTBS 598 setct_CRLNotificationResTBS 599 setct_BCIDistributionTBS 600 setext_genCrypt 601 setext_miAuth 602 setext_pinSecure 603 setext_pinAny 604 setext_track2 605 setext_cv 606 set_policy_root 607 setCext_hashedRoot 608 setCext_certType 609 setCext_merchData 610 setCext_cCertRequired 611 setCext_tunneling 612 setCext_setExt 613 setCext_setQualf 614 setCext_PGWYcapabilities 615 setCext_TokenIdentifier 616 setCext_Track2Data 617 setCext_TokenType 618 setCext_IssuerCapabilities 619 setAttr_Cert 620 setAttr_PGWYcap 621 setAttr_TokenType 622 setAttr_IssCap 623 set_rootKeyThumb 624 set_addPolicy 625 setAttr_Token_EMV 626 setAttr_Token_B0Prime 627 setAttr_IssCap_CVM 628 setAttr_IssCap_T2 629 setAttr_IssCap_Sig 630 setAttr_GenCryptgrm 631 setAttr_T2Enc 632 setAttr_T2cleartxt 633 setAttr_TokICCsig 634 setAttr_SecDevSig 635 set_brand_IATA_ATA 636 set_brand_Diners 637 set_brand_AmericanExpress 638 set_brand_JCB 639 set_brand_Visa 640 set_brand_MasterCard 641 set_brand_Novus 642 des_cdmf 643 rsaOAEPEncryptionSET 644 itu_t 645 joint_iso_itu_t 646 international_organizations 647 ms_smartcard_login 648 ms_upn 649 aes_128_cfb1 650 aes_192_cfb1 651 aes_256_cfb1 652 aes_128_cfb8 653 aes_192_cfb8 654 aes_256_cfb8 655 des_cfb1 656 des_cfb8 657 des_ede3_cfb1 658 des_ede3_cfb8 659 streetAddress 660 postalCode 661 id_ppl 662 proxyCertInfo 663 id_ppl_anyLanguage 664 id_ppl_inheritAll 665 name_constraints 666 Independent 667 sha256WithRSAEncryption 668 sha384WithRSAEncryption 669 sha512WithRSAEncryption 670 sha224WithRSAEncryption 671 sha256 672 sha384 673 sha512 674 sha224 675 identified_organization 676 certicom_arc 677 wap 678 wap_wsg 679 X9_62_id_characteristic_two_basis 680 X9_62_onBasis 681 X9_62_tpBasis 682 X9_62_ppBasis 683 X9_62_c2pnb163v1 684 X9_62_c2pnb163v2 685 X9_62_c2pnb163v3 686 X9_62_c2pnb176v1 687 X9_62_c2tnb191v1 688 X9_62_c2tnb191v2 689 X9_62_c2tnb191v3 690 X9_62_c2onb191v4 691 X9_62_c2onb191v5 692 X9_62_c2pnb208w1 693 X9_62_c2tnb239v1 694 X9_62_c2tnb239v2 695 X9_62_c2tnb239v3 696 X9_62_c2onb239v4 697 X9_62_c2onb239v5 698 X9_62_c2pnb272w1 699 X9_62_c2pnb304w1 700 X9_62_c2tnb359v1 701 X9_62_c2pnb368w1 702 X9_62_c2tnb431r1 703 secp112r1 704 secp112r2 705 secp128r1 706 secp128r2 707 secp160k1 708 secp160r1 709 secp160r2 710 secp192k1 711 secp224k1 712 secp224r1 713 secp256k1 714 secp384r1 715 secp521r1 716 sect113r1 717 sect113r2 718 sect131r1 719 sect131r2 720 sect163k1 721 sect163r1 722 sect163r2 723 sect193r1 724 sect193r2 725 sect233k1 726 sect233r1 727 sect239k1 728 sect283k1 729 sect283r1 730 sect409k1 731 sect409r1 732 sect571k1 733 sect571r1 734 wap_wsg_idm_ecid_wtls1 735 wap_wsg_idm_ecid_wtls3 736 wap_wsg_idm_ecid_wtls4 737 wap_wsg_idm_ecid_wtls5 738 wap_wsg_idm_ecid_wtls6 739 wap_wsg_idm_ecid_wtls7 740 wap_wsg_idm_ecid_wtls8 741 wap_wsg_idm_ecid_wtls9 742 wap_wsg_idm_ecid_wtls10 743 wap_wsg_idm_ecid_wtls11 744 wap_wsg_idm_ecid_wtls12 745 any_policy 746 policy_mappings 747 inhibit_any_policy 748 ipsec3 749 ipsec4 750 camellia_128_cbc 751 camellia_192_cbc 752 camellia_256_cbc 753 camellia_128_ecb 754 camellia_192_ecb 755 camellia_256_ecb 756 camellia_128_cfb128 757 camellia_192_cfb128 758 camellia_256_cfb128 759 camellia_128_cfb1 760 camellia_192_cfb1 761 camellia_256_cfb1 762 camellia_128_cfb8 763 camellia_192_cfb8 764 camellia_256_cfb8 765 camellia_128_ofb128 766 camellia_192_ofb128 767 camellia_256_ofb128 768 subject_directory_attributes 769 issuing_distribution_point 770 certificate_issuer 771 korea 772 kisa 773 kftc 774 npki_alg 775 seed_ecb 776 seed_cbc 777 seed_ofb128 778 seed_cfb128 779 hmac_md5 780 hmac_sha1 781 id_PasswordBasedMAC 782 id_DHBasedMac 783 id_it_suppLangTags 784 caRepository 785 id_smime_ct_compressedData 786 id_ct_asciiTextWithCRLF 787 id_aes128_wrap 788 id_aes192_wrap 789 id_aes256_wrap 790 ecdsa_with_Recommended 791 ecdsa_with_Specified 792 ecdsa_with_SHA224 793 ecdsa_with_SHA256 794 ecdsa_with_SHA384 795 ecdsa_with_SHA512 796 hmacWithMD5 797 hmacWithSHA224 798 hmacWithSHA256 799 hmacWithSHA384 800 hmacWithSHA512 801 dsa_with_SHA224 802 dsa_with_SHA256 803 whirlpool 804 cryptopro 805 cryptocom 806 id_GostR3411_94_with_GostR3410_2001 807 id_GostR3411_94_with_GostR3410_94 808 id_GostR3411_94 809 id_HMACGostR3411_94 810 id_GostR3410_2001 811 id_GostR3410_94 812 id_Gost28147_89 813 gost89_cnt 814 id_Gost28147_89_MAC 815 id_GostR3411_94_prf 816 id_GostR3410_2001DH 817 id_GostR3410_94DH 818 id_Gost28147_89_CryptoPro_KeyMeshing 819 id_Gost28147_89_None_KeyMeshing 820 id_GostR3411_94_TestParamSet 821 id_GostR3411_94_CryptoProParamSet 822 id_Gost28147_89_TestParamSet 823 id_Gost28147_89_CryptoPro_A_ParamSet 824 id_Gost28147_89_CryptoPro_B_ParamSet 825 id_Gost28147_89_CryptoPro_C_ParamSet 826 id_Gost28147_89_CryptoPro_D_ParamSet 827 id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet 828 id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet 829 id_Gost28147_89_CryptoPro_RIC_1_ParamSet 830 id_GostR3410_94_TestParamSet 831 id_GostR3410_94_CryptoPro_A_ParamSet 832 id_GostR3410_94_CryptoPro_B_ParamSet 833 id_GostR3410_94_CryptoPro_C_ParamSet 834 id_GostR3410_94_CryptoPro_D_ParamSet 835 id_GostR3410_94_CryptoPro_XchA_ParamSet 836 id_GostR3410_94_CryptoPro_XchB_ParamSet 837 id_GostR3410_94_CryptoPro_XchC_ParamSet 838 id_GostR3410_2001_TestParamSet 839 id_GostR3410_2001_CryptoPro_A_ParamSet 840 id_GostR3410_2001_CryptoPro_B_ParamSet 841 id_GostR3410_2001_CryptoPro_C_ParamSet 842 id_GostR3410_2001_CryptoPro_XchA_ParamSet 843 id_GostR3410_2001_CryptoPro_XchB_ParamSet 844 id_GostR3410_94_a 845 id_GostR3410_94_aBis 846 id_GostR3410_94_b 847 id_GostR3410_94_bBis 848 id_Gost28147_89_cc 849 id_GostR3410_94_cc 850 id_GostR3410_2001_cc 851 id_GostR3411_94_with_GostR3410_94_cc 852 id_GostR3411_94_with_GostR3410_2001_cc 853 id_GostR3410_2001_ParamSet_cc 854 hmac 855 LocalKeySet 856 freshest_crl 857 id_on_permanentIdentifier 858 searchGuide 859 businessCategory 860 postalAddress 861 postOfficeBox 862 physicalDeliveryOfficeName 863 telephoneNumber 864 telexNumber 865 teletexTerminalIdentifier 866 facsimileTelephoneNumber 867 x121Address 868 internationaliSDNNumber 869 registeredAddress 870 destinationIndicator 871 preferredDeliveryMethod 872 presentationAddress 873 supportedApplicationContext 874 member 875 owner 876 roleOccupant 877 seeAlso 878 userPassword 879 userCertificate 880 cACertificate 881 authorityRevocationList 882 certificateRevocationList 883 crossCertificatePair 884 enhancedSearchGuide 885 protocolInformation 886 distinguishedName 887 uniqueMember 888 houseIdentifier 889 supportedAlgorithms 890 deltaRevocationList 891 dmdName 892 id_alg_PWRI_KEK 893 cmac 894 aes_128_gcm 895 aes_128_ccm 896 id_aes128_wrap_pad 897 aes_192_gcm 898 aes_192_ccm 899 id_aes192_wrap_pad 900 aes_256_gcm 901 aes_256_ccm 902 id_aes256_wrap_pad 903 aes_128_ctr 904 aes_192_ctr 905 aes_256_ctr 906 id_camellia128_wrap 907 id_camellia192_wrap 908 id_camellia256_wrap 909 anyExtendedKeyUsage 910 mgf1 911 rsassaPss 912 aes_128_xts 913 aes_256_xts 914 rc4_hmac_md5 915 aes_128_cbc_hmac_sha1 916 aes_192_cbc_hmac_sha1 917 aes_256_cbc_hmac_sha1 918 rsaesOaep 919 dhpublicnumber 920 brainpoolP160r1 921 brainpoolP160t1 922 brainpoolP192r1 923 brainpoolP192t1 924 brainpoolP224r1 925 brainpoolP224t1 926 brainpoolP256r1 927 brainpoolP256t1 928 brainpoolP320r1 929 brainpoolP320t1 930 brainpoolP384r1 931 brainpoolP384t1 932 brainpoolP512r1 933 brainpoolP512t1 934 pSpecified 935 dhSinglePass_stdDH_sha1kdf_scheme 936 dhSinglePass_stdDH_sha224kdf_scheme 937 dhSinglePass_stdDH_sha256kdf_scheme 938 dhSinglePass_stdDH_sha384kdf_scheme 939 dhSinglePass_stdDH_sha512kdf_scheme 940 dhSinglePass_cofactorDH_sha1kdf_scheme 941 dhSinglePass_cofactorDH_sha224kdf_scheme 942 dhSinglePass_cofactorDH_sha256kdf_scheme 943 dhSinglePass_cofactorDH_sha384kdf_scheme 944 dhSinglePass_cofactorDH_sha512kdf_scheme 945 dh_std_kdf 946 dh_cofactor_kdf 947 aes_128_cbc_hmac_sha256 948 aes_192_cbc_hmac_sha256 949 aes_256_cbc_hmac_sha256 950 ct_precert_scts 951 ct_precert_poison 952 ct_precert_signer 953 ct_cert_scts 954 jurisdictionLocalityName 955 jurisdictionStateOrProvinceName 956 jurisdictionCountryName 957 aes_128_ocb 958 aes_192_ocb 959 aes_256_ocb 960 camellia_128_gcm 961 camellia_128_ccm 962 camellia_128_ctr 963 camellia_128_cmac 964 camellia_192_gcm 965 camellia_192_ccm 966 camellia_192_ctr 967 camellia_192_cmac 968 camellia_256_gcm 969 camellia_256_ccm 970 camellia_256_ctr 971 camellia_256_cmac 972 id_scrypt 973 id_tc26 974 gost89_cnt_12 975 gost_mac_12 976 id_tc26_algorithms 977 id_tc26_sign 978 id_GostR3410_2012_256 979 id_GostR3410_2012_512 980 id_tc26_digest 981 id_GostR3411_2012_256 982 id_GostR3411_2012_512 983 id_tc26_signwithdigest 984 id_tc26_signwithdigest_gost3410_2012_256 985 id_tc26_signwithdigest_gost3410_2012_512 986 id_tc26_mac 987 id_tc26_hmac_gost_3411_2012_256 988 id_tc26_hmac_gost_3411_2012_512 989 id_tc26_cipher 990 id_tc26_agreement 991 id_tc26_agreement_gost_3410_2012_256 992 id_tc26_agreement_gost_3410_2012_512 993 id_tc26_constants 994 id_tc26_sign_constants 995 id_tc26_gost_3410_2012_512_constants 996 id_tc26_gost_3410_2012_512_paramSetTest 997 id_tc26_gost_3410_2012_512_paramSetA 998 id_tc26_gost_3410_2012_512_paramSetB 999 id_tc26_digest_constants 1000 id_tc26_cipher_constants 1001 id_tc26_gost_28147_constants 1002 id_tc26_gost_28147_param_Z 1003 INN 1004 OGRN 1005 SNILS 1006 subjectSignTool 1007 issuerSignTool 1008 gost89_cbc 1009 gost89_ecb 1010 gost89_ctr 1011 grasshopper_ecb 1012 grasshopper_ctr 1013 grasshopper_ofb 1014 grasshopper_cbc 1015 grasshopper_cfb 1016 grasshopper_mac 1017 chacha20_poly1305 1018 chacha20 1019 tlsfeature 1020 tls1_prf 1021 ipsec_IKE 1022 capwapAC 1023 capwapWTP 1024 sshClient 1025 sshServer 1026 sendRouter 1027 sendProxiedRouter 1028 sendOwner 1029 sendProxiedOwner 1030 id_pkinit 1031 pkInitClientAuth 1032 pkInitKDC 1033 X25519 1034 X448 1035 hkdf 1036 kx_rsa 1037 kx_ecdhe 1038 kx_dhe 1039 kx_ecdhe_psk 1040 kx_dhe_psk 1041 kx_rsa_psk 1042 kx_psk 1043 kx_srp 1044 kx_gost 1045 auth_rsa 1046 auth_ecdsa 1047 auth_psk 1048 auth_dss 1049 auth_gost01 1050 auth_gost12 1051 auth_srp 1052 auth_null 1053 fips_none 1054 fips_140_2 1055 blake2b512 1056 blake2s256 1057 id_smime_ct_contentCollection 1058 id_smime_ct_authEnvelopedData 1059 id_ct_xml 1060 poly1305 1061 siphash 1062 kx_any 1063 auth_any 1064 aria_128_ecb 1065 aria_128_cbc 1066 aria_128_cfb128 1067 aria_128_ofb128 1068 aria_128_ctr 1069 aria_192_ecb 1070 aria_192_cbc 1071 aria_192_cfb128 1072 aria_192_ofb128 1073 aria_192_ctr 1074 aria_256_ecb 1075 aria_256_cbc 1076 aria_256_cfb128 1077 aria_256_ofb128 1078 aria_256_ctr 1079 aria_128_cfb1 1080 aria_192_cfb1 1081 aria_256_cfb1 1082 aria_128_cfb8 1083 aria_192_cfb8 1084 aria_256_cfb8 1085 id_smime_aa_signingCertificateV2 1086 ED25519 1087 ED448 1088 organizationIdentifier 1089 countryCode3c 1090 countryCode3n 1091 dnsName 1092 x509ExtAdmission 1093 sha512_224 1094 sha512_256 1095 sha3_224 1096 sha3_256 1097 sha3_384 1098 sha3_512 1099 shake128 1100 shake256 1101 hmac_sha3_224 1102 hmac_sha3_256 1103 hmac_sha3_384 1104 hmac_sha3_512 1105 dsa_with_SHA384 1106 dsa_with_SHA512 1107 dsa_with_SHA3_224 1108 dsa_with_SHA3_256 1109 dsa_with_SHA3_384 1110 dsa_with_SHA3_512 1111 ecdsa_with_SHA3_224 1112 ecdsa_with_SHA3_256 1113 ecdsa_with_SHA3_384 1114 ecdsa_with_SHA3_512 1115 RSA_SHA3_224 1116 RSA_SHA3_256 1117 RSA_SHA3_384 1118 RSA_SHA3_512 1119 aria_128_ccm 1120 aria_192_ccm 1121 aria_256_ccm 1122 aria_128_gcm 1123 aria_192_gcm 1124 aria_256_gcm 1125 ffdhe2048 1126 ffdhe3072 1127 ffdhe4096 1128 ffdhe6144 1129 ffdhe8192 1130 cmcCA 1131 cmcRA 1132 sm4_ecb 1133 sm4_cbc 1134 sm4_ofb128 1135 sm4_cfb1 1136 sm4_cfb128 1137 sm4_cfb8 1138 sm4_ctr 1139 ISO_CN 1140 oscca 1141 sm_scheme 1142 sm3 1143 sm3WithRSAEncryption 1144 sha512_224WithRSAEncryption 1145 sha512_256WithRSAEncryption 1146 id_tc26_gost_3410_2012_256_constants 1147 id_tc26_gost_3410_2012_256_paramSetA 1148 id_tc26_gost_3410_2012_512_paramSetC 1149 ISO_UA 1150 ua_pki 1151 dstu28147 1152 dstu28147_ofb 1153 dstu28147_cfb 1154 dstu28147_wrap 1155 hmacWithDstu34311 1156 dstu34311 1157 dstu4145le 1158 dstu4145be 1159 uacurve0 1160 uacurve1 1161 uacurve2 1162 uacurve3 1163 uacurve4 1164 uacurve5 1165 uacurve6 1166 uacurve7 1167 uacurve8 1168 uacurve9 1169 ieee 1170 ieee_siswg 1171 sm2 1172 id_tc26_cipher_gostr3412_2015_magma 1173 id_tc26_cipher_gostr3412_2015_magma_ctracpkm 1174 id_tc26_cipher_gostr3412_2015_magma_ctracpkm_omac 1175 id_tc26_cipher_gostr3412_2015_kuznyechik 1176 id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm 1177 id_tc26_cipher_gostr3412_2015_kuznyechik_ctracpkm_omac 1178 id_tc26_wrap 1179 id_tc26_wrap_gostr3412_2015_magma 1180 id_tc26_wrap_gostr3412_2015_magma_kexp15 1181 id_tc26_wrap_gostr3412_2015_kuznyechik 1182 id_tc26_wrap_gostr3412_2015_kuznyechik_kexp15 1183 id_tc26_gost_3410_2012_256_paramSetB 1184 id_tc26_gost_3410_2012_256_paramSetC 1185 id_tc26_gost_3410_2012_256_paramSetD 1186 magma_ecb 1187 magma_ctr 1188 magma_ofb 1189 magma_cbc 1190 magma_cfb 1191 magma_mac 1192 hmacWithSHA512_224 1193 hmacWithSHA512_256 1194 openssl-1.1.1f/crypto/objects/obj_xref.c000066400000000000000000000065211364063235100202650ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "obj_xref.h" #include "internal/nelem.h" #include static STACK_OF(nid_triple) *sig_app, *sigx_app; static int sig_cmp(const nid_triple *a, const nid_triple *b) { return a->sign_id - b->sign_id; } DECLARE_OBJ_BSEARCH_CMP_FN(nid_triple, nid_triple, sig); IMPLEMENT_OBJ_BSEARCH_CMP_FN(nid_triple, nid_triple, sig); static int sig_sk_cmp(const nid_triple *const *a, const nid_triple *const *b) { return (*a)->sign_id - (*b)->sign_id; } DECLARE_OBJ_BSEARCH_CMP_FN(const nid_triple *, const nid_triple *, sigx); static int sigx_cmp(const nid_triple *const *a, const nid_triple *const *b) { int ret; ret = (*a)->hash_id - (*b)->hash_id; if (ret) return ret; return (*a)->pkey_id - (*b)->pkey_id; } IMPLEMENT_OBJ_BSEARCH_CMP_FN(const nid_triple *, const nid_triple *, sigx); int OBJ_find_sigid_algs(int signid, int *pdig_nid, int *ppkey_nid) { nid_triple tmp; const nid_triple *rv = NULL; tmp.sign_id = signid; if (sig_app != NULL) { int idx = sk_nid_triple_find(sig_app, &tmp); rv = sk_nid_triple_value(sig_app, idx); } #ifndef OBJ_XREF_TEST2 if (rv == NULL) { rv = OBJ_bsearch_sig(&tmp, sigoid_srt, OSSL_NELEM(sigoid_srt)); } #endif if (rv == NULL) return 0; if (pdig_nid) *pdig_nid = rv->hash_id; if (ppkey_nid) *ppkey_nid = rv->pkey_id; return 1; } int OBJ_find_sigid_by_algs(int *psignid, int dig_nid, int pkey_nid) { nid_triple tmp; const nid_triple *t = &tmp; const nid_triple **rv = NULL; tmp.hash_id = dig_nid; tmp.pkey_id = pkey_nid; if (sigx_app) { int idx = sk_nid_triple_find(sigx_app, &tmp); if (idx >= 0) { t = sk_nid_triple_value(sigx_app, idx); rv = &t; } } #ifndef OBJ_XREF_TEST2 if (rv == NULL) { rv = OBJ_bsearch_sigx(&t, sigoid_srt_xref, OSSL_NELEM(sigoid_srt_xref)); } #endif if (rv == NULL) return 0; if (psignid) *psignid = (*rv)->sign_id; return 1; } int OBJ_add_sigid(int signid, int dig_id, int pkey_id) { nid_triple *ntr; if (sig_app == NULL) sig_app = sk_nid_triple_new(sig_sk_cmp); if (sig_app == NULL) return 0; if (sigx_app == NULL) sigx_app = sk_nid_triple_new(sigx_cmp); if (sigx_app == NULL) return 0; if ((ntr = OPENSSL_malloc(sizeof(*ntr))) == NULL) { OBJerr(OBJ_F_OBJ_ADD_SIGID, ERR_R_MALLOC_FAILURE); return 0; } ntr->sign_id = signid; ntr->hash_id = dig_id; ntr->pkey_id = pkey_id; if (!sk_nid_triple_push(sig_app, ntr)) { OPENSSL_free(ntr); return 0; } if (!sk_nid_triple_push(sigx_app, ntr)) return 0; sk_nid_triple_sort(sig_app); sk_nid_triple_sort(sigx_app); return 1; } static void sid_free(nid_triple *tt) { OPENSSL_free(tt); } void OBJ_sigid_free(void) { sk_nid_triple_pop_free(sig_app, sid_free); sig_app = NULL; sk_nid_triple_free(sigx_app); sigx_app = NULL; } openssl-1.1.1f/crypto/objects/obj_xref.h000066400000000000000000000112051364063235100202650ustar00rootroot00000000000000/* * WARNING: do not edit! * Generated by objxref.pl * * Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ typedef struct { int sign_id; int hash_id; int pkey_id; } nid_triple; DEFINE_STACK_OF(nid_triple) static const nid_triple sigoid_srt[] = { {NID_md2WithRSAEncryption, NID_md2, NID_rsaEncryption}, {NID_md5WithRSAEncryption, NID_md5, NID_rsaEncryption}, {NID_shaWithRSAEncryption, NID_sha, NID_rsaEncryption}, {NID_sha1WithRSAEncryption, NID_sha1, NID_rsaEncryption}, {NID_dsaWithSHA, NID_sha, NID_dsa}, {NID_dsaWithSHA1_2, NID_sha1, NID_dsa_2}, {NID_mdc2WithRSA, NID_mdc2, NID_rsaEncryption}, {NID_md5WithRSA, NID_md5, NID_rsa}, {NID_dsaWithSHA1, NID_sha1, NID_dsa}, {NID_sha1WithRSA, NID_sha1, NID_rsa}, {NID_ripemd160WithRSA, NID_ripemd160, NID_rsaEncryption}, {NID_md4WithRSAEncryption, NID_md4, NID_rsaEncryption}, {NID_ecdsa_with_SHA1, NID_sha1, NID_X9_62_id_ecPublicKey}, {NID_sha256WithRSAEncryption, NID_sha256, NID_rsaEncryption}, {NID_sha384WithRSAEncryption, NID_sha384, NID_rsaEncryption}, {NID_sha512WithRSAEncryption, NID_sha512, NID_rsaEncryption}, {NID_sha224WithRSAEncryption, NID_sha224, NID_rsaEncryption}, {NID_ecdsa_with_Recommended, NID_undef, NID_X9_62_id_ecPublicKey}, {NID_ecdsa_with_Specified, NID_undef, NID_X9_62_id_ecPublicKey}, {NID_ecdsa_with_SHA224, NID_sha224, NID_X9_62_id_ecPublicKey}, {NID_ecdsa_with_SHA256, NID_sha256, NID_X9_62_id_ecPublicKey}, {NID_ecdsa_with_SHA384, NID_sha384, NID_X9_62_id_ecPublicKey}, {NID_ecdsa_with_SHA512, NID_sha512, NID_X9_62_id_ecPublicKey}, {NID_dsa_with_SHA224, NID_sha224, NID_dsa}, {NID_dsa_with_SHA256, NID_sha256, NID_dsa}, {NID_id_GostR3411_94_with_GostR3410_2001, NID_id_GostR3411_94, NID_id_GostR3410_2001}, {NID_id_GostR3411_94_with_GostR3410_94, NID_id_GostR3411_94, NID_id_GostR3410_94}, {NID_id_GostR3411_94_with_GostR3410_94_cc, NID_id_GostR3411_94, NID_id_GostR3410_94_cc}, {NID_id_GostR3411_94_with_GostR3410_2001_cc, NID_id_GostR3411_94, NID_id_GostR3410_2001_cc}, {NID_rsassaPss, NID_undef, NID_rsaEncryption}, {NID_dhSinglePass_stdDH_sha1kdf_scheme, NID_sha1, NID_dh_std_kdf}, {NID_dhSinglePass_stdDH_sha224kdf_scheme, NID_sha224, NID_dh_std_kdf}, {NID_dhSinglePass_stdDH_sha256kdf_scheme, NID_sha256, NID_dh_std_kdf}, {NID_dhSinglePass_stdDH_sha384kdf_scheme, NID_sha384, NID_dh_std_kdf}, {NID_dhSinglePass_stdDH_sha512kdf_scheme, NID_sha512, NID_dh_std_kdf}, {NID_dhSinglePass_cofactorDH_sha1kdf_scheme, NID_sha1, NID_dh_cofactor_kdf}, {NID_dhSinglePass_cofactorDH_sha224kdf_scheme, NID_sha224, NID_dh_cofactor_kdf}, {NID_dhSinglePass_cofactorDH_sha256kdf_scheme, NID_sha256, NID_dh_cofactor_kdf}, {NID_dhSinglePass_cofactorDH_sha384kdf_scheme, NID_sha384, NID_dh_cofactor_kdf}, {NID_dhSinglePass_cofactorDH_sha512kdf_scheme, NID_sha512, NID_dh_cofactor_kdf}, {NID_id_tc26_signwithdigest_gost3410_2012_256, NID_id_GostR3411_2012_256, NID_id_GostR3410_2012_256}, {NID_id_tc26_signwithdigest_gost3410_2012_512, NID_id_GostR3411_2012_512, NID_id_GostR3410_2012_512}, {NID_ED25519, NID_undef, NID_ED25519}, {NID_ED448, NID_undef, NID_ED448}, {NID_RSA_SHA3_224, NID_sha3_224, NID_rsaEncryption}, {NID_RSA_SHA3_256, NID_sha3_256, NID_rsaEncryption}, {NID_RSA_SHA3_384, NID_sha3_384, NID_rsaEncryption}, {NID_RSA_SHA3_512, NID_sha3_512, NID_rsaEncryption}, }; static const nid_triple *const sigoid_srt_xref[] = { &sigoid_srt[0], &sigoid_srt[1], &sigoid_srt[7], &sigoid_srt[2], &sigoid_srt[4], &sigoid_srt[3], &sigoid_srt[9], &sigoid_srt[5], &sigoid_srt[8], &sigoid_srt[12], &sigoid_srt[30], &sigoid_srt[35], &sigoid_srt[6], &sigoid_srt[10], &sigoid_srt[11], &sigoid_srt[13], &sigoid_srt[24], &sigoid_srt[20], &sigoid_srt[32], &sigoid_srt[37], &sigoid_srt[14], &sigoid_srt[21], &sigoid_srt[33], &sigoid_srt[38], &sigoid_srt[15], &sigoid_srt[22], &sigoid_srt[34], &sigoid_srt[39], &sigoid_srt[16], &sigoid_srt[23], &sigoid_srt[19], &sigoid_srt[31], &sigoid_srt[36], &sigoid_srt[25], &sigoid_srt[26], &sigoid_srt[27], &sigoid_srt[28], &sigoid_srt[40], &sigoid_srt[41], &sigoid_srt[44], &sigoid_srt[45], &sigoid_srt[46], &sigoid_srt[47], }; openssl-1.1.1f/crypto/objects/obj_xref.txt000066400000000000000000000051761364063235100206670ustar00rootroot00000000000000# OID cross reference table. # Links signatures OIDs to their corresponding public key algorithms # and digests. md2WithRSAEncryption md2 rsaEncryption md5WithRSAEncryption md5 rsaEncryption shaWithRSAEncryption sha rsaEncryption sha1WithRSAEncryption sha1 rsaEncryption md4WithRSAEncryption md4 rsaEncryption sha256WithRSAEncryption sha256 rsaEncryption sha384WithRSAEncryption sha384 rsaEncryption sha512WithRSAEncryption sha512 rsaEncryption sha224WithRSAEncryption sha224 rsaEncryption mdc2WithRSA mdc2 rsaEncryption ripemd160WithRSA ripemd160 rsaEncryption RSA_SHA3_224 sha3_224 rsaEncryption RSA_SHA3_256 sha3_256 rsaEncryption RSA_SHA3_384 sha3_384 rsaEncryption RSA_SHA3_512 sha3_512 rsaEncryption # For PSS the digest algorithm can vary and depends on the included # AlgorithmIdentifier. The digest "undef" indicates the public key # method should handle this explicitly. rsassaPss undef rsaEncryption ED25519 undef ED25519 ED448 undef ED448 # Alternative deprecated OIDs. By using the older "rsa" OID this # type will be recognized by not normally used. md5WithRSA md5 rsa sha1WithRSA sha1 rsa dsaWithSHA sha dsa dsaWithSHA1 sha1 dsa dsaWithSHA1_2 sha1 dsa_2 ecdsa_with_SHA1 sha1 X9_62_id_ecPublicKey ecdsa_with_SHA224 sha224 X9_62_id_ecPublicKey ecdsa_with_SHA256 sha256 X9_62_id_ecPublicKey ecdsa_with_SHA384 sha384 X9_62_id_ecPublicKey ecdsa_with_SHA512 sha512 X9_62_id_ecPublicKey ecdsa_with_Recommended undef X9_62_id_ecPublicKey ecdsa_with_Specified undef X9_62_id_ecPublicKey dsa_with_SHA224 sha224 dsa dsa_with_SHA256 sha256 dsa id_GostR3411_94_with_GostR3410_2001 id_GostR3411_94 id_GostR3410_2001 id_GostR3411_94_with_GostR3410_94 id_GostR3411_94 id_GostR3410_94 id_GostR3411_94_with_GostR3410_94_cc id_GostR3411_94 id_GostR3410_94_cc id_GostR3411_94_with_GostR3410_2001_cc id_GostR3411_94 id_GostR3410_2001_cc id_tc26_signwithdigest_gost3410_2012_256 id_GostR3411_2012_256 id_GostR3410_2012_256 id_tc26_signwithdigest_gost3410_2012_512 id_GostR3411_2012_512 id_GostR3410_2012_512 # ECDH KDFs and their corresponding message digests and schemes dhSinglePass_stdDH_sha1kdf_scheme sha1 dh_std_kdf dhSinglePass_stdDH_sha224kdf_scheme sha224 dh_std_kdf dhSinglePass_stdDH_sha256kdf_scheme sha256 dh_std_kdf dhSinglePass_stdDH_sha384kdf_scheme sha384 dh_std_kdf dhSinglePass_stdDH_sha512kdf_scheme sha512 dh_std_kdf dhSinglePass_cofactorDH_sha1kdf_scheme sha1 dh_cofactor_kdf dhSinglePass_cofactorDH_sha224kdf_scheme sha224 dh_cofactor_kdf dhSinglePass_cofactorDH_sha256kdf_scheme sha256 dh_cofactor_kdf dhSinglePass_cofactorDH_sha384kdf_scheme sha384 dh_cofactor_kdf dhSinglePass_cofactorDH_sha512kdf_scheme sha512 dh_cofactor_kdf openssl-1.1.1f/crypto/objects/objects.pl000066400000000000000000000116521364063235100203120ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html use Getopt::Std; our($opt_n); getopts('n'); # Output year depends on the year of the script and the input file. my $YEAR = [localtime([stat($0)]->[9])]->[5] + 1900; my $iYEAR = [localtime([stat($ARGV[0])]->[9])]->[5] + 1900; $YEAR = $iYEAR if $iYEAR > $YEAR; $iYEAR = [localtime([stat($ARGV[1])]->[9])]->[5] + 1900; $YEAR = $iYEAR if $iYEAR > $YEAR; open (NUMIN,"$ARGV[1]") || die "Can't open number file $ARGV[1]"; $max_nid=0; $o=0; while() { s|\R$||; $o++; s/#.*$//; next if /^\s*$/; $_ = 'X'.$_; ($Cname,$mynum) = split; $Cname =~ s/^X//; if (defined($nidn{$mynum})) { die "$ARGV[1]:$o:There's already an object with NID ",$mynum," on line ",$order{$mynum},"\n"; } if (defined($nid{$Cname})) { die "$ARGV[1]:$o:There's already an object with name ",$Cname," on line ",$order{$nid{$Cname}},"\n"; } $nid{$Cname} = $mynum; $nidn{$mynum} = $Cname; $order{$mynum} = $o; $max_nid = $mynum if $mynum > $max_nid; } close NUMIN; open (IN,"$ARGV[0]") || die "Can't open input file $ARGV[0]"; $Cname=""; $o=0; while () { s|\R$||; $o++; if (/^!module\s+(.*)$/) { $module = $1."-"; $module =~ s/\./_/g; $module =~ s/-/_/g; } if (/^!global$/) { $module = ""; } if (/^!Cname\s+(.*)$/) { $Cname = $1; } if (/^!Alias\s+(.+?)\s+(.*)$/) { $Cname = $module.$1; $myoid = $2; $myoid = &process_oid($myoid); $Cname =~ s/-/_/g; $ordern{$o} = $Cname; $order{$Cname} = $o; $obj{$Cname} = $myoid; $_ = ""; $Cname = ""; } s/!.*$//; s/#.*$//; next if /^\s*$/; ($myoid,$mysn,$myln) = split ':'; $mysn =~ s/^\s*//; $mysn =~ s/\s*$//; $myln =~ s/^\s*//; $myln =~ s/\s*$//; $myoid =~ s/^\s*//; $myoid =~ s/\s*$//; if ($myoid ne "") { $myoid = &process_oid($myoid); } if ($Cname eq "" && ($myln =~ /^[_A-Za-z][\w.-]*$/ )) { $Cname = $myln; $Cname =~ s/\./_/g; $Cname =~ s/-/_/g; if ($Cname ne "" && defined($ln{$module.$Cname})) { die "objects.txt:$o:There's already an object with long name ",$ln{$module.$Cname}," on line ",$order{$module.$Cname},"\n"; } } if ($Cname eq "") { $Cname = $mysn; $Cname =~ s/-/_/g; if ($Cname ne "" && defined($sn{$module.$Cname})) { die "objects.txt:$o:There's already an object with short name ",$sn{$module.$Cname}," on line ",$order{$module.$Cname},"\n"; } } if ($Cname eq "") { $Cname = $myln; $Cname =~ s/-/_/g; $Cname =~ s/\./_/g; $Cname =~ s/ /_/g; if ($Cname ne "" && defined($ln{$module.$Cname})) { die "objects.txt:$o:There's already an object with long name ",$ln{$module.$Cname}," on line ",$order{$module.$Cname},"\n"; } } $Cname =~ s/\./_/g; $Cname =~ s/-/_/g; $Cname = $module.$Cname; $ordern{$o} = $Cname; $order{$Cname} = $o; $sn{$Cname} = $mysn; $ln{$Cname} = $myln; $obj{$Cname} = $myoid; if (!defined($nid{$Cname})) { $max_nid++; $nid{$Cname} = $max_nid; $nidn{$max_nid} = $Cname; print STDERR "Added OID $Cname\n"; } $Cname=""; } close IN; if ( $opt_n ) { foreach (sort { $a <=> $b } keys %nidn) { print $nidn{$_},"\t\t",$_,"\n"; } exit; } print <<"EOF"; /* * WARNING: do not edit! * Generated by crypto/objects/objects.pl * * Copyright 2000-$YEAR The OpenSSL Project Authors. All Rights Reserved. * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define SN_undef "UNDEF" #define LN_undef "undefined" #define NID_undef 0 #define OBJ_undef 0L EOF sub expand { my $string = shift; 1 while $string =~ s/\t+/' ' x (length($&) * 8 - length($`) % 8)/e; return $string; } foreach (sort { $a <=> $b } keys %ordern) { $Cname=$ordern{$_}; print "\n"; print expand("#define SN_$Cname\t\t\"$sn{$Cname}\"\n") if $sn{$Cname} ne ""; print expand("#define LN_$Cname\t\t\"$ln{$Cname}\"\n") if $ln{$Cname} ne ""; print expand("#define NID_$Cname\t\t$nid{$Cname}\n") if $nid{$Cname} ne ""; print expand("#define OBJ_$Cname\t\t$obj{$Cname}\n") if $obj{$Cname} ne ""; } sub process_oid { local($oid)=@_; local(@a,$oid_pref); @a = split(/\s+/,$myoid); $pref_oid = ""; $pref_sep = ""; if (!($a[0] =~ /^[0-9]+$/)) { $a[0] =~ s/-/_/g; if (!defined($obj{$a[0]})) { die "$ARGV[0]:$o:Undefined identifier ",$a[0],"\n"; } $pref_oid = "OBJ_" . $a[0]; $pref_sep = ","; shift @a; } $oids = join('L,',@a) . "L"; if ($oids ne "L") { $oids = $pref_oid . $pref_sep . $oids; } else { $oids = $pref_oid; } return($oids); } openssl-1.1.1f/crypto/objects/objects.txt000066400000000000000000001650661364063235100205270ustar00rootroot00000000000000# CCITT was renamed to ITU-T quite some time ago 0 : ITU-T : itu-t !Alias ccitt itu-t 1 : ISO : iso 2 : JOINT-ISO-ITU-T : joint-iso-itu-t !Alias joint-iso-ccitt joint-iso-itu-t iso 2 : member-body : ISO Member Body iso 3 : identified-organization # HMAC OIDs identified-organization 6 1 5 5 8 1 1 : HMAC-MD5 : hmac-md5 identified-organization 6 1 5 5 8 1 2 : HMAC-SHA1 : hmac-sha1 # "1.3.36.8.3.3" identified-organization 36 8 3 3 : x509ExtAdmission : Professional Information or basis for Admission identified-organization 132 : certicom-arc identified-organization 111 : ieee ieee 2 1619 : ieee-siswg : IEEE Security in Storage Working Group joint-iso-itu-t 23 : international-organizations : International Organizations international-organizations 43 : wap wap 1 : wap-wsg joint-iso-itu-t 5 1 5 : selected-attribute-types : Selected Attribute Types selected-attribute-types 55 : clearance member-body 840 : ISO-US : ISO US Member Body ISO-US 10040 : X9-57 : X9.57 X9-57 4 : X9cm : X9.57 CM ? member-body 156 : ISO-CN : ISO CN Member Body ISO-CN 10197 : oscca oscca 1 : sm-scheme !Cname dsa X9cm 1 : DSA : dsaEncryption X9cm 3 : DSA-SHA1 : dsaWithSHA1 ISO-US 10045 : ansi-X9-62 : ANSI X9.62 !module X9-62 !Alias id-fieldType ansi-X9-62 1 X9-62_id-fieldType 1 : prime-field X9-62_id-fieldType 2 : characteristic-two-field X9-62_characteristic-two-field 3 : id-characteristic-two-basis X9-62_id-characteristic-two-basis 1 : onBasis X9-62_id-characteristic-two-basis 2 : tpBasis X9-62_id-characteristic-two-basis 3 : ppBasis !Alias id-publicKeyType ansi-X9-62 2 X9-62_id-publicKeyType 1 : id-ecPublicKey !Alias ellipticCurve ansi-X9-62 3 !Alias c-TwoCurve X9-62_ellipticCurve 0 X9-62_c-TwoCurve 1 : c2pnb163v1 X9-62_c-TwoCurve 2 : c2pnb163v2 X9-62_c-TwoCurve 3 : c2pnb163v3 X9-62_c-TwoCurve 4 : c2pnb176v1 X9-62_c-TwoCurve 5 : c2tnb191v1 X9-62_c-TwoCurve 6 : c2tnb191v2 X9-62_c-TwoCurve 7 : c2tnb191v3 X9-62_c-TwoCurve 8 : c2onb191v4 X9-62_c-TwoCurve 9 : c2onb191v5 X9-62_c-TwoCurve 10 : c2pnb208w1 X9-62_c-TwoCurve 11 : c2tnb239v1 X9-62_c-TwoCurve 12 : c2tnb239v2 X9-62_c-TwoCurve 13 : c2tnb239v3 X9-62_c-TwoCurve 14 : c2onb239v4 X9-62_c-TwoCurve 15 : c2onb239v5 X9-62_c-TwoCurve 16 : c2pnb272w1 X9-62_c-TwoCurve 17 : c2pnb304w1 X9-62_c-TwoCurve 18 : c2tnb359v1 X9-62_c-TwoCurve 19 : c2pnb368w1 X9-62_c-TwoCurve 20 : c2tnb431r1 !Alias primeCurve X9-62_ellipticCurve 1 X9-62_primeCurve 1 : prime192v1 X9-62_primeCurve 2 : prime192v2 X9-62_primeCurve 3 : prime192v3 X9-62_primeCurve 4 : prime239v1 X9-62_primeCurve 5 : prime239v2 X9-62_primeCurve 6 : prime239v3 X9-62_primeCurve 7 : prime256v1 !Alias id-ecSigType ansi-X9-62 4 !global X9-62_id-ecSigType 1 : ecdsa-with-SHA1 X9-62_id-ecSigType 2 : ecdsa-with-Recommended X9-62_id-ecSigType 3 : ecdsa-with-Specified ecdsa-with-Specified 1 : ecdsa-with-SHA224 ecdsa-with-Specified 2 : ecdsa-with-SHA256 ecdsa-with-Specified 3 : ecdsa-with-SHA384 ecdsa-with-Specified 4 : ecdsa-with-SHA512 # SECG curve OIDs from "SEC 2: Recommended Elliptic Curve Domain Parameters" # (http://www.secg.org/) !Alias secg_ellipticCurve certicom-arc 0 # SECG prime curves OIDs secg-ellipticCurve 6 : secp112r1 secg-ellipticCurve 7 : secp112r2 secg-ellipticCurve 28 : secp128r1 secg-ellipticCurve 29 : secp128r2 secg-ellipticCurve 9 : secp160k1 secg-ellipticCurve 8 : secp160r1 secg-ellipticCurve 30 : secp160r2 secg-ellipticCurve 31 : secp192k1 # NOTE: the curve secp192r1 is the same as prime192v1 defined above # and is therefore omitted secg-ellipticCurve 32 : secp224k1 secg-ellipticCurve 33 : secp224r1 secg-ellipticCurve 10 : secp256k1 # NOTE: the curve secp256r1 is the same as prime256v1 defined above # and is therefore omitted secg-ellipticCurve 34 : secp384r1 secg-ellipticCurve 35 : secp521r1 # SECG characteristic two curves OIDs secg-ellipticCurve 4 : sect113r1 secg-ellipticCurve 5 : sect113r2 secg-ellipticCurve 22 : sect131r1 secg-ellipticCurve 23 : sect131r2 secg-ellipticCurve 1 : sect163k1 secg-ellipticCurve 2 : sect163r1 secg-ellipticCurve 15 : sect163r2 secg-ellipticCurve 24 : sect193r1 secg-ellipticCurve 25 : sect193r2 secg-ellipticCurve 26 : sect233k1 secg-ellipticCurve 27 : sect233r1 secg-ellipticCurve 3 : sect239k1 secg-ellipticCurve 16 : sect283k1 secg-ellipticCurve 17 : sect283r1 secg-ellipticCurve 36 : sect409k1 secg-ellipticCurve 37 : sect409r1 secg-ellipticCurve 38 : sect571k1 secg-ellipticCurve 39 : sect571r1 # WAP/TLS curve OIDs (http://www.wapforum.org/) !Alias wap-wsg-idm-ecid wap-wsg 4 wap-wsg-idm-ecid 1 : wap-wsg-idm-ecid-wtls1 wap-wsg-idm-ecid 3 : wap-wsg-idm-ecid-wtls3 wap-wsg-idm-ecid 4 : wap-wsg-idm-ecid-wtls4 wap-wsg-idm-ecid 5 : wap-wsg-idm-ecid-wtls5 wap-wsg-idm-ecid 6 : wap-wsg-idm-ecid-wtls6 wap-wsg-idm-ecid 7 : wap-wsg-idm-ecid-wtls7 wap-wsg-idm-ecid 8 : wap-wsg-idm-ecid-wtls8 wap-wsg-idm-ecid 9 : wap-wsg-idm-ecid-wtls9 wap-wsg-idm-ecid 10 : wap-wsg-idm-ecid-wtls10 wap-wsg-idm-ecid 11 : wap-wsg-idm-ecid-wtls11 wap-wsg-idm-ecid 12 : wap-wsg-idm-ecid-wtls12 ISO-US 113533 7 66 10 : CAST5-CBC : cast5-cbc : CAST5-ECB : cast5-ecb !Cname cast5-cfb64 : CAST5-CFB : cast5-cfb !Cname cast5-ofb64 : CAST5-OFB : cast5-ofb !Cname pbeWithMD5AndCast5-CBC ISO-US 113533 7 66 12 : : pbeWithMD5AndCast5CBC # Macs for CMP and CRMF ISO-US 113533 7 66 13 : id-PasswordBasedMAC : password based MAC ISO-US 113533 7 66 30 : id-DHBasedMac : Diffie-Hellman based MAC ISO-US 113549 : rsadsi : RSA Data Security, Inc. rsadsi 1 : pkcs : RSA Data Security, Inc. PKCS pkcs 1 : pkcs1 pkcs1 1 : : rsaEncryption pkcs1 2 : RSA-MD2 : md2WithRSAEncryption pkcs1 3 : RSA-MD4 : md4WithRSAEncryption pkcs1 4 : RSA-MD5 : md5WithRSAEncryption pkcs1 5 : RSA-SHA1 : sha1WithRSAEncryption # According to PKCS #1 version 2.1 pkcs1 7 : RSAES-OAEP : rsaesOaep pkcs1 8 : MGF1 : mgf1 pkcs1 9 : PSPECIFIED : pSpecified pkcs1 10 : RSASSA-PSS : rsassaPss pkcs1 11 : RSA-SHA256 : sha256WithRSAEncryption pkcs1 12 : RSA-SHA384 : sha384WithRSAEncryption pkcs1 13 : RSA-SHA512 : sha512WithRSAEncryption pkcs1 14 : RSA-SHA224 : sha224WithRSAEncryption pkcs1 15 : RSA-SHA512/224 : sha512-224WithRSAEncryption pkcs1 16 : RSA-SHA512/256 : sha512-256WithRSAEncryption pkcs 3 : pkcs3 pkcs3 1 : : dhKeyAgreement pkcs 5 : pkcs5 pkcs5 1 : PBE-MD2-DES : pbeWithMD2AndDES-CBC pkcs5 3 : PBE-MD5-DES : pbeWithMD5AndDES-CBC pkcs5 4 : PBE-MD2-RC2-64 : pbeWithMD2AndRC2-CBC pkcs5 6 : PBE-MD5-RC2-64 : pbeWithMD5AndRC2-CBC pkcs5 10 : PBE-SHA1-DES : pbeWithSHA1AndDES-CBC pkcs5 11 : PBE-SHA1-RC2-64 : pbeWithSHA1AndRC2-CBC !Cname id_pbkdf2 pkcs5 12 : : PBKDF2 !Cname pbes2 pkcs5 13 : : PBES2 !Cname pbmac1 pkcs5 14 : : PBMAC1 pkcs 7 : pkcs7 pkcs7 1 : : pkcs7-data !Cname pkcs7-signed pkcs7 2 : : pkcs7-signedData !Cname pkcs7-enveloped pkcs7 3 : : pkcs7-envelopedData !Cname pkcs7-signedAndEnveloped pkcs7 4 : : pkcs7-signedAndEnvelopedData !Cname pkcs7-digest pkcs7 5 : : pkcs7-digestData !Cname pkcs7-encrypted pkcs7 6 : : pkcs7-encryptedData pkcs 9 : pkcs9 !module pkcs9 pkcs9 1 : : emailAddress pkcs9 2 : : unstructuredName pkcs9 3 : : contentType pkcs9 4 : : messageDigest pkcs9 5 : : signingTime pkcs9 6 : : countersignature pkcs9 7 : : challengePassword pkcs9 8 : : unstructuredAddress !Cname extCertAttributes pkcs9 9 : : extendedCertificateAttributes !global !Cname ext-req pkcs9 14 : extReq : Extension Request !Cname SMIMECapabilities pkcs9 15 : SMIME-CAPS : S/MIME Capabilities # S/MIME !Cname SMIME pkcs9 16 : SMIME : S/MIME SMIME 0 : id-smime-mod SMIME 1 : id-smime-ct SMIME 2 : id-smime-aa SMIME 3 : id-smime-alg SMIME 4 : id-smime-cd SMIME 5 : id-smime-spq SMIME 6 : id-smime-cti # S/MIME Modules id-smime-mod 1 : id-smime-mod-cms id-smime-mod 2 : id-smime-mod-ess id-smime-mod 3 : id-smime-mod-oid id-smime-mod 4 : id-smime-mod-msg-v3 id-smime-mod 5 : id-smime-mod-ets-eSignature-88 id-smime-mod 6 : id-smime-mod-ets-eSignature-97 id-smime-mod 7 : id-smime-mod-ets-eSigPolicy-88 id-smime-mod 8 : id-smime-mod-ets-eSigPolicy-97 # S/MIME Content Types id-smime-ct 1 : id-smime-ct-receipt id-smime-ct 2 : id-smime-ct-authData id-smime-ct 3 : id-smime-ct-publishCert id-smime-ct 4 : id-smime-ct-TSTInfo id-smime-ct 5 : id-smime-ct-TDTInfo id-smime-ct 6 : id-smime-ct-contentInfo id-smime-ct 7 : id-smime-ct-DVCSRequestData id-smime-ct 8 : id-smime-ct-DVCSResponseData id-smime-ct 9 : id-smime-ct-compressedData id-smime-ct 19 : id-smime-ct-contentCollection id-smime-ct 23 : id-smime-ct-authEnvelopedData id-smime-ct 27 : id-ct-asciiTextWithCRLF id-smime-ct 28 : id-ct-xml # S/MIME Attributes id-smime-aa 1 : id-smime-aa-receiptRequest id-smime-aa 2 : id-smime-aa-securityLabel id-smime-aa 3 : id-smime-aa-mlExpandHistory id-smime-aa 4 : id-smime-aa-contentHint id-smime-aa 5 : id-smime-aa-msgSigDigest # obsolete id-smime-aa 6 : id-smime-aa-encapContentType id-smime-aa 7 : id-smime-aa-contentIdentifier # obsolete id-smime-aa 8 : id-smime-aa-macValue id-smime-aa 9 : id-smime-aa-equivalentLabels id-smime-aa 10 : id-smime-aa-contentReference id-smime-aa 11 : id-smime-aa-encrypKeyPref id-smime-aa 12 : id-smime-aa-signingCertificate id-smime-aa 13 : id-smime-aa-smimeEncryptCerts id-smime-aa 14 : id-smime-aa-timeStampToken id-smime-aa 15 : id-smime-aa-ets-sigPolicyId id-smime-aa 16 : id-smime-aa-ets-commitmentType id-smime-aa 17 : id-smime-aa-ets-signerLocation id-smime-aa 18 : id-smime-aa-ets-signerAttr id-smime-aa 19 : id-smime-aa-ets-otherSigCert id-smime-aa 20 : id-smime-aa-ets-contentTimestamp id-smime-aa 21 : id-smime-aa-ets-CertificateRefs id-smime-aa 22 : id-smime-aa-ets-RevocationRefs id-smime-aa 23 : id-smime-aa-ets-certValues id-smime-aa 24 : id-smime-aa-ets-revocationValues id-smime-aa 25 : id-smime-aa-ets-escTimeStamp id-smime-aa 26 : id-smime-aa-ets-certCRLTimestamp id-smime-aa 27 : id-smime-aa-ets-archiveTimeStamp id-smime-aa 28 : id-smime-aa-signatureType id-smime-aa 29 : id-smime-aa-dvcs-dvc id-smime-aa 47 : id-smime-aa-signingCertificateV2 # S/MIME Algorithm Identifiers # obsolete id-smime-alg 1 : id-smime-alg-ESDHwith3DES # obsolete id-smime-alg 2 : id-smime-alg-ESDHwithRC2 # obsolete id-smime-alg 3 : id-smime-alg-3DESwrap # obsolete id-smime-alg 4 : id-smime-alg-RC2wrap id-smime-alg 5 : id-smime-alg-ESDH id-smime-alg 6 : id-smime-alg-CMS3DESwrap id-smime-alg 7 : id-smime-alg-CMSRC2wrap id-smime-alg 9 : id-alg-PWRI-KEK # S/MIME Certificate Distribution id-smime-cd 1 : id-smime-cd-ldap # S/MIME Signature Policy Qualifier id-smime-spq 1 : id-smime-spq-ets-sqt-uri id-smime-spq 2 : id-smime-spq-ets-sqt-unotice # S/MIME Commitment Type Identifier id-smime-cti 1 : id-smime-cti-ets-proofOfOrigin id-smime-cti 2 : id-smime-cti-ets-proofOfReceipt id-smime-cti 3 : id-smime-cti-ets-proofOfDelivery id-smime-cti 4 : id-smime-cti-ets-proofOfSender id-smime-cti 5 : id-smime-cti-ets-proofOfApproval id-smime-cti 6 : id-smime-cti-ets-proofOfCreation pkcs9 20 : : friendlyName pkcs9 21 : : localKeyID !Cname ms-csp-name 1 3 6 1 4 1 311 17 1 : CSPName : Microsoft CSP Name 1 3 6 1 4 1 311 17 2 : LocalKeySet : Microsoft Local Key set !Alias certTypes pkcs9 22 certTypes 1 : : x509Certificate certTypes 2 : : sdsiCertificate !Alias crlTypes pkcs9 23 crlTypes 1 : : x509Crl !Alias pkcs12 pkcs 12 !Alias pkcs12-pbeids pkcs12 1 !Cname pbe-WithSHA1And128BitRC4 pkcs12-pbeids 1 : PBE-SHA1-RC4-128 : pbeWithSHA1And128BitRC4 !Cname pbe-WithSHA1And40BitRC4 pkcs12-pbeids 2 : PBE-SHA1-RC4-40 : pbeWithSHA1And40BitRC4 !Cname pbe-WithSHA1And3_Key_TripleDES-CBC pkcs12-pbeids 3 : PBE-SHA1-3DES : pbeWithSHA1And3-KeyTripleDES-CBC !Cname pbe-WithSHA1And2_Key_TripleDES-CBC pkcs12-pbeids 4 : PBE-SHA1-2DES : pbeWithSHA1And2-KeyTripleDES-CBC !Cname pbe-WithSHA1And128BitRC2-CBC pkcs12-pbeids 5 : PBE-SHA1-RC2-128 : pbeWithSHA1And128BitRC2-CBC !Cname pbe-WithSHA1And40BitRC2-CBC pkcs12-pbeids 6 : PBE-SHA1-RC2-40 : pbeWithSHA1And40BitRC2-CBC !Alias pkcs12-Version1 pkcs12 10 !Alias pkcs12-BagIds pkcs12-Version1 1 pkcs12-BagIds 1 : : keyBag pkcs12-BagIds 2 : : pkcs8ShroudedKeyBag pkcs12-BagIds 3 : : certBag pkcs12-BagIds 4 : : crlBag pkcs12-BagIds 5 : : secretBag pkcs12-BagIds 6 : : safeContentsBag rsadsi 2 2 : MD2 : md2 rsadsi 2 4 : MD4 : md4 rsadsi 2 5 : MD5 : md5 : MD5-SHA1 : md5-sha1 rsadsi 2 6 : : hmacWithMD5 rsadsi 2 7 : : hmacWithSHA1 sm-scheme 301 : SM2 : sm2 sm-scheme 401 : SM3 : sm3 sm-scheme 504 : RSA-SM3 : sm3WithRSAEncryption # From RFC4231 rsadsi 2 8 : : hmacWithSHA224 rsadsi 2 9 : : hmacWithSHA256 rsadsi 2 10 : : hmacWithSHA384 rsadsi 2 11 : : hmacWithSHA512 # From RFC8018 rsadsi 2 12 : : hmacWithSHA512-224 rsadsi 2 13 : : hmacWithSHA512-256 rsadsi 3 2 : RC2-CBC : rc2-cbc : RC2-ECB : rc2-ecb !Cname rc2-cfb64 : RC2-CFB : rc2-cfb !Cname rc2-ofb64 : RC2-OFB : rc2-ofb : RC2-40-CBC : rc2-40-cbc : RC2-64-CBC : rc2-64-cbc rsadsi 3 4 : RC4 : rc4 : RC4-40 : rc4-40 rsadsi 3 7 : DES-EDE3-CBC : des-ede3-cbc rsadsi 3 8 : RC5-CBC : rc5-cbc : RC5-ECB : rc5-ecb !Cname rc5-cfb64 : RC5-CFB : rc5-cfb !Cname rc5-ofb64 : RC5-OFB : rc5-ofb !Cname ms-ext-req 1 3 6 1 4 1 311 2 1 14 : msExtReq : Microsoft Extension Request !Cname ms-code-ind 1 3 6 1 4 1 311 2 1 21 : msCodeInd : Microsoft Individual Code Signing !Cname ms-code-com 1 3 6 1 4 1 311 2 1 22 : msCodeCom : Microsoft Commercial Code Signing !Cname ms-ctl-sign 1 3 6 1 4 1 311 10 3 1 : msCTLSign : Microsoft Trust List Signing !Cname ms-sgc 1 3 6 1 4 1 311 10 3 3 : msSGC : Microsoft Server Gated Crypto !Cname ms-efs 1 3 6 1 4 1 311 10 3 4 : msEFS : Microsoft Encrypted File System !Cname ms-smartcard-login 1 3 6 1 4 1 311 20 2 2 : msSmartcardLogin : Microsoft Smartcard Login !Cname ms-upn 1 3 6 1 4 1 311 20 2 3 : msUPN : Microsoft User Principal Name 1 3 6 1 4 1 188 7 1 1 2 : IDEA-CBC : idea-cbc : IDEA-ECB : idea-ecb !Cname idea-cfb64 : IDEA-CFB : idea-cfb !Cname idea-ofb64 : IDEA-OFB : idea-ofb 1 3 6 1 4 1 3029 1 2 : BF-CBC : bf-cbc : BF-ECB : bf-ecb !Cname bf-cfb64 : BF-CFB : bf-cfb !Cname bf-ofb64 : BF-OFB : bf-ofb !Cname id-pkix 1 3 6 1 5 5 7 : PKIX # PKIX Arcs id-pkix 0 : id-pkix-mod id-pkix 1 : id-pe id-pkix 2 : id-qt id-pkix 3 : id-kp id-pkix 4 : id-it id-pkix 5 : id-pkip id-pkix 6 : id-alg id-pkix 7 : id-cmc id-pkix 8 : id-on id-pkix 9 : id-pda id-pkix 10 : id-aca id-pkix 11 : id-qcs id-pkix 12 : id-cct id-pkix 21 : id-ppl id-pkix 48 : id-ad # PKIX Modules id-pkix-mod 1 : id-pkix1-explicit-88 id-pkix-mod 2 : id-pkix1-implicit-88 id-pkix-mod 3 : id-pkix1-explicit-93 id-pkix-mod 4 : id-pkix1-implicit-93 id-pkix-mod 5 : id-mod-crmf id-pkix-mod 6 : id-mod-cmc id-pkix-mod 7 : id-mod-kea-profile-88 id-pkix-mod 8 : id-mod-kea-profile-93 id-pkix-mod 9 : id-mod-cmp id-pkix-mod 10 : id-mod-qualified-cert-88 id-pkix-mod 11 : id-mod-qualified-cert-93 id-pkix-mod 12 : id-mod-attribute-cert id-pkix-mod 13 : id-mod-timestamp-protocol id-pkix-mod 14 : id-mod-ocsp id-pkix-mod 15 : id-mod-dvcs id-pkix-mod 16 : id-mod-cmp2000 # PKIX Private Extensions !Cname info-access id-pe 1 : authorityInfoAccess : Authority Information Access id-pe 2 : biometricInfo : Biometric Info id-pe 3 : qcStatements id-pe 4 : ac-auditEntity id-pe 5 : ac-targeting id-pe 6 : aaControls id-pe 7 : sbgp-ipAddrBlock id-pe 8 : sbgp-autonomousSysNum id-pe 9 : sbgp-routerIdentifier id-pe 10 : ac-proxying !Cname sinfo-access id-pe 11 : subjectInfoAccess : Subject Information Access id-pe 14 : proxyCertInfo : Proxy Certificate Information id-pe 24 : tlsfeature : TLS Feature # PKIX policyQualifiers for Internet policy qualifiers id-qt 1 : id-qt-cps : Policy Qualifier CPS id-qt 2 : id-qt-unotice : Policy Qualifier User Notice id-qt 3 : textNotice # PKIX key purpose identifiers !Cname server-auth id-kp 1 : serverAuth : TLS Web Server Authentication !Cname client-auth id-kp 2 : clientAuth : TLS Web Client Authentication !Cname code-sign id-kp 3 : codeSigning : Code Signing !Cname email-protect id-kp 4 : emailProtection : E-mail Protection id-kp 5 : ipsecEndSystem : IPSec End System id-kp 6 : ipsecTunnel : IPSec Tunnel id-kp 7 : ipsecUser : IPSec User !Cname time-stamp id-kp 8 : timeStamping : Time Stamping # From OCSP spec RFC2560 !Cname OCSP-sign id-kp 9 : OCSPSigning : OCSP Signing id-kp 10 : DVCS : dvcs !Cname ipsec-IKE id-kp 17 : ipsecIKE : ipsec Internet Key Exchange id-kp 18 : capwapAC : Ctrl/provision WAP Access id-kp 19 : capwapWTP : Ctrl/Provision WAP Termination !Cname sshClient id-kp 21 : secureShellClient : SSH Client !Cname sshServer id-kp 22 : secureShellServer : SSH Server id-kp 23 : sendRouter : Send Router id-kp 24 : sendProxiedRouter : Send Proxied Router id-kp 25 : sendOwner : Send Owner id-kp 26 : sendProxiedOwner : Send Proxied Owner id-kp 27 : cmcCA : CMC Certificate Authority id-kp 28 : cmcRA : CMC Registration Authority # CMP information types id-it 1 : id-it-caProtEncCert id-it 2 : id-it-signKeyPairTypes id-it 3 : id-it-encKeyPairTypes id-it 4 : id-it-preferredSymmAlg id-it 5 : id-it-caKeyUpdateInfo id-it 6 : id-it-currentCRL id-it 7 : id-it-unsupportedOIDs # obsolete id-it 8 : id-it-subscriptionRequest # obsolete id-it 9 : id-it-subscriptionResponse id-it 10 : id-it-keyPairParamReq id-it 11 : id-it-keyPairParamRep id-it 12 : id-it-revPassphrase id-it 13 : id-it-implicitConfirm id-it 14 : id-it-confirmWaitTime id-it 15 : id-it-origPKIMessage id-it 16 : id-it-suppLangTags # CRMF registration id-pkip 1 : id-regCtrl id-pkip 2 : id-regInfo # CRMF registration controls id-regCtrl 1 : id-regCtrl-regToken id-regCtrl 2 : id-regCtrl-authenticator id-regCtrl 3 : id-regCtrl-pkiPublicationInfo id-regCtrl 4 : id-regCtrl-pkiArchiveOptions id-regCtrl 5 : id-regCtrl-oldCertID id-regCtrl 6 : id-regCtrl-protocolEncrKey # CRMF registration information id-regInfo 1 : id-regInfo-utf8Pairs id-regInfo 2 : id-regInfo-certReq # algorithms id-alg 1 : id-alg-des40 id-alg 2 : id-alg-noSignature id-alg 3 : id-alg-dh-sig-hmac-sha1 id-alg 4 : id-alg-dh-pop # CMC controls id-cmc 1 : id-cmc-statusInfo id-cmc 2 : id-cmc-identification id-cmc 3 : id-cmc-identityProof id-cmc 4 : id-cmc-dataReturn id-cmc 5 : id-cmc-transactionId id-cmc 6 : id-cmc-senderNonce id-cmc 7 : id-cmc-recipientNonce id-cmc 8 : id-cmc-addExtensions id-cmc 9 : id-cmc-encryptedPOP id-cmc 10 : id-cmc-decryptedPOP id-cmc 11 : id-cmc-lraPOPWitness id-cmc 15 : id-cmc-getCert id-cmc 16 : id-cmc-getCRL id-cmc 17 : id-cmc-revokeRequest id-cmc 18 : id-cmc-regInfo id-cmc 19 : id-cmc-responseInfo id-cmc 21 : id-cmc-queryPending id-cmc 22 : id-cmc-popLinkRandom id-cmc 23 : id-cmc-popLinkWitness id-cmc 24 : id-cmc-confirmCertAcceptance # other names id-on 1 : id-on-personalData id-on 3 : id-on-permanentIdentifier : Permanent Identifier # personal data attributes id-pda 1 : id-pda-dateOfBirth id-pda 2 : id-pda-placeOfBirth id-pda 3 : id-pda-gender id-pda 4 : id-pda-countryOfCitizenship id-pda 5 : id-pda-countryOfResidence # attribute certificate attributes id-aca 1 : id-aca-authenticationInfo id-aca 2 : id-aca-accessIdentity id-aca 3 : id-aca-chargingIdentity id-aca 4 : id-aca-group # attention : the following seems to be obsolete, replace by 'role' id-aca 5 : id-aca-role id-aca 6 : id-aca-encAttrs # qualified certificate statements id-qcs 1 : id-qcs-pkixQCSyntax-v1 # CMC content types id-cct 1 : id-cct-crs id-cct 2 : id-cct-PKIData id-cct 3 : id-cct-PKIResponse # Predefined Proxy Certificate policy languages id-ppl 0 : id-ppl-anyLanguage : Any language id-ppl 1 : id-ppl-inheritAll : Inherit all id-ppl 2 : id-ppl-independent : Independent # access descriptors for authority info access extension !Cname ad-OCSP id-ad 1 : OCSP : OCSP !Cname ad-ca-issuers id-ad 2 : caIssuers : CA Issuers !Cname ad-timeStamping id-ad 3 : ad_timestamping : AD Time Stamping !Cname ad-dvcs id-ad 4 : AD_DVCS : ad dvcs id-ad 5 : caRepository : CA Repository !Alias id-pkix-OCSP ad-OCSP !module id-pkix-OCSP !Cname basic id-pkix-OCSP 1 : basicOCSPResponse : Basic OCSP Response id-pkix-OCSP 2 : Nonce : OCSP Nonce id-pkix-OCSP 3 : CrlID : OCSP CRL ID id-pkix-OCSP 4 : acceptableResponses : Acceptable OCSP Responses id-pkix-OCSP 5 : noCheck : OCSP No Check id-pkix-OCSP 6 : archiveCutoff : OCSP Archive Cutoff id-pkix-OCSP 7 : serviceLocator : OCSP Service Locator id-pkix-OCSP 8 : extendedStatus : Extended OCSP Status id-pkix-OCSP 9 : valid id-pkix-OCSP 10 : path id-pkix-OCSP 11 : trustRoot : Trust Root !global 1 3 14 3 2 : algorithm : algorithm algorithm 3 : RSA-NP-MD5 : md5WithRSA algorithm 6 : DES-ECB : des-ecb algorithm 7 : DES-CBC : des-cbc !Cname des-ofb64 algorithm 8 : DES-OFB : des-ofb !Cname des-cfb64 algorithm 9 : DES-CFB : des-cfb algorithm 11 : rsaSignature !Cname dsa-2 algorithm 12 : DSA-old : dsaEncryption-old algorithm 13 : DSA-SHA : dsaWithSHA algorithm 15 : RSA-SHA : shaWithRSAEncryption !Cname des-ede-ecb algorithm 17 : DES-EDE : des-ede !Cname des-ede3-ecb : DES-EDE3 : des-ede3 : DES-EDE-CBC : des-ede-cbc !Cname des-ede-cfb64 : DES-EDE-CFB : des-ede-cfb !Cname des-ede3-cfb64 : DES-EDE3-CFB : des-ede3-cfb !Cname des-ede-ofb64 : DES-EDE-OFB : des-ede-ofb !Cname des-ede3-ofb64 : DES-EDE3-OFB : des-ede3-ofb : DESX-CBC : desx-cbc algorithm 18 : SHA : sha algorithm 26 : SHA1 : sha1 !Cname dsaWithSHA1-2 algorithm 27 : DSA-SHA1-old : dsaWithSHA1-old algorithm 29 : RSA-SHA1-2 : sha1WithRSA 1 3 36 3 2 1 : RIPEMD160 : ripemd160 1 3 36 3 3 1 2 : RSA-RIPEMD160 : ripemd160WithRSA 1 3 6 1 4 1 1722 12 2 1 16 : BLAKE2b512 : blake2b512 1 3 6 1 4 1 1722 12 2 2 8 : BLAKE2s256 : blake2s256 !Cname sxnet 1 3 101 1 4 1 : SXNetID : Strong Extranet ID 2 5 : X500 : directory services (X.500) X500 4 : X509 X509 3 : CN : commonName X509 4 : SN : surname X509 5 : : serialNumber X509 6 : C : countryName X509 7 : L : localityName X509 8 : ST : stateOrProvinceName X509 9 : street : streetAddress X509 10 : O : organizationName X509 11 : OU : organizationalUnitName X509 12 : title : title X509 13 : : description X509 14 : : searchGuide X509 15 : : businessCategory X509 16 : : postalAddress X509 17 : : postalCode X509 18 : : postOfficeBox X509 19 : : physicalDeliveryOfficeName X509 20 : : telephoneNumber X509 21 : : telexNumber X509 22 : : teletexTerminalIdentifier X509 23 : : facsimileTelephoneNumber X509 24 : : x121Address X509 25 : : internationaliSDNNumber X509 26 : : registeredAddress X509 27 : : destinationIndicator X509 28 : : preferredDeliveryMethod X509 29 : : presentationAddress X509 30 : : supportedApplicationContext X509 31 : member : X509 32 : owner : X509 33 : : roleOccupant X509 34 : seeAlso : X509 35 : : userPassword X509 36 : : userCertificate X509 37 : : cACertificate X509 38 : : authorityRevocationList X509 39 : : certificateRevocationList X509 40 : : crossCertificatePair X509 41 : name : name X509 42 : GN : givenName X509 43 : initials : initials X509 44 : : generationQualifier X509 45 : : x500UniqueIdentifier X509 46 : dnQualifier : dnQualifier X509 47 : : enhancedSearchGuide X509 48 : : protocolInformation X509 49 : : distinguishedName X509 50 : : uniqueMember X509 51 : : houseIdentifier X509 52 : : supportedAlgorithms X509 53 : : deltaRevocationList X509 54 : dmdName : X509 65 : : pseudonym X509 72 : role : role X509 97 : : organizationIdentifier X509 98 : c3 : countryCode3c X509 99 : n3 : countryCode3n X509 100 : : dnsName X500 8 : X500algorithms : directory services - algorithms X500algorithms 1 1 : RSA : rsa X500algorithms 3 100 : RSA-MDC2 : mdc2WithRSA X500algorithms 3 101 : MDC2 : mdc2 X500 29 : id-ce !Cname subject-directory-attributes id-ce 9 : subjectDirectoryAttributes : X509v3 Subject Directory Attributes !Cname subject-key-identifier id-ce 14 : subjectKeyIdentifier : X509v3 Subject Key Identifier !Cname key-usage id-ce 15 : keyUsage : X509v3 Key Usage !Cname private-key-usage-period id-ce 16 : privateKeyUsagePeriod : X509v3 Private Key Usage Period !Cname subject-alt-name id-ce 17 : subjectAltName : X509v3 Subject Alternative Name !Cname issuer-alt-name id-ce 18 : issuerAltName : X509v3 Issuer Alternative Name !Cname basic-constraints id-ce 19 : basicConstraints : X509v3 Basic Constraints !Cname crl-number id-ce 20 : crlNumber : X509v3 CRL Number !Cname crl-reason id-ce 21 : CRLReason : X509v3 CRL Reason Code !Cname invalidity-date id-ce 24 : invalidityDate : Invalidity Date !Cname delta-crl id-ce 27 : deltaCRL : X509v3 Delta CRL Indicator !Cname issuing-distribution-point id-ce 28 : issuingDistributionPoint : X509v3 Issuing Distribution Point !Cname certificate-issuer id-ce 29 : certificateIssuer : X509v3 Certificate Issuer !Cname name-constraints id-ce 30 : nameConstraints : X509v3 Name Constraints !Cname crl-distribution-points id-ce 31 : crlDistributionPoints : X509v3 CRL Distribution Points !Cname certificate-policies id-ce 32 : certificatePolicies : X509v3 Certificate Policies !Cname any-policy certificate-policies 0 : anyPolicy : X509v3 Any Policy !Cname policy-mappings id-ce 33 : policyMappings : X509v3 Policy Mappings !Cname authority-key-identifier id-ce 35 : authorityKeyIdentifier : X509v3 Authority Key Identifier !Cname policy-constraints id-ce 36 : policyConstraints : X509v3 Policy Constraints !Cname ext-key-usage id-ce 37 : extendedKeyUsage : X509v3 Extended Key Usage !Cname freshest-crl id-ce 46 : freshestCRL : X509v3 Freshest CRL !Cname inhibit-any-policy id-ce 54 : inhibitAnyPolicy : X509v3 Inhibit Any Policy !Cname target-information id-ce 55 : targetInformation : X509v3 AC Targeting !Cname no-rev-avail id-ce 56 : noRevAvail : X509v3 No Revocation Available # From RFC5280 ext-key-usage 0 : anyExtendedKeyUsage : Any Extended Key Usage !Cname netscape 2 16 840 1 113730 : Netscape : Netscape Communications Corp. !Cname netscape-cert-extension netscape 1 : nsCertExt : Netscape Certificate Extension !Cname netscape-data-type netscape 2 : nsDataType : Netscape Data Type !Cname netscape-cert-type netscape-cert-extension 1 : nsCertType : Netscape Cert Type !Cname netscape-base-url netscape-cert-extension 2 : nsBaseUrl : Netscape Base Url !Cname netscape-revocation-url netscape-cert-extension 3 : nsRevocationUrl : Netscape Revocation Url !Cname netscape-ca-revocation-url netscape-cert-extension 4 : nsCaRevocationUrl : Netscape CA Revocation Url !Cname netscape-renewal-url netscape-cert-extension 7 : nsRenewalUrl : Netscape Renewal Url !Cname netscape-ca-policy-url netscape-cert-extension 8 : nsCaPolicyUrl : Netscape CA Policy Url !Cname netscape-ssl-server-name netscape-cert-extension 12 : nsSslServerName : Netscape SSL Server Name !Cname netscape-comment netscape-cert-extension 13 : nsComment : Netscape Comment !Cname netscape-cert-sequence netscape-data-type 5 : nsCertSequence : Netscape Certificate Sequence !Cname ns-sgc netscape 4 1 : nsSGC : Netscape Server Gated Crypto # iso(1) iso 3 : ORG : org org 6 : DOD : dod dod 1 : IANA : iana !Alias internet iana internet 1 : directory : Directory internet 2 : mgmt : Management internet 3 : experimental : Experimental internet 4 : private : Private internet 5 : security : Security internet 6 : snmpv2 : SNMPv2 # Documents refer to "internet 7" as "mail". This however leads to ambiguities # with RFC2798, Section 9.1.3, where "mail" is defined as the short name for # rfc822Mailbox. The short name is therefore here left out for a reason. # Subclasses of "mail", e.g. "MIME MHS" don't constitute a problem, as # references are realized via long name "Mail" (with capital M). internet 7 : : Mail Private 1 : enterprises : Enterprises # RFC 2247 Enterprises 1466 344 : dcobject : dcObject # RFC 1495 Mail 1 : mime-mhs : MIME MHS mime-mhs 1 : mime-mhs-headings : mime-mhs-headings mime-mhs 2 : mime-mhs-bodies : mime-mhs-bodies mime-mhs-headings 1 : id-hex-partial-message : id-hex-partial-message mime-mhs-headings 2 : id-hex-multipart-message : id-hex-multipart-message # RFC 3274 !Cname zlib-compression id-smime-alg 8 : ZLIB : zlib compression # AES aka Rijndael !Alias csor 2 16 840 1 101 3 !Alias nistAlgorithms csor 4 !Alias aes nistAlgorithms 1 aes 1 : AES-128-ECB : aes-128-ecb aes 2 : AES-128-CBC : aes-128-cbc !Cname aes-128-ofb128 aes 3 : AES-128-OFB : aes-128-ofb !Cname aes-128-cfb128 aes 4 : AES-128-CFB : aes-128-cfb aes 5 : id-aes128-wrap aes 6 : id-aes128-GCM : aes-128-gcm aes 7 : id-aes128-CCM : aes-128-ccm aes 8 : id-aes128-wrap-pad aes 21 : AES-192-ECB : aes-192-ecb aes 22 : AES-192-CBC : aes-192-cbc !Cname aes-192-ofb128 aes 23 : AES-192-OFB : aes-192-ofb !Cname aes-192-cfb128 aes 24 : AES-192-CFB : aes-192-cfb aes 25 : id-aes192-wrap aes 26 : id-aes192-GCM : aes-192-gcm aes 27 : id-aes192-CCM : aes-192-ccm aes 28 : id-aes192-wrap-pad aes 41 : AES-256-ECB : aes-256-ecb aes 42 : AES-256-CBC : aes-256-cbc !Cname aes-256-ofb128 aes 43 : AES-256-OFB : aes-256-ofb !Cname aes-256-cfb128 aes 44 : AES-256-CFB : aes-256-cfb aes 45 : id-aes256-wrap aes 46 : id-aes256-GCM : aes-256-gcm aes 47 : id-aes256-CCM : aes-256-ccm aes 48 : id-aes256-wrap-pad ieee-siswg 0 1 1 : AES-128-XTS : aes-128-xts ieee-siswg 0 1 2 : AES-256-XTS : aes-256-xts # There are no OIDs for these modes... : AES-128-CFB1 : aes-128-cfb1 : AES-192-CFB1 : aes-192-cfb1 : AES-256-CFB1 : aes-256-cfb1 : AES-128-CFB8 : aes-128-cfb8 : AES-192-CFB8 : aes-192-cfb8 : AES-256-CFB8 : aes-256-cfb8 : AES-128-CTR : aes-128-ctr : AES-192-CTR : aes-192-ctr : AES-256-CTR : aes-256-ctr : AES-128-OCB : aes-128-ocb : AES-192-OCB : aes-192-ocb : AES-256-OCB : aes-256-ocb : DES-CFB1 : des-cfb1 : DES-CFB8 : des-cfb8 : DES-EDE3-CFB1 : des-ede3-cfb1 : DES-EDE3-CFB8 : des-ede3-cfb8 # OIDs for SHA224, SHA256, SHA385 and SHA512, according to x9.84 and # http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html # "Middle" names are specified to be id-sha256, id-sha384, etc., but # we adhere to unprefixed capitals for backward compatibility... !Alias nist_hashalgs nistAlgorithms 2 nist_hashalgs 1 : SHA256 : sha256 nist_hashalgs 2 : SHA384 : sha384 nist_hashalgs 3 : SHA512 : sha512 nist_hashalgs 4 : SHA224 : sha224 nist_hashalgs 5 : SHA512-224 : sha512-224 nist_hashalgs 6 : SHA512-256 : sha512-256 nist_hashalgs 7 : SHA3-224 : sha3-224 nist_hashalgs 8 : SHA3-256 : sha3-256 nist_hashalgs 9 : SHA3-384 : sha3-384 nist_hashalgs 10 : SHA3-512 : sha3-512 nist_hashalgs 11 : SHAKE128 : shake128 nist_hashalgs 12 : SHAKE256 : shake256 nist_hashalgs 13 : id-hmacWithSHA3-224 : hmac-sha3-224 nist_hashalgs 14 : id-hmacWithSHA3-256 : hmac-sha3-256 nist_hashalgs 15 : id-hmacWithSHA3-384 : hmac-sha3-384 nist_hashalgs 16 : id-hmacWithSHA3-512 : hmac-sha3-512 # Below two are incomplete OIDs, to be uncommented when we figure out # how to handle them... # nist_hashalgs 17 : id-shake128-len : shake128-len # nist_hashalgs 18 : id-shake256-len : shake256-len # OIDs for dsa-with-sha224 and dsa-with-sha256 !Alias dsa_with_sha2 nistAlgorithms 3 dsa_with_sha2 1 : dsa_with_SHA224 dsa_with_sha2 2 : dsa_with_SHA256 # Above two belong below, but kept as they are for backward compatibility !Alias sigAlgs nistAlgorithms 3 sigAlgs 3 : id-dsa-with-sha384 : dsa_with_SHA384 sigAlgs 4 : id-dsa-with-sha512 : dsa_with_SHA512 sigAlgs 5 : id-dsa-with-sha3-224 : dsa_with_SHA3-224 sigAlgs 6 : id-dsa-with-sha3-256 : dsa_with_SHA3-256 sigAlgs 7 : id-dsa-with-sha3-384 : dsa_with_SHA3-384 sigAlgs 8 : id-dsa-with-sha3-512 : dsa_with_SHA3-512 sigAlgs 9 : id-ecdsa-with-sha3-224 : ecdsa_with_SHA3-224 sigAlgs 10 : id-ecdsa-with-sha3-256 : ecdsa_with_SHA3-256 sigAlgs 11 : id-ecdsa-with-sha3-384 : ecdsa_with_SHA3-384 sigAlgs 12 : id-ecdsa-with-sha3-512 : ecdsa_with_SHA3-512 sigAlgs 13 : id-rsassa-pkcs1-v1_5-with-sha3-224 : RSA-SHA3-224 sigAlgs 14 : id-rsassa-pkcs1-v1_5-with-sha3-256 : RSA-SHA3-256 sigAlgs 15 : id-rsassa-pkcs1-v1_5-with-sha3-384 : RSA-SHA3-384 sigAlgs 16 : id-rsassa-pkcs1-v1_5-with-sha3-512 : RSA-SHA3-512 # Hold instruction CRL entry extension !Cname hold-instruction-code id-ce 23 : holdInstructionCode : Hold Instruction Code !Alias holdInstruction X9-57 2 !Cname hold-instruction-none holdInstruction 1 : holdInstructionNone : Hold Instruction None !Cname hold-instruction-call-issuer holdInstruction 2 : holdInstructionCallIssuer : Hold Instruction Call Issuer !Cname hold-instruction-reject holdInstruction 3 : holdInstructionReject : Hold Instruction Reject # OID's from ITU-T. Most of this is defined in RFC 1274. A couple of # them are also mentioned in RFC 2247 itu-t 9 : data data 2342 : pss pss 19200300 : ucl ucl 100 : pilot pilot 1 : : pilotAttributeType pilot 3 : : pilotAttributeSyntax pilot 4 : : pilotObjectClass pilot 10 : : pilotGroups pilotAttributeSyntax 4 : : iA5StringSyntax pilotAttributeSyntax 5 : : caseIgnoreIA5StringSyntax pilotObjectClass 3 : : pilotObject pilotObjectClass 4 : : pilotPerson pilotObjectClass 5 : account pilotObjectClass 6 : document pilotObjectClass 7 : room pilotObjectClass 9 : : documentSeries pilotObjectClass 13 : domain : Domain pilotObjectClass 14 : : rFC822localPart pilotObjectClass 15 : : dNSDomain pilotObjectClass 17 : : domainRelatedObject pilotObjectClass 18 : : friendlyCountry pilotObjectClass 19 : : simpleSecurityObject pilotObjectClass 20 : : pilotOrganization pilotObjectClass 21 : : pilotDSA pilotObjectClass 22 : : qualityLabelledData pilotAttributeType 1 : UID : userId pilotAttributeType 2 : : textEncodedORAddress pilotAttributeType 3 : mail : rfc822Mailbox pilotAttributeType 4 : info pilotAttributeType 5 : : favouriteDrink pilotAttributeType 6 : : roomNumber pilotAttributeType 7 : photo pilotAttributeType 8 : : userClass pilotAttributeType 9 : host pilotAttributeType 10 : manager pilotAttributeType 11 : : documentIdentifier pilotAttributeType 12 : : documentTitle pilotAttributeType 13 : : documentVersion pilotAttributeType 14 : : documentAuthor pilotAttributeType 15 : : documentLocation pilotAttributeType 20 : : homeTelephoneNumber pilotAttributeType 21 : secretary pilotAttributeType 22 : : otherMailbox pilotAttributeType 23 : : lastModifiedTime pilotAttributeType 24 : : lastModifiedBy pilotAttributeType 25 : DC : domainComponent pilotAttributeType 26 : : aRecord pilotAttributeType 27 : : pilotAttributeType27 pilotAttributeType 28 : : mXRecord pilotAttributeType 29 : : nSRecord pilotAttributeType 30 : : sOARecord pilotAttributeType 31 : : cNAMERecord pilotAttributeType 37 : : associatedDomain pilotAttributeType 38 : : associatedName pilotAttributeType 39 : : homePostalAddress pilotAttributeType 40 : : personalTitle pilotAttributeType 41 : : mobileTelephoneNumber pilotAttributeType 42 : : pagerTelephoneNumber pilotAttributeType 43 : : friendlyCountryName pilotAttributeType 44 : uid : uniqueIdentifier pilotAttributeType 45 : : organizationalStatus pilotAttributeType 46 : : janetMailbox pilotAttributeType 47 : : mailPreferenceOption pilotAttributeType 48 : : buildingName pilotAttributeType 49 : : dSAQuality pilotAttributeType 50 : : singleLevelQuality pilotAttributeType 51 : : subtreeMinimumQuality pilotAttributeType 52 : : subtreeMaximumQuality pilotAttributeType 53 : : personalSignature pilotAttributeType 54 : : dITRedirect pilotAttributeType 55 : audio pilotAttributeType 56 : : documentPublisher international-organizations 42 : id-set : Secure Electronic Transactions id-set 0 : set-ctype : content types id-set 1 : set-msgExt : message extensions id-set 3 : set-attr id-set 5 : set-policy id-set 7 : set-certExt : certificate extensions id-set 8 : set-brand set-ctype 0 : setct-PANData set-ctype 1 : setct-PANToken set-ctype 2 : setct-PANOnly set-ctype 3 : setct-OIData set-ctype 4 : setct-PI set-ctype 5 : setct-PIData set-ctype 6 : setct-PIDataUnsigned set-ctype 7 : setct-HODInput set-ctype 8 : setct-AuthResBaggage set-ctype 9 : setct-AuthRevReqBaggage set-ctype 10 : setct-AuthRevResBaggage set-ctype 11 : setct-CapTokenSeq set-ctype 12 : setct-PInitResData set-ctype 13 : setct-PI-TBS set-ctype 14 : setct-PResData set-ctype 16 : setct-AuthReqTBS set-ctype 17 : setct-AuthResTBS set-ctype 18 : setct-AuthResTBSX set-ctype 19 : setct-AuthTokenTBS set-ctype 20 : setct-CapTokenData set-ctype 21 : setct-CapTokenTBS set-ctype 22 : setct-AcqCardCodeMsg set-ctype 23 : setct-AuthRevReqTBS set-ctype 24 : setct-AuthRevResData set-ctype 25 : setct-AuthRevResTBS set-ctype 26 : setct-CapReqTBS set-ctype 27 : setct-CapReqTBSX set-ctype 28 : setct-CapResData set-ctype 29 : setct-CapRevReqTBS set-ctype 30 : setct-CapRevReqTBSX set-ctype 31 : setct-CapRevResData set-ctype 32 : setct-CredReqTBS set-ctype 33 : setct-CredReqTBSX set-ctype 34 : setct-CredResData set-ctype 35 : setct-CredRevReqTBS set-ctype 36 : setct-CredRevReqTBSX set-ctype 37 : setct-CredRevResData set-ctype 38 : setct-PCertReqData set-ctype 39 : setct-PCertResTBS set-ctype 40 : setct-BatchAdminReqData set-ctype 41 : setct-BatchAdminResData set-ctype 42 : setct-CardCInitResTBS set-ctype 43 : setct-MeAqCInitResTBS set-ctype 44 : setct-RegFormResTBS set-ctype 45 : setct-CertReqData set-ctype 46 : setct-CertReqTBS set-ctype 47 : setct-CertResData set-ctype 48 : setct-CertInqReqTBS set-ctype 49 : setct-ErrorTBS set-ctype 50 : setct-PIDualSignedTBE set-ctype 51 : setct-PIUnsignedTBE set-ctype 52 : setct-AuthReqTBE set-ctype 53 : setct-AuthResTBE set-ctype 54 : setct-AuthResTBEX set-ctype 55 : setct-AuthTokenTBE set-ctype 56 : setct-CapTokenTBE set-ctype 57 : setct-CapTokenTBEX set-ctype 58 : setct-AcqCardCodeMsgTBE set-ctype 59 : setct-AuthRevReqTBE set-ctype 60 : setct-AuthRevResTBE set-ctype 61 : setct-AuthRevResTBEB set-ctype 62 : setct-CapReqTBE set-ctype 63 : setct-CapReqTBEX set-ctype 64 : setct-CapResTBE set-ctype 65 : setct-CapRevReqTBE set-ctype 66 : setct-CapRevReqTBEX set-ctype 67 : setct-CapRevResTBE set-ctype 68 : setct-CredReqTBE set-ctype 69 : setct-CredReqTBEX set-ctype 70 : setct-CredResTBE set-ctype 71 : setct-CredRevReqTBE set-ctype 72 : setct-CredRevReqTBEX set-ctype 73 : setct-CredRevResTBE set-ctype 74 : setct-BatchAdminReqTBE set-ctype 75 : setct-BatchAdminResTBE set-ctype 76 : setct-RegFormReqTBE set-ctype 77 : setct-CertReqTBE set-ctype 78 : setct-CertReqTBEX set-ctype 79 : setct-CertResTBE set-ctype 80 : setct-CRLNotificationTBS set-ctype 81 : setct-CRLNotificationResTBS set-ctype 82 : setct-BCIDistributionTBS set-msgExt 1 : setext-genCrypt : generic cryptogram set-msgExt 3 : setext-miAuth : merchant initiated auth set-msgExt 4 : setext-pinSecure set-msgExt 5 : setext-pinAny set-msgExt 7 : setext-track2 set-msgExt 8 : setext-cv : additional verification set-policy 0 : set-policy-root set-certExt 0 : setCext-hashedRoot set-certExt 1 : setCext-certType set-certExt 2 : setCext-merchData set-certExt 3 : setCext-cCertRequired set-certExt 4 : setCext-tunneling set-certExt 5 : setCext-setExt set-certExt 6 : setCext-setQualf set-certExt 7 : setCext-PGWYcapabilities set-certExt 8 : setCext-TokenIdentifier set-certExt 9 : setCext-Track2Data set-certExt 10 : setCext-TokenType set-certExt 11 : setCext-IssuerCapabilities set-attr 0 : setAttr-Cert set-attr 1 : setAttr-PGWYcap : payment gateway capabilities set-attr 2 : setAttr-TokenType set-attr 3 : setAttr-IssCap : issuer capabilities setAttr-Cert 0 : set-rootKeyThumb setAttr-Cert 1 : set-addPolicy setAttr-TokenType 1 : setAttr-Token-EMV setAttr-TokenType 2 : setAttr-Token-B0Prime setAttr-IssCap 3 : setAttr-IssCap-CVM setAttr-IssCap 4 : setAttr-IssCap-T2 setAttr-IssCap 5 : setAttr-IssCap-Sig setAttr-IssCap-CVM 1 : setAttr-GenCryptgrm : generate cryptogram setAttr-IssCap-T2 1 : setAttr-T2Enc : encrypted track 2 setAttr-IssCap-T2 2 : setAttr-T2cleartxt : cleartext track 2 setAttr-IssCap-Sig 1 : setAttr-TokICCsig : ICC or token signature setAttr-IssCap-Sig 2 : setAttr-SecDevSig : secure device signature set-brand 1 : set-brand-IATA-ATA set-brand 30 : set-brand-Diners set-brand 34 : set-brand-AmericanExpress set-brand 35 : set-brand-JCB set-brand 4 : set-brand-Visa set-brand 5 : set-brand-MasterCard set-brand 6011 : set-brand-Novus rsadsi 3 10 : DES-CDMF : des-cdmf rsadsi 1 1 6 : rsaOAEPEncryptionSET : Oakley-EC2N-3 : ipsec3 : Oakley-EC2N-4 : ipsec4 iso 0 10118 3 0 55 : whirlpool # GOST OIDs member-body 643 2 2 : cryptopro member-body 643 2 9 : cryptocom member-body 643 7 1 : id-tc26 cryptopro 3 : id-GostR3411-94-with-GostR3410-2001 : GOST R 34.11-94 with GOST R 34.10-2001 cryptopro 4 : id-GostR3411-94-with-GostR3410-94 : GOST R 34.11-94 with GOST R 34.10-94 !Cname id-GostR3411-94 cryptopro 9 : md_gost94 : GOST R 34.11-94 cryptopro 10 : id-HMACGostR3411-94 : HMAC GOST 34.11-94 !Cname id-GostR3410-2001 cryptopro 19 : gost2001 : GOST R 34.10-2001 !Cname id-GostR3410-94 cryptopro 20 : gost94 : GOST R 34.10-94 !Cname id-Gost28147-89 cryptopro 21 : gost89 : GOST 28147-89 : gost89-cnt : gost89-cnt-12 : gost89-cbc : gost89-ecb : gost89-ctr !Cname id-Gost28147-89-MAC cryptopro 22 : gost-mac : GOST 28147-89 MAC : gost-mac-12 !Cname id-GostR3411-94-prf cryptopro 23 : prf-gostr3411-94 : GOST R 34.11-94 PRF cryptopro 98 : id-GostR3410-2001DH : GOST R 34.10-2001 DH cryptopro 99 : id-GostR3410-94DH : GOST R 34.10-94 DH cryptopro 14 1 : id-Gost28147-89-CryptoPro-KeyMeshing cryptopro 14 0 : id-Gost28147-89-None-KeyMeshing # GOST parameter set OIDs cryptopro 30 0 : id-GostR3411-94-TestParamSet cryptopro 30 1 : id-GostR3411-94-CryptoProParamSet cryptopro 31 0 : id-Gost28147-89-TestParamSet cryptopro 31 1 : id-Gost28147-89-CryptoPro-A-ParamSet cryptopro 31 2 : id-Gost28147-89-CryptoPro-B-ParamSet cryptopro 31 3 : id-Gost28147-89-CryptoPro-C-ParamSet cryptopro 31 4 : id-Gost28147-89-CryptoPro-D-ParamSet cryptopro 31 5 : id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet cryptopro 31 6 : id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet cryptopro 31 7 : id-Gost28147-89-CryptoPro-RIC-1-ParamSet cryptopro 32 0 : id-GostR3410-94-TestParamSet cryptopro 32 2 : id-GostR3410-94-CryptoPro-A-ParamSet cryptopro 32 3 : id-GostR3410-94-CryptoPro-B-ParamSet cryptopro 32 4 : id-GostR3410-94-CryptoPro-C-ParamSet cryptopro 32 5 : id-GostR3410-94-CryptoPro-D-ParamSet cryptopro 33 1 : id-GostR3410-94-CryptoPro-XchA-ParamSet cryptopro 33 2 : id-GostR3410-94-CryptoPro-XchB-ParamSet cryptopro 33 3 : id-GostR3410-94-CryptoPro-XchC-ParamSet cryptopro 35 0 : id-GostR3410-2001-TestParamSet cryptopro 35 1 : id-GostR3410-2001-CryptoPro-A-ParamSet cryptopro 35 2 : id-GostR3410-2001-CryptoPro-B-ParamSet cryptopro 35 3 : id-GostR3410-2001-CryptoPro-C-ParamSet cryptopro 36 0 : id-GostR3410-2001-CryptoPro-XchA-ParamSet cryptopro 36 1 : id-GostR3410-2001-CryptoPro-XchB-ParamSet id-GostR3410-94 1 : id-GostR3410-94-a id-GostR3410-94 2 : id-GostR3410-94-aBis id-GostR3410-94 3 : id-GostR3410-94-b id-GostR3410-94 4 : id-GostR3410-94-bBis # Cryptocom LTD GOST OIDs cryptocom 1 6 1 : id-Gost28147-89-cc : GOST 28147-89 Cryptocom ParamSet !Cname id-GostR3410-94-cc cryptocom 1 5 3 : gost94cc : GOST 34.10-94 Cryptocom !Cname id-GostR3410-2001-cc cryptocom 1 5 4 : gost2001cc : GOST 34.10-2001 Cryptocom cryptocom 1 3 3 : id-GostR3411-94-with-GostR3410-94-cc : GOST R 34.11-94 with GOST R 34.10-94 Cryptocom cryptocom 1 3 4 : id-GostR3411-94-with-GostR3410-2001-cc : GOST R 34.11-94 with GOST R 34.10-2001 Cryptocom cryptocom 1 8 1 : id-GostR3410-2001-ParamSet-cc : GOST R 3410-2001 Parameter Set Cryptocom # TC26 GOST OIDs id-tc26 1 : id-tc26-algorithms id-tc26-algorithms 1 : id-tc26-sign !Cname id-GostR3410-2012-256 id-tc26-sign 1 : gost2012_256: GOST R 34.10-2012 with 256 bit modulus !Cname id-GostR3410-2012-512 id-tc26-sign 2 : gost2012_512: GOST R 34.10-2012 with 512 bit modulus id-tc26-algorithms 2 : id-tc26-digest !Cname id-GostR3411-2012-256 id-tc26-digest 2 : md_gost12_256: GOST R 34.11-2012 with 256 bit hash !Cname id-GostR3411-2012-512 id-tc26-digest 3 : md_gost12_512: GOST R 34.11-2012 with 512 bit hash id-tc26-algorithms 3 : id-tc26-signwithdigest id-tc26-signwithdigest 2: id-tc26-signwithdigest-gost3410-2012-256: GOST R 34.10-2012 with GOST R 34.11-2012 (256 bit) id-tc26-signwithdigest 3: id-tc26-signwithdigest-gost3410-2012-512: GOST R 34.10-2012 with GOST R 34.11-2012 (512 bit) id-tc26-algorithms 4 : id-tc26-mac id-tc26-mac 1 : id-tc26-hmac-gost-3411-2012-256 : HMAC GOST 34.11-2012 256 bit id-tc26-mac 2 : id-tc26-hmac-gost-3411-2012-512 : HMAC GOST 34.11-2012 512 bit id-tc26-algorithms 5 : id-tc26-cipher id-tc26-cipher 1 : id-tc26-cipher-gostr3412-2015-magma id-tc26-cipher-gostr3412-2015-magma 1 : id-tc26-cipher-gostr3412-2015-magma-ctracpkm id-tc26-cipher-gostr3412-2015-magma 2 : id-tc26-cipher-gostr3412-2015-magma-ctracpkm-omac id-tc26-cipher 2 : id-tc26-cipher-gostr3412-2015-kuznyechik id-tc26-cipher-gostr3412-2015-kuznyechik 1 : id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm id-tc26-cipher-gostr3412-2015-kuznyechik 2 : id-tc26-cipher-gostr3412-2015-kuznyechik-ctracpkm-omac id-tc26-algorithms 6 : id-tc26-agreement id-tc26-agreement 1 : id-tc26-agreement-gost-3410-2012-256 id-tc26-agreement 2 : id-tc26-agreement-gost-3410-2012-512 id-tc26-algorithms 7 : id-tc26-wrap id-tc26-wrap 1 : id-tc26-wrap-gostr3412-2015-magma id-tc26-wrap-gostr3412-2015-magma 1 : id-tc26-wrap-gostr3412-2015-magma-kexp15 id-tc26-wrap 2 : id-tc26-wrap-gostr3412-2015-kuznyechik id-tc26-wrap-gostr3412-2015-kuznyechik 1 : id-tc26-wrap-gostr3412-2015-kuznyechik-kexp15 id-tc26 2 : id-tc26-constants id-tc26-constants 1 : id-tc26-sign-constants id-tc26-sign-constants 1: id-tc26-gost-3410-2012-256-constants id-tc26-gost-3410-2012-256-constants 1 : id-tc26-gost-3410-2012-256-paramSetA: GOST R 34.10-2012 (256 bit) ParamSet A id-tc26-gost-3410-2012-256-constants 2 : id-tc26-gost-3410-2012-256-paramSetB: GOST R 34.10-2012 (256 bit) ParamSet B id-tc26-gost-3410-2012-256-constants 3 : id-tc26-gost-3410-2012-256-paramSetC: GOST R 34.10-2012 (256 bit) ParamSet C id-tc26-gost-3410-2012-256-constants 4 : id-tc26-gost-3410-2012-256-paramSetD: GOST R 34.10-2012 (256 bit) ParamSet D id-tc26-sign-constants 2: id-tc26-gost-3410-2012-512-constants id-tc26-gost-3410-2012-512-constants 0 : id-tc26-gost-3410-2012-512-paramSetTest: GOST R 34.10-2012 (512 bit) testing parameter set id-tc26-gost-3410-2012-512-constants 1 : id-tc26-gost-3410-2012-512-paramSetA: GOST R 34.10-2012 (512 bit) ParamSet A id-tc26-gost-3410-2012-512-constants 2 : id-tc26-gost-3410-2012-512-paramSetB: GOST R 34.10-2012 (512 bit) ParamSet B id-tc26-gost-3410-2012-512-constants 3 : id-tc26-gost-3410-2012-512-paramSetC: GOST R 34.10-2012 (512 bit) ParamSet C id-tc26-constants 2 : id-tc26-digest-constants id-tc26-constants 5 : id-tc26-cipher-constants id-tc26-cipher-constants 1 : id-tc26-gost-28147-constants id-tc26-gost-28147-constants 1 : id-tc26-gost-28147-param-Z : GOST 28147-89 TC26 parameter set member-body 643 3 131 1 1 : INN : INN member-body 643 100 1 : OGRN : OGRN member-body 643 100 3 : SNILS : SNILS member-body 643 100 111 : subjectSignTool : Signing Tool of Subject member-body 643 100 112 : issuerSignTool : Signing Tool of Issuer #GOST R34.13-2015 Grasshopper "Kuznechik" : grasshopper-ecb : grasshopper-ctr : grasshopper-ofb : grasshopper-cbc : grasshopper-cfb : grasshopper-mac #GOST R34.13-2015 Magma : magma-ecb : magma-ctr : magma-ofb : magma-cbc : magma-cfb : magma-mac # Definitions for Camellia cipher - CBC MODE 1 2 392 200011 61 1 1 1 2 : CAMELLIA-128-CBC : camellia-128-cbc 1 2 392 200011 61 1 1 1 3 : CAMELLIA-192-CBC : camellia-192-cbc 1 2 392 200011 61 1 1 1 4 : CAMELLIA-256-CBC : camellia-256-cbc 1 2 392 200011 61 1 1 3 2 : id-camellia128-wrap 1 2 392 200011 61 1 1 3 3 : id-camellia192-wrap 1 2 392 200011 61 1 1 3 4 : id-camellia256-wrap # Definitions for Camellia cipher - ECB, CFB, OFB MODE !Alias ntt-ds 0 3 4401 5 !Alias camellia ntt-ds 3 1 9 camellia 1 : CAMELLIA-128-ECB : camellia-128-ecb !Cname camellia-128-ofb128 camellia 3 : CAMELLIA-128-OFB : camellia-128-ofb !Cname camellia-128-cfb128 camellia 4 : CAMELLIA-128-CFB : camellia-128-cfb camellia 6 : CAMELLIA-128-GCM : camellia-128-gcm camellia 7 : CAMELLIA-128-CCM : camellia-128-ccm camellia 9 : CAMELLIA-128-CTR : camellia-128-ctr camellia 10 : CAMELLIA-128-CMAC : camellia-128-cmac camellia 21 : CAMELLIA-192-ECB : camellia-192-ecb !Cname camellia-192-ofb128 camellia 23 : CAMELLIA-192-OFB : camellia-192-ofb !Cname camellia-192-cfb128 camellia 24 : CAMELLIA-192-CFB : camellia-192-cfb camellia 26 : CAMELLIA-192-GCM : camellia-192-gcm camellia 27 : CAMELLIA-192-CCM : camellia-192-ccm camellia 29 : CAMELLIA-192-CTR : camellia-192-ctr camellia 30 : CAMELLIA-192-CMAC : camellia-192-cmac camellia 41 : CAMELLIA-256-ECB : camellia-256-ecb !Cname camellia-256-ofb128 camellia 43 : CAMELLIA-256-OFB : camellia-256-ofb !Cname camellia-256-cfb128 camellia 44 : CAMELLIA-256-CFB : camellia-256-cfb camellia 46 : CAMELLIA-256-GCM : camellia-256-gcm camellia 47 : CAMELLIA-256-CCM : camellia-256-ccm camellia 49 : CAMELLIA-256-CTR : camellia-256-ctr camellia 50 : CAMELLIA-256-CMAC : camellia-256-cmac # There are no OIDs for these modes... : CAMELLIA-128-CFB1 : camellia-128-cfb1 : CAMELLIA-192-CFB1 : camellia-192-cfb1 : CAMELLIA-256-CFB1 : camellia-256-cfb1 : CAMELLIA-128-CFB8 : camellia-128-cfb8 : CAMELLIA-192-CFB8 : camellia-192-cfb8 : CAMELLIA-256-CFB8 : camellia-256-cfb8 # Definitions for ARIA cipher !Alias aria 1 2 410 200046 1 1 aria 1 : ARIA-128-ECB : aria-128-ecb aria 2 : ARIA-128-CBC : aria-128-cbc !Cname aria-128-cfb128 aria 3 : ARIA-128-CFB : aria-128-cfb !Cname aria-128-ofb128 aria 4 : ARIA-128-OFB : aria-128-ofb aria 5 : ARIA-128-CTR : aria-128-ctr aria 6 : ARIA-192-ECB : aria-192-ecb aria 7 : ARIA-192-CBC : aria-192-cbc !Cname aria-192-cfb128 aria 8 : ARIA-192-CFB : aria-192-cfb !Cname aria-192-ofb128 aria 9 : ARIA-192-OFB : aria-192-ofb aria 10 : ARIA-192-CTR : aria-192-ctr aria 11 : ARIA-256-ECB : aria-256-ecb aria 12 : ARIA-256-CBC : aria-256-cbc !Cname aria-256-cfb128 aria 13 : ARIA-256-CFB : aria-256-cfb !Cname aria-256-ofb128 aria 14 : ARIA-256-OFB : aria-256-ofb aria 15 : ARIA-256-CTR : aria-256-ctr # There are no OIDs for these ARIA modes... : ARIA-128-CFB1 : aria-128-cfb1 : ARIA-192-CFB1 : aria-192-cfb1 : ARIA-256-CFB1 : aria-256-cfb1 : ARIA-128-CFB8 : aria-128-cfb8 : ARIA-192-CFB8 : aria-192-cfb8 : ARIA-256-CFB8 : aria-256-cfb8 aria 37 : ARIA-128-CCM : aria-128-ccm aria 38 : ARIA-192-CCM : aria-192-ccm aria 39 : ARIA-256-CCM : aria-256-ccm aria 34 : ARIA-128-GCM : aria-128-gcm aria 35 : ARIA-192-GCM : aria-192-gcm aria 36 : ARIA-256-GCM : aria-256-gcm # Definitions for SEED cipher - ECB, CBC, OFB mode member-body 410 200004 : KISA : kisa kisa 1 3 : SEED-ECB : seed-ecb kisa 1 4 : SEED-CBC : seed-cbc !Cname seed-cfb128 kisa 1 5 : SEED-CFB : seed-cfb !Cname seed-ofb128 kisa 1 6 : SEED-OFB : seed-ofb # Definitions for SM4 cipher sm-scheme 104 1 : SM4-ECB : sm4-ecb sm-scheme 104 2 : SM4-CBC : sm4-cbc !Cname sm4-ofb128 sm-scheme 104 3 : SM4-OFB : sm4-ofb !Cname sm4-cfb128 sm-scheme 104 4 : SM4-CFB : sm4-cfb sm-scheme 104 5 : SM4-CFB1 : sm4-cfb1 sm-scheme 104 6 : SM4-CFB8 : sm4-cfb8 sm-scheme 104 7 : SM4-CTR : sm4-ctr # There is no OID that just denotes "HMAC" oddly enough... : HMAC : hmac # Nor CMAC either : CMAC : cmac # Synthetic composite ciphersuites : RC4-HMAC-MD5 : rc4-hmac-md5 : AES-128-CBC-HMAC-SHA1 : aes-128-cbc-hmac-sha1 : AES-192-CBC-HMAC-SHA1 : aes-192-cbc-hmac-sha1 : AES-256-CBC-HMAC-SHA1 : aes-256-cbc-hmac-sha1 : AES-128-CBC-HMAC-SHA256 : aes-128-cbc-hmac-sha256 : AES-192-CBC-HMAC-SHA256 : aes-192-cbc-hmac-sha256 : AES-256-CBC-HMAC-SHA256 : aes-256-cbc-hmac-sha256 : ChaCha20-Poly1305 : chacha20-poly1305 : ChaCha20 : chacha20 ISO-US 10046 2 1 : dhpublicnumber : X9.42 DH # RFC 5639 curve OIDs (see http://www.ietf.org/rfc/rfc5639.txt) # versionOne OBJECT IDENTIFIER ::= { # iso(1) identified-organization(3) teletrust(36) algorithm(3) # signature-algorithm(3) ecSign(2) ecStdCurvesAndGeneration(8) # ellipticCurve(1) 1 } 1 3 36 3 3 2 8 1 1 1 : brainpoolP160r1 1 3 36 3 3 2 8 1 1 2 : brainpoolP160t1 1 3 36 3 3 2 8 1 1 3 : brainpoolP192r1 1 3 36 3 3 2 8 1 1 4 : brainpoolP192t1 1 3 36 3 3 2 8 1 1 5 : brainpoolP224r1 1 3 36 3 3 2 8 1 1 6 : brainpoolP224t1 1 3 36 3 3 2 8 1 1 7 : brainpoolP256r1 1 3 36 3 3 2 8 1 1 8 : brainpoolP256t1 1 3 36 3 3 2 8 1 1 9 : brainpoolP320r1 1 3 36 3 3 2 8 1 1 10 : brainpoolP320t1 1 3 36 3 3 2 8 1 1 11 : brainpoolP384r1 1 3 36 3 3 2 8 1 1 12 : brainpoolP384t1 1 3 36 3 3 2 8 1 1 13 : brainpoolP512r1 1 3 36 3 3 2 8 1 1 14 : brainpoolP512t1 # ECDH schemes from RFC5753 !Alias x9-63-scheme 1 3 133 16 840 63 0 !Alias secg-scheme certicom-arc 1 x9-63-scheme 2 : dhSinglePass-stdDH-sha1kdf-scheme secg-scheme 11 0 : dhSinglePass-stdDH-sha224kdf-scheme secg-scheme 11 1 : dhSinglePass-stdDH-sha256kdf-scheme secg-scheme 11 2 : dhSinglePass-stdDH-sha384kdf-scheme secg-scheme 11 3 : dhSinglePass-stdDH-sha512kdf-scheme x9-63-scheme 3 : dhSinglePass-cofactorDH-sha1kdf-scheme secg-scheme 14 0 : dhSinglePass-cofactorDH-sha224kdf-scheme secg-scheme 14 1 : dhSinglePass-cofactorDH-sha256kdf-scheme secg-scheme 14 2 : dhSinglePass-cofactorDH-sha384kdf-scheme secg-scheme 14 3 : dhSinglePass-cofactorDH-sha512kdf-scheme # NIDs for use with lookup tables. : dh-std-kdf : dh-cofactor-kdf # RFC 6962 Extension OIDs (see http://www.ietf.org/rfc/rfc6962.txt) 1 3 6 1 4 1 11129 2 4 2 : ct_precert_scts : CT Precertificate SCTs 1 3 6 1 4 1 11129 2 4 3 : ct_precert_poison : CT Precertificate Poison 1 3 6 1 4 1 11129 2 4 4 : ct_precert_signer : CT Precertificate Signer 1 3 6 1 4 1 11129 2 4 5 : ct_cert_scts : CT Certificate SCTs # CABForum EV SSL Certificate Guidelines # (see https://cabforum.org/extended-validation/) # OIDs for Subject Jurisdiction of Incorporation or Registration 1 3 6 1 4 1 311 60 2 1 1 : jurisdictionL : jurisdictionLocalityName 1 3 6 1 4 1 311 60 2 1 2 : jurisdictionST : jurisdictionStateOrProvinceName 1 3 6 1 4 1 311 60 2 1 3 : jurisdictionC : jurisdictionCountryName # SCRYPT algorithm !Cname id-scrypt 1 3 6 1 4 1 11591 4 11 : id-scrypt : scrypt # NID for TLS1 PRF : TLS1-PRF : tls1-prf # NID for HKDF : HKDF : hkdf # RFC 4556 1 3 6 1 5 2 3 : id-pkinit id-pkinit 4 : pkInitClientAuth : PKINIT Client Auth id-pkinit 5 : pkInitKDC : Signing KDC Response # From RFC8410 1 3 101 110 : X25519 1 3 101 111 : X448 1 3 101 112 : ED25519 1 3 101 113 : ED448 # NIDs for cipher key exchange : KxRSA : kx-rsa : KxECDHE : kx-ecdhe : KxDHE : kx-dhe : KxECDHE-PSK : kx-ecdhe-psk : KxDHE-PSK : kx-dhe-psk : KxRSA_PSK : kx-rsa-psk : KxPSK : kx-psk : KxSRP : kx-srp : KxGOST : kx-gost : KxANY : kx-any # NIDs for cipher authentication : AuthRSA : auth-rsa : AuthECDSA : auth-ecdsa : AuthPSK : auth-psk : AuthDSS : auth-dss : AuthGOST01 : auth-gost01 : AuthGOST12 : auth-gost12 : AuthSRP : auth-srp : AuthNULL : auth-null : AuthANY : auth-any # NID for Poly1305 : Poly1305 : poly1305 # NID for SipHash : SipHash : siphash # NIDs for RFC7919 DH parameters : ffdhe2048 : ffdhe3072 : ffdhe4096 : ffdhe6144 : ffdhe8192 # OIDs for DSTU-4145/DSTU-7564 (http://zakon2.rada.gov.ua/laws/show/z0423-17) # DSTU OIDs member-body 804 : ISO-UA ISO-UA 2 1 1 1 : ua-pki ua-pki 1 1 1 : dstu28147 : DSTU Gost 28147-2009 dstu28147 2 : dstu28147-ofb : DSTU Gost 28147-2009 OFB mode dstu28147 3 : dstu28147-cfb : DSTU Gost 28147-2009 CFB mode dstu28147 5 : dstu28147-wrap : DSTU Gost 28147-2009 key wrap ua-pki 1 1 2 : hmacWithDstu34311 : HMAC DSTU Gost 34311-95 ua-pki 1 2 1 : dstu34311 : DSTU Gost 34311-95 ua-pki 1 3 1 1 : dstu4145le : DSTU 4145-2002 little endian dstu4145le 1 1 : dstu4145be : DSTU 4145-2002 big endian # 1.2.804. 2.1.1.1 1.3.1.1 .2.6 # UA ua-pki 4145 le # DSTU named curves dstu4145le 2 0 : uacurve0 : DSTU curve 0 dstu4145le 2 1 : uacurve1 : DSTU curve 1 dstu4145le 2 2 : uacurve2 : DSTU curve 2 dstu4145le 2 3 : uacurve3 : DSTU curve 3 dstu4145le 2 4 : uacurve4 : DSTU curve 4 dstu4145le 2 5 : uacurve5 : DSTU curve 5 dstu4145le 2 6 : uacurve6 : DSTU curve 6 dstu4145le 2 7 : uacurve7 : DSTU curve 7 dstu4145le 2 8 : uacurve8 : DSTU curve 8 dstu4145le 2 9 : uacurve9 : DSTU curve 9 openssl-1.1.1f/crypto/objects/objxref.pl000066400000000000000000000056721364063235100203250ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1998-2019 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html use strict; my %xref_tbl; my %oid_tbl; my ($mac_file, $xref_file) = @ARGV; # Output year depends on the year of the script and the input file. my $YEAR = [localtime([stat($0)]->[9])]->[5] + 1900; my $iYEAR = [localtime([stat($mac_file)]->[9])]->[5] + 1900; $YEAR = $iYEAR if $iYEAR > $YEAR; $iYEAR = [localtime([stat($xref_file)]->[9])]->[5] + 1900; $YEAR = $iYEAR if $iYEAR > $YEAR; open(IN, $mac_file) || die "Can't open $mac_file, $!\n"; # Read in OID nid values for a lookup table. while () { s|\R$||; # Better chomp my ($name, $num) = /^(\S+)\s+(\S+)$/; $oid_tbl{$name} = $num; } close IN; open(IN, $xref_file) || die "Can't open $xref_file, $!\n"; my $ln = 1; while () { s|\R$||; # Better chomp s/#.*$//; next if (/^\S*$/); my ($xr, $p1, $p2) = /^(\S+)\s+(\S+)\s+(\S+)/; check_oid($xr); check_oid($p1); check_oid($p2); $xref_tbl{$xr} = [$p1, $p2, $ln]; } my @xrkeys = keys %xref_tbl; my @srt1 = sort { $oid_tbl{$a} <=> $oid_tbl{$b}} @xrkeys; my $i; for($i = 0; $i <= $#srt1; $i++) { $xref_tbl{$srt1[$i]}[2] = $i; } my @srt2 = sort { my$ap1 = $oid_tbl{$xref_tbl{$a}[0]}; my$bp1 = $oid_tbl{$xref_tbl{$b}[0]}; return $ap1 - $bp1 if ($ap1 != $bp1); my$ap2 = $oid_tbl{$xref_tbl{$a}[1]}; my$bp2 = $oid_tbl{$xref_tbl{$b}[1]}; return $ap2 - $bp2; } @xrkeys; my $pname = $0; $pname =~ s|.*/||; print < #include #include #include "ocsp_local.h" ASN1_SEQUENCE(OCSP_SIGNATURE) = { ASN1_EMBED(OCSP_SIGNATURE, signatureAlgorithm, X509_ALGOR), ASN1_SIMPLE(OCSP_SIGNATURE, signature, ASN1_BIT_STRING), ASN1_EXP_SEQUENCE_OF_OPT(OCSP_SIGNATURE, certs, X509, 0) } ASN1_SEQUENCE_END(OCSP_SIGNATURE) IMPLEMENT_ASN1_FUNCTIONS(OCSP_SIGNATURE) ASN1_SEQUENCE(OCSP_CERTID) = { ASN1_EMBED(OCSP_CERTID, hashAlgorithm, X509_ALGOR), ASN1_EMBED(OCSP_CERTID, issuerNameHash, ASN1_OCTET_STRING), ASN1_EMBED(OCSP_CERTID, issuerKeyHash, ASN1_OCTET_STRING), ASN1_EMBED(OCSP_CERTID, serialNumber, ASN1_INTEGER) } ASN1_SEQUENCE_END(OCSP_CERTID) IMPLEMENT_ASN1_FUNCTIONS(OCSP_CERTID) ASN1_SEQUENCE(OCSP_ONEREQ) = { ASN1_SIMPLE(OCSP_ONEREQ, reqCert, OCSP_CERTID), ASN1_EXP_SEQUENCE_OF_OPT(OCSP_ONEREQ, singleRequestExtensions, X509_EXTENSION, 0) } ASN1_SEQUENCE_END(OCSP_ONEREQ) IMPLEMENT_ASN1_FUNCTIONS(OCSP_ONEREQ) ASN1_SEQUENCE(OCSP_REQINFO) = { ASN1_EXP_OPT(OCSP_REQINFO, version, ASN1_INTEGER, 0), ASN1_EXP_OPT(OCSP_REQINFO, requestorName, GENERAL_NAME, 1), ASN1_SEQUENCE_OF(OCSP_REQINFO, requestList, OCSP_ONEREQ), ASN1_EXP_SEQUENCE_OF_OPT(OCSP_REQINFO, requestExtensions, X509_EXTENSION, 2) } ASN1_SEQUENCE_END(OCSP_REQINFO) IMPLEMENT_ASN1_FUNCTIONS(OCSP_REQINFO) ASN1_SEQUENCE(OCSP_REQUEST) = { ASN1_EMBED(OCSP_REQUEST, tbsRequest, OCSP_REQINFO), ASN1_EXP_OPT(OCSP_REQUEST, optionalSignature, OCSP_SIGNATURE, 0) } ASN1_SEQUENCE_END(OCSP_REQUEST) IMPLEMENT_ASN1_FUNCTIONS(OCSP_REQUEST) /* OCSP_RESPONSE templates */ ASN1_SEQUENCE(OCSP_RESPBYTES) = { ASN1_SIMPLE(OCSP_RESPBYTES, responseType, ASN1_OBJECT), ASN1_SIMPLE(OCSP_RESPBYTES, response, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(OCSP_RESPBYTES) IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPBYTES) ASN1_SEQUENCE(OCSP_RESPONSE) = { ASN1_SIMPLE(OCSP_RESPONSE, responseStatus, ASN1_ENUMERATED), ASN1_EXP_OPT(OCSP_RESPONSE, responseBytes, OCSP_RESPBYTES, 0) } ASN1_SEQUENCE_END(OCSP_RESPONSE) IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPONSE) ASN1_CHOICE(OCSP_RESPID) = { ASN1_EXP(OCSP_RESPID, value.byName, X509_NAME, 1), ASN1_EXP(OCSP_RESPID, value.byKey, ASN1_OCTET_STRING, 2) } ASN1_CHOICE_END(OCSP_RESPID) IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPID) ASN1_SEQUENCE(OCSP_REVOKEDINFO) = { ASN1_SIMPLE(OCSP_REVOKEDINFO, revocationTime, ASN1_GENERALIZEDTIME), ASN1_EXP_OPT(OCSP_REVOKEDINFO, revocationReason, ASN1_ENUMERATED, 0) } ASN1_SEQUENCE_END(OCSP_REVOKEDINFO) IMPLEMENT_ASN1_FUNCTIONS(OCSP_REVOKEDINFO) ASN1_CHOICE(OCSP_CERTSTATUS) = { ASN1_IMP(OCSP_CERTSTATUS, value.good, ASN1_NULL, 0), ASN1_IMP(OCSP_CERTSTATUS, value.revoked, OCSP_REVOKEDINFO, 1), ASN1_IMP(OCSP_CERTSTATUS, value.unknown, ASN1_NULL, 2) } ASN1_CHOICE_END(OCSP_CERTSTATUS) IMPLEMENT_ASN1_FUNCTIONS(OCSP_CERTSTATUS) ASN1_SEQUENCE(OCSP_SINGLERESP) = { ASN1_SIMPLE(OCSP_SINGLERESP, certId, OCSP_CERTID), ASN1_SIMPLE(OCSP_SINGLERESP, certStatus, OCSP_CERTSTATUS), ASN1_SIMPLE(OCSP_SINGLERESP, thisUpdate, ASN1_GENERALIZEDTIME), ASN1_EXP_OPT(OCSP_SINGLERESP, nextUpdate, ASN1_GENERALIZEDTIME, 0), ASN1_EXP_SEQUENCE_OF_OPT(OCSP_SINGLERESP, singleExtensions, X509_EXTENSION, 1) } ASN1_SEQUENCE_END(OCSP_SINGLERESP) IMPLEMENT_ASN1_FUNCTIONS(OCSP_SINGLERESP) ASN1_SEQUENCE(OCSP_RESPDATA) = { ASN1_EXP_OPT(OCSP_RESPDATA, version, ASN1_INTEGER, 0), ASN1_EMBED(OCSP_RESPDATA, responderId, OCSP_RESPID), ASN1_SIMPLE(OCSP_RESPDATA, producedAt, ASN1_GENERALIZEDTIME), ASN1_SEQUENCE_OF(OCSP_RESPDATA, responses, OCSP_SINGLERESP), ASN1_EXP_SEQUENCE_OF_OPT(OCSP_RESPDATA, responseExtensions, X509_EXTENSION, 1) } ASN1_SEQUENCE_END(OCSP_RESPDATA) IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPDATA) ASN1_SEQUENCE(OCSP_BASICRESP) = { ASN1_EMBED(OCSP_BASICRESP, tbsResponseData, OCSP_RESPDATA), ASN1_EMBED(OCSP_BASICRESP, signatureAlgorithm, X509_ALGOR), ASN1_SIMPLE(OCSP_BASICRESP, signature, ASN1_BIT_STRING), ASN1_EXP_SEQUENCE_OF_OPT(OCSP_BASICRESP, certs, X509, 0) } ASN1_SEQUENCE_END(OCSP_BASICRESP) IMPLEMENT_ASN1_FUNCTIONS(OCSP_BASICRESP) ASN1_SEQUENCE(OCSP_CRLID) = { ASN1_EXP_OPT(OCSP_CRLID, crlUrl, ASN1_IA5STRING, 0), ASN1_EXP_OPT(OCSP_CRLID, crlNum, ASN1_INTEGER, 1), ASN1_EXP_OPT(OCSP_CRLID, crlTime, ASN1_GENERALIZEDTIME, 2) } ASN1_SEQUENCE_END(OCSP_CRLID) IMPLEMENT_ASN1_FUNCTIONS(OCSP_CRLID) ASN1_SEQUENCE(OCSP_SERVICELOC) = { ASN1_SIMPLE(OCSP_SERVICELOC, issuer, X509_NAME), ASN1_SEQUENCE_OF_OPT(OCSP_SERVICELOC, locator, ACCESS_DESCRIPTION) } ASN1_SEQUENCE_END(OCSP_SERVICELOC) IMPLEMENT_ASN1_FUNCTIONS(OCSP_SERVICELOC) openssl-1.1.1f/crypto/ocsp/ocsp_cl.c000066400000000000000000000253511364063235100174260ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include "ocsp_local.h" /* * Utility functions related to sending OCSP requests and extracting relevant * information from the response. */ /* * Add an OCSP_CERTID to an OCSP request. Return new OCSP_ONEREQ pointer: * useful if we want to add extensions. */ OCSP_ONEREQ *OCSP_request_add0_id(OCSP_REQUEST *req, OCSP_CERTID *cid) { OCSP_ONEREQ *one = NULL; if ((one = OCSP_ONEREQ_new()) == NULL) return NULL; OCSP_CERTID_free(one->reqCert); one->reqCert = cid; if (req && !sk_OCSP_ONEREQ_push(req->tbsRequest.requestList, one)) { one->reqCert = NULL; /* do not free on error */ goto err; } return one; err: OCSP_ONEREQ_free(one); return NULL; } /* Set requestorName from an X509_NAME structure */ int OCSP_request_set1_name(OCSP_REQUEST *req, X509_NAME *nm) { GENERAL_NAME *gen; gen = GENERAL_NAME_new(); if (gen == NULL) return 0; if (!X509_NAME_set(&gen->d.directoryName, nm)) { GENERAL_NAME_free(gen); return 0; } gen->type = GEN_DIRNAME; GENERAL_NAME_free(req->tbsRequest.requestorName); req->tbsRequest.requestorName = gen; return 1; } /* Add a certificate to an OCSP request */ int OCSP_request_add1_cert(OCSP_REQUEST *req, X509 *cert) { OCSP_SIGNATURE *sig; if (req->optionalSignature == NULL) req->optionalSignature = OCSP_SIGNATURE_new(); sig = req->optionalSignature; if (sig == NULL) return 0; if (cert == NULL) return 1; if (sig->certs == NULL && (sig->certs = sk_X509_new_null()) == NULL) return 0; if (!sk_X509_push(sig->certs, cert)) return 0; X509_up_ref(cert); return 1; } /* * Sign an OCSP request set the requestorName to the subject name of an * optional signers certificate and include one or more optional certificates * in the request. Behaves like PKCS7_sign(). */ int OCSP_request_sign(OCSP_REQUEST *req, X509 *signer, EVP_PKEY *key, const EVP_MD *dgst, STACK_OF(X509) *certs, unsigned long flags) { int i; X509 *x; if (!OCSP_request_set1_name(req, X509_get_subject_name(signer))) goto err; if ((req->optionalSignature = OCSP_SIGNATURE_new()) == NULL) goto err; if (key) { if (!X509_check_private_key(signer, key)) { OCSPerr(OCSP_F_OCSP_REQUEST_SIGN, OCSP_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE); goto err; } if (!OCSP_REQUEST_sign(req, key, dgst)) goto err; } if (!(flags & OCSP_NOCERTS)) { if (!OCSP_request_add1_cert(req, signer)) goto err; for (i = 0; i < sk_X509_num(certs); i++) { x = sk_X509_value(certs, i); if (!OCSP_request_add1_cert(req, x)) goto err; } } return 1; err: OCSP_SIGNATURE_free(req->optionalSignature); req->optionalSignature = NULL; return 0; } /* Get response status */ int OCSP_response_status(OCSP_RESPONSE *resp) { return ASN1_ENUMERATED_get(resp->responseStatus); } /* * Extract basic response from OCSP_RESPONSE or NULL if no basic response * present. */ OCSP_BASICRESP *OCSP_response_get1_basic(OCSP_RESPONSE *resp) { OCSP_RESPBYTES *rb; rb = resp->responseBytes; if (!rb) { OCSPerr(OCSP_F_OCSP_RESPONSE_GET1_BASIC, OCSP_R_NO_RESPONSE_DATA); return NULL; } if (OBJ_obj2nid(rb->responseType) != NID_id_pkix_OCSP_basic) { OCSPerr(OCSP_F_OCSP_RESPONSE_GET1_BASIC, OCSP_R_NOT_BASIC_RESPONSE); return NULL; } return ASN1_item_unpack(rb->response, ASN1_ITEM_rptr(OCSP_BASICRESP)); } const ASN1_OCTET_STRING *OCSP_resp_get0_signature(const OCSP_BASICRESP *bs) { return bs->signature; } const X509_ALGOR *OCSP_resp_get0_tbs_sigalg(const OCSP_BASICRESP *bs) { return &bs->signatureAlgorithm; } const OCSP_RESPDATA *OCSP_resp_get0_respdata(const OCSP_BASICRESP *bs) { return &bs->tbsResponseData; } /* * Return number of OCSP_SINGLERESP responses present in a basic response. */ int OCSP_resp_count(OCSP_BASICRESP *bs) { if (!bs) return -1; return sk_OCSP_SINGLERESP_num(bs->tbsResponseData.responses); } /* Extract an OCSP_SINGLERESP response with a given index */ OCSP_SINGLERESP *OCSP_resp_get0(OCSP_BASICRESP *bs, int idx) { if (!bs) return NULL; return sk_OCSP_SINGLERESP_value(bs->tbsResponseData.responses, idx); } const ASN1_GENERALIZEDTIME *OCSP_resp_get0_produced_at(const OCSP_BASICRESP* bs) { return bs->tbsResponseData.producedAt; } const STACK_OF(X509) *OCSP_resp_get0_certs(const OCSP_BASICRESP *bs) { return bs->certs; } int OCSP_resp_get0_id(const OCSP_BASICRESP *bs, const ASN1_OCTET_STRING **pid, const X509_NAME **pname) { const OCSP_RESPID *rid = &bs->tbsResponseData.responderId; if (rid->type == V_OCSP_RESPID_NAME) { *pname = rid->value.byName; *pid = NULL; } else if (rid->type == V_OCSP_RESPID_KEY) { *pid = rid->value.byKey; *pname = NULL; } else { return 0; } return 1; } int OCSP_resp_get1_id(const OCSP_BASICRESP *bs, ASN1_OCTET_STRING **pid, X509_NAME **pname) { const OCSP_RESPID *rid = &bs->tbsResponseData.responderId; if (rid->type == V_OCSP_RESPID_NAME) { *pname = X509_NAME_dup(rid->value.byName); *pid = NULL; } else if (rid->type == V_OCSP_RESPID_KEY) { *pid = ASN1_OCTET_STRING_dup(rid->value.byKey); *pname = NULL; } else { return 0; } if (*pname == NULL && *pid == NULL) return 0; return 1; } /* Look single response matching a given certificate ID */ int OCSP_resp_find(OCSP_BASICRESP *bs, OCSP_CERTID *id, int last) { int i; STACK_OF(OCSP_SINGLERESP) *sresp; OCSP_SINGLERESP *single; if (!bs) return -1; if (last < 0) last = 0; else last++; sresp = bs->tbsResponseData.responses; for (i = last; i < sk_OCSP_SINGLERESP_num(sresp); i++) { single = sk_OCSP_SINGLERESP_value(sresp, i); if (!OCSP_id_cmp(id, single->certId)) return i; } return -1; } /* * Extract status information from an OCSP_SINGLERESP structure. Note: the * revtime and reason values are only set if the certificate status is * revoked. Returns numerical value of status. */ int OCSP_single_get0_status(OCSP_SINGLERESP *single, int *reason, ASN1_GENERALIZEDTIME **revtime, ASN1_GENERALIZEDTIME **thisupd, ASN1_GENERALIZEDTIME **nextupd) { int ret; OCSP_CERTSTATUS *cst; if (!single) return -1; cst = single->certStatus; ret = cst->type; if (ret == V_OCSP_CERTSTATUS_REVOKED) { OCSP_REVOKEDINFO *rev = cst->value.revoked; if (revtime) *revtime = rev->revocationTime; if (reason) { if (rev->revocationReason) *reason = ASN1_ENUMERATED_get(rev->revocationReason); else *reason = -1; } } if (thisupd) *thisupd = single->thisUpdate; if (nextupd) *nextupd = single->nextUpdate; return ret; } /* * This function combines the previous ones: look up a certificate ID and if * found extract status information. Return 0 is successful. */ int OCSP_resp_find_status(OCSP_BASICRESP *bs, OCSP_CERTID *id, int *status, int *reason, ASN1_GENERALIZEDTIME **revtime, ASN1_GENERALIZEDTIME **thisupd, ASN1_GENERALIZEDTIME **nextupd) { int i; OCSP_SINGLERESP *single; i = OCSP_resp_find(bs, id, -1); /* Maybe check for multiple responses and give an error? */ if (i < 0) return 0; single = OCSP_resp_get0(bs, i); i = OCSP_single_get0_status(single, reason, revtime, thisupd, nextupd); if (status) *status = i; return 1; } /* * Check validity of thisUpdate and nextUpdate fields. It is possible that * the request will take a few seconds to process and/or the time won't be * totally accurate. Therefore to avoid rejecting otherwise valid time we * allow the times to be within 'nsec' of the current time. Also to avoid * accepting very old responses without a nextUpdate field an optional maxage * parameter specifies the maximum age the thisUpdate field can be. */ int OCSP_check_validity(ASN1_GENERALIZEDTIME *thisupd, ASN1_GENERALIZEDTIME *nextupd, long nsec, long maxsec) { int ret = 1; time_t t_now, t_tmp; time(&t_now); /* Check thisUpdate is valid and not more than nsec in the future */ if (!ASN1_GENERALIZEDTIME_check(thisupd)) { OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_ERROR_IN_THISUPDATE_FIELD); ret = 0; } else { t_tmp = t_now + nsec; if (X509_cmp_time(thisupd, &t_tmp) > 0) { OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_STATUS_NOT_YET_VALID); ret = 0; } /* * If maxsec specified check thisUpdate is not more than maxsec in * the past */ if (maxsec >= 0) { t_tmp = t_now - maxsec; if (X509_cmp_time(thisupd, &t_tmp) < 0) { OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_STATUS_TOO_OLD); ret = 0; } } } if (!nextupd) return ret; /* Check nextUpdate is valid and not more than nsec in the past */ if (!ASN1_GENERALIZEDTIME_check(nextupd)) { OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_ERROR_IN_NEXTUPDATE_FIELD); ret = 0; } else { t_tmp = t_now - nsec; if (X509_cmp_time(nextupd, &t_tmp) < 0) { OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_STATUS_EXPIRED); ret = 0; } } /* Also don't allow nextUpdate to precede thisUpdate */ if (ASN1_STRING_cmp(nextupd, thisupd) < 0) { OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_NEXTUPDATE_BEFORE_THISUPDATE); ret = 0; } return ret; } const OCSP_CERTID *OCSP_SINGLERESP_get0_id(const OCSP_SINGLERESP *single) { return single->certId; } openssl-1.1.1f/crypto/ocsp/ocsp_err.c000066400000000000000000000107231364063235100176150ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA OCSP_str_functs[] = { {ERR_PACK(ERR_LIB_OCSP, OCSP_F_D2I_OCSP_NONCE, 0), "d2i_ocsp_nonce"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_BASIC_ADD1_STATUS, 0), "OCSP_basic_add1_status"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_BASIC_SIGN, 0), "OCSP_basic_sign"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_BASIC_SIGN_CTX, 0), "OCSP_basic_sign_ctx"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_BASIC_VERIFY, 0), "OCSP_basic_verify"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_CERT_ID_NEW, 0), "OCSP_cert_id_new"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_CHECK_DELEGATED, 0), "ocsp_check_delegated"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_CHECK_IDS, 0), "ocsp_check_ids"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_CHECK_ISSUER, 0), "ocsp_check_issuer"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_CHECK_VALIDITY, 0), "OCSP_check_validity"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_MATCH_ISSUERID, 0), "ocsp_match_issuerid"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_PARSE_URL, 0), "OCSP_parse_url"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_REQUEST_SIGN, 0), "OCSP_request_sign"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_REQUEST_VERIFY, 0), "OCSP_request_verify"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_OCSP_RESPONSE_GET1_BASIC, 0), "OCSP_response_get1_basic"}, {ERR_PACK(ERR_LIB_OCSP, OCSP_F_PARSE_HTTP_LINE1, 0), "parse_http_line1"}, {0, NULL} }; static const ERR_STRING_DATA OCSP_str_reasons[] = { {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_CERTIFICATE_VERIFY_ERROR), "certificate verify error"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_DIGEST_ERR), "digest err"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_ERROR_IN_NEXTUPDATE_FIELD), "error in nextupdate field"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_ERROR_IN_THISUPDATE_FIELD), "error in thisupdate field"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_ERROR_PARSING_URL), "error parsing url"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_MISSING_OCSPSIGNING_USAGE), "missing ocspsigning usage"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_NEXTUPDATE_BEFORE_THISUPDATE), "nextupdate before thisupdate"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_NOT_BASIC_RESPONSE), "not basic response"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_NO_CERTIFICATES_IN_CHAIN), "no certificates in chain"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_NO_RESPONSE_DATA), "no response data"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_NO_REVOKED_TIME), "no revoked time"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_NO_SIGNER_KEY), "no signer key"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE), "private key does not match certificate"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_REQUEST_NOT_SIGNED), "request not signed"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_RESPONSE_CONTAINS_NO_REVOCATION_DATA), "response contains no revocation data"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_ROOT_CA_NOT_TRUSTED), "root ca not trusted"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_SERVER_RESPONSE_ERROR), "server response error"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_SERVER_RESPONSE_PARSE_ERROR), "server response parse error"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_SIGNATURE_FAILURE), "signature failure"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_SIGNER_CERTIFICATE_NOT_FOUND), "signer certificate not found"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_STATUS_EXPIRED), "status expired"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_STATUS_NOT_YET_VALID), "status not yet valid"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_STATUS_TOO_OLD), "status too old"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_UNKNOWN_MESSAGE_DIGEST), "unknown message digest"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_UNKNOWN_NID), "unknown nid"}, {ERR_PACK(ERR_LIB_OCSP, 0, OCSP_R_UNSUPPORTED_REQUESTORNAME_TYPE), "unsupported requestorname type"}, {0, NULL} }; #endif int ERR_load_OCSP_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(OCSP_str_functs[0].error) == NULL) { ERR_load_strings_const(OCSP_str_functs); ERR_load_strings_const(OCSP_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/ocsp/ocsp_ext.c000066400000000000000000000337221364063235100176310ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ocsp_local.h" #include #include /* Standard wrapper functions for extensions */ /* OCSP request extensions */ int OCSP_REQUEST_get_ext_count(OCSP_REQUEST *x) { return X509v3_get_ext_count(x->tbsRequest.requestExtensions); } int OCSP_REQUEST_get_ext_by_NID(OCSP_REQUEST *x, int nid, int lastpos) { return (X509v3_get_ext_by_NID (x->tbsRequest.requestExtensions, nid, lastpos)); } int OCSP_REQUEST_get_ext_by_OBJ(OCSP_REQUEST *x, const ASN1_OBJECT *obj, int lastpos) { return (X509v3_get_ext_by_OBJ (x->tbsRequest.requestExtensions, obj, lastpos)); } int OCSP_REQUEST_get_ext_by_critical(OCSP_REQUEST *x, int crit, int lastpos) { return (X509v3_get_ext_by_critical (x->tbsRequest.requestExtensions, crit, lastpos)); } X509_EXTENSION *OCSP_REQUEST_get_ext(OCSP_REQUEST *x, int loc) { return X509v3_get_ext(x->tbsRequest.requestExtensions, loc); } X509_EXTENSION *OCSP_REQUEST_delete_ext(OCSP_REQUEST *x, int loc) { return X509v3_delete_ext(x->tbsRequest.requestExtensions, loc); } void *OCSP_REQUEST_get1_ext_d2i(OCSP_REQUEST *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->tbsRequest.requestExtensions, nid, crit, idx); } int OCSP_REQUEST_add1_ext_i2d(OCSP_REQUEST *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->tbsRequest.requestExtensions, nid, value, crit, flags); } int OCSP_REQUEST_add_ext(OCSP_REQUEST *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->tbsRequest.requestExtensions), ex, loc) != NULL); } /* Single extensions */ int OCSP_ONEREQ_get_ext_count(OCSP_ONEREQ *x) { return X509v3_get_ext_count(x->singleRequestExtensions); } int OCSP_ONEREQ_get_ext_by_NID(OCSP_ONEREQ *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->singleRequestExtensions, nid, lastpos); } int OCSP_ONEREQ_get_ext_by_OBJ(OCSP_ONEREQ *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->singleRequestExtensions, obj, lastpos); } int OCSP_ONEREQ_get_ext_by_critical(OCSP_ONEREQ *x, int crit, int lastpos) { return (X509v3_get_ext_by_critical (x->singleRequestExtensions, crit, lastpos)); } X509_EXTENSION *OCSP_ONEREQ_get_ext(OCSP_ONEREQ *x, int loc) { return X509v3_get_ext(x->singleRequestExtensions, loc); } X509_EXTENSION *OCSP_ONEREQ_delete_ext(OCSP_ONEREQ *x, int loc) { return X509v3_delete_ext(x->singleRequestExtensions, loc); } void *OCSP_ONEREQ_get1_ext_d2i(OCSP_ONEREQ *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->singleRequestExtensions, nid, crit, idx); } int OCSP_ONEREQ_add1_ext_i2d(OCSP_ONEREQ *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->singleRequestExtensions, nid, value, crit, flags); } int OCSP_ONEREQ_add_ext(OCSP_ONEREQ *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->singleRequestExtensions), ex, loc) != NULL); } /* OCSP Basic response */ int OCSP_BASICRESP_get_ext_count(OCSP_BASICRESP *x) { return X509v3_get_ext_count(x->tbsResponseData.responseExtensions); } int OCSP_BASICRESP_get_ext_by_NID(OCSP_BASICRESP *x, int nid, int lastpos) { return (X509v3_get_ext_by_NID (x->tbsResponseData.responseExtensions, nid, lastpos)); } int OCSP_BASICRESP_get_ext_by_OBJ(OCSP_BASICRESP *x, const ASN1_OBJECT *obj, int lastpos) { return (X509v3_get_ext_by_OBJ (x->tbsResponseData.responseExtensions, obj, lastpos)); } int OCSP_BASICRESP_get_ext_by_critical(OCSP_BASICRESP *x, int crit, int lastpos) { return (X509v3_get_ext_by_critical (x->tbsResponseData.responseExtensions, crit, lastpos)); } X509_EXTENSION *OCSP_BASICRESP_get_ext(OCSP_BASICRESP *x, int loc) { return X509v3_get_ext(x->tbsResponseData.responseExtensions, loc); } X509_EXTENSION *OCSP_BASICRESP_delete_ext(OCSP_BASICRESP *x, int loc) { return X509v3_delete_ext(x->tbsResponseData.responseExtensions, loc); } void *OCSP_BASICRESP_get1_ext_d2i(OCSP_BASICRESP *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->tbsResponseData.responseExtensions, nid, crit, idx); } int OCSP_BASICRESP_add1_ext_i2d(OCSP_BASICRESP *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->tbsResponseData.responseExtensions, nid, value, crit, flags); } int OCSP_BASICRESP_add_ext(OCSP_BASICRESP *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->tbsResponseData.responseExtensions), ex, loc) != NULL); } /* OCSP single response extensions */ int OCSP_SINGLERESP_get_ext_count(OCSP_SINGLERESP *x) { return X509v3_get_ext_count(x->singleExtensions); } int OCSP_SINGLERESP_get_ext_by_NID(OCSP_SINGLERESP *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->singleExtensions, nid, lastpos); } int OCSP_SINGLERESP_get_ext_by_OBJ(OCSP_SINGLERESP *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->singleExtensions, obj, lastpos); } int OCSP_SINGLERESP_get_ext_by_critical(OCSP_SINGLERESP *x, int crit, int lastpos) { return X509v3_get_ext_by_critical(x->singleExtensions, crit, lastpos); } X509_EXTENSION *OCSP_SINGLERESP_get_ext(OCSP_SINGLERESP *x, int loc) { return X509v3_get_ext(x->singleExtensions, loc); } X509_EXTENSION *OCSP_SINGLERESP_delete_ext(OCSP_SINGLERESP *x, int loc) { return X509v3_delete_ext(x->singleExtensions, loc); } void *OCSP_SINGLERESP_get1_ext_d2i(OCSP_SINGLERESP *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->singleExtensions, nid, crit, idx); } int OCSP_SINGLERESP_add1_ext_i2d(OCSP_SINGLERESP *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->singleExtensions, nid, value, crit, flags); } int OCSP_SINGLERESP_add_ext(OCSP_SINGLERESP *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->singleExtensions), ex, loc) != NULL); } /* also CRL Entry Extensions */ /* Nonce handling functions */ /* * Add a nonce to an extension stack. A nonce can be specified or if NULL a * random nonce will be generated. Note: OpenSSL 0.9.7d and later create an * OCTET STRING containing the nonce, previous versions used the raw nonce. */ static int ocsp_add1_nonce(STACK_OF(X509_EXTENSION) **exts, unsigned char *val, int len) { unsigned char *tmpval; ASN1_OCTET_STRING os; int ret = 0; if (len <= 0) len = OCSP_DEFAULT_NONCE_LENGTH; /* * Create the OCTET STRING manually by writing out the header and * appending the content octets. This avoids an extra memory allocation * operation in some cases. Applications should *NOT* do this because it * relies on library internals. */ os.length = ASN1_object_size(0, len, V_ASN1_OCTET_STRING); if (os.length < 0) return 0; os.data = OPENSSL_malloc(os.length); if (os.data == NULL) goto err; tmpval = os.data; ASN1_put_object(&tmpval, 0, len, V_ASN1_OCTET_STRING, V_ASN1_UNIVERSAL); if (val) memcpy(tmpval, val, len); else if (RAND_bytes(tmpval, len) <= 0) goto err; if (!X509V3_add1_i2d(exts, NID_id_pkix_OCSP_Nonce, &os, 0, X509V3_ADD_REPLACE)) goto err; ret = 1; err: OPENSSL_free(os.data); return ret; } /* Add nonce to an OCSP request */ int OCSP_request_add1_nonce(OCSP_REQUEST *req, unsigned char *val, int len) { return ocsp_add1_nonce(&req->tbsRequest.requestExtensions, val, len); } /* Same as above but for a response */ int OCSP_basic_add1_nonce(OCSP_BASICRESP *resp, unsigned char *val, int len) { return ocsp_add1_nonce(&resp->tbsResponseData.responseExtensions, val, len); } /*- * Check nonce validity in a request and response. * Return value reflects result: * 1: nonces present and equal. * 2: nonces both absent. * 3: nonce present in response only. * 0: nonces both present and not equal. * -1: nonce in request only. * * For most responders clients can check return > 0. * If responder doesn't handle nonces return != 0 may be * necessary. return == 0 is always an error. */ int OCSP_check_nonce(OCSP_REQUEST *req, OCSP_BASICRESP *bs) { /* * Since we are only interested in the presence or absence of * the nonce and comparing its value there is no need to use * the X509V3 routines: this way we can avoid them allocating an * ASN1_OCTET_STRING structure for the value which would be * freed immediately anyway. */ int req_idx, resp_idx; X509_EXTENSION *req_ext, *resp_ext; req_idx = OCSP_REQUEST_get_ext_by_NID(req, NID_id_pkix_OCSP_Nonce, -1); resp_idx = OCSP_BASICRESP_get_ext_by_NID(bs, NID_id_pkix_OCSP_Nonce, -1); /* Check both absent */ if ((req_idx < 0) && (resp_idx < 0)) return 2; /* Check in request only */ if ((req_idx >= 0) && (resp_idx < 0)) return -1; /* Check in response but not request */ if ((req_idx < 0) && (resp_idx >= 0)) return 3; /* * Otherwise nonce in request and response so retrieve the extensions */ req_ext = OCSP_REQUEST_get_ext(req, req_idx); resp_ext = OCSP_BASICRESP_get_ext(bs, resp_idx); if (ASN1_OCTET_STRING_cmp(X509_EXTENSION_get_data(req_ext), X509_EXTENSION_get_data(resp_ext))) return 0; return 1; } /* * Copy the nonce value (if any) from an OCSP request to a response. */ int OCSP_copy_nonce(OCSP_BASICRESP *resp, OCSP_REQUEST *req) { X509_EXTENSION *req_ext; int req_idx; /* Check for nonce in request */ req_idx = OCSP_REQUEST_get_ext_by_NID(req, NID_id_pkix_OCSP_Nonce, -1); /* If no nonce that's OK */ if (req_idx < 0) return 2; req_ext = OCSP_REQUEST_get_ext(req, req_idx); return OCSP_BASICRESP_add_ext(resp, req_ext, -1); } X509_EXTENSION *OCSP_crlID_new(const char *url, long *n, char *tim) { X509_EXTENSION *x = NULL; OCSP_CRLID *cid = NULL; if ((cid = OCSP_CRLID_new()) == NULL) goto err; if (url) { if ((cid->crlUrl = ASN1_IA5STRING_new()) == NULL) goto err; if (!(ASN1_STRING_set(cid->crlUrl, url, -1))) goto err; } if (n) { if ((cid->crlNum = ASN1_INTEGER_new()) == NULL) goto err; if (!(ASN1_INTEGER_set(cid->crlNum, *n))) goto err; } if (tim) { if ((cid->crlTime = ASN1_GENERALIZEDTIME_new()) == NULL) goto err; if (!(ASN1_GENERALIZEDTIME_set_string(cid->crlTime, tim))) goto err; } x = X509V3_EXT_i2d(NID_id_pkix_OCSP_CrlID, 0, cid); err: OCSP_CRLID_free(cid); return x; } /* AcceptableResponses ::= SEQUENCE OF OBJECT IDENTIFIER */ X509_EXTENSION *OCSP_accept_responses_new(char **oids) { int nid; STACK_OF(ASN1_OBJECT) *sk = NULL; ASN1_OBJECT *o = NULL; X509_EXTENSION *x = NULL; if ((sk = sk_ASN1_OBJECT_new_null()) == NULL) goto err; while (oids && *oids) { if ((nid = OBJ_txt2nid(*oids)) != NID_undef && (o = OBJ_nid2obj(nid))) sk_ASN1_OBJECT_push(sk, o); oids++; } x = X509V3_EXT_i2d(NID_id_pkix_OCSP_acceptableResponses, 0, sk); err: sk_ASN1_OBJECT_pop_free(sk, ASN1_OBJECT_free); return x; } /* ArchiveCutoff ::= GeneralizedTime */ X509_EXTENSION *OCSP_archive_cutoff_new(char *tim) { X509_EXTENSION *x = NULL; ASN1_GENERALIZEDTIME *gt = NULL; if ((gt = ASN1_GENERALIZEDTIME_new()) == NULL) goto err; if (!(ASN1_GENERALIZEDTIME_set_string(gt, tim))) goto err; x = X509V3_EXT_i2d(NID_id_pkix_OCSP_archiveCutoff, 0, gt); err: ASN1_GENERALIZEDTIME_free(gt); return x; } /* * per ACCESS_DESCRIPTION parameter are oids, of which there are currently * two--NID_ad_ocsp, NID_id_ad_caIssuers--and GeneralName value. This method * forces NID_ad_ocsp and uniformResourceLocator [6] IA5String. */ X509_EXTENSION *OCSP_url_svcloc_new(X509_NAME *issuer, const char **urls) { X509_EXTENSION *x = NULL; ASN1_IA5STRING *ia5 = NULL; OCSP_SERVICELOC *sloc = NULL; ACCESS_DESCRIPTION *ad = NULL; if ((sloc = OCSP_SERVICELOC_new()) == NULL) goto err; X509_NAME_free(sloc->issuer); if ((sloc->issuer = X509_NAME_dup(issuer)) == NULL) goto err; if (urls && *urls && (sloc->locator = sk_ACCESS_DESCRIPTION_new_null()) == NULL) goto err; while (urls && *urls) { if ((ad = ACCESS_DESCRIPTION_new()) == NULL) goto err; if ((ad->method = OBJ_nid2obj(NID_ad_OCSP)) == NULL) goto err; if ((ia5 = ASN1_IA5STRING_new()) == NULL) goto err; if (!ASN1_STRING_set((ASN1_STRING *)ia5, *urls, -1)) goto err; /* ad->location is allocated inside ACCESS_DESCRIPTION_new */ ad->location->type = GEN_URI; ad->location->d.ia5 = ia5; ia5 = NULL; if (!sk_ACCESS_DESCRIPTION_push(sloc->locator, ad)) goto err; ad = NULL; urls++; } x = X509V3_EXT_i2d(NID_id_pkix_OCSP_serviceLocator, 0, sloc); err: ASN1_IA5STRING_free(ia5); ACCESS_DESCRIPTION_free(ad); OCSP_SERVICELOC_free(sloc); return x; } openssl-1.1.1f/crypto/ocsp/ocsp_ht.c000066400000000000000000000311271364063235100174410ustar00rootroot00000000000000/* * Copyright 2001-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include "crypto/ctype.h" #include #include #include #include #include /* Stateful OCSP request code, supporting non-blocking I/O */ /* Opaque OCSP request status structure */ struct ocsp_req_ctx_st { int state; /* Current I/O state */ unsigned char *iobuf; /* Line buffer */ int iobuflen; /* Line buffer length */ BIO *io; /* BIO to perform I/O with */ BIO *mem; /* Memory BIO response is built into */ unsigned long asn1_len; /* ASN1 length of response */ unsigned long max_resp_len; /* Maximum length of response */ }; #define OCSP_MAX_RESP_LENGTH (100 * 1024) #define OCSP_MAX_LINE_LEN 4096; /* OCSP states */ /* If set no reading should be performed */ #define OHS_NOREAD 0x1000 /* Error condition */ #define OHS_ERROR (0 | OHS_NOREAD) /* First line being read */ #define OHS_FIRSTLINE 1 /* MIME headers being read */ #define OHS_HEADERS 2 /* OCSP initial header (tag + length) being read */ #define OHS_ASN1_HEADER 3 /* OCSP content octets being read */ #define OHS_ASN1_CONTENT 4 /* First call: ready to start I/O */ #define OHS_ASN1_WRITE_INIT (5 | OHS_NOREAD) /* Request being sent */ #define OHS_ASN1_WRITE (6 | OHS_NOREAD) /* Request being flushed */ #define OHS_ASN1_FLUSH (7 | OHS_NOREAD) /* Completed */ #define OHS_DONE (8 | OHS_NOREAD) /* Headers set, no final \r\n included */ #define OHS_HTTP_HEADER (9 | OHS_NOREAD) static int parse_http_line1(char *line); OCSP_REQ_CTX *OCSP_REQ_CTX_new(BIO *io, int maxline) { OCSP_REQ_CTX *rctx = OPENSSL_zalloc(sizeof(*rctx)); if (rctx == NULL) return NULL; rctx->state = OHS_ERROR; rctx->max_resp_len = OCSP_MAX_RESP_LENGTH; rctx->mem = BIO_new(BIO_s_mem()); rctx->io = io; if (maxline > 0) rctx->iobuflen = maxline; else rctx->iobuflen = OCSP_MAX_LINE_LEN; rctx->iobuf = OPENSSL_malloc(rctx->iobuflen); if (rctx->iobuf == NULL || rctx->mem == NULL) { OCSP_REQ_CTX_free(rctx); return NULL; } return rctx; } void OCSP_REQ_CTX_free(OCSP_REQ_CTX *rctx) { if (!rctx) return; BIO_free(rctx->mem); OPENSSL_free(rctx->iobuf); OPENSSL_free(rctx); } BIO *OCSP_REQ_CTX_get0_mem_bio(OCSP_REQ_CTX *rctx) { return rctx->mem; } void OCSP_set_max_response_length(OCSP_REQ_CTX *rctx, unsigned long len) { if (len == 0) rctx->max_resp_len = OCSP_MAX_RESP_LENGTH; else rctx->max_resp_len = len; } int OCSP_REQ_CTX_i2d(OCSP_REQ_CTX *rctx, const ASN1_ITEM *it, ASN1_VALUE *val) { static const char req_hdr[] = "Content-Type: application/ocsp-request\r\n" "Content-Length: %d\r\n\r\n"; int reqlen = ASN1_item_i2d(val, NULL, it); if (BIO_printf(rctx->mem, req_hdr, reqlen) <= 0) return 0; if (ASN1_item_i2d_bio(it, rctx->mem, val) <= 0) return 0; rctx->state = OHS_ASN1_WRITE_INIT; return 1; } int OCSP_REQ_CTX_nbio_d2i(OCSP_REQ_CTX *rctx, ASN1_VALUE **pval, const ASN1_ITEM *it) { int rv, len; const unsigned char *p; rv = OCSP_REQ_CTX_nbio(rctx); if (rv != 1) return rv; len = BIO_get_mem_data(rctx->mem, &p); *pval = ASN1_item_d2i(NULL, &p, len, it); if (*pval == NULL) { rctx->state = OHS_ERROR; return 0; } return 1; } int OCSP_REQ_CTX_http(OCSP_REQ_CTX *rctx, const char *op, const char *path) { static const char http_hdr[] = "%s %s HTTP/1.0\r\n"; if (!path) path = "/"; if (BIO_printf(rctx->mem, http_hdr, op, path) <= 0) return 0; rctx->state = OHS_HTTP_HEADER; return 1; } int OCSP_REQ_CTX_set1_req(OCSP_REQ_CTX *rctx, OCSP_REQUEST *req) { return OCSP_REQ_CTX_i2d(rctx, ASN1_ITEM_rptr(OCSP_REQUEST), (ASN1_VALUE *)req); } int OCSP_REQ_CTX_add1_header(OCSP_REQ_CTX *rctx, const char *name, const char *value) { if (!name) return 0; if (BIO_puts(rctx->mem, name) <= 0) return 0; if (value) { if (BIO_write(rctx->mem, ": ", 2) != 2) return 0; if (BIO_puts(rctx->mem, value) <= 0) return 0; } if (BIO_write(rctx->mem, "\r\n", 2) != 2) return 0; rctx->state = OHS_HTTP_HEADER; return 1; } OCSP_REQ_CTX *OCSP_sendreq_new(BIO *io, const char *path, OCSP_REQUEST *req, int maxline) { OCSP_REQ_CTX *rctx = NULL; rctx = OCSP_REQ_CTX_new(io, maxline); if (rctx == NULL) return NULL; if (!OCSP_REQ_CTX_http(rctx, "POST", path)) goto err; if (req && !OCSP_REQ_CTX_set1_req(rctx, req)) goto err; return rctx; err: OCSP_REQ_CTX_free(rctx); return NULL; } /* * Parse the HTTP response. This will look like this: "HTTP/1.0 200 OK". We * need to obtain the numeric code and (optional) informational message. */ static int parse_http_line1(char *line) { int retcode; char *p, *q, *r; /* Skip to first white space (passed protocol info) */ for (p = line; *p && !ossl_isspace(*p); p++) continue; if (!*p) { OCSPerr(OCSP_F_PARSE_HTTP_LINE1, OCSP_R_SERVER_RESPONSE_PARSE_ERROR); return 0; } /* Skip past white space to start of response code */ while (*p && ossl_isspace(*p)) p++; if (!*p) { OCSPerr(OCSP_F_PARSE_HTTP_LINE1, OCSP_R_SERVER_RESPONSE_PARSE_ERROR); return 0; } /* Find end of response code: first whitespace after start of code */ for (q = p; *q && !ossl_isspace(*q); q++) continue; if (!*q) { OCSPerr(OCSP_F_PARSE_HTTP_LINE1, OCSP_R_SERVER_RESPONSE_PARSE_ERROR); return 0; } /* Set end of response code and start of message */ *q++ = 0; /* Attempt to parse numeric code */ retcode = strtoul(p, &r, 10); if (*r) return 0; /* Skip over any leading white space in message */ while (*q && ossl_isspace(*q)) q++; if (*q) { /* * Finally zap any trailing white space in message (include CRLF) */ /* We know q has a non white space character so this is OK */ for (r = q + strlen(q) - 1; ossl_isspace(*r); r--) *r = 0; } if (retcode != 200) { OCSPerr(OCSP_F_PARSE_HTTP_LINE1, OCSP_R_SERVER_RESPONSE_ERROR); if (!*q) ERR_add_error_data(2, "Code=", p); else ERR_add_error_data(4, "Code=", p, ",Reason=", q); return 0; } return 1; } int OCSP_REQ_CTX_nbio(OCSP_REQ_CTX *rctx) { int i, n; const unsigned char *p; next_io: if (!(rctx->state & OHS_NOREAD)) { n = BIO_read(rctx->io, rctx->iobuf, rctx->iobuflen); if (n <= 0) { if (BIO_should_retry(rctx->io)) return -1; return 0; } /* Write data to memory BIO */ if (BIO_write(rctx->mem, rctx->iobuf, n) != n) return 0; } switch (rctx->state) { case OHS_HTTP_HEADER: /* Last operation was adding headers: need a final \r\n */ if (BIO_write(rctx->mem, "\r\n", 2) != 2) { rctx->state = OHS_ERROR; return 0; } rctx->state = OHS_ASN1_WRITE_INIT; /* fall thru */ case OHS_ASN1_WRITE_INIT: rctx->asn1_len = BIO_get_mem_data(rctx->mem, NULL); rctx->state = OHS_ASN1_WRITE; /* fall thru */ case OHS_ASN1_WRITE: n = BIO_get_mem_data(rctx->mem, &p); i = BIO_write(rctx->io, p + (n - rctx->asn1_len), rctx->asn1_len); if (i <= 0) { if (BIO_should_retry(rctx->io)) return -1; rctx->state = OHS_ERROR; return 0; } rctx->asn1_len -= i; if (rctx->asn1_len > 0) goto next_io; rctx->state = OHS_ASN1_FLUSH; (void)BIO_reset(rctx->mem); /* fall thru */ case OHS_ASN1_FLUSH: i = BIO_flush(rctx->io); if (i > 0) { rctx->state = OHS_FIRSTLINE; goto next_io; } if (BIO_should_retry(rctx->io)) return -1; rctx->state = OHS_ERROR; return 0; case OHS_ERROR: return 0; case OHS_FIRSTLINE: case OHS_HEADERS: /* Attempt to read a line in */ next_line: /* * Due to &%^*$" memory BIO behaviour with BIO_gets we have to check * there's a complete line in there before calling BIO_gets or we'll * just get a partial read. */ n = BIO_get_mem_data(rctx->mem, &p); if ((n <= 0) || !memchr(p, '\n', n)) { if (n >= rctx->iobuflen) { rctx->state = OHS_ERROR; return 0; } goto next_io; } n = BIO_gets(rctx->mem, (char *)rctx->iobuf, rctx->iobuflen); if (n <= 0) { if (BIO_should_retry(rctx->mem)) goto next_io; rctx->state = OHS_ERROR; return 0; } /* Don't allow excessive lines */ if (n == rctx->iobuflen) { rctx->state = OHS_ERROR; return 0; } /* First line */ if (rctx->state == OHS_FIRSTLINE) { if (parse_http_line1((char *)rctx->iobuf)) { rctx->state = OHS_HEADERS; goto next_line; } else { rctx->state = OHS_ERROR; return 0; } } else { /* Look for blank line: end of headers */ for (p = rctx->iobuf; *p; p++) { if ((*p != '\r') && (*p != '\n')) break; } if (*p) goto next_line; rctx->state = OHS_ASN1_HEADER; } /* Fall thru */ case OHS_ASN1_HEADER: /* * Now reading ASN1 header: can read at least 2 bytes which is enough * for ASN1 SEQUENCE header and either length field or at least the * length of the length field. */ n = BIO_get_mem_data(rctx->mem, &p); if (n < 2) goto next_io; /* Check it is an ASN1 SEQUENCE */ if (*p++ != (V_ASN1_SEQUENCE | V_ASN1_CONSTRUCTED)) { rctx->state = OHS_ERROR; return 0; } /* Check out length field */ if (*p & 0x80) { /* * If MSB set on initial length octet we can now always read 6 * octets: make sure we have them. */ if (n < 6) goto next_io; n = *p & 0x7F; /* Not NDEF or excessive length */ if (!n || (n > 4)) { rctx->state = OHS_ERROR; return 0; } p++; rctx->asn1_len = 0; for (i = 0; i < n; i++) { rctx->asn1_len <<= 8; rctx->asn1_len |= *p++; } if (rctx->asn1_len > rctx->max_resp_len) { rctx->state = OHS_ERROR; return 0; } rctx->asn1_len += n + 2; } else rctx->asn1_len = *p + 2; rctx->state = OHS_ASN1_CONTENT; /* Fall thru */ case OHS_ASN1_CONTENT: n = BIO_get_mem_data(rctx->mem, NULL); if (n < (int)rctx->asn1_len) goto next_io; rctx->state = OHS_DONE; return 1; case OHS_DONE: return 1; } return 0; } int OCSP_sendreq_nbio(OCSP_RESPONSE **presp, OCSP_REQ_CTX *rctx) { return OCSP_REQ_CTX_nbio_d2i(rctx, (ASN1_VALUE **)presp, ASN1_ITEM_rptr(OCSP_RESPONSE)); } /* Blocking OCSP request handler: now a special case of non-blocking I/O */ OCSP_RESPONSE *OCSP_sendreq_bio(BIO *b, const char *path, OCSP_REQUEST *req) { OCSP_RESPONSE *resp = NULL; OCSP_REQ_CTX *ctx; int rv; ctx = OCSP_sendreq_new(b, path, req, -1); if (ctx == NULL) return NULL; do { rv = OCSP_sendreq_nbio(&resp, ctx); } while ((rv == -1) && BIO_should_retry(b)); OCSP_REQ_CTX_free(ctx); if (rv) return resp; return NULL; } openssl-1.1.1f/crypto/ocsp/ocsp_lib.c000066400000000000000000000122601364063235100175710ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "ocsp_local.h" #include /* Convert a certificate and its issuer to an OCSP_CERTID */ OCSP_CERTID *OCSP_cert_to_id(const EVP_MD *dgst, const X509 *subject, const X509 *issuer) { X509_NAME *iname; const ASN1_INTEGER *serial; ASN1_BIT_STRING *ikey; if (!dgst) dgst = EVP_sha1(); if (subject) { iname = X509_get_issuer_name(subject); serial = X509_get0_serialNumber(subject); } else { iname = X509_get_subject_name(issuer); serial = NULL; } ikey = X509_get0_pubkey_bitstr(issuer); return OCSP_cert_id_new(dgst, iname, ikey, serial); } OCSP_CERTID *OCSP_cert_id_new(const EVP_MD *dgst, const X509_NAME *issuerName, const ASN1_BIT_STRING *issuerKey, const ASN1_INTEGER *serialNumber) { int nid; unsigned int i; X509_ALGOR *alg; OCSP_CERTID *cid = NULL; unsigned char md[EVP_MAX_MD_SIZE]; if ((cid = OCSP_CERTID_new()) == NULL) goto err; alg = &cid->hashAlgorithm; ASN1_OBJECT_free(alg->algorithm); if ((nid = EVP_MD_type(dgst)) == NID_undef) { OCSPerr(OCSP_F_OCSP_CERT_ID_NEW, OCSP_R_UNKNOWN_NID); goto err; } if ((alg->algorithm = OBJ_nid2obj(nid)) == NULL) goto err; if ((alg->parameter = ASN1_TYPE_new()) == NULL) goto err; alg->parameter->type = V_ASN1_NULL; if (!X509_NAME_digest(issuerName, dgst, md, &i)) goto digerr; if (!(ASN1_OCTET_STRING_set(&cid->issuerNameHash, md, i))) goto err; /* Calculate the issuerKey hash, excluding tag and length */ if (!EVP_Digest(issuerKey->data, issuerKey->length, md, &i, dgst, NULL)) goto err; if (!(ASN1_OCTET_STRING_set(&cid->issuerKeyHash, md, i))) goto err; if (serialNumber) { if (ASN1_STRING_copy(&cid->serialNumber, serialNumber) == 0) goto err; } return cid; digerr: OCSPerr(OCSP_F_OCSP_CERT_ID_NEW, OCSP_R_DIGEST_ERR); err: OCSP_CERTID_free(cid); return NULL; } int OCSP_id_issuer_cmp(const OCSP_CERTID *a, const OCSP_CERTID *b) { int ret; ret = OBJ_cmp(a->hashAlgorithm.algorithm, b->hashAlgorithm.algorithm); if (ret) return ret; ret = ASN1_OCTET_STRING_cmp(&a->issuerNameHash, &b->issuerNameHash); if (ret) return ret; return ASN1_OCTET_STRING_cmp(&a->issuerKeyHash, &b->issuerKeyHash); } int OCSP_id_cmp(const OCSP_CERTID *a, const OCSP_CERTID *b) { int ret; ret = OCSP_id_issuer_cmp(a, b); if (ret) return ret; return ASN1_INTEGER_cmp(&a->serialNumber, &b->serialNumber); } /* * Parse a URL and split it up into host, port and path components and * whether it is SSL. */ int OCSP_parse_url(const char *url, char **phost, char **pport, char **ppath, int *pssl) { char *p, *buf; char *host, *port; *phost = NULL; *pport = NULL; *ppath = NULL; /* dup the buffer since we are going to mess with it */ buf = OPENSSL_strdup(url); if (!buf) goto mem_err; /* Check for initial colon */ p = strchr(buf, ':'); if (!p) goto parse_err; *(p++) = '\0'; if (strcmp(buf, "http") == 0) { *pssl = 0; port = "80"; } else if (strcmp(buf, "https") == 0) { *pssl = 1; port = "443"; } else goto parse_err; /* Check for double slash */ if ((p[0] != '/') || (p[1] != '/')) goto parse_err; p += 2; host = p; /* Check for trailing part of path */ p = strchr(p, '/'); if (!p) *ppath = OPENSSL_strdup("/"); else { *ppath = OPENSSL_strdup(p); /* Set start of path to 0 so hostname is valid */ *p = '\0'; } if (!*ppath) goto mem_err; p = host; if (host[0] == '[') { /* ipv6 literal */ host++; p = strchr(host, ']'); if (!p) goto parse_err; *p = '\0'; p++; } /* Look for optional ':' for port number */ if ((p = strchr(p, ':'))) { *p = 0; port = p + 1; } *pport = OPENSSL_strdup(port); if (!*pport) goto mem_err; *phost = OPENSSL_strdup(host); if (!*phost) goto mem_err; OPENSSL_free(buf); return 1; mem_err: OCSPerr(OCSP_F_OCSP_PARSE_URL, ERR_R_MALLOC_FAILURE); goto err; parse_err: OCSPerr(OCSP_F_OCSP_PARSE_URL, OCSP_R_ERROR_PARSING_URL); err: OPENSSL_free(buf); OPENSSL_free(*ppath); *ppath = NULL; OPENSSL_free(*pport); *pport = NULL; OPENSSL_free(*phost); *phost = NULL; return 0; } IMPLEMENT_ASN1_DUP_FUNCTION(OCSP_CERTID) openssl-1.1.1f/crypto/ocsp/ocsp_local.h000066400000000000000000000202151364063235100201210ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- CertID ::= SEQUENCE { * hashAlgorithm AlgorithmIdentifier, * issuerNameHash OCTET STRING, -- Hash of Issuer's DN * issuerKeyHash OCTET STRING, -- Hash of Issuers public key (excluding the tag & length fields) * serialNumber CertificateSerialNumber } */ struct ocsp_cert_id_st { X509_ALGOR hashAlgorithm; ASN1_OCTET_STRING issuerNameHash; ASN1_OCTET_STRING issuerKeyHash; ASN1_INTEGER serialNumber; }; /*- Request ::= SEQUENCE { * reqCert CertID, * singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL } */ struct ocsp_one_request_st { OCSP_CERTID *reqCert; STACK_OF(X509_EXTENSION) *singleRequestExtensions; }; /*- TBSRequest ::= SEQUENCE { * version [0] EXPLICIT Version DEFAULT v1, * requestorName [1] EXPLICIT GeneralName OPTIONAL, * requestList SEQUENCE OF Request, * requestExtensions [2] EXPLICIT Extensions OPTIONAL } */ struct ocsp_req_info_st { ASN1_INTEGER *version; GENERAL_NAME *requestorName; STACK_OF(OCSP_ONEREQ) *requestList; STACK_OF(X509_EXTENSION) *requestExtensions; }; /*- Signature ::= SEQUENCE { * signatureAlgorithm AlgorithmIdentifier, * signature BIT STRING, * certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL } */ struct ocsp_signature_st { X509_ALGOR signatureAlgorithm; ASN1_BIT_STRING *signature; STACK_OF(X509) *certs; }; /*- OCSPRequest ::= SEQUENCE { * tbsRequest TBSRequest, * optionalSignature [0] EXPLICIT Signature OPTIONAL } */ struct ocsp_request_st { OCSP_REQINFO tbsRequest; OCSP_SIGNATURE *optionalSignature; /* OPTIONAL */ }; /*- OCSPResponseStatus ::= ENUMERATED { * successful (0), --Response has valid confirmations * malformedRequest (1), --Illegal confirmation request * internalError (2), --Internal error in issuer * tryLater (3), --Try again later * --(4) is not used * sigRequired (5), --Must sign the request * unauthorized (6) --Request unauthorized * } */ /*- ResponseBytes ::= SEQUENCE { * responseType OBJECT IDENTIFIER, * response OCTET STRING } */ struct ocsp_resp_bytes_st { ASN1_OBJECT *responseType; ASN1_OCTET_STRING *response; }; /*- OCSPResponse ::= SEQUENCE { * responseStatus OCSPResponseStatus, * responseBytes [0] EXPLICIT ResponseBytes OPTIONAL } */ struct ocsp_response_st { ASN1_ENUMERATED *responseStatus; OCSP_RESPBYTES *responseBytes; }; /*- ResponderID ::= CHOICE { * byName [1] Name, * byKey [2] KeyHash } */ struct ocsp_responder_id_st { int type; union { X509_NAME *byName; ASN1_OCTET_STRING *byKey; } value; }; /*- KeyHash ::= OCTET STRING --SHA-1 hash of responder's public key * --(excluding the tag and length fields) */ /*- RevokedInfo ::= SEQUENCE { * revocationTime GeneralizedTime, * revocationReason [0] EXPLICIT CRLReason OPTIONAL } */ struct ocsp_revoked_info_st { ASN1_GENERALIZEDTIME *revocationTime; ASN1_ENUMERATED *revocationReason; }; /*- CertStatus ::= CHOICE { * good [0] IMPLICIT NULL, * revoked [1] IMPLICIT RevokedInfo, * unknown [2] IMPLICIT UnknownInfo } */ struct ocsp_cert_status_st { int type; union { ASN1_NULL *good; OCSP_REVOKEDINFO *revoked; ASN1_NULL *unknown; } value; }; /*- SingleResponse ::= SEQUENCE { * certID CertID, * certStatus CertStatus, * thisUpdate GeneralizedTime, * nextUpdate [0] EXPLICIT GeneralizedTime OPTIONAL, * singleExtensions [1] EXPLICIT Extensions OPTIONAL } */ struct ocsp_single_response_st { OCSP_CERTID *certId; OCSP_CERTSTATUS *certStatus; ASN1_GENERALIZEDTIME *thisUpdate; ASN1_GENERALIZEDTIME *nextUpdate; STACK_OF(X509_EXTENSION) *singleExtensions; }; /*- ResponseData ::= SEQUENCE { * version [0] EXPLICIT Version DEFAULT v1, * responderID ResponderID, * producedAt GeneralizedTime, * responses SEQUENCE OF SingleResponse, * responseExtensions [1] EXPLICIT Extensions OPTIONAL } */ struct ocsp_response_data_st { ASN1_INTEGER *version; OCSP_RESPID responderId; ASN1_GENERALIZEDTIME *producedAt; STACK_OF(OCSP_SINGLERESP) *responses; STACK_OF(X509_EXTENSION) *responseExtensions; }; /*- BasicOCSPResponse ::= SEQUENCE { * tbsResponseData ResponseData, * signatureAlgorithm AlgorithmIdentifier, * signature BIT STRING, * certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL } */ /* * Note 1: The value for "signature" is specified in the OCSP rfc2560 as * follows: "The value for the signature SHALL be computed on the hash of * the DER encoding ResponseData." This means that you must hash the * DER-encoded tbsResponseData, and then run it through a crypto-signing * function, which will (at least w/RSA) do a hash-'n'-private-encrypt * operation. This seems a bit odd, but that's the spec. Also note that * the data structures do not leave anywhere to independently specify the * algorithm used for the initial hash. So, we look at the * signature-specification algorithm, and try to do something intelligent. * -- Kathy Weinhold, CertCo */ /* * Note 2: It seems that the mentioned passage from RFC 2560 (section * 4.2.1) is open for interpretation. I've done tests against another * responder, and found that it doesn't do the double hashing that the RFC * seems to say one should. Therefore, all relevant functions take a flag * saying which variant should be used. -- Richard Levitte, OpenSSL team * and CeloCom */ struct ocsp_basic_response_st { OCSP_RESPDATA tbsResponseData; X509_ALGOR signatureAlgorithm; ASN1_BIT_STRING *signature; STACK_OF(X509) *certs; }; /*- * CrlID ::= SEQUENCE { * crlUrl [0] EXPLICIT IA5String OPTIONAL, * crlNum [1] EXPLICIT INTEGER OPTIONAL, * crlTime [2] EXPLICIT GeneralizedTime OPTIONAL } */ struct ocsp_crl_id_st { ASN1_IA5STRING *crlUrl; ASN1_INTEGER *crlNum; ASN1_GENERALIZEDTIME *crlTime; }; /*- * ServiceLocator ::= SEQUENCE { * issuer Name, * locator AuthorityInfoAccessSyntax OPTIONAL } */ struct ocsp_service_locator_st { X509_NAME *issuer; STACK_OF(ACCESS_DESCRIPTION) *locator; }; # define OCSP_REQUEST_sign(o,pkey,md) \ ASN1_item_sign(ASN1_ITEM_rptr(OCSP_REQINFO),\ &(o)->optionalSignature->signatureAlgorithm,NULL,\ (o)->optionalSignature->signature,&(o)->tbsRequest,pkey,md) # define OCSP_BASICRESP_sign(o,pkey,md,d) \ ASN1_item_sign(ASN1_ITEM_rptr(OCSP_RESPDATA),&(o)->signatureAlgorithm,\ NULL,(o)->signature,&(o)->tbsResponseData,pkey,md) # define OCSP_BASICRESP_sign_ctx(o,ctx,d) \ ASN1_item_sign_ctx(ASN1_ITEM_rptr(OCSP_RESPDATA),&(o)->signatureAlgorithm,\ NULL,(o)->signature,&(o)->tbsResponseData,ctx) # define OCSP_REQUEST_verify(a,r) ASN1_item_verify(ASN1_ITEM_rptr(OCSP_REQINFO),\ &(a)->optionalSignature->signatureAlgorithm,\ (a)->optionalSignature->signature,&(a)->tbsRequest,r) # define OCSP_BASICRESP_verify(a,r,d) ASN1_item_verify(ASN1_ITEM_rptr(OCSP_RESPDATA),\ &(a)->signatureAlgorithm,(a)->signature,&(a)->tbsResponseData,r) openssl-1.1.1f/crypto/ocsp/ocsp_prn.c000066400000000000000000000204001364063235100176150ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "ocsp_local.h" #include "internal/cryptlib.h" #include static int ocsp_certid_print(BIO *bp, OCSP_CERTID *a, int indent) { BIO_printf(bp, "%*sCertificate ID:\n", indent, ""); indent += 2; BIO_printf(bp, "%*sHash Algorithm: ", indent, ""); i2a_ASN1_OBJECT(bp, a->hashAlgorithm.algorithm); BIO_printf(bp, "\n%*sIssuer Name Hash: ", indent, ""); i2a_ASN1_STRING(bp, &a->issuerNameHash, 0); BIO_printf(bp, "\n%*sIssuer Key Hash: ", indent, ""); i2a_ASN1_STRING(bp, &a->issuerKeyHash, 0); BIO_printf(bp, "\n%*sSerial Number: ", indent, ""); i2a_ASN1_INTEGER(bp, &a->serialNumber); BIO_printf(bp, "\n"); return 1; } typedef struct { long t; const char *m; } OCSP_TBLSTR; static const char *do_table2string(long s, const OCSP_TBLSTR *ts, size_t len) { size_t i; for (i = 0; i < len; i++, ts++) if (ts->t == s) return ts->m; return "(UNKNOWN)"; } #define table2string(s, tbl) do_table2string(s, tbl, OSSL_NELEM(tbl)) const char *OCSP_response_status_str(long s) { static const OCSP_TBLSTR rstat_tbl[] = { {OCSP_RESPONSE_STATUS_SUCCESSFUL, "successful"}, {OCSP_RESPONSE_STATUS_MALFORMEDREQUEST, "malformedrequest"}, {OCSP_RESPONSE_STATUS_INTERNALERROR, "internalerror"}, {OCSP_RESPONSE_STATUS_TRYLATER, "trylater"}, {OCSP_RESPONSE_STATUS_SIGREQUIRED, "sigrequired"}, {OCSP_RESPONSE_STATUS_UNAUTHORIZED, "unauthorized"} }; return table2string(s, rstat_tbl); } const char *OCSP_cert_status_str(long s) { static const OCSP_TBLSTR cstat_tbl[] = { {V_OCSP_CERTSTATUS_GOOD, "good"}, {V_OCSP_CERTSTATUS_REVOKED, "revoked"}, {V_OCSP_CERTSTATUS_UNKNOWN, "unknown"} }; return table2string(s, cstat_tbl); } const char *OCSP_crl_reason_str(long s) { static const OCSP_TBLSTR reason_tbl[] = { {OCSP_REVOKED_STATUS_UNSPECIFIED, "unspecified"}, {OCSP_REVOKED_STATUS_KEYCOMPROMISE, "keyCompromise"}, {OCSP_REVOKED_STATUS_CACOMPROMISE, "cACompromise"}, {OCSP_REVOKED_STATUS_AFFILIATIONCHANGED, "affiliationChanged"}, {OCSP_REVOKED_STATUS_SUPERSEDED, "superseded"}, {OCSP_REVOKED_STATUS_CESSATIONOFOPERATION, "cessationOfOperation"}, {OCSP_REVOKED_STATUS_CERTIFICATEHOLD, "certificateHold"}, {OCSP_REVOKED_STATUS_REMOVEFROMCRL, "removeFromCRL"} }; return table2string(s, reason_tbl); } int OCSP_REQUEST_print(BIO *bp, OCSP_REQUEST *o, unsigned long flags) { int i; long l; OCSP_CERTID *cid = NULL; OCSP_ONEREQ *one = NULL; OCSP_REQINFO *inf = &o->tbsRequest; OCSP_SIGNATURE *sig = o->optionalSignature; if (BIO_write(bp, "OCSP Request Data:\n", 19) <= 0) goto err; l = ASN1_INTEGER_get(inf->version); if (BIO_printf(bp, " Version: %lu (0x%lx)", l + 1, l) <= 0) goto err; if (inf->requestorName != NULL) { if (BIO_write(bp, "\n Requestor Name: ", 21) <= 0) goto err; GENERAL_NAME_print(bp, inf->requestorName); } if (BIO_write(bp, "\n Requestor List:\n", 21) <= 0) goto err; for (i = 0; i < sk_OCSP_ONEREQ_num(inf->requestList); i++) { one = sk_OCSP_ONEREQ_value(inf->requestList, i); cid = one->reqCert; ocsp_certid_print(bp, cid, 8); if (!X509V3_extensions_print(bp, "Request Single Extensions", one->singleRequestExtensions, flags, 8)) goto err; } if (!X509V3_extensions_print(bp, "Request Extensions", inf->requestExtensions, flags, 4)) goto err; if (sig) { X509_signature_print(bp, &sig->signatureAlgorithm, sig->signature); for (i = 0; i < sk_X509_num(sig->certs); i++) { X509_print(bp, sk_X509_value(sig->certs, i)); PEM_write_bio_X509(bp, sk_X509_value(sig->certs, i)); } } return 1; err: return 0; } int OCSP_RESPONSE_print(BIO *bp, OCSP_RESPONSE *o, unsigned long flags) { int i, ret = 0; long l; OCSP_CERTID *cid = NULL; OCSP_BASICRESP *br = NULL; OCSP_RESPID *rid = NULL; OCSP_RESPDATA *rd = NULL; OCSP_CERTSTATUS *cst = NULL; OCSP_REVOKEDINFO *rev = NULL; OCSP_SINGLERESP *single = NULL; OCSP_RESPBYTES *rb = o->responseBytes; if (BIO_puts(bp, "OCSP Response Data:\n") <= 0) goto err; l = ASN1_ENUMERATED_get(o->responseStatus); if (BIO_printf(bp, " OCSP Response Status: %s (0x%lx)\n", OCSP_response_status_str(l), l) <= 0) goto err; if (rb == NULL) return 1; if (BIO_puts(bp, " Response Type: ") <= 0) goto err; if (i2a_ASN1_OBJECT(bp, rb->responseType) <= 0) goto err; if (OBJ_obj2nid(rb->responseType) != NID_id_pkix_OCSP_basic) { BIO_puts(bp, " (unknown response type)\n"); return 1; } if ((br = OCSP_response_get1_basic(o)) == NULL) goto err; rd = &br->tbsResponseData; l = ASN1_INTEGER_get(rd->version); if (BIO_printf(bp, "\n Version: %lu (0x%lx)\n", l + 1, l) <= 0) goto err; if (BIO_puts(bp, " Responder Id: ") <= 0) goto err; rid = &rd->responderId; switch (rid->type) { case V_OCSP_RESPID_NAME: X509_NAME_print_ex(bp, rid->value.byName, 0, XN_FLAG_ONELINE); break; case V_OCSP_RESPID_KEY: i2a_ASN1_STRING(bp, rid->value.byKey, 0); break; } if (BIO_printf(bp, "\n Produced At: ") <= 0) goto err; if (!ASN1_GENERALIZEDTIME_print(bp, rd->producedAt)) goto err; if (BIO_printf(bp, "\n Responses:\n") <= 0) goto err; for (i = 0; i < sk_OCSP_SINGLERESP_num(rd->responses); i++) { if (!sk_OCSP_SINGLERESP_value(rd->responses, i)) continue; single = sk_OCSP_SINGLERESP_value(rd->responses, i); cid = single->certId; if (ocsp_certid_print(bp, cid, 4) <= 0) goto err; cst = single->certStatus; if (BIO_printf(bp, " Cert Status: %s", OCSP_cert_status_str(cst->type)) <= 0) goto err; if (cst->type == V_OCSP_CERTSTATUS_REVOKED) { rev = cst->value.revoked; if (BIO_printf(bp, "\n Revocation Time: ") <= 0) goto err; if (!ASN1_GENERALIZEDTIME_print(bp, rev->revocationTime)) goto err; if (rev->revocationReason) { l = ASN1_ENUMERATED_get(rev->revocationReason); if (BIO_printf(bp, "\n Revocation Reason: %s (0x%lx)", OCSP_crl_reason_str(l), l) <= 0) goto err; } } if (BIO_printf(bp, "\n This Update: ") <= 0) goto err; if (!ASN1_GENERALIZEDTIME_print(bp, single->thisUpdate)) goto err; if (single->nextUpdate) { if (BIO_printf(bp, "\n Next Update: ") <= 0) goto err; if (!ASN1_GENERALIZEDTIME_print(bp, single->nextUpdate)) goto err; } if (BIO_write(bp, "\n", 1) <= 0) goto err; if (!X509V3_extensions_print(bp, "Response Single Extensions", single->singleExtensions, flags, 8)) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!X509V3_extensions_print(bp, "Response Extensions", rd->responseExtensions, flags, 4)) goto err; if (X509_signature_print(bp, &br->signatureAlgorithm, br->signature) <= 0) goto err; for (i = 0; i < sk_X509_num(br->certs); i++) { X509_print(bp, sk_X509_value(br->certs, i)); PEM_write_bio_X509(bp, sk_X509_value(br->certs, i)); } ret = 1; err: OCSP_BASICRESP_free(br); return ret; } openssl-1.1.1f/crypto/ocsp/ocsp_srv.c000066400000000000000000000205421364063235100176370ustar00rootroot00000000000000/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "ocsp_local.h" /* * Utility functions related to sending OCSP responses and extracting * relevant information from the request. */ int OCSP_request_onereq_count(OCSP_REQUEST *req) { return sk_OCSP_ONEREQ_num(req->tbsRequest.requestList); } OCSP_ONEREQ *OCSP_request_onereq_get0(OCSP_REQUEST *req, int i) { return sk_OCSP_ONEREQ_value(req->tbsRequest.requestList, i); } OCSP_CERTID *OCSP_onereq_get0_id(OCSP_ONEREQ *one) { return one->reqCert; } int OCSP_id_get0_info(ASN1_OCTET_STRING **piNameHash, ASN1_OBJECT **pmd, ASN1_OCTET_STRING **pikeyHash, ASN1_INTEGER **pserial, OCSP_CERTID *cid) { if (!cid) return 0; if (pmd) *pmd = cid->hashAlgorithm.algorithm; if (piNameHash) *piNameHash = &cid->issuerNameHash; if (pikeyHash) *pikeyHash = &cid->issuerKeyHash; if (pserial) *pserial = &cid->serialNumber; return 1; } int OCSP_request_is_signed(OCSP_REQUEST *req) { if (req->optionalSignature) return 1; return 0; } /* Create an OCSP response and encode an optional basic response */ OCSP_RESPONSE *OCSP_response_create(int status, OCSP_BASICRESP *bs) { OCSP_RESPONSE *rsp = NULL; if ((rsp = OCSP_RESPONSE_new()) == NULL) goto err; if (!(ASN1_ENUMERATED_set(rsp->responseStatus, status))) goto err; if (!bs) return rsp; if ((rsp->responseBytes = OCSP_RESPBYTES_new()) == NULL) goto err; rsp->responseBytes->responseType = OBJ_nid2obj(NID_id_pkix_OCSP_basic); if (!ASN1_item_pack (bs, ASN1_ITEM_rptr(OCSP_BASICRESP), &rsp->responseBytes->response)) goto err; return rsp; err: OCSP_RESPONSE_free(rsp); return NULL; } OCSP_SINGLERESP *OCSP_basic_add1_status(OCSP_BASICRESP *rsp, OCSP_CERTID *cid, int status, int reason, ASN1_TIME *revtime, ASN1_TIME *thisupd, ASN1_TIME *nextupd) { OCSP_SINGLERESP *single = NULL; OCSP_CERTSTATUS *cs; OCSP_REVOKEDINFO *ri; if (rsp->tbsResponseData.responses == NULL && (rsp->tbsResponseData.responses = sk_OCSP_SINGLERESP_new_null()) == NULL) goto err; if ((single = OCSP_SINGLERESP_new()) == NULL) goto err; if (!ASN1_TIME_to_generalizedtime(thisupd, &single->thisUpdate)) goto err; if (nextupd && !ASN1_TIME_to_generalizedtime(nextupd, &single->nextUpdate)) goto err; OCSP_CERTID_free(single->certId); if ((single->certId = OCSP_CERTID_dup(cid)) == NULL) goto err; cs = single->certStatus; switch (cs->type = status) { case V_OCSP_CERTSTATUS_REVOKED: if (!revtime) { OCSPerr(OCSP_F_OCSP_BASIC_ADD1_STATUS, OCSP_R_NO_REVOKED_TIME); goto err; } if ((cs->value.revoked = ri = OCSP_REVOKEDINFO_new()) == NULL) goto err; if (!ASN1_TIME_to_generalizedtime(revtime, &ri->revocationTime)) goto err; if (reason != OCSP_REVOKED_STATUS_NOSTATUS) { if ((ri->revocationReason = ASN1_ENUMERATED_new()) == NULL) goto err; if (!(ASN1_ENUMERATED_set(ri->revocationReason, reason))) goto err; } break; case V_OCSP_CERTSTATUS_GOOD: if ((cs->value.good = ASN1_NULL_new()) == NULL) goto err; break; case V_OCSP_CERTSTATUS_UNKNOWN: if ((cs->value.unknown = ASN1_NULL_new()) == NULL) goto err; break; default: goto err; } if (!(sk_OCSP_SINGLERESP_push(rsp->tbsResponseData.responses, single))) goto err; return single; err: OCSP_SINGLERESP_free(single); return NULL; } /* Add a certificate to an OCSP request */ int OCSP_basic_add1_cert(OCSP_BASICRESP *resp, X509 *cert) { if (resp->certs == NULL && (resp->certs = sk_X509_new_null()) == NULL) return 0; if (!sk_X509_push(resp->certs, cert)) return 0; X509_up_ref(cert); return 1; } /* * Sign an OCSP response using the parameters contained in the digest context, * set the responderID to the subject name in the signer's certificate, and * include one or more optional certificates in the response. */ int OCSP_basic_sign_ctx(OCSP_BASICRESP *brsp, X509 *signer, EVP_MD_CTX *ctx, STACK_OF(X509) *certs, unsigned long flags) { int i; OCSP_RESPID *rid; EVP_PKEY *pkey; if (ctx == NULL || EVP_MD_CTX_pkey_ctx(ctx) == NULL) { OCSPerr(OCSP_F_OCSP_BASIC_SIGN_CTX, OCSP_R_NO_SIGNER_KEY); goto err; } pkey = EVP_PKEY_CTX_get0_pkey(EVP_MD_CTX_pkey_ctx(ctx)); if (pkey == NULL || !X509_check_private_key(signer, pkey)) { OCSPerr(OCSP_F_OCSP_BASIC_SIGN_CTX, OCSP_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE); goto err; } if (!(flags & OCSP_NOCERTS)) { if (!OCSP_basic_add1_cert(brsp, signer)) goto err; for (i = 0; i < sk_X509_num(certs); i++) { X509 *tmpcert = sk_X509_value(certs, i); if (!OCSP_basic_add1_cert(brsp, tmpcert)) goto err; } } rid = &brsp->tbsResponseData.responderId; if (flags & OCSP_RESPID_KEY) { if (!OCSP_RESPID_set_by_key(rid, signer)) goto err; } else if (!OCSP_RESPID_set_by_name(rid, signer)) { goto err; } if (!(flags & OCSP_NOTIME) && !X509_gmtime_adj(brsp->tbsResponseData.producedAt, 0)) goto err; /* * Right now, I think that not doing double hashing is the right thing. * -- Richard Levitte */ if (!OCSP_BASICRESP_sign_ctx(brsp, ctx, 0)) goto err; return 1; err: return 0; } int OCSP_basic_sign(OCSP_BASICRESP *brsp, X509 *signer, EVP_PKEY *key, const EVP_MD *dgst, STACK_OF(X509) *certs, unsigned long flags) { EVP_MD_CTX *ctx = EVP_MD_CTX_new(); EVP_PKEY_CTX *pkctx = NULL; int i; if (ctx == NULL) return 0; if (!EVP_DigestSignInit(ctx, &pkctx, dgst, NULL, key)) { EVP_MD_CTX_free(ctx); return 0; } i = OCSP_basic_sign_ctx(brsp, signer, ctx, certs, flags); EVP_MD_CTX_free(ctx); return i; } int OCSP_RESPID_set_by_name(OCSP_RESPID *respid, X509 *cert) { if (!X509_NAME_set(&respid->value.byName, X509_get_subject_name(cert))) return 0; respid->type = V_OCSP_RESPID_NAME; return 1; } int OCSP_RESPID_set_by_key(OCSP_RESPID *respid, X509 *cert) { ASN1_OCTET_STRING *byKey = NULL; unsigned char md[SHA_DIGEST_LENGTH]; /* RFC2560 requires SHA1 */ if (!X509_pubkey_digest(cert, EVP_sha1(), md, NULL)) return 0; byKey = ASN1_OCTET_STRING_new(); if (byKey == NULL) return 0; if (!(ASN1_OCTET_STRING_set(byKey, md, SHA_DIGEST_LENGTH))) { ASN1_OCTET_STRING_free(byKey); return 0; } respid->type = V_OCSP_RESPID_KEY; respid->value.byKey = byKey; return 1; } int OCSP_RESPID_match(OCSP_RESPID *respid, X509 *cert) { if (respid->type == V_OCSP_RESPID_KEY) { unsigned char md[SHA_DIGEST_LENGTH]; if (respid->value.byKey == NULL) return 0; /* RFC2560 requires SHA1 */ if (!X509_pubkey_digest(cert, EVP_sha1(), md, NULL)) return 0; return (ASN1_STRING_length(respid->value.byKey) == SHA_DIGEST_LENGTH) && (memcmp(ASN1_STRING_get0_data(respid->value.byKey), md, SHA_DIGEST_LENGTH) == 0); } else if (respid->type == V_OCSP_RESPID_NAME) { if (respid->value.byName == NULL) return 0; return X509_NAME_cmp(respid->value.byName, X509_get_subject_name(cert)) == 0; } return 0; } openssl-1.1.1f/crypto/ocsp/ocsp_vfy.c000066400000000000000000000320221364063235100176250ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ocsp_local.h" #include #include static int ocsp_find_signer(X509 **psigner, OCSP_BASICRESP *bs, STACK_OF(X509) *certs, unsigned long flags); static X509 *ocsp_find_signer_sk(STACK_OF(X509) *certs, OCSP_RESPID *id); static int ocsp_check_issuer(OCSP_BASICRESP *bs, STACK_OF(X509) *chain); static int ocsp_check_ids(STACK_OF(OCSP_SINGLERESP) *sresp, OCSP_CERTID **ret); static int ocsp_match_issuerid(X509 *cert, OCSP_CERTID *cid, STACK_OF(OCSP_SINGLERESP) *sresp); static int ocsp_check_delegated(X509 *x); static int ocsp_req_find_signer(X509 **psigner, OCSP_REQUEST *req, X509_NAME *nm, STACK_OF(X509) *certs, unsigned long flags); /* Verify a basic response message */ int OCSP_basic_verify(OCSP_BASICRESP *bs, STACK_OF(X509) *certs, X509_STORE *st, unsigned long flags) { X509 *signer, *x; STACK_OF(X509) *chain = NULL; STACK_OF(X509) *untrusted = NULL; X509_STORE_CTX *ctx = NULL; int i, ret = ocsp_find_signer(&signer, bs, certs, flags); if (!ret) { OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, OCSP_R_SIGNER_CERTIFICATE_NOT_FOUND); goto end; } ctx = X509_STORE_CTX_new(); if (ctx == NULL) { OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, ERR_R_MALLOC_FAILURE); goto f_err; } if ((ret == 2) && (flags & OCSP_TRUSTOTHER)) flags |= OCSP_NOVERIFY; if (!(flags & OCSP_NOSIGS)) { EVP_PKEY *skey; skey = X509_get0_pubkey(signer); if (skey == NULL) { OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, OCSP_R_NO_SIGNER_KEY); goto err; } ret = OCSP_BASICRESP_verify(bs, skey, 0); if (ret <= 0) { OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, OCSP_R_SIGNATURE_FAILURE); goto end; } } if (!(flags & OCSP_NOVERIFY)) { int init_res; if (flags & OCSP_NOCHAIN) { untrusted = NULL; } else if (bs->certs && certs) { untrusted = sk_X509_dup(bs->certs); for (i = 0; i < sk_X509_num(certs); i++) { if (!sk_X509_push(untrusted, sk_X509_value(certs, i))) { OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, ERR_R_MALLOC_FAILURE); goto f_err; } } } else if (certs != NULL) { untrusted = certs; } else { untrusted = bs->certs; } init_res = X509_STORE_CTX_init(ctx, st, signer, untrusted); if (!init_res) { OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, ERR_R_X509_LIB); goto f_err; } X509_STORE_CTX_set_purpose(ctx, X509_PURPOSE_OCSP_HELPER); ret = X509_verify_cert(ctx); chain = X509_STORE_CTX_get1_chain(ctx); if (ret <= 0) { i = X509_STORE_CTX_get_error(ctx); OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, OCSP_R_CERTIFICATE_VERIFY_ERROR); ERR_add_error_data(2, "Verify error:", X509_verify_cert_error_string(i)); goto end; } if (flags & OCSP_NOCHECKS) { ret = 1; goto end; } /* * At this point we have a valid certificate chain need to verify it * against the OCSP issuer criteria. */ ret = ocsp_check_issuer(bs, chain); /* If fatal error or valid match then finish */ if (ret != 0) goto end; /* * Easy case: explicitly trusted. Get root CA and check for explicit * trust */ if (flags & OCSP_NOEXPLICIT) goto end; x = sk_X509_value(chain, sk_X509_num(chain) - 1); if (X509_check_trust(x, NID_OCSP_sign, 0) != X509_TRUST_TRUSTED) { OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, OCSP_R_ROOT_CA_NOT_TRUSTED); goto err; } ret = 1; } end: X509_STORE_CTX_free(ctx); sk_X509_pop_free(chain, X509_free); if (bs->certs && certs) sk_X509_free(untrusted); return ret; err: ret = 0; goto end; f_err: ret = -1; goto end; } int OCSP_resp_get0_signer(OCSP_BASICRESP *bs, X509 **signer, STACK_OF(X509) *extra_certs) { int ret; ret = ocsp_find_signer(signer, bs, extra_certs, 0); return (ret > 0) ? 1 : 0; } static int ocsp_find_signer(X509 **psigner, OCSP_BASICRESP *bs, STACK_OF(X509) *certs, unsigned long flags) { X509 *signer; OCSP_RESPID *rid = &bs->tbsResponseData.responderId; if ((signer = ocsp_find_signer_sk(certs, rid))) { *psigner = signer; return 2; } if (!(flags & OCSP_NOINTERN) && (signer = ocsp_find_signer_sk(bs->certs, rid))) { *psigner = signer; return 1; } /* Maybe lookup from store if by subject name */ *psigner = NULL; return 0; } static X509 *ocsp_find_signer_sk(STACK_OF(X509) *certs, OCSP_RESPID *id) { int i; unsigned char tmphash[SHA_DIGEST_LENGTH], *keyhash; X509 *x; /* Easy if lookup by name */ if (id->type == V_OCSP_RESPID_NAME) return X509_find_by_subject(certs, id->value.byName); /* Lookup by key hash */ /* If key hash isn't SHA1 length then forget it */ if (id->value.byKey->length != SHA_DIGEST_LENGTH) return NULL; keyhash = id->value.byKey->data; /* Calculate hash of each key and compare */ for (i = 0; i < sk_X509_num(certs); i++) { x = sk_X509_value(certs, i); X509_pubkey_digest(x, EVP_sha1(), tmphash, NULL); if (!memcmp(keyhash, tmphash, SHA_DIGEST_LENGTH)) return x; } return NULL; } static int ocsp_check_issuer(OCSP_BASICRESP *bs, STACK_OF(X509) *chain) { STACK_OF(OCSP_SINGLERESP) *sresp; X509 *signer, *sca; OCSP_CERTID *caid = NULL; int i; sresp = bs->tbsResponseData.responses; if (sk_X509_num(chain) <= 0) { OCSPerr(OCSP_F_OCSP_CHECK_ISSUER, OCSP_R_NO_CERTIFICATES_IN_CHAIN); return -1; } /* See if the issuer IDs match. */ i = ocsp_check_ids(sresp, &caid); /* If ID mismatch or other error then return */ if (i <= 0) return i; signer = sk_X509_value(chain, 0); /* Check to see if OCSP responder CA matches request CA */ if (sk_X509_num(chain) > 1) { sca = sk_X509_value(chain, 1); i = ocsp_match_issuerid(sca, caid, sresp); if (i < 0) return i; if (i) { /* We have a match, if extensions OK then success */ if (ocsp_check_delegated(signer)) return 1; return 0; } } /* Otherwise check if OCSP request signed directly by request CA */ return ocsp_match_issuerid(signer, caid, sresp); } /* * Check the issuer certificate IDs for equality. If there is a mismatch with * the same algorithm then there's no point trying to match any certificates * against the issuer. If the issuer IDs all match then we just need to check * equality against one of them. */ static int ocsp_check_ids(STACK_OF(OCSP_SINGLERESP) *sresp, OCSP_CERTID **ret) { OCSP_CERTID *tmpid, *cid; int i, idcount; idcount = sk_OCSP_SINGLERESP_num(sresp); if (idcount <= 0) { OCSPerr(OCSP_F_OCSP_CHECK_IDS, OCSP_R_RESPONSE_CONTAINS_NO_REVOCATION_DATA); return -1; } cid = sk_OCSP_SINGLERESP_value(sresp, 0)->certId; *ret = NULL; for (i = 1; i < idcount; i++) { tmpid = sk_OCSP_SINGLERESP_value(sresp, i)->certId; /* Check to see if IDs match */ if (OCSP_id_issuer_cmp(cid, tmpid)) { /* If algorithm mismatch let caller deal with it */ if (OBJ_cmp(tmpid->hashAlgorithm.algorithm, cid->hashAlgorithm.algorithm)) return 2; /* Else mismatch */ return 0; } } /* All IDs match: only need to check one ID */ *ret = cid; return 1; } static int ocsp_match_issuerid(X509 *cert, OCSP_CERTID *cid, STACK_OF(OCSP_SINGLERESP) *sresp) { /* If only one ID to match then do it */ if (cid) { const EVP_MD *dgst; X509_NAME *iname; int mdlen; unsigned char md[EVP_MAX_MD_SIZE]; if ((dgst = EVP_get_digestbyobj(cid->hashAlgorithm.algorithm)) == NULL) { OCSPerr(OCSP_F_OCSP_MATCH_ISSUERID, OCSP_R_UNKNOWN_MESSAGE_DIGEST); return -1; } mdlen = EVP_MD_size(dgst); if (mdlen < 0) return -1; if ((cid->issuerNameHash.length != mdlen) || (cid->issuerKeyHash.length != mdlen)) return 0; iname = X509_get_subject_name(cert); if (!X509_NAME_digest(iname, dgst, md, NULL)) return -1; if (memcmp(md, cid->issuerNameHash.data, mdlen)) return 0; X509_pubkey_digest(cert, dgst, md, NULL); if (memcmp(md, cid->issuerKeyHash.data, mdlen)) return 0; return 1; } else { /* We have to match the whole lot */ int i, ret; OCSP_CERTID *tmpid; for (i = 0; i < sk_OCSP_SINGLERESP_num(sresp); i++) { tmpid = sk_OCSP_SINGLERESP_value(sresp, i)->certId; ret = ocsp_match_issuerid(cert, tmpid, NULL); if (ret <= 0) return ret; } return 1; } } static int ocsp_check_delegated(X509 *x) { if ((X509_get_extension_flags(x) & EXFLAG_XKUSAGE) && (X509_get_extended_key_usage(x) & XKU_OCSP_SIGN)) return 1; OCSPerr(OCSP_F_OCSP_CHECK_DELEGATED, OCSP_R_MISSING_OCSPSIGNING_USAGE); return 0; } /* * Verify an OCSP request. This is fortunately much easier than OCSP response * verify. Just find the signers certificate and verify it against a given * trust value. */ int OCSP_request_verify(OCSP_REQUEST *req, STACK_OF(X509) *certs, X509_STORE *store, unsigned long flags) { X509 *signer; X509_NAME *nm; GENERAL_NAME *gen; int ret = 0; X509_STORE_CTX *ctx = X509_STORE_CTX_new(); if (ctx == NULL) { OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } if (!req->optionalSignature) { OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_REQUEST_NOT_SIGNED); goto err; } gen = req->tbsRequest.requestorName; if (!gen || gen->type != GEN_DIRNAME) { OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_UNSUPPORTED_REQUESTORNAME_TYPE); goto err; } nm = gen->d.directoryName; ret = ocsp_req_find_signer(&signer, req, nm, certs, flags); if (ret <= 0) { OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_SIGNER_CERTIFICATE_NOT_FOUND); goto err; } if ((ret == 2) && (flags & OCSP_TRUSTOTHER)) flags |= OCSP_NOVERIFY; if (!(flags & OCSP_NOSIGS)) { EVP_PKEY *skey; skey = X509_get0_pubkey(signer); ret = OCSP_REQUEST_verify(req, skey); if (ret <= 0) { OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_SIGNATURE_FAILURE); goto err; } } if (!(flags & OCSP_NOVERIFY)) { int init_res; if (flags & OCSP_NOCHAIN) init_res = X509_STORE_CTX_init(ctx, store, signer, NULL); else init_res = X509_STORE_CTX_init(ctx, store, signer, req->optionalSignature->certs); if (!init_res) { OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, ERR_R_X509_LIB); goto err; } X509_STORE_CTX_set_purpose(ctx, X509_PURPOSE_OCSP_HELPER); X509_STORE_CTX_set_trust(ctx, X509_TRUST_OCSP_REQUEST); ret = X509_verify_cert(ctx); if (ret <= 0) { ret = X509_STORE_CTX_get_error(ctx); OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_CERTIFICATE_VERIFY_ERROR); ERR_add_error_data(2, "Verify error:", X509_verify_cert_error_string(ret)); goto err; } } ret = 1; goto end; err: ret = 0; end: X509_STORE_CTX_free(ctx); return ret; } static int ocsp_req_find_signer(X509 **psigner, OCSP_REQUEST *req, X509_NAME *nm, STACK_OF(X509) *certs, unsigned long flags) { X509 *signer; if (!(flags & OCSP_NOINTERN)) { signer = X509_find_by_subject(req->optionalSignature->certs, nm); if (signer) { *psigner = signer; return 1; } } signer = X509_find_by_subject(certs, nm); if (signer) { *psigner = signer; return 2; } return 0; } openssl-1.1.1f/crypto/ocsp/v3_ocsp.c000066400000000000000000000155131364063235100173570ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ # include # include "internal/cryptlib.h" # include # include # include # include "ocsp_local.h" # include # include "../x509v3/ext_dat.h" /* * OCSP extensions and a couple of CRL entry extensions */ static int i2r_ocsp_crlid(const X509V3_EXT_METHOD *method, void *nonce, BIO *out, int indent); static int i2r_ocsp_acutoff(const X509V3_EXT_METHOD *method, void *nonce, BIO *out, int indent); static int i2r_object(const X509V3_EXT_METHOD *method, void *obj, BIO *out, int indent); static void *ocsp_nonce_new(void); static int i2d_ocsp_nonce(void *a, unsigned char **pp); static void *d2i_ocsp_nonce(void *a, const unsigned char **pp, long length); static void ocsp_nonce_free(void *a); static int i2r_ocsp_nonce(const X509V3_EXT_METHOD *method, void *nonce, BIO *out, int indent); static int i2r_ocsp_nocheck(const X509V3_EXT_METHOD *method, void *nocheck, BIO *out, int indent); static void *s2i_ocsp_nocheck(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str); static int i2r_ocsp_serviceloc(const X509V3_EXT_METHOD *method, void *in, BIO *bp, int ind); const X509V3_EXT_METHOD v3_ocsp_crlid = { NID_id_pkix_OCSP_CrlID, 0, ASN1_ITEM_ref(OCSP_CRLID), 0, 0, 0, 0, 0, 0, 0, 0, i2r_ocsp_crlid, 0, NULL }; const X509V3_EXT_METHOD v3_ocsp_acutoff = { NID_id_pkix_OCSP_archiveCutoff, 0, ASN1_ITEM_ref(ASN1_GENERALIZEDTIME), 0, 0, 0, 0, 0, 0, 0, 0, i2r_ocsp_acutoff, 0, NULL }; const X509V3_EXT_METHOD v3_crl_invdate = { NID_invalidity_date, 0, ASN1_ITEM_ref(ASN1_GENERALIZEDTIME), 0, 0, 0, 0, 0, 0, 0, 0, i2r_ocsp_acutoff, 0, NULL }; const X509V3_EXT_METHOD v3_crl_hold = { NID_hold_instruction_code, 0, ASN1_ITEM_ref(ASN1_OBJECT), 0, 0, 0, 0, 0, 0, 0, 0, i2r_object, 0, NULL }; const X509V3_EXT_METHOD v3_ocsp_nonce = { NID_id_pkix_OCSP_Nonce, 0, NULL, ocsp_nonce_new, ocsp_nonce_free, d2i_ocsp_nonce, i2d_ocsp_nonce, 0, 0, 0, 0, i2r_ocsp_nonce, 0, NULL }; const X509V3_EXT_METHOD v3_ocsp_nocheck = { NID_id_pkix_OCSP_noCheck, 0, ASN1_ITEM_ref(ASN1_NULL), 0, 0, 0, 0, 0, s2i_ocsp_nocheck, 0, 0, i2r_ocsp_nocheck, 0, NULL }; const X509V3_EXT_METHOD v3_ocsp_serviceloc = { NID_id_pkix_OCSP_serviceLocator, 0, ASN1_ITEM_ref(OCSP_SERVICELOC), 0, 0, 0, 0, 0, 0, 0, 0, i2r_ocsp_serviceloc, 0, NULL }; static int i2r_ocsp_crlid(const X509V3_EXT_METHOD *method, void *in, BIO *bp, int ind) { OCSP_CRLID *a = in; if (a->crlUrl) { if (BIO_printf(bp, "%*scrlUrl: ", ind, "") <= 0) goto err; if (!ASN1_STRING_print(bp, (ASN1_STRING *)a->crlUrl)) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (a->crlNum) { if (BIO_printf(bp, "%*scrlNum: ", ind, "") <= 0) goto err; if (i2a_ASN1_INTEGER(bp, a->crlNum) <= 0) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (a->crlTime) { if (BIO_printf(bp, "%*scrlTime: ", ind, "") <= 0) goto err; if (!ASN1_GENERALIZEDTIME_print(bp, a->crlTime)) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } return 1; err: return 0; } static int i2r_ocsp_acutoff(const X509V3_EXT_METHOD *method, void *cutoff, BIO *bp, int ind) { if (BIO_printf(bp, "%*s", ind, "") <= 0) return 0; if (!ASN1_GENERALIZEDTIME_print(bp, cutoff)) return 0; return 1; } static int i2r_object(const X509V3_EXT_METHOD *method, void *oid, BIO *bp, int ind) { if (BIO_printf(bp, "%*s", ind, "") <= 0) return 0; if (i2a_ASN1_OBJECT(bp, oid) <= 0) return 0; return 1; } /* * OCSP nonce. This is needs special treatment because it doesn't have an * ASN1 encoding at all: it just contains arbitrary data. */ static void *ocsp_nonce_new(void) { return ASN1_OCTET_STRING_new(); } static int i2d_ocsp_nonce(void *a, unsigned char **pp) { ASN1_OCTET_STRING *os = a; if (pp) { memcpy(*pp, os->data, os->length); *pp += os->length; } return os->length; } static void *d2i_ocsp_nonce(void *a, const unsigned char **pp, long length) { ASN1_OCTET_STRING *os, **pos; pos = a; if (pos == NULL || *pos == NULL) { os = ASN1_OCTET_STRING_new(); if (os == NULL) goto err; } else { os = *pos; } if (!ASN1_OCTET_STRING_set(os, *pp, length)) goto err; *pp += length; if (pos) *pos = os; return os; err: if ((pos == NULL) || (*pos != os)) ASN1_OCTET_STRING_free(os); OCSPerr(OCSP_F_D2I_OCSP_NONCE, ERR_R_MALLOC_FAILURE); return NULL; } static void ocsp_nonce_free(void *a) { ASN1_OCTET_STRING_free(a); } static int i2r_ocsp_nonce(const X509V3_EXT_METHOD *method, void *nonce, BIO *out, int indent) { if (BIO_printf(out, "%*s", indent, "") <= 0) return 0; if (i2a_ASN1_STRING(out, nonce, V_ASN1_OCTET_STRING) <= 0) return 0; return 1; } /* Nocheck is just a single NULL. Don't print anything and always set it */ static int i2r_ocsp_nocheck(const X509V3_EXT_METHOD *method, void *nocheck, BIO *out, int indent) { return 1; } static void *s2i_ocsp_nocheck(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { return ASN1_NULL_new(); } static int i2r_ocsp_serviceloc(const X509V3_EXT_METHOD *method, void *in, BIO *bp, int ind) { int i; OCSP_SERVICELOC *a = in; ACCESS_DESCRIPTION *ad; if (BIO_printf(bp, "%*sIssuer: ", ind, "") <= 0) goto err; if (X509_NAME_print_ex(bp, a->issuer, 0, XN_FLAG_ONELINE) <= 0) goto err; for (i = 0; i < sk_ACCESS_DESCRIPTION_num(a->locator); i++) { ad = sk_ACCESS_DESCRIPTION_value(a->locator, i); if (BIO_printf(bp, "\n%*s", (2 * ind), "") <= 0) goto err; if (i2a_ASN1_OBJECT(bp, ad->method) <= 0) goto err; if (BIO_puts(bp, " - ") <= 0) goto err; if (GENERAL_NAME_print(bp, ad->location) <= 0) goto err; } return 1; err: return 0; } openssl-1.1.1f/crypto/pariscid.pl000066400000000000000000000111041364063235100170160ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $ST ="std"; } else { $LEVEL ="1.1"; $SIZE_T =4; $ST ="stw"; } $rp="%r2"; $sp="%r30"; $rv="%r28"; $code=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT OPENSSL_cpuid_setup,ENTRY .ALIGN 8 OPENSSL_cpuid_setup .PROC .CALLINFO NO_CALLS .ENTRY bv ($rp) .EXIT nop .PROCEND .EXPORT OPENSSL_rdtsc,ENTRY .ALIGN 8 OPENSSL_rdtsc .PROC .CALLINFO NO_CALLS .ENTRY mfctl %cr16,$rv bv ($rp) .EXIT nop .PROCEND .EXPORT OPENSSL_wipe_cpu,ENTRY .ALIGN 8 OPENSSL_wipe_cpu .PROC .CALLINFO NO_CALLS .ENTRY xor %r0,%r0,%r1 fcpy,dbl %fr0,%fr4 xor %r0,%r0,%r19 fcpy,dbl %fr0,%fr5 xor %r0,%r0,%r20 fcpy,dbl %fr0,%fr6 xor %r0,%r0,%r21 fcpy,dbl %fr0,%fr7 xor %r0,%r0,%r22 fcpy,dbl %fr0,%fr8 xor %r0,%r0,%r23 fcpy,dbl %fr0,%fr9 xor %r0,%r0,%r24 fcpy,dbl %fr0,%fr10 xor %r0,%r0,%r25 fcpy,dbl %fr0,%fr11 xor %r0,%r0,%r26 fcpy,dbl %fr0,%fr22 xor %r0,%r0,%r29 fcpy,dbl %fr0,%fr23 xor %r0,%r0,%r31 fcpy,dbl %fr0,%fr24 fcpy,dbl %fr0,%fr25 fcpy,dbl %fr0,%fr26 fcpy,dbl %fr0,%fr27 fcpy,dbl %fr0,%fr28 fcpy,dbl %fr0,%fr29 fcpy,dbl %fr0,%fr30 fcpy,dbl %fr0,%fr31 bv ($rp) .EXIT ldo 0($sp),$rv .PROCEND ___ { my $inp="%r26"; my $len="%r25"; $code.=<<___; .EXPORT OPENSSL_cleanse,ENTRY,ARGW0=GR,ARGW1=GR .ALIGN 8 OPENSSL_cleanse .PROC .CALLINFO NO_CALLS .ENTRY cmpib,*= 0,$len,L\$done nop cmpib,*>>= 15,$len,L\$ittle ldi $SIZE_T-1,%r1 L\$align and,*<> $inp,%r1,%r28 b,n L\$aligned stb %r0,0($inp) ldo -1($len),$len b L\$align ldo 1($inp),$inp L\$aligned andcm $len,%r1,%r28 L\$ot $ST %r0,0($inp) addib,*<> -$SIZE_T,%r28,L\$ot ldo $SIZE_T($inp),$inp and,*<> $len,%r1,$len b,n L\$done L\$ittle stb %r0,0($inp) addib,*<> -1,$len,L\$ittle ldo 1($inp),$inp L\$done bv ($rp) .EXIT nop .PROCEND ___ } { my ($in1,$in2,$len)=("%r26","%r25","%r24"); $code.=<<___; .EXPORT CRYPTO_memcmp,ENTRY,ARGW0=GR,ARGW1=GR,ARGW1=GR .ALIGN 8 CRYPTO_memcmp .PROC .CALLINFO NO_CALLS .ENTRY cmpib,*= 0,$len,L\$no_data xor $rv,$rv,$rv L\$oop_cmp ldb 0($in1),%r19 ldb 0($in2),%r20 ldo 1($in1),$in1 ldo 1($in2),$in2 xor %r19,%r20,%r29 addib,*<> -1,$len,L\$oop_cmp or %r29,$rv,$rv sub %r0,$rv,%r29 extru %r29,0,1,$rv L\$no_data bv ($rp) .EXIT nop .PROCEND ___ } { my ($out,$cnt,$max)=("%r26","%r25","%r24"); my ($tick,$lasttick)=("%r23","%r22"); my ($diff,$lastdiff)=("%r21","%r20"); $code.=<<___; .EXPORT OPENSSL_instrument_bus,ENTRY,ARGW0=GR,ARGW1=GR .ALIGN 8 OPENSSL_instrument_bus .PROC .CALLINFO NO_CALLS .ENTRY copy $cnt,$rv mfctl %cr16,$tick copy $tick,$lasttick ldi 0,$diff fdc 0($out) ldw 0($out),$tick add $diff,$tick,$tick stw $tick,0($out) L\$oop mfctl %cr16,$tick sub $tick,$lasttick,$diff copy $tick,$lasttick fdc 0($out) ldw 0($out),$tick add $diff,$tick,$tick stw $tick,0($out) addib,<> -1,$cnt,L\$oop addi 4,$out,$out bv ($rp) .EXIT sub $rv,$cnt,$rv .PROCEND .EXPORT OPENSSL_instrument_bus2,ENTRY,ARGW0=GR,ARGW1=GR .ALIGN 8 OPENSSL_instrument_bus2 .PROC .CALLINFO NO_CALLS .ENTRY copy $cnt,$rv sub %r0,$cnt,$cnt mfctl %cr16,$tick copy $tick,$lasttick ldi 0,$diff fdc 0($out) ldw 0($out),$tick add $diff,$tick,$tick stw $tick,0($out) mfctl %cr16,$tick sub $tick,$lasttick,$diff copy $tick,$lasttick L\$oop2 copy $diff,$lastdiff fdc 0($out) ldw 0($out),$tick add $diff,$tick,$tick stw $tick,0($out) addib,= -1,$max,L\$done2 nop mfctl %cr16,$tick sub $tick,$lasttick,$diff copy $tick,$lasttick cmpclr,<> $lastdiff,$diff,$tick ldi 1,$tick ldi 1,%r1 xor %r1,$tick,$tick addb,<> $tick,$cnt,L\$oop2 shladd,l $tick,2,$out,$out L\$done2 bv ($rp) .EXIT add $rv,$cnt,$rv .PROCEND ___ } if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler/) { $gnuas = 1; } foreach(split("\n",$code)) { s/(\.LEVEL\s+2\.0)W/$1w/ if ($gnuas && $SIZE_T==8); s/\.SPACE\s+\$TEXT\$/.text/ if ($gnuas && $SIZE_T==8); s/\.SUBSPA.*// if ($gnuas && $SIZE_T==8); s/cmpib,\*/comib,/ if ($SIZE_T==4); s/,\*/,/ if ($SIZE_T==4); s/\bbv\b/bve/ if ($SIZE_T==8); print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/pem/000077500000000000000000000000001364063235100154475ustar00rootroot00000000000000openssl-1.1.1f/crypto/pem/build.info000066400000000000000000000002631364063235100174240ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ pem_sign.c pem_info.c pem_lib.c pem_all.c pem_err.c \ pem_x509.c pem_xaux.c pem_oth.c pem_pk8.c pem_pkey.c pvkfmt.c openssl-1.1.1f/crypto/pem/pem_all.c000066400000000000000000000116451364063235100172330ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_RSA static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa); #endif #ifndef OPENSSL_NO_DSA static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa); #endif #ifndef OPENSSL_NO_EC static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey); #endif IMPLEMENT_PEM_rw(X509_REQ, X509_REQ, PEM_STRING_X509_REQ, X509_REQ) IMPLEMENT_PEM_write(X509_REQ_NEW, X509_REQ, PEM_STRING_X509_REQ_OLD, X509_REQ) IMPLEMENT_PEM_rw(X509_CRL, X509_CRL, PEM_STRING_X509_CRL, X509_CRL) IMPLEMENT_PEM_rw(PKCS7, PKCS7, PEM_STRING_PKCS7, PKCS7) IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE, PEM_STRING_X509, NETSCAPE_CERT_SEQUENCE) #ifndef OPENSSL_NO_RSA /* * We treat RSA or DSA private keys as a special case. For private keys we * read in an EVP_PKEY structure with PEM_read_bio_PrivateKey() and extract * the relevant private key: this means can handle "traditional" and PKCS#8 * formats transparently. */ static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa) { RSA *rtmp; if (!key) return NULL; rtmp = EVP_PKEY_get1_RSA(key); EVP_PKEY_free(key); if (!rtmp) return NULL; if (rsa) { RSA_free(*rsa); *rsa = rtmp; } return rtmp; } RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **rsa, pem_password_cb *cb, void *u) { EVP_PKEY *pktmp; pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); return pkey_get_rsa(pktmp, rsa); } # ifndef OPENSSL_NO_STDIO RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **rsa, pem_password_cb *cb, void *u) { EVP_PKEY *pktmp; pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); return pkey_get_rsa(pktmp, rsa); } # endif IMPLEMENT_PEM_write_cb_const(RSAPrivateKey, RSA, PEM_STRING_RSA, RSAPrivateKey) IMPLEMENT_PEM_rw_const(RSAPublicKey, RSA, PEM_STRING_RSA_PUBLIC, RSAPublicKey) IMPLEMENT_PEM_rw(RSA_PUBKEY, RSA, PEM_STRING_PUBLIC, RSA_PUBKEY) #endif #ifndef OPENSSL_NO_DSA static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa) { DSA *dtmp; if (!key) return NULL; dtmp = EVP_PKEY_get1_DSA(key); EVP_PKEY_free(key); if (!dtmp) return NULL; if (dsa) { DSA_free(*dsa); *dsa = dtmp; } return dtmp; } DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **dsa, pem_password_cb *cb, void *u) { EVP_PKEY *pktmp; pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ } IMPLEMENT_PEM_write_cb_const(DSAPrivateKey, DSA, PEM_STRING_DSA, DSAPrivateKey) IMPLEMENT_PEM_rw(DSA_PUBKEY, DSA, PEM_STRING_PUBLIC, DSA_PUBKEY) # ifndef OPENSSL_NO_STDIO DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **dsa, pem_password_cb *cb, void *u) { EVP_PKEY *pktmp; pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ } # endif IMPLEMENT_PEM_rw_const(DSAparams, DSA, PEM_STRING_DSAPARAMS, DSAparams) #endif #ifndef OPENSSL_NO_EC static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey) { EC_KEY *dtmp; if (!key) return NULL; dtmp = EVP_PKEY_get1_EC_KEY(key); EVP_PKEY_free(key); if (!dtmp) return NULL; if (eckey) { EC_KEY_free(*eckey); *eckey = dtmp; } return dtmp; } EC_KEY *PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb, void *u) { EVP_PKEY *pktmp; pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); return pkey_get_eckey(pktmp, key); /* will free pktmp */ } IMPLEMENT_PEM_rw_const(ECPKParameters, EC_GROUP, PEM_STRING_ECPARAMETERS, ECPKParameters) IMPLEMENT_PEM_write_cb(ECPrivateKey, EC_KEY, PEM_STRING_ECPRIVATEKEY, ECPrivateKey) IMPLEMENT_PEM_rw(EC_PUBKEY, EC_KEY, PEM_STRING_PUBLIC, EC_PUBKEY) # ifndef OPENSSL_NO_STDIO EC_KEY *PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb, void *u) { EVP_PKEY *pktmp; pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); return pkey_get_eckey(pktmp, eckey); /* will free pktmp */ } # endif #endif #ifndef OPENSSL_NO_DH IMPLEMENT_PEM_write_const(DHparams, DH, PEM_STRING_DHPARAMS, DHparams) IMPLEMENT_PEM_write_const(DHxparams, DH, PEM_STRING_DHXPARAMS, DHxparams) #endif IMPLEMENT_PEM_rw(PUBKEY, EVP_PKEY, PEM_STRING_PUBLIC, PUBKEY) openssl-1.1.1f/crypto/pem/pem_err.c000066400000000000000000000143101364063235100172430ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA PEM_str_functs[] = { {ERR_PACK(ERR_LIB_PEM, PEM_F_B2I_DSS, 0), "b2i_dss"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_B2I_PVK_BIO, 0), "b2i_PVK_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_B2I_RSA, 0), "b2i_rsa"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_CHECK_BITLEN_DSA, 0), "check_bitlen_dsa"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_CHECK_BITLEN_RSA, 0), "check_bitlen_rsa"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_D2I_PKCS8PRIVATEKEY_BIO, 0), "d2i_PKCS8PrivateKey_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_D2I_PKCS8PRIVATEKEY_FP, 0), "d2i_PKCS8PrivateKey_fp"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_B2I, 0), "do_b2i"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_B2I_BIO, 0), "do_b2i_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_BLOB_HEADER, 0), "do_blob_header"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_I2B, 0), "do_i2b"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PK8PKEY, 0), "do_pk8pkey"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PK8PKEY_FP, 0), "do_pk8pkey_fp"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PVK_BODY, 0), "do_PVK_body"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PVK_HEADER, 0), "do_PVK_header"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_GET_HEADER_AND_DATA, 0), "get_header_and_data"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_GET_NAME, 0), "get_name"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_I2B_PVK, 0), "i2b_PVK"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_I2B_PVK_BIO, 0), "i2b_PVK_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_LOAD_IV, 0), "load_iv"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_READ, 0), "PEM_ASN1_read"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_READ_BIO, 0), "PEM_ASN1_read_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_WRITE, 0), "PEM_ASN1_write"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_WRITE_BIO, 0), "PEM_ASN1_write_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_DEF_CALLBACK, 0), "PEM_def_callback"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_DO_HEADER, 0), "PEM_do_header"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_GET_EVP_CIPHER_INFO, 0), "PEM_get_EVP_CIPHER_INFO"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ, 0), "PEM_read"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO, 0), "PEM_read_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_DHPARAMS, 0), "PEM_read_bio_DHparams"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_EX, 0), "PEM_read_bio_ex"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_PARAMETERS, 0), "PEM_read_bio_Parameters"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_PRIVATEKEY, 0), "PEM_read_bio_PrivateKey"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_DHPARAMS, 0), "PEM_read_DHparams"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_PRIVATEKEY, 0), "PEM_read_PrivateKey"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_SIGNFINAL, 0), "PEM_SignFinal"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_WRITE, 0), "PEM_write"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_WRITE_BIO, 0), "PEM_write_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_WRITE_PRIVATEKEY, 0), "PEM_write_PrivateKey"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_X509_INFO_READ, 0), "PEM_X509_INFO_read"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_X509_INFO_READ_BIO, 0), "PEM_X509_INFO_read_bio"}, {ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_X509_INFO_WRITE_BIO, 0), "PEM_X509_INFO_write_bio"}, {0, NULL} }; static const ERR_STRING_DATA PEM_str_reasons[] = { {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_BASE64_DECODE), "bad base64 decode"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_DECRYPT), "bad decrypt"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_END_LINE), "bad end line"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_IV_CHARS), "bad iv chars"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_MAGIC_NUMBER), "bad magic number"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_PASSWORD_READ), "bad password read"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_VERSION_NUMBER), "bad version number"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BIO_WRITE_FAILURE), "bio write failure"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_CIPHER_IS_NULL), "cipher is null"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_ERROR_CONVERTING_PRIVATE_KEY), "error converting private key"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_EXPECTING_PRIVATE_KEY_BLOB), "expecting private key blob"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_EXPECTING_PUBLIC_KEY_BLOB), "expecting public key blob"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_HEADER_TOO_LONG), "header too long"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_INCONSISTENT_HEADER), "inconsistent header"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_KEYBLOB_HEADER_PARSE_ERROR), "keyblob header parse error"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_KEYBLOB_TOO_SHORT), "keyblob too short"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_MISSING_DEK_IV), "missing dek iv"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NOT_DEK_INFO), "not dek info"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NOT_ENCRYPTED), "not encrypted"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NOT_PROC_TYPE), "not proc type"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NO_START_LINE), "no start line"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_PROBLEMS_GETTING_PASSWORD), "problems getting password"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_PVK_DATA_TOO_SHORT), "pvk data too short"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_PVK_TOO_SHORT), "pvk too short"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_READ_KEY), "read key"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_SHORT_HEADER), "short header"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNEXPECTED_DEK_IV), "unexpected dek iv"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNSUPPORTED_CIPHER), "unsupported cipher"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNSUPPORTED_ENCRYPTION), "unsupported encryption"}, {ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNSUPPORTED_KEY_COMPONENTS), "unsupported key components"}, {0, NULL} }; #endif int ERR_load_PEM_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(PEM_str_functs[0].error) == NULL) { ERR_load_strings_const(PEM_str_functs); ERR_load_strings_const(PEM_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/pem/pem_info.c000066400000000000000000000246371364063235100174230ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #ifndef OPENSSL_NO_STDIO STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u) { BIO *b; STACK_OF(X509_INFO) *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { PEMerr(PEM_F_PEM_X509_INFO_READ, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_X509_INFO_read_bio(b, sk, cb, u); BIO_free(b); return ret; } #endif STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u) { X509_INFO *xi = NULL; char *name = NULL, *header = NULL; void *pp; unsigned char *data = NULL; const unsigned char *p; long len, error = 0; int ok = 0; STACK_OF(X509_INFO) *ret = NULL; unsigned int i, raw, ptype; d2i_of_void *d2i = 0; if (sk == NULL) { if ((ret = sk_X509_INFO_new_null()) == NULL) { PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } } else ret = sk; if ((xi = X509_INFO_new()) == NULL) goto err; for (;;) { raw = 0; ptype = 0; i = PEM_read_bio(bp, &name, &header, &data, &len); if (i == 0) { error = ERR_GET_REASON(ERR_peek_last_error()); if (error == PEM_R_NO_START_LINE) { ERR_clear_error(); break; } goto err; } start: if ((strcmp(name, PEM_STRING_X509) == 0) || (strcmp(name, PEM_STRING_X509_OLD) == 0)) { d2i = (D2I_OF(void)) d2i_X509; if (xi->x509 != NULL) { if (!sk_X509_INFO_push(ret, xi)) goto err; if ((xi = X509_INFO_new()) == NULL) goto err; goto start; } pp = &(xi->x509); } else if ((strcmp(name, PEM_STRING_X509_TRUSTED) == 0)) { d2i = (D2I_OF(void)) d2i_X509_AUX; if (xi->x509 != NULL) { if (!sk_X509_INFO_push(ret, xi)) goto err; if ((xi = X509_INFO_new()) == NULL) goto err; goto start; } pp = &(xi->x509); } else if (strcmp(name, PEM_STRING_X509_CRL) == 0) { d2i = (D2I_OF(void)) d2i_X509_CRL; if (xi->crl != NULL) { if (!sk_X509_INFO_push(ret, xi)) goto err; if ((xi = X509_INFO_new()) == NULL) goto err; goto start; } pp = &(xi->crl); } else #ifndef OPENSSL_NO_RSA if (strcmp(name, PEM_STRING_RSA) == 0) { d2i = (D2I_OF(void)) d2i_RSAPrivateKey; if (xi->x_pkey != NULL) { if (!sk_X509_INFO_push(ret, xi)) goto err; if ((xi = X509_INFO_new()) == NULL) goto err; goto start; } xi->enc_data = NULL; xi->enc_len = 0; xi->x_pkey = X509_PKEY_new(); if (xi->x_pkey == NULL) goto err; ptype = EVP_PKEY_RSA; pp = &xi->x_pkey->dec_pkey; if ((int)strlen(header) > 10) /* assume encrypted */ raw = 1; } else #endif #ifndef OPENSSL_NO_DSA if (strcmp(name, PEM_STRING_DSA) == 0) { d2i = (D2I_OF(void)) d2i_DSAPrivateKey; if (xi->x_pkey != NULL) { if (!sk_X509_INFO_push(ret, xi)) goto err; if ((xi = X509_INFO_new()) == NULL) goto err; goto start; } xi->enc_data = NULL; xi->enc_len = 0; xi->x_pkey = X509_PKEY_new(); if (xi->x_pkey == NULL) goto err; ptype = EVP_PKEY_DSA; pp = &xi->x_pkey->dec_pkey; if ((int)strlen(header) > 10) /* assume encrypted */ raw = 1; } else #endif #ifndef OPENSSL_NO_EC if (strcmp(name, PEM_STRING_ECPRIVATEKEY) == 0) { d2i = (D2I_OF(void)) d2i_ECPrivateKey; if (xi->x_pkey != NULL) { if (!sk_X509_INFO_push(ret, xi)) goto err; if ((xi = X509_INFO_new()) == NULL) goto err; goto start; } xi->enc_data = NULL; xi->enc_len = 0; xi->x_pkey = X509_PKEY_new(); if (xi->x_pkey == NULL) goto err; ptype = EVP_PKEY_EC; pp = &xi->x_pkey->dec_pkey; if ((int)strlen(header) > 10) /* assume encrypted */ raw = 1; } else #endif { d2i = NULL; pp = NULL; } if (d2i != NULL) { if (!raw) { EVP_CIPHER_INFO cipher; if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) goto err; if (!PEM_do_header(&cipher, data, &len, cb, u)) goto err; p = data; if (ptype) { if (!d2i_PrivateKey(ptype, pp, &p, len)) { PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB); goto err; } } else if (d2i(pp, &p, len) == NULL) { PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB); goto err; } } else { /* encrypted RSA data */ if (!PEM_get_EVP_CIPHER_INFO(header, &xi->enc_cipher)) goto err; xi->enc_data = (char *)data; xi->enc_len = (int)len; data = NULL; } } else { /* unknown */ } OPENSSL_free(name); name = NULL; OPENSSL_free(header); header = NULL; OPENSSL_free(data); data = NULL; } /* * if the last one hasn't been pushed yet and there is anything in it * then add it to the stack ... */ if ((xi->x509 != NULL) || (xi->crl != NULL) || (xi->x_pkey != NULL) || (xi->enc_data != NULL)) { if (!sk_X509_INFO_push(ret, xi)) goto err; xi = NULL; } ok = 1; err: X509_INFO_free(xi); if (!ok) { for (i = 0; ((int)i) < sk_X509_INFO_num(ret); i++) { xi = sk_X509_INFO_value(ret, i); X509_INFO_free(xi); } if (ret != sk) sk_X509_INFO_free(ret); ret = NULL; } OPENSSL_free(name); OPENSSL_free(header); OPENSSL_free(data); return ret; } /* A TJH addition */ int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { int i, ret = 0; unsigned char *data = NULL; const char *objstr = NULL; char buf[PEM_BUFSIZE]; unsigned char *iv = NULL; if (enc != NULL) { objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); if (objstr == NULL /* * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" * fits into buf */ || (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13) > sizeof(buf)) { PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER); goto err; } } /* * now for the fun part ... if we have a private key then we have to be * able to handle a not-yet-decrypted key being written out correctly ... * if it is decrypted or it is non-encrypted then we use the base code */ if (xi->x_pkey != NULL) { if ((xi->enc_data != NULL) && (xi->enc_len > 0)) { if (enc == NULL) { PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, PEM_R_CIPHER_IS_NULL); goto err; } /* copy from weirdo names into more normal things */ iv = xi->enc_cipher.iv; data = (unsigned char *)xi->enc_data; i = xi->enc_len; /* * we take the encryption data from the internal stuff rather * than what the user has passed us ... as we have to match * exactly for some strange reason */ objstr = OBJ_nid2sn(EVP_CIPHER_nid(xi->enc_cipher.cipher)); if (objstr == NULL) { PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER); goto err; } /* Create the right magic header stuff */ buf[0] = '\0'; PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc), (char *)iv); /* use the normal code to write things out */ i = PEM_write_bio(bp, PEM_STRING_RSA, buf, data, i); if (i <= 0) goto err; } else { /* Add DSA/DH */ #ifndef OPENSSL_NO_RSA /* normal optionally encrypted stuff */ if (PEM_write_bio_RSAPrivateKey(bp, EVP_PKEY_get0_RSA(xi->x_pkey->dec_pkey), enc, kstr, klen, cb, u) <= 0) goto err; #endif } } /* if we have a certificate then write it out now */ if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp, xi->x509) <= 0)) goto err; /* * we are ignoring anything else that is loaded into the X509_INFO * structure for the moment ... as I don't need it so I'm not coding it * here and Eric can do it when this makes it into the base library --tjh */ ret = 1; err: OPENSSL_cleanse(buf, PEM_BUFSIZE); return ret; } openssl-1.1.1f/crypto/pem/pem_lib.c000066400000000000000000000714411364063235100172310ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "crypto/asn1.h" #include #include #define MIN_LENGTH 4 static int load_iv(char **fromp, unsigned char *to, int num); static int check_pem(const char *nm, const char *name); int pem_check_suffix(const char *pem_str, const char *suffix); int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) { int i, min_len; const char *prompt; /* We assume that the user passes a default password as userdata */ if (userdata) { i = strlen(userdata); i = (i > num) ? num : i; memcpy(buf, userdata, i); return i; } prompt = EVP_get_pw_prompt(); if (prompt == NULL) prompt = "Enter PEM pass phrase:"; /* * rwflag == 0 means decryption * rwflag == 1 means encryption * * We assume that for encryption, we want a minimum length, while for * decryption, we cannot know any minimum length, so we assume zero. */ min_len = rwflag ? MIN_LENGTH : 0; i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); if (i != 0) { PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD); memset(buf, 0, (unsigned int)num); return -1; } return strlen(buf); } void PEM_proc_type(char *buf, int type) { const char *str; char *p = buf + strlen(buf); if (type == PEM_TYPE_ENCRYPTED) str = "ENCRYPTED"; else if (type == PEM_TYPE_MIC_CLEAR) str = "MIC-CLEAR"; else if (type == PEM_TYPE_MIC_ONLY) str = "MIC-ONLY"; else str = "BAD-TYPE"; BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str); } void PEM_dek_info(char *buf, const char *type, int len, char *str) { long i; char *p = buf + strlen(buf); int j = PEM_BUFSIZE - (size_t)(p - buf), n; n = BIO_snprintf(p, j, "DEK-Info: %s,", type); if (n > 0) { j -= n; p += n; for (i = 0; i < len; i++) { n = BIO_snprintf(p, j, "%02X", 0xff & str[i]); if (n <= 0) return; j -= n; p += n; } if (j > 1) strcpy(p, "\n"); } } #ifndef OPENSSL_NO_STDIO void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, pem_password_cb *cb, void *u) { BIO *b; void *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); BIO_free(b); return ret; } #endif static int check_pem(const char *nm, const char *name) { /* Normal matching nm and name */ if (strcmp(nm, name) == 0) return 1; /* Make PEM_STRING_EVP_PKEY match any private key */ if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { int slen; const EVP_PKEY_ASN1_METHOD *ameth; if (strcmp(nm, PEM_STRING_PKCS8) == 0) return 1; if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) return 1; slen = pem_check_suffix(nm, "PRIVATE KEY"); if (slen > 0) { /* * NB: ENGINE implementations won't contain a deprecated old * private key decode function so don't look for them. */ ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); if (ameth && ameth->old_priv_decode) return 1; } return 0; } if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { int slen; const EVP_PKEY_ASN1_METHOD *ameth; slen = pem_check_suffix(nm, "PARAMETERS"); if (slen > 0) { ENGINE *e; ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); if (ameth) { int r; if (ameth->param_decode) r = 1; else r = 0; #ifndef OPENSSL_NO_ENGINE ENGINE_finish(e); #endif return r; } } return 0; } /* If reading DH parameters handle X9.42 DH format too */ if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 && strcmp(name, PEM_STRING_DHPARAMS) == 0) return 1; /* Permit older strings */ if (strcmp(nm, PEM_STRING_X509_OLD) == 0 && strcmp(name, PEM_STRING_X509) == 0) return 1; if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 && strcmp(name, PEM_STRING_X509_REQ) == 0) return 1; /* Allow normal certs to be read as trusted certs */ if (strcmp(nm, PEM_STRING_X509) == 0 && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) return 1; if (strcmp(nm, PEM_STRING_X509_OLD) == 0 && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) return 1; /* Some CAs use PKCS#7 with CERTIFICATE headers */ if (strcmp(nm, PEM_STRING_X509) == 0 && strcmp(name, PEM_STRING_PKCS7) == 0) return 1; if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 && strcmp(name, PEM_STRING_PKCS7) == 0) return 1; #ifndef OPENSSL_NO_CMS if (strcmp(nm, PEM_STRING_X509) == 0 && strcmp(name, PEM_STRING_CMS) == 0) return 1; /* Allow CMS to be read from PKCS#7 headers */ if (strcmp(nm, PEM_STRING_PKCS7) == 0 && strcmp(name, PEM_STRING_CMS) == 0) return 1; #endif return 0; } static void pem_free(void *p, unsigned int flags, size_t num) { if (flags & PEM_FLAG_SECURE) OPENSSL_secure_clear_free(p, num); else OPENSSL_free(p); } static void *pem_malloc(int num, unsigned int flags) { return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num) : OPENSSL_malloc(num); } static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u, unsigned int flags) { EVP_CIPHER_INFO cipher; char *nm = NULL, *header = NULL; unsigned char *data = NULL; long len = 0; int ret = 0; do { pem_free(nm, flags, 0); pem_free(header, flags, 0); pem_free(data, flags, len); if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) ERR_add_error_data(2, "Expecting: ", name); return 0; } } while (!check_pem(nm, name)); if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) goto err; if (!PEM_do_header(&cipher, data, &len, cb, u)) goto err; *pdata = data; *plen = len; if (pnm != NULL) *pnm = nm; ret = 1; err: if (!ret || pnm == NULL) pem_free(nm, flags, 0); pem_free(header, flags, 0); if (!ret) pem_free(data, flags, len); return ret; } int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u) { return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, PEM_FLAG_EAY_COMPATIBLE); } int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u) { return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); } #ifndef OPENSSL_NO_STDIO int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, void *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *callback, void *u) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); BIO_free(b); return ret; } #endif int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *callback, void *u) { EVP_CIPHER_CTX *ctx = NULL; int dsize = 0, i = 0, j = 0, ret = 0; unsigned char *p, *data = NULL; const char *objstr = NULL; char buf[PEM_BUFSIZE]; unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; if (enc != NULL) { objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0 || EVP_CIPHER_iv_length(enc) > (int)sizeof(iv) /* * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" * fits into buf */ || (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13) > sizeof(buf)) { PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER); goto err; } } if ((dsize = i2d(x, NULL)) < 0) { PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB); dsize = 0; goto err; } /* dsize + 8 bytes are needed */ /* actually it needs the cipher block size extra... */ data = OPENSSL_malloc((unsigned int)dsize + 20); if (data == NULL) { PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE); goto err; } p = data; i = i2d(x, &p); if (enc != NULL) { if (kstr == NULL) { if (callback == NULL) klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); else klen = (*callback) (buf, PEM_BUFSIZE, 1, u); if (klen <= 0) { PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY); goto err; } #ifdef CHARSET_EBCDIC /* Convert the pass phrase from EBCDIC */ ebcdic2ascii(buf, buf, klen); #endif kstr = (unsigned char *)buf; } if (RAND_bytes(iv, EVP_CIPHER_iv_length(enc)) <= 0) /* Generate a salt */ goto err; /* * The 'iv' is used as the iv and as a salt. It is NOT taken from * the BytesToKey function */ if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) goto err; if (kstr == (unsigned char *)buf) OPENSSL_cleanse(buf, PEM_BUFSIZE); buf[0] = '\0'; PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc), (char *)iv); /* k=strlen(buf); */ ret = 1; if ((ctx = EVP_CIPHER_CTX_new()) == NULL || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) || !EVP_EncryptUpdate(ctx, data, &j, data, i) || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) ret = 0; if (ret == 0) goto err; i += j; } else { ret = 1; buf[0] = '\0'; } i = PEM_write_bio(bp, name, buf, data, i); if (i <= 0) ret = 0; err: OPENSSL_cleanse(key, sizeof(key)); OPENSSL_cleanse(iv, sizeof(iv)); EVP_CIPHER_CTX_free(ctx); OPENSSL_cleanse(buf, PEM_BUFSIZE); OPENSSL_clear_free(data, (unsigned int)dsize); return ret; } int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, pem_password_cb *callback, void *u) { int ok; int keylen; long len = *plen; int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */ EVP_CIPHER_CTX *ctx; unsigned char key[EVP_MAX_KEY_LENGTH]; char buf[PEM_BUFSIZE]; #if LONG_MAX > INT_MAX /* Check that we did not truncate the length */ if (len > INT_MAX) { PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_HEADER_TOO_LONG); return 0; } #endif if (cipher->cipher == NULL) return 1; if (callback == NULL) keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); else keylen = callback(buf, PEM_BUFSIZE, 0, u); if (keylen < 0) { PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ); return 0; } #ifdef CHARSET_EBCDIC /* Convert the pass phrase from EBCDIC */ ebcdic2ascii(buf, buf, keylen); #endif if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), (unsigned char *)buf, keylen, 1, key, NULL)) return 0; ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) return 0; ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); if (ok) ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); if (ok) { /* Squirrel away the length of data decrypted so far. */ *plen = ilen; ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); } if (ok) *plen += ilen; else PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT); EVP_CIPHER_CTX_free(ctx); OPENSSL_cleanse((char *)buf, sizeof(buf)); OPENSSL_cleanse((char *)key, sizeof(key)); return ok; } /* * This implements a very limited PEM header parser that does not support the * full grammar of rfc1421. In particular, folded headers are not supported, * nor is additional whitespace. * * A robust implementation would make use of a library that turns the headers * into a BIO from which one folded line is read at a time, and is then split * into a header label and content. We would then parse the content of the * headers we care about. This is overkill for just this limited use-case, but * presumably we also parse rfc822-style headers for S/MIME, so a common * abstraction might well be more generally useful. */ int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) { static const char ProcType[] = "Proc-Type:"; static const char ENCRYPTED[] = "ENCRYPTED"; static const char DEKInfo[] = "DEK-Info:"; const EVP_CIPHER *enc = NULL; int ivlen; char *dekinfostart, c; cipher->cipher = NULL; memset(cipher->iv, 0, sizeof(cipher->iv)); if ((header == NULL) || (*header == '\0') || (*header == '\n')) return 1; if (strncmp(header, ProcType, sizeof(ProcType)-1) != 0) { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE); return 0; } header += sizeof(ProcType)-1; header += strspn(header, " \t"); if (*header++ != '4' || *header++ != ',') return 0; header += strspn(header, " \t"); /* We expect "ENCRYPTED" followed by optional white-space + line break */ if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED)-1) != 0 || strspn(header+sizeof(ENCRYPTED)-1, " \t\r\n") == 0) { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED); return 0; } header += sizeof(ENCRYPTED)-1; header += strspn(header, " \t\r"); if (*header++ != '\n') { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER); return 0; } /*- * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 * We expect "DEK-Info: algo[,hex-parameters]" */ if (strncmp(header, DEKInfo, sizeof(DEKInfo)-1) != 0) { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO); return 0; } header += sizeof(DEKInfo)-1; header += strspn(header, " \t"); /* * DEK-INFO is a comma-separated combination of algorithm name and optional * parameters. */ dekinfostart = header; header += strcspn(header, " \t,"); c = *header; *header = '\0'; cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); *header = c; header += strspn(header, " \t"); if (enc == NULL) { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION); return 0; } ivlen = EVP_CIPHER_iv_length(enc); if (ivlen > 0 && *header++ != ',') { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_MISSING_DEK_IV); return 0; } else if (ivlen == 0 && *header == ',') { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNEXPECTED_DEK_IV); return 0; } if (!load_iv(&header, cipher->iv, EVP_CIPHER_iv_length(enc))) return 0; return 1; } static int load_iv(char **fromp, unsigned char *to, int num) { int v, i; char *from; from = *fromp; for (i = 0; i < num; i++) to[i] = 0; num *= 2; for (i = 0; i < num; i++) { v = OPENSSL_hexchar2int(*from); if (v < 0) { PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS); return 0; } from++; to[i / 2] |= v << (long)((!(i & 1)) * 4); } *fromp = from; return 1; } #ifndef OPENSSL_NO_STDIO int PEM_write(FILE *fp, const char *name, const char *header, const unsigned char *data, long len) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_write_bio(b, name, header, data, len); BIO_free(b); return ret; } #endif int PEM_write_bio(BIO *bp, const char *name, const char *header, const unsigned char *data, long len) { int nlen, n, i, j, outl; unsigned char *buf = NULL; EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); int reason = ERR_R_BUF_LIB; int retval = 0; if (ctx == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } EVP_EncodeInit(ctx); nlen = strlen(name); if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) goto err; i = strlen(header); if (i > 0) { if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) goto err; } buf = OPENSSL_malloc(PEM_BUFSIZE * 8); if (buf == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } i = j = 0; while (len > 0) { n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) goto err; if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) goto err; i += outl; len -= n; j += n; } EVP_EncodeFinal(ctx, buf, &outl); if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) goto err; if ((BIO_write(bp, "-----END ", 9) != 9) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) goto err; retval = i + outl; err: if (retval == 0) PEMerr(PEM_F_PEM_WRITE_BIO, reason); EVP_ENCODE_CTX_free(ctx); OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); return retval; } #ifndef OPENSSL_NO_STDIO int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, long *len) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_read_bio(b, name, header, data, len); BIO_free(b); return ret; } #endif /* Some helpers for PEM_read_bio_ex(). */ static int sanitize_line(char *linebuf, int len, unsigned int flags) { int i; if (flags & PEM_FLAG_EAY_COMPATIBLE) { /* Strip trailing whitespace */ while ((len >= 0) && (linebuf[len] <= ' ')) len--; /* Go back to whitespace before applying uniform line ending. */ len++; } else if (flags & PEM_FLAG_ONLY_B64) { for (i = 0; i < len; ++i) { if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' || linebuf[i] == '\r') break; } len = i; } else { /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip * control characters in-place and let everything through. */ for (i = 0; i < len; ++i) { if (linebuf[i] == '\n' || linebuf[i] == '\r') break; if (ossl_iscntrl(linebuf[i])) linebuf[i] = ' '; } len = i; } /* The caller allocated LINESIZE+1, so this is safe. */ linebuf[len++] = '\n'; linebuf[len] = '\0'; return len; } #define LINESIZE 255 /* Note trailing spaces for begin and end. */ static const char beginstr[] = "-----BEGIN "; static const char endstr[] = "-----END "; static const char tailstr[] = "-----\n"; #define BEGINLEN ((int)(sizeof(beginstr) - 1)) #define ENDLEN ((int)(sizeof(endstr) - 1)) #define TAILLEN ((int)(sizeof(tailstr) - 1)) static int get_name(BIO *bp, char **name, unsigned int flags) { char *linebuf; int ret = 0; int len; /* * Need to hold trailing NUL (accounted for by BIO_gets() and the newline * that will be added by sanitize_line() (the extra '1'). */ linebuf = pem_malloc(LINESIZE + 1, flags); if (linebuf == NULL) { PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE); return 0; } do { len = BIO_gets(bp, linebuf, LINESIZE); if (len <= 0) { PEMerr(PEM_F_GET_NAME, PEM_R_NO_START_LINE); goto err; } /* Strip trailing garbage and standardize ending. */ len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64); /* Allow leading empty or non-matching lines. */ } while (strncmp(linebuf, beginstr, BEGINLEN) != 0 || len < TAILLEN || strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0); linebuf[len - TAILLEN] = '\0'; len = len - BEGINLEN - TAILLEN + 1; *name = pem_malloc(len, flags); if (*name == NULL) { PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE); goto err; } memcpy(*name, linebuf + BEGINLEN, len); ret = 1; err: pem_free(linebuf, flags, LINESIZE + 1); return ret; } /* Keep track of how much of a header we've seen. */ enum header_status { MAYBE_HEADER, IN_HEADER, POST_HEADER }; /** * Extract the optional PEM header, with details on the type of content and * any encryption used on the contents, and the bulk of the data from the bio. * The end of the header is marked by a blank line; if the end-of-input marker * is reached prior to a blank line, there is no header. * * The header and data arguments are BIO** since we may have to swap them * if there is no header, for efficiency. * * We need the name of the PEM-encoded type to verify the end string. */ static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name, unsigned int flags) { BIO *tmp = *header; char *linebuf, *p; int len, line, ret = 0, end = 0; /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ enum header_status got_header = MAYBE_HEADER; unsigned int flags_mask; size_t namelen; /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline * that will be added by sanitize_line() (the extra '1'). */ linebuf = pem_malloc(LINESIZE + 1, flags); if (linebuf == NULL) { PEMerr(PEM_F_GET_HEADER_AND_DATA, ERR_R_MALLOC_FAILURE); return 0; } for (line = 0; ; line++) { flags_mask = ~0u; len = BIO_gets(bp, linebuf, LINESIZE); if (len <= 0) { PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_SHORT_HEADER); goto err; } if (got_header == MAYBE_HEADER) { if (memchr(linebuf, ':', len) != NULL) got_header = IN_HEADER; } if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER) flags_mask &= ~PEM_FLAG_ONLY_B64; len = sanitize_line(linebuf, len, flags & flags_mask); /* Check for end of header. */ if (linebuf[0] == '\n') { if (got_header == POST_HEADER) { /* Another blank line is an error. */ PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); goto err; } got_header = POST_HEADER; tmp = *data; continue; } /* Check for end of stream (which means there is no header). */ if (strncmp(linebuf, endstr, ENDLEN) == 0) { p = linebuf + ENDLEN; namelen = strlen(name); if (strncmp(p, name, namelen) != 0 || strncmp(p + namelen, tailstr, TAILLEN) != 0) { PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); goto err; } if (got_header == MAYBE_HEADER) { *header = *data; *data = tmp; } break; } else if (end) { /* Malformed input; short line not at end of data. */ PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); goto err; } /* * Else, a line of text -- could be header or data; we don't * know yet. Just pass it through. */ if (BIO_puts(tmp, linebuf) < 0) goto err; /* * Only encrypted files need the line length check applied. */ if (got_header == POST_HEADER) { /* 65 includes the trailing newline */ if (len > 65) goto err; if (len < 65) end = 1; } } ret = 1; err: pem_free(linebuf, flags, LINESIZE + 1); return ret; } /** * Read in PEM-formatted data from the given BIO. * * By nature of the PEM format, all content must be printable ASCII (except * for line endings). Other characters are malformed input and will be rejected. */ int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, unsigned char **data, long *len_out, unsigned int flags) { EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); const BIO_METHOD *bmeth; BIO *headerB = NULL, *dataB = NULL; char *name = NULL; int len, taillen, headerlen, ret = 0; BUF_MEM * buf_mem; if (ctx == NULL) { PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); return 0; } *len_out = 0; *name_out = *header = NULL; *data = NULL; if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { /* These two are mutually incompatible; bail out. */ PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_PASSED_INVALID_ARGUMENT); goto end; } bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); headerB = BIO_new(bmeth); dataB = BIO_new(bmeth); if (headerB == NULL || dataB == NULL) { PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); goto end; } if (!get_name(bp, &name, flags)) goto end; if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) goto end; EVP_DecodeInit(ctx); BIO_get_mem_ptr(dataB, &buf_mem); len = buf_mem->length; if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, (unsigned char*)buf_mem->data, len) < 0 || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), &taillen) < 0) { PEMerr(PEM_F_PEM_READ_BIO_EX, PEM_R_BAD_BASE64_DECODE); goto end; } len += taillen; buf_mem->length = len; /* There was no data in the PEM file; avoid malloc(0). */ if (len == 0) goto end; headerlen = BIO_get_mem_data(headerB, NULL); *header = pem_malloc(headerlen + 1, flags); *data = pem_malloc(len, flags); if (*header == NULL || *data == NULL) { pem_free(*header, flags, 0); pem_free(*data, flags, 0); goto end; } BIO_read(headerB, *header, headerlen); (*header)[headerlen] = '\0'; BIO_read(dataB, *data, len); *len_out = len; *name_out = name; name = NULL; ret = 1; end: EVP_ENCODE_CTX_free(ctx); pem_free(name, flags, 0); BIO_free(headerB); BIO_free(dataB); return ret; } int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, long *len) { return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); } /* * Check pem string and return prefix length. If for example the pem_str == * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the * string "RSA". */ int pem_check_suffix(const char *pem_str, const char *suffix) { int pem_len = strlen(pem_str); int suffix_len = strlen(suffix); const char *p; if (suffix_len + 1 >= pem_len) return 0; p = pem_str + pem_len - suffix_len; if (strcmp(p, suffix)) return 0; p--; if (*p != ' ') return 0; return p - pem_str; } openssl-1.1.1f/crypto/pem/pem_oth.c000066400000000000000000000020311364063235100172420ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include /* Handle 'other' PEMs: not private keys */ void *PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x, pem_password_cb *cb, void *u) { const unsigned char *p = NULL; unsigned char *data = NULL; long len; char *ret = NULL; if (!PEM_bytes_read_bio(&data, &len, NULL, name, bp, cb, u)) return NULL; p = data; ret = d2i(x, &p, len); if (ret == NULL) PEMerr(PEM_F_PEM_ASN1_READ_BIO, ERR_R_ASN1_LIB); OPENSSL_free(data); return ret; } openssl-1.1.1f/crypto/pem/pem_pk8.c000066400000000000000000000150451364063235100171630ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); #ifndef OPENSSL_NO_STDIO static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); #endif /* * These functions write a private key in PKCS#8 format: it is a "drop in" * replacement for PEM_write_bio_PrivateKey() and friends. As usual if 'enc' * is NULL then it uses the unencrypted private key form. The 'nid' versions * uses PKCS#5 v1.5 PBE algorithms whereas the others use PKCS#5 v2.0. */ int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey(bp, x, 0, nid, NULL, kstr, klen, cb, u); } int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey(bp, x, 0, -1, enc, kstr, klen, cb, u); } int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey(bp, x, 1, -1, enc, kstr, klen, cb, u); } int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey(bp, x, 1, nid, NULL, kstr, klen, cb, u); } static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u) { X509_SIG *p8; PKCS8_PRIV_KEY_INFO *p8inf; char buf[PEM_BUFSIZE]; int ret; if ((p8inf = EVP_PKEY2PKCS8(x)) == NULL) { PEMerr(PEM_F_DO_PK8PKEY, PEM_R_ERROR_CONVERTING_PRIVATE_KEY); return 0; } if (enc || (nid != -1)) { if (!kstr) { if (!cb) klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); else klen = cb(buf, PEM_BUFSIZE, 1, u); if (klen <= 0) { PEMerr(PEM_F_DO_PK8PKEY, PEM_R_READ_KEY); PKCS8_PRIV_KEY_INFO_free(p8inf); return 0; } kstr = buf; } p8 = PKCS8_encrypt(nid, enc, kstr, klen, NULL, 0, 0, p8inf); if (kstr == buf) OPENSSL_cleanse(buf, klen); PKCS8_PRIV_KEY_INFO_free(p8inf); if (p8 == NULL) return 0; if (isder) ret = i2d_PKCS8_bio(bp, p8); else ret = PEM_write_bio_PKCS8(bp, p8); X509_SIG_free(p8); return ret; } else { if (isder) ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf); else ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bp, p8inf); PKCS8_PRIV_KEY_INFO_free(p8inf); return ret; } } EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) { PKCS8_PRIV_KEY_INFO *p8inf = NULL; X509_SIG *p8 = NULL; int klen; EVP_PKEY *ret; char psbuf[PEM_BUFSIZE]; p8 = d2i_PKCS8_bio(bp, NULL); if (!p8) return NULL; if (cb) klen = cb(psbuf, PEM_BUFSIZE, 0, u); else klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); if (klen < 0) { PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ); X509_SIG_free(p8); return NULL; } p8inf = PKCS8_decrypt(p8, psbuf, klen); X509_SIG_free(p8); OPENSSL_cleanse(psbuf, klen); if (!p8inf) return NULL; ret = EVP_PKCS82PKEY(p8inf); PKCS8_PRIV_KEY_INFO_free(p8inf); if (!ret) return NULL; if (x) { EVP_PKEY_free(*x); *x = ret; } return ret; } #ifndef OPENSSL_NO_STDIO int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey_fp(fp, x, 1, -1, enc, kstr, klen, cb, u); } int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey_fp(fp, x, 1, nid, NULL, kstr, klen, cb, u); } int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey_fp(fp, x, 0, nid, NULL, kstr, klen, cb, u); } int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u) { return do_pk8pkey_fp(fp, x, 0, -1, enc, kstr, klen, cb, u); } static int do_pk8pkey_fp(FILE *fp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u) { BIO *bp; int ret; if ((bp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) { PEMerr(PEM_F_DO_PK8PKEY_FP, ERR_R_BUF_LIB); return 0; } ret = do_pk8pkey(bp, x, isder, nid, enc, kstr, klen, cb, u); BIO_free(bp); return ret; } EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) { BIO *bp; EVP_PKEY *ret; if ((bp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) { PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_FP, ERR_R_BUF_LIB); return NULL; } ret = d2i_PKCS8PrivateKey_bio(bp, x, cb, u); BIO_free(bp); return ret; } #endif IMPLEMENT_PEM_rw(PKCS8, X509_SIG, PEM_STRING_PKCS8, X509_SIG) IMPLEMENT_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO, PEM_STRING_PKCS8INF, PKCS8_PRIV_KEY_INFO) openssl-1.1.1f/crypto/pem/pem_pkey.c000066400000000000000000000156531364063235100174360ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" int pem_check_suffix(const char *pem_str, const char *suffix); EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) { char *nm = NULL; const unsigned char *p = NULL; unsigned char *data = NULL; long len; int slen; EVP_PKEY *ret = NULL; if (!PEM_bytes_read_bio_secmem(&data, &len, &nm, PEM_STRING_EVP_PKEY, bp, cb, u)) return NULL; p = data; if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) { PKCS8_PRIV_KEY_INFO *p8inf; p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len); if (!p8inf) goto p8err; ret = EVP_PKCS82PKEY(p8inf); if (x) { EVP_PKEY_free((EVP_PKEY *)*x); *x = ret; } PKCS8_PRIV_KEY_INFO_free(p8inf); } else if (strcmp(nm, PEM_STRING_PKCS8) == 0) { PKCS8_PRIV_KEY_INFO *p8inf; X509_SIG *p8; int klen; char psbuf[PEM_BUFSIZE]; p8 = d2i_X509_SIG(NULL, &p, len); if (!p8) goto p8err; if (cb) klen = cb(psbuf, PEM_BUFSIZE, 0, u); else klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); if (klen < 0) { PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, PEM_R_BAD_PASSWORD_READ); X509_SIG_free(p8); goto err; } p8inf = PKCS8_decrypt(p8, psbuf, klen); X509_SIG_free(p8); OPENSSL_cleanse(psbuf, klen); if (!p8inf) goto p8err; ret = EVP_PKCS82PKEY(p8inf); if (x) { EVP_PKEY_free((EVP_PKEY *)*x); *x = ret; } PKCS8_PRIV_KEY_INFO_free(p8inf); } else if ((slen = pem_check_suffix(nm, "PRIVATE KEY")) > 0) { const EVP_PKEY_ASN1_METHOD *ameth; ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); if (!ameth || !ameth->old_priv_decode) goto p8err; ret = d2i_PrivateKey(ameth->pkey_id, x, &p, len); } p8err: if (ret == NULL) PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, ERR_R_ASN1_LIB); err: OPENSSL_secure_free(nm); OPENSSL_secure_clear_free(data, len); return ret; } int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { if (x->ameth == NULL || x->ameth->priv_encode != NULL) return PEM_write_bio_PKCS8PrivateKey(bp, x, enc, (char *)kstr, klen, cb, u); return PEM_write_bio_PrivateKey_traditional(bp, x, enc, kstr, klen, cb, u); } int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { char pem_str[80]; BIO_snprintf(pem_str, 80, "%s PRIVATE KEY", x->ameth->pem_str); return PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, pem_str, bp, x, enc, kstr, klen, cb, u); } EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x) { char *nm = NULL; const unsigned char *p = NULL; unsigned char *data = NULL; long len; int slen; EVP_PKEY *ret = NULL; if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS, bp, 0, NULL)) return NULL; p = data; if ((slen = pem_check_suffix(nm, "PARAMETERS")) > 0) { ret = EVP_PKEY_new(); if (ret == NULL) goto err; if (!EVP_PKEY_set_type_str(ret, nm, slen) || !ret->ameth->param_decode || !ret->ameth->param_decode(ret, &p, len)) { EVP_PKEY_free(ret); ret = NULL; goto err; } if (x) { EVP_PKEY_free((EVP_PKEY *)*x); *x = ret; } } err: if (ret == NULL) PEMerr(PEM_F_PEM_READ_BIO_PARAMETERS, ERR_R_ASN1_LIB); OPENSSL_free(nm); OPENSSL_free(data); return ret; } int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x) { char pem_str[80]; if (!x->ameth || !x->ameth->param_encode) return 0; BIO_snprintf(pem_str, 80, "%s PARAMETERS", x->ameth->pem_str); return PEM_ASN1_write_bio((i2d_of_void *)x->ameth->param_encode, pem_str, bp, x, NULL, NULL, 0, 0, NULL); } #ifndef OPENSSL_NO_STDIO EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) { BIO *b; EVP_PKEY *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { PEMerr(PEM_F_PEM_READ_PRIVATEKEY, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_read_bio_PrivateKey(b, x, cb, u); BIO_free(b); return ret; } int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { BIO *b; int ret; if ((b = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) { PEMerr(PEM_F_PEM_WRITE_PRIVATEKEY, ERR_R_BUF_LIB); return 0; } ret = PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u); BIO_free(b); return ret; } #endif #ifndef OPENSSL_NO_DH /* Transparently read in PKCS#3 or X9.42 DH parameters */ DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u) { char *nm = NULL; const unsigned char *p = NULL; unsigned char *data = NULL; long len; DH *ret = NULL; if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_DHPARAMS, bp, cb, u)) return NULL; p = data; if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0) ret = d2i_DHxparams(x, &p, len); else ret = d2i_DHparams(x, &p, len); if (ret == NULL) PEMerr(PEM_F_PEM_READ_BIO_DHPARAMS, ERR_R_ASN1_LIB); OPENSSL_free(nm); OPENSSL_free(data); return ret; } # ifndef OPENSSL_NO_STDIO DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u) { BIO *b; DH *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { PEMerr(PEM_F_PEM_READ_DHPARAMS, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_read_bio_DHparams(b, x, cb, u); BIO_free(b); return ret; } # endif #endif openssl-1.1.1f/crypto/pem/pem_sign.c000066400000000000000000000024101364063235100174110ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include int PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type) { return EVP_DigestInit_ex(ctx, type, NULL); } int PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data, unsigned int count) { return EVP_DigestUpdate(ctx, data, count); } int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen, EVP_PKEY *pkey) { unsigned char *m; int i, ret = 0; unsigned int m_len; m = OPENSSL_malloc(EVP_PKEY_size(pkey)); if (m == NULL) { PEMerr(PEM_F_PEM_SIGNFINAL, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_SignFinal(ctx, m, &m_len, pkey) <= 0) goto err; i = EVP_EncodeBlock(sigret, m, m_len); *siglen = i; ret = 1; err: /* ctx has been zeroed by EVP_SignFinal() */ OPENSSL_free(m); return ret; } openssl-1.1.1f/crypto/pem/pem_x509.c000066400000000000000000000010651364063235100171630ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include IMPLEMENT_PEM_rw(X509, X509, PEM_STRING_X509, X509) openssl-1.1.1f/crypto/pem/pem_xaux.c000066400000000000000000000011051364063235100174360ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include IMPLEMENT_PEM_rw(X509_AUX, X509, PEM_STRING_X509_TRUSTED, X509_AUX) openssl-1.1.1f/crypto/pem/pvkfmt.c000066400000000000000000000567561364063235100171450ustar00rootroot00000000000000/* * Copyright 2005-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Support for PVK format keys and related structures (such a PUBLICKEYBLOB * and PRIVATEKEYBLOB). */ #include "internal/cryptlib.h" #include #include #include #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) # include # include /* * Utility function: read a DWORD (4 byte unsigned integer) in little endian * format */ static unsigned int read_ledword(const unsigned char **in) { const unsigned char *p = *in; unsigned int ret; ret = *p++; ret |= (*p++ << 8); ret |= (*p++ << 16); ret |= (*p++ << 24); *in = p; return ret; } /* * Read a BIGNUM in little endian format. The docs say that this should take * up bitlen/8 bytes. */ static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) { *r = BN_lebin2bn(*in, nbyte, NULL); if (*r == NULL) return 0; *in += nbyte; return 1; } /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ # define MS_PUBLICKEYBLOB 0x6 # define MS_PRIVATEKEYBLOB 0x7 # define MS_RSA1MAGIC 0x31415352L # define MS_RSA2MAGIC 0x32415352L # define MS_DSS1MAGIC 0x31535344L # define MS_DSS2MAGIC 0x32535344L # define MS_KEYALG_RSA_KEYX 0xa400 # define MS_KEYALG_DSS_SIGN 0x2200 # define MS_KEYTYPE_KEYX 0x1 # define MS_KEYTYPE_SIGN 0x2 /* Maximum length of a blob after header */ # define BLOB_MAX_LENGTH 102400 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ # define MS_PVKMAGIC 0xb0b5f11eL /* Salt length for PVK files */ # define PVK_SALTLEN 0x10 /* Maximum length in PVK header */ # define PVK_MAX_KEYLEN 102400 /* Maximum salt length */ # define PVK_MAX_SALTLEN 10240 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int bitlen, int ispub); static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int bitlen, int ispub); static int do_blob_header(const unsigned char **in, unsigned int length, unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub) { const unsigned char *p = *in; if (length < 16) return 0; /* bType */ if (*p == MS_PUBLICKEYBLOB) { if (*pispub == 0) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); return 0; } *pispub = 1; } else if (*p == MS_PRIVATEKEYBLOB) { if (*pispub == 1) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); return 0; } *pispub = 0; } else return 0; p++; /* Version */ if (*p++ != 0x2) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); return 0; } /* Ignore reserved, aiKeyAlg */ p += 6; *pmagic = read_ledword(&p); *pbitlen = read_ledword(&p); *pisdss = 0; switch (*pmagic) { case MS_DSS1MAGIC: *pisdss = 1; /* fall thru */ case MS_RSA1MAGIC: if (*pispub == 0) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); return 0; } break; case MS_DSS2MAGIC: *pisdss = 1; /* fall thru */ case MS_RSA2MAGIC: if (*pispub == 1) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); return 0; } break; default: PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); return -1; } *in = p; return 1; } static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) { unsigned int nbyte, hnbyte; nbyte = (bitlen + 7) >> 3; hnbyte = (bitlen + 15) >> 4; if (isdss) { /* * Expected length: 20 for q + 3 components bitlen each + 24 for seed * structure. */ if (ispub) return 44 + 3 * nbyte; /* * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed * structure. */ else return 64 + 2 * nbyte; } else { /* Expected length: 4 for 'e' + 'n' */ if (ispub) return 4 + nbyte; else /* * Expected length: 4 for 'e' and 7 other components. 2 * components are bitlen size, 5 are bitlen/2 */ return 4 + 2 * nbyte + 5 * hnbyte; } } static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, int ispub) { const unsigned char *p = *in; unsigned int bitlen, magic; int isdss; if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); return NULL; } length -= 16; if (length < blob_length(bitlen, isdss, ispub)) { PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); return NULL; } if (isdss) return b2i_dss(&p, bitlen, ispub); else return b2i_rsa(&p, bitlen, ispub); } static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) { const unsigned char *p; unsigned char hdr_buf[16], *buf = NULL; unsigned int bitlen, magic, length; int isdss; EVP_PKEY *ret = NULL; if (BIO_read(in, hdr_buf, 16) != 16) { PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); return NULL; } p = hdr_buf; if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) return NULL; length = blob_length(bitlen, isdss, ispub); if (length > BLOB_MAX_LENGTH) { PEMerr(PEM_F_DO_B2I_BIO, PEM_R_HEADER_TOO_LONG); return NULL; } buf = OPENSSL_malloc(length); if (buf == NULL) { PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); goto err; } p = buf; if (BIO_read(in, buf, length) != (int)length) { PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); goto err; } if (isdss) ret = b2i_dss(&p, bitlen, ispub); else ret = b2i_rsa(&p, bitlen, ispub); err: OPENSSL_free(buf); return ret; } static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int bitlen, int ispub) { const unsigned char *p = *in; EVP_PKEY *ret = NULL; DSA *dsa = NULL; BN_CTX *ctx = NULL; unsigned int nbyte; BIGNUM *pbn = NULL, *qbn = NULL, *gbn = NULL, *priv_key = NULL; BIGNUM *pub_key = NULL; nbyte = (bitlen + 7) >> 3; dsa = DSA_new(); ret = EVP_PKEY_new(); if (dsa == NULL || ret == NULL) goto memerr; if (!read_lebn(&p, nbyte, &pbn)) goto memerr; if (!read_lebn(&p, 20, &qbn)) goto memerr; if (!read_lebn(&p, nbyte, &gbn)) goto memerr; if (ispub) { if (!read_lebn(&p, nbyte, &pub_key)) goto memerr; } else { if (!read_lebn(&p, 20, &priv_key)) goto memerr; /* Set constant time flag before public key calculation */ BN_set_flags(priv_key, BN_FLG_CONSTTIME); /* Calculate public key */ pub_key = BN_new(); if (pub_key == NULL) goto memerr; if ((ctx = BN_CTX_new()) == NULL) goto memerr; if (!BN_mod_exp(pub_key, gbn, priv_key, pbn, ctx)) goto memerr; BN_CTX_free(ctx); ctx = NULL; } if (!DSA_set0_pqg(dsa, pbn, qbn, gbn)) goto memerr; pbn = qbn = gbn = NULL; if (!DSA_set0_key(dsa, pub_key, priv_key)) goto memerr; pub_key = priv_key = NULL; if (!EVP_PKEY_set1_DSA(ret, dsa)) goto memerr; DSA_free(dsa); *in = p; return ret; memerr: PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); DSA_free(dsa); BN_free(pbn); BN_free(qbn); BN_free(gbn); BN_free(pub_key); BN_free(priv_key); EVP_PKEY_free(ret); BN_CTX_free(ctx); return NULL; } static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int bitlen, int ispub) { const unsigned char *pin = *in; EVP_PKEY *ret = NULL; BIGNUM *e = NULL, *n = NULL, *d = NULL; BIGNUM *p = NULL, *q = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL; RSA *rsa = NULL; unsigned int nbyte, hnbyte; nbyte = (bitlen + 7) >> 3; hnbyte = (bitlen + 15) >> 4; rsa = RSA_new(); ret = EVP_PKEY_new(); if (rsa == NULL || ret == NULL) goto memerr; e = BN_new(); if (e == NULL) goto memerr; if (!BN_set_word(e, read_ledword(&pin))) goto memerr; if (!read_lebn(&pin, nbyte, &n)) goto memerr; if (!ispub) { if (!read_lebn(&pin, hnbyte, &p)) goto memerr; if (!read_lebn(&pin, hnbyte, &q)) goto memerr; if (!read_lebn(&pin, hnbyte, &dmp1)) goto memerr; if (!read_lebn(&pin, hnbyte, &dmq1)) goto memerr; if (!read_lebn(&pin, hnbyte, &iqmp)) goto memerr; if (!read_lebn(&pin, nbyte, &d)) goto memerr; if (!RSA_set0_factors(rsa, p, q)) goto memerr; p = q = NULL; if (!RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp)) goto memerr; dmp1 = dmq1 = iqmp = NULL; } if (!RSA_set0_key(rsa, n, e, d)) goto memerr; n = e = d = NULL; if (!EVP_PKEY_set1_RSA(ret, rsa)) goto memerr; RSA_free(rsa); *in = pin; return ret; memerr: PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); BN_free(e); BN_free(n); BN_free(p); BN_free(q); BN_free(dmp1); BN_free(dmq1); BN_free(iqmp); BN_free(d); RSA_free(rsa); EVP_PKEY_free(ret); return NULL; } EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) { return do_b2i(in, length, 0); } EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) { return do_b2i(in, length, 1); } EVP_PKEY *b2i_PrivateKey_bio(BIO *in) { return do_b2i_bio(in, 0); } EVP_PKEY *b2i_PublicKey_bio(BIO *in) { return do_b2i_bio(in, 1); } static void write_ledword(unsigned char **out, unsigned int dw) { unsigned char *p = *out; *p++ = dw & 0xff; *p++ = (dw >> 8) & 0xff; *p++ = (dw >> 16) & 0xff; *p++ = (dw >> 24) & 0xff; *out = p; } static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) { BN_bn2lebinpad(bn, *out, len); *out += len; } static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); static void write_rsa(unsigned char **out, RSA *rsa, int ispub); static void write_dsa(unsigned char **out, DSA *dsa, int ispub); static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) { unsigned char *p; unsigned int bitlen, magic = 0, keyalg; int outlen, noinc = 0; int pktype = EVP_PKEY_id(pk); if (pktype == EVP_PKEY_DSA) { bitlen = check_bitlen_dsa(EVP_PKEY_get0_DSA(pk), ispub, &magic); keyalg = MS_KEYALG_DSS_SIGN; } else if (pktype == EVP_PKEY_RSA) { bitlen = check_bitlen_rsa(EVP_PKEY_get0_RSA(pk), ispub, &magic); keyalg = MS_KEYALG_RSA_KEYX; } else return -1; if (bitlen == 0) return -1; outlen = 16 + blob_length(bitlen, keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); if (out == NULL) return outlen; if (*out) p = *out; else { if ((p = OPENSSL_malloc(outlen)) == NULL) { PEMerr(PEM_F_DO_I2B, ERR_R_MALLOC_FAILURE); return -1; } *out = p; noinc = 1; } if (ispub) *p++ = MS_PUBLICKEYBLOB; else *p++ = MS_PRIVATEKEYBLOB; *p++ = 0x2; *p++ = 0; *p++ = 0; write_ledword(&p, keyalg); write_ledword(&p, magic); write_ledword(&p, bitlen); if (keyalg == MS_KEYALG_DSS_SIGN) write_dsa(&p, EVP_PKEY_get0_DSA(pk), ispub); else write_rsa(&p, EVP_PKEY_get0_RSA(pk), ispub); if (!noinc) *out += outlen; return outlen; } static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) { unsigned char *tmp = NULL; int outlen, wrlen; outlen = do_i2b(&tmp, pk, ispub); if (outlen < 0) return -1; wrlen = BIO_write(out, tmp, outlen); OPENSSL_free(tmp); if (wrlen == outlen) return outlen; return -1; } static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) { int bitlen; const BIGNUM *p = NULL, *q = NULL, *g = NULL; const BIGNUM *pub_key = NULL, *priv_key = NULL; DSA_get0_pqg(dsa, &p, &q, &g); DSA_get0_key(dsa, &pub_key, &priv_key); bitlen = BN_num_bits(p); if ((bitlen & 7) || (BN_num_bits(q) != 160) || (BN_num_bits(g) > bitlen)) goto badkey; if (ispub) { if (BN_num_bits(pub_key) > bitlen) goto badkey; *pmagic = MS_DSS1MAGIC; } else { if (BN_num_bits(priv_key) > 160) goto badkey; *pmagic = MS_DSS2MAGIC; } return bitlen; badkey: PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); return 0; } static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) { int nbyte, hnbyte, bitlen; const BIGNUM *e; RSA_get0_key(rsa, NULL, &e, NULL); if (BN_num_bits(e) > 32) goto badkey; bitlen = RSA_bits(rsa); nbyte = RSA_size(rsa); hnbyte = (bitlen + 15) >> 4; if (ispub) { *pmagic = MS_RSA1MAGIC; return bitlen; } else { const BIGNUM *d, *p, *q, *iqmp, *dmp1, *dmq1; *pmagic = MS_RSA2MAGIC; /* * For private key each component must fit within nbyte or hnbyte. */ RSA_get0_key(rsa, NULL, NULL, &d); if (BN_num_bytes(d) > nbyte) goto badkey; RSA_get0_factors(rsa, &p, &q); RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); if ((BN_num_bytes(iqmp) > hnbyte) || (BN_num_bytes(p) > hnbyte) || (BN_num_bytes(q) > hnbyte) || (BN_num_bytes(dmp1) > hnbyte) || (BN_num_bytes(dmq1) > hnbyte)) goto badkey; } return bitlen; badkey: PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); return 0; } static void write_rsa(unsigned char **out, RSA *rsa, int ispub) { int nbyte, hnbyte; const BIGNUM *n, *d, *e, *p, *q, *iqmp, *dmp1, *dmq1; nbyte = RSA_size(rsa); hnbyte = (RSA_bits(rsa) + 15) >> 4; RSA_get0_key(rsa, &n, &e, &d); write_lebn(out, e, 4); write_lebn(out, n, nbyte); if (ispub) return; RSA_get0_factors(rsa, &p, &q); RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); write_lebn(out, p, hnbyte); write_lebn(out, q, hnbyte); write_lebn(out, dmp1, hnbyte); write_lebn(out, dmq1, hnbyte); write_lebn(out, iqmp, hnbyte); write_lebn(out, d, nbyte); } static void write_dsa(unsigned char **out, DSA *dsa, int ispub) { int nbyte; const BIGNUM *p = NULL, *q = NULL, *g = NULL; const BIGNUM *pub_key = NULL, *priv_key = NULL; DSA_get0_pqg(dsa, &p, &q, &g); DSA_get0_key(dsa, &pub_key, &priv_key); nbyte = BN_num_bytes(p); write_lebn(out, p, nbyte); write_lebn(out, q, 20); write_lebn(out, g, nbyte); if (ispub) write_lebn(out, pub_key, nbyte); else write_lebn(out, priv_key, 20); /* Set "invalid" for seed structure values */ memset(*out, 0xff, 24); *out += 24; return; } int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) { return do_i2b_bio(out, pk, 0); } int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) { return do_i2b_bio(out, pk, 1); } # ifndef OPENSSL_NO_RC4 static int do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic, unsigned int *psaltlen, unsigned int *pkeylen) { const unsigned char *p = *in; unsigned int pvk_magic, is_encrypted; if (skip_magic) { if (length < 20) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); return 0; } } else { if (length < 24) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); return 0; } pvk_magic = read_ledword(&p); if (pvk_magic != MS_PVKMAGIC) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); return 0; } } /* Skip reserved */ p += 4; /* * keytype = */ read_ledword(&p); is_encrypted = read_ledword(&p); *psaltlen = read_ledword(&p); *pkeylen = read_ledword(&p); if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN) return 0; if (is_encrypted && !*psaltlen) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); return 0; } *in = p; return 1; } static int derive_pvk_key(unsigned char *key, const unsigned char *salt, unsigned int saltlen, const unsigned char *pass, int passlen) { EVP_MD_CTX *mctx = EVP_MD_CTX_new(); int rv = 1; if (mctx == NULL || !EVP_DigestInit_ex(mctx, EVP_sha1(), NULL) || !EVP_DigestUpdate(mctx, salt, saltlen) || !EVP_DigestUpdate(mctx, pass, passlen) || !EVP_DigestFinal_ex(mctx, key, NULL)) rv = 0; EVP_MD_CTX_free(mctx); return rv; } static EVP_PKEY *do_PVK_body(const unsigned char **in, unsigned int saltlen, unsigned int keylen, pem_password_cb *cb, void *u) { EVP_PKEY *ret = NULL; const unsigned char *p = *in; unsigned int magic; unsigned char *enctmp = NULL, *q; unsigned char keybuf[20]; EVP_CIPHER_CTX *cctx = EVP_CIPHER_CTX_new(); if (saltlen) { char psbuf[PEM_BUFSIZE]; int enctmplen, inlen; if (cb) inlen = cb(psbuf, PEM_BUFSIZE, 0, u); else inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); if (inlen < 0) { PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ); goto err; } enctmp = OPENSSL_malloc(keylen + 8); if (enctmp == NULL) { PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); goto err; } if (!derive_pvk_key(keybuf, p, saltlen, (unsigned char *)psbuf, inlen)) goto err; p += saltlen; /* Copy BLOBHEADER across, decrypt rest */ memcpy(enctmp, p, 8); p += 8; if (keylen < 8) { PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT); goto err; } inlen = keylen - 8; q = enctmp + 8; if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) goto err; if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) goto err; if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) goto err; magic = read_ledword((const unsigned char **)&q); if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { q = enctmp + 8; memset(keybuf + 5, 0, 11); if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) goto err; if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) goto err; if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) goto err; magic = read_ledword((const unsigned char **)&q); if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); goto err; } } p = enctmp; } ret = b2i_PrivateKey(&p, keylen); err: EVP_CIPHER_CTX_free(cctx); if (enctmp != NULL) { OPENSSL_cleanse(keybuf, sizeof(keybuf)); OPENSSL_free(enctmp); } return ret; } EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) { unsigned char pvk_hdr[24], *buf = NULL; const unsigned char *p; int buflen; EVP_PKEY *ret = NULL; unsigned int saltlen, keylen; if (BIO_read(in, pvk_hdr, 24) != 24) { PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); return NULL; } p = pvk_hdr; if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) return 0; buflen = (int)keylen + saltlen; buf = OPENSSL_malloc(buflen); if (buf == NULL) { PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); return 0; } p = buf; if (BIO_read(in, buf, buflen) != buflen) { PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); goto err; } ret = do_PVK_body(&p, saltlen, keylen, cb, u); err: OPENSSL_clear_free(buf, buflen); return ret; } static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) { int outlen = 24, pklen; unsigned char *p = NULL, *start = NULL, *salt = NULL; EVP_CIPHER_CTX *cctx = NULL; if (enclevel) outlen += PVK_SALTLEN; pklen = do_i2b(NULL, pk, 0); if (pklen < 0) return -1; outlen += pklen; if (out == NULL) return outlen; if (*out != NULL) { p = *out; } else { start = p = OPENSSL_malloc(outlen); if (p == NULL) { PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE); return -1; } } cctx = EVP_CIPHER_CTX_new(); if (cctx == NULL) goto error; write_ledword(&p, MS_PVKMAGIC); write_ledword(&p, 0); if (EVP_PKEY_id(pk) == EVP_PKEY_DSA) write_ledword(&p, MS_KEYTYPE_SIGN); else write_ledword(&p, MS_KEYTYPE_KEYX); write_ledword(&p, enclevel ? 1 : 0); write_ledword(&p, enclevel ? PVK_SALTLEN : 0); write_ledword(&p, pklen); if (enclevel) { if (RAND_bytes(p, PVK_SALTLEN) <= 0) goto error; salt = p; p += PVK_SALTLEN; } do_i2b(&p, pk, 0); if (enclevel != 0) { char psbuf[PEM_BUFSIZE]; unsigned char keybuf[20]; int enctmplen, inlen; if (cb) inlen = cb(psbuf, PEM_BUFSIZE, 1, u); else inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); if (inlen <= 0) { PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ); goto error; } if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, (unsigned char *)psbuf, inlen)) goto error; if (enclevel == 1) memset(keybuf + 5, 0, 11); p = salt + PVK_SALTLEN + 8; if (!EVP_EncryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) goto error; OPENSSL_cleanse(keybuf, 20); if (!EVP_EncryptUpdate(cctx, p, &enctmplen, p, pklen - 8)) goto error; if (!EVP_EncryptFinal_ex(cctx, p + enctmplen, &enctmplen)) goto error; } EVP_CIPHER_CTX_free(cctx); if (*out == NULL) *out = start; return outlen; error: EVP_CIPHER_CTX_free(cctx); if (*out == NULL) OPENSSL_free(start); return -1; } int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) { unsigned char *tmp = NULL; int outlen, wrlen; outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); if (outlen < 0) return -1; wrlen = BIO_write(out, tmp, outlen); OPENSSL_free(tmp); if (wrlen == outlen) { PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); return outlen; } return -1; } # endif #endif openssl-1.1.1f/crypto/perlasm/000077500000000000000000000000001364063235100163315ustar00rootroot00000000000000openssl-1.1.1f/crypto/perlasm/README000066400000000000000000000065151364063235100172200ustar00rootroot00000000000000The perl scripts in this directory are my 'hack' to generate multiple different assembler formats via the one original script. The way to use this library is to start with adding the path to this directory and then include it. push(@INC,"perlasm","../../perlasm"); require "x86asm.pl"; The first thing we do is setup the file and type of assembler &asm_init($ARGV[0]); The first argument is the 'type'. Currently 'cpp', 'sol', 'a.out', 'elf' or 'win32'. Argument 2 is the file name. The reciprocal function is &asm_finish() which should be called at the end. There are 2 main 'packages'. x86ms.pl, which is the Microsoft assembler, and x86unix.pl which is the unix (gas) version. Functions of interest are: &external_label("des_SPtrans"); declare and external variable &LB(reg); Low byte for a register &HB(reg); High byte for a register &BP(off,base,index,scale) Byte pointer addressing &DWP(off,base,index,scale) Word pointer addressing &stack_push(num) Basically a 'sub esp, num*4' with extra &stack_pop(num) inverse of stack_push &function_begin(name,extra) Start a function with pushing of edi, esi, ebx and ebp. extra is extra win32 external info that may be required. &function_begin_B(name,extra) Same as normal function_begin but no pushing. &function_end(name) Call at end of function. &function_end_A(name) Standard pop and ret, for use inside functions &function_end_B(name) Call at end but with pop or ret. &swtmp(num) Address on stack temp word. &wparam(num) Parameter number num, that was push in C convention. This all works over pushes and pops. &comment("hello there") Put in a comment. &label("loop") Refer to a label, normally a jmp target. &set_label("loop") Set a label at this point. &data_word(word) Put in a word of data. So how does this all hold together? Given int calc(int len, int *data) { int i,j=0; for (i=0; i$output" || die "can't open $output: $!"; $flavour = "linux32" if (!$flavour or $flavour eq "void"); my %GLOBALS; my $dotinlocallabels=($flavour=~/linux/)?1:0; ################################################################ # directives which need special treatment on different platforms ################################################################ my $arch = sub { if ($flavour =~ /linux/) { ".arch\t".join(',',@_); } else { ""; } }; my $fpu = sub { if ($flavour =~ /linux/) { ".fpu\t".join(',',@_); } else { ""; } }; my $hidden = sub { if ($flavour =~ /ios/) { ".private_extern\t".join(',',@_); } else { ".hidden\t".join(',',@_); } }; my $comm = sub { my @args = split(/,\s*/,shift); my $name = @args[0]; my $global = \$GLOBALS{$name}; my $ret; if ($flavour =~ /ios32/) { $ret = ".comm\t_$name,@args[1]\n"; $ret .= ".non_lazy_symbol_pointer\n"; $ret .= "$name:\n"; $ret .= ".indirect_symbol\t_$name\n"; $ret .= ".long\t0"; $name = "_$name"; } else { $ret = ".comm\t".join(',',@args); } $$global = $name; $ret; }; my $globl = sub { my $name = shift; my $global = \$GLOBALS{$name}; my $ret; SWITCH: for ($flavour) { /ios/ && do { $name = "_$name"; last; }; } $ret = ".globl $name" if (!$ret); $$global = $name; $ret; }; my $global = $globl; my $extern = sub { &$globl(@_); return; # return nothing }; my $type = sub { if ($flavour =~ /linux/) { ".type\t".join(',',@_); } elsif ($flavour =~ /ios32/) { if (join(',',@_) =~ /(\w+),%function/) { "#ifdef __thumb2__\n". ".thumb_func $1\n". "#endif"; } } else { ""; } }; my $size = sub { if ($flavour =~ /linux/) { ".size\t".join(',',@_); } else { ""; } }; my $inst = sub { if ($flavour =~ /linux/) { ".inst\t".join(',',@_); } else { ".long\t".join(',',@_); } }; my $asciz = sub { my $line = join(",",@_); if ($line =~ /^"(.*)"$/) { ".byte " . join(",",unpack("C*",$1),0) . "\n.align 2"; } else { ""; } }; sub range { my ($r,$sfx,$start,$end) = @_; join(",",map("$r$_$sfx",($start..$end))); } sub expand_line { my $line = shift; my @ret = (); pos($line)=0; while ($line =~ m/\G[^@\/\{\"]*/g) { if ($line =~ m/\G(@|\/\/|$)/gc) { last; } elsif ($line =~ m/\G\{/gc) { my $saved_pos = pos($line); $line =~ s/\G([rdqv])([0-9]+)([^\-]*)\-\1([0-9]+)\3/range($1,$3,$2,$4)/e; pos($line) = $saved_pos; $line =~ m/\G[^\}]*\}/g; } elsif ($line =~ m/\G\"/gc) { $line =~ m/\G[^\"]*\"/g; } } $line =~ s/\b(\w+)/$GLOBALS{$1} or $1/ge; return $line; } while(my $line=<>) { if ($line =~ m/^\s*(#|@|\/\/)/) { print $line; next; } $line =~ s|/\*.*\*/||; # get rid of C-style comments... $line =~ s|^\s+||; # ... and skip white spaces in beginning... $line =~ s|\s+$||; # ... and at the end { $line =~ s|[\b\.]L(\w{2,})|L$1|g; # common denominator for Locallabel $line =~ s|\bL(\w{2,})|\.L$1|g if ($dotinlocallabels); } { $line =~ s|(^[\.\w]+)\:\s*||; my $label = $1; if ($label) { printf "%s:",($GLOBALS{$label} or $label); } } if ($line !~ m/^[#@]/) { $line =~ s|^\s*(\.?)(\S+)\s*||; my $c = $1; $c = "\t" if ($c eq ""); my $mnemonic = $2; my $opcode; if ($mnemonic =~ m/([^\.]+)\.([^\.]+)/) { $opcode = eval("\$$1_$2"); } else { $opcode = eval("\$$mnemonic"); } my $arg=expand_line($line); if (ref($opcode) eq 'CODE') { $line = &$opcode($arg); } elsif ($mnemonic) { $line = $c.$mnemonic; $line.= "\t$arg" if ($arg ne ""); } } print $line if ($line); print "\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/perlasm/cbc.pl000066400000000000000000000222631364063235100174220ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # void des_ncbc_encrypt(input, output, length, schedule, ivec, enc) # des_cblock (*input); # des_cblock (*output); # long length; # des_key_schedule schedule; # des_cblock (*ivec); # int enc; # # calls # des_encrypt((DES_LONG *)tin,schedule,DES_ENCRYPT); # #&cbc("des_ncbc_encrypt","des_encrypt",0); #&cbc("BF_cbc_encrypt","BF_encrypt","BF_encrypt", # 1,4,5,3,5,-1); #&cbc("des_ncbc_encrypt","des_encrypt","des_encrypt", # 0,4,5,3,5,-1); #&cbc("des_ede3_cbc_encrypt","des_encrypt3","des_decrypt3", # 0,6,7,3,4,5); # # When doing a cipher that needs bigendian order, # for encrypt, the iv is kept in bigendian form, # while for decrypt, it is kept in little endian. sub cbc { local($name,$enc_func,$dec_func,$swap,$iv_off,$enc_off,$p1,$p2,$p3)=@_; # name is the function name # enc_func and dec_func and the functions to call for encrypt/decrypt # swap is true if byte order needs to be reversed # iv_off is parameter number for the iv # enc_off is parameter number for the encrypt/decrypt flag # p1,p2,p3 are the offsets for parameters to be passed to the # underlying calls. &function_begin_B($name,""); &comment(""); $in="esi"; $out="edi"; $count="ebp"; &push("ebp"); &push("ebx"); &push("esi"); &push("edi"); $data_off=4; $data_off+=4 if ($p1 > 0); $data_off+=4 if ($p2 > 0); $data_off+=4 if ($p3 > 0); &mov($count, &wparam(2)); # length &comment("getting iv ptr from parameter $iv_off"); &mov("ebx", &wparam($iv_off)); # Get iv ptr &mov($in, &DWP(0,"ebx","",0));# iv[0] &mov($out, &DWP(4,"ebx","",0));# iv[1] &push($out); &push($in); &push($out); # used in decrypt for iv[1] &push($in); # used in decrypt for iv[0] &mov("ebx", "esp"); # This is the address of tin[2] &mov($in, &wparam(0)); # in &mov($out, &wparam(1)); # out # We have loaded them all, how lets push things &comment("getting encrypt flag from parameter $enc_off"); &mov("ecx", &wparam($enc_off)); # Get enc flag if ($p3 > 0) { &comment("get and push parameter $p3"); if ($enc_off != $p3) { &mov("eax", &wparam($p3)); &push("eax"); } else { &push("ecx"); } } if ($p2 > 0) { &comment("get and push parameter $p2"); if ($enc_off != $p2) { &mov("eax", &wparam($p2)); &push("eax"); } else { &push("ecx"); } } if ($p1 > 0) { &comment("get and push parameter $p1"); if ($enc_off != $p1) { &mov("eax", &wparam($p1)); &push("eax"); } else { &push("ecx"); } } &push("ebx"); # push data/iv &cmp("ecx",0); &jz(&label("decrypt")); &and($count,0xfffffff8); &mov("eax", &DWP($data_off,"esp","",0)); # load iv[0] &mov("ebx", &DWP($data_off+4,"esp","",0)); # load iv[1] &jz(&label("encrypt_finish")); ############################################################# &set_label("encrypt_loop"); # encrypt start # "eax" and "ebx" hold iv (or the last cipher text) &mov("ecx", &DWP(0,$in,"",0)); # load first 4 bytes &mov("edx", &DWP(4,$in,"",0)); # second 4 bytes &xor("eax", "ecx"); &xor("ebx", "edx"); &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov(&DWP($data_off,"esp","",0), "eax"); # put in array for call &mov(&DWP($data_off+4,"esp","",0), "ebx"); # &call($enc_func); &mov("eax", &DWP($data_off,"esp","",0)); &mov("ebx", &DWP($data_off+4,"esp","",0)); &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov(&DWP(0,$out,"",0),"eax"); &mov(&DWP(4,$out,"",0),"ebx"); # eax and ebx are the next iv. &add($in, 8); &add($out, 8); &sub($count, 8); &jnz(&label("encrypt_loop")); ###################################################################3 &set_label("encrypt_finish"); &mov($count, &wparam(2)); # length &and($count, 7); &jz(&label("finish")); &call(&label("PIC_point")); &set_label("PIC_point"); &blindpop("edx"); &lea("ecx",&DWP(&label("cbc_enc_jmp_table")."-".&label("PIC_point"),"edx")); &mov($count,&DWP(0,"ecx",$count,4)); &add($count,"edx"); &xor("ecx","ecx"); &xor("edx","edx"); #&mov($count,&DWP(&label("cbc_enc_jmp_table"),"",$count,4)); &jmp_ptr($count); &set_label("ej7"); &movb(&HB("edx"), &BP(6,$in,"",0)); &shl("edx",8); &set_label("ej6"); &movb(&HB("edx"), &BP(5,$in,"",0)); &set_label("ej5"); &movb(&LB("edx"), &BP(4,$in,"",0)); &set_label("ej4"); &mov("ecx", &DWP(0,$in,"",0)); &jmp(&label("ejend")); &set_label("ej3"); &movb(&HB("ecx"), &BP(2,$in,"",0)); &shl("ecx",8); &set_label("ej2"); &movb(&HB("ecx"), &BP(1,$in,"",0)); &set_label("ej1"); &movb(&LB("ecx"), &BP(0,$in,"",0)); &set_label("ejend"); &xor("eax", "ecx"); &xor("ebx", "edx"); &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov(&DWP($data_off,"esp","",0), "eax"); # put in array for call &mov(&DWP($data_off+4,"esp","",0), "ebx"); # &call($enc_func); &mov("eax", &DWP($data_off,"esp","",0)); &mov("ebx", &DWP($data_off+4,"esp","",0)); &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov(&DWP(0,$out,"",0),"eax"); &mov(&DWP(4,$out,"",0),"ebx"); &jmp(&label("finish")); ############################################################# ############################################################# &set_label("decrypt",1); # decrypt start &and($count,0xfffffff8); # The next 2 instructions are only for if the jz is taken &mov("eax", &DWP($data_off+8,"esp","",0)); # get iv[0] &mov("ebx", &DWP($data_off+12,"esp","",0)); # get iv[1] &jz(&label("decrypt_finish")); &set_label("decrypt_loop"); &mov("eax", &DWP(0,$in,"",0)); # load first 4 bytes &mov("ebx", &DWP(4,$in,"",0)); # second 4 bytes &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov(&DWP($data_off,"esp","",0), "eax"); # put back &mov(&DWP($data_off+4,"esp","",0), "ebx"); # &call($dec_func); &mov("eax", &DWP($data_off,"esp","",0)); # get return &mov("ebx", &DWP($data_off+4,"esp","",0)); # &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov("ecx", &DWP($data_off+8,"esp","",0)); # get iv[0] &mov("edx", &DWP($data_off+12,"esp","",0)); # get iv[1] &xor("ecx", "eax"); &xor("edx", "ebx"); &mov("eax", &DWP(0,$in,"",0)); # get old cipher text, &mov("ebx", &DWP(4,$in,"",0)); # next iv actually &mov(&DWP(0,$out,"",0),"ecx"); &mov(&DWP(4,$out,"",0),"edx"); &mov(&DWP($data_off+8,"esp","",0), "eax"); # save iv &mov(&DWP($data_off+12,"esp","",0), "ebx"); # &add($in, 8); &add($out, 8); &sub($count, 8); &jnz(&label("decrypt_loop")); ############################ ENDIT #######################3 &set_label("decrypt_finish"); &mov($count, &wparam(2)); # length &and($count, 7); &jz(&label("finish")); &mov("eax", &DWP(0,$in,"",0)); # load first 4 bytes &mov("ebx", &DWP(4,$in,"",0)); # second 4 bytes &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov(&DWP($data_off,"esp","",0), "eax"); # put back &mov(&DWP($data_off+4,"esp","",0), "ebx"); # &call($dec_func); &mov("eax", &DWP($data_off,"esp","",0)); # get return &mov("ebx", &DWP($data_off+4,"esp","",0)); # &bswap("eax") if $swap; &bswap("ebx") if $swap; &mov("ecx", &DWP($data_off+8,"esp","",0)); # get iv[0] &mov("edx", &DWP($data_off+12,"esp","",0)); # get iv[1] &xor("ecx", "eax"); &xor("edx", "ebx"); # this is for when we exit &mov("eax", &DWP(0,$in,"",0)); # get old cipher text, &mov("ebx", &DWP(4,$in,"",0)); # next iv actually &set_label("dj7"); &rotr("edx", 16); &movb(&BP(6,$out,"",0), &LB("edx")); &shr("edx",16); &set_label("dj6"); &movb(&BP(5,$out,"",0), &HB("edx")); &set_label("dj5"); &movb(&BP(4,$out,"",0), &LB("edx")); &set_label("dj4"); &mov(&DWP(0,$out,"",0), "ecx"); &jmp(&label("djend")); &set_label("dj3"); &rotr("ecx", 16); &movb(&BP(2,$out,"",0), &LB("ecx")); &shl("ecx",16); &set_label("dj2"); &movb(&BP(1,$in,"",0), &HB("ecx")); &set_label("dj1"); &movb(&BP(0,$in,"",0), &LB("ecx")); &set_label("djend"); # final iv is still in eax:ebx &jmp(&label("finish")); ############################ FINISH #######################3 &set_label("finish",1); &mov("ecx", &wparam($iv_off)); # Get iv ptr ################################################# $total=16+4; $total+=4 if ($p1 > 0); $total+=4 if ($p2 > 0); $total+=4 if ($p3 > 0); &add("esp",$total); &mov(&DWP(0,"ecx","",0), "eax"); # save iv &mov(&DWP(4,"ecx","",0), "ebx"); # save iv &function_end_A($name); &align(64); &set_label("cbc_enc_jmp_table"); &data_word("0"); &data_word(&label("ej1")."-".&label("PIC_point")); &data_word(&label("ej2")."-".&label("PIC_point")); &data_word(&label("ej3")."-".&label("PIC_point")); &data_word(&label("ej4")."-".&label("PIC_point")); &data_word(&label("ej5")."-".&label("PIC_point")); &data_word(&label("ej6")."-".&label("PIC_point")); &data_word(&label("ej7")."-".&label("PIC_point")); # not used #&set_label("cbc_dec_jmp_table",1); #&data_word("0"); #&data_word(&label("dj1")."-".&label("PIC_point")); #&data_word(&label("dj2")."-".&label("PIC_point")); #&data_word(&label("dj3")."-".&label("PIC_point")); #&data_word(&label("dj4")."-".&label("PIC_point")); #&data_word(&label("dj5")."-".&label("PIC_point")); #&data_word(&label("dj6")."-".&label("PIC_point")); #&data_word(&label("dj7")."-".&label("PIC_point")); &align(64); &function_end_B($name); } 1; openssl-1.1.1f/crypto/perlasm/ppc-xlate.pl000077500000000000000000000235461364063235100206000ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html my $flavour = shift; my $output = shift; open STDOUT,">$output" || die "can't open $output: $!"; my %GLOBALS; my %TYPES; my $dotinlocallabels=($flavour=~/linux/)?1:0; ################################################################ # directives which need special treatment on different platforms ################################################################ my $type = sub { my ($dir,$name,$type) = @_; $TYPES{$name} = $type; if ($flavour =~ /linux/) { $name =~ s|^\.||; ".type $name,$type"; } else { ""; } }; my $globl = sub { my $junk = shift; my $name = shift; my $global = \$GLOBALS{$name}; my $type = \$TYPES{$name}; my $ret; $name =~ s|^\.||; SWITCH: for ($flavour) { /aix/ && do { if (!$$type) { $$type = "\@function"; } if ($$type =~ /function/) { $name = ".$name"; } last; }; /osx/ && do { $name = "_$name"; last; }; /linux.*(32|64le)/ && do { $ret .= ".globl $name"; if (!$$type) { $ret .= "\n.type $name,\@function"; $$type = "\@function"; } last; }; /linux.*64/ && do { $ret .= ".globl $name"; if (!$$type) { $ret .= "\n.type $name,\@function"; $$type = "\@function"; } if ($$type =~ /function/) { $ret .= "\n.section \".opd\",\"aw\""; $ret .= "\n.align 3"; $ret .= "\n$name:"; $ret .= "\n.quad .$name,.TOC.\@tocbase,0"; $ret .= "\n.previous"; $name = ".$name"; } last; }; } $ret = ".globl $name" if (!$ret); $$global = $name; $ret; }; my $text = sub { my $ret = ($flavour =~ /aix/) ? ".csect\t.text[PR],7" : ".text"; $ret = ".abiversion 2\n".$ret if ($flavour =~ /linux.*64le/); $ret; }; my $machine = sub { my $junk = shift; my $arch = shift; if ($flavour =~ /osx/) { $arch =~ s/\"//g; $arch = ($flavour=~/64/) ? "ppc970-64" : "ppc970" if ($arch eq "any"); } ".machine $arch"; }; my $size = sub { if ($flavour =~ /linux/) { shift; my $name = shift; my $real = $GLOBALS{$name} ? \$GLOBALS{$name} : \$name; my $ret = ".size $$real,.-$$real"; $name =~ s|^\.||; if ($$real ne $name) { $ret .= "\n.size $name,.-$$real"; } $ret; } else { ""; } }; my $asciz = sub { shift; my $line = join(",",@_); if ($line =~ /^"(.*)"$/) { ".byte " . join(",",unpack("C*",$1),0) . "\n.align 2"; } else { ""; } }; my $quad = sub { shift; my @ret; my ($hi,$lo); for (@_) { if (/^0x([0-9a-f]*?)([0-9a-f]{1,8})$/io) { $hi=$1?"0x$1":"0"; $lo="0x$2"; } elsif (/^([0-9]+)$/o) { $hi=$1>>32; $lo=$1&0xffffffff; } # error-prone with 32-bit perl else { $hi=undef; $lo=$_; } if (defined($hi)) { push(@ret,$flavour=~/le$/o?".long\t$lo,$hi":".long\t$hi,$lo"); } else { push(@ret,".quad $lo"); } } join("\n",@ret); }; ################################################################ # simplified mnemonics not handled by at least one assembler ################################################################ my $cmplw = sub { my $f = shift; my $cr = 0; $cr = shift if ($#_>1); # Some out-of-date 32-bit GNU assembler just can't handle cmplw... ($flavour =~ /linux.*32/) ? " .long ".sprintf "0x%x",31<<26|$cr<<23|$_[0]<<16|$_[1]<<11|64 : " cmplw ".join(',',$cr,@_); }; my $bdnz = sub { my $f = shift; my $bo = $f=~/[\+\-]/ ? 16+9 : 16; # optional "to be taken" hint " bc $bo,0,".shift; } if ($flavour!~/linux/); my $bltlr = sub { my $f = shift; my $bo = $f=~/\-/ ? 12+2 : 12; # optional "not to be taken" hint ($flavour =~ /linux/) ? # GNU as doesn't allow most recent hints " .long ".sprintf "0x%x",19<<26|$bo<<21|16<<1 : " bclr $bo,0"; }; my $bnelr = sub { my $f = shift; my $bo = $f=~/\-/ ? 4+2 : 4; # optional "not to be taken" hint ($flavour =~ /linux/) ? # GNU as doesn't allow most recent hints " .long ".sprintf "0x%x",19<<26|$bo<<21|2<<16|16<<1 : " bclr $bo,2"; }; my $beqlr = sub { my $f = shift; my $bo = $f=~/-/ ? 12+2 : 12; # optional "not to be taken" hint ($flavour =~ /linux/) ? # GNU as doesn't allow most recent hints " .long ".sprintf "0x%X",19<<26|$bo<<21|2<<16|16<<1 : " bclr $bo,2"; }; # GNU assembler can't handle extrdi rA,rS,16,48, or when sum of last two # arguments is 64, with "operand out of range" error. my $extrdi = sub { my ($f,$ra,$rs,$n,$b) = @_; $b = ($b+$n)&63; $n = 64-$n; " rldicl $ra,$rs,$b,$n"; }; my $vmr = sub { my ($f,$vx,$vy) = @_; " vor $vx,$vy,$vy"; }; # Some ABIs specify vrsave, special-purpose register #256, as reserved # for system use. my $no_vrsave = ($flavour =~ /aix|linux64le/); my $mtspr = sub { my ($f,$idx,$ra) = @_; if ($idx == 256 && $no_vrsave) { " or $ra,$ra,$ra"; } else { " mtspr $idx,$ra"; } }; my $mfspr = sub { my ($f,$rd,$idx) = @_; if ($idx == 256 && $no_vrsave) { " li $rd,-1"; } else { " mfspr $rd,$idx"; } }; # PowerISA 2.06 stuff sub vsxmem_op { my ($f, $vrt, $ra, $rb, $op) = @_; " .long ".sprintf "0x%X",(31<<26)|($vrt<<21)|($ra<<16)|($rb<<11)|($op*2+1); } # made-up unaligned memory reference AltiVec/VMX instructions my $lvx_u = sub { vsxmem_op(@_, 844); }; # lxvd2x my $stvx_u = sub { vsxmem_op(@_, 972); }; # stxvd2x my $lvdx_u = sub { vsxmem_op(@_, 588); }; # lxsdx my $stvdx_u = sub { vsxmem_op(@_, 716); }; # stxsdx my $lvx_4w = sub { vsxmem_op(@_, 780); }; # lxvw4x my $stvx_4w = sub { vsxmem_op(@_, 908); }; # stxvw4x my $lvx_splt = sub { vsxmem_op(@_, 332); }; # lxvdsx # VSX instruction[s] masqueraded as made-up AltiVec/VMX my $vpermdi = sub { # xxpermdi my ($f, $vrt, $vra, $vrb, $dm) = @_; $dm = oct($dm) if ($dm =~ /^0/); " .long ".sprintf "0x%X",(60<<26)|($vrt<<21)|($vra<<16)|($vrb<<11)|($dm<<8)|(10<<3)|7; }; # PowerISA 2.07 stuff sub vcrypto_op { my ($f, $vrt, $vra, $vrb, $op) = @_; " .long ".sprintf "0x%X",(4<<26)|($vrt<<21)|($vra<<16)|($vrb<<11)|$op; } sub vfour { my ($f, $vrt, $vra, $vrb, $vrc, $op) = @_; " .long ".sprintf "0x%X",(4<<26)|($vrt<<21)|($vra<<16)|($vrb<<11)|($vrc<<6)|$op; }; my $vcipher = sub { vcrypto_op(@_, 1288); }; my $vcipherlast = sub { vcrypto_op(@_, 1289); }; my $vncipher = sub { vcrypto_op(@_, 1352); }; my $vncipherlast= sub { vcrypto_op(@_, 1353); }; my $vsbox = sub { vcrypto_op(@_, 0, 1480); }; my $vshasigmad = sub { my ($st,$six)=splice(@_,-2); vcrypto_op(@_, $st<<4|$six, 1730); }; my $vshasigmaw = sub { my ($st,$six)=splice(@_,-2); vcrypto_op(@_, $st<<4|$six, 1666); }; my $vpmsumb = sub { vcrypto_op(@_, 1032); }; my $vpmsumd = sub { vcrypto_op(@_, 1224); }; my $vpmsubh = sub { vcrypto_op(@_, 1096); }; my $vpmsumw = sub { vcrypto_op(@_, 1160); }; # These are not really crypto, but vcrypto_op template works my $vaddudm = sub { vcrypto_op(@_, 192); }; my $vadduqm = sub { vcrypto_op(@_, 256); }; my $vmuleuw = sub { vcrypto_op(@_, 648); }; my $vmulouw = sub { vcrypto_op(@_, 136); }; my $vrld = sub { vcrypto_op(@_, 196); }; my $vsld = sub { vcrypto_op(@_, 1476); }; my $vsrd = sub { vcrypto_op(@_, 1732); }; my $vsubudm = sub { vcrypto_op(@_, 1216); }; my $vaddcuq = sub { vcrypto_op(@_, 320); }; my $vaddeuqm = sub { vfour(@_,60); }; my $vaddecuq = sub { vfour(@_,61); }; my $vmrgew = sub { vfour(@_,0,1932); }; my $vmrgow = sub { vfour(@_,0,1676); }; my $mtsle = sub { my ($f, $arg) = @_; " .long ".sprintf "0x%X",(31<<26)|($arg<<21)|(147*2); }; # VSX instructions masqueraded as AltiVec/VMX my $mtvrd = sub { my ($f, $vrt, $ra) = @_; " .long ".sprintf "0x%X",(31<<26)|($vrt<<21)|($ra<<16)|(179<<1)|1; }; my $mtvrwz = sub { my ($f, $vrt, $ra) = @_; " .long ".sprintf "0x%X",(31<<26)|($vrt<<21)|($ra<<16)|(243<<1)|1; }; # PowerISA 3.0 stuff my $maddhdu = sub { vfour(@_,49); }; my $maddld = sub { vfour(@_,51); }; my $darn = sub { my ($f, $rt, $l) = @_; " .long ".sprintf "0x%X",(31<<26)|($rt<<21)|($l<<16)|(755<<1); }; my $iseleq = sub { my ($f, $rt, $ra, $rb) = @_; " .long ".sprintf "0x%X",(31<<26)|($rt<<21)|($ra<<16)|($rb<<11)|(2<<6)|30; }; # VSX instruction[s] masqueraded as made-up AltiVec/VMX my $vspltib = sub { # xxspltib my ($f, $vrt, $imm8) = @_; $imm8 = oct($imm8) if ($imm8 =~ /^0/); $imm8 &= 0xff; " .long ".sprintf "0x%X",(60<<26)|($vrt<<21)|($imm8<<11)|(360<<1)|1; }; # PowerISA 3.0B stuff my $addex = sub { my ($f, $rt, $ra, $rb, $cy) = @_; # only cy==0 is specified in 3.0B " .long ".sprintf "0x%X",(31<<26)|($rt<<21)|($ra<<16)|($rb<<11)|($cy<<9)|(170<<1); }; my $vmsumudm = sub { vfour(@_,35); }; while($line=<>) { $line =~ s|[#!;].*$||; # get rid of asm-style comments... $line =~ s|/\*.*\*/||; # ... and C-style comments... $line =~ s|^\s+||; # ... and skip white spaces in beginning... $line =~ s|\s+$||; # ... and at the end { $line =~ s|\.L(\w+)|L$1|g; # common denominator for Locallabel $line =~ s|\bL(\w+)|\.L$1|g if ($dotinlocallabels); } { $line =~ s|(^[\.\w]+)\:\s*||; my $label = $1; if ($label) { my $xlated = ($GLOBALS{$label} or $label); print "$xlated:"; if ($flavour =~ /linux.*64le/) { if ($TYPES{$label} =~ /function/) { printf "\n.localentry %s,0\n",$xlated; } } } } { $line =~ s|^\s*(\.?)(\w+)([\.\+\-]?)\s*||; my $c = $1; $c = "\t" if ($c eq ""); my $mnemonic = $2; my $f = $3; my $opcode = eval("\$$mnemonic"); $line =~ s/\b(c?[rf]|v|vs)([0-9]+)\b/$2/g if ($c ne "." and $flavour !~ /osx/); if (ref($opcode) eq 'CODE') { $line = &$opcode($f,split(/,\s*/,$line)); } elsif ($mnemonic) { $line = $c.$mnemonic.$f."\t".$line; } } print $line if ($line); print "\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/perlasm/sparcv9_modes.pl000066400000000000000000001147111364063235100214510ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Specific modes implementations for SPARC Architecture 2011. There # is T4 dependency though, an ASI value that is not specified in the # Architecture Manual. But as SPARC universe is rather monocultural, # we imply that processor capable of executing crypto instructions # can handle the ASI in question as well. This means that we ought to # keep eyes open when new processors emerge... # # As for above mentioned ASI. It's so called "block initializing # store" which cancels "read" in "read-update-write" on cache lines. # This is "cooperative" optimization, as it reduces overall pressure # on memory interface. Benefits can't be observed/quantified with # usual benchmarks, on the contrary you can notice that single-thread # performance for parallelizable modes is ~1.5% worse for largest # block sizes [though few percent better for not so long ones]. All # this based on suggestions from David Miller. $::bias="STACK_BIAS"; $::frame="STACK_FRAME"; $::size_t_cc="SIZE_T_CC"; sub asm_init { # to be called with @ARGV as argument for (@_) { $::abibits=64 if (/\-m64/ || /\-xarch\=v9/); } if ($::abibits==64) { $::bias=2047; $::frame=192; $::size_t_cc="%xcc"; } else { $::bias=0; $::frame=112; $::size_t_cc="%icc"; } } # unified interface my ($inp,$out,$len,$key,$ivec)=map("%i$_",(0..5)); # local variables my ($ileft,$iright,$ooff,$omask,$ivoff,$blk_init)=map("%l$_",(0..7)); sub alg_cbc_encrypt_implement { my ($alg,$bits) = @_; $::code.=<<___; .globl ${alg}${bits}_t4_cbc_encrypt .align 32 ${alg}${bits}_t4_cbc_encrypt: save %sp, -$::frame, %sp cmp $len, 0 be,pn $::size_t_cc, .L${bits}_cbc_enc_abort srln $len, 0, $len ! needed on v8+, "nop" on v9 sub $inp, $out, $blk_init ! $inp!=$out ___ $::code.=<<___ if (!$::evp); andcc $ivec, 7, $ivoff alignaddr $ivec, %g0, $ivec ldd [$ivec + 0], %f0 ! load ivec bz,pt %icc, 1f ldd [$ivec + 8], %f2 ldd [$ivec + 16], %f4 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 1: ___ $::code.=<<___ if ($::evp); ld [$ivec + 0], %f0 ld [$ivec + 4], %f1 ld [$ivec + 8], %f2 ld [$ivec + 12], %f3 ___ $::code.=<<___; prefetch [$inp], 20 prefetch [$inp + 63], 20 call _${alg}${bits}_load_enckey and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 64, $iright mov 0xff, $omask sub $iright, $ileft, $iright and $out, 7, $ooff cmp $len, 127 movrnz $ooff, 0, $blk_init ! if ( $out&7 || movleu $::size_t_cc, 0, $blk_init ! $len<128 || brnz,pn $blk_init, .L${bits}cbc_enc_blk ! $inp==$out) srl $omask, $ooff, $omask alignaddrl $out, %g0, $out srlx $len, 4, $len prefetch [$out], 22 .L${bits}_cbc_enc_loop: ldx [$inp + 0], %o0 brz,pt $ileft, 4f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 4: xor %g4, %o0, %o0 ! ^= rk[0] xor %g5, %o1, %o1 movxtod %o0, %f12 movxtod %o1, %f14 fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 prefetch [$out + 63], 22 prefetch [$inp + 16+63], 20 call _${alg}${bits}_encrypt_1x add $inp, 16, $inp brnz,pn $ooff, 2f sub $len, 1, $len std %f0, [$out + 0] std %f2, [$out + 8] brnz,pt $len, .L${bits}_cbc_enc_loop add $out, 16, $out ___ $::code.=<<___ if ($::evp); st %f0, [$ivec + 0] st %f1, [$ivec + 4] st %f2, [$ivec + 8] st %f3, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, 3f nop std %f0, [$ivec + 0] ! write out ivec std %f2, [$ivec + 8] ___ $::code.=<<___; .L${bits}_cbc_enc_abort: ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f4 ! handle unaligned output faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $omask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $omask, $omask stda %f8, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_cbc_enc_loop+4 orn %g0, $omask, $omask ___ $::code.=<<___ if ($::evp); st %f0, [$ivec + 0] st %f1, [$ivec + 4] st %f2, [$ivec + 8] st %f3, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, 3f nop std %f0, [$ivec + 0] ! write out ivec std %f2, [$ivec + 8] ret restore .align 16 3: alignaddrl $ivec, $ivoff, %g0 ! handle unaligned ivec mov 0xff, $omask srl $omask, $ivoff, $omask faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$ivec + $omask]0xc0 std %f6, [$ivec + 8] add $ivec, 16, $ivec orn %g0, $omask, $omask stda %f8, [$ivec + $omask]0xc0 ___ $::code.=<<___; ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}cbc_enc_blk: add $out, $len, $blk_init and $blk_init, 63, $blk_init ! tail sub $len, $blk_init, $len add $blk_init, 15, $blk_init ! round up to 16n srlx $len, 4, $len srl $blk_init, 4, $blk_init .L${bits}_cbc_enc_blk_loop: ldx [$inp + 0], %o0 brz,pt $ileft, 5f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 5: xor %g4, %o0, %o0 ! ^= rk[0] xor %g5, %o1, %o1 movxtod %o0, %f12 movxtod %o1, %f14 fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 prefetch [$inp + 16+63], 20 call _${alg}${bits}_encrypt_1x add $inp, 16, $inp sub $len, 1, $len stda %f0, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f2, [$out]0xe2 ! ASI_BLK_INIT, T4-specific brnz,pt $len, .L${bits}_cbc_enc_blk_loop add $out, 8, $out membar #StoreLoad|#StoreStore brnz,pt $blk_init, .L${bits}_cbc_enc_loop mov $blk_init, $len ___ $::code.=<<___ if ($::evp); st %f0, [$ivec + 0] st %f1, [$ivec + 4] st %f2, [$ivec + 8] st %f3, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, 3b nop std %f0, [$ivec + 0] ! write out ivec std %f2, [$ivec + 8] ___ $::code.=<<___; ret restore .type ${alg}${bits}_t4_cbc_encrypt,#function .size ${alg}${bits}_t4_cbc_encrypt,.-${alg}${bits}_t4_cbc_encrypt ___ } sub alg_cbc_decrypt_implement { my ($alg,$bits) = @_; $::code.=<<___; .globl ${alg}${bits}_t4_cbc_decrypt .align 32 ${alg}${bits}_t4_cbc_decrypt: save %sp, -$::frame, %sp cmp $len, 0 be,pn $::size_t_cc, .L${bits}_cbc_dec_abort srln $len, 0, $len ! needed on v8+, "nop" on v9 sub $inp, $out, $blk_init ! $inp!=$out ___ $::code.=<<___ if (!$::evp); andcc $ivec, 7, $ivoff alignaddr $ivec, %g0, $ivec ldd [$ivec + 0], %f12 ! load ivec bz,pt %icc, 1f ldd [$ivec + 8], %f14 ldd [$ivec + 16], %f0 faligndata %f12, %f14, %f12 faligndata %f14, %f0, %f14 1: ___ $::code.=<<___ if ($::evp); ld [$ivec + 0], %f12 ! load ivec ld [$ivec + 4], %f13 ld [$ivec + 8], %f14 ld [$ivec + 12], %f15 ___ $::code.=<<___; prefetch [$inp], 20 prefetch [$inp + 63], 20 call _${alg}${bits}_load_deckey and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 64, $iright mov 0xff, $omask sub $iright, $ileft, $iright and $out, 7, $ooff cmp $len, 255 movrnz $ooff, 0, $blk_init ! if ( $out&7 || movleu $::size_t_cc, 0, $blk_init ! $len<256 || brnz,pn $blk_init, .L${bits}cbc_dec_blk ! $inp==$out) srl $omask, $ooff, $omask andcc $len, 16, %g0 ! is number of blocks even? srlx $len, 4, $len alignaddrl $out, %g0, $out bz %icc, .L${bits}_cbc_dec_loop2x prefetch [$out], 22 .L${bits}_cbc_dec_loop: ldx [$inp + 0], %o0 brz,pt $ileft, 4f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 4: xor %g4, %o0, %o2 ! ^= rk[0] xor %g5, %o1, %o3 movxtod %o2, %f0 movxtod %o3, %f2 prefetch [$out + 63], 22 prefetch [$inp + 16+63], 20 call _${alg}${bits}_decrypt_1x add $inp, 16, $inp fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 movxtod %o0, %f12 movxtod %o1, %f14 brnz,pn $ooff, 2f sub $len, 1, $len std %f0, [$out + 0] std %f2, [$out + 8] brnz,pt $len, .L${bits}_cbc_dec_loop2x add $out, 16, $out ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ___ $::code.=<<___; .L${bits}_cbc_dec_abort: ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f4 ! handle unaligned output faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $omask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $omask, $omask stda %f8, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_cbc_dec_loop2x+4 orn %g0, $omask, $omask ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ___ $::code.=<<___; ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}_cbc_dec_loop2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 4f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 4: xor %g4, %o0, %o4 ! ^= rk[0] xor %g5, %o1, %o5 movxtod %o4, %f0 movxtod %o5, %f2 xor %g4, %o2, %o4 xor %g5, %o3, %o5 movxtod %o4, %f4 movxtod %o5, %f6 prefetch [$out + 63], 22 prefetch [$inp + 32+63], 20 call _${alg}${bits}_decrypt_2x add $inp, 32, $inp movxtod %o0, %f8 movxtod %o1, %f10 fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 movxtod %o2, %f12 movxtod %o3, %f14 fxor %f8, %f4, %f4 fxor %f10, %f6, %f6 brnz,pn $ooff, 2f sub $len, 2, $len std %f0, [$out + 0] std %f2, [$out + 8] std %f4, [$out + 16] std %f6, [$out + 24] brnz,pt $len, .L${bits}_cbc_dec_loop2x add $out, 32, $out ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ___ $::code.=<<___; ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f8 ! handle unaligned output faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 faligndata %f6, %f6, %f6 stda %f8, [$out + $omask]0xc0 ! partial store std %f0, [$out + 8] std %f2, [$out + 16] std %f4, [$out + 24] add $out, 32, $out orn %g0, $omask, $omask stda %f6, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_cbc_dec_loop2x+4 orn %g0, $omask, $omask ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ret restore .align 16 .L${bits}_cbc_dec_unaligned_ivec: alignaddrl $ivec, $ivoff, %g0 ! handle unaligned ivec mov 0xff, $omask srl $omask, $ivoff, $omask faligndata %f12, %f12, %f0 faligndata %f12, %f14, %f2 faligndata %f14, %f14, %f4 stda %f0, [$ivec + $omask]0xc0 std %f2, [$ivec + 8] add $ivec, 16, $ivec orn %g0, $omask, $omask stda %f4, [$ivec + $omask]0xc0 ___ $::code.=<<___; ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}cbc_dec_blk: add $out, $len, $blk_init and $blk_init, 63, $blk_init ! tail sub $len, $blk_init, $len add $blk_init, 15, $blk_init ! round up to 16n srlx $len, 4, $len srl $blk_init, 4, $blk_init sub $len, 1, $len add $blk_init, 1, $blk_init .L${bits}_cbc_dec_blk_loop2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 5f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 5: xor %g4, %o0, %o4 ! ^= rk[0] xor %g5, %o1, %o5 movxtod %o4, %f0 movxtod %o5, %f2 xor %g4, %o2, %o4 xor %g5, %o3, %o5 movxtod %o4, %f4 movxtod %o5, %f6 prefetch [$inp + 32+63], 20 call _${alg}${bits}_decrypt_2x add $inp, 32, $inp subcc $len, 2, $len movxtod %o0, %f8 movxtod %o1, %f10 fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 movxtod %o2, %f12 movxtod %o3, %f14 fxor %f8, %f4, %f4 fxor %f10, %f6, %f6 stda %f0, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f2, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f4, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f6, [$out]0xe2 ! ASI_BLK_INIT, T4-specific bgu,pt $::size_t_cc, .L${bits}_cbc_dec_blk_loop2x add $out, 8, $out add $blk_init, $len, $len andcc $len, 1, %g0 ! is number of blocks even? membar #StoreLoad|#StoreStore bnz,pt %icc, .L${bits}_cbc_dec_loop srl $len, 0, $len brnz,pn $len, .L${bits}_cbc_dec_loop2x nop ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] ! write out ivec st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, 3b nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ___ $::code.=<<___; ret restore .type ${alg}${bits}_t4_cbc_decrypt,#function .size ${alg}${bits}_t4_cbc_decrypt,.-${alg}${bits}_t4_cbc_decrypt ___ } sub alg_ctr32_implement { my ($alg,$bits) = @_; $::code.=<<___; .globl ${alg}${bits}_t4_ctr32_encrypt .align 32 ${alg}${bits}_t4_ctr32_encrypt: save %sp, -$::frame, %sp srln $len, 0, $len ! needed on v8+, "nop" on v9 prefetch [$inp], 20 prefetch [$inp + 63], 20 call _${alg}${bits}_load_enckey sllx $len, 4, $len ld [$ivec + 0], %l4 ! counter ld [$ivec + 4], %l5 ld [$ivec + 8], %l6 ld [$ivec + 12], %l7 sllx %l4, 32, %o5 or %l5, %o5, %o5 sllx %l6, 32, %g1 xor %o5, %g4, %g4 ! ^= rk[0] xor %g1, %g5, %g5 movxtod %g4, %f14 ! most significant 64 bits sub $inp, $out, $blk_init ! $inp!=$out and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 64, $iright mov 0xff, $omask sub $iright, $ileft, $iright and $out, 7, $ooff cmp $len, 255 movrnz $ooff, 0, $blk_init ! if ( $out&7 || movleu $::size_t_cc, 0, $blk_init ! $len<256 || brnz,pn $blk_init, .L${bits}_ctr32_blk ! $inp==$out) srl $omask, $ooff, $omask andcc $len, 16, %g0 ! is number of blocks even? alignaddrl $out, %g0, $out bz %icc, .L${bits}_ctr32_loop2x srlx $len, 4, $len .L${bits}_ctr32_loop: ldx [$inp + 0], %o0 brz,pt $ileft, 4f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 4: xor %g5, %l7, %g1 ! ^= rk[0] add %l7, 1, %l7 movxtod %g1, %f2 srl %l7, 0, %l7 ! clruw prefetch [$out + 63], 22 prefetch [$inp + 16+63], 20 ___ $::code.=<<___ if ($alg eq "aes"); aes_eround01 %f16, %f14, %f2, %f4 aes_eround23 %f18, %f14, %f2, %f2 ___ $::code.=<<___ if ($alg eq "cmll"); camellia_f %f16, %f2, %f14, %f2 camellia_f %f18, %f14, %f2, %f0 ___ $::code.=<<___; call _${alg}${bits}_encrypt_1x+8 add $inp, 16, $inp movxtod %o0, %f10 movxtod %o1, %f12 fxor %f10, %f0, %f0 ! ^= inp fxor %f12, %f2, %f2 brnz,pn $ooff, 2f sub $len, 1, $len std %f0, [$out + 0] std %f2, [$out + 8] brnz,pt $len, .L${bits}_ctr32_loop2x add $out, 16, $out ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f4 ! handle unaligned output faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $omask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $omask, $omask stda %f8, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_ctr32_loop2x+4 orn %g0, $omask, $omask ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}_ctr32_loop2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 4f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 4: xor %g5, %l7, %g1 ! ^= rk[0] add %l7, 1, %l7 movxtod %g1, %f2 srl %l7, 0, %l7 ! clruw xor %g5, %l7, %g1 add %l7, 1, %l7 movxtod %g1, %f6 srl %l7, 0, %l7 ! clruw prefetch [$out + 63], 22 prefetch [$inp + 32+63], 20 ___ $::code.=<<___ if ($alg eq "aes"); aes_eround01 %f16, %f14, %f2, %f8 aes_eround23 %f18, %f14, %f2, %f2 aes_eround01 %f16, %f14, %f6, %f10 aes_eround23 %f18, %f14, %f6, %f6 ___ $::code.=<<___ if ($alg eq "cmll"); camellia_f %f16, %f2, %f14, %f2 camellia_f %f16, %f6, %f14, %f6 camellia_f %f18, %f14, %f2, %f0 camellia_f %f18, %f14, %f6, %f4 ___ $::code.=<<___; call _${alg}${bits}_encrypt_2x+16 add $inp, 32, $inp movxtod %o0, %f8 movxtod %o1, %f10 movxtod %o2, %f12 fxor %f8, %f0, %f0 ! ^= inp movxtod %o3, %f8 fxor %f10, %f2, %f2 fxor %f12, %f4, %f4 fxor %f8, %f6, %f6 brnz,pn $ooff, 2f sub $len, 2, $len std %f0, [$out + 0] std %f2, [$out + 8] std %f4, [$out + 16] std %f6, [$out + 24] brnz,pt $len, .L${bits}_ctr32_loop2x add $out, 32, $out ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f8 ! handle unaligned output faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 faligndata %f6, %f6, %f6 stda %f8, [$out + $omask]0xc0 ! partial store std %f0, [$out + 8] std %f2, [$out + 16] std %f4, [$out + 24] add $out, 32, $out orn %g0, $omask, $omask stda %f6, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_ctr32_loop2x+4 orn %g0, $omask, $omask ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}_ctr32_blk: add $out, $len, $blk_init and $blk_init, 63, $blk_init ! tail sub $len, $blk_init, $len add $blk_init, 15, $blk_init ! round up to 16n srlx $len, 4, $len srl $blk_init, 4, $blk_init sub $len, 1, $len add $blk_init, 1, $blk_init .L${bits}_ctr32_blk_loop2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 5f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 5: xor %g5, %l7, %g1 ! ^= rk[0] add %l7, 1, %l7 movxtod %g1, %f2 srl %l7, 0, %l7 ! clruw xor %g5, %l7, %g1 add %l7, 1, %l7 movxtod %g1, %f6 srl %l7, 0, %l7 ! clruw prefetch [$inp + 32+63], 20 ___ $::code.=<<___ if ($alg eq "aes"); aes_eround01 %f16, %f14, %f2, %f8 aes_eround23 %f18, %f14, %f2, %f2 aes_eround01 %f16, %f14, %f6, %f10 aes_eround23 %f18, %f14, %f6, %f6 ___ $::code.=<<___ if ($alg eq "cmll"); camellia_f %f16, %f2, %f14, %f2 camellia_f %f16, %f6, %f14, %f6 camellia_f %f18, %f14, %f2, %f0 camellia_f %f18, %f14, %f6, %f4 ___ $::code.=<<___; call _${alg}${bits}_encrypt_2x+16 add $inp, 32, $inp subcc $len, 2, $len movxtod %o0, %f8 movxtod %o1, %f10 movxtod %o2, %f12 fxor %f8, %f0, %f0 ! ^= inp movxtod %o3, %f8 fxor %f10, %f2, %f2 fxor %f12, %f4, %f4 fxor %f8, %f6, %f6 stda %f0, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f2, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f4, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f6, [$out]0xe2 ! ASI_BLK_INIT, T4-specific bgu,pt $::size_t_cc, .L${bits}_ctr32_blk_loop2x add $out, 8, $out add $blk_init, $len, $len andcc $len, 1, %g0 ! is number of blocks even? membar #StoreLoad|#StoreStore bnz,pt %icc, .L${bits}_ctr32_loop srl $len, 0, $len brnz,pn $len, .L${bits}_ctr32_loop2x nop ret restore .type ${alg}${bits}_t4_ctr32_encrypt,#function .size ${alg}${bits}_t4_ctr32_encrypt,.-${alg}${bits}_t4_ctr32_encrypt ___ } sub alg_xts_implement { my ($alg,$bits,$dir) = @_; my ($inp,$out,$len,$key1,$key2,$ivec)=map("%i$_",(0..5)); my $rem=$ivec; $::code.=<<___; .globl ${alg}${bits}_t4_xts_${dir}crypt .align 32 ${alg}${bits}_t4_xts_${dir}crypt: save %sp, -$::frame-16, %sp srln $len, 0, $len ! needed on v8+, "nop" on v9 mov $ivec, %o0 add %fp, $::bias-16, %o1 call ${alg}_t4_encrypt mov $key2, %o2 add %fp, $::bias-16, %l7 ldxa [%l7]0x88, %g2 add %fp, $::bias-8, %l7 ldxa [%l7]0x88, %g3 ! %g3:%g2 is tweak sethi %hi(0x76543210), %l7 or %l7, %lo(0x76543210), %l7 bmask %l7, %g0, %g0 ! byte swap mask prefetch [$inp], 20 prefetch [$inp + 63], 20 call _${alg}${bits}_load_${dir}ckey and $len, 15, $rem and $len, -16, $len ___ $code.=<<___ if ($dir eq "de"); mov 0, %l7 movrnz $rem, 16, %l7 sub $len, %l7, $len ___ $code.=<<___; sub $inp, $out, $blk_init ! $inp!=$out and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 64, $iright mov 0xff, $omask sub $iright, $ileft, $iright and $out, 7, $ooff cmp $len, 255 movrnz $ooff, 0, $blk_init ! if ( $out&7 || movleu $::size_t_cc, 0, $blk_init ! $len<256 || brnz,pn $blk_init, .L${bits}_xts_${dir}blk ! $inp==$out) srl $omask, $ooff, $omask andcc $len, 16, %g0 ! is number of blocks even? ___ $code.=<<___ if ($dir eq "de"); brz,pn $len, .L${bits}_xts_${dir}steal ___ $code.=<<___; alignaddrl $out, %g0, $out bz %icc, .L${bits}_xts_${dir}loop2x srlx $len, 4, $len .L${bits}_xts_${dir}loop: ldx [$inp + 0], %o0 brz,pt $ileft, 4f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 4: movxtod %g2, %f12 movxtod %g3, %f14 bshuffle %f12, %f12, %f12 bshuffle %f14, %f14, %f14 xor %g4, %o0, %o0 ! ^= rk[0] xor %g5, %o1, %o1 movxtod %o0, %f0 movxtod %o1, %f2 fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 prefetch [$out + 63], 22 prefetch [$inp + 16+63], 20 call _${alg}${bits}_${dir}crypt_1x add $inp, 16, $inp fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 srax %g3, 63, %l7 ! next tweak value addcc %g2, %g2, %g2 and %l7, 0x87, %l7 addxc %g3, %g3, %g3 xor %l7, %g2, %g2 brnz,pn $ooff, 2f sub $len, 1, $len std %f0, [$out + 0] std %f2, [$out + 8] brnz,pt $len, .L${bits}_xts_${dir}loop2x add $out, 16, $out brnz,pn $rem, .L${bits}_xts_${dir}steal nop ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f4 ! handle unaligned output faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $omask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $omask, $omask stda %f8, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_xts_${dir}loop2x+4 orn %g0, $omask, $omask brnz,pn $rem, .L${bits}_xts_${dir}steal nop ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}_xts_${dir}loop2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 4f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 4: movxtod %g2, %f12 movxtod %g3, %f14 bshuffle %f12, %f12, %f12 bshuffle %f14, %f14, %f14 srax %g3, 63, %l7 ! next tweak value addcc %g2, %g2, %g2 and %l7, 0x87, %l7 addxc %g3, %g3, %g3 xor %l7, %g2, %g2 movxtod %g2, %f8 movxtod %g3, %f10 bshuffle %f8, %f8, %f8 bshuffle %f10, %f10, %f10 xor %g4, %o0, %o0 ! ^= rk[0] xor %g5, %o1, %o1 xor %g4, %o2, %o2 ! ^= rk[0] xor %g5, %o3, %o3 movxtod %o0, %f0 movxtod %o1, %f2 movxtod %o2, %f4 movxtod %o3, %f6 fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 fxor %f8, %f4, %f4 ! ^= tweak[0] fxor %f10, %f6, %f6 prefetch [$out + 63], 22 prefetch [$inp + 32+63], 20 call _${alg}${bits}_${dir}crypt_2x add $inp, 32, $inp movxtod %g2, %f8 movxtod %g3, %f10 srax %g3, 63, %l7 ! next tweak value addcc %g2, %g2, %g2 and %l7, 0x87, %l7 addxc %g3, %g3, %g3 xor %l7, %g2, %g2 bshuffle %f8, %f8, %f8 bshuffle %f10, %f10, %f10 fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 fxor %f8, %f4, %f4 fxor %f10, %f6, %f6 brnz,pn $ooff, 2f sub $len, 2, $len std %f0, [$out + 0] std %f2, [$out + 8] std %f4, [$out + 16] std %f6, [$out + 24] brnz,pt $len, .L${bits}_xts_${dir}loop2x add $out, 32, $out fsrc2 %f4, %f0 fsrc2 %f6, %f2 brnz,pn $rem, .L${bits}_xts_${dir}steal nop ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f8 ! handle unaligned output faligndata %f0, %f2, %f10 faligndata %f2, %f4, %f12 faligndata %f4, %f6, %f14 faligndata %f6, %f6, %f0 stda %f8, [$out + $omask]0xc0 ! partial store std %f10, [$out + 8] std %f12, [$out + 16] std %f14, [$out + 24] add $out, 32, $out orn %g0, $omask, $omask stda %f0, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_xts_${dir}loop2x+4 orn %g0, $omask, $omask fsrc2 %f4, %f0 fsrc2 %f6, %f2 brnz,pn $rem, .L${bits}_xts_${dir}steal nop ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}_xts_${dir}blk: add $out, $len, $blk_init and $blk_init, 63, $blk_init ! tail sub $len, $blk_init, $len add $blk_init, 15, $blk_init ! round up to 16n srlx $len, 4, $len srl $blk_init, 4, $blk_init sub $len, 1, $len add $blk_init, 1, $blk_init .L${bits}_xts_${dir}blk2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 5f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 5: movxtod %g2, %f12 movxtod %g3, %f14 bshuffle %f12, %f12, %f12 bshuffle %f14, %f14, %f14 srax %g3, 63, %l7 ! next tweak value addcc %g2, %g2, %g2 and %l7, 0x87, %l7 addxc %g3, %g3, %g3 xor %l7, %g2, %g2 movxtod %g2, %f8 movxtod %g3, %f10 bshuffle %f8, %f8, %f8 bshuffle %f10, %f10, %f10 xor %g4, %o0, %o0 ! ^= rk[0] xor %g5, %o1, %o1 xor %g4, %o2, %o2 ! ^= rk[0] xor %g5, %o3, %o3 movxtod %o0, %f0 movxtod %o1, %f2 movxtod %o2, %f4 movxtod %o3, %f6 fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 fxor %f8, %f4, %f4 ! ^= tweak[0] fxor %f10, %f6, %f6 prefetch [$inp + 32+63], 20 call _${alg}${bits}_${dir}crypt_2x add $inp, 32, $inp movxtod %g2, %f8 movxtod %g3, %f10 srax %g3, 63, %l7 ! next tweak value addcc %g2, %g2, %g2 and %l7, 0x87, %l7 addxc %g3, %g3, %g3 xor %l7, %g2, %g2 bshuffle %f8, %f8, %f8 bshuffle %f10, %f10, %f10 fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 fxor %f8, %f4, %f4 fxor %f10, %f6, %f6 subcc $len, 2, $len stda %f0, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f2, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f4, [$out]0xe2 ! ASI_BLK_INIT, T4-specific add $out, 8, $out stda %f6, [$out]0xe2 ! ASI_BLK_INIT, T4-specific bgu,pt $::size_t_cc, .L${bits}_xts_${dir}blk2x add $out, 8, $out add $blk_init, $len, $len andcc $len, 1, %g0 ! is number of blocks even? membar #StoreLoad|#StoreStore bnz,pt %icc, .L${bits}_xts_${dir}loop srl $len, 0, $len brnz,pn $len, .L${bits}_xts_${dir}loop2x nop fsrc2 %f4, %f0 fsrc2 %f6, %f2 brnz,pn $rem, .L${bits}_xts_${dir}steal nop ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ___ $code.=<<___ if ($dir eq "en"); .align 32 .L${bits}_xts_${dir}steal: std %f0, [%fp + $::bias-16] ! copy of output std %f2, [%fp + $::bias-8] srl $ileft, 3, $ileft add %fp, $::bias-16, %l7 add $inp, $ileft, $inp ! original $inp+$len&-15 add $out, $ooff, $out ! original $out+$len&-15 mov 0, $ileft nop ! align .L${bits}_xts_${dir}stealing: ldub [$inp + $ileft], %o0 ldub [%l7 + $ileft], %o1 dec $rem stb %o0, [%l7 + $ileft] stb %o1, [$out + $ileft] brnz $rem, .L${bits}_xts_${dir}stealing inc $ileft mov %l7, $inp sub $out, 16, $out mov 0, $ileft sub $out, $ooff, $out ba .L${bits}_xts_${dir}loop ! one more time mov 1, $len ! $rem is 0 ___ $code.=<<___ if ($dir eq "de"); .align 32 .L${bits}_xts_${dir}steal: ldx [$inp + 0], %o0 brz,pt $ileft, 8f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 8: srax %g3, 63, %l7 ! next tweak value addcc %g2, %g2, %o2 and %l7, 0x87, %l7 addxc %g3, %g3, %o3 xor %l7, %o2, %o2 movxtod %o2, %f12 movxtod %o3, %f14 bshuffle %f12, %f12, %f12 bshuffle %f14, %f14, %f14 xor %g4, %o0, %o0 ! ^= rk[0] xor %g5, %o1, %o1 movxtod %o0, %f0 movxtod %o1, %f2 fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 call _${alg}${bits}_${dir}crypt_1x add $inp, 16, $inp fxor %f12, %f0, %f0 ! ^= tweak[0] fxor %f14, %f2, %f2 std %f0, [%fp + $::bias-16] std %f2, [%fp + $::bias-8] srl $ileft, 3, $ileft add %fp, $::bias-16, %l7 add $inp, $ileft, $inp ! original $inp+$len&-15 add $out, $ooff, $out ! original $out+$len&-15 mov 0, $ileft add $out, 16, $out nop ! align .L${bits}_xts_${dir}stealing: ldub [$inp + $ileft], %o0 ldub [%l7 + $ileft], %o1 dec $rem stb %o0, [%l7 + $ileft] stb %o1, [$out + $ileft] brnz $rem, .L${bits}_xts_${dir}stealing inc $ileft mov %l7, $inp sub $out, 16, $out mov 0, $ileft sub $out, $ooff, $out ba .L${bits}_xts_${dir}loop ! one more time mov 1, $len ! $rem is 0 ___ $code.=<<___; ret restore .type ${alg}${bits}_t4_xts_${dir}crypt,#function .size ${alg}${bits}_t4_xts_${dir}crypt,.-${alg}${bits}_t4_xts_${dir}crypt ___ } # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %visopf = ( "faligndata" => 0x048, "bshuffle" => 0x04c, "fnot2" => 0x066, "fxor" => 0x06c, "fsrc2" => 0x078 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "addxc" => 0x011, "addxccc" => 0x013, "umulxhi" => 0x016, "alignaddr" => 0x018, "bmask" => 0x019, "alignaddrl" => 0x01a ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unaes_round { # 4-argument instructions my ($mnemonic,$rs1,$rs2,$rs3,$rd)=@_; my ($ref,$opf); my %aesopf = ( "aes_eround01" => 0, "aes_eround23" => 1, "aes_dround01" => 2, "aes_dround23" => 3, "aes_eround01_l"=> 4, "aes_eround23_l"=> 5, "aes_dround01_l"=> 6, "aes_dround23_l"=> 7, "aes_kexpand1" => 8 ); $ref = "$mnemonic\t$rs1,$rs2,$rs3,$rd"; if (defined($opf=$aesopf{$mnemonic})) { $rs3 = ($rs3 =~ /%f([0-6]*[02468])/) ? (($1|$1>>5)&31) : $rs3; foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x19<<19|$rs1<<14|$rs3<<9|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unaes_kexpand { # 3-argument instructions my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %aesopf = ( "aes_kexpand0" => 0x130, "aes_kexpand2" => 0x131 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if (defined($opf=$aesopf{$mnemonic})) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub uncamellia_f { # 4-argument instructions my ($mnemonic,$rs1,$rs2,$rs3,$rd)=@_; my ($ref,$opf); $ref = "$mnemonic\t$rs1,$rs2,$rs3,$rd"; if (1) { $rs3 = ($rs3 =~ /%f([0-6]*[02468])/) ? (($1|$1>>5)&31) : $rs3; foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x19<<19|$rs1<<14|$rs3<<9|0xc<<5|$rs2, $ref; } else { return $ref; } } sub uncamellia3 { # 3-argument instructions my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %cmllopf = ( "camellia_fl" => 0x13c, "camellia_fli" => 0x13d ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if (defined($opf=$cmllopf{$mnemonic})) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unmovxtox { # 2-argument instructions my ($mnemonic,$rs,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24, "f" => 0 ); my ($ref,$opf); my %movxopf = ( "movdtox" => 0x110, "movstouw" => 0x111, "movstosw" => 0x113, "movxtod" => 0x118, "movwtos" => 0x119 ); $ref = "$mnemonic\t$rs,$rd"; if (defined($opf=$movxopf{$mnemonic})) { foreach ($rs,$rd) { return $ref if (!/%([fgoli])([0-9]{1,2})/); $_=$bias{$1}+$2; if ($2>=32) { return $ref if ($2&1); # re-encode for upper double register addressing $_=($2|$2>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$opf<<5|$rs, $ref; } else { return $ref; } } sub undes { my ($mnemonic)=shift; my @args=@_; my ($ref,$opf); my %desopf = ( "des_round" => 0b1001, "des_ip" => 0b100110100, "des_iip" => 0b100110101, "des_kexpand" => 0b100110110 ); $ref = "$mnemonic\t".join(",",@_); if (defined($opf=$desopf{$mnemonic})) { # 4-arg if ($mnemonic eq "des_round") { foreach (@args[0..3]) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|0b011001<<19|$opf<<5|$args[0]<<14|$args[1]|$args[2]<<9|$args[3]<<25, $ref; } elsif ($mnemonic eq "des_kexpand") { # 3-arg foreach (@args[0..2]) { return $ref if (!/(%f)?([0-9]{1,2})/); $_=$2; if ($2>=32) { return $ref if ($2&1); # re-encode for upper double register addressing $_=($2|$2>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|0b110110<<19|$opf<<5|$args[0]<<14|$args[1]|$args[2]<<25, $ref; } else { # 2-arg foreach (@args[0..1]) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($2&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|0b110110<<19|$opf<<5|$args[0]<<14|$args[1]<<25, $ref; } } else { return $ref; } } sub emit_assembler { foreach (split("\n",$::code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(f[a-z]+2[sd]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})\s*$/$1\t%f0,$2,$3/go; s/\b(aes_[edk][^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*([%fx0-9]+),\s*(%f[0-9]{1,2})/ &unaes_round($1,$2,$3,$4,$5) /geo or s/\b(aes_kexpand[02])\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unaes_kexpand($1,$2,$3,$4) /geo or s/\b(camellia_f)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*([%fx0-9]+),\s*(%f[0-9]{1,2})/ &uncamellia_f($1,$2,$3,$4,$5) /geo or s/\b(camellia_[^s]+)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &uncamellia3($1,$2,$3,$4) /geo or s/\b(des_\w+)\s+(%f[0-9]{1,2}),\s*([%fx0-9]+)(?:,\s*(%f[0-9]{1,2})(?:,\s*(%f[0-9]{1,2}))?)?/ &undes($1,$2,$3,$4,$5) /geo or s/\b(mov[ds]to\w+)\s+(%f[0-9]{1,2}),\s*(%[goli][0-7])/ &unmovxtox($1,$2,$3) /geo or s/\b(mov[xw]to[ds])\s+(%[goli][0-7]),\s*(%f[0-9]{1,2})/ &unmovxtox($1,$2,$3) /geo or s/\b([fb][^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /geo or s/\b(umulxhi|bmask|addxc[c]{0,2}|alignaddr[l]*)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /geo; print $_,"\n"; } } 1; openssl-1.1.1f/crypto/perlasm/x86_64-xlate.pl000077500000000000000000001274271364063235100207570ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Ascetic x86_64 AT&T to MASM/NASM assembler translator by . # # Why AT&T to MASM and not vice versa? Several reasons. Because AT&T # format is way easier to parse. Because it's simpler to "gear" from # Unix ABI to Windows one [see cross-reference "card" at the end of # file]. Because Linux targets were available first... # # In addition the script also "distills" code suitable for GNU # assembler, so that it can be compiled with more rigid assemblers, # such as Solaris /usr/ccs/bin/as. # # This translator is not designed to convert *arbitrary* assembler # code from AT&T format to MASM one. It's designed to convert just # enough to provide for dual-ABI OpenSSL modules development... # There *are* limitations and you might have to modify your assembler # code or this script to achieve the desired result... # # Currently recognized limitations: # # - can't use multiple ops per line; # # Dual-ABI styling rules. # # 1. Adhere to Unix register and stack layout [see cross-reference # ABI "card" at the end for explanation]. # 2. Forget about "red zone," stick to more traditional blended # stack frame allocation. If volatile storage is actually required # that is. If not, just leave the stack as is. # 3. Functions tagged with ".type name,@function" get crafted with # unified Win64 prologue and epilogue automatically. If you want # to take care of ABI differences yourself, tag functions as # ".type name,@abi-omnipotent" instead. # 4. To optimize the Win64 prologue you can specify number of input # arguments as ".type name,@function,N." Keep in mind that if N is # larger than 6, then you *have to* write "abi-omnipotent" code, # because >6 cases can't be addressed with unified prologue. # 5. Name local labels as .L*, do *not* use dynamic labels such as 1: # (sorry about latter). # 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is # required to identify the spots, where to inject Win64 epilogue! # But on the pros, it's then prefixed with rep automatically:-) # 7. Stick to explicit ip-relative addressing. If you have to use # GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??. # Both are recognized and translated to proper Win64 addressing # modes. # # 8. In order to provide for structured exception handling unified # Win64 prologue copies %rsp value to %rax. For further details # see SEH paragraph at the end. # 9. .init segment is allowed to contain calls to functions only. # a. If function accepts more than 4 arguments *and* >4th argument # is declared as non 64-bit value, do clear its upper part. use strict; my $flavour = shift; my $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } open STDOUT,">$output" || die "can't open $output: $!" if (defined($output)); my $gas=1; $gas=0 if ($output =~ /\.asm$/); my $elf=1; $elf=0 if (!$gas); my $win64=0; my $prefix=""; my $decor=".L"; my $masmref=8 + 50727*2**-32; # 8.00.50727 shipped with VS2005 my $masm=0; my $PTR=" PTR"; my $nasmref=2.03; my $nasm=0; if ($flavour eq "mingw64") { $gas=1; $elf=0; $win64=1; $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`; $prefix =~ s|\R$||; # Better chomp } elsif ($flavour eq "macosx") { $gas=1; $elf=0; $prefix="_"; $decor="L\$"; } elsif ($flavour eq "masm") { $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; } elsif ($flavour eq "nasm") { $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; } elsif (!$gas) { if ($ENV{ASM} =~ m/nasm/ && `nasm -v` =~ m/version ([0-9]+)\.([0-9]+)/i) { $nasm = $1 + $2*0.01; $PTR=""; } elsif (`ml64 2>&1` =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/) { $masm = $1 + $2*2**-16 + $4*2**-32; } die "no assembler found on %PATH%" if (!($nasm || $masm)); $win64=1; $elf=0; $decor="\$L\$"; } my $current_segment; my $current_function; my %globals; { package opcode; # pick up opcodes sub re { my ($class, $line) = @_; my $self = {}; my $ret; if ($$line =~ /^([a-z][a-z0-9]*)/i) { bless $self,$class; $self->{op} = $1; $ret = $self; $$line = substr($$line,@+[0]); $$line =~ s/^\s+//; undef $self->{sz}; if ($self->{op} =~ /^(movz)x?([bw]).*/) { # movz is pain... $self->{op} = $1; $self->{sz} = $2; } elsif ($self->{op} =~ /call|jmp/) { $self->{sz} = ""; } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn $self->{sz} = ""; } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov $self->{sz} = ""; } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) { $self->{sz} = ""; } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) { $self->{op} = $1; $self->{sz} = $2; } } $ret; } sub size { my ($self, $sz) = @_; $self->{sz} = $sz if (defined($sz) && !defined($self->{sz})); $self->{sz}; } sub out { my $self = shift; if ($gas) { if ($self->{op} eq "movz") { # movz is pain... sprintf "%s%s%s",$self->{op},$self->{sz},shift; } elsif ($self->{op} =~ /^set/) { "$self->{op}"; } elsif ($self->{op} eq "ret") { my $epilogue = ""; if ($win64 && $current_function->{abi} eq "svr4") { $epilogue = "movq 8(%rsp),%rdi\n\t" . "movq 16(%rsp),%rsi\n\t"; } $epilogue . ".byte 0xf3,0xc3"; } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") { ".p2align\t3\n\t.quad"; } else { "$self->{op}$self->{sz}"; } } else { $self->{op} =~ s/^movz/movzx/; if ($self->{op} eq "ret") { $self->{op} = ""; if ($win64 && $current_function->{abi} eq "svr4") { $self->{op} = "mov rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t". "mov rsi,QWORD$PTR\[16+rsp\]\n\t"; } $self->{op} .= "DB\t0F3h,0C3h\t\t;repret"; } elsif ($self->{op} =~ /^(pop|push)f/) { $self->{op} .= $self->{sz}; } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") { $self->{op} = "\tDQ"; } $self->{op}; } } sub mnemonic { my ($self, $op) = @_; $self->{op}=$op if (defined($op)); $self->{op}; } } { package const; # pick up constants, which start with $ sub re { my ($class, $line) = @_; my $self = {}; my $ret; if ($$line =~ /^\$([^,]+)/) { bless $self, $class; $self->{value} = $1; $ret = $self; $$line = substr($$line,@+[0]); $$line =~ s/^\s+//; } $ret; } sub out { my $self = shift; $self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig; if ($gas) { # Solaris /usr/ccs/bin/as can't handle multiplications # in $self->{value} my $value = $self->{value}; no warnings; # oct might complain about overflow, ignore here... $value =~ s/(?{value} = $value; } sprintf "\$%s",$self->{value}; } else { my $value = $self->{value}; $value =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm); sprintf "%s",$value; } } } { package ea; # pick up effective addresses: expr(%reg,%reg,scale) my %szmap = ( b=>"BYTE$PTR", w=>"WORD$PTR", l=>"DWORD$PTR", d=>"DWORD$PTR", q=>"QWORD$PTR", o=>"OWORD$PTR", x=>"XMMWORD$PTR", y=>"YMMWORD$PTR", z=>"ZMMWORD$PTR" ) if (!$gas); sub re { my ($class, $line, $opcode) = @_; my $self = {}; my $ret; # optional * ----vvv--- appears in indirect jmp/call if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) { bless $self, $class; $self->{asterisk} = $1; $self->{label} = $2; ($self->{base},$self->{index},$self->{scale})=split(/,/,$3); $self->{scale} = 1 if (!defined($self->{scale})); $self->{opmask} = $4; $ret = $self; $$line = substr($$line,@+[0]); $$line =~ s/^\s+//; if ($win64 && $self->{label} =~ s/\@GOTPCREL//) { die if ($opcode->mnemonic() ne "mov"); $opcode->mnemonic("lea"); } $self->{base} =~ s/^%//; $self->{index} =~ s/^%// if (defined($self->{index})); $self->{opcode} = $opcode; } $ret; } sub size {} sub out { my ($self, $sz) = @_; $self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei; $self->{label} =~ s/\.L/$decor/g; # Silently convert all EAs to 64-bit. This is required for # elder GNU assembler and results in more compact code, # *but* most importantly AES module depends on this feature! $self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/; $self->{base} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/; # Solaris /usr/ccs/bin/as can't handle multiplications # in $self->{label}... use integer; $self->{label} =~ s/(?{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg; # Some assemblers insist on signed presentation of 32-bit # offsets, but sign extension is a tricky business in perl... if ((1<<31)<<1) { $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg; } else { $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg; } # if base register is %rbp or %r13, see if it's possible to # flip base and index registers [for better performance] if (!$self->{label} && $self->{index} && $self->{scale}==1 && $self->{base} =~ /(rbp|r13)/) { $self->{base} = $self->{index}; $self->{index} = $1; } if ($gas) { $self->{label} =~ s/^___imp_/__imp__/ if ($flavour eq "mingw64"); if (defined($self->{index})) { sprintf "%s%s(%s,%%%s,%d)%s", $self->{asterisk},$self->{label}, $self->{base}?"%$self->{base}":"", $self->{index},$self->{scale}, $self->{opmask}; } else { sprintf "%s%s(%%%s)%s", $self->{asterisk},$self->{label}, $self->{base},$self->{opmask}; } } else { $self->{label} =~ s/\./\$/g; $self->{label} =~ s/(?{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/); my $mnemonic = $self->{opcode}->mnemonic(); ($self->{asterisk}) && ($sz="q") || ($mnemonic =~ /^v?mov([qd])$/) && ($sz=$1) || ($mnemonic =~ /^v?pinsr([qdwb])$/) && ($sz=$1) || ($mnemonic =~ /^vpbroadcast([qdwb])$/) && ($sz=$1) || ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/) && ($sz="x"); $self->{opmask} =~ s/%(k[0-7])/$1/; if (defined($self->{index})) { sprintf "%s[%s%s*%d%s]%s",$szmap{$sz}, $self->{label}?"$self->{label}+":"", $self->{index},$self->{scale}, $self->{base}?"+$self->{base}":"", $self->{opmask}; } elsif ($self->{base} eq "rip") { sprintf "%s[%s]",$szmap{$sz},$self->{label}; } else { sprintf "%s[%s%s]%s", $szmap{$sz}, $self->{label}?"$self->{label}+":"", $self->{base},$self->{opmask}; } } } } { package register; # pick up registers, which start with %. sub re { my ($class, $line, $opcode) = @_; my $self = {}; my $ret; # optional * ----vvv--- appears in indirect jmp/call if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) { bless $self,$class; $self->{asterisk} = $1; $self->{value} = $2; $self->{opmask} = $3; $opcode->size($self->size()); $ret = $self; $$line = substr($$line,@+[0]); $$line =~ s/^\s+//; } $ret; } sub size { my $self = shift; my $ret; if ($self->{value} =~ /^r[\d]+b$/i) { $ret="b"; } elsif ($self->{value} =~ /^r[\d]+w$/i) { $ret="w"; } elsif ($self->{value} =~ /^r[\d]+d$/i) { $ret="l"; } elsif ($self->{value} =~ /^r[\w]+$/i) { $ret="q"; } elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; } elsif ($self->{value} =~ /^[\w]{2}l$/i) { $ret="b"; } elsif ($self->{value} =~ /^[\w]{2}$/i) { $ret="w"; } elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; } $ret; } sub out { my $self = shift; if ($gas) { sprintf "%s%%%s%s", $self->{asterisk}, $self->{value}, $self->{opmask}; } else { $self->{opmask} =~ s/%(k[0-7])/$1/; $self->{value}.$self->{opmask}; } } } { package label; # pick up labels, which end with : sub re { my ($class, $line) = @_; my $self = {}; my $ret; if ($$line =~ /(^[\.\w]+)\:/) { bless $self,$class; $self->{value} = $1; $ret = $self; $$line = substr($$line,@+[0]); $$line =~ s/^\s+//; $self->{value} =~ s/^\.L/$decor/; } $ret; } sub out { my $self = shift; if ($gas) { my $func = ($globals{$self->{value}} or $self->{value}) . ":"; if ($win64 && $current_function->{name} eq $self->{value} && $current_function->{abi} eq "svr4") { $func .= "\n"; $func .= " movq %rdi,8(%rsp)\n"; $func .= " movq %rsi,16(%rsp)\n"; $func .= " movq %rsp,%rax\n"; $func .= "${decor}SEH_begin_$current_function->{name}:\n"; my $narg = $current_function->{narg}; $narg=6 if (!defined($narg)); $func .= " movq %rcx,%rdi\n" if ($narg>0); $func .= " movq %rdx,%rsi\n" if ($narg>1); $func .= " movq %r8,%rdx\n" if ($narg>2); $func .= " movq %r9,%rcx\n" if ($narg>3); $func .= " movq 40(%rsp),%r8\n" if ($narg>4); $func .= " movq 48(%rsp),%r9\n" if ($narg>5); } $func; } elsif ($self->{value} ne "$current_function->{name}") { # Make all labels in masm global. $self->{value} .= ":" if ($masm); $self->{value} . ":"; } elsif ($win64 && $current_function->{abi} eq "svr4") { my $func = "$current_function->{name}" . ($nasm ? ":" : "\tPROC $current_function->{scope}") . "\n"; $func .= " mov QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n"; $func .= " mov QWORD$PTR\[16+rsp\],rsi\n"; $func .= " mov rax,rsp\n"; $func .= "${decor}SEH_begin_$current_function->{name}:"; $func .= ":" if ($masm); $func .= "\n"; my $narg = $current_function->{narg}; $narg=6 if (!defined($narg)); $func .= " mov rdi,rcx\n" if ($narg>0); $func .= " mov rsi,rdx\n" if ($narg>1); $func .= " mov rdx,r8\n" if ($narg>2); $func .= " mov rcx,r9\n" if ($narg>3); $func .= " mov r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4); $func .= " mov r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5); $func .= "\n"; } else { "$current_function->{name}". ($nasm ? ":" : "\tPROC $current_function->{scope}"); } } } { package expr; # pick up expressions sub re { my ($class, $line, $opcode) = @_; my $self = {}; my $ret; if ($$line =~ /(^[^,]+)/) { bless $self,$class; $self->{value} = $1; $ret = $self; $$line = substr($$line,@+[0]); $$line =~ s/^\s+//; $self->{value} =~ s/\@PLT// if (!$elf); $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei; $self->{value} =~ s/\.L/$decor/g; $self->{opcode} = $opcode; } $ret; } sub out { my $self = shift; if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) { "NEAR ".$self->{value}; } else { $self->{value}; } } } { package cfi_directive; # CFI directives annotate instructions that are significant for # stack unwinding procedure compliant with DWARF specification, # see http://dwarfstd.org/. Besides naturally expected for this # script platform-specific filtering function, this module adds # three auxiliary synthetic directives not recognized by [GNU] # assembler: # # - .cfi_push to annotate push instructions in prologue, which # translates to .cfi_adjust_cfa_offset (if needed) and # .cfi_offset; # - .cfi_pop to annotate pop instructions in epilogue, which # translates to .cfi_adjust_cfa_offset (if needed) and # .cfi_restore; # - [and most notably] .cfi_cfa_expression which encodes # DW_CFA_def_cfa_expression and passes it to .cfi_escape as # byte vector; # # CFA expressions were introduced in DWARF specification version # 3 and describe how to deduce CFA, Canonical Frame Address. This # becomes handy if your stack frame is variable and you can't # spare register for [previous] frame pointer. Suggested directive # syntax is made-up mix of DWARF operator suffixes [subset of] # and references to registers with optional bias. Following example # describes offloaded *original* stack pointer at specific offset # from *current* stack pointer: # # .cfi_cfa_expression %rsp+40,deref,+8 # # Final +8 has everything to do with the fact that CFA is defined # as reference to top of caller's stack, and on x86_64 call to # subroutine pushes 8-byte return address. In other words original # stack pointer upon entry to a subroutine is 8 bytes off from CFA. # Below constants are taken from "DWARF Expressions" section of the # DWARF specification, section is numbered 7.7 in versions 3 and 4. my %DW_OP_simple = ( # no-arg operators, mapped directly deref => 0x06, dup => 0x12, drop => 0x13, over => 0x14, pick => 0x15, swap => 0x16, rot => 0x17, xderef => 0x18, abs => 0x19, and => 0x1a, div => 0x1b, minus => 0x1c, mod => 0x1d, mul => 0x1e, neg => 0x1f, not => 0x20, or => 0x21, plus => 0x22, shl => 0x24, shr => 0x25, shra => 0x26, xor => 0x27, ); my %DW_OP_complex = ( # used in specific subroutines constu => 0x10, # uleb128 consts => 0x11, # sleb128 plus_uconst => 0x23, # uleb128 lit0 => 0x30, # add 0-31 to opcode reg0 => 0x50, # add 0-31 to opcode breg0 => 0x70, # add 0-31 to opcole, sleb128 regx => 0x90, # uleb28 fbreg => 0x91, # sleb128 bregx => 0x92, # uleb128, sleb128 piece => 0x93, # uleb128 ); # Following constants are defined in x86_64 ABI supplement, for # example available at https://www.uclibc.org/docs/psABI-x86_64.pdf, # see section 3.7 "Stack Unwind Algorithm". my %DW_reg_idx = ( "%rax"=>0, "%rdx"=>1, "%rcx"=>2, "%rbx"=>3, "%rsi"=>4, "%rdi"=>5, "%rbp"=>6, "%rsp"=>7, "%r8" =>8, "%r9" =>9, "%r10"=>10, "%r11"=>11, "%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15 ); my ($cfa_reg, $cfa_rsp); my @cfa_stack; # [us]leb128 format is variable-length integer representation base # 2^128, with most significant bit of each byte being 0 denoting # *last* most significant digit. See "Variable Length Data" in the # DWARF specification, numbered 7.6 at least in versions 3 and 4. sub sleb128 { use integer; # get right shift extend sign my $val = shift; my $sign = ($val < 0) ? -1 : 0; my @ret = (); while(1) { push @ret, $val&0x7f; # see if remaining bits are same and equal to most # significant bit of the current digit, if so, it's # last digit... last if (($val>>6) == $sign); @ret[-1] |= 0x80; $val >>= 7; } return @ret; } sub uleb128 { my $val = shift; my @ret = (); while(1) { push @ret, $val&0x7f; # see if it's last significant digit... last if (($val >>= 7) == 0); @ret[-1] |= 0x80; } return @ret; } sub const { my $val = shift; if ($val >= 0 && $val < 32) { return ($DW_OP_complex{lit0}+$val); } return ($DW_OP_complex{consts}, sleb128($val)); } sub reg { my $val = shift; return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/); my $reg = $DW_reg_idx{$1}; my $off = eval ("0 $2 $3"); return (($DW_OP_complex{breg0} + $reg), sleb128($off)); # Yes, we use DW_OP_bregX+0 to push register value and not # DW_OP_regX, because latter would require even DW_OP_piece, # which would be a waste under the circumstances. If you have # to use DWP_OP_reg, use "regx:N"... } sub cfa_expression { my $line = shift; my @ret; foreach my $token (split(/,\s*/,$line)) { if ($token =~ /^%r/) { push @ret,reg($token); } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) { push @ret,reg("$2+$1"); } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) { my $i = 1*eval($2); push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i)); } elsif (my $i = 1*eval($token) or $token eq "0") { if ($token =~ /^\+/) { push @ret,$DW_OP_complex{plus_uconst},uleb128($i); } else { push @ret,const($i); } } else { push @ret,$DW_OP_simple{$token}; } } # Finally we return DW_CFA_def_cfa_expression, 15, followed by # length of the expression and of course the expression itself. return (15,scalar(@ret),@ret); } sub re { my ($class, $line) = @_; my $self = {}; my $ret; if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) { bless $self,$class; $ret = $self; undef $self->{value}; my $dir = $1; SWITCH: for ($dir) { # What is $cfa_rsp? Effectively it's difference between %rsp # value and current CFA, Canonical Frame Address, which is # why it starts with -8. Recall that CFA is top of caller's # stack... /startproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; }; /endproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", 0); # .cfi_remember_state directives that are not # matched with .cfi_restore_state are # unnecessary. die "unpaired .cfi_remember_state" if (@cfa_stack); last; }; /def_cfa_register/ && do { $cfa_reg = $$line; last; }; /def_cfa_offset/ && do { $cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp"); last; }; /adjust_cfa_offset/ && do { $cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp"); last; }; /def_cfa/ && do { if ($$line =~ /(%r\w+)\s*,\s*(.+)/) { $cfa_reg = $1; $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp"); } last; }; /push/ && do { $dir = undef; $cfa_rsp -= 8; if ($cfa_reg eq "%rsp") { $self->{value} = ".cfi_adjust_cfa_offset\t8\n"; } $self->{value} .= ".cfi_offset\t$$line,$cfa_rsp"; last; }; /pop/ && do { $dir = undef; $cfa_rsp += 8; if ($cfa_reg eq "%rsp") { $self->{value} = ".cfi_adjust_cfa_offset\t-8\n"; } $self->{value} .= ".cfi_restore\t$$line"; last; }; /cfa_expression/ && do { $dir = undef; $self->{value} = ".cfi_escape\t" . join(",", map(sprintf("0x%02x", $_), cfa_expression($$line))); last; }; /remember_state/ && do { push @cfa_stack, [$cfa_reg, $cfa_rsp]; last; }; /restore_state/ && do { ($cfa_reg, $cfa_rsp) = @{pop @cfa_stack}; last; }; } $self->{value} = ".cfi_$dir\t$$line" if ($dir); $$line = ""; } return $ret; } sub out { my $self = shift; return ($elf ? $self->{value} : undef); } } { package directive; # pick up directives, which start with . sub re { my ($class, $line) = @_; my $self = {}; my $ret; my $dir; # chain-call to cfi_directive $ret = cfi_directive->re($line) and return $ret; if ($$line =~ /^\s*(\.\w+)/) { bless $self,$class; $dir = $1; $ret = $self; undef $self->{value}; $$line = substr($$line,@+[0]); $$line =~ s/^\s+//; SWITCH: for ($dir) { /\.global|\.globl|\.extern/ && do { $globals{$$line} = $prefix . $$line; $$line = $globals{$$line} if ($prefix); last; }; /\.type/ && do { my ($sym,$type,$narg) = split(',',$$line); if ($type eq "\@function") { undef $current_function; $current_function->{name} = $sym; $current_function->{abi} = "svr4"; $current_function->{narg} = $narg; $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE"; } elsif ($type eq "\@abi-omnipotent") { undef $current_function; $current_function->{name} = $sym; $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE"; } $$line =~ s/\@abi\-omnipotent/\@function/; $$line =~ s/\@function.*/\@function/; last; }; /\.asciz/ && do { if ($$line =~ /^"(.*)"$/) { $dir = ".byte"; $$line = join(",",unpack("C*",$1),0); } last; }; /\.rva|\.long|\.quad/ && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei; $$line =~ s/\.L/$decor/g; last; }; } if ($gas) { $self->{value} = $dir . "\t" . $$line; if ($dir =~ /\.extern/) { $self->{value} = ""; # swallow extern } elsif (!$elf && $dir =~ /\.type/) { $self->{value} = ""; $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" . (defined($globals{$1})?".scl 2;":".scl 3;") . "\t.type 32;\t.endef" if ($win64 && $$line =~ /([^,]+),\@function/); } elsif (!$elf && $dir =~ /\.size/) { $self->{value} = ""; if (defined($current_function)) { $self->{value} .= "${decor}SEH_end_$current_function->{name}:" if ($win64 && $current_function->{abi} eq "svr4"); undef $current_function; } } elsif (!$elf && $dir =~ /\.align/) { $self->{value} = ".p2align\t" . (log($$line)/log(2)); } elsif ($dir eq ".section") { $current_segment=$$line; if (!$elf && $current_segment eq ".init") { if ($flavour eq "macosx") { $self->{value} = ".mod_init_func"; } elsif ($flavour eq "mingw64") { $self->{value} = ".section\t.ctors"; } } } elsif ($dir =~ /\.(text|data)/) { $current_segment=".$1"; } elsif ($dir =~ /\.hidden/) { if ($flavour eq "macosx") { $self->{value} = ".private_extern\t$prefix$$line"; } elsif ($flavour eq "mingw64") { $self->{value} = ""; } } elsif ($dir =~ /\.comm/) { $self->{value} = "$dir\t$prefix$$line"; $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx"); } $$line = ""; return $self; } # non-gas case or nasm/masm SWITCH: for ($dir) { /\.text/ && do { my $v=undef; if ($nasm) { $v="section .text code align=64\n"; } else { $v="$current_segment\tENDS\n" if ($current_segment); $current_segment = ".text\$"; $v.="$current_segment\tSEGMENT "; $v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE"; $v.=" 'CODE'"; } $self->{value} = $v; last; }; /\.data/ && do { my $v=undef; if ($nasm) { $v="section .data data align=8\n"; } else { $v="$current_segment\tENDS\n" if ($current_segment); $current_segment = "_DATA"; $v.="$current_segment\tSEGMENT"; } $self->{value} = $v; last; }; /\.section/ && do { my $v=undef; $$line =~ s/([^,]*).*/$1/; $$line = ".CRT\$XCU" if ($$line eq ".init"); if ($nasm) { $v="section $$line"; if ($$line=~/\.([px])data/) { $v.=" rdata align="; $v.=$1 eq "p"? 4 : 8; } elsif ($$line=~/\.CRT\$/i) { $v.=" rdata align=8"; } } else { $v="$current_segment\tENDS\n" if ($current_segment); $v.="$$line\tSEGMENT"; if ($$line=~/\.([px])data/) { $v.=" READONLY"; $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref); } elsif ($$line=~/\.CRT\$/i) { $v.=" READONLY "; $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD"; } } $current_segment = $$line; $self->{value} = $v; last; }; /\.extern/ && do { $self->{value} = "EXTERN\t".$$line; $self->{value} .= ":NEAR" if ($masm); last; }; /\.globl|.global/ && do { $self->{value} = $masm?"PUBLIC":"global"; $self->{value} .= "\t".$$line; last; }; /\.size/ && do { if (defined($current_function)) { undef $self->{value}; if ($current_function->{abi} eq "svr4") { $self->{value}="${decor}SEH_end_$current_function->{name}:"; $self->{value}.=":\n" if($masm); } $self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name}); undef $current_function; } last; }; /\.align/ && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096; $self->{value} = "ALIGN\t".($$line>$max?$max:$$line); last; }; /\.(value|long|rva|quad)/ && do { my $sz = substr($1,0,1); my @arr = split(/,\s*/,$$line); my $last = pop(@arr); my $conv = sub { my $var=shift; $var=~s/^(0b[0-1]+)/oct($1)/eig; $var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm); if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva")) { $var=~s/^([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; } $var; }; $sz =~ tr/bvlrq/BWDDQ/; $self->{value} = "\tD$sz\t"; for (@arr) { $self->{value} .= &$conv($_).","; } $self->{value} .= &$conv($last); last; }; /\.byte/ && do { my @str=split(/,\s*/,$$line); map(s/(0b[0-1]+)/oct($1)/eig,@str); map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm); while ($#str>15) { $self->{value}.="DB\t" .join(",",@str[0..15])."\n"; foreach (0..15) { shift @str; } } $self->{value}.="DB\t" .join(",",@str) if (@str); last; }; /\.comm/ && do { my @str=split(/,\s*/,$$line); my $v=undef; if ($nasm) { $v.="common $prefix@str[0] @str[1]"; } else { $v="$current_segment\tENDS\n" if ($current_segment); $current_segment = "_DATA"; $v.="$current_segment\tSEGMENT\n"; $v.="COMM @str[0]:DWORD:".@str[1]/4; } $self->{value} = $v; last; }; } $$line = ""; } $ret; } sub out { my $self = shift; $self->{value}; } } # Upon initial x86_64 introduction SSE>2 extensions were not introduced # yet. In order not to be bothered by tracing exact assembler versions, # but at the same time to provide a bare security minimum of AES-NI, we # hard-code some instructions. Extensions past AES-NI on the other hand # are traced by examining assembler version in individual perlasm # modules... my %regrm = ( "%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3, "%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7 ); sub rex { my $opcode=shift; my ($dst,$src,$rex)=@_; $rex|=0x04 if($dst>=8); $rex|=0x01 if($src>=8); push @$opcode,($rex|0x40) if ($rex); } my $movq = sub { # elderly gas can't handle inter-register movq my $arg = shift; my @opcode=(0x66); if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) { my ($src,$dst)=($1,$2); if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; } rex(\@opcode,$src,$dst,0x8); push @opcode,0x0f,0x7e; push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M @opcode; } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) { my ($src,$dst)=($2,$1); if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; } rex(\@opcode,$src,$dst,0x8); push @opcode,0x0f,0x6e; push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M @opcode; } else { (); } }; my $pextrd = sub { if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) { my @opcode=(0x66); my $imm=$1; my $src=$2; my $dst=$3; if ($dst =~ /%r([0-9]+)d/) { $dst = $1; } elsif ($dst =~ /%e/) { $dst = $regrm{$dst}; } rex(\@opcode,$src,$dst); push @opcode,0x0f,0x3a,0x16; push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M push @opcode,$imm; @opcode; } else { (); } }; my $pinsrd = sub { if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) { my @opcode=(0x66); my $imm=$1; my $src=$2; my $dst=$3; if ($src =~ /%r([0-9]+)/) { $src = $1; } elsif ($src =~ /%e/) { $src = $regrm{$src}; } rex(\@opcode,$dst,$src); push @opcode,0x0f,0x3a,0x22; push @opcode,0xc0|(($dst&7)<<3)|($src&7); # ModR/M push @opcode,$imm; @opcode; } else { (); } }; my $pshufb = sub { if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x66); rex(\@opcode,$2,$1); push @opcode,0x0f,0x38,0x00; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M @opcode; } else { (); } }; my $palignr = sub { if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x66); rex(\@opcode,$3,$2); push @opcode,0x0f,0x3a,0x0f; push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M push @opcode,$1; @opcode; } else { (); } }; my $pclmulqdq = sub { if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x66); rex(\@opcode,$3,$2); push @opcode,0x0f,0x3a,0x44; push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M my $c=$1; push @opcode,$c=~/^0/?oct($c):$c; @opcode; } else { (); } }; my $rdrand = sub { if (shift =~ /%[er](\w+)/) { my @opcode=(); my $dst=$1; if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; } rex(\@opcode,0,$dst,8); push @opcode,0x0f,0xc7,0xf0|($dst&7); @opcode; } else { (); } }; my $rdseed = sub { if (shift =~ /%[er](\w+)/) { my @opcode=(); my $dst=$1; if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; } rex(\@opcode,0,$dst,8); push @opcode,0x0f,0xc7,0xf8|($dst&7); @opcode; } else { (); } }; # Not all AVX-capable assemblers recognize AMD XOP extension. Since we # are using only two instructions hand-code them in order to be excused # from chasing assembler versions... sub rxb { my $opcode=shift; my ($dst,$src1,$src2,$rxb)=@_; $rxb|=0x7<<5; $rxb&=~(0x04<<5) if($dst>=8); $rxb&=~(0x01<<5) if($src1>=8); $rxb&=~(0x02<<5) if($src2>=8); push @$opcode,$rxb; } my $vprotd = sub { if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x8f); rxb(\@opcode,$3,$2,-1,0x08); push @opcode,0x78,0xc2; push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M my $c=$1; push @opcode,$c=~/^0/?oct($c):$c; @opcode; } else { (); } }; my $vprotq = sub { if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x8f); rxb(\@opcode,$3,$2,-1,0x08); push @opcode,0x78,0xc3; push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M my $c=$1; push @opcode,$c=~/^0/?oct($c):$c; @opcode; } else { (); } }; # Intel Control-flow Enforcement Technology extension. All functions and # indirect branch targets will have to start with this instruction... my $endbranch = sub { (0xf3,0x0f,0x1e,0xfa); }; ######################################################################## if ($nasm) { print <<___; default rel %define XMMWORD %define YMMWORD %define ZMMWORD ___ } elsif ($masm) { print <<___; OPTION DOTNAME ___ } while(defined(my $line=<>)) { $line =~ s|\R$||; # Better chomp $line =~ s|[#!].*$||; # get rid of asm-style comments... $line =~ s|/\*.*\*/||; # ... and C-style comments... $line =~ s|^\s+||; # ... and skip white spaces in beginning $line =~ s|\s+$||; # ... and at the end if (my $label=label->re(\$line)) { print $label->out(); } if (my $directive=directive->re(\$line)) { printf "%s",$directive->out(); } elsif (my $opcode=opcode->re(\$line)) { my $asm = eval("\$".$opcode->mnemonic()); if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) { print $gas?".byte\t":"DB\t",join(',',@bytes),"\n"; next; } my @args; ARGUMENT: while (1) { my $arg; ($arg=register->re(\$line, $opcode))|| ($arg=const->re(\$line)) || ($arg=ea->re(\$line, $opcode)) || ($arg=expr->re(\$line, $opcode)) || last ARGUMENT; push @args,$arg; last ARGUMENT if ($line !~ /^,/); $line =~ s/^,\s*//; } # ARGUMENT: if ($#args>=0) { my $insn; my $sz=$opcode->size(); if ($gas) { $insn = $opcode->out($#args>=1?$args[$#args]->size():$sz); @args = map($_->out($sz),@args); printf "\t%s\t%s",$insn,join(",",@args); } else { $insn = $opcode->out(); foreach (@args) { my $arg = $_->out(); # $insn.=$sz compensates for movq, pinsrw, ... if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; } if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; } if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; } if ($arg =~ /^mm[0-9]+$/) { $insn.=$sz; $sz="q" if(!$sz); last; } } @args = reverse(@args); undef $sz if ($nasm && $opcode->mnemonic() eq "lea"); printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args)); } } else { printf "\t%s",$opcode->out(); } } print $line,"\n"; } print "\n$current_segment\tENDS\n" if ($current_segment && $masm); print "END\n" if ($masm); close STDOUT or die "error closing STDOUT: $!"; ################################################# # Cross-reference x86_64 ABI "card" # # Unix Win64 # %rax * * # %rbx - - # %rcx #4 #1 # %rdx #3 #2 # %rsi #2 - # %rdi #1 - # %rbp - - # %rsp - - # %r8 #5 #3 # %r9 #6 #4 # %r10 * * # %r11 * * # %r12 - - # %r13 - - # %r14 - - # %r15 - - # # (*) volatile register # (-) preserved by callee # (#) Nth argument, volatile # # In Unix terms top of stack is argument transfer area for arguments # which could not be accommodated in registers. Or in other words 7th # [integer] argument resides at 8(%rsp) upon function entry point. # 128 bytes above %rsp constitute a "red zone" which is not touched # by signal handlers and can be used as temporal storage without # allocating a frame. # # In Win64 terms N*8 bytes on top of stack is argument transfer area, # which belongs to/can be overwritten by callee. N is the number of # arguments passed to callee, *but* not less than 4! This means that # upon function entry point 5th argument resides at 40(%rsp), as well # as that 32 bytes from 8(%rsp) can always be used as temporal # storage [without allocating a frame]. One can actually argue that # one can assume a "red zone" above stack pointer under Win64 as well. # Point is that at apparently no occasion Windows kernel would alter # the area above user stack pointer in true asynchronous manner... # # All the above means that if assembler programmer adheres to Unix # register and stack layout, but disregards the "red zone" existence, # it's possible to use following prologue and epilogue to "gear" from # Unix to Win64 ABI in leaf functions with not more than 6 arguments. # # omnipotent_function: # ifdef WIN64 # movq %rdi,8(%rsp) # movq %rsi,16(%rsp) # movq %rcx,%rdi ; if 1st argument is actually present # movq %rdx,%rsi ; if 2nd argument is actually ... # movq %r8,%rdx ; if 3rd argument is ... # movq %r9,%rcx ; if 4th argument ... # movq 40(%rsp),%r8 ; if 5th ... # movq 48(%rsp),%r9 ; if 6th ... # endif # ... # ifdef WIN64 # movq 8(%rsp),%rdi # movq 16(%rsp),%rsi # endif # ret # ################################################# # Win64 SEH, Structured Exception Handling. # # Unlike on Unix systems(*) lack of Win64 stack unwinding information # has undesired side-effect at run-time: if an exception is raised in # assembler subroutine such as those in question (basically we're # referring to segmentation violations caused by malformed input # parameters), the application is briskly terminated without invoking # any exception handlers, most notably without generating memory dump # or any user notification whatsoever. This poses a problem. It's # possible to address it by registering custom language-specific # handler that would restore processor context to the state at # subroutine entry point and return "exception is not handled, keep # unwinding" code. Writing such handler can be a challenge... But it's # doable, though requires certain coding convention. Consider following # snippet: # # .type function,@function # function: # movq %rsp,%rax # copy rsp to volatile register # pushq %r15 # save non-volatile registers # pushq %rbx # pushq %rbp # movq %rsp,%r11 # subq %rdi,%r11 # prepare [variable] stack frame # andq $-64,%r11 # movq %rax,0(%r11) # check for exceptions # movq %r11,%rsp # allocate [variable] stack frame # movq %rax,0(%rsp) # save original rsp value # magic_point: # ... # movq 0(%rsp),%rcx # pull original rsp value # movq -24(%rcx),%rbp # restore non-volatile registers # movq -16(%rcx),%rbx # movq -8(%rcx),%r15 # movq %rcx,%rsp # restore original rsp # magic_epilogue: # ret # .size function,.-function # # The key is that up to magic_point copy of original rsp value remains # in chosen volatile register and no non-volatile register, except for # rsp, is modified. While past magic_point rsp remains constant till # the very end of the function. In this case custom language-specific # exception handler would look like this: # # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) # { ULONG64 *rsp = (ULONG64 *)context->Rax; # ULONG64 rip = context->Rip; # # if (rip >= magic_point) # { rsp = (ULONG64 *)context->Rsp; # if (rip < magic_epilogue) # { rsp = (ULONG64 *)rsp[0]; # context->Rbp = rsp[-3]; # context->Rbx = rsp[-2]; # context->R15 = rsp[-1]; # } # } # context->Rsp = (ULONG64)rsp; # context->Rdi = rsp[1]; # context->Rsi = rsp[2]; # # memcpy (disp->ContextRecord,context,sizeof(CONTEXT)); # RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase, # dips->ControlPc,disp->FunctionEntry,disp->ContextRecord, # &disp->HandlerData,&disp->EstablisherFrame,NULL); # return ExceptionContinueSearch; # } # # It's appropriate to implement this handler in assembler, directly in # function's module. In order to do that one has to know members' # offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant # values. Here they are: # # CONTEXT.Rax 120 # CONTEXT.Rcx 128 # CONTEXT.Rdx 136 # CONTEXT.Rbx 144 # CONTEXT.Rsp 152 # CONTEXT.Rbp 160 # CONTEXT.Rsi 168 # CONTEXT.Rdi 176 # CONTEXT.R8 184 # CONTEXT.R9 192 # CONTEXT.R10 200 # CONTEXT.R11 208 # CONTEXT.R12 216 # CONTEXT.R13 224 # CONTEXT.R14 232 # CONTEXT.R15 240 # CONTEXT.Rip 248 # CONTEXT.Xmm6 512 # sizeof(CONTEXT) 1232 # DISPATCHER_CONTEXT.ControlPc 0 # DISPATCHER_CONTEXT.ImageBase 8 # DISPATCHER_CONTEXT.FunctionEntry 16 # DISPATCHER_CONTEXT.EstablisherFrame 24 # DISPATCHER_CONTEXT.TargetIp 32 # DISPATCHER_CONTEXT.ContextRecord 40 # DISPATCHER_CONTEXT.LanguageHandler 48 # DISPATCHER_CONTEXT.HandlerData 56 # UNW_FLAG_NHANDLER 0 # ExceptionContinueSearch 1 # # In order to tie the handler to the function one has to compose # couple of structures: one for .xdata segment and one for .pdata. # # UNWIND_INFO structure for .xdata segment would be # # function_unwind_info: # .byte 9,0,0,0 # .rva handler # # This structure designates exception handler for a function with # zero-length prologue, no stack frame or frame register. # # To facilitate composing of .pdata structures, auto-generated "gear" # prologue copies rsp value to rax and denotes next instruction with # .LSEH_begin_{function_name} label. This essentially defines the SEH # styling rule mentioned in the beginning. Position of this label is # chosen in such manner that possible exceptions raised in the "gear" # prologue would be accounted to caller and unwound from latter's frame. # End of function is marked with respective .LSEH_end_{function_name} # label. To summarize, .pdata segment would contain # # .rva .LSEH_begin_function # .rva .LSEH_end_function # .rva function_unwind_info # # Reference to function_unwind_info from .xdata segment is the anchor. # In case you wonder why references are 32-bit .rvas and not 64-bit # .quads. References put into these two segments are required to be # *relative* to the base address of the current binary module, a.k.a. # image base. No Win64 module, be it .exe or .dll, can be larger than # 2GB and thus such relative references can be and are accommodated in # 32 bits. # # Having reviewed the example function code, one can argue that "movq # %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix # rax would contain an undefined value. If this "offends" you, use # another register and refrain from modifying rax till magic_point is # reached, i.e. as if it was a non-volatile register. If more registers # are required prior [variable] frame setup is completed, note that # nobody says that you can have only one "magic point." You can # "liberate" non-volatile registers by denoting last stack off-load # instruction and reflecting it in finer grade unwind logic in handler. # After all, isn't it why it's called *language-specific* handler... # # SE handlers are also involved in unwinding stack when executable is # profiled or debugged. Profiling implies additional limitations that # are too subtle to discuss here. For now it's sufficient to say that # in order to simplify handlers one should either a) offload original # %rsp to stack (like discussed above); or b) if you have a register to # spare for frame pointer, choose volatile one. # # (*) Note that we're talking about run-time, not debug-time. Lack of # unwind information makes debugging hard on both Windows and # Unix. "Unlike" refers to the fact that on Unix signal handler # will always be invoked, core dumped and appropriate exit code # returned to parent (for user notification). openssl-1.1.1f/crypto/perlasm/x86asm.pl000066400000000000000000000160011364063235100200120ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # require 'x86asm.pl'; # &asm_init([,$i386only]); # &function_begin("foo"); # ... # &function_end("foo"); # &asm_finish $out=(); $i386=0; # AUTOLOAD is this context has quite unpleasant side effect, namely # that typos in function calls effectively go to assembler output, # but on the pros side we don't have to implement one subroutine per # each opcode... sub ::AUTOLOAD { my $opcode = $AUTOLOAD; die "more than 4 arguments passed to $opcode" if ($#_>3); $opcode =~ s/.*:://; if ($opcode =~ /^push/) { $stack+=4; } elsif ($opcode =~ /^pop/) { $stack-=4; } &generic($opcode,@_) or die "undefined subroutine \&$AUTOLOAD"; } sub ::emit { my $opcode=shift; if ($#_==-1) { push(@out,"\t$opcode\n"); } else { push(@out,"\t$opcode\t".join(',',@_)."\n"); } } sub ::LB { $_[0] =~ m/^e?([a-d])x$/o or die "$_[0] does not have a 'low byte'"; $1."l"; } sub ::HB { $_[0] =~ m/^e?([a-d])x$/o or die "$_[0] does not have a 'high byte'"; $1."h"; } sub ::stack_push{ my $num=$_[0]*4; $stack+=$num; &sub("esp",$num); } sub ::stack_pop { my $num=$_[0]*4; $stack-=$num; &add("esp",$num); } sub ::blindpop { &pop($_[0]); $stack+=4; } sub ::wparam { &DWP($stack+4*$_[0],"esp"); } sub ::swtmp { &DWP(4*$_[0],"esp"); } sub ::bswap { if ($i386) # emulate bswap for i386 { &comment("bswap @_"); &xchg(&HB(@_),&LB(@_)); &ror (@_,16); &xchg(&HB(@_),&LB(@_)); } else { &generic("bswap",@_); } } # These are made-up opcodes introduced over the years essentially # by ignorance, just alias them to real ones... sub ::movb { &mov(@_); } sub ::xorb { &xor(@_); } sub ::rotl { &rol(@_); } sub ::rotr { &ror(@_); } sub ::exch { &xchg(@_); } sub ::halt { &hlt; } sub ::movz { &movzx(@_); } sub ::pushf { &pushfd; } sub ::popf { &popfd; } # 3 argument instructions sub ::movq { my($p1,$p2,$optimize)=@_; if ($optimize && $p1=~/^mm[0-7]$/ && $p2=~/^mm[0-7]$/) # movq between mmx registers can sink Intel CPUs { &::pshufw($p1,$p2,0xe4); } else { &::generic("movq",@_); } } # SSE>2 instructions my %regrm = ( "eax"=>0, "ecx"=>1, "edx"=>2, "ebx"=>3, "esp"=>4, "ebp"=>5, "esi"=>6, "edi"=>7 ); sub ::pextrd { my($dst,$src,$imm)=@_; if ("$dst:$src" =~ /(e[a-dsd][ixp]):xmm([0-7])/) { &::data_byte(0x66,0x0f,0x3a,0x16,0xc0|($2<<3)|$regrm{$1},$imm); } else { &::generic("pextrd",@_); } } sub ::pinsrd { my($dst,$src,$imm)=@_; if ("$dst:$src" =~ /xmm([0-7]):(e[a-dsd][ixp])/) { &::data_byte(0x66,0x0f,0x3a,0x22,0xc0|($1<<3)|$regrm{$2},$imm); } else { &::generic("pinsrd",@_); } } sub ::pshufb { my($dst,$src)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x66,0x0f,0x38,0x00,0xc0|($1<<3)|$2); } else { &::generic("pshufb",@_); } } sub ::palignr { my($dst,$src,$imm)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &::data_byte(0x66,0x0f,0x3a,0x0f,0xc0|($1<<3)|$2,$imm); } else { &::generic("palignr",@_); } } sub ::pclmulqdq { my($dst,$src,$imm)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &::data_byte(0x66,0x0f,0x3a,0x44,0xc0|($1<<3)|$2,$imm); } else { &::generic("pclmulqdq",@_); } } sub ::rdrand { my ($dst)=@_; if ($dst =~ /(e[a-dsd][ixp])/) { &::data_byte(0x0f,0xc7,0xf0|$regrm{$dst}); } else { &::generic("rdrand",@_); } } sub ::rdseed { my ($dst)=@_; if ($dst =~ /(e[a-dsd][ixp])/) { &::data_byte(0x0f,0xc7,0xf8|$regrm{$dst}); } else { &::generic("rdrand",@_); } } sub rxb { local *opcode=shift; my ($dst,$src1,$src2,$rxb)=@_; $rxb|=0x7<<5; $rxb&=~(0x04<<5) if($dst>=8); $rxb&=~(0x01<<5) if($src1>=8); $rxb&=~(0x02<<5) if($src2>=8); push @opcode,$rxb; } sub ::vprotd { my $args=join(',',@_); if ($args =~ /xmm([0-7]),xmm([0-7]),([x0-9a-f]+)/) { my @opcode=(0x8f); rxb(\@opcode,$1,$2,-1,0x08); push @opcode,0x78,0xc2; push @opcode,0xc0|($2&7)|(($1&7)<<3); # ModR/M my $c=$3; push @opcode,$c=~/^0/?oct($c):$c; &::data_byte(@opcode); } else { &::generic("vprotd",@_); } } sub ::endbranch { &::data_byte(0xf3,0x0f,0x1e,0xfb); } # label management $lbdecor="L"; # local label decoration, set by package $label="000"; sub ::islabel # see is argument is a known label { my $i; foreach $i (values %label) { return $i if ($i eq $_[0]); } $label{$_[0]}; # can be undef } sub ::label # instantiate a function-scope label { if (!defined($label{$_[0]})) { $label{$_[0]}="${lbdecor}${label}${_[0]}"; $label++; } $label{$_[0]}; } sub ::LABEL # instantiate a file-scope label { $label{$_[0]}=$_[1] if (!defined($label{$_[0]})); $label{$_[0]}; } sub ::static_label { &::LABEL($_[0],$lbdecor.$_[0]); } sub ::set_label_B { push(@out,"@_:\n"); } sub ::set_label { my $label=&::label($_[0]); &::align($_[1]) if ($_[1]>1); &::set_label_B($label); $label; } sub ::wipe_labels # wipes function-scope labels { foreach $i (keys %label) { delete $label{$i} if ($label{$i} =~ /^\Q${lbdecor}\E[0-9]{3}/); } } # subroutine management sub ::function_begin { &function_begin_B(@_); $stack=4; &push("ebp"); &push("ebx"); &push("esi"); &push("edi"); } sub ::function_end { &pop("edi"); &pop("esi"); &pop("ebx"); &pop("ebp"); &ret(); &function_end_B(@_); $stack=0; &wipe_labels(); } sub ::function_end_A { &pop("edi"); &pop("esi"); &pop("ebx"); &pop("ebp"); &ret(); $stack+=16; # readjust esp as if we didn't pop anything } sub ::asciz { my @str=unpack("C*",shift); push @str,0; while ($#str>15) { &data_byte(@str[0..15]); foreach (0..15) { shift @str; } } &data_byte(@str) if (@str); } sub ::asm_finish { &file_end(); print @out; } sub ::asm_init { my ($type,$cpu)=@_; $i386=$cpu; $elf=$cpp=$coff=$aout=$macosx=$win32=$mwerks=$android=0; if (($type eq "elf")) { $elf=1; require "x86gas.pl"; } elsif (($type eq "elf-1")) { $elf=-1; require "x86gas.pl"; } elsif (($type eq "a\.out")) { $aout=1; require "x86gas.pl"; } elsif (($type eq "coff" or $type eq "gaswin")) { $coff=1; require "x86gas.pl"; } elsif (($type eq "win32n")) { $win32=1; require "x86nasm.pl"; } elsif (($type eq "win32")) { $win32=1; require "x86masm.pl"; } elsif (($type eq "macosx")) { $aout=1; $macosx=1; require "x86gas.pl"; } elsif (($type eq "android")) { $elf=1; $android=1; require "x86gas.pl"; } else { print STDERR <<"EOF"; Pick one target type from elf - Linux, FreeBSD, Solaris x86, etc. a.out - DJGPP, elder OpenBSD, etc. coff - GAS/COFF such as Win32 targets win32n - Windows 95/Windows NT NASM format macosx - Mac OS X EOF exit(1); } $pic=0; for (@ARGV) { $pic=1 if (/\-[fK]PIC/i); } &file(); } sub ::hidden {} 1; openssl-1.1.1f/crypto/perlasm/x86gas.pl000066400000000000000000000144461364063235100200170ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html package x86gas; *out=\@::out; $::lbdecor=$::aout?"L":".L"; # local label decoration $nmdecor=($::aout or $::coff)?"_":""; # external name decoration $initseg=""; $align=16; $align=log($align)/log(2) if ($::aout); $com_start="#" if ($::aout or $::coff); sub opsize() { my $reg=shift; if ($reg =~ m/^%e/o) { "l"; } elsif ($reg =~ m/^%[a-d][hl]$/o) { "b"; } elsif ($reg =~ m/^%[yxm]/o) { undef; } else { "w"; } } # swap arguments; # expand opcode with size suffix; # prefix numeric constants with $; sub ::generic { my($opcode,@arg)=@_; my($suffix,$dst,$src); @arg=reverse(@arg); for (@arg) { s/^(\*?)(e?[a-dsixphl]{2})$/$1%$2/o; # gp registers s/^([xy]?mm[0-7])$/%$1/o; # xmm/mmx registers s/^(\-?[0-9]+)$/\$$1/o; # constants s/^(\-?0x[0-9a-f]+)$/\$$1/o; # constants } $dst = $arg[$#arg] if ($#arg>=0); $src = $arg[$#arg-1] if ($#arg>=1); if ($dst =~ m/^%/o) { $suffix=&opsize($dst); } elsif ($src =~ m/^%/o) { $suffix=&opsize($src); } else { $suffix="l"; } undef $suffix if ($dst =~ m/^%[xm]/o || $src =~ m/^%[xm]/o); if ($#_==0) { &::emit($opcode); } elsif ($#_==1 && $opcode =~ m/^(call|clflush|j|loop|set)/o) { &::emit($opcode,@arg); } else { &::emit($opcode.$suffix,@arg);} 1; } # # opcodes not covered by ::generic above, mostly inconsistent namings... # sub ::movzx { &::movzb(@_); } sub ::pushfd { &::pushfl; } sub ::popfd { &::popfl; } sub ::cpuid { &::emit(".byte\t0x0f,0xa2"); } sub ::rdtsc { &::emit(".byte\t0x0f,0x31"); } sub ::call { &::emit("call",(&::islabel($_[0]) or "$nmdecor$_[0]")); } sub ::call_ptr { &::generic("call","*$_[0]"); } sub ::jmp_ptr { &::generic("jmp","*$_[0]"); } *::bswap = sub { &::emit("bswap","%$_[0]"); } if (!$::i386); sub ::DWP { my($addr,$reg1,$reg2,$idx)=@_; my $ret=""; if (!defined($idx) && 1*$reg2) { $idx=$reg2; $reg2=$reg1; undef $reg1; } $addr =~ s/^\s+//; # prepend global references with optional underscore $addr =~ s/^([^\+\-0-9][^\+\-]*)/&::islabel($1) or "$nmdecor$1"/ige; $reg1 = "%$reg1" if ($reg1); $reg2 = "%$reg2" if ($reg2); $ret .= $addr if (($addr ne "") && ($addr ne 0)); if ($reg2) { $idx!= 0 or $idx=1; $ret .= "($reg1,$reg2,$idx)"; } elsif ($reg1) { $ret .= "($reg1)"; } $ret; } sub ::QWP { &::DWP(@_); } sub ::BP { &::DWP(@_); } sub ::WP { &::DWP(@_); } sub ::BC { @_; } sub ::DWC { @_; } sub ::file { push(@out,".text\n"); } sub ::function_begin_B { my $func=shift; my $global=($func !~ /^_/); my $begin="${::lbdecor}_${func}_begin"; &::LABEL($func,$global?"$begin":"$nmdecor$func"); $func=$nmdecor.$func; push(@out,".globl\t$func\n") if ($global); if ($::coff) { push(@out,".def\t$func;\t.scl\t".(3-$global).";\t.type\t32;\t.endef\n"); } elsif (($::aout and !$::pic) or $::macosx) { } else { push(@out,".type $func,\@function\n"); } push(@out,".align\t$align\n"); push(@out,"$func:\n"); push(@out,"$begin:\n") if ($global); $::stack=4; } sub ::function_end_B { my $func=shift; push(@out,".size\t$nmdecor$func,.-".&::LABEL($func)."\n") if ($::elf); $::stack=0; &::wipe_labels(); } sub ::comment { if (!defined($com_start) or $::elf) { # Regarding $::elf above... # GNU and SVR4 as'es use different comment delimiters, push(@out,"\n"); # so we just skip ELF comments... return; } foreach (@_) { if (/^\s*$/) { push(@out,"\n"); } else { push(@out,"\t$com_start $_ $com_end\n"); } } } sub ::external_label { foreach(@_) { &::LABEL($_,$nmdecor.$_); } } sub ::public_label { push(@out,".globl\t".&::LABEL($_[0],$nmdecor.$_[0])."\n"); } sub ::file_end { if ($::macosx) { if (%non_lazy_ptr) { push(@out,".section __IMPORT,__pointers,non_lazy_symbol_pointers\n"); foreach $i (keys %non_lazy_ptr) { push(@out,"$non_lazy_ptr{$i}:\n.indirect_symbol\t$i\n.long\t0\n"); } } } if (grep {/\b${nmdecor}OPENSSL_ia32cap_P\b/i} @out) { my $tmp=".comm\t${nmdecor}OPENSSL_ia32cap_P,16"; if ($::macosx) { push (@out,"$tmp,2\n"); } elsif ($::elf) { push (@out,"$tmp,4\n"); } else { push (@out,"$tmp\n"); } } push(@out,$initseg) if ($initseg); } sub ::data_byte { push(@out,".byte\t".join(',',@_)."\n"); } sub ::data_short{ push(@out,".value\t".join(',',@_)."\n"); } sub ::data_word { push(@out,".long\t".join(',',@_)."\n"); } sub ::align { my $val=$_[0]; if ($::aout) { $val=int(log($val)/log(2)); $val.=",0x90"; } push(@out,".align\t$val\n"); } sub ::picmeup { my($dst,$sym,$base,$reflabel)=@_; if (($::pic && ($::elf || $::aout)) || $::macosx) { if (!defined($base)) { &::call(&::label("PIC_me_up")); &::set_label("PIC_me_up"); &::blindpop($dst); $base=$dst; $reflabel=&::label("PIC_me_up"); } if ($::macosx) { my $indirect=&::static_label("$nmdecor$sym\$non_lazy_ptr"); &::mov($dst,&::DWP("$indirect-$reflabel",$base)); $non_lazy_ptr{"$nmdecor$sym"}=$indirect; } elsif ($sym eq "OPENSSL_ia32cap_P" && $::elf>0) { &::lea($dst,&::DWP("$sym-$reflabel",$base)); } else { &::lea($dst,&::DWP("_GLOBAL_OFFSET_TABLE_+[.-$reflabel]", $base)); &::mov($dst,&::DWP("$sym\@GOT",$dst)); } } else { &::lea($dst,&::DWP($sym)); } } sub ::initseg { my $f=$nmdecor.shift; if ($::android) { $initseg.=<<___; .section .init_array .align 4 .long $f ___ } elsif ($::elf) { $initseg.=<<___; .section .init call $f ___ } elsif ($::coff) { $initseg.=<<___; # applies to both Cygwin and Mingw .section .ctors .long $f ___ } elsif ($::macosx) { $initseg.=<<___; .mod_init_func .align 2 .long $f ___ } elsif ($::aout) { my $ctor="${nmdecor}_GLOBAL_\$I\$$f"; $initseg.=".text\n"; $initseg.=".type $ctor,\@function\n" if ($::pic); $initseg.=<<___; # OpenBSD way... .globl $ctor .align 2 $ctor: jmp $f ___ } } sub ::dataseg { push(@out,".data\n"); } *::hidden = sub { push(@out,".hidden\t$nmdecor$_[0]\n"); } if ($::elf); 1; openssl-1.1.1f/crypto/perlasm/x86masm.pl000066400000000000000000000112441364063235100201730ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html package x86masm; *out=\@::out; $::lbdecor="\$L"; # local label decoration $nmdecor="_"; # external name decoration $initseg=""; $segment=""; sub ::generic { my ($opcode,@arg)=@_; # fix hexadecimal constants for (@arg) { s/(?= 0x02030000\n"); push(@out,"safeseh ".&::LABEL($nm,$nmdecor.$nm)."\n"); push(@out,"%endif\n"); } 1; openssl-1.1.1f/crypto/pkcs12/000077500000000000000000000000001364063235100157715ustar00rootroot00000000000000openssl-1.1.1f/crypto/pkcs12/build.info000066400000000000000000000003631364063235100177470ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ p12_add.c p12_asn.c p12_attr.c p12_crpt.c p12_crt.c p12_decr.c \ p12_init.c p12_key.c p12_kiss.c p12_mutl.c p12_sbag.c \ p12_utl.c p12_npas.c pk12err.c p12_p8d.c p12_p8e.c openssl-1.1.1f/crypto/pkcs12/p12_add.c000066400000000000000000000120161364063235100173470ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "p12_local.h" /* Pack an object into an OCTET STRING and turn into a safebag */ PKCS12_SAFEBAG *PKCS12_item_pack_safebag(void *obj, const ASN1_ITEM *it, int nid1, int nid2) { PKCS12_BAGS *bag; PKCS12_SAFEBAG *safebag; if ((bag = PKCS12_BAGS_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, ERR_R_MALLOC_FAILURE); return NULL; } bag->type = OBJ_nid2obj(nid1); if (!ASN1_item_pack(obj, it, &bag->value.octet)) { PKCS12err(PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, ERR_R_MALLOC_FAILURE); goto err; } if ((safebag = PKCS12_SAFEBAG_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, ERR_R_MALLOC_FAILURE); goto err; } safebag->value.bag = bag; safebag->type = OBJ_nid2obj(nid2); return safebag; err: PKCS12_BAGS_free(bag); return NULL; } /* Turn a stack of SAFEBAGS into a PKCS#7 data Contentinfo */ PKCS7 *PKCS12_pack_p7data(STACK_OF(PKCS12_SAFEBAG) *sk) { PKCS7 *p7; if ((p7 = PKCS7_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_PACK_P7DATA, ERR_R_MALLOC_FAILURE); return NULL; } p7->type = OBJ_nid2obj(NID_pkcs7_data); if ((p7->d.data = ASN1_OCTET_STRING_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_PACK_P7DATA, ERR_R_MALLOC_FAILURE); goto err; } if (!ASN1_item_pack(sk, ASN1_ITEM_rptr(PKCS12_SAFEBAGS), &p7->d.data)) { PKCS12err(PKCS12_F_PKCS12_PACK_P7DATA, PKCS12_R_CANT_PACK_STRUCTURE); goto err; } return p7; err: PKCS7_free(p7); return NULL; } /* Unpack SAFEBAGS from PKCS#7 data ContentInfo */ STACK_OF(PKCS12_SAFEBAG) *PKCS12_unpack_p7data(PKCS7 *p7) { if (!PKCS7_type_is_data(p7)) { PKCS12err(PKCS12_F_PKCS12_UNPACK_P7DATA, PKCS12_R_CONTENT_TYPE_NOT_DATA); return NULL; } return ASN1_item_unpack(p7->d.data, ASN1_ITEM_rptr(PKCS12_SAFEBAGS)); } /* Turn a stack of SAFEBAGS into a PKCS#7 encrypted data ContentInfo */ PKCS7 *PKCS12_pack_p7encdata(int pbe_nid, const char *pass, int passlen, unsigned char *salt, int saltlen, int iter, STACK_OF(PKCS12_SAFEBAG) *bags) { PKCS7 *p7; X509_ALGOR *pbe; const EVP_CIPHER *pbe_ciph; if ((p7 = PKCS7_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA, ERR_R_MALLOC_FAILURE); return NULL; } if (!PKCS7_set_type(p7, NID_pkcs7_encrypted)) { PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA, PKCS12_R_ERROR_SETTING_ENCRYPTED_DATA_TYPE); goto err; } pbe_ciph = EVP_get_cipherbynid(pbe_nid); if (pbe_ciph) pbe = PKCS5_pbe2_set(pbe_ciph, iter, salt, saltlen); else pbe = PKCS5_pbe_set(pbe_nid, iter, salt, saltlen); if (!pbe) { PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA, ERR_R_MALLOC_FAILURE); goto err; } X509_ALGOR_free(p7->d.encrypted->enc_data->algorithm); p7->d.encrypted->enc_data->algorithm = pbe; ASN1_OCTET_STRING_free(p7->d.encrypted->enc_data->enc_data); if (!(p7->d.encrypted->enc_data->enc_data = PKCS12_item_i2d_encrypt(pbe, ASN1_ITEM_rptr(PKCS12_SAFEBAGS), pass, passlen, bags, 1))) { PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA, PKCS12_R_ENCRYPT_ERROR); goto err; } return p7; err: PKCS7_free(p7); return NULL; } STACK_OF(PKCS12_SAFEBAG) *PKCS12_unpack_p7encdata(PKCS7 *p7, const char *pass, int passlen) { if (!PKCS7_type_is_encrypted(p7)) return NULL; return PKCS12_item_decrypt_d2i(p7->d.encrypted->enc_data->algorithm, ASN1_ITEM_rptr(PKCS12_SAFEBAGS), pass, passlen, p7->d.encrypted->enc_data->enc_data, 1); } PKCS8_PRIV_KEY_INFO *PKCS12_decrypt_skey(const PKCS12_SAFEBAG *bag, const char *pass, int passlen) { return PKCS8_decrypt(bag->value.shkeybag, pass, passlen); } int PKCS12_pack_authsafes(PKCS12 *p12, STACK_OF(PKCS7) *safes) { if (ASN1_item_pack(safes, ASN1_ITEM_rptr(PKCS12_AUTHSAFES), &p12->authsafes->d.data)) return 1; return 0; } STACK_OF(PKCS7) *PKCS12_unpack_authsafes(const PKCS12 *p12) { if (!PKCS7_type_is_data(p12->authsafes)) { PKCS12err(PKCS12_F_PKCS12_UNPACK_AUTHSAFES, PKCS12_R_CONTENT_TYPE_NOT_DATA); return NULL; } return ASN1_item_unpack(p12->authsafes->d.data, ASN1_ITEM_rptr(PKCS12_AUTHSAFES)); } openssl-1.1.1f/crypto/pkcs12/p12_asn.c000066400000000000000000000060171364063235100174040ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "p12_local.h" /* PKCS#12 ASN1 module */ ASN1_SEQUENCE(PKCS12) = { ASN1_SIMPLE(PKCS12, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS12, authsafes, PKCS7), ASN1_OPT(PKCS12, mac, PKCS12_MAC_DATA) } ASN1_SEQUENCE_END(PKCS12) IMPLEMENT_ASN1_FUNCTIONS(PKCS12) ASN1_SEQUENCE(PKCS12_MAC_DATA) = { ASN1_SIMPLE(PKCS12_MAC_DATA, dinfo, X509_SIG), ASN1_SIMPLE(PKCS12_MAC_DATA, salt, ASN1_OCTET_STRING), ASN1_OPT(PKCS12_MAC_DATA, iter, ASN1_INTEGER) } ASN1_SEQUENCE_END(PKCS12_MAC_DATA) IMPLEMENT_ASN1_FUNCTIONS(PKCS12_MAC_DATA) ASN1_ADB_TEMPLATE(bag_default) = ASN1_EXP(PKCS12_BAGS, value.other, ASN1_ANY, 0); ASN1_ADB(PKCS12_BAGS) = { ADB_ENTRY(NID_x509Certificate, ASN1_EXP(PKCS12_BAGS, value.x509cert, ASN1_OCTET_STRING, 0)), ADB_ENTRY(NID_x509Crl, ASN1_EXP(PKCS12_BAGS, value.x509crl, ASN1_OCTET_STRING, 0)), ADB_ENTRY(NID_sdsiCertificate, ASN1_EXP(PKCS12_BAGS, value.sdsicert, ASN1_IA5STRING, 0)), } ASN1_ADB_END(PKCS12_BAGS, 0, type, 0, &bag_default_tt, NULL); ASN1_SEQUENCE(PKCS12_BAGS) = { ASN1_SIMPLE(PKCS12_BAGS, type, ASN1_OBJECT), ASN1_ADB_OBJECT(PKCS12_BAGS), } ASN1_SEQUENCE_END(PKCS12_BAGS) IMPLEMENT_ASN1_FUNCTIONS(PKCS12_BAGS) ASN1_ADB_TEMPLATE(safebag_default) = ASN1_EXP(PKCS12_SAFEBAG, value.other, ASN1_ANY, 0); ASN1_ADB(PKCS12_SAFEBAG) = { ADB_ENTRY(NID_keyBag, ASN1_EXP(PKCS12_SAFEBAG, value.keybag, PKCS8_PRIV_KEY_INFO, 0)), ADB_ENTRY(NID_pkcs8ShroudedKeyBag, ASN1_EXP(PKCS12_SAFEBAG, value.shkeybag, X509_SIG, 0)), ADB_ENTRY(NID_safeContentsBag, ASN1_EXP_SEQUENCE_OF(PKCS12_SAFEBAG, value.safes, PKCS12_SAFEBAG, 0)), ADB_ENTRY(NID_certBag, ASN1_EXP(PKCS12_SAFEBAG, value.bag, PKCS12_BAGS, 0)), ADB_ENTRY(NID_crlBag, ASN1_EXP(PKCS12_SAFEBAG, value.bag, PKCS12_BAGS, 0)), ADB_ENTRY(NID_secretBag, ASN1_EXP(PKCS12_SAFEBAG, value.bag, PKCS12_BAGS, 0)) } ASN1_ADB_END(PKCS12_SAFEBAG, 0, type, 0, &safebag_default_tt, NULL); ASN1_SEQUENCE(PKCS12_SAFEBAG) = { ASN1_SIMPLE(PKCS12_SAFEBAG, type, ASN1_OBJECT), ASN1_ADB_OBJECT(PKCS12_SAFEBAG), ASN1_SET_OF_OPT(PKCS12_SAFEBAG, attrib, X509_ATTRIBUTE) } ASN1_SEQUENCE_END(PKCS12_SAFEBAG) IMPLEMENT_ASN1_FUNCTIONS(PKCS12_SAFEBAG) /* SEQUENCE OF SafeBag */ ASN1_ITEM_TEMPLATE(PKCS12_SAFEBAGS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, PKCS12_SAFEBAGS, PKCS12_SAFEBAG) ASN1_ITEM_TEMPLATE_END(PKCS12_SAFEBAGS) /* Authsafes: SEQUENCE OF PKCS7 */ ASN1_ITEM_TEMPLATE(PKCS12_AUTHSAFES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, PKCS12_AUTHSAFES, PKCS7) ASN1_ITEM_TEMPLATE_END(PKCS12_AUTHSAFES) openssl-1.1.1f/crypto/pkcs12/p12_attr.c000066400000000000000000000057541364063235100176040ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "p12_local.h" /* Add a local keyid to a safebag */ int PKCS12_add_localkeyid(PKCS12_SAFEBAG *bag, unsigned char *name, int namelen) { if (X509at_add1_attr_by_NID(&bag->attrib, NID_localKeyID, V_ASN1_OCTET_STRING, name, namelen)) return 1; else return 0; } /* Add key usage to PKCS#8 structure */ int PKCS8_add_keyusage(PKCS8_PRIV_KEY_INFO *p8, int usage) { unsigned char us_val = (unsigned char)usage; return PKCS8_pkey_add1_attr_by_NID(p8, NID_key_usage, V_ASN1_BIT_STRING, &us_val, 1); } /* Add a friendlyname to a safebag */ int PKCS12_add_friendlyname_asc(PKCS12_SAFEBAG *bag, const char *name, int namelen) { if (X509at_add1_attr_by_NID(&bag->attrib, NID_friendlyName, MBSTRING_ASC, (unsigned char *)name, namelen)) return 1; else return 0; } int PKCS12_add_friendlyname_utf8(PKCS12_SAFEBAG *bag, const char *name, int namelen) { if (X509at_add1_attr_by_NID(&bag->attrib, NID_friendlyName, MBSTRING_UTF8, (unsigned char *)name, namelen)) return 1; else return 0; } int PKCS12_add_friendlyname_uni(PKCS12_SAFEBAG *bag, const unsigned char *name, int namelen) { if (X509at_add1_attr_by_NID(&bag->attrib, NID_friendlyName, MBSTRING_BMP, name, namelen)) return 1; else return 0; } int PKCS12_add_CSPName_asc(PKCS12_SAFEBAG *bag, const char *name, int namelen) { if (X509at_add1_attr_by_NID(&bag->attrib, NID_ms_csp_name, MBSTRING_ASC, (unsigned char *)name, namelen)) return 1; else return 0; } ASN1_TYPE *PKCS12_get_attr_gen(const STACK_OF(X509_ATTRIBUTE) *attrs, int attr_nid) { X509_ATTRIBUTE *attrib; int i; i = X509at_get_attr_by_NID(attrs, attr_nid, -1); attrib = X509at_get_attr(attrs, i); return X509_ATTRIBUTE_get0_type(attrib, 0); } char *PKCS12_get_friendlyname(PKCS12_SAFEBAG *bag) { const ASN1_TYPE *atype; if ((atype = PKCS12_SAFEBAG_get0_attr(bag, NID_friendlyName)) == NULL) return NULL; if (atype->type != V_ASN1_BMPSTRING) return NULL; return OPENSSL_uni2utf8(atype->value.bmpstring->data, atype->value.bmpstring->length); } const STACK_OF(X509_ATTRIBUTE) * PKCS12_SAFEBAG_get0_attrs(const PKCS12_SAFEBAG *bag) { return bag->attrib; } openssl-1.1.1f/crypto/pkcs12/p12_crpt.c000066400000000000000000000044011364063235100175660ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* PKCS#12 PBE algorithms now in static table */ void PKCS12_PBE_add(void) { } int PKCS12_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, int en_de) { PBEPARAM *pbe; int saltlen, iter, ret; unsigned char *salt; unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; int (*pkcs12_key_gen)(const char *pass, int passlen, unsigned char *salt, int slen, int id, int iter, int n, unsigned char *out, const EVP_MD *md_type); pkcs12_key_gen = PKCS12_key_gen_utf8; if (cipher == NULL) return 0; /* Extract useful info from parameter */ pbe = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBEPARAM), param); if (pbe == NULL) { PKCS12err(PKCS12_F_PKCS12_PBE_KEYIVGEN, PKCS12_R_DECODE_ERROR); return 0; } if (!pbe->iter) iter = 1; else iter = ASN1_INTEGER_get(pbe->iter); salt = pbe->salt->data; saltlen = pbe->salt->length; if (!(*pkcs12_key_gen)(pass, passlen, salt, saltlen, PKCS12_KEY_ID, iter, EVP_CIPHER_key_length(cipher), key, md)) { PKCS12err(PKCS12_F_PKCS12_PBE_KEYIVGEN, PKCS12_R_KEY_GEN_ERROR); PBEPARAM_free(pbe); return 0; } if (!(*pkcs12_key_gen)(pass, passlen, salt, saltlen, PKCS12_IV_ID, iter, EVP_CIPHER_iv_length(cipher), iv, md)) { PKCS12err(PKCS12_F_PKCS12_PBE_KEYIVGEN, PKCS12_R_IV_GEN_ERROR); PBEPARAM_free(pbe); return 0; } PBEPARAM_free(pbe); ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, en_de); OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); return ret; } openssl-1.1.1f/crypto/pkcs12/p12_crt.c000066400000000000000000000155331364063235100174160ustar00rootroot00000000000000/* * Copyright 1999-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "p12_local.h" static int pkcs12_add_bag(STACK_OF(PKCS12_SAFEBAG) **pbags, PKCS12_SAFEBAG *bag); static int copy_bag_attr(PKCS12_SAFEBAG *bag, EVP_PKEY *pkey, int nid) { int idx; X509_ATTRIBUTE *attr; idx = EVP_PKEY_get_attr_by_NID(pkey, nid, -1); if (idx < 0) return 1; attr = EVP_PKEY_get_attr(pkey, idx); if (!X509at_add1_attr(&bag->attrib, attr)) return 0; return 1; } PKCS12 *PKCS12_create(const char *pass, const char *name, EVP_PKEY *pkey, X509 *cert, STACK_OF(X509) *ca, int nid_key, int nid_cert, int iter, int mac_iter, int keytype) { PKCS12 *p12 = NULL; STACK_OF(PKCS7) *safes = NULL; STACK_OF(PKCS12_SAFEBAG) *bags = NULL; PKCS12_SAFEBAG *bag = NULL; int i; unsigned char keyid[EVP_MAX_MD_SIZE]; unsigned int keyidlen = 0; /* Set defaults */ if (!nid_cert) #ifdef OPENSSL_NO_RC2 nid_cert = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; #else nid_cert = NID_pbe_WithSHA1And40BitRC2_CBC; #endif if (!nid_key) nid_key = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; if (!iter) iter = PKCS12_DEFAULT_ITER; if (!mac_iter) mac_iter = 1; if (!pkey && !cert && !ca) { PKCS12err(PKCS12_F_PKCS12_CREATE, PKCS12_R_INVALID_NULL_ARGUMENT); return NULL; } if (pkey && cert) { if (!X509_check_private_key(cert, pkey)) return NULL; if (!X509_digest(cert, EVP_sha1(), keyid, &keyidlen)) return NULL; } if (cert) { bag = PKCS12_add_cert(&bags, cert); if (name && !PKCS12_add_friendlyname(bag, name, -1)) goto err; if (keyidlen && !PKCS12_add_localkeyid(bag, keyid, keyidlen)) goto err; } /* Add all other certificates */ for (i = 0; i < sk_X509_num(ca); i++) { if (!PKCS12_add_cert(&bags, sk_X509_value(ca, i))) goto err; } if (bags && !PKCS12_add_safe(&safes, bags, nid_cert, iter, pass)) goto err; sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); bags = NULL; if (pkey) { bag = PKCS12_add_key(&bags, pkey, keytype, iter, nid_key, pass); if (!bag) goto err; if (!copy_bag_attr(bag, pkey, NID_ms_csp_name)) goto err; if (!copy_bag_attr(bag, pkey, NID_LocalKeySet)) goto err; if (name && !PKCS12_add_friendlyname(bag, name, -1)) goto err; if (keyidlen && !PKCS12_add_localkeyid(bag, keyid, keyidlen)) goto err; } if (bags && !PKCS12_add_safe(&safes, bags, -1, 0, NULL)) goto err; sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); bags = NULL; p12 = PKCS12_add_safes(safes, 0); if (!p12) goto err; sk_PKCS7_pop_free(safes, PKCS7_free); safes = NULL; if ((mac_iter != -1) && !PKCS12_set_mac(p12, pass, -1, NULL, 0, mac_iter, NULL)) goto err; return p12; err: PKCS12_free(p12); sk_PKCS7_pop_free(safes, PKCS7_free); sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); return NULL; } PKCS12_SAFEBAG *PKCS12_add_cert(STACK_OF(PKCS12_SAFEBAG) **pbags, X509 *cert) { PKCS12_SAFEBAG *bag = NULL; char *name; int namelen = -1; unsigned char *keyid; int keyidlen = -1; /* Add user certificate */ if ((bag = PKCS12_SAFEBAG_create_cert(cert)) == NULL) goto err; /* * Use friendlyName and localKeyID in certificate. (if present) */ name = (char *)X509_alias_get0(cert, &namelen); if (name && !PKCS12_add_friendlyname(bag, name, namelen)) goto err; keyid = X509_keyid_get0(cert, &keyidlen); if (keyid && !PKCS12_add_localkeyid(bag, keyid, keyidlen)) goto err; if (!pkcs12_add_bag(pbags, bag)) goto err; return bag; err: PKCS12_SAFEBAG_free(bag); return NULL; } PKCS12_SAFEBAG *PKCS12_add_key(STACK_OF(PKCS12_SAFEBAG) **pbags, EVP_PKEY *key, int key_usage, int iter, int nid_key, const char *pass) { PKCS12_SAFEBAG *bag = NULL; PKCS8_PRIV_KEY_INFO *p8 = NULL; /* Make a PKCS#8 structure */ if ((p8 = EVP_PKEY2PKCS8(key)) == NULL) goto err; if (key_usage && !PKCS8_add_keyusage(p8, key_usage)) goto err; if (nid_key != -1) { bag = PKCS12_SAFEBAG_create_pkcs8_encrypt(nid_key, pass, -1, NULL, 0, iter, p8); PKCS8_PRIV_KEY_INFO_free(p8); } else bag = PKCS12_SAFEBAG_create0_p8inf(p8); if (!bag) goto err; if (!pkcs12_add_bag(pbags, bag)) goto err; return bag; err: PKCS12_SAFEBAG_free(bag); return NULL; } int PKCS12_add_safe(STACK_OF(PKCS7) **psafes, STACK_OF(PKCS12_SAFEBAG) *bags, int nid_safe, int iter, const char *pass) { PKCS7 *p7 = NULL; int free_safes = 0; if (!*psafes) { *psafes = sk_PKCS7_new_null(); if (!*psafes) return 0; free_safes = 1; } else free_safes = 0; if (nid_safe == 0) #ifdef OPENSSL_NO_RC2 nid_safe = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; #else nid_safe = NID_pbe_WithSHA1And40BitRC2_CBC; #endif if (nid_safe == -1) p7 = PKCS12_pack_p7data(bags); else p7 = PKCS12_pack_p7encdata(nid_safe, pass, -1, NULL, 0, iter, bags); if (!p7) goto err; if (!sk_PKCS7_push(*psafes, p7)) goto err; return 1; err: if (free_safes) { sk_PKCS7_free(*psafes); *psafes = NULL; } PKCS7_free(p7); return 0; } static int pkcs12_add_bag(STACK_OF(PKCS12_SAFEBAG) **pbags, PKCS12_SAFEBAG *bag) { int free_bags; if (!pbags) return 1; if (!*pbags) { *pbags = sk_PKCS12_SAFEBAG_new_null(); if (!*pbags) return 0; free_bags = 1; } else free_bags = 0; if (!sk_PKCS12_SAFEBAG_push(*pbags, bag)) { if (free_bags) { sk_PKCS12_SAFEBAG_free(*pbags); *pbags = NULL; } return 0; } return 1; } PKCS12 *PKCS12_add_safes(STACK_OF(PKCS7) *safes, int nid_p7) { PKCS12 *p12; if (nid_p7 <= 0) nid_p7 = NID_pkcs7_data; p12 = PKCS12_init(nid_p7); if (!p12) return NULL; if (!PKCS12_pack_authsafes(p12, safes)) { PKCS12_free(p12); return NULL; } return p12; } openssl-1.1.1f/crypto/pkcs12/p12_decr.c000066400000000000000000000104761364063235100175440ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* Define this to dump decrypted output to files called DERnnn */ /* * #define OPENSSL_DEBUG_DECRYPT */ /* * Encrypt/Decrypt a buffer based on password and algor, result in a * OPENSSL_malloc'ed buffer */ unsigned char *PKCS12_pbe_crypt(const X509_ALGOR *algor, const char *pass, int passlen, const unsigned char *in, int inlen, unsigned char **data, int *datalen, int en_de) { unsigned char *out = NULL; int outlen, i; EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) { PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT, ERR_R_MALLOC_FAILURE); goto err; } /* Decrypt data */ if (!EVP_PBE_CipherInit(algor->algorithm, pass, passlen, algor->parameter, ctx, en_de)) { PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT, PKCS12_R_PKCS12_ALGOR_CIPHERINIT_ERROR); goto err; } if ((out = OPENSSL_malloc(inlen + EVP_CIPHER_CTX_block_size(ctx))) == NULL) { PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (!EVP_CipherUpdate(ctx, out, &i, in, inlen)) { OPENSSL_free(out); out = NULL; PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT, ERR_R_EVP_LIB); goto err; } outlen = i; if (!EVP_CipherFinal_ex(ctx, out + i, &i)) { OPENSSL_free(out); out = NULL; PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT, PKCS12_R_PKCS12_CIPHERFINAL_ERROR); goto err; } outlen += i; if (datalen) *datalen = outlen; if (data) *data = out; err: EVP_CIPHER_CTX_free(ctx); return out; } /* * Decrypt an OCTET STRING and decode ASN1 structure if zbuf set zero buffer * after use. */ void *PKCS12_item_decrypt_d2i(const X509_ALGOR *algor, const ASN1_ITEM *it, const char *pass, int passlen, const ASN1_OCTET_STRING *oct, int zbuf) { unsigned char *out; const unsigned char *p; void *ret; int outlen; if (!PKCS12_pbe_crypt(algor, pass, passlen, oct->data, oct->length, &out, &outlen, 0)) { PKCS12err(PKCS12_F_PKCS12_ITEM_DECRYPT_D2I, PKCS12_R_PKCS12_PBE_CRYPT_ERROR); return NULL; } p = out; #ifdef OPENSSL_DEBUG_DECRYPT { FILE *op; char fname[30]; static int fnm = 1; sprintf(fname, "DER%d", fnm++); op = fopen(fname, "wb"); fwrite(p, 1, outlen, op); fclose(op); } #endif ret = ASN1_item_d2i(NULL, &p, outlen, it); if (zbuf) OPENSSL_cleanse(out, outlen); if (!ret) PKCS12err(PKCS12_F_PKCS12_ITEM_DECRYPT_D2I, PKCS12_R_DECODE_ERROR); OPENSSL_free(out); return ret; } /* * Encode ASN1 structure and encrypt, return OCTET STRING if zbuf set zero * encoding. */ ASN1_OCTET_STRING *PKCS12_item_i2d_encrypt(X509_ALGOR *algor, const ASN1_ITEM *it, const char *pass, int passlen, void *obj, int zbuf) { ASN1_OCTET_STRING *oct = NULL; unsigned char *in = NULL; int inlen; if ((oct = ASN1_OCTET_STRING_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT, ERR_R_MALLOC_FAILURE); goto err; } inlen = ASN1_item_i2d(obj, &in, it); if (!in) { PKCS12err(PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT, PKCS12_R_ENCODE_ERROR); goto err; } if (!PKCS12_pbe_crypt(algor, pass, passlen, in, inlen, &oct->data, &oct->length, 1)) { PKCS12err(PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT, PKCS12_R_ENCRYPT_ERROR); OPENSSL_free(in); goto err; } if (zbuf) OPENSSL_cleanse(in, inlen); OPENSSL_free(in); return oct; err: ASN1_OCTET_STRING_free(oct); return NULL; } openssl-1.1.1f/crypto/pkcs12/p12_init.c000066400000000000000000000022641364063235100175660ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "p12_local.h" /* Initialise a PKCS12 structure to take data */ PKCS12 *PKCS12_init(int mode) { PKCS12 *pkcs12; if ((pkcs12 = PKCS12_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_INIT, ERR_R_MALLOC_FAILURE); return NULL; } if (!ASN1_INTEGER_set(pkcs12->version, 3)) goto err; pkcs12->authsafes->type = OBJ_nid2obj(mode); switch (mode) { case NID_pkcs7_data: if ((pkcs12->authsafes->d.data = ASN1_OCTET_STRING_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_INIT, ERR_R_MALLOC_FAILURE); goto err; } break; default: PKCS12err(PKCS12_F_PKCS12_INIT, PKCS12_R_UNSUPPORTED_PKCS12_MODE); goto err; } return pkcs12; err: PKCS12_free(pkcs12); return NULL; } openssl-1.1.1f/crypto/pkcs12/p12_key.c000066400000000000000000000120711364063235100174100ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include /* Uncomment out this line to get debugging info about key generation */ /* * #define OPENSSL_DEBUG_KEYGEN */ #ifdef OPENSSL_DEBUG_KEYGEN # include extern BIO *bio_err; void h__dump(unsigned char *p, int len); #endif /* PKCS12 compatible key/IV generation */ #ifndef min # define min(a,b) ((a) < (b) ? (a) : (b)) #endif int PKCS12_key_gen_asc(const char *pass, int passlen, unsigned char *salt, int saltlen, int id, int iter, int n, unsigned char *out, const EVP_MD *md_type) { int ret; unsigned char *unipass; int uniplen; if (!pass) { unipass = NULL; uniplen = 0; } else if (!OPENSSL_asc2uni(pass, passlen, &unipass, &uniplen)) { PKCS12err(PKCS12_F_PKCS12_KEY_GEN_ASC, ERR_R_MALLOC_FAILURE); return 0; } ret = PKCS12_key_gen_uni(unipass, uniplen, salt, saltlen, id, iter, n, out, md_type); if (ret <= 0) return 0; OPENSSL_clear_free(unipass, uniplen); return ret; } int PKCS12_key_gen_utf8(const char *pass, int passlen, unsigned char *salt, int saltlen, int id, int iter, int n, unsigned char *out, const EVP_MD *md_type) { int ret; unsigned char *unipass; int uniplen; if (!pass) { unipass = NULL; uniplen = 0; } else if (!OPENSSL_utf82uni(pass, passlen, &unipass, &uniplen)) { PKCS12err(PKCS12_F_PKCS12_KEY_GEN_UTF8, ERR_R_MALLOC_FAILURE); return 0; } ret = PKCS12_key_gen_uni(unipass, uniplen, salt, saltlen, id, iter, n, out, md_type); if (ret <= 0) return 0; OPENSSL_clear_free(unipass, uniplen); return ret; } int PKCS12_key_gen_uni(unsigned char *pass, int passlen, unsigned char *salt, int saltlen, int id, int iter, int n, unsigned char *out, const EVP_MD *md_type) { unsigned char *B = NULL, *D = NULL, *I = NULL, *p = NULL, *Ai = NULL; int Slen, Plen, Ilen; int i, j, u, v; int ret = 0; EVP_MD_CTX *ctx = NULL; #ifdef OPENSSL_DEBUG_KEYGEN unsigned char *tmpout = out; int tmpn = n; #endif ctx = EVP_MD_CTX_new(); if (ctx == NULL) goto err; #ifdef OPENSSL_DEBUG_KEYGEN fprintf(stderr, "KEYGEN DEBUG\n"); fprintf(stderr, "ID %d, ITER %d\n", id, iter); fprintf(stderr, "Password (length %d):\n", passlen); h__dump(pass, passlen); fprintf(stderr, "Salt (length %d):\n", saltlen); h__dump(salt, saltlen); #endif v = EVP_MD_block_size(md_type); u = EVP_MD_size(md_type); if (u < 0 || v <= 0) goto err; D = OPENSSL_malloc(v); Ai = OPENSSL_malloc(u); B = OPENSSL_malloc(v + 1); Slen = v * ((saltlen + v - 1) / v); if (passlen) Plen = v * ((passlen + v - 1) / v); else Plen = 0; Ilen = Slen + Plen; I = OPENSSL_malloc(Ilen); if (D == NULL || Ai == NULL || B == NULL || I == NULL) goto err; for (i = 0; i < v; i++) D[i] = id; p = I; for (i = 0; i < Slen; i++) *p++ = salt[i % saltlen]; for (i = 0; i < Plen; i++) *p++ = pass[i % passlen]; for (;;) { if (!EVP_DigestInit_ex(ctx, md_type, NULL) || !EVP_DigestUpdate(ctx, D, v) || !EVP_DigestUpdate(ctx, I, Ilen) || !EVP_DigestFinal_ex(ctx, Ai, NULL)) goto err; for (j = 1; j < iter; j++) { if (!EVP_DigestInit_ex(ctx, md_type, NULL) || !EVP_DigestUpdate(ctx, Ai, u) || !EVP_DigestFinal_ex(ctx, Ai, NULL)) goto err; } memcpy(out, Ai, min(n, u)); if (u >= n) { #ifdef OPENSSL_DEBUG_KEYGEN fprintf(stderr, "Output KEY (length %d)\n", tmpn); h__dump(tmpout, tmpn); #endif ret = 1; goto end; } n -= u; out += u; for (j = 0; j < v; j++) B[j] = Ai[j % u]; for (j = 0; j < Ilen; j += v) { int k; unsigned char *Ij = I + j; uint16_t c = 1; /* Work out Ij = Ij + B + 1 */ for (k = v - 1; k >= 0; k--) { c += Ij[k] + B[k]; Ij[k] = (unsigned char)c; c >>= 8; } } } err: PKCS12err(PKCS12_F_PKCS12_KEY_GEN_UNI, ERR_R_MALLOC_FAILURE); end: OPENSSL_free(Ai); OPENSSL_free(B); OPENSSL_free(D); OPENSSL_free(I); EVP_MD_CTX_free(ctx); return ret; } #ifdef OPENSSL_DEBUG_KEYGEN void h__dump(unsigned char *p, int len) { for (; len--; p++) fprintf(stderr, "%02X", *p); fprintf(stderr, "\n"); } #endif openssl-1.1.1f/crypto/pkcs12/p12_kiss.c000066400000000000000000000156401364063235100175760ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* Simplified PKCS#12 routines */ static int parse_pk12(PKCS12 *p12, const char *pass, int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts); static int parse_bags(const STACK_OF(PKCS12_SAFEBAG) *bags, const char *pass, int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts); static int parse_bag(PKCS12_SAFEBAG *bag, const char *pass, int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts); /* * Parse and decrypt a PKCS#12 structure returning user key, user cert and * other (CA) certs. Note either ca should be NULL, *ca should be NULL, or it * should point to a valid STACK structure. pkey and cert can be passed * uninitialised. */ int PKCS12_parse(PKCS12 *p12, const char *pass, EVP_PKEY **pkey, X509 **cert, STACK_OF(X509) **ca) { STACK_OF(X509) *ocerts = NULL; X509 *x = NULL; if (pkey) *pkey = NULL; if (cert) *cert = NULL; /* Check for NULL PKCS12 structure */ if (!p12) { PKCS12err(PKCS12_F_PKCS12_PARSE, PKCS12_R_INVALID_NULL_PKCS12_POINTER); return 0; } /* Check the mac */ /* * If password is zero length or NULL then try verifying both cases to * determine which password is correct. The reason for this is that under * PKCS#12 password based encryption no password and a zero length * password are two different things... */ if (!pass || !*pass) { if (PKCS12_verify_mac(p12, NULL, 0)) pass = NULL; else if (PKCS12_verify_mac(p12, "", 0)) pass = ""; else { PKCS12err(PKCS12_F_PKCS12_PARSE, PKCS12_R_MAC_VERIFY_FAILURE); goto err; } } else if (!PKCS12_verify_mac(p12, pass, -1)) { PKCS12err(PKCS12_F_PKCS12_PARSE, PKCS12_R_MAC_VERIFY_FAILURE); goto err; } /* Allocate stack for other certificates */ ocerts = sk_X509_new_null(); if (!ocerts) { PKCS12err(PKCS12_F_PKCS12_PARSE, ERR_R_MALLOC_FAILURE); goto err; } if (!parse_pk12(p12, pass, -1, pkey, ocerts)) { PKCS12err(PKCS12_F_PKCS12_PARSE, PKCS12_R_PARSE_ERROR); goto err; } while ((x = sk_X509_pop(ocerts))) { if (pkey && *pkey && cert && !*cert) { ERR_set_mark(); if (X509_check_private_key(x, *pkey)) { *cert = x; x = NULL; } ERR_pop_to_mark(); } if (ca && x) { if (!*ca) *ca = sk_X509_new_null(); if (!*ca) goto err; if (!sk_X509_push(*ca, x)) goto err; x = NULL; } X509_free(x); } sk_X509_pop_free(ocerts, X509_free); return 1; err: if (pkey) { EVP_PKEY_free(*pkey); *pkey = NULL; } if (cert) { X509_free(*cert); *cert = NULL; } X509_free(x); sk_X509_pop_free(ocerts, X509_free); return 0; } /* Parse the outer PKCS#12 structure */ static int parse_pk12(PKCS12 *p12, const char *pass, int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts) { STACK_OF(PKCS7) *asafes; STACK_OF(PKCS12_SAFEBAG) *bags; int i, bagnid; PKCS7 *p7; if ((asafes = PKCS12_unpack_authsafes(p12)) == NULL) return 0; for (i = 0; i < sk_PKCS7_num(asafes); i++) { p7 = sk_PKCS7_value(asafes, i); bagnid = OBJ_obj2nid(p7->type); if (bagnid == NID_pkcs7_data) { bags = PKCS12_unpack_p7data(p7); } else if (bagnid == NID_pkcs7_encrypted) { bags = PKCS12_unpack_p7encdata(p7, pass, passlen); } else continue; if (!bags) { sk_PKCS7_pop_free(asafes, PKCS7_free); return 0; } if (!parse_bags(bags, pass, passlen, pkey, ocerts)) { sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); sk_PKCS7_pop_free(asafes, PKCS7_free); return 0; } sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); } sk_PKCS7_pop_free(asafes, PKCS7_free); return 1; } static int parse_bags(const STACK_OF(PKCS12_SAFEBAG) *bags, const char *pass, int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts) { int i; for (i = 0; i < sk_PKCS12_SAFEBAG_num(bags); i++) { if (!parse_bag(sk_PKCS12_SAFEBAG_value(bags, i), pass, passlen, pkey, ocerts)) return 0; } return 1; } static int parse_bag(PKCS12_SAFEBAG *bag, const char *pass, int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts) { PKCS8_PRIV_KEY_INFO *p8; X509 *x509; const ASN1_TYPE *attrib; ASN1_BMPSTRING *fname = NULL; ASN1_OCTET_STRING *lkid = NULL; if ((attrib = PKCS12_SAFEBAG_get0_attr(bag, NID_friendlyName))) fname = attrib->value.bmpstring; if ((attrib = PKCS12_SAFEBAG_get0_attr(bag, NID_localKeyID))) lkid = attrib->value.octet_string; switch (PKCS12_SAFEBAG_get_nid(bag)) { case NID_keyBag: if (!pkey || *pkey) return 1; *pkey = EVP_PKCS82PKEY(PKCS12_SAFEBAG_get0_p8inf(bag)); if (*pkey == NULL) return 0; break; case NID_pkcs8ShroudedKeyBag: if (!pkey || *pkey) return 1; if ((p8 = PKCS12_decrypt_skey(bag, pass, passlen)) == NULL) return 0; *pkey = EVP_PKCS82PKEY(p8); PKCS8_PRIV_KEY_INFO_free(p8); if (!(*pkey)) return 0; break; case NID_certBag: if (PKCS12_SAFEBAG_get_bag_nid(bag) != NID_x509Certificate) return 1; if ((x509 = PKCS12_SAFEBAG_get1_cert(bag)) == NULL) return 0; if (lkid && !X509_keyid_set1(x509, lkid->data, lkid->length)) { X509_free(x509); return 0; } if (fname) { int len, r; unsigned char *data; len = ASN1_STRING_to_UTF8(&data, fname); if (len >= 0) { r = X509_alias_set1(x509, data, len); OPENSSL_free(data); if (!r) { X509_free(x509); return 0; } } } if (!sk_X509_push(ocerts, x509)) { X509_free(x509); return 0; } break; case NID_safeContentsBag: return parse_bags(PKCS12_SAFEBAG_get0_safes(bag), pass, passlen, pkey, ocerts); default: return 1; } return 1; } openssl-1.1.1f/crypto/pkcs12/p12_local.h000066400000000000000000000022561364063235100177230ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ struct PKCS12_MAC_DATA_st { X509_SIG *dinfo; ASN1_OCTET_STRING *salt; ASN1_INTEGER *iter; /* defaults to 1 */ }; struct PKCS12_st { ASN1_INTEGER *version; PKCS12_MAC_DATA *mac; PKCS7 *authsafes; }; struct PKCS12_SAFEBAG_st { ASN1_OBJECT *type; union { struct pkcs12_bag_st *bag; /* secret, crl and certbag */ struct pkcs8_priv_key_info_st *keybag; /* keybag */ X509_SIG *shkeybag; /* shrouded key bag */ STACK_OF(PKCS12_SAFEBAG) *safes; ASN1_TYPE *other; } value; STACK_OF(X509_ATTRIBUTE) *attrib; }; struct pkcs12_bag_st { ASN1_OBJECT *type; union { ASN1_OCTET_STRING *x509cert; ASN1_OCTET_STRING *x509crl; ASN1_OCTET_STRING *octet; ASN1_IA5STRING *sdsicert; ASN1_TYPE *other; /* Secret or other bag */ } value; }; openssl-1.1.1f/crypto/pkcs12/p12_mutl.c000066400000000000000000000172711364063235100176100ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "p12_local.h" int PKCS12_mac_present(const PKCS12 *p12) { return p12->mac ? 1 : 0; } void PKCS12_get0_mac(const ASN1_OCTET_STRING **pmac, const X509_ALGOR **pmacalg, const ASN1_OCTET_STRING **psalt, const ASN1_INTEGER **piter, const PKCS12 *p12) { if (p12->mac) { X509_SIG_get0(p12->mac->dinfo, pmacalg, pmac); if (psalt) *psalt = p12->mac->salt; if (piter) *piter = p12->mac->iter; } else { if (pmac) *pmac = NULL; if (pmacalg) *pmacalg = NULL; if (psalt) *psalt = NULL; if (piter) *piter = NULL; } } #define TK26_MAC_KEY_LEN 32 static int pkcs12_gen_gost_mac_key(const char *pass, int passlen, const unsigned char *salt, int saltlen, int iter, int keylen, unsigned char *key, const EVP_MD *digest) { unsigned char out[96]; if (keylen != TK26_MAC_KEY_LEN) { return 0; } if (!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, digest, sizeof(out), out)) { return 0; } memcpy(key, out + sizeof(out) - TK26_MAC_KEY_LEN, TK26_MAC_KEY_LEN); OPENSSL_cleanse(out, sizeof(out)); return 1; } /* Generate a MAC */ static int pkcs12_gen_mac(PKCS12 *p12, const char *pass, int passlen, unsigned char *mac, unsigned int *maclen, int (*pkcs12_key_gen)(const char *pass, int passlen, unsigned char *salt, int slen, int id, int iter, int n, unsigned char *out, const EVP_MD *md_type)) { int ret = 0; const EVP_MD *md_type; HMAC_CTX *hmac = NULL; unsigned char key[EVP_MAX_MD_SIZE], *salt; int saltlen, iter; int md_size = 0; int md_type_nid; const X509_ALGOR *macalg; const ASN1_OBJECT *macoid; if (pkcs12_key_gen == NULL) pkcs12_key_gen = PKCS12_key_gen_utf8; if (!PKCS7_type_is_data(p12->authsafes)) { PKCS12err(PKCS12_F_PKCS12_GEN_MAC, PKCS12_R_CONTENT_TYPE_NOT_DATA); return 0; } salt = p12->mac->salt->data; saltlen = p12->mac->salt->length; if (!p12->mac->iter) iter = 1; else iter = ASN1_INTEGER_get(p12->mac->iter); X509_SIG_get0(p12->mac->dinfo, &macalg, NULL); X509_ALGOR_get0(&macoid, NULL, NULL, macalg); if ((md_type = EVP_get_digestbyobj(macoid)) == NULL) { PKCS12err(PKCS12_F_PKCS12_GEN_MAC, PKCS12_R_UNKNOWN_DIGEST_ALGORITHM); return 0; } md_size = EVP_MD_size(md_type); md_type_nid = EVP_MD_type(md_type); if (md_size < 0) return 0; if ((md_type_nid == NID_id_GostR3411_94 || md_type_nid == NID_id_GostR3411_2012_256 || md_type_nid == NID_id_GostR3411_2012_512) && ossl_safe_getenv("LEGACY_GOST_PKCS12") == NULL) { md_size = TK26_MAC_KEY_LEN; if (!pkcs12_gen_gost_mac_key(pass, passlen, salt, saltlen, iter, md_size, key, md_type)) { PKCS12err(PKCS12_F_PKCS12_GEN_MAC, PKCS12_R_KEY_GEN_ERROR); goto err; } } else if (!(*pkcs12_key_gen)(pass, passlen, salt, saltlen, PKCS12_MAC_ID, iter, md_size, key, md_type)) { PKCS12err(PKCS12_F_PKCS12_GEN_MAC, PKCS12_R_KEY_GEN_ERROR); goto err; } if ((hmac = HMAC_CTX_new()) == NULL || !HMAC_Init_ex(hmac, key, md_size, md_type, NULL) || !HMAC_Update(hmac, p12->authsafes->d.data->data, p12->authsafes->d.data->length) || !HMAC_Final(hmac, mac, maclen)) { goto err; } ret = 1; err: OPENSSL_cleanse(key, sizeof(key)); HMAC_CTX_free(hmac); return ret; } int PKCS12_gen_mac(PKCS12 *p12, const char *pass, int passlen, unsigned char *mac, unsigned int *maclen) { return pkcs12_gen_mac(p12, pass, passlen, mac, maclen, NULL); } /* Verify the mac */ int PKCS12_verify_mac(PKCS12 *p12, const char *pass, int passlen) { unsigned char mac[EVP_MAX_MD_SIZE]; unsigned int maclen; const ASN1_OCTET_STRING *macoct; if (p12->mac == NULL) { PKCS12err(PKCS12_F_PKCS12_VERIFY_MAC, PKCS12_R_MAC_ABSENT); return 0; } if (!pkcs12_gen_mac(p12, pass, passlen, mac, &maclen, PKCS12_key_gen_utf8)) { PKCS12err(PKCS12_F_PKCS12_VERIFY_MAC, PKCS12_R_MAC_GENERATION_ERROR); return 0; } X509_SIG_get0(p12->mac->dinfo, NULL, &macoct); if ((maclen != (unsigned int)ASN1_STRING_length(macoct)) || CRYPTO_memcmp(mac, ASN1_STRING_get0_data(macoct), maclen) != 0) return 0; return 1; } /* Set a mac */ int PKCS12_set_mac(PKCS12 *p12, const char *pass, int passlen, unsigned char *salt, int saltlen, int iter, const EVP_MD *md_type) { unsigned char mac[EVP_MAX_MD_SIZE]; unsigned int maclen; ASN1_OCTET_STRING *macoct; if (!md_type) md_type = EVP_sha1(); if (PKCS12_setup_mac(p12, iter, salt, saltlen, md_type) == PKCS12_ERROR) { PKCS12err(PKCS12_F_PKCS12_SET_MAC, PKCS12_R_MAC_SETUP_ERROR); return 0; } /* * Note that output mac is forced to UTF-8... */ if (!pkcs12_gen_mac(p12, pass, passlen, mac, &maclen, PKCS12_key_gen_utf8)) { PKCS12err(PKCS12_F_PKCS12_SET_MAC, PKCS12_R_MAC_GENERATION_ERROR); return 0; } X509_SIG_getm(p12->mac->dinfo, NULL, &macoct); if (!ASN1_OCTET_STRING_set(macoct, mac, maclen)) { PKCS12err(PKCS12_F_PKCS12_SET_MAC, PKCS12_R_MAC_STRING_SET_ERROR); return 0; } return 1; } /* Set up a mac structure */ int PKCS12_setup_mac(PKCS12 *p12, int iter, unsigned char *salt, int saltlen, const EVP_MD *md_type) { X509_ALGOR *macalg; PKCS12_MAC_DATA_free(p12->mac); p12->mac = NULL; if ((p12->mac = PKCS12_MAC_DATA_new()) == NULL) return PKCS12_ERROR; if (iter > 1) { if ((p12->mac->iter = ASN1_INTEGER_new()) == NULL) { PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILURE); return 0; } if (!ASN1_INTEGER_set(p12->mac->iter, iter)) { PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILURE); return 0; } } if (!saltlen) saltlen = PKCS12_SALT_LEN; if ((p12->mac->salt->data = OPENSSL_malloc(saltlen)) == NULL) { PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILURE); return 0; } p12->mac->salt->length = saltlen; if (!salt) { if (RAND_bytes(p12->mac->salt->data, saltlen) <= 0) return 0; } else memcpy(p12->mac->salt->data, salt, saltlen); X509_SIG_getm(p12->mac->dinfo, &macalg, NULL); if (!X509_ALGOR_set0(macalg, OBJ_nid2obj(EVP_MD_type(md_type)), V_ASN1_NULL, NULL)) { PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILURE); return 0; } return 1; } openssl-1.1.1f/crypto/pkcs12/p12_npas.c000066400000000000000000000131671364063235100175700ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "p12_local.h" /* PKCS#12 password change routine */ static int newpass_p12(PKCS12 *p12, const char *oldpass, const char *newpass); static int newpass_bags(STACK_OF(PKCS12_SAFEBAG) *bags, const char *oldpass, const char *newpass); static int newpass_bag(PKCS12_SAFEBAG *bag, const char *oldpass, const char *newpass); static int alg_get(const X509_ALGOR *alg, int *pnid, int *piter, int *psaltlen); /* * Change the password on a PKCS#12 structure. */ int PKCS12_newpass(PKCS12 *p12, const char *oldpass, const char *newpass) { /* Check for NULL PKCS12 structure */ if (!p12) { PKCS12err(PKCS12_F_PKCS12_NEWPASS, PKCS12_R_INVALID_NULL_PKCS12_POINTER); return 0; } /* Check the mac */ if (!PKCS12_verify_mac(p12, oldpass, -1)) { PKCS12err(PKCS12_F_PKCS12_NEWPASS, PKCS12_R_MAC_VERIFY_FAILURE); return 0; } if (!newpass_p12(p12, oldpass, newpass)) { PKCS12err(PKCS12_F_PKCS12_NEWPASS, PKCS12_R_PARSE_ERROR); return 0; } return 1; } /* Parse the outer PKCS#12 structure */ static int newpass_p12(PKCS12 *p12, const char *oldpass, const char *newpass) { STACK_OF(PKCS7) *asafes = NULL, *newsafes = NULL; STACK_OF(PKCS12_SAFEBAG) *bags = NULL; int i, bagnid, pbe_nid = 0, pbe_iter = 0, pbe_saltlen = 0; PKCS7 *p7, *p7new; ASN1_OCTET_STRING *p12_data_tmp = NULL, *macoct = NULL; unsigned char mac[EVP_MAX_MD_SIZE]; unsigned int maclen; int rv = 0; if ((asafes = PKCS12_unpack_authsafes(p12)) == NULL) goto err; if ((newsafes = sk_PKCS7_new_null()) == NULL) goto err; for (i = 0; i < sk_PKCS7_num(asafes); i++) { p7 = sk_PKCS7_value(asafes, i); bagnid = OBJ_obj2nid(p7->type); if (bagnid == NID_pkcs7_data) { bags = PKCS12_unpack_p7data(p7); } else if (bagnid == NID_pkcs7_encrypted) { bags = PKCS12_unpack_p7encdata(p7, oldpass, -1); if (!alg_get(p7->d.encrypted->enc_data->algorithm, &pbe_nid, &pbe_iter, &pbe_saltlen)) goto err; } else { continue; } if (bags == NULL) goto err; if (!newpass_bags(bags, oldpass, newpass)) goto err; /* Repack bag in same form with new password */ if (bagnid == NID_pkcs7_data) p7new = PKCS12_pack_p7data(bags); else p7new = PKCS12_pack_p7encdata(pbe_nid, newpass, -1, NULL, pbe_saltlen, pbe_iter, bags); if (!p7new || !sk_PKCS7_push(newsafes, p7new)) goto err; sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); bags = NULL; } /* Repack safe: save old safe in case of error */ p12_data_tmp = p12->authsafes->d.data; if ((p12->authsafes->d.data = ASN1_OCTET_STRING_new()) == NULL) goto err; if (!PKCS12_pack_authsafes(p12, newsafes)) goto err; if (!PKCS12_gen_mac(p12, newpass, -1, mac, &maclen)) goto err; X509_SIG_getm(p12->mac->dinfo, NULL, &macoct); if (!ASN1_OCTET_STRING_set(macoct, mac, maclen)) goto err; rv = 1; err: /* Restore old safe if necessary */ if (rv == 1) { ASN1_OCTET_STRING_free(p12_data_tmp); } else if (p12_data_tmp != NULL) { ASN1_OCTET_STRING_free(p12->authsafes->d.data); p12->authsafes->d.data = p12_data_tmp; } sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); sk_PKCS7_pop_free(asafes, PKCS7_free); sk_PKCS7_pop_free(newsafes, PKCS7_free); return rv; } static int newpass_bags(STACK_OF(PKCS12_SAFEBAG) *bags, const char *oldpass, const char *newpass) { int i; for (i = 0; i < sk_PKCS12_SAFEBAG_num(bags); i++) { if (!newpass_bag(sk_PKCS12_SAFEBAG_value(bags, i), oldpass, newpass)) return 0; } return 1; } /* Change password of safebag: only needs handle shrouded keybags */ static int newpass_bag(PKCS12_SAFEBAG *bag, const char *oldpass, const char *newpass) { PKCS8_PRIV_KEY_INFO *p8; X509_SIG *p8new; int p8_nid, p8_saltlen, p8_iter; const X509_ALGOR *shalg; if (PKCS12_SAFEBAG_get_nid(bag) != NID_pkcs8ShroudedKeyBag) return 1; if ((p8 = PKCS8_decrypt(bag->value.shkeybag, oldpass, -1)) == NULL) return 0; X509_SIG_get0(bag->value.shkeybag, &shalg, NULL); if (!alg_get(shalg, &p8_nid, &p8_iter, &p8_saltlen)) return 0; p8new = PKCS8_encrypt(p8_nid, NULL, newpass, -1, NULL, p8_saltlen, p8_iter, p8); PKCS8_PRIV_KEY_INFO_free(p8); if (p8new == NULL) return 0; X509_SIG_free(bag->value.shkeybag); bag->value.shkeybag = p8new; return 1; } static int alg_get(const X509_ALGOR *alg, int *pnid, int *piter, int *psaltlen) { PBEPARAM *pbe; pbe = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBEPARAM), alg->parameter); if (!pbe) return 0; *pnid = OBJ_obj2nid(alg->algorithm); *piter = ASN1_INTEGER_get(pbe->iter); *psaltlen = pbe->salt->length; PBEPARAM_free(pbe); return 1; } openssl-1.1.1f/crypto/pkcs12/p12_p8d.c000066400000000000000000000014531364063235100173150ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(const X509_SIG *p8, const char *pass, int passlen) { const X509_ALGOR *dalg; const ASN1_OCTET_STRING *doct; X509_SIG_get0(p8, &dalg, &doct); return PKCS12_item_decrypt_d2i(dalg, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass, passlen, doct, 1); } openssl-1.1.1f/crypto/pkcs12/p12_p8e.c000066400000000000000000000037241364063235100173210ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/x509.h" X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, int passlen, unsigned char *salt, int saltlen, int iter, PKCS8_PRIV_KEY_INFO *p8inf) { X509_SIG *p8 = NULL; X509_ALGOR *pbe; if (pbe_nid == -1) pbe = PKCS5_pbe2_set(cipher, iter, salt, saltlen); else if (EVP_PBE_find(EVP_PBE_TYPE_PRF, pbe_nid, NULL, NULL, 0)) pbe = PKCS5_pbe2_set_iv(cipher, iter, salt, saltlen, NULL, pbe_nid); else { ERR_clear_error(); pbe = PKCS5_pbe_set(pbe_nid, iter, salt, saltlen); } if (!pbe) { PKCS12err(PKCS12_F_PKCS8_ENCRYPT, ERR_R_ASN1_LIB); return NULL; } p8 = PKCS8_set0_pbe(pass, passlen, p8inf, pbe); if (p8 == NULL) { X509_ALGOR_free(pbe); return NULL; } return p8; } X509_SIG *PKCS8_set0_pbe(const char *pass, int passlen, PKCS8_PRIV_KEY_INFO *p8inf, X509_ALGOR *pbe) { X509_SIG *p8; ASN1_OCTET_STRING *enckey; enckey = PKCS12_item_i2d_encrypt(pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass, passlen, p8inf, 1); if (!enckey) { PKCS12err(PKCS12_F_PKCS8_SET0_PBE, PKCS12_R_ENCRYPT_ERROR); return NULL; } p8 = OPENSSL_zalloc(sizeof(*p8)); if (p8 == NULL) { PKCS12err(PKCS12_F_PKCS8_SET0_PBE, ERR_R_MALLOC_FAILURE); ASN1_OCTET_STRING_free(enckey); return NULL; } p8->algor = pbe; p8->digest = enckey; return p8; } openssl-1.1.1f/crypto/pkcs12/p12_sbag.c000066400000000000000000000110451364063235100175340ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "p12_local.h" #if OPENSSL_API_COMPAT < 0x10100000L ASN1_TYPE *PKCS12_get_attr(const PKCS12_SAFEBAG *bag, int attr_nid) { return PKCS12_get_attr_gen(bag->attrib, attr_nid); } #endif const ASN1_TYPE *PKCS12_SAFEBAG_get0_attr(const PKCS12_SAFEBAG *bag, int attr_nid) { return PKCS12_get_attr_gen(bag->attrib, attr_nid); } ASN1_TYPE *PKCS8_get_attr(PKCS8_PRIV_KEY_INFO *p8, int attr_nid) { return PKCS12_get_attr_gen(PKCS8_pkey_get0_attrs(p8), attr_nid); } const PKCS8_PRIV_KEY_INFO *PKCS12_SAFEBAG_get0_p8inf(const PKCS12_SAFEBAG *bag) { if (PKCS12_SAFEBAG_get_nid(bag) != NID_keyBag) return NULL; return bag->value.keybag; } const X509_SIG *PKCS12_SAFEBAG_get0_pkcs8(const PKCS12_SAFEBAG *bag) { if (OBJ_obj2nid(bag->type) != NID_pkcs8ShroudedKeyBag) return NULL; return bag->value.shkeybag; } const STACK_OF(PKCS12_SAFEBAG) * PKCS12_SAFEBAG_get0_safes(const PKCS12_SAFEBAG *bag) { if (OBJ_obj2nid(bag->type) != NID_safeContentsBag) return NULL; return bag->value.safes; } const ASN1_OBJECT *PKCS12_SAFEBAG_get0_type(const PKCS12_SAFEBAG *bag) { return bag->type; } int PKCS12_SAFEBAG_get_nid(const PKCS12_SAFEBAG *bag) { return OBJ_obj2nid(bag->type); } int PKCS12_SAFEBAG_get_bag_nid(const PKCS12_SAFEBAG *bag) { int btype = PKCS12_SAFEBAG_get_nid(bag); if (btype != NID_certBag && btype != NID_crlBag && btype != NID_secretBag) return -1; return OBJ_obj2nid(bag->value.bag->type); } X509 *PKCS12_SAFEBAG_get1_cert(const PKCS12_SAFEBAG *bag) { if (PKCS12_SAFEBAG_get_nid(bag) != NID_certBag) return NULL; if (OBJ_obj2nid(bag->value.bag->type) != NID_x509Certificate) return NULL; return ASN1_item_unpack(bag->value.bag->value.octet, ASN1_ITEM_rptr(X509)); } X509_CRL *PKCS12_SAFEBAG_get1_crl(const PKCS12_SAFEBAG *bag) { if (PKCS12_SAFEBAG_get_nid(bag) != NID_crlBag) return NULL; if (OBJ_obj2nid(bag->value.bag->type) != NID_x509Crl) return NULL; return ASN1_item_unpack(bag->value.bag->value.octet, ASN1_ITEM_rptr(X509_CRL)); } PKCS12_SAFEBAG *PKCS12_SAFEBAG_create_cert(X509 *x509) { return PKCS12_item_pack_safebag(x509, ASN1_ITEM_rptr(X509), NID_x509Certificate, NID_certBag); } PKCS12_SAFEBAG *PKCS12_SAFEBAG_create_crl(X509_CRL *crl) { return PKCS12_item_pack_safebag(crl, ASN1_ITEM_rptr(X509_CRL), NID_x509Crl, NID_crlBag); } /* Turn PKCS8 object into a keybag */ PKCS12_SAFEBAG *PKCS12_SAFEBAG_create0_p8inf(PKCS8_PRIV_KEY_INFO *p8) { PKCS12_SAFEBAG *bag = PKCS12_SAFEBAG_new(); if (bag == NULL) { PKCS12err(PKCS12_F_PKCS12_SAFEBAG_CREATE0_P8INF, ERR_R_MALLOC_FAILURE); return NULL; } bag->type = OBJ_nid2obj(NID_keyBag); bag->value.keybag = p8; return bag; } /* Turn PKCS8 object into a shrouded keybag */ PKCS12_SAFEBAG *PKCS12_SAFEBAG_create0_pkcs8(X509_SIG *p8) { PKCS12_SAFEBAG *bag = PKCS12_SAFEBAG_new(); /* Set up the safe bag */ if (bag == NULL) { PKCS12err(PKCS12_F_PKCS12_SAFEBAG_CREATE0_PKCS8, ERR_R_MALLOC_FAILURE); return NULL; } bag->type = OBJ_nid2obj(NID_pkcs8ShroudedKeyBag); bag->value.shkeybag = p8; return bag; } PKCS12_SAFEBAG *PKCS12_SAFEBAG_create_pkcs8_encrypt(int pbe_nid, const char *pass, int passlen, unsigned char *salt, int saltlen, int iter, PKCS8_PRIV_KEY_INFO *p8inf) { PKCS12_SAFEBAG *bag; const EVP_CIPHER *pbe_ciph; X509_SIG *p8; pbe_ciph = EVP_get_cipherbynid(pbe_nid); if (pbe_ciph) pbe_nid = -1; p8 = PKCS8_encrypt(pbe_nid, pbe_ciph, pass, passlen, salt, saltlen, iter, p8inf); if (p8 == NULL) return NULL; bag = PKCS12_SAFEBAG_create0_pkcs8(p8); if (bag == NULL) X509_SIG_free(p8); return bag; } openssl-1.1.1f/crypto/pkcs12/p12_utl.c000066400000000000000000000166231364063235100174330ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include /* Cheap and nasty Unicode stuff */ unsigned char *OPENSSL_asc2uni(const char *asc, int asclen, unsigned char **uni, int *unilen) { int ulen, i; unsigned char *unitmp; if (asclen == -1) asclen = strlen(asc); ulen = asclen * 2 + 2; if ((unitmp = OPENSSL_malloc(ulen)) == NULL) { PKCS12err(PKCS12_F_OPENSSL_ASC2UNI, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < ulen - 2; i += 2) { unitmp[i] = 0; unitmp[i + 1] = asc[i >> 1]; } /* Make result double null terminated */ unitmp[ulen - 2] = 0; unitmp[ulen - 1] = 0; if (unilen) *unilen = ulen; if (uni) *uni = unitmp; return unitmp; } char *OPENSSL_uni2asc(const unsigned char *uni, int unilen) { int asclen, i; char *asctmp; /* string must contain an even number of bytes */ if (unilen & 1) return NULL; asclen = unilen / 2; /* If no terminating zero allow for one */ if (!unilen || uni[unilen - 1]) asclen++; uni++; if ((asctmp = OPENSSL_malloc(asclen)) == NULL) { PKCS12err(PKCS12_F_OPENSSL_UNI2ASC, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < unilen; i += 2) asctmp[i >> 1] = uni[i]; asctmp[asclen - 1] = 0; return asctmp; } /* * OPENSSL_{utf82uni|uni2utf8} perform conversion between UTF-8 and * PKCS#12 BMPString format, which is specified as big-endian UTF-16. * One should keep in mind that even though BMPString is passed as * unsigned char *, it's not the kind of string you can exercise e.g. * strlen on. Caller also has to keep in mind that its length is * expressed not in number of UTF-16 characters, but in number of * bytes the string occupies, and treat it, the length, accordingly. */ unsigned char *OPENSSL_utf82uni(const char *asc, int asclen, unsigned char **uni, int *unilen) { int ulen, i, j; unsigned char *unitmp, *ret; unsigned long utf32chr = 0; if (asclen == -1) asclen = strlen(asc); for (ulen = 0, i = 0; i < asclen; i += j) { j = UTF8_getc((const unsigned char *)asc+i, asclen-i, &utf32chr); /* * Following condition is somewhat opportunistic is sense that * decoding failure is used as *indirect* indication that input * string might in fact be extended ASCII/ANSI/ISO-8859-X. The * fallback is taken in hope that it would allow to process * files created with previous OpenSSL version, which used the * naive OPENSSL_asc2uni all along. It might be worth noting * that probability of false positive depends on language. In * cases covered by ISO Latin 1 probability is very low, because * any printable non-ASCII alphabet letter followed by another * or any ASCII character will trigger failure and fallback. * In other cases situation can be intensified by the fact that * English letters are not part of alternative keyboard layout, * but even then there should be plenty of pairs that trigger * decoding failure... */ if (j < 0) return OPENSSL_asc2uni(asc, asclen, uni, unilen); if (utf32chr > 0x10FFFF) /* UTF-16 cap */ return NULL; if (utf32chr >= 0x10000) /* pair of UTF-16 characters */ ulen += 2*2; else /* or just one */ ulen += 2; } ulen += 2; /* for trailing UTF16 zero */ if ((ret = OPENSSL_malloc(ulen)) == NULL) { PKCS12err(PKCS12_F_OPENSSL_UTF82UNI, ERR_R_MALLOC_FAILURE); return NULL; } /* re-run the loop writing down UTF-16 characters in big-endian order */ for (unitmp = ret, i = 0; i < asclen; i += j) { j = UTF8_getc((const unsigned char *)asc+i, asclen-i, &utf32chr); if (utf32chr >= 0x10000) { /* pair if UTF-16 characters */ unsigned int hi, lo; utf32chr -= 0x10000; hi = 0xD800 + (utf32chr>>10); lo = 0xDC00 + (utf32chr&0x3ff); *unitmp++ = (unsigned char)(hi>>8); *unitmp++ = (unsigned char)(hi); *unitmp++ = (unsigned char)(lo>>8); *unitmp++ = (unsigned char)(lo); } else { /* or just one */ *unitmp++ = (unsigned char)(utf32chr>>8); *unitmp++ = (unsigned char)(utf32chr); } } /* Make result double null terminated */ *unitmp++ = 0; *unitmp++ = 0; if (unilen) *unilen = ulen; if (uni) *uni = ret; return ret; } static int bmp_to_utf8(char *str, const unsigned char *utf16, int len) { unsigned long utf32chr; if (len == 0) return 0; if (len < 2) return -1; /* pull UTF-16 character in big-endian order */ utf32chr = (utf16[0]<<8) | utf16[1]; if (utf32chr >= 0xD800 && utf32chr < 0xE000) { /* two chars */ unsigned int lo; if (len < 4) return -1; utf32chr -= 0xD800; utf32chr <<= 10; lo = (utf16[2]<<8) | utf16[3]; if (lo < 0xDC00 || lo >= 0xE000) return -1; utf32chr |= lo-0xDC00; utf32chr += 0x10000; } return UTF8_putc((unsigned char *)str, len > 4 ? 4 : len, utf32chr); } char *OPENSSL_uni2utf8(const unsigned char *uni, int unilen) { int asclen, i, j; char *asctmp; /* string must contain an even number of bytes */ if (unilen & 1) return NULL; for (asclen = 0, i = 0; i < unilen; ) { j = bmp_to_utf8(NULL, uni+i, unilen-i); /* * falling back to OPENSSL_uni2asc makes lesser sense [than * falling back to OPENSSL_asc2uni in OPENSSL_utf82uni above], * it's done rather to maintain symmetry... */ if (j < 0) return OPENSSL_uni2asc(uni, unilen); if (j == 4) i += 4; else i += 2; asclen += j; } /* If no terminating zero allow for one */ if (!unilen || (uni[unilen-2]||uni[unilen - 1])) asclen++; if ((asctmp = OPENSSL_malloc(asclen)) == NULL) { PKCS12err(PKCS12_F_OPENSSL_UNI2UTF8, ERR_R_MALLOC_FAILURE); return NULL; } /* re-run the loop emitting UTF-8 string */ for (asclen = 0, i = 0; i < unilen; ) { j = bmp_to_utf8(asctmp+asclen, uni+i, unilen-i); if (j == 4) i += 4; else i += 2; asclen += j; } /* If no terminating zero write one */ if (!unilen || (uni[unilen-2]||uni[unilen - 1])) asctmp[asclen] = '\0'; return asctmp; } int i2d_PKCS12_bio(BIO *bp, PKCS12 *p12) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(PKCS12), bp, p12); } #ifndef OPENSSL_NO_STDIO int i2d_PKCS12_fp(FILE *fp, PKCS12 *p12) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(PKCS12), fp, p12); } #endif PKCS12 *d2i_PKCS12_bio(BIO *bp, PKCS12 **p12) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(PKCS12), bp, p12); } #ifndef OPENSSL_NO_STDIO PKCS12 *d2i_PKCS12_fp(FILE *fp, PKCS12 **p12) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(PKCS12), fp, p12); } #endif openssl-1.1.1f/crypto/pkcs12/pk12err.c000066400000000000000000000124031364063235100174230ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA PKCS12_str_functs[] = { {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_ASC2UNI, 0), "OPENSSL_asc2uni"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_UNI2ASC, 0), "OPENSSL_uni2asc"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_UNI2UTF8, 0), "OPENSSL_uni2utf8"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_UTF82UNI, 0), "OPENSSL_utf82uni"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_CREATE, 0), "PKCS12_create"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_GEN_MAC, 0), "PKCS12_gen_mac"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_INIT, 0), "PKCS12_init"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_ITEM_DECRYPT_D2I, 0), "PKCS12_item_decrypt_d2i"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT, 0), "PKCS12_item_i2d_encrypt"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, 0), "PKCS12_item_pack_safebag"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_KEY_GEN_ASC, 0), "PKCS12_key_gen_asc"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_KEY_GEN_UNI, 0), "PKCS12_key_gen_uni"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_KEY_GEN_UTF8, 0), "PKCS12_key_gen_utf8"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_NEWPASS, 0), "PKCS12_newpass"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PACK_P7DATA, 0), "PKCS12_pack_p7data"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PACK_P7ENCDATA, 0), "PKCS12_pack_p7encdata"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PARSE, 0), "PKCS12_parse"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PBE_CRYPT, 0), "PKCS12_pbe_crypt"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PBE_KEYIVGEN, 0), "PKCS12_PBE_keyivgen"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SAFEBAG_CREATE0_P8INF, 0), "PKCS12_SAFEBAG_create0_p8inf"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SAFEBAG_CREATE0_PKCS8, 0), "PKCS12_SAFEBAG_create0_pkcs8"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SAFEBAG_CREATE_PKCS8_ENCRYPT, 0), "PKCS12_SAFEBAG_create_pkcs8_encrypt"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SETUP_MAC, 0), "PKCS12_setup_mac"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SET_MAC, 0), "PKCS12_set_mac"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_UNPACK_AUTHSAFES, 0), "PKCS12_unpack_authsafes"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_UNPACK_P7DATA, 0), "PKCS12_unpack_p7data"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_VERIFY_MAC, 0), "PKCS12_verify_mac"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS8_ENCRYPT, 0), "PKCS8_encrypt"}, {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS8_SET0_PBE, 0), "PKCS8_set0_pbe"}, {0, NULL} }; static const ERR_STRING_DATA PKCS12_str_reasons[] = { {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_CANT_PACK_STRUCTURE), "cant pack structure"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_CONTENT_TYPE_NOT_DATA), "content type not data"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_DECODE_ERROR), "decode error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_ENCODE_ERROR), "encode error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_ENCRYPT_ERROR), "encrypt error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_ERROR_SETTING_ENCRYPTED_DATA_TYPE), "error setting encrypted data type"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_INVALID_NULL_ARGUMENT), "invalid null argument"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_INVALID_NULL_PKCS12_POINTER), "invalid null pkcs12 pointer"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_IV_GEN_ERROR), "iv gen error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_KEY_GEN_ERROR), "key gen error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_MAC_ABSENT), "mac absent"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_MAC_GENERATION_ERROR), "mac generation error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_MAC_SETUP_ERROR), "mac setup error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_MAC_STRING_SET_ERROR), "mac string set error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_MAC_VERIFY_FAILURE), "mac verify failure"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_PARSE_ERROR), "parse error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_PKCS12_ALGOR_CIPHERINIT_ERROR), "pkcs12 algor cipherinit error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_PKCS12_CIPHERFINAL_ERROR), "pkcs12 cipherfinal error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_PKCS12_PBE_CRYPT_ERROR), "pkcs12 pbe crypt error"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_UNKNOWN_DIGEST_ALGORITHM), "unknown digest algorithm"}, {ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_UNSUPPORTED_PKCS12_MODE), "unsupported pkcs12 mode"}, {0, NULL} }; #endif int ERR_load_PKCS12_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(PKCS12_str_functs[0].error) == NULL) { ERR_load_strings_const(PKCS12_str_functs); ERR_load_strings_const(PKCS12_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/pkcs7/000077500000000000000000000000001364063235100157155ustar00rootroot00000000000000openssl-1.1.1f/crypto/pkcs7/bio_pk7.c000066400000000000000000000012151364063235100174120ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #if !defined(OPENSSL_SYS_VXWORKS) # include #endif #include /* Streaming encode support for PKCS#7 */ BIO *BIO_new_PKCS7(BIO *out, PKCS7 *p7) { return BIO_new_NDEF(out, (ASN1_VALUE *)p7, ASN1_ITEM_rptr(PKCS7)); } openssl-1.1.1f/crypto/pkcs7/build.info000066400000000000000000000002301364063235100176640ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ pk7_asn1.c pk7_lib.c pkcs7err.c pk7_doit.c pk7_smime.c pk7_attr.c \ pk7_mime.c bio_pk7.c openssl-1.1.1f/crypto/pkcs7/pk7_asn1.c000066400000000000000000000165751364063235100175220ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include /* PKCS#7 ASN1 module */ /* This is the ANY DEFINED BY table for the top level PKCS#7 structure */ ASN1_ADB_TEMPLATE(p7default) = ASN1_EXP_OPT(PKCS7, d.other, ASN1_ANY, 0); ASN1_ADB(PKCS7) = { ADB_ENTRY(NID_pkcs7_data, ASN1_NDEF_EXP_OPT(PKCS7, d.data, ASN1_OCTET_STRING_NDEF, 0)), ADB_ENTRY(NID_pkcs7_signed, ASN1_NDEF_EXP_OPT(PKCS7, d.sign, PKCS7_SIGNED, 0)), ADB_ENTRY(NID_pkcs7_enveloped, ASN1_NDEF_EXP_OPT(PKCS7, d.enveloped, PKCS7_ENVELOPE, 0)), ADB_ENTRY(NID_pkcs7_signedAndEnveloped, ASN1_NDEF_EXP_OPT(PKCS7, d.signed_and_enveloped, PKCS7_SIGN_ENVELOPE, 0)), ADB_ENTRY(NID_pkcs7_digest, ASN1_NDEF_EXP_OPT(PKCS7, d.digest, PKCS7_DIGEST, 0)), ADB_ENTRY(NID_pkcs7_encrypted, ASN1_NDEF_EXP_OPT(PKCS7, d.encrypted, PKCS7_ENCRYPT, 0)) } ASN1_ADB_END(PKCS7, 0, type, 0, &p7default_tt, NULL); /* PKCS#7 streaming support */ static int pk7_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { ASN1_STREAM_ARG *sarg = exarg; PKCS7 **pp7 = (PKCS7 **)pval; switch (operation) { case ASN1_OP_STREAM_PRE: if (PKCS7_stream(&sarg->boundary, *pp7) <= 0) return 0; /* fall thru */ case ASN1_OP_DETACHED_PRE: sarg->ndef_bio = PKCS7_dataInit(*pp7, sarg->out); if (!sarg->ndef_bio) return 0; break; case ASN1_OP_STREAM_POST: case ASN1_OP_DETACHED_POST: if (PKCS7_dataFinal(*pp7, sarg->ndef_bio) <= 0) return 0; break; } return 1; } ASN1_NDEF_SEQUENCE_cb(PKCS7, pk7_cb) = { ASN1_SIMPLE(PKCS7, type, ASN1_OBJECT), ASN1_ADB_OBJECT(PKCS7) }ASN1_NDEF_SEQUENCE_END_cb(PKCS7, PKCS7) IMPLEMENT_ASN1_FUNCTIONS(PKCS7) IMPLEMENT_ASN1_NDEF_FUNCTION(PKCS7) IMPLEMENT_ASN1_DUP_FUNCTION(PKCS7) ASN1_NDEF_SEQUENCE(PKCS7_SIGNED) = { ASN1_SIMPLE(PKCS7_SIGNED, version, ASN1_INTEGER), ASN1_SET_OF(PKCS7_SIGNED, md_algs, X509_ALGOR), ASN1_SIMPLE(PKCS7_SIGNED, contents, PKCS7), ASN1_IMP_SEQUENCE_OF_OPT(PKCS7_SIGNED, cert, X509, 0), ASN1_IMP_SET_OF_OPT(PKCS7_SIGNED, crl, X509_CRL, 1), ASN1_SET_OF(PKCS7_SIGNED, signer_info, PKCS7_SIGNER_INFO) } ASN1_NDEF_SEQUENCE_END(PKCS7_SIGNED) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_SIGNED) /* Minor tweak to operation: free up EVP_PKEY */ static int si_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_POST) { PKCS7_SIGNER_INFO *si = (PKCS7_SIGNER_INFO *)*pval; EVP_PKEY_free(si->pkey); } return 1; } ASN1_SEQUENCE_cb(PKCS7_SIGNER_INFO, si_cb) = { ASN1_SIMPLE(PKCS7_SIGNER_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS7_SIGNER_INFO, issuer_and_serial, PKCS7_ISSUER_AND_SERIAL), ASN1_SIMPLE(PKCS7_SIGNER_INFO, digest_alg, X509_ALGOR), /* NB this should be a SET OF but we use a SEQUENCE OF so the * original order * is retained when the structure is reencoded. * Since the attributes are implicitly tagged this will not affect * the encoding. */ ASN1_IMP_SEQUENCE_OF_OPT(PKCS7_SIGNER_INFO, auth_attr, X509_ATTRIBUTE, 0), ASN1_SIMPLE(PKCS7_SIGNER_INFO, digest_enc_alg, X509_ALGOR), ASN1_SIMPLE(PKCS7_SIGNER_INFO, enc_digest, ASN1_OCTET_STRING), ASN1_IMP_SET_OF_OPT(PKCS7_SIGNER_INFO, unauth_attr, X509_ATTRIBUTE, 1) } ASN1_SEQUENCE_END_cb(PKCS7_SIGNER_INFO, PKCS7_SIGNER_INFO) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_SIGNER_INFO) ASN1_SEQUENCE(PKCS7_ISSUER_AND_SERIAL) = { ASN1_SIMPLE(PKCS7_ISSUER_AND_SERIAL, issuer, X509_NAME), ASN1_SIMPLE(PKCS7_ISSUER_AND_SERIAL, serial, ASN1_INTEGER) } ASN1_SEQUENCE_END(PKCS7_ISSUER_AND_SERIAL) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ISSUER_AND_SERIAL) ASN1_NDEF_SEQUENCE(PKCS7_ENVELOPE) = { ASN1_SIMPLE(PKCS7_ENVELOPE, version, ASN1_INTEGER), ASN1_SET_OF(PKCS7_ENVELOPE, recipientinfo, PKCS7_RECIP_INFO), ASN1_SIMPLE(PKCS7_ENVELOPE, enc_data, PKCS7_ENC_CONTENT) } ASN1_NDEF_SEQUENCE_END(PKCS7_ENVELOPE) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ENVELOPE) /* Minor tweak to operation: free up X509 */ static int ri_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_POST) { PKCS7_RECIP_INFO *ri = (PKCS7_RECIP_INFO *)*pval; X509_free(ri->cert); } return 1; } ASN1_SEQUENCE_cb(PKCS7_RECIP_INFO, ri_cb) = { ASN1_SIMPLE(PKCS7_RECIP_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS7_RECIP_INFO, issuer_and_serial, PKCS7_ISSUER_AND_SERIAL), ASN1_SIMPLE(PKCS7_RECIP_INFO, key_enc_algor, X509_ALGOR), ASN1_SIMPLE(PKCS7_RECIP_INFO, enc_key, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END_cb(PKCS7_RECIP_INFO, PKCS7_RECIP_INFO) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_RECIP_INFO) ASN1_NDEF_SEQUENCE(PKCS7_ENC_CONTENT) = { ASN1_SIMPLE(PKCS7_ENC_CONTENT, content_type, ASN1_OBJECT), ASN1_SIMPLE(PKCS7_ENC_CONTENT, algorithm, X509_ALGOR), ASN1_IMP_OPT(PKCS7_ENC_CONTENT, enc_data, ASN1_OCTET_STRING_NDEF, 0) } ASN1_NDEF_SEQUENCE_END(PKCS7_ENC_CONTENT) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ENC_CONTENT) ASN1_NDEF_SEQUENCE(PKCS7_SIGN_ENVELOPE) = { ASN1_SIMPLE(PKCS7_SIGN_ENVELOPE, version, ASN1_INTEGER), ASN1_SET_OF(PKCS7_SIGN_ENVELOPE, recipientinfo, PKCS7_RECIP_INFO), ASN1_SET_OF(PKCS7_SIGN_ENVELOPE, md_algs, X509_ALGOR), ASN1_SIMPLE(PKCS7_SIGN_ENVELOPE, enc_data, PKCS7_ENC_CONTENT), ASN1_IMP_SET_OF_OPT(PKCS7_SIGN_ENVELOPE, cert, X509, 0), ASN1_IMP_SET_OF_OPT(PKCS7_SIGN_ENVELOPE, crl, X509_CRL, 1), ASN1_SET_OF(PKCS7_SIGN_ENVELOPE, signer_info, PKCS7_SIGNER_INFO) } ASN1_NDEF_SEQUENCE_END(PKCS7_SIGN_ENVELOPE) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_SIGN_ENVELOPE) ASN1_NDEF_SEQUENCE(PKCS7_ENCRYPT) = { ASN1_SIMPLE(PKCS7_ENCRYPT, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS7_ENCRYPT, enc_data, PKCS7_ENC_CONTENT) } ASN1_NDEF_SEQUENCE_END(PKCS7_ENCRYPT) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ENCRYPT) ASN1_NDEF_SEQUENCE(PKCS7_DIGEST) = { ASN1_SIMPLE(PKCS7_DIGEST, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS7_DIGEST, md, X509_ALGOR), ASN1_SIMPLE(PKCS7_DIGEST, contents, PKCS7), ASN1_SIMPLE(PKCS7_DIGEST, digest, ASN1_OCTET_STRING) } ASN1_NDEF_SEQUENCE_END(PKCS7_DIGEST) IMPLEMENT_ASN1_FUNCTIONS(PKCS7_DIGEST) /* Specials for authenticated attributes */ /* * When signing attributes we want to reorder them to match the sorted * encoding. */ ASN1_ITEM_TEMPLATE(PKCS7_ATTR_SIGN) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_ORDER, 0, PKCS7_ATTRIBUTES, X509_ATTRIBUTE) ASN1_ITEM_TEMPLATE_END(PKCS7_ATTR_SIGN) /* * When verifying attributes we need to use the received order. So we use * SEQUENCE OF and tag it to SET OF */ ASN1_ITEM_TEMPLATE(PKCS7_ATTR_VERIFY) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF | ASN1_TFLG_IMPTAG | ASN1_TFLG_UNIVERSAL, V_ASN1_SET, PKCS7_ATTRIBUTES, X509_ATTRIBUTE) ASN1_ITEM_TEMPLATE_END(PKCS7_ATTR_VERIFY) IMPLEMENT_ASN1_PRINT_FUNCTION(PKCS7) openssl-1.1.1f/crypto/pkcs7/pk7_attr.c000066400000000000000000000072351364063235100176230ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include int PKCS7_add_attrib_smimecap(PKCS7_SIGNER_INFO *si, STACK_OF(X509_ALGOR) *cap) { ASN1_STRING *seq; if ((seq = ASN1_STRING_new()) == NULL) { PKCS7err(PKCS7_F_PKCS7_ADD_ATTRIB_SMIMECAP, ERR_R_MALLOC_FAILURE); return 0; } seq->length = ASN1_item_i2d((ASN1_VALUE *)cap, &seq->data, ASN1_ITEM_rptr(X509_ALGORS)); return PKCS7_add_signed_attribute(si, NID_SMIMECapabilities, V_ASN1_SEQUENCE, seq); } STACK_OF(X509_ALGOR) *PKCS7_get_smimecap(PKCS7_SIGNER_INFO *si) { ASN1_TYPE *cap; const unsigned char *p; cap = PKCS7_get_signed_attribute(si, NID_SMIMECapabilities); if (cap == NULL || (cap->type != V_ASN1_SEQUENCE)) return NULL; p = cap->value.sequence->data; return (STACK_OF(X509_ALGOR) *) ASN1_item_d2i(NULL, &p, cap->value.sequence->length, ASN1_ITEM_rptr(X509_ALGORS)); } /* Basic smime-capabilities OID and optional integer arg */ int PKCS7_simple_smimecap(STACK_OF(X509_ALGOR) *sk, int nid, int arg) { ASN1_INTEGER *nbit = NULL; X509_ALGOR *alg; if ((alg = X509_ALGOR_new()) == NULL) { PKCS7err(PKCS7_F_PKCS7_SIMPLE_SMIMECAP, ERR_R_MALLOC_FAILURE); return 0; } ASN1_OBJECT_free(alg->algorithm); alg->algorithm = OBJ_nid2obj(nid); if (arg > 0) { if ((alg->parameter = ASN1_TYPE_new()) == NULL) { goto err; } if ((nbit = ASN1_INTEGER_new()) == NULL) { goto err; } if (!ASN1_INTEGER_set(nbit, arg)) { goto err; } alg->parameter->value.integer = nbit; alg->parameter->type = V_ASN1_INTEGER; nbit = NULL; } if (!sk_X509_ALGOR_push(sk, alg)) { goto err; } return 1; err: PKCS7err(PKCS7_F_PKCS7_SIMPLE_SMIMECAP, ERR_R_MALLOC_FAILURE); ASN1_INTEGER_free(nbit); X509_ALGOR_free(alg); return 0; } int PKCS7_add_attrib_content_type(PKCS7_SIGNER_INFO *si, ASN1_OBJECT *coid) { if (PKCS7_get_signed_attribute(si, NID_pkcs9_contentType)) return 0; if (!coid) coid = OBJ_nid2obj(NID_pkcs7_data); return PKCS7_add_signed_attribute(si, NID_pkcs9_contentType, V_ASN1_OBJECT, coid); } int PKCS7_add0_attrib_signing_time(PKCS7_SIGNER_INFO *si, ASN1_TIME *t) { if (t == NULL && (t = X509_gmtime_adj(NULL, 0)) == NULL) { PKCS7err(PKCS7_F_PKCS7_ADD0_ATTRIB_SIGNING_TIME, ERR_R_MALLOC_FAILURE); return 0; } return PKCS7_add_signed_attribute(si, NID_pkcs9_signingTime, V_ASN1_UTCTIME, t); } int PKCS7_add1_attrib_digest(PKCS7_SIGNER_INFO *si, const unsigned char *md, int mdlen) { ASN1_OCTET_STRING *os; os = ASN1_OCTET_STRING_new(); if (os == NULL) return 0; if (!ASN1_STRING_set(os, md, mdlen) || !PKCS7_add_signed_attribute(si, NID_pkcs9_messageDigest, V_ASN1_OCTET_STRING, os)) { ASN1_OCTET_STRING_free(os); return 0; } return 1; } openssl-1.1.1f/crypto/pkcs7/pk7_doit.c000066400000000000000000001037071364063235100176110ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include static int add_attribute(STACK_OF(X509_ATTRIBUTE) **sk, int nid, int atrtype, void *value); static ASN1_TYPE *get_attribute(STACK_OF(X509_ATTRIBUTE) *sk, int nid); static int PKCS7_type_is_other(PKCS7 *p7) { int isOther = 1; int nid = OBJ_obj2nid(p7->type); switch (nid) { case NID_pkcs7_data: case NID_pkcs7_signed: case NID_pkcs7_enveloped: case NID_pkcs7_signedAndEnveloped: case NID_pkcs7_digest: case NID_pkcs7_encrypted: isOther = 0; break; default: isOther = 1; } return isOther; } static ASN1_OCTET_STRING *PKCS7_get_octet_string(PKCS7 *p7) { if (PKCS7_type_is_data(p7)) return p7->d.data; if (PKCS7_type_is_other(p7) && p7->d.other && (p7->d.other->type == V_ASN1_OCTET_STRING)) return p7->d.other->value.octet_string; return NULL; } static int PKCS7_bio_add_digest(BIO **pbio, X509_ALGOR *alg) { BIO *btmp; const EVP_MD *md; if ((btmp = BIO_new(BIO_f_md())) == NULL) { PKCS7err(PKCS7_F_PKCS7_BIO_ADD_DIGEST, ERR_R_BIO_LIB); goto err; } md = EVP_get_digestbyobj(alg->algorithm); if (md == NULL) { PKCS7err(PKCS7_F_PKCS7_BIO_ADD_DIGEST, PKCS7_R_UNKNOWN_DIGEST_TYPE); goto err; } BIO_set_md(btmp, md); if (*pbio == NULL) *pbio = btmp; else if (!BIO_push(*pbio, btmp)) { PKCS7err(PKCS7_F_PKCS7_BIO_ADD_DIGEST, ERR_R_BIO_LIB); goto err; } btmp = NULL; return 1; err: BIO_free(btmp); return 0; } static int pkcs7_encode_rinfo(PKCS7_RECIP_INFO *ri, unsigned char *key, int keylen) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *pkey = NULL; unsigned char *ek = NULL; int ret = 0; size_t eklen; pkey = X509_get0_pubkey(ri->cert); if (!pkey) return 0; pctx = EVP_PKEY_CTX_new(pkey, NULL); if (!pctx) return 0; if (EVP_PKEY_encrypt_init(pctx) <= 0) goto err; if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_ENCRYPT, EVP_PKEY_CTRL_PKCS7_ENCRYPT, 0, ri) <= 0) { PKCS7err(PKCS7_F_PKCS7_ENCODE_RINFO, PKCS7_R_CTRL_ERROR); goto err; } if (EVP_PKEY_encrypt(pctx, NULL, &eklen, key, keylen) <= 0) goto err; ek = OPENSSL_malloc(eklen); if (ek == NULL) { PKCS7err(PKCS7_F_PKCS7_ENCODE_RINFO, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_PKEY_encrypt(pctx, ek, &eklen, key, keylen) <= 0) goto err; ASN1_STRING_set0(ri->enc_key, ek, eklen); ek = NULL; ret = 1; err: EVP_PKEY_CTX_free(pctx); OPENSSL_free(ek); return ret; } static int pkcs7_decrypt_rinfo(unsigned char **pek, int *peklen, PKCS7_RECIP_INFO *ri, EVP_PKEY *pkey, size_t fixlen) { EVP_PKEY_CTX *pctx = NULL; unsigned char *ek = NULL; size_t eklen; int ret = -1; pctx = EVP_PKEY_CTX_new(pkey, NULL); if (!pctx) return -1; if (EVP_PKEY_decrypt_init(pctx) <= 0) goto err; if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_DECRYPT, EVP_PKEY_CTRL_PKCS7_DECRYPT, 0, ri) <= 0) { PKCS7err(PKCS7_F_PKCS7_DECRYPT_RINFO, PKCS7_R_CTRL_ERROR); goto err; } if (EVP_PKEY_decrypt(pctx, NULL, &eklen, ri->enc_key->data, ri->enc_key->length) <= 0) goto err; ek = OPENSSL_malloc(eklen); if (ek == NULL) { PKCS7err(PKCS7_F_PKCS7_DECRYPT_RINFO, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_PKEY_decrypt(pctx, ek, &eklen, ri->enc_key->data, ri->enc_key->length) <= 0 || eklen == 0 || (fixlen != 0 && eklen != fixlen)) { ret = 0; PKCS7err(PKCS7_F_PKCS7_DECRYPT_RINFO, ERR_R_EVP_LIB); goto err; } ret = 1; OPENSSL_clear_free(*pek, *peklen); *pek = ek; *peklen = eklen; err: EVP_PKEY_CTX_free(pctx); if (!ret) OPENSSL_free(ek); return ret; } BIO *PKCS7_dataInit(PKCS7 *p7, BIO *bio) { int i; BIO *out = NULL, *btmp = NULL; X509_ALGOR *xa = NULL; const EVP_CIPHER *evp_cipher = NULL; STACK_OF(X509_ALGOR) *md_sk = NULL; STACK_OF(PKCS7_RECIP_INFO) *rsk = NULL; X509_ALGOR *xalg = NULL; PKCS7_RECIP_INFO *ri = NULL; ASN1_OCTET_STRING *os = NULL; if (p7 == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAINIT, PKCS7_R_INVALID_NULL_POINTER); return NULL; } /* * The content field in the PKCS7 ContentInfo is optional, but that really * only applies to inner content (precisely, detached signatures). * * When reading content, missing outer content is therefore treated as an * error. * * When creating content, PKCS7_content_new() must be called before * calling this method, so a NULL p7->d is always an error. */ if (p7->d.ptr == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAINIT, PKCS7_R_NO_CONTENT); return NULL; } i = OBJ_obj2nid(p7->type); p7->state = PKCS7_S_HEADER; switch (i) { case NID_pkcs7_signed: md_sk = p7->d.sign->md_algs; os = PKCS7_get_octet_string(p7->d.sign->contents); break; case NID_pkcs7_signedAndEnveloped: rsk = p7->d.signed_and_enveloped->recipientinfo; md_sk = p7->d.signed_and_enveloped->md_algs; xalg = p7->d.signed_and_enveloped->enc_data->algorithm; evp_cipher = p7->d.signed_and_enveloped->enc_data->cipher; if (evp_cipher == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAINIT, PKCS7_R_CIPHER_NOT_INITIALIZED); goto err; } break; case NID_pkcs7_enveloped: rsk = p7->d.enveloped->recipientinfo; xalg = p7->d.enveloped->enc_data->algorithm; evp_cipher = p7->d.enveloped->enc_data->cipher; if (evp_cipher == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAINIT, PKCS7_R_CIPHER_NOT_INITIALIZED); goto err; } break; case NID_pkcs7_digest: xa = p7->d.digest->md; os = PKCS7_get_octet_string(p7->d.digest->contents); break; case NID_pkcs7_data: break; default: PKCS7err(PKCS7_F_PKCS7_DATAINIT, PKCS7_R_UNSUPPORTED_CONTENT_TYPE); goto err; } for (i = 0; i < sk_X509_ALGOR_num(md_sk); i++) if (!PKCS7_bio_add_digest(&out, sk_X509_ALGOR_value(md_sk, i))) goto err; if (xa && !PKCS7_bio_add_digest(&out, xa)) goto err; if (evp_cipher != NULL) { unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; int keylen, ivlen; EVP_CIPHER_CTX *ctx; if ((btmp = BIO_new(BIO_f_cipher())) == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAINIT, ERR_R_BIO_LIB); goto err; } BIO_get_cipher_ctx(btmp, &ctx); keylen = EVP_CIPHER_key_length(evp_cipher); ivlen = EVP_CIPHER_iv_length(evp_cipher); xalg->algorithm = OBJ_nid2obj(EVP_CIPHER_type(evp_cipher)); if (ivlen > 0) if (RAND_bytes(iv, ivlen) <= 0) goto err; if (EVP_CipherInit_ex(ctx, evp_cipher, NULL, NULL, NULL, 1) <= 0) goto err; if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0) goto err; if (EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, 1) <= 0) goto err; if (ivlen > 0) { if (xalg->parameter == NULL) { xalg->parameter = ASN1_TYPE_new(); if (xalg->parameter == NULL) goto err; } if (EVP_CIPHER_param_to_asn1(ctx, xalg->parameter) < 0) goto err; } /* Lets do the pub key stuff :-) */ for (i = 0; i < sk_PKCS7_RECIP_INFO_num(rsk); i++) { ri = sk_PKCS7_RECIP_INFO_value(rsk, i); if (pkcs7_encode_rinfo(ri, key, keylen) <= 0) goto err; } OPENSSL_cleanse(key, keylen); if (out == NULL) out = btmp; else BIO_push(out, btmp); btmp = NULL; } if (bio == NULL) { if (PKCS7_is_detached(p7)) { bio = BIO_new(BIO_s_null()); } else if (os && os->length > 0) { bio = BIO_new_mem_buf(os->data, os->length); } else { bio = BIO_new(BIO_s_mem()); if (bio == NULL) goto err; BIO_set_mem_eof_return(bio, 0); } if (bio == NULL) goto err; } if (out) BIO_push(out, bio); else out = bio; return out; err: BIO_free_all(out); BIO_free_all(btmp); return NULL; } static int pkcs7_cmp_ri(PKCS7_RECIP_INFO *ri, X509 *pcert) { int ret; ret = X509_NAME_cmp(ri->issuer_and_serial->issuer, X509_get_issuer_name(pcert)); if (ret) return ret; return ASN1_INTEGER_cmp(X509_get_serialNumber(pcert), ri->issuer_and_serial->serial); } /* int */ BIO *PKCS7_dataDecode(PKCS7 *p7, EVP_PKEY *pkey, BIO *in_bio, X509 *pcert) { int i, j; BIO *out = NULL, *btmp = NULL, *etmp = NULL, *bio = NULL; X509_ALGOR *xa; ASN1_OCTET_STRING *data_body = NULL; const EVP_MD *evp_md; const EVP_CIPHER *evp_cipher = NULL; EVP_CIPHER_CTX *evp_ctx = NULL; X509_ALGOR *enc_alg = NULL; STACK_OF(X509_ALGOR) *md_sk = NULL; STACK_OF(PKCS7_RECIP_INFO) *rsk = NULL; PKCS7_RECIP_INFO *ri = NULL; unsigned char *ek = NULL, *tkey = NULL; int eklen = 0, tkeylen = 0; if (p7 == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_INVALID_NULL_POINTER); return NULL; } if (p7->d.ptr == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_NO_CONTENT); return NULL; } i = OBJ_obj2nid(p7->type); p7->state = PKCS7_S_HEADER; switch (i) { case NID_pkcs7_signed: /* * p7->d.sign->contents is a PKCS7 structure consisting of a contentType * field and optional content. * data_body is NULL if that structure has no (=detached) content * or if the contentType is wrong (i.e., not "data"). */ data_body = PKCS7_get_octet_string(p7->d.sign->contents); if (!PKCS7_is_detached(p7) && data_body == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_INVALID_SIGNED_DATA_TYPE); goto err; } md_sk = p7->d.sign->md_algs; break; case NID_pkcs7_signedAndEnveloped: rsk = p7->d.signed_and_enveloped->recipientinfo; md_sk = p7->d.signed_and_enveloped->md_algs; /* data_body is NULL if the optional EncryptedContent is missing. */ data_body = p7->d.signed_and_enveloped->enc_data->enc_data; enc_alg = p7->d.signed_and_enveloped->enc_data->algorithm; evp_cipher = EVP_get_cipherbyobj(enc_alg->algorithm); if (evp_cipher == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNSUPPORTED_CIPHER_TYPE); goto err; } break; case NID_pkcs7_enveloped: rsk = p7->d.enveloped->recipientinfo; enc_alg = p7->d.enveloped->enc_data->algorithm; /* data_body is NULL if the optional EncryptedContent is missing. */ data_body = p7->d.enveloped->enc_data->enc_data; evp_cipher = EVP_get_cipherbyobj(enc_alg->algorithm); if (evp_cipher == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNSUPPORTED_CIPHER_TYPE); goto err; } break; default: PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNSUPPORTED_CONTENT_TYPE); goto err; } /* Detached content must be supplied via in_bio instead. */ if (data_body == NULL && in_bio == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_NO_CONTENT); goto err; } /* We will be checking the signature */ if (md_sk != NULL) { for (i = 0; i < sk_X509_ALGOR_num(md_sk); i++) { xa = sk_X509_ALGOR_value(md_sk, i); if ((btmp = BIO_new(BIO_f_md())) == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, ERR_R_BIO_LIB); goto err; } j = OBJ_obj2nid(xa->algorithm); evp_md = EVP_get_digestbynid(j); if (evp_md == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNKNOWN_DIGEST_TYPE); goto err; } BIO_set_md(btmp, evp_md); if (out == NULL) out = btmp; else BIO_push(out, btmp); btmp = NULL; } } if (evp_cipher != NULL) { if ((etmp = BIO_new(BIO_f_cipher())) == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, ERR_R_BIO_LIB); goto err; } /* * It was encrypted, we need to decrypt the secret key with the * private key */ /* * Find the recipientInfo which matches the passed certificate (if * any) */ if (pcert) { for (i = 0; i < sk_PKCS7_RECIP_INFO_num(rsk); i++) { ri = sk_PKCS7_RECIP_INFO_value(rsk, i); if (!pkcs7_cmp_ri(ri, pcert)) break; ri = NULL; } if (ri == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_NO_RECIPIENT_MATCHES_CERTIFICATE); goto err; } } /* If we haven't got a certificate try each ri in turn */ if (pcert == NULL) { /* * Always attempt to decrypt all rinfo even after success as a * defence against MMA timing attacks. */ for (i = 0; i < sk_PKCS7_RECIP_INFO_num(rsk); i++) { ri = sk_PKCS7_RECIP_INFO_value(rsk, i); if (pkcs7_decrypt_rinfo(&ek, &eklen, ri, pkey, EVP_CIPHER_key_length(evp_cipher)) < 0) goto err; ERR_clear_error(); } } else { /* Only exit on fatal errors, not decrypt failure */ if (pkcs7_decrypt_rinfo(&ek, &eklen, ri, pkey, 0) < 0) goto err; ERR_clear_error(); } evp_ctx = NULL; BIO_get_cipher_ctx(etmp, &evp_ctx); if (EVP_CipherInit_ex(evp_ctx, evp_cipher, NULL, NULL, NULL, 0) <= 0) goto err; if (EVP_CIPHER_asn1_to_param(evp_ctx, enc_alg->parameter) < 0) goto err; /* Generate random key as MMA defence */ tkeylen = EVP_CIPHER_CTX_key_length(evp_ctx); tkey = OPENSSL_malloc(tkeylen); if (tkey == NULL) goto err; if (EVP_CIPHER_CTX_rand_key(evp_ctx, tkey) <= 0) goto err; if (ek == NULL) { ek = tkey; eklen = tkeylen; tkey = NULL; } if (eklen != EVP_CIPHER_CTX_key_length(evp_ctx)) { /* * Some S/MIME clients don't use the same key and effective key * length. The key length is determined by the size of the * decrypted RSA key. */ if (!EVP_CIPHER_CTX_set_key_length(evp_ctx, eklen)) { /* Use random key as MMA defence */ OPENSSL_clear_free(ek, eklen); ek = tkey; eklen = tkeylen; tkey = NULL; } } /* Clear errors so we don't leak information useful in MMA */ ERR_clear_error(); if (EVP_CipherInit_ex(evp_ctx, NULL, NULL, ek, NULL, 0) <= 0) goto err; OPENSSL_clear_free(ek, eklen); ek = NULL; OPENSSL_clear_free(tkey, tkeylen); tkey = NULL; if (out == NULL) out = etmp; else BIO_push(out, etmp); etmp = NULL; } if (in_bio != NULL) { bio = in_bio; } else { if (data_body->length > 0) bio = BIO_new_mem_buf(data_body->data, data_body->length); else { bio = BIO_new(BIO_s_mem()); if (bio == NULL) goto err; BIO_set_mem_eof_return(bio, 0); } if (bio == NULL) goto err; } BIO_push(out, bio); bio = NULL; return out; err: OPENSSL_clear_free(ek, eklen); OPENSSL_clear_free(tkey, tkeylen); BIO_free_all(out); BIO_free_all(btmp); BIO_free_all(etmp); BIO_free_all(bio); return NULL; } static BIO *PKCS7_find_digest(EVP_MD_CTX **pmd, BIO *bio, int nid) { for (;;) { bio = BIO_find_type(bio, BIO_TYPE_MD); if (bio == NULL) { PKCS7err(PKCS7_F_PKCS7_FIND_DIGEST, PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST); return NULL; } BIO_get_md_ctx(bio, pmd); if (*pmd == NULL) { PKCS7err(PKCS7_F_PKCS7_FIND_DIGEST, ERR_R_INTERNAL_ERROR); return NULL; } if (EVP_MD_CTX_type(*pmd) == nid) return bio; bio = BIO_next(bio); } return NULL; } static int do_pkcs7_signed_attrib(PKCS7_SIGNER_INFO *si, EVP_MD_CTX *mctx) { unsigned char md_data[EVP_MAX_MD_SIZE]; unsigned int md_len; /* Add signing time if not already present */ if (!PKCS7_get_signed_attribute(si, NID_pkcs9_signingTime)) { if (!PKCS7_add0_attrib_signing_time(si, NULL)) { PKCS7err(PKCS7_F_DO_PKCS7_SIGNED_ATTRIB, ERR_R_MALLOC_FAILURE); return 0; } } /* Add digest */ if (!EVP_DigestFinal_ex(mctx, md_data, &md_len)) { PKCS7err(PKCS7_F_DO_PKCS7_SIGNED_ATTRIB, ERR_R_EVP_LIB); return 0; } if (!PKCS7_add1_attrib_digest(si, md_data, md_len)) { PKCS7err(PKCS7_F_DO_PKCS7_SIGNED_ATTRIB, ERR_R_MALLOC_FAILURE); return 0; } /* Now sign the attributes */ if (!PKCS7_SIGNER_INFO_sign(si)) return 0; return 1; } int PKCS7_dataFinal(PKCS7 *p7, BIO *bio) { int ret = 0; int i, j; BIO *btmp; PKCS7_SIGNER_INFO *si; EVP_MD_CTX *mdc, *ctx_tmp; STACK_OF(X509_ATTRIBUTE) *sk; STACK_OF(PKCS7_SIGNER_INFO) *si_sk = NULL; ASN1_OCTET_STRING *os = NULL; if (p7 == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAFINAL, PKCS7_R_INVALID_NULL_POINTER); return 0; } if (p7->d.ptr == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAFINAL, PKCS7_R_NO_CONTENT); return 0; } ctx_tmp = EVP_MD_CTX_new(); if (ctx_tmp == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAFINAL, ERR_R_MALLOC_FAILURE); return 0; } i = OBJ_obj2nid(p7->type); p7->state = PKCS7_S_HEADER; switch (i) { case NID_pkcs7_data: os = p7->d.data; break; case NID_pkcs7_signedAndEnveloped: /* XXXXXXXXXXXXXXXX */ si_sk = p7->d.signed_and_enveloped->signer_info; os = p7->d.signed_and_enveloped->enc_data->enc_data; if (os == NULL) { os = ASN1_OCTET_STRING_new(); if (os == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAFINAL, ERR_R_MALLOC_FAILURE); goto err; } p7->d.signed_and_enveloped->enc_data->enc_data = os; } break; case NID_pkcs7_enveloped: /* XXXXXXXXXXXXXXXX */ os = p7->d.enveloped->enc_data->enc_data; if (os == NULL) { os = ASN1_OCTET_STRING_new(); if (os == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAFINAL, ERR_R_MALLOC_FAILURE); goto err; } p7->d.enveloped->enc_data->enc_data = os; } break; case NID_pkcs7_signed: si_sk = p7->d.sign->signer_info; os = PKCS7_get_octet_string(p7->d.sign->contents); /* If detached data then the content is excluded */ if (PKCS7_type_is_data(p7->d.sign->contents) && p7->detached) { ASN1_OCTET_STRING_free(os); os = NULL; p7->d.sign->contents->d.data = NULL; } break; case NID_pkcs7_digest: os = PKCS7_get_octet_string(p7->d.digest->contents); /* If detached data then the content is excluded */ if (PKCS7_type_is_data(p7->d.digest->contents) && p7->detached) { ASN1_OCTET_STRING_free(os); os = NULL; p7->d.digest->contents->d.data = NULL; } break; default: PKCS7err(PKCS7_F_PKCS7_DATAFINAL, PKCS7_R_UNSUPPORTED_CONTENT_TYPE); goto err; } if (si_sk != NULL) { for (i = 0; i < sk_PKCS7_SIGNER_INFO_num(si_sk); i++) { si = sk_PKCS7_SIGNER_INFO_value(si_sk, i); if (si->pkey == NULL) continue; j = OBJ_obj2nid(si->digest_alg->algorithm); btmp = bio; btmp = PKCS7_find_digest(&mdc, btmp, j); if (btmp == NULL) goto err; /* * We now have the EVP_MD_CTX, lets do the signing. */ if (!EVP_MD_CTX_copy_ex(ctx_tmp, mdc)) goto err; sk = si->auth_attr; /* * If there are attributes, we add the digest attribute and only * sign the attributes */ if (sk_X509_ATTRIBUTE_num(sk) > 0) { if (!do_pkcs7_signed_attrib(si, ctx_tmp)) goto err; } else { unsigned char *abuf = NULL; unsigned int abuflen; abuflen = EVP_PKEY_size(si->pkey); abuf = OPENSSL_malloc(abuflen); if (abuf == NULL) goto err; if (!EVP_SignFinal(ctx_tmp, abuf, &abuflen, si->pkey)) { OPENSSL_free(abuf); PKCS7err(PKCS7_F_PKCS7_DATAFINAL, ERR_R_EVP_LIB); goto err; } ASN1_STRING_set0(si->enc_digest, abuf, abuflen); } } } else if (i == NID_pkcs7_digest) { unsigned char md_data[EVP_MAX_MD_SIZE]; unsigned int md_len; if (!PKCS7_find_digest(&mdc, bio, OBJ_obj2nid(p7->d.digest->md->algorithm))) goto err; if (!EVP_DigestFinal_ex(mdc, md_data, &md_len)) goto err; if (!ASN1_OCTET_STRING_set(p7->d.digest->digest, md_data, md_len)) goto err; } if (!PKCS7_is_detached(p7)) { /* * NOTE(emilia): I think we only reach os == NULL here because detached * digested data support is broken. */ if (os == NULL) goto err; if (!(os->flags & ASN1_STRING_FLAG_NDEF)) { char *cont; long contlen; btmp = BIO_find_type(bio, BIO_TYPE_MEM); if (btmp == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAFINAL, PKCS7_R_UNABLE_TO_FIND_MEM_BIO); goto err; } contlen = BIO_get_mem_data(btmp, &cont); /* * Mark the BIO read only then we can use its copy of the data * instead of making an extra copy. */ BIO_set_flags(btmp, BIO_FLAGS_MEM_RDONLY); BIO_set_mem_eof_return(btmp, 0); ASN1_STRING_set0(os, (unsigned char *)cont, contlen); } } ret = 1; err: EVP_MD_CTX_free(ctx_tmp); return ret; } int PKCS7_SIGNER_INFO_sign(PKCS7_SIGNER_INFO *si) { EVP_MD_CTX *mctx; EVP_PKEY_CTX *pctx = NULL; unsigned char *abuf = NULL; int alen; size_t siglen; const EVP_MD *md = NULL; md = EVP_get_digestbyobj(si->digest_alg->algorithm); if (md == NULL) return 0; mctx = EVP_MD_CTX_new(); if (mctx == NULL) { PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SIGN, ERR_R_MALLOC_FAILURE); goto err; } if (EVP_DigestSignInit(mctx, &pctx, md, NULL, si->pkey) <= 0) goto err; if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN, EVP_PKEY_CTRL_PKCS7_SIGN, 0, si) <= 0) { PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SIGN, PKCS7_R_CTRL_ERROR); goto err; } alen = ASN1_item_i2d((ASN1_VALUE *)si->auth_attr, &abuf, ASN1_ITEM_rptr(PKCS7_ATTR_SIGN)); if (!abuf) goto err; if (EVP_DigestSignUpdate(mctx, abuf, alen) <= 0) goto err; OPENSSL_free(abuf); abuf = NULL; if (EVP_DigestSignFinal(mctx, NULL, &siglen) <= 0) goto err; abuf = OPENSSL_malloc(siglen); if (abuf == NULL) goto err; if (EVP_DigestSignFinal(mctx, abuf, &siglen) <= 0) goto err; if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN, EVP_PKEY_CTRL_PKCS7_SIGN, 1, si) <= 0) { PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SIGN, PKCS7_R_CTRL_ERROR); goto err; } EVP_MD_CTX_free(mctx); ASN1_STRING_set0(si->enc_digest, abuf, siglen); return 1; err: OPENSSL_free(abuf); EVP_MD_CTX_free(mctx); return 0; } int PKCS7_dataVerify(X509_STORE *cert_store, X509_STORE_CTX *ctx, BIO *bio, PKCS7 *p7, PKCS7_SIGNER_INFO *si) { PKCS7_ISSUER_AND_SERIAL *ias; int ret = 0, i; STACK_OF(X509) *cert; X509 *x509; if (p7 == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAVERIFY, PKCS7_R_INVALID_NULL_POINTER); return 0; } if (p7->d.ptr == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAVERIFY, PKCS7_R_NO_CONTENT); return 0; } if (PKCS7_type_is_signed(p7)) { cert = p7->d.sign->cert; } else if (PKCS7_type_is_signedAndEnveloped(p7)) { cert = p7->d.signed_and_enveloped->cert; } else { PKCS7err(PKCS7_F_PKCS7_DATAVERIFY, PKCS7_R_WRONG_PKCS7_TYPE); goto err; } /* XXXXXXXXXXXXXXXXXXXXXXX */ ias = si->issuer_and_serial; x509 = X509_find_by_issuer_and_serial(cert, ias->issuer, ias->serial); /* were we able to find the cert in passed to us */ if (x509 == NULL) { PKCS7err(PKCS7_F_PKCS7_DATAVERIFY, PKCS7_R_UNABLE_TO_FIND_CERTIFICATE); goto err; } /* Lets verify */ if (!X509_STORE_CTX_init(ctx, cert_store, x509, cert)) { PKCS7err(PKCS7_F_PKCS7_DATAVERIFY, ERR_R_X509_LIB); goto err; } X509_STORE_CTX_set_purpose(ctx, X509_PURPOSE_SMIME_SIGN); i = X509_verify_cert(ctx); if (i <= 0) { PKCS7err(PKCS7_F_PKCS7_DATAVERIFY, ERR_R_X509_LIB); X509_STORE_CTX_cleanup(ctx); goto err; } X509_STORE_CTX_cleanup(ctx); return PKCS7_signatureVerify(bio, p7, si, x509); err: return ret; } int PKCS7_signatureVerify(BIO *bio, PKCS7 *p7, PKCS7_SIGNER_INFO *si, X509 *x509) { ASN1_OCTET_STRING *os; EVP_MD_CTX *mdc_tmp, *mdc; int ret = 0, i; int md_type; STACK_OF(X509_ATTRIBUTE) *sk; BIO *btmp; EVP_PKEY *pkey; mdc_tmp = EVP_MD_CTX_new(); if (mdc_tmp == NULL) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, ERR_R_MALLOC_FAILURE); goto err; } if (!PKCS7_type_is_signed(p7) && !PKCS7_type_is_signedAndEnveloped(p7)) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, PKCS7_R_WRONG_PKCS7_TYPE); goto err; } md_type = OBJ_obj2nid(si->digest_alg->algorithm); btmp = bio; for (;;) { if ((btmp == NULL) || ((btmp = BIO_find_type(btmp, BIO_TYPE_MD)) == NULL)) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST); goto err; } BIO_get_md_ctx(btmp, &mdc); if (mdc == NULL) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, ERR_R_INTERNAL_ERROR); goto err; } if (EVP_MD_CTX_type(mdc) == md_type) break; /* * Workaround for some broken clients that put the signature OID * instead of the digest OID in digest_alg->algorithm */ if (EVP_MD_pkey_type(EVP_MD_CTX_md(mdc)) == md_type) break; btmp = BIO_next(btmp); } /* * mdc is the digest ctx that we want, unless there are attributes, in * which case the digest is the signed attributes */ if (!EVP_MD_CTX_copy_ex(mdc_tmp, mdc)) goto err; sk = si->auth_attr; if ((sk != NULL) && (sk_X509_ATTRIBUTE_num(sk) != 0)) { unsigned char md_dat[EVP_MAX_MD_SIZE], *abuf = NULL; unsigned int md_len; int alen; ASN1_OCTET_STRING *message_digest; if (!EVP_DigestFinal_ex(mdc_tmp, md_dat, &md_len)) goto err; message_digest = PKCS7_digest_from_attributes(sk); if (!message_digest) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST); goto err; } if ((message_digest->length != (int)md_len) || (memcmp(message_digest->data, md_dat, md_len))) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, PKCS7_R_DIGEST_FAILURE); ret = -1; goto err; } if (!EVP_VerifyInit_ex(mdc_tmp, EVP_get_digestbynid(md_type), NULL)) goto err; alen = ASN1_item_i2d((ASN1_VALUE *)sk, &abuf, ASN1_ITEM_rptr(PKCS7_ATTR_VERIFY)); if (alen <= 0) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, ERR_R_ASN1_LIB); ret = -1; goto err; } if (!EVP_VerifyUpdate(mdc_tmp, abuf, alen)) goto err; OPENSSL_free(abuf); } os = si->enc_digest; pkey = X509_get0_pubkey(x509); if (!pkey) { ret = -1; goto err; } i = EVP_VerifyFinal(mdc_tmp, os->data, os->length, pkey); if (i <= 0) { PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY, PKCS7_R_SIGNATURE_FAILURE); ret = -1; goto err; } ret = 1; err: EVP_MD_CTX_free(mdc_tmp); return ret; } PKCS7_ISSUER_AND_SERIAL *PKCS7_get_issuer_and_serial(PKCS7 *p7, int idx) { STACK_OF(PKCS7_RECIP_INFO) *rsk; PKCS7_RECIP_INFO *ri; int i; i = OBJ_obj2nid(p7->type); if (i != NID_pkcs7_signedAndEnveloped) return NULL; if (p7->d.signed_and_enveloped == NULL) return NULL; rsk = p7->d.signed_and_enveloped->recipientinfo; if (rsk == NULL) return NULL; if (sk_PKCS7_RECIP_INFO_num(rsk) <= idx) return NULL; ri = sk_PKCS7_RECIP_INFO_value(rsk, idx); return ri->issuer_and_serial; } ASN1_TYPE *PKCS7_get_signed_attribute(PKCS7_SIGNER_INFO *si, int nid) { return get_attribute(si->auth_attr, nid); } ASN1_TYPE *PKCS7_get_attribute(PKCS7_SIGNER_INFO *si, int nid) { return get_attribute(si->unauth_attr, nid); } static ASN1_TYPE *get_attribute(STACK_OF(X509_ATTRIBUTE) *sk, int nid) { int idx; X509_ATTRIBUTE *xa; idx = X509at_get_attr_by_NID(sk, nid, -1); xa = X509at_get_attr(sk, idx); return X509_ATTRIBUTE_get0_type(xa, 0); } ASN1_OCTET_STRING *PKCS7_digest_from_attributes(STACK_OF(X509_ATTRIBUTE) *sk) { ASN1_TYPE *astype; if ((astype = get_attribute(sk, NID_pkcs9_messageDigest)) == NULL) return NULL; return astype->value.octet_string; } int PKCS7_set_signed_attributes(PKCS7_SIGNER_INFO *p7si, STACK_OF(X509_ATTRIBUTE) *sk) { int i; sk_X509_ATTRIBUTE_pop_free(p7si->auth_attr, X509_ATTRIBUTE_free); p7si->auth_attr = sk_X509_ATTRIBUTE_dup(sk); if (p7si->auth_attr == NULL) return 0; for (i = 0; i < sk_X509_ATTRIBUTE_num(sk); i++) { if ((sk_X509_ATTRIBUTE_set(p7si->auth_attr, i, X509_ATTRIBUTE_dup(sk_X509_ATTRIBUTE_value (sk, i)))) == NULL) return 0; } return 1; } int PKCS7_set_attributes(PKCS7_SIGNER_INFO *p7si, STACK_OF(X509_ATTRIBUTE) *sk) { int i; sk_X509_ATTRIBUTE_pop_free(p7si->unauth_attr, X509_ATTRIBUTE_free); p7si->unauth_attr = sk_X509_ATTRIBUTE_dup(sk); if (p7si->unauth_attr == NULL) return 0; for (i = 0; i < sk_X509_ATTRIBUTE_num(sk); i++) { if ((sk_X509_ATTRIBUTE_set(p7si->unauth_attr, i, X509_ATTRIBUTE_dup(sk_X509_ATTRIBUTE_value (sk, i)))) == NULL) return 0; } return 1; } int PKCS7_add_signed_attribute(PKCS7_SIGNER_INFO *p7si, int nid, int atrtype, void *value) { return add_attribute(&(p7si->auth_attr), nid, atrtype, value); } int PKCS7_add_attribute(PKCS7_SIGNER_INFO *p7si, int nid, int atrtype, void *value) { return add_attribute(&(p7si->unauth_attr), nid, atrtype, value); } static int add_attribute(STACK_OF(X509_ATTRIBUTE) **sk, int nid, int atrtype, void *value) { X509_ATTRIBUTE *attr = NULL; if (*sk == NULL) { if ((*sk = sk_X509_ATTRIBUTE_new_null()) == NULL) return 0; new_attrib: if ((attr = X509_ATTRIBUTE_create(nid, atrtype, value)) == NULL) return 0; if (!sk_X509_ATTRIBUTE_push(*sk, attr)) { X509_ATTRIBUTE_free(attr); return 0; } } else { int i; for (i = 0; i < sk_X509_ATTRIBUTE_num(*sk); i++) { attr = sk_X509_ATTRIBUTE_value(*sk, i); if (OBJ_obj2nid(X509_ATTRIBUTE_get0_object(attr)) == nid) { X509_ATTRIBUTE_free(attr); attr = X509_ATTRIBUTE_create(nid, atrtype, value); if (attr == NULL) return 0; if (!sk_X509_ATTRIBUTE_set(*sk, i, attr)) { X509_ATTRIBUTE_free(attr); return 0; } goto end; } } goto new_attrib; } end: return 1; } openssl-1.1.1f/crypto/pkcs7/pk7_lib.c000066400000000000000000000362131364063235100174150ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" #include "crypto/evp.h" long PKCS7_ctrl(PKCS7 *p7, int cmd, long larg, char *parg) { int nid; long ret; nid = OBJ_obj2nid(p7->type); switch (cmd) { /* NOTE(emilia): does not support detached digested data. */ case PKCS7_OP_SET_DETACHED_SIGNATURE: if (nid == NID_pkcs7_signed) { ret = p7->detached = (int)larg; if (ret && PKCS7_type_is_data(p7->d.sign->contents)) { ASN1_OCTET_STRING *os; os = p7->d.sign->contents->d.data; ASN1_OCTET_STRING_free(os); p7->d.sign->contents->d.data = NULL; } } else { PKCS7err(PKCS7_F_PKCS7_CTRL, PKCS7_R_OPERATION_NOT_SUPPORTED_ON_THIS_TYPE); ret = 0; } break; case PKCS7_OP_GET_DETACHED_SIGNATURE: if (nid == NID_pkcs7_signed) { if (!p7->d.sign || !p7->d.sign->contents->d.ptr) ret = 1; else ret = 0; p7->detached = ret; } else { PKCS7err(PKCS7_F_PKCS7_CTRL, PKCS7_R_OPERATION_NOT_SUPPORTED_ON_THIS_TYPE); ret = 0; } break; default: PKCS7err(PKCS7_F_PKCS7_CTRL, PKCS7_R_UNKNOWN_OPERATION); ret = 0; } return ret; } int PKCS7_content_new(PKCS7 *p7, int type) { PKCS7 *ret = NULL; if ((ret = PKCS7_new()) == NULL) goto err; if (!PKCS7_set_type(ret, type)) goto err; if (!PKCS7_set_content(p7, ret)) goto err; return 1; err: PKCS7_free(ret); return 0; } int PKCS7_set_content(PKCS7 *p7, PKCS7 *p7_data) { int i; i = OBJ_obj2nid(p7->type); switch (i) { case NID_pkcs7_signed: PKCS7_free(p7->d.sign->contents); p7->d.sign->contents = p7_data; break; case NID_pkcs7_digest: PKCS7_free(p7->d.digest->contents); p7->d.digest->contents = p7_data; break; case NID_pkcs7_data: case NID_pkcs7_enveloped: case NID_pkcs7_signedAndEnveloped: case NID_pkcs7_encrypted: default: PKCS7err(PKCS7_F_PKCS7_SET_CONTENT, PKCS7_R_UNSUPPORTED_CONTENT_TYPE); goto err; } return 1; err: return 0; } int PKCS7_set_type(PKCS7 *p7, int type) { ASN1_OBJECT *obj; /* * PKCS7_content_free(p7); */ obj = OBJ_nid2obj(type); /* will not fail */ switch (type) { case NID_pkcs7_signed: p7->type = obj; if ((p7->d.sign = PKCS7_SIGNED_new()) == NULL) goto err; if (!ASN1_INTEGER_set(p7->d.sign->version, 1)) { PKCS7_SIGNED_free(p7->d.sign); p7->d.sign = NULL; goto err; } break; case NID_pkcs7_data: p7->type = obj; if ((p7->d.data = ASN1_OCTET_STRING_new()) == NULL) goto err; break; case NID_pkcs7_signedAndEnveloped: p7->type = obj; if ((p7->d.signed_and_enveloped = PKCS7_SIGN_ENVELOPE_new()) == NULL) goto err; if (!ASN1_INTEGER_set(p7->d.signed_and_enveloped->version, 1)) goto err; p7->d.signed_and_enveloped->enc_data->content_type = OBJ_nid2obj(NID_pkcs7_data); break; case NID_pkcs7_enveloped: p7->type = obj; if ((p7->d.enveloped = PKCS7_ENVELOPE_new()) == NULL) goto err; if (!ASN1_INTEGER_set(p7->d.enveloped->version, 0)) goto err; p7->d.enveloped->enc_data->content_type = OBJ_nid2obj(NID_pkcs7_data); break; case NID_pkcs7_encrypted: p7->type = obj; if ((p7->d.encrypted = PKCS7_ENCRYPT_new()) == NULL) goto err; if (!ASN1_INTEGER_set(p7->d.encrypted->version, 0)) goto err; p7->d.encrypted->enc_data->content_type = OBJ_nid2obj(NID_pkcs7_data); break; case NID_pkcs7_digest: p7->type = obj; if ((p7->d.digest = PKCS7_DIGEST_new()) == NULL) goto err; if (!ASN1_INTEGER_set(p7->d.digest->version, 0)) goto err; break; default: PKCS7err(PKCS7_F_PKCS7_SET_TYPE, PKCS7_R_UNSUPPORTED_CONTENT_TYPE); goto err; } return 1; err: return 0; } int PKCS7_set0_type_other(PKCS7 *p7, int type, ASN1_TYPE *other) { p7->type = OBJ_nid2obj(type); p7->d.other = other; return 1; } int PKCS7_add_signer(PKCS7 *p7, PKCS7_SIGNER_INFO *psi) { int i, j, nid; X509_ALGOR *alg; STACK_OF(PKCS7_SIGNER_INFO) *signer_sk; STACK_OF(X509_ALGOR) *md_sk; i = OBJ_obj2nid(p7->type); switch (i) { case NID_pkcs7_signed: signer_sk = p7->d.sign->signer_info; md_sk = p7->d.sign->md_algs; break; case NID_pkcs7_signedAndEnveloped: signer_sk = p7->d.signed_and_enveloped->signer_info; md_sk = p7->d.signed_and_enveloped->md_algs; break; default: PKCS7err(PKCS7_F_PKCS7_ADD_SIGNER, PKCS7_R_WRONG_CONTENT_TYPE); return 0; } nid = OBJ_obj2nid(psi->digest_alg->algorithm); /* If the digest is not currently listed, add it */ j = 0; for (i = 0; i < sk_X509_ALGOR_num(md_sk); i++) { alg = sk_X509_ALGOR_value(md_sk, i); if (OBJ_obj2nid(alg->algorithm) == nid) { j = 1; break; } } if (!j) { /* we need to add another algorithm */ if ((alg = X509_ALGOR_new()) == NULL || (alg->parameter = ASN1_TYPE_new()) == NULL) { X509_ALGOR_free(alg); PKCS7err(PKCS7_F_PKCS7_ADD_SIGNER, ERR_R_MALLOC_FAILURE); return 0; } alg->algorithm = OBJ_nid2obj(nid); alg->parameter->type = V_ASN1_NULL; if (!sk_X509_ALGOR_push(md_sk, alg)) { X509_ALGOR_free(alg); return 0; } } if (!sk_PKCS7_SIGNER_INFO_push(signer_sk, psi)) return 0; return 1; } int PKCS7_add_certificate(PKCS7 *p7, X509 *x509) { int i; STACK_OF(X509) **sk; i = OBJ_obj2nid(p7->type); switch (i) { case NID_pkcs7_signed: sk = &(p7->d.sign->cert); break; case NID_pkcs7_signedAndEnveloped: sk = &(p7->d.signed_and_enveloped->cert); break; default: PKCS7err(PKCS7_F_PKCS7_ADD_CERTIFICATE, PKCS7_R_WRONG_CONTENT_TYPE); return 0; } if (*sk == NULL) *sk = sk_X509_new_null(); if (*sk == NULL) { PKCS7err(PKCS7_F_PKCS7_ADD_CERTIFICATE, ERR_R_MALLOC_FAILURE); return 0; } X509_up_ref(x509); if (!sk_X509_push(*sk, x509)) { X509_free(x509); return 0; } return 1; } int PKCS7_add_crl(PKCS7 *p7, X509_CRL *crl) { int i; STACK_OF(X509_CRL) **sk; i = OBJ_obj2nid(p7->type); switch (i) { case NID_pkcs7_signed: sk = &(p7->d.sign->crl); break; case NID_pkcs7_signedAndEnveloped: sk = &(p7->d.signed_and_enveloped->crl); break; default: PKCS7err(PKCS7_F_PKCS7_ADD_CRL, PKCS7_R_WRONG_CONTENT_TYPE); return 0; } if (*sk == NULL) *sk = sk_X509_CRL_new_null(); if (*sk == NULL) { PKCS7err(PKCS7_F_PKCS7_ADD_CRL, ERR_R_MALLOC_FAILURE); return 0; } X509_CRL_up_ref(crl); if (!sk_X509_CRL_push(*sk, crl)) { X509_CRL_free(crl); return 0; } return 1; } int PKCS7_SIGNER_INFO_set(PKCS7_SIGNER_INFO *p7i, X509 *x509, EVP_PKEY *pkey, const EVP_MD *dgst) { int ret; /* We now need to add another PKCS7_SIGNER_INFO entry */ if (!ASN1_INTEGER_set(p7i->version, 1)) goto err; if (!X509_NAME_set(&p7i->issuer_and_serial->issuer, X509_get_issuer_name(x509))) goto err; /* * because ASN1_INTEGER_set is used to set a 'long' we will do things the * ugly way. */ ASN1_INTEGER_free(p7i->issuer_and_serial->serial); if (!(p7i->issuer_and_serial->serial = ASN1_INTEGER_dup(X509_get_serialNumber(x509)))) goto err; /* lets keep the pkey around for a while */ EVP_PKEY_up_ref(pkey); p7i->pkey = pkey; /* Set the algorithms */ X509_ALGOR_set0(p7i->digest_alg, OBJ_nid2obj(EVP_MD_type(dgst)), V_ASN1_NULL, NULL); if (pkey->ameth && pkey->ameth->pkey_ctrl) { ret = pkey->ameth->pkey_ctrl(pkey, ASN1_PKEY_CTRL_PKCS7_SIGN, 0, p7i); if (ret > 0) return 1; if (ret != -2) { PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SET, PKCS7_R_SIGNING_CTRL_FAILURE); return 0; } } PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SET, PKCS7_R_SIGNING_NOT_SUPPORTED_FOR_THIS_KEY_TYPE); err: return 0; } PKCS7_SIGNER_INFO *PKCS7_add_signature(PKCS7 *p7, X509 *x509, EVP_PKEY *pkey, const EVP_MD *dgst) { PKCS7_SIGNER_INFO *si = NULL; if (dgst == NULL) { int def_nid; if (EVP_PKEY_get_default_digest_nid(pkey, &def_nid) <= 0) goto err; dgst = EVP_get_digestbynid(def_nid); if (dgst == NULL) { PKCS7err(PKCS7_F_PKCS7_ADD_SIGNATURE, PKCS7_R_NO_DEFAULT_DIGEST); goto err; } } if ((si = PKCS7_SIGNER_INFO_new()) == NULL) goto err; if (!PKCS7_SIGNER_INFO_set(si, x509, pkey, dgst)) goto err; if (!PKCS7_add_signer(p7, si)) goto err; return si; err: PKCS7_SIGNER_INFO_free(si); return NULL; } int PKCS7_set_digest(PKCS7 *p7, const EVP_MD *md) { if (PKCS7_type_is_digest(p7)) { if ((p7->d.digest->md->parameter = ASN1_TYPE_new()) == NULL) { PKCS7err(PKCS7_F_PKCS7_SET_DIGEST, ERR_R_MALLOC_FAILURE); return 0; } p7->d.digest->md->parameter->type = V_ASN1_NULL; p7->d.digest->md->algorithm = OBJ_nid2obj(EVP_MD_nid(md)); return 1; } PKCS7err(PKCS7_F_PKCS7_SET_DIGEST, PKCS7_R_WRONG_CONTENT_TYPE); return 1; } STACK_OF(PKCS7_SIGNER_INFO) *PKCS7_get_signer_info(PKCS7 *p7) { if (p7 == NULL || p7->d.ptr == NULL) return NULL; if (PKCS7_type_is_signed(p7)) { return p7->d.sign->signer_info; } else if (PKCS7_type_is_signedAndEnveloped(p7)) { return p7->d.signed_and_enveloped->signer_info; } else return NULL; } void PKCS7_SIGNER_INFO_get0_algs(PKCS7_SIGNER_INFO *si, EVP_PKEY **pk, X509_ALGOR **pdig, X509_ALGOR **psig) { if (pk) *pk = si->pkey; if (pdig) *pdig = si->digest_alg; if (psig) *psig = si->digest_enc_alg; } void PKCS7_RECIP_INFO_get0_alg(PKCS7_RECIP_INFO *ri, X509_ALGOR **penc) { if (penc) *penc = ri->key_enc_algor; } PKCS7_RECIP_INFO *PKCS7_add_recipient(PKCS7 *p7, X509 *x509) { PKCS7_RECIP_INFO *ri; if ((ri = PKCS7_RECIP_INFO_new()) == NULL) goto err; if (!PKCS7_RECIP_INFO_set(ri, x509)) goto err; if (!PKCS7_add_recipient_info(p7, ri)) goto err; return ri; err: PKCS7_RECIP_INFO_free(ri); return NULL; } int PKCS7_add_recipient_info(PKCS7 *p7, PKCS7_RECIP_INFO *ri) { int i; STACK_OF(PKCS7_RECIP_INFO) *sk; i = OBJ_obj2nid(p7->type); switch (i) { case NID_pkcs7_signedAndEnveloped: sk = p7->d.signed_and_enveloped->recipientinfo; break; case NID_pkcs7_enveloped: sk = p7->d.enveloped->recipientinfo; break; default: PKCS7err(PKCS7_F_PKCS7_ADD_RECIPIENT_INFO, PKCS7_R_WRONG_CONTENT_TYPE); return 0; } if (!sk_PKCS7_RECIP_INFO_push(sk, ri)) return 0; return 1; } int PKCS7_RECIP_INFO_set(PKCS7_RECIP_INFO *p7i, X509 *x509) { int ret; EVP_PKEY *pkey = NULL; if (!ASN1_INTEGER_set(p7i->version, 0)) return 0; if (!X509_NAME_set(&p7i->issuer_and_serial->issuer, X509_get_issuer_name(x509))) return 0; ASN1_INTEGER_free(p7i->issuer_and_serial->serial); if (!(p7i->issuer_and_serial->serial = ASN1_INTEGER_dup(X509_get_serialNumber(x509)))) return 0; pkey = X509_get0_pubkey(x509); if (!pkey || !pkey->ameth || !pkey->ameth->pkey_ctrl) { PKCS7err(PKCS7_F_PKCS7_RECIP_INFO_SET, PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE); goto err; } ret = pkey->ameth->pkey_ctrl(pkey, ASN1_PKEY_CTRL_PKCS7_ENCRYPT, 0, p7i); if (ret == -2) { PKCS7err(PKCS7_F_PKCS7_RECIP_INFO_SET, PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE); goto err; } if (ret <= 0) { PKCS7err(PKCS7_F_PKCS7_RECIP_INFO_SET, PKCS7_R_ENCRYPTION_CTRL_FAILURE); goto err; } X509_up_ref(x509); p7i->cert = x509; return 1; err: return 0; } X509 *PKCS7_cert_from_signer_info(PKCS7 *p7, PKCS7_SIGNER_INFO *si) { if (PKCS7_type_is_signed(p7)) return (X509_find_by_issuer_and_serial(p7->d.sign->cert, si->issuer_and_serial->issuer, si-> issuer_and_serial->serial)); else return NULL; } int PKCS7_set_cipher(PKCS7 *p7, const EVP_CIPHER *cipher) { int i; PKCS7_ENC_CONTENT *ec; i = OBJ_obj2nid(p7->type); switch (i) { case NID_pkcs7_signedAndEnveloped: ec = p7->d.signed_and_enveloped->enc_data; break; case NID_pkcs7_enveloped: ec = p7->d.enveloped->enc_data; break; default: PKCS7err(PKCS7_F_PKCS7_SET_CIPHER, PKCS7_R_WRONG_CONTENT_TYPE); return 0; } /* Check cipher OID exists and has data in it */ i = EVP_CIPHER_type(cipher); if (i == NID_undef) { PKCS7err(PKCS7_F_PKCS7_SET_CIPHER, PKCS7_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); return 0; } ec->cipher = cipher; return 1; } int PKCS7_stream(unsigned char ***boundary, PKCS7 *p7) { ASN1_OCTET_STRING *os = NULL; switch (OBJ_obj2nid(p7->type)) { case NID_pkcs7_data: os = p7->d.data; break; case NID_pkcs7_signedAndEnveloped: os = p7->d.signed_and_enveloped->enc_data->enc_data; if (os == NULL) { os = ASN1_OCTET_STRING_new(); p7->d.signed_and_enveloped->enc_data->enc_data = os; } break; case NID_pkcs7_enveloped: os = p7->d.enveloped->enc_data->enc_data; if (os == NULL) { os = ASN1_OCTET_STRING_new(); p7->d.enveloped->enc_data->enc_data = os; } break; case NID_pkcs7_signed: os = p7->d.sign->contents->d.data; break; default: os = NULL; break; } if (os == NULL) return 0; os->flags |= ASN1_STRING_FLAG_NDEF; *boundary = &os->data; return 1; } openssl-1.1.1f/crypto/pkcs7/pk7_mime.c000066400000000000000000000027271364063235100176010ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include /* PKCS#7 wrappers round generalised stream and MIME routines */ int i2d_PKCS7_bio_stream(BIO *out, PKCS7 *p7, BIO *in, int flags) { return i2d_ASN1_bio_stream(out, (ASN1_VALUE *)p7, in, flags, ASN1_ITEM_rptr(PKCS7)); } int PEM_write_bio_PKCS7_stream(BIO *out, PKCS7 *p7, BIO *in, int flags) { return PEM_write_bio_ASN1_stream(out, (ASN1_VALUE *)p7, in, flags, "PKCS7", ASN1_ITEM_rptr(PKCS7)); } int SMIME_write_PKCS7(BIO *bio, PKCS7 *p7, BIO *data, int flags) { STACK_OF(X509_ALGOR) *mdalgs; int ctype_nid = OBJ_obj2nid(p7->type); if (ctype_nid == NID_pkcs7_signed) mdalgs = p7->d.sign->md_algs; else mdalgs = NULL; flags ^= SMIME_OLDMIME; return SMIME_write_ASN1(bio, (ASN1_VALUE *)p7, data, flags, ctype_nid, NID_undef, mdalgs, ASN1_ITEM_rptr(PKCS7)); } PKCS7 *SMIME_read_PKCS7(BIO *bio, BIO **bcont) { return (PKCS7 *)SMIME_read_ASN1(bio, bcont, ASN1_ITEM_rptr(PKCS7)); } openssl-1.1.1f/crypto/pkcs7/pk7_smime.c000066400000000000000000000377241364063235100177710ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple PKCS#7 processing functions */ #include #include "internal/cryptlib.h" #include #include #define BUFFERSIZE 4096 static int pkcs7_copy_existing_digest(PKCS7 *p7, PKCS7_SIGNER_INFO *si); PKCS7 *PKCS7_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs, BIO *data, int flags) { PKCS7 *p7; int i; if ((p7 = PKCS7_new()) == NULL) { PKCS7err(PKCS7_F_PKCS7_SIGN, ERR_R_MALLOC_FAILURE); return NULL; } if (!PKCS7_set_type(p7, NID_pkcs7_signed)) goto err; if (!PKCS7_content_new(p7, NID_pkcs7_data)) goto err; if (pkey && !PKCS7_sign_add_signer(p7, signcert, pkey, NULL, flags)) { PKCS7err(PKCS7_F_PKCS7_SIGN, PKCS7_R_PKCS7_ADD_SIGNER_ERROR); goto err; } if (!(flags & PKCS7_NOCERTS)) { for (i = 0; i < sk_X509_num(certs); i++) { if (!PKCS7_add_certificate(p7, sk_X509_value(certs, i))) goto err; } } if (flags & PKCS7_DETACHED) PKCS7_set_detached(p7, 1); if (flags & (PKCS7_STREAM | PKCS7_PARTIAL)) return p7; if (PKCS7_final(p7, data, flags)) return p7; err: PKCS7_free(p7); return NULL; } int PKCS7_final(PKCS7 *p7, BIO *data, int flags) { BIO *p7bio; int ret = 0; if ((p7bio = PKCS7_dataInit(p7, NULL)) == NULL) { PKCS7err(PKCS7_F_PKCS7_FINAL, ERR_R_MALLOC_FAILURE); return 0; } SMIME_crlf_copy(data, p7bio, flags); (void)BIO_flush(p7bio); if (!PKCS7_dataFinal(p7, p7bio)) { PKCS7err(PKCS7_F_PKCS7_FINAL, PKCS7_R_PKCS7_DATASIGN); goto err; } ret = 1; err: BIO_free_all(p7bio); return ret; } /* Check to see if a cipher exists and if so add S/MIME capabilities */ static int add_cipher_smcap(STACK_OF(X509_ALGOR) *sk, int nid, int arg) { if (EVP_get_cipherbynid(nid)) return PKCS7_simple_smimecap(sk, nid, arg); return 1; } static int add_digest_smcap(STACK_OF(X509_ALGOR) *sk, int nid, int arg) { if (EVP_get_digestbynid(nid)) return PKCS7_simple_smimecap(sk, nid, arg); return 1; } PKCS7_SIGNER_INFO *PKCS7_sign_add_signer(PKCS7 *p7, X509 *signcert, EVP_PKEY *pkey, const EVP_MD *md, int flags) { PKCS7_SIGNER_INFO *si = NULL; STACK_OF(X509_ALGOR) *smcap = NULL; if (!X509_check_private_key(signcert, pkey)) { PKCS7err(PKCS7_F_PKCS7_SIGN_ADD_SIGNER, PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE); return NULL; } if ((si = PKCS7_add_signature(p7, signcert, pkey, md)) == NULL) { PKCS7err(PKCS7_F_PKCS7_SIGN_ADD_SIGNER, PKCS7_R_PKCS7_ADD_SIGNATURE_ERROR); return NULL; } if (!(flags & PKCS7_NOCERTS)) { if (!PKCS7_add_certificate(p7, signcert)) goto err; } if (!(flags & PKCS7_NOATTR)) { if (!PKCS7_add_attrib_content_type(si, NULL)) goto err; /* Add SMIMECapabilities */ if (!(flags & PKCS7_NOSMIMECAP)) { if ((smcap = sk_X509_ALGOR_new_null()) == NULL) { PKCS7err(PKCS7_F_PKCS7_SIGN_ADD_SIGNER, ERR_R_MALLOC_FAILURE); goto err; } if (!add_cipher_smcap(smcap, NID_aes_256_cbc, -1) || !add_digest_smcap(smcap, NID_id_GostR3411_2012_256, -1) || !add_digest_smcap(smcap, NID_id_GostR3411_2012_512, -1) || !add_digest_smcap(smcap, NID_id_GostR3411_94, -1) || !add_cipher_smcap(smcap, NID_id_Gost28147_89, -1) || !add_cipher_smcap(smcap, NID_aes_192_cbc, -1) || !add_cipher_smcap(smcap, NID_aes_128_cbc, -1) || !add_cipher_smcap(smcap, NID_des_ede3_cbc, -1) || !add_cipher_smcap(smcap, NID_rc2_cbc, 128) || !add_cipher_smcap(smcap, NID_rc2_cbc, 64) || !add_cipher_smcap(smcap, NID_des_cbc, -1) || !add_cipher_smcap(smcap, NID_rc2_cbc, 40) || !PKCS7_add_attrib_smimecap(si, smcap)) goto err; sk_X509_ALGOR_pop_free(smcap, X509_ALGOR_free); smcap = NULL; } if (flags & PKCS7_REUSE_DIGEST) { if (!pkcs7_copy_existing_digest(p7, si)) goto err; if (!(flags & PKCS7_PARTIAL) && !PKCS7_SIGNER_INFO_sign(si)) goto err; } } return si; err: sk_X509_ALGOR_pop_free(smcap, X509_ALGOR_free); return NULL; } /* * Search for a digest matching SignerInfo digest type and if found copy * across. */ static int pkcs7_copy_existing_digest(PKCS7 *p7, PKCS7_SIGNER_INFO *si) { int i; STACK_OF(PKCS7_SIGNER_INFO) *sinfos; PKCS7_SIGNER_INFO *sitmp; ASN1_OCTET_STRING *osdig = NULL; sinfos = PKCS7_get_signer_info(p7); for (i = 0; i < sk_PKCS7_SIGNER_INFO_num(sinfos); i++) { sitmp = sk_PKCS7_SIGNER_INFO_value(sinfos, i); if (si == sitmp) break; if (sk_X509_ATTRIBUTE_num(sitmp->auth_attr) <= 0) continue; if (!OBJ_cmp(si->digest_alg->algorithm, sitmp->digest_alg->algorithm)) { osdig = PKCS7_digest_from_attributes(sitmp->auth_attr); break; } } if (osdig) return PKCS7_add1_attrib_digest(si, osdig->data, osdig->length); PKCS7err(PKCS7_F_PKCS7_COPY_EXISTING_DIGEST, PKCS7_R_NO_MATCHING_DIGEST_TYPE_FOUND); return 0; } int PKCS7_verify(PKCS7 *p7, STACK_OF(X509) *certs, X509_STORE *store, BIO *indata, BIO *out, int flags) { STACK_OF(X509) *signers; X509 *signer; STACK_OF(PKCS7_SIGNER_INFO) *sinfos; PKCS7_SIGNER_INFO *si; X509_STORE_CTX *cert_ctx = NULL; char *buf = NULL; int i, j = 0, k, ret = 0; BIO *p7bio = NULL; BIO *tmpin = NULL, *tmpout = NULL; if (!p7) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_INVALID_NULL_POINTER); return 0; } if (!PKCS7_type_is_signed(p7)) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_WRONG_CONTENT_TYPE); return 0; } /* Check for no data and no content: no data to verify signature */ if (PKCS7_get_detached(p7) && !indata) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_NO_CONTENT); return 0; } if (flags & PKCS7_NO_DUAL_CONTENT) { /* * This was originally "#if 0" because we thought that only old broken * Netscape did this. It turns out that Authenticode uses this kind * of "extended" PKCS7 format, and things like UEFI secure boot and * tools like osslsigncode need it. In Authenticode the verification * process is different, but the existing PKCs7 verification works. */ if (!PKCS7_get_detached(p7) && indata) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_CONTENT_AND_DATA_PRESENT); return 0; } } sinfos = PKCS7_get_signer_info(p7); if (!sinfos || !sk_PKCS7_SIGNER_INFO_num(sinfos)) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_NO_SIGNATURES_ON_DATA); return 0; } signers = PKCS7_get0_signers(p7, certs, flags); if (!signers) return 0; /* Now verify the certificates */ cert_ctx = X509_STORE_CTX_new(); if (cert_ctx == NULL) goto err; if (!(flags & PKCS7_NOVERIFY)) for (k = 0; k < sk_X509_num(signers); k++) { signer = sk_X509_value(signers, k); if (!(flags & PKCS7_NOCHAIN)) { if (!X509_STORE_CTX_init(cert_ctx, store, signer, p7->d.sign->cert)) { PKCS7err(PKCS7_F_PKCS7_VERIFY, ERR_R_X509_LIB); goto err; } X509_STORE_CTX_set_default(cert_ctx, "smime_sign"); } else if (!X509_STORE_CTX_init(cert_ctx, store, signer, NULL)) { PKCS7err(PKCS7_F_PKCS7_VERIFY, ERR_R_X509_LIB); goto err; } if (!(flags & PKCS7_NOCRL)) X509_STORE_CTX_set0_crls(cert_ctx, p7->d.sign->crl); i = X509_verify_cert(cert_ctx); if (i <= 0) j = X509_STORE_CTX_get_error(cert_ctx); X509_STORE_CTX_cleanup(cert_ctx); if (i <= 0) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_CERTIFICATE_VERIFY_ERROR); ERR_add_error_data(2, "Verify error:", X509_verify_cert_error_string(j)); goto err; } /* Check for revocation status here */ } /* * Performance optimization: if the content is a memory BIO then store * its contents in a temporary read only memory BIO. This avoids * potentially large numbers of slow copies of data which will occur when * reading from a read write memory BIO when signatures are calculated. */ if (indata && (BIO_method_type(indata) == BIO_TYPE_MEM)) { char *ptr; long len; len = BIO_get_mem_data(indata, &ptr); tmpin = BIO_new_mem_buf(ptr, len); if (tmpin == NULL) { PKCS7err(PKCS7_F_PKCS7_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } } else tmpin = indata; if ((p7bio = PKCS7_dataInit(p7, tmpin)) == NULL) goto err; if (flags & PKCS7_TEXT) { if ((tmpout = BIO_new(BIO_s_mem())) == NULL) { PKCS7err(PKCS7_F_PKCS7_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } BIO_set_mem_eof_return(tmpout, 0); } else tmpout = out; /* We now have to 'read' from p7bio to calculate digests etc. */ if ((buf = OPENSSL_malloc(BUFFERSIZE)) == NULL) { PKCS7err(PKCS7_F_PKCS7_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } for (;;) { i = BIO_read(p7bio, buf, BUFFERSIZE); if (i <= 0) break; if (tmpout) BIO_write(tmpout, buf, i); } if (flags & PKCS7_TEXT) { if (!SMIME_text(tmpout, out)) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_SMIME_TEXT_ERROR); BIO_free(tmpout); goto err; } BIO_free(tmpout); } /* Now Verify All Signatures */ if (!(flags & PKCS7_NOSIGS)) for (i = 0; i < sk_PKCS7_SIGNER_INFO_num(sinfos); i++) { si = sk_PKCS7_SIGNER_INFO_value(sinfos, i); signer = sk_X509_value(signers, i); j = PKCS7_signatureVerify(p7bio, p7, si, signer); if (j <= 0) { PKCS7err(PKCS7_F_PKCS7_VERIFY, PKCS7_R_SIGNATURE_FAILURE); goto err; } } ret = 1; err: X509_STORE_CTX_free(cert_ctx); OPENSSL_free(buf); if (tmpin == indata) { if (indata) BIO_pop(p7bio); } BIO_free_all(p7bio); sk_X509_free(signers); return ret; } STACK_OF(X509) *PKCS7_get0_signers(PKCS7 *p7, STACK_OF(X509) *certs, int flags) { STACK_OF(X509) *signers; STACK_OF(PKCS7_SIGNER_INFO) *sinfos; PKCS7_SIGNER_INFO *si; PKCS7_ISSUER_AND_SERIAL *ias; X509 *signer; int i; if (!p7) { PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS, PKCS7_R_INVALID_NULL_POINTER); return NULL; } if (!PKCS7_type_is_signed(p7)) { PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS, PKCS7_R_WRONG_CONTENT_TYPE); return NULL; } /* Collect all the signers together */ sinfos = PKCS7_get_signer_info(p7); if (sk_PKCS7_SIGNER_INFO_num(sinfos) <= 0) { PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS, PKCS7_R_NO_SIGNERS); return 0; } if ((signers = sk_X509_new_null()) == NULL) { PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_PKCS7_SIGNER_INFO_num(sinfos); i++) { si = sk_PKCS7_SIGNER_INFO_value(sinfos, i); ias = si->issuer_and_serial; signer = NULL; /* If any certificates passed they take priority */ if (certs) signer = X509_find_by_issuer_and_serial(certs, ias->issuer, ias->serial); if (!signer && !(flags & PKCS7_NOINTERN) && p7->d.sign->cert) signer = X509_find_by_issuer_and_serial(p7->d.sign->cert, ias->issuer, ias->serial); if (!signer) { PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS, PKCS7_R_SIGNER_CERTIFICATE_NOT_FOUND); sk_X509_free(signers); return 0; } if (!sk_X509_push(signers, signer)) { sk_X509_free(signers); return NULL; } } return signers; } /* Build a complete PKCS#7 enveloped data */ PKCS7 *PKCS7_encrypt(STACK_OF(X509) *certs, BIO *in, const EVP_CIPHER *cipher, int flags) { PKCS7 *p7; BIO *p7bio = NULL; int i; X509 *x509; if ((p7 = PKCS7_new()) == NULL) { PKCS7err(PKCS7_F_PKCS7_ENCRYPT, ERR_R_MALLOC_FAILURE); return NULL; } if (!PKCS7_set_type(p7, NID_pkcs7_enveloped)) goto err; if (!PKCS7_set_cipher(p7, cipher)) { PKCS7err(PKCS7_F_PKCS7_ENCRYPT, PKCS7_R_ERROR_SETTING_CIPHER); goto err; } for (i = 0; i < sk_X509_num(certs); i++) { x509 = sk_X509_value(certs, i); if (!PKCS7_add_recipient(p7, x509)) { PKCS7err(PKCS7_F_PKCS7_ENCRYPT, PKCS7_R_ERROR_ADDING_RECIPIENT); goto err; } } if (flags & PKCS7_STREAM) return p7; if (PKCS7_final(p7, in, flags)) return p7; err: BIO_free_all(p7bio); PKCS7_free(p7); return NULL; } int PKCS7_decrypt(PKCS7 *p7, EVP_PKEY *pkey, X509 *cert, BIO *data, int flags) { BIO *tmpmem; int ret = 0, i; char *buf = NULL; if (!p7) { PKCS7err(PKCS7_F_PKCS7_DECRYPT, PKCS7_R_INVALID_NULL_POINTER); return 0; } if (!PKCS7_type_is_enveloped(p7)) { PKCS7err(PKCS7_F_PKCS7_DECRYPT, PKCS7_R_WRONG_CONTENT_TYPE); return 0; } if (cert && !X509_check_private_key(cert, pkey)) { PKCS7err(PKCS7_F_PKCS7_DECRYPT, PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE); return 0; } if ((tmpmem = PKCS7_dataDecode(p7, pkey, NULL, cert)) == NULL) { PKCS7err(PKCS7_F_PKCS7_DECRYPT, PKCS7_R_DECRYPT_ERROR); return 0; } if (flags & PKCS7_TEXT) { BIO *tmpbuf, *bread; /* Encrypt BIOs can't do BIO_gets() so add a buffer BIO */ if ((tmpbuf = BIO_new(BIO_f_buffer())) == NULL) { PKCS7err(PKCS7_F_PKCS7_DECRYPT, ERR_R_MALLOC_FAILURE); BIO_free_all(tmpmem); return 0; } if ((bread = BIO_push(tmpbuf, tmpmem)) == NULL) { PKCS7err(PKCS7_F_PKCS7_DECRYPT, ERR_R_MALLOC_FAILURE); BIO_free_all(tmpbuf); BIO_free_all(tmpmem); return 0; } ret = SMIME_text(bread, data); if (ret > 0 && BIO_method_type(tmpmem) == BIO_TYPE_CIPHER) { if (!BIO_get_cipher_status(tmpmem)) ret = 0; } BIO_free_all(bread); return ret; } if ((buf = OPENSSL_malloc(BUFFERSIZE)) == NULL) { PKCS7err(PKCS7_F_PKCS7_DECRYPT, ERR_R_MALLOC_FAILURE); goto err; } for (;;) { i = BIO_read(tmpmem, buf, BUFFERSIZE); if (i <= 0) { ret = 1; if (BIO_method_type(tmpmem) == BIO_TYPE_CIPHER) { if (!BIO_get_cipher_status(tmpmem)) ret = 0; } break; } if (BIO_write(data, buf, i) != i) { break; } } err: OPENSSL_free(buf); BIO_free_all(tmpmem); return ret; } openssl-1.1.1f/crypto/pkcs7/pkcs7err.c000066400000000000000000000164441364063235100176320ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA PKCS7_str_functs[] = { {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_DO_PKCS7_SIGNED_ATTRIB, 0), "do_pkcs7_signed_attrib"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ADD0_ATTRIB_SIGNING_TIME, 0), "PKCS7_add0_attrib_signing_time"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ADD_ATTRIB_SMIMECAP, 0), "PKCS7_add_attrib_smimecap"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ADD_CERTIFICATE, 0), "PKCS7_add_certificate"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ADD_CRL, 0), "PKCS7_add_crl"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ADD_RECIPIENT_INFO, 0), "PKCS7_add_recipient_info"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ADD_SIGNATURE, 0), "PKCS7_add_signature"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ADD_SIGNER, 0), "PKCS7_add_signer"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_BIO_ADD_DIGEST, 0), "PKCS7_bio_add_digest"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_COPY_EXISTING_DIGEST, 0), "pkcs7_copy_existing_digest"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_CTRL, 0), "PKCS7_ctrl"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_DATADECODE, 0), "PKCS7_dataDecode"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_DATAFINAL, 0), "PKCS7_dataFinal"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_DATAINIT, 0), "PKCS7_dataInit"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_DATAVERIFY, 0), "PKCS7_dataVerify"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_DECRYPT, 0), "PKCS7_decrypt"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_DECRYPT_RINFO, 0), "pkcs7_decrypt_rinfo"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ENCODE_RINFO, 0), "pkcs7_encode_rinfo"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_ENCRYPT, 0), "PKCS7_encrypt"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_FINAL, 0), "PKCS7_final"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_FIND_DIGEST, 0), "PKCS7_find_digest"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_GET0_SIGNERS, 0), "PKCS7_get0_signers"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_RECIP_INFO_SET, 0), "PKCS7_RECIP_INFO_set"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SET_CIPHER, 0), "PKCS7_set_cipher"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SET_CONTENT, 0), "PKCS7_set_content"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SET_DIGEST, 0), "PKCS7_set_digest"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SET_TYPE, 0), "PKCS7_set_type"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SIGN, 0), "PKCS7_sign"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SIGNATUREVERIFY, 0), "PKCS7_signatureVerify"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SIGNER_INFO_SET, 0), "PKCS7_SIGNER_INFO_set"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SIGNER_INFO_SIGN, 0), "PKCS7_SIGNER_INFO_sign"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SIGN_ADD_SIGNER, 0), "PKCS7_sign_add_signer"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_SIMPLE_SMIMECAP, 0), "PKCS7_simple_smimecap"}, {ERR_PACK(ERR_LIB_PKCS7, PKCS7_F_PKCS7_VERIFY, 0), "PKCS7_verify"}, {0, NULL} }; static const ERR_STRING_DATA PKCS7_str_reasons[] = { {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_CERTIFICATE_VERIFY_ERROR), "certificate verify error"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER), "cipher has no object identifier"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_CIPHER_NOT_INITIALIZED), "cipher not initialized"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_CONTENT_AND_DATA_PRESENT), "content and data present"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_CTRL_ERROR), "ctrl error"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_DECRYPT_ERROR), "decrypt error"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_DIGEST_FAILURE), "digest failure"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_ENCRYPTION_CTRL_FAILURE), "encryption ctrl failure"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE), "encryption not supported for this key type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_ERROR_ADDING_RECIPIENT), "error adding recipient"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_ERROR_SETTING_CIPHER), "error setting cipher"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_INVALID_NULL_POINTER), "invalid null pointer"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_INVALID_SIGNED_DATA_TYPE), "invalid signed data type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_NO_CONTENT), "no content"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_NO_DEFAULT_DIGEST), "no default digest"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_NO_MATCHING_DIGEST_TYPE_FOUND), "no matching digest type found"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_NO_RECIPIENT_MATCHES_CERTIFICATE), "no recipient matches certificate"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_NO_SIGNATURES_ON_DATA), "no signatures on data"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_NO_SIGNERS), "no signers"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_OPERATION_NOT_SUPPORTED_ON_THIS_TYPE), "operation not supported on this type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_PKCS7_ADD_SIGNATURE_ERROR), "pkcs7 add signature error"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_PKCS7_ADD_SIGNER_ERROR), "pkcs7 add signer error"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_PKCS7_DATASIGN), "pkcs7 datasign"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE), "private key does not match certificate"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_SIGNATURE_FAILURE), "signature failure"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_SIGNER_CERTIFICATE_NOT_FOUND), "signer certificate not found"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_SIGNING_CTRL_FAILURE), "signing ctrl failure"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_SIGNING_NOT_SUPPORTED_FOR_THIS_KEY_TYPE), "signing not supported for this key type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_SMIME_TEXT_ERROR), "smime text error"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_UNABLE_TO_FIND_CERTIFICATE), "unable to find certificate"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_UNABLE_TO_FIND_MEM_BIO), "unable to find mem bio"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST), "unable to find message digest"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_UNKNOWN_DIGEST_TYPE), "unknown digest type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_UNKNOWN_OPERATION), "unknown operation"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_UNSUPPORTED_CIPHER_TYPE), "unsupported cipher type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_UNSUPPORTED_CONTENT_TYPE), "unsupported content type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_WRONG_CONTENT_TYPE), "wrong content type"}, {ERR_PACK(ERR_LIB_PKCS7, 0, PKCS7_R_WRONG_PKCS7_TYPE), "wrong pkcs7 type"}, {0, NULL} }; #endif int ERR_load_PKCS7_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(PKCS7_str_functs[0].error) == NULL) { ERR_load_strings_const(PKCS7_str_functs); ERR_load_strings_const(PKCS7_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/poly1305/000077500000000000000000000000001364063235100161625ustar00rootroot00000000000000openssl-1.1.1f/crypto/poly1305/asm/000077500000000000000000000000001364063235100167425ustar00rootroot00000000000000openssl-1.1.1f/crypto/poly1305/asm/poly1305-armv4.pl000077500000000000000000000721601364063235100216330ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # IALU(*)/gcc-4.4 NEON # # ARM11xx(ARMv6) 7.78/+100% - # Cortex-A5 6.35/+130% 3.00 # Cortex-A8 6.25/+115% 2.36 # Cortex-A9 5.10/+95% 2.55 # Cortex-A15 3.85/+85% 1.25(**) # Snapdragon S4 5.70/+100% 1.48(**) # # (*) this is for -march=armv6, i.e. with bunch of ldrb loading data; # (**) these are trade-off results, they can be improved by ~8% but at # the cost of 15/12% regression on Cortex-A5/A7, it's even possible # to improve Cortex-A9 result, but then A5/A7 loose more than 20%; $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } ($ctx,$inp,$len,$padbit)=map("r$_",(0..3)); $code.=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif .globl poly1305_emit .globl poly1305_blocks .globl poly1305_init .type poly1305_init,%function .align 5 poly1305_init: .Lpoly1305_init: stmdb sp!,{r4-r11} eor r3,r3,r3 cmp $inp,#0 str r3,[$ctx,#0] @ zero hash value str r3,[$ctx,#4] str r3,[$ctx,#8] str r3,[$ctx,#12] str r3,[$ctx,#16] str r3,[$ctx,#36] @ is_base2_26 add $ctx,$ctx,#20 #ifdef __thumb2__ it eq #endif moveq r0,#0 beq .Lno_key #if __ARM_MAX_ARCH__>=7 adr r11,.Lpoly1305_init ldr r12,.LOPENSSL_armcap #endif ldrb r4,[$inp,#0] mov r10,#0x0fffffff ldrb r5,[$inp,#1] and r3,r10,#-4 @ 0x0ffffffc ldrb r6,[$inp,#2] ldrb r7,[$inp,#3] orr r4,r4,r5,lsl#8 ldrb r5,[$inp,#4] orr r4,r4,r6,lsl#16 ldrb r6,[$inp,#5] orr r4,r4,r7,lsl#24 ldrb r7,[$inp,#6] and r4,r4,r10 #if __ARM_MAX_ARCH__>=7 ldr r12,[r11,r12] @ OPENSSL_armcap_P # ifdef __APPLE__ ldr r12,[r12] # endif #endif ldrb r8,[$inp,#7] orr r5,r5,r6,lsl#8 ldrb r6,[$inp,#8] orr r5,r5,r7,lsl#16 ldrb r7,[$inp,#9] orr r5,r5,r8,lsl#24 ldrb r8,[$inp,#10] and r5,r5,r3 #if __ARM_MAX_ARCH__>=7 tst r12,#ARMV7_NEON @ check for NEON # ifdef __APPLE__ adr r9,poly1305_blocks_neon adr r11,poly1305_blocks # ifdef __thumb2__ it ne # endif movne r11,r9 adr r12,poly1305_emit adr r10,poly1305_emit_neon # ifdef __thumb2__ it ne # endif movne r12,r10 # else # ifdef __thumb2__ itete eq # endif addeq r12,r11,#(poly1305_emit-.Lpoly1305_init) addne r12,r11,#(poly1305_emit_neon-.Lpoly1305_init) addeq r11,r11,#(poly1305_blocks-.Lpoly1305_init) addne r11,r11,#(poly1305_blocks_neon-.Lpoly1305_init) # endif # ifdef __thumb2__ orr r12,r12,#1 @ thumb-ify address orr r11,r11,#1 # endif #endif ldrb r9,[$inp,#11] orr r6,r6,r7,lsl#8 ldrb r7,[$inp,#12] orr r6,r6,r8,lsl#16 ldrb r8,[$inp,#13] orr r6,r6,r9,lsl#24 ldrb r9,[$inp,#14] and r6,r6,r3 ldrb r10,[$inp,#15] orr r7,r7,r8,lsl#8 str r4,[$ctx,#0] orr r7,r7,r9,lsl#16 str r5,[$ctx,#4] orr r7,r7,r10,lsl#24 str r6,[$ctx,#8] and r7,r7,r3 str r7,[$ctx,#12] #if __ARM_MAX_ARCH__>=7 stmia r2,{r11,r12} @ fill functions table mov r0,#1 #else mov r0,#0 #endif .Lno_key: ldmia sp!,{r4-r11} #if __ARM_ARCH__>=5 ret @ bx lr #else tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size poly1305_init,.-poly1305_init ___ { my ($h0,$h1,$h2,$h3,$h4,$r0,$r1,$r2,$r3)=map("r$_",(4..12)); my ($s1,$s2,$s3)=($r1,$r2,$r3); $code.=<<___; .type poly1305_blocks,%function .align 5 poly1305_blocks: .Lpoly1305_blocks: stmdb sp!,{r3-r11,lr} ands $len,$len,#-16 beq .Lno_data cmp $padbit,#0 add $len,$len,$inp @ end pointer sub sp,sp,#32 ldmia $ctx,{$h0-$r3} @ load context str $ctx,[sp,#12] @ offload stuff mov lr,$inp str $len,[sp,#16] str $r1,[sp,#20] str $r2,[sp,#24] str $r3,[sp,#28] b .Loop .Loop: #if __ARM_ARCH__<7 ldrb r0,[lr],#16 @ load input # ifdef __thumb2__ it hi # endif addhi $h4,$h4,#1 @ 1<<128 ldrb r1,[lr,#-15] ldrb r2,[lr,#-14] ldrb r3,[lr,#-13] orr r1,r0,r1,lsl#8 ldrb r0,[lr,#-12] orr r2,r1,r2,lsl#16 ldrb r1,[lr,#-11] orr r3,r2,r3,lsl#24 ldrb r2,[lr,#-10] adds $h0,$h0,r3 @ accumulate input ldrb r3,[lr,#-9] orr r1,r0,r1,lsl#8 ldrb r0,[lr,#-8] orr r2,r1,r2,lsl#16 ldrb r1,[lr,#-7] orr r3,r2,r3,lsl#24 ldrb r2,[lr,#-6] adcs $h1,$h1,r3 ldrb r3,[lr,#-5] orr r1,r0,r1,lsl#8 ldrb r0,[lr,#-4] orr r2,r1,r2,lsl#16 ldrb r1,[lr,#-3] orr r3,r2,r3,lsl#24 ldrb r2,[lr,#-2] adcs $h2,$h2,r3 ldrb r3,[lr,#-1] orr r1,r0,r1,lsl#8 str lr,[sp,#8] @ offload input pointer orr r2,r1,r2,lsl#16 add $s1,$r1,$r1,lsr#2 orr r3,r2,r3,lsl#24 #else ldr r0,[lr],#16 @ load input # ifdef __thumb2__ it hi # endif addhi $h4,$h4,#1 @ padbit ldr r1,[lr,#-12] ldr r2,[lr,#-8] ldr r3,[lr,#-4] # ifdef __ARMEB__ rev r0,r0 rev r1,r1 rev r2,r2 rev r3,r3 # endif adds $h0,$h0,r0 @ accumulate input str lr,[sp,#8] @ offload input pointer adcs $h1,$h1,r1 add $s1,$r1,$r1,lsr#2 adcs $h2,$h2,r2 #endif add $s2,$r2,$r2,lsr#2 adcs $h3,$h3,r3 add $s3,$r3,$r3,lsr#2 umull r2,r3,$h1,$r0 adc $h4,$h4,#0 umull r0,r1,$h0,$r0 umlal r2,r3,$h4,$s1 umlal r0,r1,$h3,$s1 ldr $r1,[sp,#20] @ reload $r1 umlal r2,r3,$h2,$s3 umlal r0,r1,$h1,$s3 umlal r2,r3,$h3,$s2 umlal r0,r1,$h2,$s2 umlal r2,r3,$h0,$r1 str r0,[sp,#0] @ future $h0 mul r0,$s2,$h4 ldr $r2,[sp,#24] @ reload $r2 adds r2,r2,r1 @ d1+=d0>>32 eor r1,r1,r1 adc lr,r3,#0 @ future $h2 str r2,[sp,#4] @ future $h1 mul r2,$s3,$h4 eor r3,r3,r3 umlal r0,r1,$h3,$s3 ldr $r3,[sp,#28] @ reload $r3 umlal r2,r3,$h3,$r0 umlal r0,r1,$h2,$r0 umlal r2,r3,$h2,$r1 umlal r0,r1,$h1,$r1 umlal r2,r3,$h1,$r2 umlal r0,r1,$h0,$r2 umlal r2,r3,$h0,$r3 ldr $h0,[sp,#0] mul $h4,$r0,$h4 ldr $h1,[sp,#4] adds $h2,lr,r0 @ d2+=d1>>32 ldr lr,[sp,#8] @ reload input pointer adc r1,r1,#0 adds $h3,r2,r1 @ d3+=d2>>32 ldr r0,[sp,#16] @ reload end pointer adc r3,r3,#0 add $h4,$h4,r3 @ h4+=d3>>32 and r1,$h4,#-4 and $h4,$h4,#3 add r1,r1,r1,lsr#2 @ *=5 adds $h0,$h0,r1 adcs $h1,$h1,#0 adcs $h2,$h2,#0 adcs $h3,$h3,#0 adc $h4,$h4,#0 cmp r0,lr @ done yet? bhi .Loop ldr $ctx,[sp,#12] add sp,sp,#32 stmia $ctx,{$h0-$h4} @ store the result .Lno_data: #if __ARM_ARCH__>=5 ldmia sp!,{r3-r11,pc} #else ldmia sp!,{r3-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size poly1305_blocks,.-poly1305_blocks ___ } { my ($ctx,$mac,$nonce)=map("r$_",(0..2)); my ($h0,$h1,$h2,$h3,$h4,$g0,$g1,$g2,$g3)=map("r$_",(3..11)); my $g4=$h4; $code.=<<___; .type poly1305_emit,%function .align 5 poly1305_emit: stmdb sp!,{r4-r11} .Lpoly1305_emit_enter: ldmia $ctx,{$h0-$h4} adds $g0,$h0,#5 @ compare to modulus adcs $g1,$h1,#0 adcs $g2,$h2,#0 adcs $g3,$h3,#0 adc $g4,$h4,#0 tst $g4,#4 @ did it carry/borrow? #ifdef __thumb2__ it ne #endif movne $h0,$g0 ldr $g0,[$nonce,#0] #ifdef __thumb2__ it ne #endif movne $h1,$g1 ldr $g1,[$nonce,#4] #ifdef __thumb2__ it ne #endif movne $h2,$g2 ldr $g2,[$nonce,#8] #ifdef __thumb2__ it ne #endif movne $h3,$g3 ldr $g3,[$nonce,#12] adds $h0,$h0,$g0 adcs $h1,$h1,$g1 adcs $h2,$h2,$g2 adc $h3,$h3,$g3 #if __ARM_ARCH__>=7 # ifdef __ARMEB__ rev $h0,$h0 rev $h1,$h1 rev $h2,$h2 rev $h3,$h3 # endif str $h0,[$mac,#0] str $h1,[$mac,#4] str $h2,[$mac,#8] str $h3,[$mac,#12] #else strb $h0,[$mac,#0] mov $h0,$h0,lsr#8 strb $h1,[$mac,#4] mov $h1,$h1,lsr#8 strb $h2,[$mac,#8] mov $h2,$h2,lsr#8 strb $h3,[$mac,#12] mov $h3,$h3,lsr#8 strb $h0,[$mac,#1] mov $h0,$h0,lsr#8 strb $h1,[$mac,#5] mov $h1,$h1,lsr#8 strb $h2,[$mac,#9] mov $h2,$h2,lsr#8 strb $h3,[$mac,#13] mov $h3,$h3,lsr#8 strb $h0,[$mac,#2] mov $h0,$h0,lsr#8 strb $h1,[$mac,#6] mov $h1,$h1,lsr#8 strb $h2,[$mac,#10] mov $h2,$h2,lsr#8 strb $h3,[$mac,#14] mov $h3,$h3,lsr#8 strb $h0,[$mac,#3] strb $h1,[$mac,#7] strb $h2,[$mac,#11] strb $h3,[$mac,#15] #endif ldmia sp!,{r4-r11} #if __ARM_ARCH__>=5 ret @ bx lr #else tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size poly1305_emit,.-poly1305_emit ___ { my ($R0,$R1,$S1,$R2,$S2,$R3,$S3,$R4,$S4) = map("d$_",(0..9)); my ($D0,$D1,$D2,$D3,$D4, $H0,$H1,$H2,$H3,$H4) = map("q$_",(5..14)); my ($T0,$T1,$MASK) = map("q$_",(15,4,0)); my ($in2,$zeros,$tbl0,$tbl1) = map("r$_",(4..7)); $code.=<<___; #if __ARM_MAX_ARCH__>=7 .fpu neon .type poly1305_init_neon,%function .align 5 poly1305_init_neon: ldr r4,[$ctx,#20] @ load key base 2^32 ldr r5,[$ctx,#24] ldr r6,[$ctx,#28] ldr r7,[$ctx,#32] and r2,r4,#0x03ffffff @ base 2^32 -> base 2^26 mov r3,r4,lsr#26 mov r4,r5,lsr#20 orr r3,r3,r5,lsl#6 mov r5,r6,lsr#14 orr r4,r4,r6,lsl#12 mov r6,r7,lsr#8 orr r5,r5,r7,lsl#18 and r3,r3,#0x03ffffff and r4,r4,#0x03ffffff and r5,r5,#0x03ffffff vdup.32 $R0,r2 @ r^1 in both lanes add r2,r3,r3,lsl#2 @ *5 vdup.32 $R1,r3 add r3,r4,r4,lsl#2 vdup.32 $S1,r2 vdup.32 $R2,r4 add r4,r5,r5,lsl#2 vdup.32 $S2,r3 vdup.32 $R3,r5 add r5,r6,r6,lsl#2 vdup.32 $S3,r4 vdup.32 $R4,r6 vdup.32 $S4,r5 mov $zeros,#2 @ counter .Lsquare_neon: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 @ d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 @ d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 @ d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 @ d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 vmull.u32 $D0,$R0,${R0}[1] vmull.u32 $D1,$R1,${R0}[1] vmull.u32 $D2,$R2,${R0}[1] vmull.u32 $D3,$R3,${R0}[1] vmull.u32 $D4,$R4,${R0}[1] vmlal.u32 $D0,$R4,${S1}[1] vmlal.u32 $D1,$R0,${R1}[1] vmlal.u32 $D2,$R1,${R1}[1] vmlal.u32 $D3,$R2,${R1}[1] vmlal.u32 $D4,$R3,${R1}[1] vmlal.u32 $D0,$R3,${S2}[1] vmlal.u32 $D1,$R4,${S2}[1] vmlal.u32 $D3,$R1,${R2}[1] vmlal.u32 $D2,$R0,${R2}[1] vmlal.u32 $D4,$R2,${R2}[1] vmlal.u32 $D0,$R2,${S3}[1] vmlal.u32 $D3,$R0,${R3}[1] vmlal.u32 $D1,$R3,${S3}[1] vmlal.u32 $D2,$R4,${S3}[1] vmlal.u32 $D4,$R1,${R3}[1] vmlal.u32 $D3,$R4,${S4}[1] vmlal.u32 $D0,$R1,${S4}[1] vmlal.u32 $D1,$R2,${S4}[1] vmlal.u32 $D2,$R3,${S4}[1] vmlal.u32 $D4,$R0,${R4}[1] @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ lazy reduction as discussed in "NEON crypto" by D.J. Bernstein @ and P. Schwabe @ @ H0>>+H1>>+H2>>+H3>>+H4 @ H3>>+H4>>*5+H0>>+H1 @ @ Trivia. @ @ Result of multiplication of n-bit number by m-bit number is @ n+m bits wide. However! Even though 2^n is a n+1-bit number, @ m-bit number multiplied by 2^n is still n+m bits wide. @ @ Sum of two n-bit numbers is n+1 bits wide, sum of three - n+2, @ and so is sum of four. Sum of 2^m n-m-bit numbers and n-bit @ one is n+1 bits wide. @ @ >>+ denotes Hnext += Hn>>26, Hn &= 0x3ffffff. This means that @ H0, H2, H3 are guaranteed to be 26 bits wide, while H1 and H4 @ can be 27. However! In cases when their width exceeds 26 bits @ they are limited by 2^26+2^6. This in turn means that *sum* @ of the products with these values can still be viewed as sum @ of 52-bit numbers as long as the amount of addends is not a @ power of 2. For example, @ @ H4 = H4*R0 + H3*R1 + H2*R2 + H1*R3 + H0 * R4, @ @ which can't be larger than 5 * (2^26 + 2^6) * (2^26 + 2^6), or @ 5 * (2^52 + 2*2^32 + 2^12), which in turn is smaller than @ 8 * (2^52) or 2^55. However, the value is then multiplied by @ by 5, so we should be looking at 5 * 5 * (2^52 + 2^33 + 2^12), @ which is less than 32 * (2^52) or 2^57. And when processing @ data we are looking at triple as many addends... @ @ In key setup procedure pre-reduced H0 is limited by 5*4+1 and @ 5*H4 - by 5*5 52-bit addends, or 57 bits. But when hashing the @ input H0 is limited by (5*4+1)*3 addends, or 58 bits, while @ 5*H4 by 5*5*3, or 59[!] bits. How is this relevant? vmlal.u32 @ instruction accepts 2x32-bit input and writes 2x64-bit result. @ This means that result of reduction have to be compressed upon @ loop wrap-around. This can be done in the process of reduction @ to minimize amount of instructions [as well as amount of @ 128-bit instructions, which benefits low-end processors], but @ one has to watch for H2 (which is narrower than H0) and 5*H4 @ not being wider than 58 bits, so that result of right shift @ by 26 bits fits in 32 bits. This is also useful on x86, @ because it allows to use paddd in place for paddq, which @ benefits Atom, where paddq is ridiculously slow. vshr.u64 $T0,$D3,#26 vmovn.i64 $D3#lo,$D3 vshr.u64 $T1,$D0,#26 vmovn.i64 $D0#lo,$D0 vadd.i64 $D4,$D4,$T0 @ h3 -> h4 vbic.i32 $D3#lo,#0xfc000000 @ &=0x03ffffff vadd.i64 $D1,$D1,$T1 @ h0 -> h1 vbic.i32 $D0#lo,#0xfc000000 vshrn.u64 $T0#lo,$D4,#26 vmovn.i64 $D4#lo,$D4 vshr.u64 $T1,$D1,#26 vmovn.i64 $D1#lo,$D1 vadd.i64 $D2,$D2,$T1 @ h1 -> h2 vbic.i32 $D4#lo,#0xfc000000 vbic.i32 $D1#lo,#0xfc000000 vadd.i32 $D0#lo,$D0#lo,$T0#lo vshl.u32 $T0#lo,$T0#lo,#2 vshrn.u64 $T1#lo,$D2,#26 vmovn.i64 $D2#lo,$D2 vadd.i32 $D0#lo,$D0#lo,$T0#lo @ h4 -> h0 vadd.i32 $D3#lo,$D3#lo,$T1#lo @ h2 -> h3 vbic.i32 $D2#lo,#0xfc000000 vshr.u32 $T0#lo,$D0#lo,#26 vbic.i32 $D0#lo,#0xfc000000 vshr.u32 $T1#lo,$D3#lo,#26 vbic.i32 $D3#lo,#0xfc000000 vadd.i32 $D1#lo,$D1#lo,$T0#lo @ h0 -> h1 vadd.i32 $D4#lo,$D4#lo,$T1#lo @ h3 -> h4 subs $zeros,$zeros,#1 beq .Lsquare_break_neon add $tbl0,$ctx,#(48+0*9*4) add $tbl1,$ctx,#(48+1*9*4) vtrn.32 $R0,$D0#lo @ r^2:r^1 vtrn.32 $R2,$D2#lo vtrn.32 $R3,$D3#lo vtrn.32 $R1,$D1#lo vtrn.32 $R4,$D4#lo vshl.u32 $S2,$R2,#2 @ *5 vshl.u32 $S3,$R3,#2 vshl.u32 $S1,$R1,#2 vshl.u32 $S4,$R4,#2 vadd.i32 $S2,$S2,$R2 vadd.i32 $S1,$S1,$R1 vadd.i32 $S3,$S3,$R3 vadd.i32 $S4,$S4,$R4 vst4.32 {${R0}[0],${R1}[0],${S1}[0],${R2}[0]},[$tbl0]! vst4.32 {${R0}[1],${R1}[1],${S1}[1],${R2}[1]},[$tbl1]! vst4.32 {${S2}[0],${R3}[0],${S3}[0],${R4}[0]},[$tbl0]! vst4.32 {${S2}[1],${R3}[1],${S3}[1],${R4}[1]},[$tbl1]! vst1.32 {${S4}[0]},[$tbl0,:32] vst1.32 {${S4}[1]},[$tbl1,:32] b .Lsquare_neon .align 4 .Lsquare_break_neon: add $tbl0,$ctx,#(48+2*4*9) add $tbl1,$ctx,#(48+3*4*9) vmov $R0,$D0#lo @ r^4:r^3 vshl.u32 $S1,$D1#lo,#2 @ *5 vmov $R1,$D1#lo vshl.u32 $S2,$D2#lo,#2 vmov $R2,$D2#lo vshl.u32 $S3,$D3#lo,#2 vmov $R3,$D3#lo vshl.u32 $S4,$D4#lo,#2 vmov $R4,$D4#lo vadd.i32 $S1,$S1,$D1#lo vadd.i32 $S2,$S2,$D2#lo vadd.i32 $S3,$S3,$D3#lo vadd.i32 $S4,$S4,$D4#lo vst4.32 {${R0}[0],${R1}[0],${S1}[0],${R2}[0]},[$tbl0]! vst4.32 {${R0}[1],${R1}[1],${S1}[1],${R2}[1]},[$tbl1]! vst4.32 {${S2}[0],${R3}[0],${S3}[0],${R4}[0]},[$tbl0]! vst4.32 {${S2}[1],${R3}[1],${S3}[1],${R4}[1]},[$tbl1]! vst1.32 {${S4}[0]},[$tbl0] vst1.32 {${S4}[1]},[$tbl1] ret @ bx lr .size poly1305_init_neon,.-poly1305_init_neon .type poly1305_blocks_neon,%function .align 5 poly1305_blocks_neon: ldr ip,[$ctx,#36] @ is_base2_26 ands $len,$len,#-16 beq .Lno_data_neon cmp $len,#64 bhs .Lenter_neon tst ip,ip @ is_base2_26? beq .Lpoly1305_blocks .Lenter_neon: stmdb sp!,{r4-r7} vstmdb sp!,{d8-d15} @ ABI specification says so tst ip,ip @ is_base2_26? bne .Lbase2_26_neon stmdb sp!,{r1-r3,lr} bl poly1305_init_neon ldr r4,[$ctx,#0] @ load hash value base 2^32 ldr r5,[$ctx,#4] ldr r6,[$ctx,#8] ldr r7,[$ctx,#12] ldr ip,[$ctx,#16] and r2,r4,#0x03ffffff @ base 2^32 -> base 2^26 mov r3,r4,lsr#26 veor $D0#lo,$D0#lo,$D0#lo mov r4,r5,lsr#20 orr r3,r3,r5,lsl#6 veor $D1#lo,$D1#lo,$D1#lo mov r5,r6,lsr#14 orr r4,r4,r6,lsl#12 veor $D2#lo,$D2#lo,$D2#lo mov r6,r7,lsr#8 orr r5,r5,r7,lsl#18 veor $D3#lo,$D3#lo,$D3#lo and r3,r3,#0x03ffffff orr r6,r6,ip,lsl#24 veor $D4#lo,$D4#lo,$D4#lo and r4,r4,#0x03ffffff mov r1,#1 and r5,r5,#0x03ffffff str r1,[$ctx,#36] @ is_base2_26 vmov.32 $D0#lo[0],r2 vmov.32 $D1#lo[0],r3 vmov.32 $D2#lo[0],r4 vmov.32 $D3#lo[0],r5 vmov.32 $D4#lo[0],r6 adr $zeros,.Lzeros ldmia sp!,{r1-r3,lr} b .Lbase2_32_neon .align 4 .Lbase2_26_neon: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ load hash value veor $D0#lo,$D0#lo,$D0#lo veor $D1#lo,$D1#lo,$D1#lo veor $D2#lo,$D2#lo,$D2#lo veor $D3#lo,$D3#lo,$D3#lo veor $D4#lo,$D4#lo,$D4#lo vld4.32 {$D0#lo[0],$D1#lo[0],$D2#lo[0],$D3#lo[0]},[$ctx]! adr $zeros,.Lzeros vld1.32 {$D4#lo[0]},[$ctx] sub $ctx,$ctx,#16 @ rewind .Lbase2_32_neon: add $in2,$inp,#32 mov $padbit,$padbit,lsl#24 tst $len,#31 beq .Leven vld4.32 {$H0#lo[0],$H1#lo[0],$H2#lo[0],$H3#lo[0]},[$inp]! vmov.32 $H4#lo[0],$padbit sub $len,$len,#16 add $in2,$inp,#32 # ifdef __ARMEB__ vrev32.8 $H0,$H0 vrev32.8 $H3,$H3 vrev32.8 $H1,$H1 vrev32.8 $H2,$H2 # endif vsri.u32 $H4#lo,$H3#lo,#8 @ base 2^32 -> base 2^26 vshl.u32 $H3#lo,$H3#lo,#18 vsri.u32 $H3#lo,$H2#lo,#14 vshl.u32 $H2#lo,$H2#lo,#12 vadd.i32 $H4#hi,$H4#lo,$D4#lo @ add hash value and move to #hi vbic.i32 $H3#lo,#0xfc000000 vsri.u32 $H2#lo,$H1#lo,#20 vshl.u32 $H1#lo,$H1#lo,#6 vbic.i32 $H2#lo,#0xfc000000 vsri.u32 $H1#lo,$H0#lo,#26 vadd.i32 $H3#hi,$H3#lo,$D3#lo vbic.i32 $H0#lo,#0xfc000000 vbic.i32 $H1#lo,#0xfc000000 vadd.i32 $H2#hi,$H2#lo,$D2#lo vadd.i32 $H0#hi,$H0#lo,$D0#lo vadd.i32 $H1#hi,$H1#lo,$D1#lo mov $tbl1,$zeros add $tbl0,$ctx,#48 cmp $len,$len b .Long_tail .align 4 .Leven: subs $len,$len,#64 it lo movlo $in2,$zeros vmov.i32 $H4,#1<<24 @ padbit, yes, always vld4.32 {$H0#lo,$H1#lo,$H2#lo,$H3#lo},[$inp] @ inp[0:1] add $inp,$inp,#64 vld4.32 {$H0#hi,$H1#hi,$H2#hi,$H3#hi},[$in2] @ inp[2:3] (or 0) add $in2,$in2,#64 itt hi addhi $tbl1,$ctx,#(48+1*9*4) addhi $tbl0,$ctx,#(48+3*9*4) # ifdef __ARMEB__ vrev32.8 $H0,$H0 vrev32.8 $H3,$H3 vrev32.8 $H1,$H1 vrev32.8 $H2,$H2 # endif vsri.u32 $H4,$H3,#8 @ base 2^32 -> base 2^26 vshl.u32 $H3,$H3,#18 vsri.u32 $H3,$H2,#14 vshl.u32 $H2,$H2,#12 vbic.i32 $H3,#0xfc000000 vsri.u32 $H2,$H1,#20 vshl.u32 $H1,$H1,#6 vbic.i32 $H2,#0xfc000000 vsri.u32 $H1,$H0,#26 vbic.i32 $H0,#0xfc000000 vbic.i32 $H1,#0xfc000000 bls .Lskip_loop vld4.32 {${R0}[1],${R1}[1],${S1}[1],${R2}[1]},[$tbl1]! @ load r^2 vld4.32 {${R0}[0],${R1}[0],${S1}[0],${R2}[0]},[$tbl0]! @ load r^4 vld4.32 {${S2}[1],${R3}[1],${S3}[1],${R4}[1]},[$tbl1]! vld4.32 {${S2}[0],${R3}[0],${S3}[0],${R4}[0]},[$tbl0]! b .Loop_neon .align 5 .Loop_neon: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 @ ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r @ \___________________/ @ ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 @ ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r @ \___________________/ \____________________/ @ @ Note that we start with inp[2:3]*r^2. This is because it @ doesn't depend on reduction in previous iteration. @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 @ d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 @ d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 @ d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 @ d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ inp[2:3]*r^2 vadd.i32 $H2#lo,$H2#lo,$D2#lo @ accumulate inp[0:1] vmull.u32 $D2,$H2#hi,${R0}[1] vadd.i32 $H0#lo,$H0#lo,$D0#lo vmull.u32 $D0,$H0#hi,${R0}[1] vadd.i32 $H3#lo,$H3#lo,$D3#lo vmull.u32 $D3,$H3#hi,${R0}[1] vmlal.u32 $D2,$H1#hi,${R1}[1] vadd.i32 $H1#lo,$H1#lo,$D1#lo vmull.u32 $D1,$H1#hi,${R0}[1] vadd.i32 $H4#lo,$H4#lo,$D4#lo vmull.u32 $D4,$H4#hi,${R0}[1] subs $len,$len,#64 vmlal.u32 $D0,$H4#hi,${S1}[1] it lo movlo $in2,$zeros vmlal.u32 $D3,$H2#hi,${R1}[1] vld1.32 ${S4}[1],[$tbl1,:32] vmlal.u32 $D1,$H0#hi,${R1}[1] vmlal.u32 $D4,$H3#hi,${R1}[1] vmlal.u32 $D0,$H3#hi,${S2}[1] vmlal.u32 $D3,$H1#hi,${R2}[1] vmlal.u32 $D4,$H2#hi,${R2}[1] vmlal.u32 $D1,$H4#hi,${S2}[1] vmlal.u32 $D2,$H0#hi,${R2}[1] vmlal.u32 $D3,$H0#hi,${R3}[1] vmlal.u32 $D0,$H2#hi,${S3}[1] vmlal.u32 $D4,$H1#hi,${R3}[1] vmlal.u32 $D1,$H3#hi,${S3}[1] vmlal.u32 $D2,$H4#hi,${S3}[1] vmlal.u32 $D3,$H4#hi,${S4}[1] vmlal.u32 $D0,$H1#hi,${S4}[1] vmlal.u32 $D4,$H0#hi,${R4}[1] vmlal.u32 $D1,$H2#hi,${S4}[1] vmlal.u32 $D2,$H3#hi,${S4}[1] vld4.32 {$H0#hi,$H1#hi,$H2#hi,$H3#hi},[$in2] @ inp[2:3] (or 0) add $in2,$in2,#64 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ (hash+inp[0:1])*r^4 and accumulate vmlal.u32 $D3,$H3#lo,${R0}[0] vmlal.u32 $D0,$H0#lo,${R0}[0] vmlal.u32 $D4,$H4#lo,${R0}[0] vmlal.u32 $D1,$H1#lo,${R0}[0] vmlal.u32 $D2,$H2#lo,${R0}[0] vld1.32 ${S4}[0],[$tbl0,:32] vmlal.u32 $D3,$H2#lo,${R1}[0] vmlal.u32 $D0,$H4#lo,${S1}[0] vmlal.u32 $D4,$H3#lo,${R1}[0] vmlal.u32 $D1,$H0#lo,${R1}[0] vmlal.u32 $D2,$H1#lo,${R1}[0] vmlal.u32 $D3,$H1#lo,${R2}[0] vmlal.u32 $D0,$H3#lo,${S2}[0] vmlal.u32 $D4,$H2#lo,${R2}[0] vmlal.u32 $D1,$H4#lo,${S2}[0] vmlal.u32 $D2,$H0#lo,${R2}[0] vmlal.u32 $D3,$H0#lo,${R3}[0] vmlal.u32 $D0,$H2#lo,${S3}[0] vmlal.u32 $D4,$H1#lo,${R3}[0] vmlal.u32 $D1,$H3#lo,${S3}[0] vmlal.u32 $D3,$H4#lo,${S4}[0] vmlal.u32 $D2,$H4#lo,${S3}[0] vmlal.u32 $D0,$H1#lo,${S4}[0] vmlal.u32 $D4,$H0#lo,${R4}[0] vmov.i32 $H4,#1<<24 @ padbit, yes, always vmlal.u32 $D1,$H2#lo,${S4}[0] vmlal.u32 $D2,$H3#lo,${S4}[0] vld4.32 {$H0#lo,$H1#lo,$H2#lo,$H3#lo},[$inp] @ inp[0:1] add $inp,$inp,#64 # ifdef __ARMEB__ vrev32.8 $H0,$H0 vrev32.8 $H1,$H1 vrev32.8 $H2,$H2 vrev32.8 $H3,$H3 # endif @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ lazy reduction interleaved with base 2^32 -> base 2^26 of @ inp[0:3] previously loaded to $H0-$H3 and smashed to $H0-$H4. vshr.u64 $T0,$D3,#26 vmovn.i64 $D3#lo,$D3 vshr.u64 $T1,$D0,#26 vmovn.i64 $D0#lo,$D0 vadd.i64 $D4,$D4,$T0 @ h3 -> h4 vbic.i32 $D3#lo,#0xfc000000 vsri.u32 $H4,$H3,#8 @ base 2^32 -> base 2^26 vadd.i64 $D1,$D1,$T1 @ h0 -> h1 vshl.u32 $H3,$H3,#18 vbic.i32 $D0#lo,#0xfc000000 vshrn.u64 $T0#lo,$D4,#26 vmovn.i64 $D4#lo,$D4 vshr.u64 $T1,$D1,#26 vmovn.i64 $D1#lo,$D1 vadd.i64 $D2,$D2,$T1 @ h1 -> h2 vsri.u32 $H3,$H2,#14 vbic.i32 $D4#lo,#0xfc000000 vshl.u32 $H2,$H2,#12 vbic.i32 $D1#lo,#0xfc000000 vadd.i32 $D0#lo,$D0#lo,$T0#lo vshl.u32 $T0#lo,$T0#lo,#2 vbic.i32 $H3,#0xfc000000 vshrn.u64 $T1#lo,$D2,#26 vmovn.i64 $D2#lo,$D2 vaddl.u32 $D0,$D0#lo,$T0#lo @ h4 -> h0 [widen for a sec] vsri.u32 $H2,$H1,#20 vadd.i32 $D3#lo,$D3#lo,$T1#lo @ h2 -> h3 vshl.u32 $H1,$H1,#6 vbic.i32 $D2#lo,#0xfc000000 vbic.i32 $H2,#0xfc000000 vshrn.u64 $T0#lo,$D0,#26 @ re-narrow vmovn.i64 $D0#lo,$D0 vsri.u32 $H1,$H0,#26 vbic.i32 $H0,#0xfc000000 vshr.u32 $T1#lo,$D3#lo,#26 vbic.i32 $D3#lo,#0xfc000000 vbic.i32 $D0#lo,#0xfc000000 vadd.i32 $D1#lo,$D1#lo,$T0#lo @ h0 -> h1 vadd.i32 $D4#lo,$D4#lo,$T1#lo @ h3 -> h4 vbic.i32 $H1,#0xfc000000 bhi .Loop_neon .Lskip_loop: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 add $tbl1,$ctx,#(48+0*9*4) add $tbl0,$ctx,#(48+1*9*4) adds $len,$len,#32 it ne movne $len,#0 bne .Long_tail vadd.i32 $H2#hi,$H2#lo,$D2#lo @ add hash value and move to #hi vadd.i32 $H0#hi,$H0#lo,$D0#lo vadd.i32 $H3#hi,$H3#lo,$D3#lo vadd.i32 $H1#hi,$H1#lo,$D1#lo vadd.i32 $H4#hi,$H4#lo,$D4#lo .Long_tail: vld4.32 {${R0}[1],${R1}[1],${S1}[1],${R2}[1]},[$tbl1]! @ load r^1 vld4.32 {${R0}[0],${R1}[0],${S1}[0],${R2}[0]},[$tbl0]! @ load r^2 vadd.i32 $H2#lo,$H2#lo,$D2#lo @ can be redundant vmull.u32 $D2,$H2#hi,$R0 vadd.i32 $H0#lo,$H0#lo,$D0#lo vmull.u32 $D0,$H0#hi,$R0 vadd.i32 $H3#lo,$H3#lo,$D3#lo vmull.u32 $D3,$H3#hi,$R0 vadd.i32 $H1#lo,$H1#lo,$D1#lo vmull.u32 $D1,$H1#hi,$R0 vadd.i32 $H4#lo,$H4#lo,$D4#lo vmull.u32 $D4,$H4#hi,$R0 vmlal.u32 $D0,$H4#hi,$S1 vld4.32 {${S2}[1],${R3}[1],${S3}[1],${R4}[1]},[$tbl1]! vmlal.u32 $D3,$H2#hi,$R1 vld4.32 {${S2}[0],${R3}[0],${S3}[0],${R4}[0]},[$tbl0]! vmlal.u32 $D1,$H0#hi,$R1 vmlal.u32 $D4,$H3#hi,$R1 vmlal.u32 $D2,$H1#hi,$R1 vmlal.u32 $D3,$H1#hi,$R2 vld1.32 ${S4}[1],[$tbl1,:32] vmlal.u32 $D0,$H3#hi,$S2 vld1.32 ${S4}[0],[$tbl0,:32] vmlal.u32 $D4,$H2#hi,$R2 vmlal.u32 $D1,$H4#hi,$S2 vmlal.u32 $D2,$H0#hi,$R2 vmlal.u32 $D3,$H0#hi,$R3 it ne addne $tbl1,$ctx,#(48+2*9*4) vmlal.u32 $D0,$H2#hi,$S3 it ne addne $tbl0,$ctx,#(48+3*9*4) vmlal.u32 $D4,$H1#hi,$R3 vmlal.u32 $D1,$H3#hi,$S3 vmlal.u32 $D2,$H4#hi,$S3 vmlal.u32 $D3,$H4#hi,$S4 vorn $MASK,$MASK,$MASK @ all-ones, can be redundant vmlal.u32 $D0,$H1#hi,$S4 vshr.u64 $MASK,$MASK,#38 vmlal.u32 $D4,$H0#hi,$R4 vmlal.u32 $D1,$H2#hi,$S4 vmlal.u32 $D2,$H3#hi,$S4 beq .Lshort_tail @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ (hash+inp[0:1])*r^4:r^3 and accumulate vld4.32 {${R0}[1],${R1}[1],${S1}[1],${R2}[1]},[$tbl1]! @ load r^3 vld4.32 {${R0}[0],${R1}[0],${S1}[0],${R2}[0]},[$tbl0]! @ load r^4 vmlal.u32 $D2,$H2#lo,$R0 vmlal.u32 $D0,$H0#lo,$R0 vmlal.u32 $D3,$H3#lo,$R0 vmlal.u32 $D1,$H1#lo,$R0 vmlal.u32 $D4,$H4#lo,$R0 vmlal.u32 $D0,$H4#lo,$S1 vld4.32 {${S2}[1],${R3}[1],${S3}[1],${R4}[1]},[$tbl1]! vmlal.u32 $D3,$H2#lo,$R1 vld4.32 {${S2}[0],${R3}[0],${S3}[0],${R4}[0]},[$tbl0]! vmlal.u32 $D1,$H0#lo,$R1 vmlal.u32 $D4,$H3#lo,$R1 vmlal.u32 $D2,$H1#lo,$R1 vmlal.u32 $D3,$H1#lo,$R2 vld1.32 ${S4}[1],[$tbl1,:32] vmlal.u32 $D0,$H3#lo,$S2 vld1.32 ${S4}[0],[$tbl0,:32] vmlal.u32 $D4,$H2#lo,$R2 vmlal.u32 $D1,$H4#lo,$S2 vmlal.u32 $D2,$H0#lo,$R2 vmlal.u32 $D3,$H0#lo,$R3 vmlal.u32 $D0,$H2#lo,$S3 vmlal.u32 $D4,$H1#lo,$R3 vmlal.u32 $D1,$H3#lo,$S3 vmlal.u32 $D2,$H4#lo,$S3 vmlal.u32 $D3,$H4#lo,$S4 vorn $MASK,$MASK,$MASK @ all-ones vmlal.u32 $D0,$H1#lo,$S4 vshr.u64 $MASK,$MASK,#38 vmlal.u32 $D4,$H0#lo,$R4 vmlal.u32 $D1,$H2#lo,$S4 vmlal.u32 $D2,$H3#lo,$S4 .Lshort_tail: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ horizontal addition vadd.i64 $D3#lo,$D3#lo,$D3#hi vadd.i64 $D0#lo,$D0#lo,$D0#hi vadd.i64 $D4#lo,$D4#lo,$D4#hi vadd.i64 $D1#lo,$D1#lo,$D1#hi vadd.i64 $D2#lo,$D2#lo,$D2#hi @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ lazy reduction, but without narrowing vshr.u64 $T0,$D3,#26 vand.i64 $D3,$D3,$MASK vshr.u64 $T1,$D0,#26 vand.i64 $D0,$D0,$MASK vadd.i64 $D4,$D4,$T0 @ h3 -> h4 vadd.i64 $D1,$D1,$T1 @ h0 -> h1 vshr.u64 $T0,$D4,#26 vand.i64 $D4,$D4,$MASK vshr.u64 $T1,$D1,#26 vand.i64 $D1,$D1,$MASK vadd.i64 $D2,$D2,$T1 @ h1 -> h2 vadd.i64 $D0,$D0,$T0 vshl.u64 $T0,$T0,#2 vshr.u64 $T1,$D2,#26 vand.i64 $D2,$D2,$MASK vadd.i64 $D0,$D0,$T0 @ h4 -> h0 vadd.i64 $D3,$D3,$T1 @ h2 -> h3 vshr.u64 $T0,$D0,#26 vand.i64 $D0,$D0,$MASK vshr.u64 $T1,$D3,#26 vand.i64 $D3,$D3,$MASK vadd.i64 $D1,$D1,$T0 @ h0 -> h1 vadd.i64 $D4,$D4,$T1 @ h3 -> h4 cmp $len,#0 bne .Leven @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ store hash value vst4.32 {$D0#lo[0],$D1#lo[0],$D2#lo[0],$D3#lo[0]},[$ctx]! vst1.32 {$D4#lo[0]},[$ctx] vldmia sp!,{d8-d15} @ epilogue ldmia sp!,{r4-r7} .Lno_data_neon: ret @ bx lr .size poly1305_blocks_neon,.-poly1305_blocks_neon .type poly1305_emit_neon,%function .align 5 poly1305_emit_neon: ldr ip,[$ctx,#36] @ is_base2_26 stmdb sp!,{r4-r11} tst ip,ip beq .Lpoly1305_emit_enter ldmia $ctx,{$h0-$h4} eor $g0,$g0,$g0 adds $h0,$h0,$h1,lsl#26 @ base 2^26 -> base 2^32 mov $h1,$h1,lsr#6 adcs $h1,$h1,$h2,lsl#20 mov $h2,$h2,lsr#12 adcs $h2,$h2,$h3,lsl#14 mov $h3,$h3,lsr#18 adcs $h3,$h3,$h4,lsl#8 adc $h4,$g0,$h4,lsr#24 @ can be partially reduced ... and $g0,$h4,#-4 @ ... so reduce and $h4,$h3,#3 add $g0,$g0,$g0,lsr#2 @ *= 5 adds $h0,$h0,$g0 adcs $h1,$h1,#0 adcs $h2,$h2,#0 adcs $h3,$h3,#0 adc $h4,$h4,#0 adds $g0,$h0,#5 @ compare to modulus adcs $g1,$h1,#0 adcs $g2,$h2,#0 adcs $g3,$h3,#0 adc $g4,$h4,#0 tst $g4,#4 @ did it carry/borrow? it ne movne $h0,$g0 ldr $g0,[$nonce,#0] it ne movne $h1,$g1 ldr $g1,[$nonce,#4] it ne movne $h2,$g2 ldr $g2,[$nonce,#8] it ne movne $h3,$g3 ldr $g3,[$nonce,#12] adds $h0,$h0,$g0 @ accumulate nonce adcs $h1,$h1,$g1 adcs $h2,$h2,$g2 adc $h3,$h3,$g3 # ifdef __ARMEB__ rev $h0,$h0 rev $h1,$h1 rev $h2,$h2 rev $h3,$h3 # endif str $h0,[$mac,#0] @ store the result str $h1,[$mac,#4] str $h2,[$mac,#8] str $h3,[$mac,#12] ldmia sp!,{r4-r11} ret @ bx lr .size poly1305_emit_neon,.-poly1305_emit_neon .align 5 .Lzeros: .long 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 .LOPENSSL_armcap: .word OPENSSL_armcap_P-.Lpoly1305_init #endif ___ } } $code.=<<___; .asciz "Poly1305 for ARMv4/NEON, CRYPTOGAMS by " .align 2 #if __ARM_MAX_ARCH__>=7 .comm OPENSSL_armcap_P,4,4 #endif ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or s/\bret\b/bx lr/go or s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/poly1305/asm/poly1305-armv8.pl000077500000000000000000000521361364063235100216400ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for ARMv8. # # June 2015 # # Numbers are cycles per processed byte with poly1305_blocks alone. # # IALU/gcc-4.9 NEON # # Apple A7 1.86/+5% 0.72 # Cortex-A53 2.69/+58% 1.47 # Cortex-A57 2.70/+7% 1.14 # Denver 1.64/+50% 1.18(*) # X-Gene 2.13/+68% 2.27 # Mongoose 1.77/+75% 1.12 # Kryo 2.70/+55% 1.13 # # (*) estimate based on resources availability is less than 1.0, # i.e. measured result is worse than expected, presumably binary # translator is not almighty; $flavour=shift; $output=shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; my ($ctx,$inp,$len,$padbit) = map("x$_",(0..3)); my ($mac,$nonce)=($inp,$len); my ($h0,$h1,$h2,$r0,$r1,$s1,$t0,$t1,$d0,$d1,$d2) = map("x$_",(4..14)); $code.=<<___; #include "arm_arch.h" .text // forward "declarations" are required for Apple .extern OPENSSL_armcap_P .globl poly1305_blocks .globl poly1305_emit .globl poly1305_init .type poly1305_init,%function .align 5 poly1305_init: cmp $inp,xzr stp xzr,xzr,[$ctx] // zero hash value stp xzr,xzr,[$ctx,#16] // [along with is_base2_26] csel x0,xzr,x0,eq b.eq .Lno_key #ifdef __ILP32__ ldrsw $t1,.LOPENSSL_armcap_P #else ldr $t1,.LOPENSSL_armcap_P #endif adr $t0,.LOPENSSL_armcap_P ldp $r0,$r1,[$inp] // load key mov $s1,#0xfffffffc0fffffff movk $s1,#0x0fff,lsl#48 ldr w17,[$t0,$t1] #ifdef __ARMEB__ rev $r0,$r0 // flip bytes rev $r1,$r1 #endif and $r0,$r0,$s1 // &=0ffffffc0fffffff and $s1,$s1,#-4 and $r1,$r1,$s1 // &=0ffffffc0ffffffc stp $r0,$r1,[$ctx,#32] // save key value tst w17,#ARMV7_NEON adr $d0,poly1305_blocks adr $r0,poly1305_blocks_neon adr $d1,poly1305_emit adr $r1,poly1305_emit_neon csel $d0,$d0,$r0,eq csel $d1,$d1,$r1,eq #ifdef __ILP32__ stp w12,w13,[$len] #else stp $d0,$d1,[$len] #endif mov x0,#1 .Lno_key: ret .size poly1305_init,.-poly1305_init .type poly1305_blocks,%function .align 5 poly1305_blocks: ands $len,$len,#-16 b.eq .Lno_data ldp $h0,$h1,[$ctx] // load hash value ldp $r0,$r1,[$ctx,#32] // load key value ldr $h2,[$ctx,#16] add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) b .Loop .align 5 .Loop: ldp $t0,$t1,[$inp],#16 // load input sub $len,$len,#16 #ifdef __ARMEB__ rev $t0,$t0 rev $t1,$t1 #endif adds $h0,$h0,$t0 // accumulate input adcs $h1,$h1,$t1 mul $d0,$h0,$r0 // h0*r0 adc $h2,$h2,$padbit umulh $d1,$h0,$r0 mul $t0,$h1,$s1 // h1*5*r1 umulh $t1,$h1,$s1 adds $d0,$d0,$t0 mul $t0,$h0,$r1 // h0*r1 adc $d1,$d1,$t1 umulh $d2,$h0,$r1 adds $d1,$d1,$t0 mul $t0,$h1,$r0 // h1*r0 adc $d2,$d2,xzr umulh $t1,$h1,$r0 adds $d1,$d1,$t0 mul $t0,$h2,$s1 // h2*5*r1 adc $d2,$d2,$t1 mul $t1,$h2,$r0 // h2*r0 adds $d1,$d1,$t0 adc $d2,$d2,$t1 and $t0,$d2,#-4 // final reduction and $h2,$d2,#3 add $t0,$t0,$d2,lsr#2 adds $h0,$d0,$t0 adcs $h1,$d1,xzr adc $h2,$h2,xzr cbnz $len,.Loop stp $h0,$h1,[$ctx] // store hash value str $h2,[$ctx,#16] .Lno_data: ret .size poly1305_blocks,.-poly1305_blocks .type poly1305_emit,%function .align 5 poly1305_emit: ldp $h0,$h1,[$ctx] // load hash base 2^64 ldr $h2,[$ctx,#16] ldp $t0,$t1,[$nonce] // load nonce adds $d0,$h0,#5 // compare to modulus adcs $d1,$h1,xzr adc $d2,$h2,xzr tst $d2,#-4 // see if it's carried/borrowed csel $h0,$h0,$d0,eq csel $h1,$h1,$d1,eq #ifdef __ARMEB__ ror $t0,$t0,#32 // flip nonce words ror $t1,$t1,#32 #endif adds $h0,$h0,$t0 // accumulate nonce adc $h1,$h1,$t1 #ifdef __ARMEB__ rev $h0,$h0 // flip output bytes rev $h1,$h1 #endif stp $h0,$h1,[$mac] // write result ret .size poly1305_emit,.-poly1305_emit ___ my ($R0,$R1,$S1,$R2,$S2,$R3,$S3,$R4,$S4) = map("v$_.4s",(0..8)); my ($IN01_0,$IN01_1,$IN01_2,$IN01_3,$IN01_4) = map("v$_.2s",(9..13)); my ($IN23_0,$IN23_1,$IN23_2,$IN23_3,$IN23_4) = map("v$_.2s",(14..18)); my ($ACC0,$ACC1,$ACC2,$ACC3,$ACC4) = map("v$_.2d",(19..23)); my ($H0,$H1,$H2,$H3,$H4) = map("v$_.2s",(24..28)); my ($T0,$T1,$MASK) = map("v$_",(29..31)); my ($in2,$zeros)=("x16","x17"); my $is_base2_26 = $zeros; # borrow $code.=<<___; .type poly1305_mult,%function .align 5 poly1305_mult: mul $d0,$h0,$r0 // h0*r0 umulh $d1,$h0,$r0 mul $t0,$h1,$s1 // h1*5*r1 umulh $t1,$h1,$s1 adds $d0,$d0,$t0 mul $t0,$h0,$r1 // h0*r1 adc $d1,$d1,$t1 umulh $d2,$h0,$r1 adds $d1,$d1,$t0 mul $t0,$h1,$r0 // h1*r0 adc $d2,$d2,xzr umulh $t1,$h1,$r0 adds $d1,$d1,$t0 mul $t0,$h2,$s1 // h2*5*r1 adc $d2,$d2,$t1 mul $t1,$h2,$r0 // h2*r0 adds $d1,$d1,$t0 adc $d2,$d2,$t1 and $t0,$d2,#-4 // final reduction and $h2,$d2,#3 add $t0,$t0,$d2,lsr#2 adds $h0,$d0,$t0 adcs $h1,$d1,xzr adc $h2,$h2,xzr ret .size poly1305_mult,.-poly1305_mult .type poly1305_splat,%function .align 5 poly1305_splat: and x12,$h0,#0x03ffffff // base 2^64 -> base 2^26 ubfx x13,$h0,#26,#26 extr x14,$h1,$h0,#52 and x14,x14,#0x03ffffff ubfx x15,$h1,#14,#26 extr x16,$h2,$h1,#40 str w12,[$ctx,#16*0] // r0 add w12,w13,w13,lsl#2 // r1*5 str w13,[$ctx,#16*1] // r1 add w13,w14,w14,lsl#2 // r2*5 str w12,[$ctx,#16*2] // s1 str w14,[$ctx,#16*3] // r2 add w14,w15,w15,lsl#2 // r3*5 str w13,[$ctx,#16*4] // s2 str w15,[$ctx,#16*5] // r3 add w15,w16,w16,lsl#2 // r4*5 str w14,[$ctx,#16*6] // s3 str w16,[$ctx,#16*7] // r4 str w15,[$ctx,#16*8] // s4 ret .size poly1305_splat,.-poly1305_splat .type poly1305_blocks_neon,%function .align 5 poly1305_blocks_neon: ldr $is_base2_26,[$ctx,#24] cmp $len,#128 b.hs .Lblocks_neon cbz $is_base2_26,poly1305_blocks .Lblocks_neon: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-80]! add x29,sp,#0 ands $len,$len,#-16 b.eq .Lno_data_neon cbz $is_base2_26,.Lbase2_64_neon ldp w10,w11,[$ctx] // load hash value base 2^26 ldp w12,w13,[$ctx,#8] ldr w14,[$ctx,#16] tst $len,#31 b.eq .Leven_neon ldp $r0,$r1,[$ctx,#32] // load key value add $h0,x10,x11,lsl#26 // base 2^26 -> base 2^64 lsr $h1,x12,#12 adds $h0,$h0,x12,lsl#52 add $h1,$h1,x13,lsl#14 adc $h1,$h1,xzr lsr $h2,x14,#24 adds $h1,$h1,x14,lsl#40 adc $d2,$h2,xzr // can be partially reduced... ldp $d0,$d1,[$inp],#16 // load input sub $len,$len,#16 add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) and $t0,$d2,#-4 // ... so reduce and $h2,$d2,#3 add $t0,$t0,$d2,lsr#2 adds $h0,$h0,$t0 adcs $h1,$h1,xzr adc $h2,$h2,xzr #ifdef __ARMEB__ rev $d0,$d0 rev $d1,$d1 #endif adds $h0,$h0,$d0 // accumulate input adcs $h1,$h1,$d1 adc $h2,$h2,$padbit bl poly1305_mult ldr x30,[sp,#8] cbz $padbit,.Lstore_base2_64_neon and x10,$h0,#0x03ffffff // base 2^64 -> base 2^26 ubfx x11,$h0,#26,#26 extr x12,$h1,$h0,#52 and x12,x12,#0x03ffffff ubfx x13,$h1,#14,#26 extr x14,$h2,$h1,#40 cbnz $len,.Leven_neon stp w10,w11,[$ctx] // store hash value base 2^26 stp w12,w13,[$ctx,#8] str w14,[$ctx,#16] b .Lno_data_neon .align 4 .Lstore_base2_64_neon: stp $h0,$h1,[$ctx] // store hash value base 2^64 stp $h2,xzr,[$ctx,#16] // note that is_base2_26 is zeroed b .Lno_data_neon .align 4 .Lbase2_64_neon: ldp $r0,$r1,[$ctx,#32] // load key value ldp $h0,$h1,[$ctx] // load hash value base 2^64 ldr $h2,[$ctx,#16] tst $len,#31 b.eq .Linit_neon ldp $d0,$d1,[$inp],#16 // load input sub $len,$len,#16 add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) #ifdef __ARMEB__ rev $d0,$d0 rev $d1,$d1 #endif adds $h0,$h0,$d0 // accumulate input adcs $h1,$h1,$d1 adc $h2,$h2,$padbit bl poly1305_mult .Linit_neon: and x10,$h0,#0x03ffffff // base 2^64 -> base 2^26 ubfx x11,$h0,#26,#26 extr x12,$h1,$h0,#52 and x12,x12,#0x03ffffff ubfx x13,$h1,#14,#26 extr x14,$h2,$h1,#40 stp d8,d9,[sp,#16] // meet ABI requirements stp d10,d11,[sp,#32] stp d12,d13,[sp,#48] stp d14,d15,[sp,#64] fmov ${H0},x10 fmov ${H1},x11 fmov ${H2},x12 fmov ${H3},x13 fmov ${H4},x14 ////////////////////////////////// initialize r^n table mov $h0,$r0 // r^1 add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) mov $h1,$r1 mov $h2,xzr add $ctx,$ctx,#48+12 bl poly1305_splat bl poly1305_mult // r^2 sub $ctx,$ctx,#4 bl poly1305_splat bl poly1305_mult // r^3 sub $ctx,$ctx,#4 bl poly1305_splat bl poly1305_mult // r^4 sub $ctx,$ctx,#4 bl poly1305_splat ldr x30,[sp,#8] add $in2,$inp,#32 adr $zeros,.Lzeros subs $len,$len,#64 csel $in2,$zeros,$in2,lo mov x4,#1 str x4,[$ctx,#-24] // set is_base2_26 sub $ctx,$ctx,#48 // restore original $ctx b .Ldo_neon .align 4 .Leven_neon: add $in2,$inp,#32 adr $zeros,.Lzeros subs $len,$len,#64 csel $in2,$zeros,$in2,lo stp d8,d9,[sp,#16] // meet ABI requirements stp d10,d11,[sp,#32] stp d12,d13,[sp,#48] stp d14,d15,[sp,#64] fmov ${H0},x10 fmov ${H1},x11 fmov ${H2},x12 fmov ${H3},x13 fmov ${H4},x14 .Ldo_neon: ldp x8,x12,[$in2],#16 // inp[2:3] (or zero) ldp x9,x13,[$in2],#48 lsl $padbit,$padbit,#24 add x15,$ctx,#48 #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 and x5,x9,#0x03ffffff ubfx x6,x8,#26,#26 ubfx x7,x9,#26,#26 add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 extr x8,x12,x8,#52 extr x9,x13,x9,#52 add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 fmov $IN23_0,x4 and x8,x8,#0x03ffffff and x9,x9,#0x03ffffff ubfx x10,x12,#14,#26 ubfx x11,x13,#14,#26 add x12,$padbit,x12,lsr#40 add x13,$padbit,x13,lsr#40 add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 fmov $IN23_1,x6 add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 fmov $IN23_2,x8 fmov $IN23_3,x10 fmov $IN23_4,x12 ldp x8,x12,[$inp],#16 // inp[0:1] ldp x9,x13,[$inp],#48 ld1 {$R0,$R1,$S1,$R2},[x15],#64 ld1 {$S2,$R3,$S3,$R4},[x15],#64 ld1 {$S4},[x15] #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 and x5,x9,#0x03ffffff ubfx x6,x8,#26,#26 ubfx x7,x9,#26,#26 add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 extr x8,x12,x8,#52 extr x9,x13,x9,#52 add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 fmov $IN01_0,x4 and x8,x8,#0x03ffffff and x9,x9,#0x03ffffff ubfx x10,x12,#14,#26 ubfx x11,x13,#14,#26 add x12,$padbit,x12,lsr#40 add x13,$padbit,x13,lsr#40 add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 fmov $IN01_1,x6 add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 movi $MASK.2d,#-1 fmov $IN01_2,x8 fmov $IN01_3,x10 fmov $IN01_4,x12 ushr $MASK.2d,$MASK.2d,#38 b.ls .Lskip_loop .align 4 .Loop_neon: //////////////////////////////////////////////////////////////// // ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 // ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r // \___________________/ // ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 // ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r // \___________________/ \____________________/ // // Note that we start with inp[2:3]*r^2. This is because it // doesn't depend on reduction in previous iteration. //////////////////////////////////////////////////////////////// // d4 = h0*r4 + h1*r3 + h2*r2 + h3*r1 + h4*r0 // d3 = h0*r3 + h1*r2 + h2*r1 + h3*r0 + h4*5*r4 // d2 = h0*r2 + h1*r1 + h2*r0 + h3*5*r4 + h4*5*r3 // d1 = h0*r1 + h1*r0 + h2*5*r4 + h3*5*r3 + h4*5*r2 // d0 = h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1 subs $len,$len,#64 umull $ACC4,$IN23_0,${R4}[2] csel $in2,$zeros,$in2,lo umull $ACC3,$IN23_0,${R3}[2] umull $ACC2,$IN23_0,${R2}[2] ldp x8,x12,[$in2],#16 // inp[2:3] (or zero) umull $ACC1,$IN23_0,${R1}[2] ldp x9,x13,[$in2],#48 umull $ACC0,$IN23_0,${R0}[2] #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif umlal $ACC4,$IN23_1,${R3}[2] and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 umlal $ACC3,$IN23_1,${R2}[2] and x5,x9,#0x03ffffff umlal $ACC2,$IN23_1,${R1}[2] ubfx x6,x8,#26,#26 umlal $ACC1,$IN23_1,${R0}[2] ubfx x7,x9,#26,#26 umlal $ACC0,$IN23_1,${S4}[2] add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 umlal $ACC4,$IN23_2,${R2}[2] extr x8,x12,x8,#52 umlal $ACC3,$IN23_2,${R1}[2] extr x9,x13,x9,#52 umlal $ACC2,$IN23_2,${R0}[2] add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 umlal $ACC1,$IN23_2,${S4}[2] fmov $IN23_0,x4 umlal $ACC0,$IN23_2,${S3}[2] and x8,x8,#0x03ffffff umlal $ACC4,$IN23_3,${R1}[2] and x9,x9,#0x03ffffff umlal $ACC3,$IN23_3,${R0}[2] ubfx x10,x12,#14,#26 umlal $ACC2,$IN23_3,${S4}[2] ubfx x11,x13,#14,#26 umlal $ACC1,$IN23_3,${S3}[2] add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 umlal $ACC0,$IN23_3,${S2}[2] fmov $IN23_1,x6 add $IN01_2,$IN01_2,$H2 add x12,$padbit,x12,lsr#40 umlal $ACC4,$IN23_4,${R0}[2] add x13,$padbit,x13,lsr#40 umlal $ACC3,$IN23_4,${S4}[2] add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 umlal $ACC2,$IN23_4,${S3}[2] add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 umlal $ACC1,$IN23_4,${S2}[2] fmov $IN23_2,x8 umlal $ACC0,$IN23_4,${S1}[2] fmov $IN23_3,x10 //////////////////////////////////////////////////////////////// // (hash+inp[0:1])*r^4 and accumulate add $IN01_0,$IN01_0,$H0 fmov $IN23_4,x12 umlal $ACC3,$IN01_2,${R1}[0] ldp x8,x12,[$inp],#16 // inp[0:1] umlal $ACC0,$IN01_2,${S3}[0] ldp x9,x13,[$inp],#48 umlal $ACC4,$IN01_2,${R2}[0] umlal $ACC1,$IN01_2,${S4}[0] umlal $ACC2,$IN01_2,${R0}[0] #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif add $IN01_1,$IN01_1,$H1 umlal $ACC3,$IN01_0,${R3}[0] umlal $ACC4,$IN01_0,${R4}[0] and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 umlal $ACC2,$IN01_0,${R2}[0] and x5,x9,#0x03ffffff umlal $ACC0,$IN01_0,${R0}[0] ubfx x6,x8,#26,#26 umlal $ACC1,$IN01_0,${R1}[0] ubfx x7,x9,#26,#26 add $IN01_3,$IN01_3,$H3 add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 umlal $ACC3,$IN01_1,${R2}[0] extr x8,x12,x8,#52 umlal $ACC4,$IN01_1,${R3}[0] extr x9,x13,x9,#52 umlal $ACC0,$IN01_1,${S4}[0] add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 umlal $ACC2,$IN01_1,${R1}[0] fmov $IN01_0,x4 umlal $ACC1,$IN01_1,${R0}[0] and x8,x8,#0x03ffffff add $IN01_4,$IN01_4,$H4 and x9,x9,#0x03ffffff umlal $ACC3,$IN01_3,${R0}[0] ubfx x10,x12,#14,#26 umlal $ACC0,$IN01_3,${S2}[0] ubfx x11,x13,#14,#26 umlal $ACC4,$IN01_3,${R1}[0] add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 umlal $ACC1,$IN01_3,${S3}[0] fmov $IN01_1,x6 umlal $ACC2,$IN01_3,${S4}[0] add x12,$padbit,x12,lsr#40 umlal $ACC3,$IN01_4,${S4}[0] add x13,$padbit,x13,lsr#40 umlal $ACC0,$IN01_4,${S1}[0] add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 umlal $ACC4,$IN01_4,${R0}[0] add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 umlal $ACC1,$IN01_4,${S2}[0] fmov $IN01_2,x8 umlal $ACC2,$IN01_4,${S3}[0] fmov $IN01_3,x10 fmov $IN01_4,x12 ///////////////////////////////////////////////////////////////// // lazy reduction as discussed in "NEON crypto" by D.J. Bernstein // and P. Schwabe // // [see discussion in poly1305-armv4 module] ushr $T0.2d,$ACC3,#26 xtn $H3,$ACC3 ushr $T1.2d,$ACC0,#26 and $ACC0,$ACC0,$MASK.2d add $ACC4,$ACC4,$T0.2d // h3 -> h4 bic $H3,#0xfc,lsl#24 // &=0x03ffffff add $ACC1,$ACC1,$T1.2d // h0 -> h1 ushr $T0.2d,$ACC4,#26 xtn $H4,$ACC4 ushr $T1.2d,$ACC1,#26 xtn $H1,$ACC1 bic $H4,#0xfc,lsl#24 add $ACC2,$ACC2,$T1.2d // h1 -> h2 add $ACC0,$ACC0,$T0.2d shl $T0.2d,$T0.2d,#2 shrn $T1.2s,$ACC2,#26 xtn $H2,$ACC2 add $ACC0,$ACC0,$T0.2d // h4 -> h0 bic $H1,#0xfc,lsl#24 add $H3,$H3,$T1.2s // h2 -> h3 bic $H2,#0xfc,lsl#24 shrn $T0.2s,$ACC0,#26 xtn $H0,$ACC0 ushr $T1.2s,$H3,#26 bic $H3,#0xfc,lsl#24 bic $H0,#0xfc,lsl#24 add $H1,$H1,$T0.2s // h0 -> h1 add $H4,$H4,$T1.2s // h3 -> h4 b.hi .Loop_neon .Lskip_loop: dup $IN23_2,${IN23_2}[0] add $IN01_2,$IN01_2,$H2 //////////////////////////////////////////////////////////////// // multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 adds $len,$len,#32 b.ne .Long_tail dup $IN23_2,${IN01_2}[0] add $IN23_0,$IN01_0,$H0 add $IN23_3,$IN01_3,$H3 add $IN23_1,$IN01_1,$H1 add $IN23_4,$IN01_4,$H4 .Long_tail: dup $IN23_0,${IN23_0}[0] umull2 $ACC0,$IN23_2,${S3} umull2 $ACC3,$IN23_2,${R1} umull2 $ACC4,$IN23_2,${R2} umull2 $ACC2,$IN23_2,${R0} umull2 $ACC1,$IN23_2,${S4} dup $IN23_1,${IN23_1}[0] umlal2 $ACC0,$IN23_0,${R0} umlal2 $ACC2,$IN23_0,${R2} umlal2 $ACC3,$IN23_0,${R3} umlal2 $ACC4,$IN23_0,${R4} umlal2 $ACC1,$IN23_0,${R1} dup $IN23_3,${IN23_3}[0] umlal2 $ACC0,$IN23_1,${S4} umlal2 $ACC3,$IN23_1,${R2} umlal2 $ACC2,$IN23_1,${R1} umlal2 $ACC4,$IN23_1,${R3} umlal2 $ACC1,$IN23_1,${R0} dup $IN23_4,${IN23_4}[0] umlal2 $ACC3,$IN23_3,${R0} umlal2 $ACC4,$IN23_3,${R1} umlal2 $ACC0,$IN23_3,${S2} umlal2 $ACC1,$IN23_3,${S3} umlal2 $ACC2,$IN23_3,${S4} umlal2 $ACC3,$IN23_4,${S4} umlal2 $ACC0,$IN23_4,${S1} umlal2 $ACC4,$IN23_4,${R0} umlal2 $ACC1,$IN23_4,${S2} umlal2 $ACC2,$IN23_4,${S3} b.eq .Lshort_tail //////////////////////////////////////////////////////////////// // (hash+inp[0:1])*r^4:r^3 and accumulate add $IN01_0,$IN01_0,$H0 umlal $ACC3,$IN01_2,${R1} umlal $ACC0,$IN01_2,${S3} umlal $ACC4,$IN01_2,${R2} umlal $ACC1,$IN01_2,${S4} umlal $ACC2,$IN01_2,${R0} add $IN01_1,$IN01_1,$H1 umlal $ACC3,$IN01_0,${R3} umlal $ACC0,$IN01_0,${R0} umlal $ACC4,$IN01_0,${R4} umlal $ACC1,$IN01_0,${R1} umlal $ACC2,$IN01_0,${R2} add $IN01_3,$IN01_3,$H3 umlal $ACC3,$IN01_1,${R2} umlal $ACC0,$IN01_1,${S4} umlal $ACC4,$IN01_1,${R3} umlal $ACC1,$IN01_1,${R0} umlal $ACC2,$IN01_1,${R1} add $IN01_4,$IN01_4,$H4 umlal $ACC3,$IN01_3,${R0} umlal $ACC0,$IN01_3,${S2} umlal $ACC4,$IN01_3,${R1} umlal $ACC1,$IN01_3,${S3} umlal $ACC2,$IN01_3,${S4} umlal $ACC3,$IN01_4,${S4} umlal $ACC0,$IN01_4,${S1} umlal $ACC4,$IN01_4,${R0} umlal $ACC1,$IN01_4,${S2} umlal $ACC2,$IN01_4,${S3} .Lshort_tail: //////////////////////////////////////////////////////////////// // horizontal add addp $ACC3,$ACC3,$ACC3 ldp d8,d9,[sp,#16] // meet ABI requirements addp $ACC0,$ACC0,$ACC0 ldp d10,d11,[sp,#32] addp $ACC4,$ACC4,$ACC4 ldp d12,d13,[sp,#48] addp $ACC1,$ACC1,$ACC1 ldp d14,d15,[sp,#64] addp $ACC2,$ACC2,$ACC2 //////////////////////////////////////////////////////////////// // lazy reduction, but without narrowing ushr $T0.2d,$ACC3,#26 and $ACC3,$ACC3,$MASK.2d ushr $T1.2d,$ACC0,#26 and $ACC0,$ACC0,$MASK.2d add $ACC4,$ACC4,$T0.2d // h3 -> h4 add $ACC1,$ACC1,$T1.2d // h0 -> h1 ushr $T0.2d,$ACC4,#26 and $ACC4,$ACC4,$MASK.2d ushr $T1.2d,$ACC1,#26 and $ACC1,$ACC1,$MASK.2d add $ACC2,$ACC2,$T1.2d // h1 -> h2 add $ACC0,$ACC0,$T0.2d shl $T0.2d,$T0.2d,#2 ushr $T1.2d,$ACC2,#26 and $ACC2,$ACC2,$MASK.2d add $ACC0,$ACC0,$T0.2d // h4 -> h0 add $ACC3,$ACC3,$T1.2d // h2 -> h3 ushr $T0.2d,$ACC0,#26 and $ACC0,$ACC0,$MASK.2d ushr $T1.2d,$ACC3,#26 and $ACC3,$ACC3,$MASK.2d add $ACC1,$ACC1,$T0.2d // h0 -> h1 add $ACC4,$ACC4,$T1.2d // h3 -> h4 //////////////////////////////////////////////////////////////// // write the result, can be partially reduced st4 {$ACC0,$ACC1,$ACC2,$ACC3}[0],[$ctx],#16 st1 {$ACC4}[0],[$ctx] .Lno_data_neon: .inst 0xd50323bf // autiasp ldr x29,[sp],#80 ret .size poly1305_blocks_neon,.-poly1305_blocks_neon .type poly1305_emit_neon,%function .align 5 poly1305_emit_neon: ldr $is_base2_26,[$ctx,#24] cbz $is_base2_26,poly1305_emit ldp w10,w11,[$ctx] // load hash value base 2^26 ldp w12,w13,[$ctx,#8] ldr w14,[$ctx,#16] add $h0,x10,x11,lsl#26 // base 2^26 -> base 2^64 lsr $h1,x12,#12 adds $h0,$h0,x12,lsl#52 add $h1,$h1,x13,lsl#14 adc $h1,$h1,xzr lsr $h2,x14,#24 adds $h1,$h1,x14,lsl#40 adc $h2,$h2,xzr // can be partially reduced... ldp $t0,$t1,[$nonce] // load nonce and $d0,$h2,#-4 // ... so reduce add $d0,$d0,$h2,lsr#2 and $h2,$h2,#3 adds $h0,$h0,$d0 adcs $h1,$h1,xzr adc $h2,$h2,xzr adds $d0,$h0,#5 // compare to modulus adcs $d1,$h1,xzr adc $d2,$h2,xzr tst $d2,#-4 // see if it's carried/borrowed csel $h0,$h0,$d0,eq csel $h1,$h1,$d1,eq #ifdef __ARMEB__ ror $t0,$t0,#32 // flip nonce words ror $t1,$t1,#32 #endif adds $h0,$h0,$t0 // accumulate nonce adc $h1,$h1,$t1 #ifdef __ARMEB__ rev $h0,$h0 // flip output bytes rev $h1,$h1 #endif stp $h0,$h1,[$mac] // write result ret .size poly1305_emit_neon,.-poly1305_emit_neon .align 5 .Lzeros: .long 0,0,0,0,0,0,0,0 .LOPENSSL_armcap_P: #ifdef __ILP32__ .long OPENSSL_armcap_P-. #else .quad OPENSSL_armcap_P-. #endif .asciz "Poly1305 for ARMv8, CRYPTOGAMS by " .align 2 ___ foreach (split("\n",$code)) { s/\b(shrn\s+v[0-9]+)\.[24]d/$1.2s/ or s/\b(fmov\s+)v([0-9]+)[^,]*,\s*x([0-9]+)/$1d$2,x$3/ or (m/\bdup\b/ and (s/\.[24]s/.2d/g or 1)) or (m/\b(eor|and)/ and (s/\.[248][sdh]/.16b/g or 1)) or (m/\bum(ul|la)l\b/ and (s/\.4s/.2s/g or 1)) or (m/\bum(ul|la)l2\b/ and (s/\.2s/.4s/g or 1)) or (m/\bst[1-4]\s+{[^}]+}\[/ and (s/\.[24]d/.s/g or 1)); s/\.[124]([sd])\[/.$1\[/; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/asm/poly1305-c64xplus.pl000077500000000000000000000207701364063235100222720ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Poly1305 hash for C64x+. # # October 2015 # # Performance is [incredible for a 32-bit processor] 1.82 cycles per # processed byte. Comparison to compiler-generated code is problematic, # because results were observed to vary from 2.1 to 7.6 cpb depending # on compiler's ability to inline small functions. Compiler also # disables interrupts for some reason, thus making interrupt response # time dependent on input length. This module on the other hand is free # from such limitation. $output=pop; open STDOUT,">$output"; ($CTXA,$INPB,$LEN,$PADBIT)=("A4","B4","A6","B6"); ($H0,$H1,$H2,$H3,$H4,$H4a)=("A8","B8","A10","B10","B2",$LEN); ($D0,$D1,$D2,$D3)= ("A9","B9","A11","B11"); ($R0,$R1,$R2,$R3,$S1,$S2,$S3,$S3b)=("A0","B0","A1","B1","A12","B12","A13","B13"); ($THREE,$R0b,$S2a)=("B7","B5","A5"); $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .asg poly1305_init,_poly1305_init .asg poly1305_blocks,_poly1305_blocks .asg poly1305_emit,_poly1305_emit .endif .asg B3,RA .asg A15,FP .asg B15,SP .if .LITTLE_ENDIAN .asg MV,SWAP2 .asg MV.L,SWAP4 .endif .global _poly1305_init _poly1305_init: .asmfunc LDNDW *${INPB}[0],B17:B16 ; load key material LDNDW *${INPB}[1],A17:A16 || ZERO B9:B8 || MVK -1,B0 STDW B9:B8,*${CTXA}[0] ; initialize h1:h0 || SHRU B0,4,B0 ; 0x0fffffff || MVK -4,B1 STDW B9:B8,*${CTXA}[1] ; initialize h3:h2 || AND B0,B1,B1 ; 0x0ffffffc STW B8,*${CTXA}[4] ; initialize h4 .if .BIG_ENDIAN SWAP2 B16,B17 || SWAP2 B17,B16 SWAP2 A16,A17 || SWAP2 A17,A16 SWAP4 B16,B16 || SWAP4 A16,A16 SWAP4 B17,B17 || SWAP4 A17,A17 .endif AND B16,B0,B20 ; r0 = key[0] & 0x0fffffff || AND B17,B1,B22 ; r1 = key[1] & 0x0ffffffc || EXTU B17,4,6,B16 ; r1>>2 AND A16,B1,B21 ; r2 = key[2] & 0x0ffffffc || AND A17,B1,A23 ; r3 = key[3] & 0x0ffffffc || BNOP RA SHRU B21,2,B18 || ADD B22,B16,B16 ; s1 = r1 + r1>>2 STDW B21:B20,*${CTXA}[3] ; save r2:r0 || ADD B21,B18,B18 ; s2 = r2 + r2>>2 || SHRU A23,2,B17 || MV A23,B23 STDW B23:B22,*${CTXA}[4] ; save r3:r1 || ADD B23,B17,B19 ; s3 = r3 + r3>>2 || ADD B23,B17,B17 ; s3 = r3 + r3>>2 STDW B17:B16,*${CTXA}[5] ; save s3:s1 STDW B19:B18,*${CTXA}[6] ; save s3:s2 || ZERO A4 ; return 0 .endasmfunc .global _poly1305_blocks .align 32 _poly1305_blocks: .asmfunc stack_usage(40) SHRU $LEN,4,A2 ; A2 is loop counter, number of blocks [!A2] BNOP RA ; no data || [A2] STW FP,*SP--(40) ; save frame pointer and alloca(40) || [A2] MV SP,FP [A2] STDW B13:B12,*SP[4] ; ABI says so || [A2] MV $CTXA,$S3b ; borrow $S3b [A2] STDW B11:B10,*SP[3] || [A2] STDW A13:A12,*FP[-3] [A2] STDW A11:A10,*FP[-4] || [A2] LDDW *${S3b}[0],B25:B24 ; load h1:h0 [A2] LDNW *${INPB}++[4],$D0 ; load inp[0] [A2] LDNW *${INPB}[-3],$D1 ; load inp[1] LDDW *${CTXA}[1],B29:B28 ; load h3:h2, B28 is h2 LDNW *${INPB}[-2],$D2 ; load inp[2] LDNW *${INPB}[-1],$D3 ; load inp[3] LDDW *${CTXA}[3],$R2:$R0 ; load r2:r0 || LDDW *${S3b}[4],$R3:$R1 ; load r3:r1 || SWAP2 $D0,$D0 LDDW *${CTXA}[5],$S3:$S1 ; load s3:s1 || LDDW *${S3b}[6],$S3b:$S2 ; load s3:s2 || SWAP4 $D0,$D0 || SWAP2 $D1,$D1 ADDU $D0,B24,$D0:$H0 ; h0+=inp[0] || ADD $D0,B24,B27 ; B-copy of h0+inp[0] || SWAP4 $D1,$D1 ADDU $D1,B25,$D1:$H1 ; h1+=inp[1] || MVK 3,$THREE || SWAP2 $D2,$D2 LDW *${CTXA}[4],$H4 ; load h4 || SWAP4 $D2,$D2 || MV B29,B30 ; B30 is h3 MV $R0,$R0b loop?: MPY32U $H0,$R0,A17:A16 || MPY32U B27,$R1,B17:B16 ; MPY32U $H0,$R1,B17:B16 || ADDU $D0,$D1:$H1,B25:B24 ; ADDU $D0,$D1:$H1,$D1:$H1 || ADDU $D2,B28,$D2:$H2 ; h2+=inp[2] || SWAP2 $D3,$D3 MPY32U $H0,$R2,A19:A18 || MPY32U B27,$R3,B19:B18 ; MPY32U $H0,$R3,B19:B18 || ADD $D0,$H1,A24 ; A-copy of B24 || SWAP4 $D3,$D3 || [A2] SUB A2,1,A2 ; decrement loop counter MPY32U A24,$S3,A21:A20 ; MPY32U $H1,$S3,A21:A20 || MPY32U B24,$R0b,B21:B20 ; MPY32U $H1,$R0,B21:B20 || ADDU B25,$D2:$H2,$D2:$H2 ; ADDU $D1,$D2:$H2,$D2:$H2 || ADDU $D3,B30,$D3:$H3 ; h3+=inp[3] || ADD B25,$H2,B25 ; B-copy of $H2 MPY32U A24,$R1,A23:A22 ; MPY32U $H1,$R1,A23:A22 || MPY32U B24,$R2,B23:B22 ; MPY32U $H1,$R2,B23:B22 MPY32U $H2,$S2,A25:A24 || MPY32U B25,$S3b,B25:B24 ; MPY32U $H2,$S3,B25:B24 || ADDU $D2,$D3:$H3,$D3:$H3 || ADD $PADBIT,$H4,$H4 ; h4+=padbit MPY32U $H2,$R0,A27:A26 || MPY32U $H2,$R1,B27:B26 || ADD $D3,$H4,$H4 || MV $S2,$S2a MPY32U $H3,$S1,A29:A28 || MPY32U $H3,$S2,B29:B28 || ADD A21,A17,A21 ; start accumulating "d3:d0" || ADD B21,B17,B21 || ADDU A20,A16,A17:A16 || ADDU B20,B16,B17:B16 || [A2] LDNW *${INPB}++[4],$D0 ; load inp[0] MPY32U $H3,$S3,A31:A30 || MPY32U $H3,$R0b,B31:B30 || ADD A23,A19,A23 || ADD B23,B19,B23 || ADDU A22,A18,A19:A18 || ADDU B22,B18,B19:B18 || [A2] LDNW *${INPB}[-3],$D1 ; load inp[1] MPY32 $H4,$S1,B20 || MPY32 $H4,$S2a,A20 || ADD A25,A21,A21 || ADD B25,B21,B21 || ADDU A24,A17:A16,A17:A16 || ADDU B24,B17:B16,B17:B16 || [A2] LDNW *${INPB}[-2],$D2 ; load inp[2] MPY32 $H4,$S3b,B22 || ADD A27,A23,A23 || ADD B27,B23,B23 || ADDU A26,A19:A18,A19:A18 || ADDU B26,B19:B18,B19:B18 || [A2] LDNW *${INPB}[-1],$D3 ; load inp[3] MPY32 $H4,$R0b,$H4 || ADD A29,A21,A21 ; final hi("d0") || ADD B29,B21,B21 ; final hi("d1") || ADDU A28,A17:A16,A17:A16 ; final lo("d0") || ADDU B28,B17:B16,B17:B16 ADD A31,A23,A23 ; final hi("d2") || ADD B31,B23,B23 ; final hi("d3") || ADDU A30,A19:A18,A19:A18 || ADDU B30,B19:B18,B19:B18 ADDU B20,B17:B16,B17:B16 ; final lo("d1") || ADDU A20,A19:A18,A19:A18 ; final lo("d2") ADDU B22,B19:B18,B19:B18 ; final lo("d3") || ADD A17,A21,A21 ; "flatten" "d3:d0" MV A19,B29 ; move to avoid cross-path stalls ADDU A21,B17:B16,B27:B26 ; B26 is h1 ADD B21,B27,B27 || DMV B29,A18,B29:B28 ; move to avoid cross-path stalls ADDU B27,B29:B28,B29:B28 ; B28 is h2 || [A2] SWAP2 $D0,$D0 ADD A23,B29,B29 || [A2] SWAP4 $D0,$D0 ADDU B29,B19:B18,B31:B30 ; B30 is h3 ADD B23,B31,B31 || MV A16,B24 ; B24 is h0 || [A2] SWAP2 $D1,$D1 ADD B31,$H4,$H4 || [A2] SWAP4 $D1,$D1 SHRU $H4,2,B16 ; last reduction step || AND $H4,$THREE,$H4 ADDAW B16,B16,B16 ; 5*(h4>>2) || [A2] BNOP loop? ADDU B24,B16,B25:B24 ; B24 is h0 || [A2] SWAP2 $D2,$D2 ADDU B26,B25,B27:B26 ; B26 is h1 || [A2] SWAP4 $D2,$D2 ADDU B28,B27,B29:B28 ; B28 is h2 || [A2] ADDU $D0,B24,$D0:$H0 ; h0+=inp[0] || [A2] ADD $D0,B24,B27 ; B-copy of h0+inp[0] ADDU B30,B29,B31:B30 ; B30 is h3 ADD B31,$H4,$H4 || [A2] ADDU $D1,B26,$D1:$H1 ; h1+=inp[1] ;;===== branch to loop? is taken here LDDW *FP[-4],A11:A10 ; ABI says so LDDW *FP[-3],A13:A12 || LDDW *SP[3],B11:B10 LDDW *SP[4],B13:B12 || MV B26,B25 || BNOP RA LDW *++SP(40),FP ; restore frame pointer || MV B30,B29 STDW B25:B24,*${CTXA}[0] ; save h1:h0 STDW B29:B28,*${CTXA}[1] ; save h3:h2 STW $H4,*${CTXA}[4] ; save h4 NOP 1 .endasmfunc ___ { my ($MAC,$NONCEA,$NONCEB)=($INPB,$LEN,$PADBIT); $code.=<<___; .global _poly1305_emit .align 32 _poly1305_emit: .asmfunc LDDW *${CTXA}[0],A17:A16 ; load h1:h0 LDDW *${CTXA}[1],A19:A18 ; load h3:h2 LDW *${CTXA}[4],A20 ; load h4 MV $NONCEA,$NONCEB MVK 5,A22 ; compare to modulus ADDU A16,A22,A23:A22 || LDW *${NONCEA}[0],A8 || LDW *${NONCEB}[1],B8 ADDU A17,A23,A25:A24 || LDW *${NONCEA}[2],A9 || LDW *${NONCEB}[3],B9 ADDU A19,A25,A27:A26 ADDU A19,A27,A29:A28 ADD A20,A29,A29 SHRU A29,2,A2 ; check for overflow in 130-th bit [A2] MV A22,A16 ; select || [A2] MV A24,A17 [A2] MV A26,A18 || [A2] MV A28,A19 || ADDU A8,A16,A23:A22 ; accumulate nonce ADDU B8,A17,A25:A24 || SWAP2 A22,A22 ADDU A23,A25:A24,A25:A24 ADDU A9,A18,A27:A26 || SWAP2 A24,A24 ADDU A25,A27:A26,A27:A26 || ADD B9,A19,A28 ADD A27,A28,A28 || SWAP2 A26,A26 .if .BIG_ENDIAN SWAP2 A28,A28 || SWAP4 A22,A22 || SWAP4 A24,B24 SWAP4 A26,A26 SWAP4 A28,A28 || MV B24,A24 .endif BNOP RA,1 STNW A22,*${MAC}[0] ; write the result STNW A24,*${MAC}[1] STNW A26,*${MAC}[2] STNW A28,*${MAC}[3] .endasmfunc ___ } $code.=<<___; .sect .const .cstring "Poly1305 for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; openssl-1.1.1f/crypto/poly1305/asm/poly1305-mips.pl000077500000000000000000000216011364063235100215440ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # Poly1305 hash for MIPS64. # # May 2016 # # Numbers are cycles per processed byte with poly1305_blocks alone. # # IALU/gcc # R1x000 5.64/+120% (big-endian) # Octeon II 3.80/+280% (little-endian) ###################################################################### # There is a number of MIPS ABI in use, O32 and N32/64 are most # widely used. Then there is a new contender: NUBI. It appears that if # one picks the latter, it's possible to arrange code in ABI neutral # manner. Therefore let's stick to NUBI register layout: # ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); # # The return value is placed in $a0. Following coding rules facilitate # interoperability: # # - never ever touch $tp, "thread pointer", former $gp [o32 can be # excluded from the rule, because it's specified volatile]; # - copy return value to $t0, former $v0 [or to $a0 if you're adapting # old code]; # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; # # For reference here is register layout for N32/64 MIPS ABIs: # # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); # # # ###################################################################### $flavour = shift || "o32"; # supported flavours are o32,n32,64,nubi32,nubi64 die "MIPS64 only" unless ($flavour =~ /64|n32/i); $v0 = ($flavour =~ /nubi/i) ? $a0 : $t0; $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? "0x0003f000" : "0x00030000"; ($ctx,$inp,$len,$padbit) = ($a0,$a1,$a2,$a3); ($in0,$in1,$tmp0,$tmp1,$tmp2,$tmp3,$tmp4) = ($a4,$a5,$a6,$a7,$at,$t0,$t1); $code.=<<___; #include "mips_arch.h" #ifdef MIPSEB # define MSB 0 # define LSB 7 #else # define MSB 7 # define LSB 0 #endif .text .set noat .set noreorder .align 5 .globl poly1305_init .ent poly1305_init poly1305_init: .frame $sp,0,$ra .set reorder sd $zero,0($ctx) sd $zero,8($ctx) sd $zero,16($ctx) beqz $inp,.Lno_key #if defined(_MIPS_ARCH_MIPS64R6) ld $in0,0($inp) ld $in1,8($inp) #else ldl $in0,0+MSB($inp) ldl $in1,8+MSB($inp) ldr $in0,0+LSB($inp) ldr $in1,8+LSB($inp) #endif #ifdef MIPSEB # if defined(_MIPS_ARCH_MIPS64R2) dsbh $in0,$in0 # byte swap dsbh $in1,$in1 dshd $in0,$in0 dshd $in1,$in1 # else ori $tmp0,$zero,0xFF dsll $tmp2,$tmp0,32 or $tmp0,$tmp2 # 0x000000FF000000FF and $tmp1,$in0,$tmp0 # byte swap and $tmp3,$in1,$tmp0 dsrl $tmp2,$in0,24 dsrl $tmp4,$in1,24 dsll $tmp1,24 dsll $tmp3,24 and $tmp2,$tmp0 and $tmp4,$tmp0 dsll $tmp0,8 # 0x0000FF000000FF00 or $tmp1,$tmp2 or $tmp3,$tmp4 and $tmp2,$in0,$tmp0 and $tmp4,$in1,$tmp0 dsrl $in0,8 dsrl $in1,8 dsll $tmp2,8 dsll $tmp4,8 and $in0,$tmp0 and $in1,$tmp0 or $tmp1,$tmp2 or $tmp3,$tmp4 or $in0,$tmp1 or $in1,$tmp3 dsrl $tmp1,$in0,32 dsrl $tmp3,$in1,32 dsll $in0,32 dsll $in1,32 or $in0,$tmp1 or $in1,$tmp3 # endif #endif li $tmp0,1 dsll $tmp0,32 daddiu $tmp0,-63 dsll $tmp0,28 daddiu $tmp0,-1 # 0ffffffc0fffffff and $in0,$tmp0 daddiu $tmp0,-3 # 0ffffffc0ffffffc and $in1,$tmp0 sd $in0,24($ctx) dsrl $tmp0,$in1,2 sd $in1,32($ctx) daddu $tmp0,$in1 # s1 = r1 + (r1 >> 2) sd $tmp0,40($ctx) .Lno_key: li $v0,0 # return 0 jr $ra .end poly1305_init ___ { my ($h0,$h1,$h2,$r0,$r1,$s1,$d0,$d1,$d2) = ($s0,$s1,$s2,$s3,$s4,$s5,$in0,$in1,$t2); $code.=<<___; .align 5 .globl poly1305_blocks .ent poly1305_blocks poly1305_blocks: .set noreorder dsrl $len,4 # number of complete blocks bnez $len,poly1305_blocks_internal nop jr $ra nop .end poly1305_blocks .align 5 .ent poly1305_blocks_internal poly1305_blocks_internal: .frame $sp,6*8,$ra .mask $SAVED_REGS_MASK,-8 .set noreorder dsubu $sp,6*8 sd $s5,40($sp) sd $s4,32($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue sd $s3,24($sp) sd $s2,16($sp) sd $s1,8($sp) sd $s0,0($sp) ___ $code.=<<___; .set reorder ld $h0,0($ctx) # load hash value ld $h1,8($ctx) ld $h2,16($ctx) ld $r0,24($ctx) # load key ld $r1,32($ctx) ld $s1,40($ctx) .Loop: #if defined(_MIPS_ARCH_MIPS64R6) ld $in0,0($inp) # load input ld $in1,8($inp) #else ldl $in0,0+MSB($inp) # load input ldl $in1,8+MSB($inp) ldr $in0,0+LSB($inp) ldr $in1,8+LSB($inp) #endif daddiu $len,-1 daddiu $inp,16 #ifdef MIPSEB # if defined(_MIPS_ARCH_MIPS64R2) dsbh $in0,$in0 # byte swap dsbh $in1,$in1 dshd $in0,$in0 dshd $in1,$in1 # else ori $tmp0,$zero,0xFF dsll $tmp2,$tmp0,32 or $tmp0,$tmp2 # 0x000000FF000000FF and $tmp1,$in0,$tmp0 # byte swap and $tmp3,$in1,$tmp0 dsrl $tmp2,$in0,24 dsrl $tmp4,$in1,24 dsll $tmp1,24 dsll $tmp3,24 and $tmp2,$tmp0 and $tmp4,$tmp0 dsll $tmp0,8 # 0x0000FF000000FF00 or $tmp1,$tmp2 or $tmp3,$tmp4 and $tmp2,$in0,$tmp0 and $tmp4,$in1,$tmp0 dsrl $in0,8 dsrl $in1,8 dsll $tmp2,8 dsll $tmp4,8 and $in0,$tmp0 and $in1,$tmp0 or $tmp1,$tmp2 or $tmp3,$tmp4 or $in0,$tmp1 or $in1,$tmp3 dsrl $tmp1,$in0,32 dsrl $tmp3,$in1,32 dsll $in0,32 dsll $in1,32 or $in0,$tmp1 or $in1,$tmp3 # endif #endif daddu $h0,$in0 # accumulate input daddu $h1,$in1 sltu $tmp0,$h0,$in0 sltu $tmp1,$h1,$in1 daddu $h1,$tmp0 dmultu ($r0,$h0) # h0*r0 daddu $h2,$padbit sltu $tmp0,$h1,$tmp0 mflo ($d0,$r0,$h0) mfhi ($d1,$r0,$h0) dmultu ($s1,$h1) # h1*5*r1 daddu $tmp0,$tmp1 daddu $h2,$tmp0 mflo ($tmp0,$s1,$h1) mfhi ($tmp1,$s1,$h1) dmultu ($r1,$h0) # h0*r1 daddu $d0,$tmp0 daddu $d1,$tmp1 mflo ($tmp2,$r1,$h0) mfhi ($d2,$r1,$h0) sltu $tmp0,$d0,$tmp0 daddu $d1,$tmp0 dmultu ($r0,$h1) # h1*r0 daddu $d1,$tmp2 sltu $tmp2,$d1,$tmp2 mflo ($tmp0,$r0,$h1) mfhi ($tmp1,$r0,$h1) daddu $d2,$tmp2 dmultu ($s1,$h2) # h2*5*r1 daddu $d1,$tmp0 daddu $d2,$tmp1 mflo ($tmp2,$s1,$h2) dmultu ($r0,$h2) # h2*r0 sltu $tmp0,$d1,$tmp0 daddu $d2,$tmp0 mflo ($tmp3,$r0,$h2) daddu $d1,$tmp2 daddu $d2,$tmp3 sltu $tmp2,$d1,$tmp2 daddu $d2,$tmp2 li $tmp0,-4 # final reduction and $tmp0,$d2 dsrl $tmp1,$d2,2 andi $h2,$d2,3 daddu $tmp0,$tmp1 daddu $h0,$d0,$tmp0 sltu $tmp0,$h0,$tmp0 daddu $h1,$d1,$tmp0 sltu $tmp0,$h1,$tmp0 daddu $h2,$h2,$tmp0 bnez $len,.Loop sd $h0,0($ctx) # store hash value sd $h1,8($ctx) sd $h2,16($ctx) .set noreorder ld $s5,40($sp) # epilogue ld $s4,32($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi epilogue ld $s3,24($sp) ld $s2,16($sp) ld $s1,8($sp) ld $s0,0($sp) ___ $code.=<<___; jr $ra daddu $sp,6*8 .end poly1305_blocks_internal ___ } { my ($ctx,$mac,$nonce) = ($a0,$a1,$a2); $code.=<<___; .align 5 .globl poly1305_emit .ent poly1305_emit poly1305_emit: .frame $sp,0,$ra .set reorder ld $tmp0,0($ctx) ld $tmp1,8($ctx) ld $tmp2,16($ctx) daddiu $in0,$tmp0,5 # compare to modulus sltiu $tmp3,$in0,5 daddu $in1,$tmp1,$tmp3 sltu $tmp3,$in1,$tmp3 daddu $tmp2,$tmp2,$tmp3 dsrl $tmp2,2 # see if it carried/borrowed dsubu $tmp2,$zero,$tmp2 nor $tmp3,$zero,$tmp2 and $in0,$tmp2 and $tmp0,$tmp3 and $in1,$tmp2 and $tmp1,$tmp3 or $in0,$tmp0 or $in1,$tmp1 lwu $tmp0,0($nonce) # load nonce lwu $tmp1,4($nonce) lwu $tmp2,8($nonce) lwu $tmp3,12($nonce) dsll $tmp1,32 dsll $tmp3,32 or $tmp0,$tmp1 or $tmp2,$tmp3 daddu $in0,$tmp0 # accumulate nonce daddu $in1,$tmp2 sltu $tmp0,$in0,$tmp0 daddu $in1,$tmp0 dsrl $tmp0,$in0,8 # write mac value dsrl $tmp1,$in0,16 dsrl $tmp2,$in0,24 sb $in0,0($mac) dsrl $tmp3,$in0,32 sb $tmp0,1($mac) dsrl $tmp0,$in0,40 sb $tmp1,2($mac) dsrl $tmp1,$in0,48 sb $tmp2,3($mac) dsrl $tmp2,$in0,56 sb $tmp3,4($mac) dsrl $tmp3,$in1,8 sb $tmp0,5($mac) dsrl $tmp0,$in1,16 sb $tmp1,6($mac) dsrl $tmp1,$in1,24 sb $tmp2,7($mac) sb $in1,8($mac) dsrl $tmp2,$in1,32 sb $tmp3,9($mac) dsrl $tmp3,$in1,40 sb $tmp0,10($mac) dsrl $tmp0,$in1,48 sb $tmp1,11($mac) dsrl $tmp1,$in1,56 sb $tmp2,12($mac) sb $tmp3,13($mac) sb $tmp0,14($mac) sb $tmp1,15($mac) jr $ra .end poly1305_emit .rdata .asciiz "Poly1305 for MIPS64, CRYPTOGAMS by " .align 2 ___ } $output=pop and open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/asm/poly1305-ppc.pl000077500000000000000000000325471364063235100213710ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for PowerPC. # # June 2015 # # Numbers are cycles per processed byte with poly1305_blocks alone, # and improvement coefficients relative to gcc-generated code. # # -m32 -m64 # # Freescale e300 14.8/+80% - # PPC74x0 7.60/+60% - # PPC970 7.00/+114% 3.51/+205% # POWER7 3.75/+260% 1.93/+100% # POWER8 - 2.03/+200% # POWER9 - 2.00/+150% # # Do we need floating-point implementation for PPC? Results presented # in poly1305_ieee754.c are tricky to compare to, because they are for # compiler-generated code. On the other hand it's known that floating- # point performance can be dominated by FPU latency, which means that # there is limit even for ideally optimized (and even vectorized) code. # And this limit is estimated to be higher than above -m64 results. Or # in other words floating-point implementation can be meaningful to # consider only in 32-bit application context. We probably have to # recognize that 32-bit builds are getting less popular on high-end # systems and therefore tend to target embedded ones, which might not # even have FPU... # # On side note, Power ISA 2.07 enables vector base 2^26 implementation, # and POWER8 might have capacity to break 1.0 cycle per byte barrier... $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $UCMP ="cmpld"; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $UCMP ="cmplw"; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; } else { die "nonsense $flavour"; } # Define endianness based on flavour # i.e.: linux64le $LITTLE_ENDIAN = ($flavour=~/le$/) ? $SIZE_T : 0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=24*$SIZE_T; $sp="r1"; my ($ctx,$inp,$len,$padbit) = map("r$_",(3..6)); my ($mac,$nonce)=($inp,$len); my $mask = "r0"; $code=<<___; .machine "any" .text ___ if ($flavour =~ /64/) { ############################################################################### # base 2^64 implementation my ($h0,$h1,$h2,$d0,$d1,$d2, $r0,$r1,$s1, $t0,$t1) = map("r$_",(7..12,27..31)); $code.=<<___; .globl .poly1305_init_int .align 4 .poly1305_init_int: xor r0,r0,r0 std r0,0($ctx) # zero hash value std r0,8($ctx) std r0,16($ctx) $UCMP $inp,r0 beq- Lno_key ___ $code.=<<___ if ($LITTLE_ENDIAN); ld $d0,0($inp) # load key material ld $d1,8($inp) ___ $code.=<<___ if (!$LITTLE_ENDIAN); li $h0,4 lwbrx $d0,0,$inp # load key material li $d1,8 lwbrx $h0,$h0,$inp li $h1,12 lwbrx $d1,$d1,$inp lwbrx $h1,$h1,$inp insrdi $d0,$h0,32,0 insrdi $d1,$h1,32,0 ___ $code.=<<___; lis $h1,0xfff # 0x0fff0000 ori $h1,$h1,0xfffc # 0x0ffffffc insrdi $h1,$h1,32,0 # 0x0ffffffc0ffffffc ori $h0,$h1,3 # 0x0ffffffc0fffffff and $d0,$d0,$h0 and $d1,$d1,$h1 std $d0,32($ctx) # store key std $d1,40($ctx) Lno_key: xor r3,r3,r3 blr .long 0 .byte 0,12,0x14,0,0,0,2,0 .size .poly1305_init_int,.-.poly1305_init_int .globl .poly1305_blocks .align 4 .poly1305_blocks: srdi. $len,$len,4 beq- Labort $STU $sp,-$FRAME($sp) mflr r0 $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) ld $r0,32($ctx) # load key ld $r1,40($ctx) ld $h0,0($ctx) # load hash value ld $h1,8($ctx) ld $h2,16($ctx) srdi $s1,$r1,2 mtctr $len add $s1,$s1,$r1 # s1 = r1 + r1>>2 li $mask,3 b Loop .align 4 Loop: ___ $code.=<<___ if ($LITTLE_ENDIAN); ld $t0,0($inp) # load input ld $t1,8($inp) ___ $code.=<<___ if (!$LITTLE_ENDIAN); li $d0,4 lwbrx $t0,0,$inp # load input li $t1,8 lwbrx $d0,$d0,$inp li $d1,12 lwbrx $t1,$t1,$inp lwbrx $d1,$d1,$inp insrdi $t0,$d0,32,0 insrdi $t1,$d1,32,0 ___ $code.=<<___; addi $inp,$inp,16 addc $h0,$h0,$t0 # accumulate input adde $h1,$h1,$t1 mulld $d0,$h0,$r0 # h0*r0 mulhdu $d1,$h0,$r0 adde $h2,$h2,$padbit mulld $t0,$h1,$s1 # h1*5*r1 mulhdu $t1,$h1,$s1 addc $d0,$d0,$t0 adde $d1,$d1,$t1 mulld $t0,$h0,$r1 # h0*r1 mulhdu $d2,$h0,$r1 addc $d1,$d1,$t0 addze $d2,$d2 mulld $t0,$h1,$r0 # h1*r0 mulhdu $t1,$h1,$r0 addc $d1,$d1,$t0 adde $d2,$d2,$t1 mulld $t0,$h2,$s1 # h2*5*r1 mulld $t1,$h2,$r0 # h2*r0 addc $d1,$d1,$t0 adde $d2,$d2,$t1 andc $t0,$d2,$mask # final reduction step and $h2,$d2,$mask srdi $t1,$t0,2 add $t0,$t0,$t1 addc $h0,$d0,$t0 addze $h1,$d1 addze $h2,$h2 bdnz Loop std $h0,0($ctx) # store hash value std $h1,8($ctx) std $h2,16($ctx) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) addi $sp,$sp,$FRAME Labort: blr .long 0 .byte 0,12,4,1,0x80,5,4,0 .size .poly1305_blocks,.-.poly1305_blocks .globl .poly1305_emit .align 4 .poly1305_emit: ld $h0,0($ctx) # load hash ld $h1,8($ctx) ld $h2,16($ctx) ld $padbit,0($nonce) # load nonce ld $nonce,8($nonce) addic $d0,$h0,5 # compare to modulus addze $d1,$h1 addze $d2,$h2 srdi $mask,$d2,2 # did it carry/borrow? neg $mask,$mask andc $h0,$h0,$mask and $d0,$d0,$mask andc $h1,$h1,$mask and $d1,$d1,$mask or $h0,$h0,$d0 or $h1,$h1,$d1 ___ $code.=<<___ if (!$LITTLE_ENDIAN); rotldi $padbit,$padbit,32 # flip nonce words rotldi $nonce,$nonce,32 ___ $code.=<<___; addc $h0,$h0,$padbit # accumulate nonce adde $h1,$h1,$nonce ___ $code.=<<___ if ($LITTLE_ENDIAN); std $h0,0($mac) # write result std $h1,8($mac) ___ $code.=<<___ if (!$LITTLE_ENDIAN); extrdi r0,$h0,32,0 li $d0,4 stwbrx $h0,0,$mac # write result extrdi $h0,$h1,32,0 li $d1,8 stwbrx r0,$d0,$mac li $d2,12 stwbrx $h1,$d1,$mac stwbrx $h0,$d2,$mac ___ $code.=<<___; blr .long 0 .byte 0,12,0x14,0,0,0,3,0 .size .poly1305_emit,.-.poly1305_emit ___ } else { ############################################################################### # base 2^32 implementation my ($h0,$h1,$h2,$h3,$h4, $r0,$r1,$r2,$r3, $s1,$s2,$s3, $t0,$t1,$t2,$t3, $D0,$D1,$D2,$D3, $d0,$d1,$d2,$d3 ) = map("r$_",(7..12,14..31)); $code.=<<___; .globl .poly1305_init_int .align 4 .poly1305_init_int: xor r0,r0,r0 stw r0,0($ctx) # zero hash value stw r0,4($ctx) stw r0,8($ctx) stw r0,12($ctx) stw r0,16($ctx) $UCMP $inp,r0 beq- Lno_key ___ $code.=<<___ if ($LITTLE_ENDIAN); lw $h0,0($inp) # load key material lw $h1,4($inp) lw $h2,8($inp) lw $h3,12($inp) ___ $code.=<<___ if (!$LITTLE_ENDIAN); li $h1,4 lwbrx $h0,0,$inp # load key material li $h2,8 lwbrx $h1,$h1,$inp li $h3,12 lwbrx $h2,$h2,$inp lwbrx $h3,$h3,$inp ___ $code.=<<___; lis $mask,0xf000 # 0xf0000000 li $r0,-4 andc $r0,$r0,$mask # 0x0ffffffc andc $h0,$h0,$mask and $h1,$h1,$r0 and $h2,$h2,$r0 and $h3,$h3,$r0 stw $h0,32($ctx) # store key stw $h1,36($ctx) stw $h2,40($ctx) stw $h3,44($ctx) Lno_key: xor r3,r3,r3 blr .long 0 .byte 0,12,0x14,0,0,0,2,0 .size .poly1305_init_int,.-.poly1305_init_int .globl .poly1305_blocks .align 4 .poly1305_blocks: srwi. $len,$len,4 beq- Labort $STU $sp,-$FRAME($sp) mflr r0 $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) lwz $r0,32($ctx) # load key lwz $r1,36($ctx) lwz $r2,40($ctx) lwz $r3,44($ctx) lwz $h0,0($ctx) # load hash value lwz $h1,4($ctx) lwz $h2,8($ctx) lwz $h3,12($ctx) lwz $h4,16($ctx) srwi $s1,$r1,2 srwi $s2,$r2,2 srwi $s3,$r3,2 add $s1,$s1,$r1 # si = ri + ri>>2 add $s2,$s2,$r2 add $s3,$s3,$r3 mtctr $len li $mask,3 b Loop .align 4 Loop: ___ $code.=<<___ if ($LITTLE_ENDIAN); lwz $d0,0($inp) # load input lwz $d1,4($inp) lwz $d2,8($inp) lwz $d3,12($inp) ___ $code.=<<___ if (!$LITTLE_ENDIAN); li $d1,4 lwbrx $d0,0,$inp # load input li $d2,8 lwbrx $d1,$d1,$inp li $d3,12 lwbrx $d2,$d2,$inp lwbrx $d3,$d3,$inp ___ $code.=<<___; addi $inp,$inp,16 addc $h0,$h0,$d0 # accumulate input adde $h1,$h1,$d1 adde $h2,$h2,$d2 mullw $d0,$h0,$r0 # h0*r0 mulhwu $D0,$h0,$r0 mullw $d1,$h0,$r1 # h0*r1 mulhwu $D1,$h0,$r1 mullw $d2,$h0,$r2 # h0*r2 mulhwu $D2,$h0,$r2 adde $h3,$h3,$d3 adde $h4,$h4,$padbit mullw $d3,$h0,$r3 # h0*r3 mulhwu $D3,$h0,$r3 mullw $t0,$h1,$s3 # h1*s3 mulhwu $t1,$h1,$s3 mullw $t2,$h1,$r0 # h1*r0 mulhwu $t3,$h1,$r0 addc $d0,$d0,$t0 adde $D0,$D0,$t1 mullw $t0,$h1,$r1 # h1*r1 mulhwu $t1,$h1,$r1 addc $d1,$d1,$t2 adde $D1,$D1,$t3 mullw $t2,$h1,$r2 # h1*r2 mulhwu $t3,$h1,$r2 addc $d2,$d2,$t0 adde $D2,$D2,$t1 mullw $t0,$h2,$s2 # h2*s2 mulhwu $t1,$h2,$s2 addc $d3,$d3,$t2 adde $D3,$D3,$t3 mullw $t2,$h2,$s3 # h2*s3 mulhwu $t3,$h2,$s3 addc $d0,$d0,$t0 adde $D0,$D0,$t1 mullw $t0,$h2,$r0 # h2*r0 mulhwu $t1,$h2,$r0 addc $d1,$d1,$t2 adde $D1,$D1,$t3 mullw $t2,$h2,$r1 # h2*r1 mulhwu $t3,$h2,$r1 addc $d2,$d2,$t0 adde $D2,$D2,$t1 mullw $t0,$h3,$s1 # h3*s1 mulhwu $t1,$h3,$s1 addc $d3,$d3,$t2 adde $D3,$D3,$t3 mullw $t2,$h3,$s2 # h3*s2 mulhwu $t3,$h3,$s2 addc $d0,$d0,$t0 adde $D0,$D0,$t1 mullw $t0,$h3,$s3 # h3*s3 mulhwu $t1,$h3,$s3 addc $d1,$d1,$t2 adde $D1,$D1,$t3 mullw $t2,$h3,$r0 # h3*r0 mulhwu $t3,$h3,$r0 addc $d2,$d2,$t0 adde $D2,$D2,$t1 mullw $t0,$h4,$s1 # h4*s1 addc $d3,$d3,$t2 adde $D3,$D3,$t3 addc $d1,$d1,$t0 mullw $t1,$h4,$s2 # h4*s2 addze $D1,$D1 addc $d2,$d2,$t1 addze $D2,$D2 mullw $t2,$h4,$s3 # h4*s3 addc $d3,$d3,$t2 addze $D3,$D3 mullw $h4,$h4,$r0 # h4*r0 addc $h1,$d1,$D0 adde $h2,$d2,$D1 adde $h3,$d3,$D2 adde $h4,$h4,$D3 andc $D0,$h4,$mask # final reduction step and $h4,$h4,$mask srwi $D1,$D0,2 add $D0,$D0,$D1 addc $h0,$d0,$D0 addze $h1,$h1 addze $h2,$h2 addze $h3,$h3 addze $h4,$h4 bdnz Loop stw $h0,0($ctx) # store hash value stw $h1,4($ctx) stw $h2,8($ctx) stw $h3,12($ctx) stw $h4,16($ctx) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) addi $sp,$sp,$FRAME Labort: blr .long 0 .byte 0,12,4,1,0x80,18,4,0 .size .poly1305_blocks,.-.poly1305_blocks .globl .poly1305_emit .align 4 .poly1305_emit: $STU $sp,-$FRAME($sp) mflr r0 $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) lwz $h0,0($ctx) # load hash lwz $h1,4($ctx) lwz $h2,8($ctx) lwz $h3,12($ctx) lwz $h4,16($ctx) addic $d0,$h0,5 # compare to modulus addze $d1,$h1 addze $d2,$h2 addze $d3,$h3 addze $mask,$h4 srwi $mask,$mask,2 # did it carry/borrow? neg $mask,$mask andc $h0,$h0,$mask and $d0,$d0,$mask andc $h1,$h1,$mask and $d1,$d1,$mask or $h0,$h0,$d0 lwz $d0,0($nonce) # load nonce andc $h2,$h2,$mask and $d2,$d2,$mask or $h1,$h1,$d1 lwz $d1,4($nonce) andc $h3,$h3,$mask and $d3,$d3,$mask or $h2,$h2,$d2 lwz $d2,8($nonce) or $h3,$h3,$d3 lwz $d3,12($nonce) addc $h0,$h0,$d0 # accumulate nonce adde $h1,$h1,$d1 adde $h2,$h2,$d2 adde $h3,$h3,$d3 ___ $code.=<<___ if ($LITTLE_ENDIAN); stw $h0,0($mac) # write result stw $h1,4($mac) stw $h2,8($mac) stw $h3,12($mac) ___ $code.=<<___ if (!$LITTLE_ENDIAN); li $d1,4 stwbrx $h0,0,$mac # write result li $d2,8 stwbrx $h1,$d1,$mac li $d3,12 stwbrx $h2,$d2,$mac stwbrx $h3,$d3,$mac ___ $code.=<<___; $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,4,3,0 .size .poly1305_emit,.-.poly1305_emit ___ } $code.=<<___; .asciz "Poly1305 for PPC, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/asm/poly1305-ppcfp.pl000077500000000000000000000422421364063235100217100ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for PowerPC FPU. # # June 2015 # # Numbers are cycles per processed byte with poly1305_blocks alone, # and improvement coefficients relative to gcc-generated code. # # Freescale e300 9.78/+30% # PPC74x0 6.92/+50% # PPC970 6.03/+80% # POWER7 3.50/+30% # POWER8 3.75/+10% $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $UCMP ="cmpld"; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $UCMP ="cmplw"; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; } else { die "nonsense $flavour"; } $LITTLE_ENDIAN = ($flavour=~/le$/) ? 4 : 0; $LWXLE = $LITTLE_ENDIAN ? "lwzx" : "lwbrx"; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $LOCALS=6*$SIZE_T; $FRAME=$LOCALS+6*8+18*8; my $sp="r1"; my ($ctx,$inp,$len,$padbit) = map("r$_",(3..6)); my ($in0,$in1,$in2,$in3,$i1,$i2,$i3) = map("r$_",(7..12,6)); my ($h0lo,$h0hi,$h1lo,$h1hi,$h2lo,$h2hi,$h3lo,$h3hi, $two0,$two32,$two64,$two96,$two130,$five_two130, $r0lo,$r0hi,$r1lo,$r1hi,$r2lo,$r2hi, $s2lo,$s2hi,$s3lo,$s3hi, $c0lo,$c0hi,$c1lo,$c1hi,$c2lo,$c2hi,$c3lo,$c3hi) = map("f$_",(0..31)); # borrowings my ($r3lo,$r3hi,$s1lo,$s1hi) = ($c0lo,$c0hi,$c1lo,$c1hi); my ($x0,$x1,$x2,$x3) = ($c2lo,$c2hi,$c3lo,$c3hi); my ($y0,$y1,$y2,$y3) = ($c3lo,$c3hi,$c1lo,$c1hi); $code.=<<___; .machine "any" .text .globl .poly1305_init_fpu .align 6 .poly1305_init_fpu: $STU $sp,-$LOCALS($sp) # minimal frame mflr $padbit $PUSH $padbit,`$LOCALS+$LRSAVE`($sp) bl LPICmeup xor r0,r0,r0 mtlr $padbit # restore lr lfd $two0,8*0($len) # load constants lfd $two32,8*1($len) lfd $two64,8*2($len) lfd $two96,8*3($len) lfd $two130,8*4($len) lfd $five_two130,8*5($len) stfd $two0,8*0($ctx) # initial hash value, biased 0 stfd $two32,8*1($ctx) stfd $two64,8*2($ctx) stfd $two96,8*3($ctx) $UCMP $inp,r0 beq- Lno_key lfd $h3lo,8*13($len) # new fpscr mffs $h3hi # old fpscr stfd $two0,8*4($ctx) # key "template" stfd $two32,8*5($ctx) stfd $two64,8*6($ctx) stfd $two96,8*7($ctx) li $in1,4 li $in2,8 li $in3,12 $LWXLE $in0,0,$inp # load key $LWXLE $in1,$in1,$inp $LWXLE $in2,$in2,$inp $LWXLE $in3,$in3,$inp lis $i1,0xf000 # 0xf0000000 ori $i2,$i1,3 # 0xf0000003 andc $in0,$in0,$i1 # &=0x0fffffff andc $in1,$in1,$i2 # &=0x0ffffffc andc $in2,$in2,$i2 andc $in3,$in3,$i2 stw $in0,`8*4+(4^$LITTLE_ENDIAN)`($ctx) # fill "template" stw $in1,`8*5+(4^$LITTLE_ENDIAN)`($ctx) stw $in2,`8*6+(4^$LITTLE_ENDIAN)`($ctx) stw $in3,`8*7+(4^$LITTLE_ENDIAN)`($ctx) mtfsf 255,$h3lo # fpscr stfd $two0,8*18($ctx) # copy constants to context stfd $two32,8*19($ctx) stfd $two64,8*20($ctx) stfd $two96,8*21($ctx) stfd $two130,8*22($ctx) stfd $five_two130,8*23($ctx) lfd $h0lo,8*4($ctx) # load [biased] key lfd $h1lo,8*5($ctx) lfd $h2lo,8*6($ctx) lfd $h3lo,8*7($ctx) fsub $h0lo,$h0lo,$two0 # r0 fsub $h1lo,$h1lo,$two32 # r1 fsub $h2lo,$h2lo,$two64 # r2 fsub $h3lo,$h3lo,$two96 # r3 lfd $two0,8*6($len) # more constants lfd $two32,8*7($len) lfd $two64,8*8($len) lfd $two96,8*9($len) fmul $h1hi,$h1lo,$five_two130 # s1 fmul $h2hi,$h2lo,$five_two130 # s2 stfd $h3hi,8*15($ctx) # borrow slot for original fpscr fmul $h3hi,$h3lo,$five_two130 # s3 fadd $h0hi,$h0lo,$two0 stfd $h1hi,8*12($ctx) # put aside for now fadd $h1hi,$h1lo,$two32 stfd $h2hi,8*13($ctx) fadd $h2hi,$h2lo,$two64 stfd $h3hi,8*14($ctx) fadd $h3hi,$h3lo,$two96 fsub $h0hi,$h0hi,$two0 fsub $h1hi,$h1hi,$two32 fsub $h2hi,$h2hi,$two64 fsub $h3hi,$h3hi,$two96 lfd $two0,8*10($len) # more constants lfd $two32,8*11($len) lfd $two64,8*12($len) fsub $h0lo,$h0lo,$h0hi fsub $h1lo,$h1lo,$h1hi fsub $h2lo,$h2lo,$h2hi fsub $h3lo,$h3lo,$h3hi stfd $h0hi,8*5($ctx) # r0hi stfd $h1hi,8*7($ctx) # r1hi stfd $h2hi,8*9($ctx) # r2hi stfd $h3hi,8*11($ctx) # r3hi stfd $h0lo,8*4($ctx) # r0lo stfd $h1lo,8*6($ctx) # r1lo stfd $h2lo,8*8($ctx) # r2lo stfd $h3lo,8*10($ctx) # r3lo lfd $h1lo,8*12($ctx) # s1 lfd $h2lo,8*13($ctx) # s2 lfd $h3lo,8*14($ctx) # s3 lfd $h0lo,8*15($ctx) # pull original fpscr fadd $h1hi,$h1lo,$two0 fadd $h2hi,$h2lo,$two32 fadd $h3hi,$h3lo,$two64 fsub $h1hi,$h1hi,$two0 fsub $h2hi,$h2hi,$two32 fsub $h3hi,$h3hi,$two64 fsub $h1lo,$h1lo,$h1hi fsub $h2lo,$h2lo,$h2hi fsub $h3lo,$h3lo,$h3hi stfd $h1hi,8*13($ctx) # s1hi stfd $h2hi,8*15($ctx) # s2hi stfd $h3hi,8*17($ctx) # s3hi stfd $h1lo,8*12($ctx) # s1lo stfd $h2lo,8*14($ctx) # s2lo stfd $h3lo,8*16($ctx) # s3lo mtfsf 255,$h0lo # restore fpscr Lno_key: xor r3,r3,r3 addi $sp,$sp,$LOCALS blr .long 0 .byte 0,12,4,1,0x80,0,2,0 .size .poly1305_init_fpu,.-.poly1305_init_fpu .globl .poly1305_blocks_fpu .align 4 .poly1305_blocks_fpu: srwi. $len,$len,4 beq- Labort $STU $sp,-$FRAME($sp) mflr r0 stfd f14,`$FRAME-8*18`($sp) stfd f15,`$FRAME-8*17`($sp) stfd f16,`$FRAME-8*16`($sp) stfd f17,`$FRAME-8*15`($sp) stfd f18,`$FRAME-8*14`($sp) stfd f19,`$FRAME-8*13`($sp) stfd f20,`$FRAME-8*12`($sp) stfd f21,`$FRAME-8*11`($sp) stfd f22,`$FRAME-8*10`($sp) stfd f23,`$FRAME-8*9`($sp) stfd f24,`$FRAME-8*8`($sp) stfd f25,`$FRAME-8*7`($sp) stfd f26,`$FRAME-8*6`($sp) stfd f27,`$FRAME-8*5`($sp) stfd f28,`$FRAME-8*4`($sp) stfd f29,`$FRAME-8*3`($sp) stfd f30,`$FRAME-8*2`($sp) stfd f31,`$FRAME-8*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) xor r0,r0,r0 li $in3,1 mtctr $len neg $len,$len stw r0,`$LOCALS+8*4+(0^$LITTLE_ENDIAN)`($sp) stw $in3,`$LOCALS+8*4+(4^$LITTLE_ENDIAN)`($sp) lfd $two0,8*18($ctx) # load constants lfd $two32,8*19($ctx) lfd $two64,8*20($ctx) lfd $two96,8*21($ctx) lfd $two130,8*22($ctx) lfd $five_two130,8*23($ctx) lfd $h0lo,8*0($ctx) # load [biased] hash value lfd $h1lo,8*1($ctx) lfd $h2lo,8*2($ctx) lfd $h3lo,8*3($ctx) stfd $two0,`$LOCALS+8*0`($sp) # input "template" oris $in3,$padbit,`(1023+52+96)<<4` stfd $two32,`$LOCALS+8*1`($sp) stfd $two64,`$LOCALS+8*2`($sp) stw $in3,`$LOCALS+8*3+(0^$LITTLE_ENDIAN)`($sp) li $i1,4 li $i2,8 li $i3,12 $LWXLE $in0,0,$inp # load input $LWXLE $in1,$i1,$inp $LWXLE $in2,$i2,$inp $LWXLE $in3,$i3,$inp addi $inp,$inp,16 stw $in0,`$LOCALS+8*0+(4^$LITTLE_ENDIAN)`($sp) # fill "template" stw $in1,`$LOCALS+8*1+(4^$LITTLE_ENDIAN)`($sp) stw $in2,`$LOCALS+8*2+(4^$LITTLE_ENDIAN)`($sp) stw $in3,`$LOCALS+8*3+(4^$LITTLE_ENDIAN)`($sp) mffs $x0 # original fpscr lfd $x1,`$LOCALS+8*4`($sp) # new fpscr lfd $r0lo,8*4($ctx) # load key lfd $r0hi,8*5($ctx) lfd $r1lo,8*6($ctx) lfd $r1hi,8*7($ctx) lfd $r2lo,8*8($ctx) lfd $r2hi,8*9($ctx) lfd $r3lo,8*10($ctx) lfd $r3hi,8*11($ctx) lfd $s1lo,8*12($ctx) lfd $s1hi,8*13($ctx) lfd $s2lo,8*14($ctx) lfd $s2hi,8*15($ctx) lfd $s3lo,8*16($ctx) lfd $s3hi,8*17($ctx) stfd $x0,`$LOCALS+8*4`($sp) # save original fpscr mtfsf 255,$x1 addic $len,$len,1 addze r0,r0 slwi. r0,r0,4 sub $inp,$inp,r0 # conditional rewind lfd $x0,`$LOCALS+8*0`($sp) lfd $x1,`$LOCALS+8*1`($sp) lfd $x2,`$LOCALS+8*2`($sp) lfd $x3,`$LOCALS+8*3`($sp) fsub $h0lo,$h0lo,$two0 # de-bias hash value $LWXLE $in0,0,$inp # modulo-scheduled input load fsub $h1lo,$h1lo,$two32 $LWXLE $in1,$i1,$inp fsub $h2lo,$h2lo,$two64 $LWXLE $in2,$i2,$inp fsub $h3lo,$h3lo,$two96 $LWXLE $in3,$i3,$inp fsub $x0,$x0,$two0 # de-bias input addi $inp,$inp,16 fsub $x1,$x1,$two32 fsub $x2,$x2,$two64 fsub $x3,$x3,$two96 fadd $x0,$x0,$h0lo # accumulate input stw $in0,`$LOCALS+8*0+(4^$LITTLE_ENDIAN)`($sp) fadd $x1,$x1,$h1lo stw $in1,`$LOCALS+8*1+(4^$LITTLE_ENDIAN)`($sp) fadd $x2,$x2,$h2lo stw $in2,`$LOCALS+8*2+(4^$LITTLE_ENDIAN)`($sp) fadd $x3,$x3,$h3lo stw $in3,`$LOCALS+8*3+(4^$LITTLE_ENDIAN)`($sp) b Lentry .align 4 Loop: fsub $y0,$y0,$two0 # de-bias input addic $len,$len,1 fsub $y1,$y1,$two32 addze r0,r0 fsub $y2,$y2,$two64 slwi. r0,r0,4 fsub $y3,$y3,$two96 sub $inp,$inp,r0 # conditional rewind fadd $h0lo,$h0lo,$y0 # accumulate input fadd $h0hi,$h0hi,$y1 fadd $h2lo,$h2lo,$y2 fadd $h2hi,$h2hi,$y3 ######################################### base 2^48 -> base 2^32 fadd $c1lo,$h1lo,$two64 $LWXLE $in0,0,$inp # modulo-scheduled input load fadd $c1hi,$h1hi,$two64 $LWXLE $in1,$i1,$inp fadd $c3lo,$h3lo,$two130 $LWXLE $in2,$i2,$inp fadd $c3hi,$h3hi,$two130 $LWXLE $in3,$i3,$inp fadd $c0lo,$h0lo,$two32 addi $inp,$inp,16 fadd $c0hi,$h0hi,$two32 fadd $c2lo,$h2lo,$two96 fadd $c2hi,$h2hi,$two96 fsub $c1lo,$c1lo,$two64 stw $in0,`$LOCALS+8*0+(4^$LITTLE_ENDIAN)`($sp) # fill "template" fsub $c1hi,$c1hi,$two64 stw $in1,`$LOCALS+8*1+(4^$LITTLE_ENDIAN)`($sp) fsub $c3lo,$c3lo,$two130 stw $in2,`$LOCALS+8*2+(4^$LITTLE_ENDIAN)`($sp) fsub $c3hi,$c3hi,$two130 stw $in3,`$LOCALS+8*3+(4^$LITTLE_ENDIAN)`($sp) fsub $c0lo,$c0lo,$two32 fsub $c0hi,$c0hi,$two32 fsub $c2lo,$c2lo,$two96 fsub $c2hi,$c2hi,$two96 fsub $h1lo,$h1lo,$c1lo fsub $h1hi,$h1hi,$c1hi fsub $h3lo,$h3lo,$c3lo fsub $h3hi,$h3hi,$c3hi fsub $h2lo,$h2lo,$c2lo fsub $h2hi,$h2hi,$c2hi fsub $h0lo,$h0lo,$c0lo fsub $h0hi,$h0hi,$c0hi fadd $h1lo,$h1lo,$c0lo fadd $h1hi,$h1hi,$c0hi fadd $h3lo,$h3lo,$c2lo fadd $h3hi,$h3hi,$c2hi fadd $h2lo,$h2lo,$c1lo fadd $h2hi,$h2hi,$c1hi fmadd $h0lo,$c3lo,$five_two130,$h0lo fmadd $h0hi,$c3hi,$five_two130,$h0hi fadd $x1,$h1lo,$h1hi lfd $s1lo,8*12($ctx) # reload constants fadd $x3,$h3lo,$h3hi lfd $s1hi,8*13($ctx) fadd $x2,$h2lo,$h2hi lfd $r3lo,8*10($ctx) fadd $x0,$h0lo,$h0hi lfd $r3hi,8*11($ctx) Lentry: fmul $h0lo,$s3lo,$x1 fmul $h0hi,$s3hi,$x1 fmul $h2lo,$r1lo,$x1 fmul $h2hi,$r1hi,$x1 fmul $h1lo,$r0lo,$x1 fmul $h1hi,$r0hi,$x1 fmul $h3lo,$r2lo,$x1 fmul $h3hi,$r2hi,$x1 fmadd $h0lo,$s1lo,$x3,$h0lo fmadd $h0hi,$s1hi,$x3,$h0hi fmadd $h2lo,$s3lo,$x3,$h2lo fmadd $h2hi,$s3hi,$x3,$h2hi fmadd $h1lo,$s2lo,$x3,$h1lo fmadd $h1hi,$s2hi,$x3,$h1hi fmadd $h3lo,$r0lo,$x3,$h3lo fmadd $h3hi,$r0hi,$x3,$h3hi fmadd $h0lo,$s2lo,$x2,$h0lo fmadd $h0hi,$s2hi,$x2,$h0hi fmadd $h2lo,$r0lo,$x2,$h2lo fmadd $h2hi,$r0hi,$x2,$h2hi fmadd $h1lo,$s3lo,$x2,$h1lo fmadd $h1hi,$s3hi,$x2,$h1hi fmadd $h3lo,$r1lo,$x2,$h3lo fmadd $h3hi,$r1hi,$x2,$h3hi fmadd $h0lo,$r0lo,$x0,$h0lo lfd $y0,`$LOCALS+8*0`($sp) # load [biased] input fmadd $h0hi,$r0hi,$x0,$h0hi lfd $y1,`$LOCALS+8*1`($sp) fmadd $h2lo,$r2lo,$x0,$h2lo lfd $y2,`$LOCALS+8*2`($sp) fmadd $h2hi,$r2hi,$x0,$h2hi lfd $y3,`$LOCALS+8*3`($sp) fmadd $h1lo,$r1lo,$x0,$h1lo fmadd $h1hi,$r1hi,$x0,$h1hi fmadd $h3lo,$r3lo,$x0,$h3lo fmadd $h3hi,$r3hi,$x0,$h3hi bdnz Loop ######################################### base 2^48 -> base 2^32 fadd $c0lo,$h0lo,$two32 fadd $c0hi,$h0hi,$two32 fadd $c2lo,$h2lo,$two96 fadd $c2hi,$h2hi,$two96 fadd $c1lo,$h1lo,$two64 fadd $c1hi,$h1hi,$two64 fadd $c3lo,$h3lo,$two130 fadd $c3hi,$h3hi,$two130 fsub $c0lo,$c0lo,$two32 fsub $c0hi,$c0hi,$two32 fsub $c2lo,$c2lo,$two96 fsub $c2hi,$c2hi,$two96 fsub $c1lo,$c1lo,$two64 fsub $c1hi,$c1hi,$two64 fsub $c3lo,$c3lo,$two130 fsub $c3hi,$c3hi,$two130 fsub $h1lo,$h1lo,$c1lo fsub $h1hi,$h1hi,$c1hi fsub $h3lo,$h3lo,$c3lo fsub $h3hi,$h3hi,$c3hi fsub $h2lo,$h2lo,$c2lo fsub $h2hi,$h2hi,$c2hi fsub $h0lo,$h0lo,$c0lo fsub $h0hi,$h0hi,$c0hi fadd $h1lo,$h1lo,$c0lo fadd $h1hi,$h1hi,$c0hi fadd $h3lo,$h3lo,$c2lo fadd $h3hi,$h3hi,$c2hi fadd $h2lo,$h2lo,$c1lo fadd $h2hi,$h2hi,$c1hi fmadd $h0lo,$c3lo,$five_two130,$h0lo fmadd $h0hi,$c3hi,$five_two130,$h0hi fadd $x1,$h1lo,$h1hi fadd $x3,$h3lo,$h3hi fadd $x2,$h2lo,$h2hi fadd $x0,$h0lo,$h0hi lfd $h0lo,`$LOCALS+8*4`($sp) # pull saved fpscr fadd $x1,$x1,$two32 # bias fadd $x3,$x3,$two96 fadd $x2,$x2,$two64 fadd $x0,$x0,$two0 stfd $x1,8*1($ctx) # store [biased] hash value stfd $x3,8*3($ctx) stfd $x2,8*2($ctx) stfd $x0,8*0($ctx) mtfsf 255,$h0lo # restore original fpscr lfd f14,`$FRAME-8*18`($sp) lfd f15,`$FRAME-8*17`($sp) lfd f16,`$FRAME-8*16`($sp) lfd f17,`$FRAME-8*15`($sp) lfd f18,`$FRAME-8*14`($sp) lfd f19,`$FRAME-8*13`($sp) lfd f20,`$FRAME-8*12`($sp) lfd f21,`$FRAME-8*11`($sp) lfd f22,`$FRAME-8*10`($sp) lfd f23,`$FRAME-8*9`($sp) lfd f24,`$FRAME-8*8`($sp) lfd f25,`$FRAME-8*7`($sp) lfd f26,`$FRAME-8*6`($sp) lfd f27,`$FRAME-8*5`($sp) lfd f28,`$FRAME-8*4`($sp) lfd f29,`$FRAME-8*3`($sp) lfd f30,`$FRAME-8*2`($sp) lfd f31,`$FRAME-8*1`($sp) addi $sp,$sp,$FRAME Labort: blr .long 0 .byte 0,12,4,1,0x80,0,4,0 .size .poly1305_blocks_fpu,.-.poly1305_blocks_fpu ___ { my ($mac,$nonce)=($inp,$len); my ($h0,$h1,$h2,$h3,$h4, $d0,$d1,$d2,$d3 ) = map("r$_",(7..11,28..31)); my $mask = "r0"; my $FRAME = (6+4)*$SIZE_T; $code.=<<___; .globl .poly1305_emit_fpu .align 4 .poly1305_emit_fpu: $STU $sp,-$FRAME($sp) mflr r0 $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) lwz $d0,`8*0+(0^$LITTLE_ENDIAN)`($ctx) # load hash lwz $h0,`8*0+(4^$LITTLE_ENDIAN)`($ctx) lwz $d1,`8*1+(0^$LITTLE_ENDIAN)`($ctx) lwz $h1,`8*1+(4^$LITTLE_ENDIAN)`($ctx) lwz $d2,`8*2+(0^$LITTLE_ENDIAN)`($ctx) lwz $h2,`8*2+(4^$LITTLE_ENDIAN)`($ctx) lwz $d3,`8*3+(0^$LITTLE_ENDIAN)`($ctx) lwz $h3,`8*3+(4^$LITTLE_ENDIAN)`($ctx) lis $mask,0xfff0 andc $d0,$d0,$mask # mask exponent andc $d1,$d1,$mask andc $d2,$d2,$mask andc $d3,$d3,$mask # can be partially reduced... li $mask,3 srwi $padbit,$d3,2 # ... so reduce and $h4,$d3,$mask andc $d3,$d3,$mask add $d3,$d3,$padbit ___ if ($SIZE_T==4) { $code.=<<___; addc $h0,$h0,$d3 adde $h1,$h1,$d0 adde $h2,$h2,$d1 adde $h3,$h3,$d2 addze $h4,$h4 addic $d0,$h0,5 # compare to modulus addze $d1,$h1 addze $d2,$h2 addze $d3,$h3 addze $mask,$h4 srwi $mask,$mask,2 # did it carry/borrow? neg $mask,$mask srawi $mask,$mask,31 # mask andc $h0,$h0,$mask and $d0,$d0,$mask andc $h1,$h1,$mask and $d1,$d1,$mask or $h0,$h0,$d0 lwz $d0,0($nonce) # load nonce andc $h2,$h2,$mask and $d2,$d2,$mask or $h1,$h1,$d1 lwz $d1,4($nonce) andc $h3,$h3,$mask and $d3,$d3,$mask or $h2,$h2,$d2 lwz $d2,8($nonce) or $h3,$h3,$d3 lwz $d3,12($nonce) addc $h0,$h0,$d0 # accumulate nonce adde $h1,$h1,$d1 adde $h2,$h2,$d2 adde $h3,$h3,$d3 ___ } else { $code.=<<___; add $h0,$h0,$d3 add $h1,$h1,$d0 add $h2,$h2,$d1 add $h3,$h3,$d2 srdi $d0,$h0,32 add $h1,$h1,$d0 srdi $d1,$h1,32 add $h2,$h2,$d1 srdi $d2,$h2,32 add $h3,$h3,$d2 srdi $d3,$h3,32 add $h4,$h4,$d3 insrdi $h0,$h1,32,0 insrdi $h2,$h3,32,0 addic $d0,$h0,5 # compare to modulus addze $d1,$h2 addze $d2,$h4 srdi $mask,$d2,2 # did it carry/borrow? neg $mask,$mask sradi $mask,$mask,63 # mask ld $d2,0($nonce) # load nonce ld $d3,8($nonce) andc $h0,$h0,$mask and $d0,$d0,$mask andc $h2,$h2,$mask and $d1,$d1,$mask or $h0,$h0,$d0 or $h2,$h2,$d1 ___ $code.=<<___ if (!$LITTLE_ENDIAN); rotldi $d2,$d2,32 # flip nonce words rotldi $d3,$d3,32 ___ $code.=<<___; addc $h0,$h0,$d2 # accumulate nonce adde $h2,$h2,$d3 srdi $h1,$h0,32 srdi $h3,$h2,32 ___ } $code.=<<___ if ($LITTLE_ENDIAN); stw $h0,0($mac) # write result stw $h1,4($mac) stw $h2,8($mac) stw $h3,12($mac) ___ $code.=<<___ if (!$LITTLE_ENDIAN); li $d1,4 stwbrx $h0,0,$mac # write result li $d2,8 stwbrx $h1,$d1,$mac li $d3,12 stwbrx $h2,$d2,$mac stwbrx $h3,$d3,$mac ___ $code.=<<___; $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,4,3,0 .size .poly1305_emit_fpu,.-.poly1305_emit_fpu ___ } # Ugly hack here, because PPC assembler syntax seem to vary too # much from platforms to platform... $code.=<<___; .align 6 LPICmeup: mflr r0 bcl 20,31,\$+4 mflr $len # vvvvvv "distance" between . and 1st data entry addi $len,$len,`64-8` # borrow $len mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `64-9*4` .quad 0x4330000000000000 # 2^(52+0) .quad 0x4530000000000000 # 2^(52+32) .quad 0x4730000000000000 # 2^(52+64) .quad 0x4930000000000000 # 2^(52+96) .quad 0x4b50000000000000 # 2^(52+130) .quad 0x37f4000000000000 # 5/2^130 .quad 0x4430000000000000 # 2^(52+16+0) .quad 0x4630000000000000 # 2^(52+16+32) .quad 0x4830000000000000 # 2^(52+16+64) .quad 0x4a30000000000000 # 2^(52+16+96) .quad 0x3e30000000000000 # 2^(52+16+0-96) .quad 0x4030000000000000 # 2^(52+16+32-96) .quad 0x4230000000000000 # 2^(52+16+64-96) .quad 0x0000000000000001 # fpscr: truncate, no exceptions .asciz "Poly1305 for PPC FPU, CRYPTOGAMS by " .align 4 ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/asm/poly1305-s390x.pl000077500000000000000000000110501364063235100214570ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for s390x. # # June 2015 # # ~6.6/2.3 cpb on z10/z196+, >2x improvement over compiler-generated # code. For older compiler improvement coefficient is >3x, because # then base 2^64 and base 2^32 implementations are compared. # # On side note, z13 enables vector base 2^26 implementation... $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $sp="%r15"; my ($ctx,$inp,$len,$padbit) = map("%r$_",(2..5)); $code.=<<___; .text .globl poly1305_init .type poly1305_init,\@function .align 16 poly1305_init: lghi %r0,0 lghi %r1,-1 stg %r0,0($ctx) # zero hash value stg %r0,8($ctx) stg %r0,16($ctx) cl${g}r $inp,%r0 je .Lno_key lrvg %r4,0($inp) # load little-endian key lrvg %r5,8($inp) nihl %r1,0xffc0 # 0xffffffc0ffffffff srlg %r0,%r1,4 # 0x0ffffffc0fffffff srlg %r1,%r1,4 nill %r1,0xfffc # 0x0ffffffc0ffffffc ngr %r4,%r0 ngr %r5,%r1 stg %r4,32($ctx) stg %r5,40($ctx) .Lno_key: lghi %r2,0 br %r14 .size poly1305_init,.-poly1305_init ___ { my ($d0hi,$d0lo,$d1hi,$d1lo,$t0,$h0,$t1,$h1,$h2) = map("%r$_",(6..14)); my ($r0,$r1,$s1) = map("%r$_",(0..2)); $code.=<<___; .globl poly1305_blocks .type poly1305_blocks,\@function .align 16 poly1305_blocks: srl${g} $len,4 # fixed-up in 64-bit build lghi %r0,0 cl${g}r $len,%r0 je .Lno_data stm${g} %r6,%r14,`6*$SIZE_T`($sp) llgfr $padbit,$padbit # clear upper half, much needed with # non-64-bit ABI lg $r0,32($ctx) # load key lg $r1,40($ctx) lg $h0,0($ctx) # load hash value lg $h1,8($ctx) lg $h2,16($ctx) st$g $ctx,`2*$SIZE_T`($sp) # off-load $ctx srlg $s1,$r1,2 algr $s1,$r1 # s1 = r1 + r1>>2 j .Loop .align 16 .Loop: lrvg $d0lo,0($inp) # load little-endian input lrvg $d1lo,8($inp) la $inp,16($inp) algr $d0lo,$h0 # accumulate input alcgr $d1lo,$h1 lgr $h0,$d0lo mlgr $d0hi,$r0 # h0*r0 -> $d0hi:$d0lo lgr $h1,$d1lo mlgr $d1hi,$s1 # h1*5*r1 -> $d1hi:$d1lo mlgr $t0,$r1 # h0*r1 -> $t0:$h0 mlgr $t1,$r0 # h1*r0 -> $t1:$h1 alcgr $h2,$padbit algr $d0lo,$d1lo lgr $d1lo,$h2 alcgr $d0hi,$d1hi lghi $d1hi,0 algr $h1,$h0 alcgr $t1,$t0 msgr $d1lo,$s1 # h2*s1 msgr $h2,$r0 # h2*r0 algr $h1,$d1lo alcgr $t1,$d1hi # $d1hi is zero algr $h1,$d0hi alcgr $h2,$t1 lghi $h0,-4 # final reduction step ngr $h0,$h2 srlg $t0,$h2,2 algr $h0,$t0 lghi $t1,3 ngr $h2,$t1 algr $h0,$d0lo alcgr $h1,$d1hi # $d1hi is still zero alcgr $h2,$d1hi # $d1hi is still zero brct$g $len,.Loop l$g $ctx,`2*$SIZE_T`($sp) # restore $ctx stg $h0,0($ctx) # store hash value stg $h1,8($ctx) stg $h2,16($ctx) lm${g} %r6,%r14,`6*$SIZE_T`($sp) .Lno_data: br %r14 .size poly1305_blocks,.-poly1305_blocks ___ } { my ($mac,$nonce)=($inp,$len); my ($h0,$h1,$h2,$d0,$d1)=map("%r$_",(5..9)); $code.=<<___; .globl poly1305_emit .type poly1305_emit,\@function .align 16 poly1305_emit: stm${g} %r6,%r9,`6*$SIZE_T`($sp) lg $h0,0($ctx) lg $h1,8($ctx) lg $h2,16($ctx) lghi %r0,5 lghi %r1,0 lgr $d0,$h0 lgr $d1,$h1 algr $h0,%r0 # compare to modulus alcgr $h1,%r1 alcgr $h2,%r1 srlg $h2,$h2,2 # did it borrow/carry? slgr %r1,$h2 # 0-$h2>>2 lg $h2,0($nonce) # load nonce lghi %r0,-1 lg $ctx,8($nonce) xgr %r0,%r1 # ~%r1 ngr $h0,%r1 ngr $d0,%r0 ngr $h1,%r1 ngr $d1,%r0 ogr $h0,$d0 rllg $d0,$h2,32 # flip nonce words ogr $h1,$d1 rllg $d1,$ctx,32 algr $h0,$d0 # accumulate nonce alcgr $h1,$d1 strvg $h0,0($mac) # write little-endian result strvg $h1,8($mac) lm${g} %r6,%r9,`6*$SIZE_T`($sp) br %r14 .size poly1305_emit,.-poly1305_emit .string "Poly1305 for s390x, CRYPTOGAMS by " ___ } $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/\b(srlg\s+)(%r[0-9]+\s*,)\s*([0-9]+)/$1$2$2$3/gm; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/asm/poly1305-sparcv9.pl000077500000000000000000000573701364063235100221770ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for SPARCv9, vanilla, as well # as VIS3 and FMA extensions. # # May, August 2015 # # Numbers are cycles per processed byte with poly1305_blocks alone. # # IALU(*) FMA # # UltraSPARC III 12.3(**) # SPARC T3 7.92 # SPARC T4 1.70(***) 6.55 # SPARC64 X 5.60 3.64 # # (*) Comparison to compiler-generated code is really problematic, # because latter's performance varies too much depending on too # many variables. For example, one can measure from 5x to 15x # improvement on T4 for gcc-4.6. Well, in T4 case it's a bit # unfair comparison, because compiler doesn't use VIS3, but # given same initial conditions coefficient varies from 3x to 9x. # (**) Pre-III performance should be even worse; floating-point # performance for UltraSPARC I-IV on the other hand is reported # to be 4.25 for hand-coded assembly, but they are just too old # to care about. # (***) Multi-process benchmark saturates at ~12.5x single-process # result on 8-core processor, or ~21GBps per 2.85GHz socket. my $output = pop; open STDOUT,">$output"; my ($ctx,$inp,$len,$padbit,$shl,$shr) = map("%i$_",(0..5)); my ($r0,$r1,$r2,$r3,$s1,$s2,$s3,$h4) = map("%l$_",(0..7)); my ($h0,$h1,$h2,$h3, $t0,$t1,$t2) = map("%o$_",(0..5,7)); my ($d0,$d1,$d2,$d3) = map("%g$_",(1..4)); my $output = pop; open STDOUT,">$stdout"; $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch # define STPTR stx # define SIZE_T 8 #else # define STPTR st # define SIZE_T 4 #endif #define LOCALS (STACK_BIAS+STACK_FRAME) .section ".text",#alloc,#execinstr #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .globl poly1305_init .align 32 poly1305_init: save %sp,-STACK_FRAME-16,%sp nop SPARC_LOAD_ADDRESS(OPENSSL_sparcv9cap_P,%g1) ld [%g1],%g1 and %g1,SPARCV9_FMADD|SPARCV9_VIS3,%g1 cmp %g1,SPARCV9_FMADD be .Lpoly1305_init_fma nop stx %g0,[$ctx+0] stx %g0,[$ctx+8] ! zero hash value brz,pn $inp,.Lno_key stx %g0,[$ctx+16] and $inp,7,$shr ! alignment factor andn $inp,7,$inp sll $shr,3,$shr ! *8 neg $shr,$shl sethi %hi(0x0ffffffc),$t0 set 8,$h1 or $t0,%lo(0x0ffffffc),$t0 set 16,$h2 sllx $t0,32,$t1 or $t0,$t1,$t1 ! 0x0ffffffc0ffffffc or $t1,3,$t0 ! 0x0ffffffc0fffffff ldxa [$inp+%g0]0x88,$h0 ! load little-endian key brz,pt $shr,.Lkey_aligned ldxa [$inp+$h1]0x88,$h1 ldxa [$inp+$h2]0x88,$h2 srlx $h0,$shr,$h0 sllx $h1,$shl,$t2 srlx $h1,$shr,$h1 or $t2,$h0,$h0 sllx $h2,$shl,$h2 or $h2,$h1,$h1 .Lkey_aligned: and $t0,$h0,$h0 and $t1,$h1,$h1 stx $h0,[$ctx+32+0] ! store key stx $h1,[$ctx+32+8] andcc %g1,SPARCV9_VIS3,%g0 be .Lno_key nop 1: call .+8 add %o7,poly1305_blocks_vis3-1b,%o7 add %o7,poly1305_emit-poly1305_blocks_vis3,%o5 STPTR %o7,[%i2] STPTR %o5,[%i2+SIZE_T] ret restore %g0,1,%o0 ! return 1 .Lno_key: ret restore %g0,%g0,%o0 ! return 0 .type poly1305_init,#function .size poly1305_init,.-poly1305_init .globl poly1305_blocks .align 32 poly1305_blocks: save %sp,-STACK_FRAME,%sp srln $len,4,$len brz,pn $len,.Lno_data nop ld [$ctx+32+0],$r1 ! load key ld [$ctx+32+4],$r0 ld [$ctx+32+8],$r3 ld [$ctx+32+12],$r2 ld [$ctx+0],$h1 ! load hash value ld [$ctx+4],$h0 ld [$ctx+8],$h3 ld [$ctx+12],$h2 ld [$ctx+16],$h4 and $inp,7,$shr ! alignment factor andn $inp,7,$inp set 8,$d1 sll $shr,3,$shr ! *8 set 16,$d2 neg $shr,$shl srl $r1,2,$s1 srl $r2,2,$s2 add $r1,$s1,$s1 srl $r3,2,$s3 add $r2,$s2,$s2 add $r3,$s3,$s3 .Loop: ldxa [$inp+%g0]0x88,$d0 ! load little-endian input brz,pt $shr,.Linp_aligned ldxa [$inp+$d1]0x88,$d1 ldxa [$inp+$d2]0x88,$d2 srlx $d0,$shr,$d0 sllx $d1,$shl,$t1 srlx $d1,$shr,$d1 or $t1,$d0,$d0 sllx $d2,$shl,$d2 or $d2,$d1,$d1 .Linp_aligned: srlx $d0,32,$t0 addcc $d0,$h0,$h0 ! accumulate input srlx $d1,32,$t1 addccc $t0,$h1,$h1 addccc $d1,$h2,$h2 addccc $t1,$h3,$h3 addc $padbit,$h4,$h4 umul $r0,$h0,$d0 umul $r1,$h0,$d1 umul $r2,$h0,$d2 umul $r3,$h0,$d3 sub $len,1,$len add $inp,16,$inp umul $s3,$h1,$t0 umul $r0,$h1,$t1 umul $r1,$h1,$t2 add $t0,$d0,$d0 add $t1,$d1,$d1 umul $r2,$h1,$t0 add $t2,$d2,$d2 add $t0,$d3,$d3 umul $s2,$h2,$t1 umul $s3,$h2,$t2 umul $r0,$h2,$t0 add $t1,$d0,$d0 add $t2,$d1,$d1 umul $r1,$h2,$t1 add $t0,$d2,$d2 add $t1,$d3,$d3 umul $s1,$h3,$t2 umul $s2,$h3,$t0 umul $s3,$h3,$t1 add $t2,$d0,$d0 add $t0,$d1,$d1 umul $r0,$h3,$t2 add $t1,$d2,$d2 add $t2,$d3,$d3 umul $s1,$h4,$t0 umul $s2,$h4,$t1 umul $s3,$h4,$t2 umul $r0,$h4,$h4 add $t0,$d1,$d1 add $t1,$d2,$d2 srlx $d0,32,$h1 add $t2,$d3,$d3 srlx $d1,32,$h2 addcc $d1,$h1,$h1 srlx $d2,32,$h3 set 8,$d1 addccc $d2,$h2,$h2 srlx $d3,32,$t0 set 16,$d2 addccc $d3,$h3,$h3 addc $t0,$h4,$h4 srl $h4,2,$t0 ! final reduction step andn $h4,3,$t1 and $h4,3,$h4 add $t1,$t0,$t0 addcc $t0,$d0,$h0 addccc %g0,$h1,$h1 addccc %g0,$h2,$h2 addccc %g0,$h3,$h3 brnz,pt $len,.Loop addc %g0,$h4,$h4 st $h1,[$ctx+0] ! store hash value st $h0,[$ctx+4] st $h3,[$ctx+8] st $h2,[$ctx+12] st $h4,[$ctx+16] .Lno_data: ret restore .type poly1305_blocks,#function .size poly1305_blocks,.-poly1305_blocks ___ ######################################################################## # VIS3 has umulxhi and addxc... { my ($H0,$H1,$H2,$R0,$R1,$S1,$T1) = map("%o$_",(0..5,7)); my ($D0,$D1,$D2,$T0) = map("%g$_",(1..4)); $code.=<<___; .align 32 poly1305_blocks_vis3: save %sp,-STACK_FRAME,%sp srln $len,4,$len brz,pn $len,.Lno_data nop ldx [$ctx+32+0],$R0 ! load key ldx [$ctx+32+8],$R1 ldx [$ctx+0],$H0 ! load hash value ldx [$ctx+8],$H1 ld [$ctx+16],$H2 and $inp,7,$shr ! alignment factor andn $inp,7,$inp set 8,$r1 sll $shr,3,$shr ! *8 set 16,$r2 neg $shr,$shl srlx $R1,2,$S1 b .Loop_vis3 add $R1,$S1,$S1 .Loop_vis3: ldxa [$inp+%g0]0x88,$D0 ! load little-endian input brz,pt $shr,.Linp_aligned_vis3 ldxa [$inp+$r1]0x88,$D1 ldxa [$inp+$r2]0x88,$D2 srlx $D0,$shr,$D0 sllx $D1,$shl,$T1 srlx $D1,$shr,$D1 or $T1,$D0,$D0 sllx $D2,$shl,$D2 or $D2,$D1,$D1 .Linp_aligned_vis3: addcc $D0,$H0,$H0 ! accumulate input sub $len,1,$len addxccc $D1,$H1,$H1 add $inp,16,$inp mulx $R0,$H0,$D0 ! r0*h0 addxc $padbit,$H2,$H2 umulxhi $R0,$H0,$D1 mulx $S1,$H1,$T0 ! s1*h1 umulxhi $S1,$H1,$T1 addcc $T0,$D0,$D0 mulx $R1,$H0,$T0 ! r1*h0 addxc $T1,$D1,$D1 umulxhi $R1,$H0,$D2 addcc $T0,$D1,$D1 mulx $R0,$H1,$T0 ! r0*h1 addxc %g0,$D2,$D2 umulxhi $R0,$H1,$T1 addcc $T0,$D1,$D1 mulx $S1,$H2,$T0 ! s1*h2 addxc $T1,$D2,$D2 mulx $R0,$H2,$T1 ! r0*h2 addcc $T0,$D1,$D1 addxc $T1,$D2,$D2 srlx $D2,2,$T0 ! final reduction step andn $D2,3,$T1 and $D2,3,$H2 add $T1,$T0,$T0 addcc $T0,$D0,$H0 addxccc %g0,$D1,$H1 brnz,pt $len,.Loop_vis3 addxc %g0,$H2,$H2 stx $H0,[$ctx+0] ! store hash value stx $H1,[$ctx+8] st $H2,[$ctx+16] ret restore .type poly1305_blocks_vis3,#function .size poly1305_blocks_vis3,.-poly1305_blocks_vis3 ___ } my ($mac,$nonce) = ($inp,$len); $code.=<<___; .globl poly1305_emit .align 32 poly1305_emit: save %sp,-STACK_FRAME,%sp ld [$ctx+0],$h1 ! load hash value ld [$ctx+4],$h0 ld [$ctx+8],$h3 ld [$ctx+12],$h2 ld [$ctx+16],$h4 addcc $h0,5,$r0 ! compare to modulus addccc $h1,0,$r1 addccc $h2,0,$r2 addccc $h3,0,$r3 addc $h4,0,$h4 andcc $h4,4,%g0 ! did it carry/borrow? movnz %icc,$r0,$h0 ld [$nonce+0],$r0 ! load nonce movnz %icc,$r1,$h1 ld [$nonce+4],$r1 movnz %icc,$r2,$h2 ld [$nonce+8],$r2 movnz %icc,$r3,$h3 ld [$nonce+12],$r3 addcc $r0,$h0,$h0 ! accumulate nonce addccc $r1,$h1,$h1 addccc $r2,$h2,$h2 addc $r3,$h3,$h3 srl $h0,8,$r0 stb $h0,[$mac+0] ! store little-endian result srl $h0,16,$r1 stb $r0,[$mac+1] srl $h0,24,$r2 stb $r1,[$mac+2] stb $r2,[$mac+3] srl $h1,8,$r0 stb $h1,[$mac+4] srl $h1,16,$r1 stb $r0,[$mac+5] srl $h1,24,$r2 stb $r1,[$mac+6] stb $r2,[$mac+7] srl $h2,8,$r0 stb $h2,[$mac+8] srl $h2,16,$r1 stb $r0,[$mac+9] srl $h2,24,$r2 stb $r1,[$mac+10] stb $r2,[$mac+11] srl $h3,8,$r0 stb $h3,[$mac+12] srl $h3,16,$r1 stb $r0,[$mac+13] srl $h3,24,$r2 stb $r1,[$mac+14] stb $r2,[$mac+15] ret restore .type poly1305_emit,#function .size poly1305_emit,.-poly1305_emit ___ { my ($ctx,$inp,$len,$padbit) = map("%i$_",(0..3)); my ($in0,$in1,$in2,$in3,$in4) = map("%o$_",(0..4)); my ($i1,$step,$shr,$shl) = map("%l$_",(0..7)); my $i2=$step; my ($h0lo,$h0hi,$h1lo,$h1hi,$h2lo,$h2hi,$h3lo,$h3hi, $two0,$two32,$two64,$two96,$two130,$five_two130, $r0lo,$r0hi,$r1lo,$r1hi,$r2lo,$r2hi, $s2lo,$s2hi,$s3lo,$s3hi, $c0lo,$c0hi,$c1lo,$c1hi,$c2lo,$c2hi,$c3lo,$c3hi) = map("%f".2*$_,(0..31)); # borrowings my ($r3lo,$r3hi,$s1lo,$s1hi) = ($c0lo,$c0hi,$c1lo,$c1hi); my ($x0,$x1,$x2,$x3) = ($c2lo,$c2hi,$c3lo,$c3hi); my ($y0,$y1,$y2,$y3) = ($c1lo,$c1hi,$c3hi,$c3lo); $code.=<<___; .align 32 poly1305_init_fma: save %sp,-STACK_FRAME-16,%sp nop .Lpoly1305_init_fma: 1: call .+8 add %o7,.Lconsts_fma-1b,%o7 ldd [%o7+8*0],$two0 ! load constants ldd [%o7+8*1],$two32 ldd [%o7+8*2],$two64 ldd [%o7+8*3],$two96 ldd [%o7+8*5],$five_two130 std $two0,[$ctx+8*0] ! initial hash value, biased 0 std $two32,[$ctx+8*1] std $two64,[$ctx+8*2] std $two96,[$ctx+8*3] brz,pn $inp,.Lno_key_fma nop stx %fsr,[%sp+LOCALS] ! save original %fsr ldx [%o7+8*6],%fsr ! load new %fsr std $two0,[$ctx+8*4] ! key "template" std $two32,[$ctx+8*5] std $two64,[$ctx+8*6] std $two96,[$ctx+8*7] and $inp,7,$shr andn $inp,7,$inp ! align pointer mov 8,$i1 sll $shr,3,$shr mov 16,$i2 neg $shr,$shl ldxa [$inp+%g0]0x88,$in0 ! load little-endian key ldxa [$inp+$i1]0x88,$in2 brz $shr,.Lkey_aligned_fma sethi %hi(0xf0000000),$i1 ! 0xf0000000 ldxa [$inp+$i2]0x88,$in4 srlx $in0,$shr,$in0 ! align data sllx $in2,$shl,$in1 srlx $in2,$shr,$in2 or $in1,$in0,$in0 sllx $in4,$shl,$in3 or $in3,$in2,$in2 .Lkey_aligned_fma: or $i1,3,$i2 ! 0xf0000003 srlx $in0,32,$in1 andn $in0,$i1,$in0 ! &=0x0fffffff andn $in1,$i2,$in1 ! &=0x0ffffffc srlx $in2,32,$in3 andn $in2,$i2,$in2 andn $in3,$i2,$in3 st $in0,[$ctx+`8*4+4`] ! fill "template" st $in1,[$ctx+`8*5+4`] st $in2,[$ctx+`8*6+4`] st $in3,[$ctx+`8*7+4`] ldd [$ctx+8*4],$h0lo ! load [biased] key ldd [$ctx+8*5],$h1lo ldd [$ctx+8*6],$h2lo ldd [$ctx+8*7],$h3lo fsubd $h0lo,$two0, $h0lo ! r0 ldd [%o7+8*7],$two0 ! more constants fsubd $h1lo,$two32,$h1lo ! r1 ldd [%o7+8*8],$two32 fsubd $h2lo,$two64,$h2lo ! r2 ldd [%o7+8*9],$two64 fsubd $h3lo,$two96,$h3lo ! r3 ldd [%o7+8*10],$two96 fmuld $five_two130,$h1lo,$s1lo ! s1 fmuld $five_two130,$h2lo,$s2lo ! s2 fmuld $five_two130,$h3lo,$s3lo ! s3 faddd $h0lo,$two0, $h0hi faddd $h1lo,$two32,$h1hi faddd $h2lo,$two64,$h2hi faddd $h3lo,$two96,$h3hi fsubd $h0hi,$two0, $h0hi ldd [%o7+8*11],$two0 ! more constants fsubd $h1hi,$two32,$h1hi ldd [%o7+8*12],$two32 fsubd $h2hi,$two64,$h2hi ldd [%o7+8*13],$two64 fsubd $h3hi,$two96,$h3hi fsubd $h0lo,$h0hi,$h0lo std $h0hi,[$ctx+8*5] ! r0hi fsubd $h1lo,$h1hi,$h1lo std $h1hi,[$ctx+8*7] ! r1hi fsubd $h2lo,$h2hi,$h2lo std $h2hi,[$ctx+8*9] ! r2hi fsubd $h3lo,$h3hi,$h3lo std $h3hi,[$ctx+8*11] ! r3hi faddd $s1lo,$two0, $s1hi faddd $s2lo,$two32,$s2hi faddd $s3lo,$two64,$s3hi fsubd $s1hi,$two0, $s1hi fsubd $s2hi,$two32,$s2hi fsubd $s3hi,$two64,$s3hi fsubd $s1lo,$s1hi,$s1lo fsubd $s2lo,$s2hi,$s2lo fsubd $s3lo,$s3hi,$s3lo ldx [%sp+LOCALS],%fsr ! restore %fsr std $h0lo,[$ctx+8*4] ! r0lo std $h1lo,[$ctx+8*6] ! r1lo std $h2lo,[$ctx+8*8] ! r2lo std $h3lo,[$ctx+8*10] ! r3lo std $s1hi,[$ctx+8*13] std $s2hi,[$ctx+8*15] std $s3hi,[$ctx+8*17] std $s1lo,[$ctx+8*12] std $s2lo,[$ctx+8*14] std $s3lo,[$ctx+8*16] add %o7,poly1305_blocks_fma-.Lconsts_fma,%o0 add %o7,poly1305_emit_fma-.Lconsts_fma,%o1 STPTR %o0,[%i2] STPTR %o1,[%i2+SIZE_T] ret restore %g0,1,%o0 ! return 1 .Lno_key_fma: ret restore %g0,%g0,%o0 ! return 0 .type poly1305_init_fma,#function .size poly1305_init_fma,.-poly1305_init_fma .align 32 poly1305_blocks_fma: save %sp,-STACK_FRAME-48,%sp srln $len,4,$len brz,pn $len,.Labort sub $len,1,$len 1: call .+8 add %o7,.Lconsts_fma-1b,%o7 ldd [%o7+8*0],$two0 ! load constants ldd [%o7+8*1],$two32 ldd [%o7+8*2],$two64 ldd [%o7+8*3],$two96 ldd [%o7+8*4],$two130 ldd [%o7+8*5],$five_two130 ldd [$ctx+8*0],$h0lo ! load [biased] hash value ldd [$ctx+8*1],$h1lo ldd [$ctx+8*2],$h2lo ldd [$ctx+8*3],$h3lo std $two0,[%sp+LOCALS+8*0] ! input "template" sethi %hi((1023+52+96)<<20),$in3 std $two32,[%sp+LOCALS+8*1] or $padbit,$in3,$in3 std $two64,[%sp+LOCALS+8*2] st $in3,[%sp+LOCALS+8*3] and $inp,7,$shr andn $inp,7,$inp ! align pointer mov 8,$i1 sll $shr,3,$shr mov 16,$step neg $shr,$shl ldxa [$inp+%g0]0x88,$in0 ! load little-endian input brz $shr,.Linp_aligned_fma ldxa [$inp+$i1]0x88,$in2 ldxa [$inp+$step]0x88,$in4 add $inp,8,$inp srlx $in0,$shr,$in0 ! align data sllx $in2,$shl,$in1 srlx $in2,$shr,$in2 or $in1,$in0,$in0 sllx $in4,$shl,$in3 srlx $in4,$shr,$in4 ! pre-shift or $in3,$in2,$in2 .Linp_aligned_fma: srlx $in0,32,$in1 movrz $len,0,$step srlx $in2,32,$in3 add $step,$inp,$inp ! conditional advance st $in0,[%sp+LOCALS+8*0+4] ! fill "template" st $in1,[%sp+LOCALS+8*1+4] st $in2,[%sp+LOCALS+8*2+4] st $in3,[%sp+LOCALS+8*3+4] ldd [$ctx+8*4],$r0lo ! load key ldd [$ctx+8*5],$r0hi ldd [$ctx+8*6],$r1lo ldd [$ctx+8*7],$r1hi ldd [$ctx+8*8],$r2lo ldd [$ctx+8*9],$r2hi ldd [$ctx+8*10],$r3lo ldd [$ctx+8*11],$r3hi ldd [$ctx+8*12],$s1lo ldd [$ctx+8*13],$s1hi ldd [$ctx+8*14],$s2lo ldd [$ctx+8*15],$s2hi ldd [$ctx+8*16],$s3lo ldd [$ctx+8*17],$s3hi stx %fsr,[%sp+LOCALS+8*4] ! save original %fsr ldx [%o7+8*6],%fsr ! load new %fsr subcc $len,1,$len movrz $len,0,$step ldd [%sp+LOCALS+8*0],$x0 ! load biased input ldd [%sp+LOCALS+8*1],$x1 ldd [%sp+LOCALS+8*2],$x2 ldd [%sp+LOCALS+8*3],$x3 fsubd $h0lo,$two0, $h0lo ! de-bias hash value fsubd $h1lo,$two32,$h1lo ldxa [$inp+%g0]0x88,$in0 ! modulo-scheduled input load fsubd $h2lo,$two64,$h2lo fsubd $h3lo,$two96,$h3lo ldxa [$inp+$i1]0x88,$in2 fsubd $x0,$two0, $x0 ! de-bias input fsubd $x1,$two32,$x1 fsubd $x2,$two64,$x2 fsubd $x3,$two96,$x3 brz $shr,.Linp_aligned_fma2 add $step,$inp,$inp ! conditional advance sllx $in0,$shl,$in1 ! align data srlx $in0,$shr,$in3 or $in1,$in4,$in0 sllx $in2,$shl,$in1 srlx $in2,$shr,$in4 ! pre-shift or $in3,$in1,$in2 .Linp_aligned_fma2: srlx $in0,32,$in1 srlx $in2,32,$in3 faddd $h0lo,$x0,$x0 ! accumulate input stw $in0,[%sp+LOCALS+8*0+4] faddd $h1lo,$x1,$x1 stw $in1,[%sp+LOCALS+8*1+4] faddd $h2lo,$x2,$x2 stw $in2,[%sp+LOCALS+8*2+4] faddd $h3lo,$x3,$x3 stw $in3,[%sp+LOCALS+8*3+4] b .Lentry_fma nop .align 16 .Loop_fma: ldxa [$inp+%g0]0x88,$in0 ! modulo-scheduled input load ldxa [$inp+$i1]0x88,$in2 movrz $len,0,$step faddd $y0,$h0lo,$h0lo ! accumulate input faddd $y1,$h0hi,$h0hi faddd $y2,$h2lo,$h2lo faddd $y3,$h2hi,$h2hi brz,pn $shr,.Linp_aligned_fma3 add $step,$inp,$inp ! conditional advance sllx $in0,$shl,$in1 ! align data srlx $in0,$shr,$in3 or $in1,$in4,$in0 sllx $in2,$shl,$in1 srlx $in2,$shr,$in4 ! pre-shift or $in3,$in1,$in2 .Linp_aligned_fma3: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! base 2^48 -> base 2^32 faddd $two64,$h1lo,$c1lo srlx $in0,32,$in1 faddd $two64,$h1hi,$c1hi srlx $in2,32,$in3 faddd $two130,$h3lo,$c3lo st $in0,[%sp+LOCALS+8*0+4] ! fill "template" faddd $two130,$h3hi,$c3hi st $in1,[%sp+LOCALS+8*1+4] faddd $two32,$h0lo,$c0lo st $in2,[%sp+LOCALS+8*2+4] faddd $two32,$h0hi,$c0hi st $in3,[%sp+LOCALS+8*3+4] faddd $two96,$h2lo,$c2lo faddd $two96,$h2hi,$c2hi fsubd $c1lo,$two64,$c1lo fsubd $c1hi,$two64,$c1hi fsubd $c3lo,$two130,$c3lo fsubd $c3hi,$two130,$c3hi fsubd $c0lo,$two32,$c0lo fsubd $c0hi,$two32,$c0hi fsubd $c2lo,$two96,$c2lo fsubd $c2hi,$two96,$c2hi fsubd $h1lo,$c1lo,$h1lo fsubd $h1hi,$c1hi,$h1hi fsubd $h3lo,$c3lo,$h3lo fsubd $h3hi,$c3hi,$h3hi fsubd $h2lo,$c2lo,$h2lo fsubd $h2hi,$c2hi,$h2hi fsubd $h0lo,$c0lo,$h0lo fsubd $h0hi,$c0hi,$h0hi faddd $h1lo,$c0lo,$h1lo faddd $h1hi,$c0hi,$h1hi faddd $h3lo,$c2lo,$h3lo faddd $h3hi,$c2hi,$h3hi faddd $h2lo,$c1lo,$h2lo faddd $h2hi,$c1hi,$h2hi fmaddd $five_two130,$c3lo,$h0lo,$h0lo fmaddd $five_two130,$c3hi,$h0hi,$h0hi faddd $h1lo,$h1hi,$x1 ldd [$ctx+8*12],$s1lo ! reload constants faddd $h3lo,$h3hi,$x3 ldd [$ctx+8*13],$s1hi faddd $h2lo,$h2hi,$x2 ldd [$ctx+8*10],$r3lo faddd $h0lo,$h0hi,$x0 ldd [$ctx+8*11],$r3hi .Lentry_fma: fmuld $x1,$s3lo,$h0lo fmuld $x1,$s3hi,$h0hi fmuld $x1,$r1lo,$h2lo fmuld $x1,$r1hi,$h2hi fmuld $x1,$r0lo,$h1lo fmuld $x1,$r0hi,$h1hi fmuld $x1,$r2lo,$h3lo fmuld $x1,$r2hi,$h3hi fmaddd $x3,$s1lo,$h0lo,$h0lo fmaddd $x3,$s1hi,$h0hi,$h0hi fmaddd $x3,$s3lo,$h2lo,$h2lo fmaddd $x3,$s3hi,$h2hi,$h2hi fmaddd $x3,$s2lo,$h1lo,$h1lo fmaddd $x3,$s2hi,$h1hi,$h1hi fmaddd $x3,$r0lo,$h3lo,$h3lo fmaddd $x3,$r0hi,$h3hi,$h3hi fmaddd $x2,$s2lo,$h0lo,$h0lo fmaddd $x2,$s2hi,$h0hi,$h0hi fmaddd $x2,$r0lo,$h2lo,$h2lo fmaddd $x2,$r0hi,$h2hi,$h2hi fmaddd $x2,$s3lo,$h1lo,$h1lo ldd [%sp+LOCALS+8*0],$y0 ! load [biased] input fmaddd $x2,$s3hi,$h1hi,$h1hi ldd [%sp+LOCALS+8*1],$y1 fmaddd $x2,$r1lo,$h3lo,$h3lo ldd [%sp+LOCALS+8*2],$y2 fmaddd $x2,$r1hi,$h3hi,$h3hi ldd [%sp+LOCALS+8*3],$y3 fmaddd $x0,$r0lo,$h0lo,$h0lo fsubd $y0,$two0, $y0 ! de-bias input fmaddd $x0,$r0hi,$h0hi,$h0hi fsubd $y1,$two32,$y1 fmaddd $x0,$r2lo,$h2lo,$h2lo fsubd $y2,$two64,$y2 fmaddd $x0,$r2hi,$h2hi,$h2hi fsubd $y3,$two96,$y3 fmaddd $x0,$r1lo,$h1lo,$h1lo fmaddd $x0,$r1hi,$h1hi,$h1hi fmaddd $x0,$r3lo,$h3lo,$h3lo fmaddd $x0,$r3hi,$h3hi,$h3hi bcc SIZE_T_CC,.Loop_fma subcc $len,1,$len !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! base 2^48 -> base 2^32 faddd $h0lo,$two32,$c0lo faddd $h0hi,$two32,$c0hi faddd $h2lo,$two96,$c2lo faddd $h2hi,$two96,$c2hi faddd $h1lo,$two64,$c1lo faddd $h1hi,$two64,$c1hi faddd $h3lo,$two130,$c3lo faddd $h3hi,$two130,$c3hi fsubd $c0lo,$two32,$c0lo fsubd $c0hi,$two32,$c0hi fsubd $c2lo,$two96,$c2lo fsubd $c2hi,$two96,$c2hi fsubd $c1lo,$two64,$c1lo fsubd $c1hi,$two64,$c1hi fsubd $c3lo,$two130,$c3lo fsubd $c3hi,$two130,$c3hi fsubd $h1lo,$c1lo,$h1lo fsubd $h1hi,$c1hi,$h1hi fsubd $h3lo,$c3lo,$h3lo fsubd $h3hi,$c3hi,$h3hi fsubd $h2lo,$c2lo,$h2lo fsubd $h2hi,$c2hi,$h2hi fsubd $h0lo,$c0lo,$h0lo fsubd $h0hi,$c0hi,$h0hi faddd $h1lo,$c0lo,$h1lo faddd $h1hi,$c0hi,$h1hi faddd $h3lo,$c2lo,$h3lo faddd $h3hi,$c2hi,$h3hi faddd $h2lo,$c1lo,$h2lo faddd $h2hi,$c1hi,$h2hi fmaddd $five_two130,$c3lo,$h0lo,$h0lo fmaddd $five_two130,$c3hi,$h0hi,$h0hi faddd $h1lo,$h1hi,$x1 faddd $h3lo,$h3hi,$x3 faddd $h2lo,$h2hi,$x2 faddd $h0lo,$h0hi,$x0 faddd $x1,$two32,$x1 ! bias faddd $x3,$two96,$x3 faddd $x2,$two64,$x2 faddd $x0,$two0, $x0 ldx [%sp+LOCALS+8*4],%fsr ! restore saved %fsr std $x1,[$ctx+8*1] ! store [biased] hash value std $x3,[$ctx+8*3] std $x2,[$ctx+8*2] std $x0,[$ctx+8*0] .Labort: ret restore .type poly1305_blocks_fma,#function .size poly1305_blocks_fma,.-poly1305_blocks_fma ___ { my ($mac,$nonce)=($inp,$len); my ($h0,$h1,$h2,$h3,$h4, $d0,$d1,$d2,$d3, $mask ) = (map("%l$_",(0..5)),map("%o$_",(0..4))); $code.=<<___; .align 32 poly1305_emit_fma: save %sp,-STACK_FRAME,%sp ld [$ctx+8*0+0],$d0 ! load hash ld [$ctx+8*0+4],$h0 ld [$ctx+8*1+0],$d1 ld [$ctx+8*1+4],$h1 ld [$ctx+8*2+0],$d2 ld [$ctx+8*2+4],$h2 ld [$ctx+8*3+0],$d3 ld [$ctx+8*3+4],$h3 sethi %hi(0xfff00000),$mask andn $d0,$mask,$d0 ! mask exponent andn $d1,$mask,$d1 andn $d2,$mask,$d2 andn $d3,$mask,$d3 ! can be partially reduced... mov 3,$mask srl $d3,2,$padbit ! ... so reduce and $d3,$mask,$h4 andn $d3,$mask,$d3 add $padbit,$d3,$d3 addcc $d3,$h0,$h0 addccc $d0,$h1,$h1 addccc $d1,$h2,$h2 addccc $d2,$h3,$h3 addc %g0,$h4,$h4 addcc $h0,5,$d0 ! compare to modulus addccc $h1,0,$d1 addccc $h2,0,$d2 addccc $h3,0,$d3 addc $h4,0,$mask srl $mask,2,$mask ! did it carry/borrow? neg $mask,$mask sra $mask,31,$mask ! mask andn $h0,$mask,$h0 and $d0,$mask,$d0 andn $h1,$mask,$h1 and $d1,$mask,$d1 or $d0,$h0,$h0 ld [$nonce+0],$d0 ! load nonce andn $h2,$mask,$h2 and $d2,$mask,$d2 or $d1,$h1,$h1 ld [$nonce+4],$d1 andn $h3,$mask,$h3 and $d3,$mask,$d3 or $d2,$h2,$h2 ld [$nonce+8],$d2 or $d3,$h3,$h3 ld [$nonce+12],$d3 addcc $d0,$h0,$h0 ! accumulate nonce addccc $d1,$h1,$h1 addccc $d2,$h2,$h2 addc $d3,$h3,$h3 stb $h0,[$mac+0] ! write little-endian result srl $h0,8,$h0 stb $h1,[$mac+4] srl $h1,8,$h1 stb $h2,[$mac+8] srl $h2,8,$h2 stb $h3,[$mac+12] srl $h3,8,$h3 stb $h0,[$mac+1] srl $h0,8,$h0 stb $h1,[$mac+5] srl $h1,8,$h1 stb $h2,[$mac+9] srl $h2,8,$h2 stb $h3,[$mac+13] srl $h3,8,$h3 stb $h0,[$mac+2] srl $h0,8,$h0 stb $h1,[$mac+6] srl $h1,8,$h1 stb $h2,[$mac+10] srl $h2,8,$h2 stb $h3,[$mac+14] srl $h3,8,$h3 stb $h0,[$mac+3] stb $h1,[$mac+7] stb $h2,[$mac+11] stb $h3,[$mac+15] ret restore .type poly1305_emit_fma,#function .size poly1305_emit_fma,.-poly1305_emit_fma ___ } $code.=<<___; .align 64 .Lconsts_fma: .word 0x43300000,0x00000000 ! 2^(52+0) .word 0x45300000,0x00000000 ! 2^(52+32) .word 0x47300000,0x00000000 ! 2^(52+64) .word 0x49300000,0x00000000 ! 2^(52+96) .word 0x4b500000,0x00000000 ! 2^(52+130) .word 0x37f40000,0x00000000 ! 5/2^130 .word 0,1<<30 ! fsr: truncate, no exceptions .word 0x44300000,0x00000000 ! 2^(52+16+0) .word 0x46300000,0x00000000 ! 2^(52+16+32) .word 0x48300000,0x00000000 ! 2^(52+16+64) .word 0x4a300000,0x00000000 ! 2^(52+16+96) .word 0x3e300000,0x00000000 ! 2^(52+16+0-96) .word 0x40300000,0x00000000 ! 2^(52+16+32-96) .word 0x42300000,0x00000000 ! 2^(52+16+64-96) .asciz "Poly1305 for SPARCv9/VIS3/FMA, CRYPTOGAMS by " .align 4 ___ } # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "addxc" => 0x011, "addxccc" => 0x013, "umulxhi" => 0x016 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unfma { my ($mnemonic,$rs1,$rs2,$rs3,$rd)=@_; my ($ref,$opf); my %fmaopf = ( "fmadds" => 0x1, "fmaddd" => 0x2, "fmsubs" => 0x5, "fmsubd" => 0x6 ); $ref = "$mnemonic\t$rs1,$rs2,$rs3,$rd"; if ($opf=$fmaopf{$mnemonic}) { foreach ($rs1,$rs2,$rs3,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b80000|$rd<<25|$rs1<<14|$rs3<<9|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(umulxhi|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge or s/\b(fmadd[sd])\s+(%f[0-9]+),\s*(%f[0-9]+),\s*(%f[0-9]+),\s*(%f[0-9]+)/ &unfma($1,$2,$3,$4,$5) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/asm/poly1305-x86.pl000077500000000000000000001450261364063235100212310ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for x86. # # April 2015 # # Numbers are cycles per processed byte with poly1305_blocks alone, # measured with rdtsc at fixed clock frequency. # # IALU/gcc-3.4(*) SSE2(**) AVX2 # Pentium 15.7/+80% - # PIII 6.21/+90% - # P4 19.8/+40% 3.24 # Core 2 4.85/+90% 1.80 # Westmere 4.58/+100% 1.43 # Sandy Bridge 3.90/+100% 1.36 # Haswell 3.88/+70% 1.18 0.72 # Skylake 3.10/+60% 1.14 0.62 # Silvermont 11.0/+40% 4.80 # Goldmont 4.10/+200% 2.10 # VIA Nano 6.71/+90% 2.47 # Sledgehammer 3.51/+180% 4.27 # Bulldozer 4.53/+140% 1.31 # # (*) gcc 4.8 for some reason generated worse code; # (**) besides SSE2 there are floating-point and AVX options; FP # is deemed unnecessary, because pre-SSE2 processor are too # old to care about, while it's not the fastest option on # SSE2-capable ones; AVX is omitted, because it doesn't give # a lot of improvement, 5-10% depending on processor; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $sse2=$avx=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } if ($sse2) { &static_label("const_sse2"); &static_label("enter_blocks"); &static_label("enter_emit"); &external_label("OPENSSL_ia32cap_P"); if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if (!$avx && $ARGV[0] eq "win32n" && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } } ######################################################################## # Layout of opaque area is following. # # unsigned __int32 h[5]; # current hash value base 2^32 # unsigned __int32 pad; # is_base2_26 in vector context # unsigned __int32 r[4]; # key value base 2^32 &align(64); &function_begin("poly1305_init"); &mov ("edi",&wparam(0)); # context &mov ("esi",&wparam(1)); # key &mov ("ebp",&wparam(2)); # function table &xor ("eax","eax"); &mov (&DWP(4*0,"edi"),"eax"); # zero hash value &mov (&DWP(4*1,"edi"),"eax"); &mov (&DWP(4*2,"edi"),"eax"); &mov (&DWP(4*3,"edi"),"eax"); &mov (&DWP(4*4,"edi"),"eax"); &mov (&DWP(4*5,"edi"),"eax"); # is_base2_26 &cmp ("esi",0); &je (&label("nokey")); if ($sse2) { &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("eax",&DWP("poly1305_blocks-".&label("pic_point"),"ebx")); &lea ("edx",&DWP("poly1305_emit-".&label("pic_point"),"ebx")); &picmeup("edi","OPENSSL_ia32cap_P","ebx",&label("pic_point")); &mov ("ecx",&DWP(0,"edi")); &and ("ecx",1<<26|1<<24); &cmp ("ecx",1<<26|1<<24); # SSE2 and XMM? &jne (&label("no_sse2")); &lea ("eax",&DWP("_poly1305_blocks_sse2-".&label("pic_point"),"ebx")); &lea ("edx",&DWP("_poly1305_emit_sse2-".&label("pic_point"),"ebx")); if ($avx>1) { &mov ("ecx",&DWP(8,"edi")); &test ("ecx",1<<5); # AVX2? &jz (&label("no_sse2")); &lea ("eax",&DWP("_poly1305_blocks_avx2-".&label("pic_point"),"ebx")); } &set_label("no_sse2"); &mov ("edi",&wparam(0)); # reload context &mov (&DWP(0,"ebp"),"eax"); # fill function table &mov (&DWP(4,"ebp"),"edx"); } &mov ("eax",&DWP(4*0,"esi")); # load input key &mov ("ebx",&DWP(4*1,"esi")); &mov ("ecx",&DWP(4*2,"esi")); &mov ("edx",&DWP(4*3,"esi")); &and ("eax",0x0fffffff); &and ("ebx",0x0ffffffc); &and ("ecx",0x0ffffffc); &and ("edx",0x0ffffffc); &mov (&DWP(4*6,"edi"),"eax"); &mov (&DWP(4*7,"edi"),"ebx"); &mov (&DWP(4*8,"edi"),"ecx"); &mov (&DWP(4*9,"edi"),"edx"); &mov ("eax",$sse2); &set_label("nokey"); &function_end("poly1305_init"); ($h0,$h1,$h2,$h3,$h4, $d0,$d1,$d2,$d3, $r0,$r1,$r2,$r3, $s1,$s2,$s3)=map(4*$_,(0..15)); &function_begin("poly1305_blocks"); &mov ("edi",&wparam(0)); # ctx &mov ("esi",&wparam(1)); # inp &mov ("ecx",&wparam(2)); # len &set_label("enter_blocks"); &and ("ecx",-15); &jz (&label("nodata")); &stack_push(16); &mov ("eax",&DWP(4*6,"edi")); # r0 &mov ("ebx",&DWP(4*7,"edi")); # r1 &lea ("ebp",&DWP(0,"esi","ecx")); # end of input &mov ("ecx",&DWP(4*8,"edi")); # r2 &mov ("edx",&DWP(4*9,"edi")); # r3 &mov (&wparam(2),"ebp"); &mov ("ebp","esi"); &mov (&DWP($r0,"esp"),"eax"); # r0 &mov ("eax","ebx"); &shr ("eax",2); &mov (&DWP($r1,"esp"),"ebx"); # r1 &add ("eax","ebx"); # s1 &mov ("ebx","ecx"); &shr ("ebx",2); &mov (&DWP($r2,"esp"),"ecx"); # r2 &add ("ebx","ecx"); # s2 &mov ("ecx","edx"); &shr ("ecx",2); &mov (&DWP($r3,"esp"),"edx"); # r3 &add ("ecx","edx"); # s3 &mov (&DWP($s1,"esp"),"eax"); # s1 &mov (&DWP($s2,"esp"),"ebx"); # s2 &mov (&DWP($s3,"esp"),"ecx"); # s3 &mov ("eax",&DWP(4*0,"edi")); # load hash value &mov ("ebx",&DWP(4*1,"edi")); &mov ("ecx",&DWP(4*2,"edi")); &mov ("esi",&DWP(4*3,"edi")); &mov ("edi",&DWP(4*4,"edi")); &jmp (&label("loop")); &set_label("loop",32); &add ("eax",&DWP(4*0,"ebp")); # accumulate input &adc ("ebx",&DWP(4*1,"ebp")); &adc ("ecx",&DWP(4*2,"ebp")); &adc ("esi",&DWP(4*3,"ebp")); &lea ("ebp",&DWP(4*4,"ebp")); &adc ("edi",&wparam(3)); # padbit &mov (&DWP($h0,"esp"),"eax"); # put aside hash[+inp] &mov (&DWP($h3,"esp"),"esi"); &mul (&DWP($r0,"esp")); # h0*r0 &mov (&DWP($h4,"esp"),"edi"); &mov ("edi","eax"); &mov ("eax","ebx"); # h1 &mov ("esi","edx"); &mul (&DWP($s3,"esp")); # h1*s3 &add ("edi","eax"); &mov ("eax","ecx"); # h2 &adc ("esi","edx"); &mul (&DWP($s2,"esp")); # h2*s2 &add ("edi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("esi","edx"); &mul (&DWP($s1,"esp")); # h3*s1 &add ("edi","eax"); &mov ("eax",&DWP($h0,"esp")); &adc ("esi","edx"); &mul (&DWP($r1,"esp")); # h0*r1 &mov (&DWP($d0,"esp"),"edi"); &xor ("edi","edi"); &add ("esi","eax"); &mov ("eax","ebx"); # h1 &adc ("edi","edx"); &mul (&DWP($r0,"esp")); # h1*r0 &add ("esi","eax"); &mov ("eax","ecx"); # h2 &adc ("edi","edx"); &mul (&DWP($s3,"esp")); # h2*s3 &add ("esi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("edi","edx"); &mul (&DWP($s2,"esp")); # h3*s2 &add ("esi","eax"); &mov ("eax",&DWP($h4,"esp")); &adc ("edi","edx"); &imul ("eax",&DWP($s1,"esp")); # h4*s1 &add ("esi","eax"); &mov ("eax",&DWP($h0,"esp")); &adc ("edi",0); &mul (&DWP($r2,"esp")); # h0*r2 &mov (&DWP($d1,"esp"),"esi"); &xor ("esi","esi"); &add ("edi","eax"); &mov ("eax","ebx"); # h1 &adc ("esi","edx"); &mul (&DWP($r1,"esp")); # h1*r1 &add ("edi","eax"); &mov ("eax","ecx"); # h2 &adc ("esi","edx"); &mul (&DWP($r0,"esp")); # h2*r0 &add ("edi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("esi","edx"); &mul (&DWP($s3,"esp")); # h3*s3 &add ("edi","eax"); &mov ("eax",&DWP($h4,"esp")); &adc ("esi","edx"); &imul ("eax",&DWP($s2,"esp")); # h4*s2 &add ("edi","eax"); &mov ("eax",&DWP($h0,"esp")); &adc ("esi",0); &mul (&DWP($r3,"esp")); # h0*r3 &mov (&DWP($d2,"esp"),"edi"); &xor ("edi","edi"); &add ("esi","eax"); &mov ("eax","ebx"); # h1 &adc ("edi","edx"); &mul (&DWP($r2,"esp")); # h1*r2 &add ("esi","eax"); &mov ("eax","ecx"); # h2 &adc ("edi","edx"); &mul (&DWP($r1,"esp")); # h2*r1 &add ("esi","eax"); &mov ("eax",&DWP($h3,"esp")); &adc ("edi","edx"); &mul (&DWP($r0,"esp")); # h3*r0 &add ("esi","eax"); &mov ("ecx",&DWP($h4,"esp")); &adc ("edi","edx"); &mov ("edx","ecx"); &imul ("ecx",&DWP($s3,"esp")); # h4*s3 &add ("esi","ecx"); &mov ("eax",&DWP($d0,"esp")); &adc ("edi",0); &imul ("edx",&DWP($r0,"esp")); # h4*r0 &add ("edx","edi"); &mov ("ebx",&DWP($d1,"esp")); &mov ("ecx",&DWP($d2,"esp")); &mov ("edi","edx"); # last reduction step &shr ("edx",2); &and ("edi",3); &lea ("edx",&DWP(0,"edx","edx",4)); # *5 &add ("eax","edx"); &adc ("ebx",0); &adc ("ecx",0); &adc ("esi",0); &adc ("edi",0); &cmp ("ebp",&wparam(2)); # done yet? &jne (&label("loop")); &mov ("edx",&wparam(0)); # ctx &stack_pop(16); &mov (&DWP(4*0,"edx"),"eax"); # store hash value &mov (&DWP(4*1,"edx"),"ebx"); &mov (&DWP(4*2,"edx"),"ecx"); &mov (&DWP(4*3,"edx"),"esi"); &mov (&DWP(4*4,"edx"),"edi"); &set_label("nodata"); &function_end("poly1305_blocks"); &function_begin("poly1305_emit"); &mov ("ebp",&wparam(0)); # context &set_label("enter_emit"); &mov ("edi",&wparam(1)); # output &mov ("eax",&DWP(4*0,"ebp")); # load hash value &mov ("ebx",&DWP(4*1,"ebp")); &mov ("ecx",&DWP(4*2,"ebp")); &mov ("edx",&DWP(4*3,"ebp")); &mov ("esi",&DWP(4*4,"ebp")); &add ("eax",5); # compare to modulus &adc ("ebx",0); &adc ("ecx",0); &adc ("edx",0); &adc ("esi",0); &shr ("esi",2); # did it carry/borrow? &neg ("esi"); # do we choose hash-modulus? &and ("eax","esi"); &and ("ebx","esi"); &and ("ecx","esi"); &and ("edx","esi"); &mov (&DWP(4*0,"edi"),"eax"); &mov (&DWP(4*1,"edi"),"ebx"); &mov (&DWP(4*2,"edi"),"ecx"); &mov (&DWP(4*3,"edi"),"edx"); ¬ ("esi"); # or original hash value? &mov ("eax",&DWP(4*0,"ebp")); &mov ("ebx",&DWP(4*1,"ebp")); &mov ("ecx",&DWP(4*2,"ebp")); &mov ("edx",&DWP(4*3,"ebp")); &mov ("ebp",&wparam(2)); &and ("eax","esi"); &and ("ebx","esi"); &and ("ecx","esi"); &and ("edx","esi"); &or ("eax",&DWP(4*0,"edi")); &or ("ebx",&DWP(4*1,"edi")); &or ("ecx",&DWP(4*2,"edi")); &or ("edx",&DWP(4*3,"edi")); &add ("eax",&DWP(4*0,"ebp")); # accumulate key &adc ("ebx",&DWP(4*1,"ebp")); &adc ("ecx",&DWP(4*2,"ebp")); &adc ("edx",&DWP(4*3,"ebp")); &mov (&DWP(4*0,"edi"),"eax"); &mov (&DWP(4*1,"edi"),"ebx"); &mov (&DWP(4*2,"edi"),"ecx"); &mov (&DWP(4*3,"edi"),"edx"); &function_end("poly1305_emit"); if ($sse2) { ######################################################################## # Layout of opaque area is following. # # unsigned __int32 h[5]; # current hash value base 2^26 # unsigned __int32 is_base2_26; # unsigned __int32 r[4]; # key value base 2^32 # unsigned __int32 pad[2]; # struct { unsigned __int32 r^4, r^3, r^2, r^1; } r[9]; # # where r^n are base 2^26 digits of degrees of multiplier key. There are # 5 digits, but last four are interleaved with multiples of 5, totalling # in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4. my ($D0,$D1,$D2,$D3,$D4,$T0,$T1,$T2)=map("xmm$_",(0..7)); my $MASK=$T2; # borrow and keep in mind &align (32); &function_begin_B("_poly1305_init_sse2"); &movdqu ($D4,&QWP(4*6,"edi")); # key base 2^32 &lea ("edi",&DWP(16*3,"edi")); # size optimization &mov ("ebp","esp"); &sub ("esp",16*(9+5)); &and ("esp",-16); #&pand ($D4,&QWP(96,"ebx")); # magic mask &movq ($MASK,&QWP(64,"ebx")); &movdqa ($D0,$D4); &movdqa ($D1,$D4); &movdqa ($D2,$D4); &pand ($D0,$MASK); # -> base 2^26 &psrlq ($D1,26); &psrldq ($D2,6); &pand ($D1,$MASK); &movdqa ($D3,$D2); &psrlq ($D2,4) &psrlq ($D3,30); &pand ($D2,$MASK); &pand ($D3,$MASK); &psrldq ($D4,13); &lea ("edx",&DWP(16*9,"esp")); # size optimization &mov ("ecx",2); &set_label("square"); &movdqa (&QWP(16*0,"esp"),$D0); &movdqa (&QWP(16*1,"esp"),$D1); &movdqa (&QWP(16*2,"esp"),$D2); &movdqa (&QWP(16*3,"esp"),$D3); &movdqa (&QWP(16*4,"esp"),$D4); &movdqa ($T1,$D1); &movdqa ($T0,$D2); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D1); # *5 &paddd ($T0,$D2); # *5 &movdqa (&QWP(16*5,"esp"),$T1); &movdqa (&QWP(16*6,"esp"),$T0); &movdqa ($T1,$D3); &movdqa ($T0,$D4); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D3); # *5 &paddd ($T0,$D4); # *5 &movdqa (&QWP(16*7,"esp"),$T1); &movdqa (&QWP(16*8,"esp"),$T0); &pshufd ($T1,$D0,0b01000100); &movdqa ($T0,$D1); &pshufd ($D1,$D1,0b01000100); &pshufd ($D2,$D2,0b01000100); &pshufd ($D3,$D3,0b01000100); &pshufd ($D4,$D4,0b01000100); &movdqa (&QWP(16*0,"edx"),$T1); &movdqa (&QWP(16*1,"edx"),$D1); &movdqa (&QWP(16*2,"edx"),$D2); &movdqa (&QWP(16*3,"edx"),$D3); &movdqa (&QWP(16*4,"edx"),$D4); ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 &pmuludq ($D4,$D0); # h4*r0 &pmuludq ($D3,$D0); # h3*r0 &pmuludq ($D2,$D0); # h2*r0 &pmuludq ($D1,$D0); # h1*r0 &pmuludq ($D0,$T1); # h0*r0 sub pmuladd { my $load = shift; my $base = shift; $base = "esp" if (!defined($base)); ################################################################ # As for choice to "rotate" $T0-$T2 in order to move paddq # past next multiplication. While it makes code harder to read # and doesn't have significant effect on most processors, it # makes a lot of difference on Atom, up to 30% improvement. &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*3,$base)); # r1*h3 &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*2,$base)); # r1*h2 &paddq ($D4,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*1,$base)); # r1*h1 &paddq ($D3,$T1); &$load ($T1,5); # s1 &pmuludq ($T0,&QWP(16*0,$base)); # r1*h0 &paddq ($D2,$T2); &pmuludq ($T1,&QWP(16*4,$base)); # s1*h4 &$load ($T2,2); # r2^n &paddq ($D1,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*2,$base)); # r2*h2 &paddq ($D0,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*1,$base)); # r2*h1 &paddq ($D4,$T2); &$load ($T2,6); # s2^n &pmuludq ($T1,&QWP(16*0,$base)); # r2*h0 &paddq ($D3,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*4,$base)); # s2*h4 &paddq ($D2,$T1); &pmuludq ($T0,&QWP(16*3,$base)); # s2*h3 &$load ($T1,3); # r3^n &paddq ($D1,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*1,$base)); # r3*h1 &paddq ($D0,$T0); &$load ($T0,7); # s3^n &pmuludq ($T2,&QWP(16*0,$base)); # r3*h0 &paddq ($D4,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*4,$base)); # s3*h4 &paddq ($D3,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*3,$base)); # s3*h3 &paddq ($D2,$T0); &pmuludq ($T2,&QWP(16*2,$base)); # s3*h2 &$load ($T0,4); # r4^n &paddq ($D1,$T1); &$load ($T1,8); # s4^n &pmuludq ($T0,&QWP(16*0,$base)); # r4*h0 &paddq ($D0,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&QWP(16*4,$base)); # s4*h4 &paddq ($D4,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&QWP(16*1,$base)); # s4*h1 &paddq ($D3,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&QWP(16*2,$base)); # s4*h2 &paddq ($D0,$T2); &pmuludq ($T1,&QWP(16*3,$base)); # s4*h3 &movdqa ($MASK,&QWP(64,"ebx")); &paddq ($D1,$T0); &paddq ($D2,$T1); } &pmuladd (sub { my ($reg,$i)=@_; &movdqa ($reg,&QWP(16*$i,"esp")); },"edx"); sub lazy_reduction { my $extra = shift; ################################################################ # lazy reduction as discussed in "NEON crypto" by D.J. Bernstein # and P. Schwabe # # [(*) see discussion in poly1305-armv4 module] &movdqa ($T0,$D3); &pand ($D3,$MASK); &psrlq ($T0,26); &$extra () if (defined($extra)); &paddq ($T0,$D4); # h3 -> h4 &movdqa ($T1,$D0); &pand ($D0,$MASK); &psrlq ($T1,26); &movdqa ($D4,$T0); &paddq ($T1,$D1); # h0 -> h1 &psrlq ($T0,26); &pand ($D4,$MASK); &movdqa ($D1,$T1); &psrlq ($T1,26); &paddd ($D0,$T0); # favour paddd when # possible, because # paddq is "broken" # on Atom &psllq ($T0,2); &paddq ($T1,$D2); # h1 -> h2 &paddq ($T0,$D0); # h4 -> h0 (*) &pand ($D1,$MASK); &movdqa ($D2,$T1); &psrlq ($T1,26); &pand ($D2,$MASK); &paddd ($T1,$D3); # h2 -> h3 &movdqa ($D0,$T0); &psrlq ($T0,26); &movdqa ($D3,$T1); &psrlq ($T1,26); &pand ($D0,$MASK); &paddd ($D1,$T0); # h0 -> h1 &pand ($D3,$MASK); &paddd ($D4,$T1); # h3 -> h4 } &lazy_reduction (); &dec ("ecx"); &jz (&label("square_break")); &punpcklqdq ($D0,&QWP(16*0,"esp")); # 0:r^1:0:r^2 &punpcklqdq ($D1,&QWP(16*1,"esp")); &punpcklqdq ($D2,&QWP(16*2,"esp")); &punpcklqdq ($D3,&QWP(16*3,"esp")); &punpcklqdq ($D4,&QWP(16*4,"esp")); &jmp (&label("square")); &set_label("square_break"); &psllq ($D0,32); # -> r^3:0:r^4:0 &psllq ($D1,32); &psllq ($D2,32); &psllq ($D3,32); &psllq ($D4,32); &por ($D0,&QWP(16*0,"esp")); # r^3:r^1:r^4:r^2 &por ($D1,&QWP(16*1,"esp")); &por ($D2,&QWP(16*2,"esp")); &por ($D3,&QWP(16*3,"esp")); &por ($D4,&QWP(16*4,"esp")); &pshufd ($D0,$D0,0b10001101); # -> r^1:r^2:r^3:r^4 &pshufd ($D1,$D1,0b10001101); &pshufd ($D2,$D2,0b10001101); &pshufd ($D3,$D3,0b10001101); &pshufd ($D4,$D4,0b10001101); &movdqu (&QWP(16*0,"edi"),$D0); # save the table &movdqu (&QWP(16*1,"edi"),$D1); &movdqu (&QWP(16*2,"edi"),$D2); &movdqu (&QWP(16*3,"edi"),$D3); &movdqu (&QWP(16*4,"edi"),$D4); &movdqa ($T1,$D1); &movdqa ($T0,$D2); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D1); # *5 &paddd ($T0,$D2); # *5 &movdqu (&QWP(16*5,"edi"),$T1); &movdqu (&QWP(16*6,"edi"),$T0); &movdqa ($T1,$D3); &movdqa ($T0,$D4); &pslld ($T1,2); &pslld ($T0,2); &paddd ($T1,$D3); # *5 &paddd ($T0,$D4); # *5 &movdqu (&QWP(16*7,"edi"),$T1); &movdqu (&QWP(16*8,"edi"),$T0); &mov ("esp","ebp"); &lea ("edi",&DWP(-16*3,"edi")); # size de-optimization &ret (); &function_end_B("_poly1305_init_sse2"); &align (32); &function_begin("_poly1305_blocks_sse2"); &mov ("edi",&wparam(0)); # ctx &mov ("esi",&wparam(1)); # inp &mov ("ecx",&wparam(2)); # len &mov ("eax",&DWP(4*5,"edi")); # is_base2_26 &and ("ecx",-16); &jz (&label("nodata")); &cmp ("ecx",64); &jae (&label("enter_sse2")); &test ("eax","eax"); # is_base2_26? &jz (&label("enter_blocks")); &set_label("enter_sse2",16); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("const_sse2")."-".&label("pic_point"),"ebx")); &test ("eax","eax"); # is_base2_26? &jnz (&label("base2_26")); &call ("_poly1305_init_sse2"); ################################################# base 2^32 -> base 2^26 &mov ("eax",&DWP(0,"edi")); &mov ("ecx",&DWP(3,"edi")); &mov ("edx",&DWP(6,"edi")); &mov ("esi",&DWP(9,"edi")); &mov ("ebp",&DWP(13,"edi")); &mov (&DWP(4*5,"edi"),1); # is_base2_26 &shr ("ecx",2); &and ("eax",0x3ffffff); &shr ("edx",4); &and ("ecx",0x3ffffff); &shr ("esi",6); &and ("edx",0x3ffffff); &movd ($D0,"eax"); &movd ($D1,"ecx"); &movd ($D2,"edx"); &movd ($D3,"esi"); &movd ($D4,"ebp"); &mov ("esi",&wparam(1)); # [reload] inp &mov ("ecx",&wparam(2)); # [reload] len &jmp (&label("base2_32")); &set_label("base2_26",16); &movd ($D0,&DWP(4*0,"edi")); # load hash value &movd ($D1,&DWP(4*1,"edi")); &movd ($D2,&DWP(4*2,"edi")); &movd ($D3,&DWP(4*3,"edi")); &movd ($D4,&DWP(4*4,"edi")); &movdqa ($MASK,&QWP(64,"ebx")); &set_label("base2_32"); &mov ("eax",&wparam(3)); # padbit &mov ("ebp","esp"); &sub ("esp",16*(5+5+5+9+9)); &and ("esp",-16); &lea ("edi",&DWP(16*3,"edi")); # size optimization &shl ("eax",24); # padbit &test ("ecx",31); &jz (&label("even")); ################################################################ # process single block, with SSE2, because it's still faster # even though half of result is discarded &movdqu ($T1,&QWP(0,"esi")); # input &lea ("esi",&DWP(16,"esi")); &movdqa ($T0,$T1); # -> base 2^26 ... &pand ($T1,$MASK); &paddd ($D0,$T1); # ... and accumulate &movdqa ($T1,$T0); &psrlq ($T0,26); &psrldq ($T1,6); &pand ($T0,$MASK); &paddd ($D1,$T0); &movdqa ($T0,$T1); &psrlq ($T1,4); &pand ($T1,$MASK); &paddd ($D2,$T1); &movdqa ($T1,$T0); &psrlq ($T0,30); &pand ($T0,$MASK); &psrldq ($T1,7); &paddd ($D3,$T0); &movd ($T0,"eax"); # padbit &paddd ($D4,$T1); &movd ($T1,&DWP(16*0+12,"edi")); # r0 &paddd ($D4,$T0); &movdqa (&QWP(16*0,"esp"),$D0); &movdqa (&QWP(16*1,"esp"),$D1); &movdqa (&QWP(16*2,"esp"),$D2); &movdqa (&QWP(16*3,"esp"),$D3); &movdqa (&QWP(16*4,"esp"),$D4); ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 &pmuludq ($D0,$T1); # h4*r0 &pmuludq ($D1,$T1); # h3*r0 &pmuludq ($D2,$T1); # h2*r0 &movd ($T0,&DWP(16*1+12,"edi")); # r1 &pmuludq ($D3,$T1); # h1*r0 &pmuludq ($D4,$T1); # h0*r0 &pmuladd (sub { my ($reg,$i)=@_; &movd ($reg,&DWP(16*$i+12,"edi")); }); &lazy_reduction (); &sub ("ecx",16); &jz (&label("done")); &set_label("even"); &lea ("edx",&DWP(16*(5+5+5+9),"esp"));# size optimization &lea ("eax",&DWP(-16*2,"esi")); &sub ("ecx",64); ################################################################ # expand and copy pre-calculated table to stack &movdqu ($T0,&QWP(16*0,"edi")); # r^1:r^2:r^3:r^4 &pshufd ($T1,$T0,0b01000100); # duplicate r^3:r^4 &cmovb ("esi","eax"); &pshufd ($T0,$T0,0b11101110); # duplicate r^1:r^2 &movdqa (&QWP(16*0,"edx"),$T1); &lea ("eax",&DWP(16*10,"esp")); &movdqu ($T1,&QWP(16*1,"edi")); &movdqa (&QWP(16*(0-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*1,"edx"),$T0); &movdqu ($T0,&QWP(16*2,"edi")); &movdqa (&QWP(16*(1-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*2,"edx"),$T1); &movdqu ($T1,&QWP(16*3,"edi")); &movdqa (&QWP(16*(2-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*3,"edx"),$T0); &movdqu ($T0,&QWP(16*4,"edi")); &movdqa (&QWP(16*(3-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*4,"edx"),$T1); &movdqu ($T1,&QWP(16*5,"edi")); &movdqa (&QWP(16*(4-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*5,"edx"),$T0); &movdqu ($T0,&QWP(16*6,"edi")); &movdqa (&QWP(16*(5-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*6,"edx"),$T1); &movdqu ($T1,&QWP(16*7,"edi")); &movdqa (&QWP(16*(6-9),"edx"),$T0); &pshufd ($T0,$T1,0b01000100); &pshufd ($T1,$T1,0b11101110); &movdqa (&QWP(16*7,"edx"),$T0); &movdqu ($T0,&QWP(16*8,"edi")); &movdqa (&QWP(16*(7-9),"edx"),$T1); &pshufd ($T1,$T0,0b01000100); &pshufd ($T0,$T0,0b11101110); &movdqa (&QWP(16*8,"edx"),$T1); &movdqa (&QWP(16*(8-9),"edx"),$T0); sub load_input { my ($inpbase,$offbase)=@_; &movdqu ($T0,&QWP($inpbase+0,"esi")); # load input &movdqu ($T1,&QWP($inpbase+16,"esi")); &lea ("esi",&DWP(16*2,"esi")); &movdqa (&QWP($offbase+16*2,"esp"),$D2); &movdqa (&QWP($offbase+16*3,"esp"),$D3); &movdqa (&QWP($offbase+16*4,"esp"),$D4); &movdqa ($D2,$T0); # splat input &movdqa ($D3,$T1); &psrldq ($D2,6); &psrldq ($D3,6); &movdqa ($D4,$T0); &punpcklqdq ($D2,$D3); # 2:3 &punpckhqdq ($D4,$T1); # 4 &punpcklqdq ($T0,$T1); # 0:1 &movdqa ($D3,$D2); &psrlq ($D2,4); &psrlq ($D3,30); &movdqa ($T1,$T0); &psrlq ($D4,40); # 4 &psrlq ($T1,26); &pand ($T0,$MASK); # 0 &pand ($T1,$MASK); # 1 &pand ($D2,$MASK); # 2 &pand ($D3,$MASK); # 3 &por ($D4,&QWP(0,"ebx")); # padbit, yes, always &movdqa (&QWP($offbase+16*0,"esp"),$D0) if ($offbase); &movdqa (&QWP($offbase+16*1,"esp"),$D1) if ($offbase); } &load_input (16*2,16*5); &jbe (&label("skip_loop")); &jmp (&label("loop")); &set_label("loop",32); ################################################################ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r # \___________________/ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r # \___________________/ \____________________/ ################################################################ &movdqa ($T2,&QWP(16*(0-9),"edx")); # r0^2 &movdqa (&QWP(16*1,"eax"),$T1); &movdqa (&QWP(16*2,"eax"),$D2); &movdqa (&QWP(16*3,"eax"),$D3); &movdqa (&QWP(16*4,"eax"),$D4); ################################################################ # d4 = h4*r0 + h0*r4 + h1*r3 + h2*r2 + h3*r1 # d3 = h3*r0 + h0*r3 + h1*r2 + h2*r1 + h4*5*r4 # d2 = h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 # d1 = h1*r0 + h0*r1 + h2*5*r4 + h3*5*r3 + h4*5*r2 # d0 = h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1 &movdqa ($D1,$T0); &pmuludq ($T0,$T2); # h0*r0 &movdqa ($D0,$T1); &pmuludq ($T1,$T2); # h1*r0 &pmuludq ($D2,$T2); # h2*r0 &pmuludq ($D3,$T2); # h3*r0 &pmuludq ($D4,$T2); # h4*r0 sub pmuladd_alt { my $addr = shift; &pmuludq ($D0,&$addr(8)); # h1*s4 &movdqa ($T2,$D1); &pmuludq ($D1,&$addr(1)); # h0*r1 &paddq ($D0,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(2)); # h0*r2 &paddq ($D1,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(3)); # h0*r3 &paddq ($D2,$T2); &movdqa ($T2,&QWP(16*1,"eax")); # pull h1 &pmuludq ($T1,&$addr(4)); # h0*r4 &paddq ($D3,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(1)); # h1*r1 &paddq ($D4,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(2)); # h1*r2 &paddq ($D2,$T2); &movdqa ($T2,&QWP(16*2,"eax")); # pull h2 &pmuludq ($T1,&$addr(3)); # h1*r3 &paddq ($D3,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(7)); # h2*s3 &paddq ($D4,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(8)); # h2*s4 &paddq ($D0,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&$addr(1)); # h2*r1 &paddq ($D1,$T0); &movdqa ($T0,&QWP(16*3,"eax")); # pull h3 &pmuludq ($T2,&$addr(2)); # h2*r2 &paddq ($D3,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(6)); # h3*s2 &paddq ($D4,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&$addr(7)); # h3*s3 &paddq ($D0,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(8)); # h3*s4 &paddq ($D1,$T1); &movdqa ($T1,&QWP(16*4,"eax")); # pull h4 &pmuludq ($T0,&$addr(1)); # h3*r1 &paddq ($D2,$T2); &movdqa ($T2,$T1); &pmuludq ($T1,&$addr(8)); # h4*s4 &paddq ($D4,$T0); &movdqa ($T0,$T2); &pmuludq ($T2,&$addr(5)); # h4*s1 &paddq ($D3,$T1); &movdqa ($T1,$T0); &pmuludq ($T0,&$addr(6)); # h4*s2 &paddq ($D0,$T2); &movdqa ($MASK,&QWP(64,"ebx")); &pmuludq ($T1,&$addr(7)); # h4*s3 &paddq ($D1,$T0); &paddq ($D2,$T1); } &pmuladd_alt (sub { my $i=shift; &QWP(16*($i-9),"edx"); }); &load_input (-16*2,0); &lea ("eax",&DWP(-16*2,"esi")); &sub ("ecx",64); &paddd ($T0,&QWP(16*(5+0),"esp")); # add hash value &paddd ($T1,&QWP(16*(5+1),"esp")); &paddd ($D2,&QWP(16*(5+2),"esp")); &paddd ($D3,&QWP(16*(5+3),"esp")); &paddd ($D4,&QWP(16*(5+4),"esp")); &cmovb ("esi","eax"); &lea ("eax",&DWP(16*10,"esp")); &movdqa ($T2,&QWP(16*0,"edx")); # r0^4 &movdqa (&QWP(16*1,"esp"),$D1); &movdqa (&QWP(16*1,"eax"),$T1); &movdqa (&QWP(16*2,"eax"),$D2); &movdqa (&QWP(16*3,"eax"),$D3); &movdqa (&QWP(16*4,"eax"),$D4); ################################################################ # d4 += h4*r0 + h0*r4 + h1*r3 + h2*r2 + h3*r1 # d3 += h3*r0 + h0*r3 + h1*r2 + h2*r1 + h4*5*r4 # d2 += h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 # d1 += h1*r0 + h0*r1 + h2*5*r4 + h3*5*r3 + h4*5*r2 # d0 += h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1 &movdqa ($D1,$T0); &pmuludq ($T0,$T2); # h0*r0 &paddq ($T0,$D0); &movdqa ($D0,$T1); &pmuludq ($T1,$T2); # h1*r0 &pmuludq ($D2,$T2); # h2*r0 &pmuludq ($D3,$T2); # h3*r0 &pmuludq ($D4,$T2); # h4*r0 &paddq ($T1,&QWP(16*1,"esp")); &paddq ($D2,&QWP(16*2,"esp")); &paddq ($D3,&QWP(16*3,"esp")); &paddq ($D4,&QWP(16*4,"esp")); &pmuladd_alt (sub { my $i=shift; &QWP(16*$i,"edx"); }); &lazy_reduction (); &load_input (16*2,16*5); &ja (&label("loop")); &set_label("skip_loop"); ################################################################ # multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 &pshufd ($T2,&QWP(16*(0-9),"edx"),0x10);# r0^n &add ("ecx",32); &jnz (&label("long_tail")); &paddd ($T0,$D0); # add hash value &paddd ($T1,$D1); &paddd ($D2,&QWP(16*7,"esp")); &paddd ($D3,&QWP(16*8,"esp")); &paddd ($D4,&QWP(16*9,"esp")); &set_label("long_tail"); &movdqa (&QWP(16*0,"eax"),$T0); &movdqa (&QWP(16*1,"eax"),$T1); &movdqa (&QWP(16*2,"eax"),$D2); &movdqa (&QWP(16*3,"eax"),$D3); &movdqa (&QWP(16*4,"eax"),$D4); ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 &pmuludq ($T0,$T2); # h0*r0 &pmuludq ($T1,$T2); # h1*r0 &pmuludq ($D2,$T2); # h2*r0 &movdqa ($D0,$T0); &pshufd ($T0,&QWP(16*(1-9),"edx"),0x10);# r1^n &pmuludq ($D3,$T2); # h3*r0 &movdqa ($D1,$T1); &pmuludq ($D4,$T2); # h4*r0 &pmuladd (sub { my ($reg,$i)=@_; &pshufd ($reg,&QWP(16*($i-9),"edx"),0x10); },"eax"); &jz (&label("short_tail")); &load_input (-16*2,0); &pshufd ($T2,&QWP(16*0,"edx"),0x10); # r0^n &paddd ($T0,&QWP(16*5,"esp")); # add hash value &paddd ($T1,&QWP(16*6,"esp")); &paddd ($D2,&QWP(16*7,"esp")); &paddd ($D3,&QWP(16*8,"esp")); &paddd ($D4,&QWP(16*9,"esp")); ################################################################ # multiply inp[0:1] by r^4:r^3 and accumulate &movdqa (&QWP(16*0,"esp"),$T0); &pmuludq ($T0,$T2); # h0*r0 &movdqa (&QWP(16*1,"esp"),$T1); &pmuludq ($T1,$T2); # h1*r0 &paddq ($D0,$T0); &movdqa ($T0,$D2); &pmuludq ($D2,$T2); # h2*r0 &paddq ($D1,$T1); &movdqa ($T1,$D3); &pmuludq ($D3,$T2); # h3*r0 &paddq ($D2,&QWP(16*2,"esp")); &movdqa (&QWP(16*2,"esp"),$T0); &pshufd ($T0,&QWP(16*1,"edx"),0x10); # r1^n &paddq ($D3,&QWP(16*3,"esp")); &movdqa (&QWP(16*3,"esp"),$T1); &movdqa ($T1,$D4); &pmuludq ($D4,$T2); # h4*r0 &paddq ($D4,&QWP(16*4,"esp")); &movdqa (&QWP(16*4,"esp"),$T1); &pmuladd (sub { my ($reg,$i)=@_; &pshufd ($reg,&QWP(16*$i,"edx"),0x10); }); &set_label("short_tail"); ################################################################ # horizontal addition &pshufd ($T1,$D4,0b01001110); &pshufd ($T0,$D3,0b01001110); &paddq ($D4,$T1); &paddq ($D3,$T0); &pshufd ($T1,$D0,0b01001110); &pshufd ($T0,$D1,0b01001110); &paddq ($D0,$T1); &paddq ($D1,$T0); &pshufd ($T1,$D2,0b01001110); #&paddq ($D2,$T1); &lazy_reduction (sub { &paddq ($D2,$T1) }); &set_label("done"); &movd (&DWP(-16*3+4*0,"edi"),$D0); # store hash value &movd (&DWP(-16*3+4*1,"edi"),$D1); &movd (&DWP(-16*3+4*2,"edi"),$D2); &movd (&DWP(-16*3+4*3,"edi"),$D3); &movd (&DWP(-16*3+4*4,"edi"),$D4); &mov ("esp","ebp"); &set_label("nodata"); &function_end("_poly1305_blocks_sse2"); &align (32); &function_begin("_poly1305_emit_sse2"); &mov ("ebp",&wparam(0)); # context &cmp (&DWP(4*5,"ebp"),0); # is_base2_26? &je (&label("enter_emit")); &mov ("eax",&DWP(4*0,"ebp")); # load hash value &mov ("edi",&DWP(4*1,"ebp")); &mov ("ecx",&DWP(4*2,"ebp")); &mov ("edx",&DWP(4*3,"ebp")); &mov ("esi",&DWP(4*4,"ebp")); &mov ("ebx","edi"); # base 2^26 -> base 2^32 &shl ("edi",26); &shr ("ebx",6); &add ("eax","edi"); &mov ("edi","ecx"); &adc ("ebx",0); &shl ("edi",20); &shr ("ecx",12); &add ("ebx","edi"); &mov ("edi","edx"); &adc ("ecx",0); &shl ("edi",14); &shr ("edx",18); &add ("ecx","edi"); &mov ("edi","esi"); &adc ("edx",0); &shl ("edi",8); &shr ("esi",24); &add ("edx","edi"); &adc ("esi",0); # can be partially reduced &mov ("edi","esi"); # final reduction &and ("esi",3); &shr ("edi",2); &lea ("ebp",&DWP(0,"edi","edi",4)); # *5 &mov ("edi",&wparam(1)); # output &add ("eax","ebp"); &mov ("ebp",&wparam(2)); # key &adc ("ebx",0); &adc ("ecx",0); &adc ("edx",0); &adc ("esi",0); &movd ($D0,"eax"); # offload original hash value &add ("eax",5); # compare to modulus &movd ($D1,"ebx"); &adc ("ebx",0); &movd ($D2,"ecx"); &adc ("ecx",0); &movd ($D3,"edx"); &adc ("edx",0); &adc ("esi",0); &shr ("esi",2); # did it carry/borrow? &neg ("esi"); # do we choose (hash-modulus) ... &and ("eax","esi"); &and ("ebx","esi"); &and ("ecx","esi"); &and ("edx","esi"); &mov (&DWP(4*0,"edi"),"eax"); &movd ("eax",$D0); &mov (&DWP(4*1,"edi"),"ebx"); &movd ("ebx",$D1); &mov (&DWP(4*2,"edi"),"ecx"); &movd ("ecx",$D2); &mov (&DWP(4*3,"edi"),"edx"); &movd ("edx",$D3); ¬ ("esi"); # ... or original hash value? &and ("eax","esi"); &and ("ebx","esi"); &or ("eax",&DWP(4*0,"edi")); &and ("ecx","esi"); &or ("ebx",&DWP(4*1,"edi")); &and ("edx","esi"); &or ("ecx",&DWP(4*2,"edi")); &or ("edx",&DWP(4*3,"edi")); &add ("eax",&DWP(4*0,"ebp")); # accumulate key &adc ("ebx",&DWP(4*1,"ebp")); &mov (&DWP(4*0,"edi"),"eax"); &adc ("ecx",&DWP(4*2,"ebp")); &mov (&DWP(4*1,"edi"),"ebx"); &adc ("edx",&DWP(4*3,"ebp")); &mov (&DWP(4*2,"edi"),"ecx"); &mov (&DWP(4*3,"edi"),"edx"); &function_end("_poly1305_emit_sse2"); if ($avx>1) { ######################################################################## # Note that poly1305_init_avx2 operates on %xmm, I could have used # poly1305_init_sse2... &align (32); &function_begin_B("_poly1305_init_avx2"); &vmovdqu ($D4,&QWP(4*6,"edi")); # key base 2^32 &lea ("edi",&DWP(16*3,"edi")); # size optimization &mov ("ebp","esp"); &sub ("esp",16*(9+5)); &and ("esp",-16); #&vpand ($D4,$D4,&QWP(96,"ebx")); # magic mask &vmovdqa ($MASK,&QWP(64,"ebx")); &vpand ($D0,$D4,$MASK); # -> base 2^26 &vpsrlq ($D1,$D4,26); &vpsrldq ($D3,$D4,6); &vpand ($D1,$D1,$MASK); &vpsrlq ($D2,$D3,4) &vpsrlq ($D3,$D3,30); &vpand ($D2,$D2,$MASK); &vpand ($D3,$D3,$MASK); &vpsrldq ($D4,$D4,13); &lea ("edx",&DWP(16*9,"esp")); # size optimization &mov ("ecx",2); &set_label("square"); &vmovdqa (&QWP(16*0,"esp"),$D0); &vmovdqa (&QWP(16*1,"esp"),$D1); &vmovdqa (&QWP(16*2,"esp"),$D2); &vmovdqa (&QWP(16*3,"esp"),$D3); &vmovdqa (&QWP(16*4,"esp"),$D4); &vpslld ($T1,$D1,2); &vpslld ($T0,$D2,2); &vpaddd ($T1,$T1,$D1); # *5 &vpaddd ($T0,$T0,$D2); # *5 &vmovdqa (&QWP(16*5,"esp"),$T1); &vmovdqa (&QWP(16*6,"esp"),$T0); &vpslld ($T1,$D3,2); &vpslld ($T0,$D4,2); &vpaddd ($T1,$T1,$D3); # *5 &vpaddd ($T0,$T0,$D4); # *5 &vmovdqa (&QWP(16*7,"esp"),$T1); &vmovdqa (&QWP(16*8,"esp"),$T0); &vpshufd ($T0,$D0,0b01000100); &vmovdqa ($T1,$D1); &vpshufd ($D1,$D1,0b01000100); &vpshufd ($D2,$D2,0b01000100); &vpshufd ($D3,$D3,0b01000100); &vpshufd ($D4,$D4,0b01000100); &vmovdqa (&QWP(16*0,"edx"),$T0); &vmovdqa (&QWP(16*1,"edx"),$D1); &vmovdqa (&QWP(16*2,"edx"),$D2); &vmovdqa (&QWP(16*3,"edx"),$D3); &vmovdqa (&QWP(16*4,"edx"),$D4); ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 &vpmuludq ($D4,$D4,$D0); # h4*r0 &vpmuludq ($D3,$D3,$D0); # h3*r0 &vpmuludq ($D2,$D2,$D0); # h2*r0 &vpmuludq ($D1,$D1,$D0); # h1*r0 &vpmuludq ($D0,$T0,$D0); # h0*r0 &vpmuludq ($T0,$T1,&QWP(16*3,"edx")); # r1*h3 &vpaddq ($D4,$D4,$T0); &vpmuludq ($T2,$T1,&QWP(16*2,"edx")); # r1*h2 &vpaddq ($D3,$D3,$T2); &vpmuludq ($T0,$T1,&QWP(16*1,"edx")); # r1*h1 &vpaddq ($D2,$D2,$T0); &vmovdqa ($T2,&QWP(16*5,"esp")); # s1 &vpmuludq ($T1,$T1,&QWP(16*0,"edx")); # r1*h0 &vpaddq ($D1,$D1,$T1); &vmovdqa ($T0,&QWP(16*2,"esp")); # r2 &vpmuludq ($T2,$T2,&QWP(16*4,"edx")); # s1*h4 &vpaddq ($D0,$D0,$T2); &vpmuludq ($T1,$T0,&QWP(16*2,"edx")); # r2*h2 &vpaddq ($D4,$D4,$T1); &vpmuludq ($T2,$T0,&QWP(16*1,"edx")); # r2*h1 &vpaddq ($D3,$D3,$T2); &vmovdqa ($T1,&QWP(16*6,"esp")); # s2 &vpmuludq ($T0,$T0,&QWP(16*0,"edx")); # r2*h0 &vpaddq ($D2,$D2,$T0); &vpmuludq ($T2,$T1,&QWP(16*4,"edx")); # s2*h4 &vpaddq ($D1,$D1,$T2); &vmovdqa ($T0,&QWP(16*3,"esp")); # r3 &vpmuludq ($T1,$T1,&QWP(16*3,"edx")); # s2*h3 &vpaddq ($D0,$D0,$T1); &vpmuludq ($T2,$T0,&QWP(16*1,"edx")); # r3*h1 &vpaddq ($D4,$D4,$T2); &vmovdqa ($T1,&QWP(16*7,"esp")); # s3 &vpmuludq ($T0,$T0,&QWP(16*0,"edx")); # r3*h0 &vpaddq ($D3,$D3,$T0); &vpmuludq ($T2,$T1,&QWP(16*4,"edx")); # s3*h4 &vpaddq ($D2,$D2,$T2); &vpmuludq ($T0,$T1,&QWP(16*3,"edx")); # s3*h3 &vpaddq ($D1,$D1,$T0); &vmovdqa ($T2,&QWP(16*4,"esp")); # r4 &vpmuludq ($T1,$T1,&QWP(16*2,"edx")); # s3*h2 &vpaddq ($D0,$D0,$T1); &vmovdqa ($T0,&QWP(16*8,"esp")); # s4 &vpmuludq ($T2,$T2,&QWP(16*0,"edx")); # r4*h0 &vpaddq ($D4,$D4,$T2); &vpmuludq ($T1,$T0,&QWP(16*4,"edx")); # s4*h4 &vpaddq ($D3,$D3,$T1); &vpmuludq ($T2,$T0,&QWP(16*1,"edx")); # s4*h1 &vpaddq ($D0,$D0,$T2); &vpmuludq ($T1,$T0,&QWP(16*2,"edx")); # s4*h2 &vpaddq ($D1,$D1,$T1); &vmovdqa ($MASK,&QWP(64,"ebx")); &vpmuludq ($T0,$T0,&QWP(16*3,"edx")); # s4*h3 &vpaddq ($D2,$D2,$T0); ################################################################ # lazy reduction &vpsrlq ($T0,$D3,26); &vpand ($D3,$D3,$MASK); &vpsrlq ($T1,$D0,26); &vpand ($D0,$D0,$MASK); &vpaddq ($D4,$D4,$T0); # h3 -> h4 &vpaddq ($D1,$D1,$T1); # h0 -> h1 &vpsrlq ($T0,$D4,26); &vpand ($D4,$D4,$MASK); &vpsrlq ($T1,$D1,26); &vpand ($D1,$D1,$MASK); &vpaddq ($D2,$D2,$T1); # h1 -> h2 &vpaddd ($D0,$D0,$T0); &vpsllq ($T0,$T0,2); &vpsrlq ($T1,$D2,26); &vpand ($D2,$D2,$MASK); &vpaddd ($D0,$D0,$T0); # h4 -> h0 &vpaddd ($D3,$D3,$T1); # h2 -> h3 &vpsrlq ($T1,$D3,26); &vpsrlq ($T0,$D0,26); &vpand ($D0,$D0,$MASK); &vpand ($D3,$D3,$MASK); &vpaddd ($D1,$D1,$T0); # h0 -> h1 &vpaddd ($D4,$D4,$T1); # h3 -> h4 &dec ("ecx"); &jz (&label("square_break")); &vpunpcklqdq ($D0,$D0,&QWP(16*0,"esp")); # 0:r^1:0:r^2 &vpunpcklqdq ($D1,$D1,&QWP(16*1,"esp")); &vpunpcklqdq ($D2,$D2,&QWP(16*2,"esp")); &vpunpcklqdq ($D3,$D3,&QWP(16*3,"esp")); &vpunpcklqdq ($D4,$D4,&QWP(16*4,"esp")); &jmp (&label("square")); &set_label("square_break"); &vpsllq ($D0,$D0,32); # -> r^3:0:r^4:0 &vpsllq ($D1,$D1,32); &vpsllq ($D2,$D2,32); &vpsllq ($D3,$D3,32); &vpsllq ($D4,$D4,32); &vpor ($D0,$D0,&QWP(16*0,"esp")); # r^3:r^1:r^4:r^2 &vpor ($D1,$D1,&QWP(16*1,"esp")); &vpor ($D2,$D2,&QWP(16*2,"esp")); &vpor ($D3,$D3,&QWP(16*3,"esp")); &vpor ($D4,$D4,&QWP(16*4,"esp")); &vpshufd ($D0,$D0,0b10001101); # -> r^1:r^2:r^3:r^4 &vpshufd ($D1,$D1,0b10001101); &vpshufd ($D2,$D2,0b10001101); &vpshufd ($D3,$D3,0b10001101); &vpshufd ($D4,$D4,0b10001101); &vmovdqu (&QWP(16*0,"edi"),$D0); # save the table &vmovdqu (&QWP(16*1,"edi"),$D1); &vmovdqu (&QWP(16*2,"edi"),$D2); &vmovdqu (&QWP(16*3,"edi"),$D3); &vmovdqu (&QWP(16*4,"edi"),$D4); &vpslld ($T1,$D1,2); &vpslld ($T0,$D2,2); &vpaddd ($T1,$T1,$D1); # *5 &vpaddd ($T0,$T0,$D2); # *5 &vmovdqu (&QWP(16*5,"edi"),$T1); &vmovdqu (&QWP(16*6,"edi"),$T0); &vpslld ($T1,$D3,2); &vpslld ($T0,$D4,2); &vpaddd ($T1,$T1,$D3); # *5 &vpaddd ($T0,$T0,$D4); # *5 &vmovdqu (&QWP(16*7,"edi"),$T1); &vmovdqu (&QWP(16*8,"edi"),$T0); &mov ("esp","ebp"); &lea ("edi",&DWP(-16*3,"edi")); # size de-optimization &ret (); &function_end_B("_poly1305_init_avx2"); ######################################################################## # now it's time to switch to %ymm my ($D0,$D1,$D2,$D3,$D4,$T0,$T1,$T2)=map("ymm$_",(0..7)); my $MASK=$T2; sub X { my $reg=shift; $reg=~s/^ymm/xmm/; $reg; } &align (32); &function_begin("_poly1305_blocks_avx2"); &mov ("edi",&wparam(0)); # ctx &mov ("esi",&wparam(1)); # inp &mov ("ecx",&wparam(2)); # len &mov ("eax",&DWP(4*5,"edi")); # is_base2_26 &and ("ecx",-16); &jz (&label("nodata")); &cmp ("ecx",64); &jae (&label("enter_avx2")); &test ("eax","eax"); # is_base2_26? &jz (&label("enter_blocks")); &set_label("enter_avx2"); &vzeroupper (); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("const_sse2")."-".&label("pic_point"),"ebx")); &test ("eax","eax"); # is_base2_26? &jnz (&label("base2_26")); &call ("_poly1305_init_avx2"); ################################################# base 2^32 -> base 2^26 &mov ("eax",&DWP(0,"edi")); &mov ("ecx",&DWP(3,"edi")); &mov ("edx",&DWP(6,"edi")); &mov ("esi",&DWP(9,"edi")); &mov ("ebp",&DWP(13,"edi")); &shr ("ecx",2); &and ("eax",0x3ffffff); &shr ("edx",4); &and ("ecx",0x3ffffff); &shr ("esi",6); &and ("edx",0x3ffffff); &mov (&DWP(4*0,"edi"),"eax"); &mov (&DWP(4*1,"edi"),"ecx"); &mov (&DWP(4*2,"edi"),"edx"); &mov (&DWP(4*3,"edi"),"esi"); &mov (&DWP(4*4,"edi"),"ebp"); &mov (&DWP(4*5,"edi"),1); # is_base2_26 &mov ("esi",&wparam(1)); # [reload] inp &mov ("ecx",&wparam(2)); # [reload] len &set_label("base2_26"); &mov ("eax",&wparam(3)); # padbit &mov ("ebp","esp"); &sub ("esp",32*(5+9)); &and ("esp",-512); # ensure that frame # doesn't cross page # boundary, which is # essential for # misaligned 32-byte # loads ################################################################ # expand and copy pre-calculated table to stack &vmovdqu (&X($D0),&QWP(16*(3+0),"edi")); &lea ("edx",&DWP(32*5+128,"esp")); # +128 size optimization &vmovdqu (&X($D1),&QWP(16*(3+1),"edi")); &vmovdqu (&X($D2),&QWP(16*(3+2),"edi")); &vmovdqu (&X($D3),&QWP(16*(3+3),"edi")); &vmovdqu (&X($D4),&QWP(16*(3+4),"edi")); &lea ("edi",&DWP(16*3,"edi")); # size optimization &vpermq ($D0,$D0,0b01000000); # 00001234 -> 12343434 &vpermq ($D1,$D1,0b01000000); &vpermq ($D2,$D2,0b01000000); &vpermq ($D3,$D3,0b01000000); &vpermq ($D4,$D4,0b01000000); &vpshufd ($D0,$D0,0b11001000); # 12343434 -> 14243444 &vpshufd ($D1,$D1,0b11001000); &vpshufd ($D2,$D2,0b11001000); &vpshufd ($D3,$D3,0b11001000); &vpshufd ($D4,$D4,0b11001000); &vmovdqa (&QWP(32*0-128,"edx"),$D0); &vmovdqu (&X($D0),&QWP(16*5,"edi")); &vmovdqa (&QWP(32*1-128,"edx"),$D1); &vmovdqu (&X($D1),&QWP(16*6,"edi")); &vmovdqa (&QWP(32*2-128,"edx"),$D2); &vmovdqu (&X($D2),&QWP(16*7,"edi")); &vmovdqa (&QWP(32*3-128,"edx"),$D3); &vmovdqu (&X($D3),&QWP(16*8,"edi")); &vmovdqa (&QWP(32*4-128,"edx"),$D4); &vpermq ($D0,$D0,0b01000000); &vpermq ($D1,$D1,0b01000000); &vpermq ($D2,$D2,0b01000000); &vpermq ($D3,$D3,0b01000000); &vpshufd ($D0,$D0,0b11001000); &vpshufd ($D1,$D1,0b11001000); &vpshufd ($D2,$D2,0b11001000); &vpshufd ($D3,$D3,0b11001000); &vmovdqa (&QWP(32*5-128,"edx"),$D0); &vmovd (&X($D0),&DWP(-16*3+4*0,"edi"));# load hash value &vmovdqa (&QWP(32*6-128,"edx"),$D1); &vmovd (&X($D1),&DWP(-16*3+4*1,"edi")); &vmovdqa (&QWP(32*7-128,"edx"),$D2); &vmovd (&X($D2),&DWP(-16*3+4*2,"edi")); &vmovdqa (&QWP(32*8-128,"edx"),$D3); &vmovd (&X($D3),&DWP(-16*3+4*3,"edi")); &vmovd (&X($D4),&DWP(-16*3+4*4,"edi")); &vmovdqa ($MASK,&QWP(64,"ebx")); &neg ("eax"); # padbit &test ("ecx",63); &jz (&label("even")); &mov ("edx","ecx"); &and ("ecx",-64); &and ("edx",63); &vmovdqu (&X($T0),&QWP(16*0,"esi")); &cmp ("edx",32); &jb (&label("one")); &vmovdqu (&X($T1),&QWP(16*1,"esi")); &je (&label("two")); &vinserti128 ($T0,$T0,&QWP(16*2,"esi"),1); &lea ("esi",&DWP(16*3,"esi")); &lea ("ebx",&DWP(8,"ebx")); # three padbits &lea ("edx",&DWP(32*5+128+8,"esp")); # --:r^1:r^2:r^3 (*) &jmp (&label("tail")); &set_label("two"); &lea ("esi",&DWP(16*2,"esi")); &lea ("ebx",&DWP(16,"ebx")); # two padbits &lea ("edx",&DWP(32*5+128+16,"esp"));# --:--:r^1:r^2 (*) &jmp (&label("tail")); &set_label("one"); &lea ("esi",&DWP(16*1,"esi")); &vpxor ($T1,$T1,$T1); &lea ("ebx",&DWP(32,"ebx","eax",8)); # one or no padbits &lea ("edx",&DWP(32*5+128+24,"esp"));# --:--:--:r^1 (*) &jmp (&label("tail")); # (*) spots marked with '--' are data from next table entry, but they # are multiplied by 0 and therefore rendered insignificant &set_label("even",32); &vmovdqu (&X($T0),&QWP(16*0,"esi")); # load input &vmovdqu (&X($T1),&QWP(16*1,"esi")); &vinserti128 ($T0,$T0,&QWP(16*2,"esi"),1); &vinserti128 ($T1,$T1,&QWP(16*3,"esi"),1); &lea ("esi",&DWP(16*4,"esi")); &sub ("ecx",64); &jz (&label("tail")); &set_label("loop"); ################################################################ # ((inp[0]*r^4+r[4])*r^4+r[8])*r^4 # ((inp[1]*r^4+r[5])*r^4+r[9])*r^3 # ((inp[2]*r^4+r[6])*r^4+r[10])*r^2 # ((inp[3]*r^4+r[7])*r^4+r[11])*r^1 # \________/ \_______/ ################################################################ sub vsplat_input { &vmovdqa (&QWP(32*2,"esp"),$D2); &vpsrldq ($D2,$T0,6); # splat input &vmovdqa (&QWP(32*0,"esp"),$D0); &vpsrldq ($D0,$T1,6); &vmovdqa (&QWP(32*1,"esp"),$D1); &vpunpckhqdq ($D1,$T0,$T1); # 4 &vpunpcklqdq ($T0,$T0,$T1); # 0:1 &vpunpcklqdq ($D2,$D2,$D0); # 2:3 &vpsrlq ($D0,$D2,30); &vpsrlq ($D2,$D2,4); &vpsrlq ($T1,$T0,26); &vpsrlq ($D1,$D1,40); # 4 &vpand ($D2,$D2,$MASK); # 2 &vpand ($T0,$T0,$MASK); # 0 &vpand ($T1,$T1,$MASK); # 1 &vpand ($D0,$D0,$MASK); # 3 (*) &vpor ($D1,$D1,&QWP(0,"ebx")); # padbit, yes, always # (*) note that output is counterintuitive, inp[3:4] is # returned in $D1-2, while $D3-4 are preserved; } &vsplat_input (); sub vpmuladd { my $addr = shift; &vpaddq ($D2,$D2,&QWP(32*2,"esp")); # add hash value &vpaddq ($T0,$T0,&QWP(32*0,"esp")); &vpaddq ($T1,$T1,&QWP(32*1,"esp")); &vpaddq ($D0,$D0,$D3); &vpaddq ($D1,$D1,$D4); ################################################################ # d3 = h2*r1 + h0*r3 + h1*r2 + h3*r0 + h4*5*r4 # d4 = h2*r2 + h0*r4 + h1*r3 + h3*r1 + h4*r0 # d0 = h2*5*r3 + h0*r0 + h1*5*r4 + h3*5*r2 + h4*5*r1 # d1 = h2*5*r4 + h0*r1 + h1*r0 + h3*5*r3 + h4*5*r2 # d2 = h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 &vpmuludq ($D3,$D2,&$addr(1)); # d3 = h2*r1 &vmovdqa (QWP(32*1,"esp"),$T1); &vpmuludq ($D4,$D2,&$addr(2)); # d4 = h2*r2 &vmovdqa (QWP(32*3,"esp"),$D0); &vpmuludq ($D0,$D2,&$addr(7)); # d0 = h2*s3 &vmovdqa (QWP(32*4,"esp"),$D1); &vpmuludq ($D1,$D2,&$addr(8)); # d1 = h2*s4 &vpmuludq ($D2,$D2,&$addr(0)); # d2 = h2*r0 &vpmuludq ($T2,$T0,&$addr(3)); # h0*r3 &vpaddq ($D3,$D3,$T2); # d3 += h0*r3 &vpmuludq ($T1,$T0,&$addr(4)); # h0*r4 &vpaddq ($D4,$D4,$T1); # d4 + h0*r4 &vpmuludq ($T2,$T0,&$addr(0)); # h0*r0 &vpaddq ($D0,$D0,$T2); # d0 + h0*r0 &vmovdqa ($T2,&QWP(32*1,"esp")); # h1 &vpmuludq ($T1,$T0,&$addr(1)); # h0*r1 &vpaddq ($D1,$D1,$T1); # d1 += h0*r1 &vpmuludq ($T0,$T0,&$addr(2)); # h0*r2 &vpaddq ($D2,$D2,$T0); # d2 += h0*r2 &vpmuludq ($T1,$T2,&$addr(2)); # h1*r2 &vpaddq ($D3,$D3,$T1); # d3 += h1*r2 &vpmuludq ($T0,$T2,&$addr(3)); # h1*r3 &vpaddq ($D4,$D4,$T0); # d4 += h1*r3 &vpmuludq ($T1,$T2,&$addr(8)); # h1*s4 &vpaddq ($D0,$D0,$T1); # d0 += h1*s4 &vmovdqa ($T1,&QWP(32*3,"esp")); # h3 &vpmuludq ($T0,$T2,&$addr(0)); # h1*r0 &vpaddq ($D1,$D1,$T0); # d1 += h1*r0 &vpmuludq ($T2,$T2,&$addr(1)); # h1*r1 &vpaddq ($D2,$D2,$T2); # d2 += h1*r1 &vpmuludq ($T0,$T1,&$addr(0)); # h3*r0 &vpaddq ($D3,$D3,$T0); # d3 += h3*r0 &vpmuludq ($T2,$T1,&$addr(1)); # h3*r1 &vpaddq ($D4,$D4,$T2); # d4 += h3*r1 &vpmuludq ($T0,$T1,&$addr(6)); # h3*s2 &vpaddq ($D0,$D0,$T0); # d0 += h3*s2 &vmovdqa ($T0,&QWP(32*4,"esp")); # h4 &vpmuludq ($T2,$T1,&$addr(7)); # h3*s3 &vpaddq ($D1,$D1,$T2); # d1+= h3*s3 &vpmuludq ($T1,$T1,&$addr(8)); # h3*s4 &vpaddq ($D2,$D2,$T1); # d2 += h3*s4 &vpmuludq ($T2,$T0,&$addr(8)); # h4*s4 &vpaddq ($D3,$D3,$T2); # d3 += h4*s4 &vpmuludq ($T1,$T0,&$addr(5)); # h4*s1 &vpaddq ($D0,$D0,$T1); # d0 += h4*s1 &vpmuludq ($T2,$T0,&$addr(0)); # h4*r0 &vpaddq ($D4,$D4,$T2); # d4 += h4*r0 &vmovdqa ($MASK,&QWP(64,"ebx")); &vpmuludq ($T1,$T0,&$addr(6)); # h4*s2 &vpaddq ($D1,$D1,$T1); # d1 += h4*s2 &vpmuludq ($T0,$T0,&$addr(7)); # h4*s3 &vpaddq ($D2,$D2,$T0); # d2 += h4*s3 } &vpmuladd (sub { my $i=shift; &QWP(32*$i-128,"edx"); }); sub vlazy_reduction { ################################################################ # lazy reduction &vpsrlq ($T0,$D3,26); &vpand ($D3,$D3,$MASK); &vpsrlq ($T1,$D0,26); &vpand ($D0,$D0,$MASK); &vpaddq ($D4,$D4,$T0); # h3 -> h4 &vpaddq ($D1,$D1,$T1); # h0 -> h1 &vpsrlq ($T0,$D4,26); &vpand ($D4,$D4,$MASK); &vpsrlq ($T1,$D1,26); &vpand ($D1,$D1,$MASK); &vpaddq ($D2,$D2,$T1); # h1 -> h2 &vpaddq ($D0,$D0,$T0); &vpsllq ($T0,$T0,2); &vpsrlq ($T1,$D2,26); &vpand ($D2,$D2,$MASK); &vpaddq ($D0,$D0,$T0); # h4 -> h0 &vpaddq ($D3,$D3,$T1); # h2 -> h3 &vpsrlq ($T1,$D3,26); &vpsrlq ($T0,$D0,26); &vpand ($D0,$D0,$MASK); &vpand ($D3,$D3,$MASK); &vpaddq ($D1,$D1,$T0); # h0 -> h1 &vpaddq ($D4,$D4,$T1); # h3 -> h4 } &vlazy_reduction(); &vmovdqu (&X($T0),&QWP(16*0,"esi")); # load input &vmovdqu (&X($T1),&QWP(16*1,"esi")); &vinserti128 ($T0,$T0,&QWP(16*2,"esi"),1); &vinserti128 ($T1,$T1,&QWP(16*3,"esi"),1); &lea ("esi",&DWP(16*4,"esi")); &sub ("ecx",64); &jnz (&label("loop")); &set_label("tail"); &vsplat_input (); &and ("ebx",-64); # restore pointer &vpmuladd (sub { my $i=shift; &QWP(4+32*$i-128,"edx"); }); ################################################################ # horizontal addition &vpsrldq ($T0,$D4,8); &vpsrldq ($T1,$D3,8); &vpaddq ($D4,$D4,$T0); &vpsrldq ($T0,$D0,8); &vpaddq ($D3,$D3,$T1); &vpsrldq ($T1,$D1,8); &vpaddq ($D0,$D0,$T0); &vpsrldq ($T0,$D2,8); &vpaddq ($D1,$D1,$T1); &vpermq ($T1,$D4,2); # keep folding &vpaddq ($D2,$D2,$T0); &vpermq ($T0,$D3,2); &vpaddq ($D4,$D4,$T1); &vpermq ($T1,$D0,2); &vpaddq ($D3,$D3,$T0); &vpermq ($T0,$D1,2); &vpaddq ($D0,$D0,$T1); &vpermq ($T1,$D2,2); &vpaddq ($D1,$D1,$T0); &vpaddq ($D2,$D2,$T1); &vlazy_reduction(); &cmp ("ecx",0); &je (&label("done")); ################################################################ # clear all but single word &vpshufd (&X($D0),&X($D0),0b11111100); &lea ("edx",&DWP(32*5+128,"esp")); # restore pointer &vpshufd (&X($D1),&X($D1),0b11111100); &vpshufd (&X($D2),&X($D2),0b11111100); &vpshufd (&X($D3),&X($D3),0b11111100); &vpshufd (&X($D4),&X($D4),0b11111100); &jmp (&label("even")); &set_label("done",16); &vmovd (&DWP(-16*3+4*0,"edi"),&X($D0));# store hash value &vmovd (&DWP(-16*3+4*1,"edi"),&X($D1)); &vmovd (&DWP(-16*3+4*2,"edi"),&X($D2)); &vmovd (&DWP(-16*3+4*3,"edi"),&X($D3)); &vmovd (&DWP(-16*3+4*4,"edi"),&X($D4)); &vzeroupper (); &mov ("esp","ebp"); &set_label("nodata"); &function_end("_poly1305_blocks_avx2"); } &set_label("const_sse2",64); &data_word(1<<24,0, 1<<24,0, 1<<24,0, 1<<24,0); &data_word(0,0, 0,0, 0,0, 0,0); &data_word(0x03ffffff,0,0x03ffffff,0, 0x03ffffff,0, 0x03ffffff,0); &data_word(0x0fffffff,0x0ffffffc,0x0ffffffc,0x0ffffffc); } &asciz ("Poly1305 for x86, CRYPTOGAMS by "); &align (4); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/asm/poly1305-x86_64.pl000077500000000000000000003036211364063235100215370ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for x86_64. # # March 2015 # # Initial release. # # December 2016 # # Add AVX512F+VL+BW code path. # # November 2017 # # Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be # executed even on Knights Landing. Trigger for modification was # observation that AVX512 code paths can negatively affect overall # Skylake-X system performance. Since we are likely to suppress # AVX512F capability flag [at least on Skylake-X], conversion serves # as kind of "investment protection". Note that next *lake processor, # Cannolake, has AVX512IFMA code path to execute... # # Numbers are cycles per processed byte with poly1305_blocks alone, # measured with rdtsc at fixed clock frequency. # # IALU/gcc-4.8(*) AVX(**) AVX2 AVX-512 # P4 4.46/+120% - # Core 2 2.41/+90% - # Westmere 1.88/+120% - # Sandy Bridge 1.39/+140% 1.10 # Haswell 1.14/+175% 1.11 0.65 # Skylake[-X] 1.13/+120% 0.96 0.51 [0.35] # Silvermont 2.83/+95% - # Knights L 3.60/? 1.65 1.10 0.41(***) # Goldmont 1.70/+180% - # VIA Nano 1.82/+150% - # Sledgehammer 1.38/+160% - # Bulldozer 2.30/+130% 0.97 # Ryzen 1.15/+200% 1.08 1.18 # # (*) improvement coefficients relative to clang are more modest and # are ~50% on most processors, in both cases we are comparing to # __int128 code; # (**) SSE2 implementation was attempted, but among non-AVX processors # it was faster than integer-only code only on older Intel P4 and # Core processors, 50-30%, less newer processor is, but slower on # contemporary ones, for example almost 2x slower on Atom, and as # former are naturally disappearing, SSE2 is deemed unnecessary; # (***) strangely enough performance seems to vary from core to core, # listed result is best case; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22) + ($1>=2.25) + ($1>=2.26); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) { $avx = ($1>=2.09) + ($1>=2.10) + 2 * ($1>=2.12); $avx += 2 if ($1==2.11 && $2>=8); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=12); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; my ($ctx,$inp,$len,$padbit)=("%rdi","%rsi","%rdx","%rcx"); my ($mac,$nonce)=($inp,$len); # *_emit arguments my ($d1,$d2,$d3, $r0,$r1,$s1)=map("%r$_",(8..13)); my ($h0,$h1,$h2)=("%r14","%rbx","%rbp"); sub poly1305_iteration { # input: copy of $r1 in %rax, $h0-$h2, $r0-$r1 # output: $h0-$h2 *= $r0-$r1 $code.=<<___; mulq $h0 # h0*r1 mov %rax,$d2 mov $r0,%rax mov %rdx,$d3 mulq $h0 # h0*r0 mov %rax,$h0 # future $h0 mov $r0,%rax mov %rdx,$d1 mulq $h1 # h1*r0 add %rax,$d2 mov $s1,%rax adc %rdx,$d3 mulq $h1 # h1*s1 mov $h2,$h1 # borrow $h1 add %rax,$h0 adc %rdx,$d1 imulq $s1,$h1 # h2*s1 add $h1,$d2 mov $d1,$h1 adc \$0,$d3 imulq $r0,$h2 # h2*r0 add $d2,$h1 mov \$-4,%rax # mask value adc $h2,$d3 and $d3,%rax # last reduction step mov $d3,$h2 shr \$2,$d3 and \$3,$h2 add $d3,%rax add %rax,$h0 adc \$0,$h1 adc \$0,$h2 ___ } ######################################################################## # Layout of opaque area is following. # # unsigned __int64 h[3]; # current hash value base 2^64 # unsigned __int64 r[2]; # key value base 2^64 $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl poly1305_init .hidden poly1305_init .globl poly1305_blocks .hidden poly1305_blocks .globl poly1305_emit .hidden poly1305_emit .type poly1305_init,\@function,3 .align 32 poly1305_init: .cfi_startproc xor %rax,%rax mov %rax,0($ctx) # initialize hash value mov %rax,8($ctx) mov %rax,16($ctx) cmp \$0,$inp je .Lno_key lea poly1305_blocks(%rip),%r10 lea poly1305_emit(%rip),%r11 ___ $code.=<<___ if ($avx); mov OPENSSL_ia32cap_P+4(%rip),%r9 lea poly1305_blocks_avx(%rip),%rax lea poly1305_emit_avx(%rip),%rcx bt \$`60-32`,%r9 # AVX? cmovc %rax,%r10 cmovc %rcx,%r11 ___ $code.=<<___ if ($avx>1); lea poly1305_blocks_avx2(%rip),%rax bt \$`5+32`,%r9 # AVX2? cmovc %rax,%r10 ___ $code.=<<___ if ($avx>3); mov \$`(1<<31|1<<21|1<<16)`,%rax shr \$32,%r9 and %rax,%r9 cmp %rax,%r9 je .Linit_base2_44 ___ $code.=<<___; mov \$0x0ffffffc0fffffff,%rax mov \$0x0ffffffc0ffffffc,%rcx and 0($inp),%rax and 8($inp),%rcx mov %rax,24($ctx) mov %rcx,32($ctx) ___ $code.=<<___ if ($flavour !~ /elf32/); mov %r10,0(%rdx) mov %r11,8(%rdx) ___ $code.=<<___ if ($flavour =~ /elf32/); mov %r10d,0(%rdx) mov %r11d,4(%rdx) ___ $code.=<<___; mov \$1,%eax .Lno_key: ret .cfi_endproc .size poly1305_init,.-poly1305_init .type poly1305_blocks,\@function,4 .align 32 poly1305_blocks: .cfi_startproc .Lblocks: shr \$4,$len jz .Lno_data # too short push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lblocks_body: mov $len,%r15 # reassign $len mov 24($ctx),$r0 # load r mov 32($ctx),$s1 mov 0($ctx),$h0 # load hash value mov 8($ctx),$h1 mov 16($ctx),$h2 mov $s1,$r1 shr \$2,$s1 mov $r1,%rax add $r1,$s1 # s1 = r1 + (r1 >> 2) jmp .Loop .align 32 .Loop: add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 ___ &poly1305_iteration(); $code.=<<___; mov $r1,%rax dec %r15 # len-=16 jnz .Loop mov $h0,0($ctx) # store hash value mov $h1,8($ctx) mov $h2,16($ctx) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lno_data: .Lblocks_epilogue: ret .cfi_endproc .size poly1305_blocks,.-poly1305_blocks .type poly1305_emit,\@function,3 .align 32 poly1305_emit: .cfi_startproc .Lemit: mov 0($ctx),%r8 # load hash value mov 8($ctx),%r9 mov 16($ctx),%r10 mov %r8,%rax add \$5,%r8 # compare to modulus mov %r9,%rcx adc \$0,%r9 adc \$0,%r10 shr \$2,%r10 # did 130-bit value overflow? cmovnz %r8,%rax cmovnz %r9,%rcx add 0($nonce),%rax # accumulate nonce adc 8($nonce),%rcx mov %rax,0($mac) # write result mov %rcx,8($mac) ret .cfi_endproc .size poly1305_emit,.-poly1305_emit ___ if ($avx) { ######################################################################## # Layout of opaque area is following. # # unsigned __int32 h[5]; # current hash value base 2^26 # unsigned __int32 is_base2_26; # unsigned __int64 r[2]; # key value base 2^64 # unsigned __int64 pad; # struct { unsigned __int32 r^2, r^1, r^4, r^3; } r[9]; # # where r^n are base 2^26 digits of degrees of multiplier key. There are # 5 digits, but last four are interleaved with multiples of 5, totalling # in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4. my ($H0,$H1,$H2,$H3,$H4, $T0,$T1,$T2,$T3,$T4, $D0,$D1,$D2,$D3,$D4, $MASK) = map("%xmm$_",(0..15)); $code.=<<___; .type __poly1305_block,\@abi-omnipotent .align 32 __poly1305_block: .cfi_startproc ___ &poly1305_iteration(); $code.=<<___; ret .cfi_endproc .size __poly1305_block,.-__poly1305_block .type __poly1305_init_avx,\@abi-omnipotent .align 32 __poly1305_init_avx: .cfi_startproc mov $r0,$h0 mov $r1,$h1 xor $h2,$h2 lea 48+64($ctx),$ctx # size optimization mov $r1,%rax call __poly1305_block # r^2 mov \$0x3ffffff,%eax # save interleaved r^2 and r base 2^26 mov \$0x3ffffff,%edx mov $h0,$d1 and $h0#d,%eax mov $r0,$d2 and $r0#d,%edx mov %eax,`16*0+0-64`($ctx) shr \$26,$d1 mov %edx,`16*0+4-64`($ctx) shr \$26,$d2 mov \$0x3ffffff,%eax mov \$0x3ffffff,%edx and $d1#d,%eax and $d2#d,%edx mov %eax,`16*1+0-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov %edx,`16*1+4-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 mov %eax,`16*2+0-64`($ctx) shr \$26,$d1 mov %edx,`16*2+4-64`($ctx) shr \$26,$d2 mov $h1,%rax mov $r1,%rdx shl \$12,%rax shl \$12,%rdx or $d1,%rax or $d2,%rdx and \$0x3ffffff,%eax and \$0x3ffffff,%edx mov %eax,`16*3+0-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov %edx,`16*3+4-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 mov %eax,`16*4+0-64`($ctx) mov $h1,$d1 mov %edx,`16*4+4-64`($ctx) mov $r1,$d2 mov \$0x3ffffff,%eax mov \$0x3ffffff,%edx shr \$14,$d1 shr \$14,$d2 and $d1#d,%eax and $d2#d,%edx mov %eax,`16*5+0-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov %edx,`16*5+4-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 mov %eax,`16*6+0-64`($ctx) shr \$26,$d1 mov %edx,`16*6+4-64`($ctx) shr \$26,$d2 mov $h2,%rax shl \$24,%rax or %rax,$d1 mov $d1#d,`16*7+0-64`($ctx) lea ($d1,$d1,4),$d1 # *5 mov $d2#d,`16*7+4-64`($ctx) lea ($d2,$d2,4),$d2 # *5 mov $d1#d,`16*8+0-64`($ctx) mov $d2#d,`16*8+4-64`($ctx) mov $r1,%rax call __poly1305_block # r^3 mov \$0x3ffffff,%eax # save r^3 base 2^26 mov $h0,$d1 and $h0#d,%eax shr \$26,$d1 mov %eax,`16*0+12-64`($ctx) mov \$0x3ffffff,%edx and $d1#d,%edx mov %edx,`16*1+12-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*2+12-64`($ctx) mov $h1,%rax shl \$12,%rax or $d1,%rax and \$0x3ffffff,%eax mov %eax,`16*3+12-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov $h1,$d1 mov %eax,`16*4+12-64`($ctx) mov \$0x3ffffff,%edx shr \$14,$d1 and $d1#d,%edx mov %edx,`16*5+12-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*6+12-64`($ctx) mov $h2,%rax shl \$24,%rax or %rax,$d1 mov $d1#d,`16*7+12-64`($ctx) lea ($d1,$d1,4),$d1 # *5 mov $d1#d,`16*8+12-64`($ctx) mov $r1,%rax call __poly1305_block # r^4 mov \$0x3ffffff,%eax # save r^4 base 2^26 mov $h0,$d1 and $h0#d,%eax shr \$26,$d1 mov %eax,`16*0+8-64`($ctx) mov \$0x3ffffff,%edx and $d1#d,%edx mov %edx,`16*1+8-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*2+8-64`($ctx) mov $h1,%rax shl \$12,%rax or $d1,%rax and \$0x3ffffff,%eax mov %eax,`16*3+8-64`($ctx) lea (%rax,%rax,4),%eax # *5 mov $h1,$d1 mov %eax,`16*4+8-64`($ctx) mov \$0x3ffffff,%edx shr \$14,$d1 and $d1#d,%edx mov %edx,`16*5+8-64`($ctx) lea (%rdx,%rdx,4),%edx # *5 shr \$26,$d1 mov %edx,`16*6+8-64`($ctx) mov $h2,%rax shl \$24,%rax or %rax,$d1 mov $d1#d,`16*7+8-64`($ctx) lea ($d1,$d1,4),$d1 # *5 mov $d1#d,`16*8+8-64`($ctx) lea -48-64($ctx),$ctx # size [de-]optimization ret .cfi_endproc .size __poly1305_init_avx,.-__poly1305_init_avx .type poly1305_blocks_avx,\@function,4 .align 32 poly1305_blocks_avx: .cfi_startproc mov 20($ctx),%r8d # is_base2_26 cmp \$128,$len jae .Lblocks_avx test %r8d,%r8d jz .Lblocks .Lblocks_avx: and \$-16,$len jz .Lno_data_avx vzeroupper test %r8d,%r8d jz .Lbase2_64_avx test \$31,$len jz .Leven_avx push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lblocks_avx_body: mov $len,%r15 # reassign $len mov 0($ctx),$d1 # load hash value mov 8($ctx),$d2 mov 16($ctx),$h2#d mov 24($ctx),$r0 # load r mov 32($ctx),$s1 ################################# base 2^26 -> base 2^64 mov $d1#d,$h0#d and \$`-1*(1<<31)`,$d1 mov $d2,$r1 # borrow $r1 mov $d2#d,$h1#d and \$`-1*(1<<31)`,$d2 shr \$6,$d1 shl \$52,$r1 add $d1,$h0 shr \$12,$h1 shr \$18,$d2 add $r1,$h0 adc $d2,$h1 mov $h2,$d1 shl \$40,$d1 shr \$24,$h2 add $d1,$h1 adc \$0,$h2 # can be partially reduced... mov \$-4,$d2 # ... so reduce mov $h2,$d1 and $h2,$d2 shr \$2,$d1 and \$3,$h2 add $d2,$d1 # =*5 add $d1,$h0 adc \$0,$h1 adc \$0,$h2 mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 call __poly1305_block test $padbit,$padbit # if $padbit is zero, jz .Lstore_base2_64_avx # store hash in base 2^64 format ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$r0 mov $h1,$r1 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$r0 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $r0,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$r1 and \$0x3ffffff,$h1 # h[3] or $r1,$h2 # h[4] sub \$16,%r15 jz .Lstore_base2_26_avx vmovd %rax#d,$H0 vmovd %rdx#d,$H1 vmovd $h0#d,$H2 vmovd $h1#d,$H3 vmovd $h2#d,$H4 jmp .Lproceed_avx .align 32 .Lstore_base2_64_avx: mov $h0,0($ctx) mov $h1,8($ctx) mov $h2,16($ctx) # note that is_base2_26 is zeroed jmp .Ldone_avx .align 16 .Lstore_base2_26_avx: mov %rax#d,0($ctx) # store hash value base 2^26 mov %rdx#d,4($ctx) mov $h0#d,8($ctx) mov $h1#d,12($ctx) mov $h2#d,16($ctx) .align 16 .Ldone_avx: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lno_data_avx: .Lblocks_avx_epilogue: ret .cfi_endproc .align 32 .Lbase2_64_avx: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lbase2_64_avx_body: mov $len,%r15 # reassign $len mov 24($ctx),$r0 # load r mov 32($ctx),$s1 mov 0($ctx),$h0 # load hash value mov 8($ctx),$h1 mov 16($ctx),$h2#d mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) test \$31,$len jz .Linit_avx add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 sub \$16,%r15 call __poly1305_block .Linit_avx: ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$d1 mov $h1,$d2 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$d1 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $d1,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$d2 and \$0x3ffffff,$h1 # h[3] or $d2,$h2 # h[4] vmovd %rax#d,$H0 vmovd %rdx#d,$H1 vmovd $h0#d,$H2 vmovd $h1#d,$H3 vmovd $h2#d,$H4 movl \$1,20($ctx) # set is_base2_26 call __poly1305_init_avx .Lproceed_avx: mov %r15,$len mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rax lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lbase2_64_avx_epilogue: jmp .Ldo_avx .cfi_endproc .align 32 .Leven_avx: .cfi_startproc vmovd 4*0($ctx),$H0 # load hash value vmovd 4*1($ctx),$H1 vmovd 4*2($ctx),$H2 vmovd 4*3($ctx),$H3 vmovd 4*4($ctx),$H4 .Ldo_avx: ___ $code.=<<___ if (!$win64); lea -0x58(%rsp),%r11 .cfi_def_cfa %r11,0x60 sub \$0x178,%rsp ___ $code.=<<___ if ($win64); lea -0xf8(%rsp),%r11 sub \$0x218,%rsp vmovdqa %xmm6,0x50(%r11) vmovdqa %xmm7,0x60(%r11) vmovdqa %xmm8,0x70(%r11) vmovdqa %xmm9,0x80(%r11) vmovdqa %xmm10,0x90(%r11) vmovdqa %xmm11,0xa0(%r11) vmovdqa %xmm12,0xb0(%r11) vmovdqa %xmm13,0xc0(%r11) vmovdqa %xmm14,0xd0(%r11) vmovdqa %xmm15,0xe0(%r11) .Ldo_avx_body: ___ $code.=<<___; sub \$64,$len lea -32($inp),%rax cmovc %rax,$inp vmovdqu `16*3`($ctx),$D4 # preload r0^2 lea `16*3+64`($ctx),$ctx # size optimization lea .Lconst(%rip),%rcx ################################################################ # load input vmovdqu 16*2($inp),$T0 vmovdqu 16*3($inp),$T1 vmovdqa 64(%rcx),$MASK # .Lmask26 vpsrldq \$6,$T0,$T2 # splat input vpsrldq \$6,$T1,$T3 vpunpckhqdq $T1,$T0,$T4 # 4 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpunpcklqdq $T3,$T2,$T3 # 2:3 vpsrlq \$40,$T4,$T4 # 4 vpsrlq \$26,$T0,$T1 vpand $MASK,$T0,$T0 # 0 vpsrlq \$4,$T3,$T2 vpand $MASK,$T1,$T1 # 1 vpsrlq \$30,$T3,$T3 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always jbe .Lskip_loop_avx # expand and copy pre-calculated table to stack vmovdqu `16*1-64`($ctx),$D1 vmovdqu `16*2-64`($ctx),$D2 vpshufd \$0xEE,$D4,$D3 # 34xx -> 3434 vpshufd \$0x44,$D4,$D0 # xx12 -> 1212 vmovdqa $D3,-0x90(%r11) vmovdqa $D0,0x00(%rsp) vpshufd \$0xEE,$D1,$D4 vmovdqu `16*3-64`($ctx),$D0 vpshufd \$0x44,$D1,$D1 vmovdqa $D4,-0x80(%r11) vmovdqa $D1,0x10(%rsp) vpshufd \$0xEE,$D2,$D3 vmovdqu `16*4-64`($ctx),$D1 vpshufd \$0x44,$D2,$D2 vmovdqa $D3,-0x70(%r11) vmovdqa $D2,0x20(%rsp) vpshufd \$0xEE,$D0,$D4 vmovdqu `16*5-64`($ctx),$D2 vpshufd \$0x44,$D0,$D0 vmovdqa $D4,-0x60(%r11) vmovdqa $D0,0x30(%rsp) vpshufd \$0xEE,$D1,$D3 vmovdqu `16*6-64`($ctx),$D0 vpshufd \$0x44,$D1,$D1 vmovdqa $D3,-0x50(%r11) vmovdqa $D1,0x40(%rsp) vpshufd \$0xEE,$D2,$D4 vmovdqu `16*7-64`($ctx),$D1 vpshufd \$0x44,$D2,$D2 vmovdqa $D4,-0x40(%r11) vmovdqa $D2,0x50(%rsp) vpshufd \$0xEE,$D0,$D3 vmovdqu `16*8-64`($ctx),$D2 vpshufd \$0x44,$D0,$D0 vmovdqa $D3,-0x30(%r11) vmovdqa $D0,0x60(%rsp) vpshufd \$0xEE,$D1,$D4 vpshufd \$0x44,$D1,$D1 vmovdqa $D4,-0x20(%r11) vmovdqa $D1,0x70(%rsp) vpshufd \$0xEE,$D2,$D3 vmovdqa 0x00(%rsp),$D4 # preload r0^2 vpshufd \$0x44,$D2,$D2 vmovdqa $D3,-0x10(%r11) vmovdqa $D2,0x80(%rsp) jmp .Loop_avx .align 32 .Loop_avx: ################################################################ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r # \___________________/ # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r # \___________________/ \____________________/ # # Note that we start with inp[2:3]*r^2. This is because it # doesn't depend on reduction in previous iteration. ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 # # though note that $Tx and $Hx are "reversed" in this section, # and $D4 is preloaded with r0^2... vpmuludq $T0,$D4,$D0 # d0 = h0*r0 vpmuludq $T1,$D4,$D1 # d1 = h1*r0 vmovdqa $H2,0x20(%r11) # offload hash vpmuludq $T2,$D4,$D2 # d3 = h2*r0 vmovdqa 0x10(%rsp),$H2 # r1^2 vpmuludq $T3,$D4,$D3 # d3 = h3*r0 vpmuludq $T4,$D4,$D4 # d4 = h4*r0 vmovdqa $H0,0x00(%r11) # vpmuludq 0x20(%rsp),$T4,$H0 # h4*s1 vmovdqa $H1,0x10(%r11) # vpmuludq $T3,$H2,$H1 # h3*r1 vpaddq $H0,$D0,$D0 # d0 += h4*s1 vpaddq $H1,$D4,$D4 # d4 += h3*r1 vmovdqa $H3,0x30(%r11) # vpmuludq $T2,$H2,$H0 # h2*r1 vpmuludq $T1,$H2,$H1 # h1*r1 vpaddq $H0,$D3,$D3 # d3 += h2*r1 vmovdqa 0x30(%rsp),$H3 # r2^2 vpaddq $H1,$D2,$D2 # d2 += h1*r1 vmovdqa $H4,0x40(%r11) # vpmuludq $T0,$H2,$H2 # h0*r1 vpmuludq $T2,$H3,$H0 # h2*r2 vpaddq $H2,$D1,$D1 # d1 += h0*r1 vmovdqa 0x40(%rsp),$H4 # s2^2 vpaddq $H0,$D4,$D4 # d4 += h2*r2 vpmuludq $T1,$H3,$H1 # h1*r2 vpmuludq $T0,$H3,$H3 # h0*r2 vpaddq $H1,$D3,$D3 # d3 += h1*r2 vmovdqa 0x50(%rsp),$H2 # r3^2 vpaddq $H3,$D2,$D2 # d2 += h0*r2 vpmuludq $T4,$H4,$H0 # h4*s2 vpmuludq $T3,$H4,$H4 # h3*s2 vpaddq $H0,$D1,$D1 # d1 += h4*s2 vmovdqa 0x60(%rsp),$H3 # s3^2 vpaddq $H4,$D0,$D0 # d0 += h3*s2 vmovdqa 0x80(%rsp),$H4 # s4^2 vpmuludq $T1,$H2,$H1 # h1*r3 vpmuludq $T0,$H2,$H2 # h0*r3 vpaddq $H1,$D4,$D4 # d4 += h1*r3 vpaddq $H2,$D3,$D3 # d3 += h0*r3 vpmuludq $T4,$H3,$H0 # h4*s3 vpmuludq $T3,$H3,$H1 # h3*s3 vpaddq $H0,$D2,$D2 # d2 += h4*s3 vmovdqu 16*0($inp),$H0 # load input vpaddq $H1,$D1,$D1 # d1 += h3*s3 vpmuludq $T2,$H3,$H3 # h2*s3 vpmuludq $T2,$H4,$T2 # h2*s4 vpaddq $H3,$D0,$D0 # d0 += h2*s3 vmovdqu 16*1($inp),$H1 # vpaddq $T2,$D1,$D1 # d1 += h2*s4 vpmuludq $T3,$H4,$T3 # h3*s4 vpmuludq $T4,$H4,$T4 # h4*s4 vpsrldq \$6,$H0,$H2 # splat input vpaddq $T3,$D2,$D2 # d2 += h3*s4 vpaddq $T4,$D3,$D3 # d3 += h4*s4 vpsrldq \$6,$H1,$H3 # vpmuludq 0x70(%rsp),$T0,$T4 # h0*r4 vpmuludq $T1,$H4,$T0 # h1*s4 vpunpckhqdq $H1,$H0,$H4 # 4 vpaddq $T4,$D4,$D4 # d4 += h0*r4 vmovdqa -0x90(%r11),$T4 # r0^4 vpaddq $T0,$D0,$D0 # d0 += h1*s4 vpunpcklqdq $H1,$H0,$H0 # 0:1 vpunpcklqdq $H3,$H2,$H3 # 2:3 #vpsrlq \$40,$H4,$H4 # 4 vpsrldq \$`40/8`,$H4,$H4 # 4 vpsrlq \$26,$H0,$H1 vpand $MASK,$H0,$H0 # 0 vpsrlq \$4,$H3,$H2 vpand $MASK,$H1,$H1 # 1 vpand 0(%rcx),$H4,$H4 # .Lmask24 vpsrlq \$30,$H3,$H3 vpand $MASK,$H2,$H2 # 2 vpand $MASK,$H3,$H3 # 3 vpor 32(%rcx),$H4,$H4 # padbit, yes, always vpaddq 0x00(%r11),$H0,$H0 # add hash value vpaddq 0x10(%r11),$H1,$H1 vpaddq 0x20(%r11),$H2,$H2 vpaddq 0x30(%r11),$H3,$H3 vpaddq 0x40(%r11),$H4,$H4 lea 16*2($inp),%rax lea 16*4($inp),$inp sub \$64,$len cmovc %rax,$inp ################################################################ # Now we accumulate (inp[0:1]+hash)*r^4 ################################################################ # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 vpmuludq $H0,$T4,$T0 # h0*r0 vpmuludq $H1,$T4,$T1 # h1*r0 vpaddq $T0,$D0,$D0 vpaddq $T1,$D1,$D1 vmovdqa -0x80(%r11),$T2 # r1^4 vpmuludq $H2,$T4,$T0 # h2*r0 vpmuludq $H3,$T4,$T1 # h3*r0 vpaddq $T0,$D2,$D2 vpaddq $T1,$D3,$D3 vpmuludq $H4,$T4,$T4 # h4*r0 vpmuludq -0x70(%r11),$H4,$T0 # h4*s1 vpaddq $T4,$D4,$D4 vpaddq $T0,$D0,$D0 # d0 += h4*s1 vpmuludq $H2,$T2,$T1 # h2*r1 vpmuludq $H3,$T2,$T0 # h3*r1 vpaddq $T1,$D3,$D3 # d3 += h2*r1 vmovdqa -0x60(%r11),$T3 # r2^4 vpaddq $T0,$D4,$D4 # d4 += h3*r1 vpmuludq $H1,$T2,$T1 # h1*r1 vpmuludq $H0,$T2,$T2 # h0*r1 vpaddq $T1,$D2,$D2 # d2 += h1*r1 vpaddq $T2,$D1,$D1 # d1 += h0*r1 vmovdqa -0x50(%r11),$T4 # s2^4 vpmuludq $H2,$T3,$T0 # h2*r2 vpmuludq $H1,$T3,$T1 # h1*r2 vpaddq $T0,$D4,$D4 # d4 += h2*r2 vpaddq $T1,$D3,$D3 # d3 += h1*r2 vmovdqa -0x40(%r11),$T2 # r3^4 vpmuludq $H0,$T3,$T3 # h0*r2 vpmuludq $H4,$T4,$T0 # h4*s2 vpaddq $T3,$D2,$D2 # d2 += h0*r2 vpaddq $T0,$D1,$D1 # d1 += h4*s2 vmovdqa -0x30(%r11),$T3 # s3^4 vpmuludq $H3,$T4,$T4 # h3*s2 vpmuludq $H1,$T2,$T1 # h1*r3 vpaddq $T4,$D0,$D0 # d0 += h3*s2 vmovdqa -0x10(%r11),$T4 # s4^4 vpaddq $T1,$D4,$D4 # d4 += h1*r3 vpmuludq $H0,$T2,$T2 # h0*r3 vpmuludq $H4,$T3,$T0 # h4*s3 vpaddq $T2,$D3,$D3 # d3 += h0*r3 vpaddq $T0,$D2,$D2 # d2 += h4*s3 vmovdqu 16*2($inp),$T0 # load input vpmuludq $H3,$T3,$T2 # h3*s3 vpmuludq $H2,$T3,$T3 # h2*s3 vpaddq $T2,$D1,$D1 # d1 += h3*s3 vmovdqu 16*3($inp),$T1 # vpaddq $T3,$D0,$D0 # d0 += h2*s3 vpmuludq $H2,$T4,$H2 # h2*s4 vpmuludq $H3,$T4,$H3 # h3*s4 vpsrldq \$6,$T0,$T2 # splat input vpaddq $H2,$D1,$D1 # d1 += h2*s4 vpmuludq $H4,$T4,$H4 # h4*s4 vpsrldq \$6,$T1,$T3 # vpaddq $H3,$D2,$H2 # h2 = d2 + h3*s4 vpaddq $H4,$D3,$H3 # h3 = d3 + h4*s4 vpmuludq -0x20(%r11),$H0,$H4 # h0*r4 vpmuludq $H1,$T4,$H0 vpunpckhqdq $T1,$T0,$T4 # 4 vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpunpcklqdq $T3,$T2,$T3 # 2:3 #vpsrlq \$40,$T4,$T4 # 4 vpsrldq \$`40/8`,$T4,$T4 # 4 vpsrlq \$26,$T0,$T1 vmovdqa 0x00(%rsp),$D4 # preload r0^2 vpand $MASK,$T0,$T0 # 0 vpsrlq \$4,$T3,$T2 vpand $MASK,$T1,$T1 # 1 vpand 0(%rcx),$T4,$T4 # .Lmask24 vpsrlq \$30,$T3,$T3 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always ################################################################ # lazy reduction as discussed in "NEON crypto" by D.J. Bernstein # and P. Schwabe vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$D1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D0 vpand $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D0,$H0,$H0 vpsllq \$2,$D0,$D0 vpaddq $D0,$H0,$H0 # h4 -> h0 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpaddq $D2,$H3,$H3 # h2 -> h3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 ja .Loop_avx .Lskip_loop_avx: ################################################################ # multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 vpshufd \$0x10,$D4,$D4 # r0^n, xx12 -> x1x2 add \$32,$len jnz .Long_tail_avx vpaddq $H2,$T2,$T2 vpaddq $H0,$T0,$T0 vpaddq $H1,$T1,$T1 vpaddq $H3,$T3,$T3 vpaddq $H4,$T4,$T4 .Long_tail_avx: vmovdqa $H2,0x20(%r11) vmovdqa $H0,0x00(%r11) vmovdqa $H1,0x10(%r11) vmovdqa $H3,0x30(%r11) vmovdqa $H4,0x40(%r11) # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 vpmuludq $T2,$D4,$D2 # d2 = h2*r0 vpmuludq $T0,$D4,$D0 # d0 = h0*r0 vpshufd \$0x10,`16*1-64`($ctx),$H2 # r1^n vpmuludq $T1,$D4,$D1 # d1 = h1*r0 vpmuludq $T3,$D4,$D3 # d3 = h3*r0 vpmuludq $T4,$D4,$D4 # d4 = h4*r0 vpmuludq $T3,$H2,$H0 # h3*r1 vpaddq $H0,$D4,$D4 # d4 += h3*r1 vpshufd \$0x10,`16*2-64`($ctx),$H3 # s1^n vpmuludq $T2,$H2,$H1 # h2*r1 vpaddq $H1,$D3,$D3 # d3 += h2*r1 vpshufd \$0x10,`16*3-64`($ctx),$H4 # r2^n vpmuludq $T1,$H2,$H0 # h1*r1 vpaddq $H0,$D2,$D2 # d2 += h1*r1 vpmuludq $T0,$H2,$H2 # h0*r1 vpaddq $H2,$D1,$D1 # d1 += h0*r1 vpmuludq $T4,$H3,$H3 # h4*s1 vpaddq $H3,$D0,$D0 # d0 += h4*s1 vpshufd \$0x10,`16*4-64`($ctx),$H2 # s2^n vpmuludq $T2,$H4,$H1 # h2*r2 vpaddq $H1,$D4,$D4 # d4 += h2*r2 vpmuludq $T1,$H4,$H0 # h1*r2 vpaddq $H0,$D3,$D3 # d3 += h1*r2 vpshufd \$0x10,`16*5-64`($ctx),$H3 # r3^n vpmuludq $T0,$H4,$H4 # h0*r2 vpaddq $H4,$D2,$D2 # d2 += h0*r2 vpmuludq $T4,$H2,$H1 # h4*s2 vpaddq $H1,$D1,$D1 # d1 += h4*s2 vpshufd \$0x10,`16*6-64`($ctx),$H4 # s3^n vpmuludq $T3,$H2,$H2 # h3*s2 vpaddq $H2,$D0,$D0 # d0 += h3*s2 vpmuludq $T1,$H3,$H0 # h1*r3 vpaddq $H0,$D4,$D4 # d4 += h1*r3 vpmuludq $T0,$H3,$H3 # h0*r3 vpaddq $H3,$D3,$D3 # d3 += h0*r3 vpshufd \$0x10,`16*7-64`($ctx),$H2 # r4^n vpmuludq $T4,$H4,$H1 # h4*s3 vpaddq $H1,$D2,$D2 # d2 += h4*s3 vpshufd \$0x10,`16*8-64`($ctx),$H3 # s4^n vpmuludq $T3,$H4,$H0 # h3*s3 vpaddq $H0,$D1,$D1 # d1 += h3*s3 vpmuludq $T2,$H4,$H4 # h2*s3 vpaddq $H4,$D0,$D0 # d0 += h2*s3 vpmuludq $T0,$H2,$H2 # h0*r4 vpaddq $H2,$D4,$D4 # h4 = d4 + h0*r4 vpmuludq $T4,$H3,$H1 # h4*s4 vpaddq $H1,$D3,$D3 # h3 = d3 + h4*s4 vpmuludq $T3,$H3,$H0 # h3*s4 vpaddq $H0,$D2,$D2 # h2 = d2 + h3*s4 vpmuludq $T2,$H3,$H1 # h2*s4 vpaddq $H1,$D1,$D1 # h1 = d1 + h2*s4 vpmuludq $T1,$H3,$H3 # h1*s4 vpaddq $H3,$D0,$D0 # h0 = d0 + h1*s4 jz .Lshort_tail_avx vmovdqu 16*0($inp),$H0 # load input vmovdqu 16*1($inp),$H1 vpsrldq \$6,$H0,$H2 # splat input vpsrldq \$6,$H1,$H3 vpunpckhqdq $H1,$H0,$H4 # 4 vpunpcklqdq $H1,$H0,$H0 # 0:1 vpunpcklqdq $H3,$H2,$H3 # 2:3 vpsrlq \$40,$H4,$H4 # 4 vpsrlq \$26,$H0,$H1 vpand $MASK,$H0,$H0 # 0 vpsrlq \$4,$H3,$H2 vpand $MASK,$H1,$H1 # 1 vpsrlq \$30,$H3,$H3 vpand $MASK,$H2,$H2 # 2 vpand $MASK,$H3,$H3 # 3 vpor 32(%rcx),$H4,$H4 # padbit, yes, always vpshufd \$0x32,`16*0-64`($ctx),$T4 # r0^n, 34xx -> x3x4 vpaddq 0x00(%r11),$H0,$H0 vpaddq 0x10(%r11),$H1,$H1 vpaddq 0x20(%r11),$H2,$H2 vpaddq 0x30(%r11),$H3,$H3 vpaddq 0x40(%r11),$H4,$H4 ################################################################ # multiply (inp[0:1]+hash) by r^4:r^3 and accumulate vpmuludq $H0,$T4,$T0 # h0*r0 vpaddq $T0,$D0,$D0 # d0 += h0*r0 vpmuludq $H1,$T4,$T1 # h1*r0 vpaddq $T1,$D1,$D1 # d1 += h1*r0 vpmuludq $H2,$T4,$T0 # h2*r0 vpaddq $T0,$D2,$D2 # d2 += h2*r0 vpshufd \$0x32,`16*1-64`($ctx),$T2 # r1^n vpmuludq $H3,$T4,$T1 # h3*r0 vpaddq $T1,$D3,$D3 # d3 += h3*r0 vpmuludq $H4,$T4,$T4 # h4*r0 vpaddq $T4,$D4,$D4 # d4 += h4*r0 vpmuludq $H3,$T2,$T0 # h3*r1 vpaddq $T0,$D4,$D4 # d4 += h3*r1 vpshufd \$0x32,`16*2-64`($ctx),$T3 # s1 vpmuludq $H2,$T2,$T1 # h2*r1 vpaddq $T1,$D3,$D3 # d3 += h2*r1 vpshufd \$0x32,`16*3-64`($ctx),$T4 # r2 vpmuludq $H1,$T2,$T0 # h1*r1 vpaddq $T0,$D2,$D2 # d2 += h1*r1 vpmuludq $H0,$T2,$T2 # h0*r1 vpaddq $T2,$D1,$D1 # d1 += h0*r1 vpmuludq $H4,$T3,$T3 # h4*s1 vpaddq $T3,$D0,$D0 # d0 += h4*s1 vpshufd \$0x32,`16*4-64`($ctx),$T2 # s2 vpmuludq $H2,$T4,$T1 # h2*r2 vpaddq $T1,$D4,$D4 # d4 += h2*r2 vpmuludq $H1,$T4,$T0 # h1*r2 vpaddq $T0,$D3,$D3 # d3 += h1*r2 vpshufd \$0x32,`16*5-64`($ctx),$T3 # r3 vpmuludq $H0,$T4,$T4 # h0*r2 vpaddq $T4,$D2,$D2 # d2 += h0*r2 vpmuludq $H4,$T2,$T1 # h4*s2 vpaddq $T1,$D1,$D1 # d1 += h4*s2 vpshufd \$0x32,`16*6-64`($ctx),$T4 # s3 vpmuludq $H3,$T2,$T2 # h3*s2 vpaddq $T2,$D0,$D0 # d0 += h3*s2 vpmuludq $H1,$T3,$T0 # h1*r3 vpaddq $T0,$D4,$D4 # d4 += h1*r3 vpmuludq $H0,$T3,$T3 # h0*r3 vpaddq $T3,$D3,$D3 # d3 += h0*r3 vpshufd \$0x32,`16*7-64`($ctx),$T2 # r4 vpmuludq $H4,$T4,$T1 # h4*s3 vpaddq $T1,$D2,$D2 # d2 += h4*s3 vpshufd \$0x32,`16*8-64`($ctx),$T3 # s4 vpmuludq $H3,$T4,$T0 # h3*s3 vpaddq $T0,$D1,$D1 # d1 += h3*s3 vpmuludq $H2,$T4,$T4 # h2*s3 vpaddq $T4,$D0,$D0 # d0 += h2*s3 vpmuludq $H0,$T2,$T2 # h0*r4 vpaddq $T2,$D4,$D4 # d4 += h0*r4 vpmuludq $H4,$T3,$T1 # h4*s4 vpaddq $T1,$D3,$D3 # d3 += h4*s4 vpmuludq $H3,$T3,$T0 # h3*s4 vpaddq $T0,$D2,$D2 # d2 += h3*s4 vpmuludq $H2,$T3,$T1 # h2*s4 vpaddq $T1,$D1,$D1 # d1 += h2*s4 vpmuludq $H1,$T3,$T3 # h1*s4 vpaddq $T3,$D0,$D0 # d0 += h1*s4 .Lshort_tail_avx: ################################################################ # horizontal addition vpsrldq \$8,$D4,$T4 vpsrldq \$8,$D3,$T3 vpsrldq \$8,$D1,$T1 vpsrldq \$8,$D0,$T0 vpsrldq \$8,$D2,$T2 vpaddq $T3,$D3,$D3 vpaddq $T4,$D4,$D4 vpaddq $T0,$D0,$D0 vpaddq $T1,$D1,$D1 vpaddq $T2,$D2,$D2 ################################################################ # lazy reduction vpsrlq \$26,$D3,$H3 vpand $MASK,$D3,$D3 vpaddq $H3,$D4,$D4 # h3 -> h4 vpsrlq \$26,$D0,$H0 vpand $MASK,$D0,$D0 vpaddq $H0,$D1,$D1 # h0 -> h1 vpsrlq \$26,$D4,$H4 vpand $MASK,$D4,$D4 vpsrlq \$26,$D1,$H1 vpand $MASK,$D1,$D1 vpaddq $H1,$D2,$D2 # h1 -> h2 vpaddq $H4,$D0,$D0 vpsllq \$2,$H4,$H4 vpaddq $H4,$D0,$D0 # h4 -> h0 vpsrlq \$26,$D2,$H2 vpand $MASK,$D2,$D2 vpaddq $H2,$D3,$D3 # h2 -> h3 vpsrlq \$26,$D0,$H0 vpand $MASK,$D0,$D0 vpaddq $H0,$D1,$D1 # h0 -> h1 vpsrlq \$26,$D3,$H3 vpand $MASK,$D3,$D3 vpaddq $H3,$D4,$D4 # h3 -> h4 vmovd $D0,`4*0-48-64`($ctx) # save partially reduced vmovd $D1,`4*1-48-64`($ctx) vmovd $D2,`4*2-48-64`($ctx) vmovd $D3,`4*3-48-64`($ctx) vmovd $D4,`4*4-48-64`($ctx) ___ $code.=<<___ if ($win64); vmovdqa 0x50(%r11),%xmm6 vmovdqa 0x60(%r11),%xmm7 vmovdqa 0x70(%r11),%xmm8 vmovdqa 0x80(%r11),%xmm9 vmovdqa 0x90(%r11),%xmm10 vmovdqa 0xa0(%r11),%xmm11 vmovdqa 0xb0(%r11),%xmm12 vmovdqa 0xc0(%r11),%xmm13 vmovdqa 0xd0(%r11),%xmm14 vmovdqa 0xe0(%r11),%xmm15 lea 0xf8(%r11),%rsp .Ldo_avx_epilogue: ___ $code.=<<___ if (!$win64); lea 0x58(%r11),%rsp .cfi_def_cfa %rsp,8 ___ $code.=<<___; vzeroupper ret .cfi_endproc .size poly1305_blocks_avx,.-poly1305_blocks_avx .type poly1305_emit_avx,\@function,3 .align 32 poly1305_emit_avx: .cfi_startproc cmpl \$0,20($ctx) # is_base2_26? je .Lemit mov 0($ctx),%eax # load hash value base 2^26 mov 4($ctx),%ecx mov 8($ctx),%r8d mov 12($ctx),%r11d mov 16($ctx),%r10d shl \$26,%rcx # base 2^26 -> base 2^64 mov %r8,%r9 shl \$52,%r8 add %rcx,%rax shr \$12,%r9 add %rax,%r8 # h0 adc \$0,%r9 shl \$14,%r11 mov %r10,%rax shr \$24,%r10 add %r11,%r9 shl \$40,%rax add %rax,%r9 # h1 adc \$0,%r10 # h2 mov %r10,%rax # could be partially reduced, so reduce mov %r10,%rcx and \$3,%r10 shr \$2,%rax and \$-4,%rcx add %rcx,%rax add %rax,%r8 adc \$0,%r9 adc \$0,%r10 mov %r8,%rax add \$5,%r8 # compare to modulus mov %r9,%rcx adc \$0,%r9 adc \$0,%r10 shr \$2,%r10 # did 130-bit value overflow? cmovnz %r8,%rax cmovnz %r9,%rcx add 0($nonce),%rax # accumulate nonce adc 8($nonce),%rcx mov %rax,0($mac) # write result mov %rcx,8($mac) ret .cfi_endproc .size poly1305_emit_avx,.-poly1305_emit_avx ___ if ($avx>1) { my ($H0,$H1,$H2,$H3,$H4, $MASK, $T4,$T0,$T1,$T2,$T3, $D0,$D1,$D2,$D3,$D4) = map("%ymm$_",(0..15)); my $S4=$MASK; $code.=<<___; .type poly1305_blocks_avx2,\@function,4 .align 32 poly1305_blocks_avx2: .cfi_startproc mov 20($ctx),%r8d # is_base2_26 cmp \$128,$len jae .Lblocks_avx2 test %r8d,%r8d jz .Lblocks .Lblocks_avx2: and \$-16,$len jz .Lno_data_avx2 vzeroupper test %r8d,%r8d jz .Lbase2_64_avx2 test \$63,$len jz .Leven_avx2 push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lblocks_avx2_body: mov $len,%r15 # reassign $len mov 0($ctx),$d1 # load hash value mov 8($ctx),$d2 mov 16($ctx),$h2#d mov 24($ctx),$r0 # load r mov 32($ctx),$s1 ################################# base 2^26 -> base 2^64 mov $d1#d,$h0#d and \$`-1*(1<<31)`,$d1 mov $d2,$r1 # borrow $r1 mov $d2#d,$h1#d and \$`-1*(1<<31)`,$d2 shr \$6,$d1 shl \$52,$r1 add $d1,$h0 shr \$12,$h1 shr \$18,$d2 add $r1,$h0 adc $d2,$h1 mov $h2,$d1 shl \$40,$d1 shr \$24,$h2 add $d1,$h1 adc \$0,$h2 # can be partially reduced... mov \$-4,$d2 # ... so reduce mov $h2,$d1 and $h2,$d2 shr \$2,$d1 and \$3,$h2 add $d2,$d1 # =*5 add $d1,$h0 adc \$0,$h1 adc \$0,$h2 mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) .Lbase2_26_pre_avx2: add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 sub \$16,%r15 call __poly1305_block mov $r1,%rax test \$63,%r15 jnz .Lbase2_26_pre_avx2 test $padbit,$padbit # if $padbit is zero, jz .Lstore_base2_64_avx2 # store hash in base 2^64 format ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$r0 mov $h1,$r1 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$r0 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $r0,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$r1 and \$0x3ffffff,$h1 # h[3] or $r1,$h2 # h[4] test %r15,%r15 jz .Lstore_base2_26_avx2 vmovd %rax#d,%x#$H0 vmovd %rdx#d,%x#$H1 vmovd $h0#d,%x#$H2 vmovd $h1#d,%x#$H3 vmovd $h2#d,%x#$H4 jmp .Lproceed_avx2 .align 32 .Lstore_base2_64_avx2: mov $h0,0($ctx) mov $h1,8($ctx) mov $h2,16($ctx) # note that is_base2_26 is zeroed jmp .Ldone_avx2 .align 16 .Lstore_base2_26_avx2: mov %rax#d,0($ctx) # store hash value base 2^26 mov %rdx#d,4($ctx) mov $h0#d,8($ctx) mov $h1#d,12($ctx) mov $h2#d,16($ctx) .align 16 .Ldone_avx2: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lno_data_avx2: .Lblocks_avx2_epilogue: ret .cfi_endproc .align 32 .Lbase2_64_avx2: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lbase2_64_avx2_body: mov $len,%r15 # reassign $len mov 24($ctx),$r0 # load r mov 32($ctx),$s1 mov 0($ctx),$h0 # load hash value mov 8($ctx),$h1 mov 16($ctx),$h2#d mov $s1,$r1 mov $s1,%rax shr \$2,$s1 add $r1,$s1 # s1 = r1 + (r1 >> 2) test \$63,$len jz .Linit_avx2 .Lbase2_64_pre_avx2: add 0($inp),$h0 # accumulate input adc 8($inp),$h1 lea 16($inp),$inp adc $padbit,$h2 sub \$16,%r15 call __poly1305_block mov $r1,%rax test \$63,%r15 jnz .Lbase2_64_pre_avx2 .Linit_avx2: ################################# base 2^64 -> base 2^26 mov $h0,%rax mov $h0,%rdx shr \$52,$h0 mov $h1,$d1 mov $h1,$d2 shr \$26,%rdx and \$0x3ffffff,%rax # h[0] shl \$12,$d1 and \$0x3ffffff,%rdx # h[1] shr \$14,$h1 or $d1,$h0 shl \$24,$h2 and \$0x3ffffff,$h0 # h[2] shr \$40,$d2 and \$0x3ffffff,$h1 # h[3] or $d2,$h2 # h[4] vmovd %rax#d,%x#$H0 vmovd %rdx#d,%x#$H1 vmovd $h0#d,%x#$H2 vmovd $h1#d,%x#$H3 vmovd $h2#d,%x#$H4 movl \$1,20($ctx) # set is_base2_26 call __poly1305_init_avx .Lproceed_avx2: mov %r15,$len # restore $len mov OPENSSL_ia32cap_P+8(%rip),%r10d mov \$`(1<<31|1<<30|1<<16)`,%r11d mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rax lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lbase2_64_avx2_epilogue: jmp .Ldo_avx2 .cfi_endproc .align 32 .Leven_avx2: .cfi_startproc mov OPENSSL_ia32cap_P+8(%rip),%r10d vmovd 4*0($ctx),%x#$H0 # load hash value base 2^26 vmovd 4*1($ctx),%x#$H1 vmovd 4*2($ctx),%x#$H2 vmovd 4*3($ctx),%x#$H3 vmovd 4*4($ctx),%x#$H4 .Ldo_avx2: ___ $code.=<<___ if ($avx>2); cmp \$512,$len jb .Lskip_avx512 and %r11d,%r10d test \$`1<<16`,%r10d # check for AVX512F jnz .Lblocks_avx512 .Lskip_avx512: ___ $code.=<<___ if (!$win64); lea -8(%rsp),%r11 .cfi_def_cfa %r11,16 sub \$0x128,%rsp ___ $code.=<<___ if ($win64); lea -0xf8(%rsp),%r11 sub \$0x1c8,%rsp vmovdqa %xmm6,0x50(%r11) vmovdqa %xmm7,0x60(%r11) vmovdqa %xmm8,0x70(%r11) vmovdqa %xmm9,0x80(%r11) vmovdqa %xmm10,0x90(%r11) vmovdqa %xmm11,0xa0(%r11) vmovdqa %xmm12,0xb0(%r11) vmovdqa %xmm13,0xc0(%r11) vmovdqa %xmm14,0xd0(%r11) vmovdqa %xmm15,0xe0(%r11) .Ldo_avx2_body: ___ $code.=<<___; lea .Lconst(%rip),%rcx lea 48+64($ctx),$ctx # size optimization vmovdqa 96(%rcx),$T0 # .Lpermd_avx2 # expand and copy pre-calculated table to stack vmovdqu `16*0-64`($ctx),%x#$T2 and \$-512,%rsp vmovdqu `16*1-64`($ctx),%x#$T3 vmovdqu `16*2-64`($ctx),%x#$T4 vmovdqu `16*3-64`($ctx),%x#$D0 vmovdqu `16*4-64`($ctx),%x#$D1 vmovdqu `16*5-64`($ctx),%x#$D2 lea 0x90(%rsp),%rax # size optimization vmovdqu `16*6-64`($ctx),%x#$D3 vpermd $T2,$T0,$T2 # 00003412 -> 14243444 vmovdqu `16*7-64`($ctx),%x#$D4 vpermd $T3,$T0,$T3 vmovdqu `16*8-64`($ctx),%x#$MASK vpermd $T4,$T0,$T4 vmovdqa $T2,0x00(%rsp) vpermd $D0,$T0,$D0 vmovdqa $T3,0x20-0x90(%rax) vpermd $D1,$T0,$D1 vmovdqa $T4,0x40-0x90(%rax) vpermd $D2,$T0,$D2 vmovdqa $D0,0x60-0x90(%rax) vpermd $D3,$T0,$D3 vmovdqa $D1,0x80-0x90(%rax) vpermd $D4,$T0,$D4 vmovdqa $D2,0xa0-0x90(%rax) vpermd $MASK,$T0,$MASK vmovdqa $D3,0xc0-0x90(%rax) vmovdqa $D4,0xe0-0x90(%rax) vmovdqa $MASK,0x100-0x90(%rax) vmovdqa 64(%rcx),$MASK # .Lmask26 ################################################################ # load input vmovdqu 16*0($inp),%x#$T0 vmovdqu 16*1($inp),%x#$T1 vinserti128 \$1,16*2($inp),$T0,$T0 vinserti128 \$1,16*3($inp),$T1,$T1 lea 16*4($inp),$inp vpsrldq \$6,$T0,$T2 # splat input vpsrldq \$6,$T1,$T3 vpunpckhqdq $T1,$T0,$T4 # 4 vpunpcklqdq $T3,$T2,$T2 # 2:3 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpsrlq \$30,$T2,$T3 vpsrlq \$4,$T2,$T2 vpsrlq \$26,$T0,$T1 vpsrlq \$40,$T4,$T4 # 4 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T0,$T0 # 0 vpand $MASK,$T1,$T1 # 1 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always vpaddq $H2,$T2,$H2 # accumulate input sub \$64,$len jz .Ltail_avx2 jmp .Loop_avx2 .align 32 .Loop_avx2: ################################################################ # ((inp[0]*r^4+inp[4])*r^4+inp[ 8])*r^4 # ((inp[1]*r^4+inp[5])*r^4+inp[ 9])*r^3 # ((inp[2]*r^4+inp[6])*r^4+inp[10])*r^2 # ((inp[3]*r^4+inp[7])*r^4+inp[11])*r^1 # \________/\__________/ ################################################################ #vpaddq $H2,$T2,$H2 # accumulate input vpaddq $H0,$T0,$H0 vmovdqa `32*0`(%rsp),$T0 # r0^4 vpaddq $H1,$T1,$H1 vmovdqa `32*1`(%rsp),$T1 # r1^4 vpaddq $H3,$T3,$H3 vmovdqa `32*3`(%rsp),$T2 # r2^4 vpaddq $H4,$T4,$H4 vmovdqa `32*6-0x90`(%rax),$T3 # s3^4 vmovdqa `32*8-0x90`(%rax),$S4 # s4^4 # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 # # however, as h2 is "chronologically" first one available pull # corresponding operations up, so it's # # d4 = h2*r2 + h4*r0 + h3*r1 + h1*r3 + h0*r4 # d3 = h2*r1 + h3*r0 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h2*5*r4 + h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 # d0 = h2*5*r3 + h0*r0 + h4*5*r1 + h3*5*r2 + h1*5*r4 vpmuludq $H2,$T0,$D2 # d2 = h2*r0 vpmuludq $H2,$T1,$D3 # d3 = h2*r1 vpmuludq $H2,$T2,$D4 # d4 = h2*r2 vpmuludq $H2,$T3,$D0 # d0 = h2*s3 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vpmuludq $H0,$T1,$T4 # h0*r1 vpmuludq $H1,$T1,$H2 # h1*r1, borrow $H2 as temp vpaddq $T4,$D1,$D1 # d1 += h0*r1 vpaddq $H2,$D2,$D2 # d2 += h1*r1 vpmuludq $H3,$T1,$T4 # h3*r1 vpmuludq `32*2`(%rsp),$H4,$H2 # h4*s1 vpaddq $T4,$D4,$D4 # d4 += h3*r1 vpaddq $H2,$D0,$D0 # d0 += h4*s1 vmovdqa `32*4-0x90`(%rax),$T1 # s2 vpmuludq $H0,$T0,$T4 # h0*r0 vpmuludq $H1,$T0,$H2 # h1*r0 vpaddq $T4,$D0,$D0 # d0 += h0*r0 vpaddq $H2,$D1,$D1 # d1 += h1*r0 vpmuludq $H3,$T0,$T4 # h3*r0 vpmuludq $H4,$T0,$H2 # h4*r0 vmovdqu 16*0($inp),%x#$T0 # load input vpaddq $T4,$D3,$D3 # d3 += h3*r0 vpaddq $H2,$D4,$D4 # d4 += h4*r0 vinserti128 \$1,16*2($inp),$T0,$T0 vpmuludq $H3,$T1,$T4 # h3*s2 vpmuludq $H4,$T1,$H2 # h4*s2 vmovdqu 16*1($inp),%x#$T1 vpaddq $T4,$D0,$D0 # d0 += h3*s2 vpaddq $H2,$D1,$D1 # d1 += h4*s2 vmovdqa `32*5-0x90`(%rax),$H2 # r3 vpmuludq $H1,$T2,$T4 # h1*r2 vpmuludq $H0,$T2,$T2 # h0*r2 vpaddq $T4,$D3,$D3 # d3 += h1*r2 vpaddq $T2,$D2,$D2 # d2 += h0*r2 vinserti128 \$1,16*3($inp),$T1,$T1 lea 16*4($inp),$inp vpmuludq $H1,$H2,$T4 # h1*r3 vpmuludq $H0,$H2,$H2 # h0*r3 vpsrldq \$6,$T0,$T2 # splat input vpaddq $T4,$D4,$D4 # d4 += h1*r3 vpaddq $H2,$D3,$D3 # d3 += h0*r3 vpmuludq $H3,$T3,$T4 # h3*s3 vpmuludq $H4,$T3,$H2 # h4*s3 vpsrldq \$6,$T1,$T3 vpaddq $T4,$D1,$D1 # d1 += h3*s3 vpaddq $H2,$D2,$D2 # d2 += h4*s3 vpunpckhqdq $T1,$T0,$T4 # 4 vpmuludq $H3,$S4,$H3 # h3*s4 vpmuludq $H4,$S4,$H4 # h4*s4 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4 vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4 vpunpcklqdq $T3,$T2,$T3 # 2:3 vpmuludq `32*7-0x90`(%rax),$H0,$H4 # h0*r4 vpmuludq $H1,$S4,$H0 # h1*s4 vmovdqa 64(%rcx),$MASK # .Lmask26 vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 ################################################################ # lazy reduction (interleaved with tail of input splat) vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$D1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D4 vpand $MASK,$H4,$H4 vpsrlq \$4,$T3,$T2 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpand $MASK,$T2,$T2 # 2 vpsrlq \$26,$T0,$T1 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpaddq $D2,$H3,$H3 # h2 -> h3 vpaddq $T2,$H2,$H2 # modulo-scheduled vpsrlq \$30,$T3,$T3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$40,$T4,$T4 # 4 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpand $MASK,$T0,$T0 # 0 vpand $MASK,$T1,$T1 # 1 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always sub \$64,$len jnz .Loop_avx2 .byte 0x66,0x90 .Ltail_avx2: ################################################################ # while above multiplications were by r^4 in all lanes, in last # iteration we multiply least significant lane by r^4 and most # significant one by r, so copy of above except that references # to the precomputed table are displaced by 4... #vpaddq $H2,$T2,$H2 # accumulate input vpaddq $H0,$T0,$H0 vmovdqu `32*0+4`(%rsp),$T0 # r0^4 vpaddq $H1,$T1,$H1 vmovdqu `32*1+4`(%rsp),$T1 # r1^4 vpaddq $H3,$T3,$H3 vmovdqu `32*3+4`(%rsp),$T2 # r2^4 vpaddq $H4,$T4,$H4 vmovdqu `32*6+4-0x90`(%rax),$T3 # s3^4 vmovdqu `32*8+4-0x90`(%rax),$S4 # s4^4 vpmuludq $H2,$T0,$D2 # d2 = h2*r0 vpmuludq $H2,$T1,$D3 # d3 = h2*r1 vpmuludq $H2,$T2,$D4 # d4 = h2*r2 vpmuludq $H2,$T3,$D0 # d0 = h2*s3 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vpmuludq $H0,$T1,$T4 # h0*r1 vpmuludq $H1,$T1,$H2 # h1*r1 vpaddq $T4,$D1,$D1 # d1 += h0*r1 vpaddq $H2,$D2,$D2 # d2 += h1*r1 vpmuludq $H3,$T1,$T4 # h3*r1 vpmuludq `32*2+4`(%rsp),$H4,$H2 # h4*s1 vpaddq $T4,$D4,$D4 # d4 += h3*r1 vpaddq $H2,$D0,$D0 # d0 += h4*s1 vpmuludq $H0,$T0,$T4 # h0*r0 vpmuludq $H1,$T0,$H2 # h1*r0 vpaddq $T4,$D0,$D0 # d0 += h0*r0 vmovdqu `32*4+4-0x90`(%rax),$T1 # s2 vpaddq $H2,$D1,$D1 # d1 += h1*r0 vpmuludq $H3,$T0,$T4 # h3*r0 vpmuludq $H4,$T0,$H2 # h4*r0 vpaddq $T4,$D3,$D3 # d3 += h3*r0 vpaddq $H2,$D4,$D4 # d4 += h4*r0 vpmuludq $H3,$T1,$T4 # h3*s2 vpmuludq $H4,$T1,$H2 # h4*s2 vpaddq $T4,$D0,$D0 # d0 += h3*s2 vpaddq $H2,$D1,$D1 # d1 += h4*s2 vmovdqu `32*5+4-0x90`(%rax),$H2 # r3 vpmuludq $H1,$T2,$T4 # h1*r2 vpmuludq $H0,$T2,$T2 # h0*r2 vpaddq $T4,$D3,$D3 # d3 += h1*r2 vpaddq $T2,$D2,$D2 # d2 += h0*r2 vpmuludq $H1,$H2,$T4 # h1*r3 vpmuludq $H0,$H2,$H2 # h0*r3 vpaddq $T4,$D4,$D4 # d4 += h1*r3 vpaddq $H2,$D3,$D3 # d3 += h0*r3 vpmuludq $H3,$T3,$T4 # h3*s3 vpmuludq $H4,$T3,$H2 # h4*s3 vpaddq $T4,$D1,$D1 # d1 += h3*s3 vpaddq $H2,$D2,$D2 # d2 += h4*s3 vpmuludq $H3,$S4,$H3 # h3*s4 vpmuludq $H4,$S4,$H4 # h4*s4 vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4 vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4 vpmuludq `32*7+4-0x90`(%rax),$H0,$H4 # h0*r4 vpmuludq $H1,$S4,$H0 # h1*s4 vmovdqa 64(%rcx),$MASK # .Lmask26 vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 ################################################################ # horizontal addition vpsrldq \$8,$D1,$T1 vpsrldq \$8,$H2,$T2 vpsrldq \$8,$H3,$T3 vpsrldq \$8,$H4,$T4 vpsrldq \$8,$H0,$T0 vpaddq $T1,$D1,$D1 vpaddq $T2,$H2,$H2 vpaddq $T3,$H3,$H3 vpaddq $T4,$H4,$H4 vpaddq $T0,$H0,$H0 vpermq \$0x2,$H3,$T3 vpermq \$0x2,$H4,$T4 vpermq \$0x2,$H0,$T0 vpermq \$0x2,$D1,$T1 vpermq \$0x2,$H2,$T2 vpaddq $T3,$H3,$H3 vpaddq $T4,$H4,$H4 vpaddq $T0,$H0,$H0 vpaddq $T1,$D1,$D1 vpaddq $T2,$H2,$H2 ################################################################ # lazy reduction vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$D1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D4 vpand $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpaddq $D2,$H3,$H3 # h2 -> h3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced vmovd %x#$H1,`4*1-48-64`($ctx) vmovd %x#$H2,`4*2-48-64`($ctx) vmovd %x#$H3,`4*3-48-64`($ctx) vmovd %x#$H4,`4*4-48-64`($ctx) ___ $code.=<<___ if ($win64); vmovdqa 0x50(%r11),%xmm6 vmovdqa 0x60(%r11),%xmm7 vmovdqa 0x70(%r11),%xmm8 vmovdqa 0x80(%r11),%xmm9 vmovdqa 0x90(%r11),%xmm10 vmovdqa 0xa0(%r11),%xmm11 vmovdqa 0xb0(%r11),%xmm12 vmovdqa 0xc0(%r11),%xmm13 vmovdqa 0xd0(%r11),%xmm14 vmovdqa 0xe0(%r11),%xmm15 lea 0xf8(%r11),%rsp .Ldo_avx2_epilogue: ___ $code.=<<___ if (!$win64); lea 8(%r11),%rsp .cfi_def_cfa %rsp,8 ___ $code.=<<___; vzeroupper ret .cfi_endproc .size poly1305_blocks_avx2,.-poly1305_blocks_avx2 ___ ####################################################################### if ($avx>2) { # On entry we have input length divisible by 64. But since inner loop # processes 128 bytes per iteration, cases when length is not divisible # by 128 are handled by passing tail 64 bytes to .Ltail_avx2. For this # reason stack layout is kept identical to poly1305_blocks_avx2. If not # for this tail, we wouldn't have to even allocate stack frame... my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%zmm$_",(16..24)); my ($M0,$M1,$M2,$M3,$M4) = map("%zmm$_",(25..29)); my $PADBIT="%zmm30"; map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3)); # switch to %zmm domain map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4)); map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4)); map(s/%y/%z/,($MASK)); $code.=<<___; .type poly1305_blocks_avx512,\@function,4 .align 32 poly1305_blocks_avx512: .cfi_startproc .Lblocks_avx512: mov \$15,%eax kmovw %eax,%k2 ___ $code.=<<___ if (!$win64); lea -8(%rsp),%r11 .cfi_def_cfa %r11,16 sub \$0x128,%rsp ___ $code.=<<___ if ($win64); lea -0xf8(%rsp),%r11 sub \$0x1c8,%rsp vmovdqa %xmm6,0x50(%r11) vmovdqa %xmm7,0x60(%r11) vmovdqa %xmm8,0x70(%r11) vmovdqa %xmm9,0x80(%r11) vmovdqa %xmm10,0x90(%r11) vmovdqa %xmm11,0xa0(%r11) vmovdqa %xmm12,0xb0(%r11) vmovdqa %xmm13,0xc0(%r11) vmovdqa %xmm14,0xd0(%r11) vmovdqa %xmm15,0xe0(%r11) .Ldo_avx512_body: ___ $code.=<<___; lea .Lconst(%rip),%rcx lea 48+64($ctx),$ctx # size optimization vmovdqa 96(%rcx),%y#$T2 # .Lpermd_avx2 # expand pre-calculated table vmovdqu `16*0-64`($ctx),%x#$D0 # will become expanded ${R0} and \$-512,%rsp vmovdqu `16*1-64`($ctx),%x#$D1 # will become ... ${R1} mov \$0x20,%rax vmovdqu `16*2-64`($ctx),%x#$T0 # ... ${S1} vmovdqu `16*3-64`($ctx),%x#$D2 # ... ${R2} vmovdqu `16*4-64`($ctx),%x#$T1 # ... ${S2} vmovdqu `16*5-64`($ctx),%x#$D3 # ... ${R3} vmovdqu `16*6-64`($ctx),%x#$T3 # ... ${S3} vmovdqu `16*7-64`($ctx),%x#$D4 # ... ${R4} vmovdqu `16*8-64`($ctx),%x#$T4 # ... ${S4} vpermd $D0,$T2,$R0 # 00003412 -> 14243444 vpbroadcastq 64(%rcx),$MASK # .Lmask26 vpermd $D1,$T2,$R1 vpermd $T0,$T2,$S1 vpermd $D2,$T2,$R2 vmovdqa64 $R0,0x00(%rsp){%k2} # save in case $len%128 != 0 vpsrlq \$32,$R0,$T0 # 14243444 -> 01020304 vpermd $T1,$T2,$S2 vmovdqu64 $R1,0x00(%rsp,%rax){%k2} vpsrlq \$32,$R1,$T1 vpermd $D3,$T2,$R3 vmovdqa64 $S1,0x40(%rsp){%k2} vpermd $T3,$T2,$S3 vpermd $D4,$T2,$R4 vmovdqu64 $R2,0x40(%rsp,%rax){%k2} vpermd $T4,$T2,$S4 vmovdqa64 $S2,0x80(%rsp){%k2} vmovdqu64 $R3,0x80(%rsp,%rax){%k2} vmovdqa64 $S3,0xc0(%rsp){%k2} vmovdqu64 $R4,0xc0(%rsp,%rax){%k2} vmovdqa64 $S4,0x100(%rsp){%k2} ################################################################ # calculate 5th through 8th powers of the key # # d0 = r0'*r0 + r1'*5*r4 + r2'*5*r3 + r3'*5*r2 + r4'*5*r1 # d1 = r0'*r1 + r1'*r0 + r2'*5*r4 + r3'*5*r3 + r4'*5*r2 # d2 = r0'*r2 + r1'*r1 + r2'*r0 + r3'*5*r4 + r4'*5*r3 # d3 = r0'*r3 + r1'*r2 + r2'*r1 + r3'*r0 + r4'*5*r4 # d4 = r0'*r4 + r1'*r3 + r2'*r2 + r3'*r1 + r4'*r0 vpmuludq $T0,$R0,$D0 # d0 = r0'*r0 vpmuludq $T0,$R1,$D1 # d1 = r0'*r1 vpmuludq $T0,$R2,$D2 # d2 = r0'*r2 vpmuludq $T0,$R3,$D3 # d3 = r0'*r3 vpmuludq $T0,$R4,$D4 # d4 = r0'*r4 vpsrlq \$32,$R2,$T2 vpmuludq $T1,$S4,$M0 vpmuludq $T1,$R0,$M1 vpmuludq $T1,$R1,$M2 vpmuludq $T1,$R2,$M3 vpmuludq $T1,$R3,$M4 vpsrlq \$32,$R3,$T3 vpaddq $M0,$D0,$D0 # d0 += r1'*5*r4 vpaddq $M1,$D1,$D1 # d1 += r1'*r0 vpaddq $M2,$D2,$D2 # d2 += r1'*r1 vpaddq $M3,$D3,$D3 # d3 += r1'*r2 vpaddq $M4,$D4,$D4 # d4 += r1'*r3 vpmuludq $T2,$S3,$M0 vpmuludq $T2,$S4,$M1 vpmuludq $T2,$R1,$M3 vpmuludq $T2,$R2,$M4 vpmuludq $T2,$R0,$M2 vpsrlq \$32,$R4,$T4 vpaddq $M0,$D0,$D0 # d0 += r2'*5*r3 vpaddq $M1,$D1,$D1 # d1 += r2'*5*r4 vpaddq $M3,$D3,$D3 # d3 += r2'*r1 vpaddq $M4,$D4,$D4 # d4 += r2'*r2 vpaddq $M2,$D2,$D2 # d2 += r2'*r0 vpmuludq $T3,$S2,$M0 vpmuludq $T3,$R0,$M3 vpmuludq $T3,$R1,$M4 vpmuludq $T3,$S3,$M1 vpmuludq $T3,$S4,$M2 vpaddq $M0,$D0,$D0 # d0 += r3'*5*r2 vpaddq $M3,$D3,$D3 # d3 += r3'*r0 vpaddq $M4,$D4,$D4 # d4 += r3'*r1 vpaddq $M1,$D1,$D1 # d1 += r3'*5*r3 vpaddq $M2,$D2,$D2 # d2 += r3'*5*r4 vpmuludq $T4,$S4,$M3 vpmuludq $T4,$R0,$M4 vpmuludq $T4,$S1,$M0 vpmuludq $T4,$S2,$M1 vpmuludq $T4,$S3,$M2 vpaddq $M3,$D3,$D3 # d3 += r2'*5*r4 vpaddq $M4,$D4,$D4 # d4 += r2'*r0 vpaddq $M0,$D0,$D0 # d0 += r2'*5*r1 vpaddq $M1,$D1,$D1 # d1 += r2'*5*r2 vpaddq $M2,$D2,$D2 # d2 += r2'*5*r3 ################################################################ # load input vmovdqu64 16*0($inp),%z#$T3 vmovdqu64 16*4($inp),%z#$T4 lea 16*8($inp),$inp ################################################################ # lazy reduction vpsrlq \$26,$D3,$M3 vpandq $MASK,$D3,$D3 vpaddq $M3,$D4,$D4 # d3 -> d4 vpsrlq \$26,$D0,$M0 vpandq $MASK,$D0,$D0 vpaddq $M0,$D1,$D1 # d0 -> d1 vpsrlq \$26,$D4,$M4 vpandq $MASK,$D4,$D4 vpsrlq \$26,$D1,$M1 vpandq $MASK,$D1,$D1 vpaddq $M1,$D2,$D2 # d1 -> d2 vpaddq $M4,$D0,$D0 vpsllq \$2,$M4,$M4 vpaddq $M4,$D0,$D0 # d4 -> d0 vpsrlq \$26,$D2,$M2 vpandq $MASK,$D2,$D2 vpaddq $M2,$D3,$D3 # d2 -> d3 vpsrlq \$26,$D0,$M0 vpandq $MASK,$D0,$D0 vpaddq $M0,$D1,$D1 # d0 -> d1 vpsrlq \$26,$D3,$M3 vpandq $MASK,$D3,$D3 vpaddq $M3,$D4,$D4 # d3 -> d4 ################################################################ # at this point we have 14243444 in $R0-$S4 and 05060708 in # $D0-$D4, ... vpunpcklqdq $T4,$T3,$T0 # transpose input vpunpckhqdq $T4,$T3,$T4 # ... since input 64-bit lanes are ordered as 73625140, we could # "vperm" it to 76543210 (here and in each loop iteration), *or* # we could just flow along, hence the goal for $R0-$S4 is # 1858286838784888 ... vmovdqa32 128(%rcx),$M0 # .Lpermd_avx512: mov \$0x7777,%eax kmovw %eax,%k1 vpermd $R0,$M0,$R0 # 14243444 -> 1---2---3---4--- vpermd $R1,$M0,$R1 vpermd $R2,$M0,$R2 vpermd $R3,$M0,$R3 vpermd $R4,$M0,$R4 vpermd $D0,$M0,${R0}{%k1} # 05060708 -> 1858286838784888 vpermd $D1,$M0,${R1}{%k1} vpermd $D2,$M0,${R2}{%k1} vpermd $D3,$M0,${R3}{%k1} vpermd $D4,$M0,${R4}{%k1} vpslld \$2,$R1,$S1 # *5 vpslld \$2,$R2,$S2 vpslld \$2,$R3,$S3 vpslld \$2,$R4,$S4 vpaddd $R1,$S1,$S1 vpaddd $R2,$S2,$S2 vpaddd $R3,$S3,$S3 vpaddd $R4,$S4,$S4 vpbroadcastq 32(%rcx),$PADBIT # .L129 vpsrlq \$52,$T0,$T2 # splat input vpsllq \$12,$T4,$T3 vporq $T3,$T2,$T2 vpsrlq \$26,$T0,$T1 vpsrlq \$14,$T4,$T3 vpsrlq \$40,$T4,$T4 # 4 vpandq $MASK,$T2,$T2 # 2 vpandq $MASK,$T0,$T0 # 0 #vpandq $MASK,$T1,$T1 # 1 #vpandq $MASK,$T3,$T3 # 3 #vporq $PADBIT,$T4,$T4 # padbit, yes, always vpaddq $H2,$T2,$H2 # accumulate input sub \$192,$len jbe .Ltail_avx512 jmp .Loop_avx512 .align 32 .Loop_avx512: ################################################################ # ((inp[0]*r^8+inp[ 8])*r^8+inp[16])*r^8 # ((inp[1]*r^8+inp[ 9])*r^8+inp[17])*r^7 # ((inp[2]*r^8+inp[10])*r^8+inp[18])*r^6 # ((inp[3]*r^8+inp[11])*r^8+inp[19])*r^5 # ((inp[4]*r^8+inp[12])*r^8+inp[20])*r^4 # ((inp[5]*r^8+inp[13])*r^8+inp[21])*r^3 # ((inp[6]*r^8+inp[14])*r^8+inp[22])*r^2 # ((inp[7]*r^8+inp[15])*r^8+inp[23])*r^1 # \________/\___________/ ################################################################ #vpaddq $H2,$T2,$H2 # accumulate input # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 # # however, as h2 is "chronologically" first one available pull # corresponding operations up, so it's # # d3 = h2*r1 + h0*r3 + h1*r2 + h3*r0 + h4*5*r4 # d4 = h2*r2 + h0*r4 + h1*r3 + h3*r1 + h4*r0 # d0 = h2*5*r3 + h0*r0 + h1*5*r4 + h3*5*r2 + h4*5*r1 # d1 = h2*5*r4 + h0*r1 + h1*r0 + h3*5*r3 + h4*5*r2 # d2 = h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 vpmuludq $H2,$R1,$D3 # d3 = h2*r1 vpaddq $H0,$T0,$H0 vpmuludq $H2,$R2,$D4 # d4 = h2*r2 vpandq $MASK,$T1,$T1 # 1 vpmuludq $H2,$S3,$D0 # d0 = h2*s3 vpandq $MASK,$T3,$T3 # 3 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vporq $PADBIT,$T4,$T4 # padbit, yes, always vpmuludq $H2,$R0,$D2 # d2 = h2*r0 vpaddq $H1,$T1,$H1 # accumulate input vpaddq $H3,$T3,$H3 vpaddq $H4,$T4,$H4 vmovdqu64 16*0($inp),$T3 # load input vmovdqu64 16*4($inp),$T4 lea 16*8($inp),$inp vpmuludq $H0,$R3,$M3 vpmuludq $H0,$R4,$M4 vpmuludq $H0,$R0,$M0 vpmuludq $H0,$R1,$M1 vpaddq $M3,$D3,$D3 # d3 += h0*r3 vpaddq $M4,$D4,$D4 # d4 += h0*r4 vpaddq $M0,$D0,$D0 # d0 += h0*r0 vpaddq $M1,$D1,$D1 # d1 += h0*r1 vpmuludq $H1,$R2,$M3 vpmuludq $H1,$R3,$M4 vpmuludq $H1,$S4,$M0 vpmuludq $H0,$R2,$M2 vpaddq $M3,$D3,$D3 # d3 += h1*r2 vpaddq $M4,$D4,$D4 # d4 += h1*r3 vpaddq $M0,$D0,$D0 # d0 += h1*s4 vpaddq $M2,$D2,$D2 # d2 += h0*r2 vpunpcklqdq $T4,$T3,$T0 # transpose input vpunpckhqdq $T4,$T3,$T4 vpmuludq $H3,$R0,$M3 vpmuludq $H3,$R1,$M4 vpmuludq $H1,$R0,$M1 vpmuludq $H1,$R1,$M2 vpaddq $M3,$D3,$D3 # d3 += h3*r0 vpaddq $M4,$D4,$D4 # d4 += h3*r1 vpaddq $M1,$D1,$D1 # d1 += h1*r0 vpaddq $M2,$D2,$D2 # d2 += h1*r1 vpmuludq $H4,$S4,$M3 vpmuludq $H4,$R0,$M4 vpmuludq $H3,$S2,$M0 vpmuludq $H3,$S3,$M1 vpaddq $M3,$D3,$D3 # d3 += h4*s4 vpmuludq $H3,$S4,$M2 vpaddq $M4,$D4,$D4 # d4 += h4*r0 vpaddq $M0,$D0,$D0 # d0 += h3*s2 vpaddq $M1,$D1,$D1 # d1 += h3*s3 vpaddq $M2,$D2,$D2 # d2 += h3*s4 vpmuludq $H4,$S1,$M0 vpmuludq $H4,$S2,$M1 vpmuludq $H4,$S3,$M2 vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1 vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2 vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3 ################################################################ # lazy reduction (interleaved with input splat) vpsrlq \$52,$T0,$T2 # splat input vpsllq \$12,$T4,$T3 vpsrlq \$26,$D3,$H3 vpandq $MASK,$D3,$D3 vpaddq $H3,$D4,$H4 # h3 -> h4 vporq $T3,$T2,$T2 vpsrlq \$26,$H0,$D0 vpandq $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpandq $MASK,$T2,$T2 # 2 vpsrlq \$26,$H4,$D4 vpandq $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpandq $MASK,$H1,$H1 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpaddq $T2,$H2,$H2 # modulo-scheduled vpsrlq \$26,$T0,$T1 vpsrlq \$26,$H2,$D2 vpandq $MASK,$H2,$H2 vpaddq $D2,$D3,$H3 # h2 -> h3 vpsrlq \$14,$T4,$T3 vpsrlq \$26,$H0,$D0 vpandq $MASK,$H0,$H0 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$40,$T4,$T4 # 4 vpsrlq \$26,$H3,$D3 vpandq $MASK,$H3,$H3 vpaddq $D3,$H4,$H4 # h3 -> h4 vpandq $MASK,$T0,$T0 # 0 #vpandq $MASK,$T1,$T1 # 1 #vpandq $MASK,$T3,$T3 # 3 #vporq $PADBIT,$T4,$T4 # padbit, yes, always sub \$128,$len ja .Loop_avx512 .Ltail_avx512: ################################################################ # while above multiplications were by r^8 in all lanes, in last # iteration we multiply least significant lane by r^8 and most # significant one by r, that's why table gets shifted... vpsrlq \$32,$R0,$R0 # 0105020603070408 vpsrlq \$32,$R1,$R1 vpsrlq \$32,$R2,$R2 vpsrlq \$32,$S3,$S3 vpsrlq \$32,$S4,$S4 vpsrlq \$32,$R3,$R3 vpsrlq \$32,$R4,$R4 vpsrlq \$32,$S1,$S1 vpsrlq \$32,$S2,$S2 ################################################################ # load either next or last 64 byte of input lea ($inp,$len),$inp #vpaddq $H2,$T2,$H2 # accumulate input vpaddq $H0,$T0,$H0 vpmuludq $H2,$R1,$D3 # d3 = h2*r1 vpmuludq $H2,$R2,$D4 # d4 = h2*r2 vpmuludq $H2,$S3,$D0 # d0 = h2*s3 vpandq $MASK,$T1,$T1 # 1 vpmuludq $H2,$S4,$D1 # d1 = h2*s4 vpandq $MASK,$T3,$T3 # 3 vpmuludq $H2,$R0,$D2 # d2 = h2*r0 vporq $PADBIT,$T4,$T4 # padbit, yes, always vpaddq $H1,$T1,$H1 # accumulate input vpaddq $H3,$T3,$H3 vpaddq $H4,$T4,$H4 vmovdqu 16*0($inp),%x#$T0 vpmuludq $H0,$R3,$M3 vpmuludq $H0,$R4,$M4 vpmuludq $H0,$R0,$M0 vpmuludq $H0,$R1,$M1 vpaddq $M3,$D3,$D3 # d3 += h0*r3 vpaddq $M4,$D4,$D4 # d4 += h0*r4 vpaddq $M0,$D0,$D0 # d0 += h0*r0 vpaddq $M1,$D1,$D1 # d1 += h0*r1 vmovdqu 16*1($inp),%x#$T1 vpmuludq $H1,$R2,$M3 vpmuludq $H1,$R3,$M4 vpmuludq $H1,$S4,$M0 vpmuludq $H0,$R2,$M2 vpaddq $M3,$D3,$D3 # d3 += h1*r2 vpaddq $M4,$D4,$D4 # d4 += h1*r3 vpaddq $M0,$D0,$D0 # d0 += h1*s4 vpaddq $M2,$D2,$D2 # d2 += h0*r2 vinserti128 \$1,16*2($inp),%y#$T0,%y#$T0 vpmuludq $H3,$R0,$M3 vpmuludq $H3,$R1,$M4 vpmuludq $H1,$R0,$M1 vpmuludq $H1,$R1,$M2 vpaddq $M3,$D3,$D3 # d3 += h3*r0 vpaddq $M4,$D4,$D4 # d4 += h3*r1 vpaddq $M1,$D1,$D1 # d1 += h1*r0 vpaddq $M2,$D2,$D2 # d2 += h1*r1 vinserti128 \$1,16*3($inp),%y#$T1,%y#$T1 vpmuludq $H4,$S4,$M3 vpmuludq $H4,$R0,$M4 vpmuludq $H3,$S2,$M0 vpmuludq $H3,$S3,$M1 vpmuludq $H3,$S4,$M2 vpaddq $M3,$D3,$H3 # h3 = d3 + h4*s4 vpaddq $M4,$D4,$D4 # d4 += h4*r0 vpaddq $M0,$D0,$D0 # d0 += h3*s2 vpaddq $M1,$D1,$D1 # d1 += h3*s3 vpaddq $M2,$D2,$D2 # d2 += h3*s4 vpmuludq $H4,$S1,$M0 vpmuludq $H4,$S2,$M1 vpmuludq $H4,$S3,$M2 vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1 vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2 vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3 ################################################################ # horizontal addition mov \$1,%eax vpermq \$0xb1,$H3,$D3 vpermq \$0xb1,$D4,$H4 vpermq \$0xb1,$H0,$D0 vpermq \$0xb1,$H1,$D1 vpermq \$0xb1,$H2,$D2 vpaddq $D3,$H3,$H3 vpaddq $D4,$H4,$H4 vpaddq $D0,$H0,$H0 vpaddq $D1,$H1,$H1 vpaddq $D2,$H2,$H2 kmovw %eax,%k3 vpermq \$0x2,$H3,$D3 vpermq \$0x2,$H4,$D4 vpermq \$0x2,$H0,$D0 vpermq \$0x2,$H1,$D1 vpermq \$0x2,$H2,$D2 vpaddq $D3,$H3,$H3 vpaddq $D4,$H4,$H4 vpaddq $D0,$H0,$H0 vpaddq $D1,$H1,$H1 vpaddq $D2,$H2,$H2 vextracti64x4 \$0x1,$H3,%y#$D3 vextracti64x4 \$0x1,$H4,%y#$D4 vextracti64x4 \$0x1,$H0,%y#$D0 vextracti64x4 \$0x1,$H1,%y#$D1 vextracti64x4 \$0x1,$H2,%y#$D2 vpaddq $D3,$H3,${H3}{%k3}{z} # keep single qword in case vpaddq $D4,$H4,${H4}{%k3}{z} # it's passed to .Ltail_avx2 vpaddq $D0,$H0,${H0}{%k3}{z} vpaddq $D1,$H1,${H1}{%k3}{z} vpaddq $D2,$H2,${H2}{%k3}{z} ___ map(s/%z/%y/,($T0,$T1,$T2,$T3,$T4, $PADBIT)); map(s/%z/%y/,($H0,$H1,$H2,$H3,$H4, $D0,$D1,$D2,$D3,$D4, $MASK)); $code.=<<___; ################################################################ # lazy reduction (interleaved with input splat) vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpsrldq \$6,$T0,$T2 # splat input vpsrldq \$6,$T1,$T3 vpunpckhqdq $T1,$T0,$T4 # 4 vpaddq $D3,$H4,$H4 # h3 -> h4 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpunpcklqdq $T3,$T2,$T2 # 2:3 vpunpcklqdq $T1,$T0,$T0 # 0:1 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H4,$D4 vpand $MASK,$H4,$H4 vpsrlq \$26,$H1,$D1 vpand $MASK,$H1,$H1 vpsrlq \$30,$T2,$T3 vpsrlq \$4,$T2,$T2 vpaddq $D1,$H2,$H2 # h1 -> h2 vpaddq $D4,$H0,$H0 vpsllq \$2,$D4,$D4 vpsrlq \$26,$T0,$T1 vpsrlq \$40,$T4,$T4 # 4 vpaddq $D4,$H0,$H0 # h4 -> h0 vpsrlq \$26,$H2,$D2 vpand $MASK,$H2,$H2 vpand $MASK,$T2,$T2 # 2 vpand $MASK,$T0,$T0 # 0 vpaddq $D2,$H3,$H3 # h2 -> h3 vpsrlq \$26,$H0,$D0 vpand $MASK,$H0,$H0 vpaddq $H2,$T2,$H2 # accumulate input for .Ltail_avx2 vpand $MASK,$T1,$T1 # 1 vpaddq $D0,$H1,$H1 # h0 -> h1 vpsrlq \$26,$H3,$D3 vpand $MASK,$H3,$H3 vpand $MASK,$T3,$T3 # 3 vpor 32(%rcx),$T4,$T4 # padbit, yes, always vpaddq $D3,$H4,$H4 # h3 -> h4 lea 0x90(%rsp),%rax # size optimization for .Ltail_avx2 add \$64,$len jnz .Ltail_avx2 vpsubq $T2,$H2,$H2 # undo input accumulation vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced vmovd %x#$H1,`4*1-48-64`($ctx) vmovd %x#$H2,`4*2-48-64`($ctx) vmovd %x#$H3,`4*3-48-64`($ctx) vmovd %x#$H4,`4*4-48-64`($ctx) vzeroall ___ $code.=<<___ if ($win64); movdqa 0x50(%r11),%xmm6 movdqa 0x60(%r11),%xmm7 movdqa 0x70(%r11),%xmm8 movdqa 0x80(%r11),%xmm9 movdqa 0x90(%r11),%xmm10 movdqa 0xa0(%r11),%xmm11 movdqa 0xb0(%r11),%xmm12 movdqa 0xc0(%r11),%xmm13 movdqa 0xd0(%r11),%xmm14 movdqa 0xe0(%r11),%xmm15 lea 0xf8(%r11),%rsp .Ldo_avx512_epilogue: ___ $code.=<<___ if (!$win64); lea 8(%r11),%rsp .cfi_def_cfa %rsp,8 ___ $code.=<<___; ret .cfi_endproc .size poly1305_blocks_avx512,.-poly1305_blocks_avx512 ___ if ($avx>3) { ######################################################################## # VPMADD52 version using 2^44 radix. # # One can argue that base 2^52 would be more natural. Well, even though # some operations would be more natural, one has to recognize couple of # things. Base 2^52 doesn't provide advantage over base 2^44 if you look # at amount of multiply-n-accumulate operations. Secondly, it makes it # impossible to pre-compute multiples of 5 [referred to as s[]/sN in # reference implementations], which means that more such operations # would have to be performed in inner loop, which in turn makes critical # path longer. In other words, even though base 2^44 reduction might # look less elegant, overall critical path is actually shorter... ######################################################################## # Layout of opaque area is following. # # unsigned __int64 h[3]; # current hash value base 2^44 # unsigned __int64 s[2]; # key value*20 base 2^44 # unsigned __int64 r[3]; # key value base 2^44 # struct { unsigned __int64 r^1, r^3, r^2, r^4; } R[4]; # # r^n positions reflect # # placement in register, not # # memory, R[3] is R[1]*20 $code.=<<___; .type poly1305_init_base2_44,\@function,3 .align 32 poly1305_init_base2_44: .cfi_startproc xor %rax,%rax mov %rax,0($ctx) # initialize hash value mov %rax,8($ctx) mov %rax,16($ctx) .Linit_base2_44: lea poly1305_blocks_vpmadd52(%rip),%r10 lea poly1305_emit_base2_44(%rip),%r11 mov \$0x0ffffffc0fffffff,%rax mov \$0x0ffffffc0ffffffc,%rcx and 0($inp),%rax mov \$0x00000fffffffffff,%r8 and 8($inp),%rcx mov \$0x00000fffffffffff,%r9 and %rax,%r8 shrd \$44,%rcx,%rax mov %r8,40($ctx) # r0 and %r9,%rax shr \$24,%rcx mov %rax,48($ctx) # r1 lea (%rax,%rax,4),%rax # *5 mov %rcx,56($ctx) # r2 shl \$2,%rax # magic <<2 lea (%rcx,%rcx,4),%rcx # *5 shl \$2,%rcx # magic <<2 mov %rax,24($ctx) # s1 mov %rcx,32($ctx) # s2 movq \$-1,64($ctx) # write impossible value ___ $code.=<<___ if ($flavour !~ /elf32/); mov %r10,0(%rdx) mov %r11,8(%rdx) ___ $code.=<<___ if ($flavour =~ /elf32/); mov %r10d,0(%rdx) mov %r11d,4(%rdx) ___ $code.=<<___; mov \$1,%eax ret .cfi_endproc .size poly1305_init_base2_44,.-poly1305_init_base2_44 ___ { my ($H0,$H1,$H2,$r2r1r0,$r1r0s2,$r0s2s1,$Dlo,$Dhi) = map("%ymm$_",(0..5,16,17)); my ($T0,$inp_permd,$inp_shift,$PAD) = map("%ymm$_",(18..21)); my ($reduc_mask,$reduc_rght,$reduc_left) = map("%ymm$_",(22..25)); $code.=<<___; .type poly1305_blocks_vpmadd52,\@function,4 .align 32 poly1305_blocks_vpmadd52: .cfi_startproc shr \$4,$len jz .Lno_data_vpmadd52 # too short shl \$40,$padbit mov 64($ctx),%r8 # peek on power of the key # if powers of the key are not calculated yet, process up to 3 # blocks with this single-block subroutine, otherwise ensure that # length is divisible by 2 blocks and pass the rest down to next # subroutine... mov \$3,%rax mov \$1,%r10 cmp \$4,$len # is input long cmovae %r10,%rax test %r8,%r8 # is power value impossible? cmovns %r10,%rax and $len,%rax # is input of favourable length? jz .Lblocks_vpmadd52_4x sub %rax,$len mov \$7,%r10d mov \$1,%r11d kmovw %r10d,%k7 lea .L2_44_inp_permd(%rip),%r10 kmovw %r11d,%k1 vmovq $padbit,%x#$PAD vmovdqa64 0(%r10),$inp_permd # .L2_44_inp_permd vmovdqa64 32(%r10),$inp_shift # .L2_44_inp_shift vpermq \$0xcf,$PAD,$PAD vmovdqa64 64(%r10),$reduc_mask # .L2_44_mask vmovdqu64 0($ctx),${Dlo}{%k7}{z} # load hash value vmovdqu64 40($ctx),${r2r1r0}{%k7}{z} # load keys vmovdqu64 32($ctx),${r1r0s2}{%k7}{z} vmovdqu64 24($ctx),${r0s2s1}{%k7}{z} vmovdqa64 96(%r10),$reduc_rght # .L2_44_shift_rgt vmovdqa64 128(%r10),$reduc_left # .L2_44_shift_lft jmp .Loop_vpmadd52 .align 32 .Loop_vpmadd52: vmovdqu32 0($inp),%x#$T0 # load input as ----3210 lea 16($inp),$inp vpermd $T0,$inp_permd,$T0 # ----3210 -> --322110 vpsrlvq $inp_shift,$T0,$T0 vpandq $reduc_mask,$T0,$T0 vporq $PAD,$T0,$T0 vpaddq $T0,$Dlo,$Dlo # accumulate input vpermq \$0,$Dlo,${H0}{%k7}{z} # smash hash value vpermq \$0b01010101,$Dlo,${H1}{%k7}{z} vpermq \$0b10101010,$Dlo,${H2}{%k7}{z} vpxord $Dlo,$Dlo,$Dlo vpxord $Dhi,$Dhi,$Dhi vpmadd52luq $r2r1r0,$H0,$Dlo vpmadd52huq $r2r1r0,$H0,$Dhi vpmadd52luq $r1r0s2,$H1,$Dlo vpmadd52huq $r1r0s2,$H1,$Dhi vpmadd52luq $r0s2s1,$H2,$Dlo vpmadd52huq $r0s2s1,$H2,$Dhi vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost qword vpsllvq $reduc_left,$Dhi,$Dhi # 0 in topmost qword vpandq $reduc_mask,$Dlo,$Dlo vpaddq $T0,$Dhi,$Dhi vpermq \$0b10010011,$Dhi,$Dhi # 0 in lowest qword vpaddq $Dhi,$Dlo,$Dlo # note topmost qword :-) vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost word vpandq $reduc_mask,$Dlo,$Dlo vpermq \$0b10010011,$T0,$T0 vpaddq $T0,$Dlo,$Dlo vpermq \$0b10010011,$Dlo,${T0}{%k1}{z} vpaddq $T0,$Dlo,$Dlo vpsllq \$2,$T0,$T0 vpaddq $T0,$Dlo,$Dlo dec %rax # len-=16 jnz .Loop_vpmadd52 vmovdqu64 $Dlo,0($ctx){%k7} # store hash value test $len,$len jnz .Lblocks_vpmadd52_4x .Lno_data_vpmadd52: ret .cfi_endproc .size poly1305_blocks_vpmadd52,.-poly1305_blocks_vpmadd52 ___ } { ######################################################################## # As implied by its name 4x subroutine processes 4 blocks in parallel # (but handles even 4*n+2 blocks lengths). It takes up to 4th key power # and is handled in 256-bit %ymm registers. my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17)); my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23)); my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31)); $code.=<<___; .type poly1305_blocks_vpmadd52_4x,\@function,4 .align 32 poly1305_blocks_vpmadd52_4x: .cfi_startproc shr \$4,$len jz .Lno_data_vpmadd52_4x # too short shl \$40,$padbit mov 64($ctx),%r8 # peek on power of the key .Lblocks_vpmadd52_4x: vpbroadcastq $padbit,$PAD vmovdqa64 .Lx_mask44(%rip),$mask44 mov \$5,%eax vmovdqa64 .Lx_mask42(%rip),$mask42 kmovw %eax,%k1 # used in 2x path test %r8,%r8 # is power value impossible? js .Linit_vpmadd52 # if it is, then init R[4] vmovq 0($ctx),%x#$H0 # load current hash value vmovq 8($ctx),%x#$H1 vmovq 16($ctx),%x#$H2 test \$3,$len # is length 4*n+2? jnz .Lblocks_vpmadd52_2x_do .Lblocks_vpmadd52_4x_do: vpbroadcastq 64($ctx),$R0 # load 4th power of the key vpbroadcastq 96($ctx),$R1 vpbroadcastq 128($ctx),$R2 vpbroadcastq 160($ctx),$S1 .Lblocks_vpmadd52_4x_key_loaded: vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R2,$S2,$S2 vpsllq \$2,$S2,$S2 test \$7,$len # is len 8*n? jz .Lblocks_vpmadd52_8x vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*2($inp),$T3 lea 16*4($inp),$inp vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 # at this point 64-bit lanes are ordered as 3-1-2-0 vpsrlq \$24,$T3,$T2 # splat the data vporq $PAD,$T2,$T2 vpaddq $T2,$H2,$H2 # accumulate input vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 sub \$4,$len jz .Ltail_vpmadd52_4x jmp .Loop_vpmadd52_4x ud2 .align 32 .Linit_vpmadd52: vmovq 24($ctx),%x#$S1 # load key vmovq 56($ctx),%x#$H2 vmovq 32($ctx),%x#$S2 vmovq 40($ctx),%x#$R0 vmovq 48($ctx),%x#$R1 vmovdqa $R0,$H0 vmovdqa $R1,$H1 vmovdqa $H2,$R2 mov \$2,%eax .Lmul_init_vpmadd52: vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 dec %eax jz .Ldone_init_vpmadd52 vpunpcklqdq $R1,$H1,$R1 # 1,2 vpbroadcastq %x#$H1,%x#$H1 # 2,2 vpunpcklqdq $R2,$H2,$R2 vpbroadcastq %x#$H2,%x#$H2 vpunpcklqdq $R0,$H0,$R0 vpbroadcastq %x#$H0,%x#$H0 vpsllq \$2,$R1,$S1 # S1 = R1*5*4 vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R1,$S1,$S1 vpaddq $R2,$S2,$S2 vpsllq \$2,$S1,$S1 vpsllq \$2,$S2,$S2 jmp .Lmul_init_vpmadd52 ud2 .align 32 .Ldone_init_vpmadd52: vinserti128 \$1,%x#$R1,$H1,$R1 # 1,2,3,4 vinserti128 \$1,%x#$R2,$H2,$R2 vinserti128 \$1,%x#$R0,$H0,$R0 vpermq \$0b11011000,$R1,$R1 # 1,3,2,4 vpermq \$0b11011000,$R2,$R2 vpermq \$0b11011000,$R0,$R0 vpsllq \$2,$R1,$S1 # S1 = R1*5*4 vpaddq $R1,$S1,$S1 vpsllq \$2,$S1,$S1 vmovq 0($ctx),%x#$H0 # load current hash value vmovq 8($ctx),%x#$H1 vmovq 16($ctx),%x#$H2 test \$3,$len # is length 4*n+2? jnz .Ldone_init_vpmadd52_2x vmovdqu64 $R0,64($ctx) # save key powers vpbroadcastq %x#$R0,$R0 # broadcast 4th power vmovdqu64 $R1,96($ctx) vpbroadcastq %x#$R1,$R1 vmovdqu64 $R2,128($ctx) vpbroadcastq %x#$R2,$R2 vmovdqu64 $S1,160($ctx) vpbroadcastq %x#$S1,$S1 jmp .Lblocks_vpmadd52_4x_key_loaded ud2 .align 32 .Ldone_init_vpmadd52_2x: vmovdqu64 $R0,64($ctx) # save key powers vpsrldq \$8,$R0,$R0 # 0-1-0-2 vmovdqu64 $R1,96($ctx) vpsrldq \$8,$R1,$R1 vmovdqu64 $R2,128($ctx) vpsrldq \$8,$R2,$R2 vmovdqu64 $S1,160($ctx) vpsrldq \$8,$S1,$S1 jmp .Lblocks_vpmadd52_2x_key_loaded ud2 .align 32 .Lblocks_vpmadd52_2x_do: vmovdqu64 128+8($ctx),${R2}{%k1}{z}# load 2nd and 1st key powers vmovdqu64 160+8($ctx),${S1}{%k1}{z} vmovdqu64 64+8($ctx),${R0}{%k1}{z} vmovdqu64 96+8($ctx),${R1}{%k1}{z} .Lblocks_vpmadd52_2x_key_loaded: vmovdqu64 16*0($inp),$T2 # load data vpxorq $T3,$T3,$T3 lea 16*2($inp),$inp vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 # at this point 64-bit lanes are ordered as x-1-x-0 vpsrlq \$24,$T3,$T2 # splat the data vporq $PAD,$T2,$T2 vpaddq $T2,$H2,$H2 # accumulate input vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 jmp .Ltail_vpmadd52_2x ud2 .align 32 .Loop_vpmadd52_4x: #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*2($inp),$T3 lea 16*4($inp),$inp vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # partial reduction (interleaved with data splat) vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpsrlq \$24,$T3,$T2 vporq $PAD,$T2,$T2 vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $T2,$H2,$H2 # accumulate input vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 sub \$4,$len # len-=64 jnz .Loop_vpmadd52_4x .Ltail_vpmadd52_4x: vmovdqu64 128($ctx),$R2 # load all key powers vmovdqu64 160($ctx),$S1 vmovdqu64 64($ctx),$R0 vmovdqu64 96($ctx),$R1 .Ltail_vpmadd52_2x: vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R2,$S2,$S2 vpsllq \$2,$S2,$S2 #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # horizontal addition mov \$1,%eax kmovw %eax,%k1 vpsrldq \$8,$D0lo,$T0 vpsrldq \$8,$D0hi,$H0 vpsrldq \$8,$D1lo,$T1 vpsrldq \$8,$D1hi,$H1 vpaddq $T0,$D0lo,$D0lo vpaddq $H0,$D0hi,$D0hi vpsrldq \$8,$D2lo,$T2 vpsrldq \$8,$D2hi,$H2 vpaddq $T1,$D1lo,$D1lo vpaddq $H1,$D1hi,$D1hi vpermq \$0x2,$D0lo,$T0 vpermq \$0x2,$D0hi,$H0 vpaddq $T2,$D2lo,$D2lo vpaddq $H2,$D2hi,$D2hi vpermq \$0x2,$D1lo,$T1 vpermq \$0x2,$D1hi,$H1 vpaddq $T0,$D0lo,${D0lo}{%k1}{z} vpaddq $H0,$D0hi,${D0hi}{%k1}{z} vpermq \$0x2,$D2lo,$T2 vpermq \$0x2,$D2hi,$H2 vpaddq $T1,$D1lo,${D1lo}{%k1}{z} vpaddq $H1,$D1hi,${D1hi}{%k1}{z} vpaddq $T2,$D2lo,${D2lo}{%k1}{z} vpaddq $H2,$D2hi,${D2hi}{%k1}{z} ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 # at this point $len is # either 4*n+2 or 0... sub \$2,$len # len-=32 ja .Lblocks_vpmadd52_4x_do vmovq %x#$H0,0($ctx) vmovq %x#$H1,8($ctx) vmovq %x#$H2,16($ctx) vzeroall .Lno_data_vpmadd52_4x: ret .cfi_endproc .size poly1305_blocks_vpmadd52_4x,.-poly1305_blocks_vpmadd52_4x ___ } { ######################################################################## # As implied by its name 8x subroutine processes 8 blocks in parallel... # This is intermediate version, as it's used only in cases when input # length is either 8*n, 8*n+1 or 8*n+2... my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17)); my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23)); my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31)); my ($RR0,$RR1,$RR2,$SS1,$SS2) = map("%ymm$_",(6..10)); $code.=<<___; .type poly1305_blocks_vpmadd52_8x,\@function,4 .align 32 poly1305_blocks_vpmadd52_8x: .cfi_startproc shr \$4,$len jz .Lno_data_vpmadd52_8x # too short shl \$40,$padbit mov 64($ctx),%r8 # peek on power of the key vmovdqa64 .Lx_mask44(%rip),$mask44 vmovdqa64 .Lx_mask42(%rip),$mask42 test %r8,%r8 # is power value impossible? js .Linit_vpmadd52 # if it is, then init R[4] vmovq 0($ctx),%x#$H0 # load current hash value vmovq 8($ctx),%x#$H1 vmovq 16($ctx),%x#$H2 .Lblocks_vpmadd52_8x: ################################################################ # fist we calculate more key powers vmovdqu64 128($ctx),$R2 # load 1-3-2-4 powers vmovdqu64 160($ctx),$S1 vmovdqu64 64($ctx),$R0 vmovdqu64 96($ctx),$R1 vpsllq \$2,$R2,$S2 # S2 = R2*5*4 vpaddq $R2,$S2,$S2 vpsllq \$2,$S2,$S2 vpbroadcastq %x#$R2,$RR2 # broadcast 4th power vpbroadcastq %x#$R0,$RR0 vpbroadcastq %x#$R1,$RR1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $RR2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $RR2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $RR2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $RR2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $RR2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $RR2,$R0,$D2hi vpmadd52luq $RR0,$R0,$D0lo vpmadd52huq $RR0,$R0,$D0hi vpmadd52luq $RR0,$R1,$D1lo vpmadd52huq $RR0,$R1,$D1hi vpmadd52luq $RR0,$R2,$D2lo vpmadd52huq $RR0,$R2,$D2hi vpmadd52luq $RR1,$S2,$D0lo vpmadd52huq $RR1,$S2,$D0hi vpmadd52luq $RR1,$R0,$D1lo vpmadd52huq $RR1,$R0,$D1hi vpmadd52luq $RR1,$R1,$D2lo vpmadd52huq $RR1,$R1,$D2hi ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$RR0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$RR1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$RR2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$RR0,$RR0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$RR0,$RR0 vpsrlq \$44,$RR0,$tmp # additional step vpandq $mask44,$RR0,$RR0 vpaddq $tmp,$RR1,$RR1 ################################################################ # At this point Rx holds 1324 powers, RRx - 5768, and the goal # is 15263748, which reflects how data is loaded... vpunpcklqdq $R2,$RR2,$T2 # 3748 vpunpckhqdq $R2,$RR2,$R2 # 1526 vpunpcklqdq $R0,$RR0,$T0 vpunpckhqdq $R0,$RR0,$R0 vpunpcklqdq $R1,$RR1,$T1 vpunpckhqdq $R1,$RR1,$R1 ___ ######## switch to %zmm map(s/%y/%z/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2); map(s/%y/%z/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi); map(s/%y/%z/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD); map(s/%y/%z/, $RR0,$RR1,$RR2,$SS1,$SS2); $code.=<<___; vshufi64x2 \$0x44,$R2,$T2,$RR2 # 15263748 vshufi64x2 \$0x44,$R0,$T0,$RR0 vshufi64x2 \$0x44,$R1,$T1,$RR1 vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*4($inp),$T3 lea 16*8($inp),$inp vpsllq \$2,$RR2,$SS2 # S2 = R2*5*4 vpsllq \$2,$RR1,$SS1 # S1 = R1*5*4 vpaddq $RR2,$SS2,$SS2 vpaddq $RR1,$SS1,$SS1 vpsllq \$2,$SS2,$SS2 vpsllq \$2,$SS1,$SS1 vpbroadcastq $padbit,$PAD vpbroadcastq %x#$mask44,$mask44 vpbroadcastq %x#$mask42,$mask42 vpbroadcastq %x#$SS1,$S1 # broadcast 8th power vpbroadcastq %x#$SS2,$S2 vpbroadcastq %x#$RR0,$R0 vpbroadcastq %x#$RR1,$R1 vpbroadcastq %x#$RR2,$R2 vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 # at this point 64-bit lanes are ordered as 73625140 vpsrlq \$24,$T3,$T2 # splat the data vporq $PAD,$T2,$T2 vpaddq $T2,$H2,$H2 # accumulate input vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 sub \$8,$len jz .Ltail_vpmadd52_8x jmp .Loop_vpmadd52_8x .align 32 .Loop_vpmadd52_8x: #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$S1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$S1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$S2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$S2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$R0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$R0,$D2hi vmovdqu64 16*0($inp),$T2 # load data vmovdqu64 16*4($inp),$T3 lea 16*8($inp),$inp vpmadd52luq $H0,$R0,$D0lo vpmadd52huq $H0,$R0,$D0hi vpmadd52luq $H0,$R1,$D1lo vpmadd52huq $H0,$R1,$D1hi vpmadd52luq $H0,$R2,$D2lo vpmadd52huq $H0,$R2,$D2hi vpunpcklqdq $T3,$T2,$T1 # transpose data vpunpckhqdq $T3,$T2,$T3 vpmadd52luq $H1,$S2,$D0lo vpmadd52huq $H1,$S2,$D0hi vpmadd52luq $H1,$R0,$D1lo vpmadd52huq $H1,$R0,$D1hi vpmadd52luq $H1,$R1,$D2lo vpmadd52huq $H1,$R1,$D2hi ################################################################ # partial reduction (interleaved with data splat) vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpsrlq \$24,$T3,$T2 vporq $PAD,$T2,$T2 vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpandq $mask44,$T1,$T0 vpsrlq \$44,$T1,$T1 vpsllq \$20,$T3,$T3 vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $T2,$H2,$H2 # accumulate input vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vporq $T3,$T1,$T1 vpandq $mask44,$T1,$T1 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 sub \$8,$len # len-=128 jnz .Loop_vpmadd52_8x .Ltail_vpmadd52_8x: #vpaddq $T2,$H2,$H2 # accumulate input vpaddq $T0,$H0,$H0 vpaddq $T1,$H1,$H1 vpxorq $D0lo,$D0lo,$D0lo vpmadd52luq $H2,$SS1,$D0lo vpxorq $D0hi,$D0hi,$D0hi vpmadd52huq $H2,$SS1,$D0hi vpxorq $D1lo,$D1lo,$D1lo vpmadd52luq $H2,$SS2,$D1lo vpxorq $D1hi,$D1hi,$D1hi vpmadd52huq $H2,$SS2,$D1hi vpxorq $D2lo,$D2lo,$D2lo vpmadd52luq $H2,$RR0,$D2lo vpxorq $D2hi,$D2hi,$D2hi vpmadd52huq $H2,$RR0,$D2hi vpmadd52luq $H0,$RR0,$D0lo vpmadd52huq $H0,$RR0,$D0hi vpmadd52luq $H0,$RR1,$D1lo vpmadd52huq $H0,$RR1,$D1hi vpmadd52luq $H0,$RR2,$D2lo vpmadd52huq $H0,$RR2,$D2hi vpmadd52luq $H1,$SS2,$D0lo vpmadd52huq $H1,$SS2,$D0hi vpmadd52luq $H1,$RR0,$D1lo vpmadd52huq $H1,$RR0,$D1hi vpmadd52luq $H1,$RR1,$D2lo vpmadd52huq $H1,$RR1,$D2hi ################################################################ # horizontal addition mov \$1,%eax kmovw %eax,%k1 vpsrldq \$8,$D0lo,$T0 vpsrldq \$8,$D0hi,$H0 vpsrldq \$8,$D1lo,$T1 vpsrldq \$8,$D1hi,$H1 vpaddq $T0,$D0lo,$D0lo vpaddq $H0,$D0hi,$D0hi vpsrldq \$8,$D2lo,$T2 vpsrldq \$8,$D2hi,$H2 vpaddq $T1,$D1lo,$D1lo vpaddq $H1,$D1hi,$D1hi vpermq \$0x2,$D0lo,$T0 vpermq \$0x2,$D0hi,$H0 vpaddq $T2,$D2lo,$D2lo vpaddq $H2,$D2hi,$D2hi vpermq \$0x2,$D1lo,$T1 vpermq \$0x2,$D1hi,$H1 vpaddq $T0,$D0lo,$D0lo vpaddq $H0,$D0hi,$D0hi vpermq \$0x2,$D2lo,$T2 vpermq \$0x2,$D2hi,$H2 vpaddq $T1,$D1lo,$D1lo vpaddq $H1,$D1hi,$D1hi vextracti64x4 \$1,$D0lo,%y#$T0 vextracti64x4 \$1,$D0hi,%y#$H0 vpaddq $T2,$D2lo,$D2lo vpaddq $H2,$D2hi,$D2hi vextracti64x4 \$1,$D1lo,%y#$T1 vextracti64x4 \$1,$D1hi,%y#$H1 vextracti64x4 \$1,$D2lo,%y#$T2 vextracti64x4 \$1,$D2hi,%y#$H2 ___ ######## switch back to %ymm map(s/%z/%y/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2); map(s/%z/%y/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi); map(s/%z/%y/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD); $code.=<<___; vpaddq $T0,$D0lo,${D0lo}{%k1}{z} vpaddq $H0,$D0hi,${D0hi}{%k1}{z} vpaddq $T1,$D1lo,${D1lo}{%k1}{z} vpaddq $H1,$D1hi,${D1hi}{%k1}{z} vpaddq $T2,$D2lo,${D2lo}{%k1}{z} vpaddq $H2,$D2hi,${D2hi}{%k1}{z} ################################################################ # partial reduction vpsrlq \$44,$D0lo,$tmp vpsllq \$8,$D0hi,$D0hi vpandq $mask44,$D0lo,$H0 vpaddq $tmp,$D0hi,$D0hi vpaddq $D0hi,$D1lo,$D1lo vpsrlq \$44,$D1lo,$tmp vpsllq \$8,$D1hi,$D1hi vpandq $mask44,$D1lo,$H1 vpaddq $tmp,$D1hi,$D1hi vpaddq $D1hi,$D2lo,$D2lo vpsrlq \$42,$D2lo,$tmp vpsllq \$10,$D2hi,$D2hi vpandq $mask42,$D2lo,$H2 vpaddq $tmp,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsllq \$2,$D2hi,$D2hi vpaddq $D2hi,$H0,$H0 vpsrlq \$44,$H0,$tmp # additional step vpandq $mask44,$H0,$H0 vpaddq $tmp,$H1,$H1 ################################################################ vmovq %x#$H0,0($ctx) vmovq %x#$H1,8($ctx) vmovq %x#$H2,16($ctx) vzeroall .Lno_data_vpmadd52_8x: ret .cfi_endproc .size poly1305_blocks_vpmadd52_8x,.-poly1305_blocks_vpmadd52_8x ___ } $code.=<<___; .type poly1305_emit_base2_44,\@function,3 .align 32 poly1305_emit_base2_44: .cfi_startproc mov 0($ctx),%r8 # load hash value mov 8($ctx),%r9 mov 16($ctx),%r10 mov %r9,%rax shr \$20,%r9 shl \$44,%rax mov %r10,%rcx shr \$40,%r10 shl \$24,%rcx add %rax,%r8 adc %rcx,%r9 adc \$0,%r10 mov %r8,%rax add \$5,%r8 # compare to modulus mov %r9,%rcx adc \$0,%r9 adc \$0,%r10 shr \$2,%r10 # did 130-bit value overflow? cmovnz %r8,%rax cmovnz %r9,%rcx add 0($nonce),%rax # accumulate nonce adc 8($nonce),%rcx mov %rax,0($mac) # write result mov %rcx,8($mac) ret .cfi_endproc .size poly1305_emit_base2_44,.-poly1305_emit_base2_44 ___ } } } $code.=<<___; .align 64 .Lconst: .Lmask24: .long 0x0ffffff,0,0x0ffffff,0,0x0ffffff,0,0x0ffffff,0 .L129: .long `1<<24`,0,`1<<24`,0,`1<<24`,0,`1<<24`,0 .Lmask26: .long 0x3ffffff,0,0x3ffffff,0,0x3ffffff,0,0x3ffffff,0 .Lpermd_avx2: .long 2,2,2,3,2,0,2,1 .Lpermd_avx512: .long 0,0,0,1, 0,2,0,3, 0,4,0,5, 0,6,0,7 .L2_44_inp_permd: .long 0,1,1,2,2,3,7,7 .L2_44_inp_shift: .quad 0,12,24,64 .L2_44_mask: .quad 0xfffffffffff,0xfffffffffff,0x3ffffffffff,0xffffffffffffffff .L2_44_shift_rgt: .quad 44,44,42,64 .L2_44_shift_lft: .quad 8,8,10,64 .align 64 .Lx_mask44: .quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff .quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff .Lx_mask42: .quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff .quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff ___ } $code.=<<___; .asciz "Poly1305 for x86_64, CRYPTOGAMS by " .align 16 ___ { # chacha20-poly1305 helpers my ($out,$inp,$otp,$len)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order ("%rdi","%rsi","%rdx","%rcx"); # Unix order $code.=<<___; .globl xor128_encrypt_n_pad .type xor128_encrypt_n_pad,\@abi-omnipotent .align 16 xor128_encrypt_n_pad: .cfi_startproc sub $otp,$inp sub $otp,$out mov $len,%r10 # put len aside shr \$4,$len # len / 16 jz .Ltail_enc nop .Loop_enc_xmm: movdqu ($inp,$otp),%xmm0 pxor ($otp),%xmm0 movdqu %xmm0,($out,$otp) movdqa %xmm0,($otp) lea 16($otp),$otp dec $len jnz .Loop_enc_xmm and \$15,%r10 # len % 16 jz .Ldone_enc .Ltail_enc: mov \$16,$len sub %r10,$len xor %eax,%eax .Loop_enc_byte: mov ($inp,$otp),%al xor ($otp),%al mov %al,($out,$otp) mov %al,($otp) lea 1($otp),$otp dec %r10 jnz .Loop_enc_byte xor %eax,%eax .Loop_enc_pad: mov %al,($otp) lea 1($otp),$otp dec $len jnz .Loop_enc_pad .Ldone_enc: mov $otp,%rax ret .cfi_endproc .size xor128_encrypt_n_pad,.-xor128_encrypt_n_pad .globl xor128_decrypt_n_pad .type xor128_decrypt_n_pad,\@abi-omnipotent .align 16 xor128_decrypt_n_pad: .cfi_startproc sub $otp,$inp sub $otp,$out mov $len,%r10 # put len aside shr \$4,$len # len / 16 jz .Ltail_dec nop .Loop_dec_xmm: movdqu ($inp,$otp),%xmm0 movdqa ($otp),%xmm1 pxor %xmm0,%xmm1 movdqu %xmm1,($out,$otp) movdqa %xmm0,($otp) lea 16($otp),$otp dec $len jnz .Loop_dec_xmm pxor %xmm1,%xmm1 and \$15,%r10 # len % 16 jz .Ldone_dec .Ltail_dec: mov \$16,$len sub %r10,$len xor %eax,%eax xor %r11,%r11 .Loop_dec_byte: mov ($inp,$otp),%r11b mov ($otp),%al xor %r11b,%al mov %al,($out,$otp) mov %r11b,($otp) lea 1($otp),$otp dec %r10 jnz .Loop_dec_byte xor %eax,%eax .Loop_dec_pad: mov %al,($otp) lea 1($otp),$otp dec $len jnz .Loop_dec_pad .Ldone_dec: mov $otp,%rax ret .cfi_endproc .size xor128_decrypt_n_pad,.-xor128_decrypt_n_pad ___ } # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->Rip<.Lprologue jb .Lcommon_seh_tail mov 152($context),%rax # pull context->Rsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lcommon_seh_tail lea 48(%rax),%rax mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R14 jmp .Lcommon_seh_tail .size se_handler,.-se_handler .type avx_handler,\@abi-omnipotent .align 16 avx_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 208($context),%rax # pull context->R11 lea 0x50(%rax),%rsi lea 0xf8(%rax),%rax lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size avx_handler,.-avx_handler .section .pdata .align 4 .rva .LSEH_begin_poly1305_init .rva .LSEH_end_poly1305_init .rva .LSEH_info_poly1305_init .rva .LSEH_begin_poly1305_blocks .rva .LSEH_end_poly1305_blocks .rva .LSEH_info_poly1305_blocks .rva .LSEH_begin_poly1305_emit .rva .LSEH_end_poly1305_emit .rva .LSEH_info_poly1305_emit ___ $code.=<<___ if ($avx); .rva .LSEH_begin_poly1305_blocks_avx .rva .Lbase2_64_avx .rva .LSEH_info_poly1305_blocks_avx_1 .rva .Lbase2_64_avx .rva .Leven_avx .rva .LSEH_info_poly1305_blocks_avx_2 .rva .Leven_avx .rva .LSEH_end_poly1305_blocks_avx .rva .LSEH_info_poly1305_blocks_avx_3 .rva .LSEH_begin_poly1305_emit_avx .rva .LSEH_end_poly1305_emit_avx .rva .LSEH_info_poly1305_emit_avx ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_poly1305_blocks_avx2 .rva .Lbase2_64_avx2 .rva .LSEH_info_poly1305_blocks_avx2_1 .rva .Lbase2_64_avx2 .rva .Leven_avx2 .rva .LSEH_info_poly1305_blocks_avx2_2 .rva .Leven_avx2 .rva .LSEH_end_poly1305_blocks_avx2 .rva .LSEH_info_poly1305_blocks_avx2_3 ___ $code.=<<___ if ($avx>2); .rva .LSEH_begin_poly1305_blocks_avx512 .rva .LSEH_end_poly1305_blocks_avx512 .rva .LSEH_info_poly1305_blocks_avx512 ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_poly1305_init: .byte 9,0,0,0 .rva se_handler .rva .LSEH_begin_poly1305_init,.LSEH_begin_poly1305_init .LSEH_info_poly1305_blocks: .byte 9,0,0,0 .rva se_handler .rva .Lblocks_body,.Lblocks_epilogue .LSEH_info_poly1305_emit: .byte 9,0,0,0 .rva se_handler .rva .LSEH_begin_poly1305_emit,.LSEH_begin_poly1305_emit ___ $code.=<<___ if ($avx); .LSEH_info_poly1305_blocks_avx_1: .byte 9,0,0,0 .rva se_handler .rva .Lblocks_avx_body,.Lblocks_avx_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx_2: .byte 9,0,0,0 .rva se_handler .rva .Lbase2_64_avx_body,.Lbase2_64_avx_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx_3: .byte 9,0,0,0 .rva avx_handler .rva .Ldo_avx_body,.Ldo_avx_epilogue # HandlerData[] .LSEH_info_poly1305_emit_avx: .byte 9,0,0,0 .rva se_handler .rva .LSEH_begin_poly1305_emit_avx,.LSEH_begin_poly1305_emit_avx ___ $code.=<<___ if ($avx>1); .LSEH_info_poly1305_blocks_avx2_1: .byte 9,0,0,0 .rva se_handler .rva .Lblocks_avx2_body,.Lblocks_avx2_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx2_2: .byte 9,0,0,0 .rva se_handler .rva .Lbase2_64_avx2_body,.Lbase2_64_avx2_epilogue # HandlerData[] .LSEH_info_poly1305_blocks_avx2_3: .byte 9,0,0,0 .rva avx_handler .rva .Ldo_avx2_body,.Ldo_avx2_epilogue # HandlerData[] ___ $code.=<<___ if ($avx>2); .LSEH_info_poly1305_blocks_avx512: .byte 9,0,0,0 .rva avx_handler .rva .Ldo_avx512_body,.Ldo_avx512_epilogue # HandlerData[] ___ } foreach (split('\n',$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/%r([a-z]+)#d/%e$1/g; s/%r([0-9]+)#d/%r$1d/g; s/%x#%[yz]/%x/g or s/%y#%z/%y/g or s/%z#%[yz]/%z/g; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/poly1305/build.info000066400000000000000000000020701364063235100201350ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ poly1305_pmeth.c \ poly1305_ameth.c \ poly1305.c {- $target{poly1305_asm_src} -} GENERATE[poly1305-sparcv9.S]=asm/poly1305-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[poly1305-sparcv9.o]=.. GENERATE[poly1305-x86.s]=asm/poly1305-x86.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) GENERATE[poly1305-x86_64.s]=asm/poly1305-x86_64.pl $(PERLASM_SCHEME) GENERATE[poly1305-ppc.s]=asm/poly1305-ppc.pl $(PERLASM_SCHEME) GENERATE[poly1305-ppcfp.s]=asm/poly1305-ppcfp.pl $(PERLASM_SCHEME) GENERATE[poly1305-armv4.S]=asm/poly1305-armv4.pl $(PERLASM_SCHEME) INCLUDE[poly1305-armv4.o]=.. GENERATE[poly1305-armv8.S]=asm/poly1305-armv8.pl $(PERLASM_SCHEME) INCLUDE[poly1305-armv8.o]=.. GENERATE[poly1305-mips.S]=asm/poly1305-mips.pl $(PERLASM_SCHEME) INCLUDE[poly1305-mips.o]=.. GENERATE[poly1305-s390x.S]=asm/poly1305-s390x.pl $(PERLASM_SCHEME) BEGINRAW[Makefile(unix)] {- $builddir -}/poly1305-%.S: {- $sourcedir -}/asm/poly1305-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ ENDRAW[Makefile(unix)] openssl-1.1.1f/crypto/poly1305/poly1305.c000066400000000000000000000376211364063235100176330ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "crypto/poly1305.h" #include "poly1305_local.h" size_t Poly1305_ctx_size(void) { return sizeof(struct poly1305_context); } /* pick 32-bit unsigned integer in little endian order */ static unsigned int U8TOU32(const unsigned char *p) { return (((unsigned int)(p[0] & 0xff)) | ((unsigned int)(p[1] & 0xff) << 8) | ((unsigned int)(p[2] & 0xff) << 16) | ((unsigned int)(p[3] & 0xff) << 24)); } /* * Implementations can be classified by amount of significant bits in * words making up the multi-precision value, or in other words radix * or base of numerical representation, e.g. base 2^64, base 2^32, * base 2^26. Complementary characteristic is how wide is the result of * multiplication of pair of digits, e.g. it would take 128 bits to * accommodate multiplication result in base 2^64 case. These are used * interchangeably. To describe implementation that is. But interface * is designed to isolate this so that low-level primitives implemented * in assembly can be self-contained/self-coherent. */ #ifndef POLY1305_ASM /* * Even though there is __int128 reference implementation targeting * 64-bit platforms provided below, it's not obvious that it's optimal * choice for every one of them. Depending on instruction set overall * amount of instructions can be comparable to one in __int64 * implementation. Amount of multiplication instructions would be lower, * but not necessarily overall. And in out-of-order execution context, * it is the latter that can be crucial... * * On related note. Poly1305 author, D. J. Bernstein, discusses and * provides floating-point implementations of the algorithm in question. * It made a lot of sense by the time of introduction, because most * then-modern processors didn't have pipelined integer multiplier. * [Not to mention that some had non-constant timing for integer * multiplications.] Floating-point instructions on the other hand could * be issued every cycle, which allowed to achieve better performance. * Nowadays, with SIMD and/or out-or-order execution, shared or * even emulated FPU, it's more complicated, and floating-point * implementation is not necessarily optimal choice in every situation, * rather contrary... * * */ typedef unsigned int u32; /* * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks * of |inp| no longer than |len|. Behaviour for |len| not divisible by * block size is unspecified in general case, even though in reference * implementation the trailing chunk is simply ignored. Per algorithm * specification, every input block, complete or last partial, is to be * padded with a bit past most significant byte. The latter kind is then * padded with zeros till block size. This last partial block padding * is caller(*)'s responsibility, and because of this the last partial * block is always processed with separate call with |len| set to * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit| * should be set to 1 to perform implicit padding with 128th bit. * poly1305_blocks does not actually check for this constraint though, * it's caller(*)'s responsibility to comply. * * (*) In the context "caller" is not application code, but higher * level Poly1305_* from this very module, so that quirks are * handled locally. */ static void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit); /* * Type-agnostic "rip-off" from constant_time.h */ # define CONSTANT_TIME_CARRY(a,b) ( \ (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \ ) # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \ (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8) typedef unsigned long u64; typedef __uint128_t u128; typedef struct { u64 h[3]; u64 r[2]; } poly1305_internal; /* pick 32-bit unsigned integer in little endian order */ static u64 U8TOU64(const unsigned char *p) { return (((u64)(p[0] & 0xff)) | ((u64)(p[1] & 0xff) << 8) | ((u64)(p[2] & 0xff) << 16) | ((u64)(p[3] & 0xff) << 24) | ((u64)(p[4] & 0xff) << 32) | ((u64)(p[5] & 0xff) << 40) | ((u64)(p[6] & 0xff) << 48) | ((u64)(p[7] & 0xff) << 56)); } /* store a 32-bit unsigned integer in little endian */ static void U64TO8(unsigned char *p, u64 v) { p[0] = (unsigned char)((v) & 0xff); p[1] = (unsigned char)((v >> 8) & 0xff); p[2] = (unsigned char)((v >> 16) & 0xff); p[3] = (unsigned char)((v >> 24) & 0xff); p[4] = (unsigned char)((v >> 32) & 0xff); p[5] = (unsigned char)((v >> 40) & 0xff); p[6] = (unsigned char)((v >> 48) & 0xff); p[7] = (unsigned char)((v >> 56) & 0xff); } static void poly1305_init(void *ctx, const unsigned char key[16]) { poly1305_internal *st = (poly1305_internal *) ctx; /* h = 0 */ st->h[0] = 0; st->h[1] = 0; st->h[2] = 0; /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; } static void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) { poly1305_internal *st = (poly1305_internal *)ctx; u64 r0, r1; u64 s1; u64 h0, h1, h2, c; u128 d0, d1; r0 = st->r[0]; r1 = st->r[1]; s1 = r1 + (r1 >> 2); h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; while (len >= POLY1305_BLOCK_SIZE) { /* h += m[i] */ h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0)); h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8)); /* * padbit can be zero only when original len was * POLY1306_BLOCK_SIZE, but we don't check */ h2 += (u64)(d1 >> 64) + padbit; /* h *= r "%" p, where "%" stands for "partial remainder" */ d0 = ((u128)h0 * r0) + ((u128)h1 * s1); d1 = ((u128)h0 * r1) + ((u128)h1 * r0) + (h2 * s1); h2 = (h2 * r0); /* last reduction step: */ /* a) h2:h0 = h2<<128 + d1<<64 + d0 */ h0 = (u64)d0; h1 = (u64)(d1 += d0 >> 64); h2 += (u64)(d1 >> 64); /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */ c = (h2 >> 2) + (h2 & ~3UL); h2 &= 3; h0 += c; h1 += (c = CONSTANT_TIME_CARRY(h0,c)); h2 += CONSTANT_TIME_CARRY(h1,c); /* * Occasional overflows to 3rd bit of h2 are taken care of * "naturally". If after this point we end up at the top of * this loop, then the overflow bit will be accounted for * in next iteration. If we end up in poly1305_emit, then * comparison to modulus below will still count as "carry * into 131st bit", so that properly reduced value will be * picked in conditional move. */ inp += POLY1305_BLOCK_SIZE; len -= POLY1305_BLOCK_SIZE; } st->h[0] = h0; st->h[1] = h1; st->h[2] = h2; } static void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4]) { poly1305_internal *st = (poly1305_internal *) ctx; u64 h0, h1, h2; u64 g0, g1, g2; u128 t; u64 mask; h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; /* compare to modulus by computing h + -p */ g0 = (u64)(t = (u128)h0 + 5); g1 = (u64)(t = (u128)h1 + (t >> 64)); g2 = h2 + (u64)(t >> 64); /* if there was carry into 131st bit, h1:h0 = g1:g0 */ mask = 0 - (g2 >> 2); g0 &= mask; g1 &= mask; mask = ~mask; h0 = (h0 & mask) | g0; h1 = (h1 & mask) | g1; /* mac = (h + nonce) % (2^128) */ h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); U64TO8(mac + 0, h0); U64TO8(mac + 8, h1); } # else # if defined(_WIN32) && !defined(__MINGW32__) typedef unsigned __int64 u64; # elif defined(__arch64__) typedef unsigned long u64; # else typedef unsigned long long u64; # endif typedef struct { u32 h[5]; u32 r[4]; } poly1305_internal; /* store a 32-bit unsigned integer in little endian */ static void U32TO8(unsigned char *p, unsigned int v) { p[0] = (unsigned char)((v) & 0xff); p[1] = (unsigned char)((v >> 8) & 0xff); p[2] = (unsigned char)((v >> 16) & 0xff); p[3] = (unsigned char)((v >> 24) & 0xff); } static void poly1305_init(void *ctx, const unsigned char key[16]) { poly1305_internal *st = (poly1305_internal *) ctx; /* h = 0 */ st->h[0] = 0; st->h[1] = 0; st->h[2] = 0; st->h[3] = 0; st->h[4] = 0; /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ st->r[0] = U8TOU32(&key[0]) & 0x0fffffff; st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc; st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc; st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc; } static void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) { poly1305_internal *st = (poly1305_internal *)ctx; u32 r0, r1, r2, r3; u32 s1, s2, s3; u32 h0, h1, h2, h3, h4, c; u64 d0, d1, d2, d3; r0 = st->r[0]; r1 = st->r[1]; r2 = st->r[2]; r3 = st->r[3]; s1 = r1 + (r1 >> 2); s2 = r2 + (r2 >> 2); s3 = r3 + (r3 >> 2); h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; h3 = st->h[3]; h4 = st->h[4]; while (len >= POLY1305_BLOCK_SIZE) { /* h += m[i] */ h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0)); h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4)); h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8)); h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12)); h4 += (u32)(d3 >> 32) + padbit; /* h *= r "%" p, where "%" stands for "partial remainder" */ d0 = ((u64)h0 * r0) + ((u64)h1 * s3) + ((u64)h2 * s2) + ((u64)h3 * s1); d1 = ((u64)h0 * r1) + ((u64)h1 * r0) + ((u64)h2 * s3) + ((u64)h3 * s2) + (h4 * s1); d2 = ((u64)h0 * r2) + ((u64)h1 * r1) + ((u64)h2 * r0) + ((u64)h3 * s3) + (h4 * s2); d3 = ((u64)h0 * r3) + ((u64)h1 * r2) + ((u64)h2 * r1) + ((u64)h3 * r0) + (h4 * s3); h4 = (h4 * r0); /* last reduction step: */ /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */ h0 = (u32)d0; h1 = (u32)(d1 += d0 >> 32); h2 = (u32)(d2 += d1 >> 32); h3 = (u32)(d3 += d2 >> 32); h4 += (u32)(d3 >> 32); /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */ c = (h4 >> 2) + (h4 & ~3U); h4 &= 3; h0 += c; h1 += (c = CONSTANT_TIME_CARRY(h0,c)); h2 += (c = CONSTANT_TIME_CARRY(h1,c)); h3 += (c = CONSTANT_TIME_CARRY(h2,c)); h4 += CONSTANT_TIME_CARRY(h3,c); /* * Occasional overflows to 3rd bit of h4 are taken care of * "naturally". If after this point we end up at the top of * this loop, then the overflow bit will be accounted for * in next iteration. If we end up in poly1305_emit, then * comparison to modulus below will still count as "carry * into 131st bit", so that properly reduced value will be * picked in conditional move. */ inp += POLY1305_BLOCK_SIZE; len -= POLY1305_BLOCK_SIZE; } st->h[0] = h0; st->h[1] = h1; st->h[2] = h2; st->h[3] = h3; st->h[4] = h4; } static void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4]) { poly1305_internal *st = (poly1305_internal *) ctx; u32 h0, h1, h2, h3, h4; u32 g0, g1, g2, g3, g4; u64 t; u32 mask; h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; h3 = st->h[3]; h4 = st->h[4]; /* compare to modulus by computing h + -p */ g0 = (u32)(t = (u64)h0 + 5); g1 = (u32)(t = (u64)h1 + (t >> 32)); g2 = (u32)(t = (u64)h2 + (t >> 32)); g3 = (u32)(t = (u64)h3 + (t >> 32)); g4 = h4 + (u32)(t >> 32); /* if there was carry into 131st bit, h3:h0 = g3:g0 */ mask = 0 - (g4 >> 2); g0 &= mask; g1 &= mask; g2 &= mask; g3 &= mask; mask = ~mask; h0 = (h0 & mask) | g0; h1 = (h1 & mask) | g1; h2 = (h2 & mask) | g2; h3 = (h3 & mask) | g3; /* mac = (h + nonce) % (2^128) */ h0 = (u32)(t = (u64)h0 + nonce[0]); h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]); h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]); h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]); U32TO8(mac + 0, h0); U32TO8(mac + 4, h1); U32TO8(mac + 8, h2); U32TO8(mac + 12, h3); } # endif #else int poly1305_init(void *ctx, const unsigned char key[16], void *func); void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, unsigned int padbit); void poly1305_emit(void *ctx, unsigned char mac[16], const unsigned int nonce[4]); #endif void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32]) { ctx->nonce[0] = U8TOU32(&key[16]); ctx->nonce[1] = U8TOU32(&key[20]); ctx->nonce[2] = U8TOU32(&key[24]); ctx->nonce[3] = U8TOU32(&key[28]); #ifndef POLY1305_ASM poly1305_init(ctx->opaque, key); #else /* * Unlike reference poly1305_init assembly counterpart is expected * to return a value: non-zero if it initializes ctx->func, and zero * otherwise. Latter is to simplify assembly in cases when there no * multiple code paths to switch between. */ if (!poly1305_init(ctx->opaque, key, &ctx->func)) { ctx->func.blocks = poly1305_blocks; ctx->func.emit = poly1305_emit; } #endif ctx->num = 0; } #ifdef POLY1305_ASM /* * This "eclipses" poly1305_blocks and poly1305_emit, but it's * conscious choice imposed by -Wshadow compiler warnings. */ # define poly1305_blocks (*poly1305_blocks_p) # define poly1305_emit (*poly1305_emit_p) #endif void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len) { #ifdef POLY1305_ASM /* * As documented, poly1305_blocks is never called with input * longer than single block and padbit argument set to 0. This * property is fluently used in assembly modules to optimize * padbit handling on loop boundary. */ poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; #endif size_t rem, num; if ((num = ctx->num)) { rem = POLY1305_BLOCK_SIZE - num; if (len >= rem) { memcpy(ctx->data + num, inp, rem); poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1); inp += rem; len -= rem; } else { /* Still not enough data to process a block. */ memcpy(ctx->data + num, inp, len); ctx->num = num + len; return; } } rem = len % POLY1305_BLOCK_SIZE; len -= rem; if (len >= POLY1305_BLOCK_SIZE) { poly1305_blocks(ctx->opaque, inp, len, 1); inp += len; } if (rem) memcpy(ctx->data, inp, rem); ctx->num = rem; } void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16]) { #ifdef POLY1305_ASM poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; poly1305_emit_f poly1305_emit_p = ctx->func.emit; #endif size_t num; if ((num = ctx->num)) { ctx->data[num++] = 1; /* pad bit */ while (num < POLY1305_BLOCK_SIZE) ctx->data[num++] = 0; poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0); } poly1305_emit(ctx->opaque, mac, ctx->nonce); /* zero out the state */ OPENSSL_cleanse(ctx, sizeof(*ctx)); } openssl-1.1.1f/crypto/poly1305/poly1305_ameth.c000066400000000000000000000051711364063235100210040ustar00rootroot00000000000000/* * Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/asn1.h" #include "crypto/poly1305.h" #include "poly1305_local.h" #include "crypto/evp.h" /* * POLY1305 "ASN1" method. This is just here to indicate the maximum * POLY1305 output length and to free up a POLY1305 key. */ static int poly1305_size(const EVP_PKEY *pkey) { return POLY1305_DIGEST_SIZE; } static void poly1305_key_free(EVP_PKEY *pkey) { ASN1_OCTET_STRING *os = EVP_PKEY_get0(pkey); if (os != NULL) { if (os->data != NULL) OPENSSL_cleanse(os->data, os->length); ASN1_OCTET_STRING_free(os); } } static int poly1305_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { /* nothing, (including ASN1_PKEY_CTRL_DEFAULT_MD_NID), is supported */ return -2; } static int poly1305_pkey_public_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { return ASN1_OCTET_STRING_cmp(EVP_PKEY_get0(a), EVP_PKEY_get0(b)); } static int poly1305_set_priv_key(EVP_PKEY *pkey, const unsigned char *priv, size_t len) { ASN1_OCTET_STRING *os; if (pkey->pkey.ptr != NULL || len != POLY1305_KEY_SIZE) return 0; os = ASN1_OCTET_STRING_new(); if (os == NULL) return 0; if (!ASN1_OCTET_STRING_set(os, priv, len)) { ASN1_OCTET_STRING_free(os); return 0; } pkey->pkey.ptr = os; return 1; } static int poly1305_get_priv_key(const EVP_PKEY *pkey, unsigned char *priv, size_t *len) { ASN1_OCTET_STRING *os = (ASN1_OCTET_STRING *)pkey->pkey.ptr; if (priv == NULL) { *len = POLY1305_KEY_SIZE; return 1; } if (os == NULL || *len < POLY1305_KEY_SIZE) return 0; memcpy(priv, ASN1_STRING_get0_data(os), ASN1_STRING_length(os)); *len = POLY1305_KEY_SIZE; return 1; } const EVP_PKEY_ASN1_METHOD poly1305_asn1_meth = { EVP_PKEY_POLY1305, EVP_PKEY_POLY1305, 0, "POLY1305", "OpenSSL POLY1305 method", 0, 0, poly1305_pkey_public_cmp, 0, 0, 0, 0, poly1305_size, 0, 0, 0, 0, 0, 0, 0, 0, 0, poly1305_key_free, poly1305_pkey_ctrl, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, poly1305_set_priv_key, NULL, poly1305_get_priv_key, NULL, }; openssl-1.1.1f/crypto/poly1305/poly1305_base2_44.c000066400000000000000000000113361364063235100212110ustar00rootroot00000000000000/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This module is meant to be used as template for base 2^44 assembly * implementation[s]. On side note compiler-generated code is not * slower than compiler-generated base 2^64 code on [high-end] x86_64, * even though amount of multiplications is 50% higher. Go figure... */ #include typedef unsigned char u8; typedef unsigned int u32; typedef unsigned long u64; typedef unsigned __int128 u128; typedef struct { u64 h[3]; u64 s[2]; u64 r[3]; } poly1305_internal; #define POLY1305_BLOCK_SIZE 16 /* pick 64-bit unsigned integer in little endian order */ static u64 U8TOU64(const unsigned char *p) { return (((u64)(p[0] & 0xff)) | ((u64)(p[1] & 0xff) << 8) | ((u64)(p[2] & 0xff) << 16) | ((u64)(p[3] & 0xff) << 24) | ((u64)(p[4] & 0xff) << 32) | ((u64)(p[5] & 0xff) << 40) | ((u64)(p[6] & 0xff) << 48) | ((u64)(p[7] & 0xff) << 56)); } /* store a 64-bit unsigned integer in little endian */ static void U64TO8(unsigned char *p, u64 v) { p[0] = (unsigned char)((v) & 0xff); p[1] = (unsigned char)((v >> 8) & 0xff); p[2] = (unsigned char)((v >> 16) & 0xff); p[3] = (unsigned char)((v >> 24) & 0xff); p[4] = (unsigned char)((v >> 32) & 0xff); p[5] = (unsigned char)((v >> 40) & 0xff); p[6] = (unsigned char)((v >> 48) & 0xff); p[7] = (unsigned char)((v >> 56) & 0xff); } int poly1305_init(void *ctx, const unsigned char key[16]) { poly1305_internal *st = (poly1305_internal *)ctx; u64 r0, r1; /* h = 0 */ st->h[0] = 0; st->h[1] = 0; st->h[2] = 0; r0 = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; r1 = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; /* break r1:r0 to three 44-bit digits, masks are 1<<44-1 */ st->r[0] = r0 & 0x0fffffffffff; st->r[1] = ((r0 >> 44) | (r1 << 20)) & 0x0fffffffffff; st->r[2] = (r1 >> 24); st->s[0] = (st->r[1] + (st->r[1] << 2)) << 2; st->s[1] = (st->r[2] + (st->r[2] << 2)) << 2; return 0; } void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) { poly1305_internal *st = (poly1305_internal *)ctx; u64 r0, r1, r2; u64 s1, s2; u64 h0, h1, h2, c; u128 d0, d1, d2; u64 pad = (u64)padbit << 40; r0 = st->r[0]; r1 = st->r[1]; r2 = st->r[2]; s1 = st->s[0]; s2 = st->s[1]; h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; while (len >= POLY1305_BLOCK_SIZE) { u64 m0, m1; m0 = U8TOU64(inp + 0); m1 = U8TOU64(inp + 8); /* h += m[i], m[i] is broken to 44-bit digits */ h0 += m0 & 0x0fffffffffff; h1 += ((m0 >> 44) | (m1 << 20)) & 0x0fffffffffff; h2 += (m1 >> 24) + pad; /* h *= r "%" p, where "%" stands for "partial remainder" */ d0 = ((u128)h0 * r0) + ((u128)h1 * s2) + ((u128)h2 * s1); d1 = ((u128)h0 * r1) + ((u128)h1 * r0) + ((u128)h2 * s2); d2 = ((u128)h0 * r2) + ((u128)h1 * r1) + ((u128)h2 * r0); /* "lazy" reduction step */ h0 = (u64)d0 & 0x0fffffffffff; h1 = (u64)(d1 += (u64)(d0 >> 44)) & 0x0fffffffffff; h2 = (u64)(d2 += (u64)(d1 >> 44)) & 0x03ffffffffff; /* last 42 bits */ c = (d2 >> 42); h0 += c + (c << 2); inp += POLY1305_BLOCK_SIZE; len -= POLY1305_BLOCK_SIZE; } st->h[0] = h0; st->h[1] = h1; st->h[2] = h2; } void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4]) { poly1305_internal *st = (poly1305_internal *) ctx; u64 h0, h1, h2; u64 g0, g1, g2; u128 t; u64 mask; h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; /* after "lazy" reduction, convert 44+bit digits to 64-bit ones */ h0 = (u64)(t = (u128)h0 + (h1 << 44)); h1 >>= 20; h1 = (u64)(t = (u128)h1 + (h2 << 24) + (t >> 64)); h2 >>= 40; h2 += (u64)(t >> 64); /* compare to modulus by computing h + -p */ g0 = (u64)(t = (u128)h0 + 5); g1 = (u64)(t = (u128)h1 + (t >> 64)); g2 = h2 + (u64)(t >> 64); /* if there was carry into 131st bit, h1:h0 = g1:g0 */ mask = 0 - (g2 >> 2); g0 &= mask; g1 &= mask; mask = ~mask; h0 = (h0 & mask) | g0; h1 = (h1 & mask) | g1; /* mac = (h + nonce) % (2^128) */ h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); U64TO8(mac + 0, h0); U64TO8(mac + 8, h1); } openssl-1.1.1f/crypto/poly1305/poly1305_ieee754.c000066400000000000000000000344551364063235100210640ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This module is meant to be used as template for non-x87 floating- * point assembly modules. The template itself is x86_64-specific * though, as it was debugged on x86_64. So that implementor would * have to recognize platform-specific parts, UxTOy and inline asm, * and act accordingly. * * Huh? x86_64-specific code as template for non-x87? Note seven, which * is not a typo, but reference to 80-bit precision. This module on the * other hand relies on 64-bit precision operations, which are default * for x86_64 code. And since we are at it, just for sense of it, * large-block performance in cycles per processed byte for *this* code * is: * gcc-4.8 icc-15.0 clang-3.4(*) * * Westmere 4.96 5.09 4.37 * Sandy Bridge 4.95 4.90 4.17 * Haswell 4.92 4.87 3.78 * Bulldozer 4.67 4.49 4.68 * VIA Nano 7.07 7.05 5.98 * Silvermont 10.6 9.61 12.6 * * (*) clang managed to discover parallelism and deployed SIMD; * * And for range of other platforms with unspecified gcc versions: * * Freescale e300 12.5 * PPC74x0 10.8 * POWER6 4.92 * POWER7 4.50 * POWER8 4.10 * * z10 11.2 * z196+ 7.30 * * UltraSPARC III 16.0 * SPARC T4 16.1 */ #if !(defined(__GNUC__) && __GNUC__>=2) # error "this is gcc-specific template" #endif #include typedef unsigned char u8; typedef unsigned int u32; typedef unsigned long long u64; typedef union { double d; u64 u; } elem64; #define TWO(p) ((double)(1ULL<<(p))) #define TWO0 TWO(0) #define TWO32 TWO(32) #define TWO64 (TWO32*TWO(32)) #define TWO96 (TWO64*TWO(32)) #define TWO130 (TWO96*TWO(34)) #define EXP(p) ((1023ULL+(p))<<52) #if defined(__x86_64__) || (defined(__PPC__) && defined(__LITTLE_ENDIAN__)) # define U8TOU32(p) (*(const u32 *)(p)) # define U32TO8(p,v) (*(u32 *)(p) = (v)) #elif defined(__PPC__) # define U8TOU32(p) ({u32 ret; asm ("lwbrx %0,0,%1":"=r"(ret):"b"(p)); ret; }) # define U32TO8(p,v) asm ("stwbrx %0,0,%1"::"r"(v),"b"(p):"memory") #elif defined(__s390x__) # define U8TOU32(p) ({u32 ret; asm ("lrv %0,%1":"=d"(ret):"m"(*(u32 *)(p))); ret; }) # define U32TO8(p,v) asm ("strv %1,%0":"=m"(*(u32 *)(p)):"d"(v)) #endif #ifndef U8TOU32 # define U8TOU32(p) ((u32)(p)[0] | (u32)(p)[1]<<8 | \ (u32)(p)[2]<<16 | (u32)(p)[3]<<24 ) #endif #ifndef U32TO8 # define U32TO8(p,v) ((p)[0] = (u8)(v), (p)[1] = (u8)((v)>>8), \ (p)[2] = (u8)((v)>>16), (p)[3] = (u8)((v)>>24) ) #endif typedef struct { elem64 h[4]; double r[8]; double s[6]; } poly1305_internal; /* "round toward zero (truncate), mask all exceptions" */ #if defined(__x86_64__) static const u32 mxcsr = 0x7f80; #elif defined(__PPC__) static const u64 one = 1; #elif defined(__s390x__) static const u32 fpc = 1; #elif defined(__sparc__) static const u64 fsr = 1ULL<<30; #elif defined(__mips__) static const u32 fcsr = 1; #else #error "unrecognized platform" #endif int poly1305_init(void *ctx, const unsigned char key[16]) { poly1305_internal *st = (poly1305_internal *) ctx; elem64 r0, r1, r2, r3; /* h = 0, biased */ #if 0 st->h[0].d = TWO(52)*TWO0; st->h[1].d = TWO(52)*TWO32; st->h[2].d = TWO(52)*TWO64; st->h[3].d = TWO(52)*TWO96; #else st->h[0].u = EXP(52+0); st->h[1].u = EXP(52+32); st->h[2].u = EXP(52+64); st->h[3].u = EXP(52+96); #endif if (key) { /* * set "truncate" rounding mode */ #if defined(__x86_64__) u32 mxcsr_orig; asm volatile ("stmxcsr %0":"=m"(mxcsr_orig)); asm volatile ("ldmxcsr %0"::"m"(mxcsr)); #elif defined(__PPC__) double fpscr_orig, fpscr = *(double *)&one; asm volatile ("mffs %0":"=f"(fpscr_orig)); asm volatile ("mtfsf 255,%0"::"f"(fpscr)); #elif defined(__s390x__) u32 fpc_orig; asm volatile ("stfpc %0":"=m"(fpc_orig)); asm volatile ("lfpc %0"::"m"(fpc)); #elif defined(__sparc__) u64 fsr_orig; asm volatile ("stx %%fsr,%0":"=m"(fsr_orig)); asm volatile ("ldx %0,%%fsr"::"m"(fsr)); #elif defined(__mips__) u32 fcsr_orig; asm volatile ("cfc1 %0,$31":"=r"(fcsr_orig)); asm volatile ("ctc1 %0,$31"::"r"(fcsr)); #endif /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ r0.u = EXP(52+0) | (U8TOU32(&key[0]) & 0x0fffffff); r1.u = EXP(52+32) | (U8TOU32(&key[4]) & 0x0ffffffc); r2.u = EXP(52+64) | (U8TOU32(&key[8]) & 0x0ffffffc); r3.u = EXP(52+96) | (U8TOU32(&key[12]) & 0x0ffffffc); st->r[0] = r0.d - TWO(52)*TWO0; st->r[2] = r1.d - TWO(52)*TWO32; st->r[4] = r2.d - TWO(52)*TWO64; st->r[6] = r3.d - TWO(52)*TWO96; st->s[0] = st->r[2] * (5.0/TWO130); st->s[2] = st->r[4] * (5.0/TWO130); st->s[4] = st->r[6] * (5.0/TWO130); /* * base 2^32 -> base 2^16 */ st->r[1] = (st->r[0] + TWO(52)*TWO(16)*TWO0) - TWO(52)*TWO(16)*TWO0; st->r[0] -= st->r[1]; st->r[3] = (st->r[2] + TWO(52)*TWO(16)*TWO32) - TWO(52)*TWO(16)*TWO32; st->r[2] -= st->r[3]; st->r[5] = (st->r[4] + TWO(52)*TWO(16)*TWO64) - TWO(52)*TWO(16)*TWO64; st->r[4] -= st->r[5]; st->r[7] = (st->r[6] + TWO(52)*TWO(16)*TWO96) - TWO(52)*TWO(16)*TWO96; st->r[6] -= st->r[7]; st->s[1] = (st->s[0] + TWO(52)*TWO(16)*TWO0/TWO96) - TWO(52)*TWO(16)*TWO0/TWO96; st->s[0] -= st->s[1]; st->s[3] = (st->s[2] + TWO(52)*TWO(16)*TWO32/TWO96) - TWO(52)*TWO(16)*TWO32/TWO96; st->s[2] -= st->s[3]; st->s[5] = (st->s[4] + TWO(52)*TWO(16)*TWO64/TWO96) - TWO(52)*TWO(16)*TWO64/TWO96; st->s[4] -= st->s[5]; /* * restore original FPU control register */ #if defined(__x86_64__) asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig)); #elif defined(__PPC__) asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig)); #elif defined(__s390x__) asm volatile ("lfpc %0"::"m"(fpc_orig)); #elif defined(__sparc__) asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig)); #elif defined(__mips__) asm volatile ("ctc1 %0,$31"::"r"(fcsr_orig)); #endif } return 0; } void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, int padbit) { poly1305_internal *st = (poly1305_internal *)ctx; elem64 in0, in1, in2, in3; u64 pad = (u64)padbit<<32; double x0, x1, x2, x3; double h0lo, h0hi, h1lo, h1hi, h2lo, h2hi, h3lo, h3hi; double c0lo, c0hi, c1lo, c1hi, c2lo, c2hi, c3lo, c3hi; const double r0lo = st->r[0]; const double r0hi = st->r[1]; const double r1lo = st->r[2]; const double r1hi = st->r[3]; const double r2lo = st->r[4]; const double r2hi = st->r[5]; const double r3lo = st->r[6]; const double r3hi = st->r[7]; const double s1lo = st->s[0]; const double s1hi = st->s[1]; const double s2lo = st->s[2]; const double s2hi = st->s[3]; const double s3lo = st->s[4]; const double s3hi = st->s[5]; /* * set "truncate" rounding mode */ #if defined(__x86_64__) u32 mxcsr_orig; asm volatile ("stmxcsr %0":"=m"(mxcsr_orig)); asm volatile ("ldmxcsr %0"::"m"(mxcsr)); #elif defined(__PPC__) double fpscr_orig, fpscr = *(double *)&one; asm volatile ("mffs %0":"=f"(fpscr_orig)); asm volatile ("mtfsf 255,%0"::"f"(fpscr)); #elif defined(__s390x__) u32 fpc_orig; asm volatile ("stfpc %0":"=m"(fpc_orig)); asm volatile ("lfpc %0"::"m"(fpc)); #elif defined(__sparc__) u64 fsr_orig; asm volatile ("stx %%fsr,%0":"=m"(fsr_orig)); asm volatile ("ldx %0,%%fsr"::"m"(fsr)); #elif defined(__mips__) u32 fcsr_orig; asm volatile ("cfc1 %0,$31":"=r"(fcsr_orig)); asm volatile ("ctc1 %0,$31"::"r"(fcsr)); #endif /* * load base 2^32 and de-bias */ h0lo = st->h[0].d - TWO(52)*TWO0; h1lo = st->h[1].d - TWO(52)*TWO32; h2lo = st->h[2].d - TWO(52)*TWO64; h3lo = st->h[3].d - TWO(52)*TWO96; #ifdef __clang__ h0hi = 0; h1hi = 0; h2hi = 0; h3hi = 0; #else in0.u = EXP(52+0) | U8TOU32(&inp[0]); in1.u = EXP(52+32) | U8TOU32(&inp[4]); in2.u = EXP(52+64) | U8TOU32(&inp[8]); in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad; x0 = in0.d - TWO(52)*TWO0; x1 = in1.d - TWO(52)*TWO32; x2 = in2.d - TWO(52)*TWO64; x3 = in3.d - TWO(52)*TWO96; x0 += h0lo; x1 += h1lo; x2 += h2lo; x3 += h3lo; goto fast_entry; #endif do { in0.u = EXP(52+0) | U8TOU32(&inp[0]); in1.u = EXP(52+32) | U8TOU32(&inp[4]); in2.u = EXP(52+64) | U8TOU32(&inp[8]); in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad; x0 = in0.d - TWO(52)*TWO0; x1 = in1.d - TWO(52)*TWO32; x2 = in2.d - TWO(52)*TWO64; x3 = in3.d - TWO(52)*TWO96; /* * note that there are multiple ways to accumulate input, e.g. * one can as well accumulate to h0lo-h1lo-h1hi-h2hi... */ h0lo += x0; h0hi += x1; h2lo += x2; h2hi += x3; /* * carries that cross 32n-bit (and 130-bit) boundaries */ c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32; c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64; c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96; c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130; c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32; c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64; c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96; c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130; /* * base 2^48 -> base 2^32 with last reduction step */ x1 = (h1lo - c1lo) + c0lo; x2 = (h2lo - c2lo) + c1lo; x3 = (h3lo - c3lo) + c2lo; x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130); x1 += (h1hi - c1hi) + c0hi; x2 += (h2hi - c2hi) + c1hi; x3 += (h3hi - c3hi) + c2hi; x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130); #ifndef __clang__ fast_entry: #endif /* * base 2^32 * base 2^16 = base 2^48 */ h0lo = s3lo * x1 + s2lo * x2 + s1lo * x3 + r0lo * x0; h1lo = r0lo * x1 + s3lo * x2 + s2lo * x3 + r1lo * x0; h2lo = r1lo * x1 + r0lo * x2 + s3lo * x3 + r2lo * x0; h3lo = r2lo * x1 + r1lo * x2 + r0lo * x3 + r3lo * x0; h0hi = s3hi * x1 + s2hi * x2 + s1hi * x3 + r0hi * x0; h1hi = r0hi * x1 + s3hi * x2 + s2hi * x3 + r1hi * x0; h2hi = r1hi * x1 + r0hi * x2 + s3hi * x3 + r2hi * x0; h3hi = r2hi * x1 + r1hi * x2 + r0hi * x3 + r3hi * x0; inp += 16; len -= 16; } while (len >= 16); /* * carries that cross 32n-bit (and 130-bit) boundaries */ c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32; c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64; c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96; c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130; c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32; c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64; c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96; c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130; /* * base 2^48 -> base 2^32 with last reduction step */ x1 = (h1lo - c1lo) + c0lo; x2 = (h2lo - c2lo) + c1lo; x3 = (h3lo - c3lo) + c2lo; x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130); x1 += (h1hi - c1hi) + c0hi; x2 += (h2hi - c2hi) + c1hi; x3 += (h3hi - c3hi) + c2hi; x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130); /* * store base 2^32, with bias */ st->h[1].d = x1 + TWO(52)*TWO32; st->h[2].d = x2 + TWO(52)*TWO64; st->h[3].d = x3 + TWO(52)*TWO96; st->h[0].d = x0 + TWO(52)*TWO0; /* * restore original FPU control register */ #if defined(__x86_64__) asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig)); #elif defined(__PPC__) asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig)); #elif defined(__s390x__) asm volatile ("lfpc %0"::"m"(fpc_orig)); #elif defined(__sparc__) asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig)); #elif defined(__mips__) asm volatile ("ctc1 %0,$31"::"r"(fcsr_orig)); #endif } void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4]) { poly1305_internal *st = (poly1305_internal *) ctx; u64 h0, h1, h2, h3, h4; u32 g0, g1, g2, g3, g4; u64 t; u32 mask; /* * thanks to bias masking exponent gives integer result */ h0 = st->h[0].u & 0x000fffffffffffffULL; h1 = st->h[1].u & 0x000fffffffffffffULL; h2 = st->h[2].u & 0x000fffffffffffffULL; h3 = st->h[3].u & 0x000fffffffffffffULL; /* * can be partially reduced, so reduce... */ h4 = h3>>32; h3 &= 0xffffffffU; g4 = h4&-4; h4 &= 3; g4 += g4>>2; h0 += g4; h1 += h0>>32; h0 &= 0xffffffffU; h2 += h1>>32; h1 &= 0xffffffffU; h3 += h2>>32; h2 &= 0xffffffffU; /* compute h + -p */ g0 = (u32)(t = h0 + 5); g1 = (u32)(t = h1 + (t >> 32)); g2 = (u32)(t = h2 + (t >> 32)); g3 = (u32)(t = h3 + (t >> 32)); g4 = h4 + (u32)(t >> 32); /* if there was carry, select g0-g3 */ mask = 0 - (g4 >> 2); g0 &= mask; g1 &= mask; g2 &= mask; g3 &= mask; mask = ~mask; g0 |= (h0 & mask); g1 |= (h1 & mask); g2 |= (h2 & mask); g3 |= (h3 & mask); /* mac = (h + nonce) % (2^128) */ g0 = (u32)(t = (u64)g0 + nonce[0]); g1 = (u32)(t = (u64)g1 + (t >> 32) + nonce[1]); g2 = (u32)(t = (u64)g2 + (t >> 32) + nonce[2]); g3 = (u32)(t = (u64)g3 + (t >> 32) + nonce[3]); U32TO8(mac + 0, g0); U32TO8(mac + 4, g1); U32TO8(mac + 8, g2); U32TO8(mac + 12, g3); } openssl-1.1.1f/crypto/poly1305/poly1305_local.h000066400000000000000000000020501364063235100207760ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ typedef void (*poly1305_blocks_f) (void *ctx, const unsigned char *inp, size_t len, unsigned int padbit); typedef void (*poly1305_emit_f) (void *ctx, unsigned char mac[16], const unsigned int nonce[4]); struct poly1305_context { double opaque[24]; /* large enough to hold internal state, declared * 'double' to ensure at least 64-bit invariant * alignment across all platforms and * configurations */ unsigned int nonce[4]; unsigned char data[POLY1305_BLOCK_SIZE]; size_t num; struct { poly1305_blocks_f blocks; poly1305_emit_f emit; } func; }; openssl-1.1.1f/crypto/poly1305/poly1305_pmeth.c000066400000000000000000000117511364063235100210240ustar00rootroot00000000000000/* * Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/poly1305.h" #include "poly1305_local.h" #include "crypto/evp.h" /* POLY1305 pkey context structure */ typedef struct { ASN1_OCTET_STRING ktmp; /* Temp storage for key */ POLY1305 ctx; } POLY1305_PKEY_CTX; static int pkey_poly1305_init(EVP_PKEY_CTX *ctx) { POLY1305_PKEY_CTX *pctx; if ((pctx = OPENSSL_zalloc(sizeof(*pctx))) == NULL) { CRYPTOerr(CRYPTO_F_PKEY_POLY1305_INIT, ERR_R_MALLOC_FAILURE); return 0; } pctx->ktmp.type = V_ASN1_OCTET_STRING; EVP_PKEY_CTX_set_data(ctx, pctx); EVP_PKEY_CTX_set0_keygen_info(ctx, NULL, 0); return 1; } static void pkey_poly1305_cleanup(EVP_PKEY_CTX *ctx) { POLY1305_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(ctx); if (pctx != NULL) { OPENSSL_clear_free(pctx->ktmp.data, pctx->ktmp.length); OPENSSL_clear_free(pctx, sizeof(*pctx)); EVP_PKEY_CTX_set_data(ctx, NULL); } } static int pkey_poly1305_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { POLY1305_PKEY_CTX *sctx, *dctx; /* allocate memory for dst->data and a new POLY1305_CTX in dst->data->ctx */ if (!pkey_poly1305_init(dst)) return 0; sctx = EVP_PKEY_CTX_get_data(src); dctx = EVP_PKEY_CTX_get_data(dst); if (ASN1_STRING_get0_data(&sctx->ktmp) != NULL && !ASN1_STRING_copy(&dctx->ktmp, &sctx->ktmp)) { /* cleanup and free the POLY1305_PKEY_CTX in dst->data */ pkey_poly1305_cleanup(dst); return 0; } memcpy(&dctx->ctx, &sctx->ctx, sizeof(POLY1305)); return 1; } static int pkey_poly1305_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { ASN1_OCTET_STRING *key; POLY1305_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(ctx); if (ASN1_STRING_get0_data(&pctx->ktmp) == NULL) return 0; key = ASN1_OCTET_STRING_dup(&pctx->ktmp); if (key == NULL) return 0; return EVP_PKEY_assign_POLY1305(pkey, key); } static int int_update(EVP_MD_CTX *ctx, const void *data, size_t count) { POLY1305_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(EVP_MD_CTX_pkey_ctx(ctx)); Poly1305_Update(&pctx->ctx, data, count); return 1; } static int poly1305_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) { POLY1305_PKEY_CTX *pctx = ctx->data; ASN1_OCTET_STRING *key = (ASN1_OCTET_STRING *)ctx->pkey->pkey.ptr; if (key->length != POLY1305_KEY_SIZE) return 0; EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT); EVP_MD_CTX_set_update_fn(mctx, int_update); Poly1305_Init(&pctx->ctx, key->data); return 1; } static int poly1305_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx) { POLY1305_PKEY_CTX *pctx = ctx->data; *siglen = POLY1305_DIGEST_SIZE; if (sig != NULL) Poly1305_Final(&pctx->ctx, sig); return 1; } static int pkey_poly1305_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { POLY1305_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(ctx); const unsigned char *key; size_t len; switch (type) { case EVP_PKEY_CTRL_MD: /* ignore */ break; case EVP_PKEY_CTRL_SET_MAC_KEY: case EVP_PKEY_CTRL_DIGESTINIT: if (type == EVP_PKEY_CTRL_SET_MAC_KEY) { /* user explicitly setting the key */ key = p2; len = p1; } else { /* user indirectly setting the key via EVP_DigestSignInit */ key = EVP_PKEY_get0_poly1305(EVP_PKEY_CTX_get0_pkey(ctx), &len); } if (key == NULL || len != POLY1305_KEY_SIZE || !ASN1_OCTET_STRING_set(&pctx->ktmp, key, len)) return 0; Poly1305_Init(&pctx->ctx, ASN1_STRING_get0_data(&pctx->ktmp)); break; default: return -2; } return 1; } static int pkey_poly1305_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (value == NULL) return 0; if (strcmp(type, "key") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); if (strcmp(type, "hexkey") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); return -2; } const EVP_PKEY_METHOD poly1305_pkey_meth = { EVP_PKEY_POLY1305, EVP_PKEY_FLAG_SIGCTX_CUSTOM, /* we don't deal with a separate MD */ pkey_poly1305_init, pkey_poly1305_copy, pkey_poly1305_cleanup, 0, 0, 0, pkey_poly1305_keygen, 0, 0, 0, 0, 0, 0, poly1305_signctx_init, poly1305_signctx, 0, 0, 0, 0, 0, 0, 0, 0, pkey_poly1305_ctrl, pkey_poly1305_ctrl_str }; openssl-1.1.1f/crypto/ppc_arch.h000066400000000000000000000014731364063235100166230ustar00rootroot00000000000000/* * Copyright 2014-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_PPC_ARCH_H # define OSSL_CRYPTO_PPC_ARCH_H extern unsigned int OPENSSL_ppccap_P; /* * Flags' usage can appear ambiguous, because they are set rather * to reflect OpenSSL performance preferences than actual processor * capabilities. */ # define PPC_FPU64 (1<<0) # define PPC_ALTIVEC (1<<1) # define PPC_CRYPTO207 (1<<2) # define PPC_FPU (1<<3) # define PPC_MADD300 (1<<4) # define PPC_MFTB (1<<5) # define PPC_MFSPR268 (1<<6) #endif openssl-1.1.1f/crypto/ppccap.c000066400000000000000000000310601364063235100163000ustar00rootroot00000000000000/* * Copyright 2009-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #if defined(__linux) || defined(_AIX) # include #endif #if defined(_AIX53) /* defined even on post-5.3 */ # include # if !defined(__power_set) # define __power_set(a) (_system_configuration.implementation & (a)) # endif #endif #if defined(__APPLE__) && defined(__MACH__) # include # include #endif #include #include #include #include #include "bn/bn_local.h" #include "ppc_arch.h" unsigned int OPENSSL_ppccap_P = 0; static sigset_t all_masked; #ifdef OPENSSL_BN_ASM_MONT int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) { int bn_mul_mont_int(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); int bn_mul4x_mont_int(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); if (num < 4) return 0; if ((num & 3) == 0) return bn_mul4x_mont_int(rp, ap, bp, np, n0, num); /* * There used to be [optional] call to bn_mul_mont_fpu64 here, * but above subroutine is faster on contemporary processors. * Formulation means that there might be old processors where * FPU code path would be faster, POWER6 perhaps, but there was * no opportunity to figure it out... */ return bn_mul_mont_int(rp, ap, bp, np, n0, num); } #endif void sha256_block_p8(void *ctx, const void *inp, size_t len); void sha256_block_ppc(void *ctx, const void *inp, size_t len); void sha256_block_data_order(void *ctx, const void *inp, size_t len); void sha256_block_data_order(void *ctx, const void *inp, size_t len) { OPENSSL_ppccap_P & PPC_CRYPTO207 ? sha256_block_p8(ctx, inp, len) : sha256_block_ppc(ctx, inp, len); } void sha512_block_p8(void *ctx, const void *inp, size_t len); void sha512_block_ppc(void *ctx, const void *inp, size_t len); void sha512_block_data_order(void *ctx, const void *inp, size_t len); void sha512_block_data_order(void *ctx, const void *inp, size_t len) { OPENSSL_ppccap_P & PPC_CRYPTO207 ? sha512_block_p8(ctx, inp, len) : sha512_block_ppc(ctx, inp, len); } #ifndef OPENSSL_NO_CHACHA void ChaCha20_ctr32_int(unsigned char *out, const unsigned char *inp, size_t len, const unsigned int key[8], const unsigned int counter[4]); void ChaCha20_ctr32_vmx(unsigned char *out, const unsigned char *inp, size_t len, const unsigned int key[8], const unsigned int counter[4]); void ChaCha20_ctr32_vsx(unsigned char *out, const unsigned char *inp, size_t len, const unsigned int key[8], const unsigned int counter[4]); void ChaCha20_ctr32(unsigned char *out, const unsigned char *inp, size_t len, const unsigned int key[8], const unsigned int counter[4]) { OPENSSL_ppccap_P & PPC_CRYPTO207 ? ChaCha20_ctr32_vsx(out, inp, len, key, counter) : OPENSSL_ppccap_P & PPC_ALTIVEC ? ChaCha20_ctr32_vmx(out, inp, len, key, counter) : ChaCha20_ctr32_int(out, inp, len, key, counter); } #endif #ifndef OPENSSL_NO_POLY1305 void poly1305_init_int(void *ctx, const unsigned char key[16]); void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, unsigned int padbit); void poly1305_emit(void *ctx, unsigned char mac[16], const unsigned int nonce[4]); void poly1305_init_fpu(void *ctx, const unsigned char key[16]); void poly1305_blocks_fpu(void *ctx, const unsigned char *inp, size_t len, unsigned int padbit); void poly1305_emit_fpu(void *ctx, unsigned char mac[16], const unsigned int nonce[4]); int poly1305_init(void *ctx, const unsigned char key[16], void *func[2]); int poly1305_init(void *ctx, const unsigned char key[16], void *func[2]) { if (sizeof(size_t) == 4 && (OPENSSL_ppccap_P & PPC_FPU)) { poly1305_init_fpu(ctx, key); func[0] = (void*)(uintptr_t)poly1305_blocks_fpu; func[1] = (void*)(uintptr_t)poly1305_emit_fpu; } else { poly1305_init_int(ctx, key); func[0] = (void*)(uintptr_t)poly1305_blocks; func[1] = (void*)(uintptr_t)poly1305_emit; } return 1; } #endif #ifdef ECP_NISTZ256_ASM void ecp_nistz256_mul_mont(unsigned long res[4], const unsigned long a[4], const unsigned long b[4]); void ecp_nistz256_to_mont(unsigned long res[4], const unsigned long in[4]); void ecp_nistz256_to_mont(unsigned long res[4], const unsigned long in[4]) { static const unsigned long RR[] = { 0x0000000000000003U, 0xfffffffbffffffffU, 0xfffffffffffffffeU, 0x00000004fffffffdU }; ecp_nistz256_mul_mont(res, in, RR); } void ecp_nistz256_from_mont(unsigned long res[4], const unsigned long in[4]); void ecp_nistz256_from_mont(unsigned long res[4], const unsigned long in[4]) { static const unsigned long one[] = { 1, 0, 0, 0 }; ecp_nistz256_mul_mont(res, in, one); } #endif static sigjmp_buf ill_jmp; static void ill_handler(int sig) { siglongjmp(ill_jmp, sig); } void OPENSSL_fpu_probe(void); void OPENSSL_ppc64_probe(void); void OPENSSL_altivec_probe(void); void OPENSSL_crypto207_probe(void); void OPENSSL_madd300_probe(void); long OPENSSL_rdtsc_mftb(void); long OPENSSL_rdtsc_mfspr268(void); uint32_t OPENSSL_rdtsc(void) { if (OPENSSL_ppccap_P & PPC_MFTB) return OPENSSL_rdtsc_mftb(); else if (OPENSSL_ppccap_P & PPC_MFSPR268) return OPENSSL_rdtsc_mfspr268(); else return 0; } size_t OPENSSL_instrument_bus_mftb(unsigned int *, size_t); size_t OPENSSL_instrument_bus_mfspr268(unsigned int *, size_t); size_t OPENSSL_instrument_bus(unsigned int *out, size_t cnt) { if (OPENSSL_ppccap_P & PPC_MFTB) return OPENSSL_instrument_bus_mftb(out, cnt); else if (OPENSSL_ppccap_P & PPC_MFSPR268) return OPENSSL_instrument_bus_mfspr268(out, cnt); else return 0; } size_t OPENSSL_instrument_bus2_mftb(unsigned int *, size_t, size_t); size_t OPENSSL_instrument_bus2_mfspr268(unsigned int *, size_t, size_t); size_t OPENSSL_instrument_bus2(unsigned int *out, size_t cnt, size_t max) { if (OPENSSL_ppccap_P & PPC_MFTB) return OPENSSL_instrument_bus2_mftb(out, cnt, max); else if (OPENSSL_ppccap_P & PPC_MFSPR268) return OPENSSL_instrument_bus2_mfspr268(out, cnt, max); else return 0; } #if defined(__GLIBC__) && defined(__GLIBC_PREREQ) # if __GLIBC_PREREQ(2, 16) # include # define OSSL_IMPLEMENT_GETAUXVAL # endif #endif /* I wish was universally available */ #define HWCAP 16 /* AT_HWCAP */ #define HWCAP_PPC64 (1U << 30) #define HWCAP_ALTIVEC (1U << 28) #define HWCAP_FPU (1U << 27) #define HWCAP_POWER6_EXT (1U << 9) #define HWCAP_VSX (1U << 7) #define HWCAP2 26 /* AT_HWCAP2 */ #define HWCAP_VEC_CRYPTO (1U << 25) #define HWCAP_ARCH_3_00 (1U << 23) # if defined(__GNUC__) && __GNUC__>=2 __attribute__ ((constructor)) # endif void OPENSSL_cpuid_setup(void) { char *e; struct sigaction ill_oact, ill_act; sigset_t oset; static int trigger = 0; if (trigger) return; trigger = 1; if ((e = getenv("OPENSSL_ppccap"))) { OPENSSL_ppccap_P = strtoul(e, NULL, 0); return; } OPENSSL_ppccap_P = 0; #if defined(_AIX) OPENSSL_ppccap_P |= PPC_FPU; if (sizeof(size_t) == 4) { struct utsname uts; # if defined(_SC_AIX_KERNEL_BITMODE) if (sysconf(_SC_AIX_KERNEL_BITMODE) != 64) return; # endif if (uname(&uts) != 0 || atoi(uts.version) < 6) return; } # if defined(__power_set) /* * Value used in __power_set is a single-bit 1< #include #include #include #include #include "internal/thread_once.h" #include "internal/thread_once.h" #include "rand_local.h" /* * Implementation of NIST SP 800-90A CTR DRBG. */ static void inc_128(RAND_DRBG_CTR *ctr) { int i; unsigned char c; unsigned char *p = &ctr->V[15]; for (i = 0; i < 16; i++, p--) { c = *p; c++; *p = c; if (c != 0) { /* If we didn't wrap around, we're done. */ break; } } } static void ctr_XOR(RAND_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) { size_t i, n; if (in == NULL || inlen == 0) return; /* * Any zero padding will have no effect on the result as we * are XORing. So just process however much input we have. */ n = inlen < ctr->keylen ? inlen : ctr->keylen; for (i = 0; i < n; i++) ctr->K[i] ^= in[i]; if (inlen <= ctr->keylen) return; n = inlen - ctr->keylen; if (n > 16) { /* Should never happen */ n = 16; } for (i = 0; i < n; i++) ctr->V[i] ^= in[i + ctr->keylen]; } /* * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 */ __owur static int ctr_BCC_block(RAND_DRBG_CTR *ctr, unsigned char *out, const unsigned char *in) { int i, outlen = AES_BLOCK_SIZE; for (i = 0; i < 16; i++) out[i] ^= in[i]; if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; return 1; } /* * Handle several BCC operations for as much data as we need for K and X */ __owur static int ctr_BCC_blocks(RAND_DRBG_CTR *ctr, const unsigned char *in) { if (!ctr_BCC_block(ctr, ctr->KX, in) || !ctr_BCC_block(ctr, ctr->KX + 16, in)) return 0; if (ctr->keylen != 16 && !ctr_BCC_block(ctr, ctr->KX + 32, in)) return 0; return 1; } /* * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: * see 10.3.1 stage 7. */ __owur static int ctr_BCC_init(RAND_DRBG_CTR *ctr) { memset(ctr->KX, 0, 48); memset(ctr->bltmp, 0, 16); if (!ctr_BCC_block(ctr, ctr->KX, ctr->bltmp)) return 0; ctr->bltmp[3] = 1; if (!ctr_BCC_block(ctr, ctr->KX + 16, ctr->bltmp)) return 0; if (ctr->keylen != 16) { ctr->bltmp[3] = 2; if (!ctr_BCC_block(ctr, ctr->KX + 32, ctr->bltmp)) return 0; } return 1; } /* * Process several blocks into BCC algorithm, some possibly partial */ __owur static int ctr_BCC_update(RAND_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) { if (in == NULL || inlen == 0) return 1; /* If we have partial block handle it first */ if (ctr->bltmp_pos) { size_t left = 16 - ctr->bltmp_pos; /* If we now have a complete block process it */ if (inlen >= left) { memcpy(ctr->bltmp + ctr->bltmp_pos, in, left); if (!ctr_BCC_blocks(ctr, ctr->bltmp)) return 0; ctr->bltmp_pos = 0; inlen -= left; in += left; } } /* Process zero or more complete blocks */ for (; inlen >= 16; in += 16, inlen -= 16) { if (!ctr_BCC_blocks(ctr, in)) return 0; } /* Copy any remaining partial block to the temporary buffer */ if (inlen > 0) { memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen); ctr->bltmp_pos += inlen; } return 1; } __owur static int ctr_BCC_final(RAND_DRBG_CTR *ctr) { if (ctr->bltmp_pos) { memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos); if (!ctr_BCC_blocks(ctr, ctr->bltmp)) return 0; } return 1; } __owur static int ctr_df(RAND_DRBG_CTR *ctr, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *in3, size_t in3len) { static unsigned char c80 = 0x80; size_t inlen; unsigned char *p = ctr->bltmp; int outlen = AES_BLOCK_SIZE; if (!ctr_BCC_init(ctr)) return 0; if (in1 == NULL) in1len = 0; if (in2 == NULL) in2len = 0; if (in3 == NULL) in3len = 0; inlen = in1len + in2len + in3len; /* Initialise L||N in temporary block */ *p++ = (inlen >> 24) & 0xff; *p++ = (inlen >> 16) & 0xff; *p++ = (inlen >> 8) & 0xff; *p++ = inlen & 0xff; /* NB keylen is at most 32 bytes */ *p++ = 0; *p++ = 0; *p++ = 0; *p = (unsigned char)((ctr->keylen + 16) & 0xff); ctr->bltmp_pos = 8; if (!ctr_BCC_update(ctr, in1, in1len) || !ctr_BCC_update(ctr, in2, in2len) || !ctr_BCC_update(ctr, in3, in3len) || !ctr_BCC_update(ctr, &c80, 1) || !ctr_BCC_final(ctr)) return 0; /* Set up key K */ if (!EVP_CipherInit_ex(ctr->ctx, ctr->cipher, NULL, ctr->KX, NULL, 1)) return 0; /* X follows key K */ if (!EVP_CipherUpdate(ctr->ctx, ctr->KX, &outlen, ctr->KX + ctr->keylen, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; if (!EVP_CipherUpdate(ctr->ctx, ctr->KX + 16, &outlen, ctr->KX, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; if (ctr->keylen != 16) if (!EVP_CipherUpdate(ctr->ctx, ctr->KX + 32, &outlen, ctr->KX + 16, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; return 1; } /* * NB the no-df Update in SP800-90A specifies a constant input length * of seedlen, however other uses of this algorithm pad the input with * zeroes if necessary and have up to two parameters XORed together, * so we handle both cases in this function instead. */ __owur static int ctr_update(RAND_DRBG *drbg, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *nonce, size_t noncelen) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; int outlen = AES_BLOCK_SIZE; /* correct key is already set up. */ inc_128(ctr); if (!EVP_CipherUpdate(ctr->ctx, ctr->K, &outlen, ctr->V, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; /* If keylen longer than 128 bits need extra encrypt */ if (ctr->keylen != 16) { inc_128(ctr); if (!EVP_CipherUpdate(ctr->ctx, ctr->K+16, &outlen, ctr->V, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; } inc_128(ctr); if (!EVP_CipherUpdate(ctr->ctx, ctr->V, &outlen, ctr->V, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; /* If 192 bit key part of V is on end of K */ if (ctr->keylen == 24) { memcpy(ctr->V + 8, ctr->V, 8); memcpy(ctr->V, ctr->K + 24, 8); } if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { /* If no input reuse existing derived value */ if (in1 != NULL || nonce != NULL || in2 != NULL) if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len)) return 0; /* If this a reuse input in1len != 0 */ if (in1len) ctr_XOR(ctr, ctr->KX, drbg->seedlen); } else { ctr_XOR(ctr, in1, in1len); ctr_XOR(ctr, in2, in2len); } if (!EVP_CipherInit_ex(ctr->ctx, ctr->cipher, NULL, ctr->K, NULL, 1)) return 0; return 1; } __owur static int drbg_ctr_instantiate(RAND_DRBG *drbg, const unsigned char *entropy, size_t entropylen, const unsigned char *nonce, size_t noncelen, const unsigned char *pers, size_t perslen) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; if (entropy == NULL) return 0; memset(ctr->K, 0, sizeof(ctr->K)); memset(ctr->V, 0, sizeof(ctr->V)); if (!EVP_CipherInit_ex(ctr->ctx, ctr->cipher, NULL, ctr->K, NULL, 1)) return 0; if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen)) return 0; return 1; } __owur static int drbg_ctr_reseed(RAND_DRBG *drbg, const unsigned char *entropy, size_t entropylen, const unsigned char *adin, size_t adinlen) { if (entropy == NULL) return 0; if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0)) return 0; return 1; } __owur static int drbg_ctr_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen, const unsigned char *adin, size_t adinlen) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; if (adin != NULL && adinlen != 0) { if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) return 0; /* This means we reuse derived value */ if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { adin = NULL; adinlen = 1; } } else { adinlen = 0; } for ( ; ; ) { int outl = AES_BLOCK_SIZE; inc_128(ctr); if (outlen < 16) { /* Use K as temp space as it will be updated */ if (!EVP_CipherUpdate(ctr->ctx, ctr->K, &outl, ctr->V, AES_BLOCK_SIZE) || outl != AES_BLOCK_SIZE) return 0; memcpy(out, ctr->K, outlen); break; } if (!EVP_CipherUpdate(ctr->ctx, out, &outl, ctr->V, AES_BLOCK_SIZE) || outl != AES_BLOCK_SIZE) return 0; out += 16; outlen -= 16; if (outlen == 0) break; } if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) return 0; return 1; } static int drbg_ctr_uninstantiate(RAND_DRBG *drbg) { EVP_CIPHER_CTX_free(drbg->data.ctr.ctx); EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_df); OPENSSL_cleanse(&drbg->data.ctr, sizeof(drbg->data.ctr)); return 1; } static RAND_DRBG_METHOD drbg_ctr_meth = { drbg_ctr_instantiate, drbg_ctr_reseed, drbg_ctr_generate, drbg_ctr_uninstantiate }; int drbg_ctr_init(RAND_DRBG *drbg) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; size_t keylen; switch (drbg->type) { default: /* This can't happen, but silence the compiler warning. */ return 0; case NID_aes_128_ctr: keylen = 16; ctr->cipher = EVP_aes_128_ecb(); break; case NID_aes_192_ctr: keylen = 24; ctr->cipher = EVP_aes_192_ecb(); break; case NID_aes_256_ctr: keylen = 32; ctr->cipher = EVP_aes_256_ecb(); break; } drbg->meth = &drbg_ctr_meth; ctr->keylen = keylen; if (ctr->ctx == NULL) ctr->ctx = EVP_CIPHER_CTX_new(); if (ctr->ctx == NULL) return 0; drbg->strength = keylen * 8; drbg->seedlen = keylen + 16; if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { /* df initialisation */ static const unsigned char df_key[32] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }; if (ctr->ctx_df == NULL) ctr->ctx_df = EVP_CIPHER_CTX_new(); if (ctr->ctx_df == NULL) return 0; /* Set key schedule for df_key */ if (!EVP_CipherInit_ex(ctr->ctx_df, ctr->cipher, NULL, df_key, NULL, 1)) return 0; drbg->min_entropylen = ctr->keylen; drbg->max_entropylen = DRBG_MAX_LENGTH; drbg->min_noncelen = drbg->min_entropylen / 2; drbg->max_noncelen = DRBG_MAX_LENGTH; drbg->max_perslen = DRBG_MAX_LENGTH; drbg->max_adinlen = DRBG_MAX_LENGTH; } else { drbg->min_entropylen = drbg->seedlen; drbg->max_entropylen = drbg->seedlen; /* Nonce not used */ drbg->min_noncelen = 0; drbg->max_noncelen = 0; drbg->max_perslen = drbg->seedlen; drbg->max_adinlen = drbg->seedlen; } drbg->max_request = 1 << 16; return 1; } openssl-1.1.1f/crypto/rand/drbg_lib.c000066400000000000000000001017361364063235100175320ustar00rootroot00000000000000/* * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "rand_local.h" #include "internal/thread_once.h" #include "crypto/rand.h" #include "crypto/cryptlib.h" /* * Support framework for NIST SP 800-90A DRBG * * See manual page RAND_DRBG(7) for a general overview. * * The OpenSSL model is to have new and free functions, and that new * does all initialization. That is not the NIST model, which has * instantiation and un-instantiate, and re-use within a new/free * lifecycle. (No doubt this comes from the desire to support hardware * DRBG, where allocation of resources on something like an HSM is * a much bigger deal than just re-setting an allocated resource.) */ /* * The three shared DRBG instances * * There are three shared DRBG instances: , , and . */ /* * The DRBG * * Not used directly by the application, only for reseeding the two other * DRBGs. It reseeds itself by pulling either randomness from os entropy * sources or by consuming randomness which was added by RAND_add(). * * The DRBG is a global instance which is accessed concurrently by * all threads. The necessary locking is managed automatically by its child * DRBG instances during reseeding. */ static RAND_DRBG *master_drbg; /* * The DRBG * * Used by default for generating random bytes using RAND_bytes(). * * The DRBG is thread-local, i.e., there is one instance per thread. */ static CRYPTO_THREAD_LOCAL public_drbg; /* * The DRBG * * Used by default for generating private keys using RAND_priv_bytes() * * The DRBG is thread-local, i.e., there is one instance per thread. */ static CRYPTO_THREAD_LOCAL private_drbg; /* NIST SP 800-90A DRBG recommends the use of a personalization string. */ static const char ossl_pers_string[] = "OpenSSL NIST SP 800-90A DRBG"; static CRYPTO_ONCE rand_drbg_init = CRYPTO_ONCE_STATIC_INIT; static int rand_drbg_type = RAND_DRBG_TYPE; static unsigned int rand_drbg_flags = RAND_DRBG_FLAGS; static unsigned int master_reseed_interval = MASTER_RESEED_INTERVAL; static unsigned int slave_reseed_interval = SLAVE_RESEED_INTERVAL; static time_t master_reseed_time_interval = MASTER_RESEED_TIME_INTERVAL; static time_t slave_reseed_time_interval = SLAVE_RESEED_TIME_INTERVAL; /* A logical OR of all used DRBG flag bits (currently there is only one) */ static const unsigned int rand_drbg_used_flags = RAND_DRBG_FLAG_CTR_NO_DF; static RAND_DRBG *drbg_setup(RAND_DRBG *parent); static RAND_DRBG *rand_drbg_new(int secure, int type, unsigned int flags, RAND_DRBG *parent); /* * Set/initialize |drbg| to be of type |type|, with optional |flags|. * * If |type| and |flags| are zero, use the defaults * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_set(RAND_DRBG *drbg, int type, unsigned int flags) { int ret = 1; if (type == 0 && flags == 0) { type = rand_drbg_type; flags = rand_drbg_flags; } /* If set is called multiple times - clear the old one */ if (drbg->type != 0 && (type != drbg->type || flags != drbg->flags)) { drbg->meth->uninstantiate(drbg); rand_pool_free(drbg->adin_pool); drbg->adin_pool = NULL; } drbg->state = DRBG_UNINITIALISED; drbg->flags = flags; drbg->type = type; switch (type) { default: drbg->type = 0; drbg->flags = 0; drbg->meth = NULL; RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_UNSUPPORTED_DRBG_TYPE); return 0; case 0: /* Uninitialized; that's okay. */ drbg->meth = NULL; return 1; case NID_aes_128_ctr: case NID_aes_192_ctr: case NID_aes_256_ctr: ret = drbg_ctr_init(drbg); break; } if (ret == 0) { drbg->state = DRBG_ERROR; RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_ERROR_INITIALISING_DRBG); } return ret; } /* * Set/initialize default |type| and |flag| for new drbg instances. * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_set_defaults(int type, unsigned int flags) { int ret = 1; switch (type) { default: RANDerr(RAND_F_RAND_DRBG_SET_DEFAULTS, RAND_R_UNSUPPORTED_DRBG_TYPE); return 0; case NID_aes_128_ctr: case NID_aes_192_ctr: case NID_aes_256_ctr: break; } if ((flags & ~rand_drbg_used_flags) != 0) { RANDerr(RAND_F_RAND_DRBG_SET_DEFAULTS, RAND_R_UNSUPPORTED_DRBG_FLAGS); return 0; } rand_drbg_type = type; rand_drbg_flags = flags; return ret; } /* * Allocate memory and initialize a new DRBG. The DRBG is allocated on * the secure heap if |secure| is nonzero and the secure heap is enabled. * The |parent|, if not NULL, will be used as random source for reseeding. * * Returns a pointer to the new DRBG instance on success, NULL on failure. */ static RAND_DRBG *rand_drbg_new(int secure, int type, unsigned int flags, RAND_DRBG *parent) { RAND_DRBG *drbg = secure ? OPENSSL_secure_zalloc(sizeof(*drbg)) : OPENSSL_zalloc(sizeof(*drbg)); if (drbg == NULL) { RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE); return NULL; } drbg->secure = secure && CRYPTO_secure_allocated(drbg); drbg->fork_id = openssl_get_fork_id(); drbg->parent = parent; if (parent == NULL) { drbg->get_entropy = rand_drbg_get_entropy; drbg->cleanup_entropy = rand_drbg_cleanup_entropy; #ifndef RAND_DRBG_GET_RANDOM_NONCE drbg->get_nonce = rand_drbg_get_nonce; drbg->cleanup_nonce = rand_drbg_cleanup_nonce; #endif drbg->reseed_interval = master_reseed_interval; drbg->reseed_time_interval = master_reseed_time_interval; } else { drbg->get_entropy = rand_drbg_get_entropy; drbg->cleanup_entropy = rand_drbg_cleanup_entropy; /* * Do not provide nonce callbacks, the child DRBGs will * obtain their nonce using random bits from the parent. */ drbg->reseed_interval = slave_reseed_interval; drbg->reseed_time_interval = slave_reseed_time_interval; } if (RAND_DRBG_set(drbg, type, flags) == 0) goto err; if (parent != NULL) { rand_drbg_lock(parent); if (drbg->strength > parent->strength) { /* * We currently don't support the algorithm from NIST SP 800-90C * 10.1.2 to use a weaker DRBG as source */ rand_drbg_unlock(parent); RANDerr(RAND_F_RAND_DRBG_NEW, RAND_R_PARENT_STRENGTH_TOO_WEAK); goto err; } rand_drbg_unlock(parent); } return drbg; err: RAND_DRBG_free(drbg); return NULL; } RAND_DRBG *RAND_DRBG_new(int type, unsigned int flags, RAND_DRBG *parent) { return rand_drbg_new(0, type, flags, parent); } RAND_DRBG *RAND_DRBG_secure_new(int type, unsigned int flags, RAND_DRBG *parent) { return rand_drbg_new(1, type, flags, parent); } /* * Uninstantiate |drbg| and free all memory. */ void RAND_DRBG_free(RAND_DRBG *drbg) { if (drbg == NULL) return; if (drbg->meth != NULL) drbg->meth->uninstantiate(drbg); rand_pool_free(drbg->adin_pool); CRYPTO_THREAD_lock_free(drbg->lock); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DRBG, drbg, &drbg->ex_data); if (drbg->secure) OPENSSL_secure_clear_free(drbg, sizeof(*drbg)); else OPENSSL_clear_free(drbg, sizeof(*drbg)); } /* * Instantiate |drbg|, after it has been initialized. Use |pers| and * |perslen| as prediction-resistance input. * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_instantiate(RAND_DRBG *drbg, const unsigned char *pers, size_t perslen) { unsigned char *nonce = NULL, *entropy = NULL; size_t noncelen = 0, entropylen = 0; size_t min_entropy = drbg->strength; size_t min_entropylen = drbg->min_entropylen; size_t max_entropylen = drbg->max_entropylen; if (perslen > drbg->max_perslen) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_PERSONALISATION_STRING_TOO_LONG); goto end; } if (drbg->meth == NULL) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_NO_DRBG_IMPLEMENTATION_SELECTED); goto end; } if (drbg->state != DRBG_UNINITIALISED) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, drbg->state == DRBG_ERROR ? RAND_R_IN_ERROR_STATE : RAND_R_ALREADY_INSTANTIATED); goto end; } drbg->state = DRBG_ERROR; /* * NIST SP800-90Ar1 section 9.1 says you can combine getting the entropy * and nonce in 1 call by increasing the entropy with 50% and increasing * the minimum length to accommodate the length of the nonce. * We do this in case a nonce is require and get_nonce is NULL. */ if (drbg->min_noncelen > 0 && drbg->get_nonce == NULL) { min_entropy += drbg->strength / 2; min_entropylen += drbg->min_noncelen; max_entropylen += drbg->max_noncelen; } drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter); if (drbg->reseed_next_counter) { drbg->reseed_next_counter++; if(!drbg->reseed_next_counter) drbg->reseed_next_counter = 1; } if (drbg->get_entropy != NULL) entropylen = drbg->get_entropy(drbg, &entropy, min_entropy, min_entropylen, max_entropylen, 0); if (entropylen < min_entropylen || entropylen > max_entropylen) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_ENTROPY); goto end; } if (drbg->min_noncelen > 0 && drbg->get_nonce != NULL) { noncelen = drbg->get_nonce(drbg, &nonce, drbg->strength / 2, drbg->min_noncelen, drbg->max_noncelen); if (noncelen < drbg->min_noncelen || noncelen > drbg->max_noncelen) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_NONCE); goto end; } } if (!drbg->meth->instantiate(drbg, entropy, entropylen, nonce, noncelen, pers, perslen)) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_INSTANTIATING_DRBG); goto end; } drbg->state = DRBG_READY; drbg->reseed_gen_counter = 1; drbg->reseed_time = time(NULL); tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter); end: if (entropy != NULL && drbg->cleanup_entropy != NULL) drbg->cleanup_entropy(drbg, entropy, entropylen); if (nonce != NULL && drbg->cleanup_nonce != NULL) drbg->cleanup_nonce(drbg, nonce, noncelen); if (drbg->state == DRBG_READY) return 1; return 0; } /* * Uninstantiate |drbg|. Must be instantiated before it can be used. * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_uninstantiate(RAND_DRBG *drbg) { if (drbg->meth == NULL) { drbg->state = DRBG_ERROR; RANDerr(RAND_F_RAND_DRBG_UNINSTANTIATE, RAND_R_NO_DRBG_IMPLEMENTATION_SELECTED); return 0; } /* Clear the entire drbg->ctr struct, then reset some important * members of the drbg->ctr struct (e.g. keysize, df_ks) to their * initial values. */ drbg->meth->uninstantiate(drbg); return RAND_DRBG_set(drbg, drbg->type, drbg->flags); } /* * Reseed |drbg|, mixing in the specified data * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_reseed(RAND_DRBG *drbg, const unsigned char *adin, size_t adinlen, int prediction_resistance) { unsigned char *entropy = NULL; size_t entropylen = 0; if (drbg->state == DRBG_ERROR) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_IN_ERROR_STATE); return 0; } if (drbg->state == DRBG_UNINITIALISED) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_NOT_INSTANTIATED); return 0; } if (adin == NULL) { adinlen = 0; } else if (adinlen > drbg->max_adinlen) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ADDITIONAL_INPUT_TOO_LONG); return 0; } drbg->state = DRBG_ERROR; drbg->reseed_next_counter = tsan_load(&drbg->reseed_prop_counter); if (drbg->reseed_next_counter) { drbg->reseed_next_counter++; if(!drbg->reseed_next_counter) drbg->reseed_next_counter = 1; } if (drbg->get_entropy != NULL) entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength, drbg->min_entropylen, drbg->max_entropylen, prediction_resistance); if (entropylen < drbg->min_entropylen || entropylen > drbg->max_entropylen) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ERROR_RETRIEVING_ENTROPY); goto end; } if (!drbg->meth->reseed(drbg, entropy, entropylen, adin, adinlen)) goto end; drbg->state = DRBG_READY; drbg->reseed_gen_counter = 1; drbg->reseed_time = time(NULL); tsan_store(&drbg->reseed_prop_counter, drbg->reseed_next_counter); end: if (entropy != NULL && drbg->cleanup_entropy != NULL) drbg->cleanup_entropy(drbg, entropy, entropylen); if (drbg->state == DRBG_READY) return 1; return 0; } /* * Restart |drbg|, using the specified entropy or additional input * * Tries its best to get the drbg instantiated by all means, * regardless of its current state. * * Optionally, a |buffer| of |len| random bytes can be passed, * which is assumed to contain at least |entropy| bits of entropy. * * If |entropy| > 0, the buffer content is used as entropy input. * * If |entropy| == 0, the buffer content is used as additional input * * Returns 1 on success, 0 on failure. * * This function is used internally only. */ int rand_drbg_restart(RAND_DRBG *drbg, const unsigned char *buffer, size_t len, size_t entropy) { int reseeded = 0; const unsigned char *adin = NULL; size_t adinlen = 0; if (drbg->seed_pool != NULL) { RANDerr(RAND_F_RAND_DRBG_RESTART, ERR_R_INTERNAL_ERROR); drbg->state = DRBG_ERROR; rand_pool_free(drbg->seed_pool); drbg->seed_pool = NULL; return 0; } if (buffer != NULL) { if (entropy > 0) { if (drbg->max_entropylen < len) { RANDerr(RAND_F_RAND_DRBG_RESTART, RAND_R_ENTROPY_INPUT_TOO_LONG); drbg->state = DRBG_ERROR; return 0; } if (entropy > 8 * len) { RANDerr(RAND_F_RAND_DRBG_RESTART, RAND_R_ENTROPY_OUT_OF_RANGE); drbg->state = DRBG_ERROR; return 0; } /* will be picked up by the rand_drbg_get_entropy() callback */ drbg->seed_pool = rand_pool_attach(buffer, len, entropy); if (drbg->seed_pool == NULL) return 0; } else { if (drbg->max_adinlen < len) { RANDerr(RAND_F_RAND_DRBG_RESTART, RAND_R_ADDITIONAL_INPUT_TOO_LONG); drbg->state = DRBG_ERROR; return 0; } adin = buffer; adinlen = len; } } /* repair error state */ if (drbg->state == DRBG_ERROR) RAND_DRBG_uninstantiate(drbg); /* repair uninitialized state */ if (drbg->state == DRBG_UNINITIALISED) { /* reinstantiate drbg */ RAND_DRBG_instantiate(drbg, (const unsigned char *) ossl_pers_string, sizeof(ossl_pers_string) - 1); /* already reseeded. prevent second reseeding below */ reseeded = (drbg->state == DRBG_READY); } /* refresh current state if entropy or additional input has been provided */ if (drbg->state == DRBG_READY) { if (adin != NULL) { /* * mix in additional input without reseeding * * Similar to RAND_DRBG_reseed(), but the provided additional * data |adin| is mixed into the current state without pulling * entropy from the trusted entropy source using get_entropy(). * This is not a reseeding in the strict sense of NIST SP 800-90A. */ drbg->meth->reseed(drbg, adin, adinlen, NULL, 0); } else if (reseeded == 0) { /* do a full reseeding if it has not been done yet above */ RAND_DRBG_reseed(drbg, NULL, 0, 0); } } rand_pool_free(drbg->seed_pool); drbg->seed_pool = NULL; return drbg->state == DRBG_READY; } /* * Generate |outlen| bytes into the buffer at |out|. Reseed if we need * to or if |prediction_resistance| is set. Additional input can be * sent in |adin| and |adinlen|. * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. * */ int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen, int prediction_resistance, const unsigned char *adin, size_t adinlen) { int fork_id; int reseed_required = 0; if (drbg->state != DRBG_READY) { /* try to recover from previous errors */ rand_drbg_restart(drbg, NULL, 0, 0); if (drbg->state == DRBG_ERROR) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_IN_ERROR_STATE); return 0; } if (drbg->state == DRBG_UNINITIALISED) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_NOT_INSTANTIATED); return 0; } } if (outlen > drbg->max_request) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG); return 0; } if (adinlen > drbg->max_adinlen) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_ADDITIONAL_INPUT_TOO_LONG); return 0; } fork_id = openssl_get_fork_id(); if (drbg->fork_id != fork_id) { drbg->fork_id = fork_id; reseed_required = 1; } if (drbg->reseed_interval > 0) { if (drbg->reseed_gen_counter >= drbg->reseed_interval) reseed_required = 1; } if (drbg->reseed_time_interval > 0) { time_t now = time(NULL); if (now < drbg->reseed_time || now - drbg->reseed_time >= drbg->reseed_time_interval) reseed_required = 1; } if (drbg->parent != NULL) { unsigned int reseed_counter = tsan_load(&drbg->reseed_prop_counter); if (reseed_counter > 0 && tsan_load(&drbg->parent->reseed_prop_counter) != reseed_counter) reseed_required = 1; } if (reseed_required || prediction_resistance) { if (!RAND_DRBG_reseed(drbg, adin, adinlen, prediction_resistance)) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_RESEED_ERROR); return 0; } adin = NULL; adinlen = 0; } if (!drbg->meth->generate(drbg, out, outlen, adin, adinlen)) { drbg->state = DRBG_ERROR; RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_GENERATE_ERROR); return 0; } drbg->reseed_gen_counter++; return 1; } /* * Generates |outlen| random bytes and stores them in |out|. It will * using the given |drbg| to generate the bytes. * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success 0 on failure. */ int RAND_DRBG_bytes(RAND_DRBG *drbg, unsigned char *out, size_t outlen) { unsigned char *additional = NULL; size_t additional_len; size_t chunk; size_t ret = 0; if (drbg->adin_pool == NULL) { if (drbg->type == 0) goto err; drbg->adin_pool = rand_pool_new(0, 0, 0, drbg->max_adinlen); if (drbg->adin_pool == NULL) goto err; } additional_len = rand_drbg_get_additional_data(drbg->adin_pool, &additional); for ( ; outlen > 0; outlen -= chunk, out += chunk) { chunk = outlen; if (chunk > drbg->max_request) chunk = drbg->max_request; ret = RAND_DRBG_generate(drbg, out, chunk, 0, additional, additional_len); if (!ret) goto err; } ret = 1; err: if (additional != NULL) rand_drbg_cleanup_additional_data(drbg->adin_pool, additional); return ret; } /* * Set the RAND_DRBG callbacks for obtaining entropy and nonce. * * Setting the callbacks is allowed only if the drbg has not been * initialized yet. Otherwise, the operation will fail. * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_set_callbacks(RAND_DRBG *drbg, RAND_DRBG_get_entropy_fn get_entropy, RAND_DRBG_cleanup_entropy_fn cleanup_entropy, RAND_DRBG_get_nonce_fn get_nonce, RAND_DRBG_cleanup_nonce_fn cleanup_nonce) { if (drbg->state != DRBG_UNINITIALISED || drbg->parent != NULL) return 0; drbg->get_entropy = get_entropy; drbg->cleanup_entropy = cleanup_entropy; drbg->get_nonce = get_nonce; drbg->cleanup_nonce = cleanup_nonce; return 1; } /* * Set the reseed interval. * * The drbg will reseed automatically whenever the number of generate * requests exceeds the given reseed interval. If the reseed interval * is 0, then this feature is disabled. * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_set_reseed_interval(RAND_DRBG *drbg, unsigned int interval) { if (interval > MAX_RESEED_INTERVAL) return 0; drbg->reseed_interval = interval; return 1; } /* * Set the reseed time interval. * * The drbg will reseed automatically whenever the time elapsed since * the last reseeding exceeds the given reseed time interval. For safety, * a reseeding will also occur if the clock has been reset to a smaller * value. * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_set_reseed_time_interval(RAND_DRBG *drbg, time_t interval) { if (interval > MAX_RESEED_TIME_INTERVAL) return 0; drbg->reseed_time_interval = interval; return 1; } /* * Set the default values for reseed (time) intervals of new DRBG instances * * The default values can be set independently for master DRBG instances * (without a parent) and slave DRBG instances (with parent). * * Returns 1 on success, 0 on failure. */ int RAND_DRBG_set_reseed_defaults( unsigned int _master_reseed_interval, unsigned int _slave_reseed_interval, time_t _master_reseed_time_interval, time_t _slave_reseed_time_interval ) { if (_master_reseed_interval > MAX_RESEED_INTERVAL || _slave_reseed_interval > MAX_RESEED_INTERVAL) return 0; if (_master_reseed_time_interval > MAX_RESEED_TIME_INTERVAL || _slave_reseed_time_interval > MAX_RESEED_TIME_INTERVAL) return 0; master_reseed_interval = _master_reseed_interval; slave_reseed_interval = _slave_reseed_interval; master_reseed_time_interval = _master_reseed_time_interval; slave_reseed_time_interval = _slave_reseed_time_interval; return 1; } /* * Locks the given drbg. Locking a drbg which does not have locking * enabled is considered a successful no-op. * * Returns 1 on success, 0 on failure. */ int rand_drbg_lock(RAND_DRBG *drbg) { if (drbg->lock != NULL) return CRYPTO_THREAD_write_lock(drbg->lock); return 1; } /* * Unlocks the given drbg. Unlocking a drbg which does not have locking * enabled is considered a successful no-op. * * Returns 1 on success, 0 on failure. */ int rand_drbg_unlock(RAND_DRBG *drbg) { if (drbg->lock != NULL) return CRYPTO_THREAD_unlock(drbg->lock); return 1; } /* * Enables locking for the given drbg * * Locking can only be enabled if the random generator * is in the uninitialized state. * * Returns 1 on success, 0 on failure. */ int rand_drbg_enable_locking(RAND_DRBG *drbg) { if (drbg->state != DRBG_UNINITIALISED) { RANDerr(RAND_F_RAND_DRBG_ENABLE_LOCKING, RAND_R_DRBG_ALREADY_INITIALIZED); return 0; } if (drbg->lock == NULL) { if (drbg->parent != NULL && drbg->parent->lock == NULL) { RANDerr(RAND_F_RAND_DRBG_ENABLE_LOCKING, RAND_R_PARENT_LOCKING_NOT_ENABLED); return 0; } drbg->lock = CRYPTO_THREAD_lock_new(); if (drbg->lock == NULL) { RANDerr(RAND_F_RAND_DRBG_ENABLE_LOCKING, RAND_R_FAILED_TO_CREATE_LOCK); return 0; } } return 1; } /* * Get and set the EXDATA */ int RAND_DRBG_set_ex_data(RAND_DRBG *drbg, int idx, void *arg) { return CRYPTO_set_ex_data(&drbg->ex_data, idx, arg); } void *RAND_DRBG_get_ex_data(const RAND_DRBG *drbg, int idx) { return CRYPTO_get_ex_data(&drbg->ex_data, idx); } /* * The following functions provide a RAND_METHOD that works on the * global DRBG. They lock. */ /* * Allocates a new global DRBG on the secure heap (if enabled) and * initializes it with default settings. * * Returns a pointer to the new DRBG instance on success, NULL on failure. */ static RAND_DRBG *drbg_setup(RAND_DRBG *parent) { RAND_DRBG *drbg; drbg = RAND_DRBG_secure_new(rand_drbg_type, rand_drbg_flags, parent); if (drbg == NULL) return NULL; /* Only the master DRBG needs to have a lock */ if (parent == NULL && rand_drbg_enable_locking(drbg) == 0) goto err; /* enable seed propagation */ tsan_store(&drbg->reseed_prop_counter, 1); /* * Ignore instantiation error to support just-in-time instantiation. * * The state of the drbg will be checked in RAND_DRBG_generate() and * an automatic recovery is attempted. */ (void)RAND_DRBG_instantiate(drbg, (const unsigned char *) ossl_pers_string, sizeof(ossl_pers_string) - 1); return drbg; err: RAND_DRBG_free(drbg); return NULL; } /* * Initialize the global DRBGs on first use. * Returns 1 on success, 0 on failure. */ DEFINE_RUN_ONCE_STATIC(do_rand_drbg_init) { /* * ensure that libcrypto is initialized, otherwise the * DRBG locks are not cleaned up properly */ if (!OPENSSL_init_crypto(0, NULL)) return 0; if (!CRYPTO_THREAD_init_local(&private_drbg, NULL)) return 0; if (!CRYPTO_THREAD_init_local(&public_drbg, NULL)) goto err1; master_drbg = drbg_setup(NULL); if (master_drbg == NULL) goto err2; return 1; err2: CRYPTO_THREAD_cleanup_local(&public_drbg); err1: CRYPTO_THREAD_cleanup_local(&private_drbg); return 0; } /* Clean up the global DRBGs before exit */ void rand_drbg_cleanup_int(void) { if (master_drbg != NULL) { RAND_DRBG_free(master_drbg); master_drbg = NULL; CRYPTO_THREAD_cleanup_local(&private_drbg); CRYPTO_THREAD_cleanup_local(&public_drbg); } } void drbg_delete_thread_state(void) { RAND_DRBG *drbg; drbg = CRYPTO_THREAD_get_local(&public_drbg); CRYPTO_THREAD_set_local(&public_drbg, NULL); RAND_DRBG_free(drbg); drbg = CRYPTO_THREAD_get_local(&private_drbg); CRYPTO_THREAD_set_local(&private_drbg, NULL); RAND_DRBG_free(drbg); } /* Implements the default OpenSSL RAND_bytes() method */ static int drbg_bytes(unsigned char *out, int count) { int ret; RAND_DRBG *drbg = RAND_DRBG_get0_public(); if (drbg == NULL) return 0; ret = RAND_DRBG_bytes(drbg, out, count); return ret; } /* * Calculates the minimum length of a full entropy buffer * which is necessary to seed (i.e. instantiate) the DRBG * successfully. */ size_t rand_drbg_seedlen(RAND_DRBG *drbg) { /* * If no os entropy source is available then RAND_seed(buffer, bufsize) * is expected to succeed if and only if the buffer length satisfies * the following requirements, which follow from the calculations * in RAND_DRBG_instantiate(). */ size_t min_entropy = drbg->strength; size_t min_entropylen = drbg->min_entropylen; /* * Extra entropy for the random nonce in the absence of a * get_nonce callback, see comment in RAND_DRBG_instantiate(). */ if (drbg->min_noncelen > 0 && drbg->get_nonce == NULL) { min_entropy += drbg->strength / 2; min_entropylen += drbg->min_noncelen; } /* * Convert entropy requirement from bits to bytes * (dividing by 8 without rounding upwards, because * all entropy requirements are divisible by 8). */ min_entropy >>= 3; /* Return a value that satisfies both requirements */ return min_entropy > min_entropylen ? min_entropy : min_entropylen; } /* Implements the default OpenSSL RAND_add() method */ static int drbg_add(const void *buf, int num, double randomness) { int ret = 0; RAND_DRBG *drbg = RAND_DRBG_get0_master(); size_t buflen; size_t seedlen; if (drbg == NULL) return 0; if (num < 0 || randomness < 0.0) return 0; rand_drbg_lock(drbg); seedlen = rand_drbg_seedlen(drbg); buflen = (size_t)num; if (buflen < seedlen || randomness < (double) seedlen) { #if defined(OPENSSL_RAND_SEED_NONE) /* * If no os entropy source is available, a reseeding will fail * inevitably. So we use a trick to mix the buffer contents into * the DRBG state without forcing a reseeding: we generate a * dummy random byte, using the buffer content as additional data. * Note: This won't work with RAND_DRBG_FLAG_CTR_NO_DF. */ unsigned char dummy[1]; ret = RAND_DRBG_generate(drbg, dummy, sizeof(dummy), 0, buf, buflen); rand_drbg_unlock(drbg); return ret; #else /* * If an os entropy source is available then we declare the buffer content * as additional data by setting randomness to zero and trigger a regular * reseeding. */ randomness = 0.0; #endif } if (randomness > (double)seedlen) { /* * The purpose of this check is to bound |randomness| by a * relatively small value in order to prevent an integer * overflow when multiplying by 8 in the rand_drbg_restart() * call below. Note that randomness is measured in bytes, * not bits, so this value corresponds to eight times the * security strength. */ randomness = (double)seedlen; } ret = rand_drbg_restart(drbg, buf, buflen, (size_t)(8 * randomness)); rand_drbg_unlock(drbg); return ret; } /* Implements the default OpenSSL RAND_seed() method */ static int drbg_seed(const void *buf, int num) { return drbg_add(buf, num, num); } /* Implements the default OpenSSL RAND_status() method */ static int drbg_status(void) { int ret; RAND_DRBG *drbg = RAND_DRBG_get0_master(); if (drbg == NULL) return 0; rand_drbg_lock(drbg); ret = drbg->state == DRBG_READY ? 1 : 0; rand_drbg_unlock(drbg); return ret; } /* * Get the master DRBG. * Returns pointer to the DRBG on success, NULL on failure. * */ RAND_DRBG *RAND_DRBG_get0_master(void) { if (!RUN_ONCE(&rand_drbg_init, do_rand_drbg_init)) return NULL; return master_drbg; } /* * Get the public DRBG. * Returns pointer to the DRBG on success, NULL on failure. */ RAND_DRBG *RAND_DRBG_get0_public(void) { RAND_DRBG *drbg; if (!RUN_ONCE(&rand_drbg_init, do_rand_drbg_init)) return NULL; drbg = CRYPTO_THREAD_get_local(&public_drbg); if (drbg == NULL) { if (!ossl_init_thread_start(OPENSSL_INIT_THREAD_RAND)) return NULL; drbg = drbg_setup(master_drbg); CRYPTO_THREAD_set_local(&public_drbg, drbg); } return drbg; } /* * Get the private DRBG. * Returns pointer to the DRBG on success, NULL on failure. */ RAND_DRBG *RAND_DRBG_get0_private(void) { RAND_DRBG *drbg; if (!RUN_ONCE(&rand_drbg_init, do_rand_drbg_init)) return NULL; drbg = CRYPTO_THREAD_get_local(&private_drbg); if (drbg == NULL) { if (!ossl_init_thread_start(OPENSSL_INIT_THREAD_RAND)) return NULL; drbg = drbg_setup(master_drbg); CRYPTO_THREAD_set_local(&private_drbg, drbg); } return drbg; } RAND_METHOD rand_meth = { drbg_seed, drbg_bytes, NULL, drbg_add, drbg_bytes, drbg_status }; RAND_METHOD *RAND_OpenSSL(void) { return &rand_meth; } openssl-1.1.1f/crypto/rand/rand_egd.c000066400000000000000000000067421364063235100175320ustar00rootroot00000000000000/* * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #ifdef OPENSSL_NO_EGD NON_EMPTY_TRANSLATION_UNIT #else # include # include # include /* * Query an EGD */ # if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_VOS) || defined(OPENSSL_SYS_UEFI) int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes) { return -1; } int RAND_egd(const char *path) { return -1; } int RAND_egd_bytes(const char *path, int bytes) { return -1; } # else # include OPENSSL_UNISTD # include # include # include # ifndef NO_SYS_UN_H # ifdef OPENSSL_SYS_VXWORKS # include # else # include # endif # else struct sockaddr_un { short sun_family; /* AF_UNIX */ char sun_path[108]; /* path name (gag) */ }; # endif /* NO_SYS_UN_H */ # include # include int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes) { FILE *fp = NULL; struct sockaddr_un addr; int mybuffer, ret = -1, i, numbytes, fd; unsigned char tempbuf[255]; if (bytes > (int)sizeof(tempbuf)) return -1; /* Make socket. */ memset(&addr, 0, sizeof(addr)); addr.sun_family = AF_UNIX; if (strlen(path) >= sizeof(addr.sun_path)) return -1; strcpy(addr.sun_path, path); i = offsetof(struct sockaddr_un, sun_path) + strlen(path); fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd == -1 || (fp = fdopen(fd, "r+")) == NULL) return -1; setbuf(fp, NULL); /* Try to connect */ for ( ; ; ) { if (connect(fd, (struct sockaddr *)&addr, i) == 0) break; # ifdef EISCONN if (errno == EISCONN) break; # endif switch (errno) { # ifdef EINTR case EINTR: # endif # ifdef EAGAIN case EAGAIN: # endif # ifdef EINPROGRESS case EINPROGRESS: # endif # ifdef EALREADY case EALREADY: # endif /* No error, try again */ break; default: ret = -1; goto err; } } /* Make request, see how many bytes we can get back. */ tempbuf[0] = 1; tempbuf[1] = bytes; if (fwrite(tempbuf, sizeof(char), 2, fp) != 2 || fflush(fp) == EOF) goto err; if (fread(tempbuf, sizeof(char), 1, fp) != 1 || tempbuf[0] == 0) goto err; numbytes = tempbuf[0]; /* Which buffer are we using? */ mybuffer = buf == NULL; if (mybuffer) buf = tempbuf; /* Read bytes. */ i = fread(buf, sizeof(char), numbytes, fp); if (i < numbytes) goto err; ret = numbytes; if (mybuffer) RAND_add(tempbuf, i, i); err: if (fp != NULL) fclose(fp); return ret; } int RAND_egd_bytes(const char *path, int bytes) { int num; num = RAND_query_egd_bytes(path, NULL, bytes); if (num < 0) return -1; if (RAND_status() != 1) return -1; return num; } int RAND_egd(const char *path) { return RAND_egd_bytes(path, 255); } # endif #endif openssl-1.1.1f/crypto/rand/rand_err.c000066400000000000000000000146431364063235100175620ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA RAND_str_functs[] = { {ERR_PACK(ERR_LIB_RAND, RAND_F_DATA_COLLECT_METHOD, 0), "data_collect_method"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_DRBG_BYTES, 0), "drbg_bytes"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_DRBG_GET_ENTROPY, 0), "drbg_get_entropy"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_DRBG_SETUP, 0), "drbg_setup"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_GET_ENTROPY, 0), "get_entropy"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_BYTES, 0), "RAND_bytes"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_ENABLE_LOCKING, 0), "rand_drbg_enable_locking"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_GENERATE, 0), "RAND_DRBG_generate"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_GET_ENTROPY, 0), "rand_drbg_get_entropy"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_GET_NONCE, 0), "rand_drbg_get_nonce"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_INSTANTIATE, 0), "RAND_DRBG_instantiate"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_NEW, 0), "RAND_DRBG_new"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_RESEED, 0), "RAND_DRBG_reseed"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_RESTART, 0), "rand_drbg_restart"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_SET, 0), "RAND_DRBG_set"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_SET_DEFAULTS, 0), "RAND_DRBG_set_defaults"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_UNINSTANTIATE, 0), "RAND_DRBG_uninstantiate"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_LOAD_FILE, 0), "RAND_load_file"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ACQUIRE_ENTROPY, 0), "rand_pool_acquire_entropy"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ADD, 0), "rand_pool_add"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ADD_BEGIN, 0), "rand_pool_add_begin"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ADD_END, 0), "rand_pool_add_end"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ATTACH, 0), "rand_pool_attach"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_BYTES_NEEDED, 0), "rand_pool_bytes_needed"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_GROW, 0), "rand_pool_grow"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_NEW, 0), "rand_pool_new"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_PSEUDO_BYTES, 0), "RAND_pseudo_bytes"}, {ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_WRITE_FILE, 0), "RAND_write_file"}, {0, NULL} }; static const ERR_STRING_DATA RAND_str_reasons[] = { {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ADDITIONAL_INPUT_TOO_LONG), "additional input too long"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ALREADY_INSTANTIATED), "already instantiated"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ARGUMENT_OUT_OF_RANGE), "argument out of range"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_CANNOT_OPEN_FILE), "Cannot open file"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_DRBG_ALREADY_INITIALIZED), "drbg already initialized"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_DRBG_NOT_INITIALISED), "drbg not initialised"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ENTROPY_INPUT_TOO_LONG), "entropy input too long"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ENTROPY_OUT_OF_RANGE), "entropy out of range"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_ENTROPY_POOL_WAS_IGNORED), "error entropy pool was ignored"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_INITIALISING_DRBG), "error initialising drbg"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_INSTANTIATING_DRBG), "error instantiating drbg"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_RETRIEVING_ADDITIONAL_INPUT), "error retrieving additional input"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_RETRIEVING_ENTROPY), "error retrieving entropy"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_RETRIEVING_NONCE), "error retrieving nonce"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_FAILED_TO_CREATE_LOCK), "failed to create lock"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_FUNC_NOT_IMPLEMENTED), "Function not implemented"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_FWRITE_ERROR), "Error writing file"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_GENERATE_ERROR), "generate error"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_INTERNAL_ERROR), "internal error"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_IN_ERROR_STATE), "in error state"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_NOT_A_REGULAR_FILE), "Not a regular file"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_NOT_INSTANTIATED), "not instantiated"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_NO_DRBG_IMPLEMENTATION_SELECTED), "no drbg implementation selected"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_PARENT_LOCKING_NOT_ENABLED), "parent locking not enabled"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_PARENT_STRENGTH_TOO_WEAK), "parent strength too weak"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_PERSONALISATION_STRING_TOO_LONG), "personalisation string too long"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED), "prediction resistance not supported"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_PRNG_NOT_SEEDED), "PRNG not seeded"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_RANDOM_POOL_OVERFLOW), "random pool overflow"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_RANDOM_POOL_UNDERFLOW), "random pool underflow"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG), "request too large for drbg"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_RESEED_ERROR), "reseed error"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_SELFTEST_FAILURE), "selftest failure"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_TOO_LITTLE_NONCE_REQUESTED), "too little nonce requested"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_TOO_MUCH_NONCE_REQUESTED), "too much nonce requested"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_UNSUPPORTED_DRBG_FLAGS), "unsupported drbg flags"}, {ERR_PACK(ERR_LIB_RAND, 0, RAND_R_UNSUPPORTED_DRBG_TYPE), "unsupported drbg type"}, {0, NULL} }; #endif int ERR_load_RAND_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(RAND_str_functs[0].error) == NULL) { ERR_load_strings_const(RAND_str_functs); ERR_load_strings_const(RAND_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/rand/rand_lib.c000066400000000000000000000645651364063235100175500ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include "crypto/rand.h" #include #include "internal/thread_once.h" #include "rand_local.h" #include "e_os.h" #ifndef OPENSSL_NO_ENGINE /* non-NULL if default_RAND_meth is ENGINE-provided */ static ENGINE *funct_ref; static CRYPTO_RWLOCK *rand_engine_lock; #endif static CRYPTO_RWLOCK *rand_meth_lock; static const RAND_METHOD *default_RAND_meth; static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT; static CRYPTO_RWLOCK *rand_nonce_lock; static int rand_nonce_count; static int rand_inited = 0; #ifdef OPENSSL_RAND_SEED_RDTSC /* * IMPORTANT NOTE: It is not currently possible to use this code * because we are not sure about the amount of randomness it provides. * Some SP900 tests have been run, but there is internal skepticism. * So for now this code is not used. */ # error "RDTSC enabled? Should not be possible!" /* * Acquire entropy from high-speed clock * * Since we get some randomness from the low-order bits of the * high-speed clock, it can help. * * Returns the total entropy count, if it exceeds the requested * entropy count. Otherwise, returns an entropy count of 0. */ size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool) { unsigned char c; int i; if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) { for (i = 0; i < TSC_READ_COUNT; i++) { c = (unsigned char)(OPENSSL_rdtsc() & 0xFF); rand_pool_add(pool, &c, 1, 4); } } return rand_pool_entropy_available(pool); } #endif #ifdef OPENSSL_RAND_SEED_RDCPU size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len); size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len); extern unsigned int OPENSSL_ia32cap_P[]; /* * Acquire entropy using Intel-specific cpu instructions * * Uses the RDSEED instruction if available, otherwise uses * RDRAND if available. * * For the differences between RDSEED and RDRAND, and why RDSEED * is the preferred choice, see https://goo.gl/oK3KcN * * Returns the total entropy count, if it exceeds the requested * entropy count. Otherwise, returns an entropy count of 0. */ size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool) { size_t bytes_needed; unsigned char *buffer; bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); if (bytes_needed > 0) { buffer = rand_pool_add_begin(pool, bytes_needed); if (buffer != NULL) { /* Whichever comes first, use RDSEED, RDRAND or nothing */ if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) { if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed) == bytes_needed) { rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); } } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) { if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed) == bytes_needed) { rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); } } else { rand_pool_add_end(pool, 0, 0); } } } return rand_pool_entropy_available(pool); } #endif /* * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks()) * * If the DRBG has a parent, then the required amount of entropy input * is fetched using the parent's RAND_DRBG_generate(). * * Otherwise, the entropy is polled from the system entropy sources * using rand_pool_acquire_entropy(). * * If a random pool has been added to the DRBG using RAND_add(), then * its entropy will be used up first. */ size_t rand_drbg_get_entropy(RAND_DRBG *drbg, unsigned char **pout, int entropy, size_t min_len, size_t max_len, int prediction_resistance) { size_t ret = 0; size_t entropy_available = 0; RAND_POOL *pool; if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) { /* * We currently don't support the algorithm from NIST SP 800-90C * 10.1.2 to use a weaker DRBG as source */ RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK); return 0; } if (drbg->seed_pool != NULL) { pool = drbg->seed_pool; pool->entropy_requested = entropy; } else { pool = rand_pool_new(entropy, drbg->secure, min_len, max_len); if (pool == NULL) return 0; } if (drbg->parent != NULL) { size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed); if (buffer != NULL) { size_t bytes = 0; /* * Get random data from parent. Include our address as additional input, * in order to provide some additional distinction between different * DRBG child instances. * Our lock is already held, but we need to lock our parent before * generating bits from it. (Note: taking the lock will be a no-op * if locking if drbg->parent->lock == NULL.) */ rand_drbg_lock(drbg->parent); if (RAND_DRBG_generate(drbg->parent, buffer, bytes_needed, prediction_resistance, (unsigned char *)&drbg, sizeof(drbg)) != 0) bytes = bytes_needed; drbg->reseed_next_counter = tsan_load(&drbg->parent->reseed_prop_counter); rand_drbg_unlock(drbg->parent); rand_pool_add_end(pool, bytes, 8 * bytes); entropy_available = rand_pool_entropy_available(pool); } } else { if (prediction_resistance) { /* * We don't have any entropy sources that comply with the NIST * standard to provide prediction resistance (see NIST SP 800-90C, * Section 5.4). */ RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED); goto err; } /* Get entropy by polling system entropy sources. */ entropy_available = rand_pool_acquire_entropy(pool); } if (entropy_available > 0) { ret = rand_pool_length(pool); *pout = rand_pool_detach(pool); } err: if (drbg->seed_pool == NULL) rand_pool_free(pool); return ret; } /* * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks()) * */ void rand_drbg_cleanup_entropy(RAND_DRBG *drbg, unsigned char *out, size_t outlen) { if (drbg->seed_pool == NULL) { if (drbg->secure) OPENSSL_secure_clear_free(out, outlen); else OPENSSL_clear_free(out, outlen); } } /* * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks()) * */ size_t rand_drbg_get_nonce(RAND_DRBG *drbg, unsigned char **pout, int entropy, size_t min_len, size_t max_len) { size_t ret = 0; RAND_POOL *pool; struct { void * instance; int count; } data; memset(&data, 0, sizeof(data)); pool = rand_pool_new(0, 0, min_len, max_len); if (pool == NULL) return 0; if (rand_pool_add_nonce_data(pool) == 0) goto err; data.instance = drbg; CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock); if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0) goto err; ret = rand_pool_length(pool); *pout = rand_pool_detach(pool); err: rand_pool_free(pool); return ret; } /* * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks()) * */ void rand_drbg_cleanup_nonce(RAND_DRBG *drbg, unsigned char *out, size_t outlen) { OPENSSL_clear_free(out, outlen); } /* * Generate additional data that can be used for the drbg. The data does * not need to contain entropy, but it's useful if it contains at least * some bits that are unpredictable. * * Returns 0 on failure. * * On success it allocates a buffer at |*pout| and returns the length of * the data. The buffer should get freed using OPENSSL_secure_clear_free(). */ size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout) { size_t ret = 0; if (rand_pool_add_additional_data(pool) == 0) goto err; ret = rand_pool_length(pool); *pout = rand_pool_detach(pool); err: return ret; } void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out) { rand_pool_reattach(pool, out); } DEFINE_RUN_ONCE_STATIC(do_rand_init) { #ifndef OPENSSL_NO_ENGINE rand_engine_lock = CRYPTO_THREAD_lock_new(); if (rand_engine_lock == NULL) return 0; #endif rand_meth_lock = CRYPTO_THREAD_lock_new(); if (rand_meth_lock == NULL) goto err1; rand_nonce_lock = CRYPTO_THREAD_lock_new(); if (rand_nonce_lock == NULL) goto err2; if (!rand_pool_init()) goto err3; rand_inited = 1; return 1; err3: CRYPTO_THREAD_lock_free(rand_nonce_lock); rand_nonce_lock = NULL; err2: CRYPTO_THREAD_lock_free(rand_meth_lock); rand_meth_lock = NULL; err1: #ifndef OPENSSL_NO_ENGINE CRYPTO_THREAD_lock_free(rand_engine_lock); rand_engine_lock = NULL; #endif return 0; } void rand_cleanup_int(void) { const RAND_METHOD *meth = default_RAND_meth; if (!rand_inited) return; if (meth != NULL && meth->cleanup != NULL) meth->cleanup(); RAND_set_rand_method(NULL); rand_pool_cleanup(); #ifndef OPENSSL_NO_ENGINE CRYPTO_THREAD_lock_free(rand_engine_lock); rand_engine_lock = NULL; #endif CRYPTO_THREAD_lock_free(rand_meth_lock); rand_meth_lock = NULL; CRYPTO_THREAD_lock_free(rand_nonce_lock); rand_nonce_lock = NULL; rand_inited = 0; } /* * RAND_close_seed_files() ensures that any seed file descriptors are * closed after use. */ void RAND_keep_random_devices_open(int keep) { if (RUN_ONCE(&rand_init, do_rand_init)) rand_pool_keep_random_devices_open(keep); } /* * RAND_poll() reseeds the default RNG using random input * * The random input is obtained from polling various entropy * sources which depend on the operating system and are * configurable via the --with-rand-seed configure option. */ int RAND_poll(void) { int ret = 0; RAND_POOL *pool = NULL; const RAND_METHOD *meth = RAND_get_rand_method(); if (meth == NULL) return 0; if (meth == RAND_OpenSSL()) { /* fill random pool and seed the master DRBG */ RAND_DRBG *drbg = RAND_DRBG_get0_master(); if (drbg == NULL) return 0; rand_drbg_lock(drbg); ret = rand_drbg_restart(drbg, NULL, 0, 0); rand_drbg_unlock(drbg); return ret; } else { /* fill random pool and seed the current legacy RNG */ pool = rand_pool_new(RAND_DRBG_STRENGTH, 1, (RAND_DRBG_STRENGTH + 7) / 8, RAND_POOL_MAX_LENGTH); if (pool == NULL) return 0; if (rand_pool_acquire_entropy(pool) == 0) goto err; if (meth->add == NULL || meth->add(rand_pool_buffer(pool), rand_pool_length(pool), (rand_pool_entropy(pool) / 8.0)) == 0) goto err; ret = 1; } err: rand_pool_free(pool); return ret; } /* * Allocate memory and initialize a new random pool */ RAND_POOL *rand_pool_new(int entropy_requested, int secure, size_t min_len, size_t max_len) { RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool)); size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure); if (pool == NULL) { RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); return NULL; } pool->min_len = min_len; pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ? RAND_POOL_MAX_LENGTH : max_len; pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len; if (pool->alloc_len > pool->max_len) pool->alloc_len = pool->max_len; if (secure) pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len); else pool->buffer = OPENSSL_zalloc(pool->alloc_len); if (pool->buffer == NULL) { RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); goto err; } pool->entropy_requested = entropy_requested; pool->secure = secure; return pool; err: OPENSSL_free(pool); return NULL; } /* * Attach new random pool to the given buffer * * This function is intended to be used only for feeding random data * provided by RAND_add() and RAND_seed() into the DRBG. */ RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len, size_t entropy) { RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool)); if (pool == NULL) { RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE); return NULL; } /* * The const needs to be cast away, but attached buffers will not be * modified (in contrary to allocated buffers which are zeroed and * freed in the end). */ pool->buffer = (unsigned char *) buffer; pool->len = len; pool->attached = 1; pool->min_len = pool->max_len = pool->alloc_len = pool->len; pool->entropy = entropy; return pool; } /* * Free |pool|, securely erasing its buffer. */ void rand_pool_free(RAND_POOL *pool) { if (pool == NULL) return; /* * Although it would be advisable from a cryptographical viewpoint, * we are not allowed to clear attached buffers, since they are passed * to rand_pool_attach() as `const unsigned char*`. * (see corresponding comment in rand_pool_attach()). */ if (!pool->attached) { if (pool->secure) OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len); else OPENSSL_clear_free(pool->buffer, pool->alloc_len); } OPENSSL_free(pool); } /* * Return the |pool|'s buffer to the caller (readonly). */ const unsigned char *rand_pool_buffer(RAND_POOL *pool) { return pool->buffer; } /* * Return the |pool|'s entropy to the caller. */ size_t rand_pool_entropy(RAND_POOL *pool) { return pool->entropy; } /* * Return the |pool|'s buffer length to the caller. */ size_t rand_pool_length(RAND_POOL *pool) { return pool->len; } /* * Detach the |pool| buffer and return it to the caller. * It's the responsibility of the caller to free the buffer * using OPENSSL_secure_clear_free() or to re-attach it * again to the pool using rand_pool_reattach(). */ unsigned char *rand_pool_detach(RAND_POOL *pool) { unsigned char *ret = pool->buffer; pool->buffer = NULL; pool->entropy = 0; return ret; } /* * Re-attach the |pool| buffer. It is only allowed to pass * the |buffer| which was previously detached from the same pool. */ void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer) { pool->buffer = buffer; OPENSSL_cleanse(pool->buffer, pool->len); pool->len = 0; } /* * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one * need to obtain at least |bits| bits of entropy? */ #define ENTROPY_TO_BYTES(bits, entropy_factor) \ (((bits) * (entropy_factor) + 7) / 8) /* * Checks whether the |pool|'s entropy is available to the caller. * This is the case when entropy count and buffer length are high enough. * Returns * * |entropy| if the entropy count and buffer size is large enough * 0 otherwise */ size_t rand_pool_entropy_available(RAND_POOL *pool) { if (pool->entropy < pool->entropy_requested) return 0; if (pool->len < pool->min_len) return 0; return pool->entropy; } /* * Returns the (remaining) amount of entropy needed to fill * the random pool. */ size_t rand_pool_entropy_needed(RAND_POOL *pool) { if (pool->entropy < pool->entropy_requested) return pool->entropy_requested - pool->entropy; return 0; } /* Increase the allocation size -- not usable for an attached pool */ static int rand_pool_grow(RAND_POOL *pool, size_t len) { if (len > pool->alloc_len - pool->len) { unsigned char *p; const size_t limit = pool->max_len / 2; size_t newlen = pool->alloc_len; if (pool->attached || len > pool->max_len - pool->len) { RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR); return 0; } do newlen = newlen < limit ? newlen * 2 : pool->max_len; while (len > newlen - pool->len); if (pool->secure) p = OPENSSL_secure_zalloc(newlen); else p = OPENSSL_zalloc(newlen); if (p == NULL) { RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE); return 0; } memcpy(p, pool->buffer, pool->len); if (pool->secure) OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len); else OPENSSL_clear_free(pool->buffer, pool->alloc_len); pool->buffer = p; pool->alloc_len = newlen; } return 1; } /* * Returns the number of bytes needed to fill the pool, assuming * the input has 1 / |entropy_factor| entropy bits per data bit. * In case of an error, 0 is returned. */ size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor) { size_t bytes_needed; size_t entropy_needed = rand_pool_entropy_needed(pool); if (entropy_factor < 1) { RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE); return 0; } bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor); if (bytes_needed > pool->max_len - pool->len) { /* not enough space left */ RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW); return 0; } if (pool->len < pool->min_len && bytes_needed < pool->min_len - pool->len) /* to meet the min_len requirement */ bytes_needed = pool->min_len - pool->len; /* * Make sure the buffer is large enough for the requested amount * of data. This guarantees that existing code patterns where * rand_pool_add_begin, rand_pool_add_end or rand_pool_add * are used to collect entropy data without any error handling * whatsoever, continue to be valid. * Furthermore if the allocation here fails once, make sure that * we don't fall back to a less secure or even blocking random source, * as that could happen by the existing code patterns. * This is not a concern for additional data, therefore that * is not needed if rand_pool_grow fails in other places. */ if (!rand_pool_grow(pool, bytes_needed)) { /* persistent error for this pool */ pool->max_len = pool->len = 0; return 0; } return bytes_needed; } /* Returns the remaining number of bytes available */ size_t rand_pool_bytes_remaining(RAND_POOL *pool) { return pool->max_len - pool->len; } /* * Add random bytes to the random pool. * * It is expected that the |buffer| contains |len| bytes of * random input which contains at least |entropy| bits of * randomness. * * Returns 1 if the added amount is adequate, otherwise 0 */ int rand_pool_add(RAND_POOL *pool, const unsigned char *buffer, size_t len, size_t entropy) { if (len > pool->max_len - pool->len) { RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG); return 0; } if (pool->buffer == NULL) { RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR); return 0; } if (len > 0) { /* * This is to protect us from accidentally passing the buffer * returned from rand_pool_add_begin. * The check for alloc_len makes sure we do not compare the * address of the end of the allocated memory to something * different, since that comparison would have an * indeterminate result. */ if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) { RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR); return 0; } /* * We have that only for cases when a pool is used to collect * additional data. * For entropy data, as long as the allocation request stays within * the limits given by rand_pool_bytes_needed this rand_pool_grow * below is guaranteed to succeed, thus no allocation happens. */ if (!rand_pool_grow(pool, len)) return 0; memcpy(pool->buffer + pool->len, buffer, len); pool->len += len; pool->entropy += entropy; } return 1; } /* * Start to add random bytes to the random pool in-place. * * Reserves the next |len| bytes for adding random bytes in-place * and returns a pointer to the buffer. * The caller is allowed to copy up to |len| bytes into the buffer. * If |len| == 0 this is considered a no-op and a NULL pointer * is returned without producing an error message. * * After updating the buffer, rand_pool_add_end() needs to be called * to finish the update operation (see next comment). */ unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len) { if (len == 0) return NULL; if (len > pool->max_len - pool->len) { RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW); return NULL; } if (pool->buffer == NULL) { RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR); return NULL; } /* * As long as the allocation request stays within the limits given * by rand_pool_bytes_needed this rand_pool_grow below is guaranteed * to succeed, thus no allocation happens. * We have that only for cases when a pool is used to collect * additional data. Then the buffer might need to grow here, * and of course the caller is responsible to check the return * value of this function. */ if (!rand_pool_grow(pool, len)) return NULL; return pool->buffer + pool->len; } /* * Finish to add random bytes to the random pool in-place. * * Finishes an in-place update of the random pool started by * rand_pool_add_begin() (see previous comment). * It is expected that |len| bytes of random input have been added * to the buffer which contain at least |entropy| bits of randomness. * It is allowed to add less bytes than originally reserved. */ int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy) { if (len > pool->alloc_len - pool->len) { RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW); return 0; } if (len > 0) { pool->len += len; pool->entropy += entropy; } return 1; } int RAND_set_rand_method(const RAND_METHOD *meth) { if (!RUN_ONCE(&rand_init, do_rand_init)) return 0; CRYPTO_THREAD_write_lock(rand_meth_lock); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(funct_ref); funct_ref = NULL; #endif default_RAND_meth = meth; CRYPTO_THREAD_unlock(rand_meth_lock); return 1; } const RAND_METHOD *RAND_get_rand_method(void) { const RAND_METHOD *tmp_meth = NULL; if (!RUN_ONCE(&rand_init, do_rand_init)) return NULL; CRYPTO_THREAD_write_lock(rand_meth_lock); if (default_RAND_meth == NULL) { #ifndef OPENSSL_NO_ENGINE ENGINE *e; /* If we have an engine that can do RAND, use it. */ if ((e = ENGINE_get_default_RAND()) != NULL && (tmp_meth = ENGINE_get_RAND(e)) != NULL) { funct_ref = e; default_RAND_meth = tmp_meth; } else { ENGINE_finish(e); default_RAND_meth = &rand_meth; } #else default_RAND_meth = &rand_meth; #endif } tmp_meth = default_RAND_meth; CRYPTO_THREAD_unlock(rand_meth_lock); return tmp_meth; } #ifndef OPENSSL_NO_ENGINE int RAND_set_rand_engine(ENGINE *engine) { const RAND_METHOD *tmp_meth = NULL; if (!RUN_ONCE(&rand_init, do_rand_init)) return 0; if (engine != NULL) { if (!ENGINE_init(engine)) return 0; tmp_meth = ENGINE_get_RAND(engine); if (tmp_meth == NULL) { ENGINE_finish(engine); return 0; } } CRYPTO_THREAD_write_lock(rand_engine_lock); /* This function releases any prior ENGINE so call it first */ RAND_set_rand_method(tmp_meth); funct_ref = engine; CRYPTO_THREAD_unlock(rand_engine_lock); return 1; } #endif void RAND_seed(const void *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth != NULL && meth->seed != NULL) meth->seed(buf, num); } void RAND_add(const void *buf, int num, double randomness) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth != NULL && meth->add != NULL) meth->add(buf, num, randomness); } /* * This function is not part of RAND_METHOD, so if we're not using * the default method, then just call RAND_bytes(). Otherwise make * sure we're instantiated and use the private DRBG. */ int RAND_priv_bytes(unsigned char *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); RAND_DRBG *drbg; if (meth != NULL && meth != RAND_OpenSSL()) return RAND_bytes(buf, num); drbg = RAND_DRBG_get0_private(); if (drbg != NULL) return RAND_DRBG_bytes(drbg, buf, num); return 0; } int RAND_bytes(unsigned char *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth != NULL && meth->bytes != NULL) return meth->bytes(buf, num); RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); return -1; } #if OPENSSL_API_COMPAT < 0x10100000L int RAND_pseudo_bytes(unsigned char *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth != NULL && meth->pseudorand != NULL) return meth->pseudorand(buf, num); RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); return -1; } #endif int RAND_status(void) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth != NULL && meth->status != NULL) return meth->status(); return 0; } openssl-1.1.1f/crypto/rand/rand_local.h000066400000000000000000000252051364063235100200650ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_RAND_LOCAL_H # define OSSL_CRYPTO_RAND_LOCAL_H # include # include # include # include # include # include # include "internal/tsan_assist.h" # include "internal/numbers.h" /* How many times to read the TSC as a randomness source. */ # define TSC_READ_COUNT 4 /* Maximum reseed intervals */ # define MAX_RESEED_INTERVAL (1 << 24) # define MAX_RESEED_TIME_INTERVAL (1 << 20) /* approx. 12 days */ /* Default reseed intervals */ # define MASTER_RESEED_INTERVAL (1 << 8) # define SLAVE_RESEED_INTERVAL (1 << 16) # define MASTER_RESEED_TIME_INTERVAL (60*60) /* 1 hour */ # define SLAVE_RESEED_TIME_INTERVAL (7*60) /* 7 minutes */ /* * Maximum input size for the DRBG (entropy, nonce, personalization string) * * NIST SP800 90Ar1 allows a maximum of (1 << 35) bits i.e., (1 << 32) bytes. * * We lower it to 'only' INT32_MAX bytes, which is equivalent to 2 gigabytes. */ # define DRBG_MAX_LENGTH INT32_MAX /* * Maximum allocation size for RANDOM_POOL buffers * * The max_len value for the buffer provided to the rand_drbg_get_entropy() * callback is currently 2^31 bytes (2 gigabytes), if a derivation function * is used. Since this is much too large to be allocated, the rand_pool_new() * function chooses more modest values as default pool length, bounded * by RAND_POOL_MIN_LENGTH and RAND_POOL_MAX_LENGTH * * The choice of the RAND_POOL_FACTOR is large enough such that the * RAND_POOL can store a random input which has a lousy entropy rate of * 8/256 (= 0.03125) bits per byte. This input will be sent through the * derivation function which 'compresses' the low quality input into a * high quality output. * * The factor 1.5 below is the pessimistic estimate for the extra amount * of entropy required when no get_nonce() callback is defined. */ # define RAND_POOL_FACTOR 256 # define RAND_POOL_MAX_LENGTH (RAND_POOL_FACTOR * \ 3 * (RAND_DRBG_STRENGTH / 16)) /* * = (RAND_POOL_FACTOR * \ * 1.5 * (RAND_DRBG_STRENGTH / 8)) */ /* * Initial allocation minimum. * * There is a distinction between the secure and normal allocation minimums. * Ideally, the secure allocation size should be a power of two. The normal * allocation size doesn't have any such restriction. * * The secure value is based on 128 bits of secure material, which is 16 bytes. * Typically, the DRBGs will set a minimum larger than this so optimal * allocation ought to take place (for full quality seed material). * * The normal value has been chosen by noticing that the rand_drbg_get_nonce * function is usually the largest of the built in allocation (twenty four * bytes and then appending another sixteen bytes). This means the buffer ends * with 40 bytes. The value of forty eight is comfortably above this which * allows some slack in the platform specific values used. */ # define RAND_POOL_MIN_ALLOCATION(secure) ((secure) ? 16 : 48) /* DRBG status values */ typedef enum drbg_status_e { DRBG_UNINITIALISED, DRBG_READY, DRBG_ERROR } DRBG_STATUS; /* instantiate */ typedef int (*RAND_DRBG_instantiate_fn)(RAND_DRBG *ctx, const unsigned char *ent, size_t entlen, const unsigned char *nonce, size_t noncelen, const unsigned char *pers, size_t perslen); /* reseed */ typedef int (*RAND_DRBG_reseed_fn)(RAND_DRBG *ctx, const unsigned char *ent, size_t entlen, const unsigned char *adin, size_t adinlen); /* generate output */ typedef int (*RAND_DRBG_generate_fn)(RAND_DRBG *ctx, unsigned char *out, size_t outlen, const unsigned char *adin, size_t adinlen); /* uninstantiate */ typedef int (*RAND_DRBG_uninstantiate_fn)(RAND_DRBG *ctx); /* * The DRBG methods */ typedef struct rand_drbg_method_st { RAND_DRBG_instantiate_fn instantiate; RAND_DRBG_reseed_fn reseed; RAND_DRBG_generate_fn generate; RAND_DRBG_uninstantiate_fn uninstantiate; } RAND_DRBG_METHOD; /* * The state of a DRBG AES-CTR. */ typedef struct rand_drbg_ctr_st { EVP_CIPHER_CTX *ctx; EVP_CIPHER_CTX *ctx_df; const EVP_CIPHER *cipher; size_t keylen; unsigned char K[32]; unsigned char V[16]; /* Temporary block storage used by ctr_df */ unsigned char bltmp[16]; size_t bltmp_pos; unsigned char KX[48]; } RAND_DRBG_CTR; /* * The 'random pool' acts as a dumb container for collecting random * input from various entropy sources. The pool has no knowledge about * whether its randomness is fed into a legacy RAND_METHOD via RAND_add() * or into a new style RAND_DRBG. It is the callers duty to 1) initialize the * random pool, 2) pass it to the polling callbacks, 3) seed the RNG, and * 4) cleanup the random pool again. * * The random pool contains no locking mechanism because its scope and * lifetime is intended to be restricted to a single stack frame. */ struct rand_pool_st { unsigned char *buffer; /* points to the beginning of the random pool */ size_t len; /* current number of random bytes contained in the pool */ int attached; /* true pool was attached to existing buffer */ int secure; /* 1: allocated on the secure heap, 0: otherwise */ size_t min_len; /* minimum number of random bytes requested */ size_t max_len; /* maximum number of random bytes (allocated buffer size) */ size_t alloc_len; /* current number of bytes allocated */ size_t entropy; /* current entropy count in bits */ size_t entropy_requested; /* requested entropy count in bits */ }; /* * The state of all types of DRBGs, even though we only have CTR mode * right now. */ struct rand_drbg_st { CRYPTO_RWLOCK *lock; RAND_DRBG *parent; int secure; /* 1: allocated on the secure heap, 0: otherwise */ int type; /* the nid of the underlying algorithm */ /* * Stores the return value of openssl_get_fork_id() as of when we last * reseeded. The DRBG reseeds automatically whenever drbg->fork_id != * openssl_get_fork_id(). Used to provide fork-safety and reseed this * DRBG in the child process. */ int fork_id; unsigned short flags; /* various external flags */ /* * The random_data is used by RAND_add()/drbg_add() to attach random * data to the global drbg, such that the rand_drbg_get_entropy() callback * can pull it during instantiation and reseeding. This is necessary to * reconcile the different philosophies of the RAND and the RAND_DRBG * with respect to how randomness is added to the RNG during reseeding * (see PR #4328). */ struct rand_pool_st *seed_pool; /* * Auxiliary pool for additional data. */ struct rand_pool_st *adin_pool; /* * The following parameters are setup by the per-type "init" function. * * Currently the only type is CTR_DRBG, its init function is drbg_ctr_init(). * * The parameters are closely related to the ones described in * section '10.2.1 CTR_DRBG' of [NIST SP 800-90Ar1], with one * crucial difference: In the NIST standard, all counts are given * in bits, whereas in OpenSSL entropy counts are given in bits * and buffer lengths are given in bytes. * * Since this difference has lead to some confusion in the past, * (see [GitHub Issue #2443], formerly [rt.openssl.org #4055]) * the 'len' suffix has been added to all buffer sizes for * clarification. */ int strength; size_t max_request; size_t min_entropylen, max_entropylen; size_t min_noncelen, max_noncelen; size_t max_perslen, max_adinlen; /* Counts the number of generate requests since the last reseed. */ unsigned int reseed_gen_counter; /* * Maximum number of generate requests until a reseed is required. * This value is ignored if it is zero. */ unsigned int reseed_interval; /* Stores the time when the last reseeding occurred */ time_t reseed_time; /* * Specifies the maximum time interval (in seconds) between reseeds. * This value is ignored if it is zero. */ time_t reseed_time_interval; /* * Counts the number of reseeds since instantiation. * This value is ignored if it is zero. * * This counter is used only for seed propagation from the DRBG * to its two children, the and DRBG. This feature is * very special and its sole purpose is to ensure that any randomness which * is added by RAND_add() or RAND_seed() will have an immediate effect on * the output of RAND_bytes() resp. RAND_priv_bytes(). */ TSAN_QUALIFIER unsigned int reseed_prop_counter; unsigned int reseed_next_counter; size_t seedlen; DRBG_STATUS state; /* Application data, mainly used in the KATs. */ CRYPTO_EX_DATA ex_data; /* Implementation specific data (currently only one implementation) */ union { RAND_DRBG_CTR ctr; } data; /* Implementation specific methods */ RAND_DRBG_METHOD *meth; /* Callback functions. See comments in rand_lib.c */ RAND_DRBG_get_entropy_fn get_entropy; RAND_DRBG_cleanup_entropy_fn cleanup_entropy; RAND_DRBG_get_nonce_fn get_nonce; RAND_DRBG_cleanup_nonce_fn cleanup_nonce; }; /* The global RAND method, and the global buffer and DRBG instance. */ extern RAND_METHOD rand_meth; /* DRBG helpers */ int rand_drbg_restart(RAND_DRBG *drbg, const unsigned char *buffer, size_t len, size_t entropy); size_t rand_drbg_seedlen(RAND_DRBG *drbg); /* locking api */ int rand_drbg_lock(RAND_DRBG *drbg); int rand_drbg_unlock(RAND_DRBG *drbg); int rand_drbg_enable_locking(RAND_DRBG *drbg); /* initializes the AES-CTR DRBG implementation */ int drbg_ctr_init(RAND_DRBG *drbg); #endif openssl-1.1.1f/crypto/rand/rand_unix.c000066400000000000000000000620451364063235100177540ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include "e_os.h" #include #include "internal/cryptlib.h" #include #include #include "rand_local.h" #include "crypto/rand.h" #include #include "internal/dso.h" #ifdef __linux # include # ifdef DEVRANDOM_WAIT # include # include # endif #endif #if defined(__FreeBSD__) && !defined(OPENSSL_SYS_UEFI) # include # include # include #endif #if defined(__OpenBSD__) || defined(__NetBSD__) # include #endif #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) # include # include # include # include # include static uint64_t get_time_stamp(void); static uint64_t get_timer_bits(void); /* Macro to convert two thirty two bit values into a sixty four bit one */ # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b)) /* * Check for the existence and support of POSIX timers. The standard * says that the _POSIX_TIMERS macro will have a positive value if they * are available. * * However, we want an additional constraint: that the timer support does * not require an extra library dependency. Early versions of glibc * require -lrt to be specified on the link line to access the timers, * so this needs to be checked for. * * It is worse because some libraries define __GLIBC__ but don't * support the version testing macro (e.g. uClibc). This means * an extra check is needed. * * The final condition is: * "have posix timers and either not glibc or glibc without -lrt" * * The nested #if sequences are required to avoid using a parameterised * macro that might be undefined. */ # undef OSSL_POSIX_TIMER_OKAY # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0 # if defined(__GLIBC__) # if defined(__GLIBC_PREREQ) # if __GLIBC_PREREQ(2, 17) # define OSSL_POSIX_TIMER_OKAY # endif # endif # else # define OSSL_POSIX_TIMER_OKAY # endif # endif #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) || defined(__DJGPP__) */ #if defined(OPENSSL_RAND_SEED_NONE) /* none means none. this simplifies the following logic */ # undef OPENSSL_RAND_SEED_OS # undef OPENSSL_RAND_SEED_GETRANDOM # undef OPENSSL_RAND_SEED_LIBRANDOM # undef OPENSSL_RAND_SEED_DEVRANDOM # undef OPENSSL_RAND_SEED_RDTSC # undef OPENSSL_RAND_SEED_RDCPU # undef OPENSSL_RAND_SEED_EGD #endif #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \ !defined(OPENSSL_RAND_SEED_NONE) # error "UEFI and VXWorks only support seeding NONE" #endif #if defined(OPENSSL_SYS_VXWORKS) /* empty implementation */ int rand_pool_init(void) { return 1; } void rand_pool_cleanup(void) { } void rand_pool_keep_random_devices_open(int keep) { } size_t rand_pool_acquire_entropy(RAND_POOL *pool) { return rand_pool_entropy_available(pool); } #endif #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \ || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \ || defined(OPENSSL_SYS_UEFI)) # if defined(OPENSSL_SYS_VOS) # ifndef OPENSSL_RAND_SEED_OS # error "Unsupported seeding method configured; must be os" # endif # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32) # error "Unsupported HP-PA and IA32 at the same time." # endif # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32) # error "Must have one of HP-PA or IA32" # endif /* * The following algorithm repeatedly samples the real-time clock (RTC) to * generate a sequence of unpredictable data. The algorithm relies upon the * uneven execution speed of the code (due to factors such as cache misses, * interrupts, bus activity, and scheduling) and upon the rather large * relative difference between the speed of the clock and the rate at which * it can be read. If it is ported to an environment where execution speed * is more constant or where the RTC ticks at a much slower rate, or the * clock can be read with fewer instructions, it is likely that the results * would be far more predictable. This should only be used for legacy * platforms. * * As a precaution, we assume only 2 bits of entropy per byte. */ size_t rand_pool_acquire_entropy(RAND_POOL *pool) { short int code; int i, k; size_t bytes_needed; struct timespec ts; unsigned char v; # ifdef OPENSSL_SYS_VOS_HPPA long duration; extern void s$sleep(long *_duration, short int *_code); # else long long duration; extern void s$sleep2(long long *_duration, short int *_code); # endif bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/); for (i = 0; i < bytes_needed; i++) { /* * burn some cpu; hope for interrupts, cache collisions, bus * interference, etc. */ for (k = 0; k < 99; k++) ts.tv_nsec = random(); # ifdef OPENSSL_SYS_VOS_HPPA /* sleep for 1/1024 of a second (976 us). */ duration = 1; s$sleep(&duration, &code); # else /* sleep for 1/65536 of a second (15 us). */ duration = 1; s$sleep2(&duration, &code); # endif /* Get wall clock time, take 8 bits. */ clock_gettime(CLOCK_REALTIME, &ts); v = (unsigned char)(ts.tv_nsec & 0xFF); rand_pool_add(pool, arg, &v, sizeof(v) , 2); } return rand_pool_entropy_available(pool); } void rand_pool_cleanup(void) { } void rand_pool_keep_random_devices_open(int keep) { } # else # if defined(OPENSSL_RAND_SEED_EGD) && \ (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD)) # error "Seeding uses EGD but EGD is turned off or no device given" # endif # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM) # error "Seeding uses urandom but DEVRANDOM is not configured" # endif # if defined(OPENSSL_RAND_SEED_OS) # if !defined(DEVRANDOM) # error "OS seeding requires DEVRANDOM to be configured" # endif # define OPENSSL_RAND_SEED_GETRANDOM # define OPENSSL_RAND_SEED_DEVRANDOM # endif # if defined(OPENSSL_RAND_SEED_LIBRANDOM) # error "librandom not (yet) supported" # endif # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND) /* * sysctl_random(): Use sysctl() to read a random number from the kernel * Returns the number of bytes returned in buf on success, -1 on failure. */ static ssize_t sysctl_random(char *buf, size_t buflen) { int mib[2]; size_t done = 0; size_t len; /* * Note: sign conversion between size_t and ssize_t is safe even * without a range check, see comment in syscall_random() */ /* * On FreeBSD old implementations returned longs, newer versions support * variable sizes up to 256 byte. The code below would not work properly * when the sysctl returns long and we want to request something not a * multiple of longs, which should never be the case. */ if (!ossl_assert(buflen % sizeof(long) == 0)) { errno = EINVAL; return -1; } /* * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0 * it returns a variable number of bytes with the current version supporting * up to 256 bytes. * Just return an error on older NetBSD versions. */ #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000 errno = ENOSYS; return -1; #endif mib[0] = CTL_KERN; mib[1] = KERN_ARND; do { len = buflen; if (sysctl(mib, 2, buf, &len, NULL, 0) == -1) return done > 0 ? done : -1; done += len; buf += len; buflen -= len; } while (buflen > 0); return done; } # endif # if defined(OPENSSL_RAND_SEED_GETRANDOM) # if defined(__linux) && !defined(__NR_getrandom) # if defined(__arm__) # define __NR_getrandom (__NR_SYSCALL_BASE+384) # elif defined(__i386__) # define __NR_getrandom 355 # elif defined(__x86_64__) # if defined(__ILP32__) # define __NR_getrandom (__X32_SYSCALL_BIT + 318) # else # define __NR_getrandom 318 # endif # elif defined(__xtensa__) # define __NR_getrandom 338 # elif defined(__s390__) || defined(__s390x__) # define __NR_getrandom 349 # elif defined(__bfin__) # define __NR_getrandom 389 # elif defined(__powerpc__) # define __NR_getrandom 359 # elif defined(__mips__) || defined(__mips64) # if _MIPS_SIM == _MIPS_SIM_ABI32 # define __NR_getrandom (__NR_Linux + 353) # elif _MIPS_SIM == _MIPS_SIM_ABI64 # define __NR_getrandom (__NR_Linux + 313) # elif _MIPS_SIM == _MIPS_SIM_NABI32 # define __NR_getrandom (__NR_Linux + 317) # endif # elif defined(__hppa__) # define __NR_getrandom (__NR_Linux + 339) # elif defined(__sparc__) # define __NR_getrandom 347 # elif defined(__ia64__) # define __NR_getrandom 1339 # elif defined(__alpha__) # define __NR_getrandom 511 # elif defined(__sh__) # if defined(__SH5__) # define __NR_getrandom 373 # else # define __NR_getrandom 384 # endif # elif defined(__avr32__) # define __NR_getrandom 317 # elif defined(__microblaze__) # define __NR_getrandom 385 # elif defined(__m68k__) # define __NR_getrandom 352 # elif defined(__cris__) # define __NR_getrandom 356 # elif defined(__aarch64__) # define __NR_getrandom 278 # else /* generic */ # define __NR_getrandom 278 # endif # endif /* * syscall_random(): Try to get random data using a system call * returns the number of bytes returned in buf, or < 0 on error. */ static ssize_t syscall_random(void *buf, size_t buflen) { /* * Note: 'buflen' equals the size of the buffer which is used by the * get_entropy() callback of the RAND_DRBG. It is roughly bounded by * * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14 * * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion * between size_t and ssize_t is safe even without a range check. */ /* * Do runtime detection to find getentropy(). * * Known OSs that should support this: * - Darwin since 16 (OSX 10.12, IOS 10.0). * - Solaris since 11.3 * - OpenBSD since 5.6 * - Linux since 3.17 with glibc 2.25 * - FreeBSD since 12.0 (1200061) */ # if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux) extern int getentropy(void *buffer, size_t length) __attribute__((weak)); if (getentropy != NULL) return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1; # else union { void *p; int (*f)(void *buffer, size_t length); } p_getentropy; /* * We could cache the result of the lookup, but we normally don't * call this function often. */ ERR_set_mark(); p_getentropy.p = DSO_global_lookup("getentropy"); ERR_pop_to_mark(); if (p_getentropy.p != NULL) return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1; # endif /* Linux supports this since version 3.17 */ # if defined(__linux) && defined(__NR_getrandom) return syscall(__NR_getrandom, buf, buflen, 0); # elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND) return sysctl_random(buf, buflen); # else errno = ENOSYS; return -1; # endif } # endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */ # if defined(OPENSSL_RAND_SEED_DEVRANDOM) static const char *random_device_paths[] = { DEVRANDOM }; static struct random_device { int fd; dev_t dev; ino_t ino; mode_t mode; dev_t rdev; } random_devices[OSSL_NELEM(random_device_paths)]; static int keep_random_devices_open = 1; # if defined(__linux) && defined(DEVRANDOM_WAIT) static void *shm_addr; static void cleanup_shm(void) { shmdt(shm_addr); } /* * Ensure that the system randomness source has been adequately seeded. * This is done by having the first start of libcrypto, wait until the device * /dev/random becomes able to supply a byte of entropy. Subsequent starts * of the library and later reseedings do not need to do this. */ static int wait_random_seeded(void) { static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0; static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL }; int kernel[2]; int shm_id, fd, r; char c, *p; struct utsname un; fd_set fds; if (!seeded) { /* See if anything has created the global seeded indication */ if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) { /* * Check the kernel's version and fail if it is too recent. * * Linux kernels from 4.8 onwards do not guarantee that * /dev/urandom is properly seeded when /dev/random becomes * readable. However, such kernels support the getentropy(2) * system call and this should always succeed which renders * this alternative but essentially identical source moot. */ if (uname(&un) == 0) { kernel[0] = atoi(un.release); p = strchr(un.release, '.'); kernel[1] = p == NULL ? 0 : atoi(p + 1); if (kernel[0] > kernel_version[0] || (kernel[0] == kernel_version[0] && kernel[1] >= kernel_version[1])) { return 0; } } /* Open /dev/random and wait for it to be readable */ if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) { if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) { FD_ZERO(&fds); FD_SET(fd, &fds); while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0 && errno == EINTR); } else { while ((r = read(fd, &c, 1)) < 0 && errno == EINTR); } close(fd); if (r == 1) { seeded = 1; /* Create the shared memory indicator */ shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH); } } } if (shm_id != -1) { seeded = 1; /* * Map the shared memory to prevent its premature destruction. * If this call fails, it isn't a big problem. */ shm_addr = shmat(shm_id, NULL, SHM_RDONLY); if (shm_addr != (void *)-1) OPENSSL_atexit(&cleanup_shm); } } return seeded; } # else /* defined __linux */ static int wait_random_seeded(void) { return 1; } # endif /* * Verify that the file descriptor associated with the random source is * still valid. The rationale for doing this is the fact that it is not * uncommon for daemons to close all open file handles when daemonizing. * So the handle might have been closed or even reused for opening * another file. */ static int check_random_device(struct random_device * rd) { struct stat st; return rd->fd != -1 && fstat(rd->fd, &st) != -1 && rd->dev == st.st_dev && rd->ino == st.st_ino && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0 && rd->rdev == st.st_rdev; } /* * Open a random device if required and return its file descriptor or -1 on error */ static int get_random_device(size_t n) { struct stat st; struct random_device * rd = &random_devices[n]; /* reuse existing file descriptor if it is (still) valid */ if (check_random_device(rd)) return rd->fd; /* open the random device ... */ if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1) return rd->fd; /* ... and cache its relevant stat(2) data */ if (fstat(rd->fd, &st) != -1) { rd->dev = st.st_dev; rd->ino = st.st_ino; rd->mode = st.st_mode; rd->rdev = st.st_rdev; } else { close(rd->fd); rd->fd = -1; } return rd->fd; } /* * Close a random device making sure it is a random device */ static void close_random_device(size_t n) { struct random_device * rd = &random_devices[n]; if (check_random_device(rd)) close(rd->fd); rd->fd = -1; } int rand_pool_init(void) { size_t i; for (i = 0; i < OSSL_NELEM(random_devices); i++) random_devices[i].fd = -1; return 1; } void rand_pool_cleanup(void) { size_t i; for (i = 0; i < OSSL_NELEM(random_devices); i++) close_random_device(i); } void rand_pool_keep_random_devices_open(int keep) { if (!keep) rand_pool_cleanup(); keep_random_devices_open = keep; } # else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */ int rand_pool_init(void) { return 1; } void rand_pool_cleanup(void) { } void rand_pool_keep_random_devices_open(int keep) { } # endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */ /* * Try the various seeding methods in turn, exit when successful. * * TODO(DRBG): If more than one entropy source is available, is it * preferable to stop as soon as enough entropy has been collected * (as favored by @rsalz) or should one rather be defensive and add * more entropy than requested and/or from different sources? * * Currently, the user can select multiple entropy sources in the * configure step, yet in practice only the first available source * will be used. A more flexible solution has been requested, but * currently it is not clear how this can be achieved without * overengineering the problem. There are many parameters which * could be taken into account when selecting the order and amount * of input from the different entropy sources (trust, quality, * possibility of blocking). */ size_t rand_pool_acquire_entropy(RAND_POOL *pool) { # if defined(OPENSSL_RAND_SEED_NONE) return rand_pool_entropy_available(pool); # else size_t entropy_available; # if defined(OPENSSL_RAND_SEED_GETRANDOM) { size_t bytes_needed; unsigned char *buffer; ssize_t bytes; /* Maximum allowed number of consecutive unsuccessful attempts */ int attempts = 3; bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); while (bytes_needed != 0 && attempts-- > 0) { buffer = rand_pool_add_begin(pool, bytes_needed); bytes = syscall_random(buffer, bytes_needed); if (bytes > 0) { rand_pool_add_end(pool, bytes, 8 * bytes); bytes_needed -= bytes; attempts = 3; /* reset counter after successful attempt */ } else if (bytes < 0 && errno != EINTR) { break; } } } entropy_available = rand_pool_entropy_available(pool); if (entropy_available > 0) return entropy_available; # endif # if defined(OPENSSL_RAND_SEED_LIBRANDOM) { /* Not yet implemented. */ } # endif # if defined(OPENSSL_RAND_SEED_DEVRANDOM) if (wait_random_seeded()) { size_t bytes_needed; unsigned char *buffer; size_t i; bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); i++) { ssize_t bytes = 0; /* Maximum number of consecutive unsuccessful attempts */ int attempts = 3; const int fd = get_random_device(i); if (fd == -1) continue; while (bytes_needed != 0 && attempts-- > 0) { buffer = rand_pool_add_begin(pool, bytes_needed); bytes = read(fd, buffer, bytes_needed); if (bytes > 0) { rand_pool_add_end(pool, bytes, 8 * bytes); bytes_needed -= bytes; attempts = 3; /* reset counter on successful attempt */ } else if (bytes < 0 && errno != EINTR) { break; } } if (bytes < 0 || !keep_random_devices_open) close_random_device(i); bytes_needed = rand_pool_bytes_needed(pool, 1); } entropy_available = rand_pool_entropy_available(pool); if (entropy_available > 0) return entropy_available; } # endif # if defined(OPENSSL_RAND_SEED_RDTSC) entropy_available = rand_acquire_entropy_from_tsc(pool); if (entropy_available > 0) return entropy_available; # endif # if defined(OPENSSL_RAND_SEED_RDCPU) entropy_available = rand_acquire_entropy_from_cpu(pool); if (entropy_available > 0) return entropy_available; # endif # if defined(OPENSSL_RAND_SEED_EGD) { static const char *paths[] = { DEVRANDOM_EGD, NULL }; size_t bytes_needed; unsigned char *buffer; int i; bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) { size_t bytes = 0; int num; buffer = rand_pool_add_begin(pool, bytes_needed); num = RAND_query_egd_bytes(paths[i], buffer, (int)bytes_needed); if (num == (int)bytes_needed) bytes = bytes_needed; rand_pool_add_end(pool, bytes, 8 * bytes); bytes_needed = rand_pool_bytes_needed(pool, 1); } entropy_available = rand_pool_entropy_available(pool); if (entropy_available > 0) return entropy_available; } # endif return rand_pool_entropy_available(pool); # endif } # endif #endif #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) int rand_pool_add_nonce_data(RAND_POOL *pool) { struct { pid_t pid; CRYPTO_THREAD_ID tid; uint64_t time; } data = { 0 }; /* * Add process id, thread id, and a high resolution timestamp to * ensure that the nonce is unique with high probability for * different process instances. */ data.pid = getpid(); data.tid = CRYPTO_THREAD_get_current_id(); data.time = get_time_stamp(); return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } int rand_pool_add_additional_data(RAND_POOL *pool) { struct { int fork_id; CRYPTO_THREAD_ID tid; uint64_t time; } data = { 0 }; /* * Add some noise from the thread id and a high resolution timer. * The fork_id adds some extra fork-safety. * The thread id adds a little randomness if the drbg is accessed * concurrently (which is the case for the drbg). */ data.fork_id = openssl_get_fork_id(); data.tid = CRYPTO_THREAD_get_current_id(); data.time = get_timer_bits(); return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } /* * Get the current time with the highest possible resolution * * The time stamp is added to the nonce, so it is optimized for not repeating. * The current time is ideal for this purpose, provided the computer's clock * is synchronized. */ static uint64_t get_time_stamp(void) { # if defined(OSSL_POSIX_TIMER_OKAY) { struct timespec ts; if (clock_gettime(CLOCK_REALTIME, &ts) == 0) return TWO32TO64(ts.tv_sec, ts.tv_nsec); } # endif # if defined(__unix__) \ || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) { struct timeval tv; if (gettimeofday(&tv, NULL) == 0) return TWO32TO64(tv.tv_sec, tv.tv_usec); } # endif return time(NULL); } /* * Get an arbitrary timer value of the highest possible resolution * * The timer value is added as random noise to the additional data, * which is not considered a trusted entropy sourec, so any result * is acceptable. */ static uint64_t get_timer_bits(void) { uint64_t res = OPENSSL_rdtsc(); if (res != 0) return res; # if defined(__sun) || defined(__hpux) return gethrtime(); # elif defined(_AIX) { timebasestruct_t t; read_wall_time(&t, TIMEBASE_SZ); return TWO32TO64(t.tb_high, t.tb_low); } # elif defined(OSSL_POSIX_TIMER_OKAY) { struct timespec ts; # ifdef CLOCK_BOOTTIME # define CLOCK_TYPE CLOCK_BOOTTIME # elif defined(_POSIX_MONOTONIC_CLOCK) # define CLOCK_TYPE CLOCK_MONOTONIC # else # define CLOCK_TYPE CLOCK_REALTIME # endif if (clock_gettime(CLOCK_TYPE, &ts) == 0) return TWO32TO64(ts.tv_sec, ts.tv_nsec); } # endif # if defined(__unix__) \ || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) { struct timeval tv; if (gettimeofday(&tv, NULL) == 0) return TWO32TO64(tv.tv_sec, tv.tv_usec); } # endif return time(NULL); } #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) || defined(__DJGPP__) */ openssl-1.1.1f/crypto/rand/rand_vms.c000066400000000000000000000431441364063235100175750ustar00rootroot00000000000000/* * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #if defined(OPENSSL_SYS_VMS) # define __NEW_STARLET 1 /* New starlet definitions since VMS 7.0 */ # include # include "internal/cryptlib.h" # include # include # include # include "crypto/rand.h" # include "rand_local.h" # include # include # include # include # include # include # include # include # include # include # include # include # ifdef __DECC # pragma message disable DOLLARID # endif # include /* SYS$GET_ENTROPY presence */ # ifndef OPENSSL_RAND_SEED_OS # error "Unsupported seeding method configured; must be os" # endif /* * DATA COLLECTION METHOD * ====================== * * This is a method to get low quality entropy. * It works by collecting all kinds of statistical data that * VMS offers and using them as random seed. */ /* We need to make sure we have the right size pointer in some cases */ # if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size save # pragma pointer_size 32 # endif typedef uint32_t *uint32_t__ptr32; # if __INITIAL_POINTER_SIZE == 64 # pragma pointer_size restore # endif struct item_st { short length, code; /* length is number of bytes */ }; static const struct item_st DVI_item_data[] = { {4, DVI$_ERRCNT}, {4, DVI$_REFCNT}, }; static const struct item_st JPI_item_data[] = { {4, JPI$_BUFIO}, {4, JPI$_CPUTIM}, {4, JPI$_DIRIO}, {4, JPI$_IMAGECOUNT}, {4, JPI$_PAGEFLTS}, {4, JPI$_PID}, {4, JPI$_PPGCNT}, {4, JPI$_WSPEAK}, /* * Note: the direct result is just a 32-bit address. However, it points * to a list of 4 32-bit words, so we make extra space for them so we can * do in-place replacement of values */ {16, JPI$_FINALEXC}, }; static const struct item_st JPI_item_data_64bit[] = { {8, JPI$_LAST_LOGIN_I}, {8, JPI$_LOGINTIM}, }; static const struct item_st RMI_item_data[] = { {4, RMI$_COLPG}, {4, RMI$_MWAIT}, {4, RMI$_CEF}, {4, RMI$_PFW}, {4, RMI$_LEF}, {4, RMI$_LEFO}, {4, RMI$_HIB}, {4, RMI$_HIBO}, {4, RMI$_SUSP}, {4, RMI$_SUSPO}, {4, RMI$_FPG}, {4, RMI$_COM}, {4, RMI$_COMO}, {4, RMI$_CUR}, #if defined __alpha {4, RMI$_FRLIST}, {4, RMI$_MODLIST}, #endif {4, RMI$_FAULTS}, {4, RMI$_PREADS}, {4, RMI$_PWRITES}, {4, RMI$_PWRITIO}, {4, RMI$_PREADIO}, {4, RMI$_GVALFLTS}, {4, RMI$_WRTINPROG}, {4, RMI$_FREFLTS}, {4, RMI$_DZROFLTS}, {4, RMI$_SYSFAULTS}, {4, RMI$_ISWPCNT}, {4, RMI$_DIRIO}, {4, RMI$_BUFIO}, {4, RMI$_MBREADS}, {4, RMI$_MBWRITES}, {4, RMI$_LOGNAM}, {4, RMI$_FCPCALLS}, {4, RMI$_FCPREAD}, {4, RMI$_FCPWRITE}, {4, RMI$_FCPCACHE}, {4, RMI$_FCPCPU}, {4, RMI$_FCPHIT}, {4, RMI$_FCPSPLIT}, {4, RMI$_FCPFAULT}, {4, RMI$_ENQNEW}, {4, RMI$_ENQCVT}, {4, RMI$_DEQ}, {4, RMI$_BLKAST}, {4, RMI$_ENQWAIT}, {4, RMI$_ENQNOTQD}, {4, RMI$_DLCKSRCH}, {4, RMI$_DLCKFND}, {4, RMI$_NUMLOCKS}, {4, RMI$_NUMRES}, {4, RMI$_ARRLOCPK}, {4, RMI$_DEPLOCPK}, {4, RMI$_ARRTRAPK}, {4, RMI$_TRCNGLOS}, {4, RMI$_RCVBUFFL}, {4, RMI$_ENQNEWLOC}, {4, RMI$_ENQNEWIN}, {4, RMI$_ENQNEWOUT}, {4, RMI$_ENQCVTLOC}, {4, RMI$_ENQCVTIN}, {4, RMI$_ENQCVTOUT}, {4, RMI$_DEQLOC}, {4, RMI$_DEQIN}, {4, RMI$_DEQOUT}, {4, RMI$_BLKLOC}, {4, RMI$_BLKIN}, {4, RMI$_BLKOUT}, {4, RMI$_DIRIN}, {4, RMI$_DIROUT}, /* We currently get a fault when trying these. TODO: To be figured out. */ #if 0 {140, RMI$_MSCP_EVERYTHING}, /* 35 32-bit words */ {152, RMI$_DDTM_ALL}, /* 38 32-bit words */ {80, RMI$_TMSCP_EVERYTHING} /* 20 32-bit words */ #endif {4, RMI$_LPZ_PAGCNT}, {4, RMI$_LPZ_HITS}, {4, RMI$_LPZ_MISSES}, {4, RMI$_LPZ_EXPCNT}, {4, RMI$_LPZ_ALLOCF}, {4, RMI$_LPZ_ALLOC2}, {4, RMI$_ACCESS}, {4, RMI$_ALLOC}, {4, RMI$_FCPCREATE}, {4, RMI$_VOLWAIT}, {4, RMI$_FCPTURN}, {4, RMI$_FCPERASE}, {4, RMI$_OPENS}, {4, RMI$_FIDHIT}, {4, RMI$_FIDMISS}, {4, RMI$_FILHDR_HIT}, {4, RMI$_DIRFCB_HIT}, {4, RMI$_DIRFCB_MISS}, {4, RMI$_DIRDATA_HIT}, {4, RMI$_EXTHIT}, {4, RMI$_EXTMISS}, {4, RMI$_QUOHIT}, {4, RMI$_QUOMISS}, {4, RMI$_STORAGMAP_HIT}, {4, RMI$_VOLLCK}, {4, RMI$_SYNCHLCK}, {4, RMI$_SYNCHWAIT}, {4, RMI$_ACCLCK}, {4, RMI$_XQPCACHEWAIT}, {4, RMI$_DIRDATA_MISS}, {4, RMI$_FILHDR_MISS}, {4, RMI$_STORAGMAP_MISS}, {4, RMI$_PROCCNTMAX}, {4, RMI$_PROCBATCNT}, {4, RMI$_PROCINTCNT}, {4, RMI$_PROCNETCNT}, {4, RMI$_PROCSWITCHCNT}, {4, RMI$_PROCBALSETCNT}, {4, RMI$_PROCLOADCNT}, {4, RMI$_BADFLTS}, {4, RMI$_EXEFAULTS}, {4, RMI$_HDRINSWAPS}, {4, RMI$_HDROUTSWAPS}, {4, RMI$_IOPAGCNT}, {4, RMI$_ISWPCNTPG}, {4, RMI$_OSWPCNT}, {4, RMI$_OSWPCNTPG}, {4, RMI$_RDFAULTS}, {4, RMI$_TRANSFLTS}, {4, RMI$_WRTFAULTS}, #if defined __alpha {4, RMI$_USERPAGES}, #endif {4, RMI$_VMSPAGES}, {4, RMI$_TTWRITES}, {4, RMI$_BUFOBJPAG}, {4, RMI$_BUFOBJPAGPEAK}, {4, RMI$_BUFOBJPAGS01}, {4, RMI$_BUFOBJPAGS2}, {4, RMI$_BUFOBJPAGMAXS01}, {4, RMI$_BUFOBJPAGMAXS2}, {4, RMI$_BUFOBJPAGPEAKS01}, {4, RMI$_BUFOBJPAGPEAKS2}, {4, RMI$_BUFOBJPGLTMAXS01}, {4, RMI$_BUFOBJPGLTMAXS2}, {4, RMI$_DLCK_INCMPLT}, {4, RMI$_DLCKMSGS_IN}, {4, RMI$_DLCKMSGS_OUT}, {4, RMI$_MCHKERRS}, {4, RMI$_MEMERRS}, }; static const struct item_st RMI_item_data_64bit[] = { #if defined __ia64 {8, RMI$_FRLIST}, {8, RMI$_MODLIST}, #endif {8, RMI$_LCKMGR_REQCNT}, {8, RMI$_LCKMGR_REQTIME}, {8, RMI$_LCKMGR_SPINCNT}, {8, RMI$_LCKMGR_SPINTIME}, {8, RMI$_CPUINTSTK}, {8, RMI$_CPUMPSYNCH}, {8, RMI$_CPUKERNEL}, {8, RMI$_CPUEXEC}, {8, RMI$_CPUSUPER}, {8, RMI$_CPUUSER}, #if defined __ia64 {8, RMI$_USERPAGES}, #endif {8, RMI$_TQETOTAL}, {8, RMI$_TQESYSUB}, {8, RMI$_TQEUSRTIMR}, {8, RMI$_TQEUSRWAKE}, }; static const struct item_st SYI_item_data[] = { {4, SYI$_PAGEFILE_FREE}, }; /* * Input: * items_data - an array of lengths and codes * items_data_num - number of elements in that array * * Output: * items - pre-allocated ILE3 array to be filled. * It's assumed to have items_data_num elements plus * one extra for the terminating NULL element * databuffer - pre-allocated 32-bit word array. * * Returns the number of elements used in databuffer */ static size_t prepare_item_list(const struct item_st *items_input, size_t items_input_num, ILE3 *items, uint32_t__ptr32 databuffer) { size_t data_sz = 0; for (; items_input_num-- > 0; items_input++, items++) { items->ile3$w_code = items_input->code; /* Special treatment of JPI$_FINALEXC */ if (items->ile3$w_code == JPI$_FINALEXC) items->ile3$w_length = 4; else items->ile3$w_length = items_input->length; items->ile3$ps_bufaddr = databuffer; items->ile3$ps_retlen_addr = 0; databuffer += items_input->length / sizeof(databuffer[0]); data_sz += items_input->length; } /* Terminating NULL entry */ items->ile3$w_length = items->ile3$w_code = 0; items->ile3$ps_bufaddr = items->ile3$ps_retlen_addr = NULL; return data_sz / sizeof(databuffer[0]); } static void massage_JPI(ILE3 *items) { /* * Special treatment of JPI$_FINALEXC * The result of that item's data buffer is a 32-bit address to a list of * 4 32-bit words. */ for (; items->ile3$w_length != 0; items++) { if (items->ile3$w_code == JPI$_FINALEXC) { uint32_t *data = items->ile3$ps_bufaddr; uint32_t *ptr = (uint32_t *)*data; size_t j; /* * We know we made space for 4 32-bit words, so we can do in-place * replacement. */ for (j = 0; j < 4; j++) data[j] = ptr[j]; break; } } } /* * This number expresses how many bits of data contain 1 bit of entropy. * * For the moment, we assume about 0.05 entropy bits per data bit, or 1 * bit of entropy per 20 data bits. */ #define ENTROPY_FACTOR 20 size_t data_collect_method(RAND_POOL *pool) { ILE3 JPI_items_64bit[OSSL_NELEM(JPI_item_data_64bit) + 1]; ILE3 RMI_items_64bit[OSSL_NELEM(RMI_item_data_64bit) + 1]; ILE3 DVI_items[OSSL_NELEM(DVI_item_data) + 1]; ILE3 JPI_items[OSSL_NELEM(JPI_item_data) + 1]; ILE3 RMI_items[OSSL_NELEM(RMI_item_data) + 1]; ILE3 SYI_items[OSSL_NELEM(SYI_item_data) + 1]; union { /* This ensures buffer starts at 64 bit boundary */ uint64_t dummy; uint32_t buffer[OSSL_NELEM(JPI_item_data_64bit) * 2 + OSSL_NELEM(RMI_item_data_64bit) * 2 + OSSL_NELEM(DVI_item_data) + OSSL_NELEM(JPI_item_data) + OSSL_NELEM(RMI_item_data) + OSSL_NELEM(SYI_item_data) + 4 /* For JPI$_FINALEXC */]; } data; size_t total_elems = 0; size_t total_length = 0; size_t bytes_needed = rand_pool_bytes_needed(pool, ENTROPY_FACTOR); size_t bytes_remaining = rand_pool_bytes_remaining(pool); /* Take all the 64-bit items first, to ensure proper alignment of data */ total_elems += prepare_item_list(JPI_item_data_64bit, OSSL_NELEM(JPI_item_data_64bit), JPI_items_64bit, &data.buffer[total_elems]); total_elems += prepare_item_list(RMI_item_data_64bit, OSSL_NELEM(RMI_item_data_64bit), RMI_items_64bit, &data.buffer[total_elems]); /* Now the 32-bit items */ total_elems += prepare_item_list(DVI_item_data, OSSL_NELEM(DVI_item_data), DVI_items, &data.buffer[total_elems]); total_elems += prepare_item_list(JPI_item_data, OSSL_NELEM(JPI_item_data), JPI_items, &data.buffer[total_elems]); total_elems += prepare_item_list(RMI_item_data, OSSL_NELEM(RMI_item_data), RMI_items, &data.buffer[total_elems]); total_elems += prepare_item_list(SYI_item_data, OSSL_NELEM(SYI_item_data), SYI_items, &data.buffer[total_elems]); total_length = total_elems * sizeof(data.buffer[0]); /* Fill data.buffer with various info bits from this process */ { uint32_t status; uint32_t efn; IOSB iosb; $DESCRIPTOR(SYSDEVICE,"SYS$SYSDEVICE:"); if ((status = sys$getdviw(EFN$C_ENF, 0, &SYSDEVICE, DVI_items, 0, 0, 0, 0, 0)) != SS$_NORMAL) { lib$signal(status); return 0; } if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items_64bit, 0, 0, 0)) != SS$_NORMAL) { lib$signal(status); return 0; } if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items, 0, 0, 0)) != SS$_NORMAL) { lib$signal(status); return 0; } if ((status = sys$getsyiw(EFN$C_ENF, 0, 0, SYI_items, 0, 0, 0)) != SS$_NORMAL) { lib$signal(status); return 0; } /* * The RMI service is a bit special, as there is no synchronous * variant, so we MUST create an event flag to synchronise on. */ if ((status = lib$get_ef(&efn)) != SS$_NORMAL) { lib$signal(status); return 0; } if ((status = sys$getrmi(efn, 0, 0, RMI_items_64bit, &iosb, 0, 0)) != SS$_NORMAL) { lib$signal(status); return 0; } if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) { lib$signal(status); return 0; } if (iosb.iosb$l_getxxi_status != SS$_NORMAL) { lib$signal(iosb.iosb$l_getxxi_status); return 0; } if ((status = sys$getrmi(efn, 0, 0, RMI_items, &iosb, 0, 0)) != SS$_NORMAL) { lib$signal(status); return 0; } if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) { lib$signal(status); return 0; } if (iosb.iosb$l_getxxi_status != SS$_NORMAL) { lib$signal(iosb.iosb$l_getxxi_status); return 0; } if ((status = lib$free_ef(&efn)) != SS$_NORMAL) { lib$signal(status); return 0; } } massage_JPI(JPI_items); /* * If we can't feed the requirements from the caller, we're in deep trouble. */ if (!ossl_assert(total_length >= bytes_needed)) { char buf[100]; /* That should be enough */ BIO_snprintf(buf, sizeof(buf), "Needed: %zu, Available: %zu", bytes_needed, total_length); RANDerr(RAND_F_DATA_COLLECT_METHOD, RAND_R_RANDOM_POOL_UNDERFLOW); ERR_add_error_data(1, buf); return 0; } /* * Try not to overfeed the pool */ if (total_length > bytes_remaining) total_length = bytes_remaining; /* We give the pessimistic value for the amount of entropy */ rand_pool_add(pool, (unsigned char *)data.buffer, total_length, 8 * total_length / ENTROPY_FACTOR); return rand_pool_entropy_available(pool); } int rand_pool_add_nonce_data(RAND_POOL *pool) { struct { pid_t pid; CRYPTO_THREAD_ID tid; uint64_t time; } data = { 0 }; /* * Add process id, thread id, and a high resolution timestamp * (where available, which is OpenVMS v8.4 and up) to ensure that * the nonce is unique with high probability for different process * instances. */ data.pid = getpid(); data.tid = CRYPTO_THREAD_get_current_id(); #if __CRTL_VER >= 80400000 sys$gettim_prec(&data.time); #else sys$gettim((void*)&data.time); #endif return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } /* * SYS$GET_ENTROPY METHOD * ====================== * * This is a high entropy method based on a new system service that is * based on getentropy() from FreeBSD 12. It's only used if available, * and its availability is detected at run-time. * * We assume that this function provides full entropy random output. */ #define PUBLIC_VECTORS "SYS$LIBRARY:SYS$PUBLIC_VECTORS.EXE" #define GET_ENTROPY "SYS$GET_ENTROPY" static int get_entropy_address_flag = 0; static int (*get_entropy_address)(void *buffer, size_t buffer_size) = NULL; static int init_get_entropy_address(void) { if (get_entropy_address_flag == 0) get_entropy_address = dlsym(dlopen(PUBLIC_VECTORS, 0), GET_ENTROPY); get_entropy_address_flag = 1; return get_entropy_address != NULL; } size_t get_entropy_method(RAND_POOL *pool) { /* * The documentation says that SYS$GET_ENTROPY will give a maximum of * 256 bytes of data. */ unsigned char buffer[256]; size_t bytes_needed; size_t bytes_to_get = 0; uint32_t status; for (bytes_needed = rand_pool_bytes_needed(pool, 1); bytes_needed > 0; bytes_needed -= bytes_to_get) { bytes_to_get = bytes_needed > sizeof(buffer) ? sizeof(buffer) : bytes_needed; status = get_entropy_address(buffer, bytes_to_get); if (status == SS$_RETRY) { /* Set to zero so the loop doesn't diminish |bytes_needed| */ bytes_to_get = 0; /* Should sleep some amount of time */ continue; } if (status != SS$_NORMAL) { lib$signal(status); return 0; } rand_pool_add(pool, buffer, bytes_to_get, 8 * bytes_to_get); } return rand_pool_entropy_available(pool); } /* * MAIN ENTROPY ACQUISITION FUNCTIONS * ================================== * * These functions are called by the RAND / DRBG functions */ size_t rand_pool_acquire_entropy(RAND_POOL *pool) { if (init_get_entropy_address()) return get_entropy_method(pool); return data_collect_method(pool); } int rand_pool_add_additional_data(RAND_POOL *pool) { struct { CRYPTO_THREAD_ID tid; uint64_t time; } data = { 0 }; /* * Add some noise from the thread id and a high resolution timer. * The thread id adds a little randomness if the drbg is accessed * concurrently (which is the case for the drbg). */ data.tid = CRYPTO_THREAD_get_current_id(); #if __CRTL_VER >= 80400000 sys$gettim_prec(&data.time); #else sys$gettim((void*)&data.time); #endif return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } int rand_pool_init(void) { return 1; } void rand_pool_cleanup(void) { } void rand_pool_keep_random_devices_open(int keep) { } #endif openssl-1.1.1f/crypto/rand/rand_win.c000066400000000000000000000123101364063235100175540ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include "rand_local.h" #include "crypto/rand.h" #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) # ifndef OPENSSL_RAND_SEED_OS # error "Unsupported seeding method configured; must be os" # endif # include /* On Windows Vista or higher use BCrypt instead of the legacy CryptoAPI */ # if defined(_MSC_VER) && _MSC_VER > 1500 /* 1500 = Visual Studio 2008 */ \ && defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0600 # define USE_BCRYPTGENRANDOM # endif # ifdef USE_BCRYPTGENRANDOM # include # pragma comment(lib, "bcrypt.lib") # ifndef STATUS_SUCCESS # define STATUS_SUCCESS ((NTSTATUS)0x00000000L) # endif # else # include /* * Intel hardware RNG CSP -- available from * http://developer.intel.com/design/security/rng/redist_license.htm */ # define PROV_INTEL_SEC 22 # define INTEL_DEF_PROV L"Intel Hardware Cryptographic Service Provider" # endif size_t rand_pool_acquire_entropy(RAND_POOL *pool) { # ifndef USE_BCRYPTGENRANDOM HCRYPTPROV hProvider; # endif unsigned char *buffer; size_t bytes_needed; size_t entropy_available = 0; # ifdef OPENSSL_RAND_SEED_RDTSC entropy_available = rand_acquire_entropy_from_tsc(pool); if (entropy_available > 0) return entropy_available; # endif # ifdef OPENSSL_RAND_SEED_RDCPU entropy_available = rand_acquire_entropy_from_cpu(pool); if (entropy_available > 0) return entropy_available; # endif # ifdef USE_BCRYPTGENRANDOM bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); buffer = rand_pool_add_begin(pool, bytes_needed); if (buffer != NULL) { size_t bytes = 0; if (BCryptGenRandom(NULL, buffer, bytes_needed, BCRYPT_USE_SYSTEM_PREFERRED_RNG) == STATUS_SUCCESS) bytes = bytes_needed; rand_pool_add_end(pool, bytes, 8 * bytes); entropy_available = rand_pool_entropy_available(pool); } if (entropy_available > 0) return entropy_available; # else bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); buffer = rand_pool_add_begin(pool, bytes_needed); if (buffer != NULL) { size_t bytes = 0; /* poll the CryptoAPI PRNG */ if (CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT) != 0) { if (CryptGenRandom(hProvider, bytes_needed, buffer) != 0) bytes = bytes_needed; CryptReleaseContext(hProvider, 0); } rand_pool_add_end(pool, bytes, 8 * bytes); entropy_available = rand_pool_entropy_available(pool); } if (entropy_available > 0) return entropy_available; bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); buffer = rand_pool_add_begin(pool, bytes_needed); if (buffer != NULL) { size_t bytes = 0; /* poll the Pentium PRG with CryptoAPI */ if (CryptAcquireContextW(&hProvider, NULL, INTEL_DEF_PROV, PROV_INTEL_SEC, CRYPT_VERIFYCONTEXT | CRYPT_SILENT) != 0) { if (CryptGenRandom(hProvider, bytes_needed, buffer) != 0) bytes = bytes_needed; CryptReleaseContext(hProvider, 0); } rand_pool_add_end(pool, bytes, 8 * bytes); entropy_available = rand_pool_entropy_available(pool); } if (entropy_available > 0) return entropy_available; # endif return rand_pool_entropy_available(pool); } int rand_pool_add_nonce_data(RAND_POOL *pool) { struct { DWORD pid; DWORD tid; FILETIME time; } data = { 0 }; /* * Add process id, thread id, and a high resolution timestamp to * ensure that the nonce is unique with high probability for * different process instances. */ data.pid = GetCurrentProcessId(); data.tid = GetCurrentThreadId(); GetSystemTimeAsFileTime(&data.time); return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } int rand_pool_add_additional_data(RAND_POOL *pool) { struct { DWORD tid; LARGE_INTEGER time; } data = { 0 }; /* * Add some noise from the thread id and a high resolution timer. * The thread id adds a little randomness if the drbg is accessed * concurrently (which is the case for the drbg). */ data.tid = GetCurrentThreadId(); QueryPerformanceCounter(&data.time); return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); } # if OPENSSL_API_COMPAT < 0x10100000L int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam) { RAND_poll(); return RAND_status(); } void RAND_screen(void) { RAND_poll(); } # endif int rand_pool_init(void) { return 1; } void rand_pool_cleanup(void) { } void rand_pool_keep_random_devices_open(int keep) { } #endif openssl-1.1.1f/crypto/rand/randfile.c000066400000000000000000000225651364063235100175540ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include #ifdef OPENSSL_SYS_VMS # include #endif #include #ifndef OPENSSL_NO_POSIX_IO # include # include # ifdef _WIN32 # include # include # define stat _stat # define chmod _chmod # define open _open # define fdopen _fdopen # define fstat _fstat # define fileno _fileno # endif #endif /* * Following should not be needed, and we could have been stricter * and demand S_IS*. But some systems just don't comply... Formally * below macros are "anatomically incorrect", because normally they * would look like ((m) & MASK == TYPE), but since MASK availability * is as questionable, we settle for this poor-man fallback... */ # if !defined(S_ISREG) # define S_ISREG(m) ((m) & S_IFREG) # endif #define RAND_BUF_SIZE 1024 #define RFILE ".rnd" #ifdef OPENSSL_SYS_VMS /* * __FILE_ptr32 is a type provided by DEC C headers (types.h specifically) * to make sure the FILE* is a 32-bit pointer no matter what. We know that * stdio functions return this type (a study of stdio.h proves it). * * This declaration is a nasty hack to get around vms' extension to fopen for * passing in sharing options being disabled by /STANDARD=ANSI89 */ static __FILE_ptr32 (*const vms_fopen)(const char *, const char *, ...) = (__FILE_ptr32 (*)(const char *, const char *, ...))fopen; # define VMS_OPEN_ATTRS \ "shr=get,put,upd,del","ctx=bin,stm","rfm=stm","rat=none","mrs=0" # define openssl_fopen(fname, mode) vms_fopen((fname), (mode), VMS_OPEN_ATTRS) #endif /* * Note that these functions are intended for seed files only. Entropy * devices and EGD sockets are handled in rand_unix.c If |bytes| is * -1 read the complete file; otherwise read the specified amount. */ int RAND_load_file(const char *file, long bytes) { /* * The load buffer size exceeds the chunk size by the comfortable amount * of 'RAND_DRBG_STRENGTH' bytes (not bits!). This is done on purpose * to avoid calling RAND_add() with a small final chunk. Instead, such * a small final chunk will be added together with the previous chunk * (unless it's the only one). */ #define RAND_LOAD_BUF_SIZE (RAND_BUF_SIZE + RAND_DRBG_STRENGTH) unsigned char buf[RAND_LOAD_BUF_SIZE]; #ifndef OPENSSL_NO_POSIX_IO struct stat sb; #endif int i, n, ret = 0; FILE *in; if (bytes == 0) return 0; if ((in = openssl_fopen(file, "rb")) == NULL) { RANDerr(RAND_F_RAND_LOAD_FILE, RAND_R_CANNOT_OPEN_FILE); ERR_add_error_data(2, "Filename=", file); return -1; } #ifndef OPENSSL_NO_POSIX_IO if (fstat(fileno(in), &sb) < 0) { RANDerr(RAND_F_RAND_LOAD_FILE, RAND_R_INTERNAL_ERROR); ERR_add_error_data(2, "Filename=", file); fclose(in); return -1; } if (bytes < 0) { if (S_ISREG(sb.st_mode)) bytes = sb.st_size; else bytes = RAND_DRBG_STRENGTH; } #endif /* * On VMS, setbuf() will only take 32-bit pointers, and a compilation * with /POINTER_SIZE=64 will give off a MAYLOSEDATA2 warning here. * However, we trust that the C RTL will never give us a FILE pointer * above the first 4 GB of memory, so we simply turn off the warning * temporarily. */ #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma environment save # pragma message disable maylosedata2 #endif /* * Don't buffer, because even if |file| is regular file, we have * no control over the buffer, so why would we want a copy of its * contents lying around? */ setbuf(in, NULL); #if defined(OPENSSL_SYS_VMS) && defined(__DECC) # pragma environment restore #endif for ( ; ; ) { if (bytes > 0) n = (bytes <= RAND_LOAD_BUF_SIZE) ? (int)bytes : RAND_BUF_SIZE; else n = RAND_LOAD_BUF_SIZE; i = fread(buf, 1, n, in); #ifdef EINTR if (ferror(in) && errno == EINTR){ clearerr(in); if (i == 0) continue; } #endif if (i == 0) break; RAND_add(buf, i, (double)i); ret += i; /* If given a bytecount, and we did it, break. */ if (bytes > 0 && (bytes -= i) <= 0) break; } OPENSSL_cleanse(buf, sizeof(buf)); fclose(in); if (!RAND_status()) { RANDerr(RAND_F_RAND_LOAD_FILE, RAND_R_RESEED_ERROR); ERR_add_error_data(2, "Filename=", file); return -1; } return ret; } int RAND_write_file(const char *file) { unsigned char buf[RAND_BUF_SIZE]; int ret = -1; FILE *out = NULL; #ifndef OPENSSL_NO_POSIX_IO struct stat sb; if (stat(file, &sb) >= 0 && !S_ISREG(sb.st_mode)) { RANDerr(RAND_F_RAND_WRITE_FILE, RAND_R_NOT_A_REGULAR_FILE); ERR_add_error_data(2, "Filename=", file); return -1; } #endif /* Collect enough random data. */ if (RAND_priv_bytes(buf, (int)sizeof(buf)) != 1) return -1; #if defined(O_CREAT) && !defined(OPENSSL_NO_POSIX_IO) && \ !defined(OPENSSL_SYS_VMS) && !defined(OPENSSL_SYS_WINDOWS) { # ifndef O_BINARY # define O_BINARY 0 # endif /* * chmod(..., 0600) is too late to protect the file, permissions * should be restrictive from the start */ int fd = open(file, O_WRONLY | O_CREAT | O_BINARY, 0600); if (fd != -1) out = fdopen(fd, "wb"); } #endif #ifdef OPENSSL_SYS_VMS /* * VMS NOTE: Prior versions of this routine created a _new_ version of * the rand file for each call into this routine, then deleted all * existing versions named ;-1, and finally renamed the current version * as ';1'. Under concurrent usage, this resulted in an RMS race * condition in rename() which could orphan files (see vms message help * for RMS$_REENT). With the fopen() calls below, openssl/VMS now shares * the top-level version of the rand file. Note that there may still be * conditions where the top-level rand file is locked. If so, this code * will then create a new version of the rand file. Without the delete * and rename code, this can result in ascending file versions that stop * at version 32767, and this routine will then return an error. The * remedy for this is to recode the calling application to avoid * concurrent use of the rand file, or synchronize usage at the * application level. Also consider whether or not you NEED a persistent * rand file in a concurrent use situation. */ out = openssl_fopen(file, "rb+"); #endif if (out == NULL) out = openssl_fopen(file, "wb"); if (out == NULL) { RANDerr(RAND_F_RAND_WRITE_FILE, RAND_R_CANNOT_OPEN_FILE); ERR_add_error_data(2, "Filename=", file); return -1; } #if !defined(NO_CHMOD) && !defined(OPENSSL_NO_POSIX_IO) /* * Yes it's late to do this (see above comment), but better than nothing. */ chmod(file, 0600); #endif ret = fwrite(buf, 1, RAND_BUF_SIZE, out); fclose(out); OPENSSL_cleanse(buf, RAND_BUF_SIZE); return ret; } const char *RAND_file_name(char *buf, size_t size) { char *s = NULL; size_t len; int use_randfile = 1; #if defined(_WIN32) && defined(CP_UTF8) && !defined(_WIN32_WCE) DWORD envlen; WCHAR *var; /* Look up various environment variables. */ if ((envlen = GetEnvironmentVariableW(var = L"RANDFILE", NULL, 0)) == 0) { use_randfile = 0; if ((envlen = GetEnvironmentVariableW(var = L"HOME", NULL, 0)) == 0 && (envlen = GetEnvironmentVariableW(var = L"USERPROFILE", NULL, 0)) == 0) envlen = GetEnvironmentVariableW(var = L"SYSTEMROOT", NULL, 0); } /* If we got a value, allocate space to hold it and then get it. */ if (envlen != 0) { int sz; WCHAR *val = _alloca(envlen * sizeof(WCHAR)); if (GetEnvironmentVariableW(var, val, envlen) < envlen && (sz = WideCharToMultiByte(CP_UTF8, 0, val, -1, NULL, 0, NULL, NULL)) != 0) { s = _alloca(sz); if (WideCharToMultiByte(CP_UTF8, 0, val, -1, s, sz, NULL, NULL) == 0) s = NULL; } } #else if ((s = ossl_safe_getenv("RANDFILE")) == NULL || *s == '\0') { use_randfile = 0; s = ossl_safe_getenv("HOME"); } #endif #ifdef DEFAULT_HOME if (!use_randfile && s == NULL) s = DEFAULT_HOME; #endif if (s == NULL || *s == '\0') return NULL; len = strlen(s); if (use_randfile) { if (len + 1 >= size) return NULL; strcpy(buf, s); } else { if (len + 1 + strlen(RFILE) + 1 >= size) return NULL; strcpy(buf, s); #ifndef OPENSSL_SYS_VMS strcat(buf, "/"); #endif strcat(buf, RFILE); } return buf; } openssl-1.1.1f/crypto/rc2/000077500000000000000000000000001364063235100153545ustar00rootroot00000000000000openssl-1.1.1f/crypto/rc2/build.info000066400000000000000000000001541364063235100173300ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ rc2_ecb.c rc2_skey.c rc2_cbc.c rc2cfb64.c rc2ofb64.c openssl-1.1.1f/crypto/rc2/rc2_cbc.c000066400000000000000000000115361364063235100170230ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc2_local.h" void RC2_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, RC2_KEY *ks, unsigned char *iv, int encrypt) { register unsigned long tin0, tin1; register unsigned long tout0, tout1, xor0, xor1; register long l = length; unsigned long tin[2]; if (encrypt) { c2l(iv, tout0); c2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC2_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC2_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } l2c(tout0, iv); l2c(tout1, iv); } else { c2l(iv, xor0); c2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC2_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2c(tout0, out); l2c(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC2_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2cn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2c(xor0, iv); l2c(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } void RC2_encrypt(unsigned long *d, RC2_KEY *key) { int i, n; register RC2_INT *p0, *p1; register RC2_INT x0, x1, x2, x3, t; unsigned long l; l = d[0]; x0 = (RC2_INT) l & 0xffff; x1 = (RC2_INT) (l >> 16L); l = d[1]; x2 = (RC2_INT) l & 0xffff; x3 = (RC2_INT) (l >> 16L); n = 3; i = 5; p0 = p1 = &(key->data[0]); for (;;) { t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff; x0 = (t << 1) | (t >> 15); t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff; x1 = (t << 2) | (t >> 14); t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff; x2 = (t << 3) | (t >> 13); t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff; x3 = (t << 5) | (t >> 11); if (--i == 0) { if (--n == 0) break; i = (n == 2) ? 6 : 5; x0 += p1[x3 & 0x3f]; x1 += p1[x0 & 0x3f]; x2 += p1[x1 & 0x3f]; x3 += p1[x2 & 0x3f]; } } d[0] = (unsigned long)(x0 & 0xffff) | ((unsigned long)(x1 & 0xffff) << 16L); d[1] = (unsigned long)(x2 & 0xffff) | ((unsigned long)(x3 & 0xffff) << 16L); } void RC2_decrypt(unsigned long *d, RC2_KEY *key) { int i, n; register RC2_INT *p0, *p1; register RC2_INT x0, x1, x2, x3, t; unsigned long l; l = d[0]; x0 = (RC2_INT) l & 0xffff; x1 = (RC2_INT) (l >> 16L); l = d[1]; x2 = (RC2_INT) l & 0xffff; x3 = (RC2_INT) (l >> 16L); n = 3; i = 5; p0 = &(key->data[63]); p1 = &(key->data[0]); for (;;) { t = ((x3 << 11) | (x3 >> 5)) & 0xffff; x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff; t = ((x2 << 13) | (x2 >> 3)) & 0xffff; x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff; t = ((x1 << 14) | (x1 >> 2)) & 0xffff; x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff; t = ((x0 << 15) | (x0 >> 1)) & 0xffff; x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff; if (--i == 0) { if (--n == 0) break; i = (n == 2) ? 6 : 5; x3 = (x3 - p1[x2 & 0x3f]) & 0xffff; x2 = (x2 - p1[x1 & 0x3f]) & 0xffff; x1 = (x1 - p1[x0 & 0x3f]) & 0xffff; x0 = (x0 - p1[x3 & 0x3f]) & 0xffff; } } d[0] = (unsigned long)(x0 & 0xffff) | ((unsigned long)(x1 & 0xffff) << 16L); d[1] = (unsigned long)(x2 & 0xffff) | ((unsigned long)(x3 & 0xffff) << 16L); } openssl-1.1.1f/crypto/rc2/rc2_ecb.c000066400000000000000000000017451364063235100170260ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc2_local.h" #include /*- * RC2 as implemented frm a posting from * Newsgroups: sci.crypt * Subject: Specification for Ron Rivests Cipher No.2 * Message-ID: <4fk39f$f70@net.auckland.ac.nz> * Date: 11 Feb 1996 06:45:03 GMT */ void RC2_ecb_encrypt(const unsigned char *in, unsigned char *out, RC2_KEY *ks, int encrypt) { unsigned long l, d[2]; c2l(in, l); d[0] = l; c2l(in, l); d[1] = l; if (encrypt) RC2_encrypt(d, ks); else RC2_decrypt(d, ks); l = d[0]; l2c(l, out); l = d[1]; l2c(l, out); l = d[0] = d[1] = 0; } openssl-1.1.1f/crypto/rc2/rc2_local.h000066400000000000000000000160051364063235100173670ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #undef c2l #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<<24L) /* NOTE - c is not incremented as per c2l */ #undef c2ln #define c2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c))))<<24L; \ /* fall thru */ \ case 7: l2|=((unsigned long)(*(--(c))))<<16L; \ /* fall thru */ \ case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \ /* fall thru */ \ case 5: l2|=((unsigned long)(*(--(c)))); \ /* fall thru */ \ case 4: l1 =((unsigned long)(*(--(c))))<<24L; \ /* fall thru */ \ case 3: l1|=((unsigned long)(*(--(c))))<<16L; \ /* fall thru */ \ case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \ /* fall thru */ \ case 1: l1|=((unsigned long)(*(--(c)))); \ } \ } #undef l2c #define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>>24L)&0xff)) /* NOTE - c is not incremented as per l2c */ #undef l2cn #define l2cn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1) )&0xff); \ } \ } /* NOTE - c is not incremented as per n2l */ #define n2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 7: l2|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 6: l2|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 5: l2|=((unsigned long)(*(--(c))))<<24; \ /* fall thru */ \ case 4: l1 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 3: l1|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 2: l1|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 1: l1|=((unsigned long)(*(--(c))))<<24; \ } \ } /* NOTE - c is not incremented as per l2n */ #define l2nn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1) )&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \ } \ } #undef n2l #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))) #undef l2n #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) #define C_RC2(n) \ t=(x0+(x1& ~x3)+(x2&x3)+ *(p0++))&0xffff; \ x0=(t<<1)|(t>>15); \ t=(x1+(x2& ~x0)+(x3&x0)+ *(p0++))&0xffff; \ x1=(t<<2)|(t>>14); \ t=(x2+(x3& ~x1)+(x0&x1)+ *(p0++))&0xffff; \ x2=(t<<3)|(t>>13); \ t=(x3+(x0& ~x2)+(x1&x2)+ *(p0++))&0xffff; \ x3=(t<<5)|(t>>11); openssl-1.1.1f/crypto/rc2/rc2_skey.c000066400000000000000000000067561364063235100172570ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc2_local.h" static const unsigned char key_table[256] = { 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad, }; #if defined(_MSC_VER) && defined(_ARM_) # pragma optimize("g",off) #endif /* * It has come to my attention that there are 2 versions of the RC2 key * schedule. One which is normal, and anther which has a hook to use a * reduced key length. BSAFE uses the 'retarded' version. What I previously * shipped is the same as specifying 1024 for the 'bits' parameter. Bsafe * uses a version where the bits parameter is the same as len*8 */ void RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int bits) { int i, j; unsigned char *k; RC2_INT *ki; unsigned int c, d; k = (unsigned char *)&(key->data[0]); *k = 0; /* for if there is a zero length key */ if (len > 128) len = 128; if (bits <= 0) bits = 1024; if (bits > 1024) bits = 1024; for (i = 0; i < len; i++) k[i] = data[i]; /* expand table */ d = k[len - 1]; j = 0; for (i = len; i < 128; i++, j++) { d = key_table[(k[j] + d) & 0xff]; k[i] = d; } /* hmm.... key reduction to 'bits' bits */ j = (bits + 7) >> 3; i = 128 - j; c = (0xff >> (-bits & 0x07)); d = key_table[k[i] & c]; k[i] = d; while (i--) { d = key_table[k[i + j] ^ d]; k[i] = d; } /* copy from bytes into RC2_INT's */ ki = &(key->data[63]); for (i = 127; i >= 0; i -= 2) *(ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff; } #if defined(_MSC_VER) # pragma optimize("",on) #endif openssl-1.1.1f/crypto/rc2/rc2cfb64.c000066400000000000000000000042111364063235100170310ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc2_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void RC2_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC2_KEY *schedule, unsigned char *ivec, int *num, int encrypt) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned long ti[2]; unsigned char *iv, c, cc; iv = (unsigned char *)ivec; if (encrypt) { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC2_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC2_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; } openssl-1.1.1f/crypto/rc2/rc2ofb64.c000066400000000000000000000031251364063235100170500ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc2_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void RC2_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC2_KEY *schedule, unsigned char *ivec, int *num) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned char d[8]; register char *dp; unsigned long ti[2]; unsigned char *iv; int save = 0; iv = (unsigned char *)ivec; c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2c(v0, dp); l2c(v1, dp); while (l--) { if (n == 0) { RC2_encrypt((unsigned long *)ti, schedule); dp = (char *)d; t = ti[0]; l2c(t, dp); t = ti[1]; l2c(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = (unsigned char *)ivec; l2c(v0, iv); l2c(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; } openssl-1.1.1f/crypto/rc4/000077500000000000000000000000001364063235100153565ustar00rootroot00000000000000openssl-1.1.1f/crypto/rc4/asm/000077500000000000000000000000001364063235100161365ustar00rootroot00000000000000openssl-1.1.1f/crypto/rc4/asm/rc4-586.pl000066400000000000000000000303211364063235100175020ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # [Re]written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # At some point it became apparent that the original SSLeay RC4 # assembler implementation performs suboptimally on latest IA-32 # microarchitectures. After re-tuning performance has changed as # following: # # Pentium -10% # Pentium III +12% # AMD +50%(*) # P4 +250%(**) # # (*) This number is actually a trade-off:-) It's possible to # achieve +72%, but at the cost of -48% off PIII performance. # In other words code performing further 13% faster on AMD # would perform almost 2 times slower on Intel PIII... # For reference! This code delivers ~80% of rc4-amd64.pl # performance on the same Opteron machine. # (**) This number requires compressed key schedule set up by # RC4_set_key [see commentary below for further details]. # May 2011 # # Optimize for Core2 and Westmere [and incidentally Opteron]. Current # performance in cycles per processed byte (less is better) and # improvement relative to previous version of this module is: # # Pentium 10.2 # original numbers # Pentium III 7.8(*) # Intel P4 7.5 # # Opteron 6.1/+20% # new MMX numbers # Core2 5.3/+67%(**) # Westmere 5.1/+94%(**) # Sandy Bridge 5.0/+8% # Atom 12.6/+6% # VIA Nano 6.4/+9% # Ivy Bridge 4.9/±0% # Bulldozer 4.9/+15% # # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, # but this specific code performs poorly on Core2. And vice # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU # [anymore], I chose to discard PIII-specific code path and opt # for original IALU-only code, which is why MMX/SSE code path # is guarded by SSE2 bit (see below), not MMX/SSE. # (**) Performance vs. block size on Core2 and Westmere had a maximum # at ... 64 bytes block size. And it was quite a maximum, 40-60% # in comparison to largest 8KB block size. Above improvement # coefficients are for the largest block size. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); $xx="eax"; $yy="ebx"; $tx="ecx"; $ty="edx"; $inp="esi"; $out="ebp"; $dat="edi"; sub RC4_loop { my $i=shift; my $func = ($i==0)?*mov:*or; &add (&LB($yy),&LB($tx)); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &mov (&DWP(0,$dat,$xx,4),$ty); &add ($ty,$tx); &inc (&LB($xx)); &and ($ty,0xff); &ror ($out,8) if ($i!=0); if ($i<3) { &mov ($tx,&DWP(0,$dat,$xx,4)); } else { &mov ($tx,&wparam(3)); # reload [re-biased] out } &$func ($out,&DWP(0,$dat,$ty,4)); } if ($alt=0) { # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, # but ~40% slower on Core2 and Westmere... Attempt to add movz # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet # on Core2 with movz it's almost 20% slower than below alternative # code... Yes, it's a total mess... my @XX=($xx,$out); $RC4_loop_mmx = sub { # SSE actually... my $i=shift; my $j=$i<=0?0:$i>>1; my $mm=$i<=0?"mm0":"mm".($i&1); &add (&LB($yy),&LB($tx)); &lea (@XX[1],&DWP(1,@XX[0])); &pxor ("mm2","mm0") if ($i==0); &psllq ("mm1",8) if ($i==0); &and (@XX[1],0xff); &pxor ("mm0","mm0") if ($i<=0); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &pxor ("mm1","mm2") if ($i==0); &mov (&DWP(0,$dat,$XX[0],4),$ty); &add (&LB($ty),&LB($tx)); &movd (@XX[0],"mm7") if ($i==0); &mov ($tx,&DWP(0,$dat,@XX[1],4)); &pxor ("mm1","mm1") if ($i==1); &movq ("mm2",&QWP(0,$inp)) if ($i==1); &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); push (@XX,shift(@XX)) if ($i>=0); } } else { # Using pinsrw here improves performance on Intel CPUs by 2-3%, but # brings down AMD by 7%... $RC4_loop_mmx = sub { my $i=shift; &add (&LB($yy),&LB($tx)); &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &mov (&DWP(0,$dat,$xx,4),$ty); &inc ($xx); &add ($ty,$tx); &movz ($xx,&LB($xx)); # (*) &movz ($ty,&LB($ty)); # (*) &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); &movq ("mm0",&QWP(0,$inp)) if ($i<=0); &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); &mov ($tx,&DWP(0,$dat,$xx,4)); &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); # (*) This is the key to Core2 and Westmere performance. # Without movz out-of-order execution logic confuses # itself and fails to reorder loads and stores. Problem # appears to be fixed in Sandy Bridge... } } &external_label("OPENSSL_ia32cap_P"); # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); &function_begin("RC4"); &mov ($dat,&wparam(0)); # load key schedule pointer &mov ($ty, &wparam(1)); # load len &mov ($inp,&wparam(2)); # load inp &mov ($out,&wparam(3)); # load out &xor ($xx,$xx); # avoid partial register stalls &xor ($yy,$yy); &cmp ($ty,0); # safety net &je (&label("abort")); &mov (&LB($xx),&BP(0,$dat)); # load key->x &mov (&LB($yy),&BP(4,$dat)); # load key->y &add ($dat,8); &lea ($tx,&DWP(0,$inp,$ty)); &sub ($out,$inp); # re-bias out &mov (&wparam(1),$tx); # save input+len &inc (&LB($xx)); # detect compressed key schedule... &cmp (&DWP(256,$dat),-1); &je (&label("RC4_CHAR")); &mov ($tx,&DWP(0,$dat,$xx,4)); &and ($ty,-4); # how many 4-byte chunks? &jz (&label("loop1")); &mov (&wparam(3),$out); # $out as accumulator in these loops if ($x86only) { &jmp (&label("go4loop4")); } else { &test ($ty,-8); &jz (&label("go4loop4")); &picmeup($out,"OPENSSL_ia32cap_P"); &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] &jnc (&label("go4loop4")); &mov ($out,&wparam(3)) if (!$alt); &movd ("mm7",&wparam(3)) if ($alt); &and ($ty,-8); &lea ($ty,&DWP(-8,$inp,$ty)); &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 &$RC4_loop_mmx(-1); &jmp(&label("loop_mmx_enter")); &set_label("loop_mmx",16); &$RC4_loop_mmx(0); &set_label("loop_mmx_enter"); for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } &mov ($ty,$yy); &xor ($yy,$yy); # this is second key to Core2 &mov (&LB($yy),&LB($ty)); # and Westmere performance... &cmp ($inp,&DWP(-4,$dat)); &lea ($inp,&DWP(8,$inp)); &jb (&label("loop_mmx")); if ($alt) { &movd ($out,"mm7"); &pxor ("mm2","mm0"); &psllq ("mm1",8); &pxor ("mm1","mm2"); &movq (&QWP(-8,$out,$inp),"mm1"); } else { &psllq ("mm1",56); &pxor ("mm2","mm1"); &movq (&QWP(-8,$out,$inp),"mm2"); } &emms (); &cmp ($inp,&wparam(1)); # compare to input+len &je (&label("done")); &jmp (&label("loop1")); } &set_label("go4loop4",16); &lea ($ty,&DWP(-4,$inp,$ty)); &mov (&wparam(2),$ty); # save input+(len/4)*4-4 &set_label("loop4"); for ($i=0;$i<4;$i++) { RC4_loop($i); } &ror ($out,8); &xor ($out,&DWP(0,$inp)); &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here &lea ($inp,&DWP(4,$inp)); &mov ($tx,&DWP(0,$dat,$xx,4)); &jb (&label("loop4")); &cmp ($inp,&wparam(1)); # compare to input+len &je (&label("done")); &mov ($out,&wparam(3)); # restore $out &set_label("loop1",16); &add (&LB($yy),&LB($tx)); &mov ($ty,&DWP(0,$dat,$yy,4)); &mov (&DWP(0,$dat,$yy,4),$tx); &mov (&DWP(0,$dat,$xx,4),$ty); &add ($ty,$tx); &inc (&LB($xx)); &and ($ty,0xff); &mov ($ty,&DWP(0,$dat,$ty,4)); &xor (&LB($ty),&BP(0,$inp)); &lea ($inp,&DWP(1,$inp)); &mov ($tx,&DWP(0,$dat,$xx,4)); &cmp ($inp,&wparam(1)); # compare to input+len &mov (&BP(-1,$out,$inp),&LB($ty)); &jb (&label("loop1")); &jmp (&label("done")); # this is essentially Intel P4 specific codepath... &set_label("RC4_CHAR",16); &movz ($tx,&BP(0,$dat,$xx)); # strangely enough unrolled loop performs over 20% slower... &set_label("cloop1"); &add (&LB($yy),&LB($tx)); &movz ($ty,&BP(0,$dat,$yy)); &mov (&BP(0,$dat,$yy),&LB($tx)); &mov (&BP(0,$dat,$xx),&LB($ty)); &add (&LB($ty),&LB($tx)); &movz ($ty,&BP(0,$dat,$ty)); &add (&LB($xx),1); &xor (&LB($ty),&BP(0,$inp)); &lea ($inp,&DWP(1,$inp)); &movz ($tx,&BP(0,$dat,$xx)); &cmp ($inp,&wparam(1)); &mov (&BP(-1,$out,$inp),&LB($ty)); &jb (&label("cloop1")); &set_label("done"); &dec (&LB($xx)); &mov (&DWP(-4,$dat),$yy); # save key->y &mov (&BP(-8,$dat),&LB($xx)); # save key->x &set_label("abort"); &function_end("RC4"); ######################################################################## $inp="esi"; $out="edi"; $idi="ebp"; $ido="ecx"; $idx="edx"; # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); &function_begin("RC4_set_key"); &mov ($out,&wparam(0)); # load key &mov ($idi,&wparam(1)); # load len &mov ($inp,&wparam(2)); # load data &picmeup($idx,"OPENSSL_ia32cap_P"); &lea ($out,&DWP(2*4,$out)); # &key->data &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end &neg ($idi); &xor ("eax","eax"); &mov (&DWP(-4,$out),$idi); # borrow key->y &bt (&DWP(0,$idx),20); # check for bit#20 &jc (&label("c1stloop")); &set_label("w1stloop",16); &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; &add (&LB("eax"),1); # i++; &jnc (&label("w1stloop")); &xor ($ido,$ido); &xor ($idx,$idx); &set_label("w2ndloop",16); &mov ("eax",&DWP(0,$out,$ido,4)); &add (&LB($idx),&BP(0,$inp,$idi)); &add (&LB($idx),&LB("eax")); &add ($idi,1); &mov ("ebx",&DWP(0,$out,$idx,4)); &jnz (&label("wnowrap")); &mov ($idi,&DWP(-4,$out)); &set_label("wnowrap"); &mov (&DWP(0,$out,$idx,4),"eax"); &mov (&DWP(0,$out,$ido,4),"ebx"); &add (&LB($ido),1); &jnc (&label("w2ndloop")); &jmp (&label("exit")); # Unlike all other x86 [and x86_64] implementations, Intel P4 core # [including EM64T] was found to perform poorly with above "32-bit" key # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit # schedule for x86[_64], because non-P4 implementations suffer from # significant performance losses then, e.g. PIII exhibits >2x # deterioration, and so does Opteron. In order to assure optimal # all-round performance, we detect P4 at run-time and set up compressed # key schedule, which is recognized by RC4 procedure. &set_label("c1stloop",16); &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; &add (&LB("eax"),1); # i++; &jnc (&label("c1stloop")); &xor ($ido,$ido); &xor ($idx,$idx); &xor ("ebx","ebx"); &set_label("c2ndloop",16); &mov (&LB("eax"),&BP(0,$out,$ido)); &add (&LB($idx),&BP(0,$inp,$idi)); &add (&LB($idx),&LB("eax")); &add ($idi,1); &mov (&LB("ebx"),&BP(0,$out,$idx)); &jnz (&label("cnowrap")); &mov ($idi,&DWP(-4,$out)); &set_label("cnowrap"); &mov (&BP(0,$out,$idx),&LB("eax")); &mov (&BP(0,$out,$ido),&LB("ebx")); &add (&LB($ido),1); &jnc (&label("c2ndloop")); &mov (&DWP(256,$out),-1); # mark schedule as compressed &set_label("exit"); &xor ("eax","eax"); &mov (&DWP(-8,$out),"eax"); # key->x=0; &mov (&DWP(-4,$out),"eax"); # key->y=0; &function_end("RC4_set_key"); # const char *RC4_options(void); &function_begin_B("RC4_options"); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("eax"); &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); &picmeup("edx","OPENSSL_ia32cap_P"); &mov ("edx",&DWP(0,"edx")); &bt ("edx",20); &jc (&label("1xchar")); &bt ("edx",26); &jnc (&label("ret")); &add ("eax",25); &ret (); &set_label("1xchar"); &add ("eax",12); &set_label("ret"); &ret (); &set_label("opts",64); &asciz ("rc4(4x,int)"); &asciz ("rc4(1x,char)"); &asciz ("rc4(8x,mmx)"); &asciz ("RC4 for x86, CRYPTOGAMS by "); &align (64); &function_end_B("RC4_options"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/rc4/asm/rc4-c64xplus.pl000066400000000000000000000103721364063235100206540ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # RC4 for C64x+. # # April 2014 # # RC4 subroutine processes one byte in 7.0 cycles, which is 3x faster # than TI CGT-generated code. Loop is scheduled in such way that # there is only one reference to memory in each cycle. This is done # to avoid L1D memory banking conflicts, see SPRU871 TI publication # for further details. Otherwise it should be possible to schedule # the loop for iteration interval of 6... ($KEY,$LEN,$INP,$OUT)=("A4","B4","A6","B6"); ($KEYA,$XX,$TY,$xx,$ONE,$ret)=map("A$_",(5,7,8,9,1,2)); ($KEYB,$YY,$TX,$tx,$SUM,$dat)=map("B$_",(5,7,8,9,1,2)); $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .nocmp .asg RC4,_RC4 .asg RC4_set_key,_RC4_set_key .asg RC4_options,_RC4_options .endif .global _RC4 .align 16 _RC4: .asmfunc MV $LEN,B0 [!B0] BNOP B3 ; if (len==0) return; ||[B0] ADD $KEY,2,$KEYA ||[B0] ADD $KEY,2,$KEYB [B0] MVK 1,$ONE ||[B0] LDBU *${KEYA}[-2],$XX ; key->x [B0] LDBU *${KEYB}[-1],$YY ; key->y || NOP 4 ADD4 $ONE,$XX,$XX LDBU *${KEYA}[$XX],$TX || MVC $LEN,ILC NOP 4 ;;================================================== SPLOOP 7 || ADD4 $TX,$YY,$YY LDBU *${KEYB}[$YY],$TY || MVD $XX,$xx || ADD4 $ONE,$XX,$XX LDBU *${KEYA}[$XX],$tx CMPEQ $YY,$XX,B0 || NOP 3 STB $TX,*${KEYB}[$YY] ||[B0] ADD4 $TX,$YY,$YY STB $TY,*${KEYA}[$xx] ||[!B0] ADD4 $tx,$YY,$YY ||[!B0] MVD $tx,$TX ADD4 $TY,$TX,$SUM ; [0,0] $TX is not replaced by $tx yet! || NOP 2 LDBU *$INP++,$dat || NOP 2 LDBU *${KEYB}[$SUM],$ret || NOP 5 XOR.L $dat,$ret,$ret SPKERNEL || STB $ret,*$OUT++ ;;================================================== SUB4 $XX,$ONE,$XX || NOP 5 STB $XX,*${KEYA}[-2] ; key->x || SUB4 $YY,$TX,$YY || BNOP B3 STB $YY,*${KEYB}[-1] ; key->y || NOP 5 .endasmfunc .global _RC4_set_key .align 16 _RC4_set_key: .asmfunc .if .BIG_ENDIAN MVK 0x00000404,$ONE || MVK 0x00000203,B0 MVKH 0x04040000,$ONE || MVKH 0x00010000,B0 .else MVK 0x00000404,$ONE || MVK 0x00000100,B0 MVKH 0x04040000,$ONE || MVKH 0x03020000,B0 .endif ADD $KEY,2,$KEYA || ADD $KEY,2,$KEYB || ADD $INP,$LEN,$ret ; end of input LDBU *${INP}++,$dat || MVK 0,$TX STH $TX,*${KEY}++ ; key->x=key->y=0 || MV B0,A0 || MVK 64-4,B0 ;;================================================== SPLOOPD 1 || MVC B0,ILC STNW A0,*${KEY}++ || ADD4 $ONE,A0,A0 SPKERNEL ;;================================================== MVK 0,$YY || MVK 0,$XX MVK 1,$ONE || MVK 256-1,B0 ;;================================================== SPLOOPD 8 || MVC B0,ILC ADD4 $dat,$YY,$YY || CMPEQ $INP,$ret,A0 ; end of input? LDBU *${KEYB}[$YY],$TY || MVD $XX,$xx || ADD4 $ONE,$XX,$XX LDBU *${KEYA}[$XX],$tx ||[A0] SUB $INP,$LEN,$INP ; rewind LDBU *${INP}++,$dat || CMPEQ $YY,$XX,B0 || NOP 3 STB $TX,*${KEYB}[$YY] ||[B0] ADD4 $TX,$YY,$YY STB $TY,*${KEYA}[$xx] ||[!B0] ADD4 $tx,$YY,$YY ||[!B0] MV $tx,$TX SPKERNEL ;;================================================== BNOP B3,5 .endasmfunc .global _RC4_options .align 16 _RC4_options: _rc4_options: .asmfunc BNOP B3,1 ADDKPC _rc4_options,B4 .if __TI_EABI__ MVKL \$PCR_OFFSET(rc4_options,_rc4_options),A4 MVKH \$PCR_OFFSET(rc4_options,_rc4_options),A4 .else MVKL (rc4_options-_rc4_options),A4 MVKH (rc4_options-_rc4_options),A4 .endif ADD B4,A4,A4 .endasmfunc .if __TI_EABI__ .sect ".text:rc4_options.const" .else .sect ".const:rc4_options" .endif .align 4 rc4_options: .cstring "rc4(sploop,char)" .cstring "RC4 for C64+, CRYPTOGAMS by " .align 4 ___ $output=pop; open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/rc4/asm/rc4-md5-x86_64.pl000066400000000000000000000407041364063235100206070ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # June 2011 # # This is RC4+MD5 "stitch" implementation. The idea, as spelled in # http://download.intel.com/design/intarch/papers/323686.pdf, is that # since both algorithms exhibit instruction-level parallelism, ILP, # below theoretical maximum, interleaving them would allow to utilize # processor resources better and achieve better performance. RC4 # instruction sequence is virtually identical to rc4-x86_64.pl, which # is heavily based on submission by Maxim Perminov, Maxim Locktyukhin # and Jim Guilford of Intel. MD5 is fresh implementation aiming to # minimize register usage, which was used as "main thread" with RC4 # weaved into it, one RC4 round per one MD5 round. In addition to the # stiched subroutine the script can generate standalone replacement # md5_block_asm_data_order and RC4. Below are performance numbers in # cycles per processed byte, less is better, for these the standalone # subroutines, sum of them, and stitched one: # # RC4 MD5 RC4+MD5 stitch gain # Opteron 6.5(*) 5.4 11.9 7.0 +70%(*) # Core2 6.5 5.8 12.3 7.7 +60% # Westmere 4.3 5.2 9.5 7.0 +36% # Sandy Bridge 4.2 5.5 9.7 6.8 +43% # Ivy Bridge 4.1 5.2 9.3 6.0 +54% # Haswell 4.0 5.0 9.0 5.7 +60% # Skylake 6.3(**) 5.0 11.3 5.3 +110% # Atom 9.3 6.5 15.8 11.1 +42% # VIA Nano 6.3 5.4 11.7 8.6 +37% # Bulldozer 4.5 5.4 9.9 7.7 +29% # # (*) rc4-x86_64.pl delivers 5.3 on Opteron, so real improvement # is +53%... # (**) unidentified anomaly; my ($rc4,$md5)=(1,1); # what to generate? my $D="#" if (!$md5); # if set to "#", MD5 is stitched into RC4(), # but its result is discarded. Idea here is # to be able to use 'openssl speed rc4' for # benchmarking the stitched subroutine... my $flavour = shift; my $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; my ($dat,$in0,$out,$ctx,$inp,$len, $func,$nargs); if ($rc4 && !$md5) { ($dat,$len,$in0,$out) = ("%rdi","%rsi","%rdx","%rcx"); $func="RC4"; $nargs=4; } elsif ($md5 && !$rc4) { ($ctx,$inp,$len) = ("%rdi","%rsi","%rdx"); $func="md5_block_asm_data_order"; $nargs=3; } else { ($dat,$in0,$out,$ctx,$inp,$len) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9"); $func="rc4_md5_enc"; $nargs=6; # void rc4_md5_enc( # RC4_KEY *key, # # const void *in0, # RC4 input # void *out, # RC4 output # MD5_CTX *ctx, # # const void *inp, # MD5 input # size_t len); # number of 64-byte blocks } my @K=( 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee, 0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501, 0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be, 0x6b901122,0xfd987193,0xa679438e,0x49b40821, 0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa, 0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8, 0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed, 0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a, 0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c, 0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70, 0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05, 0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665, 0xf4292244,0x432aff97,0xab9423a7,0xfc93a039, 0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1, 0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1, 0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391 ); my @V=("%r8d","%r9d","%r10d","%r11d"); # MD5 registers my $tmp="%r12d"; my @XX=("%rbp","%rsi"); # RC4 registers my @TX=("%rax","%rbx"); my $YY="%rcx"; my $TY="%rdx"; my $MOD=32; # 16, 32 or 64 $code.=<<___; .text .align 16 .globl $func .type $func,\@function,$nargs $func: .cfi_startproc cmp \$0,$len je .Labort push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$40,%rsp .cfi_adjust_cfa_offset 40 .Lbody: ___ if ($rc4) { $code.=<<___; $D#md5# mov $ctx,%r11 # reassign arguments mov $len,%r12 mov $in0,%r13 mov $out,%r14 $D#md5# mov $inp,%r15 ___ $ctx="%r11" if ($md5); # reassign arguments $len="%r12"; $in0="%r13"; $out="%r14"; $inp="%r15" if ($md5); $inp=$in0 if (!$md5); $code.=<<___; xor $XX[0],$XX[0] xor $YY,$YY lea 8($dat),$dat mov -8($dat),$XX[0]#b mov -4($dat),$YY#b inc $XX[0]#b sub $in0,$out movl ($dat,$XX[0],4),$TX[0]#d ___ $code.=<<___ if (!$md5); xor $TX[1],$TX[1] test \$-128,$len jz .Loop1 sub $XX[0],$TX[1] and \$`$MOD-1`,$TX[1] jz .Loop${MOD}_is_hot sub $TX[1],$len .Loop${MOD}_warmup: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($in0),$TY#b movb $TY#b,($out,$in0) lea 1($in0),$in0 dec $TX[1] jnz .Loop${MOD}_warmup mov $YY,$TX[1] xor $YY,$YY mov $TX[1]#b,$YY#b .Loop${MOD}_is_hot: mov $len,32(%rsp) # save original $len shr \$6,$len # number of 64-byte blocks ___ if ($D && !$md5) { # stitch in dummy MD5 $md5=1; $ctx="%r11"; $inp="%r15"; $code.=<<___; mov %rsp,$ctx mov $in0,$inp ___ } } $code.=<<___; #rc4# add $TX[0]#b,$YY#b #rc4# lea ($dat,$XX[0],4),$XX[1] shl \$6,$len add $inp,$len # pointer to the end of input mov $len,16(%rsp) #md5# mov $ctx,24(%rsp) # save pointer to MD5_CTX #md5# mov 0*4($ctx),$V[0] # load current hash value from MD5_CTX #md5# mov 1*4($ctx),$V[1] #md5# mov 2*4($ctx),$V[2] #md5# mov 3*4($ctx),$V[3] jmp .Loop .align 16 .Loop: #md5# mov $V[0],0*4(%rsp) # put aside current hash value #md5# mov $V[1],1*4(%rsp) #md5# mov $V[2],2*4(%rsp) #md5# mov $V[3],$tmp # forward reference #md5# mov $V[3],3*4(%rsp) ___ sub R0 { my ($i,$a,$b,$c,$d)=@_; my @rot0=(7,12,17,22); my $j=$i%16; my $k=$i%$MOD; my $xmm="%xmm".($j&1); $code.=" movdqu ($in0),%xmm2\n" if ($rc4 && $j==15); $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); $code.=<<___; #rc4# movl ($dat,$YY,4),$TY#d #md5# xor $c,$tmp #rc4# movl $TX[0]#d,($dat,$YY,4) #md5# and $b,$tmp #md5# add 4*`$j`($inp),$a #rc4# add $TY#b,$TX[0]#b #rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d #md5# add \$$K[$i],$a #md5# xor $d,$tmp #rc4# movz $TX[0]#b,$TX[0]#d #rc4# movl $TY#d,4*$k($XX[1]) #md5# add $tmp,$a #rc4# add $TX[1]#b,$YY#b #md5# rol \$$rot0[$j%4],$a #md5# mov `$j==15?"$b":"$c"`,$tmp # forward reference #rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n #md5# add $b,$a ___ $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1); mov $YY,$XX[1] xor $YY,$YY # keyword to partial register mov $XX[1]#b,$YY#b lea ($dat,$XX[0],4),$XX[1] ___ $code.=<<___ if ($rc4 && $j==15); psllq \$8,%xmm1 pxor %xmm0,%xmm2 pxor %xmm1,%xmm2 ___ } sub R1 { my ($i,$a,$b,$c,$d)=@_; my @rot1=(5,9,14,20); my $j=$i%16; my $k=$i%$MOD; my $xmm="%xmm".($j&1); $code.=" movdqu 16($in0),%xmm3\n" if ($rc4 && $j==15); $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); $code.=<<___; #rc4# movl ($dat,$YY,4),$TY#d #md5# xor $b,$tmp #rc4# movl $TX[0]#d,($dat,$YY,4) #md5# and $d,$tmp #md5# add 4*`((1+5*$j)%16)`($inp),$a #rc4# add $TY#b,$TX[0]#b #rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d #md5# add \$$K[$i],$a #md5# xor $c,$tmp #rc4# movz $TX[0]#b,$TX[0]#d #rc4# movl $TY#d,4*$k($XX[1]) #md5# add $tmp,$a #rc4# add $TX[1]#b,$YY#b #md5# rol \$$rot1[$j%4],$a #md5# mov `$j==15?"$c":"$b"`,$tmp # forward reference #rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n #md5# add $b,$a ___ $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1); mov $YY,$XX[1] xor $YY,$YY # keyword to partial register mov $XX[1]#b,$YY#b lea ($dat,$XX[0],4),$XX[1] ___ $code.=<<___ if ($rc4 && $j==15); psllq \$8,%xmm1 pxor %xmm0,%xmm3 pxor %xmm1,%xmm3 ___ } sub R2 { my ($i,$a,$b,$c,$d)=@_; my @rot2=(4,11,16,23); my $j=$i%16; my $k=$i%$MOD; my $xmm="%xmm".($j&1); $code.=" movdqu 32($in0),%xmm4\n" if ($rc4 && $j==15); $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); $code.=<<___; #rc4# movl ($dat,$YY,4),$TY#d #md5# xor $c,$tmp #rc4# movl $TX[0]#d,($dat,$YY,4) #md5# xor $b,$tmp #md5# add 4*`((5+3*$j)%16)`($inp),$a #rc4# add $TY#b,$TX[0]#b #rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d #md5# add \$$K[$i],$a #rc4# movz $TX[0]#b,$TX[0]#d #md5# add $tmp,$a #rc4# movl $TY#d,4*$k($XX[1]) #rc4# add $TX[1]#b,$YY#b #md5# rol \$$rot2[$j%4],$a #md5# mov `$j==15?"\\\$-1":"$c"`,$tmp # forward reference #rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n #md5# add $b,$a ___ $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1); mov $YY,$XX[1] xor $YY,$YY # keyword to partial register mov $XX[1]#b,$YY#b lea ($dat,$XX[0],4),$XX[1] ___ $code.=<<___ if ($rc4 && $j==15); psllq \$8,%xmm1 pxor %xmm0,%xmm4 pxor %xmm1,%xmm4 ___ } sub R3 { my ($i,$a,$b,$c,$d)=@_; my @rot3=(6,10,15,21); my $j=$i%16; my $k=$i%$MOD; my $xmm="%xmm".($j&1); $code.=" movdqu 48($in0),%xmm5\n" if ($rc4 && $j==15); $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); $code.=<<___; #rc4# movl ($dat,$YY,4),$TY#d #md5# xor $d,$tmp #rc4# movl $TX[0]#d,($dat,$YY,4) #md5# or $b,$tmp #md5# add 4*`((7*$j)%16)`($inp),$a #rc4# add $TY#b,$TX[0]#b #rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d #md5# add \$$K[$i],$a #rc4# movz $TX[0]#b,$TX[0]#d #md5# xor $c,$tmp #rc4# movl $TY#d,4*$k($XX[1]) #md5# add $tmp,$a #rc4# add $TX[1]#b,$YY#b #md5# rol \$$rot3[$j%4],$a #md5# mov \$-1,$tmp # forward reference #rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n #md5# add $b,$a ___ $code.=<<___ if ($rc4 && $j==15); mov $XX[0],$XX[1] xor $XX[0],$XX[0] # keyword to partial register mov $XX[1]#b,$XX[0]#b mov $YY,$XX[1] xor $YY,$YY # keyword to partial register mov $XX[1]#b,$YY#b lea ($dat,$XX[0],4),$XX[1] psllq \$8,%xmm1 pxor %xmm0,%xmm5 pxor %xmm1,%xmm5 ___ } my $i=0; for(;$i<16;$i++) { R0($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } for(;$i<32;$i++) { R1($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } for(;$i<48;$i++) { R2($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } for(;$i<64;$i++) { R3($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } $code.=<<___; #md5# add 0*4(%rsp),$V[0] # accumulate hash value #md5# add 1*4(%rsp),$V[1] #md5# add 2*4(%rsp),$V[2] #md5# add 3*4(%rsp),$V[3] #rc4# movdqu %xmm2,($out,$in0) # write RC4 output #rc4# movdqu %xmm3,16($out,$in0) #rc4# movdqu %xmm4,32($out,$in0) #rc4# movdqu %xmm5,48($out,$in0) #md5# lea 64($inp),$inp #rc4# lea 64($in0),$in0 cmp 16(%rsp),$inp # are we done? jb .Loop #md5# mov 24(%rsp),$len # restore pointer to MD5_CTX #rc4# sub $TX[0]#b,$YY#b # correct $YY #md5# mov $V[0],0*4($len) # write MD5_CTX #md5# mov $V[1],1*4($len) #md5# mov $V[2],2*4($len) #md5# mov $V[3],3*4($len) ___ $code.=<<___ if ($rc4 && (!$md5 || $D)); mov 32(%rsp),$len # restore original $len and \$63,$len # remaining bytes jnz .Loop1 jmp .Ldone .align 16 .Loop1: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($in0),$TY#b movb $TY#b,($out,$in0) lea 1($in0),$in0 dec $len jnz .Loop1 .Ldone: ___ $code.=<<___; #rc4# sub \$1,$XX[0]#b #rc4# movl $XX[0]#d,-8($dat) #rc4# movl $YY#d,-4($dat) mov 40(%rsp),%r15 .cfi_restore %r15 mov 48(%rsp),%r14 .cfi_restore %r14 mov 56(%rsp),%r13 .cfi_restore %r13 mov 64(%rsp),%r12 .cfi_restore %r12 mov 72(%rsp),%rbp .cfi_restore %rbp mov 80(%rsp),%rbx .cfi_restore %rbx lea 88(%rsp),%rsp .cfi_adjust_cfa_offset -88 .Lepilogue: .Labort: ret .cfi_endproc .size $func,.-$func ___ if ($rc4 && $D) { # sole purpose of this section is to provide # option to use the generated module as drop-in # replacement for rc4-x86_64.pl for debugging # and testing purposes... my ($idx,$ido)=("%r8","%r9"); my ($dat,$len,$inp)=("%rdi","%rsi","%rdx"); $code.=<<___; .globl RC4_set_key .type RC4_set_key,\@function,3 .align 16 RC4_set_key: .cfi_startproc lea 8($dat),$dat lea ($inp,$len),$inp neg $len mov $len,%rcx xor %eax,%eax xor $ido,$ido xor %r10,%r10 xor %r11,%r11 jmp .Lw1stloop .align 16 .Lw1stloop: mov %eax,($dat,%rax,4) add \$1,%al jnc .Lw1stloop xor $ido,$ido xor $idx,$idx .align 16 .Lw2ndloop: mov ($dat,$ido,4),%r10d add ($inp,$len,1),$idx#b add %r10b,$idx#b add \$1,$len mov ($dat,$idx,4),%r11d cmovz %rcx,$len mov %r10d,($dat,$idx,4) mov %r11d,($dat,$ido,4) add \$1,$ido#b jnc .Lw2ndloop xor %eax,%eax mov %eax,-8($dat) mov %eax,-4($dat) ret .cfi_endproc .size RC4_set_key,.-RC4_set_key .globl RC4_options .type RC4_options,\@abi-omnipotent .align 16 RC4_options: lea .Lopts(%rip),%rax ret .align 64 .Lopts: .asciz "rc4(64x,int)" .align 64 .size RC4_options,.-RC4_options ___ } # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { my $rec="%rcx"; my $frame="%rdx"; my $context="%r8"; my $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lbody(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lbody jb .Lin_prologue mov 152($context),%rax # pull context->Rsp lea .Lepilogue(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lin_prologue mov 40(%rax),%r15 mov 48(%rax),%r14 mov 56(%rax),%r13 mov 64(%rax),%r12 mov 72(%rax),%rbp mov 80(%rax),%rbx lea 88(%rax),%rax mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R12 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_$func .rva .LSEH_end_$func .rva .LSEH_info_$func .section .xdata .align 8 .LSEH_info_$func: .byte 9,0,0,0 .rva se_handler ___ } sub reg_part { my ($reg,$conv)=@_; if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } return $reg; } $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/pinsrw\s+\$0,/movd /gm; $code =~ s/#md5#//gm if ($md5); $code =~ s/#rc4#//gm if ($rc4); print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/rc4/asm/rc4-parisc.pl000066400000000000000000000162411364063235100204460ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # RC4 for PA-RISC. # June 2009. # # Performance is 33% better than gcc 3.2 generated code on PA-7100LC. # For reference, [4x] unrolled loop is >40% faster than folded one. # It's possible to unroll loop 8 times on PA-RISC 2.0, but improvement # is believed to be not sufficient to justify the effort... # # Special thanks to polarhome.com for providing HP-UX account. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $FRAME_MARKER =80; $SAVED_RP =16; $PUSH ="std"; $PUSHMA ="std,ma"; $POP ="ldd"; $POPMB ="ldd,mb"; } else { $LEVEL ="1.0"; $SIZE_T =4; $FRAME_MARKER =48; $SAVED_RP =20; $PUSH ="stw"; $PUSHMA ="stwm"; $POP ="ldw"; $POPMB ="ldwm"; } $FRAME=4*$SIZE_T+$FRAME_MARKER; # 4 saved regs + frame marker # [+ argument transfer] $SZ=1; # defaults to RC4_CHAR if (open CONF,"<${dir}../../opensslconf.h") { while() { if (m/#\s*define\s+RC4_INT\s+(.*)/) { $SZ = ($1=~/char$/) ? 1 : 4; last; } } close CONF; } if ($SZ==1) { # RC4_CHAR $LD="ldb"; $LDX="ldbx"; $MKX="addl"; $ST="stb"; } else { # RC4_INT (~5% faster than RC4_CHAR on PA-7100LC) $LD="ldw"; $LDX="ldwx,s"; $MKX="sh2addl"; $ST="stw"; } $key="%r26"; $len="%r25"; $inp="%r24"; $out="%r23"; @XX=("%r19","%r20"); @TX=("%r21","%r22"); $YY="%r28"; $TY="%r29"; $acc="%r1"; $ix="%r2"; $iy="%r3"; $dat0="%r4"; $dat1="%r5"; $rem="%r6"; $mask="%r31"; sub unrolledloopbody { for ($i=0;$i<4;$i++) { $code.=<<___; ldo 1($XX[0]),$XX[1] `sprintf("$LDX %$TY(%$key),%$dat1") if ($i>0)` and $mask,$XX[1],$XX[1] $LDX $YY($key),$TY $MKX $YY,$key,$ix $LDX $XX[1]($key),$TX[1] $MKX $XX[0],$key,$iy $ST $TX[0],0($ix) comclr,<> $XX[1],$YY,%r0 ; conditional copy $TX[0],$TX[1] ; move `sprintf("%sdep %$dat1,%d,8,%$acc",$i==1?"z":"",8*($i-1)+7) if ($i>0)` $ST $TY,0($iy) addl $TX[0],$TY,$TY addl $TX[1],$YY,$YY and $mask,$TY,$TY and $mask,$YY,$YY ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } } sub foldedloop { my ($label,$count)=@_; $code.=<<___; $label $MKX $YY,$key,$iy $LDX $YY($key),$TY $MKX $XX[0],$key,$ix $ST $TX[0],0($iy) ldo 1($XX[0]),$XX[0] $ST $TY,0($ix) addl $TX[0],$TY,$TY ldbx $inp($out),$dat1 and $mask,$TY,$TY and $mask,$XX[0],$XX[0] $LDX $TY($key),$acc $LDX $XX[0]($key),$TX[0] ldo 1($out),$out xor $dat1,$acc,$acc addl $TX[0],$YY,$YY stb $acc,-1($out) addib,<> -1,$count,$label ; $count is always small and $mask,$YY,$YY ___ } $code=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT RC4,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR RC4 .PROC .CALLINFO FRAME=`$FRAME-4*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=6 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) cmpib,*= 0,$len,L\$abort sub $inp,$out,$inp ; distance between $inp and $out $LD `0*$SZ`($key),$XX[0] $LD `1*$SZ`($key),$YY ldo `2*$SZ`($key),$key ldi 0xff,$mask ldi 3,$dat0 ldo 1($XX[0]),$XX[0] ; warm up loop and $mask,$XX[0],$XX[0] $LDX $XX[0]($key),$TX[0] addl $TX[0],$YY,$YY cmpib,*>>= 6,$len,L\$oop1 ; is $len large enough to bother? and $mask,$YY,$YY and,<> $out,$dat0,$rem ; is $out aligned? b L\$alignedout subi 4,$rem,$rem sub $len,$rem,$len ___ &foldedloop("L\$alignout",$rem); # process till $out is aligned $code.=<<___; L\$alignedout ; $len is at least 4 here and,<> $inp,$dat0,$acc ; is $inp aligned? b L\$oop4 sub $inp,$acc,$rem ; align $inp sh3addl $acc,%r0,$acc subi 32,$acc,$acc mtctl $acc,%cr11 ; load %sar with vshd align factor ldwx $rem($out),$dat0 ldo 4($rem),$rem L\$oop4misalignedinp ___ &unrolledloopbody(); $code.=<<___; $LDX $TY($key),$ix ldwx $rem($out),$dat1 ldo -4($len),$len or $ix,$acc,$acc ; last piece, no need to dep vshd $dat0,$dat1,$iy ; align data copy $dat1,$dat0 xor $iy,$acc,$acc stw $acc,0($out) cmpib,*<< 3,$len,L\$oop4misalignedinp ldo 4($out),$out cmpib,*= 0,$len,L\$done nop b L\$oop1 nop .ALIGN 8 L\$oop4 ___ &unrolledloopbody(); $code.=<<___; $LDX $TY($key),$ix ldwx $inp($out),$dat0 ldo -4($len),$len or $ix,$acc,$acc ; last piece, no need to dep xor $dat0,$acc,$acc stw $acc,0($out) cmpib,*<< 3,$len,L\$oop4 ldo 4($out),$out cmpib,*= 0,$len,L\$done nop ___ &foldedloop("L\$oop1",$len); $code.=<<___; L\$done $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ldo -1($XX[0]),$XX[0] ; chill out loop sub $YY,$TX[0],$YY and $mask,$XX[0],$XX[0] and $mask,$YY,$YY $ST $XX[0],`-2*$SZ`($key) $ST $YY,`-1*$SZ`($key) $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 L\$abort bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND ___ $code.=<<___; .EXPORT RC4_set_key,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR .ALIGN 8 RC4_set_key .PROC .CALLINFO NO_CALLS .ENTRY $ST %r0,`0*$SZ`($key) $ST %r0,`1*$SZ`($key) ldo `2*$SZ`($key),$key copy %r0,@XX[0] L\$1st $ST @XX[0],0($key) ldo 1(@XX[0]),@XX[0] bb,>= @XX[0],`31-8`,L\$1st ; @XX[0]<256 ldo $SZ($key),$key ldo `-256*$SZ`($key),$key ; rewind $key addl $len,$inp,$inp ; $inp to point at the end sub %r0,$len,%r23 ; inverse index copy %r0,@XX[0] copy %r0,@XX[1] ldi 0xff,$mask L\$2nd $LDX @XX[0]($key),@TX[0] ldbx %r23($inp),@TX[1] addi,nuv 1,%r23,%r23 ; increment and conditional sub %r0,$len,%r23 ; inverse index addl @TX[0],@XX[1],@XX[1] addl @TX[1],@XX[1],@XX[1] and $mask,@XX[1],@XX[1] $MKX @XX[0],$key,$TY $LDX @XX[1]($key),@TX[1] $MKX @XX[1],$key,$YY ldo 1(@XX[0]),@XX[0] $ST @TX[0],0($YY) bb,>= @XX[0],`31-8`,L\$2nd ; @XX[0]<256 $ST @TX[1],0($TY) bv,n (%r2) .EXIT nop .PROCEND .EXPORT RC4_options,ENTRY .ALIGN 8 RC4_options .PROC .CALLINFO NO_CALLS .ENTRY blr %r0,%r28 ldi 3,%r1 L\$pic andcm %r28,%r1,%r28 bv (%r2) .EXIT ldo L\$opts-L\$pic(%r28),%r28 .PROCEND .ALIGN 8 L\$opts .STRINGZ "rc4(4x,`$SZ==1?"char":"int"`)" .STRINGZ "RC4 for PA-RISC, CRYPTOGAMS by " ___ if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler/) { $gnuas = 1; } foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/(\.LEVEL\s+2\.0)W/$1w/ if ($gnuas && $SIZE_T==8); s/\.SPACE\s+\$TEXT\$/.text/ if ($gnuas && $SIZE_T==8); s/\.SUBSPA.*// if ($gnuas && $SIZE_T==8); s/cmpib,\*/comib,/ if ($SIZE_T==4); s/\bbv\b/bve/ if ($SIZE_T==8); print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/rc4/asm/rc4-s390x.pl000066400000000000000000000110751364063235100200530ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # February 2009 # # Performance is 2x of gcc 3.4.6 on z10. Coding "secret" is to # "cluster" Address Generation Interlocks, so that one pipeline stall # resolves several dependencies. # November 2010. # # Adapt for -m31 build. If kernel supports what's called "highgprs" # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit # instructions and achieve "64-bit" performance even in 31-bit legacy # application context. The feature is not specific to any particular # processor, as long as it's "z-CPU". Latter implies that the code # remains z/Architecture specific. On z990 it was measured to perform # 50% better than code generated by gcc 4.3. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $rp="%r14"; $sp="%r15"; $code=<<___; .text ___ # void RC4(RC4_KEY *key,size_t len,const void *inp,void *out) { $acc="%r0"; $cnt="%r1"; $key="%r2"; $len="%r3"; $inp="%r4"; $out="%r5"; @XX=("%r6","%r7"); @TX=("%r8","%r9"); $YY="%r10"; $TY="%r11"; $code.=<<___; .globl RC4 .type RC4,\@function .align 64 RC4: stm${g} %r6,%r11,6*$SIZE_T($sp) ___ $code.=<<___ if ($flavour =~ /3[12]/); llgfr $len,$len ___ $code.=<<___; llgc $XX[0],0($key) llgc $YY,1($key) la $XX[0],1($XX[0]) nill $XX[0],0xff srlg $cnt,$len,3 ltgr $cnt,$cnt llgc $TX[0],2($XX[0],$key) jz .Lshort j .Loop8 .align 64 .Loop8: ___ for ($i=0;$i<8;$i++) { $code.=<<___; la $YY,0($YY,$TX[0]) # $i nill $YY,255 la $XX[1],1($XX[0]) nill $XX[1],255 ___ $code.=<<___ if ($i==1); llgc $acc,2($TY,$key) ___ $code.=<<___ if ($i>1); sllg $acc,$acc,8 ic $acc,2($TY,$key) ___ $code.=<<___; llgc $TY,2($YY,$key) stc $TX[0],2($YY,$key) llgc $TX[1],2($XX[1],$key) stc $TY,2($XX[0],$key) cr $XX[1],$YY jne .Lcmov$i la $TX[1],0($TX[0]) .Lcmov$i: la $TY,0($TY,$TX[0]) nill $TY,255 ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } $code.=<<___; lg $TX[1],0($inp) sllg $acc,$acc,8 la $inp,8($inp) ic $acc,2($TY,$key) xgr $acc,$TX[1] stg $acc,0($out) la $out,8($out) brctg $cnt,.Loop8 .Lshort: lghi $acc,7 ngr $len,$acc jz .Lexit j .Loop1 .align 16 .Loop1: la $YY,0($YY,$TX[0]) nill $YY,255 llgc $TY,2($YY,$key) stc $TX[0],2($YY,$key) stc $TY,2($XX[0],$key) ar $TY,$TX[0] ahi $XX[0],1 nill $TY,255 nill $XX[0],255 llgc $acc,0($inp) la $inp,1($inp) llgc $TY,2($TY,$key) llgc $TX[0],2($XX[0],$key) xr $acc,$TY stc $acc,0($out) la $out,1($out) brct $len,.Loop1 .Lexit: ahi $XX[0],-1 stc $XX[0],0($key) stc $YY,1($key) lm${g} %r6,%r11,6*$SIZE_T($sp) br $rp .size RC4,.-RC4 .string "RC4 for s390x, CRYPTOGAMS by " ___ } # void RC4_set_key(RC4_KEY *key,unsigned int len,const void *inp) { $cnt="%r0"; $idx="%r1"; $key="%r2"; $len="%r3"; $inp="%r4"; $acc="%r5"; $dat="%r6"; $ikey="%r7"; $iinp="%r8"; $code.=<<___; .globl RC4_set_key .type RC4_set_key,\@function .align 64 RC4_set_key: stm${g} %r6,%r8,6*$SIZE_T($sp) lhi $cnt,256 la $idx,0 sth $idx,0($key) .align 4 .L1stloop: stc $idx,2($idx,$key) la $idx,1($idx) brct $cnt,.L1stloop lghi $ikey,-256 lr $cnt,$len la $iinp,0 la $idx,0 .align 16 .L2ndloop: llgc $acc,2+256($ikey,$key) llgc $dat,0($iinp,$inp) la $idx,0($idx,$acc) la $ikey,1($ikey) la $idx,0($idx,$dat) nill $idx,255 la $iinp,1($iinp) tml $ikey,255 llgc $dat,2($idx,$key) stc $dat,2+256-1($ikey,$key) stc $acc,2($idx,$key) jz .Ldone brct $cnt,.L2ndloop lr $cnt,$len la $iinp,0 j .L2ndloop .Ldone: lm${g} %r6,%r8,6*$SIZE_T($sp) br $rp .size RC4_set_key,.-RC4_set_key ___ } # const char *RC4_options() $code.=<<___; .globl RC4_options .type RC4_options,\@function .align 16 RC4_options: larl %r2,.Loptions br %r14 .size RC4_options,.-RC4_options .section .rodata .Loptions: .align 8 .string "rc4(8x,char)" ___ print $code; close STDOUT or die "error closing STDOUT: $!"; # force flush openssl-1.1.1f/crypto/rc4/asm/rc4-x86_64.pl000077500000000000000000000377721364063235100201420ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # July 2004 # # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in # "hand-coded assembler"] doesn't stand for the whole improvement # coefficient. It turned out that eliminating RC4_CHAR from config # line results in ~40% improvement (yes, even for C implementation). # Presumably it has everything to do with AMD cache architecture and # RAW or whatever penalties. Once again! The module *requires* config # line *without* RC4_CHAR! As for coding "secret," I bet on partial # register arithmetics. For example instead of 'inc %r8; and $255,%r8' # I simply 'inc %r8b'. Even though optimization manual discourages # to operate on partial registers, it turned out to be the best bet. # At least for AMD... How IA32E would perform remains to be seen... # November 2004 # # As was shown by Marc Bevand reordering of couple of load operations # results in even higher performance gain of 3.3x:-) At least on # Opteron... For reference, 1x in this case is RC4_CHAR C-code # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. # Latter means that if you want to *estimate* what to expect from # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. # November 2004 # # Intel P4 EM64T core was found to run the AMD64 code really slow... # The only way to achieve comparable performance on P4 was to keep # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to # compose blended code, which would perform even within 30% marginal # on either AMD and Intel platforms, I implement both cases. See # rc4_skey.c for further details... # April 2005 # # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing # those with add/sub results in 50% performance improvement of folded # loop... # May 2005 # # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T # performance by >30% [unlike P4 32-bit case that is]. But this is # provided that loads are reordered even more aggressively! Both code # paths, AMD64 and EM64T, reorder loads in essentially same manner # as my IA-64 implementation. On Opteron this resulted in modest 5% # improvement [I had to test it], while final Intel P4 performance # achieves respectful 432MBps on 2.8GHz processor now. For reference. # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than # RC4_INT code-path. While if executed on Opteron, it's only 25% # slower than the RC4_INT one [meaning that if CPU µ-arch detection # is not implemented, then this final RC4_CHAR code-path should be # preferred, as it provides better *all-round* performance]. # March 2007 # # Intel Core2 was observed to perform poorly on both code paths:-( It # apparently suffers from some kind of partial register stall, which # occurs in 64-bit mode only [as virtually identical 32-bit loop was # observed to outperform 64-bit one by almost 50%]. Adding two movzb to # cloop1 boosts its performance by 80%! This loop appears to be optimal # fit for Core2 and therefore the code was modified to skip cloop8 on # this CPU. # May 2010 # # Intel Westmere was observed to perform suboptimally. Adding yet # another movzb to cloop1 improved performance by almost 50%! Core2 # performance is improved too, but nominally... # May 2011 # # The only code path that was not modified is P4-specific one. Non-P4 # Intel code path optimization is heavily based on submission by Maxim # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used # some of the ideas even in attempt to optimize the original RC4_INT # code path... Current performance in cycles per processed byte (less # is better) and improvement coefficients relative to previous # version of this module are: # # Opteron 5.3/+0%(*) # P4 6.5 # Core2 6.2/+15%(**) # Westmere 4.2/+60% # Sandy Bridge 4.2/+120% # Atom 9.3/+80% # VIA Nano 6.4/+4% # Ivy Bridge 4.1/+30% # Bulldozer 4.5/+30%(*) # # (*) But corresponding loop has less instructions, which should have # positive effect on upcoming Bulldozer, which has one less ALU. # For reference, Intel code runs at 6.8 cpb rate on Opteron. # (**) Note that Core2 result is ~15% lower than corresponding result # for 32-bit code, meaning that it's possible to improve it, # but more than likely at the cost of the others (see rc4-586.pl # to get the idea)... $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $dat="%rdi"; # arg1 $len="%rsi"; # arg2 $inp="%rdx"; # arg3 $out="%rcx"; # arg4 { $code=<<___; .text .extern OPENSSL_ia32cap_P .globl RC4 .type RC4,\@function,4 .align 16 RC4: .cfi_startproc or $len,$len jne .Lentry ret .Lentry: push %rbx .cfi_push %rbx push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 .Lprologue: mov $len,%r11 mov $inp,%r12 mov $out,%r13 ___ my $len="%r11"; # reassign input arguments my $inp="%r12"; my $out="%r13"; my @XX=("%r10","%rsi"); my @TX=("%rax","%rbx"); my $YY="%rcx"; my $TY="%rdx"; $code.=<<___; xor $XX[0],$XX[0] xor $YY,$YY lea 8($dat),$dat mov -8($dat),$XX[0]#b mov -4($dat),$YY#b cmpl \$-1,256($dat) je .LRC4_CHAR mov OPENSSL_ia32cap_P(%rip),%r8d xor $TX[1],$TX[1] inc $XX[0]#b sub $XX[0],$TX[1] sub $inp,$out movl ($dat,$XX[0],4),$TX[0]#d test \$-16,$len jz .Lloop1 bt \$30,%r8d # Intel CPU? jc .Lintel and \$7,$TX[1] lea 1($XX[0]),$XX[1] jz .Loop8 sub $TX[1],$len .Loop8_warmup: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($inp),$TY#b movb $TY#b,($out,$inp) lea 1($inp),$inp dec $TX[1] jnz .Loop8_warmup lea 1($XX[0]),$XX[1] jmp .Loop8 .align 16 .Loop8: ___ for ($i=0;$i<8;$i++) { $code.=<<___ if ($i==7); add \$8,$XX[1]#b ___ $code.=<<___; add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d ror \$8,%r8 # ror is redundant when $i=0 movl $TY#d,4*$i($dat,$XX[0],4) add $TX[0]#b,$TY#b movb ($dat,$TY,4),%r8b ___ push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers } $code.=<<___; add \$8,$XX[0]#b ror \$8,%r8 sub \$8,$len xor ($inp),%r8 mov %r8,($out,$inp) lea 8($inp),$inp test \$-8,$len jnz .Loop8 cmp \$0,$len jne .Lloop1 jmp .Lexit .align 16 .Lintel: test \$-32,$len jz .Lloop1 and \$15,$TX[1] jz .Loop16_is_hot sub $TX[1],$len .Loop16_warmup: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($inp),$TY#b movb $TY#b,($out,$inp) lea 1($inp),$inp dec $TX[1] jnz .Loop16_warmup mov $YY,$TX[1] xor $YY,$YY mov $TX[1]#b,$YY#b .Loop16_is_hot: lea ($dat,$XX[0],4),$XX[1] ___ sub RC4_loop { my $i=shift; my $j=$i<0?0:$i; my $xmm="%xmm".($j&1); $code.=" add \$16,$XX[0]#b\n" if ($i==15); $code.=" movdqu ($inp),%xmm2\n" if ($i==15); $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); $code.=" movl ($dat,$YY,4),$TY#d\n"; $code.=" pxor %xmm0,%xmm2\n" if ($i==0); $code.=" psllq \$8,%xmm1\n" if ($i==0); $code.=" pxor $xmm,$xmm\n" if ($i<=1); $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; $code.=" add $TY#b,$TX[0]#b\n"; $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); $code.=" movz $TX[0]#b,$TX[0]#d\n"; $code.=" movl $TY#d,4*$j($XX[1])\n"; $code.=" pxor %xmm1,%xmm2\n" if ($i==0); $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); $code.=" lea 16($inp),$inp\n" if ($i==0); $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); } RC4_loop(-1); $code.=<<___; jmp .Loop16_enter .align 16 .Loop16: ___ for ($i=0;$i<16;$i++) { $code.=".Loop16_enter:\n" if ($i==1); RC4_loop($i); push(@TX,shift(@TX)); # "rotate" registers } $code.=<<___; mov $YY,$TX[1] xor $YY,$YY # keyword to partial register sub \$16,$len mov $TX[1]#b,$YY#b test \$-16,$len jnz .Loop16 psllq \$8,%xmm1 pxor %xmm0,%xmm2 pxor %xmm1,%xmm2 movdqu %xmm2,($out,$inp) lea 16($inp),$inp cmp \$0,$len jne .Lloop1 jmp .Lexit .align 16 .Lloop1: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($inp),$TY#b movb $TY#b,($out,$inp) lea 1($inp),$inp dec $len jnz .Lloop1 jmp .Lexit .align 16 .LRC4_CHAR: add \$1,$XX[0]#b movzb ($dat,$XX[0]),$TX[0]#d test \$-8,$len jz .Lcloop1 jmp .Lcloop8 .align 16 .Lcloop8: mov ($inp),%r8d mov 4($inp),%r9d ___ # unroll 2x4-wise, because 64-bit rotates kill Intel P4... for ($i=0;$i<4;$i++) { $code.=<<___; add $TX[0]#b,$YY#b lea 1($XX[0]),$XX[1] movzb ($dat,$YY),$TY#d movzb $XX[1]#b,$XX[1]#d movzb ($dat,$XX[1]),$TX[1]#d movb $TX[0]#b,($dat,$YY) cmp $XX[1],$YY movb $TY#b,($dat,$XX[0]) jne .Lcmov$i # Intel cmov is sloooow... mov $TX[0],$TX[1] .Lcmov$i: add $TX[0]#b,$TY#b xor ($dat,$TY),%r8b ror \$8,%r8d ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } for ($i=4;$i<8;$i++) { $code.=<<___; add $TX[0]#b,$YY#b lea 1($XX[0]),$XX[1] movzb ($dat,$YY),$TY#d movzb $XX[1]#b,$XX[1]#d movzb ($dat,$XX[1]),$TX[1]#d movb $TX[0]#b,($dat,$YY) cmp $XX[1],$YY movb $TY#b,($dat,$XX[0]) jne .Lcmov$i # Intel cmov is sloooow... mov $TX[0],$TX[1] .Lcmov$i: add $TX[0]#b,$TY#b xor ($dat,$TY),%r9b ror \$8,%r9d ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } $code.=<<___; lea -8($len),$len mov %r8d,($out) lea 8($inp),$inp mov %r9d,4($out) lea 8($out),$out test \$-8,$len jnz .Lcloop8 cmp \$0,$len jne .Lcloop1 jmp .Lexit ___ $code.=<<___; .align 16 .Lcloop1: add $TX[0]#b,$YY#b movzb $YY#b,$YY#d movzb ($dat,$YY),$TY#d movb $TX[0]#b,($dat,$YY) movb $TY#b,($dat,$XX[0]) add $TX[0]#b,$TY#b add \$1,$XX[0]#b movzb $TY#b,$TY#d movzb $XX[0]#b,$XX[0]#d movzb ($dat,$TY),$TY#d movzb ($dat,$XX[0]),$TX[0]#d xorb ($inp),$TY#b lea 1($inp),$inp movb $TY#b,($out) lea 1($out),$out sub \$1,$len jnz .Lcloop1 jmp .Lexit .align 16 .Lexit: sub \$1,$XX[0]#b movl $XX[0]#d,-8($dat) movl $YY#d,-4($dat) mov (%rsp),%r13 .cfi_restore %r13 mov 8(%rsp),%r12 .cfi_restore %r12 mov 16(%rsp),%rbx .cfi_restore %rbx add \$24,%rsp .cfi_adjust_cfa_offset -24 .Lepilogue: ret .cfi_endproc .size RC4,.-RC4 ___ } $idx="%r8"; $ido="%r9"; $code.=<<___; .globl RC4_set_key .type RC4_set_key,\@function,3 .align 16 RC4_set_key: .cfi_startproc lea 8($dat),$dat lea ($inp,$len),$inp neg $len mov $len,%rcx xor %eax,%eax xor $ido,$ido xor %r10,%r10 xor %r11,%r11 mov OPENSSL_ia32cap_P(%rip),$idx#d bt \$20,$idx#d # RC4_CHAR? jc .Lc1stloop jmp .Lw1stloop .align 16 .Lw1stloop: mov %eax,($dat,%rax,4) add \$1,%al jnc .Lw1stloop xor $ido,$ido xor $idx,$idx .align 16 .Lw2ndloop: mov ($dat,$ido,4),%r10d add ($inp,$len,1),$idx#b add %r10b,$idx#b add \$1,$len mov ($dat,$idx,4),%r11d cmovz %rcx,$len mov %r10d,($dat,$idx,4) mov %r11d,($dat,$ido,4) add \$1,$ido#b jnc .Lw2ndloop jmp .Lexit_key .align 16 .Lc1stloop: mov %al,($dat,%rax) add \$1,%al jnc .Lc1stloop xor $ido,$ido xor $idx,$idx .align 16 .Lc2ndloop: mov ($dat,$ido),%r10b add ($inp,$len),$idx#b add %r10b,$idx#b add \$1,$len mov ($dat,$idx),%r11b jnz .Lcnowrap mov %rcx,$len .Lcnowrap: mov %r10b,($dat,$idx) mov %r11b,($dat,$ido) add \$1,$ido#b jnc .Lc2ndloop movl \$-1,256($dat) .align 16 .Lexit_key: xor %eax,%eax mov %eax,-8($dat) mov %eax,-4($dat) ret .cfi_endproc .size RC4_set_key,.-RC4_set_key .globl RC4_options .type RC4_options,\@abi-omnipotent .align 16 RC4_options: .cfi_startproc lea .Lopts(%rip),%rax mov OPENSSL_ia32cap_P(%rip),%edx bt \$20,%edx jc .L8xchar bt \$30,%edx jnc .Ldone add \$25,%rax ret .L8xchar: add \$12,%rax .Ldone: ret .cfi_endproc .align 64 .Lopts: .asciz "rc4(8x,int)" .asciz "rc4(8x,char)" .asciz "rc4(16x,int)" .asciz "RC4 for x86_64, CRYPTOGAMS by " .align 64 .size RC4_options,.-RC4_options ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type stream_se_handler,\@abi-omnipotent .align 16 stream_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lprologue(%rip),%r10 cmp %r10,%rbx # context->RipRsp lea .Lepilogue(%rip),%r10 cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue lea 24(%rax),%rax mov -8(%rax),%rbx mov -16(%rax),%r12 mov -24(%rax),%r13 mov %rbx,144($context) # restore context->Rbx mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi jmp .Lcommon_seh_exit .size stream_se_handler,.-stream_se_handler .type key_se_handler,\@abi-omnipotent .align 16 key_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 152($context),%rax # pull context->Rsp mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi .Lcommon_seh_exit: mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size key_se_handler,.-key_se_handler .section .pdata .align 4 .rva .LSEH_begin_RC4 .rva .LSEH_end_RC4 .rva .LSEH_info_RC4 .rva .LSEH_begin_RC4_set_key .rva .LSEH_end_RC4_set_key .rva .LSEH_info_RC4_set_key .section .xdata .align 8 .LSEH_info_RC4: .byte 9,0,0,0 .rva stream_se_handler .LSEH_info_RC4_set_key: .byte 9,0,0,0 .rva key_se_handler ___ } sub reg_part { my ($reg,$conv)=@_; if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } return $reg; } $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/rc4/build.info000066400000000000000000000011701364063235100173310ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ {- $target{rc4_asm_src} -} GENERATE[rc4-586.s]=asm/rc4-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[rc4-586.s]=../perlasm/x86asm.pl GENERATE[rc4-x86_64.s]=asm/rc4-x86_64.pl $(PERLASM_SCHEME) GENERATE[rc4-md5-x86_64.s]=asm/rc4-md5-x86_64.pl $(PERLASM_SCHEME) GENERATE[rc4-parisc.s]=asm/rc4-parisc.pl $(PERLASM_SCHEME) GENERATE[rc4-s390x.s]=asm/rc4-s390x.pl $(PERLASM_SCHEME) BEGINRAW[Makefile] # GNU make "catch all" {- $builddir -}/rc4-%.s: {- $sourcedir -}/asm/rc4-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ ENDRAW[Makefile] openssl-1.1.1f/crypto/rc4/rc4_enc.c000066400000000000000000000043161364063235100170430ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc4_local.h" /*- * RC4 as implemented from a posting from * Newsgroups: sci.crypt * Subject: RC4 Algorithm revealed. * Message-ID: * Date: Wed, 14 Sep 1994 06:35:31 GMT */ void RC4(RC4_KEY *key, size_t len, const unsigned char *indata, unsigned char *outdata) { register RC4_INT *d; register RC4_INT x, y, tx, ty; size_t i; x = key->x; y = key->y; d = key->data; #define LOOP(in,out) \ x=((x+1)&0xff); \ tx=d[x]; \ y=(tx+y)&0xff; \ d[x]=ty=d[y]; \ d[y]=tx; \ (out) = d[(tx+ty)&0xff]^ (in); i = len >> 3; if (i) { for (;;) { LOOP(indata[0], outdata[0]); LOOP(indata[1], outdata[1]); LOOP(indata[2], outdata[2]); LOOP(indata[3], outdata[3]); LOOP(indata[4], outdata[4]); LOOP(indata[5], outdata[5]); LOOP(indata[6], outdata[6]); LOOP(indata[7], outdata[7]); indata += 8; outdata += 8; if (--i == 0) break; } } i = len & 0x07; if (i) { for (;;) { LOOP(indata[0], outdata[0]); if (--i == 0) break; LOOP(indata[1], outdata[1]); if (--i == 0) break; LOOP(indata[2], outdata[2]); if (--i == 0) break; LOOP(indata[3], outdata[3]); if (--i == 0) break; LOOP(indata[4], outdata[4]); if (--i == 0) break; LOOP(indata[5], outdata[5]); if (--i == 0) break; LOOP(indata[6], outdata[6]); if (--i == 0) break; } } key->x = x; key->y = y; } openssl-1.1.1f/crypto/rc4/rc4_local.h000066400000000000000000000007321364063235100173730ustar00rootroot00000000000000/* * Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_RC4_LOCAL_H # define OSSL_CRYPTO_RC4_LOCAL_H # include # include "internal/cryptlib.h" #endif openssl-1.1.1f/crypto/rc4/rc4_skey.c000066400000000000000000000025671364063235100172570ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc4_local.h" #include const char *RC4_options(void) { if (sizeof(RC4_INT) == 1) return "rc4(char)"; else return "rc4(int)"; } /*- * RC4 as implemented from a posting from * Newsgroups: sci.crypt * Subject: RC4 Algorithm revealed. * Message-ID: * Date: Wed, 14 Sep 1994 06:35:31 GMT */ void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data) { register RC4_INT tmp; register int id1, id2; register RC4_INT *d; unsigned int i; d = &(key->data[0]); key->x = 0; key->y = 0; id1 = id2 = 0; #define SK_LOOP(d,n) { \ tmp=d[(n)]; \ id2 = (data[id1] + tmp + id2) & 0xff; \ if (++id1 == len) id1=0; \ d[(n)]=d[id2]; \ d[id2]=tmp; } for (i = 0; i < 256; i++) d[i] = i; for (i = 0; i < 256; i += 4) { SK_LOOP(d, i + 0); SK_LOOP(d, i + 1); SK_LOOP(d, i + 2); SK_LOOP(d, i + 3); } } openssl-1.1.1f/crypto/rc5/000077500000000000000000000000001364063235100153575ustar00rootroot00000000000000openssl-1.1.1f/crypto/rc5/asm/000077500000000000000000000000001364063235100161375ustar00rootroot00000000000000openssl-1.1.1f/crypto/rc5/asm/rc5-586.pl000066400000000000000000000045401364063235100175100ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; require "cbc.pl"; $output = pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $RC5_MAX_ROUNDS=16; $RC5_32_OFF=($RC5_MAX_ROUNDS+2)*4; $A="edi"; $B="esi"; $S="ebp"; $tmp1="eax"; $r="ebx"; $tmpc="ecx"; $tmp4="edx"; &RC5_32_encrypt("RC5_32_encrypt",1); &RC5_32_encrypt("RC5_32_decrypt",0); &cbc("RC5_32_cbc_encrypt","RC5_32_encrypt","RC5_32_decrypt",0,4,5,3,-1,-1); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub RC5_32_encrypt { local($name,$enc)=@_; &function_begin_B($name,""); &comment(""); &push("ebp"); &push("esi"); &push("edi"); &mov($tmp4,&wparam(0)); &mov($S,&wparam(1)); &comment("Load the 2 words"); &mov($A,&DWP(0,$tmp4,"",0)); &mov($B,&DWP(4,$tmp4,"",0)); &push($r); &mov($r, &DWP(0,$S,"",0)); # encrypting part if ($enc) { &add($A, &DWP(4+0,$S,"",0)); &add($B, &DWP(4+4,$S,"",0)); for ($i=0; $i<$RC5_MAX_ROUNDS; $i++) { &xor($A, $B); &mov($tmp1, &DWP(12+$i*8,$S,"",0)); &mov($tmpc, $B); &rotl($A, &LB("ecx")); &add($A, $tmp1); &xor($B, $A); &mov($tmp1, &DWP(16+$i*8,$S,"",0)); &mov($tmpc, $A); &rotl($B, &LB("ecx")); &add($B, $tmp1); if (($i == 7) || ($i == 11)) { &cmp($r, $i+1); &je(&label("rc5_exit")); } } } else { &cmp($r, 12); &je(&label("rc5_dec_12")); &cmp($r, 8); &je(&label("rc5_dec_8")); for ($i=$RC5_MAX_ROUNDS; $i > 0; $i--) { &set_label("rc5_dec_$i") if ($i == 12) || ($i == 8); &mov($tmp1, &DWP($i*8+8,$S,"",0)); &sub($B, $tmp1); &mov($tmpc, $A); &rotr($B, &LB("ecx")); &xor($B, $A); &mov($tmp1, &DWP($i*8+4,$S,"",0)); &sub($A, $tmp1); &mov($tmpc, $B); &rotr($A, &LB("ecx")); &xor($A, $B); } &sub($B, &DWP(4+4,$S,"",0)); &sub($A, &DWP(4+0,$S,"",0)); } &set_label("rc5_exit"); &mov(&DWP(0,$tmp4,"",0),$A); &mov(&DWP(4,$tmp4,"",0),$B); &pop("ebx"); &pop("edi"); &pop("esi"); &pop("ebp"); &ret(); &function_end_B($name); } openssl-1.1.1f/crypto/rc5/build.info000066400000000000000000000004241364063235100173330ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ rc5_skey.c rc5_ecb.c {- $target{rc5_asm_src} -} rc5cfb64.c rc5ofb64.c GENERATE[rc5-586.s]=asm/rc5-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) DEPEND[rc5-586.s]=../perlasm/x86asm.pl ../perlasm/cbc.pl openssl-1.1.1f/crypto/rc5/rc5_ecb.c000066400000000000000000000014421364063235100170260ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc5_local.h" #include void RC5_32_ecb_encrypt(const unsigned char *in, unsigned char *out, RC5_32_KEY *ks, int encrypt) { unsigned long l, d[2]; c2l(in, l); d[0] = l; c2l(in, l); d[1] = l; if (encrypt) RC5_32_encrypt(d, ks); else RC5_32_decrypt(d, ks); l = d[0]; l2c(l, out); l = d[1]; l2c(l, out); l = d[0] = d[1] = 0; } openssl-1.1.1f/crypto/rc5/rc5_enc.c000066400000000000000000000102201364063235100170340ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "rc5_local.h" void RC5_32_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, RC5_32_KEY *ks, unsigned char *iv, int encrypt) { register unsigned long tin0, tin1; register unsigned long tout0, tout1, xor0, xor1; register long l = length; unsigned long tin[2]; if (encrypt) { c2l(iv, tout0); c2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC5_32_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC5_32_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } l2c(tout0, iv); l2c(tout1, iv); } else { c2l(iv, xor0); c2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC5_32_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2c(tout0, out); l2c(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC5_32_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2cn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2c(xor0, iv); l2c(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } void RC5_32_encrypt(unsigned long *d, RC5_32_KEY *key) { RC5_32_INT a, b, *s; s = key->data; a = d[0] + s[0]; b = d[1] + s[1]; E_RC5_32(a, b, s, 2); E_RC5_32(a, b, s, 4); E_RC5_32(a, b, s, 6); E_RC5_32(a, b, s, 8); E_RC5_32(a, b, s, 10); E_RC5_32(a, b, s, 12); E_RC5_32(a, b, s, 14); E_RC5_32(a, b, s, 16); if (key->rounds == 12) { E_RC5_32(a, b, s, 18); E_RC5_32(a, b, s, 20); E_RC5_32(a, b, s, 22); E_RC5_32(a, b, s, 24); } else if (key->rounds == 16) { /* Do a full expansion to avoid a jump */ E_RC5_32(a, b, s, 18); E_RC5_32(a, b, s, 20); E_RC5_32(a, b, s, 22); E_RC5_32(a, b, s, 24); E_RC5_32(a, b, s, 26); E_RC5_32(a, b, s, 28); E_RC5_32(a, b, s, 30); E_RC5_32(a, b, s, 32); } d[0] = a; d[1] = b; } void RC5_32_decrypt(unsigned long *d, RC5_32_KEY *key) { RC5_32_INT a, b, *s; s = key->data; a = d[0]; b = d[1]; if (key->rounds == 16) { D_RC5_32(a, b, s, 32); D_RC5_32(a, b, s, 30); D_RC5_32(a, b, s, 28); D_RC5_32(a, b, s, 26); /* Do a full expansion to avoid a jump */ D_RC5_32(a, b, s, 24); D_RC5_32(a, b, s, 22); D_RC5_32(a, b, s, 20); D_RC5_32(a, b, s, 18); } else if (key->rounds == 12) { D_RC5_32(a, b, s, 24); D_RC5_32(a, b, s, 22); D_RC5_32(a, b, s, 20); D_RC5_32(a, b, s, 18); } D_RC5_32(a, b, s, 16); D_RC5_32(a, b, s, 14); D_RC5_32(a, b, s, 12); D_RC5_32(a, b, s, 10); D_RC5_32(a, b, s, 8); D_RC5_32(a, b, s, 6); D_RC5_32(a, b, s, 4); D_RC5_32(a, b, s, 2); d[0] = a - s[0]; d[1] = b - s[1]; } openssl-1.1.1f/crypto/rc5/rc5_local.h000066400000000000000000000216541364063235100174030ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #undef c2l #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<<24L) /* NOTE - c is not incremented as per c2l */ #undef c2ln #define c2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c))))<<24L; \ /* fall thru */ \ case 7: l2|=((unsigned long)(*(--(c))))<<16L; \ /* fall thru */ \ case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \ /* fall thru */ \ case 5: l2|=((unsigned long)(*(--(c)))); \ /* fall thru */ \ case 4: l1 =((unsigned long)(*(--(c))))<<24L; \ /* fall thru */ \ case 3: l1|=((unsigned long)(*(--(c))))<<16L; \ /* fall thru */ \ case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \ /* fall thru */ \ case 1: l1|=((unsigned long)(*(--(c)))); \ } \ } #undef l2c #define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>>24L)&0xff)) /* NOTE - c is not incremented as per l2c */ #undef l2cn #define l2cn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1) )&0xff); \ } \ } /* NOTE - c is not incremented as per n2l */ #define n2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 7: l2|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 6: l2|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 5: l2|=((unsigned long)(*(--(c))))<<24; \ /* fall thru */ \ case 4: l1 =((unsigned long)(*(--(c)))) ; \ /* fall thru */ \ case 3: l1|=((unsigned long)(*(--(c))))<< 8; \ /* fall thru */ \ case 2: l1|=((unsigned long)(*(--(c))))<<16; \ /* fall thru */ \ case 1: l1|=((unsigned long)(*(--(c))))<<24; \ } \ } /* NOTE - c is not incremented as per l2n */ #define l2nn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall thru */ \ case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \ /* fall thru */ \ case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \ /* fall thru */ \ case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \ /* fall thru */ \ case 4: *(--(c))=(unsigned char)(((l1) )&0xff); \ /* fall thru */ \ case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \ /* fall thru */ \ case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \ /* fall thru */ \ case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \ } \ } #undef n2l #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))) #undef l2n #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) #if (defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER)) # define ROTATE_l32(a,n) _lrotl(a,n) # define ROTATE_r32(a,n) _lrotr(a,n) #elif defined(__ICC) # define ROTATE_l32(a,n) _rotl(a,n) # define ROTATE_r32(a,n) _rotr(a,n) #elif defined(__GNUC__) && __GNUC__>=2 && !defined(__STRICT_ANSI__) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) # define ROTATE_l32(a,n) ({ register unsigned int ret; \ asm ("roll %%cl,%0" \ : "=r"(ret) \ : "c"(n),"0"((unsigned int)(a)) \ : "cc"); \ ret; \ }) # define ROTATE_r32(a,n) ({ register unsigned int ret; \ asm ("rorl %%cl,%0" \ : "=r"(ret) \ : "c"(n),"0"((unsigned int)(a)) \ : "cc"); \ ret; \ }) # endif #endif #ifndef ROTATE_l32 # define ROTATE_l32(a,n) (((a)<<(n&0x1f))|(((a)&0xffffffff)>>((32-n)&0x1f))) #endif #ifndef ROTATE_r32 # define ROTATE_r32(a,n) (((a)<<((32-n)&0x1f))|(((a)&0xffffffff)>>(n&0x1f))) #endif #define RC5_32_MASK 0xffffffffL #define RC5_16_P 0xB7E1 #define RC5_16_Q 0x9E37 #define RC5_32_P 0xB7E15163L #define RC5_32_Q 0x9E3779B9L #define RC5_64_P 0xB7E151628AED2A6BLL #define RC5_64_Q 0x9E3779B97F4A7C15LL #define E_RC5_32(a,b,s,n) \ a^=b; \ a=ROTATE_l32(a,b); \ a+=s[n]; \ a&=RC5_32_MASK; \ b^=a; \ b=ROTATE_l32(b,a); \ b+=s[n+1]; \ b&=RC5_32_MASK; #define D_RC5_32(a,b,s,n) \ b-=s[n+1]; \ b&=RC5_32_MASK; \ b=ROTATE_r32(b,a); \ b^=a; \ a-=s[n]; \ a&=RC5_32_MASK; \ a=ROTATE_r32(a,b); \ a^=b; openssl-1.1.1f/crypto/rc5/rc5_skey.c000066400000000000000000000030311364063235100172440ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc5_local.h" void RC5_32_set_key(RC5_32_KEY *key, int len, const unsigned char *data, int rounds) { RC5_32_INT L[64], l, ll, A, B, *S, k; int i, j, m, c, t, ii, jj; if ((rounds != RC5_16_ROUNDS) && (rounds != RC5_12_ROUNDS) && (rounds != RC5_8_ROUNDS)) rounds = RC5_16_ROUNDS; key->rounds = rounds; S = &(key->data[0]); j = 0; for (i = 0; i <= (len - 8); i += 8) { c2l(data, l); L[j++] = l; c2l(data, l); L[j++] = l; } ii = len - i; if (ii) { k = len & 0x07; c2ln(data, l, ll, k); L[j + 0] = l; L[j + 1] = ll; } c = (len + 3) / 4; t = (rounds + 1) * 2; S[0] = RC5_32_P; for (i = 1; i < t; i++) S[i] = (S[i - 1] + RC5_32_Q) & RC5_32_MASK; j = (t > c) ? t : c; j *= 3; ii = jj = 0; A = B = 0; for (i = 0; i < j; i++) { k = (S[ii] + A + B) & RC5_32_MASK; A = S[ii] = ROTATE_l32(k, 3); m = (int)(A + B); k = (L[jj] + A + B) & RC5_32_MASK; B = L[jj] = ROTATE_l32(k, m); if (++ii >= t) ii = 0; if (++jj >= c) jj = 0; } } openssl-1.1.1f/crypto/rc5/rc5cfb64.c000066400000000000000000000042331364063235100170430ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc5_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void RC5_32_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC5_32_KEY *schedule, unsigned char *ivec, int *num, int encrypt) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned long ti[2]; unsigned char *iv, c, cc; iv = (unsigned char *)ivec; if (encrypt) { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC5_32_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC5_32_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; } openssl-1.1.1f/crypto/rc5/rc5ofb64.c000066400000000000000000000031441364063235100170570ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rc5_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void RC5_32_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC5_32_KEY *schedule, unsigned char *ivec, int *num) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned char d[8]; register char *dp; unsigned long ti[2]; unsigned char *iv; int save = 0; iv = (unsigned char *)ivec; c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2c(v0, dp); l2c(v1, dp); while (l--) { if (n == 0) { RC5_32_encrypt((unsigned long *)ti, schedule); dp = (char *)d; t = ti[0]; l2c(t, dp); t = ti[1]; l2c(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = (unsigned char *)ivec; l2c(v0, iv); l2c(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; } openssl-1.1.1f/crypto/ripemd/000077500000000000000000000000001364063235100161465ustar00rootroot00000000000000openssl-1.1.1f/crypto/ripemd/asm/000077500000000000000000000000001364063235100167265ustar00rootroot00000000000000openssl-1.1.1f/crypto/ripemd/asm/rmd-586.pl000066400000000000000000000403411364063235100203670ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # Normal is the # ripemd160_block_asm_data_order(RIPEMD160_CTX *c, ULONG *X,int blocks); $normal=0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0]); $A="ecx"; $B="esi"; $C="edi"; $D="ebx"; $E="ebp"; $tmp1="eax"; $tmp2="edx"; $KL1=0x5A827999; $KL2=0x6ED9EBA1; $KL3=0x8F1BBCDC; $KL4=0xA953FD4E; $KR0=0x50A28BE6; $KR1=0x5C4DD124; $KR2=0x6D703EF3; $KR3=0x7A6D76E9; @wl=( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 7, 4,13, 1,10, 6,15, 3,12, 0, 9, 5, 2,14,11, 8, 3,10,14, 4, 9,15, 8, 1, 2, 7, 0, 6,13,11, 5,12, 1, 9,11,10, 0, 8,12, 4,13, 3, 7,15,14, 5, 6, 2, 4, 0, 5, 9, 7,12, 2,10,14, 1, 3, 8,11, 6,15,13, ); @wr=( 5,14, 7, 0, 9, 2,11, 4,13, 6,15, 8, 1,10, 3,12, 6,11, 3, 7, 0,13, 5,10,14,15, 8,12, 4, 9, 1, 2, 15, 5, 1, 3, 7,14, 6, 9,11, 8,12, 2,10, 0, 4,13, 8, 6, 4, 1, 3,11,15, 0, 5,12, 2,13, 9, 7,10,14, 12,15,10, 4, 1, 5, 8, 7, 6, 2,13,14, 0, 3, 9,11, ); @sl=( 11,14,15,12, 5, 8, 7, 9,11,13,14,15, 6, 7, 9, 8, 7, 6, 8,13,11, 9, 7,15, 7,12,15, 9,11, 7,13,12, 11,13, 6, 7,14, 9,13,15,14, 8,13, 6, 5,12, 7, 5, 11,12,14,15,14,15, 9, 8, 9,14, 5, 6, 8, 6, 5,12, 9,15, 5,11, 6, 8,13,12, 5,12,13,14,11, 8, 5, 6, ); @sr=( 8, 9, 9,11,13,15,15, 5, 7, 7, 8,11,14,14,12, 6, 9,13,15, 7,12, 8, 9,11, 7, 7,12, 7, 6,15,13,11, 9, 7,15,11, 8, 6, 6,14,12,13, 5,14,13,13, 7, 5, 15, 5, 8,11,14,14, 6,14, 6, 9,12, 9,12, 5,15, 8, 8, 5,12, 9,12, 5,14, 6, 8,13, 6, 5,15,13,11,11, ); &ripemd160_block("ripemd160_block_asm_data_order"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; sub Xv { local($n)=@_; return(&swtmp($n)); # tmp on stack } sub Np { local($p)=@_; local(%n)=($A,$E,$B,$A,$C,$B,$D,$C,$E,$D); return($n{$p}); } sub RIP1 { local($a,$b,$c,$d,$e,$pos,$s,$o,$pos2)=@_; &comment($p++); if ($p & 1) { #&mov($tmp1, $c) if $o == -1; &xor($tmp1, $d) if $o == -1; &mov($tmp2, &Xv($pos)); &xor($tmp1, $b); &add($a, $tmp2); &rotl($c, 10); &add($a, $tmp1); &mov($tmp1, &Np($c)); # NEXT # XXX &rotl($a, $s); &add($a, $e); } else { &xor($tmp1, $d); &mov($tmp2, &Xv($pos)); &xor($tmp1, $b); &add($a, $tmp1); &mov($tmp1, &Np($c)) if $o <= 0; &mov($tmp1, -1) if $o == 1; # XXX if $o == 2; &rotl($c, 10); &add($a, $tmp2); &xor($tmp1, &Np($d)) if $o <= 0; &mov($tmp2, &Xv($pos2)) if $o == 1; &mov($tmp2, &wparam(0)) if $o == 2; &rotl($a, $s); &add($a, $e); } } sub RIP2 { local($a,$b,$c,$d,$e,$pos,$pos2,$s,$K,$o)=@_; # XXXXXX &comment($p++); if ($p & 1) { # &mov($tmp2, &Xv($pos)) if $o < -1; # &mov($tmp1, -1) if $o < -1; &add($a, $tmp2); &mov($tmp2, $c); &sub($tmp1, $b); &and($tmp2, $b); &and($tmp1, $d); &or($tmp2, $tmp1); &mov($tmp1, &Xv($pos2)) if $o <= 0; # XXXXXXXXXXXXXX # XXX &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp2,1)); &mov($tmp2, -1) if $o <= 0; # XXX &rotl($a, $s); &add($a, $e); } else { # XXX &add($a, $tmp1); &mov($tmp1, $c); &sub($tmp2, $b); &and($tmp1, $b); &and($tmp2, $d); if ($o != 2) { &or($tmp1, $tmp2); &mov($tmp2, &Xv($pos2)) if $o <= 0; &mov($tmp2, -1) if $o == 1; &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp1,1)); &mov($tmp1, -1) if $o <= 0; &sub($tmp2, &Np($c)) if $o == 1; } else { &or($tmp2, $tmp1); &mov($tmp1, &Np($c)); &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp2,1)); &xor($tmp1, &Np($d)); } &rotl($a, $s); &add($a, $e); } } sub RIP3 { local($a,$b,$c,$d,$e,$pos,$s,$K,$o,$pos2)=@_; &comment($p++); if ($p & 1) { # &mov($tmp2, -1) if $o < -1; # &sub($tmp2, $c) if $o < -1; &mov($tmp1, &Xv($pos)); &or($tmp2, $b); &add($a, $tmp1); &xor($tmp2, $d); &mov($tmp1, -1) if $o <= 0; # NEXT # XXX &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp2,1)); &sub($tmp1, &Np($c)) if $o <= 0; # NEXT # XXX &rotl($a, $s); &add($a, $e); } else { &mov($tmp2, &Xv($pos)); &or($tmp1, $b); &add($a, $tmp2); &xor($tmp1, $d); &mov($tmp2, -1) if $o <= 0; # NEXT &mov($tmp2, -1) if $o == 1; &mov($tmp2, &Xv($pos2)) if $o == 2; &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp1,1)); &sub($tmp2, &Np($c)) if $o <= 0; # NEXT &mov($tmp1, &Np($d)) if $o == 1; &mov($tmp1, -1) if $o == 2; &rotl($a, $s); &add($a, $e); } } sub RIP4 { local($a,$b,$c,$d,$e,$pos,$s,$K,$o)=@_; &comment($p++); if ($p & 1) { # &mov($tmp2, -1) if $o == -2; # &mov($tmp1, $d) if $o == -2; &sub($tmp2, $d); &and($tmp1, $b); &and($tmp2, $c); &or($tmp2, $tmp1); &mov($tmp1, &Xv($pos)); &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp2)); &mov($tmp2, -1) unless $o > 0; # NEXT # XXX &add($a, $tmp1); &mov($tmp1, &Np($d)) unless $o > 0; # NEXT # XXX &rotl($a, $s); &add($a, $e); } else { &sub($tmp2, $d); &and($tmp1, $b); &and($tmp2, $c); &or($tmp2, $tmp1); &mov($tmp1, &Xv($pos)); &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp2)); &mov($tmp2, -1) if $o == 0; # NEXT &mov($tmp2, -1) if $o == 1; &mov($tmp2, -1) if $o == 2; # XXX &add($a, $tmp1); &mov($tmp1, &Np($d)) if $o == 0; # NEXT &sub($tmp2, &Np($d)) if $o == 1; &sub($tmp2, &Np($c)) if $o == 2; # XXX &rotl($a, $s); &add($a, $e); } } sub RIP5 { local($a,$b,$c,$d,$e,$pos,$s,$K,$o)=@_; &comment($p++); if ($p & 1) { &mov($tmp2, -1) if $o == -2; &sub($tmp2, $d) if $o == -2; &mov($tmp1, &Xv($pos)); &or($tmp2, $c); &add($a, $tmp1); &xor($tmp2, $b); &mov($tmp1, -1) if $o <= 0; # XXX &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp2,1)); &sub($tmp1, &Np($d)) if $o <= 0; # XXX &rotl($a, $s); &add($a, $e); } else { &mov($tmp2, &Xv($pos)); &or($tmp1, $c); &add($a, $tmp2); &xor($tmp1, $b); &mov($tmp2, -1) if $o <= 0; &mov($tmp2, &wparam(0)) if $o == 1; # Middle code &mov($tmp2, -1) if $o == 2; &rotl($c, 10); &lea($a, &DWP($K,$a,$tmp1,1)); &sub($tmp2, &Np($d)) if $o <= 0; &mov(&swtmp(16), $A) if $o == 1; &mov($tmp1, &Np($d)) if $o == 2; &rotl($a, $s); &add($a, $e); } } sub ripemd160_block { local($name)=@_; &function_begin_B($name,"",3); # parameter 1 is the RIPEMD160_CTX structure. # A 0 # B 4 # C 8 # D 12 # E 16 &mov($tmp2, &wparam(0)); &mov($tmp1, &wparam(1)); &push("esi"); &mov($A, &DWP( 0,$tmp2,"",0)); &push("edi"); &mov($B, &DWP( 4,$tmp2,"",0)); &push("ebp"); &mov($C, &DWP( 8,$tmp2,"",0)); &push("ebx"); &stack_push(16+5+6); # Special comment about the figure of 6. # Idea is to pad the current frame so # that the top of the stack gets fairly # aligned. Well, as you realize it would # always depend on how the frame below is # aligned. The good news are that gcc-2.95 # and later does keep first argument at # least double-wise aligned. &set_label("start") unless $normal; &comment(""); # &mov($tmp1, &wparam(1)); # Done at end of loop # &mov($tmp2, &wparam(0)); # Done at end of loop for ($z=0; $z<16; $z+=2) { &mov($D, &DWP( $z*4,$tmp1,"",0)); &mov($E, &DWP( ($z+1)*4,$tmp1,"",0)); &mov(&swtmp($z), $D); &mov(&swtmp($z+1), $E); } &mov($tmp1, $C); &mov($D, &DWP(12,$tmp2,"",0)); &mov($E, &DWP(16,$tmp2,"",0)); &RIP1($A,$B,$C,$D,$E,$wl[ 0],$sl[ 0],-1); &RIP1($E,$A,$B,$C,$D,$wl[ 1],$sl[ 1],0); &RIP1($D,$E,$A,$B,$C,$wl[ 2],$sl[ 2],0); &RIP1($C,$D,$E,$A,$B,$wl[ 3],$sl[ 3],0); &RIP1($B,$C,$D,$E,$A,$wl[ 4],$sl[ 4],0); &RIP1($A,$B,$C,$D,$E,$wl[ 5],$sl[ 5],0); &RIP1($E,$A,$B,$C,$D,$wl[ 6],$sl[ 6],0); &RIP1($D,$E,$A,$B,$C,$wl[ 7],$sl[ 7],0); &RIP1($C,$D,$E,$A,$B,$wl[ 8],$sl[ 8],0); &RIP1($B,$C,$D,$E,$A,$wl[ 9],$sl[ 9],0); &RIP1($A,$B,$C,$D,$E,$wl[10],$sl[10],0); &RIP1($E,$A,$B,$C,$D,$wl[11],$sl[11],0); &RIP1($D,$E,$A,$B,$C,$wl[12],$sl[12],0); &RIP1($C,$D,$E,$A,$B,$wl[13],$sl[13],0); &RIP1($B,$C,$D,$E,$A,$wl[14],$sl[14],0); &RIP1($A,$B,$C,$D,$E,$wl[15],$sl[15],1,$wl[16]); &RIP2($E,$A,$B,$C,$D,$wl[16],$wl[17],$sl[16],$KL1,-1); &RIP2($D,$E,$A,$B,$C,$wl[17],$wl[18],$sl[17],$KL1,0); &RIP2($C,$D,$E,$A,$B,$wl[18],$wl[19],$sl[18],$KL1,0); &RIP2($B,$C,$D,$E,$A,$wl[19],$wl[20],$sl[19],$KL1,0); &RIP2($A,$B,$C,$D,$E,$wl[20],$wl[21],$sl[20],$KL1,0); &RIP2($E,$A,$B,$C,$D,$wl[21],$wl[22],$sl[21],$KL1,0); &RIP2($D,$E,$A,$B,$C,$wl[22],$wl[23],$sl[22],$KL1,0); &RIP2($C,$D,$E,$A,$B,$wl[23],$wl[24],$sl[23],$KL1,0); &RIP2($B,$C,$D,$E,$A,$wl[24],$wl[25],$sl[24],$KL1,0); &RIP2($A,$B,$C,$D,$E,$wl[25],$wl[26],$sl[25],$KL1,0); &RIP2($E,$A,$B,$C,$D,$wl[26],$wl[27],$sl[26],$KL1,0); &RIP2($D,$E,$A,$B,$C,$wl[27],$wl[28],$sl[27],$KL1,0); &RIP2($C,$D,$E,$A,$B,$wl[28],$wl[29],$sl[28],$KL1,0); &RIP2($B,$C,$D,$E,$A,$wl[29],$wl[30],$sl[29],$KL1,0); &RIP2($A,$B,$C,$D,$E,$wl[30],$wl[31],$sl[30],$KL1,0); &RIP2($E,$A,$B,$C,$D,$wl[31],$wl[32],$sl[31],$KL1,1); &RIP3($D,$E,$A,$B,$C,$wl[32],$sl[32],$KL2,-1); &RIP3($C,$D,$E,$A,$B,$wl[33],$sl[33],$KL2,0); &RIP3($B,$C,$D,$E,$A,$wl[34],$sl[34],$KL2,0); &RIP3($A,$B,$C,$D,$E,$wl[35],$sl[35],$KL2,0); &RIP3($E,$A,$B,$C,$D,$wl[36],$sl[36],$KL2,0); &RIP3($D,$E,$A,$B,$C,$wl[37],$sl[37],$KL2,0); &RIP3($C,$D,$E,$A,$B,$wl[38],$sl[38],$KL2,0); &RIP3($B,$C,$D,$E,$A,$wl[39],$sl[39],$KL2,0); &RIP3($A,$B,$C,$D,$E,$wl[40],$sl[40],$KL2,0); &RIP3($E,$A,$B,$C,$D,$wl[41],$sl[41],$KL2,0); &RIP3($D,$E,$A,$B,$C,$wl[42],$sl[42],$KL2,0); &RIP3($C,$D,$E,$A,$B,$wl[43],$sl[43],$KL2,0); &RIP3($B,$C,$D,$E,$A,$wl[44],$sl[44],$KL2,0); &RIP3($A,$B,$C,$D,$E,$wl[45],$sl[45],$KL2,0); &RIP3($E,$A,$B,$C,$D,$wl[46],$sl[46],$KL2,0); &RIP3($D,$E,$A,$B,$C,$wl[47],$sl[47],$KL2,1); &RIP4($C,$D,$E,$A,$B,$wl[48],$sl[48],$KL3,-1); &RIP4($B,$C,$D,$E,$A,$wl[49],$sl[49],$KL3,0); &RIP4($A,$B,$C,$D,$E,$wl[50],$sl[50],$KL3,0); &RIP4($E,$A,$B,$C,$D,$wl[51],$sl[51],$KL3,0); &RIP4($D,$E,$A,$B,$C,$wl[52],$sl[52],$KL3,0); &RIP4($C,$D,$E,$A,$B,$wl[53],$sl[53],$KL3,0); &RIP4($B,$C,$D,$E,$A,$wl[54],$sl[54],$KL3,0); &RIP4($A,$B,$C,$D,$E,$wl[55],$sl[55],$KL3,0); &RIP4($E,$A,$B,$C,$D,$wl[56],$sl[56],$KL3,0); &RIP4($D,$E,$A,$B,$C,$wl[57],$sl[57],$KL3,0); &RIP4($C,$D,$E,$A,$B,$wl[58],$sl[58],$KL3,0); &RIP4($B,$C,$D,$E,$A,$wl[59],$sl[59],$KL3,0); &RIP4($A,$B,$C,$D,$E,$wl[60],$sl[60],$KL3,0); &RIP4($E,$A,$B,$C,$D,$wl[61],$sl[61],$KL3,0); &RIP4($D,$E,$A,$B,$C,$wl[62],$sl[62],$KL3,0); &RIP4($C,$D,$E,$A,$B,$wl[63],$sl[63],$KL3,1); &RIP5($B,$C,$D,$E,$A,$wl[64],$sl[64],$KL4,-1); &RIP5($A,$B,$C,$D,$E,$wl[65],$sl[65],$KL4,0); &RIP5($E,$A,$B,$C,$D,$wl[66],$sl[66],$KL4,0); &RIP5($D,$E,$A,$B,$C,$wl[67],$sl[67],$KL4,0); &RIP5($C,$D,$E,$A,$B,$wl[68],$sl[68],$KL4,0); &RIP5($B,$C,$D,$E,$A,$wl[69],$sl[69],$KL4,0); &RIP5($A,$B,$C,$D,$E,$wl[70],$sl[70],$KL4,0); &RIP5($E,$A,$B,$C,$D,$wl[71],$sl[71],$KL4,0); &RIP5($D,$E,$A,$B,$C,$wl[72],$sl[72],$KL4,0); &RIP5($C,$D,$E,$A,$B,$wl[73],$sl[73],$KL4,0); &RIP5($B,$C,$D,$E,$A,$wl[74],$sl[74],$KL4,0); &RIP5($A,$B,$C,$D,$E,$wl[75],$sl[75],$KL4,0); &RIP5($E,$A,$B,$C,$D,$wl[76],$sl[76],$KL4,0); &RIP5($D,$E,$A,$B,$C,$wl[77],$sl[77],$KL4,0); &RIP5($C,$D,$E,$A,$B,$wl[78],$sl[78],$KL4,0); &RIP5($B,$C,$D,$E,$A,$wl[79],$sl[79],$KL4,1); # &mov($tmp2, &wparam(0)); # moved into last RIP5 # &mov(&swtmp(16), $A); &mov($A, &DWP( 0,$tmp2,"",0)); &mov(&swtmp(16+1), $B); &mov(&swtmp(16+2), $C); &mov($B, &DWP( 4,$tmp2,"",0)); &mov(&swtmp(16+3), $D); &mov($C, &DWP( 8,$tmp2,"",0)); &mov(&swtmp(16+4), $E); &mov($D, &DWP(12,$tmp2,"",0)); &mov($E, &DWP(16,$tmp2,"",0)); &RIP5($A,$B,$C,$D,$E,$wr[ 0],$sr[ 0],$KR0,-2); &RIP5($E,$A,$B,$C,$D,$wr[ 1],$sr[ 1],$KR0,0); &RIP5($D,$E,$A,$B,$C,$wr[ 2],$sr[ 2],$KR0,0); &RIP5($C,$D,$E,$A,$B,$wr[ 3],$sr[ 3],$KR0,0); &RIP5($B,$C,$D,$E,$A,$wr[ 4],$sr[ 4],$KR0,0); &RIP5($A,$B,$C,$D,$E,$wr[ 5],$sr[ 5],$KR0,0); &RIP5($E,$A,$B,$C,$D,$wr[ 6],$sr[ 6],$KR0,0); &RIP5($D,$E,$A,$B,$C,$wr[ 7],$sr[ 7],$KR0,0); &RIP5($C,$D,$E,$A,$B,$wr[ 8],$sr[ 8],$KR0,0); &RIP5($B,$C,$D,$E,$A,$wr[ 9],$sr[ 9],$KR0,0); &RIP5($A,$B,$C,$D,$E,$wr[10],$sr[10],$KR0,0); &RIP5($E,$A,$B,$C,$D,$wr[11],$sr[11],$KR0,0); &RIP5($D,$E,$A,$B,$C,$wr[12],$sr[12],$KR0,0); &RIP5($C,$D,$E,$A,$B,$wr[13],$sr[13],$KR0,0); &RIP5($B,$C,$D,$E,$A,$wr[14],$sr[14],$KR0,0); &RIP5($A,$B,$C,$D,$E,$wr[15],$sr[15],$KR0,2); &RIP4($E,$A,$B,$C,$D,$wr[16],$sr[16],$KR1,-2); &RIP4($D,$E,$A,$B,$C,$wr[17],$sr[17],$KR1,0); &RIP4($C,$D,$E,$A,$B,$wr[18],$sr[18],$KR1,0); &RIP4($B,$C,$D,$E,$A,$wr[19],$sr[19],$KR1,0); &RIP4($A,$B,$C,$D,$E,$wr[20],$sr[20],$KR1,0); &RIP4($E,$A,$B,$C,$D,$wr[21],$sr[21],$KR1,0); &RIP4($D,$E,$A,$B,$C,$wr[22],$sr[22],$KR1,0); &RIP4($C,$D,$E,$A,$B,$wr[23],$sr[23],$KR1,0); &RIP4($B,$C,$D,$E,$A,$wr[24],$sr[24],$KR1,0); &RIP4($A,$B,$C,$D,$E,$wr[25],$sr[25],$KR1,0); &RIP4($E,$A,$B,$C,$D,$wr[26],$sr[26],$KR1,0); &RIP4($D,$E,$A,$B,$C,$wr[27],$sr[27],$KR1,0); &RIP4($C,$D,$E,$A,$B,$wr[28],$sr[28],$KR1,0); &RIP4($B,$C,$D,$E,$A,$wr[29],$sr[29],$KR1,0); &RIP4($A,$B,$C,$D,$E,$wr[30],$sr[30],$KR1,0); &RIP4($E,$A,$B,$C,$D,$wr[31],$sr[31],$KR1,2); &RIP3($D,$E,$A,$B,$C,$wr[32],$sr[32],$KR2,-2); &RIP3($C,$D,$E,$A,$B,$wr[33],$sr[33],$KR2,0); &RIP3($B,$C,$D,$E,$A,$wr[34],$sr[34],$KR2,0); &RIP3($A,$B,$C,$D,$E,$wr[35],$sr[35],$KR2,0); &RIP3($E,$A,$B,$C,$D,$wr[36],$sr[36],$KR2,0); &RIP3($D,$E,$A,$B,$C,$wr[37],$sr[37],$KR2,0); &RIP3($C,$D,$E,$A,$B,$wr[38],$sr[38],$KR2,0); &RIP3($B,$C,$D,$E,$A,$wr[39],$sr[39],$KR2,0); &RIP3($A,$B,$C,$D,$E,$wr[40],$sr[40],$KR2,0); &RIP3($E,$A,$B,$C,$D,$wr[41],$sr[41],$KR2,0); &RIP3($D,$E,$A,$B,$C,$wr[42],$sr[42],$KR2,0); &RIP3($C,$D,$E,$A,$B,$wr[43],$sr[43],$KR2,0); &RIP3($B,$C,$D,$E,$A,$wr[44],$sr[44],$KR2,0); &RIP3($A,$B,$C,$D,$E,$wr[45],$sr[45],$KR2,0); &RIP3($E,$A,$B,$C,$D,$wr[46],$sr[46],$KR2,0); &RIP3($D,$E,$A,$B,$C,$wr[47],$sr[47],$KR2,2,$wr[48]); &RIP2($C,$D,$E,$A,$B,$wr[48],$wr[49],$sr[48],$KR3,-2); &RIP2($B,$C,$D,$E,$A,$wr[49],$wr[50],$sr[49],$KR3,0); &RIP2($A,$B,$C,$D,$E,$wr[50],$wr[51],$sr[50],$KR3,0); &RIP2($E,$A,$B,$C,$D,$wr[51],$wr[52],$sr[51],$KR3,0); &RIP2($D,$E,$A,$B,$C,$wr[52],$wr[53],$sr[52],$KR3,0); &RIP2($C,$D,$E,$A,$B,$wr[53],$wr[54],$sr[53],$KR3,0); &RIP2($B,$C,$D,$E,$A,$wr[54],$wr[55],$sr[54],$KR3,0); &RIP2($A,$B,$C,$D,$E,$wr[55],$wr[56],$sr[55],$KR3,0); &RIP2($E,$A,$B,$C,$D,$wr[56],$wr[57],$sr[56],$KR3,0); &RIP2($D,$E,$A,$B,$C,$wr[57],$wr[58],$sr[57],$KR3,0); &RIP2($C,$D,$E,$A,$B,$wr[58],$wr[59],$sr[58],$KR3,0); &RIP2($B,$C,$D,$E,$A,$wr[59],$wr[60],$sr[59],$KR3,0); &RIP2($A,$B,$C,$D,$E,$wr[60],$wr[61],$sr[60],$KR3,0); &RIP2($E,$A,$B,$C,$D,$wr[61],$wr[62],$sr[61],$KR3,0); &RIP2($D,$E,$A,$B,$C,$wr[62],$wr[63],$sr[62],$KR3,0); &RIP2($C,$D,$E,$A,$B,$wr[63],$wr[64],$sr[63],$KR3,2); &RIP1($B,$C,$D,$E,$A,$wr[64],$sr[64],-2); &RIP1($A,$B,$C,$D,$E,$wr[65],$sr[65],0); &RIP1($E,$A,$B,$C,$D,$wr[66],$sr[66],0); &RIP1($D,$E,$A,$B,$C,$wr[67],$sr[67],0); &RIP1($C,$D,$E,$A,$B,$wr[68],$sr[68],0); &RIP1($B,$C,$D,$E,$A,$wr[69],$sr[69],0); &RIP1($A,$B,$C,$D,$E,$wr[70],$sr[70],0); &RIP1($E,$A,$B,$C,$D,$wr[71],$sr[71],0); &RIP1($D,$E,$A,$B,$C,$wr[72],$sr[72],0); &RIP1($C,$D,$E,$A,$B,$wr[73],$sr[73],0); &RIP1($B,$C,$D,$E,$A,$wr[74],$sr[74],0); &RIP1($A,$B,$C,$D,$E,$wr[75],$sr[75],0); &RIP1($E,$A,$B,$C,$D,$wr[76],$sr[76],0); &RIP1($D,$E,$A,$B,$C,$wr[77],$sr[77],0); &RIP1($C,$D,$E,$A,$B,$wr[78],$sr[78],0); &RIP1($B,$C,$D,$E,$A,$wr[79],$sr[79],2); # &mov($tmp2, &wparam(0)); # Moved into last round &mov($tmp1, &DWP( 4,$tmp2,"",0)); # ctx->B &add($D, $tmp1); &mov($tmp1, &swtmp(16+2)); # $c &add($D, $tmp1); &mov($tmp1, &DWP( 8,$tmp2,"",0)); # ctx->C &add($E, $tmp1); &mov($tmp1, &swtmp(16+3)); # $d &add($E, $tmp1); &mov($tmp1, &DWP(12,$tmp2,"",0)); # ctx->D &add($A, $tmp1); &mov($tmp1, &swtmp(16+4)); # $e &add($A, $tmp1); &mov($tmp1, &DWP(16,$tmp2,"",0)); # ctx->E &add($B, $tmp1); &mov($tmp1, &swtmp(16+0)); # $a &add($B, $tmp1); &mov($tmp1, &DWP( 0,$tmp2,"",0)); # ctx->A &add($C, $tmp1); &mov($tmp1, &swtmp(16+1)); # $b &add($C, $tmp1); &mov($tmp1, &wparam(2)); &mov(&DWP( 0,$tmp2,"",0), $D); &mov(&DWP( 4,$tmp2,"",0), $E); &mov(&DWP( 8,$tmp2,"",0), $A); &sub($tmp1,1); &mov(&DWP(12,$tmp2,"",0), $B); &mov(&DWP(16,$tmp2,"",0), $C); &jle(&label("get_out")); &mov(&wparam(2),$tmp1); &mov($C, $A); &mov($tmp1, &wparam(1)); &mov($A, $D); &add($tmp1, 64); &mov($B, $E); &mov(&wparam(1),$tmp1); &jmp(&label("start")); &set_label("get_out"); &stack_pop(16+5+6); &pop("ebx"); &pop("ebp"); &pop("edi"); &pop("esi"); &ret(); &function_end_B($name); } openssl-1.1.1f/crypto/ripemd/build.info000066400000000000000000000003571364063235100201270ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ rmd_dgst.c rmd_one.c {- $target{rmd160_asm_src} -} GENERATE[rmd-586.s]=asm/rmd-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) DEPEND[rmd-586.s]=../perlasm/x86asm.pl openssl-1.1.1f/crypto/ripemd/rmd_dgst.c000066400000000000000000000233341364063235100201220ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rmd_local.h" #include #ifdef RMD160_ASM void ripemd160_block_x86(RIPEMD160_CTX *c, unsigned long *p, size_t num); # define ripemd160_block ripemd160_block_x86 #else void ripemd160_block(RIPEMD160_CTX *c, unsigned long *p, size_t num); #endif int RIPEMD160_Init(RIPEMD160_CTX *c) { memset(c, 0, sizeof(*c)); c->A = RIPEMD160_A; c->B = RIPEMD160_B; c->C = RIPEMD160_C; c->D = RIPEMD160_D; c->E = RIPEMD160_E; return 1; } #ifndef ripemd160_block_data_order # ifdef X # undef X # endif void ripemd160_block_data_order(RIPEMD160_CTX *ctx, const void *p, size_t num) { const unsigned char *data = p; register unsigned MD32_REG_T A, B, C, D, E; unsigned MD32_REG_T a, b, c, d, e, l; # ifndef MD32_XARRAY /* See comment in crypto/sha/sha_local.h for details. */ unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15; # define X(i) XX##i # else RIPEMD160_LONG XX[16]; # define X(i) XX[i] # endif for (; num--;) { A = ctx->A; B = ctx->B; C = ctx->C; D = ctx->D; E = ctx->E; (void)HOST_c2l(data, l); X(0) = l; (void)HOST_c2l(data, l); X(1) = l; RIP1(A, B, C, D, E, WL00, SL00); (void)HOST_c2l(data, l); X(2) = l; RIP1(E, A, B, C, D, WL01, SL01); (void)HOST_c2l(data, l); X(3) = l; RIP1(D, E, A, B, C, WL02, SL02); (void)HOST_c2l(data, l); X(4) = l; RIP1(C, D, E, A, B, WL03, SL03); (void)HOST_c2l(data, l); X(5) = l; RIP1(B, C, D, E, A, WL04, SL04); (void)HOST_c2l(data, l); X(6) = l; RIP1(A, B, C, D, E, WL05, SL05); (void)HOST_c2l(data, l); X(7) = l; RIP1(E, A, B, C, D, WL06, SL06); (void)HOST_c2l(data, l); X(8) = l; RIP1(D, E, A, B, C, WL07, SL07); (void)HOST_c2l(data, l); X(9) = l; RIP1(C, D, E, A, B, WL08, SL08); (void)HOST_c2l(data, l); X(10) = l; RIP1(B, C, D, E, A, WL09, SL09); (void)HOST_c2l(data, l); X(11) = l; RIP1(A, B, C, D, E, WL10, SL10); (void)HOST_c2l(data, l); X(12) = l; RIP1(E, A, B, C, D, WL11, SL11); (void)HOST_c2l(data, l); X(13) = l; RIP1(D, E, A, B, C, WL12, SL12); (void)HOST_c2l(data, l); X(14) = l; RIP1(C, D, E, A, B, WL13, SL13); (void)HOST_c2l(data, l); X(15) = l; RIP1(B, C, D, E, A, WL14, SL14); RIP1(A, B, C, D, E, WL15, SL15); RIP2(E, A, B, C, D, WL16, SL16, KL1); RIP2(D, E, A, B, C, WL17, SL17, KL1); RIP2(C, D, E, A, B, WL18, SL18, KL1); RIP2(B, C, D, E, A, WL19, SL19, KL1); RIP2(A, B, C, D, E, WL20, SL20, KL1); RIP2(E, A, B, C, D, WL21, SL21, KL1); RIP2(D, E, A, B, C, WL22, SL22, KL1); RIP2(C, D, E, A, B, WL23, SL23, KL1); RIP2(B, C, D, E, A, WL24, SL24, KL1); RIP2(A, B, C, D, E, WL25, SL25, KL1); RIP2(E, A, B, C, D, WL26, SL26, KL1); RIP2(D, E, A, B, C, WL27, SL27, KL1); RIP2(C, D, E, A, B, WL28, SL28, KL1); RIP2(B, C, D, E, A, WL29, SL29, KL1); RIP2(A, B, C, D, E, WL30, SL30, KL1); RIP2(E, A, B, C, D, WL31, SL31, KL1); RIP3(D, E, A, B, C, WL32, SL32, KL2); RIP3(C, D, E, A, B, WL33, SL33, KL2); RIP3(B, C, D, E, A, WL34, SL34, KL2); RIP3(A, B, C, D, E, WL35, SL35, KL2); RIP3(E, A, B, C, D, WL36, SL36, KL2); RIP3(D, E, A, B, C, WL37, SL37, KL2); RIP3(C, D, E, A, B, WL38, SL38, KL2); RIP3(B, C, D, E, A, WL39, SL39, KL2); RIP3(A, B, C, D, E, WL40, SL40, KL2); RIP3(E, A, B, C, D, WL41, SL41, KL2); RIP3(D, E, A, B, C, WL42, SL42, KL2); RIP3(C, D, E, A, B, WL43, SL43, KL2); RIP3(B, C, D, E, A, WL44, SL44, KL2); RIP3(A, B, C, D, E, WL45, SL45, KL2); RIP3(E, A, B, C, D, WL46, SL46, KL2); RIP3(D, E, A, B, C, WL47, SL47, KL2); RIP4(C, D, E, A, B, WL48, SL48, KL3); RIP4(B, C, D, E, A, WL49, SL49, KL3); RIP4(A, B, C, D, E, WL50, SL50, KL3); RIP4(E, A, B, C, D, WL51, SL51, KL3); RIP4(D, E, A, B, C, WL52, SL52, KL3); RIP4(C, D, E, A, B, WL53, SL53, KL3); RIP4(B, C, D, E, A, WL54, SL54, KL3); RIP4(A, B, C, D, E, WL55, SL55, KL3); RIP4(E, A, B, C, D, WL56, SL56, KL3); RIP4(D, E, A, B, C, WL57, SL57, KL3); RIP4(C, D, E, A, B, WL58, SL58, KL3); RIP4(B, C, D, E, A, WL59, SL59, KL3); RIP4(A, B, C, D, E, WL60, SL60, KL3); RIP4(E, A, B, C, D, WL61, SL61, KL3); RIP4(D, E, A, B, C, WL62, SL62, KL3); RIP4(C, D, E, A, B, WL63, SL63, KL3); RIP5(B, C, D, E, A, WL64, SL64, KL4); RIP5(A, B, C, D, E, WL65, SL65, KL4); RIP5(E, A, B, C, D, WL66, SL66, KL4); RIP5(D, E, A, B, C, WL67, SL67, KL4); RIP5(C, D, E, A, B, WL68, SL68, KL4); RIP5(B, C, D, E, A, WL69, SL69, KL4); RIP5(A, B, C, D, E, WL70, SL70, KL4); RIP5(E, A, B, C, D, WL71, SL71, KL4); RIP5(D, E, A, B, C, WL72, SL72, KL4); RIP5(C, D, E, A, B, WL73, SL73, KL4); RIP5(B, C, D, E, A, WL74, SL74, KL4); RIP5(A, B, C, D, E, WL75, SL75, KL4); RIP5(E, A, B, C, D, WL76, SL76, KL4); RIP5(D, E, A, B, C, WL77, SL77, KL4); RIP5(C, D, E, A, B, WL78, SL78, KL4); RIP5(B, C, D, E, A, WL79, SL79, KL4); a = A; b = B; c = C; d = D; e = E; /* Do other half */ A = ctx->A; B = ctx->B; C = ctx->C; D = ctx->D; E = ctx->E; RIP5(A, B, C, D, E, WR00, SR00, KR0); RIP5(E, A, B, C, D, WR01, SR01, KR0); RIP5(D, E, A, B, C, WR02, SR02, KR0); RIP5(C, D, E, A, B, WR03, SR03, KR0); RIP5(B, C, D, E, A, WR04, SR04, KR0); RIP5(A, B, C, D, E, WR05, SR05, KR0); RIP5(E, A, B, C, D, WR06, SR06, KR0); RIP5(D, E, A, B, C, WR07, SR07, KR0); RIP5(C, D, E, A, B, WR08, SR08, KR0); RIP5(B, C, D, E, A, WR09, SR09, KR0); RIP5(A, B, C, D, E, WR10, SR10, KR0); RIP5(E, A, B, C, D, WR11, SR11, KR0); RIP5(D, E, A, B, C, WR12, SR12, KR0); RIP5(C, D, E, A, B, WR13, SR13, KR0); RIP5(B, C, D, E, A, WR14, SR14, KR0); RIP5(A, B, C, D, E, WR15, SR15, KR0); RIP4(E, A, B, C, D, WR16, SR16, KR1); RIP4(D, E, A, B, C, WR17, SR17, KR1); RIP4(C, D, E, A, B, WR18, SR18, KR1); RIP4(B, C, D, E, A, WR19, SR19, KR1); RIP4(A, B, C, D, E, WR20, SR20, KR1); RIP4(E, A, B, C, D, WR21, SR21, KR1); RIP4(D, E, A, B, C, WR22, SR22, KR1); RIP4(C, D, E, A, B, WR23, SR23, KR1); RIP4(B, C, D, E, A, WR24, SR24, KR1); RIP4(A, B, C, D, E, WR25, SR25, KR1); RIP4(E, A, B, C, D, WR26, SR26, KR1); RIP4(D, E, A, B, C, WR27, SR27, KR1); RIP4(C, D, E, A, B, WR28, SR28, KR1); RIP4(B, C, D, E, A, WR29, SR29, KR1); RIP4(A, B, C, D, E, WR30, SR30, KR1); RIP4(E, A, B, C, D, WR31, SR31, KR1); RIP3(D, E, A, B, C, WR32, SR32, KR2); RIP3(C, D, E, A, B, WR33, SR33, KR2); RIP3(B, C, D, E, A, WR34, SR34, KR2); RIP3(A, B, C, D, E, WR35, SR35, KR2); RIP3(E, A, B, C, D, WR36, SR36, KR2); RIP3(D, E, A, B, C, WR37, SR37, KR2); RIP3(C, D, E, A, B, WR38, SR38, KR2); RIP3(B, C, D, E, A, WR39, SR39, KR2); RIP3(A, B, C, D, E, WR40, SR40, KR2); RIP3(E, A, B, C, D, WR41, SR41, KR2); RIP3(D, E, A, B, C, WR42, SR42, KR2); RIP3(C, D, E, A, B, WR43, SR43, KR2); RIP3(B, C, D, E, A, WR44, SR44, KR2); RIP3(A, B, C, D, E, WR45, SR45, KR2); RIP3(E, A, B, C, D, WR46, SR46, KR2); RIP3(D, E, A, B, C, WR47, SR47, KR2); RIP2(C, D, E, A, B, WR48, SR48, KR3); RIP2(B, C, D, E, A, WR49, SR49, KR3); RIP2(A, B, C, D, E, WR50, SR50, KR3); RIP2(E, A, B, C, D, WR51, SR51, KR3); RIP2(D, E, A, B, C, WR52, SR52, KR3); RIP2(C, D, E, A, B, WR53, SR53, KR3); RIP2(B, C, D, E, A, WR54, SR54, KR3); RIP2(A, B, C, D, E, WR55, SR55, KR3); RIP2(E, A, B, C, D, WR56, SR56, KR3); RIP2(D, E, A, B, C, WR57, SR57, KR3); RIP2(C, D, E, A, B, WR58, SR58, KR3); RIP2(B, C, D, E, A, WR59, SR59, KR3); RIP2(A, B, C, D, E, WR60, SR60, KR3); RIP2(E, A, B, C, D, WR61, SR61, KR3); RIP2(D, E, A, B, C, WR62, SR62, KR3); RIP2(C, D, E, A, B, WR63, SR63, KR3); RIP1(B, C, D, E, A, WR64, SR64); RIP1(A, B, C, D, E, WR65, SR65); RIP1(E, A, B, C, D, WR66, SR66); RIP1(D, E, A, B, C, WR67, SR67); RIP1(C, D, E, A, B, WR68, SR68); RIP1(B, C, D, E, A, WR69, SR69); RIP1(A, B, C, D, E, WR70, SR70); RIP1(E, A, B, C, D, WR71, SR71); RIP1(D, E, A, B, C, WR72, SR72); RIP1(C, D, E, A, B, WR73, SR73); RIP1(B, C, D, E, A, WR74, SR74); RIP1(A, B, C, D, E, WR75, SR75); RIP1(E, A, B, C, D, WR76, SR76); RIP1(D, E, A, B, C, WR77, SR77); RIP1(C, D, E, A, B, WR78, SR78); RIP1(B, C, D, E, A, WR79, SR79); D = ctx->B + c + D; ctx->B = ctx->C + d + E; ctx->C = ctx->D + e + A; ctx->D = ctx->E + a + B; ctx->E = ctx->A + b + C; ctx->A = D; } } #endif openssl-1.1.1f/crypto/ripemd/rmd_local.h000066400000000000000000000051521364063235100202560ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include /* * DO EXAMINE COMMENTS IN crypto/md5/md5_local.h & crypto/md5/md5_dgst.c * FOR EXPLANATIONS ON FOLLOWING "CODE." */ #ifdef RMD160_ASM # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define ripemd160_block_data_order ripemd160_block_asm_data_order # endif #endif void ripemd160_block_data_order(RIPEMD160_CTX *c, const void *p, size_t num); #define DATA_ORDER_IS_LITTLE_ENDIAN #define HASH_LONG RIPEMD160_LONG #define HASH_CTX RIPEMD160_CTX #define HASH_CBLOCK RIPEMD160_CBLOCK #define HASH_UPDATE RIPEMD160_Update #define HASH_TRANSFORM RIPEMD160_Transform #define HASH_FINAL RIPEMD160_Final #define HASH_MAKE_STRING(c,s) do { \ unsigned long ll; \ ll=(c)->A; (void)HOST_l2c(ll,(s)); \ ll=(c)->B; (void)HOST_l2c(ll,(s)); \ ll=(c)->C; (void)HOST_l2c(ll,(s)); \ ll=(c)->D; (void)HOST_l2c(ll,(s)); \ ll=(c)->E; (void)HOST_l2c(ll,(s)); \ } while (0) #define HASH_BLOCK_DATA_ORDER ripemd160_block_data_order #include "crypto/md32_common.h" /* * Transformed F2 and F4 are courtesy of Wei Dai */ #define F1(x,y,z) ((x) ^ (y) ^ (z)) #define F2(x,y,z) ((((y) ^ (z)) & (x)) ^ (z)) #define F3(x,y,z) (((~(y)) | (x)) ^ (z)) #define F4(x,y,z) ((((x) ^ (y)) & (z)) ^ (y)) #define F5(x,y,z) (((~(z)) | (y)) ^ (x)) #define RIPEMD160_A 0x67452301L #define RIPEMD160_B 0xEFCDAB89L #define RIPEMD160_C 0x98BADCFEL #define RIPEMD160_D 0x10325476L #define RIPEMD160_E 0xC3D2E1F0L #include "rmdconst.h" #define RIP1(a,b,c,d,e,w,s) { \ a+=F1(b,c,d)+X(w); \ a=ROTATE(a,s)+e; \ c=ROTATE(c,10); } #define RIP2(a,b,c,d,e,w,s,K) { \ a+=F2(b,c,d)+X(w)+K; \ a=ROTATE(a,s)+e; \ c=ROTATE(c,10); } #define RIP3(a,b,c,d,e,w,s,K) { \ a+=F3(b,c,d)+X(w)+K; \ a=ROTATE(a,s)+e; \ c=ROTATE(c,10); } #define RIP4(a,b,c,d,e,w,s,K) { \ a+=F4(b,c,d)+X(w)+K; \ a=ROTATE(a,s)+e; \ c=ROTATE(c,10); } #define RIP5(a,b,c,d,e,w,s,K) { \ a+=F5(b,c,d)+X(w)+K; \ a=ROTATE(a,s)+e; \ c=ROTATE(c,10); } openssl-1.1.1f/crypto/ripemd/rmd_one.c000066400000000000000000000014561364063235100177430ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include unsigned char *RIPEMD160(const unsigned char *d, size_t n, unsigned char *md) { RIPEMD160_CTX c; static unsigned char m[RIPEMD160_DIGEST_LENGTH]; if (md == NULL) md = m; if (!RIPEMD160_Init(&c)) return NULL; RIPEMD160_Update(&c, d, n); RIPEMD160_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); /* security consideration */ return md; } openssl-1.1.1f/crypto/ripemd/rmdconst.h000066400000000000000000000131111364063235100201450ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define KL0 0x00000000L #define KL1 0x5A827999L #define KL2 0x6ED9EBA1L #define KL3 0x8F1BBCDCL #define KL4 0xA953FD4EL #define KR0 0x50A28BE6L #define KR1 0x5C4DD124L #define KR2 0x6D703EF3L #define KR3 0x7A6D76E9L #define KR4 0x00000000L #define WL00 0 #define SL00 11 #define WL01 1 #define SL01 14 #define WL02 2 #define SL02 15 #define WL03 3 #define SL03 12 #define WL04 4 #define SL04 5 #define WL05 5 #define SL05 8 #define WL06 6 #define SL06 7 #define WL07 7 #define SL07 9 #define WL08 8 #define SL08 11 #define WL09 9 #define SL09 13 #define WL10 10 #define SL10 14 #define WL11 11 #define SL11 15 #define WL12 12 #define SL12 6 #define WL13 13 #define SL13 7 #define WL14 14 #define SL14 9 #define WL15 15 #define SL15 8 #define WL16 7 #define SL16 7 #define WL17 4 #define SL17 6 #define WL18 13 #define SL18 8 #define WL19 1 #define SL19 13 #define WL20 10 #define SL20 11 #define WL21 6 #define SL21 9 #define WL22 15 #define SL22 7 #define WL23 3 #define SL23 15 #define WL24 12 #define SL24 7 #define WL25 0 #define SL25 12 #define WL26 9 #define SL26 15 #define WL27 5 #define SL27 9 #define WL28 2 #define SL28 11 #define WL29 14 #define SL29 7 #define WL30 11 #define SL30 13 #define WL31 8 #define SL31 12 #define WL32 3 #define SL32 11 #define WL33 10 #define SL33 13 #define WL34 14 #define SL34 6 #define WL35 4 #define SL35 7 #define WL36 9 #define SL36 14 #define WL37 15 #define SL37 9 #define WL38 8 #define SL38 13 #define WL39 1 #define SL39 15 #define WL40 2 #define SL40 14 #define WL41 7 #define SL41 8 #define WL42 0 #define SL42 13 #define WL43 6 #define SL43 6 #define WL44 13 #define SL44 5 #define WL45 11 #define SL45 12 #define WL46 5 #define SL46 7 #define WL47 12 #define SL47 5 #define WL48 1 #define SL48 11 #define WL49 9 #define SL49 12 #define WL50 11 #define SL50 14 #define WL51 10 #define SL51 15 #define WL52 0 #define SL52 14 #define WL53 8 #define SL53 15 #define WL54 12 #define SL54 9 #define WL55 4 #define SL55 8 #define WL56 13 #define SL56 9 #define WL57 3 #define SL57 14 #define WL58 7 #define SL58 5 #define WL59 15 #define SL59 6 #define WL60 14 #define SL60 8 #define WL61 5 #define SL61 6 #define WL62 6 #define SL62 5 #define WL63 2 #define SL63 12 #define WL64 4 #define SL64 9 #define WL65 0 #define SL65 15 #define WL66 5 #define SL66 5 #define WL67 9 #define SL67 11 #define WL68 7 #define SL68 6 #define WL69 12 #define SL69 8 #define WL70 2 #define SL70 13 #define WL71 10 #define SL71 12 #define WL72 14 #define SL72 5 #define WL73 1 #define SL73 12 #define WL74 3 #define SL74 13 #define WL75 8 #define SL75 14 #define WL76 11 #define SL76 11 #define WL77 6 #define SL77 8 #define WL78 15 #define SL78 5 #define WL79 13 #define SL79 6 #define WR00 5 #define SR00 8 #define WR01 14 #define SR01 9 #define WR02 7 #define SR02 9 #define WR03 0 #define SR03 11 #define WR04 9 #define SR04 13 #define WR05 2 #define SR05 15 #define WR06 11 #define SR06 15 #define WR07 4 #define SR07 5 #define WR08 13 #define SR08 7 #define WR09 6 #define SR09 7 #define WR10 15 #define SR10 8 #define WR11 8 #define SR11 11 #define WR12 1 #define SR12 14 #define WR13 10 #define SR13 14 #define WR14 3 #define SR14 12 #define WR15 12 #define SR15 6 #define WR16 6 #define SR16 9 #define WR17 11 #define SR17 13 #define WR18 3 #define SR18 15 #define WR19 7 #define SR19 7 #define WR20 0 #define SR20 12 #define WR21 13 #define SR21 8 #define WR22 5 #define SR22 9 #define WR23 10 #define SR23 11 #define WR24 14 #define SR24 7 #define WR25 15 #define SR25 7 #define WR26 8 #define SR26 12 #define WR27 12 #define SR27 7 #define WR28 4 #define SR28 6 #define WR29 9 #define SR29 15 #define WR30 1 #define SR30 13 #define WR31 2 #define SR31 11 #define WR32 15 #define SR32 9 #define WR33 5 #define SR33 7 #define WR34 1 #define SR34 15 #define WR35 3 #define SR35 11 #define WR36 7 #define SR36 8 #define WR37 14 #define SR37 6 #define WR38 6 #define SR38 6 #define WR39 9 #define SR39 14 #define WR40 11 #define SR40 12 #define WR41 8 #define SR41 13 #define WR42 12 #define SR42 5 #define WR43 2 #define SR43 14 #define WR44 10 #define SR44 13 #define WR45 0 #define SR45 13 #define WR46 4 #define SR46 7 #define WR47 13 #define SR47 5 #define WR48 8 #define SR48 15 #define WR49 6 #define SR49 5 #define WR50 4 #define SR50 8 #define WR51 1 #define SR51 11 #define WR52 3 #define SR52 14 #define WR53 11 #define SR53 14 #define WR54 15 #define SR54 6 #define WR55 0 #define SR55 14 #define WR56 5 #define SR56 6 #define WR57 12 #define SR57 9 #define WR58 2 #define SR58 12 #define WR59 13 #define SR59 9 #define WR60 9 #define SR60 12 #define WR61 7 #define SR61 5 #define WR62 10 #define SR62 15 #define WR63 14 #define SR63 8 #define WR64 12 #define SR64 8 #define WR65 15 #define SR65 5 #define WR66 10 #define SR66 12 #define WR67 4 #define SR67 9 #define WR68 1 #define SR68 12 #define WR69 5 #define SR69 5 #define WR70 8 #define SR70 14 #define WR71 7 #define SR71 6 #define WR72 6 #define SR72 8 #define WR73 2 #define SR73 13 #define WR74 13 #define SR74 6 #define WR75 14 #define SR75 5 #define WR76 0 #define SR76 15 #define WR77 3 #define SR77 13 #define WR78 9 #define SR78 11 #define WR79 11 #define SR79 11 openssl-1.1.1f/crypto/rsa/000077500000000000000000000000001364063235100154535ustar00rootroot00000000000000openssl-1.1.1f/crypto/rsa/build.info000066400000000000000000000005001364063235100174220ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ rsa_ossl.c rsa_gen.c rsa_lib.c rsa_sign.c rsa_saos.c rsa_err.c \ rsa_pk1.c rsa_ssl.c rsa_none.c rsa_oaep.c rsa_chk.c \ rsa_pss.c rsa_x931.c rsa_asn1.c rsa_depr.c rsa_ameth.c rsa_prn.c \ rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c openssl-1.1.1f/crypto/rsa/rsa_ameth.c000066400000000000000000000736221364063235100175740ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "rsa_local.h" #ifndef OPENSSL_NO_CMS static int rsa_cms_sign(CMS_SignerInfo *si); static int rsa_cms_verify(CMS_SignerInfo *si); static int rsa_cms_decrypt(CMS_RecipientInfo *ri); static int rsa_cms_encrypt(CMS_RecipientInfo *ri); #endif static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg); /* Set any parameters associated with pkey */ static int rsa_param_encode(const EVP_PKEY *pkey, ASN1_STRING **pstr, int *pstrtype) { const RSA *rsa = pkey->pkey.rsa; *pstr = NULL; /* If RSA it's just NULL type */ if (pkey->ameth->pkey_id != EVP_PKEY_RSA_PSS) { *pstrtype = V_ASN1_NULL; return 1; } /* If no PSS parameters we omit parameters entirely */ if (rsa->pss == NULL) { *pstrtype = V_ASN1_UNDEF; return 1; } /* Encode PSS parameters */ if (ASN1_item_pack(rsa->pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), pstr) == NULL) return 0; *pstrtype = V_ASN1_SEQUENCE; return 1; } /* Decode any parameters and set them in RSA structure */ static int rsa_param_decode(RSA *rsa, const X509_ALGOR *alg) { const ASN1_OBJECT *algoid; const void *algp; int algptype; X509_ALGOR_get0(&algoid, &algptype, &algp, alg); if (OBJ_obj2nid(algoid) != EVP_PKEY_RSA_PSS) return 1; if (algptype == V_ASN1_UNDEF) return 1; if (algptype != V_ASN1_SEQUENCE) { RSAerr(RSA_F_RSA_PARAM_DECODE, RSA_R_INVALID_PSS_PARAMETERS); return 0; } rsa->pss = rsa_pss_decode(alg); if (rsa->pss == NULL) return 0; return 1; } static int rsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) { unsigned char *penc = NULL; int penclen; ASN1_STRING *str; int strtype; if (!rsa_param_encode(pkey, &str, &strtype)) return 0; penclen = i2d_RSAPublicKey(pkey->pkey.rsa, &penc); if (penclen <= 0) return 0; if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(pkey->ameth->pkey_id), strtype, str, penc, penclen)) return 1; OPENSSL_free(penc); return 0; } static int rsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) { const unsigned char *p; int pklen; X509_ALGOR *alg; RSA *rsa = NULL; if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &alg, pubkey)) return 0; if ((rsa = d2i_RSAPublicKey(NULL, &p, pklen)) == NULL) { RSAerr(RSA_F_RSA_PUB_DECODE, ERR_R_RSA_LIB); return 0; } if (!rsa_param_decode(rsa, alg)) { RSA_free(rsa); return 0; } if (!EVP_PKEY_assign(pkey, pkey->ameth->pkey_id, rsa)) { RSA_free(rsa); return 0; } return 1; } static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { if (BN_cmp(b->pkey.rsa->n, a->pkey.rsa->n) != 0 || BN_cmp(b->pkey.rsa->e, a->pkey.rsa->e) != 0) return 0; return 1; } static int old_rsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen) { RSA *rsa; if ((rsa = d2i_RSAPrivateKey(NULL, pder, derlen)) == NULL) { RSAerr(RSA_F_OLD_RSA_PRIV_DECODE, ERR_R_RSA_LIB); return 0; } EVP_PKEY_assign(pkey, pkey->ameth->pkey_id, rsa); return 1; } static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) { return i2d_RSAPrivateKey(pkey->pkey.rsa, pder); } static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) { unsigned char *rk = NULL; int rklen; ASN1_STRING *str; int strtype; if (!rsa_param_encode(pkey, &str, &strtype)) return 0; rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk); if (rklen <= 0) { RSAerr(RSA_F_RSA_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); ASN1_STRING_free(str); return 0; } if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(pkey->ameth->pkey_id), 0, strtype, str, rk, rklen)) { RSAerr(RSA_F_RSA_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); ASN1_STRING_free(str); return 0; } return 1; } static int rsa_priv_decode(EVP_PKEY *pkey, const PKCS8_PRIV_KEY_INFO *p8) { const unsigned char *p; RSA *rsa; int pklen; const X509_ALGOR *alg; if (!PKCS8_pkey_get0(NULL, &p, &pklen, &alg, p8)) return 0; rsa = d2i_RSAPrivateKey(NULL, &p, pklen); if (rsa == NULL) { RSAerr(RSA_F_RSA_PRIV_DECODE, ERR_R_RSA_LIB); return 0; } if (!rsa_param_decode(rsa, alg)) { RSA_free(rsa); return 0; } EVP_PKEY_assign(pkey, pkey->ameth->pkey_id, rsa); return 1; } static int int_rsa_size(const EVP_PKEY *pkey) { return RSA_size(pkey->pkey.rsa); } static int rsa_bits(const EVP_PKEY *pkey) { return BN_num_bits(pkey->pkey.rsa->n); } static int rsa_security_bits(const EVP_PKEY *pkey) { return RSA_security_bits(pkey->pkey.rsa); } static void int_rsa_free(EVP_PKEY *pkey) { RSA_free(pkey->pkey.rsa); } static X509_ALGOR *rsa_mgf1_decode(X509_ALGOR *alg) { if (OBJ_obj2nid(alg->algorithm) != NID_mgf1) return NULL; return ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(X509_ALGOR), alg->parameter); } static int rsa_pss_param_print(BIO *bp, int pss_key, RSA_PSS_PARAMS *pss, int indent) { int rv = 0; X509_ALGOR *maskHash = NULL; if (!BIO_indent(bp, indent, 128)) goto err; if (pss_key) { if (pss == NULL) { if (BIO_puts(bp, "No PSS parameter restrictions\n") <= 0) return 0; return 1; } else { if (BIO_puts(bp, "PSS parameter restrictions:") <= 0) return 0; } } else if (pss == NULL) { if (BIO_puts(bp,"(INVALID PSS PARAMETERS)\n") <= 0) return 0; return 1; } if (BIO_puts(bp, "\n") <= 0) goto err; if (pss_key) indent += 2; if (!BIO_indent(bp, indent, 128)) goto err; if (BIO_puts(bp, "Hash Algorithm: ") <= 0) goto err; if (pss->hashAlgorithm) { if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0) goto err; } else if (BIO_puts(bp, "sha1 (default)") <= 0) { goto err; } if (BIO_puts(bp, "\n") <= 0) goto err; if (!BIO_indent(bp, indent, 128)) goto err; if (BIO_puts(bp, "Mask Algorithm: ") <= 0) goto err; if (pss->maskGenAlgorithm) { if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0) goto err; if (BIO_puts(bp, " with ") <= 0) goto err; maskHash = rsa_mgf1_decode(pss->maskGenAlgorithm); if (maskHash != NULL) { if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0) goto err; } else if (BIO_puts(bp, "INVALID") <= 0) { goto err; } } else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0) { goto err; } BIO_puts(bp, "\n"); if (!BIO_indent(bp, indent, 128)) goto err; if (BIO_printf(bp, "%s Salt Length: 0x", pss_key ? "Minimum" : "") <= 0) goto err; if (pss->saltLength) { if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0) goto err; } else if (BIO_puts(bp, "14 (default)") <= 0) { goto err; } BIO_puts(bp, "\n"); if (!BIO_indent(bp, indent, 128)) goto err; if (BIO_puts(bp, "Trailer Field: 0x") <= 0) goto err; if (pss->trailerField) { if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0) goto err; } else if (BIO_puts(bp, "BC (default)") <= 0) { goto err; } BIO_puts(bp, "\n"); rv = 1; err: X509_ALGOR_free(maskHash); return rv; } static int pkey_rsa_print(BIO *bp, const EVP_PKEY *pkey, int off, int priv) { const RSA *x = pkey->pkey.rsa; char *str; const char *s; int ret = 0, mod_len = 0, ex_primes; if (x->n != NULL) mod_len = BN_num_bits(x->n); ex_primes = sk_RSA_PRIME_INFO_num(x->prime_infos); if (!BIO_indent(bp, off, 128)) goto err; if (BIO_printf(bp, "%s ", pkey_is_pss(pkey) ? "RSA-PSS" : "RSA") <= 0) goto err; if (priv && x->d) { if (BIO_printf(bp, "Private-Key: (%d bit, %d primes)\n", mod_len, ex_primes <= 0 ? 2 : ex_primes + 2) <= 0) goto err; str = "modulus:"; s = "publicExponent:"; } else { if (BIO_printf(bp, "Public-Key: (%d bit)\n", mod_len) <= 0) goto err; str = "Modulus:"; s = "Exponent:"; } if (!ASN1_bn_print(bp, str, x->n, NULL, off)) goto err; if (!ASN1_bn_print(bp, s, x->e, NULL, off)) goto err; if (priv) { int i; if (!ASN1_bn_print(bp, "privateExponent:", x->d, NULL, off)) goto err; if (!ASN1_bn_print(bp, "prime1:", x->p, NULL, off)) goto err; if (!ASN1_bn_print(bp, "prime2:", x->q, NULL, off)) goto err; if (!ASN1_bn_print(bp, "exponent1:", x->dmp1, NULL, off)) goto err; if (!ASN1_bn_print(bp, "exponent2:", x->dmq1, NULL, off)) goto err; if (!ASN1_bn_print(bp, "coefficient:", x->iqmp, NULL, off)) goto err; for (i = 0; i < sk_RSA_PRIME_INFO_num(x->prime_infos); i++) { /* print multi-prime info */ BIGNUM *bn = NULL; RSA_PRIME_INFO *pinfo; int j; pinfo = sk_RSA_PRIME_INFO_value(x->prime_infos, i); for (j = 0; j < 3; j++) { if (!BIO_indent(bp, off, 128)) goto err; switch (j) { case 0: if (BIO_printf(bp, "prime%d:", i + 3) <= 0) goto err; bn = pinfo->r; break; case 1: if (BIO_printf(bp, "exponent%d:", i + 3) <= 0) goto err; bn = pinfo->d; break; case 2: if (BIO_printf(bp, "coefficient%d:", i + 3) <= 0) goto err; bn = pinfo->t; break; default: break; } if (!ASN1_bn_print(bp, "", bn, NULL, off)) goto err; } } } if (pkey_is_pss(pkey) && !rsa_pss_param_print(bp, 1, x->pss, off)) goto err; ret = 1; err: return ret; } static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return pkey_rsa_print(bp, pkey, indent, 0); } static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, ASN1_PCTX *ctx) { return pkey_rsa_print(bp, pkey, indent, 1); } static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg) { RSA_PSS_PARAMS *pss; pss = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(RSA_PSS_PARAMS), alg->parameter); if (pss == NULL) return NULL; if (pss->maskGenAlgorithm != NULL) { pss->maskHash = rsa_mgf1_decode(pss->maskGenAlgorithm); if (pss->maskHash == NULL) { RSA_PSS_PARAMS_free(pss); return NULL; } } return pss; } static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg, const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) { if (OBJ_obj2nid(sigalg->algorithm) == EVP_PKEY_RSA_PSS) { int rv; RSA_PSS_PARAMS *pss = rsa_pss_decode(sigalg); rv = rsa_pss_param_print(bp, 0, pss, indent); RSA_PSS_PARAMS_free(pss); if (!rv) return 0; } else if (!sig && BIO_puts(bp, "\n") <= 0) { return 0; } if (sig) return X509_signature_dump(bp, sig, indent); return 1; } static int rsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { X509_ALGOR *alg = NULL; const EVP_MD *md; const EVP_MD *mgf1md; int min_saltlen; switch (op) { case ASN1_PKEY_CTRL_PKCS7_SIGN: if (arg1 == 0) PKCS7_SIGNER_INFO_get0_algs(arg2, NULL, NULL, &alg); break; case ASN1_PKEY_CTRL_PKCS7_ENCRYPT: if (pkey_is_pss(pkey)) return -2; if (arg1 == 0) PKCS7_RECIP_INFO_get0_alg(arg2, &alg); break; #ifndef OPENSSL_NO_CMS case ASN1_PKEY_CTRL_CMS_SIGN: if (arg1 == 0) return rsa_cms_sign(arg2); else if (arg1 == 1) return rsa_cms_verify(arg2); break; case ASN1_PKEY_CTRL_CMS_ENVELOPE: if (pkey_is_pss(pkey)) return -2; if (arg1 == 0) return rsa_cms_encrypt(arg2); else if (arg1 == 1) return rsa_cms_decrypt(arg2); break; case ASN1_PKEY_CTRL_CMS_RI_TYPE: if (pkey_is_pss(pkey)) return -2; *(int *)arg2 = CMS_RECIPINFO_TRANS; return 1; #endif case ASN1_PKEY_CTRL_DEFAULT_MD_NID: if (pkey->pkey.rsa->pss != NULL) { if (!rsa_pss_get_param(pkey->pkey.rsa->pss, &md, &mgf1md, &min_saltlen)) { RSAerr(0, ERR_R_INTERNAL_ERROR); return 0; } *(int *)arg2 = EVP_MD_type(md); /* Return of 2 indicates this MD is mandatory */ return 2; } *(int *)arg2 = NID_sha256; return 1; default: return -2; } if (alg) X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption), V_ASN1_NULL, 0); return 1; } /* allocate and set algorithm ID from EVP_MD, default SHA1 */ static int rsa_md_to_algor(X509_ALGOR **palg, const EVP_MD *md) { if (md == NULL || EVP_MD_type(md) == NID_sha1) return 1; *palg = X509_ALGOR_new(); if (*palg == NULL) return 0; X509_ALGOR_set_md(*palg, md); return 1; } /* Allocate and set MGF1 algorithm ID from EVP_MD */ static int rsa_md_to_mgf1(X509_ALGOR **palg, const EVP_MD *mgf1md) { X509_ALGOR *algtmp = NULL; ASN1_STRING *stmp = NULL; *palg = NULL; if (mgf1md == NULL || EVP_MD_type(mgf1md) == NID_sha1) return 1; /* need to embed algorithm ID inside another */ if (!rsa_md_to_algor(&algtmp, mgf1md)) goto err; if (ASN1_item_pack(algtmp, ASN1_ITEM_rptr(X509_ALGOR), &stmp) == NULL) goto err; *palg = X509_ALGOR_new(); if (*palg == NULL) goto err; X509_ALGOR_set0(*palg, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, stmp); stmp = NULL; err: ASN1_STRING_free(stmp); X509_ALGOR_free(algtmp); if (*palg) return 1; return 0; } /* convert algorithm ID to EVP_MD, default SHA1 */ static const EVP_MD *rsa_algor_to_md(X509_ALGOR *alg) { const EVP_MD *md; if (!alg) return EVP_sha1(); md = EVP_get_digestbyobj(alg->algorithm); if (md == NULL) RSAerr(RSA_F_RSA_ALGOR_TO_MD, RSA_R_UNKNOWN_DIGEST); return md; } /* * Convert EVP_PKEY_CTX in PSS mode into corresponding algorithm parameter, * suitable for setting an AlgorithmIdentifier. */ static RSA_PSS_PARAMS *rsa_ctx_to_pss(EVP_PKEY_CTX *pkctx) { const EVP_MD *sigmd, *mgf1md; EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx); int saltlen; if (EVP_PKEY_CTX_get_signature_md(pkctx, &sigmd) <= 0) return NULL; if (EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0) return NULL; if (!EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen)) return NULL; if (saltlen == -1) { saltlen = EVP_MD_size(sigmd); } else if (saltlen == -2 || saltlen == -3) { saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2; if ((EVP_PKEY_bits(pk) & 0x7) == 1) saltlen--; if (saltlen < 0) return NULL; } return rsa_pss_params_create(sigmd, mgf1md, saltlen); } RSA_PSS_PARAMS *rsa_pss_params_create(const EVP_MD *sigmd, const EVP_MD *mgf1md, int saltlen) { RSA_PSS_PARAMS *pss = RSA_PSS_PARAMS_new(); if (pss == NULL) goto err; if (saltlen != 20) { pss->saltLength = ASN1_INTEGER_new(); if (pss->saltLength == NULL) goto err; if (!ASN1_INTEGER_set(pss->saltLength, saltlen)) goto err; } if (!rsa_md_to_algor(&pss->hashAlgorithm, sigmd)) goto err; if (mgf1md == NULL) mgf1md = sigmd; if (!rsa_md_to_mgf1(&pss->maskGenAlgorithm, mgf1md)) goto err; if (!rsa_md_to_algor(&pss->maskHash, mgf1md)) goto err; return pss; err: RSA_PSS_PARAMS_free(pss); return NULL; } static ASN1_STRING *rsa_ctx_to_pss_string(EVP_PKEY_CTX *pkctx) { RSA_PSS_PARAMS *pss = rsa_ctx_to_pss(pkctx); ASN1_STRING *os; if (pss == NULL) return NULL; os = ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), NULL); RSA_PSS_PARAMS_free(pss); return os; } /* * From PSS AlgorithmIdentifier set public key parameters. If pkey isn't NULL * then the EVP_MD_CTX is setup and initialised. If it is NULL parameters are * passed to pkctx instead. */ static int rsa_pss_to_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pkctx, X509_ALGOR *sigalg, EVP_PKEY *pkey) { int rv = -1; int saltlen; const EVP_MD *mgf1md = NULL, *md = NULL; RSA_PSS_PARAMS *pss; /* Sanity check: make sure it is PSS */ if (OBJ_obj2nid(sigalg->algorithm) != EVP_PKEY_RSA_PSS) { RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_UNSUPPORTED_SIGNATURE_TYPE); return -1; } /* Decode PSS parameters */ pss = rsa_pss_decode(sigalg); if (!rsa_pss_get_param(pss, &md, &mgf1md, &saltlen)) { RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_INVALID_PSS_PARAMETERS); goto err; } /* We have all parameters now set up context */ if (pkey) { if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey)) goto err; } else { const EVP_MD *checkmd; if (EVP_PKEY_CTX_get_signature_md(pkctx, &checkmd) <= 0) goto err; if (EVP_MD_type(md) != EVP_MD_type(checkmd)) { RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_DIGEST_DOES_NOT_MATCH); goto err; } } if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) <= 0) goto err; if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) <= 0) goto err; if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0) goto err; /* Carry on */ rv = 1; err: RSA_PSS_PARAMS_free(pss); return rv; } int rsa_pss_get_param(const RSA_PSS_PARAMS *pss, const EVP_MD **pmd, const EVP_MD **pmgf1md, int *psaltlen) { if (pss == NULL) return 0; *pmd = rsa_algor_to_md(pss->hashAlgorithm); if (*pmd == NULL) return 0; *pmgf1md = rsa_algor_to_md(pss->maskHash); if (*pmgf1md == NULL) return 0; if (pss->saltLength) { *psaltlen = ASN1_INTEGER_get(pss->saltLength); if (*psaltlen < 0) { RSAerr(RSA_F_RSA_PSS_GET_PARAM, RSA_R_INVALID_SALT_LENGTH); return 0; } } else { *psaltlen = 20; } /* * low-level routines support only trailer field 0xbc (value 1) and * PKCS#1 says we should reject any other value anyway. */ if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1) { RSAerr(RSA_F_RSA_PSS_GET_PARAM, RSA_R_INVALID_TRAILER); return 0; } return 1; } #ifndef OPENSSL_NO_CMS static int rsa_cms_verify(CMS_SignerInfo *si) { int nid, nid2; X509_ALGOR *alg; EVP_PKEY_CTX *pkctx = CMS_SignerInfo_get0_pkey_ctx(si); CMS_SignerInfo_get0_algs(si, NULL, NULL, NULL, &alg); nid = OBJ_obj2nid(alg->algorithm); if (nid == EVP_PKEY_RSA_PSS) return rsa_pss_to_ctx(NULL, pkctx, alg, NULL); /* Only PSS allowed for PSS keys */ if (pkey_ctx_is_pss(pkctx)) { RSAerr(RSA_F_RSA_CMS_VERIFY, RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); return 0; } if (nid == NID_rsaEncryption) return 1; /* Workaround for some implementation that use a signature OID */ if (OBJ_find_sigid_algs(nid, NULL, &nid2)) { if (nid2 == NID_rsaEncryption) return 1; } return 0; } #endif /* * Customised RSA item verification routine. This is called when a signature * is encountered requiring special handling. We currently only handle PSS. */ static int rsa_item_verify(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, X509_ALGOR *sigalg, ASN1_BIT_STRING *sig, EVP_PKEY *pkey) { /* Sanity check: make sure it is PSS */ if (OBJ_obj2nid(sigalg->algorithm) != EVP_PKEY_RSA_PSS) { RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_UNSUPPORTED_SIGNATURE_TYPE); return -1; } if (rsa_pss_to_ctx(ctx, NULL, sigalg, pkey) > 0) { /* Carry on */ return 2; } return -1; } #ifndef OPENSSL_NO_CMS static int rsa_cms_sign(CMS_SignerInfo *si) { int pad_mode = RSA_PKCS1_PADDING; X509_ALGOR *alg; EVP_PKEY_CTX *pkctx = CMS_SignerInfo_get0_pkey_ctx(si); ASN1_STRING *os = NULL; CMS_SignerInfo_get0_algs(si, NULL, NULL, NULL, &alg); if (pkctx) { if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0) return 0; } if (pad_mode == RSA_PKCS1_PADDING) { X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption), V_ASN1_NULL, 0); return 1; } /* We don't support it */ if (pad_mode != RSA_PKCS1_PSS_PADDING) return 0; os = rsa_ctx_to_pss_string(pkctx); if (!os) return 0; X509_ALGOR_set0(alg, OBJ_nid2obj(EVP_PKEY_RSA_PSS), V_ASN1_SEQUENCE, os); return 1; } #endif static int rsa_item_sign(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn, X509_ALGOR *alg1, X509_ALGOR *alg2, ASN1_BIT_STRING *sig) { int pad_mode; EVP_PKEY_CTX *pkctx = EVP_MD_CTX_pkey_ctx(ctx); if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0) return 0; if (pad_mode == RSA_PKCS1_PADDING) return 2; if (pad_mode == RSA_PKCS1_PSS_PADDING) { ASN1_STRING *os1 = NULL; os1 = rsa_ctx_to_pss_string(pkctx); if (!os1) return 0; /* Duplicate parameters if we have to */ if (alg2) { ASN1_STRING *os2 = ASN1_STRING_dup(os1); if (!os2) { ASN1_STRING_free(os1); return 0; } X509_ALGOR_set0(alg2, OBJ_nid2obj(EVP_PKEY_RSA_PSS), V_ASN1_SEQUENCE, os2); } X509_ALGOR_set0(alg1, OBJ_nid2obj(EVP_PKEY_RSA_PSS), V_ASN1_SEQUENCE, os1); return 3; } return 2; } static int rsa_sig_info_set(X509_SIG_INFO *siginf, const X509_ALGOR *sigalg, const ASN1_STRING *sig) { int rv = 0; int mdnid, saltlen; uint32_t flags; const EVP_MD *mgf1md = NULL, *md = NULL; RSA_PSS_PARAMS *pss; /* Sanity check: make sure it is PSS */ if (OBJ_obj2nid(sigalg->algorithm) != EVP_PKEY_RSA_PSS) return 0; /* Decode PSS parameters */ pss = rsa_pss_decode(sigalg); if (!rsa_pss_get_param(pss, &md, &mgf1md, &saltlen)) goto err; mdnid = EVP_MD_type(md); /* * For TLS need SHA256, SHA384 or SHA512, digest and MGF1 digest must * match and salt length must equal digest size */ if ((mdnid == NID_sha256 || mdnid == NID_sha384 || mdnid == NID_sha512) && mdnid == EVP_MD_type(mgf1md) && saltlen == EVP_MD_size(md)) flags = X509_SIG_INFO_TLS; else flags = 0; /* Note: security bits half number of digest bits */ X509_SIG_INFO_set(siginf, mdnid, EVP_PKEY_RSA_PSS, EVP_MD_size(md) * 4, flags); rv = 1; err: RSA_PSS_PARAMS_free(pss); return rv; } #ifndef OPENSSL_NO_CMS static RSA_OAEP_PARAMS *rsa_oaep_decode(const X509_ALGOR *alg) { RSA_OAEP_PARAMS *oaep; oaep = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(RSA_OAEP_PARAMS), alg->parameter); if (oaep == NULL) return NULL; if (oaep->maskGenFunc != NULL) { oaep->maskHash = rsa_mgf1_decode(oaep->maskGenFunc); if (oaep->maskHash == NULL) { RSA_OAEP_PARAMS_free(oaep); return NULL; } } return oaep; } static int rsa_cms_decrypt(CMS_RecipientInfo *ri) { EVP_PKEY_CTX *pkctx; X509_ALGOR *cmsalg; int nid; int rv = -1; unsigned char *label = NULL; int labellen = 0; const EVP_MD *mgf1md = NULL, *md = NULL; RSA_OAEP_PARAMS *oaep; pkctx = CMS_RecipientInfo_get0_pkey_ctx(ri); if (pkctx == NULL) return 0; if (!CMS_RecipientInfo_ktri_get0_algs(ri, NULL, NULL, &cmsalg)) return -1; nid = OBJ_obj2nid(cmsalg->algorithm); if (nid == NID_rsaEncryption) return 1; if (nid != NID_rsaesOaep) { RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_UNSUPPORTED_ENCRYPTION_TYPE); return -1; } /* Decode OAEP parameters */ oaep = rsa_oaep_decode(cmsalg); if (oaep == NULL) { RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_INVALID_OAEP_PARAMETERS); goto err; } mgf1md = rsa_algor_to_md(oaep->maskHash); if (mgf1md == NULL) goto err; md = rsa_algor_to_md(oaep->hashFunc); if (md == NULL) goto err; if (oaep->pSourceFunc != NULL) { X509_ALGOR *plab = oaep->pSourceFunc; if (OBJ_obj2nid(plab->algorithm) != NID_pSpecified) { RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_UNSUPPORTED_LABEL_SOURCE); goto err; } if (plab->parameter->type != V_ASN1_OCTET_STRING) { RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_INVALID_LABEL); goto err; } label = plab->parameter->value.octet_string->data; /* Stop label being freed when OAEP parameters are freed */ plab->parameter->value.octet_string->data = NULL; labellen = plab->parameter->value.octet_string->length; } if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_OAEP_PADDING) <= 0) goto err; if (EVP_PKEY_CTX_set_rsa_oaep_md(pkctx, md) <= 0) goto err; if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0) goto err; if (EVP_PKEY_CTX_set0_rsa_oaep_label(pkctx, label, labellen) <= 0) goto err; /* Carry on */ rv = 1; err: RSA_OAEP_PARAMS_free(oaep); return rv; } static int rsa_cms_encrypt(CMS_RecipientInfo *ri) { const EVP_MD *md, *mgf1md; RSA_OAEP_PARAMS *oaep = NULL; ASN1_STRING *os = NULL; X509_ALGOR *alg; EVP_PKEY_CTX *pkctx = CMS_RecipientInfo_get0_pkey_ctx(ri); int pad_mode = RSA_PKCS1_PADDING, rv = 0, labellen; unsigned char *label; if (CMS_RecipientInfo_ktri_get0_algs(ri, NULL, NULL, &alg) <= 0) return 0; if (pkctx) { if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0) return 0; } if (pad_mode == RSA_PKCS1_PADDING) { X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption), V_ASN1_NULL, 0); return 1; } /* Not supported */ if (pad_mode != RSA_PKCS1_OAEP_PADDING) return 0; if (EVP_PKEY_CTX_get_rsa_oaep_md(pkctx, &md) <= 0) goto err; if (EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0) goto err; labellen = EVP_PKEY_CTX_get0_rsa_oaep_label(pkctx, &label); if (labellen < 0) goto err; oaep = RSA_OAEP_PARAMS_new(); if (oaep == NULL) goto err; if (!rsa_md_to_algor(&oaep->hashFunc, md)) goto err; if (!rsa_md_to_mgf1(&oaep->maskGenFunc, mgf1md)) goto err; if (labellen > 0) { ASN1_OCTET_STRING *los; oaep->pSourceFunc = X509_ALGOR_new(); if (oaep->pSourceFunc == NULL) goto err; los = ASN1_OCTET_STRING_new(); if (los == NULL) goto err; if (!ASN1_OCTET_STRING_set(los, label, labellen)) { ASN1_OCTET_STRING_free(los); goto err; } X509_ALGOR_set0(oaep->pSourceFunc, OBJ_nid2obj(NID_pSpecified), V_ASN1_OCTET_STRING, los); } /* create string with pss parameter encoding. */ if (!ASN1_item_pack(oaep, ASN1_ITEM_rptr(RSA_OAEP_PARAMS), &os)) goto err; X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaesOaep), V_ASN1_SEQUENCE, os); os = NULL; rv = 1; err: RSA_OAEP_PARAMS_free(oaep); ASN1_STRING_free(os); return rv; } #endif static int rsa_pkey_check(const EVP_PKEY *pkey) { return RSA_check_key_ex(pkey->pkey.rsa, NULL); } const EVP_PKEY_ASN1_METHOD rsa_asn1_meths[2] = { { EVP_PKEY_RSA, EVP_PKEY_RSA, ASN1_PKEY_SIGPARAM_NULL, "RSA", "OpenSSL RSA method", rsa_pub_decode, rsa_pub_encode, rsa_pub_cmp, rsa_pub_print, rsa_priv_decode, rsa_priv_encode, rsa_priv_print, int_rsa_size, rsa_bits, rsa_security_bits, 0, 0, 0, 0, 0, 0, rsa_sig_print, int_rsa_free, rsa_pkey_ctrl, old_rsa_priv_decode, old_rsa_priv_encode, rsa_item_verify, rsa_item_sign, rsa_sig_info_set, rsa_pkey_check }, { EVP_PKEY_RSA2, EVP_PKEY_RSA, ASN1_PKEY_ALIAS} }; const EVP_PKEY_ASN1_METHOD rsa_pss_asn1_meth = { EVP_PKEY_RSA_PSS, EVP_PKEY_RSA_PSS, ASN1_PKEY_SIGPARAM_NULL, "RSA-PSS", "OpenSSL RSA-PSS method", rsa_pub_decode, rsa_pub_encode, rsa_pub_cmp, rsa_pub_print, rsa_priv_decode, rsa_priv_encode, rsa_priv_print, int_rsa_size, rsa_bits, rsa_security_bits, 0, 0, 0, 0, 0, 0, rsa_sig_print, int_rsa_free, rsa_pkey_ctrl, 0, 0, rsa_item_verify, rsa_item_sign, 0, rsa_pkey_check }; openssl-1.1.1f/crypto/rsa/rsa_asn1.c000066400000000000000000000075111364063235100173320ustar00rootroot00000000000000/* * Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "rsa_local.h" /* * Override the default free and new methods, * and calculate helper products for multi-prime * RSA keys. */ static int rsa_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_NEW_PRE) { *pval = (ASN1_VALUE *)RSA_new(); if (*pval != NULL) return 2; return 0; } else if (operation == ASN1_OP_FREE_PRE) { RSA_free((RSA *)*pval); *pval = NULL; return 2; } else if (operation == ASN1_OP_D2I_POST) { if (((RSA *)*pval)->version != RSA_ASN1_VERSION_MULTI) { /* not a multi-prime key, skip */ return 1; } return (rsa_multip_calc_product((RSA *)*pval) == 1) ? 2 : 0; } return 1; } /* Based on definitions in RFC 8017 appendix A.1.2 */ ASN1_SEQUENCE(RSA_PRIME_INFO) = { ASN1_SIMPLE(RSA_PRIME_INFO, r, CBIGNUM), ASN1_SIMPLE(RSA_PRIME_INFO, d, CBIGNUM), ASN1_SIMPLE(RSA_PRIME_INFO, t, CBIGNUM), } ASN1_SEQUENCE_END(RSA_PRIME_INFO) ASN1_SEQUENCE_cb(RSAPrivateKey, rsa_cb) = { ASN1_EMBED(RSA, version, INT32), ASN1_SIMPLE(RSA, n, BIGNUM), ASN1_SIMPLE(RSA, e, BIGNUM), ASN1_SIMPLE(RSA, d, CBIGNUM), ASN1_SIMPLE(RSA, p, CBIGNUM), ASN1_SIMPLE(RSA, q, CBIGNUM), ASN1_SIMPLE(RSA, dmp1, CBIGNUM), ASN1_SIMPLE(RSA, dmq1, CBIGNUM), ASN1_SIMPLE(RSA, iqmp, CBIGNUM), ASN1_SEQUENCE_OF_OPT(RSA, prime_infos, RSA_PRIME_INFO) } ASN1_SEQUENCE_END_cb(RSA, RSAPrivateKey) ASN1_SEQUENCE_cb(RSAPublicKey, rsa_cb) = { ASN1_SIMPLE(RSA, n, BIGNUM), ASN1_SIMPLE(RSA, e, BIGNUM), } ASN1_SEQUENCE_END_cb(RSA, RSAPublicKey) /* Free up maskHash */ static int rsa_pss_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_PRE) { RSA_PSS_PARAMS *pss = (RSA_PSS_PARAMS *)*pval; X509_ALGOR_free(pss->maskHash); } return 1; } ASN1_SEQUENCE_cb(RSA_PSS_PARAMS, rsa_pss_cb) = { ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0), ASN1_EXP_OPT(RSA_PSS_PARAMS, maskGenAlgorithm, X509_ALGOR,1), ASN1_EXP_OPT(RSA_PSS_PARAMS, saltLength, ASN1_INTEGER,2), ASN1_EXP_OPT(RSA_PSS_PARAMS, trailerField, ASN1_INTEGER,3) } ASN1_SEQUENCE_END_cb(RSA_PSS_PARAMS, RSA_PSS_PARAMS) IMPLEMENT_ASN1_FUNCTIONS(RSA_PSS_PARAMS) /* Free up maskHash */ static int rsa_oaep_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_PRE) { RSA_OAEP_PARAMS *oaep = (RSA_OAEP_PARAMS *)*pval; X509_ALGOR_free(oaep->maskHash); } return 1; } ASN1_SEQUENCE_cb(RSA_OAEP_PARAMS, rsa_oaep_cb) = { ASN1_EXP_OPT(RSA_OAEP_PARAMS, hashFunc, X509_ALGOR, 0), ASN1_EXP_OPT(RSA_OAEP_PARAMS, maskGenFunc, X509_ALGOR, 1), ASN1_EXP_OPT(RSA_OAEP_PARAMS, pSourceFunc, X509_ALGOR, 2), } ASN1_SEQUENCE_END_cb(RSA_OAEP_PARAMS, RSA_OAEP_PARAMS) IMPLEMENT_ASN1_FUNCTIONS(RSA_OAEP_PARAMS) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(RSA, RSAPrivateKey, RSAPrivateKey) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(RSA, RSAPublicKey, RSAPublicKey) RSA *RSAPublicKey_dup(RSA *rsa) { return ASN1_item_dup(ASN1_ITEM_rptr(RSAPublicKey), rsa); } RSA *RSAPrivateKey_dup(RSA *rsa) { return ASN1_item_dup(ASN1_ITEM_rptr(RSAPrivateKey), rsa); } openssl-1.1.1f/crypto/rsa/rsa_chk.c000066400000000000000000000140561364063235100172370ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "rsa_local.h" int RSA_check_key(const RSA *key) { return RSA_check_key_ex(key, NULL); } int RSA_check_key_ex(const RSA *key, BN_GENCB *cb) { BIGNUM *i, *j, *k, *l, *m; BN_CTX *ctx; int ret = 1, ex_primes = 0, idx; RSA_PRIME_INFO *pinfo; if (key->p == NULL || key->q == NULL || key->n == NULL || key->e == NULL || key->d == NULL) { RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_VALUE_MISSING); return 0; } /* multi-prime? */ if (key->version == RSA_ASN1_VERSION_MULTI) { ex_primes = sk_RSA_PRIME_INFO_num(key->prime_infos); if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(BN_num_bits(key->n))) { RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_INVALID_MULTI_PRIME_KEY); return 0; } } i = BN_new(); j = BN_new(); k = BN_new(); l = BN_new(); m = BN_new(); ctx = BN_CTX_new(); if (i == NULL || j == NULL || k == NULL || l == NULL || m == NULL || ctx == NULL) { ret = -1; RSAerr(RSA_F_RSA_CHECK_KEY_EX, ERR_R_MALLOC_FAILURE); goto err; } if (BN_is_one(key->e)) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_BAD_E_VALUE); } if (!BN_is_odd(key->e)) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_BAD_E_VALUE); } /* p prime? */ if (BN_is_prime_ex(key->p, BN_prime_checks, NULL, cb) != 1) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_P_NOT_PRIME); } /* q prime? */ if (BN_is_prime_ex(key->q, BN_prime_checks, NULL, cb) != 1) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_Q_NOT_PRIME); } /* r_i prime? */ for (idx = 0; idx < ex_primes; idx++) { pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx); if (BN_is_prime_ex(pinfo->r, BN_prime_checks, NULL, cb) != 1) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_R_NOT_PRIME); } } /* n = p*q * r_3...r_i? */ if (!BN_mul(i, key->p, key->q, ctx)) { ret = -1; goto err; } for (idx = 0; idx < ex_primes; idx++) { pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx); if (!BN_mul(i, i, pinfo->r, ctx)) { ret = -1; goto err; } } if (BN_cmp(i, key->n) != 0) { ret = 0; if (ex_primes) RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_N_DOES_NOT_EQUAL_PRODUCT_OF_PRIMES); else RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_N_DOES_NOT_EQUAL_P_Q); } /* d*e = 1 mod \lambda(n)? */ if (!BN_sub(i, key->p, BN_value_one())) { ret = -1; goto err; } if (!BN_sub(j, key->q, BN_value_one())) { ret = -1; goto err; } /* now compute k = \lambda(n) = LCM(i, j, r_3 - 1...) */ if (!BN_mul(l, i, j, ctx)) { ret = -1; goto err; } if (!BN_gcd(m, i, j, ctx)) { ret = -1; goto err; } for (idx = 0; idx < ex_primes; idx++) { pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx); if (!BN_sub(k, pinfo->r, BN_value_one())) { ret = -1; goto err; } if (!BN_mul(l, l, k, ctx)) { ret = -1; goto err; } if (!BN_gcd(m, m, k, ctx)) { ret = -1; goto err; } } if (!BN_div(k, NULL, l, m, ctx)) { /* remainder is 0 */ ret = -1; goto err; } if (!BN_mod_mul(i, key->d, key->e, k, ctx)) { ret = -1; goto err; } if (!BN_is_one(i)) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_D_E_NOT_CONGRUENT_TO_1); } if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL) { /* dmp1 = d mod (p-1)? */ if (!BN_sub(i, key->p, BN_value_one())) { ret = -1; goto err; } if (!BN_mod(j, key->d, i, ctx)) { ret = -1; goto err; } if (BN_cmp(j, key->dmp1) != 0) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_DMP1_NOT_CONGRUENT_TO_D); } /* dmq1 = d mod (q-1)? */ if (!BN_sub(i, key->q, BN_value_one())) { ret = -1; goto err; } if (!BN_mod(j, key->d, i, ctx)) { ret = -1; goto err; } if (BN_cmp(j, key->dmq1) != 0) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_DMQ1_NOT_CONGRUENT_TO_D); } /* iqmp = q^-1 mod p? */ if (!BN_mod_inverse(i, key->q, key->p, ctx)) { ret = -1; goto err; } if (BN_cmp(i, key->iqmp) != 0) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_IQMP_NOT_INVERSE_OF_Q); } } for (idx = 0; idx < ex_primes; idx++) { pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx); /* d_i = d mod (r_i - 1)? */ if (!BN_sub(i, pinfo->r, BN_value_one())) { ret = -1; goto err; } if (!BN_mod(j, key->d, i, ctx)) { ret = -1; goto err; } if (BN_cmp(j, pinfo->d) != 0) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D); } /* t_i = R_i ^ -1 mod r_i ? */ if (!BN_mod_inverse(i, pinfo->pp, pinfo->r, ctx)) { ret = -1; goto err; } if (BN_cmp(i, pinfo->t) != 0) { ret = 0; RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R); } } err: BN_free(i); BN_free(j); BN_free(k); BN_free(l); BN_free(m); BN_CTX_free(ctx); return ret; } openssl-1.1.1f/crypto/rsa/rsa_crpt.c000066400000000000000000000076701364063235100174460ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "crypto/bn.h" #include #include "rsa_local.h" int RSA_bits(const RSA *r) { return BN_num_bits(r->n); } int RSA_size(const RSA *r) { return BN_num_bytes(r->n); } int RSA_public_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return rsa->meth->rsa_pub_enc(flen, from, to, rsa, padding); } int RSA_private_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return rsa->meth->rsa_priv_enc(flen, from, to, rsa, padding); } int RSA_private_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return rsa->meth->rsa_priv_dec(flen, from, to, rsa, padding); } int RSA_public_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return rsa->meth->rsa_pub_dec(flen, from, to, rsa, padding); } int RSA_flags(const RSA *r) { return r == NULL ? 0 : r->meth->flags; } void RSA_blinding_off(RSA *rsa) { BN_BLINDING_free(rsa->blinding); rsa->blinding = NULL; rsa->flags &= ~RSA_FLAG_BLINDING; rsa->flags |= RSA_FLAG_NO_BLINDING; } int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { int ret = 0; if (rsa->blinding != NULL) RSA_blinding_off(rsa); rsa->blinding = RSA_setup_blinding(rsa, ctx); if (rsa->blinding == NULL) goto err; rsa->flags |= RSA_FLAG_BLINDING; rsa->flags &= ~RSA_FLAG_NO_BLINDING; ret = 1; err: return ret; } static BIGNUM *rsa_get_public_exp(const BIGNUM *d, const BIGNUM *p, const BIGNUM *q, BN_CTX *ctx) { BIGNUM *ret = NULL, *r0, *r1, *r2; if (d == NULL || p == NULL || q == NULL) return NULL; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); if (r2 == NULL) goto err; if (!BN_sub(r1, p, BN_value_one())) goto err; if (!BN_sub(r2, q, BN_value_one())) goto err; if (!BN_mul(r0, r1, r2, ctx)) goto err; ret = BN_mod_inverse(NULL, d, r0, ctx); err: BN_CTX_end(ctx); return ret; } BN_BLINDING *RSA_setup_blinding(RSA *rsa, BN_CTX *in_ctx) { BIGNUM *e; BN_CTX *ctx; BN_BLINDING *ret = NULL; if (in_ctx == NULL) { if ((ctx = BN_CTX_new()) == NULL) return 0; } else { ctx = in_ctx; } BN_CTX_start(ctx); e = BN_CTX_get(ctx); if (e == NULL) { RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_MALLOC_FAILURE); goto err; } if (rsa->e == NULL) { e = rsa_get_public_exp(rsa->d, rsa->p, rsa->q, ctx); if (e == NULL) { RSAerr(RSA_F_RSA_SETUP_BLINDING, RSA_R_NO_PUBLIC_EXPONENT); goto err; } } else { e = rsa->e; } { BIGNUM *n = BN_new(); if (n == NULL) { RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_MALLOC_FAILURE); goto err; } BN_with_flags(n, rsa->n, BN_FLG_CONSTTIME); ret = BN_BLINDING_create_param(NULL, e, n, ctx, rsa->meth->bn_mod_exp, rsa->_method_mod_n); /* We MUST free n before any further use of rsa->n */ BN_free(n); } if (ret == NULL) { RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_BN_LIB); goto err; } BN_BLINDING_set_current_thread(ret); err: BN_CTX_end(ctx); if (ctx != in_ctx) BN_CTX_free(ctx); if (e != rsa->e) BN_free(e); return ret; } openssl-1.1.1f/crypto/rsa/rsa_depr.c000066400000000000000000000027321364063235100174220ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * NB: This file contains deprecated functions (compatibility wrappers to the * "new" versions). */ #include #if OPENSSL_API_COMPAT >= 0x00908000L NON_EMPTY_TRANSLATION_UNIT #else # include # include # include "internal/cryptlib.h" # include # include RSA *RSA_generate_key(int bits, unsigned long e_value, void (*callback) (int, int, void *), void *cb_arg) { int i; BN_GENCB *cb = BN_GENCB_new(); RSA *rsa = RSA_new(); BIGNUM *e = BN_new(); if (cb == NULL || rsa == NULL || e == NULL) goto err; /* * The problem is when building with 8, 16, or 32 BN_ULONG, unsigned long * can be larger */ for (i = 0; i < (int)sizeof(unsigned long) * 8; i++) { if (e_value & (1UL << i)) if (BN_set_bit(e, i) == 0) goto err; } BN_GENCB_set_old(cb, callback, cb_arg); if (RSA_generate_key_ex(rsa, bits, e, cb)) { BN_free(e); BN_GENCB_free(cb); return rsa; } err: BN_free(e); RSA_free(rsa); BN_GENCB_free(cb); return 0; } #endif openssl-1.1.1f/crypto/rsa/rsa_err.c000066400000000000000000000304111364063235100172530ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA RSA_str_functs[] = { {ERR_PACK(ERR_LIB_RSA, RSA_F_CHECK_PADDING_MD, 0), "check_padding_md"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_ENCODE_PKCS1, 0), "encode_pkcs1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_INT_RSA_VERIFY, 0), "int_rsa_verify"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_OLD_RSA_PRIV_DECODE, 0), "old_rsa_priv_decode"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_PKEY_PSS_INIT, 0), "pkey_pss_init"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_PKEY_RSA_CTRL, 0), "pkey_rsa_ctrl"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_PKEY_RSA_CTRL_STR, 0), "pkey_rsa_ctrl_str"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_PKEY_RSA_SIGN, 0), "pkey_rsa_sign"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_PKEY_RSA_VERIFY, 0), "pkey_rsa_verify"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_PKEY_RSA_VERIFYRECOVER, 0), "pkey_rsa_verifyrecover"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_ALGOR_TO_MD, 0), "rsa_algor_to_md"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_BUILTIN_KEYGEN, 0), "rsa_builtin_keygen"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_CHECK_KEY, 0), "RSA_check_key"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_CHECK_KEY_EX, 0), "RSA_check_key_ex"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_CMS_DECRYPT, 0), "rsa_cms_decrypt"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_CMS_VERIFY, 0), "rsa_cms_verify"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_ITEM_VERIFY, 0), "rsa_item_verify"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_METH_DUP, 0), "RSA_meth_dup"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_METH_NEW, 0), "RSA_meth_new"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_METH_SET1_NAME, 0), "RSA_meth_set1_name"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_MGF1_TO_MD, 0), ""}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_MULTIP_INFO_NEW, 0), "rsa_multip_info_new"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_NEW_METHOD, 0), "RSA_new_method"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_NULL, 0), ""}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_NULL_PRIVATE_DECRYPT, 0), ""}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_NULL_PRIVATE_ENCRYPT, 0), ""}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_NULL_PUBLIC_DECRYPT, 0), ""}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_NULL_PUBLIC_ENCRYPT, 0), ""}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_OSSL_PRIVATE_DECRYPT, 0), "rsa_ossl_private_decrypt"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, 0), "rsa_ossl_private_encrypt"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_OSSL_PUBLIC_DECRYPT, 0), "rsa_ossl_public_decrypt"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, 0), "rsa_ossl_public_encrypt"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_NONE, 0), "RSA_padding_add_none"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, 0), "RSA_padding_add_PKCS1_OAEP"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, 0), "RSA_padding_add_PKCS1_OAEP_mgf1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_PKCS1_PSS, 0), "RSA_padding_add_PKCS1_PSS"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1, 0), "RSA_padding_add_PKCS1_PSS_mgf1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1, 0), "RSA_padding_add_PKCS1_type_1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2, 0), "RSA_padding_add_PKCS1_type_2"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_SSLV23, 0), "RSA_padding_add_SSLv23"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_ADD_X931, 0), "RSA_padding_add_X931"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_CHECK_NONE, 0), "RSA_padding_check_none"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, 0), "RSA_padding_check_PKCS1_OAEP"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, 0), "RSA_padding_check_PKCS1_OAEP_mgf1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, 0), "RSA_padding_check_PKCS1_type_1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, 0), "RSA_padding_check_PKCS1_type_2"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_CHECK_SSLV23, 0), "RSA_padding_check_SSLv23"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PADDING_CHECK_X931, 0), "RSA_padding_check_X931"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PARAM_DECODE, 0), "rsa_param_decode"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PRINT, 0), "RSA_print"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PRINT_FP, 0), "RSA_print_fp"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PRIV_DECODE, 0), "rsa_priv_decode"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PRIV_ENCODE, 0), "rsa_priv_encode"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PSS_GET_PARAM, 0), "rsa_pss_get_param"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PSS_TO_CTX, 0), "rsa_pss_to_ctx"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_PUB_DECODE, 0), "rsa_pub_decode"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_SETUP_BLINDING, 0), "RSA_setup_blinding"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_SIGN, 0), "RSA_sign"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_SIGN_ASN1_OCTET_STRING, 0), "RSA_sign_ASN1_OCTET_STRING"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_VERIFY, 0), "RSA_verify"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_VERIFY_ASN1_OCTET_STRING, 0), "RSA_verify_ASN1_OCTET_STRING"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, 0), "RSA_verify_PKCS1_PSS_mgf1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_SETUP_TBUF, 0), "setup_tbuf"}, {0, NULL} }; static const ERR_STRING_DATA RSA_str_reasons[] = { {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_ALGORITHM_MISMATCH), "algorithm mismatch"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_BAD_E_VALUE), "bad e value"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_BAD_FIXED_HEADER_DECRYPT), "bad fixed header decrypt"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_BAD_PAD_BYTE_COUNT), "bad pad byte count"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_BAD_SIGNATURE), "bad signature"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_BLOCK_TYPE_IS_NOT_01), "block type is not 01"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_BLOCK_TYPE_IS_NOT_02), "block type is not 02"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DATA_GREATER_THAN_MOD_LEN), "data greater than mod len"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DATA_TOO_LARGE), "data too large"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE), "data too large for key size"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DATA_TOO_LARGE_FOR_MODULUS), "data too large for modulus"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DATA_TOO_SMALL), "data too small"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE), "data too small for key size"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DIGEST_DOES_NOT_MATCH), "digest does not match"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DIGEST_NOT_ALLOWED), "digest not allowed"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY), "digest too big for rsa key"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DMP1_NOT_CONGRUENT_TO_D), "dmp1 not congruent to d"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_DMQ1_NOT_CONGRUENT_TO_D), "dmq1 not congruent to d"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_D_E_NOT_CONGRUENT_TO_1), "d e not congruent to 1"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_FIRST_OCTET_INVALID), "first octet invalid"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE), "illegal or unsupported padding mode"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_DIGEST), "invalid digest"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_DIGEST_LENGTH), "invalid digest length"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_HEADER), "invalid header"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_LABEL), "invalid label"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_MESSAGE_LENGTH), "invalid message length"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_MGF1_MD), "invalid mgf1 md"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_MULTI_PRIME_KEY), "invalid multi prime key"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_OAEP_PARAMETERS), "invalid oaep parameters"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_PADDING), "invalid padding"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_PADDING_MODE), "invalid padding mode"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_PSS_PARAMETERS), "invalid pss parameters"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_PSS_SALTLEN), "invalid pss saltlen"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_SALT_LENGTH), "invalid salt length"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_TRAILER), "invalid trailer"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_INVALID_X931_DIGEST), "invalid x931 digest"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_IQMP_NOT_INVERSE_OF_Q), "iqmp not inverse of q"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_KEY_PRIME_NUM_INVALID), "key prime num invalid"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_KEY_SIZE_TOO_SMALL), "key size too small"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_LAST_OCTET_INVALID), "last octet invalid"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_MGF1_DIGEST_NOT_ALLOWED), "mgf1 digest not allowed"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_MISSING_PRIVATE_KEY), "missing private key"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_MODULUS_TOO_LARGE), "modulus too large"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R), "mp coefficient not inverse of r"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D), "mp exponent not congruent to d"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_MP_R_NOT_PRIME), "mp r not prime"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_NO_PUBLIC_EXPONENT), "no public exponent"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_NULL_BEFORE_BLOCK_MISSING), "null before block missing"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_N_DOES_NOT_EQUAL_PRODUCT_OF_PRIMES), "n does not equal product of primes"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_N_DOES_NOT_EQUAL_P_Q), "n does not equal p q"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_OAEP_DECODING_ERROR), "oaep decoding error"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE), "operation not supported for this keytype"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_PADDING_CHECK_FAILED), "padding check failed"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_PKCS_DECODING_ERROR), "pkcs decoding error"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_PSS_SALTLEN_TOO_SMALL), "pss saltlen too small"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_P_NOT_PRIME), "p not prime"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_Q_NOT_PRIME), "q not prime"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED), "rsa operations not supported"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_SLEN_CHECK_FAILED), "salt length check failed"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_SLEN_RECOVERY_FAILED), "salt length recovery failed"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_SSLV3_ROLLBACK_ATTACK), "sslv3 rollback attack"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD), "the asn1 object identifier is not known for this md"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNKNOWN_ALGORITHM_TYPE), "unknown algorithm type"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNKNOWN_DIGEST), "unknown digest"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNKNOWN_MASK_DIGEST), "unknown mask digest"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNKNOWN_PADDING_TYPE), "unknown padding type"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNSUPPORTED_ENCRYPTION_TYPE), "unsupported encryption type"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNSUPPORTED_LABEL_SOURCE), "unsupported label source"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNSUPPORTED_MASK_ALGORITHM), "unsupported mask algorithm"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNSUPPORTED_MASK_PARAMETER), "unsupported mask parameter"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_UNSUPPORTED_SIGNATURE_TYPE), "unsupported signature type"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_VALUE_MISSING), "value missing"}, {ERR_PACK(ERR_LIB_RSA, 0, RSA_R_WRONG_SIGNATURE_LENGTH), "wrong signature length"}, {0, NULL} }; #endif int ERR_load_RSA_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(RSA_str_functs[0].error) == NULL) { ERR_load_strings_const(RSA_str_functs); ERR_load_strings_const(RSA_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/rsa/rsa_gen.c000066400000000000000000000302711364063235100172400ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * NB: these functions have been "upgraded", the deprecated versions (which * are compatibility wrappers using these functions) are in rsa_depr.c. - * Geoff */ #include #include #include "internal/cryptlib.h" #include #include "rsa_local.h" static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb); /* * NB: this wrapper would normally be placed in rsa_lib.c and the static * implementation would probably be in rsa_eay.c. Nonetheless, is kept here * so that we don't introduce a new linker dependency. Eg. any application * that wasn't previously linking object code related to key-generation won't * have to now just because key-generation is part of RSA_METHOD. */ int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) { if (rsa->meth->rsa_keygen != NULL) return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM, e_value, cb); } int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { /* multi-prime is only supported with the builtin key generation */ if (rsa->meth->rsa_multi_prime_keygen != NULL) { return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, e_value, cb); } else if (rsa->meth->rsa_keygen != NULL) { /* * However, if rsa->meth implements only rsa_keygen, then we * have to honour it in 2-prime case and assume that it wouldn't * know what to do with multi-prime key generated by builtin * subroutine... */ if (primes == 2) return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); else return 0; } return rsa_builtin_keygen(rsa, bits, primes, e_value, cb); } static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value, BN_GENCB *cb) { BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime; int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; RSA_PRIME_INFO *pinfo = NULL; STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL; BN_CTX *ctx = NULL; BN_ULONG bitst = 0; unsigned long error = 0; if (bits < RSA_MIN_MODULUS_BITS) { ok = 0; /* we set our own err */ RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL); goto err; } if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) { ok = 0; /* we set our own err */ RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID); goto err; } ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); if (r2 == NULL) goto err; /* divide bits into 'primes' pieces evenly */ quo = bits / primes; rmd = bits % primes; for (i = 0; i < primes; i++) bitsr[i] = (i < rmd) ? quo + 1 : quo; /* We need the RSA components non-NULL */ if (!rsa->n && ((rsa->n = BN_new()) == NULL)) goto err; if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL)) goto err; if (!rsa->e && ((rsa->e = BN_new()) == NULL)) goto err; if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL)) goto err; if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL)) goto err; if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL)) goto err; if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL)) goto err; if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL)) goto err; /* initialize multi-prime components */ if (primes > RSA_DEFAULT_PRIME_NUM) { rsa->version = RSA_ASN1_VERSION_MULTI; prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2); if (prime_infos == NULL) goto err; if (rsa->prime_infos != NULL) { /* could this happen? */ sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free); } rsa->prime_infos = prime_infos; /* prime_info from 2 to |primes| -1 */ for (i = 2; i < primes; i++) { pinfo = rsa_multip_info_new(); if (pinfo == NULL) goto err; (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); } } if (BN_copy(rsa->e, e_value) == NULL) goto err; /* generate p, q and other primes (if any) */ for (i = 0; i < primes; i++) { adj = 0; retries = 0; if (i == 0) { prime = rsa->p; } else if (i == 1) { prime = rsa->q; } else { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); prime = pinfo->r; } BN_set_flags(prime, BN_FLG_CONSTTIME); for (;;) { redo: if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb)) goto err; /* * prime should not be equal to p, q, r_3... * (those primes prior to this one) */ { int j; for (j = 0; j < i; j++) { BIGNUM *prev_prime; if (j == 0) prev_prime = rsa->p; else if (j == 1) prev_prime = rsa->q; else prev_prime = sk_RSA_PRIME_INFO_value(prime_infos, j - 2)->r; if (!BN_cmp(prime, prev_prime)) { goto redo; } } } if (!BN_sub(r2, prime, BN_value_one())) goto err; ERR_set_mark(); BN_set_flags(r2, BN_FLG_CONSTTIME); if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) { /* GCD == 1 since inverse exists */ break; } error = ERR_peek_last_error(); if (ERR_GET_LIB(error) == ERR_LIB_BN && ERR_GET_REASON(error) == BN_R_NO_INVERSE) { /* GCD != 1 */ ERR_pop_to_mark(); } else { goto err; } if (!BN_GENCB_call(cb, 2, n++)) goto err; } bitse += bitsr[i]; /* calculate n immediately to see if it's sufficient */ if (i == 1) { /* we get at least 2 primes */ if (!BN_mul(r1, rsa->p, rsa->q, ctx)) goto err; } else if (i != 0) { /* modulus n = p * q * r_3 * r_4 ... */ if (!BN_mul(r1, rsa->n, prime, ctx)) goto err; } else { /* i == 0, do nothing */ if (!BN_GENCB_call(cb, 3, i)) goto err; continue; } /* * if |r1|, product of factors so far, is not as long as expected * (by checking the first 4 bits are less than 0x9 or greater than * 0xF). If so, re-generate the last prime. * * NOTE: This actually can't happen in two-prime case, because of * the way factors are generated. * * Besides, another consideration is, for multi-prime case, even the * length modulus is as long as expected, the modulus could start at * 0x8, which could be utilized to distinguish a multi-prime private * key by using the modulus in a certificate. This is also covered * by checking the length should not be less than 0x9. */ if (!BN_rshift(r2, r1, bitse - 4)) goto err; bitst = BN_get_word(r2); if (bitst < 0x9 || bitst > 0xF) { /* * For keys with more than 4 primes, we attempt longer factor to * meet length requirement. * * Otherwise, we just re-generate the prime with the same length. * * This strategy has the following goals: * * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key * 2. stay the same logic with normal 2-prime key */ bitse -= bitsr[i]; if (!BN_GENCB_call(cb, 2, n++)) goto err; if (primes > 4) { if (bitst < 0x9) adj++; else adj--; } else if (retries == 4) { /* * re-generate all primes from scratch, mainly used * in 4 prime case to avoid long loop. Max retry times * is set to 4. */ i = -1; bitse = 0; continue; } retries++; goto redo; } /* save product of primes for further use, for multi-prime only */ if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL) goto err; if (BN_copy(rsa->n, r1) == NULL) goto err; if (!BN_GENCB_call(cb, 3, i)) goto err; } if (BN_cmp(rsa->p, rsa->q) < 0) { tmp = rsa->p; rsa->p = rsa->q; rsa->q = tmp; } /* calculate d */ /* p - 1 */ if (!BN_sub(r1, rsa->p, BN_value_one())) goto err; /* q - 1 */ if (!BN_sub(r2, rsa->q, BN_value_one())) goto err; /* (p - 1)(q - 1) */ if (!BN_mul(r0, r1, r2, ctx)) goto err; /* multi-prime */ for (i = 2; i < primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); /* save r_i - 1 to pinfo->d temporarily */ if (!BN_sub(pinfo->d, pinfo->r, BN_value_one())) goto err; if (!BN_mul(r0, r0, pinfo->d, ctx)) goto err; } { BIGNUM *pr0 = BN_new(); if (pr0 == NULL) goto err; BN_with_flags(pr0, r0, BN_FLG_CONSTTIME); if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) { BN_free(pr0); goto err; /* d */ } /* We MUST free pr0 before any further use of r0 */ BN_free(pr0); } { BIGNUM *d = BN_new(); if (d == NULL) goto err; BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); /* calculate d mod (p-1) and d mod (q - 1) */ if (!BN_mod(rsa->dmp1, d, r1, ctx) || !BN_mod(rsa->dmq1, d, r2, ctx)) { BN_free(d); goto err; } /* calculate CRT exponents */ for (i = 2; i < primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); /* pinfo->d == r_i - 1 */ if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) { BN_free(d); goto err; } } /* We MUST free d before any further use of rsa->d */ BN_free(d); } { BIGNUM *p = BN_new(); if (p == NULL) goto err; BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); /* calculate inverse of q mod p */ if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) { BN_free(p); goto err; } /* calculate CRT coefficient for other primes */ for (i = 2; i < primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME); if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) { BN_free(p); goto err; } } /* We MUST free p before any further use of rsa->p */ BN_free(p); } ok = 1; err: if (ok == -1) { RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN); ok = 0; } BN_CTX_end(ctx); BN_CTX_free(ctx); return ok; } openssl-1.1.1f/crypto/rsa/rsa_lib.c000066400000000000000000000262441364063235100172420ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include "crypto/bn.h" #include #include #include "crypto/evp.h" #include "rsa_local.h" RSA *RSA_new(void) { return RSA_new_method(NULL); } const RSA_METHOD *RSA_get_method(const RSA *rsa) { return rsa->meth; } int RSA_set_method(RSA *rsa, const RSA_METHOD *meth) { /* * NB: The caller is specifically setting a method, so it's not up to us * to deal with which ENGINE it comes from. */ const RSA_METHOD *mtmp; mtmp = rsa->meth; if (mtmp->finish) mtmp->finish(rsa); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(rsa->engine); rsa->engine = NULL; #endif rsa->meth = meth; if (meth->init) meth->init(rsa); return 1; } RSA *RSA_new_method(ENGINE *engine) { RSA *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE); return NULL; } ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } ret->meth = RSA_get_default_method(); #ifndef OPENSSL_NO_ENGINE ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; if (engine) { if (!ENGINE_init(engine)) { RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } ret->engine = engine; } else { ret->engine = ENGINE_get_default_RSA(); } if (ret->engine) { ret->meth = ENGINE_get_RSA(ret->engine); if (ret->meth == NULL) { RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB); goto err; } } #endif ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) { goto err; } if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_INIT_FAIL); goto err; } return ret; err: RSA_free(ret); return NULL; } void RSA_free(RSA *r) { int i; if (r == NULL) return; CRYPTO_DOWN_REF(&r->references, &i, r->lock); REF_PRINT_COUNT("RSA", r); if (i > 0) return; REF_ASSERT_ISNT(i < 0); if (r->meth != NULL && r->meth->finish != NULL) r->meth->finish(r); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(r->engine); #endif CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data); CRYPTO_THREAD_lock_free(r->lock); BN_free(r->n); BN_free(r->e); BN_clear_free(r->d); BN_clear_free(r->p); BN_clear_free(r->q); BN_clear_free(r->dmp1); BN_clear_free(r->dmq1); BN_clear_free(r->iqmp); RSA_PSS_PARAMS_free(r->pss); sk_RSA_PRIME_INFO_pop_free(r->prime_infos, rsa_multip_info_free); BN_BLINDING_free(r->blinding); BN_BLINDING_free(r->mt_blinding); OPENSSL_free(r->bignum_data); OPENSSL_free(r); } int RSA_up_ref(RSA *r) { int i; if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0) return 0; REF_PRINT_COUNT("RSA", r); REF_ASSERT_ISNT(i < 2); return i > 1 ? 1 : 0; } int RSA_set_ex_data(RSA *r, int idx, void *arg) { return CRYPTO_set_ex_data(&r->ex_data, idx, arg); } void *RSA_get_ex_data(const RSA *r, int idx) { return CRYPTO_get_ex_data(&r->ex_data, idx); } int RSA_security_bits(const RSA *rsa) { int bits = BN_num_bits(rsa->n); if (rsa->version == RSA_ASN1_VERSION_MULTI) { /* This ought to mean that we have private key at hand. */ int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos); if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(bits)) return 0; } return BN_security_bits(bits, -1); } int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) { /* If the fields n and e in r are NULL, the corresponding input * parameters MUST be non-NULL for n and e. d may be * left NULL (in case only the public key is used). */ if ((r->n == NULL && n == NULL) || (r->e == NULL && e == NULL)) return 0; if (n != NULL) { BN_free(r->n); r->n = n; } if (e != NULL) { BN_free(r->e); r->e = e; } if (d != NULL) { BN_clear_free(r->d); r->d = d; BN_set_flags(r->d, BN_FLG_CONSTTIME); } return 1; } int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q) { /* If the fields p and q in r are NULL, the corresponding input * parameters MUST be non-NULL. */ if ((r->p == NULL && p == NULL) || (r->q == NULL && q == NULL)) return 0; if (p != NULL) { BN_clear_free(r->p); r->p = p; BN_set_flags(r->p, BN_FLG_CONSTTIME); } if (q != NULL) { BN_clear_free(r->q); r->q = q; BN_set_flags(r->q, BN_FLG_CONSTTIME); } return 1; } int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input * parameters MUST be non-NULL. */ if ((r->dmp1 == NULL && dmp1 == NULL) || (r->dmq1 == NULL && dmq1 == NULL) || (r->iqmp == NULL && iqmp == NULL)) return 0; if (dmp1 != NULL) { BN_clear_free(r->dmp1); r->dmp1 = dmp1; BN_set_flags(r->dmp1, BN_FLG_CONSTTIME); } if (dmq1 != NULL) { BN_clear_free(r->dmq1); r->dmq1 = dmq1; BN_set_flags(r->dmq1, BN_FLG_CONSTTIME); } if (iqmp != NULL) { BN_clear_free(r->iqmp); r->iqmp = iqmp; BN_set_flags(r->iqmp, BN_FLG_CONSTTIME); } return 1; } /* * Is it better to export RSA_PRIME_INFO structure * and related functions to let user pass a triplet? */ int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[], BIGNUM *coeffs[], int pnum) { STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL; RSA_PRIME_INFO *pinfo; int i; if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0) return 0; prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); if (prime_infos == NULL) return 0; if (r->prime_infos != NULL) old = r->prime_infos; for (i = 0; i < pnum; i++) { pinfo = rsa_multip_info_new(); if (pinfo == NULL) goto err; if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) { BN_clear_free(pinfo->r); BN_clear_free(pinfo->d); BN_clear_free(pinfo->t); pinfo->r = primes[i]; pinfo->d = exps[i]; pinfo->t = coeffs[i]; BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); } else { rsa_multip_info_free(pinfo); goto err; } (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); } r->prime_infos = prime_infos; if (!rsa_multip_calc_product(r)) { r->prime_infos = old; goto err; } if (old != NULL) { /* * This is hard to deal with, since the old infos could * also be set by this function and r, d, t should not * be freed in that case. So currently, stay consistent * with other *set0* functions: just free it... */ sk_RSA_PRIME_INFO_pop_free(old, rsa_multip_info_free); } r->version = RSA_ASN1_VERSION_MULTI; return 1; err: /* r, d, t should not be freed */ sk_RSA_PRIME_INFO_pop_free(prime_infos, rsa_multip_info_free_ex); return 0; } void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) { if (n != NULL) *n = r->n; if (e != NULL) *e = r->e; if (d != NULL) *d = r->d; } void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q) { if (p != NULL) *p = r->p; if (q != NULL) *q = r->q; } int RSA_get_multi_prime_extra_count(const RSA *r) { int pnum; pnum = sk_RSA_PRIME_INFO_num(r->prime_infos); if (pnum <= 0) pnum = 0; return pnum; } int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[]) { int pnum, i; RSA_PRIME_INFO *pinfo; if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) return 0; /* * return other primes * it's caller's responsibility to allocate oth_primes[pnum] */ for (i = 0; i < pnum; i++) { pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); primes[i] = pinfo->r; } return 1; } void RSA_get0_crt_params(const RSA *r, const BIGNUM **dmp1, const BIGNUM **dmq1, const BIGNUM **iqmp) { if (dmp1 != NULL) *dmp1 = r->dmp1; if (dmq1 != NULL) *dmq1 = r->dmq1; if (iqmp != NULL) *iqmp = r->iqmp; } int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[], const BIGNUM *coeffs[]) { int pnum; if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) return 0; /* return other primes */ if (exps != NULL || coeffs != NULL) { RSA_PRIME_INFO *pinfo; int i; /* it's the user's job to guarantee the buffer length */ for (i = 0; i < pnum; i++) { pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); if (exps != NULL) exps[i] = pinfo->d; if (coeffs != NULL) coeffs[i] = pinfo->t; } } return 1; } const BIGNUM *RSA_get0_n(const RSA *r) { return r->n; } const BIGNUM *RSA_get0_e(const RSA *r) { return r->e; } const BIGNUM *RSA_get0_d(const RSA *r) { return r->d; } const BIGNUM *RSA_get0_p(const RSA *r) { return r->p; } const BIGNUM *RSA_get0_q(const RSA *r) { return r->q; } const BIGNUM *RSA_get0_dmp1(const RSA *r) { return r->dmp1; } const BIGNUM *RSA_get0_dmq1(const RSA *r) { return r->dmq1; } const BIGNUM *RSA_get0_iqmp(const RSA *r) { return r->iqmp; } const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r) { return r->pss; } void RSA_clear_flags(RSA *r, int flags) { r->flags &= ~flags; } int RSA_test_flags(const RSA *r, int flags) { return r->flags & flags; } void RSA_set_flags(RSA *r, int flags) { r->flags |= flags; } int RSA_get_version(RSA *r) { /* { two-prime(0), multi(1) } */ return r->version; } ENGINE *RSA_get0_engine(const RSA *r) { return r->engine; } int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2) { /* If key type not RSA or RSA-PSS return error */ if (ctx != NULL && ctx->pmeth != NULL && ctx->pmeth->pkey_id != EVP_PKEY_RSA && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) return -1; return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2); } openssl-1.1.1f/crypto/rsa/rsa_local.h000066400000000000000000000116301364063235100175640ustar00rootroot00000000000000/* * Copyright 2006-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/refcount.h" #define RSA_MAX_PRIME_NUM 5 #define RSA_MIN_MODULUS_BITS 512 typedef struct rsa_prime_info_st { BIGNUM *r; BIGNUM *d; BIGNUM *t; /* save product of primes prior to this one */ BIGNUM *pp; BN_MONT_CTX *m; } RSA_PRIME_INFO; DECLARE_ASN1_ITEM(RSA_PRIME_INFO) DEFINE_STACK_OF(RSA_PRIME_INFO) struct rsa_st { /* * The first parameter is used to pickup errors where this is passed * instead of an EVP_PKEY, it is set to 0 */ int pad; int32_t version; const RSA_METHOD *meth; /* functional reference if 'meth' is ENGINE-provided */ ENGINE *engine; BIGNUM *n; BIGNUM *e; BIGNUM *d; BIGNUM *p; BIGNUM *q; BIGNUM *dmp1; BIGNUM *dmq1; BIGNUM *iqmp; /* for multi-prime RSA, defined in RFC 8017 */ STACK_OF(RSA_PRIME_INFO) *prime_infos; /* If a PSS only key this contains the parameter restrictions */ RSA_PSS_PARAMS *pss; /* be careful using this if the RSA structure is shared */ CRYPTO_EX_DATA ex_data; CRYPTO_REF_COUNT references; int flags; /* Used to cache montgomery values */ BN_MONT_CTX *_method_mod_n; BN_MONT_CTX *_method_mod_p; BN_MONT_CTX *_method_mod_q; /* * all BIGNUM values are actually in the following data, if it is not * NULL */ char *bignum_data; BN_BLINDING *blinding; BN_BLINDING *mt_blinding; CRYPTO_RWLOCK *lock; }; struct rsa_meth_st { char *name; int (*rsa_pub_enc) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); int (*rsa_pub_dec) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); int (*rsa_priv_enc) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); int (*rsa_priv_dec) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); /* Can be null */ int (*rsa_mod_exp) (BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); /* Can be null */ int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); /* called at new */ int (*init) (RSA *rsa); /* called at free */ int (*finish) (RSA *rsa); /* RSA_METHOD_FLAG_* things */ int flags; /* may be needed! */ char *app_data; /* * New sign and verify functions: some libraries don't allow arbitrary * data to be signed/verified: this allows them to be used. Note: for * this to work the RSA_public_decrypt() and RSA_private_encrypt() should * *NOT* be used RSA_sign(), RSA_verify() should be used instead. */ int (*rsa_sign) (int type, const unsigned char *m, unsigned int m_length, unsigned char *sigret, unsigned int *siglen, const RSA *rsa); int (*rsa_verify) (int dtype, const unsigned char *m, unsigned int m_length, const unsigned char *sigbuf, unsigned int siglen, const RSA *rsa); /* * If this callback is NULL, the builtin software RSA key-gen will be * used. This is for behavioural compatibility whilst the code gets * rewired, but one day it would be nice to assume there are no such * things as "builtin software" implementations. */ int (*rsa_keygen) (RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb); int (*rsa_multi_prime_keygen) (RSA *rsa, int bits, int primes, BIGNUM *e, BN_GENCB *cb); }; extern int int_rsa_verify(int dtype, const unsigned char *m, unsigned int m_len, unsigned char *rm, size_t *prm_len, const unsigned char *sigbuf, size_t siglen, RSA *rsa); /* Macros to test if a pkey or ctx is for a PSS key */ #define pkey_is_pss(pkey) (pkey->ameth->pkey_id == EVP_PKEY_RSA_PSS) #define pkey_ctx_is_pss(ctx) (ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS) RSA_PSS_PARAMS *rsa_pss_params_create(const EVP_MD *sigmd, const EVP_MD *mgf1md, int saltlen); int rsa_pss_get_param(const RSA_PSS_PARAMS *pss, const EVP_MD **pmd, const EVP_MD **pmgf1md, int *psaltlen); /* internal function to clear and free multi-prime parameters */ void rsa_multip_info_free_ex(RSA_PRIME_INFO *pinfo); void rsa_multip_info_free(RSA_PRIME_INFO *pinfo); RSA_PRIME_INFO *rsa_multip_info_new(void); int rsa_multip_calc_product(RSA *rsa); int rsa_multip_cap(int bits); openssl-1.1.1f/crypto/rsa/rsa_meth.c000066400000000000000000000165211364063235100174260ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "rsa_local.h" #include RSA_METHOD *RSA_meth_new(const char *name, int flags) { RSA_METHOD *meth = OPENSSL_zalloc(sizeof(*meth)); if (meth != NULL) { meth->flags = flags; meth->name = OPENSSL_strdup(name); if (meth->name != NULL) return meth; OPENSSL_free(meth); } RSAerr(RSA_F_RSA_METH_NEW, ERR_R_MALLOC_FAILURE); return NULL; } void RSA_meth_free(RSA_METHOD *meth) { if (meth != NULL) { OPENSSL_free(meth->name); OPENSSL_free(meth); } } RSA_METHOD *RSA_meth_dup(const RSA_METHOD *meth) { RSA_METHOD *ret = OPENSSL_malloc(sizeof(*ret)); if (ret != NULL) { memcpy(ret, meth, sizeof(*meth)); ret->name = OPENSSL_strdup(meth->name); if (ret->name != NULL) return ret; OPENSSL_free(ret); } RSAerr(RSA_F_RSA_METH_DUP, ERR_R_MALLOC_FAILURE); return NULL; } const char *RSA_meth_get0_name(const RSA_METHOD *meth) { return meth->name; } int RSA_meth_set1_name(RSA_METHOD *meth, const char *name) { char *tmpname = OPENSSL_strdup(name); if (tmpname == NULL) { RSAerr(RSA_F_RSA_METH_SET1_NAME, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_free(meth->name); meth->name = tmpname; return 1; } int RSA_meth_get_flags(const RSA_METHOD *meth) { return meth->flags; } int RSA_meth_set_flags(RSA_METHOD *meth, int flags) { meth->flags = flags; return 1; } void *RSA_meth_get0_app_data(const RSA_METHOD *meth) { return meth->app_data; } int RSA_meth_set0_app_data(RSA_METHOD *meth, void *app_data) { meth->app_data = app_data; return 1; } int (*RSA_meth_get_pub_enc(const RSA_METHOD *meth)) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return meth->rsa_pub_enc; } int RSA_meth_set_pub_enc(RSA_METHOD *meth, int (*pub_enc) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding)) { meth->rsa_pub_enc = pub_enc; return 1; } int (*RSA_meth_get_pub_dec(const RSA_METHOD *meth)) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return meth->rsa_pub_dec; } int RSA_meth_set_pub_dec(RSA_METHOD *meth, int (*pub_dec) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding)) { meth->rsa_pub_dec = pub_dec; return 1; } int (*RSA_meth_get_priv_enc(const RSA_METHOD *meth)) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return meth->rsa_priv_enc; } int RSA_meth_set_priv_enc(RSA_METHOD *meth, int (*priv_enc) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding)) { meth->rsa_priv_enc = priv_enc; return 1; } int (*RSA_meth_get_priv_dec(const RSA_METHOD *meth)) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { return meth->rsa_priv_dec; } int RSA_meth_set_priv_dec(RSA_METHOD *meth, int (*priv_dec) (int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding)) { meth->rsa_priv_dec = priv_dec; return 1; } /* Can be null */ int (*RSA_meth_get_mod_exp(const RSA_METHOD *meth)) (BIGNUM *r0, const BIGNUM *i, RSA *rsa, BN_CTX *ctx) { return meth->rsa_mod_exp; } int RSA_meth_set_mod_exp(RSA_METHOD *meth, int (*mod_exp) (BIGNUM *r0, const BIGNUM *i, RSA *rsa, BN_CTX *ctx)) { meth->rsa_mod_exp = mod_exp; return 1; } /* Can be null */ int (*RSA_meth_get_bn_mod_exp(const RSA_METHOD *meth)) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return meth->bn_mod_exp; } int RSA_meth_set_bn_mod_exp(RSA_METHOD *meth, int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)) { meth->bn_mod_exp = bn_mod_exp; return 1; } /* called at new */ int (*RSA_meth_get_init(const RSA_METHOD *meth)) (RSA *rsa) { return meth->init; } int RSA_meth_set_init(RSA_METHOD *meth, int (*init) (RSA *rsa)) { meth->init = init; return 1; } /* called at free */ int (*RSA_meth_get_finish(const RSA_METHOD *meth)) (RSA *rsa) { return meth->finish; } int RSA_meth_set_finish(RSA_METHOD *meth, int (*finish) (RSA *rsa)) { meth->finish = finish; return 1; } int (*RSA_meth_get_sign(const RSA_METHOD *meth)) (int type, const unsigned char *m, unsigned int m_length, unsigned char *sigret, unsigned int *siglen, const RSA *rsa) { return meth->rsa_sign; } int RSA_meth_set_sign(RSA_METHOD *meth, int (*sign) (int type, const unsigned char *m, unsigned int m_length, unsigned char *sigret, unsigned int *siglen, const RSA *rsa)) { meth->rsa_sign = sign; return 1; } int (*RSA_meth_get_verify(const RSA_METHOD *meth)) (int dtype, const unsigned char *m, unsigned int m_length, const unsigned char *sigbuf, unsigned int siglen, const RSA *rsa) { return meth->rsa_verify; } int RSA_meth_set_verify(RSA_METHOD *meth, int (*verify) (int dtype, const unsigned char *m, unsigned int m_length, const unsigned char *sigbuf, unsigned int siglen, const RSA *rsa)) { meth->rsa_verify = verify; return 1; } int (*RSA_meth_get_keygen(const RSA_METHOD *meth)) (RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb) { return meth->rsa_keygen; } int RSA_meth_set_keygen(RSA_METHOD *meth, int (*keygen) (RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb)) { meth->rsa_keygen = keygen; return 1; } int (*RSA_meth_get_multi_prime_keygen(const RSA_METHOD *meth)) (RSA *rsa, int bits, int primes, BIGNUM *e, BN_GENCB *cb) { return meth->rsa_multi_prime_keygen; } int RSA_meth_set_multi_prime_keygen(RSA_METHOD *meth, int (*keygen) (RSA *rsa, int bits, int primes, BIGNUM *e, BN_GENCB *cb)) { meth->rsa_multi_prime_keygen = keygen; return 1; } openssl-1.1.1f/crypto/rsa/rsa_mp.c000066400000000000000000000052101364063235100170760ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 BaishanCloud. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "rsa_local.h" void rsa_multip_info_free_ex(RSA_PRIME_INFO *pinfo) { /* free pp and pinfo only */ BN_clear_free(pinfo->pp); OPENSSL_free(pinfo); } void rsa_multip_info_free(RSA_PRIME_INFO *pinfo) { /* free a RSA_PRIME_INFO structure */ BN_clear_free(pinfo->r); BN_clear_free(pinfo->d); BN_clear_free(pinfo->t); rsa_multip_info_free_ex(pinfo); } RSA_PRIME_INFO *rsa_multip_info_new(void) { RSA_PRIME_INFO *pinfo; /* create a RSA_PRIME_INFO structure */ if ((pinfo = OPENSSL_zalloc(sizeof(RSA_PRIME_INFO))) == NULL) { RSAerr(RSA_F_RSA_MULTIP_INFO_NEW, ERR_R_MALLOC_FAILURE); return NULL; } if ((pinfo->r = BN_secure_new()) == NULL) goto err; if ((pinfo->d = BN_secure_new()) == NULL) goto err; if ((pinfo->t = BN_secure_new()) == NULL) goto err; if ((pinfo->pp = BN_secure_new()) == NULL) goto err; return pinfo; err: BN_free(pinfo->r); BN_free(pinfo->d); BN_free(pinfo->t); BN_free(pinfo->pp); OPENSSL_free(pinfo); return NULL; } /* Refill products of primes */ int rsa_multip_calc_product(RSA *rsa) { RSA_PRIME_INFO *pinfo; BIGNUM *p1 = NULL, *p2 = NULL; BN_CTX *ctx = NULL; int i, rv = 0, ex_primes; if ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0) { /* invalid */ goto err; } if ((ctx = BN_CTX_new()) == NULL) goto err; /* calculate pinfo->pp = p * q for first 'extra' prime */ p1 = rsa->p; p2 = rsa->q; for (i = 0; i < ex_primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); if (pinfo->pp == NULL) { pinfo->pp = BN_secure_new(); if (pinfo->pp == NULL) goto err; } if (!BN_mul(pinfo->pp, p1, p2, ctx)) goto err; /* save previous one */ p1 = pinfo->pp; p2 = pinfo->r; } rv = 1; err: BN_CTX_free(ctx); return rv; } int rsa_multip_cap(int bits) { int cap = 5; if (bits < 1024) cap = 2; else if (bits < 4096) cap = 3; else if (bits < 8192) cap = 4; if (cap > RSA_MAX_PRIME_NUM) cap = RSA_MAX_PRIME_NUM; return cap; } openssl-1.1.1f/crypto/rsa/rsa_none.c000066400000000000000000000022441364063235100174250ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include int RSA_padding_add_none(unsigned char *to, int tlen, const unsigned char *from, int flen) { if (flen > tlen) { RSAerr(RSA_F_RSA_PADDING_ADD_NONE, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } if (flen < tlen) { RSAerr(RSA_F_RSA_PADDING_ADD_NONE, RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE); return 0; } memcpy(to, from, (unsigned int)flen); return 1; } int RSA_padding_check_none(unsigned char *to, int tlen, const unsigned char *from, int flen, int num) { if (flen > tlen) { RSAerr(RSA_F_RSA_PADDING_CHECK_NONE, RSA_R_DATA_TOO_LARGE); return -1; } memset(to, 0, tlen - flen); memcpy(to + tlen - flen, from, flen); return tlen; } openssl-1.1.1f/crypto/rsa/rsa_oaep.c000066400000000000000000000245111364063235100174130ustar00rootroot00000000000000/* * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ /* * See Victor Shoup, "OAEP reconsidered," Nov. 2000, for problems with the security * proof for the original OAEP scheme, which EME-OAEP is based on. A new * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, * "RSA-OEAP is Still Alive!", Dec. 2000, . The new proof has stronger requirements * for the underlying permutation: "partial-one-wayness" instead of * one-wayness. For the RSA function, this is an equivalent notion. */ #include "internal/constant_time.h" #include #include "internal/cryptlib.h" #include #include #include #include #include "rsa_local.h" int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, const unsigned char *from, int flen, const unsigned char *param, int plen) { return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen, param, plen, NULL, NULL); } int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, const unsigned char *from, int flen, const unsigned char *param, int plen, const EVP_MD *md, const EVP_MD *mgf1md) { int rv = 0; int i, emlen = tlen - 1; unsigned char *db, *seed; unsigned char *dbmask = NULL; unsigned char seedmask[EVP_MAX_MD_SIZE]; int mdlen, dbmask_len = 0; if (md == NULL) md = EVP_sha1(); if (mgf1md == NULL) mgf1md = md; mdlen = EVP_MD_size(md); if (flen > emlen - 2 * mdlen - 1) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } if (emlen < 2 * mdlen + 1) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, RSA_R_KEY_SIZE_TOO_SMALL); return 0; } to[0] = 0; seed = to + 1; db = to + mdlen + 1; if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) goto err; memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1); db[emlen - flen - mdlen - 1] = 0x01; memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen); if (RAND_bytes(seed, mdlen) <= 0) goto err; dbmask_len = emlen - mdlen; dbmask = OPENSSL_malloc(dbmask_len); if (dbmask == NULL) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); goto err; } if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0) goto err; for (i = 0; i < dbmask_len; i++) db[i] ^= dbmask[i]; if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0) goto err; for (i = 0; i < mdlen; i++) seed[i] ^= seedmask[i]; rv = 1; err: OPENSSL_cleanse(seedmask, sizeof(seedmask)); OPENSSL_clear_free(dbmask, dbmask_len); return rv; } int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, const unsigned char *from, int flen, int num, const unsigned char *param, int plen) { return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num, param, plen, NULL, NULL); } int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, const unsigned char *from, int flen, int num, const unsigned char *param, int plen, const EVP_MD *md, const EVP_MD *mgf1md) { int i, dblen = 0, mlen = -1, one_index = 0, msg_index; unsigned int good = 0, found_one_byte, mask; const unsigned char *maskedseed, *maskeddb; /* * |em| is the encoded message, zero-padded to exactly |num| bytes: em = * Y || maskedSeed || maskedDB */ unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE], phash[EVP_MAX_MD_SIZE]; int mdlen; if (md == NULL) md = EVP_sha1(); if (mgf1md == NULL) mgf1md = md; mdlen = EVP_MD_size(md); if (tlen <= 0 || flen <= 0) return -1; /* * |num| is the length of the modulus; |flen| is the length of the * encoded message. Therefore, for any |from| that was obtained by * decrypting a ciphertext, we must have |flen| <= |num|. Similarly, * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of * the ciphertext, see PKCS #1 v2.2, section 7.1.2. * This does not leak any side-channel information. */ if (num < flen || num < 2 * mdlen + 2) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_OAEP_DECODING_ERROR); return -1; } dblen = num - mdlen - 1; db = OPENSSL_malloc(dblen); if (db == NULL) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); goto cleanup; } em = OPENSSL_malloc(num); if (em == NULL) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); goto cleanup; } /* * Caller is encouraged to pass zero-padded message created with * BN_bn2binpad. Trouble is that since we can't read out of |from|'s * bounds, it's impossible to have an invariant memory access pattern * in case |from| was not zero-padded in advance. */ for (from += flen, em += num, i = 0; i < num; i++) { mask = ~constant_time_is_zero(flen); flen -= 1 & mask; from -= 1 & mask; *--em = *from & mask; } /* * The first byte must be zero, however we must not leak if this is * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001). */ good = constant_time_is_zero(em[0]); maskedseed = em + 1; maskeddb = em + 1 + mdlen; if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) goto cleanup; for (i = 0; i < mdlen; i++) seed[i] ^= maskedseed[i]; if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) goto cleanup; for (i = 0; i < dblen; i++) db[i] ^= maskeddb[i]; if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) goto cleanup; good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen)); found_one_byte = 0; for (i = mdlen; i < dblen; i++) { /* * Padding consists of a number of 0-bytes, followed by a 1. */ unsigned int equals1 = constant_time_eq(db[i], 1); unsigned int equals0 = constant_time_is_zero(db[i]); one_index = constant_time_select_int(~found_one_byte & equals1, i, one_index); found_one_byte |= equals1; good &= (found_one_byte | equals0); } good &= found_one_byte; /* * At this point |good| is zero unless the plaintext was valid, * so plaintext-awareness ensures timing side-channels are no longer a * concern. */ msg_index = one_index + 1; mlen = dblen - msg_index; /* * For good measure, do this check in constant time as well. */ good &= constant_time_ge(tlen, mlen); /* * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left. * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|. * Otherwise leave |to| unchanged. * Copy the memory back in a way that does not reveal the size of * the data being copied via a timing side channel. This requires copying * parts of the buffer multiple times based on the bits set in the real * length. Clear bits do a non-copy with identical access pattern. * The loop below has overall complexity of O(N*log(N)). */ tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen), dblen - mdlen - 1, tlen); for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) { mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0); for (i = mdlen + 1; i < dblen - msg_index; i++) db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]); } for (i = 0; i < tlen; i++) { mask = good & constant_time_lt(i, mlen); to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]); } /* * To avoid chosen ciphertext attacks, the error message should not * reveal which kind of decoding error happened. */ RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_OAEP_DECODING_ERROR); err_clear_last_constant_time(1 & good); cleanup: OPENSSL_cleanse(seed, sizeof(seed)); OPENSSL_clear_free(db, dblen); OPENSSL_clear_free(em, num); return constant_time_select_int(good, mlen, -1); } int PKCS1_MGF1(unsigned char *mask, long len, const unsigned char *seed, long seedlen, const EVP_MD *dgst) { long i, outlen = 0; unsigned char cnt[4]; EVP_MD_CTX *c = EVP_MD_CTX_new(); unsigned char md[EVP_MAX_MD_SIZE]; int mdlen; int rv = -1; if (c == NULL) goto err; mdlen = EVP_MD_size(dgst); if (mdlen < 0) goto err; for (i = 0; outlen < len; i++) { cnt[0] = (unsigned char)((i >> 24) & 255); cnt[1] = (unsigned char)((i >> 16) & 255); cnt[2] = (unsigned char)((i >> 8)) & 255; cnt[3] = (unsigned char)(i & 255); if (!EVP_DigestInit_ex(c, dgst, NULL) || !EVP_DigestUpdate(c, seed, seedlen) || !EVP_DigestUpdate(c, cnt, 4)) goto err; if (outlen + mdlen <= len) { if (!EVP_DigestFinal_ex(c, mask + outlen, NULL)) goto err; outlen += mdlen; } else { if (!EVP_DigestFinal_ex(c, md, NULL)) goto err; memcpy(mask + outlen, md, len - outlen); outlen = len; } } rv = 0; err: OPENSSL_cleanse(md, sizeof(md)); EVP_MD_CTX_free(c); return rv; } openssl-1.1.1f/crypto/rsa/rsa_ossl.c000066400000000000000000000724721364063235100174600ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "crypto/bn.h" #include "rsa_local.h" #include "internal/constant_time.h" static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding); static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, BN_CTX *ctx); static int rsa_ossl_init(RSA *rsa); static int rsa_ossl_finish(RSA *rsa); static RSA_METHOD rsa_pkcs1_ossl_meth = { "OpenSSL PKCS#1 RSA", rsa_ossl_public_encrypt, rsa_ossl_public_decrypt, /* signature verification */ rsa_ossl_private_encrypt, /* signing */ rsa_ossl_private_decrypt, rsa_ossl_mod_exp, BN_mod_exp_mont, /* XXX probably we should not use Montgomery * if e == 3 */ rsa_ossl_init, rsa_ossl_finish, RSA_FLAG_FIPS_METHOD, /* flags */ NULL, 0, /* rsa_sign */ 0, /* rsa_verify */ NULL, /* rsa_keygen */ NULL /* rsa_multi_prime_keygen */ }; static const RSA_METHOD *default_RSA_meth = &rsa_pkcs1_ossl_meth; void RSA_set_default_method(const RSA_METHOD *meth) { default_RSA_meth = meth; } const RSA_METHOD *RSA_get_default_method(void) { return default_RSA_meth; } const RSA_METHOD *RSA_PKCS1_OpenSSL(void) { return &rsa_pkcs1_ossl_meth; } const RSA_METHOD *RSA_null_method(void) { return NULL; } static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { BIGNUM *f, *ret; int i, num = 0, r = -1; unsigned char *buf = NULL; BN_CTX *ctx = NULL; if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_MODULUS_TOO_LARGE); return -1; } if (BN_ucmp(rsa->n, rsa->e) <= 0) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); return -1; } /* for large moduli, enforce exponent limit */ if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); return -1; } } if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); f = BN_CTX_get(ctx); ret = BN_CTX_get(ctx); num = BN_num_bytes(rsa->n); buf = OPENSSL_malloc(num); if (ret == NULL || buf == NULL) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, ERR_R_MALLOC_FAILURE); goto err; } switch (padding) { case RSA_PKCS1_PADDING: i = RSA_padding_add_PKCS1_type_2(buf, num, from, flen); break; case RSA_PKCS1_OAEP_PADDING: i = RSA_padding_add_PKCS1_OAEP(buf, num, from, flen, NULL, 0); break; case RSA_SSLV23_PADDING: i = RSA_padding_add_SSLv23(buf, num, from, flen); break; case RSA_NO_PADDING: i = RSA_padding_add_none(buf, num, from, flen); break; default: RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (i <= 0) goto err; if (BN_bin2bn(buf, num, f) == NULL) goto err; if (BN_ucmp(f, rsa->n) >= 0) { /* usually the padding functions would catch this */ RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, rsa->n, ctx)) goto err; if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, rsa->_method_mod_n)) goto err; /* * BN_bn2binpad puts in leading 0 bytes if the number is less than * the length of the modulus. */ r = BN_bn2binpad(ret, to, num); err: BN_CTX_end(ctx); BN_CTX_free(ctx); OPENSSL_clear_free(buf, num); return r; } static BN_BLINDING *rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx) { BN_BLINDING *ret; CRYPTO_THREAD_write_lock(rsa->lock); if (rsa->blinding == NULL) { rsa->blinding = RSA_setup_blinding(rsa, ctx); } ret = rsa->blinding; if (ret == NULL) goto err; if (BN_BLINDING_is_current_thread(ret)) { /* rsa->blinding is ours! */ *local = 1; } else { /* resort to rsa->mt_blinding instead */ /* * instructs rsa_blinding_convert(), rsa_blinding_invert() that the * BN_BLINDING is shared, meaning that accesses require locks, and * that the blinding factor must be stored outside the BN_BLINDING */ *local = 0; if (rsa->mt_blinding == NULL) { rsa->mt_blinding = RSA_setup_blinding(rsa, ctx); } ret = rsa->mt_blinding; } err: CRYPTO_THREAD_unlock(rsa->lock); return ret; } static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, BN_CTX *ctx) { if (unblind == NULL) { /* * Local blinding: store the unblinding factor in BN_BLINDING. */ return BN_BLINDING_convert_ex(f, NULL, b, ctx); } else { /* * Shared blinding: store the unblinding factor outside BN_BLINDING. */ int ret; BN_BLINDING_lock(b); ret = BN_BLINDING_convert_ex(f, unblind, b, ctx); BN_BLINDING_unlock(b); return ret; } } static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, BN_CTX *ctx) { /* * For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex * will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING * is shared between threads, unblind must be non-null: * BN_BLINDING_invert_ex will then use the local unblinding factor, and * will only read the modulus from BN_BLINDING. In both cases it's safe * to access the blinding without a lock. */ return BN_BLINDING_invert_ex(f, unblind, b, ctx); } /* signing */ static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { BIGNUM *f, *ret, *res; int i, num = 0, r = -1; unsigned char *buf = NULL; BN_CTX *ctx = NULL; int local_blinding = 0; /* * Used only if the blinding structure is shared. A non-NULL unblind * instructs rsa_blinding_convert() and rsa_blinding_invert() to store * the unblinding factor outside the blinding structure. */ BIGNUM *unblind = NULL; BN_BLINDING *blinding = NULL; if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); f = BN_CTX_get(ctx); ret = BN_CTX_get(ctx); num = BN_num_bytes(rsa->n); buf = OPENSSL_malloc(num); if (ret == NULL || buf == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); goto err; } switch (padding) { case RSA_PKCS1_PADDING: i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen); break; case RSA_X931_PADDING: i = RSA_padding_add_X931(buf, num, from, flen); break; case RSA_NO_PADDING: i = RSA_padding_add_none(buf, num, from, flen); break; case RSA_SSLV23_PADDING: default: RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (i <= 0) goto err; if (BN_bin2bn(buf, num, f) == NULL) goto err; if (BN_ucmp(f, rsa->n) >= 0) { /* usually the padding functions would catch this */ RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, rsa->n, ctx)) goto err; if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { blinding = rsa_get_blinding(rsa, &local_blinding, ctx); if (blinding == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); goto err; } } if (blinding != NULL) { if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (!rsa_blinding_convert(blinding, f, unblind, ctx)) goto err; } if ((rsa->flags & RSA_FLAG_EXT_PKEY) || (rsa->version == RSA_ASN1_VERSION_MULTI) || ((rsa->p != NULL) && (rsa->q != NULL) && (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) goto err; } else { BIGNUM *d = BN_new(); if (d == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (rsa->d == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, RSA_R_MISSING_PRIVATE_KEY); BN_free(d); goto err; } BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, rsa->_method_mod_n)) { BN_free(d); goto err; } /* We MUST free d before any further use of rsa->d */ BN_free(d); } if (blinding) if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) goto err; if (padding == RSA_X931_PADDING) { if (!BN_sub(f, rsa->n, ret)) goto err; if (BN_cmp(ret, f) > 0) res = f; else res = ret; } else { res = ret; } /* * BN_bn2binpad puts in leading 0 bytes if the number is less than * the length of the modulus. */ r = BN_bn2binpad(res, to, num); err: BN_CTX_end(ctx); BN_CTX_free(ctx); OPENSSL_clear_free(buf, num); return r; } static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { BIGNUM *f, *ret; int j, num = 0, r = -1; unsigned char *buf = NULL; BN_CTX *ctx = NULL; int local_blinding = 0; /* * Used only if the blinding structure is shared. A non-NULL unblind * instructs rsa_blinding_convert() and rsa_blinding_invert() to store * the unblinding factor outside the blinding structure. */ BIGNUM *unblind = NULL; BN_BLINDING *blinding = NULL; if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); f = BN_CTX_get(ctx); ret = BN_CTX_get(ctx); num = BN_num_bytes(rsa->n); buf = OPENSSL_malloc(num); if (ret == NULL || buf == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); goto err; } /* * This check was for equality but PGP does evil things and chops off the * top '0' bytes */ if (flen > num) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_DATA_GREATER_THAN_MOD_LEN); goto err; } /* make data into a big number */ if (BN_bin2bn(from, (int)flen, f) == NULL) goto err; if (BN_ucmp(f, rsa->n) >= 0) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { blinding = rsa_get_blinding(rsa, &local_blinding, ctx); if (blinding == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_INTERNAL_ERROR); goto err; } } if (blinding != NULL) { if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (!rsa_blinding_convert(blinding, f, unblind, ctx)) goto err; } /* do the decrypt */ if ((rsa->flags & RSA_FLAG_EXT_PKEY) || (rsa->version == RSA_ASN1_VERSION_MULTI) || ((rsa->p != NULL) && (rsa->q != NULL) && (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) goto err; } else { BIGNUM *d = BN_new(); if (d == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); goto err; } if (rsa->d == NULL) { RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_MISSING_PRIVATE_KEY); BN_free(d); goto err; } BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, rsa->n, ctx)) { BN_free(d); goto err; } if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, rsa->_method_mod_n)) { BN_free(d); goto err; } /* We MUST free d before any further use of rsa->d */ BN_free(d); } if (blinding) if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) goto err; j = BN_bn2binpad(ret, buf, num); switch (padding) { case RSA_PKCS1_PADDING: r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num); break; case RSA_PKCS1_OAEP_PADDING: r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0); break; case RSA_SSLV23_PADDING: r = RSA_padding_check_SSLv23(to, num, buf, j, num); break; case RSA_NO_PADDING: memcpy(to, buf, (r = j)); break; default: RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_PADDING_CHECK_FAILED); err_clear_last_constant_time(1 & ~constant_time_msb(r)); err: BN_CTX_end(ctx); BN_CTX_free(ctx); OPENSSL_clear_free(buf, num); return r; } /* signature verification */ static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa, int padding) { BIGNUM *f, *ret; int i, num = 0, r = -1; unsigned char *buf = NULL; BN_CTX *ctx = NULL; if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_MODULUS_TOO_LARGE); return -1; } if (BN_ucmp(rsa->n, rsa->e) <= 0) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); return -1; } /* for large moduli, enforce exponent limit */ if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); return -1; } } if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); f = BN_CTX_get(ctx); ret = BN_CTX_get(ctx); num = BN_num_bytes(rsa->n); buf = OPENSSL_malloc(num); if (ret == NULL || buf == NULL) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, ERR_R_MALLOC_FAILURE); goto err; } /* * This check was for equality but PGP does evil things and chops off the * top '0' bytes */ if (flen > num) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_DATA_GREATER_THAN_MOD_LEN); goto err; } if (BN_bin2bn(from, flen, f) == NULL) goto err; if (BN_ucmp(f, rsa->n) >= 0) { RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); goto err; } if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, rsa->n, ctx)) goto err; if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, rsa->_method_mod_n)) goto err; if ((padding == RSA_X931_PADDING) && ((bn_get_words(ret)[0] & 0xf) != 12)) if (!BN_sub(ret, rsa->n, ret)) goto err; i = BN_bn2binpad(ret, buf, num); switch (padding) { case RSA_PKCS1_PADDING: r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num); break; case RSA_X931_PADDING: r = RSA_padding_check_X931(to, num, buf, i, num); break; case RSA_NO_PADDING: memcpy(to, buf, (r = i)); break; default: RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); goto err; } if (r < 0) RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_PADDING_CHECK_FAILED); err: BN_CTX_end(ctx); BN_CTX_free(ctx); OPENSSL_clear_free(buf, num); return r; } static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { BIGNUM *r1, *m1, *vrfy, *r2, *m[RSA_MAX_PRIME_NUM - 2]; int ret = 0, i, ex_primes = 0, smooth = 0; RSA_PRIME_INFO *pinfo; BN_CTX_start(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); m1 = BN_CTX_get(ctx); vrfy = BN_CTX_get(ctx); if (vrfy == NULL) goto err; if (rsa->version == RSA_ASN1_VERSION_MULTI && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0 || ex_primes > RSA_MAX_PRIME_NUM - 2)) goto err; if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { BIGNUM *factor = BN_new(); if (factor == NULL) goto err; /* * Make sure BN_mod_inverse in Montgomery initialization uses the * BN_FLG_CONSTTIME flag */ if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME), BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock, factor, ctx)) || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME), BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock, factor, ctx))) { BN_free(factor); goto err; } for (i = 0; i < ex_primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME); if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) { BN_free(factor); goto err; } } /* * We MUST free |factor| before any further use of the prime factors */ BN_free(factor); smooth = (ex_primes == 0) && (rsa->meth->bn_mod_exp == BN_mod_exp_mont) && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p)); } if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, rsa->n, ctx)) goto err; if (smooth) { /* * Conversion from Montgomery domain, a.k.a. Montgomery reduction, * accepts values in [0-m*2^w) range. w is m's bit width rounded up * to limb width. So that at the very least if |I| is fully reduced, * i.e. less than p*q, we can count on from-to round to perform * below modulo operations on |I|. Unlike BN_mod it's constant time. */ if (/* m1 = I moq q */ !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) /* m1 = m1^dmq1 mod q */ || !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx, rsa->_method_mod_q) /* r1 = I mod p */ || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) /* r1 = r1^dmp1 mod p */ || !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx, rsa->_method_mod_p) /* r1 = (r1 - m1) mod p */ /* * bn_mod_sub_fixed_top is not regular modular subtraction, * it can tolerate subtrahend to be larger than modulus, but * not bit-wise wider. This makes up for uncommon q>p case, * when |m1| can be larger than |rsa->p|. */ || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) /* r1 = r1 * iqmp mod p */ || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, ctx) /* r0 = r1 * q + m1 */ || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) goto err; goto tail; } /* compute I mod q */ { BIGNUM *c = BN_new(); if (c == NULL) goto err; BN_with_flags(c, I, BN_FLG_CONSTTIME); if (!BN_mod(r1, c, rsa->q, ctx)) { BN_free(c); goto err; } { BIGNUM *dmq1 = BN_new(); if (dmq1 == NULL) { BN_free(c); goto err; } BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); /* compute r1^dmq1 mod q */ if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, rsa->_method_mod_q)) { BN_free(c); BN_free(dmq1); goto err; } /* We MUST free dmq1 before any further use of rsa->dmq1 */ BN_free(dmq1); } /* compute I mod p */ if (!BN_mod(r1, c, rsa->p, ctx)) { BN_free(c); goto err; } /* We MUST free c before any further use of I */ BN_free(c); } { BIGNUM *dmp1 = BN_new(); if (dmp1 == NULL) goto err; BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); /* compute r1^dmp1 mod p */ if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, rsa->_method_mod_p)) { BN_free(dmp1); goto err; } /* We MUST free dmp1 before any further use of rsa->dmp1 */ BN_free(dmp1); } /* * calculate m_i in multi-prime case * * TODO: * 1. squash the following two loops and calculate |m_i| there. * 2. remove cc and reuse |c|. * 3. remove |dmq1| and |dmp1| in previous block and use |di|. * * If these things are done, the code will be more readable. */ if (ex_primes > 0) { BIGNUM *di = BN_new(), *cc = BN_new(); if (cc == NULL || di == NULL) { BN_free(cc); BN_free(di); goto err; } for (i = 0; i < ex_primes; i++) { /* prepare m_i */ if ((m[i] = BN_CTX_get(ctx)) == NULL) { BN_free(cc); BN_free(di); goto err; } pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); /* prepare c and d_i */ BN_with_flags(cc, I, BN_FLG_CONSTTIME); BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME); if (!BN_mod(r1, cc, pinfo->r, ctx)) { BN_free(cc); BN_free(di); goto err; } /* compute r1 ^ d_i mod r_i */ if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) { BN_free(cc); BN_free(di); goto err; } } BN_free(cc); BN_free(di); } if (!BN_sub(r0, r0, m1)) goto err; /* * This will help stop the size of r0 increasing, which does affect the * multiply if it optimised for a power of 2 size */ if (BN_is_negative(r0)) if (!BN_add(r0, r0, rsa->p)) goto err; if (!BN_mul(r1, r0, rsa->iqmp, ctx)) goto err; { BIGNUM *pr1 = BN_new(); if (pr1 == NULL) goto err; BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); if (!BN_mod(r0, pr1, rsa->p, ctx)) { BN_free(pr1); goto err; } /* We MUST free pr1 before any further use of r1 */ BN_free(pr1); } /* * If p < q it is occasionally possible for the correction of adding 'p' * if r0 is negative above to leave the result still negative. This can * break the private key operations: the following second correction * should *always* correct this rare occurrence. This will *never* happen * with OpenSSL generated keys because they ensure p > q [steve] */ if (BN_is_negative(r0)) if (!BN_add(r0, r0, rsa->p)) goto err; if (!BN_mul(r1, r0, rsa->q, ctx)) goto err; if (!BN_add(r0, r1, m1)) goto err; /* add m_i to m in multi-prime case */ if (ex_primes > 0) { BIGNUM *pr2 = BN_new(); if (pr2 == NULL) goto err; for (i = 0; i < ex_primes; i++) { pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); if (!BN_sub(r1, m[i], r0)) { BN_free(pr2); goto err; } if (!BN_mul(r2, r1, pinfo->t, ctx)) { BN_free(pr2); goto err; } BN_with_flags(pr2, r2, BN_FLG_CONSTTIME); if (!BN_mod(r1, pr2, pinfo->r, ctx)) { BN_free(pr2); goto err; } if (BN_is_negative(r1)) if (!BN_add(r1, r1, pinfo->r)) { BN_free(pr2); goto err; } if (!BN_mul(r1, r1, pinfo->pp, ctx)) { BN_free(pr2); goto err; } if (!BN_add(r0, r0, r1)) { BN_free(pr2); goto err; } } BN_free(pr2); } tail: if (rsa->e && rsa->n) { if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n)) goto err; } else { bn_correct_top(r0); if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n)) goto err; } /* * If 'I' was greater than (or equal to) rsa->n, the operation will * be equivalent to using 'I mod n'. However, the result of the * verify will *always* be less than 'n' so we don't check for * absolute equality, just congruency. */ if (!BN_sub(vrfy, vrfy, I)) goto err; if (BN_is_zero(vrfy)) { bn_correct_top(r0); ret = 1; goto err; /* not actually error */ } if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err; if (BN_is_negative(vrfy)) if (!BN_add(vrfy, vrfy, rsa->n)) goto err; if (!BN_is_zero(vrfy)) { /* * 'I' and 'vrfy' aren't congruent mod n. Don't leak * miscalculated CRT output, just do a raw (slower) mod_exp and * return that instead. */ BIGNUM *d = BN_new(); if (d == NULL) goto err; BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, rsa->_method_mod_n)) { BN_free(d); goto err; } /* We MUST free d before any further use of rsa->d */ BN_free(d); } } /* * It's unfortunate that we have to bn_correct_top(r0). What hopefully * saves the day is that correction is highly unlike, and private key * operations are customarily performed on blinded message. Which means * that attacker won't observe correlation with chosen plaintext. * Secondly, remaining code would still handle it in same computational * time and even conceal memory access pattern around corrected top. */ bn_correct_top(r0); ret = 1; err: BN_CTX_end(ctx); return ret; } static int rsa_ossl_init(RSA *rsa) { rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE; return 1; } static int rsa_ossl_finish(RSA *rsa) { int i; RSA_PRIME_INFO *pinfo; BN_MONT_CTX_free(rsa->_method_mod_n); BN_MONT_CTX_free(rsa->_method_mod_p); BN_MONT_CTX_free(rsa->_method_mod_q); for (i = 0; i < sk_RSA_PRIME_INFO_num(rsa->prime_infos); i++) { pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); BN_MONT_CTX_free(pinfo->m); } return 1; } openssl-1.1.1f/crypto/rsa/rsa_pk1.c000066400000000000000000000167271364063235100171740ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/constant_time.h" #include #include "internal/cryptlib.h" #include #include #include int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, const unsigned char *from, int flen) { int j; unsigned char *p; if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } p = (unsigned char *)to; *(p++) = 0; *(p++) = 1; /* Private Key BT (Block Type) */ /* pad out with 0xff data */ j = tlen - 3 - flen; memset(p, 0xff, j); p += j; *(p++) = '\0'; memcpy(p, from, (unsigned int)flen); return 1; } int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, const unsigned char *from, int flen, int num) { int i, j; const unsigned char *p; p = from; /* * The format is * 00 || 01 || PS || 00 || D * PS - padding string, at least 8 bytes of FF * D - data. */ if (num < RSA_PKCS1_PADDING_SIZE) return -1; /* Accept inputs with and without the leading 0-byte. */ if (num == flen) { if ((*p++) != 0x00) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_INVALID_PADDING); return -1; } flen--; } if ((num != (flen + 1)) || (*(p++) != 0x01)) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_BLOCK_TYPE_IS_NOT_01); return -1; } /* scan over padding data */ j = flen - 1; /* one for type. */ for (i = 0; i < j; i++) { if (*p != 0xff) { /* should decrypt to 0xff */ if (*p == 0) { p++; break; } else { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_BAD_FIXED_HEADER_DECRYPT); return -1; } } p++; } if (i == j) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_NULL_BEFORE_BLOCK_MISSING); return -1; } if (i < 8) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_BAD_PAD_BYTE_COUNT); return -1; } i++; /* Skip over the '\0' */ j -= i; if (j > tlen) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE); return -1; } memcpy(to, p, (unsigned int)j); return j; } int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, const unsigned char *from, int flen) { int i, j; unsigned char *p; if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } p = (unsigned char *)to; *(p++) = 0; *(p++) = 2; /* Public Key BT (Block Type) */ /* pad out with non-zero random data */ j = tlen - 3 - flen; if (RAND_bytes(p, j) <= 0) return 0; for (i = 0; i < j; i++) { if (*p == '\0') do { if (RAND_bytes(p, 1) <= 0) return 0; } while (*p == '\0'); p++; } *(p++) = '\0'; memcpy(p, from, (unsigned int)flen); return 1; } int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, const unsigned char *from, int flen, int num) { int i; /* |em| is the encoded message, zero-padded to exactly |num| bytes */ unsigned char *em = NULL; unsigned int good, found_zero_byte, mask; int zero_index = 0, msg_index, mlen = -1; if (tlen <= 0 || flen <= 0) return -1; /* * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", * section 7.2.2. */ if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR); return -1; } em = OPENSSL_malloc(num); if (em == NULL) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE); return -1; } /* * Caller is encouraged to pass zero-padded message created with * BN_bn2binpad. Trouble is that since we can't read out of |from|'s * bounds, it's impossible to have an invariant memory access pattern * in case |from| was not zero-padded in advance. */ for (from += flen, em += num, i = 0; i < num; i++) { mask = ~constant_time_is_zero(flen); flen -= 1 & mask; from -= 1 & mask; *--em = *from & mask; } good = constant_time_is_zero(em[0]); good &= constant_time_eq(em[1], 2); /* scan over padding data */ found_zero_byte = 0; for (i = 2; i < num; i++) { unsigned int equals0 = constant_time_is_zero(em[i]); zero_index = constant_time_select_int(~found_zero_byte & equals0, i, zero_index); found_zero_byte |= equals0; } /* * PS must be at least 8 bytes long, and it starts two bytes into |em|. * If we never found a 0-byte, then |zero_index| is 0 and the check * also fails. */ good &= constant_time_ge(zero_index, 2 + 8); /* * Skip the zero byte. This is incorrect if we never found a zero-byte * but in this case we also do not copy the message out. */ msg_index = zero_index + 1; mlen = num - msg_index; /* * For good measure, do this check in constant time as well. */ good &= constant_time_ge(tlen, mlen); /* * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. * Otherwise leave |to| unchanged. * Copy the memory back in a way that does not reveal the size of * the data being copied via a timing side channel. This requires copying * parts of the buffer multiple times based on the bits set in the real * length. Clear bits do a non-copy with identical access pattern. * The loop below has overall complexity of O(N*log(N)). */ tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), num - RSA_PKCS1_PADDING_SIZE, tlen); for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); } for (i = 0; i < tlen; i++) { mask = good & constant_time_lt(i, mlen); to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); } OPENSSL_clear_free(em, num); RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR); err_clear_last_constant_time(1 & good); return constant_time_select_int(good, mlen, -1); } openssl-1.1.1f/crypto/rsa/rsa_pmeth.c000066400000000000000000000616421364063235100176120ustar00rootroot00000000000000/* * Copyright 2006-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/constant_time.h" #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "crypto/evp.h" #include "rsa_local.h" /* RSA pkey context structure */ typedef struct { /* Key gen parameters */ int nbits; BIGNUM *pub_exp; int primes; /* Keygen callback info */ int gentmp[2]; /* RSA padding mode */ int pad_mode; /* message digest */ const EVP_MD *md; /* message digest for MGF1 */ const EVP_MD *mgf1md; /* PSS salt length */ int saltlen; /* Minimum salt length or -1 if no PSS parameter restriction */ int min_saltlen; /* Temp buffer */ unsigned char *tbuf; /* OAEP label */ unsigned char *oaep_label; size_t oaep_labellen; } RSA_PKEY_CTX; /* True if PSS parameters are restricted */ #define rsa_pss_restricted(rctx) (rctx->min_saltlen != -1) static int pkey_rsa_init(EVP_PKEY_CTX *ctx) { RSA_PKEY_CTX *rctx = OPENSSL_zalloc(sizeof(*rctx)); if (rctx == NULL) return 0; rctx->nbits = 2048; rctx->primes = RSA_DEFAULT_PRIME_NUM; if (pkey_ctx_is_pss(ctx)) rctx->pad_mode = RSA_PKCS1_PSS_PADDING; else rctx->pad_mode = RSA_PKCS1_PADDING; /* Maximum for sign, auto for verify */ rctx->saltlen = RSA_PSS_SALTLEN_AUTO; rctx->min_saltlen = -1; ctx->data = rctx; ctx->keygen_info = rctx->gentmp; ctx->keygen_info_count = 2; return 1; } static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { RSA_PKEY_CTX *dctx, *sctx; if (!pkey_rsa_init(dst)) return 0; sctx = src->data; dctx = dst->data; dctx->nbits = sctx->nbits; if (sctx->pub_exp) { dctx->pub_exp = BN_dup(sctx->pub_exp); if (!dctx->pub_exp) return 0; } dctx->pad_mode = sctx->pad_mode; dctx->md = sctx->md; dctx->mgf1md = sctx->mgf1md; if (sctx->oaep_label) { OPENSSL_free(dctx->oaep_label); dctx->oaep_label = OPENSSL_memdup(sctx->oaep_label, sctx->oaep_labellen); if (!dctx->oaep_label) return 0; dctx->oaep_labellen = sctx->oaep_labellen; } return 1; } static int setup_tbuf(RSA_PKEY_CTX *ctx, EVP_PKEY_CTX *pk) { if (ctx->tbuf != NULL) return 1; if ((ctx->tbuf = OPENSSL_malloc(EVP_PKEY_size(pk->pkey))) == NULL) { RSAerr(RSA_F_SETUP_TBUF, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) { RSA_PKEY_CTX *rctx = ctx->data; if (rctx) { BN_free(rctx->pub_exp); OPENSSL_free(rctx->tbuf); OPENSSL_free(rctx->oaep_label); OPENSSL_free(rctx); } } static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) { int ret; RSA_PKEY_CTX *rctx = ctx->data; RSA *rsa = ctx->pkey->pkey.rsa; if (rctx->md) { if (tbslen != (size_t)EVP_MD_size(rctx->md)) { RSAerr(RSA_F_PKEY_RSA_SIGN, RSA_R_INVALID_DIGEST_LENGTH); return -1; } if (EVP_MD_type(rctx->md) == NID_mdc2) { unsigned int sltmp; if (rctx->pad_mode != RSA_PKCS1_PADDING) return -1; ret = RSA_sign_ASN1_OCTET_STRING(0, tbs, tbslen, sig, &sltmp, rsa); if (ret <= 0) return ret; ret = sltmp; } else if (rctx->pad_mode == RSA_X931_PADDING) { if ((size_t)EVP_PKEY_size(ctx->pkey) < tbslen + 1) { RSAerr(RSA_F_PKEY_RSA_SIGN, RSA_R_KEY_SIZE_TOO_SMALL); return -1; } if (!setup_tbuf(rctx, ctx)) { RSAerr(RSA_F_PKEY_RSA_SIGN, ERR_R_MALLOC_FAILURE); return -1; } memcpy(rctx->tbuf, tbs, tbslen); rctx->tbuf[tbslen] = RSA_X931_hash_id(EVP_MD_type(rctx->md)); ret = RSA_private_encrypt(tbslen + 1, rctx->tbuf, sig, rsa, RSA_X931_PADDING); } else if (rctx->pad_mode == RSA_PKCS1_PADDING) { unsigned int sltmp; ret = RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &sltmp, rsa); if (ret <= 0) return ret; ret = sltmp; } else if (rctx->pad_mode == RSA_PKCS1_PSS_PADDING) { if (!setup_tbuf(rctx, ctx)) return -1; if (!RSA_padding_add_PKCS1_PSS_mgf1(rsa, rctx->tbuf, tbs, rctx->md, rctx->mgf1md, rctx->saltlen)) return -1; ret = RSA_private_encrypt(RSA_size(rsa), rctx->tbuf, sig, rsa, RSA_NO_PADDING); } else { return -1; } } else { ret = RSA_private_encrypt(tbslen, tbs, sig, ctx->pkey->pkey.rsa, rctx->pad_mode); } if (ret < 0) return ret; *siglen = ret; return 1; } static int pkey_rsa_verifyrecover(EVP_PKEY_CTX *ctx, unsigned char *rout, size_t *routlen, const unsigned char *sig, size_t siglen) { int ret; RSA_PKEY_CTX *rctx = ctx->data; if (rctx->md) { if (rctx->pad_mode == RSA_X931_PADDING) { if (!setup_tbuf(rctx, ctx)) return -1; ret = RSA_public_decrypt(siglen, sig, rctx->tbuf, ctx->pkey->pkey.rsa, RSA_X931_PADDING); if (ret < 1) return 0; ret--; if (rctx->tbuf[ret] != RSA_X931_hash_id(EVP_MD_type(rctx->md))) { RSAerr(RSA_F_PKEY_RSA_VERIFYRECOVER, RSA_R_ALGORITHM_MISMATCH); return 0; } if (ret != EVP_MD_size(rctx->md)) { RSAerr(RSA_F_PKEY_RSA_VERIFYRECOVER, RSA_R_INVALID_DIGEST_LENGTH); return 0; } if (rout) memcpy(rout, rctx->tbuf, ret); } else if (rctx->pad_mode == RSA_PKCS1_PADDING) { size_t sltmp; ret = int_rsa_verify(EVP_MD_type(rctx->md), NULL, 0, rout, &sltmp, sig, siglen, ctx->pkey->pkey.rsa); if (ret <= 0) return 0; ret = sltmp; } else { return -1; } } else { ret = RSA_public_decrypt(siglen, sig, rout, ctx->pkey->pkey.rsa, rctx->pad_mode); } if (ret < 0) return ret; *routlen = ret; return 1; } static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { RSA_PKEY_CTX *rctx = ctx->data; RSA *rsa = ctx->pkey->pkey.rsa; size_t rslen; if (rctx->md) { if (rctx->pad_mode == RSA_PKCS1_PADDING) return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa); if (tbslen != (size_t)EVP_MD_size(rctx->md)) { RSAerr(RSA_F_PKEY_RSA_VERIFY, RSA_R_INVALID_DIGEST_LENGTH); return -1; } if (rctx->pad_mode == RSA_X931_PADDING) { if (pkey_rsa_verifyrecover(ctx, NULL, &rslen, sig, siglen) <= 0) return 0; } else if (rctx->pad_mode == RSA_PKCS1_PSS_PADDING) { int ret; if (!setup_tbuf(rctx, ctx)) return -1; ret = RSA_public_decrypt(siglen, sig, rctx->tbuf, rsa, RSA_NO_PADDING); if (ret <= 0) return 0; ret = RSA_verify_PKCS1_PSS_mgf1(rsa, tbs, rctx->md, rctx->mgf1md, rctx->tbuf, rctx->saltlen); if (ret <= 0) return 0; return 1; } else { return -1; } } else { if (!setup_tbuf(rctx, ctx)) return -1; rslen = RSA_public_decrypt(siglen, sig, rctx->tbuf, rsa, rctx->pad_mode); if (rslen == 0) return 0; } if ((rslen != tbslen) || memcmp(tbs, rctx->tbuf, rslen)) return 0; return 1; } static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen) { int ret; RSA_PKEY_CTX *rctx = ctx->data; if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { int klen = RSA_size(ctx->pkey->pkey.rsa); if (!setup_tbuf(rctx, ctx)) return -1; if (!RSA_padding_add_PKCS1_OAEP_mgf1(rctx->tbuf, klen, in, inlen, rctx->oaep_label, rctx->oaep_labellen, rctx->md, rctx->mgf1md)) return -1; ret = RSA_public_encrypt(klen, rctx->tbuf, out, ctx->pkey->pkey.rsa, RSA_NO_PADDING); } else { ret = RSA_public_encrypt(inlen, in, out, ctx->pkey->pkey.rsa, rctx->pad_mode); } if (ret < 0) return ret; *outlen = ret; return 1; } static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen) { int ret; RSA_PKEY_CTX *rctx = ctx->data; if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { if (!setup_tbuf(rctx, ctx)) return -1; ret = RSA_private_decrypt(inlen, in, rctx->tbuf, ctx->pkey->pkey.rsa, RSA_NO_PADDING); if (ret <= 0) return ret; ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, ret, rctx->tbuf, ret, ret, rctx->oaep_label, rctx->oaep_labellen, rctx->md, rctx->mgf1md); } else { ret = RSA_private_decrypt(inlen, in, out, ctx->pkey->pkey.rsa, rctx->pad_mode); } *outlen = constant_time_select_s(constant_time_msb_s(ret), *outlen, ret); ret = constant_time_select_int(constant_time_msb(ret), ret, 1); return ret; } static int check_padding_md(const EVP_MD *md, int padding) { int mdnid; if (!md) return 1; mdnid = EVP_MD_type(md); if (padding == RSA_NO_PADDING) { RSAerr(RSA_F_CHECK_PADDING_MD, RSA_R_INVALID_PADDING_MODE); return 0; } if (padding == RSA_X931_PADDING) { if (RSA_X931_hash_id(mdnid) == -1) { RSAerr(RSA_F_CHECK_PADDING_MD, RSA_R_INVALID_X931_DIGEST); return 0; } } else { switch(mdnid) { /* List of all supported RSA digests */ case NID_sha1: case NID_sha224: case NID_sha256: case NID_sha384: case NID_sha512: case NID_md5: case NID_md5_sha1: case NID_md2: case NID_md4: case NID_mdc2: case NID_ripemd160: case NID_sha3_224: case NID_sha3_256: case NID_sha3_384: case NID_sha3_512: return 1; default: RSAerr(RSA_F_CHECK_PADDING_MD, RSA_R_INVALID_DIGEST); return 0; } } return 1; } static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { RSA_PKEY_CTX *rctx = ctx->data; switch (type) { case EVP_PKEY_CTRL_RSA_PADDING: if ((p1 >= RSA_PKCS1_PADDING) && (p1 <= RSA_PKCS1_PSS_PADDING)) { if (!check_padding_md(rctx->md, p1)) return 0; if (p1 == RSA_PKCS1_PSS_PADDING) { if (!(ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) goto bad_pad; if (!rctx->md) rctx->md = EVP_sha1(); } else if (pkey_ctx_is_pss(ctx)) { goto bad_pad; } if (p1 == RSA_PKCS1_OAEP_PADDING) { if (!(ctx->operation & EVP_PKEY_OP_TYPE_CRYPT)) goto bad_pad; if (!rctx->md) rctx->md = EVP_sha1(); } rctx->pad_mode = p1; return 1; } bad_pad: RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); return -2; case EVP_PKEY_CTRL_GET_RSA_PADDING: *(int *)p2 = rctx->pad_mode; return 1; case EVP_PKEY_CTRL_RSA_PSS_SALTLEN: case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN: if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_PSS_SALTLEN); return -2; } if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) { *(int *)p2 = rctx->saltlen; } else { if (p1 < RSA_PSS_SALTLEN_MAX) return -2; if (rsa_pss_restricted(rctx)) { if (p1 == RSA_PSS_SALTLEN_AUTO && ctx->operation == EVP_PKEY_OP_VERIFY) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_PSS_SALTLEN); return -2; } if ((p1 == RSA_PSS_SALTLEN_DIGEST && rctx->min_saltlen > EVP_MD_size(rctx->md)) || (p1 >= 0 && p1 < rctx->min_saltlen)) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_PSS_SALTLEN_TOO_SMALL); return 0; } } rctx->saltlen = p1; } return 1; case EVP_PKEY_CTRL_RSA_KEYGEN_BITS: if (p1 < RSA_MIN_MODULUS_BITS) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_KEY_SIZE_TOO_SMALL); return -2; } rctx->nbits = p1; return 1; case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP: if (p2 == NULL || !BN_is_odd((BIGNUM *)p2) || BN_is_one((BIGNUM *)p2)) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_BAD_E_VALUE); return -2; } BN_free(rctx->pub_exp); rctx->pub_exp = p2; return 1; case EVP_PKEY_CTRL_RSA_KEYGEN_PRIMES: if (p1 < RSA_DEFAULT_PRIME_NUM || p1 > RSA_MAX_PRIME_NUM) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_KEY_PRIME_NUM_INVALID); return -2; } rctx->primes = p1; return 1; case EVP_PKEY_CTRL_RSA_OAEP_MD: case EVP_PKEY_CTRL_GET_RSA_OAEP_MD: if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_PADDING_MODE); return -2; } if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) *(const EVP_MD **)p2 = rctx->md; else rctx->md = p2; return 1; case EVP_PKEY_CTRL_MD: if (!check_padding_md(p2, rctx->pad_mode)) return 0; if (rsa_pss_restricted(rctx)) { if (EVP_MD_type(rctx->md) == EVP_MD_type(p2)) return 1; RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_DIGEST_NOT_ALLOWED); return 0; } rctx->md = p2; return 1; case EVP_PKEY_CTRL_GET_MD: *(const EVP_MD **)p2 = rctx->md; return 1; case EVP_PKEY_CTRL_RSA_MGF1_MD: case EVP_PKEY_CTRL_GET_RSA_MGF1_MD: if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING && rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_MGF1_MD); return -2; } if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) { if (rctx->mgf1md) *(const EVP_MD **)p2 = rctx->mgf1md; else *(const EVP_MD **)p2 = rctx->md; } else { if (rsa_pss_restricted(rctx)) { if (EVP_MD_type(rctx->mgf1md) == EVP_MD_type(p2)) return 1; RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_MGF1_DIGEST_NOT_ALLOWED); return 0; } rctx->mgf1md = p2; } return 1; case EVP_PKEY_CTRL_RSA_OAEP_LABEL: if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_PADDING_MODE); return -2; } OPENSSL_free(rctx->oaep_label); if (p2 && p1 > 0) { rctx->oaep_label = p2; rctx->oaep_labellen = p1; } else { rctx->oaep_label = NULL; rctx->oaep_labellen = 0; } return 1; case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL: if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_PADDING_MODE); return -2; } *(unsigned char **)p2 = rctx->oaep_label; return rctx->oaep_labellen; case EVP_PKEY_CTRL_DIGESTINIT: case EVP_PKEY_CTRL_PKCS7_SIGN: #ifndef OPENSSL_NO_CMS case EVP_PKEY_CTRL_CMS_SIGN: #endif return 1; case EVP_PKEY_CTRL_PKCS7_ENCRYPT: case EVP_PKEY_CTRL_PKCS7_DECRYPT: #ifndef OPENSSL_NO_CMS case EVP_PKEY_CTRL_CMS_DECRYPT: case EVP_PKEY_CTRL_CMS_ENCRYPT: #endif if (!pkey_ctx_is_pss(ctx)) return 1; /* fall through */ case EVP_PKEY_CTRL_PEER_KEY: RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; default: return -2; } } static int pkey_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (value == NULL) { RSAerr(RSA_F_PKEY_RSA_CTRL_STR, RSA_R_VALUE_MISSING); return 0; } if (strcmp(type, "rsa_padding_mode") == 0) { int pm; if (strcmp(value, "pkcs1") == 0) { pm = RSA_PKCS1_PADDING; } else if (strcmp(value, "sslv23") == 0) { pm = RSA_SSLV23_PADDING; } else if (strcmp(value, "none") == 0) { pm = RSA_NO_PADDING; } else if (strcmp(value, "oeap") == 0) { pm = RSA_PKCS1_OAEP_PADDING; } else if (strcmp(value, "oaep") == 0) { pm = RSA_PKCS1_OAEP_PADDING; } else if (strcmp(value, "x931") == 0) { pm = RSA_X931_PADDING; } else if (strcmp(value, "pss") == 0) { pm = RSA_PKCS1_PSS_PADDING; } else { RSAerr(RSA_F_PKEY_RSA_CTRL_STR, RSA_R_UNKNOWN_PADDING_TYPE); return -2; } return EVP_PKEY_CTX_set_rsa_padding(ctx, pm); } if (strcmp(type, "rsa_pss_saltlen") == 0) { int saltlen; if (!strcmp(value, "digest")) saltlen = RSA_PSS_SALTLEN_DIGEST; else if (!strcmp(value, "max")) saltlen = RSA_PSS_SALTLEN_MAX; else if (!strcmp(value, "auto")) saltlen = RSA_PSS_SALTLEN_AUTO; else saltlen = atoi(value); return EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, saltlen); } if (strcmp(type, "rsa_keygen_bits") == 0) { int nbits = atoi(value); return EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, nbits); } if (strcmp(type, "rsa_keygen_pubexp") == 0) { int ret; BIGNUM *pubexp = NULL; if (!BN_asc2bn(&pubexp, value)) return 0; ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp); if (ret <= 0) BN_free(pubexp); return ret; } if (strcmp(type, "rsa_keygen_primes") == 0) { int nprimes = atoi(value); return EVP_PKEY_CTX_set_rsa_keygen_primes(ctx, nprimes); } if (strcmp(type, "rsa_mgf1_md") == 0) return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_RSA_MGF1_MD, value); if (pkey_ctx_is_pss(ctx)) { if (strcmp(type, "rsa_pss_keygen_mgf1_md") == 0) return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_RSA_MGF1_MD, value); if (strcmp(type, "rsa_pss_keygen_md") == 0) return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_MD, value); if (strcmp(type, "rsa_pss_keygen_saltlen") == 0) { int saltlen = atoi(value); return EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(ctx, saltlen); } } if (strcmp(type, "rsa_oaep_md") == 0) return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_RSA_OAEP_MD, value); if (strcmp(type, "rsa_oaep_label") == 0) { unsigned char *lab; long lablen; int ret; lab = OPENSSL_hexstr2buf(value, &lablen); if (!lab) return 0; ret = EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, lab, lablen); if (ret <= 0) OPENSSL_free(lab); return ret; } return -2; } /* Set PSS parameters when generating a key, if necessary */ static int rsa_set_pss_param(RSA *rsa, EVP_PKEY_CTX *ctx) { RSA_PKEY_CTX *rctx = ctx->data; if (!pkey_ctx_is_pss(ctx)) return 1; /* If all parameters are default values don't set pss */ if (rctx->md == NULL && rctx->mgf1md == NULL && rctx->saltlen == -2) return 1; rsa->pss = rsa_pss_params_create(rctx->md, rctx->mgf1md, rctx->saltlen == -2 ? 0 : rctx->saltlen); if (rsa->pss == NULL) return 0; return 1; } static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { RSA *rsa = NULL; RSA_PKEY_CTX *rctx = ctx->data; BN_GENCB *pcb; int ret; if (rctx->pub_exp == NULL) { rctx->pub_exp = BN_new(); if (rctx->pub_exp == NULL || !BN_set_word(rctx->pub_exp, RSA_F4)) return 0; } rsa = RSA_new(); if (rsa == NULL) return 0; if (ctx->pkey_gencb) { pcb = BN_GENCB_new(); if (pcb == NULL) { RSA_free(rsa); return 0; } evp_pkey_set_cb_translate(pcb, ctx); } else { pcb = NULL; } ret = RSA_generate_multi_prime_key(rsa, rctx->nbits, rctx->primes, rctx->pub_exp, pcb); BN_GENCB_free(pcb); if (ret > 0 && !rsa_set_pss_param(rsa, ctx)) { RSA_free(rsa); return 0; } if (ret > 0) EVP_PKEY_assign(pkey, ctx->pmeth->pkey_id, rsa); else RSA_free(rsa); return ret; } const EVP_PKEY_METHOD rsa_pkey_meth = { EVP_PKEY_RSA, EVP_PKEY_FLAG_AUTOARGLEN, pkey_rsa_init, pkey_rsa_copy, pkey_rsa_cleanup, 0, 0, 0, pkey_rsa_keygen, 0, pkey_rsa_sign, 0, pkey_rsa_verify, 0, pkey_rsa_verifyrecover, 0, 0, 0, 0, 0, pkey_rsa_encrypt, 0, pkey_rsa_decrypt, 0, 0, pkey_rsa_ctrl, pkey_rsa_ctrl_str }; /* * Called for PSS sign or verify initialisation: checks PSS parameter * sanity and sets any restrictions on key usage. */ static int pkey_pss_init(EVP_PKEY_CTX *ctx) { RSA *rsa; RSA_PKEY_CTX *rctx = ctx->data; const EVP_MD *md; const EVP_MD *mgf1md; int min_saltlen, max_saltlen; /* Should never happen */ if (!pkey_ctx_is_pss(ctx)) return 0; rsa = ctx->pkey->pkey.rsa; /* If no restrictions just return */ if (rsa->pss == NULL) return 1; /* Get and check parameters */ if (!rsa_pss_get_param(rsa->pss, &md, &mgf1md, &min_saltlen)) return 0; /* See if minimum salt length exceeds maximum possible */ max_saltlen = RSA_size(rsa) - EVP_MD_size(md); if ((RSA_bits(rsa) & 0x7) == 1) max_saltlen--; if (min_saltlen > max_saltlen) { RSAerr(RSA_F_PKEY_PSS_INIT, RSA_R_INVALID_SALT_LENGTH); return 0; } rctx->min_saltlen = min_saltlen; /* * Set PSS restrictions as defaults: we can then block any attempt to * use invalid values in pkey_rsa_ctrl */ rctx->md = md; rctx->mgf1md = mgf1md; rctx->saltlen = min_saltlen; return 1; } const EVP_PKEY_METHOD rsa_pss_pkey_meth = { EVP_PKEY_RSA_PSS, EVP_PKEY_FLAG_AUTOARGLEN, pkey_rsa_init, pkey_rsa_copy, pkey_rsa_cleanup, 0, 0, 0, pkey_rsa_keygen, pkey_pss_init, pkey_rsa_sign, pkey_pss_init, pkey_rsa_verify, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_rsa_ctrl, pkey_rsa_ctrl_str }; openssl-1.1.1f/crypto/rsa/rsa_prn.c000066400000000000000000000020231364063235100172600ustar00rootroot00000000000000/* * Copyright 2006-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #ifndef OPENSSL_NO_STDIO int RSA_print_fp(FILE *fp, const RSA *x, int off) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { RSAerr(RSA_F_RSA_PRINT_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = RSA_print(b, x, off); BIO_free(b); return ret; } #endif int RSA_print(BIO *bp, const RSA *x, int off) { EVP_PKEY *pk; int ret; pk = EVP_PKEY_new(); if (pk == NULL || !EVP_PKEY_set1_RSA(pk, (RSA *)x)) return 0; ret = EVP_PKEY_print_private(bp, pk, off, NULL); EVP_PKEY_free(pk); return ret; } openssl-1.1.1f/crypto/rsa/rsa_pss.c000066400000000000000000000163071364063235100173000ustar00rootroot00000000000000/* * Copyright 2005-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "rsa_local.h" static const unsigned char zeroes[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; #if defined(_MSC_VER) && defined(_ARM_) # pragma optimize("g", off) #endif int RSA_verify_PKCS1_PSS(RSA *rsa, const unsigned char *mHash, const EVP_MD *Hash, const unsigned char *EM, int sLen) { return RSA_verify_PKCS1_PSS_mgf1(rsa, mHash, Hash, NULL, EM, sLen); } int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const unsigned char *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, const unsigned char *EM, int sLen) { int i; int ret = 0; int hLen, maskedDBLen, MSBits, emLen; const unsigned char *H; unsigned char *DB = NULL; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); unsigned char H_[EVP_MAX_MD_SIZE]; if (ctx == NULL) goto err; if (mgf1Hash == NULL) mgf1Hash = Hash; hLen = EVP_MD_size(Hash); if (hLen < 0) goto err; /*- * Negative sLen has special meanings: * -1 sLen == hLen * -2 salt length is autorecovered from signature * -3 salt length is maximized * -N reserved */ if (sLen == RSA_PSS_SALTLEN_DIGEST) { sLen = hLen; } else if (sLen < RSA_PSS_SALTLEN_MAX) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_SLEN_CHECK_FAILED); goto err; } MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; emLen = RSA_size(rsa); if (EM[0] & (0xFF << MSBits)) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_FIRST_OCTET_INVALID); goto err; } if (MSBits == 0) { EM++; emLen--; } if (emLen < hLen + 2) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_DATA_TOO_LARGE); goto err; } if (sLen == RSA_PSS_SALTLEN_MAX) { sLen = emLen - hLen - 2; } else if (sLen > emLen - hLen - 2) { /* sLen can be small negative */ RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_DATA_TOO_LARGE); goto err; } if (EM[emLen - 1] != 0xbc) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_LAST_OCTET_INVALID); goto err; } maskedDBLen = emLen - hLen - 1; H = EM + maskedDBLen; DB = OPENSSL_malloc(maskedDBLen); if (DB == NULL) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, ERR_R_MALLOC_FAILURE); goto err; } if (PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash) < 0) goto err; for (i = 0; i < maskedDBLen; i++) DB[i] ^= EM[i]; if (MSBits) DB[0] &= 0xFF >> (8 - MSBits); for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++) ; if (DB[i++] != 0x1) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_SLEN_RECOVERY_FAILED); goto err; } if (sLen != RSA_PSS_SALTLEN_AUTO && (maskedDBLen - i) != sLen) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_SLEN_CHECK_FAILED); goto err; } if (!EVP_DigestInit_ex(ctx, Hash, NULL) || !EVP_DigestUpdate(ctx, zeroes, sizeof(zeroes)) || !EVP_DigestUpdate(ctx, mHash, hLen)) goto err; if (maskedDBLen - i) { if (!EVP_DigestUpdate(ctx, DB + i, maskedDBLen - i)) goto err; } if (!EVP_DigestFinal_ex(ctx, H_, NULL)) goto err; if (memcmp(H_, H, hLen)) { RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_BAD_SIGNATURE); ret = 0; } else { ret = 1; } err: OPENSSL_free(DB); EVP_MD_CTX_free(ctx); return ret; } int RSA_padding_add_PKCS1_PSS(RSA *rsa, unsigned char *EM, const unsigned char *mHash, const EVP_MD *Hash, int sLen) { return RSA_padding_add_PKCS1_PSS_mgf1(rsa, EM, mHash, Hash, NULL, sLen); } int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM, const unsigned char *mHash, const EVP_MD *Hash, const EVP_MD *mgf1Hash, int sLen) { int i; int ret = 0; int hLen, maskedDBLen, MSBits, emLen; unsigned char *H, *salt = NULL, *p; EVP_MD_CTX *ctx = NULL; if (mgf1Hash == NULL) mgf1Hash = Hash; hLen = EVP_MD_size(Hash); if (hLen < 0) goto err; /*- * Negative sLen has special meanings: * -1 sLen == hLen * -2 salt length is maximized * -3 same as above (on signing) * -N reserved */ if (sLen == RSA_PSS_SALTLEN_DIGEST) { sLen = hLen; } else if (sLen == RSA_PSS_SALTLEN_MAX_SIGN) { sLen = RSA_PSS_SALTLEN_MAX; } else if (sLen < RSA_PSS_SALTLEN_MAX) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1, RSA_R_SLEN_CHECK_FAILED); goto err; } MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; emLen = RSA_size(rsa); if (MSBits == 0) { *EM++ = 0; emLen--; } if (emLen < hLen + 2) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); goto err; } if (sLen == RSA_PSS_SALTLEN_MAX) { sLen = emLen - hLen - 2; } else if (sLen > emLen - hLen - 2) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); goto err; } if (sLen > 0) { salt = OPENSSL_malloc(sLen); if (salt == NULL) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1, ERR_R_MALLOC_FAILURE); goto err; } if (RAND_bytes(salt, sLen) <= 0) goto err; } maskedDBLen = emLen - hLen - 1; H = EM + maskedDBLen; ctx = EVP_MD_CTX_new(); if (ctx == NULL) goto err; if (!EVP_DigestInit_ex(ctx, Hash, NULL) || !EVP_DigestUpdate(ctx, zeroes, sizeof(zeroes)) || !EVP_DigestUpdate(ctx, mHash, hLen)) goto err; if (sLen && !EVP_DigestUpdate(ctx, salt, sLen)) goto err; if (!EVP_DigestFinal_ex(ctx, H, NULL)) goto err; /* Generate dbMask in place then perform XOR on it */ if (PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) goto err; p = EM; /* * Initial PS XORs with all zeroes which is a NOP so just update pointer. * Note from a test above this value is guaranteed to be non-negative. */ p += emLen - sLen - hLen - 2; *p++ ^= 0x1; if (sLen > 0) { for (i = 0; i < sLen; i++) *p++ ^= salt[i]; } if (MSBits) EM[0] &= 0xFF >> (8 - MSBits); /* H is already in place so just set final 0xbc */ EM[emLen - 1] = 0xbc; ret = 1; err: EVP_MD_CTX_free(ctx); OPENSSL_clear_free(salt, (size_t)sLen); /* salt != NULL implies sLen > 0 */ return ret; } #if defined(_MSC_VER) # pragma optimize("",on) #endif openssl-1.1.1f/crypto/rsa/rsa_saos.c000066400000000000000000000052731364063235100174400ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include int RSA_sign_ASN1_OCTET_STRING(int type, const unsigned char *m, unsigned int m_len, unsigned char *sigret, unsigned int *siglen, RSA *rsa) { ASN1_OCTET_STRING sig; int i, j, ret = 1; unsigned char *p, *s; sig.type = V_ASN1_OCTET_STRING; sig.length = m_len; sig.data = (unsigned char *)m; i = i2d_ASN1_OCTET_STRING(&sig, NULL); j = RSA_size(rsa); if (i > (j - RSA_PKCS1_PADDING_SIZE)) { RSAerr(RSA_F_RSA_SIGN_ASN1_OCTET_STRING, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); return 0; } s = OPENSSL_malloc((unsigned int)j + 1); if (s == NULL) { RSAerr(RSA_F_RSA_SIGN_ASN1_OCTET_STRING, ERR_R_MALLOC_FAILURE); return 0; } p = s; i2d_ASN1_OCTET_STRING(&sig, &p); i = RSA_private_encrypt(i, s, sigret, rsa, RSA_PKCS1_PADDING); if (i <= 0) ret = 0; else *siglen = i; OPENSSL_clear_free(s, (unsigned int)j + 1); return ret; } int RSA_verify_ASN1_OCTET_STRING(int dtype, const unsigned char *m, unsigned int m_len, unsigned char *sigbuf, unsigned int siglen, RSA *rsa) { int i, ret = 0; unsigned char *s; const unsigned char *p; ASN1_OCTET_STRING *sig = NULL; if (siglen != (unsigned int)RSA_size(rsa)) { RSAerr(RSA_F_RSA_VERIFY_ASN1_OCTET_STRING, RSA_R_WRONG_SIGNATURE_LENGTH); return 0; } s = OPENSSL_malloc((unsigned int)siglen); if (s == NULL) { RSAerr(RSA_F_RSA_VERIFY_ASN1_OCTET_STRING, ERR_R_MALLOC_FAILURE); goto err; } i = RSA_public_decrypt((int)siglen, sigbuf, s, rsa, RSA_PKCS1_PADDING); if (i <= 0) goto err; p = s; sig = d2i_ASN1_OCTET_STRING(NULL, &p, (long)i); if (sig == NULL) goto err; if (((unsigned int)sig->length != m_len) || (memcmp(m, sig->data, m_len) != 0)) { RSAerr(RSA_F_RSA_VERIFY_ASN1_OCTET_STRING, RSA_R_BAD_SIGNATURE); } else { ret = 1; } err: ASN1_OCTET_STRING_free(sig); OPENSSL_clear_free(s, (unsigned int)siglen); return ret; } openssl-1.1.1f/crypto/rsa/rsa_sign.c000066400000000000000000000173651364063235100174400ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" #include "rsa_local.h" /* Size of an SSL signature: MD5+SHA1 */ #define SSL_SIG_LENGTH 36 /* * encode_pkcs1 encodes a DigestInfo prefix of hash |type| and digest |m|, as * described in EMSA-PKCS1-v1_5-ENCODE, RFC 3447 section 9.2 step 2. This * encodes the DigestInfo (T and tLen) but does not add the padding. * * On success, it returns one and sets |*out| to a newly allocated buffer * containing the result and |*out_len| to its length. The caller must free * |*out| with |OPENSSL_free|. Otherwise, it returns zero. */ static int encode_pkcs1(unsigned char **out, int *out_len, int type, const unsigned char *m, unsigned int m_len) { X509_SIG sig; X509_ALGOR algor; ASN1_TYPE parameter; ASN1_OCTET_STRING digest; uint8_t *der = NULL; int len; sig.algor = &algor; sig.algor->algorithm = OBJ_nid2obj(type); if (sig.algor->algorithm == NULL) { RSAerr(RSA_F_ENCODE_PKCS1, RSA_R_UNKNOWN_ALGORITHM_TYPE); return 0; } if (OBJ_length(sig.algor->algorithm) == 0) { RSAerr(RSA_F_ENCODE_PKCS1, RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD); return 0; } parameter.type = V_ASN1_NULL; parameter.value.ptr = NULL; sig.algor->parameter = ¶meter; sig.digest = &digest; sig.digest->data = (unsigned char *)m; sig.digest->length = m_len; len = i2d_X509_SIG(&sig, &der); if (len < 0) return 0; *out = der; *out_len = len; return 1; } int RSA_sign(int type, const unsigned char *m, unsigned int m_len, unsigned char *sigret, unsigned int *siglen, RSA *rsa) { int encrypt_len, encoded_len = 0, ret = 0; unsigned char *tmps = NULL; const unsigned char *encoded = NULL; if (rsa->meth->rsa_sign) { return rsa->meth->rsa_sign(type, m, m_len, sigret, siglen, rsa); } /* Compute the encoded digest. */ if (type == NID_md5_sha1) { /* * NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and * earlier. It has no DigestInfo wrapper but otherwise is * RSASSA-PKCS1-v1_5. */ if (m_len != SSL_SIG_LENGTH) { RSAerr(RSA_F_RSA_SIGN, RSA_R_INVALID_MESSAGE_LENGTH); return 0; } encoded_len = SSL_SIG_LENGTH; encoded = m; } else { if (!encode_pkcs1(&tmps, &encoded_len, type, m, m_len)) goto err; encoded = tmps; } if (encoded_len > RSA_size(rsa) - RSA_PKCS1_PADDING_SIZE) { RSAerr(RSA_F_RSA_SIGN, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); goto err; } encrypt_len = RSA_private_encrypt(encoded_len, encoded, sigret, rsa, RSA_PKCS1_PADDING); if (encrypt_len <= 0) goto err; *siglen = encrypt_len; ret = 1; err: OPENSSL_clear_free(tmps, (size_t)encoded_len); return ret; } /* * int_rsa_verify verifies an RSA signature in |sigbuf| using |rsa|. It may be * called in two modes. If |rm| is NULL, it verifies the signature for digest * |m|. Otherwise, it recovers the digest from the signature, writing the digest * to |rm| and the length to |*prm_len|. |type| is the NID of the digest * algorithm to use. It returns one on successful verification and zero * otherwise. */ int int_rsa_verify(int type, const unsigned char *m, unsigned int m_len, unsigned char *rm, size_t *prm_len, const unsigned char *sigbuf, size_t siglen, RSA *rsa) { int decrypt_len, ret = 0, encoded_len = 0; unsigned char *decrypt_buf = NULL, *encoded = NULL; if (siglen != (size_t)RSA_size(rsa)) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_WRONG_SIGNATURE_LENGTH); return 0; } /* Recover the encoded digest. */ decrypt_buf = OPENSSL_malloc(siglen); if (decrypt_buf == NULL) { RSAerr(RSA_F_INT_RSA_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } decrypt_len = RSA_public_decrypt((int)siglen, sigbuf, decrypt_buf, rsa, RSA_PKCS1_PADDING); if (decrypt_len <= 0) goto err; if (type == NID_md5_sha1) { /* * NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and * earlier. It has no DigestInfo wrapper but otherwise is * RSASSA-PKCS1-v1_5. */ if (decrypt_len != SSL_SIG_LENGTH) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE); goto err; } if (rm != NULL) { memcpy(rm, decrypt_buf, SSL_SIG_LENGTH); *prm_len = SSL_SIG_LENGTH; } else { if (m_len != SSL_SIG_LENGTH) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_INVALID_MESSAGE_LENGTH); goto err; } if (memcmp(decrypt_buf, m, SSL_SIG_LENGTH) != 0) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE); goto err; } } } else if (type == NID_mdc2 && decrypt_len == 2 + 16 && decrypt_buf[0] == 0x04 && decrypt_buf[1] == 0x10) { /* * Oddball MDC2 case: signature can be OCTET STRING. check for correct * tag and length octets. */ if (rm != NULL) { memcpy(rm, decrypt_buf + 2, 16); *prm_len = 16; } else { if (m_len != 16) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_INVALID_MESSAGE_LENGTH); goto err; } if (memcmp(m, decrypt_buf + 2, 16) != 0) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE); goto err; } } } else { /* * If recovering the digest, extract a digest-sized output from the end * of |decrypt_buf| for |encode_pkcs1|, then compare the decryption * output as in a standard verification. */ if (rm != NULL) { const EVP_MD *md = EVP_get_digestbynid(type); if (md == NULL) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_UNKNOWN_ALGORITHM_TYPE); goto err; } m_len = EVP_MD_size(md); if (m_len > (size_t)decrypt_len) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_INVALID_DIGEST_LENGTH); goto err; } m = decrypt_buf + decrypt_len - m_len; } /* Construct the encoded digest and ensure it matches. */ if (!encode_pkcs1(&encoded, &encoded_len, type, m, m_len)) goto err; if (encoded_len != decrypt_len || memcmp(encoded, decrypt_buf, encoded_len) != 0) { RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE); goto err; } /* Output the recovered digest. */ if (rm != NULL) { memcpy(rm, m, m_len); *prm_len = m_len; } } ret = 1; err: OPENSSL_clear_free(encoded, (size_t)encoded_len); OPENSSL_clear_free(decrypt_buf, siglen); return ret; } int RSA_verify(int type, const unsigned char *m, unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen, RSA *rsa) { if (rsa->meth->rsa_verify) { return rsa->meth->rsa_verify(type, m, m_len, sigbuf, siglen, rsa); } return int_rsa_verify(type, m, m_len, NULL, NULL, sigbuf, siglen, rsa); } openssl-1.1.1f/crypto/rsa/rsa_ssl.c000066400000000000000000000132651364063235100172740ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "internal/constant_time.h" int RSA_padding_add_SSLv23(unsigned char *to, int tlen, const unsigned char *from, int flen) { int i, j; unsigned char *p; if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { RSAerr(RSA_F_RSA_PADDING_ADD_SSLV23, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return 0; } p = (unsigned char *)to; *(p++) = 0; *(p++) = 2; /* Public Key BT (Block Type) */ /* pad out with non-zero random data */ j = tlen - 3 - 8 - flen; if (RAND_bytes(p, j) <= 0) return 0; for (i = 0; i < j; i++) { if (*p == '\0') do { if (RAND_bytes(p, 1) <= 0) return 0; } while (*p == '\0'); p++; } memset(p, 3, 8); p += 8; *(p++) = '\0'; memcpy(p, from, (unsigned int)flen); return 1; } /* * Copy of RSA_padding_check_PKCS1_type_2 with a twist that rejects padding * if nul delimiter is not preceded by 8 consecutive 0x03 bytes. It also * preserves error code reporting for backward compatibility. */ int RSA_padding_check_SSLv23(unsigned char *to, int tlen, const unsigned char *from, int flen, int num) { int i; /* |em| is the encoded message, zero-padded to exactly |num| bytes */ unsigned char *em = NULL; unsigned int good, found_zero_byte, mask, threes_in_row; int zero_index = 0, msg_index, mlen = -1, err; if (tlen <= 0 || flen <= 0) return -1; if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23, RSA_R_DATA_TOO_SMALL); return -1; } em = OPENSSL_malloc(num); if (em == NULL) { RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23, ERR_R_MALLOC_FAILURE); return -1; } /* * Caller is encouraged to pass zero-padded message created with * BN_bn2binpad. Trouble is that since we can't read out of |from|'s * bounds, it's impossible to have an invariant memory access pattern * in case |from| was not zero-padded in advance. */ for (from += flen, em += num, i = 0; i < num; i++) { mask = ~constant_time_is_zero(flen); flen -= 1 & mask; from -= 1 & mask; *--em = *from & mask; } good = constant_time_is_zero(em[0]); good &= constant_time_eq(em[1], 2); err = constant_time_select_int(good, 0, RSA_R_BLOCK_TYPE_IS_NOT_02); mask = ~good; /* scan over padding data */ found_zero_byte = 0; threes_in_row = 0; for (i = 2; i < num; i++) { unsigned int equals0 = constant_time_is_zero(em[i]); zero_index = constant_time_select_int(~found_zero_byte & equals0, i, zero_index); found_zero_byte |= equals0; threes_in_row += 1 & ~found_zero_byte; threes_in_row &= found_zero_byte | constant_time_eq(em[i], 3); } /* * PS must be at least 8 bytes long, and it starts two bytes into |em|. * If we never found a 0-byte, then |zero_index| is 0 and the check * also fails. */ good &= constant_time_ge(zero_index, 2 + 8); err = constant_time_select_int(mask | good, err, RSA_R_NULL_BEFORE_BLOCK_MISSING); mask = ~good; good &= constant_time_ge(threes_in_row, 8); err = constant_time_select_int(mask | good, err, RSA_R_SSLV3_ROLLBACK_ATTACK); mask = ~good; /* * Skip the zero byte. This is incorrect if we never found a zero-byte * but in this case we also do not copy the message out. */ msg_index = zero_index + 1; mlen = num - msg_index; /* * For good measure, do this check in constant time as well. */ good &= constant_time_ge(tlen, mlen); err = constant_time_select_int(mask | good, err, RSA_R_DATA_TOO_LARGE); /* * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. * Otherwise leave |to| unchanged. * Copy the memory back in a way that does not reveal the size of * the data being copied via a timing side channel. This requires copying * parts of the buffer multiple times based on the bits set in the real * length. Clear bits do a non-copy with identical access pattern. * The loop below has overall complexity of O(N*log(N)). */ tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), num - RSA_PKCS1_PADDING_SIZE, tlen); for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); } for (i = 0; i < tlen; i++) { mask = good & constant_time_lt(i, mlen); to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); } OPENSSL_clear_free(em, num); RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23, err); err_clear_last_constant_time(1 & good); return constant_time_select_int(good, mlen, -1); } openssl-1.1.1f/crypto/rsa/rsa_x931.c000066400000000000000000000050671364063235100172000ustar00rootroot00000000000000/* * Copyright 2005-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include int RSA_padding_add_X931(unsigned char *to, int tlen, const unsigned char *from, int flen) { int j; unsigned char *p; /* * Absolute minimum amount of padding is 1 header nibble, 1 padding * nibble and 2 trailer bytes: but 1 hash if is already in 'from'. */ j = tlen - flen - 2; if (j < 0) { RSAerr(RSA_F_RSA_PADDING_ADD_X931, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return -1; } p = (unsigned char *)to; /* If no padding start and end nibbles are in one byte */ if (j == 0) { *p++ = 0x6A; } else { *p++ = 0x6B; if (j > 1) { memset(p, 0xBB, j - 1); p += j - 1; } *p++ = 0xBA; } memcpy(p, from, (unsigned int)flen); p += flen; *p = 0xCC; return 1; } int RSA_padding_check_X931(unsigned char *to, int tlen, const unsigned char *from, int flen, int num) { int i = 0, j; const unsigned char *p; p = from; if ((num != flen) || ((*p != 0x6A) && (*p != 0x6B))) { RSAerr(RSA_F_RSA_PADDING_CHECK_X931, RSA_R_INVALID_HEADER); return -1; } if (*p++ == 0x6B) { j = flen - 3; for (i = 0; i < j; i++) { unsigned char c = *p++; if (c == 0xBA) break; if (c != 0xBB) { RSAerr(RSA_F_RSA_PADDING_CHECK_X931, RSA_R_INVALID_PADDING); return -1; } } j -= i; if (i == 0) { RSAerr(RSA_F_RSA_PADDING_CHECK_X931, RSA_R_INVALID_PADDING); return -1; } } else { j = flen - 2; } if (p[j] != 0xCC) { RSAerr(RSA_F_RSA_PADDING_CHECK_X931, RSA_R_INVALID_TRAILER); return -1; } memcpy(to, p, (unsigned int)j); return j; } /* Translate between X931 hash ids and NIDs */ int RSA_X931_hash_id(int nid) { switch (nid) { case NID_sha1: return 0x33; case NID_sha256: return 0x34; case NID_sha384: return 0x36; case NID_sha512: return 0x35; } return -1; } openssl-1.1.1f/crypto/rsa/rsa_x931g.c000066400000000000000000000112541364063235100173420ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "rsa_local.h" /* X9.31 RSA key derivation and generation */ int RSA_X931_derive_ex(RSA *rsa, BIGNUM *p1, BIGNUM *p2, BIGNUM *q1, BIGNUM *q2, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *Xq1, const BIGNUM *Xq2, const BIGNUM *Xq, const BIGNUM *e, BN_GENCB *cb) { BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL; BN_CTX *ctx = NULL, *ctx2 = NULL; int ret = 0; if (!rsa) goto err; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); r3 = BN_CTX_get(ctx); if (r3 == NULL) goto err; if (!rsa->e) { rsa->e = BN_dup(e); if (!rsa->e) goto err; } else { e = rsa->e; } /* * If not all parameters present only calculate what we can. This allows * test programs to output selective parameters. */ if (Xp && rsa->p == NULL) { rsa->p = BN_new(); if (rsa->p == NULL) goto err; if (!BN_X931_derive_prime_ex(rsa->p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) goto err; } if (Xq && rsa->q == NULL) { rsa->q = BN_new(); if (rsa->q == NULL) goto err; if (!BN_X931_derive_prime_ex(rsa->q, q1, q2, Xq, Xq1, Xq2, e, ctx, cb)) goto err; } if (rsa->p == NULL || rsa->q == NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); return 2; } /* * Since both primes are set we can now calculate all remaining * components. */ /* calculate n */ rsa->n = BN_new(); if (rsa->n == NULL) goto err; if (!BN_mul(rsa->n, rsa->p, rsa->q, ctx)) goto err; /* calculate d */ if (!BN_sub(r1, rsa->p, BN_value_one())) goto err; /* p-1 */ if (!BN_sub(r2, rsa->q, BN_value_one())) goto err; /* q-1 */ if (!BN_mul(r0, r1, r2, ctx)) goto err; /* (p-1)(q-1) */ if (!BN_gcd(r3, r1, r2, ctx)) goto err; if (!BN_div(r0, NULL, r0, r3, ctx)) goto err; /* LCM((p-1)(q-1)) */ ctx2 = BN_CTX_new(); if (ctx2 == NULL) goto err; rsa->d = BN_mod_inverse(NULL, rsa->e, r0, ctx2); /* d */ if (rsa->d == NULL) goto err; /* calculate d mod (p-1) */ rsa->dmp1 = BN_new(); if (rsa->dmp1 == NULL) goto err; if (!BN_mod(rsa->dmp1, rsa->d, r1, ctx)) goto err; /* calculate d mod (q-1) */ rsa->dmq1 = BN_new(); if (rsa->dmq1 == NULL) goto err; if (!BN_mod(rsa->dmq1, rsa->d, r2, ctx)) goto err; /* calculate inverse of q mod p */ rsa->iqmp = BN_mod_inverse(NULL, rsa->q, rsa->p, ctx2); if (rsa->iqmp == NULL) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); BN_CTX_free(ctx2); return ret; } int RSA_X931_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e, BN_GENCB *cb) { int ok = 0; BIGNUM *Xp = NULL, *Xq = NULL; BN_CTX *ctx = NULL; ctx = BN_CTX_new(); if (ctx == NULL) goto error; BN_CTX_start(ctx); Xp = BN_CTX_get(ctx); Xq = BN_CTX_get(ctx); if (Xq == NULL) goto error; if (!BN_X931_generate_Xpq(Xp, Xq, bits, ctx)) goto error; rsa->p = BN_new(); rsa->q = BN_new(); if (rsa->p == NULL || rsa->q == NULL) goto error; /* Generate two primes from Xp, Xq */ if (!BN_X931_generate_prime_ex(rsa->p, NULL, NULL, NULL, NULL, Xp, e, ctx, cb)) goto error; if (!BN_X931_generate_prime_ex(rsa->q, NULL, NULL, NULL, NULL, Xq, e, ctx, cb)) goto error; /* * Since rsa->p and rsa->q are valid this call will just derive remaining * RSA components. */ if (!RSA_X931_derive_ex(rsa, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, e, cb)) goto error; ok = 1; error: BN_CTX_end(ctx); BN_CTX_free(ctx); if (ok) return 1; return 0; } openssl-1.1.1f/crypto/s390x_arch.h000066400000000000000000000061051364063235100167240ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_S390X_ARCH_H # define OSSL_CRYPTO_S390X_ARCH_H # ifndef __ASSEMBLER__ void s390x_kimd(const unsigned char *in, size_t len, unsigned int fc, void *param); void s390x_klmd(const unsigned char *in, size_t inlen, unsigned char *out, size_t outlen, unsigned int fc, void *param); void s390x_km(const unsigned char *in, size_t len, unsigned char *out, unsigned int fc, void *param); void s390x_kmac(const unsigned char *in, size_t len, unsigned int fc, void *param); void s390x_kmo(const unsigned char *in, size_t len, unsigned char *out, unsigned int fc, void *param); void s390x_kmf(const unsigned char *in, size_t len, unsigned char *out, unsigned int fc, void *param); void s390x_kma(const unsigned char *aad, size_t alen, const unsigned char *in, size_t len, unsigned char *out, unsigned int fc, void *param); /* * The field elements of OPENSSL_s390xcap_P are the 64-bit words returned by * the STFLE instruction followed by the 64-bit word pairs returned by * instructions' QUERY functions. If STFLE returns fewer data or an instruction * is not supported, the corresponding field elements are zero. */ struct OPENSSL_s390xcap_st { unsigned long long stfle[4]; unsigned long long kimd[2]; unsigned long long klmd[2]; unsigned long long km[2]; unsigned long long kmc[2]; unsigned long long kmac[2]; unsigned long long kmctr[2]; unsigned long long kmo[2]; unsigned long long kmf[2]; unsigned long long prno[2]; unsigned long long kma[2]; }; extern struct OPENSSL_s390xcap_st OPENSSL_s390xcap_P; /* convert facility bit number or function code to bit mask */ # define S390X_CAPBIT(i) (1ULL << (63 - (i) % 64)) # endif /* OPENSSL_s390xcap_P offsets [bytes] */ # define S390X_STFLE 0x00 # define S390X_KIMD 0x20 # define S390X_KLMD 0x30 # define S390X_KM 0x40 # define S390X_KMC 0x50 # define S390X_KMAC 0x60 # define S390X_KMCTR 0x70 # define S390X_KMO 0x80 # define S390X_KMF 0x90 # define S390X_PRNO 0xa0 # define S390X_KMA 0xb0 /* Facility Bit Numbers */ # define S390X_VX 129 # define S390X_VXD 134 # define S390X_VXE 135 /* Function Codes */ /* all instructions */ # define S390X_QUERY 0 /* kimd/klmd */ # define S390X_SHA3_224 32 # define S390X_SHA3_256 33 # define S390X_SHA3_384 34 # define S390X_SHA3_512 35 # define S390X_SHAKE_128 36 # define S390X_SHAKE_256 37 # define S390X_GHASH 65 /* km/kmc/kmac/kmctr/kmo/kmf/kma */ # define S390X_AES_128 18 # define S390X_AES_192 19 # define S390X_AES_256 20 /* prno */ # define S390X_TRNG 114 /* Register 0 Flags */ # define S390X_DECRYPT 0x80 # define S390X_KMA_LPC 0x100 # define S390X_KMA_LAAD 0x200 # define S390X_KMA_HS 0x400 #endif openssl-1.1.1f/crypto/s390xcap.c000066400000000000000000000037351364063235100164140ustar00rootroot00000000000000/* * Copyright 2010-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "internal/cryptlib.h" #include "s390x_arch.h" static sigjmp_buf ill_jmp; static void ill_handler(int sig) { siglongjmp(ill_jmp, sig); } void OPENSSL_s390x_facilities(void); void OPENSSL_vx_probe(void); struct OPENSSL_s390xcap_st OPENSSL_s390xcap_P; void OPENSSL_cpuid_setup(void) { sigset_t oset; struct sigaction ill_act, oact_ill, oact_fpe; if (OPENSSL_s390xcap_P.stfle[0]) return; /* set a bit that will not be tested later */ OPENSSL_s390xcap_P.stfle[0] |= S390X_CAPBIT(0); memset(&ill_act, 0, sizeof(ill_act)); ill_act.sa_handler = ill_handler; sigfillset(&ill_act.sa_mask); sigdelset(&ill_act.sa_mask, SIGILL); sigdelset(&ill_act.sa_mask, SIGFPE); sigdelset(&ill_act.sa_mask, SIGTRAP); sigprocmask(SIG_SETMASK, &ill_act.sa_mask, &oset); sigaction(SIGILL, &ill_act, &oact_ill); sigaction(SIGFPE, &ill_act, &oact_fpe); /* protection against missing store-facility-list-extended */ if (sigsetjmp(ill_jmp, 1) == 0) OPENSSL_s390x_facilities(); /* protection against disabled vector facility */ if ((OPENSSL_s390xcap_P.stfle[2] & S390X_CAPBIT(S390X_VX)) && (sigsetjmp(ill_jmp, 1) == 0)) { OPENSSL_vx_probe(); } else { OPENSSL_s390xcap_P.stfle[2] &= ~(S390X_CAPBIT(S390X_VX) | S390X_CAPBIT(S390X_VXD) | S390X_CAPBIT(S390X_VXE)); } sigaction(SIGFPE, &oact_fpe, NULL); sigaction(SIGILL, &oact_ill, NULL); sigprocmask(SIG_SETMASK, &oset, NULL); } openssl-1.1.1f/crypto/s390xcpuid.pl000077500000000000000000000210531364063235100171420ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $ra="%r14"; $sp="%r15"; $stdframe=16*$SIZE_T+4*8; $code=<<___; #include "s390x_arch.h" .text .globl OPENSSL_s390x_facilities .type OPENSSL_s390x_facilities,\@function .align 16 OPENSSL_s390x_facilities: lghi %r0,0 larl %r4,OPENSSL_s390xcap_P stg %r0,S390X_STFLE+8(%r4) # wipe capability vectors stg %r0,S390X_STFLE+16(%r4) stg %r0,S390X_STFLE+24(%r4) stg %r0,S390X_KIMD(%r4) stg %r0,S390X_KIMD+8(%r4) stg %r0,S390X_KLMD(%r4) stg %r0,S390X_KLMD+8(%r4) stg %r0,S390X_KM(%r4) stg %r0,S390X_KM+8(%r4) stg %r0,S390X_KMC(%r4) stg %r0,S390X_KMC+8(%r4) stg %r0,S390X_KMAC(%r4) stg %r0,S390X_KMAC+8(%r4) stg %r0,S390X_KMCTR(%r4) stg %r0,S390X_KMCTR+8(%r4) stg %r0,S390X_KMO(%r4) stg %r0,S390X_KMO+8(%r4) stg %r0,S390X_KMF(%r4) stg %r0,S390X_KMF+8(%r4) stg %r0,S390X_PRNO(%r4) stg %r0,S390X_PRNO+8(%r4) stg %r0,S390X_KMA(%r4) stg %r0,S390X_KMA+8(%r4) .long 0xb2b04000 # stfle 0(%r4) brc 8,.Ldone lghi %r0,1 .long 0xb2b04000 # stfle 0(%r4) brc 8,.Ldone lghi %r0,2 .long 0xb2b04000 # stfle 0(%r4) .Ldone: lmg %r2,%r3,S390X_STFLE(%r4) tmhl %r2,0x4000 # check for message-security-assist jz .Lret lghi %r0,S390X_QUERY # query kimd capabilities la %r1,S390X_KIMD(%r4) .long 0xb93e0002 # kimd %r0,%r2 lghi %r0,S390X_QUERY # query klmd capabilities la %r1,S390X_KLMD(%r4) .long 0xb93f0002 # klmd %r0,%r2 lghi %r0,S390X_QUERY # query km capability vector la %r1,S390X_KM(%r4) .long 0xb92e0042 # km %r4,%r2 lghi %r0,S390X_QUERY # query kmc capability vector la %r1,S390X_KMC(%r4) .long 0xb92f0042 # kmc %r4,%r2 lghi %r0,S390X_QUERY # query kmac capability vector la %r1,S390X_KMAC(%r4) .long 0xb91e0042 # kmac %r4,%r2 tmhh %r3,0x0004 # check for message-security-assist-4 jz .Lret lghi %r0,S390X_QUERY # query kmctr capability vector la %r1,S390X_KMCTR(%r4) .long 0xb92d2042 # kmctr %r4,%r2,%r2 lghi %r0,S390X_QUERY # query kmo capability vector la %r1,S390X_KMO(%r4) .long 0xb92b0042 # kmo %r4,%r2 lghi %r0,S390X_QUERY # query kmf capability vector la %r1,S390X_KMF(%r4) .long 0xb92a0042 # kmf %r4,%r2 tml %r2,0x40 # check for message-security-assist-5 jz .Lret lghi %r0,S390X_QUERY # query prno capability vector la %r1,S390X_PRNO(%r4) .long 0xb93c0042 # prno %r4,%r2 lg %r2,S390X_STFLE+16(%r4) tmhl %r2,0x2000 # check for message-security-assist-8 jz .Lret lghi %r0,S390X_QUERY # query kma capability vector la %r1,S390X_KMA(%r4) .long 0xb9294022 # kma %r2,%r4,%r2 .Lret: br $ra .size OPENSSL_s390x_facilities,.-OPENSSL_s390x_facilities .globl OPENSSL_rdtsc .type OPENSSL_rdtsc,\@function .align 16 OPENSSL_rdtsc: larl %r4,OPENSSL_s390xcap_P tm S390X_STFLE+3(%r4),0x40 # check for store-clock-fast facility jz .Lstck .long 0xb27cf010 # stckf 16($sp) lg %r2,16($sp) br $ra .Lstck: stck 16($sp) lg %r2,16($sp) br $ra .size OPENSSL_rdtsc,.-OPENSSL_rdtsc .globl OPENSSL_atomic_add .type OPENSSL_atomic_add,\@function .align 16 OPENSSL_atomic_add: l %r1,0(%r2) .Lspin: lr %r0,%r1 ar %r0,%r3 cs %r1,%r0,0(%r2) brc 4,.Lspin lgfr %r2,%r0 # OpenSSL expects the new value br $ra .size OPENSSL_atomic_add,.-OPENSSL_atomic_add .globl OPENSSL_wipe_cpu .type OPENSSL_wipe_cpu,\@function .align 16 OPENSSL_wipe_cpu: xgr %r0,%r0 xgr %r1,%r1 lgr %r2,$sp xgr %r3,%r3 xgr %r4,%r4 lzdr %f0 lzdr %f1 lzdr %f2 lzdr %f3 lzdr %f4 lzdr %f5 lzdr %f6 lzdr %f7 br $ra .size OPENSSL_wipe_cpu,.-OPENSSL_wipe_cpu .globl OPENSSL_cleanse .type OPENSSL_cleanse,\@function .align 16 OPENSSL_cleanse: #if !defined(__s390x__) && !defined(__s390x) llgfr %r3,%r3 #endif lghi %r4,15 lghi %r0,0 clgr %r3,%r4 jh .Lot clgr %r3,%r0 bcr 8,%r14 .Little: stc %r0,0(%r2) la %r2,1(%r2) brctg %r3,.Little br %r14 .align 4 .Lot: tmll %r2,7 jz .Laligned stc %r0,0(%r2) la %r2,1(%r2) brctg %r3,.Lot .Laligned: srlg %r4,%r3,3 .Loop: stg %r0,0(%r2) la %r2,8(%r2) brctg %r4,.Loop lghi %r4,7 ngr %r3,%r4 jnz .Little br $ra .size OPENSSL_cleanse,.-OPENSSL_cleanse .globl CRYPTO_memcmp .type CRYPTO_memcmp,\@function .align 16 CRYPTO_memcmp: #if !defined(__s390x__) && !defined(__s390x) llgfr %r4,%r4 #endif lghi %r5,0 clgr %r4,%r5 je .Lno_data .Loop_cmp: llgc %r0,0(%r2) la %r2,1(%r2) llgc %r1,0(%r3) la %r3,1(%r3) xr %r1,%r0 or %r5,%r1 brctg %r4,.Loop_cmp lnr %r5,%r5 srl %r5,31 .Lno_data: lgr %r2,%r5 br $ra .size CRYPTO_memcmp,.-CRYPTO_memcmp .globl OPENSSL_instrument_bus .type OPENSSL_instrument_bus,\@function .align 16 OPENSSL_instrument_bus: lghi %r2,0 br %r14 .size OPENSSL_instrument_bus,.-OPENSSL_instrument_bus .globl OPENSSL_instrument_bus2 .type OPENSSL_instrument_bus2,\@function .align 16 OPENSSL_instrument_bus2: lghi %r2,0 br $ra .size OPENSSL_instrument_bus2,.-OPENSSL_instrument_bus2 .globl OPENSSL_vx_probe .type OPENSSL_vx_probe,\@function .align 16 OPENSSL_vx_probe: .word 0xe700,0x0000,0x0044 # vzero %v0 br $ra .size OPENSSL_vx_probe,.-OPENSSL_vx_probe ___ { ################ # void s390x_kimd(const unsigned char *in, size_t len, unsigned int fc, # void *param) my ($in,$len,$fc,$param) = map("%r$_",(2..5)); $code.=<<___; .globl s390x_kimd .type s390x_kimd,\@function .align 16 s390x_kimd: llgfr %r0,$fc lgr %r1,$param .long 0xb93e0002 # kimd %r0,%r2 brc 1,.-4 # pay attention to "partial completion" br $ra .size s390x_kimd,.-s390x_kimd ___ } { ################ # void s390x_klmd(const unsigned char *in, size_t inlen, unsigned char *out, # size_t outlen, unsigned int fc, void *param) my ($in,$inlen,$out,$outlen,$fc) = map("%r$_",(2..6)); $code.=<<___; .globl s390x_klmd .type s390x_klmd,\@function .align 32 s390x_klmd: llgfr %r0,$fc l${g} %r1,$stdframe($sp) .long 0xb93f0042 # klmd %r4,%r2 brc 1,.-4 # pay attention to "partial completion" br $ra .size s390x_klmd,.-s390x_klmd ___ } ################ # void s390x_km(const unsigned char *in, size_t len, unsigned char *out, # unsigned int fc, void *param) { my ($in,$len,$out,$fc,$param) = map("%r$_",(2..6)); $code.=<<___; .globl s390x_km .type s390x_km,\@function .align 16 s390x_km: lr %r0,$fc l${g}r %r1,$param .long 0xb92e0042 # km $out,$in brc 1,.-4 # pay attention to "partial completion" br $ra .size s390x_km,.-s390x_km ___ } ################ # void s390x_kmac(const unsigned char *in, size_t len, unsigned int fc, # void *param) { my ($in,$len,$fc,$param) = map("%r$_",(2..5)); $code.=<<___; .globl s390x_kmac .type s390x_kmac,\@function .align 16 s390x_kmac: lr %r0,$fc l${g}r %r1,$param .long 0xb91e0002 # kmac %r0,$in brc 1,.-4 # pay attention to "partial completion" br $ra .size s390x_kmac,.-s390x_kmac ___ } ################ # void s390x_kmo(const unsigned char *in, size_t len, unsigned char *out, # unsigned int fc, void *param) { my ($in,$len,$out,$fc,$param) = map("%r$_",(2..6)); $code.=<<___; .globl s390x_kmo .type s390x_kmo,\@function .align 16 s390x_kmo: lr %r0,$fc l${g}r %r1,$param .long 0xb92b0042 # kmo $out,$in brc 1,.-4 # pay attention to "partial completion" br $ra .size s390x_kmo,.-s390x_kmo ___ } ################ # void s390x_kmf(const unsigned char *in, size_t len, unsigned char *out, # unsigned int fc, void *param) { my ($in,$len,$out,$fc,$param) = map("%r$_",(2..6)); $code.=<<___; .globl s390x_kmf .type s390x_kmf,\@function .align 16 s390x_kmf: lr %r0,$fc l${g}r %r1,$param .long 0xb92a0042 # kmf $out,$in brc 1,.-4 # pay attention to "partial completion" br $ra .size s390x_kmf,.-s390x_kmf ___ } ################ # void s390x_kma(const unsigned char *aad, size_t alen, # const unsigned char *in, size_t len, # unsigned char *out, unsigned int fc, void *param) { my ($aad,$alen,$in,$len,$out) = map("%r$_",(2..6)); $code.=<<___; .globl s390x_kma .type s390x_kma,\@function .align 16 s390x_kma: st${g} $out,6*$SIZE_T($sp) lm${g} %r0,%r1,$stdframe($sp) .long 0xb9292064 # kma $out,$aad,$in brc 1,.-4 # pay attention to "partial completion" l${g} $out,6*$SIZE_T($sp) br $ra .size s390x_kma,.-s390x_kma ___ } $code.=<<___; .section .init brasl $ra,OPENSSL_cpuid_setup ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; # force flush openssl-1.1.1f/crypto/seed/000077500000000000000000000000001364063235100156065ustar00rootroot00000000000000openssl-1.1.1f/crypto/seed/build.info000066400000000000000000000001401364063235100175550ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=seed.c seed_ecb.c seed_cbc.c seed_cfb.c seed_ofb.c openssl-1.1.1f/crypto/seed/seed.c000066400000000000000000000624711364063235100167040ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Copyright (c) 2007 KISA(Korea Information Security Agency). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Neither the name of author nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #ifndef OPENSSL_NO_SEED # include # include # include # ifdef _WIN32 # include # endif # include # include "seed_local.h" # ifdef SS /* can get defined on Solaris by inclusion of * */ # undef SS # endif # if !defined(OPENSSL_SMALL_FOOTPRINT) # define G_FUNC(v) \ SS[0][(unsigned char) (v) & 0xff] ^ \ SS[1][(unsigned char) ((v)>>8) & 0xff] ^ \ SS[2][(unsigned char)((v)>>16) & 0xff] ^ \ SS[3][(unsigned char)((v)>>24) & 0xff] static const seed_word SS[4][256] = { { 0x2989a1a8, 0x05858184, 0x16c6d2d4, 0x13c3d3d0, 0x14445054, 0x1d0d111c, 0x2c8ca0ac, 0x25052124, 0x1d4d515c, 0x03434340, 0x18081018, 0x1e0e121c, 0x11415150, 0x3cccf0fc, 0x0acac2c8, 0x23436360, 0x28082028, 0x04444044, 0x20002020, 0x1d8d919c, 0x20c0e0e0, 0x22c2e2e0, 0x08c8c0c8, 0x17071314, 0x2585a1a4, 0x0f8f838c, 0x03030300, 0x3b4b7378, 0x3b8bb3b8, 0x13031310, 0x12c2d2d0, 0x2ecee2ec, 0x30407070, 0x0c8c808c, 0x3f0f333c, 0x2888a0a8, 0x32023230, 0x1dcdd1dc, 0x36c6f2f4, 0x34447074, 0x2ccce0ec, 0x15859194, 0x0b0b0308, 0x17475354, 0x1c4c505c, 0x1b4b5358, 0x3d8db1bc, 0x01010100, 0x24042024, 0x1c0c101c, 0x33437370, 0x18889098, 0x10001010, 0x0cccc0cc, 0x32c2f2f0, 0x19c9d1d8, 0x2c0c202c, 0x27c7e3e4, 0x32427270, 0x03838380, 0x1b8b9398, 0x11c1d1d0, 0x06868284, 0x09c9c1c8, 0x20406060, 0x10405050, 0x2383a3a0, 0x2bcbe3e8, 0x0d0d010c, 0x3686b2b4, 0x1e8e929c, 0x0f4f434c, 0x3787b3b4, 0x1a4a5258, 0x06c6c2c4, 0x38487078, 0x2686a2a4, 0x12021210, 0x2f8fa3ac, 0x15c5d1d4, 0x21416160, 0x03c3c3c0, 0x3484b0b4, 0x01414140, 0x12425250, 0x3d4d717c, 0x0d8d818c, 0x08080008, 0x1f0f131c, 0x19899198, 0x00000000, 0x19091118, 0x04040004, 0x13435350, 0x37c7f3f4, 0x21c1e1e0, 0x3dcdf1fc, 0x36467274, 0x2f0f232c, 0x27072324, 0x3080b0b0, 0x0b8b8388, 0x0e0e020c, 0x2b8ba3a8, 0x2282a2a0, 0x2e4e626c, 0x13839390, 0x0d4d414c, 0x29496168, 0x3c4c707c, 0x09090108, 0x0a0a0208, 0x3f8fb3bc, 0x2fcfe3ec, 0x33c3f3f0, 0x05c5c1c4, 0x07878384, 0x14041014, 0x3ecef2fc, 0x24446064, 0x1eced2dc, 0x2e0e222c, 0x0b4b4348, 0x1a0a1218, 0x06060204, 0x21012120, 0x2b4b6368, 0x26466264, 0x02020200, 0x35c5f1f4, 0x12829290, 0x0a8a8288, 0x0c0c000c, 0x3383b3b0, 0x3e4e727c, 0x10c0d0d0, 0x3a4a7278, 0x07474344, 0x16869294, 0x25c5e1e4, 0x26062224, 0x00808080, 0x2d8da1ac, 0x1fcfd3dc, 0x2181a1a0, 0x30003030, 0x37073334, 0x2e8ea2ac, 0x36063234, 0x15051114, 0x22022220, 0x38083038, 0x34c4f0f4, 0x2787a3a4, 0x05454144, 0x0c4c404c, 0x01818180, 0x29c9e1e8, 0x04848084, 0x17879394, 0x35053134, 0x0bcbc3c8, 0x0ecec2cc, 0x3c0c303c, 0x31417170, 0x11011110, 0x07c7c3c4, 0x09898188, 0x35457174, 0x3bcbf3f8, 0x1acad2d8, 0x38c8f0f8, 0x14849094, 0x19495158, 0x02828280, 0x04c4c0c4, 0x3fcff3fc, 0x09494148, 0x39093138, 0x27476364, 0x00c0c0c0, 0x0fcfc3cc, 0x17c7d3d4, 0x3888b0b8, 0x0f0f030c, 0x0e8e828c, 0x02424240, 0x23032320, 0x11819190, 0x2c4c606c, 0x1bcbd3d8, 0x2484a0a4, 0x34043034, 0x31c1f1f0, 0x08484048, 0x02c2c2c0, 0x2f4f636c, 0x3d0d313c, 0x2d0d212c, 0x00404040, 0x3e8eb2bc, 0x3e0e323c, 0x3c8cb0bc, 0x01c1c1c0, 0x2a8aa2a8, 0x3a8ab2b8, 0x0e4e424c, 0x15455154, 0x3b0b3338, 0x1cccd0dc, 0x28486068, 0x3f4f737c, 0x1c8c909c, 0x18c8d0d8, 0x0a4a4248, 0x16465254, 0x37477374, 0x2080a0a0, 0x2dcde1ec, 0x06464244, 0x3585b1b4, 0x2b0b2328, 0x25456164, 0x3acaf2f8, 0x23c3e3e0, 0x3989b1b8, 0x3181b1b0, 0x1f8f939c, 0x1e4e525c, 0x39c9f1f8, 0x26c6e2e4, 0x3282b2b0, 0x31013130, 0x2acae2e8, 0x2d4d616c, 0x1f4f535c, 0x24c4e0e4, 0x30c0f0f0, 0x0dcdc1cc, 0x08888088, 0x16061214, 0x3a0a3238, 0x18485058, 0x14c4d0d4, 0x22426260, 0x29092128, 0x07070304, 0x33033330, 0x28c8e0e8, 0x1b0b1318, 0x05050104, 0x39497178, 0x10809090, 0x2a4a6268, 0x2a0a2228, 0x1a8a9298 }, { 0x38380830, 0xe828c8e0, 0x2c2d0d21, 0xa42686a2, 0xcc0fcfc3, 0xdc1eced2, 0xb03383b3, 0xb83888b0, 0xac2f8fa3, 0x60204060, 0x54154551, 0xc407c7c3, 0x44044440, 0x6c2f4f63, 0x682b4b63, 0x581b4b53, 0xc003c3c3, 0x60224262, 0x30330333, 0xb43585b1, 0x28290921, 0xa02080a0, 0xe022c2e2, 0xa42787a3, 0xd013c3d3, 0x90118191, 0x10110111, 0x04060602, 0x1c1c0c10, 0xbc3c8cb0, 0x34360632, 0x480b4b43, 0xec2fcfe3, 0x88088880, 0x6c2c4c60, 0xa82888a0, 0x14170713, 0xc404c4c0, 0x14160612, 0xf434c4f0, 0xc002c2c2, 0x44054541, 0xe021c1e1, 0xd416c6d2, 0x3c3f0f33, 0x3c3d0d31, 0x8c0e8e82, 0x98188890, 0x28280820, 0x4c0e4e42, 0xf436c6f2, 0x3c3e0e32, 0xa42585a1, 0xf839c9f1, 0x0c0d0d01, 0xdc1fcfd3, 0xd818c8d0, 0x282b0b23, 0x64264662, 0x783a4a72, 0x24270723, 0x2c2f0f23, 0xf031c1f1, 0x70324272, 0x40024242, 0xd414c4d0, 0x40014141, 0xc000c0c0, 0x70334373, 0x64274763, 0xac2c8ca0, 0x880b8b83, 0xf437c7f3, 0xac2d8da1, 0x80008080, 0x1c1f0f13, 0xc80acac2, 0x2c2c0c20, 0xa82a8aa2, 0x34340430, 0xd012c2d2, 0x080b0b03, 0xec2ecee2, 0xe829c9e1, 0x5c1d4d51, 0x94148490, 0x18180810, 0xf838c8f0, 0x54174753, 0xac2e8ea2, 0x08080800, 0xc405c5c1, 0x10130313, 0xcc0dcdc1, 0x84068682, 0xb83989b1, 0xfc3fcff3, 0x7c3d4d71, 0xc001c1c1, 0x30310131, 0xf435c5f1, 0x880a8a82, 0x682a4a62, 0xb03181b1, 0xd011c1d1, 0x20200020, 0xd417c7d3, 0x00020202, 0x20220222, 0x04040400, 0x68284860, 0x70314171, 0x04070703, 0xd81bcbd3, 0x9c1d8d91, 0x98198991, 0x60214161, 0xbc3e8eb2, 0xe426c6e2, 0x58194951, 0xdc1dcdd1, 0x50114151, 0x90108090, 0xdc1cccd0, 0x981a8a92, 0xa02383a3, 0xa82b8ba3, 0xd010c0d0, 0x80018181, 0x0c0f0f03, 0x44074743, 0x181a0a12, 0xe023c3e3, 0xec2ccce0, 0x8c0d8d81, 0xbc3f8fb3, 0x94168692, 0x783b4b73, 0x5c1c4c50, 0xa02282a2, 0xa02181a1, 0x60234363, 0x20230323, 0x4c0d4d41, 0xc808c8c0, 0x9c1e8e92, 0x9c1c8c90, 0x383a0a32, 0x0c0c0c00, 0x2c2e0e22, 0xb83a8ab2, 0x6c2e4e62, 0x9c1f8f93, 0x581a4a52, 0xf032c2f2, 0x90128292, 0xf033c3f3, 0x48094941, 0x78384870, 0xcc0cccc0, 0x14150511, 0xf83bcbf3, 0x70304070, 0x74354571, 0x7c3f4f73, 0x34350531, 0x10100010, 0x00030303, 0x64244460, 0x6c2d4d61, 0xc406c6c2, 0x74344470, 0xd415c5d1, 0xb43484b0, 0xe82acae2, 0x08090901, 0x74364672, 0x18190911, 0xfc3ecef2, 0x40004040, 0x10120212, 0xe020c0e0, 0xbc3d8db1, 0x04050501, 0xf83acaf2, 0x00010101, 0xf030c0f0, 0x282a0a22, 0x5c1e4e52, 0xa82989a1, 0x54164652, 0x40034343, 0x84058581, 0x14140410, 0x88098981, 0x981b8b93, 0xb03080b0, 0xe425c5e1, 0x48084840, 0x78394971, 0x94178793, 0xfc3cccf0, 0x1c1e0e12, 0x80028282, 0x20210121, 0x8c0c8c80, 0x181b0b13, 0x5c1f4f53, 0x74374773, 0x54144450, 0xb03282b2, 0x1c1d0d11, 0x24250521, 0x4c0f4f43, 0x00000000, 0x44064642, 0xec2dcde1, 0x58184850, 0x50124252, 0xe82bcbe3, 0x7c3e4e72, 0xd81acad2, 0xc809c9c1, 0xfc3dcdf1, 0x30300030, 0x94158591, 0x64254561, 0x3c3c0c30, 0xb43686b2, 0xe424c4e0, 0xb83b8bb3, 0x7c3c4c70, 0x0c0e0e02, 0x50104050, 0x38390931, 0x24260622, 0x30320232, 0x84048480, 0x68294961, 0x90138393, 0x34370733, 0xe427c7e3, 0x24240420, 0xa42484a0, 0xc80bcbc3, 0x50134353, 0x080a0a02, 0x84078783, 0xd819c9d1, 0x4c0c4c40, 0x80038383, 0x8c0f8f83, 0xcc0ecec2, 0x383b0b33, 0x480a4a42, 0xb43787b3 }, { 0xa1a82989, 0x81840585, 0xd2d416c6, 0xd3d013c3, 0x50541444, 0x111c1d0d, 0xa0ac2c8c, 0x21242505, 0x515c1d4d, 0x43400343, 0x10181808, 0x121c1e0e, 0x51501141, 0xf0fc3ccc, 0xc2c80aca, 0x63602343, 0x20282808, 0x40440444, 0x20202000, 0x919c1d8d, 0xe0e020c0, 0xe2e022c2, 0xc0c808c8, 0x13141707, 0xa1a42585, 0x838c0f8f, 0x03000303, 0x73783b4b, 0xb3b83b8b, 0x13101303, 0xd2d012c2, 0xe2ec2ece, 0x70703040, 0x808c0c8c, 0x333c3f0f, 0xa0a82888, 0x32303202, 0xd1dc1dcd, 0xf2f436c6, 0x70743444, 0xe0ec2ccc, 0x91941585, 0x03080b0b, 0x53541747, 0x505c1c4c, 0x53581b4b, 0xb1bc3d8d, 0x01000101, 0x20242404, 0x101c1c0c, 0x73703343, 0x90981888, 0x10101000, 0xc0cc0ccc, 0xf2f032c2, 0xd1d819c9, 0x202c2c0c, 0xe3e427c7, 0x72703242, 0x83800383, 0x93981b8b, 0xd1d011c1, 0x82840686, 0xc1c809c9, 0x60602040, 0x50501040, 0xa3a02383, 0xe3e82bcb, 0x010c0d0d, 0xb2b43686, 0x929c1e8e, 0x434c0f4f, 0xb3b43787, 0x52581a4a, 0xc2c406c6, 0x70783848, 0xa2a42686, 0x12101202, 0xa3ac2f8f, 0xd1d415c5, 0x61602141, 0xc3c003c3, 0xb0b43484, 0x41400141, 0x52501242, 0x717c3d4d, 0x818c0d8d, 0x00080808, 0x131c1f0f, 0x91981989, 0x00000000, 0x11181909, 0x00040404, 0x53501343, 0xf3f437c7, 0xe1e021c1, 0xf1fc3dcd, 0x72743646, 0x232c2f0f, 0x23242707, 0xb0b03080, 0x83880b8b, 0x020c0e0e, 0xa3a82b8b, 0xa2a02282, 0x626c2e4e, 0x93901383, 0x414c0d4d, 0x61682949, 0x707c3c4c, 0x01080909, 0x02080a0a, 0xb3bc3f8f, 0xe3ec2fcf, 0xf3f033c3, 0xc1c405c5, 0x83840787, 0x10141404, 0xf2fc3ece, 0x60642444, 0xd2dc1ece, 0x222c2e0e, 0x43480b4b, 0x12181a0a, 0x02040606, 0x21202101, 0x63682b4b, 0x62642646, 0x02000202, 0xf1f435c5, 0x92901282, 0x82880a8a, 0x000c0c0c, 0xb3b03383, 0x727c3e4e, 0xd0d010c0, 0x72783a4a, 0x43440747, 0x92941686, 0xe1e425c5, 0x22242606, 0x80800080, 0xa1ac2d8d, 0xd3dc1fcf, 0xa1a02181, 0x30303000, 0x33343707, 0xa2ac2e8e, 0x32343606, 0x11141505, 0x22202202, 0x30383808, 0xf0f434c4, 0xa3a42787, 0x41440545, 0x404c0c4c, 0x81800181, 0xe1e829c9, 0x80840484, 0x93941787, 0x31343505, 0xc3c80bcb, 0xc2cc0ece, 0x303c3c0c, 0x71703141, 0x11101101, 0xc3c407c7, 0x81880989, 0x71743545, 0xf3f83bcb, 0xd2d81aca, 0xf0f838c8, 0x90941484, 0x51581949, 0x82800282, 0xc0c404c4, 0xf3fc3fcf, 0x41480949, 0x31383909, 0x63642747, 0xc0c000c0, 0xc3cc0fcf, 0xd3d417c7, 0xb0b83888, 0x030c0f0f, 0x828c0e8e, 0x42400242, 0x23202303, 0x91901181, 0x606c2c4c, 0xd3d81bcb, 0xa0a42484, 0x30343404, 0xf1f031c1, 0x40480848, 0xc2c002c2, 0x636c2f4f, 0x313c3d0d, 0x212c2d0d, 0x40400040, 0xb2bc3e8e, 0x323c3e0e, 0xb0bc3c8c, 0xc1c001c1, 0xa2a82a8a, 0xb2b83a8a, 0x424c0e4e, 0x51541545, 0x33383b0b, 0xd0dc1ccc, 0x60682848, 0x737c3f4f, 0x909c1c8c, 0xd0d818c8, 0x42480a4a, 0x52541646, 0x73743747, 0xa0a02080, 0xe1ec2dcd, 0x42440646, 0xb1b43585, 0x23282b0b, 0x61642545, 0xf2f83aca, 0xe3e023c3, 0xb1b83989, 0xb1b03181, 0x939c1f8f, 0x525c1e4e, 0xf1f839c9, 0xe2e426c6, 0xb2b03282, 0x31303101, 0xe2e82aca, 0x616c2d4d, 0x535c1f4f, 0xe0e424c4, 0xf0f030c0, 0xc1cc0dcd, 0x80880888, 0x12141606, 0x32383a0a, 0x50581848, 0xd0d414c4, 0x62602242, 0x21282909, 0x03040707, 0x33303303, 0xe0e828c8, 0x13181b0b, 0x01040505, 0x71783949, 0x90901080, 0x62682a4a, 0x22282a0a, 0x92981a8a }, { 0x08303838, 0xc8e0e828, 0x0d212c2d, 0x86a2a426, 0xcfc3cc0f, 0xced2dc1e, 0x83b3b033, 0x88b0b838, 0x8fa3ac2f, 0x40606020, 0x45515415, 0xc7c3c407, 0x44404404, 0x4f636c2f, 0x4b63682b, 0x4b53581b, 0xc3c3c003, 0x42626022, 0x03333033, 0x85b1b435, 0x09212829, 0x80a0a020, 0xc2e2e022, 0x87a3a427, 0xc3d3d013, 0x81919011, 0x01111011, 0x06020406, 0x0c101c1c, 0x8cb0bc3c, 0x06323436, 0x4b43480b, 0xcfe3ec2f, 0x88808808, 0x4c606c2c, 0x88a0a828, 0x07131417, 0xc4c0c404, 0x06121416, 0xc4f0f434, 0xc2c2c002, 0x45414405, 0xc1e1e021, 0xc6d2d416, 0x0f333c3f, 0x0d313c3d, 0x8e828c0e, 0x88909818, 0x08202828, 0x4e424c0e, 0xc6f2f436, 0x0e323c3e, 0x85a1a425, 0xc9f1f839, 0x0d010c0d, 0xcfd3dc1f, 0xc8d0d818, 0x0b23282b, 0x46626426, 0x4a72783a, 0x07232427, 0x0f232c2f, 0xc1f1f031, 0x42727032, 0x42424002, 0xc4d0d414, 0x41414001, 0xc0c0c000, 0x43737033, 0x47636427, 0x8ca0ac2c, 0x8b83880b, 0xc7f3f437, 0x8da1ac2d, 0x80808000, 0x0f131c1f, 0xcac2c80a, 0x0c202c2c, 0x8aa2a82a, 0x04303434, 0xc2d2d012, 0x0b03080b, 0xcee2ec2e, 0xc9e1e829, 0x4d515c1d, 0x84909414, 0x08101818, 0xc8f0f838, 0x47535417, 0x8ea2ac2e, 0x08000808, 0xc5c1c405, 0x03131013, 0xcdc1cc0d, 0x86828406, 0x89b1b839, 0xcff3fc3f, 0x4d717c3d, 0xc1c1c001, 0x01313031, 0xc5f1f435, 0x8a82880a, 0x4a62682a, 0x81b1b031, 0xc1d1d011, 0x00202020, 0xc7d3d417, 0x02020002, 0x02222022, 0x04000404, 0x48606828, 0x41717031, 0x07030407, 0xcbd3d81b, 0x8d919c1d, 0x89919819, 0x41616021, 0x8eb2bc3e, 0xc6e2e426, 0x49515819, 0xcdd1dc1d, 0x41515011, 0x80909010, 0xccd0dc1c, 0x8a92981a, 0x83a3a023, 0x8ba3a82b, 0xc0d0d010, 0x81818001, 0x0f030c0f, 0x47434407, 0x0a12181a, 0xc3e3e023, 0xcce0ec2c, 0x8d818c0d, 0x8fb3bc3f, 0x86929416, 0x4b73783b, 0x4c505c1c, 0x82a2a022, 0x81a1a021, 0x43636023, 0x03232023, 0x4d414c0d, 0xc8c0c808, 0x8e929c1e, 0x8c909c1c, 0x0a32383a, 0x0c000c0c, 0x0e222c2e, 0x8ab2b83a, 0x4e626c2e, 0x8f939c1f, 0x4a52581a, 0xc2f2f032, 0x82929012, 0xc3f3f033, 0x49414809, 0x48707838, 0xccc0cc0c, 0x05111415, 0xcbf3f83b, 0x40707030, 0x45717435, 0x4f737c3f, 0x05313435, 0x00101010, 0x03030003, 0x44606424, 0x4d616c2d, 0xc6c2c406, 0x44707434, 0xc5d1d415, 0x84b0b434, 0xcae2e82a, 0x09010809, 0x46727436, 0x09111819, 0xcef2fc3e, 0x40404000, 0x02121012, 0xc0e0e020, 0x8db1bc3d, 0x05010405, 0xcaf2f83a, 0x01010001, 0xc0f0f030, 0x0a22282a, 0x4e525c1e, 0x89a1a829, 0x46525416, 0x43434003, 0x85818405, 0x04101414, 0x89818809, 0x8b93981b, 0x80b0b030, 0xc5e1e425, 0x48404808, 0x49717839, 0x87939417, 0xccf0fc3c, 0x0e121c1e, 0x82828002, 0x01212021, 0x8c808c0c, 0x0b13181b, 0x4f535c1f, 0x47737437, 0x44505414, 0x82b2b032, 0x0d111c1d, 0x05212425, 0x4f434c0f, 0x00000000, 0x46424406, 0xcde1ec2d, 0x48505818, 0x42525012, 0xcbe3e82b, 0x4e727c3e, 0xcad2d81a, 0xc9c1c809, 0xcdf1fc3d, 0x00303030, 0x85919415, 0x45616425, 0x0c303c3c, 0x86b2b436, 0xc4e0e424, 0x8bb3b83b, 0x4c707c3c, 0x0e020c0e, 0x40505010, 0x09313839, 0x06222426, 0x02323032, 0x84808404, 0x49616829, 0x83939013, 0x07333437, 0xc7e3e427, 0x04202424, 0x84a0a424, 0xcbc3c80b, 0x43535013, 0x0a02080a, 0x87838407, 0xc9d1d819, 0x4c404c0c, 0x83838003, 0x8f838c0f, 0xcec2cc0e, 0x0b33383b, 0x4a42480a, 0x87b3b437 } }; #else /* on x86_64 >5x size reduction at 40% performance penalty */ static const unsigned char SEED_Sbox[2][256] = { { 0xA9, 0x85, 0xD6, 0xD3, 0x54, 0x1D, 0xAC, 0x25, 0x5D, 0x43, 0x18, 0x1E, 0x51, 0xFC, 0xCA, 0x63, 0x28, 0x44, 0x20, 0x9D, 0xE0, 0xE2, 0xC8, 0x17, 0xA5, 0x8F, 0x03, 0x7B, 0xBB, 0x13, 0xD2, 0xEE, 0x70, 0x8C, 0x3F, 0xA8, 0x32, 0xDD, 0xF6, 0x74, 0xEC, 0x95, 0x0B, 0x57, 0x5C, 0x5B, 0xBD, 0x01, 0x24, 0x1C, 0x73, 0x98, 0x10, 0xCC, 0xF2, 0xD9, 0x2C, 0xE7, 0x72, 0x83, 0x9B, 0xD1, 0x86, 0xC9, 0x60, 0x50, 0xA3, 0xEB, 0x0D, 0xB6, 0x9E, 0x4F, 0xB7, 0x5A, 0xC6, 0x78, 0xA6, 0x12, 0xAF, 0xD5, 0x61, 0xC3, 0xB4, 0x41, 0x52, 0x7D, 0x8D, 0x08, 0x1F, 0x99, 0x00, 0x19, 0x04, 0x53, 0xF7, 0xE1, 0xFD, 0x76, 0x2F, 0x27, 0xB0, 0x8B, 0x0E, 0xAB, 0xA2, 0x6E, 0x93, 0x4D, 0x69, 0x7C, 0x09, 0x0A, 0xBF, 0xEF, 0xF3, 0xC5, 0x87, 0x14, 0xFE, 0x64, 0xDE, 0x2E, 0x4B, 0x1A, 0x06, 0x21, 0x6B, 0x66, 0x02, 0xF5, 0x92, 0x8A, 0x0C, 0xB3, 0x7E, 0xD0, 0x7A, 0x47, 0x96, 0xE5, 0x26, 0x80, 0xAD, 0xDF, 0xA1, 0x30, 0x37, 0xAE, 0x36, 0x15, 0x22, 0x38, 0xF4, 0xA7, 0x45, 0x4C, 0x81, 0xE9, 0x84, 0x97, 0x35, 0xCB, 0xCE, 0x3C, 0x71, 0x11, 0xC7, 0x89, 0x75, 0xFB, 0xDA, 0xF8, 0x94, 0x59, 0x82, 0xC4, 0xFF, 0x49, 0x39, 0x67, 0xC0, 0xCF, 0xD7, 0xB8, 0x0F, 0x8E, 0x42, 0x23, 0x91, 0x6C, 0xDB, 0xA4, 0x34, 0xF1, 0x48, 0xC2, 0x6F, 0x3D, 0x2D, 0x40, 0xBE, 0x3E, 0xBC, 0xC1, 0xAA, 0xBA, 0x4E, 0x55, 0x3B, 0xDC, 0x68, 0x7F, 0x9C, 0xD8, 0x4A, 0x56, 0x77, 0xA0, 0xED, 0x46, 0xB5, 0x2B, 0x65, 0xFA, 0xE3, 0xB9, 0xB1, 0x9F, 0x5E, 0xF9, 0xE6, 0xB2, 0x31, 0xEA, 0x6D, 0x5F, 0xE4, 0xF0, 0xCD, 0x88, 0x16, 0x3A, 0x58, 0xD4, 0x62, 0x29, 0x07, 0x33, 0xE8, 0x1B, 0x05, 0x79, 0x90, 0x6A, 0x2A, 0x9A }, { 0x38, 0xE8, 0x2D, 0xA6, 0xCF, 0xDE, 0xB3, 0xB8, 0xAF, 0x60, 0x55, 0xC7, 0x44, 0x6F, 0x6B, 0x5B, 0xC3, 0x62, 0x33, 0xB5, 0x29, 0xA0, 0xE2, 0xA7, 0xD3, 0x91, 0x11, 0x06, 0x1C, 0xBC, 0x36, 0x4B, 0xEF, 0x88, 0x6C, 0xA8, 0x17, 0xC4, 0x16, 0xF4, 0xC2, 0x45, 0xE1, 0xD6, 0x3F, 0x3D, 0x8E, 0x98, 0x28, 0x4E, 0xF6, 0x3E, 0xA5, 0xF9, 0x0D, 0xDF, 0xD8, 0x2B, 0x66, 0x7A, 0x27, 0x2F, 0xF1, 0x72, 0x42, 0xD4, 0x41, 0xC0, 0x73, 0x67, 0xAC, 0x8B, 0xF7, 0xAD, 0x80, 0x1F, 0xCA, 0x2C, 0xAA, 0x34, 0xD2, 0x0B, 0xEE, 0xE9, 0x5D, 0x94, 0x18, 0xF8, 0x57, 0xAE, 0x08, 0xC5, 0x13, 0xCD, 0x86, 0xB9, 0xFF, 0x7D, 0xC1, 0x31, 0xF5, 0x8A, 0x6A, 0xB1, 0xD1, 0x20, 0xD7, 0x02, 0x22, 0x04, 0x68, 0x71, 0x07, 0xDB, 0x9D, 0x99, 0x61, 0xBE, 0xE6, 0x59, 0xDD, 0x51, 0x90, 0xDC, 0x9A, 0xA3, 0xAB, 0xD0, 0x81, 0x0F, 0x47, 0x1A, 0xE3, 0xEC, 0x8D, 0xBF, 0x96, 0x7B, 0x5C, 0xA2, 0xA1, 0x63, 0x23, 0x4D, 0xC8, 0x9E, 0x9C, 0x3A, 0x0C, 0x2E, 0xBA, 0x6E, 0x9F, 0x5A, 0xF2, 0x92, 0xF3, 0x49, 0x78, 0xCC, 0x15, 0xFB, 0x70, 0x75, 0x7F, 0x35, 0x10, 0x03, 0x64, 0x6D, 0xC6, 0x74, 0xD5, 0xB4, 0xEA, 0x09, 0x76, 0x19, 0xFE, 0x40, 0x12, 0xE0, 0xBD, 0x05, 0xFA, 0x01, 0xF0, 0x2A, 0x5E, 0xA9, 0x56, 0x43, 0x85, 0x14, 0x89, 0x9B, 0xB0, 0xE5, 0x48, 0x79, 0x97, 0xFC, 0x1E, 0x82, 0x21, 0x8C, 0x1B, 0x5F, 0x77, 0x54, 0xB2, 0x1D, 0x25, 0x4F, 0x00, 0x46, 0xED, 0x58, 0x52, 0xEB, 0x7E, 0xDA, 0xC9, 0xFD, 0x30, 0x95, 0x65, 0x3C, 0xB6, 0xE4, 0xBB, 0x7C, 0x0E, 0x50, 0x39, 0x26, 0x32, 0x84, 0x69, 0x93, 0x37, 0xE7, 0x24, 0xA4, 0xCB, 0x53, 0x0A, 0x87, 0xD9, 0x4C, 0x83, 0x8F, 0xCE, 0x3B, 0x4A, 0xB7 } }; static unsigned int G_FUNC(unsigned int v) { unsigned int s0, s1, s2, s3, ret; s0 = SEED_Sbox[0][(unsigned char) (v) & 0xff]; s1 = SEED_Sbox[1][(unsigned char)((v)>> 8) & 0xff]; s2 = SEED_Sbox[0][(unsigned char)((v)>>16) & 0xff]; s3 = SEED_Sbox[1][(unsigned char)((v)>>24) & 0xff]; ret = ((s0 & 0xFC) ^ (s1 & 0xF3) ^ (s2 & 0xCF) ^ (s3 & 0x3F)); ret |= ((s0 & 0xF3) ^ (s1 & 0xCF) ^ (s2 & 0x3F) ^ (s3 & 0xFC)) << 8; ret |= ((s0 & 0xCF) ^ (s1 & 0x3F) ^ (s2 & 0xFC) ^ (s3 & 0xF3)) << 16; ret |= ((s0 & 0x3F) ^ (s1 & 0xFC) ^ (s2 & 0xF3) ^ (s3 & 0xCF)) << 24; return ret; } # endif /* key schedule constants - golden ratio */ # define KC0 0x9e3779b9 # define KC1 0x3c6ef373 # define KC2 0x78dde6e6 # define KC3 0xf1bbcdcc # define KC4 0xe3779b99 # define KC5 0xc6ef3733 # define KC6 0x8dde6e67 # define KC7 0x1bbcdccf # define KC8 0x3779b99e # define KC9 0x6ef3733c # define KC10 0xdde6e678 # define KC11 0xbbcdccf1 # define KC12 0x779b99e3 # define KC13 0xef3733c6 # define KC14 0xde6e678d # define KC15 0xbcdccf1b # if defined(OPENSSL_SMALL_FOOTPRINT) static const seed_word KC[] = { KC0, KC1, KC2, KC3, KC4, KC5, KC6, KC7, KC8, KC9, KC10, KC11, KC12, KC13, KC14, KC15 }; # endif void SEED_set_key(const unsigned char rawkey[SEED_KEY_LENGTH], SEED_KEY_SCHEDULE *ks) { seed_word x1, x2, x3, x4; seed_word t0, t1; char2word(rawkey, x1); char2word(rawkey + 4, x2); char2word(rawkey + 8, x3); char2word(rawkey + 12, x4); t0 = (x1 + x3 - KC0) & 0xffffffff; t1 = (x2 - x4 + KC0) & 0xffffffff; KEYUPDATE_TEMP(t0, t1, &ks->data[0]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC1); KEYUPDATE_TEMP(t0, t1, &ks->data[2]); # if !defined(OPENSSL_SMALL_FOOTPRINT) KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC2); KEYUPDATE_TEMP(t0, t1, &ks->data[4]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC3); KEYUPDATE_TEMP(t0, t1, &ks->data[6]); KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC4); KEYUPDATE_TEMP(t0, t1, &ks->data[8]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC5); KEYUPDATE_TEMP(t0, t1, &ks->data[10]); KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC6); KEYUPDATE_TEMP(t0, t1, &ks->data[12]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC7); KEYUPDATE_TEMP(t0, t1, &ks->data[14]); KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC8); KEYUPDATE_TEMP(t0, t1, &ks->data[16]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC9); KEYUPDATE_TEMP(t0, t1, &ks->data[18]); KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC10); KEYUPDATE_TEMP(t0, t1, &ks->data[20]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC11); KEYUPDATE_TEMP(t0, t1, &ks->data[22]); KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC12); KEYUPDATE_TEMP(t0, t1, &ks->data[24]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC13); KEYUPDATE_TEMP(t0, t1, &ks->data[26]); KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC14); KEYUPDATE_TEMP(t0, t1, &ks->data[28]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC15); KEYUPDATE_TEMP(t0, t1, &ks->data[30]); # else { int i; for (i = 2; i < 16; i += 2) { KEYSCHEDULE_UPDATE0(t0, t1, x1, x2, x3, x4, KC[i]); KEYUPDATE_TEMP(t0, t1, &ks->data[i * 2]); KEYSCHEDULE_UPDATE1(t0, t1, x1, x2, x3, x4, KC[i + 1]); KEYUPDATE_TEMP(t0, t1, &ks->data[i * 2 + 2]); } } # endif } void SEED_encrypt(const unsigned char s[SEED_BLOCK_SIZE], unsigned char d[SEED_BLOCK_SIZE], const SEED_KEY_SCHEDULE *ks) { seed_word x1, x2, x3, x4; seed_word t0, t1; char2word(s, x1); char2word(s + 4, x2); char2word(s + 8, x3); char2word(s + 12, x4); # if !defined(OPENSSL_SMALL_FOOTPRINT) E_SEED(t0, t1, x1, x2, x3, x4, 0); E_SEED(t0, t1, x3, x4, x1, x2, 2); E_SEED(t0, t1, x1, x2, x3, x4, 4); E_SEED(t0, t1, x3, x4, x1, x2, 6); E_SEED(t0, t1, x1, x2, x3, x4, 8); E_SEED(t0, t1, x3, x4, x1, x2, 10); E_SEED(t0, t1, x1, x2, x3, x4, 12); E_SEED(t0, t1, x3, x4, x1, x2, 14); E_SEED(t0, t1, x1, x2, x3, x4, 16); E_SEED(t0, t1, x3, x4, x1, x2, 18); E_SEED(t0, t1, x1, x2, x3, x4, 20); E_SEED(t0, t1, x3, x4, x1, x2, 22); E_SEED(t0, t1, x1, x2, x3, x4, 24); E_SEED(t0, t1, x3, x4, x1, x2, 26); E_SEED(t0, t1, x1, x2, x3, x4, 28); E_SEED(t0, t1, x3, x4, x1, x2, 30); # else { int i; for (i = 0; i < 30; i += 4) { E_SEED(t0, t1, x1, x2, x3, x4, i); E_SEED(t0, t1, x3, x4, x1, x2, i + 2); } } # endif word2char(x3, d); word2char(x4, d + 4); word2char(x1, d + 8); word2char(x2, d + 12); } void SEED_decrypt(const unsigned char s[SEED_BLOCK_SIZE], unsigned char d[SEED_BLOCK_SIZE], const SEED_KEY_SCHEDULE *ks) { seed_word x1, x2, x3, x4; seed_word t0, t1; char2word(s, x1); char2word(s + 4, x2); char2word(s + 8, x3); char2word(s + 12, x4); # if !defined(OPENSSL_SMALL_FOOTPRINT) E_SEED(t0, t1, x1, x2, x3, x4, 30); E_SEED(t0, t1, x3, x4, x1, x2, 28); E_SEED(t0, t1, x1, x2, x3, x4, 26); E_SEED(t0, t1, x3, x4, x1, x2, 24); E_SEED(t0, t1, x1, x2, x3, x4, 22); E_SEED(t0, t1, x3, x4, x1, x2, 20); E_SEED(t0, t1, x1, x2, x3, x4, 18); E_SEED(t0, t1, x3, x4, x1, x2, 16); E_SEED(t0, t1, x1, x2, x3, x4, 14); E_SEED(t0, t1, x3, x4, x1, x2, 12); E_SEED(t0, t1, x1, x2, x3, x4, 10); E_SEED(t0, t1, x3, x4, x1, x2, 8); E_SEED(t0, t1, x1, x2, x3, x4, 6); E_SEED(t0, t1, x3, x4, x1, x2, 4); E_SEED(t0, t1, x1, x2, x3, x4, 2); E_SEED(t0, t1, x3, x4, x1, x2, 0); # else { int i; for (i = 30; i > 0; i -= 4) { E_SEED(t0, t1, x1, x2, x3, x4, i); E_SEED(t0, t1, x3, x4, x1, x2, i - 2); } } # endif word2char(x3, d); word2char(x4, d + 4); word2char(x1, d + 8); word2char(x2, d + 12); } #endif /* OPENSSL_NO_SEED */ openssl-1.1.1f/crypto/seed/seed_cbc.c000066400000000000000000000015041364063235100175010ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include void SEED_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const SEED_KEY_SCHEDULE *ks, unsigned char ivec[SEED_BLOCK_SIZE], int enc) { if (enc) CRYPTO_cbc128_encrypt(in, out, len, ks, ivec, (block128_f) SEED_encrypt); else CRYPTO_cbc128_decrypt(in, out, len, ks, ivec, (block128_f) SEED_decrypt); } openssl-1.1.1f/crypto/seed/seed_cfb.c000066400000000000000000000013541364063235100175070ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include void SEED_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const SEED_KEY_SCHEDULE *ks, unsigned char ivec[SEED_BLOCK_SIZE], int *num, int enc) { CRYPTO_cfb128_encrypt(in, out, len, ks, ivec, num, enc, (block128_f) SEED_encrypt); } openssl-1.1.1f/crypto/seed/seed_ecb.c000066400000000000000000000011101364063235100174740ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include void SEED_ecb_encrypt(const unsigned char *in, unsigned char *out, const SEED_KEY_SCHEDULE *ks, int enc) { if (enc) SEED_encrypt(in, out, ks); else SEED_decrypt(in, out, ks); } openssl-1.1.1f/crypto/seed/seed_local.h000066400000000000000000000107211364063235100200520ustar00rootroot00000000000000/* * Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Copyright (c) 2007 KISA(Korea Information Security Agency). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Neither the name of author nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #ifndef OSSL_CRYPTO_SEED_LOCAL_H # define OSSL_CRYPTO_SEED_LOCAL_H # include "openssl/e_os2.h" # include # ifdef SEED_LONG /* need 32-bit type */ typedef unsigned long seed_word; # else typedef unsigned int seed_word; # endif # define char2word(c, i) \ (i) = ((((seed_word)(c)[0]) << 24) | (((seed_word)(c)[1]) << 16) | (((seed_word)(c)[2]) << 8) | ((seed_word)(c)[3])) # define word2char(l, c) \ *((c)+0) = (unsigned char)((l)>>24) & 0xff; \ *((c)+1) = (unsigned char)((l)>>16) & 0xff; \ *((c)+2) = (unsigned char)((l)>> 8) & 0xff; \ *((c)+3) = (unsigned char)((l)) & 0xff # define KEYSCHEDULE_UPDATE0(T0, T1, X1, X2, X3, X4, KC) \ (T0) = (X3); \ (X3) = (((X3)<<8) ^ ((X4)>>24)) & 0xffffffff; \ (X4) = (((X4)<<8) ^ ((T0)>>24)) & 0xffffffff; \ (T0) = ((X1) + (X3) - (KC)) & 0xffffffff; \ (T1) = ((X2) + (KC) - (X4)) & 0xffffffff # define KEYSCHEDULE_UPDATE1(T0, T1, X1, X2, X3, X4, KC) \ (T0) = (X1); \ (X1) = (((X1)>>8) ^ ((X2)<<24)) & 0xffffffff; \ (X2) = (((X2)>>8) ^ ((T0)<<24)) & 0xffffffff; \ (T0) = ((X1) + (X3) - (KC)) & 0xffffffff; \ (T1) = ((X2) + (KC) - (X4)) & 0xffffffff # define KEYUPDATE_TEMP(T0, T1, K) \ (K)[0] = G_FUNC((T0)); \ (K)[1] = G_FUNC((T1)) # define XOR_SEEDBLOCK(DST, SRC) \ ((DST))[0] ^= ((SRC))[0]; \ ((DST))[1] ^= ((SRC))[1]; \ ((DST))[2] ^= ((SRC))[2]; \ ((DST))[3] ^= ((SRC))[3] # define MOV_SEEDBLOCK(DST, SRC) \ ((DST))[0] = ((SRC))[0]; \ ((DST))[1] = ((SRC))[1]; \ ((DST))[2] = ((SRC))[2]; \ ((DST))[3] = ((SRC))[3] # define CHAR2WORD(C, I) \ char2word((C), (I)[0]); \ char2word((C+4), (I)[1]); \ char2word((C+8), (I)[2]); \ char2word((C+12), (I)[3]) # define WORD2CHAR(I, C) \ word2char((I)[0], (C)); \ word2char((I)[1], (C+4)); \ word2char((I)[2], (C+8)); \ word2char((I)[3], (C+12)) # define E_SEED(T0, T1, X1, X2, X3, X4, rbase) \ (T0) = (X3) ^ (ks->data)[(rbase)]; \ (T1) = (X4) ^ (ks->data)[(rbase)+1]; \ (T1) ^= (T0); \ (T1) = G_FUNC((T1)); \ (T0) = ((T0) + (T1)) & 0xffffffff; \ (T0) = G_FUNC((T0)); \ (T1) = ((T1) + (T0)) & 0xffffffff; \ (T1) = G_FUNC((T1)); \ (T0) = ((T0) + (T1)) & 0xffffffff; \ (X1) ^= (T0); \ (X2) ^= (T1) #endif /* OSSL_CRYPTO_SEED_LOCAL_H */ openssl-1.1.1f/crypto/seed/seed_ofb.c000066400000000000000000000013051364063235100175170ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include void SEED_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const SEED_KEY_SCHEDULE *ks, unsigned char ivec[SEED_BLOCK_SIZE], int *num) { CRYPTO_ofb128_encrypt(in, out, len, ks, ivec, num, (block128_f) SEED_encrypt); } openssl-1.1.1f/crypto/sha/000077500000000000000000000000001364063235100154415ustar00rootroot00000000000000openssl-1.1.1f/crypto/sha/asm/000077500000000000000000000000001364063235100162215ustar00rootroot00000000000000openssl-1.1.1f/crypto/sha/asm/keccak1600-armv4.pl000077500000000000000000001275721364063235100213560ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for ARMv4. # # June 2017. # # Non-NEON code is KECCAK_1X variant (see sha/keccak1600.c) with bit # interleaving. How does it compare to Keccak Code Package? It's as # fast, but several times smaller, and is endian- and ISA-neutral. ISA # neutrality means that minimum ISA requirement is ARMv4, yet it can # be assembled even as Thumb-2. NEON code path is KECCAK_1X_ALT with # register layout taken from Keccak Code Package. It's also as fast, # in fact faster by 10-15% on some processors, and endian-neutral. # # August 2017. # # Switch to KECCAK_2X variant for non-NEON code and merge almost 1/2 # of rotate instructions with logical ones. This resulted in ~10% # improvement on most processors. Switch to KECCAK_2X effectively # minimizes re-loads from temporary storage, and merged rotates just # eliminate corresponding instructions. As for latter. When examining # code you'll notice commented ror instructions. These are eliminated # ones, and you should trace destination register below to see what's # going on. Just in case, why not all rotates are eliminated. Trouble # is that you have operations that require both inputs to be rotated, # e.g. 'eor a,b>>>x,c>>>y'. This conundrum is resolved by using # 'eor a,b,c>>>(x-y)' and then merge-rotating 'a' in next operation # that takes 'a' as input. And thing is that this next operation can # be in next round. It's totally possible to "carry" rotate "factors" # to the next round, but it makes code more complex. And the last word # is the keyword, i.e. "almost 1/2" is kind of complexity cap [for the # time being]... # # Reduce per-round instruction count in Thumb-2 case by 16%. This is # achieved by folding ldr/str pairs to their double-word counterparts. # Theoretically this should have improved performance on single-issue # cores, such as Cortex-A5/A7, by 19%. Reality is a bit different, as # usual... # ######################################################################## # Numbers are cycles per processed byte. Non-NEON results account even # for input bit interleaving. # # r=1088(*) Thumb-2(**) NEON # # ARM11xx 82/+150% # Cortex-A5 88/+160%, 86, 36 # Cortex-A7 78/+160%, 68, 34 # Cortex-A8 51/+230%, 57, 30 # Cortex-A9 53/+210%, 51, 26 # Cortex-A15 42/+160%, 38, 18 # Snapdragon S4 43/+210%, 38, 24 # # (*) Corresponds to SHA3-256. Percentage after slash is improvement # over compiler-generated KECCAK_2X reference code. # (**) Thumb-2 results for Cortex-A5/A7 are likely to apply even to # Cortex-Mx, x>=3. Otherwise, non-NEON results for NEON-capable # processors are presented mostly for reference purposes. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } my @C = map("r$_",(0..9)); my @E = map("r$_",(10..12,14)); ######################################################################## # Stack layout # ----->+-----------------------+ # | uint64_t A[5][5] | # | ... | # +200->+-----------------------+ # | uint64_t D[5] | # | ... | # +240->+-----------------------+ # | uint64_t T[5][5] | # | ... | # +440->+-----------------------+ # | saved lr | # +444->+-----------------------+ # | loop counter | # +448->+-----------------------+ # | ... my @A = map([ 8*$_, 8*($_+1), 8*($_+2), 8*($_+3), 8*($_+4) ], (0,5,10,15,20)); my @D = map(8*$_, (25..29)); my @T = map([ 8*$_, 8*($_+1), 8*($_+2), 8*($_+3), 8*($_+4) ], (30,35,40,45,50)); $code.=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif .type iotas32, %object .align 5 iotas32: .long 0x00000001, 0x00000000 .long 0x00000000, 0x00000089 .long 0x00000000, 0x8000008b .long 0x00000000, 0x80008080 .long 0x00000001, 0x0000008b .long 0x00000001, 0x00008000 .long 0x00000001, 0x80008088 .long 0x00000001, 0x80000082 .long 0x00000000, 0x0000000b .long 0x00000000, 0x0000000a .long 0x00000001, 0x00008082 .long 0x00000000, 0x00008003 .long 0x00000001, 0x0000808b .long 0x00000001, 0x8000000b .long 0x00000001, 0x8000008a .long 0x00000001, 0x80000081 .long 0x00000000, 0x80000081 .long 0x00000000, 0x80000008 .long 0x00000000, 0x00000083 .long 0x00000000, 0x80008003 .long 0x00000001, 0x80008088 .long 0x00000000, 0x80000088 .long 0x00000001, 0x00008000 .long 0x00000000, 0x80008082 .size iotas32,.-iotas32 .type KeccakF1600_int, %function .align 5 KeccakF1600_int: add @C[9],sp,#$A[4][2] add @E[2],sp,#$A[0][0] add @E[0],sp,#$A[1][0] ldmia @C[9],{@C[4]-@C[9]} @ A[4][2..4] KeccakF1600_enter: str lr,[sp,#440] eor @E[1],@E[1],@E[1] str @E[1],[sp,#444] b .Lround2x .align 4 .Lround2x: ___ sub Round { my (@A,@R); (@A[0..4],@R) = @_; $code.=<<___; ldmia @E[2],{@C[0]-@C[3]} @ A[0][0..1] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[1][0..1] #ifdef __thumb2__ eor @C[0],@C[0],@E[0] eor @C[1],@C[1],@E[1] eor @C[2],@C[2],@E[2] ldrd @E[0],@E[1],[sp,#$A[1][2]] eor @C[3],@C[3],@E[3] ldrd @E[2],@E[3],[sp,#$A[1][3]] eor @C[4],@C[4],@E[0] eor @C[5],@C[5],@E[1] eor @C[6],@C[6],@E[2] ldrd @E[0],@E[1],[sp,#$A[1][4]] eor @C[7],@C[7],@E[3] ldrd @E[2],@E[3],[sp,#$A[2][0]] eor @C[8],@C[8],@E[0] eor @C[9],@C[9],@E[1] eor @C[0],@C[0],@E[2] ldrd @E[0],@E[1],[sp,#$A[2][1]] eor @C[1],@C[1],@E[3] ldrd @E[2],@E[3],[sp,#$A[2][2]] eor @C[2],@C[2],@E[0] eor @C[3],@C[3],@E[1] eor @C[4],@C[4],@E[2] ldrd @E[0],@E[1],[sp,#$A[2][3]] eor @C[5],@C[5],@E[3] ldrd @E[2],@E[3],[sp,#$A[2][4]] eor @C[6],@C[6],@E[0] eor @C[7],@C[7],@E[1] eor @C[8],@C[8],@E[2] ldrd @E[0],@E[1],[sp,#$A[3][0]] eor @C[9],@C[9],@E[3] ldrd @E[2],@E[3],[sp,#$A[3][1]] eor @C[0],@C[0],@E[0] eor @C[1],@C[1],@E[1] eor @C[2],@C[2],@E[2] ldrd @E[0],@E[1],[sp,#$A[3][2]] eor @C[3],@C[3],@E[3] ldrd @E[2],@E[3],[sp,#$A[3][3]] eor @C[4],@C[4],@E[0] eor @C[5],@C[5],@E[1] eor @C[6],@C[6],@E[2] ldrd @E[0],@E[1],[sp,#$A[3][4]] eor @C[7],@C[7],@E[3] ldrd @E[2],@E[3],[sp,#$A[4][0]] eor @C[8],@C[8],@E[0] eor @C[9],@C[9],@E[1] eor @C[0],@C[0],@E[2] ldrd @E[0],@E[1],[sp,#$A[4][1]] eor @C[1],@C[1],@E[3] ldrd @E[2],@E[3],[sp,#$A[0][2]] eor @C[2],@C[2],@E[0] eor @C[3],@C[3],@E[1] eor @C[4],@C[4],@E[2] ldrd @E[0],@E[1],[sp,#$A[0][3]] eor @C[5],@C[5],@E[3] ldrd @E[2],@E[3],[sp,#$A[0][4]] #else eor @C[0],@C[0],@E[0] add @E[0],sp,#$A[1][2] eor @C[1],@C[1],@E[1] eor @C[2],@C[2],@E[2] eor @C[3],@C[3],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[1][2..3] eor @C[4],@C[4],@E[0] add @E[0],sp,#$A[1][4] eor @C[5],@C[5],@E[1] eor @C[6],@C[6],@E[2] eor @C[7],@C[7],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[1][4]..A[2][0] eor @C[8],@C[8],@E[0] add @E[0],sp,#$A[2][1] eor @C[9],@C[9],@E[1] eor @C[0],@C[0],@E[2] eor @C[1],@C[1],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[2][1..2] eor @C[2],@C[2],@E[0] add @E[0],sp,#$A[2][3] eor @C[3],@C[3],@E[1] eor @C[4],@C[4],@E[2] eor @C[5],@C[5],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[2][3..4] eor @C[6],@C[6],@E[0] add @E[0],sp,#$A[3][0] eor @C[7],@C[7],@E[1] eor @C[8],@C[8],@E[2] eor @C[9],@C[9],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[3][0..1] eor @C[0],@C[0],@E[0] add @E[0],sp,#$A[3][2] eor @C[1],@C[1],@E[1] eor @C[2],@C[2],@E[2] eor @C[3],@C[3],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[3][2..3] eor @C[4],@C[4],@E[0] add @E[0],sp,#$A[3][4] eor @C[5],@C[5],@E[1] eor @C[6],@C[6],@E[2] eor @C[7],@C[7],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[3][4]..A[4][0] eor @C[8],@C[8],@E[0] ldr @E[0],[sp,#$A[4][1]] @ A[4][1] eor @C[9],@C[9],@E[1] ldr @E[1],[sp,#$A[4][1]+4] eor @C[0],@C[0],@E[2] ldr @E[2],[sp,#$A[0][2]] @ A[0][2] eor @C[1],@C[1],@E[3] ldr @E[3],[sp,#$A[0][2]+4] eor @C[2],@C[2],@E[0] add @E[0],sp,#$A[0][3] eor @C[3],@C[3],@E[1] eor @C[4],@C[4],@E[2] eor @C[5],@C[5],@E[3] ldmia @E[0],{@E[0]-@E[2],@E[3]} @ A[0][3..4] #endif eor @C[6],@C[6],@E[0] eor @C[7],@C[7],@E[1] eor @C[8],@C[8],@E[2] eor @C[9],@C[9],@E[3] eor @E[0],@C[0],@C[5],ror#32-1 @ E[0] = ROL64(C[2], 1) ^ C[0]; str.l @E[0],[sp,#$D[1]] @ D[1] = E[0] eor @E[1],@C[1],@C[4] str.h @E[1],[sp,#$D[1]+4] eor @E[2],@C[6],@C[1],ror#32-1 @ E[1] = ROL64(C[0], 1) ^ C[3]; eor @E[3],@C[7],@C[0] str.l @E[2],[sp,#$D[4]] @ D[4] = E[1] eor @C[0],@C[8],@C[3],ror#32-1 @ C[0] = ROL64(C[1], 1) ^ C[4]; str.h @E[3],[sp,#$D[4]+4] eor @C[1],@C[9],@C[2] str.l @C[0],[sp,#$D[0]] @ D[0] = C[0] eor @C[2],@C[2],@C[7],ror#32-1 @ C[1] = ROL64(C[3], 1) ^ C[1]; ldr.l @C[7],[sp,#$A[3][3]] eor @C[3],@C[3],@C[6] str.h @C[1],[sp,#$D[0]+4] ldr.h @C[6],[sp,#$A[3][3]+4] str.l @C[2],[sp,#$D[2]] @ D[2] = C[1] eor @C[4],@C[4],@C[9],ror#32-1 @ C[2] = ROL64(C[4], 1) ^ C[2]; str.h @C[3],[sp,#$D[2]+4] eor @C[5],@C[5],@C[8] ldr.l @C[8],[sp,#$A[4][4]] ldr.h @C[9],[sp,#$A[4][4]+4] str.l @C[4],[sp,#$D[3]] @ D[3] = C[2] eor @C[7],@C[7],@C[4] str.h @C[5],[sp,#$D[3]+4] eor @C[6],@C[6],@C[5] ldr.l @C[4],[sp,#$A[0][0]] @ ror @C[7],@C[7],#32-10 @ C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ @ ror @C[6],@C[6],#32-11 ldr.h @C[5],[sp,#$A[0][0]+4] eor @C[8],@C[8],@E[2] eor @C[9],@C[9],@E[3] ldr.l @E[2],[sp,#$A[2][2]] eor @C[0],@C[0],@C[4] ldr.h @E[3],[sp,#$A[2][2]+4] @ ror @C[8],@C[8],#32-7 @ C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ @ ror @C[9],@C[9],#32-7 eor @C[1],@C[1],@C[5] @ C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ eor @E[2],@E[2],@C[2] ldr.l @C[2],[sp,#$A[1][1]] eor @E[3],@E[3],@C[3] ldr.h @C[3],[sp,#$A[1][1]+4] ror @C[5],@E[2],#32-21 @ C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ ldr @E[2],[sp,#444] @ load counter eor @C[2],@C[2],@E[0] adr @E[0],iotas32 ror @C[4],@E[3],#32-22 add @E[3],@E[0],@E[2] eor @C[3],@C[3],@E[1] ___ $code.=<<___ if ($A[0][0] != $T[0][0]); ldmia @E[3],{@E[0],@E[1]} @ iotas[i] ___ $code.=<<___ if ($A[0][0] == $T[0][0]); ldr.l @E[0],[@E[3],#8] @ iotas[i].lo add @E[2],@E[2],#16 ldr.h @E[1],[@E[3],#12] @ iotas[i].hi cmp @E[2],#192 str @E[2],[sp,#444] @ store counter ___ $code.=<<___; bic @E[2],@C[4],@C[2],ror#32-22 bic @E[3],@C[5],@C[3],ror#32-22 ror @C[2],@C[2],#32-22 @ C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ ror @C[3],@C[3],#32-22 eor @E[2],@E[2],@C[0] eor @E[3],@E[3],@C[1] eor @E[0],@E[0],@E[2] eor @E[1],@E[1],@E[3] str.l @E[0],[sp,#$R[0][0]] @ R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; bic @E[2],@C[6],@C[4],ror#11 str.h @E[1],[sp,#$R[0][0]+4] bic @E[3],@C[7],@C[5],ror#10 bic @E[0],@C[8],@C[6],ror#32-(11-7) bic @E[1],@C[9],@C[7],ror#32-(10-7) eor @E[2],@C[2],@E[2],ror#32-11 str.l @E[2],[sp,#$R[0][1]] @ R[0][1] = C[1] ^ (~C[2] & C[3]); eor @E[3],@C[3],@E[3],ror#32-10 str.h @E[3],[sp,#$R[0][1]+4] eor @E[0],@C[4],@E[0],ror#32-7 eor @E[1],@C[5],@E[1],ror#32-7 str.l @E[0],[sp,#$R[0][2]] @ R[0][2] = C[2] ^ (~C[3] & C[4]); bic @E[2],@C[0],@C[8],ror#32-7 str.h @E[1],[sp,#$R[0][2]+4] bic @E[3],@C[1],@C[9],ror#32-7 eor @E[2],@E[2],@C[6],ror#32-11 str.l @E[2],[sp,#$R[0][3]] @ R[0][3] = C[3] ^ (~C[4] & C[0]); eor @E[3],@E[3],@C[7],ror#32-10 str.h @E[3],[sp,#$R[0][3]+4] bic @E[0],@C[2],@C[0] add @E[3],sp,#$D[3] ldr.l @C[0],[sp,#$A[0][3]] @ A[0][3] bic @E[1],@C[3],@C[1] ldr.h @C[1],[sp,#$A[0][3]+4] eor @E[0],@E[0],@C[8],ror#32-7 eor @E[1],@E[1],@C[9],ror#32-7 str.l @E[0],[sp,#$R[0][4]] @ R[0][4] = C[4] ^ (~C[0] & C[1]); add @C[9],sp,#$D[0] str.h @E[1],[sp,#$R[0][4]+4] ldmia @E[3],{@E[0]-@E[2],@E[3]} @ D[3..4] ldmia @C[9],{@C[6]-@C[9]} @ D[0..1] ldr.l @C[2],[sp,#$A[1][4]] @ A[1][4] eor @C[0],@C[0],@E[0] ldr.h @C[3],[sp,#$A[1][4]+4] eor @C[1],@C[1],@E[1] @ ror @C[0],@C[0],#32-14 @ C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); ldr.l @E[0],[sp,#$A[3][1]] @ A[3][1] @ ror @C[1],@C[1],#32-14 ldr.h @E[1],[sp,#$A[3][1]+4] eor @C[2],@C[2],@E[2] ldr.l @C[4],[sp,#$A[2][0]] @ A[2][0] eor @C[3],@C[3],@E[3] ldr.h @C[5],[sp,#$A[2][0]+4] @ ror @C[2],@C[2],#32-10 @ C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); @ ror @C[3],@C[3],#32-10 eor @C[6],@C[6],@C[4] ldr.l @E[2],[sp,#$D[2]] @ D[2] eor @C[7],@C[7],@C[5] ldr.h @E[3],[sp,#$D[2]+4] ror @C[5],@C[6],#32-1 @ C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); ror @C[4],@C[7],#32-2 eor @E[0],@E[0],@C[8] ldr.l @C[8],[sp,#$A[4][2]] @ A[4][2] eor @E[1],@E[1],@C[9] ldr.h @C[9],[sp,#$A[4][2]+4] ror @C[7],@E[0],#32-22 @ C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); ror @C[6],@E[1],#32-23 bic @E[0],@C[4],@C[2],ror#32-10 bic @E[1],@C[5],@C[3],ror#32-10 eor @E[2],@E[2],@C[8] eor @E[3],@E[3],@C[9] ror @C[9],@E[2],#32-30 @ C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); ror @C[8],@E[3],#32-31 eor @E[0],@E[0],@C[0],ror#32-14 eor @E[1],@E[1],@C[1],ror#32-14 str.l @E[0],[sp,#$R[1][0]] @ R[1][0] = C[0] ^ (~C[1] & C[2]) bic @E[2],@C[6],@C[4] str.h @E[1],[sp,#$R[1][0]+4] bic @E[3],@C[7],@C[5] eor @E[2],@E[2],@C[2],ror#32-10 str.l @E[2],[sp,#$R[1][1]] @ R[1][1] = C[1] ^ (~C[2] & C[3]); eor @E[3],@E[3],@C[3],ror#32-10 str.h @E[3],[sp,#$R[1][1]+4] bic @E[0],@C[8],@C[6] bic @E[1],@C[9],@C[7] bic @E[2],@C[0],@C[8],ror#14 bic @E[3],@C[1],@C[9],ror#14 eor @E[0],@E[0],@C[4] eor @E[1],@E[1],@C[5] str.l @E[0],[sp,#$R[1][2]] @ R[1][2] = C[2] ^ (~C[3] & C[4]); bic @C[2],@C[2],@C[0],ror#32-(14-10) str.h @E[1],[sp,#$R[1][2]+4] eor @E[2],@C[6],@E[2],ror#32-14 bic @E[1],@C[3],@C[1],ror#32-(14-10) str.l @E[2],[sp,#$R[1][3]] @ R[1][3] = C[3] ^ (~C[4] & C[0]); eor @E[3],@C[7],@E[3],ror#32-14 str.h @E[3],[sp,#$R[1][3]+4] add @E[2],sp,#$D[1] ldr.l @C[1],[sp,#$A[0][1]] @ A[0][1] eor @E[0],@C[8],@C[2],ror#32-10 ldr.h @C[0],[sp,#$A[0][1]+4] eor @E[1],@C[9],@E[1],ror#32-10 str.l @E[0],[sp,#$R[1][4]] @ R[1][4] = C[4] ^ (~C[0] & C[1]); str.h @E[1],[sp,#$R[1][4]+4] add @C[9],sp,#$D[3] ldmia @E[2],{@E[0]-@E[2],@E[3]} @ D[1..2] ldr.l @C[2],[sp,#$A[1][2]] @ A[1][2] ldr.h @C[3],[sp,#$A[1][2]+4] ldmia @C[9],{@C[6]-@C[9]} @ D[3..4] eor @C[1],@C[1],@E[0] ldr.l @C[4],[sp,#$A[2][3]] @ A[2][3] eor @C[0],@C[0],@E[1] ldr.h @C[5],[sp,#$A[2][3]+4] ror @C[0],@C[0],#32-1 @ C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); eor @C[2],@C[2],@E[2] ldr.l @E[0],[sp,#$A[3][4]] @ A[3][4] eor @C[3],@C[3],@E[3] ldr.h @E[1],[sp,#$A[3][4]+4] @ ror @C[2],@C[2],#32-3 @ C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); ldr.l @E[2],[sp,#$D[0]] @ D[0] @ ror @C[3],@C[3],#32-3 ldr.h @E[3],[sp,#$D[0]+4] eor @C[4],@C[4],@C[6] eor @C[5],@C[5],@C[7] @ ror @C[5],@C[6],#32-12 @ C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); @ ror @C[4],@C[7],#32-13 @ [track reverse order below] eor @E[0],@E[0],@C[8] ldr.l @C[8],[sp,#$A[4][0]] @ A[4][0] eor @E[1],@E[1],@C[9] ldr.h @C[9],[sp,#$A[4][0]+4] ror @C[6],@E[0],#32-4 @ C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); ror @C[7],@E[1],#32-4 eor @E[2],@E[2],@C[8] eor @E[3],@E[3],@C[9] ror @C[8],@E[2],#32-9 @ C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); ror @C[9],@E[3],#32-9 bic @E[0],@C[5],@C[2],ror#13-3 bic @E[1],@C[4],@C[3],ror#12-3 bic @E[2],@C[6],@C[5],ror#32-13 bic @E[3],@C[7],@C[4],ror#32-12 eor @E[0],@C[0],@E[0],ror#32-13 eor @E[1],@C[1],@E[1],ror#32-12 str.l @E[0],[sp,#$R[2][0]] @ R[2][0] = C[0] ^ (~C[1] & C[2]) eor @E[2],@E[2],@C[2],ror#32-3 str.h @E[1],[sp,#$R[2][0]+4] eor @E[3],@E[3],@C[3],ror#32-3 str.l @E[2],[sp,#$R[2][1]] @ R[2][1] = C[1] ^ (~C[2] & C[3]); bic @E[0],@C[8],@C[6] bic @E[1],@C[9],@C[7] str.h @E[3],[sp,#$R[2][1]+4] eor @E[0],@E[0],@C[5],ror#32-13 eor @E[1],@E[1],@C[4],ror#32-12 str.l @E[0],[sp,#$R[2][2]] @ R[2][2] = C[2] ^ (~C[3] & C[4]); bic @E[2],@C[0],@C[8] str.h @E[1],[sp,#$R[2][2]+4] bic @E[3],@C[1],@C[9] eor @E[2],@E[2],@C[6] eor @E[3],@E[3],@C[7] str.l @E[2],[sp,#$R[2][3]] @ R[2][3] = C[3] ^ (~C[4] & C[0]); bic @E[0],@C[2],@C[0],ror#3 str.h @E[3],[sp,#$R[2][3]+4] bic @E[1],@C[3],@C[1],ror#3 ldr.l @C[1],[sp,#$A[0][4]] @ A[0][4] [in reverse order] eor @E[0],@C[8],@E[0],ror#32-3 ldr.h @C[0],[sp,#$A[0][4]+4] eor @E[1],@C[9],@E[1],ror#32-3 str.l @E[0],[sp,#$R[2][4]] @ R[2][4] = C[4] ^ (~C[0] & C[1]); add @C[9],sp,#$D[1] str.h @E[1],[sp,#$R[2][4]+4] ldr.l @E[0],[sp,#$D[4]] @ D[4] ldr.h @E[1],[sp,#$D[4]+4] ldr.l @E[2],[sp,#$D[0]] @ D[0] ldr.h @E[3],[sp,#$D[0]+4] ldmia @C[9],{@C[6]-@C[9]} @ D[1..2] eor @C[1],@C[1],@E[0] ldr.l @C[2],[sp,#$A[1][0]] @ A[1][0] eor @C[0],@C[0],@E[1] ldr.h @C[3],[sp,#$A[1][0]+4] @ ror @C[1],@E[0],#32-13 @ C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); ldr.l @C[4],[sp,#$A[2][1]] @ A[2][1] @ ror @C[0],@E[1],#32-14 @ [was loaded in reverse order] ldr.h @C[5],[sp,#$A[2][1]+4] eor @C[2],@C[2],@E[2] ldr.l @E[0],[sp,#$A[3][2]] @ A[3][2] eor @C[3],@C[3],@E[3] ldr.h @E[1],[sp,#$A[3][2]+4] @ ror @C[2],@C[2],#32-18 @ C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); ldr.l @E[2],[sp,#$D[3]] @ D[3] @ ror @C[3],@C[3],#32-18 ldr.h @E[3],[sp,#$D[3]+4] eor @C[6],@C[6],@C[4] eor @C[7],@C[7],@C[5] ror @C[4],@C[6],#32-5 @ C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); ror @C[5],@C[7],#32-5 eor @E[0],@E[0],@C[8] ldr.l @C[8],[sp,#$A[4][3]] @ A[4][3] eor @E[1],@E[1],@C[9] ldr.h @C[9],[sp,#$A[4][3]+4] ror @C[7],@E[0],#32-7 @ C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); ror @C[6],@E[1],#32-8 eor @E[2],@E[2],@C[8] eor @E[3],@E[3],@C[9] ror @C[8],@E[2],#32-28 @ C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); ror @C[9],@E[3],#32-28 bic @E[0],@C[4],@C[2],ror#32-18 bic @E[1],@C[5],@C[3],ror#32-18 eor @E[0],@E[0],@C[0],ror#32-14 eor @E[1],@E[1],@C[1],ror#32-13 str.l @E[0],[sp,#$R[3][0]] @ R[3][0] = C[0] ^ (~C[1] & C[2]) bic @E[2],@C[6],@C[4] str.h @E[1],[sp,#$R[3][0]+4] bic @E[3],@C[7],@C[5] eor @E[2],@E[2],@C[2],ror#32-18 str.l @E[2],[sp,#$R[3][1]] @ R[3][1] = C[1] ^ (~C[2] & C[3]); eor @E[3],@E[3],@C[3],ror#32-18 str.h @E[3],[sp,#$R[3][1]+4] bic @E[0],@C[8],@C[6] bic @E[1],@C[9],@C[7] bic @E[2],@C[0],@C[8],ror#14 bic @E[3],@C[1],@C[9],ror#13 eor @E[0],@E[0],@C[4] eor @E[1],@E[1],@C[5] str.l @E[0],[sp,#$R[3][2]] @ R[3][2] = C[2] ^ (~C[3] & C[4]); bic @C[2],@C[2],@C[0],ror#18-14 str.h @E[1],[sp,#$R[3][2]+4] eor @E[2],@C[6],@E[2],ror#32-14 bic @E[1],@C[3],@C[1],ror#18-13 eor @E[3],@C[7],@E[3],ror#32-13 str.l @E[2],[sp,#$R[3][3]] @ R[3][3] = C[3] ^ (~C[4] & C[0]); str.h @E[3],[sp,#$R[3][3]+4] add @E[3],sp,#$D[2] ldr.l @C[0],[sp,#$A[0][2]] @ A[0][2] eor @E[0],@C[8],@C[2],ror#32-18 ldr.h @C[1],[sp,#$A[0][2]+4] eor @E[1],@C[9],@E[1],ror#32-18 str.l @E[0],[sp,#$R[3][4]] @ R[3][4] = C[4] ^ (~C[0] & C[1]); str.h @E[1],[sp,#$R[3][4]+4] ldmia @E[3],{@E[0]-@E[2],@E[3]} @ D[2..3] ldr.l @C[2],[sp,#$A[1][3]] @ A[1][3] ldr.h @C[3],[sp,#$A[1][3]+4] ldr.l @C[6],[sp,#$D[4]] @ D[4] ldr.h @C[7],[sp,#$D[4]+4] eor @C[0],@C[0],@E[0] ldr.l @C[4],[sp,#$A[2][4]] @ A[2][4] eor @C[1],@C[1],@E[1] ldr.h @C[5],[sp,#$A[2][4]+4] @ ror @C[0],@C[0],#32-31 @ C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); ldr.l @C[8],[sp,#$D[0]] @ D[0] @ ror @C[1],@C[1],#32-31 ldr.h @C[9],[sp,#$D[0]+4] eor @E[2],@E[2],@C[2] ldr.l @E[0],[sp,#$A[3][0]] @ A[3][0] eor @E[3],@E[3],@C[3] ldr.h @E[1],[sp,#$A[3][0]+4] ror @C[3],@E[2],#32-27 @ C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); ldr.l @E[2],[sp,#$D[1]] @ D[1] ror @C[2],@E[3],#32-28 ldr.h @E[3],[sp,#$D[1]+4] eor @C[6],@C[6],@C[4] eor @C[7],@C[7],@C[5] ror @C[5],@C[6],#32-19 @ C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); ror @C[4],@C[7],#32-20 eor @E[0],@E[0],@C[8] ldr.l @C[8],[sp,#$A[4][1]] @ A[4][1] eor @E[1],@E[1],@C[9] ldr.h @C[9],[sp,#$A[4][1]+4] ror @C[7],@E[0],#32-20 @ C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); ror @C[6],@E[1],#32-21 eor @C[8],@C[8],@E[2] eor @C[9],@C[9],@E[3] @ ror @C[8],@C[2],#32-1 @ C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); @ ror @C[9],@C[3],#32-1 bic @E[0],@C[4],@C[2] bic @E[1],@C[5],@C[3] eor @E[0],@E[0],@C[0],ror#32-31 str.l @E[0],[sp,#$R[4][0]] @ R[4][0] = C[0] ^ (~C[1] & C[2]) eor @E[1],@E[1],@C[1],ror#32-31 str.h @E[1],[sp,#$R[4][0]+4] bic @E[2],@C[6],@C[4] bic @E[3],@C[7],@C[5] eor @E[2],@E[2],@C[2] eor @E[3],@E[3],@C[3] str.l @E[2],[sp,#$R[4][1]] @ R[4][1] = C[1] ^ (~C[2] & C[3]); bic @E[0],@C[8],@C[6],ror#1 str.h @E[3],[sp,#$R[4][1]+4] bic @E[1],@C[9],@C[7],ror#1 bic @E[2],@C[0],@C[8],ror#31-1 bic @E[3],@C[1],@C[9],ror#31-1 eor @C[4],@C[4],@E[0],ror#32-1 str.l @C[4],[sp,#$R[4][2]] @ R[4][2] = C[2] ^= (~C[3] & C[4]); eor @C[5],@C[5],@E[1],ror#32-1 str.h @C[5],[sp,#$R[4][2]+4] eor @C[6],@C[6],@E[2],ror#32-31 eor @C[7],@C[7],@E[3],ror#32-31 str.l @C[6],[sp,#$R[4][3]] @ R[4][3] = C[3] ^= (~C[4] & C[0]); bic @E[0],@C[2],@C[0],ror#32-31 str.h @C[7],[sp,#$R[4][3]+4] bic @E[1],@C[3],@C[1],ror#32-31 add @E[2],sp,#$R[0][0] eor @C[8],@E[0],@C[8],ror#32-1 add @E[0],sp,#$R[1][0] eor @C[9],@E[1],@C[9],ror#32-1 str.l @C[8],[sp,#$R[4][4]] @ R[4][4] = C[4] ^= (~C[0] & C[1]); str.h @C[9],[sp,#$R[4][4]+4] ___ } Round(@A,@T); Round(@T,@A); $code.=<<___; blo .Lround2x ldr pc,[sp,#440] .size KeccakF1600_int,.-KeccakF1600_int .type KeccakF1600, %function .align 5 KeccakF1600: stmdb sp!,{r0,r4-r11,lr} sub sp,sp,#440+16 @ space for A[5][5],D[5],T[5][5],... add @E[0],r0,#$A[1][0] add @E[1],sp,#$A[1][0] ldmia r0, {@C[0]-@C[9]} @ copy A[5][5] to stack stmia sp, {@C[0]-@C[9]} ldmia @E[0]!,{@C[0]-@C[9]} stmia @E[1]!,{@C[0]-@C[9]} ldmia @E[0]!,{@C[0]-@C[9]} stmia @E[1]!,{@C[0]-@C[9]} ldmia @E[0]!,{@C[0]-@C[9]} stmia @E[1]!,{@C[0]-@C[9]} ldmia @E[0], {@C[0]-@C[9]} add @E[2],sp,#$A[0][0] add @E[0],sp,#$A[1][0] stmia @E[1], {@C[0]-@C[9]} bl KeccakF1600_enter ldr @E[1], [sp,#440+16] @ restore pointer to A ldmia sp, {@C[0]-@C[9]} stmia @E[1]!,{@C[0]-@C[9]} @ return A[5][5] ldmia @E[0]!,{@C[0]-@C[9]} stmia @E[1]!,{@C[0]-@C[9]} ldmia @E[0]!,{@C[0]-@C[9]} stmia @E[1]!,{@C[0]-@C[9]} ldmia @E[0]!,{@C[0]-@C[9]} stmia @E[1]!,{@C[0]-@C[9]} ldmia @E[0], {@C[0]-@C[9]} stmia @E[1], {@C[0]-@C[9]} add sp,sp,#440+20 ldmia sp!,{r4-r11,pc} .size KeccakF1600,.-KeccakF1600 ___ { my ($A_flat,$inp,$len,$bsz) = map("r$_",(10..12,14)); ######################################################################## # Stack layout # ----->+-----------------------+ # | uint64_t A[5][5] | # | ... | # | ... | # +456->+-----------------------+ # | 0x55555555 | # +460->+-----------------------+ # | 0x33333333 | # +464->+-----------------------+ # | 0x0f0f0f0f | # +468->+-----------------------+ # | 0x00ff00ff | # +472->+-----------------------+ # | uint64_t *A | # +476->+-----------------------+ # | const void *inp | # +480->+-----------------------+ # | size_t len | # +484->+-----------------------+ # | size_t bs | # +488->+-----------------------+ # | .... $code.=<<___; .global SHA3_absorb .type SHA3_absorb,%function .align 5 SHA3_absorb: stmdb sp!,{r0-r12,lr} sub sp,sp,#456+16 add $A_flat,r0,#$A[1][0] @ mov $inp,r1 mov $len,r2 mov $bsz,r3 cmp r2,r3 blo .Labsorb_abort add $inp,sp,#0 ldmia r0, {@C[0]-@C[9]} @ copy A[5][5] to stack stmia $inp!, {@C[0]-@C[9]} ldmia $A_flat!,{@C[0]-@C[9]} stmia $inp!, {@C[0]-@C[9]} ldmia $A_flat!,{@C[0]-@C[9]} stmia $inp!, {@C[0]-@C[9]} ldmia $A_flat!,{@C[0]-@C[9]} stmia $inp!, {@C[0]-@C[9]} ldmia $A_flat!,{@C[0]-@C[9]} stmia $inp, {@C[0]-@C[9]} ldr $inp,[sp,#476] @ restore $inp #ifdef __thumb2__ mov r9,#0x00ff00ff mov r8,#0x0f0f0f0f mov r7,#0x33333333 mov r6,#0x55555555 #else mov r6,#0x11 @ compose constants mov r8,#0x0f mov r9,#0xff orr r6,r6,r6,lsl#8 orr r8,r8,r8,lsl#8 orr r6,r6,r6,lsl#16 @ 0x11111111 orr r9,r9,r9,lsl#16 @ 0x00ff00ff orr r8,r8,r8,lsl#16 @ 0x0f0f0f0f orr r7,r6,r6,lsl#1 @ 0x33333333 orr r6,r6,r6,lsl#2 @ 0x55555555 #endif str r9,[sp,#468] str r8,[sp,#464] str r7,[sp,#460] str r6,[sp,#456] b .Loop_absorb .align 4 .Loop_absorb: subs r0,$len,$bsz blo .Labsorbed add $A_flat,sp,#0 str r0,[sp,#480] @ save len - bsz .align 4 .Loop_block: ldrb r0,[$inp],#1 ldrb r1,[$inp],#1 ldrb r2,[$inp],#1 ldrb r3,[$inp],#1 ldrb r4,[$inp],#1 orr r0,r0,r1,lsl#8 ldrb r1,[$inp],#1 orr r0,r0,r2,lsl#16 ldrb r2,[$inp],#1 orr r0,r0,r3,lsl#24 @ lo ldrb r3,[$inp],#1 orr r1,r4,r1,lsl#8 orr r1,r1,r2,lsl#16 orr r1,r1,r3,lsl#24 @ hi and r2,r0,r6 @ &=0x55555555 and r0,r0,r6,lsl#1 @ &=0xaaaaaaaa and r3,r1,r6 @ &=0x55555555 and r1,r1,r6,lsl#1 @ &=0xaaaaaaaa orr r2,r2,r2,lsr#1 orr r0,r0,r0,lsl#1 orr r3,r3,r3,lsr#1 orr r1,r1,r1,lsl#1 and r2,r2,r7 @ &=0x33333333 and r0,r0,r7,lsl#2 @ &=0xcccccccc and r3,r3,r7 @ &=0x33333333 and r1,r1,r7,lsl#2 @ &=0xcccccccc orr r2,r2,r2,lsr#2 orr r0,r0,r0,lsl#2 orr r3,r3,r3,lsr#2 orr r1,r1,r1,lsl#2 and r2,r2,r8 @ &=0x0f0f0f0f and r0,r0,r8,lsl#4 @ &=0xf0f0f0f0 and r3,r3,r8 @ &=0x0f0f0f0f and r1,r1,r8,lsl#4 @ &=0xf0f0f0f0 ldmia $A_flat,{r4-r5} @ A_flat[i] orr r2,r2,r2,lsr#4 orr r0,r0,r0,lsl#4 orr r3,r3,r3,lsr#4 orr r1,r1,r1,lsl#4 and r2,r2,r9 @ &=0x00ff00ff and r0,r0,r9,lsl#8 @ &=0xff00ff00 and r3,r3,r9 @ &=0x00ff00ff and r1,r1,r9,lsl#8 @ &=0xff00ff00 orr r2,r2,r2,lsr#8 orr r0,r0,r0,lsl#8 orr r3,r3,r3,lsr#8 orr r1,r1,r1,lsl#8 lsl r2,r2,#16 lsr r1,r1,#16 eor r4,r4,r3,lsl#16 eor r5,r5,r0,lsr#16 eor r4,r4,r2,lsr#16 eor r5,r5,r1,lsl#16 stmia $A_flat!,{r4-r5} @ A_flat[i++] ^= BitInterleave(inp[0..7]) subs $bsz,$bsz,#8 bhi .Loop_block str $inp,[sp,#476] bl KeccakF1600_int add r14,sp,#456 ldmia r14,{r6-r12,r14} @ restore constants and variables b .Loop_absorb .align 4 .Labsorbed: add $inp,sp,#$A[1][0] ldmia sp, {@C[0]-@C[9]} stmia $A_flat!,{@C[0]-@C[9]} @ return A[5][5] ldmia $inp!, {@C[0]-@C[9]} stmia $A_flat!,{@C[0]-@C[9]} ldmia $inp!, {@C[0]-@C[9]} stmia $A_flat!,{@C[0]-@C[9]} ldmia $inp!, {@C[0]-@C[9]} stmia $A_flat!,{@C[0]-@C[9]} ldmia $inp, {@C[0]-@C[9]} stmia $A_flat, {@C[0]-@C[9]} .Labsorb_abort: add sp,sp,#456+32 mov r0,$len @ return value ldmia sp!,{r4-r12,pc} .size SHA3_absorb,.-SHA3_absorb ___ } { my ($out,$len,$A_flat,$bsz) = map("r$_", (4,5,10,12)); $code.=<<___; .global SHA3_squeeze .type SHA3_squeeze,%function .align 5 SHA3_squeeze: stmdb sp!,{r0,r3-r10,lr} mov $A_flat,r0 mov $out,r1 mov $len,r2 mov $bsz,r3 #ifdef __thumb2__ mov r9,#0x00ff00ff mov r8,#0x0f0f0f0f mov r7,#0x33333333 mov r6,#0x55555555 #else mov r6,#0x11 @ compose constants mov r8,#0x0f mov r9,#0xff orr r6,r6,r6,lsl#8 orr r8,r8,r8,lsl#8 orr r6,r6,r6,lsl#16 @ 0x11111111 orr r9,r9,r9,lsl#16 @ 0x00ff00ff orr r8,r8,r8,lsl#16 @ 0x0f0f0f0f orr r7,r6,r6,lsl#1 @ 0x33333333 orr r6,r6,r6,lsl#2 @ 0x55555555 #endif stmdb sp!,{r6-r9} mov r14,$A_flat b .Loop_squeeze .align 4 .Loop_squeeze: ldmia $A_flat!,{r0,r1} @ A_flat[i++] lsl r2,r0,#16 lsl r3,r1,#16 @ r3 = r1 << 16 lsr r2,r2,#16 @ r2 = r0 & 0x0000ffff lsr r1,r1,#16 lsr r0,r0,#16 @ r0 = r0 >> 16 lsl r1,r1,#16 @ r1 = r1 & 0xffff0000 orr r2,r2,r2,lsl#8 orr r3,r3,r3,lsr#8 orr r0,r0,r0,lsl#8 orr r1,r1,r1,lsr#8 and r2,r2,r9 @ &=0x00ff00ff and r3,r3,r9,lsl#8 @ &=0xff00ff00 and r0,r0,r9 @ &=0x00ff00ff and r1,r1,r9,lsl#8 @ &=0xff00ff00 orr r2,r2,r2,lsl#4 orr r3,r3,r3,lsr#4 orr r0,r0,r0,lsl#4 orr r1,r1,r1,lsr#4 and r2,r2,r8 @ &=0x0f0f0f0f and r3,r3,r8,lsl#4 @ &=0xf0f0f0f0 and r0,r0,r8 @ &=0x0f0f0f0f and r1,r1,r8,lsl#4 @ &=0xf0f0f0f0 orr r2,r2,r2,lsl#2 orr r3,r3,r3,lsr#2 orr r0,r0,r0,lsl#2 orr r1,r1,r1,lsr#2 and r2,r2,r7 @ &=0x33333333 and r3,r3,r7,lsl#2 @ &=0xcccccccc and r0,r0,r7 @ &=0x33333333 and r1,r1,r7,lsl#2 @ &=0xcccccccc orr r2,r2,r2,lsl#1 orr r3,r3,r3,lsr#1 orr r0,r0,r0,lsl#1 orr r1,r1,r1,lsr#1 and r2,r2,r6 @ &=0x55555555 and r3,r3,r6,lsl#1 @ &=0xaaaaaaaa and r0,r0,r6 @ &=0x55555555 and r1,r1,r6,lsl#1 @ &=0xaaaaaaaa orr r2,r2,r3 orr r0,r0,r1 cmp $len,#8 blo .Lsqueeze_tail lsr r1,r2,#8 strb r2,[$out],#1 lsr r3,r2,#16 strb r1,[$out],#1 lsr r2,r2,#24 strb r3,[$out],#1 strb r2,[$out],#1 lsr r1,r0,#8 strb r0,[$out],#1 lsr r3,r0,#16 strb r1,[$out],#1 lsr r0,r0,#24 strb r3,[$out],#1 strb r0,[$out],#1 subs $len,$len,#8 beq .Lsqueeze_done subs $bsz,$bsz,#8 @ bsz -= 8 bhi .Loop_squeeze mov r0,r14 @ original $A_flat bl KeccakF1600 ldmia sp,{r6-r10,r12} @ restore constants and variables mov r14,$A_flat b .Loop_squeeze .align 4 .Lsqueeze_tail: strb r2,[$out],#1 lsr r2,r2,#8 subs $len,$len,#1 beq .Lsqueeze_done strb r2,[$out],#1 lsr r2,r2,#8 subs $len,$len,#1 beq .Lsqueeze_done strb r2,[$out],#1 lsr r2,r2,#8 subs $len,$len,#1 beq .Lsqueeze_done strb r2,[$out],#1 subs $len,$len,#1 beq .Lsqueeze_done strb r0,[$out],#1 lsr r0,r0,#8 subs $len,$len,#1 beq .Lsqueeze_done strb r0,[$out],#1 lsr r0,r0,#8 subs $len,$len,#1 beq .Lsqueeze_done strb r0,[$out] b .Lsqueeze_done .align 4 .Lsqueeze_done: add sp,sp,#24 ldmia sp!,{r4-r10,pc} .size SHA3_squeeze,.-SHA3_squeeze ___ } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .fpu neon .type iotas64, %object .align 5 iotas64: .quad 0x0000000000000001 .quad 0x0000000000008082 .quad 0x800000000000808a .quad 0x8000000080008000 .quad 0x000000000000808b .quad 0x0000000080000001 .quad 0x8000000080008081 .quad 0x8000000000008009 .quad 0x000000000000008a .quad 0x0000000000000088 .quad 0x0000000080008009 .quad 0x000000008000000a .quad 0x000000008000808b .quad 0x800000000000008b .quad 0x8000000000008089 .quad 0x8000000000008003 .quad 0x8000000000008002 .quad 0x8000000000000080 .quad 0x000000000000800a .quad 0x800000008000000a .quad 0x8000000080008081 .quad 0x8000000000008080 .quad 0x0000000080000001 .quad 0x8000000080008008 .size iotas64,.-iotas64 .type KeccakF1600_neon, %function .align 5 KeccakF1600_neon: add r1, r0, #16 adr r2, iotas64 mov r3, #24 @ loop counter b .Loop_neon .align 4 .Loop_neon: @ Theta vst1.64 {q4}, [r0,:64] @ offload A[0..1][4] veor q13, q0, q5 @ A[0..1][0]^A[2..3][0] vst1.64 {d18}, [r1,:64] @ offload A[2][4] veor q14, q1, q6 @ A[0..1][1]^A[2..3][1] veor q15, q2, q7 @ A[0..1][2]^A[2..3][2] veor d26, d26, d27 @ C[0]=A[0][0]^A[1][0]^A[2][0]^A[3][0] veor d27, d28, d29 @ C[1]=A[0][1]^A[1][1]^A[2][1]^A[3][1] veor q14, q3, q8 @ A[0..1][3]^A[2..3][3] veor q4, q4, q9 @ A[0..1][4]^A[2..3][4] veor d30, d30, d31 @ C[2]=A[0][2]^A[1][2]^A[2][2]^A[3][2] veor d31, d28, d29 @ C[3]=A[0][3]^A[1][3]^A[2][3]^A[3][3] veor d25, d8, d9 @ C[4]=A[0][4]^A[1][4]^A[2][4]^A[3][4] veor q13, q13, q10 @ C[0..1]^=A[4][0..1] veor q14, q15, q11 @ C[2..3]^=A[4][2..3] veor d25, d25, d24 @ C[4]^=A[4][4] vadd.u64 q4, q13, q13 @ C[0..1]<<1 vadd.u64 q15, q14, q14 @ C[2..3]<<1 vadd.u64 d18, d25, d25 @ C[4]<<1 vsri.u64 q4, q13, #63 @ ROL64(C[0..1],1) vsri.u64 q15, q14, #63 @ ROL64(C[2..3],1) vsri.u64 d18, d25, #63 @ ROL64(C[4],1) veor d25, d25, d9 @ D[0] = C[4] ^= ROL64(C[1],1) veor q13, q13, q15 @ D[1..2] = C[0..1] ^ ROL64(C[2..3],1) veor d28, d28, d18 @ D[3] = C[2] ^= ROL64(C[4],1) veor d29, d29, d8 @ D[4] = C[3] ^= ROL64(C[0],1) veor d0, d0, d25 @ A[0][0] ^= C[4] veor d1, d1, d25 @ A[1][0] ^= C[4] veor d10, d10, d25 @ A[2][0] ^= C[4] veor d11, d11, d25 @ A[3][0] ^= C[4] veor d20, d20, d25 @ A[4][0] ^= C[4] veor d2, d2, d26 @ A[0][1] ^= D[1] veor d3, d3, d26 @ A[1][1] ^= D[1] veor d12, d12, d26 @ A[2][1] ^= D[1] veor d13, d13, d26 @ A[3][1] ^= D[1] veor d21, d21, d26 @ A[4][1] ^= D[1] vmov d26, d27 veor d6, d6, d28 @ A[0][3] ^= C[2] veor d7, d7, d28 @ A[1][3] ^= C[2] veor d16, d16, d28 @ A[2][3] ^= C[2] veor d17, d17, d28 @ A[3][3] ^= C[2] veor d23, d23, d28 @ A[4][3] ^= C[2] vld1.64 {q4}, [r0,:64] @ restore A[0..1][4] vmov d28, d29 vld1.64 {d18}, [r1,:64] @ restore A[2][4] veor q2, q2, q13 @ A[0..1][2] ^= D[2] veor q7, q7, q13 @ A[2..3][2] ^= D[2] veor d22, d22, d27 @ A[4][2] ^= D[2] veor q4, q4, q14 @ A[0..1][4] ^= C[3] veor q9, q9, q14 @ A[2..3][4] ^= C[3] veor d24, d24, d29 @ A[4][4] ^= C[3] @ Rho + Pi vmov d26, d2 @ C[1] = A[0][1] vshl.u64 d2, d3, #44 vmov d27, d4 @ C[2] = A[0][2] vshl.u64 d4, d14, #43 vmov d28, d6 @ C[3] = A[0][3] vshl.u64 d6, d17, #21 vmov d29, d8 @ C[4] = A[0][4] vshl.u64 d8, d24, #14 vsri.u64 d2, d3, #64-44 @ A[0][1] = ROL64(A[1][1], rhotates[1][1]) vsri.u64 d4, d14, #64-43 @ A[0][2] = ROL64(A[2][2], rhotates[2][2]) vsri.u64 d6, d17, #64-21 @ A[0][3] = ROL64(A[3][3], rhotates[3][3]) vsri.u64 d8, d24, #64-14 @ A[0][4] = ROL64(A[4][4], rhotates[4][4]) vshl.u64 d3, d9, #20 vshl.u64 d14, d16, #25 vshl.u64 d17, d15, #15 vshl.u64 d24, d21, #2 vsri.u64 d3, d9, #64-20 @ A[1][1] = ROL64(A[1][4], rhotates[1][4]) vsri.u64 d14, d16, #64-25 @ A[2][2] = ROL64(A[2][3], rhotates[2][3]) vsri.u64 d17, d15, #64-15 @ A[3][3] = ROL64(A[3][2], rhotates[3][2]) vsri.u64 d24, d21, #64-2 @ A[4][4] = ROL64(A[4][1], rhotates[4][1]) vshl.u64 d9, d22, #61 @ vshl.u64 d16, d19, #8 vshl.u64 d15, d12, #10 vshl.u64 d21, d7, #55 vsri.u64 d9, d22, #64-61 @ A[1][4] = ROL64(A[4][2], rhotates[4][2]) vext.8 d16, d19, d19, #8-1 @ A[2][3] = ROL64(A[3][4], rhotates[3][4]) vsri.u64 d15, d12, #64-10 @ A[3][2] = ROL64(A[2][1], rhotates[2][1]) vsri.u64 d21, d7, #64-55 @ A[4][1] = ROL64(A[1][3], rhotates[1][3]) vshl.u64 d22, d18, #39 @ vshl.u64 d19, d23, #56 vshl.u64 d12, d5, #6 vshl.u64 d7, d13, #45 vsri.u64 d22, d18, #64-39 @ A[4][2] = ROL64(A[2][4], rhotates[2][4]) vext.8 d19, d23, d23, #8-7 @ A[3][4] = ROL64(A[4][3], rhotates[4][3]) vsri.u64 d12, d5, #64-6 @ A[2][1] = ROL64(A[1][2], rhotates[1][2]) vsri.u64 d7, d13, #64-45 @ A[1][3] = ROL64(A[3][1], rhotates[3][1]) vshl.u64 d18, d20, #18 vshl.u64 d23, d11, #41 vshl.u64 d5, d10, #3 vshl.u64 d13, d1, #36 vsri.u64 d18, d20, #64-18 @ A[2][4] = ROL64(A[4][0], rhotates[4][0]) vsri.u64 d23, d11, #64-41 @ A[4][3] = ROL64(A[3][0], rhotates[3][0]) vsri.u64 d5, d10, #64-3 @ A[1][2] = ROL64(A[2][0], rhotates[2][0]) vsri.u64 d13, d1, #64-36 @ A[3][1] = ROL64(A[1][0], rhotates[1][0]) vshl.u64 d1, d28, #28 vshl.u64 d10, d26, #1 vshl.u64 d11, d29, #27 vshl.u64 d20, d27, #62 vsri.u64 d1, d28, #64-28 @ A[1][0] = ROL64(C[3], rhotates[0][3]) vsri.u64 d10, d26, #64-1 @ A[2][0] = ROL64(C[1], rhotates[0][1]) vsri.u64 d11, d29, #64-27 @ A[3][0] = ROL64(C[4], rhotates[0][4]) vsri.u64 d20, d27, #64-62 @ A[4][0] = ROL64(C[2], rhotates[0][2]) @ Chi + Iota vbic q13, q2, q1 vbic q14, q3, q2 vbic q15, q4, q3 veor q13, q13, q0 @ A[0..1][0] ^ (~A[0..1][1] & A[0..1][2]) veor q14, q14, q1 @ A[0..1][1] ^ (~A[0..1][2] & A[0..1][3]) veor q2, q2, q15 @ A[0..1][2] ^= (~A[0..1][3] & A[0..1][4]) vst1.64 {q13}, [r0,:64] @ offload A[0..1][0] vbic q13, q0, q4 vbic q15, q1, q0 vmov q1, q14 @ A[0..1][1] veor q3, q3, q13 @ A[0..1][3] ^= (~A[0..1][4] & A[0..1][0]) veor q4, q4, q15 @ A[0..1][4] ^= (~A[0..1][0] & A[0..1][1]) vbic q13, q7, q6 vmov q0, q5 @ A[2..3][0] vbic q14, q8, q7 vmov q15, q6 @ A[2..3][1] veor q5, q5, q13 @ A[2..3][0] ^= (~A[2..3][1] & A[2..3][2]) vbic q13, q9, q8 veor q6, q6, q14 @ A[2..3][1] ^= (~A[2..3][2] & A[2..3][3]) vbic q14, q0, q9 veor q7, q7, q13 @ A[2..3][2] ^= (~A[2..3][3] & A[2..3][4]) vbic q13, q15, q0 veor q8, q8, q14 @ A[2..3][3] ^= (~A[2..3][4] & A[2..3][0]) vmov q14, q10 @ A[4][0..1] veor q9, q9, q13 @ A[2..3][4] ^= (~A[2..3][0] & A[2..3][1]) vld1.64 d25, [r2,:64]! @ Iota[i++] vbic d26, d22, d21 vbic d27, d23, d22 vld1.64 {q0}, [r0,:64] @ restore A[0..1][0] veor d20, d20, d26 @ A[4][0] ^= (~A[4][1] & A[4][2]) vbic d26, d24, d23 veor d21, d21, d27 @ A[4][1] ^= (~A[4][2] & A[4][3]) vbic d27, d28, d24 veor d22, d22, d26 @ A[4][2] ^= (~A[4][3] & A[4][4]) vbic d26, d29, d28 veor d23, d23, d27 @ A[4][3] ^= (~A[4][4] & A[4][0]) veor d0, d0, d25 @ A[0][0] ^= Iota[i] veor d24, d24, d26 @ A[4][4] ^= (~A[4][0] & A[4][1]) subs r3, r3, #1 bne .Loop_neon bx lr .size KeccakF1600_neon,.-KeccakF1600_neon .global SHA3_absorb_neon .type SHA3_absorb_neon, %function .align 5 SHA3_absorb_neon: stmdb sp!, {r4-r6,lr} vstmdb sp!, {d8-d15} mov r4, r1 @ inp mov r5, r2 @ len mov r6, r3 @ bsz vld1.32 {d0}, [r0,:64]! @ A[0][0] vld1.32 {d2}, [r0,:64]! @ A[0][1] vld1.32 {d4}, [r0,:64]! @ A[0][2] vld1.32 {d6}, [r0,:64]! @ A[0][3] vld1.32 {d8}, [r0,:64]! @ A[0][4] vld1.32 {d1}, [r0,:64]! @ A[1][0] vld1.32 {d3}, [r0,:64]! @ A[1][1] vld1.32 {d5}, [r0,:64]! @ A[1][2] vld1.32 {d7}, [r0,:64]! @ A[1][3] vld1.32 {d9}, [r0,:64]! @ A[1][4] vld1.32 {d10}, [r0,:64]! @ A[2][0] vld1.32 {d12}, [r0,:64]! @ A[2][1] vld1.32 {d14}, [r0,:64]! @ A[2][2] vld1.32 {d16}, [r0,:64]! @ A[2][3] vld1.32 {d18}, [r0,:64]! @ A[2][4] vld1.32 {d11}, [r0,:64]! @ A[3][0] vld1.32 {d13}, [r0,:64]! @ A[3][1] vld1.32 {d15}, [r0,:64]! @ A[3][2] vld1.32 {d17}, [r0,:64]! @ A[3][3] vld1.32 {d19}, [r0,:64]! @ A[3][4] vld1.32 {d20-d23}, [r0,:64]! @ A[4][0..3] vld1.32 {d24}, [r0,:64] @ A[4][4] sub r0, r0, #24*8 @ rewind b .Loop_absorb_neon .align 4 .Loop_absorb_neon: subs r12, r5, r6 @ len - bsz blo .Labsorbed_neon mov r5, r12 vld1.8 {d31}, [r4]! @ endian-neutral loads... cmp r6, #8*2 veor d0, d0, d31 @ A[0][0] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d2, d2, d31 @ A[0][1] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*4 veor d4, d4, d31 @ A[0][2] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d6, d6, d31 @ A[0][3] ^= *inp++ beq .Lprocess_neon vld1.8 {d31},[r4]! cmp r6, #8*6 veor d8, d8, d31 @ A[0][4] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d1, d1, d31 @ A[1][0] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*8 veor d3, d3, d31 @ A[1][1] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d5, d5, d31 @ A[1][2] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*10 veor d7, d7, d31 @ A[1][3] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d9, d9, d31 @ A[1][4] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*12 veor d10, d10, d31 @ A[2][0] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d12, d12, d31 @ A[2][1] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*14 veor d14, d14, d31 @ A[2][2] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d16, d16, d31 @ A[2][3] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*16 veor d18, d18, d31 @ A[2][4] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d11, d11, d31 @ A[3][0] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*18 veor d13, d13, d31 @ A[3][1] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d15, d15, d31 @ A[3][2] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*20 veor d17, d17, d31 @ A[3][3] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d19, d19, d31 @ A[3][4] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*22 veor d20, d20, d31 @ A[4][0] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d21, d21, d31 @ A[4][1] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! cmp r6, #8*24 veor d22, d22, d31 @ A[4][2] ^= *inp++ blo .Lprocess_neon vld1.8 {d31}, [r4]! veor d23, d23, d31 @ A[4][3] ^= *inp++ beq .Lprocess_neon vld1.8 {d31}, [r4]! veor d24, d24, d31 @ A[4][4] ^= *inp++ .Lprocess_neon: bl KeccakF1600_neon b .Loop_absorb_neon .align 4 .Labsorbed_neon: vst1.32 {d0}, [r0,:64]! @ A[0][0..4] vst1.32 {d2}, [r0,:64]! vst1.32 {d4}, [r0,:64]! vst1.32 {d6}, [r0,:64]! vst1.32 {d8}, [r0,:64]! vst1.32 {d1}, [r0,:64]! @ A[1][0..4] vst1.32 {d3}, [r0,:64]! vst1.32 {d5}, [r0,:64]! vst1.32 {d7}, [r0,:64]! vst1.32 {d9}, [r0,:64]! vst1.32 {d10}, [r0,:64]! @ A[2][0..4] vst1.32 {d12}, [r0,:64]! vst1.32 {d14}, [r0,:64]! vst1.32 {d16}, [r0,:64]! vst1.32 {d18}, [r0,:64]! vst1.32 {d11}, [r0,:64]! @ A[3][0..4] vst1.32 {d13}, [r0,:64]! vst1.32 {d15}, [r0,:64]! vst1.32 {d17}, [r0,:64]! vst1.32 {d19}, [r0,:64]! vst1.32 {d20-d23}, [r0,:64]! @ A[4][0..4] vst1.32 {d24}, [r0,:64] mov r0, r5 @ return value vldmia sp!, {d8-d15} ldmia sp!, {r4-r6,pc} .size SHA3_absorb_neon,.-SHA3_absorb_neon .global SHA3_squeeze_neon .type SHA3_squeeze_neon, %function .align 5 SHA3_squeeze_neon: stmdb sp!, {r4-r6,lr} mov r4, r1 @ out mov r5, r2 @ len mov r6, r3 @ bsz mov r12, r0 @ A_flat mov r14, r3 @ bsz b .Loop_squeeze_neon .align 4 .Loop_squeeze_neon: cmp r5, #8 blo .Lsqueeze_neon_tail vld1.32 {d0}, [r12]! vst1.8 {d0}, [r4]! @ endian-neutral store subs r5, r5, #8 @ len -= 8 beq .Lsqueeze_neon_done subs r14, r14, #8 @ bsz -= 8 bhi .Loop_squeeze_neon vstmdb sp!, {d8-d15} vld1.32 {d0}, [r0,:64]! @ A[0][0..4] vld1.32 {d2}, [r0,:64]! vld1.32 {d4}, [r0,:64]! vld1.32 {d6}, [r0,:64]! vld1.32 {d8}, [r0,:64]! vld1.32 {d1}, [r0,:64]! @ A[1][0..4] vld1.32 {d3}, [r0,:64]! vld1.32 {d5}, [r0,:64]! vld1.32 {d7}, [r0,:64]! vld1.32 {d9}, [r0,:64]! vld1.32 {d10}, [r0,:64]! @ A[2][0..4] vld1.32 {d12}, [r0,:64]! vld1.32 {d14}, [r0,:64]! vld1.32 {d16}, [r0,:64]! vld1.32 {d18}, [r0,:64]! vld1.32 {d11}, [r0,:64]! @ A[3][0..4] vld1.32 {d13}, [r0,:64]! vld1.32 {d15}, [r0,:64]! vld1.32 {d17}, [r0,:64]! vld1.32 {d19}, [r0,:64]! vld1.32 {d20-d23}, [r0,:64]! @ A[4][0..4] vld1.32 {d24}, [r0,:64] sub r0, r0, #24*8 @ rewind bl KeccakF1600_neon mov r12, r0 @ A_flat vst1.32 {d0}, [r0,:64]! @ A[0][0..4] vst1.32 {d2}, [r0,:64]! vst1.32 {d4}, [r0,:64]! vst1.32 {d6}, [r0,:64]! vst1.32 {d8}, [r0,:64]! vst1.32 {d1}, [r0,:64]! @ A[1][0..4] vst1.32 {d3}, [r0,:64]! vst1.32 {d5}, [r0,:64]! vst1.32 {d7}, [r0,:64]! vst1.32 {d9}, [r0,:64]! vst1.32 {d10}, [r0,:64]! @ A[2][0..4] vst1.32 {d12}, [r0,:64]! vst1.32 {d14}, [r0,:64]! vst1.32 {d16}, [r0,:64]! vst1.32 {d18}, [r0,:64]! vst1.32 {d11}, [r0,:64]! @ A[3][0..4] vst1.32 {d13}, [r0,:64]! vst1.32 {d15}, [r0,:64]! vst1.32 {d17}, [r0,:64]! vst1.32 {d19}, [r0,:64]! vst1.32 {d20-d23}, [r0,:64]! @ A[4][0..4] mov r14, r6 @ bsz vst1.32 {d24}, [r0,:64] mov r0, r12 @ rewind vldmia sp!, {d8-d15} b .Loop_squeeze_neon .align 4 .Lsqueeze_neon_tail: ldmia r12, {r2,r3} cmp r5, #2 strb r2, [r4],#1 @ endian-neutral store lsr r2, r2, #8 blo .Lsqueeze_neon_done strb r2, [r4], #1 lsr r2, r2, #8 beq .Lsqueeze_neon_done strb r2, [r4], #1 lsr r2, r2, #8 cmp r5, #4 blo .Lsqueeze_neon_done strb r2, [r4], #1 beq .Lsqueeze_neon_done strb r3, [r4], #1 lsr r3, r3, #8 cmp r5, #6 blo .Lsqueeze_neon_done strb r3, [r4], #1 lsr r3, r3, #8 beq .Lsqueeze_neon_done strb r3, [r4], #1 .Lsqueeze_neon_done: ldmia sp!, {r4-r6,pc} .size SHA3_squeeze_neon,.-SHA3_squeeze_neon #endif .asciz "Keccak-1600 absorb and squeeze for ARMv4/NEON, CRYPTOGAMS by " .align 2 ___ { my %ldr, %str; sub ldrd { my ($mnemonic,$half,$reg,$ea) = @_; my $op = $mnemonic eq "ldr" ? \%ldr : \%str; if ($half eq "l") { $$op{reg} = $reg; $$op{ea} = $ea; sprintf "#ifndef __thumb2__\n" . " %s\t%s,%s\n" . "#endif", $mnemonic,$reg,$ea; } else { sprintf "#ifndef __thumb2__\n" . " %s\t%s,%s\n" . "#else\n" . " %sd\t%s,%s,%s\n" . "#endif", $mnemonic,$reg,$ea, $mnemonic,$$op{reg},$reg,$$op{ea}; } } } foreach (split($/,$code)) { s/\`([^\`]*)\`/eval $1/ge; s/^\s+(ldr|str)\.([lh])\s+(r[0-9]+),\s*(\[.*)/ldrd($1,$2,$3,$4)/ge or s/\b(ror|ls[rl])\s+(r[0-9]+.*)#/mov $2$1#/g or s/\bret\b/bx lr/g or s/\bbx\s+lr\b/.word\t0xe12fff1e/g; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/sha/asm/keccak1600-armv8.pl000077500000000000000000000533541364063235100213560ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for ARMv8. # # June 2017. # # This is straightforward KECCAK_1X_ALT implementation. It makes no # sense to attempt SIMD/NEON implementation for following reason. # 64-bit lanes of vector registers can't be addressed as easily as in # 32-bit mode. This means that 64-bit NEON is bound to be slower than # 32-bit NEON, and this implementation is faster than 32-bit NEON on # same processor. Even though it takes more scalar xor's and andn's, # it gets compensated by availability of rotate. Not to forget that # most processors achieve higher issue rate with scalar instructions. # # February 2018. # # Add hardware-assisted ARMv8.2 implementation. It's KECCAK_1X_ALT # variant with register permutation/rotation twist that allows to # eliminate copies to temporary registers. If you look closely you'll # notice that it uses only one lane of vector registers. The new # instructions effectively facilitate parallel hashing, which we don't # support [yet?]. But lowest-level core procedure is prepared for it. # The inner round is 67 [vector] instructions, so it's not actually # obvious that it will provide performance improvement [in serial # hash] as long as vector instructions issue rate is limited to 1 per # cycle... # ###################################################################### # Numbers are cycles per processed byte. # # r=1088(*) # # Cortex-A53 13 # Cortex-A57 12 # X-Gene 14 # Mongoose 10 # Kryo 12 # Denver 7.8 # Apple A7 7.2 # # (*) Corresponds to SHA3-256. No improvement coefficients are listed # because they vary too much from compiler to compiler. Newer # compiler does much better and improvement varies from 5% on # Cortex-A57 to 25% on Cortex-A53. While in comparison to older # compiler this code is at least 2x faster... $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; my @rhotates = ([ 0, 1, 62, 28, 27 ], [ 36, 44, 6, 55, 20 ], [ 3, 10, 43, 25, 39 ], [ 41, 45, 15, 21, 8 ], [ 18, 2, 61, 56, 14 ]); $code.=<<___; .text .align 8 // strategic alignment and padding that allows to use // address value as loop termination condition... .quad 0,0,0,0,0,0,0,0 .type iotas,%object iotas: .quad 0x0000000000000001 .quad 0x0000000000008082 .quad 0x800000000000808a .quad 0x8000000080008000 .quad 0x000000000000808b .quad 0x0000000080000001 .quad 0x8000000080008081 .quad 0x8000000000008009 .quad 0x000000000000008a .quad 0x0000000000000088 .quad 0x0000000080008009 .quad 0x000000008000000a .quad 0x000000008000808b .quad 0x800000000000008b .quad 0x8000000000008089 .quad 0x8000000000008003 .quad 0x8000000000008002 .quad 0x8000000000000080 .quad 0x000000000000800a .quad 0x800000008000000a .quad 0x8000000080008081 .quad 0x8000000000008080 .quad 0x0000000080000001 .quad 0x8000000080008008 .size iotas,.-iotas ___ {{{ my @A = map([ "x$_", "x".($_+1), "x".($_+2), "x".($_+3), "x".($_+4) ], (0, 5, 10, 15, 20)); $A[3][3] = "x25"; # x18 is reserved my @C = map("x$_", (26,27,28,30)); $code.=<<___; .type KeccakF1600_int,%function .align 5 KeccakF1600_int: adr $C[2],iotas .inst 0xd503233f // paciasp stp $C[2],x30,[sp,#16] // 32 bytes on top are mine b .Loop .align 4 .Loop: ////////////////////////////////////////// Theta eor $C[0],$A[0][0],$A[1][0] stp $A[0][4],$A[1][4],[sp,#0] // offload pair... eor $C[1],$A[0][1],$A[1][1] eor $C[2],$A[0][2],$A[1][2] eor $C[3],$A[0][3],$A[1][3] ___ $C[4]=$A[0][4]; $C[5]=$A[1][4]; $code.=<<___; eor $C[4],$A[0][4],$A[1][4] eor $C[0],$C[0],$A[2][0] eor $C[1],$C[1],$A[2][1] eor $C[2],$C[2],$A[2][2] eor $C[3],$C[3],$A[2][3] eor $C[4],$C[4],$A[2][4] eor $C[0],$C[0],$A[3][0] eor $C[1],$C[1],$A[3][1] eor $C[2],$C[2],$A[3][2] eor $C[3],$C[3],$A[3][3] eor $C[4],$C[4],$A[3][4] eor $C[0],$C[0],$A[4][0] eor $C[2],$C[2],$A[4][2] eor $C[1],$C[1],$A[4][1] eor $C[3],$C[3],$A[4][3] eor $C[4],$C[4],$A[4][4] eor $C[5],$C[0],$C[2],ror#63 eor $A[0][1],$A[0][1],$C[5] eor $A[1][1],$A[1][1],$C[5] eor $A[2][1],$A[2][1],$C[5] eor $A[3][1],$A[3][1],$C[5] eor $A[4][1],$A[4][1],$C[5] eor $C[5],$C[1],$C[3],ror#63 eor $C[2],$C[2],$C[4],ror#63 eor $C[3],$C[3],$C[0],ror#63 eor $C[4],$C[4],$C[1],ror#63 eor $C[1], $A[0][2],$C[5] // mov $C[1],$A[0][2] eor $A[1][2],$A[1][2],$C[5] eor $A[2][2],$A[2][2],$C[5] eor $A[3][2],$A[3][2],$C[5] eor $A[4][2],$A[4][2],$C[5] eor $A[0][0],$A[0][0],$C[4] eor $A[1][0],$A[1][0],$C[4] eor $A[2][0],$A[2][0],$C[4] eor $A[3][0],$A[3][0],$C[4] eor $A[4][0],$A[4][0],$C[4] ___ $C[4]=undef; $C[5]=undef; $code.=<<___; ldp $A[0][4],$A[1][4],[sp,#0] // re-load offloaded data eor $C[0], $A[0][3],$C[2] // mov $C[0],$A[0][3] eor $A[1][3],$A[1][3],$C[2] eor $A[2][3],$A[2][3],$C[2] eor $A[3][3],$A[3][3],$C[2] eor $A[4][3],$A[4][3],$C[2] eor $C[2], $A[0][4],$C[3] // mov $C[2],$A[0][4] eor $A[1][4],$A[1][4],$C[3] eor $A[2][4],$A[2][4],$C[3] eor $A[3][4],$A[3][4],$C[3] eor $A[4][4],$A[4][4],$C[3] ////////////////////////////////////////// Rho+Pi mov $C[3],$A[0][1] ror $A[0][1],$A[1][1],#64-$rhotates[1][1] //mov $C[1],$A[0][2] ror $A[0][2],$A[2][2],#64-$rhotates[2][2] //mov $C[0],$A[0][3] ror $A[0][3],$A[3][3],#64-$rhotates[3][3] //mov $C[2],$A[0][4] ror $A[0][4],$A[4][4],#64-$rhotates[4][4] ror $A[1][1],$A[1][4],#64-$rhotates[1][4] ror $A[2][2],$A[2][3],#64-$rhotates[2][3] ror $A[3][3],$A[3][2],#64-$rhotates[3][2] ror $A[4][4],$A[4][1],#64-$rhotates[4][1] ror $A[1][4],$A[4][2],#64-$rhotates[4][2] ror $A[2][3],$A[3][4],#64-$rhotates[3][4] ror $A[3][2],$A[2][1],#64-$rhotates[2][1] ror $A[4][1],$A[1][3],#64-$rhotates[1][3] ror $A[4][2],$A[2][4],#64-$rhotates[2][4] ror $A[3][4],$A[4][3],#64-$rhotates[4][3] ror $A[2][1],$A[1][2],#64-$rhotates[1][2] ror $A[1][3],$A[3][1],#64-$rhotates[3][1] ror $A[2][4],$A[4][0],#64-$rhotates[4][0] ror $A[4][3],$A[3][0],#64-$rhotates[3][0] ror $A[1][2],$A[2][0],#64-$rhotates[2][0] ror $A[3][1],$A[1][0],#64-$rhotates[1][0] ror $A[1][0],$C[0],#64-$rhotates[0][3] ror $A[2][0],$C[3],#64-$rhotates[0][1] ror $A[3][0],$C[2],#64-$rhotates[0][4] ror $A[4][0],$C[1],#64-$rhotates[0][2] ////////////////////////////////////////// Chi+Iota bic $C[0],$A[0][2],$A[0][1] bic $C[1],$A[0][3],$A[0][2] bic $C[2],$A[0][0],$A[0][4] bic $C[3],$A[0][1],$A[0][0] eor $A[0][0],$A[0][0],$C[0] bic $C[0],$A[0][4],$A[0][3] eor $A[0][1],$A[0][1],$C[1] ldr $C[1],[sp,#16] eor $A[0][3],$A[0][3],$C[2] eor $A[0][4],$A[0][4],$C[3] eor $A[0][2],$A[0][2],$C[0] ldr $C[3],[$C[1]],#8 // Iota[i++] bic $C[0],$A[1][2],$A[1][1] tst $C[1],#255 // are we done? str $C[1],[sp,#16] bic $C[1],$A[1][3],$A[1][2] bic $C[2],$A[1][0],$A[1][4] eor $A[0][0],$A[0][0],$C[3] // A[0][0] ^= Iota bic $C[3],$A[1][1],$A[1][0] eor $A[1][0],$A[1][0],$C[0] bic $C[0],$A[1][4],$A[1][3] eor $A[1][1],$A[1][1],$C[1] eor $A[1][3],$A[1][3],$C[2] eor $A[1][4],$A[1][4],$C[3] eor $A[1][2],$A[1][2],$C[0] bic $C[0],$A[2][2],$A[2][1] bic $C[1],$A[2][3],$A[2][2] bic $C[2],$A[2][0],$A[2][4] bic $C[3],$A[2][1],$A[2][0] eor $A[2][0],$A[2][0],$C[0] bic $C[0],$A[2][4],$A[2][3] eor $A[2][1],$A[2][1],$C[1] eor $A[2][3],$A[2][3],$C[2] eor $A[2][4],$A[2][4],$C[3] eor $A[2][2],$A[2][2],$C[0] bic $C[0],$A[3][2],$A[3][1] bic $C[1],$A[3][3],$A[3][2] bic $C[2],$A[3][0],$A[3][4] bic $C[3],$A[3][1],$A[3][0] eor $A[3][0],$A[3][0],$C[0] bic $C[0],$A[3][4],$A[3][3] eor $A[3][1],$A[3][1],$C[1] eor $A[3][3],$A[3][3],$C[2] eor $A[3][4],$A[3][4],$C[3] eor $A[3][2],$A[3][2],$C[0] bic $C[0],$A[4][2],$A[4][1] bic $C[1],$A[4][3],$A[4][2] bic $C[2],$A[4][0],$A[4][4] bic $C[3],$A[4][1],$A[4][0] eor $A[4][0],$A[4][0],$C[0] bic $C[0],$A[4][4],$A[4][3] eor $A[4][1],$A[4][1],$C[1] eor $A[4][3],$A[4][3],$C[2] eor $A[4][4],$A[4][4],$C[3] eor $A[4][2],$A[4][2],$C[0] bne .Loop ldr x30,[sp,#24] .inst 0xd50323bf // autiasp ret .size KeccakF1600_int,.-KeccakF1600_int .type KeccakF1600,%function .align 5 KeccakF1600: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub sp,sp,#48 str x0,[sp,#32] // offload argument mov $C[0],x0 ldp $A[0][0],$A[0][1],[x0,#16*0] ldp $A[0][2],$A[0][3],[$C[0],#16*1] ldp $A[0][4],$A[1][0],[$C[0],#16*2] ldp $A[1][1],$A[1][2],[$C[0],#16*3] ldp $A[1][3],$A[1][4],[$C[0],#16*4] ldp $A[2][0],$A[2][1],[$C[0],#16*5] ldp $A[2][2],$A[2][3],[$C[0],#16*6] ldp $A[2][4],$A[3][0],[$C[0],#16*7] ldp $A[3][1],$A[3][2],[$C[0],#16*8] ldp $A[3][3],$A[3][4],[$C[0],#16*9] ldp $A[4][0],$A[4][1],[$C[0],#16*10] ldp $A[4][2],$A[4][3],[$C[0],#16*11] ldr $A[4][4],[$C[0],#16*12] bl KeccakF1600_int ldr $C[0],[sp,#32] stp $A[0][0],$A[0][1],[$C[0],#16*0] stp $A[0][2],$A[0][3],[$C[0],#16*1] stp $A[0][4],$A[1][0],[$C[0],#16*2] stp $A[1][1],$A[1][2],[$C[0],#16*3] stp $A[1][3],$A[1][4],[$C[0],#16*4] stp $A[2][0],$A[2][1],[$C[0],#16*5] stp $A[2][2],$A[2][3],[$C[0],#16*6] stp $A[2][4],$A[3][0],[$C[0],#16*7] stp $A[3][1],$A[3][2],[$C[0],#16*8] stp $A[3][3],$A[3][4],[$C[0],#16*9] stp $A[4][0],$A[4][1],[$C[0],#16*10] stp $A[4][2],$A[4][3],[$C[0],#16*11] str $A[4][4],[$C[0],#16*12] ldp x19,x20,[x29,#16] add sp,sp,#48 ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#128 .inst 0xd50323bf // autiasp ret .size KeccakF1600,.-KeccakF1600 .globl SHA3_absorb .type SHA3_absorb,%function .align 5 SHA3_absorb: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub sp,sp,#64 stp x0,x1,[sp,#32] // offload arguments stp x2,x3,[sp,#48] mov $C[0],x0 // uint64_t A[5][5] mov $C[1],x1 // const void *inp mov $C[2],x2 // size_t len mov $C[3],x3 // size_t bsz ldp $A[0][0],$A[0][1],[$C[0],#16*0] ldp $A[0][2],$A[0][3],[$C[0],#16*1] ldp $A[0][4],$A[1][0],[$C[0],#16*2] ldp $A[1][1],$A[1][2],[$C[0],#16*3] ldp $A[1][3],$A[1][4],[$C[0],#16*4] ldp $A[2][0],$A[2][1],[$C[0],#16*5] ldp $A[2][2],$A[2][3],[$C[0],#16*6] ldp $A[2][4],$A[3][0],[$C[0],#16*7] ldp $A[3][1],$A[3][2],[$C[0],#16*8] ldp $A[3][3],$A[3][4],[$C[0],#16*9] ldp $A[4][0],$A[4][1],[$C[0],#16*10] ldp $A[4][2],$A[4][3],[$C[0],#16*11] ldr $A[4][4],[$C[0],#16*12] b .Loop_absorb .align 4 .Loop_absorb: subs $C[0],$C[2],$C[3] // len - bsz blo .Labsorbed str $C[0],[sp,#48] // save len - bsz ___ for (my $i=0; $i<24; $i+=2) { my $j = $i+1; $code.=<<___; ldr $C[0],[$C[1]],#8 // *inp++ #ifdef __AARCH64EB__ rev $C[0],$C[0] #endif eor $A[$i/5][$i%5],$A[$i/5][$i%5],$C[0] cmp $C[3],#8*($i+2) blo .Lprocess_block ldr $C[0],[$C[1]],#8 // *inp++ #ifdef __AARCH64EB__ rev $C[0],$C[0] #endif eor $A[$j/5][$j%5],$A[$j/5][$j%5],$C[0] beq .Lprocess_block ___ } $code.=<<___; ldr $C[0],[$C[1]],#8 // *inp++ #ifdef __AARCH64EB__ rev $C[0],$C[0] #endif eor $A[4][4],$A[4][4],$C[0] .Lprocess_block: str $C[1],[sp,#40] // save inp bl KeccakF1600_int ldr $C[1],[sp,#40] // restore arguments ldp $C[2],$C[3],[sp,#48] b .Loop_absorb .align 4 .Labsorbed: ldr $C[1],[sp,#32] stp $A[0][0],$A[0][1],[$C[1],#16*0] stp $A[0][2],$A[0][3],[$C[1],#16*1] stp $A[0][4],$A[1][0],[$C[1],#16*2] stp $A[1][1],$A[1][2],[$C[1],#16*3] stp $A[1][3],$A[1][4],[$C[1],#16*4] stp $A[2][0],$A[2][1],[$C[1],#16*5] stp $A[2][2],$A[2][3],[$C[1],#16*6] stp $A[2][4],$A[3][0],[$C[1],#16*7] stp $A[3][1],$A[3][2],[$C[1],#16*8] stp $A[3][3],$A[3][4],[$C[1],#16*9] stp $A[4][0],$A[4][1],[$C[1],#16*10] stp $A[4][2],$A[4][3],[$C[1],#16*11] str $A[4][4],[$C[1],#16*12] mov x0,$C[2] // return value ldp x19,x20,[x29,#16] add sp,sp,#64 ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#128 .inst 0xd50323bf // autiasp ret .size SHA3_absorb,.-SHA3_absorb ___ { my ($A_flat,$out,$len,$bsz) = map("x$_",(19..22)); $code.=<<___; .globl SHA3_squeeze .type SHA3_squeeze,%function .align 5 SHA3_squeeze: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-48]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] mov $A_flat,x0 // put aside arguments mov $out,x1 mov $len,x2 mov $bsz,x3 .Loop_squeeze: ldr x4,[x0],#8 cmp $len,#8 blo .Lsqueeze_tail #ifdef __AARCH64EB__ rev x4,x4 #endif str x4,[$out],#8 subs $len,$len,#8 beq .Lsqueeze_done subs x3,x3,#8 bhi .Loop_squeeze mov x0,$A_flat bl KeccakF1600 mov x0,$A_flat mov x3,$bsz b .Loop_squeeze .align 4 .Lsqueeze_tail: strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done strb w4,[$out],#1 .Lsqueeze_done: ldp x19,x20,[sp,#16] ldp x21,x22,[sp,#32] ldp x29,x30,[sp],#48 .inst 0xd50323bf // autiasp ret .size SHA3_squeeze,.-SHA3_squeeze ___ } }}} {{{ my @A = map([ "v".$_.".16b", "v".($_+1).".16b", "v".($_+2).".16b", "v".($_+3).".16b", "v".($_+4).".16b" ], (0, 5, 10, 15, 20)); my @C = map("v$_.16b", (25..31)); $code.=<<___; .type KeccakF1600_ce,%function .align 5 KeccakF1600_ce: mov x9,#12 adr x10,iotas b .Loop_ce .align 4 .Loop_ce: ___ for($i=0; $i<2; $i++) { $code.=<<___; ////////////////////////////////////////////////// Theta eor3 $C[0],$A[0][0],$A[1][0],$A[2][0] eor3 $C[1],$A[0][1],$A[1][1],$A[2][1] eor3 $C[2],$A[0][2],$A[1][2],$A[2][2] eor3 $C[3],$A[0][3],$A[1][3],$A[2][3] eor3 $C[4],$A[0][4],$A[1][4],$A[2][4] eor3 $C[0],$C[0], $A[3][0],$A[4][0] eor3 $C[1],$C[1], $A[3][1],$A[4][1] eor3 $C[2],$C[2], $A[3][2],$A[4][2] eor3 $C[3],$C[3], $A[3][3],$A[4][3] eor3 $C[4],$C[4], $A[3][4],$A[4][4] rax1 $C[5],$C[0],$C[2] // D[1] rax1 $C[6],$C[1],$C[3] // D[2] rax1 $C[2],$C[2],$C[4] // D[3] rax1 $C[3],$C[3],$C[0] // D[4] rax1 $C[4],$C[4],$C[1] // D[0] ////////////////////////////////////////////////// Theta+Rho+Pi xar $C[0], $A[1][1],$C[5],#64-$rhotates[1][1] // C[0]=A[0][1] xar $A[1][1],$A[1][4],$C[3],#64-$rhotates[1][4] xar $A[1][4],$A[4][2],$C[6],#64-$rhotates[4][2] xar $A[4][2],$A[2][4],$C[3],#64-$rhotates[2][4] xar $A[2][4],$A[4][0],$C[4],#64-$rhotates[4][0] xar $A[4][0],$A[0][2],$C[6],#64-$rhotates[0][2] xar $A[0][2],$A[2][2],$C[6],#64-$rhotates[2][2] xar $A[2][2],$A[2][3],$C[2],#64-$rhotates[2][3] xar $A[2][3],$A[3][4],$C[3],#64-$rhotates[3][4] xar $A[3][4],$A[4][3],$C[2],#64-$rhotates[4][3] xar $A[4][3],$A[3][0],$C[4],#64-$rhotates[3][0] xar $A[3][0],$A[0][4],$C[3],#64-$rhotates[0][4] eor $A[0][0],$A[0][0],$C[4] ldr x11,[x10],#8 xar $C[1], $A[3][3],$C[2],#64-$rhotates[3][3] // C[1]=A[0][3] xar $A[3][3],$A[3][2],$C[6],#64-$rhotates[3][2] xar $A[3][2],$A[2][1],$C[5],#64-$rhotates[2][1] xar $A[2][1],$A[1][2],$C[6],#64-$rhotates[1][2] xar $A[1][2],$A[2][0],$C[4],#64-$rhotates[2][0] xar $A[2][0],$A[0][1],$C[5],#64-$rhotates[0][1] // * xar $A[0][4],$A[4][4],$C[3],#64-$rhotates[4][4] xar $A[4][4],$A[4][1],$C[5],#64-$rhotates[4][1] xar $A[4][1],$A[1][3],$C[2],#64-$rhotates[1][3] xar $A[1][3],$A[3][1],$C[5],#64-$rhotates[3][1] xar $A[3][1],$A[1][0],$C[4],#64-$rhotates[1][0] xar $C[2], $A[0][3],$C[2],#64-$rhotates[0][3] // C[2]=A[1][0] ////////////////////////////////////////////////// Chi+Iota dup $C[6],x11 // borrow C[6] bcax $C[3], $A[0][0],$A[0][2],$C[0] // * bcax $A[0][1],$C[0], $C[1], $A[0][2] // * bcax $A[0][2],$A[0][2],$A[0][4],$C[1] bcax $A[0][3],$C[1], $A[0][0],$A[0][4] bcax $A[0][4],$A[0][4],$C[0], $A[0][0] bcax $A[1][0],$C[2], $A[1][2],$A[1][1] // * bcax $C[0], $A[1][1],$A[1][3],$A[1][2] // * bcax $A[1][2],$A[1][2],$A[1][4],$A[1][3] bcax $A[1][3],$A[1][3],$C[2], $A[1][4] bcax $A[1][4],$A[1][4],$A[1][1],$C[2] eor $A[0][0],$C[3],$C[6] // Iota bcax $C[1], $A[2][0],$A[2][2],$A[2][1] // * bcax $C[2], $A[2][1],$A[2][3],$A[2][2] // * bcax $A[2][2],$A[2][2],$A[2][4],$A[2][3] bcax $A[2][3],$A[2][3],$A[2][0],$A[2][4] bcax $A[2][4],$A[2][4],$A[2][1],$A[2][0] bcax $C[3], $A[3][0],$A[3][2],$A[3][1] // * bcax $C[4], $A[3][1],$A[3][3],$A[3][2] // * bcax $A[3][2],$A[3][2],$A[3][4],$A[3][3] bcax $A[3][3],$A[3][3],$A[3][0],$A[3][4] bcax $A[3][4],$A[3][4],$A[3][1],$A[3][0] bcax $C[5], $A[4][0],$A[4][2],$A[4][1] // * bcax $C[6], $A[4][1],$A[4][3],$A[4][2] // * bcax $A[4][2],$A[4][2],$A[4][4],$A[4][3] bcax $A[4][3],$A[4][3],$A[4][0],$A[4][4] bcax $A[4][4],$A[4][4],$A[4][1],$A[4][0] ___ ( $A[1][1], $C[0]) = ( $C[0], $A[1][1]); ($A[2][0],$A[2][1], $C[1],$C[2]) = ($C[1],$C[2], $A[2][0],$A[2][1]); ($A[3][0],$A[3][1], $C[3],$C[4]) = ($C[3],$C[4], $A[3][0],$A[3][1]); ($A[4][0],$A[4][1], $C[5],$C[6]) = ($C[5],$C[6], $A[4][0],$A[4][1]); } $code.=<<___; subs x9,x9,#1 bne .Loop_ce ret .size KeccakF1600_ce,.-KeccakF1600_ce .type KeccakF1600_cext,%function .align 5 KeccakF1600_cext: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-80]! add x29,sp,#0 stp d8,d9,[sp,#16] // per ABI requirement stp d10,d11,[sp,#32] stp d12,d13,[sp,#48] stp d14,d15,[sp,#64] ___ for($i=0; $i<24; $i+=2) { # load A[5][5] my $j=$i+1; $code.=<<___; ldp d$i,d$j,[x0,#8*$i] ___ } $code.=<<___; ldr d24,[x0,#8*$i] bl KeccakF1600_ce ldr x30,[sp,#8] ___ for($i=0; $i<24; $i+=2) { # store A[5][5] my $j=$i+1; $code.=<<___; stp d$i,d$j,[x0,#8*$i] ___ } $code.=<<___; str d24,[x0,#8*$i] ldp d8,d9,[sp,#16] ldp d10,d11,[sp,#32] ldp d12,d13,[sp,#48] ldp d14,d15,[sp,#64] ldr x29,[sp],#80 .inst 0xd50323bf // autiasp ret .size KeccakF1600_cext,.-KeccakF1600_cext ___ { my ($ctx,$inp,$len,$bsz) = map("x$_",(0..3)); $code.=<<___; .globl SHA3_absorb_cext .type SHA3_absorb_cext,%function .align 5 SHA3_absorb_cext: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-80]! add x29,sp,#0 stp d8,d9,[sp,#16] // per ABI requirement stp d10,d11,[sp,#32] stp d12,d13,[sp,#48] stp d14,d15,[sp,#64] ___ for($i=0; $i<24; $i+=2) { # load A[5][5] my $j=$i+1; $code.=<<___; ldp d$i,d$j,[x0,#8*$i] ___ } $code.=<<___; ldr d24,[x0,#8*$i] b .Loop_absorb_ce .align 4 .Loop_absorb_ce: subs $len,$len,$bsz // len - bsz blo .Labsorbed_ce ___ for (my $i=0; $i<24; $i+=2) { my $j = $i+1; $code.=<<___; ldr d31,[$inp],#8 // *inp++ #ifdef __AARCH64EB__ rev64 v31.16b,v31.16b #endif eor $A[$i/5][$i%5],$A[$i/5][$i%5],v31.16b cmp $bsz,#8*($i+2) blo .Lprocess_block_ce ldr d31,[$inp],#8 // *inp++ #ifdef __AARCH64EB__ rev64 v31.16b,v31.16b #endif eor $A[$j/5][$j%5],$A[$j/5][$j%5],v31.16b beq .Lprocess_block_ce ___ } $code.=<<___; ldr d31,[$inp],#8 // *inp++ #ifdef __AARCH64EB__ rev64 v31.16b,v31.16b #endif eor $A[4][4],$A[4][4],v31.16b .Lprocess_block_ce: bl KeccakF1600_ce b .Loop_absorb_ce .align 4 .Labsorbed_ce: ___ for($i=0; $i<24; $i+=2) { # store A[5][5] my $j=$i+1; $code.=<<___; stp d$i,d$j,[x0,#8*$i] ___ } $code.=<<___; str d24,[x0,#8*$i] add x0,$len,$bsz // return value ldp d8,d9,[sp,#16] ldp d10,d11,[sp,#32] ldp d12,d13,[sp,#48] ldp d14,d15,[sp,#64] ldp x29,x30,[sp],#80 .inst 0xd50323bf // autiasp ret .size SHA3_absorb_cext,.-SHA3_absorb_cext ___ } { my ($ctx,$out,$len,$bsz) = map("x$_",(0..3)); $code.=<<___; .globl SHA3_squeeze_cext .type SHA3_squeeze_cext,%function .align 5 SHA3_squeeze_cext: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-16]! add x29,sp,#0 mov x9,$ctx mov x10,$bsz .Loop_squeeze_ce: ldr x4,[x9],#8 cmp $len,#8 blo .Lsqueeze_tail_ce #ifdef __AARCH64EB__ rev x4,x4 #endif str x4,[$out],#8 beq .Lsqueeze_done_ce sub $len,$len,#8 subs x10,x10,#8 bhi .Loop_squeeze_ce bl KeccakF1600_cext ldr x30,[sp,#8] mov x9,$ctx mov x10,$bsz b .Loop_squeeze_ce .align 4 .Lsqueeze_tail_ce: strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done_ce strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done_ce strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done_ce strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done_ce strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done_ce strb w4,[$out],#1 lsr x4,x4,#8 subs $len,$len,#1 beq .Lsqueeze_done_ce strb w4,[$out],#1 .Lsqueeze_done_ce: ldr x29,[sp],#16 .inst 0xd50323bf // autiasp ret .size SHA3_squeeze_cext,.-SHA3_squeeze_cext ___ } }}} $code.=<<___; .asciz "Keccak-1600 absorb and squeeze for ARMv8, CRYPTOGAMS by " ___ { my %opcode = ( "rax1" => 0xce608c00, "eor3" => 0xce000000, "bcax" => 0xce200000, "xar" => 0xce800000 ); sub unsha3 { my ($mnemonic,$arg)=@_; $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv#]([0-9\-]+))?)?/ && sprintf ".inst\t0x%08x\t//%s %s", $opcode{$mnemonic}|$1|($2<<5)|($3<<16)|(eval($4)<<10), $mnemonic,$arg; } } foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/ge; m/\bdup\b/ and s/\.16b/.2d/g or s/\b(eor3|rax1|xar|bcax)\s+(v.*)/unsha3($1,$2)/ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-avx2.pl000077500000000000000000000405211364063235100211710ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for AVX2. # # July 2017. # # To paraphrase Gilles Van Assche, if you contemplate Fig. 2.3 on page # 20 of The Keccak reference [or Fig. 5 of FIPS PUB 202], and load data # other than A[0][0] in magic order into 6 [256-bit] registers, *each # dedicated to one axis*, Pi permutation is reduced to intra-register # shuffles... # # It makes other steps more intricate, but overall, is it a win? To be # more specific index permutations organized by quadruples are: # # [4][4] [3][3] [2][2] [1][1]<-+ # [0][4] [0][3] [0][2] [0][1]<-+ # [3][0] [1][0] [4][0] [2][0] | # [4][3] [3][1] [2][4] [1][2] | # [3][4] [1][3] [4][2] [2][1] | # [2][3] [4][1] [1][4] [3][2] | # [2][2] [4][4] [1][1] [3][3] -+ # # This however is highly impractical for Theta and Chi. What would help # Theta is if x indices were aligned column-wise, or in other words: # # [0][4] [0][3] [0][2] [0][1] # [3][0] [1][0] [4][0] [2][0] #vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010) # [2][4] [4][3] [1][2] [3][1] #vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101) # [3][4] [1][3] [4][2] [2][1] #vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010) # [1][4] [2][3] [3][2] [4][1] #vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011) # [4][4] [3][3] [2][2] [1][1] # # So here we have it, lines not marked with vpermq() represent the magic # order in which data is to be loaded and maintained. [And lines marked # with vpermq() represent Pi circular permutation in chosen layout. Note # that first step is permutation-free.] A[0][0] is loaded to register of # its own, to all lanes. [A[0][0] is not part of Pi permutation or Rho.] # Digits in variables' names denote right-most coordinates: my ($A00, # [0][0] [0][0] [0][0] [0][0] # %ymm0 $A01, # [0][4] [0][3] [0][2] [0][1] # %ymm1 $A20, # [3][0] [1][0] [4][0] [2][0] # %ymm2 $A31, # [2][4] [4][3] [1][2] [3][1] # %ymm3 $A21, # [3][4] [1][3] [4][2] [2][1] # %ymm4 $A41, # [1][4] [2][3] [3][2] [4][1] # %ymm5 $A11) = # [4][4] [3][3] [2][2] [1][1] # %ymm6 map("%ymm$_",(0..6)); # We also need to map the magic order into offsets within structure: my @A_jagged = ([0,0], [1,0], [1,1], [1,2], [1,3], # [0][0..4] [2,2], [6,0], [3,1], [4,2], [5,3], # [1][0..4] [2,0], [4,0], [6,1], [5,2], [3,3], # [2][0..4] [2,3], [3,0], [5,1], [6,2], [4,3], # [3][0..4] [2,1], [5,0], [4,1], [3,2], [6,3]); # [4][0..4] @A_jagged = map(8*($$_[0]*4+$$_[1]), @A_jagged); # ... and now linear # But on the other hand Chi is much better off if y indices were aligned # column-wise, not x. For this reason we have to shuffle data prior # Chi and revert it afterwards. Prior shuffle is naturally merged with # Pi itself: # # [0][4] [0][3] [0][2] [0][1] # [3][0] [1][0] [4][0] [2][0] #vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010) #vpermq([2][4] [4][3] [1][2] [3][1], 0b00011011) = 0b10001101 # [3][1] [1][2] [4][3] [2][4] #vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101) #vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = 0b10001101 # [3][4] [1][3] [4][2] [2][1] #vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010) #vpermq([1][4] [2][3] [3][2] [4][1], 0b01110010) = 0b00011011 # [3][2] [1][4] [4][1] [2][3] #vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011) #vpermq([4][4] [3][3] [2][2] [1][1], 0b10001101) = 0b01110010 # [3][3] [1][1] [4][4] [2][2] # # And reverse post-Chi permutation: # # [0][4] [0][3] [0][2] [0][1] # [3][0] [1][0] [4][0] [2][0] #vpermq([3][1] [1][2] [4][3] [2][4], 0b00011011) # [2][4] [4][3] [1][2] [3][1] #vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = nop :-) # [3][4] [1][3] [4][2] [2][1] #vpermq([3][2] [1][4] [4][1] [2][3], 0b10001101) # [1][4] [2][3] [3][2] [4][1] #vpermq([3][3] [1][1] [4][4] [2][2], 0b01110010) # [4][4] [3][3] [2][2] [1][1] # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(*) # # Haswell 8.7/+10% # Skylake 7.8/+20% # Ryzen 17(**) # # (*) Corresponds to SHA3-256. Percentage after slash is improvement # coefficient in comparison to scalar keccak1600-x86_64.pl. # (**) It's expected that Ryzen performs poorly, because instruction # issue rate is limited to two AVX2 instructions per cycle and # in addition vpblendd is reportedly bound to specific port. # Obviously this code path should not be executed on Ryzen. my @T = map("%ymm$_",(7..15)); my ($C14,$C00,$D00,$D14) = @T[5..8]; $code.=<<___; .text .type __KeccakF1600,\@function .align 32 __KeccakF1600: lea rhotates_left+96(%rip),%r8 lea rhotates_right+96(%rip),%r9 lea iotas(%rip),%r10 mov \$24,%eax jmp .Loop_avx2 .align 32 .Loop_avx2: ######################################### Theta vpshufd \$0b01001110,$A20,$C00 vpxor $A31,$A41,$C14 vpxor $A11,$A21,@T[2] vpxor $A01,$C14,$C14 vpxor @T[2],$C14,$C14 # C[1..4] vpermq \$0b10010011,$C14,@T[4] vpxor $A20,$C00,$C00 vpermq \$0b01001110,$C00,@T[0] vpsrlq \$63,$C14,@T[1] vpaddq $C14,$C14,@T[2] vpor @T[2],@T[1],@T[1] # ROL64(C[1..4],1) vpermq \$0b00111001,@T[1],$D14 vpxor @T[4],@T[1],$D00 vpermq \$0b00000000,$D00,$D00 # D[0..0] = ROL64(C[1],1) ^ C[4] vpxor $A00,$C00,$C00 vpxor @T[0],$C00,$C00 # C[0..0] vpsrlq \$63,$C00,@T[0] vpaddq $C00,$C00,@T[1] vpor @T[0],@T[1],@T[1] # ROL64(C[0..0],1) vpxor $D00,$A20,$A20 # ^= D[0..0] vpxor $D00,$A00,$A00 # ^= D[0..0] vpblendd \$0b11000000,@T[1],$D14,$D14 vpblendd \$0b00000011,$C00,@T[4],@T[4] vpxor @T[4],$D14,$D14 # D[1..4] = ROL64(C[2..4,0),1) ^ C[0..3] ######################################### Rho + Pi + pre-Chi shuffle vpsllvq 0*32-96(%r8),$A20,@T[3] vpsrlvq 0*32-96(%r9),$A20,$A20 vpor @T[3],$A20,$A20 vpxor $D14,$A31,$A31 # ^= D[1..4] from Theta vpsllvq 2*32-96(%r8),$A31,@T[4] vpsrlvq 2*32-96(%r9),$A31,$A31 vpor @T[4],$A31,$A31 vpxor $D14,$A21,$A21 # ^= D[1..4] from Theta vpsllvq 3*32-96(%r8),$A21,@T[5] vpsrlvq 3*32-96(%r9),$A21,$A21 vpor @T[5],$A21,$A21 vpxor $D14,$A41,$A41 # ^= D[1..4] from Theta vpsllvq 4*32-96(%r8),$A41,@T[6] vpsrlvq 4*32-96(%r9),$A41,$A41 vpor @T[6],$A41,$A41 vpxor $D14,$A11,$A11 # ^= D[1..4] from Theta vpermq \$0b10001101,$A20,@T[3] # $A20 -> future $A31 vpermq \$0b10001101,$A31,@T[4] # $A31 -> future $A21 vpsllvq 5*32-96(%r8),$A11,@T[7] vpsrlvq 5*32-96(%r9),$A11,@T[1] vpor @T[7],@T[1],@T[1] # $A11 -> future $A01 vpxor $D14,$A01,$A01 # ^= D[1..4] from Theta vpermq \$0b00011011,$A21,@T[5] # $A21 -> future $A41 vpermq \$0b01110010,$A41,@T[6] # $A41 -> future $A11 vpsllvq 1*32-96(%r8),$A01,@T[8] vpsrlvq 1*32-96(%r9),$A01,@T[2] vpor @T[8],@T[2],@T[2] # $A01 -> future $A20 ######################################### Chi vpsrldq \$8,@T[1],@T[7] vpandn @T[7],@T[1],@T[0] # tgting [0][0] [0][0] [0][0] [0][0] vpblendd \$0b00001100,@T[6],@T[2],$A31 # [4][4] [2][0] vpblendd \$0b00001100,@T[2],@T[4],@T[8] # [4][0] [2][1] vpblendd \$0b00001100,@T[4],@T[3],$A41 # [4][2] [2][4] vpblendd \$0b00001100,@T[3],@T[2],@T[7] # [4][3] [2][0] vpblendd \$0b00110000,@T[4],$A31,$A31 # [1][3] [4][4] [2][0] vpblendd \$0b00110000,@T[5],@T[8],@T[8] # [1][4] [4][0] [2][1] vpblendd \$0b00110000,@T[2],$A41,$A41 # [1][0] [4][2] [2][4] vpblendd \$0b00110000,@T[6],@T[7],@T[7] # [1][1] [4][3] [2][0] vpblendd \$0b11000000,@T[5],$A31,$A31 # [3][2] [1][3] [4][4] [2][0] vpblendd \$0b11000000,@T[6],@T[8],@T[8] # [3][3] [1][4] [4][0] [2][1] vpblendd \$0b11000000,@T[6],$A41,$A41 # [3][3] [1][0] [4][2] [2][4] vpblendd \$0b11000000,@T[4],@T[7],@T[7] # [3][4] [1][1] [4][3] [2][0] vpandn @T[8],$A31,$A31 # tgting [3][1] [1][2] [4][3] [2][4] vpandn @T[7],$A41,$A41 # tgting [3][2] [1][4] [4][1] [2][3] vpblendd \$0b00001100,@T[2],@T[5],$A11 # [4][0] [2][3] vpblendd \$0b00001100,@T[5],@T[3],@T[8] # [4][1] [2][4] vpxor @T[3],$A31,$A31 vpblendd \$0b00110000,@T[3],$A11,$A11 # [1][2] [4][0] [2][3] vpblendd \$0b00110000,@T[4],@T[8],@T[8] # [1][3] [4][1] [2][4] vpxor @T[5],$A41,$A41 vpblendd \$0b11000000,@T[4],$A11,$A11 # [3][4] [1][2] [4][0] [2][3] vpblendd \$0b11000000,@T[2],@T[8],@T[8] # [3][0] [1][3] [4][1] [2][4] vpandn @T[8],$A11,$A11 # tgting [3][3] [1][1] [4][4] [2][2] vpxor @T[6],$A11,$A11 vpermq \$0b00011110,@T[1],$A21 # [0][1] [0][2] [0][4] [0][3] vpblendd \$0b00110000,$A00,$A21,@T[8] # [0][1] [0][0] [0][4] [0][3] vpermq \$0b00111001,@T[1],$A01 # [0][1] [0][4] [0][3] [0][2] vpblendd \$0b11000000,$A00,$A01,$A01 # [0][0] [0][4] [0][3] [0][2] vpandn @T[8],$A01,$A01 # tgting [0][4] [0][3] [0][2] [0][1] vpblendd \$0b00001100,@T[5],@T[4],$A20 # [4][1] [2][1] vpblendd \$0b00001100,@T[4],@T[6],@T[7] # [4][2] [2][2] vpblendd \$0b00110000,@T[6],$A20,$A20 # [1][1] [4][1] [2][1] vpblendd \$0b00110000,@T[3],@T[7],@T[7] # [1][2] [4][2] [2][2] vpblendd \$0b11000000,@T[3],$A20,$A20 # [3][1] [1][1] [4][1] [2][1] vpblendd \$0b11000000,@T[5],@T[7],@T[7] # [3][2] [1][2] [4][2] [2][2] vpandn @T[7],$A20,$A20 # tgting [3][0] [1][0] [4][0] [2][0] vpxor @T[2],$A20,$A20 vpermq \$0b00000000,@T[0],@T[0] # [0][0] [0][0] [0][0] [0][0] vpermq \$0b00011011,$A31,$A31 # post-Chi shuffle vpermq \$0b10001101,$A41,$A41 vpermq \$0b01110010,$A11,$A11 vpblendd \$0b00001100,@T[3],@T[6],$A21 # [4][3] [2][2] vpblendd \$0b00001100,@T[6],@T[5],@T[7] # [4][4] [2][3] vpblendd \$0b00110000,@T[5],$A21,$A21 # [1][4] [4][3] [2][2] vpblendd \$0b00110000,@T[2],@T[7],@T[7] # [1][0] [4][4] [2][3] vpblendd \$0b11000000,@T[2],$A21,$A21 # [3][0] [1][4] [4][3] [2][2] vpblendd \$0b11000000,@T[3],@T[7],@T[7] # [3][1] [1][0] [4][4] [2][3] vpandn @T[7],$A21,$A21 # tgting [3][4] [1][3] [4][2] [2][1] vpxor @T[0],$A00,$A00 vpxor @T[1],$A01,$A01 vpxor @T[4],$A21,$A21 ######################################### Iota vpxor (%r10),$A00,$A00 lea 32(%r10),%r10 dec %eax jnz .Loop_avx2 ret .size __KeccakF1600,.-__KeccakF1600 ___ my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx"); my $out = $inp; # in squeeze $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function .align 32 SHA3_absorb: mov %rsp,%r11 lea -240(%rsp),%rsp and \$-32,%rsp lea 96($A_flat),$A_flat lea 96($inp),$inp lea 96(%rsp),%r10 vzeroupper vpbroadcastq -96($A_flat),$A00 # load A[5][5] vmovdqu 8+32*0-96($A_flat),$A01 vmovdqu 8+32*1-96($A_flat),$A20 vmovdqu 8+32*2-96($A_flat),$A31 vmovdqu 8+32*3-96($A_flat),$A21 vmovdqu 8+32*4-96($A_flat),$A41 vmovdqu 8+32*5-96($A_flat),$A11 vpxor @T[0],@T[0],@T[0] vmovdqa @T[0],32*2-96(%r10) # zero transfer area on stack vmovdqa @T[0],32*3-96(%r10) vmovdqa @T[0],32*4-96(%r10) vmovdqa @T[0],32*5-96(%r10) vmovdqa @T[0],32*6-96(%r10) .Loop_absorb_avx2: mov $bsz,%rax sub $bsz,$len jc .Ldone_absorb_avx2 shr \$3,%eax vpbroadcastq 0-96($inp),@T[0] vmovdqu 8-96($inp),@T[1] sub \$4,%eax ___ for(my $i=5; $i<25; $i++) { $code.=<<___ dec %eax jz .Labsorved_avx2 mov 8*$i-96($inp),%r8 mov %r8,$A_jagged[$i]-96(%r10) ___ } $code.=<<___; .Labsorved_avx2: lea ($inp,$bsz),$inp vpxor @T[0],$A00,$A00 vpxor @T[1],$A01,$A01 vpxor 32*2-96(%r10),$A20,$A20 vpxor 32*3-96(%r10),$A31,$A31 vpxor 32*4-96(%r10),$A21,$A21 vpxor 32*5-96(%r10),$A41,$A41 vpxor 32*6-96(%r10),$A11,$A11 call __KeccakF1600 lea 96(%rsp),%r10 jmp .Loop_absorb_avx2 .Ldone_absorb_avx2: vmovq %xmm0,-96($A_flat) vmovdqu $A01,8+32*0-96($A_flat) vmovdqu $A20,8+32*1-96($A_flat) vmovdqu $A31,8+32*2-96($A_flat) vmovdqu $A21,8+32*3-96($A_flat) vmovdqu $A41,8+32*4-96($A_flat) vmovdqu $A11,8+32*5-96($A_flat) vzeroupper lea (%r11),%rsp lea ($len,$bsz),%rax # return value ret .size SHA3_absorb,.-SHA3_absorb .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 32 SHA3_squeeze: mov %rsp,%r11 lea 96($A_flat),$A_flat shr \$3,$bsz vzeroupper vpbroadcastq -96($A_flat),$A00 vpxor @T[0],@T[0],@T[0] vmovdqu 8+32*0-96($A_flat),$A01 vmovdqu 8+32*1-96($A_flat),$A20 vmovdqu 8+32*2-96($A_flat),$A31 vmovdqu 8+32*3-96($A_flat),$A21 vmovdqu 8+32*4-96($A_flat),$A41 vmovdqu 8+32*5-96($A_flat),$A11 mov $bsz,%rax .Loop_squeeze_avx2: mov @A_jagged[$i]-96($A_flat),%r8 ___ for (my $i=0; $i<25; $i++) { $code.=<<___; sub \$8,$len jc .Ltail_squeeze_avx2 mov %r8,($out) lea 8($out),$out je .Ldone_squeeze_avx2 dec %eax je .Lextend_output_avx2 mov @A_jagged[$i+1]-120($A_flat),%r8 ___ } $code.=<<___; .Lextend_output_avx2: call __KeccakF1600 vmovq %xmm0,-96($A_flat) vmovdqu $A01,8+32*0-96($A_flat) vmovdqu $A20,8+32*1-96($A_flat) vmovdqu $A31,8+32*2-96($A_flat) vmovdqu $A21,8+32*3-96($A_flat) vmovdqu $A41,8+32*4-96($A_flat) vmovdqu $A11,8+32*5-96($A_flat) mov $bsz,%rax jmp .Loop_squeeze_avx2 .Ltail_squeeze_avx2: add \$8,$len .Loop_tail_avx2: mov %r8b,($out) lea 1($out),$out shr \$8,%r8 dec $len jnz .Loop_tail_avx2 .Ldone_squeeze_avx2: vzeroupper lea (%r11),%rsp ret .size SHA3_squeeze,.-SHA3_squeeze .align 64 rhotates_left: .quad 3, 18, 36, 41 # [2][0] [4][0] [1][0] [3][0] .quad 1, 62, 28, 27 # [0][1] [0][2] [0][3] [0][4] .quad 45, 6, 56, 39 # [3][1] [1][2] [4][3] [2][4] .quad 10, 61, 55, 8 # [2][1] [4][2] [1][3] [3][4] .quad 2, 15, 25, 20 # [4][1] [3][2] [2][3] [1][4] .quad 44, 43, 21, 14 # [1][1] [2][2] [3][3] [4][4] rhotates_right: .quad 64-3, 64-18, 64-36, 64-41 .quad 64-1, 64-62, 64-28, 64-27 .quad 64-45, 64-6, 64-56, 64-39 .quad 64-10, 64-61, 64-55, 64-8 .quad 64-2, 64-15, 64-25, 64-20 .quad 64-44, 64-43, 64-21, 64-14 iotas: .quad 0x0000000000000001, 0x0000000000000001, 0x0000000000000001, 0x0000000000000001 .quad 0x0000000000008082, 0x0000000000008082, 0x0000000000008082, 0x0000000000008082 .quad 0x800000000000808a, 0x800000000000808a, 0x800000000000808a, 0x800000000000808a .quad 0x8000000080008000, 0x8000000080008000, 0x8000000080008000, 0x8000000080008000 .quad 0x000000000000808b, 0x000000000000808b, 0x000000000000808b, 0x000000000000808b .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001 .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081 .quad 0x8000000000008009, 0x8000000000008009, 0x8000000000008009, 0x8000000000008009 .quad 0x000000000000008a, 0x000000000000008a, 0x000000000000008a, 0x000000000000008a .quad 0x0000000000000088, 0x0000000000000088, 0x0000000000000088, 0x0000000000000088 .quad 0x0000000080008009, 0x0000000080008009, 0x0000000080008009, 0x0000000080008009 .quad 0x000000008000000a, 0x000000008000000a, 0x000000008000000a, 0x000000008000000a .quad 0x000000008000808b, 0x000000008000808b, 0x000000008000808b, 0x000000008000808b .quad 0x800000000000008b, 0x800000000000008b, 0x800000000000008b, 0x800000000000008b .quad 0x8000000000008089, 0x8000000000008089, 0x8000000000008089, 0x8000000000008089 .quad 0x8000000000008003, 0x8000000000008003, 0x8000000000008003, 0x8000000000008003 .quad 0x8000000000008002, 0x8000000000008002, 0x8000000000008002, 0x8000000000008002 .quad 0x8000000000000080, 0x8000000000000080, 0x8000000000000080, 0x8000000000000080 .quad 0x000000000000800a, 0x000000000000800a, 0x000000000000800a, 0x000000000000800a .quad 0x800000008000000a, 0x800000008000000a, 0x800000008000000a, 0x800000008000000a .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081 .quad 0x8000000000008080, 0x8000000000008080, 0x8000000000008080, 0x8000000000008080 .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001 .quad 0x8000000080008008, 0x8000000080008008, 0x8000000080008008, 0x8000000080008008 .asciz "Keccak-1600 absorb and squeeze for AVX2, CRYPTOGAMS by " ___ $output=pop; open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-avx512.pl000077500000000000000000000377121364063235100213470ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for AVX-512F. # # July 2017. # # Below code is KECCAK_1X_ALT implementation (see sha/keccak1600.c). # Pretty straightforward, the only "magic" is data layout in registers. # It's impossible to have one that is optimal for every step, hence # it's changing as algorithm progresses. Data is saved in linear order, # but in-register order morphs between rounds. Even rounds take in # linear layout, and odd rounds - transposed, or "verticaly-shaped"... # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(*) # # Knights Landing 7.6 # Skylake-X 5.7 # # (*) Corresponds to SHA3-256. ######################################################################## # Below code is combination of two ideas. One is taken from Keccak Code # Package, hereafter KCP, and another one from initial version of this # module. What is common is observation that Pi's input and output are # "mostly transposed", i.e. if input is aligned by x coordinate, then # output is [mostly] aligned by y. Both versions, KCP and predecessor, # were trying to use one of them from round to round, which resulted in # some kind of transposition in each round. This version still does # transpose data, but only every second round. Another essential factor # is that KCP transposition has to be performed with instructions that # turned to be rather expensive on Knights Landing, both latency- and # throughput-wise. Not to mention that some of them have to depend on # each other. On the other hand initial version of this module was # relying heavily on blend instructions. There were lots of them, # resulting in higher instruction count, yet it performed better on # Knights Landing, because processor can execute pair of them each # cycle and they have minimal latency. This module is an attempt to # bring best parts together:-) # # Coordinates below correspond to those in sha/keccak1600.c. Input # layout is straight linear: # # [0][4] [0][3] [0][2] [0][1] [0][0] # [1][4] [1][3] [1][2] [1][1] [1][0] # [2][4] [2][3] [2][2] [2][1] [2][0] # [3][4] [3][3] [3][2] [3][1] [3][0] # [4][4] [4][3] [4][2] [4][1] [4][0] # # It's perfect for Theta, while Pi is reduced to intra-register # permutations which yield layout perfect for Chi: # # [4][0] [3][0] [2][0] [1][0] [0][0] # [4][1] [3][1] [2][1] [1][1] [0][1] # [4][2] [3][2] [2][2] [1][2] [0][2] # [4][3] [3][3] [2][3] [1][3] [0][3] # [4][4] [3][4] [2][4] [1][4] [0][4] # # Now instead of performing full transposition and feeding it to next # identical round, we perform kind of diagonal transposition to layout # from initial version of this module, and make it suitable for Theta: # # [4][4] [3][3] [2][2] [1][1] [0][0]>4.3.2.1.0>[4][4] [3][3] [2][2] [1][1] [0][0] # [4][0] [3][4] [2][3] [1][2] [0][1]>3.2.1.0.4>[3][4] [2][3] [1][2] [0][1] [4][0] # [4][1] [3][0] [2][4] [1][3] [0][2]>2.1.0.4.3>[2][4] [1][3] [0][2] [4][1] [3][0] # [4][2] [3][1] [2][0] [1][4] [0][3]>1.0.4.3.2>[1][4] [0][3] [4][2] [3][1] [2][0] # [4][3] [3][2] [2][1] [1][0] [0][4]>0.4.3.2.1>[0][4] [4][3] [3][2] [2][1] [1][0] # # Now intra-register permutations yield initial [almost] straight # linear layout: # # [4][4] [3][3] [2][2] [1][1] [0][0] ##[0][4] [0][3] [0][2] [0][1] [0][0] # [3][4] [2][3] [1][2] [0][1] [4][0] ##[2][3] [2][2] [2][1] [2][0] [2][4] # [2][4] [1][3] [0][2] [4][1] [3][0] ##[4][2] [4][1] [4][0] [4][4] [4][3] # [1][4] [0][3] [4][2] [3][1] [2][0] ##[1][1] [1][0] [1][4] [1][3] [1][2] # [0][4] [4][3] [3][2] [2][1] [1][0] ##[3][0] [3][4] [3][3] [3][2] [3][1] # # This means that odd round Chi is performed in less suitable layout, # with a number of additional permutations. But overall it turned to be # a win. Permutations are fastest possible on Knights Landing and they # are laid down to be independent of each other. In the essence I traded # 20 blend instructions for 3 permutations. The result is 13% faster # than KCP on Skylake-X, and >40% on Knights Landing. # # As implied, data is loaded in straight linear order. Digits in # variables' names represent coordinates of right-most element of # loaded data chunk: my ($A00, # [0][4] [0][3] [0][2] [0][1] [0][0] $A10, # [1][4] [1][3] [1][2] [1][1] [1][0] $A20, # [2][4] [2][3] [2][2] [2][1] [2][0] $A30, # [3][4] [3][3] [3][2] [3][1] [3][0] $A40) = # [4][4] [4][3] [4][2] [4][1] [4][0] map("%zmm$_",(0..4)); # We also need to map the magic order into offsets within structure: my @A_jagged = ([0,0], [0,1], [0,2], [0,3], [0,4], [1,0], [1,1], [1,2], [1,3], [1,4], [2,0], [2,1], [2,2], [2,3], [2,4], [3,0], [3,1], [3,2], [3,3], [3,4], [4,0], [4,1], [4,2], [4,3], [4,4]); @A_jagged = map(8*($$_[0]*8+$$_[1]), @A_jagged); # ... and now linear my @T = map("%zmm$_",(5..12)); my @Theta = map("%zmm$_",(33,13..16)); # invalid @Theta[0] is not typo my @Pi0 = map("%zmm$_",(17..21)); my @Rhotate0 = map("%zmm$_",(22..26)); my @Rhotate1 = map("%zmm$_",(27..31)); my ($C00,$D00) = @T[0..1]; my ($k00001,$k00010,$k00100,$k01000,$k10000,$k11111) = map("%k$_",(1..6)); $code.=<<___; .text .type __KeccakF1600,\@function .align 32 __KeccakF1600: lea iotas(%rip),%r10 mov \$12,%eax jmp .Loop_avx512 .align 32 .Loop_avx512: ######################################### Theta, even round vmovdqa64 $A00,@T[0] # put aside original A00 vpternlogq \$0x96,$A20,$A10,$A00 # and use it as "C00" vpternlogq \$0x96,$A40,$A30,$A00 vprolq \$1,$A00,$D00 vpermq $A00,@Theta[1],$A00 vpermq $D00,@Theta[4],$D00 vpternlogq \$0x96,$A00,$D00,@T[0] # T[0] is original A00 vpternlogq \$0x96,$A00,$D00,$A10 vpternlogq \$0x96,$A00,$D00,$A20 vpternlogq \$0x96,$A00,$D00,$A30 vpternlogq \$0x96,$A00,$D00,$A40 ######################################### Rho vprolvq @Rhotate0[0],@T[0],$A00 # T[0] is original A00 vprolvq @Rhotate0[1],$A10,$A10 vprolvq @Rhotate0[2],$A20,$A20 vprolvq @Rhotate0[3],$A30,$A30 vprolvq @Rhotate0[4],$A40,$A40 ######################################### Pi vpermq $A00,@Pi0[0],$A00 vpermq $A10,@Pi0[1],$A10 vpermq $A20,@Pi0[2],$A20 vpermq $A30,@Pi0[3],$A30 vpermq $A40,@Pi0[4],$A40 ######################################### Chi vmovdqa64 $A00,@T[0] vmovdqa64 $A10,@T[1] vpternlogq \$0xD2,$A20,$A10,$A00 vpternlogq \$0xD2,$A30,$A20,$A10 vpternlogq \$0xD2,$A40,$A30,$A20 vpternlogq \$0xD2,@T[0],$A40,$A30 vpternlogq \$0xD2,@T[1],@T[0],$A40 ######################################### Iota vpxorq (%r10),$A00,${A00}{$k00001} lea 16(%r10),%r10 ######################################### Harmonize rounds vpblendmq $A20,$A10,@{T[1]}{$k00010} vpblendmq $A30,$A20,@{T[2]}{$k00010} vpblendmq $A40,$A30,@{T[3]}{$k00010} vpblendmq $A10,$A00,@{T[0]}{$k00010} vpblendmq $A00,$A40,@{T[4]}{$k00010} vpblendmq $A30,@T[1],@{T[1]}{$k00100} vpblendmq $A40,@T[2],@{T[2]}{$k00100} vpblendmq $A20,@T[0],@{T[0]}{$k00100} vpblendmq $A00,@T[3],@{T[3]}{$k00100} vpblendmq $A10,@T[4],@{T[4]}{$k00100} vpblendmq $A40,@T[1],@{T[1]}{$k01000} vpblendmq $A30,@T[0],@{T[0]}{$k01000} vpblendmq $A00,@T[2],@{T[2]}{$k01000} vpblendmq $A10,@T[3],@{T[3]}{$k01000} vpblendmq $A20,@T[4],@{T[4]}{$k01000} vpblendmq $A40,@T[0],@{T[0]}{$k10000} vpblendmq $A00,@T[1],@{T[1]}{$k10000} vpblendmq $A10,@T[2],@{T[2]}{$k10000} vpblendmq $A20,@T[3],@{T[3]}{$k10000} vpblendmq $A30,@T[4],@{T[4]}{$k10000} #vpermq @T[0],@Theta[0],$A00 # doesn't actually change order vpermq @T[1],@Theta[1],$A10 vpermq @T[2],@Theta[2],$A20 vpermq @T[3],@Theta[3],$A30 vpermq @T[4],@Theta[4],$A40 ######################################### Theta, odd round vmovdqa64 $T[0],$A00 # real A00 vpternlogq \$0x96,$A20,$A10,$C00 # C00 is @T[0]'s alias vpternlogq \$0x96,$A40,$A30,$C00 vprolq \$1,$C00,$D00 vpermq $C00,@Theta[1],$C00 vpermq $D00,@Theta[4],$D00 vpternlogq \$0x96,$C00,$D00,$A00 vpternlogq \$0x96,$C00,$D00,$A30 vpternlogq \$0x96,$C00,$D00,$A10 vpternlogq \$0x96,$C00,$D00,$A40 vpternlogq \$0x96,$C00,$D00,$A20 ######################################### Rho vprolvq @Rhotate1[0],$A00,$A00 vprolvq @Rhotate1[3],$A30,@T[1] vprolvq @Rhotate1[1],$A10,@T[2] vprolvq @Rhotate1[4],$A40,@T[3] vprolvq @Rhotate1[2],$A20,@T[4] vpermq $A00,@Theta[4],@T[5] vpermq $A00,@Theta[3],@T[6] ######################################### Iota vpxorq -8(%r10),$A00,${A00}{$k00001} ######################################### Pi vpermq @T[1],@Theta[2],$A10 vpermq @T[2],@Theta[4],$A20 vpermq @T[3],@Theta[1],$A30 vpermq @T[4],@Theta[3],$A40 ######################################### Chi vpternlogq \$0xD2,@T[6],@T[5],$A00 vpermq @T[1],@Theta[1],@T[7] #vpermq @T[1],@Theta[0],@T[1] vpternlogq \$0xD2,@T[1],@T[7],$A10 vpermq @T[2],@Theta[3],@T[0] vpermq @T[2],@Theta[2],@T[2] vpternlogq \$0xD2,@T[2],@T[0],$A20 #vpermq @T[3],@Theta[0],@T[3] vpermq @T[3],@Theta[4],@T[1] vpternlogq \$0xD2,@T[1],@T[3],$A30 vpermq @T[4],@Theta[2],@T[0] vpermq @T[4],@Theta[1],@T[4] vpternlogq \$0xD2,@T[4],@T[0],$A40 dec %eax jnz .Loop_avx512 ret .size __KeccakF1600,.-__KeccakF1600 ___ my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx"); my $out = $inp; # in squeeze $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function .align 32 SHA3_absorb: mov %rsp,%r11 lea -320(%rsp),%rsp and \$-64,%rsp lea 96($A_flat),$A_flat lea 96($inp),$inp lea 128(%rsp),%r9 lea theta_perm(%rip),%r8 kxnorw $k11111,$k11111,$k11111 kshiftrw \$15,$k11111,$k00001 kshiftrw \$11,$k11111,$k11111 kshiftlw \$1,$k00001,$k00010 kshiftlw \$2,$k00001,$k00100 kshiftlw \$3,$k00001,$k01000 kshiftlw \$4,$k00001,$k10000 #vmovdqa64 64*0(%r8),@Theta[0] vmovdqa64 64*1(%r8),@Theta[1] vmovdqa64 64*2(%r8),@Theta[2] vmovdqa64 64*3(%r8),@Theta[3] vmovdqa64 64*4(%r8),@Theta[4] vmovdqa64 64*5(%r8),@Rhotate1[0] vmovdqa64 64*6(%r8),@Rhotate1[1] vmovdqa64 64*7(%r8),@Rhotate1[2] vmovdqa64 64*8(%r8),@Rhotate1[3] vmovdqa64 64*9(%r8),@Rhotate1[4] vmovdqa64 64*10(%r8),@Rhotate0[0] vmovdqa64 64*11(%r8),@Rhotate0[1] vmovdqa64 64*12(%r8),@Rhotate0[2] vmovdqa64 64*13(%r8),@Rhotate0[3] vmovdqa64 64*14(%r8),@Rhotate0[4] vmovdqa64 64*15(%r8),@Pi0[0] vmovdqa64 64*16(%r8),@Pi0[1] vmovdqa64 64*17(%r8),@Pi0[2] vmovdqa64 64*18(%r8),@Pi0[3] vmovdqa64 64*19(%r8),@Pi0[4] vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z} vpxorq @T[0],@T[0],@T[0] vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z} vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z} vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z} vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z} vmovdqa64 @T[0],0*64-128(%r9) # zero transfer area on stack vmovdqa64 @T[0],1*64-128(%r9) vmovdqa64 @T[0],2*64-128(%r9) vmovdqa64 @T[0],3*64-128(%r9) vmovdqa64 @T[0],4*64-128(%r9) jmp .Loop_absorb_avx512 .align 32 .Loop_absorb_avx512: mov $bsz,%rax sub $bsz,$len jc .Ldone_absorb_avx512 shr \$3,%eax ___ for(my $i=0; $i<25; $i++) { $code.=<<___ mov 8*$i-96($inp),%r8 mov %r8,$A_jagged[$i]-128(%r9) dec %eax jz .Labsorved_avx512 ___ } $code.=<<___; .Labsorved_avx512: lea ($inp,$bsz),$inp vpxorq 64*0-128(%r9),$A00,$A00 vpxorq 64*1-128(%r9),$A10,$A10 vpxorq 64*2-128(%r9),$A20,$A20 vpxorq 64*3-128(%r9),$A30,$A30 vpxorq 64*4-128(%r9),$A40,$A40 call __KeccakF1600 jmp .Loop_absorb_avx512 .align 32 .Ldone_absorb_avx512: vmovdqu64 $A00,40*0-96($A_flat){$k11111} vmovdqu64 $A10,40*1-96($A_flat){$k11111} vmovdqu64 $A20,40*2-96($A_flat){$k11111} vmovdqu64 $A30,40*3-96($A_flat){$k11111} vmovdqu64 $A40,40*4-96($A_flat){$k11111} vzeroupper lea (%r11),%rsp lea ($len,$bsz),%rax # return value ret .size SHA3_absorb,.-SHA3_absorb .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 32 SHA3_squeeze: mov %rsp,%r11 lea 96($A_flat),$A_flat cmp $bsz,$len jbe .Lno_output_extension_avx512 lea theta_perm(%rip),%r8 kxnorw $k11111,$k11111,$k11111 kshiftrw \$15,$k11111,$k00001 kshiftrw \$11,$k11111,$k11111 kshiftlw \$1,$k00001,$k00010 kshiftlw \$2,$k00001,$k00100 kshiftlw \$3,$k00001,$k01000 kshiftlw \$4,$k00001,$k10000 #vmovdqa64 64*0(%r8),@Theta[0] vmovdqa64 64*1(%r8),@Theta[1] vmovdqa64 64*2(%r8),@Theta[2] vmovdqa64 64*3(%r8),@Theta[3] vmovdqa64 64*4(%r8),@Theta[4] vmovdqa64 64*5(%r8),@Rhotate1[0] vmovdqa64 64*6(%r8),@Rhotate1[1] vmovdqa64 64*7(%r8),@Rhotate1[2] vmovdqa64 64*8(%r8),@Rhotate1[3] vmovdqa64 64*9(%r8),@Rhotate1[4] vmovdqa64 64*10(%r8),@Rhotate0[0] vmovdqa64 64*11(%r8),@Rhotate0[1] vmovdqa64 64*12(%r8),@Rhotate0[2] vmovdqa64 64*13(%r8),@Rhotate0[3] vmovdqa64 64*14(%r8),@Rhotate0[4] vmovdqa64 64*15(%r8),@Pi0[0] vmovdqa64 64*16(%r8),@Pi0[1] vmovdqa64 64*17(%r8),@Pi0[2] vmovdqa64 64*18(%r8),@Pi0[3] vmovdqa64 64*19(%r8),@Pi0[4] vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z} vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z} vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z} vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z} vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z} .Lno_output_extension_avx512: shr \$3,$bsz lea -96($A_flat),%r9 mov $bsz,%rax jmp .Loop_squeeze_avx512 .align 32 .Loop_squeeze_avx512: cmp \$8,$len jb .Ltail_squeeze_avx512 mov (%r9),%r8 lea 8(%r9),%r9 mov %r8,($out) lea 8($out),$out sub \$8,$len # len -= 8 jz .Ldone_squeeze_avx512 sub \$1,%rax # bsz-- jnz .Loop_squeeze_avx512 #vpermq @Theta[4],@Theta[4],@Theta[3] #vpermq @Theta[3],@Theta[4],@Theta[2] #vpermq @Theta[3],@Theta[3],@Theta[1] call __KeccakF1600 vmovdqu64 $A00,40*0-96($A_flat){$k11111} vmovdqu64 $A10,40*1-96($A_flat){$k11111} vmovdqu64 $A20,40*2-96($A_flat){$k11111} vmovdqu64 $A30,40*3-96($A_flat){$k11111} vmovdqu64 $A40,40*4-96($A_flat){$k11111} lea -96($A_flat),%r9 mov $bsz,%rax jmp .Loop_squeeze_avx512 .Ltail_squeeze_avx512: mov $out,%rdi mov %r9,%rsi mov $len,%rcx .byte 0xf3,0xa4 # rep movsb .Ldone_squeeze_avx512: vzeroupper lea (%r11),%rsp ret .size SHA3_squeeze,.-SHA3_squeeze .align 64 theta_perm: .quad 0, 1, 2, 3, 4, 5, 6, 7 # [not used] .quad 4, 0, 1, 2, 3, 5, 6, 7 .quad 3, 4, 0, 1, 2, 5, 6, 7 .quad 2, 3, 4, 0, 1, 5, 6, 7 .quad 1, 2, 3, 4, 0, 5, 6, 7 rhotates1: .quad 0, 44, 43, 21, 14, 0, 0, 0 # [0][0] [1][1] [2][2] [3][3] [4][4] .quad 18, 1, 6, 25, 8, 0, 0, 0 # [4][0] [0][1] [1][2] [2][3] [3][4] .quad 41, 2, 62, 55, 39, 0, 0, 0 # [3][0] [4][1] [0][2] [1][3] [2][4] .quad 3, 45, 61, 28, 20, 0, 0, 0 # [2][0] [3][1] [4][2] [0][3] [1][4] .quad 36, 10, 15, 56, 27, 0, 0, 0 # [1][0] [2][1] [3][2] [4][3] [0][4] rhotates0: .quad 0, 1, 62, 28, 27, 0, 0, 0 .quad 36, 44, 6, 55, 20, 0, 0, 0 .quad 3, 10, 43, 25, 39, 0, 0, 0 .quad 41, 45, 15, 21, 8, 0, 0, 0 .quad 18, 2, 61, 56, 14, 0, 0, 0 pi0_perm: .quad 0, 3, 1, 4, 2, 5, 6, 7 .quad 1, 4, 2, 0, 3, 5, 6, 7 .quad 2, 0, 3, 1, 4, 5, 6, 7 .quad 3, 1, 4, 2, 0, 5, 6, 7 .quad 4, 2, 0, 3, 1, 5, 6, 7 iotas: .quad 0x0000000000000001 .quad 0x0000000000008082 .quad 0x800000000000808a .quad 0x8000000080008000 .quad 0x000000000000808b .quad 0x0000000080000001 .quad 0x8000000080008081 .quad 0x8000000000008009 .quad 0x000000000000008a .quad 0x0000000000000088 .quad 0x0000000080008009 .quad 0x000000008000000a .quad 0x000000008000808b .quad 0x800000000000008b .quad 0x8000000000008089 .quad 0x8000000000008003 .quad 0x8000000000008002 .quad 0x8000000000000080 .quad 0x000000000000800a .quad 0x800000008000000a .quad 0x8000000080008081 .quad 0x8000000000008080 .quad 0x0000000080000001 .quad 0x8000000080008008 .asciz "Keccak-1600 absorb and squeeze for AVX-512F, CRYPTOGAMS by " ___ $output=pop; open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-avx512vl.pl000077500000000000000000000317151364063235100217060ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for AVX512VL. # # December 2017. # # This is an adaptation of AVX2 module that reuses register data # layout, but utilizes new 256-bit AVX512VL instructions. See AVX2 # module for further information on layout. # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(*) # # Skylake-X 6.4/+47% # # (*) Corresponds to SHA3-256. Percentage after slash is improvement # coefficient in comparison to scalar keccak1600-x86_64.pl. # Digits in variables' names denote right-most coordinates: my ($A00, # [0][0] [0][0] [0][0] [0][0] # %ymm0 $A01, # [0][4] [0][3] [0][2] [0][1] # %ymm1 $A20, # [3][0] [1][0] [4][0] [2][0] # %ymm2 $A31, # [2][4] [4][3] [1][2] [3][1] # %ymm3 $A21, # [3][4] [1][3] [4][2] [2][1] # %ymm4 $A41, # [1][4] [2][3] [3][2] [4][1] # %ymm5 $A11) = # [4][4] [3][3] [2][2] [1][1] # %ymm6 map("%ymm$_",(0..6)); # We also need to map the magic order into offsets within structure: my @A_jagged = ([0,0], [1,0], [1,1], [1,2], [1,3], # [0][0..4] [2,2], [6,0], [3,1], [4,2], [5,3], # [1][0..4] [2,0], [4,0], [6,1], [5,2], [3,3], # [2][0..4] [2,3], [3,0], [5,1], [6,2], [4,3], # [3][0..4] [2,1], [5,0], [4,1], [3,2], [6,3]); # [4][0..4] @A_jagged = map(8*($$_[0]*4+$$_[1]), @A_jagged); # ... and now linear my @T = map("%ymm$_",(7..15)); my ($C14,$C00,$D00,$D14) = @T[5..8]; my ($R20,$R01,$R31,$R21,$R41,$R11) = map("%ymm$_",(16..21)); $code.=<<___; .text .type __KeccakF1600,\@function .align 32 __KeccakF1600: lea iotas(%rip),%r10 mov \$24,%eax jmp .Loop_avx512vl .align 32 .Loop_avx512vl: ######################################### Theta vpshufd \$0b01001110,$A20,$C00 vpxor $A31,$A41,$C14 vpxor $A11,$A21,@T[2] vpternlogq \$0x96,$A01,$T[2],$C14 # C[1..4] vpxor $A20,$C00,$C00 vpermq \$0b01001110,$C00,@T[0] vpermq \$0b10010011,$C14,@T[4] vprolq \$1,$C14,@T[1] # ROL64(C[1..4],1) vpermq \$0b00111001,@T[1],$D14 vpxor @T[4],@T[1],$D00 vpermq \$0b00000000,$D00,$D00 # D[0..0] = ROL64(C[1],1) ^ C[4] vpternlogq \$0x96,@T[0],$A00,$C00 # C[0..0] vprolq \$1,$C00,@T[1] # ROL64(C[0..0],1) vpxor $D00,$A00,$A00 # ^= D[0..0] vpblendd \$0b11000000,@T[1],$D14,$D14 vpblendd \$0b00000011,$C00,@T[4],@T[0] ######################################### Rho + Pi + pre-Chi shuffle vpxor $D00,$A20,$A20 # ^= D[0..0] from Theta vprolvq $R20,$A20,$A20 vpternlogq \$0x96,@T[0],$D14,$A31 # ^= D[1..4] from Theta vprolvq $R31,$A31,$A31 vpternlogq \$0x96,@T[0],$D14,$A21 # ^= D[1..4] from Theta vprolvq $R21,$A21,$A21 vpternlogq \$0x96,@T[0],$D14,$A41 # ^= D[1..4] from Theta vprolvq $R41,$A41,$A41 vpermq \$0b10001101,$A20,@T[3] # $A20 -> future $A31 vpermq \$0b10001101,$A31,@T[4] # $A31 -> future $A21 vpternlogq \$0x96,@T[0],$D14,$A11 # ^= D[1..4] from Theta vprolvq $R11,$A11,@T[1] # $A11 -> future $A01 vpermq \$0b00011011,$A21,@T[5] # $A21 -> future $A41 vpermq \$0b01110010,$A41,@T[6] # $A41 -> future $A11 vpternlogq \$0x96,@T[0],$D14,$A01 # ^= D[1..4] from Theta vprolvq $R01,$A01,@T[2] # $A01 -> future $A20 ######################################### Chi vpblendd \$0b00001100,@T[6],@T[2],$A31 # [4][4] [2][0] vpblendd \$0b00001100,@T[2],@T[4],@T[8] # [4][0] [2][1] vpblendd \$0b00001100,@T[4],@T[3],$A41 # [4][2] [2][4] vpblendd \$0b00001100,@T[3],@T[2],@T[7] # [4][3] [2][0] vpblendd \$0b00110000,@T[4],$A31,$A31 # [1][3] [4][4] [2][0] vpblendd \$0b00110000,@T[5],@T[8],@T[8] # [1][4] [4][0] [2][1] vpblendd \$0b00110000,@T[2],$A41,$A41 # [1][0] [4][2] [2][4] vpblendd \$0b00110000,@T[6],@T[7],@T[7] # [1][1] [4][3] [2][0] vpblendd \$0b11000000,@T[5],$A31,$A31 # [3][2] [1][3] [4][4] [2][0] vpblendd \$0b11000000,@T[6],@T[8],@T[8] # [3][3] [1][4] [4][0] [2][1] vpblendd \$0b11000000,@T[6],$A41,$A41 # [3][3] [1][0] [4][2] [2][4] vpblendd \$0b11000000,@T[4],@T[7],@T[7] # [3][4] [1][1] [4][3] [2][0] vpternlogq \$0xC6,@T[8],@T[3],$A31 # [3][1] [1][2] [4][3] [2][4] vpternlogq \$0xC6,@T[7],@T[5],$A41 # [3][2] [1][4] [4][1] [2][3] vpsrldq \$8,@T[1],@T[0] vpandn @T[0],@T[1],@T[0] # tgting [0][0] [0][0] [0][0] [0][0] vpblendd \$0b00001100,@T[2],@T[5],$A11 # [4][0] [2][3] vpblendd \$0b00001100,@T[5],@T[3],@T[8] # [4][1] [2][4] vpblendd \$0b00110000,@T[3],$A11,$A11 # [1][2] [4][0] [2][3] vpblendd \$0b00110000,@T[4],@T[8],@T[8] # [1][3] [4][1] [2][4] vpblendd \$0b11000000,@T[4],$A11,$A11 # [3][4] [1][2] [4][0] [2][3] vpblendd \$0b11000000,@T[2],@T[8],@T[8] # [3][0] [1][3] [4][1] [2][4] vpternlogq \$0xC6,@T[8],@T[6],$A11 # [3][3] [1][1] [4][4] [2][2] vpermq \$0b00011110,@T[1],$A21 # [0][1] [0][2] [0][4] [0][3] vpblendd \$0b00110000,$A00,$A21,@T[8] # [0][1] [0][0] [0][4] [0][3] vpermq \$0b00111001,@T[1],$A01 # [0][1] [0][4] [0][3] [0][2] vpblendd \$0b11000000,$A00,$A01,$A01 # [0][0] [0][4] [0][3] [0][2] vpblendd \$0b00001100,@T[5],@T[4],$A20 # [4][1] [2][1] vpblendd \$0b00001100,@T[4],@T[6],@T[7] # [4][2] [2][2] vpblendd \$0b00110000,@T[6],$A20,$A20 # [1][1] [4][1] [2][1] vpblendd \$0b00110000,@T[3],@T[7],@T[7] # [1][2] [4][2] [2][2] vpblendd \$0b11000000,@T[3],$A20,$A20 # [3][1] [1][1] [4][1] [2][1] vpblendd \$0b11000000,@T[5],@T[7],@T[7] # [3][2] [1][2] [4][2] [2][2] vpternlogq \$0xC6,@T[7],@T[2],$A20 # [3][0] [1][0] [4][0] [2][0] vpermq \$0b00000000,@T[0],@T[0] # [0][0] [0][0] [0][0] [0][0] vpermq \$0b00011011,$A31,$A31 # post-Chi shuffle vpermq \$0b10001101,$A41,$A41 vpermq \$0b01110010,$A11,$A11 vpblendd \$0b00001100,@T[3],@T[6],$A21 # [4][3] [2][2] vpblendd \$0b00001100,@T[6],@T[5],@T[7] # [4][4] [2][3] vpblendd \$0b00110000,@T[5],$A21,$A21 # [1][4] [4][3] [2][2] vpblendd \$0b00110000,@T[2],@T[7],@T[7] # [1][0] [4][4] [2][3] vpblendd \$0b11000000,@T[2],$A21,$A21 # [3][0] [1][4] [4][3] [2][2] vpblendd \$0b11000000,@T[3],@T[7],@T[7] # [3][1] [1][0] [4][4] [2][3] vpternlogq \$0xC6,@T[8],@T[1],$A01 # [0][4] [0][3] [0][2] [0][1] vpternlogq \$0xC6,@T[7],@T[4],$A21 # [3][4] [1][3] [4][2] [2][1] ######################################### Iota vpternlogq \$0x96,(%r10),@T[0],$A00 lea 32(%r10),%r10 dec %eax jnz .Loop_avx512vl ret .size __KeccakF1600,.-__KeccakF1600 ___ my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx"); my $out = $inp; # in squeeze $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function .align 32 SHA3_absorb: mov %rsp,%r11 lea -240(%rsp),%rsp and \$-32,%rsp lea 96($A_flat),$A_flat lea 96($inp),$inp lea 96(%rsp),%r10 lea rhotates_left(%rip),%r8 vzeroupper vpbroadcastq -96($A_flat),$A00 # load A[5][5] vmovdqu 8+32*0-96($A_flat),$A01 vmovdqu 8+32*1-96($A_flat),$A20 vmovdqu 8+32*2-96($A_flat),$A31 vmovdqu 8+32*3-96($A_flat),$A21 vmovdqu 8+32*4-96($A_flat),$A41 vmovdqu 8+32*5-96($A_flat),$A11 vmovdqa64 0*32(%r8),$R20 # load "rhotate" indices vmovdqa64 1*32(%r8),$R01 vmovdqa64 2*32(%r8),$R31 vmovdqa64 3*32(%r8),$R21 vmovdqa64 4*32(%r8),$R41 vmovdqa64 5*32(%r8),$R11 vpxor @T[0],@T[0],@T[0] vmovdqa @T[0],32*2-96(%r10) # zero transfer area on stack vmovdqa @T[0],32*3-96(%r10) vmovdqa @T[0],32*4-96(%r10) vmovdqa @T[0],32*5-96(%r10) vmovdqa @T[0],32*6-96(%r10) .Loop_absorb_avx512vl: mov $bsz,%rax sub $bsz,$len jc .Ldone_absorb_avx512vl shr \$3,%eax vpbroadcastq 0-96($inp),@T[0] vmovdqu 8-96($inp),@T[1] sub \$4,%eax ___ for(my $i=5; $i<25; $i++) { $code.=<<___ dec %eax jz .Labsorved_avx512vl mov 8*$i-96($inp),%r8 mov %r8,$A_jagged[$i]-96(%r10) ___ } $code.=<<___; .Labsorved_avx512vl: lea ($inp,$bsz),$inp vpxor @T[0],$A00,$A00 vpxor @T[1],$A01,$A01 vpxor 32*2-96(%r10),$A20,$A20 vpxor 32*3-96(%r10),$A31,$A31 vpxor 32*4-96(%r10),$A21,$A21 vpxor 32*5-96(%r10),$A41,$A41 vpxor 32*6-96(%r10),$A11,$A11 call __KeccakF1600 lea 96(%rsp),%r10 jmp .Loop_absorb_avx512vl .Ldone_absorb_avx512vl: vmovq %xmm0,-96($A_flat) vmovdqu $A01,8+32*0-96($A_flat) vmovdqu $A20,8+32*1-96($A_flat) vmovdqu $A31,8+32*2-96($A_flat) vmovdqu $A21,8+32*3-96($A_flat) vmovdqu $A41,8+32*4-96($A_flat) vmovdqu $A11,8+32*5-96($A_flat) vzeroupper lea (%r11),%rsp lea ($len,$bsz),%rax # return value ret .size SHA3_absorb,.-SHA3_absorb .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 32 SHA3_squeeze: mov %rsp,%r11 lea 96($A_flat),$A_flat lea rhotates_left(%rip),%r8 shr \$3,$bsz vzeroupper vpbroadcastq -96($A_flat),$A00 vpxor @T[0],@T[0],@T[0] vmovdqu 8+32*0-96($A_flat),$A01 vmovdqu 8+32*1-96($A_flat),$A20 vmovdqu 8+32*2-96($A_flat),$A31 vmovdqu 8+32*3-96($A_flat),$A21 vmovdqu 8+32*4-96($A_flat),$A41 vmovdqu 8+32*5-96($A_flat),$A11 vmovdqa64 0*32(%r8),$R20 # load "rhotate" indices vmovdqa64 1*32(%r8),$R01 vmovdqa64 2*32(%r8),$R31 vmovdqa64 3*32(%r8),$R21 vmovdqa64 4*32(%r8),$R41 vmovdqa64 5*32(%r8),$R11 mov $bsz,%rax .Loop_squeeze_avx512vl: mov @A_jagged[$i]-96($A_flat),%r8 ___ for (my $i=0; $i<25; $i++) { $code.=<<___; sub \$8,$len jc .Ltail_squeeze_avx512vl mov %r8,($out) lea 8($out),$out je .Ldone_squeeze_avx512vl dec %eax je .Lextend_output_avx512vl mov @A_jagged[$i+1]-120($A_flat),%r8 ___ } $code.=<<___; .Lextend_output_avx512vl: call __KeccakF1600 vmovq %xmm0,-96($A_flat) vmovdqu $A01,8+32*0-96($A_flat) vmovdqu $A20,8+32*1-96($A_flat) vmovdqu $A31,8+32*2-96($A_flat) vmovdqu $A21,8+32*3-96($A_flat) vmovdqu $A41,8+32*4-96($A_flat) vmovdqu $A11,8+32*5-96($A_flat) mov $bsz,%rax jmp .Loop_squeeze_avx512vl .Ltail_squeeze_avx512vl: add \$8,$len .Loop_tail_avx512vl: mov %r8b,($out) lea 1($out),$out shr \$8,%r8 dec $len jnz .Loop_tail_avx512vl .Ldone_squeeze_avx512vl: vzeroupper lea (%r11),%rsp ret .size SHA3_squeeze,.-SHA3_squeeze .align 64 rhotates_left: .quad 3, 18, 36, 41 # [2][0] [4][0] [1][0] [3][0] .quad 1, 62, 28, 27 # [0][1] [0][2] [0][3] [0][4] .quad 45, 6, 56, 39 # [3][1] [1][2] [4][3] [2][4] .quad 10, 61, 55, 8 # [2][1] [4][2] [1][3] [3][4] .quad 2, 15, 25, 20 # [4][1] [3][2] [2][3] [1][4] .quad 44, 43, 21, 14 # [1][1] [2][2] [3][3] [4][4] iotas: .quad 0x0000000000000001, 0x0000000000000001, 0x0000000000000001, 0x0000000000000001 .quad 0x0000000000008082, 0x0000000000008082, 0x0000000000008082, 0x0000000000008082 .quad 0x800000000000808a, 0x800000000000808a, 0x800000000000808a, 0x800000000000808a .quad 0x8000000080008000, 0x8000000080008000, 0x8000000080008000, 0x8000000080008000 .quad 0x000000000000808b, 0x000000000000808b, 0x000000000000808b, 0x000000000000808b .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001 .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081 .quad 0x8000000000008009, 0x8000000000008009, 0x8000000000008009, 0x8000000000008009 .quad 0x000000000000008a, 0x000000000000008a, 0x000000000000008a, 0x000000000000008a .quad 0x0000000000000088, 0x0000000000000088, 0x0000000000000088, 0x0000000000000088 .quad 0x0000000080008009, 0x0000000080008009, 0x0000000080008009, 0x0000000080008009 .quad 0x000000008000000a, 0x000000008000000a, 0x000000008000000a, 0x000000008000000a .quad 0x000000008000808b, 0x000000008000808b, 0x000000008000808b, 0x000000008000808b .quad 0x800000000000008b, 0x800000000000008b, 0x800000000000008b, 0x800000000000008b .quad 0x8000000000008089, 0x8000000000008089, 0x8000000000008089, 0x8000000000008089 .quad 0x8000000000008003, 0x8000000000008003, 0x8000000000008003, 0x8000000000008003 .quad 0x8000000000008002, 0x8000000000008002, 0x8000000000008002, 0x8000000000008002 .quad 0x8000000000000080, 0x8000000000000080, 0x8000000000000080, 0x8000000000000080 .quad 0x000000000000800a, 0x000000000000800a, 0x000000000000800a, 0x000000000000800a .quad 0x800000008000000a, 0x800000008000000a, 0x800000008000000a, 0x800000008000000a .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081 .quad 0x8000000000008080, 0x8000000000008080, 0x8000000000008080, 0x8000000000008080 .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001 .quad 0x8000000080008008, 0x8000000080008008, 0x8000000080008008, 0x8000000080008008 .asciz "Keccak-1600 absorb and squeeze for AVX512VL, CRYPTOGAMS by " ___ $output=pop; open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-c64x.pl000077500000000000000000000543211364063235100211000ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # [ABI- and endian-neutral] Keccak-1600 for C64x. # # June 2017. # # This is straightforward KECCAK_1X_ALT variant (see sha/keccak1600.c) # with bit interleaving. 64-bit values are simply split between A- and # B-files, with A-file holding least significant halves. This works # out perfectly, because all operations including cross-communications # [in rotate operations] are always complementary. Performance is # [incredible for a 32-bit processor] 10.9 cycles per processed byte # for r=1088, which corresponds to SHA3-256. This is >15x faster than # compiler-generated KECCAK_1X_ALT code, and >10x than other variants. # On average processor ends up issuing ~4.5 instructions per cycle... my @A = map([ $_, ($_+1), ($_+2), ($_+3), ($_+4) ], (5,10,16,21,26)); $A[1][4] = 31; # B14 is reserved, A14 is used as iota[] ($A[3][0],$A[4][1]) = ($A[4][1],$A[3][0]); my @C = (0..4,$A[3][0],$A[4][0]); my $iotas = "A14"; my @rhotates = ([ 0, 1, 62, 28, 27 ], [ 36, 44, 6, 55, 20 ], [ 3, 10, 43, 25, 39 ], [ 41, 45, 15, 21, 8 ], [ 18, 2, 61, 56, 14 ]); sub ROL64 { my ($src,$rot,$dst,$p) = @_; if ($rot&1) { $code.=<<___; $p ROTL B$src,$rot/2+1,A$dst || ROTL A$src,$rot/2, B$dst ___ } else { $code.=<<___; $p ROTL A$src,$rot/2,A$dst || ROTL B$src,$rot/2,B$dst ___ } } ######################################################################## # Stack frame layout # # SP--->+------+------+ # | | | # +1--->+------+------+<- -9 below 4 slots are used by KeccakF1600_int # | | | # +2--->+------+------+<- -8 # | | | # +3--->+------+------+<- -7 # | A2 | A3 | A3:A2 are preserved by KeccakF1600_int # +4--->+------+------+<- -6 # | B2 | B3 | B3:B2 are preserved by KeccakF1600_int # +5--->+------+------+<- -5 below is ABI-compliant layout # | A10 | A11 | # +6--->+------+------+<- -4 # | A12 | A13 | # +7--->+------+------+<- -3 # | A14 | B3 | # +8--->+------+------+<- -2 # | B10 | B11 | # +9--->+------+------+<- -1 # | B12 | B13 | # +------+------+<---FP # | A15 | # +------+-- $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .nocmp .asg KeccakF1600,_KeccakF1600 .asg SHA3_absorb,_SHA3_absorb .asg SHA3_squeeze,_SHA3_squeeze .endif .asg B3,RA .asg A15,FP .asg B15,SP .align 32 _KeccakF1600_int: .asmfunc STDW A3:A2,*FP[-7] || STDW B3:B2,*SP[4] _KeccakF1600_cheat: .if __TI_EABI__ ADDKPC _KeccakF1600_int,B0 || MVKL \$PCR_OFFSET(iotas,_KeccakF1600_int),$iotas MVKH \$PCR_OFFSET(iotas,_KeccakF1600_int),$iotas .else ADDKPC _KeccakF1600_int,B0 || MVKL (iotas-_KeccakF1600_int),$iotas MVKH (iotas-_KeccakF1600_int),$iotas .endif ADD B0,$iotas,$iotas loop?: XOR A$A[0][2],A$A[1][2],A$C[2] ; Theta || XOR B$A[0][2],B$A[1][2],B$C[2] || XOR A$A[0][3],A$A[1][3],A$C[3] || XOR B$A[0][3],B$A[1][3],B$C[3] || XOR A$A[0][0],A$A[1][0],A$C[0] || XOR B$A[0][0],B$A[1][0],B$C[0] XOR A$A[2][2],A$C[2],A$C[2] || XOR B$A[2][2],B$C[2],B$C[2] || XOR A$A[2][3],A$C[3],A$C[3] || XOR B$A[2][3],B$C[3],B$C[3] || XOR A$A[2][0],A$C[0],A$C[0] || XOR B$A[2][0],B$C[0],B$C[0] XOR A$A[3][2],A$C[2],A$C[2] || XOR B$A[3][2],B$C[2],B$C[2] || XOR A$A[3][3],A$C[3],A$C[3] || XOR B$A[3][3],B$C[3],B$C[3] || XOR A$A[3][0],A$C[0],A$C[0] || XOR B$A[3][0],B$C[0],B$C[0] XOR A$A[4][2],A$C[2],A$C[2] || XOR B$A[4][2],B$C[2],B$C[2] || XOR A$A[4][3],A$C[3],A$C[3] || XOR B$A[4][3],B$C[3],B$C[3] || XOR A$A[4][0],A$C[0],A$C[0] || XOR B$A[4][0],B$C[0],B$C[0] XOR A$A[0][4],A$A[1][4],A$C[4] || XOR B$A[0][4],B$A[1][4],B$C[4] || XOR A$A[0][1],A$A[1][1],A$C[1] || XOR B$A[0][1],B$A[1][1],B$C[1] || STDW A$A[3][0]:A$A[4][0],*SP[1] ; offload some data STDW B$A[3][0]:B$A[4][0],*SP[2] || XOR A$A[2][4],A$C[4],A$C[4] || XOR B$A[2][4],B$C[4],B$C[4] || XOR A$A[2][1],A$C[1],A$C[1] || XOR B$A[2][1],B$C[1],B$C[1] || ROTL B$C[2],1,A$C[5] ; ROL64(C[2],1) || ROTL A$C[2],0,B$C[5] XOR A$A[3][4],A$C[4],A$C[4] || XOR B$A[3][4],B$C[4],B$C[4] || XOR A$A[3][1],A$C[1],A$C[1] || XOR B$A[3][1],B$C[1],B$C[1] || ROTL B$C[3],1,A$C[6] ; ROL64(C[3],1) || ROTL A$C[3],0,B$C[6] XOR A$A[4][4],A$C[4],A$C[4] || XOR B$A[4][4],B$C[4],B$C[4] || XOR A$A[4][1],A$C[1],A$C[1] || XOR B$A[4][1],B$C[1],B$C[1] || XOR A$C[0],A$C[5],A$C[5] ; C[0] ^ ROL64(C[2],1) || XOR B$C[0],B$C[5],B$C[5] XOR A$C[5],A$A[0][1],A$A[0][1] || XOR B$C[5],B$A[0][1],B$A[0][1] || XOR A$C[5],A$A[1][1],A$A[1][1] || XOR B$C[5],B$A[1][1],B$A[1][1] || XOR A$C[5],A$A[2][1],A$A[2][1] || XOR B$C[5],B$A[2][1],B$A[2][1] XOR A$C[5],A$A[3][1],A$A[3][1] || XOR B$C[5],B$A[3][1],B$A[3][1] || XOR A$C[5],A$A[4][1],A$A[4][1] || XOR B$C[5],B$A[4][1],B$A[4][1] || ROTL B$C[4],1,A$C[5] ; ROL64(C[4],1) || ROTL A$C[4],0,B$C[5] || XOR A$C[1],A$C[6],A$C[6] ; C[1] ^ ROL64(C[3],1) || XOR B$C[1],B$C[6],B$C[6] XOR A$C[6],A$A[0][2],A$A[0][2] || XOR B$C[6],B$A[0][2],B$A[0][2] || XOR A$C[6],A$A[1][2],A$A[1][2] || XOR B$C[6],B$A[1][2],B$A[1][2] || XOR A$C[6],A$A[2][2],A$A[2][2] || XOR B$C[6],B$A[2][2],B$A[2][2] || ROTL B$C[1],1,A$C[1] ; ROL64(C[1],1) || ROTL A$C[1],0,B$C[1] XOR A$C[6],A$A[3][2],A$A[3][2] || XOR B$C[6],B$A[3][2],B$A[3][2] || XOR A$C[6],A$A[4][2],A$A[4][2] || XOR B$C[6],B$A[4][2],B$A[4][2] || ROTL B$C[0],1,A$C[6] ; ROL64(C[0],1) || ROTL A$C[0],0,B$C[6] || XOR A$C[5],A$C[2],A$C[2] ; C[2] ^= ROL64(C[4],1) || XOR B$C[5],B$C[2],B$C[2] XOR A$C[2],A$A[0][3],A$A[0][3] || XOR B$C[2],B$A[0][3],B$A[0][3] || XOR A$C[2],A$A[1][3],A$A[1][3] || XOR B$C[2],B$A[1][3],B$A[1][3] || XOR A$C[2],A$A[2][3],A$A[2][3] || XOR B$C[2],B$A[2][3],B$A[2][3] XOR A$C[6],A$C[3],A$C[3] ; C[3] ^= ROL64(C[0],1) || XOR B$C[6],B$C[3],B$C[3] || LDDW *FP[-9],A$A[3][0]:A$A[4][0] ; restore offloaded data || LDDW *SP[2],B$A[3][0]:B$A[4][0] || XOR A$C[2],A$A[3][3],A$A[3][3] || XOR B$C[2],B$A[3][3],B$A[3][3] XOR A$C[2],A$A[4][3],A$A[4][3] || XOR B$C[2],B$A[4][3],B$A[4][3] || XOR A$C[3],A$A[0][4],A$A[0][4] || XOR B$C[3],B$A[0][4],B$A[0][4] || XOR A$C[3],A$A[1][4],A$A[1][4] || XOR B$C[3],B$A[1][4],B$A[1][4] XOR A$C[3],A$A[2][4],A$A[2][4] || XOR B$C[3],B$A[2][4],B$A[2][4] || XOR A$C[3],A$A[3][4],A$A[3][4] || XOR B$C[3],B$A[3][4],B$A[3][4] || XOR A$C[3],A$A[4][4],A$A[4][4] || XOR B$C[3],B$A[4][4],B$A[4][4] XOR A$C[1],A$C[4],A$C[4] ; C[4] ^= ROL64(C[1],1) || XOR B$C[1],B$C[4],B$C[4] || MV A$A[0][1],A$C[1] ; Rho+Pi, "early start" || MV B$A[0][1],B$C[1] ___ &ROL64 ($A[1][1],$rhotates[1][1],$A[0][1],"||"); $code.=<<___; XOR A$C[4],A$A[0][0],A$A[0][0] || XOR B$C[4],B$A[0][0],B$A[0][0] || XOR A$C[4],A$A[1][0],A$A[1][0] || XOR B$C[4],B$A[1][0],B$A[1][0] || MV A$A[0][3],A$C[3] || MV B$A[0][3],B$C[3] ___ &ROL64 ($A[3][3],$rhotates[3][3],$A[0][3],"||"); $code.=<<___; XOR A$C[4],A$A[2][0],A$A[2][0] || XOR B$C[4],B$A[2][0],B$A[2][0] || XOR A$C[4],A$A[3][0],A$A[3][0] || XOR B$C[4],B$A[3][0],B$A[3][0] || MV A$A[0][2],A$C[2] || MV B$A[0][2],B$C[2] ___ &ROL64 ($A[2][2],$rhotates[2][2],$A[0][2],"||"); $code.=<<___; XOR A$C[4],A$A[4][0],A$A[4][0] || XOR B$C[4],B$A[4][0],B$A[4][0] || MV A$A[0][4],A$C[4] || MV B$A[0][4],B$C[4] ___ &ROL64 ($A[4][4],$rhotates[4][4],$A[0][4],"||"); &ROL64 ($A[1][4],$rhotates[1][4],$A[1][1]); $code.=<<___; || LDW *${iotas}++[2],A$C[0] ___ &ROL64 ($A[2][3],$rhotates[2][3],$A[2][2]); $code.=<<___; || LDW *${iotas}[-1],B$C[0] ___ &ROL64 ($A[3][2],$rhotates[3][2],$A[3][3]); &ROL64 ($A[4][1],$rhotates[4][1],$A[4][4]); &ROL64 ($A[4][2],$rhotates[4][2],$A[1][4]); &ROL64 ($A[3][4],$rhotates[3][4],$A[2][3]); &ROL64 ($A[2][1],$rhotates[2][1],$A[3][2]); &ROL64 ($A[1][3],$rhotates[1][3],$A[4][1]); &ROL64 ($A[2][4],$rhotates[2][4],$A[4][2]); &ROL64 ($A[4][3],$rhotates[4][3],$A[3][4]); &ROL64 ($A[1][2],$rhotates[1][2],$A[2][1]); &ROL64 ($A[3][1],$rhotates[3][1],$A[1][3]); &ROL64 ($A[4][0],$rhotates[4][0],$A[2][4]); &ROL64 ($A[3][0],$rhotates[3][0],$A[4][3]); &ROL64 ($A[2][0],$rhotates[2][0],$A[1][2]); &ROL64 ($A[1][0],$rhotates[1][0],$A[3][1]); #&ROL64 ($C[3], $rhotates[0][3],$A[1][0]); # moved below &ROL64 ($C[1], $rhotates[0][1],$A[2][0]); &ROL64 ($C[4], $rhotates[0][4],$A[3][0]); &ROL64 ($C[2], $rhotates[0][2],$A[4][0]); $code.=<<___; || ANDN A$A[0][2],A$A[0][1],A$C[4] ; Chi+Iota || ANDN B$A[0][2],B$A[0][1],B$C[4] || ANDN A$A[0][3],A$A[0][2],A$C[1] || ANDN B$A[0][3],B$A[0][2],B$C[1] || ANDN A$A[0][4],A$A[0][3],A$C[2] || ANDN B$A[0][4],B$A[0][3],B$C[2] ___ &ROL64 ($C[3], $rhotates[0][3],$A[1][0]); $code.=<<___; || ANDN A$A[0][0],A$A[0][4],A$C[3] || ANDN B$A[0][0],B$A[0][4],B$C[3] || XOR A$C[4],A$A[0][0],A$A[0][0] || XOR B$C[4],B$A[0][0],B$A[0][0] || ANDN A$A[0][1],A$A[0][0],A$C[4] || ANDN B$A[0][1],B$A[0][0],B$C[4] XOR A$C[1],A$A[0][1],A$A[0][1] || XOR B$C[1],B$A[0][1],B$A[0][1] || XOR A$C[2],A$A[0][2],A$A[0][2] || XOR B$C[2],B$A[0][2],B$A[0][2] || XOR A$C[3],A$A[0][3],A$A[0][3] || XOR B$C[3],B$A[0][3],B$A[0][3] XOR A$C[4],A$A[0][4],A$A[0][4] || XOR B$C[4],B$A[0][4],B$A[0][4] || XOR A$C[0],A$A[0][0],A$A[0][0] ; A[0][0] ^= iotas[i++]; || XOR B$C[0],B$A[0][0],B$A[0][0] || EXTU $iotas,24,24,A0 ; A0 is A$C[0], as we done? ANDN A$A[1][2],A$A[1][1],A$C[4] || ANDN B$A[1][2],B$A[1][1],B$C[4] || ANDN A$A[1][3],A$A[1][2],A$C[1] || ANDN B$A[1][3],B$A[1][2],B$C[1] || ANDN A$A[1][4],A$A[1][3],A$C[2] || ANDN B$A[1][4],B$A[1][3],B$C[2] ANDN A$A[1][0],A$A[1][4],A$C[3] || ANDN B$A[1][0],B$A[1][4],B$C[3] || XOR A$C[4],A$A[1][0],A$A[1][0] || XOR B$C[4],B$A[1][0],B$A[1][0] || ANDN A$A[1][1],A$A[1][0],A$C[4] || ANDN B$A[1][1],B$A[1][0],B$C[4] XOR A$C[1],A$A[1][1],A$A[1][1] || XOR B$C[1],B$A[1][1],B$A[1][1] || XOR A$C[2],A$A[1][2],A$A[1][2] || XOR B$C[2],B$A[1][2],B$A[1][2] || XOR A$C[3],A$A[1][3],A$A[1][3] || XOR B$C[3],B$A[1][3],B$A[1][3] XOR A$C[4],A$A[1][4],A$A[1][4] || XOR B$C[4],B$A[1][4],B$A[1][4] || ANDN A$A[2][2],A$A[2][1],A$C[4] || ANDN B$A[2][2],B$A[2][1],B$C[4] || ANDN A$A[2][3],A$A[2][2],A$C[1] || ANDN B$A[2][3],B$A[2][2],B$C[1] ANDN A$A[2][4],A$A[2][3],A$C[2] || ANDN B$A[2][4],B$A[2][3],B$C[2] || ANDN A$A[2][0],A$A[2][4],A$C[3] || ANDN B$A[2][0],B$A[2][4],B$C[3] || XOR A$C[4],A$A[2][0],A$A[2][0] || XOR B$C[4],B$A[2][0],B$A[2][0] ANDN A$A[2][1],A$A[2][0],A$C[4] || ANDN B$A[2][1],B$A[2][0],B$C[4] || XOR A$C[1],A$A[2][1],A$A[2][1] || XOR B$C[1],B$A[2][1],B$A[2][1] || XOR A$C[2],A$A[2][2],A$A[2][2] || XOR B$C[2],B$A[2][2],B$A[2][2] XOR A$C[3],A$A[2][3],A$A[2][3] || XOR B$C[3],B$A[2][3],B$A[2][3] || XOR A$C[4],A$A[2][4],A$A[2][4] || XOR B$C[4],B$A[2][4],B$A[2][4] ANDN A$A[3][2],A$A[3][1],A$C[4] || ANDN B$A[3][2],B$A[3][1],B$C[4] || ANDN A$A[3][3],A$A[3][2],A$C[1] || ANDN B$A[3][3],B$A[3][2],B$C[1] || ANDN A$A[3][4],A$A[3][3],A$C[2] || ANDN B$A[3][4],B$A[3][3],B$C[2] ANDN A$A[3][0],A$A[3][4],A$C[3] || ANDN B$A[3][0],B$A[3][4],B$C[3] || XOR A$C[4],A$A[3][0],A$A[3][0] || XOR B$C[4],B$A[3][0],B$A[3][0] || ANDN A$A[3][1],A$A[3][0],A$C[4] || ANDN B$A[3][1],B$A[3][0],B$C[4] XOR A$C[1],A$A[3][1],A$A[3][1] || XOR B$C[1],B$A[3][1],B$A[3][1] || XOR A$C[2],A$A[3][2],A$A[3][2] || XOR B$C[2],B$A[3][2],B$A[3][2] || XOR A$C[3],A$A[3][3],A$A[3][3] ||[A0] BNOP loop? XOR B$C[3],B$A[3][3],B$A[3][3] || XOR A$C[4],A$A[3][4],A$A[3][4] || XOR B$C[4],B$A[3][4],B$A[3][4] ||[!A0] LDDW *FP[-7],A3:A2 ||[!A0] LDDW *SP[4], RA:B2 ANDN A$A[4][2],A$A[4][1],A$C[4] || ANDN B$A[4][2],B$A[4][1],B$C[4] || ANDN A$A[4][3],A$A[4][2],A$C[1] || ANDN B$A[4][3],B$A[4][2],B$C[1] || ANDN A$A[4][4],A$A[4][3],A$C[2] || ANDN B$A[4][4],B$A[4][3],B$C[2] ANDN A$A[4][0],A$A[4][4],A$C[3] || ANDN B$A[4][0],B$A[4][4],B$C[3] || XOR A$C[4],A$A[4][0],A$A[4][0] || XOR B$C[4],B$A[4][0],B$A[4][0] || ANDN A$A[4][1],A$A[4][0],A$C[4] || ANDN B$A[4][1],B$A[4][0],B$C[4] XOR A$C[1],A$A[4][1],A$A[4][1] || XOR B$C[1],B$A[4][1],B$A[4][1] || XOR A$C[2],A$A[4][2],A$A[4][2] || XOR B$C[2],B$A[4][2],B$A[4][2] || XOR A$C[3],A$A[4][3],A$A[4][3] || XOR B$C[3],B$A[4][3],B$A[4][3] XOR A$C[4],A$A[4][4],A$A[4][4] || XOR B$C[4],B$A[4][4],B$A[4][4] ;;===== branch to loop? is taken here BNOP RA,5 .endasmfunc .newblock .global _KeccakF1600 .align 32 _KeccakF1600: .asmfunc stack_usage(80) STW FP,*SP--(80) ; save frame pointer || MV SP,FP STDW B13:B12,*SP[9] || STDW A13:A12,*FP[-4] STDW B11:B10,*SP[8] || STDW A11:A10,*FP[-5] STW RA, *SP[15] || STW A14,*FP[-6] || MV A4,A2 || ADD 4,A4,B2 LDW *A2++[2],A$A[0][0] ; load A[5][5] || LDW *B2++[2],B$A[0][0] LDW *A2++[2],A$A[0][1] || LDW *B2++[2],B$A[0][1] LDW *A2++[2],A$A[0][2] || LDW *B2++[2],B$A[0][2] LDW *A2++[2],A$A[0][3] || LDW *B2++[2],B$A[0][3] LDW *A2++[2],A$A[0][4] || LDW *B2++[2],B$A[0][4] LDW *A2++[2],A$A[1][0] || LDW *B2++[2],B$A[1][0] LDW *A2++[2],A$A[1][1] || LDW *B2++[2],B$A[1][1] LDW *A2++[2],A$A[1][2] || LDW *B2++[2],B$A[1][2] LDW *A2++[2],A$A[1][3] || LDW *B2++[2],B$A[1][3] LDW *A2++[2],A$A[1][4] || LDW *B2++[2],B$A[1][4] LDW *A2++[2],A$A[2][0] || LDW *B2++[2],B$A[2][0] LDW *A2++[2],A$A[2][1] || LDW *B2++[2],B$A[2][1] LDW *A2++[2],A$A[2][2] || LDW *B2++[2],B$A[2][2] LDW *A2++[2],A$A[2][3] || LDW *B2++[2],B$A[2][3] LDW *A2++[2],A$A[2][4] || LDW *B2++[2],B$A[2][4] LDW *A2++[2],A$A[3][0] || LDW *B2++[2],B$A[3][0] LDW *A2++[2],A$A[3][1] || LDW *B2++[2],B$A[3][1] LDW *A2++[2],A$A[3][2] || LDW *B2++[2],B$A[3][2] LDW *A2++[2],A$A[3][3] || LDW *B2++[2],B$A[3][3] LDW *A2++[2],A$A[3][4] || LDW *B2++[2],B$A[3][4] || BNOP _KeccakF1600_int ADDKPC ret?,RA || LDW *A2++[2],A$A[4][0] || LDW *B2++[2],B$A[4][0] LDW *A2++[2],A$A[4][1] || LDW *B2++[2],B$A[4][1] LDW *A2++[2],A$A[4][2] || LDW *B2++[2],B$A[4][2] LDW *A2++[2],A$A[4][3] || LDW *B2++[2],B$A[4][3] LDW *A2,A$A[4][4] || LDW *B2,B$A[4][4] || ADDK -192,A2 ; rewind || ADDK -192,B2 .align 16 ret?: STW A$A[0][0],*A2++[2] ; store A[5][5] || STW B$A[0][0],*B2++[2] STW A$A[0][1],*A2++[2] || STW B$A[0][1],*B2++[2] STW A$A[0][2],*A2++[2] || STW B$A[0][2],*B2++[2] STW A$A[0][3],*A2++[2] || STW B$A[0][3],*B2++[2] STW A$A[0][4],*A2++[2] || STW B$A[0][4],*B2++[2] STW A$A[1][0],*A2++[2] || STW B$A[1][0],*B2++[2] STW A$A[1][1],*A2++[2] || STW B$A[1][1],*B2++[2] STW A$A[1][2],*A2++[2] || STW B$A[1][2],*B2++[2] STW A$A[1][3],*A2++[2] || STW B$A[1][3],*B2++[2] STW A$A[1][4],*A2++[2] || STW B$A[1][4],*B2++[2] STW A$A[2][0],*A2++[2] || STW B$A[2][0],*B2++[2] STW A$A[2][1],*A2++[2] || STW B$A[2][1],*B2++[2] STW A$A[2][2],*A2++[2] || STW B$A[2][2],*B2++[2] STW A$A[2][3],*A2++[2] || STW B$A[2][3],*B2++[2] STW A$A[2][4],*A2++[2] || STW B$A[2][4],*B2++[2] STW A$A[3][0],*A2++[2] || STW B$A[3][0],*B2++[2] STW A$A[3][1],*A2++[2] || STW B$A[3][1],*B2++[2] STW A$A[3][2],*A2++[2] || STW B$A[3][2],*B2++[2] STW A$A[3][3],*A2++[2] || STW B$A[3][3],*B2++[2] STW A$A[3][4],*A2++[2] || STW B$A[3][4],*B2++[2] LDW *SP[15],RA || LDW *FP[-6],A14 STW A$A[4][0],*A2++[2] || STW B$A[4][0],*B2++[2] STW A$A[4][1],*A2++[2] || STW B$A[4][1],*B2++[2] STW A$A[4][2],*A2++[2] || STW B$A[4][2],*B2++[2] STW A$A[4][3],*A2++[2] || STW B$A[4][3],*B2++[2] STW A$A[4][4],*A2 || STW B$A[4][4],*B2 || ADDK -192,A2 ; rewind MV A2,A4 ; return original A4 || LDDW *SP[8], B11:B10 || LDDW *FP[-5],A11:A10 LDDW *SP[9], B13:B12 || LDDW *FP[-4],A13:A12 || BNOP RA LDW *++SP(80),FP ; restore frame pointer NOP 4 ; wait till FP is committed .endasmfunc .newblock .asg B2,BSZ .asg A2,INP .asg A3,LEN .global _SHA3_absorb .align 32 _SHA3_absorb: .asmfunc stack_usage(80) STW FP,*SP--(80) ; save frame pointer || MV SP,FP STDW B13:B12,*SP[9] || STDW A13:A12,*FP[-4] STDW B11:B10,*SP[8] || STDW A11:A10,*FP[-5] STW RA, *SP[15] || STW A14,*FP[-6] STW A4,*SP[1] ; save A[][] || MV B4,INP ; reassign arguments || MV A6,LEN || MV B6,BSZ || ADD 4,A4,B4 LDW *A4++[2],A$A[0][0] ; load A[5][5] || LDW *B4++[2],B$A[0][0] LDW *A4++[2],A$A[0][1] || LDW *B4++[2],B$A[0][1] LDW *A4++[2],A$A[0][2] || LDW *B4++[2],B$A[0][2] LDW *A4++[2],A$A[0][3] || LDW *B4++[2],B$A[0][3] LDW *A4++[2],A$A[0][4] || LDW *B4++[2],B$A[0][4] LDW *A4++[2],A$A[1][0] || LDW *B4++[2],B$A[1][0] LDW *A4++[2],A$A[1][1] || LDW *B4++[2],B$A[1][1] LDW *A4++[2],A$A[1][2] || LDW *B4++[2],B$A[1][2] LDW *A4++[2],A$A[1][3] || LDW *B4++[2],B$A[1][3] LDW *A4++[2],A$A[1][4] || LDW *B4++[2],B$A[1][4] LDW *A4++[2],A$A[2][0] || LDW *B4++[2],B$A[2][0] LDW *A4++[2],A$A[2][1] || LDW *B4++[2],B$A[2][1] LDW *A4++[2],A$A[2][2] || LDW *B4++[2],B$A[2][2] LDW *A4++[2],A$A[2][3] || LDW *B4++[2],B$A[2][3] LDW *A4++[2],A$A[2][4] || LDW *B4++[2],B$A[2][4] LDW *A4++[2],A$A[3][0] || LDW *B4++[2],B$A[3][0] LDW *A4++[2],A$A[3][1] || LDW *B4++[2],B$A[3][1] LDW *A4++[2],A$A[3][2] || LDW *B4++[2],B$A[3][2] LDW *A4++[2],A$A[3][3] || LDW *B4++[2],B$A[3][3] LDW *A4++[2],A$A[3][4] || LDW *B4++[2],B$A[3][4] LDW *A4++[2],A$A[4][0] || LDW *B4++[2],B$A[4][0] LDW *A4++[2],A$A[4][1] || LDW *B4++[2],B$A[4][1] LDW *A4++[2],A$A[4][2] || LDW *B4++[2],B$A[4][2] LDW *A4++[2],A$A[4][3] || LDW *B4++[2],B$A[4][3] LDW *A4,A$A[4][4] || LDW *B4,B$A[4][4] || ADDKPC loop?,RA STDW RA:BSZ,*SP[4] loop?: CMPLTU LEN,BSZ,A0 ; len < bsz? || SHRU BSZ,3,BSZ [A0] BNOP ret? ||[A0] ZERO BSZ ||[A0] LDW *SP[1],A2 ; pull A[][] [BSZ] LDNDW *INP++,A1:A0 ||[BSZ] SUB LEN,8,LEN ||[BSZ] SUB BSZ,1,BSZ NOP 4 ___ for ($y = 0; $y < 5; $y++) { for ($x = 0; $x < ($y<4 ? 5 : 4); $x++) { $code.=<<___; .if .BIG_ENDIAN SWAP2 A0,A1 || SWAP2 A1,A0 SWAP4 A0,A0 SWAP4 A1,A1 ||[!BSZ]BNOP _KeccakF1600_cheat ||[!BSZ]STDW LEN:INP,*SP[3] || DEAL A0,A0 .else [!BSZ]BNOP _KeccakF1600_cheat ||[!BSZ]STDW LEN:INP,*SP[3] || DEAL A0,A0 .endif [BSZ] LDNDW *INP++,A1:A0 || DEAL A1,A1 [BSZ] SUB LEN,8,LEN ||[BSZ] SUB BSZ,1,BSZ PACK2 A1,A0,A0 || PACKH2 A1,A0,A1 XOR A0,A$A[$y][$x],A$A[$y][$x] XOR A1,B$A[$y][$x],B$A[$y][$x] ___ } } $code.=<<___; .if .BIG_ENDIAN SWAP2 A0,A1 || SWAP2 A1,A0 SWAP4 A0,A0 SWAP4 A1,A1 .endif BNOP _KeccakF1600_cheat || STDW LEN:INP,*SP[3] || DEAL A0,A0 DEAL A1,A1 NOP PACK2 A1,A0,A0 || PACKH2 A1,A0,A1 XOR A0,A$A[4][4],A$A[4][4] XOR A1,B$A[4][4],B$A[4][4] .align 16 ret?: MV LEN,A4 ; return value || ADD 4,A2,B2 STW A$A[0][0],*A2++[2] ; store A[5][5] || STW B$A[0][0],*B2++[2] STW A$A[0][1],*A2++[2] || STW B$A[0][1],*B2++[2] STW A$A[0][2],*A2++[2] || STW B$A[0][2],*B2++[2] STW A$A[0][3],*A2++[2] || STW B$A[0][3],*B2++[2] STW A$A[0][4],*A2++[2] || STW B$A[0][4],*B2++[2] STW A$A[1][0],*A2++[2] || STW B$A[1][0],*B2++[2] STW A$A[1][1],*A2++[2] || STW B$A[1][1],*B2++[2] STW A$A[1][2],*A2++[2] || STW B$A[1][2],*B2++[2] STW A$A[1][3],*A2++[2] || STW B$A[1][3],*B2++[2] STW A$A[1][4],*A2++[2] || STW B$A[1][4],*B2++[2] STW A$A[2][0],*A2++[2] || STW B$A[2][0],*B2++[2] STW A$A[2][1],*A2++[2] || STW B$A[2][1],*B2++[2] STW A$A[2][2],*A2++[2] || STW B$A[2][2],*B2++[2] STW A$A[2][3],*A2++[2] || STW B$A[2][3],*B2++[2] STW A$A[2][4],*A2++[2] || STW B$A[2][4],*B2++[2] LDW *SP[15],RA || LDW *FP[-6],A14 STW A$A[3][0],*A2++[2] || STW B$A[3][0],*B2++[2] STW A$A[3][1],*A2++[2] || STW B$A[3][1],*B2++[2] STW A$A[3][2],*A2++[2] || STW B$A[3][2],*B2++[2] STW A$A[3][3],*A2++[2] || STW B$A[3][3],*B2++[2] STW A$A[3][4],*A2++[2] || STW B$A[3][4],*B2++[2] LDDW *SP[8], B11:B10 || LDDW *FP[-5],A11:A10 LDDW *SP[9], B13:B12 || LDDW *FP[-4],A13:A12 BNOP RA || LDW *++SP(80),FP ; restore frame pointer STW A$A[4][0],*A2++[2] || STW B$A[4][0],*B2++[2] STW A$A[4][1],*A2++[2] || STW B$A[4][1],*B2++[2] STW A$A[4][2],*A2++[2] || STW B$A[4][2],*B2++[2] STW A$A[4][3],*A2++[2] || STW B$A[4][3],*B2++[2] STW A$A[4][4],*A2++[2] || STW B$A[4][4],*B2++[2] .endasmfunc .newblock .global _SHA3_squeeze .asg A12,OUT .asg A13,LEN .asg A14,BSZ .align 32 _SHA3_squeeze: .asmfunc stack_usage(24) STW FP,*SP--(24) ; save frame pointer || MV SP,FP STW RA, *SP[5] || STW A14,*FP[-2] STDW A13:A12,*FP[-2] || MV B4,OUT ; reassign arguments MV A6,LEN || MV B6,BSZ loop?: LDW *SP[5],RA ; reload RA || SHRU BSZ,3,A1 || MV A4,A8 || ADD 4,A4,B8 block?: CMPLTU LEN,8,A0 ; len < 8? [A0] BNOP tail? LDW *A8++[2],A9 || LDW *B8++[2],B9 || SUB LEN,8,LEN ; len -= 8 MV LEN,A0 || SUB A1,1,A1 ; bsz-- || NOP 4 .if .BIG_ENDIAN SWAP4 A9,A9 || SWAP4 B9,B9 SWAP2 A9,A9 || SWAP2 B9,B9 .endif [!A0] BNOP ret? ||[!A0] ZERO A1 PACK2 B9,A9,B7 ||[A1] BNOP block? PACKH2 B9,A9,B9 || SHFL B7,B7 SHFL B9,B9 STNW B7,*OUT++ STNW B9,*OUT++ NOP BNOP _KeccakF1600,4 ADDKPC loop?,RA .align 16 tail?: .if .BIG_ENDIAN SWAP4 A9,A9 || SWAP4 B9,B9 SWAP2 A9,A9 || SWAP2 B9,B9 .endif PACK2 B9,A9,B7 PACKH2 B9,A9,B9 || SHFL B7,B7 SHFL B9,B9 STB B7,*OUT++ || SHRU B7,8,B7 || ADD LEN,7,A0 [A0] STB B7,*OUT++ ||[A0] SHRU B7,8,B7 ||[A0] SUB A0,1,A0 [A0] STB B7,*OUT++ ||[A0] SHRU B7,8,B7 ||[A0] SUB A0,1,A0 [A0] STB B7,*OUT++ ||[A0] SUB A0,1,A0 [A0] STB B9,*OUT++ ||[A0] SHRU B9,8,B9 ||[A0] SUB A0,1,A0 [A0] STB B9,*OUT++ ||[A0] SHRU B9,8,B9 ||[A0] SUB A0,1,A0 [A0] STB B9,*OUT++ ret?: LDDW *FP[-2],A13:A12 BNOP RA || LDW *FP[-2],A14 LDW *++SP(24),FP ; restore frame pointer NOP 4 ; wait till FP is committed .endasmfunc .if __TI_EABI__ .sect ".text:sha_asm.const" .else .sect ".const:sha_asm" .endif .align 256 .uword 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 iotas: .uword 0x00000001, 0x00000000 .uword 0x00000000, 0x00000089 .uword 0x00000000, 0x8000008b .uword 0x00000000, 0x80008080 .uword 0x00000001, 0x0000008b .uword 0x00000001, 0x00008000 .uword 0x00000001, 0x80008088 .uword 0x00000001, 0x80000082 .uword 0x00000000, 0x0000000b .uword 0x00000000, 0x0000000a .uword 0x00000001, 0x00008082 .uword 0x00000000, 0x00008003 .uword 0x00000001, 0x0000808b .uword 0x00000001, 0x8000000b .uword 0x00000001, 0x8000008a .uword 0x00000001, 0x80000081 .uword 0x00000000, 0x80000081 .uword 0x00000000, 0x80000008 .uword 0x00000000, 0x00000083 .uword 0x00000000, 0x80008003 .uword 0x00000001, 0x80008088 .uword 0x00000000, 0x80000088 .uword 0x00000001, 0x00008000 .uword 0x00000000, 0x80008082 .cstring "Keccak-1600 absorb and squeeze for C64x, CRYPTOGAMS by " .align 4 ___ $output=pop; open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-mmx.pl000077500000000000000000000334431364063235100211170ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for x86 MMX. # # June 2017. # # Below code is KECCAK_2X implementation (see sha/keccak1600.c) with # C[5] held in register bank and D[5] offloaded to memory. Though # instead of actually unrolling the loop pair-wise I simply flip # pointers to T[][] and A[][] and the end of round. Since number of # rounds is even, last round writes to A[][] and everything works out. # It's argued that MMX is the only code path meaningful to implement # for x86. This is because non-MMX-capable processors is an extinct # breed, and they as well can lurk executing compiler-generated code. # For reference gcc-5.x-generated KECCAK_2X code takes 89 cycles per # processed byte on Pentium. Which is fair result. But older compilers # produce worse code. On the other hand one can wonder why not 128-bit # SSE2? Well, SSE2 won't provide double improvement, rather far from # that, if any at all on some processors, because it will take extra # permutations and inter-bank data transfers. Besides, contemporary # CPUs are better off executing 64-bit code, and it makes lesser sense # to invest into fancy 32-bit code. And the decision doesn't seem to # be inadequate, if one compares below results to "64-bit platforms in # 32-bit mode" SIMD data points available at # http://keccak.noekeon.org/sw_performance.html. # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(i) # # PIII 30/+150% # Pentium M 27/+150% # P4 40/+85% # Core 2 19/+170% # Sandy Bridge(ii) 18/+140% # Atom 33/+180% # Silvermont(ii) 30/+180% # VIA Nano(ii) 43/+60% # Sledgehammer(ii)(iii) 24/+130% # # (i) Corresponds to SHA3-256. Numbers after slash are improvement # coefficients over KECCAK_2X [with bit interleave and lane # complementing] position-independent *scalar* code generated # by gcc-5.x. It's not exactly fair comparison, but it's a # datapoint... # (ii) 64-bit processor executing 32-bit code. # (iii) Result is considered to be representative even for older AMD # processors. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); my @C = map("mm$_",(0..4)); my @T = map("mm$_",(5..7)); my @A = map([ 8*$_-100, 8*($_+1)-100, 8*($_+2)-100, 8*($_+3)-100, 8*($_+4)-100 ], (0,5,10,15,20)); my @D = map(8*$_+4, (0..4)); my @rhotates = ([ 0, 1, 62, 28, 27 ], [ 36, 44, 6, 55, 20 ], [ 3, 10, 43, 25, 39 ], [ 41, 45, 15, 21, 8 ], [ 18, 2, 61, 56, 14 ]); &static_label("iotas"); &function_begin_B("_KeccakF1600"); &movq (@C[0],&QWP($A[4][0],"esi")); &movq (@C[1],&QWP($A[4][1],"esi")); &movq (@C[2],&QWP($A[4][2],"esi")); &movq (@C[3],&QWP($A[4][3],"esi")); &movq (@C[4],&QWP($A[4][4],"esi")); &mov ("ecx",24); # loop counter &jmp (&label("loop")); &set_label("loop",16); ######################################### Theta &pxor (@C[0],&QWP($A[0][0],"esi")); &pxor (@C[1],&QWP($A[0][1],"esi")); &pxor (@C[2],&QWP($A[0][2],"esi")); &pxor (@C[3],&QWP($A[0][3],"esi")); &pxor (@C[4],&QWP($A[0][4],"esi")); &pxor (@C[0],&QWP($A[1][0],"esi")); &pxor (@C[1],&QWP($A[1][1],"esi")); &pxor (@C[2],&QWP($A[1][2],"esi")); &pxor (@C[3],&QWP($A[1][3],"esi")); &pxor (@C[4],&QWP($A[1][4],"esi")); &pxor (@C[0],&QWP($A[2][0],"esi")); &pxor (@C[1],&QWP($A[2][1],"esi")); &pxor (@C[2],&QWP($A[2][2],"esi")); &pxor (@C[3],&QWP($A[2][3],"esi")); &pxor (@C[4],&QWP($A[2][4],"esi")); &pxor (@C[2],&QWP($A[3][2],"esi")); &pxor (@C[0],&QWP($A[3][0],"esi")); &pxor (@C[1],&QWP($A[3][1],"esi")); &pxor (@C[3],&QWP($A[3][3],"esi")); &movq (@T[0],@C[2]); &pxor (@C[4],&QWP($A[3][4],"esi")); &movq (@T[2],@C[2]); &psrlq (@T[0],63); &movq (@T[1],@C[0]); &psllq (@T[2],1); &pxor (@T[0],@C[0]); &psrlq (@C[0],63); &pxor (@T[0],@T[2]); &psllq (@T[1],1); &movq (@T[2],@C[1]); &movq (&QWP(@D[1],"esp"),@T[0]); # D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; &pxor (@T[1],@C[0]); &psrlq (@T[2],63); &pxor (@T[1],@C[3]); &movq (@C[0],@C[1]); &movq (&QWP(@D[4],"esp"),@T[1]); # D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; &psllq (@C[0],1); &pxor (@T[2],@C[4]); &pxor (@C[0],@T[2]); &movq (@T[2],@C[3]); &psrlq (@C[3],63); &movq (&QWP(@D[0],"esp"),@C[0]); # D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; &psllq (@T[2],1); &movq (@T[0],@C[4]); &psrlq (@C[4],63); &pxor (@C[1],@C[3]); &psllq (@T[0],1); &pxor (@C[1],@T[2]); &pxor (@C[2],@C[4]); &movq (&QWP(@D[2],"esp"),@C[1]); # D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; &pxor (@C[2],@T[0]); ######################################### first Rho(0) is special &movq (@C[3],&QWP($A[3][3],"esi")); &movq (&QWP(@D[3],"esp"),@C[2]); # D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; &pxor (@C[3],@C[2]); &movq (@C[4],&QWP($A[4][4],"esi")); &movq (@T[2],@C[3]); &psrlq (@C[3],64-$rhotates[3][3]); &pxor (@C[4],@T[1]); &psllq (@T[2],$rhotates[3][3]); &movq (@T[1],@C[4]); &psrlq (@C[4],64-$rhotates[4][4]); &por (@C[3],@T[2]); # C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ &psllq (@T[1],$rhotates[4][4]); &movq (@C[2],&QWP($A[2][2],"esi")); &por (@C[4],@T[1]); # C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ &pxor (@C[2],@C[1]); &movq (@C[1],&QWP($A[1][1],"esi")); &movq (@T[1],@C[2]); &psrlq (@C[2],64-$rhotates[2][2]); &pxor (@C[1],&QWP(@D[1],"esp")); &psllq (@T[1],$rhotates[2][2]); &movq (@T[2],@C[1]); &psrlq (@C[1],64-$rhotates[1][1]); &por (@C[2],@T[1]); # C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ &psllq (@T[2],$rhotates[1][1]); &pxor (@C[0],&QWP($A[0][0],"esi")); # /* rotate by 0 */ /* D[0] */ &por (@C[1],@T[2]); # C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); sub Chi() { ######### regular Chi step my ($y,$xrho) = @_; &movq (@T[0],@C[1]); &movq (@T[1],@C[2]); &pandn (@T[0],@C[2]); &pandn (@C[2],@C[3]); &pxor (@T[0],@C[0]); &pxor (@C[2],@C[1]); &pxor (@T[0],&QWP(0,"ebx")) if ($y == 0); &lea ("ebx",&DWP(8,"ebx")) if ($y == 0); &movq (@T[2],@C[3]); &movq (&QWP($A[$y][0],"edi"),@T[0]); # R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; &movq (@T[0],@C[4]); &pandn (@C[3],@C[4]); &pandn (@C[4],@C[0]); &pxor (@C[3],@T[1]); &movq (&QWP($A[$y][1],"edi"),@C[2]); # R[0][1] = C[1] ^ (~C[2] & C[3]); &pxor (@C[4],@T[2]); &movq (@T[2],&QWP($A[0][$xrho],"esi")) if (defined($xrho)); &movq (&QWP($A[$y][2],"edi"),@C[3]); # R[0][2] = C[2] ^ (~C[3] & C[4]); &pandn (@C[0],@C[1]); &movq (&QWP($A[$y][3],"edi"),@C[4]); # R[0][3] = C[3] ^ (~C[4] & C[0]); &pxor (@C[0],@T[0]); &pxor (@T[2],&QWP(@D[$xrho],"esp")) if (defined($xrho)); &movq (&QWP($A[$y][4],"edi"),@C[0]); # R[0][4] = C[4] ^ (~C[0] & C[1]); } &Chi (0, 3); sub Rho() { ######### regular Rho step my $x = shift; #&movq (@T[2],&QWP($A[0][$x],"esi")); # moved to Chi #&pxor (@T[2],&QWP(@D[$x],"esp")); # moved to Chi &movq (@C[0],@T[2]); &psrlq (@T[2],64-$rhotates[0][$x]); &movq (@C[1],&QWP($A[1][($x+1)%5],"esi")); &psllq (@C[0],$rhotates[0][$x]); &pxor (@C[1],&QWP(@D[($x+1)%5],"esp")); &por (@C[0],@T[2]); # C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); &movq (@T[1],@C[1]); &psrlq (@C[1],64-$rhotates[1][($x+1)%5]); &movq (@C[2],&QWP($A[2][($x+2)%5],"esi")); &psllq (@T[1],$rhotates[1][($x+1)%5]); &pxor (@C[2],&QWP(@D[($x+2)%5],"esp")); &por (@C[1],@T[1]); # C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); &movq (@T[2],@C[2]); &psrlq (@C[2],64-$rhotates[2][($x+2)%5]); &movq (@C[3],&QWP($A[3][($x+3)%5],"esi")); &psllq (@T[2],$rhotates[2][($x+2)%5]); &pxor (@C[3],&QWP(@D[($x+3)%5],"esp")); &por (@C[2],@T[2]); # C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); &movq (@T[0],@C[3]); &psrlq (@C[3],64-$rhotates[3][($x+3)%5]); &movq (@C[4],&QWP($A[4][($x+4)%5],"esi")); &psllq (@T[0],$rhotates[3][($x+3)%5]); &pxor (@C[4],&QWP(@D[($x+4)%5],"esp")); &por (@C[3],@T[0]); # C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); &movq (@T[1],@C[4]); &psrlq (@C[4],64-$rhotates[4][($x+4)%5]); &psllq (@T[1],$rhotates[4][($x+4)%5]); &por (@C[4],@T[1]); # C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); } &Rho (3); &Chi (1, 1); &Rho (1); &Chi (2, 4); &Rho (4); &Chi (3, 2); &Rho (2); ###&Chi (4); &movq (@T[0],@C[0]); ######### last Chi(4) is special &xor ("edi","esi"); # &xchg ("esi","edi"); &movq (&QWP(@D[1],"esp"),@C[1]); &xor ("esi","edi"); &xor ("edi","esi"); &movq (@T[1],@C[1]); &movq (@T[2],@C[2]); &pandn (@T[1],@C[2]); &pandn (@T[2],@C[3]); &pxor (@C[0],@T[1]); &pxor (@C[1],@T[2]); &movq (@T[1],@C[3]); &movq (&QWP($A[4][0],"esi"),@C[0]); # R[4][0] = C[0] ^= (~C[1] & C[2]); &pandn (@T[1],@C[4]); &movq (&QWP($A[4][1],"esi"),@C[1]); # R[4][1] = C[1] ^= (~C[2] & C[3]); &pxor (@C[2],@T[1]); &movq (@T[2],@C[4]); &movq (&QWP($A[4][2],"esi"),@C[2]); # R[4][2] = C[2] ^= (~C[3] & C[4]); &pandn (@T[2],@T[0]); &pandn (@T[0],&QWP(@D[1],"esp")); &pxor (@C[3],@T[2]); &pxor (@C[4],@T[0]); &movq (&QWP($A[4][3],"esi"),@C[3]); # R[4][3] = C[3] ^= (~C[4] & D[0]); &sub ("ecx",1); &movq (&QWP($A[4][4],"esi"),@C[4]); # R[4][4] = C[4] ^= (~D[0] & D[1]); &jnz (&label("loop")); &lea ("ebx",&DWP(-192,"ebx")); # rewind iotas &ret (); &function_end_B("_KeccakF1600"); &function_begin("KeccakF1600"); &mov ("esi",&wparam(0)); &mov ("ebp","esp"); &sub ("esp",240); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); &and ("esp",-8); &lea ("esi",&DWP(100,"esi")); # size optimization &lea ("edi",&DWP(8*5+100,"esp")); # size optimization &call ("_KeccakF1600"); &mov ("esp","ebp"); &emms (); &function_end("KeccakF1600"); &function_begin("SHA3_absorb"); &mov ("esi",&wparam(0)); # A[][] &mov ("eax",&wparam(1)); # inp &mov ("ecx",&wparam(2)); # len &mov ("edx",&wparam(3)); # bsz &mov ("ebp","esp"); &sub ("esp",240+8); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); &and ("esp",-8); &mov ("edi","esi"); &lea ("esi",&DWP(100,"esi")); # size optimization &mov (&DWP(-4,"ebp"),"edx"); # save bsz &jmp (&label("loop")); &set_label("loop",16); &cmp ("ecx","edx"); # len < bsz? &jc (&label("absorbed")); &shr ("edx",3); # bsz /= 8 &set_label("block"); &movq ("mm0",&QWP(0,"eax")); &lea ("eax",&DWP(8,"eax")); &pxor ("mm0",&QWP(0,"edi")); &lea ("edi",&DWP(8,"edi")); &sub ("ecx",8); # len -= 8 &movq (&QWP(-8,"edi"),"mm0"); &dec ("edx"); # bsz-- &jnz (&label("block")); &lea ("edi",&DWP(8*5+100,"esp")); # size optimization &mov (&DWP(-8,"ebp"),"ecx"); # save len &call ("_KeccakF1600"); &mov ("ecx",&DWP(-8,"ebp")); # pull len &mov ("edx",&DWP(-4,"ebp")); # pull bsz &lea ("edi",&DWP(-100,"esi")); &jmp (&label("loop")); &set_label("absorbed",16); &mov ("eax","ecx"); # return value &mov ("esp","ebp"); &emms (); &function_end("SHA3_absorb"); &function_begin("SHA3_squeeze"); &mov ("esi",&wparam(0)); # A[][] &mov ("eax",&wparam(1)); # out &mov ("ecx",&wparam(2)); # len &mov ("edx",&wparam(3)); # bsz &mov ("ebp","esp"); &sub ("esp",240+8); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); &and ("esp",-8); &shr ("edx",3); # bsz /= 8 &mov ("edi","esi"); &lea ("esi",&DWP(100,"esi")); # size optimization &mov (&DWP(-4,"ebp"),"edx"); # save bsz &jmp (&label("loop")); &set_label("loop",16); &cmp ("ecx",8); # len < 8? &jc (&label("tail")); &movq ("mm0",&QWP(0,"edi")); &lea ("edi",&DWP(8,"edi")); &movq (&QWP(0,"eax"),"mm0"); &lea ("eax",&DWP(8,"eax")); &sub ("ecx",8); # len -= 8 &jz (&label("done")); &dec ("edx"); # bsz-- &jnz (&label("loop")); &lea ("edi",&DWP(8*5+100,"esp")); # size optimization &mov (&DWP(-8,"ebp"),"ecx"); # save len &call ("_KeccakF1600"); &mov ("ecx",&DWP(-8,"ebp")); # pull len &mov ("edx",&DWP(-4,"ebp")); # pull bsz &lea ("edi",&DWP(-100,"esi")); &jmp (&label("loop")); &set_label("tail",16); &mov ("esi","edi"); &mov ("edi","eax"); &data_word("0xA4F39066"); # rep movsb &set_label("done"); &mov ("esp","ebp"); &emms (); &function_end("SHA3_squeeze"); &set_label("iotas",32); &data_word(0x00000001,0x00000000); &data_word(0x00008082,0x00000000); &data_word(0x0000808a,0x80000000); &data_word(0x80008000,0x80000000); &data_word(0x0000808b,0x00000000); &data_word(0x80000001,0x00000000); &data_word(0x80008081,0x80000000); &data_word(0x00008009,0x80000000); &data_word(0x0000008a,0x00000000); &data_word(0x00000088,0x00000000); &data_word(0x80008009,0x00000000); &data_word(0x8000000a,0x00000000); &data_word(0x8000808b,0x00000000); &data_word(0x0000008b,0x80000000); &data_word(0x00008089,0x80000000); &data_word(0x00008003,0x80000000); &data_word(0x00008002,0x80000000); &data_word(0x00000080,0x80000000); &data_word(0x0000800a,0x00000000); &data_word(0x8000000a,0x80000000); &data_word(0x80008081,0x80000000); &data_word(0x00008080,0x80000000); &data_word(0x80000001,0x00000000); &data_word(0x80008008,0x80000000); &asciz("Keccak-1600 absorb and squeeze for MMX, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-ppc64.pl000077500000000000000000000447151364063235100212560ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for PPC64. # # June 2017. # # This is straightforward KECCAK_1X_ALT implementation that works on # *any* PPC64. Then PowerISA 2.07 adds 2x64-bit vector rotate, and # it's possible to achieve performance better than below, but that is # naturally option only for POWER8 and successors... # ###################################################################### # Numbers are cycles per processed byte. # # r=1088(*) # # PPC970/G5 14.6/+120% # POWER7 10.3/+100% # POWER8 11.5/+85% # POWER9 9.4/+45% # # (*) Corresponds to SHA3-256. Percentage after slash is improvement # over gcc-4.x-generated KECCAK_1X_ALT code. Newer compilers do # much better (but watch out for them generating code specific # to processor they execute on). $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $UCMP ="cmpld"; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; } else { die "nonsense $flavour"; } $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=24*$SIZE_T+6*$SIZE_T+32; $LOCALS=6*$SIZE_T; $TEMP=$LOCALS+6*$SIZE_T; my $sp ="r1"; my @A = map([ "r$_", "r".($_+1), "r".($_+2), "r".($_+3), "r".($_+4) ], (7, 12, 17, 22, 27)); $A[1][1] = "r6"; # r13 is reserved my @C = map("r$_", (0,3,4,5)); my @rhotates = ([ 0, 1, 62, 28, 27 ], [ 36, 44, 6, 55, 20 ], [ 3, 10, 43, 25, 39 ], [ 41, 45, 15, 21, 8 ], [ 18, 2, 61, 56, 14 ]); $code.=<<___; .text .type KeccakF1600_int,\@function .align 5 KeccakF1600_int: li r0,24 mtctr r0 b .Loop .align 4 .Loop: xor $C[0],$A[0][0],$A[1][0] ; Theta std $A[0][4],`$TEMP+0`($sp) xor $C[1],$A[0][1],$A[1][1] std $A[1][4],`$TEMP+8`($sp) xor $C[2],$A[0][2],$A[1][2] std $A[2][4],`$TEMP+16`($sp) xor $C[3],$A[0][3],$A[1][3] std $A[3][4],`$TEMP+24`($sp) ___ $C[4]=$A[0][4]; $C[5]=$A[1][4]; $C[6]=$A[2][4]; $C[7]=$A[3][4]; $code.=<<___; xor $C[4],$A[0][4],$A[1][4] xor $C[0],$C[0],$A[2][0] xor $C[1],$C[1],$A[2][1] xor $C[2],$C[2],$A[2][2] xor $C[3],$C[3],$A[2][3] xor $C[4],$C[4],$A[2][4] xor $C[0],$C[0],$A[3][0] xor $C[1],$C[1],$A[3][1] xor $C[2],$C[2],$A[3][2] xor $C[3],$C[3],$A[3][3] xor $C[4],$C[4],$A[3][4] xor $C[0],$C[0],$A[4][0] xor $C[2],$C[2],$A[4][2] xor $C[1],$C[1],$A[4][1] xor $C[3],$C[3],$A[4][3] rotldi $C[5],$C[2],1 xor $C[4],$C[4],$A[4][4] rotldi $C[6],$C[3],1 xor $C[5],$C[5],$C[0] rotldi $C[7],$C[4],1 xor $A[0][1],$A[0][1],$C[5] xor $A[1][1],$A[1][1],$C[5] xor $A[2][1],$A[2][1],$C[5] xor $A[3][1],$A[3][1],$C[5] xor $A[4][1],$A[4][1],$C[5] rotldi $C[5],$C[0],1 xor $C[6],$C[6],$C[1] xor $C[2],$C[2],$C[7] rotldi $C[7],$C[1],1 xor $C[3],$C[3],$C[5] xor $C[4],$C[4],$C[7] xor $C[1], $A[0][2],$C[6] ;mr $C[1],$A[0][2] xor $A[1][2],$A[1][2],$C[6] xor $A[2][2],$A[2][2],$C[6] xor $A[3][2],$A[3][2],$C[6] xor $A[4][2],$A[4][2],$C[6] xor $A[0][0],$A[0][0],$C[4] xor $A[1][0],$A[1][0],$C[4] xor $A[2][0],$A[2][0],$C[4] xor $A[3][0],$A[3][0],$C[4] xor $A[4][0],$A[4][0],$C[4] ___ $C[4]=undef; $C[5]=undef; $C[6]=undef; $C[7]=undef; $code.=<<___; ld $A[0][4],`$TEMP+0`($sp) xor $C[0], $A[0][3],$C[2] ;mr $C[0],$A[0][3] ld $A[1][4],`$TEMP+8`($sp) xor $A[1][3],$A[1][3],$C[2] ld $A[2][4],`$TEMP+16`($sp) xor $A[2][3],$A[2][3],$C[2] ld $A[3][4],`$TEMP+24`($sp) xor $A[3][3],$A[3][3],$C[2] xor $A[4][3],$A[4][3],$C[2] xor $C[2], $A[0][4],$C[3] ;mr $C[2],$A[0][4] xor $A[1][4],$A[1][4],$C[3] xor $A[2][4],$A[2][4],$C[3] xor $A[3][4],$A[3][4],$C[3] xor $A[4][4],$A[4][4],$C[3] mr $C[3],$A[0][1] ; Rho+Pi rotldi $A[0][1],$A[1][1],$rhotates[1][1] ;mr $C[1],$A[0][2] rotldi $A[0][2],$A[2][2],$rhotates[2][2] ;mr $C[0],$A[0][3] rotldi $A[0][3],$A[3][3],$rhotates[3][3] ;mr $C[2],$A[0][4] rotldi $A[0][4],$A[4][4],$rhotates[4][4] rotldi $A[1][1],$A[1][4],$rhotates[1][4] rotldi $A[2][2],$A[2][3],$rhotates[2][3] rotldi $A[3][3],$A[3][2],$rhotates[3][2] rotldi $A[4][4],$A[4][1],$rhotates[4][1] rotldi $A[1][4],$A[4][2],$rhotates[4][2] rotldi $A[2][3],$A[3][4],$rhotates[3][4] rotldi $A[3][2],$A[2][1],$rhotates[2][1] rotldi $A[4][1],$A[1][3],$rhotates[1][3] rotldi $A[4][2],$A[2][4],$rhotates[2][4] rotldi $A[3][4],$A[4][3],$rhotates[4][3] rotldi $A[2][1],$A[1][2],$rhotates[1][2] rotldi $A[1][3],$A[3][1],$rhotates[3][1] rotldi $A[2][4],$A[4][0],$rhotates[4][0] rotldi $A[4][3],$A[3][0],$rhotates[3][0] rotldi $A[1][2],$A[2][0],$rhotates[2][0] rotldi $A[3][1],$A[1][0],$rhotates[1][0] rotldi $A[1][0],$C[0],$rhotates[0][3] rotldi $A[2][0],$C[3],$rhotates[0][1] rotldi $A[3][0],$C[2],$rhotates[0][4] rotldi $A[4][0],$C[1],$rhotates[0][2] andc $C[0],$A[0][2],$A[0][1] ; Chi+Iota andc $C[1],$A[0][3],$A[0][2] andc $C[2],$A[0][0],$A[0][4] andc $C[3],$A[0][1],$A[0][0] xor $A[0][0],$A[0][0],$C[0] andc $C[0],$A[0][4],$A[0][3] xor $A[0][1],$A[0][1],$C[1] ld $C[1],`$LOCALS+4*$SIZE_T`($sp) xor $A[0][3],$A[0][3],$C[2] xor $A[0][4],$A[0][4],$C[3] xor $A[0][2],$A[0][2],$C[0] ldu $C[3],8($C[1]) ; Iota[i++] andc $C[0],$A[1][2],$A[1][1] std $C[1],`$LOCALS+4*$SIZE_T`($sp) andc $C[1],$A[1][3],$A[1][2] andc $C[2],$A[1][0],$A[1][4] xor $A[0][0],$A[0][0],$C[3] ; A[0][0] ^= Iota andc $C[3],$A[1][1],$A[1][0] xor $A[1][0],$A[1][0],$C[0] andc $C[0],$A[1][4],$A[1][3] xor $A[1][1],$A[1][1],$C[1] xor $A[1][3],$A[1][3],$C[2] xor $A[1][4],$A[1][4],$C[3] xor $A[1][2],$A[1][2],$C[0] andc $C[0],$A[2][2],$A[2][1] andc $C[1],$A[2][3],$A[2][2] andc $C[2],$A[2][0],$A[2][4] andc $C[3],$A[2][1],$A[2][0] xor $A[2][0],$A[2][0],$C[0] andc $C[0],$A[2][4],$A[2][3] xor $A[2][1],$A[2][1],$C[1] xor $A[2][3],$A[2][3],$C[2] xor $A[2][4],$A[2][4],$C[3] xor $A[2][2],$A[2][2],$C[0] andc $C[0],$A[3][2],$A[3][1] andc $C[1],$A[3][3],$A[3][2] andc $C[2],$A[3][0],$A[3][4] andc $C[3],$A[3][1],$A[3][0] xor $A[3][0],$A[3][0],$C[0] andc $C[0],$A[3][4],$A[3][3] xor $A[3][1],$A[3][1],$C[1] xor $A[3][3],$A[3][3],$C[2] xor $A[3][4],$A[3][4],$C[3] xor $A[3][2],$A[3][2],$C[0] andc $C[0],$A[4][2],$A[4][1] andc $C[1],$A[4][3],$A[4][2] andc $C[2],$A[4][0],$A[4][4] andc $C[3],$A[4][1],$A[4][0] xor $A[4][0],$A[4][0],$C[0] andc $C[0],$A[4][4],$A[4][3] xor $A[4][1],$A[4][1],$C[1] xor $A[4][3],$A[4][3],$C[2] xor $A[4][4],$A[4][4],$C[3] xor $A[4][2],$A[4][2],$C[0] bdnz .Loop blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .size KeccakF1600_int,.-KeccakF1600_int .type KeccakF1600,\@function .align 5 KeccakF1600: $STU $sp,-$FRAME($sp) mflr r0 $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) bl PICmeup subi r12,r12,8 ; prepare for ldu $PUSH r3,`$LOCALS+0*$SIZE_T`($sp) ;$PUSH r4,`$LOCALS+1*$SIZE_T`($sp) ;$PUSH r5,`$LOCALS+2*$SIZE_T`($sp) ;$PUSH r6,`$LOCALS+3*$SIZE_T`($sp) $PUSH r12,`$LOCALS+4*$SIZE_T`($sp) ld $A[0][0],`8*0`(r3) ; load A[5][5] ld $A[0][1],`8*1`(r3) ld $A[0][2],`8*2`(r3) ld $A[0][3],`8*3`(r3) ld $A[0][4],`8*4`(r3) ld $A[1][0],`8*5`(r3) ld $A[1][1],`8*6`(r3) ld $A[1][2],`8*7`(r3) ld $A[1][3],`8*8`(r3) ld $A[1][4],`8*9`(r3) ld $A[2][0],`8*10`(r3) ld $A[2][1],`8*11`(r3) ld $A[2][2],`8*12`(r3) ld $A[2][3],`8*13`(r3) ld $A[2][4],`8*14`(r3) ld $A[3][0],`8*15`(r3) ld $A[3][1],`8*16`(r3) ld $A[3][2],`8*17`(r3) ld $A[3][3],`8*18`(r3) ld $A[3][4],`8*19`(r3) ld $A[4][0],`8*20`(r3) ld $A[4][1],`8*21`(r3) ld $A[4][2],`8*22`(r3) ld $A[4][3],`8*23`(r3) ld $A[4][4],`8*24`(r3) bl KeccakF1600_int $POP r3,`$LOCALS+0*$SIZE_T`($sp) std $A[0][0],`8*0`(r3) ; return A[5][5] std $A[0][1],`8*1`(r3) std $A[0][2],`8*2`(r3) std $A[0][3],`8*3`(r3) std $A[0][4],`8*4`(r3) std $A[1][0],`8*5`(r3) std $A[1][1],`8*6`(r3) std $A[1][2],`8*7`(r3) std $A[1][3],`8*8`(r3) std $A[1][4],`8*9`(r3) std $A[2][0],`8*10`(r3) std $A[2][1],`8*11`(r3) std $A[2][2],`8*12`(r3) std $A[2][3],`8*13`(r3) std $A[2][4],`8*14`(r3) std $A[3][0],`8*15`(r3) std $A[3][1],`8*16`(r3) std $A[3][2],`8*17`(r3) std $A[3][3],`8*18`(r3) std $A[3][4],`8*19`(r3) std $A[4][0],`8*20`(r3) std $A[4][1],`8*21`(r3) std $A[4][2],`8*22`(r3) std $A[4][3],`8*23`(r3) std $A[4][4],`8*24`(r3) $POP r0,`$FRAME+$LRSAVE`($sp) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,18,1,0 .long 0 .size KeccakF1600,.-KeccakF1600 .type dword_le_load,\@function .align 5 dword_le_load: lbzu r0,1(r3) lbzu r4,1(r3) lbzu r5,1(r3) insrdi r0,r4,8,48 lbzu r4,1(r3) insrdi r0,r5,8,40 lbzu r5,1(r3) insrdi r0,r4,8,32 lbzu r4,1(r3) insrdi r0,r5,8,24 lbzu r5,1(r3) insrdi r0,r4,8,16 lbzu r4,1(r3) insrdi r0,r5,8,8 insrdi r0,r4,8,0 blr .long 0 .byte 0,12,0x14,0,0,0,1,0 .long 0 .size dword_le_load,.-dword_le_load .globl SHA3_absorb .type SHA3_absorb,\@function .align 5 SHA3_absorb: $STU $sp,-$FRAME($sp) mflr r0 $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) bl PICmeup subi r4,r4,1 ; prepare for lbzu subi r12,r12,8 ; prepare for ldu $PUSH r3,`$LOCALS+0*$SIZE_T`($sp) ; save A[][] $PUSH r4,`$LOCALS+1*$SIZE_T`($sp) ; save inp $PUSH r5,`$LOCALS+2*$SIZE_T`($sp) ; save len $PUSH r6,`$LOCALS+3*$SIZE_T`($sp) ; save bsz mr r0,r6 $PUSH r12,`$LOCALS+4*$SIZE_T`($sp) ld $A[0][0],`8*0`(r3) ; load A[5][5] ld $A[0][1],`8*1`(r3) ld $A[0][2],`8*2`(r3) ld $A[0][3],`8*3`(r3) ld $A[0][4],`8*4`(r3) ld $A[1][0],`8*5`(r3) ld $A[1][1],`8*6`(r3) ld $A[1][2],`8*7`(r3) ld $A[1][3],`8*8`(r3) ld $A[1][4],`8*9`(r3) ld $A[2][0],`8*10`(r3) ld $A[2][1],`8*11`(r3) ld $A[2][2],`8*12`(r3) ld $A[2][3],`8*13`(r3) ld $A[2][4],`8*14`(r3) ld $A[3][0],`8*15`(r3) ld $A[3][1],`8*16`(r3) ld $A[3][2],`8*17`(r3) ld $A[3][3],`8*18`(r3) ld $A[3][4],`8*19`(r3) ld $A[4][0],`8*20`(r3) ld $A[4][1],`8*21`(r3) ld $A[4][2],`8*22`(r3) ld $A[4][3],`8*23`(r3) ld $A[4][4],`8*24`(r3) mr r3,r4 mr r4,r5 mr r5,r0 b .Loop_absorb .align 4 .Loop_absorb: $UCMP r4,r5 ; len < bsz? blt .Labsorbed sub r4,r4,r5 ; len -= bsz srwi r5,r5,3 $PUSH r4,`$LOCALS+2*$SIZE_T`($sp) ; save len mtctr r5 bl dword_le_load ; *inp++ xor $A[0][0],$A[0][0],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[0][1],$A[0][1],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[0][2],$A[0][2],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[0][3],$A[0][3],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[0][4],$A[0][4],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[1][0],$A[1][0],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[1][1],$A[1][1],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[1][2],$A[1][2],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[1][3],$A[1][3],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[1][4],$A[1][4],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[2][0],$A[2][0],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[2][1],$A[2][1],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[2][2],$A[2][2],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[2][3],$A[2][3],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[2][4],$A[2][4],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[3][0],$A[3][0],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[3][1],$A[3][1],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[3][2],$A[3][2],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[3][3],$A[3][3],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[3][4],$A[3][4],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[4][0],$A[4][0],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[4][1],$A[4][1],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[4][2],$A[4][2],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[4][3],$A[4][3],r0 bdz .Lprocess_block bl dword_le_load ; *inp++ xor $A[4][4],$A[4][4],r0 .Lprocess_block: $PUSH r3,`$LOCALS+1*$SIZE_T`($sp) ; save inp bl KeccakF1600_int $POP r0,`$LOCALS+4*$SIZE_T`($sp) ; pull iotas[24] $POP r5,`$LOCALS+3*$SIZE_T`($sp) ; restore bsz $POP r4,`$LOCALS+2*$SIZE_T`($sp) ; restore len $POP r3,`$LOCALS+1*$SIZE_T`($sp) ; restore inp addic r0,r0,`-8*24` ; rewind iotas $PUSH r0,`$LOCALS+4*$SIZE_T`($sp) b .Loop_absorb .align 4 .Labsorbed: $POP r3,`$LOCALS+0*$SIZE_T`($sp) std $A[0][0],`8*0`(r3) ; return A[5][5] std $A[0][1],`8*1`(r3) std $A[0][2],`8*2`(r3) std $A[0][3],`8*3`(r3) std $A[0][4],`8*4`(r3) std $A[1][0],`8*5`(r3) std $A[1][1],`8*6`(r3) std $A[1][2],`8*7`(r3) std $A[1][3],`8*8`(r3) std $A[1][4],`8*9`(r3) std $A[2][0],`8*10`(r3) std $A[2][1],`8*11`(r3) std $A[2][2],`8*12`(r3) std $A[2][3],`8*13`(r3) std $A[2][4],`8*14`(r3) std $A[3][0],`8*15`(r3) std $A[3][1],`8*16`(r3) std $A[3][2],`8*17`(r3) std $A[3][3],`8*18`(r3) std $A[3][4],`8*19`(r3) std $A[4][0],`8*20`(r3) std $A[4][1],`8*21`(r3) std $A[4][2],`8*22`(r3) std $A[4][3],`8*23`(r3) std $A[4][4],`8*24`(r3) mr r3,r4 ; return value $POP r0,`$FRAME+$LRSAVE`($sp) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,18,4,0 .long 0 .size SHA3_absorb,.-SHA3_absorb ___ { my ($A_flat,$out,$len,$bsz) = map("r$_",(28..31)); $code.=<<___; .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 5 SHA3_squeeze: $STU $sp,`-10*$SIZE_T`($sp) mflr r0 $PUSH r28,`6*$SIZE_T`($sp) $PUSH r29,`7*$SIZE_T`($sp) $PUSH r30,`8*$SIZE_T`($sp) $PUSH r31,`9*$SIZE_T`($sp) $PUSH r0,`10*$SIZE_T+$LRSAVE`($sp) mr $A_flat,r3 subi r3,r3,8 ; prepare for ldu subi $out,r4,1 ; prepare for stbu mr $len,r5 mr $bsz,r6 b .Loop_squeeze .align 4 .Loop_squeeze: ldu r0,8(r3) ${UCMP}i $len,8 blt .Lsqueeze_tail stbu r0,1($out) srdi r0,r0,8 stbu r0,1($out) srdi r0,r0,8 stbu r0,1($out) srdi r0,r0,8 stbu r0,1($out) srdi r0,r0,8 stbu r0,1($out) srdi r0,r0,8 stbu r0,1($out) srdi r0,r0,8 stbu r0,1($out) srdi r0,r0,8 stbu r0,1($out) subic. $len,$len,8 beq .Lsqueeze_done subic. r6,r6,8 bgt .Loop_squeeze mr r3,$A_flat bl KeccakF1600 subi r3,$A_flat,8 ; prepare for ldu mr r6,$bsz b .Loop_squeeze .align 4 .Lsqueeze_tail: mtctr $len .Loop_tail: stbu r0,1($out) srdi r0,r0,8 bdnz .Loop_tail .Lsqueeze_done: $POP r0,`10*$SIZE_T+$LRSAVE`($sp) $POP r28,`6*$SIZE_T`($sp) $POP r29,`7*$SIZE_T`($sp) $POP r30,`8*$SIZE_T`($sp) $POP r31,`9*$SIZE_T`($sp) mtlr r0 addi $sp,$sp,`10*$SIZE_T` blr .long 0 .byte 0,12,4,1,0x80,4,4,0 .long 0 .size SHA3_squeeze,.-SHA3_squeeze ___ } # Ugly hack here, because PPC assembler syntax seem to vary too # much from platforms to platform... $code.=<<___; .align 6 PICmeup: mflr r0 bcl 20,31,\$+4 mflr r12 ; vvvvvv "distance" between . and 1st data entry addi r12,r12,`64-8` mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `64-9*4` .type iotas,\@object iotas: .quad 0x0000000000000001 .quad 0x0000000000008082 .quad 0x800000000000808a .quad 0x8000000080008000 .quad 0x000000000000808b .quad 0x0000000080000001 .quad 0x8000000080008081 .quad 0x8000000000008009 .quad 0x000000000000008a .quad 0x0000000000000088 .quad 0x0000000080008009 .quad 0x000000008000000a .quad 0x000000008000808b .quad 0x800000000000008b .quad 0x8000000000008089 .quad 0x8000000000008003 .quad 0x8000000000008002 .quad 0x8000000000000080 .quad 0x000000000000800a .quad 0x800000008000000a .quad 0x8000000080008081 .quad 0x8000000000008080 .quad 0x0000000080000001 .quad 0x8000000080008008 .size iotas,.-iotas .asciz "Keccak-1600 absorb and squeeze for PPC64, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-s390x.pl000077500000000000000000000330041364063235100211750ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for s390x. # # June 2017. # # Below code is [lane complementing] KECCAK_2X implementation (see # sha/keccak1600.c) with C[5] and D[5] held in register bank. Though # instead of actually unrolling the loop pair-wise I simply flip # pointers to T[][] and A[][] at the end of round. Since number of # rounds is even, last round writes to A[][] and everything works out. # In the nutshell it's transliteration of x86_64 module, because both # architectures have similar capabilities/limitations. Performance # measurement is problematic as I don't have access to an idle system. # It looks like z13 processes one byte [out of long message] in ~14 # cycles. At least the result is consistent with estimate based on # amount of instruction and assumed instruction issue rate. It's ~2.5x # faster than compiler-generated code. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; my @A = map([ 8*$_, 8*($_+1), 8*($_+2), 8*($_+3), 8*($_+4) ], (0,5,10,15,20)); my @C = map("%r$_",(0,1,5..7)); my @D = map("%r$_",(8..12)); my @T = map("%r$_",(13..14)); my ($src,$dst,$iotas) = map("%r$_",(2..4)); my $sp = "%r15"; $stdframe=16*$SIZE_T+4*8; $frame=$stdframe+25*8; my @rhotates = ([ 0, 1, 62, 28, 27 ], [ 36, 44, 6, 55, 20 ], [ 3, 10, 43, 25, 39 ], [ 41, 45, 15, 21, 8 ], [ 18, 2, 61, 56, 14 ]); { my @C = @C; # copy, because we mess them up... my @D = @D; $code.=<<___; .text .type __KeccakF1600,\@function .align 32 __KeccakF1600: st${g} %r14,$SIZE_T*14($sp) lg @C[0],$A[4][0]($src) lg @C[1],$A[4][1]($src) lg @C[2],$A[4][2]($src) lg @C[3],$A[4][3]($src) lg @C[4],$A[4][4]($src) larl $iotas,iotas j .Loop .align 16 .Loop: lg @D[0],$A[0][0]($src) lg @D[1],$A[1][1]($src) lg @D[2],$A[2][2]($src) lg @D[3],$A[3][3]($src) xgr @C[0],@D[0] xg @C[1],$A[0][1]($src) xg @C[2],$A[0][2]($src) xg @C[3],$A[0][3]($src) lgr @D[4],@C[4] xg @C[4],$A[0][4]($src) xg @C[0],$A[1][0]($src) xgr @C[1],@D[1] xg @C[2],$A[1][2]($src) xg @C[3],$A[1][3]($src) xg @C[4],$A[1][4]($src) xg @C[0],$A[2][0]($src) xg @C[1],$A[2][1]($src) xgr @C[2],@D[2] xg @C[3],$A[2][3]($src) xg @C[4],$A[2][4]($src) xg @C[0],$A[3][0]($src) xg @C[1],$A[3][1]($src) xg @C[2],$A[3][2]($src) xgr @C[3],@D[3] xg @C[4],$A[3][4]($src) lgr @T[0],@C[2] rllg @C[2],@C[2],1 xgr @C[2],@C[0] # D[1] = ROL64(C[2], 1) ^ C[0] rllg @C[0],@C[0],1 xgr @C[0],@C[3] # D[4] = ROL64(C[0], 1) ^ C[3] rllg @C[3],@C[3],1 xgr @C[3],@C[1] # D[2] = ROL64(C[3], 1) ^ C[1] rllg @C[1],@C[1],1 xgr @C[1],@C[4] # D[0] = ROL64(C[1], 1) ^ C[4] rllg @C[4],@C[4],1 xgr @C[4],@T[0] # D[3] = ROL64(C[4], 1) ^ C[2] ___ (@D[0..4], @C) = (@C[1..4,0], @D); $code.=<<___; xgr @C[1],@D[1] xgr @C[2],@D[2] xgr @C[3],@D[3] rllg @C[1],@C[1],$rhotates[1][1] xgr @C[4],@D[4] rllg @C[2],@C[2],$rhotates[2][2] xgr @C[0],@D[0] lgr @T[0],@C[1] ogr @C[1],@C[2] rllg @C[3],@C[3],$rhotates[3][3] xgr @C[1],@C[0] # C[0] ^ ( C[1] | C[2]) rllg @C[4],@C[4],$rhotates[4][4] xg @C[1],0($iotas) la $iotas,8($iotas) stg @C[1],$A[0][0]($dst) # R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i] lgr @T[1],@C[4] ngr @C[4],@C[3] lghi @C[1],-1 # no 'not' instruction :-( xgr @C[4],@C[2] # C[2] ^ ( C[4] & C[3]) xgr @C[2],@C[1] # not @C[2] stg @C[4],$A[0][2]($dst) # R[0][2] = C[2] ^ ( C[4] & C[3]) ogr @C[2],@C[3] xgr @C[2],@T[0] # C[1] ^ (~C[2] | C[3]) ngr @T[0],@C[0] stg @C[2],$A[0][1]($dst) # R[0][1] = C[1] ^ (~C[2] | C[3]) xgr @T[0],@T[1] # C[4] ^ ( C[1] & C[0]) ogr @T[1],@C[0] stg @T[0],$A[0][4]($dst) # R[0][4] = C[4] ^ ( C[1] & C[0]) xgr @T[1],@C[3] # C[3] ^ ( C[4] | C[0]) stg @T[1],$A[0][3]($dst) # R[0][3] = C[3] ^ ( C[4] | C[0]) lg @C[0],$A[0][3]($src) lg @C[4],$A[4][2]($src) lg @C[3],$A[3][1]($src) lg @C[1],$A[1][4]($src) lg @C[2],$A[2][0]($src) xgr @C[0],@D[3] xgr @C[4],@D[2] rllg @C[0],@C[0],$rhotates[0][3] xgr @C[3],@D[1] rllg @C[4],@C[4],$rhotates[4][2] xgr @C[1],@D[4] rllg @C[3],@C[3],$rhotates[3][1] xgr @C[2],@D[0] lgr @T[0],@C[0] ogr @C[0],@C[4] rllg @C[1],@C[1],$rhotates[1][4] xgr @C[0],@C[3] # C[3] ^ (C[0] | C[4]) rllg @C[2],@C[2],$rhotates[2][0] stg @C[0],$A[1][3]($dst) # R[1][3] = C[3] ^ (C[0] | C[4]) lgr @T[1],@C[1] ngr @C[1],@T[0] lghi @C[0],-1 # no 'not' instruction :-( xgr @C[1],@C[4] # C[4] ^ (C[1] & C[0]) xgr @C[4],@C[0] # not @C[4] stg @C[1],$A[1][4]($dst) # R[1][4] = C[4] ^ (C[1] & C[0]) ogr @C[4],@C[3] xgr @C[4],@C[2] # C[2] ^ (~C[4] | C[3]) ngr @C[3],@C[2] stg @C[4],$A[1][2]($dst) # R[1][2] = C[2] ^ (~C[4] | C[3]) xgr @C[3],@T[1] # C[1] ^ (C[3] & C[2]) ogr @T[1],@C[2] stg @C[3],$A[1][1]($dst) # R[1][1] = C[1] ^ (C[3] & C[2]) xgr @T[1],@T[0] # C[0] ^ (C[1] | C[2]) stg @T[1],$A[1][0]($dst) # R[1][0] = C[0] ^ (C[1] | C[2]) lg @C[2],$A[2][3]($src) lg @C[3],$A[3][4]($src) lg @C[1],$A[1][2]($src) lg @C[4],$A[4][0]($src) lg @C[0],$A[0][1]($src) xgr @C[2],@D[3] xgr @C[3],@D[4] rllg @C[2],@C[2],$rhotates[2][3] xgr @C[1],@D[2] rllg @C[3],@C[3],$rhotates[3][4] xgr @C[4],@D[0] rllg @C[1],@C[1],$rhotates[1][2] xgr @C[0],@D[1] lgr @T[0],@C[2] ngr @C[2],@C[3] rllg @C[4],@C[4],$rhotates[4][0] xgr @C[2],@C[1] # C[1] ^ ( C[2] & C[3]) lghi @T[1],-1 # no 'not' instruction :-( stg @C[2],$A[2][1]($dst) # R[2][1] = C[1] ^ ( C[2] & C[3]) xgr @C[3],@T[1] # not @C[3] lgr @T[1],@C[4] ngr @C[4],@C[3] rllg @C[0],@C[0],$rhotates[0][1] xgr @C[4],@T[0] # C[2] ^ ( C[4] & ~C[3]) ogr @T[0],@C[1] stg @C[4],$A[2][2]($dst) # R[2][2] = C[2] ^ ( C[4] & ~C[3]) xgr @T[0],@C[0] # C[0] ^ ( C[2] | C[1]) ngr @C[1],@C[0] stg @T[0],$A[2][0]($dst) # R[2][0] = C[0] ^ ( C[2] | C[1]) xgr @C[1],@T[1] # C[4] ^ ( C[1] & C[0]) ogr @C[0],@T[1] stg @C[1],$A[2][4]($dst) # R[2][4] = C[4] ^ ( C[1] & C[0]) xgr @C[0],@C[3] # ~C[3] ^ ( C[0] | C[4]) stg @C[0],$A[2][3]($dst) # R[2][3] = ~C[3] ^ ( C[0] | C[4]) lg @C[2],$A[2][1]($src) lg @C[3],$A[3][2]($src) lg @C[1],$A[1][0]($src) lg @C[4],$A[4][3]($src) lg @C[0],$A[0][4]($src) xgr @C[2],@D[1] xgr @C[3],@D[2] rllg @C[2],@C[2],$rhotates[2][1] xgr @C[1],@D[0] rllg @C[3],@C[3],$rhotates[3][2] xgr @C[4],@D[3] rllg @C[1],@C[1],$rhotates[1][0] xgr @C[0],@D[4] rllg @C[4],@C[4],$rhotates[4][3] lgr @T[0],@C[2] ogr @C[2],@C[3] lghi @T[1],-1 # no 'not' instruction :-( xgr @C[2],@C[1] # C[1] ^ ( C[2] | C[3]) xgr @C[3],@T[1] # not @C[3] stg @C[2],$A[3][1]($dst) # R[3][1] = C[1] ^ ( C[2] | C[3]) lgr @T[1],@C[4] ogr @C[4],@C[3] rllg @C[0],@C[0],$rhotates[0][4] xgr @C[4],@T[0] # C[2] ^ ( C[4] | ~C[3]) ngr @T[0],@C[1] stg @C[4],$A[3][2]($dst) # R[3][2] = C[2] ^ ( C[4] | ~C[3]) xgr @T[0],@C[0] # C[0] ^ ( C[2] & C[1]) ogr @C[1],@C[0] stg @T[0],$A[3][0]($dst) # R[3][0] = C[0] ^ ( C[2] & C[1]) xgr @C[1],@T[1] # C[4] ^ ( C[1] | C[0]) ngr @C[0],@T[1] stg @C[1],$A[3][4]($dst) # R[3][4] = C[4] ^ ( C[1] | C[0]) xgr @C[0],@C[3] # ~C[3] ^ ( C[0] & C[4]) stg @C[0],$A[3][3]($dst) # R[3][3] = ~C[3] ^ ( C[0] & C[4]) xg @D[2],$A[0][2]($src) xg @D[3],$A[1][3]($src) xg @D[1],$A[4][1]($src) xg @D[4],$A[2][4]($src) xgr $dst,$src # xchg $dst,$src rllg @D[2],@D[2],$rhotates[0][2] xg @D[0],$A[3][0]($src) rllg @D[3],@D[3],$rhotates[1][3] xgr $src,$dst rllg @D[1],@D[1],$rhotates[4][1] xgr $dst,$src rllg @D[4],@D[4],$rhotates[2][4] ___ @C = @D[2..4,0,1]; $code.=<<___; lgr @T[0],@C[0] ngr @C[0],@C[1] lghi @T[1],-1 # no 'not' instruction :-( xgr @C[0],@C[4] # C[4] ^ ( C[0] & C[1]) xgr @C[1],@T[1] # not @C[1] stg @C[0],$A[4][4]($src) # R[4][4] = C[4] ^ ( C[0] & C[1]) lgr @T[1],@C[2] ngr @C[2],@C[1] rllg @D[0],@D[0],$rhotates[3][0] xgr @C[2],@T[0] # C[0] ^ ( C[2] & ~C[1]) ogr @T[0],@C[4] stg @C[2],$A[4][0]($src) # R[4][0] = C[0] ^ ( C[2] & ~C[1]) xgr @T[0],@C[3] # C[3] ^ ( C[0] | C[4]) ngr @C[4],@C[3] stg @T[0],$A[4][3]($src) # R[4][3] = C[3] ^ ( C[0] | C[4]) xgr @C[4],@T[1] # C[2] ^ ( C[4] & C[3]) ogr @C[3],@T[1] stg @C[4],$A[4][2]($src) # R[4][2] = C[2] ^ ( C[4] & C[3]) xgr @C[3],@C[1] # ~C[1] ^ ( C[2] | C[3]) lgr @C[1],@C[0] # harmonize with the loop top lgr @C[0],@T[0] stg @C[3],$A[4][1]($src) # R[4][1] = ~C[1] ^ ( C[2] | C[3]) tmll $iotas,255 jnz .Loop l${g} %r14,$SIZE_T*14($sp) br %r14 .size __KeccakF1600,.-__KeccakF1600 ___ } { $code.=<<___; .type KeccakF1600,\@function .align 32 KeccakF1600: .LKeccakF1600: lghi %r1,-$frame stm${g} %r6,%r15,$SIZE_T*6($sp) lgr %r0,$sp la $sp,0(%r1,$sp) st${g} %r0,0($sp) lghi @D[0],-1 # no 'not' instruction :-( lghi @D[1],-1 lghi @D[2],-1 lghi @D[3],-1 lghi @D[4],-1 lghi @T[0],-1 xg @D[0],$A[0][1]($src) xg @D[1],$A[0][2]($src) xg @D[2],$A[1][3]($src) xg @D[3],$A[2][2]($src) xg @D[4],$A[3][2]($src) xg @T[0],$A[4][0]($src) stmg @D[0],@D[1],$A[0][1]($src) stg @D[2],$A[1][3]($src) stg @D[3],$A[2][2]($src) stg @D[4],$A[3][2]($src) stg @T[0],$A[4][0]($src) la $dst,$stdframe($sp) bras %r14,__KeccakF1600 lghi @D[0],-1 # no 'not' instruction :-( lghi @D[1],-1 lghi @D[2],-1 lghi @D[3],-1 lghi @D[4],-1 lghi @T[0],-1 xg @D[0],$A[0][1]($src) xg @D[1],$A[0][2]($src) xg @D[2],$A[1][3]($src) xg @D[3],$A[2][2]($src) xg @D[4],$A[3][2]($src) xg @T[0],$A[4][0]($src) stmg @D[0],@D[1],$A[0][1]($src) stg @D[2],$A[1][3]($src) stg @D[3],$A[2][2]($src) stg @D[4],$A[3][2]($src) stg @T[0],$A[4][0]($src) lm${g} %r6,%r15,$frame+6*$SIZE_T($sp) br %r14 .size KeccakF1600,.-KeccakF1600 ___ } { my ($A_flat,$inp,$len,$bsz) = map("%r$_",(2..5)); $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function .align 32 SHA3_absorb: lghi %r1,-$frame stm${g} %r5,%r15,$SIZE_T*5($sp) lgr %r0,$sp la $sp,0(%r1,$sp) st${g} %r0,0($sp) lghi @D[0],-1 # no 'not' instruction :-( lghi @D[1],-1 lghi @D[2],-1 lghi @D[3],-1 lghi @D[4],-1 lghi @T[0],-1 xg @D[0],$A[0][1]($src) xg @D[1],$A[0][2]($src) xg @D[2],$A[1][3]($src) xg @D[3],$A[2][2]($src) xg @D[4],$A[3][2]($src) xg @T[0],$A[4][0]($src) stmg @D[0],@D[1],$A[0][1]($src) stg @D[2],$A[1][3]($src) stg @D[3],$A[2][2]($src) stg @D[4],$A[3][2]($src) stg @T[0],$A[4][0]($src) .Loop_absorb: cl${g}r $len,$bsz jl .Ldone_absorb srl${g} $bsz,3 la %r1,0($A_flat) .Lblock_absorb: lrvg %r0,0($inp) la $inp,8($inp) xg %r0,0(%r1) a${g}hi $len,-8 stg %r0,0(%r1) la %r1,8(%r1) brct $bsz,.Lblock_absorb stm${g} $inp,$len,$frame+3*$SIZE_T($sp) la $dst,$stdframe($sp) bras %r14,__KeccakF1600 lm${g} $inp,$bsz,$frame+3*$SIZE_T($sp) j .Loop_absorb .align 16 .Ldone_absorb: lghi @D[0],-1 # no 'not' instruction :-( lghi @D[1],-1 lghi @D[2],-1 lghi @D[3],-1 lghi @D[4],-1 lghi @T[0],-1 xg @D[0],$A[0][1]($src) xg @D[1],$A[0][2]($src) xg @D[2],$A[1][3]($src) xg @D[3],$A[2][2]($src) xg @D[4],$A[3][2]($src) xg @T[0],$A[4][0]($src) stmg @D[0],@D[1],$A[0][1]($src) stg @D[2],$A[1][3]($src) stg @D[3],$A[2][2]($src) stg @D[4],$A[3][2]($src) stg @T[0],$A[4][0]($src) lgr %r2,$len # return value lm${g} %r6,%r15,$frame+6*$SIZE_T($sp) br %r14 .size SHA3_absorb,.-SHA3_absorb ___ } { my ($A_flat,$out,$len,$bsz) = map("%r$_",(2..5)); $code.=<<___; .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 32 SHA3_squeeze: srl${g} $bsz,3 st${g} %r14,2*$SIZE_T($sp) lghi %r14,8 st${g} $bsz,5*$SIZE_T($sp) la %r1,0($A_flat) j .Loop_squeeze .align 16 .Loop_squeeze: cl${g}r $len,%r14 jl .Ltail_squeeze lrvg %r0,0(%r1) la %r1,8(%r1) stg %r0,0($out) la $out,8($out) a${g}hi $len,-8 # len -= 8 jz .Ldone_squeeze brct $bsz,.Loop_squeeze # bsz-- stm${g} $out,$len,3*$SIZE_T($sp) bras %r14,.LKeccakF1600 lm${g} $out,$bsz,3*$SIZE_T($sp) lghi %r14,8 la %r1,0($A_flat) j .Loop_squeeze .Ltail_squeeze: lg %r0,0(%r1) .Loop_tail_squeeze: stc %r0,0($out) la $out,1($out) srlg %r0,8 brct $len,.Loop_tail_squeeze .Ldone_squeeze: l${g} %r14,2*$SIZE_T($sp) br %r14 .size SHA3_squeeze,.-SHA3_squeeze ___ } $code.=<<___; .align 256 .quad 0,0,0,0,0,0,0,0 .type iotas,\@object iotas: .quad 0x0000000000000001 .quad 0x0000000000008082 .quad 0x800000000000808a .quad 0x8000000080008000 .quad 0x000000000000808b .quad 0x0000000080000001 .quad 0x8000000080008081 .quad 0x8000000000008009 .quad 0x000000000000008a .quad 0x0000000000000088 .quad 0x0000000080008009 .quad 0x000000008000000a .quad 0x000000008000808b .quad 0x800000000000008b .quad 0x8000000000008089 .quad 0x8000000000008003 .quad 0x8000000000008002 .quad 0x8000000000000080 .quad 0x000000000000800a .quad 0x800000008000000a .quad 0x8000000080008081 .quad 0x8000000000008080 .quad 0x0000000080000001 .quad 0x8000000080008008 .size iotas,.-iotas .asciz "Keccak-1600 absorb and squeeze for s390x, CRYPTOGAMS by " ___ # unlike 32-bit shift 64-bit one takes three arguments $code =~ s/(srlg\s+)(%r[0-9]+),/$1$2,$2,/gm; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600-x86_64.pl000077500000000000000000000336731364063235100212610ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for x86_64. # # June 2017. # # Below code is [lane complementing] KECCAK_2X implementation (see # sha/keccak1600.c) with C[5] and D[5] held in register bank. Though # instead of actually unrolling the loop pair-wise I simply flip # pointers to T[][] and A[][] at the end of round. Since number of # rounds is even, last round writes to A[][] and everything works out. # How does it compare to x86_64 assembly module in Keccak Code Package? # Depending on processor it's either as fast or faster by up to 15%... # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(*) # # P4 25.8 # Core 2 12.9 # Westmere 13.7 # Sandy Bridge 12.9(**) # Haswell 9.6 # Skylake 9.4 # Silvermont 22.8 # Goldmont 15.8 # VIA Nano 17.3 # Sledgehammer 13.3 # Bulldozer 16.5 # Ryzen 8.8 # # (*) Corresponds to SHA3-256. Improvement over compiler-generate # varies a lot, most common coefficient is 15% in comparison to # gcc-5.x, 50% for gcc-4.x, 90% for gcc-3.x. # (**) Sandy Bridge has broken rotate instruction. Performance can be # improved by 14% by replacing rotates with double-precision # shift with same register as source and destination. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; my @A = map([ 8*$_-100, 8*($_+1)-100, 8*($_+2)-100, 8*($_+3)-100, 8*($_+4)-100 ], (0,5,10,15,20)); my @C = ("%rax","%rbx","%rcx","%rdx","%rbp"); my @D = map("%r$_",(8..12)); my @T = map("%r$_",(13..14)); my $iotas = "%r15"; my @rhotates = ([ 0, 1, 62, 28, 27 ], [ 36, 44, 6, 55, 20 ], [ 3, 10, 43, 25, 39 ], [ 41, 45, 15, 21, 8 ], [ 18, 2, 61, 56, 14 ]); $code.=<<___; .text .type __KeccakF1600,\@abi-omnipotent .align 32 __KeccakF1600: .cfi_startproc mov $A[4][0](%rdi),@C[0] mov $A[4][1](%rdi),@C[1] mov $A[4][2](%rdi),@C[2] mov $A[4][3](%rdi),@C[3] mov $A[4][4](%rdi),@C[4] jmp .Loop .align 32 .Loop: mov $A[0][0](%rdi),@D[0] mov $A[1][1](%rdi),@D[1] mov $A[2][2](%rdi),@D[2] mov $A[3][3](%rdi),@D[3] xor $A[0][2](%rdi),@C[2] xor $A[0][3](%rdi),@C[3] xor @D[0], @C[0] xor $A[0][1](%rdi),@C[1] xor $A[1][2](%rdi),@C[2] xor $A[1][0](%rdi),@C[0] mov @C[4],@D[4] xor $A[0][4](%rdi),@C[4] xor @D[2], @C[2] xor $A[2][0](%rdi),@C[0] xor $A[1][3](%rdi),@C[3] xor @D[1], @C[1] xor $A[1][4](%rdi),@C[4] xor $A[3][2](%rdi),@C[2] xor $A[3][0](%rdi),@C[0] xor $A[2][3](%rdi),@C[3] xor $A[2][1](%rdi),@C[1] xor $A[2][4](%rdi),@C[4] mov @C[2],@T[0] rol \$1,@C[2] xor @C[0],@C[2] # D[1] = ROL64(C[2], 1) ^ C[0] xor @D[3], @C[3] rol \$1,@C[0] xor @C[3],@C[0] # D[4] = ROL64(C[0], 1) ^ C[3] xor $A[3][1](%rdi),@C[1] rol \$1,@C[3] xor @C[1],@C[3] # D[2] = ROL64(C[3], 1) ^ C[1] xor $A[3][4](%rdi),@C[4] rol \$1,@C[1] xor @C[4],@C[1] # D[0] = ROL64(C[1], 1) ^ C[4] rol \$1,@C[4] xor @T[0],@C[4] # D[3] = ROL64(C[4], 1) ^ C[2] ___ (@D[0..4], @C) = (@C[1..4,0], @D); $code.=<<___; xor @D[1],@C[1] xor @D[2],@C[2] rol \$$rhotates[1][1],@C[1] xor @D[3],@C[3] xor @D[4],@C[4] rol \$$rhotates[2][2],@C[2] xor @D[0],@C[0] mov @C[1],@T[0] rol \$$rhotates[3][3],@C[3] or @C[2],@C[1] xor @C[0],@C[1] # C[0] ^ ( C[1] | C[2]) rol \$$rhotates[4][4],@C[4] xor ($iotas),@C[1] lea 8($iotas),$iotas mov @C[4],@T[1] and @C[3],@C[4] mov @C[1],$A[0][0](%rsi) # R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i] xor @C[2],@C[4] # C[2] ^ ( C[4] & C[3]) not @C[2] mov @C[4],$A[0][2](%rsi) # R[0][2] = C[2] ^ ( C[4] & C[3]) or @C[3],@C[2] mov $A[4][2](%rdi),@C[4] xor @T[0],@C[2] # C[1] ^ (~C[2] | C[3]) mov @C[2],$A[0][1](%rsi) # R[0][1] = C[1] ^ (~C[2] | C[3]) and @C[0],@T[0] mov $A[1][4](%rdi),@C[1] xor @T[1],@T[0] # C[4] ^ ( C[1] & C[0]) mov $A[2][0](%rdi),@C[2] mov @T[0],$A[0][4](%rsi) # R[0][4] = C[4] ^ ( C[1] & C[0]) or @C[0],@T[1] mov $A[0][3](%rdi),@C[0] xor @C[3],@T[1] # C[3] ^ ( C[4] | C[0]) mov $A[3][1](%rdi),@C[3] mov @T[1],$A[0][3](%rsi) # R[0][3] = C[3] ^ ( C[4] | C[0]) xor @D[3],@C[0] xor @D[2],@C[4] rol \$$rhotates[0][3],@C[0] xor @D[1],@C[3] xor @D[4],@C[1] rol \$$rhotates[4][2],@C[4] rol \$$rhotates[3][1],@C[3] xor @D[0],@C[2] rol \$$rhotates[1][4],@C[1] mov @C[0],@T[0] or @C[4],@C[0] rol \$$rhotates[2][0],@C[2] xor @C[3],@C[0] # C[3] ^ (C[0] | C[4]) mov @C[0],$A[1][3](%rsi) # R[1][3] = C[3] ^ (C[0] | C[4]) mov @C[1],@T[1] and @T[0],@C[1] mov $A[0][1](%rdi),@C[0] xor @C[4],@C[1] # C[4] ^ (C[1] & C[0]) not @C[4] mov @C[1],$A[1][4](%rsi) # R[1][4] = C[4] ^ (C[1] & C[0]) or @C[3],@C[4] mov $A[1][2](%rdi),@C[1] xor @C[2],@C[4] # C[2] ^ (~C[4] | C[3]) mov @C[4],$A[1][2](%rsi) # R[1][2] = C[2] ^ (~C[4] | C[3]) and @C[2],@C[3] mov $A[4][0](%rdi),@C[4] xor @T[1],@C[3] # C[1] ^ (C[3] & C[2]) mov @C[3],$A[1][1](%rsi) # R[1][1] = C[1] ^ (C[3] & C[2]) or @C[2],@T[1] mov $A[2][3](%rdi),@C[2] xor @T[0],@T[1] # C[0] ^ (C[1] | C[2]) mov $A[3][4](%rdi),@C[3] mov @T[1],$A[1][0](%rsi) # R[1][0] = C[0] ^ (C[1] | C[2]) xor @D[3],@C[2] xor @D[4],@C[3] rol \$$rhotates[2][3],@C[2] xor @D[2],@C[1] rol \$$rhotates[3][4],@C[3] xor @D[0],@C[4] rol \$$rhotates[1][2],@C[1] xor @D[1],@C[0] rol \$$rhotates[4][0],@C[4] mov @C[2],@T[0] and @C[3],@C[2] rol \$$rhotates[0][1],@C[0] not @C[3] xor @C[1],@C[2] # C[1] ^ ( C[2] & C[3]) mov @C[2],$A[2][1](%rsi) # R[2][1] = C[1] ^ ( C[2] & C[3]) mov @C[4],@T[1] and @C[3],@C[4] mov $A[2][1](%rdi),@C[2] xor @T[0],@C[4] # C[2] ^ ( C[4] & ~C[3]) mov @C[4],$A[2][2](%rsi) # R[2][2] = C[2] ^ ( C[4] & ~C[3]) or @C[1],@T[0] mov $A[4][3](%rdi),@C[4] xor @C[0],@T[0] # C[0] ^ ( C[2] | C[1]) mov @T[0],$A[2][0](%rsi) # R[2][0] = C[0] ^ ( C[2] | C[1]) and @C[0],@C[1] xor @T[1],@C[1] # C[4] ^ ( C[1] & C[0]) mov @C[1],$A[2][4](%rsi) # R[2][4] = C[4] ^ ( C[1] & C[0]) or @C[0],@T[1] mov $A[1][0](%rdi),@C[1] xor @C[3],@T[1] # ~C[3] ^ ( C[0] | C[4]) mov $A[3][2](%rdi),@C[3] mov @T[1],$A[2][3](%rsi) # R[2][3] = ~C[3] ^ ( C[0] | C[4]) mov $A[0][4](%rdi),@C[0] xor @D[1],@C[2] xor @D[2],@C[3] rol \$$rhotates[2][1],@C[2] xor @D[0],@C[1] rol \$$rhotates[3][2],@C[3] xor @D[3],@C[4] rol \$$rhotates[1][0],@C[1] xor @D[4],@C[0] rol \$$rhotates[4][3],@C[4] mov @C[2],@T[0] or @C[3],@C[2] rol \$$rhotates[0][4],@C[0] not @C[3] xor @C[1],@C[2] # C[1] ^ ( C[2] | C[3]) mov @C[2],$A[3][1](%rsi) # R[3][1] = C[1] ^ ( C[2] | C[3]) mov @C[4],@T[1] or @C[3],@C[4] xor @T[0],@C[4] # C[2] ^ ( C[4] | ~C[3]) mov @C[4],$A[3][2](%rsi) # R[3][2] = C[2] ^ ( C[4] | ~C[3]) and @C[1],@T[0] xor @C[0],@T[0] # C[0] ^ ( C[2] & C[1]) mov @T[0],$A[3][0](%rsi) # R[3][0] = C[0] ^ ( C[2] & C[1]) or @C[0],@C[1] xor @T[1],@C[1] # C[4] ^ ( C[1] | C[0]) mov @C[1],$A[3][4](%rsi) # R[3][4] = C[4] ^ ( C[1] | C[0]) and @T[1],@C[0] xor @C[3],@C[0] # ~C[3] ^ ( C[0] & C[4]) mov @C[0],$A[3][3](%rsi) # R[3][3] = ~C[3] ^ ( C[0] & C[4]) xor $A[0][2](%rdi),@D[2] xor $A[1][3](%rdi),@D[3] rol \$$rhotates[0][2],@D[2] xor $A[4][1](%rdi),@D[1] rol \$$rhotates[1][3],@D[3] xor $A[2][4](%rdi),@D[4] rol \$$rhotates[4][1],@D[1] xor $A[3][0](%rdi),@D[0] xchg %rsi,%rdi rol \$$rhotates[2][4],@D[4] rol \$$rhotates[3][0],@D[0] ___ @C = @D[2..4,0,1]; $code.=<<___; mov @C[0],@T[0] and @C[1],@C[0] not @C[1] xor @C[4],@C[0] # C[4] ^ ( C[0] & C[1]) mov @C[0],$A[4][4](%rdi) # R[4][4] = C[4] ^ ( C[0] & C[1]) mov @C[2],@T[1] and @C[1],@C[2] xor @T[0],@C[2] # C[0] ^ ( C[2] & ~C[1]) mov @C[2],$A[4][0](%rdi) # R[4][0] = C[0] ^ ( C[2] & ~C[1]) or @C[4],@T[0] xor @C[3],@T[0] # C[3] ^ ( C[0] | C[4]) mov @T[0],$A[4][3](%rdi) # R[4][3] = C[3] ^ ( C[0] | C[4]) and @C[3],@C[4] xor @T[1],@C[4] # C[2] ^ ( C[4] & C[3]) mov @C[4],$A[4][2](%rdi) # R[4][2] = C[2] ^ ( C[4] & C[3]) or @T[1],@C[3] xor @C[1],@C[3] # ~C[1] ^ ( C[2] | C[3]) mov @C[3],$A[4][1](%rdi) # R[4][1] = ~C[1] ^ ( C[2] | C[3]) mov @C[0],@C[1] # harmonize with the loop top mov @T[0],@C[0] test \$255,$iotas jnz .Loop lea -192($iotas),$iotas # rewind iotas ret .cfi_endproc .size __KeccakF1600,.-__KeccakF1600 .type KeccakF1600,\@abi-omnipotent .align 32 KeccakF1600: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea 100(%rdi),%rdi # size optimization sub \$200,%rsp .cfi_adjust_cfa_offset 200 notq $A[0][1](%rdi) notq $A[0][2](%rdi) notq $A[1][3](%rdi) notq $A[2][2](%rdi) notq $A[3][2](%rdi) notq $A[4][0](%rdi) lea iotas(%rip),$iotas lea 100(%rsp),%rsi # size optimization call __KeccakF1600 notq $A[0][1](%rdi) notq $A[0][2](%rdi) notq $A[1][3](%rdi) notq $A[2][2](%rdi) notq $A[3][2](%rdi) notq $A[4][0](%rdi) lea -100(%rdi),%rdi # preserve A[][] add \$200,%rsp .cfi_adjust_cfa_offset -200 pop %r15 .cfi_pop %r15 pop %r14 .cfi_pop %r14 pop %r13 .cfi_pop %r13 pop %r12 .cfi_pop %r12 pop %rbp .cfi_pop %rbp pop %rbx .cfi_pop %rbx ret .cfi_endproc .size KeccakF1600,.-KeccakF1600 ___ { my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx"); ($A_flat,$inp) = ("%r8","%r9"); $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function,4 .align 32 SHA3_absorb: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea 100(%rdi),%rdi # size optimization sub \$232,%rsp .cfi_adjust_cfa_offset 232 mov %rsi,$inp lea 100(%rsp),%rsi # size optimization notq $A[0][1](%rdi) notq $A[0][2](%rdi) notq $A[1][3](%rdi) notq $A[2][2](%rdi) notq $A[3][2](%rdi) notq $A[4][0](%rdi) lea iotas(%rip),$iotas mov $bsz,216-100(%rsi) # save bsz .Loop_absorb: cmp $bsz,$len jc .Ldone_absorb shr \$3,$bsz lea -100(%rdi),$A_flat .Lblock_absorb: mov ($inp),%rax lea 8($inp),$inp xor ($A_flat),%rax lea 8($A_flat),$A_flat sub \$8,$len mov %rax,-8($A_flat) sub \$1,$bsz jnz .Lblock_absorb mov $inp,200-100(%rsi) # save inp mov $len,208-100(%rsi) # save len call __KeccakF1600 mov 200-100(%rsi),$inp # pull inp mov 208-100(%rsi),$len # pull len mov 216-100(%rsi),$bsz # pull bsz jmp .Loop_absorb .align 32 .Ldone_absorb: mov $len,%rax # return value notq $A[0][1](%rdi) notq $A[0][2](%rdi) notq $A[1][3](%rdi) notq $A[2][2](%rdi) notq $A[3][2](%rdi) notq $A[4][0](%rdi) add \$232,%rsp .cfi_adjust_cfa_offset -232 pop %r15 .cfi_pop %r15 pop %r14 .cfi_pop %r14 pop %r13 .cfi_pop %r13 pop %r12 .cfi_pop %r12 pop %rbp .cfi_pop %rbp pop %rbx .cfi_pop %rbx ret .cfi_endproc .size SHA3_absorb,.-SHA3_absorb ___ } { my ($A_flat,$out,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx"); ($out,$len,$bsz) = ("%r12","%r13","%r14"); $code.=<<___; .globl SHA3_squeeze .type SHA3_squeeze,\@function,4 .align 32 SHA3_squeeze: .cfi_startproc push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 shr \$3,%rcx mov $A_flat,%r8 mov %rsi,$out mov %rdx,$len mov %rcx,$bsz jmp .Loop_squeeze .align 32 .Loop_squeeze: cmp \$8,$len jb .Ltail_squeeze mov (%r8),%rax lea 8(%r8),%r8 mov %rax,($out) lea 8($out),$out sub \$8,$len # len -= 8 jz .Ldone_squeeze sub \$1,%rcx # bsz-- jnz .Loop_squeeze call KeccakF1600 mov $A_flat,%r8 mov $bsz,%rcx jmp .Loop_squeeze .Ltail_squeeze: mov %r8, %rsi mov $out,%rdi mov $len,%rcx .byte 0xf3,0xa4 # rep movsb .Ldone_squeeze: pop %r14 .cfi_pop %r14 pop %r13 .cfi_pop %r13 pop %r12 .cfi_pop %r13 ret .cfi_endproc .size SHA3_squeeze,.-SHA3_squeeze ___ } $code.=<<___; .align 256 .quad 0,0,0,0,0,0,0,0 .type iotas,\@object iotas: .quad 0x0000000000000001 .quad 0x0000000000008082 .quad 0x800000000000808a .quad 0x8000000080008000 .quad 0x000000000000808b .quad 0x0000000080000001 .quad 0x8000000080008081 .quad 0x8000000000008009 .quad 0x000000000000008a .quad 0x0000000000000088 .quad 0x0000000080008009 .quad 0x000000008000000a .quad 0x000000008000808b .quad 0x800000000000008b .quad 0x8000000000008089 .quad 0x8000000000008003 .quad 0x8000000000008002 .quad 0x8000000000000080 .quad 0x000000000000800a .quad 0x800000008000000a .quad 0x8000000080008081 .quad 0x8000000000008080 .quad 0x0000000080000001 .quad 0x8000000080008008 .size iotas,.-iotas .asciz "Keccak-1600 absorb and squeeze for x86_64, CRYPTOGAMS by " ___ foreach (split("\n",$code)) { # Below replacement results in 11.2 on Sandy Bridge, 9.4 on # Haswell, but it hurts other processors by up to 2-3-4x... #s/rol\s+(\$[0-9]+),(%[a-z][a-z0-9]+)/shld\t$1,$2,$2/; # Below replacement results in 9.3 on Haswell [as well as # on Ryzen, i.e. it *hurts* Ryzen]... #s/rol\s+\$([0-9]+),(%[a-z][a-z0-9]+)/rorx\t\$64-$1,$2,$2/; print $_, "\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/keccak1600p8-ppc.pl000077500000000000000000000452341364063235100213510ustar00rootroot00000000000000#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for PowerISA 2.07. # # June 2017. # # This is straightforward KECCAK_1X_ALT SIMD implementation, but with # disjoint Rho and Pi. The module is ABI-bitness- and endian-neutral. # POWER8 processor spends 9.8 cycles to process byte out of large # buffer for r=1088, which matches SHA3-256. This is 17% better than # scalar PPC64 code. It probably should be noted that if POWER8's # successor can achieve higher scalar instruction issue rate, then # this module will loose... And it does on POWER9 with 12.0 vs. 9.4. $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $UCMP ="cmpld"; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; $UCMP ="cmplw"; } else { die "nonsense $flavour"; } $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload my $sp ="r1"; my $iotas = "r12"; ######################################################################## # Register layout: # # v0 A[0][0] A[1][0] # v1 A[0][1] A[1][1] # v2 A[0][2] A[1][2] # v3 A[0][3] A[1][3] # v4 A[0][4] A[1][4] # # v5 A[2][0] A[3][0] # v6 A[2][1] A[3][1] # v7 A[2][2] A[3][2] # v8 A[2][3] A[3][3] # v9 A[2][4] A[3][4] # # v10 A[4][0] A[4][1] # v11 A[4][2] A[4][3] # v12 A[4][4] A[4][4] # # v13..25 rhotates[][] # v26..31 volatile # $code.=<<___; .machine "any" .text .type KeccakF1600_int,\@function .align 5 KeccakF1600_int: li r0,24 mtctr r0 li r0,0 b .Loop .align 4 .Loop: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Theta vxor v26,v0, v5 ; A[0..1][0]^A[2..3][0] vxor v27,v1, v6 ; A[0..1][1]^A[2..3][1] vxor v28,v2, v7 ; A[0..1][2]^A[2..3][2] vxor v29,v3, v8 ; A[0..1][3]^A[2..3][3] vxor v30,v4, v9 ; A[0..1][4]^A[2..3][4] vpermdi v31,v26,v27,0b00 ; A[0][0..1]^A[2][0..1] vpermdi v26,v26,v27,0b11 ; A[1][0..1]^A[3][0..1] vpermdi v27,v28,v29,0b00 ; A[0][2..3]^A[2][2..3] vpermdi v28,v28,v29,0b11 ; A[1][2..3]^A[3][2..3] vpermdi v29,v30,v30,0b10 ; A[1..0][4]^A[3..2][4] vxor v26,v26,v31 ; C[0..1] vxor v27,v27,v28 ; C[2..3] vxor v28,v29,v30 ; C[4..4] vspltisb v31,1 vxor v26,v26,v10 ; C[0..1] ^= A[4][0..1] vxor v27,v27,v11 ; C[2..3] ^= A[4][2..3] vxor v28,v28,v12 ; C[4..4] ^= A[4][4..4], low! vrld v29,v26,v31 ; ROL64(C[0..1],1) vrld v30,v27,v31 ; ROL64(C[2..3],1) vrld v31,v28,v31 ; ROL64(C[4..4],1) vpermdi v31,v31,v29,0b10 vxor v26,v26,v30 ; C[0..1] ^= ROL64(C[2..3],1) vxor v27,v27,v31 ; C[2..3] ^= ROL64(C[4..0],1) vxor v28,v28,v29 ; C[4..4] ^= ROL64(C[0..1],1), low! vpermdi v29,v26,v26,0b00 ; C[0..0] vpermdi v30,v28,v26,0b10 ; C[4..0] vpermdi v31,v28,v28,0b11 ; C[4..4] vxor v1, v1, v29 ; A[0..1][1] ^= C[0..0] vxor v6, v6, v29 ; A[2..3][1] ^= C[0..0] vxor v10,v10,v30 ; A[4][0..1] ^= C[4..0] vxor v0, v0, v31 ; A[0..1][0] ^= C[4..4] vxor v5, v5, v31 ; A[2..3][0] ^= C[4..4] vpermdi v29,v27,v27,0b00 ; C[2..2] vpermdi v30,v26,v26,0b11 ; C[1..1] vpermdi v31,v26,v27,0b10 ; C[1..2] vxor v3, v3, v29 ; A[0..1][3] ^= C[2..2] vxor v8, v8, v29 ; A[2..3][3] ^= C[2..2] vxor v2, v2, v30 ; A[0..1][2] ^= C[1..1] vxor v7, v7, v30 ; A[2..3][2] ^= C[1..1] vxor v11,v11,v31 ; A[4][2..3] ^= C[1..2] vpermdi v29,v27,v27,0b11 ; C[3..3] vxor v4, v4, v29 ; A[0..1][4] ^= C[3..3] vxor v9, v9, v29 ; A[2..3][4] ^= C[3..3] vxor v12,v12,v29 ; A[4..4][4] ^= C[3..3] ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Rho vrld v26,v0, v13 ; v0 vrld v1, v1, v14 vrld v27,v2, v15 ; v2 vrld v28,v3, v16 ; v3 vrld v4, v4, v17 vrld v5, v5, v18 vrld v6, v6, v19 vrld v29,v7, v20 ; v7 vrld v8, v8, v21 vrld v9, v9, v22 vrld v10,v10,v23 vrld v30,v11,v24 ; v11 vrld v12,v12,v25 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Pi vpermdi v0, v26,v28,0b00 ; [0][0] [1][0] < [0][0] [0][3] vpermdi v2, v29,v5, 0b00 ; [0][2] [1][2] < [2][2] [2][0] vpermdi v11,v9, v5, 0b01 ; [4][2] [4][3] < [2][4] [3][0] vpermdi v5, v1, v4, 0b00 ; [2][0] [3][0] < [0][1] [0][4] vpermdi v1, v1, v4, 0b11 ; [0][1] [1][1] < [1][1] [1][4] vpermdi v3, v8, v6, 0b11 ; [0][3] [1][3] < [3][3] [3][1] vpermdi v4, v12,v30,0b10 ; [0][4] [1][4] < [4][4] [4][2] vpermdi v7, v8, v6, 0b00 ; [2][2] [3][2] < [2][3] [2][1] vpermdi v6, v27,v26,0b11 ; [2][1] [3][1] < [1][2] [1][0] vpermdi v8, v9, v29,0b11 ; [2][3] [3][3] < [3][4] [3][2] vpermdi v12,v10,v10,0b11 ; [4][4] [4][4] < [4][1] [4][1] vpermdi v9, v10,v30,0b01 ; [2][4] [3][4] < [4][0] [4][3] vpermdi v10,v27,v28,0b01 ; [4][0] [4][1] < [0][2] [1][3] ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Chi + Iota lvx_u v31,$iotas,r0 ; iotas[index] addic r0,r0,16 ; index++ vandc v26,v2, v1 ; (~A[0..1][1] & A[0..1][2]) vandc v27,v3, v2 ; (~A[0..1][2] & A[0..1][3]) vandc v28,v4, v3 ; (~A[0..1][3] & A[0..1][4]) vandc v29,v0, v4 ; (~A[0..1][4] & A[0..1][0]) vandc v30,v1, v0 ; (~A[0..1][0] & A[0..1][1]) vxor v0, v0, v26 ; A[0..1][0] ^= (~A[0..1][1] & A[0..1][2]) vxor v1, v1, v27 ; A[0..1][1] ^= (~A[0..1][2] & A[0..1][3]) vxor v2, v2, v28 ; A[0..1][2] ^= (~A[0..1][3] & A[0..1][4]) vxor v3, v3, v29 ; A[0..1][3] ^= (~A[0..1][4] & A[0..1][0]) vxor v4, v4, v30 ; A[0..1][4] ^= (~A[0..1][0] & A[0..1][1]) vandc v26,v7, v6 ; (~A[2..3][1] & A[2..3][2]) vandc v27,v8, v7 ; (~A[2..3][2] & A[2..3][3]) vandc v28,v9, v8 ; (~A[2..3][3] & A[2..3][4]) vandc v29,v5, v9 ; (~A[2..3][4] & A[2..3][0]) vandc v30,v6, v5 ; (~A[2..3][0] & A[2..3][1]) vxor v5, v5, v26 ; A[2..3][0] ^= (~A[2..3][1] & A[2..3][2]) vxor v6, v6, v27 ; A[2..3][1] ^= (~A[2..3][2] & A[2..3][3]) vxor v7, v7, v28 ; A[2..3][2] ^= (~A[2..3][3] & A[2..3][4]) vxor v8, v8, v29 ; A[2..3][3] ^= (~A[2..3][4] & A[2..3][0]) vxor v9, v9, v30 ; A[2..3][4] ^= (~A[2..3][0] & A[2..3][1]) vxor v0, v0, v31 ; A[0][0] ^= iotas[index++] vpermdi v26,v10,v11,0b10 ; A[4][1..2] vpermdi v27,v12,v10,0b00 ; A[4][4..0] vpermdi v28,v11,v12,0b10 ; A[4][3..4] vpermdi v29,v10,v10,0b10 ; A[4][1..0] vandc v26,v11,v26 ; (~A[4][1..2] & A[4][2..3]) vandc v27,v27,v28 ; (~A[4][3..4] & A[4][4..0]) vandc v28,v10,v29 ; (~A[4][1..0] & A[4][0..1]) vxor v10,v10,v26 ; A[4][0..1] ^= (~A[4][1..2] & A[4][2..3]) vxor v11,v11,v27 ; A[4][2..3] ^= (~A[4][3..4] & A[4][4..0]) vxor v12,v12,v28 ; A[4][4..4] ^= (~A[4][0..1] & A[4][1..0]) bdnz .Loop vpermdi v12,v12,v12,0b11 ; broadcast A[4][4] blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .size KeccakF1600_int,.-KeccakF1600_int .type KeccakF1600,\@function .align 5 KeccakF1600: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r8 mfspr r7, 256 ; save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r7,`$FRAME-4`($sp) ; save vrsave li r0, -1 $PUSH r8,`$FRAME+$LRSAVE`($sp) mtspr 256, r0 ; preserve all AltiVec registers li r11,16 lvx_4w v0,0,r3 ; load A[5][5] li r10,32 lvx_4w v1,r11,r3 addi r11,r11,32 lvx_4w v2,r10,r3 addi r10,r10,32 lvx_4w v3,r11,r3 addi r11,r11,32 lvx_4w v4,r10,r3 addi r10,r10,32 lvx_4w v5,r11,r3 addi r11,r11,32 lvx_4w v6,r10,r3 addi r10,r10,32 lvx_4w v7,r11,r3 addi r11,r11,32 lvx_4w v8,r10,r3 addi r10,r10,32 lvx_4w v9,r11,r3 addi r11,r11,32 lvx_4w v10,r10,r3 addi r10,r10,32 lvx_4w v11,r11,r3 lvx_splt v12,r10,r3 bl PICmeup li r11,16 lvx_u v13,0,r12 ; load rhotates li r10,32 lvx_u v14,r11,r12 addi r11,r11,32 lvx_u v15,r10,r12 addi r10,r10,32 lvx_u v16,r11,r12 addi r11,r11,32 lvx_u v17,r10,r12 addi r10,r10,32 lvx_u v18,r11,r12 addi r11,r11,32 lvx_u v19,r10,r12 addi r10,r10,32 lvx_u v20,r11,r12 addi r11,r11,32 lvx_u v21,r10,r12 addi r10,r10,32 lvx_u v22,r11,r12 addi r11,r11,32 lvx_u v23,r10,r12 addi r10,r10,32 lvx_u v24,r11,r12 lvx_u v25,r10,r12 addi r12,r12,`16*16` ; points at iotas bl KeccakF1600_int li r11,16 stvx_4w v0,0,r3 ; return A[5][5] li r10,32 stvx_4w v1,r11,r3 addi r11,r11,32 stvx_4w v2,r10,r3 addi r10,r10,32 stvx_4w v3,r11,r3 addi r11,r11,32 stvx_4w v4,r10,r3 addi r10,r10,32 stvx_4w v5,r11,r3 addi r11,r11,32 stvx_4w v6,r10,r3 addi r10,r10,32 stvx_4w v7,r11,r3 addi r11,r11,32 stvx_4w v8,r10,r3 addi r10,r10,32 stvx_4w v9,r11,r3 addi r11,r11,32 stvx_4w v10,r10,r3 addi r10,r10,32 stvx_4w v11,r11,r3 stvdx_u v12,r10,r3 li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtlr r8 mtspr 256, r7 ; restore vrsave lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,1,0 .long 0 .size KeccakF1600,.-KeccakF1600 ___ { my ($A_jagged,$inp,$len,$bsz) = map("r$_",(3..6)); $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function .align 5 SHA3_absorb: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r8 mfspr r7, 256 ; save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r7,`$FRAME-4`($sp) ; save vrsave li r0, -1 $PUSH r8,`$FRAME+$LRSAVE`($sp) mtspr 256, r0 ; preserve all AltiVec registers li r11,16 lvx_4w v0,0,$A_jagged ; load A[5][5] li r10,32 lvx_4w v1,r11,$A_jagged addi r11,r11,32 lvx_4w v2,r10,$A_jagged addi r10,r10,32 lvx_4w v3,r11,$A_jagged addi r11,r11,32 lvx_4w v4,r10,$A_jagged addi r10,r10,32 lvx_4w v5,r11,$A_jagged addi r11,r11,32 lvx_4w v6,r10,$A_jagged addi r10,r10,32 lvx_4w v7,r11,$A_jagged addi r11,r11,32 lvx_4w v8,r10,$A_jagged addi r10,r10,32 lvx_4w v9,r11,$A_jagged addi r11,r11,32 lvx_4w v10,r10,$A_jagged addi r10,r10,32 lvx_4w v11,r11,$A_jagged lvx_splt v12,r10,$A_jagged bl PICmeup li r11,16 lvx_u v13,0,r12 ; load rhotates li r10,32 lvx_u v14,r11,r12 addi r11,r11,32 lvx_u v15,r10,r12 addi r10,r10,32 lvx_u v16,r11,r12 addi r11,r11,32 lvx_u v17,r10,r12 addi r10,r10,32 lvx_u v18,r11,r12 addi r11,r11,32 lvx_u v19,r10,r12 addi r10,r10,32 lvx_u v20,r11,r12 addi r11,r11,32 lvx_u v21,r10,r12 addi r10,r10,32 lvx_u v22,r11,r12 addi r11,r11,32 lvx_u v23,r10,r12 addi r10,r10,32 lvx_u v24,r11,r12 lvx_u v25,r10,r12 li r10,-32 li r11,-16 addi r12,r12,`16*16` ; points at iotas b .Loop_absorb .align 4 .Loop_absorb: $UCMP $len,$bsz ; len < bsz? blt .Labsorbed sub $len,$len,$bsz ; len -= bsz srwi r0,$bsz,3 mtctr r0 lvx_u v30,r10,r12 ; permutation masks lvx_u v31,r11,r12 ?vspltisb v27,7 ; prepare masks for byte swap ?vxor v30,v30,v27 ; on big-endian ?vxor v31,v31,v27 vxor v27,v27,v27 ; zero lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v0, v0, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v1, v1, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v2, v2, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v3, v3, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v4, v4, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v0, v0, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v1, v1, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v2, v2, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v3, v3, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v4, v4, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v5, v5, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v6, v6, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v7, v7, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v8, v8, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v9, v9, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v5, v5, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v6, v6, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v7, v7, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v8, v8, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v9, v9, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v10, v10, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v10, v10, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v30 vxor v11, v11, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v11, v11, v26 bdz .Lprocess_block lvdx_u v26,0,$inp addi $inp,$inp,8 vperm v26,v26,v27,v31 vxor v12, v12, v26 .Lprocess_block: bl KeccakF1600_int b .Loop_absorb .align 4 .Labsorbed: li r11,16 stvx_4w v0,0,$A_jagged ; return A[5][5] li r10,32 stvx_4w v1,r11,$A_jagged addi r11,r11,32 stvx_4w v2,r10,$A_jagged addi r10,r10,32 stvx_4w v3,r11,$A_jagged addi r11,r11,32 stvx_4w v4,r10,$A_jagged addi r10,r10,32 stvx_4w v5,r11,$A_jagged addi r11,r11,32 stvx_4w v6,r10,$A_jagged addi r10,r10,32 stvx_4w v7,r11,$A_jagged addi r11,r11,32 stvx_4w v8,r10,$A_jagged addi r10,r10,32 stvx_4w v9,r11,$A_jagged addi r11,r11,32 stvx_4w v10,r10,$A_jagged addi r10,r10,32 stvx_4w v11,r11,$A_jagged stvdx_u v12,r10,$A_jagged mr r3,$len ; return value li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtlr r8 mtspr 256, r7 ; restore vrsave lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,4,0 .long 0 .size SHA3_absorb,.-SHA3_absorb ___ } { my ($A_jagged,$out,$len,$bsz) = map("r$_",(3..6)); $code.=<<___; .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 5 SHA3_squeeze: mflr r9 ; r9 is not touched by KeccakF1600 subi $out,$out,1 ; prepare for stbu addi r8,$A_jagged,4 ; prepare volatiles mr r10,$bsz li r11,0 b .Loop_squeeze .align 4 .Loop_squeeze: lwzx r7,r11,r8 ; lo lwzx r0,r11,$A_jagged ; hi ${UCMP}i $len,8 blt .Lsqueeze_tail stbu r7,1($out) ; write lo srwi r7,r7,8 stbu r7,1($out) srwi r7,r7,8 stbu r7,1($out) srwi r7,r7,8 stbu r7,1($out) stbu r0,1($out) ; write hi srwi r0,r0,8 stbu r0,1($out) srwi r0,r0,8 stbu r0,1($out) srwi r0,r0,8 stbu r0,1($out) subic. $len,$len,8 beqlr ; return if done subic. r10,r10,8 ble .Loutput_expand addi r11,r11,16 ; calculate jagged index cmplwi r11,`16*5` blt .Loop_squeeze subi r11,r11,72 beq .Loop_squeeze addi r11,r11,72 cmplwi r11,`16*5+8` subi r11,r11,8 beq .Loop_squeeze addi r11,r11,8 cmplwi r11,`16*10` subi r11,r11,72 beq .Loop_squeeze addi r11,r11,72 blt .Loop_squeeze subi r11,r11,8 b .Loop_squeeze .align 4 .Loutput_expand: bl KeccakF1600 mtlr r9 addi r8,$A_jagged,4 ; restore volatiles mr r10,$bsz li r11,0 b .Loop_squeeze .align 4 .Lsqueeze_tail: mtctr $len subic. $len,$len,4 ble .Loop_tail_lo li r8,4 mtctr r8 .Loop_tail_lo: stbu r7,1($out) srdi r7,r7,8 bdnz .Loop_tail_lo ble .Lsqueeze_done mtctr $len .Loop_tail_hi: stbu r0,1($out) srdi r0,r0,8 bdnz .Loop_tail_hi .Lsqueeze_done: blr .long 0 .byte 0,12,0x14,0,0,0,4,0 .long 0 .size SHA3_squeeze,.-SHA3_squeeze ___ } $code.=<<___; .align 6 PICmeup: mflr r0 bcl 20,31,\$+4 mflr r12 ; vvvvvv "distance" between . and 1st data entry addi r12,r12,`64-8` mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `64-9*4` .type rhotates,\@object .align 6 rhotates: .quad 0, 36 .quad 1, 44 .quad 62, 6 .quad 28, 55 .quad 27, 20 .quad 3, 41 .quad 10, 45 .quad 43, 15 .quad 25, 21 .quad 39, 8 .quad 18, 2 .quad 61, 56 .quad 14, 14 .size rhotates,.-rhotates .quad 0,0 .quad 0x0001020304050607,0x1011121314151617 .quad 0x1011121314151617,0x0001020304050607 .type iotas,\@object iotas: .quad 0x0000000000000001,0 .quad 0x0000000000008082,0 .quad 0x800000000000808a,0 .quad 0x8000000080008000,0 .quad 0x000000000000808b,0 .quad 0x0000000080000001,0 .quad 0x8000000080008081,0 .quad 0x8000000000008009,0 .quad 0x000000000000008a,0 .quad 0x0000000000000088,0 .quad 0x0000000080008009,0 .quad 0x000000008000000a,0 .quad 0x000000008000808b,0 .quad 0x800000000000008b,0 .quad 0x8000000000008089,0 .quad 0x8000000000008003,0 .quad 0x8000000000008002,0 .quad 0x8000000000000080,0 .quad 0x000000000000800a,0 .quad 0x800000008000000a,0 .quad 0x8000000080008081,0 .quad 0x8000000000008080,0 .quad 0x0000000080000001,0 .quad 0x8000000080008008,0 .size iotas,.-iotas .asciz "Keccak-1600 absorb and squeeze for PowerISA 2.07, CRYPTOGAMS by " ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; if ($flavour =~ /le$/) { # little-endian s/\?([a-z]+)/;$1/; } else { # big-endian s/\?([a-z]+)/$1/; } print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-586.pl000066400000000000000000001266701364063235100177460ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # [Re]written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # "[Re]written" was achieved in two major overhauls. In 2004 BODY_* # functions were re-implemented to address P4 performance issue [see # commentary below], and in 2006 the rest was rewritten in order to # gain freedom to liberate licensing terms. # January, September 2004. # # It was noted that Intel IA-32 C compiler generates code which # performs ~30% *faster* on P4 CPU than original *hand-coded* # SHA1 assembler implementation. To address this problem (and # prove that humans are still better than machines:-), the # original code was overhauled, which resulted in following # performance changes: # # compared with original compared with Intel cc # assembler impl. generated code # Pentium -16% +48% # PIII/AMD +8% +16% # P4 +85%(!) +45% # # As you can see Pentium came out as looser:-( Yet I reckoned that # improvement on P4 outweighs the loss and incorporate this # re-tuned code to 0.9.7 and later. # ---------------------------------------------------------------- # August 2009. # # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as # '(c&d) + (b&(c^d))', which allows to accumulate partial results # and lighten "pressure" on scratch registers. This resulted in # >12% performance improvement on contemporary AMD cores (with no # degradation on other CPUs:-). Also, the code was revised to maximize # "distance" between instructions producing input to 'lea' instruction # and the 'lea' instruction itself, which is essential for Intel Atom # core and resulted in ~15% improvement. # October 2010. # # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it # is to offload message schedule denoted by Wt in NIST specification, # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel, # and in SSE2 context was first explored by Dean Gaudet in 2004, see # http://arctic.org/~dean/crypto/sha1.html. Since then several things # have changed that made it interesting again: # # a) XMM units became faster and wider; # b) instruction set became more versatile; # c) an important observation was made by Max Locktykhin, which made # it possible to reduce amount of instructions required to perform # the operation in question, for further details see # http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/. # April 2011. # # Add AVX code path, probably most controversial... The thing is that # switch to AVX alone improves performance by as little as 4% in # comparison to SSSE3 code path. But below result doesn't look like # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as # pair of µ-ops, and it's the additional µ-ops, two per round, that # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded # as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with # equivalent 'sh[rl]d' that is responsible for the impressive 5.1 # cycles per processed byte. But 'sh[rl]d' is not something that used # to be fast, nor does it appear to be fast in upcoming Bulldozer # [according to its optimization manual]. Which is why AVX code path # is guarded by *both* AVX and synthetic bit denoting Intel CPUs. # One can argue that it's unfair to AMD, but without 'sh[rl]d' it # makes no sense to keep the AVX code path. If somebody feels that # strongly, it's probably more appropriate to discuss possibility of # using vector rotate XOP on AMD... # March 2014. # # Add support for Intel SHA Extensions. ###################################################################### # Current performance is summarized in following table. Numbers are # CPU clock cycles spent to process single byte (less is better). # # x86 SSSE3 AVX # Pentium 15.7 - # PIII 11.5 - # P4 10.6 - # AMD K8 7.1 - # Core2 7.3 6.0/+22% - # Westmere 7.3 5.5/+33% - # Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73% # Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53% # Haswell 6.5 4.3/+51% 4.1(**)/+58% # Skylake 6.4 4.1/+55% 4.1(**)/+55% # Bulldozer 11.6 6.0/+92% # VIA Nano 10.6 7.5/+41% # Atom 12.5 9.3(*)/+35% # Silvermont 14.5 9.9(*)/+46% # Goldmont 8.8 6.7/+30% 1.7(***)/+415% # # (*) Loop is 1056 instructions long and expected result is ~8.25. # The discrepancy is because of front-end limitations, so # called MS-ROM penalties, and on Silvermont even rotate's # limited parallelism. # # (**) As per above comment, the result is for AVX *plus* sh[rl]d. # # (***) SHAEXT result $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $xmm=$ymm=0; for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } $ymm=1 if ($xmm && `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/ && $1>=2.19); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ && $1>=2.03); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" && `ml 2>&1` =~ /Version ([0-9]+)\./ && $1>=10); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([0-9]+\.[0-9]+)/ && $2>=3.0); # first version supporting AVX $shaext=$xmm; ### set to zero if compiling for 1.0.1 &external_label("OPENSSL_ia32cap_P") if ($xmm); $A="eax"; $B="ebx"; $C="ecx"; $D="edx"; $E="edi"; $T="esi"; $tmp1="ebp"; @V=($A,$B,$C,$D,$E,$T); $alt=0; # 1 denotes alternative IALU implementation, which performs # 8% *worse* on P4, same on Westmere and Atom, 2% better on # Sandy Bridge... sub BODY_00_15 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("00_15 $n"); &mov($f,$c); # f to hold F_00_19(b,c,d) if ($n==0) { &mov($tmp1,$a); } else { &mov($a,$tmp1); } &rotl($tmp1,5); # tmp1=ROTATE(a,5) &xor($f,$d); &add($tmp1,$e); # tmp1+=e; &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded # with xi, also note that e becomes # f in next round... &and($f,$b); &rotr($b,2); # b=ROTATE(b,30) &xor($f,$d); # f holds F_00_19(b,c,d) &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round &add($f,$tmp1); } # f+=tmp1 else { &add($tmp1,$f); } # f becomes a in next round &mov($tmp1,$a) if ($alt && $n==15); } sub BODY_16_19 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("16_19 $n"); if ($alt) { &xor($c,$d); &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d &xor($f,&swtmp(($n+8)%16)); &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &add($e,$tmp1); # e+=F_00_19(b,c,d) &xor($c,$d); # restore $c &mov($tmp1,$a); # b in next round &rotr($b,$n==16?2:7); # b=ROTATE(b,30) &mov(&swtmp($n%16),$f); # xi=f &rotl($a,5); # ROTATE(a,5) &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$a); # f+=ROTATE(a,5) } else { &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$d); &xor($f,&swtmp(($n+8)%16)); &and($tmp1,$b); &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) &add($e,$tmp1); # e+=F_00_19(b,c,d) &mov($tmp1,$a); &rotr($b,2); # b=ROTATE(b,30) &mov(&swtmp($n%16),$f); # xi=f &rotl($tmp1,5); # ROTATE(a,5) &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$tmp1); # f+=ROTATE(a,5) } } sub BODY_20_39 { local($n,$a,$b,$c,$d,$e,$f)=@_; local $K=($n<40)?0x6ed9eba1:0xca62c1d6; &comment("20_39 $n"); if ($alt) { &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) &xor($f,&swtmp(($n+8)%16)); &add($e,$tmp1); # e+=F_20_39(b,c,d) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &mov($tmp1,$a); # b in next round &rotr($b,7); # b=ROTATE(b,30) &mov(&swtmp($n%16),$f) if($n<77);# xi=f &rotl($a,5); # ROTATE(a,5) &xor($b,$c) if($n==39);# warm up for BODY_40_59 &and($tmp1,$b) if($n==39); &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round &add($f,$a); # f+=ROTATE(a,5) &rotr($a,5) if ($n==79); } else { &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$c); &xor($f,&swtmp(($n+8)%16)); &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &add($e,$tmp1); # e+=F_20_39(b,c,d) &rotr($b,2); # b=ROTATE(b,30) &mov($tmp1,$a); &rotl($tmp1,5); # ROTATE(a,5) &mov(&swtmp($n%16),$f) if($n<77);# xi=f &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round &add($f,$tmp1); # f+=ROTATE(a,5) } } sub BODY_40_59 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("40_59 $n"); if ($alt) { &add($e,$tmp1); # e+=b&(c^d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &mov($tmp1,$d); &xor($f,&swtmp(($n+8)%16)); &xor($c,$d); # restore $c &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &and($tmp1,$c); &rotr($b,7); # b=ROTATE(b,30) &add($e,$tmp1); # e+=c&d &mov($tmp1,$a); # b in next round &mov(&swtmp($n%16),$f); # xi=f &rotl($a,5); # ROTATE(a,5) &xor($b,$c) if ($n<59); &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d) &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d)) &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$a); # f+=ROTATE(a,5) } else { &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$d); &xor($f,&swtmp(($n+8)%16)); &and($tmp1,$b); &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &add($tmp1,$e); # b&(c^d)+=e &rotr($b,2); # b=ROTATE(b,30) &mov($e,$a); # e becomes volatile &rotl($e,5); # ROTATE(a,5) &mov(&swtmp($n%16),$f); # xi=f &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d)) &mov($tmp1,$c); &add($f,$e); # f+=ROTATE(a,5) &and($tmp1,$d); &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$tmp1); # f+=c&d } } &function_begin("sha1_block_data_order"); if ($xmm) { &static_label("shaext_shortcut") if ($shaext); &static_label("ssse3_shortcut"); &static_label("avx_shortcut") if ($ymm); &static_label("K_XX_XX"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point")); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &mov ($A,&DWP(0,$T)); &mov ($D,&DWP(4,$T)); &test ($D,1<<9); # check SSSE3 bit &jz (&label("x86")); &mov ($C,&DWP(8,$T)); &test ($A,1<<24); # check FXSR bit &jz (&label("x86")); if ($shaext) { &test ($C,1<<29); # check SHA bit &jnz (&label("shaext_shortcut")); } if ($ymm) { &and ($D,1<<28); # mask AVX bit &and ($A,1<<30); # mask "Intel CPU" bit &or ($A,$D); &cmp ($A,1<<28|1<<30); &je (&label("avx_shortcut")); } &jmp (&label("ssse3_shortcut")); &set_label("x86",16); } &mov($tmp1,&wparam(0)); # SHA_CTX *c &mov($T,&wparam(1)); # const void *input &mov($A,&wparam(2)); # size_t num &stack_push(16+3); # allocate X[16] &shl($A,6); &add($A,$T); &mov(&wparam(2),$A); # pointer beyond the end of input &mov($E,&DWP(16,$tmp1));# pre-load E &jmp(&label("loop")); &set_label("loop",16); # copy input chunk to X, but reversing byte order! for ($i=0; $i<16; $i+=4) { &mov($A,&DWP(4*($i+0),$T)); &mov($B,&DWP(4*($i+1),$T)); &mov($C,&DWP(4*($i+2),$T)); &mov($D,&DWP(4*($i+3),$T)); &bswap($A); &bswap($B); &bswap($C); &bswap($D); &mov(&swtmp($i+0),$A); &mov(&swtmp($i+1),$B); &mov(&swtmp($i+2),$C); &mov(&swtmp($i+3),$D); } &mov(&wparam(1),$T); # redundant in 1st spin &mov($A,&DWP(0,$tmp1)); # load SHA_CTX &mov($B,&DWP(4,$tmp1)); &mov($C,&DWP(8,$tmp1)); &mov($D,&DWP(12,$tmp1)); # E is pre-loaded for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check &mov($tmp1,&wparam(0)); # re-load SHA_CTX* &mov($D,&wparam(1)); # D is last "T" and is discarded &add($E,&DWP(0,$tmp1)); # E is last "A"... &add($T,&DWP(4,$tmp1)); &add($A,&DWP(8,$tmp1)); &add($B,&DWP(12,$tmp1)); &add($C,&DWP(16,$tmp1)); &mov(&DWP(0,$tmp1),$E); # update SHA_CTX &add($D,64); # advance input pointer &mov(&DWP(4,$tmp1),$T); &cmp($D,&wparam(2)); # have we reached the end yet? &mov(&DWP(8,$tmp1),$A); &mov($E,$C); # C is last "E" which needs to be "pre-loaded" &mov(&DWP(12,$tmp1),$B); &mov($T,$D); # input pointer &mov(&DWP(16,$tmp1),$C); &jb(&label("loop")); &stack_pop(16+3); &function_end("sha1_block_data_order"); if ($xmm) { if ($shaext) { ###################################################################### # Intel SHA Extensions implementation of SHA1 update function. # my ($ctx,$inp,$num)=("edi","esi","ecx"); my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3)); my @MSG=map("xmm$_",(4..7)); sub sha1rnds4 { my ($dst,$src,$imm)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm); } } sub sha1op38 { my ($opcodelet,$dst,$src)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); } } sub sha1nexte { sha1op38(0xc8,@_); } sub sha1msg1 { sha1op38(0xc9,@_); } sub sha1msg2 { sha1op38(0xca,@_); } &function_begin("_sha1_block_data_order_shaext"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &set_label("shaext_shortcut"); &mov ($ctx,&wparam(0)); &mov ("ebx","esp"); &mov ($inp,&wparam(1)); &mov ($num,&wparam(2)); &sub ("esp",32); &movdqu ($ABCD,&QWP(0,$ctx)); &movd ($E,&DWP(16,$ctx)); &and ("esp",-32); &movdqa ($BSWAP,&QWP(0x50,$tmp1)); # byte-n-word swap &movdqu (@MSG[0],&QWP(0,$inp)); &pshufd ($ABCD,$ABCD,0b00011011); # flip word order &movdqu (@MSG[1],&QWP(0x10,$inp)); &pshufd ($E,$E,0b00011011); # flip word order &movdqu (@MSG[2],&QWP(0x20,$inp)); &pshufb (@MSG[0],$BSWAP); &movdqu (@MSG[3],&QWP(0x30,$inp)); &pshufb (@MSG[1],$BSWAP); &pshufb (@MSG[2],$BSWAP); &pshufb (@MSG[3],$BSWAP); &jmp (&label("loop_shaext")); &set_label("loop_shaext",16); &dec ($num); &lea ("eax",&DWP(0x40,$inp)); &movdqa (&QWP(0,"esp"),$E); # offload $E &paddd ($E,@MSG[0]); &cmovne ($inp,"eax"); &movdqa (&QWP(16,"esp"),$ABCD); # offload $ABCD for($i=0;$i<20-4;$i+=2) { &sha1msg1 (@MSG[0],@MSG[1]); &movdqa ($E_,$ABCD); &sha1rnds4 ($ABCD,$E,int($i/5)); # 0-3... &sha1nexte ($E_,@MSG[1]); &pxor (@MSG[0],@MSG[2]); &sha1msg1 (@MSG[1],@MSG[2]); &sha1msg2 (@MSG[0],@MSG[3]); &movdqa ($E,$ABCD); &sha1rnds4 ($ABCD,$E_,int(($i+1)/5)); &sha1nexte ($E,@MSG[2]); &pxor (@MSG[1],@MSG[3]); &sha1msg2 (@MSG[1],@MSG[0]); push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG)); } &movdqu (@MSG[0],&QWP(0,$inp)); &movdqa ($E_,$ABCD); &sha1rnds4 ($ABCD,$E,3); # 64-67 &sha1nexte ($E_,@MSG[1]); &movdqu (@MSG[1],&QWP(0x10,$inp)); &pshufb (@MSG[0],$BSWAP); &movdqa ($E,$ABCD); &sha1rnds4 ($ABCD,$E_,3); # 68-71 &sha1nexte ($E,@MSG[2]); &movdqu (@MSG[2],&QWP(0x20,$inp)); &pshufb (@MSG[1],$BSWAP); &movdqa ($E_,$ABCD); &sha1rnds4 ($ABCD,$E,3); # 72-75 &sha1nexte ($E_,@MSG[3]); &movdqu (@MSG[3],&QWP(0x30,$inp)); &pshufb (@MSG[2],$BSWAP); &movdqa ($E,$ABCD); &sha1rnds4 ($ABCD,$E_,3); # 76-79 &movdqa ($E_,&QWP(0,"esp")); &pshufb (@MSG[3],$BSWAP); &sha1nexte ($E,$E_); &paddd ($ABCD,&QWP(16,"esp")); &jnz (&label("loop_shaext")); &pshufd ($ABCD,$ABCD,0b00011011); &pshufd ($E,$E,0b00011011); &movdqu (&QWP(0,$ctx),$ABCD) &movd (&DWP(16,$ctx),$E); &mov ("esp","ebx"); &function_end("_sha1_block_data_order_shaext"); } ###################################################################### # The SSSE3 implementation. # # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last # 32 elements of the message schedule or Xupdate outputs. First 4 # quadruples are simply byte-swapped input, next 4 are calculated # according to method originally suggested by Dean Gaudet (modulo # being implemented in SSSE3). Once 8 quadruples or 32 elements are # collected, it switches to routine proposed by Max Locktyukhin. # # Calculations inevitably require temporary registers, and there are # no %xmm registers left to spare. For this reason part of the ring # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] - # X[-5], and X[4] - X[-4]... # # Another notable optimization is aggressive stack frame compression # aiming to minimize amount of 9-byte instructions... # # Yet another notable optimization is "jumping" $B variable. It means # that there is no register permanently allocated for $B value. This # allowed to eliminate one instruction from body_20_39... # my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 my @V=($A,$B,$C,$D,$E); my $j=0; # hash round my $rx=0; my @T=($T,$tmp1); my $inp; my $_rol=sub { &rol(@_) }; my $_ror=sub { &ror(@_) }; &function_begin("_sha1_block_data_order_ssse3"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &set_label("ssse3_shortcut"); &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask &mov ($E,&wparam(0)); # load argument block &mov ($inp=@T[1],&wparam(1)); &mov ($D,&wparam(2)); &mov (@T[0],"esp"); # stack frame layout # # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area # X[4]+K X[5]+K X[6]+K X[7]+K # X[8]+K X[9]+K X[10]+K X[11]+K # X[12]+K X[13]+K X[14]+K X[15]+K # # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area # X[4] X[5] X[6] X[7] # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 # # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants # K_40_59 K_40_59 K_40_59 K_40_59 # K_60_79 K_60_79 K_60_79 K_60_79 # K_00_19 K_00_19 K_00_19 K_00_19 # pbswap mask # # +192 ctx # argument block # +196 inp # +200 end # +204 esp &sub ("esp",208); &and ("esp",-64); &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants &movdqa (&QWP(112+16,"esp"),@X[5]); &movdqa (&QWP(112+32,"esp"),@X[6]); &shl ($D,6); # len*64 &movdqa (&QWP(112+48,"esp"),@X[3]); &add ($D,$inp); # end of input &movdqa (&QWP(112+64,"esp"),@X[2]); &add ($inp,64); &mov (&DWP(192+0,"esp"),$E); # save argument block &mov (&DWP(192+4,"esp"),$inp); &mov (&DWP(192+8,"esp"),$D); &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp &mov ($A,&DWP(0,$E)); # load context &mov ($B,&DWP(4,$E)); &mov ($C,&DWP(8,$E)); &mov ($D,&DWP(12,$E)); &mov ($E,&DWP(16,$E)); &mov (@T[0],$B); # magic seed &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] &movdqu (@X[-3&7],&QWP(-48,$inp)); &movdqu (@X[-2&7],&QWP(-32,$inp)); &movdqu (@X[-1&7],&QWP(-16,$inp)); &pshufb (@X[-4&7],@X[2]); # byte swap &pshufb (@X[-3&7],@X[2]); &pshufb (@X[-2&7],@X[2]); &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot &pshufb (@X[-1&7],@X[2]); &paddd (@X[-4&7],@X[3]); # add K_00_19 &paddd (@X[-3&7],@X[3]); &paddd (@X[-2&7],@X[3]); &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU &psubd (@X[-4&7],@X[3]); # restore X[] &movdqa (&QWP(0+16,"esp"),@X[-3&7]); &psubd (@X[-3&7],@X[3]); &movdqa (&QWP(0+32,"esp"),@X[-2&7]); &mov (@T[1],$C); &psubd (@X[-2&7],@X[3]); &xor (@T[1],$D); &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); &and (@T[0],@T[1]); &jmp (&label("loop")); ###################################################################### # SSE instruction sequence is first broken to groups of independent # instructions, independent in respect to their inputs and shifter # (not all architectures have more than one). Then IALU instructions # are "knitted in" between the SSE groups. Distance is maintained for # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer # [which allegedly also implements SSSE3]... # # Temporary registers usage. X[2] is volatile at the entry and at the # end is restored from backtrace ring buffer. X[3] is expected to # contain current K_XX_XX constant and is used to calculate X[-1]+K # from previous round, it becomes volatile the moment the value is # saved to stack for transfer to IALU. X[4] becomes volatile whenever # X[-4] is accumulated and offloaded to backtrace ring buffer, at the # end it is loaded with next K_XX_XX [which becomes X[3] in next # round]... # sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)); &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8); &movdqa (@X[2],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[3],@X[-1&7]); &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer eval(shift(@insns)); # rol eval(shift(@insns)); &psrldq (@X[2],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); # ror &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &movdqa (@X[4],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &movdqa (@X[2],@X[0]); eval(shift(@insns)); &pslldq (@X[4],12); # "X[0]"<<96, extract one dword &paddd (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@X[2],31); eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (@X[3],@X[4]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psrld (@X[4],30); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@X[2]); # "X[0]"<<<=1 eval(shift(@insns)); &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); &pslld (@X[3],2); eval(shift(@insns)); eval(shift(@insns)); # rol &pxor (@X[0],@X[4]); &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2 &pshufd (@X[1],@X[-3&7],0xee) if ($Xi<7); # was &movdqa (@X[1],@X[-2&7]) &pshufd (@X[3],@X[-1&7],0xee) if ($Xi==7); eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_ssse3_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); # body_20_39 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" &punpcklqdq(@X[2],@X[-1&7]); # compose "X[-6]", was &palignr(@X[2],@X[-2&7],8) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)) if (@insns[0] =~ /_rol/); if ($Xi%5) { &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... } else { # ... or load next one &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); } eval(shift(@insns)); # ror &paddd (@X[3],@X[-1&7]); eval(shift(@insns)); &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (@X[2],@X[0]); &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)) if (@insns[0] =~ /_rol/); &pslld (@X[0],2); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); &psrld (@X[2],30); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)) if (@insns[1] =~ /_rol/); eval(shift(@insns)) if (@insns[0] =~ /_rol/); &por (@X[0],@X[2]); # "X[0]"<<<=2 eval(shift(@insns)); # body_20_39 eval(shift(@insns)); &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &pshufd (@X[3],@X[-1],0xee) if ($Xi<19); # was &movdqa (@X[3],@X[0]) eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_ssse3_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[3],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &mov ($inp=@T[1],&DWP(192+4,"esp")); &cmp ($inp,&DWP(192+8,"esp")); &je (&label("done")); &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask &movdqu (@X[-4&7],&QWP(0,$inp)); # load input &movdqu (@X[-3&7],&QWP(16,$inp)); &movdqu (@X[-2&7],&QWP(32,$inp)); &movdqu (@X[-1&7],&QWP(48,$inp)); &add ($inp,64); &pshufb (@X[-4&7],@X[2]); # byte swap &mov (&DWP(192+4,"esp"),$inp); &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot $Xi=0; } sub Xloop_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pshufb (@X[($Xi-3)&7],@X[2]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[($Xi-4)&7],@X[3]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psubd (@X[($Xi-4)&7],@X[3]); foreach (@insns) { eval; } $Xi++; } sub Xtail_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } sub body_00_19 () { # ((c^d)&b)^d # on start @T[0]=(c^d)&b return &body_20_39() if ($rx==19); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&$_ror ($b,$j?7:2);', # $b>>>2 '&xor (@T[0],$d);', '&mov (@T[1],$a);', # $b in next round '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer '&xor ($b,$c);', # $c^$d for next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&and (@T[1],$b);', # ($b&($c^$d)) for next round '&xor ($b,$c);', # restore $b '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub body_20_39 () { # b^d^c # on entry @T[0]=b^d return &body_40_59() if ($rx==39); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer '&xor (@T[0],$d) if($j==19);'. '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c) '&mov (@T[1],$a);', # $b in next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round '&$_ror ($b,7);', # $b>>>2 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub body_40_59 () { # ((b^c)&(c^d))^c # on entry @T[0]=(b^c), (c^=d) $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d) '&xor ($c,$d) if ($j>=40);', # restore $c '&$_ror ($b,7);', # $b>>>2 '&mov (@T[1],$a);', # $b for next round '&xor (@T[0],$c);', '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j==59);'. '&xor (@T[1],$b) if ($j< 59);', # b^c for next round '&xor ($b,$c) if ($j< 59);', # c^d for next round '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } ###### sub bodyx_00_19 () { # ((c^d)&b)^d # on start @T[0]=(b&c)^(~b&d), $e+=X[]+K return &bodyx_20_39() if ($rx==19); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&rorx ($b,$b,2) if ($j==0);'. # $b>>>2 '&rorx ($b,@T[1],7) if ($j!=0);', # $b>>>2 '&lea ($e,&DWP(0,$e,@T[0]));', '&rorx (@T[0],$a,5);', '&andn (@T[1],$a,$c);', '&and ($a,$b)', '&add ($d,&DWP(4*(($j+1)&15),"esp"));', # X[]+K xfer '&xor (@T[1],$a)', '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub bodyx_20_39 () { # b^d^c # on start $b=b^c^d return &bodyx_40_59() if ($rx==39); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,($j==19?@T[0]:$b))', '&rorx ($b,@T[1],7);', # $b>>>2 '&rorx (@T[0],$a,5);', '&xor ($a,$b) if ($j<79);', '&add ($d,&DWP(4*(($j+1)&15),"esp")) if ($j<79);', # X[]+K xfer '&xor ($a,$c) if ($j<79);', '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub bodyx_40_59 () { # ((b^c)&(c^d))^c # on start $b=((b^c)&(c^d))^c return &bodyx_20_39() if ($rx==59); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&rorx (@T[0],$a,5)', '&lea ($e,&DWP(0,$e,$b))', '&rorx ($b,@T[1],7)', # $b>>>2 '&add ($d,&DWP(4*(($j+1)&15),"esp"))', # X[]+K xfer '&mov (@T[1],$c)', '&xor ($a,$b)', # b^c for next round '&xor (@T[1],$b)', # c^d for next round '&and ($a,@T[1])', '&add ($e,@T[0])', '&xor ($a,$b)' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } &set_label("loop",16); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_32_79(\&body_00_19); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_20_39); &Xuplast_ssse3_80(\&body_20_39); # can jump to "done" $saved_j=$j; @saved_V=@V; &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov (&DWP(8,@T[1]),$C); &mov ($B,$C); &mov (&DWP(12,@T[1]),$D); &xor ($B,$D); &mov (&DWP(16,@T[1]),$E); &mov (@T[1],@T[0]); &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); &and (@T[0],$B); &mov ($B,$T[1]); &jmp (&label("loop")); &set_label("done",16); $j=$saved_j; @V=@saved_V; &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &mov ("esp",&DWP(192+12,"esp")); # restore %esp &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov (&DWP(8,@T[1]),$C); &mov (&DWP(12,@T[1]),$D); &mov (&DWP(16,@T[1]),$E); &function_end("_sha1_block_data_order_ssse3"); $rx=0; # reset if ($ymm) { my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 my @V=($A,$B,$C,$D,$E); my $j=0; # hash round my @T=($T,$tmp1); my $inp; my $_rol=sub { &shld(@_[0],@_) }; my $_ror=sub { &shrd(@_[0],@_) }; &function_begin("_sha1_block_data_order_avx"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &set_label("avx_shortcut"); &vzeroall(); &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask &mov ($E,&wparam(0)); # load argument block &mov ($inp=@T[1],&wparam(1)); &mov ($D,&wparam(2)); &mov (@T[0],"esp"); # stack frame layout # # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area # X[4]+K X[5]+K X[6]+K X[7]+K # X[8]+K X[9]+K X[10]+K X[11]+K # X[12]+K X[13]+K X[14]+K X[15]+K # # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area # X[4] X[5] X[6] X[7] # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 # # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants # K_40_59 K_40_59 K_40_59 K_40_59 # K_60_79 K_60_79 K_60_79 K_60_79 # K_00_19 K_00_19 K_00_19 K_00_19 # pbswap mask # # +192 ctx # argument block # +196 inp # +200 end # +204 esp &sub ("esp",208); &and ("esp",-64); &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants &vmovdqa(&QWP(112+16,"esp"),@X[5]); &vmovdqa(&QWP(112+32,"esp"),@X[6]); &shl ($D,6); # len*64 &vmovdqa(&QWP(112+48,"esp"),@X[3]); &add ($D,$inp); # end of input &vmovdqa(&QWP(112+64,"esp"),@X[2]); &add ($inp,64); &mov (&DWP(192+0,"esp"),$E); # save argument block &mov (&DWP(192+4,"esp"),$inp); &mov (&DWP(192+8,"esp"),$D); &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp &mov ($A,&DWP(0,$E)); # load context &mov ($B,&DWP(4,$E)); &mov ($C,&DWP(8,$E)); &mov ($D,&DWP(12,$E)); &mov ($E,&DWP(16,$E)); &mov (@T[0],$B); # magic seed &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] &vmovdqu(@X[-3&7],&QWP(-48,$inp)); &vmovdqu(@X[-2&7],&QWP(-32,$inp)); &vmovdqu(@X[-1&7],&QWP(-16,$inp)); &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap &vpshufb(@X[-3&7],@X[-3&7],@X[2]); &vpshufb(@X[-2&7],@X[-2&7],@X[2]); &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot &vpshufb(@X[-1&7],@X[-1&7],@X[2]); &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19 &vpaddd (@X[1],@X[-3&7],@X[3]); &vpaddd (@X[2],@X[-2&7],@X[3]); &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU &mov (@T[1],$C); &vmovdqa(&QWP(0+16,"esp"),@X[1]); &xor (@T[1],$D); &vmovdqa(&QWP(0+32,"esp"),@X[2]); &and (@T[0],@T[1]); &jmp (&label("loop")); sub Xupdate_avx_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[3],@X[3],@X[-1&7]); &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer eval(shift(@insns)); eval(shift(@insns)); &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@X[2],@X[0],31); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword &vpaddd (@X[0],@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@X[3],@X[4],30); &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslld (@X[4],@X[4],2); &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[3]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2 eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_avx_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]" &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer eval(shift(@insns)); eval(shift(@insns)); if ($Xi%5) { &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... } else { # ... or load next one &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); } &vpaddd (@X[3],@X[3],@X[-1&7]); eval(shift(@insns)); # ror eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpsrld (@X[2],@X[0],30); &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpslld (@X[0],@X[0],2); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2 eval(shift(@insns)); # body_20_39 eval(shift(@insns)); &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_avx_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); &vpaddd (@X[3],@X[3],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &mov ($inp=@T[1],&DWP(192+4,"esp")); &cmp ($inp,&DWP(192+8,"esp")); &je (&label("done")); &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input &vmovdqu(@X[-3&7],&QWP(16,$inp)); &vmovdqu(@X[-2&7],&QWP(32,$inp)); &vmovdqu(@X[-1&7],&QWP(48,$inp)); &add ($inp,64); &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap &mov (&DWP(192+4,"esp"),$inp); &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot $Xi=0; } sub Xloop_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } $Xi++; } sub Xtail_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } &set_label("loop",16); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_32_79(\&body_00_19); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_20_39); &Xuplast_avx_80(\&body_20_39); # can jump to "done" $saved_j=$j; @saved_V=@V; &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov ($B,$C); &mov (&DWP(8,@T[1]),$C); &xor ($B,$D); &mov (&DWP(12,@T[1]),$D); &mov (&DWP(16,@T[1]),$E); &mov (@T[1],@T[0]); &and (@T[0],$B); &mov ($B,@T[1]); &jmp (&label("loop")); &set_label("done",16); $j=$saved_j; @V=@saved_V; &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); &vzeroall(); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &mov ("esp",&DWP(192+12,"esp")); # restore %esp &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov (&DWP(8,@T[1]),$C); &mov (&DWP(12,@T[1]),$D); &mov (&DWP(16,@T[1]),$E); &function_end("_sha1_block_data_order_avx"); } &set_label("K_XX_XX",64); &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask &data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0); } &asciz("SHA1 block transform for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-alpha.pl000066400000000000000000000142451364063235100205030ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA1 block procedure for Alpha. # On 21264 performance is 33% better than code generated by vendor # compiler, and 75% better than GCC [3.4], and in absolute terms is # 8.7 cycles per processed byte. Implementation features vectorized # byte swap, but not Xupdate. @X=( "\$0", "\$1", "\$2", "\$3", "\$4", "\$5", "\$6", "\$7", "\$8", "\$9", "\$10", "\$11", "\$12", "\$13", "\$14", "\$15"); $ctx="a0"; # $16 $inp="a1"; $num="a2"; $A="a3"; $B="a4"; # 20 $C="a5"; $D="t8"; $E="t9"; @V=($A,$B,$C,$D,$E); $t0="t10"; # 24 $t1="t11"; $t2="ra"; $t3="t12"; $K="AT"; # 28 sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i==0); ldq_u @X[0],0+0($inp) ldq_u @X[1],0+7($inp) ___ $code.=<<___ if (!($i&1) && $i<14); ldq_u @X[$i+2],($i+2)*4+0($inp) ldq_u @X[$i+3],($i+2)*4+7($inp) ___ $code.=<<___ if (!($i&1) && $i<15); extql @X[$i],$inp,@X[$i] extqh @X[$i+1],$inp,@X[$i+1] or @X[$i+1],@X[$i],@X[$i] # pair of 32-bit values are fetched srl @X[$i],24,$t0 # vectorized byte swap srl @X[$i],8,$t2 sll @X[$i],8,$t3 sll @X[$i],24,@X[$i] zapnot $t0,0x11,$t0 zapnot $t2,0x22,$t2 zapnot @X[$i],0x88,@X[$i] or $t0,$t2,$t0 zapnot $t3,0x44,$t3 sll $a,5,$t1 or @X[$i],$t0,@X[$i] addl $K,$e,$e and $b,$c,$t2 zapnot $a,0xf,$a or @X[$i],$t3,@X[$i] srl $a,27,$t0 bic $d,$b,$t3 sll $b,30,$b extll @X[$i],4,@X[$i+1] # extract upper half or $t2,$t3,$t2 addl @X[$i],$e,$e addl $t1,$e,$e srl $b,32,$t3 zapnot @X[$i],0xf,@X[$i] addl $t0,$e,$e addl $t2,$e,$e or $t3,$b,$b ___ $code.=<<___ if (($i&1) && $i<15); sll $a,5,$t1 addl $K,$e,$e and $b,$c,$t2 zapnot $a,0xf,$a srl $a,27,$t0 addl @X[$i%16],$e,$e bic $d,$b,$t3 sll $b,30,$b or $t2,$t3,$t2 addl $t1,$e,$e srl $b,32,$t3 zapnot @X[$i],0xf,@X[$i] addl $t0,$e,$e addl $t2,$e,$e or $t3,$b,$b ___ $code.=<<___ if ($i>=15); # with forward Xupdate sll $a,5,$t1 addl $K,$e,$e and $b,$c,$t2 xor @X[($j+2)%16],@X[$j%16],@X[$j%16] zapnot $a,0xf,$a addl @X[$i%16],$e,$e bic $d,$b,$t3 xor @X[($j+8)%16],@X[$j%16],@X[$j%16] srl $a,27,$t0 addl $t1,$e,$e or $t2,$t3,$t2 xor @X[($j+13)%16],@X[$j%16],@X[$j%16] sll $b,30,$b addl $t0,$e,$e srl @X[$j%16],31,$t1 addl $t2,$e,$e srl $b,32,$t3 addl @X[$j%16],@X[$j%16],@X[$j%16] or $t3,$b,$b zapnot @X[$i%16],0xf,@X[$i%16] or $t1,@X[$j%16],@X[$j%16] ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); # with forward Xupdate sll $a,5,$t1 addl $K,$e,$e zapnot $a,0xf,$a xor @X[($j+2)%16],@X[$j%16],@X[$j%16] sll $b,30,$t3 addl $t1,$e,$e xor $b,$c,$t2 xor @X[($j+8)%16],@X[$j%16],@X[$j%16] srl $b,2,$b addl @X[$i%16],$e,$e xor $d,$t2,$t2 xor @X[($j+13)%16],@X[$j%16],@X[$j%16] srl @X[$j%16],31,$t1 addl $t2,$e,$e srl $a,27,$t0 addl @X[$j%16],@X[$j%16],@X[$j%16] or $t3,$b,$b addl $t0,$e,$e or $t1,@X[$j%16],@X[$j%16] ___ $code.=<<___ if ($i<77); zapnot @X[$i%16],0xf,@X[$i%16] ___ $code.=<<___ if ($i==79); # with context fetch sll $a,5,$t1 addl $K,$e,$e zapnot $a,0xf,$a ldl @X[0],0($ctx) sll $b,30,$t3 addl $t1,$e,$e xor $b,$c,$t2 ldl @X[1],4($ctx) srl $b,2,$b addl @X[$i%16],$e,$e xor $d,$t2,$t2 ldl @X[2],8($ctx) srl $a,27,$t0 addl $t2,$e,$e ldl @X[3],12($ctx) or $t3,$b,$b addl $t0,$e,$e ldl @X[4],16($ctx) ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___; # with forward Xupdate sll $a,5,$t1 addl $K,$e,$e zapnot $a,0xf,$a xor @X[($j+2)%16],@X[$j%16],@X[$j%16] srl $a,27,$t0 and $b,$c,$t2 and $b,$d,$t3 xor @X[($j+8)%16],@X[$j%16],@X[$j%16] sll $b,30,$b addl $t1,$e,$e xor @X[($j+13)%16],@X[$j%16],@X[$j%16] srl @X[$j%16],31,$t1 addl $t0,$e,$e or $t2,$t3,$t2 and $c,$d,$t3 or $t2,$t3,$t2 srl $b,32,$t3 addl @X[$i%16],$e,$e addl @X[$j%16],@X[$j%16],@X[$j%16] or $t3,$b,$b addl $t2,$e,$e or $t1,@X[$j%16],@X[$j%16] zapnot @X[$i%16],0xf,@X[$i%16] ___ } $code=<<___; #ifdef __linux__ #include #else #include #include #endif .text .set noat .set noreorder .globl sha1_block_data_order .align 5 .ent sha1_block_data_order sha1_block_data_order: lda sp,-64(sp) stq ra,0(sp) stq s0,8(sp) stq s1,16(sp) stq s2,24(sp) stq s3,32(sp) stq s4,40(sp) stq s5,48(sp) stq fp,56(sp) .mask 0x0400fe00,-64 .frame sp,64,ra .prologue 0 ldl $A,0($ctx) ldl $B,4($ctx) sll $num,6,$num ldl $C,8($ctx) ldl $D,12($ctx) ldl $E,16($ctx) addq $inp,$num,$num .Lloop: .set noreorder ldah $K,23170(zero) zapnot $B,0xf,$B lda $K,31129($K) # K_00_19 ___ for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } $code.=<<___; ldah $K,28378(zero) lda $K,-5215($K) # K_20_39 ___ for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; ldah $K,-28900(zero) lda $K,-17188($K) # K_40_59 ___ for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } $code.=<<___; ldah $K,-13725(zero) lda $K,-15914($K) # K_60_79 ___ for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; addl @X[0],$A,$A addl @X[1],$B,$B addl @X[2],$C,$C addl @X[3],$D,$D addl @X[4],$E,$E stl $A,0($ctx) stl $B,4($ctx) addq $inp,64,$inp stl $C,8($ctx) stl $D,12($ctx) stl $E,16($ctx) cmpult $inp,$num,$t1 bne $t1,.Lloop .set noreorder ldq ra,0(sp) ldq s0,8(sp) ldq s1,16(sp) ldq s2,24(sp) ldq s3,32(sp) ldq s4,40(sp) ldq s5,48(sp) ldq fp,56(sp) lda sp,64(sp) ret (ra) .end sha1_block_data_order .ascii "SHA1 block transform for Alpha, CRYPTOGAMS by " .align 2 ___ $output=pop and open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-armv4-large.pl000066400000000000000000000452731364063235100215440ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # sha1_block procedure for ARMv4. # # January 2007. # Size/performance trade-off # ==================================================================== # impl size in bytes comp cycles[*] measured performance # ==================================================================== # thumb 304 3212 4420 # armv4-small 392/+29% 1958/+64% 2250/+96% # armv4-compact 740/+89% 1552/+26% 1840/+22% # armv4-large 1420/+92% 1307/+19% 1370/+34%[***] # full unroll ~5100/+260% ~1260/+4% ~1300/+5% # ==================================================================== # thumb = same as 'small' but in Thumb instructions[**] and # with recurring code in two private functions; # small = detached Xload/update, loops are folded; # compact = detached Xload/update, 5x unroll; # large = interleaved Xload/update, 5x unroll; # full unroll = interleaved Xload/update, full unroll, estimated[!]; # # [*] Manually counted instructions in "grand" loop body. Measured # performance is affected by prologue and epilogue overhead, # i-cache availability, branch penalties, etc. # [**] While each Thumb instruction is twice smaller, they are not as # diverse as ARM ones: e.g., there are only two arithmetic # instructions with 3 arguments, no [fixed] rotate, addressing # modes are limited. As result it takes more instructions to do # the same job in Thumb, therefore the code is never twice as # small and always slower. # [***] which is also ~35% better than compiler generated code. Dual- # issue Cortex A8 core was measured to process input block in # ~990 cycles. # August 2010. # # Rescheduling for dual-issue pipeline resulted in 13% improvement on # Cortex A8 core and in absolute terms ~870 cycles per input block # [or 13.6 cycles per byte]. # February 2011. # # Profiler-assisted and platform-specific optimization resulted in 10% # improvement on Cortex A8 core and 12.2 cycles per byte. # September 2013. # # Add NEON implementation (see sha1-586.pl for background info). On # Cortex A8 it was measured to process one byte in 6.7 cycles or >80% # faster than integer-only code. Because [fully unrolled] NEON code # is ~2.5x larger and there are some redundant instructions executed # when processing last block, improvement is not as big for smallest # blocks, only ~30%. Snapdragon S4 is a tad faster, 6.4 cycles per # byte, which is also >80% faster than integer-only code. Cortex-A15 # is even faster spending 5.6 cycles per byte outperforming integer- # only code by factor of 2. # May 2014. # # Add ARMv8 code path performing at 2.35 cpb on Apple A7. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $ctx="r0"; $inp="r1"; $len="r2"; $a="r3"; $b="r4"; $c="r5"; $d="r6"; $e="r7"; $K="r8"; $t0="r9"; $t1="r10"; $t2="r11"; $t3="r12"; $Xi="r14"; @V=($a,$b,$c,$d,$e); sub Xupdate { my ($a,$b,$c,$d,$e,$opt1,$opt2)=@_; $code.=<<___; ldr $t0,[$Xi,#15*4] ldr $t1,[$Xi,#13*4] ldr $t2,[$Xi,#7*4] add $e,$K,$e,ror#2 @ E+=K_xx_xx ldr $t3,[$Xi,#2*4] eor $t0,$t0,$t1 eor $t2,$t2,$t3 @ 1 cycle stall eor $t1,$c,$d @ F_xx_xx mov $t0,$t0,ror#31 add $e,$e,$a,ror#27 @ E+=ROR(A,27) eor $t0,$t0,$t2,ror#31 str $t0,[$Xi,#-4]! $opt1 @ F_xx_xx $opt2 @ F_xx_xx add $e,$e,$t0 @ E+=X[i] ___ } sub BODY_00_15 { my ($a,$b,$c,$d,$e)=@_; $code.=<<___; #if __ARM_ARCH__<7 ldrb $t1,[$inp,#2] ldrb $t0,[$inp,#3] ldrb $t2,[$inp,#1] add $e,$K,$e,ror#2 @ E+=K_00_19 ldrb $t3,[$inp],#4 orr $t0,$t0,$t1,lsl#8 eor $t1,$c,$d @ F_xx_xx orr $t0,$t0,$t2,lsl#16 add $e,$e,$a,ror#27 @ E+=ROR(A,27) orr $t0,$t0,$t3,lsl#24 #else ldr $t0,[$inp],#4 @ handles unaligned add $e,$K,$e,ror#2 @ E+=K_00_19 eor $t1,$c,$d @ F_xx_xx add $e,$e,$a,ror#27 @ E+=ROR(A,27) #ifdef __ARMEL__ rev $t0,$t0 @ byte swap #endif #endif and $t1,$b,$t1,ror#2 add $e,$e,$t0 @ E+=X[i] eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) str $t0,[$Xi,#-4]! add $e,$e,$t1 @ E+=F_00_19(B,C,D) ___ } sub BODY_16_19 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_,"and $t1,$b,$t1,ror#2"); $code.=<<___; eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) add $e,$e,$t1 @ E+=F_00_19(B,C,D) ___ } sub BODY_20_39 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_,"eor $t1,$b,$t1,ror#2"); $code.=<<___; add $e,$e,$t1 @ E+=F_20_39(B,C,D) ___ } sub BODY_40_59 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_,"and $t1,$b,$t1,ror#2","and $t2,$c,$d"); $code.=<<___; add $e,$e,$t1 @ E+=F_40_59(B,C,D) add $e,$e,$t2,ror#2 ___ } $code=<<___; #include "arm_arch.h" .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif .global sha1_block_data_order .type sha1_block_data_order,%function .align 5 sha1_block_data_order: #if __ARM_MAX_ARCH__>=7 .Lsha1_block: adr r3,.Lsha1_block ldr r12,.LOPENSSL_armcap ldr r12,[r3,r12] @ OPENSSL_armcap_P #ifdef __APPLE__ ldr r12,[r12] #endif tst r12,#ARMV8_SHA1 bne .LARMv8 tst r12,#ARMV7_NEON bne .LNEON #endif stmdb sp!,{r4-r12,lr} add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp ldmia $ctx,{$a,$b,$c,$d,$e} .Lloop: ldr $K,.LK_00_19 mov $Xi,sp sub sp,sp,#15*4 mov $c,$c,ror#30 mov $d,$d,ror#30 mov $e,$e,ror#30 @ [6] .L_00_15: ___ for($i=0;$i<5;$i++) { &BODY_00_15(@V); unshift(@V,pop(@V)); } $code.=<<___; #if defined(__thumb2__) mov $t3,sp teq $Xi,$t3 #else teq $Xi,sp #endif bne .L_00_15 @ [((11+4)*5+2)*3] sub sp,sp,#25*4 ___ &BODY_00_15(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); $code.=<<___; ldr $K,.LK_20_39 @ [+15+16*4] cmn sp,#0 @ [+3], clear carry to denote 20_39 .L_20_39_or_60_79: ___ for($i=0;$i<5;$i++) { &BODY_20_39(@V); unshift(@V,pop(@V)); } $code.=<<___; #if defined(__thumb2__) mov $t3,sp teq $Xi,$t3 #else teq $Xi,sp @ preserve carry #endif bne .L_20_39_or_60_79 @ [+((12+3)*5+2)*4] bcs .L_done @ [+((12+3)*5+2)*4], spare 300 bytes ldr $K,.LK_40_59 sub sp,sp,#20*4 @ [+2] .L_40_59: ___ for($i=0;$i<5;$i++) { &BODY_40_59(@V); unshift(@V,pop(@V)); } $code.=<<___; #if defined(__thumb2__) mov $t3,sp teq $Xi,$t3 #else teq $Xi,sp #endif bne .L_40_59 @ [+((12+5)*5+2)*4] ldr $K,.LK_60_79 sub sp,sp,#20*4 cmp sp,#0 @ set carry to denote 60_79 b .L_20_39_or_60_79 @ [+4], spare 300 bytes .L_done: add sp,sp,#80*4 @ "deallocate" stack frame ldmia $ctx,{$K,$t0,$t1,$t2,$t3} add $a,$K,$a add $b,$t0,$b add $c,$t1,$c,ror#2 add $d,$t2,$d,ror#2 add $e,$t3,$e,ror#2 stmia $ctx,{$a,$b,$c,$d,$e} teq $inp,$len bne .Lloop @ [+18], total 1307 #if __ARM_ARCH__>=5 ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size sha1_block_data_order,.-sha1_block_data_order .align 5 .LK_00_19: .word 0x5a827999 .LK_20_39: .word 0x6ed9eba1 .LK_40_59: .word 0x8f1bbcdc .LK_60_79: .word 0xca62c1d6 #if __ARM_MAX_ARCH__>=7 .LOPENSSL_armcap: .word OPENSSL_armcap_P-.Lsha1_block #endif .asciz "SHA1 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by " .align 5 ___ ##################################################################### # NEON stuff # {{{ my @V=($a,$b,$c,$d,$e); my ($K_XX_XX,$Ki,$t0,$t1,$Xfer,$saved_sp)=map("r$_",(8..12,14)); my $Xi=4; my @X=map("q$_",(8..11,0..3)); my @Tx=("q12","q13"); my ($K,$zero)=("q14","q15"); my $j=0; sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } sub body_00_19 () { ( '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. '&bic ($t0,$d,$b)', '&add ($e,$e,$Ki)', # e+=X[i]+K '&and ($t1,$c,$b)', '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))', '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) '&eor ($t1,$t1,$t0)', # F_00_19 '&mov ($b,$b,"ror#2")', # b=ROR(b,2) '&add ($e,$e,$t1);'. # e+=F_00_19 '$j++; unshift(@V,pop(@V));' ) } sub body_20_39 () { ( '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. '&eor ($t0,$b,$d)', '&add ($e,$e,$Ki)', # e+=X[i]+K '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15)) if ($j<79)', '&eor ($t1,$t0,$c)', # F_20_39 '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) '&mov ($b,$b,"ror#2")', # b=ROR(b,2) '&add ($e,$e,$t1);'. # e+=F_20_39 '$j++; unshift(@V,pop(@V));' ) } sub body_40_59 () { ( '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. '&add ($e,$e,$Ki)', # e+=X[i]+K '&and ($t0,$c,$d)', '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))', '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) '&eor ($t1,$c,$d)', '&add ($e,$e,$t0)', '&and ($t1,$t1,$b)', '&mov ($b,$b,"ror#2")', # b=ROR(b,2) '&add ($e,$e,$t1);'. # e+=F_40_59 '$j++; unshift(@V,pop(@V));' ) } sub Xupdate_16_31 () { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vext_8 (@X[0],@X[-4&7],@X[-3&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@Tx[1],@X[-1&7],$K); eval(shift(@insns)); &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0); eval(shift(@insns)); &vext_8 (@Tx[0],@X[-1&7],$zero,4); # "X[-3]", 3 words eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); &veor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &veor (@Tx[0],@Tx[0],@X[0]); # "X[0]"^="X[-3]"^"X[-8] eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer &sub ($Xfer,$Xfer,64) if ($Xi%4==0); eval(shift(@insns)); eval(shift(@insns)); &vext_8 (@Tx[1],$zero,@Tx[0],4); # "X[0]"<<96, extract one dword eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[0],@Tx[0],@Tx[0]); eval(shift(@insns)); eval(shift(@insns)); &vsri_32 (@X[0],@Tx[0],31); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 (@Tx[0],@Tx[1],30); eval(shift(@insns)); eval(shift(@insns)); &vshl_u32 (@Tx[1],@Tx[1],2); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@Tx[0]); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_32_79 () { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vext_8 (@Tx[0],@X[-2&7],@X[-1&7],8); # compose "X[-6]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@Tx[1],@X[-1&7],$K); eval(shift(@insns)); &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0); eval(shift(@insns)); &veor (@Tx[0],@Tx[0],@X[0]); # "X[-6]"^="X[0]" eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 (@X[0],@Tx[0],30); eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer &sub ($Xfer,$Xfer,64) if ($Xi%4==0); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 (@X[0],@Tx[0],2); # "X[0]"="X[-6]"<<<2 foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_80 () { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vadd_i32 (@Tx[1],@X[-1&7],$K); eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); &sub ($Xfer,$Xfer,64); &teq ($inp,$len); &sub ($K_XX_XX,$K_XX_XX,16); # rewind $K_XX_XX &it ("eq"); &subeq ($inp,$inp,64); # reload last block to avoid SEGV &vld1_8 ("{@X[-4&7]-@X[-3&7]}","[$inp]!"); eval(shift(@insns)); eval(shift(@insns)); &vld1_8 ("{@X[-2&7]-@X[-1&7]}","[$inp]!"); eval(shift(@insns)); eval(shift(@insns)); &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!"); # load K_00_19 eval(shift(@insns)); eval(shift(@insns)); &vrev32_8 (@X[-4&7],@X[-4&7]); foreach (@insns) { eval; } # remaining instructions $Xi=0; } sub Xloop() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vrev32_8 (@X[($Xi-3)&7],@X[($Xi-3)&7]); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[$Xi&7],@X[($Xi-4)&7],$K); eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@X[$Xi&7]}","[$Xfer,:128]!");# X[]+K xfer to IALU foreach (@insns) { eval; } $Xi++; } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .type sha1_block_data_order_neon,%function .align 4 sha1_block_data_order_neon: .LNEON: stmdb sp!,{r4-r12,lr} add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp @ dmb @ errata #451034 on early Cortex A8 @ vstmdb sp!,{d8-d15} @ ABI specification says so mov $saved_sp,sp sub $Xfer,sp,#64 adr $K_XX_XX,.LK_00_19 bic $Xfer,$Xfer,#15 @ align for 128-bit stores ldmia $ctx,{$a,$b,$c,$d,$e} @ load context mov sp,$Xfer @ alloca vld1.8 {@X[-4&7]-@X[-3&7]},[$inp]! @ handles unaligned veor $zero,$zero,$zero vld1.8 {@X[-2&7]-@X[-1&7]},[$inp]! vld1.32 {${K}\[]},[$K_XX_XX,:32]! @ load K_00_19 vrev32.8 @X[-4&7],@X[-4&7] @ yes, even on vrev32.8 @X[-3&7],@X[-3&7] @ big-endian... vrev32.8 @X[-2&7],@X[-2&7] vadd.i32 @X[0],@X[-4&7],$K vrev32.8 @X[-1&7],@X[-1&7] vadd.i32 @X[1],@X[-3&7],$K vst1.32 {@X[0]},[$Xfer,:128]! vadd.i32 @X[2],@X[-2&7],$K vst1.32 {@X[1]},[$Xfer,:128]! vst1.32 {@X[2]},[$Xfer,:128]! ldr $Ki,[sp] @ big RAW stall .Loop_neon: ___ &Xupdate_16_31(\&body_00_19); &Xupdate_16_31(\&body_00_19); &Xupdate_16_31(\&body_00_19); &Xupdate_16_31(\&body_00_19); &Xupdate_32_79(\&body_00_19); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_20_39); &Xuplast_80(\&body_20_39); &Xloop(\&body_20_39); &Xloop(\&body_20_39); &Xloop(\&body_20_39); $code.=<<___; ldmia $ctx,{$Ki,$t0,$t1,$Xfer} @ accumulate context add $a,$a,$Ki ldr $Ki,[$ctx,#16] add $b,$b,$t0 add $c,$c,$t1 add $d,$d,$Xfer it eq moveq sp,$saved_sp add $e,$e,$Ki it ne ldrne $Ki,[sp] stmia $ctx,{$a,$b,$c,$d,$e} itt ne addne $Xfer,sp,#3*16 bne .Loop_neon @ vldmia sp!,{d8-d15} ldmia sp!,{r4-r12,pc} .size sha1_block_data_order_neon,.-sha1_block_data_order_neon #endif ___ }}} ##################################################################### # ARMv8 stuff # {{{ my ($ABCD,$E,$E0,$E1)=map("q$_",(0..3)); my @MSG=map("q$_",(4..7)); my @Kxx=map("q$_",(8..11)); my ($W0,$W1,$ABCD_SAVE)=map("q$_",(12..14)); $code.=<<___; #if __ARM_MAX_ARCH__>=7 # if defined(__thumb2__) # define INST(a,b,c,d) .byte c,d|0xf,a,b # else # define INST(a,b,c,d) .byte a,b,c,d|0x10 # endif .type sha1_block_data_order_armv8,%function .align 5 sha1_block_data_order_armv8: .LARMv8: vstmdb sp!,{d8-d15} @ ABI specification says so veor $E,$E,$E adr r3,.LK_00_19 vld1.32 {$ABCD},[$ctx]! vld1.32 {$E\[0]},[$ctx] sub $ctx,$ctx,#16 vld1.32 {@Kxx[0]\[]},[r3,:32]! vld1.32 {@Kxx[1]\[]},[r3,:32]! vld1.32 {@Kxx[2]\[]},[r3,:32]! vld1.32 {@Kxx[3]\[]},[r3,:32] .Loop_v8: vld1.8 {@MSG[0]-@MSG[1]},[$inp]! vld1.8 {@MSG[2]-@MSG[3]},[$inp]! vrev32.8 @MSG[0],@MSG[0] vrev32.8 @MSG[1],@MSG[1] vadd.i32 $W0,@Kxx[0],@MSG[0] vrev32.8 @MSG[2],@MSG[2] vmov $ABCD_SAVE,$ABCD @ offload subs $len,$len,#1 vadd.i32 $W1,@Kxx[0],@MSG[1] vrev32.8 @MSG[3],@MSG[3] sha1h $E1,$ABCD @ 0 sha1c $ABCD,$E,$W0 vadd.i32 $W0,@Kxx[$j],@MSG[2] sha1su0 @MSG[0],@MSG[1],@MSG[2] ___ for ($j=0,$i=1;$i<20-3;$i++) { my $f=("c","p","m","p")[$i/5]; $code.=<<___; sha1h $E0,$ABCD @ $i sha1$f $ABCD,$E1,$W1 vadd.i32 $W1,@Kxx[$j],@MSG[3] sha1su1 @MSG[0],@MSG[3] ___ $code.=<<___ if ($i<20-4); sha1su0 @MSG[1],@MSG[2],@MSG[3] ___ ($E0,$E1)=($E1,$E0); ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); $j++ if ((($i+3)%5)==0); } $code.=<<___; sha1h $E0,$ABCD @ $i sha1p $ABCD,$E1,$W1 vadd.i32 $W1,@Kxx[$j],@MSG[3] sha1h $E1,$ABCD @ 18 sha1p $ABCD,$E0,$W0 sha1h $E0,$ABCD @ 19 sha1p $ABCD,$E1,$W1 vadd.i32 $E,$E,$E0 vadd.i32 $ABCD,$ABCD,$ABCD_SAVE bne .Loop_v8 vst1.32 {$ABCD},[$ctx]! vst1.32 {$E\[0]},[$ctx] vldmia sp!,{d8-d15} ret @ bx lr .size sha1_block_data_order_armv8,.-sha1_block_data_order_armv8 #endif ___ }}} $code.=<<___; #if __ARM_MAX_ARCH__>=7 .comm OPENSSL_armcap_P,4,4 #endif ___ { my %opcode = ( "sha1c" => 0xf2000c40, "sha1p" => 0xf2100c40, "sha1m" => 0xf2200c40, "sha1su0" => 0xf2300c40, "sha1h" => 0xf3b902c0, "sha1su1" => 0xf3ba0380 ); sub unsha1 { my ($mnemonic,$arg)=@_; if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) { my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19) |(($2&7)<<17)|(($2&8)<<4) |(($3&7)<<1) |(($3&8)<<2); # since ARMv7 instructions are always encoded little-endian. # correct solution is to use .inst directive, but older # assemblers don't implement it:-( # this fix-up provides Thumb encoding in conjunction with INST $word &= ~0x10000000 if (($word & 0x0f000000) == 0x02000000); sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s", $word&0xff,($word>>8)&0xff, ($word>>16)&0xff,($word>>24)&0xff, $mnemonic,$arg; } } } foreach (split($/,$code)) { s/{q([0-9]+)\[\]}/sprintf "{d%d[],d%d[]}",2*$1,2*$1+1/eo or s/{q([0-9]+)\[0\]}/sprintf "{d%d[0]}",2*$1/eo; s/\b(sha1\w+)\s+(q.*)/unsha1($1,$2)/geo; s/\bret\b/bx lr/o or s/\bbx\s+lr\b/.word\t0xe12fff1e/o; # make it possible to compile with -march=armv4 print $_,$/; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/sha/asm/sha1-armv8.pl000066400000000000000000000201541364063235100204470ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA1 for ARMv8. # # Performance in cycles per processed byte and improvement coefficient # over code generated with "default" compiler: # # hardware-assisted software(*) # Apple A7 2.31 4.13 (+14%) # Cortex-A53 2.24 8.03 (+97%) # Cortex-A57 2.35 7.88 (+74%) # Denver 2.13 3.97 (+0%)(**) # X-Gene 8.80 (+200%) # Mongoose 2.05 6.50 (+160%) # Kryo 1.88 8.00 (+90%) # # (*) Software results are presented mostly for reference purposes. # (**) Keep in mind that Denver relies on binary translation, which # optimizes compiler output at run-time. $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; ($ctx,$inp,$num)=("x0","x1","x2"); @Xw=map("w$_",(3..17,19)); @Xx=map("x$_",(3..17,19)); @V=($A,$B,$C,$D,$E)=map("w$_",(20..24)); ($t0,$t1,$t2,$K)=map("w$_",(25..28)); sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=($i+2)&15; $code.=<<___ if ($i<15 && !($i&1)); lsr @Xx[$i+1],@Xx[$i],#32 ___ $code.=<<___ if ($i<14 && !($i&1)); ldr @Xx[$i+2],[$inp,#`($i+2)*4-64`] ___ $code.=<<___ if ($i<14 && ($i&1)); #ifdef __ARMEB__ ror @Xx[$i+1],@Xx[$i+1],#32 #else rev32 @Xx[$i+1],@Xx[$i+1] #endif ___ $code.=<<___ if ($i<14); bic $t0,$d,$b and $t1,$c,$b ror $t2,$a,#27 add $d,$d,$K // future e+=K orr $t0,$t0,$t1 add $e,$e,$t2 // e+=rot(a,5) ror $b,$b,#2 add $d,$d,@Xw[($i+1)&15] // future e+=X[i] add $e,$e,$t0 // e+=F(b,c,d) ___ $code.=<<___ if ($i==19); movz $K,#0xeba1 movk $K,#0x6ed9,lsl#16 ___ $code.=<<___ if ($i>=14); eor @Xw[$j],@Xw[$j],@Xw[($j+2)&15] bic $t0,$d,$b and $t1,$c,$b ror $t2,$a,#27 eor @Xw[$j],@Xw[$j],@Xw[($j+8)&15] add $d,$d,$K // future e+=K orr $t0,$t0,$t1 add $e,$e,$t2 // e+=rot(a,5) eor @Xw[$j],@Xw[$j],@Xw[($j+13)&15] ror $b,$b,#2 add $d,$d,@Xw[($i+1)&15] // future e+=X[i] add $e,$e,$t0 // e+=F(b,c,d) ror @Xw[$j],@Xw[$j],#31 ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=($i+2)&15; $code.=<<___ if ($i==59); movz $K,#0xc1d6 movk $K,#0xca62,lsl#16 ___ $code.=<<___; orr $t0,$b,$c and $t1,$b,$c eor @Xw[$j],@Xw[$j],@Xw[($j+2)&15] ror $t2,$a,#27 and $t0,$t0,$d add $d,$d,$K // future e+=K eor @Xw[$j],@Xw[$j],@Xw[($j+8)&15] add $e,$e,$t2 // e+=rot(a,5) orr $t0,$t0,$t1 ror $b,$b,#2 eor @Xw[$j],@Xw[$j],@Xw[($j+13)&15] add $d,$d,@Xw[($i+1)&15] // future e+=X[i] add $e,$e,$t0 // e+=F(b,c,d) ror @Xw[$j],@Xw[$j],#31 ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=($i+2)&15; $code.=<<___ if ($i==39); movz $K,#0xbcdc movk $K,#0x8f1b,lsl#16 ___ $code.=<<___ if ($i<78); eor @Xw[$j],@Xw[$j],@Xw[($j+2)&15] eor $t0,$d,$b ror $t2,$a,#27 add $d,$d,$K // future e+=K eor @Xw[$j],@Xw[$j],@Xw[($j+8)&15] eor $t0,$t0,$c add $e,$e,$t2 // e+=rot(a,5) ror $b,$b,#2 eor @Xw[$j],@Xw[$j],@Xw[($j+13)&15] add $d,$d,@Xw[($i+1)&15] // future e+=X[i] add $e,$e,$t0 // e+=F(b,c,d) ror @Xw[$j],@Xw[$j],#31 ___ $code.=<<___ if ($i==78); ldp @Xw[1],@Xw[2],[$ctx] eor $t0,$d,$b ror $t2,$a,#27 add $d,$d,$K // future e+=K eor $t0,$t0,$c add $e,$e,$t2 // e+=rot(a,5) ror $b,$b,#2 add $d,$d,@Xw[($i+1)&15] // future e+=X[i] add $e,$e,$t0 // e+=F(b,c,d) ___ $code.=<<___ if ($i==79); ldp @Xw[3],@Xw[4],[$ctx,#8] eor $t0,$d,$b ror $t2,$a,#27 eor $t0,$t0,$c add $e,$e,$t2 // e+=rot(a,5) ror $b,$b,#2 ldr @Xw[5],[$ctx,#16] add $e,$e,$t0 // e+=F(b,c,d) ___ } $code.=<<___; #include "arm_arch.h" .text .extern OPENSSL_armcap_P .globl sha1_block_data_order .type sha1_block_data_order,%function .align 6 sha1_block_data_order: #ifdef __ILP32__ ldrsw x16,.LOPENSSL_armcap_P #else ldr x16,.LOPENSSL_armcap_P #endif adr x17,.LOPENSSL_armcap_P add x16,x16,x17 ldr w16,[x16] tst w16,#ARMV8_SHA1 b.ne .Lv8_entry stp x29,x30,[sp,#-96]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] ldp $A,$B,[$ctx] ldp $C,$D,[$ctx,#8] ldr $E,[$ctx,#16] .Loop: ldr @Xx[0],[$inp],#64 movz $K,#0x7999 sub $num,$num,#1 movk $K,#0x5a82,lsl#16 #ifdef __ARMEB__ ror $Xx[0],@Xx[0],#32 #else rev32 @Xx[0],@Xx[0] #endif add $E,$E,$K // warm it up add $E,$E,@Xw[0] ___ for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; add $B,$B,@Xw[2] add $C,$C,@Xw[3] add $A,$A,@Xw[1] add $D,$D,@Xw[4] add $E,$E,@Xw[5] stp $A,$B,[$ctx] stp $C,$D,[$ctx,#8] str $E,[$ctx,#16] cbnz $num,.Loop ldp x19,x20,[sp,#16] ldp x21,x22,[sp,#32] ldp x23,x24,[sp,#48] ldp x25,x26,[sp,#64] ldp x27,x28,[sp,#80] ldr x29,[sp],#96 ret .size sha1_block_data_order,.-sha1_block_data_order ___ {{{ my ($ABCD,$E,$E0,$E1)=map("v$_.16b",(0..3)); my @MSG=map("v$_.16b",(4..7)); my @Kxx=map("v$_.4s",(16..19)); my ($W0,$W1)=("v20.4s","v21.4s"); my $ABCD_SAVE="v22.16b"; $code.=<<___; .type sha1_block_armv8,%function .align 6 sha1_block_armv8: .Lv8_entry: stp x29,x30,[sp,#-16]! add x29,sp,#0 adr x4,.Lconst eor $E,$E,$E ld1.32 {$ABCD},[$ctx],#16 ld1.32 {$E}[0],[$ctx] sub $ctx,$ctx,#16 ld1.32 {@Kxx[0]-@Kxx[3]},[x4] .Loop_hw: ld1 {@MSG[0]-@MSG[3]},[$inp],#64 sub $num,$num,#1 rev32 @MSG[0],@MSG[0] rev32 @MSG[1],@MSG[1] add.i32 $W0,@Kxx[0],@MSG[0] rev32 @MSG[2],@MSG[2] orr $ABCD_SAVE,$ABCD,$ABCD // offload add.i32 $W1,@Kxx[0],@MSG[1] rev32 @MSG[3],@MSG[3] sha1h $E1,$ABCD sha1c $ABCD,$E,$W0 // 0 add.i32 $W0,@Kxx[$j],@MSG[2] sha1su0 @MSG[0],@MSG[1],@MSG[2] ___ for ($j=0,$i=1;$i<20-3;$i++) { my $f=("c","p","m","p")[$i/5]; $code.=<<___; sha1h $E0,$ABCD // $i sha1$f $ABCD,$E1,$W1 add.i32 $W1,@Kxx[$j],@MSG[3] sha1su1 @MSG[0],@MSG[3] ___ $code.=<<___ if ($i<20-4); sha1su0 @MSG[1],@MSG[2],@MSG[3] ___ ($E0,$E1)=($E1,$E0); ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); $j++ if ((($i+3)%5)==0); } $code.=<<___; sha1h $E0,$ABCD // $i sha1p $ABCD,$E1,$W1 add.i32 $W1,@Kxx[$j],@MSG[3] sha1h $E1,$ABCD // 18 sha1p $ABCD,$E0,$W0 sha1h $E0,$ABCD // 19 sha1p $ABCD,$E1,$W1 add.i32 $E,$E,$E0 add.i32 $ABCD,$ABCD,$ABCD_SAVE cbnz $num,.Loop_hw st1.32 {$ABCD},[$ctx],#16 st1.32 {$E}[0],[$ctx] ldr x29,[sp],#16 ret .size sha1_block_armv8,.-sha1_block_armv8 .align 6 .Lconst: .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 //K_00_19 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 //K_20_39 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc //K_40_59 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 //K_60_79 .LOPENSSL_armcap_P: #ifdef __ILP32__ .long OPENSSL_armcap_P-. #else .quad OPENSSL_armcap_P-. #endif .asciz "SHA1 block transform for ARMv8, CRYPTOGAMS by " .align 2 .comm OPENSSL_armcap_P,4,4 ___ }}} { my %opcode = ( "sha1c" => 0x5e000000, "sha1p" => 0x5e001000, "sha1m" => 0x5e002000, "sha1su0" => 0x5e003000, "sha1h" => 0x5e280800, "sha1su1" => 0x5e281800 ); sub unsha1 { my ($mnemonic,$arg)=@_; $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o && sprintf ".inst\t0x%08x\t//%s %s", $opcode{$mnemonic}|$1|($2<<5)|($3<<16), $mnemonic,$arg; } } foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/geo; s/\b(sha1\w+)\s+([qv].*)/unsha1($1,$2)/geo; s/\.\w?32\b//o and s/\.16b/\.4s/go; m/(ld|st)1[^\[]+\[0\]/o and s/\.4s/\.s/go; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-c64xplus.pl000066400000000000000000000200471364063235100211030ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA1 for C64x+. # # November 2011 # # If compared to compiler-generated code with similar characteristics, # i.e. compiled with OPENSSL_SMALL_FOOTPRINT and utilizing SPLOOPs, # this implementation is 25% smaller and >2x faster. In absolute terms # performance is (quite impressive) ~6.5 cycles per processed byte. # Fully unrolled assembler would be ~5x larger and is likely to be # ~15% faster. It would be free from references to intermediate ring # buffer, but put more pressure on L1P [both because the code would be # larger and won't be using SPLOOP buffer]. There are no plans to # realize fully unrolled variant though... # # !!! Note that this module uses AMR, which means that all interrupt # service routines are expected to preserve it and for own well-being # zero it upon entry. while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; ($CTX,$INP,$NUM) = ("A4","B4","A6"); # arguments ($A,$B,$C,$D,$E, $Arot,$F,$F0,$T,$K) = map("A$_",(16..20, 21..25)); ($X0,$X2,$X8,$X13) = ("A26","B26","A27","B27"); ($TX0,$TX1,$TX2,$TX3) = map("B$_",(28..31)); ($XPA,$XPB) = ("A5","B5"); # X circular buffer ($Actx,$Bctx,$Cctx,$Dctx,$Ectx) = map("A$_",(3,6..9)); # zaps $NUM $code=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .asg sha1_block_data_order,_sha1_block_data_order .endif .asg B3,RA .asg A15,FP .asg B15,SP .if .BIG_ENDIAN .asg MV,SWAP2 .asg MV,SWAP4 .endif .global _sha1_block_data_order _sha1_block_data_order: .asmfunc stack_usage(64) MV $NUM,A0 ; reassign $NUM || MVK -64,B0 [!A0] BNOP RA ; if ($NUM==0) return; || [A0] STW FP,*SP--[16] ; save frame pointer and alloca(64) || [A0] MV SP,FP [A0] LDW *${CTX}[0],$A ; load A-E... || [A0] AND B0,SP,SP ; align stack at 64 bytes [A0] LDW *${CTX}[1],$B || [A0] SUBAW SP,2,SP ; reserve two words above buffer [A0] LDW *${CTX}[2],$C || [A0] MVK 0x00404,B0 [A0] LDW *${CTX}[3],$D || [A0] MVKH 0x50000,B0 ; 0x050404, 64 bytes for $XP[AB] [A0] LDW *${CTX}[4],$E || [A0] MVC B0,AMR ; setup circular addressing LDNW *${INP}++,$TX1 ; pre-fetch input NOP 1 loop?: MVK 0x00007999,$K || ADDAW SP,2,$XPA || SUB A0,1,A0 || MVK 13,B0 MVKH 0x5a820000,$K ; K_00_19 || ADDAW SP,2,$XPB || MV $A,$Actx || MV $B,$Bctx ;;================================================== SPLOOPD 5 ; BODY_00_13 || MV $C,$Cctx || MV $D,$Dctx || MV $E,$Ectx || MVC B0,ILC ROTL $A,5,$Arot || AND $C,$B,$F || ANDN $D,$B,$F0 || ADD $K,$E,$T ; T=E+K XOR $F0,$F,$F ; F_00_19(B,C,D) || MV $D,$E ; E=D || MV $C,$D ; D=C || SWAP2 $TX1,$TX2 || LDNW *${INP}++,$TX1 ADD $F,$T,$T ; T+=F_00_19(B,C,D) || ROTL $B,30,$C ; C=ROL(B,30) || SWAP4 $TX2,$TX3 ; byte swap ADD $Arot,$T,$T ; T+=ROL(A,5) || MV $A,$B ; B=A ADD $TX3,$T,$A ; A=T+Xi || STW $TX3,*${XPB}++ SPKERNEL ;;================================================== ROTL $A,5,$Arot ; BODY_14 || AND $C,$B,$F || ANDN $D,$B,$F0 || ADD $K,$E,$T ; T=E+K XOR $F0,$F,$F ; F_00_19(B,C,D) || MV $D,$E ; E=D || MV $C,$D ; D=C || SWAP2 $TX1,$TX2 || LDNW *${INP}++,$TX1 ADD $F,$T,$T ; T+=F_00_19(B,C,D) || ROTL $B,30,$C ; C=ROL(B,30) || SWAP4 $TX2,$TX2 ; byte swap || LDW *${XPA}++,$X0 ; fetches from X ring buffer are || LDW *${XPB}[4],$X2 ; 2 iterations ahead ADD $Arot,$T,$T ; T+=ROL(A,5) || MV $A,$B ; B=A || LDW *${XPA}[7],$X8 || MV $TX3,$X13 ; || LDW *${XPB}[15],$X13 || MV $TX2,$TX3 ADD $TX2,$T,$A ; A=T+Xi || STW $TX2,*${XPB}++ ;;================================================== ROTL $A,5,$Arot ; BODY_15 || AND $C,$B,$F || ANDN $D,$B,$F0 || ADD $K,$E,$T ; T=E+K XOR $F0,$F,$F ; F_00_19(B,C,D) || MV $D,$E ; E=D || MV $C,$D ; D=C || SWAP2 $TX1,$TX2 ADD $F,$T,$T ; T+=F_00_19(B,C,D) || ROTL $B,30,$C ; C=ROL(B,30) || SWAP4 $TX2,$TX2 ; byte swap || XOR $X0,$X2,$TX0 ; Xupdate XORs are 1 iteration ahead || LDW *${XPA}++,$X0 || LDW *${XPB}[4],$X2 ADD $Arot,$T,$T ; T+=ROL(A,5) || MV $A,$B ; B=A || XOR $X8,$X13,$TX1 || LDW *${XPA}[7],$X8 || MV $TX3,$X13 ; || LDW *${XPB}[15],$X13 || MV $TX2,$TX3 ADD $TX2,$T,$A ; A=T+Xi || STW $TX2,*${XPB}++ || XOR $TX0,$TX1,$TX1 || MVK 3,B0 ;;================================================== SPLOOPD 5 ; BODY_16_19 || MVC B0,ILC ROTL $A,5,$Arot || AND $C,$B,$F || ANDN $D,$B,$F0 || ADD $K,$E,$T ; T=E+K || ROTL $TX1,1,$TX2 ; Xupdate output XOR $F0,$F,$F ; F_00_19(B,C,D) || MV $D,$E ; E=D || MV $C,$D ; D=C ADD $F,$T,$T ; T+=F_00_19(B,C,D) || ROTL $B,30,$C ; C=ROL(B,30) || XOR $X0,$X2,$TX0 || LDW *${XPA}++,$X0 || LDW *${XPB}[4],$X2 ADD $Arot,$T,$T ; T+=ROL(A,5) || MV $A,$B ; B=A || XOR $X8,$X13,$TX1 || LDW *${XPA}[7],$X8 || MV $TX3,$X13 ; || LDW *${XPB}[15],$X13 || MV $TX2,$TX3 ADD $TX2,$T,$A ; A=T+Xi || STW $TX2,*${XPB}++ || XOR $TX0,$TX1,$TX1 SPKERNEL MVK 0xffffeba1,$K || MVK 19,B0 MVKH 0x6ed90000,$K ; K_20_39 ___ sub BODY_20_39 { $code.=<<___; ;;================================================== SPLOOPD 5 ; BODY_20_39 || MVC B0,ILC ROTL $A,5,$Arot || XOR $B,$C,$F || ADD $K,$E,$T ; T=E+K || ROTL $TX1,1,$TX2 ; Xupdate output XOR $D,$F,$F ; F_20_39(B,C,D) || MV $D,$E ; E=D || MV $C,$D ; D=C ADD $F,$T,$T ; T+=F_20_39(B,C,D) || ROTL $B,30,$C ; C=ROL(B,30) || XOR $X0,$X2,$TX0 || LDW *${XPA}++,$X0 || LDW *${XPB}[4],$X2 ADD $Arot,$T,$T ; T+=ROL(A,5) || MV $A,$B ; B=A || XOR $X8,$X13,$TX1 || LDW *${XPA}[7],$X8 || MV $TX3,$X13 ; || LDW *${XPB}[15],$X13 || MV $TX2,$TX3 ADD $TX2,$T,$A ; A=T+Xi || STW $TX2,*${XPB}++ ; last one is redundant || XOR $TX0,$TX1,$TX1 SPKERNEL ___ $code.=<<___ if (!shift); MVK 0xffffbcdc,$K MVKH 0x8f1b0000,$K ; K_40_59 ___ } &BODY_20_39(); $code.=<<___; ;;================================================== SPLOOPD 5 ; BODY_40_59 || MVC B0,ILC || AND $B,$C,$F || AND $B,$D,$F0 ROTL $A,5,$Arot || XOR $F0,$F,$F || AND $C,$D,$F0 || ADD $K,$E,$T ; T=E+K || ROTL $TX1,1,$TX2 ; Xupdate output XOR $F0,$F,$F ; F_40_59(B,C,D) || MV $D,$E ; E=D || MV $C,$D ; D=C ADD $F,$T,$T ; T+=F_40_59(B,C,D) || ROTL $B,30,$C ; C=ROL(B,30) || XOR $X0,$X2,$TX0 || LDW *${XPA}++,$X0 || LDW *${XPB}[4],$X2 ADD $Arot,$T,$T ; T+=ROL(A,5) || MV $A,$B ; B=A || XOR $X8,$X13,$TX1 || LDW *${XPA}[7],$X8 || MV $TX3,$X13 ; || LDW *${XPB}[15],$X13 || MV $TX2,$TX3 ADD $TX2,$T,$A ; A=T+Xi || STW $TX2,*${XPB}++ || XOR $TX0,$TX1,$TX1 || AND $B,$C,$F || AND $B,$D,$F0 SPKERNEL MVK 0xffffc1d6,$K || MVK 18,B0 MVKH 0xca620000,$K ; K_60_79 ___ &BODY_20_39(-1); # BODY_60_78 $code.=<<___; ;;================================================== [A0] B loop? || ROTL $A,5,$Arot ; BODY_79 || XOR $B,$C,$F || ROTL $TX1,1,$TX2 ; Xupdate output [A0] LDNW *${INP}++,$TX1 ; pre-fetch input || ADD $K,$E,$T ; T=E+K || XOR $D,$F,$F ; F_20_39(B,C,D) ADD $F,$T,$T ; T+=F_20_39(B,C,D) || ADD $Ectx,$D,$E ; E=D,E+=Ectx || ADD $Dctx,$C,$D ; D=C,D+=Dctx || ROTL $B,30,$C ; C=ROL(B,30) ADD $Arot,$T,$T ; T+=ROL(A,5) || ADD $Bctx,$A,$B ; B=A,B+=Bctx ADD $TX2,$T,$A ; A=T+Xi ADD $Actx,$A,$A ; A+=Actx || ADD $Cctx,$C,$C ; C+=Cctx ;; end of loop? BNOP RA ; return || MV FP,SP ; restore stack pointer || LDW *FP[0],FP ; restore frame pointer STW $A,*${CTX}[0] ; emit A-E... || MVK 0,B0 STW $B,*${CTX}[1] || MVC B0,AMR ; clear AMR STW $C,*${CTX}[2] STW $D,*${CTX}[3] STW $E,*${CTX}[4] .endasmfunc .sect .const .cstring "SHA1 block transform for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-ia64.pl000066400000000000000000000216741364063235100201650ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Eternal question is what's wrong with compiler generated code? The # trick is that it's possible to reduce the number of shifts required # to perform rotations by maintaining copy of 32-bit value in upper # bits of 64-bit register. Just follow mux2 and shrp instructions... # Performance under big-endian OS such as HP-UX is 179MBps*1GHz, which # is >50% better than HP C and >2x better than gcc. $output = pop; $code=<<___; .ident \"sha1-ia64.s, version 1.3\" .ident \"IA-64 ISA artwork by Andy Polyakov \" .explicit ___ if ($^O eq "hpux") { $ADDP="addp4"; for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); } } else { $ADDP="add"; } #$human=1; if ($human) { # useful for visual code auditing... ($A,$B,$C,$D,$E) = ("A","B","C","D","E"); ($h0,$h1,$h2,$h3,$h4) = ("h0","h1","h2","h3","h4"); ($K_00_19, $K_20_39, $K_40_59, $K_60_79) = ( "K_00_19","K_20_39","K_40_59","K_60_79" ); @X= ( "X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9","X10","X11","X12","X13","X14","X15" ); } else { ($A,$B,$C,$D,$E) = ("loc0","loc1","loc2","loc3","loc4"); ($h0,$h1,$h2,$h3,$h4) = ("loc5","loc6","loc7","loc8","loc9"); ($K_00_19, $K_20_39, $K_40_59, $K_60_79) = ( "r14", "r15", "loc10", "loc11" ); @X= ( "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" ); } sub BODY_00_15 { local *code=shift; my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; my $Xn=@X[$j%16]; $code.=<<___ if ($i==0); { .mmi; ld1 $X[$i]=[inp],2 // MSB ld1 tmp2=[tmp3],2 };; { .mmi; ld1 tmp0=[inp],2 ld1 tmp4=[tmp3],2 // LSB dep $X[$i]=$X[$i],tmp2,8,8 };; ___ if ($i<15) { $code.=<<___; { .mmi; ld1 $Xn=[inp],2 // forward Xload nop.m 0x0 dep tmp1=tmp0,tmp4,8,8 };; { .mmi; ld1 tmp2=[tmp3],2 // forward Xload and tmp4=$c,$b dep $X[$i]=$X[$i],tmp1,16,16} //;; { .mmi; add $e=$e,$K_00_19 // e+=K_00_19 andcm tmp1=$d,$b dep.z tmp5=$a,5,27 };; // a<<5 { .mmi; add $e=$e,$X[$i] // e+=Xload or tmp4=tmp4,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d) extr.u tmp1=$a,27,5 };; // a>>27 { .mmi; ld1 tmp0=[inp],2 // forward Xload add $e=$e,tmp4 // e+=F_00_19(b,c,d) shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) { .mmi; ld1 tmp4=[tmp3],2 // forward Xload or tmp5=tmp1,tmp5 // ROTATE(a,5) mux2 tmp6=$a,0x44 };; // see b in next iteration { .mii; add $e=$e,tmp5 // e+=ROTATE(a,5) dep $Xn=$Xn,tmp2,8,8 // forward Xload mux2 $X[$i]=$X[$i],0x44 } //;; ___ } else { $code.=<<___; { .mii; and tmp3=$c,$b dep tmp1=tmp0,tmp4,8,8;; dep $X[$i]=$X[$i],tmp1,16,16} //;; { .mmi; add $e=$e,$K_00_19 // e+=K_00_19 andcm tmp1=$d,$b dep.z tmp5=$a,5,27 };; // a<<5 { .mmi; add $e=$e,$X[$i] // e+=Xupdate or tmp4=tmp3,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d) extr.u tmp1=$a,27,5 } // a>>27 { .mmi; xor $Xn=$Xn,$X[($j+2)%16] // forward Xupdate xor tmp3=$X[($j+8)%16],$X[($j+13)%16] // forward Xupdate nop.i 0 };; { .mmi; add $e=$e,tmp4 // e+=F_00_19(b,c,d) xor $Xn=$Xn,tmp3 // forward Xupdate shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) { .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5) mux2 tmp6=$a,0x44 };; // see b in next iteration { .mii; add $e=$e,tmp1 // e+=ROTATE(a,5) shrp $Xn=$Xn,$Xn,31 // ROTATE(x[0]^x[2]^x[8]^x[13],1) mux2 $X[$i]=$X[$i],0x44 };; ___ } } sub BODY_16_19 { local *code=shift; my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; my $Xn=@X[$j%16]; $code.=<<___; { .mib; add $e=$e,$K_00_19 // e+=K_00_19 dep.z tmp5=$a,5,27 } // a<<5 { .mib; andcm tmp1=$d,$b and tmp0=$c,$b };; { .mmi; add $e=$e,$X[$i%16] // e+=Xupdate or tmp0=tmp0,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d) extr.u tmp1=$a,27,5 } // a>>27 { .mmi; xor $Xn=$Xn,$X[($j+2)%16] // forward Xupdate xor tmp3=$X[($j+8)%16],$X[($j+13)%16] // forward Xupdate nop.i 0 };; { .mmi; add $e=$e,tmp0 // f+=F_00_19(b,c,d) xor $Xn=$Xn,tmp3 // forward Xupdate shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) { .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5) mux2 tmp6=$a,0x44 };; // see b in next iteration { .mii; add $e=$e,tmp1 // e+=ROTATE(a,5) shrp $Xn=$Xn,$Xn,31 // ROTATE(x[0]^x[2]^x[8]^x[13],1) nop.i 0 };; ___ } sub BODY_20_39 { local *code=shift; my ($i,$a,$b,$c,$d,$e,$Konst)=@_; $Konst = $K_20_39 if (!defined($Konst)); my $j=$i+1; my $Xn=@X[$j%16]; if ($i<79) { $code.=<<___; { .mib; add $e=$e,$Konst // e+=K_XX_XX dep.z tmp5=$a,5,27 } // a<<5 { .mib; xor tmp0=$c,$b xor $Xn=$Xn,$X[($j+2)%16] };; // forward Xupdate { .mib; add $e=$e,$X[$i%16] // e+=Xupdate extr.u tmp1=$a,27,5 } // a>>27 { .mib; xor tmp0=tmp0,$d // F_20_39(b,c,d)=b^c^d xor $Xn=$Xn,$X[($j+8)%16] };; // forward Xupdate { .mmi; add $e=$e,tmp0 // e+=F_20_39(b,c,d) xor $Xn=$Xn,$X[($j+13)%16] // forward Xupdate shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) { .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5) mux2 tmp6=$a,0x44 };; // see b in next iteration { .mii; add $e=$e,tmp1 // e+=ROTATE(a,5) shrp $Xn=$Xn,$Xn,31 // ROTATE(x[0]^x[2]^x[8]^x[13],1) nop.i 0 };; ___ } else { $code.=<<___; { .mib; add $e=$e,$Konst // e+=K_60_79 dep.z tmp5=$a,5,27 } // a<<5 { .mib; xor tmp0=$c,$b add $h1=$h1,$a };; // wrap up { .mib; add $e=$e,$X[$i%16] // e+=Xupdate extr.u tmp1=$a,27,5 } // a>>27 { .mib; xor tmp0=tmp0,$d // F_20_39(b,c,d)=b^c^d add $h3=$h3,$c };; // wrap up { .mmi; add $e=$e,tmp0 // e+=F_20_39(b,c,d) or tmp1=tmp1,tmp5 // ROTATE(a,5) shrp $b=tmp6,tmp6,2 };; // b=ROTATE(b,30) ;;? { .mmi; add $e=$e,tmp1 // e+=ROTATE(a,5) add tmp3=1,inp // used in unaligned codepath add $h4=$h4,$d };; // wrap up ___ } } sub BODY_40_59 { local *code=shift; my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; my $Xn=@X[$j%16]; $code.=<<___; { .mib; add $e=$e,$K_40_59 // e+=K_40_59 dep.z tmp5=$a,5,27 } // a<<5 { .mib; and tmp1=$c,$d xor tmp0=$c,$d };; { .mmi; add $e=$e,$X[$i%16] // e+=Xupdate add tmp5=tmp5,tmp1 // a<<5+(c&d) extr.u tmp1=$a,27,5 } // a>>27 { .mmi; and tmp0=tmp0,$b xor $Xn=$Xn,$X[($j+2)%16] // forward Xupdate xor tmp3=$X[($j+8)%16],$X[($j+13)%16] };; // forward Xupdate { .mmi; add $e=$e,tmp0 // e+=b&(c^d) add tmp5=tmp5,tmp1 // ROTATE(a,5)+(c&d) shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) { .mmi; xor $Xn=$Xn,tmp3 mux2 tmp6=$a,0x44 };; // see b in next iteration { .mii; add $e=$e,tmp5 // e+=ROTATE(a,5)+(c&d) shrp $Xn=$Xn,$Xn,31 // ROTATE(x[0]^x[2]^x[8]^x[13],1) nop.i 0x0 };; ___ } sub BODY_60_79 { &BODY_20_39(@_,$K_60_79); } $code.=<<___; .text tmp0=r8; tmp1=r9; tmp2=r10; tmp3=r11; ctx=r32; // in0 inp=r33; // in1 // void sha1_block_data_order(SHA_CTX *c,const void *p,size_t num); .global sha1_block_data_order# .proc sha1_block_data_order# .align 32 sha1_block_data_order: .prologue { .mmi; alloc tmp1=ar.pfs,3,14,0,0 $ADDP tmp0=4,ctx .save ar.lc,r3 mov r3=ar.lc } { .mmi; $ADDP ctx=0,ctx $ADDP inp=0,inp mov r2=pr };; tmp4=in2; tmp5=loc12; tmp6=loc13; .body { .mlx; ld4 $h0=[ctx],8 movl $K_00_19=0x5a827999 } { .mlx; ld4 $h1=[tmp0],8 movl $K_20_39=0x6ed9eba1 };; { .mlx; ld4 $h2=[ctx],8 movl $K_40_59=0x8f1bbcdc } { .mlx; ld4 $h3=[tmp0] movl $K_60_79=0xca62c1d6 };; { .mmi; ld4 $h4=[ctx],-16 add in2=-1,in2 // adjust num for ar.lc mov ar.ec=1 };; { .mmi; nop.m 0 add tmp3=1,inp mov ar.lc=in2 };; // brp.loop.imp: too far .Ldtop: { .mmi; mov $A=$h0 mov $B=$h1 mux2 tmp6=$h1,0x44 } { .mmi; mov $C=$h2 mov $D=$h3 mov $E=$h4 };; ___ { my $i; my @V=($A,$B,$C,$D,$E); for($i=0;$i<16;$i++) { &BODY_00_15(\$code,$i,@V); unshift(@V,pop(@V)); } for(;$i<20;$i++) { &BODY_16_19(\$code,$i,@V); unshift(@V,pop(@V)); } for(;$i<40;$i++) { &BODY_20_39(\$code,$i,@V); unshift(@V,pop(@V)); } for(;$i<60;$i++) { &BODY_40_59(\$code,$i,@V); unshift(@V,pop(@V)); } for(;$i<80;$i++) { &BODY_60_79(\$code,$i,@V); unshift(@V,pop(@V)); } (($V[0] eq $A) and ($V[4] eq $E)) or die; # double-check } $code.=<<___; { .mmb; add $h0=$h0,$A add $h2=$h2,$C br.ctop.dptk.many .Ldtop };; .Ldend: { .mmi; add tmp0=4,ctx mov ar.lc=r3 };; { .mmi; st4 [ctx]=$h0,8 st4 [tmp0]=$h1,8 };; { .mmi; st4 [ctx]=$h2,8 st4 [tmp0]=$h3 };; { .mib; st4 [ctx]=$h4,-16 mov pr=r2,0x1ffff br.ret.sptk.many b0 };; .endp sha1_block_data_order# stringz "SHA1 block transform for IA64, CRYPTOGAMS by " ___ open STDOUT,">$output" if $output; print $code; openssl-1.1.1f/crypto/sha/asm/sha1-mb-x86_64.pl000066400000000000000000001142151364063235100207460ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # Multi-buffer SHA1 procedure processes n buffers in parallel by # placing buffer data to designated lane of SIMD register. n is # naturally limited to 4 on pre-AVX2 processors and to 8 on # AVX2-capable processors such as Haswell. # # this +aesni(i) sha1 aesni-sha1 gain(iv) # ------------------------------------------------------------------- # Westmere(ii) 10.7/n +1.28=3.96(n=4) 5.30 6.66 +68% # Atom(ii) 18.1/n +3.93=8.46(n=4) 9.37 12.8 +51% # Sandy Bridge (8.16 +5.15=13.3)/n 4.99 5.98 +80% # Ivy Bridge (8.08 +5.14=13.2)/n 4.60 5.54 +68% # Haswell(iii) (8.96 +5.00=14.0)/n 3.57 4.55 +160% # Skylake (8.70 +5.00=13.7)/n 3.64 4.20 +145% # Bulldozer (9.76 +5.76=15.5)/n 5.95 6.37 +64% # # (i) multi-block CBC encrypt with 128-bit key; # (ii) (HASH+AES)/n does not apply to Westmere for n>3 and Atom, # because of lower AES-NI instruction throughput; # (iii) "this" is for n=8, when we gather twice as much data, result # for n=4 is 8.00+4.44=12.4; # (iv) presented improvement coefficients are asymptotic limits and # in real-life application are somewhat lower, e.g. for 2KB # fragments they range from 30% to 100% (on Haswell); $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; $avx=0; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; # void sha1_multi_block ( # struct { unsigned int A[8]; # unsigned int B[8]; # unsigned int C[8]; # unsigned int D[8]; # unsigned int E[8]; } *ctx, # struct { void *ptr; int blocks; } inp[8], # int num); /* 1 or 2 */ # $ctx="%rdi"; # 1st arg $inp="%rsi"; # 2nd arg $num="%edx"; @ptr=map("%r$_",(8..11)); $Tbl="%rbp"; @V=($A,$B,$C,$D,$E)=map("%xmm$_",(0..4)); ($t0,$t1,$t2,$t3,$tx)=map("%xmm$_",(5..9)); @Xi=map("%xmm$_",(10..14)); $K="%xmm15"; if (1) { # Atom-specific optimization aiming to eliminate pshufb with high # registers [and thus get rid of 48 cycles accumulated penalty] @Xi=map("%xmm$_",(0..4)); ($tx,$t0,$t1,$t2,$t3)=map("%xmm$_",(5..9)); @V=($A,$B,$C,$D,$E)=map("%xmm$_",(10..14)); } $REG_SZ=16; sub Xi_off { my $off = shift; $off %= 16; $off *= $REG_SZ; $off<256 ? "$off-128(%rax)" : "$off-256-128(%rbx)"; } sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; my $k=$i+2; # Loads are performed 2+3/4 iterations in advance. 3/4 means that out # of 4 words you would expect to be loaded per given iteration one is # spilled to next iteration. In other words indices in four input # streams are distributed as following: # # $i==0: 0,0,0,0,1,1,1,1,2,2,2, # $i==1: 2,3,3,3, # $i==2: 3,4,4,4, # ... # $i==13: 14,15,15,15, # $i==14: 15 # # Then at $i==15 Xupdate is applied one iteration in advance... $code.=<<___ if ($i==0); movd (@ptr[0]),@Xi[0] lea `16*4`(@ptr[0]),@ptr[0] movd (@ptr[1]),@Xi[2] # borrow @Xi[2] lea `16*4`(@ptr[1]),@ptr[1] movd (@ptr[2]),@Xi[3] # borrow @Xi[3] lea `16*4`(@ptr[2]),@ptr[2] movd (@ptr[3]),@Xi[4] # borrow @Xi[4] lea `16*4`(@ptr[3]),@ptr[3] punpckldq @Xi[3],@Xi[0] movd `4*$j-16*4`(@ptr[0]),@Xi[1] punpckldq @Xi[4],@Xi[2] movd `4*$j-16*4`(@ptr[1]),$t3 punpckldq @Xi[2],@Xi[0] movd `4*$j-16*4`(@ptr[2]),$t2 pshufb $tx,@Xi[0] ___ $code.=<<___ if ($i<14); # just load input movd `4*$j-16*4`(@ptr[3]),$t1 punpckldq $t2,@Xi[1] movdqa $a,$t2 paddd $K,$e # e+=K_00_19 punpckldq $t1,$t3 movdqa $b,$t1 movdqa $b,$t0 pslld \$5,$t2 pandn $d,$t1 pand $c,$t0 punpckldq $t3,@Xi[1] movdqa $a,$t3 movdqa @Xi[0],`&Xi_off($i)` paddd @Xi[0],$e # e+=X[i] movd `4*$k-16*4`(@ptr[0]),@Xi[2] psrld \$27,$t3 pxor $t1,$t0 # Ch(b,c,d) movdqa $b,$t1 por $t3,$t2 # rol(a,5) movd `4*$k-16*4`(@ptr[1]),$t3 pslld \$30,$t1 paddd $t0,$e # e+=Ch(b,c,d) psrld \$2,$b paddd $t2,$e # e+=rol(a,5) pshufb $tx,@Xi[1] movd `4*$k-16*4`(@ptr[2]),$t2 por $t1,$b # b=rol(b,30) ___ $code.=<<___ if ($i==14); # just load input movd `4*$j-16*4`(@ptr[3]),$t1 punpckldq $t2,@Xi[1] movdqa $a,$t2 paddd $K,$e # e+=K_00_19 punpckldq $t1,$t3 movdqa $b,$t1 movdqa $b,$t0 pslld \$5,$t2 prefetcht0 63(@ptr[0]) pandn $d,$t1 pand $c,$t0 punpckldq $t3,@Xi[1] movdqa $a,$t3 movdqa @Xi[0],`&Xi_off($i)` paddd @Xi[0],$e # e+=X[i] psrld \$27,$t3 pxor $t1,$t0 # Ch(b,c,d) movdqa $b,$t1 prefetcht0 63(@ptr[1]) por $t3,$t2 # rol(a,5) pslld \$30,$t1 paddd $t0,$e # e+=Ch(b,c,d) prefetcht0 63(@ptr[2]) psrld \$2,$b paddd $t2,$e # e+=rol(a,5) pshufb $tx,@Xi[1] prefetcht0 63(@ptr[3]) por $t1,$b # b=rol(b,30) ___ $code.=<<___ if ($i>=13 && $i<15); movdqa `&Xi_off($j+2)`,@Xi[3] # preload "X[2]" ___ $code.=<<___ if ($i>=15); # apply Xupdate pxor @Xi[-2],@Xi[1] # "X[13]" movdqa `&Xi_off($j+2)`,@Xi[3] # "X[2]" movdqa $a,$t2 pxor `&Xi_off($j+8)`,@Xi[1] paddd $K,$e # e+=K_00_19 movdqa $b,$t1 pslld \$5,$t2 pxor @Xi[3],@Xi[1] movdqa $b,$t0 pandn $d,$t1 movdqa @Xi[1],$tx pand $c,$t0 movdqa $a,$t3 psrld \$31,$tx paddd @Xi[1],@Xi[1] movdqa @Xi[0],`&Xi_off($i)` paddd @Xi[0],$e # e+=X[i] psrld \$27,$t3 pxor $t1,$t0 # Ch(b,c,d) movdqa $b,$t1 por $t3,$t2 # rol(a,5) pslld \$30,$t1 paddd $t0,$e # e+=Ch(b,c,d) psrld \$2,$b paddd $t2,$e # e+=rol(a,5) por $tx,@Xi[1] # rol \$1,@Xi[1] por $t1,$b # b=rol(b,30) ___ push(@Xi,shift(@Xi)); } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); pxor @Xi[-2],@Xi[1] # "X[13]" movdqa `&Xi_off($j+2)`,@Xi[3] # "X[2]" movdqa $a,$t2 movdqa $d,$t0 pxor `&Xi_off($j+8)`,@Xi[1] paddd $K,$e # e+=K_20_39 pslld \$5,$t2 pxor $b,$t0 movdqa $a,$t3 ___ $code.=<<___ if ($i<72); movdqa @Xi[0],`&Xi_off($i)` ___ $code.=<<___ if ($i<79); paddd @Xi[0],$e # e+=X[i] pxor @Xi[3],@Xi[1] psrld \$27,$t3 pxor $c,$t0 # Parity(b,c,d) movdqa $b,$t1 pslld \$30,$t1 movdqa @Xi[1],$tx por $t3,$t2 # rol(a,5) psrld \$31,$tx paddd $t0,$e # e+=Parity(b,c,d) paddd @Xi[1],@Xi[1] psrld \$2,$b paddd $t2,$e # e+=rol(a,5) por $tx,@Xi[1] # rol(@Xi[1],1) por $t1,$b # b=rol(b,30) ___ $code.=<<___ if ($i==79); movdqa $a,$t2 paddd $K,$e # e+=K_20_39 movdqa $d,$t0 pslld \$5,$t2 pxor $b,$t0 movdqa $a,$t3 paddd @Xi[0],$e # e+=X[i] psrld \$27,$t3 movdqa $b,$t1 pxor $c,$t0 # Parity(b,c,d) pslld \$30,$t1 por $t3,$t2 # rol(a,5) paddd $t0,$e # e+=Parity(b,c,d) psrld \$2,$b paddd $t2,$e # e+=rol(a,5) por $t1,$b # b=rol(b,30) ___ push(@Xi,shift(@Xi)); } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___; pxor @Xi[-2],@Xi[1] # "X[13]" movdqa `&Xi_off($j+2)`,@Xi[3] # "X[2]" movdqa $a,$t2 movdqa $d,$t1 pxor `&Xi_off($j+8)`,@Xi[1] pxor @Xi[3],@Xi[1] paddd $K,$e # e+=K_40_59 pslld \$5,$t2 movdqa $a,$t3 pand $c,$t1 movdqa $d,$t0 movdqa @Xi[1],$tx psrld \$27,$t3 paddd $t1,$e pxor $c,$t0 movdqa @Xi[0],`&Xi_off($i)` paddd @Xi[0],$e # e+=X[i] por $t3,$t2 # rol(a,5) psrld \$31,$tx pand $b,$t0 movdqa $b,$t1 pslld \$30,$t1 paddd @Xi[1],@Xi[1] paddd $t0,$e # e+=Maj(b,d,c) psrld \$2,$b paddd $t2,$e # e+=rol(a,5) por $tx,@Xi[1] # rol(@X[1],1) por $t1,$b # b=rol(b,30) ___ push(@Xi,shift(@Xi)); } $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl sha1_multi_block .type sha1_multi_block,\@function,3 .align 32 sha1_multi_block: .cfi_startproc mov OPENSSL_ia32cap_P+4(%rip),%rcx bt \$61,%rcx # check SHA bit jc _shaext_shortcut ___ $code.=<<___ if ($avx); test \$`1<<28`,%ecx jnz _avx_shortcut ___ $code.=<<___; mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbx ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,-0x78(%rax) movaps %xmm11,-0x68(%rax) movaps %xmm12,-0x58(%rax) movaps %xmm13,-0x48(%rax) movaps %xmm14,-0x38(%rax) movaps %xmm15,-0x28(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`,%rsp and \$-256,%rsp mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .cfi_cfa_expression %rsp+`$REG_SZ*17`,deref,+8 .Lbody: lea K_XX_XX(%rip),$Tbl lea `$REG_SZ*16`(%rsp),%rbx .Loop_grande: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num ___ for($i=0;$i<4;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Ldone movdqu 0x00($ctx),$A # load context lea 128(%rsp),%rax movdqu 0x20($ctx),$B movdqu 0x40($ctx),$C movdqu 0x60($ctx),$D movdqu 0x80($ctx),$E movdqa 0x60($Tbl),$tx # pbswap_mask movdqa -0x20($Tbl),$K # K_00_19 jmp .Loop .align 32 .Loop: ___ for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } $code.=" movdqa 0x00($Tbl),$K\n"; # K_20_39 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=" movdqa 0x20($Tbl),$K\n"; # K_40_59 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } $code.=" movdqa 0x40($Tbl),$K\n"; # K_60_79 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; movdqa (%rbx),@Xi[0] # pull counters mov \$1,%ecx cmp 4*0(%rbx),%ecx # examine counters pxor $t2,$t2 cmovge $Tbl,@ptr[0] # cancel input cmp 4*1(%rbx),%ecx movdqa @Xi[0],@Xi[1] cmovge $Tbl,@ptr[1] cmp 4*2(%rbx),%ecx pcmpgtd $t2,@Xi[1] # mask value cmovge $Tbl,@ptr[2] cmp 4*3(%rbx),%ecx paddd @Xi[1],@Xi[0] # counters-- cmovge $Tbl,@ptr[3] movdqu 0x00($ctx),$t0 pand @Xi[1],$A movdqu 0x20($ctx),$t1 pand @Xi[1],$B paddd $t0,$A movdqu 0x40($ctx),$t2 pand @Xi[1],$C paddd $t1,$B movdqu 0x60($ctx),$t3 pand @Xi[1],$D paddd $t2,$C movdqu 0x80($ctx),$tx pand @Xi[1],$E movdqu $A,0x00($ctx) paddd $t3,$D movdqu $B,0x20($ctx) paddd $tx,$E movdqu $C,0x40($ctx) movdqu $D,0x60($ctx) movdqu $E,0x80($ctx) movdqa @Xi[0],(%rbx) # save counters movdqa 0x60($Tbl),$tx # pbswap_mask movdqa -0x20($Tbl),$K # K_00_19 dec $num jnz .Loop mov `$REG_SZ*17+8`(%rsp),$num lea $REG_SZ($ctx),$ctx lea `16*$REG_SZ/4`($inp),$inp dec $num jnz .Loop_grande .Ldone: mov `$REG_SZ*17`(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 ___ $code.=<<___ if ($win64); movaps -0xb8(%rax),%xmm6 movaps -0xa8(%rax),%xmm7 movaps -0x98(%rax),%xmm8 movaps -0x88(%rax),%xmm9 movaps -0x78(%rax),%xmm10 movaps -0x68(%rax),%xmm11 movaps -0x58(%rax),%xmm12 movaps -0x48(%rax),%xmm13 movaps -0x38(%rax),%xmm14 movaps -0x28(%rax),%xmm15 ___ $code.=<<___; mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue: ret .cfi_endproc .size sha1_multi_block,.-sha1_multi_block ___ {{{ my ($ABCD0,$E0,$E0_,$BSWAP,$ABCD1,$E1,$E1_)=map("%xmm$_",(0..3,8..10)); my @MSG0=map("%xmm$_",(4..7)); my @MSG1=map("%xmm$_",(11..14)); $code.=<<___; .type sha1_multi_block_shaext,\@function,3 .align 32 sha1_multi_block_shaext: .cfi_startproc _shaext_shortcut: mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,-0x78(%rax) movaps %xmm11,-0x68(%rax) movaps %xmm12,-0x58(%rax) movaps %xmm13,-0x48(%rax) movaps %xmm14,-0x38(%rax) movaps %xmm15,-0x28(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`,%rsp shl \$1,$num # we process pair at a time and \$-256,%rsp lea 0x40($ctx),$ctx # size optimization mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .Lbody_shaext: lea `$REG_SZ*16`(%rsp),%rbx movdqa K_XX_XX+0x80(%rip),$BSWAP # byte-n-word swap .Loop_grande_shaext: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num ___ for($i=0;$i<2;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle %rsp,@ptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Ldone_shaext movq 0x00-0x40($ctx),$ABCD0 # a1.a0 movq 0x20-0x40($ctx),@MSG0[0]# b1.b0 movq 0x40-0x40($ctx),@MSG0[1]# c1.c0 movq 0x60-0x40($ctx),@MSG0[2]# d1.d0 movq 0x80-0x40($ctx),@MSG0[3]# e1.e0 punpckldq @MSG0[0],$ABCD0 # b1.a1.b0.a0 punpckldq @MSG0[2],@MSG0[1] # d1.c1.d0.c0 movdqa $ABCD0,$ABCD1 punpcklqdq @MSG0[1],$ABCD0 # d0.c0.b0.a0 punpckhqdq @MSG0[1],$ABCD1 # d1.c1.b1.a1 pshufd \$0b00111111,@MSG0[3],$E0 pshufd \$0b01111111,@MSG0[3],$E1 pshufd \$0b00011011,$ABCD0,$ABCD0 pshufd \$0b00011011,$ABCD1,$ABCD1 jmp .Loop_shaext .align 32 .Loop_shaext: movdqu 0x00(@ptr[0]),@MSG0[0] movdqu 0x00(@ptr[1]),@MSG1[0] movdqu 0x10(@ptr[0]),@MSG0[1] movdqu 0x10(@ptr[1]),@MSG1[1] movdqu 0x20(@ptr[0]),@MSG0[2] pshufb $BSWAP,@MSG0[0] movdqu 0x20(@ptr[1]),@MSG1[2] pshufb $BSWAP,@MSG1[0] movdqu 0x30(@ptr[0]),@MSG0[3] lea 0x40(@ptr[0]),@ptr[0] pshufb $BSWAP,@MSG0[1] movdqu 0x30(@ptr[1]),@MSG1[3] lea 0x40(@ptr[1]),@ptr[1] pshufb $BSWAP,@MSG1[1] movdqa $E0,0x50(%rsp) # offload paddd @MSG0[0],$E0 movdqa $E1,0x70(%rsp) paddd @MSG1[0],$E1 movdqa $ABCD0,0x40(%rsp) # offload movdqa $ABCD0,$E0_ movdqa $ABCD1,0x60(%rsp) movdqa $ABCD1,$E1_ sha1rnds4 \$0,$E0,$ABCD0 # 0-3 sha1nexte @MSG0[1],$E0_ sha1rnds4 \$0,$E1,$ABCD1 # 0-3 sha1nexte @MSG1[1],$E1_ pshufb $BSWAP,@MSG0[2] prefetcht0 127(@ptr[0]) sha1msg1 @MSG0[1],@MSG0[0] pshufb $BSWAP,@MSG1[2] prefetcht0 127(@ptr[1]) sha1msg1 @MSG1[1],@MSG1[0] pshufb $BSWAP,@MSG0[3] movdqa $ABCD0,$E0 pshufb $BSWAP,@MSG1[3] movdqa $ABCD1,$E1 sha1rnds4 \$0,$E0_,$ABCD0 # 4-7 sha1nexte @MSG0[2],$E0 sha1rnds4 \$0,$E1_,$ABCD1 # 4-7 sha1nexte @MSG1[2],$E1 pxor @MSG0[2],@MSG0[0] sha1msg1 @MSG0[2],@MSG0[1] pxor @MSG1[2],@MSG1[0] sha1msg1 @MSG1[2],@MSG1[1] ___ for($i=2;$i<20-4;$i++) { $code.=<<___; movdqa $ABCD0,$E0_ movdqa $ABCD1,$E1_ sha1rnds4 \$`int($i/5)`,$E0,$ABCD0 # 8-11 sha1nexte @MSG0[3],$E0_ sha1rnds4 \$`int($i/5)`,$E1,$ABCD1 # 8-11 sha1nexte @MSG1[3],$E1_ sha1msg2 @MSG0[3],@MSG0[0] sha1msg2 @MSG1[3],@MSG1[0] pxor @MSG0[3],@MSG0[1] sha1msg1 @MSG0[3],@MSG0[2] pxor @MSG1[3],@MSG1[1] sha1msg1 @MSG1[3],@MSG1[2] ___ ($E0,$E0_)=($E0_,$E0); ($E1,$E1_)=($E1_,$E1); push(@MSG0,shift(@MSG0)); push(@MSG1,shift(@MSG1)); } $code.=<<___; movdqa $ABCD0,$E0_ movdqa $ABCD1,$E1_ sha1rnds4 \$3,$E0,$ABCD0 # 64-67 sha1nexte @MSG0[3],$E0_ sha1rnds4 \$3,$E1,$ABCD1 # 64-67 sha1nexte @MSG1[3],$E1_ sha1msg2 @MSG0[3],@MSG0[0] sha1msg2 @MSG1[3],@MSG1[0] pxor @MSG0[3],@MSG0[1] pxor @MSG1[3],@MSG1[1] mov \$1,%ecx pxor @MSG0[2],@MSG0[2] # zero cmp 4*0(%rbx),%ecx # examine counters cmovge %rsp,@ptr[0] # cancel input movdqa $ABCD0,$E0 movdqa $ABCD1,$E1 sha1rnds4 \$3,$E0_,$ABCD0 # 68-71 sha1nexte @MSG0[0],$E0 sha1rnds4 \$3,$E1_,$ABCD1 # 68-71 sha1nexte @MSG1[0],$E1 sha1msg2 @MSG0[0],@MSG0[1] sha1msg2 @MSG1[0],@MSG1[1] cmp 4*1(%rbx),%ecx cmovge %rsp,@ptr[1] movq (%rbx),@MSG0[0] # pull counters movdqa $ABCD0,$E0_ movdqa $ABCD1,$E1_ sha1rnds4 \$3,$E0,$ABCD0 # 72-75 sha1nexte @MSG0[1],$E0_ sha1rnds4 \$3,$E1,$ABCD1 # 72-75 sha1nexte @MSG1[1],$E1_ pshufd \$0x00,@MSG0[0],@MSG1[2] pshufd \$0x55,@MSG0[0],@MSG1[3] movdqa @MSG0[0],@MSG0[1] pcmpgtd @MSG0[2],@MSG1[2] pcmpgtd @MSG0[2],@MSG1[3] movdqa $ABCD0,$E0 movdqa $ABCD1,$E1 sha1rnds4 \$3,$E0_,$ABCD0 # 76-79 sha1nexte $MSG0[2],$E0 sha1rnds4 \$3,$E1_,$ABCD1 # 76-79 sha1nexte $MSG0[2],$E1 pcmpgtd @MSG0[2],@MSG0[1] # counter mask pand @MSG1[2],$ABCD0 pand @MSG1[2],$E0 pand @MSG1[3],$ABCD1 pand @MSG1[3],$E1 paddd @MSG0[1],@MSG0[0] # counters-- paddd 0x40(%rsp),$ABCD0 paddd 0x50(%rsp),$E0 paddd 0x60(%rsp),$ABCD1 paddd 0x70(%rsp),$E1 movq @MSG0[0],(%rbx) # save counters dec $num jnz .Loop_shaext mov `$REG_SZ*17+8`(%rsp),$num pshufd \$0b00011011,$ABCD0,$ABCD0 pshufd \$0b00011011,$ABCD1,$ABCD1 movdqa $ABCD0,@MSG0[0] punpckldq $ABCD1,$ABCD0 # b1.b0.a1.a0 punpckhdq $ABCD1,@MSG0[0] # d1.d0.c1.c0 punpckhdq $E1,$E0 # e1.e0.xx.xx movq $ABCD0,0x00-0x40($ctx) # a1.a0 psrldq \$8,$ABCD0 movq @MSG0[0],0x40-0x40($ctx)# c1.c0 psrldq \$8,@MSG0[0] movq $ABCD0,0x20-0x40($ctx) # b1.b0 psrldq \$8,$E0 movq @MSG0[0],0x60-0x40($ctx)# d1.d0 movq $E0,0x80-0x40($ctx) # e1.e0 lea `$REG_SZ/2`($ctx),$ctx lea `16*2`($inp),$inp dec $num jnz .Loop_grande_shaext .Ldone_shaext: #mov `$REG_SZ*17`(%rsp),%rax # original %rsp ___ $code.=<<___ if ($win64); movaps -0xb8(%rax),%xmm6 movaps -0xa8(%rax),%xmm7 movaps -0x98(%rax),%xmm8 movaps -0x88(%rax),%xmm9 movaps -0x78(%rax),%xmm10 movaps -0x68(%rax),%xmm11 movaps -0x58(%rax),%xmm12 movaps -0x48(%rax),%xmm13 movaps -0x38(%rax),%xmm14 movaps -0x28(%rax),%xmm15 ___ $code.=<<___; mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue_shaext: ret .cfi_endproc .size sha1_multi_block_shaext,.-sha1_multi_block_shaext ___ }}} if ($avx) {{{ sub BODY_00_19_avx { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; my $k=$i+2; my $vpack = $REG_SZ==16 ? "vpunpckldq" : "vinserti128"; my $ptr_n = $REG_SZ==16 ? @ptr[1] : @ptr[4]; $code.=<<___ if ($i==0 && $REG_SZ==16); vmovd (@ptr[0]),@Xi[0] lea `16*4`(@ptr[0]),@ptr[0] vmovd (@ptr[1]),@Xi[2] # borrow Xi[2] lea `16*4`(@ptr[1]),@ptr[1] vpinsrd \$1,(@ptr[2]),@Xi[0],@Xi[0] lea `16*4`(@ptr[2]),@ptr[2] vpinsrd \$1,(@ptr[3]),@Xi[2],@Xi[2] lea `16*4`(@ptr[3]),@ptr[3] vmovd `4*$j-16*4`(@ptr[0]),@Xi[1] vpunpckldq @Xi[2],@Xi[0],@Xi[0] vmovd `4*$j-16*4`($ptr_n),$t3 vpshufb $tx,@Xi[0],@Xi[0] ___ $code.=<<___ if ($i<15 && $REG_SZ==16); # just load input vpinsrd \$1,`4*$j-16*4`(@ptr[2]),@Xi[1],@Xi[1] vpinsrd \$1,`4*$j-16*4`(@ptr[3]),$t3,$t3 ___ $code.=<<___ if ($i==0 && $REG_SZ==32); vmovd (@ptr[0]),@Xi[0] lea `16*4`(@ptr[0]),@ptr[0] vmovd (@ptr[4]),@Xi[2] # borrow Xi[2] lea `16*4`(@ptr[4]),@ptr[4] vmovd (@ptr[1]),$t2 lea `16*4`(@ptr[1]),@ptr[1] vmovd (@ptr[5]),$t1 lea `16*4`(@ptr[5]),@ptr[5] vpinsrd \$1,(@ptr[2]),@Xi[0],@Xi[0] lea `16*4`(@ptr[2]),@ptr[2] vpinsrd \$1,(@ptr[6]),@Xi[2],@Xi[2] lea `16*4`(@ptr[6]),@ptr[6] vpinsrd \$1,(@ptr[3]),$t2,$t2 lea `16*4`(@ptr[3]),@ptr[3] vpunpckldq $t2,@Xi[0],@Xi[0] vpinsrd \$1,(@ptr[7]),$t1,$t1 lea `16*4`(@ptr[7]),@ptr[7] vpunpckldq $t1,@Xi[2],@Xi[2] vmovd `4*$j-16*4`(@ptr[0]),@Xi[1] vinserti128 @Xi[2],@Xi[0],@Xi[0] vmovd `4*$j-16*4`($ptr_n),$t3 vpshufb $tx,@Xi[0],@Xi[0] ___ $code.=<<___ if ($i<15 && $REG_SZ==32); # just load input vmovd `4*$j-16*4`(@ptr[1]),$t2 vmovd `4*$j-16*4`(@ptr[5]),$t1 vpinsrd \$1,`4*$j-16*4`(@ptr[2]),@Xi[1],@Xi[1] vpinsrd \$1,`4*$j-16*4`(@ptr[6]),$t3,$t3 vpinsrd \$1,`4*$j-16*4`(@ptr[3]),$t2,$t2 vpunpckldq $t2,@Xi[1],@Xi[1] vpinsrd \$1,`4*$j-16*4`(@ptr[7]),$t1,$t1 vpunpckldq $t1,$t3,$t3 ___ $code.=<<___ if ($i<14); vpaddd $K,$e,$e # e+=K_00_19 vpslld \$5,$a,$t2 vpandn $d,$b,$t1 vpand $c,$b,$t0 vmovdqa @Xi[0],`&Xi_off($i)` vpaddd @Xi[0],$e,$e # e+=X[i] $vpack $t3,@Xi[1],@Xi[1] vpsrld \$27,$a,$t3 vpxor $t1,$t0,$t0 # Ch(b,c,d) vmovd `4*$k-16*4`(@ptr[0]),@Xi[2] vpslld \$30,$b,$t1 vpor $t3,$t2,$t2 # rol(a,5) vmovd `4*$k-16*4`($ptr_n),$t3 vpaddd $t0,$e,$e # e+=Ch(b,c,d) vpsrld \$2,$b,$b vpaddd $t2,$e,$e # e+=rol(a,5) vpshufb $tx,@Xi[1],@Xi[1] vpor $t1,$b,$b # b=rol(b,30) ___ $code.=<<___ if ($i==14); vpaddd $K,$e,$e # e+=K_00_19 prefetcht0 63(@ptr[0]) vpslld \$5,$a,$t2 vpandn $d,$b,$t1 vpand $c,$b,$t0 vmovdqa @Xi[0],`&Xi_off($i)` vpaddd @Xi[0],$e,$e # e+=X[i] $vpack $t3,@Xi[1],@Xi[1] vpsrld \$27,$a,$t3 prefetcht0 63(@ptr[1]) vpxor $t1,$t0,$t0 # Ch(b,c,d) vpslld \$30,$b,$t1 vpor $t3,$t2,$t2 # rol(a,5) prefetcht0 63(@ptr[2]) vpaddd $t0,$e,$e # e+=Ch(b,c,d) vpsrld \$2,$b,$b vpaddd $t2,$e,$e # e+=rol(a,5) prefetcht0 63(@ptr[3]) vpshufb $tx,@Xi[1],@Xi[1] vpor $t1,$b,$b # b=rol(b,30) ___ $code.=<<___ if ($i>=13 && $i<15); vmovdqa `&Xi_off($j+2)`,@Xi[3] # preload "X[2]" ___ $code.=<<___ if ($i>=15); # apply Xupdate vpxor @Xi[-2],@Xi[1],@Xi[1] # "X[13]" vmovdqa `&Xi_off($j+2)`,@Xi[3] # "X[2]" vpaddd $K,$e,$e # e+=K_00_19 vpslld \$5,$a,$t2 vpandn $d,$b,$t1 `"prefetcht0 63(@ptr[4])" if ($i==15 && $REG_SZ==32)` vpand $c,$b,$t0 vmovdqa @Xi[0],`&Xi_off($i)` vpaddd @Xi[0],$e,$e # e+=X[i] vpxor `&Xi_off($j+8)`,@Xi[1],@Xi[1] vpsrld \$27,$a,$t3 vpxor $t1,$t0,$t0 # Ch(b,c,d) vpxor @Xi[3],@Xi[1],@Xi[1] `"prefetcht0 63(@ptr[5])" if ($i==15 && $REG_SZ==32)` vpslld \$30,$b,$t1 vpor $t3,$t2,$t2 # rol(a,5) vpaddd $t0,$e,$e # e+=Ch(b,c,d) `"prefetcht0 63(@ptr[6])" if ($i==15 && $REG_SZ==32)` vpsrld \$31,@Xi[1],$tx vpaddd @Xi[1],@Xi[1],@Xi[1] vpsrld \$2,$b,$b `"prefetcht0 63(@ptr[7])" if ($i==15 && $REG_SZ==32)` vpaddd $t2,$e,$e # e+=rol(a,5) vpor $tx,@Xi[1],@Xi[1] # rol \$1,@Xi[1] vpor $t1,$b,$b # b=rol(b,30) ___ push(@Xi,shift(@Xi)); } sub BODY_20_39_avx { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); vpxor @Xi[-2],@Xi[1],@Xi[1] # "X[13]" vmovdqa `&Xi_off($j+2)`,@Xi[3] # "X[2]" vpslld \$5,$a,$t2 vpaddd $K,$e,$e # e+=K_20_39 vpxor $b,$d,$t0 ___ $code.=<<___ if ($i<72); vmovdqa @Xi[0],`&Xi_off($i)` ___ $code.=<<___ if ($i<79); vpaddd @Xi[0],$e,$e # e+=X[i] vpxor `&Xi_off($j+8)`,@Xi[1],@Xi[1] vpsrld \$27,$a,$t3 vpxor $c,$t0,$t0 # Parity(b,c,d) vpxor @Xi[3],@Xi[1],@Xi[1] vpslld \$30,$b,$t1 vpor $t3,$t2,$t2 # rol(a,5) vpaddd $t0,$e,$e # e+=Parity(b,c,d) vpsrld \$31,@Xi[1],$tx vpaddd @Xi[1],@Xi[1],@Xi[1] vpsrld \$2,$b,$b vpaddd $t2,$e,$e # e+=rol(a,5) vpor $tx,@Xi[1],@Xi[1] # rol(@Xi[1],1) vpor $t1,$b,$b # b=rol(b,30) ___ $code.=<<___ if ($i==79); vpslld \$5,$a,$t2 vpaddd $K,$e,$e # e+=K_20_39 vpxor $b,$d,$t0 vpsrld \$27,$a,$t3 vpaddd @Xi[0],$e,$e # e+=X[i] vpxor $c,$t0,$t0 # Parity(b,c,d) vpslld \$30,$b,$t1 vpor $t3,$t2,$t2 # rol(a,5) vpaddd $t0,$e,$e # e+=Parity(b,c,d) vpsrld \$2,$b,$b vpaddd $t2,$e,$e # e+=rol(a,5) vpor $t1,$b,$b # b=rol(b,30) ___ push(@Xi,shift(@Xi)); } sub BODY_40_59_avx { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___; vpxor @Xi[-2],@Xi[1],@Xi[1] # "X[13]" vmovdqa `&Xi_off($j+2)`,@Xi[3] # "X[2]" vpaddd $K,$e,$e # e+=K_40_59 vpslld \$5,$a,$t2 vpand $c,$d,$t1 vpxor `&Xi_off($j+8)`,@Xi[1],@Xi[1] vpaddd $t1,$e,$e vpsrld \$27,$a,$t3 vpxor $c,$d,$t0 vpxor @Xi[3],@Xi[1],@Xi[1] vmovdqu @Xi[0],`&Xi_off($i)` vpaddd @Xi[0],$e,$e # e+=X[i] vpor $t3,$t2,$t2 # rol(a,5) vpsrld \$31,@Xi[1],$tx vpand $b,$t0,$t0 vpaddd @Xi[1],@Xi[1],@Xi[1] vpslld \$30,$b,$t1 vpaddd $t0,$e,$e # e+=Maj(b,d,c) vpsrld \$2,$b,$b vpaddd $t2,$e,$e # e+=rol(a,5) vpor $tx,@Xi[1],@Xi[1] # rol(@X[1],1) vpor $t1,$b,$b # b=rol(b,30) ___ push(@Xi,shift(@Xi)); } $code.=<<___; .type sha1_multi_block_avx,\@function,3 .align 32 sha1_multi_block_avx: .cfi_startproc _avx_shortcut: ___ $code.=<<___ if ($avx>1); shr \$32,%rcx cmp \$2,$num jb .Lavx test \$`1<<5`,%ecx jnz _avx2_shortcut jmp .Lavx .align 32 .Lavx: ___ $code.=<<___; mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,-0x78(%rax) movaps %xmm11,-0x68(%rax) movaps %xmm12,-0x58(%rax) movaps %xmm13,-0x48(%rax) movaps %xmm14,-0x38(%rax) movaps %xmm15,-0x28(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`, %rsp and \$-256,%rsp mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .cfi_cfa_expression %rsp+`$REG_SZ*17`,deref,+8 .Lbody_avx: lea K_XX_XX(%rip),$Tbl lea `$REG_SZ*16`(%rsp),%rbx vzeroupper .Loop_grande_avx: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num ___ for($i=0;$i<4;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Ldone_avx vmovdqu 0x00($ctx),$A # load context lea 128(%rsp),%rax vmovdqu 0x20($ctx),$B vmovdqu 0x40($ctx),$C vmovdqu 0x60($ctx),$D vmovdqu 0x80($ctx),$E vmovdqu 0x60($Tbl),$tx # pbswap_mask jmp .Loop_avx .align 32 .Loop_avx: ___ $code.=" vmovdqa -0x20($Tbl),$K\n"; # K_00_19 for($i=0;$i<20;$i++) { &BODY_00_19_avx($i,@V); unshift(@V,pop(@V)); } $code.=" vmovdqa 0x00($Tbl),$K\n"; # K_20_39 for(;$i<40;$i++) { &BODY_20_39_avx($i,@V); unshift(@V,pop(@V)); } $code.=" vmovdqa 0x20($Tbl),$K\n"; # K_40_59 for(;$i<60;$i++) { &BODY_40_59_avx($i,@V); unshift(@V,pop(@V)); } $code.=" vmovdqa 0x40($Tbl),$K\n"; # K_60_79 for(;$i<80;$i++) { &BODY_20_39_avx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; mov \$1,%ecx ___ for($i=0;$i<4;$i++) { $code.=<<___; cmp `4*$i`(%rbx),%ecx # examine counters cmovge $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; vmovdqu (%rbx),$t0 # pull counters vpxor $t2,$t2,$t2 vmovdqa $t0,$t1 vpcmpgtd $t2,$t1,$t1 # mask value vpaddd $t1,$t0,$t0 # counters-- vpand $t1,$A,$A vpand $t1,$B,$B vpaddd 0x00($ctx),$A,$A vpand $t1,$C,$C vpaddd 0x20($ctx),$B,$B vpand $t1,$D,$D vpaddd 0x40($ctx),$C,$C vpand $t1,$E,$E vpaddd 0x60($ctx),$D,$D vpaddd 0x80($ctx),$E,$E vmovdqu $A,0x00($ctx) vmovdqu $B,0x20($ctx) vmovdqu $C,0x40($ctx) vmovdqu $D,0x60($ctx) vmovdqu $E,0x80($ctx) vmovdqu $t0,(%rbx) # save counters vmovdqu 0x60($Tbl),$tx # pbswap_mask dec $num jnz .Loop_avx mov `$REG_SZ*17+8`(%rsp),$num lea $REG_SZ($ctx),$ctx lea `16*$REG_SZ/4`($inp),$inp dec $num jnz .Loop_grande_avx .Ldone_avx: mov `$REG_SZ*17`(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 vzeroupper ___ $code.=<<___ if ($win64); movaps -0xb8(%rax),%xmm6 movaps -0xa8(%rax),%xmm7 movaps -0x98(%rax),%xmm8 movaps -0x88(%rax),%xmm9 movaps -0x78(%rax),%xmm10 movaps -0x68(%rax),%xmm11 movaps -0x58(%rax),%xmm12 movaps -0x48(%rax),%xmm13 movaps -0x38(%rax),%xmm14 movaps -0x28(%rax),%xmm15 ___ $code.=<<___; mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx: ret .cfi_endproc .size sha1_multi_block_avx,.-sha1_multi_block_avx ___ if ($avx>1) { $code =~ s/\`([^\`]*)\`/eval $1/gem; $REG_SZ=32; @ptr=map("%r$_",(12..15,8..11)); @V=($A,$B,$C,$D,$E)=map("%ymm$_",(0..4)); ($t0,$t1,$t2,$t3,$tx)=map("%ymm$_",(5..9)); @Xi=map("%ymm$_",(10..14)); $K="%ymm15"; $code.=<<___; .type sha1_multi_block_avx2,\@function,3 .align 32 sha1_multi_block_avx2: .cfi_startproc _avx2_shortcut: mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,-0x78(%rax) movaps %xmm13,-0x68(%rax) movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`, %rsp and \$-256,%rsp mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .cfi_cfa_expression %rsp+`$REG_SZ*17`,deref,+8 .Lbody_avx2: lea K_XX_XX(%rip),$Tbl shr \$1,$num vzeroupper .Loop_grande_avx2: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num lea `$REG_SZ*16`(%rsp),%rbx ___ for($i=0;$i<8;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; vmovdqu 0x00($ctx),$A # load context lea 128(%rsp),%rax vmovdqu 0x20($ctx),$B lea 256+128(%rsp),%rbx vmovdqu 0x40($ctx),$C vmovdqu 0x60($ctx),$D vmovdqu 0x80($ctx),$E vmovdqu 0x60($Tbl),$tx # pbswap_mask jmp .Loop_avx2 .align 32 .Loop_avx2: ___ $code.=" vmovdqa -0x20($Tbl),$K\n"; # K_00_19 for($i=0;$i<20;$i++) { &BODY_00_19_avx($i,@V); unshift(@V,pop(@V)); } $code.=" vmovdqa 0x00($Tbl),$K\n"; # K_20_39 for(;$i<40;$i++) { &BODY_20_39_avx($i,@V); unshift(@V,pop(@V)); } $code.=" vmovdqa 0x20($Tbl),$K\n"; # K_40_59 for(;$i<60;$i++) { &BODY_40_59_avx($i,@V); unshift(@V,pop(@V)); } $code.=" vmovdqa 0x40($Tbl),$K\n"; # K_60_79 for(;$i<80;$i++) { &BODY_20_39_avx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; mov \$1,%ecx lea `$REG_SZ*16`(%rsp),%rbx ___ for($i=0;$i<8;$i++) { $code.=<<___; cmp `4*$i`(%rbx),%ecx # examine counters cmovge $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; vmovdqu (%rbx),$t0 # pull counters vpxor $t2,$t2,$t2 vmovdqa $t0,$t1 vpcmpgtd $t2,$t1,$t1 # mask value vpaddd $t1,$t0,$t0 # counters-- vpand $t1,$A,$A vpand $t1,$B,$B vpaddd 0x00($ctx),$A,$A vpand $t1,$C,$C vpaddd 0x20($ctx),$B,$B vpand $t1,$D,$D vpaddd 0x40($ctx),$C,$C vpand $t1,$E,$E vpaddd 0x60($ctx),$D,$D vpaddd 0x80($ctx),$E,$E vmovdqu $A,0x00($ctx) vmovdqu $B,0x20($ctx) vmovdqu $C,0x40($ctx) vmovdqu $D,0x60($ctx) vmovdqu $E,0x80($ctx) vmovdqu $t0,(%rbx) # save counters lea 256+128(%rsp),%rbx vmovdqu 0x60($Tbl),$tx # pbswap_mask dec $num jnz .Loop_avx2 #mov `$REG_SZ*17+8`(%rsp),$num #lea $REG_SZ($ctx),$ctx #lea `16*$REG_SZ/4`($inp),$inp #dec $num #jnz .Loop_grande_avx2 .Ldone_avx2: mov `$REG_SZ*17`(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 vzeroupper ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx2: ret .cfi_endproc .size sha1_multi_block_avx2,.-sha1_multi_block_avx2 ___ } }}} $code.=<<___; .align 256 .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19 .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19 K_XX_XX: .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap .byte 0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0 .asciz "SHA1 multi-block transform for x86_64, CRYPTOGAMS by " ___ if ($win64) { # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->Rip<.Lbody jb .Lin_prologue mov 152($context),%rax # pull context->Rsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lin_prologue mov `16*17`(%rax),%rax # pull saved stack pointer mov -8(%rax),%rbx mov -16(%rax),%rbp mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp lea -24-10*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler ___ $code.=<<___ if ($avx>1); .type avx2_handler,\@abi-omnipotent .align 16 avx2_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue mov `32*17`($context),%rax # pull saved stack pointer mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 lea -56-10*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq jmp .Lin_prologue .size avx2_handler,.-avx2_handler ___ $code.=<<___; .section .pdata .align 4 .rva .LSEH_begin_sha1_multi_block .rva .LSEH_end_sha1_multi_block .rva .LSEH_info_sha1_multi_block .rva .LSEH_begin_sha1_multi_block_shaext .rva .LSEH_end_sha1_multi_block_shaext .rva .LSEH_info_sha1_multi_block_shaext ___ $code.=<<___ if ($avx); .rva .LSEH_begin_sha1_multi_block_avx .rva .LSEH_end_sha1_multi_block_avx .rva .LSEH_info_sha1_multi_block_avx ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_sha1_multi_block_avx2 .rva .LSEH_end_sha1_multi_block_avx2 .rva .LSEH_info_sha1_multi_block_avx2 ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_sha1_multi_block: .byte 9,0,0,0 .rva se_handler .rva .Lbody,.Lepilogue # HandlerData[] .LSEH_info_sha1_multi_block_shaext: .byte 9,0,0,0 .rva se_handler .rva .Lbody_shaext,.Lepilogue_shaext # HandlerData[] ___ $code.=<<___ if ($avx); .LSEH_info_sha1_multi_block_avx: .byte 9,0,0,0 .rva se_handler .rva .Lbody_avx,.Lepilogue_avx # HandlerData[] ___ $code.=<<___ if ($avx>1); .LSEH_info_sha1_multi_block_avx2: .byte 9,0,0,0 .rva avx2_handler .rva .Lbody_avx2,.Lepilogue_avx2 # HandlerData[] ___ } #################################################################### sub rex { local *opcode=shift; my ($dst,$src)=@_; my $rex=0; $rex|=0x04 if ($dst>=8); $rex|=0x01 if ($src>=8); unshift @opcode,$rex|0x40 if ($rex); } sub sha1rnds4 { if (@_[0] =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x3a,0xcc); rex(\@opcode,$3,$2); push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M my $c=$1; push @opcode,$c=~/^0/?oct($c):$c; return ".byte\t".join(',',@opcode); } else { return "sha1rnds4\t".@_[0]; } } sub sha1op38 { my $instr = shift; my %opcodelet = ( "sha1nexte" => 0xc8, "sha1msg1" => 0xc9, "sha1msg2" => 0xca ); if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x38); rex(\@opcode,$2,$1); push @opcode,$opcodelet{$instr}; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } else { return $instr."\t".@_[0]; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/\b(sha1rnds4)\s+(.*)/sha1rnds4($2)/geo or s/\b(sha1[^\s]*)\s+(.*)/sha1op38($1,$2)/geo or s/\b(vmov[dq])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vmovdqu)\b(.+)%x%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpinsr[qd])\b(.+)%ymm([0-9]+),%ymm([0-9]+)/$1$2%xmm$3,%xmm$4/go or s/\b(vpextr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vinserti128)\b(\s+)%ymm/$1$2\$1,%xmm/go or s/\b(vpbroadcast[qd]\s+)%ymm([0-9]+)/$1%xmm$2/go; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-mips.pl000066400000000000000000000247631364063235100203740ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA1 block procedure for MIPS. # Performance improvement is 30% on unaligned input. The "secret" is # to deploy lwl/lwr pair to load unaligned input. One could have # vectorized Xupdate on MIPSIII/IV, but the goal was to code MIPS32- # compatible subroutine. There is room for minor optimization on # little-endian platforms... # September 2012. # # Add MIPS32r2 code (>25% less instructions). ###################################################################### # There is a number of MIPS ABI in use, O32 and N32/64 are most # widely used. Then there is a new contender: NUBI. It appears that if # one picks the latter, it's possible to arrange code in ABI neutral # manner. Therefore let's stick to NUBI register layout: # ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); # # The return value is placed in $a0. Following coding rules facilitate # interoperability: # # - never ever touch $tp, "thread pointer", former $gp; # - copy return value to $t0, former $v0 [or to $a0 if you're adapting # old code]; # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; # # For reference here is register layout for N32/64 MIPS ABIs: # # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); # $flavour = shift || "o32"; # supported flavours are o32,n32,64,nubi32,nubi64 if ($flavour =~ /64|n32/i) { $PTR_ADD="daddu"; # incidentally works even on n32 $PTR_SUB="dsubu"; # incidentally works even on n32 $REG_S="sd"; $REG_L="ld"; $PTR_SLL="dsll"; # incidentally works even on n32 $SZREG=8; } else { $PTR_ADD="addu"; $PTR_SUB="subu"; $REG_S="sw"; $REG_L="lw"; $PTR_SLL="sll"; $SZREG=4; } # # # ###################################################################### $big_endian=(`echo MIPSEB | $ENV{CC} -E -`=~/MIPSEB/)?0:1 if ($ENV{CC}); for (@ARGV) { $output=$_ if (/\w[\w\-]*\.\w+$/); } open STDOUT,">$output"; if (!defined($big_endian)) { $big_endian=(unpack('L',pack('N',1))==1); } # offsets of the Most and Least Significant Bytes $MSB=$big_endian?0:3; $LSB=3&~$MSB; @X=map("\$$_",(8..23)); # a4-a7,s0-s11 $ctx=$a0; $inp=$a1; $num=$a2; $A="\$1"; $B="\$2"; $C="\$3"; $D="\$7"; $E="\$24"; @V=($A,$B,$C,$D,$E); $t0="\$25"; $t1=$num; # $num is offloaded to stack $t2="\$30"; # fp $K="\$31"; # ra sub BODY_00_14 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if (!$big_endian); #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) wsbh @X[$i],@X[$i] # byte swap($i) rotr @X[$i],@X[$i],16 #else srl $t0,@X[$i],24 # byte swap($i) srl $t1,@X[$i],8 andi $t2,@X[$i],0xFF00 sll @X[$i],@X[$i],24 andi $t1,0xFF00 sll $t2,$t2,8 or @X[$i],$t0 or $t1,$t2 or @X[$i],$t1 #endif ___ $code.=<<___; #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) addu $e,$K # $i xor $t0,$c,$d rotr $t1,$a,27 and $t0,$b addu $e,$t1 #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) lw @X[$j],$j*4($inp) #else lwl @X[$j],$j*4+$MSB($inp) lwr @X[$j],$j*4+$LSB($inp) #endif xor $t0,$d addu $e,@X[$i] rotr $b,$b,2 addu $e,$t0 #else lwl @X[$j],$j*4+$MSB($inp) sll $t0,$a,5 # $i addu $e,$K lwr @X[$j],$j*4+$LSB($inp) srl $t1,$a,27 addu $e,$t0 xor $t0,$c,$d addu $e,$t1 sll $t2,$b,30 and $t0,$b srl $b,$b,2 xor $t0,$d addu $e,@X[$i] or $b,$t2 addu $e,$t0 #endif ___ } sub BODY_15_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if (!$big_endian && $i==15); #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) wsbh @X[$i],@X[$i] # byte swap($i) rotr @X[$i],@X[$i],16 #else srl $t0,@X[$i],24 # byte swap($i) srl $t1,@X[$i],8 andi $t2,@X[$i],0xFF00 sll @X[$i],@X[$i],24 andi $t1,0xFF00 sll $t2,$t2,8 or @X[$i],$t0 or @X[$i],$t1 or @X[$i],$t2 #endif ___ $code.=<<___; #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) addu $e,$K # $i xor @X[$j%16],@X[($j+2)%16] xor $t0,$c,$d rotr $t1,$a,27 xor @X[$j%16],@X[($j+8)%16] and $t0,$b addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] xor $t0,$d addu $e,@X[$i%16] rotr @X[$j%16],@X[$j%16],31 rotr $b,$b,2 addu $e,$t0 #else xor @X[$j%16],@X[($j+2)%16] sll $t0,$a,5 # $i addu $e,$K srl $t1,$a,27 addu $e,$t0 xor @X[$j%16],@X[($j+8)%16] xor $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] sll $t2,$b,30 and $t0,$b srl $t1,@X[$j%16],31 addu @X[$j%16],@X[$j%16] srl $b,$b,2 xor $t0,$d or @X[$j%16],$t1 addu $e,@X[$i%16] or $b,$t2 addu $e,$t0 #endif ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) xor @X[$j%16],@X[($j+2)%16] addu $e,$K # $i rotr $t1,$a,27 xor @X[$j%16],@X[($j+8)%16] xor $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] xor $t0,$b addu $e,@X[$i%16] rotr @X[$j%16],@X[$j%16],31 rotr $b,$b,2 addu $e,$t0 #else xor @X[$j%16],@X[($j+2)%16] sll $t0,$a,5 # $i addu $e,$K srl $t1,$a,27 addu $e,$t0 xor @X[$j%16],@X[($j+8)%16] xor $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] sll $t2,$b,30 xor $t0,$b srl $t1,@X[$j%16],31 addu @X[$j%16],@X[$j%16] srl $b,$b,2 addu $e,@X[$i%16] or @X[$j%16],$t1 or $b,$t2 addu $e,$t0 #endif ___ $code.=<<___ if ($i==79); #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) lw @X[0],0($ctx) addu $e,$K # $i lw @X[1],4($ctx) rotr $t1,$a,27 lw @X[2],8($ctx) xor $t0,$c,$d addu $e,$t1 lw @X[3],12($ctx) xor $t0,$b addu $e,@X[$i%16] lw @X[4],16($ctx) rotr $b,$b,2 addu $e,$t0 #else lw @X[0],0($ctx) sll $t0,$a,5 # $i addu $e,$K lw @X[1],4($ctx) srl $t1,$a,27 addu $e,$t0 lw @X[2],8($ctx) xor $t0,$c,$d addu $e,$t1 lw @X[3],12($ctx) sll $t2,$b,30 xor $t0,$b lw @X[4],16($ctx) srl $b,$b,2 addu $e,@X[$i%16] or $b,$t2 addu $e,$t0 #endif ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) addu $e,$K # $i and $t0,$c,$d xor @X[$j%16],@X[($j+2)%16] rotr $t1,$a,27 addu $e,$t0 xor @X[$j%16],@X[($j+8)%16] xor $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] and $t0,$b addu $e,@X[$i%16] rotr @X[$j%16],@X[$j%16],31 rotr $b,$b,2 addu $e,$t0 #else xor @X[$j%16],@X[($j+2)%16] sll $t0,$a,5 # $i addu $e,$K srl $t1,$a,27 addu $e,$t0 xor @X[$j%16],@X[($j+8)%16] and $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] sll $t2,$b,30 addu $e,$t0 srl $t1,@X[$j%16],31 xor $t0,$c,$d addu @X[$j%16],@X[$j%16] and $t0,$b srl $b,$b,2 or @X[$j%16],$t1 addu $e,@X[$i%16] or $b,$t2 addu $e,$t0 #endif ___ } $FRAMESIZE=16; # large enough to accommodate NUBI saved registers $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? "0xc0fff008" : "0xc0ff0000"; $code=<<___; #include "mips_arch.h" .text .set noat .set noreorder .align 5 .globl sha1_block_data_order .ent sha1_block_data_order sha1_block_data_order: .frame $sp,$FRAMESIZE*$SZREG,$ra .mask $SAVED_REGS_MASK,-$SZREG .set noreorder $PTR_SUB $sp,$FRAMESIZE*$SZREG $REG_S $ra,($FRAMESIZE-1)*$SZREG($sp) $REG_S $fp,($FRAMESIZE-2)*$SZREG($sp) $REG_S $s11,($FRAMESIZE-3)*$SZREG($sp) $REG_S $s10,($FRAMESIZE-4)*$SZREG($sp) $REG_S $s9,($FRAMESIZE-5)*$SZREG($sp) $REG_S $s8,($FRAMESIZE-6)*$SZREG($sp) $REG_S $s7,($FRAMESIZE-7)*$SZREG($sp) $REG_S $s6,($FRAMESIZE-8)*$SZREG($sp) $REG_S $s5,($FRAMESIZE-9)*$SZREG($sp) $REG_S $s4,($FRAMESIZE-10)*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue $REG_S $s3,($FRAMESIZE-11)*$SZREG($sp) $REG_S $s2,($FRAMESIZE-12)*$SZREG($sp) $REG_S $s1,($FRAMESIZE-13)*$SZREG($sp) $REG_S $s0,($FRAMESIZE-14)*$SZREG($sp) $REG_S $gp,($FRAMESIZE-15)*$SZREG($sp) ___ $code.=<<___; $PTR_SLL $num,6 $PTR_ADD $num,$inp $REG_S $num,0($sp) lw $A,0($ctx) lw $B,4($ctx) lw $C,8($ctx) lw $D,12($ctx) b .Loop lw $E,16($ctx) .align 4 .Loop: .set reorder #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) lui $K,0x5a82 lw @X[0],($inp) ori $K,0x7999 # K_00_19 #else lwl @X[0],$MSB($inp) lui $K,0x5a82 lwr @X[0],$LSB($inp) ori $K,0x7999 # K_00_19 #endif ___ for ($i=0;$i<15;$i++) { &BODY_00_14($i,@V); unshift(@V,pop(@V)); } for (;$i<20;$i++) { &BODY_15_19($i,@V); unshift(@V,pop(@V)); } $code.=<<___; lui $K,0x6ed9 ori $K,0xeba1 # K_20_39 ___ for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; lui $K,0x8f1b ori $K,0xbcdc # K_40_59 ___ for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } $code.=<<___; lui $K,0xca62 ori $K,0xc1d6 # K_60_79 ___ for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; $PTR_ADD $inp,64 $REG_L $num,0($sp) addu $A,$X[0] addu $B,$X[1] sw $A,0($ctx) addu $C,$X[2] addu $D,$X[3] sw $B,4($ctx) addu $E,$X[4] sw $C,8($ctx) sw $D,12($ctx) sw $E,16($ctx) .set noreorder bne $inp,$num,.Loop nop .set noreorder $REG_L $ra,($FRAMESIZE-1)*$SZREG($sp) $REG_L $fp,($FRAMESIZE-2)*$SZREG($sp) $REG_L $s11,($FRAMESIZE-3)*$SZREG($sp) $REG_L $s10,($FRAMESIZE-4)*$SZREG($sp) $REG_L $s9,($FRAMESIZE-5)*$SZREG($sp) $REG_L $s8,($FRAMESIZE-6)*$SZREG($sp) $REG_L $s7,($FRAMESIZE-7)*$SZREG($sp) $REG_L $s6,($FRAMESIZE-8)*$SZREG($sp) $REG_L $s5,($FRAMESIZE-9)*$SZREG($sp) $REG_L $s4,($FRAMESIZE-10)*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $s3,($FRAMESIZE-11)*$SZREG($sp) $REG_L $s2,($FRAMESIZE-12)*$SZREG($sp) $REG_L $s1,($FRAMESIZE-13)*$SZREG($sp) $REG_L $s0,($FRAMESIZE-14)*$SZREG($sp) $REG_L $gp,($FRAMESIZE-15)*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE*$SZREG .end sha1_block_data_order .rdata .asciiz "SHA1 for MIPS, CRYPTOGAMS by " ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-parisc.pl000066400000000000000000000153251364063235100206770ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA1 block procedure for PA-RISC. # June 2009. # # On PA-7100LC performance is >30% better than gcc 3.2 generated code # for aligned input and >50% better for unaligned. Compared to vendor # compiler on PA-8600 it's almost 60% faster in 64-bit build and just # few percent faster in 32-bit one (this for aligned input, data for # unaligned input is not available). # # Special thanks to polarhome.com for providing HP-UX account. $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $FRAME_MARKER =80; $SAVED_RP =16; $PUSH ="std"; $PUSHMA ="std,ma"; $POP ="ldd"; $POPMB ="ldd,mb"; } else { $LEVEL ="1.0"; $SIZE_T =4; $FRAME_MARKER =48; $SAVED_RP =20; $PUSH ="stw"; $PUSHMA ="stwm"; $POP ="ldw"; $POPMB ="ldwm"; } $FRAME=14*$SIZE_T+$FRAME_MARKER;# 14 saved regs + frame marker # [+ argument transfer] $ctx="%r26"; # arg0 $inp="%r25"; # arg1 $num="%r24"; # arg2 $t0="%r28"; $t1="%r29"; $K="%r31"; @X=("%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", "%r8", "%r9", "%r10","%r11","%r12","%r13","%r14","%r15","%r16",$t0); @V=($A,$B,$C,$D,$E)=("%r19","%r20","%r21","%r22","%r23"); sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<15); addl $K,$e,$e ; $i shd $a,$a,27,$t1 addl @X[$i],$e,$e and $c,$b,$t0 addl $t1,$e,$e andcm $d,$b,$t1 shd $b,$b,2,$b or $t1,$t0,$t0 addl $t0,$e,$e ___ $code.=<<___ if ($i>=15); # with forward Xupdate addl $K,$e,$e ; $i shd $a,$a,27,$t1 xor @X[($j+2)%16],@X[$j%16],@X[$j%16] addl @X[$i%16],$e,$e and $c,$b,$t0 xor @X[($j+8)%16],@X[$j%16],@X[$j%16] addl $t1,$e,$e andcm $d,$b,$t1 shd $b,$b,2,$b or $t1,$t0,$t0 xor @X[($j+13)%16],@X[$j%16],@X[$j%16] add $t0,$e,$e shd @X[$j%16],@X[$j%16],31,@X[$j%16] ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); xor @X[($j+2)%16],@X[$j%16],@X[$j%16] ; $i addl $K,$e,$e shd $a,$a,27,$t1 xor @X[($j+8)%16],@X[$j%16],@X[$j%16] addl @X[$i%16],$e,$e xor $b,$c,$t0 xor @X[($j+13)%16],@X[$j%16],@X[$j%16] addl $t1,$e,$e shd $b,$b,2,$b xor $d,$t0,$t0 shd @X[$j%16],@X[$j%16],31,@X[$j%16] addl $t0,$e,$e ___ $code.=<<___ if ($i==79); # with context load ldw 0($ctx),@X[0] ; $i addl $K,$e,$e shd $a,$a,27,$t1 ldw 4($ctx),@X[1] addl @X[$i%16],$e,$e xor $b,$c,$t0 ldw 8($ctx),@X[2] addl $t1,$e,$e shd $b,$b,2,$b xor $d,$t0,$t0 ldw 12($ctx),@X[3] addl $t0,$e,$e ldw 16($ctx),@X[4] ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___; shd $a,$a,27,$t1 ; $i addl $K,$e,$e xor @X[($j+2)%16],@X[$j%16],@X[$j%16] xor $d,$c,$t0 addl @X[$i%16],$e,$e xor @X[($j+8)%16],@X[$j%16],@X[$j%16] and $b,$t0,$t0 addl $t1,$e,$e shd $b,$b,2,$b xor @X[($j+13)%16],@X[$j%16],@X[$j%16] addl $t0,$e,$e and $d,$c,$t1 shd @X[$j%16],@X[$j%16],31,@X[$j%16] addl $t1,$e,$e ___ } $code=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT sha1_block_data_order,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR sha1_block_data_order .PROC .CALLINFO FRAME=`$FRAME-14*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=16 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) $PUSH %r12,`-$FRAME+9*$SIZE_T`(%sp) $PUSH %r13,`-$FRAME+10*$SIZE_T`(%sp) $PUSH %r14,`-$FRAME+11*$SIZE_T`(%sp) $PUSH %r15,`-$FRAME+12*$SIZE_T`(%sp) $PUSH %r16,`-$FRAME+13*$SIZE_T`(%sp) ldw 0($ctx),$A ldw 4($ctx),$B ldw 8($ctx),$C ldw 12($ctx),$D ldw 16($ctx),$E extru $inp,31,2,$t0 ; t0=inp&3; sh3addl $t0,%r0,$t0 ; t0*=8; subi 32,$t0,$t0 ; t0=32-t0; mtctl $t0,%cr11 ; %sar=t0; L\$oop ldi 3,$t0 andcm $inp,$t0,$t0 ; 64-bit neutral ___ for ($i=0;$i<15;$i++) { # load input block $code.="\tldw `4*$i`($t0),@X[$i]\n"; } $code.=<<___; cmpb,*= $inp,$t0,L\$aligned ldw 60($t0),@X[15] ldw 64($t0),@X[16] ___ for ($i=0;$i<16;$i++) { # align input $code.="\tvshd @X[$i],@X[$i+1],@X[$i]\n"; } $code.=<<___; L\$aligned ldil L'0x5a827000,$K ; K_00_19 ldo 0x999($K),$K ___ for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } $code.=<<___; ldil L'0x6ed9e000,$K ; K_20_39 ldo 0xba1($K),$K ___ for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; ldil L'0x8f1bb000,$K ; K_40_59 ldo 0xcdc($K),$K ___ for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } $code.=<<___; ldil L'0xca62c000,$K ; K_60_79 ldo 0x1d6($K),$K ___ for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; addl @X[0],$A,$A addl @X[1],$B,$B addl @X[2],$C,$C addl @X[3],$D,$D addl @X[4],$E,$E stw $A,0($ctx) stw $B,4($ctx) stw $C,8($ctx) stw $D,12($ctx) stw $E,16($ctx) addib,*<> -1,$num,L\$oop ldo 64($inp),$inp $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 $POP `-$FRAME+9*$SIZE_T`(%sp),%r12 $POP `-$FRAME+10*$SIZE_T`(%sp),%r13 $POP `-$FRAME+11*$SIZE_T`(%sp),%r14 $POP `-$FRAME+12*$SIZE_T`(%sp),%r15 $POP `-$FRAME+13*$SIZE_T`(%sp),%r16 bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .STRINGZ "SHA1 block transform for PA-RISC, CRYPTOGAMS by " ___ if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler/) { $gnuas = 1; } foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/(\.LEVEL\s+2\.0)W/$1w/ if ($gnuas && $SIZE_T==8); s/\.SPACE\s+\$TEXT\$/.text/ if ($gnuas && $SIZE_T==8); s/\.SUBSPA.*// if ($gnuas && $SIZE_T==8); s/,\*/,/ if ($SIZE_T==4); s/\bbv\b/bve/ if ($SIZE_T==8); print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-ppc.pl000077500000000000000000000200231364063235100201720ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # I let hardware handle unaligned input(*), except on page boundaries # (see below for details). Otherwise straightforward implementation # with X vector in register bank. # # (*) this means that this module is inappropriate for PPC403? Does # anybody know if pre-POWER3 can sustain unaligned load? # -m64 -m32 # ---------------------------------- # PPC970,gcc-4.0.0 +76% +59% # Power6,xlc-7 +68% +33% $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $UCMP ="cmpld"; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $UCMP ="cmplw"; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; } else { die "nonsense $flavour"; } # Define endianness based on flavour # i.e.: linux64le $LITTLE_ENDIAN = ($flavour=~/le$/) ? $SIZE_T : 0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=24*$SIZE_T+64; $LOCALS=6*$SIZE_T; $K ="r0"; $sp ="r1"; $toc="r2"; $ctx="r3"; $inp="r4"; $num="r5"; $t0 ="r15"; $t1 ="r6"; $A ="r7"; $B ="r8"; $C ="r9"; $D ="r10"; $E ="r11"; $T ="r12"; @V=($A,$B,$C,$D,$E,$T); @X=("r16","r17","r18","r19","r20","r21","r22","r23", "r24","r25","r26","r27","r28","r29","r30","r31"); sub loadbe { my ($dst, $src, $temp_reg) = @_; $code.=<<___ if (!$LITTLE_ENDIAN); lwz $dst,$src ___ $code.=<<___ if ($LITTLE_ENDIAN); lwz $temp_reg,$src rotlwi $dst,$temp_reg,8 rlwimi $dst,$temp_reg,24,0,7 rlwimi $dst,$temp_reg,24,16,23 ___ } sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e,$f)=@_; my $j=$i+1; # Since the last value of $f is discarded, we can use # it as a temp reg to swap byte-order when needed. loadbe("@X[$i]","`$i*4`($inp)",$f) if ($i==0); loadbe("@X[$j]","`$j*4`($inp)",$f) if ($i<15); $code.=<<___ if ($i<15); add $f,$K,$e rotlwi $e,$a,5 add $f,$f,@X[$i] and $t0,$c,$b add $f,$f,$e andc $t1,$d,$b rotlwi $b,$b,30 or $t0,$t0,$t1 add $f,$f,$t0 ___ $code.=<<___ if ($i>=15); add $f,$K,$e rotlwi $e,$a,5 xor @X[$j%16],@X[$j%16],@X[($j+2)%16] add $f,$f,@X[$i%16] and $t0,$c,$b xor @X[$j%16],@X[$j%16],@X[($j+8)%16] add $f,$f,$e andc $t1,$d,$b rotlwi $b,$b,30 or $t0,$t0,$t1 xor @X[$j%16],@X[$j%16],@X[($j+13)%16] add $f,$f,$t0 rotlwi @X[$j%16],@X[$j%16],1 ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e,$f)=@_; my $j=$i+1; $code.=<<___ if ($i<79); add $f,$K,$e xor $t0,$b,$d rotlwi $e,$a,5 xor @X[$j%16],@X[$j%16],@X[($j+2)%16] add $f,$f,@X[$i%16] xor $t0,$t0,$c xor @X[$j%16],@X[$j%16],@X[($j+8)%16] add $f,$f,$t0 rotlwi $b,$b,30 xor @X[$j%16],@X[$j%16],@X[($j+13)%16] add $f,$f,$e rotlwi @X[$j%16],@X[$j%16],1 ___ $code.=<<___ if ($i==79); add $f,$K,$e xor $t0,$b,$d rotlwi $e,$a,5 lwz r16,0($ctx) add $f,$f,@X[$i%16] xor $t0,$t0,$c lwz r17,4($ctx) add $f,$f,$t0 rotlwi $b,$b,30 lwz r18,8($ctx) lwz r19,12($ctx) add $f,$f,$e lwz r20,16($ctx) ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e,$f)=@_; my $j=$i+1; $code.=<<___; add $f,$K,$e rotlwi $e,$a,5 xor @X[$j%16],@X[$j%16],@X[($j+2)%16] add $f,$f,@X[$i%16] and $t0,$b,$c xor @X[$j%16],@X[$j%16],@X[($j+8)%16] add $f,$f,$e or $t1,$b,$c rotlwi $b,$b,30 xor @X[$j%16],@X[$j%16],@X[($j+13)%16] and $t1,$t1,$d or $t0,$t0,$t1 rotlwi @X[$j%16],@X[$j%16],1 add $f,$f,$t0 ___ } $code=<<___; .machine "any" .text .globl .sha1_block_data_order .align 4 .sha1_block_data_order: $STU $sp,-$FRAME($sp) mflr r0 $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) lwz $A,0($ctx) lwz $B,4($ctx) lwz $C,8($ctx) lwz $D,12($ctx) lwz $E,16($ctx) andi. r0,$inp,3 bne Lunaligned Laligned: mtctr $num bl Lsha1_block_private b Ldone ; PowerPC specification allows an implementation to be ill-behaved ; upon unaligned access which crosses page boundary. "Better safe ; than sorry" principle makes me treat it specially. But I don't ; look for particular offending word, but rather for 64-byte input ; block which crosses the boundary. Once found that block is aligned ; and hashed separately... .align 4 Lunaligned: subfic $t1,$inp,4096 andi. $t1,$t1,4095 ; distance to closest page boundary srwi. $t1,$t1,6 ; t1/=64 beq Lcross_page $UCMP $num,$t1 ble Laligned ; didn't cross the page boundary mtctr $t1 subfc $num,$t1,$num bl Lsha1_block_private Lcross_page: li $t1,16 mtctr $t1 addi r20,$sp,$LOCALS ; spot within the frame Lmemcpy: lbz r16,0($inp) lbz r17,1($inp) lbz r18,2($inp) lbz r19,3($inp) addi $inp,$inp,4 stb r16,0(r20) stb r17,1(r20) stb r18,2(r20) stb r19,3(r20) addi r20,r20,4 bdnz Lmemcpy $PUSH $inp,`$FRAME-$SIZE_T*18`($sp) li $t1,1 addi $inp,$sp,$LOCALS mtctr $t1 bl Lsha1_block_private $POP $inp,`$FRAME-$SIZE_T*18`($sp) addic. $num,$num,-1 bne Lunaligned Ldone: $POP r0,`$FRAME+$LRSAVE`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,18,3,0 .long 0 ___ # This is private block function, which uses tailored calling # interface, namely upon entry SHA_CTX is pre-loaded to given # registers and counter register contains amount of chunks to # digest... $code.=<<___; .align 4 Lsha1_block_private: ___ $code.=<<___; # load K_00_19 lis $K,0x5a82 ori $K,$K,0x7999 ___ for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } $code.=<<___; # load K_20_39 lis $K,0x6ed9 ori $K,$K,0xeba1 ___ for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; # load K_40_59 lis $K,0x8f1b ori $K,$K,0xbcdc ___ for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } $code.=<<___; # load K_60_79 lis $K,0xca62 ori $K,$K,0xc1d6 ___ for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; add r16,r16,$E add r17,r17,$T add r18,r18,$A add r19,r19,$B add r20,r20,$C stw r16,0($ctx) mr $A,r16 stw r17,4($ctx) mr $B,r17 stw r18,8($ctx) mr $C,r18 stw r19,12($ctx) mr $D,r19 stw r20,16($ctx) mr $E,r20 addi $inp,$inp,`16*4` bdnz Lsha1_block_private blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .size .sha1_block_data_order,.-.sha1_block_data_order ___ $code.=<<___; .asciz "SHA1 block transform for PPC, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-s390x.pl000066400000000000000000000124631364063235100203040ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA1 block procedure for s390x. # April 2007. # # Performance is >30% better than gcc 3.3 generated code. But the real # twist is that SHA1 hardware support is detected and utilized. In # which case performance can reach further >4.5x for larger chunks. # January 2009. # # Optimize Xupdate for amount of memory references and reschedule # instructions to favour dual-issue z10 pipeline. On z10 hardware is # "only" ~2.3x faster than software. # November 2010. # # Adapt for -m31 build. If kernel supports what's called "highgprs" # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit # instructions and achieve "64-bit" performance even in 31-bit legacy # application context. The feature is not specific to any particular # processor, as long as it's "z-CPU". Latter implies that the code # remains z/Architecture specific. On z990 it was measured to perform # 23% better than code generated by gcc 4.3. $kimdfunc=1; # magic function code for kimd instruction $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $K_00_39="%r0"; $K=$K_00_39; $K_40_79="%r1"; $ctx="%r2"; $prefetch="%r2"; $inp="%r3"; $len="%r4"; $A="%r5"; $B="%r6"; $C="%r7"; $D="%r8"; $E="%r9"; @V=($A,$B,$C,$D,$E); $t0="%r10"; $t1="%r11"; @X=("%r12","%r13","%r14"); $sp="%r15"; $stdframe=16*$SIZE_T+4*8; $frame=$stdframe+16*4; sub Xupdate { my $i=shift; $code.=<<___ if ($i==15); lg $prefetch,$stdframe($sp) ### Xupdate(16) warm-up lr $X[0],$X[2] ___ return if ($i&1); # Xupdate is vectorized and executed every 2nd cycle $code.=<<___ if ($i<16); lg $X[0],`$i*4`($inp) ### Xload($i) rllg $X[1],$X[0],32 ___ $code.=<<___ if ($i>=16); xgr $X[0],$prefetch ### Xupdate($i) lg $prefetch,`$stdframe+4*(($i+2)%16)`($sp) xg $X[0],`$stdframe+4*(($i+8)%16)`($sp) xgr $X[0],$prefetch rll $X[0],$X[0],1 rllg $X[1],$X[0],32 rll $X[1],$X[1],1 rllg $X[0],$X[1],32 lr $X[2],$X[1] # feedback ___ $code.=<<___ if ($i<=70); stg $X[0],`$stdframe+4*($i%16)`($sp) ___ unshift(@X,pop(@X)); } sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $xi=$X[1]; &Xupdate($i); $code.=<<___; alr $e,$K ### $i rll $t1,$a,5 lr $t0,$d xr $t0,$c alr $e,$t1 nr $t0,$b alr $e,$xi xr $t0,$d rll $b,$b,30 alr $e,$t0 ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $xi=$X[1]; &Xupdate($i); $code.=<<___; alr $e,$K ### $i rll $t1,$a,5 lr $t0,$b alr $e,$t1 xr $t0,$c alr $e,$xi xr $t0,$d rll $b,$b,30 alr $e,$t0 ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $xi=$X[1]; &Xupdate($i); $code.=<<___; alr $e,$K ### $i rll $t1,$a,5 lr $t0,$b alr $e,$t1 or $t0,$c lr $t1,$b nr $t0,$d nr $t1,$c alr $e,$xi or $t0,$t1 rll $b,$b,30 alr $e,$t0 ___ } $code.=<<___; #include "s390x_arch.h" .text .align 64 .type Ktable,\@object Ktable: .long 0x5a827999,0x6ed9eba1,0x8f1bbcdc,0xca62c1d6 .skip 48 #.long 0,0,0,0,0,0,0,0,0,0,0,0 .size Ktable,.-Ktable .globl sha1_block_data_order .type sha1_block_data_order,\@function sha1_block_data_order: ___ $code.=<<___ if ($kimdfunc); larl %r1,OPENSSL_s390xcap_P lg %r0,S390X_KIMD(%r1) # check kimd capabilities tmhh %r0,`0x8000>>$kimdfunc` jz .Lsoftware lghi %r0,$kimdfunc lgr %r1,$ctx lgr %r2,$inp sllg %r3,$len,6 .long 0xb93e0002 # kimd %r0,%r2 brc 1,.-4 # pay attention to "partial completion" br %r14 .align 16 .Lsoftware: ___ $code.=<<___; lghi %r1,-$frame st${g} $ctx,`2*$SIZE_T`($sp) stm${g} %r6,%r15,`6*$SIZE_T`($sp) lgr %r0,$sp la $sp,0(%r1,$sp) st${g} %r0,0($sp) larl $t0,Ktable llgf $A,0($ctx) llgf $B,4($ctx) llgf $C,8($ctx) llgf $D,12($ctx) llgf $E,16($ctx) lg $K_00_39,0($t0) lg $K_40_79,8($t0) .Lloop: rllg $K_00_39,$K_00_39,32 ___ for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } $code.=<<___; rllg $K_00_39,$K_00_39,32 ___ for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; $K=$K_40_79; rllg $K_40_79,$K_40_79,32 ___ for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } $code.=<<___; rllg $K_40_79,$K_40_79,32 ___ for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; l${g} $ctx,`$frame+2*$SIZE_T`($sp) la $inp,64($inp) al $A,0($ctx) al $B,4($ctx) al $C,8($ctx) al $D,12($ctx) al $E,16($ctx) st $A,0($ctx) st $B,4($ctx) st $C,8($ctx) st $D,12($ctx) st $E,16($ctx) brct${g} $len,.Lloop lm${g} %r6,%r15,`$frame+6*$SIZE_T`($sp) br %r14 .size sha1_block_data_order,.-sha1_block_data_order .string "SHA1 block transform for s390x, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-sparcv9.pl000066400000000000000000000223441364063235100210040ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Hardware SPARC T4 support by David S. Miller # ==================================================================== # Performance improvement is not really impressive on pre-T1 CPU: +8% # over Sun C and +25% over gcc [3.3]. While on T1, a.k.a. Niagara, it # turned to be 40% faster than 64-bit code generated by Sun C 5.8 and # >2x than 64-bit code generated by gcc 3.4. And there is a gimmick. # X[16] vector is packed to 8 64-bit registers and as result nothing # is spilled on stack. In addition input data is loaded in compact # instruction sequence, thus minimizing the window when the code is # subject to [inter-thread] cache-thrashing hazard. The goal is to # ensure scalability on UltraSPARC T1, or rather to avoid decay when # amount of active threads exceeds the number of physical cores. # SPARC T4 SHA1 hardware achieves 3.72 cycles per byte, which is 3.1x # faster than software. Multi-process benchmark saturates at 11x # single-process result on 8-core processor, or ~9GBps per 2.85GHz # socket. $output=pop; open STDOUT,">$output"; @X=("%o0","%o1","%o2","%o3","%o4","%o5","%g1","%o7"); $rot1m="%g2"; $tmp64="%g3"; $Xi="%g4"; $A="%l0"; $B="%l1"; $C="%l2"; $D="%l3"; $E="%l4"; @V=($A,$B,$C,$D,$E); $K_00_19="%l5"; $K_20_39="%l6"; $K_40_59="%l7"; $K_60_79="%g5"; @K=($K_00_19,$K_20_39,$K_40_59,$K_60_79); $ctx="%i0"; $inp="%i1"; $len="%i2"; $tmp0="%i3"; $tmp1="%i4"; $tmp2="%i5"; sub BODY_00_15 { my ($i,$a,$b,$c,$d,$e)=@_; my $xi=($i&1)?@X[($i/2)%8]:$Xi; $code.=<<___; sll $a,5,$tmp0 !! $i add @K[$i/20],$e,$e srl $a,27,$tmp1 add $tmp0,$e,$e and $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 andn $d,$b,$tmp1 srl $b,2,$b or $tmp1,$tmp0,$tmp1 or $tmp2,$b,$b add $xi,$e,$e ___ if ($i&1 && $i<15) { $code.= " srlx @X[(($i+1)/2)%8],32,$Xi\n"; } $code.=<<___; add $tmp1,$e,$e ___ } sub Xupdate { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i/2; if ($i&1) { $code.=<<___; sll $a,5,$tmp0 !! $i add @K[$i/20],$e,$e srl $a,27,$tmp1 ___ } else { $code.=<<___; sllx @X[($j+6)%8],32,$Xi ! Xupdate($i) xor @X[($j+1)%8],@X[$j%8],@X[$j%8] srlx @X[($j+7)%8],32,$tmp1 xor @X[($j+4)%8],@X[$j%8],@X[$j%8] sll $a,5,$tmp0 !! $i or $tmp1,$Xi,$Xi add @K[$i/20],$e,$e !! xor $Xi,@X[$j%8],@X[$j%8] srlx @X[$j%8],31,$Xi add @X[$j%8],@X[$j%8],@X[$j%8] and $Xi,$rot1m,$Xi andn @X[$j%8],$rot1m,@X[$j%8] srl $a,27,$tmp1 !! or $Xi,@X[$j%8],@X[$j%8] ___ } } sub BODY_16_19 { my ($i,$a,$b,$c,$d,$e)=@_; &Xupdate(@_); if ($i&1) { $xi=@X[($i/2)%8]; } else { $xi=$Xi; $code.="\tsrlx @X[($i/2)%8],32,$xi\n"; } $code.=<<___; add $tmp0,$e,$e !! and $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 add $xi,$e,$e andn $d,$b,$tmp1 srl $b,2,$b or $tmp1,$tmp0,$tmp1 or $tmp2,$b,$b add $tmp1,$e,$e ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $xi; &Xupdate(@_); if ($i&1) { $xi=@X[($i/2)%8]; } else { $xi=$Xi; $code.="\tsrlx @X[($i/2)%8],32,$xi\n"; } $code.=<<___; add $tmp0,$e,$e !! xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $xi,$e,$e ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $xi; &Xupdate(@_); if ($i&1) { $xi=@X[($i/2)%8]; } else { $xi=$Xi; $code.="\tsrlx @X[($i/2)%8],32,$xi\n"; } $code.=<<___; add $tmp0,$e,$e !! and $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 or $c,$b,$tmp1 srl $b,2,$b and $d,$tmp1,$tmp1 add $xi,$e,$e or $tmp1,$tmp0,$tmp1 or $tmp2,$b,$b add $tmp1,$e,$e ___ } $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .align 32 .globl sha1_block_data_order sha1_block_data_order: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1] andcc %g1, CFR_SHA1, %g0 be .Lsoftware nop ld [%o0 + 0x00], %f0 ! load context ld [%o0 + 0x04], %f1 ld [%o0 + 0x08], %f2 andcc %o1, 0x7, %g0 ld [%o0 + 0x0c], %f3 bne,pn %icc, .Lhwunaligned ld [%o0 + 0x10], %f4 .Lhw_loop: ldd [%o1 + 0x00], %f8 ldd [%o1 + 0x08], %f10 ldd [%o1 + 0x10], %f12 ldd [%o1 + 0x18], %f14 ldd [%o1 + 0x20], %f16 ldd [%o1 + 0x28], %f18 ldd [%o1 + 0x30], %f20 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x38], %f22 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 .word 0x81b02820 ! SHA1 bne,pt SIZE_T_CC, .Lhw_loop nop .Lhwfinish: st %f0, [%o0 + 0x00] ! store context st %f1, [%o0 + 0x04] st %f2, [%o0 + 0x08] st %f3, [%o0 + 0x0c] retl st %f4, [%o0 + 0x10] .align 8 .Lhwunaligned: alignaddr %o1, %g0, %o1 ldd [%o1 + 0x00], %f10 .Lhwunaligned_loop: ldd [%o1 + 0x08], %f12 ldd [%o1 + 0x10], %f14 ldd [%o1 + 0x18], %f16 ldd [%o1 + 0x20], %f18 ldd [%o1 + 0x28], %f20 ldd [%o1 + 0x30], %f22 ldd [%o1 + 0x38], %f24 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x40], %f26 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 faligndata %f10, %f12, %f8 faligndata %f12, %f14, %f10 faligndata %f14, %f16, %f12 faligndata %f16, %f18, %f14 faligndata %f18, %f20, %f16 faligndata %f20, %f22, %f18 faligndata %f22, %f24, %f20 faligndata %f24, %f26, %f22 .word 0x81b02820 ! SHA1 bne,pt SIZE_T_CC, .Lhwunaligned_loop for %f26, %f26, %f10 ! %f10=%f26 ba .Lhwfinish nop .align 16 .Lsoftware: save %sp,-STACK_FRAME,%sp sllx $len,6,$len add $inp,$len,$len or %g0,1,$rot1m sllx $rot1m,32,$rot1m or $rot1m,1,$rot1m ld [$ctx+0],$A ld [$ctx+4],$B ld [$ctx+8],$C ld [$ctx+12],$D ld [$ctx+16],$E andn $inp,7,$tmp0 sethi %hi(0x5a827999),$K_00_19 or $K_00_19,%lo(0x5a827999),$K_00_19 sethi %hi(0x6ed9eba1),$K_20_39 or $K_20_39,%lo(0x6ed9eba1),$K_20_39 sethi %hi(0x8f1bbcdc),$K_40_59 or $K_40_59,%lo(0x8f1bbcdc),$K_40_59 sethi %hi(0xca62c1d6),$K_60_79 or $K_60_79,%lo(0xca62c1d6),$K_60_79 .Lloop: ldx [$tmp0+0],@X[0] ldx [$tmp0+16],@X[2] ldx [$tmp0+32],@X[4] ldx [$tmp0+48],@X[6] and $inp,7,$tmp1 ldx [$tmp0+8],@X[1] sll $tmp1,3,$tmp1 ldx [$tmp0+24],@X[3] subcc %g0,$tmp1,$tmp2 ! should be 64-$tmp1, but -$tmp1 works too ldx [$tmp0+40],@X[5] bz,pt %icc,.Laligned ldx [$tmp0+56],@X[7] sllx @X[0],$tmp1,@X[0] ldx [$tmp0+64],$tmp64 ___ for($i=0;$i<7;$i++) { $code.=<<___; srlx @X[$i+1],$tmp2,$Xi sllx @X[$i+1],$tmp1,@X[$i+1] or $Xi,@X[$i],@X[$i] ___ } $code.=<<___; srlx $tmp64,$tmp2,$tmp64 or $tmp64,@X[7],@X[7] .Laligned: srlx @X[0],32,$Xi ___ for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } for (;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; ld [$ctx+0],@X[0] ld [$ctx+4],@X[1] ld [$ctx+8],@X[2] ld [$ctx+12],@X[3] add $inp,64,$inp ld [$ctx+16],@X[4] cmp $inp,$len add $A,@X[0],$A st $A,[$ctx+0] add $B,@X[1],$B st $B,[$ctx+4] add $C,@X[2],$C st $C,[$ctx+8] add $D,@X[3],$D st $D,[$ctx+12] add $E,@X[4],$E st $E,[$ctx+16] bne SIZE_T_CC,.Lloop andn $inp,7,$tmp0 ret restore .type sha1_block_data_order,#function .size sha1_block_data_order,(.-sha1_block_data_order) .asciz "SHA1 block transform for SPARCv9, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my $ref,$opf; my %visopf = ( "faligndata" => 0x048, "for" => 0x07c ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unalignaddr { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my $ref="$mnemonic\t$rs1,$rs2,$rd"; foreach ($rs1,$rs2,$rd) { if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } else { return $ref; } } return sprintf ".word\t0x%08x !%s", 0x81b00300|$rd<<25|$rs1<<14|$rs2, $ref; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /ge; s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unalignaddr($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-sparcv9a.pl000066400000000000000000000402511364063235100211420ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # January 2009 # # Provided that UltraSPARC VIS instructions are pipe-lined(*) and # pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC # Graphic Unit would make it possible to achieve higher instruction- # level parallelism, ILP, and thus higher performance. It should be # explicitly noted that ILP is the keyword, and it means that this # code would be unsuitable for cores like UltraSPARC-Tx. The idea is # not really novel, Sun had VIS-powered implementation for a while. # Unlike Sun's implementation this one can process multiple unaligned # input blocks, and as such works as drop-in replacement for OpenSSL # sha1_block_data_order. Performance improvement was measured to be # 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on # UltraSPARC-III. See below for discussion... # # The module does not present direct interest for OpenSSL, because # it doesn't provide better performance on contemporary SPARCv9 CPUs, # UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they # absolutely must score on UltraSPARC-I-IV can simply replace # crypto/sha/asm/sha1-sparcv9.pl with this module. # # (*) "Pipe-lined" means that even if it takes several cycles to # complete, next instruction using same functional unit [but not # depending on the result of the current instruction] can start # execution without having to wait for the unit. "Pairable" # means that two [or more] independent instructions can be # issued at the very same time. $bits=32; for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } if ($bits==64) { $bias=2047; $frame=192; } else { $bias=0; $frame=112; } $output=shift; open STDOUT,">$output"; $ctx="%i0"; $inp="%i1"; $len="%i2"; $tmp0="%i3"; $tmp1="%i4"; $tmp2="%i5"; $tmp3="%g5"; $base="%g1"; $align="%g4"; $Xfer="%o5"; $nXfer=$tmp3; $Xi="%o7"; $A="%l0"; $B="%l1"; $C="%l2"; $D="%l3"; $E="%l4"; @V=($A,$B,$C,$D,$E); $Actx="%o0"; $Bctx="%o1"; $Cctx="%o2"; $Dctx="%o3"; $Ectx="%o4"; $fmul="%f32"; $VK_00_19="%f34"; $VK_20_39="%f36"; $VK_40_59="%f38"; $VK_60_79="%f40"; @VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79); @X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16"); # This is reference 2x-parallelized VIS-powered Xupdate procedure. It # covers even K_NN_MM addition... sub Xupdate { my ($i)=@_; my $K=@VK[($i+16)/20]; my $j=($i+16)%16; # [ provided that GSR.alignaddr_offset is 5, $mul contains # 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to # chosen registers... ] $code.=<<___; fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13] fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 ![fxors %f15,%f2,%f2] for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency fpadd32 $K,@X[$j],%f20 std %f20,[$Xfer+`4*$j`] ___ # The numbers delimited with slash are the earliest possible dispatch # cycles for given instruction assuming 1 cycle latency for simple VIS # instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as # on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being # 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1 # round. As [long as] FPU/VIS instructions are perfectly pairable with # IALU ones, the round timing is defined by the maximum between VIS # and IALU timings. The latter varies from round to round and averages # out at 6.25 ticks. This means that USI&II should operate at IALU # rate, while USIII&IV - at VIS rate. This explains why performance # improvement varies among processors. Well, given that pure IALU # sha1-sparcv9.pl module exhibits virtually uniform performance of # ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical # lower limits. Real-life performance was measured to be 6.6 cycles # per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than # half-round VIS timing, because there are 16 Xupdate-free rounds, # which "push down" average theoretical timing to 8 cycles... # (*) SPARC64-V[II] was originally believed to have 2 cycles VIS # latency. Well, it might have, but it doesn't have dedicated # VIS-unit. Instead, VIS instructions are executed by other # functional units, ones used here - by IALU. This doesn't # improve effective ILP... } # The reference Xupdate procedure is then "strained" over *pairs* of # BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13] # and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves # plenty of room to amortize for read-after-write hazard, as well as # to fetch and align input for the next spin. The VIS instructions are # scheduled for latency of 2 cycles, because there are not enough IALU # instructions to schedule for latency of 3, while scheduling for 1 # would give no gain on USI&II anyway. sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $k=($j+16+2)%16; # ahead reference my $l=($j+16-2)%16; # behind reference my $K=@VK[($j+16-2)/20]; $j=($j+16)%16; $code.=<<___ if (!($i&1)); sll $a,5,$tmp0 !! $i and $c,$b,$tmp3 ld [$Xfer+`4*($i%16)`],$Xi fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] srl $a,27,$tmp1 add $tmp0,$e,$e fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] sll $b,30,$tmp2 add $tmp1,$e,$e andn $d,$b,$tmp1 add $Xi,$e,$e fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] srl $b,2,$b or $tmp1,$tmp3,$tmp1 or $tmp2,$b,$b add $tmp1,$e,$e faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 ___ $code.=<<___ if ($i&1); sll $a,5,$tmp0 !! $i and $c,$b,$tmp3 ld [$Xfer+`4*($i%16)`],$Xi fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 srl $a,27,$tmp1 add $tmp0,$e,$e fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 sll $b,30,$tmp2 add $tmp1,$e,$e fpadd32 $K,@X[$l],%f20 ! andn $d,$b,$tmp1 add $Xi,$e,$e fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] srl $b,2,$b or $tmp1,$tmp3,$tmp1 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp or $tmp2,$b,$b add $tmp1,$e,$e ___ $code.=<<___ if ($i&1 && $i>=2); std %f20,[$Xfer+`4*$l`] ! ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $k=($j+16+2)%16; # ahead reference my $l=($j+16-2)%16; # behind reference my $K=@VK[($j+16-2)/20]; $j=($j+16)%16; $code.=<<___ if (!($i&1) && $i<64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] srl $a,27,$tmp1 add $tmp0,$e,$e fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 ___ $code.=<<___ if ($i&1 && $i<64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 srl $a,27,$tmp1 add $tmp0,$e,$e fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 xor $c,$b,$tmp0 add $tmp1,$e,$e fpadd32 $K,@X[$l],%f20 ! sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] srl $b,2,$b add $tmp1,$e,$e fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp or $tmp2,$b,$b add $Xi,$e,$e std %f20,[$Xfer+`4*$l`] ! ___ $code.=<<___ if ($i==64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fpadd32 $K,@X[$l],%f20 srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 std %f20,[$Xfer+`4*$l`] srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ $code.=<<___ if ($i>64); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $k=($j+16+2)%16; # ahead reference my $l=($j+16-2)%16; # behind reference my $K=@VK[($j+16-2)/20]; $j=($j+16)%16; $code.=<<___ if (!($i&1)); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] srl $a,27,$tmp1 add $tmp0,$e,$e fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] and $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 or $c,$b,$tmp1 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] srl $b,2,$b and $d,$tmp1,$tmp1 add $Xi,$e,$e or $tmp1,$tmp0,$tmp1 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 or $tmp2,$b,$b add $tmp1,$e,$e fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 ___ $code.=<<___ if ($i&1); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 and $c,$b,$tmp0 add $tmp1,$e,$e fpadd32 $K,@X[$l],%f20 ! sll $b,30,$tmp2 or $c,$b,$tmp1 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] srl $b,2,$b and $d,$tmp1,$tmp1 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp add $Xi,$e,$e or $tmp1,$tmp0,$tmp1 or $tmp2,$b,$b add $tmp1,$e,$e std %f20,[$Xfer+`4*$l`] ! ___ } # If there is more data to process, then we pre-fetch the data for # next iteration in last ten rounds... sub BODY_70_79 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i&~1; my $m=($i%8)*2; $j=($j+16)%16; $code.=<<___ if ($i==70); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e ldd [$inp+64],@X[0] xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e and $inp,-64,$nXfer inc 64,$inp and $nXfer,255,$nXfer alignaddr %g0,$align,%g0 add $base,$nXfer,$nXfer ___ $code.=<<___ if ($i==71); sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ $code.=<<___ if ($i>=72); faligndata @X[$m],@X[$m+2],@X[$m] sll $a,5,$tmp0 !! $i ld [$Xfer+`4*($i%16)`],$Xi srl $a,27,$tmp1 add $tmp0,$e,$e xor $c,$b,$tmp0 add $tmp1,$e,$e fpadd32 $VK_00_19,@X[$m],%f20 sll $b,30,$tmp2 xor $d,$tmp0,$tmp1 srl $b,2,$b add $tmp1,$e,$e or $tmp2,$b,$b add $Xi,$e,$e ___ $code.=<<___ if ($i<77); ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)] ___ $code.=<<___ if ($i==77); # redundant if $inp was aligned add $align,63,$tmp0 and $tmp0,-8,$tmp0 ldd [$inp+$tmp0],@X[16] ___ $code.=<<___ if ($i>=72); std %f20,[$nXfer+`4*$m`] ___ } $code.=<<___; .section ".text",#alloc,#execinstr .align 64 vis_const: .long 0x5a827999,0x5a827999 ! K_00_19 .long 0x6ed9eba1,0x6ed9eba1 ! K_20_39 .long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59 .long 0xca62c1d6,0xca62c1d6 ! K_60_79 .long 0x00000100,0x00000100 .align 64 .type vis_const,#object .size vis_const,(.-vis_const) .globl sha1_block_data_order sha1_block_data_order: save %sp,-$frame,%sp add %fp,$bias-256,$base 1: call .+8 add %o7,vis_const-1b,$tmp0 ldd [$tmp0+0],$VK_00_19 ldd [$tmp0+8],$VK_20_39 ldd [$tmp0+16],$VK_40_59 ldd [$tmp0+24],$VK_60_79 ldd [$tmp0+32],$fmul ld [$ctx+0],$Actx and $base,-256,$base ld [$ctx+4],$Bctx sub $base,$bias+$frame,%sp ld [$ctx+8],$Cctx and $inp,7,$align ld [$ctx+12],$Dctx and $inp,-8,$inp ld [$ctx+16],$Ectx ! X[16] is maintained in FP register bank alignaddr %g0,$align,%g0 ldd [$inp+0],@X[0] sub $inp,-64,$Xfer ldd [$inp+8],@X[2] and $Xfer,-64,$Xfer ldd [$inp+16],@X[4] and $Xfer,255,$Xfer ldd [$inp+24],@X[6] add $base,$Xfer,$Xfer ldd [$inp+32],@X[8] ldd [$inp+40],@X[10] ldd [$inp+48],@X[12] brz,pt $align,.Laligned ldd [$inp+56],@X[14] ldd [$inp+64],@X[16] faligndata @X[0],@X[2],@X[0] faligndata @X[2],@X[4],@X[2] faligndata @X[4],@X[6],@X[4] faligndata @X[6],@X[8],@X[6] faligndata @X[8],@X[10],@X[8] faligndata @X[10],@X[12],@X[10] faligndata @X[12],@X[14],@X[12] faligndata @X[14],@X[16],@X[14] .Laligned: mov 5,$tmp0 dec 1,$len alignaddr %g0,$tmp0,%g0 fpadd32 $VK_00_19,@X[0],%f16 fpadd32 $VK_00_19,@X[2],%f18 fpadd32 $VK_00_19,@X[4],%f20 fpadd32 $VK_00_19,@X[6],%f22 fpadd32 $VK_00_19,@X[8],%f24 fpadd32 $VK_00_19,@X[10],%f26 fpadd32 $VK_00_19,@X[12],%f28 fpadd32 $VK_00_19,@X[14],%f30 std %f16,[$Xfer+0] mov $Actx,$A std %f18,[$Xfer+8] mov $Bctx,$B std %f20,[$Xfer+16] mov $Cctx,$C std %f22,[$Xfer+24] mov $Dctx,$D std %f24,[$Xfer+32] mov $Ectx,$E std %f26,[$Xfer+40] fxors @X[13],@X[0],@X[0] std %f28,[$Xfer+48] ba .Loop std %f30,[$Xfer+56] .align 32 .Loop: ___ for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; tst $len bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail nop ___ for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); } $code.=<<___; add $A,$Actx,$Actx add $B,$Bctx,$Bctx add $C,$Cctx,$Cctx add $D,$Dctx,$Dctx add $E,$Ectx,$Ectx mov 5,$tmp0 fxors @X[13],@X[0],@X[0] mov $Actx,$A mov $Bctx,$B mov $Cctx,$C mov $Dctx,$D mov $Ectx,$E alignaddr %g0,$tmp0,%g0 dec 1,$len ba .Loop mov $nXfer,$Xfer .align 32 .Ltail: ___ for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; add $A,$Actx,$Actx add $B,$Bctx,$Bctx add $C,$Cctx,$Cctx add $D,$Dctx,$Dctx add $E,$Ectx,$Ectx st $Actx,[$ctx+0] st $Bctx,[$ctx+4] st $Cctx,[$ctx+8] st $Dctx,[$ctx+12] st $Ectx,[$ctx+16] ret restore .type sha1_block_data_order,#function .size sha1_block_data_order,(.-sha1_block_data_order) .asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %visopf = ( "fmul8ulx16" => 0x037, "faligndata" => 0x048, "fpadd32" => 0x052, "fxor" => 0x06c, "fxors" => 0x06d ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unalignaddr { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my $ref="$mnemonic\t$rs1,$rs2,$rd"; foreach ($rs1,$rs2,$rd) { if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } else { return $ref; } } return sprintf ".word\t0x%08x !%s", 0x81b00300|$rd<<25|$rs1<<14|$rs2, $ref; } $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /gem; $code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/ &unalignaddr($1,$2,$3,$4) /gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha1-thumb.pl000066400000000000000000000121201364063235100205230ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # sha1_block for Thumb. # # January 2007. # # The code does not present direct interest to OpenSSL, because of low # performance. Its purpose is to establish _size_ benchmark. Pretty # useless one I must say, because 30% or 88 bytes larger ARMv4 code # [available on demand] is almost _twice_ as fast. It should also be # noted that in-lining of .Lcommon and .Lrotate improves performance # by over 40%, while code increases by only 10% or 32 bytes. But once # again, the goal was to establish _size_ benchmark, not performance. $output=shift; open STDOUT,">$output"; $inline=0; #$cheat_on_binutils=1; $t0="r0"; $t1="r1"; $t2="r2"; $a="r3"; $b="r4"; $c="r5"; $d="r6"; $e="r7"; $K="r8"; # "upper" registers can be used in add/sub and mov insns $ctx="r9"; $inp="r10"; $len="r11"; $Xi="r12"; sub common { <<___; sub $t0,#4 ldr $t1,[$t0] add $e,$K @ E+=K_xx_xx lsl $t2,$a,#5 add $t2,$e lsr $e,$a,#27 add $t2,$e @ E+=ROR(A,27) add $t2,$t1 @ E+=X[i] ___ } sub rotate { <<___; mov $e,$d @ E=D mov $d,$c @ D=C lsl $c,$b,#30 lsr $b,$b,#2 orr $c,$b @ C=ROR(B,2) mov $b,$a @ B=A add $a,$t2,$t1 @ A=E+F_xx_xx(B,C,D) ___ } sub BODY_00_19 { $code.=$inline?&common():"\tbl .Lcommon\n"; $code.=<<___; mov $t1,$c eor $t1,$d and $t1,$b eor $t1,$d @ F_00_19(B,C,D) ___ $code.=$inline?&rotate():"\tbl .Lrotate\n"; } sub BODY_20_39 { $code.=$inline?&common():"\tbl .Lcommon\n"; $code.=<<___; mov $t1,$b eor $t1,$c eor $t1,$d @ F_20_39(B,C,D) ___ $code.=$inline?&rotate():"\tbl .Lrotate\n"; } sub BODY_40_59 { $code.=$inline?&common():"\tbl .Lcommon\n"; $code.=<<___; mov $t1,$b and $t1,$c mov $e,$b orr $e,$c and $e,$d orr $t1,$e @ F_40_59(B,C,D) ___ $code.=$inline?&rotate():"\tbl .Lrotate\n"; } $code=<<___; .text .code 16 .global sha1_block_data_order .type sha1_block_data_order,%function .align 2 sha1_block_data_order: ___ if ($cheat_on_binutils) { $code.=<<___; .code 32 add r3,pc,#1 bx r3 @ switch to Thumb ISA .code 16 ___ } $code.=<<___; push {r4-r7} mov r3,r8 mov r4,r9 mov r5,r10 mov r6,r11 mov r7,r12 push {r3-r7,lr} lsl r2,#6 mov $ctx,r0 @ save context mov $inp,r1 @ save inp mov $len,r2 @ save len add $len,$inp @ $len to point at inp end .Lloop: mov $Xi,sp mov $t2,sp sub $t2,#16*4 @ [3] .LXload: ldrb $a,[$t1,#0] @ $t1 is r1 and holds inp ldrb $b,[$t1,#1] ldrb $c,[$t1,#2] ldrb $d,[$t1,#3] lsl $a,#24 lsl $b,#16 lsl $c,#8 orr $a,$b orr $a,$c orr $a,$d add $t1,#4 push {$a} cmp sp,$t2 bne .LXload @ [+14*16] mov $inp,$t1 @ update $inp sub $t2,#32*4 sub $t2,#32*4 mov $e,#31 @ [+4] .LXupdate: ldr $a,[sp,#15*4] ldr $b,[sp,#13*4] ldr $c,[sp,#7*4] ldr $d,[sp,#2*4] eor $a,$b eor $a,$c eor $a,$d ror $a,$e push {$a} cmp sp,$t2 bne .LXupdate @ [+(11+1)*64] ldmia $t0!,{$a,$b,$c,$d,$e} @ $t0 is r0 and holds ctx mov $t0,$Xi ldr $t2,.LK_00_19 mov $t1,$t0 sub $t1,#20*4 mov $Xi,$t1 mov $K,$t2 @ [+7+4] .L_00_19: ___ &BODY_00_19(); $code.=<<___; cmp $Xi,$t0 bne .L_00_19 @ [+(2+9+4+2+8+2)*20] ldr $t2,.LK_20_39 mov $t1,$t0 sub $t1,#20*4 mov $Xi,$t1 mov $K,$t2 @ [+5] .L_20_39_or_60_79: ___ &BODY_20_39(); $code.=<<___; cmp $Xi,$t0 bne .L_20_39_or_60_79 @ [+(2+9+3+2+8+2)*20*2] cmp sp,$t0 beq .Ldone @ [+2] ldr $t2,.LK_40_59 mov $t1,$t0 sub $t1,#20*4 mov $Xi,$t1 mov $K,$t2 @ [+5] .L_40_59: ___ &BODY_40_59(); $code.=<<___; cmp $Xi,$t0 bne .L_40_59 @ [+(2+9+6+2+8+2)*20] ldr $t2,.LK_60_79 mov $Xi,sp mov $K,$t2 b .L_20_39_or_60_79 @ [+4] .Ldone: mov $t0,$ctx ldr $t1,[$t0,#0] ldr $t2,[$t0,#4] add $a,$t1 ldr $t1,[$t0,#8] add $b,$t2 ldr $t2,[$t0,#12] add $c,$t1 ldr $t1,[$t0,#16] add $d,$t2 add $e,$t1 stmia $t0!,{$a,$b,$c,$d,$e} @ [+20] add sp,#80*4 @ deallocate stack frame mov $t0,$ctx @ restore ctx mov $t1,$inp @ restore inp cmp $t1,$len beq .Lexit b .Lloop @ [+6] total 3212 cycles .Lexit: pop {r2-r7} mov r8,r2 mov r9,r3 mov r10,r4 mov r11,r5 mov r12,r6 mov lr,r7 pop {r4-r7} bx lr .align 2 ___ $code.=".Lcommon:\n".&common()."\tmov pc,lr\n" if (!$inline); $code.=".Lrotate:\n".&rotate()."\tmov pc,lr\n" if (!$inline); $code.=<<___; .align 2 .LK_00_19: .word 0x5a827999 .LK_20_39: .word 0x6ed9eba1 .LK_40_59: .word 0x8f1bbcdc .LK_60_79: .word 0xca62c1d6 .size sha1_block_data_order,.-sha1_block_data_order .asciz "SHA1 block transform for Thumb, CRYPTOGAMS by " ___ print $code; close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/sha/asm/sha1-x86_64.pl000077500000000000000000001453401364063235100203600ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # sha1_block procedure for x86_64. # # It was brought to my attention that on EM64T compiler-generated code # was far behind 32-bit assembler implementation. This is unlike on # Opteron where compiler-generated code was only 15% behind 32-bit # assembler, which originally made it hard to motivate the effort. # There was suggestion to mechanically translate 32-bit code, but I # dismissed it, reasoning that x86_64 offers enough register bank # capacity to fully utilize SHA-1 parallelism. Therefore this fresh # implementation:-) However! While 64-bit code does perform better # on Opteron, I failed to beat 32-bit assembler on EM64T core. Well, # x86_64 does offer larger *addressable* bank, but out-of-order core # reaches for even more registers through dynamic aliasing, and EM64T # core must have managed to run-time optimize even 32-bit code just as # good as 64-bit one. Performance improvement is summarized in the # following table: # # gcc 3.4 32-bit asm cycles/byte # Opteron +45% +20% 6.8 # Xeon P4 +65% +0% 9.9 # Core2 +60% +10% 7.0 # August 2009. # # The code was revised to minimize code size and to maximize # "distance" between instructions producing input to 'lea' # instruction and the 'lea' instruction itself, which is essential # for Intel Atom core. # October 2010. # # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it # is to offload message schedule denoted by Wt in NIST specification, # or Xupdate in OpenSSL source, to SIMD unit. See sha1-586.pl module # for background and implementation details. The only difference from # 32-bit code is that 64-bit code doesn't have to spill @X[] elements # to free temporary registers. # April 2011. # # Add AVX code path. See sha1-586.pl for further information. # May 2013. # # Add AVX2+BMI code path. Initial attempt (utilizing BMI instructions # and loading pair of consecutive blocks to 256-bit %ymm registers) # did not provide impressive performance improvement till a crucial # hint regarding the number of Xupdate iterations to pre-compute in # advance was provided by Ilya Albrekht of Intel Corp. # March 2014. # # Add support for Intel SHA Extensions. ###################################################################### # Current performance is summarized in following table. Numbers are # CPU clock cycles spent to process single byte (less is better). # # x86_64 SSSE3 AVX[2] # P4 9.05 - # Opteron 6.26 - # Core2 6.55 6.05/+8% - # Westmere 6.73 5.30/+27% - # Sandy Bridge 7.70 6.10/+26% 4.99/+54% # Ivy Bridge 6.06 4.67/+30% 4.60/+32% # Haswell 5.45 4.15/+31% 3.57/+53% # Skylake 5.18 4.06/+28% 3.54/+46% # Bulldozer 9.11 5.95/+53% # Ryzen 4.75 3.80/+24% 1.93/+150%(**) # VIA Nano 9.32 7.15/+30% # Atom 10.3 9.17/+12% # Silvermont 13.1(*) 9.37/+40% # Knights L 13.2(*) 9.68/+36% 8.30/+59% # Goldmont 8.13 6.42/+27% 1.70/+380%(**) # # (*) obviously suboptimal result, nothing was done about it, # because SSSE3 code is compiled unconditionally; # (**) SHAEXT result $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } $shaext=1; ### set to zero if compiling for 1.0.1 $avx=1 if (!$shaext && $avx); open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $ctx="%rdi"; # 1st arg $inp="%rsi"; # 2nd arg $num="%rdx"; # 3rd arg # reassign arguments in order to produce more compact code $ctx="%r8"; $inp="%r9"; $num="%r10"; $t0="%eax"; $t1="%ebx"; $t2="%ecx"; @xi=("%edx","%ebp","%r14d"); $A="%esi"; $B="%edi"; $C="%r11d"; $D="%r12d"; $E="%r13d"; @V=($A,$B,$C,$D,$E); sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i==0); mov `4*$i`($inp),$xi[0] bswap $xi[0] ___ $code.=<<___ if ($i<15); mov `4*$j`($inp),$xi[1] mov $d,$t0 mov $xi[0],`4*$i`(%rsp) mov $a,$t2 bswap $xi[1] xor $c,$t0 rol \$5,$t2 and $b,$t0 lea 0x5a827999($xi[0],$e),$e add $t2,$e xor $d,$t0 rol \$30,$b add $t0,$e ___ $code.=<<___ if ($i>=15); xor `4*($j%16)`(%rsp),$xi[1] mov $d,$t0 mov $xi[0],`4*($i%16)`(%rsp) mov $a,$t2 xor `4*(($j+2)%16)`(%rsp),$xi[1] xor $c,$t0 rol \$5,$t2 xor `4*(($j+8)%16)`(%rsp),$xi[1] and $b,$t0 lea 0x5a827999($xi[0],$e),$e rol \$30,$b xor $d,$t0 add $t2,$e rol \$1,$xi[1] add $t0,$e ___ push(@xi,shift(@xi)); } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; my $K=($i<40)?0x6ed9eba1:0xca62c1d6; $code.=<<___ if ($i<79); xor `4*($j%16)`(%rsp),$xi[1] mov $b,$t0 `"mov $xi[0],".4*($i%16)."(%rsp)" if ($i<72)` mov $a,$t2 xor `4*(($j+2)%16)`(%rsp),$xi[1] xor $d,$t0 rol \$5,$t2 xor `4*(($j+8)%16)`(%rsp),$xi[1] lea $K($xi[0],$e),$e xor $c,$t0 add $t2,$e rol \$30,$b add $t0,$e rol \$1,$xi[1] ___ $code.=<<___ if ($i==79); mov $b,$t0 mov $a,$t2 xor $d,$t0 lea $K($xi[0],$e),$e rol \$5,$t2 xor $c,$t0 add $t2,$e rol \$30,$b add $t0,$e ___ push(@xi,shift(@xi)); } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___; xor `4*($j%16)`(%rsp),$xi[1] mov $d,$t0 mov $xi[0],`4*($i%16)`(%rsp) mov $d,$t1 xor `4*(($j+2)%16)`(%rsp),$xi[1] and $c,$t0 mov $a,$t2 xor `4*(($j+8)%16)`(%rsp),$xi[1] lea 0x8f1bbcdc($xi[0],$e),$e xor $c,$t1 rol \$5,$t2 add $t0,$e rol \$1,$xi[1] and $b,$t1 add $t2,$e rol \$30,$b add $t1,$e ___ push(@xi,shift(@xi)); } $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl sha1_block_data_order .type sha1_block_data_order,\@function,3 .align 16 sha1_block_data_order: .cfi_startproc mov OPENSSL_ia32cap_P+0(%rip),%r9d mov OPENSSL_ia32cap_P+4(%rip),%r8d mov OPENSSL_ia32cap_P+8(%rip),%r10d test \$`1<<9`,%r8d # check SSSE3 bit jz .Lialu ___ $code.=<<___ if ($shaext); test \$`1<<29`,%r10d # check SHA bit jnz _shaext_shortcut ___ $code.=<<___ if ($avx>1); and \$`1<<3|1<<5|1<<8`,%r10d # check AVX2+BMI1+BMI2 cmp \$`1<<3|1<<5|1<<8`,%r10d je _avx2_shortcut ___ $code.=<<___ if ($avx); and \$`1<<28`,%r8d # mask AVX bit and \$`1<<30`,%r9d # mask "Intel CPU" bit or %r9d,%r8d cmp \$`1<<28|1<<30`,%r8d je _avx_shortcut ___ $code.=<<___; jmp _ssse3_shortcut .align 16 .Lialu: mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 mov %rdi,$ctx # reassigned argument sub \$`8+16*4`,%rsp mov %rsi,$inp # reassigned argument and \$-64,%rsp mov %rdx,$num # reassigned argument mov %rax,`16*4`(%rsp) .cfi_cfa_expression %rsp+64,deref,+8 .Lprologue: mov 0($ctx),$A mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov 16($ctx),$E jmp .Lloop .align 16 .Lloop: ___ for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; add 0($ctx),$A add 4($ctx),$B add 8($ctx),$C add 12($ctx),$D add 16($ctx),$E mov $A,0($ctx) mov $B,4($ctx) mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) sub \$1,$num lea `16*4`($inp),$inp jnz .Lloop mov `16*4`(%rsp),%rsi .cfi_def_cfa %rsi,8 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue: ret .cfi_endproc .size sha1_block_data_order,.-sha1_block_data_order ___ if ($shaext) {{{ ###################################################################### # Intel SHA Extensions implementation of SHA1 update function. # my ($ctx,$inp,$num)=("%rdi","%rsi","%rdx"); my ($ABCD,$E,$E_,$BSWAP,$ABCD_SAVE,$E_SAVE)=map("%xmm$_",(0..3,8,9)); my @MSG=map("%xmm$_",(4..7)); $code.=<<___; .type sha1_block_data_order_shaext,\@function,3 .align 32 sha1_block_data_order_shaext: _shaext_shortcut: .cfi_startproc ___ $code.=<<___ if ($win64); lea `-8-4*16`(%rsp),%rsp movaps %xmm6,-8-4*16(%rax) movaps %xmm7,-8-3*16(%rax) movaps %xmm8,-8-2*16(%rax) movaps %xmm9,-8-1*16(%rax) .Lprologue_shaext: ___ $code.=<<___; movdqu ($ctx),$ABCD movd 16($ctx),$E movdqa K_XX_XX+0xa0(%rip),$BSWAP # byte-n-word swap movdqu ($inp),@MSG[0] pshufd \$0b00011011,$ABCD,$ABCD # flip word order movdqu 0x10($inp),@MSG[1] pshufd \$0b00011011,$E,$E # flip word order movdqu 0x20($inp),@MSG[2] pshufb $BSWAP,@MSG[0] movdqu 0x30($inp),@MSG[3] pshufb $BSWAP,@MSG[1] pshufb $BSWAP,@MSG[2] movdqa $E,$E_SAVE # offload $E pshufb $BSWAP,@MSG[3] jmp .Loop_shaext .align 16 .Loop_shaext: dec $num lea 0x40($inp),%r8 # next input block paddd @MSG[0],$E cmovne %r8,$inp movdqa $ABCD,$ABCD_SAVE # offload $ABCD ___ for($i=0;$i<20-4;$i+=2) { $code.=<<___; sha1msg1 @MSG[1],@MSG[0] movdqa $ABCD,$E_ sha1rnds4 \$`int($i/5)`,$E,$ABCD # 0-3... sha1nexte @MSG[1],$E_ pxor @MSG[2],@MSG[0] sha1msg1 @MSG[2],@MSG[1] sha1msg2 @MSG[3],@MSG[0] movdqa $ABCD,$E sha1rnds4 \$`int(($i+1)/5)`,$E_,$ABCD sha1nexte @MSG[2],$E pxor @MSG[3],@MSG[1] sha1msg2 @MSG[0],@MSG[1] ___ push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG)); } $code.=<<___; movdqu ($inp),@MSG[0] movdqa $ABCD,$E_ sha1rnds4 \$3,$E,$ABCD # 64-67 sha1nexte @MSG[1],$E_ movdqu 0x10($inp),@MSG[1] pshufb $BSWAP,@MSG[0] movdqa $ABCD,$E sha1rnds4 \$3,$E_,$ABCD # 68-71 sha1nexte @MSG[2],$E movdqu 0x20($inp),@MSG[2] pshufb $BSWAP,@MSG[1] movdqa $ABCD,$E_ sha1rnds4 \$3,$E,$ABCD # 72-75 sha1nexte @MSG[3],$E_ movdqu 0x30($inp),@MSG[3] pshufb $BSWAP,@MSG[2] movdqa $ABCD,$E sha1rnds4 \$3,$E_,$ABCD # 76-79 sha1nexte $E_SAVE,$E pshufb $BSWAP,@MSG[3] paddd $ABCD_SAVE,$ABCD movdqa $E,$E_SAVE # offload $E jnz .Loop_shaext pshufd \$0b00011011,$ABCD,$ABCD pshufd \$0b00011011,$E,$E movdqu $ABCD,($ctx) movd $E,16($ctx) ___ $code.=<<___ if ($win64); movaps -8-4*16(%rax),%xmm6 movaps -8-3*16(%rax),%xmm7 movaps -8-2*16(%rax),%xmm8 movaps -8-1*16(%rax),%xmm9 mov %rax,%rsp .Lepilogue_shaext: ___ $code.=<<___; ret .cfi_endproc .size sha1_block_data_order_shaext,.-sha1_block_data_order_shaext ___ }}} {{{ my $Xi=4; my @X=map("%xmm$_",(4..7,0..3)); my @Tx=map("%xmm$_",(8..10)); my $Kx="%xmm11"; my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization my @T=("%esi","%edi"); my $j=0; my $rx=0; my $K_XX_XX="%r14"; my $fp="%r11"; my $_rol=sub { &rol(@_) }; my $_ror=sub { &ror(@_) }; { my $sn; sub align32() { ++$sn; $code.=<<___; jmp .Lalign32_$sn # see "Decoded ICache" in manual .align 32 .Lalign32_$sn: ___ } } $code.=<<___; .type sha1_block_data_order_ssse3,\@function,3 .align 16 sha1_block_data_order_ssse3: _ssse3_shortcut: .cfi_startproc mov %rsp,$fp # frame pointer .cfi_def_cfa_register $fp push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 # redundant, done to share Win64 SE handler .cfi_push %r13 push %r14 .cfi_push %r14 lea `-64-($win64?6*16:0)`(%rsp),%rsp ___ $code.=<<___ if ($win64); movaps %xmm6,-40-6*16($fp) movaps %xmm7,-40-5*16($fp) movaps %xmm8,-40-4*16($fp) movaps %xmm9,-40-3*16($fp) movaps %xmm10,-40-2*16($fp) movaps %xmm11,-40-1*16($fp) .Lprologue_ssse3: ___ $code.=<<___; and \$-64,%rsp mov %rdi,$ctx # reassigned argument mov %rsi,$inp # reassigned argument mov %rdx,$num # reassigned argument shl \$6,$num add $inp,$num lea K_XX_XX+64(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] movdqa 64($K_XX_XX),@X[2] # pbswap mask movdqa -64($K_XX_XX),@Tx[1] # K_00_19 movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] movdqu 16($inp),@X[-3&7] movdqu 32($inp),@X[-2&7] movdqu 48($inp),@X[-1&7] pshufb @X[2],@X[-4&7] # byte swap pshufb @X[2],@X[-3&7] pshufb @X[2],@X[-2&7] add \$64,$inp paddd @Tx[1],@X[-4&7] # add K_00_19 pshufb @X[2],@X[-1&7] paddd @Tx[1],@X[-3&7] paddd @Tx[1],@X[-2&7] movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU psubd @Tx[1],@X[-4&7] # restore X[] movdqa @X[-3&7],16(%rsp) psubd @Tx[1],@X[-3&7] movdqa @X[-2&7],32(%rsp) psubd @Tx[1],@X[-2&7] jmp .Loop_ssse3 ___ sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; my $arg = pop; $arg = "\$$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; } sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); # ror &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); eval(shift(@insns)); &movdqa (@Tx[0],@X[-1&7]); &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); &psrldq (@Tx[0],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); # ror &pxor (@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &movdqa (@Tx[2],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &movdqa (@Tx[0],@X[0]); eval(shift(@insns)); &pslldq (@Tx[2],12); # "X[0]"<<96, extract one dword &paddd (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[0],31); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); &movdqa (@Tx[1],@Tx[2]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[2],30); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@Tx[0]); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pslld (@Tx[1],2); &pxor (@X[0],@Tx[2]); eval(shift(@insns)); &movdqa (@Tx[2],eval(2*16*(($Xi)/5)-64)."($K_XX_XX)"); # K_XX_XX eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 &pshufd (@Tx[1],@X[-1&7],0xee) if ($Xi==7); # was &movdqa (@Tx[0],@X[-1&7]) in Xupdate_ssse3_32_79 foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] push(@Tx,shift(@Tx)); } sub Xupdate_ssse3_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)) if ($Xi==8); &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)) if ($Xi==8); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)) if (@insns[1] =~ /_ror/); eval(shift(@insns)) if (@insns[0] =~ /_ror/); &punpcklqdq(@Tx[0],@X[-1&7]); # compose "X[-6]", was &palignr(@Tx[0],@X[-2&7],8); eval(shift(@insns)); eval(shift(@insns)); # rol &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)); if ($Xi%5) { &movdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX... } else { # ... or load next one &movdqa (@Tx[2],eval(2*16*($Xi/5)-64)."($K_XX_XX)"); } eval(shift(@insns)); # ror &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)) if (@insns[0] =~ /_ror/); &movdqa (@Tx[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)); # body_20_39 &pslld (@X[0],2); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[0],30); eval(shift(@insns)) if (@insns[0] =~ /_rol/);# rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@Tx[0]); # "X[0]"<<<=2 eval(shift(@insns)); eval(shift(@insns)); # body_20_39 eval(shift(@insns)) if (@insns[1] =~ /_rol/); eval(shift(@insns)) if (@insns[0] =~ /_rol/); &pshufd(@Tx[1],@X[-1&7],0xee) if ($Xi<19); # was &movdqa (@Tx[1],@X[0]) eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] push(@Tx,shift(@Tx)); } sub Xuplast_ssse3_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &cmp ($inp,$num); &je (".Ldone_ssse3"); unshift(@Tx,pop(@Tx)); &movdqa (@X[2],"64($K_XX_XX)"); # pbswap mask &movdqa (@Tx[1],"-64($K_XX_XX)"); # K_00_19 &movdqu (@X[-4&7],"0($inp)"); # load input &movdqu (@X[-3&7],"16($inp)"); &movdqu (@X[-2&7],"32($inp)"); &movdqu (@X[-1&7],"48($inp)"); &pshufb (@X[-4&7],@X[2]); # byte swap &add ($inp,64); $Xi=0; } sub Xloop_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pshufb (@X[($Xi-3)&7],@X[2]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[($Xi-4)&7],@Tx[1]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*$Xi)."(%rsp)",@X[($Xi-4)&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psubd (@X[($Xi-4)&7],@Tx[1]); foreach (@insns) { eval; } $Xi++; } sub Xtail_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } sub body_00_19 () { # ((c^d)&b)^d # on start @T[0]=(c^d)&b return &body_20_39() if ($rx==19); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&$_ror ($b,$j?7:2)', # $b>>>2 '&xor (@T[0],$d)', '&mov (@T[1],$a)', # $b for next round '&add ($e,eval(4*($j&15))."(%rsp)")', # X[]+K xfer '&xor ($b,$c)', # $c^$d for next round '&$_rol ($a,5)', '&add ($e,@T[0])', '&and (@T[1],$b)', # ($b&($c^$d)) for next round '&xor ($b,$c)', # restore $b '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub body_20_39 () { # b^d^c # on entry @T[0]=b^d return &body_40_59() if ($rx==39); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,eval(4*($j&15))."(%rsp)")', # X[]+K xfer '&xor (@T[0],$d) if($j==19);'. '&xor (@T[0],$c) if($j> 19)', # ($b^$d^$c) '&mov (@T[1],$a)', # $b for next round '&$_rol ($a,5)', '&add ($e,@T[0])', '&xor (@T[1],$c) if ($j< 79)', # $b^$d for next round '&$_ror ($b,7)', # $b>>>2 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub body_40_59 () { # ((b^c)&(c^d))^c # on entry @T[0]=(b^c), (c^=d) $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,eval(4*($j&15))."(%rsp)")', # X[]+K xfer '&and (@T[0],$c) if ($j>=40)', # (b^c)&(c^d) '&xor ($c,$d) if ($j>=40)', # restore $c '&$_ror ($b,7)', # $b>>>2 '&mov (@T[1],$a)', # $b for next round '&xor (@T[0],$c)', '&$_rol ($a,5)', '&add ($e,@T[0])', '&xor (@T[1],$c) if ($j==59);'. '&xor (@T[1],$b) if ($j< 59)', # b^c for next round '&xor ($b,$c) if ($j< 59)', # c^d for next round '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } $code.=<<___; .align 16 .Loop_ssse3: ___ &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_32_79(\&body_00_19); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_20_39); &Xuplast_ssse3_80(\&body_20_39); # can jump to "done" $saved_j=$j; @saved_V=@V; &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); $code.=<<___; add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_ssse3 .align 16 .Ldone_ssse3: ___ $j=$saved_j; @V=@saved_V; &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); $code.=<<___; add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) ___ $code.=<<___ if ($win64); movaps -40-6*16($fp),%xmm6 movaps -40-5*16($fp),%xmm7 movaps -40-4*16($fp),%xmm8 movaps -40-3*16($fp),%xmm9 movaps -40-2*16($fp),%xmm10 movaps -40-1*16($fp),%xmm11 ___ $code.=<<___; mov -40($fp),%r14 .cfi_restore %r14 mov -32($fp),%r13 .cfi_restore %r13 mov -24($fp),%r12 .cfi_restore %r12 mov -16($fp),%rbp .cfi_restore %rbp mov -8($fp),%rbx .cfi_restore %rbx lea ($fp),%rsp .cfi_def_cfa_register %rsp .Lepilogue_ssse3: ret .cfi_endproc .size sha1_block_data_order_ssse3,.-sha1_block_data_order_ssse3 ___ if ($avx) { $Xi=4; # reset variables @X=map("%xmm$_",(4..7,0..3)); @Tx=map("%xmm$_",(8..10)); $j=0; $rx=0; my $done_avx_label=".Ldone_avx"; my $_rol=sub { &shld(@_[0],@_) }; my $_ror=sub { &shrd(@_[0],@_) }; $code.=<<___; .type sha1_block_data_order_avx,\@function,3 .align 16 sha1_block_data_order_avx: _avx_shortcut: .cfi_startproc mov %rsp,$fp .cfi_def_cfa_register $fp push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 # redundant, done to share Win64 SE handler .cfi_push %r13 push %r14 .cfi_push %r14 lea `-64-($win64?6*16:0)`(%rsp),%rsp vzeroupper ___ $code.=<<___ if ($win64); vmovaps %xmm6,-40-6*16($fp) vmovaps %xmm7,-40-5*16($fp) vmovaps %xmm8,-40-4*16($fp) vmovaps %xmm9,-40-3*16($fp) vmovaps %xmm10,-40-2*16($fp) vmovaps %xmm11,-40-1*16($fp) .Lprologue_avx: ___ $code.=<<___; and \$-64,%rsp mov %rdi,$ctx # reassigned argument mov %rsi,$inp # reassigned argument mov %rdx,$num # reassigned argument shl \$6,$num add $inp,$num lea K_XX_XX+64(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] vmovdqa 64($K_XX_XX),@X[2] # pbswap mask vmovdqa -64($K_XX_XX),$Kx # K_00_19 vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] vmovdqu 16($inp),@X[-3&7] vmovdqu 32($inp),@X[-2&7] vmovdqu 48($inp),@X[-1&7] vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap add \$64,$inp vpshufb @X[2],@X[-3&7],@X[-3&7] vpshufb @X[2],@X[-2&7],@X[-2&7] vpshufb @X[2],@X[-1&7],@X[-1&7] vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19 vpaddd $Kx,@X[-3&7],@X[1] vpaddd $Kx,@X[-2&7],@X[2] vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU vmovdqa @X[1],16(%rsp) vmovdqa @X[2],32(%rsp) jmp .Loop_avx ___ sub Xupdate_avx_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@Tx[1],$Kx,@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); &vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@Tx[0],@X[0],31); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword &vpaddd (@X[0],@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@Tx[1],@Tx[2],30); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslld (@Tx[2],@Tx[2],2); &vpxor (@X[0],@X[0],@Tx[1]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2 eval(shift(@insns)); eval(shift(@insns)); &vmovdqa ($Kx,eval(2*16*(($Xi)/5)-64)."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_avx_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); &vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]" &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/); &vpaddd (@Tx[1],$Kx,@X[-1&7]); &vmovdqa ($Kx,eval(2*16*($Xi/5)-64)."($K_XX_XX)") if ($Xi%5==0); eval(shift(@insns)); # ror eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpsrld (@Tx[0],@X[0],30); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpslld (@X[0],@X[0],2); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2 eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_avx_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); &vpaddd (@Tx[1],$Kx,@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &cmp ($inp,$num); &je ($done_avx_label); &vmovdqa(@X[2],"64($K_XX_XX)"); # pbswap mask &vmovdqa($Kx,"-64($K_XX_XX)"); # K_00_19 &vmovdqu(@X[-4&7],"0($inp)"); # load input &vmovdqu(@X[-3&7],"16($inp)"); &vmovdqu(@X[-2&7],"32($inp)"); &vmovdqu(@X[-1&7],"48($inp)"); &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap &add ($inp,64); $Xi=0; } sub Xloop_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpshufb(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],$Kx); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa(eval(16*$Xi)."(%rsp)",@X[$Xi&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } $Xi++; } sub Xtail_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } $code.=<<___; .align 16 .Loop_avx: ___ &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_32_79(\&body_00_19); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_20_39); &Xuplast_avx_80(\&body_20_39); # can jump to "done" $saved_j=$j; @saved_V=@V; &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); $code.=<<___; add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_avx .align 16 $done_avx_label: ___ $j=$saved_j; @V=@saved_V; &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); $code.=<<___; vzeroupper add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) ___ $code.=<<___ if ($win64); movaps -40-6*16($fp),%xmm6 movaps -40-5*16($fp),%xmm7 movaps -40-4*16($fp),%xmm8 movaps -40-3*16($fp),%xmm9 movaps -40-2*16($fp),%xmm10 movaps -40-1*16($fp),%xmm11 ___ $code.=<<___; mov -40($fp),%r14 .cfi_restore %r14 mov -32($fp),%r13 .cfi_restore %r13 mov -24($fp),%r12 .cfi_restore %r12 mov -16($fp),%rbp .cfi_restore %rbp mov -8($fp),%rbx .cfi_restore %rbx lea ($fp),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx: ret .cfi_endproc .size sha1_block_data_order_avx,.-sha1_block_data_order_avx ___ if ($avx>1) { use integer; $Xi=4; # reset variables @X=map("%ymm$_",(4..7,0..3)); @Tx=map("%ymm$_",(8..10)); $Kx="%ymm11"; $j=0; my @ROTX=("%eax","%ebp","%ebx","%ecx","%edx","%esi"); my ($a5,$t0)=("%r12d","%edi"); my ($A,$F,$B,$C,$D,$E)=@ROTX; my $rx=0; my $frame="%r13"; $code.=<<___; .type sha1_block_data_order_avx2,\@function,3 .align 16 sha1_block_data_order_avx2: _avx2_shortcut: .cfi_startproc mov %rsp,$fp .cfi_def_cfa_register $fp push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 vzeroupper ___ $code.=<<___ if ($win64); lea -6*16(%rsp),%rsp vmovaps %xmm6,-40-6*16($fp) vmovaps %xmm7,-40-5*16($fp) vmovaps %xmm8,-40-4*16($fp) vmovaps %xmm9,-40-3*16($fp) vmovaps %xmm10,-40-2*16($fp) vmovaps %xmm11,-40-1*16($fp) .Lprologue_avx2: ___ $code.=<<___; mov %rdi,$ctx # reassigned argument mov %rsi,$inp # reassigned argument mov %rdx,$num # reassigned argument lea -640(%rsp),%rsp shl \$6,$num lea 64($inp),$frame and \$-128,%rsp add $inp,$num lea K_XX_XX+64(%rip),$K_XX_XX mov 0($ctx),$A # load context cmp $num,$frame cmovae $inp,$frame # next or same block mov 4($ctx),$F mov 8($ctx),$C mov 12($ctx),$D mov 16($ctx),$E vmovdqu 64($K_XX_XX),@X[2] # pbswap mask vmovdqu ($inp),%xmm0 vmovdqu 16($inp),%xmm1 vmovdqu 32($inp),%xmm2 vmovdqu 48($inp),%xmm3 lea 64($inp),$inp vinserti128 \$1,($frame),@X[-4&7],@X[-4&7] vinserti128 \$1,16($frame),@X[-3&7],@X[-3&7] vpshufb @X[2],@X[-4&7],@X[-4&7] vinserti128 \$1,32($frame),@X[-2&7],@X[-2&7] vpshufb @X[2],@X[-3&7],@X[-3&7] vinserti128 \$1,48($frame),@X[-1&7],@X[-1&7] vpshufb @X[2],@X[-2&7],@X[-2&7] vmovdqu -64($K_XX_XX),$Kx # K_00_19 vpshufb @X[2],@X[-1&7],@X[-1&7] vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19 vpaddd $Kx,@X[-3&7],@X[1] vmovdqu @X[0],0(%rsp) # X[]+K xfer to IALU vpaddd $Kx,@X[-2&7],@X[2] vmovdqu @X[1],32(%rsp) vpaddd $Kx,@X[-1&7],@X[3] vmovdqu @X[2],64(%rsp) vmovdqu @X[3],96(%rsp) ___ for (;$Xi<8;$Xi++) { # Xupdate_avx2_16_31 use integer; &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" &vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" &vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" &vpsrld (@Tx[0],@X[0],31); &vmovdqu($Kx,eval(2*16*(($Xi)/5)-64)."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX &vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword &vpaddd (@X[0],@X[0],@X[0]); &vpsrld (@Tx[1],@Tx[2],30); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1 &vpslld (@Tx[2],@Tx[2],2); &vpxor (@X[0],@X[0],@Tx[1]); &vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2 &vpaddd (@Tx[1],@X[0],$Kx); &vmovdqu("32*$Xi(%rsp)",@Tx[1]); # X[]+K xfer to IALU push(@X,shift(@X)); # "rotate" X[] } $code.=<<___; lea 128(%rsp),$frame jmp .Loop_avx2 .align 32 .Loop_avx2: rorx \$2,$F,$B andn $D,$F,$t0 and $C,$F xor $t0,$F ___ sub bodyx_00_19 () { # 8 instructions, 3 cycles critical path # at start $f=(b&c)^(~b&d), $b>>>=2 return &bodyx_20_39() if ($rx==19); $rx++; ( '($a,$f,$b,$c,$d,$e)=@ROTX;'. '&add ($e,((32*($j/4)+4*($j%4))%256-128)."($frame)");'. # e+=X[i]+K '&lea ($frame,"256($frame)") if ($j%32==31);', '&andn ($t0,$a,$c)', # ~b&d for next round '&add ($e,$f)', # e+=(b&c)^(~b&d) '&rorx ($a5,$a,27)', # a<<<5 '&rorx ($f,$a,2)', # b>>>2 for next round '&and ($a,$b)', # b&c for next round '&add ($e,$a5)', # e+=a<<<5 '&xor ($a,$t0);'. # f=(b&c)^(~b&d) for next round 'unshift(@ROTX,pop(@ROTX)); $j++;' ) } sub bodyx_20_39 () { # 7 instructions, 2 cycles critical path # on entry $f=b^c^d, $b>>>=2 return &bodyx_40_59() if ($rx==39); $rx++; ( '($a,$f,$b,$c,$d,$e)=@ROTX;'. '&add ($e,((32*($j/4)+4*($j%4))%256-128)."($frame)");'. # e+=X[i]+K '&lea ($frame,"256($frame)") if ($j%32==31);', '&lea ($e,"($e,$f)")', # e+=b^c^d '&rorx ($a5,$a,27)', # a<<<5 '&rorx ($f,$a,2) if ($j<79)', # b>>>2 in next round '&xor ($a,$b) if ($j<79)', # b^c for next round '&add ($e,$a5)', # e+=a<<<5 '&xor ($a,$c) if ($j<79);'. # f=b^c^d for next round 'unshift(@ROTX,pop(@ROTX)); $j++;' ) } sub bodyx_40_59 () { # 10 instructions, 3 cycles critical path # on entry $f=((b^c)&(c^d)), $b>>>=2 $rx++; ( '($a,$f,$b,$c,$d,$e)=@ROTX;'. '&add ($e,((32*($j/4)+4*($j%4))%256-128)."($frame)");'. # e+=X[i]+K '&lea ($frame,"256($frame)") if ($j%32==31);', '&xor ($f,$c) if ($j>39)', # (b^c)&(c^d)^c '&mov ($t0,$b) if ($j<59)', # count on zero latency '&xor ($t0,$c) if ($j<59)', # c^d for next round '&lea ($e,"($e,$f)")', # e+=(b^c)&(c^d)^c '&rorx ($a5,$a,27)', # a<<<5 '&rorx ($f,$a,2)', # b>>>2 in next round '&xor ($a,$b)', # b^c for next round '&add ($e,$a5)', # e+=a<<<5 '&and ($a,$t0) if ($j< 59);'. # f=(b^c)&(c^d) for next round '&xor ($a,$c) if ($j==59);'. # f=b^c^d for next round 'unshift(@ROTX,pop(@ROTX)); $j++;' ) } sub Xupdate_avx2_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body,&$body); # 35 instructions my ($a,$b,$c,$d,$e); &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" &vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@Tx[0],@X[0],31); &vmovdqu($Kx,eval(2*16*(($Xi)/5)-64)."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword &vpaddd (@X[0],@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@Tx[1],@Tx[2],30); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); &vpslld (@Tx[2],@Tx[2],2); &vpxor (@X[0],@X[0],@Tx[1]); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@Tx[1],@X[0],$Kx); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqu(eval(32*($Xi))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_avx2_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body,&$body); # 35 to 50 instructions my ($a,$b,$c,$d,$e); &vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]" &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" &vmovdqu($Kx,eval(2*16*($Xi/5)-64)."($K_XX_XX)") if ($Xi%5==0); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@Tx[0],@X[0],30); &vpslld (@X[0],@X[0],2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #&vpslld (@X[0],@X[0],2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@Tx[1],@X[0],$Kx); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqu("32*$Xi(%rsp)",@Tx[1]); # X[]+K xfer to IALU foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xloop_avx2() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } &align32(); &Xupdate_avx2_32_79(\&bodyx_00_19); &Xupdate_avx2_32_79(\&bodyx_00_19); &Xupdate_avx2_32_79(\&bodyx_00_19); &Xupdate_avx2_32_79(\&bodyx_00_19); &Xupdate_avx2_32_79(\&bodyx_20_39); &Xupdate_avx2_32_79(\&bodyx_20_39); &Xupdate_avx2_32_79(\&bodyx_20_39); &Xupdate_avx2_32_79(\&bodyx_20_39); &align32(); &Xupdate_avx2_32_79(\&bodyx_40_59); &Xupdate_avx2_32_79(\&bodyx_40_59); &Xupdate_avx2_32_79(\&bodyx_40_59); &Xupdate_avx2_32_79(\&bodyx_40_59); &Xloop_avx2(\&bodyx_20_39); &Xloop_avx2(\&bodyx_20_39); &Xloop_avx2(\&bodyx_20_39); &Xloop_avx2(\&bodyx_20_39); $code.=<<___; lea 128($inp),$frame lea 128($inp),%rdi # borrow $t0 cmp $num,$frame cmovae $inp,$frame # next or previous block # output is d-e-[a]-f-b-c => A=d,F=e,C=f,D=b,E=c add 0($ctx),@ROTX[0] # update context add 4($ctx),@ROTX[1] add 8($ctx),@ROTX[3] mov @ROTX[0],0($ctx) add 12($ctx),@ROTX[4] mov @ROTX[1],4($ctx) mov @ROTX[0],$A # A=d add 16($ctx),@ROTX[5] mov @ROTX[3],$a5 mov @ROTX[3],8($ctx) mov @ROTX[4],$D # D=b #xchg @ROTX[5],$F # F=c, C=f mov @ROTX[4],12($ctx) mov @ROTX[1],$F # F=e mov @ROTX[5],16($ctx) #mov $F,16($ctx) mov @ROTX[5],$E # E=c mov $a5,$C # C=f #xchg $F,$E # E=c, F=e cmp $num,$inp je .Ldone_avx2 ___ $Xi=4; # reset variables @X=map("%ymm$_",(4..7,0..3)); $code.=<<___; vmovdqu 64($K_XX_XX),@X[2] # pbswap mask cmp $num,%rdi # borrowed $t0 ja .Last_avx2 vmovdqu -64(%rdi),%xmm0 # low part of @X[-4&7] vmovdqu -48(%rdi),%xmm1 vmovdqu -32(%rdi),%xmm2 vmovdqu -16(%rdi),%xmm3 vinserti128 \$1,0($frame),@X[-4&7],@X[-4&7] vinserti128 \$1,16($frame),@X[-3&7],@X[-3&7] vinserti128 \$1,32($frame),@X[-2&7],@X[-2&7] vinserti128 \$1,48($frame),@X[-1&7],@X[-1&7] jmp .Last_avx2 .align 32 .Last_avx2: lea 128+16(%rsp),$frame rorx \$2,$F,$B andn $D,$F,$t0 and $C,$F xor $t0,$F sub \$-128,$inp ___ $rx=$j=0; @ROTX=($A,$F,$B,$C,$D,$E); &Xloop_avx2 (\&bodyx_00_19); &Xloop_avx2 (\&bodyx_00_19); &Xloop_avx2 (\&bodyx_00_19); &Xloop_avx2 (\&bodyx_00_19); &Xloop_avx2 (\&bodyx_20_39); &vmovdqu ($Kx,"-64($K_XX_XX)"); # K_00_19 &vpshufb (@X[-4&7],@X[-4&7],@X[2]); # byte swap &Xloop_avx2 (\&bodyx_20_39); &vpshufb (@X[-3&7],@X[-3&7],@X[2]); &vpaddd (@Tx[0],@X[-4&7],$Kx); # add K_00_19 &Xloop_avx2 (\&bodyx_20_39); &vmovdqu ("0(%rsp)",@Tx[0]); &vpshufb (@X[-2&7],@X[-2&7],@X[2]); &vpaddd (@Tx[1],@X[-3&7],$Kx); &Xloop_avx2 (\&bodyx_20_39); &vmovdqu ("32(%rsp)",@Tx[1]); &vpshufb (@X[-1&7],@X[-1&7],@X[2]); &vpaddd (@X[2],@X[-2&7],$Kx); &Xloop_avx2 (\&bodyx_40_59); &align32 (); &vmovdqu ("64(%rsp)",@X[2]); &vpaddd (@X[3],@X[-1&7],$Kx); &Xloop_avx2 (\&bodyx_40_59); &vmovdqu ("96(%rsp)",@X[3]); &Xloop_avx2 (\&bodyx_40_59); &Xupdate_avx2_16_31(\&bodyx_40_59); &Xupdate_avx2_16_31(\&bodyx_20_39); &Xupdate_avx2_16_31(\&bodyx_20_39); &Xupdate_avx2_16_31(\&bodyx_20_39); &Xloop_avx2 (\&bodyx_20_39); $code.=<<___; lea 128(%rsp),$frame # output is d-e-[a]-f-b-c => A=d,F=e,C=f,D=b,E=c add 0($ctx),@ROTX[0] # update context add 4($ctx),@ROTX[1] add 8($ctx),@ROTX[3] mov @ROTX[0],0($ctx) add 12($ctx),@ROTX[4] mov @ROTX[1],4($ctx) mov @ROTX[0],$A # A=d add 16($ctx),@ROTX[5] mov @ROTX[3],$a5 mov @ROTX[3],8($ctx) mov @ROTX[4],$D # D=b #xchg @ROTX[5],$F # F=c, C=f mov @ROTX[4],12($ctx) mov @ROTX[1],$F # F=e mov @ROTX[5],16($ctx) #mov $F,16($ctx) mov @ROTX[5],$E # E=c mov $a5,$C # C=f #xchg $F,$E # E=c, F=e cmp $num,$inp jbe .Loop_avx2 .Ldone_avx2: vzeroupper ___ $code.=<<___ if ($win64); movaps -40-6*16($fp),%xmm6 movaps -40-5*16($fp),%xmm7 movaps -40-4*16($fp),%xmm8 movaps -40-3*16($fp),%xmm9 movaps -40-2*16($fp),%xmm10 movaps -40-1*16($fp),%xmm11 ___ $code.=<<___; mov -40($fp),%r14 .cfi_restore %r14 mov -32($fp),%r13 .cfi_restore %r13 mov -24($fp),%r12 .cfi_restore %r12 mov -16($fp),%rbp .cfi_restore %rbp mov -8($fp),%rbx .cfi_restore %rbx lea ($fp),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx2: ret .cfi_endproc .size sha1_block_data_order_avx2,.-sha1_block_data_order_avx2 ___ } } $code.=<<___; .align 64 K_XX_XX: .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19 .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask .byte 0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0 ___ }}} $code.=<<___; .asciz "SHA1 block transform for x86_64, CRYPTOGAMS by " .align 64 ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lprologue(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lprologue jb .Lcommon_seh_tail mov 152($context),%rax # pull context->Rsp lea .Lepilogue(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lcommon_seh_tail mov `16*4`(%rax),%rax # pull saved stack pointer mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 jmp .Lcommon_seh_tail .size se_handler,.-se_handler ___ $code.=<<___ if ($shaext); .type shaext_handler,\@abi-omnipotent .align 16 shaext_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lprologue_shaext(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lprologue jb .Lcommon_seh_tail lea .Lepilogue_shaext(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lcommon_seh_tail lea -8-4*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$8,%ecx .long 0xa548f3fc # cld; rep movsq jmp .Lcommon_seh_tail .size shaext_handler,.-shaext_handler ___ $code.=<<___; .type ssse3_handler,\@abi-omnipotent .align 16 ssse3_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipR11 mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail lea -40-6*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$12,%ecx .long 0xa548f3fc # cld; rep movsq mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size ssse3_handler,.-ssse3_handler .section .pdata .align 4 .rva .LSEH_begin_sha1_block_data_order .rva .LSEH_end_sha1_block_data_order .rva .LSEH_info_sha1_block_data_order ___ $code.=<<___ if ($shaext); .rva .LSEH_begin_sha1_block_data_order_shaext .rva .LSEH_end_sha1_block_data_order_shaext .rva .LSEH_info_sha1_block_data_order_shaext ___ $code.=<<___; .rva .LSEH_begin_sha1_block_data_order_ssse3 .rva .LSEH_end_sha1_block_data_order_ssse3 .rva .LSEH_info_sha1_block_data_order_ssse3 ___ $code.=<<___ if ($avx); .rva .LSEH_begin_sha1_block_data_order_avx .rva .LSEH_end_sha1_block_data_order_avx .rva .LSEH_info_sha1_block_data_order_avx ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_sha1_block_data_order_avx2 .rva .LSEH_end_sha1_block_data_order_avx2 .rva .LSEH_info_sha1_block_data_order_avx2 ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_sha1_block_data_order: .byte 9,0,0,0 .rva se_handler ___ $code.=<<___ if ($shaext); .LSEH_info_sha1_block_data_order_shaext: .byte 9,0,0,0 .rva shaext_handler ___ $code.=<<___; .LSEH_info_sha1_block_data_order_ssse3: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[] ___ $code.=<<___ if ($avx); .LSEH_info_sha1_block_data_order_avx: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_avx,.Lepilogue_avx # HandlerData[] ___ $code.=<<___ if ($avx>1); .LSEH_info_sha1_block_data_order_avx2: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_avx2,.Lepilogue_avx2 # HandlerData[] ___ } #################################################################### sub sha1rnds4 { if (@_[0] =~ /\$([x0-9a-f]+),\s*%xmm([0-7]),\s*%xmm([0-7])/) { my @opcode=(0x0f,0x3a,0xcc); push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M my $c=$1; push @opcode,$c=~/^0/?oct($c):$c; return ".byte\t".join(',',@opcode); } else { return "sha1rnds4\t".@_[0]; } } sub sha1op38 { my $instr = shift; my %opcodelet = ( "sha1nexte" => 0xc8, "sha1msg1" => 0xc9, "sha1msg2" => 0xca ); if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x38); my $rex=0; $rex|=0x04 if ($2>=8); $rex|=0x01 if ($1>=8); unshift @opcode,0x40|$rex if ($rex); push @opcode,$opcodelet{$instr}; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } else { return $instr."\t".@_[0]; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\b(sha1rnds4)\s+(.*)/sha1rnds4($2)/geo or s/\b(sha1[^\s]*)\s+(.*)/sha1op38($1,$2)/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha256-586.pl000066400000000000000000001100401364063235100201020ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA256 block transform for x86. September 2007. # # Performance improvement over compiler generated code varies from # 10% to 40% [see below]. Not very impressive on some µ-archs, but # it's 5 times smaller and optimizes amount of writes. # # May 2012. # # Optimization including two of Pavel Semjanov's ideas, alternative # Maj and full unroll, resulted in ~20-25% improvement on most CPUs, # ~7% on Pentium, ~40% on Atom. As fully unrolled loop body is almost # 15x larger, 8KB vs. 560B, it's fired only for longer inputs. But not # on P4, where it kills performance, nor Sandy Bridge, where folded # loop is approximately as fast... # # June 2012. # # Add AMD XOP-specific code path, >30% improvement on Bulldozer over # May version, >60% over original. Add AVX+shrd code path, >25% # improvement on Sandy Bridge over May version, 60% over original. # # May 2013. # # Replace AMD XOP code path with SSSE3 to cover more processors. # (Biggest improvement coefficient is on upcoming Atom Silvermont, # not shown.) Add AVX+BMI code path. # # March 2014. # # Add support for Intel SHA Extensions. # # Performance in clock cycles per processed byte (less is better): # # gcc icc x86 asm(*) SIMD x86_64 asm(**) # Pentium 46 57 40/38 - - # PIII 36 33 27/24 - - # P4 41 38 28 - 17.3 # AMD K8 27 25 19/15.5 - 14.9 # Core2 26 23 18/15.6 14.3 13.8 # Westmere 27 - 19/15.7 13.4 12.3 # Sandy Bridge 25 - 15.9 12.4 11.6 # Ivy Bridge 24 - 15.0 11.4 10.3 # Haswell 22 - 13.9 9.46 7.80 # Skylake 20 - 14.9 9.50 7.70 # Bulldozer 36 - 27/22 17.0 13.6 # VIA Nano 36 - 25/22 16.8 16.5 # Atom 50 - 30/25 21.9 18.9 # Silvermont 40 - 34/31 22.9 20.6 # Goldmont 29 - 20 16.3(***) # # (*) numbers after slash are for unrolled loop, where applicable; # (**) x86_64 assembly performance is presented for reference # purposes, results are best-available; # (***) SHAEXT result is 4.1, strangely enough better than 64-bit one; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $xmm=$avx=0; for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } if ($xmm && `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if ($xmm && !$avx && $ARGV[0] eq "win32n" && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.03) + ($1>=2.10); } if ($xmm && !$avx && $ARGV[0] eq "win32" && `ml 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if ($xmm && !$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } $shaext=$xmm; ### set to zero if compiling for 1.0.1 $unroll_after = 64*4; # If pre-evicted from L1P cache first spin of # fully unrolled loop was measured to run about # 3-4x slower. If slowdown coefficient is N and # unrolled loop is m times faster, then you break # even at (N-1)/(m-1) blocks. Then it needs to be # adjusted for probability of code being evicted, # code size/cache size=1/4. Typical m is 1.15... $A="eax"; $E="edx"; $T="ebx"; $Aoff=&DWP(4,"esp"); $Boff=&DWP(8,"esp"); $Coff=&DWP(12,"esp"); $Doff=&DWP(16,"esp"); $Eoff=&DWP(20,"esp"); $Foff=&DWP(24,"esp"); $Goff=&DWP(28,"esp"); $Hoff=&DWP(32,"esp"); $Xoff=&DWP(36,"esp"); $K256="ebp"; sub BODY_16_63() { &mov ($T,"ecx"); # "ecx" is preloaded &mov ("esi",&DWP(4*(9+15+16-14),"esp")); &ror ("ecx",18-7); &mov ("edi","esi"); &ror ("esi",19-17); &xor ("ecx",$T); &shr ($T,3); &ror ("ecx",7); &xor ("esi","edi"); &xor ($T,"ecx"); # T = sigma0(X[-15]) &ror ("esi",17); &add ($T,&DWP(4*(9+15+16),"esp")); # T += X[-16] &shr ("edi",10); &add ($T,&DWP(4*(9+15+16-9),"esp")); # T += X[-7] #&xor ("edi","esi") # sigma1(X[-2]) # &add ($T,"edi"); # T += sigma1(X[-2]) # &mov (&DWP(4*(9+15),"esp"),$T); # save X[0] &BODY_00_15(1); } sub BODY_00_15() { my $in_16_63=shift; &mov ("ecx",$E); &xor ("edi","esi") if ($in_16_63); # sigma1(X[-2]) &mov ("esi",$Foff); &ror ("ecx",25-11); &add ($T,"edi") if ($in_16_63); # T += sigma1(X[-2]) &mov ("edi",$Goff); &xor ("ecx",$E); &xor ("esi","edi"); &mov ($T,&DWP(4*(9+15),"esp")) if (!$in_16_63); &mov (&DWP(4*(9+15),"esp"),$T) if ($in_16_63); # save X[0] &ror ("ecx",11-6); &and ("esi",$E); &mov ($Eoff,$E); # modulo-scheduled &xor ($E,"ecx"); &add ($T,$Hoff); # T += h &xor ("esi","edi"); # Ch(e,f,g) &ror ($E,6); # Sigma1(e) &mov ("ecx",$A); &add ($T,"esi"); # T += Ch(e,f,g) &ror ("ecx",22-13); &add ($T,$E); # T += Sigma1(e) &mov ("edi",$Boff); &xor ("ecx",$A); &mov ($Aoff,$A); # modulo-scheduled &lea ("esp",&DWP(-4,"esp")); &ror ("ecx",13-2); &mov ("esi",&DWP(0,$K256)); &xor ("ecx",$A); &mov ($E,$Eoff); # e in next iteration, d in this one &xor ($A,"edi"); # a ^= b &ror ("ecx",2); # Sigma0(a) &add ($T,"esi"); # T+= K[i] &mov (&DWP(0,"esp"),$A); # (b^c) in next round &add ($E,$T); # d += T &and ($A,&DWP(4,"esp")); # a &= (b^c) &add ($T,"ecx"); # T += Sigma0(a) &xor ($A,"edi"); # h = Maj(a,b,c) = Ch(a^b,c,b) &mov ("ecx",&DWP(4*(9+15+16-1),"esp")) if ($in_16_63); # preload T &add ($K256,4); &add ($A,$T); # h += T } &external_label("OPENSSL_ia32cap_P") if (!$i386); &function_begin("sha256_block_data_order"); &mov ("esi",wparam(0)); # ctx &mov ("edi",wparam(1)); # inp &mov ("eax",wparam(2)); # num &mov ("ebx","esp"); # saved sp &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($K256); &lea ($K256,&DWP(&label("K256")."-".&label("pic_point"),$K256)); &sub ("esp",16); &and ("esp",-64); &shl ("eax",6); &add ("eax","edi"); &mov (&DWP(0,"esp"),"esi"); # ctx &mov (&DWP(4,"esp"),"edi"); # inp &mov (&DWP(8,"esp"),"eax"); # inp+num*128 &mov (&DWP(12,"esp"),"ebx"); # saved sp if (!$i386 && $xmm) { &picmeup("edx","OPENSSL_ia32cap_P",$K256,&label("K256")); &mov ("ecx",&DWP(0,"edx")); &mov ("ebx",&DWP(4,"edx")); &test ("ecx",1<<20); # check for P4 &jnz (&label("loop")); &mov ("edx",&DWP(8,"edx")) if ($xmm); &test ("ecx",1<<24); # check for FXSR &jz ($unroll_after?&label("no_xmm"):&label("loop")); &and ("ecx",1<<30); # mask "Intel CPU" bit &and ("ebx",1<<28|1<<9); # mask AVX and SSSE3 bits &test ("edx",1<<29) if ($shaext); # check for SHA &jnz (&label("shaext")) if ($shaext); &or ("ecx","ebx"); &and ("ecx",1<<28|1<<30); &cmp ("ecx",1<<28|1<<30); if ($xmm) { &je (&label("AVX")) if ($avx); &test ("ebx",1<<9); # check for SSSE3 &jnz (&label("SSSE3")); } else { &je (&label("loop_shrd")); } if ($unroll_after) { &set_label("no_xmm"); &sub ("eax","edi"); &cmp ("eax",$unroll_after); &jae (&label("unrolled")); } } &jmp (&label("loop")); sub COMPACT_LOOP() { my $suffix=shift; &set_label("loop$suffix",$suffix?32:16); # copy input block to stack reversing byte and dword order for($i=0;$i<4;$i++) { &mov ("eax",&DWP($i*16+0,"edi")); &mov ("ebx",&DWP($i*16+4,"edi")); &mov ("ecx",&DWP($i*16+8,"edi")); &bswap ("eax"); &mov ("edx",&DWP($i*16+12,"edi")); &bswap ("ebx"); &push ("eax"); &bswap ("ecx"); &push ("ebx"); &bswap ("edx"); &push ("ecx"); &push ("edx"); } &add ("edi",64); &lea ("esp",&DWP(-4*9,"esp"));# place for A,B,C,D,E,F,G,H &mov (&DWP(4*(9+16)+4,"esp"),"edi"); # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack &mov ($A,&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edi",&DWP(12,"esi")); # &mov ($Aoff,$A); &mov ($Boff,"ebx"); &xor ("ebx","ecx"); &mov ($Coff,"ecx"); &mov ($Doff,"edi"); &mov (&DWP(0,"esp"),"ebx"); # magic &mov ($E,&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("edi",&DWP(28,"esi")); # &mov ($Eoff,$E); &mov ($Foff,"ebx"); &mov ($Goff,"ecx"); &mov ($Hoff,"edi"); &set_label("00_15$suffix",16); &BODY_00_15(); &cmp ("esi",0xc19bf174); &jne (&label("00_15$suffix")); &mov ("ecx",&DWP(4*(9+15+16-1),"esp")); # preloaded in BODY_00_15(1) &jmp (&label("16_63$suffix")); &set_label("16_63$suffix",16); &BODY_16_63(); &cmp ("esi",0xc67178f2); &jne (&label("16_63$suffix")); &mov ("esi",&DWP(4*(9+16+64)+0,"esp"));#ctx # &mov ($A,$Aoff); &mov ("ebx",$Boff); # &mov ("edi",$Coff); &mov ("ecx",$Doff); &add ($A,&DWP(0,"esi")); &add ("ebx",&DWP(4,"esi")); &add ("edi",&DWP(8,"esi")); &add ("ecx",&DWP(12,"esi")); &mov (&DWP(0,"esi"),$A); &mov (&DWP(4,"esi"),"ebx"); &mov (&DWP(8,"esi"),"edi"); &mov (&DWP(12,"esi"),"ecx"); # &mov ($E,$Eoff); &mov ("eax",$Foff); &mov ("ebx",$Goff); &mov ("ecx",$Hoff); &mov ("edi",&DWP(4*(9+16+64)+4,"esp"));#inp &add ($E,&DWP(16,"esi")); &add ("eax",&DWP(20,"esi")); &add ("ebx",&DWP(24,"esi")); &add ("ecx",&DWP(28,"esi")); &mov (&DWP(16,"esi"),$E); &mov (&DWP(20,"esi"),"eax"); &mov (&DWP(24,"esi"),"ebx"); &mov (&DWP(28,"esi"),"ecx"); &lea ("esp",&DWP(4*(9+16+64),"esp"));# destroy frame &sub ($K256,4*64); # rewind K &cmp ("edi",&DWP(8,"esp")); # are we done yet? &jb (&label("loop$suffix")); } &COMPACT_LOOP(); &mov ("esp",&DWP(12,"esp")); # restore sp &function_end_A(); if (!$i386 && !$xmm) { # ~20% improvement on Sandy Bridge local *ror = sub { &shrd(@_[0],@_) }; &COMPACT_LOOP("_shrd"); &mov ("esp",&DWP(12,"esp")); # restore sp &function_end_A(); } &set_label("K256",64); # Yes! I keep it in the code segment! @K256=( 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5, 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5, 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3, 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174, 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc, 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7, 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967, 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13, 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85, 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3, 0xd192e819,0xd6990624,0xf40e3585,0x106aa070, 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5, 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3, 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208, 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 ); &data_word(@K256); &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # byte swap mask &asciz("SHA256 block transform for x86, CRYPTOGAMS by "); ($a,$b,$c,$d,$e,$f,$g,$h)=(0..7); # offsets sub off { &DWP(4*(((shift)-$i)&7),"esp"); } if (!$i386 && $unroll_after) { my @AH=($A,$K256); &set_label("unrolled",16); &lea ("esp",&DWP(-96,"esp")); # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack &mov ($AH[0],&DWP(0,"esi")); &mov ($AH[1],&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("ebx",&DWP(12,"esi")); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"ecx"); # magic &mov (&DWP(8,"esp"),"ecx"); &mov (&DWP(12,"esp"),"ebx"); &mov ($E,&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("esi",&DWP(28,"esi")); #&mov (&DWP(16,"esp"),$E); &mov (&DWP(20,"esp"),"ebx"); &mov (&DWP(24,"esp"),"ecx"); &mov (&DWP(28,"esp"),"esi"); &jmp (&label("grand_loop")); &set_label("grand_loop",16); # copy input block to stack reversing byte order for($i=0;$i<5;$i++) { &mov ("ebx",&DWP(12*$i+0,"edi")); &mov ("ecx",&DWP(12*$i+4,"edi")); &bswap ("ebx"); &mov ("esi",&DWP(12*$i+8,"edi")); &bswap ("ecx"); &mov (&DWP(32+12*$i+0,"esp"),"ebx"); &bswap ("esi"); &mov (&DWP(32+12*$i+4,"esp"),"ecx"); &mov (&DWP(32+12*$i+8,"esp"),"esi"); } &mov ("ebx",&DWP($i*12,"edi")); &add ("edi",64); &bswap ("ebx"); &mov (&DWP(96+4,"esp"),"edi"); &mov (&DWP(32+12*$i,"esp"),"ebx"); my ($t1,$t2) = ("ecx","esi"); for ($i=0;$i<64;$i++) { if ($i>=16) { &mov ($T,$t1); # $t1 is preloaded # &mov ($t2,&DWP(32+4*(($i+14)&15),"esp")); &ror ($t1,18-7); &mov ("edi",$t2); &ror ($t2,19-17); &xor ($t1,$T); &shr ($T,3); &ror ($t1,7); &xor ($t2,"edi"); &xor ($T,$t1); # T = sigma0(X[-15]) &ror ($t2,17); &add ($T,&DWP(32+4*($i&15),"esp")); # T += X[-16] &shr ("edi",10); &add ($T,&DWP(32+4*(($i+9)&15),"esp")); # T += X[-7] #&xor ("edi",$t2) # sigma1(X[-2]) # &add ($T,"edi"); # T += sigma1(X[-2]) # &mov (&DWP(4*(9+15),"esp"),$T); # save X[0] } &mov ($t1,$E); &xor ("edi",$t2) if ($i>=16); # sigma1(X[-2]) &mov ($t2,&off($f)); &ror ($E,25-11); &add ($T,"edi") if ($i>=16); # T += sigma1(X[-2]) &mov ("edi",&off($g)); &xor ($E,$t1); &mov ($T,&DWP(32+4*($i&15),"esp")) if ($i<16); # X[i] &mov (&DWP(32+4*($i&15),"esp"),$T) if ($i>=16 && $i<62); # save X[0] &xor ($t2,"edi"); &ror ($E,11-6); &and ($t2,$t1); &mov (&off($e),$t1); # save $E, modulo-scheduled &xor ($E,$t1); &add ($T,&off($h)); # T += h &xor ("edi",$t2); # Ch(e,f,g) &ror ($E,6); # Sigma1(e) &mov ($t1,$AH[0]); &add ($T,"edi"); # T += Ch(e,f,g) &ror ($t1,22-13); &mov ($t2,$AH[0]); &mov ("edi",&off($b)); &xor ($t1,$AH[0]); &mov (&off($a),$AH[0]); # save $A, modulo-scheduled &xor ($AH[0],"edi"); # a ^= b, (b^c) in next round &ror ($t1,13-2); &and ($AH[1],$AH[0]); # (b^c) &= (a^b) &lea ($E,&DWP(@K256[$i],$T,$E)); # T += Sigma1(1)+K[i] &xor ($t1,$t2); &xor ($AH[1],"edi"); # h = Maj(a,b,c) = Ch(a^b,c,b) &mov ($t2,&DWP(32+4*(($i+2)&15),"esp")) if ($i>=15 && $i<63); &ror ($t1,2); # Sigma0(a) &add ($AH[1],$E); # h += T &add ($E,&off($d)); # d += T &add ($AH[1],$t1); # h += Sigma0(a) &mov ($t1,&DWP(32+4*(($i+15)&15),"esp")) if ($i>=15 && $i<63); @AH = reverse(@AH); # rotate(a,h) ($t1,$t2) = ($t2,$t1); # rotate(t1,t2) } &mov ("esi",&DWP(96,"esp")); #ctx #&mov ($AH[0],&DWP(0,"esp")); &xor ($AH[1],"edi"); #&mov ($AH[1],&DWP(4,"esp")); #&mov ("edi", &DWP(8,"esp")); &mov ("ecx",&DWP(12,"esp")); &add ($AH[0],&DWP(0,"esi")); &add ($AH[1],&DWP(4,"esi")); &add ("edi",&DWP(8,"esi")); &add ("ecx",&DWP(12,"esi")); &mov (&DWP(0,"esi"),$AH[0]); &mov (&DWP(4,"esi"),$AH[1]); &mov (&DWP(8,"esi"),"edi"); &mov (&DWP(12,"esi"),"ecx"); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"edi"); # magic &mov (&DWP(8,"esp"),"edi"); &mov (&DWP(12,"esp"),"ecx"); #&mov ($E,&DWP(16,"esp")); &mov ("edi",&DWP(20,"esp")); &mov ("ebx",&DWP(24,"esp")); &mov ("ecx",&DWP(28,"esp")); &add ($E,&DWP(16,"esi")); &add ("edi",&DWP(20,"esi")); &add ("ebx",&DWP(24,"esi")); &add ("ecx",&DWP(28,"esi")); &mov (&DWP(16,"esi"),$E); &mov (&DWP(20,"esi"),"edi"); &mov (&DWP(24,"esi"),"ebx"); &mov (&DWP(28,"esi"),"ecx"); #&mov (&DWP(16,"esp"),$E); &mov (&DWP(20,"esp"),"edi"); &mov ("edi",&DWP(96+4,"esp")); # inp &mov (&DWP(24,"esp"),"ebx"); &mov (&DWP(28,"esp"),"ecx"); &cmp ("edi",&DWP(96+8,"esp")); # are we done yet? &jb (&label("grand_loop")); &mov ("esp",&DWP(96+12,"esp")); # restore sp &function_end_A(); } if (!$i386 && $xmm) {{{ if ($shaext) { ###################################################################### # Intel SHA Extensions implementation of SHA256 update function. # my ($ctx,$inp,$end)=("esi","edi","eax"); my ($Wi,$ABEF,$CDGH,$TMP)=map("xmm$_",(0..2,7)); my @MSG=map("xmm$_",(3..6)); sub sha256op38 { my ($opcodelet,$dst,$src)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); } } sub sha256rnds2 { sha256op38(0xcb,@_); } sub sha256msg1 { sha256op38(0xcc,@_); } sub sha256msg2 { sha256op38(0xcd,@_); } &set_label("shaext",32); &sub ("esp",32); &movdqu ($ABEF,&QWP(0,$ctx)); # DCBA &lea ($K256,&DWP(0x80,$K256)); &movdqu ($CDGH,&QWP(16,$ctx)); # HGFE &movdqa ($TMP,&QWP(0x100-0x80,$K256)); # byte swap mask &pshufd ($Wi,$ABEF,0x1b); # ABCD &pshufd ($ABEF,$ABEF,0xb1); # CDAB &pshufd ($CDGH,$CDGH,0x1b); # EFGH &palignr ($ABEF,$CDGH,8); # ABEF &punpcklqdq ($CDGH,$Wi); # CDGH &jmp (&label("loop_shaext")); &set_label("loop_shaext",16); &movdqu (@MSG[0],&QWP(0,$inp)); &movdqu (@MSG[1],&QWP(0x10,$inp)); &movdqu (@MSG[2],&QWP(0x20,$inp)); &pshufb (@MSG[0],$TMP); &movdqu (@MSG[3],&QWP(0x30,$inp)); &movdqa (&QWP(16,"esp"),$CDGH); # offload &movdqa ($Wi,&QWP(0*16-0x80,$K256)); &paddd ($Wi,@MSG[0]); &pshufb (@MSG[1],$TMP); &sha256rnds2 ($CDGH,$ABEF); # 0-3 &pshufd ($Wi,$Wi,0x0e); &nop (); &movdqa (&QWP(0,"esp"),$ABEF); # offload &sha256rnds2 ($ABEF,$CDGH); &movdqa ($Wi,&QWP(1*16-0x80,$K256)); &paddd ($Wi,@MSG[1]); &pshufb (@MSG[2],$TMP); &sha256rnds2 ($CDGH,$ABEF); # 4-7 &pshufd ($Wi,$Wi,0x0e); &lea ($inp,&DWP(0x40,$inp)); &sha256msg1 (@MSG[0],@MSG[1]); &sha256rnds2 ($ABEF,$CDGH); &movdqa ($Wi,&QWP(2*16-0x80,$K256)); &paddd ($Wi,@MSG[2]); &pshufb (@MSG[3],$TMP); &sha256rnds2 ($CDGH,$ABEF); # 8-11 &pshufd ($Wi,$Wi,0x0e); &movdqa ($TMP,@MSG[3]); &palignr ($TMP,@MSG[2],4); &nop (); &paddd (@MSG[0],$TMP); &sha256msg1 (@MSG[1],@MSG[2]); &sha256rnds2 ($ABEF,$CDGH); &movdqa ($Wi,&QWP(3*16-0x80,$K256)); &paddd ($Wi,@MSG[3]); &sha256msg2 (@MSG[0],@MSG[3]); &sha256rnds2 ($CDGH,$ABEF); # 12-15 &pshufd ($Wi,$Wi,0x0e); &movdqa ($TMP,@MSG[0]); &palignr ($TMP,@MSG[3],4); &nop (); &paddd (@MSG[1],$TMP); &sha256msg1 (@MSG[2],@MSG[3]); &sha256rnds2 ($ABEF,$CDGH); for($i=4;$i<16-3;$i++) { &movdqa ($Wi,&QWP($i*16-0x80,$K256)); &paddd ($Wi,@MSG[0]); &sha256msg2 (@MSG[1],@MSG[0]); &sha256rnds2 ($CDGH,$ABEF); # 16-19... &pshufd ($Wi,$Wi,0x0e); &movdqa ($TMP,@MSG[1]); &palignr ($TMP,@MSG[0],4); &nop (); &paddd (@MSG[2],$TMP); &sha256msg1 (@MSG[3],@MSG[0]); &sha256rnds2 ($ABEF,$CDGH); push(@MSG,shift(@MSG)); } &movdqa ($Wi,&QWP(13*16-0x80,$K256)); &paddd ($Wi,@MSG[0]); &sha256msg2 (@MSG[1],@MSG[0]); &sha256rnds2 ($CDGH,$ABEF); # 52-55 &pshufd ($Wi,$Wi,0x0e); &movdqa ($TMP,@MSG[1]) &palignr ($TMP,@MSG[0],4); &sha256rnds2 ($ABEF,$CDGH); &paddd (@MSG[2],$TMP); &movdqa ($Wi,&QWP(14*16-0x80,$K256)); &paddd ($Wi,@MSG[1]); &sha256rnds2 ($CDGH,$ABEF); # 56-59 &pshufd ($Wi,$Wi,0x0e); &sha256msg2 (@MSG[2],@MSG[1]); &movdqa ($TMP,&QWP(0x100-0x80,$K256)); # byte swap mask &sha256rnds2 ($ABEF,$CDGH); &movdqa ($Wi,&QWP(15*16-0x80,$K256)); &paddd ($Wi,@MSG[2]); &nop (); &sha256rnds2 ($CDGH,$ABEF); # 60-63 &pshufd ($Wi,$Wi,0x0e); &cmp ($end,$inp); &nop (); &sha256rnds2 ($ABEF,$CDGH); &paddd ($CDGH,&QWP(16,"esp")); &paddd ($ABEF,&QWP(0,"esp")); &jnz (&label("loop_shaext")); &pshufd ($CDGH,$CDGH,0xb1); # DCHG &pshufd ($TMP,$ABEF,0x1b); # FEBA &pshufd ($ABEF,$ABEF,0xb1); # BAFE &punpckhqdq ($ABEF,$CDGH); # DCBA &palignr ($CDGH,$TMP,8); # HGFE &mov ("esp",&DWP(32+12,"esp")); &movdqu (&QWP(0,$ctx),$ABEF); &movdqu (&QWP(16,$ctx),$CDGH); &function_end_A(); } my @X = map("xmm$_",(0..3)); my ($t0,$t1,$t2,$t3) = map("xmm$_",(4..7)); my @AH = ($A,$T); &set_label("SSSE3",32); &lea ("esp",&DWP(-96,"esp")); # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack &mov ($AH[0],&DWP(0,"esi")); &mov ($AH[1],&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edi",&DWP(12,"esi")); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"ecx"); # magic &mov (&DWP(8,"esp"),"ecx"); &mov (&DWP(12,"esp"),"edi"); &mov ($E,&DWP(16,"esi")); &mov ("edi",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("esi",&DWP(28,"esi")); #&mov (&DWP(16,"esp"),$E); &mov (&DWP(20,"esp"),"edi"); &mov ("edi",&DWP(96+4,"esp")); # inp &mov (&DWP(24,"esp"),"ecx"); &mov (&DWP(28,"esp"),"esi"); &movdqa ($t3,&QWP(256,$K256)); &jmp (&label("grand_ssse3")); &set_label("grand_ssse3",16); # load input, reverse byte order, add K256[0..15], save to stack &movdqu (@X[0],&QWP(0,"edi")); &movdqu (@X[1],&QWP(16,"edi")); &movdqu (@X[2],&QWP(32,"edi")); &movdqu (@X[3],&QWP(48,"edi")); &add ("edi",64); &pshufb (@X[0],$t3); &mov (&DWP(96+4,"esp"),"edi"); &pshufb (@X[1],$t3); &movdqa ($t0,&QWP(0,$K256)); &pshufb (@X[2],$t3); &movdqa ($t1,&QWP(16,$K256)); &paddd ($t0,@X[0]); &pshufb (@X[3],$t3); &movdqa ($t2,&QWP(32,$K256)); &paddd ($t1,@X[1]); &movdqa ($t3,&QWP(48,$K256)); &movdqa (&QWP(32+0,"esp"),$t0); &paddd ($t2,@X[2]); &movdqa (&QWP(32+16,"esp"),$t1); &paddd ($t3,@X[3]); &movdqa (&QWP(32+32,"esp"),$t2); &movdqa (&QWP(32+48,"esp"),$t3); &jmp (&label("ssse3_00_47")); &set_label("ssse3_00_47",16); &add ($K256,64); sub SSSE3_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 120 instructions eval(shift(@insns)); &movdqa ($t0,@X[1]); eval(shift(@insns)); # @ eval(shift(@insns)); &movdqa ($t3,@X[3]); eval(shift(@insns)); eval(shift(@insns)); &palignr ($t0,@X[0],4); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); # @ eval(shift(@insns)); &palignr ($t3,@X[2],4); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa ($t1,$t0); eval(shift(@insns)); # @ eval(shift(@insns)); &movdqa ($t2,$t0); eval(shift(@insns)); eval(shift(@insns)); &psrld ($t0,3); eval(shift(@insns)); eval(shift(@insns)); # @ &paddd (@X[0],$t3); # X[0..3] += X[9..12] eval(shift(@insns)); eval(shift(@insns)); &psrld ($t2,7); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ eval(shift(@insns)); &pshufd ($t3,@X[3],0b11111010); # X[14..15] eval(shift(@insns)); eval(shift(@insns)); &pslld ($t1,32-18); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t0,$t2); eval(shift(@insns)); eval(shift(@insns)); &psrld ($t2,18-7); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t0,$t1); eval(shift(@insns)); eval(shift(@insns)); &pslld ($t1,18-7); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t0,$t2); eval(shift(@insns)); eval(shift(@insns)); &movdqa ($t2,$t3); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t0,$t1); # sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &psrld ($t3,10); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &paddd (@X[0],$t0); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &psrlq ($t2,17); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t3,$t2); eval(shift(@insns)); eval(shift(@insns)); &psrlq ($t2,19-17); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t3,$t2); eval(shift(@insns)); eval(shift(@insns)); &pshufd ($t3,$t3,0b10000000); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ eval(shift(@insns)); &psrldq ($t3,8); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[0],$t3); # X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); # @ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ eval(shift(@insns)); &pshufd ($t3,@X[0],0b01010000); # X[16..17] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa ($t2,$t3); eval(shift(@insns)); # @ &psrld ($t3,10); eval(shift(@insns)); &psrlq ($t2,17); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t3,$t2); eval(shift(@insns)); eval(shift(@insns)); &psrlq ($t2,19-17); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &pxor ($t3,$t2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pshufd ($t3,$t3,0b00001000); eval(shift(@insns)); eval(shift(@insns)); # @ &movdqa ($t2,&QWP(16*$j,$K256)); eval(shift(@insns)); eval(shift(@insns)); &pslldq ($t3,8); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # @ &paddd (@X[0],$t3); # X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd ($t2,@X[0]); eval(shift(@insns)); # @ foreach (@insns) { eval; } # remaining instructions &movdqa (&QWP(32+16*$j,"esp"),$t2); } sub body_00_15 () { ( '&mov ("ecx",$E);', '&ror ($E,25-11);', '&mov ("esi",&off($f));', '&xor ($E,"ecx");', '&mov ("edi",&off($g));', '&xor ("esi","edi");', '&ror ($E,11-6);', '&and ("esi","ecx");', '&mov (&off($e),"ecx");', # save $E, modulo-scheduled '&xor ($E,"ecx");', '&xor ("edi","esi");', # Ch(e,f,g) '&ror ($E,6);', # T = Sigma1(e) '&mov ("ecx",$AH[0]);', '&add ($E,"edi");', # T += Ch(e,f,g) '&mov ("edi",&off($b));', '&mov ("esi",$AH[0]);', '&ror ("ecx",22-13);', '&mov (&off($a),$AH[0]);', # save $A, modulo-scheduled '&xor ("ecx",$AH[0]);', '&xor ($AH[0],"edi");', # a ^= b, (b^c) in next round '&add ($E,&off($h));', # T += h '&ror ("ecx",13-2);', '&and ($AH[1],$AH[0]);', # (b^c) &= (a^b) '&xor ("ecx","esi");', '&add ($E,&DWP(32+4*($i&15),"esp"));', # T += K[i]+X[i] '&xor ($AH[1],"edi");', # h = Maj(a,b,c) = Ch(a^b,c,b) '&ror ("ecx",2);', # Sigma0(a) '&add ($AH[1],$E);', # h += T '&add ($E,&off($d));', # d += T '&add ($AH[1],"ecx");'. # h += Sigma0(a) '@AH = reverse(@AH); $i++;' # rotate(a,h) ); } for ($i=0,$j=0; $j<4; $j++) { &SSSE3_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmp (&DWP(16*$j,$K256),0x00010203); &jne (&label("ssse3_00_47")); for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } &mov ("esi",&DWP(96,"esp")); #ctx #&mov ($AH[0],&DWP(0,"esp")); &xor ($AH[1],"edi"); #&mov ($AH[1],&DWP(4,"esp")); #&mov ("edi", &DWP(8,"esp")); &mov ("ecx",&DWP(12,"esp")); &add ($AH[0],&DWP(0,"esi")); &add ($AH[1],&DWP(4,"esi")); &add ("edi",&DWP(8,"esi")); &add ("ecx",&DWP(12,"esi")); &mov (&DWP(0,"esi"),$AH[0]); &mov (&DWP(4,"esi"),$AH[1]); &mov (&DWP(8,"esi"),"edi"); &mov (&DWP(12,"esi"),"ecx"); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"edi"); # magic &mov (&DWP(8,"esp"),"edi"); &mov (&DWP(12,"esp"),"ecx"); #&mov ($E,&DWP(16,"esp")); &mov ("edi",&DWP(20,"esp")); &mov ("ecx",&DWP(24,"esp")); &add ($E,&DWP(16,"esi")); &add ("edi",&DWP(20,"esi")); &add ("ecx",&DWP(24,"esi")); &mov (&DWP(16,"esi"),$E); &mov (&DWP(20,"esi"),"edi"); &mov (&DWP(20,"esp"),"edi"); &mov ("edi",&DWP(28,"esp")); &mov (&DWP(24,"esi"),"ecx"); #&mov (&DWP(16,"esp"),$E); &add ("edi",&DWP(28,"esi")); &mov (&DWP(24,"esp"),"ecx"); &mov (&DWP(28,"esi"),"edi"); &mov (&DWP(28,"esp"),"edi"); &mov ("edi",&DWP(96+4,"esp")); # inp &movdqa ($t3,&QWP(64,$K256)); &sub ($K256,3*64); # rewind K &cmp ("edi",&DWP(96+8,"esp")); # are we done yet? &jb (&label("grand_ssse3")); &mov ("esp",&DWP(96+12,"esp")); # restore sp &function_end_A(); if ($avx) { &set_label("AVX",32); if ($avx>1) { &and ("edx",1<<8|1<<3); # check for BMI2+BMI1 &cmp ("edx",1<<8|1<<3); &je (&label("AVX_BMI")); } &lea ("esp",&DWP(-96,"esp")); &vzeroall (); # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack &mov ($AH[0],&DWP(0,"esi")); &mov ($AH[1],&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edi",&DWP(12,"esi")); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"ecx"); # magic &mov (&DWP(8,"esp"),"ecx"); &mov (&DWP(12,"esp"),"edi"); &mov ($E,&DWP(16,"esi")); &mov ("edi",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("esi",&DWP(28,"esi")); #&mov (&DWP(16,"esp"),$E); &mov (&DWP(20,"esp"),"edi"); &mov ("edi",&DWP(96+4,"esp")); # inp &mov (&DWP(24,"esp"),"ecx"); &mov (&DWP(28,"esp"),"esi"); &vmovdqa ($t3,&QWP(256,$K256)); &jmp (&label("grand_avx")); &set_label("grand_avx",32); # load input, reverse byte order, add K256[0..15], save to stack &vmovdqu (@X[0],&QWP(0,"edi")); &vmovdqu (@X[1],&QWP(16,"edi")); &vmovdqu (@X[2],&QWP(32,"edi")); &vmovdqu (@X[3],&QWP(48,"edi")); &add ("edi",64); &vpshufb (@X[0],@X[0],$t3); &mov (&DWP(96+4,"esp"),"edi"); &vpshufb (@X[1],@X[1],$t3); &vpshufb (@X[2],@X[2],$t3); &vpaddd ($t0,@X[0],&QWP(0,$K256)); &vpshufb (@X[3],@X[3],$t3); &vpaddd ($t1,@X[1],&QWP(16,$K256)); &vpaddd ($t2,@X[2],&QWP(32,$K256)); &vpaddd ($t3,@X[3],&QWP(48,$K256)); &vmovdqa (&QWP(32+0,"esp"),$t0); &vmovdqa (&QWP(32+16,"esp"),$t1); &vmovdqa (&QWP(32+32,"esp"),$t2); &vmovdqa (&QWP(32+48,"esp"),$t3); &jmp (&label("avx_00_47")); &set_label("avx_00_47",16); &add ($K256,64); sub Xupdate_AVX () { ( '&vpalignr ($t0,@X[1],@X[0],4);', # X[1..4] '&vpalignr ($t3,@X[3],@X[2],4);', # X[9..12] '&vpsrld ($t2,$t0,7);', '&vpaddd (@X[0],@X[0],$t3);', # X[0..3] += X[9..16] '&vpsrld ($t3,$t0,3);', '&vpslld ($t1,$t0,14);', '&vpxor ($t0,$t3,$t2);', '&vpshufd ($t3,@X[3],0b11111010)',# X[14..15] '&vpsrld ($t2,$t2,18-7);', '&vpxor ($t0,$t0,$t1);', '&vpslld ($t1,$t1,25-14);', '&vpxor ($t0,$t0,$t2);', '&vpsrld ($t2,$t3,10);', '&vpxor ($t0,$t0,$t1);', # sigma0(X[1..4]) '&vpsrlq ($t1,$t3,17);', '&vpaddd (@X[0],@X[0],$t0);', # X[0..3] += sigma0(X[1..4]) '&vpxor ($t2,$t2,$t1);', '&vpsrlq ($t3,$t3,19);', '&vpxor ($t2,$t2,$t3);', # sigma1(X[14..15] '&vpshufd ($t3,$t2,0b10000100);', '&vpsrldq ($t3,$t3,8);', '&vpaddd (@X[0],@X[0],$t3);', # X[0..1] += sigma1(X[14..15]) '&vpshufd ($t3,@X[0],0b01010000)',# X[16..17] '&vpsrld ($t2,$t3,10);', '&vpsrlq ($t1,$t3,17);', '&vpxor ($t2,$t2,$t1);', '&vpsrlq ($t3,$t3,19);', '&vpxor ($t2,$t2,$t3);', # sigma1(X[16..17] '&vpshufd ($t3,$t2,0b11101000);', '&vpslldq ($t3,$t3,8);', '&vpaddd (@X[0],@X[0],$t3);' # X[2..3] += sigma1(X[16..17]) ); } local *ror = sub { &shrd(@_[0],@_) }; sub AVX_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 120 instructions my $insn; foreach (Xupdate_AVX()) { # 31 instructions eval; eval(shift(@insns)); eval(shift(@insns)); eval($insn = shift(@insns)); eval(shift(@insns)) if ($insn =~ /rorx/ && @insns[0] =~ /rorx/); } &vpaddd ($t2,@X[0],&QWP(16*$j,$K256)); foreach (@insns) { eval; } # remaining instructions &vmovdqa (&QWP(32+16*$j,"esp"),$t2); } for ($i=0,$j=0; $j<4; $j++) { &AVX_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmp (&DWP(16*$j,$K256),0x00010203); &jne (&label("avx_00_47")); for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } &mov ("esi",&DWP(96,"esp")); #ctx #&mov ($AH[0],&DWP(0,"esp")); &xor ($AH[1],"edi"); #&mov ($AH[1],&DWP(4,"esp")); #&mov ("edi", &DWP(8,"esp")); &mov ("ecx",&DWP(12,"esp")); &add ($AH[0],&DWP(0,"esi")); &add ($AH[1],&DWP(4,"esi")); &add ("edi",&DWP(8,"esi")); &add ("ecx",&DWP(12,"esi")); &mov (&DWP(0,"esi"),$AH[0]); &mov (&DWP(4,"esi"),$AH[1]); &mov (&DWP(8,"esi"),"edi"); &mov (&DWP(12,"esi"),"ecx"); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"edi"); # magic &mov (&DWP(8,"esp"),"edi"); &mov (&DWP(12,"esp"),"ecx"); #&mov ($E,&DWP(16,"esp")); &mov ("edi",&DWP(20,"esp")); &mov ("ecx",&DWP(24,"esp")); &add ($E,&DWP(16,"esi")); &add ("edi",&DWP(20,"esi")); &add ("ecx",&DWP(24,"esi")); &mov (&DWP(16,"esi"),$E); &mov (&DWP(20,"esi"),"edi"); &mov (&DWP(20,"esp"),"edi"); &mov ("edi",&DWP(28,"esp")); &mov (&DWP(24,"esi"),"ecx"); #&mov (&DWP(16,"esp"),$E); &add ("edi",&DWP(28,"esi")); &mov (&DWP(24,"esp"),"ecx"); &mov (&DWP(28,"esi"),"edi"); &mov (&DWP(28,"esp"),"edi"); &mov ("edi",&DWP(96+4,"esp")); # inp &vmovdqa ($t3,&QWP(64,$K256)); &sub ($K256,3*64); # rewind K &cmp ("edi",&DWP(96+8,"esp")); # are we done yet? &jb (&label("grand_avx")); &mov ("esp",&DWP(96+12,"esp")); # restore sp &vzeroall (); &function_end_A(); if ($avx>1) { sub bodyx_00_15 () { # +10% ( '&rorx ("ecx",$E,6)', '&rorx ("esi",$E,11)', '&mov (&off($e),$E)', # save $E, modulo-scheduled '&rorx ("edi",$E,25)', '&xor ("ecx","esi")', '&andn ("esi",$E,&off($g))', '&xor ("ecx","edi")', # Sigma1(e) '&and ($E,&off($f))', '&mov (&off($a),$AH[0]);', # save $A, modulo-scheduled '&or ($E,"esi")', # T = Ch(e,f,g) '&rorx ("edi",$AH[0],2)', '&rorx ("esi",$AH[0],13)', '&lea ($E,&DWP(0,$E,"ecx"))', # T += Sigma1(e) '&rorx ("ecx",$AH[0],22)', '&xor ("esi","edi")', '&mov ("edi",&off($b))', '&xor ("ecx","esi")', # Sigma0(a) '&xor ($AH[0],"edi")', # a ^= b, (b^c) in next round '&add ($E,&off($h))', # T += h '&and ($AH[1],$AH[0])', # (b^c) &= (a^b) '&add ($E,&DWP(32+4*($i&15),"esp"))', # T += K[i]+X[i] '&xor ($AH[1],"edi")', # h = Maj(a,b,c) = Ch(a^b,c,b) '&add ("ecx",$E)', # h += T '&add ($E,&off($d))', # d += T '&lea ($AH[1],&DWP(0,$AH[1],"ecx"));'. # h += Sigma0(a) '@AH = reverse(@AH); $i++;' # rotate(a,h) ); } &set_label("AVX_BMI",32); &lea ("esp",&DWP(-96,"esp")); &vzeroall (); # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack &mov ($AH[0],&DWP(0,"esi")); &mov ($AH[1],&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edi",&DWP(12,"esi")); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"ecx"); # magic &mov (&DWP(8,"esp"),"ecx"); &mov (&DWP(12,"esp"),"edi"); &mov ($E,&DWP(16,"esi")); &mov ("edi",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("esi",&DWP(28,"esi")); #&mov (&DWP(16,"esp"),$E); &mov (&DWP(20,"esp"),"edi"); &mov ("edi",&DWP(96+4,"esp")); # inp &mov (&DWP(24,"esp"),"ecx"); &mov (&DWP(28,"esp"),"esi"); &vmovdqa ($t3,&QWP(256,$K256)); &jmp (&label("grand_avx_bmi")); &set_label("grand_avx_bmi",32); # load input, reverse byte order, add K256[0..15], save to stack &vmovdqu (@X[0],&QWP(0,"edi")); &vmovdqu (@X[1],&QWP(16,"edi")); &vmovdqu (@X[2],&QWP(32,"edi")); &vmovdqu (@X[3],&QWP(48,"edi")); &add ("edi",64); &vpshufb (@X[0],@X[0],$t3); &mov (&DWP(96+4,"esp"),"edi"); &vpshufb (@X[1],@X[1],$t3); &vpshufb (@X[2],@X[2],$t3); &vpaddd ($t0,@X[0],&QWP(0,$K256)); &vpshufb (@X[3],@X[3],$t3); &vpaddd ($t1,@X[1],&QWP(16,$K256)); &vpaddd ($t2,@X[2],&QWP(32,$K256)); &vpaddd ($t3,@X[3],&QWP(48,$K256)); &vmovdqa (&QWP(32+0,"esp"),$t0); &vmovdqa (&QWP(32+16,"esp"),$t1); &vmovdqa (&QWP(32+32,"esp"),$t2); &vmovdqa (&QWP(32+48,"esp"),$t3); &jmp (&label("avx_bmi_00_47")); &set_label("avx_bmi_00_47",16); &add ($K256,64); for ($i=0,$j=0; $j<4; $j++) { &AVX_00_47($j,\&bodyx_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmp (&DWP(16*$j,$K256),0x00010203); &jne (&label("avx_bmi_00_47")); for ($i=0; $i<16; ) { foreach(bodyx_00_15()) { eval; } } &mov ("esi",&DWP(96,"esp")); #ctx #&mov ($AH[0],&DWP(0,"esp")); &xor ($AH[1],"edi"); #&mov ($AH[1],&DWP(4,"esp")); #&mov ("edi", &DWP(8,"esp")); &mov ("ecx",&DWP(12,"esp")); &add ($AH[0],&DWP(0,"esi")); &add ($AH[1],&DWP(4,"esi")); &add ("edi",&DWP(8,"esi")); &add ("ecx",&DWP(12,"esi")); &mov (&DWP(0,"esi"),$AH[0]); &mov (&DWP(4,"esi"),$AH[1]); &mov (&DWP(8,"esi"),"edi"); &mov (&DWP(12,"esi"),"ecx"); #&mov (&DWP(0,"esp"),$AH[0]); &mov (&DWP(4,"esp"),$AH[1]); &xor ($AH[1],"edi"); # magic &mov (&DWP(8,"esp"),"edi"); &mov (&DWP(12,"esp"),"ecx"); #&mov ($E,&DWP(16,"esp")); &mov ("edi",&DWP(20,"esp")); &mov ("ecx",&DWP(24,"esp")); &add ($E,&DWP(16,"esi")); &add ("edi",&DWP(20,"esi")); &add ("ecx",&DWP(24,"esi")); &mov (&DWP(16,"esi"),$E); &mov (&DWP(20,"esi"),"edi"); &mov (&DWP(20,"esp"),"edi"); &mov ("edi",&DWP(28,"esp")); &mov (&DWP(24,"esi"),"ecx"); #&mov (&DWP(16,"esp"),$E); &add ("edi",&DWP(28,"esi")); &mov (&DWP(24,"esp"),"ecx"); &mov (&DWP(28,"esi"),"edi"); &mov (&DWP(28,"esp"),"edi"); &mov ("edi",&DWP(96+4,"esp")); # inp &vmovdqa ($t3,&QWP(64,$K256)); &sub ($K256,3*64); # rewind K &cmp ("edi",&DWP(96+8,"esp")); # are we done yet? &jb (&label("grand_avx_bmi")); &mov ("esp",&DWP(96+12,"esp")); # restore sp &vzeroall (); &function_end_A(); } } }}} &function_end_B("sha256_block_data_order"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha256-armv4.pl000066400000000000000000000443701364063235100206250ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Permission to use under GPL terms is granted. # ==================================================================== # SHA256 block procedure for ARMv4. May 2007. # Performance is ~2x better than gcc 3.4 generated code and in "abso- # lute" terms is ~2250 cycles per 64-byte block or ~35 cycles per # byte [on single-issue Xscale PXA250 core]. # July 2010. # # Rescheduling for dual-issue pipeline resulted in 22% improvement on # Cortex A8 core and ~20 cycles per processed byte. # February 2011. # # Profiler-assisted and platform-specific optimization resulted in 16% # improvement on Cortex A8 core and ~15.4 cycles per processed byte. # September 2013. # # Add NEON implementation. On Cortex A8 it was measured to process one # byte in 12.5 cycles or 23% faster than integer-only code. Snapdragon # S4 does it in 12.5 cycles too, but it's 50% faster than integer-only # code (meaning that latter performs sub-optimally, nothing was done # about it). # May 2014. # # Add ARMv8 code path performing at 2.0 cpb on Apple A7. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $ctx="r0"; $t0="r0"; $inp="r1"; $t4="r1"; $len="r2"; $t1="r2"; $T1="r3"; $t3="r3"; $A="r4"; $B="r5"; $C="r6"; $D="r7"; $E="r8"; $F="r9"; $G="r10"; $H="r11"; @V=($A,$B,$C,$D,$E,$F,$G,$H); $t2="r12"; $Ktbl="r14"; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); sub BODY_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; $code.=<<___ if ($i<16); #if __ARM_ARCH__>=7 @ ldr $t1,[$inp],#4 @ $i # if $i==15 str $inp,[sp,#17*4] @ make room for $t4 # endif eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` add $a,$a,$t2 @ h+=Maj(a,b,c) from the past eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e) # ifndef __ARMEB__ rev $t1,$t1 # endif #else @ ldrb $t1,[$inp,#3] @ $i add $a,$a,$t2 @ h+=Maj(a,b,c) from the past ldrb $t2,[$inp,#2] ldrb $t0,[$inp,#1] orr $t1,$t1,$t2,lsl#8 ldrb $t2,[$inp],#4 orr $t1,$t1,$t0,lsl#16 # if $i==15 str $inp,[sp,#17*4] @ make room for $t4 # endif eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` orr $t1,$t1,$t2,lsl#24 eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e) #endif ___ $code.=<<___; ldr $t2,[$Ktbl],#4 @ *K256++ add $h,$h,$t1 @ h+=X[i] str $t1,[sp,#`$i%16`*4] eor $t1,$f,$g add $h,$h,$t0,ror#$Sigma1[0] @ h+=Sigma1(e) and $t1,$t1,$e add $h,$h,$t2 @ h+=K256[i] eor $t1,$t1,$g @ Ch(e,f,g) eor $t0,$a,$a,ror#`$Sigma0[1]-$Sigma0[0]` add $h,$h,$t1 @ h+=Ch(e,f,g) #if $i==31 and $t2,$t2,#0xff cmp $t2,#0xf2 @ done? #endif #if $i<15 # if __ARM_ARCH__>=7 ldr $t1,[$inp],#4 @ prefetch # else ldrb $t1,[$inp,#3] # endif eor $t2,$a,$b @ a^b, b^c in next round #else ldr $t1,[sp,#`($i+2)%16`*4] @ from future BODY_16_xx eor $t2,$a,$b @ a^b, b^c in next round ldr $t4,[sp,#`($i+15)%16`*4] @ from future BODY_16_xx #endif eor $t0,$t0,$a,ror#`$Sigma0[2]-$Sigma0[0]` @ Sigma0(a) and $t3,$t3,$t2 @ (b^c)&=(a^b) add $d,$d,$h @ d+=h eor $t3,$t3,$b @ Maj(a,b,c) add $h,$h,$t0,ror#$Sigma0[0] @ h+=Sigma0(a) @ add $h,$h,$t3 @ h+=Maj(a,b,c) ___ ($t2,$t3)=($t3,$t2); } sub BODY_16_XX { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; $code.=<<___; @ ldr $t1,[sp,#`($i+1)%16`*4] @ $i @ ldr $t4,[sp,#`($i+14)%16`*4] mov $t0,$t1,ror#$sigma0[0] add $a,$a,$t2 @ h+=Maj(a,b,c) from the past mov $t2,$t4,ror#$sigma1[0] eor $t0,$t0,$t1,ror#$sigma0[1] eor $t2,$t2,$t4,ror#$sigma1[1] eor $t0,$t0,$t1,lsr#$sigma0[2] @ sigma0(X[i+1]) ldr $t1,[sp,#`($i+0)%16`*4] eor $t2,$t2,$t4,lsr#$sigma1[2] @ sigma1(X[i+14]) ldr $t4,[sp,#`($i+9)%16`*4] add $t2,$t2,$t0 eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` @ from BODY_00_15 add $t1,$t1,$t2 eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e) add $t1,$t1,$t4 @ X[i] ___ &BODY_00_15(@_); } $code=<<___; #ifndef __KERNEL__ # include "arm_arch.h" #else # define __ARM_ARCH__ __LINUX_ARM_ARCH__ # define __ARM_MAX_ARCH__ 7 #endif .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif .type K256,%object .align 5 K256: .word 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .word 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .word 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .word 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .word 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .word 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .word 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .word 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .word 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .word 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .word 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .word 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .word 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .word 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .word 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .word 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .size K256,.-K256 .word 0 @ terminator #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) .LOPENSSL_armcap: .word OPENSSL_armcap_P-.Lsha256_block_data_order #endif .align 5 .global sha256_block_data_order .type sha256_block_data_order,%function sha256_block_data_order: .Lsha256_block_data_order: #if __ARM_ARCH__<7 && !defined(__thumb2__) sub r3,pc,#8 @ sha256_block_data_order #else adr r3,.Lsha256_block_data_order #endif #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) ldr r12,.LOPENSSL_armcap ldr r12,[r3,r12] @ OPENSSL_armcap_P #ifdef __APPLE__ ldr r12,[r12] #endif tst r12,#ARMV8_SHA256 bne .LARMv8 tst r12,#ARMV7_NEON bne .LNEON #endif add $len,$inp,$len,lsl#6 @ len to point at the end of inp stmdb sp!,{$ctx,$inp,$len,r4-r11,lr} ldmia $ctx,{$A,$B,$C,$D,$E,$F,$G,$H} sub $Ktbl,r3,#256+32 @ K256 sub sp,sp,#16*4 @ alloca(X[16]) .Loop: # if __ARM_ARCH__>=7 ldr $t1,[$inp],#4 # else ldrb $t1,[$inp,#3] # endif eor $t3,$B,$C @ magic eor $t2,$t2,$t2 ___ for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } $code.=".Lrounds_16_xx:\n"; for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); } $code.=<<___; #ifdef __thumb2__ ite eq @ Thumb2 thing, sanity check in ARM #endif ldreq $t3,[sp,#16*4] @ pull ctx bne .Lrounds_16_xx add $A,$A,$t2 @ h+=Maj(a,b,c) from the past ldr $t0,[$t3,#0] ldr $t1,[$t3,#4] ldr $t2,[$t3,#8] add $A,$A,$t0 ldr $t0,[$t3,#12] add $B,$B,$t1 ldr $t1,[$t3,#16] add $C,$C,$t2 ldr $t2,[$t3,#20] add $D,$D,$t0 ldr $t0,[$t3,#24] add $E,$E,$t1 ldr $t1,[$t3,#28] add $F,$F,$t2 ldr $inp,[sp,#17*4] @ pull inp ldr $t2,[sp,#18*4] @ pull inp+len add $G,$G,$t0 add $H,$H,$t1 stmia $t3,{$A,$B,$C,$D,$E,$F,$G,$H} cmp $inp,$t2 sub $Ktbl,$Ktbl,#256 @ rewind Ktbl bne .Loop add sp,sp,#`16+3`*4 @ destroy frame #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size sha256_block_data_order,.-sha256_block_data_order ___ ###################################################################### # NEON stuff # {{{ my @X=map("q$_",(0..3)); my ($T0,$T1,$T2,$T3,$T4,$T5)=("q8","q9","q10","q11","d24","d25"); my $Xfer=$t4; my $j=0; sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; } sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; } sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } sub Xupdate() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); &vext_8 ($T0,@X[0],@X[1],4); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vext_8 ($T1,@X[2],@X[3],4); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T2,$T0,$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += X[9..12] eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T1,$T0,$sigma0[2]); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T2,$T0,32-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T3,$T0,$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T1,$T1,$T2); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T3,$T0,32-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T1,$T1,$T3); # sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T5,&Dhi(@X[3]),$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); # sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (&Dlo(@X[0]),&Dlo(@X[0]),$T5);# X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T5,&Dlo(@X[0]),$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vld1_32 ("{$T0}","[$Ktbl,:128]!"); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &veor ($T5,$T5,$T4); # sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (&Dhi(@X[0]),&Dhi(@X[0]),$T5);# X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 ($T0,$T0,@X[0]); while($#insns>=2) { eval(shift(@insns)); } &vst1_32 ("{$T0}","[$Xfer,:128]!"); eval(shift(@insns)); eval(shift(@insns)); push(@X,shift(@X)); # "rotate" X[] } sub Xpreload() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vld1_32 ("{$T0}","[$Ktbl,:128]!"); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vrev32_8 (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 ($T0,$T0,@X[0]); foreach (@insns) { eval; } # remaining instructions &vst1_32 ("{$T0}","[$Xfer,:128]!"); push(@X,shift(@X)); # "rotate" X[] } sub body_00_15 () { ( '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'. '&add ($h,$h,$t1)', # h+=X[i]+K[i] '&eor ($t1,$f,$g)', '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))', '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past '&and ($t1,$t1,$e)', '&eor ($t2,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e) '&eor ($t0,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))', '&eor ($t1,$t1,$g)', # Ch(e,f,g) '&add ($h,$h,$t2,"ror#$Sigma1[0]")', # h+=Sigma1(e) '&eor ($t2,$a,$b)', # a^b, b^c in next round '&eor ($t0,$t0,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a) '&add ($h,$h,$t1)', # h+=Ch(e,f,g) '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'. '&ldr ($t1,"[$Ktbl]") if ($j==15);'. '&ldr ($t1,"[sp,#64]") if ($j==31)', '&and ($t3,$t3,$t2)', # (b^c)&=(a^b) '&add ($d,$d,$h)', # d+=h '&add ($h,$h,$t0,"ror#$Sigma0[0]");'. # h+=Sigma0(a) '&eor ($t3,$t3,$b)', # Maj(a,b,c) '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);' ) } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .global sha256_block_data_order_neon .type sha256_block_data_order_neon,%function .align 5 .skip 16 sha256_block_data_order_neon: .LNEON: stmdb sp!,{r4-r12,lr} sub $H,sp,#16*4+16 adr $Ktbl,K256 bic $H,$H,#15 @ align for 128-bit stores mov $t2,sp mov sp,$H @ alloca add $len,$inp,$len,lsl#6 @ len to point at the end of inp vld1.8 {@X[0]},[$inp]! vld1.8 {@X[1]},[$inp]! vld1.8 {@X[2]},[$inp]! vld1.8 {@X[3]},[$inp]! vld1.32 {$T0},[$Ktbl,:128]! vld1.32 {$T1},[$Ktbl,:128]! vld1.32 {$T2},[$Ktbl,:128]! vld1.32 {$T3},[$Ktbl,:128]! vrev32.8 @X[0],@X[0] @ yes, even on str $ctx,[sp,#64] vrev32.8 @X[1],@X[1] @ big-endian str $inp,[sp,#68] mov $Xfer,sp vrev32.8 @X[2],@X[2] str $len,[sp,#72] vrev32.8 @X[3],@X[3] str $t2,[sp,#76] @ save original sp vadd.i32 $T0,$T0,@X[0] vadd.i32 $T1,$T1,@X[1] vst1.32 {$T0},[$Xfer,:128]! vadd.i32 $T2,$T2,@X[2] vst1.32 {$T1},[$Xfer,:128]! vadd.i32 $T3,$T3,@X[3] vst1.32 {$T2},[$Xfer,:128]! vst1.32 {$T3},[$Xfer,:128]! ldmia $ctx,{$A-$H} sub $Xfer,$Xfer,#64 ldr $t1,[sp,#0] eor $t2,$t2,$t2 eor $t3,$B,$C b .L_00_48 .align 4 .L_00_48: ___ &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); $code.=<<___; teq $t1,#0 @ check for K256 terminator ldr $t1,[sp,#0] sub $Xfer,$Xfer,#64 bne .L_00_48 ldr $inp,[sp,#68] ldr $t0,[sp,#72] sub $Ktbl,$Ktbl,#256 @ rewind $Ktbl teq $inp,$t0 it eq subeq $inp,$inp,#64 @ avoid SEGV vld1.8 {@X[0]},[$inp]! @ load next input block vld1.8 {@X[1]},[$inp]! vld1.8 {@X[2]},[$inp]! vld1.8 {@X[3]},[$inp]! it ne strne $inp,[sp,#68] mov $Xfer,sp ___ &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); $code.=<<___; ldr $t0,[$t1,#0] add $A,$A,$t2 @ h+=Maj(a,b,c) from the past ldr $t2,[$t1,#4] ldr $t3,[$t1,#8] ldr $t4,[$t1,#12] add $A,$A,$t0 @ accumulate ldr $t0,[$t1,#16] add $B,$B,$t2 ldr $t2,[$t1,#20] add $C,$C,$t3 ldr $t3,[$t1,#24] add $D,$D,$t4 ldr $t4,[$t1,#28] add $E,$E,$t0 str $A,[$t1],#4 add $F,$F,$t2 str $B,[$t1],#4 add $G,$G,$t3 str $C,[$t1],#4 add $H,$H,$t4 str $D,[$t1],#4 stmia $t1,{$E-$H} ittte ne movne $Xfer,sp ldrne $t1,[sp,#0] eorne $t2,$t2,$t2 ldreq sp,[sp,#76] @ restore original sp itt ne eorne $t3,$B,$C bne .L_00_48 ldmia sp!,{r4-r12,pc} .size sha256_block_data_order_neon,.-sha256_block_data_order_neon #endif ___ }}} ###################################################################### # ARMv8 stuff # {{{ my ($ABCD,$EFGH,$abcd)=map("q$_",(0..2)); my @MSG=map("q$_",(8..11)); my ($W0,$W1,$ABCD_SAVE,$EFGH_SAVE)=map("q$_",(12..15)); my $Ktbl="r3"; $code.=<<___; #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) # if defined(__thumb2__) # define INST(a,b,c,d) .byte c,d|0xc,a,b # else # define INST(a,b,c,d) .byte a,b,c,d # endif .type sha256_block_data_order_armv8,%function .align 5 sha256_block_data_order_armv8: .LARMv8: vld1.32 {$ABCD,$EFGH},[$ctx] sub $Ktbl,$Ktbl,#256+32 add $len,$inp,$len,lsl#6 @ len to point at the end of inp b .Loop_v8 .align 4 .Loop_v8: vld1.8 {@MSG[0]-@MSG[1]},[$inp]! vld1.8 {@MSG[2]-@MSG[3]},[$inp]! vld1.32 {$W0},[$Ktbl]! vrev32.8 @MSG[0],@MSG[0] vrev32.8 @MSG[1],@MSG[1] vrev32.8 @MSG[2],@MSG[2] vrev32.8 @MSG[3],@MSG[3] vmov $ABCD_SAVE,$ABCD @ offload vmov $EFGH_SAVE,$EFGH teq $inp,$len ___ for($i=0;$i<12;$i++) { $code.=<<___; vld1.32 {$W1},[$Ktbl]! vadd.i32 $W0,$W0,@MSG[0] sha256su0 @MSG[0],@MSG[1] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 sha256su1 @MSG[0],@MSG[2],@MSG[3] ___ ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); } $code.=<<___; vld1.32 {$W1},[$Ktbl]! vadd.i32 $W0,$W0,@MSG[0] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 vld1.32 {$W0},[$Ktbl]! vadd.i32 $W1,$W1,@MSG[1] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 vld1.32 {$W1},[$Ktbl] vadd.i32 $W0,$W0,@MSG[2] sub $Ktbl,$Ktbl,#256-16 @ rewind vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 vadd.i32 $W1,$W1,@MSG[3] vmov $abcd,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 vadd.i32 $ABCD,$ABCD,$ABCD_SAVE vadd.i32 $EFGH,$EFGH,$EFGH_SAVE it ne bne .Loop_v8 vst1.32 {$ABCD,$EFGH},[$ctx] ret @ bx lr .size sha256_block_data_order_armv8,.-sha256_block_data_order_armv8 #endif ___ }}} $code.=<<___; .asciz "SHA256 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by " .align 2 #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) .comm OPENSSL_armcap_P,4,4 #endif ___ open SELF,$0; while() { next if (/^#!/); last if (!s/^#/@/ and !/^$/); print; } close SELF; { my %opcode = ( "sha256h" => 0xf3000c40, "sha256h2" => 0xf3100c40, "sha256su0" => 0xf3ba03c0, "sha256su1" => 0xf3200c40 ); sub unsha256 { my ($mnemonic,$arg)=@_; if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) { my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19) |(($2&7)<<17)|(($2&8)<<4) |(($3&7)<<1) |(($3&8)<<2); # since ARMv7 instructions are always encoded little-endian. # correct solution is to use .inst directive, but older # assemblers don't implement it:-( sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s", $word&0xff,($word>>8)&0xff, ($word>>16)&0xff,($word>>24)&0xff, $mnemonic,$arg; } } } foreach (split($/,$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\b(sha256\w+)\s+(q.*)/unsha256($1,$2)/geo; s/\bret\b/bx lr/go or s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/sha/asm/sha256-c64xplus.pl000066400000000000000000000214101364063235100212520ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA256 for C64x+. # # January 2012 # # Performance is just below 10 cycles per processed byte, which is # almost 40% faster than compiler-generated code. Unroll is unlikely # to give more than ~8% improvement... # # !!! Note that this module uses AMR, which means that all interrupt # service routines are expected to preserve it and for own well-being # zero it upon entry. while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; ($CTXA,$INP,$NUM) = ("A4","B4","A6"); # arguments $K256="A3"; ($A,$Actx,$B,$Bctx,$C,$Cctx,$D,$Dctx,$T2,$S0,$s1,$t0a,$t1a,$t2a,$X9,$X14) =map("A$_",(16..31)); ($E,$Ectx,$F,$Fctx,$G,$Gctx,$H,$Hctx,$T1,$S1,$s0,$t0e,$t1e,$t2e,$X1,$X15) =map("B$_",(16..31)); ($Xia,$Xib)=("A5","B5"); # circular/ring buffer $CTXB=$t2e; ($Xn,$X0,$K)=("B7","B8","B9"); ($Maj,$Ch)=($T2,"B6"); $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .nocmp .asg sha256_block_data_order,_sha256_block_data_order .endif .asg B3,RA .asg A15,FP .asg B15,SP .if .BIG_ENDIAN .asg SWAP2,MV .asg SWAP4,MV .endif .global _sha256_block_data_order _sha256_block_data_order: __sha256_block: .asmfunc stack_usage(64) MV $NUM,A0 ; reassign $NUM || MVK -64,B0 [!A0] BNOP RA ; if ($NUM==0) return; || [A0] STW FP,*SP--[16] ; save frame pointer and alloca(64) || [A0] MV SP,FP [A0] ADDKPC __sha256_block,B2 || [A0] AND B0,SP,SP ; align stack at 64 bytes .if __TI_EABI__ [A0] MVK 0x00404,B1 || [A0] MVKL \$PCR_OFFSET(K256,__sha256_block),$K256 [A0] MVKH 0x50000,B1 || [A0] MVKH \$PCR_OFFSET(K256,__sha256_block),$K256 .else [A0] MVK 0x00404,B1 || [A0] MVKL (K256-__sha256_block),$K256 [A0] MVKH 0x50000,B1 || [A0] MVKH (K256-__sha256_block),$K256 .endif [A0] MVC B1,AMR ; setup circular addressing || [A0] MV SP,$Xia [A0] MV SP,$Xib || [A0] ADD B2,$K256,$K256 || [A0] MV $CTXA,$CTXB || [A0] SUBAW SP,2,SP ; reserve two words above buffer LDW *${CTXA}[0],$A ; load ctx || LDW *${CTXB}[4],$E LDW *${CTXA}[1],$B || LDW *${CTXB}[5],$F LDW *${CTXA}[2],$C || LDW *${CTXB}[6],$G LDW *${CTXA}[3],$D || LDW *${CTXB}[7],$H LDNW *$INP++,$Xn ; pre-fetch input LDW *$K256++,$K ; pre-fetch K256[0] MVK 14,B0 ; loop counters MVK 47,B1 || ADDAW $Xia,9,$Xia outerloop?: SUB A0,1,A0 || MV $A,$Actx || MV $E,$Ectx || MVD $B,$Bctx || MVD $F,$Fctx MV $C,$Cctx || MV $G,$Gctx || MVD $D,$Dctx || MVD $H,$Hctx || SWAP4 $Xn,$X0 SPLOOPD 8 ; BODY_00_14 || MVC B0,ILC || SWAP2 $X0,$X0 LDNW *$INP++,$Xn || ROTL $A,30,$S0 || OR $A,$B,$Maj || AND $A,$B,$t2a || ROTL $E,26,$S1 || AND $F,$E,$Ch || ANDN $G,$E,$t2e ROTL $A,19,$t0a || AND $C,$Maj,$Maj || ROTL $E,21,$t0e || XOR $t2e,$Ch,$Ch ; Ch(e,f,g) = (e&f)^(~e&g) ROTL $A,10,$t1a || OR $t2a,$Maj,$Maj ; Maj(a,b,c) = ((a|b)&c)|(a&b) || ROTL $E,7,$t1e || ADD $K,$H,$T1 ; T1 = h + K256[i] ADD $X0,$T1,$T1 ; T1 += X[i]; || STW $X0,*$Xib++ || XOR $t0a,$S0,$S0 || XOR $t0e,$S1,$S1 XOR $t1a,$S0,$S0 ; Sigma0(a) || XOR $t1e,$S1,$S1 ; Sigma1(e) || LDW *$K256++,$K ; pre-fetch K256[i+1] || ADD $Ch,$T1,$T1 ; T1 += Ch(e,f,g) ADD $S1,$T1,$T1 ; T1 += Sigma1(e) || ADD $S0,$Maj,$T2 ; T2 = Sigma0(a) + Maj(a,b,c) || ROTL $G,0,$H ; h = g || MV $F,$G ; g = f || MV $X0,$X14 || SWAP4 $Xn,$X0 SWAP2 $X0,$X0 || MV $E,$F ; f = e || ADD $D,$T1,$E ; e = d + T1 || MV $C,$D ; d = c MV $B,$C ; c = b || MV $A,$B ; b = a || ADD $T1,$T2,$A ; a = T1 + T2 SPKERNEL ROTL $A,30,$S0 ; BODY_15 || OR $A,$B,$Maj || AND $A,$B,$t2a || ROTL $E,26,$S1 || AND $F,$E,$Ch || ANDN $G,$E,$t2e || LDW *${Xib}[1],$Xn ; modulo-scheduled ROTL $A,19,$t0a || AND $C,$Maj,$Maj || ROTL $E,21,$t0e || XOR $t2e,$Ch,$Ch ; Ch(e,f,g) = (e&f)^(~e&g) || LDW *${Xib}[2],$X1 ; modulo-scheduled ROTL $A,10,$t1a || OR $t2a,$Maj,$Maj ; Maj(a,b,c) = ((a|b)&c)|(a&b) || ROTL $E,7,$t1e || ADD $K,$H,$T1 ; T1 = h + K256[i] ADD $X0,$T1,$T1 ; T1 += X[i]; || STW $X0,*$Xib++ || XOR $t0a,$S0,$S0 || XOR $t0e,$S1,$S1 XOR $t1a,$S0,$S0 ; Sigma0(a) || XOR $t1e,$S1,$S1 ; Sigma1(e) || LDW *$K256++,$K ; pre-fetch K256[i+1] || ADD $Ch,$T1,$T1 ; T1 += Ch(e,f,g) ADD $S1,$T1,$T1 ; T1 += Sigma1(e) || ADD $S0,$Maj,$T2 ; T2 = Sigma0(a) + Maj(a,b,c) || ROTL $G,0,$H ; h = g || MV $F,$G ; g = f || MV $X0,$X15 MV $E,$F ; f = e || ADD $D,$T1,$E ; e = d + T1 || MV $C,$D ; d = c || MV $Xn,$X0 ; modulo-scheduled || LDW *$Xia,$X9 ; modulo-scheduled || ROTL $X1,25,$t0e ; modulo-scheduled || ROTL $X14,15,$t0a ; modulo-scheduled SHRU $X1,3,$s0 ; modulo-scheduled || SHRU $X14,10,$s1 ; modulo-scheduled || ROTL $B,0,$C ; c = b || MV $A,$B ; b = a || ADD $T1,$T2,$A ; a = T1 + T2 SPLOOPD 10 ; BODY_16_63 || MVC B1,ILC || ROTL $X1,14,$t1e ; modulo-scheduled || ROTL $X14,13,$t1a ; modulo-scheduled XOR $t0e,$s0,$s0 || XOR $t0a,$s1,$s1 || MV $X15,$X14 || MV $X1,$Xn XOR $t1e,$s0,$s0 ; sigma0(X[i+1]) || XOR $t1a,$s1,$s1 ; sigma1(X[i+14]) || LDW *${Xib}[2],$X1 ; module-scheduled ROTL $A,30,$S0 || OR $A,$B,$Maj || AND $A,$B,$t2a || ROTL $E,26,$S1 || AND $F,$E,$Ch || ANDN $G,$E,$t2e || ADD $X9,$X0,$X0 ; X[i] += X[i+9] ROTL $A,19,$t0a || AND $C,$Maj,$Maj || ROTL $E,21,$t0e || XOR $t2e,$Ch,$Ch ; Ch(e,f,g) = (e&f)^(~e&g) || ADD $s0,$X0,$X0 ; X[i] += sigma1(X[i+1]) ROTL $A,10,$t1a || OR $t2a,$Maj,$Maj ; Maj(a,b,c) = ((a|b)&c)|(a&b) || ROTL $E,7,$t1e || ADD $H,$K,$T1 ; T1 = h + K256[i] || ADD $s1,$X0,$X0 ; X[i] += sigma1(X[i+14]) XOR $t0a,$S0,$S0 || XOR $t0e,$S1,$S1 || ADD $X0,$T1,$T1 ; T1 += X[i] || STW $X0,*$Xib++ XOR $t1a,$S0,$S0 ; Sigma0(a) || XOR $t1e,$S1,$S1 ; Sigma1(e) || ADD $Ch,$T1,$T1 ; T1 += Ch(e,f,g) || MV $X0,$X15 || ROTL $G,0,$H ; h = g || LDW *$K256++,$K ; pre-fetch K256[i+1] ADD $S1,$T1,$T1 ; T1 += Sigma1(e) || ADD $S0,$Maj,$T2 ; T2 = Sigma0(a) + Maj(a,b,c) || MV $F,$G ; g = f || MV $Xn,$X0 ; modulo-scheduled || LDW *++$Xia,$X9 ; modulo-scheduled || ROTL $X1,25,$t0e ; module-scheduled || ROTL $X14,15,$t0a ; modulo-scheduled ROTL $X1,14,$t1e ; modulo-scheduled || ROTL $X14,13,$t1a ; modulo-scheduled || MV $E,$F ; f = e || ADD $D,$T1,$E ; e = d + T1 || MV $C,$D ; d = c || MV $B,$C ; c = b MV $A,$B ; b = a || ADD $T1,$T2,$A ; a = T1 + T2 || SHRU $X1,3,$s0 ; modulo-scheduled || SHRU $X14,10,$s1 ; modulo-scheduled SPKERNEL [A0] B outerloop? || [A0] LDNW *$INP++,$Xn ; pre-fetch input || [A0] ADDK -260,$K256 ; rewind K256 || ADD $Actx,$A,$A ; accumulate ctx || ADD $Ectx,$E,$E || ADD $Bctx,$B,$B ADD $Fctx,$F,$F || ADD $Cctx,$C,$C || ADD $Gctx,$G,$G || ADD $Dctx,$D,$D || ADD $Hctx,$H,$H || [A0] LDW *$K256++,$K ; pre-fetch K256[0] [!A0] BNOP RA ||[!A0] MV $CTXA,$CTXB [!A0] MV FP,SP ; restore stack pointer ||[!A0] LDW *FP[0],FP ; restore frame pointer [!A0] STW $A,*${CTXA}[0] ; save ctx ||[!A0] STW $E,*${CTXB}[4] ||[!A0] MVK 0,B0 [!A0] STW $B,*${CTXA}[1] ||[!A0] STW $F,*${CTXB}[5] ||[!A0] MVC B0,AMR ; clear AMR STW $C,*${CTXA}[2] || STW $G,*${CTXB}[6] STW $D,*${CTXA}[3] || STW $H,*${CTXB}[7] .endasmfunc .if __TI_EABI__ .sect ".text:sha_asm.const" .else .sect ".const:sha_asm" .endif .align 128 K256: .uword 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5 .uword 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5 .uword 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3 .uword 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174 .uword 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc .uword 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da .uword 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7 .uword 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967 .uword 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13 .uword 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85 .uword 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3 .uword 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070 .uword 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5 .uword 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3 .uword 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208 .uword 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 .cstring "SHA256 block transform for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha256-mb-x86_64.pl000066400000000000000000001152171364063235100211250ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # Multi-buffer SHA256 procedure processes n buffers in parallel by # placing buffer data to designated lane of SIMD register. n is # naturally limited to 4 on pre-AVX2 processors and to 8 on # AVX2-capable processors such as Haswell. # # this +aesni(i) sha256 aesni-sha256 gain(iv) # ------------------------------------------------------------------- # Westmere(ii) 23.3/n +1.28=7.11(n=4) 12.3 +3.75=16.1 +126% # Atom(ii) 38.7/n +3.93=13.6(n=4) 20.8 +5.69=26.5 +95% # Sandy Bridge (20.5 +5.15=25.7)/n 11.6 13.0 +103% # Ivy Bridge (20.4 +5.14=25.5)/n 10.3 11.6 +82% # Haswell(iii) (21.0 +5.00=26.0)/n 7.80 8.79 +170% # Skylake (18.9 +5.00=23.9)/n 7.70 8.17 +170% # Bulldozer (21.6 +5.76=27.4)/n 13.6 13.7 +100% # # (i) multi-block CBC encrypt with 128-bit key; # (ii) (HASH+AES)/n does not apply to Westmere for n>3 and Atom, # because of lower AES-NI instruction throughput, nor is there # AES-NI-SHA256 stitch for these processors; # (iii) "this" is for n=8, when we gather twice as much data, result # for n=4 is 20.3+4.44=24.7; # (iv) presented improvement coefficients are asymptotic limits and # in real-life application are somewhat lower, e.g. for 2KB # fragments they range from 75% to 130% (on Haswell); $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; $avx=0; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; # void sha256_multi_block ( # struct { unsigned int A[8]; # unsigned int B[8]; # unsigned int C[8]; # unsigned int D[8]; # unsigned int E[8]; # unsigned int F[8]; # unsigned int G[8]; # unsigned int H[8]; } *ctx, # struct { void *ptr; int blocks; } inp[8], # int num); /* 1 or 2 */ # $ctx="%rdi"; # 1st arg $inp="%rsi"; # 2nd arg $num="%edx"; # 3rd arg @ptr=map("%r$_",(8..11)); $Tbl="%rbp"; @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("%xmm$_",(8..15)); ($t1,$t2,$t3,$axb,$bxc,$Xi,$Xn,$sigma)=map("%xmm$_",(0..7)); $REG_SZ=16; sub Xi_off { my $off = shift; $off %= 16; $off *= $REG_SZ; $off<256 ? "$off-128(%rax)" : "$off-256-128(%rbx)"; } sub ROUND_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; $code.=<<___ if ($i<15); movd `4*$i`(@ptr[0]),$Xi movd `4*$i`(@ptr[1]),$t1 movd `4*$i`(@ptr[2]),$t2 movd `4*$i`(@ptr[3]),$t3 punpckldq $t2,$Xi punpckldq $t3,$t1 punpckldq $t1,$Xi ___ $code.=<<___ if ($i==15); movd `4*$i`(@ptr[0]),$Xi lea `16*4`(@ptr[0]),@ptr[0] movd `4*$i`(@ptr[1]),$t1 lea `16*4`(@ptr[1]),@ptr[1] movd `4*$i`(@ptr[2]),$t2 lea `16*4`(@ptr[2]),@ptr[2] movd `4*$i`(@ptr[3]),$t3 lea `16*4`(@ptr[3]),@ptr[3] punpckldq $t2,$Xi punpckldq $t3,$t1 punpckldq $t1,$Xi ___ $code.=<<___; movdqa $e,$sigma `"pshufb $Xn,$Xi" if ($i<=15 && ($i&1)==0)` movdqa $e,$t3 `"pshufb $Xn,$Xi" if ($i<=15 && ($i&1)==1)` psrld \$6,$sigma movdqa $e,$t2 pslld \$7,$t3 movdqa $Xi,`&Xi_off($i)` paddd $h,$Xi # Xi+=h psrld \$11,$t2 pxor $t3,$sigma pslld \$21-7,$t3 paddd `32*($i%8)-128`($Tbl),$Xi # Xi+=K[round] pxor $t2,$sigma psrld \$25-11,$t2 movdqa $e,$t1 `"prefetcht0 63(@ptr[0])" if ($i==15)` pxor $t3,$sigma movdqa $e,$axb # borrow $axb pslld \$26-21,$t3 pandn $g,$t1 pand $f,$axb pxor $t2,$sigma `"prefetcht0 63(@ptr[1])" if ($i==15)` movdqa $a,$t2 pxor $t3,$sigma # Sigma1(e) movdqa $a,$t3 psrld \$2,$t2 paddd $sigma,$Xi # Xi+=Sigma1(e) pxor $axb,$t1 # Ch(e,f,g) movdqa $b,$axb movdqa $a,$sigma pslld \$10,$t3 pxor $a,$axb # a^b, b^c in next round `"prefetcht0 63(@ptr[2])" if ($i==15)` psrld \$13,$sigma pxor $t3,$t2 paddd $t1,$Xi # Xi+=Ch(e,f,g) pslld \$19-10,$t3 pand $axb,$bxc pxor $sigma,$t2 `"prefetcht0 63(@ptr[3])" if ($i==15)` psrld \$22-13,$sigma pxor $t3,$t2 movdqa $b,$h pslld \$30-19,$t3 pxor $t2,$sigma pxor $bxc,$h # h=Maj(a,b,c)=Ch(a^b,c,b) paddd $Xi,$d # d+=Xi pxor $t3,$sigma # Sigma0(a) paddd $Xi,$h # h+=Xi paddd $sigma,$h # h+=Sigma0(a) ___ $code.=<<___ if (($i%8)==7); lea `32*8`($Tbl),$Tbl ___ ($axb,$bxc)=($bxc,$axb); } sub ROUND_16_XX { my $i=shift; $code.=<<___; movdqa `&Xi_off($i+1)`,$Xn paddd `&Xi_off($i+9)`,$Xi # Xi+=X[i+9] movdqa $Xn,$sigma movdqa $Xn,$t2 psrld \$3,$sigma movdqa $Xn,$t3 psrld \$7,$t2 movdqa `&Xi_off($i+14)`,$t1 pslld \$14,$t3 pxor $t2,$sigma psrld \$18-7,$t2 movdqa $t1,$axb # borrow $axb pxor $t3,$sigma pslld \$25-14,$t3 pxor $t2,$sigma psrld \$10,$t1 movdqa $axb,$t2 psrld \$17,$axb pxor $t3,$sigma # sigma0(X[i+1]) pslld \$13,$t2 paddd $sigma,$Xi # Xi+=sigma0(e) pxor $axb,$t1 psrld \$19-17,$axb pxor $t2,$t1 pslld \$15-13,$t2 pxor $axb,$t1 pxor $t2,$t1 # sigma0(X[i+14]) paddd $t1,$Xi # Xi+=sigma1(X[i+14]) ___ &ROUND_00_15($i,@_); ($Xi,$Xn)=($Xn,$Xi); } $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl sha256_multi_block .type sha256_multi_block,\@function,3 .align 32 sha256_multi_block: .cfi_startproc mov OPENSSL_ia32cap_P+4(%rip),%rcx bt \$61,%rcx # check SHA bit jc _shaext_shortcut ___ $code.=<<___ if ($avx); test \$`1<<28`,%ecx jnz _avx_shortcut ___ $code.=<<___; mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,-0x78(%rax) movaps %xmm11,-0x68(%rax) movaps %xmm12,-0x58(%rax) movaps %xmm13,-0x48(%rax) movaps %xmm14,-0x38(%rax) movaps %xmm15,-0x28(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`, %rsp and \$-256,%rsp mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .cfi_cfa_expression %rsp+`$REG_SZ*17`,deref,+8 .Lbody: lea K256+128(%rip),$Tbl lea `$REG_SZ*16`(%rsp),%rbx lea 0x80($ctx),$ctx # size optimization .Loop_grande: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num ___ for($i=0;$i<4;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Ldone movdqu 0x00-0x80($ctx),$A # load context lea 128(%rsp),%rax movdqu 0x20-0x80($ctx),$B movdqu 0x40-0x80($ctx),$C movdqu 0x60-0x80($ctx),$D movdqu 0x80-0x80($ctx),$E movdqu 0xa0-0x80($ctx),$F movdqu 0xc0-0x80($ctx),$G movdqu 0xe0-0x80($ctx),$H movdqu .Lpbswap(%rip),$Xn jmp .Loop .align 32 .Loop: movdqa $C,$bxc pxor $B,$bxc # magic seed ___ for($i=0;$i<16;$i++) { &ROUND_00_15($i,@V); unshift(@V,pop(@V)); } $code.=<<___; movdqu `&Xi_off($i)`,$Xi mov \$3,%ecx jmp .Loop_16_xx .align 32 .Loop_16_xx: ___ for(;$i<32;$i++) { &ROUND_16_XX($i,@V); unshift(@V,pop(@V)); } $code.=<<___; dec %ecx jnz .Loop_16_xx mov \$1,%ecx lea K256+128(%rip),$Tbl movdqa (%rbx),$sigma # pull counters cmp 4*0(%rbx),%ecx # examine counters pxor $t1,$t1 cmovge $Tbl,@ptr[0] # cancel input cmp 4*1(%rbx),%ecx movdqa $sigma,$Xn cmovge $Tbl,@ptr[1] cmp 4*2(%rbx),%ecx pcmpgtd $t1,$Xn # mask value cmovge $Tbl,@ptr[2] cmp 4*3(%rbx),%ecx paddd $Xn,$sigma # counters-- cmovge $Tbl,@ptr[3] movdqu 0x00-0x80($ctx),$t1 pand $Xn,$A movdqu 0x20-0x80($ctx),$t2 pand $Xn,$B movdqu 0x40-0x80($ctx),$t3 pand $Xn,$C movdqu 0x60-0x80($ctx),$Xi pand $Xn,$D paddd $t1,$A movdqu 0x80-0x80($ctx),$t1 pand $Xn,$E paddd $t2,$B movdqu 0xa0-0x80($ctx),$t2 pand $Xn,$F paddd $t3,$C movdqu 0xc0-0x80($ctx),$t3 pand $Xn,$G paddd $Xi,$D movdqu 0xe0-0x80($ctx),$Xi pand $Xn,$H paddd $t1,$E paddd $t2,$F movdqu $A,0x00-0x80($ctx) paddd $t3,$G movdqu $B,0x20-0x80($ctx) paddd $Xi,$H movdqu $C,0x40-0x80($ctx) movdqu $D,0x60-0x80($ctx) movdqu $E,0x80-0x80($ctx) movdqu $F,0xa0-0x80($ctx) movdqu $G,0xc0-0x80($ctx) movdqu $H,0xe0-0x80($ctx) movdqa $sigma,(%rbx) # save counters movdqa .Lpbswap(%rip),$Xn dec $num jnz .Loop mov `$REG_SZ*17+8`(%rsp),$num lea $REG_SZ($ctx),$ctx lea `16*$REG_SZ/4`($inp),$inp dec $num jnz .Loop_grande .Ldone: mov `$REG_SZ*17`(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 ___ $code.=<<___ if ($win64); movaps -0xb8(%rax),%xmm6 movaps -0xa8(%rax),%xmm7 movaps -0x98(%rax),%xmm8 movaps -0x88(%rax),%xmm9 movaps -0x78(%rax),%xmm10 movaps -0x68(%rax),%xmm11 movaps -0x58(%rax),%xmm12 movaps -0x48(%rax),%xmm13 movaps -0x38(%rax),%xmm14 movaps -0x28(%rax),%xmm15 ___ $code.=<<___; mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue: ret .cfi_endproc .size sha256_multi_block,.-sha256_multi_block ___ {{{ my ($Wi,$TMP0,$TMP1,$TMPx,$ABEF0,$CDGH0,$ABEF1,$CDGH1)=map("%xmm$_",(0..3,12..15)); my @MSG0=map("%xmm$_",(4..7)); my @MSG1=map("%xmm$_",(8..11)); $code.=<<___; .type sha256_multi_block_shaext,\@function,3 .align 32 sha256_multi_block_shaext: .cfi_startproc _shaext_shortcut: mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,-0x78(%rax) movaps %xmm11,-0x68(%rax) movaps %xmm12,-0x58(%rax) movaps %xmm13,-0x48(%rax) movaps %xmm14,-0x38(%rax) movaps %xmm15,-0x28(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`,%rsp shl \$1,$num # we process pair at a time and \$-256,%rsp lea 0x80($ctx),$ctx # size optimization mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .Lbody_shaext: lea `$REG_SZ*16`(%rsp),%rbx lea K256_shaext+0x80(%rip),$Tbl .Loop_grande_shaext: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num ___ for($i=0;$i<2;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle %rsp,@ptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Ldone_shaext movq 0x00-0x80($ctx),$ABEF0 # A1.A0 movq 0x20-0x80($ctx),@MSG0[0] # B1.B0 movq 0x40-0x80($ctx),$CDGH0 # C1.C0 movq 0x60-0x80($ctx),@MSG0[1] # D1.D0 movq 0x80-0x80($ctx),@MSG1[0] # E1.E0 movq 0xa0-0x80($ctx),@MSG1[1] # F1.F0 movq 0xc0-0x80($ctx),@MSG1[2] # G1.G0 movq 0xe0-0x80($ctx),@MSG1[3] # H1.H0 punpckldq @MSG0[0],$ABEF0 # B1.A1.B0.A0 punpckldq @MSG0[1],$CDGH0 # D1.C1.D0.C0 punpckldq @MSG1[1],@MSG1[0] # F1.E1.F0.E0 punpckldq @MSG1[3],@MSG1[2] # H1.G1.H0.G0 movdqa K256_shaext-0x10(%rip),$TMPx # byte swap movdqa $ABEF0,$ABEF1 movdqa $CDGH0,$CDGH1 punpcklqdq @MSG1[0],$ABEF0 # F0.E0.B0.A0 punpcklqdq @MSG1[2],$CDGH0 # H0.G0.D0.C0 punpckhqdq @MSG1[0],$ABEF1 # F1.E1.B1.A1 punpckhqdq @MSG1[2],$CDGH1 # H1.G1.D1.C1 pshufd \$0b00011011,$ABEF0,$ABEF0 pshufd \$0b00011011,$CDGH0,$CDGH0 pshufd \$0b00011011,$ABEF1,$ABEF1 pshufd \$0b00011011,$CDGH1,$CDGH1 jmp .Loop_shaext .align 32 .Loop_shaext: movdqu 0x00(@ptr[0]),@MSG0[0] movdqu 0x00(@ptr[1]),@MSG1[0] movdqu 0x10(@ptr[0]),@MSG0[1] movdqu 0x10(@ptr[1]),@MSG1[1] movdqu 0x20(@ptr[0]),@MSG0[2] pshufb $TMPx,@MSG0[0] movdqu 0x20(@ptr[1]),@MSG1[2] pshufb $TMPx,@MSG1[0] movdqu 0x30(@ptr[0]),@MSG0[3] lea 0x40(@ptr[0]),@ptr[0] movdqu 0x30(@ptr[1]),@MSG1[3] lea 0x40(@ptr[1]),@ptr[1] movdqa 0*16-0x80($Tbl),$Wi pshufb $TMPx,@MSG0[1] paddd @MSG0[0],$Wi pxor $ABEF0,@MSG0[0] # black magic movdqa $Wi,$TMP0 movdqa 0*16-0x80($Tbl),$TMP1 pshufb $TMPx,@MSG1[1] paddd @MSG1[0],$TMP1 movdqa $CDGH0,0x50(%rsp) # offload sha256rnds2 $ABEF0,$CDGH0 # 0-3 pxor $ABEF1,@MSG1[0] # black magic movdqa $TMP1,$Wi movdqa $CDGH1,0x70(%rsp) sha256rnds2 $ABEF1,$CDGH1 # 0-3 pshufd \$0x0e,$TMP0,$Wi pxor $ABEF0,@MSG0[0] # black magic movdqa $ABEF0,0x40(%rsp) # offload sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi pxor $ABEF1,@MSG1[0] # black magic movdqa $ABEF1,0x60(%rsp) movdqa 1*16-0x80($Tbl),$TMP0 paddd @MSG0[1],$TMP0 pshufb $TMPx,@MSG0[2] sha256rnds2 $CDGH1,$ABEF1 movdqa $TMP0,$Wi movdqa 1*16-0x80($Tbl),$TMP1 paddd @MSG1[1],$TMP1 sha256rnds2 $ABEF0,$CDGH0 # 4-7 movdqa $TMP1,$Wi prefetcht0 127(@ptr[0]) pshufb $TMPx,@MSG0[3] pshufb $TMPx,@MSG1[2] prefetcht0 127(@ptr[1]) sha256rnds2 $ABEF1,$CDGH1 # 4-7 pshufd \$0x0e,$TMP0,$Wi pshufb $TMPx,@MSG1[3] sha256msg1 @MSG0[1],@MSG0[0] sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi movdqa 2*16-0x80($Tbl),$TMP0 paddd @MSG0[2],$TMP0 sha256rnds2 $CDGH1,$ABEF1 movdqa $TMP0,$Wi movdqa 2*16-0x80($Tbl),$TMP1 paddd @MSG1[2],$TMP1 sha256rnds2 $ABEF0,$CDGH0 # 8-11 sha256msg1 @MSG1[1],@MSG1[0] movdqa $TMP1,$Wi movdqa @MSG0[3],$TMPx sha256rnds2 $ABEF1,$CDGH1 # 8-11 pshufd \$0x0e,$TMP0,$Wi palignr \$4,@MSG0[2],$TMPx paddd $TMPx,@MSG0[0] movdqa @MSG1[3],$TMPx palignr \$4,@MSG1[2],$TMPx sha256msg1 @MSG0[2],@MSG0[1] sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi movdqa 3*16-0x80($Tbl),$TMP0 paddd @MSG0[3],$TMP0 sha256rnds2 $CDGH1,$ABEF1 sha256msg1 @MSG1[2],@MSG1[1] movdqa $TMP0,$Wi movdqa 3*16-0x80($Tbl),$TMP1 paddd $TMPx,@MSG1[0] paddd @MSG1[3],$TMP1 sha256msg2 @MSG0[3],@MSG0[0] sha256rnds2 $ABEF0,$CDGH0 # 12-15 movdqa $TMP1,$Wi movdqa @MSG0[0],$TMPx palignr \$4,@MSG0[3],$TMPx sha256rnds2 $ABEF1,$CDGH1 # 12-15 sha256msg2 @MSG1[3],@MSG1[0] pshufd \$0x0e,$TMP0,$Wi paddd $TMPx,@MSG0[1] movdqa @MSG1[0],$TMPx palignr \$4,@MSG1[3],$TMPx sha256msg1 @MSG0[3],@MSG0[2] sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi movdqa 4*16-0x80($Tbl),$TMP0 paddd @MSG0[0],$TMP0 sha256rnds2 $CDGH1,$ABEF1 sha256msg1 @MSG1[3],@MSG1[2] ___ for($i=4;$i<16-3;$i++) { $code.=<<___; movdqa $TMP0,$Wi movdqa $i*16-0x80($Tbl),$TMP1 paddd $TMPx,@MSG1[1] paddd @MSG1[0],$TMP1 sha256msg2 @MSG0[0],@MSG0[1] sha256rnds2 $ABEF0,$CDGH0 # 16-19... movdqa $TMP1,$Wi movdqa @MSG0[1],$TMPx palignr \$4,@MSG0[0],$TMPx sha256rnds2 $ABEF1,$CDGH1 # 16-19... sha256msg2 @MSG1[0],@MSG1[1] pshufd \$0x0e,$TMP0,$Wi paddd $TMPx,@MSG0[2] movdqa @MSG1[1],$TMPx palignr \$4,@MSG1[0],$TMPx sha256msg1 @MSG0[0],@MSG0[3] sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi movdqa `($i+1)*16`-0x80($Tbl),$TMP0 paddd @MSG0[1],$TMP0 sha256rnds2 $CDGH1,$ABEF1 sha256msg1 @MSG1[0],@MSG1[3] ___ push(@MSG0,shift(@MSG0)); push(@MSG1,shift(@MSG1)); } $code.=<<___; movdqa $TMP0,$Wi movdqa 13*16-0x80($Tbl),$TMP1 paddd $TMPx,@MSG1[1] paddd @MSG1[0],$TMP1 sha256msg2 @MSG0[0],@MSG0[1] sha256rnds2 $ABEF0,$CDGH0 # 52-55 movdqa $TMP1,$Wi movdqa @MSG0[1],$TMPx palignr \$4,@MSG0[0],$TMPx sha256rnds2 $ABEF1,$CDGH1 # 52-55 sha256msg2 @MSG1[0],@MSG1[1] pshufd \$0x0e,$TMP0,$Wi paddd $TMPx,@MSG0[2] movdqa @MSG1[1],$TMPx palignr \$4,@MSG1[0],$TMPx nop sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi movdqa 14*16-0x80($Tbl),$TMP0 paddd @MSG0[1],$TMP0 sha256rnds2 $CDGH1,$ABEF1 movdqa $TMP0,$Wi movdqa 14*16-0x80($Tbl),$TMP1 paddd $TMPx,@MSG1[2] paddd @MSG1[1],$TMP1 sha256msg2 @MSG0[1],@MSG0[2] nop sha256rnds2 $ABEF0,$CDGH0 # 56-59 movdqa $TMP1,$Wi mov \$1,%ecx pxor @MSG0[1],@MSG0[1] # zero sha256rnds2 $ABEF1,$CDGH1 # 56-59 sha256msg2 @MSG1[1],@MSG1[2] pshufd \$0x0e,$TMP0,$Wi movdqa 15*16-0x80($Tbl),$TMP0 paddd @MSG0[2],$TMP0 movq (%rbx),@MSG0[2] # pull counters nop sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi movdqa 15*16-0x80($Tbl),$TMP1 paddd @MSG1[2],$TMP1 sha256rnds2 $CDGH1,$ABEF1 movdqa $TMP0,$Wi cmp 4*0(%rbx),%ecx # examine counters cmovge %rsp,@ptr[0] # cancel input cmp 4*1(%rbx),%ecx cmovge %rsp,@ptr[1] pshufd \$0x00,@MSG0[2],@MSG1[0] sha256rnds2 $ABEF0,$CDGH0 # 60-63 movdqa $TMP1,$Wi pshufd \$0x55,@MSG0[2],@MSG1[1] movdqa @MSG0[2],@MSG1[2] sha256rnds2 $ABEF1,$CDGH1 # 60-63 pshufd \$0x0e,$TMP0,$Wi pcmpgtd @MSG0[1],@MSG1[0] pcmpgtd @MSG0[1],@MSG1[1] sha256rnds2 $CDGH0,$ABEF0 pshufd \$0x0e,$TMP1,$Wi pcmpgtd @MSG0[1],@MSG1[2] # counter mask movdqa K256_shaext-0x10(%rip),$TMPx sha256rnds2 $CDGH1,$ABEF1 pand @MSG1[0],$CDGH0 pand @MSG1[1],$CDGH1 pand @MSG1[0],$ABEF0 pand @MSG1[1],$ABEF1 paddd @MSG0[2],@MSG1[2] # counters-- paddd 0x50(%rsp),$CDGH0 paddd 0x70(%rsp),$CDGH1 paddd 0x40(%rsp),$ABEF0 paddd 0x60(%rsp),$ABEF1 movq @MSG1[2],(%rbx) # save counters dec $num jnz .Loop_shaext mov `$REG_SZ*17+8`(%rsp),$num pshufd \$0b00011011,$ABEF0,$ABEF0 pshufd \$0b00011011,$CDGH0,$CDGH0 pshufd \$0b00011011,$ABEF1,$ABEF1 pshufd \$0b00011011,$CDGH1,$CDGH1 movdqa $ABEF0,@MSG0[0] movdqa $CDGH0,@MSG0[1] punpckldq $ABEF1,$ABEF0 # B1.B0.A1.A0 punpckhdq $ABEF1,@MSG0[0] # F1.F0.E1.E0 punpckldq $CDGH1,$CDGH0 # D1.D0.C1.C0 punpckhdq $CDGH1,@MSG0[1] # H1.H0.G1.G0 movq $ABEF0,0x00-0x80($ctx) # A1.A0 psrldq \$8,$ABEF0 movq @MSG0[0],0x80-0x80($ctx) # E1.E0 psrldq \$8,@MSG0[0] movq $ABEF0,0x20-0x80($ctx) # B1.B0 movq @MSG0[0],0xa0-0x80($ctx) # F1.F0 movq $CDGH0,0x40-0x80($ctx) # C1.C0 psrldq \$8,$CDGH0 movq @MSG0[1],0xc0-0x80($ctx) # G1.G0 psrldq \$8,@MSG0[1] movq $CDGH0,0x60-0x80($ctx) # D1.D0 movq @MSG0[1],0xe0-0x80($ctx) # H1.H0 lea `$REG_SZ/2`($ctx),$ctx lea `16*2`($inp),$inp dec $num jnz .Loop_grande_shaext .Ldone_shaext: #mov `$REG_SZ*17`(%rsp),%rax # original %rsp ___ $code.=<<___ if ($win64); movaps -0xb8(%rax),%xmm6 movaps -0xa8(%rax),%xmm7 movaps -0x98(%rax),%xmm8 movaps -0x88(%rax),%xmm9 movaps -0x78(%rax),%xmm10 movaps -0x68(%rax),%xmm11 movaps -0x58(%rax),%xmm12 movaps -0x48(%rax),%xmm13 movaps -0x38(%rax),%xmm14 movaps -0x28(%rax),%xmm15 ___ $code.=<<___; mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue_shaext: ret .cfi_endproc .size sha256_multi_block_shaext,.-sha256_multi_block_shaext ___ }}} if ($avx) {{{ sub ROUND_00_15_avx { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; $code.=<<___ if ($i<15 && $REG_SZ==16); vmovd `4*$i`(@ptr[0]),$Xi vmovd `4*$i`(@ptr[1]),$t1 vpinsrd \$1,`4*$i`(@ptr[2]),$Xi,$Xi vpinsrd \$1,`4*$i`(@ptr[3]),$t1,$t1 vpunpckldq $t1,$Xi,$Xi vpshufb $Xn,$Xi,$Xi ___ $code.=<<___ if ($i==15 && $REG_SZ==16); vmovd `4*$i`(@ptr[0]),$Xi lea `16*4`(@ptr[0]),@ptr[0] vmovd `4*$i`(@ptr[1]),$t1 lea `16*4`(@ptr[1]),@ptr[1] vpinsrd \$1,`4*$i`(@ptr[2]),$Xi,$Xi lea `16*4`(@ptr[2]),@ptr[2] vpinsrd \$1,`4*$i`(@ptr[3]),$t1,$t1 lea `16*4`(@ptr[3]),@ptr[3] vpunpckldq $t1,$Xi,$Xi vpshufb $Xn,$Xi,$Xi ___ $code.=<<___ if ($i<15 && $REG_SZ==32); vmovd `4*$i`(@ptr[0]),$Xi vmovd `4*$i`(@ptr[4]),$t1 vmovd `4*$i`(@ptr[1]),$t2 vmovd `4*$i`(@ptr[5]),$t3 vpinsrd \$1,`4*$i`(@ptr[2]),$Xi,$Xi vpinsrd \$1,`4*$i`(@ptr[6]),$t1,$t1 vpinsrd \$1,`4*$i`(@ptr[3]),$t2,$t2 vpunpckldq $t2,$Xi,$Xi vpinsrd \$1,`4*$i`(@ptr[7]),$t3,$t3 vpunpckldq $t3,$t1,$t1 vinserti128 $t1,$Xi,$Xi vpshufb $Xn,$Xi,$Xi ___ $code.=<<___ if ($i==15 && $REG_SZ==32); vmovd `4*$i`(@ptr[0]),$Xi lea `16*4`(@ptr[0]),@ptr[0] vmovd `4*$i`(@ptr[4]),$t1 lea `16*4`(@ptr[4]),@ptr[4] vmovd `4*$i`(@ptr[1]),$t2 lea `16*4`(@ptr[1]),@ptr[1] vmovd `4*$i`(@ptr[5]),$t3 lea `16*4`(@ptr[5]),@ptr[5] vpinsrd \$1,`4*$i`(@ptr[2]),$Xi,$Xi lea `16*4`(@ptr[2]),@ptr[2] vpinsrd \$1,`4*$i`(@ptr[6]),$t1,$t1 lea `16*4`(@ptr[6]),@ptr[6] vpinsrd \$1,`4*$i`(@ptr[3]),$t2,$t2 lea `16*4`(@ptr[3]),@ptr[3] vpunpckldq $t2,$Xi,$Xi vpinsrd \$1,`4*$i`(@ptr[7]),$t3,$t3 lea `16*4`(@ptr[7]),@ptr[7] vpunpckldq $t3,$t1,$t1 vinserti128 $t1,$Xi,$Xi vpshufb $Xn,$Xi,$Xi ___ $code.=<<___; vpsrld \$6,$e,$sigma vpslld \$26,$e,$t3 vmovdqu $Xi,`&Xi_off($i)` vpaddd $h,$Xi,$Xi # Xi+=h vpsrld \$11,$e,$t2 vpxor $t3,$sigma,$sigma vpslld \$21,$e,$t3 vpaddd `32*($i%8)-128`($Tbl),$Xi,$Xi # Xi+=K[round] vpxor $t2,$sigma,$sigma vpsrld \$25,$e,$t2 vpxor $t3,$sigma,$sigma `"prefetcht0 63(@ptr[0])" if ($i==15)` vpslld \$7,$e,$t3 vpandn $g,$e,$t1 vpand $f,$e,$axb # borrow $axb `"prefetcht0 63(@ptr[1])" if ($i==15)` vpxor $t2,$sigma,$sigma vpsrld \$2,$a,$h # borrow $h vpxor $t3,$sigma,$sigma # Sigma1(e) `"prefetcht0 63(@ptr[2])" if ($i==15)` vpslld \$30,$a,$t2 vpxor $axb,$t1,$t1 # Ch(e,f,g) vpxor $a,$b,$axb # a^b, b^c in next round `"prefetcht0 63(@ptr[3])" if ($i==15)` vpxor $t2,$h,$h vpaddd $sigma,$Xi,$Xi # Xi+=Sigma1(e) vpsrld \$13,$a,$t2 `"prefetcht0 63(@ptr[4])" if ($i==15 && $REG_SZ==32)` vpslld \$19,$a,$t3 vpaddd $t1,$Xi,$Xi # Xi+=Ch(e,f,g) vpand $axb,$bxc,$bxc `"prefetcht0 63(@ptr[5])" if ($i==15 && $REG_SZ==32)` vpxor $t2,$h,$sigma vpsrld \$22,$a,$t2 vpxor $t3,$sigma,$sigma `"prefetcht0 63(@ptr[6])" if ($i==15 && $REG_SZ==32)` vpslld \$10,$a,$t3 vpxor $bxc,$b,$h # h=Maj(a,b,c)=Ch(a^b,c,b) vpaddd $Xi,$d,$d # d+=Xi `"prefetcht0 63(@ptr[7])" if ($i==15 && $REG_SZ==32)` vpxor $t2,$sigma,$sigma vpxor $t3,$sigma,$sigma # Sigma0(a) vpaddd $Xi,$h,$h # h+=Xi vpaddd $sigma,$h,$h # h+=Sigma0(a) ___ $code.=<<___ if (($i%8)==7); add \$`32*8`,$Tbl ___ ($axb,$bxc)=($bxc,$axb); } sub ROUND_16_XX_avx { my $i=shift; $code.=<<___; vmovdqu `&Xi_off($i+1)`,$Xn vpaddd `&Xi_off($i+9)`,$Xi,$Xi # Xi+=X[i+9] vpsrld \$3,$Xn,$sigma vpsrld \$7,$Xn,$t2 vpslld \$25,$Xn,$t3 vpxor $t2,$sigma,$sigma vpsrld \$18,$Xn,$t2 vpxor $t3,$sigma,$sigma vpslld \$14,$Xn,$t3 vmovdqu `&Xi_off($i+14)`,$t1 vpsrld \$10,$t1,$axb # borrow $axb vpxor $t2,$sigma,$sigma vpsrld \$17,$t1,$t2 vpxor $t3,$sigma,$sigma # sigma0(X[i+1]) vpslld \$15,$t1,$t3 vpaddd $sigma,$Xi,$Xi # Xi+=sigma0(e) vpxor $t2,$axb,$sigma vpsrld \$19,$t1,$t2 vpxor $t3,$sigma,$sigma vpslld \$13,$t1,$t3 vpxor $t2,$sigma,$sigma vpxor $t3,$sigma,$sigma # sigma0(X[i+14]) vpaddd $sigma,$Xi,$Xi # Xi+=sigma1(X[i+14]) ___ &ROUND_00_15_avx($i,@_); ($Xi,$Xn)=($Xn,$Xi); } $code.=<<___; .type sha256_multi_block_avx,\@function,3 .align 32 sha256_multi_block_avx: .cfi_startproc _avx_shortcut: ___ $code.=<<___ if ($avx>1); shr \$32,%rcx cmp \$2,$num jb .Lavx test \$`1<<5`,%ecx jnz _avx2_shortcut jmp .Lavx .align 32 .Lavx: ___ $code.=<<___; mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,-0x78(%rax) movaps %xmm11,-0x68(%rax) movaps %xmm12,-0x58(%rax) movaps %xmm13,-0x48(%rax) movaps %xmm14,-0x38(%rax) movaps %xmm15,-0x28(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`, %rsp and \$-256,%rsp mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .cfi_cfa_expression %rsp+`$REG_SZ*17`,deref,+8 .Lbody_avx: lea K256+128(%rip),$Tbl lea `$REG_SZ*16`(%rsp),%rbx lea 0x80($ctx),$ctx # size optimization .Loop_grande_avx: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num ___ for($i=0;$i<4;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; test $num,$num jz .Ldone_avx vmovdqu 0x00-0x80($ctx),$A # load context lea 128(%rsp),%rax vmovdqu 0x20-0x80($ctx),$B vmovdqu 0x40-0x80($ctx),$C vmovdqu 0x60-0x80($ctx),$D vmovdqu 0x80-0x80($ctx),$E vmovdqu 0xa0-0x80($ctx),$F vmovdqu 0xc0-0x80($ctx),$G vmovdqu 0xe0-0x80($ctx),$H vmovdqu .Lpbswap(%rip),$Xn jmp .Loop_avx .align 32 .Loop_avx: vpxor $B,$C,$bxc # magic seed ___ for($i=0;$i<16;$i++) { &ROUND_00_15_avx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; vmovdqu `&Xi_off($i)`,$Xi mov \$3,%ecx jmp .Loop_16_xx_avx .align 32 .Loop_16_xx_avx: ___ for(;$i<32;$i++) { &ROUND_16_XX_avx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; dec %ecx jnz .Loop_16_xx_avx mov \$1,%ecx lea K256+128(%rip),$Tbl ___ for($i=0;$i<4;$i++) { $code.=<<___; cmp `4*$i`(%rbx),%ecx # examine counters cmovge $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; vmovdqa (%rbx),$sigma # pull counters vpxor $t1,$t1,$t1 vmovdqa $sigma,$Xn vpcmpgtd $t1,$Xn,$Xn # mask value vpaddd $Xn,$sigma,$sigma # counters-- vmovdqu 0x00-0x80($ctx),$t1 vpand $Xn,$A,$A vmovdqu 0x20-0x80($ctx),$t2 vpand $Xn,$B,$B vmovdqu 0x40-0x80($ctx),$t3 vpand $Xn,$C,$C vmovdqu 0x60-0x80($ctx),$Xi vpand $Xn,$D,$D vpaddd $t1,$A,$A vmovdqu 0x80-0x80($ctx),$t1 vpand $Xn,$E,$E vpaddd $t2,$B,$B vmovdqu 0xa0-0x80($ctx),$t2 vpand $Xn,$F,$F vpaddd $t3,$C,$C vmovdqu 0xc0-0x80($ctx),$t3 vpand $Xn,$G,$G vpaddd $Xi,$D,$D vmovdqu 0xe0-0x80($ctx),$Xi vpand $Xn,$H,$H vpaddd $t1,$E,$E vpaddd $t2,$F,$F vmovdqu $A,0x00-0x80($ctx) vpaddd $t3,$G,$G vmovdqu $B,0x20-0x80($ctx) vpaddd $Xi,$H,$H vmovdqu $C,0x40-0x80($ctx) vmovdqu $D,0x60-0x80($ctx) vmovdqu $E,0x80-0x80($ctx) vmovdqu $F,0xa0-0x80($ctx) vmovdqu $G,0xc0-0x80($ctx) vmovdqu $H,0xe0-0x80($ctx) vmovdqu $sigma,(%rbx) # save counters vmovdqu .Lpbswap(%rip),$Xn dec $num jnz .Loop_avx mov `$REG_SZ*17+8`(%rsp),$num lea $REG_SZ($ctx),$ctx lea `16*$REG_SZ/4`($inp),$inp dec $num jnz .Loop_grande_avx .Ldone_avx: mov `$REG_SZ*17`(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 vzeroupper ___ $code.=<<___ if ($win64); movaps -0xb8(%rax),%xmm6 movaps -0xa8(%rax),%xmm7 movaps -0x98(%rax),%xmm8 movaps -0x88(%rax),%xmm9 movaps -0x78(%rax),%xmm10 movaps -0x68(%rax),%xmm11 movaps -0x58(%rax),%xmm12 movaps -0x48(%rax),%xmm13 movaps -0x38(%rax),%xmm14 movaps -0x28(%rax),%xmm15 ___ $code.=<<___; mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx: ret .cfi_endproc .size sha256_multi_block_avx,.-sha256_multi_block_avx ___ if ($avx>1) { $code =~ s/\`([^\`]*)\`/eval $1/gem; $REG_SZ=32; @ptr=map("%r$_",(12..15,8..11)); @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("%ymm$_",(8..15)); ($t1,$t2,$t3,$axb,$bxc,$Xi,$Xn,$sigma)=map("%ymm$_",(0..7)); $code.=<<___; .type sha256_multi_block_avx2,\@function,3 .align 32 sha256_multi_block_avx2: .cfi_startproc _avx2_shortcut: mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp movaps %xmm6,(%rsp) movaps %xmm7,0x10(%rsp) movaps %xmm8,0x20(%rsp) movaps %xmm9,0x30(%rsp) movaps %xmm10,0x40(%rsp) movaps %xmm11,0x50(%rsp) movaps %xmm12,-0x78(%rax) movaps %xmm13,-0x68(%rax) movaps %xmm14,-0x58(%rax) movaps %xmm15,-0x48(%rax) ___ $code.=<<___; sub \$`$REG_SZ*18`, %rsp and \$-256,%rsp mov %rax,`$REG_SZ*17`(%rsp) # original %rsp .cfi_cfa_expression %rsp+`$REG_SZ*17`,deref,+8 .Lbody_avx2: lea K256+128(%rip),$Tbl lea 0x80($ctx),$ctx # size optimization .Loop_grande_avx2: mov $num,`$REG_SZ*17+8`(%rsp) # original $num xor $num,$num lea `$REG_SZ*16`(%rsp),%rbx ___ for($i=0;$i<8;$i++) { $code.=<<___; mov `16*$i+0`($inp),@ptr[$i] # input pointer mov `16*$i+8`($inp),%ecx # number of blocks cmp $num,%ecx cmovg %ecx,$num # find maximum test %ecx,%ecx mov %ecx,`4*$i`(%rbx) # initialize counters cmovle $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; vmovdqu 0x00-0x80($ctx),$A # load context lea 128(%rsp),%rax vmovdqu 0x20-0x80($ctx),$B lea 256+128(%rsp),%rbx vmovdqu 0x40-0x80($ctx),$C vmovdqu 0x60-0x80($ctx),$D vmovdqu 0x80-0x80($ctx),$E vmovdqu 0xa0-0x80($ctx),$F vmovdqu 0xc0-0x80($ctx),$G vmovdqu 0xe0-0x80($ctx),$H vmovdqu .Lpbswap(%rip),$Xn jmp .Loop_avx2 .align 32 .Loop_avx2: vpxor $B,$C,$bxc # magic seed ___ for($i=0;$i<16;$i++) { &ROUND_00_15_avx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; vmovdqu `&Xi_off($i)`,$Xi mov \$3,%ecx jmp .Loop_16_xx_avx2 .align 32 .Loop_16_xx_avx2: ___ for(;$i<32;$i++) { &ROUND_16_XX_avx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; dec %ecx jnz .Loop_16_xx_avx2 mov \$1,%ecx lea `$REG_SZ*16`(%rsp),%rbx lea K256+128(%rip),$Tbl ___ for($i=0;$i<8;$i++) { $code.=<<___; cmp `4*$i`(%rbx),%ecx # examine counters cmovge $Tbl,@ptr[$i] # cancel input ___ } $code.=<<___; vmovdqa (%rbx),$sigma # pull counters vpxor $t1,$t1,$t1 vmovdqa $sigma,$Xn vpcmpgtd $t1,$Xn,$Xn # mask value vpaddd $Xn,$sigma,$sigma # counters-- vmovdqu 0x00-0x80($ctx),$t1 vpand $Xn,$A,$A vmovdqu 0x20-0x80($ctx),$t2 vpand $Xn,$B,$B vmovdqu 0x40-0x80($ctx),$t3 vpand $Xn,$C,$C vmovdqu 0x60-0x80($ctx),$Xi vpand $Xn,$D,$D vpaddd $t1,$A,$A vmovdqu 0x80-0x80($ctx),$t1 vpand $Xn,$E,$E vpaddd $t2,$B,$B vmovdqu 0xa0-0x80($ctx),$t2 vpand $Xn,$F,$F vpaddd $t3,$C,$C vmovdqu 0xc0-0x80($ctx),$t3 vpand $Xn,$G,$G vpaddd $Xi,$D,$D vmovdqu 0xe0-0x80($ctx),$Xi vpand $Xn,$H,$H vpaddd $t1,$E,$E vpaddd $t2,$F,$F vmovdqu $A,0x00-0x80($ctx) vpaddd $t3,$G,$G vmovdqu $B,0x20-0x80($ctx) vpaddd $Xi,$H,$H vmovdqu $C,0x40-0x80($ctx) vmovdqu $D,0x60-0x80($ctx) vmovdqu $E,0x80-0x80($ctx) vmovdqu $F,0xa0-0x80($ctx) vmovdqu $G,0xc0-0x80($ctx) vmovdqu $H,0xe0-0x80($ctx) vmovdqu $sigma,(%rbx) # save counters lea 256+128(%rsp),%rbx vmovdqu .Lpbswap(%rip),$Xn dec $num jnz .Loop_avx2 #mov `$REG_SZ*17+8`(%rsp),$num #lea $REG_SZ($ctx),$ctx #lea `16*$REG_SZ/4`($inp),$inp #dec $num #jnz .Loop_grande_avx2 .Ldone_avx2: mov `$REG_SZ*17`(%rsp),%rax # original %rsp .cfi_def_cfa %rax,8 vzeroupper ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 .cfi_restore %r15 mov -40(%rax),%r14 .cfi_restore %r14 mov -32(%rax),%r13 .cfi_restore %r13 mov -24(%rax),%r12 .cfi_restore %r12 mov -16(%rax),%rbp .cfi_restore %rbp mov -8(%rax),%rbx .cfi_restore %rbx lea (%rax),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx2: ret .cfi_endproc .size sha256_multi_block_avx2,.-sha256_multi_block_avx2 ___ } }}} $code.=<<___; .align 256 K256: ___ sub TABLE { foreach (@_) { $code.=<<___; .long $_,$_,$_,$_ .long $_,$_,$_,$_ ___ } } &TABLE( 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5, 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5, 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3, 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174, 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc, 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7, 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967, 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13, 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85, 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3, 0xd192e819,0xd6990624,0xf40e3585,0x106aa070, 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5, 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3, 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208, 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 ); $code.=<<___; .Lpbswap: .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap K256_shaext: .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .asciz "SHA256 multi-block transform for x86_64, CRYPTOGAMS by " ___ if ($win64) { # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->Rip<.Lbody jb .Lin_prologue mov 152($context),%rax # pull context->Rsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lin_prologue mov `16*17`(%rax),%rax # pull saved stack pointer mov -8(%rax),%rbx mov -16(%rax),%rbp mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp lea -24-10*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler ___ $code.=<<___ if ($avx>1); .type avx2_handler,\@abi-omnipotent .align 16 avx2_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # end of prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue mov `32*17`($context),%rax # pull saved stack pointer mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 lea -56-10*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq jmp .Lin_prologue .size avx2_handler,.-avx2_handler ___ $code.=<<___; .section .pdata .align 4 .rva .LSEH_begin_sha256_multi_block .rva .LSEH_end_sha256_multi_block .rva .LSEH_info_sha256_multi_block .rva .LSEH_begin_sha256_multi_block_shaext .rva .LSEH_end_sha256_multi_block_shaext .rva .LSEH_info_sha256_multi_block_shaext ___ $code.=<<___ if ($avx); .rva .LSEH_begin_sha256_multi_block_avx .rva .LSEH_end_sha256_multi_block_avx .rva .LSEH_info_sha256_multi_block_avx ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_sha256_multi_block_avx2 .rva .LSEH_end_sha256_multi_block_avx2 .rva .LSEH_info_sha256_multi_block_avx2 ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_sha256_multi_block: .byte 9,0,0,0 .rva se_handler .rva .Lbody,.Lepilogue # HandlerData[] .LSEH_info_sha256_multi_block_shaext: .byte 9,0,0,0 .rva se_handler .rva .Lbody_shaext,.Lepilogue_shaext # HandlerData[] ___ $code.=<<___ if ($avx); .LSEH_info_sha256_multi_block_avx: .byte 9,0,0,0 .rva se_handler .rva .Lbody_avx,.Lepilogue_avx # HandlerData[] ___ $code.=<<___ if ($avx>1); .LSEH_info_sha256_multi_block_avx2: .byte 9,0,0,0 .rva avx2_handler .rva .Lbody_avx2,.Lepilogue_avx2 # HandlerData[] ___ } #################################################################### sub rex { local *opcode=shift; my ($dst,$src)=@_; my $rex=0; $rex|=0x04 if ($dst>=8); $rex|=0x01 if ($src>=8); unshift @opcode,$rex|0x40 if ($rex); } sub sha256op38 { my $instr = shift; my %opcodelet = ( "sha256rnds2" => 0xcb, "sha256msg1" => 0xcc, "sha256msg2" => 0xcd ); if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x38); rex(\@opcode,$2,$1); push @opcode,$opcodelet{$instr}; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } else { return $instr."\t".@_[0]; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/\b(sha256[^\s]*)\s+(.*)/sha256op38($1,$2)/geo or s/\b(vmov[dq])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vmovdqu)\b(.+)%x%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpinsr[qd])\b(.+)%ymm([0-9]+),%ymm([0-9]+)/$1$2%xmm$3,%xmm$4/go or s/\b(vpextr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vinserti128)\b(\s+)%ymm/$1$2\$1,%xmm/go or s/\b(vpbroadcast[qd]\s+)%ymm([0-9]+)/$1%xmm$2/go; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-586.pl000066400000000000000000000640631364063235100201120ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA512 block transform for x86. September 2007. # # May 2013. # # Add SSSE3 code path, 20-25% improvement [over original SSE2 code]. # # Performance in clock cycles per processed byte (less is better): # # gcc icc x86 asm SIMD(*) x86_64(**) # Pentium 100 97 61 - - # PIII 75 77 56 - - # P4 116 95 82 34.6 30.8 # AMD K8 54 55 36 20.7 9.57 # Core2 66 57 40 15.9 9.97 # Westmere 70 - 38 12.2 9.58 # Sandy Bridge 58 - 35 11.9 11.2 # Ivy Bridge 50 - 33 11.5 8.17 # Haswell 46 - 29 11.3 7.66 # Skylake 40 - 26 13.3 7.25 # Bulldozer 121 - 50 14.0 13.5 # VIA Nano 91 - 52 33 14.7 # Atom 126 - 68 48(***) 14.7 # Silvermont 97 - 58 42(***) 17.5 # Goldmont 80 - 48 19.5 12.0 # # (*) whichever best applicable. # (**) x86_64 assembler performance is presented for reference # purposes, the results are for integer-only code. # (***) paddq is incredibly slow on Atom. # # IALU code-path is optimized for elder Pentiums. On vanilla Pentium # performance improvement over compiler generated code reaches ~60%, # while on PIII - ~35%. On newer µ-archs improvement varies from 15% # to 50%, but it's less important as they are expected to execute SSE2 # code-path, which is commonly ~2-3x faster [than compiler generated # code]. SSE2 code-path is as fast as original sha512-sse2.pl, even # though it does not use 128-bit operations. The latter means that # SSE2-aware kernel is no longer required to execute the code. Another # difference is that new code optimizes amount of writes, but at the # cost of increased data cache "footprint" by 1/2KB. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); $Tlo=&DWP(0,"esp"); $Thi=&DWP(4,"esp"); $Alo=&DWP(8,"esp"); $Ahi=&DWP(8+4,"esp"); $Blo=&DWP(16,"esp"); $Bhi=&DWP(16+4,"esp"); $Clo=&DWP(24,"esp"); $Chi=&DWP(24+4,"esp"); $Dlo=&DWP(32,"esp"); $Dhi=&DWP(32+4,"esp"); $Elo=&DWP(40,"esp"); $Ehi=&DWP(40+4,"esp"); $Flo=&DWP(48,"esp"); $Fhi=&DWP(48+4,"esp"); $Glo=&DWP(56,"esp"); $Ghi=&DWP(56+4,"esp"); $Hlo=&DWP(64,"esp"); $Hhi=&DWP(64+4,"esp"); $K512="ebp"; $Asse2=&QWP(0,"esp"); $Bsse2=&QWP(8,"esp"); $Csse2=&QWP(16,"esp"); $Dsse2=&QWP(24,"esp"); $Esse2=&QWP(32,"esp"); $Fsse2=&QWP(40,"esp"); $Gsse2=&QWP(48,"esp"); $Hsse2=&QWP(56,"esp"); $A="mm0"; # B-D and $E="mm4"; # F-H are commonly loaded to respectively mm1-mm3 and # mm5-mm7, but it's done on on-demand basis... $BxC="mm2"; # ... except for B^C sub BODY_00_15_sse2 { my $phase=shift; #&movq ("mm5",$Fsse2); # load f #&movq ("mm6",$Gsse2); # load g &movq ("mm1",$E); # %mm1 is sliding right &pxor ("mm5","mm6"); # f^=g &psrlq ("mm1",14); &movq ($Esse2,$E); # modulo-scheduled save e &pand ("mm5",$E); # f&=e &psllq ($E,23); # $E is sliding left &movq ($A,"mm3") if ($phase<2); &movq (&QWP(8*9,"esp"),"mm7") # save X[i] &movq ("mm3","mm1"); # %mm3 is T1 &psrlq ("mm1",4); &pxor ("mm5","mm6"); # Ch(e,f,g) &pxor ("mm3",$E); &psllq ($E,23); &pxor ("mm3","mm1"); &movq ($Asse2,$A); # modulo-scheduled save a &paddq ("mm7","mm5"); # X[i]+=Ch(e,f,g) &pxor ("mm3",$E); &psrlq ("mm1",23); &paddq ("mm7",$Hsse2); # X[i]+=h &pxor ("mm3","mm1"); &psllq ($E,4); &paddq ("mm7",QWP(0,$K512)); # X[i]+=K512[i] &pxor ("mm3",$E); # T1=Sigma1_512(e) &movq ($E,$Dsse2); # e = load d, e in next round &paddq ("mm3","mm7"); # T1+=X[i] &movq ("mm5",$A); # %mm5 is sliding right &psrlq ("mm5",28); &paddq ($E,"mm3"); # d += T1 &movq ("mm6",$A); # %mm6 is sliding left &movq ("mm7","mm5"); &psllq ("mm6",25); &movq ("mm1",$Bsse2); # load b &psrlq ("mm5",6); &pxor ("mm7","mm6"); &sub ("esp",8); &psllq ("mm6",5); &pxor ("mm7","mm5"); &pxor ($A,"mm1"); # a^b, b^c in next round &psrlq ("mm5",5); &pxor ("mm7","mm6"); &pand ($BxC,$A); # (b^c)&(a^b) &psllq ("mm6",6); &pxor ("mm7","mm5"); &pxor ($BxC,"mm1"); # [h=]Maj(a,b,c) &pxor ("mm6","mm7"); # Sigma0_512(a) &movq ("mm7",&QWP(8*(9+16-1),"esp")) if ($phase!=0); # pre-fetch &movq ("mm5",$Fsse2) if ($phase==0); # load f if ($phase>1) { &paddq ($BxC,"mm6"); # h+=Sigma0(a) &add ($K512,8); #&paddq ($BxC,"mm3"); # h+=T1 ($A,$BxC) = ($BxC,$A); # rotate registers } else { &paddq ("mm3",$BxC); # T1+=Maj(a,b,c) &movq ($BxC,$A); &add ($K512,8); &paddq ("mm3","mm6"); # T1+=Sigma0(a) &movq ("mm6",$Gsse2) if ($phase==0); # load g #&movq ($A,"mm3"); # h=T1 } } sub BODY_00_15_x86 { #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) # LO lo>>14^hi<<18 ^ lo>>18^hi<<14 ^ hi>>9^lo<<23 # HI hi>>14^lo<<18 ^ hi>>18^lo<<14 ^ lo>>9^hi<<23 &mov ("ecx",$Elo); &mov ("edx",$Ehi); &mov ("esi","ecx"); &shr ("ecx",9); # lo>>9 &mov ("edi","edx"); &shr ("edx",9); # hi>>9 &mov ("ebx","ecx"); &shl ("esi",14); # lo<<14 &mov ("eax","edx"); &shl ("edi",14); # hi<<14 &xor ("ebx","esi"); &shr ("ecx",14-9); # lo>>14 &xor ("eax","edi"); &shr ("edx",14-9); # hi>>14 &xor ("eax","ecx"); &shl ("esi",18-14); # lo<<18 &xor ("ebx","edx"); &shl ("edi",18-14); # hi<<18 &xor ("ebx","esi"); &shr ("ecx",18-14); # lo>>18 &xor ("eax","edi"); &shr ("edx",18-14); # hi>>18 &xor ("eax","ecx"); &shl ("esi",23-18); # lo<<23 &xor ("ebx","edx"); &shl ("edi",23-18); # hi<<23 &xor ("eax","esi"); &xor ("ebx","edi"); # T1 = Sigma1(e) &mov ("ecx",$Flo); &mov ("edx",$Fhi); &mov ("esi",$Glo); &mov ("edi",$Ghi); &add ("eax",$Hlo); &adc ("ebx",$Hhi); # T1 += h &xor ("ecx","esi"); &xor ("edx","edi"); &and ("ecx",$Elo); &and ("edx",$Ehi); &add ("eax",&DWP(8*(9+15)+0,"esp")); &adc ("ebx",&DWP(8*(9+15)+4,"esp")); # T1 += X[0] &xor ("ecx","esi"); &xor ("edx","edi"); # Ch(e,f,g) = (f^g)&e)^g &mov ("esi",&DWP(0,$K512)); &mov ("edi",&DWP(4,$K512)); # K[i] &add ("eax","ecx"); &adc ("ebx","edx"); # T1 += Ch(e,f,g) &mov ("ecx",$Dlo); &mov ("edx",$Dhi); &add ("eax","esi"); &adc ("ebx","edi"); # T1 += K[i] &mov ($Tlo,"eax"); &mov ($Thi,"ebx"); # put T1 away &add ("eax","ecx"); &adc ("ebx","edx"); # d += T1 #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) # LO lo>>28^hi<<4 ^ hi>>2^lo<<30 ^ hi>>7^lo<<25 # HI hi>>28^lo<<4 ^ lo>>2^hi<<30 ^ lo>>7^hi<<25 &mov ("ecx",$Alo); &mov ("edx",$Ahi); &mov ($Dlo,"eax"); &mov ($Dhi,"ebx"); &mov ("esi","ecx"); &shr ("ecx",2); # lo>>2 &mov ("edi","edx"); &shr ("edx",2); # hi>>2 &mov ("ebx","ecx"); &shl ("esi",4); # lo<<4 &mov ("eax","edx"); &shl ("edi",4); # hi<<4 &xor ("ebx","esi"); &shr ("ecx",7-2); # lo>>7 &xor ("eax","edi"); &shr ("edx",7-2); # hi>>7 &xor ("ebx","ecx"); &shl ("esi",25-4); # lo<<25 &xor ("eax","edx"); &shl ("edi",25-4); # hi<<25 &xor ("eax","esi"); &shr ("ecx",28-7); # lo>>28 &xor ("ebx","edi"); &shr ("edx",28-7); # hi>>28 &xor ("eax","ecx"); &shl ("esi",30-25); # lo<<30 &xor ("ebx","edx"); &shl ("edi",30-25); # hi<<30 &xor ("eax","esi"); &xor ("ebx","edi"); # Sigma0(a) &mov ("ecx",$Alo); &mov ("edx",$Ahi); &mov ("esi",$Blo); &mov ("edi",$Bhi); &add ("eax",$Tlo); &adc ("ebx",$Thi); # T1 = Sigma0(a)+T1 &or ("ecx","esi"); &or ("edx","edi"); &and ("ecx",$Clo); &and ("edx",$Chi); &and ("esi",$Alo); &and ("edi",$Ahi); &or ("ecx","esi"); &or ("edx","edi"); # Maj(a,b,c) = ((a|b)&c)|(a&b) &add ("eax","ecx"); &adc ("ebx","edx"); # T1 += Maj(a,b,c) &mov ($Tlo,"eax"); &mov ($Thi,"ebx"); &mov (&LB("edx"),&BP(0,$K512)); # pre-fetch LSB of *K &sub ("esp",8); &lea ($K512,&DWP(8,$K512)); # K++ } &function_begin("sha512_block_data_order"); &mov ("esi",wparam(0)); # ctx &mov ("edi",wparam(1)); # inp &mov ("eax",wparam(2)); # num &mov ("ebx","esp"); # saved sp &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($K512); &lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512)); &sub ("esp",16); &and ("esp",-64); &shl ("eax",7); &add ("eax","edi"); &mov (&DWP(0,"esp"),"esi"); # ctx &mov (&DWP(4,"esp"),"edi"); # inp &mov (&DWP(8,"esp"),"eax"); # inp+num*128 &mov (&DWP(12,"esp"),"ebx"); # saved sp if ($sse2) { &picmeup("edx","OPENSSL_ia32cap_P",$K512,&label("K512")); &mov ("ecx",&DWP(0,"edx")); &test ("ecx",1<<26); &jz (&label("loop_x86")); &mov ("edx",&DWP(4,"edx")); # load ctx->h[0-7] &movq ($A,&QWP(0,"esi")); &and ("ecx",1<<24); # XMM registers availability &movq ("mm1",&QWP(8,"esi")); &and ("edx",1<<9); # SSSE3 bit &movq ($BxC,&QWP(16,"esi")); &or ("ecx","edx"); &movq ("mm3",&QWP(24,"esi")); &movq ($E,&QWP(32,"esi")); &movq ("mm5",&QWP(40,"esi")); &movq ("mm6",&QWP(48,"esi")); &movq ("mm7",&QWP(56,"esi")); &cmp ("ecx",1<<24|1<<9); &je (&label("SSSE3")); &sub ("esp",8*10); &jmp (&label("loop_sse2")); &set_label("loop_sse2",16); #&movq ($Asse2,$A); &movq ($Bsse2,"mm1"); &movq ($Csse2,$BxC); &movq ($Dsse2,"mm3"); #&movq ($Esse2,$E); &movq ($Fsse2,"mm5"); &movq ($Gsse2,"mm6"); &pxor ($BxC,"mm1"); # magic &movq ($Hsse2,"mm7"); &movq ("mm3",$A); # magic &mov ("eax",&DWP(0,"edi")); &mov ("ebx",&DWP(4,"edi")); &add ("edi",8); &mov ("edx",15); # counter &bswap ("eax"); &bswap ("ebx"); &jmp (&label("00_14_sse2")); &set_label("00_14_sse2",16); &movd ("mm1","eax"); &mov ("eax",&DWP(0,"edi")); &movd ("mm7","ebx"); &mov ("ebx",&DWP(4,"edi")); &add ("edi",8); &bswap ("eax"); &bswap ("ebx"); &punpckldq("mm7","mm1"); &BODY_00_15_sse2(); &dec ("edx"); &jnz (&label("00_14_sse2")); &movd ("mm1","eax"); &movd ("mm7","ebx"); &punpckldq("mm7","mm1"); &BODY_00_15_sse2(1); &pxor ($A,$A); # A is in %mm3 &mov ("edx",32); # counter &jmp (&label("16_79_sse2")); &set_label("16_79_sse2",16); for ($j=0;$j<2;$j++) { # 2x unroll #&movq ("mm7",&QWP(8*(9+16-1),"esp")); # prefetched in BODY_00_15 &movq ("mm5",&QWP(8*(9+16-14),"esp")); &movq ("mm1","mm7"); &psrlq ("mm7",1); &movq ("mm6","mm5"); &psrlq ("mm5",6); &psllq ("mm1",56); &paddq ($A,"mm3"); # from BODY_00_15 &movq ("mm3","mm7"); &psrlq ("mm7",7-1); &pxor ("mm3","mm1"); &psllq ("mm1",63-56); &pxor ("mm3","mm7"); &psrlq ("mm7",8-7); &pxor ("mm3","mm1"); &movq ("mm1","mm5"); &psrlq ("mm5",19-6); &pxor ("mm7","mm3"); # sigma0 &psllq ("mm6",3); &pxor ("mm1","mm5"); &paddq ("mm7",&QWP(8*(9+16),"esp")); &pxor ("mm1","mm6"); &psrlq ("mm5",61-19); &paddq ("mm7",&QWP(8*(9+16-9),"esp")); &pxor ("mm1","mm5"); &psllq ("mm6",45-3); &movq ("mm5",$Fsse2); # load f &pxor ("mm1","mm6"); # sigma1 &movq ("mm6",$Gsse2); # load g &paddq ("mm7","mm1"); # X[i] #&movq (&QWP(8*9,"esp"),"mm7"); # moved to BODY_00_15 &BODY_00_15_sse2(2); } &dec ("edx"); &jnz (&label("16_79_sse2")); #&movq ($A,$Asse2); &paddq ($A,"mm3"); # from BODY_00_15 &movq ("mm1",$Bsse2); #&movq ($BxC,$Csse2); &movq ("mm3",$Dsse2); #&movq ($E,$Esse2); &movq ("mm5",$Fsse2); &movq ("mm6",$Gsse2); &movq ("mm7",$Hsse2); &pxor ($BxC,"mm1"); # de-magic &paddq ($A,&QWP(0,"esi")); &paddq ("mm1",&QWP(8,"esi")); &paddq ($BxC,&QWP(16,"esi")); &paddq ("mm3",&QWP(24,"esi")); &paddq ($E,&QWP(32,"esi")); &paddq ("mm5",&QWP(40,"esi")); &paddq ("mm6",&QWP(48,"esi")); &paddq ("mm7",&QWP(56,"esi")); &mov ("eax",8*80); &movq (&QWP(0,"esi"),$A); &movq (&QWP(8,"esi"),"mm1"); &movq (&QWP(16,"esi"),$BxC); &movq (&QWP(24,"esi"),"mm3"); &movq (&QWP(32,"esi"),$E); &movq (&QWP(40,"esi"),"mm5"); &movq (&QWP(48,"esi"),"mm6"); &movq (&QWP(56,"esi"),"mm7"); &lea ("esp",&DWP(0,"esp","eax")); # destroy frame &sub ($K512,"eax"); # rewind K &cmp ("edi",&DWP(8*10+8,"esp")); # are we done yet? &jb (&label("loop_sse2")); &mov ("esp",&DWP(8*10+12,"esp")); # restore sp &emms (); &function_end_A(); &set_label("SSSE3",32); { my ($cnt,$frame)=("ecx","edx"); my @X=map("xmm$_",(0..7)); my $j; my $i=0; &lea ($frame,&DWP(-64,"esp")); &sub ("esp",256); # fixed stack frame layout # # +0 A B C D E F G H # backing store # +64 X[0]+K[i] .. X[15]+K[i] # XMM->MM xfer area # +192 # XMM off-load ring buffer # +256 # saved parameters &movdqa (@X[1],&QWP(80*8,$K512)); # byte swap mask &movdqu (@X[0],&QWP(0,"edi")); &pshufb (@X[0],@X[1]); for ($j=0;$j<8;$j++) { &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]) if ($j>4); # off-load &movdqa (@X[3],&QWP(16*($j%8),$K512)); &movdqa (@X[2],@X[1]) if ($j<7); # perpetuate byte swap mask &movdqu (@X[1],&QWP(16*($j+1),"edi")) if ($j<7); # next input &movdqa (@X[1],&QWP(16*(($j+1)%4),$frame)) if ($j==7);# restore @X[0] &paddq (@X[3],@X[0]); &pshufb (@X[1],@X[2]) if ($j<7); &movdqa (&QWP(16*($j%8)-128,$frame),@X[3]); # xfer X[i]+K[i] push(@X,shift(@X)); # rotate(@X) } #&jmp (&label("loop_ssse3")); &nop (); &set_label("loop_ssse3",32); &movdqa (@X[2],&QWP(16*(($j+1)%4),$frame)); # pre-restore @X[1] &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]); # off-load @X[3] &lea ($K512,&DWP(16*8,$K512)); #&movq ($Asse2,$A); # off-load A-H &movq ($Bsse2,"mm1"); &mov ("ebx","edi"); &movq ($Csse2,$BxC); &lea ("edi",&DWP(128,"edi")); # advance input &movq ($Dsse2,"mm3"); &cmp ("edi","eax"); #&movq ($Esse2,$E); &movq ($Fsse2,"mm5"); &cmovb ("ebx","edi"); &movq ($Gsse2,"mm6"); &mov ("ecx",4); # loop counter &pxor ($BxC,"mm1"); # magic &movq ($Hsse2,"mm7"); &pxor ("mm3","mm3"); # magic &jmp (&label("00_47_ssse3")); sub BODY_00_15_ssse3 { # "phase-less" copy of BODY_00_15_sse2 ( '&movq ("mm1",$E)', # %mm1 is sliding right '&movq ("mm7",&QWP(((-8*$i)%128)-128,$frame))',# X[i]+K[i] '&pxor ("mm5","mm6")', # f^=g '&psrlq ("mm1",14)', '&movq (&QWP(8*($i+4)%64,"esp"),$E)', # modulo-scheduled save e '&pand ("mm5",$E)', # f&=e '&psllq ($E,23)', # $E is sliding left '&paddq ($A,"mm3")', # [h+=Maj(a,b,c)] '&movq ("mm3","mm1")', # %mm3 is T1 '&psrlq("mm1",4)', '&pxor ("mm5","mm6")', # Ch(e,f,g) '&pxor ("mm3",$E)', '&psllq($E,23)', '&pxor ("mm3","mm1")', '&movq (&QWP(8*$i%64,"esp"),$A)', # modulo-scheduled save a '&paddq("mm7","mm5")', # X[i]+=Ch(e,f,g) '&pxor ("mm3",$E)', '&psrlq("mm1",23)', '&paddq("mm7",&QWP(8*($i+7)%64,"esp"))', # X[i]+=h '&pxor ("mm3","mm1")', '&psllq($E,4)', '&pxor ("mm3",$E)', # T1=Sigma1_512(e) '&movq ($E,&QWP(8*($i+3)%64,"esp"))', # e = load d, e in next round '&paddq ("mm3","mm7")', # T1+=X[i] '&movq ("mm5",$A)', # %mm5 is sliding right '&psrlq("mm5",28)', '&paddq ($E,"mm3")', # d += T1 '&movq ("mm6",$A)', # %mm6 is sliding left '&movq ("mm7","mm5")', '&psllq("mm6",25)', '&movq ("mm1",&QWP(8*($i+1)%64,"esp"))', # load b '&psrlq("mm5",6)', '&pxor ("mm7","mm6")', '&psllq("mm6",5)', '&pxor ("mm7","mm5")', '&pxor ($A,"mm1")', # a^b, b^c in next round '&psrlq("mm5",5)', '&pxor ("mm7","mm6")', '&pand ($BxC,$A)', # (b^c)&(a^b) '&psllq("mm6",6)', '&pxor ("mm7","mm5")', '&pxor ($BxC,"mm1")', # [h=]Maj(a,b,c) '&pxor ("mm6","mm7")', # Sigma0_512(a) '&movq ("mm5",&QWP(8*($i+5-1)%64,"esp"))', # pre-load f '&paddq ($BxC,"mm6")', # h+=Sigma0(a) '&movq ("mm6",&QWP(8*($i+6-1)%64,"esp"))', # pre-load g '($A,$BxC) = ($BxC,$A); $i--;' ); } &set_label("00_47_ssse3",32); for(;$j<16;$j++) { my ($t0,$t2,$t1)=@X[2..4]; my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3()); &movdqa ($t2,@X[5]); &movdqa (@X[1],$t0); # restore @X[1] &palignr ($t0,@X[0],8); # X[1..2] &movdqa (&QWP(16*($j%4),$frame),@X[4]); # off-load @X[4] &palignr ($t2,@X[4],8); # X[9..10] &movdqa ($t1,$t0); &psrlq ($t0,7); &paddq (@X[0],$t2); # X[0..1] += X[9..10] &movdqa ($t2,$t1); &psrlq ($t1,1); &psllq ($t2,64-8); &pxor ($t0,$t1); &psrlq ($t1,8-1); &pxor ($t0,$t2); &psllq ($t2,8-1); &pxor ($t0,$t1); &movdqa ($t1,@X[7]); &pxor ($t0,$t2); # sigma0(X[1..2]) &movdqa ($t2,@X[7]); &psrlq ($t1,6); &paddq (@X[0],$t0); # X[0..1] += sigma0(X[1..2]) &movdqa ($t0,@X[7]); &psrlq ($t2,19); &psllq ($t0,64-61); &pxor ($t1,$t2); &psrlq ($t2,61-19); &pxor ($t1,$t0); &psllq ($t0,61-19); &pxor ($t1,$t2); &movdqa ($t2,&QWP(16*(($j+2)%4),$frame));# pre-restore @X[1] &pxor ($t1,$t0); # sigma0(X[1..2]) &movdqa ($t0,&QWP(16*($j%8),$K512)); eval(shift(@insns)); &paddq (@X[0],$t1); # X[0..1] += sigma0(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddq ($t0,@X[0]); foreach(@insns) { eval; } &movdqa (&QWP(16*($j%8)-128,$frame),$t0);# xfer X[i]+K[i] push(@X,shift(@X)); # rotate(@X) } &lea ($K512,&DWP(16*8,$K512)); &dec ("ecx"); &jnz (&label("00_47_ssse3")); &movdqa (@X[1],&QWP(0,$K512)); # byte swap mask &lea ($K512,&DWP(-80*8,$K512)); # rewind &movdqu (@X[0],&QWP(0,"ebx")); &pshufb (@X[0],@X[1]); for ($j=0;$j<8;$j++) { # load next or same block my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3()); &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]) if ($j>4); # off-load &movdqa (@X[3],&QWP(16*($j%8),$K512)); &movdqa (@X[2],@X[1]) if ($j<7); # perpetuate byte swap mask &movdqu (@X[1],&QWP(16*($j+1),"ebx")) if ($j<7); # next input &movdqa (@X[1],&QWP(16*(($j+1)%4),$frame)) if ($j==7);# restore @X[0] &paddq (@X[3],@X[0]); &pshufb (@X[1],@X[2]) if ($j<7); foreach(@insns) { eval; } &movdqa (&QWP(16*($j%8)-128,$frame),@X[3]);# xfer X[i]+K[i] push(@X,shift(@X)); # rotate(@X) } #&movq ($A,$Asse2); # load A-H &movq ("mm1",$Bsse2); &paddq ($A,"mm3"); # from BODY_00_15 #&movq ($BxC,$Csse2); &movq ("mm3",$Dsse2); #&movq ($E,$Esse2); #&movq ("mm5",$Fsse2); #&movq ("mm6",$Gsse2); &movq ("mm7",$Hsse2); &pxor ($BxC,"mm1"); # de-magic &paddq ($A,&QWP(0,"esi")); &paddq ("mm1",&QWP(8,"esi")); &paddq ($BxC,&QWP(16,"esi")); &paddq ("mm3",&QWP(24,"esi")); &paddq ($E,&QWP(32,"esi")); &paddq ("mm5",&QWP(40,"esi")); &paddq ("mm6",&QWP(48,"esi")); &paddq ("mm7",&QWP(56,"esi")); &movq (&QWP(0,"esi"),$A); &movq (&QWP(8,"esi"),"mm1"); &movq (&QWP(16,"esi"),$BxC); &movq (&QWP(24,"esi"),"mm3"); &movq (&QWP(32,"esi"),$E); &movq (&QWP(40,"esi"),"mm5"); &movq (&QWP(48,"esi"),"mm6"); &movq (&QWP(56,"esi"),"mm7"); &cmp ("edi","eax") # are we done yet? &jb (&label("loop_ssse3")); &mov ("esp",&DWP(64+12,$frame)); # restore sp &emms (); } &function_end_A(); } &set_label("loop_x86",16); # copy input block to stack reversing byte and qword order for ($i=0;$i<8;$i++) { &mov ("eax",&DWP($i*16+0,"edi")); &mov ("ebx",&DWP($i*16+4,"edi")); &mov ("ecx",&DWP($i*16+8,"edi")); &mov ("edx",&DWP($i*16+12,"edi")); &bswap ("eax"); &bswap ("ebx"); &bswap ("ecx"); &bswap ("edx"); &push ("eax"); &push ("ebx"); &push ("ecx"); &push ("edx"); } &add ("edi",128); &sub ("esp",9*8); # place for T,A,B,C,D,E,F,G,H &mov (&DWP(8*(9+16)+4,"esp"),"edi"); # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack &lea ("edi",&DWP(8,"esp")); &mov ("ecx",16); &data_word(0xA5F3F689); # rep movsd &set_label("00_15_x86",16); &BODY_00_15_x86(); &cmp (&LB("edx"),0x94); &jne (&label("00_15_x86")); &set_label("16_79_x86",16); #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) # LO lo>>1^hi<<31 ^ lo>>8^hi<<24 ^ lo>>7^hi<<25 # HI hi>>1^lo<<31 ^ hi>>8^lo<<24 ^ hi>>7 &mov ("ecx",&DWP(8*(9+15+16-1)+0,"esp")); &mov ("edx",&DWP(8*(9+15+16-1)+4,"esp")); &mov ("esi","ecx"); &shr ("ecx",1); # lo>>1 &mov ("edi","edx"); &shr ("edx",1); # hi>>1 &mov ("eax","ecx"); &shl ("esi",24); # lo<<24 &mov ("ebx","edx"); &shl ("edi",24); # hi<<24 &xor ("ebx","esi"); &shr ("ecx",7-1); # lo>>7 &xor ("eax","edi"); &shr ("edx",7-1); # hi>>7 &xor ("eax","ecx"); &shl ("esi",31-24); # lo<<31 &xor ("ebx","edx"); &shl ("edi",25-24); # hi<<25 &xor ("ebx","esi"); &shr ("ecx",8-7); # lo>>8 &xor ("eax","edi"); &shr ("edx",8-7); # hi>>8 &xor ("eax","ecx"); &shl ("edi",31-25); # hi<<31 &xor ("ebx","edx"); &xor ("eax","edi"); # T1 = sigma0(X[-15]) &mov (&DWP(0,"esp"),"eax"); &mov (&DWP(4,"esp"),"ebx"); # put T1 away #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) # LO lo>>19^hi<<13 ^ hi>>29^lo<<3 ^ lo>>6^hi<<26 # HI hi>>19^lo<<13 ^ lo>>29^hi<<3 ^ hi>>6 &mov ("ecx",&DWP(8*(9+15+16-14)+0,"esp")); &mov ("edx",&DWP(8*(9+15+16-14)+4,"esp")); &mov ("esi","ecx"); &shr ("ecx",6); # lo>>6 &mov ("edi","edx"); &shr ("edx",6); # hi>>6 &mov ("eax","ecx"); &shl ("esi",3); # lo<<3 &mov ("ebx","edx"); &shl ("edi",3); # hi<<3 &xor ("eax","esi"); &shr ("ecx",19-6); # lo>>19 &xor ("ebx","edi"); &shr ("edx",19-6); # hi>>19 &xor ("eax","ecx"); &shl ("esi",13-3); # lo<<13 &xor ("ebx","edx"); &shl ("edi",13-3); # hi<<13 &xor ("ebx","esi"); &shr ("ecx",29-19); # lo>>29 &xor ("eax","edi"); &shr ("edx",29-19); # hi>>29 &xor ("ebx","ecx"); &shl ("edi",26-13); # hi<<26 &xor ("eax","edx"); &xor ("eax","edi"); # sigma1(X[-2]) &mov ("ecx",&DWP(8*(9+15+16)+0,"esp")); &mov ("edx",&DWP(8*(9+15+16)+4,"esp")); &add ("eax",&DWP(0,"esp")); &adc ("ebx",&DWP(4,"esp")); # T1 = sigma1(X[-2])+T1 &mov ("esi",&DWP(8*(9+15+16-9)+0,"esp")); &mov ("edi",&DWP(8*(9+15+16-9)+4,"esp")); &add ("eax","ecx"); &adc ("ebx","edx"); # T1 += X[-16] &add ("eax","esi"); &adc ("ebx","edi"); # T1 += X[-7] &mov (&DWP(8*(9+15)+0,"esp"),"eax"); &mov (&DWP(8*(9+15)+4,"esp"),"ebx"); # save X[0] &BODY_00_15_x86(); &cmp (&LB("edx"),0x17); &jne (&label("16_79_x86")); &mov ("esi",&DWP(8*(9+16+80)+0,"esp"));# ctx &mov ("edi",&DWP(8*(9+16+80)+4,"esp"));# inp for($i=0;$i<4;$i++) { &mov ("eax",&DWP($i*16+0,"esi")); &mov ("ebx",&DWP($i*16+4,"esi")); &mov ("ecx",&DWP($i*16+8,"esi")); &mov ("edx",&DWP($i*16+12,"esi")); &add ("eax",&DWP(8+($i*16)+0,"esp")); &adc ("ebx",&DWP(8+($i*16)+4,"esp")); &mov (&DWP($i*16+0,"esi"),"eax"); &mov (&DWP($i*16+4,"esi"),"ebx"); &add ("ecx",&DWP(8+($i*16)+8,"esp")); &adc ("edx",&DWP(8+($i*16)+12,"esp")); &mov (&DWP($i*16+8,"esi"),"ecx"); &mov (&DWP($i*16+12,"esi"),"edx"); } &add ("esp",8*(9+16+80)); # destroy frame &sub ($K512,8*80); # rewind K &cmp ("edi",&DWP(8,"esp")); # are we done yet? &jb (&label("loop_x86")); &mov ("esp",&DWP(12,"esp")); # restore sp &function_end_A(); &set_label("K512",64); # Yes! I keep it in the code segment! &data_word(0xd728ae22,0x428a2f98); # u64 &data_word(0x23ef65cd,0x71374491); # u64 &data_word(0xec4d3b2f,0xb5c0fbcf); # u64 &data_word(0x8189dbbc,0xe9b5dba5); # u64 &data_word(0xf348b538,0x3956c25b); # u64 &data_word(0xb605d019,0x59f111f1); # u64 &data_word(0xaf194f9b,0x923f82a4); # u64 &data_word(0xda6d8118,0xab1c5ed5); # u64 &data_word(0xa3030242,0xd807aa98); # u64 &data_word(0x45706fbe,0x12835b01); # u64 &data_word(0x4ee4b28c,0x243185be); # u64 &data_word(0xd5ffb4e2,0x550c7dc3); # u64 &data_word(0xf27b896f,0x72be5d74); # u64 &data_word(0x3b1696b1,0x80deb1fe); # u64 &data_word(0x25c71235,0x9bdc06a7); # u64 &data_word(0xcf692694,0xc19bf174); # u64 &data_word(0x9ef14ad2,0xe49b69c1); # u64 &data_word(0x384f25e3,0xefbe4786); # u64 &data_word(0x8b8cd5b5,0x0fc19dc6); # u64 &data_word(0x77ac9c65,0x240ca1cc); # u64 &data_word(0x592b0275,0x2de92c6f); # u64 &data_word(0x6ea6e483,0x4a7484aa); # u64 &data_word(0xbd41fbd4,0x5cb0a9dc); # u64 &data_word(0x831153b5,0x76f988da); # u64 &data_word(0xee66dfab,0x983e5152); # u64 &data_word(0x2db43210,0xa831c66d); # u64 &data_word(0x98fb213f,0xb00327c8); # u64 &data_word(0xbeef0ee4,0xbf597fc7); # u64 &data_word(0x3da88fc2,0xc6e00bf3); # u64 &data_word(0x930aa725,0xd5a79147); # u64 &data_word(0xe003826f,0x06ca6351); # u64 &data_word(0x0a0e6e70,0x14292967); # u64 &data_word(0x46d22ffc,0x27b70a85); # u64 &data_word(0x5c26c926,0x2e1b2138); # u64 &data_word(0x5ac42aed,0x4d2c6dfc); # u64 &data_word(0x9d95b3df,0x53380d13); # u64 &data_word(0x8baf63de,0x650a7354); # u64 &data_word(0x3c77b2a8,0x766a0abb); # u64 &data_word(0x47edaee6,0x81c2c92e); # u64 &data_word(0x1482353b,0x92722c85); # u64 &data_word(0x4cf10364,0xa2bfe8a1); # u64 &data_word(0xbc423001,0xa81a664b); # u64 &data_word(0xd0f89791,0xc24b8b70); # u64 &data_word(0x0654be30,0xc76c51a3); # u64 &data_word(0xd6ef5218,0xd192e819); # u64 &data_word(0x5565a910,0xd6990624); # u64 &data_word(0x5771202a,0xf40e3585); # u64 &data_word(0x32bbd1b8,0x106aa070); # u64 &data_word(0xb8d2d0c8,0x19a4c116); # u64 &data_word(0x5141ab53,0x1e376c08); # u64 &data_word(0xdf8eeb99,0x2748774c); # u64 &data_word(0xe19b48a8,0x34b0bcb5); # u64 &data_word(0xc5c95a63,0x391c0cb3); # u64 &data_word(0xe3418acb,0x4ed8aa4a); # u64 &data_word(0x7763e373,0x5b9cca4f); # u64 &data_word(0xd6b2b8a3,0x682e6ff3); # u64 &data_word(0x5defb2fc,0x748f82ee); # u64 &data_word(0x43172f60,0x78a5636f); # u64 &data_word(0xa1f0ab72,0x84c87814); # u64 &data_word(0x1a6439ec,0x8cc70208); # u64 &data_word(0x23631e28,0x90befffa); # u64 &data_word(0xde82bde9,0xa4506ceb); # u64 &data_word(0xb2c67915,0xbef9a3f7); # u64 &data_word(0xe372532b,0xc67178f2); # u64 &data_word(0xea26619c,0xca273ece); # u64 &data_word(0x21c0c207,0xd186b8c7); # u64 &data_word(0xcde0eb1e,0xeada7dd6); # u64 &data_word(0xee6ed178,0xf57d4f7f); # u64 &data_word(0x72176fba,0x06f067aa); # u64 &data_word(0xa2c898a6,0x0a637dc5); # u64 &data_word(0xbef90dae,0x113f9804); # u64 &data_word(0x131c471b,0x1b710b35); # u64 &data_word(0x23047d84,0x28db77f5); # u64 &data_word(0x40c72493,0x32caab7b); # u64 &data_word(0x15c9bebc,0x3c9ebe0a); # u64 &data_word(0x9c100d4c,0x431d67c4); # u64 &data_word(0xcb3e42b6,0x4cc5d4be); # u64 &data_word(0xfc657e2a,0x597f299c); # u64 &data_word(0x3ad6faec,0x5fcb6fab); # u64 &data_word(0x4a475817,0x6c44198c); # u64 &data_word(0x04050607,0x00010203); # byte swap &data_word(0x0c0d0e0f,0x08090a0b); # mask &function_end_B("sha512_block_data_order"); &asciz("SHA512 block transform for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-armv4.pl000066400000000000000000000424051364063235100206150ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Permission to use under GPL terms is granted. # ==================================================================== # SHA512 block procedure for ARMv4. September 2007. # This code is ~4.5 (four and a half) times faster than code generated # by gcc 3.4 and it spends ~72 clock cycles per byte [on single-issue # Xscale PXA250 core]. # # July 2010. # # Rescheduling for dual-issue pipeline resulted in 6% improvement on # Cortex A8 core and ~40 cycles per processed byte. # February 2011. # # Profiler-assisted and platform-specific optimization resulted in 7% # improvement on Coxtex A8 core and ~38 cycles per byte. # March 2011. # # Add NEON implementation. On Cortex A8 it was measured to process # one byte in 23.3 cycles or ~60% faster than integer-only code. # August 2012. # # Improve NEON performance by 12% on Snapdragon S4. In absolute # terms it's 22.6 cycles per byte, which is disappointing result. # Technical writers asserted that 3-way S4 pipeline can sustain # multiple NEON instructions per cycle, but dual NEON issue could # not be observed, see http://www.openssl.org/~appro/Snapdragon-S4.html # for further details. On side note Cortex-A15 processes one byte in # 16 cycles. # Byte order [in]dependence. ========================================= # # Originally caller was expected to maintain specific *dword* order in # h[0-7], namely with most significant dword at *lower* address, which # was reflected in below two parameters as 0 and 4. Now caller is # expected to maintain native byte order for whole 64-bit values. $hi="HI"; $lo="LO"; # ==================================================================== $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $ctx="r0"; # parameter block $inp="r1"; $len="r2"; $Tlo="r3"; $Thi="r4"; $Alo="r5"; $Ahi="r6"; $Elo="r7"; $Ehi="r8"; $t0="r9"; $t1="r10"; $t2="r11"; $t3="r12"; ############ r13 is stack pointer $Ktbl="r14"; ############ r15 is program counter $Aoff=8*0; $Boff=8*1; $Coff=8*2; $Doff=8*3; $Eoff=8*4; $Foff=8*5; $Goff=8*6; $Hoff=8*7; $Xoff=8*8; sub BODY_00_15() { my $magic = shift; $code.=<<___; @ Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) @ LO lo>>14^hi<<18 ^ lo>>18^hi<<14 ^ hi>>9^lo<<23 @ HI hi>>14^lo<<18 ^ hi>>18^lo<<14 ^ lo>>9^hi<<23 mov $t0,$Elo,lsr#14 str $Tlo,[sp,#$Xoff+0] mov $t1,$Ehi,lsr#14 str $Thi,[sp,#$Xoff+4] eor $t0,$t0,$Ehi,lsl#18 ldr $t2,[sp,#$Hoff+0] @ h.lo eor $t1,$t1,$Elo,lsl#18 ldr $t3,[sp,#$Hoff+4] @ h.hi eor $t0,$t0,$Elo,lsr#18 eor $t1,$t1,$Ehi,lsr#18 eor $t0,$t0,$Ehi,lsl#14 eor $t1,$t1,$Elo,lsl#14 eor $t0,$t0,$Ehi,lsr#9 eor $t1,$t1,$Elo,lsr#9 eor $t0,$t0,$Elo,lsl#23 eor $t1,$t1,$Ehi,lsl#23 @ Sigma1(e) adds $Tlo,$Tlo,$t0 ldr $t0,[sp,#$Foff+0] @ f.lo adc $Thi,$Thi,$t1 @ T += Sigma1(e) ldr $t1,[sp,#$Foff+4] @ f.hi adds $Tlo,$Tlo,$t2 ldr $t2,[sp,#$Goff+0] @ g.lo adc $Thi,$Thi,$t3 @ T += h ldr $t3,[sp,#$Goff+4] @ g.hi eor $t0,$t0,$t2 str $Elo,[sp,#$Eoff+0] eor $t1,$t1,$t3 str $Ehi,[sp,#$Eoff+4] and $t0,$t0,$Elo str $Alo,[sp,#$Aoff+0] and $t1,$t1,$Ehi str $Ahi,[sp,#$Aoff+4] eor $t0,$t0,$t2 ldr $t2,[$Ktbl,#$lo] @ K[i].lo eor $t1,$t1,$t3 @ Ch(e,f,g) ldr $t3,[$Ktbl,#$hi] @ K[i].hi adds $Tlo,$Tlo,$t0 ldr $Elo,[sp,#$Doff+0] @ d.lo adc $Thi,$Thi,$t1 @ T += Ch(e,f,g) ldr $Ehi,[sp,#$Doff+4] @ d.hi adds $Tlo,$Tlo,$t2 and $t0,$t2,#0xff adc $Thi,$Thi,$t3 @ T += K[i] adds $Elo,$Elo,$Tlo ldr $t2,[sp,#$Boff+0] @ b.lo adc $Ehi,$Ehi,$Thi @ d += T teq $t0,#$magic ldr $t3,[sp,#$Coff+0] @ c.lo #ifdef __thumb2__ it eq @ Thumb2 thing, sanity check in ARM #endif orreq $Ktbl,$Ktbl,#1 @ Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) @ LO lo>>28^hi<<4 ^ hi>>2^lo<<30 ^ hi>>7^lo<<25 @ HI hi>>28^lo<<4 ^ lo>>2^hi<<30 ^ lo>>7^hi<<25 mov $t0,$Alo,lsr#28 mov $t1,$Ahi,lsr#28 eor $t0,$t0,$Ahi,lsl#4 eor $t1,$t1,$Alo,lsl#4 eor $t0,$t0,$Ahi,lsr#2 eor $t1,$t1,$Alo,lsr#2 eor $t0,$t0,$Alo,lsl#30 eor $t1,$t1,$Ahi,lsl#30 eor $t0,$t0,$Ahi,lsr#7 eor $t1,$t1,$Alo,lsr#7 eor $t0,$t0,$Alo,lsl#25 eor $t1,$t1,$Ahi,lsl#25 @ Sigma0(a) adds $Tlo,$Tlo,$t0 and $t0,$Alo,$t2 adc $Thi,$Thi,$t1 @ T += Sigma0(a) ldr $t1,[sp,#$Boff+4] @ b.hi orr $Alo,$Alo,$t2 ldr $t2,[sp,#$Coff+4] @ c.hi and $Alo,$Alo,$t3 and $t3,$Ahi,$t1 orr $Ahi,$Ahi,$t1 orr $Alo,$Alo,$t0 @ Maj(a,b,c).lo and $Ahi,$Ahi,$t2 adds $Alo,$Alo,$Tlo orr $Ahi,$Ahi,$t3 @ Maj(a,b,c).hi sub sp,sp,#8 adc $Ahi,$Ahi,$Thi @ h += T tst $Ktbl,#1 add $Ktbl,$Ktbl,#8 ___ } $code=<<___; #ifndef __KERNEL__ # include "arm_arch.h" # define VFP_ABI_PUSH vstmdb sp!,{d8-d15} # define VFP_ABI_POP vldmia sp!,{d8-d15} #else # define __ARM_ARCH__ __LINUX_ARM_ARCH__ # define __ARM_MAX_ARCH__ 7 # define VFP_ABI_PUSH # define VFP_ABI_POP #endif #ifdef __ARMEL__ # define LO 0 # define HI 4 # define WORD64(hi0,lo0,hi1,lo1) .word lo0,hi0, lo1,hi1 #else # define HI 0 # define LO 4 # define WORD64(hi0,lo0,hi1,lo1) .word hi0,lo0, hi1,lo1 #endif .text #if defined(__thumb2__) .syntax unified .thumb # define adrl adr #else .code 32 #endif .type K512,%object .align 5 K512: WORD64(0x428a2f98,0xd728ae22, 0x71374491,0x23ef65cd) WORD64(0xb5c0fbcf,0xec4d3b2f, 0xe9b5dba5,0x8189dbbc) WORD64(0x3956c25b,0xf348b538, 0x59f111f1,0xb605d019) WORD64(0x923f82a4,0xaf194f9b, 0xab1c5ed5,0xda6d8118) WORD64(0xd807aa98,0xa3030242, 0x12835b01,0x45706fbe) WORD64(0x243185be,0x4ee4b28c, 0x550c7dc3,0xd5ffb4e2) WORD64(0x72be5d74,0xf27b896f, 0x80deb1fe,0x3b1696b1) WORD64(0x9bdc06a7,0x25c71235, 0xc19bf174,0xcf692694) WORD64(0xe49b69c1,0x9ef14ad2, 0xefbe4786,0x384f25e3) WORD64(0x0fc19dc6,0x8b8cd5b5, 0x240ca1cc,0x77ac9c65) WORD64(0x2de92c6f,0x592b0275, 0x4a7484aa,0x6ea6e483) WORD64(0x5cb0a9dc,0xbd41fbd4, 0x76f988da,0x831153b5) WORD64(0x983e5152,0xee66dfab, 0xa831c66d,0x2db43210) WORD64(0xb00327c8,0x98fb213f, 0xbf597fc7,0xbeef0ee4) WORD64(0xc6e00bf3,0x3da88fc2, 0xd5a79147,0x930aa725) WORD64(0x06ca6351,0xe003826f, 0x14292967,0x0a0e6e70) WORD64(0x27b70a85,0x46d22ffc, 0x2e1b2138,0x5c26c926) WORD64(0x4d2c6dfc,0x5ac42aed, 0x53380d13,0x9d95b3df) WORD64(0x650a7354,0x8baf63de, 0x766a0abb,0x3c77b2a8) WORD64(0x81c2c92e,0x47edaee6, 0x92722c85,0x1482353b) WORD64(0xa2bfe8a1,0x4cf10364, 0xa81a664b,0xbc423001) WORD64(0xc24b8b70,0xd0f89791, 0xc76c51a3,0x0654be30) WORD64(0xd192e819,0xd6ef5218, 0xd6990624,0x5565a910) WORD64(0xf40e3585,0x5771202a, 0x106aa070,0x32bbd1b8) WORD64(0x19a4c116,0xb8d2d0c8, 0x1e376c08,0x5141ab53) WORD64(0x2748774c,0xdf8eeb99, 0x34b0bcb5,0xe19b48a8) WORD64(0x391c0cb3,0xc5c95a63, 0x4ed8aa4a,0xe3418acb) WORD64(0x5b9cca4f,0x7763e373, 0x682e6ff3,0xd6b2b8a3) WORD64(0x748f82ee,0x5defb2fc, 0x78a5636f,0x43172f60) WORD64(0x84c87814,0xa1f0ab72, 0x8cc70208,0x1a6439ec) WORD64(0x90befffa,0x23631e28, 0xa4506ceb,0xde82bde9) WORD64(0xbef9a3f7,0xb2c67915, 0xc67178f2,0xe372532b) WORD64(0xca273ece,0xea26619c, 0xd186b8c7,0x21c0c207) WORD64(0xeada7dd6,0xcde0eb1e, 0xf57d4f7f,0xee6ed178) WORD64(0x06f067aa,0x72176fba, 0x0a637dc5,0xa2c898a6) WORD64(0x113f9804,0xbef90dae, 0x1b710b35,0x131c471b) WORD64(0x28db77f5,0x23047d84, 0x32caab7b,0x40c72493) WORD64(0x3c9ebe0a,0x15c9bebc, 0x431d67c4,0x9c100d4c) WORD64(0x4cc5d4be,0xcb3e42b6, 0x597f299c,0xfc657e2a) WORD64(0x5fcb6fab,0x3ad6faec, 0x6c44198c,0x4a475817) .size K512,.-K512 #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) .LOPENSSL_armcap: .word OPENSSL_armcap_P-.Lsha512_block_data_order .skip 32-4 #else .skip 32 #endif .global sha512_block_data_order .type sha512_block_data_order,%function sha512_block_data_order: .Lsha512_block_data_order: #if __ARM_ARCH__<7 && !defined(__thumb2__) sub r3,pc,#8 @ sha512_block_data_order #else adr r3,.Lsha512_block_data_order #endif #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) ldr r12,.LOPENSSL_armcap ldr r12,[r3,r12] @ OPENSSL_armcap_P #ifdef __APPLE__ ldr r12,[r12] #endif tst r12,#ARMV7_NEON bne .LNEON #endif add $len,$inp,$len,lsl#7 @ len to point at the end of inp stmdb sp!,{r4-r12,lr} sub $Ktbl,r3,#672 @ K512 sub sp,sp,#9*8 ldr $Elo,[$ctx,#$Eoff+$lo] ldr $Ehi,[$ctx,#$Eoff+$hi] ldr $t0, [$ctx,#$Goff+$lo] ldr $t1, [$ctx,#$Goff+$hi] ldr $t2, [$ctx,#$Hoff+$lo] ldr $t3, [$ctx,#$Hoff+$hi] .Loop: str $t0, [sp,#$Goff+0] str $t1, [sp,#$Goff+4] str $t2, [sp,#$Hoff+0] str $t3, [sp,#$Hoff+4] ldr $Alo,[$ctx,#$Aoff+$lo] ldr $Ahi,[$ctx,#$Aoff+$hi] ldr $Tlo,[$ctx,#$Boff+$lo] ldr $Thi,[$ctx,#$Boff+$hi] ldr $t0, [$ctx,#$Coff+$lo] ldr $t1, [$ctx,#$Coff+$hi] ldr $t2, [$ctx,#$Doff+$lo] ldr $t3, [$ctx,#$Doff+$hi] str $Tlo,[sp,#$Boff+0] str $Thi,[sp,#$Boff+4] str $t0, [sp,#$Coff+0] str $t1, [sp,#$Coff+4] str $t2, [sp,#$Doff+0] str $t3, [sp,#$Doff+4] ldr $Tlo,[$ctx,#$Foff+$lo] ldr $Thi,[$ctx,#$Foff+$hi] str $Tlo,[sp,#$Foff+0] str $Thi,[sp,#$Foff+4] .L00_15: #if __ARM_ARCH__<7 ldrb $Tlo,[$inp,#7] ldrb $t0, [$inp,#6] ldrb $t1, [$inp,#5] ldrb $t2, [$inp,#4] ldrb $Thi,[$inp,#3] ldrb $t3, [$inp,#2] orr $Tlo,$Tlo,$t0,lsl#8 ldrb $t0, [$inp,#1] orr $Tlo,$Tlo,$t1,lsl#16 ldrb $t1, [$inp],#8 orr $Tlo,$Tlo,$t2,lsl#24 orr $Thi,$Thi,$t3,lsl#8 orr $Thi,$Thi,$t0,lsl#16 orr $Thi,$Thi,$t1,lsl#24 #else ldr $Tlo,[$inp,#4] ldr $Thi,[$inp],#8 #ifdef __ARMEL__ rev $Tlo,$Tlo rev $Thi,$Thi #endif #endif ___ &BODY_00_15(0x94); $code.=<<___; tst $Ktbl,#1 beq .L00_15 ldr $t0,[sp,#`$Xoff+8*(16-1)`+0] ldr $t1,[sp,#`$Xoff+8*(16-1)`+4] bic $Ktbl,$Ktbl,#1 .L16_79: @ sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) @ LO lo>>1^hi<<31 ^ lo>>8^hi<<24 ^ lo>>7^hi<<25 @ HI hi>>1^lo<<31 ^ hi>>8^lo<<24 ^ hi>>7 mov $Tlo,$t0,lsr#1 ldr $t2,[sp,#`$Xoff+8*(16-14)`+0] mov $Thi,$t1,lsr#1 ldr $t3,[sp,#`$Xoff+8*(16-14)`+4] eor $Tlo,$Tlo,$t1,lsl#31 eor $Thi,$Thi,$t0,lsl#31 eor $Tlo,$Tlo,$t0,lsr#8 eor $Thi,$Thi,$t1,lsr#8 eor $Tlo,$Tlo,$t1,lsl#24 eor $Thi,$Thi,$t0,lsl#24 eor $Tlo,$Tlo,$t0,lsr#7 eor $Thi,$Thi,$t1,lsr#7 eor $Tlo,$Tlo,$t1,lsl#25 @ sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) @ LO lo>>19^hi<<13 ^ hi>>29^lo<<3 ^ lo>>6^hi<<26 @ HI hi>>19^lo<<13 ^ lo>>29^hi<<3 ^ hi>>6 mov $t0,$t2,lsr#19 mov $t1,$t3,lsr#19 eor $t0,$t0,$t3,lsl#13 eor $t1,$t1,$t2,lsl#13 eor $t0,$t0,$t3,lsr#29 eor $t1,$t1,$t2,lsr#29 eor $t0,$t0,$t2,lsl#3 eor $t1,$t1,$t3,lsl#3 eor $t0,$t0,$t2,lsr#6 eor $t1,$t1,$t3,lsr#6 ldr $t2,[sp,#`$Xoff+8*(16-9)`+0] eor $t0,$t0,$t3,lsl#26 ldr $t3,[sp,#`$Xoff+8*(16-9)`+4] adds $Tlo,$Tlo,$t0 ldr $t0,[sp,#`$Xoff+8*16`+0] adc $Thi,$Thi,$t1 ldr $t1,[sp,#`$Xoff+8*16`+4] adds $Tlo,$Tlo,$t2 adc $Thi,$Thi,$t3 adds $Tlo,$Tlo,$t0 adc $Thi,$Thi,$t1 ___ &BODY_00_15(0x17); $code.=<<___; #ifdef __thumb2__ ittt eq @ Thumb2 thing, sanity check in ARM #endif ldreq $t0,[sp,#`$Xoff+8*(16-1)`+0] ldreq $t1,[sp,#`$Xoff+8*(16-1)`+4] beq .L16_79 bic $Ktbl,$Ktbl,#1 ldr $Tlo,[sp,#$Boff+0] ldr $Thi,[sp,#$Boff+4] ldr $t0, [$ctx,#$Aoff+$lo] ldr $t1, [$ctx,#$Aoff+$hi] ldr $t2, [$ctx,#$Boff+$lo] ldr $t3, [$ctx,#$Boff+$hi] adds $t0,$Alo,$t0 str $t0, [$ctx,#$Aoff+$lo] adc $t1,$Ahi,$t1 str $t1, [$ctx,#$Aoff+$hi] adds $t2,$Tlo,$t2 str $t2, [$ctx,#$Boff+$lo] adc $t3,$Thi,$t3 str $t3, [$ctx,#$Boff+$hi] ldr $Alo,[sp,#$Coff+0] ldr $Ahi,[sp,#$Coff+4] ldr $Tlo,[sp,#$Doff+0] ldr $Thi,[sp,#$Doff+4] ldr $t0, [$ctx,#$Coff+$lo] ldr $t1, [$ctx,#$Coff+$hi] ldr $t2, [$ctx,#$Doff+$lo] ldr $t3, [$ctx,#$Doff+$hi] adds $t0,$Alo,$t0 str $t0, [$ctx,#$Coff+$lo] adc $t1,$Ahi,$t1 str $t1, [$ctx,#$Coff+$hi] adds $t2,$Tlo,$t2 str $t2, [$ctx,#$Doff+$lo] adc $t3,$Thi,$t3 str $t3, [$ctx,#$Doff+$hi] ldr $Tlo,[sp,#$Foff+0] ldr $Thi,[sp,#$Foff+4] ldr $t0, [$ctx,#$Eoff+$lo] ldr $t1, [$ctx,#$Eoff+$hi] ldr $t2, [$ctx,#$Foff+$lo] ldr $t3, [$ctx,#$Foff+$hi] adds $Elo,$Elo,$t0 str $Elo,[$ctx,#$Eoff+$lo] adc $Ehi,$Ehi,$t1 str $Ehi,[$ctx,#$Eoff+$hi] adds $t2,$Tlo,$t2 str $t2, [$ctx,#$Foff+$lo] adc $t3,$Thi,$t3 str $t3, [$ctx,#$Foff+$hi] ldr $Alo,[sp,#$Goff+0] ldr $Ahi,[sp,#$Goff+4] ldr $Tlo,[sp,#$Hoff+0] ldr $Thi,[sp,#$Hoff+4] ldr $t0, [$ctx,#$Goff+$lo] ldr $t1, [$ctx,#$Goff+$hi] ldr $t2, [$ctx,#$Hoff+$lo] ldr $t3, [$ctx,#$Hoff+$hi] adds $t0,$Alo,$t0 str $t0, [$ctx,#$Goff+$lo] adc $t1,$Ahi,$t1 str $t1, [$ctx,#$Goff+$hi] adds $t2,$Tlo,$t2 str $t2, [$ctx,#$Hoff+$lo] adc $t3,$Thi,$t3 str $t3, [$ctx,#$Hoff+$hi] add sp,sp,#640 sub $Ktbl,$Ktbl,#640 teq $inp,$len bne .Loop add sp,sp,#8*9 @ destroy frame #if __ARM_ARCH__>=5 ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size sha512_block_data_order,.-sha512_block_data_order ___ { my @Sigma0=(28,34,39); my @Sigma1=(14,18,41); my @sigma0=(1, 8, 7); my @sigma1=(19,61,6); my $Ktbl="r3"; my $cnt="r12"; # volatile register known as ip, intra-procedure-call scratch my @X=map("d$_",(0..15)); my @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("d$_",(16..23)); sub NEON_00_15() { my $i=shift; my ($a,$b,$c,$d,$e,$f,$g,$h)=@_; my ($t0,$t1,$t2,$T1,$K,$Ch,$Maj)=map("d$_",(24..31)); # temps $code.=<<___ if ($i<16 || $i&1); vshr.u64 $t0,$e,#@Sigma1[0] @ $i #if $i<16 vld1.64 {@X[$i%16]},[$inp]! @ handles unaligned #endif vshr.u64 $t1,$e,#@Sigma1[1] #if $i>0 vadd.i64 $a,$Maj @ h+=Maj from the past #endif vshr.u64 $t2,$e,#@Sigma1[2] ___ $code.=<<___; vld1.64 {$K},[$Ktbl,:64]! @ K[i++] vsli.64 $t0,$e,#`64-@Sigma1[0]` vsli.64 $t1,$e,#`64-@Sigma1[1]` vmov $Ch,$e vsli.64 $t2,$e,#`64-@Sigma1[2]` #if $i<16 && defined(__ARMEL__) vrev64.8 @X[$i],@X[$i] #endif veor $t1,$t0 vbsl $Ch,$f,$g @ Ch(e,f,g) vshr.u64 $t0,$a,#@Sigma0[0] veor $t2,$t1 @ Sigma1(e) vadd.i64 $T1,$Ch,$h vshr.u64 $t1,$a,#@Sigma0[1] vsli.64 $t0,$a,#`64-@Sigma0[0]` vadd.i64 $T1,$t2 vshr.u64 $t2,$a,#@Sigma0[2] vadd.i64 $K,@X[$i%16] vsli.64 $t1,$a,#`64-@Sigma0[1]` veor $Maj,$a,$b vsli.64 $t2,$a,#`64-@Sigma0[2]` veor $h,$t0,$t1 vadd.i64 $T1,$K vbsl $Maj,$c,$b @ Maj(a,b,c) veor $h,$t2 @ Sigma0(a) vadd.i64 $d,$T1 vadd.i64 $Maj,$T1 @ vadd.i64 $h,$Maj ___ } sub NEON_16_79() { my $i=shift; if ($i&1) { &NEON_00_15($i,@_); return; } # 2x-vectorized, therefore runs every 2nd round my @X=map("q$_",(0..7)); # view @X as 128-bit vector my ($t0,$t1,$s0,$s1) = map("q$_",(12..15)); # temps my ($d0,$d1,$d2) = map("d$_",(24..26)); # temps from NEON_00_15 my $e=@_[4]; # $e from NEON_00_15 $i /= 2; $code.=<<___; vshr.u64 $t0,@X[($i+7)%8],#@sigma1[0] vshr.u64 $t1,@X[($i+7)%8],#@sigma1[1] vadd.i64 @_[0],d30 @ h+=Maj from the past vshr.u64 $s1,@X[($i+7)%8],#@sigma1[2] vsli.64 $t0,@X[($i+7)%8],#`64-@sigma1[0]` vext.8 $s0,@X[$i%8],@X[($i+1)%8],#8 @ X[i+1] vsli.64 $t1,@X[($i+7)%8],#`64-@sigma1[1]` veor $s1,$t0 vshr.u64 $t0,$s0,#@sigma0[0] veor $s1,$t1 @ sigma1(X[i+14]) vshr.u64 $t1,$s0,#@sigma0[1] vadd.i64 @X[$i%8],$s1 vshr.u64 $s1,$s0,#@sigma0[2] vsli.64 $t0,$s0,#`64-@sigma0[0]` vsli.64 $t1,$s0,#`64-@sigma0[1]` vext.8 $s0,@X[($i+4)%8],@X[($i+5)%8],#8 @ X[i+9] veor $s1,$t0 vshr.u64 $d0,$e,#@Sigma1[0] @ from NEON_00_15 vadd.i64 @X[$i%8],$s0 vshr.u64 $d1,$e,#@Sigma1[1] @ from NEON_00_15 veor $s1,$t1 @ sigma0(X[i+1]) vshr.u64 $d2,$e,#@Sigma1[2] @ from NEON_00_15 vadd.i64 @X[$i%8],$s1 ___ &NEON_00_15(2*$i,@_); } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .global sha512_block_data_order_neon .type sha512_block_data_order_neon,%function .align 4 sha512_block_data_order_neon: .LNEON: dmb @ errata #451034 on early Cortex A8 add $len,$inp,$len,lsl#7 @ len to point at the end of inp adr $Ktbl,K512 VFP_ABI_PUSH vldmia $ctx,{$A-$H} @ load context .Loop_neon: ___ for($i=0;$i<16;$i++) { &NEON_00_15($i,@V); unshift(@V,pop(@V)); } $code.=<<___; mov $cnt,#4 .L16_79_neon: subs $cnt,#1 ___ for(;$i<32;$i++) { &NEON_16_79($i,@V); unshift(@V,pop(@V)); } $code.=<<___; bne .L16_79_neon vadd.i64 $A,d30 @ h+=Maj from the past vldmia $ctx,{d24-d31} @ load context to temp vadd.i64 q8,q12 @ vectorized accumulate vadd.i64 q9,q13 vadd.i64 q10,q14 vadd.i64 q11,q15 vstmia $ctx,{$A-$H} @ save context teq $inp,$len sub $Ktbl,#640 @ rewind K512 bne .Loop_neon VFP_ABI_POP ret @ bx lr .size sha512_block_data_order_neon,.-sha512_block_data_order_neon #endif ___ } $code.=<<___; .asciz "SHA512 block transform for ARMv4/NEON, CRYPTOGAMS by " .align 2 #if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__) .comm OPENSSL_armcap_P,4,4 #endif ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 $code =~ s/\bret\b/bx lr/gm; open SELF,$0; while() { next if (/^#!/); last if (!s/^#/@/ and !/^$/); print; } close SELF; print $code; close STDOUT or die "error closing STDOUT: $!"; # enforce flush openssl-1.1.1f/crypto/sha/asm/sha512-armv8.pl000066400000000000000000000571101364063235100206200ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Permission to use under GPLv2 terms is granted. # ==================================================================== # # SHA256/512 for ARMv8. # # Performance in cycles per processed byte and improvement coefficient # over code generated with "default" compiler: # # SHA256-hw SHA256(*) SHA512 # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**)) # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***)) # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***)) # Denver 2.01 10.5 (+26%) 6.70 (+8%) # X-Gene 20.0 (+100%) 12.8 (+300%(***)) # Mongoose 2.36 13.0 (+50%) 8.36 (+33%) # Kryo 1.92 17.4 (+30%) 11.2 (+8%) # # (*) Software SHA256 results are of lesser relevance, presented # mostly for informational purposes. # (**) The result is a trade-off: it's possible to improve it by # 10% (or by 1 cycle per round), but at the cost of 20% loss # on Cortex-A53 (or by 4 cycles per round). # (***) Super-impressive coefficients over gcc-generated code are # indication of some compiler "pathology", most notably code # generated with -mgeneral-regs-only is significantly faster # and the gap is only 40-90%. # # October 2016. # # Originally it was reckoned that it makes no sense to implement NEON # version of SHA256 for 64-bit processors. This is because performance # improvement on most wide-spread Cortex-A5x processors was observed # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was # observed that 32-bit NEON SHA256 performs significantly better than # 64-bit scalar version on *some* of the more recent processors. As # result 64-bit NEON version of SHA256 was added to provide best # all-round performance. For example it executes ~30% faster on X-Gene # and Mongoose. [For reference, NEON version of SHA512 is bound to # deliver much less improvement, likely *negative* on Cortex-A5x. # Which is why NEON support is limited to SHA256.] $output=pop; $flavour=pop; if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; } else { open STDOUT,">$output"; } if ($output =~ /512/) { $BITS=512; $SZ=8; @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=(1, 8, 7); @sigma1=(19,61, 6); $rounds=80; $reg_t="x"; } else { $BITS=256; $SZ=4; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; $reg_t="w"; } $func="sha${BITS}_block_data_order"; ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30)); @X=map("$reg_t$_",(3..15,0..2)); @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27)); ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28)); sub BODY_00_xx { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; my $j=($i+1)&15; my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]); $T0=@X[$i+3] if ($i<11); $code.=<<___ if ($i<16); #ifndef __AARCH64EB__ rev @X[$i],@X[$i] // $i #endif ___ $code.=<<___ if ($i<13 && ($i&1)); ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ ___ $code.=<<___ if ($i==13); ldp @X[14],@X[15],[$inp] ___ $code.=<<___ if ($i>=14); ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`] ___ $code.=<<___ if ($i>0 && $i<16); add $a,$a,$t1 // h+=Sigma0(a) ___ $code.=<<___ if ($i>=11); str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`] ___ # While ARMv8 specifies merged rotate-n-logical operation such as # 'eor x,y,z,ror#n', it was found to negatively affect performance # on Apple A7. The reason seems to be that it requires even 'y' to # be available earlier. This means that such merged instruction is # not necessarily best choice on critical path... On the other hand # Cortex-A5x handles merged instructions much better than disjoint # rotate and logical... See (**) footnote above. $code.=<<___ if ($i<15); ror $t0,$e,#$Sigma1[0] add $h,$h,$t2 // h+=K[i] eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]` and $t1,$f,$e bic $t2,$g,$e add $h,$h,@X[$i&15] // h+=X[i] orr $t1,$t1,$t2 // Ch(e,f,g) eor $t2,$a,$b // a^b, b^c in next round eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e) ror $T0,$a,#$Sigma0[0] add $h,$h,$t1 // h+=Ch(e,f,g) eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]` add $h,$h,$t0 // h+=Sigma1(e) and $t3,$t3,$t2 // (b^c)&=(a^b) add $d,$d,$h // d+=h eor $t3,$t3,$b // Maj(a,b,c) eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a) add $h,$h,$t3 // h+=Maj(a,b,c) ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round //add $h,$h,$t1 // h+=Sigma0(a) ___ $code.=<<___ if ($i>=15); ror $t0,$e,#$Sigma1[0] add $h,$h,$t2 // h+=K[i] ror $T1,@X[($j+1)&15],#$sigma0[0] and $t1,$f,$e ror $T2,@X[($j+14)&15],#$sigma1[0] bic $t2,$g,$e ror $T0,$a,#$Sigma0[0] add $h,$h,@X[$i&15] // h+=X[i] eor $t0,$t0,$e,ror#$Sigma1[1] eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1] orr $t1,$t1,$t2 // Ch(e,f,g) eor $t2,$a,$b // a^b, b^c in next round eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e) eor $T0,$T0,$a,ror#$Sigma0[1] add $h,$h,$t1 // h+=Ch(e,f,g) and $t3,$t3,$t2 // (b^c)&=(a^b) eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1] eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1]) add $h,$h,$t0 // h+=Sigma1(e) eor $t3,$t3,$b // Maj(a,b,c) eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a) eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14]) add @X[$j],@X[$j],@X[($j+9)&15] add $d,$d,$h // d+=h add $h,$h,$t3 // h+=Maj(a,b,c) ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round add @X[$j],@X[$j],$T1 add $h,$h,$t1 // h+=Sigma0(a) add @X[$j],@X[$j],$T2 ___ ($t2,$t3)=($t3,$t2); } $code.=<<___; #ifndef __KERNEL__ # include "arm_arch.h" #endif .text .extern OPENSSL_armcap_P .globl $func .type $func,%function .align 6 $func: #ifndef __KERNEL__ # ifdef __ILP32__ ldrsw x16,.LOPENSSL_armcap_P # else ldr x16,.LOPENSSL_armcap_P # endif adr x17,.LOPENSSL_armcap_P add x16,x16,x17 ldr w16,[x16] ___ $code.=<<___ if ($SZ==4); tst w16,#ARMV8_SHA256 b.ne .Lv8_entry tst w16,#ARMV7_NEON b.ne .Lneon_entry ___ $code.=<<___ if ($SZ==8); tst w16,#ARMV8_SHA512 b.ne .Lv8_entry ___ $code.=<<___; #endif .inst 0xd503233f // paciasp stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub sp,sp,#4*$SZ ldp $A,$B,[$ctx] // load context ldp $C,$D,[$ctx,#2*$SZ] ldp $E,$F,[$ctx,#4*$SZ] add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input ldp $G,$H,[$ctx,#6*$SZ] adr $Ktbl,.LK$BITS stp $ctx,$num,[x29,#96] .Loop: ldp @X[0],@X[1],[$inp],#2*$SZ ldr $t2,[$Ktbl],#$SZ // *K++ eor $t3,$B,$C // magic seed str $inp,[x29,#112] ___ for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } $code.=".Loop_16_xx:\n"; for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; cbnz $t2,.Loop_16_xx ldp $ctx,$num,[x29,#96] ldr $inp,[x29,#112] sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind ldp @X[0],@X[1],[$ctx] ldp @X[2],@X[3],[$ctx,#2*$SZ] add $inp,$inp,#14*$SZ // advance input pointer ldp @X[4],@X[5],[$ctx,#4*$SZ] add $A,$A,@X[0] ldp @X[6],@X[7],[$ctx,#6*$SZ] add $B,$B,@X[1] add $C,$C,@X[2] add $D,$D,@X[3] stp $A,$B,[$ctx] add $E,$E,@X[4] add $F,$F,@X[5] stp $C,$D,[$ctx,#2*$SZ] add $G,$G,@X[6] add $H,$H,@X[7] cmp $inp,$num stp $E,$F,[$ctx,#4*$SZ] stp $G,$H,[$ctx,#6*$SZ] b.ne .Loop ldp x19,x20,[x29,#16] add sp,sp,#4*$SZ ldp x21,x22,[x29,#32] ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#128 .inst 0xd50323bf // autiasp ret .size $func,.-$func .align 6 .type .LK$BITS,%object .LK$BITS: ___ $code.=<<___ if ($SZ==8); .quad 0x428a2f98d728ae22,0x7137449123ef65cd .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc .quad 0x3956c25bf348b538,0x59f111f1b605d019 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 .quad 0xd807aa98a3030242,0x12835b0145706fbe .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 .quad 0x06ca6351e003826f,0x142929670a0e6e70 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 .quad 0x81c2c92e47edaee6,0x92722c851482353b .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 .quad 0xd192e819d6ef5218,0xd69906245565a910 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec .quad 0x90befffa23631e28,0xa4506cebde82bde9 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b .quad 0xca273eceea26619c,0xd186b8c721c0c207 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 .quad 0x113f9804bef90dae,0x1b710b35131c471b .quad 0x28db77f523047d84,0x32caab7b40c72493 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 .quad 0 // terminator ___ $code.=<<___ if ($SZ==4); .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0 //terminator ___ $code.=<<___; .size .LK$BITS,.-.LK$BITS #ifndef __KERNEL__ .align 3 .LOPENSSL_armcap_P: # ifdef __ILP32__ .long OPENSSL_armcap_P-. # else .quad OPENSSL_armcap_P-. # endif #endif .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by " .align 2 ___ if ($SZ==4) { my $Ktbl="x3"; my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2)); my @MSG=map("v$_.16b",(4..7)); my ($W0,$W1)=("v16.4s","v17.4s"); my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b"); $code.=<<___; #ifndef __KERNEL__ .type sha256_block_armv8,%function .align 6 sha256_block_armv8: .Lv8_entry: stp x29,x30,[sp,#-16]! add x29,sp,#0 ld1.32 {$ABCD,$EFGH},[$ctx] adr $Ktbl,.LK256 .Loop_hw: ld1 {@MSG[0]-@MSG[3]},[$inp],#64 sub $num,$num,#1 ld1.32 {$W0},[$Ktbl],#16 rev32 @MSG[0],@MSG[0] rev32 @MSG[1],@MSG[1] rev32 @MSG[2],@MSG[2] rev32 @MSG[3],@MSG[3] orr $ABCD_SAVE,$ABCD,$ABCD // offload orr $EFGH_SAVE,$EFGH,$EFGH ___ for($i=0;$i<12;$i++) { $code.=<<___; ld1.32 {$W1},[$Ktbl],#16 add.i32 $W0,$W0,@MSG[0] sha256su0 @MSG[0],@MSG[1] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 sha256su1 @MSG[0],@MSG[2],@MSG[3] ___ ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); } $code.=<<___; ld1.32 {$W1},[$Ktbl],#16 add.i32 $W0,$W0,@MSG[0] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 ld1.32 {$W0},[$Ktbl],#16 add.i32 $W1,$W1,@MSG[1] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 ld1.32 {$W1},[$Ktbl] add.i32 $W0,$W0,@MSG[2] sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W0 sha256h2 $EFGH,$abcd,$W0 add.i32 $W1,$W1,@MSG[3] orr $abcd,$ABCD,$ABCD sha256h $ABCD,$EFGH,$W1 sha256h2 $EFGH,$abcd,$W1 add.i32 $ABCD,$ABCD,$ABCD_SAVE add.i32 $EFGH,$EFGH,$EFGH_SAVE cbnz $num,.Loop_hw st1.32 {$ABCD,$EFGH},[$ctx] ldr x29,[sp],#16 ret .size sha256_block_armv8,.-sha256_block_armv8 #endif ___ } if ($SZ==4) { ######################################### NEON stuff # # You'll surely note a lot of similarities with sha256-armv4 module, # and of course it's not a coincidence. sha256-armv4 was used as # initial template, but was adapted for ARMv8 instruction set and # extensively re-tuned for all-round performance. my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10)); my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15)); my $Ktbl="x16"; my $Xfer="x17"; my @X = map("q$_",(0..3)); my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19)); my $j=0; sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; } sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; } sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; } sub Xupdate() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); &ext_8 ($T0,@X[0],@X[1],4); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &ext_8 ($T3,@X[2],@X[3],4); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15] eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T2,$T0,$sigma0[0]); eval(shift(@insns)); &ushr_32 ($T1,$T0,$sigma0[2]); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12] eval(shift(@insns)); &sli_32 ($T2,$T0,32-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T3,$T0,$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T1,$T1,$T2); eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T3,$T0,32-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T4,$T7,$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T4,$T7,32-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T5,$T7,$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T3,$T7,$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &sli_u32 ($T3,$T7,32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T5,$T5,$T4); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &ushr_32 ($T6,@X[0],$sigma1[0]); eval(shift(@insns)); &ushr_32 ($T7,@X[0],$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T6,@X[0],32-$sigma1[0]); eval(shift(@insns)); &ushr_32 ($T5,@X[0],$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T7,$T7,$T6); eval(shift(@insns)); eval(shift(@insns)); &sli_32 ($T5,@X[0],32-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &ld1_32 ("{$T0}","[$Ktbl], #16"); eval(shift(@insns)); &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); &eor_8 ($T5,$T5,$T5); eval(shift(@insns)); eval(shift(@insns)); &mov (&Dhi($T5), &Dlo($T7)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 ($T0,$T0,@X[0]); while($#insns>=1) { eval(shift(@insns)); } &st1_32 ("{$T0}","[$Xfer], #16"); eval(shift(@insns)); push(@X,shift(@X)); # "rotate" X[] } sub Xpreload() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e,$f,$g,$h); eval(shift(@insns)); eval(shift(@insns)); &ld1_8 ("{@X[0]}","[$inp],#16"); eval(shift(@insns)); eval(shift(@insns)); &ld1_32 ("{$T0}","[$Ktbl],#16"); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &rev32 (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &add_32 ($T0,$T0,@X[0]); foreach (@insns) { eval; } # remaining instructions &st1_32 ("{$T0}","[$Xfer], #16"); push(@X,shift(@X)); # "rotate" X[] } sub body_00_15 () { ( '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'. '&add ($h,$h,$t1)', # h+=X[i]+K[i] '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past '&and ($t1,$f,$e)', '&bic ($t4,$g,$e)', '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))', '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past '&orr ($t1,$t1,$t4)', # Ch(e,f,g) '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e) '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))', '&add ($h,$h,$t1)', # h+=Ch(e,f,g) '&ror ($t0,$t0,"#$Sigma1[0]")', '&eor ($t2,$a,$b)', # a^b, b^c in next round '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a) '&add ($h,$h,$t0)', # h+=Sigma1(e) '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'. '&ldr ($t1,"[$Ktbl]") if ($j==15);'. '&and ($t3,$t3,$t2)', # (b^c)&=(a^b) '&ror ($t4,$t4,"#$Sigma0[0]")', '&add ($d,$d,$h)', # d+=h '&eor ($t3,$t3,$b)', # Maj(a,b,c) '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);' ) } $code.=<<___; #ifdef __KERNEL__ .globl sha256_block_neon #endif .type sha256_block_neon,%function .align 4 sha256_block_neon: .Lneon_entry: stp x29, x30, [sp, #-16]! mov x29, sp sub sp,sp,#16*4 adr $Ktbl,.LK256 add $num,$inp,$num,lsl#6 // len to point at the end of inp ld1.8 {@X[0]},[$inp], #16 ld1.8 {@X[1]},[$inp], #16 ld1.8 {@X[2]},[$inp], #16 ld1.8 {@X[3]},[$inp], #16 ld1.32 {$T0},[$Ktbl], #16 ld1.32 {$T1},[$Ktbl], #16 ld1.32 {$T2},[$Ktbl], #16 ld1.32 {$T3},[$Ktbl], #16 rev32 @X[0],@X[0] // yes, even on rev32 @X[1],@X[1] // big-endian rev32 @X[2],@X[2] rev32 @X[3],@X[3] mov $Xfer,sp add.32 $T0,$T0,@X[0] add.32 $T1,$T1,@X[1] add.32 $T2,$T2,@X[2] st1.32 {$T0-$T1},[$Xfer], #32 add.32 $T3,$T3,@X[3] st1.32 {$T2-$T3},[$Xfer] sub $Xfer,$Xfer,#32 ldp $A,$B,[$ctx] ldp $C,$D,[$ctx,#8] ldp $E,$F,[$ctx,#16] ldp $G,$H,[$ctx,#24] ldr $t1,[sp,#0] mov $t2,wzr eor $t3,$B,$C mov $t4,wzr b .L_00_48 .align 4 .L_00_48: ___ &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); &Xupdate(\&body_00_15); $code.=<<___; cmp $t1,#0 // check for K256 terminator ldr $t1,[sp,#0] sub $Xfer,$Xfer,#64 bne .L_00_48 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl cmp $inp,$num mov $Xfer, #64 csel $Xfer, $Xfer, xzr, eq sub $inp,$inp,$Xfer // avoid SEGV mov $Xfer,sp ___ &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); &Xpreload(\&body_00_15); $code.=<<___; add $A,$A,$t4 // h+=Sigma0(a) from the past ldp $t0,$t1,[$ctx,#0] add $A,$A,$t2 // h+=Maj(a,b,c) from the past ldp $t2,$t3,[$ctx,#8] add $A,$A,$t0 // accumulate add $B,$B,$t1 ldp $t0,$t1,[$ctx,#16] add $C,$C,$t2 add $D,$D,$t3 ldp $t2,$t3,[$ctx,#24] add $E,$E,$t0 add $F,$F,$t1 ldr $t1,[sp,#0] stp $A,$B,[$ctx,#0] add $G,$G,$t2 mov $t2,wzr stp $C,$D,[$ctx,#8] add $H,$H,$t3 stp $E,$F,[$ctx,#16] eor $t3,$B,$C stp $G,$H,[$ctx,#24] mov $t4,wzr mov $Xfer,sp b.ne .L_00_48 ldr x29,[x29] add sp,sp,#16*4+16 ret .size sha256_block_neon,.-sha256_block_neon ___ } if ($SZ==8) { my $Ktbl="x3"; my @H = map("v$_.16b",(0..4)); my ($fg,$de,$m9_10)=map("v$_.16b",(5..7)); my @MSG=map("v$_.16b",(16..23)); my ($W0,$W1)=("v24.2d","v25.2d"); my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29)); $code.=<<___; #ifndef __KERNEL__ .type sha512_block_armv8,%function .align 6 sha512_block_armv8: .Lv8_entry: stp x29,x30,[sp,#-16]! add x29,sp,#0 ld1 {@MSG[0]-@MSG[3]},[$inp],#64 // load input ld1 {@MSG[4]-@MSG[7]},[$inp],#64 ld1.64 {@H[0]-@H[3]},[$ctx] // load context adr $Ktbl,.LK512 rev64 @MSG[0],@MSG[0] rev64 @MSG[1],@MSG[1] rev64 @MSG[2],@MSG[2] rev64 @MSG[3],@MSG[3] rev64 @MSG[4],@MSG[4] rev64 @MSG[5],@MSG[5] rev64 @MSG[6],@MSG[6] rev64 @MSG[7],@MSG[7] b .Loop_hw .align 4 .Loop_hw: ld1.64 {$W0},[$Ktbl],#16 subs $num,$num,#1 sub x4,$inp,#128 orr $AB,@H[0],@H[0] // offload orr $CD,@H[1],@H[1] orr $EF,@H[2],@H[2] orr $GH,@H[3],@H[3] csel $inp,$inp,x4,ne // conditional rewind ___ for($i=0;$i<32;$i++) { $code.=<<___; add.i64 $W0,$W0,@MSG[0] ld1.64 {$W1},[$Ktbl],#16 ext $W0,$W0,$W0,#8 ext $fg,@H[2],@H[3],#8 ext $de,@H[1],@H[2],#8 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]" sha512su0 @MSG[0],@MSG[1] ext $m9_10,@MSG[4],@MSG[5],#8 sha512h @H[3],$fg,$de sha512su1 @MSG[0],@MSG[7],$m9_10 add.i64 @H[4],@H[1],@H[3] // "D + T1" sha512h2 @H[3],$H[1],@H[0] ___ ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); @H = (@H[3],@H[0],@H[4],@H[2],@H[1]); } for(;$i<40;$i++) { $code.=<<___ if ($i<39); ld1.64 {$W1},[$Ktbl],#16 ___ $code.=<<___ if ($i==39); sub $Ktbl,$Ktbl,#$rounds*$SZ // rewind ___ $code.=<<___; add.i64 $W0,$W0,@MSG[0] ld1 {@MSG[0]},[$inp],#16 // load next input ext $W0,$W0,$W0,#8 ext $fg,@H[2],@H[3],#8 ext $de,@H[1],@H[2],#8 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]" sha512h @H[3],$fg,$de rev64 @MSG[0],@MSG[0] add.i64 @H[4],@H[1],@H[3] // "D + T1" sha512h2 @H[3],$H[1],@H[0] ___ ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); @H = (@H[3],@H[0],@H[4],@H[2],@H[1]); } $code.=<<___; add.i64 @H[0],@H[0],$AB // accumulate add.i64 @H[1],@H[1],$CD add.i64 @H[2],@H[2],$EF add.i64 @H[3],@H[3],$GH cbnz $num,.Loop_hw st1.64 {@H[0]-@H[3]},[$ctx] // store context ldr x29,[sp],#16 ret .size sha512_block_armv8,.-sha512_block_armv8 #endif ___ } $code.=<<___; #ifndef __KERNEL__ .comm OPENSSL_armcap_P,4,4 #endif ___ { my %opcode = ( "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000, "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 ); sub unsha256 { my ($mnemonic,$arg)=@_; $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o && sprintf ".inst\t0x%08x\t//%s %s", $opcode{$mnemonic}|$1|($2<<5)|($3<<16), $mnemonic,$arg; } } { my %opcode = ( "sha512h" => 0xce608000, "sha512h2" => 0xce608400, "sha512su0" => 0xcec08000, "sha512su1" => 0xce608800 ); sub unsha512 { my ($mnemonic,$arg)=@_; $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o && sprintf ".inst\t0x%08x\t//%s %s", $opcode{$mnemonic}|$1|($2<<5)|($3<<16), $mnemonic,$arg; } } open SELF,$0; while() { next if (/^#!/); last if (!s/^#/\/\// and !/^$/); print; } close SELF; foreach(split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge or s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge; s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers s/\.[ui]?8(\s)/$1/; s/\.\w?64\b// and s/\.16b/\.2d/g or s/\.\w?32\b// and s/\.16b/\.4s/g; m/\bext\b/ and s/\.2d/\.16b/g or m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-c64xplus.pl000066400000000000000000000323171364063235100212550ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA512 for C64x+. # # January 2012 # # Performance is 19 cycles per processed byte. Compared to block # transform function from sha512.c compiled with cl6x with -mv6400+ # -o2 -DOPENSSL_SMALL_FOOTPRINT it's almost 7x faster and 2x smaller. # Loop unroll won't make it, this implementation, any faster, because # it's effectively dominated by SHRU||SHL pairs and you can't schedule # more of them. # # !!! Note that this module uses AMR, which means that all interrupt # service routines are expected to preserve it and for own well-being # zero it upon entry. while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; ($CTXA,$INP,$NUM) = ("A4","B4","A6"); # arguments $K512="A3"; ($Ahi,$Actxhi,$Bhi,$Bctxhi,$Chi,$Cctxhi,$Dhi,$Dctxhi, $Ehi,$Ectxhi,$Fhi,$Fctxhi,$Ghi,$Gctxhi,$Hhi,$Hctxhi)=map("A$_",(16..31)); ($Alo,$Actxlo,$Blo,$Bctxlo,$Clo,$Cctxlo,$Dlo,$Dctxlo, $Elo,$Ectxlo,$Flo,$Fctxlo,$Glo,$Gctxlo,$Hlo,$Hctxlo)=map("B$_",(16..31)); ($S1hi,$CHhi,$S0hi,$t0hi)=map("A$_",(10..13)); ($S1lo,$CHlo,$S0lo,$t0lo)=map("B$_",(10..13)); ($T1hi, $T2hi)= ("A6","A7"); ($T1lo,$T1carry,$T2lo,$T2carry)=("B6","B7","B8","B9"); ($Khi,$Klo)=("A9","A8"); ($MAJhi,$MAJlo)=($T2hi,$T2lo); ($t1hi,$t1lo)=($Khi,"B2"); $CTXB=$t1lo; ($Xihi,$Xilo)=("A5","B5"); # circular/ring buffer $code.=<<___; .text .if .ASSEMBLER_VERSION<7000000 .asg 0,__TI_EABI__ .endif .if __TI_EABI__ .nocmp .asg sha512_block_data_order,_sha512_block_data_order .endif .asg B3,RA .asg A15,FP .asg B15,SP .if .BIG_ENDIAN .asg $Khi,KHI .asg $Klo,KLO .else .asg $Khi,KLO .asg $Klo,KHI .endif .global _sha512_block_data_order _sha512_block_data_order: __sha512_block: .asmfunc stack_usage(40+128) MV $NUM,A0 ; reassign $NUM || MVK -128,B0 [!A0] BNOP RA ; if ($NUM==0) return; || [A0] STW FP,*SP--(40) ; save frame pointer || [A0] MV SP,FP [A0] STDW B13:B12,*SP[4] || [A0] MVK 0x00404,B1 [A0] STDW B11:B10,*SP[3] || [A0] STDW A13:A12,*FP[-3] || [A0] MVKH 0x60000,B1 [A0] STDW A11:A10,*SP[1] || [A0] MVC B1,AMR ; setup circular addressing || [A0] ADD B0,SP,SP ; alloca(128) .if __TI_EABI__ [A0] AND B0,SP,SP ; align stack at 128 bytes || [A0] ADDKPC __sha512_block,B1 || [A0] MVKL \$PCR_OFFSET(K512,__sha512_block),$K512 [A0] MVKH \$PCR_OFFSET(K512,__sha512_block),$K512 || [A0] SUBAW SP,2,SP ; reserve two words above buffer .else [A0] AND B0,SP,SP ; align stack at 128 bytes || [A0] ADDKPC __sha512_block,B1 || [A0] MVKL (K512-__sha512_block),$K512 [A0] MVKH (K512-__sha512_block),$K512 || [A0] SUBAW SP,2,SP ; reserve two words above buffer .endif ADDAW SP,3,$Xilo ADDAW SP,2,$Xihi || MV $CTXA,$CTXB LDW *${CTXA}[0^.LITTLE_ENDIAN],$Ahi ; load ctx || LDW *${CTXB}[1^.LITTLE_ENDIAN],$Alo || ADD B1,$K512,$K512 LDW *${CTXA}[2^.LITTLE_ENDIAN],$Bhi || LDW *${CTXB}[3^.LITTLE_ENDIAN],$Blo LDW *${CTXA}[4^.LITTLE_ENDIAN],$Chi || LDW *${CTXB}[5^.LITTLE_ENDIAN],$Clo LDW *${CTXA}[6^.LITTLE_ENDIAN],$Dhi || LDW *${CTXB}[7^.LITTLE_ENDIAN],$Dlo LDW *${CTXA}[8^.LITTLE_ENDIAN],$Ehi || LDW *${CTXB}[9^.LITTLE_ENDIAN],$Elo LDW *${CTXA}[10^.LITTLE_ENDIAN],$Fhi || LDW *${CTXB}[11^.LITTLE_ENDIAN],$Flo LDW *${CTXA}[12^.LITTLE_ENDIAN],$Ghi || LDW *${CTXB}[13^.LITTLE_ENDIAN],$Glo LDW *${CTXA}[14^.LITTLE_ENDIAN],$Hhi || LDW *${CTXB}[15^.LITTLE_ENDIAN],$Hlo LDNDW *$INP++,B11:B10 ; pre-fetch input LDDW *$K512++,$Khi:$Klo ; pre-fetch K512[0] outerloop?: MVK 15,B0 ; loop counters || MVK 64,B1 || SUB A0,1,A0 MV $Ahi,$Actxhi || MV $Alo,$Actxlo || MV $Bhi,$Bctxhi || MV $Blo,$Bctxlo || MV $Chi,$Cctxhi || MV $Clo,$Cctxlo || MVD $Dhi,$Dctxhi || MVD $Dlo,$Dctxlo MV $Ehi,$Ectxhi || MV $Elo,$Ectxlo || MV $Fhi,$Fctxhi || MV $Flo,$Fctxlo || MV $Ghi,$Gctxhi || MV $Glo,$Gctxlo || MVD $Hhi,$Hctxhi || MVD $Hlo,$Hctxlo loop0_15?: .if .BIG_ENDIAN MV B11,$T1hi || MV B10,$T1lo .else SWAP4 B10,$T1hi || SWAP4 B11,$T1lo SWAP2 $T1hi,$T1hi || SWAP2 $T1lo,$T1lo .endif loop16_79?: STW $T1hi,*$Xihi++[2] || STW $T1lo,*$Xilo++[2] ; X[i] = T1 || ADD $Hhi,$T1hi,$T1hi || ADDU $Hlo,$T1lo,$T1carry:$T1lo ; T1 += h || SHRU $Ehi,14,$S1hi || SHL $Ehi,32-14,$S1lo XOR $Fhi,$Ghi,$CHhi || XOR $Flo,$Glo,$CHlo || ADD KHI,$T1hi,$T1hi || ADDU KLO,$T1carry:$T1lo,$T1carry:$T1lo ; T1 += K512[i] || SHRU $Elo,14,$t0lo || SHL $Elo,32-14,$t0hi XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || AND $Ehi,$CHhi,$CHhi || AND $Elo,$CHlo,$CHlo || ROTL $Ghi,0,$Hhi || ROTL $Glo,0,$Hlo ; h = g || SHRU $Ehi,18,$t0hi || SHL $Ehi,32-18,$t0lo XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || XOR $Ghi,$CHhi,$CHhi || XOR $Glo,$CHlo,$CHlo ; Ch(e,f,g) = ((f^g)&e)^g || ROTL $Fhi,0,$Ghi || ROTL $Flo,0,$Glo ; g = f || SHRU $Elo,18,$t0lo || SHL $Elo,32-18,$t0hi XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || OR $Ahi,$Bhi,$MAJhi || OR $Alo,$Blo,$MAJlo || ROTL $Ehi,0,$Fhi || ROTL $Elo,0,$Flo ; f = e || SHRU $Ehi,41-32,$t0lo || SHL $Ehi,64-41,$t0hi XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || AND $Chi,$MAJhi,$MAJhi || AND $Clo,$MAJlo,$MAJlo || ROTL $Dhi,0,$Ehi || ROTL $Dlo,0,$Elo ; e = d || SHRU $Elo,41-32,$t0hi || SHL $Elo,64-41,$t0lo XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo ; Sigma1(e) || AND $Ahi,$Bhi,$t1hi || AND $Alo,$Blo,$t1lo || ROTL $Chi,0,$Dhi || ROTL $Clo,0,$Dlo ; d = c || SHRU $Ahi,28,$S0hi || SHL $Ahi,32-28,$S0lo OR $t1hi,$MAJhi,$MAJhi || OR $t1lo,$MAJlo,$MAJlo ; Maj(a,b,c) = ((a|b)&c)|(a&b) || ADD $CHhi,$T1hi,$T1hi || ADDU $CHlo,$T1carry:$T1lo,$T1carry:$T1lo ; T1 += Ch(e,f,g) || ROTL $Bhi,0,$Chi || ROTL $Blo,0,$Clo ; c = b || SHRU $Alo,28,$t0lo || SHL $Alo,32-28,$t0hi XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || ADD $S1hi,$T1hi,$T1hi || ADDU $S1lo,$T1carry:$T1lo,$T1carry:$T1lo ; T1 += Sigma1(e) || ROTL $Ahi,0,$Bhi || ROTL $Alo,0,$Blo ; b = a || SHRU $Ahi,34-32,$t0lo || SHL $Ahi,64-34,$t0hi XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || ADD $MAJhi,$T1hi,$T2hi || ADDU $MAJlo,$T1carry:$T1lo,$T2carry:$T2lo ; T2 = T1+Maj(a,b,c) || SHRU $Alo,34-32,$t0hi || SHL $Alo,64-34,$t0lo XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || ADD $Ehi,$T1hi,$T1hi || ADDU $Elo,$T1carry:$T1lo,$T1carry:$T1lo ; T1 += e || [B0] BNOP loop0_15? || SHRU $Ahi,39-32,$t0lo || SHL $Ahi,64-39,$t0hi XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || [B0] LDNDW *$INP++,B11:B10 ; pre-fetch input ||[!B1] BNOP break? || SHRU $Alo,39-32,$t0hi || SHL $Alo,64-39,$t0lo XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo ; Sigma0(a) || ADD $T1carry,$T1hi,$Ehi || MV $T1lo,$Elo ; e = T1 ||[!B0] LDW *${Xihi}[28],$T1hi ||[!B0] LDW *${Xilo}[28],$T1lo ; X[i+14] ADD $S0hi,$T2hi,$T2hi || ADDU $S0lo,$T2carry:$T2lo,$T2carry:$T2lo ; T2 += Sigma0(a) || [B1] LDDW *$K512++,$Khi:$Klo ; pre-fetch K512[i] NOP ; avoid cross-path stall ADD $T2carry,$T2hi,$Ahi || MV $T2lo,$Alo ; a = T2 || [B0] SUB B0,1,B0 ;;===== branch to loop00_15? is taken here NOP ;;===== branch to break? is taken here LDW *${Xihi}[2],$T2hi || LDW *${Xilo}[2],$T2lo ; X[i+1] || SHRU $T1hi,19,$S1hi || SHL $T1hi,32-19,$S1lo SHRU $T1lo,19,$t0lo || SHL $T1lo,32-19,$t0hi XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || SHRU $T1hi,61-32,$t0lo || SHL $T1hi,64-61,$t0hi XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || SHRU $T1lo,61-32,$t0hi || SHL $T1lo,64-61,$t0lo XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || SHRU $T1hi,6,$t0hi || SHL $T1hi,32-6,$t0lo XOR $t0hi,$S1hi,$S1hi || XOR $t0lo,$S1lo,$S1lo || SHRU $T1lo,6,$t0lo || LDW *${Xihi}[18],$T1hi || LDW *${Xilo}[18],$T1lo ; X[i+9] XOR $t0lo,$S1lo,$S1lo ; sigma1(Xi[i+14]) || LDW *${Xihi}[0],$CHhi || LDW *${Xilo}[0],$CHlo ; X[i] || SHRU $T2hi,1,$S0hi || SHL $T2hi,32-1,$S0lo SHRU $T2lo,1,$t0lo || SHL $T2lo,32-1,$t0hi XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || SHRU $T2hi,8,$t0hi || SHL $T2hi,32-8,$t0lo XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || SHRU $T2lo,8,$t0lo || SHL $T2lo,32-8,$t0hi XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || ADD $S1hi,$T1hi,$T1hi || ADDU $S1lo,$T1lo,$T1carry:$T1lo ; T1 = X[i+9]+sigma1() || [B1] BNOP loop16_79? || SHRU $T2hi,7,$t0hi || SHL $T2hi,32-7,$t0lo XOR $t0hi,$S0hi,$S0hi || XOR $t0lo,$S0lo,$S0lo || ADD $CHhi,$T1hi,$T1hi || ADDU $CHlo,$T1carry:$T1lo,$T1carry:$T1lo ; T1 += X[i] || SHRU $T2lo,7,$t0lo XOR $t0lo,$S0lo,$S0lo ; sigma0(Xi[i+1] ADD $S0hi,$T1hi,$T1hi || ADDU $S0lo,$T1carry:$T1lo,$T1carry:$T1lo ; T1 += sigma0() || [B1] SUB B1,1,B1 NOP ; avoid cross-path stall ADD $T1carry,$T1hi,$T1hi ;;===== branch to loop16_79? is taken here break?: ADD $Ahi,$Actxhi,$Ahi ; accumulate ctx || ADDU $Alo,$Actxlo,$Actxlo:$Alo || [A0] LDNDW *$INP++,B11:B10 ; pre-fetch input || [A0] ADDK -640,$K512 ; rewind pointer to K512 ADD $Bhi,$Bctxhi,$Bhi || ADDU $Blo,$Bctxlo,$Bctxlo:$Blo || [A0] LDDW *$K512++,$Khi:$Klo ; pre-fetch K512[0] ADD $Chi,$Cctxhi,$Chi || ADDU $Clo,$Cctxlo,$Cctxlo:$Clo || ADD $Actxlo,$Ahi,$Ahi ||[!A0] MV $CTXA,$CTXB ADD $Dhi,$Dctxhi,$Dhi || ADDU $Dlo,$Dctxlo,$Dctxlo:$Dlo || ADD $Bctxlo,$Bhi,$Bhi ||[!A0] STW $Ahi,*${CTXA}[0^.LITTLE_ENDIAN] ; save ctx ||[!A0] STW $Alo,*${CTXB}[1^.LITTLE_ENDIAN] ADD $Ehi,$Ectxhi,$Ehi || ADDU $Elo,$Ectxlo,$Ectxlo:$Elo || ADD $Cctxlo,$Chi,$Chi || [A0] BNOP outerloop? ||[!A0] STW $Bhi,*${CTXA}[2^.LITTLE_ENDIAN] ||[!A0] STW $Blo,*${CTXB}[3^.LITTLE_ENDIAN] ADD $Fhi,$Fctxhi,$Fhi || ADDU $Flo,$Fctxlo,$Fctxlo:$Flo || ADD $Dctxlo,$Dhi,$Dhi ||[!A0] STW $Chi,*${CTXA}[4^.LITTLE_ENDIAN] ||[!A0] STW $Clo,*${CTXB}[5^.LITTLE_ENDIAN] ADD $Ghi,$Gctxhi,$Ghi || ADDU $Glo,$Gctxlo,$Gctxlo:$Glo || ADD $Ectxlo,$Ehi,$Ehi ||[!A0] STW $Dhi,*${CTXA}[6^.LITTLE_ENDIAN] ||[!A0] STW $Dlo,*${CTXB}[7^.LITTLE_ENDIAN] ADD $Hhi,$Hctxhi,$Hhi || ADDU $Hlo,$Hctxlo,$Hctxlo:$Hlo || ADD $Fctxlo,$Fhi,$Fhi ||[!A0] STW $Ehi,*${CTXA}[8^.LITTLE_ENDIAN] ||[!A0] STW $Elo,*${CTXB}[9^.LITTLE_ENDIAN] ADD $Gctxlo,$Ghi,$Ghi ||[!A0] STW $Fhi,*${CTXA}[10^.LITTLE_ENDIAN] ||[!A0] STW $Flo,*${CTXB}[11^.LITTLE_ENDIAN] ADD $Hctxlo,$Hhi,$Hhi ||[!A0] STW $Ghi,*${CTXA}[12^.LITTLE_ENDIAN] ||[!A0] STW $Glo,*${CTXB}[13^.LITTLE_ENDIAN] ;;===== branch to outerloop? is taken here STW $Hhi,*${CTXA}[14^.LITTLE_ENDIAN] || STW $Hlo,*${CTXB}[15^.LITTLE_ENDIAN] || MVK -40,B0 ADD FP,B0,SP ; destroy circular buffer || LDDW *FP[-4],A11:A10 LDDW *SP[2],A13:A12 || LDDW *FP[-2],B11:B10 LDDW *SP[4],B13:B12 || BNOP RA LDW *++SP(40),FP ; restore frame pointer MVK 0,B0 MVC B0,AMR ; clear AMR NOP 2 ; wait till FP is committed .endasmfunc .if __TI_EABI__ .sect ".text:sha_asm.const" .else .sect ".const:sha_asm" .endif .align 128 K512: .uword 0x428a2f98,0xd728ae22, 0x71374491,0x23ef65cd .uword 0xb5c0fbcf,0xec4d3b2f, 0xe9b5dba5,0x8189dbbc .uword 0x3956c25b,0xf348b538, 0x59f111f1,0xb605d019 .uword 0x923f82a4,0xaf194f9b, 0xab1c5ed5,0xda6d8118 .uword 0xd807aa98,0xa3030242, 0x12835b01,0x45706fbe .uword 0x243185be,0x4ee4b28c, 0x550c7dc3,0xd5ffb4e2 .uword 0x72be5d74,0xf27b896f, 0x80deb1fe,0x3b1696b1 .uword 0x9bdc06a7,0x25c71235, 0xc19bf174,0xcf692694 .uword 0xe49b69c1,0x9ef14ad2, 0xefbe4786,0x384f25e3 .uword 0x0fc19dc6,0x8b8cd5b5, 0x240ca1cc,0x77ac9c65 .uword 0x2de92c6f,0x592b0275, 0x4a7484aa,0x6ea6e483 .uword 0x5cb0a9dc,0xbd41fbd4, 0x76f988da,0x831153b5 .uword 0x983e5152,0xee66dfab, 0xa831c66d,0x2db43210 .uword 0xb00327c8,0x98fb213f, 0xbf597fc7,0xbeef0ee4 .uword 0xc6e00bf3,0x3da88fc2, 0xd5a79147,0x930aa725 .uword 0x06ca6351,0xe003826f, 0x14292967,0x0a0e6e70 .uword 0x27b70a85,0x46d22ffc, 0x2e1b2138,0x5c26c926 .uword 0x4d2c6dfc,0x5ac42aed, 0x53380d13,0x9d95b3df .uword 0x650a7354,0x8baf63de, 0x766a0abb,0x3c77b2a8 .uword 0x81c2c92e,0x47edaee6, 0x92722c85,0x1482353b .uword 0xa2bfe8a1,0x4cf10364, 0xa81a664b,0xbc423001 .uword 0xc24b8b70,0xd0f89791, 0xc76c51a3,0x0654be30 .uword 0xd192e819,0xd6ef5218, 0xd6990624,0x5565a910 .uword 0xf40e3585,0x5771202a, 0x106aa070,0x32bbd1b8 .uword 0x19a4c116,0xb8d2d0c8, 0x1e376c08,0x5141ab53 .uword 0x2748774c,0xdf8eeb99, 0x34b0bcb5,0xe19b48a8 .uword 0x391c0cb3,0xc5c95a63, 0x4ed8aa4a,0xe3418acb .uword 0x5b9cca4f,0x7763e373, 0x682e6ff3,0xd6b2b8a3 .uword 0x748f82ee,0x5defb2fc, 0x78a5636f,0x43172f60 .uword 0x84c87814,0xa1f0ab72, 0x8cc70208,0x1a6439ec .uword 0x90befffa,0x23631e28, 0xa4506ceb,0xde82bde9 .uword 0xbef9a3f7,0xb2c67915, 0xc67178f2,0xe372532b .uword 0xca273ece,0xea26619c, 0xd186b8c7,0x21c0c207 .uword 0xeada7dd6,0xcde0eb1e, 0xf57d4f7f,0xee6ed178 .uword 0x06f067aa,0x72176fba, 0x0a637dc5,0xa2c898a6 .uword 0x113f9804,0xbef90dae, 0x1b710b35,0x131c471b .uword 0x28db77f5,0x23047d84, 0x32caab7b,0x40c72493 .uword 0x3c9ebe0a,0x15c9bebc, 0x431d67c4,0x9c100d4c .uword 0x4cc5d4be,0xcb3e42b6, 0x597f299c,0xfc657e2a .uword 0x5fcb6fab,0x3ad6faec, 0x6c44198c,0x4a475817 .cstring "SHA512 block transform for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-ia64.pl000077500000000000000000000516501364063235100203340ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA256/512_Transform for Itanium. # # sha512_block runs in 1003 cycles on Itanium 2, which is almost 50% # faster than gcc and >60%(!) faster than code generated by HP-UX # compiler (yes, HP-UX is generating slower code, because unlike gcc, # it failed to deploy "shift right pair," 'shrp' instruction, which # substitutes for 64-bit rotate). # # 924 cycles long sha256_block outperforms gcc by over factor of 2(!) # and HP-UX compiler - by >40% (yes, gcc won sha512_block, but lost # this one big time). Note that "formally" 924 is about 100 cycles # too much. I mean it's 64 32-bit rounds vs. 80 virtually identical # 64-bit ones and 1003*64/80 gives 802. Extra cycles, 2 per round, # are spent on extra work to provide for 32-bit rotations. 32-bit # rotations are still handled by 'shrp' instruction and for this # reason lower 32 bits are deposited to upper half of 64-bit register # prior 'shrp' issue. And in order to minimize the amount of such # operations, X[16] values are *maintained* with copies of lower # halves in upper halves, which is why you'll spot such instructions # as custom 'mux2', "parallel 32-bit add," 'padd4' and "parallel # 32-bit unsigned right shift," 'pshr4.u' instructions here. # # Rules of engagement. # # There is only one integer shifter meaning that if I have two rotate, # deposit or extract instructions in adjacent bundles, they shall # split [at run-time if they have to]. But note that variable and # parallel shifts are performed by multi-media ALU and *are* pairable # with rotates [and alike]. On the backside MMALU is rather slow: it # takes 2 extra cycles before the result of integer operation is # available *to* MMALU and 2(*) extra cycles before the result of MM # operation is available "back" *to* integer ALU, not to mention that # MMALU itself has 2 cycles latency. However! I explicitly scheduled # these MM instructions to avoid MM stalls, so that all these extra # latencies get "hidden" in instruction-level parallelism. # # (*) 2 cycles on Itanium 1 and 1 cycle on Itanium 2. But I schedule # for 2 in order to provide for best *overall* performance, # because on Itanium 1 stall on MM result is accompanied by # pipeline flush, which takes 6 cycles:-( # # June 2012 # # Improve performance by 15-20%. Note about "rules of engagement" # above. Contemporary cores are equipped with additional shifter, # so that they should perform even better than below, presumably # by ~10%. # ###################################################################### # Current performance in cycles per processed byte for Itanium 2 # pre-9000 series [little-endian] system: # # SHA1(*) 5.7 # SHA256 12.6 # SHA512 6.7 # # (*) SHA1 result is presented purely for reference purposes. # # To generate code, pass the file name with either 256 or 512 in its # name and compiler flags. $output=pop; if ($output =~ /512.*\.[s|asm]/) { $SZ=8; $BITS=8*$SZ; $LDW="ld8"; $STW="st8"; $ADD="add"; $SHRU="shr.u"; $TABLE="K512"; $func="sha512_block_data_order"; @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=(1, 8, 7); @sigma1=(19,61, 6); $rounds=80; } elsif ($output =~ /256.*\.[s|asm]/) { $SZ=4; $BITS=8*$SZ; $LDW="ld4"; $STW="st4"; $ADD="padd4"; $SHRU="pshr4.u"; $TABLE="K256"; $func="sha256_block_data_order"; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; } else { die "nonsense $output"; } open STDOUT,">$output" || die "can't open $output: $!"; if ($^O eq "hpux") { $ADDP="addp4"; for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); } } else { $ADDP="add"; } for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/); $big_endian=0 if (/\-DL_ENDIAN/); } if (!defined($big_endian)) { $big_endian=(unpack('L',pack('N',1))==1); } $code=<<___; .ident \"$output, version 2.0\" .ident \"IA-64 ISA artwork by Andy Polyakov \" .explicit .text pfssave=r2; lcsave=r3; prsave=r14; K=r15; A_=r16; B_=r17; C_=r18; D_=r19; E_=r20; F_=r21; G_=r22; H_=r23; T1=r24; T2=r25; s0=r26; s1=r27; t0=r28; t1=r29; Ktbl=r30; ctx=r31; // 1st arg input=r56; // 2nd arg num=r57; // 3rd arg sgm0=r58; sgm1=r59; // small constants // void $func (SHA_CTX *ctx, const void *in,size_t num[,int host]) .global $func# .proc $func# .align 32 .skip 16 $func: .prologue .save ar.pfs,pfssave { .mmi; alloc pfssave=ar.pfs,3,25,0,24 $ADDP ctx=0,r32 // 1st arg .save ar.lc,lcsave mov lcsave=ar.lc } { .mmi; $ADDP input=0,r33 // 2nd arg mov num=r34 // 3rd arg .save pr,prsave mov prsave=pr };; .body { .mib; add r8=0*$SZ,ctx add r9=1*$SZ,ctx } { .mib; add r10=2*$SZ,ctx add r11=3*$SZ,ctx };; // load A-H .Lpic_point: { .mmi; $LDW A_=[r8],4*$SZ $LDW B_=[r9],4*$SZ mov Ktbl=ip } { .mmi; $LDW C_=[r10],4*$SZ $LDW D_=[r11],4*$SZ mov sgm0=$sigma0[2] };; { .mmi; $LDW E_=[r8] $LDW F_=[r9] add Ktbl=($TABLE#-.Lpic_point),Ktbl } { .mmi; $LDW G_=[r10] $LDW H_=[r11] cmp.ne p0,p16=0,r0 };; ___ $code.=<<___ if ($BITS==64); { .mii; and r8=7,input and input=~7,input;; cmp.eq p9,p0=1,r8 } { .mmi; cmp.eq p10,p0=2,r8 cmp.eq p11,p0=3,r8 cmp.eq p12,p0=4,r8 } { .mmi; cmp.eq p13,p0=5,r8 cmp.eq p14,p0=6,r8 cmp.eq p15,p0=7,r8 };; ___ $code.=<<___; .L_outer: .rotr R[8],X[16] A=R[0]; B=R[1]; C=R[2]; D=R[3]; E=R[4]; F=R[5]; G=R[6]; H=R[7] { .mmi; ld1 X[15]=[input],$SZ // eliminated in sha512 mov A=A_ mov ar.lc=14 } { .mmi; mov B=B_ mov C=C_ mov D=D_ } { .mmi; mov E=E_ mov F=F_ mov ar.ec=2 };; { .mmi; mov G=G_ mov H=H_ mov sgm1=$sigma1[2] } { .mib; mov r8=0 add r9=1-$SZ,input brp.loop.imp .L_first16,.L_first16_end-16 };; ___ $t0="A", $t1="E", $code.=<<___ if ($BITS==64); // in sha512 case I load whole X[16] at once and take care of alignment... { .mmi; add r8=1*$SZ,input add r9=2*$SZ,input add r10=3*$SZ,input };; { .mmb; $LDW X[15]=[input],4*$SZ $LDW X[14]=[r8],4*$SZ (p9) br.cond.dpnt.many .L1byte };; { .mmb; $LDW X[13]=[r9],4*$SZ $LDW X[12]=[r10],4*$SZ (p10) br.cond.dpnt.many .L2byte };; { .mmb; $LDW X[11]=[input],4*$SZ $LDW X[10]=[r8],4*$SZ (p11) br.cond.dpnt.many .L3byte };; { .mmb; $LDW X[ 9]=[r9],4*$SZ $LDW X[ 8]=[r10],4*$SZ (p12) br.cond.dpnt.many .L4byte };; { .mmb; $LDW X[ 7]=[input],4*$SZ $LDW X[ 6]=[r8],4*$SZ (p13) br.cond.dpnt.many .L5byte };; { .mmb; $LDW X[ 5]=[r9],4*$SZ $LDW X[ 4]=[r10],4*$SZ (p14) br.cond.dpnt.many .L6byte };; { .mmb; $LDW X[ 3]=[input],4*$SZ $LDW X[ 2]=[r8],4*$SZ (p15) br.cond.dpnt.many .L7byte };; { .mmb; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev // eliminated on big-endian br.many .L_first16 };; .L1byte: { .mmi; $LDW X[13]=[r9],4*$SZ $LDW X[12]=[r10],4*$SZ shrp X[15]=X[15],X[14],56 };; { .mmi; $LDW X[11]=[input],4*$SZ $LDW X[10]=[r8],4*$SZ shrp X[14]=X[14],X[13],56 } { .mmi; $LDW X[ 9]=[r9],4*$SZ $LDW X[ 8]=[r10],4*$SZ shrp X[13]=X[13],X[12],56 };; { .mmi; $LDW X[ 7]=[input],4*$SZ $LDW X[ 6]=[r8],4*$SZ shrp X[12]=X[12],X[11],56 } { .mmi; $LDW X[ 5]=[r9],4*$SZ $LDW X[ 4]=[r10],4*$SZ shrp X[11]=X[11],X[10],56 };; { .mmi; $LDW X[ 3]=[input],4*$SZ $LDW X[ 2]=[r8],4*$SZ shrp X[10]=X[10],X[ 9],56 } { .mmi; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ shrp X[ 9]=X[ 9],X[ 8],56 };; { .mii; $LDW T1=[input] shrp X[ 8]=X[ 8],X[ 7],56 shrp X[ 7]=X[ 7],X[ 6],56 } { .mii; shrp X[ 6]=X[ 6],X[ 5],56 shrp X[ 5]=X[ 5],X[ 4],56 };; { .mii; shrp X[ 4]=X[ 4],X[ 3],56 shrp X[ 3]=X[ 3],X[ 2],56 } { .mii; shrp X[ 2]=X[ 2],X[ 1],56 shrp X[ 1]=X[ 1],X[ 0],56 } { .mib; shrp X[ 0]=X[ 0],T1,56 } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev // eliminated on big-endian br.many .L_first16 };; .L2byte: { .mmi; $LDW X[11]=[input],4*$SZ $LDW X[10]=[r8],4*$SZ shrp X[15]=X[15],X[14],48 } { .mmi; $LDW X[ 9]=[r9],4*$SZ $LDW X[ 8]=[r10],4*$SZ shrp X[14]=X[14],X[13],48 };; { .mmi; $LDW X[ 7]=[input],4*$SZ $LDW X[ 6]=[r8],4*$SZ shrp X[13]=X[13],X[12],48 } { .mmi; $LDW X[ 5]=[r9],4*$SZ $LDW X[ 4]=[r10],4*$SZ shrp X[12]=X[12],X[11],48 };; { .mmi; $LDW X[ 3]=[input],4*$SZ $LDW X[ 2]=[r8],4*$SZ shrp X[11]=X[11],X[10],48 } { .mmi; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ shrp X[10]=X[10],X[ 9],48 };; { .mii; $LDW T1=[input] shrp X[ 9]=X[ 9],X[ 8],48 shrp X[ 8]=X[ 8],X[ 7],48 } { .mii; shrp X[ 7]=X[ 7],X[ 6],48 shrp X[ 6]=X[ 6],X[ 5],48 };; { .mii; shrp X[ 5]=X[ 5],X[ 4],48 shrp X[ 4]=X[ 4],X[ 3],48 } { .mii; shrp X[ 3]=X[ 3],X[ 2],48 shrp X[ 2]=X[ 2],X[ 1],48 } { .mii; shrp X[ 1]=X[ 1],X[ 0],48 shrp X[ 0]=X[ 0],T1,48 } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev // eliminated on big-endian br.many .L_first16 };; .L3byte: { .mmi; $LDW X[ 9]=[r9],4*$SZ $LDW X[ 8]=[r10],4*$SZ shrp X[15]=X[15],X[14],40 };; { .mmi; $LDW X[ 7]=[input],4*$SZ $LDW X[ 6]=[r8],4*$SZ shrp X[14]=X[14],X[13],40 } { .mmi; $LDW X[ 5]=[r9],4*$SZ $LDW X[ 4]=[r10],4*$SZ shrp X[13]=X[13],X[12],40 };; { .mmi; $LDW X[ 3]=[input],4*$SZ $LDW X[ 2]=[r8],4*$SZ shrp X[12]=X[12],X[11],40 } { .mmi; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ shrp X[11]=X[11],X[10],40 };; { .mii; $LDW T1=[input] shrp X[10]=X[10],X[ 9],40 shrp X[ 9]=X[ 9],X[ 8],40 } { .mii; shrp X[ 8]=X[ 8],X[ 7],40 shrp X[ 7]=X[ 7],X[ 6],40 };; { .mii; shrp X[ 6]=X[ 6],X[ 5],40 shrp X[ 5]=X[ 5],X[ 4],40 } { .mii; shrp X[ 4]=X[ 4],X[ 3],40 shrp X[ 3]=X[ 3],X[ 2],40 } { .mii; shrp X[ 2]=X[ 2],X[ 1],40 shrp X[ 1]=X[ 1],X[ 0],40 } { .mib; shrp X[ 0]=X[ 0],T1,40 } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev // eliminated on big-endian br.many .L_first16 };; .L4byte: { .mmi; $LDW X[ 7]=[input],4*$SZ $LDW X[ 6]=[r8],4*$SZ shrp X[15]=X[15],X[14],32 } { .mmi; $LDW X[ 5]=[r9],4*$SZ $LDW X[ 4]=[r10],4*$SZ shrp X[14]=X[14],X[13],32 };; { .mmi; $LDW X[ 3]=[input],4*$SZ $LDW X[ 2]=[r8],4*$SZ shrp X[13]=X[13],X[12],32 } { .mmi; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ shrp X[12]=X[12],X[11],32 };; { .mii; $LDW T1=[input] shrp X[11]=X[11],X[10],32 shrp X[10]=X[10],X[ 9],32 } { .mii; shrp X[ 9]=X[ 9],X[ 8],32 shrp X[ 8]=X[ 8],X[ 7],32 };; { .mii; shrp X[ 7]=X[ 7],X[ 6],32 shrp X[ 6]=X[ 6],X[ 5],32 } { .mii; shrp X[ 5]=X[ 5],X[ 4],32 shrp X[ 4]=X[ 4],X[ 3],32 } { .mii; shrp X[ 3]=X[ 3],X[ 2],32 shrp X[ 2]=X[ 2],X[ 1],32 } { .mii; shrp X[ 1]=X[ 1],X[ 0],32 shrp X[ 0]=X[ 0],T1,32 } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev // eliminated on big-endian br.many .L_first16 };; .L5byte: { .mmi; $LDW X[ 5]=[r9],4*$SZ $LDW X[ 4]=[r10],4*$SZ shrp X[15]=X[15],X[14],24 };; { .mmi; $LDW X[ 3]=[input],4*$SZ $LDW X[ 2]=[r8],4*$SZ shrp X[14]=X[14],X[13],24 } { .mmi; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ shrp X[13]=X[13],X[12],24 };; { .mii; $LDW T1=[input] shrp X[12]=X[12],X[11],24 shrp X[11]=X[11],X[10],24 } { .mii; shrp X[10]=X[10],X[ 9],24 shrp X[ 9]=X[ 9],X[ 8],24 };; { .mii; shrp X[ 8]=X[ 8],X[ 7],24 shrp X[ 7]=X[ 7],X[ 6],24 } { .mii; shrp X[ 6]=X[ 6],X[ 5],24 shrp X[ 5]=X[ 5],X[ 4],24 } { .mii; shrp X[ 4]=X[ 4],X[ 3],24 shrp X[ 3]=X[ 3],X[ 2],24 } { .mii; shrp X[ 2]=X[ 2],X[ 1],24 shrp X[ 1]=X[ 1],X[ 0],24 } { .mib; shrp X[ 0]=X[ 0],T1,24 } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev // eliminated on big-endian br.many .L_first16 };; .L6byte: { .mmi; $LDW X[ 3]=[input],4*$SZ $LDW X[ 2]=[r8],4*$SZ shrp X[15]=X[15],X[14],16 } { .mmi; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ shrp X[14]=X[14],X[13],16 };; { .mii; $LDW T1=[input] shrp X[13]=X[13],X[12],16 shrp X[12]=X[12],X[11],16 } { .mii; shrp X[11]=X[11],X[10],16 shrp X[10]=X[10],X[ 9],16 };; { .mii; shrp X[ 9]=X[ 9],X[ 8],16 shrp X[ 8]=X[ 8],X[ 7],16 } { .mii; shrp X[ 7]=X[ 7],X[ 6],16 shrp X[ 6]=X[ 6],X[ 5],16 } { .mii; shrp X[ 5]=X[ 5],X[ 4],16 shrp X[ 4]=X[ 4],X[ 3],16 } { .mii; shrp X[ 3]=X[ 3],X[ 2],16 shrp X[ 2]=X[ 2],X[ 1],16 } { .mii; shrp X[ 1]=X[ 1],X[ 0],16 shrp X[ 0]=X[ 0],T1,16 } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev // eliminated on big-endian br.many .L_first16 };; .L7byte: { .mmi; $LDW X[ 1]=[r9],4*$SZ $LDW X[ 0]=[r10],4*$SZ shrp X[15]=X[15],X[14],8 };; { .mii; $LDW T1=[input] shrp X[14]=X[14],X[13],8 shrp X[13]=X[13],X[12],8 } { .mii; shrp X[12]=X[12],X[11],8 shrp X[11]=X[11],X[10],8 };; { .mii; shrp X[10]=X[10],X[ 9],8 shrp X[ 9]=X[ 9],X[ 8],8 } { .mii; shrp X[ 8]=X[ 8],X[ 7],8 shrp X[ 7]=X[ 7],X[ 6],8 } { .mii; shrp X[ 6]=X[ 6],X[ 5],8 shrp X[ 5]=X[ 5],X[ 4],8 } { .mii; shrp X[ 4]=X[ 4],X[ 3],8 shrp X[ 3]=X[ 3],X[ 2],8 } { .mii; shrp X[ 2]=X[ 2],X[ 1],8 shrp X[ 1]=X[ 1],X[ 0],8 } { .mib; shrp X[ 0]=X[ 0],T1,8 } { .mib; mov r8=0 mux1 X[15]=X[15],\@rev };; // eliminated on big-endian .align 32 .L_first16: { .mmi; $LDW K=[Ktbl],$SZ add A=A,r8 // H+=Sigma(0) from the past _rotr r10=$t1,$Sigma1[0] } // ROTR(e,14) { .mmi; and T1=F,E andcm r8=G,E (p16) mux1 X[14]=X[14],\@rev };; // eliminated on big-endian { .mmi; and T2=A,B and r9=A,C _rotr r11=$t1,$Sigma1[1] } // ROTR(e,41) { .mmi; xor T1=T1,r8 // T1=((e & f) ^ (~e & g)) and r8=B,C };; ___ $t0="t0", $t1="t1", $code.=<<___ if ($BITS==32); .align 32 .L_first16: { .mmi; add A=A,r8 // H+=Sigma(0) from the past add r10=2-$SZ,input add r11=3-$SZ,input };; { .mmi; ld1 r9=[r9] ld1 r10=[r10] dep.z $t1=E,32,32 } { .mmi; ld1 r11=[r11] $LDW K=[Ktbl],$SZ zxt4 E=E };; { .mii; or $t1=$t1,E dep X[15]=X[15],r9,8,8 mux2 $t0=A,0x44 };; // copy lower half to upper { .mmi; and T1=F,E andcm r8=G,E dep r11=r10,r11,8,8 };; { .mmi; and T2=A,B and r9=A,C dep X[15]=X[15],r11,16,16 };; { .mmi; (p16) ld1 X[15-1]=[input],$SZ // prefetch xor T1=T1,r8 // T1=((e & f) ^ (~e & g)) _rotr r10=$t1,$Sigma1[0] } // ROTR(e,14) { .mmi; and r8=B,C _rotr r11=$t1,$Sigma1[1] };; // ROTR(e,18) ___ $code.=<<___; { .mmi; add T1=T1,H // T1=Ch(e,f,g)+h xor r10=r10,r11 _rotr r11=$t1,$Sigma1[2] } // ROTR(e,41) { .mmi; xor T2=T2,r9 add K=K,X[15] };; { .mmi; add T1=T1,K // T1+=K[i]+X[i] xor T2=T2,r8 // T2=((a & b) ^ (a & c) ^ (b & c)) _rotr r8=$t0,$Sigma0[0] } // ROTR(a,28) { .mmi; xor r11=r11,r10 // Sigma1(e) _rotr r9=$t0,$Sigma0[1] };; // ROTR(a,34) { .mmi; add T1=T1,r11 // T+=Sigma1(e) xor r8=r8,r9 _rotr r9=$t0,$Sigma0[2] };; // ROTR(a,39) { .mmi; xor r8=r8,r9 // Sigma0(a) add D=D,T1 mux2 H=X[15],0x44 } // mov H=X[15] in sha512 { .mib; (p16) add r9=1-$SZ,input // not used in sha512 add X[15]=T1,T2 // H=T1+Maj(a,b,c) br.ctop.sptk .L_first16 };; .L_first16_end: { .mib; mov ar.lc=$rounds-17 brp.loop.imp .L_rest,.L_rest_end-16 } { .mib; mov ar.ec=1 br.many .L_rest };; .align 32 .L_rest: { .mmi; $LDW K=[Ktbl],$SZ add A=A,r8 // H+=Sigma0(a) from the past _rotr r8=X[15-1],$sigma0[0] } // ROTR(s0,1) { .mmi; add X[15]=X[15],X[15-9] // X[i&0xF]+=X[(i+9)&0xF] $SHRU s0=X[15-1],sgm0 };; // s0=X[(i+1)&0xF]>>7 { .mib; and T1=F,E _rotr r9=X[15-1],$sigma0[1] } // ROTR(s0,8) { .mib; andcm r10=G,E $SHRU s1=X[15-14],sgm1 };; // s1=X[(i+14)&0xF]>>6 // Pair of mmi; splits on Itanium 1 and prevents pipeline flush // upon $SHRU output usage { .mmi; xor T1=T1,r10 // T1=((e & f) ^ (~e & g)) xor r9=r8,r9 _rotr r10=X[15-14],$sigma1[0] }// ROTR(s1,19) { .mmi; and T2=A,B and r8=A,C _rotr r11=X[15-14],$sigma1[1] };;// ROTR(s1,61) ___ $t0="t0", $t1="t1", $code.=<<___ if ($BITS==32); { .mib; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF]) dep.z $t1=E,32,32 } { .mib; xor r10=r11,r10 zxt4 E=E };; { .mii; xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF]) shrp r9=E,$t1,32+$Sigma1[0] // ROTR(e,14) mux2 $t0=A,0x44 };; // copy lower half to upper // Pair of mmi; splits on Itanium 1 and prevents pipeline flush // upon mux2 output usage { .mmi; xor T2=T2,r8 shrp r8=E,$t1,32+$Sigma1[1]} // ROTR(e,18) { .mmi; and r10=B,C add T1=T1,H // T1=Ch(e,f,g)+h or $t1=$t1,E };; ___ $t0="A", $t1="E", $code.=<<___ if ($BITS==64); { .mib; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF]) _rotr r9=$t1,$Sigma1[0] } // ROTR(e,14) { .mib; xor r10=r11,r10 xor T2=T2,r8 };; { .mib; xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF]) _rotr r8=$t1,$Sigma1[1] } // ROTR(e,18) { .mib; and r10=B,C add T1=T1,H };; // T1+=H ___ $code.=<<___; { .mib; xor r9=r9,r8 _rotr r8=$t1,$Sigma1[2] } // ROTR(e,41) { .mib; xor T2=T2,r10 // T2=((a & b) ^ (a & c) ^ (b & c)) add X[15]=X[15],s0 };; // X[i]+=sigma0(X[i+1]) { .mmi; xor r9=r9,r8 // Sigma1(e) add X[15]=X[15],s1 // X[i]+=sigma0(X[i+14]) _rotr r8=$t0,$Sigma0[0] };; // ROTR(a,28) { .mmi; add K=K,X[15] add T1=T1,r9 // T1+=Sigma1(e) _rotr r9=$t0,$Sigma0[1] };; // ROTR(a,34) { .mmi; add T1=T1,K // T1+=K[i]+X[i] xor r8=r8,r9 _rotr r9=$t0,$Sigma0[2] };; // ROTR(a,39) { .mib; add D=D,T1 mux2 H=X[15],0x44 } // mov H=X[15] in sha512 { .mib; xor r8=r8,r9 // Sigma0(a) add X[15]=T1,T2 // H=T1+Maj(a,b,c) br.ctop.sptk .L_rest };; .L_rest_end: { .mmi; add A=A,r8 };; // H+=Sigma0(a) from the past { .mmi; add A_=A_,A add B_=B_,B add C_=C_,C } { .mmi; add D_=D_,D add E_=E_,E cmp.ltu p16,p0=1,num };; { .mmi; add F_=F_,F add G_=G_,G add H_=H_,H } { .mmb; add Ktbl=-$SZ*$rounds,Ktbl (p16) add num=-1,num (p16) br.dptk.many .L_outer };; { .mib; add r8=0*$SZ,ctx add r9=1*$SZ,ctx } { .mib; add r10=2*$SZ,ctx add r11=3*$SZ,ctx };; { .mmi; $STW [r8]=A_,4*$SZ $STW [r9]=B_,4*$SZ mov ar.lc=lcsave } { .mmi; $STW [r10]=C_,4*$SZ $STW [r11]=D_,4*$SZ mov pr=prsave,0x1ffff };; { .mmb; $STW [r8]=E_ $STW [r9]=F_ } { .mmb; $STW [r10]=G_ $STW [r11]=H_ br.ret.sptk.many b0 };; .endp $func# ___ foreach(split($/,$code)) { s/\`([^\`]*)\`/eval $1/gem; s/_rotr(\s+)([^=]+)=([^,]+),([0-9]+)/shrp$1$2=$3,$3,$4/gm; if ($BITS==64) { s/mux2(\s+)([^=]+)=([^,]+),\S+/mov$1 $2=$3/gm; s/mux1(\s+)\S+/nop.i$1 0x0/gm if ($big_endian); s/(shrp\s+X\[[^=]+)=([^,]+),([^,]+),([1-9]+)/$1=$3,$2,64-$4/gm if (!$big_endian); s/ld1(\s+)X\[\S+/nop.m$1 0x0/gm; } print $_,"\n"; } print<<___ if ($BITS==32); .align 64 .type K256#,\@object K256: data4 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 data4 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 data4 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 data4 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 data4 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc data4 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da data4 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 data4 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 data4 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 data4 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 data4 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 data4 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 data4 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 data4 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 data4 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 data4 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .size K256#,$SZ*$rounds stringz "SHA256 block transform for IA64, CRYPTOGAMS by " ___ print<<___ if ($BITS==64); .align 64 .type K512#,\@object K512: data8 0x428a2f98d728ae22,0x7137449123ef65cd data8 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc data8 0x3956c25bf348b538,0x59f111f1b605d019 data8 0x923f82a4af194f9b,0xab1c5ed5da6d8118 data8 0xd807aa98a3030242,0x12835b0145706fbe data8 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 data8 0x72be5d74f27b896f,0x80deb1fe3b1696b1 data8 0x9bdc06a725c71235,0xc19bf174cf692694 data8 0xe49b69c19ef14ad2,0xefbe4786384f25e3 data8 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 data8 0x2de92c6f592b0275,0x4a7484aa6ea6e483 data8 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 data8 0x983e5152ee66dfab,0xa831c66d2db43210 data8 0xb00327c898fb213f,0xbf597fc7beef0ee4 data8 0xc6e00bf33da88fc2,0xd5a79147930aa725 data8 0x06ca6351e003826f,0x142929670a0e6e70 data8 0x27b70a8546d22ffc,0x2e1b21385c26c926 data8 0x4d2c6dfc5ac42aed,0x53380d139d95b3df data8 0x650a73548baf63de,0x766a0abb3c77b2a8 data8 0x81c2c92e47edaee6,0x92722c851482353b data8 0xa2bfe8a14cf10364,0xa81a664bbc423001 data8 0xc24b8b70d0f89791,0xc76c51a30654be30 data8 0xd192e819d6ef5218,0xd69906245565a910 data8 0xf40e35855771202a,0x106aa07032bbd1b8 data8 0x19a4c116b8d2d0c8,0x1e376c085141ab53 data8 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 data8 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb data8 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 data8 0x748f82ee5defb2fc,0x78a5636f43172f60 data8 0x84c87814a1f0ab72,0x8cc702081a6439ec data8 0x90befffa23631e28,0xa4506cebde82bde9 data8 0xbef9a3f7b2c67915,0xc67178f2e372532b data8 0xca273eceea26619c,0xd186b8c721c0c207 data8 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 data8 0x06f067aa72176fba,0x0a637dc5a2c898a6 data8 0x113f9804bef90dae,0x1b710b35131c471b data8 0x28db77f523047d84,0x32caab7b40c72493 data8 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c data8 0x4cc5d4becb3e42b6,0x597f299cfc657e2a data8 0x5fcb6fab3ad6faec,0x6c44198c4a475817 .size K512#,$SZ*$rounds stringz "SHA512 block transform for IA64, CRYPTOGAMS by " ___ openssl-1.1.1f/crypto/sha/asm/sha512-mips.pl000066400000000000000000000344171364063235100205400ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA2 block procedures for MIPS. # October 2010. # # SHA256 performance improvement on MIPS R5000 CPU is ~27% over gcc- # generated code in o32 build and ~55% in n32/64 build. SHA512 [which # for now can only be compiled for MIPS64 ISA] improvement is modest # ~17%, but it comes for free, because it's same instruction sequence. # Improvement coefficients are for aligned input. # September 2012. # # Add MIPS[32|64]R2 code (>25% less instructions). ###################################################################### # There is a number of MIPS ABI in use, O32 and N32/64 are most # widely used. Then there is a new contender: NUBI. It appears that if # one picks the latter, it's possible to arrange code in ABI neutral # manner. Therefore let's stick to NUBI register layout: # ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); # # The return value is placed in $a0. Following coding rules facilitate # interoperability: # # - never ever touch $tp, "thread pointer", former $gp [o32 can be # excluded from the rule, because it's specified volatile]; # - copy return value to $t0, former $v0 [or to $a0 if you're adapting # old code]; # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; # # For reference here is register layout for N32/64 MIPS ABIs: # # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); # $flavour = shift || "o32"; # supported flavours are o32,n32,64,nubi32,nubi64 if ($flavour =~ /64|n32/i) { $PTR_LA="dla"; $PTR_ADD="daddu"; # incidentally works even on n32 $PTR_SUB="dsubu"; # incidentally works even on n32 $REG_S="sd"; $REG_L="ld"; $PTR_SLL="dsll"; # incidentally works even on n32 $SZREG=8; } else { $PTR_LA="la"; $PTR_ADD="addu"; $PTR_SUB="subu"; $REG_S="sw"; $REG_L="lw"; $PTR_SLL="sll"; $SZREG=4; } $pf = ($flavour =~ /nubi/i) ? $t0 : $t2; # # # ###################################################################### $big_endian=(`echo MIPSEB | $ENV{CC} -E -`=~/MIPSEB/)?0:1 if ($ENV{CC}); for (@ARGV) { $output=$_ if (/\w[\w\-]*\.\w+$/); } open STDOUT,">$output"; if (!defined($big_endian)) { $big_endian=(unpack('L',pack('N',1))==1); } if ($output =~ /512/) { $label="512"; $SZ=8; $LD="ld"; # load from memory $ST="sd"; # store to memory $SLL="dsll"; # shift left logical $SRL="dsrl"; # shift right logical $ADDU="daddu"; $ROTR="drotr"; @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=( 7, 1, 8); # right shift first @sigma1=( 6,19,61); # right shift first $lastK=0x817; $rounds=80; } else { $label="256"; $SZ=4; $LD="lw"; # load from memory $ST="sw"; # store to memory $SLL="sll"; # shift left logical $SRL="srl"; # shift right logical $ADDU="addu"; $ROTR="rotr"; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 3, 7,18); # right shift first @sigma1=(10,17,19); # right shift first $lastK=0x8f2; $rounds=64; } $MSB = $big_endian ? 0 : ($SZ-1); $LSB = ($SZ-1)&~$MSB; @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("\$$_",(1,2,3,7,24,25,30,31)); @X=map("\$$_",(8..23)); $ctx=$a0; $inp=$a1; $len=$a2; $Ktbl=$len; sub BODY_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; my ($T1,$tmp0,$tmp1,$tmp2)=(@X[4],@X[5],@X[6],@X[7]); $code.=<<___ if ($i<15); #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) ${LD} @X[1],`($i+1)*$SZ`($inp) #else ${LD}l @X[1],`($i+1)*$SZ+$MSB`($inp) ${LD}r @X[1],`($i+1)*$SZ+$LSB`($inp) #endif ___ $code.=<<___ if (!$big_endian && $i<16 && $SZ==4); #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) wsbh @X[0],@X[0] # byte swap($i) rotr @X[0],@X[0],16 #else srl $tmp0,@X[0],24 # byte swap($i) srl $tmp1,@X[0],8 andi $tmp2,@X[0],0xFF00 sll @X[0],@X[0],24 andi $tmp1,0xFF00 sll $tmp2,$tmp2,8 or @X[0],$tmp0 or $tmp1,$tmp2 or @X[0],$tmp1 #endif ___ $code.=<<___ if (!$big_endian && $i<16 && $SZ==8); #if defined(_MIPS_ARCH_MIPS64R2) dsbh @X[0],@X[0] # byte swap($i) dshd @X[0],@X[0] #else ori $tmp0,$zero,0xFF dsll $tmp2,$tmp0,32 or $tmp0,$tmp2 # 0x000000FF000000FF and $tmp1,@X[0],$tmp0 # byte swap($i) dsrl $tmp2,@X[0],24 dsll $tmp1,24 and $tmp2,$tmp0 dsll $tmp0,8 # 0x0000FF000000FF00 or $tmp1,$tmp2 and $tmp2,@X[0],$tmp0 dsrl @X[0],8 dsll $tmp2,8 and @X[0],$tmp0 or $tmp1,$tmp2 or @X[0],$tmp1 dsrl $tmp1,@X[0],32 dsll @X[0],32 or @X[0],$tmp1 #endif ___ $code.=<<___; #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) xor $tmp2,$f,$g # $i $ROTR $tmp0,$e,@Sigma1[0] $ADDU $T1,$X[0],$h $ROTR $tmp1,$e,@Sigma1[1] and $tmp2,$e $ROTR $h,$e,@Sigma1[2] xor $tmp0,$tmp1 $ROTR $tmp1,$a,@Sigma0[0] xor $tmp2,$g # Ch(e,f,g) xor $tmp0,$h # Sigma1(e) $ROTR $h,$a,@Sigma0[1] $ADDU $T1,$tmp2 $LD $tmp2,`$i*$SZ`($Ktbl) # K[$i] xor $h,$tmp1 $ROTR $tmp1,$a,@Sigma0[2] $ADDU $T1,$tmp0 and $tmp0,$b,$c xor $h,$tmp1 # Sigma0(a) xor $tmp1,$b,$c #else $ADDU $T1,$X[0],$h # $i $SRL $h,$e,@Sigma1[0] xor $tmp2,$f,$g $SLL $tmp1,$e,`$SZ*8-@Sigma1[2]` and $tmp2,$e $SRL $tmp0,$e,@Sigma1[1] xor $h,$tmp1 $SLL $tmp1,$e,`$SZ*8-@Sigma1[1]` xor $h,$tmp0 $SRL $tmp0,$e,@Sigma1[2] xor $h,$tmp1 $SLL $tmp1,$e,`$SZ*8-@Sigma1[0]` xor $h,$tmp0 xor $tmp2,$g # Ch(e,f,g) xor $tmp0,$tmp1,$h # Sigma1(e) $SRL $h,$a,@Sigma0[0] $ADDU $T1,$tmp2 $LD $tmp2,`$i*$SZ`($Ktbl) # K[$i] $SLL $tmp1,$a,`$SZ*8-@Sigma0[2]` $ADDU $T1,$tmp0 $SRL $tmp0,$a,@Sigma0[1] xor $h,$tmp1 $SLL $tmp1,$a,`$SZ*8-@Sigma0[1]` xor $h,$tmp0 $SRL $tmp0,$a,@Sigma0[2] xor $h,$tmp1 $SLL $tmp1,$a,`$SZ*8-@Sigma0[0]` xor $h,$tmp0 and $tmp0,$b,$c xor $h,$tmp1 # Sigma0(a) xor $tmp1,$b,$c #endif $ST @X[0],`($i%16)*$SZ`($sp) # offload to ring buffer $ADDU $h,$tmp0 and $tmp1,$a $ADDU $T1,$tmp2 # +=K[$i] $ADDU $h,$tmp1 # +=Maj(a,b,c) $ADDU $d,$T1 $ADDU $h,$T1 ___ $code.=<<___ if ($i>=13); $LD @X[3],`(($i+3)%16)*$SZ`($sp) # prefetch from ring buffer ___ } sub BODY_16_XX { my $i=@_[0]; my ($tmp0,$tmp1,$tmp2,$tmp3)=(@X[4],@X[5],@X[6],@X[7]); $code.=<<___; #if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2) $SRL $tmp2,@X[1],@sigma0[0] # Xupdate($i) $ROTR $tmp0,@X[1],@sigma0[1] $ADDU @X[0],@X[9] # +=X[i+9] xor $tmp2,$tmp0 $ROTR $tmp0,@X[1],@sigma0[2] $SRL $tmp3,@X[14],@sigma1[0] $ROTR $tmp1,@X[14],@sigma1[1] xor $tmp2,$tmp0 # sigma0(X[i+1]) $ROTR $tmp0,@X[14],@sigma1[2] xor $tmp3,$tmp1 $ADDU @X[0],$tmp2 #else $SRL $tmp2,@X[1],@sigma0[0] # Xupdate($i) $ADDU @X[0],@X[9] # +=X[i+9] $SLL $tmp1,@X[1],`$SZ*8-@sigma0[2]` $SRL $tmp0,@X[1],@sigma0[1] xor $tmp2,$tmp1 $SLL $tmp1,`@sigma0[2]-@sigma0[1]` xor $tmp2,$tmp0 $SRL $tmp0,@X[1],@sigma0[2] xor $tmp2,$tmp1 $SRL $tmp3,@X[14],@sigma1[0] xor $tmp2,$tmp0 # sigma0(X[i+1]) $SLL $tmp1,@X[14],`$SZ*8-@sigma1[2]` $ADDU @X[0],$tmp2 $SRL $tmp0,@X[14],@sigma1[1] xor $tmp3,$tmp1 $SLL $tmp1,`@sigma1[2]-@sigma1[1]` xor $tmp3,$tmp0 $SRL $tmp0,@X[14],@sigma1[2] xor $tmp3,$tmp1 #endif xor $tmp3,$tmp0 # sigma1(X[i+14]) $ADDU @X[0],$tmp3 ___ &BODY_00_15(@_); } $FRAMESIZE=16*$SZ+16*$SZREG; $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? "0xc0fff008" : "0xc0ff0000"; $code.=<<___; #include "mips_arch.h" .text .set noat #if !defined(__mips_eabi) && (!defined(__vxworks) || defined(__pic__)) .option pic2 #endif .align 5 .globl sha${label}_block_data_order .ent sha${label}_block_data_order sha${label}_block_data_order: .frame $sp,$FRAMESIZE,$ra .mask $SAVED_REGS_MASK,-$SZREG .set noreorder ___ $code.=<<___ if ($flavour =~ /o32/i); # o32 PIC-ification .cpload $pf ___ $code.=<<___; $PTR_SUB $sp,$FRAMESIZE $REG_S $ra,$FRAMESIZE-1*$SZREG($sp) $REG_S $fp,$FRAMESIZE-2*$SZREG($sp) $REG_S $s11,$FRAMESIZE-3*$SZREG($sp) $REG_S $s10,$FRAMESIZE-4*$SZREG($sp) $REG_S $s9,$FRAMESIZE-5*$SZREG($sp) $REG_S $s8,$FRAMESIZE-6*$SZREG($sp) $REG_S $s7,$FRAMESIZE-7*$SZREG($sp) $REG_S $s6,$FRAMESIZE-8*$SZREG($sp) $REG_S $s5,$FRAMESIZE-9*$SZREG($sp) $REG_S $s4,$FRAMESIZE-10*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue $REG_S $s3,$FRAMESIZE-11*$SZREG($sp) $REG_S $s2,$FRAMESIZE-12*$SZREG($sp) $REG_S $s1,$FRAMESIZE-13*$SZREG($sp) $REG_S $s0,$FRAMESIZE-14*$SZREG($sp) $REG_S $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___; $PTR_SLL @X[15],$len,`log(16*$SZ)/log(2)` ___ $code.=<<___ if ($flavour !~ /o32/i); # non-o32 PIC-ification .cplocal $Ktbl .cpsetup $pf,$zero,sha${label}_block_data_order ___ $code.=<<___; .set reorder $PTR_LA $Ktbl,K${label} # PIC-ified 'load address' $LD $A,0*$SZ($ctx) # load context $LD $B,1*$SZ($ctx) $LD $C,2*$SZ($ctx) $LD $D,3*$SZ($ctx) $LD $E,4*$SZ($ctx) $LD $F,5*$SZ($ctx) $LD $G,6*$SZ($ctx) $LD $H,7*$SZ($ctx) $PTR_ADD @X[15],$inp # pointer to the end of input $REG_S @X[15],16*$SZ($sp) b .Loop .align 5 .Loop: #if defined(_MIPS_ARCH_MIPS32R6) || defined(_MIPS_ARCH_MIPS64R6) ${LD} @X[0],($inp) #else ${LD}l @X[0],$MSB($inp) ${LD}r @X[0],$LSB($inp) #endif ___ for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); push(@X,shift(@X)); } $code.=<<___; b .L16_xx .align 4 .L16_xx: ___ for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); push(@X,shift(@X)); } $code.=<<___; and @X[6],0xfff li @X[7],$lastK .set noreorder bne @X[6],@X[7],.L16_xx $PTR_ADD $Ktbl,16*$SZ # Ktbl+=16 $REG_L @X[15],16*$SZ($sp) # restore pointer to the end of input $LD @X[0],0*$SZ($ctx) $LD @X[1],1*$SZ($ctx) $LD @X[2],2*$SZ($ctx) $PTR_ADD $inp,16*$SZ $LD @X[3],3*$SZ($ctx) $ADDU $A,@X[0] $LD @X[4],4*$SZ($ctx) $ADDU $B,@X[1] $LD @X[5],5*$SZ($ctx) $ADDU $C,@X[2] $LD @X[6],6*$SZ($ctx) $ADDU $D,@X[3] $LD @X[7],7*$SZ($ctx) $ADDU $E,@X[4] $ST $A,0*$SZ($ctx) $ADDU $F,@X[5] $ST $B,1*$SZ($ctx) $ADDU $G,@X[6] $ST $C,2*$SZ($ctx) $ADDU $H,@X[7] $ST $D,3*$SZ($ctx) $ST $E,4*$SZ($ctx) $ST $F,5*$SZ($ctx) $ST $G,6*$SZ($ctx) $ST $H,7*$SZ($ctx) bne $inp,@X[15],.Loop $PTR_SUB $Ktbl,`($rounds-16)*$SZ` # rewind $Ktbl $REG_L $ra,$FRAMESIZE-1*$SZREG($sp) $REG_L $fp,$FRAMESIZE-2*$SZREG($sp) $REG_L $s11,$FRAMESIZE-3*$SZREG($sp) $REG_L $s10,$FRAMESIZE-4*$SZREG($sp) $REG_L $s9,$FRAMESIZE-5*$SZREG($sp) $REG_L $s8,$FRAMESIZE-6*$SZREG($sp) $REG_L $s7,$FRAMESIZE-7*$SZREG($sp) $REG_L $s6,$FRAMESIZE-8*$SZREG($sp) $REG_L $s5,$FRAMESIZE-9*$SZREG($sp) $REG_L $s4,$FRAMESIZE-10*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $s3,$FRAMESIZE-11*$SZREG($sp) $REG_L $s2,$FRAMESIZE-12*$SZREG($sp) $REG_L $s1,$FRAMESIZE-13*$SZREG($sp) $REG_L $s0,$FRAMESIZE-14*$SZREG($sp) $REG_L $gp,$FRAMESIZE-15*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE .end sha${label}_block_data_order .rdata .align 5 K${label}: ___ if ($SZ==4) { $code.=<<___; .word 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5 .word 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5 .word 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3 .word 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174 .word 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc .word 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da .word 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7 .word 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967 .word 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13 .word 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85 .word 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3 .word 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070 .word 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5 .word 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3 .word 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208 .word 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ___ } else { $code.=<<___; .dword 0x428a2f98d728ae22, 0x7137449123ef65cd .dword 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc .dword 0x3956c25bf348b538, 0x59f111f1b605d019 .dword 0x923f82a4af194f9b, 0xab1c5ed5da6d8118 .dword 0xd807aa98a3030242, 0x12835b0145706fbe .dword 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2 .dword 0x72be5d74f27b896f, 0x80deb1fe3b1696b1 .dword 0x9bdc06a725c71235, 0xc19bf174cf692694 .dword 0xe49b69c19ef14ad2, 0xefbe4786384f25e3 .dword 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65 .dword 0x2de92c6f592b0275, 0x4a7484aa6ea6e483 .dword 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5 .dword 0x983e5152ee66dfab, 0xa831c66d2db43210 .dword 0xb00327c898fb213f, 0xbf597fc7beef0ee4 .dword 0xc6e00bf33da88fc2, 0xd5a79147930aa725 .dword 0x06ca6351e003826f, 0x142929670a0e6e70 .dword 0x27b70a8546d22ffc, 0x2e1b21385c26c926 .dword 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df .dword 0x650a73548baf63de, 0x766a0abb3c77b2a8 .dword 0x81c2c92e47edaee6, 0x92722c851482353b .dword 0xa2bfe8a14cf10364, 0xa81a664bbc423001 .dword 0xc24b8b70d0f89791, 0xc76c51a30654be30 .dword 0xd192e819d6ef5218, 0xd69906245565a910 .dword 0xf40e35855771202a, 0x106aa07032bbd1b8 .dword 0x19a4c116b8d2d0c8, 0x1e376c085141ab53 .dword 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8 .dword 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb .dword 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3 .dword 0x748f82ee5defb2fc, 0x78a5636f43172f60 .dword 0x84c87814a1f0ab72, 0x8cc702081a6439ec .dword 0x90befffa23631e28, 0xa4506cebde82bde9 .dword 0xbef9a3f7b2c67915, 0xc67178f2e372532b .dword 0xca273eceea26619c, 0xd186b8c721c0c207 .dword 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178 .dword 0x06f067aa72176fba, 0x0a637dc5a2c898a6 .dword 0x113f9804bef90dae, 0x1b710b35131c471b .dword 0x28db77f523047d84, 0x32caab7b40c72493 .dword 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c .dword 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a .dword 0x5fcb6fab3ad6faec, 0x6c44198c4a475817 ___ } $code.=<<___; .asciiz "SHA${label} for MIPS, CRYPTOGAMS by " .align 5 ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-parisc.pl000077500000000000000000000525441364063235100210550ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA256/512 block procedure for PA-RISC. # June 2009. # # SHA256 performance is >75% better than gcc 3.2 generated code on # PA-7100LC. Compared to code generated by vendor compiler this # implementation is almost 70% faster in 64-bit build, but delivers # virtually same performance in 32-bit build on PA-8600. # # SHA512 performance is >2.9x better than gcc 3.2 generated code on # PA-7100LC, PA-RISC 1.1 processor. Then implementation detects if the # code is executed on PA-RISC 2.0 processor and switches to 64-bit # code path delivering adequate performance even in "blended" 32-bit # build. Though 64-bit code is not any faster than code generated by # vendor compiler on PA-8600... # # Special thanks to polarhome.com for providing HP-UX account. $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $FRAME_MARKER =80; $SAVED_RP =16; $PUSH ="std"; $PUSHMA ="std,ma"; $POP ="ldd"; $POPMB ="ldd,mb"; } else { $LEVEL ="1.0"; $SIZE_T =4; $FRAME_MARKER =48; $SAVED_RP =20; $PUSH ="stw"; $PUSHMA ="stwm"; $POP ="ldw"; $POPMB ="ldwm"; } if ($output =~ /512/) { $func="sha512_block_data_order"; $SZ=8; @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=(1, 8, 7); @sigma1=(19,61, 6); $rounds=80; $LAST10BITS=0x017; $LD="ldd"; $LDM="ldd,ma"; $ST="std"; } else { $func="sha256_block_data_order"; $SZ=4; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; $LAST10BITS=0x0f2; $LD="ldw"; $LDM="ldwm"; $ST="stw"; } $FRAME=16*$SIZE_T+$FRAME_MARKER;# 16 saved regs + frame marker # [+ argument transfer] $XOFF=16*$SZ+32; # local variables $FRAME+=$XOFF; $XOFF+=$FRAME_MARKER; # distance between %sp and local variables $ctx="%r26"; # zapped by $a0 $inp="%r25"; # zapped by $a1 $num="%r24"; # zapped by $t0 $a0 ="%r26"; $a1 ="%r25"; $t0 ="%r24"; $t1 ="%r29"; $Tbl="%r31"; @V=($A,$B,$C,$D,$E,$F,$G,$H)=("%r17","%r18","%r19","%r20","%r21","%r22","%r23","%r28"); @X=("%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", "%r8", "%r9", "%r10","%r11","%r12","%r13","%r14","%r15","%r16",$inp); sub ROUND_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; $code.=<<___; _ror $e,$Sigma1[0],$a0 and $f,$e,$t0 _ror $e,$Sigma1[1],$a1 addl $t1,$h,$h andcm $g,$e,$t1 xor $a1,$a0,$a0 _ror $a1,`$Sigma1[2]-$Sigma1[1]`,$a1 or $t0,$t1,$t1 ; Ch(e,f,g) addl @X[$i%16],$h,$h xor $a0,$a1,$a1 ; Sigma1(e) addl $t1,$h,$h _ror $a,$Sigma0[0],$a0 addl $a1,$h,$h _ror $a,$Sigma0[1],$a1 and $a,$b,$t0 and $a,$c,$t1 xor $a1,$a0,$a0 _ror $a1,`$Sigma0[2]-$Sigma0[1]`,$a1 xor $t1,$t0,$t0 and $b,$c,$t1 xor $a0,$a1,$a1 ; Sigma0(a) addl $h,$d,$d xor $t1,$t0,$t0 ; Maj(a,b,c) `"$LDM $SZ($Tbl),$t1" if ($i<15)` addl $a1,$h,$h addl $t0,$h,$h ___ } sub ROUND_16_xx { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; $i-=16; $code.=<<___; _ror @X[($i+1)%16],$sigma0[0],$a0 _ror @X[($i+1)%16],$sigma0[1],$a1 addl @X[($i+9)%16],@X[$i],@X[$i] _ror @X[($i+14)%16],$sigma1[0],$t0 _ror @X[($i+14)%16],$sigma1[1],$t1 xor $a1,$a0,$a0 _shr @X[($i+1)%16],$sigma0[2],$a1 xor $t1,$t0,$t0 _shr @X[($i+14)%16],$sigma1[2],$t1 xor $a1,$a0,$a0 ; sigma0(X[(i+1)&0x0f]) xor $t1,$t0,$t0 ; sigma1(X[(i+14)&0x0f]) $LDM $SZ($Tbl),$t1 addl $a0,@X[$i],@X[$i] addl $t0,@X[$i],@X[$i] ___ $code.=<<___ if ($i==15); extru $t1,31,10,$a1 comiclr,<> $LAST10BITS,$a1,%r0 ldo 1($Tbl),$Tbl ; signal end of $Tbl ___ &ROUND_00_15($i+16,$a,$b,$c,$d,$e,$f,$g,$h); } $code=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .ALIGN 64 L\$table ___ $code.=<<___ if ($SZ==8); .WORD 0x428a2f98,0xd728ae22,0x71374491,0x23ef65cd .WORD 0xb5c0fbcf,0xec4d3b2f,0xe9b5dba5,0x8189dbbc .WORD 0x3956c25b,0xf348b538,0x59f111f1,0xb605d019 .WORD 0x923f82a4,0xaf194f9b,0xab1c5ed5,0xda6d8118 .WORD 0xd807aa98,0xa3030242,0x12835b01,0x45706fbe .WORD 0x243185be,0x4ee4b28c,0x550c7dc3,0xd5ffb4e2 .WORD 0x72be5d74,0xf27b896f,0x80deb1fe,0x3b1696b1 .WORD 0x9bdc06a7,0x25c71235,0xc19bf174,0xcf692694 .WORD 0xe49b69c1,0x9ef14ad2,0xefbe4786,0x384f25e3 .WORD 0x0fc19dc6,0x8b8cd5b5,0x240ca1cc,0x77ac9c65 .WORD 0x2de92c6f,0x592b0275,0x4a7484aa,0x6ea6e483 .WORD 0x5cb0a9dc,0xbd41fbd4,0x76f988da,0x831153b5 .WORD 0x983e5152,0xee66dfab,0xa831c66d,0x2db43210 .WORD 0xb00327c8,0x98fb213f,0xbf597fc7,0xbeef0ee4 .WORD 0xc6e00bf3,0x3da88fc2,0xd5a79147,0x930aa725 .WORD 0x06ca6351,0xe003826f,0x14292967,0x0a0e6e70 .WORD 0x27b70a85,0x46d22ffc,0x2e1b2138,0x5c26c926 .WORD 0x4d2c6dfc,0x5ac42aed,0x53380d13,0x9d95b3df .WORD 0x650a7354,0x8baf63de,0x766a0abb,0x3c77b2a8 .WORD 0x81c2c92e,0x47edaee6,0x92722c85,0x1482353b .WORD 0xa2bfe8a1,0x4cf10364,0xa81a664b,0xbc423001 .WORD 0xc24b8b70,0xd0f89791,0xc76c51a3,0x0654be30 .WORD 0xd192e819,0xd6ef5218,0xd6990624,0x5565a910 .WORD 0xf40e3585,0x5771202a,0x106aa070,0x32bbd1b8 .WORD 0x19a4c116,0xb8d2d0c8,0x1e376c08,0x5141ab53 .WORD 0x2748774c,0xdf8eeb99,0x34b0bcb5,0xe19b48a8 .WORD 0x391c0cb3,0xc5c95a63,0x4ed8aa4a,0xe3418acb .WORD 0x5b9cca4f,0x7763e373,0x682e6ff3,0xd6b2b8a3 .WORD 0x748f82ee,0x5defb2fc,0x78a5636f,0x43172f60 .WORD 0x84c87814,0xa1f0ab72,0x8cc70208,0x1a6439ec .WORD 0x90befffa,0x23631e28,0xa4506ceb,0xde82bde9 .WORD 0xbef9a3f7,0xb2c67915,0xc67178f2,0xe372532b .WORD 0xca273ece,0xea26619c,0xd186b8c7,0x21c0c207 .WORD 0xeada7dd6,0xcde0eb1e,0xf57d4f7f,0xee6ed178 .WORD 0x06f067aa,0x72176fba,0x0a637dc5,0xa2c898a6 .WORD 0x113f9804,0xbef90dae,0x1b710b35,0x131c471b .WORD 0x28db77f5,0x23047d84,0x32caab7b,0x40c72493 .WORD 0x3c9ebe0a,0x15c9bebc,0x431d67c4,0x9c100d4c .WORD 0x4cc5d4be,0xcb3e42b6,0x597f299c,0xfc657e2a .WORD 0x5fcb6fab,0x3ad6faec,0x6c44198c,0x4a475817 ___ $code.=<<___ if ($SZ==4); .WORD 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .WORD 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .WORD 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .WORD 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .WORD 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .WORD 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .WORD 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .WORD 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .WORD 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .WORD 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .WORD 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .WORD 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .WORD 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .WORD 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .WORD 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .WORD 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 ___ $code.=<<___; .EXPORT $func,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR .ALIGN 64 $func .PROC .CALLINFO FRAME=`$FRAME-16*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=18 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) $PUSH %r12,`-$FRAME+9*$SIZE_T`(%sp) $PUSH %r13,`-$FRAME+10*$SIZE_T`(%sp) $PUSH %r14,`-$FRAME+11*$SIZE_T`(%sp) $PUSH %r15,`-$FRAME+12*$SIZE_T`(%sp) $PUSH %r16,`-$FRAME+13*$SIZE_T`(%sp) $PUSH %r17,`-$FRAME+14*$SIZE_T`(%sp) $PUSH %r18,`-$FRAME+15*$SIZE_T`(%sp) _shl $num,`log(16*$SZ)/log(2)`,$num addl $inp,$num,$num ; $num to point at the end of $inp $PUSH $num,`-$FRAME_MARKER-4*$SIZE_T`(%sp) ; save arguments $PUSH $inp,`-$FRAME_MARKER-3*$SIZE_T`(%sp) $PUSH $ctx,`-$FRAME_MARKER-2*$SIZE_T`(%sp) blr %r0,$Tbl ldi 3,$t1 L\$pic andcm $Tbl,$t1,$Tbl ; wipe privilege level ldo L\$table-L\$pic($Tbl),$Tbl ___ $code.=<<___ if ($SZ==8 && $SIZE_T==4); ldi 31,$t1 mtctl $t1,%cr11 extrd,u,*= $t1,%sar,1,$t1 ; executes on PA-RISC 1.0 b L\$parisc1 nop ___ $code.=<<___; $LD `0*$SZ`($ctx),$A ; load context $LD `1*$SZ`($ctx),$B $LD `2*$SZ`($ctx),$C $LD `3*$SZ`($ctx),$D $LD `4*$SZ`($ctx),$E $LD `5*$SZ`($ctx),$F $LD `6*$SZ`($ctx),$G $LD `7*$SZ`($ctx),$H extru $inp,31,`log($SZ)/log(2)`,$t0 sh3addl $t0,%r0,$t0 subi `8*$SZ`,$t0,$t0 mtctl $t0,%cr11 ; load %sar with align factor L\$oop ldi `$SZ-1`,$t0 $LDM $SZ($Tbl),$t1 andcm $inp,$t0,$t0 ; align $inp ___ for ($i=0;$i<15;$i++) { # load input block $code.="\t$LD `$SZ*$i`($t0),@X[$i]\n"; } $code.=<<___; cmpb,*= $inp,$t0,L\$aligned $LD `$SZ*15`($t0),@X[15] $LD `$SZ*16`($t0),@X[16] ___ for ($i=0;$i<16;$i++) { # align data $code.="\t_align @X[$i],@X[$i+1],@X[$i]\n"; } $code.=<<___; L\$aligned nop ; otherwise /usr/ccs/bin/as is confused by below .WORD ___ for($i=0;$i<16;$i++) { &ROUND_00_15($i,@V); unshift(@V,pop(@V)); } $code.=<<___; L\$rounds nop ; otherwise /usr/ccs/bin/as is confused by below .WORD ___ for(;$i<32;$i++) { &ROUND_16_xx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; bb,>= $Tbl,31,L\$rounds ; end of $Tbl signalled? nop $POP `-$FRAME_MARKER-2*$SIZE_T`(%sp),$ctx ; restore arguments $POP `-$FRAME_MARKER-3*$SIZE_T`(%sp),$inp $POP `-$FRAME_MARKER-4*$SIZE_T`(%sp),$num ldo `-$rounds*$SZ-1`($Tbl),$Tbl ; rewind $Tbl $LD `0*$SZ`($ctx),@X[0] ; load context $LD `1*$SZ`($ctx),@X[1] $LD `2*$SZ`($ctx),@X[2] $LD `3*$SZ`($ctx),@X[3] $LD `4*$SZ`($ctx),@X[4] $LD `5*$SZ`($ctx),@X[5] addl @X[0],$A,$A $LD `6*$SZ`($ctx),@X[6] addl @X[1],$B,$B $LD `7*$SZ`($ctx),@X[7] ldo `16*$SZ`($inp),$inp ; advance $inp $ST $A,`0*$SZ`($ctx) ; save context addl @X[2],$C,$C $ST $B,`1*$SZ`($ctx) addl @X[3],$D,$D $ST $C,`2*$SZ`($ctx) addl @X[4],$E,$E $ST $D,`3*$SZ`($ctx) addl @X[5],$F,$F $ST $E,`4*$SZ`($ctx) addl @X[6],$G,$G $ST $F,`5*$SZ`($ctx) addl @X[7],$H,$H $ST $G,`6*$SZ`($ctx) $ST $H,`7*$SZ`($ctx) cmpb,*<>,n $inp,$num,L\$oop $PUSH $inp,`-$FRAME_MARKER-3*$SIZE_T`(%sp) ; save $inp ___ if ($SZ==8 && $SIZE_T==4) # SHA512 for 32-bit PA-RISC 1.0 {{ $code.=<<___; b L\$done nop .ALIGN 64 L\$parisc1 ___ @V=( $Ahi, $Alo, $Bhi, $Blo, $Chi, $Clo, $Dhi, $Dlo, $Ehi, $Elo, $Fhi, $Flo, $Ghi, $Glo, $Hhi, $Hlo) = ( "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", "%r8", "%r9","%r10","%r11","%r12","%r13","%r14","%r15","%r16"); $a0 ="%r17"; $a1 ="%r18"; $a2 ="%r19"; $a3 ="%r20"; $t0 ="%r21"; $t1 ="%r22"; $t2 ="%r28"; $t3 ="%r29"; $Tbl="%r31"; @X=("%r23","%r24","%r25","%r26"); # zaps $num,$inp,$ctx sub ROUND_00_15_pa1 { my ($i,$ahi,$alo,$bhi,$blo,$chi,$clo,$dhi,$dlo, $ehi,$elo,$fhi,$flo,$ghi,$glo,$hhi,$hlo,$flag)=@_; my ($Xhi,$Xlo,$Xnhi,$Xnlo) = @X; $code.=<<___ if (!$flag); ldw `-$XOFF+8*(($i+1)%16)`(%sp),$Xnhi ldw `-$XOFF+8*(($i+1)%16)+4`(%sp),$Xnlo ; load X[i+1] ___ $code.=<<___; shd $ehi,$elo,$Sigma1[0],$t0 add $Xlo,$hlo,$hlo shd $elo,$ehi,$Sigma1[0],$t1 addc $Xhi,$hhi,$hhi ; h += X[i] shd $ehi,$elo,$Sigma1[1],$t2 ldwm 8($Tbl),$Xhi shd $elo,$ehi,$Sigma1[1],$t3 ldw -4($Tbl),$Xlo ; load K[i] xor $t2,$t0,$t0 xor $t3,$t1,$t1 and $flo,$elo,$a0 and $fhi,$ehi,$a1 shd $ehi,$elo,$Sigma1[2],$t2 andcm $glo,$elo,$a2 shd $elo,$ehi,$Sigma1[2],$t3 andcm $ghi,$ehi,$a3 xor $t2,$t0,$t0 xor $t3,$t1,$t1 ; Sigma1(e) add $Xlo,$hlo,$hlo xor $a2,$a0,$a0 addc $Xhi,$hhi,$hhi ; h += K[i] xor $a3,$a1,$a1 ; Ch(e,f,g) add $t0,$hlo,$hlo shd $ahi,$alo,$Sigma0[0],$t0 addc $t1,$hhi,$hhi ; h += Sigma1(e) shd $alo,$ahi,$Sigma0[0],$t1 add $a0,$hlo,$hlo shd $ahi,$alo,$Sigma0[1],$t2 addc $a1,$hhi,$hhi ; h += Ch(e,f,g) shd $alo,$ahi,$Sigma0[1],$t3 xor $t2,$t0,$t0 xor $t3,$t1,$t1 shd $ahi,$alo,$Sigma0[2],$t2 and $alo,$blo,$a0 shd $alo,$ahi,$Sigma0[2],$t3 and $ahi,$bhi,$a1 xor $t2,$t0,$t0 xor $t3,$t1,$t1 ; Sigma0(a) and $alo,$clo,$a2 and $ahi,$chi,$a3 xor $a2,$a0,$a0 add $hlo,$dlo,$dlo xor $a3,$a1,$a1 addc $hhi,$dhi,$dhi ; d += h and $blo,$clo,$a2 add $t0,$hlo,$hlo and $bhi,$chi,$a3 addc $t1,$hhi,$hhi ; h += Sigma0(a) xor $a2,$a0,$a0 add $a0,$hlo,$hlo xor $a3,$a1,$a1 ; Maj(a,b,c) addc $a1,$hhi,$hhi ; h += Maj(a,b,c) ___ $code.=<<___ if ($i==15 && $flag); extru $Xlo,31,10,$Xlo comiclr,= $LAST10BITS,$Xlo,%r0 b L\$rounds_pa1 nop ___ push(@X,shift(@X)); push(@X,shift(@X)); } sub ROUND_16_xx_pa1 { my ($Xhi,$Xlo,$Xnhi,$Xnlo) = @X; my ($i)=shift; $i-=16; $code.=<<___; ldw `-$XOFF+8*(($i+1)%16)`(%sp),$Xnhi ldw `-$XOFF+8*(($i+1)%16)+4`(%sp),$Xnlo ; load X[i+1] ldw `-$XOFF+8*(($i+9)%16)`(%sp),$a1 ldw `-$XOFF+8*(($i+9)%16)+4`(%sp),$a0 ; load X[i+9] ldw `-$XOFF+8*(($i+14)%16)`(%sp),$a3 ldw `-$XOFF+8*(($i+14)%16)+4`(%sp),$a2 ; load X[i+14] shd $Xnhi,$Xnlo,$sigma0[0],$t0 shd $Xnlo,$Xnhi,$sigma0[0],$t1 add $a0,$Xlo,$Xlo shd $Xnhi,$Xnlo,$sigma0[1],$t2 addc $a1,$Xhi,$Xhi shd $Xnlo,$Xnhi,$sigma0[1],$t3 xor $t2,$t0,$t0 shd $Xnhi,$Xnlo,$sigma0[2],$t2 xor $t3,$t1,$t1 extru $Xnhi,`31-$sigma0[2]`,`32-$sigma0[2]`,$t3 xor $t2,$t0,$t0 shd $a3,$a2,$sigma1[0],$a0 xor $t3,$t1,$t1 ; sigma0(X[i+1)&0x0f]) shd $a2,$a3,$sigma1[0],$a1 add $t0,$Xlo,$Xlo shd $a3,$a2,$sigma1[1],$t2 addc $t1,$Xhi,$Xhi shd $a2,$a3,$sigma1[1],$t3 xor $t2,$a0,$a0 shd $a3,$a2,$sigma1[2],$t2 xor $t3,$a1,$a1 extru $a3,`31-$sigma1[2]`,`32-$sigma1[2]`,$t3 xor $t2,$a0,$a0 xor $t3,$a1,$a1 ; sigma0(X[i+14)&0x0f]) add $a0,$Xlo,$Xlo addc $a1,$Xhi,$Xhi stw $Xhi,`-$XOFF+8*($i%16)`(%sp) stw $Xlo,`-$XOFF+8*($i%16)+4`(%sp) ___ &ROUND_00_15_pa1($i,@_,1); } $code.=<<___; ldw `0*4`($ctx),$Ahi ; load context ldw `1*4`($ctx),$Alo ldw `2*4`($ctx),$Bhi ldw `3*4`($ctx),$Blo ldw `4*4`($ctx),$Chi ldw `5*4`($ctx),$Clo ldw `6*4`($ctx),$Dhi ldw `7*4`($ctx),$Dlo ldw `8*4`($ctx),$Ehi ldw `9*4`($ctx),$Elo ldw `10*4`($ctx),$Fhi ldw `11*4`($ctx),$Flo ldw `12*4`($ctx),$Ghi ldw `13*4`($ctx),$Glo ldw `14*4`($ctx),$Hhi ldw `15*4`($ctx),$Hlo extru $inp,31,2,$t0 sh3addl $t0,%r0,$t0 subi 32,$t0,$t0 mtctl $t0,%cr11 ; load %sar with align factor L\$oop_pa1 extru $inp,31,2,$a3 comib,= 0,$a3,L\$aligned_pa1 sub $inp,$a3,$inp ldw `0*4`($inp),$X[0] ldw `1*4`($inp),$X[1] ldw `2*4`($inp),$t2 ldw `3*4`($inp),$t3 ldw `4*4`($inp),$a0 ldw `5*4`($inp),$a1 ldw `6*4`($inp),$a2 ldw `7*4`($inp),$a3 vshd $X[0],$X[1],$X[0] vshd $X[1],$t2,$X[1] stw $X[0],`-$XOFF+0*4`(%sp) ldw `8*4`($inp),$t0 vshd $t2,$t3,$t2 stw $X[1],`-$XOFF+1*4`(%sp) ldw `9*4`($inp),$t1 vshd $t3,$a0,$t3 ___ { my @t=($t2,$t3,$a0,$a1,$a2,$a3,$t0,$t1); for ($i=2;$i<=(128/4-8);$i++) { $code.=<<___; stw $t[0],`-$XOFF+$i*4`(%sp) ldw `(8+$i)*4`($inp),$t[0] vshd $t[1],$t[2],$t[1] ___ push(@t,shift(@t)); } for (;$i<(128/4-1);$i++) { $code.=<<___; stw $t[0],`-$XOFF+$i*4`(%sp) vshd $t[1],$t[2],$t[1] ___ push(@t,shift(@t)); } $code.=<<___; b L\$collected_pa1 stw $t[0],`-$XOFF+$i*4`(%sp) ___ } $code.=<<___; L\$aligned_pa1 ldw `0*4`($inp),$X[0] ldw `1*4`($inp),$X[1] ldw `2*4`($inp),$t2 ldw `3*4`($inp),$t3 ldw `4*4`($inp),$a0 ldw `5*4`($inp),$a1 ldw `6*4`($inp),$a2 ldw `7*4`($inp),$a3 stw $X[0],`-$XOFF+0*4`(%sp) ldw `8*4`($inp),$t0 stw $X[1],`-$XOFF+1*4`(%sp) ldw `9*4`($inp),$t1 ___ { my @t=($t2,$t3,$a0,$a1,$a2,$a3,$t0,$t1); for ($i=2;$i<(128/4-8);$i++) { $code.=<<___; stw $t[0],`-$XOFF+$i*4`(%sp) ldw `(8+$i)*4`($inp),$t[0] ___ push(@t,shift(@t)); } for (;$i<128/4;$i++) { $code.=<<___; stw $t[0],`-$XOFF+$i*4`(%sp) ___ push(@t,shift(@t)); } $code.="L\$collected_pa1\n"; } for($i=0;$i<16;$i++) { &ROUND_00_15_pa1($i,@V); unshift(@V,pop(@V)); unshift(@V,pop(@V)); } $code.="L\$rounds_pa1\n"; for(;$i<32;$i++) { &ROUND_16_xx_pa1($i,@V); unshift(@V,pop(@V)); unshift(@V,pop(@V)); } $code.=<<___; $POP `-$FRAME_MARKER-2*$SIZE_T`(%sp),$ctx ; restore arguments $POP `-$FRAME_MARKER-3*$SIZE_T`(%sp),$inp $POP `-$FRAME_MARKER-4*$SIZE_T`(%sp),$num ldo `-$rounds*$SZ`($Tbl),$Tbl ; rewind $Tbl ldw `0*4`($ctx),$t1 ; update context ldw `1*4`($ctx),$t0 ldw `2*4`($ctx),$t3 ldw `3*4`($ctx),$t2 ldw `4*4`($ctx),$a1 ldw `5*4`($ctx),$a0 ldw `6*4`($ctx),$a3 add $t0,$Alo,$Alo ldw `7*4`($ctx),$a2 addc $t1,$Ahi,$Ahi ldw `8*4`($ctx),$t1 add $t2,$Blo,$Blo ldw `9*4`($ctx),$t0 addc $t3,$Bhi,$Bhi ldw `10*4`($ctx),$t3 add $a0,$Clo,$Clo ldw `11*4`($ctx),$t2 addc $a1,$Chi,$Chi ldw `12*4`($ctx),$a1 add $a2,$Dlo,$Dlo ldw `13*4`($ctx),$a0 addc $a3,$Dhi,$Dhi ldw `14*4`($ctx),$a3 add $t0,$Elo,$Elo ldw `15*4`($ctx),$a2 addc $t1,$Ehi,$Ehi stw $Ahi,`0*4`($ctx) add $t2,$Flo,$Flo stw $Alo,`1*4`($ctx) addc $t3,$Fhi,$Fhi stw $Bhi,`2*4`($ctx) add $a0,$Glo,$Glo stw $Blo,`3*4`($ctx) addc $a1,$Ghi,$Ghi stw $Chi,`4*4`($ctx) add $a2,$Hlo,$Hlo stw $Clo,`5*4`($ctx) addc $a3,$Hhi,$Hhi stw $Dhi,`6*4`($ctx) ldo `16*$SZ`($inp),$inp ; advance $inp stw $Dlo,`7*4`($ctx) stw $Ehi,`8*4`($ctx) stw $Elo,`9*4`($ctx) stw $Fhi,`10*4`($ctx) stw $Flo,`11*4`($ctx) stw $Ghi,`12*4`($ctx) stw $Glo,`13*4`($ctx) stw $Hhi,`14*4`($ctx) comb,= $inp,$num,L\$done stw $Hlo,`15*4`($ctx) b L\$oop_pa1 $PUSH $inp,`-$FRAME_MARKER-3*$SIZE_T`(%sp) ; save $inp L\$done ___ }} $code.=<<___; $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 $POP `-$FRAME+9*$SIZE_T`(%sp),%r12 $POP `-$FRAME+10*$SIZE_T`(%sp),%r13 $POP `-$FRAME+11*$SIZE_T`(%sp),%r14 $POP `-$FRAME+12*$SIZE_T`(%sp),%r15 $POP `-$FRAME+13*$SIZE_T`(%sp),%r16 $POP `-$FRAME+14*$SIZE_T`(%sp),%r17 $POP `-$FRAME+15*$SIZE_T`(%sp),%r18 bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .STRINGZ "SHA`64*$SZ` block transform for PA-RISC, CRYPTOGAMS by " ___ # Explicitly encode PA-RISC 2.0 instructions used in this module, so # that it can be compiled with .LEVEL 1.0. It should be noted that I # wouldn't have to do this, if GNU assembler understood .ALLOW 2.0 # directive... my $ldd = sub { my ($mod,$args) = @_; my $orig = "ldd$mod\t$args"; if ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 3 suffices { my $opcode=(0x14<<26)|($2<<21)|($3<<16)|(($1&0x1FF8)<<1)|(($1>>13)&1); $opcode|=(1<<3) if ($mod =~ /^,m/); $opcode|=(1<<2) if ($mod =~ /^,mb/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $std = sub { my ($mod,$args) = @_; my $orig = "std$mod\t$args"; if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 3 suffices { my $opcode=(0x1c<<26)|($3<<21)|($1<<16)|(($2&0x1FF8)<<1)|(($2>>13)&1); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $extrd = sub { my ($mod,$args) = @_; my $orig = "extrd$mod\t$args"; # I only have ",u" completer, it's implicitly encoded... if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15 { my $opcode=(0x36<<26)|($1<<21)|($4<<16); my $len=32-$3; $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12 { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9); my $len=32-$2; $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len $opcode |= (1<<13) if ($mod =~ /,\**=/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $shrpd = sub { my ($mod,$args) = @_; my $orig = "shrpd$mod\t$args"; if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14 { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4; my $cpos=63-$3; $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /%r([0-9]+),%r([0-9]+),%sar,%r([0-9]+)/) # format 11 { sprintf "\t.WORD\t0x%08x\t; %s", (0x34<<26)|($2<<21)|($1<<16)|(1<<9)|$3,$orig; } else { "\t".$orig; } }; sub assemble { my ($mnemonic,$mod,$args)=@_; my $opcode = eval("\$$mnemonic"); ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args"; } if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler/) { $gnuas = 1; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/shd\s+(%r[0-9]+),(%r[0-9]+),([0-9]+)/ $3>31 ? sprintf("shd\t%$2,%$1,%d",$3-32) # rotation for >=32 : sprintf("shd\t%$1,%$2,%d",$3)/e or # translate made up instructions: _ror, _shr, _align, _shl s/_ror(\s+)(%r[0-9]+),/ ($SZ==4 ? "shd" : "shrpd")."$1$2,$2,"/e or s/_shr(\s+%r[0-9]+),([0-9]+),/ $SZ==4 ? sprintf("extru%s,%d,%d,",$1,31-$2,32-$2) : sprintf("extrd,u%s,%d,%d,",$1,63-$2,64-$2)/e or s/_align(\s+%r[0-9]+,%r[0-9]+),/ ($SZ==4 ? "vshd$1," : "shrpd$1,%sar,")/e or s/_shl(\s+%r[0-9]+),([0-9]+),/ $SIZE_T==4 ? sprintf("zdep%s,%d,%d,",$1,31-$2,32-$2) : sprintf("depd,z%s,%d,%d,",$1,63-$2,64-$2)/e; s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($SIZE_T==4); s/(\.LEVEL\s+2\.0)W/$1w/ if ($gnuas && $SIZE_T==8); s/\.SPACE\s+\$TEXT\$/.text/ if ($gnuas && $SIZE_T==8); s/\.SUBSPA.*// if ($gnuas && $SIZE_T==8); s/cmpb,\*/comb,/ if ($SIZE_T==4); s/\bbv\b/bve/ if ($SIZE_T==8); print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-ppc.pl000077500000000000000000000514421364063235100203520ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # I let hardware handle unaligned input, except on page boundaries # (see below for details). Otherwise straightforward implementation # with X vector in register bank. # sha256 | sha512 # -m64 -m32 | -m64 -m32 # --------------------------------------+----------------------- # PPC970,gcc-4.0.0 +50% +38% | +40% +410%(*) # Power6,xlc-7 +150% +90% | +100% +430%(*) # # (*) 64-bit code in 32-bit application context, which actually is # on TODO list. It should be noted that for safe deployment in # 32-bit *multi-threaded* context asynchronous signals should be # blocked upon entry to SHA512 block routine. This is because # 32-bit signaling procedure invalidates upper halves of GPRs. # Context switch procedure preserves them, but not signaling:-( # Second version is true multi-thread safe. Trouble with the original # version was that it was using thread local storage pointer register. # Well, it scrupulously preserved it, but the problem would arise the # moment asynchronous signal was delivered and signal handler would # dereference the TLS pointer. While it's never the case in openssl # application or test suite, we have to respect this scenario and not # use TLS pointer register. Alternative would be to require caller to # block signals prior calling this routine. For the record, in 32-bit # context R2 serves as TLS pointer, while in 64-bit context - R13. $flavour=shift; $output =shift; if ($flavour =~ /64/) { $SIZE_T=8; $LRSAVE=2*$SIZE_T; $STU="stdu"; $UCMP="cmpld"; $SHL="sldi"; $POP="ld"; $PUSH="std"; } elsif ($flavour =~ /32/) { $SIZE_T=4; $LRSAVE=$SIZE_T; $STU="stwu"; $UCMP="cmplw"; $SHL="slwi"; $POP="lwz"; $PUSH="stw"; } else { die "nonsense $flavour"; } $LITTLE_ENDIAN = ($flavour=~/le$/) ? $SIZE_T : 0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!"; if ($output =~ /512/) { $func="sha512_block_ppc"; $SZ=8; @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=(1, 8, 7); @sigma1=(19,61, 6); $rounds=80; $LD="ld"; $ST="std"; $ROR="rotrdi"; $SHR="srdi"; } else { $func="sha256_block_ppc"; $SZ=4; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; $LD="lwz"; $ST="stw"; $ROR="rotrwi"; $SHR="srwi"; } $FRAME=32*$SIZE_T+16*$SZ; $LOCALS=6*$SIZE_T; $sp ="r1"; $toc="r2"; $ctx="r3"; # zapped by $a0 $inp="r4"; # zapped by $a1 $num="r5"; # zapped by $t0 $T ="r0"; $a0 ="r3"; $a1 ="r4"; $t0 ="r5"; $t1 ="r6"; $Tbl="r7"; $A ="r8"; $B ="r9"; $C ="r10"; $D ="r11"; $E ="r12"; $F =$t1; $t1 = "r0"; # stay away from "r13"; $G ="r14"; $H ="r15"; @V=($A,$B,$C,$D,$E,$F,$G,$H); @X=("r16","r17","r18","r19","r20","r21","r22","r23", "r24","r25","r26","r27","r28","r29","r30","r31"); $inp="r31" if($SZ==4 || $SIZE_T==8); # reassigned $inp! aliases with @X[15] sub ROUND_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; $code.=<<___; $ROR $a0,$e,$Sigma1[0] $ROR $a1,$e,$Sigma1[1] and $t0,$f,$e xor $a0,$a0,$a1 add $h,$h,$t1 andc $t1,$g,$e $ROR $a1,$a1,`$Sigma1[2]-$Sigma1[1]` or $t0,$t0,$t1 ; Ch(e,f,g) add $h,$h,@X[$i%16] xor $a0,$a0,$a1 ; Sigma1(e) add $h,$h,$t0 add $h,$h,$a0 $ROR $a0,$a,$Sigma0[0] $ROR $a1,$a,$Sigma0[1] and $t0,$a,$b and $t1,$a,$c xor $a0,$a0,$a1 $ROR $a1,$a1,`$Sigma0[2]-$Sigma0[1]` xor $t0,$t0,$t1 and $t1,$b,$c xor $a0,$a0,$a1 ; Sigma0(a) add $d,$d,$h xor $t0,$t0,$t1 ; Maj(a,b,c) ___ $code.=<<___ if ($i<15); $LD $t1,`($i+1)*$SZ`($Tbl) ___ $code.=<<___; add $h,$h,$a0 add $h,$h,$t0 ___ } sub ROUND_16_xx { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; $i-=16; $code.=<<___; $ROR $a0,@X[($i+1)%16],$sigma0[0] $ROR $a1,@X[($i+1)%16],$sigma0[1] $ROR $t0,@X[($i+14)%16],$sigma1[0] $ROR $t1,@X[($i+14)%16],$sigma1[1] xor $a0,$a0,$a1 $SHR $a1,@X[($i+1)%16],$sigma0[2] xor $t0,$t0,$t1 $SHR $t1,@X[($i+14)%16],$sigma1[2] add @X[$i],@X[$i],@X[($i+9)%16] xor $a0,$a0,$a1 ; sigma0(X[(i+1)&0x0f]) xor $t0,$t0,$t1 ; sigma1(X[(i+14)&0x0f]) $LD $t1,`$i*$SZ`($Tbl) add @X[$i],@X[$i],$a0 add @X[$i],@X[$i],$t0 ___ &ROUND_00_15($i+16,$a,$b,$c,$d,$e,$f,$g,$h); } $code=<<___; .machine "any" .text .globl $func .align 6 $func: $STU $sp,-$FRAME($sp) mflr r0 $SHL $num,$num,`log(16*$SZ)/log(2)` $PUSH $ctx,`$FRAME-$SIZE_T*22`($sp) $PUSH r14,`$FRAME-$SIZE_T*18`($sp) $PUSH r15,`$FRAME-$SIZE_T*17`($sp) $PUSH r16,`$FRAME-$SIZE_T*16`($sp) $PUSH r17,`$FRAME-$SIZE_T*15`($sp) $PUSH r18,`$FRAME-$SIZE_T*14`($sp) $PUSH r19,`$FRAME-$SIZE_T*13`($sp) $PUSH r20,`$FRAME-$SIZE_T*12`($sp) $PUSH r21,`$FRAME-$SIZE_T*11`($sp) $PUSH r22,`$FRAME-$SIZE_T*10`($sp) $PUSH r23,`$FRAME-$SIZE_T*9`($sp) $PUSH r24,`$FRAME-$SIZE_T*8`($sp) $PUSH r25,`$FRAME-$SIZE_T*7`($sp) $PUSH r26,`$FRAME-$SIZE_T*6`($sp) $PUSH r27,`$FRAME-$SIZE_T*5`($sp) $PUSH r28,`$FRAME-$SIZE_T*4`($sp) $PUSH r29,`$FRAME-$SIZE_T*3`($sp) $PUSH r30,`$FRAME-$SIZE_T*2`($sp) $PUSH r31,`$FRAME-$SIZE_T*1`($sp) $PUSH r0,`$FRAME+$LRSAVE`($sp) ___ if ($SZ==4 || $SIZE_T==8) { $code.=<<___; $LD $A,`0*$SZ`($ctx) mr $inp,r4 ; incarnate $inp $LD $B,`1*$SZ`($ctx) $LD $C,`2*$SZ`($ctx) $LD $D,`3*$SZ`($ctx) $LD $E,`4*$SZ`($ctx) $LD $F,`5*$SZ`($ctx) $LD $G,`6*$SZ`($ctx) $LD $H,`7*$SZ`($ctx) ___ } else { for ($i=16;$i<32;$i++) { $code.=<<___; lwz r$i,`$LITTLE_ENDIAN^(4*($i-16))`($ctx) ___ } } $code.=<<___; bl LPICmeup LPICedup: andi. r0,$inp,3 bne Lunaligned Laligned: add $num,$inp,$num $PUSH $num,`$FRAME-$SIZE_T*24`($sp) ; end pointer $PUSH $inp,`$FRAME-$SIZE_T*23`($sp) ; inp pointer bl Lsha2_block_private b Ldone ; PowerPC specification allows an implementation to be ill-behaved ; upon unaligned access which crosses page boundary. "Better safe ; than sorry" principle makes me treat it specially. But I don't ; look for particular offending word, but rather for the input ; block which crosses the boundary. Once found that block is aligned ; and hashed separately... .align 4 Lunaligned: subfic $t1,$inp,4096 andi. $t1,$t1,`4096-16*$SZ` ; distance to closest page boundary beq Lcross_page $UCMP $num,$t1 ble Laligned ; didn't cross the page boundary subfc $num,$t1,$num add $t1,$inp,$t1 $PUSH $num,`$FRAME-$SIZE_T*25`($sp) ; save real remaining num $PUSH $t1,`$FRAME-$SIZE_T*24`($sp) ; intermediate end pointer $PUSH $inp,`$FRAME-$SIZE_T*23`($sp) ; inp pointer bl Lsha2_block_private ; $inp equals to the intermediate end pointer here $POP $num,`$FRAME-$SIZE_T*25`($sp) ; restore real remaining num Lcross_page: li $t1,`16*$SZ/4` mtctr $t1 ___ if ($SZ==4 || $SIZE_T==8) { $code.=<<___; addi r20,$sp,$LOCALS ; aligned spot below the frame Lmemcpy: lbz r16,0($inp) lbz r17,1($inp) lbz r18,2($inp) lbz r19,3($inp) addi $inp,$inp,4 stb r16,0(r20) stb r17,1(r20) stb r18,2(r20) stb r19,3(r20) addi r20,r20,4 bdnz Lmemcpy ___ } else { $code.=<<___; addi r12,$sp,$LOCALS ; aligned spot below the frame Lmemcpy: lbz r8,0($inp) lbz r9,1($inp) lbz r10,2($inp) lbz r11,3($inp) addi $inp,$inp,4 stb r8,0(r12) stb r9,1(r12) stb r10,2(r12) stb r11,3(r12) addi r12,r12,4 bdnz Lmemcpy ___ } $code.=<<___; $PUSH $inp,`$FRAME-$SIZE_T*26`($sp) ; save real inp addi $t1,$sp,`$LOCALS+16*$SZ` ; fictitious end pointer addi $inp,$sp,$LOCALS ; fictitious inp pointer $PUSH $num,`$FRAME-$SIZE_T*25`($sp) ; save real num $PUSH $t1,`$FRAME-$SIZE_T*24`($sp) ; end pointer $PUSH $inp,`$FRAME-$SIZE_T*23`($sp) ; inp pointer bl Lsha2_block_private $POP $inp,`$FRAME-$SIZE_T*26`($sp) ; restore real inp $POP $num,`$FRAME-$SIZE_T*25`($sp) ; restore real num addic. $num,$num,`-16*$SZ` ; num-- bne Lunaligned Ldone: $POP r0,`$FRAME+$LRSAVE`($sp) $POP r14,`$FRAME-$SIZE_T*18`($sp) $POP r15,`$FRAME-$SIZE_T*17`($sp) $POP r16,`$FRAME-$SIZE_T*16`($sp) $POP r17,`$FRAME-$SIZE_T*15`($sp) $POP r18,`$FRAME-$SIZE_T*14`($sp) $POP r19,`$FRAME-$SIZE_T*13`($sp) $POP r20,`$FRAME-$SIZE_T*12`($sp) $POP r21,`$FRAME-$SIZE_T*11`($sp) $POP r22,`$FRAME-$SIZE_T*10`($sp) $POP r23,`$FRAME-$SIZE_T*9`($sp) $POP r24,`$FRAME-$SIZE_T*8`($sp) $POP r25,`$FRAME-$SIZE_T*7`($sp) $POP r26,`$FRAME-$SIZE_T*6`($sp) $POP r27,`$FRAME-$SIZE_T*5`($sp) $POP r28,`$FRAME-$SIZE_T*4`($sp) $POP r29,`$FRAME-$SIZE_T*3`($sp) $POP r30,`$FRAME-$SIZE_T*2`($sp) $POP r31,`$FRAME-$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,18,3,0 .long 0 ___ if ($SZ==4 || $SIZE_T==8) { $code.=<<___; .align 4 Lsha2_block_private: $LD $t1,0($Tbl) ___ for($i=0;$i<16;$i++) { $code.=<<___ if ($SZ==4 && !$LITTLE_ENDIAN); lwz @X[$i],`$i*$SZ`($inp) ___ $code.=<<___ if ($SZ==4 && $LITTLE_ENDIAN); lwz $a0,`$i*$SZ`($inp) rotlwi @X[$i],$a0,8 rlwimi @X[$i],$a0,24,0,7 rlwimi @X[$i],$a0,24,16,23 ___ # 64-bit loads are split to 2x32-bit ones, as CPU can't handle # unaligned 64-bit loads, only 32-bit ones... $code.=<<___ if ($SZ==8 && !$LITTLE_ENDIAN); lwz $t0,`$i*$SZ`($inp) lwz @X[$i],`$i*$SZ+4`($inp) insrdi @X[$i],$t0,32,0 ___ $code.=<<___ if ($SZ==8 && $LITTLE_ENDIAN); lwz $a0,`$i*$SZ`($inp) lwz $a1,`$i*$SZ+4`($inp) rotlwi $t0,$a0,8 rotlwi @X[$i],$a1,8 rlwimi $t0,$a0,24,0,7 rlwimi @X[$i],$a1,24,0,7 rlwimi $t0,$a0,24,16,23 rlwimi @X[$i],$a1,24,16,23 insrdi @X[$i],$t0,32,0 ___ &ROUND_00_15($i,@V); unshift(@V,pop(@V)); } $code.=<<___; li $t0,`$rounds/16-1` mtctr $t0 .align 4 Lrounds: addi $Tbl,$Tbl,`16*$SZ` ___ for(;$i<32;$i++) { &ROUND_16_xx($i,@V); unshift(@V,pop(@V)); } $code.=<<___; bdnz Lrounds $POP $ctx,`$FRAME-$SIZE_T*22`($sp) $POP $inp,`$FRAME-$SIZE_T*23`($sp) ; inp pointer $POP $num,`$FRAME-$SIZE_T*24`($sp) ; end pointer subi $Tbl,$Tbl,`($rounds-16)*$SZ` ; rewind Tbl $LD r16,`0*$SZ`($ctx) $LD r17,`1*$SZ`($ctx) $LD r18,`2*$SZ`($ctx) $LD r19,`3*$SZ`($ctx) $LD r20,`4*$SZ`($ctx) $LD r21,`5*$SZ`($ctx) $LD r22,`6*$SZ`($ctx) addi $inp,$inp,`16*$SZ` ; advance inp $LD r23,`7*$SZ`($ctx) add $A,$A,r16 add $B,$B,r17 $PUSH $inp,`$FRAME-$SIZE_T*23`($sp) add $C,$C,r18 $ST $A,`0*$SZ`($ctx) add $D,$D,r19 $ST $B,`1*$SZ`($ctx) add $E,$E,r20 $ST $C,`2*$SZ`($ctx) add $F,$F,r21 $ST $D,`3*$SZ`($ctx) add $G,$G,r22 $ST $E,`4*$SZ`($ctx) add $H,$H,r23 $ST $F,`5*$SZ`($ctx) $ST $G,`6*$SZ`($ctx) $UCMP $inp,$num $ST $H,`7*$SZ`($ctx) bne Lsha2_block_private blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .size $func,.-$func ___ } else { ######################################################################## # SHA512 for PPC32, X vector is off-loaded to stack... # # | sha512 # | -m32 # ----------------------+----------------------- # PPC74x0,gcc-4.0.1 | +48% # POWER6,gcc-4.4.6 | +124%(*) # POWER7,gcc-4.4.6 | +79%(*) # e300,gcc-4.1.0 | +167% # # (*) ~1/3 of -m64 result [and ~20% better than -m32 code generated # by xlc-12.1] my $XOFF=$LOCALS; my @V=map("r$_",(16..31)); # A..H my ($s0,$s1,$t0,$t1,$t2,$t3,$a0,$a1,$a2,$a3)=map("r$_",(0,5,6,8..12,14,15)); my ($x0,$x1)=("r3","r4"); # zaps $ctx and $inp sub ROUND_00_15_ppc32 { my ($i, $ahi,$alo,$bhi,$blo,$chi,$clo,$dhi,$dlo, $ehi,$elo,$fhi,$flo,$ghi,$glo,$hhi,$hlo)=@_; $code.=<<___; lwz $t2,`$SZ*($i%16)+($LITTLE_ENDIAN^4)`($Tbl) xor $a0,$flo,$glo lwz $t3,`$SZ*($i%16)+($LITTLE_ENDIAN^0)`($Tbl) xor $a1,$fhi,$ghi addc $hlo,$hlo,$t0 ; h+=x[i] stw $t0,`$XOFF+0+$SZ*($i%16)`($sp) ; save x[i] srwi $s0,$elo,$Sigma1[0] srwi $s1,$ehi,$Sigma1[0] and $a0,$a0,$elo adde $hhi,$hhi,$t1 and $a1,$a1,$ehi stw $t1,`$XOFF+4+$SZ*($i%16)`($sp) srwi $t0,$elo,$Sigma1[1] srwi $t1,$ehi,$Sigma1[1] addc $hlo,$hlo,$t2 ; h+=K512[i] insrwi $s0,$ehi,$Sigma1[0],0 insrwi $s1,$elo,$Sigma1[0],0 xor $a0,$a0,$glo ; Ch(e,f,g) adde $hhi,$hhi,$t3 xor $a1,$a1,$ghi insrwi $t0,$ehi,$Sigma1[1],0 insrwi $t1,$elo,$Sigma1[1],0 addc $hlo,$hlo,$a0 ; h+=Ch(e,f,g) srwi $t2,$ehi,$Sigma1[2]-32 srwi $t3,$elo,$Sigma1[2]-32 xor $s0,$s0,$t0 xor $s1,$s1,$t1 insrwi $t2,$elo,$Sigma1[2]-32,0 insrwi $t3,$ehi,$Sigma1[2]-32,0 xor $a0,$alo,$blo ; a^b, b^c in next round adde $hhi,$hhi,$a1 xor $a1,$ahi,$bhi xor $s0,$s0,$t2 ; Sigma1(e) xor $s1,$s1,$t3 srwi $t0,$alo,$Sigma0[0] and $a2,$a2,$a0 addc $hlo,$hlo,$s0 ; h+=Sigma1(e) and $a3,$a3,$a1 srwi $t1,$ahi,$Sigma0[0] srwi $s0,$ahi,$Sigma0[1]-32 adde $hhi,$hhi,$s1 srwi $s1,$alo,$Sigma0[1]-32 insrwi $t0,$ahi,$Sigma0[0],0 insrwi $t1,$alo,$Sigma0[0],0 xor $a2,$a2,$blo ; Maj(a,b,c) addc $dlo,$dlo,$hlo ; d+=h xor $a3,$a3,$bhi insrwi $s0,$alo,$Sigma0[1]-32,0 insrwi $s1,$ahi,$Sigma0[1]-32,0 adde $dhi,$dhi,$hhi srwi $t2,$ahi,$Sigma0[2]-32 srwi $t3,$alo,$Sigma0[2]-32 xor $s0,$s0,$t0 addc $hlo,$hlo,$a2 ; h+=Maj(a,b,c) xor $s1,$s1,$t1 insrwi $t2,$alo,$Sigma0[2]-32,0 insrwi $t3,$ahi,$Sigma0[2]-32,0 adde $hhi,$hhi,$a3 ___ $code.=<<___ if ($i>=15); lwz $t0,`$XOFF+0+$SZ*(($i+2)%16)`($sp) lwz $t1,`$XOFF+4+$SZ*(($i+2)%16)`($sp) ___ $code.=<<___ if ($i<15 && !$LITTLE_ENDIAN); lwz $t1,`$SZ*($i+1)+0`($inp) lwz $t0,`$SZ*($i+1)+4`($inp) ___ $code.=<<___ if ($i<15 && $LITTLE_ENDIAN); lwz $a2,`$SZ*($i+1)+0`($inp) lwz $a3,`$SZ*($i+1)+4`($inp) rotlwi $t1,$a2,8 rotlwi $t0,$a3,8 rlwimi $t1,$a2,24,0,7 rlwimi $t0,$a3,24,0,7 rlwimi $t1,$a2,24,16,23 rlwimi $t0,$a3,24,16,23 ___ $code.=<<___; xor $s0,$s0,$t2 ; Sigma0(a) xor $s1,$s1,$t3 addc $hlo,$hlo,$s0 ; h+=Sigma0(a) adde $hhi,$hhi,$s1 ___ $code.=<<___ if ($i==15); lwz $x0,`$XOFF+0+$SZ*(($i+1)%16)`($sp) lwz $x1,`$XOFF+4+$SZ*(($i+1)%16)`($sp) ___ } sub ROUND_16_xx_ppc32 { my ($i, $ahi,$alo,$bhi,$blo,$chi,$clo,$dhi,$dlo, $ehi,$elo,$fhi,$flo,$ghi,$glo,$hhi,$hlo)=@_; $code.=<<___; srwi $s0,$t0,$sigma0[0] srwi $s1,$t1,$sigma0[0] srwi $t2,$t0,$sigma0[1] srwi $t3,$t1,$sigma0[1] insrwi $s0,$t1,$sigma0[0],0 insrwi $s1,$t0,$sigma0[0],0 srwi $a0,$t0,$sigma0[2] insrwi $t2,$t1,$sigma0[1],0 insrwi $t3,$t0,$sigma0[1],0 insrwi $a0,$t1,$sigma0[2],0 xor $s0,$s0,$t2 lwz $t2,`$XOFF+0+$SZ*(($i+14)%16)`($sp) srwi $a1,$t1,$sigma0[2] xor $s1,$s1,$t3 lwz $t3,`$XOFF+4+$SZ*(($i+14)%16)`($sp) xor $a0,$a0,$s0 srwi $s0,$t2,$sigma1[0] xor $a1,$a1,$s1 srwi $s1,$t3,$sigma1[0] addc $x0,$x0,$a0 ; x[i]+=sigma0(x[i+1]) srwi $a0,$t3,$sigma1[1]-32 insrwi $s0,$t3,$sigma1[0],0 insrwi $s1,$t2,$sigma1[0],0 adde $x1,$x1,$a1 srwi $a1,$t2,$sigma1[1]-32 insrwi $a0,$t2,$sigma1[1]-32,0 srwi $t2,$t2,$sigma1[2] insrwi $a1,$t3,$sigma1[1]-32,0 insrwi $t2,$t3,$sigma1[2],0 xor $s0,$s0,$a0 lwz $a0,`$XOFF+0+$SZ*(($i+9)%16)`($sp) srwi $t3,$t3,$sigma1[2] xor $s1,$s1,$a1 lwz $a1,`$XOFF+4+$SZ*(($i+9)%16)`($sp) xor $s0,$s0,$t2 addc $x0,$x0,$a0 ; x[i]+=x[i+9] xor $s1,$s1,$t3 adde $x1,$x1,$a1 addc $x0,$x0,$s0 ; x[i]+=sigma1(x[i+14]) adde $x1,$x1,$s1 ___ ($t0,$t1,$x0,$x1) = ($x0,$x1,$t0,$t1); &ROUND_00_15_ppc32(@_); } $code.=<<___; .align 4 Lsha2_block_private: ___ $code.=<<___ if (!$LITTLE_ENDIAN); lwz $t1,0($inp) xor $a2,@V[3],@V[5] ; B^C, magic seed lwz $t0,4($inp) xor $a3,@V[2],@V[4] ___ $code.=<<___ if ($LITTLE_ENDIAN); lwz $a1,0($inp) xor $a2,@V[3],@V[5] ; B^C, magic seed lwz $a0,4($inp) xor $a3,@V[2],@V[4] rotlwi $t1,$a1,8 rotlwi $t0,$a0,8 rlwimi $t1,$a1,24,0,7 rlwimi $t0,$a0,24,0,7 rlwimi $t1,$a1,24,16,23 rlwimi $t0,$a0,24,16,23 ___ for($i=0;$i<16;$i++) { &ROUND_00_15_ppc32($i,@V); unshift(@V,pop(@V)); unshift(@V,pop(@V)); ($a0,$a1,$a2,$a3) = ($a2,$a3,$a0,$a1); } $code.=<<___; li $a0,`$rounds/16-1` mtctr $a0 .align 4 Lrounds: addi $Tbl,$Tbl,`16*$SZ` ___ for(;$i<32;$i++) { &ROUND_16_xx_ppc32($i,@V); unshift(@V,pop(@V)); unshift(@V,pop(@V)); ($a0,$a1,$a2,$a3) = ($a2,$a3,$a0,$a1); } $code.=<<___; bdnz Lrounds $POP $ctx,`$FRAME-$SIZE_T*22`($sp) $POP $inp,`$FRAME-$SIZE_T*23`($sp) ; inp pointer $POP $num,`$FRAME-$SIZE_T*24`($sp) ; end pointer subi $Tbl,$Tbl,`($rounds-16)*$SZ` ; rewind Tbl lwz $t0,`$LITTLE_ENDIAN^0`($ctx) lwz $t1,`$LITTLE_ENDIAN^4`($ctx) lwz $t2,`$LITTLE_ENDIAN^8`($ctx) lwz $t3,`$LITTLE_ENDIAN^12`($ctx) lwz $a0,`$LITTLE_ENDIAN^16`($ctx) lwz $a1,`$LITTLE_ENDIAN^20`($ctx) lwz $a2,`$LITTLE_ENDIAN^24`($ctx) addc @V[1],@V[1],$t1 lwz $a3,`$LITTLE_ENDIAN^28`($ctx) adde @V[0],@V[0],$t0 lwz $t0,`$LITTLE_ENDIAN^32`($ctx) addc @V[3],@V[3],$t3 lwz $t1,`$LITTLE_ENDIAN^36`($ctx) adde @V[2],@V[2],$t2 lwz $t2,`$LITTLE_ENDIAN^40`($ctx) addc @V[5],@V[5],$a1 lwz $t3,`$LITTLE_ENDIAN^44`($ctx) adde @V[4],@V[4],$a0 lwz $a0,`$LITTLE_ENDIAN^48`($ctx) addc @V[7],@V[7],$a3 lwz $a1,`$LITTLE_ENDIAN^52`($ctx) adde @V[6],@V[6],$a2 lwz $a2,`$LITTLE_ENDIAN^56`($ctx) addc @V[9],@V[9],$t1 lwz $a3,`$LITTLE_ENDIAN^60`($ctx) adde @V[8],@V[8],$t0 stw @V[0],`$LITTLE_ENDIAN^0`($ctx) stw @V[1],`$LITTLE_ENDIAN^4`($ctx) addc @V[11],@V[11],$t3 stw @V[2],`$LITTLE_ENDIAN^8`($ctx) stw @V[3],`$LITTLE_ENDIAN^12`($ctx) adde @V[10],@V[10],$t2 stw @V[4],`$LITTLE_ENDIAN^16`($ctx) stw @V[5],`$LITTLE_ENDIAN^20`($ctx) addc @V[13],@V[13],$a1 stw @V[6],`$LITTLE_ENDIAN^24`($ctx) stw @V[7],`$LITTLE_ENDIAN^28`($ctx) adde @V[12],@V[12],$a0 stw @V[8],`$LITTLE_ENDIAN^32`($ctx) stw @V[9],`$LITTLE_ENDIAN^36`($ctx) addc @V[15],@V[15],$a3 stw @V[10],`$LITTLE_ENDIAN^40`($ctx) stw @V[11],`$LITTLE_ENDIAN^44`($ctx) adde @V[14],@V[14],$a2 stw @V[12],`$LITTLE_ENDIAN^48`($ctx) stw @V[13],`$LITTLE_ENDIAN^52`($ctx) stw @V[14],`$LITTLE_ENDIAN^56`($ctx) stw @V[15],`$LITTLE_ENDIAN^60`($ctx) addi $inp,$inp,`16*$SZ` ; advance inp $PUSH $inp,`$FRAME-$SIZE_T*23`($sp) $UCMP $inp,$num bne Lsha2_block_private blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .size $func,.-$func ___ } # Ugly hack here, because PPC assembler syntax seem to vary too # much from platforms to platform... $code.=<<___; .align 6 LPICmeup: mflr r0 bcl 20,31,\$+4 mflr $Tbl ; vvvvvv "distance" between . and 1st data entry addi $Tbl,$Tbl,`64-8` mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `64-9*4` ___ $code.=<<___ if ($SZ==8); .quad 0x428a2f98d728ae22,0x7137449123ef65cd .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc .quad 0x3956c25bf348b538,0x59f111f1b605d019 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 .quad 0xd807aa98a3030242,0x12835b0145706fbe .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 .quad 0x06ca6351e003826f,0x142929670a0e6e70 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 .quad 0x81c2c92e47edaee6,0x92722c851482353b .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 .quad 0xd192e819d6ef5218,0xd69906245565a910 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec .quad 0x90befffa23631e28,0xa4506cebde82bde9 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b .quad 0xca273eceea26619c,0xd186b8c721c0c207 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 .quad 0x113f9804bef90dae,0x1b710b35131c471b .quad 0x28db77f523047d84,0x32caab7b40c72493 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 ___ $code.=<<___ if ($SZ==4); .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-s390x.pl000066400000000000000000000220741364063235100204520ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA256/512 block procedures for s390x. # April 2007. # # sha256_block_data_order is reportedly >3 times faster than gcc 3.3 # generated code (must be a bug in compiler, as improvement is # "pathologically" high, in particular in comparison to other SHA # modules). But the real twist is that it detects if hardware support # for SHA256 is available and in such case utilizes it. Then the # performance can reach >6.5x of assembler one for larger chunks. # # sha512_block_data_order is ~70% faster than gcc 3.3 generated code. # January 2009. # # Add support for hardware SHA512 and reschedule instructions to # favour dual-issue z10 pipeline. Hardware SHA256/512 is ~4.7x faster # than software. # November 2010. # # Adapt for -m31 build. If kernel supports what's called "highgprs" # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit # instructions and achieve "64-bit" performance even in 31-bit legacy # application context. The feature is not specific to any particular # processor, as long as it's "z-CPU". Latter implies that the code # remains z/Architecture specific. On z990 SHA256 was measured to # perform 2.4x and SHA512 - 13x better than code generated by gcc 4.3. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } $t0="%r0"; $t1="%r1"; $ctx="%r2"; $t2="%r2"; $inp="%r3"; $len="%r4"; # used as index in inner loop $A="%r5"; $B="%r6"; $C="%r7"; $D="%r8"; $E="%r9"; $F="%r10"; $G="%r11"; $H="%r12"; @V=($A,$B,$C,$D,$E,$F,$G,$H); $tbl="%r13"; $T1="%r14"; $sp="%r15"; while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; if ($output =~ /512/) { $label="512"; $SZ=8; $LD="lg"; # load from memory $ST="stg"; # store to memory $ADD="alg"; # add with memory operand $ROT="rllg"; # rotate left $SHR="srlg"; # logical right shift [see even at the end] @Sigma0=(25,30,36); @Sigma1=(23,46,50); @sigma0=(56,63, 7); @sigma1=( 3,45, 6); $rounds=80; $kimdfunc=3; # 0 means unknown/unsupported/unimplemented/disabled } else { $label="256"; $SZ=4; $LD="llgf"; # load from memory $ST="st"; # store to memory $ADD="al"; # add with memory operand $ROT="rll"; # rotate left $SHR="srl"; # logical right shift @Sigma0=(10,19,30); @Sigma1=( 7,21,26); @sigma0=(14,25, 3); @sigma1=(13,15,10); $rounds=64; $kimdfunc=2; # magic function code for kimd instruction } $Func="sha${label}_block_data_order"; $Table="K${label}"; $stdframe=16*$SIZE_T+4*8; $frame=$stdframe+16*$SZ; sub BODY_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; $code.=<<___ if ($i<16); $LD $T1,`$i*$SZ`($inp) ### $i ___ $code.=<<___; $ROT $t0,$e,$Sigma1[0] $ROT $t1,$e,$Sigma1[1] lgr $t2,$f xgr $t0,$t1 $ROT $t1,$t1,`$Sigma1[2]-$Sigma1[1]` xgr $t2,$g $ST $T1,`$stdframe+$SZ*($i%16)`($sp) xgr $t0,$t1 # Sigma1(e) algr $T1,$h # T1+=h ngr $t2,$e lgr $t1,$a algr $T1,$t0 # T1+=Sigma1(e) $ROT $h,$a,$Sigma0[0] xgr $t2,$g # Ch(e,f,g) $ADD $T1,`$i*$SZ`($len,$tbl) # T1+=K[i] $ROT $t0,$a,$Sigma0[1] algr $T1,$t2 # T1+=Ch(e,f,g) ogr $t1,$b xgr $h,$t0 lgr $t2,$a ngr $t1,$c $ROT $t0,$t0,`$Sigma0[2]-$Sigma0[1]` xgr $h,$t0 # h=Sigma0(a) ngr $t2,$b algr $h,$T1 # h+=T1 ogr $t2,$t1 # Maj(a,b,c) algr $d,$T1 # d+=T1 algr $h,$t2 # h+=Maj(a,b,c) ___ } sub BODY_16_XX { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; $code.=<<___; $LD $T1,`$stdframe+$SZ*(($i+1)%16)`($sp) ### $i $LD $t1,`$stdframe+$SZ*(($i+14)%16)`($sp) $ROT $t0,$T1,$sigma0[0] $SHR $T1,$sigma0[2] $ROT $t2,$t0,`$sigma0[1]-$sigma0[0]` xgr $T1,$t0 $ROT $t0,$t1,$sigma1[0] xgr $T1,$t2 # sigma0(X[i+1]) $SHR $t1,$sigma1[2] $ADD $T1,`$stdframe+$SZ*($i%16)`($sp) # +=X[i] xgr $t1,$t0 $ROT $t0,$t0,`$sigma1[1]-$sigma1[0]` $ADD $T1,`$stdframe+$SZ*(($i+9)%16)`($sp) # +=X[i+9] xgr $t1,$t0 # sigma1(X[i+14]) algr $T1,$t1 # +=sigma1(X[i+14]) ___ &BODY_00_15(@_); } $code.=<<___; #include "s390x_arch.h" .text .align 64 .type $Table,\@object $Table: ___ $code.=<<___ if ($SZ==4); .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 ___ $code.=<<___ if ($SZ==8); .quad 0x428a2f98d728ae22,0x7137449123ef65cd .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc .quad 0x3956c25bf348b538,0x59f111f1b605d019 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 .quad 0xd807aa98a3030242,0x12835b0145706fbe .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 .quad 0x06ca6351e003826f,0x142929670a0e6e70 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 .quad 0x81c2c92e47edaee6,0x92722c851482353b .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 .quad 0xd192e819d6ef5218,0xd69906245565a910 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec .quad 0x90befffa23631e28,0xa4506cebde82bde9 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b .quad 0xca273eceea26619c,0xd186b8c721c0c207 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 .quad 0x113f9804bef90dae,0x1b710b35131c471b .quad 0x28db77f523047d84,0x32caab7b40c72493 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 ___ $code.=<<___; .size $Table,.-$Table .globl $Func .type $Func,\@function $Func: sllg $len,$len,`log(16*$SZ)/log(2)` ___ $code.=<<___ if ($kimdfunc); larl %r1,OPENSSL_s390xcap_P lg %r0,S390X_KIMD(%r1) # check kimd capabilities tmhh %r0,`0x8000>>$kimdfunc` jz .Lsoftware lghi %r0,$kimdfunc lgr %r1,$ctx lgr %r2,$inp lgr %r3,$len .long 0xb93e0002 # kimd %r0,%r2 brc 1,.-4 # pay attention to "partial completion" br %r14 .align 16 .Lsoftware: ___ $code.=<<___; lghi %r1,-$frame la $len,0($len,$inp) stm${g} $ctx,%r15,`2*$SIZE_T`($sp) lgr %r0,$sp la $sp,0(%r1,$sp) st${g} %r0,0($sp) larl $tbl,$Table $LD $A,`0*$SZ`($ctx) $LD $B,`1*$SZ`($ctx) $LD $C,`2*$SZ`($ctx) $LD $D,`3*$SZ`($ctx) $LD $E,`4*$SZ`($ctx) $LD $F,`5*$SZ`($ctx) $LD $G,`6*$SZ`($ctx) $LD $H,`7*$SZ`($ctx) .Lloop: lghi $len,0 ___ for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } $code.=".Lrounds_16_xx:\n"; for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); } $code.=<<___; aghi $len,`16*$SZ` lghi $t0,`($rounds-16)*$SZ` clgr $len,$t0 jne .Lrounds_16_xx l${g} $ctx,`$frame+2*$SIZE_T`($sp) la $inp,`16*$SZ`($inp) $ADD $A,`0*$SZ`($ctx) $ADD $B,`1*$SZ`($ctx) $ADD $C,`2*$SZ`($ctx) $ADD $D,`3*$SZ`($ctx) $ADD $E,`4*$SZ`($ctx) $ADD $F,`5*$SZ`($ctx) $ADD $G,`6*$SZ`($ctx) $ADD $H,`7*$SZ`($ctx) $ST $A,`0*$SZ`($ctx) $ST $B,`1*$SZ`($ctx) $ST $C,`2*$SZ`($ctx) $ST $D,`3*$SZ`($ctx) $ST $E,`4*$SZ`($ctx) $ST $F,`5*$SZ`($ctx) $ST $G,`6*$SZ`($ctx) $ST $H,`7*$SZ`($ctx) cl${g} $inp,`$frame+4*$SIZE_T`($sp) jne .Lloop lm${g} %r6,%r15,`$frame+6*$SIZE_T`($sp) br %r14 .size $Func,.-$Func .string "SHA${label} block transform for s390x, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; # unlike 32-bit shift 64-bit one takes three arguments $code =~ s/(srlg\s+)(%r[0-9]+),/$1$2,$2,/gm; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-sparcv9.pl000066400000000000000000000527751364063235100211660ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # # Hardware SPARC T4 support by David S. Miller # ==================================================================== # SHA256 performance improvement over compiler generated code varies # from 40% for Sun C [32-bit build] to 70% for gcc [3.3, 64-bit # build]. Just like in SHA1 module I aim to ensure scalability on # UltraSPARC T1 by packing X[16] to 8 64-bit registers. # SHA512 on pre-T1 UltraSPARC. # # Performance is >75% better than 64-bit code generated by Sun C and # over 2x than 32-bit code. X[16] resides on stack, but access to it # is scheduled for L2 latency and staged through 32 least significant # bits of %l0-%l7. The latter is done to achieve 32-/64-bit ABI # duality. Nevertheless it's ~40% faster than SHA256, which is pretty # good [optimal coefficient is 50%]. # # SHA512 on UltraSPARC T1. # # It's not any faster than 64-bit code generated by Sun C 5.8. This is # because 64-bit code generator has the advantage of using 64-bit # loads(*) to access X[16], which I consciously traded for 32-/64-bit # ABI duality [as per above]. But it surpasses 32-bit Sun C generated # code by 60%, not to mention that it doesn't suffer from severe decay # when running 4 times physical cores threads and that it leaves gcc # [3.4] behind by over 4x factor! If compared to SHA256, single thread # performance is only 10% better, but overall throughput for maximum # amount of threads for given CPU exceeds corresponding one of SHA256 # by 30% [again, optimal coefficient is 50%]. # # (*) Unlike pre-T1 UltraSPARC loads on T1 are executed strictly # in-order, i.e. load instruction has to complete prior next # instruction in given thread is executed, even if the latter is # not dependent on load result! This means that on T1 two 32-bit # loads are always slower than one 64-bit load. Once again this # is unlike pre-T1 UltraSPARC, where, if scheduled appropriately, # 2x32-bit loads can be as fast as 1x64-bit ones. # # SPARC T4 SHA256/512 hardware achieves 3.17/2.01 cycles per byte, # which is 9.3x/11.1x faster than software. Multi-process benchmark # saturates at 11.5x single-process result on 8-core processor, or # ~11/16GBps per 2.85GHz socket. $output=pop; open STDOUT,">$output"; if ($output =~ /512/) { $label="512"; $SZ=8; $LD="ldx"; # load from memory $ST="stx"; # store to memory $SLL="sllx"; # shift left logical $SRL="srlx"; # shift right logical @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=( 7, 1, 8); # right shift first @sigma1=( 6,19,61); # right shift first $lastK=0x817; $rounds=80; $align=4; $locals=16*$SZ; # X[16] $A="%o0"; $B="%o1"; $C="%o2"; $D="%o3"; $E="%o4"; $F="%o5"; $G="%g1"; $H="%o7"; @V=($A,$B,$C,$D,$E,$F,$G,$H); } else { $label="256"; $SZ=4; $LD="ld"; # load from memory $ST="st"; # store to memory $SLL="sll"; # shift left logical $SRL="srl"; # shift right logical @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 3, 7,18); # right shift first @sigma1=(10,17,19); # right shift first $lastK=0x8f2; $rounds=64; $align=8; $locals=0; # X[16] is register resident @X=("%o0","%o1","%o2","%o3","%o4","%o5","%g1","%o7"); $A="%l0"; $B="%l1"; $C="%l2"; $D="%l3"; $E="%l4"; $F="%l5"; $G="%l6"; $H="%l7"; @V=($A,$B,$C,$D,$E,$F,$G,$H); } $T1="%g2"; $tmp0="%g3"; $tmp1="%g4"; $tmp2="%g5"; $ctx="%i0"; $inp="%i1"; $len="%i2"; $Ktbl="%i3"; $tmp31="%i4"; $tmp32="%i5"; ########### SHA256 $Xload = sub { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; if ($i==0) { $code.=<<___; ldx [$inp+0],@X[0] ldx [$inp+16],@X[2] ldx [$inp+32],@X[4] ldx [$inp+48],@X[6] ldx [$inp+8],@X[1] ldx [$inp+24],@X[3] subcc %g0,$tmp31,$tmp32 ! should be 64-$tmp31, but -$tmp31 works too ldx [$inp+40],@X[5] bz,pt %icc,.Laligned ldx [$inp+56],@X[7] sllx @X[0],$tmp31,@X[0] ldx [$inp+64],$T1 ___ for($j=0;$j<7;$j++) { $code.=<<___; srlx @X[$j+1],$tmp32,$tmp1 sllx @X[$j+1],$tmp31,@X[$j+1] or $tmp1,@X[$j],@X[$j] ___ } $code.=<<___; srlx $T1,$tmp32,$T1 or $T1,@X[7],@X[7] .Laligned: ___ } if ($i&1) { $code.="\tadd @X[$i/2],$h,$T1\n"; } else { $code.="\tsrlx @X[$i/2],32,$T1\n\tadd $h,$T1,$T1\n"; } } if ($SZ==4); ########### SHA512 $Xload = sub { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; my @pair=("%l".eval(($i*2)%8),"%l".eval(($i*2)%8+1),"%l".eval((($i+1)*2)%8)); $code.=<<___ if ($i==0); ld [$inp+0],%l0 ld [$inp+4],%l1 ld [$inp+8],%l2 ld [$inp+12],%l3 ld [$inp+16],%l4 ld [$inp+20],%l5 ld [$inp+24],%l6 cmp $tmp31,0 ld [$inp+28],%l7 ___ $code.=<<___ if ($i<15); sllx @pair[1],$tmp31,$tmp2 ! Xload($i) add $tmp31,32,$tmp0 sllx @pair[0],$tmp0,$tmp1 `"ld [$inp+".eval(32+0+$i*8)."],@pair[0]" if ($i<12)` srlx @pair[2],$tmp32,@pair[1] or $tmp1,$tmp2,$tmp2 or @pair[1],$tmp2,$tmp2 `"ld [$inp+".eval(32+4+$i*8)."],@pair[1]" if ($i<12)` add $h,$tmp2,$T1 $ST $tmp2,[%sp+STACK_BIAS+STACK_FRAME+`$i*$SZ`] ___ $code.=<<___ if ($i==12); bnz,a,pn %icc,.+8 ld [$inp+128],%l0 ___ $code.=<<___ if ($i==15); ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+0`],%l2 sllx @pair[1],$tmp31,$tmp2 ! Xload($i) add $tmp31,32,$tmp0 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+4`],%l3 sllx @pair[0],$tmp0,$tmp1 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+0`],%l4 srlx @pair[2],$tmp32,@pair[1] or $tmp1,$tmp2,$tmp2 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+4`],%l5 or @pair[1],$tmp2,$tmp2 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+0`],%l6 add $h,$tmp2,$T1 $ST $tmp2,[%sp+STACK_BIAS+STACK_FRAME+`$i*$SZ`] ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+4`],%l7 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+0`],%l0 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+4`],%l1 ___ } if ($SZ==8); ########### common sub BODY_00_15 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; if ($i<16) { &$Xload(@_); } else { $code.="\tadd $h,$T1,$T1\n"; } $code.=<<___; $SRL $e,@Sigma1[0],$h !! $i xor $f,$g,$tmp2 $SLL $e,`$SZ*8-@Sigma1[2]`,$tmp1 and $e,$tmp2,$tmp2 $SRL $e,@Sigma1[1],$tmp0 xor $tmp1,$h,$h $SLL $e,`$SZ*8-@Sigma1[1]`,$tmp1 xor $tmp0,$h,$h $SRL $e,@Sigma1[2],$tmp0 xor $tmp1,$h,$h $SLL $e,`$SZ*8-@Sigma1[0]`,$tmp1 xor $tmp0,$h,$h xor $g,$tmp2,$tmp2 ! Ch(e,f,g) xor $tmp1,$h,$tmp0 ! Sigma1(e) $SRL $a,@Sigma0[0],$h add $tmp2,$T1,$T1 $LD [$Ktbl+`$i*$SZ`],$tmp2 ! K[$i] $SLL $a,`$SZ*8-@Sigma0[2]`,$tmp1 add $tmp0,$T1,$T1 $SRL $a,@Sigma0[1],$tmp0 xor $tmp1,$h,$h $SLL $a,`$SZ*8-@Sigma0[1]`,$tmp1 xor $tmp0,$h,$h $SRL $a,@Sigma0[2],$tmp0 xor $tmp1,$h,$h $SLL $a,`$SZ*8-@Sigma0[0]`,$tmp1 xor $tmp0,$h,$h xor $tmp1,$h,$h ! Sigma0(a) or $a,$b,$tmp0 and $a,$b,$tmp1 and $c,$tmp0,$tmp0 or $tmp0,$tmp1,$tmp1 ! Maj(a,b,c) add $tmp2,$T1,$T1 ! +=K[$i] add $tmp1,$h,$h add $T1,$d,$d add $T1,$h,$h ___ } ########### SHA256 $BODY_16_XX = sub { my $i=@_[0]; my $xi; if ($i&1) { $xi=$tmp32; $code.="\tsrlx @X[(($i+1)/2)%8],32,$xi\n"; } else { $xi=@X[(($i+1)/2)%8]; } $code.=<<___; srl $xi,@sigma0[0],$T1 !! Xupdate($i) sll $xi,`32-@sigma0[2]`,$tmp1 srl $xi,@sigma0[1],$tmp0 xor $tmp1,$T1,$T1 sll $tmp1,`@sigma0[2]-@sigma0[1]`,$tmp1 xor $tmp0,$T1,$T1 srl $xi,@sigma0[2],$tmp0 xor $tmp1,$T1,$T1 ___ if ($i&1) { $xi=@X[(($i+14)/2)%8]; } else { $xi=$tmp32; $code.="\tsrlx @X[(($i+14)/2)%8],32,$xi\n"; } $code.=<<___; srl $xi,@sigma1[0],$tmp2 xor $tmp0,$T1,$T1 ! T1=sigma0(X[i+1]) sll $xi,`32-@sigma1[2]`,$tmp1 srl $xi,@sigma1[1],$tmp0 xor $tmp1,$tmp2,$tmp2 sll $tmp1,`@sigma1[2]-@sigma1[1]`,$tmp1 xor $tmp0,$tmp2,$tmp2 srl $xi,@sigma1[2],$tmp0 xor $tmp1,$tmp2,$tmp2 ___ if ($i&1) { $xi=@X[($i/2)%8]; $code.=<<___; srlx @X[(($i+9)/2)%8],32,$tmp1 ! X[i+9] xor $tmp0,$tmp2,$tmp2 ! sigma1(X[i+14]) srl @X[($i/2)%8],0,$tmp0 add $tmp2,$tmp1,$tmp1 add $xi,$T1,$T1 ! +=X[i] xor $tmp0,@X[($i/2)%8],@X[($i/2)%8] add $tmp1,$T1,$T1 srl $T1,0,$T1 or $T1,@X[($i/2)%8],@X[($i/2)%8] ___ } else { $xi=@X[(($i+9)/2)%8]; $code.=<<___; srlx @X[($i/2)%8],32,$tmp1 ! X[i] xor $tmp0,$tmp2,$tmp2 ! sigma1(X[i+14]) add $xi,$T1,$T1 ! +=X[i+9] add $tmp2,$tmp1,$tmp1 srl @X[($i/2)%8],0,@X[($i/2)%8] add $tmp1,$T1,$T1 sllx $T1,32,$tmp0 or $tmp0,@X[($i/2)%8],@X[($i/2)%8] ___ } &BODY_00_15(@_); } if ($SZ==4); ########### SHA512 $BODY_16_XX = sub { my $i=@_[0]; my @pair=("%l".eval(($i*2)%8),"%l".eval(($i*2)%8+1)); $code.=<<___; sllx %l2,32,$tmp0 !! Xupdate($i) or %l3,$tmp0,$tmp0 srlx $tmp0,@sigma0[0],$T1 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+0`],%l2 sllx $tmp0,`64-@sigma0[2]`,$tmp1 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+1)%16)*$SZ+4`],%l3 srlx $tmp0,@sigma0[1],$tmp0 xor $tmp1,$T1,$T1 sllx $tmp1,`@sigma0[2]-@sigma0[1]`,$tmp1 xor $tmp0,$T1,$T1 srlx $tmp0,`@sigma0[2]-@sigma0[1]`,$tmp0 xor $tmp1,$T1,$T1 sllx %l6,32,$tmp2 xor $tmp0,$T1,$T1 ! sigma0(X[$i+1]) or %l7,$tmp2,$tmp2 srlx $tmp2,@sigma1[0],$tmp1 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+0`],%l6 sllx $tmp2,`64-@sigma1[2]`,$tmp0 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+14)%16)*$SZ+4`],%l7 srlx $tmp2,@sigma1[1],$tmp2 xor $tmp0,$tmp1,$tmp1 sllx $tmp0,`@sigma1[2]-@sigma1[1]`,$tmp0 xor $tmp2,$tmp1,$tmp1 srlx $tmp2,`@sigma1[2]-@sigma1[1]`,$tmp2 xor $tmp0,$tmp1,$tmp1 sllx %l4,32,$tmp0 xor $tmp2,$tmp1,$tmp1 ! sigma1(X[$i+14]) ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+0`],%l4 or %l5,$tmp0,$tmp0 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+9)%16)*$SZ+4`],%l5 sllx %l0,32,$tmp2 add $tmp1,$T1,$T1 ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+0`],%l0 or %l1,$tmp2,$tmp2 add $tmp0,$T1,$T1 ! +=X[$i+9] ld [%sp+STACK_BIAS+STACK_FRAME+`(($i+1+0)%16)*$SZ+4`],%l1 add $tmp2,$T1,$T1 ! +=X[$i] $ST $T1,[%sp+STACK_BIAS+STACK_FRAME+`($i%16)*$SZ`] ___ &BODY_00_15(@_); } if ($SZ==8); $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr .align 64 K${label}: .type K${label},#object ___ if ($SZ==4) { $code.=<<___; .long 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5 .long 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5 .long 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3 .long 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174 .long 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc .long 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da .long 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7 .long 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967 .long 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13 .long 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85 .long 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3 .long 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070 .long 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5 .long 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3 .long 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208 .long 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ___ } else { $code.=<<___; .long 0x428a2f98,0xd728ae22, 0x71374491,0x23ef65cd .long 0xb5c0fbcf,0xec4d3b2f, 0xe9b5dba5,0x8189dbbc .long 0x3956c25b,0xf348b538, 0x59f111f1,0xb605d019 .long 0x923f82a4,0xaf194f9b, 0xab1c5ed5,0xda6d8118 .long 0xd807aa98,0xa3030242, 0x12835b01,0x45706fbe .long 0x243185be,0x4ee4b28c, 0x550c7dc3,0xd5ffb4e2 .long 0x72be5d74,0xf27b896f, 0x80deb1fe,0x3b1696b1 .long 0x9bdc06a7,0x25c71235, 0xc19bf174,0xcf692694 .long 0xe49b69c1,0x9ef14ad2, 0xefbe4786,0x384f25e3 .long 0x0fc19dc6,0x8b8cd5b5, 0x240ca1cc,0x77ac9c65 .long 0x2de92c6f,0x592b0275, 0x4a7484aa,0x6ea6e483 .long 0x5cb0a9dc,0xbd41fbd4, 0x76f988da,0x831153b5 .long 0x983e5152,0xee66dfab, 0xa831c66d,0x2db43210 .long 0xb00327c8,0x98fb213f, 0xbf597fc7,0xbeef0ee4 .long 0xc6e00bf3,0x3da88fc2, 0xd5a79147,0x930aa725 .long 0x06ca6351,0xe003826f, 0x14292967,0x0a0e6e70 .long 0x27b70a85,0x46d22ffc, 0x2e1b2138,0x5c26c926 .long 0x4d2c6dfc,0x5ac42aed, 0x53380d13,0x9d95b3df .long 0x650a7354,0x8baf63de, 0x766a0abb,0x3c77b2a8 .long 0x81c2c92e,0x47edaee6, 0x92722c85,0x1482353b .long 0xa2bfe8a1,0x4cf10364, 0xa81a664b,0xbc423001 .long 0xc24b8b70,0xd0f89791, 0xc76c51a3,0x0654be30 .long 0xd192e819,0xd6ef5218, 0xd6990624,0x5565a910 .long 0xf40e3585,0x5771202a, 0x106aa070,0x32bbd1b8 .long 0x19a4c116,0xb8d2d0c8, 0x1e376c08,0x5141ab53 .long 0x2748774c,0xdf8eeb99, 0x34b0bcb5,0xe19b48a8 .long 0x391c0cb3,0xc5c95a63, 0x4ed8aa4a,0xe3418acb .long 0x5b9cca4f,0x7763e373, 0x682e6ff3,0xd6b2b8a3 .long 0x748f82ee,0x5defb2fc, 0x78a5636f,0x43172f60 .long 0x84c87814,0xa1f0ab72, 0x8cc70208,0x1a6439ec .long 0x90befffa,0x23631e28, 0xa4506ceb,0xde82bde9 .long 0xbef9a3f7,0xb2c67915, 0xc67178f2,0xe372532b .long 0xca273ece,0xea26619c, 0xd186b8c7,0x21c0c207 .long 0xeada7dd6,0xcde0eb1e, 0xf57d4f7f,0xee6ed178 .long 0x06f067aa,0x72176fba, 0x0a637dc5,0xa2c898a6 .long 0x113f9804,0xbef90dae, 0x1b710b35,0x131c471b .long 0x28db77f5,0x23047d84, 0x32caab7b,0x40c72493 .long 0x3c9ebe0a,0x15c9bebc, 0x431d67c4,0x9c100d4c .long 0x4cc5d4be,0xcb3e42b6, 0x597f299c,0xfc657e2a .long 0x5fcb6fab,0x3ad6faec, 0x6c44198c,0x4a475817 ___ } $code.=<<___; .size K${label},.-K${label} #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .globl sha${label}_block_data_order .align 32 sha${label}_block_data_order: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1] andcc %g1, CFR_SHA${label}, %g0 be .Lsoftware nop ___ $code.=<<___ if ($SZ==8); # SHA512 ldd [%o0 + 0x00], %f0 ! load context ldd [%o0 + 0x08], %f2 ldd [%o0 + 0x10], %f4 ldd [%o0 + 0x18], %f6 ldd [%o0 + 0x20], %f8 ldd [%o0 + 0x28], %f10 andcc %o1, 0x7, %g0 ldd [%o0 + 0x30], %f12 bne,pn %icc, .Lhwunaligned ldd [%o0 + 0x38], %f14 .Lhwaligned_loop: ldd [%o1 + 0x00], %f16 ldd [%o1 + 0x08], %f18 ldd [%o1 + 0x10], %f20 ldd [%o1 + 0x18], %f22 ldd [%o1 + 0x20], %f24 ldd [%o1 + 0x28], %f26 ldd [%o1 + 0x30], %f28 ldd [%o1 + 0x38], %f30 ldd [%o1 + 0x40], %f32 ldd [%o1 + 0x48], %f34 ldd [%o1 + 0x50], %f36 ldd [%o1 + 0x58], %f38 ldd [%o1 + 0x60], %f40 ldd [%o1 + 0x68], %f42 ldd [%o1 + 0x70], %f44 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x78], %f46 add %o1, 0x80, %o1 prefetch [%o1 + 63], 20 prefetch [%o1 + 64+63], 20 .word 0x81b02860 ! SHA512 bne,pt SIZE_T_CC, .Lhwaligned_loop nop .Lhwfinish: std %f0, [%o0 + 0x00] ! store context std %f2, [%o0 + 0x08] std %f4, [%o0 + 0x10] std %f6, [%o0 + 0x18] std %f8, [%o0 + 0x20] std %f10, [%o0 + 0x28] std %f12, [%o0 + 0x30] retl std %f14, [%o0 + 0x38] .align 16 .Lhwunaligned: alignaddr %o1, %g0, %o1 ldd [%o1 + 0x00], %f18 .Lhwunaligned_loop: ldd [%o1 + 0x08], %f20 ldd [%o1 + 0x10], %f22 ldd [%o1 + 0x18], %f24 ldd [%o1 + 0x20], %f26 ldd [%o1 + 0x28], %f28 ldd [%o1 + 0x30], %f30 ldd [%o1 + 0x38], %f32 ldd [%o1 + 0x40], %f34 ldd [%o1 + 0x48], %f36 ldd [%o1 + 0x50], %f38 ldd [%o1 + 0x58], %f40 ldd [%o1 + 0x60], %f42 ldd [%o1 + 0x68], %f44 ldd [%o1 + 0x70], %f46 ldd [%o1 + 0x78], %f48 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x80], %f50 add %o1, 0x80, %o1 prefetch [%o1 + 63], 20 prefetch [%o1 + 64+63], 20 faligndata %f18, %f20, %f16 faligndata %f20, %f22, %f18 faligndata %f22, %f24, %f20 faligndata %f24, %f26, %f22 faligndata %f26, %f28, %f24 faligndata %f28, %f30, %f26 faligndata %f30, %f32, %f28 faligndata %f32, %f34, %f30 faligndata %f34, %f36, %f32 faligndata %f36, %f38, %f34 faligndata %f38, %f40, %f36 faligndata %f40, %f42, %f38 faligndata %f42, %f44, %f40 faligndata %f44, %f46, %f42 faligndata %f46, %f48, %f44 faligndata %f48, %f50, %f46 .word 0x81b02860 ! SHA512 bne,pt SIZE_T_CC, .Lhwunaligned_loop for %f50, %f50, %f18 ! %f18=%f50 ba .Lhwfinish nop ___ $code.=<<___ if ($SZ==4); # SHA256 ld [%o0 + 0x00], %f0 ld [%o0 + 0x04], %f1 ld [%o0 + 0x08], %f2 ld [%o0 + 0x0c], %f3 ld [%o0 + 0x10], %f4 ld [%o0 + 0x14], %f5 andcc %o1, 0x7, %g0 ld [%o0 + 0x18], %f6 bne,pn %icc, .Lhwunaligned ld [%o0 + 0x1c], %f7 .Lhwloop: ldd [%o1 + 0x00], %f8 ldd [%o1 + 0x08], %f10 ldd [%o1 + 0x10], %f12 ldd [%o1 + 0x18], %f14 ldd [%o1 + 0x20], %f16 ldd [%o1 + 0x28], %f18 ldd [%o1 + 0x30], %f20 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x38], %f22 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 .word 0x81b02840 ! SHA256 bne,pt SIZE_T_CC, .Lhwloop nop .Lhwfinish: st %f0, [%o0 + 0x00] ! store context st %f1, [%o0 + 0x04] st %f2, [%o0 + 0x08] st %f3, [%o0 + 0x0c] st %f4, [%o0 + 0x10] st %f5, [%o0 + 0x14] st %f6, [%o0 + 0x18] retl st %f7, [%o0 + 0x1c] .align 8 .Lhwunaligned: alignaddr %o1, %g0, %o1 ldd [%o1 + 0x00], %f10 .Lhwunaligned_loop: ldd [%o1 + 0x08], %f12 ldd [%o1 + 0x10], %f14 ldd [%o1 + 0x18], %f16 ldd [%o1 + 0x20], %f18 ldd [%o1 + 0x28], %f20 ldd [%o1 + 0x30], %f22 ldd [%o1 + 0x38], %f24 subcc %o2, 1, %o2 ! done yet? ldd [%o1 + 0x40], %f26 add %o1, 0x40, %o1 prefetch [%o1 + 63], 20 faligndata %f10, %f12, %f8 faligndata %f12, %f14, %f10 faligndata %f14, %f16, %f12 faligndata %f16, %f18, %f14 faligndata %f18, %f20, %f16 faligndata %f20, %f22, %f18 faligndata %f22, %f24, %f20 faligndata %f24, %f26, %f22 .word 0x81b02840 ! SHA256 bne,pt SIZE_T_CC, .Lhwunaligned_loop for %f26, %f26, %f10 ! %f10=%f26 ba .Lhwfinish nop ___ $code.=<<___; .align 16 .Lsoftware: save %sp,-STACK_FRAME-$locals,%sp and $inp,`$align-1`,$tmp31 sllx $len,`log(16*$SZ)/log(2)`,$len andn $inp,`$align-1`,$inp sll $tmp31,3,$tmp31 add $inp,$len,$len ___ $code.=<<___ if ($SZ==8); # SHA512 mov 32,$tmp32 sub $tmp32,$tmp31,$tmp32 ___ $code.=<<___; .Lpic: call .+8 add %o7,K${label}-.Lpic,$Ktbl $LD [$ctx+`0*$SZ`],$A $LD [$ctx+`1*$SZ`],$B $LD [$ctx+`2*$SZ`],$C $LD [$ctx+`3*$SZ`],$D $LD [$ctx+`4*$SZ`],$E $LD [$ctx+`5*$SZ`],$F $LD [$ctx+`6*$SZ`],$G $LD [$ctx+`7*$SZ`],$H .Lloop: ___ for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } $code.=".L16_xx:\n"; for (;$i<32;$i++) { &$BODY_16_XX($i,@V); unshift(@V,pop(@V)); } $code.=<<___; and $tmp2,0xfff,$tmp2 cmp $tmp2,$lastK bne .L16_xx add $Ktbl,`16*$SZ`,$Ktbl ! Ktbl+=16 ___ $code.=<<___ if ($SZ==4); # SHA256 $LD [$ctx+`0*$SZ`],@X[0] $LD [$ctx+`1*$SZ`],@X[1] $LD [$ctx+`2*$SZ`],@X[2] $LD [$ctx+`3*$SZ`],@X[3] $LD [$ctx+`4*$SZ`],@X[4] $LD [$ctx+`5*$SZ`],@X[5] $LD [$ctx+`6*$SZ`],@X[6] $LD [$ctx+`7*$SZ`],@X[7] add $A,@X[0],$A $ST $A,[$ctx+`0*$SZ`] add $B,@X[1],$B $ST $B,[$ctx+`1*$SZ`] add $C,@X[2],$C $ST $C,[$ctx+`2*$SZ`] add $D,@X[3],$D $ST $D,[$ctx+`3*$SZ`] add $E,@X[4],$E $ST $E,[$ctx+`4*$SZ`] add $F,@X[5],$F $ST $F,[$ctx+`5*$SZ`] add $G,@X[6],$G $ST $G,[$ctx+`6*$SZ`] add $H,@X[7],$H $ST $H,[$ctx+`7*$SZ`] ___ $code.=<<___ if ($SZ==8); # SHA512 ld [$ctx+`0*$SZ+0`],%l0 ld [$ctx+`0*$SZ+4`],%l1 ld [$ctx+`1*$SZ+0`],%l2 ld [$ctx+`1*$SZ+4`],%l3 ld [$ctx+`2*$SZ+0`],%l4 ld [$ctx+`2*$SZ+4`],%l5 ld [$ctx+`3*$SZ+0`],%l6 sllx %l0,32,$tmp0 ld [$ctx+`3*$SZ+4`],%l7 sllx %l2,32,$tmp1 or %l1,$tmp0,$tmp0 or %l3,$tmp1,$tmp1 add $tmp0,$A,$A add $tmp1,$B,$B $ST $A,[$ctx+`0*$SZ`] sllx %l4,32,$tmp2 $ST $B,[$ctx+`1*$SZ`] sllx %l6,32,$T1 or %l5,$tmp2,$tmp2 or %l7,$T1,$T1 add $tmp2,$C,$C $ST $C,[$ctx+`2*$SZ`] add $T1,$D,$D $ST $D,[$ctx+`3*$SZ`] ld [$ctx+`4*$SZ+0`],%l0 ld [$ctx+`4*$SZ+4`],%l1 ld [$ctx+`5*$SZ+0`],%l2 ld [$ctx+`5*$SZ+4`],%l3 ld [$ctx+`6*$SZ+0`],%l4 ld [$ctx+`6*$SZ+4`],%l5 ld [$ctx+`7*$SZ+0`],%l6 sllx %l0,32,$tmp0 ld [$ctx+`7*$SZ+4`],%l7 sllx %l2,32,$tmp1 or %l1,$tmp0,$tmp0 or %l3,$tmp1,$tmp1 add $tmp0,$E,$E add $tmp1,$F,$F $ST $E,[$ctx+`4*$SZ`] sllx %l4,32,$tmp2 $ST $F,[$ctx+`5*$SZ`] sllx %l6,32,$T1 or %l5,$tmp2,$tmp2 or %l7,$T1,$T1 add $tmp2,$G,$G $ST $G,[$ctx+`6*$SZ`] add $T1,$H,$H $ST $H,[$ctx+`7*$SZ`] ___ $code.=<<___; add $inp,`16*$SZ`,$inp ! advance inp cmp $inp,$len bne SIZE_T_CC,.Lloop sub $Ktbl,`($rounds-16)*$SZ`,$Ktbl ! rewind Ktbl ret restore .type sha${label}_block_data_order,#function .size sha${label}_block_data_order,(.-sha${label}_block_data_order) .asciz "SHA${label} block transform for SPARCv9, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my $ref,$opf; my %visopf = ( "faligndata" => 0x048, "for" => 0x07c ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unalignaddr { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my $ref="$mnemonic\t$rs1,$rs2,$rd"; foreach ($rs1,$rs2,$rd) { if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } else { return $ref; } } return sprintf ".word\t0x%08x !%s", 0x81b00300|$rd<<25|$rs1<<14|$rs2, $ref; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /ge; s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unalignaddr($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512-x86_64.pl000077500000000000000000001764401364063235100205340ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. Rights for redistribution and usage in source and binary # forms are granted according to the OpenSSL license. # ==================================================================== # # sha256/512_block procedure for x86_64. # # 40% improvement over compiler-generated code on Opteron. On EM64T # sha256 was observed to run >80% faster and sha512 - >40%. No magical # tricks, just straight implementation... I really wonder why gcc # [being armed with inline assembler] fails to generate as fast code. # The only thing which is cool about this module is that it's very # same instruction sequence used for both SHA-256 and SHA-512. In # former case the instructions operate on 32-bit operands, while in # latter - on 64-bit ones. All I had to do is to get one flavor right, # the other one passed the test right away:-) # # sha256_block runs in ~1005 cycles on Opteron, which gives you # asymptotic performance of 64*1000/1005=63.7MBps times CPU clock # frequency in GHz. sha512_block runs in ~1275 cycles, which results # in 128*1000/1275=100MBps per GHz. Is there room for improvement? # Well, if you compare it to IA-64 implementation, which maintains # X[16] in register bank[!], tends to 4 instructions per CPU clock # cycle and runs in 1003 cycles, 1275 is very good result for 3-way # issue Opteron pipeline and X[16] maintained in memory. So that *if* # there is a way to improve it, *then* the only way would be to try to # offload X[16] updates to SSE unit, but that would require "deeper" # loop unroll, which in turn would naturally cause size blow-up, not # to mention increased complexity! And once again, only *if* it's # actually possible to noticeably improve overall ILP, instruction # level parallelism, on a given CPU implementation in this case. # # Special note on Intel EM64T. While Opteron CPU exhibits perfect # performance ratio of 1.5 between 64- and 32-bit flavors [see above], # [currently available] EM64T CPUs apparently are far from it. On the # contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit # sha256_block:-( This is presumably because 64-bit shifts/rotates # apparently are not atomic instructions, but implemented in microcode. # # May 2012. # # Optimization including one of Pavel Semjanov's ideas, alternative # Maj, resulted in >=5% improvement on most CPUs, +20% SHA256 and # unfortunately -2% SHA512 on P4 [which nobody should care about # that much]. # # June 2012. # # Add SIMD code paths, see below for improvement coefficients. SSSE3 # code path was not attempted for SHA512, because improvement is not # estimated to be high enough, noticeably less than 9%, to justify # the effort, not on pre-AVX processors. [Obviously with exclusion # for VIA Nano, but it has SHA512 instruction that is faster and # should be used instead.] For reference, corresponding estimated # upper limit for improvement for SSSE3 SHA256 is 28%. The fact that # higher coefficients are observed on VIA Nano and Bulldozer has more # to do with specifics of their architecture [which is topic for # separate discussion]. # # November 2012. # # Add AVX2 code path. Two consecutive input blocks are loaded to # 256-bit %ymm registers, with data from first block to least # significant 128-bit halves and data from second to most significant. # The data is then processed with same SIMD instruction sequence as # for AVX, but with %ymm as operands. Side effect is increased stack # frame, 448 additional bytes in SHA256 and 1152 in SHA512, and 1.2KB # code size increase. # # March 2014. # # Add support for Intel SHA Extensions. ###################################################################### # Current performance in cycles per processed byte (less is better): # # SHA256 SSSE3 AVX/XOP(*) SHA512 AVX/XOP(*) # # AMD K8 14.9 - - 9.57 - # P4 17.3 - - 30.8 - # Core 2 15.6 13.8(+13%) - 9.97 - # Westmere 14.8 12.3(+19%) - 9.58 - # Sandy Bridge 17.4 14.2(+23%) 11.6(+50%(**)) 11.2 8.10(+38%(**)) # Ivy Bridge 12.6 10.5(+20%) 10.3(+22%) 8.17 7.22(+13%) # Haswell 12.2 9.28(+31%) 7.80(+56%) 7.66 5.40(+42%) # Skylake 11.4 9.03(+26%) 7.70(+48%) 7.25 5.20(+40%) # Bulldozer 21.1 13.6(+54%) 13.6(+54%(***)) 13.5 8.58(+57%) # Ryzen 11.0 9.02(+22%) 2.05(+440%) 7.05 5.67(+20%) # VIA Nano 23.0 16.5(+39%) - 14.7 - # Atom 23.0 18.9(+22%) - 14.7 - # Silvermont 27.4 20.6(+33%) - 17.5 - # Knights L 27.4 21.0(+30%) 19.6(+40%) 17.5 12.8(+37%) # Goldmont 18.9 14.3(+32%) 4.16(+350%) 12.0 - # # (*) whichever best applicable, including SHAEXT; # (**) switch from ror to shrd stands for fair share of improvement; # (***) execution time is fully determined by remaining integer-only # part, body_00_15; reducing the amount of SIMD instructions # below certain limit makes no difference/sense; to conserve # space SHA256 XOP code path is therefore omitted; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx = ($2>=3.0) + ($2>3.0); } $shaext=1; ### set to zero if compiling for 1.0.1 $avx=1 if (!$shaext && $avx); open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if ($output =~ /512/) { $func="sha512_block_data_order"; $TABLE="K512"; $SZ=8; @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx", "%r8", "%r9", "%r10","%r11"); ($T1,$a0,$a1,$a2,$a3)=("%r12","%r13","%r14","%r15","%rdi"); @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=(1, 8, 7); @sigma1=(19,61, 6); $rounds=80; } else { $func="sha256_block_data_order"; $TABLE="K256"; $SZ=4; @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx", "%r8d","%r9d","%r10d","%r11d"); ($T1,$a0,$a1,$a2,$a3)=("%r12d","%r13d","%r14d","%r15d","%edi"); @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; } $ctx="%rdi"; # 1st arg, zapped by $a3 $inp="%rsi"; # 2nd arg $Tbl="%rbp"; $_ctx="16*$SZ+0*8(%rsp)"; $_inp="16*$SZ+1*8(%rsp)"; $_end="16*$SZ+2*8(%rsp)"; $_rsp="`16*$SZ+3*8`(%rsp)"; $framesz="16*$SZ+4*8"; sub ROUND_00_15() { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; my $STRIDE=$SZ; $STRIDE += 16 if ($i%(16/$SZ)==(16/$SZ-1)); $code.=<<___; ror \$`$Sigma1[2]-$Sigma1[1]`,$a0 mov $f,$a2 xor $e,$a0 ror \$`$Sigma0[2]-$Sigma0[1]`,$a1 xor $g,$a2 # f^g mov $T1,`$SZ*($i&0xf)`(%rsp) xor $a,$a1 and $e,$a2 # (f^g)&e ror \$`$Sigma1[1]-$Sigma1[0]`,$a0 add $h,$T1 # T1+=h xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g ror \$`$Sigma0[1]-$Sigma0[0]`,$a1 xor $e,$a0 add $a2,$T1 # T1+=Ch(e,f,g) mov $a,$a2 add ($Tbl),$T1 # T1+=K[round] xor $a,$a1 xor $b,$a2 # a^b, b^c in next round ror \$$Sigma1[0],$a0 # Sigma1(e) mov $b,$h and $a2,$a3 ror \$$Sigma0[0],$a1 # Sigma0(a) add $a0,$T1 # T1+=Sigma1(e) xor $a3,$h # h=Maj(a,b,c)=Ch(a^b,c,b) add $T1,$d # d+=T1 add $T1,$h # h+=T1 lea $STRIDE($Tbl),$Tbl # round++ ___ $code.=<<___ if ($i<15); add $a1,$h # h+=Sigma0(a) ___ ($a2,$a3) = ($a3,$a2); } sub ROUND_16_XX() { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; $code.=<<___; mov `$SZ*(($i+1)&0xf)`(%rsp),$a0 mov `$SZ*(($i+14)&0xf)`(%rsp),$a2 mov $a0,$T1 ror \$`$sigma0[1]-$sigma0[0]`,$a0 add $a1,$a # modulo-scheduled h+=Sigma0(a) mov $a2,$a1 ror \$`$sigma1[1]-$sigma1[0]`,$a2 xor $T1,$a0 shr \$$sigma0[2],$T1 ror \$$sigma0[0],$a0 xor $a1,$a2 shr \$$sigma1[2],$a1 ror \$$sigma1[0],$a2 xor $a0,$T1 # sigma0(X[(i+1)&0xf]) xor $a1,$a2 # sigma1(X[(i+14)&0xf]) add `$SZ*(($i+9)&0xf)`(%rsp),$T1 add `$SZ*($i&0xf)`(%rsp),$T1 mov $e,$a0 add $a2,$T1 mov $a,$a1 ___ &ROUND_00_15(@_); } $code=<<___; .text .extern OPENSSL_ia32cap_P .globl $func .type $func,\@function,3 .align 16 $func: .cfi_startproc ___ $code.=<<___ if ($SZ==4 || $avx); lea OPENSSL_ia32cap_P(%rip),%r11 mov 0(%r11),%r9d mov 4(%r11),%r10d mov 8(%r11),%r11d ___ $code.=<<___ if ($SZ==4 && $shaext); test \$`1<<29`,%r11d # check for SHA jnz _shaext_shortcut ___ $code.=<<___ if ($avx && $SZ==8); test \$`1<<11`,%r10d # check for XOP jnz .Lxop_shortcut ___ $code.=<<___ if ($avx>1); and \$`1<<8|1<<5|1<<3`,%r11d # check for BMI2+AVX2+BMI1 cmp \$`1<<8|1<<5|1<<3`,%r11d je .Lavx2_shortcut ___ $code.=<<___ if ($avx); and \$`1<<30`,%r9d # mask "Intel CPU" bit and \$`1<<28|1<<9`,%r10d # mask AVX and SSSE3 bits or %r9d,%r10d cmp \$`1<<28|1<<9|1<<30`,%r10d je .Lavx_shortcut ___ $code.=<<___ if ($SZ==4); test \$`1<<9`,%r10d jnz .Lssse3_shortcut ___ $code.=<<___; mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 shl \$4,%rdx # num*16 sub \$$framesz,%rsp lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ and \$-64,%rsp # align stack frame mov $ctx,$_ctx # save ctx, 1st arg mov $inp,$_inp # save inp, 2nd arh mov %rdx,$_end # save end pointer, "3rd" arg mov %rax,$_rsp # save copy of %rsp .cfi_cfa_expression $_rsp,deref,+8 .Lprologue: mov $SZ*0($ctx),$A mov $SZ*1($ctx),$B mov $SZ*2($ctx),$C mov $SZ*3($ctx),$D mov $SZ*4($ctx),$E mov $SZ*5($ctx),$F mov $SZ*6($ctx),$G mov $SZ*7($ctx),$H jmp .Lloop .align 16 .Lloop: mov $B,$a3 lea $TABLE(%rip),$Tbl xor $C,$a3 # magic ___ for($i=0;$i<16;$i++) { $code.=" mov $SZ*$i($inp),$T1\n"; $code.=" mov @ROT[4],$a0\n"; $code.=" mov @ROT[0],$a1\n"; $code.=" bswap $T1\n"; &ROUND_00_15($i,@ROT); unshift(@ROT,pop(@ROT)); } $code.=<<___; jmp .Lrounds_16_xx .align 16 .Lrounds_16_xx: ___ for(;$i<32;$i++) { &ROUND_16_XX($i,@ROT); unshift(@ROT,pop(@ROT)); } $code.=<<___; cmpb \$0,`$SZ-1`($Tbl) jnz .Lrounds_16_xx mov $_ctx,$ctx add $a1,$A # modulo-scheduled h+=Sigma0(a) lea 16*$SZ($inp),$inp add $SZ*0($ctx),$A add $SZ*1($ctx),$B add $SZ*2($ctx),$C add $SZ*3($ctx),$D add $SZ*4($ctx),$E add $SZ*5($ctx),$F add $SZ*6($ctx),$G add $SZ*7($ctx),$H cmp $_end,$inp mov $A,$SZ*0($ctx) mov $B,$SZ*1($ctx) mov $C,$SZ*2($ctx) mov $D,$SZ*3($ctx) mov $E,$SZ*4($ctx) mov $F,$SZ*5($ctx) mov $G,$SZ*6($ctx) mov $H,$SZ*7($ctx) jb .Lloop mov $_rsp,%rsi .cfi_def_cfa %rsi,8 mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue: ret .cfi_endproc .size $func,.-$func ___ if ($SZ==4) { $code.=<<___; .align 64 .type $TABLE,\@object $TABLE: .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f .long 0x03020100,0x0b0a0908,0xffffffff,0xffffffff .long 0x03020100,0x0b0a0908,0xffffffff,0xffffffff .long 0xffffffff,0xffffffff,0x03020100,0x0b0a0908 .long 0xffffffff,0xffffffff,0x03020100,0x0b0a0908 .asciz "SHA256 block transform for x86_64, CRYPTOGAMS by " ___ } else { $code.=<<___; .align 64 .type $TABLE,\@object $TABLE: .quad 0x428a2f98d728ae22,0x7137449123ef65cd .quad 0x428a2f98d728ae22,0x7137449123ef65cd .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc .quad 0x3956c25bf348b538,0x59f111f1b605d019 .quad 0x3956c25bf348b538,0x59f111f1b605d019 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 .quad 0xd807aa98a3030242,0x12835b0145706fbe .quad 0xd807aa98a3030242,0x12835b0145706fbe .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 .quad 0x06ca6351e003826f,0x142929670a0e6e70 .quad 0x06ca6351e003826f,0x142929670a0e6e70 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 .quad 0x81c2c92e47edaee6,0x92722c851482353b .quad 0x81c2c92e47edaee6,0x92722c851482353b .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 .quad 0xd192e819d6ef5218,0xd69906245565a910 .quad 0xd192e819d6ef5218,0xd69906245565a910 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec .quad 0x90befffa23631e28,0xa4506cebde82bde9 .quad 0x90befffa23631e28,0xa4506cebde82bde9 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b .quad 0xca273eceea26619c,0xd186b8c721c0c207 .quad 0xca273eceea26619c,0xd186b8c721c0c207 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 .quad 0x113f9804bef90dae,0x1b710b35131c471b .quad 0x113f9804bef90dae,0x1b710b35131c471b .quad 0x28db77f523047d84,0x32caab7b40c72493 .quad 0x28db77f523047d84,0x32caab7b40c72493 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 .quad 0x0001020304050607,0x08090a0b0c0d0e0f .quad 0x0001020304050607,0x08090a0b0c0d0e0f .asciz "SHA512 block transform for x86_64, CRYPTOGAMS by " ___ } ###################################################################### # SIMD code paths # if ($SZ==4 && $shaext) {{{ ###################################################################### # Intel SHA Extensions implementation of SHA256 update function. # my ($ctx,$inp,$num,$Tbl)=("%rdi","%rsi","%rdx","%rcx"); my ($Wi,$ABEF,$CDGH,$TMP,$BSWAP,$ABEF_SAVE,$CDGH_SAVE)=map("%xmm$_",(0..2,7..10)); my @MSG=map("%xmm$_",(3..6)); $code.=<<___; .type sha256_block_data_order_shaext,\@function,3 .align 64 sha256_block_data_order_shaext: _shaext_shortcut: .cfi_startproc ___ $code.=<<___ if ($win64); lea `-8-5*16`(%rsp),%rsp movaps %xmm6,-8-5*16(%rax) movaps %xmm7,-8-4*16(%rax) movaps %xmm8,-8-3*16(%rax) movaps %xmm9,-8-2*16(%rax) movaps %xmm10,-8-1*16(%rax) .Lprologue_shaext: ___ $code.=<<___; lea K256+0x80(%rip),$Tbl movdqu ($ctx),$ABEF # DCBA movdqu 16($ctx),$CDGH # HGFE movdqa 0x200-0x80($Tbl),$TMP # byte swap mask pshufd \$0x1b,$ABEF,$Wi # ABCD pshufd \$0xb1,$ABEF,$ABEF # CDAB pshufd \$0x1b,$CDGH,$CDGH # EFGH movdqa $TMP,$BSWAP # offload palignr \$8,$CDGH,$ABEF # ABEF punpcklqdq $Wi,$CDGH # CDGH jmp .Loop_shaext .align 16 .Loop_shaext: movdqu ($inp),@MSG[0] movdqu 0x10($inp),@MSG[1] movdqu 0x20($inp),@MSG[2] pshufb $TMP,@MSG[0] movdqu 0x30($inp),@MSG[3] movdqa 0*32-0x80($Tbl),$Wi paddd @MSG[0],$Wi pshufb $TMP,@MSG[1] movdqa $CDGH,$CDGH_SAVE # offload sha256rnds2 $ABEF,$CDGH # 0-3 pshufd \$0x0e,$Wi,$Wi nop movdqa $ABEF,$ABEF_SAVE # offload sha256rnds2 $CDGH,$ABEF movdqa 1*32-0x80($Tbl),$Wi paddd @MSG[1],$Wi pshufb $TMP,@MSG[2] sha256rnds2 $ABEF,$CDGH # 4-7 pshufd \$0x0e,$Wi,$Wi lea 0x40($inp),$inp sha256msg1 @MSG[1],@MSG[0] sha256rnds2 $CDGH,$ABEF movdqa 2*32-0x80($Tbl),$Wi paddd @MSG[2],$Wi pshufb $TMP,@MSG[3] sha256rnds2 $ABEF,$CDGH # 8-11 pshufd \$0x0e,$Wi,$Wi movdqa @MSG[3],$TMP palignr \$4,@MSG[2],$TMP nop paddd $TMP,@MSG[0] sha256msg1 @MSG[2],@MSG[1] sha256rnds2 $CDGH,$ABEF movdqa 3*32-0x80($Tbl),$Wi paddd @MSG[3],$Wi sha256msg2 @MSG[3],@MSG[0] sha256rnds2 $ABEF,$CDGH # 12-15 pshufd \$0x0e,$Wi,$Wi movdqa @MSG[0],$TMP palignr \$4,@MSG[3],$TMP nop paddd $TMP,@MSG[1] sha256msg1 @MSG[3],@MSG[2] sha256rnds2 $CDGH,$ABEF ___ for($i=4;$i<16-3;$i++) { $code.=<<___; movdqa $i*32-0x80($Tbl),$Wi paddd @MSG[0],$Wi sha256msg2 @MSG[0],@MSG[1] sha256rnds2 $ABEF,$CDGH # 16-19... pshufd \$0x0e,$Wi,$Wi movdqa @MSG[1],$TMP palignr \$4,@MSG[0],$TMP nop paddd $TMP,@MSG[2] sha256msg1 @MSG[0],@MSG[3] sha256rnds2 $CDGH,$ABEF ___ push(@MSG,shift(@MSG)); } $code.=<<___; movdqa 13*32-0x80($Tbl),$Wi paddd @MSG[0],$Wi sha256msg2 @MSG[0],@MSG[1] sha256rnds2 $ABEF,$CDGH # 52-55 pshufd \$0x0e,$Wi,$Wi movdqa @MSG[1],$TMP palignr \$4,@MSG[0],$TMP sha256rnds2 $CDGH,$ABEF paddd $TMP,@MSG[2] movdqa 14*32-0x80($Tbl),$Wi paddd @MSG[1],$Wi sha256rnds2 $ABEF,$CDGH # 56-59 pshufd \$0x0e,$Wi,$Wi sha256msg2 @MSG[1],@MSG[2] movdqa $BSWAP,$TMP sha256rnds2 $CDGH,$ABEF movdqa 15*32-0x80($Tbl),$Wi paddd @MSG[2],$Wi nop sha256rnds2 $ABEF,$CDGH # 60-63 pshufd \$0x0e,$Wi,$Wi dec $num nop sha256rnds2 $CDGH,$ABEF paddd $CDGH_SAVE,$CDGH paddd $ABEF_SAVE,$ABEF jnz .Loop_shaext pshufd \$0xb1,$CDGH,$CDGH # DCHG pshufd \$0x1b,$ABEF,$TMP # FEBA pshufd \$0xb1,$ABEF,$ABEF # BAFE punpckhqdq $CDGH,$ABEF # DCBA palignr \$8,$TMP,$CDGH # HGFE movdqu $ABEF,($ctx) movdqu $CDGH,16($ctx) ___ $code.=<<___ if ($win64); movaps -8-5*16(%rax),%xmm6 movaps -8-4*16(%rax),%xmm7 movaps -8-3*16(%rax),%xmm8 movaps -8-2*16(%rax),%xmm9 movaps -8-1*16(%rax),%xmm10 mov %rax,%rsp .Lepilogue_shaext: ___ $code.=<<___; ret .cfi_endproc .size sha256_block_data_order_shaext,.-sha256_block_data_order_shaext ___ }}} {{{ my $a4=$T1; my ($a,$b,$c,$d,$e,$f,$g,$h); sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; my $arg = pop; $arg = "\$$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; } sub body_00_15 () { ( '($a,$b,$c,$d,$e,$f,$g,$h)=@ROT;'. '&ror ($a0,$Sigma1[2]-$Sigma1[1])', '&mov ($a,$a1)', '&mov ($a4,$f)', '&ror ($a1,$Sigma0[2]-$Sigma0[1])', '&xor ($a0,$e)', '&xor ($a4,$g)', # f^g '&ror ($a0,$Sigma1[1]-$Sigma1[0])', '&xor ($a1,$a)', '&and ($a4,$e)', # (f^g)&e '&xor ($a0,$e)', '&add ($h,$SZ*($i&15)."(%rsp)")', # h+=X[i]+K[i] '&mov ($a2,$a)', '&xor ($a4,$g)', # Ch(e,f,g)=((f^g)&e)^g '&ror ($a1,$Sigma0[1]-$Sigma0[0])', '&xor ($a2,$b)', # a^b, b^c in next round '&add ($h,$a4)', # h+=Ch(e,f,g) '&ror ($a0,$Sigma1[0])', # Sigma1(e) '&and ($a3,$a2)', # (b^c)&(a^b) '&xor ($a1,$a)', '&add ($h,$a0)', # h+=Sigma1(e) '&xor ($a3,$b)', # Maj(a,b,c)=Ch(a^b,c,b) '&ror ($a1,$Sigma0[0])', # Sigma0(a) '&add ($d,$h)', # d+=h '&add ($h,$a3)', # h+=Maj(a,b,c) '&mov ($a0,$d)', '&add ($a1,$h);'. # h+=Sigma0(a) '($a2,$a3) = ($a3,$a2); unshift(@ROT,pop(@ROT)); $i++;' ); } ###################################################################### # SSSE3 code path # if ($SZ==4) { # SHA256 only my @X = map("%xmm$_",(0..3)); my ($t0,$t1,$t2,$t3, $t4,$t5) = map("%xmm$_",(4..9)); $code.=<<___; .type ${func}_ssse3,\@function,3 .align 64 ${func}_ssse3: .cfi_startproc .Lssse3_shortcut: mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 shl \$4,%rdx # num*16 sub \$`$framesz+$win64*16*4`,%rsp lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ and \$-64,%rsp # align stack frame mov $ctx,$_ctx # save ctx, 1st arg mov $inp,$_inp # save inp, 2nd arh mov %rdx,$_end # save end pointer, "3rd" arg mov %rax,$_rsp # save copy of %rsp .cfi_cfa_expression $_rsp,deref,+8 ___ $code.=<<___ if ($win64); movaps %xmm6,16*$SZ+32(%rsp) movaps %xmm7,16*$SZ+48(%rsp) movaps %xmm8,16*$SZ+64(%rsp) movaps %xmm9,16*$SZ+80(%rsp) ___ $code.=<<___; .Lprologue_ssse3: mov $SZ*0($ctx),$A mov $SZ*1($ctx),$B mov $SZ*2($ctx),$C mov $SZ*3($ctx),$D mov $SZ*4($ctx),$E mov $SZ*5($ctx),$F mov $SZ*6($ctx),$G mov $SZ*7($ctx),$H ___ $code.=<<___; #movdqa $TABLE+`$SZ*2*$rounds`+32(%rip),$t4 #movdqa $TABLE+`$SZ*2*$rounds`+64(%rip),$t5 jmp .Lloop_ssse3 .align 16 .Lloop_ssse3: movdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 movdqu 0x00($inp),@X[0] movdqu 0x10($inp),@X[1] movdqu 0x20($inp),@X[2] pshufb $t3,@X[0] movdqu 0x30($inp),@X[3] lea $TABLE(%rip),$Tbl pshufb $t3,@X[1] movdqa 0x00($Tbl),$t0 movdqa 0x20($Tbl),$t1 pshufb $t3,@X[2] paddd @X[0],$t0 movdqa 0x40($Tbl),$t2 pshufb $t3,@X[3] movdqa 0x60($Tbl),$t3 paddd @X[1],$t1 paddd @X[2],$t2 paddd @X[3],$t3 movdqa $t0,0x00(%rsp) mov $A,$a1 movdqa $t1,0x10(%rsp) mov $B,$a3 movdqa $t2,0x20(%rsp) xor $C,$a3 # magic movdqa $t3,0x30(%rsp) mov $E,$a0 jmp .Lssse3_00_47 .align 16 .Lssse3_00_47: sub \$`-16*2*$SZ`,$Tbl # size optimization ___ sub Xupdate_256_SSSE3 () { ( '&movdqa ($t0,@X[1]);', '&movdqa ($t3,@X[3])', '&palignr ($t0,@X[0],$SZ)', # X[1..4] '&palignr ($t3,@X[2],$SZ);', # X[9..12] '&movdqa ($t1,$t0)', '&movdqa ($t2,$t0);', '&psrld ($t0,$sigma0[2])', '&paddd (@X[0],$t3);', # X[0..3] += X[9..12] '&psrld ($t2,$sigma0[0])', '&pshufd ($t3,@X[3],0b11111010)',# X[14..15] '&pslld ($t1,8*$SZ-$sigma0[1]);'. '&pxor ($t0,$t2)', '&psrld ($t2,$sigma0[1]-$sigma0[0]);'. '&pxor ($t0,$t1)', '&pslld ($t1,$sigma0[1]-$sigma0[0]);'. '&pxor ($t0,$t2);', '&movdqa ($t2,$t3)', '&pxor ($t0,$t1);', # sigma0(X[1..4]) '&psrld ($t3,$sigma1[2])', '&paddd (@X[0],$t0);', # X[0..3] += sigma0(X[1..4]) '&psrlq ($t2,$sigma1[0])', '&pxor ($t3,$t2);', '&psrlq ($t2,$sigma1[1]-$sigma1[0])', '&pxor ($t3,$t2)', '&pshufb ($t3,$t4)', # sigma1(X[14..15]) '&paddd (@X[0],$t3)', # X[0..1] += sigma1(X[14..15]) '&pshufd ($t3,@X[0],0b01010000)',# X[16..17] '&movdqa ($t2,$t3);', '&psrld ($t3,$sigma1[2])', '&psrlq ($t2,$sigma1[0])', '&pxor ($t3,$t2);', '&psrlq ($t2,$sigma1[1]-$sigma1[0])', '&pxor ($t3,$t2);', '&movdqa ($t2,16*2*$j."($Tbl)")', '&pshufb ($t3,$t5)', '&paddd (@X[0],$t3)' # X[2..3] += sigma1(X[16..17]) ); } sub SSSE3_256_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 104 instructions if (0) { foreach (Xupdate_256_SSSE3()) { # 36 instructions eval; eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); } } else { # squeeze extra 4% on Westmere and 19% on Atom eval(shift(@insns)); #@ &movdqa ($t0,@X[1]); eval(shift(@insns)); eval(shift(@insns)); &movdqa ($t3,@X[3]); eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #@ eval(shift(@insns)); &palignr ($t0,@X[0],$SZ); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); &palignr ($t3,@X[2],$SZ); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #@ &movdqa ($t1,$t0); eval(shift(@insns)); eval(shift(@insns)); &movdqa ($t2,$t0); eval(shift(@insns)); #@ eval(shift(@insns)); &psrld ($t0,$sigma0[2]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[0],$t3); # X[0..3] += X[9..12] eval(shift(@insns)); #@ eval(shift(@insns)); &psrld ($t2,$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &pshufd ($t3,@X[3],0b11111010); # X[4..15] eval(shift(@insns)); eval(shift(@insns)); #@ &pslld ($t1,8*$SZ-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &pxor ($t0,$t2); eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #@ &psrld ($t2,$sigma0[1]-$sigma0[0]); eval(shift(@insns)); &pxor ($t0,$t1); eval(shift(@insns)); eval(shift(@insns)); &pslld ($t1,$sigma0[1]-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &pxor ($t0,$t2); eval(shift(@insns)); eval(shift(@insns)); #@ &movdqa ($t2,$t3); eval(shift(@insns)); eval(shift(@insns)); &pxor ($t0,$t1); # sigma0(X[1..4]) eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); &psrld ($t3,$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[0],$t0); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); #@ eval(shift(@insns)); &psrlq ($t2,$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pxor ($t3,$t2); eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #@ &psrlq ($t2,$sigma1[1]-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &pxor ($t3,$t2); eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); #&pshufb ($t3,$t4); # sigma1(X[14..15]) &pshufd ($t3,$t3,0b10000000); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psrldq ($t3,8); eval(shift(@insns)); eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #@ &paddd (@X[0],$t3); # X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pshufd ($t3,@X[0],0b01010000); # X[16..17] eval(shift(@insns)); eval(shift(@insns)); #@ eval(shift(@insns)); &movdqa ($t2,$t3); eval(shift(@insns)); eval(shift(@insns)); &psrld ($t3,$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); #@ &psrlq ($t2,$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &pxor ($t3,$t2); eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #@ eval(shift(@insns)); &psrlq ($t2,$sigma1[1]-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pxor ($t3,$t2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); #@ #&pshufb ($t3,$t5); &pshufd ($t3,$t3,0b00001000); eval(shift(@insns)); eval(shift(@insns)); &movdqa ($t2,16*2*$j."($Tbl)"); eval(shift(@insns)); #@ eval(shift(@insns)); &pslldq ($t3,8); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[0],$t3); # X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); #@ eval(shift(@insns)); eval(shift(@insns)); } &paddd ($t2,@X[0]); foreach (@insns) { eval; } # remaining instructions &movdqa (16*$j."(%rsp)",$t2); } for ($i=0,$j=0; $j<4; $j++) { &SSSE3_256_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmpb ($SZ-1+16*2*$SZ."($Tbl)",0); &jne (".Lssse3_00_47"); for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } $code.=<<___; mov $_ctx,$ctx mov $a1,$A add $SZ*0($ctx),$A lea 16*$SZ($inp),$inp add $SZ*1($ctx),$B add $SZ*2($ctx),$C add $SZ*3($ctx),$D add $SZ*4($ctx),$E add $SZ*5($ctx),$F add $SZ*6($ctx),$G add $SZ*7($ctx),$H cmp $_end,$inp mov $A,$SZ*0($ctx) mov $B,$SZ*1($ctx) mov $C,$SZ*2($ctx) mov $D,$SZ*3($ctx) mov $E,$SZ*4($ctx) mov $F,$SZ*5($ctx) mov $G,$SZ*6($ctx) mov $H,$SZ*7($ctx) jb .Lloop_ssse3 mov $_rsp,%rsi .cfi_def_cfa %rsi,8 ___ $code.=<<___ if ($win64); movaps 16*$SZ+32(%rsp),%xmm6 movaps 16*$SZ+48(%rsp),%xmm7 movaps 16*$SZ+64(%rsp),%xmm8 movaps 16*$SZ+80(%rsp),%xmm9 ___ $code.=<<___; mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue_ssse3: ret .cfi_endproc .size ${func}_ssse3,.-${func}_ssse3 ___ } if ($avx) {{ ###################################################################### # XOP code path # if ($SZ==8) { # SHA512 only $code.=<<___; .type ${func}_xop,\@function,3 .align 64 ${func}_xop: .cfi_startproc .Lxop_shortcut: mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 shl \$4,%rdx # num*16 sub \$`$framesz+$win64*16*($SZ==4?4:6)`,%rsp lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ and \$-64,%rsp # align stack frame mov $ctx,$_ctx # save ctx, 1st arg mov $inp,$_inp # save inp, 2nd arh mov %rdx,$_end # save end pointer, "3rd" arg mov %rax,$_rsp # save copy of %rsp .cfi_cfa_expression $_rsp,deref,+8 ___ $code.=<<___ if ($win64); movaps %xmm6,16*$SZ+32(%rsp) movaps %xmm7,16*$SZ+48(%rsp) movaps %xmm8,16*$SZ+64(%rsp) movaps %xmm9,16*$SZ+80(%rsp) ___ $code.=<<___ if ($win64 && $SZ>4); movaps %xmm10,16*$SZ+96(%rsp) movaps %xmm11,16*$SZ+112(%rsp) ___ $code.=<<___; .Lprologue_xop: vzeroupper mov $SZ*0($ctx),$A mov $SZ*1($ctx),$B mov $SZ*2($ctx),$C mov $SZ*3($ctx),$D mov $SZ*4($ctx),$E mov $SZ*5($ctx),$F mov $SZ*6($ctx),$G mov $SZ*7($ctx),$H jmp .Lloop_xop ___ if ($SZ==4) { # SHA256 my @X = map("%xmm$_",(0..3)); my ($t0,$t1,$t2,$t3) = map("%xmm$_",(4..7)); $code.=<<___; .align 16 .Lloop_xop: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu 0x00($inp),@X[0] vmovdqu 0x10($inp),@X[1] vmovdqu 0x20($inp),@X[2] vmovdqu 0x30($inp),@X[3] vpshufb $t3,@X[0],@X[0] lea $TABLE(%rip),$Tbl vpshufb $t3,@X[1],@X[1] vpshufb $t3,@X[2],@X[2] vpaddd 0x00($Tbl),@X[0],$t0 vpshufb $t3,@X[3],@X[3] vpaddd 0x20($Tbl),@X[1],$t1 vpaddd 0x40($Tbl),@X[2],$t2 vpaddd 0x60($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) mov $A,$a1 vmovdqa $t1,0x10(%rsp) mov $B,$a3 vmovdqa $t2,0x20(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x30(%rsp) mov $E,$a0 jmp .Lxop_00_47 .align 16 .Lxop_00_47: sub \$`-16*2*$SZ`,$Tbl # size optimization ___ sub XOP_256_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 104 instructions &vpalignr ($t0,@X[1],@X[0],$SZ); # X[1..4] eval(shift(@insns)); eval(shift(@insns)); &vpalignr ($t3,@X[3],@X[2],$SZ); # X[9..12] eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t1,$t0,8*$SZ-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &vpsrld ($t0,$t0,$sigma0[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t3); # X[0..3] += X[9..12] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t2,$t1,$sigma0[1]-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t0,$t0,$t1); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t3,@X[3],8*$SZ-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t0,$t0,$t2); # sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &vpsrld ($t2,@X[3],$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t0); # X[0..3] += sigma0(X[1..4]) eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t1,$t3,$sigma1[1]-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t1); # sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrldq ($t3,$t3,8); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t3); # X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t3,@X[0],8*$SZ-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vpsrld ($t2,@X[0],$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &vprotd ($t1,$t3,$sigma1[1]-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t1); # sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq ($t3,$t3,8); # 22 instructions eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[0],@X[0],$t3); # X[2..3] += sigma1(X[16..17]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddd ($t2,@X[0],16*2*$j."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa (16*$j."(%rsp)",$t2); } for ($i=0,$j=0; $j<4; $j++) { &XOP_256_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmpb ($SZ-1+16*2*$SZ."($Tbl)",0); &jne (".Lxop_00_47"); for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } } else { # SHA512 my @X = map("%xmm$_",(0..7)); my ($t0,$t1,$t2,$t3) = map("%xmm$_",(8..11)); $code.=<<___; .align 16 .Lloop_xop: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu 0x00($inp),@X[0] lea $TABLE+0x80(%rip),$Tbl # size optimization vmovdqu 0x10($inp),@X[1] vmovdqu 0x20($inp),@X[2] vpshufb $t3,@X[0],@X[0] vmovdqu 0x30($inp),@X[3] vpshufb $t3,@X[1],@X[1] vmovdqu 0x40($inp),@X[4] vpshufb $t3,@X[2],@X[2] vmovdqu 0x50($inp),@X[5] vpshufb $t3,@X[3],@X[3] vmovdqu 0x60($inp),@X[6] vpshufb $t3,@X[4],@X[4] vmovdqu 0x70($inp),@X[7] vpshufb $t3,@X[5],@X[5] vpaddq -0x80($Tbl),@X[0],$t0 vpshufb $t3,@X[6],@X[6] vpaddq -0x60($Tbl),@X[1],$t1 vpshufb $t3,@X[7],@X[7] vpaddq -0x40($Tbl),@X[2],$t2 vpaddq -0x20($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) vpaddq 0x00($Tbl),@X[4],$t0 vmovdqa $t1,0x10(%rsp) vpaddq 0x20($Tbl),@X[5],$t1 vmovdqa $t2,0x20(%rsp) vpaddq 0x40($Tbl),@X[6],$t2 vmovdqa $t3,0x30(%rsp) vpaddq 0x60($Tbl),@X[7],$t3 vmovdqa $t0,0x40(%rsp) mov $A,$a1 vmovdqa $t1,0x50(%rsp) mov $B,$a3 vmovdqa $t2,0x60(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x70(%rsp) mov $E,$a0 jmp .Lxop_00_47 .align 16 .Lxop_00_47: add \$`16*2*$SZ`,$Tbl ___ sub XOP_512_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body); # 52 instructions &vpalignr ($t0,@X[1],@X[0],$SZ); # X[1..2] eval(shift(@insns)); eval(shift(@insns)); &vpalignr ($t3,@X[5],@X[4],$SZ); # X[9..10] eval(shift(@insns)); eval(shift(@insns)); &vprotq ($t1,$t0,8*$SZ-$sigma0[1]); eval(shift(@insns)); eval(shift(@insns)); &vpsrlq ($t0,$t0,$sigma0[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddq (@X[0],@X[0],$t3); # X[0..1] += X[9..10] eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotq ($t2,$t1,$sigma0[1]-$sigma0[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t0,$t0,$t1); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vprotq ($t3,@X[7],8*$SZ-$sigma1[1]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t0,$t0,$t2); # sigma0(X[1..2]) eval(shift(@insns)); eval(shift(@insns)); &vpsrlq ($t2,@X[7],$sigma1[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddq (@X[0],@X[0],$t0); # X[0..1] += sigma0(X[1..2]) eval(shift(@insns)); eval(shift(@insns)); &vprotq ($t1,$t3,$sigma1[1]-$sigma1[0]); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t2); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor ($t3,$t3,$t1); # sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddq (@X[0],@X[0],$t3); # X[0..1] += sigma1(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpaddq ($t2,@X[0],16*2*$j-0x80."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa (16*$j."(%rsp)",$t2); } for ($i=0,$j=0; $j<8; $j++) { &XOP_512_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmpb ($SZ-1+16*2*$SZ-0x80."($Tbl)",0); &jne (".Lxop_00_47"); for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } } $code.=<<___; mov $_ctx,$ctx mov $a1,$A add $SZ*0($ctx),$A lea 16*$SZ($inp),$inp add $SZ*1($ctx),$B add $SZ*2($ctx),$C add $SZ*3($ctx),$D add $SZ*4($ctx),$E add $SZ*5($ctx),$F add $SZ*6($ctx),$G add $SZ*7($ctx),$H cmp $_end,$inp mov $A,$SZ*0($ctx) mov $B,$SZ*1($ctx) mov $C,$SZ*2($ctx) mov $D,$SZ*3($ctx) mov $E,$SZ*4($ctx) mov $F,$SZ*5($ctx) mov $G,$SZ*6($ctx) mov $H,$SZ*7($ctx) jb .Lloop_xop mov $_rsp,%rsi .cfi_def_cfa %rsi,8 vzeroupper ___ $code.=<<___ if ($win64); movaps 16*$SZ+32(%rsp),%xmm6 movaps 16*$SZ+48(%rsp),%xmm7 movaps 16*$SZ+64(%rsp),%xmm8 movaps 16*$SZ+80(%rsp),%xmm9 ___ $code.=<<___ if ($win64 && $SZ>4); movaps 16*$SZ+96(%rsp),%xmm10 movaps 16*$SZ+112(%rsp),%xmm11 ___ $code.=<<___; mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue_xop: ret .cfi_endproc .size ${func}_xop,.-${func}_xop ___ } ###################################################################### # AVX+shrd code path # local *ror = sub { &shrd(@_[0],@_) }; $code.=<<___; .type ${func}_avx,\@function,3 .align 64 ${func}_avx: .cfi_startproc .Lavx_shortcut: mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 shl \$4,%rdx # num*16 sub \$`$framesz+$win64*16*($SZ==4?4:6)`,%rsp lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ and \$-64,%rsp # align stack frame mov $ctx,$_ctx # save ctx, 1st arg mov $inp,$_inp # save inp, 2nd arh mov %rdx,$_end # save end pointer, "3rd" arg mov %rax,$_rsp # save copy of %rsp .cfi_cfa_expression $_rsp,deref,+8 ___ $code.=<<___ if ($win64); movaps %xmm6,16*$SZ+32(%rsp) movaps %xmm7,16*$SZ+48(%rsp) movaps %xmm8,16*$SZ+64(%rsp) movaps %xmm9,16*$SZ+80(%rsp) ___ $code.=<<___ if ($win64 && $SZ>4); movaps %xmm10,16*$SZ+96(%rsp) movaps %xmm11,16*$SZ+112(%rsp) ___ $code.=<<___; .Lprologue_avx: vzeroupper mov $SZ*0($ctx),$A mov $SZ*1($ctx),$B mov $SZ*2($ctx),$C mov $SZ*3($ctx),$D mov $SZ*4($ctx),$E mov $SZ*5($ctx),$F mov $SZ*6($ctx),$G mov $SZ*7($ctx),$H ___ if ($SZ==4) { # SHA256 my @X = map("%xmm$_",(0..3)); my ($t0,$t1,$t2,$t3, $t4,$t5) = map("%xmm$_",(4..9)); $code.=<<___; vmovdqa $TABLE+`$SZ*2*$rounds`+32(%rip),$t4 vmovdqa $TABLE+`$SZ*2*$rounds`+64(%rip),$t5 jmp .Lloop_avx .align 16 .Lloop_avx: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu 0x00($inp),@X[0] vmovdqu 0x10($inp),@X[1] vmovdqu 0x20($inp),@X[2] vmovdqu 0x30($inp),@X[3] vpshufb $t3,@X[0],@X[0] lea $TABLE(%rip),$Tbl vpshufb $t3,@X[1],@X[1] vpshufb $t3,@X[2],@X[2] vpaddd 0x00($Tbl),@X[0],$t0 vpshufb $t3,@X[3],@X[3] vpaddd 0x20($Tbl),@X[1],$t1 vpaddd 0x40($Tbl),@X[2],$t2 vpaddd 0x60($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) mov $A,$a1 vmovdqa $t1,0x10(%rsp) mov $B,$a3 vmovdqa $t2,0x20(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x30(%rsp) mov $E,$a0 jmp .Lavx_00_47 .align 16 .Lavx_00_47: sub \$`-16*2*$SZ`,$Tbl # size optimization ___ sub Xupdate_256_AVX () { ( '&vpalignr ($t0,@X[1],@X[0],$SZ)', # X[1..4] '&vpalignr ($t3,@X[3],@X[2],$SZ)', # X[9..12] '&vpsrld ($t2,$t0,$sigma0[0]);', '&vpaddd (@X[0],@X[0],$t3)', # X[0..3] += X[9..12] '&vpsrld ($t3,$t0,$sigma0[2])', '&vpslld ($t1,$t0,8*$SZ-$sigma0[1]);', '&vpxor ($t0,$t3,$t2)', '&vpshufd ($t3,@X[3],0b11111010)',# X[14..15] '&vpsrld ($t2,$t2,$sigma0[1]-$sigma0[0]);', '&vpxor ($t0,$t0,$t1)', '&vpslld ($t1,$t1,$sigma0[1]-$sigma0[0]);', '&vpxor ($t0,$t0,$t2)', '&vpsrld ($t2,$t3,$sigma1[2]);', '&vpxor ($t0,$t0,$t1)', # sigma0(X[1..4]) '&vpsrlq ($t3,$t3,$sigma1[0]);', '&vpaddd (@X[0],@X[0],$t0)', # X[0..3] += sigma0(X[1..4]) '&vpxor ($t2,$t2,$t3);', '&vpsrlq ($t3,$t3,$sigma1[1]-$sigma1[0])', '&vpxor ($t2,$t2,$t3)', '&vpshufb ($t2,$t2,$t4)', # sigma1(X[14..15]) '&vpaddd (@X[0],@X[0],$t2)', # X[0..1] += sigma1(X[14..15]) '&vpshufd ($t3,@X[0],0b01010000)',# X[16..17] '&vpsrld ($t2,$t3,$sigma1[2])', '&vpsrlq ($t3,$t3,$sigma1[0])', '&vpxor ($t2,$t2,$t3);', '&vpsrlq ($t3,$t3,$sigma1[1]-$sigma1[0])', '&vpxor ($t2,$t2,$t3)', '&vpshufb ($t2,$t2,$t5)', '&vpaddd (@X[0],@X[0],$t2)' # X[2..3] += sigma1(X[16..17]) ); } sub AVX_256_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 104 instructions foreach (Xupdate_256_AVX()) { # 29 instructions eval; eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); } &vpaddd ($t2,@X[0],16*2*$j."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa (16*$j."(%rsp)",$t2); } for ($i=0,$j=0; $j<4; $j++) { &AVX_256_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmpb ($SZ-1+16*2*$SZ."($Tbl)",0); &jne (".Lavx_00_47"); for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } } else { # SHA512 my @X = map("%xmm$_",(0..7)); my ($t0,$t1,$t2,$t3) = map("%xmm$_",(8..11)); $code.=<<___; jmp .Lloop_avx .align 16 .Lloop_avx: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu 0x00($inp),@X[0] lea $TABLE+0x80(%rip),$Tbl # size optimization vmovdqu 0x10($inp),@X[1] vmovdqu 0x20($inp),@X[2] vpshufb $t3,@X[0],@X[0] vmovdqu 0x30($inp),@X[3] vpshufb $t3,@X[1],@X[1] vmovdqu 0x40($inp),@X[4] vpshufb $t3,@X[2],@X[2] vmovdqu 0x50($inp),@X[5] vpshufb $t3,@X[3],@X[3] vmovdqu 0x60($inp),@X[6] vpshufb $t3,@X[4],@X[4] vmovdqu 0x70($inp),@X[7] vpshufb $t3,@X[5],@X[5] vpaddq -0x80($Tbl),@X[0],$t0 vpshufb $t3,@X[6],@X[6] vpaddq -0x60($Tbl),@X[1],$t1 vpshufb $t3,@X[7],@X[7] vpaddq -0x40($Tbl),@X[2],$t2 vpaddq -0x20($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) vpaddq 0x00($Tbl),@X[4],$t0 vmovdqa $t1,0x10(%rsp) vpaddq 0x20($Tbl),@X[5],$t1 vmovdqa $t2,0x20(%rsp) vpaddq 0x40($Tbl),@X[6],$t2 vmovdqa $t3,0x30(%rsp) vpaddq 0x60($Tbl),@X[7],$t3 vmovdqa $t0,0x40(%rsp) mov $A,$a1 vmovdqa $t1,0x50(%rsp) mov $B,$a3 vmovdqa $t2,0x60(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x70(%rsp) mov $E,$a0 jmp .Lavx_00_47 .align 16 .Lavx_00_47: add \$`16*2*$SZ`,$Tbl ___ sub Xupdate_512_AVX () { ( '&vpalignr ($t0,@X[1],@X[0],$SZ)', # X[1..2] '&vpalignr ($t3,@X[5],@X[4],$SZ)', # X[9..10] '&vpsrlq ($t2,$t0,$sigma0[0])', '&vpaddq (@X[0],@X[0],$t3);', # X[0..1] += X[9..10] '&vpsrlq ($t3,$t0,$sigma0[2])', '&vpsllq ($t1,$t0,8*$SZ-$sigma0[1]);', '&vpxor ($t0,$t3,$t2)', '&vpsrlq ($t2,$t2,$sigma0[1]-$sigma0[0]);', '&vpxor ($t0,$t0,$t1)', '&vpsllq ($t1,$t1,$sigma0[1]-$sigma0[0]);', '&vpxor ($t0,$t0,$t2)', '&vpsrlq ($t3,@X[7],$sigma1[2]);', '&vpxor ($t0,$t0,$t1)', # sigma0(X[1..2]) '&vpsllq ($t2,@X[7],8*$SZ-$sigma1[1]);', '&vpaddq (@X[0],@X[0],$t0)', # X[0..1] += sigma0(X[1..2]) '&vpsrlq ($t1,@X[7],$sigma1[0]);', '&vpxor ($t3,$t3,$t2)', '&vpsllq ($t2,$t2,$sigma1[1]-$sigma1[0]);', '&vpxor ($t3,$t3,$t1)', '&vpsrlq ($t1,$t1,$sigma1[1]-$sigma1[0]);', '&vpxor ($t3,$t3,$t2)', '&vpxor ($t3,$t3,$t1)', # sigma1(X[14..15]) '&vpaddq (@X[0],@X[0],$t3)', # X[0..1] += sigma1(X[14..15]) ); } sub AVX_512_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body); # 52 instructions foreach (Xupdate_512_AVX()) { # 23 instructions eval; eval(shift(@insns)); eval(shift(@insns)); } &vpaddq ($t2,@X[0],16*2*$j-0x80."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa (16*$j."(%rsp)",$t2); } for ($i=0,$j=0; $j<8; $j++) { &AVX_512_00_47($j,\&body_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &cmpb ($SZ-1+16*2*$SZ-0x80."($Tbl)",0); &jne (".Lavx_00_47"); for ($i=0; $i<16; ) { foreach(body_00_15()) { eval; } } } $code.=<<___; mov $_ctx,$ctx mov $a1,$A add $SZ*0($ctx),$A lea 16*$SZ($inp),$inp add $SZ*1($ctx),$B add $SZ*2($ctx),$C add $SZ*3($ctx),$D add $SZ*4($ctx),$E add $SZ*5($ctx),$F add $SZ*6($ctx),$G add $SZ*7($ctx),$H cmp $_end,$inp mov $A,$SZ*0($ctx) mov $B,$SZ*1($ctx) mov $C,$SZ*2($ctx) mov $D,$SZ*3($ctx) mov $E,$SZ*4($ctx) mov $F,$SZ*5($ctx) mov $G,$SZ*6($ctx) mov $H,$SZ*7($ctx) jb .Lloop_avx mov $_rsp,%rsi .cfi_def_cfa %rsi,8 vzeroupper ___ $code.=<<___ if ($win64); movaps 16*$SZ+32(%rsp),%xmm6 movaps 16*$SZ+48(%rsp),%xmm7 movaps 16*$SZ+64(%rsp),%xmm8 movaps 16*$SZ+80(%rsp),%xmm9 ___ $code.=<<___ if ($win64 && $SZ>4); movaps 16*$SZ+96(%rsp),%xmm10 movaps 16*$SZ+112(%rsp),%xmm11 ___ $code.=<<___; mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx: ret .cfi_endproc .size ${func}_avx,.-${func}_avx ___ if ($avx>1) {{ ###################################################################### # AVX2+BMI code path # my $a5=$SZ==4?"%esi":"%rsi"; # zap $inp my $PUSH8=8*2*$SZ; use integer; sub bodyx_00_15 () { # at start $a1 should be zero, $a3 - $b^$c and $a4 copy of $f ( '($a,$b,$c,$d,$e,$f,$g,$h)=@ROT;'. '&add ($h,(32*($i/(16/$SZ))+$SZ*($i%(16/$SZ)))%$PUSH8.$base)', # h+=X[i]+K[i] '&and ($a4,$e)', # f&e '&rorx ($a0,$e,$Sigma1[2])', '&rorx ($a2,$e,$Sigma1[1])', '&lea ($a,"($a,$a1)")', # h+=Sigma0(a) from the past '&lea ($h,"($h,$a4)")', '&andn ($a4,$e,$g)', # ~e&g '&xor ($a0,$a2)', '&rorx ($a1,$e,$Sigma1[0])', '&lea ($h,"($h,$a4)")', # h+=Ch(e,f,g)=(e&f)+(~e&g) '&xor ($a0,$a1)', # Sigma1(e) '&mov ($a2,$a)', '&rorx ($a4,$a,$Sigma0[2])', '&lea ($h,"($h,$a0)")', # h+=Sigma1(e) '&xor ($a2,$b)', # a^b, b^c in next round '&rorx ($a1,$a,$Sigma0[1])', '&rorx ($a0,$a,$Sigma0[0])', '&lea ($d,"($d,$h)")', # d+=h '&and ($a3,$a2)', # (b^c)&(a^b) '&xor ($a1,$a4)', '&xor ($a3,$b)', # Maj(a,b,c)=Ch(a^b,c,b) '&xor ($a1,$a0)', # Sigma0(a) '&lea ($h,"($h,$a3)");'. # h+=Maj(a,b,c) '&mov ($a4,$e)', # copy of f in future '($a2,$a3) = ($a3,$a2); unshift(@ROT,pop(@ROT)); $i++;' ); # and at the finish one has to $a+=$a1 } $code.=<<___; .type ${func}_avx2,\@function,3 .align 64 ${func}_avx2: .cfi_startproc .Lavx2_shortcut: mov %rsp,%rax # copy %rsp .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$`2*$SZ*$rounds+4*8+$win64*16*($SZ==4?4:6)`,%rsp shl \$4,%rdx # num*16 and \$-256*$SZ,%rsp # align stack frame lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ add \$`2*$SZ*($rounds-8)`,%rsp mov $ctx,$_ctx # save ctx, 1st arg mov $inp,$_inp # save inp, 2nd arh mov %rdx,$_end # save end pointer, "3rd" arg mov %rax,$_rsp # save copy of %rsp .cfi_cfa_expression $_rsp,deref,+8 ___ $code.=<<___ if ($win64); movaps %xmm6,16*$SZ+32(%rsp) movaps %xmm7,16*$SZ+48(%rsp) movaps %xmm8,16*$SZ+64(%rsp) movaps %xmm9,16*$SZ+80(%rsp) ___ $code.=<<___ if ($win64 && $SZ>4); movaps %xmm10,16*$SZ+96(%rsp) movaps %xmm11,16*$SZ+112(%rsp) ___ $code.=<<___; .Lprologue_avx2: vzeroupper sub \$-16*$SZ,$inp # inp++, size optimization mov $SZ*0($ctx),$A mov $inp,%r12 # borrow $T1 mov $SZ*1($ctx),$B cmp %rdx,$inp # $_end mov $SZ*2($ctx),$C cmove %rsp,%r12 # next block or random data mov $SZ*3($ctx),$D mov $SZ*4($ctx),$E mov $SZ*5($ctx),$F mov $SZ*6($ctx),$G mov $SZ*7($ctx),$H ___ if ($SZ==4) { # SHA256 my @X = map("%ymm$_",(0..3)); my ($t0,$t1,$t2,$t3, $t4,$t5) = map("%ymm$_",(4..9)); $code.=<<___; vmovdqa $TABLE+`$SZ*2*$rounds`+32(%rip),$t4 vmovdqa $TABLE+`$SZ*2*$rounds`+64(%rip),$t5 jmp .Loop_avx2 .align 16 .Loop_avx2: vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3 vmovdqu -16*$SZ+0($inp),%xmm0 vmovdqu -16*$SZ+16($inp),%xmm1 vmovdqu -16*$SZ+32($inp),%xmm2 vmovdqu -16*$SZ+48($inp),%xmm3 #mov $inp,$_inp # offload $inp vinserti128 \$1,(%r12),@X[0],@X[0] vinserti128 \$1,16(%r12),@X[1],@X[1] vpshufb $t3,@X[0],@X[0] vinserti128 \$1,32(%r12),@X[2],@X[2] vpshufb $t3,@X[1],@X[1] vinserti128 \$1,48(%r12),@X[3],@X[3] lea $TABLE(%rip),$Tbl vpshufb $t3,@X[2],@X[2] vpaddd 0x00($Tbl),@X[0],$t0 vpshufb $t3,@X[3],@X[3] vpaddd 0x20($Tbl),@X[1],$t1 vpaddd 0x40($Tbl),@X[2],$t2 vpaddd 0x60($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) xor $a1,$a1 vmovdqa $t1,0x20(%rsp) ___ $code.=<<___ if (!$win64); # temporarily use %rdi as frame pointer mov $_rsp,%rdi .cfi_def_cfa %rdi,8 ___ $code.=<<___; lea -$PUSH8(%rsp),%rsp ___ $code.=<<___ if (!$win64); # the frame info is at $_rsp, but the stack is moving... # so a second frame pointer is saved at -8(%rsp) # that is in the red zone mov %rdi,-8(%rsp) .cfi_cfa_expression %rsp-8,deref,+8 ___ $code.=<<___; mov $B,$a3 vmovdqa $t2,0x00(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x20(%rsp) mov $F,$a4 sub \$-16*2*$SZ,$Tbl # size optimization jmp .Lavx2_00_47 .align 16 .Lavx2_00_47: ___ sub AVX2_256_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body,&$body,&$body); # 96 instructions my $base = "+2*$PUSH8(%rsp)"; if (($j%2)==0) { &lea ("%rsp","-$PUSH8(%rsp)"); $code.=<<___ if (!$win64); .cfi_cfa_expression %rsp+`$PUSH8-8`,deref,+8 # copy secondary frame pointer to new location again at -8(%rsp) pushq $PUSH8-8(%rsp) .cfi_cfa_expression %rsp,deref,+8 lea 8(%rsp),%rsp .cfi_cfa_expression %rsp-8,deref,+8 ___ } foreach (Xupdate_256_AVX()) { # 29 instructions eval; eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); } &vpaddd ($t2,@X[0],16*2*$j."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa ((32*$j)%$PUSH8."(%rsp)",$t2); } for ($i=0,$j=0; $j<4; $j++) { &AVX2_256_00_47($j,\&bodyx_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &lea ($Tbl,16*2*$SZ."($Tbl)"); &cmpb (($SZ-1)."($Tbl)",0); &jne (".Lavx2_00_47"); for ($i=0; $i<16; ) { my $base=$i<8?"+$PUSH8(%rsp)":"(%rsp)"; foreach(bodyx_00_15()) { eval; } } } else { # SHA512 my @X = map("%ymm$_",(0..7)); my ($t0,$t1,$t2,$t3) = map("%ymm$_",(8..11)); $code.=<<___; jmp .Loop_avx2 .align 16 .Loop_avx2: vmovdqu -16*$SZ($inp),%xmm0 vmovdqu -16*$SZ+16($inp),%xmm1 vmovdqu -16*$SZ+32($inp),%xmm2 lea $TABLE+0x80(%rip),$Tbl # size optimization vmovdqu -16*$SZ+48($inp),%xmm3 vmovdqu -16*$SZ+64($inp),%xmm4 vmovdqu -16*$SZ+80($inp),%xmm5 vmovdqu -16*$SZ+96($inp),%xmm6 vmovdqu -16*$SZ+112($inp),%xmm7 #mov $inp,$_inp # offload $inp vmovdqa `$SZ*2*$rounds-0x80`($Tbl),$t2 vinserti128 \$1,(%r12),@X[0],@X[0] vinserti128 \$1,16(%r12),@X[1],@X[1] vpshufb $t2,@X[0],@X[0] vinserti128 \$1,32(%r12),@X[2],@X[2] vpshufb $t2,@X[1],@X[1] vinserti128 \$1,48(%r12),@X[3],@X[3] vpshufb $t2,@X[2],@X[2] vinserti128 \$1,64(%r12),@X[4],@X[4] vpshufb $t2,@X[3],@X[3] vinserti128 \$1,80(%r12),@X[5],@X[5] vpshufb $t2,@X[4],@X[4] vinserti128 \$1,96(%r12),@X[6],@X[6] vpshufb $t2,@X[5],@X[5] vinserti128 \$1,112(%r12),@X[7],@X[7] vpaddq -0x80($Tbl),@X[0],$t0 vpshufb $t2,@X[6],@X[6] vpaddq -0x60($Tbl),@X[1],$t1 vpshufb $t2,@X[7],@X[7] vpaddq -0x40($Tbl),@X[2],$t2 vpaddq -0x20($Tbl),@X[3],$t3 vmovdqa $t0,0x00(%rsp) vpaddq 0x00($Tbl),@X[4],$t0 vmovdqa $t1,0x20(%rsp) vpaddq 0x20($Tbl),@X[5],$t1 vmovdqa $t2,0x40(%rsp) vpaddq 0x40($Tbl),@X[6],$t2 vmovdqa $t3,0x60(%rsp) ___ $code.=<<___ if (!$win64); # temporarily use %rdi as frame pointer mov $_rsp,%rdi .cfi_def_cfa %rdi,8 ___ $code.=<<___; lea -$PUSH8(%rsp),%rsp ___ $code.=<<___ if (!$win64); # the frame info is at $_rsp, but the stack is moving... # so a second frame pointer is saved at -8(%rsp) # that is in the red zone mov %rdi,-8(%rsp) .cfi_cfa_expression %rsp-8,deref,+8 ___ $code.=<<___; vpaddq 0x60($Tbl),@X[7],$t3 vmovdqa $t0,0x00(%rsp) xor $a1,$a1 vmovdqa $t1,0x20(%rsp) mov $B,$a3 vmovdqa $t2,0x40(%rsp) xor $C,$a3 # magic vmovdqa $t3,0x60(%rsp) mov $F,$a4 add \$16*2*$SZ,$Tbl jmp .Lavx2_00_47 .align 16 .Lavx2_00_47: ___ sub AVX2_512_00_47 () { my $j = shift; my $body = shift; my @X = @_; my @insns = (&$body,&$body); # 48 instructions my $base = "+2*$PUSH8(%rsp)"; if (($j%4)==0) { &lea ("%rsp","-$PUSH8(%rsp)"); $code.=<<___ if (!$win64); .cfi_cfa_expression %rsp+`$PUSH8-8`,deref,+8 # copy secondary frame pointer to new location again at -8(%rsp) pushq $PUSH8-8(%rsp) .cfi_cfa_expression %rsp,deref,+8 lea 8(%rsp),%rsp .cfi_cfa_expression %rsp-8,deref,+8 ___ } foreach (Xupdate_512_AVX()) { # 23 instructions eval; if ($_ !~ /\;$/) { eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); } } &vpaddq ($t2,@X[0],16*2*$j-0x80."($Tbl)"); foreach (@insns) { eval; } # remaining instructions &vmovdqa ((32*$j)%$PUSH8."(%rsp)",$t2); } for ($i=0,$j=0; $j<8; $j++) { &AVX2_512_00_47($j,\&bodyx_00_15,@X); push(@X,shift(@X)); # rotate(@X) } &lea ($Tbl,16*2*$SZ."($Tbl)"); &cmpb (($SZ-1-0x80)."($Tbl)",0); &jne (".Lavx2_00_47"); for ($i=0; $i<16; ) { my $base=$i<8?"+$PUSH8(%rsp)":"(%rsp)"; foreach(bodyx_00_15()) { eval; } } } $code.=<<___; mov `2*$SZ*$rounds`(%rsp),$ctx # $_ctx add $a1,$A #mov `2*$SZ*$rounds+8`(%rsp),$inp # $_inp lea `2*$SZ*($rounds-8)`(%rsp),$Tbl add $SZ*0($ctx),$A add $SZ*1($ctx),$B add $SZ*2($ctx),$C add $SZ*3($ctx),$D add $SZ*4($ctx),$E add $SZ*5($ctx),$F add $SZ*6($ctx),$G add $SZ*7($ctx),$H mov $A,$SZ*0($ctx) mov $B,$SZ*1($ctx) mov $C,$SZ*2($ctx) mov $D,$SZ*3($ctx) mov $E,$SZ*4($ctx) mov $F,$SZ*5($ctx) mov $G,$SZ*6($ctx) mov $H,$SZ*7($ctx) cmp `$PUSH8+2*8`($Tbl),$inp # $_end je .Ldone_avx2 xor $a1,$a1 mov $B,$a3 xor $C,$a3 # magic mov $F,$a4 jmp .Lower_avx2 .align 16 .Lower_avx2: ___ for ($i=0; $i<8; ) { my $base="+16($Tbl)"; foreach(bodyx_00_15()) { eval; } } $code.=<<___; lea -$PUSH8($Tbl),$Tbl cmp %rsp,$Tbl jae .Lower_avx2 mov `2*$SZ*$rounds`(%rsp),$ctx # $_ctx add $a1,$A #mov `2*$SZ*$rounds+8`(%rsp),$inp # $_inp lea `2*$SZ*($rounds-8)`(%rsp),%rsp # restore frame pointer to original location at $_rsp .cfi_cfa_expression $_rsp,deref,+8 add $SZ*0($ctx),$A add $SZ*1($ctx),$B add $SZ*2($ctx),$C add $SZ*3($ctx),$D add $SZ*4($ctx),$E add $SZ*5($ctx),$F lea `2*16*$SZ`($inp),$inp # inp+=2 add $SZ*6($ctx),$G mov $inp,%r12 add $SZ*7($ctx),$H cmp $_end,$inp mov $A,$SZ*0($ctx) cmove %rsp,%r12 # next block or stale data mov $B,$SZ*1($ctx) mov $C,$SZ*2($ctx) mov $D,$SZ*3($ctx) mov $E,$SZ*4($ctx) mov $F,$SZ*5($ctx) mov $G,$SZ*6($ctx) mov $H,$SZ*7($ctx) jbe .Loop_avx2 lea (%rsp),$Tbl # temporarily use $Tbl as index to $_rsp # this avoids the need to save a secondary frame pointer at -8(%rsp) .cfi_cfa_expression $Tbl+`16*$SZ+3*8`,deref,+8 .Ldone_avx2: mov `16*$SZ+3*8`($Tbl),%rsi .cfi_def_cfa %rsi,8 vzeroupper ___ $code.=<<___ if ($win64); movaps 16*$SZ+32($Tbl),%xmm6 movaps 16*$SZ+48($Tbl),%xmm7 movaps 16*$SZ+64($Tbl),%xmm8 movaps 16*$SZ+80($Tbl),%xmm9 ___ $code.=<<___ if ($win64 && $SZ>4); movaps 16*$SZ+96($Tbl),%xmm10 movaps 16*$SZ+112($Tbl),%xmm11 ___ $code.=<<___; mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue_avx2: ret .cfi_endproc .size ${func}_avx2,.-${func}_avx2 ___ }} }}}}} # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HanderlData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue ___ $code.=<<___ if ($avx>1); lea .Lavx2_shortcut(%rip),%r10 cmp %r10,%rbx # context->RipRbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 lea .Lepilogue(%rip),%r10 cmp %r10,%rbx jb .Lin_prologue # non-AVX code lea 16*$SZ+4*8(%rsi),%rsi # Xmm6- save area lea 512($context),%rdi # &context.Xmm6 mov \$`$SZ==4?8:12`,%ecx .long 0xa548f3fc # cld; rep movsq .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler ___ $code.=<<___ if ($SZ==4 && $shaext); .type shaext_handler,\@abi-omnipotent .align 16 shaext_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lprologue_shaext(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lprologue jb .Lin_prologue lea .Lepilogue_shaext(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lin_prologue lea -8-5*16(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$10,%ecx .long 0xa548f3fc # cld; rep movsq jmp .Lin_prologue .size shaext_handler,.-shaext_handler ___ $code.=<<___; .section .pdata .align 4 .rva .LSEH_begin_$func .rva .LSEH_end_$func .rva .LSEH_info_$func ___ $code.=<<___ if ($SZ==4 && $shaext); .rva .LSEH_begin_${func}_shaext .rva .LSEH_end_${func}_shaext .rva .LSEH_info_${func}_shaext ___ $code.=<<___ if ($SZ==4); .rva .LSEH_begin_${func}_ssse3 .rva .LSEH_end_${func}_ssse3 .rva .LSEH_info_${func}_ssse3 ___ $code.=<<___ if ($avx && $SZ==8); .rva .LSEH_begin_${func}_xop .rva .LSEH_end_${func}_xop .rva .LSEH_info_${func}_xop ___ $code.=<<___ if ($avx); .rva .LSEH_begin_${func}_avx .rva .LSEH_end_${func}_avx .rva .LSEH_info_${func}_avx ___ $code.=<<___ if ($avx>1); .rva .LSEH_begin_${func}_avx2 .rva .LSEH_end_${func}_avx2 .rva .LSEH_info_${func}_avx2 ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_$func: .byte 9,0,0,0 .rva se_handler .rva .Lprologue,.Lepilogue # HandlerData[] ___ $code.=<<___ if ($SZ==4 && $shaext); .LSEH_info_${func}_shaext: .byte 9,0,0,0 .rva shaext_handler ___ $code.=<<___ if ($SZ==4); .LSEH_info_${func}_ssse3: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[] ___ $code.=<<___ if ($avx && $SZ==8); .LSEH_info_${func}_xop: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_xop,.Lepilogue_xop # HandlerData[] ___ $code.=<<___ if ($avx); .LSEH_info_${func}_avx: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_avx,.Lepilogue_avx # HandlerData[] ___ $code.=<<___ if ($avx>1); .LSEH_info_${func}_avx2: .byte 9,0,0,0 .rva se_handler .rva .Lprologue_avx2,.Lepilogue_avx2 # HandlerData[] ___ } sub sha256op38 { my $instr = shift; my %opcodelet = ( "sha256rnds2" => 0xcb, "sha256msg1" => 0xcc, "sha256msg2" => 0xcd ); if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-7]),\s*%xmm([0-7])/) { my @opcode=(0x0f,0x38); push @opcode,$opcodelet{$instr}; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } else { return $instr."\t".@_[0]; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\b(sha256[^\s]*)\s+(.*)/sha256op38($1,$2)/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/asm/sha512p8-ppc.pl000077500000000000000000000271451364063235100206250ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA256/512 for PowerISA v2.07. # # Accurate performance measurements are problematic, because it's # always virtualized setup with possibly throttled processor. # Relative comparison is therefore more informative. This module is # ~60% faster than integer-only sha512-ppc.pl. To anchor to something # else, SHA256 is 24% slower than sha1-ppc.pl and 2.5x slower than # hardware-assisted aes-128-cbc encrypt. SHA512 is 20% faster than # sha1-ppc.pl and 1.6x slower than aes-128-cbc. Another interesting # result is degree of computational resources' utilization. POWER8 is # "massively multi-threaded chip" and difference between single- and # maximum multi-process benchmark results tells that utilization is # whooping 94%. For sha512-ppc.pl we get [not unimpressive] 84% and # for sha1-ppc.pl - 73%. 100% means that multi-process result equals # to single-process one, given that all threads end up on the same # physical core. # ###################################################################### # Believed-to-be-accurate results in cycles per processed byte [on # little-endian system]. Numbers in square brackets are for 64-bit # build of sha512-ppc.pl, presented for reference. # # POWER8 POWER9 # SHA256 9.7 [15.8] 11.2 [12.5] # SHA512 6.1 [10.3] 7.0 [7.9] $flavour=shift; $output =shift; if ($flavour =~ /64/) { $SIZE_T=8; $LRSAVE=2*$SIZE_T; $STU="stdu"; $POP="ld"; $PUSH="std"; } elsif ($flavour =~ /32/) { $SIZE_T=4; $LRSAVE=$SIZE_T; $STU="stwu"; $POP="lwz"; $PUSH="stw"; } else { die "nonsense $flavour"; } $LENDIAN=($flavour=~/le/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!"; if ($output =~ /512/) { $bits=512; $SZ=8; $sz="d"; $rounds=80; } else { $bits=256; $SZ=4; $sz="w"; $rounds=64; } $func="sha${bits}_block_p8"; $LOCALS=8*$SIZE_T+8*16; $FRAME=$LOCALS+9*16+6*$SIZE_T; $sp ="r1"; $toc="r2"; $ctx="r3"; $inp="r4"; $num="r5"; $Tbl="r6"; $idx="r7"; $lrsave="r8"; $offload="r11"; $vrsave="r12"; @I = ($x00,$x10,$x20,$x30,$x40,$x50,$x60,$x70) = (0,map("r$_",(10,26..31))); @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("v$_",(0..7)); @X=map("v$_",(8..19,24..27)); ($Ki,$Func,$Sigma,$lemask)=map("v$_",(28..31)); sub ROUND { my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_; my $j=($i+1)%16; my $k=($i+2)%8; $code.=<<___ if ($i<15 && ($i%(16/$SZ))==(16/$SZ-1)); lvx_u @X[$i+1],0,$inp ; load X[i] in advance addi $inp,$inp,16 ___ $code.=<<___ if ($i<16 && ($i%(16/$SZ))); vsldoi @X[$i],@X[$i-1],@X[$i-1],$SZ ___ $code.=<<___ if ($LENDIAN && $i<16 && ($i%(16/$SZ))==0); vperm @X[$i],@X[$i],@X[$i],$lemask ___ $code.=<<___ if ($i>=15); vshasigma${sz} $Sigma,@X[($j+1)%16],0,0 vaddu${sz}m @X[$j],@X[$j],$Sigma vshasigma${sz} $Sigma,@X[($j+14)%16],0,15 vaddu${sz}m @X[$j],@X[$j],$Sigma vaddu${sz}m @X[$j],@X[$j],@X[($j+9)%16] ___ $code.=<<___; vaddu${sz}m $h,$h,@X[$i%16] ; h+=X[i] vsel $Func,$g,$f,$e ; Ch(e,f,g) vaddu${sz}m $g,$g,$Ki ; future h+=K[i] vaddu${sz}m $h,$h,$Func ; h+=Ch(e,f,g) vshasigma${sz} $Sigma,$e,1,15 ; Sigma1(e) vaddu${sz}m $h,$h,$Sigma ; h+=Sigma1(e) vxor $Func,$a,$b vsel $Func,$b,$c,$Func ; Maj(a,b,c) vaddu${sz}m $d,$d,$h ; d+=h vshasigma${sz} $Sigma,$a,1,0 ; Sigma0(a) vaddu${sz}m $Sigma,$Sigma,$Func ; Sigma0(a)+Maj(a,b,c) vaddu${sz}m $h,$h,$Sigma ; h+=Sigma0(a)+Maj(a,b,c) lvx $Ki,@I[$k],$idx ; load next K[i] ___ $code.=<<___ if ($k == 7); addi $idx,$idx,0x80 ___ } $code=<<___; .machine "any" .text .globl $func .align 6 $func: $STU $sp,-$FRAME($sp) mflr $lrsave li r10,`$LOCALS+15` li r11,`$LOCALS+31` stvx v24,r10,$sp # ABI says so addi r10,r10,32 mfspr $vrsave,256 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp li r11,-4096+255 # 0xfffff0ff stw $vrsave,`$FRAME-6*$SIZE_T-4`($sp) # save vrsave li $x10,0x10 $PUSH r26,`$FRAME-6*$SIZE_T`($sp) li $x20,0x20 $PUSH r27,`$FRAME-5*$SIZE_T`($sp) li $x30,0x30 $PUSH r28,`$FRAME-4*$SIZE_T`($sp) li $x40,0x40 $PUSH r29,`$FRAME-3*$SIZE_T`($sp) li $x50,0x50 $PUSH r30,`$FRAME-2*$SIZE_T`($sp) li $x60,0x60 $PUSH r31,`$FRAME-1*$SIZE_T`($sp) li $x70,0x70 $PUSH $lrsave,`$FRAME+$LRSAVE`($sp) mtspr 256,r11 bl LPICmeup addi $offload,$sp,`8*$SIZE_T+15` ___ $code.=<<___ if ($LENDIAN); li $idx,8 lvsl $lemask,0,$idx vspltisb $Ki,0x0f vxor $lemask,$lemask,$Ki ___ $code.=<<___ if ($SZ==4); lvx_4w $A,$x00,$ctx lvx_4w $E,$x10,$ctx vsldoi $B,$A,$A,4 # unpack vsldoi $C,$A,$A,8 vsldoi $D,$A,$A,12 vsldoi $F,$E,$E,4 vsldoi $G,$E,$E,8 vsldoi $H,$E,$E,12 ___ $code.=<<___ if ($SZ==8); lvx_u $A,$x00,$ctx lvx_u $C,$x10,$ctx lvx_u $E,$x20,$ctx vsldoi $B,$A,$A,8 # unpack lvx_u $G,$x30,$ctx vsldoi $D,$C,$C,8 vsldoi $F,$E,$E,8 vsldoi $H,$G,$G,8 ___ $code.=<<___; li r0,`($rounds-16)/16` # inner loop counter b Loop .align 5 Loop: lvx $Ki,$x00,$Tbl lvx_u @X[0],0,$inp addi $inp,$inp,16 mr $idx,$Tbl # copy $Tbl stvx $A,$x00,$offload # offload $A-$H stvx $B,$x10,$offload stvx $C,$x20,$offload stvx $D,$x30,$offload stvx $E,$x40,$offload stvx $F,$x50,$offload stvx $G,$x60,$offload stvx $H,$x70,$offload vaddu${sz}m $H,$H,$Ki # h+K[i] lvx $Ki,$x10,$Tbl ___ for ($i=0;$i<16;$i++) { &ROUND($i,@V); unshift(@V,pop(@V)); } $code.=<<___; mtctr r0 b L16_xx .align 5 L16_xx: ___ for (;$i<32;$i++) { &ROUND($i,@V); unshift(@V,pop(@V)); } $code.=<<___; bdnz L16_xx lvx @X[2],$x00,$offload subic. $num,$num,1 lvx @X[3],$x10,$offload vaddu${sz}m $A,$A,@X[2] lvx @X[4],$x20,$offload vaddu${sz}m $B,$B,@X[3] lvx @X[5],$x30,$offload vaddu${sz}m $C,$C,@X[4] lvx @X[6],$x40,$offload vaddu${sz}m $D,$D,@X[5] lvx @X[7],$x50,$offload vaddu${sz}m $E,$E,@X[6] lvx @X[8],$x60,$offload vaddu${sz}m $F,$F,@X[7] lvx @X[9],$x70,$offload vaddu${sz}m $G,$G,@X[8] vaddu${sz}m $H,$H,@X[9] bne Loop ___ $code.=<<___ if ($SZ==4); lvx @X[0],$x20,$idx vperm $A,$A,$B,$Ki # pack the answer lvx @X[1],$x30,$idx vperm $E,$E,$F,$Ki vperm $A,$A,$C,@X[0] vperm $E,$E,$G,@X[0] vperm $A,$A,$D,@X[1] vperm $E,$E,$H,@X[1] stvx_4w $A,$x00,$ctx stvx_4w $E,$x10,$ctx ___ $code.=<<___ if ($SZ==8); vperm $A,$A,$B,$Ki # pack the answer vperm $C,$C,$D,$Ki vperm $E,$E,$F,$Ki vperm $G,$G,$H,$Ki stvx_u $A,$x00,$ctx stvx_u $C,$x10,$ctx stvx_u $E,$x20,$ctx stvx_u $G,$x30,$ctx ___ $code.=<<___; addi $offload,$sp,`$LOCALS+15` mtlr $lrsave mtspr 256,$vrsave lvx v24,$x00,$offload # ABI says so lvx v25,$x10,$offload lvx v26,$x20,$offload lvx v27,$x30,$offload lvx v28,$x40,$offload lvx v29,$x50,$offload lvx v30,$x60,$offload lvx v31,$x70,$offload $POP r26,`$FRAME-6*$SIZE_T`($sp) $POP r27,`$FRAME-5*$SIZE_T`($sp) $POP r28,`$FRAME-4*$SIZE_T`($sp) $POP r29,`$FRAME-3*$SIZE_T`($sp) $POP r30,`$FRAME-2*$SIZE_T`($sp) $POP r31,`$FRAME-1*$SIZE_T`($sp) addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,4,1,0x80,6,3,0 .long 0 .size $func,.-$func ___ # Ugly hack here, because PPC assembler syntax seem to vary too # much from platforms to platform... $code.=<<___; .align 6 LPICmeup: mflr r0 bcl 20,31,\$+4 mflr $Tbl ; vvvvvv "distance" between . and 1st data entry addi $Tbl,$Tbl,`64-8` mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .space `64-9*4` ___ if ($SZ==8) { local *table = sub { foreach(@_) { $code.=".quad $_,$_\n"; } }; table( "0x428a2f98d728ae22","0x7137449123ef65cd", "0xb5c0fbcfec4d3b2f","0xe9b5dba58189dbbc", "0x3956c25bf348b538","0x59f111f1b605d019", "0x923f82a4af194f9b","0xab1c5ed5da6d8118", "0xd807aa98a3030242","0x12835b0145706fbe", "0x243185be4ee4b28c","0x550c7dc3d5ffb4e2", "0x72be5d74f27b896f","0x80deb1fe3b1696b1", "0x9bdc06a725c71235","0xc19bf174cf692694", "0xe49b69c19ef14ad2","0xefbe4786384f25e3", "0x0fc19dc68b8cd5b5","0x240ca1cc77ac9c65", "0x2de92c6f592b0275","0x4a7484aa6ea6e483", "0x5cb0a9dcbd41fbd4","0x76f988da831153b5", "0x983e5152ee66dfab","0xa831c66d2db43210", "0xb00327c898fb213f","0xbf597fc7beef0ee4", "0xc6e00bf33da88fc2","0xd5a79147930aa725", "0x06ca6351e003826f","0x142929670a0e6e70", "0x27b70a8546d22ffc","0x2e1b21385c26c926", "0x4d2c6dfc5ac42aed","0x53380d139d95b3df", "0x650a73548baf63de","0x766a0abb3c77b2a8", "0x81c2c92e47edaee6","0x92722c851482353b", "0xa2bfe8a14cf10364","0xa81a664bbc423001", "0xc24b8b70d0f89791","0xc76c51a30654be30", "0xd192e819d6ef5218","0xd69906245565a910", "0xf40e35855771202a","0x106aa07032bbd1b8", "0x19a4c116b8d2d0c8","0x1e376c085141ab53", "0x2748774cdf8eeb99","0x34b0bcb5e19b48a8", "0x391c0cb3c5c95a63","0x4ed8aa4ae3418acb", "0x5b9cca4f7763e373","0x682e6ff3d6b2b8a3", "0x748f82ee5defb2fc","0x78a5636f43172f60", "0x84c87814a1f0ab72","0x8cc702081a6439ec", "0x90befffa23631e28","0xa4506cebde82bde9", "0xbef9a3f7b2c67915","0xc67178f2e372532b", "0xca273eceea26619c","0xd186b8c721c0c207", "0xeada7dd6cde0eb1e","0xf57d4f7fee6ed178", "0x06f067aa72176fba","0x0a637dc5a2c898a6", "0x113f9804bef90dae","0x1b710b35131c471b", "0x28db77f523047d84","0x32caab7b40c72493", "0x3c9ebe0a15c9bebc","0x431d67c49c100d4c", "0x4cc5d4becb3e42b6","0x597f299cfc657e2a", "0x5fcb6fab3ad6faec","0x6c44198c4a475817","0"); $code.=<<___ if (!$LENDIAN); .quad 0x0001020304050607,0x1011121314151617 ___ $code.=<<___ if ($LENDIAN); # quad-swapped .quad 0x1011121314151617,0x0001020304050607 ___ } else { local *table = sub { foreach(@_) { $code.=".long $_,$_,$_,$_\n"; } }; table( "0x428a2f98","0x71374491","0xb5c0fbcf","0xe9b5dba5", "0x3956c25b","0x59f111f1","0x923f82a4","0xab1c5ed5", "0xd807aa98","0x12835b01","0x243185be","0x550c7dc3", "0x72be5d74","0x80deb1fe","0x9bdc06a7","0xc19bf174", "0xe49b69c1","0xefbe4786","0x0fc19dc6","0x240ca1cc", "0x2de92c6f","0x4a7484aa","0x5cb0a9dc","0x76f988da", "0x983e5152","0xa831c66d","0xb00327c8","0xbf597fc7", "0xc6e00bf3","0xd5a79147","0x06ca6351","0x14292967", "0x27b70a85","0x2e1b2138","0x4d2c6dfc","0x53380d13", "0x650a7354","0x766a0abb","0x81c2c92e","0x92722c85", "0xa2bfe8a1","0xa81a664b","0xc24b8b70","0xc76c51a3", "0xd192e819","0xd6990624","0xf40e3585","0x106aa070", "0x19a4c116","0x1e376c08","0x2748774c","0x34b0bcb5", "0x391c0cb3","0x4ed8aa4a","0x5b9cca4f","0x682e6ff3", "0x748f82ee","0x78a5636f","0x84c87814","0x8cc70208", "0x90befffa","0xa4506ceb","0xbef9a3f7","0xc67178f2","0"); $code.=<<___ if (!$LENDIAN); .long 0x00010203,0x10111213,0x10111213,0x10111213 .long 0x00010203,0x04050607,0x10111213,0x10111213 .long 0x00010203,0x04050607,0x08090a0b,0x10111213 ___ $code.=<<___ if ($LENDIAN); # word-swapped .long 0x10111213,0x10111213,0x10111213,0x00010203 .long 0x10111213,0x10111213,0x04050607,0x00010203 .long 0x10111213,0x08090a0b,0x04050607,0x00010203 ___ } $code.=<<___; .asciz "SHA${bits} for PowerISA 2.07, CRYPTOGAMS by " .align 2 ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/sha/build.info000066400000000000000000000074521364063235100174250ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ sha1dgst.c sha1_one.c sha256.c sha512.c {- $target{sha1_asm_src} -} \ {- $target{keccak1600_asm_src} -} GENERATE[sha1-586.s]=asm/sha1-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[sha1-586.s]=../perlasm/x86asm.pl GENERATE[sha256-586.s]=asm/sha256-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[sha256-586.s]=../perlasm/x86asm.pl GENERATE[sha512-586.s]=asm/sha512-586.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[sha512-586.s]=../perlasm/x86asm.pl GENERATE[sha1-ia64.s]=asm/sha1-ia64.pl $(LIB_CFLAGS) $(LIB_CPPFLAGS) GENERATE[sha256-ia64.s]=asm/sha512-ia64.pl $(LIB_CFLAGS) $(LIB_CPPFLAGS) GENERATE[sha512-ia64.s]=asm/sha512-ia64.pl $(LIB_CFLAGS) $(LIB_CPPFLAGS) GENERATE[sha1-alpha.S]=asm/sha1-alpha.pl $(PERLASM_SCHEME) GENERATE[sha1-x86_64.s]=asm/sha1-x86_64.pl $(PERLASM_SCHEME) GENERATE[sha1-mb-x86_64.s]=asm/sha1-mb-x86_64.pl $(PERLASM_SCHEME) GENERATE[sha256-x86_64.s]=asm/sha512-x86_64.pl $(PERLASM_SCHEME) GENERATE[sha256-mb-x86_64.s]=asm/sha256-mb-x86_64.pl $(PERLASM_SCHEME) GENERATE[sha512-x86_64.s]=asm/sha512-x86_64.pl $(PERLASM_SCHEME) GENERATE[keccak1600-x86_64.s]=asm/keccak1600-x86_64.pl $(PERLASM_SCHEME) GENERATE[sha1-sparcv9.S]=asm/sha1-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[sha1-sparcv9.o]=.. GENERATE[sha256-sparcv9.S]=asm/sha512-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[sha256-sparcv9.o]=.. GENERATE[sha512-sparcv9.S]=asm/sha512-sparcv9.pl $(PERLASM_SCHEME) INCLUDE[sha512-sparcv9.o]=.. GENERATE[sha1-ppc.s]=asm/sha1-ppc.pl $(PERLASM_SCHEME) GENERATE[sha256-ppc.s]=asm/sha512-ppc.pl $(PERLASM_SCHEME) GENERATE[sha512-ppc.s]=asm/sha512-ppc.pl $(PERLASM_SCHEME) GENERATE[sha256p8-ppc.s]=asm/sha512p8-ppc.pl $(PERLASM_SCHEME) GENERATE[sha512p8-ppc.s]=asm/sha512p8-ppc.pl $(PERLASM_SCHEME) GENERATE[keccak1600-ppc64.s]=asm/keccak1600-ppc64.pl $(PERLASM_SCHEME) GENERATE[sha1-parisc.s]=asm/sha1-parisc.pl $(PERLASM_SCHEME) GENERATE[sha256-parisc.s]=asm/sha512-parisc.pl $(PERLASM_SCHEME) GENERATE[sha512-parisc.s]=asm/sha512-parisc.pl $(PERLASM_SCHEME) GENERATE[sha1-mips.S]=asm/sha1-mips.pl $(PERLASM_SCHEME) INCLUDE[sha1-mips.o]=.. GENERATE[sha256-mips.S]=asm/sha512-mips.pl $(PERLASM_SCHEME) INCLUDE[sha256-mips.o]=.. GENERATE[sha512-mips.S]=asm/sha512-mips.pl $(PERLASM_SCHEME) INCLUDE[sha512-mips.o]=.. GENERATE[sha1-armv4-large.S]=asm/sha1-armv4-large.pl $(PERLASM_SCHEME) INCLUDE[sha1-armv4-large.o]=.. GENERATE[sha256-armv4.S]=asm/sha256-armv4.pl $(PERLASM_SCHEME) INCLUDE[sha256-armv4.o]=.. GENERATE[sha512-armv4.S]=asm/sha512-armv4.pl $(PERLASM_SCHEME) INCLUDE[sha512-armv4.o]=.. GENERATE[keccak1600-armv4.S]=asm/keccak1600-armv4.pl $(PERLASM_SCHEME) INCLUDE[keccak1600-armv4.o]=.. GENERATE[sha1-armv8.S]=asm/sha1-armv8.pl $(PERLASM_SCHEME) INCLUDE[sha1-armv8.o]=.. GENERATE[sha256-armv8.S]=asm/sha512-armv8.pl $(PERLASM_SCHEME) INCLUDE[sha256-armv8.o]=.. GENERATE[sha512-armv8.S]=asm/sha512-armv8.pl $(PERLASM_SCHEME) INCLUDE[sha512-armv8.o]=.. GENERATE[keccak1600-armv8.S]=asm/keccak1600-armv8.pl $(PERLASM_SCHEME) GENERATE[sha1-s390x.S]=asm/sha1-s390x.pl $(PERLASM_SCHEME) INCLUDE[sha1-s390x.o]=.. GENERATE[sha256-s390x.S]=asm/sha512-s390x.pl $(PERLASM_SCHEME) INCLUDE[sha256-s390x.o]=.. GENERATE[sha512-s390x.S]=asm/sha512-s390x.pl $(PERLASM_SCHEME) INCLUDE[sha512-s390x.o]=.. GENERATE[keccak1600-s390x.S]=asm/keccak1600-s390x.pl $(PERLASM_SCHEME) BEGINRAW[Makefile(unix)] ##### SHA assembler implementations # GNU make "catch all" {- $builddir -}/sha1-%.S: {- $sourcedir -}/asm/sha1-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ {- $builddir -}/sha256-%.S: {- $sourcedir -}/asm/sha512-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ {- $builddir -}/sha512-%.S: {- $sourcedir -}/asm/sha512-%.pl CC="$(CC)" $(PERL) $< $(PERLASM_SCHEME) $@ ENDRAW[Makefile(unix)] openssl-1.1.1f/crypto/sha/keccak1600.c000066400000000000000000001220141364063235100173350ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, size_t r); void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); #if !defined(KECCAK1600_ASM) || !defined(SELFTEST) /* * Choose some sensible defaults */ #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \ !defined(KECCAK_2X) && !defined(KECCAK_INPLACE) # define KECCAK_2X /* default to KECCAK_2X variant */ #endif #if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define KECCAK_COMPLEMENTING_TRANSFORM #endif #if defined(__x86_64__) || defined(__aarch64__) || \ defined(__mips64) || defined(__ia64) || \ (defined(__VMS) && !defined(__vax)) /* * These are available even in ILP32 flavours, but even then they are * capable of performing 64-bit operations as efficiently as in *P64. * Since it's not given that we can use sizeof(void *), just shunt it. */ # define BIT_INTERLEAVE (0) #else # define BIT_INTERLEAVE (sizeof(void *) < 8) #endif #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) static uint64_t ROL64(uint64_t val, int offset) { if (offset == 0) { return val; } else if (!BIT_INTERLEAVE) { return (val << offset) | (val >> (64-offset)); } else { uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; if (offset & 1) { uint32_t tmp = hi; offset >>= 1; hi = ROL32(lo, offset); lo = ROL32(tmp, offset + 1); } else { offset >>= 1; lo = ROL32(lo, offset); hi = ROL32(hi, offset); } return ((uint64_t)hi << 32) | lo; } } static const unsigned char rhotates[5][5] = { { 0, 1, 62, 28, 27 }, { 36, 44, 6, 55, 20 }, { 3, 10, 43, 25, 39 }, { 41, 45, 15, 21, 8 }, { 18, 2, 61, 56, 14 } }; static const uint64_t iotas[] = { BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL, BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL, BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL, BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL, BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL, BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL, BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL, BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL, BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL, BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL, BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL, BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL, BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL, BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL, BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL, BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL, BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL, BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL, BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL, BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL }; #if defined(KECCAK_REF) /* * This is straightforward or "maximum clarity" implementation aiming * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: * Permutation-Based Hash and Extendible-Output Functions" as much as * possible. With one caveat. Because of the way C stores matrices, * references to A[x,y] in the specification are presented as A[y][x]. * Implementation unrolls inner x-loops so that modulo 5 operations are * explicitly pre-computed. */ static void Theta(uint64_t A[5][5]) { uint64_t C[5], D[5]; size_t y; C[0] = A[0][0]; C[1] = A[0][1]; C[2] = A[0][2]; C[3] = A[0][3]; C[4] = A[0][4]; for (y = 1; y < 5; y++) { C[0] ^= A[y][0]; C[1] ^= A[y][1]; C[2] ^= A[y][2]; C[3] ^= A[y][3]; C[4] ^= A[y][4]; } D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; for (y = 0; y < 5; y++) { A[y][0] ^= D[0]; A[y][1] ^= D[1]; A[y][2] ^= D[2]; A[y][3] ^= D[3]; A[y][4] ^= D[4]; } } static void Rho(uint64_t A[5][5]) { size_t y; for (y = 0; y < 5; y++) { A[y][0] = ROL64(A[y][0], rhotates[y][0]); A[y][1] = ROL64(A[y][1], rhotates[y][1]); A[y][2] = ROL64(A[y][2], rhotates[y][2]); A[y][3] = ROL64(A[y][3], rhotates[y][3]); A[y][4] = ROL64(A[y][4], rhotates[y][4]); } } static void Pi(uint64_t A[5][5]) { uint64_t T[5][5]; /* * T = A * A[y][x] = T[x][(3*y+x)%5] */ memcpy(T, A, sizeof(T)); A[0][0] = T[0][0]; A[0][1] = T[1][1]; A[0][2] = T[2][2]; A[0][3] = T[3][3]; A[0][4] = T[4][4]; A[1][0] = T[0][3]; A[1][1] = T[1][4]; A[1][2] = T[2][0]; A[1][3] = T[3][1]; A[1][4] = T[4][2]; A[2][0] = T[0][1]; A[2][1] = T[1][2]; A[2][2] = T[2][3]; A[2][3] = T[3][4]; A[2][4] = T[4][0]; A[3][0] = T[0][4]; A[3][1] = T[1][0]; A[3][2] = T[2][1]; A[3][3] = T[3][2]; A[3][4] = T[4][3]; A[4][0] = T[0][2]; A[4][1] = T[1][3]; A[4][2] = T[2][4]; A[4][3] = T[3][0]; A[4][4] = T[4][1]; } static void Chi(uint64_t A[5][5]) { uint64_t C[5]; size_t y; for (y = 0; y < 5; y++) { C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); A[y][0] = C[0]; A[y][1] = C[1]; A[y][2] = C[2]; A[y][3] = C[3]; A[y][4] = C[4]; } } static void Iota(uint64_t A[5][5], size_t i) { assert(i < (sizeof(iotas) / sizeof(iotas[0]))); A[0][0] ^= iotas[i]; } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i++) { Theta(A); Rho(A); Pi(A); Chi(A); Iota(A, i); } } #elif defined(KECCAK_1X) /* * This implementation is optimization of above code featuring unroll * of even y-loops, their fusion and code motion. It also minimizes * temporary storage. Compiler would normally do all these things for * you, purpose of manual optimization is to provide "unobscured" * reference for assembly implementation [in case this approach is * chosen for implementation on some platform]. In the nutshell it's * equivalent of "plane-per-plane processing" approach discussed in * section 2.4 of "Keccak implementation overview". */ static void Round(uint64_t A[5][5], size_t i) { uint64_t C[5], E[2]; /* registers */ uint64_t D[5], T[2][5]; /* memory */ assert(i < (sizeof(iotas) / sizeof(iotas[0]))); C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; #if defined(__arm__) D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ T[0][1] = A[0][1] ^ E[0]; /* D[1] */ T[0][2] = A[0][2] ^ C[1]; /* D[2] */ T[0][3] = A[0][3] ^ C[2]; /* D[3] */ T[0][4] = A[0][4] ^ E[1]; /* D[4] */ C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ #else D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ T[0][1] = A[0][1] ^ D[1]; T[0][2] = A[0][2] ^ D[2]; T[0][3] = A[0][3] ^ D[3]; T[0][4] = A[0][4] ^ D[4]; C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); #endif A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; A[0][1] = C[1] ^ (~C[2] & C[3]); A[0][2] = C[2] ^ (~C[3] & C[4]); A[0][3] = C[3] ^ (~C[4] & C[0]); A[0][4] = C[4] ^ (~C[0] & C[1]); T[1][0] = A[1][0] ^ (C[3] = D[0]); T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ T[1][2] = A[1][2] ^ (E[0] = D[2]); T[1][3] = A[1][3] ^ (E[1] = D[3]); T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ C[0] = ROL64(T[0][3], rhotates[0][3]); C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */ C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */ C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */ C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */ A[1][0] = C[0] ^ (~C[1] & C[2]); A[1][1] = C[1] ^ (~C[2] & C[3]); A[1][2] = C[2] ^ (~C[3] & C[4]); A[1][3] = C[3] ^ (~C[4] & C[0]); A[1][4] = C[4] ^ (~C[0] & C[1]); C[0] = ROL64(T[0][1], rhotates[0][1]); C[1] = ROL64(T[1][2], rhotates[1][2]); C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); A[2][0] = C[0] ^ (~C[1] & C[2]); A[2][1] = C[1] ^ (~C[2] & C[3]); A[2][2] = C[2] ^ (~C[3] & C[4]); A[2][3] = C[3] ^ (~C[4] & C[0]); A[2][4] = C[4] ^ (~C[0] & C[1]); C[0] = ROL64(T[0][4], rhotates[0][4]); C[1] = ROL64(T[1][0], rhotates[1][0]); C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); A[3][0] = C[0] ^ (~C[1] & C[2]); A[3][1] = C[1] ^ (~C[2] & C[3]); A[3][2] = C[2] ^ (~C[3] & C[4]); A[3][3] = C[3] ^ (~C[4] & C[0]); A[3][4] = C[4] ^ (~C[0] & C[1]); C[0] = ROL64(T[0][2], rhotates[0][2]); C[1] = ROL64(T[1][3], rhotates[1][3]); C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); A[4][0] = C[0] ^ (~C[1] & C[2]); A[4][1] = C[1] ^ (~C[2] & C[3]); A[4][2] = C[2] ^ (~C[3] & C[4]); A[4][3] = C[3] ^ (~C[4] & C[0]); A[4][4] = C[4] ^ (~C[0] & C[1]); } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i++) { Round(A, i); } } #elif defined(KECCAK_1X_ALT) /* * This is variant of above KECCAK_1X that reduces requirement for * temporary storage even further, but at cost of more updates to A[][]. * It's less suitable if A[][] is memory bound, but better if it's * register bound. */ static void Round(uint64_t A[5][5], size_t i) { uint64_t C[5], D[5]; assert(i < (sizeof(iotas) / sizeof(iotas[0]))); C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; D[1] = C[0] ^ ROL64(C[2], 1); D[2] = C[1] ^ ROL64(C[3], 1); D[3] = C[2] ^= ROL64(C[4], 1); D[4] = C[3] ^= ROL64(C[0], 1); D[0] = C[4] ^= ROL64(C[1], 1); A[0][1] ^= D[1]; A[1][1] ^= D[1]; A[2][1] ^= D[1]; A[3][1] ^= D[1]; A[4][1] ^= D[1]; A[0][2] ^= D[2]; A[1][2] ^= D[2]; A[2][2] ^= D[2]; A[3][2] ^= D[2]; A[4][2] ^= D[2]; A[0][3] ^= C[2]; A[1][3] ^= C[2]; A[2][3] ^= C[2]; A[3][3] ^= C[2]; A[4][3] ^= C[2]; A[0][4] ^= C[3]; A[1][4] ^= C[3]; A[2][4] ^= C[3]; A[3][4] ^= C[3]; A[4][4] ^= C[3]; A[0][0] ^= C[4]; A[1][0] ^= C[4]; A[2][0] ^= C[4]; A[3][0] ^= C[4]; A[4][0] ^= C[4]; C[1] = A[0][1]; C[2] = A[0][2]; C[3] = A[0][3]; C[4] = A[0][4]; A[0][1] = ROL64(A[1][1], rhotates[1][1]); A[0][2] = ROL64(A[2][2], rhotates[2][2]); A[0][3] = ROL64(A[3][3], rhotates[3][3]); A[0][4] = ROL64(A[4][4], rhotates[4][4]); A[1][1] = ROL64(A[1][4], rhotates[1][4]); A[2][2] = ROL64(A[2][3], rhotates[2][3]); A[3][3] = ROL64(A[3][2], rhotates[3][2]); A[4][4] = ROL64(A[4][1], rhotates[4][1]); A[1][4] = ROL64(A[4][2], rhotates[4][2]); A[2][3] = ROL64(A[3][4], rhotates[3][4]); A[3][2] = ROL64(A[2][1], rhotates[2][1]); A[4][1] = ROL64(A[1][3], rhotates[1][3]); A[4][2] = ROL64(A[2][4], rhotates[2][4]); A[3][4] = ROL64(A[4][3], rhotates[4][3]); A[2][1] = ROL64(A[1][2], rhotates[1][2]); A[1][3] = ROL64(A[3][1], rhotates[3][1]); A[2][4] = ROL64(A[4][0], rhotates[4][0]); A[4][3] = ROL64(A[3][0], rhotates[3][0]); A[1][2] = ROL64(A[2][0], rhotates[2][0]); A[3][1] = ROL64(A[1][0], rhotates[1][0]); A[1][0] = ROL64(C[3], rhotates[0][3]); A[2][0] = ROL64(C[1], rhotates[0][1]); A[3][0] = ROL64(C[4], rhotates[0][4]); A[4][0] = ROL64(C[2], rhotates[0][2]); C[0] = A[0][0]; C[1] = A[1][0]; D[0] = A[0][1]; D[1] = A[1][1]; A[0][0] ^= (~A[0][1] & A[0][2]); A[1][0] ^= (~A[1][1] & A[1][2]); A[0][1] ^= (~A[0][2] & A[0][3]); A[1][1] ^= (~A[1][2] & A[1][3]); A[0][2] ^= (~A[0][3] & A[0][4]); A[1][2] ^= (~A[1][3] & A[1][4]); A[0][3] ^= (~A[0][4] & C[0]); A[1][3] ^= (~A[1][4] & C[1]); A[0][4] ^= (~C[0] & D[0]); A[1][4] ^= (~C[1] & D[1]); C[2] = A[2][0]; C[3] = A[3][0]; D[2] = A[2][1]; D[3] = A[3][1]; A[2][0] ^= (~A[2][1] & A[2][2]); A[3][0] ^= (~A[3][1] & A[3][2]); A[2][1] ^= (~A[2][2] & A[2][3]); A[3][1] ^= (~A[3][2] & A[3][3]); A[2][2] ^= (~A[2][3] & A[2][4]); A[3][2] ^= (~A[3][3] & A[3][4]); A[2][3] ^= (~A[2][4] & C[2]); A[3][3] ^= (~A[3][4] & C[3]); A[2][4] ^= (~C[2] & D[2]); A[3][4] ^= (~C[3] & D[3]); C[4] = A[4][0]; D[4] = A[4][1]; A[4][0] ^= (~A[4][1] & A[4][2]); A[4][1] ^= (~A[4][2] & A[4][3]); A[4][2] ^= (~A[4][3] & A[4][4]); A[4][3] ^= (~A[4][4] & C[4]); A[4][4] ^= (~C[4] & D[4]); A[0][0] ^= iotas[i]; } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i++) { Round(A, i); } } #elif defined(KECCAK_2X) /* * This implementation is variant of KECCAK_1X above with outer-most * round loop unrolled twice. This allows to take temporary storage * out of round procedure and simplify references to it by alternating * it with actual data (see round loop below). Originally it was meant * rather as reference for an assembly implementation, but it seems to * play best with compilers [as well as provide best instruction per * processed byte ratio at minimal round unroll factor]... */ static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) { uint64_t C[5], D[5]; assert(i < (sizeof(iotas) / sizeof(iotas[0]))); C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i]; R[0][1] = C[1] ^ (~C[2] | C[3]); R[0][2] = C[2] ^ ( C[3] & C[4]); R[0][3] = C[3] ^ ( C[4] | C[0]); R[0][4] = C[4] ^ ( C[0] & C[1]); #else R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; R[0][1] = C[1] ^ (~C[2] & C[3]); R[0][2] = C[2] ^ (~C[3] & C[4]); R[0][3] = C[3] ^ (~C[4] & C[0]); R[0][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[1][0] = C[0] ^ (C[1] | C[2]); R[1][1] = C[1] ^ (C[2] & C[3]); R[1][2] = C[2] ^ (C[3] | ~C[4]); R[1][3] = C[3] ^ (C[4] | C[0]); R[1][4] = C[4] ^ (C[0] & C[1]); #else R[1][0] = C[0] ^ (~C[1] & C[2]); R[1][1] = C[1] ^ (~C[2] & C[3]); R[1][2] = C[2] ^ (~C[3] & C[4]); R[1][3] = C[3] ^ (~C[4] & C[0]); R[1][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[2][0] = C[0] ^ ( C[1] | C[2]); R[2][1] = C[1] ^ ( C[2] & C[3]); R[2][2] = C[2] ^ (~C[3] & C[4]); R[2][3] = ~C[3] ^ ( C[4] | C[0]); R[2][4] = C[4] ^ ( C[0] & C[1]); #else R[2][0] = C[0] ^ (~C[1] & C[2]); R[2][1] = C[1] ^ (~C[2] & C[3]); R[2][2] = C[2] ^ (~C[3] & C[4]); R[2][3] = C[3] ^ (~C[4] & C[0]); R[2][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[3][0] = C[0] ^ ( C[1] & C[2]); R[3][1] = C[1] ^ ( C[2] | C[3]); R[3][2] = C[2] ^ (~C[3] | C[4]); R[3][3] = ~C[3] ^ ( C[4] & C[0]); R[3][4] = C[4] ^ ( C[0] | C[1]); #else R[3][0] = C[0] ^ (~C[1] & C[2]); R[3][1] = C[1] ^ (~C[2] & C[3]); R[3][2] = C[2] ^ (~C[3] & C[4]); R[3][3] = C[3] ^ (~C[4] & C[0]); R[3][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[4][0] = C[0] ^ (~C[1] & C[2]); R[4][1] = ~C[1] ^ ( C[2] | C[3]); R[4][2] = C[2] ^ ( C[3] & C[4]); R[4][3] = C[3] ^ ( C[4] | C[0]); R[4][4] = C[4] ^ ( C[0] & C[1]); #else R[4][0] = C[0] ^ (~C[1] & C[2]); R[4][1] = C[1] ^ (~C[2] & C[3]); R[4][2] = C[2] ^ (~C[3] & C[4]); R[4][3] = C[3] ^ (~C[4] & C[0]); R[4][4] = C[4] ^ (~C[0] & C[1]); #endif } static void KeccakF1600(uint64_t A[5][5]) { uint64_t T[5][5]; size_t i; #ifdef KECCAK_COMPLEMENTING_TRANSFORM A[0][1] = ~A[0][1]; A[0][2] = ~A[0][2]; A[1][3] = ~A[1][3]; A[2][2] = ~A[2][2]; A[3][2] = ~A[3][2]; A[4][0] = ~A[4][0]; #endif for (i = 0; i < 24; i += 2) { Round(T, A, i); Round(A, T, i + 1); } #ifdef KECCAK_COMPLEMENTING_TRANSFORM A[0][1] = ~A[0][1]; A[0][2] = ~A[0][2]; A[1][3] = ~A[1][3]; A[2][2] = ~A[2][2]; A[3][2] = ~A[3][2]; A[4][0] = ~A[4][0]; #endif } #else /* define KECCAK_INPLACE to compile this code path */ /* * This implementation is KECCAK_1X from above combined 4 times with * a twist that allows to omit temporary storage and perform in-place * processing. It's discussed in section 2.5 of "Keccak implementation * overview". It's likely to be best suited for processors with large * register bank... On the other hand processor with large register * bank can as well use KECCAK_1X_ALT, it would be as fast but much * more compact... */ static void FourRounds(uint64_t A[5][5], size_t i) { uint64_t B[5], C[5], D[5]; assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); /* Round 4*n */ C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); /* Round 4*n+1 */ D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); /* Round 4*n+2 */ D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); /* Round 4*n+3 */ D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i += 4) { FourRounds(A, i); } } #endif static uint64_t BitInterleave(uint64_t Ai) { if (BIT_INTERLEAVE) { uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; uint32_t t0, t1; t0 = lo & 0x55555555; t0 |= t0 >> 1; t0 &= 0x33333333; t0 |= t0 >> 2; t0 &= 0x0f0f0f0f; t0 |= t0 >> 4; t0 &= 0x00ff00ff; t0 |= t0 >> 8; t0 &= 0x0000ffff; t1 = hi & 0x55555555; t1 |= t1 >> 1; t1 &= 0x33333333; t1 |= t1 >> 2; t1 &= 0x0f0f0f0f; t1 |= t1 >> 4; t1 &= 0x00ff00ff; t1 |= t1 >> 8; t1 <<= 16; lo &= 0xaaaaaaaa; lo |= lo << 1; lo &= 0xcccccccc; lo |= lo << 2; lo &= 0xf0f0f0f0; lo |= lo << 4; lo &= 0xff00ff00; lo |= lo << 8; lo >>= 16; hi &= 0xaaaaaaaa; hi |= hi << 1; hi &= 0xcccccccc; hi |= hi << 2; hi &= 0xf0f0f0f0; hi |= hi << 4; hi &= 0xff00ff00; hi |= hi << 8; hi &= 0xffff0000; Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); } return Ai; } static uint64_t BitDeinterleave(uint64_t Ai) { if (BIT_INTERLEAVE) { uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; uint32_t t0, t1; t0 = lo & 0x0000ffff; t0 |= t0 << 8; t0 &= 0x00ff00ff; t0 |= t0 << 4; t0 &= 0x0f0f0f0f; t0 |= t0 << 2; t0 &= 0x33333333; t0 |= t0 << 1; t0 &= 0x55555555; t1 = hi << 16; t1 |= t1 >> 8; t1 &= 0xff00ff00; t1 |= t1 >> 4; t1 &= 0xf0f0f0f0; t1 |= t1 >> 2; t1 &= 0xcccccccc; t1 |= t1 >> 1; t1 &= 0xaaaaaaaa; lo >>= 16; lo |= lo << 8; lo &= 0x00ff00ff; lo |= lo << 4; lo &= 0x0f0f0f0f; lo |= lo << 2; lo &= 0x33333333; lo |= lo << 1; lo &= 0x55555555; hi &= 0xffff0000; hi |= hi >> 8; hi &= 0xff00ff00; hi |= hi >> 4; hi &= 0xf0f0f0f0; hi |= hi >> 2; hi &= 0xcccccccc; hi |= hi >> 1; hi &= 0xaaaaaaaa; Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); } return Ai; } /* * SHA3_absorb can be called multiple times, but at each invocation * largest multiple of |r| out of |len| bytes are processed. Then * remaining amount of bytes is returned. This is done to spare caller * trouble of calculating the largest multiple of |r|. |r| can be viewed * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, * 72, but can also be (1600 - 448)/8 = 144. All this means that message * padding and intermediate sub-block buffering, byte- or bitwise, is * caller's responsibility. */ size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, size_t r) { uint64_t *A_flat = (uint64_t *)A; size_t i, w = r / 8; assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); while (len >= r) { for (i = 0; i < w; i++) { uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; inp += 8; A_flat[i] ^= BitInterleave(Ai); } KeccakF1600(A); len -= r; } return len; } /* * SHA3_squeeze is called once at the end to generate |out| hash value * of |len| bytes. */ void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) { uint64_t *A_flat = (uint64_t *)A; size_t i, w = r / 8; assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); while (len != 0) { for (i = 0; i < w && len != 0; i++) { uint64_t Ai = BitDeinterleave(A_flat[i]); if (len < 8) { for (i = 0; i < len; i++) { *out++ = (unsigned char)Ai; Ai >>= 8; } return; } out[0] = (unsigned char)(Ai); out[1] = (unsigned char)(Ai >> 8); out[2] = (unsigned char)(Ai >> 16); out[3] = (unsigned char)(Ai >> 24); out[4] = (unsigned char)(Ai >> 32); out[5] = (unsigned char)(Ai >> 40); out[6] = (unsigned char)(Ai >> 48); out[7] = (unsigned char)(Ai >> 56); out += 8; len -= 8; } if (len) KeccakF1600(A); } } #endif #ifdef SELFTEST /* * Post-padding one-shot implementations would look as following: * * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); */ void SHA3_sponge(const unsigned char *inp, size_t len, unsigned char *out, size_t d, size_t r) { uint64_t A[5][5]; memset(A, 0, sizeof(A)); SHA3_absorb(A, inp, len, r); SHA3_squeeze(A, out, d, r); } # include int main() { /* * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing */ unsigned char test[168] = { '\xf3', '\x3' }; unsigned char out[512]; size_t i; static const unsigned char result[512] = { 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 }; test[167] = '\x80'; SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); /* * Rationale behind keeping output [formatted as below] is that * one should be able to redirect it to a file, then copy-n-paste * final "output val" from official example to another file, and * compare the two with diff(1). */ for (i = 0; i < sizeof(out);) { printf("%02X", out[i]); printf(++i % 16 && i != sizeof(out) ? " " : "\n"); } if (memcmp(out,result,sizeof(out))) { fprintf(stderr,"failure\n"); return 1; } else { fprintf(stderr,"success\n"); return 0; } } #endif openssl-1.1.1f/crypto/sha/sha1_one.c000066400000000000000000000013561364063235100173070ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include unsigned char *SHA1(const unsigned char *d, size_t n, unsigned char *md) { SHA_CTX c; static unsigned char m[SHA_DIGEST_LENGTH]; if (md == NULL) md = m; if (!SHA1_Init(&c)) return NULL; SHA1_Update(&c, d, n); SHA1_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); return md; } openssl-1.1.1f/crypto/sha/sha1dgst.c000066400000000000000000000007651364063235100173330ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include # include /* The implementation is in ../md32_common.h */ # include "sha_local.h" openssl-1.1.1f/crypto/sha/sha256.c000066400000000000000000000302161364063235100166170ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include int SHA224_Init(SHA256_CTX *c) { memset(c, 0, sizeof(*c)); c->h[0] = 0xc1059ed8UL; c->h[1] = 0x367cd507UL; c->h[2] = 0x3070dd17UL; c->h[3] = 0xf70e5939UL; c->h[4] = 0xffc00b31UL; c->h[5] = 0x68581511UL; c->h[6] = 0x64f98fa7UL; c->h[7] = 0xbefa4fa4UL; c->md_len = SHA224_DIGEST_LENGTH; return 1; } int SHA256_Init(SHA256_CTX *c) { memset(c, 0, sizeof(*c)); c->h[0] = 0x6a09e667UL; c->h[1] = 0xbb67ae85UL; c->h[2] = 0x3c6ef372UL; c->h[3] = 0xa54ff53aUL; c->h[4] = 0x510e527fUL; c->h[5] = 0x9b05688cUL; c->h[6] = 0x1f83d9abUL; c->h[7] = 0x5be0cd19UL; c->md_len = SHA256_DIGEST_LENGTH; return 1; } unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) { SHA256_CTX c; static unsigned char m[SHA224_DIGEST_LENGTH]; if (md == NULL) md = m; SHA224_Init(&c); SHA256_Update(&c, d, n); SHA256_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); return md; } unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) { SHA256_CTX c; static unsigned char m[SHA256_DIGEST_LENGTH]; if (md == NULL) md = m; SHA256_Init(&c); SHA256_Update(&c, d, n); SHA256_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); return md; } int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) { return SHA256_Update(c, data, len); } int SHA224_Final(unsigned char *md, SHA256_CTX *c) { return SHA256_Final(md, c); } #define DATA_ORDER_IS_BIG_ENDIAN #define HASH_LONG SHA_LONG #define HASH_CTX SHA256_CTX #define HASH_CBLOCK SHA_CBLOCK /* * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." * default: case below covers for it. It's not clear however if it's * permitted to truncate to amount of bytes not divisible by 4. I bet not, * but if it is, then default: case shall be extended. For reference. * Idea behind separate cases for pre-defined lengths is to let the * compiler decide if it's appropriate to unroll small loops. */ #define HASH_MAKE_STRING(c,s) do { \ unsigned long ll; \ unsigned int nn; \ switch ((c)->md_len) \ { case SHA224_DIGEST_LENGTH: \ for (nn=0;nnh[nn]; (void)HOST_l2c(ll,(s)); } \ break; \ case SHA256_DIGEST_LENGTH: \ for (nn=0;nnh[nn]; (void)HOST_l2c(ll,(s)); } \ break; \ default: \ if ((c)->md_len > SHA256_DIGEST_LENGTH) \ return 0; \ for (nn=0;nn<(c)->md_len/4;nn++) \ { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ break; \ } \ } while (0) #define HASH_UPDATE SHA256_Update #define HASH_TRANSFORM SHA256_Transform #define HASH_FINAL SHA256_Final #define HASH_BLOCK_DATA_ORDER sha256_block_data_order #ifndef SHA256_ASM static #endif void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num); #include "crypto/md32_common.h" #ifndef SHA256_ASM static const SHA_LONG K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* * FIPS specification refers to right rotations, while our ROTATE macro * is left one. This is why you might notice that rotation coefficients * differ from those observed in FIPS document by 32-N... */ # define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) # define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) # define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) # define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) # ifdef OPENSSL_SMALL_FOOTPRINT static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num) { unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2; SHA_LONG X[16], l; int i; const unsigned char *data = in; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; for (i = 0; i < 16; i++) { (void)HOST_c2l(data, l); T1 = X[i] = l; T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } for (; i < 64; i++) { s0 = X[(i + 1) & 0x0f]; s0 = sigma0(s0); s1 = X[(i + 14) & 0x0f]; s1 = sigma1(s1); T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf]; T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; } } # else # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ h = Sigma0(a) + Maj(a,b,c); \ d += T1; h += T1; } while (0) # define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num) { unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1; SHA_LONG X[16]; int i; const unsigned char *data = in; const union { long one; char little; } is_endian = { 1 }; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; if (!is_endian.little && sizeof(SHA_LONG) == 4 && ((size_t)in % 4) == 0) { const SHA_LONG *W = (const SHA_LONG *)data; T1 = X[0] = W[0]; ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = W[1]; ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = W[2]; ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = W[3]; ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = W[4]; ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = W[5]; ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = W[6]; ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = W[7]; ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = W[8]; ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = W[9]; ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = W[10]; ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = W[11]; ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = W[12]; ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = W[13]; ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = W[14]; ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = W[15]; ROUND_00_15(15, b, c, d, e, f, g, h, a); data += SHA256_CBLOCK; } else { SHA_LONG l; (void)HOST_c2l(data, l); T1 = X[0] = l; ROUND_00_15(0, a, b, c, d, e, f, g, h); (void)HOST_c2l(data, l); T1 = X[1] = l; ROUND_00_15(1, h, a, b, c, d, e, f, g); (void)HOST_c2l(data, l); T1 = X[2] = l; ROUND_00_15(2, g, h, a, b, c, d, e, f); (void)HOST_c2l(data, l); T1 = X[3] = l; ROUND_00_15(3, f, g, h, a, b, c, d, e); (void)HOST_c2l(data, l); T1 = X[4] = l; ROUND_00_15(4, e, f, g, h, a, b, c, d); (void)HOST_c2l(data, l); T1 = X[5] = l; ROUND_00_15(5, d, e, f, g, h, a, b, c); (void)HOST_c2l(data, l); T1 = X[6] = l; ROUND_00_15(6, c, d, e, f, g, h, a, b); (void)HOST_c2l(data, l); T1 = X[7] = l; ROUND_00_15(7, b, c, d, e, f, g, h, a); (void)HOST_c2l(data, l); T1 = X[8] = l; ROUND_00_15(8, a, b, c, d, e, f, g, h); (void)HOST_c2l(data, l); T1 = X[9] = l; ROUND_00_15(9, h, a, b, c, d, e, f, g); (void)HOST_c2l(data, l); T1 = X[10] = l; ROUND_00_15(10, g, h, a, b, c, d, e, f); (void)HOST_c2l(data, l); T1 = X[11] = l; ROUND_00_15(11, f, g, h, a, b, c, d, e); (void)HOST_c2l(data, l); T1 = X[12] = l; ROUND_00_15(12, e, f, g, h, a, b, c, d); (void)HOST_c2l(data, l); T1 = X[13] = l; ROUND_00_15(13, d, e, f, g, h, a, b, c); (void)HOST_c2l(data, l); T1 = X[14] = l; ROUND_00_15(14, c, d, e, f, g, h, a, b); (void)HOST_c2l(data, l); T1 = X[15] = l; ROUND_00_15(15, b, c, d, e, f, g, h, a); } for (i = 16; i < 64; i += 8) { ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X); ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X); ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X); ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X); ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X); ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X); ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X); ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X); } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; } } # endif #endif /* SHA256_ASM */ openssl-1.1.1f/crypto/sha/sha512.c000066400000000000000000000615301364063235100166150ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include /*- * IMPLEMENTATION NOTES. * * As you might have noticed 32-bit hash algorithms: * * - permit SHA_LONG to be wider than 32-bit * - optimized versions implement two transform functions: one operating * on [aligned] data in host byte order and one - on data in input * stream byte order; * - share common byte-order neutral collector and padding function * implementations, ../md32_common.h; * * Neither of the above applies to this SHA-512 implementations. Reasons * [in reverse order] are: * * - it's the only 64-bit hash algorithm for the moment of this writing, * there is no need for common collector/padding implementation [yet]; * - by supporting only one transform function [which operates on * *aligned* data in input stream byte order, big-endian in this case] * we minimize burden of maintenance in two ways: a) collector/padding * function is simpler; b) only one transform function to stare at; * - SHA_LONG64 is required to be exactly 64-bit in order to be able to * apply a number of optimizations to mitigate potential performance * penalties caused by previous design decision; * * Caveat lector. * * Implementation relies on the fact that "long long" is 64-bit on * both 32- and 64-bit platforms. If some compiler vendor comes up * with 128-bit long long, adjustment to sha.h would be required. * As this implementation relies on 64-bit integer type, it's totally * inappropriate for platforms which don't support it, most notably * 16-bit platforms. */ #include #include #include #include #include #include "internal/cryptlib.h" #include "crypto/sha.h" #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \ defined(__s390__) || defined(__s390x__) || \ defined(__aarch64__) || \ defined(SHA512_ASM) # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA #endif int sha512_224_init(SHA512_CTX *c) { c->h[0] = U64(0x8c3d37c819544da2); c->h[1] = U64(0x73e1996689dcd4d6); c->h[2] = U64(0x1dfab7ae32ff9c82); c->h[3] = U64(0x679dd514582f9fcf); c->h[4] = U64(0x0f6d2b697bd44da8); c->h[5] = U64(0x77e36f7304c48942); c->h[6] = U64(0x3f9d85a86a1d36c8); c->h[7] = U64(0x1112e6ad91d692a1); c->Nl = 0; c->Nh = 0; c->num = 0; c->md_len = SHA224_DIGEST_LENGTH; return 1; } int sha512_256_init(SHA512_CTX *c) { c->h[0] = U64(0x22312194fc2bf72c); c->h[1] = U64(0x9f555fa3c84c64c2); c->h[2] = U64(0x2393b86b6f53b151); c->h[3] = U64(0x963877195940eabd); c->h[4] = U64(0x96283ee2a88effe3); c->h[5] = U64(0xbe5e1e2553863992); c->h[6] = U64(0x2b0199fc2c85b8aa); c->h[7] = U64(0x0eb72ddc81c52ca2); c->Nl = 0; c->Nh = 0; c->num = 0; c->md_len = SHA256_DIGEST_LENGTH; return 1; } int SHA384_Init(SHA512_CTX *c) { c->h[0] = U64(0xcbbb9d5dc1059ed8); c->h[1] = U64(0x629a292a367cd507); c->h[2] = U64(0x9159015a3070dd17); c->h[3] = U64(0x152fecd8f70e5939); c->h[4] = U64(0x67332667ffc00b31); c->h[5] = U64(0x8eb44a8768581511); c->h[6] = U64(0xdb0c2e0d64f98fa7); c->h[7] = U64(0x47b5481dbefa4fa4); c->Nl = 0; c->Nh = 0; c->num = 0; c->md_len = SHA384_DIGEST_LENGTH; return 1; } int SHA512_Init(SHA512_CTX *c) { c->h[0] = U64(0x6a09e667f3bcc908); c->h[1] = U64(0xbb67ae8584caa73b); c->h[2] = U64(0x3c6ef372fe94f82b); c->h[3] = U64(0xa54ff53a5f1d36f1); c->h[4] = U64(0x510e527fade682d1); c->h[5] = U64(0x9b05688c2b3e6c1f); c->h[6] = U64(0x1f83d9abfb41bd6b); c->h[7] = U64(0x5be0cd19137e2179); c->Nl = 0; c->Nh = 0; c->num = 0; c->md_len = SHA512_DIGEST_LENGTH; return 1; } #ifndef SHA512_ASM static #endif void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num); int SHA512_Final(unsigned char *md, SHA512_CTX *c) { unsigned char *p = (unsigned char *)c->u.p; size_t n = c->num; p[n] = 0x80; /* There always is a room for one */ n++; if (n > (sizeof(c->u) - 16)) { memset(p + n, 0, sizeof(c->u) - n); n = 0; sha512_block_data_order(c, p, 1); } memset(p + n, 0, sizeof(c->u) - 16 - n); #ifdef B_ENDIAN c->u.d[SHA_LBLOCK - 2] = c->Nh; c->u.d[SHA_LBLOCK - 1] = c->Nl; #else p[sizeof(c->u) - 1] = (unsigned char)(c->Nl); p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8); p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16); p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24); p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32); p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40); p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48); p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56); p[sizeof(c->u) - 9] = (unsigned char)(c->Nh); p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8); p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16); p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24); p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32); p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40); p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48); p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56); #endif sha512_block_data_order(c, p, 1); if (md == 0) return 0; switch (c->md_len) { /* Let compiler decide if it's appropriate to unroll... */ case SHA224_DIGEST_LENGTH: for (n = 0; n < SHA224_DIGEST_LENGTH / 8; n++) { SHA_LONG64 t = c->h[n]; *(md++) = (unsigned char)(t >> 56); *(md++) = (unsigned char)(t >> 48); *(md++) = (unsigned char)(t >> 40); *(md++) = (unsigned char)(t >> 32); *(md++) = (unsigned char)(t >> 24); *(md++) = (unsigned char)(t >> 16); *(md++) = (unsigned char)(t >> 8); *(md++) = (unsigned char)(t); } /* * For 224 bits, there are four bytes left over that have to be * processed separately. */ { SHA_LONG64 t = c->h[SHA224_DIGEST_LENGTH / 8]; *(md++) = (unsigned char)(t >> 56); *(md++) = (unsigned char)(t >> 48); *(md++) = (unsigned char)(t >> 40); *(md++) = (unsigned char)(t >> 32); } break; case SHA256_DIGEST_LENGTH: for (n = 0; n < SHA256_DIGEST_LENGTH / 8; n++) { SHA_LONG64 t = c->h[n]; *(md++) = (unsigned char)(t >> 56); *(md++) = (unsigned char)(t >> 48); *(md++) = (unsigned char)(t >> 40); *(md++) = (unsigned char)(t >> 32); *(md++) = (unsigned char)(t >> 24); *(md++) = (unsigned char)(t >> 16); *(md++) = (unsigned char)(t >> 8); *(md++) = (unsigned char)(t); } break; case SHA384_DIGEST_LENGTH: for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) { SHA_LONG64 t = c->h[n]; *(md++) = (unsigned char)(t >> 56); *(md++) = (unsigned char)(t >> 48); *(md++) = (unsigned char)(t >> 40); *(md++) = (unsigned char)(t >> 32); *(md++) = (unsigned char)(t >> 24); *(md++) = (unsigned char)(t >> 16); *(md++) = (unsigned char)(t >> 8); *(md++) = (unsigned char)(t); } break; case SHA512_DIGEST_LENGTH: for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) { SHA_LONG64 t = c->h[n]; *(md++) = (unsigned char)(t >> 56); *(md++) = (unsigned char)(t >> 48); *(md++) = (unsigned char)(t >> 40); *(md++) = (unsigned char)(t >> 32); *(md++) = (unsigned char)(t >> 24); *(md++) = (unsigned char)(t >> 16); *(md++) = (unsigned char)(t >> 8); *(md++) = (unsigned char)(t); } break; /* ... as well as make sure md_len is not abused. */ default: return 0; } return 1; } int SHA384_Final(unsigned char *md, SHA512_CTX *c) { return SHA512_Final(md, c); } int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len) { SHA_LONG64 l; unsigned char *p = c->u.p; const unsigned char *data = (const unsigned char *)_data; if (len == 0) return 1; l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff); if (l < c->Nl) c->Nh++; if (sizeof(len) >= 8) c->Nh += (((SHA_LONG64) len) >> 61); c->Nl = l; if (c->num != 0) { size_t n = sizeof(c->u) - c->num; if (len < n) { memcpy(p + c->num, data, len), c->num += (unsigned int)len; return 1; } else { memcpy(p + c->num, data, n), c->num = 0; len -= n, data += n; sha512_block_data_order(c, p, 1); } } if (len >= sizeof(c->u)) { #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if ((size_t)data % sizeof(c->u.d[0]) != 0) while (len >= sizeof(c->u)) memcpy(p, data, sizeof(c->u)), sha512_block_data_order(c, p, 1), len -= sizeof(c->u), data += sizeof(c->u); else #endif sha512_block_data_order(c, data, len / sizeof(c->u)), data += len, len %= sizeof(c->u), data -= len; } if (len != 0) memcpy(p, data, len), c->num = (int)len; return 1; } int SHA384_Update(SHA512_CTX *c, const void *data, size_t len) { return SHA512_Update(c, data, len); } void SHA512_Transform(SHA512_CTX *c, const unsigned char *data) { #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if ((size_t)data % sizeof(c->u.d[0]) != 0) memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p; #endif sha512_block_data_order(c, data, 1); } unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md) { SHA512_CTX c; static unsigned char m[SHA384_DIGEST_LENGTH]; if (md == NULL) md = m; SHA384_Init(&c); SHA512_Update(&c, d, n); SHA512_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); return md; } unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md) { SHA512_CTX c; static unsigned char m[SHA512_DIGEST_LENGTH]; if (md == NULL) md = m; SHA512_Init(&c); SHA512_Update(&c, d, n); SHA512_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); return md; } #ifndef SHA512_ASM static const SHA_LONG64 K512[80] = { U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd), U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc), U64(0x3956c25bf348b538), U64(0x59f111f1b605d019), U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118), U64(0xd807aa98a3030242), U64(0x12835b0145706fbe), U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2), U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1), U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694), U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3), U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65), U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483), U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5), U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210), U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4), U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725), U64(0x06ca6351e003826f), U64(0x142929670a0e6e70), U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926), U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df), U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8), U64(0x81c2c92e47edaee6), U64(0x92722c851482353b), U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001), U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30), U64(0xd192e819d6ef5218), U64(0xd69906245565a910), U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8), U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53), U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8), U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb), U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3), U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60), U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec), U64(0x90befffa23631e28), U64(0xa4506cebde82bde9), U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b), U64(0xca273eceea26619c), U64(0xd186b8c721c0c207), U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178), U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6), U64(0x113f9804bef90dae), U64(0x1b710b35131c471b), U64(0x28db77f523047d84), U64(0x32caab7b40c72493), U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c), U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a), U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817) }; # ifndef PEDANTIC # if defined(__GNUC__) && __GNUC__>=2 && \ !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) # if defined(__x86_64) || defined(__x86_64__) # define ROTR(a,n) ({ SHA_LONG64 ret; \ asm ("rorq %1,%0" \ : "=r"(ret) \ : "J"(n),"0"(a) \ : "cc"); ret; }) # if !defined(B_ENDIAN) # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \ asm ("bswapq %0" \ : "=r"(ret) \ : "0"(ret)); ret; }) # endif # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN) # if defined(I386_ONLY) # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ unsigned int hi=p[0],lo=p[1]; \ asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\ "roll $16,%%eax; roll $16,%%edx; "\ "xchgb %%ah,%%al;xchgb %%dh,%%dl;"\ : "=a"(lo),"=d"(hi) \ : "0"(lo),"1"(hi) : "cc"); \ ((SHA_LONG64)hi)<<32|lo; }) # else # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ unsigned int hi=p[0],lo=p[1]; \ asm ("bswapl %0; bswapl %1;" \ : "=r"(lo),"=r"(hi) \ : "0"(lo),"1"(hi)); \ ((SHA_LONG64)hi)<<32|lo; }) # endif # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64) # define ROTR(a,n) ({ SHA_LONG64 ret; \ asm ("rotrdi %0,%1,%2" \ : "=r"(ret) \ : "r"(a),"K"(n)); ret; }) # elif defined(__aarch64__) # define ROTR(a,n) ({ SHA_LONG64 ret; \ asm ("ror %0,%1,%2" \ : "=r"(ret) \ : "r"(a),"I"(n)); ret; }) # if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \ __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__ # define PULL64(x) ({ SHA_LONG64 ret; \ asm ("rev %0,%1" \ : "=r"(ret) \ : "r"(*((const SHA_LONG64 *)(&(x))))); ret; }) # endif # endif # elif defined(_MSC_VER) # if defined(_WIN64) /* applies to both IA-64 and AMD64 */ # pragma intrinsic(_rotr64) # define ROTR(a,n) _rotr64((a),n) # endif # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && \ !defined(OPENSSL_NO_INLINE_ASM) # if defined(I386_ONLY) static SHA_LONG64 __fastcall __pull64be(const void *x) { _asm mov edx,[ecx + 0] _asm mov eax,[ecx + 4] _asm xchg dh, dl _asm xchg ah, al _asm rol edx, 16 _asm rol eax, 16 _asm xchg dh, dl _asm xchg ah, al } # else static SHA_LONG64 __fastcall __pull64be(const void *x) { _asm mov edx,[ecx + 0] _asm mov eax,[ecx + 4] _asm bswap edx _asm bswap eax } # endif # define PULL64(x) __pull64be(&(x)) # endif # endif # endif # ifndef PULL64 # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8)) # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7)) # endif # ifndef ROTR # define ROTR(x,s) (((x)>>s) | (x)<<(64-s)) # endif # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) # if defined(__i386) || defined(__i386__) || defined(_M_IX86) /* * This code should give better results on 32-bit CPU with less than * ~24 registers, both size and performance wise... */ static void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W = in; SHA_LONG64 A, E, T; SHA_LONG64 X[9 + 80], *F; int i; while (num--) { F = X + 80; A = ctx->h[0]; F[1] = ctx->h[1]; F[2] = ctx->h[2]; F[3] = ctx->h[3]; E = ctx->h[4]; F[5] = ctx->h[5]; F[6] = ctx->h[6]; F[7] = ctx->h[7]; for (i = 0; i < 16; i++, F--) { # ifdef B_ENDIAN T = W[i]; # else T = PULL64(W[i]); # endif F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } for (; i < 80; i++, F--) { T = sigma0(F[8 + 16 - 1]); T += sigma1(F[8 + 16 - 14]); T += F[8 + 16] + F[8 + 16 - 9]; F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } ctx->h[0] += A; ctx->h[1] += F[1]; ctx->h[2] += F[2]; ctx->h[3] += F[3]; ctx->h[4] += E; ctx->h[5] += F[5]; ctx->h[6] += F[6]; ctx->h[7] += F[7]; W += SHA_LBLOCK; } } # elif defined(OPENSSL_SMALL_FOOTPRINT) static void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W = in; SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2; SHA_LONG64 X[16]; int i; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; for (i = 0; i < 16; i++) { # ifdef B_ENDIAN T1 = X[i] = W[i]; # else T1 = X[i] = PULL64(W[i]); # endif T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } for (; i < 80; i++) { s0 = X[(i + 1) & 0x0f]; s0 = sigma0(s0); s1 = X[(i + 14) & 0x0f]; s1 = sigma1(s1); T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf]; T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; W += SHA_LBLOCK; } } # else # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \ h = Sigma0(a) + Maj(a,b,c); \ d += T1; h += T1; } while (0) # define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \ s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \ s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \ T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \ ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0) static void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W = in; SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1; SHA_LONG64 X[16]; int i; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; # ifdef B_ENDIAN T1 = X[0] = W[0]; ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = W[1]; ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = W[2]; ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = W[3]; ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = W[4]; ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = W[5]; ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = W[6]; ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = W[7]; ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = W[8]; ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = W[9]; ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = W[10]; ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = W[11]; ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = W[12]; ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = W[13]; ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = W[14]; ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = W[15]; ROUND_00_15(15, b, c, d, e, f, g, h, a); # else T1 = X[0] = PULL64(W[0]); ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = PULL64(W[1]); ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = PULL64(W[2]); ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = PULL64(W[3]); ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = PULL64(W[4]); ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = PULL64(W[5]); ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = PULL64(W[6]); ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = PULL64(W[7]); ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = PULL64(W[8]); ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = PULL64(W[9]); ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = PULL64(W[10]); ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = PULL64(W[11]); ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = PULL64(W[12]); ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = PULL64(W[13]); ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = PULL64(W[14]); ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = PULL64(W[15]); ROUND_00_15(15, b, c, d, e, f, g, h, a); # endif for (i = 16; i < 80; i += 16) { ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; W += SHA_LBLOCK; } } # endif #endif /* SHA512_ASM */ openssl-1.1.1f/crypto/sha/sha_local.h000066400000000000000000000362311364063235100175440ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #define DATA_ORDER_IS_BIG_ENDIAN #define HASH_LONG SHA_LONG #define HASH_CTX SHA_CTX #define HASH_CBLOCK SHA_CBLOCK #define HASH_MAKE_STRING(c,s) do { \ unsigned long ll; \ ll=(c)->h0; (void)HOST_l2c(ll,(s)); \ ll=(c)->h1; (void)HOST_l2c(ll,(s)); \ ll=(c)->h2; (void)HOST_l2c(ll,(s)); \ ll=(c)->h3; (void)HOST_l2c(ll,(s)); \ ll=(c)->h4; (void)HOST_l2c(ll,(s)); \ } while (0) #define HASH_UPDATE SHA1_Update #define HASH_TRANSFORM SHA1_Transform #define HASH_FINAL SHA1_Final #define HASH_INIT SHA1_Init #define HASH_BLOCK_DATA_ORDER sha1_block_data_order #define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \ ix=(a)=ROTATE((a),1) \ ) #ifndef SHA1_ASM static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num); #else void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num); #endif #include "crypto/md32_common.h" #define INIT_DATA_h0 0x67452301UL #define INIT_DATA_h1 0xefcdab89UL #define INIT_DATA_h2 0x98badcfeUL #define INIT_DATA_h3 0x10325476UL #define INIT_DATA_h4 0xc3d2e1f0UL int HASH_INIT(SHA_CTX *c) { memset(c, 0, sizeof(*c)); c->h0 = INIT_DATA_h0; c->h1 = INIT_DATA_h1; c->h2 = INIT_DATA_h2; c->h3 = INIT_DATA_h3; c->h4 = INIT_DATA_h4; return 1; } #define K_00_19 0x5a827999UL #define K_20_39 0x6ed9eba1UL #define K_40_59 0x8f1bbcdcUL #define K_60_79 0xca62c1d6UL /* * As pointed out by Wei Dai, F() below can be simplified to the code in * F_00_19. Wei attributes these optimizations to Peter Gutmann's SHS code, * and he attributes it to Rich Schroeppel. * #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) * I've just become aware of another tweak to be made, again from Wei Dai, * in F_40_59, (x&a)|(y&a) -> (x|y)&a */ #define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) #define F_20_39(b,c,d) ((b) ^ (c) ^ (d)) #define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d))) #define F_60_79(b,c,d) F_20_39(b,c,d) #ifndef OPENSSL_SMALL_FOOTPRINT # define BODY_00_15(i,a,b,c,d,e,f,xi) \ (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \ (b)=ROTATE((b),30); # define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \ Xupdate(f,xi,xa,xb,xc,xd); \ (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \ (b)=ROTATE((b),30); # define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \ Xupdate(f,xi,xa,xb,xc,xd); \ (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \ (b)=ROTATE((b),30); # define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \ Xupdate(f,xa,xa,xb,xc,xd); \ (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \ (b)=ROTATE((b),30); # define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \ Xupdate(f,xa,xa,xb,xc,xd); \ (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \ (b)=ROTATE((b),30); # define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \ Xupdate(f,xa,xa,xb,xc,xd); \ (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \ (b)=ROTATE((b),30); # ifdef X # undef X # endif # ifndef MD32_XARRAY /* * Originally X was an array. As it's automatic it's natural * to expect RISC compiler to accommodate at least part of it in * the register bank, isn't it? Unfortunately not all compilers * "find" this expectation reasonable:-( On order to make such * compilers generate better code I replace X[] with a bunch of * X0, X1, etc. See the function body below... */ # define X(i) XX##i # else /* * However! Some compilers (most notably HP C) get overwhelmed by * that many local variables so that we have to have the way to * fall down to the original behavior. */ # define X(i) XX[i] # endif # if !defined(SHA1_ASM) static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num) { const unsigned char *data = p; register unsigned MD32_REG_T A, B, C, D, E, T, l; # ifndef MD32_XARRAY unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15; # else SHA_LONG XX[16]; # endif A = c->h0; B = c->h1; C = c->h2; D = c->h3; E = c->h4; for (;;) { const union { long one; char little; } is_endian = { 1 }; if (!is_endian.little && sizeof(SHA_LONG) == 4 && ((size_t)p % 4) == 0) { const SHA_LONG *W = (const SHA_LONG *)data; X(0) = W[0]; X(1) = W[1]; BODY_00_15(0, A, B, C, D, E, T, X(0)); X(2) = W[2]; BODY_00_15(1, T, A, B, C, D, E, X(1)); X(3) = W[3]; BODY_00_15(2, E, T, A, B, C, D, X(2)); X(4) = W[4]; BODY_00_15(3, D, E, T, A, B, C, X(3)); X(5) = W[5]; BODY_00_15(4, C, D, E, T, A, B, X(4)); X(6) = W[6]; BODY_00_15(5, B, C, D, E, T, A, X(5)); X(7) = W[7]; BODY_00_15(6, A, B, C, D, E, T, X(6)); X(8) = W[8]; BODY_00_15(7, T, A, B, C, D, E, X(7)); X(9) = W[9]; BODY_00_15(8, E, T, A, B, C, D, X(8)); X(10) = W[10]; BODY_00_15(9, D, E, T, A, B, C, X(9)); X(11) = W[11]; BODY_00_15(10, C, D, E, T, A, B, X(10)); X(12) = W[12]; BODY_00_15(11, B, C, D, E, T, A, X(11)); X(13) = W[13]; BODY_00_15(12, A, B, C, D, E, T, X(12)); X(14) = W[14]; BODY_00_15(13, T, A, B, C, D, E, X(13)); X(15) = W[15]; BODY_00_15(14, E, T, A, B, C, D, X(14)); BODY_00_15(15, D, E, T, A, B, C, X(15)); data += SHA_CBLOCK; } else { (void)HOST_c2l(data, l); X(0) = l; (void)HOST_c2l(data, l); X(1) = l; BODY_00_15(0, A, B, C, D, E, T, X(0)); (void)HOST_c2l(data, l); X(2) = l; BODY_00_15(1, T, A, B, C, D, E, X(1)); (void)HOST_c2l(data, l); X(3) = l; BODY_00_15(2, E, T, A, B, C, D, X(2)); (void)HOST_c2l(data, l); X(4) = l; BODY_00_15(3, D, E, T, A, B, C, X(3)); (void)HOST_c2l(data, l); X(5) = l; BODY_00_15(4, C, D, E, T, A, B, X(4)); (void)HOST_c2l(data, l); X(6) = l; BODY_00_15(5, B, C, D, E, T, A, X(5)); (void)HOST_c2l(data, l); X(7) = l; BODY_00_15(6, A, B, C, D, E, T, X(6)); (void)HOST_c2l(data, l); X(8) = l; BODY_00_15(7, T, A, B, C, D, E, X(7)); (void)HOST_c2l(data, l); X(9) = l; BODY_00_15(8, E, T, A, B, C, D, X(8)); (void)HOST_c2l(data, l); X(10) = l; BODY_00_15(9, D, E, T, A, B, C, X(9)); (void)HOST_c2l(data, l); X(11) = l; BODY_00_15(10, C, D, E, T, A, B, X(10)); (void)HOST_c2l(data, l); X(12) = l; BODY_00_15(11, B, C, D, E, T, A, X(11)); (void)HOST_c2l(data, l); X(13) = l; BODY_00_15(12, A, B, C, D, E, T, X(12)); (void)HOST_c2l(data, l); X(14) = l; BODY_00_15(13, T, A, B, C, D, E, X(13)); (void)HOST_c2l(data, l); X(15) = l; BODY_00_15(14, E, T, A, B, C, D, X(14)); BODY_00_15(15, D, E, T, A, B, C, X(15)); } BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13)); BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14)); BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15)); BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0)); BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1)); BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2)); BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3)); BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4)); BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5)); BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6)); BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7)); BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8)); BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9)); BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10)); BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11)); BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12)); BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13)); BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14)); BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15)); BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0)); BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1)); BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2)); BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3)); BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4)); BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5)); BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6)); BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7)); BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8)); BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9)); BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10)); BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11)); BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12)); BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13)); BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14)); BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15)); BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0)); BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1)); BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2)); BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3)); BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4)); BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5)); BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6)); BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7)); BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8)); BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9)); BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10)); BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11)); BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12)); BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13)); BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14)); BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15)); BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0)); BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1)); BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2)); BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3)); BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4)); BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5)); BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6)); BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7)); BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8)); BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9)); BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10)); BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11)); BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12)); c->h0 = (c->h0 + E) & 0xffffffffL; c->h1 = (c->h1 + T) & 0xffffffffL; c->h2 = (c->h2 + A) & 0xffffffffL; c->h3 = (c->h3 + B) & 0xffffffffL; c->h4 = (c->h4 + C) & 0xffffffffL; if (--num == 0) break; A = c->h0; B = c->h1; C = c->h2; D = c->h3; E = c->h4; } } # endif #else /* OPENSSL_SMALL_FOOTPRINT */ # define BODY_00_15(xi) do { \ T=E+K_00_19+F_00_19(B,C,D); \ E=D, D=C, C=ROTATE(B,30), B=A; \ A=ROTATE(A,5)+T+xi; } while(0) # define BODY_16_19(xa,xb,xc,xd) do { \ Xupdate(T,xa,xa,xb,xc,xd); \ T+=E+K_00_19+F_00_19(B,C,D); \ E=D, D=C, C=ROTATE(B,30), B=A; \ A=ROTATE(A,5)+T; } while(0) # define BODY_20_39(xa,xb,xc,xd) do { \ Xupdate(T,xa,xa,xb,xc,xd); \ T+=E+K_20_39+F_20_39(B,C,D); \ E=D, D=C, C=ROTATE(B,30), B=A; \ A=ROTATE(A,5)+T; } while(0) # define BODY_40_59(xa,xb,xc,xd) do { \ Xupdate(T,xa,xa,xb,xc,xd); \ T+=E+K_40_59+F_40_59(B,C,D); \ E=D, D=C, C=ROTATE(B,30), B=A; \ A=ROTATE(A,5)+T; } while(0) # define BODY_60_79(xa,xb,xc,xd) do { \ Xupdate(T,xa,xa,xb,xc,xd); \ T=E+K_60_79+F_60_79(B,C,D); \ E=D, D=C, C=ROTATE(B,30), B=A; \ A=ROTATE(A,5)+T+xa; } while(0) # if !defined(SHA1_ASM) static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num) { const unsigned char *data = p; register unsigned MD32_REG_T A, B, C, D, E, T, l; int i; SHA_LONG X[16]; A = c->h0; B = c->h1; C = c->h2; D = c->h3; E = c->h4; for (;;) { for (i = 0; i < 16; i++) { (void)HOST_c2l(data, l); X[i] = l; BODY_00_15(X[i]); } for (i = 0; i < 4; i++) { BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]); } for (; i < 24; i++) { BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15], X[(i + 13) & 15]); } for (i = 0; i < 20; i++) { BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15], X[(i + 5) & 15]); } for (i = 4; i < 24; i++) { BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15], X[(i + 5) & 15]); } c->h0 = (c->h0 + A) & 0xffffffffL; c->h1 = (c->h1 + B) & 0xffffffffL; c->h2 = (c->h2 + C) & 0xffffffffL; c->h3 = (c->h3 + D) & 0xffffffffL; c->h4 = (c->h4 + E) & 0xffffffffL; if (--num == 0) break; A = c->h0; B = c->h1; C = c->h2; D = c->h3; E = c->h4; } } # endif #endif openssl-1.1.1f/crypto/siphash/000077500000000000000000000000001364063235100163255ustar00rootroot00000000000000openssl-1.1.1f/crypto/siphash/build.info000066400000000000000000000001401364063235100202740ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ siphash.c \ siphash_pmeth.c \ siphash_ameth.c openssl-1.1.1f/crypto/siphash/siphash.c000066400000000000000000000176661364063235100201500ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Based on https://131002.net/siphash C reference implementation */ /* SipHash reference C implementation Copyright (c) 2012-2016 Jean-Philippe Aumasson Copyright (c) 2012-2014 Daniel J. Bernstein To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty. You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see . */ #include #include #include #include "crypto/siphash.h" #include "siphash_local.h" /* default: SipHash-2-4 */ #define SIPHASH_C_ROUNDS 2 #define SIPHASH_D_ROUNDS 4 #define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b)))) #define U32TO8_LE(p, v) \ (p)[0] = (uint8_t)((v)); \ (p)[1] = (uint8_t)((v) >> 8); \ (p)[2] = (uint8_t)((v) >> 16); \ (p)[3] = (uint8_t)((v) >> 24); #define U64TO8_LE(p, v) \ U32TO8_LE((p), (uint32_t)((v))); \ U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); #define U8TO64_LE(p) \ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \ ((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \ ((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \ ((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) #define SIPROUND \ do { \ v0 += v1; \ v1 = ROTL(v1, 13); \ v1 ^= v0; \ v0 = ROTL(v0, 32); \ v2 += v3; \ v3 = ROTL(v3, 16); \ v3 ^= v2; \ v0 += v3; \ v3 = ROTL(v3, 21); \ v3 ^= v0; \ v2 += v1; \ v1 = ROTL(v1, 17); \ v1 ^= v2; \ v2 = ROTL(v2, 32); \ } while (0) size_t SipHash_ctx_size(void) { return sizeof(SIPHASH); } size_t SipHash_hash_size(SIPHASH *ctx) { return ctx->hash_size; } static size_t siphash_adjust_hash_size(size_t hash_size) { if (hash_size == 0) hash_size = SIPHASH_MAX_DIGEST_SIZE; return hash_size; } int SipHash_set_hash_size(SIPHASH *ctx, size_t hash_size) { hash_size = siphash_adjust_hash_size(hash_size); if (hash_size != SIPHASH_MIN_DIGEST_SIZE && hash_size != SIPHASH_MAX_DIGEST_SIZE) return 0; /* * It's possible that the key was set first. If the hash size changes, * we need to adjust v1 (see SipHash_Init(). */ /* Start by adjusting the stored size, to make things easier */ ctx->hash_size = siphash_adjust_hash_size(ctx->hash_size); /* Now, adjust ctx->v1 if the old and the new size differ */ if ((size_t)ctx->hash_size != hash_size) { ctx->v1 ^= 0xee; ctx->hash_size = hash_size; } return 1; } /* hash_size = crounds = drounds = 0 means SipHash24 with 16-byte output */ int SipHash_Init(SIPHASH *ctx, const unsigned char *k, int crounds, int drounds) { uint64_t k0 = U8TO64_LE(k); uint64_t k1 = U8TO64_LE(k + 8); /* If the hash size wasn't set, i.e. is zero */ ctx->hash_size = siphash_adjust_hash_size(ctx->hash_size); if (drounds == 0) drounds = SIPHASH_D_ROUNDS; if (crounds == 0) crounds = SIPHASH_C_ROUNDS; ctx->crounds = crounds; ctx->drounds = drounds; ctx->len = 0; ctx->total_inlen = 0; ctx->v0 = 0x736f6d6570736575ULL ^ k0; ctx->v1 = 0x646f72616e646f6dULL ^ k1; ctx->v2 = 0x6c7967656e657261ULL ^ k0; ctx->v3 = 0x7465646279746573ULL ^ k1; if (ctx->hash_size == SIPHASH_MAX_DIGEST_SIZE) ctx->v1 ^= 0xee; return 1; } void SipHash_Update(SIPHASH *ctx, const unsigned char *in, size_t inlen) { uint64_t m; const uint8_t *end; int left; int i; uint64_t v0 = ctx->v0; uint64_t v1 = ctx->v1; uint64_t v2 = ctx->v2; uint64_t v3 = ctx->v3; ctx->total_inlen += inlen; if (ctx->len) { /* deal with leavings */ size_t available = SIPHASH_BLOCK_SIZE - ctx->len; /* not enough to fill leavings */ if (inlen < available) { memcpy(&ctx->leavings[ctx->len], in, inlen); ctx->len += inlen; return; } /* copy data into leavings and reduce input */ memcpy(&ctx->leavings[ctx->len], in, available); inlen -= available; in += available; /* process leavings */ m = U8TO64_LE(ctx->leavings); v3 ^= m; for (i = 0; i < ctx->crounds; ++i) SIPROUND; v0 ^= m; } left = inlen & (SIPHASH_BLOCK_SIZE-1); /* gets put into leavings */ end = in + inlen - left; for (; in != end; in += 8) { m = U8TO64_LE(in); v3 ^= m; for (i = 0; i < ctx->crounds; ++i) SIPROUND; v0 ^= m; } /* save leavings and other ctx */ if (left) memcpy(ctx->leavings, end, left); ctx->len = left; ctx->v0 = v0; ctx->v1 = v1; ctx->v2 = v2; ctx->v3 = v3; } int SipHash_Final(SIPHASH *ctx, unsigned char *out, size_t outlen) { /* finalize hash */ int i; uint64_t b = ctx->total_inlen << 56; uint64_t v0 = ctx->v0; uint64_t v1 = ctx->v1; uint64_t v2 = ctx->v2; uint64_t v3 = ctx->v3; if (outlen != (size_t)ctx->hash_size) return 0; switch (ctx->len) { case 7: b |= ((uint64_t)ctx->leavings[6]) << 48; /* fall thru */ case 6: b |= ((uint64_t)ctx->leavings[5]) << 40; /* fall thru */ case 5: b |= ((uint64_t)ctx->leavings[4]) << 32; /* fall thru */ case 4: b |= ((uint64_t)ctx->leavings[3]) << 24; /* fall thru */ case 3: b |= ((uint64_t)ctx->leavings[2]) << 16; /* fall thru */ case 2: b |= ((uint64_t)ctx->leavings[1]) << 8; /* fall thru */ case 1: b |= ((uint64_t)ctx->leavings[0]); case 0: break; } v3 ^= b; for (i = 0; i < ctx->crounds; ++i) SIPROUND; v0 ^= b; if (ctx->hash_size == SIPHASH_MAX_DIGEST_SIZE) v2 ^= 0xee; else v2 ^= 0xff; for (i = 0; i < ctx->drounds; ++i) SIPROUND; b = v0 ^ v1 ^ v2 ^ v3; U64TO8_LE(out, b); if (ctx->hash_size == SIPHASH_MIN_DIGEST_SIZE) return 1; v1 ^= 0xdd; for (i = 0; i < ctx->drounds; ++i) SIPROUND; b = v0 ^ v1 ^ v2 ^ v3; U64TO8_LE(out + 8, b); return 1; } openssl-1.1.1f/crypto/siphash/siphash_ameth.c000066400000000000000000000051401364063235100213060ustar00rootroot00000000000000/* * Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/asn1.h" #include "crypto/siphash.h" #include "siphash_local.h" #include "crypto/evp.h" /* * SIPHASH "ASN1" method. This is just here to indicate the maximum * SIPHASH output length and to free up a SIPHASH key. */ static int siphash_size(const EVP_PKEY *pkey) { return SIPHASH_MAX_DIGEST_SIZE; } static void siphash_key_free(EVP_PKEY *pkey) { ASN1_OCTET_STRING *os = EVP_PKEY_get0(pkey); if (os != NULL) { if (os->data != NULL) OPENSSL_cleanse(os->data, os->length); ASN1_OCTET_STRING_free(os); } } static int siphash_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) { /* nothing (including ASN1_PKEY_CTRL_DEFAULT_MD_NID), is supported */ return -2; } static int siphash_pkey_public_cmp(const EVP_PKEY *a, const EVP_PKEY *b) { return ASN1_OCTET_STRING_cmp(EVP_PKEY_get0(a), EVP_PKEY_get0(b)); } static int siphash_set_priv_key(EVP_PKEY *pkey, const unsigned char *priv, size_t len) { ASN1_OCTET_STRING *os; if (pkey->pkey.ptr != NULL || len != SIPHASH_KEY_SIZE) return 0; os = ASN1_OCTET_STRING_new(); if (os == NULL) return 0; if (!ASN1_OCTET_STRING_set(os, priv, len)) { ASN1_OCTET_STRING_free(os); return 0; } pkey->pkey.ptr = os; return 1; } static int siphash_get_priv_key(const EVP_PKEY *pkey, unsigned char *priv, size_t *len) { ASN1_OCTET_STRING *os = (ASN1_OCTET_STRING *)pkey->pkey.ptr; if (priv == NULL) { *len = SIPHASH_KEY_SIZE; return 1; } if (os == NULL || *len < SIPHASH_KEY_SIZE) return 0; memcpy(priv, ASN1_STRING_get0_data(os), ASN1_STRING_length(os)); *len = SIPHASH_KEY_SIZE; return 1; } const EVP_PKEY_ASN1_METHOD siphash_asn1_meth = { EVP_PKEY_SIPHASH, EVP_PKEY_SIPHASH, 0, "SIPHASH", "OpenSSL SIPHASH method", 0, 0, siphash_pkey_public_cmp, 0, 0, 0, 0, siphash_size, 0, 0, 0, 0, 0, 0, 0, 0, 0, siphash_key_free, siphash_pkey_ctrl, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, siphash_set_priv_key, NULL, siphash_get_priv_key, NULL, }; openssl-1.1.1f/crypto/siphash/siphash_local.h000066400000000000000000000011771364063235100213150ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Based on https://131002.net/siphash C reference implementation */ struct siphash_st { uint64_t total_inlen; uint64_t v0; uint64_t v1; uint64_t v2; uint64_t v3; unsigned int len; int hash_size; int crounds; int drounds; unsigned char leavings[SIPHASH_BLOCK_SIZE]; }; openssl-1.1.1f/crypto/siphash/siphash_pmeth.c000066400000000000000000000126271364063235100213350ustar00rootroot00000000000000/* * Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/siphash.h" #include "siphash_local.h" #include "crypto/evp.h" /* SIPHASH pkey context structure */ typedef struct siphash_pkey_ctx_st { ASN1_OCTET_STRING ktmp; /* Temp storage for key */ SIPHASH ctx; } SIPHASH_PKEY_CTX; static int pkey_siphash_init(EVP_PKEY_CTX *ctx) { SIPHASH_PKEY_CTX *pctx; if ((pctx = OPENSSL_zalloc(sizeof(*pctx))) == NULL) { CRYPTOerr(CRYPTO_F_PKEY_SIPHASH_INIT, ERR_R_MALLOC_FAILURE); return 0; } pctx->ktmp.type = V_ASN1_OCTET_STRING; EVP_PKEY_CTX_set_data(ctx, pctx); EVP_PKEY_CTX_set0_keygen_info(ctx, NULL, 0); return 1; } static void pkey_siphash_cleanup(EVP_PKEY_CTX *ctx) { SIPHASH_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(ctx); if (pctx != NULL) { OPENSSL_clear_free(pctx->ktmp.data, pctx->ktmp.length); OPENSSL_clear_free(pctx, sizeof(*pctx)); EVP_PKEY_CTX_set_data(ctx, NULL); } } static int pkey_siphash_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { SIPHASH_PKEY_CTX *sctx, *dctx; /* allocate memory for dst->data and a new SIPHASH_CTX in dst->data->ctx */ if (!pkey_siphash_init(dst)) return 0; sctx = EVP_PKEY_CTX_get_data(src); dctx = EVP_PKEY_CTX_get_data(dst); if (ASN1_STRING_get0_data(&sctx->ktmp) != NULL && !ASN1_STRING_copy(&dctx->ktmp, &sctx->ktmp)) { /* cleanup and free the SIPHASH_PKEY_CTX in dst->data */ pkey_siphash_cleanup(dst); return 0; } memcpy(&dctx->ctx, &sctx->ctx, sizeof(SIPHASH)); return 1; } static int pkey_siphash_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { ASN1_OCTET_STRING *key; SIPHASH_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(ctx); if (ASN1_STRING_get0_data(&pctx->ktmp) == NULL) return 0; key = ASN1_OCTET_STRING_dup(&pctx->ktmp); if (key == NULL) return 0; return EVP_PKEY_assign_SIPHASH(pkey, key); } static int int_update(EVP_MD_CTX *ctx, const void *data, size_t count) { SIPHASH_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(EVP_MD_CTX_pkey_ctx(ctx)); SipHash_Update(&pctx->ctx, data, count); return 1; } static int siphash_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) { SIPHASH_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(ctx); const unsigned char* key; size_t len; key = EVP_PKEY_get0_siphash(EVP_PKEY_CTX_get0_pkey(ctx), &len); if (key == NULL || len != SIPHASH_KEY_SIZE) return 0; EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT); EVP_MD_CTX_set_update_fn(mctx, int_update); return SipHash_Init(&pctx->ctx, key, 0, 0); } static int siphash_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx) { SIPHASH_PKEY_CTX *pctx = ctx->data; *siglen = SipHash_hash_size(&pctx->ctx); if (sig != NULL) return SipHash_Final(&pctx->ctx, sig, *siglen); return 1; } static int pkey_siphash_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { SIPHASH_PKEY_CTX *pctx = EVP_PKEY_CTX_get_data(ctx); const unsigned char *key; size_t len; switch (type) { case EVP_PKEY_CTRL_MD: /* ignore */ break; case EVP_PKEY_CTRL_SET_DIGEST_SIZE: return SipHash_set_hash_size(&pctx->ctx, p1); case EVP_PKEY_CTRL_SET_MAC_KEY: case EVP_PKEY_CTRL_DIGESTINIT: if (type == EVP_PKEY_CTRL_SET_MAC_KEY) { /* user explicitly setting the key */ key = p2; len = p1; } else { /* user indirectly setting the key via EVP_DigestSignInit */ key = EVP_PKEY_get0_siphash(EVP_PKEY_CTX_get0_pkey(ctx), &len); } if (key == NULL || len != SIPHASH_KEY_SIZE || !ASN1_OCTET_STRING_set(&pctx->ktmp, key, len)) return 0; /* use default rounds (2,4) */ return SipHash_Init(&pctx->ctx, ASN1_STRING_get0_data(&pctx->ktmp), 0, 0); default: return -2; } return 1; } static int pkey_siphash_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (value == NULL) return 0; if (strcmp(type, "digestsize") == 0) { size_t hash_size = atoi(value); return pkey_siphash_ctrl(ctx, EVP_PKEY_CTRL_SET_DIGEST_SIZE, hash_size, NULL); } if (strcmp(type, "key") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); if (strcmp(type, "hexkey") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, value); return -2; } const EVP_PKEY_METHOD siphash_pkey_meth = { EVP_PKEY_SIPHASH, EVP_PKEY_FLAG_SIGCTX_CUSTOM, /* we don't deal with a separate MD */ pkey_siphash_init, pkey_siphash_copy, pkey_siphash_cleanup, 0, 0, 0, pkey_siphash_keygen, 0, 0, 0, 0, 0, 0, siphash_signctx_init, siphash_signctx, 0, 0, 0, 0, 0, 0, 0, 0, pkey_siphash_ctrl, pkey_siphash_ctrl_str }; openssl-1.1.1f/crypto/sm2/000077500000000000000000000000001364063235100153675ustar00rootroot00000000000000openssl-1.1.1f/crypto/sm2/build.info000066400000000000000000000001461364063235100173440ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ sm2_sign.c sm2_crypt.c sm2_err.c sm2_pmeth.c openssl-1.1.1f/crypto/sm2/sm2_crypt.c000066400000000000000000000261271364063235100174650ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * Ported from Ribose contributions from Botan. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "crypto/sm2.h" #include "crypto/sm2err.h" #include "crypto/ec.h" /* ecdh_KDF_X9_63() */ #include #include #include #include #include #include typedef struct SM2_Ciphertext_st SM2_Ciphertext; DECLARE_ASN1_FUNCTIONS(SM2_Ciphertext) struct SM2_Ciphertext_st { BIGNUM *C1x; BIGNUM *C1y; ASN1_OCTET_STRING *C3; ASN1_OCTET_STRING *C2; }; ASN1_SEQUENCE(SM2_Ciphertext) = { ASN1_SIMPLE(SM2_Ciphertext, C1x, BIGNUM), ASN1_SIMPLE(SM2_Ciphertext, C1y, BIGNUM), ASN1_SIMPLE(SM2_Ciphertext, C3, ASN1_OCTET_STRING), ASN1_SIMPLE(SM2_Ciphertext, C2, ASN1_OCTET_STRING), } ASN1_SEQUENCE_END(SM2_Ciphertext) IMPLEMENT_ASN1_FUNCTIONS(SM2_Ciphertext) static size_t ec_field_size(const EC_GROUP *group) { /* Is there some simpler way to do this? */ BIGNUM *p = BN_new(); BIGNUM *a = BN_new(); BIGNUM *b = BN_new(); size_t field_size = 0; if (p == NULL || a == NULL || b == NULL) goto done; if (!EC_GROUP_get_curve(group, p, a, b, NULL)) goto done; field_size = (BN_num_bits(p) + 7) / 8; done: BN_free(p); BN_free(a); BN_free(b); return field_size; } int sm2_plaintext_size(const EC_KEY *key, const EVP_MD *digest, size_t msg_len, size_t *pt_size) { const size_t field_size = ec_field_size(EC_KEY_get0_group(key)); const int md_size = EVP_MD_size(digest); size_t overhead; if (md_size < 0) { SM2err(SM2_F_SM2_PLAINTEXT_SIZE, SM2_R_INVALID_DIGEST); return 0; } if (field_size == 0) { SM2err(SM2_F_SM2_PLAINTEXT_SIZE, SM2_R_INVALID_FIELD); return 0; } overhead = 10 + 2 * field_size + (size_t)md_size; if (msg_len <= overhead) { SM2err(SM2_F_SM2_PLAINTEXT_SIZE, SM2_R_INVALID_ENCODING); return 0; } *pt_size = msg_len - overhead; return 1; } int sm2_ciphertext_size(const EC_KEY *key, const EVP_MD *digest, size_t msg_len, size_t *ct_size) { const size_t field_size = ec_field_size(EC_KEY_get0_group(key)); const int md_size = EVP_MD_size(digest); size_t sz; if (field_size == 0 || md_size < 0) return 0; /* Integer and string are simple type; set constructed = 0, means primitive and definite length encoding. */ sz = 2 * ASN1_object_size(0, field_size + 1, V_ASN1_INTEGER) + ASN1_object_size(0, md_size, V_ASN1_OCTET_STRING) + ASN1_object_size(0, msg_len, V_ASN1_OCTET_STRING); /* Sequence is structured type; set constructed = 1, means constructed and definite length encoding. */ *ct_size = ASN1_object_size(1, sz, V_ASN1_SEQUENCE); return 1; } int sm2_encrypt(const EC_KEY *key, const EVP_MD *digest, const uint8_t *msg, size_t msg_len, uint8_t *ciphertext_buf, size_t *ciphertext_len) { int rc = 0, ciphertext_leni; size_t i; BN_CTX *ctx = NULL; BIGNUM *k = NULL; BIGNUM *x1 = NULL; BIGNUM *y1 = NULL; BIGNUM *x2 = NULL; BIGNUM *y2 = NULL; EVP_MD_CTX *hash = EVP_MD_CTX_new(); struct SM2_Ciphertext_st ctext_struct; const EC_GROUP *group = EC_KEY_get0_group(key); const BIGNUM *order = EC_GROUP_get0_order(group); const EC_POINT *P = EC_KEY_get0_public_key(key); EC_POINT *kG = NULL; EC_POINT *kP = NULL; uint8_t *msg_mask = NULL; uint8_t *x2y2 = NULL; uint8_t *C3 = NULL; size_t field_size; const int C3_size = EVP_MD_size(digest); /* NULL these before any "goto done" */ ctext_struct.C2 = NULL; ctext_struct.C3 = NULL; if (hash == NULL || C3_size <= 0) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_INTERNAL_ERROR); goto done; } field_size = ec_field_size(group); if (field_size == 0) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_INTERNAL_ERROR); goto done; } kG = EC_POINT_new(group); kP = EC_POINT_new(group); ctx = BN_CTX_new(); if (kG == NULL || kP == NULL || ctx == NULL) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_MALLOC_FAILURE); goto done; } BN_CTX_start(ctx); k = BN_CTX_get(ctx); x1 = BN_CTX_get(ctx); x2 = BN_CTX_get(ctx); y1 = BN_CTX_get(ctx); y2 = BN_CTX_get(ctx); if (y2 == NULL) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_BN_LIB); goto done; } x2y2 = OPENSSL_zalloc(2 * field_size); C3 = OPENSSL_zalloc(C3_size); if (x2y2 == NULL || C3 == NULL) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_MALLOC_FAILURE); goto done; } memset(ciphertext_buf, 0, *ciphertext_len); if (!BN_priv_rand_range(k, order)) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_INTERNAL_ERROR); goto done; } if (!EC_POINT_mul(group, kG, k, NULL, NULL, ctx) || !EC_POINT_get_affine_coordinates(group, kG, x1, y1, ctx) || !EC_POINT_mul(group, kP, NULL, P, k, ctx) || !EC_POINT_get_affine_coordinates(group, kP, x2, y2, ctx)) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_EC_LIB); goto done; } if (BN_bn2binpad(x2, x2y2, field_size) < 0 || BN_bn2binpad(y2, x2y2 + field_size, field_size) < 0) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_INTERNAL_ERROR); goto done; } msg_mask = OPENSSL_zalloc(msg_len); if (msg_mask == NULL) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_MALLOC_FAILURE); goto done; } /* X9.63 with no salt happens to match the KDF used in SM2 */ if (!ecdh_KDF_X9_63(msg_mask, msg_len, x2y2, 2 * field_size, NULL, 0, digest)) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_EVP_LIB); goto done; } for (i = 0; i != msg_len; ++i) msg_mask[i] ^= msg[i]; if (EVP_DigestInit(hash, digest) == 0 || EVP_DigestUpdate(hash, x2y2, field_size) == 0 || EVP_DigestUpdate(hash, msg, msg_len) == 0 || EVP_DigestUpdate(hash, x2y2 + field_size, field_size) == 0 || EVP_DigestFinal(hash, C3, NULL) == 0) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_EVP_LIB); goto done; } ctext_struct.C1x = x1; ctext_struct.C1y = y1; ctext_struct.C3 = ASN1_OCTET_STRING_new(); ctext_struct.C2 = ASN1_OCTET_STRING_new(); if (ctext_struct.C3 == NULL || ctext_struct.C2 == NULL) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_MALLOC_FAILURE); goto done; } if (!ASN1_OCTET_STRING_set(ctext_struct.C3, C3, C3_size) || !ASN1_OCTET_STRING_set(ctext_struct.C2, msg_mask, msg_len)) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_INTERNAL_ERROR); goto done; } ciphertext_leni = i2d_SM2_Ciphertext(&ctext_struct, &ciphertext_buf); /* Ensure cast to size_t is safe */ if (ciphertext_leni < 0) { SM2err(SM2_F_SM2_ENCRYPT, ERR_R_INTERNAL_ERROR); goto done; } *ciphertext_len = (size_t)ciphertext_leni; rc = 1; done: ASN1_OCTET_STRING_free(ctext_struct.C2); ASN1_OCTET_STRING_free(ctext_struct.C3); OPENSSL_free(msg_mask); OPENSSL_free(x2y2); OPENSSL_free(C3); EVP_MD_CTX_free(hash); BN_CTX_free(ctx); EC_POINT_free(kG); EC_POINT_free(kP); return rc; } int sm2_decrypt(const EC_KEY *key, const EVP_MD *digest, const uint8_t *ciphertext, size_t ciphertext_len, uint8_t *ptext_buf, size_t *ptext_len) { int rc = 0; int i; BN_CTX *ctx = NULL; const EC_GROUP *group = EC_KEY_get0_group(key); EC_POINT *C1 = NULL; struct SM2_Ciphertext_st *sm2_ctext = NULL; BIGNUM *x2 = NULL; BIGNUM *y2 = NULL; uint8_t *x2y2 = NULL; uint8_t *computed_C3 = NULL; const size_t field_size = ec_field_size(group); const int hash_size = EVP_MD_size(digest); uint8_t *msg_mask = NULL; const uint8_t *C2 = NULL; const uint8_t *C3 = NULL; int msg_len = 0; EVP_MD_CTX *hash = NULL; if (field_size == 0 || hash_size <= 0) goto done; memset(ptext_buf, 0xFF, *ptext_len); sm2_ctext = d2i_SM2_Ciphertext(NULL, &ciphertext, ciphertext_len); if (sm2_ctext == NULL) { SM2err(SM2_F_SM2_DECRYPT, SM2_R_ASN1_ERROR); goto done; } if (sm2_ctext->C3->length != hash_size) { SM2err(SM2_F_SM2_DECRYPT, SM2_R_INVALID_ENCODING); goto done; } C2 = sm2_ctext->C2->data; C3 = sm2_ctext->C3->data; msg_len = sm2_ctext->C2->length; ctx = BN_CTX_new(); if (ctx == NULL) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_MALLOC_FAILURE); goto done; } BN_CTX_start(ctx); x2 = BN_CTX_get(ctx); y2 = BN_CTX_get(ctx); if (y2 == NULL) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_BN_LIB); goto done; } msg_mask = OPENSSL_zalloc(msg_len); x2y2 = OPENSSL_zalloc(2 * field_size); computed_C3 = OPENSSL_zalloc(hash_size); if (msg_mask == NULL || x2y2 == NULL || computed_C3 == NULL) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_MALLOC_FAILURE); goto done; } C1 = EC_POINT_new(group); if (C1 == NULL) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_MALLOC_FAILURE); goto done; } if (!EC_POINT_set_affine_coordinates(group, C1, sm2_ctext->C1x, sm2_ctext->C1y, ctx) || !EC_POINT_mul(group, C1, NULL, C1, EC_KEY_get0_private_key(key), ctx) || !EC_POINT_get_affine_coordinates(group, C1, x2, y2, ctx)) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_EC_LIB); goto done; } if (BN_bn2binpad(x2, x2y2, field_size) < 0 || BN_bn2binpad(y2, x2y2 + field_size, field_size) < 0 || !ecdh_KDF_X9_63(msg_mask, msg_len, x2y2, 2 * field_size, NULL, 0, digest)) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_INTERNAL_ERROR); goto done; } for (i = 0; i != msg_len; ++i) ptext_buf[i] = C2[i] ^ msg_mask[i]; hash = EVP_MD_CTX_new(); if (hash == NULL) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_MALLOC_FAILURE); goto done; } if (!EVP_DigestInit(hash, digest) || !EVP_DigestUpdate(hash, x2y2, field_size) || !EVP_DigestUpdate(hash, ptext_buf, msg_len) || !EVP_DigestUpdate(hash, x2y2 + field_size, field_size) || !EVP_DigestFinal(hash, computed_C3, NULL)) { SM2err(SM2_F_SM2_DECRYPT, ERR_R_EVP_LIB); goto done; } if (CRYPTO_memcmp(computed_C3, C3, hash_size) != 0) { SM2err(SM2_F_SM2_DECRYPT, SM2_R_INVALID_DIGEST); goto done; } rc = 1; *ptext_len = msg_len; done: if (rc == 0) memset(ptext_buf, 0, *ptext_len); OPENSSL_free(msg_mask); OPENSSL_free(x2y2); OPENSSL_free(computed_C3); EC_POINT_free(C1); BN_CTX_free(ctx); SM2_Ciphertext_free(sm2_ctext); EVP_MD_CTX_free(hash); return rc; } openssl-1.1.1f/crypto/sm2/sm2_err.c000066400000000000000000000056661364063235100171210ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/sm2err.h" #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA SM2_str_functs[] = { {ERR_PACK(ERR_LIB_SM2, SM2_F_PKEY_SM2_COPY, 0), "pkey_sm2_copy"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_PKEY_SM2_CTRL, 0), "pkey_sm2_ctrl"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_PKEY_SM2_CTRL_STR, 0), "pkey_sm2_ctrl_str"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_PKEY_SM2_DIGEST_CUSTOM, 0), "pkey_sm2_digest_custom"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_PKEY_SM2_INIT, 0), "pkey_sm2_init"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_PKEY_SM2_SIGN, 0), "pkey_sm2_sign"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_COMPUTE_MSG_HASH, 0), "sm2_compute_msg_hash"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_COMPUTE_USERID_DIGEST, 0), "sm2_compute_userid_digest"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_COMPUTE_Z_DIGEST, 0), "sm2_compute_z_digest"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_DECRYPT, 0), "sm2_decrypt"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_ENCRYPT, 0), "sm2_encrypt"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_PLAINTEXT_SIZE, 0), "sm2_plaintext_size"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_SIGN, 0), "sm2_sign"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_SIG_GEN, 0), "sm2_sig_gen"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_SIG_VERIFY, 0), "sm2_sig_verify"}, {ERR_PACK(ERR_LIB_SM2, SM2_F_SM2_VERIFY, 0), "sm2_verify"}, {0, NULL} }; static const ERR_STRING_DATA SM2_str_reasons[] = { {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_ASN1_ERROR), "asn1 error"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_BAD_SIGNATURE), "bad signature"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_BUFFER_TOO_SMALL), "buffer too small"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_DIST_ID_TOO_LARGE), "dist id too large"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_ID_NOT_SET), "id not set"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_ID_TOO_LARGE), "id too large"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_INVALID_CURVE), "invalid curve"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_INVALID_DIGEST), "invalid digest"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_INVALID_DIGEST_TYPE), "invalid digest type"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_INVALID_ENCODING), "invalid encoding"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_INVALID_FIELD), "invalid field"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_NO_PARAMETERS_SET), "no parameters set"}, {ERR_PACK(ERR_LIB_SM2, 0, SM2_R_USER_ID_TOO_LARGE), "user id too large"}, {0, NULL} }; #endif int ERR_load_SM2_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(SM2_str_functs[0].error) == NULL) { ERR_load_strings_const(SM2_str_functs); ERR_load_strings_const(SM2_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/sm2/sm2_pmeth.c000066400000000000000000000177201364063235100174400ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include #include "crypto/evp.h" #include "crypto/sm2.h" #include "crypto/sm2err.h" /* EC pkey context structure */ typedef struct { /* Key and paramgen group */ EC_GROUP *gen_group; /* message digest */ const EVP_MD *md; /* Distinguishing Identifier, ISO/IEC 15946-3 */ uint8_t *id; size_t id_len; /* id_set indicates if the 'id' field is set (1) or not (0) */ int id_set; } SM2_PKEY_CTX; static int pkey_sm2_init(EVP_PKEY_CTX *ctx) { SM2_PKEY_CTX *smctx; if ((smctx = OPENSSL_zalloc(sizeof(*smctx))) == NULL) { SM2err(SM2_F_PKEY_SM2_INIT, ERR_R_MALLOC_FAILURE); return 0; } ctx->data = smctx; return 1; } static void pkey_sm2_cleanup(EVP_PKEY_CTX *ctx) { SM2_PKEY_CTX *smctx = ctx->data; if (smctx != NULL) { EC_GROUP_free(smctx->gen_group); OPENSSL_free(smctx->id); OPENSSL_free(smctx); ctx->data = NULL; } } static int pkey_sm2_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { SM2_PKEY_CTX *dctx, *sctx; if (!pkey_sm2_init(dst)) return 0; sctx = src->data; dctx = dst->data; if (sctx->gen_group != NULL) { dctx->gen_group = EC_GROUP_dup(sctx->gen_group); if (dctx->gen_group == NULL) { pkey_sm2_cleanup(dst); return 0; } } if (sctx->id != NULL) { dctx->id = OPENSSL_malloc(sctx->id_len); if (dctx->id == NULL) { SM2err(SM2_F_PKEY_SM2_COPY, ERR_R_MALLOC_FAILURE); pkey_sm2_cleanup(dst); return 0; } memcpy(dctx->id, sctx->id, sctx->id_len); } dctx->id_len = sctx->id_len; dctx->id_set = sctx->id_set; dctx->md = sctx->md; return 1; } static int pkey_sm2_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) { int ret; unsigned int sltmp; EC_KEY *ec = ctx->pkey->pkey.ec; const int sig_sz = ECDSA_size(ctx->pkey->pkey.ec); if (sig_sz <= 0) { return 0; } if (sig == NULL) { *siglen = (size_t)sig_sz; return 1; } if (*siglen < (size_t)sig_sz) { SM2err(SM2_F_PKEY_SM2_SIGN, SM2_R_BUFFER_TOO_SMALL); return 0; } ret = sm2_sign(tbs, tbslen, sig, &sltmp, ec); if (ret <= 0) return ret; *siglen = (size_t)sltmp; return 1; } static int pkey_sm2_verify(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { EC_KEY *ec = ctx->pkey->pkey.ec; return sm2_verify(tbs, tbslen, sig, siglen, ec); } static int pkey_sm2_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen) { EC_KEY *ec = ctx->pkey->pkey.ec; SM2_PKEY_CTX *dctx = ctx->data; const EVP_MD *md = (dctx->md == NULL) ? EVP_sm3() : dctx->md; if (out == NULL) { if (!sm2_ciphertext_size(ec, md, inlen, outlen)) return -1; else return 1; } return sm2_encrypt(ec, md, in, inlen, out, outlen); } static int pkey_sm2_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen) { EC_KEY *ec = ctx->pkey->pkey.ec; SM2_PKEY_CTX *dctx = ctx->data; const EVP_MD *md = (dctx->md == NULL) ? EVP_sm3() : dctx->md; if (out == NULL) { if (!sm2_plaintext_size(ec, md, inlen, outlen)) return -1; else return 1; } return sm2_decrypt(ec, md, in, inlen, out, outlen); } static int pkey_sm2_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { SM2_PKEY_CTX *smctx = ctx->data; EC_GROUP *group; uint8_t *tmp_id; switch (type) { case EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID: group = EC_GROUP_new_by_curve_name(p1); if (group == NULL) { SM2err(SM2_F_PKEY_SM2_CTRL, SM2_R_INVALID_CURVE); return 0; } EC_GROUP_free(smctx->gen_group); smctx->gen_group = group; return 1; case EVP_PKEY_CTRL_EC_PARAM_ENC: if (smctx->gen_group == NULL) { SM2err(SM2_F_PKEY_SM2_CTRL, SM2_R_NO_PARAMETERS_SET); return 0; } EC_GROUP_set_asn1_flag(smctx->gen_group, p1); return 1; case EVP_PKEY_CTRL_MD: smctx->md = p2; return 1; case EVP_PKEY_CTRL_GET_MD: *(const EVP_MD **)p2 = smctx->md; return 1; case EVP_PKEY_CTRL_SET1_ID: if (p1 > 0) { tmp_id = OPENSSL_malloc(p1); if (tmp_id == NULL) { SM2err(SM2_F_PKEY_SM2_CTRL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(tmp_id, p2, p1); OPENSSL_free(smctx->id); smctx->id = tmp_id; } else { /* set null-ID */ OPENSSL_free(smctx->id); smctx->id = NULL; } smctx->id_len = (size_t)p1; smctx->id_set = 1; return 1; case EVP_PKEY_CTRL_GET1_ID: memcpy(p2, smctx->id, smctx->id_len); return 1; case EVP_PKEY_CTRL_GET1_ID_LEN: *(size_t *)p2 = smctx->id_len; return 1; case EVP_PKEY_CTRL_DIGESTINIT: /* nothing to be inited, this is to suppress the error... */ return 1; default: return -2; } } static int pkey_sm2_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (strcmp(type, "ec_paramgen_curve") == 0) { int nid = NID_undef; if (((nid = EC_curve_nist2nid(value)) == NID_undef) && ((nid = OBJ_sn2nid(value)) == NID_undef) && ((nid = OBJ_ln2nid(value)) == NID_undef)) { SM2err(SM2_F_PKEY_SM2_CTRL_STR, SM2_R_INVALID_CURVE); return 0; } return EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx, nid); } else if (strcmp(type, "ec_param_enc") == 0) { int param_enc; if (strcmp(value, "explicit") == 0) param_enc = 0; else if (strcmp(value, "named_curve") == 0) param_enc = OPENSSL_EC_NAMED_CURVE; else return -2; return EVP_PKEY_CTX_set_ec_param_enc(ctx, param_enc); } return -2; } static int pkey_sm2_digest_custom(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) { uint8_t z[EVP_MAX_MD_SIZE]; SM2_PKEY_CTX *smctx = ctx->data; EC_KEY *ec = ctx->pkey->pkey.ec; const EVP_MD *md = EVP_MD_CTX_md(mctx); int mdlen = EVP_MD_size(md); if (!smctx->id_set) { /* * An ID value must be set. The specifications are not clear whether a * NULL is allowed. We only allow it if set explicitly for maximum * flexibility. */ SM2err(SM2_F_PKEY_SM2_DIGEST_CUSTOM, SM2_R_ID_NOT_SET); return 0; } if (mdlen < 0) { SM2err(SM2_F_PKEY_SM2_DIGEST_CUSTOM, SM2_R_INVALID_DIGEST); return 0; } /* get hashed prefix 'z' of tbs message */ if (!sm2_compute_z_digest(z, md, smctx->id, smctx->id_len, ec)) return 0; return EVP_DigestUpdate(mctx, z, (size_t)mdlen); } const EVP_PKEY_METHOD sm2_pkey_meth = { EVP_PKEY_SM2, 0, pkey_sm2_init, pkey_sm2_copy, pkey_sm2_cleanup, 0, 0, 0, 0, 0, pkey_sm2_sign, 0, pkey_sm2_verify, 0, 0, 0, 0, 0, 0, 0, pkey_sm2_encrypt, 0, pkey_sm2_decrypt, 0, 0, pkey_sm2_ctrl, pkey_sm2_ctrl_str, 0, 0, 0, 0, 0, pkey_sm2_digest_custom }; openssl-1.1.1f/crypto/sm2/sm2_sign.c000066400000000000000000000313031364063235100172540ustar00rootroot00000000000000/* * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * Ported from Ribose contributions from Botan. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "crypto/sm2.h" #include "crypto/sm2err.h" #include "crypto/ec.h" /* ec_group_do_inverse_ord() */ #include "internal/numbers.h" #include #include #include #include #include int sm2_compute_z_digest(uint8_t *out, const EVP_MD *digest, const uint8_t *id, const size_t id_len, const EC_KEY *key) { int rc = 0; const EC_GROUP *group = EC_KEY_get0_group(key); BN_CTX *ctx = NULL; EVP_MD_CTX *hash = NULL; BIGNUM *p = NULL; BIGNUM *a = NULL; BIGNUM *b = NULL; BIGNUM *xG = NULL; BIGNUM *yG = NULL; BIGNUM *xA = NULL; BIGNUM *yA = NULL; int p_bytes = 0; uint8_t *buf = NULL; uint16_t entl = 0; uint8_t e_byte = 0; hash = EVP_MD_CTX_new(); ctx = BN_CTX_new(); if (hash == NULL || ctx == NULL) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_MALLOC_FAILURE); goto done; } p = BN_CTX_get(ctx); a = BN_CTX_get(ctx); b = BN_CTX_get(ctx); xG = BN_CTX_get(ctx); yG = BN_CTX_get(ctx); xA = BN_CTX_get(ctx); yA = BN_CTX_get(ctx); if (yA == NULL) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_MALLOC_FAILURE); goto done; } if (!EVP_DigestInit(hash, digest)) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_EVP_LIB); goto done; } /* Z = h(ENTL || ID || a || b || xG || yG || xA || yA) */ if (id_len >= (UINT16_MAX / 8)) { /* too large */ SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, SM2_R_ID_TOO_LARGE); goto done; } entl = (uint16_t)(8 * id_len); e_byte = entl >> 8; if (!EVP_DigestUpdate(hash, &e_byte, 1)) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_EVP_LIB); goto done; } e_byte = entl & 0xFF; if (!EVP_DigestUpdate(hash, &e_byte, 1)) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_EVP_LIB); goto done; } if (id_len > 0 && !EVP_DigestUpdate(hash, id, id_len)) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_EVP_LIB); goto done; } if (!EC_GROUP_get_curve(group, p, a, b, ctx)) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_EC_LIB); goto done; } p_bytes = BN_num_bytes(p); buf = OPENSSL_zalloc(p_bytes); if (buf == NULL) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_MALLOC_FAILURE); goto done; } if (BN_bn2binpad(a, buf, p_bytes) < 0 || !EVP_DigestUpdate(hash, buf, p_bytes) || BN_bn2binpad(b, buf, p_bytes) < 0 || !EVP_DigestUpdate(hash, buf, p_bytes) || !EC_POINT_get_affine_coordinates(group, EC_GROUP_get0_generator(group), xG, yG, ctx) || BN_bn2binpad(xG, buf, p_bytes) < 0 || !EVP_DigestUpdate(hash, buf, p_bytes) || BN_bn2binpad(yG, buf, p_bytes) < 0 || !EVP_DigestUpdate(hash, buf, p_bytes) || !EC_POINT_get_affine_coordinates(group, EC_KEY_get0_public_key(key), xA, yA, ctx) || BN_bn2binpad(xA, buf, p_bytes) < 0 || !EVP_DigestUpdate(hash, buf, p_bytes) || BN_bn2binpad(yA, buf, p_bytes) < 0 || !EVP_DigestUpdate(hash, buf, p_bytes) || !EVP_DigestFinal(hash, out, NULL)) { SM2err(SM2_F_SM2_COMPUTE_Z_DIGEST, ERR_R_INTERNAL_ERROR); goto done; } rc = 1; done: OPENSSL_free(buf); BN_CTX_free(ctx); EVP_MD_CTX_free(hash); return rc; } static BIGNUM *sm2_compute_msg_hash(const EVP_MD *digest, const EC_KEY *key, const uint8_t *id, const size_t id_len, const uint8_t *msg, size_t msg_len) { EVP_MD_CTX *hash = EVP_MD_CTX_new(); const int md_size = EVP_MD_size(digest); uint8_t *z = NULL; BIGNUM *e = NULL; if (md_size < 0) { SM2err(SM2_F_SM2_COMPUTE_MSG_HASH, SM2_R_INVALID_DIGEST); goto done; } z = OPENSSL_zalloc(md_size); if (hash == NULL || z == NULL) { SM2err(SM2_F_SM2_COMPUTE_MSG_HASH, ERR_R_MALLOC_FAILURE); goto done; } if (!sm2_compute_z_digest(z, digest, id, id_len, key)) { /* SM2err already called */ goto done; } if (!EVP_DigestInit(hash, digest) || !EVP_DigestUpdate(hash, z, md_size) || !EVP_DigestUpdate(hash, msg, msg_len) /* reuse z buffer to hold H(Z || M) */ || !EVP_DigestFinal(hash, z, NULL)) { SM2err(SM2_F_SM2_COMPUTE_MSG_HASH, ERR_R_EVP_LIB); goto done; } e = BN_bin2bn(z, md_size, NULL); if (e == NULL) SM2err(SM2_F_SM2_COMPUTE_MSG_HASH, ERR_R_INTERNAL_ERROR); done: OPENSSL_free(z); EVP_MD_CTX_free(hash); return e; } static ECDSA_SIG *sm2_sig_gen(const EC_KEY *key, const BIGNUM *e) { const BIGNUM *dA = EC_KEY_get0_private_key(key); const EC_GROUP *group = EC_KEY_get0_group(key); const BIGNUM *order = EC_GROUP_get0_order(group); ECDSA_SIG *sig = NULL; EC_POINT *kG = NULL; BN_CTX *ctx = NULL; BIGNUM *k = NULL; BIGNUM *rk = NULL; BIGNUM *r = NULL; BIGNUM *s = NULL; BIGNUM *x1 = NULL; BIGNUM *tmp = NULL; kG = EC_POINT_new(group); ctx = BN_CTX_new(); if (kG == NULL || ctx == NULL) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_MALLOC_FAILURE); goto done; } BN_CTX_start(ctx); k = BN_CTX_get(ctx); rk = BN_CTX_get(ctx); x1 = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_MALLOC_FAILURE); goto done; } /* * These values are returned and so should not be allocated out of the * context */ r = BN_new(); s = BN_new(); if (r == NULL || s == NULL) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_MALLOC_FAILURE); goto done; } for (;;) { if (!BN_priv_rand_range(k, order)) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_INTERNAL_ERROR); goto done; } if (!EC_POINT_mul(group, kG, k, NULL, NULL, ctx) || !EC_POINT_get_affine_coordinates(group, kG, x1, NULL, ctx) || !BN_mod_add(r, e, x1, order, ctx)) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_INTERNAL_ERROR); goto done; } /* try again if r == 0 or r+k == n */ if (BN_is_zero(r)) continue; if (!BN_add(rk, r, k)) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_INTERNAL_ERROR); goto done; } if (BN_cmp(rk, order) == 0) continue; if (!BN_add(s, dA, BN_value_one()) || !ec_group_do_inverse_ord(group, s, s, ctx) || !BN_mod_mul(tmp, dA, r, order, ctx) || !BN_sub(tmp, k, tmp) || !BN_mod_mul(s, s, tmp, order, ctx)) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_BN_LIB); goto done; } sig = ECDSA_SIG_new(); if (sig == NULL) { SM2err(SM2_F_SM2_SIG_GEN, ERR_R_MALLOC_FAILURE); goto done; } /* takes ownership of r and s */ ECDSA_SIG_set0(sig, r, s); break; } done: if (sig == NULL) { BN_free(r); BN_free(s); } BN_CTX_free(ctx); EC_POINT_free(kG); return sig; } static int sm2_sig_verify(const EC_KEY *key, const ECDSA_SIG *sig, const BIGNUM *e) { int ret = 0; const EC_GROUP *group = EC_KEY_get0_group(key); const BIGNUM *order = EC_GROUP_get0_order(group); BN_CTX *ctx = NULL; EC_POINT *pt = NULL; BIGNUM *t = NULL; BIGNUM *x1 = NULL; const BIGNUM *r = NULL; const BIGNUM *s = NULL; ctx = BN_CTX_new(); pt = EC_POINT_new(group); if (ctx == NULL || pt == NULL) { SM2err(SM2_F_SM2_SIG_VERIFY, ERR_R_MALLOC_FAILURE); goto done; } BN_CTX_start(ctx); t = BN_CTX_get(ctx); x1 = BN_CTX_get(ctx); if (x1 == NULL) { SM2err(SM2_F_SM2_SIG_VERIFY, ERR_R_MALLOC_FAILURE); goto done; } /* * B1: verify whether r' in [1,n-1], verification failed if not * B2: verify whether s' in [1,n-1], verification failed if not * B3: set M'~=ZA || M' * B4: calculate e'=Hv(M'~) * B5: calculate t = (r' + s') modn, verification failed if t=0 * B6: calculate the point (x1', y1')=[s']G + [t]PA * B7: calculate R=(e'+x1') modn, verification pass if yes, otherwise failed */ ECDSA_SIG_get0(sig, &r, &s); if (BN_cmp(r, BN_value_one()) < 0 || BN_cmp(s, BN_value_one()) < 0 || BN_cmp(order, r) <= 0 || BN_cmp(order, s) <= 0) { SM2err(SM2_F_SM2_SIG_VERIFY, SM2_R_BAD_SIGNATURE); goto done; } if (!BN_mod_add(t, r, s, order, ctx)) { SM2err(SM2_F_SM2_SIG_VERIFY, ERR_R_BN_LIB); goto done; } if (BN_is_zero(t)) { SM2err(SM2_F_SM2_SIG_VERIFY, SM2_R_BAD_SIGNATURE); goto done; } if (!EC_POINT_mul(group, pt, s, EC_KEY_get0_public_key(key), t, ctx) || !EC_POINT_get_affine_coordinates(group, pt, x1, NULL, ctx)) { SM2err(SM2_F_SM2_SIG_VERIFY, ERR_R_EC_LIB); goto done; } if (!BN_mod_add(t, e, x1, order, ctx)) { SM2err(SM2_F_SM2_SIG_VERIFY, ERR_R_BN_LIB); goto done; } if (BN_cmp(r, t) == 0) ret = 1; done: EC_POINT_free(pt); BN_CTX_free(ctx); return ret; } ECDSA_SIG *sm2_do_sign(const EC_KEY *key, const EVP_MD *digest, const uint8_t *id, const size_t id_len, const uint8_t *msg, size_t msg_len) { BIGNUM *e = NULL; ECDSA_SIG *sig = NULL; e = sm2_compute_msg_hash(digest, key, id, id_len, msg, msg_len); if (e == NULL) { /* SM2err already called */ goto done; } sig = sm2_sig_gen(key, e); done: BN_free(e); return sig; } int sm2_do_verify(const EC_KEY *key, const EVP_MD *digest, const ECDSA_SIG *sig, const uint8_t *id, const size_t id_len, const uint8_t *msg, size_t msg_len) { BIGNUM *e = NULL; int ret = 0; e = sm2_compute_msg_hash(digest, key, id, id_len, msg, msg_len); if (e == NULL) { /* SM2err already called */ goto done; } ret = sm2_sig_verify(key, sig, e); done: BN_free(e); return ret; } int sm2_sign(const unsigned char *dgst, int dgstlen, unsigned char *sig, unsigned int *siglen, EC_KEY *eckey) { BIGNUM *e = NULL; ECDSA_SIG *s = NULL; int sigleni; int ret = -1; e = BN_bin2bn(dgst, dgstlen, NULL); if (e == NULL) { SM2err(SM2_F_SM2_SIGN, ERR_R_BN_LIB); goto done; } s = sm2_sig_gen(eckey, e); sigleni = i2d_ECDSA_SIG(s, &sig); if (sigleni < 0) { SM2err(SM2_F_SM2_SIGN, ERR_R_INTERNAL_ERROR); goto done; } *siglen = (unsigned int)sigleni; ret = 1; done: ECDSA_SIG_free(s); BN_free(e); return ret; } int sm2_verify(const unsigned char *dgst, int dgstlen, const unsigned char *sig, int sig_len, EC_KEY *eckey) { ECDSA_SIG *s = NULL; BIGNUM *e = NULL; const unsigned char *p = sig; unsigned char *der = NULL; int derlen = -1; int ret = -1; s = ECDSA_SIG_new(); if (s == NULL) { SM2err(SM2_F_SM2_VERIFY, ERR_R_MALLOC_FAILURE); goto done; } if (d2i_ECDSA_SIG(&s, &p, sig_len) == NULL) { SM2err(SM2_F_SM2_VERIFY, SM2_R_INVALID_ENCODING); goto done; } /* Ensure signature uses DER and doesn't have trailing garbage */ derlen = i2d_ECDSA_SIG(s, &der); if (derlen != sig_len || memcmp(sig, der, derlen) != 0) { SM2err(SM2_F_SM2_VERIFY, SM2_R_INVALID_ENCODING); goto done; } e = BN_bin2bn(dgst, dgstlen, NULL); if (e == NULL) { SM2err(SM2_F_SM2_VERIFY, ERR_R_BN_LIB); goto done; } ret = sm2_sig_verify(eckey, s, e); done: OPENSSL_free(der); BN_free(e); ECDSA_SIG_free(s); return ret; } openssl-1.1.1f/crypto/sm3/000077500000000000000000000000001364063235100153705ustar00rootroot00000000000000openssl-1.1.1f/crypto/sm3/build.info000066400000000000000000000000731364063235100173440ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=sm3.c m_sm3.c openssl-1.1.1f/crypto/sm3/m_sm3.c000066400000000000000000000021331364063235100165510ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #ifndef OPENSSL_NO_SM3 # include # include "crypto/evp.h" # include "crypto/sm3.h" static int init(EVP_MD_CTX *ctx) { return sm3_init(EVP_MD_CTX_md_data(ctx)); } static int update(EVP_MD_CTX *ctx, const void *data, size_t count) { return sm3_update(EVP_MD_CTX_md_data(ctx), data, count); } static int final(EVP_MD_CTX *ctx, unsigned char *md) { return sm3_final(md, EVP_MD_CTX_md_data(ctx)); } static const EVP_MD sm3_md = { NID_sm3, NID_sm3WithRSAEncryption, SM3_DIGEST_LENGTH, 0, init, update, final, NULL, NULL, SM3_CBLOCK, sizeof(EVP_MD *) + sizeof(SM3_CTX), }; const EVP_MD *EVP_sm3(void) { return &sm3_md; } #endif openssl-1.1.1f/crypto/sm3/sm3.c000066400000000000000000000205661364063235100162470ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * Ported from Ribose contributions from Botan. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "sm3_local.h" int sm3_init(SM3_CTX *c) { memset(c, 0, sizeof(*c)); c->A = SM3_A; c->B = SM3_B; c->C = SM3_C; c->D = SM3_D; c->E = SM3_E; c->F = SM3_F; c->G = SM3_G; c->H = SM3_H; return 1; } void sm3_block_data_order(SM3_CTX *ctx, const void *p, size_t num) { const unsigned char *data = p; register unsigned MD32_REG_T A, B, C, D, E, F, G, H; unsigned MD32_REG_T W00, W01, W02, W03, W04, W05, W06, W07, W08, W09, W10, W11, W12, W13, W14, W15; for (; num--;) { A = ctx->A; B = ctx->B; C = ctx->C; D = ctx->D; E = ctx->E; F = ctx->F; G = ctx->G; H = ctx->H; /* * We have to load all message bytes immediately since SM3 reads * them slightly out of order. */ (void)HOST_c2l(data, W00); (void)HOST_c2l(data, W01); (void)HOST_c2l(data, W02); (void)HOST_c2l(data, W03); (void)HOST_c2l(data, W04); (void)HOST_c2l(data, W05); (void)HOST_c2l(data, W06); (void)HOST_c2l(data, W07); (void)HOST_c2l(data, W08); (void)HOST_c2l(data, W09); (void)HOST_c2l(data, W10); (void)HOST_c2l(data, W11); (void)HOST_c2l(data, W12); (void)HOST_c2l(data, W13); (void)HOST_c2l(data, W14); (void)HOST_c2l(data, W15); R1(A, B, C, D, E, F, G, H, 0x79CC4519, W00, W00 ^ W04); W00 = EXPAND(W00, W07, W13, W03, W10); R1(D, A, B, C, H, E, F, G, 0xF3988A32, W01, W01 ^ W05); W01 = EXPAND(W01, W08, W14, W04, W11); R1(C, D, A, B, G, H, E, F, 0xE7311465, W02, W02 ^ W06); W02 = EXPAND(W02, W09, W15, W05, W12); R1(B, C, D, A, F, G, H, E, 0xCE6228CB, W03, W03 ^ W07); W03 = EXPAND(W03, W10, W00, W06, W13); R1(A, B, C, D, E, F, G, H, 0x9CC45197, W04, W04 ^ W08); W04 = EXPAND(W04, W11, W01, W07, W14); R1(D, A, B, C, H, E, F, G, 0x3988A32F, W05, W05 ^ W09); W05 = EXPAND(W05, W12, W02, W08, W15); R1(C, D, A, B, G, H, E, F, 0x7311465E, W06, W06 ^ W10); W06 = EXPAND(W06, W13, W03, W09, W00); R1(B, C, D, A, F, G, H, E, 0xE6228CBC, W07, W07 ^ W11); W07 = EXPAND(W07, W14, W04, W10, W01); R1(A, B, C, D, E, F, G, H, 0xCC451979, W08, W08 ^ W12); W08 = EXPAND(W08, W15, W05, W11, W02); R1(D, A, B, C, H, E, F, G, 0x988A32F3, W09, W09 ^ W13); W09 = EXPAND(W09, W00, W06, W12, W03); R1(C, D, A, B, G, H, E, F, 0x311465E7, W10, W10 ^ W14); W10 = EXPAND(W10, W01, W07, W13, W04); R1(B, C, D, A, F, G, H, E, 0x6228CBCE, W11, W11 ^ W15); W11 = EXPAND(W11, W02, W08, W14, W05); R1(A, B, C, D, E, F, G, H, 0xC451979C, W12, W12 ^ W00); W12 = EXPAND(W12, W03, W09, W15, W06); R1(D, A, B, C, H, E, F, G, 0x88A32F39, W13, W13 ^ W01); W13 = EXPAND(W13, W04, W10, W00, W07); R1(C, D, A, B, G, H, E, F, 0x11465E73, W14, W14 ^ W02); W14 = EXPAND(W14, W05, W11, W01, W08); R1(B, C, D, A, F, G, H, E, 0x228CBCE6, W15, W15 ^ W03); W15 = EXPAND(W15, W06, W12, W02, W09); R2(A, B, C, D, E, F, G, H, 0x9D8A7A87, W00, W00 ^ W04); W00 = EXPAND(W00, W07, W13, W03, W10); R2(D, A, B, C, H, E, F, G, 0x3B14F50F, W01, W01 ^ W05); W01 = EXPAND(W01, W08, W14, W04, W11); R2(C, D, A, B, G, H, E, F, 0x7629EA1E, W02, W02 ^ W06); W02 = EXPAND(W02, W09, W15, W05, W12); R2(B, C, D, A, F, G, H, E, 0xEC53D43C, W03, W03 ^ W07); W03 = EXPAND(W03, W10, W00, W06, W13); R2(A, B, C, D, E, F, G, H, 0xD8A7A879, W04, W04 ^ W08); W04 = EXPAND(W04, W11, W01, W07, W14); R2(D, A, B, C, H, E, F, G, 0xB14F50F3, W05, W05 ^ W09); W05 = EXPAND(W05, W12, W02, W08, W15); R2(C, D, A, B, G, H, E, F, 0x629EA1E7, W06, W06 ^ W10); W06 = EXPAND(W06, W13, W03, W09, W00); R2(B, C, D, A, F, G, H, E, 0xC53D43CE, W07, W07 ^ W11); W07 = EXPAND(W07, W14, W04, W10, W01); R2(A, B, C, D, E, F, G, H, 0x8A7A879D, W08, W08 ^ W12); W08 = EXPAND(W08, W15, W05, W11, W02); R2(D, A, B, C, H, E, F, G, 0x14F50F3B, W09, W09 ^ W13); W09 = EXPAND(W09, W00, W06, W12, W03); R2(C, D, A, B, G, H, E, F, 0x29EA1E76, W10, W10 ^ W14); W10 = EXPAND(W10, W01, W07, W13, W04); R2(B, C, D, A, F, G, H, E, 0x53D43CEC, W11, W11 ^ W15); W11 = EXPAND(W11, W02, W08, W14, W05); R2(A, B, C, D, E, F, G, H, 0xA7A879D8, W12, W12 ^ W00); W12 = EXPAND(W12, W03, W09, W15, W06); R2(D, A, B, C, H, E, F, G, 0x4F50F3B1, W13, W13 ^ W01); W13 = EXPAND(W13, W04, W10, W00, W07); R2(C, D, A, B, G, H, E, F, 0x9EA1E762, W14, W14 ^ W02); W14 = EXPAND(W14, W05, W11, W01, W08); R2(B, C, D, A, F, G, H, E, 0x3D43CEC5, W15, W15 ^ W03); W15 = EXPAND(W15, W06, W12, W02, W09); R2(A, B, C, D, E, F, G, H, 0x7A879D8A, W00, W00 ^ W04); W00 = EXPAND(W00, W07, W13, W03, W10); R2(D, A, B, C, H, E, F, G, 0xF50F3B14, W01, W01 ^ W05); W01 = EXPAND(W01, W08, W14, W04, W11); R2(C, D, A, B, G, H, E, F, 0xEA1E7629, W02, W02 ^ W06); W02 = EXPAND(W02, W09, W15, W05, W12); R2(B, C, D, A, F, G, H, E, 0xD43CEC53, W03, W03 ^ W07); W03 = EXPAND(W03, W10, W00, W06, W13); R2(A, B, C, D, E, F, G, H, 0xA879D8A7, W04, W04 ^ W08); W04 = EXPAND(W04, W11, W01, W07, W14); R2(D, A, B, C, H, E, F, G, 0x50F3B14F, W05, W05 ^ W09); W05 = EXPAND(W05, W12, W02, W08, W15); R2(C, D, A, B, G, H, E, F, 0xA1E7629E, W06, W06 ^ W10); W06 = EXPAND(W06, W13, W03, W09, W00); R2(B, C, D, A, F, G, H, E, 0x43CEC53D, W07, W07 ^ W11); W07 = EXPAND(W07, W14, W04, W10, W01); R2(A, B, C, D, E, F, G, H, 0x879D8A7A, W08, W08 ^ W12); W08 = EXPAND(W08, W15, W05, W11, W02); R2(D, A, B, C, H, E, F, G, 0x0F3B14F5, W09, W09 ^ W13); W09 = EXPAND(W09, W00, W06, W12, W03); R2(C, D, A, B, G, H, E, F, 0x1E7629EA, W10, W10 ^ W14); W10 = EXPAND(W10, W01, W07, W13, W04); R2(B, C, D, A, F, G, H, E, 0x3CEC53D4, W11, W11 ^ W15); W11 = EXPAND(W11, W02, W08, W14, W05); R2(A, B, C, D, E, F, G, H, 0x79D8A7A8, W12, W12 ^ W00); W12 = EXPAND(W12, W03, W09, W15, W06); R2(D, A, B, C, H, E, F, G, 0xF3B14F50, W13, W13 ^ W01); W13 = EXPAND(W13, W04, W10, W00, W07); R2(C, D, A, B, G, H, E, F, 0xE7629EA1, W14, W14 ^ W02); W14 = EXPAND(W14, W05, W11, W01, W08); R2(B, C, D, A, F, G, H, E, 0xCEC53D43, W15, W15 ^ W03); W15 = EXPAND(W15, W06, W12, W02, W09); R2(A, B, C, D, E, F, G, H, 0x9D8A7A87, W00, W00 ^ W04); W00 = EXPAND(W00, W07, W13, W03, W10); R2(D, A, B, C, H, E, F, G, 0x3B14F50F, W01, W01 ^ W05); W01 = EXPAND(W01, W08, W14, W04, W11); R2(C, D, A, B, G, H, E, F, 0x7629EA1E, W02, W02 ^ W06); W02 = EXPAND(W02, W09, W15, W05, W12); R2(B, C, D, A, F, G, H, E, 0xEC53D43C, W03, W03 ^ W07); W03 = EXPAND(W03, W10, W00, W06, W13); R2(A, B, C, D, E, F, G, H, 0xD8A7A879, W04, W04 ^ W08); R2(D, A, B, C, H, E, F, G, 0xB14F50F3, W05, W05 ^ W09); R2(C, D, A, B, G, H, E, F, 0x629EA1E7, W06, W06 ^ W10); R2(B, C, D, A, F, G, H, E, 0xC53D43CE, W07, W07 ^ W11); R2(A, B, C, D, E, F, G, H, 0x8A7A879D, W08, W08 ^ W12); R2(D, A, B, C, H, E, F, G, 0x14F50F3B, W09, W09 ^ W13); R2(C, D, A, B, G, H, E, F, 0x29EA1E76, W10, W10 ^ W14); R2(B, C, D, A, F, G, H, E, 0x53D43CEC, W11, W11 ^ W15); R2(A, B, C, D, E, F, G, H, 0xA7A879D8, W12, W12 ^ W00); R2(D, A, B, C, H, E, F, G, 0x4F50F3B1, W13, W13 ^ W01); R2(C, D, A, B, G, H, E, F, 0x9EA1E762, W14, W14 ^ W02); R2(B, C, D, A, F, G, H, E, 0x3D43CEC5, W15, W15 ^ W03); ctx->A ^= A; ctx->B ^= B; ctx->C ^= C; ctx->D ^= D; ctx->E ^= E; ctx->F ^= F; ctx->G ^= G; ctx->H ^= H; } } openssl-1.1.1f/crypto/sm3/sm3_local.h000066400000000000000000000055471364063235100174300ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * Ported from Ribose contributions from Botan. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/sm3.h" #define DATA_ORDER_IS_BIG_ENDIAN #define HASH_LONG SM3_WORD #define HASH_CTX SM3_CTX #define HASH_CBLOCK SM3_CBLOCK #define HASH_UPDATE sm3_update #define HASH_TRANSFORM sm3_transform #define HASH_FINAL sm3_final #define HASH_MAKE_STRING(c, s) \ do { \ unsigned long ll; \ ll=(c)->A; (void)HOST_l2c(ll, (s)); \ ll=(c)->B; (void)HOST_l2c(ll, (s)); \ ll=(c)->C; (void)HOST_l2c(ll, (s)); \ ll=(c)->D; (void)HOST_l2c(ll, (s)); \ ll=(c)->E; (void)HOST_l2c(ll, (s)); \ ll=(c)->F; (void)HOST_l2c(ll, (s)); \ ll=(c)->G; (void)HOST_l2c(ll, (s)); \ ll=(c)->H; (void)HOST_l2c(ll, (s)); \ } while (0) #define HASH_BLOCK_DATA_ORDER sm3_block_data_order void sm3_transform(SM3_CTX *c, const unsigned char *data); #include "crypto/md32_common.h" #define P0(X) (X ^ ROTATE(X, 9) ^ ROTATE(X, 17)) #define P1(X) (X ^ ROTATE(X, 15) ^ ROTATE(X, 23)) #define FF0(X,Y,Z) (X ^ Y ^ Z) #define GG0(X,Y,Z) (X ^ Y ^ Z) #define FF1(X,Y,Z) ((X & Y) | ((X | Y) & Z)) #define GG1(X,Y,Z) ((Z ^ (X & (Y ^ Z)))) #define EXPAND(W0,W7,W13,W3,W10) \ (P1(W0 ^ W7 ^ ROTATE(W13, 15)) ^ ROTATE(W3, 7) ^ W10) #define RND(A, B, C, D, E, F, G, H, TJ, Wi, Wj, FF, GG) \ do { \ const SM3_WORD A12 = ROTATE(A, 12); \ const SM3_WORD A12_SM = A12 + E + TJ; \ const SM3_WORD SS1 = ROTATE(A12_SM, 7); \ const SM3_WORD TT1 = FF(A, B, C) + D + (SS1 ^ A12) + (Wj); \ const SM3_WORD TT2 = GG(E, F, G) + H + SS1 + Wi; \ B = ROTATE(B, 9); \ D = TT1; \ F = ROTATE(F, 19); \ H = P0(TT2); \ } while(0) #define R1(A,B,C,D,E,F,G,H,TJ,Wi,Wj) \ RND(A,B,C,D,E,F,G,H,TJ,Wi,Wj,FF0,GG0) #define R2(A,B,C,D,E,F,G,H,TJ,Wi,Wj) \ RND(A,B,C,D,E,F,G,H,TJ,Wi,Wj,FF1,GG1) #define SM3_A 0x7380166fUL #define SM3_B 0x4914b2b9UL #define SM3_C 0x172442d7UL #define SM3_D 0xda8a0600UL #define SM3_E 0xa96f30bcUL #define SM3_F 0x163138aaUL #define SM3_G 0xe38dee4dUL #define SM3_H 0xb0fb0e4eUL openssl-1.1.1f/crypto/sm4/000077500000000000000000000000001364063235100153715ustar00rootroot00000000000000openssl-1.1.1f/crypto/sm4/build.info000066400000000000000000000000761364063235100173500ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ sm4.c openssl-1.1.1f/crypto/sm4/sm4.c000066400000000000000000000230121364063235100162360ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * Ported from Ribose contributions from Botan. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/sm4.h" static const uint8_t SM4_S[256] = { 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48 }; /* * SM4_SBOX_T[j] == L(SM4_SBOX[j]). */ static const uint32_t SM4_SBOX_T[256] = { 0x8ED55B5B, 0xD0924242, 0x4DEAA7A7, 0x06FDFBFB, 0xFCCF3333, 0x65E28787, 0xC93DF4F4, 0x6BB5DEDE, 0x4E165858, 0x6EB4DADA, 0x44145050, 0xCAC10B0B, 0x8828A0A0, 0x17F8EFEF, 0x9C2CB0B0, 0x11051414, 0x872BACAC, 0xFB669D9D, 0xF2986A6A, 0xAE77D9D9, 0x822AA8A8, 0x46BCFAFA, 0x14041010, 0xCFC00F0F, 0x02A8AAAA, 0x54451111, 0x5F134C4C, 0xBE269898, 0x6D482525, 0x9E841A1A, 0x1E061818, 0xFD9B6666, 0xEC9E7272, 0x4A430909, 0x10514141, 0x24F7D3D3, 0xD5934646, 0x53ECBFBF, 0xF89A6262, 0x927BE9E9, 0xFF33CCCC, 0x04555151, 0x270B2C2C, 0x4F420D0D, 0x59EEB7B7, 0xF3CC3F3F, 0x1CAEB2B2, 0xEA638989, 0x74E79393, 0x7FB1CECE, 0x6C1C7070, 0x0DABA6A6, 0xEDCA2727, 0x28082020, 0x48EBA3A3, 0xC1975656, 0x80820202, 0xA3DC7F7F, 0xC4965252, 0x12F9EBEB, 0xA174D5D5, 0xB38D3E3E, 0xC33FFCFC, 0x3EA49A9A, 0x5B461D1D, 0x1B071C1C, 0x3BA59E9E, 0x0CFFF3F3, 0x3FF0CFCF, 0xBF72CDCD, 0x4B175C5C, 0x52B8EAEA, 0x8F810E0E, 0x3D586565, 0xCC3CF0F0, 0x7D196464, 0x7EE59B9B, 0x91871616, 0x734E3D3D, 0x08AAA2A2, 0xC869A1A1, 0xC76AADAD, 0x85830606, 0x7AB0CACA, 0xB570C5C5, 0xF4659191, 0xB2D96B6B, 0xA7892E2E, 0x18FBE3E3, 0x47E8AFAF, 0x330F3C3C, 0x674A2D2D, 0xB071C1C1, 0x0E575959, 0xE99F7676, 0xE135D4D4, 0x661E7878, 0xB4249090, 0x360E3838, 0x265F7979, 0xEF628D8D, 0x38596161, 0x95D24747, 0x2AA08A8A, 0xB1259494, 0xAA228888, 0x8C7DF1F1, 0xD73BECEC, 0x05010404, 0xA5218484, 0x9879E1E1, 0x9B851E1E, 0x84D75353, 0x00000000, 0x5E471919, 0x0B565D5D, 0xE39D7E7E, 0x9FD04F4F, 0xBB279C9C, 0x1A534949, 0x7C4D3131, 0xEE36D8D8, 0x0A020808, 0x7BE49F9F, 0x20A28282, 0xD4C71313, 0xE8CB2323, 0xE69C7A7A, 0x42E9ABAB, 0x43BDFEFE, 0xA2882A2A, 0x9AD14B4B, 0x40410101, 0xDBC41F1F, 0xD838E0E0, 0x61B7D6D6, 0x2FA18E8E, 0x2BF4DFDF, 0x3AF1CBCB, 0xF6CD3B3B, 0x1DFAE7E7, 0xE5608585, 0x41155454, 0x25A38686, 0x60E38383, 0x16ACBABA, 0x295C7575, 0x34A69292, 0xF7996E6E, 0xE434D0D0, 0x721A6868, 0x01545555, 0x19AFB6B6, 0xDF914E4E, 0xFA32C8C8, 0xF030C0C0, 0x21F6D7D7, 0xBC8E3232, 0x75B3C6C6, 0x6FE08F8F, 0x691D7474, 0x2EF5DBDB, 0x6AE18B8B, 0x962EB8B8, 0x8A800A0A, 0xFE679999, 0xE2C92B2B, 0xE0618181, 0xC0C30303, 0x8D29A4A4, 0xAF238C8C, 0x07A9AEAE, 0x390D3434, 0x1F524D4D, 0x764F3939, 0xD36EBDBD, 0x81D65757, 0xB7D86F6F, 0xEB37DCDC, 0x51441515, 0xA6DD7B7B, 0x09FEF7F7, 0xB68C3A3A, 0x932FBCBC, 0x0F030C0C, 0x03FCFFFF, 0xC26BA9A9, 0xBA73C9C9, 0xD96CB5B5, 0xDC6DB1B1, 0x375A6D6D, 0x15504545, 0xB98F3636, 0x771B6C6C, 0x13ADBEBE, 0xDA904A4A, 0x57B9EEEE, 0xA9DE7777, 0x4CBEF2F2, 0x837EFDFD, 0x55114444, 0xBDDA6767, 0x2C5D7171, 0x45400505, 0x631F7C7C, 0x50104040, 0x325B6969, 0xB8DB6363, 0x220A2828, 0xC5C20707, 0xF531C4C4, 0xA88A2222, 0x31A79696, 0xF9CE3737, 0x977AEDED, 0x49BFF6F6, 0x992DB4B4, 0xA475D1D1, 0x90D34343, 0x5A124848, 0x58BAE2E2, 0x71E69797, 0x64B6D2D2, 0x70B2C2C2, 0xAD8B2626, 0xCD68A5A5, 0xCB955E5E, 0x624B2929, 0x3C0C3030, 0xCE945A5A, 0xAB76DDDD, 0x867FF9F9, 0xF1649595, 0x5DBBE6E6, 0x35F2C7C7, 0x2D092424, 0xD1C61717, 0xD66FB9B9, 0xDEC51B1B, 0x94861212, 0x78186060, 0x30F3C3C3, 0x897CF5F5, 0x5CEFB3B3, 0xD23AE8E8, 0xACDF7373, 0x794C3535, 0xA0208080, 0x9D78E5E5, 0x56EDBBBB, 0x235E7D7D, 0xC63EF8F8, 0x8BD45F5F, 0xE7C82F2F, 0xDD39E4E4, 0x68492121 }; static ossl_inline uint32_t rotl(uint32_t a, uint8_t n) { return (a << n) | (a >> (32 - n)); } static ossl_inline uint32_t load_u32_be(const uint8_t *b, uint32_t n) { return ((uint32_t)b[4 * n] << 24) | ((uint32_t)b[4 * n + 1] << 16) | ((uint32_t)b[4 * n + 2] << 8) | ((uint32_t)b[4 * n + 3]); } static ossl_inline void store_u32_be(uint32_t v, uint8_t *b) { b[0] = (uint8_t)(v >> 24); b[1] = (uint8_t)(v >> 16); b[2] = (uint8_t)(v >> 8); b[3] = (uint8_t)(v); } static ossl_inline uint32_t SM4_T_slow(uint32_t X) { uint32_t t = 0; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 24)]) << 24; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 16)]) << 16; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 8)]) << 8; t |= SM4_S[(uint8_t)X]; /* * L linear transform */ return t ^ rotl(t, 2) ^ rotl(t, 10) ^ rotl(t, 18) ^ rotl(t, 24); } static ossl_inline uint32_t SM4_T(uint32_t X) { return SM4_SBOX_T[(uint8_t)(X >> 24)] ^ rotl(SM4_SBOX_T[(uint8_t)(X >> 16)], 24) ^ rotl(SM4_SBOX_T[(uint8_t)(X >> 8)], 16) ^ rotl(SM4_SBOX_T[(uint8_t)X], 8); } int SM4_set_key(const uint8_t *key, SM4_KEY *ks) { /* * Family Key */ static const uint32_t FK[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; /* * Constant Key */ static const uint32_t CK[32] = { 0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269, 0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9, 0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249, 0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9, 0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229, 0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299, 0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209, 0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279 }; uint32_t K[4]; int i; K[0] = load_u32_be(key, 0) ^ FK[0]; K[1] = load_u32_be(key, 1) ^ FK[1]; K[2] = load_u32_be(key, 2) ^ FK[2]; K[3] = load_u32_be(key, 3) ^ FK[3]; for (i = 0; i != SM4_KEY_SCHEDULE; ++i) { uint32_t X = K[(i + 1) % 4] ^ K[(i + 2) % 4] ^ K[(i + 3) % 4] ^ CK[i]; uint32_t t = 0; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 24)]) << 24; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 16)]) << 16; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 8)]) << 8; t |= SM4_S[(uint8_t)X]; t = t ^ rotl(t, 13) ^ rotl(t, 23); K[i % 4] ^= t; ks->rk[i] = K[i % 4]; } return 1; } #define SM4_RNDS(k0, k1, k2, k3, F) \ do { \ B0 ^= F(B1 ^ B2 ^ B3 ^ ks->rk[k0]); \ B1 ^= F(B0 ^ B2 ^ B3 ^ ks->rk[k1]); \ B2 ^= F(B0 ^ B1 ^ B3 ^ ks->rk[k2]); \ B3 ^= F(B0 ^ B1 ^ B2 ^ ks->rk[k3]); \ } while(0) void SM4_encrypt(const uint8_t *in, uint8_t *out, const SM4_KEY *ks) { uint32_t B0 = load_u32_be(in, 0); uint32_t B1 = load_u32_be(in, 1); uint32_t B2 = load_u32_be(in, 2); uint32_t B3 = load_u32_be(in, 3); /* * Uses byte-wise sbox in the first and last rounds to provide some * protection from cache based side channels. */ SM4_RNDS( 0, 1, 2, 3, SM4_T_slow); SM4_RNDS( 4, 5, 6, 7, SM4_T); SM4_RNDS( 8, 9, 10, 11, SM4_T); SM4_RNDS(12, 13, 14, 15, SM4_T); SM4_RNDS(16, 17, 18, 19, SM4_T); SM4_RNDS(20, 21, 22, 23, SM4_T); SM4_RNDS(24, 25, 26, 27, SM4_T); SM4_RNDS(28, 29, 30, 31, SM4_T_slow); store_u32_be(B3, out); store_u32_be(B2, out + 4); store_u32_be(B1, out + 8); store_u32_be(B0, out + 12); } void SM4_decrypt(const uint8_t *in, uint8_t *out, const SM4_KEY *ks) { uint32_t B0 = load_u32_be(in, 0); uint32_t B1 = load_u32_be(in, 1); uint32_t B2 = load_u32_be(in, 2); uint32_t B3 = load_u32_be(in, 3); SM4_RNDS(31, 30, 29, 28, SM4_T_slow); SM4_RNDS(27, 26, 25, 24, SM4_T); SM4_RNDS(23, 22, 21, 20, SM4_T); SM4_RNDS(19, 18, 17, 16, SM4_T); SM4_RNDS(15, 14, 13, 12, SM4_T); SM4_RNDS(11, 10, 9, 8, SM4_T); SM4_RNDS( 7, 6, 5, 4, SM4_T); SM4_RNDS( 3, 2, 1, 0, SM4_T_slow); store_u32_be(B3, out); store_u32_be(B2, out + 4); store_u32_be(B1, out + 8); store_u32_be(B0, out + 12); } openssl-1.1.1f/crypto/sparc_arch.h000066400000000000000000000103671364063235100171530ustar00rootroot00000000000000/* * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_SPARC_ARCH_H # define OSSL_CRYPTO_SPARC_ARCH_H # define SPARCV9_TICK_PRIVILEGED (1<<0) # define SPARCV9_PREFER_FPU (1<<1) # define SPARCV9_VIS1 (1<<2) # define SPARCV9_VIS2 (1<<3)/* reserved */ # define SPARCV9_FMADD (1<<4) # define SPARCV9_BLK (1<<5)/* VIS1 block copy */ # define SPARCV9_VIS3 (1<<6) # define SPARCV9_RANDOM (1<<7) # define SPARCV9_64BIT_STACK (1<<8) # define SPARCV9_FJAESX (1<<9)/* Fujitsu SPARC64 X AES */ # define SPARCV9_FJDESX (1<<10)/* Fujitsu SPARC64 X DES, reserved */ # define SPARCV9_FJHPCACE (1<<11)/* Fujitsu HPC-ACE, reserved */ # define SPARCV9_IMA (1<<13)/* reserved */ # define SPARCV9_VIS4 (1<<14)/* reserved */ /* * OPENSSL_sparcv9cap_P[1] is copy of Compatibility Feature Register, * %asr26, SPARC-T4 and later. There is no SPARCV9_CFR bit in * OPENSSL_sparcv9cap_P[0], as %cfr copy is sufficient... */ # define CFR_AES 0x00000001/* Supports AES opcodes */ # define CFR_DES 0x00000002/* Supports DES opcodes */ # define CFR_KASUMI 0x00000004/* Supports KASUMI opcodes */ # define CFR_CAMELLIA 0x00000008/* Supports CAMELLIA opcodes */ # define CFR_MD5 0x00000010/* Supports MD5 opcodes */ # define CFR_SHA1 0x00000020/* Supports SHA1 opcodes */ # define CFR_SHA256 0x00000040/* Supports SHA256 opcodes */ # define CFR_SHA512 0x00000080/* Supports SHA512 opcodes */ # define CFR_MPMUL 0x00000100/* Supports MPMUL opcodes */ # define CFR_MONTMUL 0x00000200/* Supports MONTMUL opcodes */ # define CFR_MONTSQR 0x00000400/* Supports MONTSQR opcodes */ # define CFR_CRC32C 0x00000800/* Supports CRC32C opcodes */ # define CFR_XMPMUL 0x00001000/* Supports XMPMUL opcodes */ # define CFR_XMONTMUL 0x00002000/* Supports XMONTMUL opcodes */ # define CFR_XMONTSQR 0x00004000/* Supports XMONTSQR opcodes */ # if defined(OPENSSL_PIC) && !defined(__PIC__) # define __PIC__ # endif # if defined(__SUNPRO_C) && defined(__sparcv9) && !defined(__arch64__) # define __arch64__ # endif # define SPARC_PIC_THUNK(reg) \ .align 32; \ .Lpic_thunk: \ jmp %o7 + 8; \ add %o7, reg, reg; # define SPARC_PIC_THUNK_CALL(reg) \ sethi %hi(_GLOBAL_OFFSET_TABLE_-4), reg; \ call .Lpic_thunk; \ or reg, %lo(_GLOBAL_OFFSET_TABLE_+4), reg; # if 1 # define SPARC_SETUP_GOT_REG(reg) SPARC_PIC_THUNK_CALL(reg) # else # define SPARC_SETUP_GOT_REG(reg) \ sethi %hi(_GLOBAL_OFFSET_TABLE_-4), reg; \ call .+8; \ or reg,%lo(_GLOBAL_OFFSET_TABLE_+4), reg; \ add %o7, reg, reg # endif # if defined(__arch64__) # define SPARC_LOAD_ADDRESS(SYM, reg) \ setx SYM, %o7, reg; # define LDPTR ldx # define SIZE_T_CC %xcc # define STACK_FRAME 192 # define STACK_BIAS 2047 # define STACK_7thARG (STACK_BIAS+176) # else # define SPARC_LOAD_ADDRESS(SYM, reg) \ set SYM, reg; # define LDPTR ld # define SIZE_T_CC %icc # define STACK_FRAME 112 # define STACK_BIAS 0 # define STACK_7thARG 92 # define SPARC_LOAD_ADDRESS_LEAF(SYM,reg,tmp) SPARC_LOAD_ADDRESS(SYM,reg) # endif # ifdef __PIC__ # undef SPARC_LOAD_ADDRESS # undef SPARC_LOAD_ADDRESS_LEAF # define SPARC_LOAD_ADDRESS(SYM, reg) \ SPARC_SETUP_GOT_REG(reg); \ sethi %hi(SYM), %o7; \ or %o7, %lo(SYM), %o7; \ LDPTR [reg + %o7], reg; # endif # ifndef SPARC_LOAD_ADDRESS_LEAF # define SPARC_LOAD_ADDRESS_LEAF(SYM, reg, tmp) \ mov %o7, tmp; \ SPARC_LOAD_ADDRESS(SYM, reg) \ mov tmp, %o7; # endif #endif /* OSSL_CRYPTO_SPARC_ARCH_H */ openssl-1.1.1f/crypto/sparccpuid.S000066400000000000000000000277761364063235100171720ustar00rootroot00000000000000! Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. ! ! Licensed under the OpenSSL license (the "License"). You may not use ! this file except in compliance with the License. You can obtain a copy ! in the file LICENSE in the source distribution or at ! https://www.openssl.org/source/license.html #if defined(__SUNPRO_C) && defined(__sparcv9) # define ABI64 /* They've said -xarch=v9 at command line */ #elif defined(__GNUC__) && defined(__arch64__) # define ABI64 /* They've said -m64 at command line */ #endif #ifdef ABI64 .register %g2,#scratch .register %g3,#scratch # define FRAME -192 # define BIAS 2047 #else # define FRAME -96 # define BIAS 0 #endif .text .align 32 .global OPENSSL_wipe_cpu .type OPENSSL_wipe_cpu,#function ! Keep in mind that this does not excuse us from wiping the stack! ! This routine wipes registers, but not the backing store [which ! resides on the stack, toward lower addresses]. To facilitate for ! stack wiping I return pointer to the top of stack of the *caller*. OPENSSL_wipe_cpu: save %sp,FRAME,%sp nop #ifdef __sun #include ta ST_CLEAN_WINDOWS #else call .walk.reg.wins #endif nop call .PIC.zero.up mov .zero-(.-4),%o0 ld [%o0],%f0 ld [%o0],%f1 subcc %g0,1,%o0 ! Following is V9 "rd %ccr,%o0" instruction. However! V8 ! specification says that it ("rd %asr2,%o0" in V8 terms) does ! not cause illegal_instruction trap. It therefore can be used ! to determine if the CPU the code is executing on is V8- or ! V9-compliant, as V9 returns a distinct value of 0x99, ! "negative" and "borrow" bits set in both %icc and %xcc. .word 0x91408000 !rd %ccr,%o0 cmp %o0,0x99 bne .v8 nop ! Even though we do not use %fp register bank, ! we wipe it as memcpy might have used it... .word 0xbfa00040 !fmovd %f0,%f62 .word 0xbba00040 !... .word 0xb7a00040 .word 0xb3a00040 .word 0xafa00040 .word 0xaba00040 .word 0xa7a00040 .word 0xa3a00040 .word 0x9fa00040 .word 0x9ba00040 .word 0x97a00040 .word 0x93a00040 .word 0x8fa00040 .word 0x8ba00040 .word 0x87a00040 .word 0x83a00040 !fmovd %f0,%f32 .v8: fmovs %f1,%f31 clr %o0 fmovs %f0,%f30 clr %o1 fmovs %f1,%f29 clr %o2 fmovs %f0,%f28 clr %o3 fmovs %f1,%f27 clr %o4 fmovs %f0,%f26 clr %o5 fmovs %f1,%f25 clr %o7 fmovs %f0,%f24 clr %l0 fmovs %f1,%f23 clr %l1 fmovs %f0,%f22 clr %l2 fmovs %f1,%f21 clr %l3 fmovs %f0,%f20 clr %l4 fmovs %f1,%f19 clr %l5 fmovs %f0,%f18 clr %l6 fmovs %f1,%f17 clr %l7 fmovs %f0,%f16 clr %i0 fmovs %f1,%f15 clr %i1 fmovs %f0,%f14 clr %i2 fmovs %f1,%f13 clr %i3 fmovs %f0,%f12 clr %i4 fmovs %f1,%f11 clr %i5 fmovs %f0,%f10 clr %g1 fmovs %f1,%f9 clr %g2 fmovs %f0,%f8 clr %g3 fmovs %f1,%f7 clr %g4 fmovs %f0,%f6 clr %g5 fmovs %f1,%f5 fmovs %f0,%f4 fmovs %f1,%f3 fmovs %f0,%f2 add %fp,BIAS,%i0 ! return pointer to caller´s top of stack ret restore .zero: .long 0x0,0x0 .PIC.zero.up: retl add %o0,%o7,%o0 #ifdef DEBUG .global walk_reg_wins .type walk_reg_wins,#function walk_reg_wins: #endif .walk.reg.wins: save %sp,FRAME,%sp cmp %i7,%o7 be 2f clr %o0 cmp %o7,0 ! compiler never cleans %o7... be 1f ! could have been a leaf function... clr %o1 call .walk.reg.wins nop 1: clr %o2 clr %o3 clr %o4 clr %o5 clr %o7 clr %l0 clr %l1 clr %l2 clr %l3 clr %l4 clr %l5 clr %l6 clr %l7 add %o0,1,%i0 ! used for debugging 2: ret restore .size OPENSSL_wipe_cpu,.-OPENSSL_wipe_cpu .global OPENSSL_atomic_add .type OPENSSL_atomic_add,#function .align 32 OPENSSL_atomic_add: #ifndef ABI64 subcc %g0,1,%o2 .word 0x95408000 !rd %ccr,%o2, see comment above cmp %o2,0x99 be .v9 nop save %sp,FRAME,%sp ba .enter nop #ifdef __sun ! Note that you do not have to link with libthread to call thr_yield, ! as libc provides a stub, which is overloaded the moment you link ! with *either* libpthread or libthread... #define YIELD_CPU thr_yield #else ! applies at least to Linux and FreeBSD... Feedback expected... #define YIELD_CPU sched_yield #endif .spin: call YIELD_CPU nop .enter: ld [%i0],%i2 cmp %i2,-4096 be .spin mov -1,%i2 swap [%i0],%i2 cmp %i2,-1 be .spin add %i2,%i1,%i2 stbar st %i2,[%i0] sra %i2,%g0,%i0 ret restore .v9: #endif ld [%o0],%o2 1: add %o1,%o2,%o3 .word 0xd7e2100a !cas [%o0],%o2,%o3, compare [%o0] with %o2 and swap %o3 cmp %o2,%o3 bne 1b mov %o3,%o2 ! cas is always fetching to dest. register add %o1,%o2,%o0 ! OpenSSL expects the new value retl sra %o0,%g0,%o0 ! we return signed int, remember? .size OPENSSL_atomic_add,.-OPENSSL_atomic_add .global _sparcv9_rdtick .align 32 _sparcv9_rdtick: subcc %g0,1,%o0 .word 0x91408000 !rd %ccr,%o0 cmp %o0,0x99 bne .notick xor %o0,%o0,%o0 .word 0x91410000 !rd %tick,%o0 retl .word 0x93323020 !srlx %o0,32,%o1 .notick: retl xor %o1,%o1,%o1 .type _sparcv9_rdtick,#function .size _sparcv9_rdtick,.-_sparcv9_rdtick .global _sparcv9_vis1_probe .align 8 _sparcv9_vis1_probe: add %sp,BIAS+2,%o1 .word 0xc19a5a40 !ldda [%o1]ASI_FP16_P,%f0 retl .word 0x81b00d80 !fxor %f0,%f0,%f0 .type _sparcv9_vis1_probe,#function .size _sparcv9_vis1_probe,.-_sparcv9_vis1_probe ! Probe and instrument VIS1 instruction. Output is number of cycles it ! takes to execute rdtick and pair of VIS1 instructions. US-Tx VIS unit ! is slow (documented to be 6 cycles on T2) and the core is in-order ! single-issue, it should be possible to distinguish Tx reliably... ! Observed return values are: ! ! UltraSPARC IIe 7 ! UltraSPARC III 7 ! UltraSPARC T1 24 ! SPARC T4 65(*) ! ! (*) result has lesser to do with VIS instruction latencies, rdtick ! appears that slow, but it does the trick in sense that FP and ! VIS code paths are still slower than integer-only ones. ! ! Numbers for T2 and SPARC64 V-VII are more than welcomed. ! ! It would be possible to detect specifically US-T1 by instrumenting ! fmul8ulx16, which is emulated on T1 and as such accounts for quite ! a lot of %tick-s, couple of thousand on Linux... .global _sparcv9_vis1_instrument .align 8 _sparcv9_vis1_instrument: .word 0x81b00d80 !fxor %f0,%f0,%f0 .word 0x85b08d82 !fxor %f2,%f2,%f2 .word 0x91410000 !rd %tick,%o0 .word 0x81b00d80 !fxor %f0,%f0,%f0 .word 0x85b08d82 !fxor %f2,%f2,%f2 .word 0x93410000 !rd %tick,%o1 .word 0x81b00d80 !fxor %f0,%f0,%f0 .word 0x85b08d82 !fxor %f2,%f2,%f2 .word 0x95410000 !rd %tick,%o2 .word 0x81b00d80 !fxor %f0,%f0,%f0 .word 0x85b08d82 !fxor %f2,%f2,%f2 .word 0x97410000 !rd %tick,%o3 .word 0x81b00d80 !fxor %f0,%f0,%f0 .word 0x85b08d82 !fxor %f2,%f2,%f2 .word 0x99410000 !rd %tick,%o4 ! calculate intervals sub %o1,%o0,%o0 sub %o2,%o1,%o1 sub %o3,%o2,%o2 sub %o4,%o3,%o3 ! find minimum value cmp %o0,%o1 .word 0x38680002 !bgu,a %xcc,.+8 mov %o1,%o0 cmp %o0,%o2 .word 0x38680002 !bgu,a %xcc,.+8 mov %o2,%o0 cmp %o0,%o3 .word 0x38680002 !bgu,a %xcc,.+8 mov %o3,%o0 retl nop .type _sparcv9_vis1_instrument,#function .size _sparcv9_vis1_instrument,.-_sparcv9_vis1_instrument .global _sparcv9_vis2_probe .align 8 _sparcv9_vis2_probe: retl .word 0x81b00980 !bshuffle %f0,%f0,%f0 .type _sparcv9_vis2_probe,#function .size _sparcv9_vis2_probe,.-_sparcv9_vis2_probe .global _sparcv9_fmadd_probe .align 8 _sparcv9_fmadd_probe: .word 0x81b00d80 !fxor %f0,%f0,%f0 .word 0x85b08d82 !fxor %f2,%f2,%f2 retl .word 0x81b80440 !fmaddd %f0,%f0,%f2,%f0 .type _sparcv9_fmadd_probe,#function .size _sparcv9_fmadd_probe,.-_sparcv9_fmadd_probe .global _sparcv9_rdcfr .align 8 _sparcv9_rdcfr: retl .word 0x91468000 !rd %asr26,%o0 .type _sparcv9_rdcfr,#function .size _sparcv9_rdcfr,.-_sparcv9_rdcfr .global _sparcv9_vis3_probe .align 8 _sparcv9_vis3_probe: retl .word 0x81b022a0 !xmulx %g0,%g0,%g0 .type _sparcv9_vis3_probe,#function .size _sparcv9_vis3_probe,.-_sparcv9_vis3_probe .global _sparcv9_random .align 8 _sparcv9_random: retl .word 0x91b002a0 !random %o0 .type _sparcv9_random,#function .size _sparcv9_random,.-_sparcv9_vis3_probe .global _sparcv9_fjaesx_probe .align 8 _sparcv9_fjaesx_probe: .word 0x81b09206 !faesencx %f2,%f6,%f0 retl nop .size _sparcv9_fjaesx_probe,.-_sparcv9_fjaesx_probe .global OPENSSL_cleanse .align 32 OPENSSL_cleanse: cmp %o1,14 nop #ifdef ABI64 bgu %xcc,.Lot #else bgu .Lot #endif cmp %o1,0 bne .Little nop retl nop .Little: stb %g0,[%o0] subcc %o1,1,%o1 bnz .Little add %o0,1,%o0 retl nop .align 32 .Lot: #ifndef ABI64 subcc %g0,1,%g1 ! see above for explanation .word 0x83408000 !rd %ccr,%g1 cmp %g1,0x99 bne .v8lot nop #endif .v9lot: andcc %o0,7,%g0 bz .v9aligned nop stb %g0,[%o0] sub %o1,1,%o1 ba .v9lot add %o0,1,%o0 .align 16,0x01000000 .v9aligned: .word 0xc0720000 !stx %g0,[%o0] sub %o1,8,%o1 andcc %o1,-8,%g0 #ifdef ABI64 .word 0x126ffffd !bnz %xcc,.v9aligned #else .word 0x124ffffd !bnz %icc,.v9aligned #endif add %o0,8,%o0 cmp %o1,0 bne .Little nop retl nop #ifndef ABI64 .v8lot: andcc %o0,3,%g0 bz .v8aligned nop stb %g0,[%o0] sub %o1,1,%o1 ba .v8lot add %o0,1,%o0 nop .v8aligned: st %g0,[%o0] sub %o1,4,%o1 andcc %o1,-4,%g0 bnz .v8aligned add %o0,4,%o0 cmp %o1,0 bne .Little nop retl nop #endif .type OPENSSL_cleanse,#function .size OPENSSL_cleanse,.-OPENSSL_cleanse .global CRYPTO_memcmp .align 16 CRYPTO_memcmp: cmp %o2,0 #ifdef ABI64 beq,pn %xcc,.Lno_data #else beq .Lno_data #endif xor %g1,%g1,%g1 nop .Loop_cmp: ldub [%o0],%o3 add %o0,1,%o0 ldub [%o1],%o4 add %o1,1,%o1 subcc %o2,1,%o2 xor %o3,%o4,%o4 #ifdef ABI64 bnz %xcc,.Loop_cmp #else bnz .Loop_cmp #endif or %o4,%g1,%g1 sub %g0,%g1,%g1 srl %g1,31,%g1 .Lno_data: retl mov %g1,%o0 .type CRYPTO_memcmp,#function .size CRYPTO_memcmp,.-CRYPTO_memcmp .global _sparcv9_vis1_instrument_bus .align 8 _sparcv9_vis1_instrument_bus: mov %o1,%o3 ! save cnt .word 0x99410000 !rd %tick,%o4 ! tick mov %o4,%o5 ! lasttick = tick set 0,%g4 ! diff andn %o0,63,%g1 .word 0xc1985e00 !ldda [%g1]0xf0,%f0 ! block load .word 0x8143e040 !membar #Sync .word 0xc1b85c00 !stda %f0,[%g1]0xe0 ! block store and commit .word 0x8143e040 !membar #Sync ld [%o0],%o4 add %o4,%g4,%g4 .word 0xc9e2100c !cas [%o0],%o4,%g4 .Loop: .word 0x99410000 !rd %tick,%o4 sub %o4,%o5,%g4 ! diff=tick-lasttick mov %o4,%o5 ! lasttick=tick andn %o0,63,%g1 .word 0xc1985e00 !ldda [%g1]0xf0,%f0 ! block load .word 0x8143e040 !membar #Sync .word 0xc1b85c00 !stda %f0,[%g1]0xe0 ! block store and commit .word 0x8143e040 !membar #Sync ld [%o0],%o4 add %o4,%g4,%g4 .word 0xc9e2100c !cas [%o0],%o4,%g4 subcc %o1,1,%o1 ! --$cnt bnz .Loop add %o0,4,%o0 ! ++$out retl mov %o3,%o0 .type _sparcv9_vis1_instrument_bus,#function .size _sparcv9_vis1_instrument_bus,.-_sparcv9_vis1_instrument_bus .global _sparcv9_vis1_instrument_bus2 .align 8 _sparcv9_vis1_instrument_bus2: mov %o1,%o3 ! save cnt sll %o1,2,%o1 ! cnt*=4 .word 0x99410000 !rd %tick,%o4 ! tick mov %o4,%o5 ! lasttick = tick set 0,%g4 ! diff andn %o0,63,%g1 .word 0xc1985e00 !ldda [%g1]0xf0,%f0 ! block load .word 0x8143e040 !membar #Sync .word 0xc1b85c00 !stda %f0,[%g1]0xe0 ! block store and commit .word 0x8143e040 !membar #Sync ld [%o0],%o4 add %o4,%g4,%g4 .word 0xc9e2100c !cas [%o0],%o4,%g4 .word 0x99410000 !rd %tick,%o4 ! tick sub %o4,%o5,%g4 ! diff=tick-lasttick mov %o4,%o5 ! lasttick=tick mov %g4,%g5 ! lastdiff=diff .Loop2: andn %o0,63,%g1 .word 0xc1985e00 !ldda [%g1]0xf0,%f0 ! block load .word 0x8143e040 !membar #Sync .word 0xc1b85c00 !stda %f0,[%g1]0xe0 ! block store and commit .word 0x8143e040 !membar #Sync ld [%o0],%o4 add %o4,%g4,%g4 .word 0xc9e2100c !cas [%o0],%o4,%g4 subcc %o2,1,%o2 ! --max bz .Ldone2 nop .word 0x99410000 !rd %tick,%o4 ! tick sub %o4,%o5,%g4 ! diff=tick-lasttick mov %o4,%o5 ! lasttick=tick cmp %g4,%g5 mov %g4,%g5 ! lastdiff=diff .word 0x83408000 !rd %ccr,%g1 and %g1,4,%g1 ! isolate zero flag xor %g1,4,%g1 ! flip zero flag subcc %o1,%g1,%o1 ! conditional --$cnt bnz .Loop2 add %o0,%g1,%o0 ! conditional ++$out .Ldone2: srl %o1,2,%o1 retl sub %o3,%o1,%o0 .type _sparcv9_vis1_instrument_bus2,#function .size _sparcv9_vis1_instrument_bus2,.-_sparcv9_vis1_instrument_bus2 .section ".init",#alloc,#execinstr call OPENSSL_cpuid_setup nop openssl-1.1.1f/crypto/sparcv9cap.c000066400000000000000000000247721364063235100171210ustar00rootroot00000000000000/* * Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "sparc_arch.h" #if defined(__GNUC__) && defined(__linux) __attribute__ ((visibility("hidden"))) #endif unsigned int OPENSSL_sparcv9cap_P[2] = { SPARCV9_TICK_PRIVILEGED, 0 }; int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) { int bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); int bn_mul_mont_fpu(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); int bn_mul_mont_int(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); if (!(num & 1) && num >= 6) { if ((num & 15) == 0 && num <= 64 && (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) == (CFR_MONTMUL | CFR_MONTSQR)) { typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0); int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0); static const bn_mul_mont_f funcs[4] = { bn_mul_mont_t4_8, bn_mul_mont_t4_16, bn_mul_mont_t4_24, bn_mul_mont_t4_32 }; bn_mul_mont_f worker = funcs[num / 16 - 1]; if ((*worker) (rp, ap, bp, np, n0)) return 1; /* retry once and fall back */ if ((*worker) (rp, ap, bp, np, n0)) return 1; return bn_mul_mont_vis3(rp, ap, bp, np, n0, num); } if ((OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3)) return bn_mul_mont_vis3(rp, ap, bp, np, n0, num); else if (num >= 8 && /* * bn_mul_mont_fpu doesn't use FMADD, we just use the * flag to detect when FPU path is preferable in cases * when current heuristics is unreliable. [it works * out because FMADD-capable processors where FPU * code path is undesirable are also VIS3-capable and * VIS3 code path takes precedence.] */ ( (OPENSSL_sparcv9cap_P[0] & SPARCV9_FMADD) || (OPENSSL_sparcv9cap_P[0] & (SPARCV9_PREFER_FPU | SPARCV9_VIS1)) == (SPARCV9_PREFER_FPU | SPARCV9_VIS1) )) return bn_mul_mont_fpu(rp, ap, bp, np, n0, num); } return bn_mul_mont_int(rp, ap, bp, np, n0, num); } unsigned long _sparcv9_rdtick(void); void _sparcv9_vis1_probe(void); unsigned long _sparcv9_vis1_instrument(void); void _sparcv9_vis2_probe(void); void _sparcv9_fmadd_probe(void); unsigned long _sparcv9_rdcfr(void); void _sparcv9_vis3_probe(void); void _sparcv9_fjaesx_probe(void); unsigned long _sparcv9_random(void); size_t _sparcv9_vis1_instrument_bus(unsigned int *, size_t); size_t _sparcv9_vis1_instrument_bus2(unsigned int *, size_t, size_t); uint32_t OPENSSL_rdtsc(void) { if (OPENSSL_sparcv9cap_P[0] & SPARCV9_TICK_PRIVILEGED) #if defined(__sun) && defined(__SVR4) return gethrtime(); #else return 0; #endif else return _sparcv9_rdtick(); } size_t OPENSSL_instrument_bus(unsigned int *out, size_t cnt) { if ((OPENSSL_sparcv9cap_P[0] & (SPARCV9_TICK_PRIVILEGED | SPARCV9_BLK)) == SPARCV9_BLK) return _sparcv9_vis1_instrument_bus(out, cnt); else return 0; } size_t OPENSSL_instrument_bus2(unsigned int *out, size_t cnt, size_t max) { if ((OPENSSL_sparcv9cap_P[0] & (SPARCV9_TICK_PRIVILEGED | SPARCV9_BLK)) == SPARCV9_BLK) return _sparcv9_vis1_instrument_bus2(out, cnt, max); else return 0; } static sigjmp_buf common_jmp; static void common_handler(int sig) { siglongjmp(common_jmp, sig); } #if defined(__sun) && defined(__SVR4) # if defined(__GNUC__) && __GNUC__>=2 extern unsigned int getisax(unsigned int vec[], unsigned int sz) __attribute__ ((weak)); # elif defined(__SUNPRO_C) #pragma weak getisax extern unsigned int getisax(unsigned int vec[], unsigned int sz); # else static unsigned int (*getisax) (unsigned int vec[], unsigned int sz) = NULL; # endif #endif void OPENSSL_cpuid_setup(void) { char *e; struct sigaction common_act, ill_oact, bus_oact; sigset_t all_masked, oset; static int trigger = 0; if (trigger) return; trigger = 1; if ((e = getenv("OPENSSL_sparcv9cap"))) { OPENSSL_sparcv9cap_P[0] = strtoul(e, NULL, 0); if ((e = strchr(e, ':'))) OPENSSL_sparcv9cap_P[1] = strtoul(e + 1, NULL, 0); return; } #if defined(__sun) && defined(__SVR4) if (getisax != NULL) { unsigned int vec[2] = { 0, 0 }; if (getisax (vec,2)) { if (vec[0]&0x00020) OPENSSL_sparcv9cap_P[0] |= SPARCV9_VIS1; if (vec[0]&0x00040) OPENSSL_sparcv9cap_P[0] |= SPARCV9_VIS2; if (vec[0]&0x00080) OPENSSL_sparcv9cap_P[0] |= SPARCV9_BLK; if (vec[0]&0x00100) OPENSSL_sparcv9cap_P[0] |= SPARCV9_FMADD; if (vec[0]&0x00400) OPENSSL_sparcv9cap_P[0] |= SPARCV9_VIS3; if (vec[0]&0x01000) OPENSSL_sparcv9cap_P[0] |= SPARCV9_FJHPCACE; if (vec[0]&0x02000) OPENSSL_sparcv9cap_P[0] |= SPARCV9_FJDESX; if (vec[0]&0x08000) OPENSSL_sparcv9cap_P[0] |= SPARCV9_IMA; if (vec[0]&0x10000) OPENSSL_sparcv9cap_P[0] |= SPARCV9_FJAESX; if (vec[1]&0x00008) OPENSSL_sparcv9cap_P[0] |= SPARCV9_VIS4; /* reconstruct %cfr copy */ OPENSSL_sparcv9cap_P[1] = (vec[0]>>17)&0x3ff; OPENSSL_sparcv9cap_P[1] |= (OPENSSL_sparcv9cap_P[1]&CFR_MONTMUL)<<1; if (vec[0]&0x20000000) OPENSSL_sparcv9cap_P[1] |= CFR_CRC32C; if (vec[1]&0x00000020) OPENSSL_sparcv9cap_P[1] |= CFR_XMPMUL; if (vec[1]&0x00000040) OPENSSL_sparcv9cap_P[1] |= CFR_XMONTMUL|CFR_XMONTSQR; /* Some heuristics */ /* all known VIS2-capable CPUs have unprivileged tick counter */ if (OPENSSL_sparcv9cap_P[0]&SPARCV9_VIS2) OPENSSL_sparcv9cap_P[0] &= ~SPARCV9_TICK_PRIVILEGED; OPENSSL_sparcv9cap_P[0] |= SPARCV9_PREFER_FPU; /* detect UltraSPARC-Tx, see sparccpud.S for details... */ if ((OPENSSL_sparcv9cap_P[0]&SPARCV9_VIS1) && _sparcv9_vis1_instrument() >= 12) OPENSSL_sparcv9cap_P[0] &= ~(SPARCV9_VIS1 | SPARCV9_PREFER_FPU); } if (sizeof(size_t) == 8) OPENSSL_sparcv9cap_P[0] |= SPARCV9_64BIT_STACK; return; } #endif /* Initial value, fits UltraSPARC-I&II... */ OPENSSL_sparcv9cap_P[0] = SPARCV9_PREFER_FPU | SPARCV9_TICK_PRIVILEGED; sigfillset(&all_masked); sigdelset(&all_masked, SIGILL); sigdelset(&all_masked, SIGTRAP); # ifdef SIGEMT sigdelset(&all_masked, SIGEMT); # endif sigdelset(&all_masked, SIGFPE); sigdelset(&all_masked, SIGBUS); sigdelset(&all_masked, SIGSEGV); sigprocmask(SIG_SETMASK, &all_masked, &oset); memset(&common_act, 0, sizeof(common_act)); common_act.sa_handler = common_handler; common_act.sa_mask = all_masked; sigaction(SIGILL, &common_act, &ill_oact); sigaction(SIGBUS, &common_act, &bus_oact); /* T1 fails 16-bit ldda [on * Linux] */ if (sigsetjmp(common_jmp, 1) == 0) { _sparcv9_rdtick(); OPENSSL_sparcv9cap_P[0] &= ~SPARCV9_TICK_PRIVILEGED; } if (sigsetjmp(common_jmp, 1) == 0) { _sparcv9_vis1_probe(); OPENSSL_sparcv9cap_P[0] |= SPARCV9_VIS1 | SPARCV9_BLK; /* detect UltraSPARC-Tx, see sparccpud.S for details... */ if (_sparcv9_vis1_instrument() >= 12) OPENSSL_sparcv9cap_P[0] &= ~(SPARCV9_VIS1 | SPARCV9_PREFER_FPU); else { _sparcv9_vis2_probe(); OPENSSL_sparcv9cap_P[0] |= SPARCV9_VIS2; } } if (sigsetjmp(common_jmp, 1) == 0) { _sparcv9_fmadd_probe(); OPENSSL_sparcv9cap_P[0] |= SPARCV9_FMADD; } /* * VIS3 flag is tested independently from VIS1, unlike VIS2 that is, * because VIS3 defines even integer instructions. */ if (sigsetjmp(common_jmp, 1) == 0) { _sparcv9_vis3_probe(); OPENSSL_sparcv9cap_P[0] |= SPARCV9_VIS3; } if (sigsetjmp(common_jmp, 1) == 0) { _sparcv9_fjaesx_probe(); OPENSSL_sparcv9cap_P[0] |= SPARCV9_FJAESX; } /* * In wait for better solution _sparcv9_rdcfr is masked by * VIS3 flag, because it goes to uninterruptible endless * loop on UltraSPARC II running Solaris. Things might be * different on Linux... */ if ((OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) && sigsetjmp(common_jmp, 1) == 0) { OPENSSL_sparcv9cap_P[1] = (unsigned int)_sparcv9_rdcfr(); } sigaction(SIGBUS, &bus_oact, NULL); sigaction(SIGILL, &ill_oact, NULL); sigprocmask(SIG_SETMASK, &oset, NULL); if (sizeof(size_t) == 8) OPENSSL_sparcv9cap_P[0] |= SPARCV9_64BIT_STACK; # ifdef __linux else { int ret = syscall(340); if (ret >= 0 && ret & 1) OPENSSL_sparcv9cap_P[0] |= SPARCV9_64BIT_STACK; } # endif } openssl-1.1.1f/crypto/srp/000077500000000000000000000000001364063235100154725ustar00rootroot00000000000000openssl-1.1.1f/crypto/srp/build.info000066400000000000000000000001011364063235100174360ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=srp_lib.c srp_vfy.c openssl-1.1.1f/crypto/srp/srp_lib.c000066400000000000000000000164721364063235100173020ustar00rootroot00000000000000/* * Copyright 2004-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2004, EdelKey Project. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Christophe Renou and Peter Sylvester, * for the EdelKey project. */ #ifndef OPENSSL_NO_SRP # include "internal/cryptlib.h" # include # include # include # include "crypto/bn_srp.h" /* calculate = SHA1(PAD(x) || PAD(y)) */ static BIGNUM *srp_Calc_xy(const BIGNUM *x, const BIGNUM *y, const BIGNUM *N) { unsigned char digest[SHA_DIGEST_LENGTH]; unsigned char *tmp = NULL; int numN = BN_num_bytes(N); BIGNUM *res = NULL; if (x != N && BN_ucmp(x, N) >= 0) return NULL; if (y != N && BN_ucmp(y, N) >= 0) return NULL; if ((tmp = OPENSSL_malloc(numN * 2)) == NULL) goto err; if (BN_bn2binpad(x, tmp, numN) < 0 || BN_bn2binpad(y, tmp + numN, numN) < 0 || !EVP_Digest(tmp, numN * 2, digest, NULL, EVP_sha1(), NULL)) goto err; res = BN_bin2bn(digest, sizeof(digest), NULL); err: OPENSSL_free(tmp); return res; } static BIGNUM *srp_Calc_k(const BIGNUM *N, const BIGNUM *g) { /* k = SHA1(N | PAD(g)) -- tls-srp draft 8 */ return srp_Calc_xy(N, g, N); } BIGNUM *SRP_Calc_u(const BIGNUM *A, const BIGNUM *B, const BIGNUM *N) { /* k = SHA1(PAD(A) || PAD(B) ) -- tls-srp draft 8 */ return srp_Calc_xy(A, B, N); } BIGNUM *SRP_Calc_server_key(const BIGNUM *A, const BIGNUM *v, const BIGNUM *u, const BIGNUM *b, const BIGNUM *N) { BIGNUM *tmp = NULL, *S = NULL; BN_CTX *bn_ctx; if (u == NULL || A == NULL || v == NULL || b == NULL || N == NULL) return NULL; if ((bn_ctx = BN_CTX_new()) == NULL || (tmp = BN_new()) == NULL) goto err; /* S = (A*v**u) ** b */ if (!BN_mod_exp(tmp, v, u, N, bn_ctx)) goto err; if (!BN_mod_mul(tmp, A, tmp, N, bn_ctx)) goto err; S = BN_new(); if (S != NULL && !BN_mod_exp(S, tmp, b, N, bn_ctx)) { BN_free(S); S = NULL; } err: BN_CTX_free(bn_ctx); BN_clear_free(tmp); return S; } BIGNUM *SRP_Calc_B(const BIGNUM *b, const BIGNUM *N, const BIGNUM *g, const BIGNUM *v) { BIGNUM *kv = NULL, *gb = NULL; BIGNUM *B = NULL, *k = NULL; BN_CTX *bn_ctx; if (b == NULL || N == NULL || g == NULL || v == NULL || (bn_ctx = BN_CTX_new()) == NULL) return NULL; if ((kv = BN_new()) == NULL || (gb = BN_new()) == NULL || (B = BN_new()) == NULL) goto err; /* B = g**b + k*v */ if (!BN_mod_exp(gb, g, b, N, bn_ctx) || (k = srp_Calc_k(N, g)) == NULL || !BN_mod_mul(kv, v, k, N, bn_ctx) || !BN_mod_add(B, gb, kv, N, bn_ctx)) { BN_free(B); B = NULL; } err: BN_CTX_free(bn_ctx); BN_clear_free(kv); BN_clear_free(gb); BN_free(k); return B; } BIGNUM *SRP_Calc_x(const BIGNUM *s, const char *user, const char *pass) { unsigned char dig[SHA_DIGEST_LENGTH]; EVP_MD_CTX *ctxt; unsigned char *cs = NULL; BIGNUM *res = NULL; if ((s == NULL) || (user == NULL) || (pass == NULL)) return NULL; ctxt = EVP_MD_CTX_new(); if (ctxt == NULL) return NULL; if ((cs = OPENSSL_malloc(BN_num_bytes(s))) == NULL) goto err; if (!EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL) || !EVP_DigestUpdate(ctxt, user, strlen(user)) || !EVP_DigestUpdate(ctxt, ":", 1) || !EVP_DigestUpdate(ctxt, pass, strlen(pass)) || !EVP_DigestFinal_ex(ctxt, dig, NULL) || !EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL)) goto err; if (BN_bn2bin(s, cs) < 0) goto err; if (!EVP_DigestUpdate(ctxt, cs, BN_num_bytes(s))) goto err; if (!EVP_DigestUpdate(ctxt, dig, sizeof(dig)) || !EVP_DigestFinal_ex(ctxt, dig, NULL)) goto err; res = BN_bin2bn(dig, sizeof(dig), NULL); err: OPENSSL_free(cs); EVP_MD_CTX_free(ctxt); return res; } BIGNUM *SRP_Calc_A(const BIGNUM *a, const BIGNUM *N, const BIGNUM *g) { BN_CTX *bn_ctx; BIGNUM *A = NULL; if (a == NULL || N == NULL || g == NULL || (bn_ctx = BN_CTX_new()) == NULL) return NULL; if ((A = BN_new()) != NULL && !BN_mod_exp(A, g, a, N, bn_ctx)) { BN_free(A); A = NULL; } BN_CTX_free(bn_ctx); return A; } BIGNUM *SRP_Calc_client_key(const BIGNUM *N, const BIGNUM *B, const BIGNUM *g, const BIGNUM *x, const BIGNUM *a, const BIGNUM *u) { BIGNUM *tmp = NULL, *tmp2 = NULL, *tmp3 = NULL, *k = NULL, *K = NULL; BN_CTX *bn_ctx; if (u == NULL || B == NULL || N == NULL || g == NULL || x == NULL || a == NULL || (bn_ctx = BN_CTX_new()) == NULL) return NULL; if ((tmp = BN_new()) == NULL || (tmp2 = BN_new()) == NULL || (tmp3 = BN_new()) == NULL) goto err; if (!BN_mod_exp(tmp, g, x, N, bn_ctx)) goto err; if ((k = srp_Calc_k(N, g)) == NULL) goto err; if (!BN_mod_mul(tmp2, tmp, k, N, bn_ctx)) goto err; if (!BN_mod_sub(tmp, B, tmp2, N, bn_ctx)) goto err; if (!BN_mul(tmp3, u, x, bn_ctx)) goto err; if (!BN_add(tmp2, a, tmp3)) goto err; K = BN_new(); if (K != NULL && !BN_mod_exp(K, tmp, tmp2, N, bn_ctx)) { BN_free(K); K = NULL; } err: BN_CTX_free(bn_ctx); BN_clear_free(tmp); BN_clear_free(tmp2); BN_clear_free(tmp3); BN_free(k); return K; } int SRP_Verify_B_mod_N(const BIGNUM *B, const BIGNUM *N) { BIGNUM *r; BN_CTX *bn_ctx; int ret = 0; if (B == NULL || N == NULL || (bn_ctx = BN_CTX_new()) == NULL) return 0; if ((r = BN_new()) == NULL) goto err; /* Checks if B % N == 0 */ if (!BN_nnmod(r, B, N, bn_ctx)) goto err; ret = !BN_is_zero(r); err: BN_CTX_free(bn_ctx); BN_free(r); return ret; } int SRP_Verify_A_mod_N(const BIGNUM *A, const BIGNUM *N) { /* Checks if A % N == 0 */ return SRP_Verify_B_mod_N(A, N); } static SRP_gN knowngN[] = { {"8192", &bn_generator_19, &bn_group_8192}, {"6144", &bn_generator_5, &bn_group_6144}, {"4096", &bn_generator_5, &bn_group_4096}, {"3072", &bn_generator_5, &bn_group_3072}, {"2048", &bn_generator_2, &bn_group_2048}, {"1536", &bn_generator_2, &bn_group_1536}, {"1024", &bn_generator_2, &bn_group_1024}, }; # define KNOWN_GN_NUMBER sizeof(knowngN) / sizeof(SRP_gN) /* * Check if G and N are known parameters. The values have been generated * from the ietf-tls-srp draft version 8 */ char *SRP_check_known_gN_param(const BIGNUM *g, const BIGNUM *N) { size_t i; if ((g == NULL) || (N == NULL)) return 0; for (i = 0; i < KNOWN_GN_NUMBER; i++) { if (BN_cmp(knowngN[i].g, g) == 0 && BN_cmp(knowngN[i].N, N) == 0) return knowngN[i].id; } return NULL; } SRP_gN *SRP_get_default_gN(const char *id) { size_t i; if (id == NULL) return knowngN; for (i = 0; i < KNOWN_GN_NUMBER; i++) { if (strcmp(knowngN[i].id, id) == 0) return knowngN + i; } return NULL; } #endif openssl-1.1.1f/crypto/srp/srp_vfy.c000066400000000000000000000470321364063235100173340ustar00rootroot00000000000000/* * Copyright 2004-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2004, EdelKey Project. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Christophe Renou and Peter Sylvester, * for the EdelKey project. */ #ifndef OPENSSL_NO_SRP # include "internal/cryptlib.h" # include "crypto/evp.h" # include # include # include # include # include # include # include # define SRP_RANDOM_SALT_LEN 20 # define MAX_LEN 2500 /* * Note that SRP uses its own variant of base 64 encoding. A different base64 * alphabet is used and no padding '=' characters are added. Instead we pad to * the front with 0 bytes and subsequently strip off leading encoded padding. * This variant is used for compatibility with other SRP implementations - * notably libsrp, but also others. It is also required for backwards * compatibility in order to load verifier files from other OpenSSL versions. */ /* * Convert a base64 string into raw byte array representation. * Returns the length of the decoded data, or -1 on error. */ static int t_fromb64(unsigned char *a, size_t alen, const char *src) { EVP_ENCODE_CTX *ctx; int outl = 0, outl2 = 0; size_t size, padsize; const unsigned char *pad = (const unsigned char *)"00"; while (*src == ' ' || *src == '\t' || *src == '\n') ++src; size = strlen(src); padsize = 4 - (size & 3); padsize &= 3; /* Four bytes in src become three bytes output. */ if (size > INT_MAX || ((size + padsize) / 4) * 3 > alen) return -1; ctx = EVP_ENCODE_CTX_new(); if (ctx == NULL) return -1; /* * This should never occur because 1 byte of data always requires 2 bytes of * encoding, i.e. * 0 bytes unencoded = 0 bytes encoded * 1 byte unencoded = 2 bytes encoded * 2 bytes unencoded = 3 bytes encoded * 3 bytes unencoded = 4 bytes encoded * 4 bytes unencoded = 6 bytes encoded * etc */ if (padsize == 3) { outl = -1; goto err; } /* Valid padsize values are now 0, 1 or 2 */ EVP_DecodeInit(ctx); evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_USE_SRP_ALPHABET); /* Add any encoded padding that is required */ if (padsize != 0 && EVP_DecodeUpdate(ctx, a, &outl, pad, padsize) < 0) { outl = -1; goto err; } if (EVP_DecodeUpdate(ctx, a, &outl2, (const unsigned char *)src, size) < 0) { outl = -1; goto err; } outl += outl2; EVP_DecodeFinal(ctx, a + outl, &outl2); outl += outl2; /* Strip off the leading padding */ if (padsize != 0) { if ((int)padsize >= outl) { outl = -1; goto err; } /* * If we added 1 byte of padding prior to encoding then we have 2 bytes * of "real" data which gets spread across 4 encoded bytes like this: * (6 bits pad)(2 bits pad | 4 bits data)(6 bits data)(6 bits data) * So 1 byte of pre-encoding padding results in 1 full byte of encoded * padding. * If we added 2 bytes of padding prior to encoding this gets encoded * as: * (6 bits pad)(6 bits pad)(4 bits pad | 2 bits data)(6 bits data) * So 2 bytes of pre-encoding padding results in 2 full bytes of encoded * padding, i.e. we have to strip the same number of bytes of padding * from the encoded data as we added to the pre-encoded data. */ memmove(a, a + padsize, outl - padsize); outl -= padsize; } err: EVP_ENCODE_CTX_free(ctx); return outl; } /* * Convert a raw byte string into a null-terminated base64 ASCII string. * Returns 1 on success or 0 on error. */ static int t_tob64(char *dst, const unsigned char *src, int size) { EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); int outl = 0, outl2 = 0; unsigned char pad[2] = {0, 0}; size_t leadz = 0; if (ctx == NULL) return 0; EVP_EncodeInit(ctx); evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_NO_NEWLINES | EVP_ENCODE_CTX_USE_SRP_ALPHABET); /* * We pad at the front with zero bytes until the length is a multiple of 3 * so that EVP_EncodeUpdate/EVP_EncodeFinal does not add any of its own "=" * padding */ leadz = 3 - (size % 3); if (leadz != 3 && !EVP_EncodeUpdate(ctx, (unsigned char *)dst, &outl, pad, leadz)) { EVP_ENCODE_CTX_free(ctx); return 0; } if (!EVP_EncodeUpdate(ctx, (unsigned char *)dst + outl, &outl2, src, size)) { EVP_ENCODE_CTX_free(ctx); return 0; } outl += outl2; EVP_EncodeFinal(ctx, (unsigned char *)dst + outl, &outl2); outl += outl2; /* Strip the encoded padding at the front */ if (leadz != 3) { memmove(dst, dst + leadz, outl - leadz); dst[outl - leadz] = '\0'; } EVP_ENCODE_CTX_free(ctx); return 1; } void SRP_user_pwd_free(SRP_user_pwd *user_pwd) { if (user_pwd == NULL) return; BN_free(user_pwd->s); BN_clear_free(user_pwd->v); OPENSSL_free(user_pwd->id); OPENSSL_free(user_pwd->info); OPENSSL_free(user_pwd); } static SRP_user_pwd *SRP_user_pwd_new(void) { SRP_user_pwd *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { /* SRPerr(SRP_F_SRP_USER_PWD_NEW, ERR_R_MALLOC_FAILURE); */ /*ckerr_ignore*/ return NULL; } ret->N = NULL; ret->g = NULL; ret->s = NULL; ret->v = NULL; ret->id = NULL; ret->info = NULL; return ret; } static void SRP_user_pwd_set_gN(SRP_user_pwd *vinfo, const BIGNUM *g, const BIGNUM *N) { vinfo->N = N; vinfo->g = g; } static int SRP_user_pwd_set_ids(SRP_user_pwd *vinfo, const char *id, const char *info) { if (id != NULL && NULL == (vinfo->id = OPENSSL_strdup(id))) return 0; return (info == NULL || NULL != (vinfo->info = OPENSSL_strdup(info))); } static int SRP_user_pwd_set_sv(SRP_user_pwd *vinfo, const char *s, const char *v) { unsigned char tmp[MAX_LEN]; int len; vinfo->v = NULL; vinfo->s = NULL; len = t_fromb64(tmp, sizeof(tmp), v); if (len < 0) return 0; if (NULL == (vinfo->v = BN_bin2bn(tmp, len, NULL))) return 0; len = t_fromb64(tmp, sizeof(tmp), s); if (len < 0) goto err; vinfo->s = BN_bin2bn(tmp, len, NULL); if (vinfo->s == NULL) goto err; return 1; err: BN_free(vinfo->v); vinfo->v = NULL; return 0; } static int SRP_user_pwd_set_sv_BN(SRP_user_pwd *vinfo, BIGNUM *s, BIGNUM *v) { vinfo->v = v; vinfo->s = s; return (vinfo->s != NULL && vinfo->v != NULL); } static SRP_user_pwd *srp_user_pwd_dup(SRP_user_pwd *src) { SRP_user_pwd *ret; if (src == NULL) return NULL; if ((ret = SRP_user_pwd_new()) == NULL) return NULL; SRP_user_pwd_set_gN(ret, src->g, src->N); if (!SRP_user_pwd_set_ids(ret, src->id, src->info) || !SRP_user_pwd_set_sv_BN(ret, BN_dup(src->s), BN_dup(src->v))) { SRP_user_pwd_free(ret); return NULL; } return ret; } SRP_VBASE *SRP_VBASE_new(char *seed_key) { SRP_VBASE *vb = OPENSSL_malloc(sizeof(*vb)); if (vb == NULL) return NULL; if ((vb->users_pwd = sk_SRP_user_pwd_new_null()) == NULL || (vb->gN_cache = sk_SRP_gN_cache_new_null()) == NULL) { OPENSSL_free(vb); return NULL; } vb->default_g = NULL; vb->default_N = NULL; vb->seed_key = NULL; if ((seed_key != NULL) && (vb->seed_key = OPENSSL_strdup(seed_key)) == NULL) { sk_SRP_user_pwd_free(vb->users_pwd); sk_SRP_gN_cache_free(vb->gN_cache); OPENSSL_free(vb); return NULL; } return vb; } void SRP_VBASE_free(SRP_VBASE *vb) { if (!vb) return; sk_SRP_user_pwd_pop_free(vb->users_pwd, SRP_user_pwd_free); sk_SRP_gN_cache_free(vb->gN_cache); OPENSSL_free(vb->seed_key); OPENSSL_free(vb); } static SRP_gN_cache *SRP_gN_new_init(const char *ch) { unsigned char tmp[MAX_LEN]; int len; SRP_gN_cache *newgN = OPENSSL_malloc(sizeof(*newgN)); if (newgN == NULL) return NULL; len = t_fromb64(tmp, sizeof(tmp), ch); if (len < 0) goto err; if ((newgN->b64_bn = OPENSSL_strdup(ch)) == NULL) goto err; if ((newgN->bn = BN_bin2bn(tmp, len, NULL))) return newgN; OPENSSL_free(newgN->b64_bn); err: OPENSSL_free(newgN); return NULL; } static void SRP_gN_free(SRP_gN_cache *gN_cache) { if (gN_cache == NULL) return; OPENSSL_free(gN_cache->b64_bn); BN_free(gN_cache->bn); OPENSSL_free(gN_cache); } static SRP_gN *SRP_get_gN_by_id(const char *id, STACK_OF(SRP_gN) *gN_tab) { int i; SRP_gN *gN; if (gN_tab != NULL) for (i = 0; i < sk_SRP_gN_num(gN_tab); i++) { gN = sk_SRP_gN_value(gN_tab, i); if (gN && (id == NULL || strcmp(gN->id, id) == 0)) return gN; } return SRP_get_default_gN(id); } static BIGNUM *SRP_gN_place_bn(STACK_OF(SRP_gN_cache) *gN_cache, char *ch) { int i; if (gN_cache == NULL) return NULL; /* search if we have already one... */ for (i = 0; i < sk_SRP_gN_cache_num(gN_cache); i++) { SRP_gN_cache *cache = sk_SRP_gN_cache_value(gN_cache, i); if (strcmp(cache->b64_bn, ch) == 0) return cache->bn; } { /* it is the first time that we find it */ SRP_gN_cache *newgN = SRP_gN_new_init(ch); if (newgN) { if (sk_SRP_gN_cache_insert(gN_cache, newgN, 0) > 0) return newgN->bn; SRP_gN_free(newgN); } } return NULL; } /* * this function parses verifier file. Format is: * string(index):base64(N):base64(g):0 * string(username):base64(v):base64(salt):int(index) */ int SRP_VBASE_init(SRP_VBASE *vb, char *verifier_file) { int error_code; STACK_OF(SRP_gN) *SRP_gN_tab = sk_SRP_gN_new_null(); char *last_index = NULL; int i; char **pp; SRP_gN *gN = NULL; SRP_user_pwd *user_pwd = NULL; TXT_DB *tmpdb = NULL; BIO *in = BIO_new(BIO_s_file()); error_code = SRP_ERR_OPEN_FILE; if (in == NULL || BIO_read_filename(in, verifier_file) <= 0) goto err; error_code = SRP_ERR_VBASE_INCOMPLETE_FILE; if ((tmpdb = TXT_DB_read(in, DB_NUMBER)) == NULL) goto err; error_code = SRP_ERR_MEMORY; if (vb->seed_key) { last_index = SRP_get_default_gN(NULL)->id; } for (i = 0; i < sk_OPENSSL_PSTRING_num(tmpdb->data); i++) { pp = sk_OPENSSL_PSTRING_value(tmpdb->data, i); if (pp[DB_srptype][0] == DB_SRP_INDEX) { /* * we add this couple in the internal Stack */ if ((gN = OPENSSL_malloc(sizeof(*gN))) == NULL) goto err; if ((gN->id = OPENSSL_strdup(pp[DB_srpid])) == NULL || (gN->N = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpverifier])) == NULL || (gN->g = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpsalt])) == NULL || sk_SRP_gN_insert(SRP_gN_tab, gN, 0) == 0) goto err; gN = NULL; if (vb->seed_key != NULL) { last_index = pp[DB_srpid]; } } else if (pp[DB_srptype][0] == DB_SRP_VALID) { /* it is a user .... */ const SRP_gN *lgN; if ((lgN = SRP_get_gN_by_id(pp[DB_srpgN], SRP_gN_tab)) != NULL) { error_code = SRP_ERR_MEMORY; if ((user_pwd = SRP_user_pwd_new()) == NULL) goto err; SRP_user_pwd_set_gN(user_pwd, lgN->g, lgN->N); if (!SRP_user_pwd_set_ids (user_pwd, pp[DB_srpid], pp[DB_srpinfo])) goto err; error_code = SRP_ERR_VBASE_BN_LIB; if (!SRP_user_pwd_set_sv (user_pwd, pp[DB_srpsalt], pp[DB_srpverifier])) goto err; if (sk_SRP_user_pwd_insert(vb->users_pwd, user_pwd, 0) == 0) goto err; user_pwd = NULL; /* abandon responsibility */ } } } if (last_index != NULL) { /* this means that we want to simulate a default user */ if (((gN = SRP_get_gN_by_id(last_index, SRP_gN_tab)) == NULL)) { error_code = SRP_ERR_VBASE_BN_LIB; goto err; } vb->default_g = gN->g; vb->default_N = gN->N; gN = NULL; } error_code = SRP_NO_ERROR; err: /* * there may be still some leaks to fix, if this fails, the application * terminates most likely */ if (gN != NULL) { OPENSSL_free(gN->id); OPENSSL_free(gN); } SRP_user_pwd_free(user_pwd); TXT_DB_free(tmpdb); BIO_free_all(in); sk_SRP_gN_free(SRP_gN_tab); return error_code; } static SRP_user_pwd *find_user(SRP_VBASE *vb, char *username) { int i; SRP_user_pwd *user; if (vb == NULL) return NULL; for (i = 0; i < sk_SRP_user_pwd_num(vb->users_pwd); i++) { user = sk_SRP_user_pwd_value(vb->users_pwd, i); if (strcmp(user->id, username) == 0) return user; } return NULL; } # if OPENSSL_API_COMPAT < 0x10100000L /* * DEPRECATED: use SRP_VBASE_get1_by_user instead. * This method ignores the configured seed and fails for an unknown user. * Ownership of the returned pointer is not released to the caller. * In other words, caller must not free the result. */ SRP_user_pwd *SRP_VBASE_get_by_user(SRP_VBASE *vb, char *username) { return find_user(vb, username); } # endif /* * Ownership of the returned pointer is released to the caller. * In other words, caller must free the result once done. */ SRP_user_pwd *SRP_VBASE_get1_by_user(SRP_VBASE *vb, char *username) { SRP_user_pwd *user; unsigned char digv[SHA_DIGEST_LENGTH]; unsigned char digs[SHA_DIGEST_LENGTH]; EVP_MD_CTX *ctxt = NULL; if (vb == NULL) return NULL; if ((user = find_user(vb, username)) != NULL) return srp_user_pwd_dup(user); if ((vb->seed_key == NULL) || (vb->default_g == NULL) || (vb->default_N == NULL)) return NULL; /* if the user is unknown we set parameters as well if we have a seed_key */ if ((user = SRP_user_pwd_new()) == NULL) return NULL; SRP_user_pwd_set_gN(user, vb->default_g, vb->default_N); if (!SRP_user_pwd_set_ids(user, username, NULL)) goto err; if (RAND_priv_bytes(digv, SHA_DIGEST_LENGTH) <= 0) goto err; ctxt = EVP_MD_CTX_new(); if (ctxt == NULL || !EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL) || !EVP_DigestUpdate(ctxt, vb->seed_key, strlen(vb->seed_key)) || !EVP_DigestUpdate(ctxt, username, strlen(username)) || !EVP_DigestFinal_ex(ctxt, digs, NULL)) goto err; EVP_MD_CTX_free(ctxt); ctxt = NULL; if (SRP_user_pwd_set_sv_BN(user, BN_bin2bn(digs, SHA_DIGEST_LENGTH, NULL), BN_bin2bn(digv, SHA_DIGEST_LENGTH, NULL))) return user; err: EVP_MD_CTX_free(ctxt); SRP_user_pwd_free(user); return NULL; } /* * create a verifier (*salt,*verifier,g and N are in base64) */ char *SRP_create_verifier(const char *user, const char *pass, char **salt, char **verifier, const char *N, const char *g) { int len; char *result = NULL, *vf = NULL; const BIGNUM *N_bn = NULL, *g_bn = NULL; BIGNUM *N_bn_alloc = NULL, *g_bn_alloc = NULL, *s = NULL, *v = NULL; unsigned char tmp[MAX_LEN]; unsigned char tmp2[MAX_LEN]; char *defgNid = NULL; int vfsize = 0; if ((user == NULL) || (pass == NULL) || (salt == NULL) || (verifier == NULL)) goto err; if (N) { if ((len = t_fromb64(tmp, sizeof(tmp), N)) <= 0) goto err; N_bn_alloc = BN_bin2bn(tmp, len, NULL); if (N_bn_alloc == NULL) goto err; N_bn = N_bn_alloc; if ((len = t_fromb64(tmp, sizeof(tmp) ,g)) <= 0) goto err; g_bn_alloc = BN_bin2bn(tmp, len, NULL); if (g_bn_alloc == NULL) goto err; g_bn = g_bn_alloc; defgNid = "*"; } else { SRP_gN *gN = SRP_get_gN_by_id(g, NULL); if (gN == NULL) goto err; N_bn = gN->N; g_bn = gN->g; defgNid = gN->id; } if (*salt == NULL) { if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0) goto err; s = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL); } else { if ((len = t_fromb64(tmp2, sizeof(tmp2), *salt)) <= 0) goto err; s = BN_bin2bn(tmp2, len, NULL); } if (s == NULL) goto err; if (!SRP_create_verifier_BN(user, pass, &s, &v, N_bn, g_bn)) goto err; if (BN_bn2bin(v, tmp) < 0) goto err; vfsize = BN_num_bytes(v) * 2; if (((vf = OPENSSL_malloc(vfsize)) == NULL)) goto err; if (!t_tob64(vf, tmp, BN_num_bytes(v))) goto err; if (*salt == NULL) { char *tmp_salt; if ((tmp_salt = OPENSSL_malloc(SRP_RANDOM_SALT_LEN * 2)) == NULL) { goto err; } if (!t_tob64(tmp_salt, tmp2, SRP_RANDOM_SALT_LEN)) { OPENSSL_free(tmp_salt); goto err; } *salt = tmp_salt; } *verifier = vf; vf = NULL; result = defgNid; err: BN_free(N_bn_alloc); BN_free(g_bn_alloc); OPENSSL_clear_free(vf, vfsize); BN_clear_free(s); BN_clear_free(v); return result; } /* * create a verifier (*salt,*verifier,g and N are BIGNUMs). If *salt != NULL * then the provided salt will be used. On successful exit *verifier will point * to a newly allocated BIGNUM containing the verifier and (if a salt was not * provided) *salt will be populated with a newly allocated BIGNUM containing a * random salt. * The caller is responsible for freeing the allocated *salt and *verifier * BIGNUMS. */ int SRP_create_verifier_BN(const char *user, const char *pass, BIGNUM **salt, BIGNUM **verifier, const BIGNUM *N, const BIGNUM *g) { int result = 0; BIGNUM *x = NULL; BN_CTX *bn_ctx = BN_CTX_new(); unsigned char tmp2[MAX_LEN]; BIGNUM *salttmp = NULL; if ((user == NULL) || (pass == NULL) || (salt == NULL) || (verifier == NULL) || (N == NULL) || (g == NULL) || (bn_ctx == NULL)) goto err; if (*salt == NULL) { if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0) goto err; salttmp = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL); if (salttmp == NULL) goto err; } else { salttmp = *salt; } x = SRP_Calc_x(salttmp, user, pass); if (x == NULL) goto err; *verifier = BN_new(); if (*verifier == NULL) goto err; if (!BN_mod_exp(*verifier, g, x, N, bn_ctx)) { BN_clear_free(*verifier); goto err; } result = 1; *salt = salttmp; err: if (salt != NULL && *salt != salttmp) BN_clear_free(salttmp); BN_clear_free(x); BN_CTX_free(bn_ctx); return result; } #endif openssl-1.1.1f/crypto/stack/000077500000000000000000000000001364063235100157735ustar00rootroot00000000000000openssl-1.1.1f/crypto/stack/build.info000066400000000000000000000000651364063235100177500ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=stack.c openssl-1.1.1f/crypto/stack/stack.c000066400000000000000000000241731364063235100172530ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include #include #include /* For ossl_inline */ /* * The initial number of nodes in the array. */ static const int min_nodes = 4; static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX; struct stack_st { int num; const void **data; int sorted; int num_alloc; OPENSSL_sk_compfunc comp; }; OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c) { OPENSSL_sk_compfunc old = sk->comp; if (sk->comp != c) sk->sorted = 0; sk->comp = c; return old; } OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) { OPENSSL_STACK *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE); return NULL; } /* direct structure assignment */ *ret = *sk; if (sk->num == 0) { /* postpone |ret->data| allocation */ ret->data = NULL; ret->num_alloc = 0; return ret; } /* duplicate |sk->data| content */ if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL) goto err; memcpy(ret->data, sk->data, sizeof(void *) * sk->num); return ret; err: OPENSSL_sk_free(ret); return NULL; } OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, OPENSSL_sk_copyfunc copy_func, OPENSSL_sk_freefunc free_func) { OPENSSL_STACK *ret; int i; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE); return NULL; } /* direct structure assignment */ *ret = *sk; if (sk->num == 0) { /* postpone |ret| data allocation */ ret->data = NULL; ret->num_alloc = 0; return ret; } ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); if (ret->data == NULL) { OPENSSL_free(ret); return NULL; } for (i = 0; i < ret->num; ++i) { if (sk->data[i] == NULL) continue; if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { while (--i >= 0) if (ret->data[i] != NULL) free_func((void *)ret->data[i]); OPENSSL_sk_free(ret); return NULL; } } return ret; } OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new_reserve(NULL, 0); } OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) { return OPENSSL_sk_new_reserve(c, 0); } /* * Calculate the array growth based on the target size. * * The growth fraction is a rational number and is defined by a numerator * and a denominator. According to Andrew Koenig in his paper "Why Are * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less * than the golden ratio (1.618...). * * We use 3/2 = 1.5 for simplicity of calculation and overflow checking. * Another option 8/5 = 1.6 allows for slightly faster growth, although safe * computation is more difficult. * * The limit to avoid overflow is spot on. The modulo three correction term * ensures that the limit is the largest number than can be expanded by the * growth factor without exceeding the hard limit. * * Do not call it with |current| lower than 2, or it will infinitely loop. */ static ossl_inline int compute_growth(int target, int current) { const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0); while (current < target) { /* Check to see if we're at the hard limit */ if (current >= max_nodes) return 0; /* Expand the size by a factor of 3/2 if it is within range */ current = current < limit ? current + current / 2 : max_nodes; } return current; } /* internal STACK storage allocation */ static int sk_reserve(OPENSSL_STACK *st, int n, int exact) { const void **tmpdata; int num_alloc; /* Check to see the reservation isn't exceeding the hard limit */ if (n > max_nodes - st->num) return 0; /* Figure out the new size */ num_alloc = st->num + n; if (num_alloc < min_nodes) num_alloc = min_nodes; /* If |st->data| allocation was postponed */ if (st->data == NULL) { /* * At this point, |st->num_alloc| and |st->num| are 0; * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. */ if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) { CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE); return 0; } st->num_alloc = num_alloc; return 1; } if (!exact) { if (num_alloc <= st->num_alloc) return 1; num_alloc = compute_growth(num_alloc, st->num_alloc); if (num_alloc == 0) return 0; } else if (num_alloc == st->num_alloc) { return 1; } tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); if (tmpdata == NULL) return 0; st->data = tmpdata; st->num_alloc = num_alloc; return 1; } OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) { OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); if (st == NULL) return NULL; st->comp = c; if (n <= 0) return st; if (!sk_reserve(st, n, 1)) { OPENSSL_sk_free(st); return NULL; } return st; } int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) { if (st == NULL) return 0; if (n < 0) return 1; return sk_reserve(st, n, 1); } int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) { if (st == NULL || st->num == max_nodes) return 0; if (!sk_reserve(st, 1, 0)) return 0; if ((loc >= st->num) || (loc < 0)) { st->data[st->num] = data; } else { memmove(&st->data[loc + 1], &st->data[loc], sizeof(st->data[0]) * (st->num - loc)); st->data[loc] = data; } st->num++; st->sorted = 0; return st->num; } static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) { const void *ret = st->data[loc]; if (loc != st->num - 1) memmove(&st->data[loc], &st->data[loc + 1], sizeof(st->data[0]) * (st->num - loc - 1)); st->num--; return (void *)ret; } void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) { int i; for (i = 0; i < st->num; i++) if (st->data[i] == p) return internal_delete(st, i); return NULL; } void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) { if (st == NULL || loc < 0 || loc >= st->num) return NULL; return internal_delete(st, loc); } static int internal_find(OPENSSL_STACK *st, const void *data, int ret_val_options) { const void *r; int i; if (st == NULL || st->num == 0) return -1; if (st->comp == NULL) { for (i = 0; i < st->num; i++) if (st->data[i] == data) return i; return -1; } if (!st->sorted) { if (st->num > 1) qsort(st->data, st->num, sizeof(void *), st->comp); st->sorted = 1; /* empty or single-element stack is considered sorted */ } if (data == NULL) return -1; r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp, ret_val_options); return r == NULL ? -1 : (int)((const void **)r - st->data); } int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) { return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH); } int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) { return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH); } int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) { if (st == NULL) return -1; return OPENSSL_sk_insert(st, data, st->num); } int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) { return OPENSSL_sk_insert(st, data, 0); } void *OPENSSL_sk_shift(OPENSSL_STACK *st) { if (st == NULL || st->num == 0) return NULL; return internal_delete(st, 0); } void *OPENSSL_sk_pop(OPENSSL_STACK *st) { if (st == NULL || st->num == 0) return NULL; return internal_delete(st, st->num - 1); } void OPENSSL_sk_zero(OPENSSL_STACK *st) { if (st == NULL || st->num == 0) return; memset(st->data, 0, sizeof(*st->data) * st->num); st->num = 0; } void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) { int i; if (st == NULL) return; for (i = 0; i < st->num; i++) if (st->data[i] != NULL) func((char *)st->data[i]); OPENSSL_sk_free(st); } void OPENSSL_sk_free(OPENSSL_STACK *st) { if (st == NULL) return; OPENSSL_free(st->data); OPENSSL_free(st); } int OPENSSL_sk_num(const OPENSSL_STACK *st) { return st == NULL ? -1 : st->num; } void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) { if (st == NULL || i < 0 || i >= st->num) return NULL; return (void *)st->data[i]; } void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) { if (st == NULL || i < 0 || i >= st->num) return NULL; st->data[i] = data; st->sorted = 0; return (void *)st->data[i]; } void OPENSSL_sk_sort(OPENSSL_STACK *st) { if (st != NULL && !st->sorted && st->comp != NULL) { if (st->num > 1) qsort(st->data, st->num, sizeof(void *), st->comp); st->sorted = 1; /* empty or single-element stack is considered sorted */ } } int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) { return st == NULL ? 1 : st->sorted; } openssl-1.1.1f/crypto/store/000077500000000000000000000000001364063235100160225ustar00rootroot00000000000000openssl-1.1.1f/crypto/store/build.info000066400000000000000000000002251364063235100177750ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ store_err.c store_init.c store_lib.c store_register.c store_strings.c \ loader_file.c openssl-1.1.1f/crypto/store/loader_file.c000066400000000000000000001307131364063235100204400ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include #include #include #include /* For d2i_DSAPrivateKey */ #include #include #include #include /* For the PKCS8 stuff o.O */ #include /* For d2i_RSAPrivateKey */ #include #include #include #include /* For the PKCS8 stuff o.O */ #include "crypto/asn1.h" #include "crypto/ctype.h" #include "internal/o_dir.h" #include "internal/cryptlib.h" #include "crypto/store.h" #include "store_local.h" #ifdef _WIN32 # define stat _stat #endif #ifndef S_ISDIR # define S_ISDIR(a) (((a) & S_IFMT) == S_IFDIR) #endif /*- * Password prompting * ------------------ */ static char *file_get_pass(const UI_METHOD *ui_method, char *pass, size_t maxsize, const char *prompt_info, void *data) { UI *ui = UI_new(); char *prompt = NULL; if (ui == NULL) { OSSL_STOREerr(OSSL_STORE_F_FILE_GET_PASS, ERR_R_MALLOC_FAILURE); return NULL; } if (ui_method != NULL) UI_set_method(ui, ui_method); UI_add_user_data(ui, data); if ((prompt = UI_construct_prompt(ui, "pass phrase", prompt_info)) == NULL) { OSSL_STOREerr(OSSL_STORE_F_FILE_GET_PASS, ERR_R_MALLOC_FAILURE); pass = NULL; } else if (!UI_add_input_string(ui, prompt, UI_INPUT_FLAG_DEFAULT_PWD, pass, 0, maxsize - 1)) { OSSL_STOREerr(OSSL_STORE_F_FILE_GET_PASS, ERR_R_UI_LIB); pass = NULL; } else { switch (UI_process(ui)) { case -2: OSSL_STOREerr(OSSL_STORE_F_FILE_GET_PASS, OSSL_STORE_R_UI_PROCESS_INTERRUPTED_OR_CANCELLED); pass = NULL; break; case -1: OSSL_STOREerr(OSSL_STORE_F_FILE_GET_PASS, ERR_R_UI_LIB); pass = NULL; break; default: break; } } OPENSSL_free(prompt); UI_free(ui); return pass; } struct pem_pass_data { const UI_METHOD *ui_method; void *data; const char *prompt_info; }; static int file_fill_pem_pass_data(struct pem_pass_data *pass_data, const char *prompt_info, const UI_METHOD *ui_method, void *ui_data) { if (pass_data == NULL) return 0; pass_data->ui_method = ui_method; pass_data->data = ui_data; pass_data->prompt_info = prompt_info; return 1; } /* This is used anywhere a pem_password_cb is needed */ static int file_get_pem_pass(char *buf, int num, int w, void *data) { struct pem_pass_data *pass_data = data; char *pass = file_get_pass(pass_data->ui_method, buf, num, pass_data->prompt_info, pass_data->data); return pass == NULL ? 0 : strlen(pass); } /*- * The file scheme decoders * ------------------------ * * Each possible data type has its own decoder, which either operates * through a given PEM name, or attempts to decode to see if the blob * it's given is decodable for its data type. The assumption is that * only the correct data type will match the content. */ /*- * The try_decode function is called to check if the blob of data can * be used by this handler, and if it can, decodes it into a supported * OpenSSL type and returns a OSSL_STORE_INFO with the decoded data. * Input: * pem_name: If this blob comes from a PEM file, this holds * the PEM name. If it comes from another type of * file, this is NULL. * pem_header: If this blob comes from a PEM file, this holds * the PEM headers. If it comes from another type of * file, this is NULL. * blob: The blob of data to match with what this handler * can use. * len: The length of the blob. * handler_ctx: For a handler marked repeatable, this pointer can * be used to create a context for the handler. IT IS * THE HANDLER'S RESPONSIBILITY TO CREATE AND DESTROY * THIS CONTEXT APPROPRIATELY, i.e. create on first call * and destroy when about to return NULL. * matchcount: A pointer to an int to count matches for this data. * Usually becomes 0 (no match) or 1 (match!), but may * be higher in the (unlikely) event that the data matches * more than one possibility. The int will always be * zero when the function is called. * ui_method: Application UI method for getting a password, pin * or any other interactive data. * ui_data: Application data to be passed to ui_method when * it's called. * Output: * a OSSL_STORE_INFO */ typedef OSSL_STORE_INFO *(*file_try_decode_fn)(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **handler_ctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data); /* * The eof function should return 1 if there's no more data to be found * with the handler_ctx, otherwise 0. This is only used when the handler is * marked repeatable. */ typedef int (*file_eof_fn)(void *handler_ctx); /* * The destroy_ctx function is used to destroy the handler_ctx that was * initiated by a repeatable try_decode function. This is only used when * the handler is marked repeatable. */ typedef void (*file_destroy_ctx_fn)(void **handler_ctx); typedef struct file_handler_st { const char *name; file_try_decode_fn try_decode; file_eof_fn eof; file_destroy_ctx_fn destroy_ctx; /* flags */ int repeatable; } FILE_HANDLER; /* * PKCS#12 decoder. It operates by decoding all of the blob content, * extracting all the interesting data from it and storing them internally, * then serving them one piece at a time. */ static OSSL_STORE_INFO *try_decode_PKCS12(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **pctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *store_info = NULL; STACK_OF(OSSL_STORE_INFO) *ctx = *pctx; if (ctx == NULL) { /* Initial parsing */ PKCS12 *p12; int ok = 0; if (pem_name != NULL) /* No match, there is no PEM PKCS12 tag */ return NULL; if ((p12 = d2i_PKCS12(NULL, &blob, len)) != NULL) { char *pass = NULL; char tpass[PEM_BUFSIZE]; EVP_PKEY *pkey = NULL; X509 *cert = NULL; STACK_OF(X509) *chain = NULL; *matchcount = 1; if (PKCS12_verify_mac(p12, "", 0) || PKCS12_verify_mac(p12, NULL, 0)) { pass = ""; } else { if ((pass = file_get_pass(ui_method, tpass, PEM_BUFSIZE, "PKCS12 import password", ui_data)) == NULL) { OSSL_STOREerr(OSSL_STORE_F_TRY_DECODE_PKCS12, OSSL_STORE_R_PASSPHRASE_CALLBACK_ERROR); goto p12_end; } if (!PKCS12_verify_mac(p12, pass, strlen(pass))) { OSSL_STOREerr(OSSL_STORE_F_TRY_DECODE_PKCS12, OSSL_STORE_R_ERROR_VERIFYING_PKCS12_MAC); goto p12_end; } } if (PKCS12_parse(p12, pass, &pkey, &cert, &chain)) { OSSL_STORE_INFO *osi_pkey = NULL; OSSL_STORE_INFO *osi_cert = NULL; OSSL_STORE_INFO *osi_ca = NULL; if ((ctx = sk_OSSL_STORE_INFO_new_null()) != NULL && (osi_pkey = OSSL_STORE_INFO_new_PKEY(pkey)) != NULL && sk_OSSL_STORE_INFO_push(ctx, osi_pkey) != 0 && (osi_cert = OSSL_STORE_INFO_new_CERT(cert)) != NULL && sk_OSSL_STORE_INFO_push(ctx, osi_cert) != 0) { ok = 1; osi_pkey = NULL; osi_cert = NULL; while(sk_X509_num(chain) > 0) { X509 *ca = sk_X509_value(chain, 0); if ((osi_ca = OSSL_STORE_INFO_new_CERT(ca)) == NULL || sk_OSSL_STORE_INFO_push(ctx, osi_ca) == 0) { ok = 0; break; } osi_ca = NULL; (void)sk_X509_shift(chain); } } if (!ok) { OSSL_STORE_INFO_free(osi_ca); OSSL_STORE_INFO_free(osi_cert); OSSL_STORE_INFO_free(osi_pkey); sk_OSSL_STORE_INFO_pop_free(ctx, OSSL_STORE_INFO_free); EVP_PKEY_free(pkey); X509_free(cert); sk_X509_pop_free(chain, X509_free); ctx = NULL; } *pctx = ctx; } } p12_end: PKCS12_free(p12); if (!ok) return NULL; } if (ctx != NULL) { *matchcount = 1; store_info = sk_OSSL_STORE_INFO_shift(ctx); } return store_info; } static int eof_PKCS12(void *ctx_) { STACK_OF(OSSL_STORE_INFO) *ctx = ctx_; return ctx == NULL || sk_OSSL_STORE_INFO_num(ctx) == 0; } static void destroy_ctx_PKCS12(void **pctx) { STACK_OF(OSSL_STORE_INFO) *ctx = *pctx; sk_OSSL_STORE_INFO_pop_free(ctx, OSSL_STORE_INFO_free); *pctx = NULL; } static FILE_HANDLER PKCS12_handler = { "PKCS12", try_decode_PKCS12, eof_PKCS12, destroy_ctx_PKCS12, 1 /* repeatable */ }; /* * Encrypted PKCS#8 decoder. It operates by just decrypting the given blob * into a new blob, which is returned as an EMBEDDED STORE_INFO. The whole * decoding process will then start over with the new blob. */ static OSSL_STORE_INFO *try_decode_PKCS8Encrypted(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **pctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data) { X509_SIG *p8 = NULL; char kbuf[PEM_BUFSIZE]; char *pass = NULL; const X509_ALGOR *dalg = NULL; const ASN1_OCTET_STRING *doct = NULL; OSSL_STORE_INFO *store_info = NULL; BUF_MEM *mem = NULL; unsigned char *new_data = NULL; int new_data_len; if (pem_name != NULL) { if (strcmp(pem_name, PEM_STRING_PKCS8) != 0) return NULL; *matchcount = 1; } if ((p8 = d2i_X509_SIG(NULL, &blob, len)) == NULL) return NULL; *matchcount = 1; if ((mem = BUF_MEM_new()) == NULL) { OSSL_STOREerr(OSSL_STORE_F_TRY_DECODE_PKCS8ENCRYPTED, ERR_R_MALLOC_FAILURE); goto nop8; } if ((pass = file_get_pass(ui_method, kbuf, PEM_BUFSIZE, "PKCS8 decrypt password", ui_data)) == NULL) { OSSL_STOREerr(OSSL_STORE_F_TRY_DECODE_PKCS8ENCRYPTED, OSSL_STORE_R_BAD_PASSWORD_READ); goto nop8; } X509_SIG_get0(p8, &dalg, &doct); if (!PKCS12_pbe_crypt(dalg, pass, strlen(pass), doct->data, doct->length, &new_data, &new_data_len, 0)) goto nop8; mem->data = (char *)new_data; mem->max = mem->length = (size_t)new_data_len; X509_SIG_free(p8); store_info = ossl_store_info_new_EMBEDDED(PEM_STRING_PKCS8INF, mem); if (store_info == NULL) { OSSL_STOREerr(OSSL_STORE_F_TRY_DECODE_PKCS8ENCRYPTED, ERR_R_MALLOC_FAILURE); goto nop8; } return store_info; nop8: X509_SIG_free(p8); BUF_MEM_free(mem); return NULL; } static FILE_HANDLER PKCS8Encrypted_handler = { "PKCS8Encrypted", try_decode_PKCS8Encrypted }; /* * Private key decoder. Decodes all sorts of private keys, both PKCS#8 * encoded ones and old style PEM ones (with the key type is encoded into * the PEM name). */ int pem_check_suffix(const char *pem_str, const char *suffix); static OSSL_STORE_INFO *try_decode_PrivateKey(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **pctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *store_info = NULL; EVP_PKEY *pkey = NULL; const EVP_PKEY_ASN1_METHOD *ameth = NULL; if (pem_name != NULL) { if (strcmp(pem_name, PEM_STRING_PKCS8INF) == 0) { PKCS8_PRIV_KEY_INFO *p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, &blob, len); *matchcount = 1; if (p8inf != NULL) pkey = EVP_PKCS82PKEY(p8inf); PKCS8_PRIV_KEY_INFO_free(p8inf); } else { int slen; if ((slen = pem_check_suffix(pem_name, "PRIVATE KEY")) > 0 && (ameth = EVP_PKEY_asn1_find_str(NULL, pem_name, slen)) != NULL) { *matchcount = 1; pkey = d2i_PrivateKey(ameth->pkey_id, NULL, &blob, len); } } } else { int i; for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) { EVP_PKEY *tmp_pkey = NULL; const unsigned char *tmp_blob = blob; ameth = EVP_PKEY_asn1_get0(i); if (ameth->pkey_flags & ASN1_PKEY_ALIAS) continue; tmp_pkey = d2i_PrivateKey(ameth->pkey_id, NULL, &tmp_blob, len); if (tmp_pkey != NULL) { if (pkey != NULL) EVP_PKEY_free(tmp_pkey); else pkey = tmp_pkey; (*matchcount)++; } } if (*matchcount > 1) { EVP_PKEY_free(pkey); pkey = NULL; } } if (pkey == NULL) /* No match */ return NULL; store_info = OSSL_STORE_INFO_new_PKEY(pkey); if (store_info == NULL) EVP_PKEY_free(pkey); return store_info; } static FILE_HANDLER PrivateKey_handler = { "PrivateKey", try_decode_PrivateKey }; /* * Public key decoder. Only supports SubjectPublicKeyInfo formatted keys. */ static OSSL_STORE_INFO *try_decode_PUBKEY(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **pctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *store_info = NULL; EVP_PKEY *pkey = NULL; if (pem_name != NULL) { if (strcmp(pem_name, PEM_STRING_PUBLIC) != 0) /* No match */ return NULL; *matchcount = 1; } if ((pkey = d2i_PUBKEY(NULL, &blob, len)) != NULL) { *matchcount = 1; store_info = OSSL_STORE_INFO_new_PKEY(pkey); } return store_info; } static FILE_HANDLER PUBKEY_handler = { "PUBKEY", try_decode_PUBKEY }; /* * Key parameter decoder. */ static OSSL_STORE_INFO *try_decode_params(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **pctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *store_info = NULL; int slen = 0; EVP_PKEY *pkey = NULL; const EVP_PKEY_ASN1_METHOD *ameth = NULL; int ok = 0; if (pem_name != NULL) { if ((slen = pem_check_suffix(pem_name, "PARAMETERS")) == 0) return NULL; *matchcount = 1; } if (slen > 0) { if ((pkey = EVP_PKEY_new()) == NULL) { OSSL_STOREerr(OSSL_STORE_F_TRY_DECODE_PARAMS, ERR_R_EVP_LIB); return NULL; } if (EVP_PKEY_set_type_str(pkey, pem_name, slen) && (ameth = EVP_PKEY_get0_asn1(pkey)) != NULL && ameth->param_decode != NULL && ameth->param_decode(pkey, &blob, len)) ok = 1; } else { int i; EVP_PKEY *tmp_pkey = NULL; for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) { const unsigned char *tmp_blob = blob; if (tmp_pkey == NULL && (tmp_pkey = EVP_PKEY_new()) == NULL) { OSSL_STOREerr(OSSL_STORE_F_TRY_DECODE_PARAMS, ERR_R_EVP_LIB); break; } ameth = EVP_PKEY_asn1_get0(i); if (ameth->pkey_flags & ASN1_PKEY_ALIAS) continue; if (EVP_PKEY_set_type(tmp_pkey, ameth->pkey_id) && (ameth = EVP_PKEY_get0_asn1(tmp_pkey)) != NULL && ameth->param_decode != NULL && ameth->param_decode(tmp_pkey, &tmp_blob, len)) { if (pkey != NULL) EVP_PKEY_free(tmp_pkey); else pkey = tmp_pkey; tmp_pkey = NULL; (*matchcount)++; } } EVP_PKEY_free(tmp_pkey); if (*matchcount == 1) { ok = 1; } } if (ok) store_info = OSSL_STORE_INFO_new_PARAMS(pkey); if (store_info == NULL) EVP_PKEY_free(pkey); return store_info; } static FILE_HANDLER params_handler = { "params", try_decode_params }; /* * X.509 certificate decoder. */ static OSSL_STORE_INFO *try_decode_X509Certificate(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **pctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *store_info = NULL; X509 *cert = NULL; /* * In most cases, we can try to interpret the serialized data as a trusted * cert (X509 + X509_AUX) and fall back to reading it as a normal cert * (just X509), but if the PEM name specifically declares it as a trusted * cert, then no fallback should be engaged. |ignore_trusted| tells if * the fallback can be used (1) or not (0). */ int ignore_trusted = 1; if (pem_name != NULL) { if (strcmp(pem_name, PEM_STRING_X509_TRUSTED) == 0) ignore_trusted = 0; else if (strcmp(pem_name, PEM_STRING_X509_OLD) != 0 && strcmp(pem_name, PEM_STRING_X509) != 0) /* No match */ return NULL; *matchcount = 1; } if ((cert = d2i_X509_AUX(NULL, &blob, len)) != NULL || (ignore_trusted && (cert = d2i_X509(NULL, &blob, len)) != NULL)) { *matchcount = 1; store_info = OSSL_STORE_INFO_new_CERT(cert); } if (store_info == NULL) X509_free(cert); return store_info; } static FILE_HANDLER X509Certificate_handler = { "X509Certificate", try_decode_X509Certificate }; /* * X.509 CRL decoder. */ static OSSL_STORE_INFO *try_decode_X509CRL(const char *pem_name, const char *pem_header, const unsigned char *blob, size_t len, void **pctx, int *matchcount, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *store_info = NULL; X509_CRL *crl = NULL; if (pem_name != NULL) { if (strcmp(pem_name, PEM_STRING_X509_CRL) != 0) /* No match */ return NULL; *matchcount = 1; } if ((crl = d2i_X509_CRL(NULL, &blob, len)) != NULL) { *matchcount = 1; store_info = OSSL_STORE_INFO_new_CRL(crl); } if (store_info == NULL) X509_CRL_free(crl); return store_info; } static FILE_HANDLER X509CRL_handler = { "X509CRL", try_decode_X509CRL }; /* * To finish it all off, we collect all the handlers. */ static const FILE_HANDLER *file_handlers[] = { &PKCS12_handler, &PKCS8Encrypted_handler, &X509Certificate_handler, &X509CRL_handler, ¶ms_handler, &PUBKEY_handler, &PrivateKey_handler, }; /*- * The loader itself * ----------------- */ struct ossl_store_loader_ctx_st { enum { is_raw = 0, is_pem, is_dir } type; int errcnt; #define FILE_FLAG_SECMEM (1<<0) unsigned int flags; union { struct { /* Used with is_raw and is_pem */ BIO *file; /* * The following are used when the handler is marked as * repeatable */ const FILE_HANDLER *last_handler; void *last_handler_ctx; } file; struct { /* Used with is_dir */ OPENSSL_DIR_CTX *ctx; int end_reached; char *uri; /* * When a search expression is given, these are filled in. * |search_name| contains the file basename to look for. * The string is exactly 8 characters long. */ char search_name[9]; /* * The directory reading utility we have combines opening with * reading the first name. To make sure we can detect the end * at the right time, we read early and cache the name. */ const char *last_entry; int last_errno; } dir; } _; /* Expected object type. May be unspecified */ int expected_type; }; static void OSSL_STORE_LOADER_CTX_free(OSSL_STORE_LOADER_CTX *ctx) { if (ctx->type == is_dir) { OPENSSL_free(ctx->_.dir.uri); } else { if (ctx->_.file.last_handler != NULL) { ctx->_.file.last_handler->destroy_ctx(&ctx->_.file.last_handler_ctx); ctx->_.file.last_handler_ctx = NULL; ctx->_.file.last_handler = NULL; } } OPENSSL_free(ctx); } static OSSL_STORE_LOADER_CTX *file_open(const OSSL_STORE_LOADER *loader, const char *uri, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_LOADER_CTX *ctx = NULL; struct stat st; struct { const char *path; unsigned int check_absolute:1; } path_data[2]; size_t path_data_n = 0, i; const char *path; /* * First step, just take the URI as is. */ path_data[path_data_n].check_absolute = 0; path_data[path_data_n++].path = uri; /* * Second step, if the URI appears to start with the 'file' scheme, * extract the path and make that the second path to check. * There's a special case if the URI also contains an authority, then * the full URI shouldn't be used as a path anywhere. */ if (strncasecmp(uri, "file:", 5) == 0) { const char *p = &uri[5]; if (strncmp(&uri[5], "//", 2) == 0) { path_data_n--; /* Invalidate using the full URI */ if (strncasecmp(&uri[7], "localhost/", 10) == 0) { p = &uri[16]; } else if (uri[7] == '/') { p = &uri[7]; } else { OSSL_STOREerr(OSSL_STORE_F_FILE_OPEN, OSSL_STORE_R_URI_AUTHORITY_UNSUPPORTED); return NULL; } } path_data[path_data_n].check_absolute = 1; #ifdef _WIN32 /* Windows file: URIs with a drive letter start with a / */ if (p[0] == '/' && p[2] == ':' && p[3] == '/') { char c = ossl_tolower(p[1]); if (c >= 'a' && c <= 'z') { p++; /* We know it's absolute, so no need to check */ path_data[path_data_n].check_absolute = 0; } } #endif path_data[path_data_n++].path = p; } for (i = 0, path = NULL; path == NULL && i < path_data_n; i++) { /* * If the scheme "file" was an explicit part of the URI, the path must * be absolute. So says RFC 8089 */ if (path_data[i].check_absolute && path_data[i].path[0] != '/') { OSSL_STOREerr(OSSL_STORE_F_FILE_OPEN, OSSL_STORE_R_PATH_MUST_BE_ABSOLUTE); ERR_add_error_data(1, path_data[i].path); return NULL; } if (stat(path_data[i].path, &st) < 0) { SYSerr(SYS_F_STAT, errno); ERR_add_error_data(1, path_data[i].path); } else { path = path_data[i].path; } } if (path == NULL) { return NULL; } /* Successfully found a working path, clear possible collected errors */ ERR_clear_error(); ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) { OSSL_STOREerr(OSSL_STORE_F_FILE_OPEN, ERR_R_MALLOC_FAILURE); return NULL; } if (S_ISDIR(st.st_mode)) { /* * Try to copy everything, even if we know that some of them must be * NULL for the moment. This prevents errors in the future, when more * components may be used. */ ctx->_.dir.uri = OPENSSL_strdup(uri); ctx->type = is_dir; if (ctx->_.dir.uri == NULL) goto err; ctx->_.dir.last_entry = OPENSSL_DIR_read(&ctx->_.dir.ctx, path); ctx->_.dir.last_errno = errno; if (ctx->_.dir.last_entry == NULL) { if (ctx->_.dir.last_errno != 0) { char errbuf[256]; OSSL_STOREerr(OSSL_STORE_F_FILE_OPEN, ERR_R_SYS_LIB); errno = ctx->_.dir.last_errno; if (openssl_strerror_r(errno, errbuf, sizeof(errbuf))) ERR_add_error_data(1, errbuf); goto err; } ctx->_.dir.end_reached = 1; } } else { BIO *buff = NULL; char peekbuf[4096] = { 0, }; if ((buff = BIO_new(BIO_f_buffer())) == NULL || (ctx->_.file.file = BIO_new_file(path, "rb")) == NULL) { BIO_free_all(buff); goto err; } ctx->_.file.file = BIO_push(buff, ctx->_.file.file); if (BIO_buffer_peek(ctx->_.file.file, peekbuf, sizeof(peekbuf) - 1) > 0) { peekbuf[sizeof(peekbuf) - 1] = '\0'; if (strstr(peekbuf, "-----BEGIN ") != NULL) ctx->type = is_pem; } } return ctx; err: OSSL_STORE_LOADER_CTX_free(ctx); return NULL; } static int file_ctrl(OSSL_STORE_LOADER_CTX *ctx, int cmd, va_list args) { int ret = 1; switch (cmd) { case OSSL_STORE_C_USE_SECMEM: { int on = *(va_arg(args, int *)); switch (on) { case 0: ctx->flags &= ~FILE_FLAG_SECMEM; break; case 1: ctx->flags |= FILE_FLAG_SECMEM; break; default: OSSL_STOREerr(OSSL_STORE_F_FILE_CTRL, ERR_R_PASSED_INVALID_ARGUMENT); ret = 0; break; } } break; default: break; } return ret; } static int file_expect(OSSL_STORE_LOADER_CTX *ctx, int expected) { ctx->expected_type = expected; return 1; } static int file_find(OSSL_STORE_LOADER_CTX *ctx, OSSL_STORE_SEARCH *search) { /* * If ctx == NULL, the library is looking to know if this loader supports * the given search type. */ if (OSSL_STORE_SEARCH_get_type(search) == OSSL_STORE_SEARCH_BY_NAME) { unsigned long hash = 0; if (ctx == NULL) return 1; if (ctx->type != is_dir) { OSSL_STOREerr(OSSL_STORE_F_FILE_FIND, OSSL_STORE_R_SEARCH_ONLY_SUPPORTED_FOR_DIRECTORIES); return 0; } hash = X509_NAME_hash(OSSL_STORE_SEARCH_get0_name(search)); BIO_snprintf(ctx->_.dir.search_name, sizeof(ctx->_.dir.search_name), "%08lx", hash); return 1; } if (ctx != NULL) OSSL_STOREerr(OSSL_STORE_F_FILE_FIND, OSSL_STORE_R_UNSUPPORTED_SEARCH_TYPE); return 0; } /* Internal function to decode an already opened PEM file */ OSSL_STORE_LOADER_CTX *ossl_store_file_attach_pem_bio_int(BIO *bp) { OSSL_STORE_LOADER_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_FILE_ATTACH_PEM_BIO_INT, ERR_R_MALLOC_FAILURE); return NULL; } ctx->_.file.file = bp; ctx->type = is_pem; return ctx; } static OSSL_STORE_INFO *file_load_try_decode(OSSL_STORE_LOADER_CTX *ctx, const char *pem_name, const char *pem_header, unsigned char *data, size_t len, const UI_METHOD *ui_method, void *ui_data, int *matchcount) { OSSL_STORE_INFO *result = NULL; BUF_MEM *new_mem = NULL; char *new_pem_name = NULL; int t = 0; again: { size_t i = 0; void *handler_ctx = NULL; const FILE_HANDLER **matching_handlers = OPENSSL_zalloc(sizeof(*matching_handlers) * OSSL_NELEM(file_handlers)); if (matching_handlers == NULL) { OSSL_STOREerr(OSSL_STORE_F_FILE_LOAD_TRY_DECODE, ERR_R_MALLOC_FAILURE); goto err; } *matchcount = 0; for (i = 0; i < OSSL_NELEM(file_handlers); i++) { const FILE_HANDLER *handler = file_handlers[i]; int try_matchcount = 0; void *tmp_handler_ctx = NULL; OSSL_STORE_INFO *tmp_result = handler->try_decode(pem_name, pem_header, data, len, &tmp_handler_ctx, &try_matchcount, ui_method, ui_data); if (try_matchcount > 0) { matching_handlers[*matchcount] = handler; if (handler_ctx) handler->destroy_ctx(&handler_ctx); handler_ctx = tmp_handler_ctx; if ((*matchcount += try_matchcount) > 1) { /* more than one match => ambiguous, kill any result */ OSSL_STORE_INFO_free(result); OSSL_STORE_INFO_free(tmp_result); if (handler->destroy_ctx != NULL) handler->destroy_ctx(&handler_ctx); handler_ctx = NULL; tmp_result = NULL; result = NULL; } if (result == NULL) result = tmp_result; } } if (*matchcount == 1 && matching_handlers[0]->repeatable) { ctx->_.file.last_handler = matching_handlers[0]; ctx->_.file.last_handler_ctx = handler_ctx; } OPENSSL_free(matching_handlers); } err: OPENSSL_free(new_pem_name); BUF_MEM_free(new_mem); if (result != NULL && (t = OSSL_STORE_INFO_get_type(result)) == OSSL_STORE_INFO_EMBEDDED) { pem_name = new_pem_name = ossl_store_info_get0_EMBEDDED_pem_name(result); new_mem = ossl_store_info_get0_EMBEDDED_buffer(result); data = (unsigned char *)new_mem->data; len = new_mem->length; OPENSSL_free(result); result = NULL; goto again; } if (result != NULL) ERR_clear_error(); return result; } static OSSL_STORE_INFO *file_load_try_repeat(OSSL_STORE_LOADER_CTX *ctx, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *result = NULL; int try_matchcount = 0; if (ctx->_.file.last_handler != NULL) { result = ctx->_.file.last_handler->try_decode(NULL, NULL, NULL, 0, &ctx->_.file.last_handler_ctx, &try_matchcount, ui_method, ui_data); if (result == NULL) { ctx->_.file.last_handler->destroy_ctx(&ctx->_.file.last_handler_ctx); ctx->_.file.last_handler_ctx = NULL; ctx->_.file.last_handler = NULL; } } return result; } static void pem_free_flag(void *pem_data, int secure, size_t num) { if (secure) OPENSSL_secure_clear_free(pem_data, num); else OPENSSL_free(pem_data); } static int file_read_pem(BIO *bp, char **pem_name, char **pem_header, unsigned char **data, long *len, const UI_METHOD *ui_method, void *ui_data, int secure) { int i = secure ? PEM_read_bio_ex(bp, pem_name, pem_header, data, len, PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE) : PEM_read_bio(bp, pem_name, pem_header, data, len); if (i <= 0) return 0; /* * 10 is the number of characters in "Proc-Type:", which * PEM_get_EVP_CIPHER_INFO() requires to be present. * If the PEM header has less characters than that, it's * not worth spending cycles on it. */ if (strlen(*pem_header) > 10) { EVP_CIPHER_INFO cipher; struct pem_pass_data pass_data; if (!PEM_get_EVP_CIPHER_INFO(*pem_header, &cipher) || !file_fill_pem_pass_data(&pass_data, "PEM", ui_method, ui_data) || !PEM_do_header(&cipher, *data, len, file_get_pem_pass, &pass_data)) { return 0; } } return 1; } static int file_read_asn1(BIO *bp, unsigned char **data, long *len) { BUF_MEM *mem = NULL; if (asn1_d2i_read_bio(bp, &mem) < 0) return 0; *data = (unsigned char *)mem->data; *len = (long)mem->length; OPENSSL_free(mem); return 1; } static int ends_with_dirsep(const char *uri) { if (*uri != '\0') uri += strlen(uri) - 1; #if defined __VMS if (*uri == ']' || *uri == '>' || *uri == ':') return 1; #elif defined _WIN32 if (*uri == '\\') return 1; #endif return *uri == '/'; } static int file_name_to_uri(OSSL_STORE_LOADER_CTX *ctx, const char *name, char **data) { assert(name != NULL); assert(data != NULL); { const char *pathsep = ends_with_dirsep(ctx->_.dir.uri) ? "" : "/"; long calculated_length = strlen(ctx->_.dir.uri) + strlen(pathsep) + strlen(name) + 1 /* \0 */; *data = OPENSSL_zalloc(calculated_length); if (*data == NULL) { OSSL_STOREerr(OSSL_STORE_F_FILE_NAME_TO_URI, ERR_R_MALLOC_FAILURE); return 0; } OPENSSL_strlcat(*data, ctx->_.dir.uri, calculated_length); OPENSSL_strlcat(*data, pathsep, calculated_length); OPENSSL_strlcat(*data, name, calculated_length); } return 1; } static int file_name_check(OSSL_STORE_LOADER_CTX *ctx, const char *name) { const char *p = NULL; /* If there are no search criteria, all names are accepted */ if (ctx->_.dir.search_name[0] == '\0') return 1; /* If the expected type isn't supported, no name is accepted */ if (ctx->expected_type != 0 && ctx->expected_type != OSSL_STORE_INFO_CERT && ctx->expected_type != OSSL_STORE_INFO_CRL) return 0; /* * First, check the basename */ if (strncasecmp(name, ctx->_.dir.search_name, sizeof(ctx->_.dir.search_name) - 1) != 0 || name[sizeof(ctx->_.dir.search_name) - 1] != '.') return 0; p = &name[sizeof(ctx->_.dir.search_name)]; /* * Then, if the expected type is a CRL, check that the extension starts * with 'r' */ if (*p == 'r') { p++; if (ctx->expected_type != 0 && ctx->expected_type != OSSL_STORE_INFO_CRL) return 0; } else if (ctx->expected_type == OSSL_STORE_INFO_CRL) { return 0; } /* * Last, check that the rest of the extension is a decimal number, at * least one digit long. */ if (!ossl_isdigit(*p)) return 0; while (ossl_isdigit(*p)) p++; # ifdef __VMS /* * One extra step here, check for a possible generation number. */ if (*p == ';') for (p++; *p != '\0'; p++) if (!ossl_isdigit(*p)) break; # endif /* * If we've reached the end of the string at this point, we've successfully * found a fitting file name. */ return *p == '\0'; } static int file_eof(OSSL_STORE_LOADER_CTX *ctx); static int file_error(OSSL_STORE_LOADER_CTX *ctx); static OSSL_STORE_INFO *file_load(OSSL_STORE_LOADER_CTX *ctx, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_INFO *result = NULL; ctx->errcnt = 0; ERR_clear_error(); if (ctx->type == is_dir) { do { char *newname = NULL; if (ctx->_.dir.last_entry == NULL) { if (!ctx->_.dir.end_reached) { char errbuf[256]; assert(ctx->_.dir.last_errno != 0); OSSL_STOREerr(OSSL_STORE_F_FILE_LOAD, ERR_R_SYS_LIB); errno = ctx->_.dir.last_errno; ctx->errcnt++; if (openssl_strerror_r(errno, errbuf, sizeof(errbuf))) ERR_add_error_data(1, errbuf); } return NULL; } if (ctx->_.dir.last_entry[0] != '.' && file_name_check(ctx, ctx->_.dir.last_entry) && !file_name_to_uri(ctx, ctx->_.dir.last_entry, &newname)) return NULL; /* * On the first call (with a NULL context), OPENSSL_DIR_read() * cares about the second argument. On the following calls, it * only cares that it isn't NULL. Therefore, we can safely give * it our URI here. */ ctx->_.dir.last_entry = OPENSSL_DIR_read(&ctx->_.dir.ctx, ctx->_.dir.uri); ctx->_.dir.last_errno = errno; if (ctx->_.dir.last_entry == NULL && ctx->_.dir.last_errno == 0) ctx->_.dir.end_reached = 1; if (newname != NULL && (result = OSSL_STORE_INFO_new_NAME(newname)) == NULL) { OPENSSL_free(newname); OSSL_STOREerr(OSSL_STORE_F_FILE_LOAD, ERR_R_OSSL_STORE_LIB); return NULL; } } while (result == NULL && !file_eof(ctx)); } else { int matchcount = -1; again: result = file_load_try_repeat(ctx, ui_method, ui_data); if (result != NULL) return result; if (file_eof(ctx)) return NULL; do { char *pem_name = NULL; /* PEM record name */ char *pem_header = NULL; /* PEM record header */ unsigned char *data = NULL; /* DER encoded data */ long len = 0; /* DER encoded data length */ matchcount = -1; if (ctx->type == is_pem) { if (!file_read_pem(ctx->_.file.file, &pem_name, &pem_header, &data, &len, ui_method, ui_data, (ctx->flags & FILE_FLAG_SECMEM) != 0)) { ctx->errcnt++; goto endloop; } } else { if (!file_read_asn1(ctx->_.file.file, &data, &len)) { ctx->errcnt++; goto endloop; } } result = file_load_try_decode(ctx, pem_name, pem_header, data, len, ui_method, ui_data, &matchcount); if (result != NULL) goto endloop; /* * If a PEM name matches more than one handler, the handlers are * badly coded. */ if (!ossl_assert(pem_name == NULL || matchcount <= 1)) { ctx->errcnt++; goto endloop; } if (matchcount > 1) { OSSL_STOREerr(OSSL_STORE_F_FILE_LOAD, OSSL_STORE_R_AMBIGUOUS_CONTENT_TYPE); } else if (matchcount == 1) { /* * If there are other errors on the stack, they already show * what the problem is. */ if (ERR_peek_error() == 0) { OSSL_STOREerr(OSSL_STORE_F_FILE_LOAD, OSSL_STORE_R_UNSUPPORTED_CONTENT_TYPE); if (pem_name != NULL) ERR_add_error_data(3, "PEM type is '", pem_name, "'"); } } if (matchcount > 0) ctx->errcnt++; endloop: pem_free_flag(pem_name, (ctx->flags & FILE_FLAG_SECMEM) != 0, 0); pem_free_flag(pem_header, (ctx->flags & FILE_FLAG_SECMEM) != 0, 0); pem_free_flag(data, (ctx->flags & FILE_FLAG_SECMEM) != 0, len); } while (matchcount == 0 && !file_eof(ctx) && !file_error(ctx)); /* We bail out on ambiguity */ if (matchcount > 1) return NULL; if (result != NULL && ctx->expected_type != 0 && ctx->expected_type != OSSL_STORE_INFO_get_type(result)) { OSSL_STORE_INFO_free(result); goto again; } } return result; } static int file_error(OSSL_STORE_LOADER_CTX *ctx) { return ctx->errcnt > 0; } static int file_eof(OSSL_STORE_LOADER_CTX *ctx) { if (ctx->type == is_dir) return ctx->_.dir.end_reached; if (ctx->_.file.last_handler != NULL && !ctx->_.file.last_handler->eof(ctx->_.file.last_handler_ctx)) return 0; return BIO_eof(ctx->_.file.file); } static int file_close(OSSL_STORE_LOADER_CTX *ctx) { if (ctx->type == is_dir) { OPENSSL_DIR_end(&ctx->_.dir.ctx); } else { BIO_free_all(ctx->_.file.file); } OSSL_STORE_LOADER_CTX_free(ctx); return 1; } int ossl_store_file_detach_pem_bio_int(OSSL_STORE_LOADER_CTX *ctx) { OSSL_STORE_LOADER_CTX_free(ctx); return 1; } static OSSL_STORE_LOADER file_loader = { "file", NULL, file_open, file_ctrl, file_expect, file_find, file_load, file_eof, file_error, file_close }; static void store_file_loader_deinit(void) { ossl_store_unregister_loader_int(file_loader.scheme); } int ossl_store_file_loader_init(void) { int ret = ossl_store_register_loader_int(&file_loader); OPENSSL_atexit(store_file_loader_deinit); return ret; } openssl-1.1.1f/crypto/store/store_err.c000066400000000000000000000160611364063235100201760ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA OSSL_STORE_str_functs[] = { {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_FILE_CTRL, 0), "file_ctrl"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_FILE_FIND, 0), "file_find"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_FILE_GET_PASS, 0), "file_get_pass"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_FILE_LOAD, 0), "file_load"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_FILE_LOAD_TRY_DECODE, 0), "file_load_try_decode"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_FILE_NAME_TO_URI, 0), "file_name_to_uri"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_FILE_OPEN, 0), "file_open"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_ATTACH_PEM_BIO, 0), "ossl_store_attach_pem_bio"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_EXPECT, 0), "OSSL_STORE_expect"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_FILE_ATTACH_PEM_BIO_INT, 0), "ossl_store_file_attach_pem_bio_int"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_FIND, 0), "OSSL_STORE_find"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_GET0_LOADER_INT, 0), "ossl_store_get0_loader_int"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_GET1_CERT, 0), "OSSL_STORE_INFO_get1_CERT"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_GET1_CRL, 0), "OSSL_STORE_INFO_get1_CRL"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME, 0), "OSSL_STORE_INFO_get1_NAME"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME_DESCRIPTION, 0), "OSSL_STORE_INFO_get1_NAME_description"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_GET1_PARAMS, 0), "OSSL_STORE_INFO_get1_PARAMS"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_GET1_PKEY, 0), "OSSL_STORE_INFO_get1_PKEY"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_NEW_CERT, 0), "OSSL_STORE_INFO_new_CERT"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_NEW_CRL, 0), "OSSL_STORE_INFO_new_CRL"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_NEW_EMBEDDED, 0), "ossl_store_info_new_EMBEDDED"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_NEW_NAME, 0), "OSSL_STORE_INFO_new_NAME"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_NEW_PARAMS, 0), "OSSL_STORE_INFO_new_PARAMS"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_NEW_PKEY, 0), "OSSL_STORE_INFO_new_PKEY"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INFO_SET0_NAME_DESCRIPTION, 0), "OSSL_STORE_INFO_set0_NAME_description"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_INIT_ONCE, 0), "ossl_store_init_once"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_LOADER_NEW, 0), "OSSL_STORE_LOADER_new"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_OPEN, 0), "OSSL_STORE_open"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_OPEN_INT, 0), ""}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_REGISTER_LOADER_INT, 0), "ossl_store_register_loader_int"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_SEARCH_BY_ALIAS, 0), "OSSL_STORE_SEARCH_by_alias"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_SEARCH_BY_ISSUER_SERIAL, 0), "OSSL_STORE_SEARCH_by_issuer_serial"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT, 0), "OSSL_STORE_SEARCH_by_key_fingerprint"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_SEARCH_BY_NAME, 0), "OSSL_STORE_SEARCH_by_name"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_OSSL_STORE_UNREGISTER_LOADER_INT, 0), "ossl_store_unregister_loader_int"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_TRY_DECODE_PARAMS, 0), "try_decode_params"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_TRY_DECODE_PKCS12, 0), "try_decode_PKCS12"}, {ERR_PACK(ERR_LIB_OSSL_STORE, OSSL_STORE_F_TRY_DECODE_PKCS8ENCRYPTED, 0), "try_decode_PKCS8Encrypted"}, {0, NULL} }; static const ERR_STRING_DATA OSSL_STORE_str_reasons[] = { {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_AMBIGUOUS_CONTENT_TYPE), "ambiguous content type"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_BAD_PASSWORD_READ), "bad password read"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_ERROR_VERIFYING_PKCS12_MAC), "error verifying pkcs12 mac"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_FINGERPRINT_SIZE_DOES_NOT_MATCH_DIGEST), "fingerprint size does not match digest"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_INVALID_SCHEME), "invalid scheme"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_IS_NOT_A), "is not a"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_LOADER_INCOMPLETE), "loader incomplete"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_LOADING_STARTED), "loading started"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_NOT_A_CERTIFICATE), "not a certificate"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_NOT_A_CRL), "not a crl"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_NOT_A_KEY), "not a key"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_NOT_A_NAME), "not a name"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_NOT_PARAMETERS), "not parameters"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_PASSPHRASE_CALLBACK_ERROR), "passphrase callback error"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_PATH_MUST_BE_ABSOLUTE), "path must be absolute"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_SEARCH_ONLY_SUPPORTED_FOR_DIRECTORIES), "search only supported for directories"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_UI_PROCESS_INTERRUPTED_OR_CANCELLED), "ui process interrupted or cancelled"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_UNREGISTERED_SCHEME), "unregistered scheme"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_UNSUPPORTED_CONTENT_TYPE), "unsupported content type"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_UNSUPPORTED_OPERATION), "unsupported operation"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_UNSUPPORTED_SEARCH_TYPE), "unsupported search type"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, OSSL_STORE_R_URI_AUTHORITY_UNSUPPORTED), "uri authority unsupported"}, {0, NULL} }; #endif int ERR_load_OSSL_STORE_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(OSSL_STORE_str_functs[0].error) == NULL) { ERR_load_strings_const(OSSL_STORE_str_functs); ERR_load_strings_const(OSSL_STORE_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/store/store_init.c000066400000000000000000000015501364063235100203460ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/store.h" #include "store_local.h" static CRYPTO_ONCE store_init = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(do_store_init) { return OPENSSL_init_crypto(0, NULL) && ossl_store_file_loader_init(); } int ossl_store_init_once(void) { if (!RUN_ONCE(&store_init, do_store_init)) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INIT_ONCE, ERR_R_MALLOC_FAILURE); return 0; } return 1; } void ossl_store_cleanup_int(void) { ossl_store_destroy_loaders_int(); } openssl-1.1.1f/crypto/store/store_lib.c000066400000000000000000000456141364063235100201620ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include #include "e_os.h" #include #include #include #include "internal/thread_once.h" #include "crypto/store.h" #include "store_local.h" struct ossl_store_ctx_st { const OSSL_STORE_LOADER *loader; OSSL_STORE_LOADER_CTX *loader_ctx; const UI_METHOD *ui_method; void *ui_data; OSSL_STORE_post_process_info_fn post_process; void *post_process_data; int expected_type; /* 0 before the first STORE_load(), 1 otherwise */ int loading; }; OSSL_STORE_CTX *OSSL_STORE_open(const char *uri, const UI_METHOD *ui_method, void *ui_data, OSSL_STORE_post_process_info_fn post_process, void *post_process_data) { const OSSL_STORE_LOADER *loader = NULL; OSSL_STORE_LOADER_CTX *loader_ctx = NULL; OSSL_STORE_CTX *ctx = NULL; char scheme_copy[256], *p, *schemes[2]; size_t schemes_n = 0; size_t i; /* * Put the file scheme first. If the uri does represent an existing file, * possible device name and all, then it should be loaded. Only a failed * attempt at loading a local file should have us try something else. */ schemes[schemes_n++] = "file"; /* * Now, check if we have something that looks like a scheme, and add it * as a second scheme. However, also check if there's an authority start * (://), because that will invalidate the previous file scheme. Also, * check that this isn't actually the file scheme, as there's no point * going through that one twice! */ OPENSSL_strlcpy(scheme_copy, uri, sizeof(scheme_copy)); if ((p = strchr(scheme_copy, ':')) != NULL) { *p++ = '\0'; if (strcasecmp(scheme_copy, "file") != 0) { if (strncmp(p, "//", 2) == 0) schemes_n--; /* Invalidate the file scheme */ schemes[schemes_n++] = scheme_copy; } } ERR_set_mark(); /* Try each scheme until we find one that could open the URI */ for (i = 0; loader_ctx == NULL && i < schemes_n; i++) { if ((loader = ossl_store_get0_loader_int(schemes[i])) != NULL) loader_ctx = loader->open(loader, uri, ui_method, ui_data); } if (loader_ctx == NULL) goto err; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_OPEN, ERR_R_MALLOC_FAILURE); goto err; } ctx->loader = loader; ctx->loader_ctx = loader_ctx; ctx->ui_method = ui_method; ctx->ui_data = ui_data; ctx->post_process = post_process; ctx->post_process_data = post_process_data; /* * If the attempt to open with the 'file' scheme loader failed and the * other scheme loader succeeded, the failure to open with the 'file' * scheme loader leaves an error on the error stack. Let's remove it. */ ERR_pop_to_mark(); return ctx; err: ERR_clear_last_mark(); if (loader_ctx != NULL) { /* * We ignore a returned error because we will return NULL anyway in * this case, so if something goes wrong when closing, that'll simply * just add another entry on the error stack. */ (void)loader->close(loader_ctx); } return NULL; } int OSSL_STORE_ctrl(OSSL_STORE_CTX *ctx, int cmd, ...) { va_list args; int ret; va_start(args, cmd); ret = OSSL_STORE_vctrl(ctx, cmd, args); va_end(args); return ret; } int OSSL_STORE_vctrl(OSSL_STORE_CTX *ctx, int cmd, va_list args) { if (ctx->loader->ctrl != NULL) return ctx->loader->ctrl(ctx->loader_ctx, cmd, args); return 0; } int OSSL_STORE_expect(OSSL_STORE_CTX *ctx, int expected_type) { if (ctx->loading) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_EXPECT, OSSL_STORE_R_LOADING_STARTED); return 0; } ctx->expected_type = expected_type; if (ctx->loader->expect != NULL) return ctx->loader->expect(ctx->loader_ctx, expected_type); return 1; } int OSSL_STORE_find(OSSL_STORE_CTX *ctx, OSSL_STORE_SEARCH *search) { if (ctx->loading) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_FIND, OSSL_STORE_R_LOADING_STARTED); return 0; } if (ctx->loader->find == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_FIND, OSSL_STORE_R_UNSUPPORTED_OPERATION); return 0; } return ctx->loader->find(ctx->loader_ctx, search); } OSSL_STORE_INFO *OSSL_STORE_load(OSSL_STORE_CTX *ctx) { OSSL_STORE_INFO *v = NULL; ctx->loading = 1; again: if (OSSL_STORE_eof(ctx)) return NULL; v = ctx->loader->load(ctx->loader_ctx, ctx->ui_method, ctx->ui_data); if (ctx->post_process != NULL && v != NULL) { v = ctx->post_process(v, ctx->post_process_data); /* * By returning NULL, the callback decides that this object should * be ignored. */ if (v == NULL) goto again; } if (v != NULL && ctx->expected_type != 0) { int returned_type = OSSL_STORE_INFO_get_type(v); if (returned_type != OSSL_STORE_INFO_NAME && returned_type != 0) { /* * Soft assert here so those who want to harsly weed out faulty * loaders can do so using a debugging version of libcrypto. */ if (ctx->loader->expect != NULL) assert(ctx->expected_type == returned_type); if (ctx->expected_type != returned_type) { OSSL_STORE_INFO_free(v); goto again; } } } return v; } int OSSL_STORE_error(OSSL_STORE_CTX *ctx) { return ctx->loader->error(ctx->loader_ctx); } int OSSL_STORE_eof(OSSL_STORE_CTX *ctx) { return ctx->loader->eof(ctx->loader_ctx); } int OSSL_STORE_close(OSSL_STORE_CTX *ctx) { int loader_ret = ctx->loader->close(ctx->loader_ctx); OPENSSL_free(ctx); return loader_ret; } /* * Functions to generate OSSL_STORE_INFOs, one function for each type we * support having in them as well as a generic constructor. * * In all cases, ownership of the object is transferred to the OSSL_STORE_INFO * and will therefore be freed when the OSSL_STORE_INFO is freed. */ static OSSL_STORE_INFO *store_info_new(int type, void *data) { OSSL_STORE_INFO *info = OPENSSL_zalloc(sizeof(*info)); if (info == NULL) return NULL; info->type = type; info->_.data = data; return info; } OSSL_STORE_INFO *OSSL_STORE_INFO_new_NAME(char *name) { OSSL_STORE_INFO *info = store_info_new(OSSL_STORE_INFO_NAME, NULL); if (info == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_NEW_NAME, ERR_R_MALLOC_FAILURE); return NULL; } info->_.name.name = name; info->_.name.desc = NULL; return info; } int OSSL_STORE_INFO_set0_NAME_description(OSSL_STORE_INFO *info, char *desc) { if (info->type != OSSL_STORE_INFO_NAME) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_SET0_NAME_DESCRIPTION, ERR_R_PASSED_INVALID_ARGUMENT); return 0; } info->_.name.desc = desc; return 1; } OSSL_STORE_INFO *OSSL_STORE_INFO_new_PARAMS(EVP_PKEY *params) { OSSL_STORE_INFO *info = store_info_new(OSSL_STORE_INFO_PARAMS, params); if (info == NULL) OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_NEW_PARAMS, ERR_R_MALLOC_FAILURE); return info; } OSSL_STORE_INFO *OSSL_STORE_INFO_new_PKEY(EVP_PKEY *pkey) { OSSL_STORE_INFO *info = store_info_new(OSSL_STORE_INFO_PKEY, pkey); if (info == NULL) OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_NEW_PKEY, ERR_R_MALLOC_FAILURE); return info; } OSSL_STORE_INFO *OSSL_STORE_INFO_new_CERT(X509 *x509) { OSSL_STORE_INFO *info = store_info_new(OSSL_STORE_INFO_CERT, x509); if (info == NULL) OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_NEW_CERT, ERR_R_MALLOC_FAILURE); return info; } OSSL_STORE_INFO *OSSL_STORE_INFO_new_CRL(X509_CRL *crl) { OSSL_STORE_INFO *info = store_info_new(OSSL_STORE_INFO_CRL, crl); if (info == NULL) OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_NEW_CRL, ERR_R_MALLOC_FAILURE); return info; } /* * Functions to try to extract data from a OSSL_STORE_INFO. */ int OSSL_STORE_INFO_get_type(const OSSL_STORE_INFO *info) { return info->type; } const char *OSSL_STORE_INFO_get0_NAME(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_NAME) return info->_.name.name; return NULL; } char *OSSL_STORE_INFO_get1_NAME(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_NAME) { char *ret = OPENSSL_strdup(info->_.name.name); if (ret == NULL) OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME, ERR_R_MALLOC_FAILURE); return ret; } OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME, OSSL_STORE_R_NOT_A_NAME); return NULL; } const char *OSSL_STORE_INFO_get0_NAME_description(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_NAME) return info->_.name.desc; return NULL; } char *OSSL_STORE_INFO_get1_NAME_description(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_NAME) { char *ret = OPENSSL_strdup(info->_.name.desc ? info->_.name.desc : ""); if (ret == NULL) OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME_DESCRIPTION, ERR_R_MALLOC_FAILURE); return ret; } OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_NAME_DESCRIPTION, OSSL_STORE_R_NOT_A_NAME); return NULL; } EVP_PKEY *OSSL_STORE_INFO_get0_PARAMS(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_PARAMS) return info->_.params; return NULL; } EVP_PKEY *OSSL_STORE_INFO_get1_PARAMS(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_PARAMS) { EVP_PKEY_up_ref(info->_.params); return info->_.params; } OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_PARAMS, OSSL_STORE_R_NOT_PARAMETERS); return NULL; } EVP_PKEY *OSSL_STORE_INFO_get0_PKEY(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_PKEY) return info->_.pkey; return NULL; } EVP_PKEY *OSSL_STORE_INFO_get1_PKEY(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_PKEY) { EVP_PKEY_up_ref(info->_.pkey); return info->_.pkey; } OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_PKEY, OSSL_STORE_R_NOT_A_KEY); return NULL; } X509 *OSSL_STORE_INFO_get0_CERT(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_CERT) return info->_.x509; return NULL; } X509 *OSSL_STORE_INFO_get1_CERT(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_CERT) { X509_up_ref(info->_.x509); return info->_.x509; } OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_CERT, OSSL_STORE_R_NOT_A_CERTIFICATE); return NULL; } X509_CRL *OSSL_STORE_INFO_get0_CRL(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_CRL) return info->_.crl; return NULL; } X509_CRL *OSSL_STORE_INFO_get1_CRL(const OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_CRL) { X509_CRL_up_ref(info->_.crl); return info->_.crl; } OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_GET1_CRL, OSSL_STORE_R_NOT_A_CRL); return NULL; } /* * Free the OSSL_STORE_INFO */ void OSSL_STORE_INFO_free(OSSL_STORE_INFO *info) { if (info != NULL) { switch (info->type) { case OSSL_STORE_INFO_EMBEDDED: BUF_MEM_free(info->_.embedded.blob); OPENSSL_free(info->_.embedded.pem_name); break; case OSSL_STORE_INFO_NAME: OPENSSL_free(info->_.name.name); OPENSSL_free(info->_.name.desc); break; case OSSL_STORE_INFO_PARAMS: EVP_PKEY_free(info->_.params); break; case OSSL_STORE_INFO_PKEY: EVP_PKEY_free(info->_.pkey); break; case OSSL_STORE_INFO_CERT: X509_free(info->_.x509); break; case OSSL_STORE_INFO_CRL: X509_CRL_free(info->_.crl); break; } OPENSSL_free(info); } } int OSSL_STORE_supports_search(OSSL_STORE_CTX *ctx, int search_type) { OSSL_STORE_SEARCH tmp_search; if (ctx->loader->find == NULL) return 0; tmp_search.search_type = search_type; return ctx->loader->find(NULL, &tmp_search); } /* Search term constructors */ OSSL_STORE_SEARCH *OSSL_STORE_SEARCH_by_name(X509_NAME *name) { OSSL_STORE_SEARCH *search = OPENSSL_zalloc(sizeof(*search)); if (search == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_SEARCH_BY_NAME, ERR_R_MALLOC_FAILURE); return NULL; } search->search_type = OSSL_STORE_SEARCH_BY_NAME; search->name = name; return search; } OSSL_STORE_SEARCH *OSSL_STORE_SEARCH_by_issuer_serial(X509_NAME *name, const ASN1_INTEGER *serial) { OSSL_STORE_SEARCH *search = OPENSSL_zalloc(sizeof(*search)); if (search == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_SEARCH_BY_ISSUER_SERIAL, ERR_R_MALLOC_FAILURE); return NULL; } search->search_type = OSSL_STORE_SEARCH_BY_ISSUER_SERIAL; search->name = name; search->serial = serial; return search; } OSSL_STORE_SEARCH *OSSL_STORE_SEARCH_by_key_fingerprint(const EVP_MD *digest, const unsigned char *bytes, size_t len) { OSSL_STORE_SEARCH *search = OPENSSL_zalloc(sizeof(*search)); if (search == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT, ERR_R_MALLOC_FAILURE); return NULL; } if (digest != NULL && len != (size_t)EVP_MD_size(digest)) { char buf1[20], buf2[20]; BIO_snprintf(buf1, sizeof(buf1), "%d", EVP_MD_size(digest)); BIO_snprintf(buf2, sizeof(buf2), "%zu", len); OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT, OSSL_STORE_R_FINGERPRINT_SIZE_DOES_NOT_MATCH_DIGEST); ERR_add_error_data(5, EVP_MD_name(digest), " size is ", buf1, ", fingerprint size is ", buf2); } search->search_type = OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT; search->digest = digest; search->string = bytes; search->stringlength = len; return search; } OSSL_STORE_SEARCH *OSSL_STORE_SEARCH_by_alias(const char *alias) { OSSL_STORE_SEARCH *search = OPENSSL_zalloc(sizeof(*search)); if (search == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_SEARCH_BY_ALIAS, ERR_R_MALLOC_FAILURE); return NULL; } search->search_type = OSSL_STORE_SEARCH_BY_ALIAS; search->string = (const unsigned char *)alias; search->stringlength = strlen(alias); return search; } /* Search term destructor */ void OSSL_STORE_SEARCH_free(OSSL_STORE_SEARCH *search) { OPENSSL_free(search); } /* Search term accessors */ int OSSL_STORE_SEARCH_get_type(const OSSL_STORE_SEARCH *criterion) { return criterion->search_type; } X509_NAME *OSSL_STORE_SEARCH_get0_name(OSSL_STORE_SEARCH *criterion) { return criterion->name; } const ASN1_INTEGER *OSSL_STORE_SEARCH_get0_serial(const OSSL_STORE_SEARCH *criterion) { return criterion->serial; } const unsigned char *OSSL_STORE_SEARCH_get0_bytes(const OSSL_STORE_SEARCH *criterion, size_t *length) { *length = criterion->stringlength; return criterion->string; } const char *OSSL_STORE_SEARCH_get0_string(const OSSL_STORE_SEARCH *criterion) { return (const char *)criterion->string; } const EVP_MD *OSSL_STORE_SEARCH_get0_digest(const OSSL_STORE_SEARCH *criterion) { return criterion->digest; } /* Internal functions */ OSSL_STORE_INFO *ossl_store_info_new_EMBEDDED(const char *new_pem_name, BUF_MEM *embedded) { OSSL_STORE_INFO *info = store_info_new(OSSL_STORE_INFO_EMBEDDED, NULL); if (info == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_NEW_EMBEDDED, ERR_R_MALLOC_FAILURE); return NULL; } info->_.embedded.blob = embedded; info->_.embedded.pem_name = new_pem_name == NULL ? NULL : OPENSSL_strdup(new_pem_name); if (new_pem_name != NULL && info->_.embedded.pem_name == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_INFO_NEW_EMBEDDED, ERR_R_MALLOC_FAILURE); OSSL_STORE_INFO_free(info); info = NULL; } return info; } BUF_MEM *ossl_store_info_get0_EMBEDDED_buffer(OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_EMBEDDED) return info->_.embedded.blob; return NULL; } char *ossl_store_info_get0_EMBEDDED_pem_name(OSSL_STORE_INFO *info) { if (info->type == OSSL_STORE_INFO_EMBEDDED) return info->_.embedded.pem_name; return NULL; } OSSL_STORE_CTX *ossl_store_attach_pem_bio(BIO *bp, const UI_METHOD *ui_method, void *ui_data) { OSSL_STORE_CTX *ctx = NULL; const OSSL_STORE_LOADER *loader = NULL; OSSL_STORE_LOADER_CTX *loader_ctx = NULL; if ((loader = ossl_store_get0_loader_int("file")) == NULL || ((loader_ctx = ossl_store_file_attach_pem_bio_int(bp)) == NULL)) goto done; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_ATTACH_PEM_BIO, ERR_R_MALLOC_FAILURE); goto done; } ctx->loader = loader; ctx->loader_ctx = loader_ctx; loader_ctx = NULL; ctx->ui_method = ui_method; ctx->ui_data = ui_data; ctx->post_process = NULL; ctx->post_process_data = NULL; done: if (loader_ctx != NULL) /* * We ignore a returned error because we will return NULL anyway in * this case, so if something goes wrong when closing, that'll simply * just add another entry on the error stack. */ (void)loader->close(loader_ctx); return ctx; } int ossl_store_detach_pem_bio(OSSL_STORE_CTX *ctx) { int loader_ret = ossl_store_file_detach_pem_bio_int(ctx->loader_ctx); OPENSSL_free(ctx); return loader_ret; } openssl-1.1.1f/crypto/store/store_local.h000066400000000000000000000072201364063235100205020ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/thread_once.h" #include #include #include #include #include #include /*- * OSSL_STORE_INFO stuff * --------------------- */ struct ossl_store_info_st { int type; union { void *data; /* used internally as generic pointer */ struct { BUF_MEM *blob; char *pem_name; } embedded; /* when type == OSSL_STORE_INFO_EMBEDDED */ struct { char *name; char *desc; } name; /* when type == OSSL_STORE_INFO_NAME */ EVP_PKEY *params; /* when type == OSSL_STORE_INFO_PARAMS */ EVP_PKEY *pkey; /* when type == OSSL_STORE_INFO_PKEY */ X509 *x509; /* when type == OSSL_STORE_INFO_CERT */ X509_CRL *crl; /* when type == OSSL_STORE_INFO_CRL */ } _; }; DEFINE_STACK_OF(OSSL_STORE_INFO) /* * EMBEDDED is a special type of OSSL_STORE_INFO, specially for the file * handlers. It should never reach a calling application or any engine. * However, it can be used by a FILE_HANDLER's try_decode function to signal * that it has decoded the incoming blob into a new blob, and that the * attempted decoding should be immediately restarted with the new blob, using * the new PEM name. */ /* * Because this is an internal type, we don't make it public. */ #define OSSL_STORE_INFO_EMBEDDED -1 OSSL_STORE_INFO *ossl_store_info_new_EMBEDDED(const char *new_pem_name, BUF_MEM *embedded); BUF_MEM *ossl_store_info_get0_EMBEDDED_buffer(OSSL_STORE_INFO *info); char *ossl_store_info_get0_EMBEDDED_pem_name(OSSL_STORE_INFO *info); /*- * OSSL_STORE_SEARCH stuff * ----------------------- */ struct ossl_store_search_st { int search_type; /* * Used by OSSL_STORE_SEARCH_BY_NAME and * OSSL_STORE_SEARCH_BY_ISSUER_SERIAL */ X509_NAME *name; /* Used by OSSL_STORE_SEARCH_BY_ISSUER_SERIAL */ const ASN1_INTEGER *serial; /* Used by OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT */ const EVP_MD *digest; /* * Used by OSSL_STORE_SEARCH_BY_KEY_FINGERPRINT and * OSSL_STORE_SEARCH_BY_ALIAS */ const unsigned char *string; size_t stringlength; }; /*- * OSSL_STORE_LOADER stuff * ----------------------- */ int ossl_store_register_loader_int(OSSL_STORE_LOADER *loader); OSSL_STORE_LOADER *ossl_store_unregister_loader_int(const char *scheme); /* loader stuff */ struct ossl_store_loader_st { const char *scheme; ENGINE *engine; OSSL_STORE_open_fn open; OSSL_STORE_ctrl_fn ctrl; OSSL_STORE_expect_fn expect; OSSL_STORE_find_fn find; OSSL_STORE_load_fn load; OSSL_STORE_eof_fn eof; OSSL_STORE_error_fn error; OSSL_STORE_close_fn close; }; DEFINE_LHASH_OF(OSSL_STORE_LOADER); const OSSL_STORE_LOADER *ossl_store_get0_loader_int(const char *scheme); void ossl_store_destroy_loaders_int(void); /*- * OSSL_STORE init stuff * --------------------- */ int ossl_store_init_once(void); int ossl_store_file_loader_init(void); /*- * 'file' scheme stuff * ------------------- */ OSSL_STORE_LOADER_CTX *ossl_store_file_attach_pem_bio_int(BIO *bp); int ossl_store_file_detach_pem_bio_int(OSSL_STORE_LOADER_CTX *ctx); openssl-1.1.1f/crypto/store/store_register.c000066400000000000000000000200341364063235100212250ustar00rootroot00000000000000/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include #include #include #include "store_local.h" static CRYPTO_RWLOCK *registry_lock; static CRYPTO_ONCE registry_init = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(do_registry_init) { registry_lock = CRYPTO_THREAD_lock_new(); return registry_lock != NULL; } /* * Functions for manipulating OSSL_STORE_LOADERs */ OSSL_STORE_LOADER *OSSL_STORE_LOADER_new(ENGINE *e, const char *scheme) { OSSL_STORE_LOADER *res = NULL; /* * We usually don't check NULL arguments. For loaders, though, the * scheme is crucial and must never be NULL, or the user will get * mysterious errors when trying to register the created loader * later on. */ if (scheme == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_LOADER_NEW, OSSL_STORE_R_INVALID_SCHEME); return NULL; } if ((res = OPENSSL_zalloc(sizeof(*res))) == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_LOADER_NEW, ERR_R_MALLOC_FAILURE); return NULL; } res->engine = e; res->scheme = scheme; return res; } const ENGINE *OSSL_STORE_LOADER_get0_engine(const OSSL_STORE_LOADER *loader) { return loader->engine; } const char *OSSL_STORE_LOADER_get0_scheme(const OSSL_STORE_LOADER *loader) { return loader->scheme; } int OSSL_STORE_LOADER_set_open(OSSL_STORE_LOADER *loader, OSSL_STORE_open_fn open_function) { loader->open = open_function; return 1; } int OSSL_STORE_LOADER_set_ctrl(OSSL_STORE_LOADER *loader, OSSL_STORE_ctrl_fn ctrl_function) { loader->ctrl = ctrl_function; return 1; } int OSSL_STORE_LOADER_set_expect(OSSL_STORE_LOADER *loader, OSSL_STORE_expect_fn expect_function) { loader->expect = expect_function; return 1; } int OSSL_STORE_LOADER_set_find(OSSL_STORE_LOADER *loader, OSSL_STORE_find_fn find_function) { loader->find = find_function; return 1; } int OSSL_STORE_LOADER_set_load(OSSL_STORE_LOADER *loader, OSSL_STORE_load_fn load_function) { loader->load = load_function; return 1; } int OSSL_STORE_LOADER_set_eof(OSSL_STORE_LOADER *loader, OSSL_STORE_eof_fn eof_function) { loader->eof = eof_function; return 1; } int OSSL_STORE_LOADER_set_error(OSSL_STORE_LOADER *loader, OSSL_STORE_error_fn error_function) { loader->error = error_function; return 1; } int OSSL_STORE_LOADER_set_close(OSSL_STORE_LOADER *loader, OSSL_STORE_close_fn close_function) { loader->close = close_function; return 1; } void OSSL_STORE_LOADER_free(OSSL_STORE_LOADER *loader) { OPENSSL_free(loader); } /* * Functions for registering OSSL_STORE_LOADERs */ static unsigned long store_loader_hash(const OSSL_STORE_LOADER *v) { return OPENSSL_LH_strhash(v->scheme); } static int store_loader_cmp(const OSSL_STORE_LOADER *a, const OSSL_STORE_LOADER *b) { assert(a->scheme != NULL && b->scheme != NULL); return strcmp(a->scheme, b->scheme); } static LHASH_OF(OSSL_STORE_LOADER) *loader_register = NULL; int ossl_store_register_loader_int(OSSL_STORE_LOADER *loader) { const char *scheme = loader->scheme; int ok = 0; /* * Check that the given scheme conforms to correct scheme syntax as per * RFC 3986: * * scheme = ALPHA *( ALPHA / DIGIT / "+" / "-" / "." ) */ if (ossl_isalpha(*scheme)) while (*scheme != '\0' && (ossl_isalpha(*scheme) || ossl_isdigit(*scheme) || strchr("+-.", *scheme) != NULL)) scheme++; if (*scheme != '\0') { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_REGISTER_LOADER_INT, OSSL_STORE_R_INVALID_SCHEME); ERR_add_error_data(2, "scheme=", loader->scheme); return 0; } /* Check that functions we absolutely require are present */ if (loader->open == NULL || loader->load == NULL || loader->eof == NULL || loader->error == NULL || loader->close == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_REGISTER_LOADER_INT, OSSL_STORE_R_LOADER_INCOMPLETE); return 0; } if (!RUN_ONCE(®istry_init, do_registry_init)) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_REGISTER_LOADER_INT, ERR_R_MALLOC_FAILURE); return 0; } CRYPTO_THREAD_write_lock(registry_lock); if (loader_register == NULL) { loader_register = lh_OSSL_STORE_LOADER_new(store_loader_hash, store_loader_cmp); } if (loader_register != NULL && (lh_OSSL_STORE_LOADER_insert(loader_register, loader) != NULL || lh_OSSL_STORE_LOADER_error(loader_register) == 0)) ok = 1; CRYPTO_THREAD_unlock(registry_lock); return ok; } int OSSL_STORE_register_loader(OSSL_STORE_LOADER *loader) { if (!ossl_store_init_once()) return 0; return ossl_store_register_loader_int(loader); } const OSSL_STORE_LOADER *ossl_store_get0_loader_int(const char *scheme) { OSSL_STORE_LOADER template; OSSL_STORE_LOADER *loader = NULL; template.scheme = scheme; template.open = NULL; template.load = NULL; template.eof = NULL; template.close = NULL; if (!ossl_store_init_once()) return NULL; if (!RUN_ONCE(®istry_init, do_registry_init)) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_GET0_LOADER_INT, ERR_R_MALLOC_FAILURE); return NULL; } CRYPTO_THREAD_write_lock(registry_lock); loader = lh_OSSL_STORE_LOADER_retrieve(loader_register, &template); if (loader == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_GET0_LOADER_INT, OSSL_STORE_R_UNREGISTERED_SCHEME); ERR_add_error_data(2, "scheme=", scheme); } CRYPTO_THREAD_unlock(registry_lock); return loader; } OSSL_STORE_LOADER *ossl_store_unregister_loader_int(const char *scheme) { OSSL_STORE_LOADER template; OSSL_STORE_LOADER *loader = NULL; template.scheme = scheme; template.open = NULL; template.load = NULL; template.eof = NULL; template.close = NULL; if (!RUN_ONCE(®istry_init, do_registry_init)) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_UNREGISTER_LOADER_INT, ERR_R_MALLOC_FAILURE); return NULL; } CRYPTO_THREAD_write_lock(registry_lock); loader = lh_OSSL_STORE_LOADER_delete(loader_register, &template); if (loader == NULL) { OSSL_STOREerr(OSSL_STORE_F_OSSL_STORE_UNREGISTER_LOADER_INT, OSSL_STORE_R_UNREGISTERED_SCHEME); ERR_add_error_data(2, "scheme=", scheme); } CRYPTO_THREAD_unlock(registry_lock); return loader; } OSSL_STORE_LOADER *OSSL_STORE_unregister_loader(const char *scheme) { if (!ossl_store_init_once()) return 0; return ossl_store_unregister_loader_int(scheme); } void ossl_store_destroy_loaders_int(void) { assert(lh_OSSL_STORE_LOADER_num_items(loader_register) == 0); lh_OSSL_STORE_LOADER_free(loader_register); loader_register = NULL; CRYPTO_THREAD_lock_free(registry_lock); registry_lock = NULL; } /* * Functions to list OSSL_STORE loaders */ IMPLEMENT_LHASH_DOALL_ARG_CONST(OSSL_STORE_LOADER, void); int OSSL_STORE_do_all_loaders(void (*do_function) (const OSSL_STORE_LOADER *loader, void *do_arg), void *do_arg) { lh_OSSL_STORE_LOADER_doall_void(loader_register, do_function, do_arg); return 1; } openssl-1.1.1f/crypto/store/store_strings.c000066400000000000000000000016151364063235100210760ustar00rootroot00000000000000/* * Copyright 2016-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include static char *type_strings[] = { "Name", /* OSSL_STORE_INFO_NAME */ "Parameters", /* OSSL_STORE_INFO_PARAMS */ "Pkey", /* OSSL_STORE_INFO_PKEY */ "Certificate", /* OSSL_STORE_INFO_CERT */ "CRL" /* OSSL_STORE_INFO_CRL */ }; const char *OSSL_STORE_INFO_type_string(int type) { int types = sizeof(type_strings) / sizeof(type_strings[0]); if (type < 1 || type > types) return NULL; return type_strings[type - 1]; } openssl-1.1.1f/crypto/threads_none.c000066400000000000000000000055651364063235100175160ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #if !defined(OPENSSL_THREADS) || defined(CRYPTO_TDEBUG) # if defined(OPENSSL_SYS_UNIX) # include # include # endif CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) { CRYPTO_RWLOCK *lock; if ((lock = OPENSSL_zalloc(sizeof(unsigned int))) == NULL) { /* Don't set error, to avoid recursion blowup. */ return NULL; } *(unsigned int *)lock = 1; return lock; } int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) { if (!ossl_assert(*(unsigned int *)lock == 1)) return 0; return 1; } int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) { if (!ossl_assert(*(unsigned int *)lock == 1)) return 0; return 1; } int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) { if (!ossl_assert(*(unsigned int *)lock == 1)) return 0; return 1; } void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) { if (lock == NULL) return; *(unsigned int *)lock = 0; OPENSSL_free(lock); return; } int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) { if (*once != 0) return 1; init(); *once = 1; return 1; } #define OPENSSL_CRYPTO_THREAD_LOCAL_KEY_MAX 256 static void *thread_local_storage[OPENSSL_CRYPTO_THREAD_LOCAL_KEY_MAX]; int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) { static unsigned int thread_local_key = 0; if (thread_local_key >= OPENSSL_CRYPTO_THREAD_LOCAL_KEY_MAX) return 0; *key = thread_local_key++; thread_local_storage[*key] = NULL; return 1; } void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) { if (*key >= OPENSSL_CRYPTO_THREAD_LOCAL_KEY_MAX) return NULL; return thread_local_storage[*key]; } int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) { if (*key >= OPENSSL_CRYPTO_THREAD_LOCAL_KEY_MAX) return 0; thread_local_storage[*key] = val; return 1; } int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) { *key = OPENSSL_CRYPTO_THREAD_LOCAL_KEY_MAX + 1; return 1; } CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) { return 0; } int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) { return (a == b); } int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) { *val += amount; *ret = *val; return 1; } int openssl_init_fork_handlers(void) { return 0; } int openssl_get_fork_id(void) { # if defined(OPENSSL_SYS_UNIX) return getpid(); # else return 0; # endif } #endif openssl-1.1.1f/crypto/threads_pthread.c000066400000000000000000000101531364063235100201730ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS) # if defined(OPENSSL_SYS_UNIX) # include # include #endif # ifdef PTHREAD_RWLOCK_INITIALIZER # define USE_RWLOCK # endif CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) { # ifdef USE_RWLOCK CRYPTO_RWLOCK *lock; if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) { /* Don't set error, to avoid recursion blowup. */ return NULL; } if (pthread_rwlock_init(lock, NULL) != 0) { OPENSSL_free(lock); return NULL; } # else pthread_mutexattr_t attr; CRYPTO_RWLOCK *lock; if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) { /* Don't set error, to avoid recursion blowup. */ return NULL; } pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); if (pthread_mutex_init(lock, &attr) != 0) { pthread_mutexattr_destroy(&attr); OPENSSL_free(lock); return NULL; } pthread_mutexattr_destroy(&attr); # endif return lock; } int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) { # ifdef USE_RWLOCK if (pthread_rwlock_rdlock(lock) != 0) return 0; # else if (pthread_mutex_lock(lock) != 0) return 0; # endif return 1; } int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) { # ifdef USE_RWLOCK if (pthread_rwlock_wrlock(lock) != 0) return 0; # else if (pthread_mutex_lock(lock) != 0) return 0; # endif return 1; } int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) { # ifdef USE_RWLOCK if (pthread_rwlock_unlock(lock) != 0) return 0; # else if (pthread_mutex_unlock(lock) != 0) return 0; # endif return 1; } void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) { if (lock == NULL) return; # ifdef USE_RWLOCK pthread_rwlock_destroy(lock); # else pthread_mutex_destroy(lock); # endif OPENSSL_free(lock); return; } int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) { if (pthread_once(once, init) != 0) return 0; return 1; } int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) { if (pthread_key_create(key, cleanup) != 0) return 0; return 1; } void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) { return pthread_getspecific(*key); } int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) { if (pthread_setspecific(*key, val) != 0) return 0; return 1; } int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) { if (pthread_key_delete(*key) != 0) return 0; return 1; } CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) { return pthread_self(); } int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) { return pthread_equal(a, b); } int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) { # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) if (__atomic_is_lock_free(sizeof(*val), val)) { *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL); return 1; } # endif if (!CRYPTO_THREAD_write_lock(lock)) return 0; *val += amount; *ret = *val; if (!CRYPTO_THREAD_unlock(lock)) return 0; return 1; } # ifdef OPENSSL_SYS_UNIX static pthread_once_t fork_once_control = PTHREAD_ONCE_INIT; static void fork_once_func(void) { pthread_atfork(OPENSSL_fork_prepare, OPENSSL_fork_parent, OPENSSL_fork_child); } # endif int openssl_init_fork_handlers(void) { # ifdef OPENSSL_SYS_UNIX if (pthread_once(&fork_once_control, fork_once_func) == 0) return 1; # endif return 0; } int openssl_get_fork_id(void) { return getpid(); } #endif openssl-1.1.1f/crypto/threads_win.c000066400000000000000000000075141364063235100173500ustar00rootroot00000000000000/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #if defined(_WIN32) # include #endif #include #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS) CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) { CRYPTO_RWLOCK *lock; if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL) { /* Don't set error, to avoid recursion blowup. */ return NULL; } # if !defined(_WIN32_WCE) /* 0x400 is the spin count value suggested in the documentation */ if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) { OPENSSL_free(lock); return NULL; } # else InitializeCriticalSection(lock); # endif return lock; } int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) { EnterCriticalSection(lock); return 1; } int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) { EnterCriticalSection(lock); return 1; } int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) { LeaveCriticalSection(lock); return 1; } void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) { if (lock == NULL) return; DeleteCriticalSection(lock); OPENSSL_free(lock); return; } # define ONCE_UNINITED 0 # define ONCE_ININIT 1 # define ONCE_DONE 2 /* * We don't use InitOnceExecuteOnce because that isn't available in WinXP which * we still have to support. */ int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) { LONG volatile *lock = (LONG *)once; LONG result; if (*lock == ONCE_DONE) return 1; do { result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED); if (result == ONCE_UNINITED) { init(); *lock = ONCE_DONE; return 1; } } while (result == ONCE_ININIT); return (*lock == ONCE_DONE); } int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) { *key = TlsAlloc(); if (*key == TLS_OUT_OF_INDEXES) return 0; return 1; } void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) { DWORD last_error; void *ret; /* * TlsGetValue clears the last error even on success, so that callers may * distinguish it successfully returning NULL or failing. It is documented * to never fail if the argument is a valid index from TlsAlloc, so we do * not need to handle this. * * However, this error-mangling behavior interferes with the caller's use of * GetLastError. In particular SSL_get_error queries the error queue to * determine whether the caller should look at the OS's errors. To avoid * destroying state, save and restore the Windows error. * * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx */ last_error = GetLastError(); ret = TlsGetValue(*key); SetLastError(last_error); return ret; } int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) { if (TlsSetValue(*key, val) == 0) return 0; return 1; } int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) { if (TlsFree(*key) == 0) return 0; return 1; } CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) { return GetCurrentThreadId(); } int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) { return (a == b); } int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) { *ret = InterlockedExchangeAdd(val, amount) + amount; return 1; } int openssl_init_fork_handlers(void) { return 0; } int openssl_get_fork_id(void) { return 0; } #endif openssl-1.1.1f/crypto/ts/000077500000000000000000000000001364063235100153145ustar00rootroot00000000000000openssl-1.1.1f/crypto/ts/build.info000066400000000000000000000003331364063235100172670ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ ts_err.c ts_req_utils.c ts_req_print.c ts_rsp_utils.c ts_rsp_print.c \ ts_rsp_sign.c ts_rsp_verify.c ts_verify_ctx.c ts_lib.c ts_conf.c \ ts_asn1.c openssl-1.1.1f/crypto/ts/ts_asn1.c000066400000000000000000000214261364063235100170350ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "ts_local.h" ASN1_SEQUENCE(TS_MSG_IMPRINT) = { ASN1_SIMPLE(TS_MSG_IMPRINT, hash_algo, X509_ALGOR), ASN1_SIMPLE(TS_MSG_IMPRINT, hashed_msg, ASN1_OCTET_STRING) } static_ASN1_SEQUENCE_END(TS_MSG_IMPRINT) IMPLEMENT_ASN1_FUNCTIONS_const(TS_MSG_IMPRINT) IMPLEMENT_ASN1_DUP_FUNCTION(TS_MSG_IMPRINT) TS_MSG_IMPRINT *d2i_TS_MSG_IMPRINT_bio(BIO *bp, TS_MSG_IMPRINT **a) { return ASN1_d2i_bio_of(TS_MSG_IMPRINT, TS_MSG_IMPRINT_new, d2i_TS_MSG_IMPRINT, bp, a); } int i2d_TS_MSG_IMPRINT_bio(BIO *bp, TS_MSG_IMPRINT *a) { return ASN1_i2d_bio_of_const(TS_MSG_IMPRINT, i2d_TS_MSG_IMPRINT, bp, a); } #ifndef OPENSSL_NO_STDIO TS_MSG_IMPRINT *d2i_TS_MSG_IMPRINT_fp(FILE *fp, TS_MSG_IMPRINT **a) { return ASN1_d2i_fp_of(TS_MSG_IMPRINT, TS_MSG_IMPRINT_new, d2i_TS_MSG_IMPRINT, fp, a); } int i2d_TS_MSG_IMPRINT_fp(FILE *fp, TS_MSG_IMPRINT *a) { return ASN1_i2d_fp_of_const(TS_MSG_IMPRINT, i2d_TS_MSG_IMPRINT, fp, a); } #endif ASN1_SEQUENCE(TS_REQ) = { ASN1_SIMPLE(TS_REQ, version, ASN1_INTEGER), ASN1_SIMPLE(TS_REQ, msg_imprint, TS_MSG_IMPRINT), ASN1_OPT(TS_REQ, policy_id, ASN1_OBJECT), ASN1_OPT(TS_REQ, nonce, ASN1_INTEGER), ASN1_OPT(TS_REQ, cert_req, ASN1_FBOOLEAN), ASN1_IMP_SEQUENCE_OF_OPT(TS_REQ, extensions, X509_EXTENSION, 0) } static_ASN1_SEQUENCE_END(TS_REQ) IMPLEMENT_ASN1_FUNCTIONS_const(TS_REQ) IMPLEMENT_ASN1_DUP_FUNCTION(TS_REQ) TS_REQ *d2i_TS_REQ_bio(BIO *bp, TS_REQ **a) { return ASN1_d2i_bio_of(TS_REQ, TS_REQ_new, d2i_TS_REQ, bp, a); } int i2d_TS_REQ_bio(BIO *bp, TS_REQ *a) { return ASN1_i2d_bio_of_const(TS_REQ, i2d_TS_REQ, bp, a); } #ifndef OPENSSL_NO_STDIO TS_REQ *d2i_TS_REQ_fp(FILE *fp, TS_REQ **a) { return ASN1_d2i_fp_of(TS_REQ, TS_REQ_new, d2i_TS_REQ, fp, a); } int i2d_TS_REQ_fp(FILE *fp, TS_REQ *a) { return ASN1_i2d_fp_of_const(TS_REQ, i2d_TS_REQ, fp, a); } #endif ASN1_SEQUENCE(TS_ACCURACY) = { ASN1_OPT(TS_ACCURACY, seconds, ASN1_INTEGER), ASN1_IMP_OPT(TS_ACCURACY, millis, ASN1_INTEGER, 0), ASN1_IMP_OPT(TS_ACCURACY, micros, ASN1_INTEGER, 1) } static_ASN1_SEQUENCE_END(TS_ACCURACY) IMPLEMENT_ASN1_FUNCTIONS_const(TS_ACCURACY) IMPLEMENT_ASN1_DUP_FUNCTION(TS_ACCURACY) ASN1_SEQUENCE(TS_TST_INFO) = { ASN1_SIMPLE(TS_TST_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(TS_TST_INFO, policy_id, ASN1_OBJECT), ASN1_SIMPLE(TS_TST_INFO, msg_imprint, TS_MSG_IMPRINT), ASN1_SIMPLE(TS_TST_INFO, serial, ASN1_INTEGER), ASN1_SIMPLE(TS_TST_INFO, time, ASN1_GENERALIZEDTIME), ASN1_OPT(TS_TST_INFO, accuracy, TS_ACCURACY), ASN1_OPT(TS_TST_INFO, ordering, ASN1_FBOOLEAN), ASN1_OPT(TS_TST_INFO, nonce, ASN1_INTEGER), ASN1_EXP_OPT(TS_TST_INFO, tsa, GENERAL_NAME, 0), ASN1_IMP_SEQUENCE_OF_OPT(TS_TST_INFO, extensions, X509_EXTENSION, 1) } static_ASN1_SEQUENCE_END(TS_TST_INFO) IMPLEMENT_ASN1_FUNCTIONS_const(TS_TST_INFO) IMPLEMENT_ASN1_DUP_FUNCTION(TS_TST_INFO) TS_TST_INFO *d2i_TS_TST_INFO_bio(BIO *bp, TS_TST_INFO **a) { return ASN1_d2i_bio_of(TS_TST_INFO, TS_TST_INFO_new, d2i_TS_TST_INFO, bp, a); } int i2d_TS_TST_INFO_bio(BIO *bp, TS_TST_INFO *a) { return ASN1_i2d_bio_of_const(TS_TST_INFO, i2d_TS_TST_INFO, bp, a); } #ifndef OPENSSL_NO_STDIO TS_TST_INFO *d2i_TS_TST_INFO_fp(FILE *fp, TS_TST_INFO **a) { return ASN1_d2i_fp_of(TS_TST_INFO, TS_TST_INFO_new, d2i_TS_TST_INFO, fp, a); } int i2d_TS_TST_INFO_fp(FILE *fp, TS_TST_INFO *a) { return ASN1_i2d_fp_of_const(TS_TST_INFO, i2d_TS_TST_INFO, fp, a); } #endif ASN1_SEQUENCE(TS_STATUS_INFO) = { ASN1_SIMPLE(TS_STATUS_INFO, status, ASN1_INTEGER), ASN1_SEQUENCE_OF_OPT(TS_STATUS_INFO, text, ASN1_UTF8STRING), ASN1_OPT(TS_STATUS_INFO, failure_info, ASN1_BIT_STRING) } static_ASN1_SEQUENCE_END(TS_STATUS_INFO) IMPLEMENT_ASN1_FUNCTIONS_const(TS_STATUS_INFO) IMPLEMENT_ASN1_DUP_FUNCTION(TS_STATUS_INFO) static int ts_resp_set_tst_info(TS_RESP *a) { long status; status = ASN1_INTEGER_get(a->status_info->status); if (a->token) { if (status != 0 && status != 1) { TSerr(TS_F_TS_RESP_SET_TST_INFO, TS_R_TOKEN_PRESENT); return 0; } TS_TST_INFO_free(a->tst_info); a->tst_info = PKCS7_to_TS_TST_INFO(a->token); if (!a->tst_info) { TSerr(TS_F_TS_RESP_SET_TST_INFO, TS_R_PKCS7_TO_TS_TST_INFO_FAILED); return 0; } } else if (status == 0 || status == 1) { TSerr(TS_F_TS_RESP_SET_TST_INFO, TS_R_TOKEN_NOT_PRESENT); return 0; } return 1; } static int ts_resp_cb(int op, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { TS_RESP *ts_resp = (TS_RESP *)*pval; if (op == ASN1_OP_NEW_POST) { ts_resp->tst_info = NULL; } else if (op == ASN1_OP_FREE_POST) { TS_TST_INFO_free(ts_resp->tst_info); } else if (op == ASN1_OP_D2I_POST) { if (ts_resp_set_tst_info(ts_resp) == 0) return 0; } return 1; } ASN1_SEQUENCE_cb(TS_RESP, ts_resp_cb) = { ASN1_SIMPLE(TS_RESP, status_info, TS_STATUS_INFO), ASN1_OPT(TS_RESP, token, PKCS7), } static_ASN1_SEQUENCE_END_cb(TS_RESP, TS_RESP) IMPLEMENT_ASN1_FUNCTIONS_const(TS_RESP) IMPLEMENT_ASN1_DUP_FUNCTION(TS_RESP) TS_RESP *d2i_TS_RESP_bio(BIO *bp, TS_RESP **a) { return ASN1_d2i_bio_of(TS_RESP, TS_RESP_new, d2i_TS_RESP, bp, a); } int i2d_TS_RESP_bio(BIO *bp, TS_RESP *a) { return ASN1_i2d_bio_of_const(TS_RESP, i2d_TS_RESP, bp, a); } #ifndef OPENSSL_NO_STDIO TS_RESP *d2i_TS_RESP_fp(FILE *fp, TS_RESP **a) { return ASN1_d2i_fp_of(TS_RESP, TS_RESP_new, d2i_TS_RESP, fp, a); } int i2d_TS_RESP_fp(FILE *fp, TS_RESP *a) { return ASN1_i2d_fp_of_const(TS_RESP, i2d_TS_RESP, fp, a); } #endif ASN1_SEQUENCE(ESS_ISSUER_SERIAL) = { ASN1_SEQUENCE_OF(ESS_ISSUER_SERIAL, issuer, GENERAL_NAME), ASN1_SIMPLE(ESS_ISSUER_SERIAL, serial, ASN1_INTEGER) } static_ASN1_SEQUENCE_END(ESS_ISSUER_SERIAL) IMPLEMENT_ASN1_FUNCTIONS_const(ESS_ISSUER_SERIAL) IMPLEMENT_ASN1_DUP_FUNCTION(ESS_ISSUER_SERIAL) ASN1_SEQUENCE(ESS_CERT_ID) = { ASN1_SIMPLE(ESS_CERT_ID, hash, ASN1_OCTET_STRING), ASN1_OPT(ESS_CERT_ID, issuer_serial, ESS_ISSUER_SERIAL) } static_ASN1_SEQUENCE_END(ESS_CERT_ID) IMPLEMENT_ASN1_FUNCTIONS_const(ESS_CERT_ID) IMPLEMENT_ASN1_DUP_FUNCTION(ESS_CERT_ID) ASN1_SEQUENCE(ESS_SIGNING_CERT) = { ASN1_SEQUENCE_OF(ESS_SIGNING_CERT, cert_ids, ESS_CERT_ID), ASN1_SEQUENCE_OF_OPT(ESS_SIGNING_CERT, policy_info, POLICYINFO) } static_ASN1_SEQUENCE_END(ESS_SIGNING_CERT) IMPLEMENT_ASN1_FUNCTIONS_const(ESS_SIGNING_CERT) IMPLEMENT_ASN1_DUP_FUNCTION(ESS_SIGNING_CERT) ASN1_SEQUENCE(ESS_CERT_ID_V2) = { ASN1_OPT(ESS_CERT_ID_V2, hash_alg, X509_ALGOR), ASN1_SIMPLE(ESS_CERT_ID_V2, hash, ASN1_OCTET_STRING), ASN1_OPT(ESS_CERT_ID_V2, issuer_serial, ESS_ISSUER_SERIAL) } static_ASN1_SEQUENCE_END(ESS_CERT_ID_V2) IMPLEMENT_ASN1_FUNCTIONS_const(ESS_CERT_ID_V2) IMPLEMENT_ASN1_DUP_FUNCTION(ESS_CERT_ID_V2) ASN1_SEQUENCE(ESS_SIGNING_CERT_V2) = { ASN1_SEQUENCE_OF(ESS_SIGNING_CERT_V2, cert_ids, ESS_CERT_ID_V2), ASN1_SEQUENCE_OF_OPT(ESS_SIGNING_CERT_V2, policy_info, POLICYINFO) } static_ASN1_SEQUENCE_END(ESS_SIGNING_CERT_V2) IMPLEMENT_ASN1_FUNCTIONS_const(ESS_SIGNING_CERT_V2) IMPLEMENT_ASN1_DUP_FUNCTION(ESS_SIGNING_CERT_V2) /* Getting encapsulated TS_TST_INFO object from PKCS7. */ TS_TST_INFO *PKCS7_to_TS_TST_INFO(PKCS7 *token) { PKCS7_SIGNED *pkcs7_signed; PKCS7 *enveloped; ASN1_TYPE *tst_info_wrapper; ASN1_OCTET_STRING *tst_info_der; const unsigned char *p; if (!PKCS7_type_is_signed(token)) { TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_BAD_PKCS7_TYPE); return NULL; } if (PKCS7_get_detached(token)) { TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_DETACHED_CONTENT); return NULL; } pkcs7_signed = token->d.sign; enveloped = pkcs7_signed->contents; if (OBJ_obj2nid(enveloped->type) != NID_id_smime_ct_TSTInfo) { TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_BAD_PKCS7_TYPE); return NULL; } tst_info_wrapper = enveloped->d.other; if (tst_info_wrapper->type != V_ASN1_OCTET_STRING) { TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_BAD_TYPE); return NULL; } tst_info_der = tst_info_wrapper->value.octet_string; p = tst_info_der->data; return d2i_TS_TST_INFO(NULL, &p, tst_info_der->length); } openssl-1.1.1f/crypto/ts/ts_conf.c000066400000000000000000000330101364063235100171100ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include /* Macro definitions for the configuration file. */ #define BASE_SECTION "tsa" #define ENV_DEFAULT_TSA "default_tsa" #define ENV_SERIAL "serial" #define ENV_CRYPTO_DEVICE "crypto_device" #define ENV_SIGNER_CERT "signer_cert" #define ENV_CERTS "certs" #define ENV_SIGNER_KEY "signer_key" #define ENV_SIGNER_DIGEST "signer_digest" #define ENV_DEFAULT_POLICY "default_policy" #define ENV_OTHER_POLICIES "other_policies" #define ENV_DIGESTS "digests" #define ENV_ACCURACY "accuracy" #define ENV_ORDERING "ordering" #define ENV_TSA_NAME "tsa_name" #define ENV_ESS_CERT_ID_CHAIN "ess_cert_id_chain" #define ENV_VALUE_SECS "secs" #define ENV_VALUE_MILLISECS "millisecs" #define ENV_VALUE_MICROSECS "microsecs" #define ENV_CLOCK_PRECISION_DIGITS "clock_precision_digits" #define ENV_VALUE_YES "yes" #define ENV_VALUE_NO "no" #define ENV_ESS_CERT_ID_ALG "ess_cert_id_alg" /* Function definitions for certificate and key loading. */ X509 *TS_CONF_load_cert(const char *file) { BIO *cert = NULL; X509 *x = NULL; if ((cert = BIO_new_file(file, "r")) == NULL) goto end; x = PEM_read_bio_X509_AUX(cert, NULL, NULL, NULL); end: if (x == NULL) TSerr(TS_F_TS_CONF_LOAD_CERT, TS_R_CANNOT_LOAD_CERT); BIO_free(cert); return x; } STACK_OF(X509) *TS_CONF_load_certs(const char *file) { BIO *certs = NULL; STACK_OF(X509) *othercerts = NULL; STACK_OF(X509_INFO) *allcerts = NULL; int i; if ((certs = BIO_new_file(file, "r")) == NULL) goto end; if ((othercerts = sk_X509_new_null()) == NULL) goto end; allcerts = PEM_X509_INFO_read_bio(certs, NULL, NULL, NULL); for (i = 0; i < sk_X509_INFO_num(allcerts); i++) { X509_INFO *xi = sk_X509_INFO_value(allcerts, i); if (xi->x509) { sk_X509_push(othercerts, xi->x509); xi->x509 = NULL; } } end: if (othercerts == NULL) TSerr(TS_F_TS_CONF_LOAD_CERTS, TS_R_CANNOT_LOAD_CERT); sk_X509_INFO_pop_free(allcerts, X509_INFO_free); BIO_free(certs); return othercerts; } EVP_PKEY *TS_CONF_load_key(const char *file, const char *pass) { BIO *key = NULL; EVP_PKEY *pkey = NULL; if ((key = BIO_new_file(file, "r")) == NULL) goto end; pkey = PEM_read_bio_PrivateKey(key, NULL, NULL, (char *)pass); end: if (pkey == NULL) TSerr(TS_F_TS_CONF_LOAD_KEY, TS_R_CANNOT_LOAD_KEY); BIO_free(key); return pkey; } /* Function definitions for handling configuration options. */ static void ts_CONF_lookup_fail(const char *name, const char *tag) { TSerr(TS_F_TS_CONF_LOOKUP_FAIL, TS_R_VAR_LOOKUP_FAILURE); ERR_add_error_data(3, name, "::", tag); } static void ts_CONF_invalid(const char *name, const char *tag) { TSerr(TS_F_TS_CONF_INVALID, TS_R_VAR_BAD_VALUE); ERR_add_error_data(3, name, "::", tag); } const char *TS_CONF_get_tsa_section(CONF *conf, const char *section) { if (!section) { section = NCONF_get_string(conf, BASE_SECTION, ENV_DEFAULT_TSA); if (!section) ts_CONF_lookup_fail(BASE_SECTION, ENV_DEFAULT_TSA); } return section; } int TS_CONF_set_serial(CONF *conf, const char *section, TS_serial_cb cb, TS_RESP_CTX *ctx) { int ret = 0; char *serial = NCONF_get_string(conf, section, ENV_SERIAL); if (!serial) { ts_CONF_lookup_fail(section, ENV_SERIAL); goto err; } TS_RESP_CTX_set_serial_cb(ctx, cb, serial); ret = 1; err: return ret; } #ifndef OPENSSL_NO_ENGINE int TS_CONF_set_crypto_device(CONF *conf, const char *section, const char *device) { int ret = 0; if (device == NULL) device = NCONF_get_string(conf, section, ENV_CRYPTO_DEVICE); if (device && !TS_CONF_set_default_engine(device)) { ts_CONF_invalid(section, ENV_CRYPTO_DEVICE); goto err; } ret = 1; err: return ret; } int TS_CONF_set_default_engine(const char *name) { ENGINE *e = NULL; int ret = 0; if (strcmp(name, "builtin") == 0) return 1; if ((e = ENGINE_by_id(name)) == NULL) goto err; if (strcmp(name, "chil") == 0) ENGINE_ctrl(e, ENGINE_CTRL_CHIL_SET_FORKCHECK, 1, 0, 0); if (!ENGINE_set_default(e, ENGINE_METHOD_ALL)) goto err; ret = 1; err: if (!ret) { TSerr(TS_F_TS_CONF_SET_DEFAULT_ENGINE, TS_R_COULD_NOT_SET_ENGINE); ERR_add_error_data(2, "engine:", name); } ENGINE_free(e); return ret; } #endif int TS_CONF_set_signer_cert(CONF *conf, const char *section, const char *cert, TS_RESP_CTX *ctx) { int ret = 0; X509 *cert_obj = NULL; if (cert == NULL) { cert = NCONF_get_string(conf, section, ENV_SIGNER_CERT); if (cert == NULL) { ts_CONF_lookup_fail(section, ENV_SIGNER_CERT); goto err; } } if ((cert_obj = TS_CONF_load_cert(cert)) == NULL) goto err; if (!TS_RESP_CTX_set_signer_cert(ctx, cert_obj)) goto err; ret = 1; err: X509_free(cert_obj); return ret; } int TS_CONF_set_certs(CONF *conf, const char *section, const char *certs, TS_RESP_CTX *ctx) { int ret = 0; STACK_OF(X509) *certs_obj = NULL; if (certs == NULL) { /* Certificate chain is optional. */ if ((certs = NCONF_get_string(conf, section, ENV_CERTS)) == NULL) goto end; } if ((certs_obj = TS_CONF_load_certs(certs)) == NULL) goto err; if (!TS_RESP_CTX_set_certs(ctx, certs_obj)) goto err; end: ret = 1; err: sk_X509_pop_free(certs_obj, X509_free); return ret; } int TS_CONF_set_signer_key(CONF *conf, const char *section, const char *key, const char *pass, TS_RESP_CTX *ctx) { int ret = 0; EVP_PKEY *key_obj = NULL; if (!key) key = NCONF_get_string(conf, section, ENV_SIGNER_KEY); if (!key) { ts_CONF_lookup_fail(section, ENV_SIGNER_KEY); goto err; } if ((key_obj = TS_CONF_load_key(key, pass)) == NULL) goto err; if (!TS_RESP_CTX_set_signer_key(ctx, key_obj)) goto err; ret = 1; err: EVP_PKEY_free(key_obj); return ret; } int TS_CONF_set_signer_digest(CONF *conf, const char *section, const char *md, TS_RESP_CTX *ctx) { int ret = 0; const EVP_MD *sign_md = NULL; if (md == NULL) md = NCONF_get_string(conf, section, ENV_SIGNER_DIGEST); if (md == NULL) { ts_CONF_lookup_fail(section, ENV_SIGNER_DIGEST); goto err; } sign_md = EVP_get_digestbyname(md); if (sign_md == NULL) { ts_CONF_invalid(section, ENV_SIGNER_DIGEST); goto err; } if (!TS_RESP_CTX_set_signer_digest(ctx, sign_md)) goto err; ret = 1; err: return ret; } int TS_CONF_set_def_policy(CONF *conf, const char *section, const char *policy, TS_RESP_CTX *ctx) { int ret = 0; ASN1_OBJECT *policy_obj = NULL; if (!policy) policy = NCONF_get_string(conf, section, ENV_DEFAULT_POLICY); if (!policy) { ts_CONF_lookup_fail(section, ENV_DEFAULT_POLICY); goto err; } if ((policy_obj = OBJ_txt2obj(policy, 0)) == NULL) { ts_CONF_invalid(section, ENV_DEFAULT_POLICY); goto err; } if (!TS_RESP_CTX_set_def_policy(ctx, policy_obj)) goto err; ret = 1; err: ASN1_OBJECT_free(policy_obj); return ret; } int TS_CONF_set_policies(CONF *conf, const char *section, TS_RESP_CTX *ctx) { int ret = 0; int i; STACK_OF(CONF_VALUE) *list = NULL; char *policies = NCONF_get_string(conf, section, ENV_OTHER_POLICIES); /* If no other policy is specified, that's fine. */ if (policies && (list = X509V3_parse_list(policies)) == NULL) { ts_CONF_invalid(section, ENV_OTHER_POLICIES); goto err; } for (i = 0; i < sk_CONF_VALUE_num(list); ++i) { CONF_VALUE *val = sk_CONF_VALUE_value(list, i); const char *extval = val->value ? val->value : val->name; ASN1_OBJECT *objtmp; if ((objtmp = OBJ_txt2obj(extval, 0)) == NULL) { ts_CONF_invalid(section, ENV_OTHER_POLICIES); goto err; } if (!TS_RESP_CTX_add_policy(ctx, objtmp)) goto err; ASN1_OBJECT_free(objtmp); } ret = 1; err: sk_CONF_VALUE_pop_free(list, X509V3_conf_free); return ret; } int TS_CONF_set_digests(CONF *conf, const char *section, TS_RESP_CTX *ctx) { int ret = 0; int i; STACK_OF(CONF_VALUE) *list = NULL; char *digests = NCONF_get_string(conf, section, ENV_DIGESTS); if (digests == NULL) { ts_CONF_lookup_fail(section, ENV_DIGESTS); goto err; } if ((list = X509V3_parse_list(digests)) == NULL) { ts_CONF_invalid(section, ENV_DIGESTS); goto err; } if (sk_CONF_VALUE_num(list) == 0) { ts_CONF_invalid(section, ENV_DIGESTS); goto err; } for (i = 0; i < sk_CONF_VALUE_num(list); ++i) { CONF_VALUE *val = sk_CONF_VALUE_value(list, i); const char *extval = val->value ? val->value : val->name; const EVP_MD *md; if ((md = EVP_get_digestbyname(extval)) == NULL) { ts_CONF_invalid(section, ENV_DIGESTS); goto err; } if (!TS_RESP_CTX_add_md(ctx, md)) goto err; } ret = 1; err: sk_CONF_VALUE_pop_free(list, X509V3_conf_free); return ret; } int TS_CONF_set_accuracy(CONF *conf, const char *section, TS_RESP_CTX *ctx) { int ret = 0; int i; int secs = 0, millis = 0, micros = 0; STACK_OF(CONF_VALUE) *list = NULL; char *accuracy = NCONF_get_string(conf, section, ENV_ACCURACY); if (accuracy && (list = X509V3_parse_list(accuracy)) == NULL) { ts_CONF_invalid(section, ENV_ACCURACY); goto err; } for (i = 0; i < sk_CONF_VALUE_num(list); ++i) { CONF_VALUE *val = sk_CONF_VALUE_value(list, i); if (strcmp(val->name, ENV_VALUE_SECS) == 0) { if (val->value) secs = atoi(val->value); } else if (strcmp(val->name, ENV_VALUE_MILLISECS) == 0) { if (val->value) millis = atoi(val->value); } else if (strcmp(val->name, ENV_VALUE_MICROSECS) == 0) { if (val->value) micros = atoi(val->value); } else { ts_CONF_invalid(section, ENV_ACCURACY); goto err; } } if (!TS_RESP_CTX_set_accuracy(ctx, secs, millis, micros)) goto err; ret = 1; err: sk_CONF_VALUE_pop_free(list, X509V3_conf_free); return ret; } int TS_CONF_set_clock_precision_digits(CONF *conf, const char *section, TS_RESP_CTX *ctx) { int ret = 0; long digits = 0; /* * If not specified, set the default value to 0, i.e. sec precision */ if (!NCONF_get_number_e(conf, section, ENV_CLOCK_PRECISION_DIGITS, &digits)) digits = 0; if (digits < 0 || digits > TS_MAX_CLOCK_PRECISION_DIGITS) { ts_CONF_invalid(section, ENV_CLOCK_PRECISION_DIGITS); goto err; } if (!TS_RESP_CTX_set_clock_precision_digits(ctx, digits)) goto err; return 1; err: return ret; } static int ts_CONF_add_flag(CONF *conf, const char *section, const char *field, int flag, TS_RESP_CTX *ctx) { const char *value = NCONF_get_string(conf, section, field); if (value) { if (strcmp(value, ENV_VALUE_YES) == 0) TS_RESP_CTX_add_flags(ctx, flag); else if (strcmp(value, ENV_VALUE_NO) != 0) { ts_CONF_invalid(section, field); return 0; } } return 1; } int TS_CONF_set_ordering(CONF *conf, const char *section, TS_RESP_CTX *ctx) { return ts_CONF_add_flag(conf, section, ENV_ORDERING, TS_ORDERING, ctx); } int TS_CONF_set_tsa_name(CONF *conf, const char *section, TS_RESP_CTX *ctx) { return ts_CONF_add_flag(conf, section, ENV_TSA_NAME, TS_TSA_NAME, ctx); } int TS_CONF_set_ess_cert_id_chain(CONF *conf, const char *section, TS_RESP_CTX *ctx) { return ts_CONF_add_flag(conf, section, ENV_ESS_CERT_ID_CHAIN, TS_ESS_CERT_ID_CHAIN, ctx); } int TS_CONF_set_ess_cert_id_digest(CONF *conf, const char *section, TS_RESP_CTX *ctx) { int ret = 0; const EVP_MD *cert_md = NULL; const char *md = NCONF_get_string(conf, section, ENV_ESS_CERT_ID_ALG); if (md == NULL) md = "sha1"; cert_md = EVP_get_digestbyname(md); if (cert_md == NULL) { ts_CONF_invalid(section, ENV_ESS_CERT_ID_ALG); goto err; } if (!TS_RESP_CTX_set_ess_cert_id_digest(ctx, cert_md)) goto err; ret = 1; err: return ret; } openssl-1.1.1f/crypto/ts/ts_err.c000066400000000000000000000214711364063235100167630ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA TS_str_functs[] = { {ERR_PACK(ERR_LIB_TS, TS_F_DEF_SERIAL_CB, 0), "def_serial_cb"}, {ERR_PACK(ERR_LIB_TS, TS_F_DEF_TIME_CB, 0), "def_time_cb"}, {ERR_PACK(ERR_LIB_TS, TS_F_ESS_ADD_SIGNING_CERT, 0), "ess_add_signing_cert"}, {ERR_PACK(ERR_LIB_TS, TS_F_ESS_ADD_SIGNING_CERT_V2, 0), "ess_add_signing_cert_v2"}, {ERR_PACK(ERR_LIB_TS, TS_F_ESS_CERT_ID_NEW_INIT, 0), "ess_CERT_ID_new_init"}, {ERR_PACK(ERR_LIB_TS, TS_F_ESS_CERT_ID_V2_NEW_INIT, 0), "ess_cert_id_v2_new_init"}, {ERR_PACK(ERR_LIB_TS, TS_F_ESS_SIGNING_CERT_NEW_INIT, 0), "ess_SIGNING_CERT_new_init"}, {ERR_PACK(ERR_LIB_TS, TS_F_ESS_SIGNING_CERT_V2_NEW_INIT, 0), "ess_signing_cert_v2_new_init"}, {ERR_PACK(ERR_LIB_TS, TS_F_INT_TS_RESP_VERIFY_TOKEN, 0), "int_ts_RESP_verify_token"}, {ERR_PACK(ERR_LIB_TS, TS_F_PKCS7_TO_TS_TST_INFO, 0), "PKCS7_to_TS_TST_INFO"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_ACCURACY_SET_MICROS, 0), "TS_ACCURACY_set_micros"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_ACCURACY_SET_MILLIS, 0), "TS_ACCURACY_set_millis"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_ACCURACY_SET_SECONDS, 0), "TS_ACCURACY_set_seconds"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CHECK_IMPRINTS, 0), "ts_check_imprints"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CHECK_NONCES, 0), "ts_check_nonces"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CHECK_POLICY, 0), "ts_check_policy"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CHECK_SIGNING_CERTS, 0), "ts_check_signing_certs"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CHECK_STATUS_INFO, 0), "ts_check_status_info"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_COMPUTE_IMPRINT, 0), "ts_compute_imprint"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CONF_INVALID, 0), "ts_CONF_invalid"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CONF_LOAD_CERT, 0), "TS_CONF_load_cert"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CONF_LOAD_CERTS, 0), "TS_CONF_load_certs"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CONF_LOAD_KEY, 0), "TS_CONF_load_key"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CONF_LOOKUP_FAIL, 0), "ts_CONF_lookup_fail"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_CONF_SET_DEFAULT_ENGINE, 0), "TS_CONF_set_default_engine"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_GET_STATUS_TEXT, 0), "ts_get_status_text"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_MSG_IMPRINT_SET_ALGO, 0), "TS_MSG_IMPRINT_set_algo"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_REQ_SET_MSG_IMPRINT, 0), "TS_REQ_set_msg_imprint"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_REQ_SET_NONCE, 0), "TS_REQ_set_nonce"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_REQ_SET_POLICY_ID, 0), "TS_REQ_set_policy_id"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CREATE_RESPONSE, 0), "TS_RESP_create_response"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CREATE_TST_INFO, 0), "ts_RESP_create_tst_info"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_ADD_FAILURE_INFO, 0), "TS_RESP_CTX_add_failure_info"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_ADD_MD, 0), "TS_RESP_CTX_add_md"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_ADD_POLICY, 0), "TS_RESP_CTX_add_policy"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_NEW, 0), "TS_RESP_CTX_new"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_SET_ACCURACY, 0), "TS_RESP_CTX_set_accuracy"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_SET_CERTS, 0), "TS_RESP_CTX_set_certs"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_SET_DEF_POLICY, 0), "TS_RESP_CTX_set_def_policy"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_SET_SIGNER_CERT, 0), "TS_RESP_CTX_set_signer_cert"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_CTX_SET_STATUS_INFO, 0), "TS_RESP_CTX_set_status_info"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_GET_POLICY, 0), "ts_RESP_get_policy"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_SET_GENTIME_WITH_PRECISION, 0), "TS_RESP_set_genTime_with_precision"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_SET_STATUS_INFO, 0), "TS_RESP_set_status_info"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_SET_TST_INFO, 0), "TS_RESP_set_tst_info"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_SIGN, 0), "ts_RESP_sign"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_RESP_VERIFY_SIGNATURE, 0), "TS_RESP_verify_signature"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_TST_INFO_SET_ACCURACY, 0), "TS_TST_INFO_set_accuracy"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_TST_INFO_SET_MSG_IMPRINT, 0), "TS_TST_INFO_set_msg_imprint"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_TST_INFO_SET_NONCE, 0), "TS_TST_INFO_set_nonce"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_TST_INFO_SET_POLICY_ID, 0), "TS_TST_INFO_set_policy_id"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_TST_INFO_SET_SERIAL, 0), "TS_TST_INFO_set_serial"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_TST_INFO_SET_TIME, 0), "TS_TST_INFO_set_time"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_TST_INFO_SET_TSA, 0), "TS_TST_INFO_set_tsa"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_VERIFY, 0), ""}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_VERIFY_CERT, 0), "ts_verify_cert"}, {ERR_PACK(ERR_LIB_TS, TS_F_TS_VERIFY_CTX_NEW, 0), "TS_VERIFY_CTX_new"}, {0, NULL} }; static const ERR_STRING_DATA TS_str_reasons[] = { {ERR_PACK(ERR_LIB_TS, 0, TS_R_BAD_PKCS7_TYPE), "bad pkcs7 type"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_BAD_TYPE), "bad type"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_CANNOT_LOAD_CERT), "cannot load certificate"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_CANNOT_LOAD_KEY), "cannot load private key"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_CERTIFICATE_VERIFY_ERROR), "certificate verify error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_COULD_NOT_SET_ENGINE), "could not set engine"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_COULD_NOT_SET_TIME), "could not set time"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_DETACHED_CONTENT), "detached content"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_ESS_ADD_SIGNING_CERT_ERROR), "ess add signing cert error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_ESS_ADD_SIGNING_CERT_V2_ERROR), "ess add signing cert v2 error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_ESS_SIGNING_CERTIFICATE_ERROR), "ess signing certificate error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_INVALID_NULL_POINTER), "invalid null pointer"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_INVALID_SIGNER_CERTIFICATE_PURPOSE), "invalid signer certificate purpose"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_MESSAGE_IMPRINT_MISMATCH), "message imprint mismatch"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_NONCE_MISMATCH), "nonce mismatch"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_NONCE_NOT_RETURNED), "nonce not returned"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_NO_CONTENT), "no content"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_NO_TIME_STAMP_TOKEN), "no time stamp token"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_PKCS7_ADD_SIGNATURE_ERROR), "pkcs7 add signature error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_PKCS7_ADD_SIGNED_ATTR_ERROR), "pkcs7 add signed attr error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_PKCS7_TO_TS_TST_INFO_FAILED), "pkcs7 to ts tst info failed"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_POLICY_MISMATCH), "policy mismatch"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE), "private key does not match certificate"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_RESPONSE_SETUP_ERROR), "response setup error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_SIGNATURE_FAILURE), "signature failure"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_THERE_MUST_BE_ONE_SIGNER), "there must be one signer"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_TIME_SYSCALL_ERROR), "time syscall error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_TOKEN_NOT_PRESENT), "token not present"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_TOKEN_PRESENT), "token present"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_TSA_NAME_MISMATCH), "tsa name mismatch"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_TSA_UNTRUSTED), "tsa untrusted"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_TST_INFO_SETUP_ERROR), "tst info setup error"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_TS_DATASIGN), "ts datasign"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_UNACCEPTABLE_POLICY), "unacceptable policy"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_UNSUPPORTED_MD_ALGORITHM), "unsupported md algorithm"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_UNSUPPORTED_VERSION), "unsupported version"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_VAR_BAD_VALUE), "var bad value"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_VAR_LOOKUP_FAILURE), "cannot find config variable"}, {ERR_PACK(ERR_LIB_TS, 0, TS_R_WRONG_CONTENT_TYPE), "wrong content type"}, {0, NULL} }; #endif int ERR_load_TS_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(TS_str_functs[0].error) == NULL) { ERR_load_strings_const(TS_str_functs); ERR_load_strings_const(TS_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/ts/ts_lib.c000066400000000000000000000046471364063235100167470ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "ts_local.h" int TS_ASN1_INTEGER_print_bio(BIO *bio, const ASN1_INTEGER *num) { BIGNUM *num_bn; int result = 0; char *hex; num_bn = ASN1_INTEGER_to_BN(num, NULL); if (num_bn == NULL) return -1; if ((hex = BN_bn2hex(num_bn))) { result = BIO_write(bio, "0x", 2) > 0; result = result && BIO_write(bio, hex, strlen(hex)) > 0; OPENSSL_free(hex); } BN_free(num_bn); return result; } int TS_OBJ_print_bio(BIO *bio, const ASN1_OBJECT *obj) { char obj_txt[128]; OBJ_obj2txt(obj_txt, sizeof(obj_txt), obj, 0); BIO_printf(bio, "%s\n", obj_txt); return 1; } int TS_ext_print_bio(BIO *bio, const STACK_OF(X509_EXTENSION) *extensions) { int i, critical, n; X509_EXTENSION *ex; ASN1_OBJECT *obj; BIO_printf(bio, "Extensions:\n"); n = X509v3_get_ext_count(extensions); for (i = 0; i < n; i++) { ex = X509v3_get_ext(extensions, i); obj = X509_EXTENSION_get_object(ex); if (i2a_ASN1_OBJECT(bio, obj) < 0) return 0; critical = X509_EXTENSION_get_critical(ex); BIO_printf(bio, ":%s\n", critical ? " critical" : ""); if (!X509V3_EXT_print(bio, ex, 0, 4)) { BIO_printf(bio, "%4s", ""); ASN1_STRING_print(bio, X509_EXTENSION_get_data(ex)); } BIO_write(bio, "\n", 1); } return 1; } int TS_X509_ALGOR_print_bio(BIO *bio, const X509_ALGOR *alg) { int i = OBJ_obj2nid(alg->algorithm); return BIO_printf(bio, "Hash Algorithm: %s\n", (i == NID_undef) ? "UNKNOWN" : OBJ_nid2ln(i)); } int TS_MSG_IMPRINT_print_bio(BIO *bio, TS_MSG_IMPRINT *a) { ASN1_OCTET_STRING *msg; TS_X509_ALGOR_print_bio(bio, a->hash_algo); BIO_printf(bio, "Message data:\n"); msg = a->hashed_msg; BIO_dump_indent(bio, (const char *)ASN1_STRING_get0_data(msg), ASN1_STRING_length(msg), 4); return 1; } openssl-1.1.1f/crypto/ts/ts_local.h000066400000000000000000000151461364063235100172740ustar00rootroot00000000000000/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- * MessageImprint ::= SEQUENCE { * hashAlgorithm AlgorithmIdentifier, * hashedMessage OCTET STRING } */ struct TS_msg_imprint_st { X509_ALGOR *hash_algo; ASN1_OCTET_STRING *hashed_msg; }; /*- * TimeStampResp ::= SEQUENCE { * status PKIStatusInfo, * timeStampToken TimeStampToken OPTIONAL } */ struct TS_resp_st { TS_STATUS_INFO *status_info; PKCS7 *token; TS_TST_INFO *tst_info; }; /*- * TimeStampReq ::= SEQUENCE { * version INTEGER { v1(1) }, * messageImprint MessageImprint, * --a hash algorithm OID and the hash value of the data to be * --time-stamped * reqPolicy TSAPolicyId OPTIONAL, * nonce INTEGER OPTIONAL, * certReq BOOLEAN DEFAULT FALSE, * extensions [0] IMPLICIT Extensions OPTIONAL } */ struct TS_req_st { ASN1_INTEGER *version; TS_MSG_IMPRINT *msg_imprint; ASN1_OBJECT *policy_id; ASN1_INTEGER *nonce; ASN1_BOOLEAN cert_req; STACK_OF(X509_EXTENSION) *extensions; }; /*- * Accuracy ::= SEQUENCE { * seconds INTEGER OPTIONAL, * millis [0] INTEGER (1..999) OPTIONAL, * micros [1] INTEGER (1..999) OPTIONAL } */ struct TS_accuracy_st { ASN1_INTEGER *seconds; ASN1_INTEGER *millis; ASN1_INTEGER *micros; }; /*- * TSTInfo ::= SEQUENCE { * version INTEGER { v1(1) }, * policy TSAPolicyId, * messageImprint MessageImprint, * -- MUST have the same value as the similar field in * -- TimeStampReq * serialNumber INTEGER, * -- Time-Stamping users MUST be ready to accommodate integers * -- up to 160 bits. * genTime GeneralizedTime, * accuracy Accuracy OPTIONAL, * ordering BOOLEAN DEFAULT FALSE, * nonce INTEGER OPTIONAL, * -- MUST be present if the similar field was present * -- in TimeStampReq. In that case it MUST have the same value. * tsa [0] GeneralName OPTIONAL, * extensions [1] IMPLICIT Extensions OPTIONAL } */ struct TS_tst_info_st { ASN1_INTEGER *version; ASN1_OBJECT *policy_id; TS_MSG_IMPRINT *msg_imprint; ASN1_INTEGER *serial; ASN1_GENERALIZEDTIME *time; TS_ACCURACY *accuracy; ASN1_BOOLEAN ordering; ASN1_INTEGER *nonce; GENERAL_NAME *tsa; STACK_OF(X509_EXTENSION) *extensions; }; struct TS_status_info_st { ASN1_INTEGER *status; STACK_OF(ASN1_UTF8STRING) *text; ASN1_BIT_STRING *failure_info; }; /*- * IssuerSerial ::= SEQUENCE { * issuer GeneralNames, * serialNumber CertificateSerialNumber * } */ struct ESS_issuer_serial { STACK_OF(GENERAL_NAME) *issuer; ASN1_INTEGER *serial; }; /*- * ESSCertID ::= SEQUENCE { * certHash Hash, * issuerSerial IssuerSerial OPTIONAL * } */ struct ESS_cert_id { ASN1_OCTET_STRING *hash; /* Always SHA-1 digest. */ ESS_ISSUER_SERIAL *issuer_serial; }; /*- * SigningCertificate ::= SEQUENCE { * certs SEQUENCE OF ESSCertID, * policies SEQUENCE OF PolicyInformation OPTIONAL * } */ struct ESS_signing_cert { STACK_OF(ESS_CERT_ID) *cert_ids; STACK_OF(POLICYINFO) *policy_info; }; /*- * ESSCertIDv2 ::= SEQUENCE { * hashAlgorithm AlgorithmIdentifier * DEFAULT {algorithm id-sha256}, * certHash Hash, * issuerSerial IssuerSerial OPTIONAL * } */ struct ESS_cert_id_v2_st { X509_ALGOR *hash_alg; /* Default: SHA-256 */ ASN1_OCTET_STRING *hash; ESS_ISSUER_SERIAL *issuer_serial; }; /*- * SigningCertificateV2 ::= SEQUENCE { * certs SEQUENCE OF ESSCertIDv2, * policies SEQUENCE OF PolicyInformation OPTIONAL * } */ struct ESS_signing_cert_v2_st { STACK_OF(ESS_CERT_ID_V2) *cert_ids; STACK_OF(POLICYINFO) *policy_info; }; struct TS_resp_ctx { X509 *signer_cert; EVP_PKEY *signer_key; const EVP_MD *signer_md; const EVP_MD *ess_cert_id_digest; STACK_OF(X509) *certs; /* Certs to include in signed data. */ STACK_OF(ASN1_OBJECT) *policies; /* Acceptable policies. */ ASN1_OBJECT *default_policy; /* It may appear in policies, too. */ STACK_OF(EVP_MD) *mds; /* Acceptable message digests. */ ASN1_INTEGER *seconds; /* accuracy, 0 means not specified. */ ASN1_INTEGER *millis; /* accuracy, 0 means not specified. */ ASN1_INTEGER *micros; /* accuracy, 0 means not specified. */ unsigned clock_precision_digits; /* fraction of seconds in time stamp * token. */ unsigned flags; /* Optional info, see values above. */ /* Callback functions. */ TS_serial_cb serial_cb; void *serial_cb_data; /* User data for serial_cb. */ TS_time_cb time_cb; void *time_cb_data; /* User data for time_cb. */ TS_extension_cb extension_cb; void *extension_cb_data; /* User data for extension_cb. */ /* These members are used only while creating the response. */ TS_REQ *request; TS_RESP *response; TS_TST_INFO *tst_info; }; struct TS_verify_ctx { /* Set this to the union of TS_VFY_... flags you want to carry out. */ unsigned flags; /* Must be set only with TS_VFY_SIGNATURE. certs is optional. */ X509_STORE *store; STACK_OF(X509) *certs; /* Must be set only with TS_VFY_POLICY. */ ASN1_OBJECT *policy; /* * Must be set only with TS_VFY_IMPRINT. If md_alg is NULL, the * algorithm from the response is used. */ X509_ALGOR *md_alg; unsigned char *imprint; unsigned imprint_len; /* Must be set only with TS_VFY_DATA. */ BIO *data; /* Must be set only with TS_VFY_TSA_NAME. */ ASN1_INTEGER *nonce; /* Must be set only with TS_VFY_TSA_NAME. */ GENERAL_NAME *tsa_name; }; openssl-1.1.1f/crypto/ts/ts_req_print.c000066400000000000000000000024231364063235100201720ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ts_local.h" int TS_REQ_print_bio(BIO *bio, TS_REQ *a) { int v; ASN1_OBJECT *policy_id; if (a == NULL) return 0; v = TS_REQ_get_version(a); BIO_printf(bio, "Version: %d\n", v); TS_MSG_IMPRINT_print_bio(bio, a->msg_imprint); BIO_printf(bio, "Policy OID: "); policy_id = TS_REQ_get_policy_id(a); if (policy_id == NULL) BIO_printf(bio, "unspecified\n"); else TS_OBJ_print_bio(bio, policy_id); BIO_printf(bio, "Nonce: "); if (a->nonce == NULL) BIO_printf(bio, "unspecified"); else TS_ASN1_INTEGER_print_bio(bio, a->nonce); BIO_write(bio, "\n", 1); BIO_printf(bio, "Certificate required: %s\n", a->cert_req ? "yes" : "no"); TS_ext_print_bio(bio, a->extensions); return 1; } openssl-1.1.1f/crypto/ts/ts_req_utils.c000066400000000000000000000101221364063235100201710ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ts_local.h" int TS_REQ_set_version(TS_REQ *a, long version) { return ASN1_INTEGER_set(a->version, version); } long TS_REQ_get_version(const TS_REQ *a) { return ASN1_INTEGER_get(a->version); } int TS_REQ_set_msg_imprint(TS_REQ *a, TS_MSG_IMPRINT *msg_imprint) { TS_MSG_IMPRINT *new_msg_imprint; if (a->msg_imprint == msg_imprint) return 1; new_msg_imprint = TS_MSG_IMPRINT_dup(msg_imprint); if (new_msg_imprint == NULL) { TSerr(TS_F_TS_REQ_SET_MSG_IMPRINT, ERR_R_MALLOC_FAILURE); return 0; } TS_MSG_IMPRINT_free(a->msg_imprint); a->msg_imprint = new_msg_imprint; return 1; } TS_MSG_IMPRINT *TS_REQ_get_msg_imprint(TS_REQ *a) { return a->msg_imprint; } int TS_MSG_IMPRINT_set_algo(TS_MSG_IMPRINT *a, X509_ALGOR *alg) { X509_ALGOR *new_alg; if (a->hash_algo == alg) return 1; new_alg = X509_ALGOR_dup(alg); if (new_alg == NULL) { TSerr(TS_F_TS_MSG_IMPRINT_SET_ALGO, ERR_R_MALLOC_FAILURE); return 0; } X509_ALGOR_free(a->hash_algo); a->hash_algo = new_alg; return 1; } X509_ALGOR *TS_MSG_IMPRINT_get_algo(TS_MSG_IMPRINT *a) { return a->hash_algo; } int TS_MSG_IMPRINT_set_msg(TS_MSG_IMPRINT *a, unsigned char *d, int len) { return ASN1_OCTET_STRING_set(a->hashed_msg, d, len); } ASN1_OCTET_STRING *TS_MSG_IMPRINT_get_msg(TS_MSG_IMPRINT *a) { return a->hashed_msg; } int TS_REQ_set_policy_id(TS_REQ *a, const ASN1_OBJECT *policy) { ASN1_OBJECT *new_policy; if (a->policy_id == policy) return 1; new_policy = OBJ_dup(policy); if (new_policy == NULL) { TSerr(TS_F_TS_REQ_SET_POLICY_ID, ERR_R_MALLOC_FAILURE); return 0; } ASN1_OBJECT_free(a->policy_id); a->policy_id = new_policy; return 1; } ASN1_OBJECT *TS_REQ_get_policy_id(TS_REQ *a) { return a->policy_id; } int TS_REQ_set_nonce(TS_REQ *a, const ASN1_INTEGER *nonce) { ASN1_INTEGER *new_nonce; if (a->nonce == nonce) return 1; new_nonce = ASN1_INTEGER_dup(nonce); if (new_nonce == NULL) { TSerr(TS_F_TS_REQ_SET_NONCE, ERR_R_MALLOC_FAILURE); return 0; } ASN1_INTEGER_free(a->nonce); a->nonce = new_nonce; return 1; } const ASN1_INTEGER *TS_REQ_get_nonce(const TS_REQ *a) { return a->nonce; } int TS_REQ_set_cert_req(TS_REQ *a, int cert_req) { a->cert_req = cert_req ? 0xFF : 0x00; return 1; } int TS_REQ_get_cert_req(const TS_REQ *a) { return a->cert_req ? 1 : 0; } STACK_OF(X509_EXTENSION) *TS_REQ_get_exts(TS_REQ *a) { return a->extensions; } void TS_REQ_ext_free(TS_REQ *a) { if (!a) return; sk_X509_EXTENSION_pop_free(a->extensions, X509_EXTENSION_free); a->extensions = NULL; } int TS_REQ_get_ext_count(TS_REQ *a) { return X509v3_get_ext_count(a->extensions); } int TS_REQ_get_ext_by_NID(TS_REQ *a, int nid, int lastpos) { return X509v3_get_ext_by_NID(a->extensions, nid, lastpos); } int TS_REQ_get_ext_by_OBJ(TS_REQ *a, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(a->extensions, obj, lastpos); } int TS_REQ_get_ext_by_critical(TS_REQ *a, int crit, int lastpos) { return X509v3_get_ext_by_critical(a->extensions, crit, lastpos); } X509_EXTENSION *TS_REQ_get_ext(TS_REQ *a, int loc) { return X509v3_get_ext(a->extensions, loc); } X509_EXTENSION *TS_REQ_delete_ext(TS_REQ *a, int loc) { return X509v3_delete_ext(a->extensions, loc); } int TS_REQ_add_ext(TS_REQ *a, X509_EXTENSION *ex, int loc) { return X509v3_add_ext(&a->extensions, ex, loc) != NULL; } void *TS_REQ_get_ext_d2i(TS_REQ *a, int nid, int *crit, int *idx) { return X509V3_get_d2i(a->extensions, nid, crit, idx); } openssl-1.1.1f/crypto/ts/ts_rsp_print.c000066400000000000000000000126221364063235100202110ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ts_local.h" struct status_map_st { int bit; const char *text; }; static int ts_status_map_print(BIO *bio, const struct status_map_st *a, const ASN1_BIT_STRING *v); static int ts_ACCURACY_print_bio(BIO *bio, const TS_ACCURACY *accuracy); int TS_RESP_print_bio(BIO *bio, TS_RESP *a) { BIO_printf(bio, "Status info:\n"); TS_STATUS_INFO_print_bio(bio, a->status_info); BIO_printf(bio, "\nTST info:\n"); if (a->tst_info != NULL) TS_TST_INFO_print_bio(bio, a->tst_info); else BIO_printf(bio, "Not included.\n"); return 1; } int TS_STATUS_INFO_print_bio(BIO *bio, TS_STATUS_INFO *a) { static const char *status_map[] = { "Granted.", "Granted with modifications.", "Rejected.", "Waiting.", "Revocation warning.", "Revoked." }; static const struct status_map_st failure_map[] = { {TS_INFO_BAD_ALG, "unrecognized or unsupported algorithm identifier"}, {TS_INFO_BAD_REQUEST, "transaction not permitted or supported"}, {TS_INFO_BAD_DATA_FORMAT, "the data submitted has the wrong format"}, {TS_INFO_TIME_NOT_AVAILABLE, "the TSA's time source is not available"}, {TS_INFO_UNACCEPTED_POLICY, "the requested TSA policy is not supported by the TSA"}, {TS_INFO_UNACCEPTED_EXTENSION, "the requested extension is not supported by the TSA"}, {TS_INFO_ADD_INFO_NOT_AVAILABLE, "the additional information requested could not be understood " "or is not available"}, {TS_INFO_SYSTEM_FAILURE, "the request cannot be handled due to system failure"}, {-1, NULL} }; long status; int i, lines = 0; BIO_printf(bio, "Status: "); status = ASN1_INTEGER_get(a->status); if (0 <= status && status < (long)OSSL_NELEM(status_map)) BIO_printf(bio, "%s\n", status_map[status]); else BIO_printf(bio, "out of bounds\n"); BIO_printf(bio, "Status description: "); for (i = 0; i < sk_ASN1_UTF8STRING_num(a->text); ++i) { if (i > 0) BIO_puts(bio, "\t"); ASN1_STRING_print_ex(bio, sk_ASN1_UTF8STRING_value(a->text, i), 0); BIO_puts(bio, "\n"); } if (i == 0) BIO_printf(bio, "unspecified\n"); BIO_printf(bio, "Failure info: "); if (a->failure_info != NULL) lines = ts_status_map_print(bio, failure_map, a->failure_info); if (lines == 0) BIO_printf(bio, "unspecified"); BIO_printf(bio, "\n"); return 1; } static int ts_status_map_print(BIO *bio, const struct status_map_st *a, const ASN1_BIT_STRING *v) { int lines = 0; for (; a->bit >= 0; ++a) { if (ASN1_BIT_STRING_get_bit(v, a->bit)) { if (++lines > 1) BIO_printf(bio, ", "); BIO_printf(bio, "%s", a->text); } } return lines; } int TS_TST_INFO_print_bio(BIO *bio, TS_TST_INFO *a) { int v; if (a == NULL) return 0; v = ASN1_INTEGER_get(a->version); BIO_printf(bio, "Version: %d\n", v); BIO_printf(bio, "Policy OID: "); TS_OBJ_print_bio(bio, a->policy_id); TS_MSG_IMPRINT_print_bio(bio, a->msg_imprint); BIO_printf(bio, "Serial number: "); if (a->serial == NULL) BIO_printf(bio, "unspecified"); else TS_ASN1_INTEGER_print_bio(bio, a->serial); BIO_write(bio, "\n", 1); BIO_printf(bio, "Time stamp: "); ASN1_GENERALIZEDTIME_print(bio, a->time); BIO_write(bio, "\n", 1); BIO_printf(bio, "Accuracy: "); if (a->accuracy == NULL) BIO_printf(bio, "unspecified"); else ts_ACCURACY_print_bio(bio, a->accuracy); BIO_write(bio, "\n", 1); BIO_printf(bio, "Ordering: %s\n", a->ordering ? "yes" : "no"); BIO_printf(bio, "Nonce: "); if (a->nonce == NULL) BIO_printf(bio, "unspecified"); else TS_ASN1_INTEGER_print_bio(bio, a->nonce); BIO_write(bio, "\n", 1); BIO_printf(bio, "TSA: "); if (a->tsa == NULL) BIO_printf(bio, "unspecified"); else { STACK_OF(CONF_VALUE) *nval; if ((nval = i2v_GENERAL_NAME(NULL, a->tsa, NULL))) X509V3_EXT_val_prn(bio, nval, 0, 0); sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); } BIO_write(bio, "\n", 1); TS_ext_print_bio(bio, a->extensions); return 1; } static int ts_ACCURACY_print_bio(BIO *bio, const TS_ACCURACY *a) { if (a->seconds != NULL) TS_ASN1_INTEGER_print_bio(bio, a->seconds); else BIO_printf(bio, "unspecified"); BIO_printf(bio, " seconds, "); if (a->millis != NULL) TS_ASN1_INTEGER_print_bio(bio, a->millis); else BIO_printf(bio, "unspecified"); BIO_printf(bio, " millis, "); if (a->micros != NULL) TS_ASN1_INTEGER_print_bio(bio, a->micros); else BIO_printf(bio, "unspecified"); BIO_printf(bio, " micros"); return 1; } openssl-1.1.1f/crypto/ts/ts_rsp_sign.c000066400000000000000000001004371364063235100200170ustar00rootroot00000000000000/* * Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "internal/cryptlib.h" #include #include #include #include #include "ts_local.h" static ASN1_INTEGER *def_serial_cb(struct TS_resp_ctx *, void *); static int def_time_cb(struct TS_resp_ctx *, void *, long *sec, long *usec); static int def_extension_cb(struct TS_resp_ctx *, X509_EXTENSION *, void *); static void ts_RESP_CTX_init(TS_RESP_CTX *ctx); static void ts_RESP_CTX_cleanup(TS_RESP_CTX *ctx); static int ts_RESP_check_request(TS_RESP_CTX *ctx); static ASN1_OBJECT *ts_RESP_get_policy(TS_RESP_CTX *ctx); static TS_TST_INFO *ts_RESP_create_tst_info(TS_RESP_CTX *ctx, ASN1_OBJECT *policy); static int ts_RESP_process_extensions(TS_RESP_CTX *ctx); static int ts_RESP_sign(TS_RESP_CTX *ctx); static ESS_SIGNING_CERT *ess_SIGNING_CERT_new_init(X509 *signcert, STACK_OF(X509) *certs); static ESS_CERT_ID *ess_CERT_ID_new_init(X509 *cert, int issuer_needed); static int ts_TST_INFO_content_new(PKCS7 *p7); static int ess_add_signing_cert(PKCS7_SIGNER_INFO *si, ESS_SIGNING_CERT *sc); static ESS_SIGNING_CERT_V2 *ess_signing_cert_v2_new_init(const EVP_MD *hash_alg, X509 *signcert, STACK_OF(X509) *certs); static ESS_CERT_ID_V2 *ess_cert_id_v2_new_init(const EVP_MD *hash_alg, X509 *cert, int issuer_needed); static int ess_add_signing_cert_v2(PKCS7_SIGNER_INFO *si, ESS_SIGNING_CERT_V2 *sc); static ASN1_GENERALIZEDTIME *TS_RESP_set_genTime_with_precision(ASN1_GENERALIZEDTIME *, long, long, unsigned); /* Default callback for response generation. */ static ASN1_INTEGER *def_serial_cb(struct TS_resp_ctx *ctx, void *data) { ASN1_INTEGER *serial = ASN1_INTEGER_new(); if (serial == NULL) goto err; if (!ASN1_INTEGER_set(serial, 1)) goto err; return serial; err: TSerr(TS_F_DEF_SERIAL_CB, ERR_R_MALLOC_FAILURE); TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Error during serial number generation."); return NULL; } #if defined(OPENSSL_SYS_UNIX) static int def_time_cb(struct TS_resp_ctx *ctx, void *data, long *sec, long *usec) { struct timeval tv; if (gettimeofday(&tv, NULL) != 0) { TSerr(TS_F_DEF_TIME_CB, TS_R_TIME_SYSCALL_ERROR); TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Time is not available."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_TIME_NOT_AVAILABLE); return 0; } *sec = tv.tv_sec; *usec = tv.tv_usec; return 1; } #else static int def_time_cb(struct TS_resp_ctx *ctx, void *data, long *sec, long *usec) { time_t t; if (time(&t) == (time_t)-1) { TSerr(TS_F_DEF_TIME_CB, TS_R_TIME_SYSCALL_ERROR); TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Time is not available."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_TIME_NOT_AVAILABLE); return 0; } *sec = (long)t; *usec = 0; return 1; } #endif static int def_extension_cb(struct TS_resp_ctx *ctx, X509_EXTENSION *ext, void *data) { TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Unsupported extension."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_UNACCEPTED_EXTENSION); return 0; } /* TS_RESP_CTX management functions. */ TS_RESP_CTX *TS_RESP_CTX_new(void) { TS_RESP_CTX *ctx; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) { TSerr(TS_F_TS_RESP_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ctx->signer_md = EVP_sha256(); ctx->serial_cb = def_serial_cb; ctx->time_cb = def_time_cb; ctx->extension_cb = def_extension_cb; return ctx; } void TS_RESP_CTX_free(TS_RESP_CTX *ctx) { if (!ctx) return; X509_free(ctx->signer_cert); EVP_PKEY_free(ctx->signer_key); sk_X509_pop_free(ctx->certs, X509_free); sk_ASN1_OBJECT_pop_free(ctx->policies, ASN1_OBJECT_free); ASN1_OBJECT_free(ctx->default_policy); sk_EVP_MD_free(ctx->mds); /* No EVP_MD_free method exists. */ ASN1_INTEGER_free(ctx->seconds); ASN1_INTEGER_free(ctx->millis); ASN1_INTEGER_free(ctx->micros); OPENSSL_free(ctx); } int TS_RESP_CTX_set_signer_cert(TS_RESP_CTX *ctx, X509 *signer) { if (X509_check_purpose(signer, X509_PURPOSE_TIMESTAMP_SIGN, 0) != 1) { TSerr(TS_F_TS_RESP_CTX_SET_SIGNER_CERT, TS_R_INVALID_SIGNER_CERTIFICATE_PURPOSE); return 0; } X509_free(ctx->signer_cert); ctx->signer_cert = signer; X509_up_ref(ctx->signer_cert); return 1; } int TS_RESP_CTX_set_signer_key(TS_RESP_CTX *ctx, EVP_PKEY *key) { EVP_PKEY_free(ctx->signer_key); ctx->signer_key = key; EVP_PKEY_up_ref(ctx->signer_key); return 1; } int TS_RESP_CTX_set_signer_digest(TS_RESP_CTX *ctx, const EVP_MD *md) { ctx->signer_md = md; return 1; } int TS_RESP_CTX_set_def_policy(TS_RESP_CTX *ctx, const ASN1_OBJECT *def_policy) { ASN1_OBJECT_free(ctx->default_policy); if ((ctx->default_policy = OBJ_dup(def_policy)) == NULL) goto err; return 1; err: TSerr(TS_F_TS_RESP_CTX_SET_DEF_POLICY, ERR_R_MALLOC_FAILURE); return 0; } int TS_RESP_CTX_set_certs(TS_RESP_CTX *ctx, STACK_OF(X509) *certs) { sk_X509_pop_free(ctx->certs, X509_free); ctx->certs = NULL; if (!certs) return 1; if ((ctx->certs = X509_chain_up_ref(certs)) == NULL) { TSerr(TS_F_TS_RESP_CTX_SET_CERTS, ERR_R_MALLOC_FAILURE); return 0; } return 1; } int TS_RESP_CTX_add_policy(TS_RESP_CTX *ctx, const ASN1_OBJECT *policy) { ASN1_OBJECT *copy = NULL; if (ctx->policies == NULL && (ctx->policies = sk_ASN1_OBJECT_new_null()) == NULL) goto err; if ((copy = OBJ_dup(policy)) == NULL) goto err; if (!sk_ASN1_OBJECT_push(ctx->policies, copy)) goto err; return 1; err: TSerr(TS_F_TS_RESP_CTX_ADD_POLICY, ERR_R_MALLOC_FAILURE); ASN1_OBJECT_free(copy); return 0; } int TS_RESP_CTX_add_md(TS_RESP_CTX *ctx, const EVP_MD *md) { if (ctx->mds == NULL && (ctx->mds = sk_EVP_MD_new_null()) == NULL) goto err; if (!sk_EVP_MD_push(ctx->mds, md)) goto err; return 1; err: TSerr(TS_F_TS_RESP_CTX_ADD_MD, ERR_R_MALLOC_FAILURE); return 0; } #define TS_RESP_CTX_accuracy_free(ctx) \ ASN1_INTEGER_free(ctx->seconds); \ ctx->seconds = NULL; \ ASN1_INTEGER_free(ctx->millis); \ ctx->millis = NULL; \ ASN1_INTEGER_free(ctx->micros); \ ctx->micros = NULL; int TS_RESP_CTX_set_accuracy(TS_RESP_CTX *ctx, int secs, int millis, int micros) { TS_RESP_CTX_accuracy_free(ctx); if (secs && ((ctx->seconds = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(ctx->seconds, secs))) goto err; if (millis && ((ctx->millis = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(ctx->millis, millis))) goto err; if (micros && ((ctx->micros = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(ctx->micros, micros))) goto err; return 1; err: TS_RESP_CTX_accuracy_free(ctx); TSerr(TS_F_TS_RESP_CTX_SET_ACCURACY, ERR_R_MALLOC_FAILURE); return 0; } void TS_RESP_CTX_add_flags(TS_RESP_CTX *ctx, int flags) { ctx->flags |= flags; } void TS_RESP_CTX_set_serial_cb(TS_RESP_CTX *ctx, TS_serial_cb cb, void *data) { ctx->serial_cb = cb; ctx->serial_cb_data = data; } void TS_RESP_CTX_set_time_cb(TS_RESP_CTX *ctx, TS_time_cb cb, void *data) { ctx->time_cb = cb; ctx->time_cb_data = data; } void TS_RESP_CTX_set_extension_cb(TS_RESP_CTX *ctx, TS_extension_cb cb, void *data) { ctx->extension_cb = cb; ctx->extension_cb_data = data; } int TS_RESP_CTX_set_status_info(TS_RESP_CTX *ctx, int status, const char *text) { TS_STATUS_INFO *si = NULL; ASN1_UTF8STRING *utf8_text = NULL; int ret = 0; if ((si = TS_STATUS_INFO_new()) == NULL) goto err; if (!ASN1_INTEGER_set(si->status, status)) goto err; if (text) { if ((utf8_text = ASN1_UTF8STRING_new()) == NULL || !ASN1_STRING_set(utf8_text, text, strlen(text))) goto err; if (si->text == NULL && (si->text = sk_ASN1_UTF8STRING_new_null()) == NULL) goto err; if (!sk_ASN1_UTF8STRING_push(si->text, utf8_text)) goto err; utf8_text = NULL; /* Ownership is lost. */ } if (!TS_RESP_set_status_info(ctx->response, si)) goto err; ret = 1; err: if (!ret) TSerr(TS_F_TS_RESP_CTX_SET_STATUS_INFO, ERR_R_MALLOC_FAILURE); TS_STATUS_INFO_free(si); ASN1_UTF8STRING_free(utf8_text); return ret; } int TS_RESP_CTX_set_status_info_cond(TS_RESP_CTX *ctx, int status, const char *text) { int ret = 1; TS_STATUS_INFO *si = ctx->response->status_info; if (ASN1_INTEGER_get(si->status) == TS_STATUS_GRANTED) { ret = TS_RESP_CTX_set_status_info(ctx, status, text); } return ret; } int TS_RESP_CTX_add_failure_info(TS_RESP_CTX *ctx, int failure) { TS_STATUS_INFO *si = ctx->response->status_info; if (si->failure_info == NULL && (si->failure_info = ASN1_BIT_STRING_new()) == NULL) goto err; if (!ASN1_BIT_STRING_set_bit(si->failure_info, failure, 1)) goto err; return 1; err: TSerr(TS_F_TS_RESP_CTX_ADD_FAILURE_INFO, ERR_R_MALLOC_FAILURE); return 0; } TS_REQ *TS_RESP_CTX_get_request(TS_RESP_CTX *ctx) { return ctx->request; } TS_TST_INFO *TS_RESP_CTX_get_tst_info(TS_RESP_CTX *ctx) { return ctx->tst_info; } int TS_RESP_CTX_set_clock_precision_digits(TS_RESP_CTX *ctx, unsigned precision) { if (precision > TS_MAX_CLOCK_PRECISION_DIGITS) return 0; ctx->clock_precision_digits = precision; return 1; } /* Main entry method of the response generation. */ TS_RESP *TS_RESP_create_response(TS_RESP_CTX *ctx, BIO *req_bio) { ASN1_OBJECT *policy; TS_RESP *response; int result = 0; ts_RESP_CTX_init(ctx); if ((ctx->response = TS_RESP_new()) == NULL) { TSerr(TS_F_TS_RESP_CREATE_RESPONSE, ERR_R_MALLOC_FAILURE); goto end; } if ((ctx->request = d2i_TS_REQ_bio(req_bio, NULL)) == NULL) { TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Bad request format or system error."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_DATA_FORMAT); goto end; } if (!TS_RESP_CTX_set_status_info(ctx, TS_STATUS_GRANTED, NULL)) goto end; if (!ts_RESP_check_request(ctx)) goto end; if ((policy = ts_RESP_get_policy(ctx)) == NULL) goto end; if ((ctx->tst_info = ts_RESP_create_tst_info(ctx, policy)) == NULL) goto end; if (!ts_RESP_process_extensions(ctx)) goto end; if (!ts_RESP_sign(ctx)) goto end; result = 1; end: if (!result) { TSerr(TS_F_TS_RESP_CREATE_RESPONSE, TS_R_RESPONSE_SETUP_ERROR); if (ctx->response != NULL) { if (TS_RESP_CTX_set_status_info_cond(ctx, TS_STATUS_REJECTION, "Error during response " "generation.") == 0) { TS_RESP_free(ctx->response); ctx->response = NULL; } } } response = ctx->response; ctx->response = NULL; /* Ownership will be returned to caller. */ ts_RESP_CTX_cleanup(ctx); return response; } /* Initializes the variable part of the context. */ static void ts_RESP_CTX_init(TS_RESP_CTX *ctx) { ctx->request = NULL; ctx->response = NULL; ctx->tst_info = NULL; } /* Cleans up the variable part of the context. */ static void ts_RESP_CTX_cleanup(TS_RESP_CTX *ctx) { TS_REQ_free(ctx->request); ctx->request = NULL; TS_RESP_free(ctx->response); ctx->response = NULL; TS_TST_INFO_free(ctx->tst_info); ctx->tst_info = NULL; } /* Checks the format and content of the request. */ static int ts_RESP_check_request(TS_RESP_CTX *ctx) { TS_REQ *request = ctx->request; TS_MSG_IMPRINT *msg_imprint; X509_ALGOR *md_alg; int md_alg_id; const ASN1_OCTET_STRING *digest; const EVP_MD *md = NULL; int i; if (TS_REQ_get_version(request) != 1) { TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Bad request version."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_REQUEST); return 0; } msg_imprint = request->msg_imprint; md_alg = msg_imprint->hash_algo; md_alg_id = OBJ_obj2nid(md_alg->algorithm); for (i = 0; !md && i < sk_EVP_MD_num(ctx->mds); ++i) { const EVP_MD *current_md = sk_EVP_MD_value(ctx->mds, i); if (md_alg_id == EVP_MD_type(current_md)) md = current_md; } if (!md) { TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Message digest algorithm is " "not supported."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_ALG); return 0; } if (md_alg->parameter && ASN1_TYPE_get(md_alg->parameter) != V_ASN1_NULL) { TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Superfluous message digest " "parameter."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_ALG); return 0; } digest = msg_imprint->hashed_msg; if (digest->length != EVP_MD_size(md)) { TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Bad message digest."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_DATA_FORMAT); return 0; } return 1; } /* Returns the TSA policy based on the requested and acceptable policies. */ static ASN1_OBJECT *ts_RESP_get_policy(TS_RESP_CTX *ctx) { ASN1_OBJECT *requested = ctx->request->policy_id; ASN1_OBJECT *policy = NULL; int i; if (ctx->default_policy == NULL) { TSerr(TS_F_TS_RESP_GET_POLICY, TS_R_INVALID_NULL_POINTER); return NULL; } if (!requested || !OBJ_cmp(requested, ctx->default_policy)) policy = ctx->default_policy; /* Check if the policy is acceptable. */ for (i = 0; !policy && i < sk_ASN1_OBJECT_num(ctx->policies); ++i) { ASN1_OBJECT *current = sk_ASN1_OBJECT_value(ctx->policies, i); if (!OBJ_cmp(requested, current)) policy = current; } if (!policy) { TSerr(TS_F_TS_RESP_GET_POLICY, TS_R_UNACCEPTABLE_POLICY); TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION, "Requested policy is not " "supported."); TS_RESP_CTX_add_failure_info(ctx, TS_INFO_UNACCEPTED_POLICY); } return policy; } /* Creates the TS_TST_INFO object based on the settings of the context. */ static TS_TST_INFO *ts_RESP_create_tst_info(TS_RESP_CTX *ctx, ASN1_OBJECT *policy) { int result = 0; TS_TST_INFO *tst_info = NULL; ASN1_INTEGER *serial = NULL; ASN1_GENERALIZEDTIME *asn1_time = NULL; long sec, usec; TS_ACCURACY *accuracy = NULL; const ASN1_INTEGER *nonce; GENERAL_NAME *tsa_name = NULL; if ((tst_info = TS_TST_INFO_new()) == NULL) goto end; if (!TS_TST_INFO_set_version(tst_info, 1)) goto end; if (!TS_TST_INFO_set_policy_id(tst_info, policy)) goto end; if (!TS_TST_INFO_set_msg_imprint(tst_info, ctx->request->msg_imprint)) goto end; if ((serial = ctx->serial_cb(ctx, ctx->serial_cb_data)) == NULL || !TS_TST_INFO_set_serial(tst_info, serial)) goto end; if (!ctx->time_cb(ctx, ctx->time_cb_data, &sec, &usec) || (asn1_time = TS_RESP_set_genTime_with_precision(NULL, sec, usec, ctx->clock_precision_digits)) == NULL || !TS_TST_INFO_set_time(tst_info, asn1_time)) goto end; if ((ctx->seconds || ctx->millis || ctx->micros) && (accuracy = TS_ACCURACY_new()) == NULL) goto end; if (ctx->seconds && !TS_ACCURACY_set_seconds(accuracy, ctx->seconds)) goto end; if (ctx->millis && !TS_ACCURACY_set_millis(accuracy, ctx->millis)) goto end; if (ctx->micros && !TS_ACCURACY_set_micros(accuracy, ctx->micros)) goto end; if (accuracy && !TS_TST_INFO_set_accuracy(tst_info, accuracy)) goto end; if ((ctx->flags & TS_ORDERING) && !TS_TST_INFO_set_ordering(tst_info, 1)) goto end; if ((nonce = ctx->request->nonce) != NULL && !TS_TST_INFO_set_nonce(tst_info, nonce)) goto end; if (ctx->flags & TS_TSA_NAME) { if ((tsa_name = GENERAL_NAME_new()) == NULL) goto end; tsa_name->type = GEN_DIRNAME; tsa_name->d.dirn = X509_NAME_dup(X509_get_subject_name(ctx->signer_cert)); if (!tsa_name->d.dirn) goto end; if (!TS_TST_INFO_set_tsa(tst_info, tsa_name)) goto end; } result = 1; end: if (!result) { TS_TST_INFO_free(tst_info); tst_info = NULL; TSerr(TS_F_TS_RESP_CREATE_TST_INFO, TS_R_TST_INFO_SETUP_ERROR); TS_RESP_CTX_set_status_info_cond(ctx, TS_STATUS_REJECTION, "Error during TSTInfo " "generation."); } GENERAL_NAME_free(tsa_name); TS_ACCURACY_free(accuracy); ASN1_GENERALIZEDTIME_free(asn1_time); ASN1_INTEGER_free(serial); return tst_info; } /* Processing the extensions of the request. */ static int ts_RESP_process_extensions(TS_RESP_CTX *ctx) { STACK_OF(X509_EXTENSION) *exts = ctx->request->extensions; int i; int ok = 1; for (i = 0; ok && i < sk_X509_EXTENSION_num(exts); ++i) { X509_EXTENSION *ext = sk_X509_EXTENSION_value(exts, i); /* * The last argument was previously (void *)ctx->extension_cb, * but ISO C doesn't permit converting a function pointer to void *. * For lack of better information, I'm placing a NULL there instead. * The callback can pick its own address out from the ctx anyway... */ ok = (*ctx->extension_cb) (ctx, ext, NULL); } return ok; } /* Functions for signing the TS_TST_INFO structure of the context. */ static int ts_RESP_sign(TS_RESP_CTX *ctx) { int ret = 0; PKCS7 *p7 = NULL; PKCS7_SIGNER_INFO *si; STACK_OF(X509) *certs; /* Certificates to include in sc. */ ESS_SIGNING_CERT_V2 *sc2 = NULL; ESS_SIGNING_CERT *sc = NULL; ASN1_OBJECT *oid; BIO *p7bio = NULL; int i; if (!X509_check_private_key(ctx->signer_cert, ctx->signer_key)) { TSerr(TS_F_TS_RESP_SIGN, TS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE); goto err; } if ((p7 = PKCS7_new()) == NULL) { TSerr(TS_F_TS_RESP_SIGN, ERR_R_MALLOC_FAILURE); goto err; } if (!PKCS7_set_type(p7, NID_pkcs7_signed)) goto err; if (!ASN1_INTEGER_set(p7->d.sign->version, 3)) goto err; if (ctx->request->cert_req) { PKCS7_add_certificate(p7, ctx->signer_cert); if (ctx->certs) { for (i = 0; i < sk_X509_num(ctx->certs); ++i) { X509 *cert = sk_X509_value(ctx->certs, i); PKCS7_add_certificate(p7, cert); } } } if ((si = PKCS7_add_signature(p7, ctx->signer_cert, ctx->signer_key, ctx->signer_md)) == NULL) { TSerr(TS_F_TS_RESP_SIGN, TS_R_PKCS7_ADD_SIGNATURE_ERROR); goto err; } oid = OBJ_nid2obj(NID_id_smime_ct_TSTInfo); if (!PKCS7_add_signed_attribute(si, NID_pkcs9_contentType, V_ASN1_OBJECT, oid)) { TSerr(TS_F_TS_RESP_SIGN, TS_R_PKCS7_ADD_SIGNED_ATTR_ERROR); goto err; } certs = ctx->flags & TS_ESS_CERT_ID_CHAIN ? ctx->certs : NULL; if (ctx->ess_cert_id_digest == NULL || ctx->ess_cert_id_digest == EVP_sha1()) { if ((sc = ess_SIGNING_CERT_new_init(ctx->signer_cert, certs)) == NULL) goto err; if (!ess_add_signing_cert(si, sc)) { TSerr(TS_F_TS_RESP_SIGN, TS_R_ESS_ADD_SIGNING_CERT_ERROR); goto err; } } else { sc2 = ess_signing_cert_v2_new_init(ctx->ess_cert_id_digest, ctx->signer_cert, certs); if (sc2 == NULL) goto err; if (!ess_add_signing_cert_v2(si, sc2)) { TSerr(TS_F_TS_RESP_SIGN, TS_R_ESS_ADD_SIGNING_CERT_V2_ERROR); goto err; } } if (!ts_TST_INFO_content_new(p7)) goto err; if ((p7bio = PKCS7_dataInit(p7, NULL)) == NULL) { TSerr(TS_F_TS_RESP_SIGN, ERR_R_MALLOC_FAILURE); goto err; } if (!i2d_TS_TST_INFO_bio(p7bio, ctx->tst_info)) { TSerr(TS_F_TS_RESP_SIGN, TS_R_TS_DATASIGN); goto err; } if (!PKCS7_dataFinal(p7, p7bio)) { TSerr(TS_F_TS_RESP_SIGN, TS_R_TS_DATASIGN); goto err; } TS_RESP_set_tst_info(ctx->response, p7, ctx->tst_info); p7 = NULL; /* Ownership is lost. */ ctx->tst_info = NULL; /* Ownership is lost. */ ret = 1; err: if (!ret) TS_RESP_CTX_set_status_info_cond(ctx, TS_STATUS_REJECTION, "Error during signature " "generation."); BIO_free_all(p7bio); ESS_SIGNING_CERT_V2_free(sc2); ESS_SIGNING_CERT_free(sc); PKCS7_free(p7); return ret; } static ESS_SIGNING_CERT *ess_SIGNING_CERT_new_init(X509 *signcert, STACK_OF(X509) *certs) { ESS_CERT_ID *cid; ESS_SIGNING_CERT *sc = NULL; int i; if ((sc = ESS_SIGNING_CERT_new()) == NULL) goto err; if (sc->cert_ids == NULL && (sc->cert_ids = sk_ESS_CERT_ID_new_null()) == NULL) goto err; if ((cid = ess_CERT_ID_new_init(signcert, 0)) == NULL || !sk_ESS_CERT_ID_push(sc->cert_ids, cid)) goto err; for (i = 0; i < sk_X509_num(certs); ++i) { X509 *cert = sk_X509_value(certs, i); if ((cid = ess_CERT_ID_new_init(cert, 1)) == NULL || !sk_ESS_CERT_ID_push(sc->cert_ids, cid)) goto err; } return sc; err: ESS_SIGNING_CERT_free(sc); TSerr(TS_F_ESS_SIGNING_CERT_NEW_INIT, ERR_R_MALLOC_FAILURE); return NULL; } static ESS_CERT_ID *ess_CERT_ID_new_init(X509 *cert, int issuer_needed) { ESS_CERT_ID *cid = NULL; GENERAL_NAME *name = NULL; unsigned char cert_sha1[SHA_DIGEST_LENGTH]; /* Call for side-effect of computing hash and caching extensions */ X509_check_purpose(cert, -1, 0); if ((cid = ESS_CERT_ID_new()) == NULL) goto err; if (!X509_digest(cert, EVP_sha1(), cert_sha1, NULL)) goto err; if (!ASN1_OCTET_STRING_set(cid->hash, cert_sha1, SHA_DIGEST_LENGTH)) goto err; /* Setting the issuer/serial if requested. */ if (issuer_needed) { if (cid->issuer_serial == NULL && (cid->issuer_serial = ESS_ISSUER_SERIAL_new()) == NULL) goto err; if ((name = GENERAL_NAME_new()) == NULL) goto err; name->type = GEN_DIRNAME; if ((name->d.dirn = X509_NAME_dup(X509_get_issuer_name(cert))) == NULL) goto err; if (!sk_GENERAL_NAME_push(cid->issuer_serial->issuer, name)) goto err; name = NULL; /* Ownership is lost. */ ASN1_INTEGER_free(cid->issuer_serial->serial); if (!(cid->issuer_serial->serial = ASN1_INTEGER_dup(X509_get_serialNumber(cert)))) goto err; } return cid; err: GENERAL_NAME_free(name); ESS_CERT_ID_free(cid); TSerr(TS_F_ESS_CERT_ID_NEW_INIT, ERR_R_MALLOC_FAILURE); return NULL; } static int ts_TST_INFO_content_new(PKCS7 *p7) { PKCS7 *ret = NULL; ASN1_OCTET_STRING *octet_string = NULL; /* Create new encapsulated NID_id_smime_ct_TSTInfo content. */ if ((ret = PKCS7_new()) == NULL) goto err; if ((ret->d.other = ASN1_TYPE_new()) == NULL) goto err; ret->type = OBJ_nid2obj(NID_id_smime_ct_TSTInfo); if ((octet_string = ASN1_OCTET_STRING_new()) == NULL) goto err; ASN1_TYPE_set(ret->d.other, V_ASN1_OCTET_STRING, octet_string); octet_string = NULL; /* Add encapsulated content to signed PKCS7 structure. */ if (!PKCS7_set_content(p7, ret)) goto err; return 1; err: ASN1_OCTET_STRING_free(octet_string); PKCS7_free(ret); return 0; } static int ess_add_signing_cert(PKCS7_SIGNER_INFO *si, ESS_SIGNING_CERT *sc) { ASN1_STRING *seq = NULL; unsigned char *p, *pp = NULL; int len; len = i2d_ESS_SIGNING_CERT(sc, NULL); if ((pp = OPENSSL_malloc(len)) == NULL) { TSerr(TS_F_ESS_ADD_SIGNING_CERT, ERR_R_MALLOC_FAILURE); goto err; } p = pp; i2d_ESS_SIGNING_CERT(sc, &p); if ((seq = ASN1_STRING_new()) == NULL || !ASN1_STRING_set(seq, pp, len)) { TSerr(TS_F_ESS_ADD_SIGNING_CERT, ERR_R_MALLOC_FAILURE); goto err; } OPENSSL_free(pp); pp = NULL; return PKCS7_add_signed_attribute(si, NID_id_smime_aa_signingCertificate, V_ASN1_SEQUENCE, seq); err: ASN1_STRING_free(seq); OPENSSL_free(pp); return 0; } static ESS_SIGNING_CERT_V2 *ess_signing_cert_v2_new_init(const EVP_MD *hash_alg, X509 *signcert, STACK_OF(X509) *certs) { ESS_CERT_ID_V2 *cid = NULL; ESS_SIGNING_CERT_V2 *sc = NULL; int i; if ((sc = ESS_SIGNING_CERT_V2_new()) == NULL) goto err; if ((cid = ess_cert_id_v2_new_init(hash_alg, signcert, 0)) == NULL) goto err; if (!sk_ESS_CERT_ID_V2_push(sc->cert_ids, cid)) goto err; cid = NULL; for (i = 0; i < sk_X509_num(certs); ++i) { X509 *cert = sk_X509_value(certs, i); if ((cid = ess_cert_id_v2_new_init(hash_alg, cert, 1)) == NULL) goto err; if (!sk_ESS_CERT_ID_V2_push(sc->cert_ids, cid)) goto err; cid = NULL; } return sc; err: ESS_SIGNING_CERT_V2_free(sc); ESS_CERT_ID_V2_free(cid); TSerr(TS_F_ESS_SIGNING_CERT_V2_NEW_INIT, ERR_R_MALLOC_FAILURE); return NULL; } static ESS_CERT_ID_V2 *ess_cert_id_v2_new_init(const EVP_MD *hash_alg, X509 *cert, int issuer_needed) { ESS_CERT_ID_V2 *cid = NULL; GENERAL_NAME *name = NULL; unsigned char hash[EVP_MAX_MD_SIZE]; unsigned int hash_len = sizeof(hash); X509_ALGOR *alg = NULL; memset(hash, 0, sizeof(hash)); if ((cid = ESS_CERT_ID_V2_new()) == NULL) goto err; if (hash_alg != EVP_sha256()) { alg = X509_ALGOR_new(); if (alg == NULL) goto err; X509_ALGOR_set_md(alg, hash_alg); if (alg->algorithm == NULL) goto err; cid->hash_alg = alg; alg = NULL; } else { cid->hash_alg = NULL; } if (!X509_digest(cert, hash_alg, hash, &hash_len)) goto err; if (!ASN1_OCTET_STRING_set(cid->hash, hash, hash_len)) goto err; if (issuer_needed) { if ((cid->issuer_serial = ESS_ISSUER_SERIAL_new()) == NULL) goto err; if ((name = GENERAL_NAME_new()) == NULL) goto err; name->type = GEN_DIRNAME; if ((name->d.dirn = X509_NAME_dup(X509_get_issuer_name(cert))) == NULL) goto err; if (!sk_GENERAL_NAME_push(cid->issuer_serial->issuer, name)) goto err; name = NULL; /* Ownership is lost. */ ASN1_INTEGER_free(cid->issuer_serial->serial); cid->issuer_serial->serial = ASN1_INTEGER_dup(X509_get_serialNumber(cert)); if (cid->issuer_serial->serial == NULL) goto err; } return cid; err: X509_ALGOR_free(alg); GENERAL_NAME_free(name); ESS_CERT_ID_V2_free(cid); TSerr(TS_F_ESS_CERT_ID_V2_NEW_INIT, ERR_R_MALLOC_FAILURE); return NULL; } static int ess_add_signing_cert_v2(PKCS7_SIGNER_INFO *si, ESS_SIGNING_CERT_V2 *sc) { ASN1_STRING *seq = NULL; unsigned char *p, *pp = NULL; int len = i2d_ESS_SIGNING_CERT_V2(sc, NULL); if ((pp = OPENSSL_malloc(len)) == NULL) { TSerr(TS_F_ESS_ADD_SIGNING_CERT_V2, ERR_R_MALLOC_FAILURE); goto err; } p = pp; i2d_ESS_SIGNING_CERT_V2(sc, &p); if ((seq = ASN1_STRING_new()) == NULL || !ASN1_STRING_set(seq, pp, len)) { TSerr(TS_F_ESS_ADD_SIGNING_CERT_V2, ERR_R_MALLOC_FAILURE); goto err; } OPENSSL_free(pp); pp = NULL; return PKCS7_add_signed_attribute(si, NID_id_smime_aa_signingCertificateV2, V_ASN1_SEQUENCE, seq); err: ASN1_STRING_free(seq); OPENSSL_free(pp); return 0; } static ASN1_GENERALIZEDTIME *TS_RESP_set_genTime_with_precision( ASN1_GENERALIZEDTIME *asn1_time, long sec, long usec, unsigned precision) { time_t time_sec = (time_t)sec; struct tm *tm = NULL, tm_result; char genTime_str[17 + TS_MAX_CLOCK_PRECISION_DIGITS]; char *p = genTime_str; char *p_end = genTime_str + sizeof(genTime_str); if (precision > TS_MAX_CLOCK_PRECISION_DIGITS) goto err; if ((tm = OPENSSL_gmtime(&time_sec, &tm_result)) == NULL) goto err; /* * Put "genTime_str" in GeneralizedTime format. We work around the * restrictions imposed by rfc3280 (i.e. "GeneralizedTime values MUST * NOT include fractional seconds") and OpenSSL related functions to * meet the rfc3161 requirement: "GeneralizedTime syntax can include * fraction-of-second details". */ p += BIO_snprintf(p, p_end - p, "%04d%02d%02d%02d%02d%02d", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); if (precision > 0) { BIO_snprintf(p, 2 + precision, ".%06ld", usec); p += strlen(p); /* * To make things a bit harder, X.690 | ISO/IEC 8825-1 provides the * following restrictions for a DER-encoding, which OpenSSL * (specifically ASN1_GENERALIZEDTIME_check() function) doesn't * support: "The encoding MUST terminate with a "Z" (which means * "Zulu" time). The decimal point element, if present, MUST be the * point option ".". The fractional-seconds elements, if present, * MUST omit all trailing 0's; if the elements correspond to 0, they * MUST be wholly omitted, and the decimal point element also MUST be * omitted." */ /* * Remove trailing zeros. The dot guarantees the exit condition of * this loop even if all the digits are zero. */ while (*--p == '0') continue; if (*p != '.') ++p; } *p++ = 'Z'; *p++ = '\0'; if (asn1_time == NULL && (asn1_time = ASN1_GENERALIZEDTIME_new()) == NULL) goto err; if (!ASN1_GENERALIZEDTIME_set_string(asn1_time, genTime_str)) { ASN1_GENERALIZEDTIME_free(asn1_time); goto err; } return asn1_time; err: TSerr(TS_F_TS_RESP_SET_GENTIME_WITH_PRECISION, TS_R_COULD_NOT_SET_TIME); return NULL; } int TS_RESP_CTX_set_ess_cert_id_digest(TS_RESP_CTX *ctx, const EVP_MD *md) { ctx->ess_cert_id_digest = md; return 1; } openssl-1.1.1f/crypto/ts/ts_rsp_utils.c000066400000000000000000000205101364063235100202100ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ts_local.h" int TS_RESP_set_status_info(TS_RESP *a, TS_STATUS_INFO *status_info) { TS_STATUS_INFO *new_status_info; if (a->status_info == status_info) return 1; new_status_info = TS_STATUS_INFO_dup(status_info); if (new_status_info == NULL) { TSerr(TS_F_TS_RESP_SET_STATUS_INFO, ERR_R_MALLOC_FAILURE); return 0; } TS_STATUS_INFO_free(a->status_info); a->status_info = new_status_info; return 1; } TS_STATUS_INFO *TS_RESP_get_status_info(TS_RESP *a) { return a->status_info; } /* Caller loses ownership of PKCS7 and TS_TST_INFO objects. */ void TS_RESP_set_tst_info(TS_RESP *a, PKCS7 *p7, TS_TST_INFO *tst_info) { PKCS7_free(a->token); a->token = p7; TS_TST_INFO_free(a->tst_info); a->tst_info = tst_info; } PKCS7 *TS_RESP_get_token(TS_RESP *a) { return a->token; } TS_TST_INFO *TS_RESP_get_tst_info(TS_RESP *a) { return a->tst_info; } int TS_TST_INFO_set_version(TS_TST_INFO *a, long version) { return ASN1_INTEGER_set(a->version, version); } long TS_TST_INFO_get_version(const TS_TST_INFO *a) { return ASN1_INTEGER_get(a->version); } int TS_TST_INFO_set_policy_id(TS_TST_INFO *a, ASN1_OBJECT *policy) { ASN1_OBJECT *new_policy; if (a->policy_id == policy) return 1; new_policy = OBJ_dup(policy); if (new_policy == NULL) { TSerr(TS_F_TS_TST_INFO_SET_POLICY_ID, ERR_R_MALLOC_FAILURE); return 0; } ASN1_OBJECT_free(a->policy_id); a->policy_id = new_policy; return 1; } ASN1_OBJECT *TS_TST_INFO_get_policy_id(TS_TST_INFO *a) { return a->policy_id; } int TS_TST_INFO_set_msg_imprint(TS_TST_INFO *a, TS_MSG_IMPRINT *msg_imprint) { TS_MSG_IMPRINT *new_msg_imprint; if (a->msg_imprint == msg_imprint) return 1; new_msg_imprint = TS_MSG_IMPRINT_dup(msg_imprint); if (new_msg_imprint == NULL) { TSerr(TS_F_TS_TST_INFO_SET_MSG_IMPRINT, ERR_R_MALLOC_FAILURE); return 0; } TS_MSG_IMPRINT_free(a->msg_imprint); a->msg_imprint = new_msg_imprint; return 1; } TS_MSG_IMPRINT *TS_TST_INFO_get_msg_imprint(TS_TST_INFO *a) { return a->msg_imprint; } int TS_TST_INFO_set_serial(TS_TST_INFO *a, const ASN1_INTEGER *serial) { ASN1_INTEGER *new_serial; if (a->serial == serial) return 1; new_serial = ASN1_INTEGER_dup(serial); if (new_serial == NULL) { TSerr(TS_F_TS_TST_INFO_SET_SERIAL, ERR_R_MALLOC_FAILURE); return 0; } ASN1_INTEGER_free(a->serial); a->serial = new_serial; return 1; } const ASN1_INTEGER *TS_TST_INFO_get_serial(const TS_TST_INFO *a) { return a->serial; } int TS_TST_INFO_set_time(TS_TST_INFO *a, const ASN1_GENERALIZEDTIME *gtime) { ASN1_GENERALIZEDTIME *new_time; if (a->time == gtime) return 1; new_time = ASN1_STRING_dup(gtime); if (new_time == NULL) { TSerr(TS_F_TS_TST_INFO_SET_TIME, ERR_R_MALLOC_FAILURE); return 0; } ASN1_GENERALIZEDTIME_free(a->time); a->time = new_time; return 1; } const ASN1_GENERALIZEDTIME *TS_TST_INFO_get_time(const TS_TST_INFO *a) { return a->time; } int TS_TST_INFO_set_accuracy(TS_TST_INFO *a, TS_ACCURACY *accuracy) { TS_ACCURACY *new_accuracy; if (a->accuracy == accuracy) return 1; new_accuracy = TS_ACCURACY_dup(accuracy); if (new_accuracy == NULL) { TSerr(TS_F_TS_TST_INFO_SET_ACCURACY, ERR_R_MALLOC_FAILURE); return 0; } TS_ACCURACY_free(a->accuracy); a->accuracy = new_accuracy; return 1; } TS_ACCURACY *TS_TST_INFO_get_accuracy(TS_TST_INFO *a) { return a->accuracy; } int TS_ACCURACY_set_seconds(TS_ACCURACY *a, const ASN1_INTEGER *seconds) { ASN1_INTEGER *new_seconds; if (a->seconds == seconds) return 1; new_seconds = ASN1_INTEGER_dup(seconds); if (new_seconds == NULL) { TSerr(TS_F_TS_ACCURACY_SET_SECONDS, ERR_R_MALLOC_FAILURE); return 0; } ASN1_INTEGER_free(a->seconds); a->seconds = new_seconds; return 1; } const ASN1_INTEGER *TS_ACCURACY_get_seconds(const TS_ACCURACY *a) { return a->seconds; } int TS_ACCURACY_set_millis(TS_ACCURACY *a, const ASN1_INTEGER *millis) { ASN1_INTEGER *new_millis = NULL; if (a->millis == millis) return 1; if (millis != NULL) { new_millis = ASN1_INTEGER_dup(millis); if (new_millis == NULL) { TSerr(TS_F_TS_ACCURACY_SET_MILLIS, ERR_R_MALLOC_FAILURE); return 0; } } ASN1_INTEGER_free(a->millis); a->millis = new_millis; return 1; } const ASN1_INTEGER *TS_ACCURACY_get_millis(const TS_ACCURACY *a) { return a->millis; } int TS_ACCURACY_set_micros(TS_ACCURACY *a, const ASN1_INTEGER *micros) { ASN1_INTEGER *new_micros = NULL; if (a->micros == micros) return 1; if (micros != NULL) { new_micros = ASN1_INTEGER_dup(micros); if (new_micros == NULL) { TSerr(TS_F_TS_ACCURACY_SET_MICROS, ERR_R_MALLOC_FAILURE); return 0; } } ASN1_INTEGER_free(a->micros); a->micros = new_micros; return 1; } const ASN1_INTEGER *TS_ACCURACY_get_micros(const TS_ACCURACY *a) { return a->micros; } int TS_TST_INFO_set_ordering(TS_TST_INFO *a, int ordering) { a->ordering = ordering ? 0xFF : 0x00; return 1; } int TS_TST_INFO_get_ordering(const TS_TST_INFO *a) { return a->ordering ? 1 : 0; } int TS_TST_INFO_set_nonce(TS_TST_INFO *a, const ASN1_INTEGER *nonce) { ASN1_INTEGER *new_nonce; if (a->nonce == nonce) return 1; new_nonce = ASN1_INTEGER_dup(nonce); if (new_nonce == NULL) { TSerr(TS_F_TS_TST_INFO_SET_NONCE, ERR_R_MALLOC_FAILURE); return 0; } ASN1_INTEGER_free(a->nonce); a->nonce = new_nonce; return 1; } const ASN1_INTEGER *TS_TST_INFO_get_nonce(const TS_TST_INFO *a) { return a->nonce; } int TS_TST_INFO_set_tsa(TS_TST_INFO *a, GENERAL_NAME *tsa) { GENERAL_NAME *new_tsa; if (a->tsa == tsa) return 1; new_tsa = GENERAL_NAME_dup(tsa); if (new_tsa == NULL) { TSerr(TS_F_TS_TST_INFO_SET_TSA, ERR_R_MALLOC_FAILURE); return 0; } GENERAL_NAME_free(a->tsa); a->tsa = new_tsa; return 1; } GENERAL_NAME *TS_TST_INFO_get_tsa(TS_TST_INFO *a) { return a->tsa; } STACK_OF(X509_EXTENSION) *TS_TST_INFO_get_exts(TS_TST_INFO *a) { return a->extensions; } void TS_TST_INFO_ext_free(TS_TST_INFO *a) { if (!a) return; sk_X509_EXTENSION_pop_free(a->extensions, X509_EXTENSION_free); a->extensions = NULL; } int TS_TST_INFO_get_ext_count(TS_TST_INFO *a) { return X509v3_get_ext_count(a->extensions); } int TS_TST_INFO_get_ext_by_NID(TS_TST_INFO *a, int nid, int lastpos) { return X509v3_get_ext_by_NID(a->extensions, nid, lastpos); } int TS_TST_INFO_get_ext_by_OBJ(TS_TST_INFO *a, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(a->extensions, obj, lastpos); } int TS_TST_INFO_get_ext_by_critical(TS_TST_INFO *a, int crit, int lastpos) { return X509v3_get_ext_by_critical(a->extensions, crit, lastpos); } X509_EXTENSION *TS_TST_INFO_get_ext(TS_TST_INFO *a, int loc) { return X509v3_get_ext(a->extensions, loc); } X509_EXTENSION *TS_TST_INFO_delete_ext(TS_TST_INFO *a, int loc) { return X509v3_delete_ext(a->extensions, loc); } int TS_TST_INFO_add_ext(TS_TST_INFO *a, X509_EXTENSION *ex, int loc) { return X509v3_add_ext(&a->extensions, ex, loc) != NULL; } void *TS_TST_INFO_get_ext_d2i(TS_TST_INFO *a, int nid, int *crit, int *idx) { return X509V3_get_d2i(a->extensions, nid, crit, idx); } int TS_STATUS_INFO_set_status(TS_STATUS_INFO *a, int i) { return ASN1_INTEGER_set(a->status, i); } const ASN1_INTEGER *TS_STATUS_INFO_get0_status(const TS_STATUS_INFO *a) { return a->status; } const STACK_OF(ASN1_UTF8STRING) * TS_STATUS_INFO_get0_text(const TS_STATUS_INFO *a) { return a->text; } const ASN1_BIT_STRING *TS_STATUS_INFO_get0_failure_info(const TS_STATUS_INFO *a) { return a->failure_info; } openssl-1.1.1f/crypto/ts/ts_rsp_verify.c000066400000000000000000000535711364063235100203710ustar00rootroot00000000000000/* * Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ts_local.h" static int ts_verify_cert(X509_STORE *store, STACK_OF(X509) *untrusted, X509 *signer, STACK_OF(X509) **chain); static int ts_check_signing_certs(PKCS7_SIGNER_INFO *si, STACK_OF(X509) *chain); static ESS_SIGNING_CERT *ess_get_signing_cert(PKCS7_SIGNER_INFO *si); static int ts_find_cert(STACK_OF(ESS_CERT_ID) *cert_ids, X509 *cert); static int ts_issuer_serial_cmp(ESS_ISSUER_SERIAL *is, X509 *cert); static int int_ts_RESP_verify_token(TS_VERIFY_CTX *ctx, PKCS7 *token, TS_TST_INFO *tst_info); static int ts_check_status_info(TS_RESP *response); static char *ts_get_status_text(STACK_OF(ASN1_UTF8STRING) *text); static int ts_check_policy(const ASN1_OBJECT *req_oid, const TS_TST_INFO *tst_info); static int ts_compute_imprint(BIO *data, TS_TST_INFO *tst_info, X509_ALGOR **md_alg, unsigned char **imprint, unsigned *imprint_len); static int ts_check_imprints(X509_ALGOR *algor_a, const unsigned char *imprint_a, unsigned len_a, TS_TST_INFO *tst_info); static int ts_check_nonces(const ASN1_INTEGER *a, TS_TST_INFO *tst_info); static int ts_check_signer_name(GENERAL_NAME *tsa_name, X509 *signer); static int ts_find_name(STACK_OF(GENERAL_NAME) *gen_names, GENERAL_NAME *name); static int ts_find_cert_v2(STACK_OF(ESS_CERT_ID_V2) *cert_ids, X509 *cert); static ESS_SIGNING_CERT_V2 *ess_get_signing_cert_v2(PKCS7_SIGNER_INFO *si); /* * This must be large enough to hold all values in ts_status_text (with * comma separator) or all text fields in ts_failure_info (also with comma). */ #define TS_STATUS_BUF_SIZE 256 /* * Local mapping between response codes and descriptions. */ static const char *ts_status_text[] = { "granted", "grantedWithMods", "rejection", "waiting", "revocationWarning", "revocationNotification" }; #define TS_STATUS_TEXT_SIZE OSSL_NELEM(ts_status_text) static struct { int code; const char *text; } ts_failure_info[] = { {TS_INFO_BAD_ALG, "badAlg"}, {TS_INFO_BAD_REQUEST, "badRequest"}, {TS_INFO_BAD_DATA_FORMAT, "badDataFormat"}, {TS_INFO_TIME_NOT_AVAILABLE, "timeNotAvailable"}, {TS_INFO_UNACCEPTED_POLICY, "unacceptedPolicy"}, {TS_INFO_UNACCEPTED_EXTENSION, "unacceptedExtension"}, {TS_INFO_ADD_INFO_NOT_AVAILABLE, "addInfoNotAvailable"}, {TS_INFO_SYSTEM_FAILURE, "systemFailure"} }; /*- * This function carries out the following tasks: * - Checks if there is one and only one signer. * - Search for the signing certificate in 'certs' and in the response. * - Check the extended key usage and key usage fields of the signer * certificate (done by the path validation). * - Build and validate the certificate path. * - Check if the certificate path meets the requirements of the * SigningCertificate ESS signed attribute. * - Verify the signature value. * - Returns the signer certificate in 'signer', if 'signer' is not NULL. */ int TS_RESP_verify_signature(PKCS7 *token, STACK_OF(X509) *certs, X509_STORE *store, X509 **signer_out) { STACK_OF(PKCS7_SIGNER_INFO) *sinfos = NULL; PKCS7_SIGNER_INFO *si; STACK_OF(X509) *signers = NULL; X509 *signer; STACK_OF(X509) *chain = NULL; char buf[4096]; int i, j = 0, ret = 0; BIO *p7bio = NULL; /* Some sanity checks first. */ if (!token) { TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_INVALID_NULL_POINTER); goto err; } if (!PKCS7_type_is_signed(token)) { TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_WRONG_CONTENT_TYPE); goto err; } sinfos = PKCS7_get_signer_info(token); if (!sinfos || sk_PKCS7_SIGNER_INFO_num(sinfos) != 1) { TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_THERE_MUST_BE_ONE_SIGNER); goto err; } si = sk_PKCS7_SIGNER_INFO_value(sinfos, 0); if (PKCS7_get_detached(token)) { TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_NO_CONTENT); goto err; } /* * Get hold of the signer certificate, search only internal certificates * if it was requested. */ signers = PKCS7_get0_signers(token, certs, 0); if (!signers || sk_X509_num(signers) != 1) goto err; signer = sk_X509_value(signers, 0); if (!ts_verify_cert(store, certs, signer, &chain)) goto err; if (!ts_check_signing_certs(si, chain)) goto err; p7bio = PKCS7_dataInit(token, NULL); /* We now have to 'read' from p7bio to calculate digests etc. */ while ((i = BIO_read(p7bio, buf, sizeof(buf))) > 0) continue; j = PKCS7_signatureVerify(p7bio, token, si, signer); if (j <= 0) { TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_SIGNATURE_FAILURE); goto err; } if (signer_out) { *signer_out = signer; X509_up_ref(signer); } ret = 1; err: BIO_free_all(p7bio); sk_X509_pop_free(chain, X509_free); sk_X509_free(signers); return ret; } /* * The certificate chain is returned in chain. Caller is responsible for * freeing the vector. */ static int ts_verify_cert(X509_STORE *store, STACK_OF(X509) *untrusted, X509 *signer, STACK_OF(X509) **chain) { X509_STORE_CTX *cert_ctx = NULL; int i; int ret = 0; *chain = NULL; cert_ctx = X509_STORE_CTX_new(); if (cert_ctx == NULL) { TSerr(TS_F_TS_VERIFY_CERT, ERR_R_MALLOC_FAILURE); goto err; } if (!X509_STORE_CTX_init(cert_ctx, store, signer, untrusted)) goto end; X509_STORE_CTX_set_purpose(cert_ctx, X509_PURPOSE_TIMESTAMP_SIGN); i = X509_verify_cert(cert_ctx); if (i <= 0) { int j = X509_STORE_CTX_get_error(cert_ctx); TSerr(TS_F_TS_VERIFY_CERT, TS_R_CERTIFICATE_VERIFY_ERROR); ERR_add_error_data(2, "Verify error:", X509_verify_cert_error_string(j)); goto err; } *chain = X509_STORE_CTX_get1_chain(cert_ctx); ret = 1; goto end; err: ret = 0; end: X509_STORE_CTX_free(cert_ctx); return ret; } static int ts_check_signing_certs(PKCS7_SIGNER_INFO *si, STACK_OF(X509) *chain) { ESS_SIGNING_CERT *ss = ess_get_signing_cert(si); STACK_OF(ESS_CERT_ID) *cert_ids = NULL; ESS_SIGNING_CERT_V2 *ssv2 = ess_get_signing_cert_v2(si); STACK_OF(ESS_CERT_ID_V2) *cert_ids_v2 = NULL; X509 *cert; int i = 0; int ret = 0; if (ss != NULL) { cert_ids = ss->cert_ids; cert = sk_X509_value(chain, 0); if (ts_find_cert(cert_ids, cert) != 0) goto err; /* * Check the other certificates of the chain if there are more than one * certificate ids in cert_ids. */ if (sk_ESS_CERT_ID_num(cert_ids) > 1) { for (i = 1; i < sk_X509_num(chain); ++i) { cert = sk_X509_value(chain, i); if (ts_find_cert(cert_ids, cert) < 0) goto err; } } } else if (ssv2 != NULL) { cert_ids_v2 = ssv2->cert_ids; cert = sk_X509_value(chain, 0); if (ts_find_cert_v2(cert_ids_v2, cert) != 0) goto err; /* * Check the other certificates of the chain if there are more than one * certificate ids in cert_ids. */ if (sk_ESS_CERT_ID_V2_num(cert_ids_v2) > 1) { for (i = 1; i < sk_X509_num(chain); ++i) { cert = sk_X509_value(chain, i); if (ts_find_cert_v2(cert_ids_v2, cert) < 0) goto err; } } } else { goto err; } ret = 1; err: if (!ret) TSerr(TS_F_TS_CHECK_SIGNING_CERTS, TS_R_ESS_SIGNING_CERTIFICATE_ERROR); ESS_SIGNING_CERT_free(ss); ESS_SIGNING_CERT_V2_free(ssv2); return ret; } static ESS_SIGNING_CERT *ess_get_signing_cert(PKCS7_SIGNER_INFO *si) { ASN1_TYPE *attr; const unsigned char *p; attr = PKCS7_get_signed_attribute(si, NID_id_smime_aa_signingCertificate); if (!attr) return NULL; p = attr->value.sequence->data; return d2i_ESS_SIGNING_CERT(NULL, &p, attr->value.sequence->length); } static ESS_SIGNING_CERT_V2 *ess_get_signing_cert_v2(PKCS7_SIGNER_INFO *si) { ASN1_TYPE *attr; const unsigned char *p; attr = PKCS7_get_signed_attribute(si, NID_id_smime_aa_signingCertificateV2); if (attr == NULL) return NULL; p = attr->value.sequence->data; return d2i_ESS_SIGNING_CERT_V2(NULL, &p, attr->value.sequence->length); } /* Returns < 0 if certificate is not found, certificate index otherwise. */ static int ts_find_cert(STACK_OF(ESS_CERT_ID) *cert_ids, X509 *cert) { int i; unsigned char cert_sha1[SHA_DIGEST_LENGTH]; if (!cert_ids || !cert) return -1; /* Recompute SHA1 hash of certificate if necessary (side effect). */ X509_check_purpose(cert, -1, 0); if (!X509_digest(cert, EVP_sha1(), cert_sha1, NULL)) return -1; /* Look for cert in the cert_ids vector. */ for (i = 0; i < sk_ESS_CERT_ID_num(cert_ids); ++i) { ESS_CERT_ID *cid = sk_ESS_CERT_ID_value(cert_ids, i); if (cid->hash->length == SHA_DIGEST_LENGTH && memcmp(cid->hash->data, cert_sha1, SHA_DIGEST_LENGTH) == 0) { ESS_ISSUER_SERIAL *is = cid->issuer_serial; if (!is || !ts_issuer_serial_cmp(is, cert)) return i; } } return -1; } /* Returns < 0 if certificate is not found, certificate index otherwise. */ static int ts_find_cert_v2(STACK_OF(ESS_CERT_ID_V2) *cert_ids, X509 *cert) { int i; unsigned char cert_digest[EVP_MAX_MD_SIZE]; unsigned int len; /* Look for cert in the cert_ids vector. */ for (i = 0; i < sk_ESS_CERT_ID_V2_num(cert_ids); ++i) { ESS_CERT_ID_V2 *cid = sk_ESS_CERT_ID_V2_value(cert_ids, i); const EVP_MD *md; if (cid->hash_alg != NULL) md = EVP_get_digestbyobj(cid->hash_alg->algorithm); else md = EVP_sha256(); if (!X509_digest(cert, md, cert_digest, &len)) return -1; if (cid->hash->length != (int)len) return -1; if (memcmp(cid->hash->data, cert_digest, cid->hash->length) == 0) { ESS_ISSUER_SERIAL *is = cid->issuer_serial; if (is == NULL || !ts_issuer_serial_cmp(is, cert)) return i; } } return -1; } static int ts_issuer_serial_cmp(ESS_ISSUER_SERIAL *is, X509 *cert) { GENERAL_NAME *issuer; if (!is || !cert || sk_GENERAL_NAME_num(is->issuer) != 1) return -1; issuer = sk_GENERAL_NAME_value(is->issuer, 0); if (issuer->type != GEN_DIRNAME || X509_NAME_cmp(issuer->d.dirn, X509_get_issuer_name(cert))) return -1; if (ASN1_INTEGER_cmp(is->serial, X509_get_serialNumber(cert))) return -1; return 0; } /*- * Verifies whether 'response' contains a valid response with regards * to the settings of the context: * - Gives an error message if the TS_TST_INFO is not present. * - Calls _TS_RESP_verify_token to verify the token content. */ int TS_RESP_verify_response(TS_VERIFY_CTX *ctx, TS_RESP *response) { PKCS7 *token = response->token; TS_TST_INFO *tst_info = response->tst_info; int ret = 0; if (!ts_check_status_info(response)) goto err; if (!int_ts_RESP_verify_token(ctx, token, tst_info)) goto err; ret = 1; err: return ret; } /* * Tries to extract a TS_TST_INFO structure from the PKCS7 token and * calls the internal int_TS_RESP_verify_token function for verifying it. */ int TS_RESP_verify_token(TS_VERIFY_CTX *ctx, PKCS7 *token) { TS_TST_INFO *tst_info = PKCS7_to_TS_TST_INFO(token); int ret = 0; if (tst_info) { ret = int_ts_RESP_verify_token(ctx, token, tst_info); TS_TST_INFO_free(tst_info); } return ret; } /*- * Verifies whether the 'token' contains a valid time stamp token * with regards to the settings of the context. Only those checks are * carried out that are specified in the context: * - Verifies the signature of the TS_TST_INFO. * - Checks the version number of the response. * - Check if the requested and returned policies math. * - Check if the message imprints are the same. * - Check if the nonces are the same. * - Check if the TSA name matches the signer. * - Check if the TSA name is the expected TSA. */ static int int_ts_RESP_verify_token(TS_VERIFY_CTX *ctx, PKCS7 *token, TS_TST_INFO *tst_info) { X509 *signer = NULL; GENERAL_NAME *tsa_name = tst_info->tsa; X509_ALGOR *md_alg = NULL; unsigned char *imprint = NULL; unsigned imprint_len = 0; int ret = 0; int flags = ctx->flags; /* Some options require us to also check the signature */ if (((flags & TS_VFY_SIGNER) && tsa_name != NULL) || (flags & TS_VFY_TSA_NAME)) { flags |= TS_VFY_SIGNATURE; } if ((flags & TS_VFY_SIGNATURE) && !TS_RESP_verify_signature(token, ctx->certs, ctx->store, &signer)) goto err; if ((flags & TS_VFY_VERSION) && TS_TST_INFO_get_version(tst_info) != 1) { TSerr(TS_F_INT_TS_RESP_VERIFY_TOKEN, TS_R_UNSUPPORTED_VERSION); goto err; } if ((flags & TS_VFY_POLICY) && !ts_check_policy(ctx->policy, tst_info)) goto err; if ((flags & TS_VFY_IMPRINT) && !ts_check_imprints(ctx->md_alg, ctx->imprint, ctx->imprint_len, tst_info)) goto err; if ((flags & TS_VFY_DATA) && (!ts_compute_imprint(ctx->data, tst_info, &md_alg, &imprint, &imprint_len) || !ts_check_imprints(md_alg, imprint, imprint_len, tst_info))) goto err; if ((flags & TS_VFY_NONCE) && !ts_check_nonces(ctx->nonce, tst_info)) goto err; if ((flags & TS_VFY_SIGNER) && tsa_name && !ts_check_signer_name(tsa_name, signer)) { TSerr(TS_F_INT_TS_RESP_VERIFY_TOKEN, TS_R_TSA_NAME_MISMATCH); goto err; } if ((flags & TS_VFY_TSA_NAME) && !ts_check_signer_name(ctx->tsa_name, signer)) { TSerr(TS_F_INT_TS_RESP_VERIFY_TOKEN, TS_R_TSA_UNTRUSTED); goto err; } ret = 1; err: X509_free(signer); X509_ALGOR_free(md_alg); OPENSSL_free(imprint); return ret; } static int ts_check_status_info(TS_RESP *response) { TS_STATUS_INFO *info = response->status_info; long status = ASN1_INTEGER_get(info->status); const char *status_text = NULL; char *embedded_status_text = NULL; char failure_text[TS_STATUS_BUF_SIZE] = ""; if (status == 0 || status == 1) return 1; /* There was an error, get the description in status_text. */ if (0 <= status && status < (long) OSSL_NELEM(ts_status_text)) status_text = ts_status_text[status]; else status_text = "unknown code"; if (sk_ASN1_UTF8STRING_num(info->text) > 0 && (embedded_status_text = ts_get_status_text(info->text)) == NULL) return 0; /* Fill in failure_text with the failure information. */ if (info->failure_info) { int i; int first = 1; for (i = 0; i < (int)OSSL_NELEM(ts_failure_info); ++i) { if (ASN1_BIT_STRING_get_bit(info->failure_info, ts_failure_info[i].code)) { if (!first) strcat(failure_text, ","); else first = 0; strcat(failure_text, ts_failure_info[i].text); } } } if (failure_text[0] == '\0') strcpy(failure_text, "unspecified"); TSerr(TS_F_TS_CHECK_STATUS_INFO, TS_R_NO_TIME_STAMP_TOKEN); ERR_add_error_data(6, "status code: ", status_text, ", status text: ", embedded_status_text ? embedded_status_text : "unspecified", ", failure codes: ", failure_text); OPENSSL_free(embedded_status_text); return 0; } static char *ts_get_status_text(STACK_OF(ASN1_UTF8STRING) *text) { int i; int length = 0; char *result = NULL; char *p; for (i = 0; i < sk_ASN1_UTF8STRING_num(text); ++i) { ASN1_UTF8STRING *current = sk_ASN1_UTF8STRING_value(text, i); if (ASN1_STRING_length(current) > TS_MAX_STATUS_LENGTH - length - 1) return NULL; length += ASN1_STRING_length(current); length += 1; /* separator character */ } if ((result = OPENSSL_malloc(length)) == NULL) { TSerr(TS_F_TS_GET_STATUS_TEXT, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0, p = result; i < sk_ASN1_UTF8STRING_num(text); ++i) { ASN1_UTF8STRING *current = sk_ASN1_UTF8STRING_value(text, i); length = ASN1_STRING_length(current); if (i > 0) *p++ = '/'; strncpy(p, (const char *)ASN1_STRING_get0_data(current), length); p += length; } *p = '\0'; return result; } static int ts_check_policy(const ASN1_OBJECT *req_oid, const TS_TST_INFO *tst_info) { const ASN1_OBJECT *resp_oid = tst_info->policy_id; if (OBJ_cmp(req_oid, resp_oid) != 0) { TSerr(TS_F_TS_CHECK_POLICY, TS_R_POLICY_MISMATCH); return 0; } return 1; } static int ts_compute_imprint(BIO *data, TS_TST_INFO *tst_info, X509_ALGOR **md_alg, unsigned char **imprint, unsigned *imprint_len) { TS_MSG_IMPRINT *msg_imprint = tst_info->msg_imprint; X509_ALGOR *md_alg_resp = msg_imprint->hash_algo; const EVP_MD *md; EVP_MD_CTX *md_ctx = NULL; unsigned char buffer[4096]; int length; *md_alg = NULL; *imprint = NULL; if ((*md_alg = X509_ALGOR_dup(md_alg_resp)) == NULL) goto err; if ((md = EVP_get_digestbyobj((*md_alg)->algorithm)) == NULL) { TSerr(TS_F_TS_COMPUTE_IMPRINT, TS_R_UNSUPPORTED_MD_ALGORITHM); goto err; } length = EVP_MD_size(md); if (length < 0) goto err; *imprint_len = length; if ((*imprint = OPENSSL_malloc(*imprint_len)) == NULL) { TSerr(TS_F_TS_COMPUTE_IMPRINT, ERR_R_MALLOC_FAILURE); goto err; } md_ctx = EVP_MD_CTX_new(); if (md_ctx == NULL) { TSerr(TS_F_TS_COMPUTE_IMPRINT, ERR_R_MALLOC_FAILURE); goto err; } if (!EVP_DigestInit(md_ctx, md)) goto err; while ((length = BIO_read(data, buffer, sizeof(buffer))) > 0) { if (!EVP_DigestUpdate(md_ctx, buffer, length)) goto err; } if (!EVP_DigestFinal(md_ctx, *imprint, NULL)) goto err; EVP_MD_CTX_free(md_ctx); return 1; err: EVP_MD_CTX_free(md_ctx); X509_ALGOR_free(*md_alg); OPENSSL_free(*imprint); *imprint_len = 0; *imprint = 0; return 0; } static int ts_check_imprints(X509_ALGOR *algor_a, const unsigned char *imprint_a, unsigned len_a, TS_TST_INFO *tst_info) { TS_MSG_IMPRINT *b = tst_info->msg_imprint; X509_ALGOR *algor_b = b->hash_algo; int ret = 0; if (algor_a) { if (OBJ_cmp(algor_a->algorithm, algor_b->algorithm)) goto err; /* The parameter must be NULL in both. */ if ((algor_a->parameter && ASN1_TYPE_get(algor_a->parameter) != V_ASN1_NULL) || (algor_b->parameter && ASN1_TYPE_get(algor_b->parameter) != V_ASN1_NULL)) goto err; } ret = len_a == (unsigned)ASN1_STRING_length(b->hashed_msg) && memcmp(imprint_a, ASN1_STRING_get0_data(b->hashed_msg), len_a) == 0; err: if (!ret) TSerr(TS_F_TS_CHECK_IMPRINTS, TS_R_MESSAGE_IMPRINT_MISMATCH); return ret; } static int ts_check_nonces(const ASN1_INTEGER *a, TS_TST_INFO *tst_info) { const ASN1_INTEGER *b = tst_info->nonce; if (!b) { TSerr(TS_F_TS_CHECK_NONCES, TS_R_NONCE_NOT_RETURNED); return 0; } /* No error if a nonce is returned without being requested. */ if (ASN1_INTEGER_cmp(a, b) != 0) { TSerr(TS_F_TS_CHECK_NONCES, TS_R_NONCE_MISMATCH); return 0; } return 1; } /* * Check if the specified TSA name matches either the subject or one of the * subject alternative names of the TSA certificate. */ static int ts_check_signer_name(GENERAL_NAME *tsa_name, X509 *signer) { STACK_OF(GENERAL_NAME) *gen_names = NULL; int idx = -1; int found = 0; if (tsa_name->type == GEN_DIRNAME && X509_name_cmp(tsa_name->d.dirn, X509_get_subject_name(signer)) == 0) return 1; gen_names = X509_get_ext_d2i(signer, NID_subject_alt_name, NULL, &idx); while (gen_names != NULL) { found = ts_find_name(gen_names, tsa_name) >= 0; if (found) break; /* * Get the next subject alternative name, although there should be no * more than one. */ GENERAL_NAMES_free(gen_names); gen_names = X509_get_ext_d2i(signer, NID_subject_alt_name, NULL, &idx); } GENERAL_NAMES_free(gen_names); return found; } /* Returns 1 if name is in gen_names, 0 otherwise. */ static int ts_find_name(STACK_OF(GENERAL_NAME) *gen_names, GENERAL_NAME *name) { int i, found; for (i = 0, found = 0; !found && i < sk_GENERAL_NAME_num(gen_names); ++i) { GENERAL_NAME *current = sk_GENERAL_NAME_value(gen_names, i); found = GENERAL_NAME_cmp(current, name) == 0; } return found ? i - 1 : -1; } openssl-1.1.1f/crypto/ts/ts_verify_ctx.c000066400000000000000000000065531364063235100203610ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include "ts_local.h" TS_VERIFY_CTX *TS_VERIFY_CTX_new(void) { TS_VERIFY_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) TSerr(TS_F_TS_VERIFY_CTX_NEW, ERR_R_MALLOC_FAILURE); return ctx; } void TS_VERIFY_CTX_init(TS_VERIFY_CTX *ctx) { OPENSSL_assert(ctx != NULL); memset(ctx, 0, sizeof(*ctx)); } void TS_VERIFY_CTX_free(TS_VERIFY_CTX *ctx) { if (!ctx) return; TS_VERIFY_CTX_cleanup(ctx); OPENSSL_free(ctx); } int TS_VERIFY_CTX_add_flags(TS_VERIFY_CTX *ctx, int f) { ctx->flags |= f; return ctx->flags; } int TS_VERIFY_CTX_set_flags(TS_VERIFY_CTX *ctx, int f) { ctx->flags = f; return ctx->flags; } BIO *TS_VERIFY_CTX_set_data(TS_VERIFY_CTX *ctx, BIO *b) { ctx->data = b; return ctx->data; } X509_STORE *TS_VERIFY_CTX_set_store(TS_VERIFY_CTX *ctx, X509_STORE *s) { ctx->store = s; return ctx->store; } STACK_OF(X509) *TS_VERIFY_CTS_set_certs(TS_VERIFY_CTX *ctx, STACK_OF(X509) *certs) { ctx->certs = certs; return ctx->certs; } unsigned char *TS_VERIFY_CTX_set_imprint(TS_VERIFY_CTX *ctx, unsigned char *hexstr, long len) { ctx->imprint = hexstr; ctx->imprint_len = len; return ctx->imprint; } void TS_VERIFY_CTX_cleanup(TS_VERIFY_CTX *ctx) { if (!ctx) return; X509_STORE_free(ctx->store); sk_X509_pop_free(ctx->certs, X509_free); ASN1_OBJECT_free(ctx->policy); X509_ALGOR_free(ctx->md_alg); OPENSSL_free(ctx->imprint); BIO_free_all(ctx->data); ASN1_INTEGER_free(ctx->nonce); GENERAL_NAME_free(ctx->tsa_name); TS_VERIFY_CTX_init(ctx); } TS_VERIFY_CTX *TS_REQ_to_TS_VERIFY_CTX(TS_REQ *req, TS_VERIFY_CTX *ctx) { TS_VERIFY_CTX *ret = ctx; ASN1_OBJECT *policy; TS_MSG_IMPRINT *imprint; X509_ALGOR *md_alg; ASN1_OCTET_STRING *msg; const ASN1_INTEGER *nonce; OPENSSL_assert(req != NULL); if (ret) TS_VERIFY_CTX_cleanup(ret); else if ((ret = TS_VERIFY_CTX_new()) == NULL) return NULL; ret->flags = TS_VFY_ALL_IMPRINT & ~(TS_VFY_TSA_NAME | TS_VFY_SIGNATURE); if ((policy = req->policy_id) != NULL) { if ((ret->policy = OBJ_dup(policy)) == NULL) goto err; } else ret->flags &= ~TS_VFY_POLICY; imprint = req->msg_imprint; md_alg = imprint->hash_algo; if ((ret->md_alg = X509_ALGOR_dup(md_alg)) == NULL) goto err; msg = imprint->hashed_msg; ret->imprint_len = ASN1_STRING_length(msg); if ((ret->imprint = OPENSSL_malloc(ret->imprint_len)) == NULL) goto err; memcpy(ret->imprint, ASN1_STRING_get0_data(msg), ret->imprint_len); if ((nonce = req->nonce) != NULL) { if ((ret->nonce = ASN1_INTEGER_dup(nonce)) == NULL) goto err; } else ret->flags &= ~TS_VFY_NONCE; return ret; err: if (ctx) TS_VERIFY_CTX_cleanup(ctx); else TS_VERIFY_CTX_free(ret); return NULL; } openssl-1.1.1f/crypto/txt_db/000077500000000000000000000000001364063235100161525ustar00rootroot00000000000000openssl-1.1.1f/crypto/txt_db/build.info000066400000000000000000000000661364063235100201300ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=txt_db.c openssl-1.1.1f/crypto/txt_db/txt_db.c000066400000000000000000000207221364063235100176050ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #undef BUFSIZE #define BUFSIZE 512 TXT_DB *TXT_DB_read(BIO *in, int num) { TXT_DB *ret = NULL; int esc = 0; long ln = 0; int i, add, n; int size = BUFSIZE; int offset = 0; char *p, *f; OPENSSL_STRING *pp; BUF_MEM *buf = NULL; if ((buf = BUF_MEM_new()) == NULL) goto err; if (!BUF_MEM_grow(buf, size)) goto err; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) goto err; ret->num_fields = num; ret->index = NULL; ret->qual = NULL; if ((ret->data = sk_OPENSSL_PSTRING_new_null()) == NULL) goto err; if ((ret->index = OPENSSL_malloc(sizeof(*ret->index) * num)) == NULL) goto err; if ((ret->qual = OPENSSL_malloc(sizeof(*(ret->qual)) * num)) == NULL) goto err; for (i = 0; i < num; i++) { ret->index[i] = NULL; ret->qual[i] = NULL; } add = (num + 1) * sizeof(char *); buf->data[size - 1] = '\0'; offset = 0; for (;;) { if (offset != 0) { size += BUFSIZE; if (!BUF_MEM_grow_clean(buf, size)) goto err; } buf->data[offset] = '\0'; BIO_gets(in, &(buf->data[offset]), size - offset); ln++; if (buf->data[offset] == '\0') break; if ((offset == 0) && (buf->data[0] == '#')) continue; i = strlen(&(buf->data[offset])); offset += i; if (buf->data[offset - 1] != '\n') continue; else { buf->data[offset - 1] = '\0'; /* blat the '\n' */ if ((p = OPENSSL_malloc(add + offset)) == NULL) goto err; offset = 0; } pp = (char **)p; p += add; n = 0; pp[n++] = p; i = 0; f = buf->data; esc = 0; for (;;) { if (*f == '\0') break; if (*f == '\t') { if (esc) p--; else { *(p++) = '\0'; f++; if (n >= num) break; pp[n++] = p; continue; } } esc = (*f == '\\'); *(p++) = *(f++); } *(p++) = '\0'; if ((n != num) || (*f != '\0')) { OPENSSL_free(pp); ret->error = DB_ERROR_WRONG_NUM_FIELDS; goto err; } pp[n] = p; if (!sk_OPENSSL_PSTRING_push(ret->data, pp)) { OPENSSL_free(pp); goto err; } } BUF_MEM_free(buf); return ret; err: BUF_MEM_free(buf); if (ret != NULL) { sk_OPENSSL_PSTRING_free(ret->data); OPENSSL_free(ret->index); OPENSSL_free(ret->qual); OPENSSL_free(ret); } return NULL; } OPENSSL_STRING *TXT_DB_get_by_index(TXT_DB *db, int idx, OPENSSL_STRING *value) { OPENSSL_STRING *ret; LHASH_OF(OPENSSL_STRING) *lh; if (idx >= db->num_fields) { db->error = DB_ERROR_INDEX_OUT_OF_RANGE; return NULL; } lh = db->index[idx]; if (lh == NULL) { db->error = DB_ERROR_NO_INDEX; return NULL; } ret = lh_OPENSSL_STRING_retrieve(lh, value); db->error = DB_ERROR_OK; return ret; } int TXT_DB_create_index(TXT_DB *db, int field, int (*qual) (OPENSSL_STRING *), OPENSSL_LH_HASHFUNC hash, OPENSSL_LH_COMPFUNC cmp) { LHASH_OF(OPENSSL_STRING) *idx; OPENSSL_STRING *r, *k; int i, n; if (field >= db->num_fields) { db->error = DB_ERROR_INDEX_OUT_OF_RANGE; return 0; } /* FIXME: we lose type checking at this point */ if ((idx = (LHASH_OF(OPENSSL_STRING) *)OPENSSL_LH_new(hash, cmp)) == NULL) { db->error = DB_ERROR_MALLOC; return 0; } n = sk_OPENSSL_PSTRING_num(db->data); for (i = 0; i < n; i++) { r = sk_OPENSSL_PSTRING_value(db->data, i); if ((qual != NULL) && (qual(r) == 0)) continue; if ((k = lh_OPENSSL_STRING_insert(idx, r)) != NULL) { db->error = DB_ERROR_INDEX_CLASH; db->arg1 = sk_OPENSSL_PSTRING_find(db->data, k); db->arg2 = i; lh_OPENSSL_STRING_free(idx); return 0; } if (lh_OPENSSL_STRING_retrieve(idx, r) == NULL) { db->error = DB_ERROR_MALLOC; lh_OPENSSL_STRING_free(idx); return 0; } } lh_OPENSSL_STRING_free(db->index[field]); db->index[field] = idx; db->qual[field] = qual; return 1; } long TXT_DB_write(BIO *out, TXT_DB *db) { long i, j, n, nn, l, tot = 0; char *p, **pp, *f; BUF_MEM *buf = NULL; long ret = -1; if ((buf = BUF_MEM_new()) == NULL) goto err; n = sk_OPENSSL_PSTRING_num(db->data); nn = db->num_fields; for (i = 0; i < n; i++) { pp = sk_OPENSSL_PSTRING_value(db->data, i); l = 0; for (j = 0; j < nn; j++) { if (pp[j] != NULL) l += strlen(pp[j]); } if (!BUF_MEM_grow_clean(buf, (int)(l * 2 + nn))) goto err; p = buf->data; for (j = 0; j < nn; j++) { f = pp[j]; if (f != NULL) for (;;) { if (*f == '\0') break; if (*f == '\t') *(p++) = '\\'; *(p++) = *(f++); } *(p++) = '\t'; } p[-1] = '\n'; j = p - buf->data; if (BIO_write(out, buf->data, (int)j) != j) goto err; tot += j; } ret = tot; err: BUF_MEM_free(buf); return ret; } int TXT_DB_insert(TXT_DB *db, OPENSSL_STRING *row) { int i; OPENSSL_STRING *r; for (i = 0; i < db->num_fields; i++) { if (db->index[i] != NULL) { if ((db->qual[i] != NULL) && (db->qual[i] (row) == 0)) continue; r = lh_OPENSSL_STRING_retrieve(db->index[i], row); if (r != NULL) { db->error = DB_ERROR_INDEX_CLASH; db->arg1 = i; db->arg_row = r; goto err; } } } for (i = 0; i < db->num_fields; i++) { if (db->index[i] != NULL) { if ((db->qual[i] != NULL) && (db->qual[i] (row) == 0)) continue; (void)lh_OPENSSL_STRING_insert(db->index[i], row); if (lh_OPENSSL_STRING_retrieve(db->index[i], row) == NULL) goto err1; } } if (!sk_OPENSSL_PSTRING_push(db->data, row)) goto err1; return 1; err1: db->error = DB_ERROR_MALLOC; while (i-- > 0) { if (db->index[i] != NULL) { if ((db->qual[i] != NULL) && (db->qual[i] (row) == 0)) continue; (void)lh_OPENSSL_STRING_delete(db->index[i], row); } } err: return 0; } void TXT_DB_free(TXT_DB *db) { int i, n; char **p, *max; if (db == NULL) return; if (db->index != NULL) { for (i = db->num_fields - 1; i >= 0; i--) lh_OPENSSL_STRING_free(db->index[i]); OPENSSL_free(db->index); } OPENSSL_free(db->qual); if (db->data != NULL) { for (i = sk_OPENSSL_PSTRING_num(db->data) - 1; i >= 0; i--) { /* * check if any 'fields' have been allocated from outside of the * initial block */ p = sk_OPENSSL_PSTRING_value(db->data, i); max = p[db->num_fields]; /* last address */ if (max == NULL) { /* new row */ for (n = 0; n < db->num_fields; n++) OPENSSL_free(p[n]); } else { for (n = 0; n < db->num_fields; n++) { if (((p[n] < (char *)p) || (p[n] > max))) OPENSSL_free(p[n]); } } OPENSSL_free(sk_OPENSSL_PSTRING_value(db->data, i)); } sk_OPENSSL_PSTRING_free(db->data); } OPENSSL_free(db); } openssl-1.1.1f/crypto/ui/000077500000000000000000000000001364063235100153035ustar00rootroot00000000000000openssl-1.1.1f/crypto/ui/build.info000066400000000000000000000001521364063235100172550ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ ui_err.c ui_lib.c ui_openssl.c ui_null.c ui_util.c openssl-1.1.1f/crypto/ui/ui_err.c000066400000000000000000000066401364063235100167420ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA UI_str_functs[] = { {ERR_PACK(ERR_LIB_UI, UI_F_CLOSE_CONSOLE, 0), "close_console"}, {ERR_PACK(ERR_LIB_UI, UI_F_ECHO_CONSOLE, 0), "echo_console"}, {ERR_PACK(ERR_LIB_UI, UI_F_GENERAL_ALLOCATE_BOOLEAN, 0), "general_allocate_boolean"}, {ERR_PACK(ERR_LIB_UI, UI_F_GENERAL_ALLOCATE_PROMPT, 0), "general_allocate_prompt"}, {ERR_PACK(ERR_LIB_UI, UI_F_NOECHO_CONSOLE, 0), "noecho_console"}, {ERR_PACK(ERR_LIB_UI, UI_F_OPEN_CONSOLE, 0), "open_console"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_CONSTRUCT_PROMPT, 0), "UI_construct_prompt"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_CREATE_METHOD, 0), "UI_create_method"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_CTRL, 0), "UI_ctrl"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_DUP_ERROR_STRING, 0), "UI_dup_error_string"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_DUP_INFO_STRING, 0), "UI_dup_info_string"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_DUP_INPUT_BOOLEAN, 0), "UI_dup_input_boolean"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_DUP_INPUT_STRING, 0), "UI_dup_input_string"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_DUP_USER_DATA, 0), "UI_dup_user_data"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_DUP_VERIFY_STRING, 0), "UI_dup_verify_string"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_GET0_RESULT, 0), "UI_get0_result"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_GET_RESULT_LENGTH, 0), "UI_get_result_length"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_NEW_METHOD, 0), "UI_new_method"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_PROCESS, 0), "UI_process"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_SET_RESULT, 0), "UI_set_result"}, {ERR_PACK(ERR_LIB_UI, UI_F_UI_SET_RESULT_EX, 0), "UI_set_result_ex"}, {0, NULL} }; static const ERR_STRING_DATA UI_str_reasons[] = { {ERR_PACK(ERR_LIB_UI, 0, UI_R_COMMON_OK_AND_CANCEL_CHARACTERS), "common ok and cancel characters"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_INDEX_TOO_LARGE), "index too large"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_INDEX_TOO_SMALL), "index too small"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_NO_RESULT_BUFFER), "no result buffer"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_PROCESSING_ERROR), "processing error"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_RESULT_TOO_LARGE), "result too large"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_RESULT_TOO_SMALL), "result too small"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_SYSASSIGN_ERROR), "sys$assign error"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_SYSDASSGN_ERROR), "sys$dassgn error"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_SYSQIOW_ERROR), "sys$qiow error"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_UNKNOWN_CONTROL_COMMAND), "unknown control command"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_UNKNOWN_TTYGET_ERRNO_VALUE), "unknown ttyget errno value"}, {ERR_PACK(ERR_LIB_UI, 0, UI_R_USER_DATA_DUPLICATION_UNSUPPORTED), "user data duplication unsupported"}, {0, NULL} }; #endif int ERR_load_UI_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(UI_str_functs[0].error) == NULL) { ERR_load_strings_const(UI_str_functs); ERR_load_strings_const(UI_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/ui/ui_lib.c000066400000000000000000000643021364063235100167170ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ui_local.h" UI *UI_new(void) { return UI_new_method(NULL); } UI *UI_new_method(const UI_METHOD *method) { UI *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { UIerr(UI_F_UI_NEW_METHOD, ERR_R_MALLOC_FAILURE); return NULL; } ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { UIerr(UI_F_UI_NEW_METHOD, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } if (method == NULL) method = UI_get_default_method(); if (method == NULL) method = UI_null(); ret->meth = method; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_UI, ret, &ret->ex_data)) { OPENSSL_free(ret); return NULL; } return ret; } static void free_string(UI_STRING *uis) { if (uis->flags & OUT_STRING_FREEABLE) { OPENSSL_free((char *)uis->out_string); switch (uis->type) { case UIT_BOOLEAN: OPENSSL_free((char *)uis->_.boolean_data.action_desc); OPENSSL_free((char *)uis->_.boolean_data.ok_chars); OPENSSL_free((char *)uis->_.boolean_data.cancel_chars); break; case UIT_NONE: case UIT_PROMPT: case UIT_VERIFY: case UIT_ERROR: case UIT_INFO: break; } } OPENSSL_free(uis); } void UI_free(UI *ui) { if (ui == NULL) return; if ((ui->flags & UI_FLAG_DUPL_DATA) != 0) { ui->meth->ui_destroy_data(ui, ui->user_data); } sk_UI_STRING_pop_free(ui->strings, free_string); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_UI, ui, &ui->ex_data); CRYPTO_THREAD_lock_free(ui->lock); OPENSSL_free(ui); } static int allocate_string_stack(UI *ui) { if (ui->strings == NULL) { ui->strings = sk_UI_STRING_new_null(); if (ui->strings == NULL) { return -1; } } return 0; } static UI_STRING *general_allocate_prompt(UI *ui, const char *prompt, int prompt_freeable, enum UI_string_types type, int input_flags, char *result_buf) { UI_STRING *ret = NULL; if (prompt == NULL) { UIerr(UI_F_GENERAL_ALLOCATE_PROMPT, ERR_R_PASSED_NULL_PARAMETER); } else if ((type == UIT_PROMPT || type == UIT_VERIFY || type == UIT_BOOLEAN) && result_buf == NULL) { UIerr(UI_F_GENERAL_ALLOCATE_PROMPT, UI_R_NO_RESULT_BUFFER); } else if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) { ret->out_string = prompt; ret->flags = prompt_freeable ? OUT_STRING_FREEABLE : 0; ret->input_flags = input_flags; ret->type = type; ret->result_buf = result_buf; } return ret; } static int general_allocate_string(UI *ui, const char *prompt, int prompt_freeable, enum UI_string_types type, int input_flags, char *result_buf, int minsize, int maxsize, const char *test_buf) { int ret = -1; UI_STRING *s = general_allocate_prompt(ui, prompt, prompt_freeable, type, input_flags, result_buf); if (s != NULL) { if (allocate_string_stack(ui) >= 0) { s->_.string_data.result_minsize = minsize; s->_.string_data.result_maxsize = maxsize; s->_.string_data.test_buf = test_buf; ret = sk_UI_STRING_push(ui->strings, s); /* sk_push() returns 0 on error. Let's adapt that */ if (ret <= 0) { ret--; free_string(s); } } else free_string(s); } return ret; } static int general_allocate_boolean(UI *ui, const char *prompt, const char *action_desc, const char *ok_chars, const char *cancel_chars, int prompt_freeable, enum UI_string_types type, int input_flags, char *result_buf) { int ret = -1; UI_STRING *s; const char *p; if (ok_chars == NULL) { UIerr(UI_F_GENERAL_ALLOCATE_BOOLEAN, ERR_R_PASSED_NULL_PARAMETER); } else if (cancel_chars == NULL) { UIerr(UI_F_GENERAL_ALLOCATE_BOOLEAN, ERR_R_PASSED_NULL_PARAMETER); } else { for (p = ok_chars; *p != '\0'; p++) { if (strchr(cancel_chars, *p) != NULL) { UIerr(UI_F_GENERAL_ALLOCATE_BOOLEAN, UI_R_COMMON_OK_AND_CANCEL_CHARACTERS); } } s = general_allocate_prompt(ui, prompt, prompt_freeable, type, input_flags, result_buf); if (s != NULL) { if (allocate_string_stack(ui) >= 0) { s->_.boolean_data.action_desc = action_desc; s->_.boolean_data.ok_chars = ok_chars; s->_.boolean_data.cancel_chars = cancel_chars; ret = sk_UI_STRING_push(ui->strings, s); /* * sk_push() returns 0 on error. Let's adapt that */ if (ret <= 0) { ret--; free_string(s); } } else free_string(s); } } return ret; } /* * Returns the index to the place in the stack or -1 for error. Uses a * direct reference to the prompt. */ int UI_add_input_string(UI *ui, const char *prompt, int flags, char *result_buf, int minsize, int maxsize) { return general_allocate_string(ui, prompt, 0, UIT_PROMPT, flags, result_buf, minsize, maxsize, NULL); } /* Same as UI_add_input_string(), excepts it takes a copy of the prompt */ int UI_dup_input_string(UI *ui, const char *prompt, int flags, char *result_buf, int minsize, int maxsize) { char *prompt_copy = NULL; if (prompt != NULL) { prompt_copy = OPENSSL_strdup(prompt); if (prompt_copy == NULL) { UIerr(UI_F_UI_DUP_INPUT_STRING, ERR_R_MALLOC_FAILURE); return 0; } } return general_allocate_string(ui, prompt_copy, 1, UIT_PROMPT, flags, result_buf, minsize, maxsize, NULL); } int UI_add_verify_string(UI *ui, const char *prompt, int flags, char *result_buf, int minsize, int maxsize, const char *test_buf) { return general_allocate_string(ui, prompt, 0, UIT_VERIFY, flags, result_buf, minsize, maxsize, test_buf); } int UI_dup_verify_string(UI *ui, const char *prompt, int flags, char *result_buf, int minsize, int maxsize, const char *test_buf) { char *prompt_copy = NULL; if (prompt != NULL) { prompt_copy = OPENSSL_strdup(prompt); if (prompt_copy == NULL) { UIerr(UI_F_UI_DUP_VERIFY_STRING, ERR_R_MALLOC_FAILURE); return -1; } } return general_allocate_string(ui, prompt_copy, 1, UIT_VERIFY, flags, result_buf, minsize, maxsize, test_buf); } int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc, const char *ok_chars, const char *cancel_chars, int flags, char *result_buf) { return general_allocate_boolean(ui, prompt, action_desc, ok_chars, cancel_chars, 0, UIT_BOOLEAN, flags, result_buf); } int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc, const char *ok_chars, const char *cancel_chars, int flags, char *result_buf) { char *prompt_copy = NULL; char *action_desc_copy = NULL; char *ok_chars_copy = NULL; char *cancel_chars_copy = NULL; if (prompt != NULL) { prompt_copy = OPENSSL_strdup(prompt); if (prompt_copy == NULL) { UIerr(UI_F_UI_DUP_INPUT_BOOLEAN, ERR_R_MALLOC_FAILURE); goto err; } } if (action_desc != NULL) { action_desc_copy = OPENSSL_strdup(action_desc); if (action_desc_copy == NULL) { UIerr(UI_F_UI_DUP_INPUT_BOOLEAN, ERR_R_MALLOC_FAILURE); goto err; } } if (ok_chars != NULL) { ok_chars_copy = OPENSSL_strdup(ok_chars); if (ok_chars_copy == NULL) { UIerr(UI_F_UI_DUP_INPUT_BOOLEAN, ERR_R_MALLOC_FAILURE); goto err; } } if (cancel_chars != NULL) { cancel_chars_copy = OPENSSL_strdup(cancel_chars); if (cancel_chars_copy == NULL) { UIerr(UI_F_UI_DUP_INPUT_BOOLEAN, ERR_R_MALLOC_FAILURE); goto err; } } return general_allocate_boolean(ui, prompt_copy, action_desc_copy, ok_chars_copy, cancel_chars_copy, 1, UIT_BOOLEAN, flags, result_buf); err: OPENSSL_free(prompt_copy); OPENSSL_free(action_desc_copy); OPENSSL_free(ok_chars_copy); OPENSSL_free(cancel_chars_copy); return -1; } int UI_add_info_string(UI *ui, const char *text) { return general_allocate_string(ui, text, 0, UIT_INFO, 0, NULL, 0, 0, NULL); } int UI_dup_info_string(UI *ui, const char *text) { char *text_copy = NULL; if (text != NULL) { text_copy = OPENSSL_strdup(text); if (text_copy == NULL) { UIerr(UI_F_UI_DUP_INFO_STRING, ERR_R_MALLOC_FAILURE); return -1; } } return general_allocate_string(ui, text_copy, 1, UIT_INFO, 0, NULL, 0, 0, NULL); } int UI_add_error_string(UI *ui, const char *text) { return general_allocate_string(ui, text, 0, UIT_ERROR, 0, NULL, 0, 0, NULL); } int UI_dup_error_string(UI *ui, const char *text) { char *text_copy = NULL; if (text != NULL) { text_copy = OPENSSL_strdup(text); if (text_copy == NULL) { UIerr(UI_F_UI_DUP_ERROR_STRING, ERR_R_MALLOC_FAILURE); return -1; } } return general_allocate_string(ui, text_copy, 1, UIT_ERROR, 0, NULL, 0, 0, NULL); } char *UI_construct_prompt(UI *ui, const char *object_desc, const char *object_name) { char *prompt = NULL; if (ui->meth->ui_construct_prompt != NULL) prompt = ui->meth->ui_construct_prompt(ui, object_desc, object_name); else { char prompt1[] = "Enter "; char prompt2[] = " for "; char prompt3[] = ":"; int len = 0; if (object_desc == NULL) return NULL; len = sizeof(prompt1) - 1 + strlen(object_desc); if (object_name != NULL) len += sizeof(prompt2) - 1 + strlen(object_name); len += sizeof(prompt3) - 1; if ((prompt = OPENSSL_malloc(len + 1)) == NULL) { UIerr(UI_F_UI_CONSTRUCT_PROMPT, ERR_R_MALLOC_FAILURE); return NULL; } OPENSSL_strlcpy(prompt, prompt1, len + 1); OPENSSL_strlcat(prompt, object_desc, len + 1); if (object_name != NULL) { OPENSSL_strlcat(prompt, prompt2, len + 1); OPENSSL_strlcat(prompt, object_name, len + 1); } OPENSSL_strlcat(prompt, prompt3, len + 1); } return prompt; } void *UI_add_user_data(UI *ui, void *user_data) { void *old_data = ui->user_data; if ((ui->flags & UI_FLAG_DUPL_DATA) != 0) { ui->meth->ui_destroy_data(ui, old_data); old_data = NULL; } ui->user_data = user_data; ui->flags &= ~UI_FLAG_DUPL_DATA; return old_data; } int UI_dup_user_data(UI *ui, void *user_data) { void *duplicate = NULL; if (ui->meth->ui_duplicate_data == NULL || ui->meth->ui_destroy_data == NULL) { UIerr(UI_F_UI_DUP_USER_DATA, UI_R_USER_DATA_DUPLICATION_UNSUPPORTED); return -1; } duplicate = ui->meth->ui_duplicate_data(ui, user_data); if (duplicate == NULL) { UIerr(UI_F_UI_DUP_USER_DATA, ERR_R_MALLOC_FAILURE); return -1; } (void)UI_add_user_data(ui, duplicate); ui->flags |= UI_FLAG_DUPL_DATA; return 0; } void *UI_get0_user_data(UI *ui) { return ui->user_data; } const char *UI_get0_result(UI *ui, int i) { if (i < 0) { UIerr(UI_F_UI_GET0_RESULT, UI_R_INDEX_TOO_SMALL); return NULL; } if (i >= sk_UI_STRING_num(ui->strings)) { UIerr(UI_F_UI_GET0_RESULT, UI_R_INDEX_TOO_LARGE); return NULL; } return UI_get0_result_string(sk_UI_STRING_value(ui->strings, i)); } int UI_get_result_length(UI *ui, int i) { if (i < 0) { UIerr(UI_F_UI_GET_RESULT_LENGTH, UI_R_INDEX_TOO_SMALL); return -1; } if (i >= sk_UI_STRING_num(ui->strings)) { UIerr(UI_F_UI_GET_RESULT_LENGTH, UI_R_INDEX_TOO_LARGE); return -1; } return UI_get_result_string_length(sk_UI_STRING_value(ui->strings, i)); } static int print_error(const char *str, size_t len, UI *ui) { UI_STRING uis; memset(&uis, 0, sizeof(uis)); uis.type = UIT_ERROR; uis.out_string = str; if (ui->meth->ui_write_string != NULL && ui->meth->ui_write_string(ui, &uis) <= 0) return -1; return 0; } int UI_process(UI *ui) { int i, ok = 0; const char *state = "processing"; if (ui->meth->ui_open_session != NULL && ui->meth->ui_open_session(ui) <= 0) { state = "opening session"; ok = -1; goto err; } if (ui->flags & UI_FLAG_PRINT_ERRORS) ERR_print_errors_cb((int (*)(const char *, size_t, void *)) print_error, (void *)ui); for (i = 0; i < sk_UI_STRING_num(ui->strings); i++) { if (ui->meth->ui_write_string != NULL && (ui->meth->ui_write_string(ui, sk_UI_STRING_value(ui->strings, i)) <= 0)) { state = "writing strings"; ok = -1; goto err; } } if (ui->meth->ui_flush != NULL) switch (ui->meth->ui_flush(ui)) { case -1: /* Interrupt/Cancel/something... */ ui->flags &= ~UI_FLAG_REDOABLE; ok = -2; goto err; case 0: /* Errors */ state = "flushing"; ok = -1; goto err; default: /* Success */ ok = 0; break; } for (i = 0; i < sk_UI_STRING_num(ui->strings); i++) { if (ui->meth->ui_read_string != NULL) { switch (ui->meth->ui_read_string(ui, sk_UI_STRING_value(ui->strings, i))) { case -1: /* Interrupt/Cancel/something... */ ui->flags &= ~UI_FLAG_REDOABLE; ok = -2; goto err; case 0: /* Errors */ state = "reading strings"; ok = -1; goto err; default: /* Success */ ok = 0; break; } } } state = NULL; err: if (ui->meth->ui_close_session != NULL && ui->meth->ui_close_session(ui) <= 0) { if (state == NULL) state = "closing session"; ok = -1; } if (ok == -1) { UIerr(UI_F_UI_PROCESS, UI_R_PROCESSING_ERROR); ERR_add_error_data(2, "while ", state); } return ok; } int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f) (void)) { if (ui == NULL) { UIerr(UI_F_UI_CTRL, ERR_R_PASSED_NULL_PARAMETER); return -1; } switch (cmd) { case UI_CTRL_PRINT_ERRORS: { int save_flag = ! !(ui->flags & UI_FLAG_PRINT_ERRORS); if (i) ui->flags |= UI_FLAG_PRINT_ERRORS; else ui->flags &= ~UI_FLAG_PRINT_ERRORS; return save_flag; } case UI_CTRL_IS_REDOABLE: return ! !(ui->flags & UI_FLAG_REDOABLE); default: break; } UIerr(UI_F_UI_CTRL, UI_R_UNKNOWN_CONTROL_COMMAND); return -1; } int UI_set_ex_data(UI *r, int idx, void *arg) { return CRYPTO_set_ex_data(&r->ex_data, idx, arg); } void *UI_get_ex_data(UI *r, int idx) { return CRYPTO_get_ex_data(&r->ex_data, idx); } const UI_METHOD *UI_get_method(UI *ui) { return ui->meth; } const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth) { ui->meth = meth; return ui->meth; } UI_METHOD *UI_create_method(const char *name) { UI_METHOD *ui_method = NULL; if ((ui_method = OPENSSL_zalloc(sizeof(*ui_method))) == NULL || (ui_method->name = OPENSSL_strdup(name)) == NULL || !CRYPTO_new_ex_data(CRYPTO_EX_INDEX_UI_METHOD, ui_method, &ui_method->ex_data)) { if (ui_method) OPENSSL_free(ui_method->name); OPENSSL_free(ui_method); UIerr(UI_F_UI_CREATE_METHOD, ERR_R_MALLOC_FAILURE); return NULL; } return ui_method; } /* * BIG FSCKING WARNING!!!! If you use this on a statically allocated method * (that is, it hasn't been allocated using UI_create_method(), you deserve * anything Murphy can throw at you and more! You have been warned. */ void UI_destroy_method(UI_METHOD *ui_method) { if (ui_method == NULL) return; CRYPTO_free_ex_data(CRYPTO_EX_INDEX_UI_METHOD, ui_method, &ui_method->ex_data); OPENSSL_free(ui_method->name); ui_method->name = NULL; OPENSSL_free(ui_method); } int UI_method_set_opener(UI_METHOD *method, int (*opener) (UI *ui)) { if (method != NULL) { method->ui_open_session = opener; return 0; } return -1; } int UI_method_set_writer(UI_METHOD *method, int (*writer) (UI *ui, UI_STRING *uis)) { if (method != NULL) { method->ui_write_string = writer; return 0; } return -1; } int UI_method_set_flusher(UI_METHOD *method, int (*flusher) (UI *ui)) { if (method != NULL) { method->ui_flush = flusher; return 0; } return -1; } int UI_method_set_reader(UI_METHOD *method, int (*reader) (UI *ui, UI_STRING *uis)) { if (method != NULL) { method->ui_read_string = reader; return 0; } return -1; } int UI_method_set_closer(UI_METHOD *method, int (*closer) (UI *ui)) { if (method != NULL) { method->ui_close_session = closer; return 0; } return -1; } int UI_method_set_data_duplicator(UI_METHOD *method, void *(*duplicator) (UI *ui, void *ui_data), void (*destructor)(UI *ui, void *ui_data)) { if (method != NULL) { method->ui_duplicate_data = duplicator; method->ui_destroy_data = destructor; return 0; } return -1; } int UI_method_set_prompt_constructor(UI_METHOD *method, char *(*prompt_constructor) (UI *ui, const char *object_desc, const char *object_name)) { if (method != NULL) { method->ui_construct_prompt = prompt_constructor; return 0; } return -1; } int UI_method_set_ex_data(UI_METHOD *method, int idx, void *data) { return CRYPTO_set_ex_data(&method->ex_data, idx, data); } int (*UI_method_get_opener(const UI_METHOD *method)) (UI *) { if (method != NULL) return method->ui_open_session; return NULL; } int (*UI_method_get_writer(const UI_METHOD *method)) (UI *, UI_STRING *) { if (method != NULL) return method->ui_write_string; return NULL; } int (*UI_method_get_flusher(const UI_METHOD *method)) (UI *) { if (method != NULL) return method->ui_flush; return NULL; } int (*UI_method_get_reader(const UI_METHOD *method)) (UI *, UI_STRING *) { if (method != NULL) return method->ui_read_string; return NULL; } int (*UI_method_get_closer(const UI_METHOD *method)) (UI *) { if (method != NULL) return method->ui_close_session; return NULL; } char *(*UI_method_get_prompt_constructor(const UI_METHOD *method)) (UI *, const char *, const char *) { if (method != NULL) return method->ui_construct_prompt; return NULL; } void *(*UI_method_get_data_duplicator(const UI_METHOD *method)) (UI *, void *) { if (method != NULL) return method->ui_duplicate_data; return NULL; } void (*UI_method_get_data_destructor(const UI_METHOD *method)) (UI *, void *) { if (method != NULL) return method->ui_destroy_data; return NULL; } const void *UI_method_get_ex_data(const UI_METHOD *method, int idx) { return CRYPTO_get_ex_data(&method->ex_data, idx); } enum UI_string_types UI_get_string_type(UI_STRING *uis) { return uis->type; } int UI_get_input_flags(UI_STRING *uis) { return uis->input_flags; } const char *UI_get0_output_string(UI_STRING *uis) { return uis->out_string; } const char *UI_get0_action_string(UI_STRING *uis) { switch (uis->type) { case UIT_BOOLEAN: return uis->_.boolean_data.action_desc; case UIT_PROMPT: case UIT_NONE: case UIT_VERIFY: case UIT_INFO: case UIT_ERROR: break; } return NULL; } const char *UI_get0_result_string(UI_STRING *uis) { switch (uis->type) { case UIT_PROMPT: case UIT_VERIFY: return uis->result_buf; case UIT_NONE: case UIT_BOOLEAN: case UIT_INFO: case UIT_ERROR: break; } return NULL; } int UI_get_result_string_length(UI_STRING *uis) { switch (uis->type) { case UIT_PROMPT: case UIT_VERIFY: return uis->result_len; case UIT_NONE: case UIT_BOOLEAN: case UIT_INFO: case UIT_ERROR: break; } return -1; } const char *UI_get0_test_string(UI_STRING *uis) { switch (uis->type) { case UIT_VERIFY: return uis->_.string_data.test_buf; case UIT_NONE: case UIT_BOOLEAN: case UIT_INFO: case UIT_ERROR: case UIT_PROMPT: break; } return NULL; } int UI_get_result_minsize(UI_STRING *uis) { switch (uis->type) { case UIT_PROMPT: case UIT_VERIFY: return uis->_.string_data.result_minsize; case UIT_NONE: case UIT_INFO: case UIT_ERROR: case UIT_BOOLEAN: break; } return -1; } int UI_get_result_maxsize(UI_STRING *uis) { switch (uis->type) { case UIT_PROMPT: case UIT_VERIFY: return uis->_.string_data.result_maxsize; case UIT_NONE: case UIT_INFO: case UIT_ERROR: case UIT_BOOLEAN: break; } return -1; } int UI_set_result(UI *ui, UI_STRING *uis, const char *result) { #if 0 /* * This is placed here solely to preserve UI_F_UI_SET_RESULT * To be removed for OpenSSL 1.2.0 */ UIerr(UI_F_UI_SET_RESULT, ERR_R_DISABLED); #endif return UI_set_result_ex(ui, uis, result, strlen(result)); } int UI_set_result_ex(UI *ui, UI_STRING *uis, const char *result, int len) { ui->flags &= ~UI_FLAG_REDOABLE; switch (uis->type) { case UIT_PROMPT: case UIT_VERIFY: { char number1[DECIMAL_SIZE(uis->_.string_data.result_minsize) + 1]; char number2[DECIMAL_SIZE(uis->_.string_data.result_maxsize) + 1]; BIO_snprintf(number1, sizeof(number1), "%d", uis->_.string_data.result_minsize); BIO_snprintf(number2, sizeof(number2), "%d", uis->_.string_data.result_maxsize); if (len < uis->_.string_data.result_minsize) { ui->flags |= UI_FLAG_REDOABLE; UIerr(UI_F_UI_SET_RESULT_EX, UI_R_RESULT_TOO_SMALL); ERR_add_error_data(5, "You must type in ", number1, " to ", number2, " characters"); return -1; } if (len > uis->_.string_data.result_maxsize) { ui->flags |= UI_FLAG_REDOABLE; UIerr(UI_F_UI_SET_RESULT_EX, UI_R_RESULT_TOO_LARGE); ERR_add_error_data(5, "You must type in ", number1, " to ", number2, " characters"); return -1; } } if (uis->result_buf == NULL) { UIerr(UI_F_UI_SET_RESULT_EX, UI_R_NO_RESULT_BUFFER); return -1; } memcpy(uis->result_buf, result, len); if (len <= uis->_.string_data.result_maxsize) uis->result_buf[len] = '\0'; uis->result_len = len; break; case UIT_BOOLEAN: { const char *p; if (uis->result_buf == NULL) { UIerr(UI_F_UI_SET_RESULT_EX, UI_R_NO_RESULT_BUFFER); return -1; } uis->result_buf[0] = '\0'; for (p = result; *p; p++) { if (strchr(uis->_.boolean_data.ok_chars, *p)) { uis->result_buf[0] = uis->_.boolean_data.ok_chars[0]; break; } if (strchr(uis->_.boolean_data.cancel_chars, *p)) { uis->result_buf[0] = uis->_.boolean_data.cancel_chars[0]; break; } } } case UIT_NONE: case UIT_INFO: case UIT_ERROR: break; } return 0; } openssl-1.1.1f/crypto/ui/ui_local.h000066400000000000000000000074231364063235100172510ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_UI_LOCAL_H # define OSSL_CRYPTO_UI_LOCAL_H # include # include # ifdef _ # undef _ # endif struct ui_method_st { char *name; /* * All the functions return 1 or non-NULL for success and 0 or NULL for * failure */ /* * Open whatever channel for this, be it the console, an X window or * whatever. This function should use the ex_data structure to save * intermediate data. */ int (*ui_open_session) (UI *ui); int (*ui_write_string) (UI *ui, UI_STRING *uis); /* * Flush the output. If a GUI dialog box is used, this function can be * used to actually display it. */ int (*ui_flush) (UI *ui); int (*ui_read_string) (UI *ui, UI_STRING *uis); int (*ui_close_session) (UI *ui); /* * Duplicate the ui_data that often comes alongside a ui_method. This * allows some backends to save away UI information for later use. */ void *(*ui_duplicate_data) (UI *ui, void *ui_data); void (*ui_destroy_data) (UI *ui, void *ui_data); /* * Construct a prompt in a user-defined manner. object_desc is a textual * short description of the object, for example "pass phrase", and * object_name is the name of the object (might be a card name or a file * name. The returned string shall always be allocated on the heap with * OPENSSL_malloc(), and need to be free'd with OPENSSL_free(). */ char *(*ui_construct_prompt) (UI *ui, const char *object_desc, const char *object_name); /* * UI_METHOD specific application data. */ CRYPTO_EX_DATA ex_data; }; struct ui_string_st { enum UI_string_types type; /* Input */ const char *out_string; /* Input */ int input_flags; /* Flags from the user */ /* * The following parameters are completely irrelevant for UIT_INFO, and * can therefore be set to 0 or NULL */ char *result_buf; /* Input and Output: If not NULL, * user-defined with size in result_maxsize. * Otherwise, it may be allocated by the UI * routine, meaning result_minsize is going * to be overwritten. */ size_t result_len; union { struct { int result_minsize; /* Input: minimum required size of the * result. */ int result_maxsize; /* Input: maximum permitted size of the * result */ const char *test_buf; /* Input: test string to verify against */ } string_data; struct { const char *action_desc; /* Input */ const char *ok_chars; /* Input */ const char *cancel_chars; /* Input */ } boolean_data; } _; # define OUT_STRING_FREEABLE 0x01 int flags; /* flags for internal use */ }; struct ui_st { const UI_METHOD *meth; STACK_OF(UI_STRING) *strings; /* We might want to prompt for more than * one thing at a time, and with different * echoing status. */ void *user_data; CRYPTO_EX_DATA ex_data; # define UI_FLAG_REDOABLE 0x0001 # define UI_FLAG_DUPL_DATA 0x0002 /* user_data was duplicated */ # define UI_FLAG_PRINT_ERRORS 0x0100 int flags; CRYPTO_RWLOCK *lock; }; #endif openssl-1.1.1f/crypto/ui/ui_null.c000066400000000000000000000013661364063235100171240ustar00rootroot00000000000000/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "ui_local.h" static const UI_METHOD ui_null = { "OpenSSL NULL UI", NULL, /* opener */ NULL, /* writer */ NULL, /* flusher */ NULL, /* reader */ NULL, /* closer */ NULL }; /* The method with all the built-in thingies */ const UI_METHOD *UI_null(void) { return &ui_null; } openssl-1.1.1f/crypto/ui/ui_openssl.c000066400000000000000000000456561364063235100176470ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include #include #include #ifndef OPENSSL_NO_UI_CONSOLE /* * need for #define _POSIX_C_SOURCE arises whenever you pass -ansi to gcc * [maybe others?], because it masks interfaces not discussed in standard, * sigaction and fileno included. -pedantic would be more appropriate for the * intended purposes, but we can't prevent users from adding -ansi. */ # if defined(OPENSSL_SYS_VXWORKS) # include # endif # if !defined(_POSIX_C_SOURCE) && defined(OPENSSL_SYS_VMS) # ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 2 # endif # endif # include # include # include # include # if !defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_VMS) # ifdef OPENSSL_UNISTD # include OPENSSL_UNISTD # else # include # endif /* * If unistd.h defines _POSIX_VERSION, we conclude that we are on a POSIX * system and have sigaction and termios. */ # if defined(_POSIX_VERSION) && _POSIX_VERSION>=199309L # define SIGACTION # if !defined(TERMIOS) && !defined(TERMIO) && !defined(SGTTY) # define TERMIOS # endif # endif # endif # include "ui_local.h" # include "internal/cryptlib.h" # ifdef OPENSSL_SYS_VMS /* prototypes for sys$whatever */ # include # ifdef __DECC # pragma message disable DOLLARID # endif # endif # ifdef WIN_CONSOLE_BUG # include # ifndef OPENSSL_SYS_WINCE # include # endif # endif /* * There are 6 types of terminal interface supported, TERMIO, TERMIOS, VMS, * MSDOS, WIN32 Console and SGTTY. * * If someone defines one of the macros TERMIO, TERMIOS or SGTTY, it will * remain respected. Otherwise, we default to TERMIOS except for a few * systems that require something different. * * Note: we do not use SGTTY unless it's defined by the configuration. We * may eventually opt to remove its use entirely. */ # if !defined(TERMIOS) && !defined(TERMIO) && !defined(SGTTY) # if defined(_LIBC) # undef TERMIOS # define TERMIO # undef SGTTY /* * We know that VMS, MSDOS, VXWORKS, use entirely other mechanisms. */ # elif !defined(OPENSSL_SYS_VMS) \ && !defined(OPENSSL_SYS_MSDOS) \ && !defined(OPENSSL_SYS_VXWORKS) # define TERMIOS # undef TERMIO # undef SGTTY # endif # endif # if defined(OPENSSL_SYS_VXWORKS) # undef TERMIOS # undef TERMIO # undef SGTTY # endif # ifdef TERMIOS # include # define TTY_STRUCT struct termios # define TTY_FLAGS c_lflag # define TTY_get(tty,data) tcgetattr(tty,data) # define TTY_set(tty,data) tcsetattr(tty,TCSANOW,data) # endif # ifdef TERMIO # include # define TTY_STRUCT struct termio # define TTY_FLAGS c_lflag # define TTY_get(tty,data) ioctl(tty,TCGETA,data) # define TTY_set(tty,data) ioctl(tty,TCSETA,data) # endif # ifdef SGTTY # include # define TTY_STRUCT struct sgttyb # define TTY_FLAGS sg_flags # define TTY_get(tty,data) ioctl(tty,TIOCGETP,data) # define TTY_set(tty,data) ioctl(tty,TIOCSETP,data) # endif # if !defined(_LIBC) && !defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_VMS) # include # endif # ifdef OPENSSL_SYS_MSDOS # include # endif # ifdef OPENSSL_SYS_VMS # include # include # include # include struct IOSB { short iosb$w_value; short iosb$w_count; long iosb$l_info; }; # endif # ifndef NX509_SIG # define NX509_SIG 32 # endif /* Define globals. They are protected by a lock */ # ifdef SIGACTION static struct sigaction savsig[NX509_SIG]; # else static void (*savsig[NX509_SIG]) (int); # endif # ifdef OPENSSL_SYS_VMS static struct IOSB iosb; static $DESCRIPTOR(terminal, "TT"); static long tty_orig[3], tty_new[3]; /* XXX Is there any guarantee that this * will always suffice for the actual * structures? */ static long status; static unsigned short channel = 0; # elif defined(_WIN32) && !defined(_WIN32_WCE) static DWORD tty_orig, tty_new; # else # if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__) static TTY_STRUCT tty_orig, tty_new; # endif # endif static FILE *tty_in, *tty_out; static int is_a_tty; /* Declare static functions */ # if !defined(OPENSSL_SYS_WINCE) static int read_till_nl(FILE *); static void recsig(int); static void pushsig(void); static void popsig(void); # endif # if defined(OPENSSL_SYS_MSDOS) && !defined(_WIN32) static int noecho_fgets(char *buf, int size, FILE *tty); # endif static int read_string_inner(UI *ui, UI_STRING *uis, int echo, int strip_nl); static int read_string(UI *ui, UI_STRING *uis); static int write_string(UI *ui, UI_STRING *uis); static int open_console(UI *ui); static int echo_console(UI *ui); static int noecho_console(UI *ui); static int close_console(UI *ui); /* * The following function makes sure that info and error strings are printed * before any prompt. */ static int write_string(UI *ui, UI_STRING *uis) { switch (UI_get_string_type(uis)) { case UIT_ERROR: case UIT_INFO: fputs(UI_get0_output_string(uis), tty_out); fflush(tty_out); break; case UIT_NONE: case UIT_PROMPT: case UIT_VERIFY: case UIT_BOOLEAN: break; } return 1; } static int read_string(UI *ui, UI_STRING *uis) { int ok = 0; switch (UI_get_string_type(uis)) { case UIT_BOOLEAN: fputs(UI_get0_output_string(uis), tty_out); fputs(UI_get0_action_string(uis), tty_out); fflush(tty_out); return read_string_inner(ui, uis, UI_get_input_flags(uis) & UI_INPUT_FLAG_ECHO, 0); case UIT_PROMPT: fputs(UI_get0_output_string(uis), tty_out); fflush(tty_out); return read_string_inner(ui, uis, UI_get_input_flags(uis) & UI_INPUT_FLAG_ECHO, 1); case UIT_VERIFY: fprintf(tty_out, "Verifying - %s", UI_get0_output_string(uis)); fflush(tty_out); if ((ok = read_string_inner(ui, uis, UI_get_input_flags(uis) & UI_INPUT_FLAG_ECHO, 1)) <= 0) return ok; if (strcmp(UI_get0_result_string(uis), UI_get0_test_string(uis)) != 0) { fprintf(tty_out, "Verify failure\n"); fflush(tty_out); return 0; } break; case UIT_NONE: case UIT_INFO: case UIT_ERROR: break; } return 1; } # if !defined(OPENSSL_SYS_WINCE) /* Internal functions to read a string without echoing */ static int read_till_nl(FILE *in) { # define SIZE 4 char buf[SIZE + 1]; do { if (!fgets(buf, SIZE, in)) return 0; } while (strchr(buf, '\n') == NULL); return 1; } static volatile sig_atomic_t intr_signal; # endif static int read_string_inner(UI *ui, UI_STRING *uis, int echo, int strip_nl) { static int ps; int ok; char result[BUFSIZ]; int maxsize = BUFSIZ - 1; # if !defined(OPENSSL_SYS_WINCE) char *p = NULL; int echo_eol = !echo; intr_signal = 0; ok = 0; ps = 0; pushsig(); ps = 1; if (!echo && !noecho_console(ui)) goto error; ps = 2; result[0] = '\0'; # if defined(_WIN32) if (is_a_tty) { DWORD numread; # if defined(CP_UTF8) if (GetEnvironmentVariableW(L"OPENSSL_WIN32_UTF8", NULL, 0) != 0) { WCHAR wresult[BUFSIZ]; if (ReadConsoleW(GetStdHandle(STD_INPUT_HANDLE), wresult, maxsize, &numread, NULL)) { if (numread >= 2 && wresult[numread-2] == L'\r' && wresult[numread-1] == L'\n') { wresult[numread-2] = L'\n'; numread--; } wresult[numread] = '\0'; if (WideCharToMultiByte(CP_UTF8, 0, wresult, -1, result, sizeof(result), NULL, 0) > 0) p = result; OPENSSL_cleanse(wresult, sizeof(wresult)); } } else # endif if (ReadConsoleA(GetStdHandle(STD_INPUT_HANDLE), result, maxsize, &numread, NULL)) { if (numread >= 2 && result[numread-2] == '\r' && result[numread-1] == '\n') { result[numread-2] = '\n'; numread--; } result[numread] = '\0'; p = result; } } else # elif defined(OPENSSL_SYS_MSDOS) if (!echo) { noecho_fgets(result, maxsize, tty_in); p = result; /* FIXME: noecho_fgets doesn't return errors */ } else # endif p = fgets(result, maxsize, tty_in); if (p == NULL) goto error; if (feof(tty_in)) goto error; if (ferror(tty_in)) goto error; if ((p = (char *)strchr(result, '\n')) != NULL) { if (strip_nl) *p = '\0'; } else if (!read_till_nl(tty_in)) goto error; if (UI_set_result(ui, uis, result) >= 0) ok = 1; error: if (intr_signal == SIGINT) ok = -1; if (echo_eol) fprintf(tty_out, "\n"); if (ps >= 2 && !echo && !echo_console(ui)) ok = 0; if (ps >= 1) popsig(); # else ok = 1; # endif OPENSSL_cleanse(result, BUFSIZ); return ok; } /* Internal functions to open, handle and close a channel to the console. */ static int open_console(UI *ui) { CRYPTO_THREAD_write_lock(ui->lock); is_a_tty = 1; # if defined(OPENSSL_SYS_VXWORKS) tty_in = stdin; tty_out = stderr; # elif defined(_WIN32) && !defined(_WIN32_WCE) if ((tty_out = fopen("conout$", "w")) == NULL) tty_out = stderr; if (GetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), &tty_orig)) { tty_in = stdin; } else { is_a_tty = 0; if ((tty_in = fopen("conin$", "r")) == NULL) tty_in = stdin; } # else # ifdef OPENSSL_SYS_MSDOS # define DEV_TTY "con" # else # define DEV_TTY "/dev/tty" # endif if ((tty_in = fopen(DEV_TTY, "r")) == NULL) tty_in = stdin; if ((tty_out = fopen(DEV_TTY, "w")) == NULL) tty_out = stderr; # endif # if defined(TTY_get) && !defined(OPENSSL_SYS_VMS) if (TTY_get(fileno(tty_in), &tty_orig) == -1) { # ifdef ENOTTY if (errno == ENOTTY) is_a_tty = 0; else # endif # ifdef EINVAL /* * Ariel Glenn reports that solaris can return EINVAL instead. * This should be ok */ if (errno == EINVAL) is_a_tty = 0; else # endif # ifdef ENXIO /* * Solaris can return ENXIO. * This should be ok */ if (errno == ENXIO) is_a_tty = 0; else # endif # ifdef EIO /* * Linux can return EIO. * This should be ok */ if (errno == EIO) is_a_tty = 0; else # endif # ifdef ENODEV /* * MacOS X returns ENODEV (Operation not supported by device), * which seems appropriate. */ if (errno == ENODEV) is_a_tty = 0; else # endif { char tmp_num[10]; BIO_snprintf(tmp_num, sizeof(tmp_num) - 1, "%d", errno); UIerr(UI_F_OPEN_CONSOLE, UI_R_UNKNOWN_TTYGET_ERRNO_VALUE); ERR_add_error_data(2, "errno=", tmp_num); return 0; } } # endif # ifdef OPENSSL_SYS_VMS status = sys$assign(&terminal, &channel, 0, 0); /* if there isn't a TT device, something is very wrong */ if (status != SS$_NORMAL) { char tmp_num[12]; BIO_snprintf(tmp_num, sizeof(tmp_num) - 1, "%%X%08X", status); UIerr(UI_F_OPEN_CONSOLE, UI_R_SYSASSIGN_ERROR); ERR_add_error_data(2, "status=", tmp_num); return 0; } status = sys$qiow(0, channel, IO$_SENSEMODE, &iosb, 0, 0, tty_orig, 12, 0, 0, 0, 0); /* If IO$_SENSEMODE doesn't work, this is not a terminal device */ if ((status != SS$_NORMAL) || (iosb.iosb$w_value != SS$_NORMAL)) is_a_tty = 0; # endif return 1; } static int noecho_console(UI *ui) { # ifdef TTY_FLAGS memcpy(&(tty_new), &(tty_orig), sizeof(tty_orig)); tty_new.TTY_FLAGS &= ~ECHO; # endif # if defined(TTY_set) && !defined(OPENSSL_SYS_VMS) if (is_a_tty && (TTY_set(fileno(tty_in), &tty_new) == -1)) return 0; # endif # ifdef OPENSSL_SYS_VMS if (is_a_tty) { tty_new[0] = tty_orig[0]; tty_new[1] = tty_orig[1] | TT$M_NOECHO; tty_new[2] = tty_orig[2]; status = sys$qiow(0, channel, IO$_SETMODE, &iosb, 0, 0, tty_new, 12, 0, 0, 0, 0); if ((status != SS$_NORMAL) || (iosb.iosb$w_value != SS$_NORMAL)) { char tmp_num[2][12]; BIO_snprintf(tmp_num[0], sizeof(tmp_num[0]) - 1, "%%X%08X", status); BIO_snprintf(tmp_num[1], sizeof(tmp_num[1]) - 1, "%%X%08X", iosb.iosb$w_value); UIerr(UI_F_NOECHO_CONSOLE, UI_R_SYSQIOW_ERROR); ERR_add_error_data(5, "status=", tmp_num[0], ",", "iosb.iosb$w_value=", tmp_num[1]); return 0; } } # endif # if defined(_WIN32) && !defined(_WIN32_WCE) if (is_a_tty) { tty_new = tty_orig; tty_new &= ~ENABLE_ECHO_INPUT; SetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), tty_new); } # endif return 1; } static int echo_console(UI *ui) { # if defined(TTY_set) && !defined(OPENSSL_SYS_VMS) memcpy(&(tty_new), &(tty_orig), sizeof(tty_orig)); if (is_a_tty && (TTY_set(fileno(tty_in), &tty_new) == -1)) return 0; # endif # ifdef OPENSSL_SYS_VMS if (is_a_tty) { tty_new[0] = tty_orig[0]; tty_new[1] = tty_orig[1]; tty_new[2] = tty_orig[2]; status = sys$qiow(0, channel, IO$_SETMODE, &iosb, 0, 0, tty_new, 12, 0, 0, 0, 0); if ((status != SS$_NORMAL) || (iosb.iosb$w_value != SS$_NORMAL)) { char tmp_num[2][12]; BIO_snprintf(tmp_num[0], sizeof(tmp_num[0]) - 1, "%%X%08X", status); BIO_snprintf(tmp_num[1], sizeof(tmp_num[1]) - 1, "%%X%08X", iosb.iosb$w_value); UIerr(UI_F_ECHO_CONSOLE, UI_R_SYSQIOW_ERROR); ERR_add_error_data(5, "status=", tmp_num[0], ",", "iosb.iosb$w_value=", tmp_num[1]); return 0; } } # endif # if defined(_WIN32) && !defined(_WIN32_WCE) if (is_a_tty) { tty_new = tty_orig; SetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), tty_new); } # endif return 1; } static int close_console(UI *ui) { if (tty_in != stdin) fclose(tty_in); if (tty_out != stderr) fclose(tty_out); # ifdef OPENSSL_SYS_VMS status = sys$dassgn(channel); if (status != SS$_NORMAL) { char tmp_num[12]; BIO_snprintf(tmp_num, sizeof(tmp_num) - 1, "%%X%08X", status); UIerr(UI_F_CLOSE_CONSOLE, UI_R_SYSDASSGN_ERROR); ERR_add_error_data(2, "status=", tmp_num); return 0; } # endif CRYPTO_THREAD_unlock(ui->lock); return 1; } # if !defined(OPENSSL_SYS_WINCE) /* Internal functions to handle signals and act on them */ static void pushsig(void) { # ifndef OPENSSL_SYS_WIN32 int i; # endif # ifdef SIGACTION struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = recsig; # endif # ifdef OPENSSL_SYS_WIN32 savsig[SIGABRT] = signal(SIGABRT, recsig); savsig[SIGFPE] = signal(SIGFPE, recsig); savsig[SIGILL] = signal(SIGILL, recsig); savsig[SIGINT] = signal(SIGINT, recsig); savsig[SIGSEGV] = signal(SIGSEGV, recsig); savsig[SIGTERM] = signal(SIGTERM, recsig); # else for (i = 1; i < NX509_SIG; i++) { # ifdef SIGUSR1 if (i == SIGUSR1) continue; # endif # ifdef SIGUSR2 if (i == SIGUSR2) continue; # endif # ifdef SIGKILL if (i == SIGKILL) /* We can't make any action on that. */ continue; # endif # ifdef SIGACTION sigaction(i, &sa, &savsig[i]); # else savsig[i] = signal(i, recsig); # endif } # endif # ifdef SIGWINCH signal(SIGWINCH, SIG_DFL); # endif } static void popsig(void) { # ifdef OPENSSL_SYS_WIN32 signal(SIGABRT, savsig[SIGABRT]); signal(SIGFPE, savsig[SIGFPE]); signal(SIGILL, savsig[SIGILL]); signal(SIGINT, savsig[SIGINT]); signal(SIGSEGV, savsig[SIGSEGV]); signal(SIGTERM, savsig[SIGTERM]); # else int i; for (i = 1; i < NX509_SIG; i++) { # ifdef SIGUSR1 if (i == SIGUSR1) continue; # endif # ifdef SIGUSR2 if (i == SIGUSR2) continue; # endif # ifdef SIGACTION sigaction(i, &savsig[i], NULL); # else signal(i, savsig[i]); # endif } # endif } static void recsig(int i) { intr_signal = i; } # endif /* Internal functions specific for Windows */ # if defined(OPENSSL_SYS_MSDOS) && !defined(_WIN32) static int noecho_fgets(char *buf, int size, FILE *tty) { int i; char *p; p = buf; for (;;) { if (size == 0) { *p = '\0'; break; } size--; # if defined(_WIN32) i = _getch(); # else i = getch(); # endif if (i == '\r') i = '\n'; *(p++) = i; if (i == '\n') { *p = '\0'; break; } } # ifdef WIN_CONSOLE_BUG /* * Win95 has several evil console bugs: one of these is that the last * character read using getch() is passed to the next read: this is * usually a CR so this can be trouble. No STDIO fix seems to work but * flushing the console appears to do the trick. */ { HANDLE inh; inh = GetStdHandle(STD_INPUT_HANDLE); FlushConsoleInputBuffer(inh); } # endif return strlen(buf); } # endif static UI_METHOD ui_openssl = { "OpenSSL default user interface", open_console, write_string, NULL, /* No flusher is needed for command lines */ read_string, close_console, NULL }; /* The method with all the built-in console thingies */ UI_METHOD *UI_OpenSSL(void) { return &ui_openssl; } static const UI_METHOD *default_UI_meth = &ui_openssl; #else static const UI_METHOD *default_UI_meth = NULL; #endif void UI_set_default_method(const UI_METHOD *meth) { default_UI_meth = meth; } const UI_METHOD *UI_get_default_method(void) { return default_UI_meth; } openssl-1.1.1f/crypto/ui/ui_util.c000066400000000000000000000110531364063235100171210ustar00rootroot00000000000000/* * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include /* PEM_def_callback() */ #include "internal/thread_once.h" #include "ui_local.h" #ifndef BUFSIZ #define BUFSIZ 256 #endif int UI_UTIL_read_pw_string(char *buf, int length, const char *prompt, int verify) { char buff[BUFSIZ]; int ret; ret = UI_UTIL_read_pw(buf, buff, (length > BUFSIZ) ? BUFSIZ : length, prompt, verify); OPENSSL_cleanse(buff, BUFSIZ); return ret; } int UI_UTIL_read_pw(char *buf, char *buff, int size, const char *prompt, int verify) { int ok = 0; UI *ui; if (size < 1) return -1; ui = UI_new(); if (ui != NULL) { ok = UI_add_input_string(ui, prompt, 0, buf, 0, size - 1); if (ok >= 0 && verify) ok = UI_add_verify_string(ui, prompt, 0, buff, 0, size - 1, buf); if (ok >= 0) ok = UI_process(ui); UI_free(ui); } if (ok > 0) ok = 0; return ok; } /* * Wrapper around pem_password_cb, a method to help older APIs use newer * ones. */ struct pem_password_cb_data { pem_password_cb *cb; int rwflag; }; static void ui_new_method_data(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { /* * Do nothing, the data is allocated externally and assigned later with * CRYPTO_set_ex_data() */ } static int ui_dup_method_data(CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from, void *from_d, int idx, long argl, void *argp) { void **pptr = (void **)from_d; if (*pptr != NULL) *pptr = OPENSSL_memdup(*pptr, sizeof(struct pem_password_cb_data)); return 1; } static void ui_free_method_data(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { OPENSSL_free(ptr); } static CRYPTO_ONCE get_index_once = CRYPTO_ONCE_STATIC_INIT; static int ui_method_data_index = -1; DEFINE_RUN_ONCE_STATIC(ui_method_data_index_init) { ui_method_data_index = CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_UI_METHOD, 0, NULL, ui_new_method_data, ui_dup_method_data, ui_free_method_data); return 1; } static int ui_open(UI *ui) { return 1; } static int ui_read(UI *ui, UI_STRING *uis) { switch (UI_get_string_type(uis)) { case UIT_PROMPT: { char result[PEM_BUFSIZE + 1]; const struct pem_password_cb_data *data = UI_method_get_ex_data(UI_get_method(ui), ui_method_data_index); int maxsize = UI_get_result_maxsize(uis); int len = data->cb(result, maxsize > PEM_BUFSIZE ? PEM_BUFSIZE : maxsize, data->rwflag, UI_get0_user_data(ui)); if (len >= 0) result[len] = '\0'; if (len <= 0) return len; if (UI_set_result_ex(ui, uis, result, len) >= 0) return 1; return 0; } case UIT_VERIFY: case UIT_NONE: case UIT_BOOLEAN: case UIT_INFO: case UIT_ERROR: break; } return 1; } static int ui_write(UI *ui, UI_STRING *uis) { return 1; } static int ui_close(UI *ui) { return 1; } UI_METHOD *UI_UTIL_wrap_read_pem_callback(pem_password_cb *cb, int rwflag) { struct pem_password_cb_data *data = NULL; UI_METHOD *ui_method = NULL; if ((data = OPENSSL_zalloc(sizeof(*data))) == NULL || (ui_method = UI_create_method("PEM password callback wrapper")) == NULL || UI_method_set_opener(ui_method, ui_open) < 0 || UI_method_set_reader(ui_method, ui_read) < 0 || UI_method_set_writer(ui_method, ui_write) < 0 || UI_method_set_closer(ui_method, ui_close) < 0 || !RUN_ONCE(&get_index_once, ui_method_data_index_init) || UI_method_set_ex_data(ui_method, ui_method_data_index, data) < 0) { UI_destroy_method(ui_method); OPENSSL_free(data); return NULL; } data->rwflag = rwflag; data->cb = cb != NULL ? cb : PEM_def_callback; return ui_method; } openssl-1.1.1f/crypto/uid.c000066400000000000000000000021351364063235100156140ustar00rootroot00000000000000/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI) int OPENSSL_issetugid(void) { return 0; } #elif defined(__OpenBSD__) || (defined(__FreeBSD__) && __FreeBSD__ > 2) || defined(__DragonFly__) # include OPENSSL_UNISTD int OPENSSL_issetugid(void) { return issetugid(); } #else # include OPENSSL_UNISTD # include # if defined(__GLIBC__) && defined(__GLIBC_PREREQ) # if __GLIBC_PREREQ(2, 16) # include # define OSSL_IMPLEMENT_GETAUXVAL # endif # endif int OPENSSL_issetugid(void) { # ifdef OSSL_IMPLEMENT_GETAUXVAL return getauxval(AT_SECURE) != 0; # else return getuid() != geteuid() || getgid() != getegid(); # endif } #endif openssl-1.1.1f/crypto/vms_rms.h000066400000000000000000000041461364063235100165320ustar00rootroot00000000000000/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifdef NAML$C_MAXRSS # define CC_RMS_NAMX cc$rms_naml # define FAB_NAMX fab$l_naml # define FAB_OR_NAML( fab, naml) naml # define FAB_OR_NAML_DNA naml$l_long_defname # define FAB_OR_NAML_DNS naml$l_long_defname_size # define FAB_OR_NAML_FNA naml$l_long_filename # define FAB_OR_NAML_FNS naml$l_long_filename_size # define NAMX_ESA naml$l_long_expand # define NAMX_ESL naml$l_long_expand_size # define NAMX_ESS naml$l_long_expand_alloc # define NAMX_NOP naml$b_nop # define SET_NAMX_NO_SHORT_UPCASE( nam) nam.naml$v_no_short_upcase = 1 # if __INITIAL_POINTER_SIZE == 64 # define NAMX_DNA_FNA_SET(fab) fab.fab$l_dna = (__char_ptr32) -1; \ fab.fab$l_fna = (__char_ptr32) -1; # else /* __INITIAL_POINTER_SIZE == 64 */ # define NAMX_DNA_FNA_SET(fab) fab.fab$l_dna = (char *) -1; \ fab.fab$l_fna = (char *) -1; # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ # define NAMX_MAXRSS NAML$C_MAXRSS # define NAMX_STRUCT NAML #else /* def NAML$C_MAXRSS */ # define CC_RMS_NAMX cc$rms_nam # define FAB_NAMX fab$l_nam # define FAB_OR_NAML( fab, naml) fab # define FAB_OR_NAML_DNA fab$l_dna # define FAB_OR_NAML_DNS fab$b_dns # define FAB_OR_NAML_FNA fab$l_fna # define FAB_OR_NAML_FNS fab$b_fns # define NAMX_ESA nam$l_esa # define NAMX_ESL nam$b_esl # define NAMX_ESS nam$b_ess # define NAMX_NOP nam$b_nop # define NAMX_DNA_FNA_SET(fab) # define NAMX_MAXRSS NAM$C_MAXRSS # define NAMX_STRUCT NAM # ifdef NAM$M_NO_SHORT_UPCASE # define SET_NAMX_NO_SHORT_UPCASE( nam) naml.naml$v_no_short_upcase = 1 # else /* def NAM$M_NO_SHORT_UPCASE */ # define SET_NAMX_NO_SHORT_UPCASE( nam) # endif /* def NAM$M_NO_SHORT_UPCASE [else] */ #endif /* def NAML$C_MAXRSS [else] */ openssl-1.1.1f/crypto/whrlpool/000077500000000000000000000000001364063235100165345ustar00rootroot00000000000000openssl-1.1.1f/crypto/whrlpool/asm/000077500000000000000000000000001364063235100173145ustar00rootroot00000000000000openssl-1.1.1f/crypto/whrlpool/asm/wp-mmx.pl000066400000000000000000000474471364063235100211160ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. Rights for redistribution and usage in source and binary # forms are granted according to the OpenSSL license. # ==================================================================== # # whirlpool_block_mmx implementation. # *SCALE=\(2); # 2 or 8, that is the question:-) Value of 8 results # in 16KB large table, which is tough on L1 cache, but eliminates # unaligned references to it. Value of 2 results in 4KB table, but # 7/8 of references to it are unaligned. AMD cores seem to be # allergic to the latter, while Intel ones - to former [see the # table]. I stick to value of 2 for two reasons: 1. smaller table # minimizes cache trashing and thus mitigates the hazard of side- # channel leakage similar to AES cache-timing one; 2. performance # gap among different µ-archs is smaller. # # Performance table lists rounded amounts of CPU cycles spent by # whirlpool_block_mmx routine on single 64 byte input block, i.e. # smaller is better and asymptotic throughput can be estimated by # multiplying 64 by CPU clock frequency and dividing by relevant # value from the given table: # # $SCALE=2/8 icc8 gcc3 # Intel P4 3200/4600 4600(*) 6400 # Intel PIII 2900/3000 4900 5400 # AMD K[78] 2500/1800 9900 8200(**) # # (*) I've sketched even non-MMX assembler, but for the record # I've failed to beat the Intel compiler on P4, without using # MMX that is... # (**) ... on AMD on the other hand non-MMX assembler was observed # to perform significantly better, but I figured this MMX # implementation is even faster anyway, so why bother? As for # pre-MMX AMD core[s], the improvement coefficient is more # than likely to vary anyway and I don't know how. But the # least I know is that gcc-generated code compiled with # -DL_ENDIAN and -DOPENSSL_SMALL_FOOTPRINT [see C module for # details] and optimized for Pentium was observed to perform # *better* on Pentium 100 than unrolled non-MMX assembler # loop... So we just say that I don't know if maintaining # non-MMX implementation would actually pay off, but till # opposite is proved "unlikely" is assumed. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0]); sub L() { &data_byte(@_); } sub LL() { if ($SCALE==2) { &data_byte(@_); &data_byte(@_); } elsif ($SCALE==8) { for ($i=0;$i<8;$i++) { &data_byte(@_); unshift(@_,pop(@_)); } } else { die "invalid SCALE value"; } } sub scale() { if ($SCALE==2) { &lea(@_[0],&DWP(0,@_[1],@_[1])); } elsif ($SCALE==8) { &lea(@_[0],&DWP(0,"",@_[1],8)); } else { die "invalid SCALE value"; } } sub row() { if ($SCALE==2) { ((8-shift)&7); } elsif ($SCALE==8) { (8*shift); } else { die "invalid SCALE value"; } } $tbl="ebp"; @mm=("mm0","mm1","mm2","mm3","mm4","mm5","mm6","mm7"); &function_begin_B("whirlpool_block_mmx"); &push ("ebp"); &push ("ebx"); &push ("esi"); &push ("edi"); &mov ("esi",&wparam(0)); # hash value &mov ("edi",&wparam(1)); # input data stream &mov ("ebp",&wparam(2)); # number of chunks in input &mov ("eax","esp"); # copy stack pointer &sub ("esp",128+20); # allocate frame &and ("esp",-64); # align for cache-line &lea ("ebx",&DWP(128,"esp")); &mov (&DWP(0,"ebx"),"esi"); # save parameter block &mov (&DWP(4,"ebx"),"edi"); &mov (&DWP(8,"ebx"),"ebp"); &mov (&DWP(16,"ebx"),"eax"); # saved stack pointer &call (&label("pic_point")); &set_label("pic_point"); &blindpop($tbl); &lea ($tbl,&DWP(&label("table")."-".&label("pic_point"),$tbl)); &xor ("ecx","ecx"); &xor ("edx","edx"); for($i=0;$i<8;$i++) { &movq(@mm[$i],&QWP($i*8,"esi")); } # L=H &set_label("outerloop"); for($i=0;$i<8;$i++) { &movq(&QWP($i*8,"esp"),@mm[$i]); } # K=L for($i=0;$i<8;$i++) { &pxor(@mm[$i],&QWP($i*8,"edi")); } # L^=inp for($i=0;$i<8;$i++) { &movq(&QWP(64+$i*8,"esp"),@mm[$i]); } # S=L &xor ("esi","esi"); &mov (&DWP(12,"ebx"),"esi"); # zero round counter &set_label("round",16); &movq (@mm[0],&QWP(2048*$SCALE,$tbl,"esi",8)); # rc[r] &mov ("eax",&DWP(0,"esp")); &mov ("ebx",&DWP(4,"esp")); &movz ("ecx",&LB("eax")); &movz ("edx",&HB("eax")); for($i=0;$i<8;$i++) { my $func = ($i==0)? \&movq : \&pxor; &shr ("eax",16); &scale ("esi","ecx"); &movz ("ecx",&LB("eax")); &scale ("edi","edx"); &movz ("edx",&HB("eax")); &pxor (@mm[0],&QWP(&row(0),$tbl,"esi",8)); &$func (@mm[1],&QWP(&row(1),$tbl,"edi",8)); &mov ("eax",&DWP(($i+1)*8,"esp")); &scale ("esi","ecx"); &movz ("ecx",&LB("ebx")); &scale ("edi","edx"); &movz ("edx",&HB("ebx")); &$func (@mm[2],&QWP(&row(2),$tbl,"esi",8)); &$func (@mm[3],&QWP(&row(3),$tbl,"edi",8)); &shr ("ebx",16); &scale ("esi","ecx"); &movz ("ecx",&LB("ebx")); &scale ("edi","edx"); &movz ("edx",&HB("ebx")); &$func (@mm[4],&QWP(&row(4),$tbl,"esi",8)); &$func (@mm[5],&QWP(&row(5),$tbl,"edi",8)); &mov ("ebx",&DWP(($i+1)*8+4,"esp")); &scale ("esi","ecx"); &movz ("ecx",&LB("eax")); &scale ("edi","edx"); &movz ("edx",&HB("eax")); &$func (@mm[6],&QWP(&row(6),$tbl,"esi",8)); &$func (@mm[7],&QWP(&row(7),$tbl,"edi",8)); push(@mm,shift(@mm)); } for($i=0;$i<8;$i++) { &movq(&QWP($i*8,"esp"),@mm[$i]); } # K=L for($i=0;$i<8;$i++) { &shr ("eax",16); &scale ("esi","ecx"); &movz ("ecx",&LB("eax")); &scale ("edi","edx"); &movz ("edx",&HB("eax")); &pxor (@mm[0],&QWP(&row(0),$tbl,"esi",8)); &pxor (@mm[1],&QWP(&row(1),$tbl,"edi",8)); &mov ("eax",&DWP(64+($i+1)*8,"esp")) if ($i<7); &scale ("esi","ecx"); &movz ("ecx",&LB("ebx")); &scale ("edi","edx"); &movz ("edx",&HB("ebx")); &pxor (@mm[2],&QWP(&row(2),$tbl,"esi",8)); &pxor (@mm[3],&QWP(&row(3),$tbl,"edi",8)); &shr ("ebx",16); &scale ("esi","ecx"); &movz ("ecx",&LB("ebx")); &scale ("edi","edx"); &movz ("edx",&HB("ebx")); &pxor (@mm[4],&QWP(&row(4),$tbl,"esi",8)); &pxor (@mm[5],&QWP(&row(5),$tbl,"edi",8)); &mov ("ebx",&DWP(64+($i+1)*8+4,"esp")) if ($i<7); &scale ("esi","ecx"); &movz ("ecx",&LB("eax")); &scale ("edi","edx"); &movz ("edx",&HB("eax")); &pxor (@mm[6],&QWP(&row(6),$tbl,"esi",8)); &pxor (@mm[7],&QWP(&row(7),$tbl,"edi",8)); push(@mm,shift(@mm)); } &lea ("ebx",&DWP(128,"esp")); &mov ("esi",&DWP(12,"ebx")); # pull round counter &add ("esi",1); &cmp ("esi",10); &je (&label("roundsdone")); &mov (&DWP(12,"ebx"),"esi"); # update round counter for($i=0;$i<8;$i++) { &movq(&QWP(64+$i*8,"esp"),@mm[$i]); } # S=L &jmp (&label("round")); &set_label("roundsdone",16); &mov ("esi",&DWP(0,"ebx")); # reload argument block &mov ("edi",&DWP(4,"ebx")); &mov ("eax",&DWP(8,"ebx")); for($i=0;$i<8;$i++) { &pxor(@mm[$i],&QWP($i*8,"edi")); } # L^=inp for($i=0;$i<8;$i++) { &pxor(@mm[$i],&QWP($i*8,"esi")); } # L^=H for($i=0;$i<8;$i++) { &movq(&QWP($i*8,"esi"),@mm[$i]); } # H=L &lea ("edi",&DWP(64,"edi")); # inp+=64 &sub ("eax",1); # num-- &jz (&label("alldone")); &mov (&DWP(4,"ebx"),"edi"); # update argument block &mov (&DWP(8,"ebx"),"eax"); &jmp (&label("outerloop")); &set_label("alldone"); &emms (); &mov ("esp",&DWP(16,"ebx")); # restore saved stack pointer &pop ("edi"); &pop ("esi"); &pop ("ebx"); &pop ("ebp"); &ret (); &align(64); &set_label("table"); &LL(0x18,0x18,0x60,0x18,0xc0,0x78,0x30,0xd8); &LL(0x23,0x23,0x8c,0x23,0x05,0xaf,0x46,0x26); &LL(0xc6,0xc6,0x3f,0xc6,0x7e,0xf9,0x91,0xb8); &LL(0xe8,0xe8,0x87,0xe8,0x13,0x6f,0xcd,0xfb); &LL(0x87,0x87,0x26,0x87,0x4c,0xa1,0x13,0xcb); &LL(0xb8,0xb8,0xda,0xb8,0xa9,0x62,0x6d,0x11); &LL(0x01,0x01,0x04,0x01,0x08,0x05,0x02,0x09); &LL(0x4f,0x4f,0x21,0x4f,0x42,0x6e,0x9e,0x0d); &LL(0x36,0x36,0xd8,0x36,0xad,0xee,0x6c,0x9b); &LL(0xa6,0xa6,0xa2,0xa6,0x59,0x04,0x51,0xff); &LL(0xd2,0xd2,0x6f,0xd2,0xde,0xbd,0xb9,0x0c); &LL(0xf5,0xf5,0xf3,0xf5,0xfb,0x06,0xf7,0x0e); &LL(0x79,0x79,0xf9,0x79,0xef,0x80,0xf2,0x96); &LL(0x6f,0x6f,0xa1,0x6f,0x5f,0xce,0xde,0x30); &LL(0x91,0x91,0x7e,0x91,0xfc,0xef,0x3f,0x6d); &LL(0x52,0x52,0x55,0x52,0xaa,0x07,0xa4,0xf8); &LL(0x60,0x60,0x9d,0x60,0x27,0xfd,0xc0,0x47); &LL(0xbc,0xbc,0xca,0xbc,0x89,0x76,0x65,0x35); &LL(0x9b,0x9b,0x56,0x9b,0xac,0xcd,0x2b,0x37); &LL(0x8e,0x8e,0x02,0x8e,0x04,0x8c,0x01,0x8a); &LL(0xa3,0xa3,0xb6,0xa3,0x71,0x15,0x5b,0xd2); &LL(0x0c,0x0c,0x30,0x0c,0x60,0x3c,0x18,0x6c); &LL(0x7b,0x7b,0xf1,0x7b,0xff,0x8a,0xf6,0x84); &LL(0x35,0x35,0xd4,0x35,0xb5,0xe1,0x6a,0x80); &LL(0x1d,0x1d,0x74,0x1d,0xe8,0x69,0x3a,0xf5); &LL(0xe0,0xe0,0xa7,0xe0,0x53,0x47,0xdd,0xb3); &LL(0xd7,0xd7,0x7b,0xd7,0xf6,0xac,0xb3,0x21); &LL(0xc2,0xc2,0x2f,0xc2,0x5e,0xed,0x99,0x9c); &LL(0x2e,0x2e,0xb8,0x2e,0x6d,0x96,0x5c,0x43); &LL(0x4b,0x4b,0x31,0x4b,0x62,0x7a,0x96,0x29); &LL(0xfe,0xfe,0xdf,0xfe,0xa3,0x21,0xe1,0x5d); &LL(0x57,0x57,0x41,0x57,0x82,0x16,0xae,0xd5); &LL(0x15,0x15,0x54,0x15,0xa8,0x41,0x2a,0xbd); &LL(0x77,0x77,0xc1,0x77,0x9f,0xb6,0xee,0xe8); &LL(0x37,0x37,0xdc,0x37,0xa5,0xeb,0x6e,0x92); &LL(0xe5,0xe5,0xb3,0xe5,0x7b,0x56,0xd7,0x9e); &LL(0x9f,0x9f,0x46,0x9f,0x8c,0xd9,0x23,0x13); &LL(0xf0,0xf0,0xe7,0xf0,0xd3,0x17,0xfd,0x23); &LL(0x4a,0x4a,0x35,0x4a,0x6a,0x7f,0x94,0x20); &LL(0xda,0xda,0x4f,0xda,0x9e,0x95,0xa9,0x44); &LL(0x58,0x58,0x7d,0x58,0xfa,0x25,0xb0,0xa2); &LL(0xc9,0xc9,0x03,0xc9,0x06,0xca,0x8f,0xcf); &LL(0x29,0x29,0xa4,0x29,0x55,0x8d,0x52,0x7c); &LL(0x0a,0x0a,0x28,0x0a,0x50,0x22,0x14,0x5a); &LL(0xb1,0xb1,0xfe,0xb1,0xe1,0x4f,0x7f,0x50); &LL(0xa0,0xa0,0xba,0xa0,0x69,0x1a,0x5d,0xc9); &LL(0x6b,0x6b,0xb1,0x6b,0x7f,0xda,0xd6,0x14); &LL(0x85,0x85,0x2e,0x85,0x5c,0xab,0x17,0xd9); &LL(0xbd,0xbd,0xce,0xbd,0x81,0x73,0x67,0x3c); &LL(0x5d,0x5d,0x69,0x5d,0xd2,0x34,0xba,0x8f); &LL(0x10,0x10,0x40,0x10,0x80,0x50,0x20,0x90); &LL(0xf4,0xf4,0xf7,0xf4,0xf3,0x03,0xf5,0x07); &LL(0xcb,0xcb,0x0b,0xcb,0x16,0xc0,0x8b,0xdd); &LL(0x3e,0x3e,0xf8,0x3e,0xed,0xc6,0x7c,0xd3); &LL(0x05,0x05,0x14,0x05,0x28,0x11,0x0a,0x2d); &LL(0x67,0x67,0x81,0x67,0x1f,0xe6,0xce,0x78); &LL(0xe4,0xe4,0xb7,0xe4,0x73,0x53,0xd5,0x97); &LL(0x27,0x27,0x9c,0x27,0x25,0xbb,0x4e,0x02); &LL(0x41,0x41,0x19,0x41,0x32,0x58,0x82,0x73); &LL(0x8b,0x8b,0x16,0x8b,0x2c,0x9d,0x0b,0xa7); &LL(0xa7,0xa7,0xa6,0xa7,0x51,0x01,0x53,0xf6); &LL(0x7d,0x7d,0xe9,0x7d,0xcf,0x94,0xfa,0xb2); &LL(0x95,0x95,0x6e,0x95,0xdc,0xfb,0x37,0x49); &LL(0xd8,0xd8,0x47,0xd8,0x8e,0x9f,0xad,0x56); &LL(0xfb,0xfb,0xcb,0xfb,0x8b,0x30,0xeb,0x70); &LL(0xee,0xee,0x9f,0xee,0x23,0x71,0xc1,0xcd); &LL(0x7c,0x7c,0xed,0x7c,0xc7,0x91,0xf8,0xbb); &LL(0x66,0x66,0x85,0x66,0x17,0xe3,0xcc,0x71); &LL(0xdd,0xdd,0x53,0xdd,0xa6,0x8e,0xa7,0x7b); &LL(0x17,0x17,0x5c,0x17,0xb8,0x4b,0x2e,0xaf); &LL(0x47,0x47,0x01,0x47,0x02,0x46,0x8e,0x45); &LL(0x9e,0x9e,0x42,0x9e,0x84,0xdc,0x21,0x1a); &LL(0xca,0xca,0x0f,0xca,0x1e,0xc5,0x89,0xd4); &LL(0x2d,0x2d,0xb4,0x2d,0x75,0x99,0x5a,0x58); &LL(0xbf,0xbf,0xc6,0xbf,0x91,0x79,0x63,0x2e); &LL(0x07,0x07,0x1c,0x07,0x38,0x1b,0x0e,0x3f); &LL(0xad,0xad,0x8e,0xad,0x01,0x23,0x47,0xac); &LL(0x5a,0x5a,0x75,0x5a,0xea,0x2f,0xb4,0xb0); &LL(0x83,0x83,0x36,0x83,0x6c,0xb5,0x1b,0xef); &LL(0x33,0x33,0xcc,0x33,0x85,0xff,0x66,0xb6); &LL(0x63,0x63,0x91,0x63,0x3f,0xf2,0xc6,0x5c); &LL(0x02,0x02,0x08,0x02,0x10,0x0a,0x04,0x12); &LL(0xaa,0xaa,0x92,0xaa,0x39,0x38,0x49,0x93); &LL(0x71,0x71,0xd9,0x71,0xaf,0xa8,0xe2,0xde); &LL(0xc8,0xc8,0x07,0xc8,0x0e,0xcf,0x8d,0xc6); &LL(0x19,0x19,0x64,0x19,0xc8,0x7d,0x32,0xd1); &LL(0x49,0x49,0x39,0x49,0x72,0x70,0x92,0x3b); &LL(0xd9,0xd9,0x43,0xd9,0x86,0x9a,0xaf,0x5f); &LL(0xf2,0xf2,0xef,0xf2,0xc3,0x1d,0xf9,0x31); &LL(0xe3,0xe3,0xab,0xe3,0x4b,0x48,0xdb,0xa8); &LL(0x5b,0x5b,0x71,0x5b,0xe2,0x2a,0xb6,0xb9); &LL(0x88,0x88,0x1a,0x88,0x34,0x92,0x0d,0xbc); &LL(0x9a,0x9a,0x52,0x9a,0xa4,0xc8,0x29,0x3e); &LL(0x26,0x26,0x98,0x26,0x2d,0xbe,0x4c,0x0b); &LL(0x32,0x32,0xc8,0x32,0x8d,0xfa,0x64,0xbf); &LL(0xb0,0xb0,0xfa,0xb0,0xe9,0x4a,0x7d,0x59); &LL(0xe9,0xe9,0x83,0xe9,0x1b,0x6a,0xcf,0xf2); &LL(0x0f,0x0f,0x3c,0x0f,0x78,0x33,0x1e,0x77); &LL(0xd5,0xd5,0x73,0xd5,0xe6,0xa6,0xb7,0x33); &LL(0x80,0x80,0x3a,0x80,0x74,0xba,0x1d,0xf4); &LL(0xbe,0xbe,0xc2,0xbe,0x99,0x7c,0x61,0x27); &LL(0xcd,0xcd,0x13,0xcd,0x26,0xde,0x87,0xeb); &LL(0x34,0x34,0xd0,0x34,0xbd,0xe4,0x68,0x89); &LL(0x48,0x48,0x3d,0x48,0x7a,0x75,0x90,0x32); &LL(0xff,0xff,0xdb,0xff,0xab,0x24,0xe3,0x54); &LL(0x7a,0x7a,0xf5,0x7a,0xf7,0x8f,0xf4,0x8d); &LL(0x90,0x90,0x7a,0x90,0xf4,0xea,0x3d,0x64); &LL(0x5f,0x5f,0x61,0x5f,0xc2,0x3e,0xbe,0x9d); &LL(0x20,0x20,0x80,0x20,0x1d,0xa0,0x40,0x3d); &LL(0x68,0x68,0xbd,0x68,0x67,0xd5,0xd0,0x0f); &LL(0x1a,0x1a,0x68,0x1a,0xd0,0x72,0x34,0xca); &LL(0xae,0xae,0x82,0xae,0x19,0x2c,0x41,0xb7); &LL(0xb4,0xb4,0xea,0xb4,0xc9,0x5e,0x75,0x7d); &LL(0x54,0x54,0x4d,0x54,0x9a,0x19,0xa8,0xce); &LL(0x93,0x93,0x76,0x93,0xec,0xe5,0x3b,0x7f); &LL(0x22,0x22,0x88,0x22,0x0d,0xaa,0x44,0x2f); &LL(0x64,0x64,0x8d,0x64,0x07,0xe9,0xc8,0x63); &LL(0xf1,0xf1,0xe3,0xf1,0xdb,0x12,0xff,0x2a); &LL(0x73,0x73,0xd1,0x73,0xbf,0xa2,0xe6,0xcc); &LL(0x12,0x12,0x48,0x12,0x90,0x5a,0x24,0x82); &LL(0x40,0x40,0x1d,0x40,0x3a,0x5d,0x80,0x7a); &LL(0x08,0x08,0x20,0x08,0x40,0x28,0x10,0x48); &LL(0xc3,0xc3,0x2b,0xc3,0x56,0xe8,0x9b,0x95); &LL(0xec,0xec,0x97,0xec,0x33,0x7b,0xc5,0xdf); &LL(0xdb,0xdb,0x4b,0xdb,0x96,0x90,0xab,0x4d); &LL(0xa1,0xa1,0xbe,0xa1,0x61,0x1f,0x5f,0xc0); &LL(0x8d,0x8d,0x0e,0x8d,0x1c,0x83,0x07,0x91); &LL(0x3d,0x3d,0xf4,0x3d,0xf5,0xc9,0x7a,0xc8); &LL(0x97,0x97,0x66,0x97,0xcc,0xf1,0x33,0x5b); &LL(0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00); &LL(0xcf,0xcf,0x1b,0xcf,0x36,0xd4,0x83,0xf9); &LL(0x2b,0x2b,0xac,0x2b,0x45,0x87,0x56,0x6e); &LL(0x76,0x76,0xc5,0x76,0x97,0xb3,0xec,0xe1); &LL(0x82,0x82,0x32,0x82,0x64,0xb0,0x19,0xe6); &LL(0xd6,0xd6,0x7f,0xd6,0xfe,0xa9,0xb1,0x28); &LL(0x1b,0x1b,0x6c,0x1b,0xd8,0x77,0x36,0xc3); &LL(0xb5,0xb5,0xee,0xb5,0xc1,0x5b,0x77,0x74); &LL(0xaf,0xaf,0x86,0xaf,0x11,0x29,0x43,0xbe); &LL(0x6a,0x6a,0xb5,0x6a,0x77,0xdf,0xd4,0x1d); &LL(0x50,0x50,0x5d,0x50,0xba,0x0d,0xa0,0xea); &LL(0x45,0x45,0x09,0x45,0x12,0x4c,0x8a,0x57); &LL(0xf3,0xf3,0xeb,0xf3,0xcb,0x18,0xfb,0x38); &LL(0x30,0x30,0xc0,0x30,0x9d,0xf0,0x60,0xad); &LL(0xef,0xef,0x9b,0xef,0x2b,0x74,0xc3,0xc4); &LL(0x3f,0x3f,0xfc,0x3f,0xe5,0xc3,0x7e,0xda); &LL(0x55,0x55,0x49,0x55,0x92,0x1c,0xaa,0xc7); &LL(0xa2,0xa2,0xb2,0xa2,0x79,0x10,0x59,0xdb); &LL(0xea,0xea,0x8f,0xea,0x03,0x65,0xc9,0xe9); &LL(0x65,0x65,0x89,0x65,0x0f,0xec,0xca,0x6a); &LL(0xba,0xba,0xd2,0xba,0xb9,0x68,0x69,0x03); &LL(0x2f,0x2f,0xbc,0x2f,0x65,0x93,0x5e,0x4a); &LL(0xc0,0xc0,0x27,0xc0,0x4e,0xe7,0x9d,0x8e); &LL(0xde,0xde,0x5f,0xde,0xbe,0x81,0xa1,0x60); &LL(0x1c,0x1c,0x70,0x1c,0xe0,0x6c,0x38,0xfc); &LL(0xfd,0xfd,0xd3,0xfd,0xbb,0x2e,0xe7,0x46); &LL(0x4d,0x4d,0x29,0x4d,0x52,0x64,0x9a,0x1f); &LL(0x92,0x92,0x72,0x92,0xe4,0xe0,0x39,0x76); &LL(0x75,0x75,0xc9,0x75,0x8f,0xbc,0xea,0xfa); &LL(0x06,0x06,0x18,0x06,0x30,0x1e,0x0c,0x36); &LL(0x8a,0x8a,0x12,0x8a,0x24,0x98,0x09,0xae); &LL(0xb2,0xb2,0xf2,0xb2,0xf9,0x40,0x79,0x4b); &LL(0xe6,0xe6,0xbf,0xe6,0x63,0x59,0xd1,0x85); &LL(0x0e,0x0e,0x38,0x0e,0x70,0x36,0x1c,0x7e); &LL(0x1f,0x1f,0x7c,0x1f,0xf8,0x63,0x3e,0xe7); &LL(0x62,0x62,0x95,0x62,0x37,0xf7,0xc4,0x55); &LL(0xd4,0xd4,0x77,0xd4,0xee,0xa3,0xb5,0x3a); &LL(0xa8,0xa8,0x9a,0xa8,0x29,0x32,0x4d,0x81); &LL(0x96,0x96,0x62,0x96,0xc4,0xf4,0x31,0x52); &LL(0xf9,0xf9,0xc3,0xf9,0x9b,0x3a,0xef,0x62); &LL(0xc5,0xc5,0x33,0xc5,0x66,0xf6,0x97,0xa3); &LL(0x25,0x25,0x94,0x25,0x35,0xb1,0x4a,0x10); &LL(0x59,0x59,0x79,0x59,0xf2,0x20,0xb2,0xab); &LL(0x84,0x84,0x2a,0x84,0x54,0xae,0x15,0xd0); &LL(0x72,0x72,0xd5,0x72,0xb7,0xa7,0xe4,0xc5); &LL(0x39,0x39,0xe4,0x39,0xd5,0xdd,0x72,0xec); &LL(0x4c,0x4c,0x2d,0x4c,0x5a,0x61,0x98,0x16); &LL(0x5e,0x5e,0x65,0x5e,0xca,0x3b,0xbc,0x94); &LL(0x78,0x78,0xfd,0x78,0xe7,0x85,0xf0,0x9f); &LL(0x38,0x38,0xe0,0x38,0xdd,0xd8,0x70,0xe5); &LL(0x8c,0x8c,0x0a,0x8c,0x14,0x86,0x05,0x98); &LL(0xd1,0xd1,0x63,0xd1,0xc6,0xb2,0xbf,0x17); &LL(0xa5,0xa5,0xae,0xa5,0x41,0x0b,0x57,0xe4); &LL(0xe2,0xe2,0xaf,0xe2,0x43,0x4d,0xd9,0xa1); &LL(0x61,0x61,0x99,0x61,0x2f,0xf8,0xc2,0x4e); &LL(0xb3,0xb3,0xf6,0xb3,0xf1,0x45,0x7b,0x42); &LL(0x21,0x21,0x84,0x21,0x15,0xa5,0x42,0x34); &LL(0x9c,0x9c,0x4a,0x9c,0x94,0xd6,0x25,0x08); &LL(0x1e,0x1e,0x78,0x1e,0xf0,0x66,0x3c,0xee); &LL(0x43,0x43,0x11,0x43,0x22,0x52,0x86,0x61); &LL(0xc7,0xc7,0x3b,0xc7,0x76,0xfc,0x93,0xb1); &LL(0xfc,0xfc,0xd7,0xfc,0xb3,0x2b,0xe5,0x4f); &LL(0x04,0x04,0x10,0x04,0x20,0x14,0x08,0x24); &LL(0x51,0x51,0x59,0x51,0xb2,0x08,0xa2,0xe3); &LL(0x99,0x99,0x5e,0x99,0xbc,0xc7,0x2f,0x25); &LL(0x6d,0x6d,0xa9,0x6d,0x4f,0xc4,0xda,0x22); &LL(0x0d,0x0d,0x34,0x0d,0x68,0x39,0x1a,0x65); &LL(0xfa,0xfa,0xcf,0xfa,0x83,0x35,0xe9,0x79); &LL(0xdf,0xdf,0x5b,0xdf,0xb6,0x84,0xa3,0x69); &LL(0x7e,0x7e,0xe5,0x7e,0xd7,0x9b,0xfc,0xa9); &LL(0x24,0x24,0x90,0x24,0x3d,0xb4,0x48,0x19); &LL(0x3b,0x3b,0xec,0x3b,0xc5,0xd7,0x76,0xfe); &LL(0xab,0xab,0x96,0xab,0x31,0x3d,0x4b,0x9a); &LL(0xce,0xce,0x1f,0xce,0x3e,0xd1,0x81,0xf0); &LL(0x11,0x11,0x44,0x11,0x88,0x55,0x22,0x99); &LL(0x8f,0x8f,0x06,0x8f,0x0c,0x89,0x03,0x83); &LL(0x4e,0x4e,0x25,0x4e,0x4a,0x6b,0x9c,0x04); &LL(0xb7,0xb7,0xe6,0xb7,0xd1,0x51,0x73,0x66); &LL(0xeb,0xeb,0x8b,0xeb,0x0b,0x60,0xcb,0xe0); &LL(0x3c,0x3c,0xf0,0x3c,0xfd,0xcc,0x78,0xc1); &LL(0x81,0x81,0x3e,0x81,0x7c,0xbf,0x1f,0xfd); &LL(0x94,0x94,0x6a,0x94,0xd4,0xfe,0x35,0x40); &LL(0xf7,0xf7,0xfb,0xf7,0xeb,0x0c,0xf3,0x1c); &LL(0xb9,0xb9,0xde,0xb9,0xa1,0x67,0x6f,0x18); &LL(0x13,0x13,0x4c,0x13,0x98,0x5f,0x26,0x8b); &LL(0x2c,0x2c,0xb0,0x2c,0x7d,0x9c,0x58,0x51); &LL(0xd3,0xd3,0x6b,0xd3,0xd6,0xb8,0xbb,0x05); &LL(0xe7,0xe7,0xbb,0xe7,0x6b,0x5c,0xd3,0x8c); &LL(0x6e,0x6e,0xa5,0x6e,0x57,0xcb,0xdc,0x39); &LL(0xc4,0xc4,0x37,0xc4,0x6e,0xf3,0x95,0xaa); &LL(0x03,0x03,0x0c,0x03,0x18,0x0f,0x06,0x1b); &LL(0x56,0x56,0x45,0x56,0x8a,0x13,0xac,0xdc); &LL(0x44,0x44,0x0d,0x44,0x1a,0x49,0x88,0x5e); &LL(0x7f,0x7f,0xe1,0x7f,0xdf,0x9e,0xfe,0xa0); &LL(0xa9,0xa9,0x9e,0xa9,0x21,0x37,0x4f,0x88); &LL(0x2a,0x2a,0xa8,0x2a,0x4d,0x82,0x54,0x67); &LL(0xbb,0xbb,0xd6,0xbb,0xb1,0x6d,0x6b,0x0a); &LL(0xc1,0xc1,0x23,0xc1,0x46,0xe2,0x9f,0x87); &LL(0x53,0x53,0x51,0x53,0xa2,0x02,0xa6,0xf1); &LL(0xdc,0xdc,0x57,0xdc,0xae,0x8b,0xa5,0x72); &LL(0x0b,0x0b,0x2c,0x0b,0x58,0x27,0x16,0x53); &LL(0x9d,0x9d,0x4e,0x9d,0x9c,0xd3,0x27,0x01); &LL(0x6c,0x6c,0xad,0x6c,0x47,0xc1,0xd8,0x2b); &LL(0x31,0x31,0xc4,0x31,0x95,0xf5,0x62,0xa4); &LL(0x74,0x74,0xcd,0x74,0x87,0xb9,0xe8,0xf3); &LL(0xf6,0xf6,0xff,0xf6,0xe3,0x09,0xf1,0x15); &LL(0x46,0x46,0x05,0x46,0x0a,0x43,0x8c,0x4c); &LL(0xac,0xac,0x8a,0xac,0x09,0x26,0x45,0xa5); &LL(0x89,0x89,0x1e,0x89,0x3c,0x97,0x0f,0xb5); &LL(0x14,0x14,0x50,0x14,0xa0,0x44,0x28,0xb4); &LL(0xe1,0xe1,0xa3,0xe1,0x5b,0x42,0xdf,0xba); &LL(0x16,0x16,0x58,0x16,0xb0,0x4e,0x2c,0xa6); &LL(0x3a,0x3a,0xe8,0x3a,0xcd,0xd2,0x74,0xf7); &LL(0x69,0x69,0xb9,0x69,0x6f,0xd0,0xd2,0x06); &LL(0x09,0x09,0x24,0x09,0x48,0x2d,0x12,0x41); &LL(0x70,0x70,0xdd,0x70,0xa7,0xad,0xe0,0xd7); &LL(0xb6,0xb6,0xe2,0xb6,0xd9,0x54,0x71,0x6f); &LL(0xd0,0xd0,0x67,0xd0,0xce,0xb7,0xbd,0x1e); &LL(0xed,0xed,0x93,0xed,0x3b,0x7e,0xc7,0xd6); &LL(0xcc,0xcc,0x17,0xcc,0x2e,0xdb,0x85,0xe2); &LL(0x42,0x42,0x15,0x42,0x2a,0x57,0x84,0x68); &LL(0x98,0x98,0x5a,0x98,0xb4,0xc2,0x2d,0x2c); &LL(0xa4,0xa4,0xaa,0xa4,0x49,0x0e,0x55,0xed); &LL(0x28,0x28,0xa0,0x28,0x5d,0x88,0x50,0x75); &LL(0x5c,0x5c,0x6d,0x5c,0xda,0x31,0xb8,0x86); &LL(0xf8,0xf8,0xc7,0xf8,0x93,0x3f,0xed,0x6b); &LL(0x86,0x86,0x22,0x86,0x44,0xa4,0x11,0xc2); &L(0x18,0x23,0xc6,0xe8,0x87,0xb8,0x01,0x4f); # rc[ROUNDS] &L(0x36,0xa6,0xd2,0xf5,0x79,0x6f,0x91,0x52); &L(0x60,0xbc,0x9b,0x8e,0xa3,0x0c,0x7b,0x35); &L(0x1d,0xe0,0xd7,0xc2,0x2e,0x4b,0xfe,0x57); &L(0x15,0x77,0x37,0xe5,0x9f,0xf0,0x4a,0xda); &L(0x58,0xc9,0x29,0x0a,0xb1,0xa0,0x6b,0x85); &L(0xbd,0x5d,0x10,0xf4,0xcb,0x3e,0x05,0x67); &L(0xe4,0x27,0x41,0x8b,0xa7,0x7d,0x95,0xd8); &L(0xfb,0xee,0x7c,0x66,0xdd,0x17,0x47,0x9e); &L(0xca,0x2d,0xbf,0x07,0xad,0x5a,0x83,0x33); &function_end_B("whirlpool_block_mmx"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/whrlpool/asm/wp-x86_64.pl000066400000000000000000000515621364063235100212440ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. Rights for redistribution and usage in source and binary # forms are granted according to the OpenSSL license. # ==================================================================== # # whirlpool_block for x86_64. # # 2500 cycles per 64-byte input block on AMD64, which is *identical* # to 32-bit MMX version executed on same CPU. So why did I bother? # Well, it's faster than gcc 3.3.2 generated code by over 50%, and # over 80% faster than PathScale 1.4, an "ambitious" commercial # compiler. Furthermore it surpasses gcc 3.4.3 by 170% and Sun Studio # 10 - by 360%[!]... What is it with x86_64 compilers? It's not the # first example when they fail to generate more optimal code, when # I believe they had *all* chances to... # # Note that register and stack frame layout are virtually identical # to 32-bit MMX version, except that %r8-15 are used instead of # %mm0-8. You can even notice that K[i] and S[i] are loaded to # %eax:%ebx as pair of 32-bit values and not as single 64-bit one. # This is done in order to avoid 64-bit shift penalties on Intel # EM64T core. Speaking of which! I bet it's possible to improve # Opteron performance by compressing the table to 2KB and replacing # unaligned references with complementary rotations [which would # incidentally replace lea instructions], but it would definitely # just "kill" EM64T, because it has only 1 shifter/rotator [against # 3 on Opteron] and which is *unacceptably* slow with 64-bit # operand. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; sub L() { $code.=".byte ".join(',',@_)."\n"; } sub LL(){ $code.=".byte ".join(',',@_).",".join(',',@_)."\n"; } @mm=("%r8","%r9","%r10","%r11","%r12","%r13","%r14","%r15"); $func="whirlpool_block"; $table=".Ltable"; $code=<<___; .text .globl $func .type $func,\@function,3 .align 16 $func: .cfi_startproc mov %rsp,%rax .cfi_def_cfa_register %rax push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 sub \$128+40,%rsp and \$-64,%rsp lea 128(%rsp),%r10 mov %rdi,0(%r10) # save parameter block mov %rsi,8(%r10) mov %rdx,16(%r10) mov %rax,32(%r10) # saved stack pointer .cfi_cfa_expression %rsp+`128+32`,deref,+8 .Lprologue: mov %r10,%rbx lea $table(%rip),%rbp xor %rcx,%rcx xor %rdx,%rdx ___ for($i=0;$i<8;$i++) { $code.="mov $i*8(%rdi),@mm[$i]\n"; } # L=H $code.=".Louterloop:\n"; for($i=0;$i<8;$i++) { $code.="mov @mm[$i],$i*8(%rsp)\n"; } # K=L for($i=0;$i<8;$i++) { $code.="xor $i*8(%rsi),@mm[$i]\n"; } # L^=inp for($i=0;$i<8;$i++) { $code.="mov @mm[$i],64+$i*8(%rsp)\n"; } # S=L $code.=<<___; xor %rsi,%rsi mov %rsi,24(%rbx) # zero round counter jmp .Lround .align 16 .Lround: mov 4096(%rbp,%rsi,8),@mm[0] # rc[r] mov 0(%rsp),%eax mov 4(%rsp),%ebx movz %al,%ecx movz %ah,%edx ___ for($i=0;$i<8;$i++) { my $func = ($i==0)? "mov" : "xor"; $code.=<<___; shr \$16,%eax lea (%rcx,%rcx),%rsi movz %al,%ecx lea (%rdx,%rdx),%rdi movz %ah,%edx xor 0(%rbp,%rsi,8),@mm[0] $func 7(%rbp,%rdi,8),@mm[1] mov $i*8+8(%rsp),%eax # ($i+1)*8 lea (%rcx,%rcx),%rsi movz %bl,%ecx lea (%rdx,%rdx),%rdi movz %bh,%edx $func 6(%rbp,%rsi,8),@mm[2] $func 5(%rbp,%rdi,8),@mm[3] shr \$16,%ebx lea (%rcx,%rcx),%rsi movz %bl,%ecx lea (%rdx,%rdx),%rdi movz %bh,%edx $func 4(%rbp,%rsi,8),@mm[4] $func 3(%rbp,%rdi,8),@mm[5] mov $i*8+8+4(%rsp),%ebx # ($i+1)*8+4 lea (%rcx,%rcx),%rsi movz %al,%ecx lea (%rdx,%rdx),%rdi movz %ah,%edx $func 2(%rbp,%rsi,8),@mm[6] $func 1(%rbp,%rdi,8),@mm[7] ___ push(@mm,shift(@mm)); } for($i=0;$i<8;$i++) { $code.="mov @mm[$i],$i*8(%rsp)\n"; } # K=L for($i=0;$i<8;$i++) { $code.=<<___; shr \$16,%eax lea (%rcx,%rcx),%rsi movz %al,%ecx lea (%rdx,%rdx),%rdi movz %ah,%edx xor 0(%rbp,%rsi,8),@mm[0] xor 7(%rbp,%rdi,8),@mm[1] `"mov 64+$i*8+8(%rsp),%eax" if($i<7);` # 64+($i+1)*8 lea (%rcx,%rcx),%rsi movz %bl,%ecx lea (%rdx,%rdx),%rdi movz %bh,%edx xor 6(%rbp,%rsi,8),@mm[2] xor 5(%rbp,%rdi,8),@mm[3] shr \$16,%ebx lea (%rcx,%rcx),%rsi movz %bl,%ecx lea (%rdx,%rdx),%rdi movz %bh,%edx xor 4(%rbp,%rsi,8),@mm[4] xor 3(%rbp,%rdi,8),@mm[5] `"mov 64+$i*8+8+4(%rsp),%ebx" if($i<7);` # 64+($i+1)*8+4 lea (%rcx,%rcx),%rsi movz %al,%ecx lea (%rdx,%rdx),%rdi movz %ah,%edx xor 2(%rbp,%rsi,8),@mm[6] xor 1(%rbp,%rdi,8),@mm[7] ___ push(@mm,shift(@mm)); } $code.=<<___; lea 128(%rsp),%rbx mov 24(%rbx),%rsi # pull round counter add \$1,%rsi cmp \$10,%rsi je .Lroundsdone mov %rsi,24(%rbx) # update round counter ___ for($i=0;$i<8;$i++) { $code.="mov @mm[$i],64+$i*8(%rsp)\n"; } # S=L $code.=<<___; jmp .Lround .align 16 .Lroundsdone: mov 0(%rbx),%rdi # reload argument block mov 8(%rbx),%rsi mov 16(%rbx),%rax ___ for($i=0;$i<8;$i++) { $code.="xor $i*8(%rsi),@mm[$i]\n"; } # L^=inp for($i=0;$i<8;$i++) { $code.="xor $i*8(%rdi),@mm[$i]\n"; } # L^=H for($i=0;$i<8;$i++) { $code.="mov @mm[$i],$i*8(%rdi)\n"; } # H=L $code.=<<___; lea 64(%rsi),%rsi # inp+=64 sub \$1,%rax # num-- jz .Lalldone mov %rsi,8(%rbx) # update parameter block mov %rax,16(%rbx) jmp .Louterloop .Lalldone: mov 32(%rbx),%rsi # restore saved pointer .cfi_def_cfa %rsi,8 mov -48(%rsi),%r15 .cfi_restore %r15 mov -40(%rsi),%r14 .cfi_restore %r14 mov -32(%rsi),%r13 .cfi_restore %r13 mov -24(%rsi),%r12 .cfi_restore %r12 mov -16(%rsi),%rbp .cfi_restore %rbp mov -8(%rsi),%rbx .cfi_restore %rbx lea (%rsi),%rsp .cfi_def_cfa_register %rsp .Lepilogue: ret .cfi_endproc .size $func,.-$func .align 64 .type $table,\@object $table: ___ &LL(0x18,0x18,0x60,0x18,0xc0,0x78,0x30,0xd8); &LL(0x23,0x23,0x8c,0x23,0x05,0xaf,0x46,0x26); &LL(0xc6,0xc6,0x3f,0xc6,0x7e,0xf9,0x91,0xb8); &LL(0xe8,0xe8,0x87,0xe8,0x13,0x6f,0xcd,0xfb); &LL(0x87,0x87,0x26,0x87,0x4c,0xa1,0x13,0xcb); &LL(0xb8,0xb8,0xda,0xb8,0xa9,0x62,0x6d,0x11); &LL(0x01,0x01,0x04,0x01,0x08,0x05,0x02,0x09); &LL(0x4f,0x4f,0x21,0x4f,0x42,0x6e,0x9e,0x0d); &LL(0x36,0x36,0xd8,0x36,0xad,0xee,0x6c,0x9b); &LL(0xa6,0xa6,0xa2,0xa6,0x59,0x04,0x51,0xff); &LL(0xd2,0xd2,0x6f,0xd2,0xde,0xbd,0xb9,0x0c); &LL(0xf5,0xf5,0xf3,0xf5,0xfb,0x06,0xf7,0x0e); &LL(0x79,0x79,0xf9,0x79,0xef,0x80,0xf2,0x96); &LL(0x6f,0x6f,0xa1,0x6f,0x5f,0xce,0xde,0x30); &LL(0x91,0x91,0x7e,0x91,0xfc,0xef,0x3f,0x6d); &LL(0x52,0x52,0x55,0x52,0xaa,0x07,0xa4,0xf8); &LL(0x60,0x60,0x9d,0x60,0x27,0xfd,0xc0,0x47); &LL(0xbc,0xbc,0xca,0xbc,0x89,0x76,0x65,0x35); &LL(0x9b,0x9b,0x56,0x9b,0xac,0xcd,0x2b,0x37); &LL(0x8e,0x8e,0x02,0x8e,0x04,0x8c,0x01,0x8a); &LL(0xa3,0xa3,0xb6,0xa3,0x71,0x15,0x5b,0xd2); &LL(0x0c,0x0c,0x30,0x0c,0x60,0x3c,0x18,0x6c); &LL(0x7b,0x7b,0xf1,0x7b,0xff,0x8a,0xf6,0x84); &LL(0x35,0x35,0xd4,0x35,0xb5,0xe1,0x6a,0x80); &LL(0x1d,0x1d,0x74,0x1d,0xe8,0x69,0x3a,0xf5); &LL(0xe0,0xe0,0xa7,0xe0,0x53,0x47,0xdd,0xb3); &LL(0xd7,0xd7,0x7b,0xd7,0xf6,0xac,0xb3,0x21); &LL(0xc2,0xc2,0x2f,0xc2,0x5e,0xed,0x99,0x9c); &LL(0x2e,0x2e,0xb8,0x2e,0x6d,0x96,0x5c,0x43); &LL(0x4b,0x4b,0x31,0x4b,0x62,0x7a,0x96,0x29); &LL(0xfe,0xfe,0xdf,0xfe,0xa3,0x21,0xe1,0x5d); &LL(0x57,0x57,0x41,0x57,0x82,0x16,0xae,0xd5); &LL(0x15,0x15,0x54,0x15,0xa8,0x41,0x2a,0xbd); &LL(0x77,0x77,0xc1,0x77,0x9f,0xb6,0xee,0xe8); &LL(0x37,0x37,0xdc,0x37,0xa5,0xeb,0x6e,0x92); &LL(0xe5,0xe5,0xb3,0xe5,0x7b,0x56,0xd7,0x9e); &LL(0x9f,0x9f,0x46,0x9f,0x8c,0xd9,0x23,0x13); &LL(0xf0,0xf0,0xe7,0xf0,0xd3,0x17,0xfd,0x23); &LL(0x4a,0x4a,0x35,0x4a,0x6a,0x7f,0x94,0x20); &LL(0xda,0xda,0x4f,0xda,0x9e,0x95,0xa9,0x44); &LL(0x58,0x58,0x7d,0x58,0xfa,0x25,0xb0,0xa2); &LL(0xc9,0xc9,0x03,0xc9,0x06,0xca,0x8f,0xcf); &LL(0x29,0x29,0xa4,0x29,0x55,0x8d,0x52,0x7c); &LL(0x0a,0x0a,0x28,0x0a,0x50,0x22,0x14,0x5a); &LL(0xb1,0xb1,0xfe,0xb1,0xe1,0x4f,0x7f,0x50); &LL(0xa0,0xa0,0xba,0xa0,0x69,0x1a,0x5d,0xc9); &LL(0x6b,0x6b,0xb1,0x6b,0x7f,0xda,0xd6,0x14); &LL(0x85,0x85,0x2e,0x85,0x5c,0xab,0x17,0xd9); &LL(0xbd,0xbd,0xce,0xbd,0x81,0x73,0x67,0x3c); &LL(0x5d,0x5d,0x69,0x5d,0xd2,0x34,0xba,0x8f); &LL(0x10,0x10,0x40,0x10,0x80,0x50,0x20,0x90); &LL(0xf4,0xf4,0xf7,0xf4,0xf3,0x03,0xf5,0x07); &LL(0xcb,0xcb,0x0b,0xcb,0x16,0xc0,0x8b,0xdd); &LL(0x3e,0x3e,0xf8,0x3e,0xed,0xc6,0x7c,0xd3); &LL(0x05,0x05,0x14,0x05,0x28,0x11,0x0a,0x2d); &LL(0x67,0x67,0x81,0x67,0x1f,0xe6,0xce,0x78); &LL(0xe4,0xe4,0xb7,0xe4,0x73,0x53,0xd5,0x97); &LL(0x27,0x27,0x9c,0x27,0x25,0xbb,0x4e,0x02); &LL(0x41,0x41,0x19,0x41,0x32,0x58,0x82,0x73); &LL(0x8b,0x8b,0x16,0x8b,0x2c,0x9d,0x0b,0xa7); &LL(0xa7,0xa7,0xa6,0xa7,0x51,0x01,0x53,0xf6); &LL(0x7d,0x7d,0xe9,0x7d,0xcf,0x94,0xfa,0xb2); &LL(0x95,0x95,0x6e,0x95,0xdc,0xfb,0x37,0x49); &LL(0xd8,0xd8,0x47,0xd8,0x8e,0x9f,0xad,0x56); &LL(0xfb,0xfb,0xcb,0xfb,0x8b,0x30,0xeb,0x70); &LL(0xee,0xee,0x9f,0xee,0x23,0x71,0xc1,0xcd); &LL(0x7c,0x7c,0xed,0x7c,0xc7,0x91,0xf8,0xbb); &LL(0x66,0x66,0x85,0x66,0x17,0xe3,0xcc,0x71); &LL(0xdd,0xdd,0x53,0xdd,0xa6,0x8e,0xa7,0x7b); &LL(0x17,0x17,0x5c,0x17,0xb8,0x4b,0x2e,0xaf); &LL(0x47,0x47,0x01,0x47,0x02,0x46,0x8e,0x45); &LL(0x9e,0x9e,0x42,0x9e,0x84,0xdc,0x21,0x1a); &LL(0xca,0xca,0x0f,0xca,0x1e,0xc5,0x89,0xd4); &LL(0x2d,0x2d,0xb4,0x2d,0x75,0x99,0x5a,0x58); &LL(0xbf,0xbf,0xc6,0xbf,0x91,0x79,0x63,0x2e); &LL(0x07,0x07,0x1c,0x07,0x38,0x1b,0x0e,0x3f); &LL(0xad,0xad,0x8e,0xad,0x01,0x23,0x47,0xac); &LL(0x5a,0x5a,0x75,0x5a,0xea,0x2f,0xb4,0xb0); &LL(0x83,0x83,0x36,0x83,0x6c,0xb5,0x1b,0xef); &LL(0x33,0x33,0xcc,0x33,0x85,0xff,0x66,0xb6); &LL(0x63,0x63,0x91,0x63,0x3f,0xf2,0xc6,0x5c); &LL(0x02,0x02,0x08,0x02,0x10,0x0a,0x04,0x12); &LL(0xaa,0xaa,0x92,0xaa,0x39,0x38,0x49,0x93); &LL(0x71,0x71,0xd9,0x71,0xaf,0xa8,0xe2,0xde); &LL(0xc8,0xc8,0x07,0xc8,0x0e,0xcf,0x8d,0xc6); &LL(0x19,0x19,0x64,0x19,0xc8,0x7d,0x32,0xd1); &LL(0x49,0x49,0x39,0x49,0x72,0x70,0x92,0x3b); &LL(0xd9,0xd9,0x43,0xd9,0x86,0x9a,0xaf,0x5f); &LL(0xf2,0xf2,0xef,0xf2,0xc3,0x1d,0xf9,0x31); &LL(0xe3,0xe3,0xab,0xe3,0x4b,0x48,0xdb,0xa8); &LL(0x5b,0x5b,0x71,0x5b,0xe2,0x2a,0xb6,0xb9); &LL(0x88,0x88,0x1a,0x88,0x34,0x92,0x0d,0xbc); &LL(0x9a,0x9a,0x52,0x9a,0xa4,0xc8,0x29,0x3e); &LL(0x26,0x26,0x98,0x26,0x2d,0xbe,0x4c,0x0b); &LL(0x32,0x32,0xc8,0x32,0x8d,0xfa,0x64,0xbf); &LL(0xb0,0xb0,0xfa,0xb0,0xe9,0x4a,0x7d,0x59); &LL(0xe9,0xe9,0x83,0xe9,0x1b,0x6a,0xcf,0xf2); &LL(0x0f,0x0f,0x3c,0x0f,0x78,0x33,0x1e,0x77); &LL(0xd5,0xd5,0x73,0xd5,0xe6,0xa6,0xb7,0x33); &LL(0x80,0x80,0x3a,0x80,0x74,0xba,0x1d,0xf4); &LL(0xbe,0xbe,0xc2,0xbe,0x99,0x7c,0x61,0x27); &LL(0xcd,0xcd,0x13,0xcd,0x26,0xde,0x87,0xeb); &LL(0x34,0x34,0xd0,0x34,0xbd,0xe4,0x68,0x89); &LL(0x48,0x48,0x3d,0x48,0x7a,0x75,0x90,0x32); &LL(0xff,0xff,0xdb,0xff,0xab,0x24,0xe3,0x54); &LL(0x7a,0x7a,0xf5,0x7a,0xf7,0x8f,0xf4,0x8d); &LL(0x90,0x90,0x7a,0x90,0xf4,0xea,0x3d,0x64); &LL(0x5f,0x5f,0x61,0x5f,0xc2,0x3e,0xbe,0x9d); &LL(0x20,0x20,0x80,0x20,0x1d,0xa0,0x40,0x3d); &LL(0x68,0x68,0xbd,0x68,0x67,0xd5,0xd0,0x0f); &LL(0x1a,0x1a,0x68,0x1a,0xd0,0x72,0x34,0xca); &LL(0xae,0xae,0x82,0xae,0x19,0x2c,0x41,0xb7); &LL(0xb4,0xb4,0xea,0xb4,0xc9,0x5e,0x75,0x7d); &LL(0x54,0x54,0x4d,0x54,0x9a,0x19,0xa8,0xce); &LL(0x93,0x93,0x76,0x93,0xec,0xe5,0x3b,0x7f); &LL(0x22,0x22,0x88,0x22,0x0d,0xaa,0x44,0x2f); &LL(0x64,0x64,0x8d,0x64,0x07,0xe9,0xc8,0x63); &LL(0xf1,0xf1,0xe3,0xf1,0xdb,0x12,0xff,0x2a); &LL(0x73,0x73,0xd1,0x73,0xbf,0xa2,0xe6,0xcc); &LL(0x12,0x12,0x48,0x12,0x90,0x5a,0x24,0x82); &LL(0x40,0x40,0x1d,0x40,0x3a,0x5d,0x80,0x7a); &LL(0x08,0x08,0x20,0x08,0x40,0x28,0x10,0x48); &LL(0xc3,0xc3,0x2b,0xc3,0x56,0xe8,0x9b,0x95); &LL(0xec,0xec,0x97,0xec,0x33,0x7b,0xc5,0xdf); &LL(0xdb,0xdb,0x4b,0xdb,0x96,0x90,0xab,0x4d); &LL(0xa1,0xa1,0xbe,0xa1,0x61,0x1f,0x5f,0xc0); &LL(0x8d,0x8d,0x0e,0x8d,0x1c,0x83,0x07,0x91); &LL(0x3d,0x3d,0xf4,0x3d,0xf5,0xc9,0x7a,0xc8); &LL(0x97,0x97,0x66,0x97,0xcc,0xf1,0x33,0x5b); &LL(0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00); &LL(0xcf,0xcf,0x1b,0xcf,0x36,0xd4,0x83,0xf9); &LL(0x2b,0x2b,0xac,0x2b,0x45,0x87,0x56,0x6e); &LL(0x76,0x76,0xc5,0x76,0x97,0xb3,0xec,0xe1); &LL(0x82,0x82,0x32,0x82,0x64,0xb0,0x19,0xe6); &LL(0xd6,0xd6,0x7f,0xd6,0xfe,0xa9,0xb1,0x28); &LL(0x1b,0x1b,0x6c,0x1b,0xd8,0x77,0x36,0xc3); &LL(0xb5,0xb5,0xee,0xb5,0xc1,0x5b,0x77,0x74); &LL(0xaf,0xaf,0x86,0xaf,0x11,0x29,0x43,0xbe); &LL(0x6a,0x6a,0xb5,0x6a,0x77,0xdf,0xd4,0x1d); &LL(0x50,0x50,0x5d,0x50,0xba,0x0d,0xa0,0xea); &LL(0x45,0x45,0x09,0x45,0x12,0x4c,0x8a,0x57); &LL(0xf3,0xf3,0xeb,0xf3,0xcb,0x18,0xfb,0x38); &LL(0x30,0x30,0xc0,0x30,0x9d,0xf0,0x60,0xad); &LL(0xef,0xef,0x9b,0xef,0x2b,0x74,0xc3,0xc4); &LL(0x3f,0x3f,0xfc,0x3f,0xe5,0xc3,0x7e,0xda); &LL(0x55,0x55,0x49,0x55,0x92,0x1c,0xaa,0xc7); &LL(0xa2,0xa2,0xb2,0xa2,0x79,0x10,0x59,0xdb); &LL(0xea,0xea,0x8f,0xea,0x03,0x65,0xc9,0xe9); &LL(0x65,0x65,0x89,0x65,0x0f,0xec,0xca,0x6a); &LL(0xba,0xba,0xd2,0xba,0xb9,0x68,0x69,0x03); &LL(0x2f,0x2f,0xbc,0x2f,0x65,0x93,0x5e,0x4a); &LL(0xc0,0xc0,0x27,0xc0,0x4e,0xe7,0x9d,0x8e); &LL(0xde,0xde,0x5f,0xde,0xbe,0x81,0xa1,0x60); &LL(0x1c,0x1c,0x70,0x1c,0xe0,0x6c,0x38,0xfc); &LL(0xfd,0xfd,0xd3,0xfd,0xbb,0x2e,0xe7,0x46); &LL(0x4d,0x4d,0x29,0x4d,0x52,0x64,0x9a,0x1f); &LL(0x92,0x92,0x72,0x92,0xe4,0xe0,0x39,0x76); &LL(0x75,0x75,0xc9,0x75,0x8f,0xbc,0xea,0xfa); &LL(0x06,0x06,0x18,0x06,0x30,0x1e,0x0c,0x36); &LL(0x8a,0x8a,0x12,0x8a,0x24,0x98,0x09,0xae); &LL(0xb2,0xb2,0xf2,0xb2,0xf9,0x40,0x79,0x4b); &LL(0xe6,0xe6,0xbf,0xe6,0x63,0x59,0xd1,0x85); &LL(0x0e,0x0e,0x38,0x0e,0x70,0x36,0x1c,0x7e); &LL(0x1f,0x1f,0x7c,0x1f,0xf8,0x63,0x3e,0xe7); &LL(0x62,0x62,0x95,0x62,0x37,0xf7,0xc4,0x55); &LL(0xd4,0xd4,0x77,0xd4,0xee,0xa3,0xb5,0x3a); &LL(0xa8,0xa8,0x9a,0xa8,0x29,0x32,0x4d,0x81); &LL(0x96,0x96,0x62,0x96,0xc4,0xf4,0x31,0x52); &LL(0xf9,0xf9,0xc3,0xf9,0x9b,0x3a,0xef,0x62); &LL(0xc5,0xc5,0x33,0xc5,0x66,0xf6,0x97,0xa3); &LL(0x25,0x25,0x94,0x25,0x35,0xb1,0x4a,0x10); &LL(0x59,0x59,0x79,0x59,0xf2,0x20,0xb2,0xab); &LL(0x84,0x84,0x2a,0x84,0x54,0xae,0x15,0xd0); &LL(0x72,0x72,0xd5,0x72,0xb7,0xa7,0xe4,0xc5); &LL(0x39,0x39,0xe4,0x39,0xd5,0xdd,0x72,0xec); &LL(0x4c,0x4c,0x2d,0x4c,0x5a,0x61,0x98,0x16); &LL(0x5e,0x5e,0x65,0x5e,0xca,0x3b,0xbc,0x94); &LL(0x78,0x78,0xfd,0x78,0xe7,0x85,0xf0,0x9f); &LL(0x38,0x38,0xe0,0x38,0xdd,0xd8,0x70,0xe5); &LL(0x8c,0x8c,0x0a,0x8c,0x14,0x86,0x05,0x98); &LL(0xd1,0xd1,0x63,0xd1,0xc6,0xb2,0xbf,0x17); &LL(0xa5,0xa5,0xae,0xa5,0x41,0x0b,0x57,0xe4); &LL(0xe2,0xe2,0xaf,0xe2,0x43,0x4d,0xd9,0xa1); &LL(0x61,0x61,0x99,0x61,0x2f,0xf8,0xc2,0x4e); &LL(0xb3,0xb3,0xf6,0xb3,0xf1,0x45,0x7b,0x42); &LL(0x21,0x21,0x84,0x21,0x15,0xa5,0x42,0x34); &LL(0x9c,0x9c,0x4a,0x9c,0x94,0xd6,0x25,0x08); &LL(0x1e,0x1e,0x78,0x1e,0xf0,0x66,0x3c,0xee); &LL(0x43,0x43,0x11,0x43,0x22,0x52,0x86,0x61); &LL(0xc7,0xc7,0x3b,0xc7,0x76,0xfc,0x93,0xb1); &LL(0xfc,0xfc,0xd7,0xfc,0xb3,0x2b,0xe5,0x4f); &LL(0x04,0x04,0x10,0x04,0x20,0x14,0x08,0x24); &LL(0x51,0x51,0x59,0x51,0xb2,0x08,0xa2,0xe3); &LL(0x99,0x99,0x5e,0x99,0xbc,0xc7,0x2f,0x25); &LL(0x6d,0x6d,0xa9,0x6d,0x4f,0xc4,0xda,0x22); &LL(0x0d,0x0d,0x34,0x0d,0x68,0x39,0x1a,0x65); &LL(0xfa,0xfa,0xcf,0xfa,0x83,0x35,0xe9,0x79); &LL(0xdf,0xdf,0x5b,0xdf,0xb6,0x84,0xa3,0x69); &LL(0x7e,0x7e,0xe5,0x7e,0xd7,0x9b,0xfc,0xa9); &LL(0x24,0x24,0x90,0x24,0x3d,0xb4,0x48,0x19); &LL(0x3b,0x3b,0xec,0x3b,0xc5,0xd7,0x76,0xfe); &LL(0xab,0xab,0x96,0xab,0x31,0x3d,0x4b,0x9a); &LL(0xce,0xce,0x1f,0xce,0x3e,0xd1,0x81,0xf0); &LL(0x11,0x11,0x44,0x11,0x88,0x55,0x22,0x99); &LL(0x8f,0x8f,0x06,0x8f,0x0c,0x89,0x03,0x83); &LL(0x4e,0x4e,0x25,0x4e,0x4a,0x6b,0x9c,0x04); &LL(0xb7,0xb7,0xe6,0xb7,0xd1,0x51,0x73,0x66); &LL(0xeb,0xeb,0x8b,0xeb,0x0b,0x60,0xcb,0xe0); &LL(0x3c,0x3c,0xf0,0x3c,0xfd,0xcc,0x78,0xc1); &LL(0x81,0x81,0x3e,0x81,0x7c,0xbf,0x1f,0xfd); &LL(0x94,0x94,0x6a,0x94,0xd4,0xfe,0x35,0x40); &LL(0xf7,0xf7,0xfb,0xf7,0xeb,0x0c,0xf3,0x1c); &LL(0xb9,0xb9,0xde,0xb9,0xa1,0x67,0x6f,0x18); &LL(0x13,0x13,0x4c,0x13,0x98,0x5f,0x26,0x8b); &LL(0x2c,0x2c,0xb0,0x2c,0x7d,0x9c,0x58,0x51); &LL(0xd3,0xd3,0x6b,0xd3,0xd6,0xb8,0xbb,0x05); &LL(0xe7,0xe7,0xbb,0xe7,0x6b,0x5c,0xd3,0x8c); &LL(0x6e,0x6e,0xa5,0x6e,0x57,0xcb,0xdc,0x39); &LL(0xc4,0xc4,0x37,0xc4,0x6e,0xf3,0x95,0xaa); &LL(0x03,0x03,0x0c,0x03,0x18,0x0f,0x06,0x1b); &LL(0x56,0x56,0x45,0x56,0x8a,0x13,0xac,0xdc); &LL(0x44,0x44,0x0d,0x44,0x1a,0x49,0x88,0x5e); &LL(0x7f,0x7f,0xe1,0x7f,0xdf,0x9e,0xfe,0xa0); &LL(0xa9,0xa9,0x9e,0xa9,0x21,0x37,0x4f,0x88); &LL(0x2a,0x2a,0xa8,0x2a,0x4d,0x82,0x54,0x67); &LL(0xbb,0xbb,0xd6,0xbb,0xb1,0x6d,0x6b,0x0a); &LL(0xc1,0xc1,0x23,0xc1,0x46,0xe2,0x9f,0x87); &LL(0x53,0x53,0x51,0x53,0xa2,0x02,0xa6,0xf1); &LL(0xdc,0xdc,0x57,0xdc,0xae,0x8b,0xa5,0x72); &LL(0x0b,0x0b,0x2c,0x0b,0x58,0x27,0x16,0x53); &LL(0x9d,0x9d,0x4e,0x9d,0x9c,0xd3,0x27,0x01); &LL(0x6c,0x6c,0xad,0x6c,0x47,0xc1,0xd8,0x2b); &LL(0x31,0x31,0xc4,0x31,0x95,0xf5,0x62,0xa4); &LL(0x74,0x74,0xcd,0x74,0x87,0xb9,0xe8,0xf3); &LL(0xf6,0xf6,0xff,0xf6,0xe3,0x09,0xf1,0x15); &LL(0x46,0x46,0x05,0x46,0x0a,0x43,0x8c,0x4c); &LL(0xac,0xac,0x8a,0xac,0x09,0x26,0x45,0xa5); &LL(0x89,0x89,0x1e,0x89,0x3c,0x97,0x0f,0xb5); &LL(0x14,0x14,0x50,0x14,0xa0,0x44,0x28,0xb4); &LL(0xe1,0xe1,0xa3,0xe1,0x5b,0x42,0xdf,0xba); &LL(0x16,0x16,0x58,0x16,0xb0,0x4e,0x2c,0xa6); &LL(0x3a,0x3a,0xe8,0x3a,0xcd,0xd2,0x74,0xf7); &LL(0x69,0x69,0xb9,0x69,0x6f,0xd0,0xd2,0x06); &LL(0x09,0x09,0x24,0x09,0x48,0x2d,0x12,0x41); &LL(0x70,0x70,0xdd,0x70,0xa7,0xad,0xe0,0xd7); &LL(0xb6,0xb6,0xe2,0xb6,0xd9,0x54,0x71,0x6f); &LL(0xd0,0xd0,0x67,0xd0,0xce,0xb7,0xbd,0x1e); &LL(0xed,0xed,0x93,0xed,0x3b,0x7e,0xc7,0xd6); &LL(0xcc,0xcc,0x17,0xcc,0x2e,0xdb,0x85,0xe2); &LL(0x42,0x42,0x15,0x42,0x2a,0x57,0x84,0x68); &LL(0x98,0x98,0x5a,0x98,0xb4,0xc2,0x2d,0x2c); &LL(0xa4,0xa4,0xaa,0xa4,0x49,0x0e,0x55,0xed); &LL(0x28,0x28,0xa0,0x28,0x5d,0x88,0x50,0x75); &LL(0x5c,0x5c,0x6d,0x5c,0xda,0x31,0xb8,0x86); &LL(0xf8,0xf8,0xc7,0xf8,0x93,0x3f,0xed,0x6b); &LL(0x86,0x86,0x22,0x86,0x44,0xa4,0x11,0xc2); &L(0x18,0x23,0xc6,0xe8,0x87,0xb8,0x01,0x4f); # rc[ROUNDS] &L(0x36,0xa6,0xd2,0xf5,0x79,0x6f,0x91,0x52); &L(0x60,0xbc,0x9b,0x8e,0xa3,0x0c,0x7b,0x35); &L(0x1d,0xe0,0xd7,0xc2,0x2e,0x4b,0xfe,0x57); &L(0x15,0x77,0x37,0xe5,0x9f,0xf0,0x4a,0xda); &L(0x58,0xc9,0x29,0x0a,0xb1,0xa0,0x6b,0x85); &L(0xbd,0x5d,0x10,0xf4,0xcb,0x3e,0x05,0x67); &L(0xe4,0x27,0x41,0x8b,0xa7,0x7d,0x95,0xd8); &L(0xfb,0xee,0x7c,0x66,0xdd,0x17,0x47,0x9e); &L(0xca,0x2d,0xbf,0x07,0xad,0x5a,0x83,0x33); # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lprologue(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lprologue jb .Lin_prologue mov 152($context),%rax # pull context->Rsp lea .Lepilogue(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lin_prologue mov 128+32(%rax),%rax # pull saved stack pointer mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_$func .rva .LSEH_end_$func .rva .LSEH_info_$func .section .xdata .align 8 .LSEH_info_$func: .byte 9,0,0,0 .rva se_handler ___ } $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/crypto/whrlpool/build.info000066400000000000000000000004321364063235100205070ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=wp_dgst.c {- $target{wp_asm_src} -} GENERATE[wp-mmx.s]=asm/wp-mmx.pl \ $(PERLASM_SCHEME) $(LIB_CFLAGS) $(LIB_CPPFLAGS) $(PROCESSOR) DEPEND[wp-mmx.s]=../perlasm/x86asm.pl GENERATE[wp-x86_64.s]=asm/wp-x86_64.pl $(PERLASM_SCHEME) openssl-1.1.1f/crypto/whrlpool/wp_block.c000066400000000000000000001037561364063235100205140ustar00rootroot00000000000000/* * Copyright 2005-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /** * The Whirlpool hashing function. * * See * P.S.L.M. Barreto, V. Rijmen, * ``The Whirlpool hashing function,'' * NESSIE submission, 2000 (tweaked version, 2001), * * * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and * Vincent Rijmen. Lookup "reference implementations" on * * * ============================================================================= * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "wp_local.h" #include typedef unsigned char u8; #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32) typedef unsigned __int64 u64; #elif defined(__arch64__) typedef unsigned long u64; #else typedef unsigned long long u64; #endif #define ROUNDS 10 #define STRICT_ALIGNMENT #if !defined(PEDANTIC) && (defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || \ defined(_M_X64)) /* * Well, formally there're couple of other architectures, which permit * unaligned loads, specifically those not crossing cache lines, IA-64 and * PowerPC... */ # undef STRICT_ALIGNMENT #endif #undef SMALL_REGISTER_BANK #if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define SMALL_REGISTER_BANK # if defined(WHIRLPOOL_ASM) # ifndef OPENSSL_SMALL_FOOTPRINT /* * it appears that for elder non-MMX * CPUs this is actually faster! */ # define OPENSSL_SMALL_FOOTPRINT # endif # define GO_FOR_MMX(ctx,inp,num) do { \ extern unsigned long OPENSSL_ia32cap_P[]; \ void whirlpool_block_mmx(void *,const void *,size_t); \ if (!(OPENSSL_ia32cap_P[0] & (1<<23))) break; \ whirlpool_block_mmx(ctx->H.c,inp,num); return; \ } while (0) # endif #endif #undef ROTATE #ifndef PEDANTIC # if defined(_MSC_VER) # if defined(_WIN64) /* applies to both IA-64 and AMD64 */ # include # pragma intrinsic(_rotl64) # define ROTATE(a,n) _rotl64((a),n) # endif # elif defined(__GNUC__) && __GNUC__>=2 # if defined(__x86_64) || defined(__x86_64__) # if defined(L_ENDIAN) # define ROTATE(a,n) ({ u64 ret; asm ("rolq %1,%0" \ : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) # elif defined(B_ENDIAN) /* * Most will argue that x86_64 is always little-endian. Well, yes, but * then we have stratus.com who has modified gcc to "emulate" * big-endian on x86. Is there evidence that they [or somebody else] * won't do same for x86_64? Naturally no. And this line is waiting * ready for that brave soul:-) */ # define ROTATE(a,n) ({ u64 ret; asm ("rorq %1,%0" \ : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) # endif # elif defined(__ia64) || defined(__ia64__) # if defined(L_ENDIAN) # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ : "=r"(ret) : "r"(a),"M"(64-(n))); ret; }) # elif defined(B_ENDIAN) # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ : "=r"(ret) : "r"(a),"M"(n)); ret; }) # endif # endif # endif #endif #if defined(OPENSSL_SMALL_FOOTPRINT) # if !defined(ROTATE) # if defined(L_ENDIAN) /* little-endians have to rotate left */ # define ROTATE(i,n) ((i)<<(n) ^ (i)>>(64-n)) # elif defined(B_ENDIAN) /* big-endians have to rotate right */ # define ROTATE(i,n) ((i)>>(n) ^ (i)<<(64-n)) # endif # endif # if defined(ROTATE) && !defined(STRICT_ALIGNMENT) # define STRICT_ALIGNMENT /* ensure smallest table size */ # endif #endif /* * Table size depends on STRICT_ALIGNMENT and whether or not endian- * specific ROTATE macro is defined. If STRICT_ALIGNMENT is not * defined, which is normally the case on x86[_64] CPUs, the table is * 4KB large unconditionally. Otherwise if ROTATE is defined, the * table is 2KB large, and otherwise - 16KB. 2KB table requires a * whole bunch of additional rotations, but I'm willing to "trade," * because 16KB table certainly trashes L1 cache. I wish all CPUs * could handle unaligned load as 4KB table doesn't trash the cache, * nor does it require additional rotations. */ /* * Note that every Cn macro expands as two loads: one byte load and * one quadword load. One can argue that that many single-byte loads * is too excessive, as one could load a quadword and "milk" it for * eight 8-bit values instead. Well, yes, but in order to do so *and* * avoid excessive loads you have to accommodate a handful of 64-bit * values in the register bank and issue a bunch of shifts and mask. * It's a tradeoff: loads vs. shift and mask in big register bank[!]. * On most CPUs eight single-byte loads are faster and I let other * ones to depend on smart compiler to fold byte loads if beneficial. * Hand-coded assembler would be another alternative:-) */ #ifdef STRICT_ALIGNMENT # if defined(ROTATE) # define N 1 # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7 # define C0(K,i) (Cx.q[K.c[(i)*8+0]]) # define C1(K,i) ROTATE(Cx.q[K.c[(i)*8+1]],8) # define C2(K,i) ROTATE(Cx.q[K.c[(i)*8+2]],16) # define C3(K,i) ROTATE(Cx.q[K.c[(i)*8+3]],24) # define C4(K,i) ROTATE(Cx.q[K.c[(i)*8+4]],32) # define C5(K,i) ROTATE(Cx.q[K.c[(i)*8+5]],40) # define C6(K,i) ROTATE(Cx.q[K.c[(i)*8+6]],48) # define C7(K,i) ROTATE(Cx.q[K.c[(i)*8+7]],56) # else # define N 8 # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ c7,c0,c1,c2,c3,c4,c5,c6, \ c6,c7,c0,c1,c2,c3,c4,c5, \ c5,c6,c7,c0,c1,c2,c3,c4, \ c4,c5,c6,c7,c0,c1,c2,c3, \ c3,c4,c5,c6,c7,c0,c1,c2, \ c2,c3,c4,c5,c6,c7,c0,c1, \ c1,c2,c3,c4,c5,c6,c7,c0 # define C0(K,i) (Cx.q[0+8*K.c[(i)*8+0]]) # define C1(K,i) (Cx.q[1+8*K.c[(i)*8+1]]) # define C2(K,i) (Cx.q[2+8*K.c[(i)*8+2]]) # define C3(K,i) (Cx.q[3+8*K.c[(i)*8+3]]) # define C4(K,i) (Cx.q[4+8*K.c[(i)*8+4]]) # define C5(K,i) (Cx.q[5+8*K.c[(i)*8+5]]) # define C6(K,i) (Cx.q[6+8*K.c[(i)*8+6]]) # define C7(K,i) (Cx.q[7+8*K.c[(i)*8+7]]) # endif #else # define N 2 # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ c0,c1,c2,c3,c4,c5,c6,c7 # define C0(K,i) (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]]) # define C1(K,i) (((u64*)(Cx.c+7))[2*K.c[(i)*8+1]]) # define C2(K,i) (((u64*)(Cx.c+6))[2*K.c[(i)*8+2]]) # define C3(K,i) (((u64*)(Cx.c+5))[2*K.c[(i)*8+3]]) # define C4(K,i) (((u64*)(Cx.c+4))[2*K.c[(i)*8+4]]) # define C5(K,i) (((u64*)(Cx.c+3))[2*K.c[(i)*8+5]]) # define C6(K,i) (((u64*)(Cx.c+2))[2*K.c[(i)*8+6]]) # define C7(K,i) (((u64*)(Cx.c+1))[2*K.c[(i)*8+7]]) #endif static const union { u8 c[(256 * N + ROUNDS) * sizeof(u64)]; u64 q[(256 * N + ROUNDS)]; } Cx = { { /* Note endian-neutral representation:-) */ LL(0x18, 0x18, 0x60, 0x18, 0xc0, 0x78, 0x30, 0xd8), LL(0x23, 0x23, 0x8c, 0x23, 0x05, 0xaf, 0x46, 0x26), LL(0xc6, 0xc6, 0x3f, 0xc6, 0x7e, 0xf9, 0x91, 0xb8), LL(0xe8, 0xe8, 0x87, 0xe8, 0x13, 0x6f, 0xcd, 0xfb), LL(0x87, 0x87, 0x26, 0x87, 0x4c, 0xa1, 0x13, 0xcb), LL(0xb8, 0xb8, 0xda, 0xb8, 0xa9, 0x62, 0x6d, 0x11), LL(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09), LL(0x4f, 0x4f, 0x21, 0x4f, 0x42, 0x6e, 0x9e, 0x0d), LL(0x36, 0x36, 0xd8, 0x36, 0xad, 0xee, 0x6c, 0x9b), LL(0xa6, 0xa6, 0xa2, 0xa6, 0x59, 0x04, 0x51, 0xff), LL(0xd2, 0xd2, 0x6f, 0xd2, 0xde, 0xbd, 0xb9, 0x0c), LL(0xf5, 0xf5, 0xf3, 0xf5, 0xfb, 0x06, 0xf7, 0x0e), LL(0x79, 0x79, 0xf9, 0x79, 0xef, 0x80, 0xf2, 0x96), LL(0x6f, 0x6f, 0xa1, 0x6f, 0x5f, 0xce, 0xde, 0x30), LL(0x91, 0x91, 0x7e, 0x91, 0xfc, 0xef, 0x3f, 0x6d), LL(0x52, 0x52, 0x55, 0x52, 0xaa, 0x07, 0xa4, 0xf8), LL(0x60, 0x60, 0x9d, 0x60, 0x27, 0xfd, 0xc0, 0x47), LL(0xbc, 0xbc, 0xca, 0xbc, 0x89, 0x76, 0x65, 0x35), LL(0x9b, 0x9b, 0x56, 0x9b, 0xac, 0xcd, 0x2b, 0x37), LL(0x8e, 0x8e, 0x02, 0x8e, 0x04, 0x8c, 0x01, 0x8a), LL(0xa3, 0xa3, 0xb6, 0xa3, 0x71, 0x15, 0x5b, 0xd2), LL(0x0c, 0x0c, 0x30, 0x0c, 0x60, 0x3c, 0x18, 0x6c), LL(0x7b, 0x7b, 0xf1, 0x7b, 0xff, 0x8a, 0xf6, 0x84), LL(0x35, 0x35, 0xd4, 0x35, 0xb5, 0xe1, 0x6a, 0x80), LL(0x1d, 0x1d, 0x74, 0x1d, 0xe8, 0x69, 0x3a, 0xf5), LL(0xe0, 0xe0, 0xa7, 0xe0, 0x53, 0x47, 0xdd, 0xb3), LL(0xd7, 0xd7, 0x7b, 0xd7, 0xf6, 0xac, 0xb3, 0x21), LL(0xc2, 0xc2, 0x2f, 0xc2, 0x5e, 0xed, 0x99, 0x9c), LL(0x2e, 0x2e, 0xb8, 0x2e, 0x6d, 0x96, 0x5c, 0x43), LL(0x4b, 0x4b, 0x31, 0x4b, 0x62, 0x7a, 0x96, 0x29), LL(0xfe, 0xfe, 0xdf, 0xfe, 0xa3, 0x21, 0xe1, 0x5d), LL(0x57, 0x57, 0x41, 0x57, 0x82, 0x16, 0xae, 0xd5), LL(0x15, 0x15, 0x54, 0x15, 0xa8, 0x41, 0x2a, 0xbd), LL(0x77, 0x77, 0xc1, 0x77, 0x9f, 0xb6, 0xee, 0xe8), LL(0x37, 0x37, 0xdc, 0x37, 0xa5, 0xeb, 0x6e, 0x92), LL(0xe5, 0xe5, 0xb3, 0xe5, 0x7b, 0x56, 0xd7, 0x9e), LL(0x9f, 0x9f, 0x46, 0x9f, 0x8c, 0xd9, 0x23, 0x13), LL(0xf0, 0xf0, 0xe7, 0xf0, 0xd3, 0x17, 0xfd, 0x23), LL(0x4a, 0x4a, 0x35, 0x4a, 0x6a, 0x7f, 0x94, 0x20), LL(0xda, 0xda, 0x4f, 0xda, 0x9e, 0x95, 0xa9, 0x44), LL(0x58, 0x58, 0x7d, 0x58, 0xfa, 0x25, 0xb0, 0xa2), LL(0xc9, 0xc9, 0x03, 0xc9, 0x06, 0xca, 0x8f, 0xcf), LL(0x29, 0x29, 0xa4, 0x29, 0x55, 0x8d, 0x52, 0x7c), LL(0x0a, 0x0a, 0x28, 0x0a, 0x50, 0x22, 0x14, 0x5a), LL(0xb1, 0xb1, 0xfe, 0xb1, 0xe1, 0x4f, 0x7f, 0x50), LL(0xa0, 0xa0, 0xba, 0xa0, 0x69, 0x1a, 0x5d, 0xc9), LL(0x6b, 0x6b, 0xb1, 0x6b, 0x7f, 0xda, 0xd6, 0x14), LL(0x85, 0x85, 0x2e, 0x85, 0x5c, 0xab, 0x17, 0xd9), LL(0xbd, 0xbd, 0xce, 0xbd, 0x81, 0x73, 0x67, 0x3c), LL(0x5d, 0x5d, 0x69, 0x5d, 0xd2, 0x34, 0xba, 0x8f), LL(0x10, 0x10, 0x40, 0x10, 0x80, 0x50, 0x20, 0x90), LL(0xf4, 0xf4, 0xf7, 0xf4, 0xf3, 0x03, 0xf5, 0x07), LL(0xcb, 0xcb, 0x0b, 0xcb, 0x16, 0xc0, 0x8b, 0xdd), LL(0x3e, 0x3e, 0xf8, 0x3e, 0xed, 0xc6, 0x7c, 0xd3), LL(0x05, 0x05, 0x14, 0x05, 0x28, 0x11, 0x0a, 0x2d), LL(0x67, 0x67, 0x81, 0x67, 0x1f, 0xe6, 0xce, 0x78), LL(0xe4, 0xe4, 0xb7, 0xe4, 0x73, 0x53, 0xd5, 0x97), LL(0x27, 0x27, 0x9c, 0x27, 0x25, 0xbb, 0x4e, 0x02), LL(0x41, 0x41, 0x19, 0x41, 0x32, 0x58, 0x82, 0x73), LL(0x8b, 0x8b, 0x16, 0x8b, 0x2c, 0x9d, 0x0b, 0xa7), LL(0xa7, 0xa7, 0xa6, 0xa7, 0x51, 0x01, 0x53, 0xf6), LL(0x7d, 0x7d, 0xe9, 0x7d, 0xcf, 0x94, 0xfa, 0xb2), LL(0x95, 0x95, 0x6e, 0x95, 0xdc, 0xfb, 0x37, 0x49), LL(0xd8, 0xd8, 0x47, 0xd8, 0x8e, 0x9f, 0xad, 0x56), LL(0xfb, 0xfb, 0xcb, 0xfb, 0x8b, 0x30, 0xeb, 0x70), LL(0xee, 0xee, 0x9f, 0xee, 0x23, 0x71, 0xc1, 0xcd), LL(0x7c, 0x7c, 0xed, 0x7c, 0xc7, 0x91, 0xf8, 0xbb), LL(0x66, 0x66, 0x85, 0x66, 0x17, 0xe3, 0xcc, 0x71), LL(0xdd, 0xdd, 0x53, 0xdd, 0xa6, 0x8e, 0xa7, 0x7b), LL(0x17, 0x17, 0x5c, 0x17, 0xb8, 0x4b, 0x2e, 0xaf), LL(0x47, 0x47, 0x01, 0x47, 0x02, 0x46, 0x8e, 0x45), LL(0x9e, 0x9e, 0x42, 0x9e, 0x84, 0xdc, 0x21, 0x1a), LL(0xca, 0xca, 0x0f, 0xca, 0x1e, 0xc5, 0x89, 0xd4), LL(0x2d, 0x2d, 0xb4, 0x2d, 0x75, 0x99, 0x5a, 0x58), LL(0xbf, 0xbf, 0xc6, 0xbf, 0x91, 0x79, 0x63, 0x2e), LL(0x07, 0x07, 0x1c, 0x07, 0x38, 0x1b, 0x0e, 0x3f), LL(0xad, 0xad, 0x8e, 0xad, 0x01, 0x23, 0x47, 0xac), LL(0x5a, 0x5a, 0x75, 0x5a, 0xea, 0x2f, 0xb4, 0xb0), LL(0x83, 0x83, 0x36, 0x83, 0x6c, 0xb5, 0x1b, 0xef), LL(0x33, 0x33, 0xcc, 0x33, 0x85, 0xff, 0x66, 0xb6), LL(0x63, 0x63, 0x91, 0x63, 0x3f, 0xf2, 0xc6, 0x5c), LL(0x02, 0x02, 0x08, 0x02, 0x10, 0x0a, 0x04, 0x12), LL(0xaa, 0xaa, 0x92, 0xaa, 0x39, 0x38, 0x49, 0x93), LL(0x71, 0x71, 0xd9, 0x71, 0xaf, 0xa8, 0xe2, 0xde), LL(0xc8, 0xc8, 0x07, 0xc8, 0x0e, 0xcf, 0x8d, 0xc6), LL(0x19, 0x19, 0x64, 0x19, 0xc8, 0x7d, 0x32, 0xd1), LL(0x49, 0x49, 0x39, 0x49, 0x72, 0x70, 0x92, 0x3b), LL(0xd9, 0xd9, 0x43, 0xd9, 0x86, 0x9a, 0xaf, 0x5f), LL(0xf2, 0xf2, 0xef, 0xf2, 0xc3, 0x1d, 0xf9, 0x31), LL(0xe3, 0xe3, 0xab, 0xe3, 0x4b, 0x48, 0xdb, 0xa8), LL(0x5b, 0x5b, 0x71, 0x5b, 0xe2, 0x2a, 0xb6, 0xb9), LL(0x88, 0x88, 0x1a, 0x88, 0x34, 0x92, 0x0d, 0xbc), LL(0x9a, 0x9a, 0x52, 0x9a, 0xa4, 0xc8, 0x29, 0x3e), LL(0x26, 0x26, 0x98, 0x26, 0x2d, 0xbe, 0x4c, 0x0b), LL(0x32, 0x32, 0xc8, 0x32, 0x8d, 0xfa, 0x64, 0xbf), LL(0xb0, 0xb0, 0xfa, 0xb0, 0xe9, 0x4a, 0x7d, 0x59), LL(0xe9, 0xe9, 0x83, 0xe9, 0x1b, 0x6a, 0xcf, 0xf2), LL(0x0f, 0x0f, 0x3c, 0x0f, 0x78, 0x33, 0x1e, 0x77), LL(0xd5, 0xd5, 0x73, 0xd5, 0xe6, 0xa6, 0xb7, 0x33), LL(0x80, 0x80, 0x3a, 0x80, 0x74, 0xba, 0x1d, 0xf4), LL(0xbe, 0xbe, 0xc2, 0xbe, 0x99, 0x7c, 0x61, 0x27), LL(0xcd, 0xcd, 0x13, 0xcd, 0x26, 0xde, 0x87, 0xeb), LL(0x34, 0x34, 0xd0, 0x34, 0xbd, 0xe4, 0x68, 0x89), LL(0x48, 0x48, 0x3d, 0x48, 0x7a, 0x75, 0x90, 0x32), LL(0xff, 0xff, 0xdb, 0xff, 0xab, 0x24, 0xe3, 0x54), LL(0x7a, 0x7a, 0xf5, 0x7a, 0xf7, 0x8f, 0xf4, 0x8d), LL(0x90, 0x90, 0x7a, 0x90, 0xf4, 0xea, 0x3d, 0x64), LL(0x5f, 0x5f, 0x61, 0x5f, 0xc2, 0x3e, 0xbe, 0x9d), LL(0x20, 0x20, 0x80, 0x20, 0x1d, 0xa0, 0x40, 0x3d), LL(0x68, 0x68, 0xbd, 0x68, 0x67, 0xd5, 0xd0, 0x0f), LL(0x1a, 0x1a, 0x68, 0x1a, 0xd0, 0x72, 0x34, 0xca), LL(0xae, 0xae, 0x82, 0xae, 0x19, 0x2c, 0x41, 0xb7), LL(0xb4, 0xb4, 0xea, 0xb4, 0xc9, 0x5e, 0x75, 0x7d), LL(0x54, 0x54, 0x4d, 0x54, 0x9a, 0x19, 0xa8, 0xce), LL(0x93, 0x93, 0x76, 0x93, 0xec, 0xe5, 0x3b, 0x7f), LL(0x22, 0x22, 0x88, 0x22, 0x0d, 0xaa, 0x44, 0x2f), LL(0x64, 0x64, 0x8d, 0x64, 0x07, 0xe9, 0xc8, 0x63), LL(0xf1, 0xf1, 0xe3, 0xf1, 0xdb, 0x12, 0xff, 0x2a), LL(0x73, 0x73, 0xd1, 0x73, 0xbf, 0xa2, 0xe6, 0xcc), LL(0x12, 0x12, 0x48, 0x12, 0x90, 0x5a, 0x24, 0x82), LL(0x40, 0x40, 0x1d, 0x40, 0x3a, 0x5d, 0x80, 0x7a), LL(0x08, 0x08, 0x20, 0x08, 0x40, 0x28, 0x10, 0x48), LL(0xc3, 0xc3, 0x2b, 0xc3, 0x56, 0xe8, 0x9b, 0x95), LL(0xec, 0xec, 0x97, 0xec, 0x33, 0x7b, 0xc5, 0xdf), LL(0xdb, 0xdb, 0x4b, 0xdb, 0x96, 0x90, 0xab, 0x4d), LL(0xa1, 0xa1, 0xbe, 0xa1, 0x61, 0x1f, 0x5f, 0xc0), LL(0x8d, 0x8d, 0x0e, 0x8d, 0x1c, 0x83, 0x07, 0x91), LL(0x3d, 0x3d, 0xf4, 0x3d, 0xf5, 0xc9, 0x7a, 0xc8), LL(0x97, 0x97, 0x66, 0x97, 0xcc, 0xf1, 0x33, 0x5b), LL(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), LL(0xcf, 0xcf, 0x1b, 0xcf, 0x36, 0xd4, 0x83, 0xf9), LL(0x2b, 0x2b, 0xac, 0x2b, 0x45, 0x87, 0x56, 0x6e), LL(0x76, 0x76, 0xc5, 0x76, 0x97, 0xb3, 0xec, 0xe1), LL(0x82, 0x82, 0x32, 0x82, 0x64, 0xb0, 0x19, 0xe6), LL(0xd6, 0xd6, 0x7f, 0xd6, 0xfe, 0xa9, 0xb1, 0x28), LL(0x1b, 0x1b, 0x6c, 0x1b, 0xd8, 0x77, 0x36, 0xc3), LL(0xb5, 0xb5, 0xee, 0xb5, 0xc1, 0x5b, 0x77, 0x74), LL(0xaf, 0xaf, 0x86, 0xaf, 0x11, 0x29, 0x43, 0xbe), LL(0x6a, 0x6a, 0xb5, 0x6a, 0x77, 0xdf, 0xd4, 0x1d), LL(0x50, 0x50, 0x5d, 0x50, 0xba, 0x0d, 0xa0, 0xea), LL(0x45, 0x45, 0x09, 0x45, 0x12, 0x4c, 0x8a, 0x57), LL(0xf3, 0xf3, 0xeb, 0xf3, 0xcb, 0x18, 0xfb, 0x38), LL(0x30, 0x30, 0xc0, 0x30, 0x9d, 0xf0, 0x60, 0xad), LL(0xef, 0xef, 0x9b, 0xef, 0x2b, 0x74, 0xc3, 0xc4), LL(0x3f, 0x3f, 0xfc, 0x3f, 0xe5, 0xc3, 0x7e, 0xda), LL(0x55, 0x55, 0x49, 0x55, 0x92, 0x1c, 0xaa, 0xc7), LL(0xa2, 0xa2, 0xb2, 0xa2, 0x79, 0x10, 0x59, 0xdb), LL(0xea, 0xea, 0x8f, 0xea, 0x03, 0x65, 0xc9, 0xe9), LL(0x65, 0x65, 0x89, 0x65, 0x0f, 0xec, 0xca, 0x6a), LL(0xba, 0xba, 0xd2, 0xba, 0xb9, 0x68, 0x69, 0x03), LL(0x2f, 0x2f, 0xbc, 0x2f, 0x65, 0x93, 0x5e, 0x4a), LL(0xc0, 0xc0, 0x27, 0xc0, 0x4e, 0xe7, 0x9d, 0x8e), LL(0xde, 0xde, 0x5f, 0xde, 0xbe, 0x81, 0xa1, 0x60), LL(0x1c, 0x1c, 0x70, 0x1c, 0xe0, 0x6c, 0x38, 0xfc), LL(0xfd, 0xfd, 0xd3, 0xfd, 0xbb, 0x2e, 0xe7, 0x46), LL(0x4d, 0x4d, 0x29, 0x4d, 0x52, 0x64, 0x9a, 0x1f), LL(0x92, 0x92, 0x72, 0x92, 0xe4, 0xe0, 0x39, 0x76), LL(0x75, 0x75, 0xc9, 0x75, 0x8f, 0xbc, 0xea, 0xfa), LL(0x06, 0x06, 0x18, 0x06, 0x30, 0x1e, 0x0c, 0x36), LL(0x8a, 0x8a, 0x12, 0x8a, 0x24, 0x98, 0x09, 0xae), LL(0xb2, 0xb2, 0xf2, 0xb2, 0xf9, 0x40, 0x79, 0x4b), LL(0xe6, 0xe6, 0xbf, 0xe6, 0x63, 0x59, 0xd1, 0x85), LL(0x0e, 0x0e, 0x38, 0x0e, 0x70, 0x36, 0x1c, 0x7e), LL(0x1f, 0x1f, 0x7c, 0x1f, 0xf8, 0x63, 0x3e, 0xe7), LL(0x62, 0x62, 0x95, 0x62, 0x37, 0xf7, 0xc4, 0x55), LL(0xd4, 0xd4, 0x77, 0xd4, 0xee, 0xa3, 0xb5, 0x3a), LL(0xa8, 0xa8, 0x9a, 0xa8, 0x29, 0x32, 0x4d, 0x81), LL(0x96, 0x96, 0x62, 0x96, 0xc4, 0xf4, 0x31, 0x52), LL(0xf9, 0xf9, 0xc3, 0xf9, 0x9b, 0x3a, 0xef, 0x62), LL(0xc5, 0xc5, 0x33, 0xc5, 0x66, 0xf6, 0x97, 0xa3), LL(0x25, 0x25, 0x94, 0x25, 0x35, 0xb1, 0x4a, 0x10), LL(0x59, 0x59, 0x79, 0x59, 0xf2, 0x20, 0xb2, 0xab), LL(0x84, 0x84, 0x2a, 0x84, 0x54, 0xae, 0x15, 0xd0), LL(0x72, 0x72, 0xd5, 0x72, 0xb7, 0xa7, 0xe4, 0xc5), LL(0x39, 0x39, 0xe4, 0x39, 0xd5, 0xdd, 0x72, 0xec), LL(0x4c, 0x4c, 0x2d, 0x4c, 0x5a, 0x61, 0x98, 0x16), LL(0x5e, 0x5e, 0x65, 0x5e, 0xca, 0x3b, 0xbc, 0x94), LL(0x78, 0x78, 0xfd, 0x78, 0xe7, 0x85, 0xf0, 0x9f), LL(0x38, 0x38, 0xe0, 0x38, 0xdd, 0xd8, 0x70, 0xe5), LL(0x8c, 0x8c, 0x0a, 0x8c, 0x14, 0x86, 0x05, 0x98), LL(0xd1, 0xd1, 0x63, 0xd1, 0xc6, 0xb2, 0xbf, 0x17), LL(0xa5, 0xa5, 0xae, 0xa5, 0x41, 0x0b, 0x57, 0xe4), LL(0xe2, 0xe2, 0xaf, 0xe2, 0x43, 0x4d, 0xd9, 0xa1), LL(0x61, 0x61, 0x99, 0x61, 0x2f, 0xf8, 0xc2, 0x4e), LL(0xb3, 0xb3, 0xf6, 0xb3, 0xf1, 0x45, 0x7b, 0x42), LL(0x21, 0x21, 0x84, 0x21, 0x15, 0xa5, 0x42, 0x34), LL(0x9c, 0x9c, 0x4a, 0x9c, 0x94, 0xd6, 0x25, 0x08), LL(0x1e, 0x1e, 0x78, 0x1e, 0xf0, 0x66, 0x3c, 0xee), LL(0x43, 0x43, 0x11, 0x43, 0x22, 0x52, 0x86, 0x61), LL(0xc7, 0xc7, 0x3b, 0xc7, 0x76, 0xfc, 0x93, 0xb1), LL(0xfc, 0xfc, 0xd7, 0xfc, 0xb3, 0x2b, 0xe5, 0x4f), LL(0x04, 0x04, 0x10, 0x04, 0x20, 0x14, 0x08, 0x24), LL(0x51, 0x51, 0x59, 0x51, 0xb2, 0x08, 0xa2, 0xe3), LL(0x99, 0x99, 0x5e, 0x99, 0xbc, 0xc7, 0x2f, 0x25), LL(0x6d, 0x6d, 0xa9, 0x6d, 0x4f, 0xc4, 0xda, 0x22), LL(0x0d, 0x0d, 0x34, 0x0d, 0x68, 0x39, 0x1a, 0x65), LL(0xfa, 0xfa, 0xcf, 0xfa, 0x83, 0x35, 0xe9, 0x79), LL(0xdf, 0xdf, 0x5b, 0xdf, 0xb6, 0x84, 0xa3, 0x69), LL(0x7e, 0x7e, 0xe5, 0x7e, 0xd7, 0x9b, 0xfc, 0xa9), LL(0x24, 0x24, 0x90, 0x24, 0x3d, 0xb4, 0x48, 0x19), LL(0x3b, 0x3b, 0xec, 0x3b, 0xc5, 0xd7, 0x76, 0xfe), LL(0xab, 0xab, 0x96, 0xab, 0x31, 0x3d, 0x4b, 0x9a), LL(0xce, 0xce, 0x1f, 0xce, 0x3e, 0xd1, 0x81, 0xf0), LL(0x11, 0x11, 0x44, 0x11, 0x88, 0x55, 0x22, 0x99), LL(0x8f, 0x8f, 0x06, 0x8f, 0x0c, 0x89, 0x03, 0x83), LL(0x4e, 0x4e, 0x25, 0x4e, 0x4a, 0x6b, 0x9c, 0x04), LL(0xb7, 0xb7, 0xe6, 0xb7, 0xd1, 0x51, 0x73, 0x66), LL(0xeb, 0xeb, 0x8b, 0xeb, 0x0b, 0x60, 0xcb, 0xe0), LL(0x3c, 0x3c, 0xf0, 0x3c, 0xfd, 0xcc, 0x78, 0xc1), LL(0x81, 0x81, 0x3e, 0x81, 0x7c, 0xbf, 0x1f, 0xfd), LL(0x94, 0x94, 0x6a, 0x94, 0xd4, 0xfe, 0x35, 0x40), LL(0xf7, 0xf7, 0xfb, 0xf7, 0xeb, 0x0c, 0xf3, 0x1c), LL(0xb9, 0xb9, 0xde, 0xb9, 0xa1, 0x67, 0x6f, 0x18), LL(0x13, 0x13, 0x4c, 0x13, 0x98, 0x5f, 0x26, 0x8b), LL(0x2c, 0x2c, 0xb0, 0x2c, 0x7d, 0x9c, 0x58, 0x51), LL(0xd3, 0xd3, 0x6b, 0xd3, 0xd6, 0xb8, 0xbb, 0x05), LL(0xe7, 0xe7, 0xbb, 0xe7, 0x6b, 0x5c, 0xd3, 0x8c), LL(0x6e, 0x6e, 0xa5, 0x6e, 0x57, 0xcb, 0xdc, 0x39), LL(0xc4, 0xc4, 0x37, 0xc4, 0x6e, 0xf3, 0x95, 0xaa), LL(0x03, 0x03, 0x0c, 0x03, 0x18, 0x0f, 0x06, 0x1b), LL(0x56, 0x56, 0x45, 0x56, 0x8a, 0x13, 0xac, 0xdc), LL(0x44, 0x44, 0x0d, 0x44, 0x1a, 0x49, 0x88, 0x5e), LL(0x7f, 0x7f, 0xe1, 0x7f, 0xdf, 0x9e, 0xfe, 0xa0), LL(0xa9, 0xa9, 0x9e, 0xa9, 0x21, 0x37, 0x4f, 0x88), LL(0x2a, 0x2a, 0xa8, 0x2a, 0x4d, 0x82, 0x54, 0x67), LL(0xbb, 0xbb, 0xd6, 0xbb, 0xb1, 0x6d, 0x6b, 0x0a), LL(0xc1, 0xc1, 0x23, 0xc1, 0x46, 0xe2, 0x9f, 0x87), LL(0x53, 0x53, 0x51, 0x53, 0xa2, 0x02, 0xa6, 0xf1), LL(0xdc, 0xdc, 0x57, 0xdc, 0xae, 0x8b, 0xa5, 0x72), LL(0x0b, 0x0b, 0x2c, 0x0b, 0x58, 0x27, 0x16, 0x53), LL(0x9d, 0x9d, 0x4e, 0x9d, 0x9c, 0xd3, 0x27, 0x01), LL(0x6c, 0x6c, 0xad, 0x6c, 0x47, 0xc1, 0xd8, 0x2b), LL(0x31, 0x31, 0xc4, 0x31, 0x95, 0xf5, 0x62, 0xa4), LL(0x74, 0x74, 0xcd, 0x74, 0x87, 0xb9, 0xe8, 0xf3), LL(0xf6, 0xf6, 0xff, 0xf6, 0xe3, 0x09, 0xf1, 0x15), LL(0x46, 0x46, 0x05, 0x46, 0x0a, 0x43, 0x8c, 0x4c), LL(0xac, 0xac, 0x8a, 0xac, 0x09, 0x26, 0x45, 0xa5), LL(0x89, 0x89, 0x1e, 0x89, 0x3c, 0x97, 0x0f, 0xb5), LL(0x14, 0x14, 0x50, 0x14, 0xa0, 0x44, 0x28, 0xb4), LL(0xe1, 0xe1, 0xa3, 0xe1, 0x5b, 0x42, 0xdf, 0xba), LL(0x16, 0x16, 0x58, 0x16, 0xb0, 0x4e, 0x2c, 0xa6), LL(0x3a, 0x3a, 0xe8, 0x3a, 0xcd, 0xd2, 0x74, 0xf7), LL(0x69, 0x69, 0xb9, 0x69, 0x6f, 0xd0, 0xd2, 0x06), LL(0x09, 0x09, 0x24, 0x09, 0x48, 0x2d, 0x12, 0x41), LL(0x70, 0x70, 0xdd, 0x70, 0xa7, 0xad, 0xe0, 0xd7), LL(0xb6, 0xb6, 0xe2, 0xb6, 0xd9, 0x54, 0x71, 0x6f), LL(0xd0, 0xd0, 0x67, 0xd0, 0xce, 0xb7, 0xbd, 0x1e), LL(0xed, 0xed, 0x93, 0xed, 0x3b, 0x7e, 0xc7, 0xd6), LL(0xcc, 0xcc, 0x17, 0xcc, 0x2e, 0xdb, 0x85, 0xe2), LL(0x42, 0x42, 0x15, 0x42, 0x2a, 0x57, 0x84, 0x68), LL(0x98, 0x98, 0x5a, 0x98, 0xb4, 0xc2, 0x2d, 0x2c), LL(0xa4, 0xa4, 0xaa, 0xa4, 0x49, 0x0e, 0x55, 0xed), LL(0x28, 0x28, 0xa0, 0x28, 0x5d, 0x88, 0x50, 0x75), LL(0x5c, 0x5c, 0x6d, 0x5c, 0xda, 0x31, 0xb8, 0x86), LL(0xf8, 0xf8, 0xc7, 0xf8, 0x93, 0x3f, 0xed, 0x6b), LL(0x86, 0x86, 0x22, 0x86, 0x44, 0xa4, 0x11, 0xc2), #define RC (&(Cx.q[256*N])) 0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f, /* rc[ROUNDS] */ 0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b, 0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b, 0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58, 0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4, 0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95, 0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d, 0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33 } }; void whirlpool_block(WHIRLPOOL_CTX *ctx, const void *inp, size_t n) { int r; const u8 *p = inp; union { u64 q[8]; u8 c[64]; } S, K, *H = (void *)ctx->H.q; #ifdef GO_FOR_MMX GO_FOR_MMX(ctx, inp, n); #endif do { #ifdef OPENSSL_SMALL_FOOTPRINT u64 L[8]; int i; for (i = 0; i < 64; i++) S.c[i] = (K.c[i] = H->c[i]) ^ p[i]; for (r = 0; r < ROUNDS; r++) { for (i = 0; i < 8; i++) { L[i] = i ? 0 : RC[r]; L[i] ^= C0(K, i) ^ C1(K, (i - 1) & 7) ^ C2(K, (i - 2) & 7) ^ C3(K, (i - 3) & 7) ^ C4(K, (i - 4) & 7) ^ C5(K, (i - 5) & 7) ^ C6(K, (i - 6) & 7) ^ C7(K, (i - 7) & 7); } memcpy(K.q, L, 64); for (i = 0; i < 8; i++) { L[i] ^= C0(S, i) ^ C1(S, (i - 1) & 7) ^ C2(S, (i - 2) & 7) ^ C3(S, (i - 3) & 7) ^ C4(S, (i - 4) & 7) ^ C5(S, (i - 5) & 7) ^ C6(S, (i - 6) & 7) ^ C7(S, (i - 7) & 7); } memcpy(S.q, L, 64); } for (i = 0; i < 64; i++) H->c[i] ^= S.c[i] ^ p[i]; #else u64 L0, L1, L2, L3, L4, L5, L6, L7; # ifdef STRICT_ALIGNMENT if ((size_t)p & 7) { memcpy(S.c, p, 64); S.q[0] ^= (K.q[0] = H->q[0]); S.q[1] ^= (K.q[1] = H->q[1]); S.q[2] ^= (K.q[2] = H->q[2]); S.q[3] ^= (K.q[3] = H->q[3]); S.q[4] ^= (K.q[4] = H->q[4]); S.q[5] ^= (K.q[5] = H->q[5]); S.q[6] ^= (K.q[6] = H->q[6]); S.q[7] ^= (K.q[7] = H->q[7]); } else # endif { const u64 *pa = (const u64 *)p; S.q[0] = (K.q[0] = H->q[0]) ^ pa[0]; S.q[1] = (K.q[1] = H->q[1]) ^ pa[1]; S.q[2] = (K.q[2] = H->q[2]) ^ pa[2]; S.q[3] = (K.q[3] = H->q[3]) ^ pa[3]; S.q[4] = (K.q[4] = H->q[4]) ^ pa[4]; S.q[5] = (K.q[5] = H->q[5]) ^ pa[5]; S.q[6] = (K.q[6] = H->q[6]) ^ pa[6]; S.q[7] = (K.q[7] = H->q[7]) ^ pa[7]; } for (r = 0; r < ROUNDS; r++) { # ifdef SMALL_REGISTER_BANK L0 = C0(K, 0) ^ C1(K, 7) ^ C2(K, 6) ^ C3(K, 5) ^ C4(K, 4) ^ C5(K, 3) ^ C6(K, 2) ^ C7(K, 1) ^ RC[r]; L1 = C0(K, 1) ^ C1(K, 0) ^ C2(K, 7) ^ C3(K, 6) ^ C4(K, 5) ^ C5(K, 4) ^ C6(K, 3) ^ C7(K, 2); L2 = C0(K, 2) ^ C1(K, 1) ^ C2(K, 0) ^ C3(K, 7) ^ C4(K, 6) ^ C5(K, 5) ^ C6(K, 4) ^ C7(K, 3); L3 = C0(K, 3) ^ C1(K, 2) ^ C2(K, 1) ^ C3(K, 0) ^ C4(K, 7) ^ C5(K, 6) ^ C6(K, 5) ^ C7(K, 4); L4 = C0(K, 4) ^ C1(K, 3) ^ C2(K, 2) ^ C3(K, 1) ^ C4(K, 0) ^ C5(K, 7) ^ C6(K, 6) ^ C7(K, 5); L5 = C0(K, 5) ^ C1(K, 4) ^ C2(K, 3) ^ C3(K, 2) ^ C4(K, 1) ^ C5(K, 0) ^ C6(K, 7) ^ C7(K, 6); L6 = C0(K, 6) ^ C1(K, 5) ^ C2(K, 4) ^ C3(K, 3) ^ C4(K, 2) ^ C5(K, 1) ^ C6(K, 0) ^ C7(K, 7); L7 = C0(K, 7) ^ C1(K, 6) ^ C2(K, 5) ^ C3(K, 4) ^ C4(K, 3) ^ C5(K, 2) ^ C6(K, 1) ^ C7(K, 0); K.q[0] = L0; K.q[1] = L1; K.q[2] = L2; K.q[3] = L3; K.q[4] = L4; K.q[5] = L5; K.q[6] = L6; K.q[7] = L7; L0 ^= C0(S, 0) ^ C1(S, 7) ^ C2(S, 6) ^ C3(S, 5) ^ C4(S, 4) ^ C5(S, 3) ^ C6(S, 2) ^ C7(S, 1); L1 ^= C0(S, 1) ^ C1(S, 0) ^ C2(S, 7) ^ C3(S, 6) ^ C4(S, 5) ^ C5(S, 4) ^ C6(S, 3) ^ C7(S, 2); L2 ^= C0(S, 2) ^ C1(S, 1) ^ C2(S, 0) ^ C3(S, 7) ^ C4(S, 6) ^ C5(S, 5) ^ C6(S, 4) ^ C7(S, 3); L3 ^= C0(S, 3) ^ C1(S, 2) ^ C2(S, 1) ^ C3(S, 0) ^ C4(S, 7) ^ C5(S, 6) ^ C6(S, 5) ^ C7(S, 4); L4 ^= C0(S, 4) ^ C1(S, 3) ^ C2(S, 2) ^ C3(S, 1) ^ C4(S, 0) ^ C5(S, 7) ^ C6(S, 6) ^ C7(S, 5); L5 ^= C0(S, 5) ^ C1(S, 4) ^ C2(S, 3) ^ C3(S, 2) ^ C4(S, 1) ^ C5(S, 0) ^ C6(S, 7) ^ C7(S, 6); L6 ^= C0(S, 6) ^ C1(S, 5) ^ C2(S, 4) ^ C3(S, 3) ^ C4(S, 2) ^ C5(S, 1) ^ C6(S, 0) ^ C7(S, 7); L7 ^= C0(S, 7) ^ C1(S, 6) ^ C2(S, 5) ^ C3(S, 4) ^ C4(S, 3) ^ C5(S, 2) ^ C6(S, 1) ^ C7(S, 0); S.q[0] = L0; S.q[1] = L1; S.q[2] = L2; S.q[3] = L3; S.q[4] = L4; S.q[5] = L5; S.q[6] = L6; S.q[7] = L7; # else L0 = C0(K, 0); L1 = C1(K, 0); L2 = C2(K, 0); L3 = C3(K, 0); L4 = C4(K, 0); L5 = C5(K, 0); L6 = C6(K, 0); L7 = C7(K, 0); L0 ^= RC[r]; L1 ^= C0(K, 1); L2 ^= C1(K, 1); L3 ^= C2(K, 1); L4 ^= C3(K, 1); L5 ^= C4(K, 1); L6 ^= C5(K, 1); L7 ^= C6(K, 1); L0 ^= C7(K, 1); L2 ^= C0(K, 2); L3 ^= C1(K, 2); L4 ^= C2(K, 2); L5 ^= C3(K, 2); L6 ^= C4(K, 2); L7 ^= C5(K, 2); L0 ^= C6(K, 2); L1 ^= C7(K, 2); L3 ^= C0(K, 3); L4 ^= C1(K, 3); L5 ^= C2(K, 3); L6 ^= C3(K, 3); L7 ^= C4(K, 3); L0 ^= C5(K, 3); L1 ^= C6(K, 3); L2 ^= C7(K, 3); L4 ^= C0(K, 4); L5 ^= C1(K, 4); L6 ^= C2(K, 4); L7 ^= C3(K, 4); L0 ^= C4(K, 4); L1 ^= C5(K, 4); L2 ^= C6(K, 4); L3 ^= C7(K, 4); L5 ^= C0(K, 5); L6 ^= C1(K, 5); L7 ^= C2(K, 5); L0 ^= C3(K, 5); L1 ^= C4(K, 5); L2 ^= C5(K, 5); L3 ^= C6(K, 5); L4 ^= C7(K, 5); L6 ^= C0(K, 6); L7 ^= C1(K, 6); L0 ^= C2(K, 6); L1 ^= C3(K, 6); L2 ^= C4(K, 6); L3 ^= C5(K, 6); L4 ^= C6(K, 6); L5 ^= C7(K, 6); L7 ^= C0(K, 7); L0 ^= C1(K, 7); L1 ^= C2(K, 7); L2 ^= C3(K, 7); L3 ^= C4(K, 7); L4 ^= C5(K, 7); L5 ^= C6(K, 7); L6 ^= C7(K, 7); K.q[0] = L0; K.q[1] = L1; K.q[2] = L2; K.q[3] = L3; K.q[4] = L4; K.q[5] = L5; K.q[6] = L6; K.q[7] = L7; L0 ^= C0(S, 0); L1 ^= C1(S, 0); L2 ^= C2(S, 0); L3 ^= C3(S, 0); L4 ^= C4(S, 0); L5 ^= C5(S, 0); L6 ^= C6(S, 0); L7 ^= C7(S, 0); L1 ^= C0(S, 1); L2 ^= C1(S, 1); L3 ^= C2(S, 1); L4 ^= C3(S, 1); L5 ^= C4(S, 1); L6 ^= C5(S, 1); L7 ^= C6(S, 1); L0 ^= C7(S, 1); L2 ^= C0(S, 2); L3 ^= C1(S, 2); L4 ^= C2(S, 2); L5 ^= C3(S, 2); L6 ^= C4(S, 2); L7 ^= C5(S, 2); L0 ^= C6(S, 2); L1 ^= C7(S, 2); L3 ^= C0(S, 3); L4 ^= C1(S, 3); L5 ^= C2(S, 3); L6 ^= C3(S, 3); L7 ^= C4(S, 3); L0 ^= C5(S, 3); L1 ^= C6(S, 3); L2 ^= C7(S, 3); L4 ^= C0(S, 4); L5 ^= C1(S, 4); L6 ^= C2(S, 4); L7 ^= C3(S, 4); L0 ^= C4(S, 4); L1 ^= C5(S, 4); L2 ^= C6(S, 4); L3 ^= C7(S, 4); L5 ^= C0(S, 5); L6 ^= C1(S, 5); L7 ^= C2(S, 5); L0 ^= C3(S, 5); L1 ^= C4(S, 5); L2 ^= C5(S, 5); L3 ^= C6(S, 5); L4 ^= C7(S, 5); L6 ^= C0(S, 6); L7 ^= C1(S, 6); L0 ^= C2(S, 6); L1 ^= C3(S, 6); L2 ^= C4(S, 6); L3 ^= C5(S, 6); L4 ^= C6(S, 6); L5 ^= C7(S, 6); L7 ^= C0(S, 7); L0 ^= C1(S, 7); L1 ^= C2(S, 7); L2 ^= C3(S, 7); L3 ^= C4(S, 7); L4 ^= C5(S, 7); L5 ^= C6(S, 7); L6 ^= C7(S, 7); S.q[0] = L0; S.q[1] = L1; S.q[2] = L2; S.q[3] = L3; S.q[4] = L4; S.q[5] = L5; S.q[6] = L6; S.q[7] = L7; # endif } # ifdef STRICT_ALIGNMENT if ((size_t)p & 7) { int i; for (i = 0; i < 64; i++) H->c[i] ^= S.c[i] ^ p[i]; } else # endif { const u64 *pa = (const u64 *)p; H->q[0] ^= S.q[0] ^ pa[0]; H->q[1] ^= S.q[1] ^ pa[1]; H->q[2] ^= S.q[2] ^ pa[2]; H->q[3] ^= S.q[3] ^ pa[3]; H->q[4] ^= S.q[4] ^ pa[4]; H->q[5] ^= S.q[5] ^ pa[5]; H->q[6] ^= S.q[6] ^ pa[6]; H->q[7] ^= S.q[7] ^ pa[7]; } #endif p += 64; } while (--n); } openssl-1.1.1f/crypto/whrlpool/wp_dgst.c000066400000000000000000000207651364063235100203610ustar00rootroot00000000000000/* * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /** * The Whirlpool hashing function. * * See * P.S.L.M. Barreto, V. Rijmen, * ``The Whirlpool hashing function,'' * NESSIE submission, 2000 (tweaked version, 2001), * * * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and * Vincent Rijmen. Lookup "reference implementations" on * * * ============================================================================= * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * OpenSSL-specific implementation notes. * * WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect * number of *bytes* as input length argument. Bit-oriented routine * as specified by authors is called WHIRLPOOL_BitUpdate[!] and * does not have one-stroke counterpart. * * WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially * to serve WHIRLPOOL_Update. This is done for performance. * * Unlike authors' reference implementation, block processing * routine whirlpool_block is designed to operate on multi-block * input. This is done for performance. */ #include #include "wp_local.h" #include int WHIRLPOOL_Init(WHIRLPOOL_CTX *c) { memset(c, 0, sizeof(*c)); return 1; } int WHIRLPOOL_Update(WHIRLPOOL_CTX *c, const void *_inp, size_t bytes) { /* * Well, largest suitable chunk size actually is * (1<<(sizeof(size_t)*8-3))-64, but below number is large enough for not * to care about excessive calls to WHIRLPOOL_BitUpdate... */ size_t chunk = ((size_t)1) << (sizeof(size_t) * 8 - 4); const unsigned char *inp = _inp; while (bytes >= chunk) { WHIRLPOOL_BitUpdate(c, inp, chunk * 8); bytes -= chunk; inp += chunk; } if (bytes) WHIRLPOOL_BitUpdate(c, inp, bytes * 8); return 1; } void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c, const void *_inp, size_t bits) { size_t n; unsigned int bitoff = c->bitoff, bitrem = bitoff % 8, inpgap = (8 - (unsigned int)bits % 8) & 7; const unsigned char *inp = _inp; /* * This 256-bit increment procedure relies on the size_t being natural * size of CPU register, so that we don't have to mask the value in order * to detect overflows. */ c->bitlen[0] += bits; if (c->bitlen[0] < bits) { /* overflow */ n = 1; do { c->bitlen[n]++; } while (c->bitlen[n] == 0 && ++n < (WHIRLPOOL_COUNTER / sizeof(size_t))); } #ifndef OPENSSL_SMALL_FOOTPRINT reconsider: if (inpgap == 0 && bitrem == 0) { /* byte-oriented loop */ while (bits) { if (bitoff == 0 && (n = bits / WHIRLPOOL_BBLOCK)) { whirlpool_block(c, inp, n); inp += n * WHIRLPOOL_BBLOCK / 8; bits %= WHIRLPOOL_BBLOCK; } else { unsigned int byteoff = bitoff / 8; bitrem = WHIRLPOOL_BBLOCK - bitoff; /* re-use bitrem */ if (bits >= bitrem) { bits -= bitrem; bitrem /= 8; memcpy(c->data + byteoff, inp, bitrem); inp += bitrem; whirlpool_block(c, c->data, 1); bitoff = 0; } else { memcpy(c->data + byteoff, inp, bits / 8); bitoff += (unsigned int)bits; bits = 0; } c->bitoff = bitoff; } } } else /* bit-oriented loop */ #endif { /*- inp | +-------+-------+------- ||||||||||||||||||||| +-------+-------+------- +-------+-------+-------+-------+------- |||||||||||||| c->data +-------+-------+-------+-------+------- | c->bitoff/8 */ while (bits) { unsigned int byteoff = bitoff / 8; unsigned char b; #ifndef OPENSSL_SMALL_FOOTPRINT if (bitrem == inpgap) { c->data[byteoff++] |= inp[0] & (0xff >> inpgap); inpgap = 8 - inpgap; bitoff += inpgap; bitrem = 0; /* bitoff%8 */ bits -= inpgap; inpgap = 0; /* bits%8 */ inp++; if (bitoff == WHIRLPOOL_BBLOCK) { whirlpool_block(c, c->data, 1); bitoff = 0; } c->bitoff = bitoff; goto reconsider; } else #endif if (bits > 8) { b = ((inp[0] << inpgap) | (inp[1] >> (8 - inpgap))); b &= 0xff; if (bitrem) c->data[byteoff++] |= b >> bitrem; else c->data[byteoff++] = b; bitoff += 8; bits -= 8; inp++; if (bitoff >= WHIRLPOOL_BBLOCK) { whirlpool_block(c, c->data, 1); byteoff = 0; bitoff %= WHIRLPOOL_BBLOCK; } if (bitrem) c->data[byteoff] = b << (8 - bitrem); } else { /* remaining less than or equal to 8 bits */ b = (inp[0] << inpgap) & 0xff; if (bitrem) c->data[byteoff++] |= b >> bitrem; else c->data[byteoff++] = b; bitoff += (unsigned int)bits; if (bitoff == WHIRLPOOL_BBLOCK) { whirlpool_block(c, c->data, 1); byteoff = 0; bitoff %= WHIRLPOOL_BBLOCK; } if (bitrem) c->data[byteoff] = b << (8 - bitrem); bits = 0; } c->bitoff = bitoff; } } } int WHIRLPOOL_Final(unsigned char *md, WHIRLPOOL_CTX *c) { unsigned int bitoff = c->bitoff, byteoff = bitoff / 8; size_t i, j, v; unsigned char *p; bitoff %= 8; if (bitoff) c->data[byteoff] |= 0x80 >> bitoff; else c->data[byteoff] = 0x80; byteoff++; /* pad with zeros */ if (byteoff > (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) { if (byteoff < WHIRLPOOL_BBLOCK / 8) memset(&c->data[byteoff], 0, WHIRLPOOL_BBLOCK / 8 - byteoff); whirlpool_block(c, c->data, 1); byteoff = 0; } if (byteoff < (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) memset(&c->data[byteoff], 0, (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER) - byteoff); /* smash 256-bit c->bitlen in big-endian order */ p = &c->data[WHIRLPOOL_BBLOCK / 8 - 1]; /* last byte in c->data */ for (i = 0; i < WHIRLPOOL_COUNTER / sizeof(size_t); i++) for (v = c->bitlen[i], j = 0; j < sizeof(size_t); j++, v >>= 8) *p-- = (unsigned char)(v & 0xff); whirlpool_block(c, c->data, 1); if (md) { memcpy(md, c->H.c, WHIRLPOOL_DIGEST_LENGTH); OPENSSL_cleanse(c, sizeof(*c)); return 1; } return 0; } unsigned char *WHIRLPOOL(const void *inp, size_t bytes, unsigned char *md) { WHIRLPOOL_CTX ctx; static unsigned char m[WHIRLPOOL_DIGEST_LENGTH]; if (md == NULL) md = m; WHIRLPOOL_Init(&ctx); WHIRLPOOL_Update(&ctx, inp, bytes); WHIRLPOOL_Final(md, &ctx); return md; } openssl-1.1.1f/crypto/whrlpool/wp_local.h000066400000000000000000000006521364063235100205100ustar00rootroot00000000000000/* * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include void whirlpool_block(WHIRLPOOL_CTX *, const void *, size_t); openssl-1.1.1f/crypto/x509/000077500000000000000000000000001364063235100153735ustar00rootroot00000000000000openssl-1.1.1f/crypto/x509/build.info000066400000000000000000000007551364063235100173560ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ x509_def.c x509_d2.c x509_r2x.c x509_cmp.c \ x509_obj.c x509_req.c x509spki.c x509_vfy.c \ x509_set.c x509cset.c x509rset.c x509_err.c \ x509name.c x509_v3.c x509_ext.c x509_att.c \ x509type.c x509_meth.c x509_lu.c x_all.c x509_txt.c \ x509_trs.c by_file.c by_dir.c x509_vpm.c \ x_crl.c t_crl.c x_req.c t_req.c x_x509.c t_x509.c \ x_pubkey.c x_x509a.c x_attrib.c x_exten.c x_name.c openssl-1.1.1f/crypto/x509/by_dir.c000066400000000000000000000262111364063235100170110ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "internal/cryptlib.h" #include #include #include #include #ifndef OPENSSL_NO_POSIX_IO # include #endif #include #include "crypto/x509.h" #include "x509_local.h" struct lookup_dir_hashes_st { unsigned long hash; int suffix; }; struct lookup_dir_entry_st { char *dir; int dir_type; STACK_OF(BY_DIR_HASH) *hashes; }; typedef struct lookup_dir_st { BUF_MEM *buffer; STACK_OF(BY_DIR_ENTRY) *dirs; CRYPTO_RWLOCK *lock; } BY_DIR; static int dir_ctrl(X509_LOOKUP *ctx, int cmd, const char *argp, long argl, char **ret); static int new_dir(X509_LOOKUP *lu); static void free_dir(X509_LOOKUP *lu); static int add_cert_dir(BY_DIR *ctx, const char *dir, int type); static int get_cert_by_subject(X509_LOOKUP *xl, X509_LOOKUP_TYPE type, X509_NAME *name, X509_OBJECT *ret); static X509_LOOKUP_METHOD x509_dir_lookup = { "Load certs from files in a directory", new_dir, /* new_item */ free_dir, /* free */ NULL, /* init */ NULL, /* shutdown */ dir_ctrl, /* ctrl */ get_cert_by_subject, /* get_by_subject */ NULL, /* get_by_issuer_serial */ NULL, /* get_by_fingerprint */ NULL, /* get_by_alias */ }; X509_LOOKUP_METHOD *X509_LOOKUP_hash_dir(void) { return &x509_dir_lookup; } static int dir_ctrl(X509_LOOKUP *ctx, int cmd, const char *argp, long argl, char **retp) { int ret = 0; BY_DIR *ld = (BY_DIR *)ctx->method_data; switch (cmd) { case X509_L_ADD_DIR: if (argl == X509_FILETYPE_DEFAULT) { const char *dir = ossl_safe_getenv(X509_get_default_cert_dir_env()); if (dir) ret = add_cert_dir(ld, dir, X509_FILETYPE_PEM); else ret = add_cert_dir(ld, X509_get_default_cert_dir(), X509_FILETYPE_PEM); if (!ret) { X509err(X509_F_DIR_CTRL, X509_R_LOADING_CERT_DIR); } } else ret = add_cert_dir(ld, argp, (int)argl); break; } return ret; } static int new_dir(X509_LOOKUP *lu) { BY_DIR *a = OPENSSL_malloc(sizeof(*a)); if (a == NULL) { X509err(X509_F_NEW_DIR, ERR_R_MALLOC_FAILURE); return 0; } if ((a->buffer = BUF_MEM_new()) == NULL) { X509err(X509_F_NEW_DIR, ERR_R_MALLOC_FAILURE); goto err; } a->dirs = NULL; a->lock = CRYPTO_THREAD_lock_new(); if (a->lock == NULL) { BUF_MEM_free(a->buffer); X509err(X509_F_NEW_DIR, ERR_R_MALLOC_FAILURE); goto err; } lu->method_data = a; return 1; err: OPENSSL_free(a); return 0; } static void by_dir_hash_free(BY_DIR_HASH *hash) { OPENSSL_free(hash); } static int by_dir_hash_cmp(const BY_DIR_HASH *const *a, const BY_DIR_HASH *const *b) { if ((*a)->hash > (*b)->hash) return 1; if ((*a)->hash < (*b)->hash) return -1; return 0; } static void by_dir_entry_free(BY_DIR_ENTRY *ent) { OPENSSL_free(ent->dir); sk_BY_DIR_HASH_pop_free(ent->hashes, by_dir_hash_free); OPENSSL_free(ent); } static void free_dir(X509_LOOKUP *lu) { BY_DIR *a = (BY_DIR *)lu->method_data; sk_BY_DIR_ENTRY_pop_free(a->dirs, by_dir_entry_free); BUF_MEM_free(a->buffer); CRYPTO_THREAD_lock_free(a->lock); OPENSSL_free(a); } static int add_cert_dir(BY_DIR *ctx, const char *dir, int type) { int j; size_t len; const char *s, *ss, *p; if (dir == NULL || !*dir) { X509err(X509_F_ADD_CERT_DIR, X509_R_INVALID_DIRECTORY); return 0; } s = dir; p = s; do { if ((*p == LIST_SEPARATOR_CHAR) || (*p == '\0')) { BY_DIR_ENTRY *ent; ss = s; s = p + 1; len = p - ss; if (len == 0) continue; for (j = 0; j < sk_BY_DIR_ENTRY_num(ctx->dirs); j++) { ent = sk_BY_DIR_ENTRY_value(ctx->dirs, j); if (strlen(ent->dir) == len && strncmp(ent->dir, ss, len) == 0) break; } if (j < sk_BY_DIR_ENTRY_num(ctx->dirs)) continue; if (ctx->dirs == NULL) { ctx->dirs = sk_BY_DIR_ENTRY_new_null(); if (!ctx->dirs) { X509err(X509_F_ADD_CERT_DIR, ERR_R_MALLOC_FAILURE); return 0; } } ent = OPENSSL_malloc(sizeof(*ent)); if (ent == NULL) { X509err(X509_F_ADD_CERT_DIR, ERR_R_MALLOC_FAILURE); return 0; } ent->dir_type = type; ent->hashes = sk_BY_DIR_HASH_new(by_dir_hash_cmp); ent->dir = OPENSSL_strndup(ss, len); if (ent->dir == NULL || ent->hashes == NULL) { by_dir_entry_free(ent); return 0; } if (!sk_BY_DIR_ENTRY_push(ctx->dirs, ent)) { by_dir_entry_free(ent); X509err(X509_F_ADD_CERT_DIR, ERR_R_MALLOC_FAILURE); return 0; } } } while (*p++ != '\0'); return 1; } static int get_cert_by_subject(X509_LOOKUP *xl, X509_LOOKUP_TYPE type, X509_NAME *name, X509_OBJECT *ret) { BY_DIR *ctx; union { X509 st_x509; X509_CRL crl; } data; int ok = 0; int i, j, k; unsigned long h; BUF_MEM *b = NULL; X509_OBJECT stmp, *tmp; const char *postfix = ""; if (name == NULL) return 0; stmp.type = type; if (type == X509_LU_X509) { data.st_x509.cert_info.subject = name; stmp.data.x509 = &data.st_x509; postfix = ""; } else if (type == X509_LU_CRL) { data.crl.crl.issuer = name; stmp.data.crl = &data.crl; postfix = "r"; } else { X509err(X509_F_GET_CERT_BY_SUBJECT, X509_R_WRONG_LOOKUP_TYPE); goto finish; } if ((b = BUF_MEM_new()) == NULL) { X509err(X509_F_GET_CERT_BY_SUBJECT, ERR_R_BUF_LIB); goto finish; } ctx = (BY_DIR *)xl->method_data; h = X509_NAME_hash(name); for (i = 0; i < sk_BY_DIR_ENTRY_num(ctx->dirs); i++) { BY_DIR_ENTRY *ent; int idx; BY_DIR_HASH htmp, *hent; ent = sk_BY_DIR_ENTRY_value(ctx->dirs, i); j = strlen(ent->dir) + 1 + 8 + 6 + 1 + 1; if (!BUF_MEM_grow(b, j)) { X509err(X509_F_GET_CERT_BY_SUBJECT, ERR_R_MALLOC_FAILURE); goto finish; } if (type == X509_LU_CRL && ent->hashes) { htmp.hash = h; CRYPTO_THREAD_read_lock(ctx->lock); idx = sk_BY_DIR_HASH_find(ent->hashes, &htmp); if (idx >= 0) { hent = sk_BY_DIR_HASH_value(ent->hashes, idx); k = hent->suffix; } else { hent = NULL; k = 0; } CRYPTO_THREAD_unlock(ctx->lock); } else { k = 0; hent = NULL; } for (;;) { char c = '/'; #ifdef OPENSSL_SYS_VMS c = ent->dir[strlen(ent->dir) - 1]; if (c != ':' && c != '>' && c != ']') { /* * If no separator is present, we assume the directory * specifier is a logical name, and add a colon. We really * should use better VMS routines for merging things like * this, but this will do for now... -- Richard Levitte */ c = ':'; } else { c = '\0'; } #endif if (c == '\0') { /* * This is special. When c == '\0', no directory separator * should be added. */ BIO_snprintf(b->data, b->max, "%s%08lx.%s%d", ent->dir, h, postfix, k); } else { BIO_snprintf(b->data, b->max, "%s%c%08lx.%s%d", ent->dir, c, h, postfix, k); } #ifndef OPENSSL_NO_POSIX_IO # ifdef _WIN32 # define stat _stat # endif { struct stat st; if (stat(b->data, &st) < 0) break; } #endif /* found one. */ if (type == X509_LU_X509) { if ((X509_load_cert_file(xl, b->data, ent->dir_type)) == 0) break; } else if (type == X509_LU_CRL) { if ((X509_load_crl_file(xl, b->data, ent->dir_type)) == 0) break; } /* else case will caught higher up */ k++; } /* * we have added it to the cache so now pull it out again */ X509_STORE_lock(xl->store_ctx); j = sk_X509_OBJECT_find(xl->store_ctx->objs, &stmp); tmp = sk_X509_OBJECT_value(xl->store_ctx->objs, j); X509_STORE_unlock(xl->store_ctx); /* If a CRL, update the last file suffix added for this */ if (type == X509_LU_CRL) { CRYPTO_THREAD_write_lock(ctx->lock); /* * Look for entry again in case another thread added an entry * first. */ if (hent == NULL) { htmp.hash = h; idx = sk_BY_DIR_HASH_find(ent->hashes, &htmp); hent = sk_BY_DIR_HASH_value(ent->hashes, idx); } if (hent == NULL) { hent = OPENSSL_malloc(sizeof(*hent)); if (hent == NULL) { CRYPTO_THREAD_unlock(ctx->lock); X509err(X509_F_GET_CERT_BY_SUBJECT, ERR_R_MALLOC_FAILURE); ok = 0; goto finish; } hent->hash = h; hent->suffix = k; if (!sk_BY_DIR_HASH_push(ent->hashes, hent)) { CRYPTO_THREAD_unlock(ctx->lock); OPENSSL_free(hent); X509err(X509_F_GET_CERT_BY_SUBJECT, ERR_R_MALLOC_FAILURE); ok = 0; goto finish; } } else if (hent->suffix < k) { hent->suffix = k; } CRYPTO_THREAD_unlock(ctx->lock); } if (tmp != NULL) { ok = 1; ret->type = tmp->type; memcpy(&ret->data, &tmp->data, sizeof(ret->data)); /* * Clear any errors that might have been raised processing empty * or malformed files. */ ERR_clear_error(); goto finish; } } finish: BUF_MEM_free(b); return ok; } openssl-1.1.1f/crypto/x509/by_file.c000066400000000000000000000150101364063235100171450ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include "x509_local.h" static int by_file_ctrl(X509_LOOKUP *ctx, int cmd, const char *argc, long argl, char **ret); static X509_LOOKUP_METHOD x509_file_lookup = { "Load file into cache", NULL, /* new_item */ NULL, /* free */ NULL, /* init */ NULL, /* shutdown */ by_file_ctrl, /* ctrl */ NULL, /* get_by_subject */ NULL, /* get_by_issuer_serial */ NULL, /* get_by_fingerprint */ NULL, /* get_by_alias */ }; X509_LOOKUP_METHOD *X509_LOOKUP_file(void) { return &x509_file_lookup; } static int by_file_ctrl(X509_LOOKUP *ctx, int cmd, const char *argp, long argl, char **ret) { int ok = 0; const char *file; switch (cmd) { case X509_L_FILE_LOAD: if (argl == X509_FILETYPE_DEFAULT) { file = ossl_safe_getenv(X509_get_default_cert_file_env()); if (file) ok = (X509_load_cert_crl_file(ctx, file, X509_FILETYPE_PEM) != 0); else ok = (X509_load_cert_crl_file (ctx, X509_get_default_cert_file(), X509_FILETYPE_PEM) != 0); if (!ok) { X509err(X509_F_BY_FILE_CTRL, X509_R_LOADING_DEFAULTS); } } else { if (argl == X509_FILETYPE_PEM) ok = (X509_load_cert_crl_file(ctx, argp, X509_FILETYPE_PEM) != 0); else ok = (X509_load_cert_file(ctx, argp, (int)argl) != 0); } break; } return ok; } int X509_load_cert_file(X509_LOOKUP *ctx, const char *file, int type) { int ret = 0; BIO *in = NULL; int i, count = 0; X509 *x = NULL; in = BIO_new(BIO_s_file()); if ((in == NULL) || (BIO_read_filename(in, file) <= 0)) { X509err(X509_F_X509_LOAD_CERT_FILE, ERR_R_SYS_LIB); goto err; } if (type == X509_FILETYPE_PEM) { for (;;) { x = PEM_read_bio_X509_AUX(in, NULL, NULL, ""); if (x == NULL) { if ((ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) && (count > 0)) { ERR_clear_error(); break; } else { X509err(X509_F_X509_LOAD_CERT_FILE, ERR_R_PEM_LIB); goto err; } } i = X509_STORE_add_cert(ctx->store_ctx, x); if (!i) goto err; count++; X509_free(x); x = NULL; } ret = count; } else if (type == X509_FILETYPE_ASN1) { x = d2i_X509_bio(in, NULL); if (x == NULL) { X509err(X509_F_X509_LOAD_CERT_FILE, ERR_R_ASN1_LIB); goto err; } i = X509_STORE_add_cert(ctx->store_ctx, x); if (!i) goto err; ret = i; } else { X509err(X509_F_X509_LOAD_CERT_FILE, X509_R_BAD_X509_FILETYPE); goto err; } if (ret == 0) X509err(X509_F_X509_LOAD_CERT_FILE, X509_R_NO_CERTIFICATE_FOUND); err: X509_free(x); BIO_free(in); return ret; } int X509_load_crl_file(X509_LOOKUP *ctx, const char *file, int type) { int ret = 0; BIO *in = NULL; int i, count = 0; X509_CRL *x = NULL; in = BIO_new(BIO_s_file()); if ((in == NULL) || (BIO_read_filename(in, file) <= 0)) { X509err(X509_F_X509_LOAD_CRL_FILE, ERR_R_SYS_LIB); goto err; } if (type == X509_FILETYPE_PEM) { for (;;) { x = PEM_read_bio_X509_CRL(in, NULL, NULL, ""); if (x == NULL) { if ((ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) && (count > 0)) { ERR_clear_error(); break; } else { X509err(X509_F_X509_LOAD_CRL_FILE, ERR_R_PEM_LIB); goto err; } } i = X509_STORE_add_crl(ctx->store_ctx, x); if (!i) goto err; count++; X509_CRL_free(x); x = NULL; } ret = count; } else if (type == X509_FILETYPE_ASN1) { x = d2i_X509_CRL_bio(in, NULL); if (x == NULL) { X509err(X509_F_X509_LOAD_CRL_FILE, ERR_R_ASN1_LIB); goto err; } i = X509_STORE_add_crl(ctx->store_ctx, x); if (!i) goto err; ret = i; } else { X509err(X509_F_X509_LOAD_CRL_FILE, X509_R_BAD_X509_FILETYPE); goto err; } if (ret == 0) X509err(X509_F_X509_LOAD_CRL_FILE, X509_R_NO_CRL_FOUND); err: X509_CRL_free(x); BIO_free(in); return ret; } int X509_load_cert_crl_file(X509_LOOKUP *ctx, const char *file, int type) { STACK_OF(X509_INFO) *inf; X509_INFO *itmp; BIO *in; int i, count = 0; if (type != X509_FILETYPE_PEM) return X509_load_cert_file(ctx, file, type); in = BIO_new_file(file, "r"); if (!in) { X509err(X509_F_X509_LOAD_CERT_CRL_FILE, ERR_R_SYS_LIB); return 0; } inf = PEM_X509_INFO_read_bio(in, NULL, NULL, ""); BIO_free(in); if (!inf) { X509err(X509_F_X509_LOAD_CERT_CRL_FILE, ERR_R_PEM_LIB); return 0; } for (i = 0; i < sk_X509_INFO_num(inf); i++) { itmp = sk_X509_INFO_value(inf, i); if (itmp->x509) { if (!X509_STORE_add_cert(ctx->store_ctx, itmp->x509)) goto err; count++; } if (itmp->crl) { if (!X509_STORE_add_crl(ctx->store_ctx, itmp->crl)) goto err; count++; } } if (count == 0) X509err(X509_F_X509_LOAD_CERT_CRL_FILE, X509_R_NO_CERTIFICATE_OR_CRL_FOUND); err: sk_X509_INFO_pop_free(inf, X509_INFO_free); return count; } openssl-1.1.1f/crypto/x509/t_crl.c000066400000000000000000000054741364063235100166540ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #ifndef OPENSSL_NO_STDIO int X509_CRL_print_fp(FILE *fp, X509_CRL *x) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { X509err(X509_F_X509_CRL_PRINT_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = X509_CRL_print(b, x); BIO_free(b); return ret; } #endif int X509_CRL_print(BIO *out, X509_CRL *x) { return X509_CRL_print_ex(out, x, XN_FLAG_COMPAT); } int X509_CRL_print_ex(BIO *out, X509_CRL *x, unsigned long nmflag) { STACK_OF(X509_REVOKED) *rev; X509_REVOKED *r; const X509_ALGOR *sig_alg; const ASN1_BIT_STRING *sig; long l; int i; BIO_printf(out, "Certificate Revocation List (CRL):\n"); l = X509_CRL_get_version(x); if (l >= 0 && l <= 1) BIO_printf(out, "%8sVersion %ld (0x%lx)\n", "", l + 1, (unsigned long)l); else BIO_printf(out, "%8sVersion unknown (%ld)\n", "", l); X509_CRL_get0_signature(x, &sig, &sig_alg); BIO_puts(out, " "); X509_signature_print(out, sig_alg, NULL); BIO_printf(out, "%8sIssuer: ", ""); X509_NAME_print_ex(out, X509_CRL_get_issuer(x), 0, nmflag); BIO_puts(out, "\n"); BIO_printf(out, "%8sLast Update: ", ""); ASN1_TIME_print(out, X509_CRL_get0_lastUpdate(x)); BIO_printf(out, "\n%8sNext Update: ", ""); if (X509_CRL_get0_nextUpdate(x)) ASN1_TIME_print(out, X509_CRL_get0_nextUpdate(x)); else BIO_printf(out, "NONE"); BIO_printf(out, "\n"); X509V3_extensions_print(out, "CRL extensions", X509_CRL_get0_extensions(x), 0, 8); rev = X509_CRL_get_REVOKED(x); if (sk_X509_REVOKED_num(rev) > 0) BIO_printf(out, "Revoked Certificates:\n"); else BIO_printf(out, "No Revoked Certificates.\n"); for (i = 0; i < sk_X509_REVOKED_num(rev); i++) { r = sk_X509_REVOKED_value(rev, i); BIO_printf(out, " Serial Number: "); i2a_ASN1_INTEGER(out, X509_REVOKED_get0_serialNumber(r)); BIO_printf(out, "\n Revocation Date: "); ASN1_TIME_print(out, X509_REVOKED_get0_revocationDate(r)); BIO_printf(out, "\n"); X509V3_extensions_print(out, "CRL entry extensions", X509_REVOKED_get0_extensions(r), 0, 8); } X509_signature_print(out, sig_alg, sig); return 1; } openssl-1.1.1f/crypto/x509/t_req.c000066400000000000000000000156631364063235100166640ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #ifndef OPENSSL_NO_STDIO int X509_REQ_print_fp(FILE *fp, X509_REQ *x) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { X509err(X509_F_X509_REQ_PRINT_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = X509_REQ_print(b, x); BIO_free(b); return ret; } #endif int X509_REQ_print_ex(BIO *bp, X509_REQ *x, unsigned long nmflags, unsigned long cflag) { long l; int i; EVP_PKEY *pkey; STACK_OF(X509_EXTENSION) *exts; char mlch = ' '; int nmindent = 0; if ((nmflags & XN_FLAG_SEP_MASK) == XN_FLAG_SEP_MULTILINE) { mlch = '\n'; nmindent = 12; } if (nmflags == X509_FLAG_COMPAT) nmindent = 16; if (!(cflag & X509_FLAG_NO_HEADER)) { if (BIO_write(bp, "Certificate Request:\n", 21) <= 0) goto err; if (BIO_write(bp, " Data:\n", 10) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_VERSION)) { l = X509_REQ_get_version(x); if (l >= 0 && l <= 2) { if (BIO_printf(bp, "%8sVersion: %ld (0x%lx)\n", "", l + 1, (unsigned long)l) <= 0) goto err; } else { if (BIO_printf(bp, "%8sVersion: Unknown (%ld)\n", "", l) <= 0) goto err; } } if (!(cflag & X509_FLAG_NO_SUBJECT)) { if (BIO_printf(bp, " Subject:%c", mlch) <= 0) goto err; if (X509_NAME_print_ex(bp, X509_REQ_get_subject_name(x), nmindent, nmflags) < 0) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_PUBKEY)) { X509_PUBKEY *xpkey; ASN1_OBJECT *koid; if (BIO_write(bp, " Subject Public Key Info:\n", 33) <= 0) goto err; if (BIO_printf(bp, "%12sPublic Key Algorithm: ", "") <= 0) goto err; xpkey = X509_REQ_get_X509_PUBKEY(x); X509_PUBKEY_get0_param(&koid, NULL, NULL, NULL, xpkey); if (i2a_ASN1_OBJECT(bp, koid) <= 0) goto err; if (BIO_puts(bp, "\n") <= 0) goto err; pkey = X509_REQ_get0_pubkey(x); if (pkey == NULL) { if (BIO_printf(bp, "%12sUnable to load Public Key\n", "") <= 0) goto err; ERR_print_errors(bp); } else { if (EVP_PKEY_print_public(bp, pkey, 16, NULL) <= 0) goto err; } } if (!(cflag & X509_FLAG_NO_ATTRIBUTES)) { /* may not be */ if (BIO_printf(bp, "%8sAttributes:\n", "") <= 0) goto err; if (X509_REQ_get_attr_count(x) == 0) { if (BIO_printf(bp, "%12sa0:00\n", "") <= 0) goto err; } else { for (i = 0; i < X509_REQ_get_attr_count(x); i++) { ASN1_TYPE *at; X509_ATTRIBUTE *a; ASN1_BIT_STRING *bs = NULL; ASN1_OBJECT *aobj; int j, type = 0, count = 1, ii = 0; a = X509_REQ_get_attr(x, i); aobj = X509_ATTRIBUTE_get0_object(a); if (X509_REQ_extension_nid(OBJ_obj2nid(aobj))) continue; if (BIO_printf(bp, "%12s", "") <= 0) goto err; if ((j = i2a_ASN1_OBJECT(bp, aobj)) > 0) { ii = 0; count = X509_ATTRIBUTE_count(a); if (count == 0) { X509err(X509_F_X509_REQ_PRINT_EX, X509_R_INVALID_ATTRIBUTES); return 0; } get_next: at = X509_ATTRIBUTE_get0_type(a, ii); type = at->type; bs = at->value.asn1_string; } for (j = 25 - j; j > 0; j--) if (BIO_write(bp, " ", 1) != 1) goto err; if (BIO_puts(bp, ":") <= 0) goto err; switch (type) { case V_ASN1_PRINTABLESTRING: case V_ASN1_T61STRING: case V_ASN1_NUMERICSTRING: case V_ASN1_UTF8STRING: case V_ASN1_IA5STRING: if (BIO_write(bp, (char *)bs->data, bs->length) != bs->length) goto err; if (BIO_puts(bp, "\n") <= 0) goto err; break; default: if (BIO_puts(bp, "unable to print attribute\n") <= 0) goto err; break; } if (++ii < count) goto get_next; } } } if (!(cflag & X509_FLAG_NO_EXTENSIONS)) { exts = X509_REQ_get_extensions(x); if (exts) { if (BIO_printf(bp, "%8sRequested Extensions:\n", "") <= 0) goto err; for (i = 0; i < sk_X509_EXTENSION_num(exts); i++) { ASN1_OBJECT *obj; X509_EXTENSION *ex; int critical; ex = sk_X509_EXTENSION_value(exts, i); if (BIO_printf(bp, "%12s", "") <= 0) goto err; obj = X509_EXTENSION_get_object(ex); if (i2a_ASN1_OBJECT(bp, obj) <= 0) goto err; critical = X509_EXTENSION_get_critical(ex); if (BIO_printf(bp, ": %s\n", critical ? "critical" : "") <= 0) goto err; if (!X509V3_EXT_print(bp, ex, cflag, 16)) { if (BIO_printf(bp, "%16s", "") <= 0 || ASN1_STRING_print(bp, X509_EXTENSION_get_data(ex)) <= 0) goto err; } if (BIO_write(bp, "\n", 1) <= 0) goto err; } sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free); } } if (!(cflag & X509_FLAG_NO_SIGDUMP)) { const X509_ALGOR *sig_alg; const ASN1_BIT_STRING *sig; X509_REQ_get0_signature(x, &sig, &sig_alg); if (!X509_signature_print(bp, sig_alg, sig)) goto err; } return 1; err: X509err(X509_F_X509_REQ_PRINT_EX, ERR_R_BUF_LIB); return 0; } int X509_REQ_print(BIO *bp, X509_REQ *x) { return X509_REQ_print_ex(bp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT); } openssl-1.1.1f/crypto/x509/t_x509.c000066400000000000000000000257151364063235100166010ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/asn1.h" #ifndef OPENSSL_NO_STDIO int X509_print_fp(FILE *fp, X509 *x) { return X509_print_ex_fp(fp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT); } int X509_print_ex_fp(FILE *fp, X509 *x, unsigned long nmflag, unsigned long cflag) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { X509err(X509_F_X509_PRINT_EX_FP, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = X509_print_ex(b, x, nmflag, cflag); BIO_free(b); return ret; } #endif int X509_print(BIO *bp, X509 *x) { return X509_print_ex(bp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT); } int X509_print_ex(BIO *bp, X509 *x, unsigned long nmflags, unsigned long cflag) { long l; int ret = 0, i; char *m = NULL, mlch = ' '; int nmindent = 0; ASN1_INTEGER *bs; EVP_PKEY *pkey = NULL; const char *neg; if ((nmflags & XN_FLAG_SEP_MASK) == XN_FLAG_SEP_MULTILINE) { mlch = '\n'; nmindent = 12; } if (nmflags == X509_FLAG_COMPAT) nmindent = 16; if (!(cflag & X509_FLAG_NO_HEADER)) { if (BIO_write(bp, "Certificate:\n", 13) <= 0) goto err; if (BIO_write(bp, " Data:\n", 10) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_VERSION)) { l = X509_get_version(x); if (l >= 0 && l <= 2) { if (BIO_printf(bp, "%8sVersion: %ld (0x%lx)\n", "", l + 1, (unsigned long)l) <= 0) goto err; } else { if (BIO_printf(bp, "%8sVersion: Unknown (%ld)\n", "", l) <= 0) goto err; } } if (!(cflag & X509_FLAG_NO_SERIAL)) { if (BIO_write(bp, " Serial Number:", 22) <= 0) goto err; bs = X509_get_serialNumber(x); if (bs->length <= (int)sizeof(long)) { ERR_set_mark(); l = ASN1_INTEGER_get(bs); ERR_pop_to_mark(); } else { l = -1; } if (l != -1) { unsigned long ul; if (bs->type == V_ASN1_NEG_INTEGER) { ul = 0 - (unsigned long)l; neg = "-"; } else { ul = l; neg = ""; } if (BIO_printf(bp, " %s%lu (%s0x%lx)\n", neg, ul, neg, ul) <= 0) goto err; } else { neg = (bs->type == V_ASN1_NEG_INTEGER) ? " (Negative)" : ""; if (BIO_printf(bp, "\n%12s%s", "", neg) <= 0) goto err; for (i = 0; i < bs->length; i++) { if (BIO_printf(bp, "%02x%c", bs->data[i], ((i + 1 == bs->length) ? '\n' : ':')) <= 0) goto err; } } } if (!(cflag & X509_FLAG_NO_SIGNAME)) { const X509_ALGOR *tsig_alg = X509_get0_tbs_sigalg(x); if (BIO_puts(bp, " ") <= 0) goto err; if (X509_signature_print(bp, tsig_alg, NULL) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_ISSUER)) { if (BIO_printf(bp, " Issuer:%c", mlch) <= 0) goto err; if (X509_NAME_print_ex(bp, X509_get_issuer_name(x), nmindent, nmflags) < 0) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_VALIDITY)) { if (BIO_write(bp, " Validity\n", 17) <= 0) goto err; if (BIO_write(bp, " Not Before: ", 24) <= 0) goto err; if (!ASN1_TIME_print(bp, X509_get0_notBefore(x))) goto err; if (BIO_write(bp, "\n Not After : ", 25) <= 0) goto err; if (!ASN1_TIME_print(bp, X509_get0_notAfter(x))) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_SUBJECT)) { if (BIO_printf(bp, " Subject:%c", mlch) <= 0) goto err; if (X509_NAME_print_ex (bp, X509_get_subject_name(x), nmindent, nmflags) < 0) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_PUBKEY)) { X509_PUBKEY *xpkey = X509_get_X509_PUBKEY(x); ASN1_OBJECT *xpoid; X509_PUBKEY_get0_param(&xpoid, NULL, NULL, NULL, xpkey); if (BIO_write(bp, " Subject Public Key Info:\n", 33) <= 0) goto err; if (BIO_printf(bp, "%12sPublic Key Algorithm: ", "") <= 0) goto err; if (i2a_ASN1_OBJECT(bp, xpoid) <= 0) goto err; if (BIO_puts(bp, "\n") <= 0) goto err; pkey = X509_get0_pubkey(x); if (pkey == NULL) { BIO_printf(bp, "%12sUnable to load Public Key\n", ""); ERR_print_errors(bp); } else { EVP_PKEY_print_public(bp, pkey, 16, NULL); } } if (!(cflag & X509_FLAG_NO_IDS)) { const ASN1_BIT_STRING *iuid, *suid; X509_get0_uids(x, &iuid, &suid); if (iuid != NULL) { if (BIO_printf(bp, "%8sIssuer Unique ID: ", "") <= 0) goto err; if (!X509_signature_dump(bp, iuid, 12)) goto err; } if (suid != NULL) { if (BIO_printf(bp, "%8sSubject Unique ID: ", "") <= 0) goto err; if (!X509_signature_dump(bp, suid, 12)) goto err; } } if (!(cflag & X509_FLAG_NO_EXTENSIONS)) X509V3_extensions_print(bp, "X509v3 extensions", X509_get0_extensions(x), cflag, 8); if (!(cflag & X509_FLAG_NO_SIGDUMP)) { const X509_ALGOR *sig_alg; const ASN1_BIT_STRING *sig; X509_get0_signature(&sig, &sig_alg, x); if (X509_signature_print(bp, sig_alg, sig) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_AUX)) { if (!X509_aux_print(bp, x, 0)) goto err; } ret = 1; err: OPENSSL_free(m); return ret; } int X509_ocspid_print(BIO *bp, X509 *x) { unsigned char *der = NULL; unsigned char *dertmp; int derlen; int i; unsigned char SHA1md[SHA_DIGEST_LENGTH]; ASN1_BIT_STRING *keybstr; X509_NAME *subj; /* * display the hash of the subject as it would appear in OCSP requests */ if (BIO_printf(bp, " Subject OCSP hash: ") <= 0) goto err; subj = X509_get_subject_name(x); derlen = i2d_X509_NAME(subj, NULL); if ((der = dertmp = OPENSSL_malloc(derlen)) == NULL) goto err; i2d_X509_NAME(subj, &dertmp); if (!EVP_Digest(der, derlen, SHA1md, NULL, EVP_sha1(), NULL)) goto err; for (i = 0; i < SHA_DIGEST_LENGTH; i++) { if (BIO_printf(bp, "%02X", SHA1md[i]) <= 0) goto err; } OPENSSL_free(der); der = NULL; /* * display the hash of the public key as it would appear in OCSP requests */ if (BIO_printf(bp, "\n Public key OCSP hash: ") <= 0) goto err; keybstr = X509_get0_pubkey_bitstr(x); if (keybstr == NULL) goto err; if (!EVP_Digest(ASN1_STRING_get0_data(keybstr), ASN1_STRING_length(keybstr), SHA1md, NULL, EVP_sha1(), NULL)) goto err; for (i = 0; i < SHA_DIGEST_LENGTH; i++) { if (BIO_printf(bp, "%02X", SHA1md[i]) <= 0) goto err; } BIO_printf(bp, "\n"); return 1; err: OPENSSL_free(der); return 0; } int X509_signature_dump(BIO *bp, const ASN1_STRING *sig, int indent) { const unsigned char *s; int i, n; n = sig->length; s = sig->data; for (i = 0; i < n; i++) { if ((i % 18) == 0) { if (BIO_write(bp, "\n", 1) <= 0) return 0; if (BIO_indent(bp, indent, indent) <= 0) return 0; } if (BIO_printf(bp, "%02x%s", s[i], ((i + 1) == n) ? "" : ":") <= 0) return 0; } if (BIO_write(bp, "\n", 1) != 1) return 0; return 1; } int X509_signature_print(BIO *bp, const X509_ALGOR *sigalg, const ASN1_STRING *sig) { int sig_nid; if (BIO_puts(bp, " Signature Algorithm: ") <= 0) return 0; if (i2a_ASN1_OBJECT(bp, sigalg->algorithm) <= 0) return 0; sig_nid = OBJ_obj2nid(sigalg->algorithm); if (sig_nid != NID_undef) { int pkey_nid, dig_nid; const EVP_PKEY_ASN1_METHOD *ameth; if (OBJ_find_sigid_algs(sig_nid, &dig_nid, &pkey_nid)) { ameth = EVP_PKEY_asn1_find(NULL, pkey_nid); if (ameth && ameth->sig_print) return ameth->sig_print(bp, sigalg, sig, 9, 0); } } if (sig) return X509_signature_dump(bp, sig, 9); else if (BIO_puts(bp, "\n") <= 0) return 0; return 1; } int X509_aux_print(BIO *out, X509 *x, int indent) { char oidstr[80], first; STACK_OF(ASN1_OBJECT) *trust, *reject; const unsigned char *alias, *keyid; int keyidlen; int i; if (X509_trusted(x) == 0) return 1; trust = X509_get0_trust_objects(x); reject = X509_get0_reject_objects(x); if (trust) { first = 1; BIO_printf(out, "%*sTrusted Uses:\n%*s", indent, "", indent + 2, ""); for (i = 0; i < sk_ASN1_OBJECT_num(trust); i++) { if (!first) BIO_puts(out, ", "); else first = 0; OBJ_obj2txt(oidstr, sizeof(oidstr), sk_ASN1_OBJECT_value(trust, i), 0); BIO_puts(out, oidstr); } BIO_puts(out, "\n"); } else BIO_printf(out, "%*sNo Trusted Uses.\n", indent, ""); if (reject) { first = 1; BIO_printf(out, "%*sRejected Uses:\n%*s", indent, "", indent + 2, ""); for (i = 0; i < sk_ASN1_OBJECT_num(reject); i++) { if (!first) BIO_puts(out, ", "); else first = 0; OBJ_obj2txt(oidstr, sizeof(oidstr), sk_ASN1_OBJECT_value(reject, i), 0); BIO_puts(out, oidstr); } BIO_puts(out, "\n"); } else BIO_printf(out, "%*sNo Rejected Uses.\n", indent, ""); alias = X509_alias_get0(x, NULL); if (alias) BIO_printf(out, "%*sAlias: %s\n", indent, "", alias); keyid = X509_keyid_get0(x, &keyidlen); if (keyid) { BIO_printf(out, "%*sKey Id: ", indent, ""); for (i = 0; i < keyidlen; i++) BIO_printf(out, "%s%02X", i ? ":" : "", keyid[i]); BIO_write(out, "\n", 1); } return 1; } openssl-1.1.1f/crypto/x509/x509_att.c000066400000000000000000000230051364063235100171140ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include "x509_local.h" int X509at_get_attr_count(const STACK_OF(X509_ATTRIBUTE) *x) { return sk_X509_ATTRIBUTE_num(x); } int X509at_get_attr_by_NID(const STACK_OF(X509_ATTRIBUTE) *x, int nid, int lastpos) { const ASN1_OBJECT *obj = OBJ_nid2obj(nid); if (obj == NULL) return -2; return X509at_get_attr_by_OBJ(x, obj, lastpos); } int X509at_get_attr_by_OBJ(const STACK_OF(X509_ATTRIBUTE) *sk, const ASN1_OBJECT *obj, int lastpos) { int n; X509_ATTRIBUTE *ex; if (sk == NULL) return -1; lastpos++; if (lastpos < 0) lastpos = 0; n = sk_X509_ATTRIBUTE_num(sk); for (; lastpos < n; lastpos++) { ex = sk_X509_ATTRIBUTE_value(sk, lastpos); if (OBJ_cmp(ex->object, obj) == 0) return lastpos; } return -1; } X509_ATTRIBUTE *X509at_get_attr(const STACK_OF(X509_ATTRIBUTE) *x, int loc) { if (x == NULL || sk_X509_ATTRIBUTE_num(x) <= loc || loc < 0) return NULL; return sk_X509_ATTRIBUTE_value(x, loc); } X509_ATTRIBUTE *X509at_delete_attr(STACK_OF(X509_ATTRIBUTE) *x, int loc) { X509_ATTRIBUTE *ret; if (x == NULL || sk_X509_ATTRIBUTE_num(x) <= loc || loc < 0) return NULL; ret = sk_X509_ATTRIBUTE_delete(x, loc); return ret; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr(STACK_OF(X509_ATTRIBUTE) **x, X509_ATTRIBUTE *attr) { X509_ATTRIBUTE *new_attr = NULL; STACK_OF(X509_ATTRIBUTE) *sk = NULL; if (x == NULL) { X509err(X509_F_X509AT_ADD1_ATTR, ERR_R_PASSED_NULL_PARAMETER); goto err2; } if (*x == NULL) { if ((sk = sk_X509_ATTRIBUTE_new_null()) == NULL) goto err; } else sk = *x; if ((new_attr = X509_ATTRIBUTE_dup(attr)) == NULL) goto err2; if (!sk_X509_ATTRIBUTE_push(sk, new_attr)) goto err; if (*x == NULL) *x = sk; return sk; err: X509err(X509_F_X509AT_ADD1_ATTR, ERR_R_MALLOC_FAILURE); err2: X509_ATTRIBUTE_free(new_attr); sk_X509_ATTRIBUTE_free(sk); return NULL; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_OBJ(STACK_OF(X509_ATTRIBUTE) **x, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len) { X509_ATTRIBUTE *attr; STACK_OF(X509_ATTRIBUTE) *ret; attr = X509_ATTRIBUTE_create_by_OBJ(NULL, obj, type, bytes, len); if (!attr) return 0; ret = X509at_add1_attr(x, attr); X509_ATTRIBUTE_free(attr); return ret; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_NID(STACK_OF(X509_ATTRIBUTE) **x, int nid, int type, const unsigned char *bytes, int len) { X509_ATTRIBUTE *attr; STACK_OF(X509_ATTRIBUTE) *ret; attr = X509_ATTRIBUTE_create_by_NID(NULL, nid, type, bytes, len); if (!attr) return 0; ret = X509at_add1_attr(x, attr); X509_ATTRIBUTE_free(attr); return ret; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_txt(STACK_OF(X509_ATTRIBUTE) **x, const char *attrname, int type, const unsigned char *bytes, int len) { X509_ATTRIBUTE *attr; STACK_OF(X509_ATTRIBUTE) *ret; attr = X509_ATTRIBUTE_create_by_txt(NULL, attrname, type, bytes, len); if (!attr) return 0; ret = X509at_add1_attr(x, attr); X509_ATTRIBUTE_free(attr); return ret; } void *X509at_get0_data_by_OBJ(STACK_OF(X509_ATTRIBUTE) *x, const ASN1_OBJECT *obj, int lastpos, int type) { int i; X509_ATTRIBUTE *at; i = X509at_get_attr_by_OBJ(x, obj, lastpos); if (i == -1) return NULL; if ((lastpos <= -2) && (X509at_get_attr_by_OBJ(x, obj, i) != -1)) return NULL; at = X509at_get_attr(x, i); if (lastpos <= -3 && (X509_ATTRIBUTE_count(at) != 1)) return NULL; return X509_ATTRIBUTE_get0_data(at, 0, type, NULL); } X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_NID(X509_ATTRIBUTE **attr, int nid, int atrtype, const void *data, int len) { ASN1_OBJECT *obj; X509_ATTRIBUTE *ret; obj = OBJ_nid2obj(nid); if (obj == NULL) { X509err(X509_F_X509_ATTRIBUTE_CREATE_BY_NID, X509_R_UNKNOWN_NID); return NULL; } ret = X509_ATTRIBUTE_create_by_OBJ(attr, obj, atrtype, data, len); if (ret == NULL) ASN1_OBJECT_free(obj); return ret; } X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_OBJ(X509_ATTRIBUTE **attr, const ASN1_OBJECT *obj, int atrtype, const void *data, int len) { X509_ATTRIBUTE *ret; if ((attr == NULL) || (*attr == NULL)) { if ((ret = X509_ATTRIBUTE_new()) == NULL) { X509err(X509_F_X509_ATTRIBUTE_CREATE_BY_OBJ, ERR_R_MALLOC_FAILURE); return NULL; } } else ret = *attr; if (!X509_ATTRIBUTE_set1_object(ret, obj)) goto err; if (!X509_ATTRIBUTE_set1_data(ret, atrtype, data, len)) goto err; if ((attr != NULL) && (*attr == NULL)) *attr = ret; return ret; err: if ((attr == NULL) || (ret != *attr)) X509_ATTRIBUTE_free(ret); return NULL; } X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_txt(X509_ATTRIBUTE **attr, const char *atrname, int type, const unsigned char *bytes, int len) { ASN1_OBJECT *obj; X509_ATTRIBUTE *nattr; obj = OBJ_txt2obj(atrname, 0); if (obj == NULL) { X509err(X509_F_X509_ATTRIBUTE_CREATE_BY_TXT, X509_R_INVALID_FIELD_NAME); ERR_add_error_data(2, "name=", atrname); return NULL; } nattr = X509_ATTRIBUTE_create_by_OBJ(attr, obj, type, bytes, len); ASN1_OBJECT_free(obj); return nattr; } int X509_ATTRIBUTE_set1_object(X509_ATTRIBUTE *attr, const ASN1_OBJECT *obj) { if ((attr == NULL) || (obj == NULL)) return 0; ASN1_OBJECT_free(attr->object); attr->object = OBJ_dup(obj); return attr->object != NULL; } int X509_ATTRIBUTE_set1_data(X509_ATTRIBUTE *attr, int attrtype, const void *data, int len) { ASN1_TYPE *ttmp = NULL; ASN1_STRING *stmp = NULL; int atype = 0; if (!attr) return 0; if (attrtype & MBSTRING_FLAG) { stmp = ASN1_STRING_set_by_NID(NULL, data, len, attrtype, OBJ_obj2nid(attr->object)); if (!stmp) { X509err(X509_F_X509_ATTRIBUTE_SET1_DATA, ERR_R_ASN1_LIB); return 0; } atype = stmp->type; } else if (len != -1) { if ((stmp = ASN1_STRING_type_new(attrtype)) == NULL) goto err; if (!ASN1_STRING_set(stmp, data, len)) goto err; atype = attrtype; } /* * This is a bit naughty because the attribute should really have at * least one value but some types use and zero length SET and require * this. */ if (attrtype == 0) { ASN1_STRING_free(stmp); return 1; } if ((ttmp = ASN1_TYPE_new()) == NULL) goto err; if ((len == -1) && !(attrtype & MBSTRING_FLAG)) { if (!ASN1_TYPE_set1(ttmp, attrtype, data)) goto err; } else { ASN1_TYPE_set(ttmp, atype, stmp); stmp = NULL; } if (!sk_ASN1_TYPE_push(attr->set, ttmp)) goto err; return 1; err: X509err(X509_F_X509_ATTRIBUTE_SET1_DATA, ERR_R_MALLOC_FAILURE); ASN1_TYPE_free(ttmp); ASN1_STRING_free(stmp); return 0; } int X509_ATTRIBUTE_count(const X509_ATTRIBUTE *attr) { if (attr == NULL) return 0; return sk_ASN1_TYPE_num(attr->set); } ASN1_OBJECT *X509_ATTRIBUTE_get0_object(X509_ATTRIBUTE *attr) { if (attr == NULL) return NULL; return attr->object; } void *X509_ATTRIBUTE_get0_data(X509_ATTRIBUTE *attr, int idx, int atrtype, void *data) { ASN1_TYPE *ttmp; ttmp = X509_ATTRIBUTE_get0_type(attr, idx); if (!ttmp) return NULL; if (atrtype == V_ASN1_BOOLEAN || atrtype == V_ASN1_NULL || atrtype != ASN1_TYPE_get(ttmp)) { X509err(X509_F_X509_ATTRIBUTE_GET0_DATA, X509_R_WRONG_TYPE); return NULL; } return ttmp->value.ptr; } ASN1_TYPE *X509_ATTRIBUTE_get0_type(X509_ATTRIBUTE *attr, int idx) { if (attr == NULL) return NULL; return sk_ASN1_TYPE_value(attr->set, idx); } openssl-1.1.1f/crypto/x509/x509_cmp.c000066400000000000000000000311231364063235100171030ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b) { int i; const X509_CINF *ai, *bi; ai = &a->cert_info; bi = &b->cert_info; i = ASN1_INTEGER_cmp(&ai->serialNumber, &bi->serialNumber); if (i) return i; return X509_NAME_cmp(ai->issuer, bi->issuer); } #ifndef OPENSSL_NO_MD5 unsigned long X509_issuer_and_serial_hash(X509 *a) { unsigned long ret = 0; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); unsigned char md[16]; char *f; if (ctx == NULL) goto err; f = X509_NAME_oneline(a->cert_info.issuer, NULL, 0); if (!EVP_DigestInit_ex(ctx, EVP_md5(), NULL)) goto err; if (!EVP_DigestUpdate(ctx, (unsigned char *)f, strlen(f))) goto err; OPENSSL_free(f); if (!EVP_DigestUpdate (ctx, (unsigned char *)a->cert_info.serialNumber.data, (unsigned long)a->cert_info.serialNumber.length)) goto err; if (!EVP_DigestFinal_ex(ctx, &(md[0]), NULL)) goto err; ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; err: EVP_MD_CTX_free(ctx); return ret; } #endif int X509_issuer_name_cmp(const X509 *a, const X509 *b) { return X509_NAME_cmp(a->cert_info.issuer, b->cert_info.issuer); } int X509_subject_name_cmp(const X509 *a, const X509 *b) { return X509_NAME_cmp(a->cert_info.subject, b->cert_info.subject); } int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b) { return X509_NAME_cmp(a->crl.issuer, b->crl.issuer); } int X509_CRL_match(const X509_CRL *a, const X509_CRL *b) { return memcmp(a->sha1_hash, b->sha1_hash, 20); } X509_NAME *X509_get_issuer_name(const X509 *a) { return a->cert_info.issuer; } unsigned long X509_issuer_name_hash(X509 *x) { return X509_NAME_hash(x->cert_info.issuer); } #ifndef OPENSSL_NO_MD5 unsigned long X509_issuer_name_hash_old(X509 *x) { return X509_NAME_hash_old(x->cert_info.issuer); } #endif X509_NAME *X509_get_subject_name(const X509 *a) { return a->cert_info.subject; } ASN1_INTEGER *X509_get_serialNumber(X509 *a) { return &a->cert_info.serialNumber; } const ASN1_INTEGER *X509_get0_serialNumber(const X509 *a) { return &a->cert_info.serialNumber; } unsigned long X509_subject_name_hash(X509 *x) { return X509_NAME_hash(x->cert_info.subject); } #ifndef OPENSSL_NO_MD5 unsigned long X509_subject_name_hash_old(X509 *x) { return X509_NAME_hash_old(x->cert_info.subject); } #endif /* * Compare two certificates: they must be identical for this to work. NB: * Although "cmp" operations are generally prototyped to take "const" * arguments (eg. for use in STACKs), the way X509 handling is - these * operations may involve ensuring the hashes are up-to-date and ensuring * certain cert information is cached. So this is the point where the * "depth-first" constification tree has to halt with an evil cast. */ int X509_cmp(const X509 *a, const X509 *b) { int rv; /* ensure hash is valid */ if (X509_check_purpose((X509 *)a, -1, 0) != 1) return -2; if (X509_check_purpose((X509 *)b, -1, 0) != 1) return -2; rv = memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH); if (rv) return rv; /* Check for match against stored encoding too */ if (!a->cert_info.enc.modified && !b->cert_info.enc.modified) { if (a->cert_info.enc.len < b->cert_info.enc.len) return -1; if (a->cert_info.enc.len > b->cert_info.enc.len) return 1; return memcmp(a->cert_info.enc.enc, b->cert_info.enc.enc, a->cert_info.enc.len); } return rv; } int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b) { int ret; /* Ensure canonical encoding is present and up to date */ if (!a->canon_enc || a->modified) { ret = i2d_X509_NAME((X509_NAME *)a, NULL); if (ret < 0) return -2; } if (!b->canon_enc || b->modified) { ret = i2d_X509_NAME((X509_NAME *)b, NULL); if (ret < 0) return -2; } ret = a->canon_enclen - b->canon_enclen; if (ret != 0 || a->canon_enclen == 0) return ret; return memcmp(a->canon_enc, b->canon_enc, a->canon_enclen); } unsigned long X509_NAME_hash(X509_NAME *x) { unsigned long ret = 0; unsigned char md[SHA_DIGEST_LENGTH]; /* Make sure X509_NAME structure contains valid cached encoding */ i2d_X509_NAME(x, NULL); if (!EVP_Digest(x->canon_enc, x->canon_enclen, md, NULL, EVP_sha1(), NULL)) return 0; ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; return ret; } #ifndef OPENSSL_NO_MD5 /* * I now DER encode the name and hash it. Since I cache the DER encoding, * this is reasonably efficient. */ unsigned long X509_NAME_hash_old(X509_NAME *x) { EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); unsigned long ret = 0; unsigned char md[16]; if (md_ctx == NULL) return ret; /* Make sure X509_NAME structure contains valid cached encoding */ i2d_X509_NAME(x, NULL); EVP_MD_CTX_set_flags(md_ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); if (EVP_DigestInit_ex(md_ctx, EVP_md5(), NULL) && EVP_DigestUpdate(md_ctx, x->bytes->data, x->bytes->length) && EVP_DigestFinal_ex(md_ctx, md, NULL)) ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; EVP_MD_CTX_free(md_ctx); return ret; } #endif /* Search a stack of X509 for a match */ X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, X509_NAME *name, ASN1_INTEGER *serial) { int i; X509 x, *x509 = NULL; if (!sk) return NULL; x.cert_info.serialNumber = *serial; x.cert_info.issuer = name; for (i = 0; i < sk_X509_num(sk); i++) { x509 = sk_X509_value(sk, i); if (X509_issuer_and_serial_cmp(x509, &x) == 0) return x509; } return NULL; } X509 *X509_find_by_subject(STACK_OF(X509) *sk, X509_NAME *name) { X509 *x509; int i; for (i = 0; i < sk_X509_num(sk); i++) { x509 = sk_X509_value(sk, i); if (X509_NAME_cmp(X509_get_subject_name(x509), name) == 0) return x509; } return NULL; } EVP_PKEY *X509_get0_pubkey(const X509 *x) { if (x == NULL) return NULL; return X509_PUBKEY_get0(x->cert_info.key); } EVP_PKEY *X509_get_pubkey(X509 *x) { if (x == NULL) return NULL; return X509_PUBKEY_get(x->cert_info.key); } int X509_check_private_key(const X509 *x, const EVP_PKEY *k) { const EVP_PKEY *xk; int ret; xk = X509_get0_pubkey(x); if (xk) ret = EVP_PKEY_cmp(xk, k); else ret = -2; switch (ret) { case 1: break; case 0: X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_KEY_VALUES_MISMATCH); break; case -1: X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_KEY_TYPE_MISMATCH); break; case -2: X509err(X509_F_X509_CHECK_PRIVATE_KEY, X509_R_UNKNOWN_KEY_TYPE); } if (ret > 0) return 1; return 0; } /* * Check a suite B algorithm is permitted: pass in a public key and the NID * of its signature (or 0 if no signature). The pflags is a pointer to a * flags field which must contain the suite B verification flags. */ #ifndef OPENSSL_NO_EC static int check_suite_b(EVP_PKEY *pkey, int sign_nid, unsigned long *pflags) { const EC_GROUP *grp = NULL; int curve_nid; if (pkey && EVP_PKEY_id(pkey) == EVP_PKEY_EC) grp = EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey)); if (!grp) return X509_V_ERR_SUITE_B_INVALID_ALGORITHM; curve_nid = EC_GROUP_get_curve_name(grp); /* Check curve is consistent with LOS */ if (curve_nid == NID_secp384r1) { /* P-384 */ /* * Check signature algorithm is consistent with curve. */ if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA384) return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; if (!(*pflags & X509_V_FLAG_SUITEB_192_LOS)) return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; /* If we encounter P-384 we cannot use P-256 later */ *pflags &= ~X509_V_FLAG_SUITEB_128_LOS_ONLY; } else if (curve_nid == NID_X9_62_prime256v1) { /* P-256 */ if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA256) return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; if (!(*pflags & X509_V_FLAG_SUITEB_128_LOS_ONLY)) return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; } else return X509_V_ERR_SUITE_B_INVALID_CURVE; return X509_V_OK; } int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, unsigned long flags) { int rv, i, sign_nid; EVP_PKEY *pk; unsigned long tflags = flags; if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) return X509_V_OK; /* If no EE certificate passed in must be first in chain */ if (x == NULL) { x = sk_X509_value(chain, 0); i = 1; } else i = 0; pk = X509_get0_pubkey(x); /* * With DANE-EE(3) success, or DANE-EE(3)/PKIX-EE(1) failure we don't build * a chain all, just report trust success or failure, but must also report * Suite-B errors if applicable. This is indicated via a NULL chain * pointer. All we need to do is check the leaf key algorithm. */ if (chain == NULL) return check_suite_b(pk, -1, &tflags); if (X509_get_version(x) != 2) { rv = X509_V_ERR_SUITE_B_INVALID_VERSION; /* Correct error depth */ i = 0; goto end; } /* Check EE key only */ rv = check_suite_b(pk, -1, &tflags); if (rv != X509_V_OK) { /* Correct error depth */ i = 0; goto end; } for (; i < sk_X509_num(chain); i++) { sign_nid = X509_get_signature_nid(x); x = sk_X509_value(chain, i); if (X509_get_version(x) != 2) { rv = X509_V_ERR_SUITE_B_INVALID_VERSION; goto end; } pk = X509_get0_pubkey(x); rv = check_suite_b(pk, sign_nid, &tflags); if (rv != X509_V_OK) goto end; } /* Final check: root CA signature */ rv = check_suite_b(pk, X509_get_signature_nid(x), &tflags); end: if (rv != X509_V_OK) { /* Invalid signature or LOS errors are for previous cert */ if ((rv == X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM || rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED) && i) i--; /* * If we have LOS error and flags changed then we are signing P-384 * with P-256. Use more meaningful error. */ if (rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED && flags != tflags) rv = X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256; if (perror_depth) *perror_depth = i; } return rv; } int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) { int sign_nid; if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) return X509_V_OK; sign_nid = OBJ_obj2nid(crl->crl.sig_alg.algorithm); return check_suite_b(pk, sign_nid, &flags); } #else int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, unsigned long flags) { return 0; } int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) { return 0; } #endif /* * Not strictly speaking an "up_ref" as a STACK doesn't have a reference * count but it has the same effect by duping the STACK and upping the ref of * each X509 structure. */ STACK_OF(X509) *X509_chain_up_ref(STACK_OF(X509) *chain) { STACK_OF(X509) *ret; int i; ret = sk_X509_dup(chain); if (ret == NULL) return NULL; for (i = 0; i < sk_X509_num(ret); i++) { X509 *x = sk_X509_value(ret, i); if (!X509_up_ref(x)) goto err; } return ret; err: while (i-- > 0) X509_free (sk_X509_value(ret, i)); sk_X509_free(ret); return NULL; } openssl-1.1.1f/crypto/x509/x509_d2.c000066400000000000000000000031261364063235100166330ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include int X509_STORE_set_default_paths(X509_STORE *ctx) { X509_LOOKUP *lookup; lookup = X509_STORE_add_lookup(ctx, X509_LOOKUP_file()); if (lookup == NULL) return 0; X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); lookup = X509_STORE_add_lookup(ctx, X509_LOOKUP_hash_dir()); if (lookup == NULL) return 0; X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); /* clear any errors */ ERR_clear_error(); return 1; } int X509_STORE_load_locations(X509_STORE *ctx, const char *file, const char *path) { X509_LOOKUP *lookup; if (file != NULL) { lookup = X509_STORE_add_lookup(ctx, X509_LOOKUP_file()); if (lookup == NULL) return 0; if (X509_LOOKUP_load_file(lookup, file, X509_FILETYPE_PEM) != 1) return 0; } if (path != NULL) { lookup = X509_STORE_add_lookup(ctx, X509_LOOKUP_hash_dir()); if (lookup == NULL) return 0; if (X509_LOOKUP_add_dir(lookup, path, X509_FILETYPE_PEM) != 1) return 0; } if ((path == NULL) && (file == NULL)) return 0; return 1; } openssl-1.1.1f/crypto/x509/x509_def.c000066400000000000000000000016241364063235100170650ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include const char *X509_get_default_private_dir(void) { return X509_PRIVATE_DIR; } const char *X509_get_default_cert_area(void) { return X509_CERT_AREA; } const char *X509_get_default_cert_dir(void) { return X509_CERT_DIR; } const char *X509_get_default_cert_file(void) { return X509_CERT_FILE; } const char *X509_get_default_cert_dir_env(void) { return X509_CERT_DIR_EVP; } const char *X509_get_default_cert_file_env(void) { return X509_CERT_FILE_EVP; } openssl-1.1.1f/crypto/x509/x509_err.c000066400000000000000000000221221364063235100171130ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA X509_str_functs[] = { {ERR_PACK(ERR_LIB_X509, X509_F_ADD_CERT_DIR, 0), "add_cert_dir"}, {ERR_PACK(ERR_LIB_X509, X509_F_BUILD_CHAIN, 0), "build_chain"}, {ERR_PACK(ERR_LIB_X509, X509_F_BY_FILE_CTRL, 0), "by_file_ctrl"}, {ERR_PACK(ERR_LIB_X509, X509_F_CHECK_NAME_CONSTRAINTS, 0), "check_name_constraints"}, {ERR_PACK(ERR_LIB_X509, X509_F_CHECK_POLICY, 0), "check_policy"}, {ERR_PACK(ERR_LIB_X509, X509_F_DANE_I2D, 0), "dane_i2d"}, {ERR_PACK(ERR_LIB_X509, X509_F_DIR_CTRL, 0), "dir_ctrl"}, {ERR_PACK(ERR_LIB_X509, X509_F_GET_CERT_BY_SUBJECT, 0), "get_cert_by_subject"}, {ERR_PACK(ERR_LIB_X509, X509_F_I2D_X509_AUX, 0), "i2d_X509_AUX"}, {ERR_PACK(ERR_LIB_X509, X509_F_LOOKUP_CERTS_SK, 0), "lookup_certs_sk"}, {ERR_PACK(ERR_LIB_X509, X509_F_NETSCAPE_SPKI_B64_DECODE, 0), "NETSCAPE_SPKI_b64_decode"}, {ERR_PACK(ERR_LIB_X509, X509_F_NETSCAPE_SPKI_B64_ENCODE, 0), "NETSCAPE_SPKI_b64_encode"}, {ERR_PACK(ERR_LIB_X509, X509_F_NEW_DIR, 0), "new_dir"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509AT_ADD1_ATTR, 0), "X509at_add1_attr"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509V3_ADD_EXT, 0), "X509v3_add_ext"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_ATTRIBUTE_CREATE_BY_NID, 0), "X509_ATTRIBUTE_create_by_NID"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_ATTRIBUTE_CREATE_BY_OBJ, 0), "X509_ATTRIBUTE_create_by_OBJ"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_ATTRIBUTE_CREATE_BY_TXT, 0), "X509_ATTRIBUTE_create_by_txt"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_ATTRIBUTE_GET0_DATA, 0), "X509_ATTRIBUTE_get0_data"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_ATTRIBUTE_SET1_DATA, 0), "X509_ATTRIBUTE_set1_data"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_CHECK_PRIVATE_KEY, 0), "X509_check_private_key"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_CRL_DIFF, 0), "X509_CRL_diff"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_CRL_METHOD_NEW, 0), "X509_CRL_METHOD_new"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_CRL_PRINT_FP, 0), "X509_CRL_print_fp"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_EXTENSION_CREATE_BY_NID, 0), "X509_EXTENSION_create_by_NID"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_EXTENSION_CREATE_BY_OBJ, 0), "X509_EXTENSION_create_by_OBJ"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_GET_PUBKEY_PARAMETERS, 0), "X509_get_pubkey_parameters"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_LOAD_CERT_CRL_FILE, 0), "X509_load_cert_crl_file"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_LOAD_CERT_FILE, 0), "X509_load_cert_file"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_LOAD_CRL_FILE, 0), "X509_load_crl_file"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_LOOKUP_METH_NEW, 0), "X509_LOOKUP_meth_new"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_LOOKUP_NEW, 0), "X509_LOOKUP_new"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_NAME_ADD_ENTRY, 0), "X509_NAME_add_entry"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_NAME_CANON, 0), "x509_name_canon"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_NAME_ENTRY_CREATE_BY_NID, 0), "X509_NAME_ENTRY_create_by_NID"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_NAME_ENTRY_CREATE_BY_TXT, 0), "X509_NAME_ENTRY_create_by_txt"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_NAME_ENTRY_SET_OBJECT, 0), "X509_NAME_ENTRY_set_object"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_NAME_ONELINE, 0), "X509_NAME_oneline"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_NAME_PRINT, 0), "X509_NAME_print"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_OBJECT_NEW, 0), "X509_OBJECT_new"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_PRINT_EX_FP, 0), "X509_print_ex_fp"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_PUBKEY_DECODE, 0), "x509_pubkey_decode"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_PUBKEY_GET0, 0), "X509_PUBKEY_get0"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_PUBKEY_SET, 0), "X509_PUBKEY_set"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_REQ_CHECK_PRIVATE_KEY, 0), "X509_REQ_check_private_key"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_REQ_PRINT_EX, 0), "X509_REQ_print_ex"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_REQ_PRINT_FP, 0), "X509_REQ_print_fp"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_REQ_TO_X509, 0), "X509_REQ_to_X509"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_ADD_CERT, 0), "X509_STORE_add_cert"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_ADD_CRL, 0), "X509_STORE_add_crl"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_ADD_LOOKUP, 0), "X509_STORE_add_lookup"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_CTX_GET1_ISSUER, 0), "X509_STORE_CTX_get1_issuer"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_CTX_INIT, 0), "X509_STORE_CTX_init"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_CTX_NEW, 0), "X509_STORE_CTX_new"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_CTX_PURPOSE_INHERIT, 0), "X509_STORE_CTX_purpose_inherit"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_STORE_NEW, 0), "X509_STORE_new"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_TO_X509_REQ, 0), "X509_to_X509_REQ"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_TRUST_ADD, 0), "X509_TRUST_add"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_TRUST_SET, 0), "X509_TRUST_set"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_VERIFY_CERT, 0), "X509_verify_cert"}, {ERR_PACK(ERR_LIB_X509, X509_F_X509_VERIFY_PARAM_NEW, 0), "X509_VERIFY_PARAM_new"}, {0, NULL} }; static const ERR_STRING_DATA X509_str_reasons[] = { {ERR_PACK(ERR_LIB_X509, 0, X509_R_AKID_MISMATCH), "akid mismatch"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_BAD_SELECTOR), "bad selector"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_BAD_X509_FILETYPE), "bad x509 filetype"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_BASE64_DECODE_ERROR), "base64 decode error"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_CANT_CHECK_DH_KEY), "cant check dh key"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_CERT_ALREADY_IN_HASH_TABLE), "cert already in hash table"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_CRL_ALREADY_DELTA), "crl already delta"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_CRL_VERIFY_FAILURE), "crl verify failure"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_IDP_MISMATCH), "idp mismatch"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_INVALID_ATTRIBUTES), "invalid attributes"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_INVALID_DIRECTORY), "invalid directory"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_INVALID_FIELD_NAME), "invalid field name"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_INVALID_TRUST), "invalid trust"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_ISSUER_MISMATCH), "issuer mismatch"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_KEY_TYPE_MISMATCH), "key type mismatch"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_KEY_VALUES_MISMATCH), "key values mismatch"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_LOADING_CERT_DIR), "loading cert dir"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_LOADING_DEFAULTS), "loading defaults"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_METHOD_NOT_SUPPORTED), "method not supported"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_NAME_TOO_LONG), "name too long"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_NEWER_CRL_NOT_NEWER), "newer crl not newer"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_NO_CERTIFICATE_FOUND), "no certificate found"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_NO_CERTIFICATE_OR_CRL_FOUND), "no certificate or crl found"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY), "no cert set for us to verify"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_NO_CRL_FOUND), "no crl found"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_NO_CRL_NUMBER), "no crl number"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_PUBLIC_KEY_DECODE_ERROR), "public key decode error"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_PUBLIC_KEY_ENCODE_ERROR), "public key encode error"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_SHOULD_RETRY), "should retry"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN), "unable to find parameters in chain"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY), "unable to get certs public key"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_UNKNOWN_KEY_TYPE), "unknown key type"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_UNKNOWN_NID), "unknown nid"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_UNKNOWN_PURPOSE_ID), "unknown purpose id"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_UNKNOWN_TRUST_ID), "unknown trust id"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_UNSUPPORTED_ALGORITHM), "unsupported algorithm"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_WRONG_LOOKUP_TYPE), "wrong lookup type"}, {ERR_PACK(ERR_LIB_X509, 0, X509_R_WRONG_TYPE), "wrong type"}, {0, NULL} }; #endif int ERR_load_X509_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(X509_str_functs[0].error) == NULL) { ERR_load_strings_const(X509_str_functs); ERR_load_strings_const(X509_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/x509/x509_ext.c000066400000000000000000000105411364063235100171250ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" #include int X509_CRL_get_ext_count(const X509_CRL *x) { return X509v3_get_ext_count(x->crl.extensions); } int X509_CRL_get_ext_by_NID(const X509_CRL *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->crl.extensions, nid, lastpos); } int X509_CRL_get_ext_by_OBJ(const X509_CRL *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->crl.extensions, obj, lastpos); } int X509_CRL_get_ext_by_critical(const X509_CRL *x, int crit, int lastpos) { return X509v3_get_ext_by_critical(x->crl.extensions, crit, lastpos); } X509_EXTENSION *X509_CRL_get_ext(const X509_CRL *x, int loc) { return X509v3_get_ext(x->crl.extensions, loc); } X509_EXTENSION *X509_CRL_delete_ext(X509_CRL *x, int loc) { return X509v3_delete_ext(x->crl.extensions, loc); } void *X509_CRL_get_ext_d2i(const X509_CRL *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->crl.extensions, nid, crit, idx); } int X509_CRL_add1_ext_i2d(X509_CRL *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->crl.extensions, nid, value, crit, flags); } int X509_CRL_add_ext(X509_CRL *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->crl.extensions), ex, loc) != NULL); } int X509_get_ext_count(const X509 *x) { return X509v3_get_ext_count(x->cert_info.extensions); } int X509_get_ext_by_NID(const X509 *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->cert_info.extensions, nid, lastpos); } int X509_get_ext_by_OBJ(const X509 *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->cert_info.extensions, obj, lastpos); } int X509_get_ext_by_critical(const X509 *x, int crit, int lastpos) { return (X509v3_get_ext_by_critical (x->cert_info.extensions, crit, lastpos)); } X509_EXTENSION *X509_get_ext(const X509 *x, int loc) { return X509v3_get_ext(x->cert_info.extensions, loc); } X509_EXTENSION *X509_delete_ext(X509 *x, int loc) { return X509v3_delete_ext(x->cert_info.extensions, loc); } int X509_add_ext(X509 *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->cert_info.extensions), ex, loc) != NULL); } void *X509_get_ext_d2i(const X509 *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->cert_info.extensions, nid, crit, idx); } int X509_add1_ext_i2d(X509 *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->cert_info.extensions, nid, value, crit, flags); } int X509_REVOKED_get_ext_count(const X509_REVOKED *x) { return X509v3_get_ext_count(x->extensions); } int X509_REVOKED_get_ext_by_NID(const X509_REVOKED *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->extensions, nid, lastpos); } int X509_REVOKED_get_ext_by_OBJ(const X509_REVOKED *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->extensions, obj, lastpos); } int X509_REVOKED_get_ext_by_critical(const X509_REVOKED *x, int crit, int lastpos) { return X509v3_get_ext_by_critical(x->extensions, crit, lastpos); } X509_EXTENSION *X509_REVOKED_get_ext(const X509_REVOKED *x, int loc) { return X509v3_get_ext(x->extensions, loc); } X509_EXTENSION *X509_REVOKED_delete_ext(X509_REVOKED *x, int loc) { return X509v3_delete_ext(x->extensions, loc); } int X509_REVOKED_add_ext(X509_REVOKED *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->extensions), ex, loc) != NULL); } void *X509_REVOKED_get_ext_d2i(const X509_REVOKED *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->extensions, nid, crit, idx); } int X509_REVOKED_add1_ext_i2d(X509_REVOKED *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->extensions, nid, value, crit, flags); } openssl-1.1.1f/crypto/x509/x509_local.h000066400000000000000000000134571364063235100174350ustar00rootroot00000000000000/* * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/refcount.h" /* * This structure holds all parameters associated with a verify operation by * including an X509_VERIFY_PARAM structure in related structures the * parameters used can be customized */ struct X509_VERIFY_PARAM_st { char *name; time_t check_time; /* Time to use */ uint32_t inh_flags; /* Inheritance flags */ unsigned long flags; /* Various verify flags */ int purpose; /* purpose to check untrusted certificates */ int trust; /* trust setting to check */ int depth; /* Verify depth */ int auth_level; /* Security level for chain verification */ STACK_OF(ASN1_OBJECT) *policies; /* Permissible policies */ /* Peer identity details */ STACK_OF(OPENSSL_STRING) *hosts; /* Set of acceptable names */ unsigned int hostflags; /* Flags to control matching features */ char *peername; /* Matching hostname in peer certificate */ char *email; /* If not NULL email address to match */ size_t emaillen; unsigned char *ip; /* If not NULL IP address to match */ size_t iplen; /* Length of IP address */ }; /* No error callback if depth < 0 */ int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth); /* a sequence of these are used */ struct x509_attributes_st { ASN1_OBJECT *object; STACK_OF(ASN1_TYPE) *set; }; struct X509_extension_st { ASN1_OBJECT *object; ASN1_BOOLEAN critical; ASN1_OCTET_STRING value; }; /* * Method to handle CRL access. In general a CRL could be very large (several * Mb) and can consume large amounts of resources if stored in memory by * multiple processes. This method allows general CRL operations to be * redirected to more efficient callbacks: for example a CRL entry database. */ #define X509_CRL_METHOD_DYNAMIC 1 struct x509_crl_method_st { int flags; int (*crl_init) (X509_CRL *crl); int (*crl_free) (X509_CRL *crl); int (*crl_lookup) (X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *ser, X509_NAME *issuer); int (*crl_verify) (X509_CRL *crl, EVP_PKEY *pk); }; struct x509_lookup_method_st { char *name; int (*new_item) (X509_LOOKUP *ctx); void (*free) (X509_LOOKUP *ctx); int (*init) (X509_LOOKUP *ctx); int (*shutdown) (X509_LOOKUP *ctx); int (*ctrl) (X509_LOOKUP *ctx, int cmd, const char *argc, long argl, char **ret); int (*get_by_subject) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, X509_NAME *name, X509_OBJECT *ret); int (*get_by_issuer_serial) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, X509_NAME *name, ASN1_INTEGER *serial, X509_OBJECT *ret); int (*get_by_fingerprint) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const unsigned char *bytes, int len, X509_OBJECT *ret); int (*get_by_alias) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const char *str, int len, X509_OBJECT *ret); }; /* This is the functions plus an instance of the local variables. */ struct x509_lookup_st { int init; /* have we been started */ int skip; /* don't use us. */ X509_LOOKUP_METHOD *method; /* the functions */ void *method_data; /* method data */ X509_STORE *store_ctx; /* who owns us */ }; /* * This is used to hold everything. It is used for all certificate * validation. Once we have a certificate chain, the 'verify' function is * then called to actually check the cert chain. */ struct x509_store_st { /* The following is a cache of trusted certs */ int cache; /* if true, stash any hits */ STACK_OF(X509_OBJECT) *objs; /* Cache of all objects */ /* These are external lookup methods */ STACK_OF(X509_LOOKUP) *get_cert_methods; X509_VERIFY_PARAM *param; /* Callbacks for various operations */ /* called to verify a certificate */ int (*verify) (X509_STORE_CTX *ctx); /* error callback */ int (*verify_cb) (int ok, X509_STORE_CTX *ctx); /* get issuers cert from ctx */ int (*get_issuer) (X509 **issuer, X509_STORE_CTX *ctx, X509 *x); /* check issued */ int (*check_issued) (X509_STORE_CTX *ctx, X509 *x, X509 *issuer); /* Check revocation status of chain */ int (*check_revocation) (X509_STORE_CTX *ctx); /* retrieve CRL */ int (*get_crl) (X509_STORE_CTX *ctx, X509_CRL **crl, X509 *x); /* Check CRL validity */ int (*check_crl) (X509_STORE_CTX *ctx, X509_CRL *crl); /* Check certificate against CRL */ int (*cert_crl) (X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x); /* Check policy status of the chain */ int (*check_policy) (X509_STORE_CTX *ctx); STACK_OF(X509) *(*lookup_certs) (X509_STORE_CTX *ctx, X509_NAME *nm); STACK_OF(X509_CRL) *(*lookup_crls) (X509_STORE_CTX *ctx, X509_NAME *nm); int (*cleanup) (X509_STORE_CTX *ctx); CRYPTO_EX_DATA ex_data; CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; }; typedef struct lookup_dir_hashes_st BY_DIR_HASH; typedef struct lookup_dir_entry_st BY_DIR_ENTRY; DEFINE_STACK_OF(BY_DIR_HASH) DEFINE_STACK_OF(BY_DIR_ENTRY) typedef STACK_OF(X509_NAME_ENTRY) STACK_OF_X509_NAME_ENTRY; DEFINE_STACK_OF(STACK_OF_X509_NAME_ENTRY) void x509_set_signature_info(X509_SIG_INFO *siginf, const X509_ALGOR *alg, const ASN1_STRING *sig); openssl-1.1.1f/crypto/x509/x509_lu.c000066400000000000000000000561661364063235100167620ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include #include "crypto/x509.h" #include #include "x509_local.h" X509_LOOKUP *X509_LOOKUP_new(X509_LOOKUP_METHOD *method) { X509_LOOKUP *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { X509err(X509_F_X509_LOOKUP_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->method = method; if (method->new_item != NULL && method->new_item(ret) == 0) { OPENSSL_free(ret); return NULL; } return ret; } void X509_LOOKUP_free(X509_LOOKUP *ctx) { if (ctx == NULL) return; if ((ctx->method != NULL) && (ctx->method->free != NULL)) (*ctx->method->free) (ctx); OPENSSL_free(ctx); } int X509_STORE_lock(X509_STORE *s) { return CRYPTO_THREAD_write_lock(s->lock); } int X509_STORE_unlock(X509_STORE *s) { return CRYPTO_THREAD_unlock(s->lock); } int X509_LOOKUP_init(X509_LOOKUP *ctx) { if (ctx->method == NULL) return 0; if (ctx->method->init != NULL) return ctx->method->init(ctx); else return 1; } int X509_LOOKUP_shutdown(X509_LOOKUP *ctx) { if (ctx->method == NULL) return 0; if (ctx->method->shutdown != NULL) return ctx->method->shutdown(ctx); else return 1; } int X509_LOOKUP_ctrl(X509_LOOKUP *ctx, int cmd, const char *argc, long argl, char **ret) { if (ctx->method == NULL) return -1; if (ctx->method->ctrl != NULL) return ctx->method->ctrl(ctx, cmd, argc, argl, ret); else return 1; } int X509_LOOKUP_by_subject(X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, X509_NAME *name, X509_OBJECT *ret) { if ((ctx->method == NULL) || (ctx->method->get_by_subject == NULL)) return 0; if (ctx->skip) return 0; return ctx->method->get_by_subject(ctx, type, name, ret); } int X509_LOOKUP_by_issuer_serial(X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, X509_NAME *name, ASN1_INTEGER *serial, X509_OBJECT *ret) { if ((ctx->method == NULL) || (ctx->method->get_by_issuer_serial == NULL)) return 0; return ctx->method->get_by_issuer_serial(ctx, type, name, serial, ret); } int X509_LOOKUP_by_fingerprint(X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const unsigned char *bytes, int len, X509_OBJECT *ret) { if ((ctx->method == NULL) || (ctx->method->get_by_fingerprint == NULL)) return 0; return ctx->method->get_by_fingerprint(ctx, type, bytes, len, ret); } int X509_LOOKUP_by_alias(X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const char *str, int len, X509_OBJECT *ret) { if ((ctx->method == NULL) || (ctx->method->get_by_alias == NULL)) return 0; return ctx->method->get_by_alias(ctx, type, str, len, ret); } int X509_LOOKUP_set_method_data(X509_LOOKUP *ctx, void *data) { ctx->method_data = data; return 1; } void *X509_LOOKUP_get_method_data(const X509_LOOKUP *ctx) { return ctx->method_data; } X509_STORE *X509_LOOKUP_get_store(const X509_LOOKUP *ctx) { return ctx->store_ctx; } static int x509_object_cmp(const X509_OBJECT *const *a, const X509_OBJECT *const *b) { int ret; ret = ((*a)->type - (*b)->type); if (ret) return ret; switch ((*a)->type) { case X509_LU_X509: ret = X509_subject_name_cmp((*a)->data.x509, (*b)->data.x509); break; case X509_LU_CRL: ret = X509_CRL_cmp((*a)->data.crl, (*b)->data.crl); break; case X509_LU_NONE: /* abort(); */ return 0; } return ret; } X509_STORE *X509_STORE_new(void) { X509_STORE *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { X509err(X509_F_X509_STORE_NEW, ERR_R_MALLOC_FAILURE); return NULL; } if ((ret->objs = sk_X509_OBJECT_new(x509_object_cmp)) == NULL) { X509err(X509_F_X509_STORE_NEW, ERR_R_MALLOC_FAILURE); goto err; } ret->cache = 1; if ((ret->get_cert_methods = sk_X509_LOOKUP_new_null()) == NULL) { X509err(X509_F_X509_STORE_NEW, ERR_R_MALLOC_FAILURE); goto err; } if ((ret->param = X509_VERIFY_PARAM_new()) == NULL) { X509err(X509_F_X509_STORE_NEW, ERR_R_MALLOC_FAILURE); goto err; } if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE, ret, &ret->ex_data)) { X509err(X509_F_X509_STORE_NEW, ERR_R_MALLOC_FAILURE); goto err; } ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { X509err(X509_F_X509_STORE_NEW, ERR_R_MALLOC_FAILURE); goto err; } ret->references = 1; return ret; err: X509_VERIFY_PARAM_free(ret->param); sk_X509_OBJECT_free(ret->objs); sk_X509_LOOKUP_free(ret->get_cert_methods); OPENSSL_free(ret); return NULL; } void X509_STORE_free(X509_STORE *vfy) { int i; STACK_OF(X509_LOOKUP) *sk; X509_LOOKUP *lu; if (vfy == NULL) return; CRYPTO_DOWN_REF(&vfy->references, &i, vfy->lock); REF_PRINT_COUNT("X509_STORE", vfy); if (i > 0) return; REF_ASSERT_ISNT(i < 0); sk = vfy->get_cert_methods; for (i = 0; i < sk_X509_LOOKUP_num(sk); i++) { lu = sk_X509_LOOKUP_value(sk, i); X509_LOOKUP_shutdown(lu); X509_LOOKUP_free(lu); } sk_X509_LOOKUP_free(sk); sk_X509_OBJECT_pop_free(vfy->objs, X509_OBJECT_free); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE, vfy, &vfy->ex_data); X509_VERIFY_PARAM_free(vfy->param); CRYPTO_THREAD_lock_free(vfy->lock); OPENSSL_free(vfy); } int X509_STORE_up_ref(X509_STORE *vfy) { int i; if (CRYPTO_UP_REF(&vfy->references, &i, vfy->lock) <= 0) return 0; REF_PRINT_COUNT("X509_STORE", a); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } X509_LOOKUP *X509_STORE_add_lookup(X509_STORE *v, X509_LOOKUP_METHOD *m) { int i; STACK_OF(X509_LOOKUP) *sk; X509_LOOKUP *lu; sk = v->get_cert_methods; for (i = 0; i < sk_X509_LOOKUP_num(sk); i++) { lu = sk_X509_LOOKUP_value(sk, i); if (m == lu->method) { return lu; } } /* a new one */ lu = X509_LOOKUP_new(m); if (lu == NULL) { X509err(X509_F_X509_STORE_ADD_LOOKUP, ERR_R_MALLOC_FAILURE); return NULL; } lu->store_ctx = v; if (sk_X509_LOOKUP_push(v->get_cert_methods, lu)) return lu; /* malloc failed */ X509err(X509_F_X509_STORE_ADD_LOOKUP, ERR_R_MALLOC_FAILURE); X509_LOOKUP_free(lu); return NULL; } X509_OBJECT *X509_STORE_CTX_get_obj_by_subject(X509_STORE_CTX *vs, X509_LOOKUP_TYPE type, X509_NAME *name) { X509_OBJECT *ret = X509_OBJECT_new(); if (ret == NULL) return NULL; if (!X509_STORE_CTX_get_by_subject(vs, type, name, ret)) { X509_OBJECT_free(ret); return NULL; } return ret; } int X509_STORE_CTX_get_by_subject(X509_STORE_CTX *vs, X509_LOOKUP_TYPE type, X509_NAME *name, X509_OBJECT *ret) { X509_STORE *store = vs->ctx; X509_LOOKUP *lu; X509_OBJECT stmp, *tmp; int i, j; if (store == NULL) return 0; stmp.type = X509_LU_NONE; stmp.data.ptr = NULL; X509_STORE_lock(store); tmp = X509_OBJECT_retrieve_by_subject(store->objs, type, name); X509_STORE_unlock(store); if (tmp == NULL || type == X509_LU_CRL) { for (i = 0; i < sk_X509_LOOKUP_num(store->get_cert_methods); i++) { lu = sk_X509_LOOKUP_value(store->get_cert_methods, i); j = X509_LOOKUP_by_subject(lu, type, name, &stmp); if (j) { tmp = &stmp; break; } } if (tmp == NULL) return 0; } if (!X509_OBJECT_up_ref_count(tmp)) return 0; ret->type = tmp->type; ret->data.ptr = tmp->data.ptr; return 1; } static int x509_store_add(X509_STORE *store, void *x, int crl) { X509_OBJECT *obj; int ret = 0, added = 0; if (x == NULL) return 0; obj = X509_OBJECT_new(); if (obj == NULL) return 0; if (crl) { obj->type = X509_LU_CRL; obj->data.crl = (X509_CRL *)x; } else { obj->type = X509_LU_X509; obj->data.x509 = (X509 *)x; } if (!X509_OBJECT_up_ref_count(obj)) { obj->type = X509_LU_NONE; X509_OBJECT_free(obj); return 0; } X509_STORE_lock(store); if (X509_OBJECT_retrieve_match(store->objs, obj)) { ret = 1; } else { added = sk_X509_OBJECT_push(store->objs, obj); ret = added != 0; } X509_STORE_unlock(store); if (added == 0) /* obj not pushed */ X509_OBJECT_free(obj); return ret; } int X509_STORE_add_cert(X509_STORE *ctx, X509 *x) { if (!x509_store_add(ctx, x, 0)) { X509err(X509_F_X509_STORE_ADD_CERT, ERR_R_MALLOC_FAILURE); return 0; } return 1; } int X509_STORE_add_crl(X509_STORE *ctx, X509_CRL *x) { if (!x509_store_add(ctx, x, 1)) { X509err(X509_F_X509_STORE_ADD_CRL, ERR_R_MALLOC_FAILURE); return 0; } return 1; } int X509_OBJECT_up_ref_count(X509_OBJECT *a) { switch (a->type) { case X509_LU_NONE: break; case X509_LU_X509: return X509_up_ref(a->data.x509); case X509_LU_CRL: return X509_CRL_up_ref(a->data.crl); } return 1; } X509 *X509_OBJECT_get0_X509(const X509_OBJECT *a) { if (a == NULL || a->type != X509_LU_X509) return NULL; return a->data.x509; } X509_CRL *X509_OBJECT_get0_X509_CRL(X509_OBJECT *a) { if (a == NULL || a->type != X509_LU_CRL) return NULL; return a->data.crl; } X509_LOOKUP_TYPE X509_OBJECT_get_type(const X509_OBJECT *a) { return a->type; } X509_OBJECT *X509_OBJECT_new(void) { X509_OBJECT *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { X509err(X509_F_X509_OBJECT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->type = X509_LU_NONE; return ret; } static void x509_object_free_internal(X509_OBJECT *a) { if (a == NULL) return; switch (a->type) { case X509_LU_NONE: break; case X509_LU_X509: X509_free(a->data.x509); break; case X509_LU_CRL: X509_CRL_free(a->data.crl); break; } } int X509_OBJECT_set1_X509(X509_OBJECT *a, X509 *obj) { if (a == NULL || !X509_up_ref(obj)) return 0; x509_object_free_internal(a); a->type = X509_LU_X509; a->data.x509 = obj; return 1; } int X509_OBJECT_set1_X509_CRL(X509_OBJECT *a, X509_CRL *obj) { if (a == NULL || !X509_CRL_up_ref(obj)) return 0; x509_object_free_internal(a); a->type = X509_LU_CRL; a->data.crl = obj; return 1; } void X509_OBJECT_free(X509_OBJECT *a) { x509_object_free_internal(a); OPENSSL_free(a); } static int x509_object_idx_cnt(STACK_OF(X509_OBJECT) *h, X509_LOOKUP_TYPE type, X509_NAME *name, int *pnmatch) { X509_OBJECT stmp; X509 x509_s; X509_CRL crl_s; int idx; stmp.type = type; switch (type) { case X509_LU_X509: stmp.data.x509 = &x509_s; x509_s.cert_info.subject = name; break; case X509_LU_CRL: stmp.data.crl = &crl_s; crl_s.crl.issuer = name; break; case X509_LU_NONE: /* abort(); */ return -1; } idx = sk_X509_OBJECT_find(h, &stmp); if (idx >= 0 && pnmatch) { int tidx; const X509_OBJECT *tobj, *pstmp; *pnmatch = 1; pstmp = &stmp; for (tidx = idx + 1; tidx < sk_X509_OBJECT_num(h); tidx++) { tobj = sk_X509_OBJECT_value(h, tidx); if (x509_object_cmp(&tobj, &pstmp)) break; (*pnmatch)++; } } return idx; } int X509_OBJECT_idx_by_subject(STACK_OF(X509_OBJECT) *h, X509_LOOKUP_TYPE type, X509_NAME *name) { return x509_object_idx_cnt(h, type, name, NULL); } X509_OBJECT *X509_OBJECT_retrieve_by_subject(STACK_OF(X509_OBJECT) *h, X509_LOOKUP_TYPE type, X509_NAME *name) { int idx; idx = X509_OBJECT_idx_by_subject(h, type, name); if (idx == -1) return NULL; return sk_X509_OBJECT_value(h, idx); } STACK_OF(X509_OBJECT) *X509_STORE_get0_objects(X509_STORE *v) { return v->objs; } STACK_OF(X509) *X509_STORE_CTX_get1_certs(X509_STORE_CTX *ctx, X509_NAME *nm) { int i, idx, cnt; STACK_OF(X509) *sk = NULL; X509 *x; X509_OBJECT *obj; X509_STORE *store = ctx->ctx; if (store == NULL) return NULL; X509_STORE_lock(store); idx = x509_object_idx_cnt(store->objs, X509_LU_X509, nm, &cnt); if (idx < 0) { /* * Nothing found in cache: do lookup to possibly add new objects to * cache */ X509_OBJECT *xobj = X509_OBJECT_new(); X509_STORE_unlock(store); if (xobj == NULL) return NULL; if (!X509_STORE_CTX_get_by_subject(ctx, X509_LU_X509, nm, xobj)) { X509_OBJECT_free(xobj); return NULL; } X509_OBJECT_free(xobj); X509_STORE_lock(store); idx = x509_object_idx_cnt(store->objs, X509_LU_X509, nm, &cnt); if (idx < 0) { X509_STORE_unlock(store); return NULL; } } sk = sk_X509_new_null(); for (i = 0; i < cnt; i++, idx++) { obj = sk_X509_OBJECT_value(store->objs, idx); x = obj->data.x509; if (!X509_up_ref(x)) { X509_STORE_unlock(store); sk_X509_pop_free(sk, X509_free); return NULL; } if (!sk_X509_push(sk, x)) { X509_STORE_unlock(store); X509_free(x); sk_X509_pop_free(sk, X509_free); return NULL; } } X509_STORE_unlock(store); return sk; } STACK_OF(X509_CRL) *X509_STORE_CTX_get1_crls(X509_STORE_CTX *ctx, X509_NAME *nm) { int i, idx, cnt; STACK_OF(X509_CRL) *sk = sk_X509_CRL_new_null(); X509_CRL *x; X509_OBJECT *obj, *xobj = X509_OBJECT_new(); X509_STORE *store = ctx->ctx; /* Always do lookup to possibly add new CRLs to cache */ if (sk == NULL || xobj == NULL || store == NULL || !X509_STORE_CTX_get_by_subject(ctx, X509_LU_CRL, nm, xobj)) { X509_OBJECT_free(xobj); sk_X509_CRL_free(sk); return NULL; } X509_OBJECT_free(xobj); X509_STORE_lock(store); idx = x509_object_idx_cnt(store->objs, X509_LU_CRL, nm, &cnt); if (idx < 0) { X509_STORE_unlock(store); sk_X509_CRL_free(sk); return NULL; } for (i = 0; i < cnt; i++, idx++) { obj = sk_X509_OBJECT_value(store->objs, idx); x = obj->data.crl; if (!X509_CRL_up_ref(x)) { X509_STORE_unlock(store); sk_X509_CRL_pop_free(sk, X509_CRL_free); return NULL; } if (!sk_X509_CRL_push(sk, x)) { X509_STORE_unlock(store); X509_CRL_free(x); sk_X509_CRL_pop_free(sk, X509_CRL_free); return NULL; } } X509_STORE_unlock(store); return sk; } X509_OBJECT *X509_OBJECT_retrieve_match(STACK_OF(X509_OBJECT) *h, X509_OBJECT *x) { int idx, i, num; X509_OBJECT *obj; idx = sk_X509_OBJECT_find(h, x); if (idx < 0) return NULL; if ((x->type != X509_LU_X509) && (x->type != X509_LU_CRL)) return sk_X509_OBJECT_value(h, idx); for (i = idx, num = sk_X509_OBJECT_num(h); i < num; i++) { obj = sk_X509_OBJECT_value(h, i); if (x509_object_cmp((const X509_OBJECT **)&obj, (const X509_OBJECT **)&x)) return NULL; if (x->type == X509_LU_X509) { if (!X509_cmp(obj->data.x509, x->data.x509)) return obj; } else if (x->type == X509_LU_CRL) { if (!X509_CRL_match(obj->data.crl, x->data.crl)) return obj; } else return obj; } return NULL; } /*- * Try to get issuer certificate from store. Due to limitations * of the API this can only retrieve a single certificate matching * a given subject name. However it will fill the cache with all * matching certificates, so we can examine the cache for all * matches. * * Return values are: * 1 lookup successful. * 0 certificate not found. * -1 some other error. */ int X509_STORE_CTX_get1_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *x) { X509_NAME *xn; X509_OBJECT *obj = X509_OBJECT_new(), *pobj = NULL; X509_STORE *store = ctx->ctx; int i, ok, idx, ret; if (obj == NULL) return -1; *issuer = NULL; xn = X509_get_issuer_name(x); ok = X509_STORE_CTX_get_by_subject(ctx, X509_LU_X509, xn, obj); if (ok != 1) { X509_OBJECT_free(obj); return 0; } /* If certificate matches all OK */ if (ctx->check_issued(ctx, x, obj->data.x509)) { if (x509_check_cert_time(ctx, obj->data.x509, -1)) { *issuer = obj->data.x509; if (!X509_up_ref(*issuer)) { *issuer = NULL; ok = -1; } X509_OBJECT_free(obj); return ok; } } X509_OBJECT_free(obj); if (store == NULL) return 0; /* Else find index of first cert accepted by 'check_issued' */ ret = 0; X509_STORE_lock(store); idx = X509_OBJECT_idx_by_subject(store->objs, X509_LU_X509, xn); if (idx != -1) { /* should be true as we've had at least one * match */ /* Look through all matching certs for suitable issuer */ for (i = idx; i < sk_X509_OBJECT_num(store->objs); i++) { pobj = sk_X509_OBJECT_value(store->objs, i); /* See if we've run past the matches */ if (pobj->type != X509_LU_X509) break; if (X509_NAME_cmp(xn, X509_get_subject_name(pobj->data.x509))) break; if (ctx->check_issued(ctx, x, pobj->data.x509)) { *issuer = pobj->data.x509; ret = 1; /* * If times check, exit with match, * otherwise keep looking. Leave last * match in issuer so we return nearest * match if no certificate time is OK. */ if (x509_check_cert_time(ctx, *issuer, -1)) break; } } } if (*issuer && !X509_up_ref(*issuer)) { *issuer = NULL; ret = -1; } X509_STORE_unlock(store); return ret; } int X509_STORE_set_flags(X509_STORE *ctx, unsigned long flags) { return X509_VERIFY_PARAM_set_flags(ctx->param, flags); } int X509_STORE_set_depth(X509_STORE *ctx, int depth) { X509_VERIFY_PARAM_set_depth(ctx->param, depth); return 1; } int X509_STORE_set_purpose(X509_STORE *ctx, int purpose) { return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose); } int X509_STORE_set_trust(X509_STORE *ctx, int trust) { return X509_VERIFY_PARAM_set_trust(ctx->param, trust); } int X509_STORE_set1_param(X509_STORE *ctx, X509_VERIFY_PARAM *param) { return X509_VERIFY_PARAM_set1(ctx->param, param); } X509_VERIFY_PARAM *X509_STORE_get0_param(X509_STORE *ctx) { return ctx->param; } void X509_STORE_set_verify(X509_STORE *ctx, X509_STORE_CTX_verify_fn verify) { ctx->verify = verify; } X509_STORE_CTX_verify_fn X509_STORE_get_verify(X509_STORE *ctx) { return ctx->verify; } void X509_STORE_set_verify_cb(X509_STORE *ctx, X509_STORE_CTX_verify_cb verify_cb) { ctx->verify_cb = verify_cb; } X509_STORE_CTX_verify_cb X509_STORE_get_verify_cb(X509_STORE *ctx) { return ctx->verify_cb; } void X509_STORE_set_get_issuer(X509_STORE *ctx, X509_STORE_CTX_get_issuer_fn get_issuer) { ctx->get_issuer = get_issuer; } X509_STORE_CTX_get_issuer_fn X509_STORE_get_get_issuer(X509_STORE *ctx) { return ctx->get_issuer; } void X509_STORE_set_check_issued(X509_STORE *ctx, X509_STORE_CTX_check_issued_fn check_issued) { ctx->check_issued = check_issued; } X509_STORE_CTX_check_issued_fn X509_STORE_get_check_issued(X509_STORE *ctx) { return ctx->check_issued; } void X509_STORE_set_check_revocation(X509_STORE *ctx, X509_STORE_CTX_check_revocation_fn check_revocation) { ctx->check_revocation = check_revocation; } X509_STORE_CTX_check_revocation_fn X509_STORE_get_check_revocation(X509_STORE *ctx) { return ctx->check_revocation; } void X509_STORE_set_get_crl(X509_STORE *ctx, X509_STORE_CTX_get_crl_fn get_crl) { ctx->get_crl = get_crl; } X509_STORE_CTX_get_crl_fn X509_STORE_get_get_crl(X509_STORE *ctx) { return ctx->get_crl; } void X509_STORE_set_check_crl(X509_STORE *ctx, X509_STORE_CTX_check_crl_fn check_crl) { ctx->check_crl = check_crl; } X509_STORE_CTX_check_crl_fn X509_STORE_get_check_crl(X509_STORE *ctx) { return ctx->check_crl; } void X509_STORE_set_cert_crl(X509_STORE *ctx, X509_STORE_CTX_cert_crl_fn cert_crl) { ctx->cert_crl = cert_crl; } X509_STORE_CTX_cert_crl_fn X509_STORE_get_cert_crl(X509_STORE *ctx) { return ctx->cert_crl; } void X509_STORE_set_check_policy(X509_STORE *ctx, X509_STORE_CTX_check_policy_fn check_policy) { ctx->check_policy = check_policy; } X509_STORE_CTX_check_policy_fn X509_STORE_get_check_policy(X509_STORE *ctx) { return ctx->check_policy; } void X509_STORE_set_lookup_certs(X509_STORE *ctx, X509_STORE_CTX_lookup_certs_fn lookup_certs) { ctx->lookup_certs = lookup_certs; } X509_STORE_CTX_lookup_certs_fn X509_STORE_get_lookup_certs(X509_STORE *ctx) { return ctx->lookup_certs; } void X509_STORE_set_lookup_crls(X509_STORE *ctx, X509_STORE_CTX_lookup_crls_fn lookup_crls) { ctx->lookup_crls = lookup_crls; } X509_STORE_CTX_lookup_crls_fn X509_STORE_get_lookup_crls(X509_STORE *ctx) { return ctx->lookup_crls; } void X509_STORE_set_cleanup(X509_STORE *ctx, X509_STORE_CTX_cleanup_fn ctx_cleanup) { ctx->cleanup = ctx_cleanup; } X509_STORE_CTX_cleanup_fn X509_STORE_get_cleanup(X509_STORE *ctx) { return ctx->cleanup; } int X509_STORE_set_ex_data(X509_STORE *ctx, int idx, void *data) { return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); } void *X509_STORE_get_ex_data(X509_STORE *ctx, int idx) { return CRYPTO_get_ex_data(&ctx->ex_data, idx); } X509_STORE *X509_STORE_CTX_get0_store(X509_STORE_CTX *ctx) { return ctx->ctx; } openssl-1.1.1f/crypto/x509/x509_meth.c000066400000000000000000000075021364063235100172650ustar00rootroot00000000000000/* * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include "x509_local.h" X509_LOOKUP_METHOD *X509_LOOKUP_meth_new(const char *name) { X509_LOOKUP_METHOD *method = OPENSSL_zalloc(sizeof(X509_LOOKUP_METHOD)); if (method != NULL) { method->name = OPENSSL_strdup(name); if (method->name == NULL) { X509err(X509_F_X509_LOOKUP_METH_NEW, ERR_R_MALLOC_FAILURE); goto err; } } return method; err: OPENSSL_free(method); return NULL; } void X509_LOOKUP_meth_free(X509_LOOKUP_METHOD *method) { if (method != NULL) OPENSSL_free(method->name); OPENSSL_free(method); } int X509_LOOKUP_meth_set_new_item(X509_LOOKUP_METHOD *method, int (*new_item) (X509_LOOKUP *ctx)) { method->new_item = new_item; return 1; } int (*X509_LOOKUP_meth_get_new_item(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->new_item; } int X509_LOOKUP_meth_set_free( X509_LOOKUP_METHOD *method, void (*free_fn) (X509_LOOKUP *ctx)) { method->free = free_fn; return 1; } void (*X509_LOOKUP_meth_get_free(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->free; } int X509_LOOKUP_meth_set_init(X509_LOOKUP_METHOD *method, int (*init) (X509_LOOKUP *ctx)) { method->init = init; return 1; } int (*X509_LOOKUP_meth_get_init(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->init; } int X509_LOOKUP_meth_set_shutdown( X509_LOOKUP_METHOD *method, int (*shutdown) (X509_LOOKUP *ctx)) { method->shutdown = shutdown; return 1; } int (*X509_LOOKUP_meth_get_shutdown(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->shutdown; } int X509_LOOKUP_meth_set_ctrl( X509_LOOKUP_METHOD *method, X509_LOOKUP_ctrl_fn ctrl) { method->ctrl = ctrl; return 1; } X509_LOOKUP_ctrl_fn X509_LOOKUP_meth_get_ctrl(const X509_LOOKUP_METHOD *method) { return method->ctrl; } int X509_LOOKUP_meth_set_get_by_subject(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_subject_fn get_by_subject) { method->get_by_subject = get_by_subject; return 1; } X509_LOOKUP_get_by_subject_fn X509_LOOKUP_meth_get_get_by_subject( const X509_LOOKUP_METHOD *method) { return method->get_by_subject; } int X509_LOOKUP_meth_set_get_by_issuer_serial(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_issuer_serial_fn get_by_issuer_serial) { method->get_by_issuer_serial = get_by_issuer_serial; return 1; } X509_LOOKUP_get_by_issuer_serial_fn X509_LOOKUP_meth_get_get_by_issuer_serial(const X509_LOOKUP_METHOD *method) { return method->get_by_issuer_serial; } int X509_LOOKUP_meth_set_get_by_fingerprint(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_fingerprint_fn get_by_fingerprint) { method->get_by_fingerprint = get_by_fingerprint; return 1; } X509_LOOKUP_get_by_fingerprint_fn X509_LOOKUP_meth_get_get_by_fingerprint( const X509_LOOKUP_METHOD *method) { return method->get_by_fingerprint; } int X509_LOOKUP_meth_set_get_by_alias(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_alias_fn get_by_alias) { method->get_by_alias = get_by_alias; return 1; } X509_LOOKUP_get_by_alias_fn X509_LOOKUP_meth_get_get_by_alias( const X509_LOOKUP_METHOD *method) { return method->get_by_alias; } openssl-1.1.1f/crypto/x509/x509_obj.c000066400000000000000000000117171364063235100171050ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/x509.h" /* * Limit to ensure we don't overflow: much greater than * anything encountered in practice. */ #define NAME_ONELINE_MAX (1024 * 1024) char *X509_NAME_oneline(const X509_NAME *a, char *buf, int len) { const X509_NAME_ENTRY *ne; int i; int n, lold, l, l1, l2, num, j, type; const char *s; char *p; unsigned char *q; BUF_MEM *b = NULL; static const char hex[17] = "0123456789ABCDEF"; int gs_doit[4]; char tmp_buf[80]; #ifdef CHARSET_EBCDIC unsigned char ebcdic_buf[1024]; #endif if (buf == NULL) { if ((b = BUF_MEM_new()) == NULL) goto err; if (!BUF_MEM_grow(b, 200)) goto err; b->data[0] = '\0'; len = 200; } else if (len == 0) { return NULL; } if (a == NULL) { if (b) { buf = b->data; OPENSSL_free(b); } strncpy(buf, "NO X509_NAME", len); buf[len - 1] = '\0'; return buf; } len--; /* space for '\0' */ l = 0; for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) { ne = sk_X509_NAME_ENTRY_value(a->entries, i); n = OBJ_obj2nid(ne->object); if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) { i2t_ASN1_OBJECT(tmp_buf, sizeof(tmp_buf), ne->object); s = tmp_buf; } l1 = strlen(s); type = ne->value->type; num = ne->value->length; if (num > NAME_ONELINE_MAX) { X509err(X509_F_X509_NAME_ONELINE, X509_R_NAME_TOO_LONG); goto end; } q = ne->value->data; #ifdef CHARSET_EBCDIC if (type == V_ASN1_GENERALSTRING || type == V_ASN1_VISIBLESTRING || type == V_ASN1_PRINTABLESTRING || type == V_ASN1_TELETEXSTRING || type == V_ASN1_IA5STRING) { if (num > (int)sizeof(ebcdic_buf)) num = sizeof(ebcdic_buf); ascii2ebcdic(ebcdic_buf, q, num); q = ebcdic_buf; } #endif if ((type == V_ASN1_GENERALSTRING) && ((num % 4) == 0)) { gs_doit[0] = gs_doit[1] = gs_doit[2] = gs_doit[3] = 0; for (j = 0; j < num; j++) if (q[j] != 0) gs_doit[j & 3] = 1; if (gs_doit[0] | gs_doit[1] | gs_doit[2]) gs_doit[0] = gs_doit[1] = gs_doit[2] = gs_doit[3] = 1; else { gs_doit[0] = gs_doit[1] = gs_doit[2] = 0; gs_doit[3] = 1; } } else gs_doit[0] = gs_doit[1] = gs_doit[2] = gs_doit[3] = 1; for (l2 = j = 0; j < num; j++) { if (!gs_doit[j & 3]) continue; l2++; #ifndef CHARSET_EBCDIC if ((q[j] < ' ') || (q[j] > '~')) l2 += 3; #else if ((os_toascii[q[j]] < os_toascii[' ']) || (os_toascii[q[j]] > os_toascii['~'])) l2 += 3; #endif } lold = l; l += 1 + l1 + 1 + l2; if (l > NAME_ONELINE_MAX) { X509err(X509_F_X509_NAME_ONELINE, X509_R_NAME_TOO_LONG); goto end; } if (b != NULL) { if (!BUF_MEM_grow(b, l + 1)) goto err; p = &(b->data[lold]); } else if (l > len) { break; } else p = &(buf[lold]); *(p++) = '/'; memcpy(p, s, (unsigned int)l1); p += l1; *(p++) = '='; #ifndef CHARSET_EBCDIC /* q was assigned above already. */ q = ne->value->data; #endif for (j = 0; j < num; j++) { if (!gs_doit[j & 3]) continue; #ifndef CHARSET_EBCDIC n = q[j]; if ((n < ' ') || (n > '~')) { *(p++) = '\\'; *(p++) = 'x'; *(p++) = hex[(n >> 4) & 0x0f]; *(p++) = hex[n & 0x0f]; } else *(p++) = n; #else n = os_toascii[q[j]]; if ((n < os_toascii[' ']) || (n > os_toascii['~'])) { *(p++) = '\\'; *(p++) = 'x'; *(p++) = hex[(n >> 4) & 0x0f]; *(p++) = hex[n & 0x0f]; } else *(p++) = q[j]; #endif } *p = '\0'; } if (b != NULL) { p = b->data; OPENSSL_free(b); } else p = buf; if (i == 0) *p = '\0'; return p; err: X509err(X509_F_X509_NAME_ONELINE, ERR_R_MALLOC_FAILURE); end: BUF_MEM_free(b); return NULL; } openssl-1.1.1f/crypto/x509/x509_r2x.c000066400000000000000000000034421364063235100170420ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" #include #include X509 *X509_REQ_to_X509(X509_REQ *r, int days, EVP_PKEY *pkey) { X509 *ret = NULL; X509_CINF *xi = NULL; X509_NAME *xn; EVP_PKEY *pubkey = NULL; if ((ret = X509_new()) == NULL) { X509err(X509_F_X509_REQ_TO_X509, ERR_R_MALLOC_FAILURE); return NULL; } /* duplicate the request */ xi = &ret->cert_info; if (sk_X509_ATTRIBUTE_num(r->req_info.attributes) != 0) { if ((xi->version = ASN1_INTEGER_new()) == NULL) goto err; if (!ASN1_INTEGER_set(xi->version, 2)) goto err; /*- xi->extensions=ri->attributes; <- bad, should not ever be done ri->attributes=NULL; */ } xn = X509_REQ_get_subject_name(r); if (X509_set_subject_name(ret, xn) == 0) goto err; if (X509_set_issuer_name(ret, xn) == 0) goto err; if (X509_gmtime_adj(xi->validity.notBefore, 0) == NULL) goto err; if (X509_gmtime_adj(xi->validity.notAfter, (long)60 * 60 * 24 * days) == NULL) goto err; pubkey = X509_REQ_get0_pubkey(r); if (pubkey == NULL || !X509_set_pubkey(ret, pubkey)) goto err; if (!X509_sign(ret, pkey, EVP_md5())) goto err; return ret; err: X509_free(ret); return NULL; } openssl-1.1.1f/crypto/x509/x509_req.c000066400000000000000000000170561364063235100171240ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/x509.h" #include #include #include X509_REQ *X509_to_X509_REQ(X509 *x, EVP_PKEY *pkey, const EVP_MD *md) { X509_REQ *ret; X509_REQ_INFO *ri; int i; EVP_PKEY *pktmp; ret = X509_REQ_new(); if (ret == NULL) { X509err(X509_F_X509_TO_X509_REQ, ERR_R_MALLOC_FAILURE); goto err; } ri = &ret->req_info; ri->version->length = 1; ri->version->data = OPENSSL_malloc(1); if (ri->version->data == NULL) goto err; ri->version->data[0] = 0; /* version == 0 */ if (!X509_REQ_set_subject_name(ret, X509_get_subject_name(x))) goto err; pktmp = X509_get0_pubkey(x); if (pktmp == NULL) goto err; i = X509_REQ_set_pubkey(ret, pktmp); if (!i) goto err; if (pkey != NULL) { if (!X509_REQ_sign(ret, pkey, md)) goto err; } return ret; err: X509_REQ_free(ret); return NULL; } EVP_PKEY *X509_REQ_get_pubkey(X509_REQ *req) { if (req == NULL) return NULL; return X509_PUBKEY_get(req->req_info.pubkey); } EVP_PKEY *X509_REQ_get0_pubkey(X509_REQ *req) { if (req == NULL) return NULL; return X509_PUBKEY_get0(req->req_info.pubkey); } X509_PUBKEY *X509_REQ_get_X509_PUBKEY(X509_REQ *req) { return req->req_info.pubkey; } int X509_REQ_check_private_key(X509_REQ *x, EVP_PKEY *k) { EVP_PKEY *xk = NULL; int ok = 0; xk = X509_REQ_get_pubkey(x); switch (EVP_PKEY_cmp(xk, k)) { case 1: ok = 1; break; case 0: X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY, X509_R_KEY_VALUES_MISMATCH); break; case -1: X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY, X509_R_KEY_TYPE_MISMATCH); break; case -2: #ifndef OPENSSL_NO_EC if (EVP_PKEY_id(k) == EVP_PKEY_EC) { X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY, ERR_R_EC_LIB); break; } #endif #ifndef OPENSSL_NO_DH if (EVP_PKEY_id(k) == EVP_PKEY_DH) { /* No idea */ X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY, X509_R_CANT_CHECK_DH_KEY); break; } #endif X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY, X509_R_UNKNOWN_KEY_TYPE); } EVP_PKEY_free(xk); return ok; } /* * It seems several organisations had the same idea of including a list of * extensions in a certificate request. There are at least two OIDs that are * used and there may be more: so the list is configurable. */ static int ext_nid_list[] = { NID_ext_req, NID_ms_ext_req, NID_undef }; static int *ext_nids = ext_nid_list; int X509_REQ_extension_nid(int req_nid) { int i, nid; for (i = 0;; i++) { nid = ext_nids[i]; if (nid == NID_undef) return 0; else if (req_nid == nid) return 1; } } int *X509_REQ_get_extension_nids(void) { return ext_nids; } void X509_REQ_set_extension_nids(int *nids) { ext_nids = nids; } STACK_OF(X509_EXTENSION) *X509_REQ_get_extensions(X509_REQ *req) { X509_ATTRIBUTE *attr; ASN1_TYPE *ext = NULL; int idx, *pnid; const unsigned char *p; if ((req == NULL) || !ext_nids) return NULL; for (pnid = ext_nids; *pnid != NID_undef; pnid++) { idx = X509_REQ_get_attr_by_NID(req, *pnid, -1); if (idx == -1) continue; attr = X509_REQ_get_attr(req, idx); ext = X509_ATTRIBUTE_get0_type(attr, 0); break; } if (!ext || (ext->type != V_ASN1_SEQUENCE)) return NULL; p = ext->value.sequence->data; return (STACK_OF(X509_EXTENSION) *) ASN1_item_d2i(NULL, &p, ext->value.sequence->length, ASN1_ITEM_rptr(X509_EXTENSIONS)); } /* * Add a STACK_OF extensions to a certificate request: allow alternative OIDs * in case we want to create a non standard one. */ int X509_REQ_add_extensions_nid(X509_REQ *req, STACK_OF(X509_EXTENSION) *exts, int nid) { int extlen; int rv = 0; unsigned char *ext = NULL; /* Generate encoding of extensions */ extlen = ASN1_item_i2d((ASN1_VALUE *)exts, &ext, ASN1_ITEM_rptr(X509_EXTENSIONS)); if (extlen <= 0) return 0; rv = X509_REQ_add1_attr_by_NID(req, nid, V_ASN1_SEQUENCE, ext, extlen); OPENSSL_free(ext); return rv; } /* This is the normal usage: use the "official" OID */ int X509_REQ_add_extensions(X509_REQ *req, STACK_OF(X509_EXTENSION) *exts) { return X509_REQ_add_extensions_nid(req, exts, NID_ext_req); } /* Request attribute functions */ int X509_REQ_get_attr_count(const X509_REQ *req) { return X509at_get_attr_count(req->req_info.attributes); } int X509_REQ_get_attr_by_NID(const X509_REQ *req, int nid, int lastpos) { return X509at_get_attr_by_NID(req->req_info.attributes, nid, lastpos); } int X509_REQ_get_attr_by_OBJ(const X509_REQ *req, const ASN1_OBJECT *obj, int lastpos) { return X509at_get_attr_by_OBJ(req->req_info.attributes, obj, lastpos); } X509_ATTRIBUTE *X509_REQ_get_attr(const X509_REQ *req, int loc) { return X509at_get_attr(req->req_info.attributes, loc); } X509_ATTRIBUTE *X509_REQ_delete_attr(X509_REQ *req, int loc) { return X509at_delete_attr(req->req_info.attributes, loc); } int X509_REQ_add1_attr(X509_REQ *req, X509_ATTRIBUTE *attr) { if (X509at_add1_attr(&req->req_info.attributes, attr)) return 1; return 0; } int X509_REQ_add1_attr_by_OBJ(X509_REQ *req, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len) { if (X509at_add1_attr_by_OBJ(&req->req_info.attributes, obj, type, bytes, len)) return 1; return 0; } int X509_REQ_add1_attr_by_NID(X509_REQ *req, int nid, int type, const unsigned char *bytes, int len) { if (X509at_add1_attr_by_NID(&req->req_info.attributes, nid, type, bytes, len)) return 1; return 0; } int X509_REQ_add1_attr_by_txt(X509_REQ *req, const char *attrname, int type, const unsigned char *bytes, int len) { if (X509at_add1_attr_by_txt(&req->req_info.attributes, attrname, type, bytes, len)) return 1; return 0; } long X509_REQ_get_version(const X509_REQ *req) { return ASN1_INTEGER_get(req->req_info.version); } X509_NAME *X509_REQ_get_subject_name(const X509_REQ *req) { return req->req_info.subject; } void X509_REQ_get0_signature(const X509_REQ *req, const ASN1_BIT_STRING **psig, const X509_ALGOR **palg) { if (psig != NULL) *psig = req->signature; if (palg != NULL) *palg = &req->sig_alg; } int X509_REQ_get_signature_nid(const X509_REQ *req) { return OBJ_obj2nid(req->sig_alg.algorithm); } int i2d_re_X509_REQ_tbs(X509_REQ *req, unsigned char **pp) { req->req_info.enc.modified = 1; return i2d_X509_REQ_INFO(&req->req_info, pp); } openssl-1.1.1f/crypto/x509/x509_set.c000066400000000000000000000133501364063235100171210ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/x509.h" #include "x509_local.h" int X509_set_version(X509 *x, long version) { if (x == NULL) return 0; if (version == 0) { ASN1_INTEGER_free(x->cert_info.version); x->cert_info.version = NULL; return 1; } if (x->cert_info.version == NULL) { if ((x->cert_info.version = ASN1_INTEGER_new()) == NULL) return 0; } return ASN1_INTEGER_set(x->cert_info.version, version); } int X509_set_serialNumber(X509 *x, ASN1_INTEGER *serial) { ASN1_INTEGER *in; if (x == NULL) return 0; in = &x->cert_info.serialNumber; if (in != serial) return ASN1_STRING_copy(in, serial); return 1; } int X509_set_issuer_name(X509 *x, X509_NAME *name) { if (x == NULL) return 0; return X509_NAME_set(&x->cert_info.issuer, name); } int X509_set_subject_name(X509 *x, X509_NAME *name) { if (x == NULL) return 0; return X509_NAME_set(&x->cert_info.subject, name); } int x509_set1_time(ASN1_TIME **ptm, const ASN1_TIME *tm) { ASN1_TIME *in; in = *ptm; if (in != tm) { in = ASN1_STRING_dup(tm); if (in != NULL) { ASN1_TIME_free(*ptm); *ptm = in; } } return (in != NULL); } int X509_set1_notBefore(X509 *x, const ASN1_TIME *tm) { if (x == NULL) return 0; return x509_set1_time(&x->cert_info.validity.notBefore, tm); } int X509_set1_notAfter(X509 *x, const ASN1_TIME *tm) { if (x == NULL) return 0; return x509_set1_time(&x->cert_info.validity.notAfter, tm); } int X509_set_pubkey(X509 *x, EVP_PKEY *pkey) { if (x == NULL) return 0; return X509_PUBKEY_set(&(x->cert_info.key), pkey); } int X509_up_ref(X509 *x) { int i; if (CRYPTO_UP_REF(&x->references, &i, x->lock) <= 0) return 0; REF_PRINT_COUNT("X509", x); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } long X509_get_version(const X509 *x) { return ASN1_INTEGER_get(x->cert_info.version); } const ASN1_TIME *X509_get0_notBefore(const X509 *x) { return x->cert_info.validity.notBefore; } const ASN1_TIME *X509_get0_notAfter(const X509 *x) { return x->cert_info.validity.notAfter; } ASN1_TIME *X509_getm_notBefore(const X509 *x) { return x->cert_info.validity.notBefore; } ASN1_TIME *X509_getm_notAfter(const X509 *x) { return x->cert_info.validity.notAfter; } int X509_get_signature_type(const X509 *x) { return EVP_PKEY_type(OBJ_obj2nid(x->sig_alg.algorithm)); } X509_PUBKEY *X509_get_X509_PUBKEY(const X509 *x) { return x->cert_info.key; } const STACK_OF(X509_EXTENSION) *X509_get0_extensions(const X509 *x) { return x->cert_info.extensions; } void X509_get0_uids(const X509 *x, const ASN1_BIT_STRING **piuid, const ASN1_BIT_STRING **psuid) { if (piuid != NULL) *piuid = x->cert_info.issuerUID; if (psuid != NULL) *psuid = x->cert_info.subjectUID; } const X509_ALGOR *X509_get0_tbs_sigalg(const X509 *x) { return &x->cert_info.signature; } int X509_SIG_INFO_get(const X509_SIG_INFO *siginf, int *mdnid, int *pknid, int *secbits, uint32_t *flags) { if (mdnid != NULL) *mdnid = siginf->mdnid; if (pknid != NULL) *pknid = siginf->pknid; if (secbits != NULL) *secbits = siginf->secbits; if (flags != NULL) *flags = siginf->flags; return (siginf->flags & X509_SIG_INFO_VALID) != 0; } void X509_SIG_INFO_set(X509_SIG_INFO *siginf, int mdnid, int pknid, int secbits, uint32_t flags) { siginf->mdnid = mdnid; siginf->pknid = pknid; siginf->secbits = secbits; siginf->flags = flags; } int X509_get_signature_info(X509 *x, int *mdnid, int *pknid, int *secbits, uint32_t *flags) { X509_check_purpose(x, -1, -1); return X509_SIG_INFO_get(&x->siginf, mdnid, pknid, secbits, flags); } static void x509_sig_info_init(X509_SIG_INFO *siginf, const X509_ALGOR *alg, const ASN1_STRING *sig) { int pknid, mdnid; const EVP_MD *md; siginf->mdnid = NID_undef; siginf->pknid = NID_undef; siginf->secbits = -1; siginf->flags = 0; if (!OBJ_find_sigid_algs(OBJ_obj2nid(alg->algorithm), &mdnid, &pknid) || pknid == NID_undef) return; siginf->pknid = pknid; if (mdnid == NID_undef) { /* If we have one, use a custom handler for this algorithm */ const EVP_PKEY_ASN1_METHOD *ameth = EVP_PKEY_asn1_find(NULL, pknid); if (ameth == NULL || ameth->siginf_set == NULL || ameth->siginf_set(siginf, alg, sig) == 0) return; siginf->flags |= X509_SIG_INFO_VALID; return; } siginf->flags |= X509_SIG_INFO_VALID; siginf->mdnid = mdnid; md = EVP_get_digestbynid(mdnid); if (md == NULL) return; /* Security bits: half number of bits in digest */ siginf->secbits = EVP_MD_size(md) * 4; switch (mdnid) { case NID_sha1: case NID_sha256: case NID_sha384: case NID_sha512: siginf->flags |= X509_SIG_INFO_TLS; } } void x509_init_sig_info(X509 *x) { x509_sig_info_init(&x->siginf, &x->sig_alg, &x->signature); } openssl-1.1.1f/crypto/x509/x509_trs.c000066400000000000000000000214301364063235100171340ustar00rootroot00000000000000/* * Copyright 1999-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/x509.h" static int tr_cmp(const X509_TRUST *const *a, const X509_TRUST *const *b); static void trtable_free(X509_TRUST *p); static int trust_1oidany(X509_TRUST *trust, X509 *x, int flags); static int trust_1oid(X509_TRUST *trust, X509 *x, int flags); static int trust_compat(X509_TRUST *trust, X509 *x, int flags); static int obj_trust(int id, X509 *x, int flags); static int (*default_trust) (int id, X509 *x, int flags) = obj_trust; /* * WARNING: the following table should be kept in order of trust and without * any gaps so we can just subtract the minimum trust value to get an index * into the table */ static X509_TRUST trstandard[] = { {X509_TRUST_COMPAT, 0, trust_compat, "compatible", 0, NULL}, {X509_TRUST_SSL_CLIENT, 0, trust_1oidany, "SSL Client", NID_client_auth, NULL}, {X509_TRUST_SSL_SERVER, 0, trust_1oidany, "SSL Server", NID_server_auth, NULL}, {X509_TRUST_EMAIL, 0, trust_1oidany, "S/MIME email", NID_email_protect, NULL}, {X509_TRUST_OBJECT_SIGN, 0, trust_1oidany, "Object Signer", NID_code_sign, NULL}, {X509_TRUST_OCSP_SIGN, 0, trust_1oid, "OCSP responder", NID_OCSP_sign, NULL}, {X509_TRUST_OCSP_REQUEST, 0, trust_1oid, "OCSP request", NID_ad_OCSP, NULL}, {X509_TRUST_TSA, 0, trust_1oidany, "TSA server", NID_time_stamp, NULL} }; #define X509_TRUST_COUNT OSSL_NELEM(trstandard) static STACK_OF(X509_TRUST) *trtable = NULL; static int tr_cmp(const X509_TRUST *const *a, const X509_TRUST *const *b) { return (*a)->trust - (*b)->trust; } int (*X509_TRUST_set_default(int (*trust) (int, X509 *, int))) (int, X509 *, int) { int (*oldtrust) (int, X509 *, int); oldtrust = default_trust; default_trust = trust; return oldtrust; } int X509_check_trust(X509 *x, int id, int flags) { X509_TRUST *pt; int idx; /* We get this as a default value */ if (id == X509_TRUST_DEFAULT) return obj_trust(NID_anyExtendedKeyUsage, x, flags | X509_TRUST_DO_SS_COMPAT); idx = X509_TRUST_get_by_id(id); if (idx == -1) return default_trust(id, x, flags); pt = X509_TRUST_get0(idx); return pt->check_trust(pt, x, flags); } int X509_TRUST_get_count(void) { if (!trtable) return X509_TRUST_COUNT; return sk_X509_TRUST_num(trtable) + X509_TRUST_COUNT; } X509_TRUST *X509_TRUST_get0(int idx) { if (idx < 0) return NULL; if (idx < (int)X509_TRUST_COUNT) return trstandard + idx; return sk_X509_TRUST_value(trtable, idx - X509_TRUST_COUNT); } int X509_TRUST_get_by_id(int id) { X509_TRUST tmp; int idx; if ((id >= X509_TRUST_MIN) && (id <= X509_TRUST_MAX)) return id - X509_TRUST_MIN; if (trtable == NULL) return -1; tmp.trust = id; idx = sk_X509_TRUST_find(trtable, &tmp); if (idx < 0) return -1; return idx + X509_TRUST_COUNT; } int X509_TRUST_set(int *t, int trust) { if (X509_TRUST_get_by_id(trust) == -1) { X509err(X509_F_X509_TRUST_SET, X509_R_INVALID_TRUST); return 0; } *t = trust; return 1; } int X509_TRUST_add(int id, int flags, int (*ck) (X509_TRUST *, X509 *, int), const char *name, int arg1, void *arg2) { int idx; X509_TRUST *trtmp; /* * This is set according to what we change: application can't set it */ flags &= ~X509_TRUST_DYNAMIC; /* This will always be set for application modified trust entries */ flags |= X509_TRUST_DYNAMIC_NAME; /* Get existing entry if any */ idx = X509_TRUST_get_by_id(id); /* Need a new entry */ if (idx == -1) { if ((trtmp = OPENSSL_malloc(sizeof(*trtmp))) == NULL) { X509err(X509_F_X509_TRUST_ADD, ERR_R_MALLOC_FAILURE); return 0; } trtmp->flags = X509_TRUST_DYNAMIC; } else trtmp = X509_TRUST_get0(idx); /* OPENSSL_free existing name if dynamic */ if (trtmp->flags & X509_TRUST_DYNAMIC_NAME) OPENSSL_free(trtmp->name); /* dup supplied name */ if ((trtmp->name = OPENSSL_strdup(name)) == NULL) { X509err(X509_F_X509_TRUST_ADD, ERR_R_MALLOC_FAILURE); goto err; } /* Keep the dynamic flag of existing entry */ trtmp->flags &= X509_TRUST_DYNAMIC; /* Set all other flags */ trtmp->flags |= flags; trtmp->trust = id; trtmp->check_trust = ck; trtmp->arg1 = arg1; trtmp->arg2 = arg2; /* If its a new entry manage the dynamic table */ if (idx == -1) { if (trtable == NULL && (trtable = sk_X509_TRUST_new(tr_cmp)) == NULL) { X509err(X509_F_X509_TRUST_ADD, ERR_R_MALLOC_FAILURE); goto err;; } if (!sk_X509_TRUST_push(trtable, trtmp)) { X509err(X509_F_X509_TRUST_ADD, ERR_R_MALLOC_FAILURE); goto err; } } return 1; err: if (idx == -1) { OPENSSL_free(trtmp->name); OPENSSL_free(trtmp); } return 0; } static void trtable_free(X509_TRUST *p) { if (!p) return; if (p->flags & X509_TRUST_DYNAMIC) { if (p->flags & X509_TRUST_DYNAMIC_NAME) OPENSSL_free(p->name); OPENSSL_free(p); } } void X509_TRUST_cleanup(void) { sk_X509_TRUST_pop_free(trtable, trtable_free); trtable = NULL; } int X509_TRUST_get_flags(const X509_TRUST *xp) { return xp->flags; } char *X509_TRUST_get0_name(const X509_TRUST *xp) { return xp->name; } int X509_TRUST_get_trust(const X509_TRUST *xp) { return xp->trust; } static int trust_1oidany(X509_TRUST *trust, X509 *x, int flags) { /* * Declare the chain verified if the desired trust OID is not rejected in * any auxiliary trust info for this certificate, and the OID is either * expressly trusted, or else either "anyEKU" is trusted, or the * certificate is self-signed. */ flags |= X509_TRUST_DO_SS_COMPAT | X509_TRUST_OK_ANY_EKU; return obj_trust(trust->arg1, x, flags); } static int trust_1oid(X509_TRUST *trust, X509 *x, int flags) { /* * Declare the chain verified only if the desired trust OID is not * rejected and is expressly trusted. Neither "anyEKU" nor "compat" * trust in self-signed certificates apply. */ flags &= ~(X509_TRUST_DO_SS_COMPAT | X509_TRUST_OK_ANY_EKU); return obj_trust(trust->arg1, x, flags); } static int trust_compat(X509_TRUST *trust, X509 *x, int flags) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, 0) != 1) return X509_TRUST_UNTRUSTED; if ((flags & X509_TRUST_NO_SS_COMPAT) == 0 && (x->ex_flags & EXFLAG_SS)) return X509_TRUST_TRUSTED; else return X509_TRUST_UNTRUSTED; } static int obj_trust(int id, X509 *x, int flags) { X509_CERT_AUX *ax = x->aux; int i; if (ax && ax->reject) { for (i = 0; i < sk_ASN1_OBJECT_num(ax->reject); i++) { ASN1_OBJECT *obj = sk_ASN1_OBJECT_value(ax->reject, i); int nid = OBJ_obj2nid(obj); if (nid == id || (nid == NID_anyExtendedKeyUsage && (flags & X509_TRUST_OK_ANY_EKU))) return X509_TRUST_REJECTED; } } if (ax && ax->trust) { for (i = 0; i < sk_ASN1_OBJECT_num(ax->trust); i++) { ASN1_OBJECT *obj = sk_ASN1_OBJECT_value(ax->trust, i); int nid = OBJ_obj2nid(obj); if (nid == id || (nid == NID_anyExtendedKeyUsage && (flags & X509_TRUST_OK_ANY_EKU))) return X509_TRUST_TRUSTED; } /* * Reject when explicit trust EKU are set and none match. * * Returning untrusted is enough for for full chains that end in * self-signed roots, because when explicit trust is specified it * suppresses the default blanket trust of self-signed objects. * * But for partial chains, this is not enough, because absent a similar * trust-self-signed policy, non matching EKUs are indistinguishable * from lack of EKU constraints. * * Therefore, failure to match any trusted purpose must trigger an * explicit reject. */ return X509_TRUST_REJECTED; } if ((flags & X509_TRUST_DO_SS_COMPAT) == 0) return X509_TRUST_UNTRUSTED; /* * Not rejected, and there is no list of accepted uses, try compat. */ return trust_compat(NULL, x, flags); } openssl-1.1.1f/crypto/x509/x509_txt.c000066400000000000000000000174051364063235100171520ustar00rootroot00000000000000/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include #include const char *X509_verify_cert_error_string(long n) { switch ((int)n) { case X509_V_OK: return "ok"; case X509_V_ERR_UNSPECIFIED: return "unspecified certificate verification error"; case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: return "unable to get issuer certificate"; case X509_V_ERR_UNABLE_TO_GET_CRL: return "unable to get certificate CRL"; case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: return "unable to decrypt certificate's signature"; case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: return "unable to decrypt CRL's signature"; case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: return "unable to decode issuer public key"; case X509_V_ERR_CERT_SIGNATURE_FAILURE: return "certificate signature failure"; case X509_V_ERR_CRL_SIGNATURE_FAILURE: return "CRL signature failure"; case X509_V_ERR_CERT_NOT_YET_VALID: return "certificate is not yet valid"; case X509_V_ERR_CERT_HAS_EXPIRED: return "certificate has expired"; case X509_V_ERR_CRL_NOT_YET_VALID: return "CRL is not yet valid"; case X509_V_ERR_CRL_HAS_EXPIRED: return "CRL has expired"; case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: return "format error in certificate's notBefore field"; case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: return "format error in certificate's notAfter field"; case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: return "format error in CRL's lastUpdate field"; case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: return "format error in CRL's nextUpdate field"; case X509_V_ERR_OUT_OF_MEM: return "out of memory"; case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: return "self signed certificate"; case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: return "self signed certificate in certificate chain"; case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: return "unable to get local issuer certificate"; case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: return "unable to verify the first certificate"; case X509_V_ERR_CERT_CHAIN_TOO_LONG: return "certificate chain too long"; case X509_V_ERR_CERT_REVOKED: return "certificate revoked"; case X509_V_ERR_INVALID_CA: return "invalid CA certificate"; case X509_V_ERR_PATH_LENGTH_EXCEEDED: return "path length constraint exceeded"; case X509_V_ERR_INVALID_PURPOSE: return "unsupported certificate purpose"; case X509_V_ERR_CERT_UNTRUSTED: return "certificate not trusted"; case X509_V_ERR_CERT_REJECTED: return "certificate rejected"; case X509_V_ERR_SUBJECT_ISSUER_MISMATCH: return "subject issuer mismatch"; case X509_V_ERR_AKID_SKID_MISMATCH: return "authority and subject key identifier mismatch"; case X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH: return "authority and issuer serial number mismatch"; case X509_V_ERR_KEYUSAGE_NO_CERTSIGN: return "key usage does not include certificate signing"; case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER: return "unable to get CRL issuer certificate"; case X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION: return "unhandled critical extension"; case X509_V_ERR_KEYUSAGE_NO_CRL_SIGN: return "key usage does not include CRL signing"; case X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION: return "unhandled critical CRL extension"; case X509_V_ERR_INVALID_NON_CA: return "invalid non-CA certificate (has CA markings)"; case X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED: return "proxy path length constraint exceeded"; case X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE: return "key usage does not include digital signature"; case X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED: return "proxy certificates not allowed, please set the appropriate flag"; case X509_V_ERR_INVALID_EXTENSION: return "invalid or inconsistent certificate extension"; case X509_V_ERR_INVALID_POLICY_EXTENSION: return "invalid or inconsistent certificate policy extension"; case X509_V_ERR_NO_EXPLICIT_POLICY: return "no explicit policy"; case X509_V_ERR_DIFFERENT_CRL_SCOPE: return "Different CRL scope"; case X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE: return "Unsupported extension feature"; case X509_V_ERR_UNNESTED_RESOURCE: return "RFC 3779 resource not subset of parent's resources"; case X509_V_ERR_PERMITTED_VIOLATION: return "permitted subtree violation"; case X509_V_ERR_EXCLUDED_VIOLATION: return "excluded subtree violation"; case X509_V_ERR_SUBTREE_MINMAX: return "name constraints minimum and maximum not supported"; case X509_V_ERR_APPLICATION_VERIFICATION: return "application verification failure"; case X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE: return "unsupported name constraint type"; case X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX: return "unsupported or invalid name constraint syntax"; case X509_V_ERR_UNSUPPORTED_NAME_SYNTAX: return "unsupported or invalid name syntax"; case X509_V_ERR_CRL_PATH_VALIDATION_ERROR: return "CRL path validation error"; case X509_V_ERR_PATH_LOOP: return "Path Loop"; case X509_V_ERR_SUITE_B_INVALID_VERSION: return "Suite B: certificate version invalid"; case X509_V_ERR_SUITE_B_INVALID_ALGORITHM: return "Suite B: invalid public key algorithm"; case X509_V_ERR_SUITE_B_INVALID_CURVE: return "Suite B: invalid ECC curve"; case X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM: return "Suite B: invalid signature algorithm"; case X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED: return "Suite B: curve not allowed for this LOS"; case X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256: return "Suite B: cannot sign P-384 with P-256"; case X509_V_ERR_HOSTNAME_MISMATCH: return "Hostname mismatch"; case X509_V_ERR_EMAIL_MISMATCH: return "Email address mismatch"; case X509_V_ERR_IP_ADDRESS_MISMATCH: return "IP address mismatch"; case X509_V_ERR_DANE_NO_MATCH: return "No matching DANE TLSA records"; case X509_V_ERR_EE_KEY_TOO_SMALL: return "EE certificate key too weak"; case X509_V_ERR_CA_KEY_TOO_SMALL: return "CA certificate key too weak"; case X509_V_ERR_CA_MD_TOO_WEAK: return "CA signature digest algorithm too weak"; case X509_V_ERR_INVALID_CALL: return "Invalid certificate verification context"; case X509_V_ERR_STORE_LOOKUP: return "Issuer certificate lookup error"; case X509_V_ERR_NO_VALID_SCTS: return "Certificate Transparency required, but no valid SCTs found"; case X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION: return "proxy subject name violation"; case X509_V_ERR_OCSP_VERIFY_NEEDED: return "OCSP verification needed"; case X509_V_ERR_OCSP_VERIFY_FAILED: return "OCSP verification failed"; case X509_V_ERR_OCSP_CERT_UNKNOWN: return "OCSP unknown cert"; default: /* Printing an error number into a static buffer is not thread-safe */ return "unknown certificate verification error"; } } openssl-1.1.1f/crypto/x509/x509_v3.c000066400000000000000000000133271364063235100166620ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include "x509_local.h" int X509v3_get_ext_count(const STACK_OF(X509_EXTENSION) *x) { if (x == NULL) return 0; return sk_X509_EXTENSION_num(x); } int X509v3_get_ext_by_NID(const STACK_OF(X509_EXTENSION) *x, int nid, int lastpos) { ASN1_OBJECT *obj; obj = OBJ_nid2obj(nid); if (obj == NULL) return -2; return X509v3_get_ext_by_OBJ(x, obj, lastpos); } int X509v3_get_ext_by_OBJ(const STACK_OF(X509_EXTENSION) *sk, const ASN1_OBJECT *obj, int lastpos) { int n; X509_EXTENSION *ex; if (sk == NULL) return -1; lastpos++; if (lastpos < 0) lastpos = 0; n = sk_X509_EXTENSION_num(sk); for (; lastpos < n; lastpos++) { ex = sk_X509_EXTENSION_value(sk, lastpos); if (OBJ_cmp(ex->object, obj) == 0) return lastpos; } return -1; } int X509v3_get_ext_by_critical(const STACK_OF(X509_EXTENSION) *sk, int crit, int lastpos) { int n; X509_EXTENSION *ex; if (sk == NULL) return -1; lastpos++; if (lastpos < 0) lastpos = 0; n = sk_X509_EXTENSION_num(sk); for (; lastpos < n; lastpos++) { ex = sk_X509_EXTENSION_value(sk, lastpos); if (((ex->critical > 0) && crit) || ((ex->critical <= 0) && !crit)) return lastpos; } return -1; } X509_EXTENSION *X509v3_get_ext(const STACK_OF(X509_EXTENSION) *x, int loc) { if (x == NULL || sk_X509_EXTENSION_num(x) <= loc || loc < 0) return NULL; else return sk_X509_EXTENSION_value(x, loc); } X509_EXTENSION *X509v3_delete_ext(STACK_OF(X509_EXTENSION) *x, int loc) { X509_EXTENSION *ret; if (x == NULL || sk_X509_EXTENSION_num(x) <= loc || loc < 0) return NULL; ret = sk_X509_EXTENSION_delete(x, loc); return ret; } STACK_OF(X509_EXTENSION) *X509v3_add_ext(STACK_OF(X509_EXTENSION) **x, X509_EXTENSION *ex, int loc) { X509_EXTENSION *new_ex = NULL; int n; STACK_OF(X509_EXTENSION) *sk = NULL; if (x == NULL) { X509err(X509_F_X509V3_ADD_EXT, ERR_R_PASSED_NULL_PARAMETER); goto err2; } if (*x == NULL) { if ((sk = sk_X509_EXTENSION_new_null()) == NULL) goto err; } else sk = *x; n = sk_X509_EXTENSION_num(sk); if (loc > n) loc = n; else if (loc < 0) loc = n; if ((new_ex = X509_EXTENSION_dup(ex)) == NULL) goto err2; if (!sk_X509_EXTENSION_insert(sk, new_ex, loc)) goto err; if (*x == NULL) *x = sk; return sk; err: X509err(X509_F_X509V3_ADD_EXT, ERR_R_MALLOC_FAILURE); err2: X509_EXTENSION_free(new_ex); if (x != NULL && *x == NULL) sk_X509_EXTENSION_free(sk); return NULL; } X509_EXTENSION *X509_EXTENSION_create_by_NID(X509_EXTENSION **ex, int nid, int crit, ASN1_OCTET_STRING *data) { ASN1_OBJECT *obj; X509_EXTENSION *ret; obj = OBJ_nid2obj(nid); if (obj == NULL) { X509err(X509_F_X509_EXTENSION_CREATE_BY_NID, X509_R_UNKNOWN_NID); return NULL; } ret = X509_EXTENSION_create_by_OBJ(ex, obj, crit, data); if (ret == NULL) ASN1_OBJECT_free(obj); return ret; } X509_EXTENSION *X509_EXTENSION_create_by_OBJ(X509_EXTENSION **ex, const ASN1_OBJECT *obj, int crit, ASN1_OCTET_STRING *data) { X509_EXTENSION *ret; if ((ex == NULL) || (*ex == NULL)) { if ((ret = X509_EXTENSION_new()) == NULL) { X509err(X509_F_X509_EXTENSION_CREATE_BY_OBJ, ERR_R_MALLOC_FAILURE); return NULL; } } else ret = *ex; if (!X509_EXTENSION_set_object(ret, obj)) goto err; if (!X509_EXTENSION_set_critical(ret, crit)) goto err; if (!X509_EXTENSION_set_data(ret, data)) goto err; if ((ex != NULL) && (*ex == NULL)) *ex = ret; return ret; err: if ((ex == NULL) || (ret != *ex)) X509_EXTENSION_free(ret); return NULL; } int X509_EXTENSION_set_object(X509_EXTENSION *ex, const ASN1_OBJECT *obj) { if ((ex == NULL) || (obj == NULL)) return 0; ASN1_OBJECT_free(ex->object); ex->object = OBJ_dup(obj); return ex->object != NULL; } int X509_EXTENSION_set_critical(X509_EXTENSION *ex, int crit) { if (ex == NULL) return 0; ex->critical = (crit) ? 0xFF : -1; return 1; } int X509_EXTENSION_set_data(X509_EXTENSION *ex, ASN1_OCTET_STRING *data) { int i; if (ex == NULL) return 0; i = ASN1_OCTET_STRING_set(&ex->value, data->data, data->length); if (!i) return 0; return 1; } ASN1_OBJECT *X509_EXTENSION_get_object(X509_EXTENSION *ex) { if (ex == NULL) return NULL; return ex->object; } ASN1_OCTET_STRING *X509_EXTENSION_get_data(X509_EXTENSION *ex) { if (ex == NULL) return NULL; return &ex->value; } int X509_EXTENSION_get_critical(const X509_EXTENSION *ex) { if (ex == NULL) return 0; if (ex->critical > 0) return 1; return 0; } openssl-1.1.1f/crypto/x509/x509_vfy.c000066400000000000000000003127421364063235100171410ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "internal/dane.h" #include "crypto/x509.h" #include "x509_local.h" /* CRL score values */ /* No unhandled critical extensions */ #define CRL_SCORE_NOCRITICAL 0x100 /* certificate is within CRL scope */ #define CRL_SCORE_SCOPE 0x080 /* CRL times valid */ #define CRL_SCORE_TIME 0x040 /* Issuer name matches certificate */ #define CRL_SCORE_ISSUER_NAME 0x020 /* If this score or above CRL is probably valid */ #define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE) /* CRL issuer is certificate issuer */ #define CRL_SCORE_ISSUER_CERT 0x018 /* CRL issuer is on certificate path */ #define CRL_SCORE_SAME_PATH 0x008 /* CRL issuer matches CRL AKID */ #define CRL_SCORE_AKID 0x004 /* Have a delta CRL with valid times */ #define CRL_SCORE_TIME_DELTA 0x002 static int build_chain(X509_STORE_CTX *ctx); static int verify_chain(X509_STORE_CTX *ctx); static int dane_verify(X509_STORE_CTX *ctx); static int null_callback(int ok, X509_STORE_CTX *e); static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer); static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); static int check_chain_extensions(X509_STORE_CTX *ctx); static int check_name_constraints(X509_STORE_CTX *ctx); static int check_id(X509_STORE_CTX *ctx); static int check_trust(X509_STORE_CTX *ctx, int num_untrusted); static int check_revocation(X509_STORE_CTX *ctx); static int check_cert(X509_STORE_CTX *ctx); static int check_policy(X509_STORE_CTX *ctx); static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x); static int check_dane_issuer(X509_STORE_CTX *ctx, int depth); static int check_key_level(X509_STORE_CTX *ctx, X509 *cert); static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert); static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, unsigned int *preasons, X509_CRL *crl, X509 *x); static int get_crl_delta(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x); static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pcrl_score, X509_CRL *base, STACK_OF(X509_CRL) *crls); static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, int *pcrl_score); static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, unsigned int *preasons); static int check_crl_path(X509_STORE_CTX *ctx, X509 *x); static int check_crl_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *cert_path, STACK_OF(X509) *crl_path); static int internal_verify(X509_STORE_CTX *ctx); static int null_callback(int ok, X509_STORE_CTX *e) { return ok; } /* Return 1 is a certificate is self signed */ static int cert_self_signed(X509 *x) { if (X509_check_purpose(x, -1, 0) != 1) return 0; if (x->ex_flags & EXFLAG_SS) return 1; else return 0; } /* Given a certificate try and find an exact match in the store */ static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) { STACK_OF(X509) *certs; X509 *xtmp = NULL; int i; /* Lookup all certs with matching subject name */ certs = ctx->lookup_certs(ctx, X509_get_subject_name(x)); if (certs == NULL) return NULL; /* Look for exact match */ for (i = 0; i < sk_X509_num(certs); i++) { xtmp = sk_X509_value(certs, i); if (!X509_cmp(xtmp, x)) break; } if (i < sk_X509_num(certs)) X509_up_ref(xtmp); else xtmp = NULL; sk_X509_pop_free(certs, X509_free); return xtmp; } /*- * Inform the verify callback of an error. * If B is not NULL it is the error cert, otherwise use the chain cert at * B. * If B is not X509_V_OK, that's the error value, otherwise leave * unchanged (presumably set by the caller). * * Returns 0 to abort verification with an error, non-zero to continue. */ static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err) { ctx->error_depth = depth; ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth); if (err != X509_V_OK) ctx->error = err; return ctx->verify_cb(0, ctx); } /*- * Inform the verify callback of an error, CRL-specific variant. Here, the * error depth and certificate are already set, we just specify the error * number. * * Returns 0 to abort verification with an error, non-zero to continue. */ static int verify_cb_crl(X509_STORE_CTX *ctx, int err) { ctx->error = err; return ctx->verify_cb(0, ctx); } static int check_auth_level(X509_STORE_CTX *ctx) { int i; int num = sk_X509_num(ctx->chain); if (ctx->param->auth_level <= 0) return 1; for (i = 0; i < num; ++i) { X509 *cert = sk_X509_value(ctx->chain, i); /* * We've already checked the security of the leaf key, so here we only * check the security of issuer keys. */ if (i > 0 && !check_key_level(ctx, cert) && verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL) == 0) return 0; /* * We also check the signature algorithm security of all certificates * except those of the trust anchor at index num-1. */ if (i < num - 1 && !check_sig_level(ctx, cert) && verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK) == 0) return 0; } return 1; } static int verify_chain(X509_STORE_CTX *ctx) { int err; int ok; /* * Before either returning with an error, or continuing with CRL checks, * instantiate chain public key parameters. */ if ((ok = build_chain(ctx)) == 0 || (ok = check_chain_extensions(ctx)) == 0 || (ok = check_auth_level(ctx)) == 0 || (ok = check_id(ctx)) == 0 || 1) X509_get_pubkey_parameters(NULL, ctx->chain); if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0) return ok; err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain, ctx->param->flags); if (err != X509_V_OK) { if ((ok = verify_cb_cert(ctx, NULL, ctx->error_depth, err)) == 0) return ok; } /* Verify chain signatures and expiration times */ ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx); if (!ok) return ok; if ((ok = check_name_constraints(ctx)) == 0) return ok; #ifndef OPENSSL_NO_RFC3779 /* RFC 3779 path validation, now that CRL check has been done */ if ((ok = X509v3_asid_validate_path(ctx)) == 0) return ok; if ((ok = X509v3_addr_validate_path(ctx)) == 0) return ok; #endif /* If we get this far evaluate policies */ if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK) ok = ctx->check_policy(ctx); return ok; } int X509_verify_cert(X509_STORE_CTX *ctx) { SSL_DANE *dane = ctx->dane; int ret; if (ctx->cert == NULL) { X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); ctx->error = X509_V_ERR_INVALID_CALL; return -1; } if (ctx->chain != NULL) { /* * This X509_STORE_CTX has already been used to verify a cert. We * cannot do another one. */ X509err(X509_F_X509_VERIFY_CERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); ctx->error = X509_V_ERR_INVALID_CALL; return -1; } /* * first we make sure the chain we are going to build is present and that * the first entry is in place */ if (((ctx->chain = sk_X509_new_null()) == NULL) || (!sk_X509_push(ctx->chain, ctx->cert))) { X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return -1; } X509_up_ref(ctx->cert); ctx->num_untrusted = 1; /* If the peer's public key is too weak, we can stop early. */ if (!check_key_level(ctx, ctx->cert) && !verify_cb_cert(ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL)) return 0; if (DANETLS_ENABLED(dane)) ret = dane_verify(ctx); else ret = verify_chain(ctx); /* * Safety-net. If we are returning an error, we must also set ctx->error, * so that the chain is not considered verified should the error be ignored * (e.g. TLS with SSL_VERIFY_NONE). */ if (ret <= 0 && ctx->error == X509_V_OK) ctx->error = X509_V_ERR_UNSPECIFIED; return ret; } /* * Given a STACK_OF(X509) find the issuer of cert (if any) */ static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) { int i; X509 *issuer, *rv = NULL; for (i = 0; i < sk_X509_num(sk); i++) { issuer = sk_X509_value(sk, i); if (ctx->check_issued(ctx, x, issuer)) { rv = issuer; if (x509_check_cert_time(ctx, rv, -1)) break; } } return rv; } /* Given a possible certificate and issuer check them */ static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer) { int ret; if (x == issuer) return cert_self_signed(x); ret = X509_check_issued(issuer, x); if (ret == X509_V_OK) { int i; X509 *ch; /* Special case: single self signed certificate */ if (cert_self_signed(x) && sk_X509_num(ctx->chain) == 1) return 1; for (i = 0; i < sk_X509_num(ctx->chain); i++) { ch = sk_X509_value(ctx->chain, i); if (ch == issuer || !X509_cmp(ch, issuer)) { ret = X509_V_ERR_PATH_LOOP; break; } } } return (ret == X509_V_OK); } /* Alternative lookup method: look from a STACK stored in other_ctx */ static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x) { *issuer = find_issuer(ctx, ctx->other_ctx, x); if (*issuer) { X509_up_ref(*issuer); return 1; } else return 0; } static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx, X509_NAME *nm) { STACK_OF(X509) *sk = NULL; X509 *x; int i; for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) { x = sk_X509_value(ctx->other_ctx, i); if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) { if (sk == NULL) sk = sk_X509_new_null(); if (sk == NULL || sk_X509_push(sk, x) == 0) { sk_X509_pop_free(sk, X509_free); X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return NULL; } X509_up_ref(x); } } return sk; } /* * Check EE or CA certificate purpose. For trusted certificates explicit local * auxiliary trust can be used to override EKU-restrictions. */ static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth, int must_be_ca) { int tr_ok = X509_TRUST_UNTRUSTED; /* * For trusted certificates we want to see whether any auxiliary trust * settings trump the purpose constraints. * * This is complicated by the fact that the trust ordinals in * ctx->param->trust are entirely independent of the purpose ordinals in * ctx->param->purpose! * * What connects them is their mutual initialization via calls from * X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets * related values of both param->trust and param->purpose. It is however * typically possible to infer associated trust values from a purpose value * via the X509_PURPOSE API. * * Therefore, we can only check for trust overrides when the purpose we're * checking is the same as ctx->param->purpose and ctx->param->trust is * also set. */ if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose) tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT); switch (tr_ok) { case X509_TRUST_TRUSTED: return 1; case X509_TRUST_REJECTED: break; default: switch (X509_check_purpose(x, purpose, must_be_ca > 0)) { case 1: return 1; case 0: break; default: if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0) return 1; } break; } return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE); } /* * Check a certificate chains extensions for consistency with the supplied * purpose */ static int check_chain_extensions(X509_STORE_CTX *ctx) { int i, must_be_ca, plen = 0; X509 *x; int proxy_path_length = 0; int purpose; int allow_proxy_certs; int num = sk_X509_num(ctx->chain); /*- * must_be_ca can have 1 of 3 values: * -1: we accept both CA and non-CA certificates, to allow direct * use of self-signed certificates (which are marked as CA). * 0: we only accept non-CA certificates. This is currently not * used, but the possibility is present for future extensions. * 1: we only accept CA certificates. This is currently used for * all certificates in the chain except the leaf certificate. */ must_be_ca = -1; /* CRL path validation */ if (ctx->parent) { allow_proxy_certs = 0; purpose = X509_PURPOSE_CRL_SIGN; } else { allow_proxy_certs = ! !(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS); purpose = ctx->param->purpose; } for (i = 0; i < num; i++) { int ret; x = sk_X509_value(ctx->chain, i); if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && (x->ex_flags & EXFLAG_CRITICAL)) { if (!verify_cb_cert(ctx, x, i, X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION)) return 0; } if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY)) { if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED)) return 0; } ret = X509_check_ca(x); switch (must_be_ca) { case -1: if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) && (ret != 1) && (ret != 0)) { ret = 0; ctx->error = X509_V_ERR_INVALID_CA; } else ret = 1; break; case 0: if (ret != 0) { ret = 0; ctx->error = X509_V_ERR_INVALID_NON_CA; } else ret = 1; break; default: /* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */ if ((ret == 0) || ((i + 1 < num || ctx->param->flags & X509_V_FLAG_X509_STRICT) && (ret != 1))) { ret = 0; ctx->error = X509_V_ERR_INVALID_CA; } else ret = 1; break; } if (ret == 0 && !verify_cb_cert(ctx, x, i, X509_V_OK)) return 0; /* check_purpose() makes the callback as needed */ if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca)) return 0; /* Check pathlen */ if ((i > 1) && (x->ex_pathlen != -1) && (plen > (x->ex_pathlen + proxy_path_length))) { if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED)) return 0; } /* Increment path length if not a self issued intermediate CA */ if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0) plen++; /* * If this certificate is a proxy certificate, the next certificate * must be another proxy certificate or a EE certificate. If not, * the next certificate must be a CA certificate. */ if (x->ex_flags & EXFLAG_PROXY) { /* * RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint * is less than max_path_length, the former should be copied to * the latter, and 4.1.4 (a) stipulates that max_path_length * should be verified to be larger than zero and decrement it. * * Because we're checking the certs in the reverse order, we start * with verifying that proxy_path_length isn't larger than pcPLC, * and copy the latter to the former if it is, and finally, * increment proxy_path_length. */ if (x->ex_pcpathlen != -1) { if (proxy_path_length > x->ex_pcpathlen) { if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED)) return 0; } proxy_path_length = x->ex_pcpathlen; } proxy_path_length++; must_be_ca = 0; } else must_be_ca = 1; } return 1; } static int has_san_id(X509 *x, int gtype) { int i; int ret = 0; GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); if (gs == NULL) return 0; for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) { GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i); if (g->type == gtype) { ret = 1; break; } } GENERAL_NAMES_free(gs); return ret; } static int check_name_constraints(X509_STORE_CTX *ctx) { int i; /* Check name constraints for all certificates */ for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) { X509 *x = sk_X509_value(ctx->chain, i); int j; /* Ignore self issued certs unless last in chain */ if (i && (x->ex_flags & EXFLAG_SI)) continue; /* * Proxy certificates policy has an extra constraint, where the * certificate subject MUST be the issuer with a single CN entry * added. * (RFC 3820: 3.4, 4.1.3 (a)(4)) */ if (x->ex_flags & EXFLAG_PROXY) { X509_NAME *tmpsubject = X509_get_subject_name(x); X509_NAME *tmpissuer = X509_get_issuer_name(x); X509_NAME_ENTRY *tmpentry = NULL; int last_object_nid = 0; int err = X509_V_OK; int last_object_loc = X509_NAME_entry_count(tmpsubject) - 1; /* Check that there are at least two RDNs */ if (last_object_loc < 1) { err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; goto proxy_name_done; } /* * Check that there is exactly one more RDN in subject as * there is in issuer. */ if (X509_NAME_entry_count(tmpsubject) != X509_NAME_entry_count(tmpissuer) + 1) { err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; goto proxy_name_done; } /* * Check that the last subject component isn't part of a * multivalued RDN */ if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, last_object_loc)) == X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, last_object_loc - 1))) { err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; goto proxy_name_done; } /* * Check that the last subject RDN is a commonName, and that * all the previous RDNs match the issuer exactly */ tmpsubject = X509_NAME_dup(tmpsubject); if (tmpsubject == NULL) { X509err(X509_F_CHECK_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return 0; } tmpentry = X509_NAME_delete_entry(tmpsubject, last_object_loc); last_object_nid = OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry)); if (last_object_nid != NID_commonName || X509_NAME_cmp(tmpsubject, tmpissuer) != 0) { err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; } X509_NAME_ENTRY_free(tmpentry); X509_NAME_free(tmpsubject); proxy_name_done: if (err != X509_V_OK && !verify_cb_cert(ctx, x, i, err)) return 0; } /* * Check against constraints for all certificates higher in chain * including trust anchor. Trust anchor not strictly speaking needed * but if it includes constraints it is to be assumed it expects them * to be obeyed. */ for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) { NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc; if (nc) { int rv = NAME_CONSTRAINTS_check(x, nc); /* If EE certificate check commonName too */ if (rv == X509_V_OK && i == 0 && (ctx->param->hostflags & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0 && ((ctx->param->hostflags & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0 || !has_san_id(x, GEN_DNS))) rv = NAME_CONSTRAINTS_check_CN(x, nc); switch (rv) { case X509_V_OK: break; case X509_V_ERR_OUT_OF_MEM: return 0; default: if (!verify_cb_cert(ctx, x, i, rv)) return 0; break; } } } } return 1; } static int check_id_error(X509_STORE_CTX *ctx, int errcode) { return verify_cb_cert(ctx, ctx->cert, 0, errcode); } static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm) { int i; int n = sk_OPENSSL_STRING_num(vpm->hosts); char *name; if (vpm->peername != NULL) { OPENSSL_free(vpm->peername); vpm->peername = NULL; } for (i = 0; i < n; ++i) { name = sk_OPENSSL_STRING_value(vpm->hosts, i); if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0) return 1; } return n == 0; } static int check_id(X509_STORE_CTX *ctx) { X509_VERIFY_PARAM *vpm = ctx->param; X509 *x = ctx->cert; if (vpm->hosts && check_hosts(x, vpm) <= 0) { if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) return 0; } if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) { if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) return 0; } if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) { if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) return 0; } return 1; } static int check_trust(X509_STORE_CTX *ctx, int num_untrusted) { int i; X509 *x = NULL; X509 *mx; SSL_DANE *dane = ctx->dane; int num = sk_X509_num(ctx->chain); int trust; /* * Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2) * match, we're done, otherwise we'll merely record the match depth. */ if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) { switch (trust = check_dane_issuer(ctx, num_untrusted)) { case X509_TRUST_TRUSTED: case X509_TRUST_REJECTED: return trust; } } /* * Check trusted certificates in chain at depth num_untrusted and up. * Note, that depths 0..num_untrusted-1 may also contain trusted * certificates, but the caller is expected to have already checked those, * and wants to incrementally check just any added since. */ for (i = num_untrusted; i < num; i++) { x = sk_X509_value(ctx->chain, i); trust = X509_check_trust(x, ctx->param->trust, 0); /* If explicitly trusted return trusted */ if (trust == X509_TRUST_TRUSTED) goto trusted; if (trust == X509_TRUST_REJECTED) goto rejected; } /* * If we are looking at a trusted certificate, and accept partial chains, * the chain is PKIX trusted. */ if (num_untrusted < num) { if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) goto trusted; return X509_TRUST_UNTRUSTED; } if (num_untrusted == num && ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { /* * Last-resort call with no new trusted certificates, check the leaf * for a direct trust store match. */ i = 0; x = sk_X509_value(ctx->chain, i); mx = lookup_cert_match(ctx, x); if (!mx) return X509_TRUST_UNTRUSTED; /* * Check explicit auxiliary trust/reject settings. If none are set, * we'll accept X509_TRUST_UNTRUSTED when not self-signed. */ trust = X509_check_trust(mx, ctx->param->trust, 0); if (trust == X509_TRUST_REJECTED) { X509_free(mx); goto rejected; } /* Replace leaf with trusted match */ (void) sk_X509_set(ctx->chain, 0, mx); X509_free(x); ctx->num_untrusted = 0; goto trusted; } /* * If no trusted certs in chain at all return untrusted and allow * standard (no issuer cert) etc errors to be indicated. */ return X509_TRUST_UNTRUSTED; rejected: if (!verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED)) return X509_TRUST_REJECTED; return X509_TRUST_UNTRUSTED; trusted: if (!DANETLS_ENABLED(dane)) return X509_TRUST_TRUSTED; if (dane->pdpth < 0) dane->pdpth = num_untrusted; /* With DANE, PKIX alone is not trusted until we have both */ if (dane->mdpth >= 0) return X509_TRUST_TRUSTED; return X509_TRUST_UNTRUSTED; } static int check_revocation(X509_STORE_CTX *ctx) { int i = 0, last = 0, ok = 0; if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) return 1; if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) last = sk_X509_num(ctx->chain) - 1; else { /* If checking CRL paths this isn't the EE certificate */ if (ctx->parent) return 1; last = 0; } for (i = 0; i <= last; i++) { ctx->error_depth = i; ok = check_cert(ctx); if (!ok) return ok; } return 1; } static int check_cert(X509_STORE_CTX *ctx) { X509_CRL *crl = NULL, *dcrl = NULL; int ok = 0; int cnum = ctx->error_depth; X509 *x = sk_X509_value(ctx->chain, cnum); ctx->current_cert = x; ctx->current_issuer = NULL; ctx->current_crl_score = 0; ctx->current_reasons = 0; if (x->ex_flags & EXFLAG_PROXY) return 1; while (ctx->current_reasons != CRLDP_ALL_REASONS) { unsigned int last_reasons = ctx->current_reasons; /* Try to retrieve relevant CRL */ if (ctx->get_crl) ok = ctx->get_crl(ctx, &crl, x); else ok = get_crl_delta(ctx, &crl, &dcrl, x); /* * If error looking up CRL, nothing we can do except notify callback */ if (!ok) { ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); goto done; } ctx->current_crl = crl; ok = ctx->check_crl(ctx, crl); if (!ok) goto done; if (dcrl) { ok = ctx->check_crl(ctx, dcrl); if (!ok) goto done; ok = ctx->cert_crl(ctx, dcrl, x); if (!ok) goto done; } else ok = 1; /* Don't look in full CRL if delta reason is removefromCRL */ if (ok != 2) { ok = ctx->cert_crl(ctx, crl, x); if (!ok) goto done; } X509_CRL_free(crl); X509_CRL_free(dcrl); crl = NULL; dcrl = NULL; /* * If reasons not updated we won't get anywhere by another iteration, * so exit loop. */ if (last_reasons == ctx->current_reasons) { ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); goto done; } } done: X509_CRL_free(crl); X509_CRL_free(dcrl); ctx->current_crl = NULL; return ok; } /* Check CRL times against values in X509_STORE_CTX */ static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) { time_t *ptime; int i; if (notify) ctx->current_crl = crl; if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) ptime = &ctx->param->check_time; else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) return 1; else ptime = NULL; i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime); if (i == 0) { if (!notify) return 0; if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD)) return 0; } if (i > 0) { if (!notify) return 0; if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID)) return 0; } if (X509_CRL_get0_nextUpdate(crl)) { i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime); if (i == 0) { if (!notify) return 0; if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD)) return 0; } /* Ignore expiry of base CRL is delta is valid */ if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA)) { if (!notify) return 0; if (!verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED)) return 0; } } if (notify) ctx->current_crl = NULL; return 1; } static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl, X509 **pissuer, int *pscore, unsigned int *preasons, STACK_OF(X509_CRL) *crls) { int i, crl_score, best_score = *pscore; unsigned int reasons, best_reasons = 0; X509 *x = ctx->current_cert; X509_CRL *crl, *best_crl = NULL; X509 *crl_issuer = NULL, *best_crl_issuer = NULL; for (i = 0; i < sk_X509_CRL_num(crls); i++) { crl = sk_X509_CRL_value(crls, i); reasons = *preasons; crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x); if (crl_score < best_score || crl_score == 0) continue; /* If current CRL is equivalent use it if it is newer */ if (crl_score == best_score && best_crl != NULL) { int day, sec; if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl), X509_CRL_get0_lastUpdate(crl)) == 0) continue; /* * ASN1_TIME_diff never returns inconsistent signs for |day| * and |sec|. */ if (day <= 0 && sec <= 0) continue; } best_crl = crl; best_crl_issuer = crl_issuer; best_score = crl_score; best_reasons = reasons; } if (best_crl) { X509_CRL_free(*pcrl); *pcrl = best_crl; *pissuer = best_crl_issuer; *pscore = best_score; *preasons = best_reasons; X509_CRL_up_ref(best_crl); X509_CRL_free(*pdcrl); *pdcrl = NULL; get_delta_sk(ctx, pdcrl, pscore, best_crl, crls); } if (best_score >= CRL_SCORE_VALID) return 1; return 0; } /* * Compare two CRL extensions for delta checking purposes. They should be * both present or both absent. If both present all fields must be identical. */ static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid) { ASN1_OCTET_STRING *exta, *extb; int i; i = X509_CRL_get_ext_by_NID(a, nid, -1); if (i >= 0) { /* Can't have multiple occurrences */ if (X509_CRL_get_ext_by_NID(a, nid, i) != -1) return 0; exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i)); } else exta = NULL; i = X509_CRL_get_ext_by_NID(b, nid, -1); if (i >= 0) { if (X509_CRL_get_ext_by_NID(b, nid, i) != -1) return 0; extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i)); } else extb = NULL; if (!exta && !extb) return 1; if (!exta || !extb) return 0; if (ASN1_OCTET_STRING_cmp(exta, extb)) return 0; return 1; } /* See if a base and delta are compatible */ static int check_delta_base(X509_CRL *delta, X509_CRL *base) { /* Delta CRL must be a delta */ if (!delta->base_crl_number) return 0; /* Base must have a CRL number */ if (!base->crl_number) return 0; /* Issuer names must match */ if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(delta))) return 0; /* AKID and IDP must match */ if (!crl_extension_match(delta, base, NID_authority_key_identifier)) return 0; if (!crl_extension_match(delta, base, NID_issuing_distribution_point)) return 0; /* Delta CRL base number must not exceed Full CRL number. */ if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0) return 0; /* Delta CRL number must exceed full CRL number */ if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0) return 1; return 0; } /* * For a given base CRL find a delta... maybe extend to delta scoring or * retrieve a chain of deltas... */ static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore, X509_CRL *base, STACK_OF(X509_CRL) *crls) { X509_CRL *delta; int i; if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS)) return; if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST)) return; for (i = 0; i < sk_X509_CRL_num(crls); i++) { delta = sk_X509_CRL_value(crls, i); if (check_delta_base(delta, base)) { if (check_crl_time(ctx, delta, 0)) *pscore |= CRL_SCORE_TIME_DELTA; X509_CRL_up_ref(delta); *dcrl = delta; return; } } *dcrl = NULL; } /* * For a given CRL return how suitable it is for the supplied certificate * 'x'. The return value is a mask of several criteria. If the issuer is not * the certificate issuer this is returned in *pissuer. The reasons mask is * also used to determine if the CRL is suitable: if no new reasons the CRL * is rejected, otherwise reasons is updated. */ static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, unsigned int *preasons, X509_CRL *crl, X509 *x) { int crl_score = 0; unsigned int tmp_reasons = *preasons, crl_reasons; /* First see if we can reject CRL straight away */ /* Invalid IDP cannot be processed */ if (crl->idp_flags & IDP_INVALID) return 0; /* Reason codes or indirect CRLs need extended CRL support */ if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) { if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) return 0; } else if (crl->idp_flags & IDP_REASONS) { /* If no new reasons reject */ if (!(crl->idp_reasons & ~tmp_reasons)) return 0; } /* Don't process deltas at this stage */ else if (crl->base_crl_number) return 0; /* If issuer name doesn't match certificate need indirect CRL */ if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) { if (!(crl->idp_flags & IDP_INDIRECT)) return 0; } else crl_score |= CRL_SCORE_ISSUER_NAME; if (!(crl->flags & EXFLAG_CRITICAL)) crl_score |= CRL_SCORE_NOCRITICAL; /* Check expiry */ if (check_crl_time(ctx, crl, 0)) crl_score |= CRL_SCORE_TIME; /* Check authority key ID and locate certificate issuer */ crl_akid_check(ctx, crl, pissuer, &crl_score); /* If we can't locate certificate issuer at this point forget it */ if (!(crl_score & CRL_SCORE_AKID)) return 0; /* Check cert for matching CRL distribution points */ if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) { /* If no new reasons reject */ if (!(crl_reasons & ~tmp_reasons)) return 0; tmp_reasons |= crl_reasons; crl_score |= CRL_SCORE_SCOPE; } *preasons = tmp_reasons; return crl_score; } static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, int *pcrl_score) { X509 *crl_issuer = NULL; X509_NAME *cnm = X509_CRL_get_issuer(crl); int cidx = ctx->error_depth; int i; if (cidx != sk_X509_num(ctx->chain) - 1) cidx++; crl_issuer = sk_X509_value(ctx->chain, cidx); if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { if (*pcrl_score & CRL_SCORE_ISSUER_NAME) { *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT; *pissuer = crl_issuer; return; } } for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) { crl_issuer = sk_X509_value(ctx->chain, cidx); if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) continue; if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH; *pissuer = crl_issuer; return; } } /* Anything else needs extended CRL support */ if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) return; /* * Otherwise the CRL issuer is not on the path. Look for it in the set of * untrusted certificates. */ for (i = 0; i < sk_X509_num(ctx->untrusted); i++) { crl_issuer = sk_X509_value(ctx->untrusted, i); if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) continue; if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { *pissuer = crl_issuer; *pcrl_score |= CRL_SCORE_AKID; return; } } } /* * Check the path of a CRL issuer certificate. This creates a new * X509_STORE_CTX and populates it with most of the parameters from the * parent. This could be optimised somewhat since a lot of path checking will * be duplicated by the parent, but this will rarely be used in practice. */ static int check_crl_path(X509_STORE_CTX *ctx, X509 *x) { X509_STORE_CTX crl_ctx; int ret; /* Don't allow recursive CRL path validation */ if (ctx->parent) return 0; if (!X509_STORE_CTX_init(&crl_ctx, ctx->ctx, x, ctx->untrusted)) return -1; crl_ctx.crls = ctx->crls; /* Copy verify params across */ X509_STORE_CTX_set0_param(&crl_ctx, ctx->param); crl_ctx.parent = ctx; crl_ctx.verify_cb = ctx->verify_cb; /* Verify CRL issuer */ ret = X509_verify_cert(&crl_ctx); if (ret <= 0) goto err; /* Check chain is acceptable */ ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain); err: X509_STORE_CTX_cleanup(&crl_ctx); return ret; } /* * RFC3280 says nothing about the relationship between CRL path and * certificate path, which could lead to situations where a certificate could * be revoked or validated by a CA not authorised to do so. RFC5280 is more * strict and states that the two paths must end in the same trust anchor, * though some discussions remain... until this is resolved we use the * RFC5280 version */ static int check_crl_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *cert_path, STACK_OF(X509) *crl_path) { X509 *cert_ta, *crl_ta; cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1); crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1); if (!X509_cmp(cert_ta, crl_ta)) return 1; return 0; } /*- * Check for match between two dist point names: three separate cases. * 1. Both are relative names and compare X509_NAME types. * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES. * 3. Both are full names and compare two GENERAL_NAMES. * 4. One is NULL: automatic match. */ static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) { X509_NAME *nm = NULL; GENERAL_NAMES *gens = NULL; GENERAL_NAME *gena, *genb; int i, j; if (!a || !b) return 1; if (a->type == 1) { if (!a->dpname) return 0; /* Case 1: two X509_NAME */ if (b->type == 1) { if (!b->dpname) return 0; if (!X509_NAME_cmp(a->dpname, b->dpname)) return 1; else return 0; } /* Case 2: set name and GENERAL_NAMES appropriately */ nm = a->dpname; gens = b->name.fullname; } else if (b->type == 1) { if (!b->dpname) return 0; /* Case 2: set name and GENERAL_NAMES appropriately */ gens = a->name.fullname; nm = b->dpname; } /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */ if (nm) { for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gena = sk_GENERAL_NAME_value(gens, i); if (gena->type != GEN_DIRNAME) continue; if (!X509_NAME_cmp(nm, gena->d.directoryName)) return 1; } return 0; } /* Else case 3: two GENERAL_NAMES */ for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) { gena = sk_GENERAL_NAME_value(a->name.fullname, i); for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) { genb = sk_GENERAL_NAME_value(b->name.fullname, j); if (!GENERAL_NAME_cmp(gena, genb)) return 1; } } return 0; } static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score) { int i; X509_NAME *nm = X509_CRL_get_issuer(crl); /* If no CRLissuer return is successful iff don't need a match */ if (!dp->CRLissuer) return ! !(crl_score & CRL_SCORE_ISSUER_NAME); for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) { GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i); if (gen->type != GEN_DIRNAME) continue; if (!X509_NAME_cmp(gen->d.directoryName, nm)) return 1; } return 0; } /* Check CRLDP and IDP */ static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, unsigned int *preasons) { int i; if (crl->idp_flags & IDP_ONLYATTR) return 0; if (x->ex_flags & EXFLAG_CA) { if (crl->idp_flags & IDP_ONLYUSER) return 0; } else { if (crl->idp_flags & IDP_ONLYCA) return 0; } *preasons = crl->idp_reasons; for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i); if (crldp_check_crlissuer(dp, crl, crl_score)) { if (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint)) { *preasons &= dp->dp_reasons; return 1; } } } if ((!crl->idp || !crl->idp->distpoint) && (crl_score & CRL_SCORE_ISSUER_NAME)) return 1; return 0; } /* * Retrieve CRL corresponding to current certificate. If deltas enabled try * to find a delta CRL too */ static int get_crl_delta(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x) { int ok; X509 *issuer = NULL; int crl_score = 0; unsigned int reasons; X509_CRL *crl = NULL, *dcrl = NULL; STACK_OF(X509_CRL) *skcrl; X509_NAME *nm = X509_get_issuer_name(x); reasons = ctx->current_reasons; ok = get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, ctx->crls); if (ok) goto done; /* Lookup CRLs from store */ skcrl = ctx->lookup_crls(ctx, nm); /* If no CRLs found and a near match from get_crl_sk use that */ if (!skcrl && crl) goto done; get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl); sk_X509_CRL_pop_free(skcrl, X509_CRL_free); done: /* If we got any kind of CRL use it and return success */ if (crl) { ctx->current_issuer = issuer; ctx->current_crl_score = crl_score; ctx->current_reasons = reasons; *pcrl = crl; *pdcrl = dcrl; return 1; } return 0; } /* Check CRL validity */ static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) { X509 *issuer = NULL; EVP_PKEY *ikey = NULL; int cnum = ctx->error_depth; int chnum = sk_X509_num(ctx->chain) - 1; /* if we have an alternative CRL issuer cert use that */ if (ctx->current_issuer) issuer = ctx->current_issuer; /* * Else find CRL issuer: if not last certificate then issuer is next * certificate in chain. */ else if (cnum < chnum) issuer = sk_X509_value(ctx->chain, cnum + 1); else { issuer = sk_X509_value(ctx->chain, chnum); /* If not self signed, can't check signature */ if (!ctx->check_issued(ctx, issuer, issuer) && !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER)) return 0; } if (issuer == NULL) return 1; /* * Skip most tests for deltas because they have already been done */ if (!crl->base_crl_number) { /* Check for cRLSign bit if keyUsage present */ if ((issuer->ex_flags & EXFLAG_KUSAGE) && !(issuer->ex_kusage & KU_CRL_SIGN) && !verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN)) return 0; if (!(ctx->current_crl_score & CRL_SCORE_SCOPE) && !verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE)) return 0; if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH) && check_crl_path(ctx, ctx->current_issuer) <= 0 && !verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR)) return 0; if ((crl->idp_flags & IDP_INVALID) && !verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION)) return 0; } if (!(ctx->current_crl_score & CRL_SCORE_TIME) && !check_crl_time(ctx, crl, 1)) return 0; /* Attempt to get issuer certificate public key */ ikey = X509_get0_pubkey(issuer); if (!ikey && !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)) return 0; if (ikey) { int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags); if (rv != X509_V_OK && !verify_cb_crl(ctx, rv)) return 0; /* Verify CRL signature */ if (X509_CRL_verify(crl, ikey) <= 0 && !verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE)) return 0; } return 1; } /* Check certificate against CRL */ static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) { X509_REVOKED *rev; /* * The rules changed for this... previously if a CRL contained unhandled * critical extensions it could still be used to indicate a certificate * was revoked. This has since been changed since critical extensions can * change the meaning of CRL entries. */ if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && (crl->flags & EXFLAG_CRITICAL) && !verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION)) return 0; /* * Look for serial number of certificate in CRL. If found, make sure * reason is not removeFromCRL. */ if (X509_CRL_get0_by_cert(crl, &rev, x)) { if (rev->reason == CRL_REASON_REMOVE_FROM_CRL) return 2; if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED)) return 0; } return 1; } static int check_policy(X509_STORE_CTX *ctx) { int ret; if (ctx->parent) return 1; /* * With DANE, the trust anchor might be a bare public key, not a * certificate! In that case our chain does not have the trust anchor * certificate as a top-most element. This comports well with RFC5280 * chain verification, since there too, the trust anchor is not part of the * chain to be verified. In particular, X509_policy_check() does not look * at the TA cert, but assumes that it is present as the top-most chain * element. We therefore temporarily push a NULL cert onto the chain if it * was verified via a bare public key, and pop it off right after the * X509_policy_check() call. */ if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL)) { X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return 0; } ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain, ctx->param->policies, ctx->param->flags); if (ctx->bare_ta_signed) sk_X509_pop(ctx->chain); if (ret == X509_PCY_TREE_INTERNAL) { X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return 0; } /* Invalid or inconsistent extensions */ if (ret == X509_PCY_TREE_INVALID) { int i; /* Locate certificates with bad extensions and notify callback. */ for (i = 1; i < sk_X509_num(ctx->chain); i++) { X509 *x = sk_X509_value(ctx->chain, i); if (!(x->ex_flags & EXFLAG_INVALID_POLICY)) continue; if (!verify_cb_cert(ctx, x, i, X509_V_ERR_INVALID_POLICY_EXTENSION)) return 0; } return 1; } if (ret == X509_PCY_TREE_FAILURE) { ctx->current_cert = NULL; ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY; return ctx->verify_cb(0, ctx); } if (ret != X509_PCY_TREE_VALID) { X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR); return 0; } if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) { ctx->current_cert = NULL; /* * Verification errors need to be "sticky", a callback may have allowed * an SSL handshake to continue despite an error, and we must then * remain in an error state. Therefore, we MUST NOT clear earlier * verification errors by setting the error to X509_V_OK. */ if (!ctx->verify_cb(2, ctx)) return 0; } return 1; } /*- * Check certificate validity times. * If depth >= 0, invoke verification callbacks on error, otherwise just return * the validation status. * * Return 1 on success, 0 otherwise. */ int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth) { time_t *ptime; int i; if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) ptime = &ctx->param->check_time; else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) return 1; else ptime = NULL; i = X509_cmp_time(X509_get0_notBefore(x), ptime); if (i >= 0 && depth < 0) return 0; if (i == 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD)) return 0; if (i > 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID)) return 0; i = X509_cmp_time(X509_get0_notAfter(x), ptime); if (i <= 0 && depth < 0) return 0; if (i == 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD)) return 0; if (i < 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED)) return 0; return 1; } static int internal_verify(X509_STORE_CTX *ctx) { int n = sk_X509_num(ctx->chain) - 1; X509 *xi = sk_X509_value(ctx->chain, n); X509 *xs; /* * With DANE-verified bare public key TA signatures, it remains only to * check the timestamps of the top certificate. We report the issuer as * NULL, since all we have is a bare key. */ if (ctx->bare_ta_signed) { xs = xi; xi = NULL; goto check_cert; } if (ctx->check_issued(ctx, xi, xi)) xs = xi; else { if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { xs = xi; goto check_cert; } if (n <= 0) return verify_cb_cert(ctx, xi, 0, X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE); n--; ctx->error_depth = n; xs = sk_X509_value(ctx->chain, n); } /* * Do not clear ctx->error=0, it must be "sticky", only the user's callback * is allowed to reset errors (at its own peril). */ while (n >= 0) { EVP_PKEY *pkey; /* * Skip signature check for self signed certificates unless explicitly * asked for. It doesn't add any security and just wastes time. If * the issuer's public key is unusable, report the issuer certificate * and its depth (rather than the depth of the subject). */ if (xs != xi || (ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)) { if ((pkey = X509_get0_pubkey(xi)) == NULL) { if (!verify_cb_cert(ctx, xi, xi != xs ? n+1 : n, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)) return 0; } else if (X509_verify(xs, pkey) <= 0) { if (!verify_cb_cert(ctx, xs, n, X509_V_ERR_CERT_SIGNATURE_FAILURE)) return 0; } } check_cert: /* Calls verify callback as needed */ if (!x509_check_cert_time(ctx, xs, n)) return 0; /* * Signal success at this depth. However, the previous error (if any) * is retained. */ ctx->current_issuer = xi; ctx->current_cert = xs; ctx->error_depth = n; if (!ctx->verify_cb(1, ctx)) return 0; if (--n >= 0) { xi = xs; xs = sk_X509_value(ctx->chain, n); } } return 1; } int X509_cmp_current_time(const ASN1_TIME *ctm) { return X509_cmp_time(ctm, NULL); } int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time) { static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ") - 1; static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ") - 1; ASN1_TIME *asn1_cmp_time = NULL; int i, day, sec, ret = 0; #ifdef CHARSET_EBCDIC const char upper_z = 0x5A; #else const char upper_z = 'Z'; #endif /* * Note that ASN.1 allows much more slack in the time format than RFC5280. * In RFC5280, the representation is fixed: * UTCTime: YYMMDDHHMMSSZ * GeneralizedTime: YYYYMMDDHHMMSSZ * * We do NOT currently enforce the following RFC 5280 requirement: * "CAs conforming to this profile MUST always encode certificate * validity dates through the year 2049 as UTCTime; certificate validity * dates in 2050 or later MUST be encoded as GeneralizedTime." */ switch (ctm->type) { case V_ASN1_UTCTIME: if (ctm->length != (int)(utctime_length)) return 0; break; case V_ASN1_GENERALIZEDTIME: if (ctm->length != (int)(generalizedtime_length)) return 0; break; default: return 0; } /** * Verify the format: the ASN.1 functions we use below allow a more * flexible format than what's mandated by RFC 5280. * Digit and date ranges will be verified in the conversion methods. */ for (i = 0; i < ctm->length - 1; i++) { if (!ascii_isdigit(ctm->data[i])) return 0; } if (ctm->data[ctm->length - 1] != upper_z) return 0; /* * There is ASN1_UTCTIME_cmp_time_t but no * ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t, * so we go through ASN.1 */ asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time); if (asn1_cmp_time == NULL) goto err; if (!ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time)) goto err; /* * X509_cmp_time comparison is <=. * The return value 0 is reserved for errors. */ ret = (day >= 0 && sec >= 0) ? -1 : 1; err: ASN1_TIME_free(asn1_cmp_time); return ret; } ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj) { return X509_time_adj(s, adj, NULL); } ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm) { return X509_time_adj_ex(s, 0, offset_sec, in_tm); } ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, int offset_day, long offset_sec, time_t *in_tm) { time_t t; if (in_tm) t = *in_tm; else time(&t); if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING)) { if (s->type == V_ASN1_UTCTIME) return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec); if (s->type == V_ASN1_GENERALIZEDTIME) return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec); } return ASN1_TIME_adj(s, t, offset_day, offset_sec); } int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain) { EVP_PKEY *ktmp = NULL, *ktmp2; int i, j; if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey)) return 1; for (i = 0; i < sk_X509_num(chain); i++) { ktmp = X509_get0_pubkey(sk_X509_value(chain, i)); if (ktmp == NULL) { X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY); return 0; } if (!EVP_PKEY_missing_parameters(ktmp)) break; } if (ktmp == NULL) { X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN); return 0; } /* first, populate the other certs */ for (j = i - 1; j >= 0; j--) { ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j)); EVP_PKEY_copy_parameters(ktmp2, ktmp); } if (pkey != NULL) EVP_PKEY_copy_parameters(pkey, ktmp); return 1; } /* Make a delta CRL as the diff between two full CRLs */ X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer, EVP_PKEY *skey, const EVP_MD *md, unsigned int flags) { X509_CRL *crl = NULL; int i; STACK_OF(X509_REVOKED) *revs = NULL; /* CRLs can't be delta already */ if (base->base_crl_number || newer->base_crl_number) { X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_ALREADY_DELTA); return NULL; } /* Base and new CRL must have a CRL number */ if (!base->crl_number || !newer->crl_number) { X509err(X509_F_X509_CRL_DIFF, X509_R_NO_CRL_NUMBER); return NULL; } /* Issuer names must match */ if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(newer))) { X509err(X509_F_X509_CRL_DIFF, X509_R_ISSUER_MISMATCH); return NULL; } /* AKID and IDP must match */ if (!crl_extension_match(base, newer, NID_authority_key_identifier)) { X509err(X509_F_X509_CRL_DIFF, X509_R_AKID_MISMATCH); return NULL; } if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) { X509err(X509_F_X509_CRL_DIFF, X509_R_IDP_MISMATCH); return NULL; } /* Newer CRL number must exceed full CRL number */ if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) { X509err(X509_F_X509_CRL_DIFF, X509_R_NEWER_CRL_NOT_NEWER); return NULL; } /* CRLs must verify */ if (skey && (X509_CRL_verify(base, skey) <= 0 || X509_CRL_verify(newer, skey) <= 0)) { X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_VERIFY_FAILURE); return NULL; } /* Create new CRL */ crl = X509_CRL_new(); if (crl == NULL || !X509_CRL_set_version(crl, 1)) goto memerr; /* Set issuer name */ if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer))) goto memerr; if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer))) goto memerr; if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer))) goto memerr; /* Set base CRL number: must be critical */ if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0)) goto memerr; /* * Copy extensions across from newest CRL to delta: this will set CRL * number to correct value too. */ for (i = 0; i < X509_CRL_get_ext_count(newer); i++) { X509_EXTENSION *ext; ext = X509_CRL_get_ext(newer, i); if (!X509_CRL_add_ext(crl, ext, -1)) goto memerr; } /* Go through revoked entries, copying as needed */ revs = X509_CRL_get_REVOKED(newer); for (i = 0; i < sk_X509_REVOKED_num(revs); i++) { X509_REVOKED *rvn, *rvtmp; rvn = sk_X509_REVOKED_value(revs, i); /* * Add only if not also in base. TODO: need something cleverer here * for some more complex CRLs covering multiple CAs. */ if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) { rvtmp = X509_REVOKED_dup(rvn); if (!rvtmp) goto memerr; if (!X509_CRL_add0_revoked(crl, rvtmp)) { X509_REVOKED_free(rvtmp); goto memerr; } } } /* TODO: optionally prune deleted entries */ if (skey && md && !X509_CRL_sign(crl, skey, md)) goto memerr; return crl; memerr: X509err(X509_F_X509_CRL_DIFF, ERR_R_MALLOC_FAILURE); X509_CRL_free(crl); return NULL; } int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) { return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); } void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) { return CRYPTO_get_ex_data(&ctx->ex_data, idx); } int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx) { return ctx->error; } void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) { ctx->error = err; } int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx) { return ctx->error_depth; } void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth) { ctx->error_depth = depth; } X509 *X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx) { return ctx->current_cert; } void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x) { ctx->current_cert = x; } STACK_OF(X509) *X509_STORE_CTX_get0_chain(X509_STORE_CTX *ctx) { return ctx->chain; } STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx) { if (!ctx->chain) return NULL; return X509_chain_up_ref(ctx->chain); } X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx) { return ctx->current_issuer; } X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx) { return ctx->current_crl; } X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx) { return ctx->parent; } void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x) { ctx->cert = x; } void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) { ctx->crls = sk; } int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) { /* * XXX: Why isn't this function always used to set the associated trust? * Should there even be a VPM->trust field at all? Or should the trust * always be inferred from the purpose by X509_STORE_CTX_init(). */ return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0); } int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) { /* * XXX: See above, this function would only be needed when the default * trust for the purpose needs an override in a corner case. */ return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust); } /* * This function is used to set the X509_STORE_CTX purpose and trust values. * This is intended to be used when another structure has its own trust and * purpose values which (if set) will be inherited by the ctx. If they aren't * set then we will usually have a default purpose in mind which should then * be used to set the trust value. An example of this is SSL use: an SSL * structure will have its own purpose and trust settings which the * application can set: if they aren't set then we use the default of SSL * client/server. */ int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose, int purpose, int trust) { int idx; /* If purpose not set use default */ if (!purpose) purpose = def_purpose; /* If we have a purpose then check it is valid */ if (purpose) { X509_PURPOSE *ptmp; idx = X509_PURPOSE_get_by_id(purpose); if (idx == -1) { X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, X509_R_UNKNOWN_PURPOSE_ID); return 0; } ptmp = X509_PURPOSE_get0(idx); if (ptmp->trust == X509_TRUST_DEFAULT) { idx = X509_PURPOSE_get_by_id(def_purpose); /* * XXX: In the two callers above def_purpose is always 0, which is * not a known value, so idx will always be -1. How is the * X509_TRUST_DEFAULT case actually supposed to be handled? */ if (idx == -1) { X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, X509_R_UNKNOWN_PURPOSE_ID); return 0; } ptmp = X509_PURPOSE_get0(idx); } /* If trust not set then get from purpose default */ if (!trust) trust = ptmp->trust; } if (trust) { idx = X509_TRUST_get_by_id(trust); if (idx == -1) { X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, X509_R_UNKNOWN_TRUST_ID); return 0; } } if (purpose && !ctx->param->purpose) ctx->param->purpose = purpose; if (trust && !ctx->param->trust) ctx->param->trust = trust; return 1; } X509_STORE_CTX *X509_STORE_CTX_new(void) { X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) { X509err(X509_F_X509_STORE_CTX_NEW, ERR_R_MALLOC_FAILURE); return NULL; } return ctx; } void X509_STORE_CTX_free(X509_STORE_CTX *ctx) { if (ctx == NULL) return; X509_STORE_CTX_cleanup(ctx); OPENSSL_free(ctx); } int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509, STACK_OF(X509) *chain) { int ret = 1; ctx->ctx = store; ctx->cert = x509; ctx->untrusted = chain; ctx->crls = NULL; ctx->num_untrusted = 0; ctx->other_ctx = NULL; ctx->valid = 0; ctx->chain = NULL; ctx->error = 0; ctx->explicit_policy = 0; ctx->error_depth = 0; ctx->current_cert = NULL; ctx->current_issuer = NULL; ctx->current_crl = NULL; ctx->current_crl_score = 0; ctx->current_reasons = 0; ctx->tree = NULL; ctx->parent = NULL; ctx->dane = NULL; ctx->bare_ta_signed = 0; /* Zero ex_data to make sure we're cleanup-safe */ memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); /* store->cleanup is always 0 in OpenSSL, if set must be idempotent */ if (store) ctx->cleanup = store->cleanup; else ctx->cleanup = 0; if (store && store->check_issued) ctx->check_issued = store->check_issued; else ctx->check_issued = check_issued; if (store && store->get_issuer) ctx->get_issuer = store->get_issuer; else ctx->get_issuer = X509_STORE_CTX_get1_issuer; if (store && store->verify_cb) ctx->verify_cb = store->verify_cb; else ctx->verify_cb = null_callback; if (store && store->verify) ctx->verify = store->verify; else ctx->verify = internal_verify; if (store && store->check_revocation) ctx->check_revocation = store->check_revocation; else ctx->check_revocation = check_revocation; if (store && store->get_crl) ctx->get_crl = store->get_crl; else ctx->get_crl = NULL; if (store && store->check_crl) ctx->check_crl = store->check_crl; else ctx->check_crl = check_crl; if (store && store->cert_crl) ctx->cert_crl = store->cert_crl; else ctx->cert_crl = cert_crl; if (store && store->check_policy) ctx->check_policy = store->check_policy; else ctx->check_policy = check_policy; if (store && store->lookup_certs) ctx->lookup_certs = store->lookup_certs; else ctx->lookup_certs = X509_STORE_CTX_get1_certs; if (store && store->lookup_crls) ctx->lookup_crls = store->lookup_crls; else ctx->lookup_crls = X509_STORE_CTX_get1_crls; ctx->param = X509_VERIFY_PARAM_new(); if (ctx->param == NULL) { X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); goto err; } /* * Inherit callbacks and flags from X509_STORE if not set use defaults. */ if (store) ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param); else ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE; if (ret) ret = X509_VERIFY_PARAM_inherit(ctx->param, X509_VERIFY_PARAM_lookup("default")); if (ret == 0) { X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); goto err; } /* * XXX: For now, continue to inherit trust from VPM, but infer from the * purpose if this still yields the default value. */ if (ctx->param->trust == X509_TRUST_DEFAULT) { int idx = X509_PURPOSE_get_by_id(ctx->param->purpose); X509_PURPOSE *xp = X509_PURPOSE_get0(idx); if (xp != NULL) ctx->param->trust = X509_PURPOSE_get_trust(xp); } if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &ctx->ex_data)) return 1; X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); err: /* * On error clean up allocated storage, if the store context was not * allocated with X509_STORE_CTX_new() this is our last chance to do so. */ X509_STORE_CTX_cleanup(ctx); return 0; } /* * Set alternative lookup method: just a STACK of trusted certificates. This * avoids X509_STORE nastiness where it isn't needed. */ void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { ctx->other_ctx = sk; ctx->get_issuer = get_issuer_sk; ctx->lookup_certs = lookup_certs_sk; } void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) { /* * We need to be idempotent because, unfortunately, free() also calls * cleanup(), so the natural call sequence new(), init(), cleanup(), free() * calls cleanup() for the same object twice! Thus we must zero the * pointers below after they're freed! */ /* Seems to always be 0 in OpenSSL, do this at most once. */ if (ctx->cleanup != NULL) { ctx->cleanup(ctx); ctx->cleanup = NULL; } if (ctx->param != NULL) { if (ctx->parent == NULL) X509_VERIFY_PARAM_free(ctx->param); ctx->param = NULL; } X509_policy_tree_free(ctx->tree); ctx->tree = NULL; sk_X509_pop_free(ctx->chain, X509_free); ctx->chain = NULL; CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data)); memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); } void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) { X509_VERIFY_PARAM_set_depth(ctx->param, depth); } void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) { X509_VERIFY_PARAM_set_flags(ctx->param, flags); } void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, time_t t) { X509_VERIFY_PARAM_set_time(ctx->param, t); } X509 *X509_STORE_CTX_get0_cert(X509_STORE_CTX *ctx) { return ctx->cert; } STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(X509_STORE_CTX *ctx) { return ctx->untrusted; } void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { ctx->untrusted = sk; } void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { sk_X509_pop_free(ctx->chain, X509_free); ctx->chain = sk; } void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx, X509_STORE_CTX_verify_cb verify_cb) { ctx->verify_cb = verify_cb; } X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(X509_STORE_CTX *ctx) { return ctx->verify_cb; } void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx, X509_STORE_CTX_verify_fn verify) { ctx->verify = verify; } X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(X509_STORE_CTX *ctx) { return ctx->verify; } X509_STORE_CTX_get_issuer_fn X509_STORE_CTX_get_get_issuer(X509_STORE_CTX *ctx) { return ctx->get_issuer; } X509_STORE_CTX_check_issued_fn X509_STORE_CTX_get_check_issued(X509_STORE_CTX *ctx) { return ctx->check_issued; } X509_STORE_CTX_check_revocation_fn X509_STORE_CTX_get_check_revocation(X509_STORE_CTX *ctx) { return ctx->check_revocation; } X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(X509_STORE_CTX *ctx) { return ctx->get_crl; } X509_STORE_CTX_check_crl_fn X509_STORE_CTX_get_check_crl(X509_STORE_CTX *ctx) { return ctx->check_crl; } X509_STORE_CTX_cert_crl_fn X509_STORE_CTX_get_cert_crl(X509_STORE_CTX *ctx) { return ctx->cert_crl; } X509_STORE_CTX_check_policy_fn X509_STORE_CTX_get_check_policy(X509_STORE_CTX *ctx) { return ctx->check_policy; } X509_STORE_CTX_lookup_certs_fn X509_STORE_CTX_get_lookup_certs(X509_STORE_CTX *ctx) { return ctx->lookup_certs; } X509_STORE_CTX_lookup_crls_fn X509_STORE_CTX_get_lookup_crls(X509_STORE_CTX *ctx) { return ctx->lookup_crls; } X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(X509_STORE_CTX *ctx) { return ctx->cleanup; } X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx) { return ctx->tree; } int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx) { return ctx->explicit_policy; } int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx) { return ctx->num_untrusted; } int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) { const X509_VERIFY_PARAM *param; param = X509_VERIFY_PARAM_lookup(name); if (!param) return 0; return X509_VERIFY_PARAM_inherit(ctx->param, param); } X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) { return ctx->param; } void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) { X509_VERIFY_PARAM_free(ctx->param); ctx->param = param; } void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane) { ctx->dane = dane; } static unsigned char *dane_i2d( X509 *cert, uint8_t selector, unsigned int *i2dlen) { unsigned char *buf = NULL; int len; /* * Extract ASN.1 DER form of certificate or public key. */ switch (selector) { case DANETLS_SELECTOR_CERT: len = i2d_X509(cert, &buf); break; case DANETLS_SELECTOR_SPKI: len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf); break; default: X509err(X509_F_DANE_I2D, X509_R_BAD_SELECTOR); return NULL; } if (len < 0 || buf == NULL) { X509err(X509_F_DANE_I2D, ERR_R_MALLOC_FAILURE); return NULL; } *i2dlen = (unsigned int)len; return buf; } #define DANETLS_NONE 256 /* impossible uint8_t */ static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth) { SSL_DANE *dane = ctx->dane; unsigned usage = DANETLS_NONE; unsigned selector = DANETLS_NONE; unsigned ordinal = DANETLS_NONE; unsigned mtype = DANETLS_NONE; unsigned char *i2dbuf = NULL; unsigned int i2dlen = 0; unsigned char mdbuf[EVP_MAX_MD_SIZE]; unsigned char *cmpbuf = NULL; unsigned int cmplen = 0; int i; int recnum; int matched = 0; danetls_record *t = NULL; uint32_t mask; mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK; /* * The trust store is not applicable with DANE-TA(2) */ if (depth >= ctx->num_untrusted) mask &= DANETLS_PKIX_MASK; /* * If we've previously matched a PKIX-?? record, no need to test any * further PKIX-?? records, it remains to just build the PKIX chain. * Had the match been a DANE-?? record, we'd be done already. */ if (dane->mdpth >= 0) mask &= ~DANETLS_PKIX_MASK; /*- * https://tools.ietf.org/html/rfc7671#section-5.1 * https://tools.ietf.org/html/rfc7671#section-5.2 * https://tools.ietf.org/html/rfc7671#section-5.3 * https://tools.ietf.org/html/rfc7671#section-5.4 * * We handle DANE-EE(3) records first as they require no chain building * and no expiration or hostname checks. We also process digests with * higher ordinals first and ignore lower priorities except Full(0) which * is always processed (last). If none match, we then process PKIX-EE(1). * * NOTE: This relies on DANE usages sorting before the corresponding PKIX * usages in SSL_dane_tlsa_add(), and also on descending sorting of digest * priorities. See twin comment in ssl/ssl_lib.c. * * We expect that most TLSA RRsets will have just a single usage, so we * don't go out of our way to cache multiple selector-specific i2d buffers * across usages, but if the selector happens to remain the same as switch * usages, that's OK. Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1", * records would result in us generating each of the certificate and public * key DER forms twice, but more typically we'd just see multiple "3 1 1" * or multiple "3 0 1" records. * * As soon as we find a match at any given depth, we stop, because either * we've matched a DANE-?? record and the peer is authenticated, or, after * exhausting all DANE-?? records, we've matched a PKIX-?? record, which is * sufficient for DANE, and what remains to do is ordinary PKIX validation. */ recnum = (dane->umask & mask) ? sk_danetls_record_num(dane->trecs) : 0; for (i = 0; matched == 0 && i < recnum; ++i) { t = sk_danetls_record_value(dane->trecs, i); if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0) continue; if (t->usage != usage) { usage = t->usage; /* Reset digest agility for each usage/selector pair */ mtype = DANETLS_NONE; ordinal = dane->dctx->mdord[t->mtype]; } if (t->selector != selector) { selector = t->selector; /* Update per-selector state */ OPENSSL_free(i2dbuf); i2dbuf = dane_i2d(cert, selector, &i2dlen); if (i2dbuf == NULL) return -1; /* Reset digest agility for each usage/selector pair */ mtype = DANETLS_NONE; ordinal = dane->dctx->mdord[t->mtype]; } else if (t->mtype != DANETLS_MATCHING_FULL) { /*- * Digest agility: * * * * For a fixed selector, after processing all records with the * highest mtype ordinal, ignore all mtypes with lower ordinals * other than "Full". */ if (dane->dctx->mdord[t->mtype] < ordinal) continue; } /* * Each time we hit a (new selector or) mtype, re-compute the relevant * digest, more complex caching is not worth the code space. */ if (t->mtype != mtype) { const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype]; cmpbuf = i2dbuf; cmplen = i2dlen; if (md != NULL) { cmpbuf = mdbuf; if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) { matched = -1; break; } } } /* * Squirrel away the certificate and depth if we have a match. Any * DANE match is dispositive, but with PKIX we still need to build a * full chain. */ if (cmplen == t->dlen && memcmp(cmpbuf, t->data, cmplen) == 0) { if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK) matched = 1; if (matched || dane->mdpth < 0) { dane->mdpth = depth; dane->mtlsa = t; OPENSSL_free(dane->mcert); dane->mcert = cert; X509_up_ref(cert); } break; } } /* Clear the one-element DER cache */ OPENSSL_free(i2dbuf); return matched; } static int check_dane_issuer(X509_STORE_CTX *ctx, int depth) { SSL_DANE *dane = ctx->dane; int matched = 0; X509 *cert; if (!DANETLS_HAS_TA(dane) || depth == 0) return X509_TRUST_UNTRUSTED; /* * Record any DANE trust-anchor matches, for the first depth to test, if * there's one at that depth. (This'll be false for length 1 chains looking * for an exact match for the leaf certificate). */ cert = sk_X509_value(ctx->chain, depth); if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0) return X509_TRUST_REJECTED; if (matched > 0) { ctx->num_untrusted = depth - 1; return X509_TRUST_TRUSTED; } return X509_TRUST_UNTRUSTED; } static int check_dane_pkeys(X509_STORE_CTX *ctx) { SSL_DANE *dane = ctx->dane; danetls_record *t; int num = ctx->num_untrusted; X509 *cert = sk_X509_value(ctx->chain, num - 1); int recnum = sk_danetls_record_num(dane->trecs); int i; for (i = 0; i < recnum; ++i) { t = sk_danetls_record_value(dane->trecs, i); if (t->usage != DANETLS_USAGE_DANE_TA || t->selector != DANETLS_SELECTOR_SPKI || t->mtype != DANETLS_MATCHING_FULL || X509_verify(cert, t->spki) <= 0) continue; /* Clear any PKIX-?? matches that failed to extend to a full chain */ X509_free(dane->mcert); dane->mcert = NULL; /* Record match via a bare TA public key */ ctx->bare_ta_signed = 1; dane->mdpth = num - 1; dane->mtlsa = t; /* Prune any excess chain certificates */ num = sk_X509_num(ctx->chain); for (; num > ctx->num_untrusted; --num) X509_free(sk_X509_pop(ctx->chain)); return X509_TRUST_TRUSTED; } return X509_TRUST_UNTRUSTED; } static void dane_reset(SSL_DANE *dane) { /* * Reset state to verify another chain, or clear after failure. */ X509_free(dane->mcert); dane->mcert = NULL; dane->mtlsa = NULL; dane->mdpth = -1; dane->pdpth = -1; } static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert) { int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags); if (err == X509_V_OK) return 1; return verify_cb_cert(ctx, cert, 0, err); } static int dane_verify(X509_STORE_CTX *ctx) { X509 *cert = ctx->cert; SSL_DANE *dane = ctx->dane; int matched; int done; dane_reset(dane); /*- * When testing the leaf certificate, if we match a DANE-EE(3) record, * dane_match() returns 1 and we're done. If however we match a PKIX-EE(1) * record, the match depth and matching TLSA record are recorded, but the * return value is 0, because we still need to find a PKIX trust-anchor. * Therefore, when DANE authentication is enabled (required), we're done * if: * + matched < 0, internal error. * + matched == 1, we matched a DANE-EE(3) record * + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no * DANE-TA(2) or PKIX-TA(0) to test. */ matched = dane_match(ctx, ctx->cert, 0); done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0); if (done) X509_get_pubkey_parameters(NULL, ctx->chain); if (matched > 0) { /* Callback invoked as needed */ if (!check_leaf_suiteb(ctx, cert)) return 0; /* Callback invoked as needed */ if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 && !check_id(ctx)) return 0; /* Bypass internal_verify(), issue depth 0 success callback */ ctx->error_depth = 0; ctx->current_cert = cert; return ctx->verify_cb(1, ctx); } if (matched < 0) { ctx->error_depth = 0; ctx->current_cert = cert; ctx->error = X509_V_ERR_OUT_OF_MEM; return -1; } if (done) { /* Fail early, TA-based success is not possible */ if (!check_leaf_suiteb(ctx, cert)) return 0; return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH); } /* * Chain verification for usages 0/1/2. TLSA record matching of depth > 0 * certificates happens in-line with building the rest of the chain. */ return verify_chain(ctx); } /* Get issuer, without duplicate suppression */ static int get_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert) { STACK_OF(X509) *saved_chain = ctx->chain; int ok; ctx->chain = NULL; ok = ctx->get_issuer(issuer, ctx, cert); ctx->chain = saved_chain; return ok; } static int build_chain(X509_STORE_CTX *ctx) { SSL_DANE *dane = ctx->dane; int num = sk_X509_num(ctx->chain); X509 *cert = sk_X509_value(ctx->chain, num - 1); int ss = cert_self_signed(cert); STACK_OF(X509) *sktmp = NULL; unsigned int search; int may_trusted = 0; int may_alternate = 0; int trust = X509_TRUST_UNTRUSTED; int alt_untrusted = 0; int depth; int ok = 0; int i; /* Our chain starts with a single untrusted element. */ if (!ossl_assert(num == 1 && ctx->num_untrusted == num)) { X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } #define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */ #define S_DOTRUSTED (1 << 1) /* Search trusted store */ #define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */ /* * Set up search policy, untrusted if possible, trusted-first if enabled. * If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the * trust_store, otherwise we might look there first. If not trusted-first, * and alternate chains are not disabled, try building an alternate chain * if no luck with untrusted first. */ search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0; if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) { if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) search |= S_DOTRUSTED; else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) may_alternate = 1; may_trusted = 1; } /* * Shallow-copy the stack of untrusted certificates (with TLS, this is * typically the content of the peer's certificate message) so can make * multiple passes over it, while free to remove elements as we go. */ if (ctx->untrusted && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) { X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return 0; } /* * If we got any "DANE-TA(2) Cert(0) Full(0)" trust-anchors from DNS, add * them to our working copy of the untrusted certificate stack. Since the * caller of X509_STORE_CTX_init() may have provided only a leaf cert with * no corresponding stack of untrusted certificates, we may need to create * an empty stack first. [ At present only the ssl library provides DANE * support, and ssl_verify_cert_chain() always provides a non-null stack * containing at least the leaf certificate, but we must be prepared for * this to change. ] */ if (DANETLS_ENABLED(dane) && dane->certs != NULL) { if (sktmp == NULL && (sktmp = sk_X509_new_null()) == NULL) { X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return 0; } for (i = 0; i < sk_X509_num(dane->certs); ++i) { if (!sk_X509_push(sktmp, sk_X509_value(dane->certs, i))) { sk_X509_free(sktmp); X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); ctx->error = X509_V_ERR_OUT_OF_MEM; return 0; } } } /* * Still absurdly large, but arithmetically safe, a lower hard upper bound * might be reasonable. */ if (ctx->param->depth > INT_MAX/2) ctx->param->depth = INT_MAX/2; /* * Try to Extend the chain until we reach an ultimately trusted issuer. * Build chains up to one longer the limit, later fail if we hit the limit, * with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code. */ depth = ctx->param->depth + 1; while (search != 0) { X509 *x; X509 *xtmp = NULL; /* * Look in the trust store if enabled for first lookup, or we've run * out of untrusted issuers and search here is not disabled. When we * reach the depth limit, we stop extending the chain, if by that point * we've not found a trust-anchor, any trusted chain would be too long. * * The error reported to the application verify callback is at the * maximal valid depth with the current certificate equal to the last * not ultimately-trusted issuer. For example, with verify_depth = 0, * the callback will report errors at depth=1 when the immediate issuer * of the leaf certificate is not a trust anchor. No attempt will be * made to locate an issuer for that certificate, since such a chain * would be a-priori too long. */ if ((search & S_DOTRUSTED) != 0) { i = num = sk_X509_num(ctx->chain); if ((search & S_DOALTERNATE) != 0) { /* * As high up the chain as we can, look for an alternative * trusted issuer of an untrusted certificate that currently * has an untrusted issuer. We use the alt_untrusted variable * to track how far up the chain we find the first match. It * is only if and when we find a match, that we prune the chain * and reset ctx->num_untrusted to the reduced count of * untrusted certificates. While we're searching for such a * match (which may never be found), it is neither safe nor * wise to preemptively modify either the chain or * ctx->num_untrusted. * * Note, like ctx->num_untrusted, alt_untrusted is a count of * untrusted certificates, not a "depth". */ i = alt_untrusted; } x = sk_X509_value(ctx->chain, i-1); ok = (depth < num) ? 0 : get_issuer(&xtmp, ctx, x); if (ok < 0) { trust = X509_TRUST_REJECTED; ctx->error = X509_V_ERR_STORE_LOOKUP; search = 0; continue; } if (ok > 0) { /* * Alternative trusted issuer for a mid-chain untrusted cert? * Pop the untrusted cert's successors and retry. We might now * be able to complete a valid chain via the trust store. Note * that despite the current trust-store match we might still * fail complete the chain to a suitable trust-anchor, in which * case we may prune some more untrusted certificates and try * again. Thus the S_DOALTERNATE bit may yet be turned on * again with an even shorter untrusted chain! * * If in the process we threw away our matching PKIX-TA trust * anchor, reset DANE trust. We might find a suitable trusted * certificate among the ones from the trust store. */ if ((search & S_DOALTERNATE) != 0) { if (!ossl_assert(num > i && i > 0 && ss == 0)) { X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); X509_free(xtmp); trust = X509_TRUST_REJECTED; ctx->error = X509_V_ERR_UNSPECIFIED; search = 0; continue; } search &= ~S_DOALTERNATE; for (; num > i; --num) X509_free(sk_X509_pop(ctx->chain)); ctx->num_untrusted = num; if (DANETLS_ENABLED(dane) && dane->mdpth >= ctx->num_untrusted) { dane->mdpth = -1; X509_free(dane->mcert); dane->mcert = NULL; } if (DANETLS_ENABLED(dane) && dane->pdpth >= ctx->num_untrusted) dane->pdpth = -1; } /* * Self-signed untrusted certificates get replaced by their * trusted matching issuer. Otherwise, grow the chain. */ if (ss == 0) { if (!sk_X509_push(ctx->chain, x = xtmp)) { X509_free(xtmp); X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); trust = X509_TRUST_REJECTED; ctx->error = X509_V_ERR_OUT_OF_MEM; search = 0; continue; } ss = cert_self_signed(x); } else if (num == ctx->num_untrusted) { /* * We have a self-signed certificate that has the same * subject name (and perhaps keyid and/or serial number) as * a trust-anchor. We must have an exact match to avoid * possible impersonation via key substitution etc. */ if (X509_cmp(x, xtmp) != 0) { /* Self-signed untrusted mimic. */ X509_free(xtmp); ok = 0; } else { X509_free(x); ctx->num_untrusted = --num; (void) sk_X509_set(ctx->chain, num, x = xtmp); } } /* * We've added a new trusted certificate to the chain, recheck * trust. If not done, and not self-signed look deeper. * Whether or not we're doing "trusted first", we no longer * look for untrusted certificates from the peer's chain. * * At this point ctx->num_trusted and num must reflect the * correct number of untrusted certificates, since the DANE * logic in check_trust() depends on distinguishing CAs from * "the wire" from CAs from the trust store. In particular, the * certificate at depth "num" should be the new trusted * certificate with ctx->num_untrusted <= num. */ if (ok) { if (!ossl_assert(ctx->num_untrusted <= num)) { X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); trust = X509_TRUST_REJECTED; ctx->error = X509_V_ERR_UNSPECIFIED; search = 0; continue; } search &= ~S_DOUNTRUSTED; switch (trust = check_trust(ctx, num)) { case X509_TRUST_TRUSTED: case X509_TRUST_REJECTED: search = 0; continue; } if (ss == 0) continue; } } /* * No dispositive decision, and either self-signed or no match, if * we were doing untrusted-first, and alt-chains are not disabled, * do that, by repeatedly losing one untrusted element at a time, * and trying to extend the shorted chain. */ if ((search & S_DOUNTRUSTED) == 0) { /* Continue search for a trusted issuer of a shorter chain? */ if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0) continue; /* Still no luck and no fallbacks left? */ if (!may_alternate || (search & S_DOALTERNATE) != 0 || ctx->num_untrusted < 2) break; /* Search for a trusted issuer of a shorter chain */ search |= S_DOALTERNATE; alt_untrusted = ctx->num_untrusted - 1; ss = 0; } } /* * Extend chain with peer-provided certificates */ if ((search & S_DOUNTRUSTED) != 0) { num = sk_X509_num(ctx->chain); if (!ossl_assert(num == ctx->num_untrusted)) { X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); trust = X509_TRUST_REJECTED; ctx->error = X509_V_ERR_UNSPECIFIED; search = 0; continue; } x = sk_X509_value(ctx->chain, num-1); /* * Once we run out of untrusted issuers, we stop looking for more * and start looking only in the trust store if enabled. */ xtmp = (ss || depth < num) ? NULL : find_issuer(ctx, sktmp, x); if (xtmp == NULL) { search &= ~S_DOUNTRUSTED; if (may_trusted) search |= S_DOTRUSTED; continue; } /* Drop this issuer from future consideration */ (void) sk_X509_delete_ptr(sktmp, xtmp); if (!sk_X509_push(ctx->chain, xtmp)) { X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); trust = X509_TRUST_REJECTED; ctx->error = X509_V_ERR_OUT_OF_MEM; search = 0; continue; } X509_up_ref(x = xtmp); ++ctx->num_untrusted; ss = cert_self_signed(xtmp); /* * Check for DANE-TA trust of the topmost untrusted certificate. */ switch (trust = check_dane_issuer(ctx, ctx->num_untrusted - 1)) { case X509_TRUST_TRUSTED: case X509_TRUST_REJECTED: search = 0; continue; } } } sk_X509_free(sktmp); /* * Last chance to make a trusted chain, either bare DANE-TA public-key * signers, or else direct leaf PKIX trust. */ num = sk_X509_num(ctx->chain); if (num <= depth) { if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane)) trust = check_dane_pkeys(ctx); if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted) trust = check_trust(ctx, num); } switch (trust) { case X509_TRUST_TRUSTED: return 1; case X509_TRUST_REJECTED: /* Callback already issued */ return 0; case X509_TRUST_UNTRUSTED: default: num = sk_X509_num(ctx->chain); if (num > depth) return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_CERT_CHAIN_TOO_LONG); if (DANETLS_ENABLED(dane) && (!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0)) return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DANE_NO_MATCH); if (ss && sk_X509_num(ctx->chain) == 1) return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT); if (ss) return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN); if (ctx->num_untrusted < num) return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT); return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY); } } static const int minbits_table[] = { 80, 112, 128, 192, 256 }; static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table); /* * Check whether the public key of ``cert`` meets the security level of * ``ctx``. * * Returns 1 on success, 0 otherwise. */ static int check_key_level(X509_STORE_CTX *ctx, X509 *cert) { EVP_PKEY *pkey = X509_get0_pubkey(cert); int level = ctx->param->auth_level; /* * At security level zero, return without checking for a supported public * key type. Some engines support key types not understood outside the * engine, and we only need to understand the key when enforcing a security * floor. */ if (level <= 0) return 1; /* Unsupported or malformed keys are not secure */ if (pkey == NULL) return 0; if (level > NUM_AUTH_LEVELS) level = NUM_AUTH_LEVELS; return EVP_PKEY_security_bits(pkey) >= minbits_table[level - 1]; } /* * Check whether the signature digest algorithm of ``cert`` meets the security * level of ``ctx``. Should not be checked for trust anchors (whether * self-signed or otherwise). * * Returns 1 on success, 0 otherwise. */ static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert) { int secbits = -1; int level = ctx->param->auth_level; if (level <= 0) return 1; if (level > NUM_AUTH_LEVELS) level = NUM_AUTH_LEVELS; if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL)) return 0; return secbits >= minbits_table[level - 1]; } openssl-1.1.1f/crypto/x509/x509_vpm.c000066400000000000000000000416331364063235100171350ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" #include "x509_local.h" /* X509_VERIFY_PARAM functions */ #define SET_HOST 0 #define ADD_HOST 1 static char *str_copy(const char *s) { return OPENSSL_strdup(s); } static void str_free(char *s) { OPENSSL_free(s); } static int int_x509_param_set_hosts(X509_VERIFY_PARAM *vpm, int mode, const char *name, size_t namelen) { char *copy; /* * Refuse names with embedded NUL bytes, except perhaps as final byte. * XXX: Do we need to push an error onto the error stack? */ if (namelen == 0 || name == NULL) namelen = name ? strlen(name) : 0; else if (name && memchr(name, '\0', namelen > 1 ? namelen - 1 : namelen)) return 0; if (namelen > 0 && name[namelen - 1] == '\0') --namelen; if (mode == SET_HOST) { sk_OPENSSL_STRING_pop_free(vpm->hosts, str_free); vpm->hosts = NULL; } if (name == NULL || namelen == 0) return 1; copy = OPENSSL_strndup(name, namelen); if (copy == NULL) return 0; if (vpm->hosts == NULL && (vpm->hosts = sk_OPENSSL_STRING_new_null()) == NULL) { OPENSSL_free(copy); return 0; } if (!sk_OPENSSL_STRING_push(vpm->hosts, copy)) { OPENSSL_free(copy); if (sk_OPENSSL_STRING_num(vpm->hosts) == 0) { sk_OPENSSL_STRING_free(vpm->hosts); vpm->hosts = NULL; } return 0; } return 1; } X509_VERIFY_PARAM *X509_VERIFY_PARAM_new(void) { X509_VERIFY_PARAM *param; param = OPENSSL_zalloc(sizeof(*param)); if (param == NULL) { X509err(X509_F_X509_VERIFY_PARAM_NEW, ERR_R_MALLOC_FAILURE); return NULL; } param->trust = X509_TRUST_DEFAULT; /* param->inh_flags = X509_VP_FLAG_DEFAULT; */ param->depth = -1; param->auth_level = -1; /* -1 means unset, 0 is explicit */ return param; } void X509_VERIFY_PARAM_free(X509_VERIFY_PARAM *param) { if (param == NULL) return; sk_ASN1_OBJECT_pop_free(param->policies, ASN1_OBJECT_free); sk_OPENSSL_STRING_pop_free(param->hosts, str_free); OPENSSL_free(param->peername); OPENSSL_free(param->email); OPENSSL_free(param->ip); OPENSSL_free(param); } /*- * This function determines how parameters are "inherited" from one structure * to another. There are several different ways this can happen. * * 1. If a child structure needs to have its values initialized from a parent * they are simply copied across. For example SSL_CTX copied to SSL. * 2. If the structure should take on values only if they are currently unset. * For example the values in an SSL structure will take appropriate value * for SSL servers or clients but only if the application has not set new * ones. * * The "inh_flags" field determines how this function behaves. * * Normally any values which are set in the default are not copied from the * destination and verify flags are ORed together. * * If X509_VP_FLAG_DEFAULT is set then anything set in the source is copied * to the destination. Effectively the values in "to" become default values * which will be used only if nothing new is set in "from". * * If X509_VP_FLAG_OVERWRITE is set then all value are copied across whether * they are set or not. Flags is still Ored though. * * If X509_VP_FLAG_RESET_FLAGS is set then the flags value is copied instead * of ORed. * * If X509_VP_FLAG_LOCKED is set then no values are copied. * * If X509_VP_FLAG_ONCE is set then the current inh_flags setting is zeroed * after the next call. */ /* Macro to test if a field should be copied from src to dest */ #define test_x509_verify_param_copy(field, def) \ (to_overwrite || \ ((src->field != def) && (to_default || (dest->field == def)))) /* Macro to test and copy a field if necessary */ #define x509_verify_param_copy(field, def) \ if (test_x509_verify_param_copy(field, def)) \ dest->field = src->field int X509_VERIFY_PARAM_inherit(X509_VERIFY_PARAM *dest, const X509_VERIFY_PARAM *src) { unsigned long inh_flags; int to_default, to_overwrite; if (!src) return 1; inh_flags = dest->inh_flags | src->inh_flags; if (inh_flags & X509_VP_FLAG_ONCE) dest->inh_flags = 0; if (inh_flags & X509_VP_FLAG_LOCKED) return 1; if (inh_flags & X509_VP_FLAG_DEFAULT) to_default = 1; else to_default = 0; if (inh_flags & X509_VP_FLAG_OVERWRITE) to_overwrite = 1; else to_overwrite = 0; x509_verify_param_copy(purpose, 0); x509_verify_param_copy(trust, X509_TRUST_DEFAULT); x509_verify_param_copy(depth, -1); x509_verify_param_copy(auth_level, -1); /* If overwrite or check time not set, copy across */ if (to_overwrite || !(dest->flags & X509_V_FLAG_USE_CHECK_TIME)) { dest->check_time = src->check_time; dest->flags &= ~X509_V_FLAG_USE_CHECK_TIME; /* Don't need to copy flag: that is done below */ } if (inh_flags & X509_VP_FLAG_RESET_FLAGS) dest->flags = 0; dest->flags |= src->flags; if (test_x509_verify_param_copy(policies, NULL)) { if (!X509_VERIFY_PARAM_set1_policies(dest, src->policies)) return 0; } /* Copy the host flags if and only if we're copying the host list */ if (test_x509_verify_param_copy(hosts, NULL)) { sk_OPENSSL_STRING_pop_free(dest->hosts, str_free); dest->hosts = NULL; if (src->hosts) { dest->hosts = sk_OPENSSL_STRING_deep_copy(src->hosts, str_copy, str_free); if (dest->hosts == NULL) return 0; dest->hostflags = src->hostflags; } } if (test_x509_verify_param_copy(email, NULL)) { if (!X509_VERIFY_PARAM_set1_email(dest, src->email, src->emaillen)) return 0; } if (test_x509_verify_param_copy(ip, NULL)) { if (!X509_VERIFY_PARAM_set1_ip(dest, src->ip, src->iplen)) return 0; } return 1; } int X509_VERIFY_PARAM_set1(X509_VERIFY_PARAM *to, const X509_VERIFY_PARAM *from) { unsigned long save_flags = to->inh_flags; int ret; to->inh_flags |= X509_VP_FLAG_DEFAULT; ret = X509_VERIFY_PARAM_inherit(to, from); to->inh_flags = save_flags; return ret; } static int int_x509_param_set1(char **pdest, size_t *pdestlen, const char *src, size_t srclen) { void *tmp; if (src) { if (srclen == 0) srclen = strlen(src); tmp = OPENSSL_memdup(src, srclen); if (tmp == NULL) return 0; } else { tmp = NULL; srclen = 0; } OPENSSL_free(*pdest); *pdest = tmp; if (pdestlen != NULL) *pdestlen = srclen; return 1; } int X509_VERIFY_PARAM_set1_name(X509_VERIFY_PARAM *param, const char *name) { OPENSSL_free(param->name); param->name = OPENSSL_strdup(name); if (param->name) return 1; return 0; } int X509_VERIFY_PARAM_set_flags(X509_VERIFY_PARAM *param, unsigned long flags) { param->flags |= flags; if (flags & X509_V_FLAG_POLICY_MASK) param->flags |= X509_V_FLAG_POLICY_CHECK; return 1; } int X509_VERIFY_PARAM_clear_flags(X509_VERIFY_PARAM *param, unsigned long flags) { param->flags &= ~flags; return 1; } unsigned long X509_VERIFY_PARAM_get_flags(X509_VERIFY_PARAM *param) { return param->flags; } uint32_t X509_VERIFY_PARAM_get_inh_flags(const X509_VERIFY_PARAM *param) { return param->inh_flags; } int X509_VERIFY_PARAM_set_inh_flags(X509_VERIFY_PARAM *param, uint32_t flags) { param->inh_flags = flags; return 1; } int X509_VERIFY_PARAM_set_purpose(X509_VERIFY_PARAM *param, int purpose) { return X509_PURPOSE_set(¶m->purpose, purpose); } int X509_VERIFY_PARAM_set_trust(X509_VERIFY_PARAM *param, int trust) { return X509_TRUST_set(¶m->trust, trust); } void X509_VERIFY_PARAM_set_depth(X509_VERIFY_PARAM *param, int depth) { param->depth = depth; } void X509_VERIFY_PARAM_set_auth_level(X509_VERIFY_PARAM *param, int auth_level) { param->auth_level = auth_level; } time_t X509_VERIFY_PARAM_get_time(const X509_VERIFY_PARAM *param) { return param->check_time; } void X509_VERIFY_PARAM_set_time(X509_VERIFY_PARAM *param, time_t t) { param->check_time = t; param->flags |= X509_V_FLAG_USE_CHECK_TIME; } int X509_VERIFY_PARAM_add0_policy(X509_VERIFY_PARAM *param, ASN1_OBJECT *policy) { if (!param->policies) { param->policies = sk_ASN1_OBJECT_new_null(); if (!param->policies) return 0; } if (!sk_ASN1_OBJECT_push(param->policies, policy)) return 0; return 1; } int X509_VERIFY_PARAM_set1_policies(X509_VERIFY_PARAM *param, STACK_OF(ASN1_OBJECT) *policies) { int i; ASN1_OBJECT *oid, *doid; if (!param) return 0; sk_ASN1_OBJECT_pop_free(param->policies, ASN1_OBJECT_free); if (!policies) { param->policies = NULL; return 1; } param->policies = sk_ASN1_OBJECT_new_null(); if (!param->policies) return 0; for (i = 0; i < sk_ASN1_OBJECT_num(policies); i++) { oid = sk_ASN1_OBJECT_value(policies, i); doid = OBJ_dup(oid); if (!doid) return 0; if (!sk_ASN1_OBJECT_push(param->policies, doid)) { ASN1_OBJECT_free(doid); return 0; } } param->flags |= X509_V_FLAG_POLICY_CHECK; return 1; } int X509_VERIFY_PARAM_set1_host(X509_VERIFY_PARAM *param, const char *name, size_t namelen) { return int_x509_param_set_hosts(param, SET_HOST, name, namelen); } int X509_VERIFY_PARAM_add1_host(X509_VERIFY_PARAM *param, const char *name, size_t namelen) { return int_x509_param_set_hosts(param, ADD_HOST, name, namelen); } void X509_VERIFY_PARAM_set_hostflags(X509_VERIFY_PARAM *param, unsigned int flags) { param->hostflags = flags; } unsigned int X509_VERIFY_PARAM_get_hostflags(const X509_VERIFY_PARAM *param) { return param->hostflags; } char *X509_VERIFY_PARAM_get0_peername(X509_VERIFY_PARAM *param) { return param->peername; } /* * Move peername from one param structure to another, freeing any name present * at the target. If the source is a NULL parameter structure, free and zero * the target peername. */ void X509_VERIFY_PARAM_move_peername(X509_VERIFY_PARAM *to, X509_VERIFY_PARAM *from) { char *peername = (from != NULL) ? from->peername : NULL; if (to->peername != peername) { OPENSSL_free(to->peername); to->peername = peername; } if (from) from->peername = NULL; } int X509_VERIFY_PARAM_set1_email(X509_VERIFY_PARAM *param, const char *email, size_t emaillen) { return int_x509_param_set1(¶m->email, ¶m->emaillen, email, emaillen); } int X509_VERIFY_PARAM_set1_ip(X509_VERIFY_PARAM *param, const unsigned char *ip, size_t iplen) { if (iplen != 0 && iplen != 4 && iplen != 16) return 0; return int_x509_param_set1((char **)¶m->ip, ¶m->iplen, (char *)ip, iplen); } int X509_VERIFY_PARAM_set1_ip_asc(X509_VERIFY_PARAM *param, const char *ipasc) { unsigned char ipout[16]; size_t iplen; iplen = (size_t)a2i_ipadd(ipout, ipasc); if (iplen == 0) return 0; return X509_VERIFY_PARAM_set1_ip(param, ipout, iplen); } int X509_VERIFY_PARAM_get_depth(const X509_VERIFY_PARAM *param) { return param->depth; } int X509_VERIFY_PARAM_get_auth_level(const X509_VERIFY_PARAM *param) { return param->auth_level; } const char *X509_VERIFY_PARAM_get0_name(const X509_VERIFY_PARAM *param) { return param->name; } #define vpm_empty_id NULL, 0U, NULL, NULL, 0, NULL, 0 /* * Default verify parameters: these are used for various applications and can * be overridden by the user specified table. NB: the 'name' field *must* be * in alphabetical order because it will be searched using OBJ_search. */ static const X509_VERIFY_PARAM default_table[] = { { "default", /* X509 default parameters */ 0, /* Check time */ 0, /* internal flags */ X509_V_FLAG_TRUSTED_FIRST, /* flags */ 0, /* purpose */ 0, /* trust */ 100, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id}, { "pkcs7", /* S/MIME sign parameters */ 0, /* Check time */ 0, /* internal flags */ 0, /* flags */ X509_PURPOSE_SMIME_SIGN, /* purpose */ X509_TRUST_EMAIL, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id}, { "smime_sign", /* S/MIME sign parameters */ 0, /* Check time */ 0, /* internal flags */ 0, /* flags */ X509_PURPOSE_SMIME_SIGN, /* purpose */ X509_TRUST_EMAIL, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id}, { "ssl_client", /* SSL/TLS client parameters */ 0, /* Check time */ 0, /* internal flags */ 0, /* flags */ X509_PURPOSE_SSL_CLIENT, /* purpose */ X509_TRUST_SSL_CLIENT, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id}, { "ssl_server", /* SSL/TLS server parameters */ 0, /* Check time */ 0, /* internal flags */ 0, /* flags */ X509_PURPOSE_SSL_SERVER, /* purpose */ X509_TRUST_SSL_SERVER, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id} }; static STACK_OF(X509_VERIFY_PARAM) *param_table = NULL; static int table_cmp(const X509_VERIFY_PARAM *a, const X509_VERIFY_PARAM *b) { return strcmp(a->name, b->name); } DECLARE_OBJ_BSEARCH_CMP_FN(X509_VERIFY_PARAM, X509_VERIFY_PARAM, table); IMPLEMENT_OBJ_BSEARCH_CMP_FN(X509_VERIFY_PARAM, X509_VERIFY_PARAM, table); static int param_cmp(const X509_VERIFY_PARAM *const *a, const X509_VERIFY_PARAM *const *b) { return strcmp((*a)->name, (*b)->name); } int X509_VERIFY_PARAM_add0_table(X509_VERIFY_PARAM *param) { int idx; X509_VERIFY_PARAM *ptmp; if (param_table == NULL) { param_table = sk_X509_VERIFY_PARAM_new(param_cmp); if (param_table == NULL) return 0; } else { idx = sk_X509_VERIFY_PARAM_find(param_table, param); if (idx >= 0) { ptmp = sk_X509_VERIFY_PARAM_delete(param_table, idx); X509_VERIFY_PARAM_free(ptmp); } } if (!sk_X509_VERIFY_PARAM_push(param_table, param)) return 0; return 1; } int X509_VERIFY_PARAM_get_count(void) { int num = OSSL_NELEM(default_table); if (param_table) num += sk_X509_VERIFY_PARAM_num(param_table); return num; } const X509_VERIFY_PARAM *X509_VERIFY_PARAM_get0(int id) { int num = OSSL_NELEM(default_table); if (id < num) return default_table + id; return sk_X509_VERIFY_PARAM_value(param_table, id - num); } const X509_VERIFY_PARAM *X509_VERIFY_PARAM_lookup(const char *name) { int idx; X509_VERIFY_PARAM pm; pm.name = (char *)name; if (param_table != NULL) { idx = sk_X509_VERIFY_PARAM_find(param_table, &pm); if (idx >= 0) return sk_X509_VERIFY_PARAM_value(param_table, idx); } return OBJ_bsearch_table(&pm, default_table, OSSL_NELEM(default_table)); } void X509_VERIFY_PARAM_table_cleanup(void) { sk_X509_VERIFY_PARAM_pop_free(param_table, X509_VERIFY_PARAM_free); param_table = NULL; } openssl-1.1.1f/crypto/x509/x509cset.c000066400000000000000000000100411364063235100171170ustar00rootroot00000000000000/* * Copyright 2001-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/refcount.h" #include #include #include #include #include "crypto/x509.h" int X509_CRL_set_version(X509_CRL *x, long version) { if (x == NULL) return 0; if (x->crl.version == NULL) { if ((x->crl.version = ASN1_INTEGER_new()) == NULL) return 0; } return ASN1_INTEGER_set(x->crl.version, version); } int X509_CRL_set_issuer_name(X509_CRL *x, X509_NAME *name) { if (x == NULL) return 0; return X509_NAME_set(&x->crl.issuer, name); } int X509_CRL_set1_lastUpdate(X509_CRL *x, const ASN1_TIME *tm) { if (x == NULL) return 0; return x509_set1_time(&x->crl.lastUpdate, tm); } int X509_CRL_set1_nextUpdate(X509_CRL *x, const ASN1_TIME *tm) { if (x == NULL) return 0; return x509_set1_time(&x->crl.nextUpdate, tm); } int X509_CRL_sort(X509_CRL *c) { int i; X509_REVOKED *r; /* * sort the data so it will be written in serial number order */ sk_X509_REVOKED_sort(c->crl.revoked); for (i = 0; i < sk_X509_REVOKED_num(c->crl.revoked); i++) { r = sk_X509_REVOKED_value(c->crl.revoked, i); r->sequence = i; } c->crl.enc.modified = 1; return 1; } int X509_CRL_up_ref(X509_CRL *crl) { int i; if (CRYPTO_UP_REF(&crl->references, &i, crl->lock) <= 0) return 0; REF_PRINT_COUNT("X509_CRL", crl); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } long X509_CRL_get_version(const X509_CRL *crl) { return ASN1_INTEGER_get(crl->crl.version); } const ASN1_TIME *X509_CRL_get0_lastUpdate(const X509_CRL *crl) { return crl->crl.lastUpdate; } const ASN1_TIME *X509_CRL_get0_nextUpdate(const X509_CRL *crl) { return crl->crl.nextUpdate; } #if OPENSSL_API_COMPAT < 0x10100000L ASN1_TIME *X509_CRL_get_lastUpdate(X509_CRL *crl) { return crl->crl.lastUpdate; } ASN1_TIME *X509_CRL_get_nextUpdate(X509_CRL *crl) { return crl->crl.nextUpdate; } #endif X509_NAME *X509_CRL_get_issuer(const X509_CRL *crl) { return crl->crl.issuer; } const STACK_OF(X509_EXTENSION) *X509_CRL_get0_extensions(const X509_CRL *crl) { return crl->crl.extensions; } STACK_OF(X509_REVOKED) *X509_CRL_get_REVOKED(X509_CRL *crl) { return crl->crl.revoked; } void X509_CRL_get0_signature(const X509_CRL *crl, const ASN1_BIT_STRING **psig, const X509_ALGOR **palg) { if (psig != NULL) *psig = &crl->signature; if (palg != NULL) *palg = &crl->sig_alg; } int X509_CRL_get_signature_nid(const X509_CRL *crl) { return OBJ_obj2nid(crl->sig_alg.algorithm); } const ASN1_TIME *X509_REVOKED_get0_revocationDate(const X509_REVOKED *x) { return x->revocationDate; } int X509_REVOKED_set_revocationDate(X509_REVOKED *x, ASN1_TIME *tm) { ASN1_TIME *in; if (x == NULL) return 0; in = x->revocationDate; if (in != tm) { in = ASN1_STRING_dup(tm); if (in != NULL) { ASN1_TIME_free(x->revocationDate); x->revocationDate = in; } } return (in != NULL); } const ASN1_INTEGER *X509_REVOKED_get0_serialNumber(const X509_REVOKED *x) { return &x->serialNumber; } int X509_REVOKED_set_serialNumber(X509_REVOKED *x, ASN1_INTEGER *serial) { ASN1_INTEGER *in; if (x == NULL) return 0; in = &x->serialNumber; if (in != serial) return ASN1_STRING_copy(in, serial); return 1; } const STACK_OF(X509_EXTENSION) *X509_REVOKED_get0_extensions(const X509_REVOKED *r) { return r->extensions; } int i2d_re_X509_CRL_tbs(X509_CRL *crl, unsigned char **pp) { crl->crl.enc.modified = 1; return i2d_X509_CRL_INFO(&crl->crl, pp); } openssl-1.1.1f/crypto/x509/x509name.c000066400000000000000000000235461364063235100171170ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/x509.h" int X509_NAME_get_text_by_NID(X509_NAME *name, int nid, char *buf, int len) { ASN1_OBJECT *obj; obj = OBJ_nid2obj(nid); if (obj == NULL) return -1; return X509_NAME_get_text_by_OBJ(name, obj, buf, len); } int X509_NAME_get_text_by_OBJ(X509_NAME *name, const ASN1_OBJECT *obj, char *buf, int len) { int i; const ASN1_STRING *data; i = X509_NAME_get_index_by_OBJ(name, obj, -1); if (i < 0) return -1; data = X509_NAME_ENTRY_get_data(X509_NAME_get_entry(name, i)); if (buf == NULL) return data->length; if (len <= 0) return 0; i = (data->length > (len - 1)) ? (len - 1) : data->length; memcpy(buf, data->data, i); buf[i] = '\0'; return i; } int X509_NAME_entry_count(const X509_NAME *name) { if (name == NULL) return 0; return sk_X509_NAME_ENTRY_num(name->entries); } int X509_NAME_get_index_by_NID(X509_NAME *name, int nid, int lastpos) { ASN1_OBJECT *obj; obj = OBJ_nid2obj(nid); if (obj == NULL) return -2; return X509_NAME_get_index_by_OBJ(name, obj, lastpos); } /* NOTE: you should be passing -1, not 0 as lastpos */ int X509_NAME_get_index_by_OBJ(X509_NAME *name, const ASN1_OBJECT *obj, int lastpos) { int n; X509_NAME_ENTRY *ne; STACK_OF(X509_NAME_ENTRY) *sk; if (name == NULL) return -1; if (lastpos < 0) lastpos = -1; sk = name->entries; n = sk_X509_NAME_ENTRY_num(sk); for (lastpos++; lastpos < n; lastpos++) { ne = sk_X509_NAME_ENTRY_value(sk, lastpos); if (OBJ_cmp(ne->object, obj) == 0) return lastpos; } return -1; } X509_NAME_ENTRY *X509_NAME_get_entry(const X509_NAME *name, int loc) { if (name == NULL || sk_X509_NAME_ENTRY_num(name->entries) <= loc || loc < 0) return NULL; return sk_X509_NAME_ENTRY_value(name->entries, loc); } X509_NAME_ENTRY *X509_NAME_delete_entry(X509_NAME *name, int loc) { X509_NAME_ENTRY *ret; int i, n, set_prev, set_next; STACK_OF(X509_NAME_ENTRY) *sk; if (name == NULL || sk_X509_NAME_ENTRY_num(name->entries) <= loc || loc < 0) return NULL; sk = name->entries; ret = sk_X509_NAME_ENTRY_delete(sk, loc); n = sk_X509_NAME_ENTRY_num(sk); name->modified = 1; if (loc == n) return ret; /* else we need to fixup the set field */ if (loc != 0) set_prev = (sk_X509_NAME_ENTRY_value(sk, loc - 1))->set; else set_prev = ret->set - 1; set_next = sk_X509_NAME_ENTRY_value(sk, loc)->set; /*- * set_prev is the previous set * set is the current set * set_next is the following * prev 1 1 1 1 1 1 1 1 * set 1 1 2 2 * next 1 1 2 2 2 2 3 2 * so basically only if prev and next differ by 2, then * re-number down by 1 */ if (set_prev + 1 < set_next) for (i = loc; i < n; i++) sk_X509_NAME_ENTRY_value(sk, i)->set--; return ret; } int X509_NAME_add_entry_by_OBJ(X509_NAME *name, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len, int loc, int set) { X509_NAME_ENTRY *ne; int ret; ne = X509_NAME_ENTRY_create_by_OBJ(NULL, obj, type, bytes, len); if (!ne) return 0; ret = X509_NAME_add_entry(name, ne, loc, set); X509_NAME_ENTRY_free(ne); return ret; } int X509_NAME_add_entry_by_NID(X509_NAME *name, int nid, int type, const unsigned char *bytes, int len, int loc, int set) { X509_NAME_ENTRY *ne; int ret; ne = X509_NAME_ENTRY_create_by_NID(NULL, nid, type, bytes, len); if (!ne) return 0; ret = X509_NAME_add_entry(name, ne, loc, set); X509_NAME_ENTRY_free(ne); return ret; } int X509_NAME_add_entry_by_txt(X509_NAME *name, const char *field, int type, const unsigned char *bytes, int len, int loc, int set) { X509_NAME_ENTRY *ne; int ret; ne = X509_NAME_ENTRY_create_by_txt(NULL, field, type, bytes, len); if (!ne) return 0; ret = X509_NAME_add_entry(name, ne, loc, set); X509_NAME_ENTRY_free(ne); return ret; } /* * if set is -1, append to previous set, 0 'a new one', and 1, prepend to the * guy we are about to stomp on. */ int X509_NAME_add_entry(X509_NAME *name, const X509_NAME_ENTRY *ne, int loc, int set) { X509_NAME_ENTRY *new_name = NULL; int n, i, inc; STACK_OF(X509_NAME_ENTRY) *sk; if (name == NULL) return 0; sk = name->entries; n = sk_X509_NAME_ENTRY_num(sk); if (loc > n) loc = n; else if (loc < 0) loc = n; inc = (set == 0); name->modified = 1; if (set == -1) { if (loc == 0) { set = 0; inc = 1; } else { set = sk_X509_NAME_ENTRY_value(sk, loc - 1)->set; } } else { /* if (set >= 0) */ if (loc >= n) { if (loc != 0) set = sk_X509_NAME_ENTRY_value(sk, loc - 1)->set + 1; else set = 0; } else set = sk_X509_NAME_ENTRY_value(sk, loc)->set; } /* * X509_NAME_ENTRY_dup is ASN1 generated code, that can't be easily * const'ified; harmless cast since dup() don't modify its input. */ if ((new_name = X509_NAME_ENTRY_dup((X509_NAME_ENTRY *)ne)) == NULL) goto err; new_name->set = set; if (!sk_X509_NAME_ENTRY_insert(sk, new_name, loc)) { X509err(X509_F_X509_NAME_ADD_ENTRY, ERR_R_MALLOC_FAILURE); goto err; } if (inc) { n = sk_X509_NAME_ENTRY_num(sk); for (i = loc + 1; i < n; i++) sk_X509_NAME_ENTRY_value(sk, i)->set += 1; } return 1; err: X509_NAME_ENTRY_free(new_name); return 0; } X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_txt(X509_NAME_ENTRY **ne, const char *field, int type, const unsigned char *bytes, int len) { ASN1_OBJECT *obj; X509_NAME_ENTRY *nentry; obj = OBJ_txt2obj(field, 0); if (obj == NULL) { X509err(X509_F_X509_NAME_ENTRY_CREATE_BY_TXT, X509_R_INVALID_FIELD_NAME); ERR_add_error_data(2, "name=", field); return NULL; } nentry = X509_NAME_ENTRY_create_by_OBJ(ne, obj, type, bytes, len); ASN1_OBJECT_free(obj); return nentry; } X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_NID(X509_NAME_ENTRY **ne, int nid, int type, const unsigned char *bytes, int len) { ASN1_OBJECT *obj; X509_NAME_ENTRY *nentry; obj = OBJ_nid2obj(nid); if (obj == NULL) { X509err(X509_F_X509_NAME_ENTRY_CREATE_BY_NID, X509_R_UNKNOWN_NID); return NULL; } nentry = X509_NAME_ENTRY_create_by_OBJ(ne, obj, type, bytes, len); ASN1_OBJECT_free(obj); return nentry; } X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_OBJ(X509_NAME_ENTRY **ne, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len) { X509_NAME_ENTRY *ret; if ((ne == NULL) || (*ne == NULL)) { if ((ret = X509_NAME_ENTRY_new()) == NULL) return NULL; } else ret = *ne; if (!X509_NAME_ENTRY_set_object(ret, obj)) goto err; if (!X509_NAME_ENTRY_set_data(ret, type, bytes, len)) goto err; if ((ne != NULL) && (*ne == NULL)) *ne = ret; return ret; err: if ((ne == NULL) || (ret != *ne)) X509_NAME_ENTRY_free(ret); return NULL; } int X509_NAME_ENTRY_set_object(X509_NAME_ENTRY *ne, const ASN1_OBJECT *obj) { if ((ne == NULL) || (obj == NULL)) { X509err(X509_F_X509_NAME_ENTRY_SET_OBJECT, ERR_R_PASSED_NULL_PARAMETER); return 0; } ASN1_OBJECT_free(ne->object); ne->object = OBJ_dup(obj); return ((ne->object == NULL) ? 0 : 1); } int X509_NAME_ENTRY_set_data(X509_NAME_ENTRY *ne, int type, const unsigned char *bytes, int len) { int i; if ((ne == NULL) || ((bytes == NULL) && (len != 0))) return 0; if ((type > 0) && (type & MBSTRING_FLAG)) return ASN1_STRING_set_by_NID(&ne->value, bytes, len, type, OBJ_obj2nid(ne->object)) ? 1 : 0; if (len < 0) len = strlen((const char *)bytes); i = ASN1_STRING_set(ne->value, bytes, len); if (!i) return 0; if (type != V_ASN1_UNDEF) { if (type == V_ASN1_APP_CHOOSE) ne->value->type = ASN1_PRINTABLE_type(bytes, len); else ne->value->type = type; } return 1; } ASN1_OBJECT *X509_NAME_ENTRY_get_object(const X509_NAME_ENTRY *ne) { if (ne == NULL) return NULL; return ne->object; } ASN1_STRING *X509_NAME_ENTRY_get_data(const X509_NAME_ENTRY *ne) { if (ne == NULL) return NULL; return ne->value; } int X509_NAME_ENTRY_set(const X509_NAME_ENTRY *ne) { return ne->set; } openssl-1.1.1f/crypto/x509/x509rset.c000066400000000000000000000020641364063235100171440ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" int X509_REQ_set_version(X509_REQ *x, long version) { if (x == NULL) return 0; x->req_info.enc.modified = 1; return ASN1_INTEGER_set(x->req_info.version, version); } int X509_REQ_set_subject_name(X509_REQ *x, X509_NAME *name) { if (x == NULL) return 0; x->req_info.enc.modified = 1; return X509_NAME_set(&x->req_info.subject, name); } int X509_REQ_set_pubkey(X509_REQ *x, EVP_PKEY *pkey) { if (x == NULL) return 0; x->req_info.enc.modified = 1; return X509_PUBKEY_set(&x->req_info.pubkey, pkey); } openssl-1.1.1f/crypto/x509/x509spki.c000066400000000000000000000042541364063235100171400ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include int NETSCAPE_SPKI_set_pubkey(NETSCAPE_SPKI *x, EVP_PKEY *pkey) { if ((x == NULL) || (x->spkac == NULL)) return 0; return X509_PUBKEY_set(&(x->spkac->pubkey), pkey); } EVP_PKEY *NETSCAPE_SPKI_get_pubkey(NETSCAPE_SPKI *x) { if ((x == NULL) || (x->spkac == NULL)) return NULL; return X509_PUBKEY_get(x->spkac->pubkey); } /* Load a Netscape SPKI from a base64 encoded string */ NETSCAPE_SPKI *NETSCAPE_SPKI_b64_decode(const char *str, int len) { unsigned char *spki_der; const unsigned char *p; int spki_len; NETSCAPE_SPKI *spki; if (len <= 0) len = strlen(str); if ((spki_der = OPENSSL_malloc(len + 1)) == NULL) { X509err(X509_F_NETSCAPE_SPKI_B64_DECODE, ERR_R_MALLOC_FAILURE); return NULL; } spki_len = EVP_DecodeBlock(spki_der, (const unsigned char *)str, len); if (spki_len < 0) { X509err(X509_F_NETSCAPE_SPKI_B64_DECODE, X509_R_BASE64_DECODE_ERROR); OPENSSL_free(spki_der); return NULL; } p = spki_der; spki = d2i_NETSCAPE_SPKI(NULL, &p, spki_len); OPENSSL_free(spki_der); return spki; } /* Generate a base64 encoded string from an SPKI */ char *NETSCAPE_SPKI_b64_encode(NETSCAPE_SPKI *spki) { unsigned char *der_spki, *p; char *b64_str; int der_len; der_len = i2d_NETSCAPE_SPKI(spki, NULL); der_spki = OPENSSL_malloc(der_len); b64_str = OPENSSL_malloc(der_len * 2); if (der_spki == NULL || b64_str == NULL) { X509err(X509_F_NETSCAPE_SPKI_B64_ENCODE, ERR_R_MALLOC_FAILURE); OPENSSL_free(der_spki); OPENSSL_free(b64_str); return NULL; } p = der_spki; i2d_NETSCAPE_SPKI(spki, &p); EVP_EncodeBlock((unsigned char *)b64_str, der_spki, der_len); OPENSSL_free(der_spki); return b64_str; } openssl-1.1.1f/crypto/x509/x509type.c000066400000000000000000000037331364063235100171540ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include int X509_certificate_type(const X509 *x, const EVP_PKEY *pkey) { const EVP_PKEY *pk; int ret = 0, i; if (x == NULL) return 0; if (pkey == NULL) pk = X509_get0_pubkey(x); else pk = pkey; if (pk == NULL) return 0; switch (EVP_PKEY_id(pk)) { case EVP_PKEY_RSA: ret = EVP_PK_RSA | EVP_PKT_SIGN; /* if (!sign only extension) */ ret |= EVP_PKT_ENC; break; case EVP_PKEY_RSA_PSS: ret = EVP_PK_RSA | EVP_PKT_SIGN; break; case EVP_PKEY_DSA: ret = EVP_PK_DSA | EVP_PKT_SIGN; break; case EVP_PKEY_EC: ret = EVP_PK_EC | EVP_PKT_SIGN | EVP_PKT_EXCH; break; case EVP_PKEY_ED448: case EVP_PKEY_ED25519: ret = EVP_PKT_SIGN; break; case EVP_PKEY_DH: ret = EVP_PK_DH | EVP_PKT_EXCH; break; case NID_id_GostR3410_2001: case NID_id_GostR3410_2012_256: case NID_id_GostR3410_2012_512: ret = EVP_PKT_EXCH | EVP_PKT_SIGN; break; default: break; } i = X509_get_signature_nid(x); if (i && OBJ_find_sigid_algs(i, NULL, &i)) { switch (i) { case NID_rsaEncryption: case NID_rsa: ret |= EVP_PKS_RSA; break; case NID_dsa: case NID_dsa_2: ret |= EVP_PKS_DSA; break; case NID_X9_62_id_ecPublicKey: ret |= EVP_PKS_EC; break; default: break; } } return ret; } openssl-1.1.1f/crypto/x509/x_all.c000066400000000000000000000334221364063235100166420ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" #include #include #include #include int X509_verify(X509 *a, EVP_PKEY *r) { if (X509_ALGOR_cmp(&a->sig_alg, &a->cert_info.signature)) return 0; return (ASN1_item_verify(ASN1_ITEM_rptr(X509_CINF), &a->sig_alg, &a->signature, &a->cert_info, r)); } int X509_REQ_verify(X509_REQ *a, EVP_PKEY *r) { return (ASN1_item_verify(ASN1_ITEM_rptr(X509_REQ_INFO), &a->sig_alg, a->signature, &a->req_info, r)); } int NETSCAPE_SPKI_verify(NETSCAPE_SPKI *a, EVP_PKEY *r) { return (ASN1_item_verify(ASN1_ITEM_rptr(NETSCAPE_SPKAC), &a->sig_algor, a->signature, a->spkac, r)); } int X509_sign(X509 *x, EVP_PKEY *pkey, const EVP_MD *md) { x->cert_info.enc.modified = 1; return (ASN1_item_sign(ASN1_ITEM_rptr(X509_CINF), &x->cert_info.signature, &x->sig_alg, &x->signature, &x->cert_info, pkey, md)); } int X509_sign_ctx(X509 *x, EVP_MD_CTX *ctx) { x->cert_info.enc.modified = 1; return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_CINF), &x->cert_info.signature, &x->sig_alg, &x->signature, &x->cert_info, ctx); } #ifndef OPENSSL_NO_OCSP int X509_http_nbio(OCSP_REQ_CTX *rctx, X509 **pcert) { return OCSP_REQ_CTX_nbio_d2i(rctx, (ASN1_VALUE **)pcert, ASN1_ITEM_rptr(X509)); } #endif int X509_REQ_sign(X509_REQ *x, EVP_PKEY *pkey, const EVP_MD *md) { return (ASN1_item_sign(ASN1_ITEM_rptr(X509_REQ_INFO), &x->sig_alg, NULL, x->signature, &x->req_info, pkey, md)); } int X509_REQ_sign_ctx(X509_REQ *x, EVP_MD_CTX *ctx) { return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_REQ_INFO), &x->sig_alg, NULL, x->signature, &x->req_info, ctx); } int X509_CRL_sign(X509_CRL *x, EVP_PKEY *pkey, const EVP_MD *md) { x->crl.enc.modified = 1; return (ASN1_item_sign(ASN1_ITEM_rptr(X509_CRL_INFO), &x->crl.sig_alg, &x->sig_alg, &x->signature, &x->crl, pkey, md)); } int X509_CRL_sign_ctx(X509_CRL *x, EVP_MD_CTX *ctx) { x->crl.enc.modified = 1; return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_CRL_INFO), &x->crl.sig_alg, &x->sig_alg, &x->signature, &x->crl, ctx); } #ifndef OPENSSL_NO_OCSP int X509_CRL_http_nbio(OCSP_REQ_CTX *rctx, X509_CRL **pcrl) { return OCSP_REQ_CTX_nbio_d2i(rctx, (ASN1_VALUE **)pcrl, ASN1_ITEM_rptr(X509_CRL)); } #endif int NETSCAPE_SPKI_sign(NETSCAPE_SPKI *x, EVP_PKEY *pkey, const EVP_MD *md) { return (ASN1_item_sign(ASN1_ITEM_rptr(NETSCAPE_SPKAC), &x->sig_algor, NULL, x->signature, x->spkac, pkey, md)); } #ifndef OPENSSL_NO_STDIO X509 *d2i_X509_fp(FILE *fp, X509 **x509) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509), fp, x509); } int i2d_X509_fp(FILE *fp, X509 *x509) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509), fp, x509); } #endif X509 *d2i_X509_bio(BIO *bp, X509 **x509) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509), bp, x509); } int i2d_X509_bio(BIO *bp, X509 *x509) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509), bp, x509); } #ifndef OPENSSL_NO_STDIO X509_CRL *d2i_X509_CRL_fp(FILE *fp, X509_CRL **crl) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509_CRL), fp, crl); } int i2d_X509_CRL_fp(FILE *fp, X509_CRL *crl) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509_CRL), fp, crl); } #endif X509_CRL *d2i_X509_CRL_bio(BIO *bp, X509_CRL **crl) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509_CRL), bp, crl); } int i2d_X509_CRL_bio(BIO *bp, X509_CRL *crl) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509_CRL), bp, crl); } #ifndef OPENSSL_NO_STDIO PKCS7 *d2i_PKCS7_fp(FILE *fp, PKCS7 **p7) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(PKCS7), fp, p7); } int i2d_PKCS7_fp(FILE *fp, PKCS7 *p7) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(PKCS7), fp, p7); } #endif PKCS7 *d2i_PKCS7_bio(BIO *bp, PKCS7 **p7) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(PKCS7), bp, p7); } int i2d_PKCS7_bio(BIO *bp, PKCS7 *p7) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(PKCS7), bp, p7); } #ifndef OPENSSL_NO_STDIO X509_REQ *d2i_X509_REQ_fp(FILE *fp, X509_REQ **req) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509_REQ), fp, req); } int i2d_X509_REQ_fp(FILE *fp, X509_REQ *req) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509_REQ), fp, req); } #endif X509_REQ *d2i_X509_REQ_bio(BIO *bp, X509_REQ **req) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509_REQ), bp, req); } int i2d_X509_REQ_bio(BIO *bp, X509_REQ *req) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509_REQ), bp, req); } #ifndef OPENSSL_NO_RSA # ifndef OPENSSL_NO_STDIO RSA *d2i_RSAPrivateKey_fp(FILE *fp, RSA **rsa) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa); } int i2d_RSAPrivateKey_fp(FILE *fp, RSA *rsa) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa); } RSA *d2i_RSAPublicKey_fp(FILE *fp, RSA **rsa) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(RSAPublicKey), fp, rsa); } RSA *d2i_RSA_PUBKEY_fp(FILE *fp, RSA **rsa) { return ASN1_d2i_fp((void *(*)(void)) RSA_new, (D2I_OF(void)) d2i_RSA_PUBKEY, fp, (void **)rsa); } int i2d_RSAPublicKey_fp(FILE *fp, RSA *rsa) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(RSAPublicKey), fp, rsa); } int i2d_RSA_PUBKEY_fp(FILE *fp, RSA *rsa) { return ASN1_i2d_fp((I2D_OF(void))i2d_RSA_PUBKEY, fp, rsa); } # endif RSA *d2i_RSAPrivateKey_bio(BIO *bp, RSA **rsa) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa); } int i2d_RSAPrivateKey_bio(BIO *bp, RSA *rsa) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa); } RSA *d2i_RSAPublicKey_bio(BIO *bp, RSA **rsa) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(RSAPublicKey), bp, rsa); } RSA *d2i_RSA_PUBKEY_bio(BIO *bp, RSA **rsa) { return ASN1_d2i_bio_of(RSA, RSA_new, d2i_RSA_PUBKEY, bp, rsa); } int i2d_RSAPublicKey_bio(BIO *bp, RSA *rsa) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(RSAPublicKey), bp, rsa); } int i2d_RSA_PUBKEY_bio(BIO *bp, RSA *rsa) { return ASN1_i2d_bio_of(RSA, i2d_RSA_PUBKEY, bp, rsa); } #endif #ifndef OPENSSL_NO_DSA # ifndef OPENSSL_NO_STDIO DSA *d2i_DSAPrivateKey_fp(FILE *fp, DSA **dsa) { return ASN1_d2i_fp_of(DSA, DSA_new, d2i_DSAPrivateKey, fp, dsa); } int i2d_DSAPrivateKey_fp(FILE *fp, DSA *dsa) { return ASN1_i2d_fp_of_const(DSA, i2d_DSAPrivateKey, fp, dsa); } DSA *d2i_DSA_PUBKEY_fp(FILE *fp, DSA **dsa) { return ASN1_d2i_fp_of(DSA, DSA_new, d2i_DSA_PUBKEY, fp, dsa); } int i2d_DSA_PUBKEY_fp(FILE *fp, DSA *dsa) { return ASN1_i2d_fp_of(DSA, i2d_DSA_PUBKEY, fp, dsa); } # endif DSA *d2i_DSAPrivateKey_bio(BIO *bp, DSA **dsa) { return ASN1_d2i_bio_of(DSA, DSA_new, d2i_DSAPrivateKey, bp, dsa); } int i2d_DSAPrivateKey_bio(BIO *bp, DSA *dsa) { return ASN1_i2d_bio_of_const(DSA, i2d_DSAPrivateKey, bp, dsa); } DSA *d2i_DSA_PUBKEY_bio(BIO *bp, DSA **dsa) { return ASN1_d2i_bio_of(DSA, DSA_new, d2i_DSA_PUBKEY, bp, dsa); } int i2d_DSA_PUBKEY_bio(BIO *bp, DSA *dsa) { return ASN1_i2d_bio_of(DSA, i2d_DSA_PUBKEY, bp, dsa); } #endif #ifndef OPENSSL_NO_EC # ifndef OPENSSL_NO_STDIO EC_KEY *d2i_EC_PUBKEY_fp(FILE *fp, EC_KEY **eckey) { return ASN1_d2i_fp_of(EC_KEY, EC_KEY_new, d2i_EC_PUBKEY, fp, eckey); } int i2d_EC_PUBKEY_fp(FILE *fp, EC_KEY *eckey) { return ASN1_i2d_fp_of(EC_KEY, i2d_EC_PUBKEY, fp, eckey); } EC_KEY *d2i_ECPrivateKey_fp(FILE *fp, EC_KEY **eckey) { return ASN1_d2i_fp_of(EC_KEY, EC_KEY_new, d2i_ECPrivateKey, fp, eckey); } int i2d_ECPrivateKey_fp(FILE *fp, EC_KEY *eckey) { return ASN1_i2d_fp_of(EC_KEY, i2d_ECPrivateKey, fp, eckey); } # endif EC_KEY *d2i_EC_PUBKEY_bio(BIO *bp, EC_KEY **eckey) { return ASN1_d2i_bio_of(EC_KEY, EC_KEY_new, d2i_EC_PUBKEY, bp, eckey); } int i2d_EC_PUBKEY_bio(BIO *bp, EC_KEY *ecdsa) { return ASN1_i2d_bio_of(EC_KEY, i2d_EC_PUBKEY, bp, ecdsa); } EC_KEY *d2i_ECPrivateKey_bio(BIO *bp, EC_KEY **eckey) { return ASN1_d2i_bio_of(EC_KEY, EC_KEY_new, d2i_ECPrivateKey, bp, eckey); } int i2d_ECPrivateKey_bio(BIO *bp, EC_KEY *eckey) { return ASN1_i2d_bio_of(EC_KEY, i2d_ECPrivateKey, bp, eckey); } #endif int X509_pubkey_digest(const X509 *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { ASN1_BIT_STRING *key; key = X509_get0_pubkey_bitstr(data); if (!key) return 0; return EVP_Digest(key->data, key->length, md, len, type, NULL); } int X509_digest(const X509 *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { if (type == EVP_sha1() && (data->ex_flags & EXFLAG_SET) != 0 && (data->ex_flags & EXFLAG_INVALID) == 0) { /* Asking for SHA1 and we already computed it. */ if (len != NULL) *len = sizeof(data->sha1_hash); memcpy(md, data->sha1_hash, sizeof(data->sha1_hash)); return 1; } return (ASN1_item_digest (ASN1_ITEM_rptr(X509), type, (char *)data, md, len)); } int X509_CRL_digest(const X509_CRL *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { if (type == EVP_sha1() && (data->flags & EXFLAG_SET) != 0 && (data->flags & EXFLAG_INVALID) == 0) { /* Asking for SHA1; always computed in CRL d2i. */ if (len != NULL) *len = sizeof(data->sha1_hash); memcpy(md, data->sha1_hash, sizeof(data->sha1_hash)); return 1; } return (ASN1_item_digest (ASN1_ITEM_rptr(X509_CRL), type, (char *)data, md, len)); } int X509_REQ_digest(const X509_REQ *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { return (ASN1_item_digest (ASN1_ITEM_rptr(X509_REQ), type, (char *)data, md, len)); } int X509_NAME_digest(const X509_NAME *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { return (ASN1_item_digest (ASN1_ITEM_rptr(X509_NAME), type, (char *)data, md, len)); } int PKCS7_ISSUER_AND_SERIAL_digest(PKCS7_ISSUER_AND_SERIAL *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { return (ASN1_item_digest(ASN1_ITEM_rptr(PKCS7_ISSUER_AND_SERIAL), type, (char *)data, md, len)); } #ifndef OPENSSL_NO_STDIO X509_SIG *d2i_PKCS8_fp(FILE *fp, X509_SIG **p8) { return ASN1_d2i_fp_of(X509_SIG, X509_SIG_new, d2i_X509_SIG, fp, p8); } int i2d_PKCS8_fp(FILE *fp, X509_SIG *p8) { return ASN1_i2d_fp_of(X509_SIG, i2d_X509_SIG, fp, p8); } #endif X509_SIG *d2i_PKCS8_bio(BIO *bp, X509_SIG **p8) { return ASN1_d2i_bio_of(X509_SIG, X509_SIG_new, d2i_X509_SIG, bp, p8); } int i2d_PKCS8_bio(BIO *bp, X509_SIG *p8) { return ASN1_i2d_bio_of(X509_SIG, i2d_X509_SIG, bp, p8); } #ifndef OPENSSL_NO_STDIO PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_fp(FILE *fp, PKCS8_PRIV_KEY_INFO **p8inf) { return ASN1_d2i_fp_of(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_new, d2i_PKCS8_PRIV_KEY_INFO, fp, p8inf); } int i2d_PKCS8_PRIV_KEY_INFO_fp(FILE *fp, PKCS8_PRIV_KEY_INFO *p8inf) { return ASN1_i2d_fp_of(PKCS8_PRIV_KEY_INFO, i2d_PKCS8_PRIV_KEY_INFO, fp, p8inf); } int i2d_PKCS8PrivateKeyInfo_fp(FILE *fp, EVP_PKEY *key) { PKCS8_PRIV_KEY_INFO *p8inf; int ret; p8inf = EVP_PKEY2PKCS8(key); if (!p8inf) return 0; ret = i2d_PKCS8_PRIV_KEY_INFO_fp(fp, p8inf); PKCS8_PRIV_KEY_INFO_free(p8inf); return ret; } int i2d_PrivateKey_fp(FILE *fp, EVP_PKEY *pkey) { return ASN1_i2d_fp_of(EVP_PKEY, i2d_PrivateKey, fp, pkey); } EVP_PKEY *d2i_PrivateKey_fp(FILE *fp, EVP_PKEY **a) { return ASN1_d2i_fp_of(EVP_PKEY, EVP_PKEY_new, d2i_AutoPrivateKey, fp, a); } int i2d_PUBKEY_fp(FILE *fp, EVP_PKEY *pkey) { return ASN1_i2d_fp_of(EVP_PKEY, i2d_PUBKEY, fp, pkey); } EVP_PKEY *d2i_PUBKEY_fp(FILE *fp, EVP_PKEY **a) { return ASN1_d2i_fp_of(EVP_PKEY, EVP_PKEY_new, d2i_PUBKEY, fp, a); } #endif PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_bio(BIO *bp, PKCS8_PRIV_KEY_INFO **p8inf) { return ASN1_d2i_bio_of(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_new, d2i_PKCS8_PRIV_KEY_INFO, bp, p8inf); } int i2d_PKCS8_PRIV_KEY_INFO_bio(BIO *bp, PKCS8_PRIV_KEY_INFO *p8inf) { return ASN1_i2d_bio_of(PKCS8_PRIV_KEY_INFO, i2d_PKCS8_PRIV_KEY_INFO, bp, p8inf); } int i2d_PKCS8PrivateKeyInfo_bio(BIO *bp, EVP_PKEY *key) { PKCS8_PRIV_KEY_INFO *p8inf; int ret; p8inf = EVP_PKEY2PKCS8(key); if (!p8inf) return 0; ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf); PKCS8_PRIV_KEY_INFO_free(p8inf); return ret; } int i2d_PrivateKey_bio(BIO *bp, EVP_PKEY *pkey) { return ASN1_i2d_bio_of(EVP_PKEY, i2d_PrivateKey, bp, pkey); } EVP_PKEY *d2i_PrivateKey_bio(BIO *bp, EVP_PKEY **a) { return ASN1_d2i_bio_of(EVP_PKEY, EVP_PKEY_new, d2i_AutoPrivateKey, bp, a); } int i2d_PUBKEY_bio(BIO *bp, EVP_PKEY *pkey) { return ASN1_i2d_bio_of(EVP_PKEY, i2d_PUBKEY, bp, pkey); } EVP_PKEY *d2i_PUBKEY_bio(BIO *bp, EVP_PKEY **a) { return ASN1_d2i_bio_of(EVP_PKEY, EVP_PKEY_new, d2i_PUBKEY, bp, a); } openssl-1.1.1f/crypto/x509/x_attrib.c000066400000000000000000000026531364063235100173610ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "x509_local.h" /*- * X509_ATTRIBUTE: this has the following form: * * typedef struct x509_attributes_st * { * ASN1_OBJECT *object; * STACK_OF(ASN1_TYPE) *set; * } X509_ATTRIBUTE; * */ ASN1_SEQUENCE(X509_ATTRIBUTE) = { ASN1_SIMPLE(X509_ATTRIBUTE, object, ASN1_OBJECT), ASN1_SET_OF(X509_ATTRIBUTE, set, ASN1_ANY) } ASN1_SEQUENCE_END(X509_ATTRIBUTE) IMPLEMENT_ASN1_FUNCTIONS(X509_ATTRIBUTE) IMPLEMENT_ASN1_DUP_FUNCTION(X509_ATTRIBUTE) X509_ATTRIBUTE *X509_ATTRIBUTE_create(int nid, int atrtype, void *value) { X509_ATTRIBUTE *ret = NULL; ASN1_TYPE *val = NULL; if ((ret = X509_ATTRIBUTE_new()) == NULL) return NULL; ret->object = OBJ_nid2obj(nid); if ((val = ASN1_TYPE_new()) == NULL) goto err; if (!sk_ASN1_TYPE_push(ret->set, val)) goto err; ASN1_TYPE_set(val, atrtype, value); return ret; err: X509_ATTRIBUTE_free(ret); ASN1_TYPE_free(val); return NULL; } openssl-1.1.1f/crypto/x509/x_crl.c000066400000000000000000000353201364063235100166510ustar00rootroot00000000000000/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" #include #include "x509_local.h" static int X509_REVOKED_cmp(const X509_REVOKED *const *a, const X509_REVOKED *const *b); static int setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp); ASN1_SEQUENCE(X509_REVOKED) = { ASN1_EMBED(X509_REVOKED,serialNumber, ASN1_INTEGER), ASN1_SIMPLE(X509_REVOKED,revocationDate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_REVOKED,extensions, X509_EXTENSION) } ASN1_SEQUENCE_END(X509_REVOKED) static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r); static int def_crl_lookup(X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *serial, X509_NAME *issuer); static X509_CRL_METHOD int_crl_meth = { 0, 0, 0, def_crl_lookup, def_crl_verify }; static const X509_CRL_METHOD *default_crl_method = &int_crl_meth; /* * The X509_CRL_INFO structure needs a bit of customisation. Since we cache * the original encoding the signature won't be affected by reordering of the * revoked field. */ static int crl_inf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL_INFO *a = (X509_CRL_INFO *)*pval; if (!a || !a->revoked) return 1; switch (operation) { /* * Just set cmp function here. We don't sort because that would * affect the output of X509_CRL_print(). */ case ASN1_OP_D2I_POST: (void)sk_X509_REVOKED_set_cmp_func(a->revoked, X509_REVOKED_cmp); break; } return 1; } ASN1_SEQUENCE_enc(X509_CRL_INFO, enc, crl_inf_cb) = { ASN1_OPT(X509_CRL_INFO, version, ASN1_INTEGER), ASN1_EMBED(X509_CRL_INFO, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_CRL_INFO, issuer, X509_NAME), ASN1_SIMPLE(X509_CRL_INFO, lastUpdate, ASN1_TIME), ASN1_OPT(X509_CRL_INFO, nextUpdate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_CRL_INFO, revoked, X509_REVOKED), ASN1_EXP_SEQUENCE_OF_OPT(X509_CRL_INFO, extensions, X509_EXTENSION, 0) } ASN1_SEQUENCE_END_enc(X509_CRL_INFO, X509_CRL_INFO) /* * Set CRL entry issuer according to CRL certificate issuer extension. Check * for unhandled critical CRL entry extensions. */ static int crl_set_issuers(X509_CRL *crl) { int i, j; GENERAL_NAMES *gens, *gtmp; STACK_OF(X509_REVOKED) *revoked; revoked = X509_CRL_get_REVOKED(crl); gens = NULL; for (i = 0; i < sk_X509_REVOKED_num(revoked); i++) { X509_REVOKED *rev = sk_X509_REVOKED_value(revoked, i); STACK_OF(X509_EXTENSION) *exts; ASN1_ENUMERATED *reason; X509_EXTENSION *ext; gtmp = X509_REVOKED_get_ext_d2i(rev, NID_certificate_issuer, &j, NULL); if (!gtmp && (j != -1)) { crl->flags |= EXFLAG_INVALID; return 1; } if (gtmp) { gens = gtmp; if (!crl->issuers) { crl->issuers = sk_GENERAL_NAMES_new_null(); if (!crl->issuers) return 0; } if (!sk_GENERAL_NAMES_push(crl->issuers, gtmp)) return 0; } rev->issuer = gens; reason = X509_REVOKED_get_ext_d2i(rev, NID_crl_reason, &j, NULL); if (!reason && (j != -1)) { crl->flags |= EXFLAG_INVALID; return 1; } if (reason) { rev->reason = ASN1_ENUMERATED_get(reason); ASN1_ENUMERATED_free(reason); } else rev->reason = CRL_REASON_NONE; /* Check for critical CRL entry extensions */ exts = rev->extensions; for (j = 0; j < sk_X509_EXTENSION_num(exts); j++) { ext = sk_X509_EXTENSION_value(exts, j); if (X509_EXTENSION_get_critical(ext)) { if (OBJ_obj2nid(X509_EXTENSION_get_object(ext)) == NID_certificate_issuer) continue; crl->flags |= EXFLAG_CRITICAL; break; } } } return 1; } /* * The X509_CRL structure needs a bit of customisation. Cache some extensions * and hash of the whole CRL. */ static int crl_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL *crl = (X509_CRL *)*pval; STACK_OF(X509_EXTENSION) *exts; X509_EXTENSION *ext; int idx, i; switch (operation) { case ASN1_OP_D2I_PRE: if (crl->meth->crl_free) { if (!crl->meth->crl_free(crl)) return 0; } AUTHORITY_KEYID_free(crl->akid); ISSUING_DIST_POINT_free(crl->idp); ASN1_INTEGER_free(crl->crl_number); ASN1_INTEGER_free(crl->base_crl_number); sk_GENERAL_NAMES_pop_free(crl->issuers, GENERAL_NAMES_free); /* fall thru */ case ASN1_OP_NEW_POST: crl->idp = NULL; crl->akid = NULL; crl->flags = 0; crl->idp_flags = 0; crl->idp_reasons = CRLDP_ALL_REASONS; crl->meth = default_crl_method; crl->meth_data = NULL; crl->issuers = NULL; crl->crl_number = NULL; crl->base_crl_number = NULL; break; case ASN1_OP_D2I_POST: if (!X509_CRL_digest(crl, EVP_sha1(), crl->sha1_hash, NULL)) crl->flags |= EXFLAG_INVALID; crl->idp = X509_CRL_get_ext_d2i(crl, NID_issuing_distribution_point, &i, NULL); if (crl->idp != NULL) { if (!setup_idp(crl, crl->idp)) crl->flags |= EXFLAG_INVALID; } else if (i != -1) { crl->flags |= EXFLAG_INVALID; } crl->akid = X509_CRL_get_ext_d2i(crl, NID_authority_key_identifier, &i, NULL); if (crl->akid == NULL && i != -1) crl->flags |= EXFLAG_INVALID; crl->crl_number = X509_CRL_get_ext_d2i(crl, NID_crl_number, &i, NULL); if (crl->crl_number == NULL && i != -1) crl->flags |= EXFLAG_INVALID; crl->base_crl_number = X509_CRL_get_ext_d2i(crl, NID_delta_crl, &i, NULL); if (crl->base_crl_number == NULL && i != -1) crl->flags |= EXFLAG_INVALID; /* Delta CRLs must have CRL number */ if (crl->base_crl_number && !crl->crl_number) crl->flags |= EXFLAG_INVALID; /* * See if we have any unhandled critical CRL extensions and indicate * this in a flag. We only currently handle IDP so anything else * critical sets the flag. This code accesses the X509_CRL structure * directly: applications shouldn't do this. */ exts = crl->crl.extensions; for (idx = 0; idx < sk_X509_EXTENSION_num(exts); idx++) { int nid; ext = sk_X509_EXTENSION_value(exts, idx); nid = OBJ_obj2nid(X509_EXTENSION_get_object(ext)); if (nid == NID_freshest_crl) crl->flags |= EXFLAG_FRESHEST; if (X509_EXTENSION_get_critical(ext)) { /* We handle IDP and deltas */ if ((nid == NID_issuing_distribution_point) || (nid == NID_authority_key_identifier) || (nid == NID_delta_crl)) continue; crl->flags |= EXFLAG_CRITICAL; break; } } if (!crl_set_issuers(crl)) return 0; if (crl->meth->crl_init) { if (crl->meth->crl_init(crl) == 0) return 0; } crl->flags |= EXFLAG_SET; break; case ASN1_OP_FREE_POST: if (crl->meth->crl_free) { if (!crl->meth->crl_free(crl)) return 0; } AUTHORITY_KEYID_free(crl->akid); ISSUING_DIST_POINT_free(crl->idp); ASN1_INTEGER_free(crl->crl_number); ASN1_INTEGER_free(crl->base_crl_number); sk_GENERAL_NAMES_pop_free(crl->issuers, GENERAL_NAMES_free); break; } return 1; } /* Convert IDP into a more convenient form */ static int setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp) { int idp_only = 0; /* Set various flags according to IDP */ crl->idp_flags |= IDP_PRESENT; if (idp->onlyuser > 0) { idp_only++; crl->idp_flags |= IDP_ONLYUSER; } if (idp->onlyCA > 0) { idp_only++; crl->idp_flags |= IDP_ONLYCA; } if (idp->onlyattr > 0) { idp_only++; crl->idp_flags |= IDP_ONLYATTR; } if (idp_only > 1) crl->idp_flags |= IDP_INVALID; if (idp->indirectCRL > 0) crl->idp_flags |= IDP_INDIRECT; if (idp->onlysomereasons) { crl->idp_flags |= IDP_REASONS; if (idp->onlysomereasons->length > 0) crl->idp_reasons = idp->onlysomereasons->data[0]; if (idp->onlysomereasons->length > 1) crl->idp_reasons |= (idp->onlysomereasons->data[1] << 8); crl->idp_reasons &= CRLDP_ALL_REASONS; } return DIST_POINT_set_dpname(idp->distpoint, X509_CRL_get_issuer(crl)); } ASN1_SEQUENCE_ref(X509_CRL, crl_cb) = { ASN1_EMBED(X509_CRL, crl, X509_CRL_INFO), ASN1_EMBED(X509_CRL, sig_alg, X509_ALGOR), ASN1_EMBED(X509_CRL, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509_CRL, X509_CRL) IMPLEMENT_ASN1_FUNCTIONS(X509_REVOKED) IMPLEMENT_ASN1_DUP_FUNCTION(X509_REVOKED) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL_INFO) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL) IMPLEMENT_ASN1_DUP_FUNCTION(X509_CRL) static int X509_REVOKED_cmp(const X509_REVOKED *const *a, const X509_REVOKED *const *b) { return (ASN1_STRING_cmp((ASN1_STRING *)&(*a)->serialNumber, (ASN1_STRING *)&(*b)->serialNumber)); } int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev) { X509_CRL_INFO *inf; inf = &crl->crl; if (inf->revoked == NULL) inf->revoked = sk_X509_REVOKED_new(X509_REVOKED_cmp); if (inf->revoked == NULL || !sk_X509_REVOKED_push(inf->revoked, rev)) { ASN1err(ASN1_F_X509_CRL_ADD0_REVOKED, ERR_R_MALLOC_FAILURE); return 0; } inf->enc.modified = 1; return 1; } int X509_CRL_verify(X509_CRL *crl, EVP_PKEY *r) { if (crl->meth->crl_verify) return crl->meth->crl_verify(crl, r); return 0; } int X509_CRL_get0_by_serial(X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *serial) { if (crl->meth->crl_lookup) return crl->meth->crl_lookup(crl, ret, serial, NULL); return 0; } int X509_CRL_get0_by_cert(X509_CRL *crl, X509_REVOKED **ret, X509 *x) { if (crl->meth->crl_lookup) return crl->meth->crl_lookup(crl, ret, X509_get_serialNumber(x), X509_get_issuer_name(x)); return 0; } static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r) { return (ASN1_item_verify(ASN1_ITEM_rptr(X509_CRL_INFO), &crl->sig_alg, &crl->signature, &crl->crl, r)); } static int crl_revoked_issuer_match(X509_CRL *crl, X509_NAME *nm, X509_REVOKED *rev) { int i; if (!rev->issuer) { if (!nm) return 1; if (!X509_NAME_cmp(nm, X509_CRL_get_issuer(crl))) return 1; return 0; } if (!nm) nm = X509_CRL_get_issuer(crl); for (i = 0; i < sk_GENERAL_NAME_num(rev->issuer); i++) { GENERAL_NAME *gen = sk_GENERAL_NAME_value(rev->issuer, i); if (gen->type != GEN_DIRNAME) continue; if (!X509_NAME_cmp(nm, gen->d.directoryName)) return 1; } return 0; } static int def_crl_lookup(X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *serial, X509_NAME *issuer) { X509_REVOKED rtmp, *rev; int idx, num; if (crl->crl.revoked == NULL) return 0; /* * Sort revoked into serial number order if not already sorted. Do this * under a lock to avoid race condition. */ if (!sk_X509_REVOKED_is_sorted(crl->crl.revoked)) { CRYPTO_THREAD_write_lock(crl->lock); sk_X509_REVOKED_sort(crl->crl.revoked); CRYPTO_THREAD_unlock(crl->lock); } rtmp.serialNumber = *serial; idx = sk_X509_REVOKED_find(crl->crl.revoked, &rtmp); if (idx < 0) return 0; /* Need to look for matching name */ for (num = sk_X509_REVOKED_num(crl->crl.revoked); idx < num; idx++) { rev = sk_X509_REVOKED_value(crl->crl.revoked, idx); if (ASN1_INTEGER_cmp(&rev->serialNumber, serial)) return 0; if (crl_revoked_issuer_match(crl, issuer, rev)) { if (ret) *ret = rev; if (rev->reason == CRL_REASON_REMOVE_FROM_CRL) return 2; return 1; } } return 0; } void X509_CRL_set_default_method(const X509_CRL_METHOD *meth) { if (meth == NULL) default_crl_method = &int_crl_meth; else default_crl_method = meth; } X509_CRL_METHOD *X509_CRL_METHOD_new(int (*crl_init) (X509_CRL *crl), int (*crl_free) (X509_CRL *crl), int (*crl_lookup) (X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *ser, X509_NAME *issuer), int (*crl_verify) (X509_CRL *crl, EVP_PKEY *pk)) { X509_CRL_METHOD *m = OPENSSL_malloc(sizeof(*m)); if (m == NULL) { X509err(X509_F_X509_CRL_METHOD_NEW, ERR_R_MALLOC_FAILURE); return NULL; } m->crl_init = crl_init; m->crl_free = crl_free; m->crl_lookup = crl_lookup; m->crl_verify = crl_verify; m->flags = X509_CRL_METHOD_DYNAMIC; return m; } void X509_CRL_METHOD_free(X509_CRL_METHOD *m) { if (m == NULL || !(m->flags & X509_CRL_METHOD_DYNAMIC)) return; OPENSSL_free(m); } void X509_CRL_set_meth_data(X509_CRL *crl, void *dat) { crl->meth_data = dat; } void *X509_CRL_get_meth_data(X509_CRL *crl) { return crl->meth_data; } openssl-1.1.1f/crypto/x509/x_exten.c000066400000000000000000000020221364063235100172050ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "x509_local.h" ASN1_SEQUENCE(X509_EXTENSION) = { ASN1_SIMPLE(X509_EXTENSION, object, ASN1_OBJECT), ASN1_OPT(X509_EXTENSION, critical, ASN1_BOOLEAN), ASN1_EMBED(X509_EXTENSION, value, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(X509_EXTENSION) ASN1_ITEM_TEMPLATE(X509_EXTENSIONS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Extension, X509_EXTENSION) ASN1_ITEM_TEMPLATE_END(X509_EXTENSIONS) IMPLEMENT_ASN1_FUNCTIONS(X509_EXTENSION) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(X509_EXTENSIONS, X509_EXTENSIONS, X509_EXTENSIONS) IMPLEMENT_ASN1_DUP_FUNCTION(X509_EXTENSION) openssl-1.1.1f/crypto/x509/x_name.c000066400000000000000000000373221364063235100170150ustar00rootroot00000000000000/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" #include "crypto/asn1.h" #include "x509_local.h" /* * Maximum length of X509_NAME: much larger than anything we should * ever see in practice. */ #define X509_NAME_MAX (1024 * 1024) static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx); static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass); static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it); static void x509_name_ex_free(ASN1_VALUE **val, const ASN1_ITEM *it); static int x509_name_encode(X509_NAME *a); static int x509_name_canon(X509_NAME *a); static int asn1_string_canon(ASN1_STRING *out, const ASN1_STRING *in); static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) * intname, unsigned char **in); static int x509_name_ex_print(BIO *out, ASN1_VALUE **pval, int indent, const char *fname, const ASN1_PCTX *pctx); ASN1_SEQUENCE(X509_NAME_ENTRY) = { ASN1_SIMPLE(X509_NAME_ENTRY, object, ASN1_OBJECT), ASN1_SIMPLE(X509_NAME_ENTRY, value, ASN1_PRINTABLE) } ASN1_SEQUENCE_END(X509_NAME_ENTRY) IMPLEMENT_ASN1_FUNCTIONS(X509_NAME_ENTRY) IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME_ENTRY) /* * For the "Name" type we need a SEQUENCE OF { SET OF X509_NAME_ENTRY } so * declare two template wrappers for this */ ASN1_ITEM_TEMPLATE(X509_NAME_ENTRIES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF, 0, RDNS, X509_NAME_ENTRY) static_ASN1_ITEM_TEMPLATE_END(X509_NAME_ENTRIES) ASN1_ITEM_TEMPLATE(X509_NAME_INTERNAL) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Name, X509_NAME_ENTRIES) static_ASN1_ITEM_TEMPLATE_END(X509_NAME_INTERNAL) /* * Normally that's where it would end: we'd have two nested STACK structures * representing the ASN1. Unfortunately X509_NAME uses a completely different * form and caches encodings so we have to process the internal form and * convert to the external form. */ static const ASN1_EXTERN_FUNCS x509_name_ff = { NULL, x509_name_ex_new, x509_name_ex_free, 0, /* Default clear behaviour is OK */ x509_name_ex_d2i, x509_name_ex_i2d, x509_name_ex_print }; IMPLEMENT_EXTERN_ASN1(X509_NAME, V_ASN1_SEQUENCE, x509_name_ff) IMPLEMENT_ASN1_FUNCTIONS(X509_NAME) IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME) static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it) { X509_NAME *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) goto memerr; if ((ret->entries = sk_X509_NAME_ENTRY_new_null()) == NULL) goto memerr; if ((ret->bytes = BUF_MEM_new()) == NULL) goto memerr; ret->modified = 1; *val = (ASN1_VALUE *)ret; return 1; memerr: ASN1err(ASN1_F_X509_NAME_EX_NEW, ERR_R_MALLOC_FAILURE); if (ret) { sk_X509_NAME_ENTRY_free(ret->entries); OPENSSL_free(ret); } return 0; } static void x509_name_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { X509_NAME *a; if (!pval || !*pval) return; a = (X509_NAME *)*pval; BUF_MEM_free(a->bytes); sk_X509_NAME_ENTRY_pop_free(a->entries, X509_NAME_ENTRY_free); OPENSSL_free(a->canon_enc); OPENSSL_free(a); *pval = NULL; } static void local_sk_X509_NAME_ENTRY_free(STACK_OF(X509_NAME_ENTRY) *ne) { sk_X509_NAME_ENTRY_free(ne); } static void local_sk_X509_NAME_ENTRY_pop_free(STACK_OF(X509_NAME_ENTRY) *ne) { sk_X509_NAME_ENTRY_pop_free(ne, X509_NAME_ENTRY_free); } static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx) { const unsigned char *p = *in, *q; union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s; ASN1_VALUE *a; } intname = { NULL }; union { X509_NAME *x; ASN1_VALUE *a; } nm = { NULL }; int i, j, ret; STACK_OF(X509_NAME_ENTRY) *entries; X509_NAME_ENTRY *entry; if (len > X509_NAME_MAX) len = X509_NAME_MAX; q = p; /* Get internal representation of Name */ ret = ASN1_item_ex_d2i(&intname.a, &p, len, ASN1_ITEM_rptr(X509_NAME_INTERNAL), tag, aclass, opt, ctx); if (ret <= 0) return ret; if (*val) x509_name_ex_free(val, NULL); if (!x509_name_ex_new(&nm.a, NULL)) goto err; /* We've decoded it: now cache encoding */ if (!BUF_MEM_grow(nm.x->bytes, p - q)) goto err; memcpy(nm.x->bytes->data, q, p - q); /* Convert internal representation to X509_NAME structure */ for (i = 0; i < sk_STACK_OF_X509_NAME_ENTRY_num(intname.s); i++) { entries = sk_STACK_OF_X509_NAME_ENTRY_value(intname.s, i); for (j = 0; j < sk_X509_NAME_ENTRY_num(entries); j++) { entry = sk_X509_NAME_ENTRY_value(entries, j); entry->set = i; if (!sk_X509_NAME_ENTRY_push(nm.x->entries, entry)) goto err; sk_X509_NAME_ENTRY_set(entries, j, NULL); } } ret = x509_name_canon(nm.x); if (!ret) goto err; sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_free); nm.x->modified = 0; *val = nm.a; *in = p; return ret; err: if (nm.x != NULL) X509_NAME_free(nm.x); sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_pop_free); ASN1err(ASN1_F_X509_NAME_EX_D2I, ERR_R_NESTED_ASN1_ERROR); return 0; } static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass) { int ret; X509_NAME *a = (X509_NAME *)*val; if (a->modified) { ret = x509_name_encode(a); if (ret < 0) return ret; ret = x509_name_canon(a); if (ret < 0) return ret; } ret = a->bytes->length; if (out != NULL) { memcpy(*out, a->bytes->data, ret); *out += ret; } return ret; } static int x509_name_encode(X509_NAME *a) { union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s; ASN1_VALUE *a; } intname = { NULL }; int len; unsigned char *p; STACK_OF(X509_NAME_ENTRY) *entries = NULL; X509_NAME_ENTRY *entry; int i, set = -1; intname.s = sk_STACK_OF_X509_NAME_ENTRY_new_null(); if (!intname.s) goto memerr; for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) { entry = sk_X509_NAME_ENTRY_value(a->entries, i); if (entry->set != set) { entries = sk_X509_NAME_ENTRY_new_null(); if (!entries) goto memerr; if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname.s, entries)) { sk_X509_NAME_ENTRY_free(entries); goto memerr; } set = entry->set; } if (!sk_X509_NAME_ENTRY_push(entries, entry)) goto memerr; } len = ASN1_item_ex_i2d(&intname.a, NULL, ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1); if (!BUF_MEM_grow(a->bytes, len)) goto memerr; p = (unsigned char *)a->bytes->data; ASN1_item_ex_i2d(&intname.a, &p, ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1); sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_free); a->modified = 0; return len; memerr: sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_free); ASN1err(ASN1_F_X509_NAME_ENCODE, ERR_R_MALLOC_FAILURE); return -1; } static int x509_name_ex_print(BIO *out, ASN1_VALUE **pval, int indent, const char *fname, const ASN1_PCTX *pctx) { if (X509_NAME_print_ex(out, (const X509_NAME *)*pval, indent, pctx->nm_flags) <= 0) return 0; return 2; } /* * This function generates the canonical encoding of the Name structure. In * it all strings are converted to UTF8, leading, trailing and multiple * spaces collapsed, converted to lower case and the leading SEQUENCE header * removed. In future we could also normalize the UTF8 too. By doing this * comparison of Name structures can be rapidly performed by just using * memcmp() of the canonical encoding. By omitting the leading SEQUENCE name * constraints of type dirName can also be checked with a simple memcmp(). */ static int x509_name_canon(X509_NAME *a) { unsigned char *p; STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname; STACK_OF(X509_NAME_ENTRY) *entries = NULL; X509_NAME_ENTRY *entry, *tmpentry = NULL; int i, set = -1, ret = 0, len; OPENSSL_free(a->canon_enc); a->canon_enc = NULL; /* Special case: empty X509_NAME => null encoding */ if (sk_X509_NAME_ENTRY_num(a->entries) == 0) { a->canon_enclen = 0; return 1; } intname = sk_STACK_OF_X509_NAME_ENTRY_new_null(); if (intname == NULL) { X509err(X509_F_X509_NAME_CANON, ERR_R_MALLOC_FAILURE); goto err; } for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) { entry = sk_X509_NAME_ENTRY_value(a->entries, i); if (entry->set != set) { entries = sk_X509_NAME_ENTRY_new_null(); if (entries == NULL) goto err; if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries)) { sk_X509_NAME_ENTRY_free(entries); X509err(X509_F_X509_NAME_CANON, ERR_R_MALLOC_FAILURE); goto err; } set = entry->set; } tmpentry = X509_NAME_ENTRY_new(); if (tmpentry == NULL) { X509err(X509_F_X509_NAME_CANON, ERR_R_MALLOC_FAILURE); goto err; } tmpentry->object = OBJ_dup(entry->object); if (tmpentry->object == NULL) { X509err(X509_F_X509_NAME_CANON, ERR_R_MALLOC_FAILURE); goto err; } if (!asn1_string_canon(tmpentry->value, entry->value)) goto err; if (!sk_X509_NAME_ENTRY_push(entries, tmpentry)) { X509err(X509_F_X509_NAME_CANON, ERR_R_MALLOC_FAILURE); goto err; } tmpentry = NULL; } /* Finally generate encoding */ len = i2d_name_canon(intname, NULL); if (len < 0) goto err; a->canon_enclen = len; p = OPENSSL_malloc(a->canon_enclen); if (p == NULL) { X509err(X509_F_X509_NAME_CANON, ERR_R_MALLOC_FAILURE); goto err; } a->canon_enc = p; i2d_name_canon(intname, &p); ret = 1; err: X509_NAME_ENTRY_free(tmpentry); sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_pop_free); return ret; } /* Bitmap of all the types of string that will be canonicalized. */ #define ASN1_MASK_CANON \ (B_ASN1_UTF8STRING | B_ASN1_BMPSTRING | B_ASN1_UNIVERSALSTRING \ | B_ASN1_PRINTABLESTRING | B_ASN1_T61STRING | B_ASN1_IA5STRING \ | B_ASN1_VISIBLESTRING) static int asn1_string_canon(ASN1_STRING *out, const ASN1_STRING *in) { unsigned char *to, *from; int len, i; /* If type not in bitmask just copy string across */ if (!(ASN1_tag2bit(in->type) & ASN1_MASK_CANON)) { if (!ASN1_STRING_copy(out, in)) return 0; return 1; } out->type = V_ASN1_UTF8STRING; out->length = ASN1_STRING_to_UTF8(&out->data, in); if (out->length == -1) return 0; to = out->data; from = to; len = out->length; /* * Convert string in place to canonical form. Ultimately we may need to * handle a wider range of characters but for now ignore anything with * MSB set and rely on the ossl_isspace() to fail on bad characters without * needing isascii or range checks as well. */ /* Ignore leading spaces */ while (len > 0 && ossl_isspace(*from)) { from++; len--; } to = from + len; /* Ignore trailing spaces */ while (len > 0 && ossl_isspace(to[-1])) { to--; len--; } to = out->data; i = 0; while (i < len) { /* If not ASCII set just copy across */ if (!ossl_isascii(*from)) { *to++ = *from++; i++; } /* Collapse multiple spaces */ else if (ossl_isspace(*from)) { /* Copy one space across */ *to++ = ' '; /* * Ignore subsequent spaces. Note: don't need to check len here * because we know the last character is a non-space so we can't * overflow. */ do { from++; i++; } while (ossl_isspace(*from)); } else { *to++ = ossl_tolower(*from); from++; i++; } } out->length = to - out->data; return 1; } static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) * _intname, unsigned char **in) { int i, len, ltmp; ASN1_VALUE *v; STACK_OF(ASN1_VALUE) *intname = (STACK_OF(ASN1_VALUE) *)_intname; len = 0; for (i = 0; i < sk_ASN1_VALUE_num(intname); i++) { v = sk_ASN1_VALUE_value(intname, i); ltmp = ASN1_item_ex_i2d(&v, in, ASN1_ITEM_rptr(X509_NAME_ENTRIES), -1, -1); if (ltmp < 0) return ltmp; len += ltmp; } return len; } int X509_NAME_set(X509_NAME **xn, X509_NAME *name) { if (*xn == name) return *xn != NULL; if ((name = X509_NAME_dup(name)) == NULL) return 0; X509_NAME_free(*xn); *xn = name; return 1; } int X509_NAME_print(BIO *bp, const X509_NAME *name, int obase) { char *s, *c, *b; int l, i; l = 80 - 2 - obase; b = X509_NAME_oneline(name, NULL, 0); if (!b) return 0; if (!*b) { OPENSSL_free(b); return 1; } s = b + 1; /* skip the first slash */ c = s; for (;;) { if (((*s == '/') && (ossl_isupper(s[1]) && ((s[2] == '=') || (ossl_isupper(s[2]) && (s[3] == '=')) ))) || (*s == '\0')) { i = s - c; if (BIO_write(bp, c, i) != i) goto err; c = s + 1; /* skip following slash */ if (*s != '\0') { if (BIO_write(bp, ", ", 2) != 2) goto err; } l--; } if (*s == '\0') break; s++; l--; } OPENSSL_free(b); return 1; err: X509err(X509_F_X509_NAME_PRINT, ERR_R_BUF_LIB); OPENSSL_free(b); return 0; } int X509_NAME_get0_der(X509_NAME *nm, const unsigned char **pder, size_t *pderlen) { /* Make sure encoding is valid */ if (i2d_X509_NAME(nm, NULL) <= 0) return 0; if (pder != NULL) *pder = (unsigned char *)nm->bytes->data; if (pderlen != NULL) *pderlen = nm->bytes->length; return 1; } openssl-1.1.1f/crypto/x509/x_pubkey.c000066400000000000000000000220751364063235100173730ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "crypto/x509.h" #include #include struct X509_pubkey_st { X509_ALGOR *algor; ASN1_BIT_STRING *public_key; EVP_PKEY *pkey; }; static int x509_pubkey_decode(EVP_PKEY **pk, X509_PUBKEY *key); /* Minor tweak to operation: free up EVP_PKEY */ static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_FREE_POST) { X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; EVP_PKEY_free(pubkey->pkey); } else if (operation == ASN1_OP_D2I_POST) { /* Attempt to decode public key and cache in pubkey structure. */ X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; EVP_PKEY_free(pubkey->pkey); pubkey->pkey = NULL; /* * Opportunistically decode the key but remove any non fatal errors * from the queue. Subsequent explicit attempts to decode/use the key * will return an appropriate error. */ ERR_set_mark(); if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1) return 0; ERR_pop_to_mark(); } return 1; } ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = { ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY) IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) { X509_PUBKEY *pk = NULL; if (x == NULL) return 0; if ((pk = X509_PUBKEY_new()) == NULL) goto error; if (pkey->ameth) { if (pkey->ameth->pub_encode) { if (!pkey->ameth->pub_encode(pk, pkey)) { X509err(X509_F_X509_PUBKEY_SET, X509_R_PUBLIC_KEY_ENCODE_ERROR); goto error; } } else { X509err(X509_F_X509_PUBKEY_SET, X509_R_METHOD_NOT_SUPPORTED); goto error; } } else { X509err(X509_F_X509_PUBKEY_SET, X509_R_UNSUPPORTED_ALGORITHM); goto error; } X509_PUBKEY_free(*x); *x = pk; pk->pkey = pkey; EVP_PKEY_up_ref(pkey); return 1; error: X509_PUBKEY_free(pk); return 0; } /* * Attempt to decode a public key. * Returns 1 on success, 0 for a decode failure and -1 for a fatal * error e.g. malloc failure. */ static int x509_pubkey_decode(EVP_PKEY **ppkey, X509_PUBKEY *key) { EVP_PKEY *pkey = EVP_PKEY_new(); if (pkey == NULL) { X509err(X509_F_X509_PUBKEY_DECODE, ERR_R_MALLOC_FAILURE); return -1; } if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) { X509err(X509_F_X509_PUBKEY_DECODE, X509_R_UNSUPPORTED_ALGORITHM); goto error; } if (pkey->ameth->pub_decode) { /* * Treat any failure of pub_decode as a decode error. In * future we could have different return codes for decode * errors and fatal errors such as malloc failure. */ if (!pkey->ameth->pub_decode(pkey, key)) { X509err(X509_F_X509_PUBKEY_DECODE, X509_R_PUBLIC_KEY_DECODE_ERROR); goto error; } } else { X509err(X509_F_X509_PUBKEY_DECODE, X509_R_METHOD_NOT_SUPPORTED); goto error; } *ppkey = pkey; return 1; error: EVP_PKEY_free(pkey); return 0; } EVP_PKEY *X509_PUBKEY_get0(X509_PUBKEY *key) { EVP_PKEY *ret = NULL; if (key == NULL || key->public_key == NULL) return NULL; if (key->pkey != NULL) return key->pkey; /* * When the key ASN.1 is initially parsed an attempt is made to * decode the public key and cache the EVP_PKEY structure. If this * operation fails the cached value will be NULL. Parsing continues * to allow parsing of unknown key types or unsupported forms. * We repeat the decode operation so the appropriate errors are left * in the queue. */ x509_pubkey_decode(&ret, key); /* If decode doesn't fail something bad happened */ if (ret != NULL) { X509err(X509_F_X509_PUBKEY_GET0, ERR_R_INTERNAL_ERROR); EVP_PKEY_free(ret); } return NULL; } EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key) { EVP_PKEY *ret = X509_PUBKEY_get0(key); if (ret != NULL) EVP_PKEY_up_ref(ret); return ret; } /* * Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or * decode as X509_PUBKEY */ EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) { X509_PUBKEY *xpk; EVP_PKEY *pktmp; const unsigned char *q; q = *pp; xpk = d2i_X509_PUBKEY(NULL, &q, length); if (!xpk) return NULL; pktmp = X509_PUBKEY_get(xpk); X509_PUBKEY_free(xpk); if (!pktmp) return NULL; *pp = q; if (a) { EVP_PKEY_free(*a); *a = pktmp; } return pktmp; } int i2d_PUBKEY(EVP_PKEY *a, unsigned char **pp) { X509_PUBKEY *xpk = NULL; int ret; if (!a) return 0; if (!X509_PUBKEY_set(&xpk, a)) return -1; ret = i2d_X509_PUBKEY(xpk, pp); X509_PUBKEY_free(xpk); return ret; } /* * The following are equivalents but which return RSA and DSA keys */ #ifndef OPENSSL_NO_RSA RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; RSA *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (!pkey) return NULL; key = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); if (!key) return NULL; *pp = q; if (a) { RSA_free(*a); *a = key; } return key; } int i2d_RSA_PUBKEY(RSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE); return -1; } EVP_PKEY_set1_RSA(pktmp, a); ret = i2d_PUBKEY(pktmp, pp); EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_DSA DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DSA *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (!pkey) return NULL; key = EVP_PKEY_get1_DSA(pkey); EVP_PKEY_free(pkey); if (!key) return NULL; *pp = q; if (a) { DSA_free(*a); *a = key; } return key; } int i2d_DSA_PUBKEY(DSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE); return -1; } EVP_PKEY_set1_DSA(pktmp, a); ret = i2d_PUBKEY(pktmp, pp); EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_EC EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; EC_KEY *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (!pkey) return NULL; key = EVP_PKEY_get1_EC_KEY(pkey); EVP_PKEY_free(pkey); if (!key) return NULL; *pp = q; if (a) { EC_KEY_free(*a); *a = key; } return key; } int i2d_EC_PUBKEY(EC_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE); return -1; } EVP_PKEY_set1_EC_KEY(pktmp, a); ret = i2d_PUBKEY(pktmp, pp); EVP_PKEY_free(pktmp); return ret; } #endif int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, int ptype, void *pval, unsigned char *penc, int penclen) { if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) return 0; if (penc) { OPENSSL_free(pub->public_key->data); pub->public_key->data = penc; pub->public_key->length = penclen; /* Set number of unused bits to zero */ pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; } return 1; } int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, X509_ALGOR **pa, X509_PUBKEY *pub) { if (ppkalg) *ppkalg = pub->algor->algorithm; if (pk) { *pk = pub->public_key->data; *ppklen = pub->public_key->length; } if (pa) *pa = pub->algor; return 1; } ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) { if (x == NULL) return NULL; return x->cert_info.key->public_key; } openssl-1.1.1f/crypto/x509/x_req.c000066400000000000000000000044441364063235100166630ustar00rootroot00000000000000/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" /*- * X509_REQ_INFO is handled in an unusual way to get round * invalid encodings. Some broken certificate requests don't * encode the attributes field if it is empty. This is in * violation of PKCS#10 but we need to tolerate it. We do * this by making the attributes field OPTIONAL then using * the callback to initialise it to an empty STACK. * * This means that the field will be correctly encoded unless * we NULL out the field. * * As a result we no longer need the req_kludge field because * the information is now contained in the attributes field: * 1. If it is NULL then it's the invalid omission. * 2. If it is empty it is the correct encoding. * 3. If it is not empty then some attributes are present. * */ static int rinf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_REQ_INFO *rinf = (X509_REQ_INFO *)*pval; if (operation == ASN1_OP_NEW_POST) { rinf->attributes = sk_X509_ATTRIBUTE_new_null(); if (!rinf->attributes) return 0; } return 1; } ASN1_SEQUENCE_enc(X509_REQ_INFO, enc, rinf_cb) = { ASN1_SIMPLE(X509_REQ_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(X509_REQ_INFO, subject, X509_NAME), ASN1_SIMPLE(X509_REQ_INFO, pubkey, X509_PUBKEY), /* This isn't really OPTIONAL but it gets round invalid * encodings */ ASN1_IMP_SET_OF_OPT(X509_REQ_INFO, attributes, X509_ATTRIBUTE, 0) } ASN1_SEQUENCE_END_enc(X509_REQ_INFO, X509_REQ_INFO) IMPLEMENT_ASN1_FUNCTIONS(X509_REQ_INFO) ASN1_SEQUENCE_ref(X509_REQ, 0) = { ASN1_EMBED(X509_REQ, req_info, X509_REQ_INFO), ASN1_EMBED(X509_REQ, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_REQ, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509_REQ, X509_REQ) IMPLEMENT_ASN1_FUNCTIONS(X509_REQ) IMPLEMENT_ASN1_DUP_FUNCTION(X509_REQ) openssl-1.1.1f/crypto/x509/x_x509.c000066400000000000000000000157241364063235100166040ustar00rootroot00000000000000/* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" ASN1_SEQUENCE_enc(X509_CINF, enc, 0) = { ASN1_EXP_OPT(X509_CINF, version, ASN1_INTEGER, 0), ASN1_EMBED(X509_CINF, serialNumber, ASN1_INTEGER), ASN1_EMBED(X509_CINF, signature, X509_ALGOR), ASN1_SIMPLE(X509_CINF, issuer, X509_NAME), ASN1_EMBED(X509_CINF, validity, X509_VAL), ASN1_SIMPLE(X509_CINF, subject, X509_NAME), ASN1_SIMPLE(X509_CINF, key, X509_PUBKEY), ASN1_IMP_OPT(X509_CINF, issuerUID, ASN1_BIT_STRING, 1), ASN1_IMP_OPT(X509_CINF, subjectUID, ASN1_BIT_STRING, 2), ASN1_EXP_SEQUENCE_OF_OPT(X509_CINF, extensions, X509_EXTENSION, 3) } ASN1_SEQUENCE_END_enc(X509_CINF, X509_CINF) IMPLEMENT_ASN1_FUNCTIONS(X509_CINF) /* X509 top level structure needs a bit of customisation */ extern void policy_cache_free(X509_POLICY_CACHE *cache); static int x509_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509 *ret = (X509 *)*pval; switch (operation) { case ASN1_OP_D2I_PRE: CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data); X509_CERT_AUX_free(ret->aux); ASN1_OCTET_STRING_free(ret->skid); AUTHORITY_KEYID_free(ret->akid); CRL_DIST_POINTS_free(ret->crldp); policy_cache_free(ret->policy_cache); GENERAL_NAMES_free(ret->altname); NAME_CONSTRAINTS_free(ret->nc); #ifndef OPENSSL_NO_RFC3779 sk_IPAddressFamily_pop_free(ret->rfc3779_addr, IPAddressFamily_free); ASIdentifiers_free(ret->rfc3779_asid); #endif /* fall thru */ case ASN1_OP_NEW_POST: ret->ex_cached = 0; ret->ex_kusage = 0; ret->ex_xkusage = 0; ret->ex_nscert = 0; ret->ex_flags = 0; ret->ex_pathlen = -1; ret->ex_pcpathlen = -1; ret->skid = NULL; ret->akid = NULL; ret->policy_cache = NULL; ret->altname = NULL; ret->nc = NULL; #ifndef OPENSSL_NO_RFC3779 ret->rfc3779_addr = NULL; ret->rfc3779_asid = NULL; #endif ret->aux = NULL; ret->crldp = NULL; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data)) return 0; break; case ASN1_OP_FREE_POST: CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data); X509_CERT_AUX_free(ret->aux); ASN1_OCTET_STRING_free(ret->skid); AUTHORITY_KEYID_free(ret->akid); CRL_DIST_POINTS_free(ret->crldp); policy_cache_free(ret->policy_cache); GENERAL_NAMES_free(ret->altname); NAME_CONSTRAINTS_free(ret->nc); #ifndef OPENSSL_NO_RFC3779 sk_IPAddressFamily_pop_free(ret->rfc3779_addr, IPAddressFamily_free); ASIdentifiers_free(ret->rfc3779_asid); #endif break; } return 1; } ASN1_SEQUENCE_ref(X509, x509_cb) = { ASN1_EMBED(X509, cert_info, X509_CINF), ASN1_EMBED(X509, sig_alg, X509_ALGOR), ASN1_EMBED(X509, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509, X509) IMPLEMENT_ASN1_FUNCTIONS(X509) IMPLEMENT_ASN1_DUP_FUNCTION(X509) int X509_set_ex_data(X509 *r, int idx, void *arg) { return CRYPTO_set_ex_data(&r->ex_data, idx, arg); } void *X509_get_ex_data(X509 *r, int idx) { return CRYPTO_get_ex_data(&r->ex_data, idx); } /* * X509_AUX ASN1 routines. X509_AUX is the name given to a certificate with * extra info tagged on the end. Since these functions set how a certificate * is trusted they should only be used when the certificate comes from a * reliable source such as local storage. */ X509 *d2i_X509_AUX(X509 **a, const unsigned char **pp, long length) { const unsigned char *q; X509 *ret; int freeret = 0; /* Save start position */ q = *pp; if (a == NULL || *a == NULL) freeret = 1; ret = d2i_X509(a, &q, length); /* If certificate unreadable then forget it */ if (ret == NULL) return NULL; /* update length */ length -= q - *pp; if (length > 0 && !d2i_X509_CERT_AUX(&ret->aux, &q, length)) goto err; *pp = q; return ret; err: if (freeret) { X509_free(ret); if (a) *a = NULL; } return NULL; } /* * Serialize trusted certificate to *pp or just return the required buffer * length if pp == NULL. We ultimately want to avoid modifying *pp in the * error path, but that depends on similar hygiene in lower-level functions. * Here we avoid compounding the problem. */ static int i2d_x509_aux_internal(X509 *a, unsigned char **pp) { int length, tmplen; unsigned char *start = pp != NULL ? *pp : NULL; /* * This might perturb *pp on error, but fixing that belongs in i2d_X509() * not here. It should be that if a == NULL length is zero, but we check * both just in case. */ length = i2d_X509(a, pp); if (length <= 0 || a == NULL) return length; tmplen = i2d_X509_CERT_AUX(a->aux, pp); if (tmplen < 0) { if (start != NULL) *pp = start; return tmplen; } length += tmplen; return length; } /* * Serialize trusted certificate to *pp, or just return the required buffer * length if pp == NULL. * * When pp is not NULL, but *pp == NULL, we allocate the buffer, but since * we're writing two ASN.1 objects back to back, we can't have i2d_X509() do * the allocation, nor can we allow i2d_X509_CERT_AUX() to increment the * allocated buffer. */ int i2d_X509_AUX(X509 *a, unsigned char **pp) { int length; unsigned char *tmp; /* Buffer provided by caller */ if (pp == NULL || *pp != NULL) return i2d_x509_aux_internal(a, pp); /* Obtain the combined length */ if ((length = i2d_x509_aux_internal(a, NULL)) <= 0) return length; /* Allocate requisite combined storage */ *pp = tmp = OPENSSL_malloc(length); if (tmp == NULL) { X509err(X509_F_I2D_X509_AUX, ERR_R_MALLOC_FAILURE); return -1; } /* Encode, but keep *pp at the originally malloced pointer */ length = i2d_x509_aux_internal(a, &tmp); if (length <= 0) { OPENSSL_free(*pp); *pp = NULL; } return length; } int i2d_re_X509_tbs(X509 *x, unsigned char **pp) { x->cert_info.enc.modified = 1; return i2d_X509_CINF(&x->cert_info, pp); } void X509_get0_signature(const ASN1_BIT_STRING **psig, const X509_ALGOR **palg, const X509 *x) { if (psig) *psig = &x->signature; if (palg) *palg = &x->sig_alg; } int X509_get_signature_nid(const X509 *x) { return OBJ_obj2nid(x->sig_alg.algorithm); } openssl-1.1.1f/crypto/x509/x_x509a.c000066400000000000000000000104251364063235100167360ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "crypto/x509.h" /* * X509_CERT_AUX routines. These are used to encode additional user * modifiable data about a certificate. This data is appended to the X509 * encoding when the *_X509_AUX routines are used. This means that the * "traditional" X509 routines will simply ignore the extra data. */ static X509_CERT_AUX *aux_get(X509 *x); ASN1_SEQUENCE(X509_CERT_AUX) = { ASN1_SEQUENCE_OF_OPT(X509_CERT_AUX, trust, ASN1_OBJECT), ASN1_IMP_SEQUENCE_OF_OPT(X509_CERT_AUX, reject, ASN1_OBJECT, 0), ASN1_OPT(X509_CERT_AUX, alias, ASN1_UTF8STRING), ASN1_OPT(X509_CERT_AUX, keyid, ASN1_OCTET_STRING), ASN1_IMP_SEQUENCE_OF_OPT(X509_CERT_AUX, other, X509_ALGOR, 1) } ASN1_SEQUENCE_END(X509_CERT_AUX) IMPLEMENT_ASN1_FUNCTIONS(X509_CERT_AUX) int X509_trusted(const X509 *x) { return x->aux ? 1 : 0; } static X509_CERT_AUX *aux_get(X509 *x) { if (x == NULL) return NULL; if (x->aux == NULL && (x->aux = X509_CERT_AUX_new()) == NULL) return NULL; return x->aux; } int X509_alias_set1(X509 *x, const unsigned char *name, int len) { X509_CERT_AUX *aux; if (!name) { if (!x || !x->aux || !x->aux->alias) return 1; ASN1_UTF8STRING_free(x->aux->alias); x->aux->alias = NULL; return 1; } if ((aux = aux_get(x)) == NULL) return 0; if (aux->alias == NULL && (aux->alias = ASN1_UTF8STRING_new()) == NULL) return 0; return ASN1_STRING_set(aux->alias, name, len); } int X509_keyid_set1(X509 *x, const unsigned char *id, int len) { X509_CERT_AUX *aux; if (!id) { if (!x || !x->aux || !x->aux->keyid) return 1; ASN1_OCTET_STRING_free(x->aux->keyid); x->aux->keyid = NULL; return 1; } if ((aux = aux_get(x)) == NULL) return 0; if (aux->keyid == NULL && (aux->keyid = ASN1_OCTET_STRING_new()) == NULL) return 0; return ASN1_STRING_set(aux->keyid, id, len); } unsigned char *X509_alias_get0(X509 *x, int *len) { if (!x->aux || !x->aux->alias) return NULL; if (len) *len = x->aux->alias->length; return x->aux->alias->data; } unsigned char *X509_keyid_get0(X509 *x, int *len) { if (!x->aux || !x->aux->keyid) return NULL; if (len) *len = x->aux->keyid->length; return x->aux->keyid->data; } int X509_add1_trust_object(X509 *x, const ASN1_OBJECT *obj) { X509_CERT_AUX *aux; ASN1_OBJECT *objtmp = NULL; if (obj) { objtmp = OBJ_dup(obj); if (!objtmp) return 0; } if ((aux = aux_get(x)) == NULL) goto err; if (aux->trust == NULL && (aux->trust = sk_ASN1_OBJECT_new_null()) == NULL) goto err; if (!objtmp || sk_ASN1_OBJECT_push(aux->trust, objtmp)) return 1; err: ASN1_OBJECT_free(objtmp); return 0; } int X509_add1_reject_object(X509 *x, const ASN1_OBJECT *obj) { X509_CERT_AUX *aux; ASN1_OBJECT *objtmp; if ((objtmp = OBJ_dup(obj)) == NULL) return 0; if ((aux = aux_get(x)) == NULL) goto err; if (aux->reject == NULL && (aux->reject = sk_ASN1_OBJECT_new_null()) == NULL) goto err; return sk_ASN1_OBJECT_push(aux->reject, objtmp); err: ASN1_OBJECT_free(objtmp); return 0; } void X509_trust_clear(X509 *x) { if (x->aux) { sk_ASN1_OBJECT_pop_free(x->aux->trust, ASN1_OBJECT_free); x->aux->trust = NULL; } } void X509_reject_clear(X509 *x) { if (x->aux) { sk_ASN1_OBJECT_pop_free(x->aux->reject, ASN1_OBJECT_free); x->aux->reject = NULL; } } STACK_OF(ASN1_OBJECT) *X509_get0_trust_objects(X509 *x) { if (x->aux != NULL) return x->aux->trust; return NULL; } STACK_OF(ASN1_OBJECT) *X509_get0_reject_objects(X509 *x) { if (x->aux != NULL) return x->aux->reject; return NULL; } openssl-1.1.1f/crypto/x509v3/000077500000000000000000000000001364063235100156445ustar00rootroot00000000000000openssl-1.1.1f/crypto/x509v3/build.info000066400000000000000000000006741364063235100176270ustar00rootroot00000000000000LIBS=../../libcrypto SOURCE[../../libcrypto]=\ v3_bcons.c v3_bitst.c v3_conf.c v3_extku.c v3_ia5.c v3_lib.c \ v3_prn.c v3_utl.c v3err.c v3_genn.c v3_alt.c v3_skey.c v3_akey.c v3_pku.c \ v3_int.c v3_enum.c v3_sxnet.c v3_cpols.c v3_crld.c v3_purp.c v3_info.c \ v3_akeya.c v3_pmaps.c v3_pcons.c v3_ncons.c v3_pcia.c v3_pci.c \ pcy_cache.c pcy_node.c pcy_data.c pcy_map.c pcy_tree.c pcy_lib.c \ v3_asid.c v3_addr.c v3_tlsf.c v3_admis.c openssl-1.1.1f/crypto/x509v3/ext_dat.h000066400000000000000000000024741364063235100174540ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ int name_cmp(const char *name, const char *cmp); extern const X509V3_EXT_METHOD v3_bcons, v3_nscert, v3_key_usage, v3_ext_ku; extern const X509V3_EXT_METHOD v3_pkey_usage_period, v3_sxnet, v3_info, v3_sinfo; extern const X509V3_EXT_METHOD v3_ns_ia5_list[8], v3_alt[3], v3_skey_id, v3_akey_id; extern const X509V3_EXT_METHOD v3_crl_num, v3_crl_reason, v3_crl_invdate; extern const X509V3_EXT_METHOD v3_delta_crl, v3_cpols, v3_crld, v3_freshest_crl; extern const X509V3_EXT_METHOD v3_ocsp_nonce, v3_ocsp_accresp, v3_ocsp_acutoff; extern const X509V3_EXT_METHOD v3_ocsp_crlid, v3_ocsp_nocheck, v3_ocsp_serviceloc; extern const X509V3_EXT_METHOD v3_crl_hold, v3_pci; extern const X509V3_EXT_METHOD v3_policy_mappings, v3_policy_constraints; extern const X509V3_EXT_METHOD v3_name_constraints, v3_inhibit_anyp, v3_idp; extern const X509V3_EXT_METHOD v3_addr, v3_asid; extern const X509V3_EXT_METHOD v3_ct_scts[3]; extern const X509V3_EXT_METHOD v3_tls_feature; extern const X509V3_EXT_METHOD v3_ext_admission; openssl-1.1.1f/crypto/x509v3/pcy_cache.c000066400000000000000000000143511364063235100177320ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" #include "pcy_local.h" static int policy_data_cmp(const X509_POLICY_DATA *const *a, const X509_POLICY_DATA *const *b); static int policy_cache_set_int(long *out, ASN1_INTEGER *value); /* * Set cache entry according to CertificatePolicies extension. Note: this * destroys the passed CERTIFICATEPOLICIES structure. */ static int policy_cache_create(X509 *x, CERTIFICATEPOLICIES *policies, int crit) { int i, num, ret = 0; X509_POLICY_CACHE *cache = x->policy_cache; X509_POLICY_DATA *data = NULL; POLICYINFO *policy; if ((num = sk_POLICYINFO_num(policies)) <= 0) goto bad_policy; cache->data = sk_X509_POLICY_DATA_new(policy_data_cmp); if (cache->data == NULL) { X509V3err(X509V3_F_POLICY_CACHE_CREATE, ERR_R_MALLOC_FAILURE); goto just_cleanup; } for (i = 0; i < num; i++) { policy = sk_POLICYINFO_value(policies, i); data = policy_data_new(policy, NULL, crit); if (data == NULL) { X509V3err(X509V3_F_POLICY_CACHE_CREATE, ERR_R_MALLOC_FAILURE); goto just_cleanup; } /* * Duplicate policy OIDs are illegal: reject if matches found. */ if (OBJ_obj2nid(data->valid_policy) == NID_any_policy) { if (cache->anyPolicy) { ret = -1; goto bad_policy; } cache->anyPolicy = data; } else if (sk_X509_POLICY_DATA_find(cache->data, data) >=0 ) { ret = -1; goto bad_policy; } else if (!sk_X509_POLICY_DATA_push(cache->data, data)) { X509V3err(X509V3_F_POLICY_CACHE_CREATE, ERR_R_MALLOC_FAILURE); goto bad_policy; } data = NULL; } ret = 1; bad_policy: if (ret == -1) x->ex_flags |= EXFLAG_INVALID_POLICY; policy_data_free(data); just_cleanup: sk_POLICYINFO_pop_free(policies, POLICYINFO_free); if (ret <= 0) { sk_X509_POLICY_DATA_pop_free(cache->data, policy_data_free); cache->data = NULL; } return ret; } static int policy_cache_new(X509 *x) { X509_POLICY_CACHE *cache; ASN1_INTEGER *ext_any = NULL; POLICY_CONSTRAINTS *ext_pcons = NULL; CERTIFICATEPOLICIES *ext_cpols = NULL; POLICY_MAPPINGS *ext_pmaps = NULL; int i; if (x->policy_cache != NULL) return 1; cache = OPENSSL_malloc(sizeof(*cache)); if (cache == NULL) { X509V3err(X509V3_F_POLICY_CACHE_NEW, ERR_R_MALLOC_FAILURE); return 0; } cache->anyPolicy = NULL; cache->data = NULL; cache->any_skip = -1; cache->explicit_skip = -1; cache->map_skip = -1; x->policy_cache = cache; /* * Handle requireExplicitPolicy *first*. Need to process this even if we * don't have any policies. */ ext_pcons = X509_get_ext_d2i(x, NID_policy_constraints, &i, NULL); if (!ext_pcons) { if (i != -1) goto bad_cache; } else { if (!ext_pcons->requireExplicitPolicy && !ext_pcons->inhibitPolicyMapping) goto bad_cache; if (!policy_cache_set_int(&cache->explicit_skip, ext_pcons->requireExplicitPolicy)) goto bad_cache; if (!policy_cache_set_int(&cache->map_skip, ext_pcons->inhibitPolicyMapping)) goto bad_cache; } /* Process CertificatePolicies */ ext_cpols = X509_get_ext_d2i(x, NID_certificate_policies, &i, NULL); /* * If no CertificatePolicies extension or problem decoding then there is * no point continuing because the valid policies will be NULL. */ if (!ext_cpols) { /* If not absent some problem with extension */ if (i != -1) goto bad_cache; return 1; } i = policy_cache_create(x, ext_cpols, i); /* NB: ext_cpols freed by policy_cache_set_policies */ if (i <= 0) return i; ext_pmaps = X509_get_ext_d2i(x, NID_policy_mappings, &i, NULL); if (!ext_pmaps) { /* If not absent some problem with extension */ if (i != -1) goto bad_cache; } else { i = policy_cache_set_mapping(x, ext_pmaps); if (i <= 0) goto bad_cache; } ext_any = X509_get_ext_d2i(x, NID_inhibit_any_policy, &i, NULL); if (!ext_any) { if (i != -1) goto bad_cache; } else if (!policy_cache_set_int(&cache->any_skip, ext_any)) goto bad_cache; goto just_cleanup; bad_cache: x->ex_flags |= EXFLAG_INVALID_POLICY; just_cleanup: POLICY_CONSTRAINTS_free(ext_pcons); ASN1_INTEGER_free(ext_any); return 1; } void policy_cache_free(X509_POLICY_CACHE *cache) { if (!cache) return; policy_data_free(cache->anyPolicy); sk_X509_POLICY_DATA_pop_free(cache->data, policy_data_free); OPENSSL_free(cache); } const X509_POLICY_CACHE *policy_cache_set(X509 *x) { if (x->policy_cache == NULL) { CRYPTO_THREAD_write_lock(x->lock); policy_cache_new(x); CRYPTO_THREAD_unlock(x->lock); } return x->policy_cache; } X509_POLICY_DATA *policy_cache_find_data(const X509_POLICY_CACHE *cache, const ASN1_OBJECT *id) { int idx; X509_POLICY_DATA tmp; tmp.valid_policy = (ASN1_OBJECT *)id; idx = sk_X509_POLICY_DATA_find(cache->data, &tmp); return sk_X509_POLICY_DATA_value(cache->data, idx); } static int policy_data_cmp(const X509_POLICY_DATA *const *a, const X509_POLICY_DATA *const *b) { return OBJ_cmp((*a)->valid_policy, (*b)->valid_policy); } static int policy_cache_set_int(long *out, ASN1_INTEGER *value) { if (value == NULL) return 1; if (value->type == V_ASN1_NEG_INTEGER) return 0; *out = ASN1_INTEGER_get(value); return 1; } openssl-1.1.1f/crypto/x509v3/pcy_data.c000066400000000000000000000043701364063235100176000ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include "pcy_local.h" /* Policy Node routines */ void policy_data_free(X509_POLICY_DATA *data) { if (data == NULL) return; ASN1_OBJECT_free(data->valid_policy); /* Don't free qualifiers if shared */ if (!(data->flags & POLICY_DATA_FLAG_SHARED_QUALIFIERS)) sk_POLICYQUALINFO_pop_free(data->qualifier_set, POLICYQUALINFO_free); sk_ASN1_OBJECT_pop_free(data->expected_policy_set, ASN1_OBJECT_free); OPENSSL_free(data); } /* * Create a data based on an existing policy. If 'id' is NULL use the OID in * the policy, otherwise use 'id'. This behaviour covers the two types of * data in RFC3280: data with from a CertificatePolicies extension and * additional data with just the qualifiers of anyPolicy and ID from another * source. */ X509_POLICY_DATA *policy_data_new(POLICYINFO *policy, const ASN1_OBJECT *cid, int crit) { X509_POLICY_DATA *ret; ASN1_OBJECT *id; if (policy == NULL && cid == NULL) return NULL; if (cid) { id = OBJ_dup(cid); if (id == NULL) return NULL; } else id = NULL; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { X509V3err(X509V3_F_POLICY_DATA_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->expected_policy_set = sk_ASN1_OBJECT_new_null(); if (ret->expected_policy_set == NULL) { OPENSSL_free(ret); ASN1_OBJECT_free(id); X509V3err(X509V3_F_POLICY_DATA_NEW, ERR_R_MALLOC_FAILURE); return NULL; } if (crit) ret->flags = POLICY_DATA_FLAG_CRITICAL; if (id) ret->valid_policy = id; else { ret->valid_policy = policy->policyid; policy->policyid = NULL; } if (policy) { ret->qualifier_set = policy->qualifiers; policy->qualifiers = NULL; } return ret; } openssl-1.1.1f/crypto/x509v3/pcy_lib.c000066400000000000000000000053311364063235100174330ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include "pcy_local.h" /* accessor functions */ /* X509_POLICY_TREE stuff */ int X509_policy_tree_level_count(const X509_POLICY_TREE *tree) { if (!tree) return 0; return tree->nlevel; } X509_POLICY_LEVEL *X509_policy_tree_get0_level(const X509_POLICY_TREE *tree, int i) { if (!tree || (i < 0) || (i >= tree->nlevel)) return NULL; return tree->levels + i; } STACK_OF(X509_POLICY_NODE) *X509_policy_tree_get0_policies(const X509_POLICY_TREE *tree) { if (!tree) return NULL; return tree->auth_policies; } STACK_OF(X509_POLICY_NODE) *X509_policy_tree_get0_user_policies(const X509_POLICY_TREE *tree) { if (!tree) return NULL; if (tree->flags & POLICY_FLAG_ANY_POLICY) return tree->auth_policies; else return tree->user_policies; } /* X509_POLICY_LEVEL stuff */ int X509_policy_level_node_count(X509_POLICY_LEVEL *level) { int n; if (!level) return 0; if (level->anyPolicy) n = 1; else n = 0; if (level->nodes) n += sk_X509_POLICY_NODE_num(level->nodes); return n; } X509_POLICY_NODE *X509_policy_level_get0_node(X509_POLICY_LEVEL *level, int i) { if (!level) return NULL; if (level->anyPolicy) { if (i == 0) return level->anyPolicy; i--; } return sk_X509_POLICY_NODE_value(level->nodes, i); } /* X509_POLICY_NODE stuff */ const ASN1_OBJECT *X509_policy_node_get0_policy(const X509_POLICY_NODE *node) { if (!node) return NULL; return node->data->valid_policy; } STACK_OF(POLICYQUALINFO) *X509_policy_node_get0_qualifiers(const X509_POLICY_NODE *node) { if (!node) return NULL; return node->data->qualifier_set; } const X509_POLICY_NODE *X509_policy_node_get0_parent(const X509_POLICY_NODE *node) { if (!node) return NULL; return node->parent; } openssl-1.1.1f/crypto/x509v3/pcy_local.h000066400000000000000000000117331364063235100177670ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ typedef struct X509_POLICY_DATA_st X509_POLICY_DATA; DEFINE_STACK_OF(X509_POLICY_DATA) /* Internal structures */ /* * This structure and the field names correspond to the Policy 'node' of * RFC3280. NB this structure contains no pointers to parent or child data: * X509_POLICY_NODE contains that. This means that the main policy data can * be kept static and cached with the certificate. */ struct X509_POLICY_DATA_st { unsigned int flags; /* Policy OID and qualifiers for this data */ ASN1_OBJECT *valid_policy; STACK_OF(POLICYQUALINFO) *qualifier_set; STACK_OF(ASN1_OBJECT) *expected_policy_set; }; /* X509_POLICY_DATA flags values */ /* * This flag indicates the structure has been mapped using a policy mapping * extension. If policy mapping is not active its references get deleted. */ #define POLICY_DATA_FLAG_MAPPED 0x1 /* * This flag indicates the data doesn't correspond to a policy in Certificate * Policies: it has been mapped to any policy. */ #define POLICY_DATA_FLAG_MAPPED_ANY 0x2 /* AND with flags to see if any mapping has occurred */ #define POLICY_DATA_FLAG_MAP_MASK 0x3 /* qualifiers are shared and shouldn't be freed */ #define POLICY_DATA_FLAG_SHARED_QUALIFIERS 0x4 /* Parent node is an extra node and should be freed */ #define POLICY_DATA_FLAG_EXTRA_NODE 0x8 /* Corresponding CertificatePolicies is critical */ #define POLICY_DATA_FLAG_CRITICAL 0x10 /* This structure is cached with a certificate */ struct X509_POLICY_CACHE_st { /* anyPolicy data or NULL if no anyPolicy */ X509_POLICY_DATA *anyPolicy; /* other policy data */ STACK_OF(X509_POLICY_DATA) *data; /* If InhibitAnyPolicy present this is its value or -1 if absent. */ long any_skip; /* * If policyConstraints and requireExplicitPolicy present this is its * value or -1 if absent. */ long explicit_skip; /* * If policyConstraints and policyMapping present this is its value or -1 * if absent. */ long map_skip; }; /* * #define POLICY_CACHE_FLAG_CRITICAL POLICY_DATA_FLAG_CRITICAL */ /* This structure represents the relationship between nodes */ struct X509_POLICY_NODE_st { /* node data this refers to */ const X509_POLICY_DATA *data; /* Parent node */ X509_POLICY_NODE *parent; /* Number of child nodes */ int nchild; }; struct X509_POLICY_LEVEL_st { /* Cert for this level */ X509 *cert; /* nodes at this level */ STACK_OF(X509_POLICY_NODE) *nodes; /* anyPolicy node */ X509_POLICY_NODE *anyPolicy; /* Extra data */ /* * STACK_OF(X509_POLICY_DATA) *extra_data; */ unsigned int flags; }; struct X509_POLICY_TREE_st { /* This is the tree 'level' data */ X509_POLICY_LEVEL *levels; int nlevel; /* * Extra policy data when additional nodes (not from the certificate) are * required. */ STACK_OF(X509_POLICY_DATA) *extra_data; /* This is the authority constrained policy set */ STACK_OF(X509_POLICY_NODE) *auth_policies; STACK_OF(X509_POLICY_NODE) *user_policies; unsigned int flags; }; /* Set if anyPolicy present in user policies */ #define POLICY_FLAG_ANY_POLICY 0x2 /* Useful macros */ #define node_data_critical(data) (data->flags & POLICY_DATA_FLAG_CRITICAL) #define node_critical(node) node_data_critical(node->data) /* Internal functions */ X509_POLICY_DATA *policy_data_new(POLICYINFO *policy, const ASN1_OBJECT *id, int crit); void policy_data_free(X509_POLICY_DATA *data); X509_POLICY_DATA *policy_cache_find_data(const X509_POLICY_CACHE *cache, const ASN1_OBJECT *id); int policy_cache_set_mapping(X509 *x, POLICY_MAPPINGS *maps); STACK_OF(X509_POLICY_NODE) *policy_node_cmp_new(void); void policy_cache_init(void); void policy_cache_free(X509_POLICY_CACHE *cache); X509_POLICY_NODE *level_find_node(const X509_POLICY_LEVEL *level, const X509_POLICY_NODE *parent, const ASN1_OBJECT *id); X509_POLICY_NODE *tree_find_sk(STACK_OF(X509_POLICY_NODE) *sk, const ASN1_OBJECT *id); X509_POLICY_NODE *level_add_node(X509_POLICY_LEVEL *level, X509_POLICY_DATA *data, X509_POLICY_NODE *parent, X509_POLICY_TREE *tree); void policy_node_free(X509_POLICY_NODE *node); int policy_node_match(const X509_POLICY_LEVEL *lvl, const X509_POLICY_NODE *node, const ASN1_OBJECT *oid); const X509_POLICY_CACHE *policy_cache_set(X509 *x); openssl-1.1.1f/crypto/x509v3/pcy_map.c000066400000000000000000000051241364063235100174420ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" #include "pcy_local.h" /* * Set policy mapping entries in cache. Note: this modifies the passed * POLICY_MAPPINGS structure */ int policy_cache_set_mapping(X509 *x, POLICY_MAPPINGS *maps) { POLICY_MAPPING *map; X509_POLICY_DATA *data; X509_POLICY_CACHE *cache = x->policy_cache; int i; int ret = 0; if (sk_POLICY_MAPPING_num(maps) == 0) { ret = -1; goto bad_mapping; } for (i = 0; i < sk_POLICY_MAPPING_num(maps); i++) { map = sk_POLICY_MAPPING_value(maps, i); /* Reject if map to or from anyPolicy */ if ((OBJ_obj2nid(map->subjectDomainPolicy) == NID_any_policy) || (OBJ_obj2nid(map->issuerDomainPolicy) == NID_any_policy)) { ret = -1; goto bad_mapping; } /* Attempt to find matching policy data */ data = policy_cache_find_data(cache, map->issuerDomainPolicy); /* If we don't have anyPolicy can't map */ if (data == NULL && !cache->anyPolicy) continue; /* Create a NODE from anyPolicy */ if (data == NULL) { data = policy_data_new(NULL, map->issuerDomainPolicy, cache->anyPolicy->flags & POLICY_DATA_FLAG_CRITICAL); if (data == NULL) goto bad_mapping; data->qualifier_set = cache->anyPolicy->qualifier_set; /* * map->issuerDomainPolicy = NULL; */ data->flags |= POLICY_DATA_FLAG_MAPPED_ANY; data->flags |= POLICY_DATA_FLAG_SHARED_QUALIFIERS; if (!sk_X509_POLICY_DATA_push(cache->data, data)) { policy_data_free(data); goto bad_mapping; } } else data->flags |= POLICY_DATA_FLAG_MAPPED; if (!sk_ASN1_OBJECT_push(data->expected_policy_set, map->subjectDomainPolicy)) goto bad_mapping; map->subjectDomainPolicy = NULL; } ret = 1; bad_mapping: if (ret == -1) x->ex_flags |= EXFLAG_INVALID_POLICY; sk_POLICY_MAPPING_pop_free(maps, POLICY_MAPPING_free); return ret; } openssl-1.1.1f/crypto/x509v3/pcy_node.c000066400000000000000000000100741364063235100176120ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "pcy_local.h" static int node_cmp(const X509_POLICY_NODE *const *a, const X509_POLICY_NODE *const *b) { return OBJ_cmp((*a)->data->valid_policy, (*b)->data->valid_policy); } STACK_OF(X509_POLICY_NODE) *policy_node_cmp_new(void) { return sk_X509_POLICY_NODE_new(node_cmp); } X509_POLICY_NODE *tree_find_sk(STACK_OF(X509_POLICY_NODE) *nodes, const ASN1_OBJECT *id) { X509_POLICY_DATA n; X509_POLICY_NODE l; int idx; n.valid_policy = (ASN1_OBJECT *)id; l.data = &n; idx = sk_X509_POLICY_NODE_find(nodes, &l); return sk_X509_POLICY_NODE_value(nodes, idx); } X509_POLICY_NODE *level_find_node(const X509_POLICY_LEVEL *level, const X509_POLICY_NODE *parent, const ASN1_OBJECT *id) { X509_POLICY_NODE *node; int i; for (i = 0; i < sk_X509_POLICY_NODE_num(level->nodes); i++) { node = sk_X509_POLICY_NODE_value(level->nodes, i); if (node->parent == parent) { if (!OBJ_cmp(node->data->valid_policy, id)) return node; } } return NULL; } X509_POLICY_NODE *level_add_node(X509_POLICY_LEVEL *level, X509_POLICY_DATA *data, X509_POLICY_NODE *parent, X509_POLICY_TREE *tree) { X509_POLICY_NODE *node; node = OPENSSL_zalloc(sizeof(*node)); if (node == NULL) { X509V3err(X509V3_F_LEVEL_ADD_NODE, ERR_R_MALLOC_FAILURE); return NULL; } node->data = data; node->parent = parent; if (level) { if (OBJ_obj2nid(data->valid_policy) == NID_any_policy) { if (level->anyPolicy) goto node_error; level->anyPolicy = node; } else { if (level->nodes == NULL) level->nodes = policy_node_cmp_new(); if (level->nodes == NULL) { X509V3err(X509V3_F_LEVEL_ADD_NODE, ERR_R_MALLOC_FAILURE); goto node_error; } if (!sk_X509_POLICY_NODE_push(level->nodes, node)) { X509V3err(X509V3_F_LEVEL_ADD_NODE, ERR_R_MALLOC_FAILURE); goto node_error; } } } if (tree) { if (tree->extra_data == NULL) tree->extra_data = sk_X509_POLICY_DATA_new_null(); if (tree->extra_data == NULL){ X509V3err(X509V3_F_LEVEL_ADD_NODE, ERR_R_MALLOC_FAILURE); goto node_error; } if (!sk_X509_POLICY_DATA_push(tree->extra_data, data)) { X509V3err(X509V3_F_LEVEL_ADD_NODE, ERR_R_MALLOC_FAILURE); goto node_error; } } if (parent) parent->nchild++; return node; node_error: policy_node_free(node); return NULL; } void policy_node_free(X509_POLICY_NODE *node) { OPENSSL_free(node); } /* * See if a policy node matches a policy OID. If mapping enabled look through * expected policy set otherwise just valid policy. */ int policy_node_match(const X509_POLICY_LEVEL *lvl, const X509_POLICY_NODE *node, const ASN1_OBJECT *oid) { int i; ASN1_OBJECT *policy_oid; const X509_POLICY_DATA *x = node->data; if ((lvl->flags & X509_V_FLAG_INHIBIT_MAP) || !(x->flags & POLICY_DATA_FLAG_MAP_MASK)) { if (!OBJ_cmp(x->valid_policy, oid)) return 1; return 0; } for (i = 0; i < sk_ASN1_OBJECT_num(x->expected_policy_set); i++) { policy_oid = sk_ASN1_OBJECT_value(x->expected_policy_set, i); if (!OBJ_cmp(policy_oid, oid)) return 1; } return 0; } openssl-1.1.1f/crypto/x509v3/pcy_tree.c000066400000000000000000000536051364063235100176330ustar00rootroot00000000000000/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include #include #include "pcy_local.h" /* * Enable this to print out the complete policy tree at various point during * evaluation. */ /* * #define OPENSSL_POLICY_DEBUG */ #ifdef OPENSSL_POLICY_DEBUG static void expected_print(BIO *err, X509_POLICY_LEVEL *lev, X509_POLICY_NODE *node, int indent) { if ((lev->flags & X509_V_FLAG_INHIBIT_MAP) || !(node->data->flags & POLICY_DATA_FLAG_MAP_MASK)) BIO_puts(err, " Not Mapped\n"); else { int i; STACK_OF(ASN1_OBJECT) *pset = node->data->expected_policy_set; ASN1_OBJECT *oid; BIO_puts(err, " Expected: "); for (i = 0; i < sk_ASN1_OBJECT_num(pset); i++) { oid = sk_ASN1_OBJECT_value(pset, i); if (i) BIO_puts(err, ", "); i2a_ASN1_OBJECT(err, oid); } BIO_puts(err, "\n"); } } static void tree_print(char *str, X509_POLICY_TREE *tree, X509_POLICY_LEVEL *curr) { BIO *err = BIO_new_fp(stderr, BIO_NOCLOSE); X509_POLICY_LEVEL *plev; if (err == NULL) return; if (!curr) curr = tree->levels + tree->nlevel; else curr++; BIO_printf(err, "Level print after %s\n", str); BIO_printf(err, "Printing Up to Level %ld\n", curr - tree->levels); for (plev = tree->levels; plev != curr; plev++) { int i; BIO_printf(err, "Level %ld, flags = %x\n", (long)(plev - tree->levels), plev->flags); for (i = 0; i < sk_X509_POLICY_NODE_num(plev->nodes); i++) { X509_POLICY_NODE *node = sk_X509_POLICY_NODE_value(plev->nodes, i); X509_POLICY_NODE_print(err, node, 2); expected_print(err, plev, node, 2); BIO_printf(err, " Flags: %x\n", node->data->flags); } if (plev->anyPolicy) X509_POLICY_NODE_print(err, plev->anyPolicy, 2); } BIO_free(err); } #endif /*- * Return value: <= 0 on error, or positive bit mask: * * X509_PCY_TREE_VALID: valid tree * X509_PCY_TREE_EMPTY: empty tree (including bare TA case) * X509_PCY_TREE_EXPLICIT: explicit policy required */ static int tree_init(X509_POLICY_TREE **ptree, STACK_OF(X509) *certs, unsigned int flags) { X509_POLICY_TREE *tree; X509_POLICY_LEVEL *level; const X509_POLICY_CACHE *cache; X509_POLICY_DATA *data = NULL; int ret = X509_PCY_TREE_VALID; int n = sk_X509_num(certs) - 1; /* RFC5280 paths omit the TA */ int explicit_policy = (flags & X509_V_FLAG_EXPLICIT_POLICY) ? 0 : n+1; int any_skip = (flags & X509_V_FLAG_INHIBIT_ANY) ? 0 : n+1; int map_skip = (flags & X509_V_FLAG_INHIBIT_MAP) ? 0 : n+1; int i; *ptree = NULL; /* Can't do anything with just a trust anchor */ if (n == 0) return X509_PCY_TREE_EMPTY; /* * First setup the policy cache in all n non-TA certificates, this will be * used in X509_verify_cert() which will invoke the verify callback for all * certificates with invalid policy extensions. */ for (i = n - 1; i >= 0; i--) { X509 *x = sk_X509_value(certs, i); /* Call for side-effect of computing hash and caching extensions */ X509_check_purpose(x, -1, 0); /* If cache is NULL, likely ENOMEM: return immediately */ if (policy_cache_set(x) == NULL) return X509_PCY_TREE_INTERNAL; } /* * At this point check for invalid policies and required explicit policy. * Note that the explicit_policy counter is a count-down to zero, with the * requirement kicking in if and once it does that. The counter is * decremented for every non-self-issued certificate in the path, but may * be further reduced by policy constraints in a non-leaf certificate. * * The ultimate policy set is the intersection of all the policies along * the path, if we hit a certificate with an empty policy set, and explicit * policy is required we're done. */ for (i = n - 1; i >= 0 && (explicit_policy > 0 || (ret & X509_PCY_TREE_EMPTY) == 0); i--) { X509 *x = sk_X509_value(certs, i); uint32_t ex_flags = X509_get_extension_flags(x); /* All the policies are already cached, we can return early */ if (ex_flags & EXFLAG_INVALID_POLICY) return X509_PCY_TREE_INVALID; /* Access the cache which we now know exists */ cache = policy_cache_set(x); if ((ret & X509_PCY_TREE_VALID) && cache->data == NULL) ret = X509_PCY_TREE_EMPTY; if (explicit_policy > 0) { if (!(ex_flags & EXFLAG_SI)) explicit_policy--; if ((cache->explicit_skip >= 0) && (cache->explicit_skip < explicit_policy)) explicit_policy = cache->explicit_skip; } } if (explicit_policy == 0) ret |= X509_PCY_TREE_EXPLICIT; if ((ret & X509_PCY_TREE_VALID) == 0) return ret; /* If we get this far initialize the tree */ if ((tree = OPENSSL_zalloc(sizeof(*tree))) == NULL) { X509V3err(X509V3_F_TREE_INIT, ERR_R_MALLOC_FAILURE); return X509_PCY_TREE_INTERNAL; } /* * http://tools.ietf.org/html/rfc5280#section-6.1.2, figure 3. * * The top level is implicitly for the trust anchor with valid expected * policies of anyPolicy. (RFC 5280 has the TA at depth 0 and the leaf at * depth n, we have the leaf at depth 0 and the TA at depth n). */ if ((tree->levels = OPENSSL_zalloc(sizeof(*tree->levels)*(n+1))) == NULL) { OPENSSL_free(tree); X509V3err(X509V3_F_TREE_INIT, ERR_R_MALLOC_FAILURE); return X509_PCY_TREE_INTERNAL; } tree->nlevel = n+1; level = tree->levels; if ((data = policy_data_new(NULL, OBJ_nid2obj(NID_any_policy), 0)) == NULL) goto bad_tree; if (level_add_node(level, data, NULL, tree) == NULL) { policy_data_free(data); goto bad_tree; } /* * In this pass initialize all the tree levels and whether anyPolicy and * policy mapping are inhibited at each level. */ for (i = n - 1; i >= 0; i--) { X509 *x = sk_X509_value(certs, i); uint32_t ex_flags = X509_get_extension_flags(x); /* Access the cache which we now know exists */ cache = policy_cache_set(x); X509_up_ref(x); (++level)->cert = x; if (!cache->anyPolicy) level->flags |= X509_V_FLAG_INHIBIT_ANY; /* Determine inhibit any and inhibit map flags */ if (any_skip == 0) { /* * Any matching allowed only if certificate is self issued and not * the last in the chain. */ if (!(ex_flags & EXFLAG_SI) || (i == 0)) level->flags |= X509_V_FLAG_INHIBIT_ANY; } else { if (!(ex_flags & EXFLAG_SI)) any_skip--; if ((cache->any_skip >= 0) && (cache->any_skip < any_skip)) any_skip = cache->any_skip; } if (map_skip == 0) level->flags |= X509_V_FLAG_INHIBIT_MAP; else { if (!(ex_flags & EXFLAG_SI)) map_skip--; if ((cache->map_skip >= 0) && (cache->map_skip < map_skip)) map_skip = cache->map_skip; } } *ptree = tree; return ret; bad_tree: X509_policy_tree_free(tree); return X509_PCY_TREE_INTERNAL; } /* * Return value: 1 on success, 0 otherwise */ static int tree_link_matching_nodes(X509_POLICY_LEVEL *curr, X509_POLICY_DATA *data) { X509_POLICY_LEVEL *last = curr - 1; int i, matched = 0; /* Iterate through all in nodes linking matches */ for (i = 0; i < sk_X509_POLICY_NODE_num(last->nodes); i++) { X509_POLICY_NODE *node = sk_X509_POLICY_NODE_value(last->nodes, i); if (policy_node_match(last, node, data->valid_policy)) { if (level_add_node(curr, data, node, NULL) == NULL) return 0; matched = 1; } } if (!matched && last->anyPolicy) { if (level_add_node(curr, data, last->anyPolicy, NULL) == NULL) return 0; } return 1; } /* * This corresponds to RFC3280 6.1.3(d)(1): link any data from * CertificatePolicies onto matching parent or anyPolicy if no match. * * Return value: 1 on success, 0 otherwise. */ static int tree_link_nodes(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache) { int i; for (i = 0; i < sk_X509_POLICY_DATA_num(cache->data); i++) { X509_POLICY_DATA *data = sk_X509_POLICY_DATA_value(cache->data, i); /* Look for matching nodes in previous level */ if (!tree_link_matching_nodes(curr, data)) return 0; } return 1; } /* * This corresponds to RFC3280 6.1.3(d)(2): Create new data for any unmatched * policies in the parent and link to anyPolicy. * * Return value: 1 on success, 0 otherwise. */ static int tree_add_unmatched(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache, const ASN1_OBJECT *id, X509_POLICY_NODE *node, X509_POLICY_TREE *tree) { X509_POLICY_DATA *data; if (id == NULL) id = node->data->valid_policy; /* * Create a new node with qualifiers from anyPolicy and id from unmatched * node. */ if ((data = policy_data_new(NULL, id, node_critical(node))) == NULL) return 0; /* Curr may not have anyPolicy */ data->qualifier_set = cache->anyPolicy->qualifier_set; data->flags |= POLICY_DATA_FLAG_SHARED_QUALIFIERS; if (level_add_node(curr, data, node, tree) == NULL) { policy_data_free(data); return 0; } return 1; } /* * Return value: 1 on success, 0 otherwise. */ static int tree_link_unmatched(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache, X509_POLICY_NODE *node, X509_POLICY_TREE *tree) { const X509_POLICY_LEVEL *last = curr - 1; int i; if ((last->flags & X509_V_FLAG_INHIBIT_MAP) || !(node->data->flags & POLICY_DATA_FLAG_MAPPED)) { /* If no policy mapping: matched if one child present */ if (node->nchild) return 1; if (!tree_add_unmatched(curr, cache, NULL, node, tree)) return 0; /* Add it */ } else { /* If mapping: matched if one child per expected policy set */ STACK_OF(ASN1_OBJECT) *expset = node->data->expected_policy_set; if (node->nchild == sk_ASN1_OBJECT_num(expset)) return 1; /* Locate unmatched nodes */ for (i = 0; i < sk_ASN1_OBJECT_num(expset); i++) { ASN1_OBJECT *oid = sk_ASN1_OBJECT_value(expset, i); if (level_find_node(curr, node, oid)) continue; if (!tree_add_unmatched(curr, cache, oid, node, tree)) return 0; } } return 1; } /* * Return value: 1 on success, 0 otherwise */ static int tree_link_any(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache, X509_POLICY_TREE *tree) { int i; X509_POLICY_NODE *node; X509_POLICY_LEVEL *last = curr - 1; for (i = 0; i < sk_X509_POLICY_NODE_num(last->nodes); i++) { node = sk_X509_POLICY_NODE_value(last->nodes, i); if (!tree_link_unmatched(curr, cache, node, tree)) return 0; } /* Finally add link to anyPolicy */ if (last->anyPolicy && level_add_node(curr, cache->anyPolicy, last->anyPolicy, NULL) == NULL) return 0; return 1; } /*- * Prune the tree: delete any child mapped child data on the current level then * proceed up the tree deleting any data with no children. If we ever have no * data on a level we can halt because the tree will be empty. * * Return value: <= 0 error, otherwise one of: * * X509_PCY_TREE_VALID: valid tree * X509_PCY_TREE_EMPTY: empty tree */ static int tree_prune(X509_POLICY_TREE *tree, X509_POLICY_LEVEL *curr) { STACK_OF(X509_POLICY_NODE) *nodes; X509_POLICY_NODE *node; int i; nodes = curr->nodes; if (curr->flags & X509_V_FLAG_INHIBIT_MAP) { for (i = sk_X509_POLICY_NODE_num(nodes) - 1; i >= 0; i--) { node = sk_X509_POLICY_NODE_value(nodes, i); /* Delete any mapped data: see RFC3280 XXXX */ if (node->data->flags & POLICY_DATA_FLAG_MAP_MASK) { node->parent->nchild--; OPENSSL_free(node); (void)sk_X509_POLICY_NODE_delete(nodes, i); } } } for (;;) { --curr; nodes = curr->nodes; for (i = sk_X509_POLICY_NODE_num(nodes) - 1; i >= 0; i--) { node = sk_X509_POLICY_NODE_value(nodes, i); if (node->nchild == 0) { node->parent->nchild--; OPENSSL_free(node); (void)sk_X509_POLICY_NODE_delete(nodes, i); } } if (curr->anyPolicy && !curr->anyPolicy->nchild) { if (curr->anyPolicy->parent) curr->anyPolicy->parent->nchild--; OPENSSL_free(curr->anyPolicy); curr->anyPolicy = NULL; } if (curr == tree->levels) { /* If we zapped anyPolicy at top then tree is empty */ if (!curr->anyPolicy) return X509_PCY_TREE_EMPTY; break; } } return X509_PCY_TREE_VALID; } /* * Return value: 1 on success, 0 otherwise. */ static int tree_add_auth_node(STACK_OF(X509_POLICY_NODE) **pnodes, X509_POLICY_NODE *pcy) { if (*pnodes == NULL && (*pnodes = policy_node_cmp_new()) == NULL) return 0; if (sk_X509_POLICY_NODE_find(*pnodes, pcy) >= 0) return 1; return sk_X509_POLICY_NODE_push(*pnodes, pcy) != 0; } #define TREE_CALC_FAILURE 0 #define TREE_CALC_OK_NOFREE 1 #define TREE_CALC_OK_DOFREE 2 /*- * Calculate the authority set based on policy tree. The 'pnodes' parameter is * used as a store for the set of policy nodes used to calculate the user set. * If the authority set is not anyPolicy then pnodes will just point to the * authority set. If however the authority set is anyPolicy then the set of * valid policies (other than anyPolicy) is store in pnodes. * * Return value: * TREE_CALC_FAILURE on failure, * TREE_CALC_OK_NOFREE on success and pnodes need not be freed, * TREE_CALC_OK_DOFREE on success and pnodes needs to be freed */ static int tree_calculate_authority_set(X509_POLICY_TREE *tree, STACK_OF(X509_POLICY_NODE) **pnodes) { X509_POLICY_LEVEL *curr; X509_POLICY_NODE *node, *anyptr; STACK_OF(X509_POLICY_NODE) **addnodes; int i, j; curr = tree->levels + tree->nlevel - 1; /* If last level contains anyPolicy set is anyPolicy */ if (curr->anyPolicy) { if (!tree_add_auth_node(&tree->auth_policies, curr->anyPolicy)) return TREE_CALC_FAILURE; addnodes = pnodes; } else /* Add policies to authority set */ addnodes = &tree->auth_policies; curr = tree->levels; for (i = 1; i < tree->nlevel; i++) { /* * If no anyPolicy node on this this level it can't appear on lower * levels so end search. */ if ((anyptr = curr->anyPolicy) == NULL) break; curr++; for (j = 0; j < sk_X509_POLICY_NODE_num(curr->nodes); j++) { node = sk_X509_POLICY_NODE_value(curr->nodes, j); if ((node->parent == anyptr) && !tree_add_auth_node(addnodes, node)) { if (addnodes == pnodes) { sk_X509_POLICY_NODE_free(*pnodes); *pnodes = NULL; } return TREE_CALC_FAILURE; } } } if (addnodes == pnodes) return TREE_CALC_OK_DOFREE; *pnodes = tree->auth_policies; return TREE_CALC_OK_NOFREE; } /* * Return value: 1 on success, 0 otherwise. */ static int tree_calculate_user_set(X509_POLICY_TREE *tree, STACK_OF(ASN1_OBJECT) *policy_oids, STACK_OF(X509_POLICY_NODE) *auth_nodes) { int i; X509_POLICY_NODE *node; ASN1_OBJECT *oid; X509_POLICY_NODE *anyPolicy; X509_POLICY_DATA *extra; /* * Check if anyPolicy present in authority constrained policy set: this * will happen if it is a leaf node. */ if (sk_ASN1_OBJECT_num(policy_oids) <= 0) return 1; anyPolicy = tree->levels[tree->nlevel - 1].anyPolicy; for (i = 0; i < sk_ASN1_OBJECT_num(policy_oids); i++) { oid = sk_ASN1_OBJECT_value(policy_oids, i); if (OBJ_obj2nid(oid) == NID_any_policy) { tree->flags |= POLICY_FLAG_ANY_POLICY; return 1; } } for (i = 0; i < sk_ASN1_OBJECT_num(policy_oids); i++) { oid = sk_ASN1_OBJECT_value(policy_oids, i); node = tree_find_sk(auth_nodes, oid); if (!node) { if (!anyPolicy) continue; /* * Create a new node with policy ID from user set and qualifiers * from anyPolicy. */ extra = policy_data_new(NULL, oid, node_critical(anyPolicy)); if (extra == NULL) return 0; extra->qualifier_set = anyPolicy->data->qualifier_set; extra->flags = POLICY_DATA_FLAG_SHARED_QUALIFIERS | POLICY_DATA_FLAG_EXTRA_NODE; node = level_add_node(NULL, extra, anyPolicy->parent, tree); } if (!tree->user_policies) { tree->user_policies = sk_X509_POLICY_NODE_new_null(); if (!tree->user_policies) return 1; } if (!sk_X509_POLICY_NODE_push(tree->user_policies, node)) return 0; } return 1; } /*- * Return value: <= 0 error, otherwise one of: * X509_PCY_TREE_VALID: valid tree * X509_PCY_TREE_EMPTY: empty tree * (see tree_prune()). */ static int tree_evaluate(X509_POLICY_TREE *tree) { int ret, i; X509_POLICY_LEVEL *curr = tree->levels + 1; const X509_POLICY_CACHE *cache; for (i = 1; i < tree->nlevel; i++, curr++) { cache = policy_cache_set(curr->cert); if (!tree_link_nodes(curr, cache)) return X509_PCY_TREE_INTERNAL; if (!(curr->flags & X509_V_FLAG_INHIBIT_ANY) && !tree_link_any(curr, cache, tree)) return X509_PCY_TREE_INTERNAL; #ifdef OPENSSL_POLICY_DEBUG tree_print("before tree_prune()", tree, curr); #endif ret = tree_prune(tree, curr); if (ret != X509_PCY_TREE_VALID) return ret; } return X509_PCY_TREE_VALID; } static void exnode_free(X509_POLICY_NODE *node) { if (node->data && (node->data->flags & POLICY_DATA_FLAG_EXTRA_NODE)) OPENSSL_free(node); } void X509_policy_tree_free(X509_POLICY_TREE *tree) { X509_POLICY_LEVEL *curr; int i; if (!tree) return; sk_X509_POLICY_NODE_free(tree->auth_policies); sk_X509_POLICY_NODE_pop_free(tree->user_policies, exnode_free); for (i = 0, curr = tree->levels; i < tree->nlevel; i++, curr++) { X509_free(curr->cert); sk_X509_POLICY_NODE_pop_free(curr->nodes, policy_node_free); policy_node_free(curr->anyPolicy); } sk_X509_POLICY_DATA_pop_free(tree->extra_data, policy_data_free); OPENSSL_free(tree->levels); OPENSSL_free(tree); } /*- * Application policy checking function. * Return codes: * X509_PCY_TREE_FAILURE: Failure to satisfy explicit policy * X509_PCY_TREE_INVALID: Inconsistent or invalid extensions * X509_PCY_TREE_INTERNAL: Internal error, most likely malloc * X509_PCY_TREE_VALID: Success (null tree if empty or bare TA) */ int X509_policy_check(X509_POLICY_TREE **ptree, int *pexplicit_policy, STACK_OF(X509) *certs, STACK_OF(ASN1_OBJECT) *policy_oids, unsigned int flags) { int init_ret; int ret; int calc_ret; X509_POLICY_TREE *tree = NULL; STACK_OF(X509_POLICY_NODE) *nodes, *auth_nodes = NULL; *ptree = NULL; *pexplicit_policy = 0; init_ret = tree_init(&tree, certs, flags); if (init_ret <= 0) return init_ret; if ((init_ret & X509_PCY_TREE_EXPLICIT) == 0) { if (init_ret & X509_PCY_TREE_EMPTY) { X509_policy_tree_free(tree); return X509_PCY_TREE_VALID; } } else { *pexplicit_policy = 1; /* Tree empty and requireExplicit True: Error */ if (init_ret & X509_PCY_TREE_EMPTY) return X509_PCY_TREE_FAILURE; } ret = tree_evaluate(tree); #ifdef OPENSSL_POLICY_DEBUG tree_print("tree_evaluate()", tree, NULL); #endif if (ret <= 0) goto error; if (ret == X509_PCY_TREE_EMPTY) { X509_policy_tree_free(tree); if (init_ret & X509_PCY_TREE_EXPLICIT) return X509_PCY_TREE_FAILURE; return X509_PCY_TREE_VALID; } /* Tree is not empty: continue */ if ((calc_ret = tree_calculate_authority_set(tree, &auth_nodes)) == 0) goto error; ret = tree_calculate_user_set(tree, policy_oids, auth_nodes); if (calc_ret == TREE_CALC_OK_DOFREE) sk_X509_POLICY_NODE_free(auth_nodes); if (!ret) goto error; *ptree = tree; if (init_ret & X509_PCY_TREE_EXPLICIT) { nodes = X509_policy_tree_get0_user_policies(tree); if (sk_X509_POLICY_NODE_num(nodes) <= 0) return X509_PCY_TREE_FAILURE; } return X509_PCY_TREE_VALID; error: X509_policy_tree_free(tree); return X509_PCY_TREE_INTERNAL; } openssl-1.1.1f/crypto/x509v3/standard_exts.h000066400000000000000000000032131364063235100206570ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This table will be searched using OBJ_bsearch so it *must* kept in order * of the ext_nid values. */ static const X509V3_EXT_METHOD *standard_exts[] = { &v3_nscert, &v3_ns_ia5_list[0], &v3_ns_ia5_list[1], &v3_ns_ia5_list[2], &v3_ns_ia5_list[3], &v3_ns_ia5_list[4], &v3_ns_ia5_list[5], &v3_ns_ia5_list[6], &v3_skey_id, &v3_key_usage, &v3_pkey_usage_period, &v3_alt[0], &v3_alt[1], &v3_bcons, &v3_crl_num, &v3_cpols, &v3_akey_id, &v3_crld, &v3_ext_ku, &v3_delta_crl, &v3_crl_reason, #ifndef OPENSSL_NO_OCSP &v3_crl_invdate, #endif &v3_sxnet, &v3_info, #ifndef OPENSSL_NO_RFC3779 &v3_addr, &v3_asid, #endif #ifndef OPENSSL_NO_OCSP &v3_ocsp_nonce, &v3_ocsp_crlid, &v3_ocsp_accresp, &v3_ocsp_nocheck, &v3_ocsp_acutoff, &v3_ocsp_serviceloc, #endif &v3_sinfo, &v3_policy_constraints, #ifndef OPENSSL_NO_OCSP &v3_crl_hold, #endif &v3_pci, &v3_name_constraints, &v3_policy_mappings, &v3_inhibit_anyp, &v3_idp, &v3_alt[2], &v3_freshest_crl, #ifndef OPENSSL_NO_CT &v3_ct_scts[0], &v3_ct_scts[1], &v3_ct_scts[2], #endif &v3_tls_feature, &v3_ext_admission }; /* Number of standard extensions */ #define STANDARD_EXTENSION_COUNT OSSL_NELEM(standard_exts) openssl-1.1.1f/crypto/x509v3/v3_addr.c000066400000000000000000001206171364063235100173410ustar00rootroot00000000000000/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Implementation of RFC 3779 section 2.2. */ #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/x509.h" #include "ext_dat.h" #ifndef OPENSSL_NO_RFC3779 /* * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. */ ASN1_SEQUENCE(IPAddressRange) = { ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) } ASN1_SEQUENCE_END(IPAddressRange) ASN1_CHOICE(IPAddressOrRange) = { ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) } ASN1_CHOICE_END(IPAddressOrRange) ASN1_CHOICE(IPAddressChoice) = { ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) } ASN1_CHOICE_END(IPAddressChoice) ASN1_SEQUENCE(IPAddressFamily) = { ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) } ASN1_SEQUENCE_END(IPAddressFamily) ASN1_ITEM_TEMPLATE(IPAddrBlocks) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, IPAddrBlocks, IPAddressFamily) static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) /* * How much buffer space do we need for a raw address? */ #define ADDR_RAW_BUF_LEN 16 /* * What's the address length associated with this AFI? */ static int length_from_afi(const unsigned afi) { switch (afi) { case IANA_AFI_IPV4: return 4; case IANA_AFI_IPV6: return 16; default: return 0; } } /* * Extract the AFI from an IPAddressFamily. */ unsigned int X509v3_addr_get_afi(const IPAddressFamily *f) { if (f == NULL || f->addressFamily == NULL || f->addressFamily->data == NULL || f->addressFamily->length < 2) return 0; return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1]; } /* * Expand the bitstring form of an address into a raw byte array. * At the moment this is coded for simplicity, not speed. */ static int addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length, const unsigned char fill) { if (bs->length < 0 || bs->length > length) return 0; if (bs->length > 0) { memcpy(addr, bs->data, bs->length); if ((bs->flags & 7) != 0) { unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); if (fill == 0) addr[bs->length - 1] &= ~mask; else addr[bs->length - 1] |= mask; } } memset(addr + bs->length, fill, length - bs->length); return 1; } /* * Extract the prefix length from a bitstring. */ #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) /* * i2r handler for one address bitstring. */ static int i2r_address(BIO *out, const unsigned afi, const unsigned char fill, const ASN1_BIT_STRING *bs) { unsigned char addr[ADDR_RAW_BUF_LEN]; int i, n; if (bs->length < 0) return 0; switch (afi) { case IANA_AFI_IPV4: if (!addr_expand(addr, bs, 4, fill)) return 0; BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); break; case IANA_AFI_IPV6: if (!addr_expand(addr, bs, 16, fill)) return 0; for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2) ; for (i = 0; i < n; i += 2) BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1], (i < 14 ? ":" : "")); if (i < 16) BIO_puts(out, ":"); if (i == 0) BIO_puts(out, ":"); break; default: for (i = 0; i < bs->length; i++) BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); BIO_printf(out, "[%d]", (int)(bs->flags & 7)); break; } return 1; } /* * i2r handler for a sequence of addresses and ranges. */ static int i2r_IPAddressOrRanges(BIO *out, const int indent, const IPAddressOrRanges *aors, const unsigned afi) { int i; for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); BIO_printf(out, "%*s", indent, ""); switch (aor->type) { case IPAddressOrRange_addressPrefix: if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) return 0; BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); continue; case IPAddressOrRange_addressRange: if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) return 0; BIO_puts(out, "-"); if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) return 0; BIO_puts(out, "\n"); continue; } } return 1; } /* * i2r handler for an IPAddrBlocks extension. */ static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out, int indent) { const IPAddrBlocks *addr = ext; int i; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); const unsigned int afi = X509v3_addr_get_afi(f); switch (afi) { case IANA_AFI_IPV4: BIO_printf(out, "%*sIPv4", indent, ""); break; case IANA_AFI_IPV6: BIO_printf(out, "%*sIPv6", indent, ""); break; default: BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); break; } if (f->addressFamily->length > 2) { switch (f->addressFamily->data[2]) { case 1: BIO_puts(out, " (Unicast)"); break; case 2: BIO_puts(out, " (Multicast)"); break; case 3: BIO_puts(out, " (Unicast/Multicast)"); break; case 4: BIO_puts(out, " (MPLS)"); break; case 64: BIO_puts(out, " (Tunnel)"); break; case 65: BIO_puts(out, " (VPLS)"); break; case 66: BIO_puts(out, " (BGP MDT)"); break; case 128: BIO_puts(out, " (MPLS-labeled VPN)"); break; default: BIO_printf(out, " (Unknown SAFI %u)", (unsigned)f->addressFamily->data[2]); break; } } switch (f->ipAddressChoice->type) { case IPAddressChoice_inherit: BIO_puts(out, ": inherit\n"); break; case IPAddressChoice_addressesOrRanges: BIO_puts(out, ":\n"); if (!i2r_IPAddressOrRanges(out, indent + 2, f->ipAddressChoice-> u.addressesOrRanges, afi)) return 0; break; } } return 1; } /* * Sort comparison function for a sequence of IPAddressOrRange * elements. * * There's no sane answer we can give if addr_expand() fails, and an * assertion failure on externally supplied data is seriously uncool, * so we just arbitrarily declare that if given invalid inputs this * function returns -1. If this messes up your preferred sort order * for garbage input, tough noogies. */ static int IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b, const int length) { unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; int prefixlen_a = 0, prefixlen_b = 0; int r; switch (a->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) return -1; prefixlen_a = addr_prefixlen(a->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) return -1; prefixlen_a = length * 8; break; } switch (b->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) return -1; prefixlen_b = addr_prefixlen(b->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) return -1; prefixlen_b = length * 8; break; } if ((r = memcmp(addr_a, addr_b, length)) != 0) return r; else return prefixlen_a - prefixlen_b; } /* * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 4); } /* * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 16); } /* * Calculate whether a range collapses to a prefix. * See last paragraph of RFC 3779 2.2.3.7. */ static int range_should_be_prefix(const unsigned char *min, const unsigned char *max, const int length) { unsigned char mask; int i, j; if (memcmp(min, max, length) <= 0) return -1; for (i = 0; i < length && min[i] == max[i]; i++) ; for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ; if (i < j) return -1; if (i > j) return i * 8; mask = min[i] ^ max[i]; switch (mask) { case 0x01: j = 7; break; case 0x03: j = 6; break; case 0x07: j = 5; break; case 0x0F: j = 4; break; case 0x1F: j = 3; break; case 0x3F: j = 2; break; case 0x7F: j = 1; break; default: return -1; } if ((min[i] & mask) != 0 || (max[i] & mask) != mask) return -1; else return i * 8 + j; } /* * Construct a prefix. */ static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, const int prefixlen) { int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; IPAddressOrRange *aor = IPAddressOrRange_new(); if (aor == NULL) return 0; aor->type = IPAddressOrRange_addressPrefix; if (aor->u.addressPrefix == NULL && (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) goto err; if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) goto err; aor->u.addressPrefix->flags &= ~7; aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (bitlen > 0) { aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); aor->u.addressPrefix->flags |= 8 - bitlen; } *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a range. If it can be expressed as a prefix, * return a prefix instead. Doing this here simplifies * the rest of the code considerably. */ static int make_addressRange(IPAddressOrRange **result, unsigned char *min, unsigned char *max, const int length) { IPAddressOrRange *aor; int i, prefixlen; if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) return make_addressPrefix(result, min, prefixlen); if ((aor = IPAddressOrRange_new()) == NULL) return 0; aor->type = IPAddressOrRange_addressRange; if ((aor->u.addressRange = IPAddressRange_new()) == NULL) goto err; if (aor->u.addressRange->min == NULL && (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) goto err; if (aor->u.addressRange->max == NULL && (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) goto err; for (i = length; i > 0 && min[i - 1] == 0x00; --i) ; if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) goto err; aor->u.addressRange->min->flags &= ~7; aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (i > 0) { unsigned char b = min[i - 1]; int j = 1; while ((b & (0xFFU >> j)) != 0) ++j; aor->u.addressRange->min->flags |= 8 - j; } for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ; if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) goto err; aor->u.addressRange->max->flags &= ~7; aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (i > 0) { unsigned char b = max[i - 1]; int j = 1; while ((b & (0xFFU >> j)) != (0xFFU >> j)) ++j; aor->u.addressRange->max->flags |= 8 - j; } *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a new address family or find an existing one. */ static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f; unsigned char key[3]; int keylen; int i; key[0] = (afi >> 8) & 0xFF; key[1] = afi & 0xFF; if (safi != NULL) { key[2] = *safi & 0xFF; keylen = 3; } else { keylen = 2; } for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { f = sk_IPAddressFamily_value(addr, i); if (f->addressFamily->length == keylen && !memcmp(f->addressFamily->data, key, keylen)) return f; } if ((f = IPAddressFamily_new()) == NULL) goto err; if (f->ipAddressChoice == NULL && (f->ipAddressChoice = IPAddressChoice_new()) == NULL) goto err; if (f->addressFamily == NULL && (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) goto err; if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) goto err; if (!sk_IPAddressFamily_push(addr, f)) goto err; return f; err: IPAddressFamily_free(f); return NULL; } /* * Add an inheritance element. */ int X509v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && f->ipAddressChoice->u.addressesOrRanges != NULL)) return 0; if (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL) return 1; if (f->ipAddressChoice->u.inherit == NULL && (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) return 0; f->ipAddressChoice->type = IPAddressChoice_inherit; return 1; } /* * Construct an IPAddressOrRange sequence, or return an existing one. */ static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); IPAddressOrRanges *aors = NULL; if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL)) return NULL; if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) aors = f->ipAddressChoice->u.addressesOrRanges; if (aors != NULL) return aors; if ((aors = sk_IPAddressOrRange_new_null()) == NULL) return NULL; switch (afi) { case IANA_AFI_IPV4: (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); break; case IANA_AFI_IPV6: (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); break; } f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; f->ipAddressChoice->u.addressesOrRanges = aors; return aors; } /* * Add a prefix. */ int X509v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *a, const int prefixlen) { IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); IPAddressOrRange *aor; if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) return 0; if (sk_IPAddressOrRange_push(aors, aor)) return 1; IPAddressOrRange_free(aor); return 0; } /* * Add a range. */ int X509v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *min, unsigned char *max) { IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); IPAddressOrRange *aor; int length = length_from_afi(afi); if (aors == NULL) return 0; if (!make_addressRange(&aor, min, max, length)) return 0; if (sk_IPAddressOrRange_push(aors, aor)) return 1; IPAddressOrRange_free(aor); return 0; } /* * Extract min and max values from an IPAddressOrRange. */ static int extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max, int length) { if (aor == NULL || min == NULL || max == NULL) return 0; switch (aor->type) { case IPAddressOrRange_addressPrefix: return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && addr_expand(max, aor->u.addressPrefix, length, 0xFF)); case IPAddressOrRange_addressRange: return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && addr_expand(max, aor->u.addressRange->max, length, 0xFF)); } return 0; } /* * Public wrapper for extract_min_max(). */ int X509v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi, unsigned char *min, unsigned char *max, const int length) { int afi_length = length_from_afi(afi); if (aor == NULL || min == NULL || max == NULL || afi_length == 0 || length < afi_length || (aor->type != IPAddressOrRange_addressPrefix && aor->type != IPAddressOrRange_addressRange) || !extract_min_max(aor, min, max, afi_length)) return 0; return afi_length; } /* * Sort comparison function for a sequence of IPAddressFamily. * * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about * the ordering: I can read it as meaning that IPv6 without a SAFI * comes before IPv4 with a SAFI, which seems pretty weird. The * examples in appendix B suggest that the author intended the * null-SAFI rule to apply only within a single AFI, which is what I * would have expected and is what the following code implements. */ static int IPAddressFamily_cmp(const IPAddressFamily *const *a_, const IPAddressFamily *const *b_) { const ASN1_OCTET_STRING *a = (*a_)->addressFamily; const ASN1_OCTET_STRING *b = (*b_)->addressFamily; int len = ((a->length <= b->length) ? a->length : b->length); int cmp = memcmp(a->data, b->data, len); return cmp ? cmp : a->length - b->length; } /* * Check whether an IPAddrBLocks is in canonical form. */ int X509v3_addr_is_canonical(IPAddrBlocks *addr) { unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; IPAddressOrRanges *aors; int i, j, k; /* * Empty extension is canonical. */ if (addr == NULL) return 1; /* * Check whether the top-level list is in order. */ for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); if (IPAddressFamily_cmp(&a, &b) >= 0) return 0; } /* * Top level's ok, now check each address family. */ for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); int length = length_from_afi(X509v3_addr_get_afi(f)); /* * Inheritance is canonical. Anything other than inheritance or * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. */ if (f == NULL || f->ipAddressChoice == NULL) return 0; switch (f->ipAddressChoice->type) { case IPAddressChoice_inherit: continue; case IPAddressChoice_addressesOrRanges: break; default: return 0; } /* * It's an IPAddressOrRanges sequence, check it. */ aors = f->ipAddressChoice->u.addressesOrRanges; if (sk_IPAddressOrRange_num(aors) == 0) return 0; for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length)) return 0; /* * Punt misordered list, overlapping start, or inverted range. */ if (memcmp(a_min, b_min, length) >= 0 || memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt if adjacent or overlapping. Check for adjacency by * subtracting one from b_min first. */ for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ; if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Check for range that should be expressed as a prefix. */ if (a->type == IPAddressOrRange_addressRange && range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } /* * Check range to see if it's inverted or should be a * prefix. */ j = sk_IPAddressOrRange_num(aors) - 1; { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); if (a != NULL && a->type == IPAddressOrRange_addressRange) { if (!extract_min_max(a, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0 || range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } } } /* * If we made it through all that, we're happy. */ return 1; } /* * Whack an IPAddressOrRanges into canonical form. */ static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi) { int i, j, length = length_from_afi(afi); /* * Sort the IPAddressOrRanges sequence. */ sk_IPAddressOrRange_sort(aors); /* * Clean up representation issues, punt on duplicates or overlaps. */ for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length)) return 0; /* * Punt inverted ranges. */ if (memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt overlaps. */ if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Merge if a and b are adjacent. We check for * adjacency by subtracting one from b_min first. */ for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ; if (memcmp(a_max, b_min, length) == 0) { IPAddressOrRange *merged; if (!make_addressRange(&merged, a_min, b_max, length)) return 0; (void)sk_IPAddressOrRange_set(aors, i, merged); (void)sk_IPAddressOrRange_delete(aors, i + 1); IPAddressOrRange_free(a); IPAddressOrRange_free(b); --i; continue; } } /* * Check for inverted final range. */ j = sk_IPAddressOrRange_num(aors) - 1; { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); if (a != NULL && a->type == IPAddressOrRange_addressRange) { unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; if (!extract_min_max(a, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0) return 0; } } return 1; } /* * Whack an IPAddrBlocks extension into canonical form. */ int X509v3_addr_canonize(IPAddrBlocks *addr) { int i; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && !IPAddressOrRanges_canonize(f->ipAddressChoice-> u.addressesOrRanges, X509v3_addr_get_afi(f))) return 0; } (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); sk_IPAddressFamily_sort(addr); if (!ossl_assert(X509v3_addr_is_canonical(addr))) return 0; return 1; } /* * v2i handler for the IPAddrBlocks extension. */ static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, STACK_OF(CONF_VALUE) *values) { static const char v4addr_chars[] = "0123456789."; static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; IPAddrBlocks *addr = NULL; char *s = NULL, *t; int i; if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { CONF_VALUE *val = sk_CONF_VALUE_value(values, i); unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; unsigned afi, *safi = NULL, safi_; const char *addr_chars = NULL; int prefixlen, i1, i2, delim, length; if (!name_cmp(val->name, "IPv4")) { afi = IANA_AFI_IPV4; } else if (!name_cmp(val->name, "IPv6")) { afi = IANA_AFI_IPV6; } else if (!name_cmp(val->name, "IPv4-SAFI")) { afi = IANA_AFI_IPV4; safi = &safi_; } else if (!name_cmp(val->name, "IPv6-SAFI")) { afi = IANA_AFI_IPV6; safi = &safi_; } else { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); X509V3_conf_err(val); goto err; } switch (afi) { case IANA_AFI_IPV4: addr_chars = v4addr_chars; break; case IANA_AFI_IPV6: addr_chars = v6addr_chars; break; } length = length_from_afi(afi); /* * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate * the other input values. */ if (safi != NULL) { *safi = strtoul(val->value, &t, 0); t += strspn(t, " \t"); if (*safi > 0xFF || *t++ != ':') { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); X509V3_conf_err(val); goto err; } t += strspn(t, " \t"); s = OPENSSL_strdup(t); } else { s = OPENSSL_strdup(val->value); } if (s == NULL) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); goto err; } /* * Check for inheritance. Not worth additional complexity to * optimize this (seldom-used) case. */ if (strcmp(s, "inherit") == 0) { if (!X509v3_addr_add_inherit(addr, afi, safi)) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); X509V3_conf_err(val); goto err; } OPENSSL_free(s); s = NULL; continue; } i1 = strspn(s, addr_chars); i2 = i1 + strspn(s + i1, " \t"); delim = s[i2++]; s[i1] = '\0'; if (a2i_ipadd(min, s) != length) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); X509V3_conf_err(val); goto err; } switch (delim) { case '/': prefixlen = (int)strtoul(s + i2, &t, 10); if (t == s + i2 || *t != '\0') { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); goto err; } break; case '-': i1 = i2 + strspn(s + i2, " \t"); i2 = i1 + strspn(s + i1, addr_chars); if (i1 == i2 || s[i2] != '\0') { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (a2i_ipadd(max, s + i1) != length) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); X509V3_conf_err(val); goto err; } if (memcmp(min, max, length_from_afi(afi)) > 0) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); goto err; } break; case '\0': if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); goto err; } break; default: X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } OPENSSL_free(s); s = NULL; } /* * Canonize the result, then we're done. */ if (!X509v3_addr_canonize(addr)) goto err; return addr; err: OPENSSL_free(s); sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); return NULL; } /* * OpenSSL dispatch */ const X509V3_EXT_METHOD v3_addr = { NID_sbgp_ipAddrBlock, /* nid */ 0, /* flags */ ASN1_ITEM_ref(IPAddrBlocks), /* template */ 0, 0, 0, 0, /* old functions, ignored */ 0, /* i2s */ 0, /* s2i */ 0, /* i2v */ v2i_IPAddrBlocks, /* v2i */ i2r_IPAddrBlocks, /* i2r */ 0, /* r2i */ NULL /* extension-specific data */ }; /* * Figure out whether extension sues inheritance. */ int X509v3_addr_inherits(IPAddrBlocks *addr) { int i; if (addr == NULL) return 0; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); if (f->ipAddressChoice->type == IPAddressChoice_inherit) return 1; } return 0; } /* * Figure out whether parent contains child. */ static int addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length) { unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; int p, c; if (child == NULL || parent == child) return 1; if (parent == NULL) return 0; p = 0; for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { if (!extract_min_max(sk_IPAddressOrRange_value(child, c), c_min, c_max, length)) return -1; for (;; p++) { if (p >= sk_IPAddressOrRange_num(parent)) return 0; if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), p_min, p_max, length)) return 0; if (memcmp(p_max, c_max, length) < 0) continue; if (memcmp(p_min, c_min, length) > 0) return 0; break; } } return 1; } /* * Test whether a is a subset of b. */ int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) { int i; if (a == NULL || a == b) return 1; if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b)) return 0; (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); for (i = 0; i < sk_IPAddressFamily_num(a); i++) { IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); int j = sk_IPAddressFamily_find(b, fa); IPAddressFamily *fb; fb = sk_IPAddressFamily_value(b, j); if (fb == NULL) return 0; if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, fa->ipAddressChoice->u.addressesOrRanges, length_from_afi(X509v3_addr_get_afi(fb)))) return 0; } return 1; } /* * Validation error handling via callback. */ #define validation_err(_err_) \ do { \ if (ctx != NULL) { \ ctx->error = _err_; \ ctx->error_depth = i; \ ctx->current_cert = x; \ ret = ctx->verify_cb(0, ctx); \ } else { \ ret = 0; \ } \ if (!ret) \ goto done; \ } while (0) /* * Core code for RFC 3779 2.3 path validation. * * Returns 1 for success, 0 on error. * * When returning 0, ctx->error MUST be set to an appropriate value other than * X509_V_OK. */ static int addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, IPAddrBlocks *ext) { IPAddrBlocks *child = NULL; int i, j, ret = 1; X509 *x; if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0) || !ossl_assert(ctx != NULL || ext != NULL) || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } /* * Figure out where to start. If we don't have an extension to * check, we're done. Otherwise, check canonical form and * set up for walking up the chain. */ if (ext != NULL) { i = -1; x = NULL; } else { i = 0; x = sk_X509_value(chain, i); if ((ext = x->rfc3779_addr) == NULL) goto done; } if (!X509v3_addr_is_canonical(ext)) validation_err(X509_V_ERR_INVALID_EXTENSION); (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); if (ctx != NULL) ctx->error = X509_V_ERR_OUT_OF_MEM; ret = 0; goto done; } /* * Now walk up the chain. No cert may list resources that its * parent doesn't list. */ for (i++; i < sk_X509_num(chain); i++) { x = sk_X509_value(chain, i); if (!X509v3_addr_is_canonical(x->rfc3779_addr)) validation_err(X509_V_ERR_INVALID_EXTENSION); if (x->rfc3779_addr == NULL) { for (j = 0; j < sk_IPAddressFamily_num(child); j++) { IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); break; } } continue; } (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); for (j = 0; j < sk_IPAddressFamily_num(child); j++) { IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); if (fp == NULL) { if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); break; } continue; } if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { if (fc->ipAddressChoice->type == IPAddressChoice_inherit || addr_contains(fp->ipAddressChoice->u.addressesOrRanges, fc->ipAddressChoice->u.addressesOrRanges, length_from_afi(X509v3_addr_get_afi(fc)))) sk_IPAddressFamily_set(child, j, fp); else validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } } /* * Trust anchor can't inherit. */ if (x->rfc3779_addr != NULL) { for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); if (fp->ipAddressChoice->type == IPAddressChoice_inherit && sk_IPAddressFamily_find(child, fp) >= 0) validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } done: sk_IPAddressFamily_free(child); return ret; } #undef validation_err /* * RFC 3779 2.3 path validation -- called from X509_verify_cert(). */ int X509v3_addr_validate_path(X509_STORE_CTX *ctx) { if (ctx->chain == NULL || sk_X509_num(ctx->chain) == 0 || ctx->verify_cb == NULL) { ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } return addr_validate_path_internal(ctx, ctx->chain, NULL); } /* * RFC 3779 2.3 path validation of an extension. * Test whether chain covers extension. */ int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, IPAddrBlocks *ext, int allow_inheritance) { if (ext == NULL) return 1; if (chain == NULL || sk_X509_num(chain) == 0) return 0; if (!allow_inheritance && X509v3_addr_inherits(ext)) return 0; return addr_validate_path_internal(NULL, chain, ext); } #endif /* OPENSSL_NO_RFC3779 */ openssl-1.1.1f/crypto/x509v3/v3_admis.c000066400000000000000000000271261364063235100175250ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include "v3_admis.h" #include "ext_dat.h" ASN1_SEQUENCE(NAMING_AUTHORITY) = { ASN1_OPT(NAMING_AUTHORITY, namingAuthorityId, ASN1_OBJECT), ASN1_OPT(NAMING_AUTHORITY, namingAuthorityUrl, ASN1_IA5STRING), ASN1_OPT(NAMING_AUTHORITY, namingAuthorityText, DIRECTORYSTRING), } ASN1_SEQUENCE_END(NAMING_AUTHORITY) ASN1_SEQUENCE(PROFESSION_INFO) = { ASN1_EXP_OPT(PROFESSION_INFO, namingAuthority, NAMING_AUTHORITY, 0), ASN1_SEQUENCE_OF(PROFESSION_INFO, professionItems, DIRECTORYSTRING), ASN1_SEQUENCE_OF_OPT(PROFESSION_INFO, professionOIDs, ASN1_OBJECT), ASN1_OPT(PROFESSION_INFO, registrationNumber, ASN1_PRINTABLESTRING), ASN1_OPT(PROFESSION_INFO, addProfessionInfo, ASN1_OCTET_STRING), } ASN1_SEQUENCE_END(PROFESSION_INFO) ASN1_SEQUENCE(ADMISSIONS) = { ASN1_EXP_OPT(ADMISSIONS, admissionAuthority, GENERAL_NAME, 0), ASN1_EXP_OPT(ADMISSIONS, namingAuthority, NAMING_AUTHORITY, 1), ASN1_SEQUENCE_OF(ADMISSIONS, professionInfos, PROFESSION_INFO), } ASN1_SEQUENCE_END(ADMISSIONS) ASN1_SEQUENCE(ADMISSION_SYNTAX) = { ASN1_OPT(ADMISSION_SYNTAX, admissionAuthority, GENERAL_NAME), ASN1_SEQUENCE_OF(ADMISSION_SYNTAX, contentsOfAdmissions, ADMISSIONS), } ASN1_SEQUENCE_END(ADMISSION_SYNTAX) IMPLEMENT_ASN1_FUNCTIONS(NAMING_AUTHORITY) IMPLEMENT_ASN1_FUNCTIONS(PROFESSION_INFO) IMPLEMENT_ASN1_FUNCTIONS(ADMISSIONS) IMPLEMENT_ASN1_FUNCTIONS(ADMISSION_SYNTAX) static int i2r_ADMISSION_SYNTAX(const struct v3_ext_method *method, void *in, BIO *bp, int ind); const X509V3_EXT_METHOD v3_ext_admission = { NID_x509ExtAdmission, /* .ext_nid = */ 0, /* .ext_flags = */ ASN1_ITEM_ref(ADMISSION_SYNTAX), /* .it = */ NULL, NULL, NULL, NULL, NULL, /* .i2s = */ NULL, /* .s2i = */ NULL, /* .i2v = */ NULL, /* .v2i = */ &i2r_ADMISSION_SYNTAX, /* .i2r = */ NULL, /* .r2i = */ NULL /* extension-specific data */ }; static int i2r_NAMING_AUTHORITY(const struct v3_ext_method *method, void *in, BIO *bp, int ind) { NAMING_AUTHORITY * namingAuthority = (NAMING_AUTHORITY*) in; if (namingAuthority == NULL) return 0; if (namingAuthority->namingAuthorityId == NULL && namingAuthority->namingAuthorityText == NULL && namingAuthority->namingAuthorityUrl == NULL) return 0; if (BIO_printf(bp, "%*snamingAuthority: ", ind, "") <= 0) goto err; if (namingAuthority->namingAuthorityId != NULL) { char objbuf[128]; const char *ln = OBJ_nid2ln(OBJ_obj2nid(namingAuthority->namingAuthorityId)); if (BIO_printf(bp, "%*s admissionAuthorityId: ", ind, "") <= 0) goto err; OBJ_obj2txt(objbuf, sizeof(objbuf), namingAuthority->namingAuthorityId, 1); if (BIO_printf(bp, "%s%s%s%s\n", ln ? ln : "", ln ? " (" : "", objbuf, ln ? ")" : "") <= 0) goto err; } if (namingAuthority->namingAuthorityText != NULL) { if (BIO_printf(bp, "%*s namingAuthorityText: ", ind, "") <= 0 || ASN1_STRING_print(bp, namingAuthority->namingAuthorityText) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } if (namingAuthority->namingAuthorityUrl != NULL ) { if (BIO_printf(bp, "%*s namingAuthorityUrl: ", ind, "") <= 0 || ASN1_STRING_print(bp, namingAuthority->namingAuthorityUrl) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } return 1; err: return 0; } static int i2r_ADMISSION_SYNTAX(const struct v3_ext_method *method, void *in, BIO *bp, int ind) { ADMISSION_SYNTAX * admission = (ADMISSION_SYNTAX *)in; int i, j, k; if (admission->admissionAuthority != NULL) { if (BIO_printf(bp, "%*sadmissionAuthority:\n", ind, "") <= 0 || BIO_printf(bp, "%*s ", ind, "") <= 0 || GENERAL_NAME_print(bp, admission->admissionAuthority) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } for (i = 0; i < sk_ADMISSIONS_num(admission->contentsOfAdmissions); i++) { ADMISSIONS* entry = sk_ADMISSIONS_value(admission->contentsOfAdmissions, i); if (BIO_printf(bp, "%*sEntry %0d:\n", ind, "", 1 + i) <= 0) goto err; if (entry->admissionAuthority != NULL) { if (BIO_printf(bp, "%*s admissionAuthority:\n", ind, "") <= 0 || BIO_printf(bp, "%*s ", ind, "") <= 0 || GENERAL_NAME_print(bp, entry->admissionAuthority) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } if (entry->namingAuthority != NULL) { if (i2r_NAMING_AUTHORITY(method, entry->namingAuthority, bp, ind) <= 0) goto err; } for (j = 0; j < sk_PROFESSION_INFO_num(entry->professionInfos); j++) { PROFESSION_INFO* pinfo = sk_PROFESSION_INFO_value(entry->professionInfos, j); if (BIO_printf(bp, "%*s Profession Info Entry %0d:\n", ind, "", 1 + j) <= 0) goto err; if (pinfo->registrationNumber != NULL) { if (BIO_printf(bp, "%*s registrationNumber: ", ind, "") <= 0 || ASN1_STRING_print(bp, pinfo->registrationNumber) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } if (pinfo->namingAuthority != NULL) { if (i2r_NAMING_AUTHORITY(method, pinfo->namingAuthority, bp, ind + 2) <= 0) goto err; } if (pinfo->professionItems != NULL) { if (BIO_printf(bp, "%*s Info Entries:\n", ind, "") <= 0) goto err; for (k = 0; k < sk_ASN1_STRING_num(pinfo->professionItems); k++) { ASN1_STRING* val = sk_ASN1_STRING_value(pinfo->professionItems, k); if (BIO_printf(bp, "%*s ", ind, "") <= 0 || ASN1_STRING_print(bp, val) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } } if (pinfo->professionOIDs != NULL) { if (BIO_printf(bp, "%*s Profession OIDs:\n", ind, "") <= 0) goto err; for (k = 0; k < sk_ASN1_OBJECT_num(pinfo->professionOIDs); k++) { ASN1_OBJECT* obj = sk_ASN1_OBJECT_value(pinfo->professionOIDs, k); const char *ln = OBJ_nid2ln(OBJ_obj2nid(obj)); char objbuf[128]; OBJ_obj2txt(objbuf, sizeof(objbuf), obj, 1); if (BIO_printf(bp, "%*s %s%s%s%s\n", ind, "", ln ? ln : "", ln ? " (" : "", objbuf, ln ? ")" : "") <= 0) goto err; } } } } return 1; err: return -1; } const ASN1_OBJECT *NAMING_AUTHORITY_get0_authorityId(const NAMING_AUTHORITY *n) { return n->namingAuthorityId; } void NAMING_AUTHORITY_set0_authorityId(NAMING_AUTHORITY *n, ASN1_OBJECT* id) { ASN1_OBJECT_free(n->namingAuthorityId); n->namingAuthorityId = id; } const ASN1_IA5STRING *NAMING_AUTHORITY_get0_authorityURL( const NAMING_AUTHORITY *n) { return n->namingAuthorityUrl; } void NAMING_AUTHORITY_set0_authorityURL(NAMING_AUTHORITY *n, ASN1_IA5STRING* u) { ASN1_IA5STRING_free(n->namingAuthorityUrl); n->namingAuthorityUrl = u; } const ASN1_STRING *NAMING_AUTHORITY_get0_authorityText( const NAMING_AUTHORITY *n) { return n->namingAuthorityText; } void NAMING_AUTHORITY_set0_authorityText(NAMING_AUTHORITY *n, ASN1_STRING* t) { ASN1_IA5STRING_free(n->namingAuthorityText); n->namingAuthorityText = t; } const GENERAL_NAME *ADMISSION_SYNTAX_get0_admissionAuthority(const ADMISSION_SYNTAX *as) { return as->admissionAuthority; } void ADMISSION_SYNTAX_set0_admissionAuthority(ADMISSION_SYNTAX *as, GENERAL_NAME *aa) { GENERAL_NAME_free(as->admissionAuthority); as->admissionAuthority = aa; } const STACK_OF(ADMISSIONS) *ADMISSION_SYNTAX_get0_contentsOfAdmissions(const ADMISSION_SYNTAX *as) { return as->contentsOfAdmissions; } void ADMISSION_SYNTAX_set0_contentsOfAdmissions(ADMISSION_SYNTAX *as, STACK_OF(ADMISSIONS) *a) { sk_ADMISSIONS_pop_free(as->contentsOfAdmissions, ADMISSIONS_free); as->contentsOfAdmissions = a; } const GENERAL_NAME *ADMISSIONS_get0_admissionAuthority(const ADMISSIONS *a) { return a->admissionAuthority; } void ADMISSIONS_set0_admissionAuthority(ADMISSIONS *a, GENERAL_NAME *aa) { GENERAL_NAME_free(a->admissionAuthority); a->admissionAuthority = aa; } const NAMING_AUTHORITY *ADMISSIONS_get0_namingAuthority(const ADMISSIONS *a) { return a->namingAuthority; } void ADMISSIONS_set0_namingAuthority(ADMISSIONS *a, NAMING_AUTHORITY *na) { NAMING_AUTHORITY_free(a->namingAuthority); a->namingAuthority = na; } const PROFESSION_INFOS *ADMISSIONS_get0_professionInfos(const ADMISSIONS *a) { return a->professionInfos; } void ADMISSIONS_set0_professionInfos(ADMISSIONS *a, PROFESSION_INFOS *pi) { sk_PROFESSION_INFO_pop_free(a->professionInfos, PROFESSION_INFO_free); a->professionInfos = pi; } const ASN1_OCTET_STRING *PROFESSION_INFO_get0_addProfessionInfo(const PROFESSION_INFO *pi) { return pi->addProfessionInfo; } void PROFESSION_INFO_set0_addProfessionInfo(PROFESSION_INFO *pi, ASN1_OCTET_STRING *aos) { ASN1_OCTET_STRING_free(pi->addProfessionInfo); pi->addProfessionInfo = aos; } const NAMING_AUTHORITY *PROFESSION_INFO_get0_namingAuthority(const PROFESSION_INFO *pi) { return pi->namingAuthority; } void PROFESSION_INFO_set0_namingAuthority(PROFESSION_INFO *pi, NAMING_AUTHORITY *na) { NAMING_AUTHORITY_free(pi->namingAuthority); pi->namingAuthority = na; } const STACK_OF(ASN1_STRING) *PROFESSION_INFO_get0_professionItems(const PROFESSION_INFO *pi) { return pi->professionItems; } void PROFESSION_INFO_set0_professionItems(PROFESSION_INFO *pi, STACK_OF(ASN1_STRING) *as) { sk_ASN1_STRING_pop_free(pi->professionItems, ASN1_STRING_free); pi->professionItems = as; } const STACK_OF(ASN1_OBJECT) *PROFESSION_INFO_get0_professionOIDs(const PROFESSION_INFO *pi) { return pi->professionOIDs; } void PROFESSION_INFO_set0_professionOIDs(PROFESSION_INFO *pi, STACK_OF(ASN1_OBJECT) *po) { sk_ASN1_OBJECT_pop_free(pi->professionOIDs, ASN1_OBJECT_free); pi->professionOIDs = po; } const ASN1_PRINTABLESTRING *PROFESSION_INFO_get0_registrationNumber(const PROFESSION_INFO *pi) { return pi->registrationNumber; } void PROFESSION_INFO_set0_registrationNumber(PROFESSION_INFO *pi, ASN1_PRINTABLESTRING *rn) { ASN1_PRINTABLESTRING_free(pi->registrationNumber); pi->registrationNumber = rn; } openssl-1.1.1f/crypto/x509v3/v3_admis.h000066400000000000000000000021721364063235100175240ustar00rootroot00000000000000/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_X509V3_V3_ADMIS_H # define OSSL_CRYPTO_X509V3_V3_ADMIS_H struct NamingAuthority_st { ASN1_OBJECT* namingAuthorityId; ASN1_IA5STRING* namingAuthorityUrl; ASN1_STRING* namingAuthorityText; /* i.e. DIRECTORYSTRING */ }; struct ProfessionInfo_st { NAMING_AUTHORITY* namingAuthority; STACK_OF(ASN1_STRING)* professionItems; /* i.e. DIRECTORYSTRING */ STACK_OF(ASN1_OBJECT)* professionOIDs; ASN1_PRINTABLESTRING* registrationNumber; ASN1_OCTET_STRING* addProfessionInfo; }; struct Admissions_st { GENERAL_NAME* admissionAuthority; NAMING_AUTHORITY* namingAuthority; STACK_OF(PROFESSION_INFO)* professionInfos; }; struct AdmissionSyntax_st { GENERAL_NAME* admissionAuthority; STACK_OF(ADMISSIONS)* contentsOfAdmissions; }; #endif openssl-1.1.1f/crypto/x509v3/v3_akey.c000066400000000000000000000122361364063235100173550ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ext_dat.h" static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_KEYID(X509V3_EXT_METHOD *method, AUTHORITY_KEYID *akeyid, STACK_OF(CONF_VALUE) *extlist); static AUTHORITY_KEYID *v2i_AUTHORITY_KEYID(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values); const X509V3_EXT_METHOD v3_akey_id = { NID_authority_key_identifier, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_KEYID), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_AUTHORITY_KEYID, (X509V3_EXT_V2I)v2i_AUTHORITY_KEYID, 0, 0, NULL }; static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_KEYID(X509V3_EXT_METHOD *method, AUTHORITY_KEYID *akeyid, STACK_OF(CONF_VALUE) *extlist) { char *tmp; if (akeyid->keyid) { tmp = OPENSSL_buf2hexstr(akeyid->keyid->data, akeyid->keyid->length); X509V3_add_value("keyid", tmp, &extlist); OPENSSL_free(tmp); } if (akeyid->issuer) extlist = i2v_GENERAL_NAMES(NULL, akeyid->issuer, extlist); if (akeyid->serial) { tmp = OPENSSL_buf2hexstr(akeyid->serial->data, akeyid->serial->length); X509V3_add_value("serial", tmp, &extlist); OPENSSL_free(tmp); } return extlist; } /*- * Currently two options: * keyid: use the issuers subject keyid, the value 'always' means its is * an error if the issuer certificate doesn't have a key id. * issuer: use the issuers cert issuer and serial number. The default is * to only use this if keyid is not present. With the option 'always' * this is always included. */ static AUTHORITY_KEYID *v2i_AUTHORITY_KEYID(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values) { char keyid = 0, issuer = 0; int i; CONF_VALUE *cnf; ASN1_OCTET_STRING *ikeyid = NULL; X509_NAME *isname = NULL; GENERAL_NAMES *gens = NULL; GENERAL_NAME *gen = NULL; ASN1_INTEGER *serial = NULL; X509_EXTENSION *ext; X509 *cert; AUTHORITY_KEYID *akeyid; for (i = 0; i < sk_CONF_VALUE_num(values); i++) { cnf = sk_CONF_VALUE_value(values, i); if (strcmp(cnf->name, "keyid") == 0) { keyid = 1; if (cnf->value && strcmp(cnf->value, "always") == 0) keyid = 2; } else if (strcmp(cnf->name, "issuer") == 0) { issuer = 1; if (cnf->value && strcmp(cnf->value, "always") == 0) issuer = 2; } else { X509V3err(X509V3_F_V2I_AUTHORITY_KEYID, X509V3_R_UNKNOWN_OPTION); ERR_add_error_data(2, "name=", cnf->name); return NULL; } } if (!ctx || !ctx->issuer_cert) { if (ctx && (ctx->flags == CTX_TEST)) return AUTHORITY_KEYID_new(); X509V3err(X509V3_F_V2I_AUTHORITY_KEYID, X509V3_R_NO_ISSUER_CERTIFICATE); return NULL; } cert = ctx->issuer_cert; if (keyid) { i = X509_get_ext_by_NID(cert, NID_subject_key_identifier, -1); if ((i >= 0) && (ext = X509_get_ext(cert, i))) ikeyid = X509V3_EXT_d2i(ext); if (keyid == 2 && !ikeyid) { X509V3err(X509V3_F_V2I_AUTHORITY_KEYID, X509V3_R_UNABLE_TO_GET_ISSUER_KEYID); return NULL; } } if ((issuer && !ikeyid) || (issuer == 2)) { isname = X509_NAME_dup(X509_get_issuer_name(cert)); serial = ASN1_INTEGER_dup(X509_get_serialNumber(cert)); if (!isname || !serial) { X509V3err(X509V3_F_V2I_AUTHORITY_KEYID, X509V3_R_UNABLE_TO_GET_ISSUER_DETAILS); goto err; } } if ((akeyid = AUTHORITY_KEYID_new()) == NULL) goto err; if (isname) { if ((gens = sk_GENERAL_NAME_new_null()) == NULL || (gen = GENERAL_NAME_new()) == NULL || !sk_GENERAL_NAME_push(gens, gen)) { X509V3err(X509V3_F_V2I_AUTHORITY_KEYID, ERR_R_MALLOC_FAILURE); goto err; } gen->type = GEN_DIRNAME; gen->d.dirn = isname; } akeyid->issuer = gens; gen = NULL; gens = NULL; akeyid->serial = serial; akeyid->keyid = ikeyid; return akeyid; err: sk_GENERAL_NAME_free(gens); GENERAL_NAME_free(gen); X509_NAME_free(isname); ASN1_INTEGER_free(serial); ASN1_OCTET_STRING_free(ikeyid); return NULL; } openssl-1.1.1f/crypto/x509v3/v3_akeya.c000066400000000000000000000014561364063235100175200ustar00rootroot00000000000000/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include ASN1_SEQUENCE(AUTHORITY_KEYID) = { ASN1_IMP_OPT(AUTHORITY_KEYID, keyid, ASN1_OCTET_STRING, 0), ASN1_IMP_SEQUENCE_OF_OPT(AUTHORITY_KEYID, issuer, GENERAL_NAME, 1), ASN1_IMP_OPT(AUTHORITY_KEYID, serial, ASN1_INTEGER, 2) } ASN1_SEQUENCE_END(AUTHORITY_KEYID) IMPLEMENT_ASN1_FUNCTIONS(AUTHORITY_KEYID) openssl-1.1.1f/crypto/x509v3/v3_alt.c000066400000000000000000000420701364063235100172030ustar00rootroot00000000000000/* * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "ext_dat.h" static GENERAL_NAMES *v2i_subject_alt(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static GENERAL_NAMES *v2i_issuer_alt(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static int copy_email(X509V3_CTX *ctx, GENERAL_NAMES *gens, int move_p); static int copy_issuer(X509V3_CTX *ctx, GENERAL_NAMES *gens); static int do_othername(GENERAL_NAME *gen, const char *value, X509V3_CTX *ctx); static int do_dirname(GENERAL_NAME *gen, const char *value, X509V3_CTX *ctx); const X509V3_EXT_METHOD v3_alt[3] = { {NID_subject_alt_name, 0, ASN1_ITEM_ref(GENERAL_NAMES), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_GENERAL_NAMES, (X509V3_EXT_V2I)v2i_subject_alt, NULL, NULL, NULL}, {NID_issuer_alt_name, 0, ASN1_ITEM_ref(GENERAL_NAMES), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_GENERAL_NAMES, (X509V3_EXT_V2I)v2i_issuer_alt, NULL, NULL, NULL}, {NID_certificate_issuer, 0, ASN1_ITEM_ref(GENERAL_NAMES), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_GENERAL_NAMES, NULL, NULL, NULL, NULL}, }; STACK_OF(CONF_VALUE) *i2v_GENERAL_NAMES(X509V3_EXT_METHOD *method, GENERAL_NAMES *gens, STACK_OF(CONF_VALUE) *ret) { int i; GENERAL_NAME *gen; STACK_OF(CONF_VALUE) *tmpret = NULL, *origret = ret; for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gen = sk_GENERAL_NAME_value(gens, i); /* * i2v_GENERAL_NAME allocates ret if it is NULL. If something goes * wrong we need to free the stack - but only if it was empty when we * originally entered this function. */ tmpret = i2v_GENERAL_NAME(method, gen, ret); if (tmpret == NULL) { if (origret == NULL) sk_CONF_VALUE_pop_free(ret, X509V3_conf_free); return NULL; } ret = tmpret; } if (ret == NULL) return sk_CONF_VALUE_new_null(); return ret; } STACK_OF(CONF_VALUE) *i2v_GENERAL_NAME(X509V3_EXT_METHOD *method, GENERAL_NAME *gen, STACK_OF(CONF_VALUE) *ret) { unsigned char *p; char oline[256], htmp[5]; int i; switch (gen->type) { case GEN_OTHERNAME: if (!X509V3_add_value("othername", "", &ret)) return NULL; break; case GEN_X400: if (!X509V3_add_value("X400Name", "", &ret)) return NULL; break; case GEN_EDIPARTY: if (!X509V3_add_value("EdiPartyName", "", &ret)) return NULL; break; case GEN_EMAIL: if (!X509V3_add_value_uchar("email", gen->d.ia5->data, &ret)) return NULL; break; case GEN_DNS: if (!X509V3_add_value_uchar("DNS", gen->d.ia5->data, &ret)) return NULL; break; case GEN_URI: if (!X509V3_add_value_uchar("URI", gen->d.ia5->data, &ret)) return NULL; break; case GEN_DIRNAME: if (X509_NAME_oneline(gen->d.dirn, oline, sizeof(oline)) == NULL || !X509V3_add_value("DirName", oline, &ret)) return NULL; break; case GEN_IPADD: p = gen->d.ip->data; if (gen->d.ip->length == 4) BIO_snprintf(oline, sizeof(oline), "%d.%d.%d.%d", p[0], p[1], p[2], p[3]); else if (gen->d.ip->length == 16) { oline[0] = 0; for (i = 0; i < 8; i++) { BIO_snprintf(htmp, sizeof(htmp), "%X", p[0] << 8 | p[1]); p += 2; strcat(oline, htmp); if (i != 7) strcat(oline, ":"); } } else { if (!X509V3_add_value("IP Address", "", &ret)) return NULL; break; } if (!X509V3_add_value("IP Address", oline, &ret)) return NULL; break; case GEN_RID: i2t_ASN1_OBJECT(oline, 256, gen->d.rid); if (!X509V3_add_value("Registered ID", oline, &ret)) return NULL; break; } return ret; } int GENERAL_NAME_print(BIO *out, GENERAL_NAME *gen) { unsigned char *p; int i; switch (gen->type) { case GEN_OTHERNAME: BIO_printf(out, "othername:"); break; case GEN_X400: BIO_printf(out, "X400Name:"); break; case GEN_EDIPARTY: /* Maybe fix this: it is supported now */ BIO_printf(out, "EdiPartyName:"); break; case GEN_EMAIL: BIO_printf(out, "email:"); ASN1_STRING_print(out, gen->d.ia5); break; case GEN_DNS: BIO_printf(out, "DNS:"); ASN1_STRING_print(out, gen->d.ia5); break; case GEN_URI: BIO_printf(out, "URI:"); ASN1_STRING_print(out, gen->d.ia5); break; case GEN_DIRNAME: BIO_printf(out, "DirName:"); X509_NAME_print_ex(out, gen->d.dirn, 0, XN_FLAG_ONELINE); break; case GEN_IPADD: p = gen->d.ip->data; if (gen->d.ip->length == 4) BIO_printf(out, "IP Address:%d.%d.%d.%d", p[0], p[1], p[2], p[3]); else if (gen->d.ip->length == 16) { BIO_printf(out, "IP Address"); for (i = 0; i < 8; i++) { BIO_printf(out, ":%X", p[0] << 8 | p[1]); p += 2; } BIO_puts(out, "\n"); } else { BIO_printf(out, "IP Address:"); break; } break; case GEN_RID: BIO_printf(out, "Registered ID:"); i2a_ASN1_OBJECT(out, gen->d.rid); break; } return 1; } static GENERAL_NAMES *v2i_issuer_alt(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { const int num = sk_CONF_VALUE_num(nval); GENERAL_NAMES *gens = sk_GENERAL_NAME_new_reserve(NULL, num); int i; if (gens == NULL) { X509V3err(X509V3_F_V2I_ISSUER_ALT, ERR_R_MALLOC_FAILURE); sk_GENERAL_NAME_free(gens); return NULL; } for (i = 0; i < num; i++) { CONF_VALUE *cnf = sk_CONF_VALUE_value(nval, i); if (!name_cmp(cnf->name, "issuer") && cnf->value && strcmp(cnf->value, "copy") == 0) { if (!copy_issuer(ctx, gens)) goto err; } else { GENERAL_NAME *gen = v2i_GENERAL_NAME(method, ctx, cnf); if (gen == NULL) goto err; sk_GENERAL_NAME_push(gens, gen); /* no failure as it was reserved */ } } return gens; err: sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); return NULL; } /* Append subject altname of issuer to issuer alt name of subject */ static int copy_issuer(X509V3_CTX *ctx, GENERAL_NAMES *gens) { GENERAL_NAMES *ialt; GENERAL_NAME *gen; X509_EXTENSION *ext; int i, num; if (ctx && (ctx->flags == CTX_TEST)) return 1; if (!ctx || !ctx->issuer_cert) { X509V3err(X509V3_F_COPY_ISSUER, X509V3_R_NO_ISSUER_DETAILS); goto err; } i = X509_get_ext_by_NID(ctx->issuer_cert, NID_subject_alt_name, -1); if (i < 0) return 1; if ((ext = X509_get_ext(ctx->issuer_cert, i)) == NULL || (ialt = X509V3_EXT_d2i(ext)) == NULL) { X509V3err(X509V3_F_COPY_ISSUER, X509V3_R_ISSUER_DECODE_ERROR); goto err; } num = sk_GENERAL_NAME_num(ialt); if (!sk_GENERAL_NAME_reserve(gens, num)) { X509V3err(X509V3_F_COPY_ISSUER, ERR_R_MALLOC_FAILURE); goto err; } for (i = 0; i < num; i++) { gen = sk_GENERAL_NAME_value(ialt, i); sk_GENERAL_NAME_push(gens, gen); /* no failure as it was reserved */ } sk_GENERAL_NAME_free(ialt); return 1; err: return 0; } static GENERAL_NAMES *v2i_subject_alt(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { GENERAL_NAMES *gens; CONF_VALUE *cnf; const int num = sk_CONF_VALUE_num(nval); int i; gens = sk_GENERAL_NAME_new_reserve(NULL, num); if (gens == NULL) { X509V3err(X509V3_F_V2I_SUBJECT_ALT, ERR_R_MALLOC_FAILURE); sk_GENERAL_NAME_free(gens); return NULL; } for (i = 0; i < num; i++) { cnf = sk_CONF_VALUE_value(nval, i); if (!name_cmp(cnf->name, "email") && cnf->value && strcmp(cnf->value, "copy") == 0) { if (!copy_email(ctx, gens, 0)) goto err; } else if (!name_cmp(cnf->name, "email") && cnf->value && strcmp(cnf->value, "move") == 0) { if (!copy_email(ctx, gens, 1)) goto err; } else { GENERAL_NAME *gen; if ((gen = v2i_GENERAL_NAME(method, ctx, cnf)) == NULL) goto err; sk_GENERAL_NAME_push(gens, gen); /* no failure as it was reserved */ } } return gens; err: sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); return NULL; } /* * Copy any email addresses in a certificate or request to GENERAL_NAMES */ static int copy_email(X509V3_CTX *ctx, GENERAL_NAMES *gens, int move_p) { X509_NAME *nm; ASN1_IA5STRING *email = NULL; X509_NAME_ENTRY *ne; GENERAL_NAME *gen = NULL; int i = -1; if (ctx != NULL && ctx->flags == CTX_TEST) return 1; if (ctx == NULL || (ctx->subject_cert == NULL && ctx->subject_req == NULL)) { X509V3err(X509V3_F_COPY_EMAIL, X509V3_R_NO_SUBJECT_DETAILS); goto err; } /* Find the subject name */ if (ctx->subject_cert) nm = X509_get_subject_name(ctx->subject_cert); else nm = X509_REQ_get_subject_name(ctx->subject_req); /* Now add any email address(es) to STACK */ while ((i = X509_NAME_get_index_by_NID(nm, NID_pkcs9_emailAddress, i)) >= 0) { ne = X509_NAME_get_entry(nm, i); email = ASN1_STRING_dup(X509_NAME_ENTRY_get_data(ne)); if (move_p) { X509_NAME_delete_entry(nm, i); X509_NAME_ENTRY_free(ne); i--; } if (email == NULL || (gen = GENERAL_NAME_new()) == NULL) { X509V3err(X509V3_F_COPY_EMAIL, ERR_R_MALLOC_FAILURE); goto err; } gen->d.ia5 = email; email = NULL; gen->type = GEN_EMAIL; if (!sk_GENERAL_NAME_push(gens, gen)) { X509V3err(X509V3_F_COPY_EMAIL, ERR_R_MALLOC_FAILURE); goto err; } gen = NULL; } return 1; err: GENERAL_NAME_free(gen); ASN1_IA5STRING_free(email); return 0; } GENERAL_NAMES *v2i_GENERAL_NAMES(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { GENERAL_NAME *gen; GENERAL_NAMES *gens; CONF_VALUE *cnf; const int num = sk_CONF_VALUE_num(nval); int i; gens = sk_GENERAL_NAME_new_reserve(NULL, num); if (gens == NULL) { X509V3err(X509V3_F_V2I_GENERAL_NAMES, ERR_R_MALLOC_FAILURE); sk_GENERAL_NAME_free(gens); return NULL; } for (i = 0; i < num; i++) { cnf = sk_CONF_VALUE_value(nval, i); if ((gen = v2i_GENERAL_NAME(method, ctx, cnf)) == NULL) goto err; sk_GENERAL_NAME_push(gens, gen); /* no failure as it was reserved */ } return gens; err: sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); return NULL; } GENERAL_NAME *v2i_GENERAL_NAME(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, CONF_VALUE *cnf) { return v2i_GENERAL_NAME_ex(NULL, method, ctx, cnf, 0); } GENERAL_NAME *a2i_GENERAL_NAME(GENERAL_NAME *out, const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, int gen_type, const char *value, int is_nc) { char is_string = 0; GENERAL_NAME *gen = NULL; if (!value) { X509V3err(X509V3_F_A2I_GENERAL_NAME, X509V3_R_MISSING_VALUE); return NULL; } if (out) gen = out; else { gen = GENERAL_NAME_new(); if (gen == NULL) { X509V3err(X509V3_F_A2I_GENERAL_NAME, ERR_R_MALLOC_FAILURE); return NULL; } } switch (gen_type) { case GEN_URI: case GEN_EMAIL: case GEN_DNS: is_string = 1; break; case GEN_RID: { ASN1_OBJECT *obj; if ((obj = OBJ_txt2obj(value, 0)) == NULL) { X509V3err(X509V3_F_A2I_GENERAL_NAME, X509V3_R_BAD_OBJECT); ERR_add_error_data(2, "value=", value); goto err; } gen->d.rid = obj; } break; case GEN_IPADD: if (is_nc) gen->d.ip = a2i_IPADDRESS_NC(value); else gen->d.ip = a2i_IPADDRESS(value); if (gen->d.ip == NULL) { X509V3err(X509V3_F_A2I_GENERAL_NAME, X509V3_R_BAD_IP_ADDRESS); ERR_add_error_data(2, "value=", value); goto err; } break; case GEN_DIRNAME: if (!do_dirname(gen, value, ctx)) { X509V3err(X509V3_F_A2I_GENERAL_NAME, X509V3_R_DIRNAME_ERROR); goto err; } break; case GEN_OTHERNAME: if (!do_othername(gen, value, ctx)) { X509V3err(X509V3_F_A2I_GENERAL_NAME, X509V3_R_OTHERNAME_ERROR); goto err; } break; default: X509V3err(X509V3_F_A2I_GENERAL_NAME, X509V3_R_UNSUPPORTED_TYPE); goto err; } if (is_string) { if ((gen->d.ia5 = ASN1_IA5STRING_new()) == NULL || !ASN1_STRING_set(gen->d.ia5, (unsigned char *)value, strlen(value))) { X509V3err(X509V3_F_A2I_GENERAL_NAME, ERR_R_MALLOC_FAILURE); goto err; } } gen->type = gen_type; return gen; err: if (!out) GENERAL_NAME_free(gen); return NULL; } GENERAL_NAME *v2i_GENERAL_NAME_ex(GENERAL_NAME *out, const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, CONF_VALUE *cnf, int is_nc) { int type; char *name, *value; name = cnf->name; value = cnf->value; if (!value) { X509V3err(X509V3_F_V2I_GENERAL_NAME_EX, X509V3_R_MISSING_VALUE); return NULL; } if (!name_cmp(name, "email")) type = GEN_EMAIL; else if (!name_cmp(name, "URI")) type = GEN_URI; else if (!name_cmp(name, "DNS")) type = GEN_DNS; else if (!name_cmp(name, "RID")) type = GEN_RID; else if (!name_cmp(name, "IP")) type = GEN_IPADD; else if (!name_cmp(name, "dirName")) type = GEN_DIRNAME; else if (!name_cmp(name, "otherName")) type = GEN_OTHERNAME; else { X509V3err(X509V3_F_V2I_GENERAL_NAME_EX, X509V3_R_UNSUPPORTED_OPTION); ERR_add_error_data(2, "name=", name); return NULL; } return a2i_GENERAL_NAME(out, method, ctx, type, value, is_nc); } static int do_othername(GENERAL_NAME *gen, const char *value, X509V3_CTX *ctx) { char *objtmp = NULL, *p; int objlen; if ((p = strchr(value, ';')) == NULL) return 0; if ((gen->d.otherName = OTHERNAME_new()) == NULL) return 0; /* * Free this up because we will overwrite it. no need to free type_id * because it is static */ ASN1_TYPE_free(gen->d.otherName->value); if ((gen->d.otherName->value = ASN1_generate_v3(p + 1, ctx)) == NULL) return 0; objlen = p - value; objtmp = OPENSSL_strndup(value, objlen); if (objtmp == NULL) return 0; gen->d.otherName->type_id = OBJ_txt2obj(objtmp, 0); OPENSSL_free(objtmp); if (!gen->d.otherName->type_id) return 0; return 1; } static int do_dirname(GENERAL_NAME *gen, const char *value, X509V3_CTX *ctx) { int ret = 0; STACK_OF(CONF_VALUE) *sk = NULL; X509_NAME *nm; if ((nm = X509_NAME_new()) == NULL) goto err; sk = X509V3_get_section(ctx, value); if (!sk) { X509V3err(X509V3_F_DO_DIRNAME, X509V3_R_SECTION_NOT_FOUND); ERR_add_error_data(2, "section=", value); goto err; } /* FIXME: should allow other character types... */ ret = X509V3_NAME_from_section(nm, sk, MBSTRING_ASC); if (!ret) goto err; gen->d.dirn = nm; err: if (ret == 0) X509_NAME_free(nm); X509V3_section_free(ctx, sk); return ret; } openssl-1.1.1f/crypto/x509v3/v3_asid.c000066400000000000000000000647121364063235100173520ustar00rootroot00000000000000/* * Copyright 2006-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Implementation of RFC 3779 section 3.2. */ #include #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/x509.h" #include #include "ext_dat.h" #ifndef OPENSSL_NO_RFC3779 /* * OpenSSL ASN.1 template translation of RFC 3779 3.2.3. */ ASN1_SEQUENCE(ASRange) = { ASN1_SIMPLE(ASRange, min, ASN1_INTEGER), ASN1_SIMPLE(ASRange, max, ASN1_INTEGER) } ASN1_SEQUENCE_END(ASRange) ASN1_CHOICE(ASIdOrRange) = { ASN1_SIMPLE(ASIdOrRange, u.id, ASN1_INTEGER), ASN1_SIMPLE(ASIdOrRange, u.range, ASRange) } ASN1_CHOICE_END(ASIdOrRange) ASN1_CHOICE(ASIdentifierChoice) = { ASN1_SIMPLE(ASIdentifierChoice, u.inherit, ASN1_NULL), ASN1_SEQUENCE_OF(ASIdentifierChoice, u.asIdsOrRanges, ASIdOrRange) } ASN1_CHOICE_END(ASIdentifierChoice) ASN1_SEQUENCE(ASIdentifiers) = { ASN1_EXP_OPT(ASIdentifiers, asnum, ASIdentifierChoice, 0), ASN1_EXP_OPT(ASIdentifiers, rdi, ASIdentifierChoice, 1) } ASN1_SEQUENCE_END(ASIdentifiers) IMPLEMENT_ASN1_FUNCTIONS(ASRange) IMPLEMENT_ASN1_FUNCTIONS(ASIdOrRange) IMPLEMENT_ASN1_FUNCTIONS(ASIdentifierChoice) IMPLEMENT_ASN1_FUNCTIONS(ASIdentifiers) /* * i2r method for an ASIdentifierChoice. */ static int i2r_ASIdentifierChoice(BIO *out, ASIdentifierChoice *choice, int indent, const char *msg) { int i; char *s; if (choice == NULL) return 1; BIO_printf(out, "%*s%s:\n", indent, "", msg); switch (choice->type) { case ASIdentifierChoice_inherit: BIO_printf(out, "%*sinherit\n", indent + 2, ""); break; case ASIdentifierChoice_asIdsOrRanges: for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges); i++) { ASIdOrRange *aor = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); switch (aor->type) { case ASIdOrRange_id: if ((s = i2s_ASN1_INTEGER(NULL, aor->u.id)) == NULL) return 0; BIO_printf(out, "%*s%s\n", indent + 2, "", s); OPENSSL_free(s); break; case ASIdOrRange_range: if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->min)) == NULL) return 0; BIO_printf(out, "%*s%s-", indent + 2, "", s); OPENSSL_free(s); if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->max)) == NULL) return 0; BIO_printf(out, "%s\n", s); OPENSSL_free(s); break; default: return 0; } } break; default: return 0; } return 1; } /* * i2r method for an ASIdentifier extension. */ static int i2r_ASIdentifiers(const X509V3_EXT_METHOD *method, void *ext, BIO *out, int indent) { ASIdentifiers *asid = ext; return (i2r_ASIdentifierChoice(out, asid->asnum, indent, "Autonomous System Numbers") && i2r_ASIdentifierChoice(out, asid->rdi, indent, "Routing Domain Identifiers")); } /* * Sort comparison function for a sequence of ASIdOrRange elements. */ static int ASIdOrRange_cmp(const ASIdOrRange *const *a_, const ASIdOrRange *const *b_) { const ASIdOrRange *a = *a_, *b = *b_; assert((a->type == ASIdOrRange_id && a->u.id != NULL) || (a->type == ASIdOrRange_range && a->u.range != NULL && a->u.range->min != NULL && a->u.range->max != NULL)); assert((b->type == ASIdOrRange_id && b->u.id != NULL) || (b->type == ASIdOrRange_range && b->u.range != NULL && b->u.range->min != NULL && b->u.range->max != NULL)); if (a->type == ASIdOrRange_id && b->type == ASIdOrRange_id) return ASN1_INTEGER_cmp(a->u.id, b->u.id); if (a->type == ASIdOrRange_range && b->type == ASIdOrRange_range) { int r = ASN1_INTEGER_cmp(a->u.range->min, b->u.range->min); return r != 0 ? r : ASN1_INTEGER_cmp(a->u.range->max, b->u.range->max); } if (a->type == ASIdOrRange_id) return ASN1_INTEGER_cmp(a->u.id, b->u.range->min); else return ASN1_INTEGER_cmp(a->u.range->min, b->u.id); } /* * Add an inherit element. */ int X509v3_asid_add_inherit(ASIdentifiers *asid, int which) { ASIdentifierChoice **choice; if (asid == NULL) return 0; switch (which) { case V3_ASID_ASNUM: choice = &asid->asnum; break; case V3_ASID_RDI: choice = &asid->rdi; break; default: return 0; } if (*choice == NULL) { if ((*choice = ASIdentifierChoice_new()) == NULL) return 0; if (((*choice)->u.inherit = ASN1_NULL_new()) == NULL) return 0; (*choice)->type = ASIdentifierChoice_inherit; } return (*choice)->type == ASIdentifierChoice_inherit; } /* * Add an ID or range to an ASIdentifierChoice. */ int X509v3_asid_add_id_or_range(ASIdentifiers *asid, int which, ASN1_INTEGER *min, ASN1_INTEGER *max) { ASIdentifierChoice **choice; ASIdOrRange *aor; if (asid == NULL) return 0; switch (which) { case V3_ASID_ASNUM: choice = &asid->asnum; break; case V3_ASID_RDI: choice = &asid->rdi; break; default: return 0; } if (*choice != NULL && (*choice)->type == ASIdentifierChoice_inherit) return 0; if (*choice == NULL) { if ((*choice = ASIdentifierChoice_new()) == NULL) return 0; (*choice)->u.asIdsOrRanges = sk_ASIdOrRange_new(ASIdOrRange_cmp); if ((*choice)->u.asIdsOrRanges == NULL) return 0; (*choice)->type = ASIdentifierChoice_asIdsOrRanges; } if ((aor = ASIdOrRange_new()) == NULL) return 0; if (max == NULL) { aor->type = ASIdOrRange_id; aor->u.id = min; } else { aor->type = ASIdOrRange_range; if ((aor->u.range = ASRange_new()) == NULL) goto err; ASN1_INTEGER_free(aor->u.range->min); aor->u.range->min = min; ASN1_INTEGER_free(aor->u.range->max); aor->u.range->max = max; } if (!(sk_ASIdOrRange_push((*choice)->u.asIdsOrRanges, aor))) goto err; return 1; err: ASIdOrRange_free(aor); return 0; } /* * Extract min and max values from an ASIdOrRange. */ static int extract_min_max(ASIdOrRange *aor, ASN1_INTEGER **min, ASN1_INTEGER **max) { if (!ossl_assert(aor != NULL)) return 0; switch (aor->type) { case ASIdOrRange_id: *min = aor->u.id; *max = aor->u.id; return 1; case ASIdOrRange_range: *min = aor->u.range->min; *max = aor->u.range->max; return 1; } return 0; } /* * Check whether an ASIdentifierChoice is in canonical form. */ static int ASIdentifierChoice_is_canonical(ASIdentifierChoice *choice) { ASN1_INTEGER *a_max_plus_one = NULL; ASN1_INTEGER *orig; BIGNUM *bn = NULL; int i, ret = 0; /* * Empty element or inheritance is canonical. */ if (choice == NULL || choice->type == ASIdentifierChoice_inherit) return 1; /* * If not a list, or if empty list, it's broken. */ if (choice->type != ASIdentifierChoice_asIdsOrRanges || sk_ASIdOrRange_num(choice->u.asIdsOrRanges) == 0) return 0; /* * It's a list, check it. */ for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1); ASN1_INTEGER *a_min = NULL, *a_max = NULL, *b_min = NULL, *b_max = NULL; if (!extract_min_max(a, &a_min, &a_max) || !extract_min_max(b, &b_min, &b_max)) goto done; /* * Punt misordered list, overlapping start, or inverted range. */ if (ASN1_INTEGER_cmp(a_min, b_min) >= 0 || ASN1_INTEGER_cmp(a_min, a_max) > 0 || ASN1_INTEGER_cmp(b_min, b_max) > 0) goto done; /* * Calculate a_max + 1 to check for adjacency. */ if ((bn == NULL && (bn = BN_new()) == NULL) || ASN1_INTEGER_to_BN(a_max, bn) == NULL || !BN_add_word(bn, 1)) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL, ERR_R_MALLOC_FAILURE); goto done; } if ((a_max_plus_one = BN_to_ASN1_INTEGER(bn, orig = a_max_plus_one)) == NULL) { a_max_plus_one = orig; X509V3err(X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL, ERR_R_MALLOC_FAILURE); goto done; } /* * Punt if adjacent or overlapping. */ if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) >= 0) goto done; } /* * Check for inverted range. */ i = sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASN1_INTEGER *a_min, *a_max; if (a != NULL && a->type == ASIdOrRange_range) { if (!extract_min_max(a, &a_min, &a_max) || ASN1_INTEGER_cmp(a_min, a_max) > 0) goto done; } } ret = 1; done: ASN1_INTEGER_free(a_max_plus_one); BN_free(bn); return ret; } /* * Check whether an ASIdentifier extension is in canonical form. */ int X509v3_asid_is_canonical(ASIdentifiers *asid) { return (asid == NULL || (ASIdentifierChoice_is_canonical(asid->asnum) && ASIdentifierChoice_is_canonical(asid->rdi))); } /* * Whack an ASIdentifierChoice into canonical form. */ static int ASIdentifierChoice_canonize(ASIdentifierChoice *choice) { ASN1_INTEGER *a_max_plus_one = NULL; ASN1_INTEGER *orig; BIGNUM *bn = NULL; int i, ret = 0; /* * Nothing to do for empty element or inheritance. */ if (choice == NULL || choice->type == ASIdentifierChoice_inherit) return 1; /* * If not a list, or if empty list, it's broken. */ if (choice->type != ASIdentifierChoice_asIdsOrRanges || sk_ASIdOrRange_num(choice->u.asIdsOrRanges) == 0) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, X509V3_R_EXTENSION_VALUE_ERROR); return 0; } /* * We have a non-empty list. Sort it. */ sk_ASIdOrRange_sort(choice->u.asIdsOrRanges); /* * Now check for errors and suboptimal encoding, rejecting the * former and fixing the latter. */ for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1); ASN1_INTEGER *a_min = NULL, *a_max = NULL, *b_min = NULL, *b_max = NULL; if (!extract_min_max(a, &a_min, &a_max) || !extract_min_max(b, &b_min, &b_max)) goto done; /* * Make sure we're properly sorted (paranoia). */ if (!ossl_assert(ASN1_INTEGER_cmp(a_min, b_min) <= 0)) goto done; /* * Punt inverted ranges. */ if (ASN1_INTEGER_cmp(a_min, a_max) > 0 || ASN1_INTEGER_cmp(b_min, b_max) > 0) goto done; /* * Check for overlaps. */ if (ASN1_INTEGER_cmp(a_max, b_min) >= 0) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, X509V3_R_EXTENSION_VALUE_ERROR); goto done; } /* * Calculate a_max + 1 to check for adjacency. */ if ((bn == NULL && (bn = BN_new()) == NULL) || ASN1_INTEGER_to_BN(a_max, bn) == NULL || !BN_add_word(bn, 1)) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE); goto done; } if ((a_max_plus_one = BN_to_ASN1_INTEGER(bn, orig = a_max_plus_one)) == NULL) { a_max_plus_one = orig; X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE); goto done; } /* * If a and b are adjacent, merge them. */ if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) == 0) { ASRange *r; switch (a->type) { case ASIdOrRange_id: if ((r = OPENSSL_malloc(sizeof(*r))) == NULL) { X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE); goto done; } r->min = a_min; r->max = b_max; a->type = ASIdOrRange_range; a->u.range = r; break; case ASIdOrRange_range: ASN1_INTEGER_free(a->u.range->max); a->u.range->max = b_max; break; } switch (b->type) { case ASIdOrRange_id: b->u.id = NULL; break; case ASIdOrRange_range: b->u.range->max = NULL; break; } ASIdOrRange_free(b); (void)sk_ASIdOrRange_delete(choice->u.asIdsOrRanges, i + 1); i--; continue; } } /* * Check for final inverted range. */ i = sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; { ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i); ASN1_INTEGER *a_min, *a_max; if (a != NULL && a->type == ASIdOrRange_range) { if (!extract_min_max(a, &a_min, &a_max) || ASN1_INTEGER_cmp(a_min, a_max) > 0) goto done; } } /* Paranoia */ if (!ossl_assert(ASIdentifierChoice_is_canonical(choice))) goto done; ret = 1; done: ASN1_INTEGER_free(a_max_plus_one); BN_free(bn); return ret; } /* * Whack an ASIdentifier extension into canonical form. */ int X509v3_asid_canonize(ASIdentifiers *asid) { return (asid == NULL || (ASIdentifierChoice_canonize(asid->asnum) && ASIdentifierChoice_canonize(asid->rdi))); } /* * v2i method for an ASIdentifier extension. */ static void *v2i_ASIdentifiers(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, STACK_OF(CONF_VALUE) *values) { ASN1_INTEGER *min = NULL, *max = NULL; ASIdentifiers *asid = NULL; int i; if ((asid = ASIdentifiers_new()) == NULL) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { CONF_VALUE *val = sk_CONF_VALUE_value(values, i); int i1 = 0, i2 = 0, i3 = 0, is_range = 0, which = 0; /* * Figure out whether this is an AS or an RDI. */ if (!name_cmp(val->name, "AS")) { which = V3_ASID_ASNUM; } else if (!name_cmp(val->name, "RDI")) { which = V3_ASID_RDI; } else { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_EXTENSION_NAME_ERROR); X509V3_conf_err(val); goto err; } /* * Handle inheritance. */ if (strcmp(val->value, "inherit") == 0) { if (X509v3_asid_add_inherit(asid, which)) continue; X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_INHERITANCE); X509V3_conf_err(val); goto err; } /* * Number, range, or mistake, pick it apart and figure out which. */ i1 = strspn(val->value, "0123456789"); if (val->value[i1] == '\0') { is_range = 0; } else { is_range = 1; i2 = i1 + strspn(val->value + i1, " \t"); if (val->value[i2] != '-') { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASNUMBER); X509V3_conf_err(val); goto err; } i2++; i2 = i2 + strspn(val->value + i2, " \t"); i3 = i2 + strspn(val->value + i2, "0123456789"); if (val->value[i3] != '\0') { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASRANGE); X509V3_conf_err(val); goto err; } } /* * Syntax is ok, read and add it. */ if (!is_range) { if (!X509V3_get_value_int(val, &min)) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } } else { char *s = OPENSSL_strdup(val->value); if (s == NULL) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } s[i1] = '\0'; min = s2i_ASN1_INTEGER(NULL, s); max = s2i_ASN1_INTEGER(NULL, s + i2); OPENSSL_free(s); if (min == NULL || max == NULL) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } if (ASN1_INTEGER_cmp(min, max) > 0) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_EXTENSION_VALUE_ERROR); goto err; } } if (!X509v3_asid_add_id_or_range(asid, which, min, max)) { X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE); goto err; } min = max = NULL; } /* * Canonize the result, then we're done. */ if (!X509v3_asid_canonize(asid)) goto err; return asid; err: ASIdentifiers_free(asid); ASN1_INTEGER_free(min); ASN1_INTEGER_free(max); return NULL; } /* * OpenSSL dispatch. */ const X509V3_EXT_METHOD v3_asid = { NID_sbgp_autonomousSysNum, /* nid */ 0, /* flags */ ASN1_ITEM_ref(ASIdentifiers), /* template */ 0, 0, 0, 0, /* old functions, ignored */ 0, /* i2s */ 0, /* s2i */ 0, /* i2v */ v2i_ASIdentifiers, /* v2i */ i2r_ASIdentifiers, /* i2r */ 0, /* r2i */ NULL /* extension-specific data */ }; /* * Figure out whether extension uses inheritance. */ int X509v3_asid_inherits(ASIdentifiers *asid) { return (asid != NULL && ((asid->asnum != NULL && asid->asnum->type == ASIdentifierChoice_inherit) || (asid->rdi != NULL && asid->rdi->type == ASIdentifierChoice_inherit))); } /* * Figure out whether parent contains child. */ static int asid_contains(ASIdOrRanges *parent, ASIdOrRanges *child) { ASN1_INTEGER *p_min = NULL, *p_max = NULL, *c_min = NULL, *c_max = NULL; int p, c; if (child == NULL || parent == child) return 1; if (parent == NULL) return 0; p = 0; for (c = 0; c < sk_ASIdOrRange_num(child); c++) { if (!extract_min_max(sk_ASIdOrRange_value(child, c), &c_min, &c_max)) return 0; for (;; p++) { if (p >= sk_ASIdOrRange_num(parent)) return 0; if (!extract_min_max(sk_ASIdOrRange_value(parent, p), &p_min, &p_max)) return 0; if (ASN1_INTEGER_cmp(p_max, c_max) < 0) continue; if (ASN1_INTEGER_cmp(p_min, c_min) > 0) return 0; break; } } return 1; } /* * Test whether a is a subset of b. */ int X509v3_asid_subset(ASIdentifiers *a, ASIdentifiers *b) { return (a == NULL || a == b || (b != NULL && !X509v3_asid_inherits(a) && !X509v3_asid_inherits(b) && asid_contains(b->asnum->u.asIdsOrRanges, a->asnum->u.asIdsOrRanges) && asid_contains(b->rdi->u.asIdsOrRanges, a->rdi->u.asIdsOrRanges))); } /* * Validation error handling via callback. */ #define validation_err(_err_) \ do { \ if (ctx != NULL) { \ ctx->error = _err_; \ ctx->error_depth = i; \ ctx->current_cert = x; \ ret = ctx->verify_cb(0, ctx); \ } else { \ ret = 0; \ } \ if (!ret) \ goto done; \ } while (0) /* * Core code for RFC 3779 3.3 path validation. */ static int asid_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, ASIdentifiers *ext) { ASIdOrRanges *child_as = NULL, *child_rdi = NULL; int i, ret = 1, inherit_as = 0, inherit_rdi = 0; X509 *x; if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0) || !ossl_assert(ctx != NULL || ext != NULL) || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } /* * Figure out where to start. If we don't have an extension to * check, we're done. Otherwise, check canonical form and * set up for walking up the chain. */ if (ext != NULL) { i = -1; x = NULL; } else { i = 0; x = sk_X509_value(chain, i); if ((ext = x->rfc3779_asid) == NULL) goto done; } if (!X509v3_asid_is_canonical(ext)) validation_err(X509_V_ERR_INVALID_EXTENSION); if (ext->asnum != NULL) { switch (ext->asnum->type) { case ASIdentifierChoice_inherit: inherit_as = 1; break; case ASIdentifierChoice_asIdsOrRanges: child_as = ext->asnum->u.asIdsOrRanges; break; } } if (ext->rdi != NULL) { switch (ext->rdi->type) { case ASIdentifierChoice_inherit: inherit_rdi = 1; break; case ASIdentifierChoice_asIdsOrRanges: child_rdi = ext->rdi->u.asIdsOrRanges; break; } } /* * Now walk up the chain. Extensions must be in canonical form, no * cert may list resources that its parent doesn't list. */ for (i++; i < sk_X509_num(chain); i++) { x = sk_X509_value(chain, i); if (!ossl_assert(x != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } if (x->rfc3779_asid == NULL) { if (child_as != NULL || child_rdi != NULL) validation_err(X509_V_ERR_UNNESTED_RESOURCE); continue; } if (!X509v3_asid_is_canonical(x->rfc3779_asid)) validation_err(X509_V_ERR_INVALID_EXTENSION); if (x->rfc3779_asid->asnum == NULL && child_as != NULL) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); child_as = NULL; inherit_as = 0; } if (x->rfc3779_asid->asnum != NULL && x->rfc3779_asid->asnum->type == ASIdentifierChoice_asIdsOrRanges) { if (inherit_as || asid_contains(x->rfc3779_asid->asnum->u.asIdsOrRanges, child_as)) { child_as = x->rfc3779_asid->asnum->u.asIdsOrRanges; inherit_as = 0; } else { validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } if (x->rfc3779_asid->rdi == NULL && child_rdi != NULL) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); child_rdi = NULL; inherit_rdi = 0; } if (x->rfc3779_asid->rdi != NULL && x->rfc3779_asid->rdi->type == ASIdentifierChoice_asIdsOrRanges) { if (inherit_rdi || asid_contains(x->rfc3779_asid->rdi->u.asIdsOrRanges, child_rdi)) { child_rdi = x->rfc3779_asid->rdi->u.asIdsOrRanges; inherit_rdi = 0; } else { validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } } /* * Trust anchor can't inherit. */ if (!ossl_assert(x != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } if (x->rfc3779_asid != NULL) { if (x->rfc3779_asid->asnum != NULL && x->rfc3779_asid->asnum->type == ASIdentifierChoice_inherit) validation_err(X509_V_ERR_UNNESTED_RESOURCE); if (x->rfc3779_asid->rdi != NULL && x->rfc3779_asid->rdi->type == ASIdentifierChoice_inherit) validation_err(X509_V_ERR_UNNESTED_RESOURCE); } done: return ret; } #undef validation_err /* * RFC 3779 3.3 path validation -- called from X509_verify_cert(). */ int X509v3_asid_validate_path(X509_STORE_CTX *ctx) { if (ctx->chain == NULL || sk_X509_num(ctx->chain) == 0 || ctx->verify_cb == NULL) { ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } return asid_validate_path_internal(ctx, ctx->chain, NULL); } /* * RFC 3779 3.3 path validation of an extension. * Test whether chain covers extension. */ int X509v3_asid_validate_resource_set(STACK_OF(X509) *chain, ASIdentifiers *ext, int allow_inheritance) { if (ext == NULL) return 1; if (chain == NULL || sk_X509_num(chain) == 0) return 0; if (!allow_inheritance && X509v3_asid_inherits(ext)) return 0; return asid_validate_path_internal(NULL, chain, ext); } #endif /* OPENSSL_NO_RFC3779 */ openssl-1.1.1f/crypto/x509v3/v3_bcons.c000066400000000000000000000056621364063235100175350ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ext_dat.h" static STACK_OF(CONF_VALUE) *i2v_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method, BASIC_CONSTRAINTS *bcons, STACK_OF(CONF_VALUE) *extlist); static BASIC_CONSTRAINTS *v2i_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values); const X509V3_EXT_METHOD v3_bcons = { NID_basic_constraints, 0, ASN1_ITEM_ref(BASIC_CONSTRAINTS), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_BASIC_CONSTRAINTS, (X509V3_EXT_V2I)v2i_BASIC_CONSTRAINTS, NULL, NULL, NULL }; ASN1_SEQUENCE(BASIC_CONSTRAINTS) = { ASN1_OPT(BASIC_CONSTRAINTS, ca, ASN1_FBOOLEAN), ASN1_OPT(BASIC_CONSTRAINTS, pathlen, ASN1_INTEGER) } ASN1_SEQUENCE_END(BASIC_CONSTRAINTS) IMPLEMENT_ASN1_FUNCTIONS(BASIC_CONSTRAINTS) static STACK_OF(CONF_VALUE) *i2v_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method, BASIC_CONSTRAINTS *bcons, STACK_OF(CONF_VALUE) *extlist) { X509V3_add_value_bool("CA", bcons->ca, &extlist); X509V3_add_value_int("pathlen", bcons->pathlen, &extlist); return extlist; } static BASIC_CONSTRAINTS *v2i_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values) { BASIC_CONSTRAINTS *bcons = NULL; CONF_VALUE *val; int i; if ((bcons = BASIC_CONSTRAINTS_new()) == NULL) { X509V3err(X509V3_F_V2I_BASIC_CONSTRAINTS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { val = sk_CONF_VALUE_value(values, i); if (strcmp(val->name, "CA") == 0) { if (!X509V3_get_value_bool(val, &bcons->ca)) goto err; } else if (strcmp(val->name, "pathlen") == 0) { if (!X509V3_get_value_int(val, &bcons->pathlen)) goto err; } else { X509V3err(X509V3_F_V2I_BASIC_CONSTRAINTS, X509V3_R_INVALID_NAME); X509V3_conf_err(val); goto err; } } return bcons; err: BASIC_CONSTRAINTS_free(bcons); return NULL; } openssl-1.1.1f/crypto/x509v3/v3_bitst.c000066400000000000000000000061431364063235100175510ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include "ext_dat.h" static BIT_STRING_BITNAME ns_cert_type_table[] = { {0, "SSL Client", "client"}, {1, "SSL Server", "server"}, {2, "S/MIME", "email"}, {3, "Object Signing", "objsign"}, {4, "Unused", "reserved"}, {5, "SSL CA", "sslCA"}, {6, "S/MIME CA", "emailCA"}, {7, "Object Signing CA", "objCA"}, {-1, NULL, NULL} }; static BIT_STRING_BITNAME key_usage_type_table[] = { {0, "Digital Signature", "digitalSignature"}, {1, "Non Repudiation", "nonRepudiation"}, {2, "Key Encipherment", "keyEncipherment"}, {3, "Data Encipherment", "dataEncipherment"}, {4, "Key Agreement", "keyAgreement"}, {5, "Certificate Sign", "keyCertSign"}, {6, "CRL Sign", "cRLSign"}, {7, "Encipher Only", "encipherOnly"}, {8, "Decipher Only", "decipherOnly"}, {-1, NULL, NULL} }; const X509V3_EXT_METHOD v3_nscert = EXT_BITSTRING(NID_netscape_cert_type, ns_cert_type_table); const X509V3_EXT_METHOD v3_key_usage = EXT_BITSTRING(NID_key_usage, key_usage_type_table); STACK_OF(CONF_VALUE) *i2v_ASN1_BIT_STRING(X509V3_EXT_METHOD *method, ASN1_BIT_STRING *bits, STACK_OF(CONF_VALUE) *ret) { BIT_STRING_BITNAME *bnam; for (bnam = method->usr_data; bnam->lname; bnam++) { if (ASN1_BIT_STRING_get_bit(bits, bnam->bitnum)) X509V3_add_value(bnam->lname, NULL, &ret); } return ret; } ASN1_BIT_STRING *v2i_ASN1_BIT_STRING(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { CONF_VALUE *val; ASN1_BIT_STRING *bs; int i; BIT_STRING_BITNAME *bnam; if ((bs = ASN1_BIT_STRING_new()) == NULL) { X509V3err(X509V3_F_V2I_ASN1_BIT_STRING, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { val = sk_CONF_VALUE_value(nval, i); for (bnam = method->usr_data; bnam->lname; bnam++) { if (strcmp(bnam->sname, val->name) == 0 || strcmp(bnam->lname, val->name) == 0) { if (!ASN1_BIT_STRING_set_bit(bs, bnam->bitnum, 1)) { X509V3err(X509V3_F_V2I_ASN1_BIT_STRING, ERR_R_MALLOC_FAILURE); ASN1_BIT_STRING_free(bs); return NULL; } break; } } if (!bnam->lname) { X509V3err(X509V3_F_V2I_ASN1_BIT_STRING, X509V3_R_UNKNOWN_BIT_STRING_ARGUMENT); X509V3_conf_err(val); ASN1_BIT_STRING_free(bs); return NULL; } } return bs; } openssl-1.1.1f/crypto/x509v3/v3_conf.c000066400000000000000000000357631364063235100173630ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* extension creation utilities */ #include #include "crypto/ctype.h" #include "internal/cryptlib.h" #include #include #include "crypto/x509.h" #include static int v3_check_critical(const char **value); static int v3_check_generic(const char **value); static X509_EXTENSION *do_ext_nconf(CONF *conf, X509V3_CTX *ctx, int ext_nid, int crit, const char *value); static X509_EXTENSION *v3_generic_extension(const char *ext, const char *value, int crit, int type, X509V3_CTX *ctx); static char *conf_lhash_get_string(void *db, const char *section, const char *value); static STACK_OF(CONF_VALUE) *conf_lhash_get_section(void *db, const char *section); static X509_EXTENSION *do_ext_i2d(const X509V3_EXT_METHOD *method, int ext_nid, int crit, void *ext_struc); static unsigned char *generic_asn1(const char *value, X509V3_CTX *ctx, long *ext_len); /* CONF *conf: Config file */ /* char *name: Name */ /* char *value: Value */ X509_EXTENSION *X509V3_EXT_nconf(CONF *conf, X509V3_CTX *ctx, const char *name, const char *value) { int crit; int ext_type; X509_EXTENSION *ret; crit = v3_check_critical(&value); if ((ext_type = v3_check_generic(&value))) return v3_generic_extension(name, value, crit, ext_type, ctx); ret = do_ext_nconf(conf, ctx, OBJ_sn2nid(name), crit, value); if (!ret) { X509V3err(X509V3_F_X509V3_EXT_NCONF, X509V3_R_ERROR_IN_EXTENSION); ERR_add_error_data(4, "name=", name, ", value=", value); } return ret; } /* CONF *conf: Config file */ /* char *value: Value */ X509_EXTENSION *X509V3_EXT_nconf_nid(CONF *conf, X509V3_CTX *ctx, int ext_nid, const char *value) { int crit; int ext_type; crit = v3_check_critical(&value); if ((ext_type = v3_check_generic(&value))) return v3_generic_extension(OBJ_nid2sn(ext_nid), value, crit, ext_type, ctx); return do_ext_nconf(conf, ctx, ext_nid, crit, value); } /* CONF *conf: Config file */ /* char *value: Value */ static X509_EXTENSION *do_ext_nconf(CONF *conf, X509V3_CTX *ctx, int ext_nid, int crit, const char *value) { const X509V3_EXT_METHOD *method; X509_EXTENSION *ext; STACK_OF(CONF_VALUE) *nval; void *ext_struc; if (ext_nid == NID_undef) { X509V3err(X509V3_F_DO_EXT_NCONF, X509V3_R_UNKNOWN_EXTENSION_NAME); return NULL; } if ((method = X509V3_EXT_get_nid(ext_nid)) == NULL) { X509V3err(X509V3_F_DO_EXT_NCONF, X509V3_R_UNKNOWN_EXTENSION); return NULL; } /* Now get internal extension representation based on type */ if (method->v2i) { if (*value == '@') nval = NCONF_get_section(conf, value + 1); else nval = X509V3_parse_list(value); if (nval == NULL || sk_CONF_VALUE_num(nval) <= 0) { X509V3err(X509V3_F_DO_EXT_NCONF, X509V3_R_INVALID_EXTENSION_STRING); ERR_add_error_data(4, "name=", OBJ_nid2sn(ext_nid), ",section=", value); if (*value != '@') sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); return NULL; } ext_struc = method->v2i(method, ctx, nval); if (*value != '@') sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); if (!ext_struc) return NULL; } else if (method->s2i) { if ((ext_struc = method->s2i(method, ctx, value)) == NULL) return NULL; } else if (method->r2i) { if (!ctx->db || !ctx->db_meth) { X509V3err(X509V3_F_DO_EXT_NCONF, X509V3_R_NO_CONFIG_DATABASE); return NULL; } if ((ext_struc = method->r2i(method, ctx, value)) == NULL) return NULL; } else { X509V3err(X509V3_F_DO_EXT_NCONF, X509V3_R_EXTENSION_SETTING_NOT_SUPPORTED); ERR_add_error_data(2, "name=", OBJ_nid2sn(ext_nid)); return NULL; } ext = do_ext_i2d(method, ext_nid, crit, ext_struc); if (method->it) ASN1_item_free(ext_struc, ASN1_ITEM_ptr(method->it)); else method->ext_free(ext_struc); return ext; } static X509_EXTENSION *do_ext_i2d(const X509V3_EXT_METHOD *method, int ext_nid, int crit, void *ext_struc) { unsigned char *ext_der = NULL; int ext_len; ASN1_OCTET_STRING *ext_oct = NULL; X509_EXTENSION *ext; /* Convert internal representation to DER */ if (method->it) { ext_der = NULL; ext_len = ASN1_item_i2d(ext_struc, &ext_der, ASN1_ITEM_ptr(method->it)); if (ext_len < 0) goto merr; } else { unsigned char *p; ext_len = method->i2d(ext_struc, NULL); if ((ext_der = OPENSSL_malloc(ext_len)) == NULL) goto merr; p = ext_der; method->i2d(ext_struc, &p); } if ((ext_oct = ASN1_OCTET_STRING_new()) == NULL) goto merr; ext_oct->data = ext_der; ext_der = NULL; ext_oct->length = ext_len; ext = X509_EXTENSION_create_by_NID(NULL, ext_nid, crit, ext_oct); if (!ext) goto merr; ASN1_OCTET_STRING_free(ext_oct); return ext; merr: X509V3err(X509V3_F_DO_EXT_I2D, ERR_R_MALLOC_FAILURE); OPENSSL_free(ext_der); ASN1_OCTET_STRING_free(ext_oct); return NULL; } /* Given an internal structure, nid and critical flag create an extension */ X509_EXTENSION *X509V3_EXT_i2d(int ext_nid, int crit, void *ext_struc) { const X509V3_EXT_METHOD *method; if ((method = X509V3_EXT_get_nid(ext_nid)) == NULL) { X509V3err(X509V3_F_X509V3_EXT_I2D, X509V3_R_UNKNOWN_EXTENSION); return NULL; } return do_ext_i2d(method, ext_nid, crit, ext_struc); } /* Check the extension string for critical flag */ static int v3_check_critical(const char **value) { const char *p = *value; if ((strlen(p) < 9) || strncmp(p, "critical,", 9)) return 0; p += 9; while (ossl_isspace(*p)) p++; *value = p; return 1; } /* Check extension string for generic extension and return the type */ static int v3_check_generic(const char **value) { int gen_type = 0; const char *p = *value; if ((strlen(p) >= 4) && strncmp(p, "DER:", 4) == 0) { p += 4; gen_type = 1; } else if ((strlen(p) >= 5) && strncmp(p, "ASN1:", 5) == 0) { p += 5; gen_type = 2; } else return 0; while (ossl_isspace(*p)) p++; *value = p; return gen_type; } /* Create a generic extension: for now just handle DER type */ static X509_EXTENSION *v3_generic_extension(const char *ext, const char *value, int crit, int gen_type, X509V3_CTX *ctx) { unsigned char *ext_der = NULL; long ext_len = 0; ASN1_OBJECT *obj = NULL; ASN1_OCTET_STRING *oct = NULL; X509_EXTENSION *extension = NULL; if ((obj = OBJ_txt2obj(ext, 0)) == NULL) { X509V3err(X509V3_F_V3_GENERIC_EXTENSION, X509V3_R_EXTENSION_NAME_ERROR); ERR_add_error_data(2, "name=", ext); goto err; } if (gen_type == 1) ext_der = OPENSSL_hexstr2buf(value, &ext_len); else if (gen_type == 2) ext_der = generic_asn1(value, ctx, &ext_len); if (ext_der == NULL) { X509V3err(X509V3_F_V3_GENERIC_EXTENSION, X509V3_R_EXTENSION_VALUE_ERROR); ERR_add_error_data(2, "value=", value); goto err; } if ((oct = ASN1_OCTET_STRING_new()) == NULL) { X509V3err(X509V3_F_V3_GENERIC_EXTENSION, ERR_R_MALLOC_FAILURE); goto err; } oct->data = ext_der; oct->length = ext_len; ext_der = NULL; extension = X509_EXTENSION_create_by_OBJ(NULL, obj, crit, oct); err: ASN1_OBJECT_free(obj); ASN1_OCTET_STRING_free(oct); OPENSSL_free(ext_der); return extension; } static unsigned char *generic_asn1(const char *value, X509V3_CTX *ctx, long *ext_len) { ASN1_TYPE *typ; unsigned char *ext_der = NULL; typ = ASN1_generate_v3(value, ctx); if (typ == NULL) return NULL; *ext_len = i2d_ASN1_TYPE(typ, &ext_der); ASN1_TYPE_free(typ); return ext_der; } static void delete_ext(STACK_OF(X509_EXTENSION) *sk, X509_EXTENSION *dext) { int idx; ASN1_OBJECT *obj; obj = X509_EXTENSION_get_object(dext); while ((idx = X509v3_get_ext_by_OBJ(sk, obj, -1)) >= 0) { X509_EXTENSION *tmpext = X509v3_get_ext(sk, idx); X509v3_delete_ext(sk, idx); X509_EXTENSION_free(tmpext); } } /* * This is the main function: add a bunch of extensions based on a config * file section to an extension STACK. */ int X509V3_EXT_add_nconf_sk(CONF *conf, X509V3_CTX *ctx, const char *section, STACK_OF(X509_EXTENSION) **sk) { X509_EXTENSION *ext; STACK_OF(CONF_VALUE) *nval; CONF_VALUE *val; int i; if ((nval = NCONF_get_section(conf, section)) == NULL) return 0; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { val = sk_CONF_VALUE_value(nval, i); if ((ext = X509V3_EXT_nconf(conf, ctx, val->name, val->value)) == NULL) return 0; if (ctx->flags == X509V3_CTX_REPLACE) delete_ext(*sk, ext); if (sk != NULL) { if (X509v3_add_ext(sk, ext, -1) == NULL) { X509_EXTENSION_free(ext); return 0; } } X509_EXTENSION_free(ext); } return 1; } /* * Convenience functions to add extensions to a certificate, CRL and request */ int X509V3_EXT_add_nconf(CONF *conf, X509V3_CTX *ctx, const char *section, X509 *cert) { STACK_OF(X509_EXTENSION) **sk = NULL; if (cert) sk = &cert->cert_info.extensions; return X509V3_EXT_add_nconf_sk(conf, ctx, section, sk); } /* Same as above but for a CRL */ int X509V3_EXT_CRL_add_nconf(CONF *conf, X509V3_CTX *ctx, const char *section, X509_CRL *crl) { STACK_OF(X509_EXTENSION) **sk = NULL; if (crl) sk = &crl->crl.extensions; return X509V3_EXT_add_nconf_sk(conf, ctx, section, sk); } /* Add extensions to certificate request */ int X509V3_EXT_REQ_add_nconf(CONF *conf, X509V3_CTX *ctx, const char *section, X509_REQ *req) { STACK_OF(X509_EXTENSION) *extlist = NULL, **sk = NULL; int i; if (req) sk = &extlist; i = X509V3_EXT_add_nconf_sk(conf, ctx, section, sk); if (!i || !sk) return i; i = X509_REQ_add_extensions(req, extlist); sk_X509_EXTENSION_pop_free(extlist, X509_EXTENSION_free); return i; } /* Config database functions */ char *X509V3_get_string(X509V3_CTX *ctx, const char *name, const char *section) { if (!ctx->db || !ctx->db_meth || !ctx->db_meth->get_string) { X509V3err(X509V3_F_X509V3_GET_STRING, X509V3_R_OPERATION_NOT_DEFINED); return NULL; } if (ctx->db_meth->get_string) return ctx->db_meth->get_string(ctx->db, name, section); return NULL; } STACK_OF(CONF_VALUE) *X509V3_get_section(X509V3_CTX *ctx, const char *section) { if (!ctx->db || !ctx->db_meth || !ctx->db_meth->get_section) { X509V3err(X509V3_F_X509V3_GET_SECTION, X509V3_R_OPERATION_NOT_DEFINED); return NULL; } if (ctx->db_meth->get_section) return ctx->db_meth->get_section(ctx->db, section); return NULL; } void X509V3_string_free(X509V3_CTX *ctx, char *str) { if (!str) return; if (ctx->db_meth->free_string) ctx->db_meth->free_string(ctx->db, str); } void X509V3_section_free(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *section) { if (!section) return; if (ctx->db_meth->free_section) ctx->db_meth->free_section(ctx->db, section); } static char *nconf_get_string(void *db, const char *section, const char *value) { return NCONF_get_string(db, section, value); } static STACK_OF(CONF_VALUE) *nconf_get_section(void *db, const char *section) { return NCONF_get_section(db, section); } static X509V3_CONF_METHOD nconf_method = { nconf_get_string, nconf_get_section, NULL, NULL }; void X509V3_set_nconf(X509V3_CTX *ctx, CONF *conf) { ctx->db_meth = &nconf_method; ctx->db = conf; } void X509V3_set_ctx(X509V3_CTX *ctx, X509 *issuer, X509 *subj, X509_REQ *req, X509_CRL *crl, int flags) { ctx->issuer_cert = issuer; ctx->subject_cert = subj; ctx->crl = crl; ctx->subject_req = req; ctx->flags = flags; } /* Old conf compatibility functions */ X509_EXTENSION *X509V3_EXT_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *name, const char *value) { CONF ctmp; CONF_set_nconf(&ctmp, conf); return X509V3_EXT_nconf(&ctmp, ctx, name, value); } /* LHASH *conf: Config file */ /* char *value: Value */ X509_EXTENSION *X509V3_EXT_conf_nid(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, int ext_nid, const char *value) { CONF ctmp; CONF_set_nconf(&ctmp, conf); return X509V3_EXT_nconf_nid(&ctmp, ctx, ext_nid, value); } static char *conf_lhash_get_string(void *db, const char *section, const char *value) { return CONF_get_string(db, section, value); } static STACK_OF(CONF_VALUE) *conf_lhash_get_section(void *db, const char *section) { return CONF_get_section(db, section); } static X509V3_CONF_METHOD conf_lhash_method = { conf_lhash_get_string, conf_lhash_get_section, NULL, NULL }; void X509V3_set_conf_lhash(X509V3_CTX *ctx, LHASH_OF(CONF_VALUE) *lhash) { ctx->db_meth = &conf_lhash_method; ctx->db = lhash; } int X509V3_EXT_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *section, X509 *cert) { CONF ctmp; CONF_set_nconf(&ctmp, conf); return X509V3_EXT_add_nconf(&ctmp, ctx, section, cert); } /* Same as above but for a CRL */ int X509V3_EXT_CRL_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *section, X509_CRL *crl) { CONF ctmp; CONF_set_nconf(&ctmp, conf); return X509V3_EXT_CRL_add_nconf(&ctmp, ctx, section, crl); } /* Add extensions to certificate request */ int X509V3_EXT_REQ_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *section, X509_REQ *req) { CONF ctmp; CONF_set_nconf(&ctmp, conf); return X509V3_EXT_REQ_add_nconf(&ctmp, ctx, section, req); } openssl-1.1.1f/crypto/x509v3/v3_cpols.c000066400000000000000000000377301364063235100175520ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "pcy_local.h" #include "ext_dat.h" /* Certificate policies extension support: this one is a bit complex... */ static int i2r_certpol(X509V3_EXT_METHOD *method, STACK_OF(POLICYINFO) *pol, BIO *out, int indent); static STACK_OF(POLICYINFO) *r2i_certpol(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *value); static void print_qualifiers(BIO *out, STACK_OF(POLICYQUALINFO) *quals, int indent); static void print_notice(BIO *out, USERNOTICE *notice, int indent); static POLICYINFO *policy_section(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *polstrs, int ia5org); static POLICYQUALINFO *notice_section(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *unot, int ia5org); static int nref_nos(STACK_OF(ASN1_INTEGER) *nnums, STACK_OF(CONF_VALUE) *nos); static int displaytext_str2tag(const char *tagstr, unsigned int *tag_len); static int displaytext_get_tag_len(const char *tagstr); const X509V3_EXT_METHOD v3_cpols = { NID_certificate_policies, 0, ASN1_ITEM_ref(CERTIFICATEPOLICIES), 0, 0, 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2R)i2r_certpol, (X509V3_EXT_R2I)r2i_certpol, NULL }; ASN1_ITEM_TEMPLATE(CERTIFICATEPOLICIES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, CERTIFICATEPOLICIES, POLICYINFO) ASN1_ITEM_TEMPLATE_END(CERTIFICATEPOLICIES) IMPLEMENT_ASN1_FUNCTIONS(CERTIFICATEPOLICIES) ASN1_SEQUENCE(POLICYINFO) = { ASN1_SIMPLE(POLICYINFO, policyid, ASN1_OBJECT), ASN1_SEQUENCE_OF_OPT(POLICYINFO, qualifiers, POLICYQUALINFO) } ASN1_SEQUENCE_END(POLICYINFO) IMPLEMENT_ASN1_FUNCTIONS(POLICYINFO) ASN1_ADB_TEMPLATE(policydefault) = ASN1_SIMPLE(POLICYQUALINFO, d.other, ASN1_ANY); ASN1_ADB(POLICYQUALINFO) = { ADB_ENTRY(NID_id_qt_cps, ASN1_SIMPLE(POLICYQUALINFO, d.cpsuri, ASN1_IA5STRING)), ADB_ENTRY(NID_id_qt_unotice, ASN1_SIMPLE(POLICYQUALINFO, d.usernotice, USERNOTICE)) } ASN1_ADB_END(POLICYQUALINFO, 0, pqualid, 0, &policydefault_tt, NULL); ASN1_SEQUENCE(POLICYQUALINFO) = { ASN1_SIMPLE(POLICYQUALINFO, pqualid, ASN1_OBJECT), ASN1_ADB_OBJECT(POLICYQUALINFO) } ASN1_SEQUENCE_END(POLICYQUALINFO) IMPLEMENT_ASN1_FUNCTIONS(POLICYQUALINFO) ASN1_SEQUENCE(USERNOTICE) = { ASN1_OPT(USERNOTICE, noticeref, NOTICEREF), ASN1_OPT(USERNOTICE, exptext, DISPLAYTEXT) } ASN1_SEQUENCE_END(USERNOTICE) IMPLEMENT_ASN1_FUNCTIONS(USERNOTICE) ASN1_SEQUENCE(NOTICEREF) = { ASN1_SIMPLE(NOTICEREF, organization, DISPLAYTEXT), ASN1_SEQUENCE_OF(NOTICEREF, noticenos, ASN1_INTEGER) } ASN1_SEQUENCE_END(NOTICEREF) IMPLEMENT_ASN1_FUNCTIONS(NOTICEREF) static STACK_OF(POLICYINFO) *r2i_certpol(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *value) { STACK_OF(POLICYINFO) *pols; char *pstr; POLICYINFO *pol; ASN1_OBJECT *pobj; STACK_OF(CONF_VALUE) *vals = X509V3_parse_list(value); CONF_VALUE *cnf; const int num = sk_CONF_VALUE_num(vals); int i, ia5org; if (vals == NULL) { X509V3err(X509V3_F_R2I_CERTPOL, ERR_R_X509V3_LIB); return NULL; } pols = sk_POLICYINFO_new_reserve(NULL, num); if (pols == NULL) { X509V3err(X509V3_F_R2I_CERTPOL, ERR_R_MALLOC_FAILURE); goto err; } ia5org = 0; for (i = 0; i < num; i++) { cnf = sk_CONF_VALUE_value(vals, i); if (cnf->value || !cnf->name) { X509V3err(X509V3_F_R2I_CERTPOL, X509V3_R_INVALID_POLICY_IDENTIFIER); X509V3_conf_err(cnf); goto err; } pstr = cnf->name; if (strcmp(pstr, "ia5org") == 0) { ia5org = 1; continue; } else if (*pstr == '@') { STACK_OF(CONF_VALUE) *polsect; polsect = X509V3_get_section(ctx, pstr + 1); if (!polsect) { X509V3err(X509V3_F_R2I_CERTPOL, X509V3_R_INVALID_SECTION); X509V3_conf_err(cnf); goto err; } pol = policy_section(ctx, polsect, ia5org); X509V3_section_free(ctx, polsect); if (pol == NULL) goto err; } else { if ((pobj = OBJ_txt2obj(cnf->name, 0)) == NULL) { X509V3err(X509V3_F_R2I_CERTPOL, X509V3_R_INVALID_OBJECT_IDENTIFIER); X509V3_conf_err(cnf); goto err; } pol = POLICYINFO_new(); if (pol == NULL) { ASN1_OBJECT_free(pobj); X509V3err(X509V3_F_R2I_CERTPOL, ERR_R_MALLOC_FAILURE); goto err; } pol->policyid = pobj; } if (!sk_POLICYINFO_push(pols, pol)) { POLICYINFO_free(pol); X509V3err(X509V3_F_R2I_CERTPOL, ERR_R_MALLOC_FAILURE); goto err; } } sk_CONF_VALUE_pop_free(vals, X509V3_conf_free); return pols; err: sk_CONF_VALUE_pop_free(vals, X509V3_conf_free); sk_POLICYINFO_pop_free(pols, POLICYINFO_free); return NULL; } static POLICYINFO *policy_section(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *polstrs, int ia5org) { int i; CONF_VALUE *cnf; POLICYINFO *pol; POLICYQUALINFO *qual; if ((pol = POLICYINFO_new()) == NULL) goto merr; for (i = 0; i < sk_CONF_VALUE_num(polstrs); i++) { cnf = sk_CONF_VALUE_value(polstrs, i); if (strcmp(cnf->name, "policyIdentifier") == 0) { ASN1_OBJECT *pobj; if ((pobj = OBJ_txt2obj(cnf->value, 0)) == NULL) { X509V3err(X509V3_F_POLICY_SECTION, X509V3_R_INVALID_OBJECT_IDENTIFIER); X509V3_conf_err(cnf); goto err; } pol->policyid = pobj; } else if (!name_cmp(cnf->name, "CPS")) { if (pol->qualifiers == NULL) pol->qualifiers = sk_POLICYQUALINFO_new_null(); if ((qual = POLICYQUALINFO_new()) == NULL) goto merr; if (!sk_POLICYQUALINFO_push(pol->qualifiers, qual)) goto merr; if ((qual->pqualid = OBJ_nid2obj(NID_id_qt_cps)) == NULL) { X509V3err(X509V3_F_POLICY_SECTION, ERR_R_INTERNAL_ERROR); goto err; } if ((qual->d.cpsuri = ASN1_IA5STRING_new()) == NULL) goto merr; if (!ASN1_STRING_set(qual->d.cpsuri, cnf->value, strlen(cnf->value))) goto merr; } else if (!name_cmp(cnf->name, "userNotice")) { STACK_OF(CONF_VALUE) *unot; if (*cnf->value != '@') { X509V3err(X509V3_F_POLICY_SECTION, X509V3_R_EXPECTED_A_SECTION_NAME); X509V3_conf_err(cnf); goto err; } unot = X509V3_get_section(ctx, cnf->value + 1); if (!unot) { X509V3err(X509V3_F_POLICY_SECTION, X509V3_R_INVALID_SECTION); X509V3_conf_err(cnf); goto err; } qual = notice_section(ctx, unot, ia5org); X509V3_section_free(ctx, unot); if (!qual) goto err; if (!pol->qualifiers) pol->qualifiers = sk_POLICYQUALINFO_new_null(); if (!sk_POLICYQUALINFO_push(pol->qualifiers, qual)) goto merr; } else { X509V3err(X509V3_F_POLICY_SECTION, X509V3_R_INVALID_OPTION); X509V3_conf_err(cnf); goto err; } } if (!pol->policyid) { X509V3err(X509V3_F_POLICY_SECTION, X509V3_R_NO_POLICY_IDENTIFIER); goto err; } return pol; merr: X509V3err(X509V3_F_POLICY_SECTION, ERR_R_MALLOC_FAILURE); err: POLICYINFO_free(pol); return NULL; } static int displaytext_get_tag_len(const char *tagstr) { char *colon = strchr(tagstr, ':'); return (colon == NULL) ? -1 : colon - tagstr; } static int displaytext_str2tag(const char *tagstr, unsigned int *tag_len) { int len; *tag_len = 0; len = displaytext_get_tag_len(tagstr); if (len == -1) return V_ASN1_VISIBLESTRING; *tag_len = len; if (len == sizeof("UTF8") - 1 && strncmp(tagstr, "UTF8", len) == 0) return V_ASN1_UTF8STRING; if (len == sizeof("UTF8String") - 1 && strncmp(tagstr, "UTF8String", len) == 0) return V_ASN1_UTF8STRING; if (len == sizeof("BMP") - 1 && strncmp(tagstr, "BMP", len) == 0) return V_ASN1_BMPSTRING; if (len == sizeof("BMPSTRING") - 1 && strncmp(tagstr, "BMPSTRING", len) == 0) return V_ASN1_BMPSTRING; if (len == sizeof("VISIBLE") - 1 && strncmp(tagstr, "VISIBLE", len) == 0) return V_ASN1_VISIBLESTRING; if (len == sizeof("VISIBLESTRING") - 1 && strncmp(tagstr, "VISIBLESTRING", len) == 0) return V_ASN1_VISIBLESTRING; *tag_len = 0; return V_ASN1_VISIBLESTRING; } static POLICYQUALINFO *notice_section(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *unot, int ia5org) { int i, ret, len, tag; unsigned int tag_len; CONF_VALUE *cnf; USERNOTICE *not; POLICYQUALINFO *qual; char *value = NULL; if ((qual = POLICYQUALINFO_new()) == NULL) goto merr; if ((qual->pqualid = OBJ_nid2obj(NID_id_qt_unotice)) == NULL) { X509V3err(X509V3_F_NOTICE_SECTION, ERR_R_INTERNAL_ERROR); goto err; } if ((not = USERNOTICE_new()) == NULL) goto merr; qual->d.usernotice = not; for (i = 0; i < sk_CONF_VALUE_num(unot); i++) { cnf = sk_CONF_VALUE_value(unot, i); value = cnf->value; if (strcmp(cnf->name, "explicitText") == 0) { tag = displaytext_str2tag(value, &tag_len); if ((not->exptext = ASN1_STRING_type_new(tag)) == NULL) goto merr; if (tag_len != 0) value += tag_len + 1; len = strlen(value); if (!ASN1_STRING_set(not->exptext, value, len)) goto merr; } else if (strcmp(cnf->name, "organization") == 0) { NOTICEREF *nref; if (!not->noticeref) { if ((nref = NOTICEREF_new()) == NULL) goto merr; not->noticeref = nref; } else nref = not->noticeref; if (ia5org) nref->organization->type = V_ASN1_IA5STRING; else nref->organization->type = V_ASN1_VISIBLESTRING; if (!ASN1_STRING_set(nref->organization, cnf->value, strlen(cnf->value))) goto merr; } else if (strcmp(cnf->name, "noticeNumbers") == 0) { NOTICEREF *nref; STACK_OF(CONF_VALUE) *nos; if (!not->noticeref) { if ((nref = NOTICEREF_new()) == NULL) goto merr; not->noticeref = nref; } else nref = not->noticeref; nos = X509V3_parse_list(cnf->value); if (!nos || !sk_CONF_VALUE_num(nos)) { X509V3err(X509V3_F_NOTICE_SECTION, X509V3_R_INVALID_NUMBERS); X509V3_conf_err(cnf); sk_CONF_VALUE_pop_free(nos, X509V3_conf_free); goto err; } ret = nref_nos(nref->noticenos, nos); sk_CONF_VALUE_pop_free(nos, X509V3_conf_free); if (!ret) goto err; } else { X509V3err(X509V3_F_NOTICE_SECTION, X509V3_R_INVALID_OPTION); X509V3_conf_err(cnf); goto err; } } if (not->noticeref && (!not->noticeref->noticenos || !not->noticeref->organization)) { X509V3err(X509V3_F_NOTICE_SECTION, X509V3_R_NEED_ORGANIZATION_AND_NUMBERS); goto err; } return qual; merr: X509V3err(X509V3_F_NOTICE_SECTION, ERR_R_MALLOC_FAILURE); err: POLICYQUALINFO_free(qual); return NULL; } static int nref_nos(STACK_OF(ASN1_INTEGER) *nnums, STACK_OF(CONF_VALUE) *nos) { CONF_VALUE *cnf; ASN1_INTEGER *aint; int i; for (i = 0; i < sk_CONF_VALUE_num(nos); i++) { cnf = sk_CONF_VALUE_value(nos, i); if ((aint = s2i_ASN1_INTEGER(NULL, cnf->name)) == NULL) { X509V3err(X509V3_F_NREF_NOS, X509V3_R_INVALID_NUMBER); goto err; } if (!sk_ASN1_INTEGER_push(nnums, aint)) goto merr; } return 1; merr: ASN1_INTEGER_free(aint); X509V3err(X509V3_F_NREF_NOS, ERR_R_MALLOC_FAILURE); err: return 0; } static int i2r_certpol(X509V3_EXT_METHOD *method, STACK_OF(POLICYINFO) *pol, BIO *out, int indent) { int i; POLICYINFO *pinfo; /* First print out the policy OIDs */ for (i = 0; i < sk_POLICYINFO_num(pol); i++) { pinfo = sk_POLICYINFO_value(pol, i); BIO_printf(out, "%*sPolicy: ", indent, ""); i2a_ASN1_OBJECT(out, pinfo->policyid); BIO_puts(out, "\n"); if (pinfo->qualifiers) print_qualifiers(out, pinfo->qualifiers, indent + 2); } return 1; } static void print_qualifiers(BIO *out, STACK_OF(POLICYQUALINFO) *quals, int indent) { POLICYQUALINFO *qualinfo; int i; for (i = 0; i < sk_POLICYQUALINFO_num(quals); i++) { qualinfo = sk_POLICYQUALINFO_value(quals, i); switch (OBJ_obj2nid(qualinfo->pqualid)) { case NID_id_qt_cps: BIO_printf(out, "%*sCPS: %s\n", indent, "", qualinfo->d.cpsuri->data); break; case NID_id_qt_unotice: BIO_printf(out, "%*sUser Notice:\n", indent, ""); print_notice(out, qualinfo->d.usernotice, indent + 2); break; default: BIO_printf(out, "%*sUnknown Qualifier: ", indent + 2, ""); i2a_ASN1_OBJECT(out, qualinfo->pqualid); BIO_puts(out, "\n"); break; } } } static void print_notice(BIO *out, USERNOTICE *notice, int indent) { int i; if (notice->noticeref) { NOTICEREF *ref; ref = notice->noticeref; BIO_printf(out, "%*sOrganization: %s\n", indent, "", ref->organization->data); BIO_printf(out, "%*sNumber%s: ", indent, "", sk_ASN1_INTEGER_num(ref->noticenos) > 1 ? "s" : ""); for (i = 0; i < sk_ASN1_INTEGER_num(ref->noticenos); i++) { ASN1_INTEGER *num; char *tmp; num = sk_ASN1_INTEGER_value(ref->noticenos, i); if (i) BIO_puts(out, ", "); if (num == NULL) BIO_puts(out, "(null)"); else { tmp = i2s_ASN1_INTEGER(NULL, num); if (tmp == NULL) return; BIO_puts(out, tmp); OPENSSL_free(tmp); } } BIO_puts(out, "\n"); } if (notice->exptext) BIO_printf(out, "%*sExplicit Text: %s\n", indent, "", notice->exptext->data); } void X509_POLICY_NODE_print(BIO *out, X509_POLICY_NODE *node, int indent) { const X509_POLICY_DATA *dat = node->data; BIO_printf(out, "%*sPolicy: ", indent, ""); i2a_ASN1_OBJECT(out, dat->valid_policy); BIO_puts(out, "\n"); BIO_printf(out, "%*s%s\n", indent + 2, "", node_data_critical(dat) ? "Critical" : "Non Critical"); if (dat->qualifier_set) print_qualifiers(out, dat->qualifier_set, indent + 2); else BIO_printf(out, "%*sNo Qualifiers\n", indent + 2, ""); } openssl-1.1.1f/crypto/x509v3/v3_crld.c000066400000000000000000000361121364063235100173470ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" #include "ext_dat.h" static void *v2i_crld(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static int i2r_crldp(const X509V3_EXT_METHOD *method, void *pcrldp, BIO *out, int indent); const X509V3_EXT_METHOD v3_crld = { NID_crl_distribution_points, 0, ASN1_ITEM_ref(CRL_DIST_POINTS), 0, 0, 0, 0, 0, 0, 0, v2i_crld, i2r_crldp, 0, NULL }; const X509V3_EXT_METHOD v3_freshest_crl = { NID_freshest_crl, 0, ASN1_ITEM_ref(CRL_DIST_POINTS), 0, 0, 0, 0, 0, 0, 0, v2i_crld, i2r_crldp, 0, NULL }; static STACK_OF(GENERAL_NAME) *gnames_from_sectname(X509V3_CTX *ctx, char *sect) { STACK_OF(CONF_VALUE) *gnsect; STACK_OF(GENERAL_NAME) *gens; if (*sect == '@') gnsect = X509V3_get_section(ctx, sect + 1); else gnsect = X509V3_parse_list(sect); if (!gnsect) { X509V3err(X509V3_F_GNAMES_FROM_SECTNAME, X509V3_R_SECTION_NOT_FOUND); return NULL; } gens = v2i_GENERAL_NAMES(NULL, ctx, gnsect); if (*sect == '@') X509V3_section_free(ctx, gnsect); else sk_CONF_VALUE_pop_free(gnsect, X509V3_conf_free); return gens; } static int set_dist_point_name(DIST_POINT_NAME **pdp, X509V3_CTX *ctx, CONF_VALUE *cnf) { STACK_OF(GENERAL_NAME) *fnm = NULL; STACK_OF(X509_NAME_ENTRY) *rnm = NULL; if (strncmp(cnf->name, "fullname", 9) == 0) { fnm = gnames_from_sectname(ctx, cnf->value); if (!fnm) goto err; } else if (strcmp(cnf->name, "relativename") == 0) { int ret; STACK_OF(CONF_VALUE) *dnsect; X509_NAME *nm; nm = X509_NAME_new(); if (nm == NULL) return -1; dnsect = X509V3_get_section(ctx, cnf->value); if (!dnsect) { X509V3err(X509V3_F_SET_DIST_POINT_NAME, X509V3_R_SECTION_NOT_FOUND); return -1; } ret = X509V3_NAME_from_section(nm, dnsect, MBSTRING_ASC); X509V3_section_free(ctx, dnsect); rnm = nm->entries; nm->entries = NULL; X509_NAME_free(nm); if (!ret || sk_X509_NAME_ENTRY_num(rnm) <= 0) goto err; /* * Since its a name fragment can't have more than one RDNSequence */ if (sk_X509_NAME_ENTRY_value(rnm, sk_X509_NAME_ENTRY_num(rnm) - 1)->set) { X509V3err(X509V3_F_SET_DIST_POINT_NAME, X509V3_R_INVALID_MULTIPLE_RDNS); goto err; } } else return 0; if (*pdp) { X509V3err(X509V3_F_SET_DIST_POINT_NAME, X509V3_R_DISTPOINT_ALREADY_SET); goto err; } *pdp = DIST_POINT_NAME_new(); if (*pdp == NULL) goto err; if (fnm) { (*pdp)->type = 0; (*pdp)->name.fullname = fnm; } else { (*pdp)->type = 1; (*pdp)->name.relativename = rnm; } return 1; err: sk_GENERAL_NAME_pop_free(fnm, GENERAL_NAME_free); sk_X509_NAME_ENTRY_pop_free(rnm, X509_NAME_ENTRY_free); return -1; } static const BIT_STRING_BITNAME reason_flags[] = { {0, "Unused", "unused"}, {1, "Key Compromise", "keyCompromise"}, {2, "CA Compromise", "CACompromise"}, {3, "Affiliation Changed", "affiliationChanged"}, {4, "Superseded", "superseded"}, {5, "Cessation Of Operation", "cessationOfOperation"}, {6, "Certificate Hold", "certificateHold"}, {7, "Privilege Withdrawn", "privilegeWithdrawn"}, {8, "AA Compromise", "AACompromise"}, {-1, NULL, NULL} }; static int set_reasons(ASN1_BIT_STRING **preas, char *value) { STACK_OF(CONF_VALUE) *rsk = NULL; const BIT_STRING_BITNAME *pbn; const char *bnam; int i, ret = 0; rsk = X509V3_parse_list(value); if (rsk == NULL) return 0; if (*preas != NULL) goto err; for (i = 0; i < sk_CONF_VALUE_num(rsk); i++) { bnam = sk_CONF_VALUE_value(rsk, i)->name; if (*preas == NULL) { *preas = ASN1_BIT_STRING_new(); if (*preas == NULL) goto err; } for (pbn = reason_flags; pbn->lname; pbn++) { if (strcmp(pbn->sname, bnam) == 0) { if (!ASN1_BIT_STRING_set_bit(*preas, pbn->bitnum, 1)) goto err; break; } } if (!pbn->lname) goto err; } ret = 1; err: sk_CONF_VALUE_pop_free(rsk, X509V3_conf_free); return ret; } static int print_reasons(BIO *out, const char *rname, ASN1_BIT_STRING *rflags, int indent) { int first = 1; const BIT_STRING_BITNAME *pbn; BIO_printf(out, "%*s%s:\n%*s", indent, "", rname, indent + 2, ""); for (pbn = reason_flags; pbn->lname; pbn++) { if (ASN1_BIT_STRING_get_bit(rflags, pbn->bitnum)) { if (first) first = 0; else BIO_puts(out, ", "); BIO_puts(out, pbn->lname); } } if (first) BIO_puts(out, "\n"); else BIO_puts(out, "\n"); return 1; } static DIST_POINT *crldp_from_section(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { int i; CONF_VALUE *cnf; DIST_POINT *point = DIST_POINT_new(); if (point == NULL) goto err; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { int ret; cnf = sk_CONF_VALUE_value(nval, i); ret = set_dist_point_name(&point->distpoint, ctx, cnf); if (ret > 0) continue; if (ret < 0) goto err; if (strcmp(cnf->name, "reasons") == 0) { if (!set_reasons(&point->reasons, cnf->value)) goto err; } else if (strcmp(cnf->name, "CRLissuer") == 0) { point->CRLissuer = gnames_from_sectname(ctx, cnf->value); if (!point->CRLissuer) goto err; } } return point; err: DIST_POINT_free(point); return NULL; } static void *v2i_crld(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { STACK_OF(DIST_POINT) *crld; GENERAL_NAMES *gens = NULL; GENERAL_NAME *gen = NULL; CONF_VALUE *cnf; const int num = sk_CONF_VALUE_num(nval); int i; crld = sk_DIST_POINT_new_reserve(NULL, num); if (crld == NULL) goto merr; for (i = 0; i < num; i++) { DIST_POINT *point; cnf = sk_CONF_VALUE_value(nval, i); if (!cnf->value) { STACK_OF(CONF_VALUE) *dpsect; dpsect = X509V3_get_section(ctx, cnf->name); if (!dpsect) goto err; point = crldp_from_section(ctx, dpsect); X509V3_section_free(ctx, dpsect); if (!point) goto err; sk_DIST_POINT_push(crld, point); /* no failure as it was reserved */ } else { if ((gen = v2i_GENERAL_NAME(method, ctx, cnf)) == NULL) goto err; if ((gens = GENERAL_NAMES_new()) == NULL) goto merr; if (!sk_GENERAL_NAME_push(gens, gen)) goto merr; gen = NULL; if ((point = DIST_POINT_new()) == NULL) goto merr; sk_DIST_POINT_push(crld, point); /* no failure as it was reserved */ if ((point->distpoint = DIST_POINT_NAME_new()) == NULL) goto merr; point->distpoint->name.fullname = gens; point->distpoint->type = 0; gens = NULL; } } return crld; merr: X509V3err(X509V3_F_V2I_CRLD, ERR_R_MALLOC_FAILURE); err: GENERAL_NAME_free(gen); GENERAL_NAMES_free(gens); sk_DIST_POINT_pop_free(crld, DIST_POINT_free); return NULL; } static int dpn_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { DIST_POINT_NAME *dpn = (DIST_POINT_NAME *)*pval; switch (operation) { case ASN1_OP_NEW_POST: dpn->dpname = NULL; break; case ASN1_OP_FREE_POST: X509_NAME_free(dpn->dpname); break; } return 1; } ASN1_CHOICE_cb(DIST_POINT_NAME, dpn_cb) = { ASN1_IMP_SEQUENCE_OF(DIST_POINT_NAME, name.fullname, GENERAL_NAME, 0), ASN1_IMP_SET_OF(DIST_POINT_NAME, name.relativename, X509_NAME_ENTRY, 1) } ASN1_CHOICE_END_cb(DIST_POINT_NAME, DIST_POINT_NAME, type) IMPLEMENT_ASN1_FUNCTIONS(DIST_POINT_NAME) ASN1_SEQUENCE(DIST_POINT) = { ASN1_EXP_OPT(DIST_POINT, distpoint, DIST_POINT_NAME, 0), ASN1_IMP_OPT(DIST_POINT, reasons, ASN1_BIT_STRING, 1), ASN1_IMP_SEQUENCE_OF_OPT(DIST_POINT, CRLissuer, GENERAL_NAME, 2) } ASN1_SEQUENCE_END(DIST_POINT) IMPLEMENT_ASN1_FUNCTIONS(DIST_POINT) ASN1_ITEM_TEMPLATE(CRL_DIST_POINTS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, CRLDistributionPoints, DIST_POINT) ASN1_ITEM_TEMPLATE_END(CRL_DIST_POINTS) IMPLEMENT_ASN1_FUNCTIONS(CRL_DIST_POINTS) ASN1_SEQUENCE(ISSUING_DIST_POINT) = { ASN1_EXP_OPT(ISSUING_DIST_POINT, distpoint, DIST_POINT_NAME, 0), ASN1_IMP_OPT(ISSUING_DIST_POINT, onlyuser, ASN1_FBOOLEAN, 1), ASN1_IMP_OPT(ISSUING_DIST_POINT, onlyCA, ASN1_FBOOLEAN, 2), ASN1_IMP_OPT(ISSUING_DIST_POINT, onlysomereasons, ASN1_BIT_STRING, 3), ASN1_IMP_OPT(ISSUING_DIST_POINT, indirectCRL, ASN1_FBOOLEAN, 4), ASN1_IMP_OPT(ISSUING_DIST_POINT, onlyattr, ASN1_FBOOLEAN, 5) } ASN1_SEQUENCE_END(ISSUING_DIST_POINT) IMPLEMENT_ASN1_FUNCTIONS(ISSUING_DIST_POINT) static int i2r_idp(const X509V3_EXT_METHOD *method, void *pidp, BIO *out, int indent); static void *v2i_idp(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); const X509V3_EXT_METHOD v3_idp = { NID_issuing_distribution_point, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(ISSUING_DIST_POINT), 0, 0, 0, 0, 0, 0, 0, v2i_idp, i2r_idp, 0, NULL }; static void *v2i_idp(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { ISSUING_DIST_POINT *idp = NULL; CONF_VALUE *cnf; char *name, *val; int i, ret; idp = ISSUING_DIST_POINT_new(); if (idp == NULL) goto merr; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { cnf = sk_CONF_VALUE_value(nval, i); name = cnf->name; val = cnf->value; ret = set_dist_point_name(&idp->distpoint, ctx, cnf); if (ret > 0) continue; if (ret < 0) goto err; if (strcmp(name, "onlyuser") == 0) { if (!X509V3_get_value_bool(cnf, &idp->onlyuser)) goto err; } else if (strcmp(name, "onlyCA") == 0) { if (!X509V3_get_value_bool(cnf, &idp->onlyCA)) goto err; } else if (strcmp(name, "onlyAA") == 0) { if (!X509V3_get_value_bool(cnf, &idp->onlyattr)) goto err; } else if (strcmp(name, "indirectCRL") == 0) { if (!X509V3_get_value_bool(cnf, &idp->indirectCRL)) goto err; } else if (strcmp(name, "onlysomereasons") == 0) { if (!set_reasons(&idp->onlysomereasons, val)) goto err; } else { X509V3err(X509V3_F_V2I_IDP, X509V3_R_INVALID_NAME); X509V3_conf_err(cnf); goto err; } } return idp; merr: X509V3err(X509V3_F_V2I_IDP, ERR_R_MALLOC_FAILURE); err: ISSUING_DIST_POINT_free(idp); return NULL; } static int print_gens(BIO *out, STACK_OF(GENERAL_NAME) *gens, int indent) { int i; for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { BIO_printf(out, "%*s", indent + 2, ""); GENERAL_NAME_print(out, sk_GENERAL_NAME_value(gens, i)); BIO_puts(out, "\n"); } return 1; } static int print_distpoint(BIO *out, DIST_POINT_NAME *dpn, int indent) { if (dpn->type == 0) { BIO_printf(out, "%*sFull Name:\n", indent, ""); print_gens(out, dpn->name.fullname, indent); } else { X509_NAME ntmp; ntmp.entries = dpn->name.relativename; BIO_printf(out, "%*sRelative Name:\n%*s", indent, "", indent + 2, ""); X509_NAME_print_ex(out, &ntmp, 0, XN_FLAG_ONELINE); BIO_puts(out, "\n"); } return 1; } static int i2r_idp(const X509V3_EXT_METHOD *method, void *pidp, BIO *out, int indent) { ISSUING_DIST_POINT *idp = pidp; if (idp->distpoint) print_distpoint(out, idp->distpoint, indent); if (idp->onlyuser > 0) BIO_printf(out, "%*sOnly User Certificates\n", indent, ""); if (idp->onlyCA > 0) BIO_printf(out, "%*sOnly CA Certificates\n", indent, ""); if (idp->indirectCRL > 0) BIO_printf(out, "%*sIndirect CRL\n", indent, ""); if (idp->onlysomereasons) print_reasons(out, "Only Some Reasons", idp->onlysomereasons, indent); if (idp->onlyattr > 0) BIO_printf(out, "%*sOnly Attribute Certificates\n", indent, ""); if (!idp->distpoint && (idp->onlyuser <= 0) && (idp->onlyCA <= 0) && (idp->indirectCRL <= 0) && !idp->onlysomereasons && (idp->onlyattr <= 0)) BIO_printf(out, "%*s\n", indent, ""); return 1; } static int i2r_crldp(const X509V3_EXT_METHOD *method, void *pcrldp, BIO *out, int indent) { STACK_OF(DIST_POINT) *crld = pcrldp; DIST_POINT *point; int i; for (i = 0; i < sk_DIST_POINT_num(crld); i++) { BIO_puts(out, "\n"); point = sk_DIST_POINT_value(crld, i); if (point->distpoint) print_distpoint(out, point->distpoint, indent); if (point->reasons) print_reasons(out, "Reasons", point->reasons, indent); if (point->CRLissuer) { BIO_printf(out, "%*sCRL Issuer:\n", indent, ""); print_gens(out, point->CRLissuer, indent); } } return 1; } int DIST_POINT_set_dpname(DIST_POINT_NAME *dpn, X509_NAME *iname) { int i; STACK_OF(X509_NAME_ENTRY) *frag; X509_NAME_ENTRY *ne; if (!dpn || (dpn->type != 1)) return 1; frag = dpn->name.relativename; dpn->dpname = X509_NAME_dup(iname); if (!dpn->dpname) return 0; for (i = 0; i < sk_X509_NAME_ENTRY_num(frag); i++) { ne = sk_X509_NAME_ENTRY_value(frag, i); if (!X509_NAME_add_entry(dpn->dpname, ne, -1, i ? 0 : 1)) { X509_NAME_free(dpn->dpname); dpn->dpname = NULL; return 0; } } /* generate cached encoding of name */ if (i2d_X509_NAME(dpn->dpname, NULL) < 0) { X509_NAME_free(dpn->dpname); dpn->dpname = NULL; return 0; } return 1; } openssl-1.1.1f/crypto/x509v3/v3_enum.c000066400000000000000000000034451364063235100173720ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "ext_dat.h" static ENUMERATED_NAMES crl_reasons[] = { {CRL_REASON_UNSPECIFIED, "Unspecified", "unspecified"}, {CRL_REASON_KEY_COMPROMISE, "Key Compromise", "keyCompromise"}, {CRL_REASON_CA_COMPROMISE, "CA Compromise", "CACompromise"}, {CRL_REASON_AFFILIATION_CHANGED, "Affiliation Changed", "affiliationChanged"}, {CRL_REASON_SUPERSEDED, "Superseded", "superseded"}, {CRL_REASON_CESSATION_OF_OPERATION, "Cessation Of Operation", "cessationOfOperation"}, {CRL_REASON_CERTIFICATE_HOLD, "Certificate Hold", "certificateHold"}, {CRL_REASON_REMOVE_FROM_CRL, "Remove From CRL", "removeFromCRL"}, {CRL_REASON_PRIVILEGE_WITHDRAWN, "Privilege Withdrawn", "privilegeWithdrawn"}, {CRL_REASON_AA_COMPROMISE, "AA Compromise", "AACompromise"}, {-1, NULL, NULL} }; const X509V3_EXT_METHOD v3_crl_reason = { NID_crl_reason, 0, ASN1_ITEM_ref(ASN1_ENUMERATED), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_ENUMERATED_TABLE, 0, 0, 0, 0, 0, crl_reasons }; char *i2s_ASN1_ENUMERATED_TABLE(X509V3_EXT_METHOD *method, const ASN1_ENUMERATED *e) { ENUMERATED_NAMES *enam; long strval; strval = ASN1_ENUMERATED_get(e); for (enam = method->usr_data; enam->lname; enam++) { if (strval == enam->bitnum) return OPENSSL_strdup(enam->lname); } return i2s_ASN1_ENUMERATED(method, e); } openssl-1.1.1f/crypto/x509v3/v3_extku.c000066400000000000000000000063621364063235100175670ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ext_dat.h" static void *v2i_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static STACK_OF(CONF_VALUE) *i2v_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, void *eku, STACK_OF(CONF_VALUE) *extlist); const X509V3_EXT_METHOD v3_ext_ku = { NID_ext_key_usage, 0, ASN1_ITEM_ref(EXTENDED_KEY_USAGE), 0, 0, 0, 0, 0, 0, i2v_EXTENDED_KEY_USAGE, v2i_EXTENDED_KEY_USAGE, 0, 0, NULL }; /* NB OCSP acceptable responses also is a SEQUENCE OF OBJECT */ const X509V3_EXT_METHOD v3_ocsp_accresp = { NID_id_pkix_OCSP_acceptableResponses, 0, ASN1_ITEM_ref(EXTENDED_KEY_USAGE), 0, 0, 0, 0, 0, 0, i2v_EXTENDED_KEY_USAGE, v2i_EXTENDED_KEY_USAGE, 0, 0, NULL }; ASN1_ITEM_TEMPLATE(EXTENDED_KEY_USAGE) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, EXTENDED_KEY_USAGE, ASN1_OBJECT) ASN1_ITEM_TEMPLATE_END(EXTENDED_KEY_USAGE) IMPLEMENT_ASN1_FUNCTIONS(EXTENDED_KEY_USAGE) static STACK_OF(CONF_VALUE) *i2v_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, void *a, STACK_OF(CONF_VALUE) *ext_list) { EXTENDED_KEY_USAGE *eku = a; int i; ASN1_OBJECT *obj; char obj_tmp[80]; for (i = 0; i < sk_ASN1_OBJECT_num(eku); i++) { obj = sk_ASN1_OBJECT_value(eku, i); i2t_ASN1_OBJECT(obj_tmp, 80, obj); X509V3_add_value(NULL, obj_tmp, &ext_list); } return ext_list; } static void *v2i_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { EXTENDED_KEY_USAGE *extku; char *extval; ASN1_OBJECT *objtmp; CONF_VALUE *val; const int num = sk_CONF_VALUE_num(nval); int i; extku = sk_ASN1_OBJECT_new_reserve(NULL, num); if (extku == NULL) { X509V3err(X509V3_F_V2I_EXTENDED_KEY_USAGE, ERR_R_MALLOC_FAILURE); sk_ASN1_OBJECT_free(extku); return NULL; } for (i = 0; i < num; i++) { val = sk_CONF_VALUE_value(nval, i); if (val->value) extval = val->value; else extval = val->name; if ((objtmp = OBJ_txt2obj(extval, 0)) == NULL) { sk_ASN1_OBJECT_pop_free(extku, ASN1_OBJECT_free); X509V3err(X509V3_F_V2I_EXTENDED_KEY_USAGE, X509V3_R_INVALID_OBJECT_IDENTIFIER); X509V3_conf_err(val); return NULL; } sk_ASN1_OBJECT_push(extku, objtmp); /* no failure as it was reserved */ } return extku; } openssl-1.1.1f/crypto/x509v3/v3_genn.c000066400000000000000000000121561364063235100173540ustar00rootroot00000000000000/* * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include ASN1_SEQUENCE(OTHERNAME) = { ASN1_SIMPLE(OTHERNAME, type_id, ASN1_OBJECT), /* Maybe have a true ANY DEFINED BY later */ ASN1_EXP(OTHERNAME, value, ASN1_ANY, 0) } ASN1_SEQUENCE_END(OTHERNAME) IMPLEMENT_ASN1_FUNCTIONS(OTHERNAME) ASN1_SEQUENCE(EDIPARTYNAME) = { ASN1_IMP_OPT(EDIPARTYNAME, nameAssigner, DIRECTORYSTRING, 0), ASN1_IMP_OPT(EDIPARTYNAME, partyName, DIRECTORYSTRING, 1) } ASN1_SEQUENCE_END(EDIPARTYNAME) IMPLEMENT_ASN1_FUNCTIONS(EDIPARTYNAME) ASN1_CHOICE(GENERAL_NAME) = { ASN1_IMP(GENERAL_NAME, d.otherName, OTHERNAME, GEN_OTHERNAME), ASN1_IMP(GENERAL_NAME, d.rfc822Name, ASN1_IA5STRING, GEN_EMAIL), ASN1_IMP(GENERAL_NAME, d.dNSName, ASN1_IA5STRING, GEN_DNS), /* Don't decode this */ ASN1_IMP(GENERAL_NAME, d.x400Address, ASN1_SEQUENCE, GEN_X400), /* X509_NAME is a CHOICE type so use EXPLICIT */ ASN1_EXP(GENERAL_NAME, d.directoryName, X509_NAME, GEN_DIRNAME), ASN1_IMP(GENERAL_NAME, d.ediPartyName, EDIPARTYNAME, GEN_EDIPARTY), ASN1_IMP(GENERAL_NAME, d.uniformResourceIdentifier, ASN1_IA5STRING, GEN_URI), ASN1_IMP(GENERAL_NAME, d.iPAddress, ASN1_OCTET_STRING, GEN_IPADD), ASN1_IMP(GENERAL_NAME, d.registeredID, ASN1_OBJECT, GEN_RID) } ASN1_CHOICE_END(GENERAL_NAME) IMPLEMENT_ASN1_FUNCTIONS(GENERAL_NAME) ASN1_ITEM_TEMPLATE(GENERAL_NAMES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, GeneralNames, GENERAL_NAME) ASN1_ITEM_TEMPLATE_END(GENERAL_NAMES) IMPLEMENT_ASN1_FUNCTIONS(GENERAL_NAMES) GENERAL_NAME *GENERAL_NAME_dup(GENERAL_NAME *a) { return (GENERAL_NAME *)ASN1_dup((i2d_of_void *)i2d_GENERAL_NAME, (d2i_of_void *)d2i_GENERAL_NAME, (char *)a); } /* Returns 0 if they are equal, != 0 otherwise. */ int GENERAL_NAME_cmp(GENERAL_NAME *a, GENERAL_NAME *b) { int result = -1; if (!a || !b || a->type != b->type) return -1; switch (a->type) { case GEN_X400: case GEN_EDIPARTY: result = ASN1_TYPE_cmp(a->d.other, b->d.other); break; case GEN_OTHERNAME: result = OTHERNAME_cmp(a->d.otherName, b->d.otherName); break; case GEN_EMAIL: case GEN_DNS: case GEN_URI: result = ASN1_STRING_cmp(a->d.ia5, b->d.ia5); break; case GEN_DIRNAME: result = X509_NAME_cmp(a->d.dirn, b->d.dirn); break; case GEN_IPADD: result = ASN1_OCTET_STRING_cmp(a->d.ip, b->d.ip); break; case GEN_RID: result = OBJ_cmp(a->d.rid, b->d.rid); break; } return result; } /* Returns 0 if they are equal, != 0 otherwise. */ int OTHERNAME_cmp(OTHERNAME *a, OTHERNAME *b) { int result = -1; if (!a || !b) return -1; /* Check their type first. */ if ((result = OBJ_cmp(a->type_id, b->type_id)) != 0) return result; /* Check the value. */ result = ASN1_TYPE_cmp(a->value, b->value); return result; } void GENERAL_NAME_set0_value(GENERAL_NAME *a, int type, void *value) { switch (type) { case GEN_X400: case GEN_EDIPARTY: a->d.other = value; break; case GEN_OTHERNAME: a->d.otherName = value; break; case GEN_EMAIL: case GEN_DNS: case GEN_URI: a->d.ia5 = value; break; case GEN_DIRNAME: a->d.dirn = value; break; case GEN_IPADD: a->d.ip = value; break; case GEN_RID: a->d.rid = value; break; } a->type = type; } void *GENERAL_NAME_get0_value(const GENERAL_NAME *a, int *ptype) { if (ptype) *ptype = a->type; switch (a->type) { case GEN_X400: case GEN_EDIPARTY: return a->d.other; case GEN_OTHERNAME: return a->d.otherName; case GEN_EMAIL: case GEN_DNS: case GEN_URI: return a->d.ia5; case GEN_DIRNAME: return a->d.dirn; case GEN_IPADD: return a->d.ip; case GEN_RID: return a->d.rid; default: return NULL; } } int GENERAL_NAME_set0_othername(GENERAL_NAME *gen, ASN1_OBJECT *oid, ASN1_TYPE *value) { OTHERNAME *oth; oth = OTHERNAME_new(); if (oth == NULL) return 0; ASN1_TYPE_free(oth->value); oth->type_id = oid; oth->value = value; GENERAL_NAME_set0_value(gen, GEN_OTHERNAME, oth); return 1; } int GENERAL_NAME_get0_otherName(const GENERAL_NAME *gen, ASN1_OBJECT **poid, ASN1_TYPE **pvalue) { if (gen->type != GEN_OTHERNAME) return 0; if (poid) *poid = gen->d.otherName->type_id; if (pvalue) *pvalue = gen->d.otherName->value; return 1; } openssl-1.1.1f/crypto/x509v3/v3_ia5.c000066400000000000000000000036741364063235100171100ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ext_dat.h" const X509V3_EXT_METHOD v3_ns_ia5_list[8] = { EXT_IA5STRING(NID_netscape_base_url), EXT_IA5STRING(NID_netscape_revocation_url), EXT_IA5STRING(NID_netscape_ca_revocation_url), EXT_IA5STRING(NID_netscape_renewal_url), EXT_IA5STRING(NID_netscape_ca_policy_url), EXT_IA5STRING(NID_netscape_ssl_server_name), EXT_IA5STRING(NID_netscape_comment), EXT_END }; char *i2s_ASN1_IA5STRING(X509V3_EXT_METHOD *method, ASN1_IA5STRING *ia5) { char *tmp; if (!ia5 || !ia5->length) return NULL; if ((tmp = OPENSSL_malloc(ia5->length + 1)) == NULL) { X509V3err(X509V3_F_I2S_ASN1_IA5STRING, ERR_R_MALLOC_FAILURE); return NULL; } memcpy(tmp, ia5->data, ia5->length); tmp[ia5->length] = 0; return tmp; } ASN1_IA5STRING *s2i_ASN1_IA5STRING(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { ASN1_IA5STRING *ia5; if (!str) { X509V3err(X509V3_F_S2I_ASN1_IA5STRING, X509V3_R_INVALID_NULL_ARGUMENT); return NULL; } if ((ia5 = ASN1_IA5STRING_new()) == NULL) goto err; if (!ASN1_STRING_set((ASN1_STRING *)ia5, str, strlen(str))) { ASN1_IA5STRING_free(ia5); return NULL; } #ifdef CHARSET_EBCDIC ebcdic2ascii(ia5->data, ia5->data, ia5->length); #endif /* CHARSET_EBCDIC */ return ia5; err: X509V3err(X509V3_F_S2I_ASN1_IA5STRING, ERR_R_MALLOC_FAILURE); return NULL; } openssl-1.1.1f/crypto/x509v3/v3_info.c000066400000000000000000000130101364063235100173460ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ext_dat.h" static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method, AUTHORITY_INFO_ACCESS *ainfo, STACK_OF(CONF_VALUE) *ret); static AUTHORITY_INFO_ACCESS *v2i_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); const X509V3_EXT_METHOD v3_info = { NID_info_access, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_INFO_ACCESS), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_AUTHORITY_INFO_ACCESS, (X509V3_EXT_V2I)v2i_AUTHORITY_INFO_ACCESS, 0, 0, NULL }; const X509V3_EXT_METHOD v3_sinfo = { NID_sinfo_access, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_INFO_ACCESS), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_AUTHORITY_INFO_ACCESS, (X509V3_EXT_V2I)v2i_AUTHORITY_INFO_ACCESS, 0, 0, NULL }; ASN1_SEQUENCE(ACCESS_DESCRIPTION) = { ASN1_SIMPLE(ACCESS_DESCRIPTION, method, ASN1_OBJECT), ASN1_SIMPLE(ACCESS_DESCRIPTION, location, GENERAL_NAME) } ASN1_SEQUENCE_END(ACCESS_DESCRIPTION) IMPLEMENT_ASN1_FUNCTIONS(ACCESS_DESCRIPTION) ASN1_ITEM_TEMPLATE(AUTHORITY_INFO_ACCESS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, GeneralNames, ACCESS_DESCRIPTION) ASN1_ITEM_TEMPLATE_END(AUTHORITY_INFO_ACCESS) IMPLEMENT_ASN1_FUNCTIONS(AUTHORITY_INFO_ACCESS) static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_INFO_ACCESS( X509V3_EXT_METHOD *method, AUTHORITY_INFO_ACCESS *ainfo, STACK_OF(CONF_VALUE) *ret) { ACCESS_DESCRIPTION *desc; int i, nlen; char objtmp[80], *ntmp; CONF_VALUE *vtmp; STACK_OF(CONF_VALUE) *tret = ret; for (i = 0; i < sk_ACCESS_DESCRIPTION_num(ainfo); i++) { STACK_OF(CONF_VALUE) *tmp; desc = sk_ACCESS_DESCRIPTION_value(ainfo, i); tmp = i2v_GENERAL_NAME(method, desc->location, tret); if (tmp == NULL) goto err; tret = tmp; vtmp = sk_CONF_VALUE_value(tret, i); i2t_ASN1_OBJECT(objtmp, sizeof(objtmp), desc->method); nlen = strlen(objtmp) + 3 + strlen(vtmp->name) + 1; ntmp = OPENSSL_malloc(nlen); if (ntmp == NULL) goto err; BIO_snprintf(ntmp, nlen, "%s - %s", objtmp, vtmp->name); OPENSSL_free(vtmp->name); vtmp->name = ntmp; } if (ret == NULL && tret == NULL) return sk_CONF_VALUE_new_null(); return tret; err: X509V3err(X509V3_F_I2V_AUTHORITY_INFO_ACCESS, ERR_R_MALLOC_FAILURE); if (ret == NULL && tret != NULL) sk_CONF_VALUE_pop_free(tret, X509V3_conf_free); return NULL; } static AUTHORITY_INFO_ACCESS *v2i_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { AUTHORITY_INFO_ACCESS *ainfo = NULL; CONF_VALUE *cnf, ctmp; ACCESS_DESCRIPTION *acc; int i, objlen; const int num = sk_CONF_VALUE_num(nval); char *objtmp, *ptmp; if ((ainfo = sk_ACCESS_DESCRIPTION_new_reserve(NULL, num)) == NULL) { X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < num; i++) { cnf = sk_CONF_VALUE_value(nval, i); if ((acc = ACCESS_DESCRIPTION_new()) == NULL) { X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS, ERR_R_MALLOC_FAILURE); goto err; } sk_ACCESS_DESCRIPTION_push(ainfo, acc); /* Cannot fail due to reserve */ ptmp = strchr(cnf->name, ';'); if (!ptmp) { X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS, X509V3_R_INVALID_SYNTAX); goto err; } objlen = ptmp - cnf->name; ctmp.name = ptmp + 1; ctmp.value = cnf->value; if (!v2i_GENERAL_NAME_ex(acc->location, method, ctx, &ctmp, 0)) goto err; if ((objtmp = OPENSSL_strndup(cnf->name, objlen)) == NULL) { X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS, ERR_R_MALLOC_FAILURE); goto err; } acc->method = OBJ_txt2obj(objtmp, 0); if (!acc->method) { X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS, X509V3_R_BAD_OBJECT); ERR_add_error_data(2, "value=", objtmp); OPENSSL_free(objtmp); goto err; } OPENSSL_free(objtmp); } return ainfo; err: sk_ACCESS_DESCRIPTION_pop_free(ainfo, ACCESS_DESCRIPTION_free); return NULL; } int i2a_ACCESS_DESCRIPTION(BIO *bp, const ACCESS_DESCRIPTION *a) { i2a_ASN1_OBJECT(bp, a->method); return 2; } openssl-1.1.1f/crypto/x509v3/v3_int.c000066400000000000000000000022151364063235100172120ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "ext_dat.h" const X509V3_EXT_METHOD v3_crl_num = { NID_crl_number, 0, ASN1_ITEM_ref(ASN1_INTEGER), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_INTEGER, 0, 0, 0, 0, 0, NULL }; const X509V3_EXT_METHOD v3_delta_crl = { NID_delta_crl, 0, ASN1_ITEM_ref(ASN1_INTEGER), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_INTEGER, 0, 0, 0, 0, 0, NULL }; static void *s2i_asn1_int(X509V3_EXT_METHOD *meth, X509V3_CTX *ctx, const char *value) { return s2i_ASN1_INTEGER(meth, value); } const X509V3_EXT_METHOD v3_inhibit_anyp = { NID_inhibit_any_policy, 0, ASN1_ITEM_ref(ASN1_INTEGER), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_INTEGER, (X509V3_EXT_S2I)s2i_asn1_int, 0, 0, 0, 0, NULL }; openssl-1.1.1f/crypto/x509v3/v3_lib.c000066400000000000000000000203641364063235100171730ustar00rootroot00000000000000/* * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* X509 v3 extension utilities */ #include #include "internal/cryptlib.h" #include #include #include "ext_dat.h" static STACK_OF(X509V3_EXT_METHOD) *ext_list = NULL; static int ext_cmp(const X509V3_EXT_METHOD *const *a, const X509V3_EXT_METHOD *const *b); static void ext_list_free(X509V3_EXT_METHOD *ext); int X509V3_EXT_add(X509V3_EXT_METHOD *ext) { if (ext_list == NULL && (ext_list = sk_X509V3_EXT_METHOD_new(ext_cmp)) == NULL) { X509V3err(X509V3_F_X509V3_EXT_ADD, ERR_R_MALLOC_FAILURE); return 0; } if (!sk_X509V3_EXT_METHOD_push(ext_list, ext)) { X509V3err(X509V3_F_X509V3_EXT_ADD, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static int ext_cmp(const X509V3_EXT_METHOD *const *a, const X509V3_EXT_METHOD *const *b) { return ((*a)->ext_nid - (*b)->ext_nid); } DECLARE_OBJ_BSEARCH_CMP_FN(const X509V3_EXT_METHOD *, const X509V3_EXT_METHOD *, ext); IMPLEMENT_OBJ_BSEARCH_CMP_FN(const X509V3_EXT_METHOD *, const X509V3_EXT_METHOD *, ext); #include "standard_exts.h" const X509V3_EXT_METHOD *X509V3_EXT_get_nid(int nid) { X509V3_EXT_METHOD tmp; const X509V3_EXT_METHOD *t = &tmp, *const *ret; int idx; if (nid < 0) return NULL; tmp.ext_nid = nid; ret = OBJ_bsearch_ext(&t, standard_exts, STANDARD_EXTENSION_COUNT); if (ret) return *ret; if (!ext_list) return NULL; idx = sk_X509V3_EXT_METHOD_find(ext_list, &tmp); return sk_X509V3_EXT_METHOD_value(ext_list, idx); } const X509V3_EXT_METHOD *X509V3_EXT_get(X509_EXTENSION *ext) { int nid; if ((nid = OBJ_obj2nid(X509_EXTENSION_get_object(ext))) == NID_undef) return NULL; return X509V3_EXT_get_nid(nid); } int X509V3_EXT_add_list(X509V3_EXT_METHOD *extlist) { for (; extlist->ext_nid != -1; extlist++) if (!X509V3_EXT_add(extlist)) return 0; return 1; } int X509V3_EXT_add_alias(int nid_to, int nid_from) { const X509V3_EXT_METHOD *ext; X509V3_EXT_METHOD *tmpext; if ((ext = X509V3_EXT_get_nid(nid_from)) == NULL) { X509V3err(X509V3_F_X509V3_EXT_ADD_ALIAS, X509V3_R_EXTENSION_NOT_FOUND); return 0; } if ((tmpext = OPENSSL_malloc(sizeof(*tmpext))) == NULL) { X509V3err(X509V3_F_X509V3_EXT_ADD_ALIAS, ERR_R_MALLOC_FAILURE); return 0; } *tmpext = *ext; tmpext->ext_nid = nid_to; tmpext->ext_flags |= X509V3_EXT_DYNAMIC; return X509V3_EXT_add(tmpext); } void X509V3_EXT_cleanup(void) { sk_X509V3_EXT_METHOD_pop_free(ext_list, ext_list_free); ext_list = NULL; } static void ext_list_free(X509V3_EXT_METHOD *ext) { if (ext->ext_flags & X509V3_EXT_DYNAMIC) OPENSSL_free(ext); } /* * Legacy function: we don't need to add standard extensions any more because * they are now kept in ext_dat.h. */ int X509V3_add_standard_extensions(void) { return 1; } /* Return an extension internal structure */ void *X509V3_EXT_d2i(X509_EXTENSION *ext) { const X509V3_EXT_METHOD *method; const unsigned char *p; ASN1_STRING *extvalue; int extlen; if ((method = X509V3_EXT_get(ext)) == NULL) return NULL; extvalue = X509_EXTENSION_get_data(ext); p = ASN1_STRING_get0_data(extvalue); extlen = ASN1_STRING_length(extvalue); if (method->it) return ASN1_item_d2i(NULL, &p, extlen, ASN1_ITEM_ptr(method->it)); return method->d2i(NULL, &p, extlen); } /*- * Get critical flag and decoded version of extension from a NID. * The "idx" variable returns the last found extension and can * be used to retrieve multiple extensions of the same NID. * However multiple extensions with the same NID is usually * due to a badly encoded certificate so if idx is NULL we * choke if multiple extensions exist. * The "crit" variable is set to the critical value. * The return value is the decoded extension or NULL on * error. The actual error can have several different causes, * the value of *crit reflects the cause: * >= 0, extension found but not decoded (reflects critical value). * -1 extension not found. * -2 extension occurs more than once. */ void *X509V3_get_d2i(const STACK_OF(X509_EXTENSION) *x, int nid, int *crit, int *idx) { int lastpos, i; X509_EXTENSION *ex, *found_ex = NULL; if (!x) { if (idx) *idx = -1; if (crit) *crit = -1; return NULL; } if (idx) lastpos = *idx + 1; else lastpos = 0; if (lastpos < 0) lastpos = 0; for (i = lastpos; i < sk_X509_EXTENSION_num(x); i++) { ex = sk_X509_EXTENSION_value(x, i); if (OBJ_obj2nid(X509_EXTENSION_get_object(ex)) == nid) { if (idx) { *idx = i; found_ex = ex; break; } else if (found_ex) { /* Found more than one */ if (crit) *crit = -2; return NULL; } found_ex = ex; } } if (found_ex) { /* Found it */ if (crit) *crit = X509_EXTENSION_get_critical(found_ex); return X509V3_EXT_d2i(found_ex); } /* Extension not found */ if (idx) *idx = -1; if (crit) *crit = -1; return NULL; } /* * This function is a general extension append, replace and delete utility. * The precise operation is governed by the 'flags' value. The 'crit' and * 'value' arguments (if relevant) are the extensions internal structure. */ int X509V3_add1_i2d(STACK_OF(X509_EXTENSION) **x, int nid, void *value, int crit, unsigned long flags) { int errcode, extidx = -1; X509_EXTENSION *ext = NULL, *extmp; STACK_OF(X509_EXTENSION) *ret = NULL; unsigned long ext_op = flags & X509V3_ADD_OP_MASK; /* * If appending we don't care if it exists, otherwise look for existing * extension. */ if (ext_op != X509V3_ADD_APPEND) extidx = X509v3_get_ext_by_NID(*x, nid, -1); /* See if extension exists */ if (extidx >= 0) { /* If keep existing, nothing to do */ if (ext_op == X509V3_ADD_KEEP_EXISTING) return 1; /* If default then its an error */ if (ext_op == X509V3_ADD_DEFAULT) { errcode = X509V3_R_EXTENSION_EXISTS; goto err; } /* If delete, just delete it */ if (ext_op == X509V3_ADD_DELETE) { if (!sk_X509_EXTENSION_delete(*x, extidx)) return -1; return 1; } } else { /* * If replace existing or delete, error since extension must exist */ if ((ext_op == X509V3_ADD_REPLACE_EXISTING) || (ext_op == X509V3_ADD_DELETE)) { errcode = X509V3_R_EXTENSION_NOT_FOUND; goto err; } } /* * If we get this far then we have to create an extension: could have * some flags for alternative encoding schemes... */ ext = X509V3_EXT_i2d(nid, crit, value); if (!ext) { X509V3err(X509V3_F_X509V3_ADD1_I2D, X509V3_R_ERROR_CREATING_EXTENSION); return 0; } /* If extension exists replace it.. */ if (extidx >= 0) { extmp = sk_X509_EXTENSION_value(*x, extidx); X509_EXTENSION_free(extmp); if (!sk_X509_EXTENSION_set(*x, extidx, ext)) return -1; return 1; } ret = *x; if (*x == NULL && (ret = sk_X509_EXTENSION_new_null()) == NULL) goto m_fail; if (!sk_X509_EXTENSION_push(ret, ext)) goto m_fail; *x = ret; return 1; m_fail: /* X509V3err(X509V3_F_X509V3_ADD1_I2D, ERR_R_MALLOC_FAILURE); */ if (ret != *x) sk_X509_EXTENSION_free(ret); X509_EXTENSION_free(ext); return -1; err: if (!(flags & X509V3_ADD_SILENT)) X509V3err(X509V3_F_X509V3_ADD1_I2D, errcode); return 0; } openssl-1.1.1f/crypto/x509v3/v3_ncons.c000066400000000000000000000506771364063235100175570ustar00rootroot00000000000000/* * Copyright 2003-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include "crypto/asn1.h" #include #include #include #include "crypto/x509.h" #include "ext_dat.h" static void *v2i_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static int i2r_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method, void *a, BIO *bp, int ind); static int do_i2r_name_constraints(const X509V3_EXT_METHOD *method, STACK_OF(GENERAL_SUBTREE) *trees, BIO *bp, int ind, const char *name); static int print_nc_ipadd(BIO *bp, ASN1_OCTET_STRING *ip); static int nc_match(GENERAL_NAME *gen, NAME_CONSTRAINTS *nc); static int nc_match_single(GENERAL_NAME *sub, GENERAL_NAME *gen); static int nc_dn(X509_NAME *sub, X509_NAME *nm); static int nc_dns(ASN1_IA5STRING *sub, ASN1_IA5STRING *dns); static int nc_email(ASN1_IA5STRING *sub, ASN1_IA5STRING *eml); static int nc_uri(ASN1_IA5STRING *uri, ASN1_IA5STRING *base); static int nc_ip(ASN1_OCTET_STRING *ip, ASN1_OCTET_STRING *base); const X509V3_EXT_METHOD v3_name_constraints = { NID_name_constraints, 0, ASN1_ITEM_ref(NAME_CONSTRAINTS), 0, 0, 0, 0, 0, 0, 0, v2i_NAME_CONSTRAINTS, i2r_NAME_CONSTRAINTS, 0, NULL }; ASN1_SEQUENCE(GENERAL_SUBTREE) = { ASN1_SIMPLE(GENERAL_SUBTREE, base, GENERAL_NAME), ASN1_IMP_OPT(GENERAL_SUBTREE, minimum, ASN1_INTEGER, 0), ASN1_IMP_OPT(GENERAL_SUBTREE, maximum, ASN1_INTEGER, 1) } ASN1_SEQUENCE_END(GENERAL_SUBTREE) ASN1_SEQUENCE(NAME_CONSTRAINTS) = { ASN1_IMP_SEQUENCE_OF_OPT(NAME_CONSTRAINTS, permittedSubtrees, GENERAL_SUBTREE, 0), ASN1_IMP_SEQUENCE_OF_OPT(NAME_CONSTRAINTS, excludedSubtrees, GENERAL_SUBTREE, 1), } ASN1_SEQUENCE_END(NAME_CONSTRAINTS) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(GENERAL_SUBTREE) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(NAME_CONSTRAINTS) /* * We cannot use strncasecmp here because that applies locale specific rules. * For example in Turkish 'I' is not the uppercase character for 'i'. We need to * do a simple ASCII case comparison ignoring the locale (that is why we use * numeric constants below). */ static int ia5ncasecmp(const char *s1, const char *s2, size_t n) { for (; n > 0; n--, s1++, s2++) { if (*s1 != *s2) { unsigned char c1 = (unsigned char)*s1, c2 = (unsigned char)*s2; /* Convert to lower case */ if (c1 >= 0x41 /* A */ && c1 <= 0x5A /* Z */) c1 += 0x20; if (c2 >= 0x41 /* A */ && c2 <= 0x5A /* Z */) c2 += 0x20; if (c1 == c2) continue; if (c1 < c2) return -1; /* c1 > c2 */ return 1; } else if (*s1 == 0) { /* If we get here we know that *s2 == 0 too */ return 0; } } return 0; } static int ia5casecmp(const char *s1, const char *s2) { return ia5ncasecmp(s1, s2, SIZE_MAX); } static void *v2i_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { int i; CONF_VALUE tval, *val; STACK_OF(GENERAL_SUBTREE) **ptree = NULL; NAME_CONSTRAINTS *ncons = NULL; GENERAL_SUBTREE *sub = NULL; ncons = NAME_CONSTRAINTS_new(); if (ncons == NULL) goto memerr; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { val = sk_CONF_VALUE_value(nval, i); if (strncmp(val->name, "permitted", 9) == 0 && val->name[9]) { ptree = &ncons->permittedSubtrees; tval.name = val->name + 10; } else if (strncmp(val->name, "excluded", 8) == 0 && val->name[8]) { ptree = &ncons->excludedSubtrees; tval.name = val->name + 9; } else { X509V3err(X509V3_F_V2I_NAME_CONSTRAINTS, X509V3_R_INVALID_SYNTAX); goto err; } tval.value = val->value; sub = GENERAL_SUBTREE_new(); if (sub == NULL) goto memerr; if (!v2i_GENERAL_NAME_ex(sub->base, method, ctx, &tval, 1)) goto err; if (*ptree == NULL) *ptree = sk_GENERAL_SUBTREE_new_null(); if (*ptree == NULL || !sk_GENERAL_SUBTREE_push(*ptree, sub)) goto memerr; sub = NULL; } return ncons; memerr: X509V3err(X509V3_F_V2I_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE); err: NAME_CONSTRAINTS_free(ncons); GENERAL_SUBTREE_free(sub); return NULL; } static int i2r_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method, void *a, BIO *bp, int ind) { NAME_CONSTRAINTS *ncons = a; do_i2r_name_constraints(method, ncons->permittedSubtrees, bp, ind, "Permitted"); do_i2r_name_constraints(method, ncons->excludedSubtrees, bp, ind, "Excluded"); return 1; } static int do_i2r_name_constraints(const X509V3_EXT_METHOD *method, STACK_OF(GENERAL_SUBTREE) *trees, BIO *bp, int ind, const char *name) { GENERAL_SUBTREE *tree; int i; if (sk_GENERAL_SUBTREE_num(trees) > 0) BIO_printf(bp, "%*s%s:\n", ind, "", name); for (i = 0; i < sk_GENERAL_SUBTREE_num(trees); i++) { tree = sk_GENERAL_SUBTREE_value(trees, i); BIO_printf(bp, "%*s", ind + 2, ""); if (tree->base->type == GEN_IPADD) print_nc_ipadd(bp, tree->base->d.ip); else GENERAL_NAME_print(bp, tree->base); BIO_puts(bp, "\n"); } return 1; } static int print_nc_ipadd(BIO *bp, ASN1_OCTET_STRING *ip) { int i, len; unsigned char *p; p = ip->data; len = ip->length; BIO_puts(bp, "IP:"); if (len == 8) { BIO_printf(bp, "%d.%d.%d.%d/%d.%d.%d.%d", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); } else if (len == 32) { for (i = 0; i < 16; i++) { BIO_printf(bp, "%X", p[0] << 8 | p[1]); p += 2; if (i == 7) BIO_puts(bp, "/"); else if (i != 15) BIO_puts(bp, ":"); } } else BIO_printf(bp, "IP Address:"); return 1; } #define NAME_CHECK_MAX (1 << 20) static int add_lengths(int *out, int a, int b) { /* sk_FOO_num(NULL) returns -1 but is effectively 0 when iterating. */ if (a < 0) a = 0; if (b < 0) b = 0; if (a > INT_MAX - b) return 0; *out = a + b; return 1; } /*- * Check a certificate conforms to a specified set of constraints. * Return values: * X509_V_OK: All constraints obeyed. * X509_V_ERR_PERMITTED_VIOLATION: Permitted subtree violation. * X509_V_ERR_EXCLUDED_VIOLATION: Excluded subtree violation. * X509_V_ERR_SUBTREE_MINMAX: Min or max values present and matching type. * X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE: Unsupported constraint type. * X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX: bad unsupported constraint syntax. * X509_V_ERR_UNSUPPORTED_NAME_SYNTAX: bad or unsupported syntax of name */ int NAME_CONSTRAINTS_check(X509 *x, NAME_CONSTRAINTS *nc) { int r, i, name_count, constraint_count; X509_NAME *nm; nm = X509_get_subject_name(x); /* * Guard against certificates with an excessive number of names or * constraints causing a computationally expensive name constraints check. */ if (!add_lengths(&name_count, X509_NAME_entry_count(nm), sk_GENERAL_NAME_num(x->altname)) || !add_lengths(&constraint_count, sk_GENERAL_SUBTREE_num(nc->permittedSubtrees), sk_GENERAL_SUBTREE_num(nc->excludedSubtrees)) || (name_count > 0 && constraint_count > NAME_CHECK_MAX / name_count)) return X509_V_ERR_UNSPECIFIED; if (X509_NAME_entry_count(nm) > 0) { GENERAL_NAME gntmp; gntmp.type = GEN_DIRNAME; gntmp.d.directoryName = nm; r = nc_match(&gntmp, nc); if (r != X509_V_OK) return r; gntmp.type = GEN_EMAIL; /* Process any email address attributes in subject name */ for (i = -1;;) { const X509_NAME_ENTRY *ne; i = X509_NAME_get_index_by_NID(nm, NID_pkcs9_emailAddress, i); if (i == -1) break; ne = X509_NAME_get_entry(nm, i); gntmp.d.rfc822Name = X509_NAME_ENTRY_get_data(ne); if (gntmp.d.rfc822Name->type != V_ASN1_IA5STRING) return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX; r = nc_match(&gntmp, nc); if (r != X509_V_OK) return r; } } for (i = 0; i < sk_GENERAL_NAME_num(x->altname); i++) { GENERAL_NAME *gen = sk_GENERAL_NAME_value(x->altname, i); r = nc_match(gen, nc); if (r != X509_V_OK) return r; } return X509_V_OK; } static int cn2dnsid(ASN1_STRING *cn, unsigned char **dnsid, size_t *idlen) { int utf8_length; unsigned char *utf8_value; int i; int isdnsname = 0; /* Don't leave outputs uninitialized */ *dnsid = NULL; *idlen = 0; /*- * Per RFC 6125, DNS-IDs representing internationalized domain names appear * in certificates in A-label encoded form: * * https://tools.ietf.org/html/rfc6125#section-6.4.2 * * The same applies to CNs which are intended to represent DNS names. * However, while in the SAN DNS-IDs are IA5Strings, as CNs they may be * needlessly encoded in 16-bit Unicode. We perform a conversion to UTF-8 * to ensure that we get an ASCII representation of any CNs that are * representable as ASCII, but just not encoded as ASCII. The UTF-8 form * may contain some non-ASCII octets, and that's fine, such CNs are not * valid legacy DNS names. * * Note, 'int' is the return type of ASN1_STRING_to_UTF8() so that's what * we must use for 'utf8_length'. */ if ((utf8_length = ASN1_STRING_to_UTF8(&utf8_value, cn)) < 0) return X509_V_ERR_OUT_OF_MEM; /* * Some certificates have had names that include a *trailing* NUL byte. * Remove these harmless NUL characters. They would otherwise yield false * alarms with the following embedded NUL check. */ while (utf8_length > 0 && utf8_value[utf8_length - 1] == '\0') --utf8_length; /* Reject *embedded* NULs */ if ((size_t)utf8_length != strlen((char *)utf8_value)) { OPENSSL_free(utf8_value); return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX; } /* * XXX: Deviation from strict DNS name syntax, also check names with '_' * Check DNS name syntax, any '-' or '.' must be internal, * and on either side of each '.' we can't have a '-' or '.'. * * If the name has just one label, we don't consider it a DNS name. This * means that "CN=sometld" cannot be precluded by DNS name constraints, but * that is not a problem. */ for (i = 0; i < utf8_length; ++i) { unsigned char c = utf8_value[i]; if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_') continue; /* Dot and hyphen cannot be first or last. */ if (i > 0 && i < utf8_length - 1) { if (c == '-') continue; /* * Next to a dot the preceding and following characters must not be * another dot or a hyphen. Otherwise, record that the name is * plausible, since it has two or more labels. */ if (c == '.' && utf8_value[i + 1] != '.' && utf8_value[i - 1] != '-' && utf8_value[i + 1] != '-') { isdnsname = 1; continue; } } isdnsname = 0; break; } if (isdnsname) { *dnsid = utf8_value; *idlen = (size_t)utf8_length; return X509_V_OK; } OPENSSL_free(utf8_value); return X509_V_OK; } /* * Check CN against DNS-ID name constraints. */ int NAME_CONSTRAINTS_check_CN(X509 *x, NAME_CONSTRAINTS *nc) { int r, i; X509_NAME *nm = X509_get_subject_name(x); ASN1_STRING stmp; GENERAL_NAME gntmp; stmp.flags = 0; stmp.type = V_ASN1_IA5STRING; gntmp.type = GEN_DNS; gntmp.d.dNSName = &stmp; /* Process any commonName attributes in subject name */ for (i = -1;;) { X509_NAME_ENTRY *ne; ASN1_STRING *cn; unsigned char *idval; size_t idlen; i = X509_NAME_get_index_by_NID(nm, NID_commonName, i); if (i == -1) break; ne = X509_NAME_get_entry(nm, i); cn = X509_NAME_ENTRY_get_data(ne); /* Only process attributes that look like host names */ if ((r = cn2dnsid(cn, &idval, &idlen)) != X509_V_OK) return r; if (idlen == 0) continue; stmp.length = idlen; stmp.data = idval; r = nc_match(&gntmp, nc); OPENSSL_free(idval); if (r != X509_V_OK) return r; } return X509_V_OK; } static int nc_match(GENERAL_NAME *gen, NAME_CONSTRAINTS *nc) { GENERAL_SUBTREE *sub; int i, r, match = 0; /* * Permitted subtrees: if any subtrees exist of matching the type at * least one subtree must match. */ for (i = 0; i < sk_GENERAL_SUBTREE_num(nc->permittedSubtrees); i++) { sub = sk_GENERAL_SUBTREE_value(nc->permittedSubtrees, i); if (gen->type != sub->base->type) continue; if (sub->minimum || sub->maximum) return X509_V_ERR_SUBTREE_MINMAX; /* If we already have a match don't bother trying any more */ if (match == 2) continue; if (match == 0) match = 1; r = nc_match_single(gen, sub->base); if (r == X509_V_OK) match = 2; else if (r != X509_V_ERR_PERMITTED_VIOLATION) return r; } if (match == 1) return X509_V_ERR_PERMITTED_VIOLATION; /* Excluded subtrees: must not match any of these */ for (i = 0; i < sk_GENERAL_SUBTREE_num(nc->excludedSubtrees); i++) { sub = sk_GENERAL_SUBTREE_value(nc->excludedSubtrees, i); if (gen->type != sub->base->type) continue; if (sub->minimum || sub->maximum) return X509_V_ERR_SUBTREE_MINMAX; r = nc_match_single(gen, sub->base); if (r == X509_V_OK) return X509_V_ERR_EXCLUDED_VIOLATION; else if (r != X509_V_ERR_PERMITTED_VIOLATION) return r; } return X509_V_OK; } static int nc_match_single(GENERAL_NAME *gen, GENERAL_NAME *base) { switch (base->type) { case GEN_DIRNAME: return nc_dn(gen->d.directoryName, base->d.directoryName); case GEN_DNS: return nc_dns(gen->d.dNSName, base->d.dNSName); case GEN_EMAIL: return nc_email(gen->d.rfc822Name, base->d.rfc822Name); case GEN_URI: return nc_uri(gen->d.uniformResourceIdentifier, base->d.uniformResourceIdentifier); case GEN_IPADD: return nc_ip(gen->d.iPAddress, base->d.iPAddress); default: return X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE; } } /* * directoryName name constraint matching. The canonical encoding of * X509_NAME makes this comparison easy. It is matched if the subtree is a * subset of the name. */ static int nc_dn(X509_NAME *nm, X509_NAME *base) { /* Ensure canonical encodings are up to date. */ if (nm->modified && i2d_X509_NAME(nm, NULL) < 0) return X509_V_ERR_OUT_OF_MEM; if (base->modified && i2d_X509_NAME(base, NULL) < 0) return X509_V_ERR_OUT_OF_MEM; if (base->canon_enclen > nm->canon_enclen) return X509_V_ERR_PERMITTED_VIOLATION; if (memcmp(base->canon_enc, nm->canon_enc, base->canon_enclen)) return X509_V_ERR_PERMITTED_VIOLATION; return X509_V_OK; } static int nc_dns(ASN1_IA5STRING *dns, ASN1_IA5STRING *base) { char *baseptr = (char *)base->data; char *dnsptr = (char *)dns->data; /* Empty matches everything */ if (!*baseptr) return X509_V_OK; /* * Otherwise can add zero or more components on the left so compare RHS * and if dns is longer and expect '.' as preceding character. */ if (dns->length > base->length) { dnsptr += dns->length - base->length; if (*baseptr != '.' && dnsptr[-1] != '.') return X509_V_ERR_PERMITTED_VIOLATION; } if (ia5casecmp(baseptr, dnsptr)) return X509_V_ERR_PERMITTED_VIOLATION; return X509_V_OK; } static int nc_email(ASN1_IA5STRING *eml, ASN1_IA5STRING *base) { const char *baseptr = (char *)base->data; const char *emlptr = (char *)eml->data; const char *baseat = strchr(baseptr, '@'); const char *emlat = strchr(emlptr, '@'); if (!emlat) return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX; /* Special case: initial '.' is RHS match */ if (!baseat && (*baseptr == '.')) { if (eml->length > base->length) { emlptr += eml->length - base->length; if (ia5casecmp(baseptr, emlptr) == 0) return X509_V_OK; } return X509_V_ERR_PERMITTED_VIOLATION; } /* If we have anything before '@' match local part */ if (baseat) { if (baseat != baseptr) { if ((baseat - baseptr) != (emlat - emlptr)) return X509_V_ERR_PERMITTED_VIOLATION; /* Case sensitive match of local part */ if (strncmp(baseptr, emlptr, emlat - emlptr)) return X509_V_ERR_PERMITTED_VIOLATION; } /* Position base after '@' */ baseptr = baseat + 1; } emlptr = emlat + 1; /* Just have hostname left to match: case insensitive */ if (ia5casecmp(baseptr, emlptr)) return X509_V_ERR_PERMITTED_VIOLATION; return X509_V_OK; } static int nc_uri(ASN1_IA5STRING *uri, ASN1_IA5STRING *base) { const char *baseptr = (char *)base->data; const char *hostptr = (char *)uri->data; const char *p = strchr(hostptr, ':'); int hostlen; /* Check for foo:// and skip past it */ if (!p || (p[1] != '/') || (p[2] != '/')) return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX; hostptr = p + 3; /* Determine length of hostname part of URI */ /* Look for a port indicator as end of hostname first */ p = strchr(hostptr, ':'); /* Otherwise look for trailing slash */ if (!p) p = strchr(hostptr, '/'); if (!p) hostlen = strlen(hostptr); else hostlen = p - hostptr; if (hostlen == 0) return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX; /* Special case: initial '.' is RHS match */ if (*baseptr == '.') { if (hostlen > base->length) { p = hostptr + hostlen - base->length; if (ia5ncasecmp(p, baseptr, base->length) == 0) return X509_V_OK; } return X509_V_ERR_PERMITTED_VIOLATION; } if ((base->length != (int)hostlen) || ia5ncasecmp(hostptr, baseptr, hostlen)) return X509_V_ERR_PERMITTED_VIOLATION; return X509_V_OK; } static int nc_ip(ASN1_OCTET_STRING *ip, ASN1_OCTET_STRING *base) { int hostlen, baselen, i; unsigned char *hostptr, *baseptr, *maskptr; hostptr = ip->data; hostlen = ip->length; baseptr = base->data; baselen = base->length; /* Invalid if not IPv4 or IPv6 */ if (!((hostlen == 4) || (hostlen == 16))) return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX; if (!((baselen == 8) || (baselen == 32))) return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX; /* Do not match IPv4 with IPv6 */ if (hostlen * 2 != baselen) return X509_V_ERR_PERMITTED_VIOLATION; maskptr = base->data + hostlen; /* Considering possible not aligned base ipAddress */ /* Not checking for wrong mask definition: i.e.: 255.0.255.0 */ for (i = 0; i < hostlen; i++) if ((hostptr[i] & maskptr[i]) != (baseptr[i] & maskptr[i])) return X509_V_ERR_PERMITTED_VIOLATION; return X509_V_OK; } openssl-1.1.1f/crypto/x509v3/v3_pci.c000066400000000000000000000267101364063235100172010ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "internal/cryptlib.h" #include #include #include "ext_dat.h" static int i2r_pci(X509V3_EXT_METHOD *method, PROXY_CERT_INFO_EXTENSION *ext, BIO *out, int indent); static PROXY_CERT_INFO_EXTENSION *r2i_pci(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, char *str); const X509V3_EXT_METHOD v3_pci = { NID_proxyCertInfo, 0, ASN1_ITEM_ref(PROXY_CERT_INFO_EXTENSION), 0, 0, 0, 0, 0, 0, NULL, NULL, (X509V3_EXT_I2R)i2r_pci, (X509V3_EXT_R2I)r2i_pci, NULL, }; static int i2r_pci(X509V3_EXT_METHOD *method, PROXY_CERT_INFO_EXTENSION *pci, BIO *out, int indent) { BIO_printf(out, "%*sPath Length Constraint: ", indent, ""); if (pci->pcPathLengthConstraint) i2a_ASN1_INTEGER(out, pci->pcPathLengthConstraint); else BIO_printf(out, "infinite"); BIO_puts(out, "\n"); BIO_printf(out, "%*sPolicy Language: ", indent, ""); i2a_ASN1_OBJECT(out, pci->proxyPolicy->policyLanguage); BIO_puts(out, "\n"); if (pci->proxyPolicy->policy && pci->proxyPolicy->policy->data) BIO_printf(out, "%*sPolicy Text: %s\n", indent, "", pci->proxyPolicy->policy->data); return 1; } static int process_pci_value(CONF_VALUE *val, ASN1_OBJECT **language, ASN1_INTEGER **pathlen, ASN1_OCTET_STRING **policy) { int free_policy = 0; if (strcmp(val->name, "language") == 0) { if (*language) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, X509V3_R_POLICY_LANGUAGE_ALREADY_DEFINED); X509V3_conf_err(val); return 0; } if ((*language = OBJ_txt2obj(val->value, 0)) == NULL) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, X509V3_R_INVALID_OBJECT_IDENTIFIER); X509V3_conf_err(val); return 0; } } else if (strcmp(val->name, "pathlen") == 0) { if (*pathlen) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, X509V3_R_POLICY_PATH_LENGTH_ALREADY_DEFINED); X509V3_conf_err(val); return 0; } if (!X509V3_get_value_int(val, pathlen)) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, X509V3_R_POLICY_PATH_LENGTH); X509V3_conf_err(val); return 0; } } else if (strcmp(val->name, "policy") == 0) { unsigned char *tmp_data = NULL; long val_len; if (!*policy) { *policy = ASN1_OCTET_STRING_new(); if (*policy == NULL) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, ERR_R_MALLOC_FAILURE); X509V3_conf_err(val); return 0; } free_policy = 1; } if (strncmp(val->value, "hex:", 4) == 0) { unsigned char *tmp_data2 = OPENSSL_hexstr2buf(val->value + 4, &val_len); if (!tmp_data2) { X509V3_conf_err(val); goto err; } tmp_data = OPENSSL_realloc((*policy)->data, (*policy)->length + val_len + 1); if (tmp_data) { (*policy)->data = tmp_data; memcpy(&(*policy)->data[(*policy)->length], tmp_data2, val_len); (*policy)->length += val_len; (*policy)->data[(*policy)->length] = '\0'; } else { OPENSSL_free(tmp_data2); /* * realloc failure implies the original data space is b0rked * too! */ OPENSSL_free((*policy)->data); (*policy)->data = NULL; (*policy)->length = 0; X509V3err(X509V3_F_PROCESS_PCI_VALUE, ERR_R_MALLOC_FAILURE); X509V3_conf_err(val); goto err; } OPENSSL_free(tmp_data2); } else if (strncmp(val->value, "file:", 5) == 0) { unsigned char buf[2048]; int n; BIO *b = BIO_new_file(val->value + 5, "r"); if (!b) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, ERR_R_BIO_LIB); X509V3_conf_err(val); goto err; } while ((n = BIO_read(b, buf, sizeof(buf))) > 0 || (n == 0 && BIO_should_retry(b))) { if (!n) continue; tmp_data = OPENSSL_realloc((*policy)->data, (*policy)->length + n + 1); if (!tmp_data) { OPENSSL_free((*policy)->data); (*policy)->data = NULL; (*policy)->length = 0; X509V3err(X509V3_F_PROCESS_PCI_VALUE, ERR_R_MALLOC_FAILURE); X509V3_conf_err(val); BIO_free_all(b); goto err; } (*policy)->data = tmp_data; memcpy(&(*policy)->data[(*policy)->length], buf, n); (*policy)->length += n; (*policy)->data[(*policy)->length] = '\0'; } BIO_free_all(b); if (n < 0) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, ERR_R_BIO_LIB); X509V3_conf_err(val); goto err; } } else if (strncmp(val->value, "text:", 5) == 0) { val_len = strlen(val->value + 5); tmp_data = OPENSSL_realloc((*policy)->data, (*policy)->length + val_len + 1); if (tmp_data) { (*policy)->data = tmp_data; memcpy(&(*policy)->data[(*policy)->length], val->value + 5, val_len); (*policy)->length += val_len; (*policy)->data[(*policy)->length] = '\0'; } else { /* * realloc failure implies the original data space is b0rked * too! */ OPENSSL_free((*policy)->data); (*policy)->data = NULL; (*policy)->length = 0; X509V3err(X509V3_F_PROCESS_PCI_VALUE, ERR_R_MALLOC_FAILURE); X509V3_conf_err(val); goto err; } } else { X509V3err(X509V3_F_PROCESS_PCI_VALUE, X509V3_R_INCORRECT_POLICY_SYNTAX_TAG); X509V3_conf_err(val); goto err; } if (!tmp_data) { X509V3err(X509V3_F_PROCESS_PCI_VALUE, ERR_R_MALLOC_FAILURE); X509V3_conf_err(val); goto err; } } return 1; err: if (free_policy) { ASN1_OCTET_STRING_free(*policy); *policy = NULL; } return 0; } static PROXY_CERT_INFO_EXTENSION *r2i_pci(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, char *value) { PROXY_CERT_INFO_EXTENSION *pci = NULL; STACK_OF(CONF_VALUE) *vals; ASN1_OBJECT *language = NULL; ASN1_INTEGER *pathlen = NULL; ASN1_OCTET_STRING *policy = NULL; int i, j; vals = X509V3_parse_list(value); for (i = 0; i < sk_CONF_VALUE_num(vals); i++) { CONF_VALUE *cnf = sk_CONF_VALUE_value(vals, i); if (!cnf->name || (*cnf->name != '@' && !cnf->value)) { X509V3err(X509V3_F_R2I_PCI, X509V3_R_INVALID_PROXY_POLICY_SETTING); X509V3_conf_err(cnf); goto err; } if (*cnf->name == '@') { STACK_OF(CONF_VALUE) *sect; int success_p = 1; sect = X509V3_get_section(ctx, cnf->name + 1); if (!sect) { X509V3err(X509V3_F_R2I_PCI, X509V3_R_INVALID_SECTION); X509V3_conf_err(cnf); goto err; } for (j = 0; success_p && j < sk_CONF_VALUE_num(sect); j++) { success_p = process_pci_value(sk_CONF_VALUE_value(sect, j), &language, &pathlen, &policy); } X509V3_section_free(ctx, sect); if (!success_p) goto err; } else { if (!process_pci_value(cnf, &language, &pathlen, &policy)) { X509V3_conf_err(cnf); goto err; } } } /* Language is mandatory */ if (!language) { X509V3err(X509V3_F_R2I_PCI, X509V3_R_NO_PROXY_CERT_POLICY_LANGUAGE_DEFINED); goto err; } i = OBJ_obj2nid(language); if ((i == NID_Independent || i == NID_id_ppl_inheritAll) && policy) { X509V3err(X509V3_F_R2I_PCI, X509V3_R_POLICY_WHEN_PROXY_LANGUAGE_REQUIRES_NO_POLICY); goto err; } pci = PROXY_CERT_INFO_EXTENSION_new(); if (pci == NULL) { X509V3err(X509V3_F_R2I_PCI, ERR_R_MALLOC_FAILURE); goto err; } pci->proxyPolicy->policyLanguage = language; language = NULL; pci->proxyPolicy->policy = policy; policy = NULL; pci->pcPathLengthConstraint = pathlen; pathlen = NULL; goto end; err: ASN1_OBJECT_free(language); ASN1_INTEGER_free(pathlen); pathlen = NULL; ASN1_OCTET_STRING_free(policy); policy = NULL; PROXY_CERT_INFO_EXTENSION_free(pci); pci = NULL; end: sk_CONF_VALUE_pop_free(vals, X509V3_conf_free); return pci; } openssl-1.1.1f/crypto/x509v3/v3_pcia.c000066400000000000000000000051671364063235100173450ustar00rootroot00000000000000/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include ASN1_SEQUENCE(PROXY_POLICY) = { ASN1_SIMPLE(PROXY_POLICY,policyLanguage,ASN1_OBJECT), ASN1_OPT(PROXY_POLICY,policy,ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(PROXY_POLICY) IMPLEMENT_ASN1_FUNCTIONS(PROXY_POLICY) ASN1_SEQUENCE(PROXY_CERT_INFO_EXTENSION) = { ASN1_OPT(PROXY_CERT_INFO_EXTENSION,pcPathLengthConstraint,ASN1_INTEGER), ASN1_SIMPLE(PROXY_CERT_INFO_EXTENSION,proxyPolicy,PROXY_POLICY) } ASN1_SEQUENCE_END(PROXY_CERT_INFO_EXTENSION) IMPLEMENT_ASN1_FUNCTIONS(PROXY_CERT_INFO_EXTENSION) openssl-1.1.1f/crypto/x509v3/v3_pcons.c000066400000000000000000000063201364063235100175430ustar00rootroot00000000000000/* * Copyright 2003-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ext_dat.h" static STACK_OF(CONF_VALUE) *i2v_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method, void *bcons, STACK_OF(CONF_VALUE) *extlist); static void *v2i_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values); const X509V3_EXT_METHOD v3_policy_constraints = { NID_policy_constraints, 0, ASN1_ITEM_ref(POLICY_CONSTRAINTS), 0, 0, 0, 0, 0, 0, i2v_POLICY_CONSTRAINTS, v2i_POLICY_CONSTRAINTS, NULL, NULL, NULL }; ASN1_SEQUENCE(POLICY_CONSTRAINTS) = { ASN1_IMP_OPT(POLICY_CONSTRAINTS, requireExplicitPolicy, ASN1_INTEGER,0), ASN1_IMP_OPT(POLICY_CONSTRAINTS, inhibitPolicyMapping, ASN1_INTEGER,1) } ASN1_SEQUENCE_END(POLICY_CONSTRAINTS) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(POLICY_CONSTRAINTS) static STACK_OF(CONF_VALUE) *i2v_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method, void *a, STACK_OF(CONF_VALUE) *extlist) { POLICY_CONSTRAINTS *pcons = a; X509V3_add_value_int("Require Explicit Policy", pcons->requireExplicitPolicy, &extlist); X509V3_add_value_int("Inhibit Policy Mapping", pcons->inhibitPolicyMapping, &extlist); return extlist; } static void *v2i_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values) { POLICY_CONSTRAINTS *pcons = NULL; CONF_VALUE *val; int i; if ((pcons = POLICY_CONSTRAINTS_new()) == NULL) { X509V3err(X509V3_F_V2I_POLICY_CONSTRAINTS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { val = sk_CONF_VALUE_value(values, i); if (strcmp(val->name, "requireExplicitPolicy") == 0) { if (!X509V3_get_value_int(val, &pcons->requireExplicitPolicy)) goto err; } else if (strcmp(val->name, "inhibitPolicyMapping") == 0) { if (!X509V3_get_value_int(val, &pcons->inhibitPolicyMapping)) goto err; } else { X509V3err(X509V3_F_V2I_POLICY_CONSTRAINTS, X509V3_R_INVALID_NAME); X509V3_conf_err(val); goto err; } } if (!pcons->inhibitPolicyMapping && !pcons->requireExplicitPolicy) { X509V3err(X509V3_F_V2I_POLICY_CONSTRAINTS, X509V3_R_ILLEGAL_EMPTY_EXTENSION); goto err; } return pcons; err: POLICY_CONSTRAINTS_free(pcons); return NULL; } openssl-1.1.1f/crypto/x509v3/v3_pku.c000066400000000000000000000032701364063235100172210ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ext_dat.h" static int i2r_PKEY_USAGE_PERIOD(X509V3_EXT_METHOD *method, PKEY_USAGE_PERIOD *usage, BIO *out, int indent); const X509V3_EXT_METHOD v3_pkey_usage_period = { NID_private_key_usage_period, 0, ASN1_ITEM_ref(PKEY_USAGE_PERIOD), 0, 0, 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2R)i2r_PKEY_USAGE_PERIOD, NULL, NULL }; ASN1_SEQUENCE(PKEY_USAGE_PERIOD) = { ASN1_IMP_OPT(PKEY_USAGE_PERIOD, notBefore, ASN1_GENERALIZEDTIME, 0), ASN1_IMP_OPT(PKEY_USAGE_PERIOD, notAfter, ASN1_GENERALIZEDTIME, 1) } ASN1_SEQUENCE_END(PKEY_USAGE_PERIOD) IMPLEMENT_ASN1_FUNCTIONS(PKEY_USAGE_PERIOD) static int i2r_PKEY_USAGE_PERIOD(X509V3_EXT_METHOD *method, PKEY_USAGE_PERIOD *usage, BIO *out, int indent) { BIO_printf(out, "%*s", indent, ""); if (usage->notBefore) { BIO_write(out, "Not Before: ", 12); ASN1_GENERALIZEDTIME_print(out, usage->notBefore); if (usage->notAfter) BIO_write(out, ", ", 2); } if (usage->notAfter) { BIO_write(out, "Not After: ", 11); ASN1_GENERALIZEDTIME_print(out, usage->notAfter); } return 1; } openssl-1.1.1f/crypto/x509v3/v3_pmaps.c000066400000000000000000000073731364063235100175520ustar00rootroot00000000000000/* * Copyright 2003-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include "ext_dat.h" static void *v2i_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static STACK_OF(CONF_VALUE) *i2v_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, void *pmps, STACK_OF(CONF_VALUE) *extlist); const X509V3_EXT_METHOD v3_policy_mappings = { NID_policy_mappings, 0, ASN1_ITEM_ref(POLICY_MAPPINGS), 0, 0, 0, 0, 0, 0, i2v_POLICY_MAPPINGS, v2i_POLICY_MAPPINGS, 0, 0, NULL }; ASN1_SEQUENCE(POLICY_MAPPING) = { ASN1_SIMPLE(POLICY_MAPPING, issuerDomainPolicy, ASN1_OBJECT), ASN1_SIMPLE(POLICY_MAPPING, subjectDomainPolicy, ASN1_OBJECT) } ASN1_SEQUENCE_END(POLICY_MAPPING) ASN1_ITEM_TEMPLATE(POLICY_MAPPINGS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, POLICY_MAPPINGS, POLICY_MAPPING) ASN1_ITEM_TEMPLATE_END(POLICY_MAPPINGS) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(POLICY_MAPPING) static STACK_OF(CONF_VALUE) *i2v_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, void *a, STACK_OF(CONF_VALUE) *ext_list) { POLICY_MAPPINGS *pmaps = a; POLICY_MAPPING *pmap; int i; char obj_tmp1[80]; char obj_tmp2[80]; for (i = 0; i < sk_POLICY_MAPPING_num(pmaps); i++) { pmap = sk_POLICY_MAPPING_value(pmaps, i); i2t_ASN1_OBJECT(obj_tmp1, 80, pmap->issuerDomainPolicy); i2t_ASN1_OBJECT(obj_tmp2, 80, pmap->subjectDomainPolicy); X509V3_add_value(obj_tmp1, obj_tmp2, &ext_list); } return ext_list; } static void *v2i_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { POLICY_MAPPING *pmap = NULL; ASN1_OBJECT *obj1 = NULL, *obj2 = NULL; CONF_VALUE *val; POLICY_MAPPINGS *pmaps; const int num = sk_CONF_VALUE_num(nval); int i; if ((pmaps = sk_POLICY_MAPPING_new_reserve(NULL, num)) == NULL) { X509V3err(X509V3_F_V2I_POLICY_MAPPINGS, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < num; i++) { val = sk_CONF_VALUE_value(nval, i); if (!val->value || !val->name) { X509V3err(X509V3_F_V2I_POLICY_MAPPINGS, X509V3_R_INVALID_OBJECT_IDENTIFIER); X509V3_conf_err(val); goto err; } obj1 = OBJ_txt2obj(val->name, 0); obj2 = OBJ_txt2obj(val->value, 0); if (!obj1 || !obj2) { X509V3err(X509V3_F_V2I_POLICY_MAPPINGS, X509V3_R_INVALID_OBJECT_IDENTIFIER); X509V3_conf_err(val); goto err; } pmap = POLICY_MAPPING_new(); if (pmap == NULL) { X509V3err(X509V3_F_V2I_POLICY_MAPPINGS, ERR_R_MALLOC_FAILURE); goto err; } pmap->issuerDomainPolicy = obj1; pmap->subjectDomainPolicy = obj2; obj1 = obj2 = NULL; sk_POLICY_MAPPING_push(pmaps, pmap); /* no failure as it was reserved */ } return pmaps; err: ASN1_OBJECT_free(obj1); ASN1_OBJECT_free(obj2); sk_POLICY_MAPPING_pop_free(pmaps, POLICY_MAPPING_free); return NULL; } openssl-1.1.1f/crypto/x509v3/v3_prn.c000066400000000000000000000136331364063235100172250ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* X509 v3 extension utilities */ #include #include "internal/cryptlib.h" #include #include /* Extension printing routines */ static int unknown_ext_print(BIO *out, const unsigned char *ext, int extlen, unsigned long flag, int indent, int supported); /* Print out a name+value stack */ void X509V3_EXT_val_prn(BIO *out, STACK_OF(CONF_VALUE) *val, int indent, int ml) { int i; CONF_VALUE *nval; if (!val) return; if (!ml || !sk_CONF_VALUE_num(val)) { BIO_printf(out, "%*s", indent, ""); if (!sk_CONF_VALUE_num(val)) BIO_puts(out, "\n"); } for (i = 0; i < sk_CONF_VALUE_num(val); i++) { if (ml) BIO_printf(out, "%*s", indent, ""); else if (i > 0) BIO_printf(out, ", "); nval = sk_CONF_VALUE_value(val, i); if (!nval->name) BIO_puts(out, nval->value); else if (!nval->value) BIO_puts(out, nval->name); #ifndef CHARSET_EBCDIC else BIO_printf(out, "%s:%s", nval->name, nval->value); #else else { int len; char *tmp; len = strlen(nval->value) + 1; tmp = OPENSSL_malloc(len); if (tmp != NULL) { ascii2ebcdic(tmp, nval->value, len); BIO_printf(out, "%s:%s", nval->name, tmp); OPENSSL_free(tmp); } } #endif if (ml) BIO_puts(out, "\n"); } } /* Main routine: print out a general extension */ int X509V3_EXT_print(BIO *out, X509_EXTENSION *ext, unsigned long flag, int indent) { void *ext_str = NULL; char *value = NULL; ASN1_OCTET_STRING *extoct; const unsigned char *p; int extlen; const X509V3_EXT_METHOD *method; STACK_OF(CONF_VALUE) *nval = NULL; int ok = 1; extoct = X509_EXTENSION_get_data(ext); p = ASN1_STRING_get0_data(extoct); extlen = ASN1_STRING_length(extoct); if ((method = X509V3_EXT_get(ext)) == NULL) return unknown_ext_print(out, p, extlen, flag, indent, 0); if (method->it) ext_str = ASN1_item_d2i(NULL, &p, extlen, ASN1_ITEM_ptr(method->it)); else ext_str = method->d2i(NULL, &p, extlen); if (!ext_str) return unknown_ext_print(out, p, extlen, flag, indent, 1); if (method->i2s) { if ((value = method->i2s(method, ext_str)) == NULL) { ok = 0; goto err; } #ifndef CHARSET_EBCDIC BIO_printf(out, "%*s%s", indent, "", value); #else { int len; char *tmp; len = strlen(value) + 1; tmp = OPENSSL_malloc(len); if (tmp != NULL) { ascii2ebcdic(tmp, value, len); BIO_printf(out, "%*s%s", indent, "", tmp); OPENSSL_free(tmp); } } #endif } else if (method->i2v) { if ((nval = method->i2v(method, ext_str, NULL)) == NULL) { ok = 0; goto err; } X509V3_EXT_val_prn(out, nval, indent, method->ext_flags & X509V3_EXT_MULTILINE); } else if (method->i2r) { if (!method->i2r(method, ext_str, out, indent)) ok = 0; } else ok = 0; err: sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); OPENSSL_free(value); if (method->it) ASN1_item_free(ext_str, ASN1_ITEM_ptr(method->it)); else method->ext_free(ext_str); return ok; } int X509V3_extensions_print(BIO *bp, const char *title, const STACK_OF(X509_EXTENSION) *exts, unsigned long flag, int indent) { int i, j; if (sk_X509_EXTENSION_num(exts) <= 0) return 1; if (title) { BIO_printf(bp, "%*s%s:\n", indent, "", title); indent += 4; } for (i = 0; i < sk_X509_EXTENSION_num(exts); i++) { ASN1_OBJECT *obj; X509_EXTENSION *ex; ex = sk_X509_EXTENSION_value(exts, i); if (indent && BIO_printf(bp, "%*s", indent, "") <= 0) return 0; obj = X509_EXTENSION_get_object(ex); i2a_ASN1_OBJECT(bp, obj); j = X509_EXTENSION_get_critical(ex); if (BIO_printf(bp, ": %s\n", j ? "critical" : "") <= 0) return 0; if (!X509V3_EXT_print(bp, ex, flag, indent + 4)) { BIO_printf(bp, "%*s", indent + 4, ""); ASN1_STRING_print(bp, X509_EXTENSION_get_data(ex)); } if (BIO_write(bp, "\n", 1) <= 0) return 0; } return 1; } static int unknown_ext_print(BIO *out, const unsigned char *ext, int extlen, unsigned long flag, int indent, int supported) { switch (flag & X509V3_EXT_UNKNOWN_MASK) { case X509V3_EXT_DEFAULT: return 0; case X509V3_EXT_ERROR_UNKNOWN: if (supported) BIO_printf(out, "%*s", indent, ""); else BIO_printf(out, "%*s", indent, ""); return 1; case X509V3_EXT_PARSE_UNKNOWN: return ASN1_parse_dump(out, ext, extlen, indent, -1); case X509V3_EXT_DUMP_UNKNOWN: return BIO_dump_indent(out, (const char *)ext, extlen, indent); default: return 1; } } #ifndef OPENSSL_NO_STDIO int X509V3_EXT_print_fp(FILE *fp, X509_EXTENSION *ext, int flag, int indent) { BIO *bio_tmp; int ret; if ((bio_tmp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) return 0; ret = X509V3_EXT_print(bio_tmp, ext, flag, indent); BIO_free(bio_tmp); return ret; } #endif openssl-1.1.1f/crypto/x509v3/v3_purp.c000066400000000000000000000674061364063235100174230ustar00rootroot00000000000000/* * Copyright 1999-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include #include "crypto/x509.h" #include "internal/tsan_assist.h" static void x509v3_cache_extensions(X509 *x); static int check_ssl_ca(const X509 *x); static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, int ca); static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, int ca); static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, int ca); static int purpose_smime(const X509 *x, int ca); static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, int ca); static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, int ca); static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, int ca); static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x, int ca); static int no_check(const X509_PURPOSE *xp, const X509 *x, int ca); static int ocsp_helper(const X509_PURPOSE *xp, const X509 *x, int ca); static int xp_cmp(const X509_PURPOSE *const *a, const X509_PURPOSE *const *b); static void xptable_free(X509_PURPOSE *p); static X509_PURPOSE xstandard[] = { {X509_PURPOSE_SSL_CLIENT, X509_TRUST_SSL_CLIENT, 0, check_purpose_ssl_client, "SSL client", "sslclient", NULL}, {X509_PURPOSE_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, check_purpose_ssl_server, "SSL server", "sslserver", NULL}, {X509_PURPOSE_NS_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, check_purpose_ns_ssl_server, "Netscape SSL server", "nssslserver", NULL}, {X509_PURPOSE_SMIME_SIGN, X509_TRUST_EMAIL, 0, check_purpose_smime_sign, "S/MIME signing", "smimesign", NULL}, {X509_PURPOSE_SMIME_ENCRYPT, X509_TRUST_EMAIL, 0, check_purpose_smime_encrypt, "S/MIME encryption", "smimeencrypt", NULL}, {X509_PURPOSE_CRL_SIGN, X509_TRUST_COMPAT, 0, check_purpose_crl_sign, "CRL signing", "crlsign", NULL}, {X509_PURPOSE_ANY, X509_TRUST_DEFAULT, 0, no_check, "Any Purpose", "any", NULL}, {X509_PURPOSE_OCSP_HELPER, X509_TRUST_COMPAT, 0, ocsp_helper, "OCSP helper", "ocsphelper", NULL}, {X509_PURPOSE_TIMESTAMP_SIGN, X509_TRUST_TSA, 0, check_purpose_timestamp_sign, "Time Stamp signing", "timestampsign", NULL}, }; #define X509_PURPOSE_COUNT OSSL_NELEM(xstandard) static STACK_OF(X509_PURPOSE) *xptable = NULL; static int xp_cmp(const X509_PURPOSE *const *a, const X509_PURPOSE *const *b) { return (*a)->purpose - (*b)->purpose; } /* * As much as I'd like to make X509_check_purpose use a "const" X509* I * really can't because it does recalculate hashes and do other non-const * things. */ int X509_check_purpose(X509 *x, int id, int ca) { int idx; const X509_PURPOSE *pt; x509v3_cache_extensions(x); if (x->ex_flags & EXFLAG_INVALID) return -1; /* Return if side-effect only call */ if (id == -1) return 1; idx = X509_PURPOSE_get_by_id(id); if (idx == -1) return -1; pt = X509_PURPOSE_get0(idx); return pt->check_purpose(pt, x, ca); } int X509_PURPOSE_set(int *p, int purpose) { if (X509_PURPOSE_get_by_id(purpose) == -1) { X509V3err(X509V3_F_X509_PURPOSE_SET, X509V3_R_INVALID_PURPOSE); return 0; } *p = purpose; return 1; } int X509_PURPOSE_get_count(void) { if (!xptable) return X509_PURPOSE_COUNT; return sk_X509_PURPOSE_num(xptable) + X509_PURPOSE_COUNT; } X509_PURPOSE *X509_PURPOSE_get0(int idx) { if (idx < 0) return NULL; if (idx < (int)X509_PURPOSE_COUNT) return xstandard + idx; return sk_X509_PURPOSE_value(xptable, idx - X509_PURPOSE_COUNT); } int X509_PURPOSE_get_by_sname(const char *sname) { int i; X509_PURPOSE *xptmp; for (i = 0; i < X509_PURPOSE_get_count(); i++) { xptmp = X509_PURPOSE_get0(i); if (strcmp(xptmp->sname, sname) == 0) return i; } return -1; } int X509_PURPOSE_get_by_id(int purpose) { X509_PURPOSE tmp; int idx; if ((purpose >= X509_PURPOSE_MIN) && (purpose <= X509_PURPOSE_MAX)) return purpose - X509_PURPOSE_MIN; if (xptable == NULL) return -1; tmp.purpose = purpose; idx = sk_X509_PURPOSE_find(xptable, &tmp); if (idx < 0) return -1; return idx + X509_PURPOSE_COUNT; } int X509_PURPOSE_add(int id, int trust, int flags, int (*ck) (const X509_PURPOSE *, const X509 *, int), const char *name, const char *sname, void *arg) { int idx; X509_PURPOSE *ptmp; /* * This is set according to what we change: application can't set it */ flags &= ~X509_PURPOSE_DYNAMIC; /* This will always be set for application modified trust entries */ flags |= X509_PURPOSE_DYNAMIC_NAME; /* Get existing entry if any */ idx = X509_PURPOSE_get_by_id(id); /* Need a new entry */ if (idx == -1) { if ((ptmp = OPENSSL_malloc(sizeof(*ptmp))) == NULL) { X509V3err(X509V3_F_X509_PURPOSE_ADD, ERR_R_MALLOC_FAILURE); return 0; } ptmp->flags = X509_PURPOSE_DYNAMIC; } else ptmp = X509_PURPOSE_get0(idx); /* OPENSSL_free existing name if dynamic */ if (ptmp->flags & X509_PURPOSE_DYNAMIC_NAME) { OPENSSL_free(ptmp->name); OPENSSL_free(ptmp->sname); } /* dup supplied name */ ptmp->name = OPENSSL_strdup(name); ptmp->sname = OPENSSL_strdup(sname); if (!ptmp->name || !ptmp->sname) { X509V3err(X509V3_F_X509_PURPOSE_ADD, ERR_R_MALLOC_FAILURE); goto err; } /* Keep the dynamic flag of existing entry */ ptmp->flags &= X509_PURPOSE_DYNAMIC; /* Set all other flags */ ptmp->flags |= flags; ptmp->purpose = id; ptmp->trust = trust; ptmp->check_purpose = ck; ptmp->usr_data = arg; /* If its a new entry manage the dynamic table */ if (idx == -1) { if (xptable == NULL && (xptable = sk_X509_PURPOSE_new(xp_cmp)) == NULL) { X509V3err(X509V3_F_X509_PURPOSE_ADD, ERR_R_MALLOC_FAILURE); goto err; } if (!sk_X509_PURPOSE_push(xptable, ptmp)) { X509V3err(X509V3_F_X509_PURPOSE_ADD, ERR_R_MALLOC_FAILURE); goto err; } } return 1; err: if (idx == -1) { OPENSSL_free(ptmp->name); OPENSSL_free(ptmp->sname); OPENSSL_free(ptmp); } return 0; } static void xptable_free(X509_PURPOSE *p) { if (!p) return; if (p->flags & X509_PURPOSE_DYNAMIC) { if (p->flags & X509_PURPOSE_DYNAMIC_NAME) { OPENSSL_free(p->name); OPENSSL_free(p->sname); } OPENSSL_free(p); } } void X509_PURPOSE_cleanup(void) { sk_X509_PURPOSE_pop_free(xptable, xptable_free); xptable = NULL; } int X509_PURPOSE_get_id(const X509_PURPOSE *xp) { return xp->purpose; } char *X509_PURPOSE_get0_name(const X509_PURPOSE *xp) { return xp->name; } char *X509_PURPOSE_get0_sname(const X509_PURPOSE *xp) { return xp->sname; } int X509_PURPOSE_get_trust(const X509_PURPOSE *xp) { return xp->trust; } static int nid_cmp(const int *a, const int *b) { return *a - *b; } DECLARE_OBJ_BSEARCH_CMP_FN(int, int, nid); IMPLEMENT_OBJ_BSEARCH_CMP_FN(int, int, nid); int X509_supported_extension(X509_EXTENSION *ex) { /* * This table is a list of the NIDs of supported extensions: that is * those which are used by the verify process. If an extension is * critical and doesn't appear in this list then the verify process will * normally reject the certificate. The list must be kept in numerical * order because it will be searched using bsearch. */ static const int supported_nids[] = { NID_netscape_cert_type, /* 71 */ NID_key_usage, /* 83 */ NID_subject_alt_name, /* 85 */ NID_basic_constraints, /* 87 */ NID_certificate_policies, /* 89 */ NID_crl_distribution_points, /* 103 */ NID_ext_key_usage, /* 126 */ #ifndef OPENSSL_NO_RFC3779 NID_sbgp_ipAddrBlock, /* 290 */ NID_sbgp_autonomousSysNum, /* 291 */ #endif NID_policy_constraints, /* 401 */ NID_proxyCertInfo, /* 663 */ NID_name_constraints, /* 666 */ NID_policy_mappings, /* 747 */ NID_inhibit_any_policy /* 748 */ }; int ex_nid = OBJ_obj2nid(X509_EXTENSION_get_object(ex)); if (ex_nid == NID_undef) return 0; if (OBJ_bsearch_nid(&ex_nid, supported_nids, OSSL_NELEM(supported_nids))) return 1; return 0; } static int setup_dp(X509 *x, DIST_POINT *dp) { X509_NAME *iname = NULL; int i; if (dp->reasons) { if (dp->reasons->length > 0) dp->dp_reasons = dp->reasons->data[0]; if (dp->reasons->length > 1) dp->dp_reasons |= (dp->reasons->data[1] << 8); dp->dp_reasons &= CRLDP_ALL_REASONS; } else dp->dp_reasons = CRLDP_ALL_REASONS; if (!dp->distpoint || (dp->distpoint->type != 1)) return 1; for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) { GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i); if (gen->type == GEN_DIRNAME) { iname = gen->d.directoryName; break; } } if (!iname) iname = X509_get_issuer_name(x); return DIST_POINT_set_dpname(dp->distpoint, iname); } static int setup_crldp(X509 *x) { int i; x->crldp = X509_get_ext_d2i(x, NID_crl_distribution_points, &i, NULL); if (x->crldp == NULL && i != -1) return 0; for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { if (!setup_dp(x, sk_DIST_POINT_value(x->crldp, i))) return 0; } return 1; } #define V1_ROOT (EXFLAG_V1|EXFLAG_SS) #define ku_reject(x, usage) \ (((x)->ex_flags & EXFLAG_KUSAGE) && !((x)->ex_kusage & (usage))) #define xku_reject(x, usage) \ (((x)->ex_flags & EXFLAG_XKUSAGE) && !((x)->ex_xkusage & (usage))) #define ns_reject(x, usage) \ (((x)->ex_flags & EXFLAG_NSCERT) && !((x)->ex_nscert & (usage))) static void x509v3_cache_extensions(X509 *x) { BASIC_CONSTRAINTS *bs; PROXY_CERT_INFO_EXTENSION *pci; ASN1_BIT_STRING *usage; ASN1_BIT_STRING *ns; EXTENDED_KEY_USAGE *extusage; X509_EXTENSION *ex; int i; #ifdef tsan_ld_acq /* fast lock-free check, see end of the function for details. */ if (tsan_ld_acq((TSAN_QUALIFIER int *)&x->ex_cached)) return; #endif CRYPTO_THREAD_write_lock(x->lock); if (x->ex_flags & EXFLAG_SET) { CRYPTO_THREAD_unlock(x->lock); return; } if (!X509_digest(x, EVP_sha1(), x->sha1_hash, NULL)) x->ex_flags |= EXFLAG_INVALID; /* V1 should mean no extensions ... */ if (!X509_get_version(x)) x->ex_flags |= EXFLAG_V1; /* Handle basic constraints */ if ((bs = X509_get_ext_d2i(x, NID_basic_constraints, &i, NULL))) { if (bs->ca) x->ex_flags |= EXFLAG_CA; if (bs->pathlen) { if ((bs->pathlen->type == V_ASN1_NEG_INTEGER) || !bs->ca) { x->ex_flags |= EXFLAG_INVALID; x->ex_pathlen = 0; } else x->ex_pathlen = ASN1_INTEGER_get(bs->pathlen); } else x->ex_pathlen = -1; BASIC_CONSTRAINTS_free(bs); x->ex_flags |= EXFLAG_BCONS; } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } /* Handle proxy certificates */ if ((pci = X509_get_ext_d2i(x, NID_proxyCertInfo, &i, NULL))) { if (x->ex_flags & EXFLAG_CA || X509_get_ext_by_NID(x, NID_subject_alt_name, -1) >= 0 || X509_get_ext_by_NID(x, NID_issuer_alt_name, -1) >= 0) { x->ex_flags |= EXFLAG_INVALID; } if (pci->pcPathLengthConstraint) { x->ex_pcpathlen = ASN1_INTEGER_get(pci->pcPathLengthConstraint); } else x->ex_pcpathlen = -1; PROXY_CERT_INFO_EXTENSION_free(pci); x->ex_flags |= EXFLAG_PROXY; } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } /* Handle key usage */ if ((usage = X509_get_ext_d2i(x, NID_key_usage, &i, NULL))) { if (usage->length > 0) { x->ex_kusage = usage->data[0]; if (usage->length > 1) x->ex_kusage |= usage->data[1] << 8; } else x->ex_kusage = 0; x->ex_flags |= EXFLAG_KUSAGE; ASN1_BIT_STRING_free(usage); } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } x->ex_xkusage = 0; if ((extusage = X509_get_ext_d2i(x, NID_ext_key_usage, &i, NULL))) { x->ex_flags |= EXFLAG_XKUSAGE; for (i = 0; i < sk_ASN1_OBJECT_num(extusage); i++) { switch (OBJ_obj2nid(sk_ASN1_OBJECT_value(extusage, i))) { case NID_server_auth: x->ex_xkusage |= XKU_SSL_SERVER; break; case NID_client_auth: x->ex_xkusage |= XKU_SSL_CLIENT; break; case NID_email_protect: x->ex_xkusage |= XKU_SMIME; break; case NID_code_sign: x->ex_xkusage |= XKU_CODE_SIGN; break; case NID_ms_sgc: case NID_ns_sgc: x->ex_xkusage |= XKU_SGC; break; case NID_OCSP_sign: x->ex_xkusage |= XKU_OCSP_SIGN; break; case NID_time_stamp: x->ex_xkusage |= XKU_TIMESTAMP; break; case NID_dvcs: x->ex_xkusage |= XKU_DVCS; break; case NID_anyExtendedKeyUsage: x->ex_xkusage |= XKU_ANYEKU; break; } } sk_ASN1_OBJECT_pop_free(extusage, ASN1_OBJECT_free); } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } if ((ns = X509_get_ext_d2i(x, NID_netscape_cert_type, &i, NULL))) { if (ns->length > 0) x->ex_nscert = ns->data[0]; else x->ex_nscert = 0; x->ex_flags |= EXFLAG_NSCERT; ASN1_BIT_STRING_free(ns); } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } x->skid = X509_get_ext_d2i(x, NID_subject_key_identifier, &i, NULL); if (x->skid == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; x->akid = X509_get_ext_d2i(x, NID_authority_key_identifier, &i, NULL); if (x->akid == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; /* Does subject name match issuer ? */ if (!X509_NAME_cmp(X509_get_subject_name(x), X509_get_issuer_name(x))) { x->ex_flags |= EXFLAG_SI; /* If SKID matches AKID also indicate self signed */ if (X509_check_akid(x, x->akid) == X509_V_OK && !ku_reject(x, KU_KEY_CERT_SIGN)) x->ex_flags |= EXFLAG_SS; } x->altname = X509_get_ext_d2i(x, NID_subject_alt_name, &i, NULL); if (x->altname == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; x->nc = X509_get_ext_d2i(x, NID_name_constraints, &i, NULL); if (x->nc == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; if (!setup_crldp(x)) x->ex_flags |= EXFLAG_INVALID; #ifndef OPENSSL_NO_RFC3779 x->rfc3779_addr = X509_get_ext_d2i(x, NID_sbgp_ipAddrBlock, &i, NULL); if (x->rfc3779_addr == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; x->rfc3779_asid = X509_get_ext_d2i(x, NID_sbgp_autonomousSysNum, &i, NULL); if (x->rfc3779_asid == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; #endif for (i = 0; i < X509_get_ext_count(x); i++) { ex = X509_get_ext(x, i); if (OBJ_obj2nid(X509_EXTENSION_get_object(ex)) == NID_freshest_crl) x->ex_flags |= EXFLAG_FRESHEST; if (!X509_EXTENSION_get_critical(ex)) continue; if (!X509_supported_extension(ex)) { x->ex_flags |= EXFLAG_CRITICAL; break; } } x509_init_sig_info(x); x->ex_flags |= EXFLAG_SET; #ifdef tsan_st_rel tsan_st_rel((TSAN_QUALIFIER int *)&x->ex_cached, 1); /* * Above store triggers fast lock-free check in the beginning of the * function. But one has to ensure that the structure is "stable", i.e. * all stores are visible on all processors. Hence the release fence. */ #endif CRYPTO_THREAD_unlock(x->lock); } /*- * CA checks common to all purposes * return codes: * 0 not a CA * 1 is a CA * 2 basicConstraints absent so "maybe" a CA * 3 basicConstraints absent but self signed V1. * 4 basicConstraints absent but keyUsage present and keyCertSign asserted. */ static int check_ca(const X509 *x) { /* keyUsage if present should allow cert signing */ if (ku_reject(x, KU_KEY_CERT_SIGN)) return 0; if (x->ex_flags & EXFLAG_BCONS) { if (x->ex_flags & EXFLAG_CA) return 1; /* If basicConstraints says not a CA then say so */ else return 0; } else { /* we support V1 roots for... uh, I don't really know why. */ if ((x->ex_flags & V1_ROOT) == V1_ROOT) return 3; /* * If key usage present it must have certSign so tolerate it */ else if (x->ex_flags & EXFLAG_KUSAGE) return 4; /* Older certificates could have Netscape-specific CA types */ else if (x->ex_flags & EXFLAG_NSCERT && x->ex_nscert & NS_ANY_CA) return 5; /* can this still be regarded a CA certificate? I doubt it */ return 0; } } void X509_set_proxy_flag(X509 *x) { x->ex_flags |= EXFLAG_PROXY; } void X509_set_proxy_pathlen(X509 *x, long l) { x->ex_pcpathlen = l; } int X509_check_ca(X509 *x) { x509v3_cache_extensions(x); return check_ca(x); } /* Check SSL CA: common checks for SSL client and server */ static int check_ssl_ca(const X509 *x) { int ca_ret; ca_ret = check_ca(x); if (!ca_ret) return 0; /* check nsCertType if present */ if (ca_ret != 5 || x->ex_nscert & NS_SSL_CA) return ca_ret; else return 0; } static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, int ca) { if (xku_reject(x, XKU_SSL_CLIENT)) return 0; if (ca) return check_ssl_ca(x); /* We need to do digital signatures or key agreement */ if (ku_reject(x, KU_DIGITAL_SIGNATURE | KU_KEY_AGREEMENT)) return 0; /* nsCertType if present should allow SSL client use */ if (ns_reject(x, NS_SSL_CLIENT)) return 0; return 1; } /* * Key usage needed for TLS/SSL server: digital signature, encipherment or * key agreement. The ssl code can check this more thoroughly for individual * key types. */ #define KU_TLS \ KU_DIGITAL_SIGNATURE|KU_KEY_ENCIPHERMENT|KU_KEY_AGREEMENT static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, int ca) { if (xku_reject(x, XKU_SSL_SERVER | XKU_SGC)) return 0; if (ca) return check_ssl_ca(x); if (ns_reject(x, NS_SSL_SERVER)) return 0; if (ku_reject(x, KU_TLS)) return 0; return 1; } static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, int ca) { int ret; ret = check_purpose_ssl_server(xp, x, ca); if (!ret || ca) return ret; /* We need to encipher or Netscape complains */ if (ku_reject(x, KU_KEY_ENCIPHERMENT)) return 0; return ret; } /* common S/MIME checks */ static int purpose_smime(const X509 *x, int ca) { if (xku_reject(x, XKU_SMIME)) return 0; if (ca) { int ca_ret; ca_ret = check_ca(x); if (!ca_ret) return 0; /* check nsCertType if present */ if (ca_ret != 5 || x->ex_nscert & NS_SMIME_CA) return ca_ret; else return 0; } if (x->ex_flags & EXFLAG_NSCERT) { if (x->ex_nscert & NS_SMIME) return 1; /* Workaround for some buggy certificates */ if (x->ex_nscert & NS_SSL_CLIENT) return 2; return 0; } return 1; } static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, int ca) { int ret; ret = purpose_smime(x, ca); if (!ret || ca) return ret; if (ku_reject(x, KU_DIGITAL_SIGNATURE | KU_NON_REPUDIATION)) return 0; return ret; } static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, int ca) { int ret; ret = purpose_smime(x, ca); if (!ret || ca) return ret; if (ku_reject(x, KU_KEY_ENCIPHERMENT)) return 0; return ret; } static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, int ca) { if (ca) { int ca_ret; if ((ca_ret = check_ca(x)) != 2) return ca_ret; else return 0; } if (ku_reject(x, KU_CRL_SIGN)) return 0; return 1; } /* * OCSP helper: this is *not* a full OCSP check. It just checks that each CA * is valid. Additional checks must be made on the chain. */ static int ocsp_helper(const X509_PURPOSE *xp, const X509 *x, int ca) { /* * Must be a valid CA. Should we really support the "I don't know" value * (2)? */ if (ca) return check_ca(x); /* leaf certificate is checked in OCSP_verify() */ return 1; } static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x, int ca) { int i_ext; /* If ca is true we must return if this is a valid CA certificate. */ if (ca) return check_ca(x); /* * Check the optional key usage field: * if Key Usage is present, it must be one of digitalSignature * and/or nonRepudiation (other values are not consistent and shall * be rejected). */ if ((x->ex_flags & EXFLAG_KUSAGE) && ((x->ex_kusage & ~(KU_NON_REPUDIATION | KU_DIGITAL_SIGNATURE)) || !(x->ex_kusage & (KU_NON_REPUDIATION | KU_DIGITAL_SIGNATURE)))) return 0; /* Only time stamp key usage is permitted and it's required. */ if (!(x->ex_flags & EXFLAG_XKUSAGE) || x->ex_xkusage != XKU_TIMESTAMP) return 0; /* Extended Key Usage MUST be critical */ i_ext = X509_get_ext_by_NID(x, NID_ext_key_usage, -1); if (i_ext >= 0) { X509_EXTENSION *ext = X509_get_ext((X509 *)x, i_ext); if (!X509_EXTENSION_get_critical(ext)) return 0; } return 1; } static int no_check(const X509_PURPOSE *xp, const X509 *x, int ca) { return 1; } /*- * Various checks to see if one certificate issued the second. * This can be used to prune a set of possible issuer certificates * which have been looked up using some simple method such as by * subject name. * These are: * 1. Check issuer_name(subject) == subject_name(issuer) * 2. If akid(subject) exists check it matches issuer * 3. If key_usage(issuer) exists check it supports certificate signing * returns 0 for OK, positive for reason for mismatch, reasons match * codes for X509_verify_cert() */ int X509_check_issued(X509 *issuer, X509 *subject) { if (X509_NAME_cmp(X509_get_subject_name(issuer), X509_get_issuer_name(subject))) return X509_V_ERR_SUBJECT_ISSUER_MISMATCH; x509v3_cache_extensions(issuer); if (issuer->ex_flags & EXFLAG_INVALID) return X509_V_ERR_UNSPECIFIED; x509v3_cache_extensions(subject); if (subject->ex_flags & EXFLAG_INVALID) return X509_V_ERR_UNSPECIFIED; if (subject->akid) { int ret = X509_check_akid(issuer, subject->akid); if (ret != X509_V_OK) return ret; } if (subject->ex_flags & EXFLAG_PROXY) { if (ku_reject(issuer, KU_DIGITAL_SIGNATURE)) return X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE; } else if (ku_reject(issuer, KU_KEY_CERT_SIGN)) return X509_V_ERR_KEYUSAGE_NO_CERTSIGN; return X509_V_OK; } int X509_check_akid(X509 *issuer, AUTHORITY_KEYID *akid) { if (!akid) return X509_V_OK; /* Check key ids (if present) */ if (akid->keyid && issuer->skid && ASN1_OCTET_STRING_cmp(akid->keyid, issuer->skid)) return X509_V_ERR_AKID_SKID_MISMATCH; /* Check serial number */ if (akid->serial && ASN1_INTEGER_cmp(X509_get_serialNumber(issuer), akid->serial)) return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH; /* Check issuer name */ if (akid->issuer) { /* * Ugh, for some peculiar reason AKID includes SEQUENCE OF * GeneralName. So look for a DirName. There may be more than one but * we only take any notice of the first. */ GENERAL_NAMES *gens; GENERAL_NAME *gen; X509_NAME *nm = NULL; int i; gens = akid->issuer; for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gen = sk_GENERAL_NAME_value(gens, i); if (gen->type == GEN_DIRNAME) { nm = gen->d.dirn; break; } } if (nm && X509_NAME_cmp(nm, X509_get_issuer_name(issuer))) return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH; } return X509_V_OK; } uint32_t X509_get_extension_flags(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ X509_check_purpose(x, -1, -1); return x->ex_flags; } uint32_t X509_get_key_usage(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, -1) != 1) return 0; if (x->ex_flags & EXFLAG_KUSAGE) return x->ex_kusage; return UINT32_MAX; } uint32_t X509_get_extended_key_usage(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, -1) != 1) return 0; if (x->ex_flags & EXFLAG_XKUSAGE) return x->ex_xkusage; return UINT32_MAX; } const ASN1_OCTET_STRING *X509_get0_subject_key_id(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, -1) != 1) return NULL; return x->skid; } const ASN1_OCTET_STRING *X509_get0_authority_key_id(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, -1) != 1) return NULL; return (x->akid != NULL ? x->akid->keyid : NULL); } const GENERAL_NAMES *X509_get0_authority_issuer(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, -1) != 1) return NULL; return (x->akid != NULL ? x->akid->issuer : NULL); } const ASN1_INTEGER *X509_get0_authority_serial(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, -1) != 1) return NULL; return (x->akid != NULL ? x->akid->serial : NULL); } long X509_get_pathlen(X509 *x) { /* Called for side effect of caching extensions */ if (X509_check_purpose(x, -1, -1) != 1 || (x->ex_flags & EXFLAG_BCONS) == 0) return -1; return x->ex_pathlen; } long X509_get_proxy_pathlen(X509 *x) { /* Called for side effect of caching extensions */ if (X509_check_purpose(x, -1, -1) != 1 || (x->ex_flags & EXFLAG_PROXY) == 0) return -1; return x->ex_pcpathlen; } openssl-1.1.1f/crypto/x509v3/v3_skey.c000066400000000000000000000055011364063235100173740ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include "crypto/x509.h" #include "ext_dat.h" static ASN1_OCTET_STRING *s2i_skey_id(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, char *str); const X509V3_EXT_METHOD v3_skey_id = { NID_subject_key_identifier, 0, ASN1_ITEM_ref(ASN1_OCTET_STRING), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_OCTET_STRING, (X509V3_EXT_S2I)s2i_skey_id, 0, 0, 0, 0, NULL }; char *i2s_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method, const ASN1_OCTET_STRING *oct) { return OPENSSL_buf2hexstr(oct->data, oct->length); } ASN1_OCTET_STRING *s2i_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { ASN1_OCTET_STRING *oct; long length; if ((oct = ASN1_OCTET_STRING_new()) == NULL) { X509V3err(X509V3_F_S2I_ASN1_OCTET_STRING, ERR_R_MALLOC_FAILURE); return NULL; } if ((oct->data = OPENSSL_hexstr2buf(str, &length)) == NULL) { ASN1_OCTET_STRING_free(oct); return NULL; } oct->length = length; return oct; } static ASN1_OCTET_STRING *s2i_skey_id(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, char *str) { ASN1_OCTET_STRING *oct; X509_PUBKEY *pubkey; const unsigned char *pk; int pklen; unsigned char pkey_dig[EVP_MAX_MD_SIZE]; unsigned int diglen; if (strcmp(str, "hash")) return s2i_ASN1_OCTET_STRING(method, ctx, str); if ((oct = ASN1_OCTET_STRING_new()) == NULL) { X509V3err(X509V3_F_S2I_SKEY_ID, ERR_R_MALLOC_FAILURE); return NULL; } if (ctx && (ctx->flags == CTX_TEST)) return oct; if (!ctx || (!ctx->subject_req && !ctx->subject_cert)) { X509V3err(X509V3_F_S2I_SKEY_ID, X509V3_R_NO_PUBLIC_KEY); goto err; } if (ctx->subject_req) pubkey = ctx->subject_req->req_info.pubkey; else pubkey = ctx->subject_cert->cert_info.key; if (pubkey == NULL) { X509V3err(X509V3_F_S2I_SKEY_ID, X509V3_R_NO_PUBLIC_KEY); goto err; } X509_PUBKEY_get0_param(NULL, &pk, &pklen, NULL, pubkey); if (!EVP_Digest(pk, pklen, pkey_dig, &diglen, EVP_sha1(), NULL)) goto err; if (!ASN1_OCTET_STRING_set(oct, pkey_dig, diglen)) { X509V3err(X509V3_F_S2I_SKEY_ID, ERR_R_MALLOC_FAILURE); goto err; } return oct; err: ASN1_OCTET_STRING_free(oct); return NULL; } openssl-1.1.1f/crypto/x509v3/v3_sxnet.c000066400000000000000000000137611364063235100175710ustar00rootroot00000000000000/* * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include "ext_dat.h" /* Support for Thawte strong extranet extension */ #define SXNET_TEST static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out, int indent); #ifdef SXNET_TEST static SXNET *sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); #endif const X509V3_EXT_METHOD v3_sxnet = { NID_sxnet, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(SXNET), 0, 0, 0, 0, 0, 0, 0, #ifdef SXNET_TEST (X509V3_EXT_V2I)sxnet_v2i, #else 0, #endif (X509V3_EXT_I2R)sxnet_i2r, 0, NULL }; ASN1_SEQUENCE(SXNETID) = { ASN1_SIMPLE(SXNETID, zone, ASN1_INTEGER), ASN1_SIMPLE(SXNETID, user, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(SXNETID) IMPLEMENT_ASN1_FUNCTIONS(SXNETID) ASN1_SEQUENCE(SXNET) = { ASN1_SIMPLE(SXNET, version, ASN1_INTEGER), ASN1_SEQUENCE_OF(SXNET, ids, SXNETID) } ASN1_SEQUENCE_END(SXNET) IMPLEMENT_ASN1_FUNCTIONS(SXNET) static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out, int indent) { long v; char *tmp; SXNETID *id; int i; v = ASN1_INTEGER_get(sx->version); BIO_printf(out, "%*sVersion: %ld (0x%lX)", indent, "", v + 1, v); for (i = 0; i < sk_SXNETID_num(sx->ids); i++) { id = sk_SXNETID_value(sx->ids, i); tmp = i2s_ASN1_INTEGER(NULL, id->zone); BIO_printf(out, "\n%*sZone: %s, User: ", indent, "", tmp); OPENSSL_free(tmp); ASN1_STRING_print(out, id->user); } return 1; } #ifdef SXNET_TEST /* * NBB: this is used for testing only. It should *not* be used for anything * else because it will just take static IDs from the configuration file and * they should really be separate values for each user. */ static SXNET *sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { CONF_VALUE *cnf; SXNET *sx = NULL; int i; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { cnf = sk_CONF_VALUE_value(nval, i); if (!SXNET_add_id_asc(&sx, cnf->name, cnf->value, -1)) return NULL; } return sx; } #endif /* Strong Extranet utility functions */ /* Add an id given the zone as an ASCII number */ int SXNET_add_id_asc(SXNET **psx, const char *zone, const char *user, int userlen) { ASN1_INTEGER *izone; if ((izone = s2i_ASN1_INTEGER(NULL, zone)) == NULL) { X509V3err(X509V3_F_SXNET_ADD_ID_ASC, X509V3_R_ERROR_CONVERTING_ZONE); return 0; } return SXNET_add_id_INTEGER(psx, izone, user, userlen); } /* Add an id given the zone as an unsigned long */ int SXNET_add_id_ulong(SXNET **psx, unsigned long lzone, const char *user, int userlen) { ASN1_INTEGER *izone; if ((izone = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(izone, lzone)) { X509V3err(X509V3_F_SXNET_ADD_ID_ULONG, ERR_R_MALLOC_FAILURE); ASN1_INTEGER_free(izone); return 0; } return SXNET_add_id_INTEGER(psx, izone, user, userlen); } /* * Add an id given the zone as an ASN1_INTEGER. Note this version uses the * passed integer and doesn't make a copy so don't free it up afterwards. */ int SXNET_add_id_INTEGER(SXNET **psx, ASN1_INTEGER *zone, const char *user, int userlen) { SXNET *sx = NULL; SXNETID *id = NULL; if (!psx || !zone || !user) { X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, X509V3_R_INVALID_NULL_ARGUMENT); return 0; } if (userlen == -1) userlen = strlen(user); if (userlen > 64) { X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, X509V3_R_USER_TOO_LONG); return 0; } if (*psx == NULL) { if ((sx = SXNET_new()) == NULL) goto err; if (!ASN1_INTEGER_set(sx->version, 0)) goto err; *psx = sx; } else sx = *psx; if (SXNET_get_id_INTEGER(sx, zone)) { X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, X509V3_R_DUPLICATE_ZONE_ID); return 0; } if ((id = SXNETID_new()) == NULL) goto err; if (userlen == -1) userlen = strlen(user); if (!ASN1_OCTET_STRING_set(id->user, (const unsigned char *)user, userlen)) goto err; if (!sk_SXNETID_push(sx->ids, id)) goto err; id->zone = zone; return 1; err: X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER, ERR_R_MALLOC_FAILURE); SXNETID_free(id); SXNET_free(sx); *psx = NULL; return 0; } ASN1_OCTET_STRING *SXNET_get_id_asc(SXNET *sx, const char *zone) { ASN1_INTEGER *izone; ASN1_OCTET_STRING *oct; if ((izone = s2i_ASN1_INTEGER(NULL, zone)) == NULL) { X509V3err(X509V3_F_SXNET_GET_ID_ASC, X509V3_R_ERROR_CONVERTING_ZONE); return NULL; } oct = SXNET_get_id_INTEGER(sx, izone); ASN1_INTEGER_free(izone); return oct; } ASN1_OCTET_STRING *SXNET_get_id_ulong(SXNET *sx, unsigned long lzone) { ASN1_INTEGER *izone; ASN1_OCTET_STRING *oct; if ((izone = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(izone, lzone)) { X509V3err(X509V3_F_SXNET_GET_ID_ULONG, ERR_R_MALLOC_FAILURE); ASN1_INTEGER_free(izone); return NULL; } oct = SXNET_get_id_INTEGER(sx, izone); ASN1_INTEGER_free(izone); return oct; } ASN1_OCTET_STRING *SXNET_get_id_INTEGER(SXNET *sx, ASN1_INTEGER *zone) { SXNETID *id; int i; for (i = 0; i < sk_SXNETID_num(sx->ids); i++) { id = sk_SXNETID_value(sx->ids, i); if (!ASN1_INTEGER_cmp(id->zone, zone)) return id->user; } return NULL; } openssl-1.1.1f/crypto/x509v3/v3_tlsf.c000066400000000000000000000104511364063235100173710ustar00rootroot00000000000000/* * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "e_os.h" #include "internal/cryptlib.h" #include #include "internal/o_str.h" #include #include #include #include "ext_dat.h" static STACK_OF(CONF_VALUE) *i2v_TLS_FEATURE(const X509V3_EXT_METHOD *method, TLS_FEATURE *tls_feature, STACK_OF(CONF_VALUE) *ext_list); static TLS_FEATURE *v2i_TLS_FEATURE(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); ASN1_ITEM_TEMPLATE(TLS_FEATURE) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, TLS_FEATURE, ASN1_INTEGER) static_ASN1_ITEM_TEMPLATE_END(TLS_FEATURE) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(TLS_FEATURE) const X509V3_EXT_METHOD v3_tls_feature = { NID_tlsfeature, 0, ASN1_ITEM_ref(TLS_FEATURE), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V)i2v_TLS_FEATURE, (X509V3_EXT_V2I)v2i_TLS_FEATURE, 0, 0, NULL }; typedef struct { long num; const char *name; } TLS_FEATURE_NAME; static TLS_FEATURE_NAME tls_feature_tbl[] = { { 5, "status_request" }, { 17, "status_request_v2" } }; /* * i2v_TLS_FEATURE converts the TLS_FEATURE structure tls_feature into the * STACK_OF(CONF_VALUE) structure ext_list. STACK_OF(CONF_VALUE) is the format * used by the CONF library to represent a multi-valued extension. ext_list is * returned. */ static STACK_OF(CONF_VALUE) *i2v_TLS_FEATURE(const X509V3_EXT_METHOD *method, TLS_FEATURE *tls_feature, STACK_OF(CONF_VALUE) *ext_list) { int i; size_t j; ASN1_INTEGER *ai; long tlsextid; for (i = 0; i < sk_ASN1_INTEGER_num(tls_feature); i++) { ai = sk_ASN1_INTEGER_value(tls_feature, i); tlsextid = ASN1_INTEGER_get(ai); for (j = 0; j < OSSL_NELEM(tls_feature_tbl); j++) if (tlsextid == tls_feature_tbl[j].num) break; if (j < OSSL_NELEM(tls_feature_tbl)) X509V3_add_value(NULL, tls_feature_tbl[j].name, &ext_list); else X509V3_add_value_int(NULL, ai, &ext_list); } return ext_list; } /* * v2i_TLS_FEATURE converts the multi-valued extension nval into a TLS_FEATURE * structure, which is returned if the conversion is successful. In case of * error, NULL is returned. */ static TLS_FEATURE *v2i_TLS_FEATURE(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { TLS_FEATURE *tlsf; char *extval, *endptr; ASN1_INTEGER *ai; CONF_VALUE *val; int i; size_t j; long tlsextid; if ((tlsf = sk_ASN1_INTEGER_new_null()) == NULL) { X509V3err(X509V3_F_V2I_TLS_FEATURE, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { val = sk_CONF_VALUE_value(nval, i); if (val->value) extval = val->value; else extval = val->name; for (j = 0; j < OSSL_NELEM(tls_feature_tbl); j++) if (strcasecmp(extval, tls_feature_tbl[j].name) == 0) break; if (j < OSSL_NELEM(tls_feature_tbl)) tlsextid = tls_feature_tbl[j].num; else { tlsextid = strtol(extval, &endptr, 10); if (((*endptr) != '\0') || (extval == endptr) || (tlsextid < 0) || (tlsextid > 65535)) { X509V3err(X509V3_F_V2I_TLS_FEATURE, X509V3_R_INVALID_SYNTAX); X509V3_conf_err(val); goto err; } } if ((ai = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(ai, tlsextid) || sk_ASN1_INTEGER_push(tlsf, ai) <= 0) { X509V3err(X509V3_F_V2I_TLS_FEATURE, ERR_R_MALLOC_FAILURE); goto err; } } return tlsf; err: sk_ASN1_INTEGER_pop_free(tlsf, ASN1_INTEGER_free); return NULL; } openssl-1.1.1f/crypto/x509v3/v3_utl.c000066400000000000000000001052711364063235100172320ustar00rootroot00000000000000/* * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* X509 v3 extension utilities */ #include "e_os.h" #include "internal/cryptlib.h" #include #include "crypto/ctype.h" #include #include #include #include "crypto/x509.h" #include #include "ext_dat.h" static char *strip_spaces(char *name); static int sk_strcmp(const char *const *a, const char *const *b); static STACK_OF(OPENSSL_STRING) *get_email(X509_NAME *name, GENERAL_NAMES *gens); static void str_free(OPENSSL_STRING str); static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, const ASN1_IA5STRING *email); static int ipv4_from_asc(unsigned char *v4, const char *in); static int ipv6_from_asc(unsigned char *v6, const char *in); static int ipv6_cb(const char *elem, int len, void *usr); static int ipv6_hex(unsigned char *out, const char *in, int inlen); /* Add a CONF_VALUE name value pair to stack */ int X509V3_add_value(const char *name, const char *value, STACK_OF(CONF_VALUE) **extlist) { CONF_VALUE *vtmp = NULL; char *tname = NULL, *tvalue = NULL; int sk_allocated = (*extlist == NULL); if (name && (tname = OPENSSL_strdup(name)) == NULL) goto err; if (value && (tvalue = OPENSSL_strdup(value)) == NULL) goto err; if ((vtmp = OPENSSL_malloc(sizeof(*vtmp))) == NULL) goto err; if (sk_allocated && (*extlist = sk_CONF_VALUE_new_null()) == NULL) goto err; vtmp->section = NULL; vtmp->name = tname; vtmp->value = tvalue; if (!sk_CONF_VALUE_push(*extlist, vtmp)) goto err; return 1; err: X509V3err(X509V3_F_X509V3_ADD_VALUE, ERR_R_MALLOC_FAILURE); if (sk_allocated) { sk_CONF_VALUE_free(*extlist); *extlist = NULL; } OPENSSL_free(vtmp); OPENSSL_free(tname); OPENSSL_free(tvalue); return 0; } int X509V3_add_value_uchar(const char *name, const unsigned char *value, STACK_OF(CONF_VALUE) **extlist) { return X509V3_add_value(name, (const char *)value, extlist); } /* Free function for STACK_OF(CONF_VALUE) */ void X509V3_conf_free(CONF_VALUE *conf) { if (!conf) return; OPENSSL_free(conf->name); OPENSSL_free(conf->value); OPENSSL_free(conf->section); OPENSSL_free(conf); } int X509V3_add_value_bool(const char *name, int asn1_bool, STACK_OF(CONF_VALUE) **extlist) { if (asn1_bool) return X509V3_add_value(name, "TRUE", extlist); return X509V3_add_value(name, "FALSE", extlist); } int X509V3_add_value_bool_nf(const char *name, int asn1_bool, STACK_OF(CONF_VALUE) **extlist) { if (asn1_bool) return X509V3_add_value(name, "TRUE", extlist); return 1; } static char *bignum_to_string(const BIGNUM *bn) { char *tmp, *ret; size_t len; /* * Display large numbers in hex and small numbers in decimal. Converting to * decimal takes quadratic time and is no more useful than hex for large * numbers. */ if (BN_num_bits(bn) < 128) return BN_bn2dec(bn); tmp = BN_bn2hex(bn); if (tmp == NULL) return NULL; len = strlen(tmp) + 3; ret = OPENSSL_malloc(len); if (ret == NULL) { X509V3err(X509V3_F_BIGNUM_TO_STRING, ERR_R_MALLOC_FAILURE); OPENSSL_free(tmp); return NULL; } /* Prepend "0x", but place it after the "-" if negative. */ if (tmp[0] == '-') { OPENSSL_strlcpy(ret, "-0x", len); OPENSSL_strlcat(ret, tmp + 1, len); } else { OPENSSL_strlcpy(ret, "0x", len); OPENSSL_strlcat(ret, tmp, len); } OPENSSL_free(tmp); return ret; } char *i2s_ASN1_ENUMERATED(X509V3_EXT_METHOD *method, const ASN1_ENUMERATED *a) { BIGNUM *bntmp = NULL; char *strtmp = NULL; if (!a) return NULL; if ((bntmp = ASN1_ENUMERATED_to_BN(a, NULL)) == NULL || (strtmp = bignum_to_string(bntmp)) == NULL) X509V3err(X509V3_F_I2S_ASN1_ENUMERATED, ERR_R_MALLOC_FAILURE); BN_free(bntmp); return strtmp; } char *i2s_ASN1_INTEGER(X509V3_EXT_METHOD *method, const ASN1_INTEGER *a) { BIGNUM *bntmp = NULL; char *strtmp = NULL; if (!a) return NULL; if ((bntmp = ASN1_INTEGER_to_BN(a, NULL)) == NULL || (strtmp = bignum_to_string(bntmp)) == NULL) X509V3err(X509V3_F_I2S_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); BN_free(bntmp); return strtmp; } ASN1_INTEGER *s2i_ASN1_INTEGER(X509V3_EXT_METHOD *method, const char *value) { BIGNUM *bn = NULL; ASN1_INTEGER *aint; int isneg, ishex; int ret; if (value == NULL) { X509V3err(X509V3_F_S2I_ASN1_INTEGER, X509V3_R_INVALID_NULL_VALUE); return NULL; } bn = BN_new(); if (bn == NULL) { X509V3err(X509V3_F_S2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); return NULL; } if (value[0] == '-') { value++; isneg = 1; } else isneg = 0; if (value[0] == '0' && ((value[1] == 'x') || (value[1] == 'X'))) { value += 2; ishex = 1; } else ishex = 0; if (ishex) ret = BN_hex2bn(&bn, value); else ret = BN_dec2bn(&bn, value); if (!ret || value[ret]) { BN_free(bn); X509V3err(X509V3_F_S2I_ASN1_INTEGER, X509V3_R_BN_DEC2BN_ERROR); return NULL; } if (isneg && BN_is_zero(bn)) isneg = 0; aint = BN_to_ASN1_INTEGER(bn, NULL); BN_free(bn); if (!aint) { X509V3err(X509V3_F_S2I_ASN1_INTEGER, X509V3_R_BN_TO_ASN1_INTEGER_ERROR); return NULL; } if (isneg) aint->type |= V_ASN1_NEG; return aint; } int X509V3_add_value_int(const char *name, const ASN1_INTEGER *aint, STACK_OF(CONF_VALUE) **extlist) { char *strtmp; int ret; if (!aint) return 1; if ((strtmp = i2s_ASN1_INTEGER(NULL, aint)) == NULL) return 0; ret = X509V3_add_value(name, strtmp, extlist); OPENSSL_free(strtmp); return ret; } int X509V3_get_value_bool(const CONF_VALUE *value, int *asn1_bool) { const char *btmp; if ((btmp = value->value) == NULL) goto err; if (strcmp(btmp, "TRUE") == 0 || strcmp(btmp, "true") == 0 || strcmp(btmp, "Y") == 0 || strcmp(btmp, "y") == 0 || strcmp(btmp, "YES") == 0 || strcmp(btmp, "yes") == 0) { *asn1_bool = 0xff; return 1; } if (strcmp(btmp, "FALSE") == 0 || strcmp(btmp, "false") == 0 || strcmp(btmp, "N") == 0 || strcmp(btmp, "n") == 0 || strcmp(btmp, "NO") == 0 || strcmp(btmp, "no") == 0) { *asn1_bool = 0; return 1; } err: X509V3err(X509V3_F_X509V3_GET_VALUE_BOOL, X509V3_R_INVALID_BOOLEAN_STRING); X509V3_conf_err(value); return 0; } int X509V3_get_value_int(const CONF_VALUE *value, ASN1_INTEGER **aint) { ASN1_INTEGER *itmp; if ((itmp = s2i_ASN1_INTEGER(NULL, value->value)) == NULL) { X509V3_conf_err(value); return 0; } *aint = itmp; return 1; } #define HDR_NAME 1 #define HDR_VALUE 2 /* * #define DEBUG */ STACK_OF(CONF_VALUE) *X509V3_parse_list(const char *line) { char *p, *q, c; char *ntmp, *vtmp; STACK_OF(CONF_VALUE) *values = NULL; char *linebuf; int state; /* We are going to modify the line so copy it first */ linebuf = OPENSSL_strdup(line); if (linebuf == NULL) { X509V3err(X509V3_F_X509V3_PARSE_LIST, ERR_R_MALLOC_FAILURE); goto err; } state = HDR_NAME; ntmp = NULL; /* Go through all characters */ for (p = linebuf, q = linebuf; (c = *p) && (c != '\r') && (c != '\n'); p++) { switch (state) { case HDR_NAME: if (c == ':') { state = HDR_VALUE; *p = 0; ntmp = strip_spaces(q); if (!ntmp) { X509V3err(X509V3_F_X509V3_PARSE_LIST, X509V3_R_INVALID_NULL_NAME); goto err; } q = p + 1; } else if (c == ',') { *p = 0; ntmp = strip_spaces(q); q = p + 1; if (!ntmp) { X509V3err(X509V3_F_X509V3_PARSE_LIST, X509V3_R_INVALID_NULL_NAME); goto err; } X509V3_add_value(ntmp, NULL, &values); } break; case HDR_VALUE: if (c == ',') { state = HDR_NAME; *p = 0; vtmp = strip_spaces(q); if (!vtmp) { X509V3err(X509V3_F_X509V3_PARSE_LIST, X509V3_R_INVALID_NULL_VALUE); goto err; } X509V3_add_value(ntmp, vtmp, &values); ntmp = NULL; q = p + 1; } } } if (state == HDR_VALUE) { vtmp = strip_spaces(q); if (!vtmp) { X509V3err(X509V3_F_X509V3_PARSE_LIST, X509V3_R_INVALID_NULL_VALUE); goto err; } X509V3_add_value(ntmp, vtmp, &values); } else { ntmp = strip_spaces(q); if (!ntmp) { X509V3err(X509V3_F_X509V3_PARSE_LIST, X509V3_R_INVALID_NULL_NAME); goto err; } X509V3_add_value(ntmp, NULL, &values); } OPENSSL_free(linebuf); return values; err: OPENSSL_free(linebuf); sk_CONF_VALUE_pop_free(values, X509V3_conf_free); return NULL; } /* Delete leading and trailing spaces from a string */ static char *strip_spaces(char *name) { char *p, *q; /* Skip over leading spaces */ p = name; while (*p && ossl_isspace(*p)) p++; if (!*p) return NULL; q = p + strlen(p) - 1; while ((q != p) && ossl_isspace(*q)) q--; if (p != q) q[1] = 0; if (!*p) return NULL; return p; } /* * V2I name comparison function: returns zero if 'name' matches cmp or cmp.* */ int name_cmp(const char *name, const char *cmp) { int len, ret; char c; len = strlen(cmp); if ((ret = strncmp(name, cmp, len))) return ret; c = name[len]; if (!c || (c == '.')) return 0; return 1; } static int sk_strcmp(const char *const *a, const char *const *b) { return strcmp(*a, *b); } STACK_OF(OPENSSL_STRING) *X509_get1_email(X509 *x) { GENERAL_NAMES *gens; STACK_OF(OPENSSL_STRING) *ret; gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); ret = get_email(X509_get_subject_name(x), gens); sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); return ret; } STACK_OF(OPENSSL_STRING) *X509_get1_ocsp(X509 *x) { AUTHORITY_INFO_ACCESS *info; STACK_OF(OPENSSL_STRING) *ret = NULL; int i; info = X509_get_ext_d2i(x, NID_info_access, NULL, NULL); if (!info) return NULL; for (i = 0; i < sk_ACCESS_DESCRIPTION_num(info); i++) { ACCESS_DESCRIPTION *ad = sk_ACCESS_DESCRIPTION_value(info, i); if (OBJ_obj2nid(ad->method) == NID_ad_OCSP) { if (ad->location->type == GEN_URI) { if (!append_ia5 (&ret, ad->location->d.uniformResourceIdentifier)) break; } } } AUTHORITY_INFO_ACCESS_free(info); return ret; } STACK_OF(OPENSSL_STRING) *X509_REQ_get1_email(X509_REQ *x) { GENERAL_NAMES *gens; STACK_OF(X509_EXTENSION) *exts; STACK_OF(OPENSSL_STRING) *ret; exts = X509_REQ_get_extensions(x); gens = X509V3_get_d2i(exts, NID_subject_alt_name, NULL, NULL); ret = get_email(X509_REQ_get_subject_name(x), gens); sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free); return ret; } static STACK_OF(OPENSSL_STRING) *get_email(X509_NAME *name, GENERAL_NAMES *gens) { STACK_OF(OPENSSL_STRING) *ret = NULL; X509_NAME_ENTRY *ne; const ASN1_IA5STRING *email; GENERAL_NAME *gen; int i = -1; /* Now add any email address(es) to STACK */ /* First supplied X509_NAME */ while ((i = X509_NAME_get_index_by_NID(name, NID_pkcs9_emailAddress, i)) >= 0) { ne = X509_NAME_get_entry(name, i); email = X509_NAME_ENTRY_get_data(ne); if (!append_ia5(&ret, email)) return NULL; } for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gen = sk_GENERAL_NAME_value(gens, i); if (gen->type != GEN_EMAIL) continue; if (!append_ia5(&ret, gen->d.ia5)) return NULL; } return ret; } static void str_free(OPENSSL_STRING str) { OPENSSL_free(str); } static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, const ASN1_IA5STRING *email) { char *emtmp; /* First some sanity checks */ if (email->type != V_ASN1_IA5STRING) return 1; if (!email->data || !email->length) return 1; if (*sk == NULL) *sk = sk_OPENSSL_STRING_new(sk_strcmp); if (*sk == NULL) return 0; /* Don't add duplicates */ if (sk_OPENSSL_STRING_find(*sk, (char *)email->data) != -1) return 1; emtmp = OPENSSL_strdup((char *)email->data); if (emtmp == NULL || !sk_OPENSSL_STRING_push(*sk, emtmp)) { OPENSSL_free(emtmp); /* free on push failure */ X509_email_free(*sk); *sk = NULL; return 0; } return 1; } void X509_email_free(STACK_OF(OPENSSL_STRING) *sk) { sk_OPENSSL_STRING_pop_free(sk, str_free); } typedef int (*equal_fn) (const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags); /* Skip pattern prefix to match "wildcard" subject */ static void skip_prefix(const unsigned char **p, size_t *plen, size_t subject_len, unsigned int flags) { const unsigned char *pattern = *p; size_t pattern_len = *plen; /* * If subject starts with a leading '.' followed by more octets, and * pattern is longer, compare just an equal-length suffix with the * full subject (starting at the '.'), provided the prefix contains * no NULs. */ if ((flags & _X509_CHECK_FLAG_DOT_SUBDOMAINS) == 0) return; while (pattern_len > subject_len && *pattern) { if ((flags & X509_CHECK_FLAG_SINGLE_LABEL_SUBDOMAINS) && *pattern == '.') break; ++pattern; --pattern_len; } /* Skip if entire prefix acceptable */ if (pattern_len == subject_len) { *p = pattern; *plen = pattern_len; } } /* Compare while ASCII ignoring case. */ static int equal_nocase(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { skip_prefix(&pattern, &pattern_len, subject_len, flags); if (pattern_len != subject_len) return 0; while (pattern_len) { unsigned char l = *pattern; unsigned char r = *subject; /* The pattern must not contain NUL characters. */ if (l == 0) return 0; if (l != r) { if ('A' <= l && l <= 'Z') l = (l - 'A') + 'a'; if ('A' <= r && r <= 'Z') r = (r - 'A') + 'a'; if (l != r) return 0; } ++pattern; ++subject; --pattern_len; } return 1; } /* Compare using memcmp. */ static int equal_case(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { skip_prefix(&pattern, &pattern_len, subject_len, flags); if (pattern_len != subject_len) return 0; return !memcmp(pattern, subject, pattern_len); } /* * RFC 5280, section 7.5, requires that only the domain is compared in a * case-insensitive manner. */ static int equal_email(const unsigned char *a, size_t a_len, const unsigned char *b, size_t b_len, unsigned int unused_flags) { size_t i = a_len; if (a_len != b_len) return 0; /* * We search backwards for the '@' character, so that we do not have to * deal with quoted local-parts. The domain part is compared in a * case-insensitive manner. */ while (i > 0) { --i; if (a[i] == '@' || b[i] == '@') { if (!equal_nocase(a + i, a_len - i, b + i, a_len - i, 0)) return 0; break; } } if (i == 0) i = a_len; return equal_case(a, i, b, i, 0); } /* * Compare the prefix and suffix with the subject, and check that the * characters in-between are valid. */ static int wildcard_match(const unsigned char *prefix, size_t prefix_len, const unsigned char *suffix, size_t suffix_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { const unsigned char *wildcard_start; const unsigned char *wildcard_end; const unsigned char *p; int allow_multi = 0; int allow_idna = 0; if (subject_len < prefix_len + suffix_len) return 0; if (!equal_nocase(prefix, prefix_len, subject, prefix_len, flags)) return 0; wildcard_start = subject + prefix_len; wildcard_end = subject + (subject_len - suffix_len); if (!equal_nocase(wildcard_end, suffix_len, suffix, suffix_len, flags)) return 0; /* * If the wildcard makes up the entire first label, it must match at * least one character. */ if (prefix_len == 0 && *suffix == '.') { if (wildcard_start == wildcard_end) return 0; allow_idna = 1; if (flags & X509_CHECK_FLAG_MULTI_LABEL_WILDCARDS) allow_multi = 1; } /* IDNA labels cannot match partial wildcards */ if (!allow_idna && subject_len >= 4 && strncasecmp((char *)subject, "xn--", 4) == 0) return 0; /* The wildcard may match a literal '*' */ if (wildcard_end == wildcard_start + 1 && *wildcard_start == '*') return 1; /* * Check that the part matched by the wildcard contains only * permitted characters and only matches a single label unless * allow_multi is set. */ for (p = wildcard_start; p != wildcard_end; ++p) if (!(('0' <= *p && *p <= '9') || ('A' <= *p && *p <= 'Z') || ('a' <= *p && *p <= 'z') || *p == '-' || (allow_multi && *p == '.'))) return 0; return 1; } #define LABEL_START (1 << 0) #define LABEL_END (1 << 1) #define LABEL_HYPHEN (1 << 2) #define LABEL_IDNA (1 << 3) static const unsigned char *valid_star(const unsigned char *p, size_t len, unsigned int flags) { const unsigned char *star = 0; size_t i; int state = LABEL_START; int dots = 0; for (i = 0; i < len; ++i) { /* * Locate first and only legal wildcard, either at the start * or end of a non-IDNA first and not final label. */ if (p[i] == '*') { int atstart = (state & LABEL_START); int atend = (i == len - 1 || p[i + 1] == '.'); /*- * At most one wildcard per pattern. * No wildcards in IDNA labels. * No wildcards after the first label. */ if (star != NULL || (state & LABEL_IDNA) != 0 || dots) return NULL; /* Only full-label '*.example.com' wildcards? */ if ((flags & X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS) && (!atstart || !atend)) return NULL; /* No 'foo*bar' wildcards */ if (!atstart && !atend) return NULL; star = &p[i]; state &= ~LABEL_START; } else if (('a' <= p[i] && p[i] <= 'z') || ('A' <= p[i] && p[i] <= 'Z') || ('0' <= p[i] && p[i] <= '9')) { if ((state & LABEL_START) != 0 && len - i >= 4 && strncasecmp((char *)&p[i], "xn--", 4) == 0) state |= LABEL_IDNA; state &= ~(LABEL_HYPHEN | LABEL_START); } else if (p[i] == '.') { if ((state & (LABEL_HYPHEN | LABEL_START)) != 0) return NULL; state = LABEL_START; ++dots; } else if (p[i] == '-') { /* no domain/subdomain starts with '-' */ if ((state & LABEL_START) != 0) return NULL; state |= LABEL_HYPHEN; } else return NULL; } /* * The final label must not end in a hyphen or ".", and * there must be at least two dots after the star. */ if ((state & (LABEL_START | LABEL_HYPHEN)) != 0 || dots < 2) return NULL; return star; } /* Compare using wildcards. */ static int equal_wildcard(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { const unsigned char *star = NULL; /* * Subject names starting with '.' can only match a wildcard pattern * via a subject sub-domain pattern suffix match. */ if (!(subject_len > 1 && subject[0] == '.')) star = valid_star(pattern, pattern_len, flags); if (star == NULL) return equal_nocase(pattern, pattern_len, subject, subject_len, flags); return wildcard_match(pattern, star - pattern, star + 1, (pattern + pattern_len) - star - 1, subject, subject_len, flags); } /* * Compare an ASN1_STRING to a supplied string. If they match return 1. If * cmp_type > 0 only compare if string matches the type, otherwise convert it * to UTF8. */ static int do_check_string(const ASN1_STRING *a, int cmp_type, equal_fn equal, unsigned int flags, const char *b, size_t blen, char **peername) { int rv = 0; if (!a->data || !a->length) return 0; if (cmp_type > 0) { if (cmp_type != a->type) return 0; if (cmp_type == V_ASN1_IA5STRING) rv = equal(a->data, a->length, (unsigned char *)b, blen, flags); else if (a->length == (int)blen && !memcmp(a->data, b, blen)) rv = 1; if (rv > 0 && peername) *peername = OPENSSL_strndup((char *)a->data, a->length); } else { int astrlen; unsigned char *astr; astrlen = ASN1_STRING_to_UTF8(&astr, a); if (astrlen < 0) { /* * -1 could be an internal malloc failure or a decoding error from * malformed input; we can't distinguish. */ return -1; } rv = equal(astr, astrlen, (unsigned char *)b, blen, flags); if (rv > 0 && peername) *peername = OPENSSL_strndup((char *)astr, astrlen); OPENSSL_free(astr); } return rv; } static int do_x509_check(X509 *x, const char *chk, size_t chklen, unsigned int flags, int check_type, char **peername) { GENERAL_NAMES *gens = NULL; X509_NAME *name = NULL; int i; int cnid = NID_undef; int alt_type; int san_present = 0; int rv = 0; equal_fn equal; /* See below, this flag is internal-only */ flags &= ~_X509_CHECK_FLAG_DOT_SUBDOMAINS; if (check_type == GEN_EMAIL) { cnid = NID_pkcs9_emailAddress; alt_type = V_ASN1_IA5STRING; equal = equal_email; } else if (check_type == GEN_DNS) { cnid = NID_commonName; /* Implicit client-side DNS sub-domain pattern */ if (chklen > 1 && chk[0] == '.') flags |= _X509_CHECK_FLAG_DOT_SUBDOMAINS; alt_type = V_ASN1_IA5STRING; if (flags & X509_CHECK_FLAG_NO_WILDCARDS) equal = equal_nocase; else equal = equal_wildcard; } else { alt_type = V_ASN1_OCTET_STRING; equal = equal_case; } if (chklen == 0) chklen = strlen(chk); gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); if (gens) { for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { GENERAL_NAME *gen; ASN1_STRING *cstr; gen = sk_GENERAL_NAME_value(gens, i); if (gen->type != check_type) continue; san_present = 1; if (check_type == GEN_EMAIL) cstr = gen->d.rfc822Name; else if (check_type == GEN_DNS) cstr = gen->d.dNSName; else cstr = gen->d.iPAddress; /* Positive on success, negative on error! */ if ((rv = do_check_string(cstr, alt_type, equal, flags, chk, chklen, peername)) != 0) break; } GENERAL_NAMES_free(gens); if (rv != 0) return rv; if (san_present && !(flags & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT)) return 0; } /* We're done if CN-ID is not pertinent */ if (cnid == NID_undef || (flags & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT)) return 0; i = -1; name = X509_get_subject_name(x); while ((i = X509_NAME_get_index_by_NID(name, cnid, i)) >= 0) { const X509_NAME_ENTRY *ne = X509_NAME_get_entry(name, i); const ASN1_STRING *str = X509_NAME_ENTRY_get_data(ne); /* Positive on success, negative on error! */ if ((rv = do_check_string(str, -1, equal, flags, chk, chklen, peername)) != 0) return rv; } return 0; } int X509_check_host(X509 *x, const char *chk, size_t chklen, unsigned int flags, char **peername) { if (chk == NULL) return -2; /* * Embedded NULs are disallowed, except as the last character of a * string of length 2 or more (tolerate caller including terminating * NUL in string length). */ if (chklen == 0) chklen = strlen(chk); else if (memchr(chk, '\0', chklen > 1 ? chklen - 1 : chklen)) return -2; if (chklen > 1 && chk[chklen - 1] == '\0') --chklen; return do_x509_check(x, chk, chklen, flags, GEN_DNS, peername); } int X509_check_email(X509 *x, const char *chk, size_t chklen, unsigned int flags) { if (chk == NULL) return -2; /* * Embedded NULs are disallowed, except as the last character of a * string of length 2 or more (tolerate caller including terminating * NUL in string length). */ if (chklen == 0) chklen = strlen((char *)chk); else if (memchr(chk, '\0', chklen > 1 ? chklen - 1 : chklen)) return -2; if (chklen > 1 && chk[chklen - 1] == '\0') --chklen; return do_x509_check(x, chk, chklen, flags, GEN_EMAIL, NULL); } int X509_check_ip(X509 *x, const unsigned char *chk, size_t chklen, unsigned int flags) { if (chk == NULL) return -2; return do_x509_check(x, (char *)chk, chklen, flags, GEN_IPADD, NULL); } int X509_check_ip_asc(X509 *x, const char *ipasc, unsigned int flags) { unsigned char ipout[16]; size_t iplen; if (ipasc == NULL) return -2; iplen = (size_t)a2i_ipadd(ipout, ipasc); if (iplen == 0) return -2; return do_x509_check(x, (char *)ipout, iplen, flags, GEN_IPADD, NULL); } /* * Convert IP addresses both IPv4 and IPv6 into an OCTET STRING compatible * with RFC3280. */ ASN1_OCTET_STRING *a2i_IPADDRESS(const char *ipasc) { unsigned char ipout[16]; ASN1_OCTET_STRING *ret; int iplen; /* If string contains a ':' assume IPv6 */ iplen = a2i_ipadd(ipout, ipasc); if (!iplen) return NULL; ret = ASN1_OCTET_STRING_new(); if (ret == NULL) return NULL; if (!ASN1_OCTET_STRING_set(ret, ipout, iplen)) { ASN1_OCTET_STRING_free(ret); return NULL; } return ret; } ASN1_OCTET_STRING *a2i_IPADDRESS_NC(const char *ipasc) { ASN1_OCTET_STRING *ret = NULL; unsigned char ipout[32]; char *iptmp = NULL, *p; int iplen1, iplen2; p = strchr(ipasc, '/'); if (!p) return NULL; iptmp = OPENSSL_strdup(ipasc); if (!iptmp) return NULL; p = iptmp + (p - ipasc); *p++ = 0; iplen1 = a2i_ipadd(ipout, iptmp); if (!iplen1) goto err; iplen2 = a2i_ipadd(ipout + iplen1, p); OPENSSL_free(iptmp); iptmp = NULL; if (!iplen2 || (iplen1 != iplen2)) goto err; ret = ASN1_OCTET_STRING_new(); if (ret == NULL) goto err; if (!ASN1_OCTET_STRING_set(ret, ipout, iplen1 + iplen2)) goto err; return ret; err: OPENSSL_free(iptmp); ASN1_OCTET_STRING_free(ret); return NULL; } int a2i_ipadd(unsigned char *ipout, const char *ipasc) { /* If string contains a ':' assume IPv6 */ if (strchr(ipasc, ':')) { if (!ipv6_from_asc(ipout, ipasc)) return 0; return 16; } else { if (!ipv4_from_asc(ipout, ipasc)) return 0; return 4; } } static int ipv4_from_asc(unsigned char *v4, const char *in) { int a0, a1, a2, a3; if (sscanf(in, "%d.%d.%d.%d", &a0, &a1, &a2, &a3) != 4) return 0; if ((a0 < 0) || (a0 > 255) || (a1 < 0) || (a1 > 255) || (a2 < 0) || (a2 > 255) || (a3 < 0) || (a3 > 255)) return 0; v4[0] = a0; v4[1] = a1; v4[2] = a2; v4[3] = a3; return 1; } typedef struct { /* Temporary store for IPV6 output */ unsigned char tmp[16]; /* Total number of bytes in tmp */ int total; /* The position of a zero (corresponding to '::') */ int zero_pos; /* Number of zeroes */ int zero_cnt; } IPV6_STAT; static int ipv6_from_asc(unsigned char *v6, const char *in) { IPV6_STAT v6stat; v6stat.total = 0; v6stat.zero_pos = -1; v6stat.zero_cnt = 0; /* * Treat the IPv6 representation as a list of values separated by ':'. * The presence of a '::' will parse as one, two or three zero length * elements. */ if (!CONF_parse_list(in, ':', 0, ipv6_cb, &v6stat)) return 0; /* Now for some sanity checks */ if (v6stat.zero_pos == -1) { /* If no '::' must have exactly 16 bytes */ if (v6stat.total != 16) return 0; } else { /* If '::' must have less than 16 bytes */ if (v6stat.total == 16) return 0; /* More than three zeroes is an error */ if (v6stat.zero_cnt > 3) return 0; /* Can only have three zeroes if nothing else present */ else if (v6stat.zero_cnt == 3) { if (v6stat.total > 0) return 0; } /* Can only have two zeroes if at start or end */ else if (v6stat.zero_cnt == 2) { if ((v6stat.zero_pos != 0) && (v6stat.zero_pos != v6stat.total)) return 0; } else /* Can only have one zero if *not* start or end */ { if ((v6stat.zero_pos == 0) || (v6stat.zero_pos == v6stat.total)) return 0; } } /* Format result */ if (v6stat.zero_pos >= 0) { /* Copy initial part */ memcpy(v6, v6stat.tmp, v6stat.zero_pos); /* Zero middle */ memset(v6 + v6stat.zero_pos, 0, 16 - v6stat.total); /* Copy final part */ if (v6stat.total != v6stat.zero_pos) memcpy(v6 + v6stat.zero_pos + 16 - v6stat.total, v6stat.tmp + v6stat.zero_pos, v6stat.total - v6stat.zero_pos); } else memcpy(v6, v6stat.tmp, 16); return 1; } static int ipv6_cb(const char *elem, int len, void *usr) { IPV6_STAT *s = usr; /* Error if 16 bytes written */ if (s->total == 16) return 0; if (len == 0) { /* Zero length element, corresponds to '::' */ if (s->zero_pos == -1) s->zero_pos = s->total; /* If we've already got a :: its an error */ else if (s->zero_pos != s->total) return 0; s->zero_cnt++; } else { /* If more than 4 characters could be final a.b.c.d form */ if (len > 4) { /* Need at least 4 bytes left */ if (s->total > 12) return 0; /* Must be end of string */ if (elem[len]) return 0; if (!ipv4_from_asc(s->tmp + s->total, elem)) return 0; s->total += 4; } else { if (!ipv6_hex(s->tmp + s->total, elem, len)) return 0; s->total += 2; } } return 1; } /* * Convert a string of up to 4 hex digits into the corresponding IPv6 form. */ static int ipv6_hex(unsigned char *out, const char *in, int inlen) { unsigned char c; unsigned int num = 0; int x; if (inlen > 4) return 0; while (inlen--) { c = *in++; num <<= 4; x = OPENSSL_hexchar2int(c); if (x < 0) return 0; num |= (char)x; } out[0] = num >> 8; out[1] = num & 0xff; return 1; } int X509V3_NAME_from_section(X509_NAME *nm, STACK_OF(CONF_VALUE) *dn_sk, unsigned long chtype) { CONF_VALUE *v; int i, mval, spec_char, plus_char; char *p, *type; if (!nm) return 0; for (i = 0; i < sk_CONF_VALUE_num(dn_sk); i++) { v = sk_CONF_VALUE_value(dn_sk, i); type = v->name; /* * Skip past any leading X. X: X, etc to allow for multiple instances */ for (p = type; *p; p++) { #ifndef CHARSET_EBCDIC spec_char = ((*p == ':') || (*p == ',') || (*p == '.')); #else spec_char = ((*p == os_toascii[':']) || (*p == os_toascii[',']) || (*p == os_toascii['.'])); #endif if (spec_char) { p++; if (*p) type = p; break; } } #ifndef CHARSET_EBCDIC plus_char = (*type == '+'); #else plus_char = (*type == os_toascii['+']); #endif if (plus_char) { mval = -1; type++; } else mval = 0; if (!X509_NAME_add_entry_by_txt(nm, type, chtype, (unsigned char *)v->value, -1, -1, mval)) return 0; } return 1; } openssl-1.1.1f/crypto/x509v3/v3err.c000066400000000000000000000305301364063235100170520ustar00rootroot00000000000000/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA X509V3_str_functs[] = { {ERR_PACK(ERR_LIB_X509V3, X509V3_F_A2I_GENERAL_NAME, 0), "a2i_GENERAL_NAME"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_ADDR_VALIDATE_PATH_INTERNAL, 0), "addr_validate_path_internal"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, 0), "ASIdentifierChoice_canonize"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL, 0), "ASIdentifierChoice_is_canonical"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_BIGNUM_TO_STRING, 0), "bignum_to_string"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_COPY_EMAIL, 0), "copy_email"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_COPY_ISSUER, 0), "copy_issuer"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_DO_DIRNAME, 0), "do_dirname"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_DO_EXT_I2D, 0), "do_ext_i2d"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_DO_EXT_NCONF, 0), "do_ext_nconf"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_GNAMES_FROM_SECTNAME, 0), "gnames_from_sectname"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_I2S_ASN1_ENUMERATED, 0), "i2s_ASN1_ENUMERATED"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_I2S_ASN1_IA5STRING, 0), "i2s_ASN1_IA5STRING"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_I2S_ASN1_INTEGER, 0), "i2s_ASN1_INTEGER"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_I2V_AUTHORITY_INFO_ACCESS, 0), "i2v_AUTHORITY_INFO_ACCESS"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_LEVEL_ADD_NODE, 0), "level_add_node"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_NOTICE_SECTION, 0), "notice_section"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_NREF_NOS, 0), "nref_nos"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_POLICY_CACHE_CREATE, 0), "policy_cache_create"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_POLICY_CACHE_NEW, 0), "policy_cache_new"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_POLICY_DATA_NEW, 0), "policy_data_new"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_POLICY_SECTION, 0), "policy_section"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_PROCESS_PCI_VALUE, 0), "process_pci_value"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_R2I_CERTPOL, 0), "r2i_certpol"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_R2I_PCI, 0), "r2i_pci"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_S2I_ASN1_IA5STRING, 0), "s2i_ASN1_IA5STRING"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_S2I_ASN1_INTEGER, 0), "s2i_ASN1_INTEGER"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_S2I_ASN1_OCTET_STRING, 0), "s2i_ASN1_OCTET_STRING"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_S2I_SKEY_ID, 0), "s2i_skey_id"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_SET_DIST_POINT_NAME, 0), "set_dist_point_name"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_SXNET_ADD_ID_ASC, 0), "SXNET_add_id_asc"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_SXNET_ADD_ID_INTEGER, 0), "SXNET_add_id_INTEGER"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_SXNET_ADD_ID_ULONG, 0), "SXNET_add_id_ulong"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_SXNET_GET_ID_ASC, 0), "SXNET_get_id_asc"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_SXNET_GET_ID_ULONG, 0), "SXNET_get_id_ulong"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_TREE_INIT, 0), "tree_init"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_ASIDENTIFIERS, 0), "v2i_ASIdentifiers"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_ASN1_BIT_STRING, 0), "v2i_ASN1_BIT_STRING"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_AUTHORITY_INFO_ACCESS, 0), "v2i_AUTHORITY_INFO_ACCESS"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_AUTHORITY_KEYID, 0), "v2i_AUTHORITY_KEYID"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_BASIC_CONSTRAINTS, 0), "v2i_BASIC_CONSTRAINTS"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_CRLD, 0), "v2i_crld"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_EXTENDED_KEY_USAGE, 0), "v2i_EXTENDED_KEY_USAGE"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_GENERAL_NAMES, 0), "v2i_GENERAL_NAMES"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_GENERAL_NAME_EX, 0), "v2i_GENERAL_NAME_ex"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_IDP, 0), "v2i_idp"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_IPADDRBLOCKS, 0), "v2i_IPAddrBlocks"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_ISSUER_ALT, 0), "v2i_issuer_alt"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_NAME_CONSTRAINTS, 0), "v2i_NAME_CONSTRAINTS"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_POLICY_CONSTRAINTS, 0), "v2i_POLICY_CONSTRAINTS"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_POLICY_MAPPINGS, 0), "v2i_POLICY_MAPPINGS"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_SUBJECT_ALT, 0), "v2i_subject_alt"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V2I_TLS_FEATURE, 0), "v2i_TLS_FEATURE"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_V3_GENERIC_EXTENSION, 0), "v3_generic_extension"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_ADD1_I2D, 0), "X509V3_add1_i2d"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_ADD_VALUE, 0), "X509V3_add_value"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_EXT_ADD, 0), "X509V3_EXT_add"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_EXT_ADD_ALIAS, 0), "X509V3_EXT_add_alias"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_EXT_I2D, 0), "X509V3_EXT_i2d"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_EXT_NCONF, 0), "X509V3_EXT_nconf"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_GET_SECTION, 0), "X509V3_get_section"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_GET_STRING, 0), "X509V3_get_string"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_GET_VALUE_BOOL, 0), "X509V3_get_value_bool"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509V3_PARSE_LIST, 0), "X509V3_parse_list"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509_PURPOSE_ADD, 0), "X509_PURPOSE_add"}, {ERR_PACK(ERR_LIB_X509V3, X509V3_F_X509_PURPOSE_SET, 0), "X509_PURPOSE_set"}, {0, NULL} }; static const ERR_STRING_DATA X509V3_str_reasons[] = { {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BAD_IP_ADDRESS), "bad ip address"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BAD_OBJECT), "bad object"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BN_DEC2BN_ERROR), "bn dec2bn error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BN_TO_ASN1_INTEGER_ERROR), "bn to asn1 integer error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_DIRNAME_ERROR), "dirname error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_DISTPOINT_ALREADY_SET), "distpoint already set"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_DUPLICATE_ZONE_ID), "duplicate zone id"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ERROR_CONVERTING_ZONE), "error converting zone"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ERROR_CREATING_EXTENSION), "error creating extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ERROR_IN_EXTENSION), "error in extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXPECTED_A_SECTION_NAME), "expected a section name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_EXISTS), "extension exists"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_NAME_ERROR), "extension name error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_NOT_FOUND), "extension not found"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_SETTING_NOT_SUPPORTED), "extension setting not supported"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_VALUE_ERROR), "extension value error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ILLEGAL_EMPTY_EXTENSION), "illegal empty extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INCORRECT_POLICY_SYNTAX_TAG), "incorrect policy syntax tag"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_ASNUMBER), "invalid asnumber"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_ASRANGE), "invalid asrange"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_BOOLEAN_STRING), "invalid boolean string"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_EXTENSION_STRING), "invalid extension string"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_INHERITANCE), "invalid inheritance"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_IPADDRESS), "invalid ipaddress"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_MULTIPLE_RDNS), "invalid multiple rdns"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NAME), "invalid name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NULL_ARGUMENT), "invalid null argument"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NULL_NAME), "invalid null name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NULL_VALUE), "invalid null value"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NUMBER), "invalid number"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NUMBERS), "invalid numbers"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_OBJECT_IDENTIFIER), "invalid object identifier"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_OPTION), "invalid option"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_POLICY_IDENTIFIER), "invalid policy identifier"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_PROXY_POLICY_SETTING), "invalid proxy policy setting"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_PURPOSE), "invalid purpose"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_SAFI), "invalid safi"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_SECTION), "invalid section"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_SYNTAX), "invalid syntax"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ISSUER_DECODE_ERROR), "issuer decode error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_MISSING_VALUE), "missing value"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NEED_ORGANIZATION_AND_NUMBERS), "need organization and numbers"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_CONFIG_DATABASE), "no config database"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_ISSUER_CERTIFICATE), "no issuer certificate"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_ISSUER_DETAILS), "no issuer details"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_POLICY_IDENTIFIER), "no policy identifier"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_PROXY_CERT_POLICY_LANGUAGE_DEFINED), "no proxy cert policy language defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_PUBLIC_KEY), "no public key"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_SUBJECT_DETAILS), "no subject details"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_OPERATION_NOT_DEFINED), "operation not defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_OTHERNAME_ERROR), "othername error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_LANGUAGE_ALREADY_DEFINED), "policy language already defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_PATH_LENGTH), "policy path length"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_PATH_LENGTH_ALREADY_DEFINED), "policy path length already defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_WHEN_PROXY_LANGUAGE_REQUIRES_NO_POLICY), "policy when proxy language requires no policy"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_SECTION_NOT_FOUND), "section not found"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNABLE_TO_GET_ISSUER_DETAILS), "unable to get issuer details"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNABLE_TO_GET_ISSUER_KEYID), "unable to get issuer keyid"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_BIT_STRING_ARGUMENT), "unknown bit string argument"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_EXTENSION), "unknown extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_EXTENSION_NAME), "unknown extension name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_OPTION), "unknown option"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNSUPPORTED_OPTION), "unsupported option"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNSUPPORTED_TYPE), "unsupported type"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_USER_TOO_LONG), "user too long"}, {0, NULL} }; #endif int ERR_load_X509V3_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_func_error_string(X509V3_str_functs[0].error) == NULL) { ERR_load_strings_const(X509V3_str_functs); ERR_load_strings_const(X509V3_str_reasons); } #endif return 1; } openssl-1.1.1f/crypto/x86_64cpuid.pl000066400000000000000000000242161364063235100172130ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; ($arg1,$arg2,$arg3,$arg4)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order ("%rdi","%rsi","%rdx","%rcx"); # Unix order print<<___; .extern OPENSSL_cpuid_setup .hidden OPENSSL_cpuid_setup .section .init call OPENSSL_cpuid_setup .hidden OPENSSL_ia32cap_P .comm OPENSSL_ia32cap_P,16,4 .text .globl OPENSSL_atomic_add .type OPENSSL_atomic_add,\@abi-omnipotent .align 16 OPENSSL_atomic_add: .cfi_startproc movl ($arg1),%eax .Lspin: leaq ($arg2,%rax),%r8 .byte 0xf0 # lock cmpxchgl %r8d,($arg1) jne .Lspin movl %r8d,%eax .byte 0x48,0x98 # cltq/cdqe ret .cfi_endproc .size OPENSSL_atomic_add,.-OPENSSL_atomic_add .globl OPENSSL_rdtsc .type OPENSSL_rdtsc,\@abi-omnipotent .align 16 OPENSSL_rdtsc: .cfi_startproc rdtsc shl \$32,%rdx or %rdx,%rax ret .cfi_endproc .size OPENSSL_rdtsc,.-OPENSSL_rdtsc .globl OPENSSL_ia32_cpuid .type OPENSSL_ia32_cpuid,\@function,1 .align 16 OPENSSL_ia32_cpuid: .cfi_startproc mov %rbx,%r8 # save %rbx .cfi_register %rbx,%r8 xor %eax,%eax mov %rax,8(%rdi) # clear extended feature flags cpuid mov %eax,%r11d # max value for standard query level xor %eax,%eax cmp \$0x756e6547,%ebx # "Genu" setne %al mov %eax,%r9d cmp \$0x49656e69,%edx # "ineI" setne %al or %eax,%r9d cmp \$0x6c65746e,%ecx # "ntel" setne %al or %eax,%r9d # 0 indicates Intel CPU jz .Lintel cmp \$0x68747541,%ebx # "Auth" setne %al mov %eax,%r10d cmp \$0x69746E65,%edx # "enti" setne %al or %eax,%r10d cmp \$0x444D4163,%ecx # "cAMD" setne %al or %eax,%r10d # 0 indicates AMD CPU jnz .Lintel # AMD specific mov \$0x80000000,%eax cpuid cmp \$0x80000001,%eax jb .Lintel mov %eax,%r10d mov \$0x80000001,%eax cpuid or %ecx,%r9d and \$0x00000801,%r9d # isolate AMD XOP bit, 1<<11 cmp \$0x80000008,%r10d jb .Lintel mov \$0x80000008,%eax cpuid movzb %cl,%r10 # number of cores - 1 inc %r10 # number of cores mov \$1,%eax cpuid bt \$28,%edx # test hyper-threading bit jnc .Lgeneric shr \$16,%ebx # number of logical processors cmp %r10b,%bl ja .Lgeneric and \$0xefffffff,%edx # ~(1<<28) jmp .Lgeneric .Lintel: cmp \$4,%r11d mov \$-1,%r10d jb .Lnocacheinfo mov \$4,%eax mov \$0,%ecx # query L1D cpuid mov %eax,%r10d shr \$14,%r10d and \$0xfff,%r10d # number of cores -1 per L1D .Lnocacheinfo: mov \$1,%eax cpuid movd %eax,%xmm0 # put aside processor id and \$0xbfefffff,%edx # force reserved bits to 0 cmp \$0,%r9d jne .Lnotintel or \$0x40000000,%edx # set reserved bit#30 on Intel CPUs and \$15,%ah cmp \$15,%ah # examine Family ID jne .LnotP4 or \$0x00100000,%edx # set reserved bit#20 to engage RC4_CHAR .LnotP4: cmp \$6,%ah jne .Lnotintel and \$0x0fff0ff0,%eax cmp \$0x00050670,%eax # Knights Landing je .Lknights cmp \$0x00080650,%eax # Knights Mill (according to sde) jne .Lnotintel .Lknights: and \$0xfbffffff,%ecx # clear XSAVE flag to mimic Silvermont .Lnotintel: bt \$28,%edx # test hyper-threading bit jnc .Lgeneric and \$0xefffffff,%edx # ~(1<<28) cmp \$0,%r10d je .Lgeneric or \$0x10000000,%edx # 1<<28 shr \$16,%ebx cmp \$1,%bl # see if cache is shared ja .Lgeneric and \$0xefffffff,%edx # ~(1<<28) .Lgeneric: and \$0x00000800,%r9d # isolate AMD XOP flag and \$0xfffff7ff,%ecx or %ecx,%r9d # merge AMD XOP flag mov %edx,%r10d # %r9d:%r10d is copy of %ecx:%edx cmp \$7,%r11d jb .Lno_extended_info mov \$7,%eax xor %ecx,%ecx cpuid bt \$26,%r9d # check XSAVE bit, cleared on Knights jc .Lnotknights and \$0xfff7ffff,%ebx # clear ADCX/ADOX flag .Lnotknights: movd %xmm0,%eax # restore processor id and \$0x0fff0ff0,%eax cmp \$0x00050650,%eax # Skylake-X jne .Lnotskylakex and \$0xfffeffff,%ebx # ~(1<<16) # suppress AVX512F flag on Skylake-X .Lnotskylakex: mov %ebx,8(%rdi) # save extended feature flags mov %ecx,12(%rdi) .Lno_extended_info: bt \$27,%r9d # check OSXSAVE bit jnc .Lclear_avx xor %ecx,%ecx # XCR0 .byte 0x0f,0x01,0xd0 # xgetbv and \$0xe6,%eax # isolate XMM, YMM and ZMM state support cmp \$0xe6,%eax je .Ldone andl \$0x3fdeffff,8(%rdi) # ~(1<<31|1<<30|1<<21|1<<16) # clear AVX512F+BW+VL+FIMA, all of # them are EVEX-encoded, which requires # ZMM state support even if one uses # only XMM and YMM :-( and \$6,%eax # isolate XMM and YMM state support cmp \$6,%eax je .Ldone .Lclear_avx: mov \$0xefffe7ff,%eax # ~(1<<28|1<<12|1<<11) and %eax,%r9d # clear AVX, FMA and AMD XOP bits mov \$0x3fdeffdf,%eax # ~(1<<31|1<<30|1<<21|1<<16|1<<5) and %eax,8(%rdi) # clear AVX2 and AVX512* bits .Ldone: shl \$32,%r9 mov %r10d,%eax mov %r8,%rbx # restore %rbx .cfi_restore %rbx or %r9,%rax ret .cfi_endproc .size OPENSSL_ia32_cpuid,.-OPENSSL_ia32_cpuid .globl OPENSSL_cleanse .type OPENSSL_cleanse,\@abi-omnipotent .align 16 OPENSSL_cleanse: .cfi_startproc xor %rax,%rax cmp \$15,$arg2 jae .Lot cmp \$0,$arg2 je .Lret .Little: mov %al,($arg1) sub \$1,$arg2 lea 1($arg1),$arg1 jnz .Little .Lret: ret .align 16 .Lot: test \$7,$arg1 jz .Laligned mov %al,($arg1) lea -1($arg2),$arg2 lea 1($arg1),$arg1 jmp .Lot .Laligned: mov %rax,($arg1) lea -8($arg2),$arg2 test \$-8,$arg2 lea 8($arg1),$arg1 jnz .Laligned cmp \$0,$arg2 jne .Little ret .cfi_endproc .size OPENSSL_cleanse,.-OPENSSL_cleanse .globl CRYPTO_memcmp .type CRYPTO_memcmp,\@abi-omnipotent .align 16 CRYPTO_memcmp: .cfi_startproc xor %rax,%rax xor %r10,%r10 cmp \$0,$arg3 je .Lno_data cmp \$16,$arg3 jne .Loop_cmp mov ($arg1),%r10 mov 8($arg1),%r11 mov \$1,$arg3 xor ($arg2),%r10 xor 8($arg2),%r11 or %r11,%r10 cmovnz $arg3,%rax ret .align 16 .Loop_cmp: mov ($arg1),%r10b lea 1($arg1),$arg1 xor ($arg2),%r10b lea 1($arg2),$arg2 or %r10b,%al dec $arg3 jnz .Loop_cmp neg %rax shr \$63,%rax .Lno_data: ret .cfi_endproc .size CRYPTO_memcmp,.-CRYPTO_memcmp ___ print<<___ if (!$win64); .globl OPENSSL_wipe_cpu .type OPENSSL_wipe_cpu,\@abi-omnipotent .align 16 OPENSSL_wipe_cpu: .cfi_startproc pxor %xmm0,%xmm0 pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 pxor %xmm6,%xmm6 pxor %xmm7,%xmm7 pxor %xmm8,%xmm8 pxor %xmm9,%xmm9 pxor %xmm10,%xmm10 pxor %xmm11,%xmm11 pxor %xmm12,%xmm12 pxor %xmm13,%xmm13 pxor %xmm14,%xmm14 pxor %xmm15,%xmm15 xorq %rcx,%rcx xorq %rdx,%rdx xorq %rsi,%rsi xorq %rdi,%rdi xorq %r8,%r8 xorq %r9,%r9 xorq %r10,%r10 xorq %r11,%r11 leaq 8(%rsp),%rax ret .cfi_endproc .size OPENSSL_wipe_cpu,.-OPENSSL_wipe_cpu ___ print<<___ if ($win64); .globl OPENSSL_wipe_cpu .type OPENSSL_wipe_cpu,\@abi-omnipotent .align 16 OPENSSL_wipe_cpu: pxor %xmm0,%xmm0 pxor %xmm1,%xmm1 pxor %xmm2,%xmm2 pxor %xmm3,%xmm3 pxor %xmm4,%xmm4 pxor %xmm5,%xmm5 xorq %rcx,%rcx xorq %rdx,%rdx xorq %r8,%r8 xorq %r9,%r9 xorq %r10,%r10 xorq %r11,%r11 leaq 8(%rsp),%rax ret .size OPENSSL_wipe_cpu,.-OPENSSL_wipe_cpu ___ { my $out="%r10"; my $cnt="%rcx"; my $max="%r11"; my $lasttick="%r8d"; my $lastdiff="%r9d"; my $redzone=win64?8:-8; print<<___; .globl OPENSSL_instrument_bus .type OPENSSL_instrument_bus,\@abi-omnipotent .align 16 OPENSSL_instrument_bus: .cfi_startproc mov $arg1,$out # tribute to Win64 mov $arg2,$cnt mov $arg2,$max rdtsc # collect 1st tick mov %eax,$lasttick # lasttick = tick mov \$0,$lastdiff # lastdiff = 0 clflush ($out) .byte 0xf0 # lock add $lastdiff,($out) jmp .Loop .align 16 .Loop: rdtsc mov %eax,%edx sub $lasttick,%eax mov %edx,$lasttick mov %eax,$lastdiff clflush ($out) .byte 0xf0 # lock add %eax,($out) lea 4($out),$out sub \$1,$cnt jnz .Loop mov $max,%rax ret .cfi_endproc .size OPENSSL_instrument_bus,.-OPENSSL_instrument_bus .globl OPENSSL_instrument_bus2 .type OPENSSL_instrument_bus2,\@abi-omnipotent .align 16 OPENSSL_instrument_bus2: .cfi_startproc mov $arg1,$out # tribute to Win64 mov $arg2,$cnt mov $arg3,$max mov $cnt,$redzone(%rsp) rdtsc # collect 1st tick mov %eax,$lasttick # lasttick = tick mov \$0,$lastdiff # lastdiff = 0 clflush ($out) .byte 0xf0 # lock add $lastdiff,($out) rdtsc # collect 1st diff mov %eax,%edx sub $lasttick,%eax # diff mov %edx,$lasttick # lasttick = tick mov %eax,$lastdiff # lastdiff = diff .Loop2: clflush ($out) .byte 0xf0 # lock add %eax,($out) # accumulate diff sub \$1,$max jz .Ldone2 rdtsc mov %eax,%edx sub $lasttick,%eax # diff mov %edx,$lasttick # lasttick = tick cmp $lastdiff,%eax mov %eax,$lastdiff # lastdiff = diff mov \$0,%edx setne %dl sub %rdx,$cnt # conditional --$cnt lea ($out,%rdx,4),$out # conditional ++$out jnz .Loop2 .Ldone2: mov $redzone(%rsp),%rax sub $cnt,%rax ret .cfi_endproc .size OPENSSL_instrument_bus2,.-OPENSSL_instrument_bus2 ___ } sub gen_random { my $rdop = shift; print<<___; .globl OPENSSL_ia32_${rdop}_bytes .type OPENSSL_ia32_${rdop}_bytes,\@abi-omnipotent .align 16 OPENSSL_ia32_${rdop}_bytes: .cfi_startproc xor %rax, %rax # return value cmp \$0,$arg2 je .Ldone_${rdop}_bytes mov \$8,%r11 .Loop_${rdop}_bytes: ${rdop} %r10 jc .Lbreak_${rdop}_bytes dec %r11 jnz .Loop_${rdop}_bytes jmp .Ldone_${rdop}_bytes .align 16 .Lbreak_${rdop}_bytes: cmp \$8,$arg2 jb .Ltail_${rdop}_bytes mov %r10,($arg1) lea 8($arg1),$arg1 add \$8,%rax sub \$8,$arg2 jz .Ldone_${rdop}_bytes mov \$8,%r11 jmp .Loop_${rdop}_bytes .align 16 .Ltail_${rdop}_bytes: mov %r10b,($arg1) lea 1($arg1),$arg1 inc %rax shr \$8,%r10 dec $arg2 jnz .Ltail_${rdop}_bytes .Ldone_${rdop}_bytes: xor %r10,%r10 # Clear sensitive data from register ret .cfi_endproc .size OPENSSL_ia32_${rdop}_bytes,.-OPENSSL_ia32_${rdop}_bytes ___ } gen_random("rdrand"); gen_random("rdseed"); close STDOUT or die "error closing STDOUT: $!"; # flush openssl-1.1.1f/crypto/x86cpuid.pl000066400000000000000000000303211364063235100166740ustar00rootroot00000000000000#! /usr/bin/env perl # Copyright 2004-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC, "${dir}perlasm", "perlasm"); require "x86asm.pl"; $output = pop; open OUT,">$output"; *STDOUT=*OUT; &asm_init($ARGV[0]); for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &function_begin("OPENSSL_ia32_cpuid"); &xor ("edx","edx"); &pushf (); &pop ("eax"); &mov ("ecx","eax"); &xor ("eax",1<<21); &push ("eax"); &popf (); &pushf (); &pop ("eax"); &xor ("ecx","eax"); &xor ("eax","eax"); &mov ("esi",&wparam(0)); &mov (&DWP(8,"esi"),"eax"); # clear extended feature flags &bt ("ecx",21); &jnc (&label("nocpuid")); &cpuid (); &mov ("edi","eax"); # max value for standard query level &xor ("eax","eax"); &cmp ("ebx",0x756e6547); # "Genu" &setne (&LB("eax")); &mov ("ebp","eax"); &cmp ("edx",0x49656e69); # "ineI" &setne (&LB("eax")); &or ("ebp","eax"); &cmp ("ecx",0x6c65746e); # "ntel" &setne (&LB("eax")); &or ("ebp","eax"); # 0 indicates Intel CPU &jz (&label("intel")); &cmp ("ebx",0x68747541); # "Auth" &setne (&LB("eax")); &mov ("esi","eax"); &cmp ("edx",0x69746E65); # "enti" &setne (&LB("eax")); &or ("esi","eax"); &cmp ("ecx",0x444D4163); # "cAMD" &setne (&LB("eax")); &or ("esi","eax"); # 0 indicates AMD CPU &jnz (&label("intel")); # AMD specific &mov ("eax",0x80000000); &cpuid (); &cmp ("eax",0x80000001); &jb (&label("intel")); &mov ("esi","eax"); &mov ("eax",0x80000001); &cpuid (); &or ("ebp","ecx"); &and ("ebp",1<<11|1); # isolate XOP bit &cmp ("esi",0x80000008); &jb (&label("intel")); &mov ("eax",0x80000008); &cpuid (); &movz ("esi",&LB("ecx")); # number of cores - 1 &inc ("esi"); # number of cores &mov ("eax",1); &xor ("ecx","ecx"); &cpuid (); &bt ("edx",28); &jnc (&label("generic")); &shr ("ebx",16); &and ("ebx",0xff); &cmp ("ebx","esi"); &ja (&label("generic")); &and ("edx",0xefffffff); # clear hyper-threading bit &jmp (&label("generic")); &set_label("intel"); &cmp ("edi",4); &mov ("esi",-1); &jb (&label("nocacheinfo")); &mov ("eax",4); &mov ("ecx",0); # query L1D &cpuid (); &mov ("esi","eax"); &shr ("esi",14); &and ("esi",0xfff); # number of cores -1 per L1D &set_label("nocacheinfo"); &mov ("eax",1); &xor ("ecx","ecx"); &cpuid (); &and ("edx",0xbfefffff); # force reserved bits #20, #30 to 0 &cmp ("ebp",0); &jne (&label("notintel")); &or ("edx",1<<30); # set reserved bit#30 on Intel CPUs &and (&HB("eax"),15); # family ID &cmp (&HB("eax"),15); # P4? &jne (&label("notintel")); &or ("edx",1<<20); # set reserved bit#20 to engage RC4_CHAR &set_label("notintel"); &bt ("edx",28); # test hyper-threading bit &jnc (&label("generic")); &and ("edx",0xefffffff); &cmp ("esi",0); &je (&label("generic")); &or ("edx",0x10000000); &shr ("ebx",16); &cmp (&LB("ebx"),1); &ja (&label("generic")); &and ("edx",0xefffffff); # clear hyper-threading bit if not &set_label("generic"); &and ("ebp",1<<11); # isolate AMD XOP flag &and ("ecx",0xfffff7ff); # force 11th bit to 0 &mov ("esi","edx"); # %ebp:%esi is copy of %ecx:%edx &or ("ebp","ecx"); # merge AMD XOP flag &cmp ("edi",7); &mov ("edi",&wparam(0)); &jb (&label("no_extended_info")); &mov ("eax",7); &xor ("ecx","ecx"); &cpuid (); &mov (&DWP(8,"edi"),"ebx"); # save extended feature flag &set_label("no_extended_info"); &bt ("ebp",27); # check OSXSAVE bit &jnc (&label("clear_avx")); &xor ("ecx","ecx"); &data_byte(0x0f,0x01,0xd0); # xgetbv &and ("eax",6); &cmp ("eax",6); &je (&label("done")); &cmp ("eax",2); &je (&label("clear_avx")); &set_label("clear_xmm"); &and ("ebp",0xfdfffffd); # clear AESNI and PCLMULQDQ bits &and ("esi",0xfeffffff); # clear FXSR &set_label("clear_avx"); &and ("ebp",0xefffe7ff); # clear AVX, FMA and AMD XOP bits &and (&DWP(8,"edi"),0xffffffdf); # clear AVX2 &set_label("done"); &mov ("eax","esi"); &mov ("edx","ebp"); &set_label("nocpuid"); &function_end("OPENSSL_ia32_cpuid"); &external_label("OPENSSL_ia32cap_P"); &function_begin_B("OPENSSL_rdtsc","EXTRN\t_OPENSSL_ia32cap_P:DWORD"); &xor ("eax","eax"); &xor ("edx","edx"); &picmeup("ecx","OPENSSL_ia32cap_P"); &bt (&DWP(0,"ecx"),4); &jnc (&label("notsc")); &rdtsc (); &set_label("notsc"); &ret (); &function_end_B("OPENSSL_rdtsc"); # This works in Ring 0 only [read DJGPP+MS-DOS+privileged DPMI host], # but it's safe to call it on any [supported] 32-bit platform... # Just check for [non-]zero return value... &function_begin_B("OPENSSL_instrument_halt","EXTRN\t_OPENSSL_ia32cap_P:DWORD"); &picmeup("ecx","OPENSSL_ia32cap_P"); &bt (&DWP(0,"ecx"),4); &jnc (&label("nohalt")); # no TSC &data_word(0x9058900e); # push %cs; pop %eax &and ("eax",3); &jnz (&label("nohalt")); # not enough privileges &pushf (); &pop ("eax"); &bt ("eax",9); &jnc (&label("nohalt")); # interrupts are disabled &rdtsc (); &push ("edx"); &push ("eax"); &halt (); &rdtsc (); &sub ("eax",&DWP(0,"esp")); &sbb ("edx",&DWP(4,"esp")); &add ("esp",8); &ret (); &set_label("nohalt"); &xor ("eax","eax"); &xor ("edx","edx"); &ret (); &function_end_B("OPENSSL_instrument_halt"); # Essentially there is only one use for this function. Under DJGPP: # # #include # ... # i=OPENSSL_far_spin(_dos_ds,0x46c); # ... # to obtain the number of spins till closest timer interrupt. &function_begin_B("OPENSSL_far_spin"); &pushf (); &pop ("eax"); &bt ("eax",9); &jnc (&label("nospin")); # interrupts are disabled &mov ("eax",&DWP(4,"esp")); &mov ("ecx",&DWP(8,"esp")); &data_word (0x90d88e1e); # push %ds, mov %eax,%ds &xor ("eax","eax"); &mov ("edx",&DWP(0,"ecx")); &jmp (&label("spin")); &align (16); &set_label("spin"); &inc ("eax"); &cmp ("edx",&DWP(0,"ecx")); &je (&label("spin")); &data_word (0x1f909090); # pop %ds &ret (); &set_label("nospin"); &xor ("eax","eax"); &xor ("edx","edx"); &ret (); &function_end_B("OPENSSL_far_spin"); &function_begin_B("OPENSSL_wipe_cpu","EXTRN\t_OPENSSL_ia32cap_P:DWORD"); &xor ("eax","eax"); &xor ("edx","edx"); &picmeup("ecx","OPENSSL_ia32cap_P"); &mov ("ecx",&DWP(0,"ecx")); &bt (&DWP(0,"ecx"),1); &jnc (&label("no_x87")); if ($sse2) { &and ("ecx",1<<26|1<<24); # check SSE2 and FXSR bits &cmp ("ecx",1<<26|1<<24); &jne (&label("no_sse2")); &pxor ("xmm0","xmm0"); &pxor ("xmm1","xmm1"); &pxor ("xmm2","xmm2"); &pxor ("xmm3","xmm3"); &pxor ("xmm4","xmm4"); &pxor ("xmm5","xmm5"); &pxor ("xmm6","xmm6"); &pxor ("xmm7","xmm7"); &set_label("no_sse2"); } # just a bunch of fldz to zap the fp/mm bank followed by finit... &data_word(0xeed9eed9,0xeed9eed9,0xeed9eed9,0xeed9eed9,0x90e3db9b); &set_label("no_x87"); &lea ("eax",&DWP(4,"esp")); &ret (); &function_end_B("OPENSSL_wipe_cpu"); &function_begin_B("OPENSSL_atomic_add"); &mov ("edx",&DWP(4,"esp")); # fetch the pointer, 1st arg &mov ("ecx",&DWP(8,"esp")); # fetch the increment, 2nd arg &push ("ebx"); &nop (); &mov ("eax",&DWP(0,"edx")); &set_label("spin"); &lea ("ebx",&DWP(0,"eax","ecx")); &nop (); &data_word(0x1ab10ff0); # lock; cmpxchg %ebx,(%edx) # %eax is involved and is always reloaded &jne (&label("spin")); &mov ("eax","ebx"); # OpenSSL expects the new value &pop ("ebx"); &ret (); &function_end_B("OPENSSL_atomic_add"); &function_begin_B("OPENSSL_cleanse"); &mov ("edx",&wparam(0)); &mov ("ecx",&wparam(1)); &xor ("eax","eax"); &cmp ("ecx",7); &jae (&label("lot")); &cmp ("ecx",0); &je (&label("ret")); &set_label("little"); &mov (&BP(0,"edx"),"al"); &sub ("ecx",1); &lea ("edx",&DWP(1,"edx")); &jnz (&label("little")); &set_label("ret"); &ret (); &set_label("lot",16); &test ("edx",3); &jz (&label("aligned")); &mov (&BP(0,"edx"),"al"); &lea ("ecx",&DWP(-1,"ecx")); &lea ("edx",&DWP(1,"edx")); &jmp (&label("lot")); &set_label("aligned"); &mov (&DWP(0,"edx"),"eax"); &lea ("ecx",&DWP(-4,"ecx")); &test ("ecx",-4); &lea ("edx",&DWP(4,"edx")); &jnz (&label("aligned")); &cmp ("ecx",0); &jne (&label("little")); &ret (); &function_end_B("OPENSSL_cleanse"); &function_begin_B("CRYPTO_memcmp"); &push ("esi"); &push ("edi"); &mov ("esi",&wparam(0)); &mov ("edi",&wparam(1)); &mov ("ecx",&wparam(2)); &xor ("eax","eax"); &xor ("edx","edx"); &cmp ("ecx",0); &je (&label("no_data")); &set_label("loop"); &mov ("dl",&BP(0,"esi")); &lea ("esi",&DWP(1,"esi")); &xor ("dl",&BP(0,"edi")); &lea ("edi",&DWP(1,"edi")); &or ("al","dl"); &dec ("ecx"); &jnz (&label("loop")); &neg ("eax"); &shr ("eax",31); &set_label("no_data"); &pop ("edi"); &pop ("esi"); &ret (); &function_end_B("CRYPTO_memcmp"); { my $lasttick = "esi"; my $lastdiff = "ebx"; my $out = "edi"; my $cnt = "ecx"; my $max = "ebp"; &function_begin("OPENSSL_instrument_bus"); &mov ("eax",0); if ($sse2) { &picmeup("edx","OPENSSL_ia32cap_P"); &bt (&DWP(0,"edx"),4); &jnc (&label("nogo")); # no TSC &bt (&DWP(0,"edx"),19); &jnc (&label("nogo")); # no CLFLUSH &mov ($out,&wparam(0)); # load arguments &mov ($cnt,&wparam(1)); # collect 1st tick &rdtsc (); &mov ($lasttick,"eax"); # lasttick = tick &mov ($lastdiff,0); # lastdiff = 0 &clflush(&DWP(0,$out)); &data_byte(0xf0); # lock &add (&DWP(0,$out),$lastdiff); &jmp (&label("loop")); &set_label("loop",16); &rdtsc (); &mov ("edx","eax"); # put aside tick (yes, I neglect edx) &sub ("eax",$lasttick); # diff &mov ($lasttick,"edx"); # lasttick = tick &mov ($lastdiff,"eax"); # lastdiff = diff &clflush(&DWP(0,$out)); &data_byte(0xf0); # lock &add (&DWP(0,$out),"eax"); # accumulate diff &lea ($out,&DWP(4,$out)); # ++$out &sub ($cnt,1); # --$cnt &jnz (&label("loop")); &mov ("eax",&wparam(1)); &set_label("nogo"); } &function_end("OPENSSL_instrument_bus"); &function_begin("OPENSSL_instrument_bus2"); &mov ("eax",0); if ($sse2) { &picmeup("edx","OPENSSL_ia32cap_P"); &bt (&DWP(0,"edx"),4); &jnc (&label("nogo")); # no TSC &bt (&DWP(0,"edx"),19); &jnc (&label("nogo")); # no CLFLUSH &mov ($out,&wparam(0)); # load arguments &mov ($cnt,&wparam(1)); &mov ($max,&wparam(2)); &rdtsc (); # collect 1st tick &mov ($lasttick,"eax"); # lasttick = tick &mov ($lastdiff,0); # lastdiff = 0 &clflush(&DWP(0,$out)); &data_byte(0xf0); # lock &add (&DWP(0,$out),$lastdiff); &rdtsc (); # collect 1st diff &mov ("edx","eax"); # put aside tick (yes, I neglect edx) &sub ("eax",$lasttick); # diff &mov ($lasttick,"edx"); # lasttick = tick &mov ($lastdiff,"eax"); # lastdiff = diff &jmp (&label("loop2")); &set_label("loop2",16); &clflush(&DWP(0,$out)); &data_byte(0xf0); # lock &add (&DWP(0,$out),"eax"); # accumulate diff &sub ($max,1); &jz (&label("done2")); &rdtsc (); &mov ("edx","eax"); # put aside tick (yes, I neglect edx) &sub ("eax",$lasttick); # diff &mov ($lasttick,"edx"); # lasttick = tick &cmp ("eax",$lastdiff); &mov ($lastdiff,"eax"); # lastdiff = diff &mov ("edx",0); &setne ("dl"); &sub ($cnt,"edx"); # conditional --$cnt &lea ($out,&DWP(0,$out,"edx",4)); # conditional ++$out &jnz (&label("loop2")); &set_label("done2"); &mov ("eax",&wparam(1)); &sub ("eax",$cnt); &set_label("nogo"); } &function_end("OPENSSL_instrument_bus2"); } sub gen_random { my $rdop = shift; &function_begin_B("OPENSSL_ia32_${rdop}_bytes"); &push ("edi"); &push ("ebx"); &xor ("eax","eax"); # return value &mov ("edi",&wparam(0)); &mov ("ebx",&wparam(1)); &cmp ("ebx",0); &je (&label("done")); &mov ("ecx",8); &set_label("loop"); &${rdop}("edx"); &jc (&label("break")); &loop (&label("loop")); &jmp (&label("done")); &set_label("break",16); &cmp ("ebx",4); &jb (&label("tail")); &mov (&DWP(0,"edi"),"edx"); &lea ("edi",&DWP(4,"edi")); &add ("eax",4); &sub ("ebx",4); &jz (&label("done")); &mov ("ecx",8); &jmp (&label("loop")); &set_label("tail",16); &mov (&BP(0,"edi"),"dl"); &lea ("edi",&DWP(1,"edi")); &inc ("eax"); &shr ("edx",8); &dec ("ebx"); &jnz (&label("tail")); &set_label("done"); &xor ("edx","edx"); # Clear random value from registers &pop ("ebx"); &pop ("edi"); &ret (); &function_end_B("OPENSSL_ia32_${rdop}_bytes"); } &gen_random("rdrand"); &gen_random("rdseed"); &initseg("OPENSSL_cpuid_setup"); &hidden("OPENSSL_cpuid_setup"); &hidden("OPENSSL_ia32cap_P"); &asm_finish(); close STDOUT or die "error closing STDOUT: $!"; openssl-1.1.1f/demos/000077500000000000000000000000001364063235100144555ustar00rootroot00000000000000openssl-1.1.1f/demos/README000066400000000000000000000004131364063235100153330ustar00rootroot00000000000000NOTE: Don't expect any of these programs to work with current OpenSSL releases, or even with later SSLeay releases. Original README: ============================================================================= Some demo programs sent to me by various people eric openssl-1.1.1f/demos/bio/000077500000000000000000000000001364063235100152265ustar00rootroot00000000000000openssl-1.1.1f/demos/bio/Makefile000066400000000000000000000017171364063235100166740ustar00rootroot00000000000000# Quick instruction: # To build against an OpenSSL built in the source tree, do this: # # make OPENSSL_INCS_LOCATION=-I../../include OPENSSL_LIBS_LOCATION=-L../.. # # To run the demos when linked with a shared library (default): # # LD_LIBRARY_PATH=../.. ./server-arg # LD_LIBRARY_PATH=../.. ./server-cmod # LD_LIBRARY_PATH=../.. ./server-conf # LD_LIBRARY_PATH=../.. ./client-arg # LD_LIBRARY_PATH=../.. ./client-conf # LD_LIBRARY_PATH=../.. ./saccept # LD_LIBRARY_PATH=../.. ./sconnect CFLAGS = $(OPENSSL_INCS_LOCATION) LDFLAGS = $(OPENSSL_LIBS_LOCATION) -lssl -lcrypto $(EX_LIBS) all: client-arg client-conf saccept sconnect server-arg server-cmod server-conf client-arg: client-arg.o client-conf: client-conf.o saccept: saccept.o sconnect: sconnect.o server-arg: server-arg.o server-cmod: server-cmod.o server-conf: server-conf.o client-arg client-conf saccept sconnect server-arg server-cmod server-conf: $(CC) $(CFLAGS) -o $@ $< $(LDFLAGS) openssl-1.1.1f/demos/bio/README000066400000000000000000000003771364063235100161150ustar00rootroot00000000000000This directory contains some simple examples of the use of BIO's to simplify socket programming. The client-conf, server-conf, client-arg and client-conf include examples of how to use the SSL_CONF API for configuration file or command line processing. openssl-1.1.1f/demos/bio/accept.cnf000066400000000000000000000006201364063235100171530ustar00rootroot00000000000000# Example configuration file # Port to listen on Port = 4433 # Disable TLS v1.2 for test. # Protocol = ALL, -TLSv1.2 # Only support 3 curves Curves = P-521:P-384:P-256 # Restricted signature algorithms SignatureAlgorithms = RSA+SHA512:ECDSA+SHA512 Certificate=server.pem PrivateKey=server.pem ChainCAFile=root.pem VerifyCAFile=root.pem # Request certificate VerifyMode=Request ClientCAFile=root.pem openssl-1.1.1f/demos/bio/client-arg.c000066400000000000000000000062511364063235100174230ustar00rootroot00000000000000/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include int main(int argc, char **argv) { BIO *sbio = NULL, *out = NULL; int len; char tmpbuf[1024]; SSL_CTX *ctx; SSL_CONF_CTX *cctx; SSL *ssl; char **args = argv + 1; const char *connect_str = "localhost:4433"; int nargs = argc - 1; ctx = SSL_CTX_new(TLS_client_method()); cctx = SSL_CONF_CTX_new(); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_CLIENT); SSL_CONF_CTX_set_ssl_ctx(cctx, ctx); while (*args && **args == '-') { int rv; /* Parse standard arguments */ rv = SSL_CONF_cmd_argv(cctx, &nargs, &args); if (rv == -3) { fprintf(stderr, "Missing argument for %s\n", *args); goto end; } if (rv < 0) { fprintf(stderr, "Error in command %s\n", *args); ERR_print_errors_fp(stderr); goto end; } /* If rv > 0 we processed something so proceed to next arg */ if (rv > 0) continue; /* Otherwise application specific argument processing */ if (strcmp(*args, "-connect") == 0) { connect_str = args[1]; if (connect_str == NULL) { fprintf(stderr, "Missing -connect argument\n"); goto end; } args += 2; nargs -= 2; continue; } else { fprintf(stderr, "Unknown argument %s\n", *args); goto end; } } if (!SSL_CONF_CTX_finish(cctx)) { fprintf(stderr, "Finish error\n"); ERR_print_errors_fp(stderr); goto end; } /* * We'd normally set some stuff like the verify paths and * mode here * because as things stand this will connect to * any server whose * certificate is signed by any CA. */ sbio = BIO_new_ssl_connect(ctx); BIO_get_ssl(sbio, &ssl); if (!ssl) { fprintf(stderr, "Can't locate SSL pointer\n"); goto end; } /* Don't want any retries */ SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY); /* We might want to do other things with ssl here */ BIO_set_conn_hostname(sbio, connect_str); out = BIO_new_fp(stdout, BIO_NOCLOSE); if (BIO_do_connect(sbio) <= 0) { fprintf(stderr, "Error connecting to server\n"); ERR_print_errors_fp(stderr); goto end; } if (BIO_do_handshake(sbio) <= 0) { fprintf(stderr, "Error establishing SSL connection\n"); ERR_print_errors_fp(stderr); goto end; } /* Could examine ssl here to get connection info */ BIO_puts(sbio, "GET / HTTP/1.0\n\n"); for (;;) { len = BIO_read(sbio, tmpbuf, 1024); if (len <= 0) break; BIO_write(out, tmpbuf, len); } end: SSL_CONF_CTX_free(cctx); BIO_free_all(sbio); BIO_free(out); return 0; } openssl-1.1.1f/demos/bio/client-conf.c000066400000000000000000000066061364063235100176030ustar00rootroot00000000000000/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include int main(int argc, char **argv) { BIO *sbio = NULL, *out = NULL; int i, len, rv; char tmpbuf[1024]; SSL_CTX *ctx = NULL; SSL_CONF_CTX *cctx = NULL; SSL *ssl = NULL; CONF *conf = NULL; STACK_OF(CONF_VALUE) *sect = NULL; CONF_VALUE *cnf; const char *connect_str = "localhost:4433"; long errline = -1; conf = NCONF_new(NULL); if (NCONF_load(conf, "connect.cnf", &errline) <= 0) { if (errline <= 0) fprintf(stderr, "Error processing config file\n"); else fprintf(stderr, "Error on line %ld\n", errline); goto end; } sect = NCONF_get_section(conf, "default"); if (sect == NULL) { fprintf(stderr, "Error retrieving default section\n"); goto end; } ctx = SSL_CTX_new(TLS_client_method()); cctx = SSL_CONF_CTX_new(); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_CLIENT); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_FILE); SSL_CONF_CTX_set_ssl_ctx(cctx, ctx); for (i = 0; i < sk_CONF_VALUE_num(sect); i++) { cnf = sk_CONF_VALUE_value(sect, i); rv = SSL_CONF_cmd(cctx, cnf->name, cnf->value); if (rv > 0) continue; if (rv != -2) { fprintf(stderr, "Error processing %s = %s\n", cnf->name, cnf->value); ERR_print_errors_fp(stderr); goto end; } if (strcmp(cnf->name, "Connect") == 0) { connect_str = cnf->value; } else { fprintf(stderr, "Unknown configuration option %s\n", cnf->name); goto end; } } if (!SSL_CONF_CTX_finish(cctx)) { fprintf(stderr, "Finish error\n"); ERR_print_errors_fp(stderr); goto end; } /* * We'd normally set some stuff like the verify paths and * mode here * because as things stand this will connect to * any server whose * certificate is signed by any CA. */ sbio = BIO_new_ssl_connect(ctx); BIO_get_ssl(sbio, &ssl); if (!ssl) { fprintf(stderr, "Can't locate SSL pointer\n"); goto end; } /* Don't want any retries */ SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY); /* We might want to do other things with ssl here */ BIO_set_conn_hostname(sbio, connect_str); out = BIO_new_fp(stdout, BIO_NOCLOSE); if (BIO_do_connect(sbio) <= 0) { fprintf(stderr, "Error connecting to server\n"); ERR_print_errors_fp(stderr); goto end; } if (BIO_do_handshake(sbio) <= 0) { fprintf(stderr, "Error establishing SSL connection\n"); ERR_print_errors_fp(stderr); goto end; } /* Could examine ssl here to get connection info */ BIO_puts(sbio, "GET / HTTP/1.0\n\n"); for (;;) { len = BIO_read(sbio, tmpbuf, 1024); if (len <= 0) break; BIO_write(out, tmpbuf, len); } end: SSL_CONF_CTX_free(cctx); BIO_free_all(sbio); BIO_free(out); NCONF_free(conf); return 0; } openssl-1.1.1f/demos/bio/cmod.cnf000066400000000000000000000010331364063235100166350ustar00rootroot00000000000000# Example config module configuration # Name supplied by application to CONF_modules_load_file # and section containing configuration testapp = test_sect [test_sect] # list of configuration modules # SSL configuration module ssl_conf = ssl_sect [ssl_sect] # list of SSL configurations server = server_sect [server_sect] # Only support 3 curves Curves = P-521:P-384:P-256 # Restricted signature algorithms SignatureAlgorithms = RSA+SHA512:ECDSA+SHA512 # Certificates and keys RSA.Certificate=server.pem ECDSA.Certificate=server-ec.pem openssl-1.1.1f/demos/bio/connect.cnf000066400000000000000000000004341364063235100173500ustar00rootroot00000000000000# Example configuration file # Connects to the default port of s_server Connect = localhost:4433 # Disable TLS v1.2 for test. # Protocol = ALL, -TLSv1.2 # Only support 3 curves Curves = P-521:P-384:P-256 # Restricted signature algorithms SignatureAlgorithms = RSA+SHA512:ECDSA+SHA512 openssl-1.1.1f/demos/bio/descrip.mms000066400000000000000000000024301364063235100173740ustar00rootroot00000000000000# This build description trusts that the following logical names are defined: # # For compilation: OPENSSL # For linking with shared libraries: OSSL$LIBCRYPTO_SHR and OSSL$LIBSSL_SHR # For linking with static libraries: OSSL$LIBCRYPTO and OSSL$LIBSSL # # These are normally defined with the OpenSSL startup procedure # By default, we link with the shared libraries SHARED = TRUE # Alternative, for linking with static libraries #SHARED = FALSE .FIRST : IF "$(SHARED)" .EQS. "TRUE" THEN DEFINE OPT []shared.opt IF "$(SHARED)" .NES. "TRUE" THEN DEFINE OPT []static.opt .LAST : DEASSIGN OPT .DEFAULT : @ ! # Because we use an option file, we need to redefine this .obj.exe : $(LINK) $(LINKFLAGS) $<,OPT:/OPT all : client-arg.exe client-conf.exe saccept.exe sconnect.exe - server-arg.exe server-cmod.exe server-conf.exe client-arg.exe : client-arg.obj client-conf.exe : client-conf.obj saccept.exe : saccept.obj sconnect.exe : sconnect.obj server-arg.exe : server-arg.obj server-cmod.exe : server-cmod.obj server-conf.exe : server-conf.obj # MMS doesn't infer this automatically... client-arg.obj : client-arg.c client-conf.obj : client-conf.c saccept.obj : saccept.c sconnect.obj : sconnect.c server-arg.obj : server-arg.c server-cmod.obj : server-cmod.c server-conf.obj : server-conf.c openssl-1.1.1f/demos/bio/intca.pem000066400000000000000000000027751364063235100170420ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIEPzCCAqegAwIBAgIILsaQqJAjK4IwDQYJKoZIhvcNAQELBQAwaDELMAkGA1UE BhMCVUsxFjAUBgNVBAoMDU9wZW5TU0wgR3JvdXAxIjAgBgNVBAsMGUZPUiBURVNU SU5HIFBVUlBPU0VTIE9OTFkxHTAbBgNVBAMMFE9wZW5TU0wgVGVzdCBSb290IENB MCAXDTE4MDYxNDEyNDYyOFoYDzIxMTgwNjE0MTI0NjI4WjBwMQswCQYDVQQGEwJV SzEWMBQGA1UECgwNT3BlblNTTCBHcm91cDEiMCAGA1UECwwZRk9SIFRFU1RJTkcg UFVSUE9TRVMgT05MWTElMCMGA1UEAwwcT3BlblNTTCBUZXN0IEludGVybWVkaWF0 ZSBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANIpVng2wNFJp2kF oJ6Yji25wy1YufnS8NxA82fk5OHdhGWj1CWqnQNotEqEQzcOUszQYrNxd8tEvoWk Ik4JMBVoEcgBGedchftptTNulFWodWpi1yFaqA/Nz2BsVgcCJW4C+UWDT7VeHtGU 7tYKKr35lxp6io/a4jUDQXvO2nJA9YlrxOktunMqtoZSYqUz35ZXsdkn58o8Fbqm dEpw6AqAr9aBgY5DSaGxbaX2lwNt9NvB+f9ucOqEnPP8AfTlPYc/ENwJ6u/H8RGw d1im71mu2lHjcws3aHkbluH860U3vlKWx6Ff1qdQcH98e2HwElqxCK00xya8leu4 u64nljkCAwEAAaNjMGEwHQYDVR0OBBYEFAoDRKVoOufDXW5Ui7L4ONxANVsFMB8G A1UdIwQYMBaAFDZjTeLsQUG6KL9xuLhzXVdB4pkKMA8GA1UdEwEB/wQFMAMBAf8w DgYDVR0PAQH/BAQDAgEGMA0GCSqGSIb3DQEBCwUAA4IBgQDZQJLA90ewVaS3E3du gSjPkQ1xsHm8H1am+7zr5oZ81J+R8XYIZgMR+9ShVo38OradiYNqDLso+4iuVdxh hzoSoQELoDXCficzWKnlAtWvwDDoczyK+/p94g3VKx14n2+GvQzoZ4kwQQgaFH1w YI6w0oH9zwoklCxvihj8D069QrYyuTT8JGZ2m0FHqVJg6teuQKFahSgwYR2CUoIb 6PrpSUQeCVCH8TPkzlRT6UgtM3ERt7+TlQ+zZ80dSf4YTAsDv9Z/CJXiF/5wZr6/ lWuFjWmX2HkpEW6Wiv5KF8QP6Ft7Z+RYua7RMtELCYvqYbWDBs7fXWGBkZ5xhB09 jCxz+F7zOeRbyzacfFq9DhxCWCRbIrdgGGE/Of2ujJtmK/2p4M6E5IsKNAI2SJBW iJXvIgQgR22ehPqy6er2Gog5LkWUwqB0kHZJJpbp1IW01IGTpD6YAJyVCEAlyMbo Kto9+wQFLT3Auv/W5h6OwxkNdfAyZBYy0ZSFk4EE8OdWWY4= -----END CERTIFICATE----- openssl-1.1.1f/demos/bio/root.pem000066400000000000000000000032601364063235100167150ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIEwzCCAyugAwIBAgIUHKKc7fxVgQjWQ7IF6l7m/fHQHH8wDQYJKoZIhvcNAQEL BQAwaDELMAkGA1UEBhMCVUsxFjAUBgNVBAoMDU9wZW5TU0wgR3JvdXAxIjAgBgNV BAsMGUZPUiBURVNUSU5HIFBVUlBPU0VTIE9OTFkxHTAbBgNVBAMMFE9wZW5TU0wg VGVzdCBSb290IENBMCAXDTE4MDYxNDEyNDYyOFoYDzIxMTgwNjE0MTI0NjI4WjBo MQswCQYDVQQGEwJVSzEWMBQGA1UECgwNT3BlblNTTCBHcm91cDEiMCAGA1UECwwZ Rk9SIFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEAwwUT3BlblNTTCBUZXN0 IFJvb3QgQ0EwggGiMA0GCSqGSIb3DQEBAQUAA4IBjwAwggGKAoIBgQDaTVriXS5C 6C17OxGwWR4xxdLveLLkAb0+nSiYpzfCcEGX3qiBxHDA+Nj1kkihIJNkXmrKxa3w 1XIVoSUaVULuVxe3vqla+DScGC9MLVsfIwWe8UdGsKst4VvvtNvQUZ5CvLF4jv0V nabvQhcjY5X7A/t8cZcjOHcaZ9fkThhG/7tJKwp4dLgPcXIimQ0UtP5gRBxnpEYd l21mPjafqPt02lfOWTgnT5PeVoBDmN7QcrTlI7RzaeDglwFm10rNuYsRxrVsEfiG Ejup/1eM/69zkV4Lb2RFbIpZ+oKqQ5AEemh6/IP9VwX08DOX3T1EqwthyB+yOZgp BQ/MZ2M21E03sxlgPGKkRVTU520az84Tyft7T7sJ6BeGSMrdEZVUSJxsS/iFFwL2 ubmhG6tq0ALIyoS+rUeHUeH2pVnEEcHIXAsLbCXfmsRpWU1fOHcpkTSzbMPhqMa3 K8aKNHni0UtoD+ddOw0Zrx4uf3zlbPCzy2eQ2d8qb/TSynGxWmN8an8CAwEAAaNj MGEwHQYDVR0OBBYEFDZjTeLsQUG6KL9xuLhzXVdB4pkKMB8GA1UdIwQYMBaAFDZj TeLsQUG6KL9xuLhzXVdB4pkKMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD AgEGMA0GCSqGSIb3DQEBCwUAA4IBgQCFbQA4yoXhxVQm+tEMpfKf2VEzQVNw0Tzd Vy+zbscQ04RM4Hx4YbICdX+J7M2fYByU+KawllZJI++mfS9sbnuPIouD5NJLX5EH //5rySOqA0OkN/Y8f41xp/YF5j96NUCjg3RoerefRSHZfNWJE1faQEHuhwDZK6OQ GNgt246FZ7ittfe537MHUWY7CjKt6kILN03rVKSgRwwOw5Tv+VyUVyUtRppWl57L Z+41g0gZ/r7h6ACd+n35nuzgbmqUF2VNYQLo7RzaxPvtkzJ4t96r+5NAr1cx8thr 3rnJWSgpm1ZKdtHMj1jCLxarn8gNz2gB35Tn2NdzHQI0/aEEcfLWpU9mrmhUW+yy WEN2R8BqGsC++HhlUKKJZgR48SHF5MOBl4KyZPylBuPYcJFQdnEbioBLPlvt5bbt +o/w3sCR3ZVHMB0n9OcQwd6tdN7aDiept6lJPlOp4dfFjkku8J5nM0oY/Xsg194A rRK0SBUCVN/2NSHFl9LKEqQiQIUjOQM= -----END CERTIFICATE----- openssl-1.1.1f/demos/bio/saccept.c000066400000000000000000000056401364063235100170210ustar00rootroot00000000000000/* * Copyright 1998-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- * A minimal program to serve an SSL connection. * It uses blocking. * saccept host:port * host is the interface IP to use. If any interface, use *:port * The default it *:4433 * * cc -I../../include saccept.c -L../.. -lssl -lcrypto -ldl */ #include #include #include #include #include #define CERT_FILE "server.pem" static volatile int done = 0; void interrupt(int sig) { done = 1; } void sigsetup(void) { struct sigaction sa; /* * Catch at most once, and don't restart the accept system call. */ sa.sa_flags = SA_RESETHAND; sa.sa_handler = interrupt; sigemptyset(&sa.sa_mask); sigaction(SIGINT, &sa, NULL); } int main(int argc, char *argv[]) { char *port = NULL; BIO *in = NULL; BIO *ssl_bio, *tmp; SSL_CTX *ctx; char buf[512]; int ret = EXIT_FAILURE, i; if (argc <= 1) port = "*:4433"; else port = argv[1]; ctx = SSL_CTX_new(TLS_server_method()); if (!SSL_CTX_use_certificate_chain_file(ctx, CERT_FILE)) goto err; if (!SSL_CTX_use_PrivateKey_file(ctx, CERT_FILE, SSL_FILETYPE_PEM)) goto err; if (!SSL_CTX_check_private_key(ctx)) goto err; /* Setup server side SSL bio */ ssl_bio = BIO_new_ssl(ctx, 0); if ((in = BIO_new_accept(port)) == NULL) goto err; /* * This means that when a new connection is accepted on 'in', The ssl_bio * will be 'duplicated' and have the new socket BIO push into it. * Basically it means the SSL BIO will be automatically setup */ BIO_set_accept_bios(in, ssl_bio); /* Arrange to leave server loop on interrupt */ sigsetup(); again: /* * The first call will setup the accept socket, and the second will get a * socket. In this loop, the first actual accept will occur in the * BIO_read() function. */ if (BIO_do_accept(in) <= 0) goto err; while (!done) { i = BIO_read(in, buf, 512); if (i == 0) { /* * If we have finished, remove the underlying BIO stack so the * next time we call any function for this BIO, it will attempt * to do an accept */ printf("Done\n"); tmp = BIO_pop(in); BIO_free_all(tmp); goto again; } if (i < 0) goto err; fwrite(buf, 1, i, stdout); fflush(stdout); } ret = EXIT_SUCCESS; err: if (ret != EXIT_SUCCESS) ERR_print_errors_fp(stderr); BIO_free(in); return ret; } openssl-1.1.1f/demos/bio/sconnect.c000066400000000000000000000061061364063235100172110ustar00rootroot00000000000000/* * Copyright 1998-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /*- * A minimal program to do SSL to a passed host and port. * It is actually using non-blocking IO but in a very simple manner * sconnect host:port - it does a 'GET / HTTP/1.0' * * cc -I../../include sconnect.c -L../.. -lssl -lcrypto */ #include #include #include #include #include #include #include #define HOSTPORT "localhost:4433" #define CAFILE "root.pem" int main(int argc, char *argv[]) { const char *hostport = HOSTPORT; const char *CAfile = CAFILE; char *hostname; char *cp; BIO *out = NULL; char buf[1024 * 10], *p; SSL_CTX *ssl_ctx = NULL; SSL *ssl; BIO *ssl_bio; int i, len, off, ret = EXIT_FAILURE; if (argc > 1) hostport = argv[1]; if (argc > 2) CAfile = argv[2]; hostname = OPENSSL_strdup(hostport); if ((cp = strchr(hostname, ':')) != NULL) *cp = 0; #ifdef WATT32 dbug_init(); sock_init(); #endif ssl_ctx = SSL_CTX_new(TLS_client_method()); /* Enable trust chain verification */ SSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER, NULL); SSL_CTX_load_verify_locations(ssl_ctx, CAfile, NULL); /* Lets make a SSL structure */ ssl = SSL_new(ssl_ctx); SSL_set_connect_state(ssl); /* Enable peername verification */ if (SSL_set1_host(ssl, hostname) <= 0) goto err; /* Use it inside an SSL BIO */ ssl_bio = BIO_new(BIO_f_ssl()); BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE); /* Lets use a connect BIO under the SSL BIO */ out = BIO_new(BIO_s_connect()); BIO_set_conn_hostname(out, hostport); BIO_set_nbio(out, 1); out = BIO_push(ssl_bio, out); p = "GET / HTTP/1.0\r\n\r\n"; len = strlen(p); off = 0; for (;;) { i = BIO_write(out, &(p[off]), len); if (i <= 0) { if (BIO_should_retry(out)) { fprintf(stderr, "write DELAY\n"); sleep(1); continue; } else { goto err; } } off += i; len -= i; if (len <= 0) break; } for (;;) { i = BIO_read(out, buf, sizeof(buf)); if (i == 0) break; if (i < 0) { if (BIO_should_retry(out)) { fprintf(stderr, "read DELAY\n"); sleep(1); continue; } goto err; } fwrite(buf, 1, i, stdout); } ret = EXIT_SUCCESS; goto done; err: if (ERR_peek_error() == 0) { /* system call error */ fprintf(stderr, "errno=%d ", errno); perror("error"); } else { ERR_print_errors_fp(stderr); } done: BIO_free_all(out); SSL_CTX_free(ssl_ctx); return ret; } openssl-1.1.1f/demos/bio/server-arg.c000066400000000000000000000100431364063235100174450ustar00rootroot00000000000000/* * Copyright 2013-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * A minimal program to serve an SSL connection. It uses blocking. It use the * SSL_CONF API with the command line. cc -I../../include server-arg.c * -L../.. -lssl -lcrypto -ldl */ #include #include #include #include #include #include int main(int argc, char *argv[]) { char *port = "*:4433"; BIO *ssl_bio, *tmp; SSL_CTX *ctx; SSL_CONF_CTX *cctx; char buf[512]; BIO *in = NULL; int ret = EXIT_FAILURE, i; char **args = argv + 1; int nargs = argc - 1; ctx = SSL_CTX_new(TLS_server_method()); cctx = SSL_CONF_CTX_new(); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_SERVER); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_CERTIFICATE); SSL_CONF_CTX_set_ssl_ctx(cctx, ctx); while (*args && **args == '-') { int rv; /* Parse standard arguments */ rv = SSL_CONF_cmd_argv(cctx, &nargs, &args); if (rv == -3) { fprintf(stderr, "Missing argument for %s\n", *args); goto err; } if (rv < 0) { fprintf(stderr, "Error in command %s\n", *args); ERR_print_errors_fp(stderr); goto err; } /* If rv > 0 we processed something so proceed to next arg */ if (rv > 0) continue; /* Otherwise application specific argument processing */ if (strcmp(*args, "-port") == 0) { port = args[1]; if (port == NULL) { fprintf(stderr, "Missing -port argument\n"); goto err; } args += 2; nargs -= 2; continue; } else { fprintf(stderr, "Unknown argument %s\n", *args); goto err; } } if (!SSL_CONF_CTX_finish(cctx)) { fprintf(stderr, "Finish error\n"); ERR_print_errors_fp(stderr); goto err; } #ifdef ITERATE_CERTS /* * Demo of how to iterate over all certificates in an SSL_CTX structure. */ { X509 *x; int rv; rv = SSL_CTX_set_current_cert(ctx, SSL_CERT_SET_FIRST); while (rv) { X509 *x = SSL_CTX_get0_certificate(ctx); X509_NAME_print_ex_fp(stdout, X509_get_subject_name(x), 0, XN_FLAG_ONELINE); printf("\n"); rv = SSL_CTX_set_current_cert(ctx, SSL_CERT_SET_NEXT); } fflush(stdout); } #endif /* Setup server side SSL bio */ ssl_bio = BIO_new_ssl(ctx, 0); if ((in = BIO_new_accept(port)) == NULL) goto err; /* * This means that when a new connection is accepted on 'in', The ssl_bio * will be 'duplicated' and have the new socket BIO push into it. * Basically it means the SSL BIO will be automatically setup */ BIO_set_accept_bios(in, ssl_bio); again: /* * The first call will setup the accept socket, and the second will get a * socket. In this loop, the first actual accept will occur in the * BIO_read() function. */ if (BIO_do_accept(in) <= 0) goto err; for (;;) { i = BIO_read(in, buf, 512); if (i == 0) { /* * If we have finished, remove the underlying BIO stack so the * next time we call any function for this BIO, it will attempt * to do an accept */ printf("Done\n"); tmp = BIO_pop(in); BIO_free_all(tmp); goto again; } if (i < 0) goto err; fwrite(buf, 1, i, stdout); fflush(stdout); } ret = EXIT_SUCCESS; err: if (ret != EXIT_SUCCESS) ERR_print_errors_fp(stderr); BIO_free(in); return ret; } openssl-1.1.1f/demos/bio/server-cmod.c000066400000000000000000000046601364063235100176260ustar00rootroot00000000000000/* * Copyright 2015-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * A minimal TLS server it ses SSL_CTX_config and a configuration file to * set most server parameters. */ #include #include #include #include #include #include int main(int argc, char *argv[]) { unsigned char buf[512]; char *port = "*:4433"; BIO *in = NULL; BIO *ssl_bio, *tmp; SSL_CTX *ctx; int ret = EXIT_FAILURE, i; ctx = SSL_CTX_new(TLS_server_method()); if (CONF_modules_load_file("cmod.cnf", "testapp", 0) <= 0) { fprintf(stderr, "Error processing config file\n"); goto err; } if (SSL_CTX_config(ctx, "server") == 0) { fprintf(stderr, "Error configuring server.\n"); goto err; } /* Setup server side SSL bio */ ssl_bio = BIO_new_ssl(ctx, 0); if ((in = BIO_new_accept(port)) == NULL) goto err; /* * This means that when a new connection is accepted on 'in', The ssl_bio * will be 'duplicated' and have the new socket BIO push into it. * Basically it means the SSL BIO will be automatically setup */ BIO_set_accept_bios(in, ssl_bio); again: /* * The first call will setup the accept socket, and the second will get a * socket. In this loop, the first actual accept will occur in the * BIO_read() function. */ if (BIO_do_accept(in) <= 0) goto err; for (;;) { i = BIO_read(in, buf, sizeof(buf)); if (i == 0) { /* * If we have finished, remove the underlying BIO stack so the * next time we call any function for this BIO, it will attempt * to do an accept */ printf("Done\n"); tmp = BIO_pop(in); BIO_free_all(tmp); goto again; } if (i < 0) { if (BIO_should_retry(in)) continue; goto err; } fwrite(buf, 1, i, stdout); fflush(stdout); } ret = EXIT_SUCCESS; err: if (ret != EXIT_SUCCESS) ERR_print_errors_fp(stderr); BIO_free(in); return ret; } openssl-1.1.1f/demos/bio/server-conf.c000066400000000000000000000074241364063235100176320ustar00rootroot00000000000000/* * Copyright 2013-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * A minimal program to serve an SSL connection. It uses blocking. It uses * the SSL_CONF API with a configuration file. cc -I../../include saccept.c * -L../.. -lssl -lcrypto -ldl */ #include #include #include #include #include #include #include int main(int argc, char *argv[]) { char *port = "*:4433"; BIO *in = NULL; BIO *ssl_bio, *tmp; SSL_CTX *ctx; SSL_CONF_CTX *cctx = NULL; CONF *conf = NULL; STACK_OF(CONF_VALUE) *sect = NULL; CONF_VALUE *cnf; long errline = -1; char buf[512]; int ret = EXIT_FAILURE, i; ctx = SSL_CTX_new(TLS_server_method()); conf = NCONF_new(NULL); if (NCONF_load(conf, "accept.cnf", &errline) <= 0) { if (errline <= 0) fprintf(stderr, "Error processing config file\n"); else fprintf(stderr, "Error on line %ld\n", errline); goto err; } sect = NCONF_get_section(conf, "default"); if (sect == NULL) { fprintf(stderr, "Error retrieving default section\n"); goto err; } cctx = SSL_CONF_CTX_new(); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_SERVER); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_CERTIFICATE); SSL_CONF_CTX_set_flags(cctx, SSL_CONF_FLAG_FILE); SSL_CONF_CTX_set_ssl_ctx(cctx, ctx); for (i = 0; i < sk_CONF_VALUE_num(sect); i++) { int rv; cnf = sk_CONF_VALUE_value(sect, i); rv = SSL_CONF_cmd(cctx, cnf->name, cnf->value); if (rv > 0) continue; if (rv != -2) { fprintf(stderr, "Error processing %s = %s\n", cnf->name, cnf->value); ERR_print_errors_fp(stderr); goto err; } if (strcmp(cnf->name, "Port") == 0) { port = cnf->value; } else { fprintf(stderr, "Unknown configuration option %s\n", cnf->name); goto err; } } if (!SSL_CONF_CTX_finish(cctx)) { fprintf(stderr, "Finish error\n"); ERR_print_errors_fp(stderr); goto err; } /* Setup server side SSL bio */ ssl_bio = BIO_new_ssl(ctx, 0); if ((in = BIO_new_accept(port)) == NULL) goto err; /* * This means that when a new connection is accepted on 'in', The ssl_bio * will be 'duplicated' and have the new socket BIO push into it. * Basically it means the SSL BIO will be automatically setup */ BIO_set_accept_bios(in, ssl_bio); again: /* * The first call will setup the accept socket, and the second will get a * socket. In this loop, the first actual accept will occur in the * BIO_read() function. */ if (BIO_do_accept(in) <= 0) goto err; for (;;) { i = BIO_read(in, buf, 512); if (i == 0) { /* * If we have finished, remove the underlying BIO stack so the * next time we call any function for this BIO, it will attempt * to do an accept */ printf("Done\n"); tmp = BIO_pop(in); BIO_free_all(tmp); goto again; } if (i < 0) { if (BIO_should_retry(in)) continue; goto err; } fwrite(buf, 1, i, stdout); fflush(stdout); } ret = EXIT_SUCCESS; err: if (ret != EXIT_SUCCESS) ERR_print_errors_fp(stderr); BIO_free(in); return ret; } openssl-1.1.1f/demos/bio/server-ec.pem000066400000000000000000000016111364063235100176230ustar00rootroot00000000000000-----BEGIN PRIVATE KEY----- MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgsoKOpzTm/+VR5xOk kgwtljzMFYtX4NGdqCkxjitXvLmhRANCAASsxTC21z8mDYAX/RgLK5XGJNmPlHcY VMql6fSeS+9fTZnn1Ma12932/UBfFTITOuHviJYkQ5KxVSitmgMwnF3V -----END PRIVATE KEY----- -----BEGIN CERTIFICATE----- MIIBvjCCAWSgAwIBAgIURVOfyUojPPQMfDEVhKY4DIdeLY0wCgYIKoZIzj0EAwIw NTEfMB0GA1UECwwWVGVzdCBFQ0RTQSBDZXJ0aWZpY2F0ZTESMBAGA1UEAwwJbG9j YWxob3N0MCAXDTE4MDYxNDEyNDYyOFoYDzIxMTgwNjE0MTI0NjI4WjA1MR8wHQYD VQQLDBZUZXN0IEVDRFNBIENlcnRpZmljYXRlMRIwEAYDVQQDDAlsb2NhbGhvc3Qw WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASsxTC21z8mDYAX/RgLK5XGJNmPlHcY VMql6fSeS+9fTZnn1Ma12932/UBfFTITOuHviJYkQ5KxVSitmgMwnF3Vo1AwTjAd BgNVHQ4EFgQUA0dWehTLHzBYhzfXiTIVUOXDusMwHwYDVR0jBBgwFoAUA0dWehTL HzBYhzfXiTIVUOXDusMwDAYDVR0TBAUwAwEB/zAKBggqhkjOPQQDAgNIADBFAiEA 8/l8RyihzqlEnLjcyIEaXTZm4HyNgZRQKhNACCW3jd4CIEbMJAf/D0eY38EeP2xY /BDy/BYXYmyDQeqiE+RDjG5X -----END CERTIFICATE----- openssl-1.1.1f/demos/bio/server.pem000066400000000000000000000115651364063235100172470ustar00rootroot00000000000000subject= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = Test Server Cert issuer= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = OpenSSL Test Intermediate CA -----BEGIN CERTIFICATE----- MIID0DCCArigAwIBAgIIcsOElVeHzfYwDQYJKoZIhvcNAQELBQAwcDELMAkGA1UE BhMCVUsxFjAUBgNVBAoMDU9wZW5TU0wgR3JvdXAxIjAgBgNVBAsMGUZPUiBURVNU SU5HIFBVUlBPU0VTIE9OTFkxJTAjBgNVBAMMHE9wZW5TU0wgVGVzdCBJbnRlcm1l ZGlhdGUgQ0EwIBcNMTgwNjE0MTI0NjI4WhgPMjExODA2MTQxMjQ2MjhaMGQxCzAJ BgNVBAYTAlVLMRYwFAYDVQQKDA1PcGVuU1NMIEdyb3VwMSIwIAYDVQQLDBlGT1Ig VEVTVElORyBQVVJQT1NFUyBPTkxZMRkwFwYDVQQDDBBUZXN0IFNlcnZlciBDZXJ0 MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA0jIZ8IZ4dIzBc+ZfdmG5 n8G3JzRX99QvIqv52s4hFVfdzoa+AciKJpo9zkegWPmfsAVNa4uVceg/ZQt6qJsu G/pxbQSZVnyjDQGtt7rgaDEbyUP0XJCnzyRdWSUjFS8yNZn4NkmZU01GlHtXdzWy dEa5PaiTIwW0HI+bjjOEhwJ1hFuFqzlKHVKHA6DBzNcl6ly0E/q2kyslbR+0hq7p NMqKvvuAxqgc//W8KvLDlKAt9D3t5zgh2+BrMPemrzjEaM97yHTogJo7+SKVDdUw YQ7Br3xfyki9u2bUYib1BMSvLezxNP0qf/iU91z4xyLmMvOXE6W0D1WHwya1CfE7 vwIDAQABo3gwdjAdBgNVHQ4EFgQU3ulCbvgfxej6rHnddMpBidwnLIIwHwYDVR0j BBgwFoAUCgNEpWg658NdblSLsvg43EA1WwUwCQYDVR0TBAIwADATBgNVHSUEDDAK BggrBgEFBQcDATAUBgNVHREEDTALgglsb2NhbGhvc3QwDQYJKoZIhvcNAQELBQAD ggEBAENMzaqJtmWED++W4KXFVwNBkQ87errBXe4jVeYKpjNb0JGMm60MS5ty54fb r27SsR2EEk3EK2rcd85RR7TEKZCn9SvPykVtVf0tru7nOptQJgSbRvxIzyyq1UcE K+BXDgN/I0f1X6qbk4Stb6uJF7yyAUabacjwKqgVifOOeKF9WJhVA8qJKoVq7HLN k+uvm0geO1I4LKeULXVnQy8kwB6twcxN8iPyO45ZxbYIVeEKaYtbj/XPoq6KsLIb 5fj+mK1r/LkWk352ksNhf73r3alF8TBcSLqnbMoy1/ZvzlI4ksp9IGWtIU+CzP/f VUjh00NOwDLd5jJbPoWW0oNp9m4= -----END CERTIFICATE----- subject= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = OpenSSL Test Intermediate CA issuer= C = UK, O = OpenSSL Group, OU = FOR TESTING PURPOSES ONLY, CN = OpenSSL Test Root CA -----BEGIN CERTIFICATE----- MIIEPzCCAqegAwIBAgIILsaQqJAjK4IwDQYJKoZIhvcNAQELBQAwaDELMAkGA1UE BhMCVUsxFjAUBgNVBAoMDU9wZW5TU0wgR3JvdXAxIjAgBgNVBAsMGUZPUiBURVNU SU5HIFBVUlBPU0VTIE9OTFkxHTAbBgNVBAMMFE9wZW5TU0wgVGVzdCBSb290IENB MCAXDTE4MDYxNDEyNDYyOFoYDzIxMTgwNjE0MTI0NjI4WjBwMQswCQYDVQQGEwJV SzEWMBQGA1UECgwNT3BlblNTTCBHcm91cDEiMCAGA1UECwwZRk9SIFRFU1RJTkcg UFVSUE9TRVMgT05MWTElMCMGA1UEAwwcT3BlblNTTCBUZXN0IEludGVybWVkaWF0 ZSBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANIpVng2wNFJp2kF oJ6Yji25wy1YufnS8NxA82fk5OHdhGWj1CWqnQNotEqEQzcOUszQYrNxd8tEvoWk Ik4JMBVoEcgBGedchftptTNulFWodWpi1yFaqA/Nz2BsVgcCJW4C+UWDT7VeHtGU 7tYKKr35lxp6io/a4jUDQXvO2nJA9YlrxOktunMqtoZSYqUz35ZXsdkn58o8Fbqm dEpw6AqAr9aBgY5DSaGxbaX2lwNt9NvB+f9ucOqEnPP8AfTlPYc/ENwJ6u/H8RGw d1im71mu2lHjcws3aHkbluH860U3vlKWx6Ff1qdQcH98e2HwElqxCK00xya8leu4 u64nljkCAwEAAaNjMGEwHQYDVR0OBBYEFAoDRKVoOufDXW5Ui7L4ONxANVsFMB8G A1UdIwQYMBaAFDZjTeLsQUG6KL9xuLhzXVdB4pkKMA8GA1UdEwEB/wQFMAMBAf8w DgYDVR0PAQH/BAQDAgEGMA0GCSqGSIb3DQEBCwUAA4IBgQDZQJLA90ewVaS3E3du gSjPkQ1xsHm8H1am+7zr5oZ81J+R8XYIZgMR+9ShVo38OradiYNqDLso+4iuVdxh hzoSoQELoDXCficzWKnlAtWvwDDoczyK+/p94g3VKx14n2+GvQzoZ4kwQQgaFH1w YI6w0oH9zwoklCxvihj8D069QrYyuTT8JGZ2m0FHqVJg6teuQKFahSgwYR2CUoIb 6PrpSUQeCVCH8TPkzlRT6UgtM3ERt7+TlQ+zZ80dSf4YTAsDv9Z/CJXiF/5wZr6/ lWuFjWmX2HkpEW6Wiv5KF8QP6Ft7Z+RYua7RMtELCYvqYbWDBs7fXWGBkZ5xhB09 jCxz+F7zOeRbyzacfFq9DhxCWCRbIrdgGGE/Of2ujJtmK/2p4M6E5IsKNAI2SJBW iJXvIgQgR22ehPqy6er2Gog5LkWUwqB0kHZJJpbp1IW01IGTpD6YAJyVCEAlyMbo Kto9+wQFLT3Auv/W5h6OwxkNdfAyZBYy0ZSFk4EE8OdWWY4= -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIIEpQIBAAKCAQEA0jIZ8IZ4dIzBc+ZfdmG5n8G3JzRX99QvIqv52s4hFVfdzoa+ AciKJpo9zkegWPmfsAVNa4uVceg/ZQt6qJsuG/pxbQSZVnyjDQGtt7rgaDEbyUP0 XJCnzyRdWSUjFS8yNZn4NkmZU01GlHtXdzWydEa5PaiTIwW0HI+bjjOEhwJ1hFuF qzlKHVKHA6DBzNcl6ly0E/q2kyslbR+0hq7pNMqKvvuAxqgc//W8KvLDlKAt9D3t 5zgh2+BrMPemrzjEaM97yHTogJo7+SKVDdUwYQ7Br3xfyki9u2bUYib1BMSvLezx NP0qf/iU91z4xyLmMvOXE6W0D1WHwya1CfE7vwIDAQABAoIBAQC2HAo1RYvfDoQc sh9LJWf5bZANO2Brqz4bP/x9AdHP+AyH/l1oliJ7R2785TmbXMppam6lGo4j3h/u n39pzOip/NWAqldfgySRBD9Jy3LZUpLMUT/JYtrAsLTfozk+BWHu5rMR9boNXgok Yqho8/DkpNGhBghUc4CUricLkL7laD3ziAHpx8yALL3tnLGOpgT9hNrA8Dm3yfUS JEfiG12ILXvq1IP+vUNuaLpTLJZuqUmLpK8v+CBYgKxfd+TDnEjul4PqhhIIFK3A xEZYQR2D/AXUwng9hP9uCbVm5lOY6vRbi9Fpbt+KRv+m25s1AnuhJFBOsL30h/Tb iCKWm/nhAoGBAO0bFqMvZHjaT2KiwOwG/Ze9NsjynFPVltiuCqNj8HE5wM6imC5J SdB+jMkgN6ERXALWrtr8Uf2pqzfeMsi6pekOOVTWLe/8c4bAZRxaCZn/BlZRysZI vB9Gb7m7Oymw5iDSqrYywgOiUu+oIiCrmPOealhmn7zmHzHaETvdL9zDAoGBAOLy DVT1csoexnuHVIWqnp7FK7lv6eOGZSdXpfJ3XYjmKJLK2hpVZe+J/mFOL1wsKSt4 0k/V0dnkHR7V4Pa4ECiCthkWMWrBVIHe7+ZnZ0ocKQSC+EEecavOiZ57S/qnUlT6 NtQP4cSy4DHzzFZdTZnn+2oymapPZpb2mvSN/GVVAoGADrIlHwwq8Aqn7Pclefuc 8DC8GoxfABs29EslQadKGdp4htYxFH1aY9/UHgsvJ36J82sW/1+wPUas5BOTljlr WxyUlRuJUVyWVH3MRouWGMNjwynipZOQhWe6OQrPye+688Ha7twKhmsjNNN4+glo u4DQGpaRxAWHXXGkq88zzj0CgYEAsICEceD7R8srnwMfb13FQ8IhQXWSuAvcO/7k 53CCZGhsgc4WVoi4YNY360G9f7gwxMiQ+NpY/Vd2dnbtIbUBjCAss9IY2OhHa0IR 3mXpZTAFjqa1oR+mVHKrgYBvFSBw3fpEDiXT9wEPcIomD709D0fmty9nZ5edOCfP WAfdlokCgYEAqXuMuAg3NMMgEv+eBfsf43v3hRwBqPYanE26wcO3GoT/S8BpB6wy vBoPZOlO5ZfsD2jaTec60GLay+MofxC7qNXIjzHOw50ry4bqHqqoQbn2cONE1k+0 ov7H2keTcG9FEGgL7dRUq3pRUo/W12WmRuDN17IEgkzAeisJnoiPtaQ= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/bio/shared.opt000066400000000000000000000000571364063235100172220ustar00rootroot00000000000000OSSL$LIBSSL_SHR/SHARE OSSL$LIBCRYPTO_SHR/SHARE openssl-1.1.1f/demos/bio/static.opt000066400000000000000000000000431364063235100172360ustar00rootroot00000000000000OSSL$LIBSSL/LIB OSSL$LIBCRYPTO/LIB openssl-1.1.1f/demos/certs/000077500000000000000000000000001364063235100155755ustar00rootroot00000000000000openssl-1.1.1f/demos/certs/README000066400000000000000000000015331364063235100164570ustar00rootroot00000000000000There is often a need to generate test certificates automatically using a script. This is often a cause for confusion which can result in incorrect CA certificates, obsolete V1 certificates or duplicate serial numbers. The range of command line options can be daunting for a beginner. The mkcerts.sh script is an example of how to generate certificates automatically using scripts. Example creates a root CA, an intermediate CA signed by the root and several certificates signed by the intermediate CA. The script then creates an empty index.txt file and adds entries for the certificates and generates a CRL. Then one certificate is revoked and a second CRL generated. The script ocsprun.sh runs the test responder on port 8888 covering the client certificates. The script ocspquery.sh queries the status of the certificates using the test responder. openssl-1.1.1f/demos/certs/apps/000077500000000000000000000000001364063235100165405ustar00rootroot00000000000000openssl-1.1.1f/demos/certs/apps/apps.cnf000066400000000000000000000034021364063235100201720ustar00rootroot00000000000000# # OpenSSL configuration file to create apps directory certificates # # This definition stops the following lines choking if HOME or CN # is undefined. HOME = . RANDFILE = $ENV::HOME/.rnd CN = "Not Defined" #################################################################### [ req ] default_bits = 2048 default_keyfile = privkey.pem # Don't prompt for fields: use those in section directly prompt = no distinguished_name = req_distinguished_name x509_extensions = v3_ca # The extensions to add to the self signed cert string_mask = utf8only # req_extensions = v3_req # The extensions to add to a certificate request [ req_distinguished_name ] countryName = UK organizationName = OpenSSL Group organizationalUnitName = FOR TESTING PURPOSES ONLY # Take CN from environment so it can come from a script. commonName = $ENV::CN [ usr_cert ] # These extensions are added when 'ca' signs a request for an end entity # certificate basicConstraints=critical, CA:FALSE keyUsage=critical, nonRepudiation, digitalSignature, keyEncipherment # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" [ ec_cert ] # These extensions are added when 'ca' signs a request for an end entity # certificate basicConstraints=critical, CA:FALSE keyUsage=critical, nonRepudiation, digitalSignature, keyAgreement # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid [ v3_ca ] # Extensions for a typical CA # PKIX recommendation. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid:always basicConstraints = critical,CA:true keyUsage = critical, cRLSign, keyCertSign openssl-1.1.1f/demos/certs/apps/ckey.pem000066400000000000000000000032171364063235100202010ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIEpQIBAAKCAQEAtK2p2x0S3C1ajftAc3GaWPsji6scw1k9Sw/XltbLQuDc11/f wwrUiFcje2CB3Ri6yD6+uCA3V12jEc4GdqzirJZhwgIhaTv42vfYBgiUcR9McEGr agFC3yVR3lIbOzhBjmXNp1on46irxnzU4pT+w58IuvYqUBavaEtfRZocFR5NsIOy mRhyNag8htOFK3wmTEYrb0vflFYT6SD47ogYtsd/xWSKS+YFyb7xSusR2Ot6Ktmr MswQE57QYJz+KiRVlnL0cduMBdT52Wm8blaC9mz50PyrzjQ68NyHapCoWDU7pe4x HLtzpXGSDMPuw4miiSwMym/2wReYJv6cFugLPQIDAQABAoIBAAZOyc9MhIwLSU4L p4RgQvM4UVVe8/Id+3XTZ8NsXExJbWxXfIhiqGjaIfL8u4vsgRjcl+v1s/jo2/iT KMab4o4D8gXD7UavQVDjtjb/ta79WL3SjRl2Uc9YjjMkyq6WmDNQeo2NKDdafCTB 1uzSJtLNipB8Z53ELPuHJhxX9QMHrMnuha49riQgXZ7buP9iQrHJFhImBjSzbxJx L+TI6rkyLSf9Wi0Pd3L27Ob3QWNfNRYNSeTE+08eSRChkur5W0RuXAcuAICdQlCl LBvWO/LmmvbzCqiDcgy/TliSb6CGGwgiNG7LJZmlkYNj8laGwalNlYZs3UrVv6NO Br2loAECgYEA2kvCvPGj0Dg/6g7WhXDvAkEbcaL1tSeCxBbNH+6HS2UWMWvyTtCn /bbD519QIdkvayy1QjEf32GV/UjUVmlULMLBcDy0DGjtL3+XpIhLKWDNxN1v1/ai 1oz23ZJCOgnk6K4qtFtlRS1XtynjA+rBetvYvLP9SKeFrnpzCgaA2r0CgYEA0+KX 1ACXDTNH5ySX3kMjSS9xdINf+OOw4CvPHFwbtc9aqk2HePlEsBTz5I/W3rKwXva3 NqZ/bRqVVeZB/hHKFywgdUQk2Uc5z/S7Lw70/w1HubNTXGU06Ngb6zOFAo/o/TwZ zTP1BMIKSOB6PAZPS3l+aLO4FRIRotfFhgRHOoECgYEAmiZbqt8cJaJDB/5YYDzC mp3tSk6gIb936Q6M5VqkMYp9pIKsxhk0N8aDCnTU+kIK6SzWBpr3/d9Ecmqmfyq7 5SvWO3KyVf0WWK9KH0abhOm2BKm2HBQvI0DB5u8sUx2/hsvOnjPYDISbZ11t0MtK u35Zy89yMYcSsIYJjG/ROCUCgYEAgI2P9G5PNxEP5OtMwOsW84Y3Xat/hPAQFlI+ HES+AzbFGWJkeT8zL2nm95tVkFP1sggZ7Kxjz3w7cpx7GX0NkbWSE9O+T51pNASV tN1sQ3p5M+/a+cnlqgfEGJVvc7iAcXQPa3LEi5h2yPR49QYXAgG6cifn3dDSpmwn SUI7PQECgYEApGCIIpSRPLAEHTGmP87RBL1smurhwmy2s/pghkvUkWehtxg0sGHh kuaqDWcskogv+QC0sVdytiLSz8G0DwcEcsHK1Fkyb8A+ayiw6jWJDo2m9+IF4Fww 1Te6jFPYDESnbhq7+TLGgHGhtwcu5cnb4vSuYXGXKupZGzoLOBbv1Zw= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/certs/apps/intkey.pem000066400000000000000000000032131364063235100205450ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIEowIBAAKCAQEAsErw75CmLYD6pkrGW/YhAl/K8L5wJYxDjqu2FghxjD8K308W 3EHq4uBxEwR1OHXaM1+6ZZw7/r2I37VLIdurBEAIEUdbzx0so74FPawgz5EW2CTq oJnK8F71/vo5Kj1VPwW46CxwxUR3cfvJGNXND2ip0TcyTSPLROXOyQakcVfIGJmd Sa1wHKi+c2gMA4emADudZUOYLrg80gr2ldePm07ynbVsKKzCcStw8MdmoW9Qt3fL nPJn2TFUUBNWj+4kvL+88edWCVQXKNdsysD/CDrH4W/hjyPDStVsM6XpiNU0+L2Z Y6fcj3OP8d0goOx45xotMn9m8hNkCGsrVXx9IwIDAQABAoIBACg3wIV2o2KIJSZg sqXyHY+0GNEZMO5v9E2NAMo//N941lshaN6wrww5FbK39qH9yNylfxmFLe6sgJhA fLZprbcXgH+onto+Fpv4UqvCI+4WdHa03U3sJ+70SvxzSy1Gtrbc8FUPJl7qgrFf Nn5S8CgOwYb4J6KPguTh5G3Z9RPiCKObwOwEM34hrZUlgPS88wmzu9H6L2GM8A1v YBtEr0msBnlJBJOgStyUEfHW2KspNQ+VllQ6c0cedgFXUpl9EoKTLxP+WXwFI1sx jFCFzSrMqPcPz1PxU6bXoZE0WH6r+3c8WAW4xR/HVu04BrBDu0CGwn6zAXDy6wCU pWogDlkCgYEA4o+nIu2CTzqUlgc22pj+hjenfS5lnCtJfAdrXOJHmnuL+J9h8Nzz 9kkL+/Y0Xg9bOM6xXPm+81UNpDvOLbUahSSQsfB+LNVEkthJIL4XIk083LsHjFaJ 9SiCFRbf2OgWrEhe/c1drySwz9u/0f4Q7B6VGqxMnTDjzS5JacZ1pE8CgYEAxzMn /n/Dpdn+c4rf14BRNKCv1qBXngPNylKJCmiRpKRJAn+B+Msdwtggk/1Ihju21wSo IGy0Gw7WQd1Iq7V85cB2G5PAFY6ybpSV6G3QrzmzuvjHmKvXgUAuuaN+7Pp1YkMY rLVjUOcdP5JbXG6XnaCkHYJR8uapPwWPkDt+oO0CgYBI4yZGGlr92j7LNW70TJw1 2dnMcAzIfTSa7lgf/bxDetPBHKWJs8vYxA9S9BZM3Gvgjr6IxuAjsI0+9O6TzdvG UckrNc+h5Mq241ZDbmRK6MZXzOPUxlKDyJBw8Hb7dU82BeJpjJRDMG6hsHS5vh77 l6sodZ4ARCZFcEq1+N8ICQKBgDeBHJLAXO6YmFrvhkGQ4o+senJuSRuhabUHXGIH ExXyJNnKV5fQWOGSwTkbKRsmBmNRS9uFDoY/kxnVI8ucjUmjYAV9HNek5DkFs+OI vc4lYNwnN85li23bSWm2kcZMX2ra0URGYn8HdtHg4Q4XTq3ANhp21oi9FsmVrhP9 T+JdAoGBAK2ebwZ7CXFavDFo4mzLKkGitBjrSi/udFhZECXZWEbNzWlVc3Y3q0cU drDqUtbVm+/Xb5CMU044Gqq6SKdObAb3JElKmFylFL9fp2rfL/foUr2sdb87Vqdp 2j5jZyvt1DKnNaJ7JaFbUdRxlvHQRiqKlZpafN/SMQ0jCs1bSgCg -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/certs/apps/mkacerts.sh000066400000000000000000000035111364063235100207050ustar00rootroot00000000000000#!/bin/sh # Recreate the demo certificates in the apps directory. OPENSSL=openssl # Root CA: create certificate directly CN="OpenSSL Test Root CA" $OPENSSL req -config apps.cnf -x509 -nodes \ -keyout root.pem -out root.pem -key rootkey.pem -new -days 3650 # Intermediate CA: request first CN="OpenSSL Test Intermediate CA" $OPENSSL req -config apps.cnf -nodes \ -key intkey.pem -out intreq.pem -new # Sign request: CA extensions $OPENSSL x509 -req -in intreq.pem -CA root.pem -CAkey rootkey.pem -days 3630 \ -extfile apps.cnf -extensions v3_ca -CAcreateserial -out intca.pem # Client certificate: request first CN="Test Client Cert" $OPENSSL req -config apps.cnf -nodes \ -key ckey.pem -out creq.pem -new # Sign using intermediate CA $OPENSSL x509 -req -in creq.pem -CA intca.pem -CAkey intkey.pem -days 3600 \ -extfile apps.cnf -extensions usr_cert -CAcreateserial | \ $OPENSSL x509 -nameopt oneline -subject -issuer >client.pem # Server certificate: request first CN="Test Server Cert" $OPENSSL req -config apps.cnf -nodes \ -key skey.pem -out sreq.pem -new # Sign using intermediate CA $OPENSSL x509 -req -in sreq.pem -CA intca.pem -CAkey intkey.pem -days 3600 \ -extfile apps.cnf -extensions usr_cert -CAcreateserial | \ $OPENSSL x509 -nameopt oneline -subject -issuer >server.pem # Server certificate #2: request first CN="Test Server Cert #2" $OPENSSL req -config apps.cnf -nodes \ -key skey2.pem -out sreq2.pem -new # Sign using intermediate CA $OPENSSL x509 -req -in sreq2.pem -CA intca.pem -CAkey intkey.pem -days 3600 \ -extfile apps.cnf -extensions usr_cert -CAcreateserial | \ $OPENSSL x509 -nameopt oneline -subject -issuer >server2.pem # Append keys to file. cat skey.pem >>server.pem cat skey2.pem >>server2.pem cat ckey.pem >>client.pem $OPENSSL verify -CAfile root.pem -untrusted intca.pem \ server2.pem server.pem client.pem openssl-1.1.1f/demos/certs/apps/mkxcerts.sh000066400000000000000000000021351364063235100207350ustar00rootroot00000000000000 # Create certificates using various algorithms to test multi-certificate # functionality. OPENSSL=../../../apps/openssl CN="OpenSSL Test RSA SHA-1 cert" $OPENSSL req \ -config apps.cnf -extensions usr_cert -x509 -nodes \ -keyout tsha1.pem -out tsha1.pem -new -days 3650 -sha1 CN="OpenSSL Test RSA SHA-256 cert" $OPENSSL req \ -config apps.cnf -extensions usr_cert -x509 -nodes \ -keyout tsha256.pem -out tsha256.pem -new -days 3650 -sha256 CN="OpenSSL Test RSA SHA-512 cert" $OPENSSL req \ -config apps.cnf -extensions usr_cert -x509 -nodes \ -keyout tsha512.pem -out tsha512.pem -new -days 3650 -sha512 # Create EC parameters $OPENSSL ecparam -name P-256 -out ecp256.pem $OPENSSL ecparam -name P-384 -out ecp384.pem CN="OpenSSL Test P-256 SHA-256 cert" $OPENSSL req \ -config apps.cnf -extensions ec_cert -x509 -nodes \ -nodes -keyout tecp256.pem -out tecp256.pem -newkey ec:ecp256.pem \ -days 3650 -sha256 CN="OpenSSL Test P-384 SHA-384 cert" $OPENSSL req \ -config apps.cnf -extensions ec_cert -x509 -nodes \ -nodes -keyout tecp384.pem -out tecp384.pem -newkey ec:ecp384.pem \ -days 3650 -sha384 openssl-1.1.1f/demos/certs/apps/rootkey.pem000066400000000000000000000032171364063235100207420ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIEpgIBAAKCAQEA0xpquKAoY6trkxz8uuE6RyYfMOy+Rgvt19pqG3x8sEpFNjDN IG873HniShNaOrseRtrGRgCDcecNOQ0LLOQYo10zz0er8+0YgUWVx5Ag5q3cqN3T kjDc+0sRZMONPoUwD0ySOT9dumbJypEjA0q2AgKgWwaO4ilzg/fWTEruLeuL4meX K9WZFmMnGuF4kHSocZeKWs5UM86WIOf/+NdtzLNd6a5HwqAB5Azggiz2Ngck6Aet Mi0inBr3A1MSn0oIaQ7rGvbQ2QrIOnpdHJ36GadQHuvvtZOm28o8UVONMMWoS1yJ /1TaRWQJ+faZJE7yegJtUf75+5HwsxaUP32C3wIDAQABAoIBAQCEybEnwVamm0Vn nGw9AT+vUYN9Ou3VEdviUzk7YOrt2Un/9GKTbGSzItf80H+JQfqhhywBDIGiPDxN Dq9g5Xm6CP51/BdlsFYhuqukhDyt3d9XOXHEG4hlaarfP0KxeQXqGbhA2mMSxWVZ TkI/59blHNHRcCagjIJlGJhsFRYNO1/ApfA5zN7fWCFvH1XWZhuvsPDgUXKm4BS0 p3ol67MVJHRfYcLb/txBO5rBhSXinK0jEBiljRcE0rWzRycSedmDgG3SNV17wvA0 UWgMNpPcJ1b7Satr0nM7A8+siV8FRcfvPqCuGPKCYTrNn71hGJEhKXKwlURj9+95 O5yzRxjBAoGBAPtTRYN40/piRB0XLpi+zNh+4Ba4TGfXSymbaozgC/pI5wfgGXrz IpT9ujjV42r8TABHvXa6uiGm0cbxcUgq2n6Y8rf6iHxmn23ezCEBUs7rd6jtt11b m58T8o0XWyOgAovaH0UgzMtrlsZYR2fli5254oRkTWwaUTuO38z6CVddAoGBANcH nvdu3RniIYStsr5/deu7l81ZQ9rSiR1m3H6Wy8ryMIfkYfa0WqXhwNHrLrhvhLIQ 7mGnJ+jAkJyVQULE6UdbmVW8tC58Dfrgz/1s7RMeUYPnOmRpx79c/LqZ2IunfFWx IvBvFu7vidEHA+1tU2N+oXNsU+B9XpfsJ+/d2QtrAoGBAJTuP58tFtClMp/agO5b AqC4bqqIBB704cGCK53XlsF2OhHcprzJH5ES2iub8+wOHit8V7Xn6SzP4jf2E58k Zd3nXM3RVNgDKC6/fE+CrUOZHYupcqOMCag29eDOGl/+DgQ5+ZXJXhKdaveWkJns 2NNat/SkS4zn+4NDozOgZ7CxAoGBAIuXjfJRTUXNUDci0APtGO9U1AJiLbOzs4Gb 0g539IqmWS0O7S3L/YDsolFkXOsssjcq2KYabsUhpX+RQVGIJWzGoS9QlqQKssSo Bz4c5Xbg2shHZtfi9+JaClNVJofazdOPcAAoDfpFFPHWnQ0YSOcxQLx+maEFok/7 5h1IputLAoGBAKGBWDPwskgRRfCAIFpCJLOu/9D30M/akMtO0kJYQpBjOaKuigUy ic7pthFVse/pMUljXHAd1hs2CTjMW1ukEusU3x1Ei6wvnHHqn0Hs+6D5NQFQkcMn 7rejJ+bpJPRAn40AAV5hGBYI12XycB8ZgyPC4hTUK6unGVK06DC4qvdv -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/certs/apps/skey.pem000066400000000000000000000032171364063235100202210ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIEpAIBAAKCAQEA84TzkjbcskbKZnrlKcXzSSgi07n+4N7kOM7uIhzpkTuU0HIv h4VZS2axxfV6hV3CD9MuKVg2zEhroqK1Js5n4ke230nSP/qiELfCl0R+hzRtbfKL tFUr1iHeU0uQ6v3q+Tg1K/Tmmg72uxKrhyHDL7z0BriPjhAHJ5XlQsvR1RCMkqzu D9wjSInJxpMMIgLndOclAKv4D1wQtYU7ZpTw+01XBlUhIiXb86qpYL9NqnnRq5JI uhmOEuxo2ca63+xaHNhD/udSyc8C0Md/yX6wlONTRFgLLv0pdLUGm1xEjfsydaQ6 qGd7hzIKUI3hohNKJa/mHLElv7SZolPTogK/EQIDAQABAoIBAADq9FwNtuE5IRQn zGtO4q7Y5uCzZ8GDNYr9RKp+P2cbuWDbvVAecYq2NV9QoIiWJOAYZKklOvekIju3 r0UZLA0PRiIrTg6NrESx3JrjWDK8QNlUO7CPTZ39/K+FrmMkV9lem9yxjJjyC34D AQB+YRTx+l14HppjdxNwHjAVQpIx/uO2F5xAMuk32+3K+pq9CZUtrofe1q4Agj9R 5s8mSy9pbRo9kW9wl5xdEotz1LivFOEiqPUJTUq5J5PeMKao3vdK726XI4Z455Nm W2/MA0YV0ug2FYinHcZdvKM6dimH8GLfa3X8xKRfzjGjTiMSwsdjgMa4awY3tEHH 674jhAECgYEA/zqMrc0zsbNk83sjgaYIug5kzEpN4ic020rSZsmQxSCerJTgNhmg utKSCt0Re09Jt3LqG48msahX8ycqDsHNvlEGPQSbMu9IYeO3Wr3fAm75GEtFWePY BhM73I7gkRt4s8bUiUepMG/wY45c5tRF23xi8foReHFFe9MDzh8fJFECgYEA9EFX 4qAik1pOJGNei9BMwmx0I0gfVEIgu0tzeVqT45vcxbxr7RkTEaDoAG6PlbWP6D9a WQNLp4gsgRM90ZXOJ4up5DsAWDluvaF4/omabMA+MJJ5kGZ0gCj5rbZbKqUws7x8 bp+6iBfUPJUbcqNqFmi/08Yt7vrDnMnyMw2A/sECgYEAiiuRMxnuzVm34hQcsbhH 6ymVqf7j0PW2qK0F4H1ocT9qhzWFd+RB3kHWrCjnqODQoI6GbGr/4JepHUpre1ex 4UEN5oSS3G0ru0rC3U4C59dZ5KwDHFm7ffZ1pr52ljfQDUsrjjIMRtuiwNK2OoRa WSsqiaL+SDzSB+nBmpnAizECgYBdt/y6rerWUx4MhDwwtTnel7JwHyo2MDFS6/5g n8qC2Lj6/fMDRE22w+CA2esp7EJNQJGv+b27iFpbJEDh+/Lf5YzIT4MwVskQ5bYB JFcmRxUVmf4e09D7o705U/DjCgMH09iCsbLmqQ38ONIRSHZaJtMDtNTHD1yi+jF+ OT43gQKBgQC/2OHZoko6iRlNOAQ/tMVFNq7fL81GivoQ9F1U0Qr+DH3ZfaH8eIkX xT0ToMPJUzWAn8pZv0snA0um6SIgvkCuxO84OkANCVbttzXImIsL7pFzfcwV/ERK UM6j0ZuSMFOCr/lGPAoOQU0fskidGEHi1/kW+suSr28TqsyYZpwBDQ== -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/certs/apps/skey2.pem000066400000000000000000000032131364063235100202770ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIEowIBAAKCAQEA63Yu4/cnLRvi+BIwcoIz5hKmcziREG2tujKEBs4JVO3uV3+f UW/4YFULigKImXu/0fKyuMyeFu4l3V8NC6gachvAeWhiniN9sPgPU3AQKaF1y9gq 2EBEI2cFCKS5WASItjZCY951ZKuXYJdYDgC4kPlvI4N5M4ORHPa4pqfa/dzfMLEi 92sLGn7q5mArzn+5Xh2jD9Vif8w0RlDRxv1rQ413PGVBtfuhF1PSXNhbPtjpn+33 DdJdNACv8D4PDmjUtKyshqvSXSE/RURldW13v68efBWhOQiLXcAkmISbxfzveS1k KMSV8nuWwhS5rw0xMlavRTEgqbX7Jm14xGRrFwIDAQABAoIBAHLsTPihIfLnYIE5 x4GsQQ5zXeBw5ITDM37ktwHnQDC+rIzyUl1aLD1AZRBoKinXd4lOTqLZ4/NHKx4A DYr58mZtWyUmqLOMmQVuHXTZBlp7XtYuXMMNovQwjQlp9LicBeoBU6gQ5PVMtubD F4xGF89Sn0cTHW3iMkqTtQ5KcR1j57OcJO0FEb1vPvk2MXI5ZyAatUYE7YacbEzd rg02uIwx3FqNSkuSI79uz4hMdV5TPtuhxx9nTwj9aLUhXFeZ0mn2PVgVzEnnMoJb +znlsZDgzDlJqdaD744YGWh8Z3OEssB35KfzFcdOeO6yH8lmv2Zfznk7pNPT7LTb Lae9VgkCgYEA92p1qnAB3NtJtNcaW53i0S5WJgS1hxWKvUDx3lTB9s8X9fHpqL1a E94fDfWzp/hax6FefUKIvBOukPLQ6bYjTMiFoOHzVirghAIuIUoMI5VtLhwD1hKs Lr7l/dptMgKb1nZHyXoKHRBthsy3K4+udsPi8TzMvYElgEqyQIe/Rk0CgYEA86GL 8HC6zLszzKERDPBxrboRmoFvVUCTQDhsfj1M8aR3nQ8V5LkdIJc7Wqm/Ggfk9QRf rJ8M2WUMlU5CNnCn/KCrKzCNZIReze3fV+HnKdbcXGLvgbHPrhnz8yYehUFG+RGq bVyDWRU94T38izy2s5qMYrMJWZEYyXncSPbfcPMCgYAtaXfxcZ+V5xYPQFARMtiX 5nZfggvDoJuXgx0h3tK/N2HBfcaSdzbaYLG4gTmZggc/jwnl2dl5E++9oSPhUdIG 3ONSFUbxsOsGr9PBvnKd8WZZyUCXAVRjPBzAzF+whzQNWCZy/5htnz9LN7YDI9s0 5113Q96cheDZPFydZY0hHQKBgQDVbEhNukM5xCiNcu+f2SaMnLp9EjQ4h5g3IvaP 5B16daw/Dw8LzcohWboqIxeAsze0GD/D1ZUJAEd0qBjC3g+a9BjefervCjKOzXng 38mEUm+6EwVjJSQcjSmycEs+Sr/kwr/8i5WYvU32+jk4tFgMoC+o6tQe/Uesf68k z/dPVwKBgGbF7Vv1/3SmhlOy+zYyvJ0CrWtKxH9QP6tLIEgEpd8x7YTSuCH94yok kToMXYA3sWNPt22GbRDZ+rcp4c7HkDx6I6vpdP9aQEwJTp0EPy0sgWr2XwYmreIQ NFmkk8Itn9EY2R9VBaP7GLv5kvwxDdLAnmwGmzVtbmaVdxCaBwUk -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/certs/ca.cnf000066400000000000000000000043061364063235100166530ustar00rootroot00000000000000# # OpenSSL example configuration file for automated certificate creation. # # This definition stops the following lines choking if HOME or CN # is undefined. HOME = . RANDFILE = $ENV::HOME/.rnd CN = "Not Defined" default_ca = ca #################################################################### [ req ] default_bits = 1024 default_keyfile = privkey.pem # Don't prompt for fields: use those in section directly prompt = no distinguished_name = req_distinguished_name x509_extensions = v3_ca # The extensions to add to the self signed cert string_mask = utf8only # req_extensions = v3_req # The extensions to add to a certificate request [ req_distinguished_name ] countryName = UK organizationName = OpenSSL Group # Take CN from environment so it can come from a script. commonName = $ENV::CN [ usr_cert ] # These extensions are added when 'ca' signs a request for an end entity # certificate basicConstraints=critical, CA:FALSE keyUsage=critical, nonRepudiation, digitalSignature, keyEncipherment # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid # OCSP responder certificate [ ocsp_cert ] basicConstraints=critical, CA:FALSE keyUsage=critical, nonRepudiation, digitalSignature, keyEncipherment # This will be displayed in Netscape's comment listbox. nsComment = "OpenSSL Generated Certificate" # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid extendedKeyUsage=OCSPSigning [ dh_cert ] # These extensions are added when 'ca' signs a request for an end entity # DH certificate basicConstraints=critical, CA:FALSE keyUsage=critical, keyAgreement # PKIX recommendations harmless if included in all certificates. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid [ v3_ca ] # Extensions for a typical CA # PKIX recommendation. subjectKeyIdentifier=hash authorityKeyIdentifier=keyid:always basicConstraints = critical,CA:true keyUsage = critical, cRLSign, keyCertSign # Minimal CA entry to allow generation of CRLs. [ca] database=index.txt crlnumber=crlnum.txt openssl-1.1.1f/demos/certs/mkcerts.sh000066400000000000000000000074601364063235100176100ustar00rootroot00000000000000#!/bin/sh OPENSSL=../../apps/openssl OPENSSL_CONF=../../apps/openssl.cnf export OPENSSL_CONF # Root CA: create certificate directly CN="Test Root CA" $OPENSSL req -config ca.cnf -x509 -nodes \ -keyout root.pem -out root.pem -newkey rsa:2048 -days 3650 # Intermediate CA: request first CN="Test Intermediate CA" $OPENSSL req -config ca.cnf -nodes \ -keyout intkey.pem -out intreq.pem -newkey rsa:2048 # Sign request: CA extensions $OPENSSL x509 -req -in intreq.pem -CA root.pem -days 3600 \ -extfile ca.cnf -extensions v3_ca -CAcreateserial -out intca.pem # Server certificate: create request first CN="Test Server Cert" $OPENSSL req -config ca.cnf -nodes \ -keyout skey.pem -out req.pem -newkey rsa:1024 # Sign request: end entity extensions $OPENSSL x509 -req -in req.pem -CA intca.pem -CAkey intkey.pem -days 3600 \ -extfile ca.cnf -extensions usr_cert -CAcreateserial -out server.pem # Client certificate: request first CN="Test Client Cert" $OPENSSL req -config ca.cnf -nodes \ -keyout ckey.pem -out creq.pem -newkey rsa:1024 # Sign using intermediate CA $OPENSSL x509 -req -in creq.pem -CA intca.pem -CAkey intkey.pem -days 3600 \ -extfile ca.cnf -extensions usr_cert -CAcreateserial -out client.pem # Revoked certificate: request first CN="Test Revoked Cert" $OPENSSL req -config ca.cnf -nodes \ -keyout revkey.pem -out rreq.pem -newkey rsa:1024 # Sign using intermediate CA $OPENSSL x509 -req -in rreq.pem -CA intca.pem -CAkey intkey.pem -days 3600 \ -extfile ca.cnf -extensions usr_cert -CAcreateserial -out rev.pem # OCSP responder certificate: request first CN="Test OCSP Responder Cert" $OPENSSL req -config ca.cnf -nodes \ -keyout respkey.pem -out respreq.pem -newkey rsa:1024 # Sign using intermediate CA and responder extensions $OPENSSL x509 -req -in respreq.pem -CA intca.pem -CAkey intkey.pem -days 3600 \ -extfile ca.cnf -extensions ocsp_cert -CAcreateserial -out resp.pem # Example creating a PKCS#3 DH certificate. # First DH parameters [ -f dhp.pem ] || $OPENSSL genpkey -genparam -algorithm DH -pkeyopt dh_paramgen_prime_len:1024 -out dhp.pem # Now a DH private key $OPENSSL genpkey -paramfile dhp.pem -out dhskey.pem # Create DH public key file $OPENSSL pkey -in dhskey.pem -pubout -out dhspub.pem # Certificate request, key just reuses old one as it is ignored when the # request is signed. CN="Test Server DH Cert" $OPENSSL req -config ca.cnf -new \ -key skey.pem -out dhsreq.pem # Sign request: end entity DH extensions $OPENSSL x509 -req -in dhsreq.pem -CA root.pem -days 3600 \ -force_pubkey dhspub.pem \ -extfile ca.cnf -extensions dh_cert -CAcreateserial -out dhserver.pem # DH client certificate $OPENSSL genpkey -paramfile dhp.pem -out dhckey.pem $OPENSSL pkey -in dhckey.pem -pubout -out dhcpub.pem CN="Test Client DH Cert" $OPENSSL req -config ca.cnf -new \ -key skey.pem -out dhcreq.pem $OPENSSL x509 -req -in dhcreq.pem -CA root.pem -days 3600 \ -force_pubkey dhcpub.pem \ -extfile ca.cnf -extensions dh_cert -CAcreateserial -out dhclient.pem # Examples of CRL generation without the need to use 'ca' to issue # certificates. # Create zero length index file >index.txt # Create initial crl number file echo 01 >crlnum.txt # Add entries for server and client certs $OPENSSL ca -valid server.pem -keyfile root.pem -cert root.pem \ -config ca.cnf -md sha1 $OPENSSL ca -valid client.pem -keyfile root.pem -cert root.pem \ -config ca.cnf -md sha1 $OPENSSL ca -valid rev.pem -keyfile root.pem -cert root.pem \ -config ca.cnf -md sha1 # Generate a CRL. $OPENSSL ca -gencrl -keyfile root.pem -cert root.pem -config ca.cnf \ -md sha1 -crldays 1 -out crl1.pem # Revoke a certificate openssl ca -revoke rev.pem -crl_reason superseded \ -keyfile root.pem -cert root.pem -config ca.cnf -md sha1 # Generate another CRL $OPENSSL ca -gencrl -keyfile root.pem -cert root.pem -config ca.cnf \ -md sha1 -crldays 1 -out crl2.pem openssl-1.1.1f/demos/certs/ocspquery.sh000066400000000000000000000014361364063235100201670ustar00rootroot00000000000000# Example querying OpenSSL test responder. Assumes ocsprun.sh has been # called. OPENSSL=../../apps/openssl OPENSSL_CONF=../../apps/openssl.cnf export OPENSSL_CONF # Send responder queries for each certificate. echo "Requesting OCSP status for each certificate" $OPENSSL ocsp -issuer intca.pem -cert client.pem -CAfile root.pem \ -url http://127.0.0.1:8888/ $OPENSSL ocsp -issuer intca.pem -cert server.pem -CAfile root.pem \ -url http://127.0.0.1:8888/ $OPENSSL ocsp -issuer intca.pem -cert rev.pem -CAfile root.pem \ -url http://127.0.0.1:8888/ # One query for all three certificates. echo "Requesting OCSP status for three certificates in one request" $OPENSSL ocsp -issuer intca.pem \ -cert client.pem -cert server.pem -cert rev.pem \ -CAfile root.pem -url http://127.0.0.1:8888/ openssl-1.1.1f/demos/certs/ocsprun.sh000066400000000000000000000006101364063235100176170ustar00rootroot00000000000000# Example of running an querying OpenSSL test OCSP responder. # This assumes "mkcerts.sh" or similar has been run to set up the # necessary file structure. OPENSSL=../../apps/openssl OPENSSL_CONF=../../apps/openssl.cnf export OPENSSL_CONF # Run OCSP responder. PORT=8888 $OPENSSL ocsp -port $PORT -index index.txt -CA intca.pem \ -rsigner resp.pem -rkey respkey.pem -rother intca.pem $* openssl-1.1.1f/demos/cms/000077500000000000000000000000001364063235100152375ustar00rootroot00000000000000openssl-1.1.1f/demos/cms/cacert.pem000066400000000000000000000034111364063235100172020ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIFBjCCA26gAwIBAgIUM/WihZJZUTZvqoyNaUlp59DOaWYwDQYJKoZIhvcNAQEL BQAwVzELMAkGA1UEBhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwN T3BlblNTTCBHcm91cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQTAgFw0x ODA2MTQxMjQ2MjhaGA8yMTE4MDYxNDEyNDYyOFowVzELMAkGA1UEBhMCVUsxEjAQ BgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBHcm91cDEcMBoGA1UE AwwTVGVzdCBTL01JTUUgUm9vdCBDQTCCAaIwDQYJKoZIhvcNAQEBBQADggGPADCC AYoCggGBAMzxOVHZFVxN9XQIVW3y1bK5ir3jKpKkU6zKrw8MdRvm233eqWSOYJvs 3rgdT59iv+CaPcBT5offbP0eH43H96CubJji/vQLMUzc/cLrJuCbLHREbSCsFNpf lYw5mkT98dCFV66HuN6Nwqi5kW8TxGSXkD4OZqklbbicrXoXh5qhREID5hgbrijy BiIHyp6bDq5zUCcmHP/Gdw2aTMEQZNsdw4MavtB65vI7dYxo2zEzdmJ3NnjlG7qZ 6Od6V4IW8yRAK9GLj0TUCZl28pq6rNio+F5Lst3clX9PDxh7LphNrXXYiHjXp2Kn LZbOnz1SJSmCeisy/EFN6fRtwdwqcM1AcKNBU+UqFq0Mv0sgNdRwghYWGQht0mT9 +Pg5HxTzDlOOmBT1kAduxJNLiRQlgysPDN94Os0EpzJyA87Z6yJRGvYGZ5mrdfx2 8p6bHptf46h1WzCX4wDy2J86y+odgWMnSkmF9h8ySj66rgmLrz40n+mDm8bhUblK AV8IqN8WmQIDAQABo4HHMIHEMB0GA1UdDgQWBBSkmMaBYQPTEGcqe1maU2IDOMLQ ezCBlAYDVR0jBIGMMIGJgBSkmMaBYQPTEGcqe1maU2IDOMLQe6FbpFkwVzELMAkG A1UEBhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBH cm91cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQYIUM/WihZJZUTZvqoyN aUlp59DOaWYwDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAYEAqP1CQRGM roHvk6dhI4ElNae5seRdSQNTtwAhlP1RoSoFz8xybMgDksKE07t77gDsKvU2SuXV fdICqVpjpN9cRYKM6VmiREdU6OGsPQ74u4sOg4cT/tuou0RsD/uQaznb5NOvo2T0 8rmX0Ai3+lbEuMBCaGNU0KYJifYy4QrSqEapq4W3NbqH85msOiKHEDh1vz9IWz6z WKjdv9lst56XuLTZrJ/O0T0qD6aMXyqK6ZART/FELjDXc+9Ey4TH+msOEKq0uQWt y7Grfmz52dTnAjBw+6/ggE9sA8Wo6DhwbEUaOA9BB5YP+XWsIkUUbiVHU7D8TyiE KHt2DkaWvjl1/RdtzQUO/vGI4yuFTZfLf23KcwgtHJI3JxLNAMLM3I2jmoWhKm/d GkVYsGH1GWonv0UTv/TKlOXaTYWK9fQVoYkFc+FrwUd2lev5FizJNigL9qatGyRZ giJmWWlf0bMMIxwWZzQswxLyKdkNlvkKf9T6BjEmGLeOHZCn0x2sOyUi -----END CERTIFICATE----- openssl-1.1.1f/demos/cms/cakey.pem000066400000000000000000000046331364063235100170440ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIG5QIBAAKCAYEAzPE5UdkVXE31dAhVbfLVsrmKveMqkqRTrMqvDwx1G+bbfd6p ZI5gm+zeuB1Pn2K/4Jo9wFPmh99s/R4fjcf3oK5smOL+9AsxTNz9wusm4JssdERt IKwU2l+VjDmaRP3x0IVXroe43o3CqLmRbxPEZJeQPg5mqSVtuJyteheHmqFEQgPm GBuuKPIGIgfKnpsOrnNQJyYc/8Z3DZpMwRBk2x3Dgxq+0Hrm8jt1jGjbMTN2Ync2 eOUbupno53pXghbzJEAr0YuPRNQJmXbymrqs2Kj4Xkuy3dyVf08PGHsumE2tddiI eNenYqctls6fPVIlKYJ6KzL8QU3p9G3B3CpwzUBwo0FT5SoWrQy/SyA11HCCFhYZ CG3SZP34+DkfFPMOU46YFPWQB27Ek0uJFCWDKw8M33g6zQSnMnIDztnrIlEa9gZn mat1/Hbynpsem1/jqHVbMJfjAPLYnzrL6h2BYydKSYX2HzJKPrquCYuvPjSf6YOb xuFRuUoBXwio3xaZAgMBAAECggGBAJrqILzozke2ujpablEtBTITJHgC9lRgmMt9 bjR+4ysTJ4kOvZbANPDIbVZY+a3uVEIv9UujYBgG4Hi4w3tF074G+xnaRIQuzbZf OgaUABA527GLY74VtbGYHRAhHqbWGmrX0H6iIzE/kQw/MVr4YzTyiFsQQbPMEhNB g7RNgvh0vIb2MYC5s71JrS8eGqAnb0KY8daV7ce9upJyt2Acx1AGQJqipegrbtVd 8q4PONkJIIyvtmJONNaprq8DAJDaTNdcZu7f7mymF5UFpp4Lh6raAvOZAZjgkPYW PsX2uMAsYchXTmSDGOHNafqeyTS0UEaw6FRhpxzMoSxRXX4/RhjeShadYwHxbh7s UwFU7S9EWlj8CjgGs00KFM1eMV0sEYsL8sRf7ZiWM5XJsmXKbRZjA5V+7OoSGElB zJcERK6NFCISijApZlVveEVZS0qESivKd9bspOzbMdoJyjBW1LZdMH85YIwM8Dox VqGR0QD3UP8RpZBRwTiFenqOpwARnQKBwQD1NBGcTxLLUUluEBG/TD9KM5sCnkm8 cn5RomwTeBrUr9SXOJuUPa8RNLrAeosuWCrx9JkF25IBExQbbs1NRHuziOIOyI0+ hvqP85zJln7kUDtiDMFfUdS8Q6PF3b3wJl6cbipowWwsahvUSkx3W8UWrzZHsvrO LBtvEZdwetNWN50FK040uM6y/x71xfvUhlKBsuZBgDFU9aXJZAGpkCklZnByURN6 LZudDQETdYo7/X8qqPlcHwHStGj9YXg/e38CgcEA1fdVA6s+KlRUGRTUDaUFPDji MciTcvA3teXJWNAsFWd71oLT5eQNI50afF242ikTT6JuXFH0mMYKoVe/LFo7m2mf uLcW4yM/FiKTkhnBQGm7KNqyvXB0T0DWTDSeS7hTzD6KjuJPf7JVH5I4In8jSKJd 3mzTA9keIosnxjX7EOsZNQd0+MKaJYHnvJsxYaoT9FXoONuyzQu96TQ8Q+fkVHXh I/ENAw0qfoJ5mw5dQnU2UtjP6cSNVQ9Rsr48GNnnAoHBAJcI65AMZNc3yrMw0r2y iYl7IBAMz/5zx7shANE9OcmoRJqhE7PMCvneMOo+kVyKkmlW8KrbBKQEzG3ZYjwl 4sxDlHrmrZnGKrBgrkK9oIuhn/JVSQcdsJwGTeqjG0vBVqWkdhrwiWESOvIYkeEz dcLzScwAQtyb7ooLm+x8u5Bv0RhOBG4VJ7y5yKg6u1O9KTUarRnLjJd4eBYEs8Fu Oun+n2TK6+RmE2Q5jmAeFne9PYdZbb+Ame7fkYwBbcAsoQKBwQC1KHQSZyp7LGsH 0Vq5Mr77/i2FeQ1eg4SnvaZ8S8UHWla/iIVgX3XAcYO7SJ76F00CX8SQ5dLyhrr5 YBG8u6k8LHHPMzVtmqoPU7cePDAjGWIddQ1g15WihILsgqCD+8z3YPxvfa1RsOvh jyt4Ca0WEmLnr7v5xhp9pNRIPewUpvjwrR+cfyeEGjjat4tX5Wh/tzym51y7vvVM Pa3I0M3BtQyqIa2ip8MS2eWcIs1TN2qHOorOolwHaLEDZY38fIECgcAKns98A2G3 tLvZaDZlVsJWZsdSDUrFCKvx9QbTZHbyOL5JU/8TgLBgfOgV2yxLXn9Pq+0Quvb2 EjaFuA3GKOFi50WtfwR6Yo1DaFcx5n0bDShnaHOF+dUi0BVQd2V1DsqAwF5/Eh3A lX+XuWeSam4/91WhmNMCZpfYv0GErs4ZBHHsl54jmvrrjbhg/efUvpWKi/9vlKm+ +ITH+nG1xCnyEEVZ+vm9Qq57lCLBZGyGT4PetllpsRrGcdO4/gfK8lY= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/cms/cms_comp.c000066400000000000000000000025321364063235100172050ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME compress example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; /* * On OpenSSL 1.0.0+ only: * for streaming set CMS_STREAM */ int flags = CMS_STREAM; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Open content being compressed */ in = BIO_new_file("comp.txt", "r"); if (!in) goto err; /* compress content */ cms = CMS_compress(in, NID_zlib_compression, flags); if (!cms) goto err; out = BIO_new_file("smcomp.txt", "w"); if (!out) goto err; /* Write out S/MIME message */ if (!SMIME_write_CMS(out, cms, in, flags)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Compressing Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); BIO_free(in); BIO_free(out); return ret; } openssl-1.1.1f/demos/cms/cms_ddec.c000066400000000000000000000036361364063235100171540ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * S/MIME detached data decrypt example: rarely done but should the need * arise this is an example.... */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL, *dcont = NULL; X509 *rcert = NULL; EVP_PKEY *rkey = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in recipient certificate and private key */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; rcert = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); rkey = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); if (!rcert || !rkey) goto err; /* Open PEM file containing enveloped data */ in = BIO_new_file("smencr.pem", "r"); if (!in) goto err; /* Parse PEM content */ cms = PEM_read_bio_CMS(in, NULL, 0, NULL); if (!cms) goto err; /* Open file containing detached content */ dcont = BIO_new_file("smencr.out", "rb"); if (!in) goto err; out = BIO_new_file("encrout.txt", "w"); if (!out) goto err; /* Decrypt S/MIME message */ if (!CMS_decrypt(cms, rkey, rcert, dcont, out, 0)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Decrypting Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); X509_free(rcert); EVP_PKEY_free(rkey); BIO_free(in); BIO_free(out); BIO_free(tbio); BIO_free(dcont); return ret; } openssl-1.1.1f/demos/cms/cms_dec.c000066400000000000000000000032301364063235100167760ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME decryption example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *rcert = NULL; EVP_PKEY *rkey = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in recipient certificate and private key */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; rcert = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); rkey = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); if (!rcert || !rkey) goto err; /* Open S/MIME message to decrypt */ in = BIO_new_file("smencr.txt", "r"); if (!in) goto err; /* Parse message */ cms = SMIME_read_CMS(in, NULL); if (!cms) goto err; out = BIO_new_file("decout.txt", "w"); if (!out) goto err; /* Decrypt S/MIME message */ if (!CMS_decrypt(cms, rkey, rcert, NULL, out, 0)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Decrypting Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); X509_free(rcert); EVP_PKEY_free(rkey); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/cms/cms_denc.c000066400000000000000000000042461364063235100171640ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * S/MIME detached data encrypt example: rarely done but should the need * arise this is an example.... */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL, *dout = NULL; X509 *rcert = NULL; STACK_OF(X509) *recips = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; int flags = CMS_STREAM | CMS_DETACHED; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in recipient certificate */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; rcert = PEM_read_bio_X509(tbio, NULL, 0, NULL); if (!rcert) goto err; /* Create recipient STACK and add recipient cert to it */ recips = sk_X509_new_null(); if (!recips || !sk_X509_push(recips, rcert)) goto err; /* * sk_X509_pop_free will free up recipient STACK and its contents so set * rcert to NULL so it isn't freed up twice. */ rcert = NULL; /* Open content being encrypted */ in = BIO_new_file("encr.txt", "r"); dout = BIO_new_file("smencr.out", "wb"); if (!in) goto err; /* encrypt content */ cms = CMS_encrypt(recips, in, EVP_des_ede3_cbc(), flags); if (!cms) goto err; out = BIO_new_file("smencr.pem", "w"); if (!out) goto err; if (!CMS_final(cms, in, dout, flags)) goto err; /* Write out CMS structure without content */ if (!PEM_write_bio_CMS(out, cms)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Encrypting Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); X509_free(rcert); sk_X509_pop_free(recips, X509_free); BIO_free(in); BIO_free(out); BIO_free(dout); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/cms/cms_enc.c000066400000000000000000000040231364063235100170110ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME encrypt example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *rcert = NULL; STACK_OF(X509) *recips = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; /* * On OpenSSL 1.0.0 and later only: * for streaming set CMS_STREAM */ int flags = CMS_STREAM; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in recipient certificate */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; rcert = PEM_read_bio_X509(tbio, NULL, 0, NULL); if (!rcert) goto err; /* Create recipient STACK and add recipient cert to it */ recips = sk_X509_new_null(); if (!recips || !sk_X509_push(recips, rcert)) goto err; /* * sk_X509_pop_free will free up recipient STACK and its contents so set * rcert to NULL so it isn't freed up twice. */ rcert = NULL; /* Open content being encrypted */ in = BIO_new_file("encr.txt", "r"); if (!in) goto err; /* encrypt content */ cms = CMS_encrypt(recips, in, EVP_des_ede3_cbc(), flags); if (!cms) goto err; out = BIO_new_file("smencr.txt", "w"); if (!out) goto err; /* Write out S/MIME message */ if (!SMIME_write_CMS(out, cms, in, flags)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Encrypting Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); X509_free(rcert); sk_X509_pop_free(recips, X509_free); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/cms/cms_sign.c000066400000000000000000000036661364063235100172200ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME signing example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *scert = NULL; EVP_PKEY *skey = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; /* * For simple S/MIME signing use CMS_DETACHED. On OpenSSL 1.0.0 only: for * streaming detached set CMS_DETACHED|CMS_STREAM for streaming * non-detached set CMS_STREAM */ int flags = CMS_DETACHED | CMS_STREAM; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in signer certificate and private key */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; scert = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); skey = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); if (!scert || !skey) goto err; /* Open content being signed */ in = BIO_new_file("sign.txt", "r"); if (!in) goto err; /* Sign content */ cms = CMS_sign(scert, skey, NULL, in, flags); if (!cms) goto err; out = BIO_new_file("smout.txt", "w"); if (!out) goto err; if (!(flags & CMS_STREAM)) BIO_reset(in); /* Write out S/MIME message */ if (!SMIME_write_CMS(out, cms, in, flags)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Signing Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); X509_free(scert); EVP_PKEY_free(skey); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/cms/cms_sign2.c000066400000000000000000000041121364063235100172650ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* S/MIME signing example: 2 signers */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *scert = NULL, *scert2 = NULL; EVP_PKEY *skey = NULL, *skey2 = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; scert = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); skey = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); BIO_free(tbio); tbio = BIO_new_file("signer2.pem", "r"); if (!tbio) goto err; scert2 = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); skey2 = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); if (!scert2 || !skey2) goto err; in = BIO_new_file("sign.txt", "r"); if (!in) goto err; cms = CMS_sign(NULL, NULL, NULL, in, CMS_STREAM | CMS_PARTIAL); if (!cms) goto err; /* Add each signer in turn */ if (!CMS_add1_signer(cms, scert, skey, NULL, 0)) goto err; if (!CMS_add1_signer(cms, scert2, skey2, NULL, 0)) goto err; out = BIO_new_file("smout.txt", "w"); if (!out) goto err; /* NB: content included and finalized by SMIME_write_CMS */ if (!SMIME_write_CMS(out, cms, in, CMS_STREAM)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Signing Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); X509_free(scert); EVP_PKEY_free(skey); X509_free(scert2); EVP_PKEY_free(skey2); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/cms/cms_uncomp.c000066400000000000000000000023251364063235100175500ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME uncompression example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Open compressed content */ in = BIO_new_file("smcomp.txt", "r"); if (!in) goto err; /* Sign content */ cms = SMIME_read_CMS(in, NULL); if (!cms) goto err; out = BIO_new_file("smuncomp.txt", "w"); if (!out) goto err; /* Uncompress S/MIME message */ if (!CMS_uncompress(cms, out, NULL, 0)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Uncompressing Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); BIO_free(in); BIO_free(out); return ret; } openssl-1.1.1f/demos/cms/cms_ver.c000066400000000000000000000034351364063235100170460ustar00rootroot00000000000000/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME verification example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL, *cont = NULL; X509_STORE *st = NULL; X509 *cacert = NULL; CMS_ContentInfo *cms = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Set up trusted CA certificate store */ st = X509_STORE_new(); /* Read in CA certificate */ tbio = BIO_new_file("cacert.pem", "r"); if (!tbio) goto err; cacert = PEM_read_bio_X509(tbio, NULL, 0, NULL); if (!cacert) goto err; if (!X509_STORE_add_cert(st, cacert)) goto err; /* Open message being verified */ in = BIO_new_file("smout.txt", "r"); if (!in) goto err; /* parse message */ cms = SMIME_read_CMS(in, &cont); if (!cms) goto err; /* File to output verified content to */ out = BIO_new_file("smver.txt", "w"); if (!out) goto err; if (!CMS_verify(cms, NULL, st, cont, out, 0)) { fprintf(stderr, "Verification Failure\n"); goto err; } fprintf(stderr, "Verification Successful\n"); ret = 0; err: if (ret) { fprintf(stderr, "Error Verifying Data\n"); ERR_print_errors_fp(stderr); } CMS_ContentInfo_free(cms); X509_free(cacert); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/cms/comp.txt000066400000000000000000000010661364063235100167410ustar00rootroot00000000000000Content-type: text/plain Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed Some Text To be Compressed openssl-1.1.1f/demos/cms/encr.txt000066400000000000000000000001011364063235100167170ustar00rootroot00000000000000Content-type: text/plain Sample OpenSSL Data for CMS encryption openssl-1.1.1f/demos/cms/sign.txt000066400000000000000000000000721364063235100167370ustar00rootroot00000000000000Content-type: text/plain Test OpenSSL CMS Signed Content openssl-1.1.1f/demos/cms/signer.pem000066400000000000000000000061641364063235100172400ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIELDCCApSgAwIBAgIIcsOElVeHzfQwDQYJKoZIhvcNAQELBQAwVzELMAkGA1UE BhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBHcm91 cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQTAgFw0xODA2MTQxMjQ2Mjha GA8yMTE4MDYxNDEyNDYyOFowVjELMAkGA1UEBhMCVUsxJTAjBgNVBAMMHE9wZW5T U0wgdGVzdCBTL01JTUUgc2lnbmVyIDExIDAeBgkqhkiG9w0BCQEWEXRlc3QxQG9w ZW5zc2wub3JnMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1vvSgaL1 byi9AE8Ep3v7Yv36JxYywaZhUy8dEFRiYn6NsVhhNo6SK1Mp8daQ0MZoMzbT1aKp JTLTgDJZHit2t1d6l3aWJG+cbcLua+XKowaZjj6rirB390fuL4qt5PiAb571QFtu L8apcydwGEdkaPRuCnvctN8VcZPTKh+M8VEESyxk5K37QYKaAB6ItWR5KhjiAuDt zsJbjEtOvGtmu2FRCU47GzfkdjYo7tY38WTY+2WWh+idKErtmYSinmhE0H7+yoJB s1VCI+cq5tVW+oEO9HF4vEDEUykEFFPsCEkIWM+RjCgK8cRSCpg6VQr+ZTii6k7C m9CP81QhUoV3QwIDAQABo3sweTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIBDQQfFh1P cGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUg1DE7OaNqMQQ 8Z1bvjhnlisxfsMwHwYDVR0jBBgwFoAUpJjGgWED0xBnKntZmlNiAzjC0HswDQYJ KoZIhvcNAQELBQADggGBAGxAivCwPsAYmMZfVJTELWNNMBzKzmeRvrp6k/6S74Pw LDEhTnslCV4U1gTSd3nQ+LRm1fkzxLA12A/rlqN51P8B+hyVSMN9dj54YUcFd+KO XhkSDrSpph6hRqGy8zqELzlb1Q8yoIBclEmyv+CkXMrpnm+4JL4kzyj/iBRkZTDz ns15jJD9KHgrOnclaoDRkOT6lGbsd3j+aviKEj8ZILufSMw+W2YORy3nSAencjbO ezivVujqm+pjkfqdCS1HcFB7LhQEILfFqkssw8YmtJVrM9LF8VIcqueXbVZmeS/1 QV5B7OEmtsM+NkoLF5ldWdPQvmftbShh+AAlpcsmqiRefQgA3aQn6YOnOHnnQwgB oQRNjQXsjgxV4t2HFYpwkK41kx4HToVGciPNMkndzfY/GJmgXsXfB6/AfUfhLTDv tbws1MZhaCNOffw3/SVS2nLREMFCGn5uAgNkqssWqeWJu3910XF640tqPBj5YGFc fykwWNhG5xS04EHpztgKdQ== -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIIEpQIBAAKCAQEA1vvSgaL1byi9AE8Ep3v7Yv36JxYywaZhUy8dEFRiYn6NsVhh No6SK1Mp8daQ0MZoMzbT1aKpJTLTgDJZHit2t1d6l3aWJG+cbcLua+XKowaZjj6r irB390fuL4qt5PiAb571QFtuL8apcydwGEdkaPRuCnvctN8VcZPTKh+M8VEESyxk 5K37QYKaAB6ItWR5KhjiAuDtzsJbjEtOvGtmu2FRCU47GzfkdjYo7tY38WTY+2WW h+idKErtmYSinmhE0H7+yoJBs1VCI+cq5tVW+oEO9HF4vEDEUykEFFPsCEkIWM+R jCgK8cRSCpg6VQr+ZTii6k7Cm9CP81QhUoV3QwIDAQABAoIBAQC6LCWmIisNcmgK RmOvbszKc0sYYj7eOGl8EgbHR2xUA2hNNk4pYtnuLvzZ84hBZDCEeWyFS3HTRuql z/QhDl6mc1k0pXtsXkNHQlIamksbVvHPnzIKzrt1J5N7FEt3SERhZXTZoNQRB6di k7qdK+YmhdZtucnt0GrPisaJaf0yU/EjLuX+MU/0Xrc23lVhR3yqYhaOhWvrxTHM evykI0kOL+gU58eN2eWE4ELjS2z+njKDqcEyeIy00FdBAtCoKjMsWpRytKNmcFm9 LdtMmizskF8VS3+XsDbkseIODx1xJ65IFmHHMV2xLG5/+bQppkB8JuE3EDrtFiUJ lGdfmBlxAoGBAP3Asg0drdunv7imeEOGpyj5JwF1hCVQ71IBGdqTr3aPqOlDH/io up7t+VBuSLqj1P20HygNjow+ALw/Ko+a0icodg7QA2Co0/RiBwa+u2SgpYDqC9Kt KIdRcv+NXkhXF/DLIn0jJvI53OtKsbgTv/C+aCipblofnO9sF4AhShq1AoGBANjj Ou0czloNORbk3qAxLi4b5P/YOyZBJDa0zijFdD1jImfOeyNFXeg2ID+8ZjDkP/eP pLy/Gt/8bVb+O+9wMOho3kWKZBN3O2VsLJYakAehDsC5ax7i2HtEqg1L1krW2duS POiKg3qNjETM30zTA4pHwkNAETIktResze7SRm0XAoGABH7KaLMS5mZFXjcMwF19 TpuDVmJHkgWqB7DfTWD6ZcZLvr4irdwHWlNq7ELX5P6MAmaTerkqwk9C4hLYZSzf 9jOgS8jhlm/HOXgXGcZ9OV4jMHJ0/Sl2I1eNCvvtJKjuUqS2mrLpuLbPtBdhqJoo 91HYNIgz3ULcG921WN6+GlUCgYEA066T6LDgxgt52NpwXrEhfWdETmDg+ilCCxLU 0/5DwVZsUhy5Gmeti+Kn/w0GQFnGBP1xr7ZlqI9auDlSjhNV6L/RkNXNbyJEGm1F 5wrt4ERVfcx6vJ5y43zU7D1EXa7s2t0UDXKDeK2GZe//UZ/yKJh5BeIV5nblOMI0 DA+3JOkCgYEA80QGLjGlCvxKceVbuohbIZ1+/EoXPq993ER9S8D2MTGATsEcygtF rM8JcHTv75sjycqu68BAQr1Z5qwwrMyY0vWVEorKzvAXEWolC67asR4cDutOd+qy WlEIyojX45GwHCHpcbVRiGRWuj3kwkc+WzdgusBoAJrPCigES/Cr8uA= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/cms/signer2.pem000066400000000000000000000061601364063235100173160ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIELDCCApSgAwIBAgIIcsOElVeHzfUwDQYJKoZIhvcNAQELBQAwVzELMAkGA1UE BhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBHcm91 cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQTAgFw0xODA2MTQxMjQ2Mjha GA8yMTE4MDYxNDEyNDYyOFowVjELMAkGA1UEBhMCVUsxJTAjBgNVBAMMHE9wZW5T U0wgdGVzdCBTL01JTUUgc2lnbmVyIDIxIDAeBgkqhkiG9w0BCQEWEXRlc3QyQG9w ZW5zc2wub3JnMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1ledrM9R 3x3bZypZAEi00DJYAmLS5F6Gg3+xpjE745UWKrjDAY5KswavKKa3vZxoUz2omNSg 4nYfLSowq7AI3VnZ8LwNo8lAeo7AX9elrsmzQzhr2DCdCdbRhCWoiS/ba5tKIhlb gFnP+pB8jhC9qZuQJkpVaivywMW8rA9DRbeDcQjDKhUi0ukVDYHDd9+FtNM3H1t3 AUGWBecjWYa4hXC3CsH3+cFBZKjAepL74hqiEfsEyzKesft3NFd1AcVY9W5MRCK4 lUFiDbBtIgPkvPJeoEs/kFp3+OvJFDwi4K4Z6XzALyT0LXNx6w3kSfx0TLdNjXLD O9a2dzwhHhPtCQIDAQABo3sweTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIBDQQfFh1P cGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUYJEUXnMb/ux0 WrzSh+bnhpi6GS0wHwYDVR0jBBgwFoAUpJjGgWED0xBnKntZmlNiAzjC0HswDQYJ KoZIhvcNAQELBQADggGBAFbrwfsSciDFI97c7oqS8jtxOSa3c4B7xhmcgUkYCiaD 7mbZuqTUf4ltJJZXP/TJ44fhL0zVAvRXSXw1LE3YvLGOlBc6dM3D7DyL5pfUTUBY ICt+NLfG5iHtkiZPPSfK2t5f4UGFwU/ERT62sLu4keLI5igi9J2jKSykN3u5SQ3s Zsennow5zUsFkcz9hkB4RczlHRogA0SgVhELQbN1nYIqJJDRFZL+CmarDRTFMilk 7dXCacw6xt9vIc3ZXO+pu2g1ezgSPwOoUykQcL3UhAEIIyt+TRe3fafh5TXwd8tr FAecAuz5Mqsmek5nEW9ZeYmxNz5VFwc4F61y4xFj7lI0frLCCAu3gVoqiQrW+WwR e27z1Nm4uUcduFqj45Pu2eTyV3LZtLUbFvL5ZSPUCSk1wVmC2otX8ksFDDTO1rIy l5Qd1g1P8bLuj8NG98J2zVOabtaxYCAIBPZ3dUh2eNrPKoLAvrgKh1MH+K2Eh5Oy z1T4Eu+e5Kq/uQkZpI5QzA== -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIIEogIBAAKCAQEA1ledrM9R3x3bZypZAEi00DJYAmLS5F6Gg3+xpjE745UWKrjD AY5KswavKKa3vZxoUz2omNSg4nYfLSowq7AI3VnZ8LwNo8lAeo7AX9elrsmzQzhr 2DCdCdbRhCWoiS/ba5tKIhlbgFnP+pB8jhC9qZuQJkpVaivywMW8rA9DRbeDcQjD KhUi0ukVDYHDd9+FtNM3H1t3AUGWBecjWYa4hXC3CsH3+cFBZKjAepL74hqiEfsE yzKesft3NFd1AcVY9W5MRCK4lUFiDbBtIgPkvPJeoEs/kFp3+OvJFDwi4K4Z6XzA LyT0LXNx6w3kSfx0TLdNjXLDO9a2dzwhHhPtCQIDAQABAoIBAGMEGJfTMiwS+979 ph3GeJjRGO0JQAk1TYiDvcpbZiItJg9YSOV4GTP4u4PY+HqEPYFus2relu/mx2Iy 4kb9zCqNLmvSQ67M8pdrSJ093pEPJlvAPbmiQ3lfHmyghOnTDNb55tY3xphVZQmI I7HxM9ydO4skva6NXNgGwLDvYBFc6z6d95ai/WEFWHOt5Mt7OVOWAHQ0lAOofWLA 2BwKmrQnCwMvm1TMoKaAU/ngTToUGBMIN1HwRcY6qDraZte5o3EDRABHB78OHrSu I/Eoi//5C8A7iZ5Y189lMbahIN6xVMwHwwIqLptTV2GNZOKSiIXnM06vIf4CPZKl 3VlwBgECgYEA/BKnn23KtefA906QNkrIOXASLEE1T77NlTYIRDTsUoz6XTVSvOCI ARxdsoLwFko5ICMhti9S/1G/MYH0BoJN8rbzvjmZDfwF612p0AYALyBlRgW+ID9L 41CJQcLWxeiQd/GcrUZmudVNUGXa8nsNHmFleGLchXeqU7M6fljJOkECgYEA2a56 yvYQgMF/SIPkxU1+WcQC6+JGc+ax220/lysBsDb4SkXomfGtFWbenxwamuQu+n67 DJWi9oJIi9Vj4eKOXS6vjCAkYeLgCpK6S26frPtxJuZwl/lF7mFl8Z4ZnJeiFJ4h AXt5r9vqnOZtCnLqRRAlqF5OswWgv/mhJ6jpMMkCgYBMPaAxWlXLexMkOcDoiunQ ZZM5i2eCfSVVEgiiCJfJyBYZhv1FX2wDWf8E9RGEzGJG1BloLxwdWS5I3RNfvJ2y 4Z8LVAR09Fsd+zBXWNlJZ7T53tbIjhx33m4FU9b9+P9pJ8zJo9eCMX+253e3i3xG ShMUvGIShEUiF72DZXtHgQKBgDi867CfNmn5BW4nQqfSrQ5EsuY80lQ/WzhwX1TN luERUuI5GomVnqGncHtUXfLlawFLqwF6t0E9cB9SfXhRDv5mvsbtUc5Zzj+zQu+K ZAA4gaO8CLjz9jBOHr49kTtpootxM/Uo8+zMi3hd7yn8Def2b3pVKnorC10+eazW sAFRAoGAet6fQbQD+4vZ1oukZcZhmVlIWTSZJ1vAGCcT/3E40pqpPY+Ho56Lcwh0 9f4TAykuGwFgqvZvR8yD2gpuISYGYplWqa1N6qxMaiVzmY5q1XW+O74xRH5Kz5fr D+3j2x4EiyG7AYyZMOphDtBd/TSQQMYmGW6PiyM9ceIVnDK1Dd4= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/engines/000077500000000000000000000000001364063235100161055ustar00rootroot00000000000000openssl-1.1.1f/demos/engines/e_chil.txt000066400000000000000000000011741364063235100200740ustar00rootroot00000000000000HWCRHK_F_BIND_HELPER 110 HWCRHK_F_HWCRHK_CTRL 100 HWCRHK_F_HWCRHK_FINISH 101 HWCRHK_F_HWCRHK_GET_PASS 102 HWCRHK_F_HWCRHK_INIT 103 HWCRHK_F_HWCRHK_INSERT_CARD 104 HWCRHK_F_HWCRHK_LOAD_PRIVKEY 105 HWCRHK_F_HWCRHK_LOAD_PUBKEY 106 HWCRHK_F_HWCRHK_MOD_EXP 107 HWCRHK_F_HWCRHK_MUTEX_INIT 111 HWCRHK_F_HWCRHK_RAND_BYTES 108 HWCRHK_F_HWCRHK_RSA_MOD_EXP 109 openssl-1.1.1f/demos/evp/000077500000000000000000000000001364063235100152475ustar00rootroot00000000000000openssl-1.1.1f/demos/evp/Makefile000066400000000000000000000010241364063235100167040ustar00rootroot00000000000000# Quick instruction: # To build against an OpenSSL built in the source tree, do this: # # make OPENSSL_INCS_LOCATION=-I../../include OPENSSL_LIBS_LOCATION=-L../.. # # To run the demos when linked with a shared library (default): # # LD_LIBRARY_PATH=../.. ./aesccm # LD_LIBRARY_PATH=../.. ./aesgcm CFLAGS = $(OPENSSL_INCS_LOCATION) LDFLAGS = $(OPENSSL_LIBS_LOCATION) -lssl -lcrypto all: aesccm aesgcm aesccm: aesccm.o aesgcm: aesgcm.o aesccm aesgcm: $(CC) $(CFLAGS) -o $@ $< $(LDFLAGS) clean: $(RM) aesccm aesgcm *.o openssl-1.1.1f/demos/evp/aesccm.c000066400000000000000000000110061364063235100166440ustar00rootroot00000000000000/* * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Simple AES CCM test program, uses the same NIST data used for the FIPS * self test but uses the application level EVP APIs. */ #include #include #include /* AES-CCM test data from NIST public test vectors */ static const unsigned char ccm_key[] = { 0xce, 0xb0, 0x09, 0xae, 0xa4, 0x45, 0x44, 0x51, 0xfe, 0xad, 0xf0, 0xe6, 0xb3, 0x6f, 0x45, 0x55, 0x5d, 0xd0, 0x47, 0x23, 0xba, 0xa4, 0x48, 0xe8 }; static const unsigned char ccm_nonce[] = { 0x76, 0x40, 0x43, 0xc4, 0x94, 0x60, 0xb7 }; static const unsigned char ccm_adata[] = { 0x6e, 0x80, 0xdd, 0x7f, 0x1b, 0xad, 0xf3, 0xa1, 0xc9, 0xab, 0x25, 0xc7, 0x5f, 0x10, 0xbd, 0xe7, 0x8c, 0x23, 0xfa, 0x0e, 0xb8, 0xf9, 0xaa, 0xa5, 0x3a, 0xde, 0xfb, 0xf4, 0xcb, 0xf7, 0x8f, 0xe4 }; static const unsigned char ccm_pt[] = { 0xc8, 0xd2, 0x75, 0xf9, 0x19, 0xe1, 0x7d, 0x7f, 0xe6, 0x9c, 0x2a, 0x1f, 0x58, 0x93, 0x9d, 0xfe, 0x4d, 0x40, 0x37, 0x91, 0xb5, 0xdf, 0x13, 0x10 }; static const unsigned char ccm_ct[] = { 0x8a, 0x0f, 0x3d, 0x82, 0x29, 0xe4, 0x8e, 0x74, 0x87, 0xfd, 0x95, 0xa2, 0x8a, 0xd3, 0x92, 0xc8, 0x0b, 0x36, 0x81, 0xd4, 0xfb, 0xc7, 0xbb, 0xfd }; static const unsigned char ccm_tag[] = { 0x2d, 0xd6, 0xef, 0x1c, 0x45, 0xd4, 0xcc, 0xb7, 0x23, 0xdc, 0x07, 0x44, 0x14, 0xdb, 0x50, 0x6d }; void aes_ccm_encrypt(void) { EVP_CIPHER_CTX *ctx; int outlen, tmplen; unsigned char outbuf[1024]; printf("AES CCM Encrypt:\n"); printf("Plaintext:\n"); BIO_dump_fp(stdout, ccm_pt, sizeof(ccm_pt)); ctx = EVP_CIPHER_CTX_new(); /* Set cipher type and mode */ EVP_EncryptInit_ex(ctx, EVP_aes_192_ccm(), NULL, NULL, NULL); /* Set nonce length if default 96 bits is not appropriate */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, sizeof(ccm_nonce), NULL); /* Set tag length */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(ccm_tag), NULL); /* Initialise key and IV */ EVP_EncryptInit_ex(ctx, NULL, NULL, ccm_key, ccm_nonce); /* Set plaintext length: only needed if AAD is used */ EVP_EncryptUpdate(ctx, NULL, &outlen, NULL, sizeof(ccm_pt)); /* Zero or one call to specify any AAD */ EVP_EncryptUpdate(ctx, NULL, &outlen, ccm_adata, sizeof(ccm_adata)); /* Encrypt plaintext: can only be called once */ EVP_EncryptUpdate(ctx, outbuf, &outlen, ccm_pt, sizeof(ccm_pt)); /* Output encrypted block */ printf("Ciphertext:\n"); BIO_dump_fp(stdout, outbuf, outlen); /* Finalise: note get no output for CCM */ EVP_EncryptFinal_ex(ctx, outbuf, &outlen); /* Get tag */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, outbuf); /* Output tag */ printf("Tag:\n"); BIO_dump_fp(stdout, outbuf, 16); EVP_CIPHER_CTX_free(ctx); } void aes_ccm_decrypt(void) { EVP_CIPHER_CTX *ctx; int outlen, tmplen, rv; unsigned char outbuf[1024]; printf("AES CCM Derypt:\n"); printf("Ciphertext:\n"); BIO_dump_fp(stdout, ccm_ct, sizeof(ccm_ct)); ctx = EVP_CIPHER_CTX_new(); /* Select cipher */ EVP_DecryptInit_ex(ctx, EVP_aes_192_ccm(), NULL, NULL, NULL); /* Set nonce length, omit for 96 bits */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, sizeof(ccm_nonce), NULL); /* Set expected tag value */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(ccm_tag), (void *)ccm_tag); /* Specify key and IV */ EVP_DecryptInit_ex(ctx, NULL, NULL, ccm_key, ccm_nonce); /* Set ciphertext length: only needed if we have AAD */ EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, sizeof(ccm_ct)); /* Zero or one call to specify any AAD */ EVP_DecryptUpdate(ctx, NULL, &outlen, ccm_adata, sizeof(ccm_adata)); /* Decrypt plaintext, verify tag: can only be called once */ rv = EVP_DecryptUpdate(ctx, outbuf, &outlen, ccm_ct, sizeof(ccm_ct)); /* Output decrypted block: if tag verify failed we get nothing */ if (rv > 0) { printf("Plaintext:\n"); BIO_dump_fp(stdout, outbuf, outlen); } else printf("Plaintext not available: tag verify failed.\n"); EVP_CIPHER_CTX_free(ctx); } int main(int argc, char **argv) { aes_ccm_encrypt(); aes_ccm_decrypt(); } openssl-1.1.1f/demos/evp/aesgcm.c000066400000000000000000000101141364063235100166470ustar00rootroot00000000000000/* * Copyright 2012-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Simple AES GCM test program, uses the same NIST data used for the FIPS * self test but uses the application level EVP APIs. */ #include #include #include /* AES-GCM test data from NIST public test vectors */ static const unsigned char gcm_key[] = { 0xee, 0xbc, 0x1f, 0x57, 0x48, 0x7f, 0x51, 0x92, 0x1c, 0x04, 0x65, 0x66, 0x5f, 0x8a, 0xe6, 0xd1, 0x65, 0x8b, 0xb2, 0x6d, 0xe6, 0xf8, 0xa0, 0x69, 0xa3, 0x52, 0x02, 0x93, 0xa5, 0x72, 0x07, 0x8f }; static const unsigned char gcm_iv[] = { 0x99, 0xaa, 0x3e, 0x68, 0xed, 0x81, 0x73, 0xa0, 0xee, 0xd0, 0x66, 0x84 }; static const unsigned char gcm_pt[] = { 0xf5, 0x6e, 0x87, 0x05, 0x5b, 0xc3, 0x2d, 0x0e, 0xeb, 0x31, 0xb2, 0xea, 0xcc, 0x2b, 0xf2, 0xa5 }; static const unsigned char gcm_aad[] = { 0x4d, 0x23, 0xc3, 0xce, 0xc3, 0x34, 0xb4, 0x9b, 0xdb, 0x37, 0x0c, 0x43, 0x7f, 0xec, 0x78, 0xde }; static const unsigned char gcm_ct[] = { 0xf7, 0x26, 0x44, 0x13, 0xa8, 0x4c, 0x0e, 0x7c, 0xd5, 0x36, 0x86, 0x7e, 0xb9, 0xf2, 0x17, 0x36 }; static const unsigned char gcm_tag[] = { 0x67, 0xba, 0x05, 0x10, 0x26, 0x2a, 0xe4, 0x87, 0xd7, 0x37, 0xee, 0x62, 0x98, 0xf7, 0x7e, 0x0c }; void aes_gcm_encrypt(void) { EVP_CIPHER_CTX *ctx; int outlen, tmplen; unsigned char outbuf[1024]; printf("AES GCM Encrypt:\n"); printf("Plaintext:\n"); BIO_dump_fp(stdout, gcm_pt, sizeof(gcm_pt)); ctx = EVP_CIPHER_CTX_new(); /* Set cipher type and mode */ EVP_EncryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL); /* Set IV length if default 96 bits is not appropriate */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, sizeof(gcm_iv), NULL); /* Initialise key and IV */ EVP_EncryptInit_ex(ctx, NULL, NULL, gcm_key, gcm_iv); /* Zero or more calls to specify any AAD */ EVP_EncryptUpdate(ctx, NULL, &outlen, gcm_aad, sizeof(gcm_aad)); /* Encrypt plaintext */ EVP_EncryptUpdate(ctx, outbuf, &outlen, gcm_pt, sizeof(gcm_pt)); /* Output encrypted block */ printf("Ciphertext:\n"); BIO_dump_fp(stdout, outbuf, outlen); /* Finalise: note get no output for GCM */ EVP_EncryptFinal_ex(ctx, outbuf, &outlen); /* Get tag */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, outbuf); /* Output tag */ printf("Tag:\n"); BIO_dump_fp(stdout, outbuf, 16); EVP_CIPHER_CTX_free(ctx); } void aes_gcm_decrypt(void) { EVP_CIPHER_CTX *ctx; int outlen, tmplen, rv; unsigned char outbuf[1024]; printf("AES GCM Decrypt:\n"); printf("Ciphertext:\n"); BIO_dump_fp(stdout, gcm_ct, sizeof(gcm_ct)); ctx = EVP_CIPHER_CTX_new(); /* Select cipher */ EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL); /* Set IV length, omit for 96 bits */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, sizeof(gcm_iv), NULL); /* Specify key and IV */ EVP_DecryptInit_ex(ctx, NULL, NULL, gcm_key, gcm_iv); /* Zero or more calls to specify any AAD */ EVP_DecryptUpdate(ctx, NULL, &outlen, gcm_aad, sizeof(gcm_aad)); /* Decrypt plaintext */ EVP_DecryptUpdate(ctx, outbuf, &outlen, gcm_ct, sizeof(gcm_ct)); /* Output decrypted block */ printf("Plaintext:\n"); BIO_dump_fp(stdout, outbuf, outlen); /* Set expected tag value. */ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(gcm_tag), (void *)gcm_tag); /* Finalise: note get no output for GCM */ rv = EVP_DecryptFinal_ex(ctx, outbuf, &outlen); /* * Print out return value. If this is not successful authentication * failed and plaintext is not trustworthy. */ printf("Tag Verify %s\n", rv > 0 ? "Successful!" : "Failed!"); EVP_CIPHER_CTX_free(ctx); } int main(int argc, char **argv) { aes_gcm_encrypt(); aes_gcm_decrypt(); } openssl-1.1.1f/demos/pkcs12/000077500000000000000000000000001364063235100155605ustar00rootroot00000000000000openssl-1.1.1f/demos/pkcs12/pkread.c000066400000000000000000000057741364063235100172070ustar00rootroot00000000000000/* * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include /* Simple PKCS#12 file reader */ static char *find_friendly_name(PKCS12 *p12) { STACK_OF(PKCS7) *safes; int n, m; char *name = NULL; PKCS7 *safe; STACK_OF(PKCS12_SAFEBAG) *bags; PKCS12_SAFEBAG *bag; if ((safes = PKCS12_unpack_authsafes(p12)) == NULL) return NULL; for (n = 0; n < sk_PKCS7_num(safes) && name == NULL; n++) { safe = sk_PKCS7_value(safes, n); if (OBJ_obj2nid(safe->type) != NID_pkcs7_data || (bags = PKCS12_unpack_p7data(safe)) == NULL) continue; for (m = 0; m < sk_PKCS12_SAFEBAG_num(bags) && name == NULL; m++) { bag = sk_PKCS12_SAFEBAG_value(bags, m); name = PKCS12_get_friendlyname(bag); } sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free); } sk_PKCS7_pop_free(safes, PKCS7_free); return name; } int main(int argc, char **argv) { FILE *fp; EVP_PKEY *pkey = NULL; X509 *cert = NULL; STACK_OF(X509) *ca = NULL; PKCS12 *p12 = NULL; char *name = NULL; int i, ret = EXIT_FAILURE; if (argc != 4) { fprintf(stderr, "Usage: pkread p12file password opfile\n"); exit(EXIT_FAILURE); } if ((fp = fopen(argv[1], "rb")) == NULL) { fprintf(stderr, "Error opening file %s\n", argv[1]); exit(EXIT_FAILURE); } p12 = d2i_PKCS12_fp(fp, NULL); fclose(fp); if (p12 == NULL) { fprintf(stderr, "Error reading PKCS#12 file\n"); ERR_print_errors_fp(stderr); goto err; } if (!PKCS12_parse(p12, argv[2], &pkey, &cert, &ca)) { fprintf(stderr, "Error parsing PKCS#12 file\n"); ERR_print_errors_fp(stderr); goto err; } name = find_friendly_name(p12); PKCS12_free(p12); if ((fp = fopen(argv[3], "w")) == NULL) { fprintf(stderr, "Error opening file %s\n", argv[1]); goto err; } if (name != NULL) fprintf(fp, "***Friendly Name***\n%s\n", name); if (pkey != NULL) { fprintf(fp, "***Private Key***\n"); PEM_write_PrivateKey(fp, pkey, NULL, NULL, 0, NULL, NULL); } if (cert != NULL) { fprintf(fp, "***User Certificate***\n"); PEM_write_X509_AUX(fp, cert); } if (ca != NULL && sk_X509_num(ca) > 0) { fprintf(fp, "***Other Certificates***\n"); for (i = 0; i < sk_X509_num(ca); i++) PEM_write_X509_AUX(fp, sk_X509_value(ca, i)); } fclose(fp); ret = EXIT_SUCCESS; err: OPENSSL_free(name); X509_free(cert); EVP_PKEY_free(pkey); sk_X509_pop_free(ca, X509_free); return ret; } openssl-1.1.1f/demos/pkcs12/pkwrite.c000066400000000000000000000027341364063235100174170ustar00rootroot00000000000000/* * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include /* Simple PKCS#12 file creator */ int main(int argc, char **argv) { FILE *fp; EVP_PKEY *pkey; X509 *cert; PKCS12 *p12; if (argc != 5) { fprintf(stderr, "Usage: pkwrite infile password name p12file\n"); exit(1); } OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); if ((fp = fopen(argv[1], "r")) == NULL) { fprintf(stderr, "Error opening file %s\n", argv[1]); exit(1); } cert = PEM_read_X509(fp, NULL, NULL, NULL); rewind(fp); pkey = PEM_read_PrivateKey(fp, NULL, NULL, NULL); fclose(fp); p12 = PKCS12_create(argv[2], argv[3], pkey, cert, NULL, 0, 0, 0, 0, 0); if (!p12) { fprintf(stderr, "Error creating PKCS#12 structure\n"); ERR_print_errors_fp(stderr); exit(1); } if ((fp = fopen(argv[4], "wb")) == NULL) { fprintf(stderr, "Error opening file %s\n", argv[1]); ERR_print_errors_fp(stderr); exit(1); } i2d_PKCS12_fp(fp, p12); PKCS12_free(p12); fclose(fp); return 0; } openssl-1.1.1f/demos/smime/000077500000000000000000000000001364063235100155675ustar00rootroot00000000000000openssl-1.1.1f/demos/smime/cacert.pem000066400000000000000000000034111364063235100175320ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIFBjCCA26gAwIBAgIUM/WihZJZUTZvqoyNaUlp59DOaWYwDQYJKoZIhvcNAQEL BQAwVzELMAkGA1UEBhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwN T3BlblNTTCBHcm91cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQTAgFw0x ODA2MTQxMjQ2MjhaGA8yMTE4MDYxNDEyNDYyOFowVzELMAkGA1UEBhMCVUsxEjAQ BgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBHcm91cDEcMBoGA1UE AwwTVGVzdCBTL01JTUUgUm9vdCBDQTCCAaIwDQYJKoZIhvcNAQEBBQADggGPADCC AYoCggGBAMzxOVHZFVxN9XQIVW3y1bK5ir3jKpKkU6zKrw8MdRvm233eqWSOYJvs 3rgdT59iv+CaPcBT5offbP0eH43H96CubJji/vQLMUzc/cLrJuCbLHREbSCsFNpf lYw5mkT98dCFV66HuN6Nwqi5kW8TxGSXkD4OZqklbbicrXoXh5qhREID5hgbrijy BiIHyp6bDq5zUCcmHP/Gdw2aTMEQZNsdw4MavtB65vI7dYxo2zEzdmJ3NnjlG7qZ 6Od6V4IW8yRAK9GLj0TUCZl28pq6rNio+F5Lst3clX9PDxh7LphNrXXYiHjXp2Kn LZbOnz1SJSmCeisy/EFN6fRtwdwqcM1AcKNBU+UqFq0Mv0sgNdRwghYWGQht0mT9 +Pg5HxTzDlOOmBT1kAduxJNLiRQlgysPDN94Os0EpzJyA87Z6yJRGvYGZ5mrdfx2 8p6bHptf46h1WzCX4wDy2J86y+odgWMnSkmF9h8ySj66rgmLrz40n+mDm8bhUblK AV8IqN8WmQIDAQABo4HHMIHEMB0GA1UdDgQWBBSkmMaBYQPTEGcqe1maU2IDOMLQ ezCBlAYDVR0jBIGMMIGJgBSkmMaBYQPTEGcqe1maU2IDOMLQe6FbpFkwVzELMAkG A1UEBhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBH cm91cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQYIUM/WihZJZUTZvqoyN aUlp59DOaWYwDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAYEAqP1CQRGM roHvk6dhI4ElNae5seRdSQNTtwAhlP1RoSoFz8xybMgDksKE07t77gDsKvU2SuXV fdICqVpjpN9cRYKM6VmiREdU6OGsPQ74u4sOg4cT/tuou0RsD/uQaznb5NOvo2T0 8rmX0Ai3+lbEuMBCaGNU0KYJifYy4QrSqEapq4W3NbqH85msOiKHEDh1vz9IWz6z WKjdv9lst56XuLTZrJ/O0T0qD6aMXyqK6ZART/FELjDXc+9Ey4TH+msOEKq0uQWt y7Grfmz52dTnAjBw+6/ggE9sA8Wo6DhwbEUaOA9BB5YP+XWsIkUUbiVHU7D8TyiE KHt2DkaWvjl1/RdtzQUO/vGI4yuFTZfLf23KcwgtHJI3JxLNAMLM3I2jmoWhKm/d GkVYsGH1GWonv0UTv/TKlOXaTYWK9fQVoYkFc+FrwUd2lev5FizJNigL9qatGyRZ giJmWWlf0bMMIxwWZzQswxLyKdkNlvkKf9T6BjEmGLeOHZCn0x2sOyUi -----END CERTIFICATE----- openssl-1.1.1f/demos/smime/cakey.pem000066400000000000000000000046331364063235100173740ustar00rootroot00000000000000-----BEGIN RSA PRIVATE KEY----- MIIG5QIBAAKCAYEAzPE5UdkVXE31dAhVbfLVsrmKveMqkqRTrMqvDwx1G+bbfd6p ZI5gm+zeuB1Pn2K/4Jo9wFPmh99s/R4fjcf3oK5smOL+9AsxTNz9wusm4JssdERt IKwU2l+VjDmaRP3x0IVXroe43o3CqLmRbxPEZJeQPg5mqSVtuJyteheHmqFEQgPm GBuuKPIGIgfKnpsOrnNQJyYc/8Z3DZpMwRBk2x3Dgxq+0Hrm8jt1jGjbMTN2Ync2 eOUbupno53pXghbzJEAr0YuPRNQJmXbymrqs2Kj4Xkuy3dyVf08PGHsumE2tddiI eNenYqctls6fPVIlKYJ6KzL8QU3p9G3B3CpwzUBwo0FT5SoWrQy/SyA11HCCFhYZ CG3SZP34+DkfFPMOU46YFPWQB27Ek0uJFCWDKw8M33g6zQSnMnIDztnrIlEa9gZn mat1/Hbynpsem1/jqHVbMJfjAPLYnzrL6h2BYydKSYX2HzJKPrquCYuvPjSf6YOb xuFRuUoBXwio3xaZAgMBAAECggGBAJrqILzozke2ujpablEtBTITJHgC9lRgmMt9 bjR+4ysTJ4kOvZbANPDIbVZY+a3uVEIv9UujYBgG4Hi4w3tF074G+xnaRIQuzbZf OgaUABA527GLY74VtbGYHRAhHqbWGmrX0H6iIzE/kQw/MVr4YzTyiFsQQbPMEhNB g7RNgvh0vIb2MYC5s71JrS8eGqAnb0KY8daV7ce9upJyt2Acx1AGQJqipegrbtVd 8q4PONkJIIyvtmJONNaprq8DAJDaTNdcZu7f7mymF5UFpp4Lh6raAvOZAZjgkPYW PsX2uMAsYchXTmSDGOHNafqeyTS0UEaw6FRhpxzMoSxRXX4/RhjeShadYwHxbh7s UwFU7S9EWlj8CjgGs00KFM1eMV0sEYsL8sRf7ZiWM5XJsmXKbRZjA5V+7OoSGElB zJcERK6NFCISijApZlVveEVZS0qESivKd9bspOzbMdoJyjBW1LZdMH85YIwM8Dox VqGR0QD3UP8RpZBRwTiFenqOpwARnQKBwQD1NBGcTxLLUUluEBG/TD9KM5sCnkm8 cn5RomwTeBrUr9SXOJuUPa8RNLrAeosuWCrx9JkF25IBExQbbs1NRHuziOIOyI0+ hvqP85zJln7kUDtiDMFfUdS8Q6PF3b3wJl6cbipowWwsahvUSkx3W8UWrzZHsvrO LBtvEZdwetNWN50FK040uM6y/x71xfvUhlKBsuZBgDFU9aXJZAGpkCklZnByURN6 LZudDQETdYo7/X8qqPlcHwHStGj9YXg/e38CgcEA1fdVA6s+KlRUGRTUDaUFPDji MciTcvA3teXJWNAsFWd71oLT5eQNI50afF242ikTT6JuXFH0mMYKoVe/LFo7m2mf uLcW4yM/FiKTkhnBQGm7KNqyvXB0T0DWTDSeS7hTzD6KjuJPf7JVH5I4In8jSKJd 3mzTA9keIosnxjX7EOsZNQd0+MKaJYHnvJsxYaoT9FXoONuyzQu96TQ8Q+fkVHXh I/ENAw0qfoJ5mw5dQnU2UtjP6cSNVQ9Rsr48GNnnAoHBAJcI65AMZNc3yrMw0r2y iYl7IBAMz/5zx7shANE9OcmoRJqhE7PMCvneMOo+kVyKkmlW8KrbBKQEzG3ZYjwl 4sxDlHrmrZnGKrBgrkK9oIuhn/JVSQcdsJwGTeqjG0vBVqWkdhrwiWESOvIYkeEz dcLzScwAQtyb7ooLm+x8u5Bv0RhOBG4VJ7y5yKg6u1O9KTUarRnLjJd4eBYEs8Fu Oun+n2TK6+RmE2Q5jmAeFne9PYdZbb+Ame7fkYwBbcAsoQKBwQC1KHQSZyp7LGsH 0Vq5Mr77/i2FeQ1eg4SnvaZ8S8UHWla/iIVgX3XAcYO7SJ76F00CX8SQ5dLyhrr5 YBG8u6k8LHHPMzVtmqoPU7cePDAjGWIddQ1g15WihILsgqCD+8z3YPxvfa1RsOvh jyt4Ca0WEmLnr7v5xhp9pNRIPewUpvjwrR+cfyeEGjjat4tX5Wh/tzym51y7vvVM Pa3I0M3BtQyqIa2ip8MS2eWcIs1TN2qHOorOolwHaLEDZY38fIECgcAKns98A2G3 tLvZaDZlVsJWZsdSDUrFCKvx9QbTZHbyOL5JU/8TgLBgfOgV2yxLXn9Pq+0Quvb2 EjaFuA3GKOFi50WtfwR6Yo1DaFcx5n0bDShnaHOF+dUi0BVQd2V1DsqAwF5/Eh3A lX+XuWeSam4/91WhmNMCZpfYv0GErs4ZBHHsl54jmvrrjbhg/efUvpWKi/9vlKm+ +ITH+nG1xCnyEEVZ+vm9Qq57lCLBZGyGT4PetllpsRrGcdO4/gfK8lY= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/smime/encr.txt000066400000000000000000000001041364063235100172520ustar00rootroot00000000000000Content-type: text/plain Sample OpenSSL Data for PKCS#7 encryption openssl-1.1.1f/demos/smime/sign.txt000066400000000000000000000000661364063235100172720ustar00rootroot00000000000000Content-type: text/plain Test OpenSSL Signed Content openssl-1.1.1f/demos/smime/signer.pem000066400000000000000000000061641364063235100175700ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIELDCCApSgAwIBAgIIcsOElVeHzfQwDQYJKoZIhvcNAQELBQAwVzELMAkGA1UE BhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBHcm91 cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQTAgFw0xODA2MTQxMjQ2Mjha GA8yMTE4MDYxNDEyNDYyOFowVjELMAkGA1UEBhMCVUsxJTAjBgNVBAMMHE9wZW5T U0wgdGVzdCBTL01JTUUgc2lnbmVyIDExIDAeBgkqhkiG9w0BCQEWEXRlc3QxQG9w ZW5zc2wub3JnMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1vvSgaL1 byi9AE8Ep3v7Yv36JxYywaZhUy8dEFRiYn6NsVhhNo6SK1Mp8daQ0MZoMzbT1aKp JTLTgDJZHit2t1d6l3aWJG+cbcLua+XKowaZjj6rirB390fuL4qt5PiAb571QFtu L8apcydwGEdkaPRuCnvctN8VcZPTKh+M8VEESyxk5K37QYKaAB6ItWR5KhjiAuDt zsJbjEtOvGtmu2FRCU47GzfkdjYo7tY38WTY+2WWh+idKErtmYSinmhE0H7+yoJB s1VCI+cq5tVW+oEO9HF4vEDEUykEFFPsCEkIWM+RjCgK8cRSCpg6VQr+ZTii6k7C m9CP81QhUoV3QwIDAQABo3sweTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIBDQQfFh1P cGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUg1DE7OaNqMQQ 8Z1bvjhnlisxfsMwHwYDVR0jBBgwFoAUpJjGgWED0xBnKntZmlNiAzjC0HswDQYJ KoZIhvcNAQELBQADggGBAGxAivCwPsAYmMZfVJTELWNNMBzKzmeRvrp6k/6S74Pw LDEhTnslCV4U1gTSd3nQ+LRm1fkzxLA12A/rlqN51P8B+hyVSMN9dj54YUcFd+KO XhkSDrSpph6hRqGy8zqELzlb1Q8yoIBclEmyv+CkXMrpnm+4JL4kzyj/iBRkZTDz ns15jJD9KHgrOnclaoDRkOT6lGbsd3j+aviKEj8ZILufSMw+W2YORy3nSAencjbO ezivVujqm+pjkfqdCS1HcFB7LhQEILfFqkssw8YmtJVrM9LF8VIcqueXbVZmeS/1 QV5B7OEmtsM+NkoLF5ldWdPQvmftbShh+AAlpcsmqiRefQgA3aQn6YOnOHnnQwgB oQRNjQXsjgxV4t2HFYpwkK41kx4HToVGciPNMkndzfY/GJmgXsXfB6/AfUfhLTDv tbws1MZhaCNOffw3/SVS2nLREMFCGn5uAgNkqssWqeWJu3910XF640tqPBj5YGFc fykwWNhG5xS04EHpztgKdQ== -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIIEpQIBAAKCAQEA1vvSgaL1byi9AE8Ep3v7Yv36JxYywaZhUy8dEFRiYn6NsVhh No6SK1Mp8daQ0MZoMzbT1aKpJTLTgDJZHit2t1d6l3aWJG+cbcLua+XKowaZjj6r irB390fuL4qt5PiAb571QFtuL8apcydwGEdkaPRuCnvctN8VcZPTKh+M8VEESyxk 5K37QYKaAB6ItWR5KhjiAuDtzsJbjEtOvGtmu2FRCU47GzfkdjYo7tY38WTY+2WW h+idKErtmYSinmhE0H7+yoJBs1VCI+cq5tVW+oEO9HF4vEDEUykEFFPsCEkIWM+R jCgK8cRSCpg6VQr+ZTii6k7Cm9CP81QhUoV3QwIDAQABAoIBAQC6LCWmIisNcmgK RmOvbszKc0sYYj7eOGl8EgbHR2xUA2hNNk4pYtnuLvzZ84hBZDCEeWyFS3HTRuql z/QhDl6mc1k0pXtsXkNHQlIamksbVvHPnzIKzrt1J5N7FEt3SERhZXTZoNQRB6di k7qdK+YmhdZtucnt0GrPisaJaf0yU/EjLuX+MU/0Xrc23lVhR3yqYhaOhWvrxTHM evykI0kOL+gU58eN2eWE4ELjS2z+njKDqcEyeIy00FdBAtCoKjMsWpRytKNmcFm9 LdtMmizskF8VS3+XsDbkseIODx1xJ65IFmHHMV2xLG5/+bQppkB8JuE3EDrtFiUJ lGdfmBlxAoGBAP3Asg0drdunv7imeEOGpyj5JwF1hCVQ71IBGdqTr3aPqOlDH/io up7t+VBuSLqj1P20HygNjow+ALw/Ko+a0icodg7QA2Co0/RiBwa+u2SgpYDqC9Kt KIdRcv+NXkhXF/DLIn0jJvI53OtKsbgTv/C+aCipblofnO9sF4AhShq1AoGBANjj Ou0czloNORbk3qAxLi4b5P/YOyZBJDa0zijFdD1jImfOeyNFXeg2ID+8ZjDkP/eP pLy/Gt/8bVb+O+9wMOho3kWKZBN3O2VsLJYakAehDsC5ax7i2HtEqg1L1krW2duS POiKg3qNjETM30zTA4pHwkNAETIktResze7SRm0XAoGABH7KaLMS5mZFXjcMwF19 TpuDVmJHkgWqB7DfTWD6ZcZLvr4irdwHWlNq7ELX5P6MAmaTerkqwk9C4hLYZSzf 9jOgS8jhlm/HOXgXGcZ9OV4jMHJ0/Sl2I1eNCvvtJKjuUqS2mrLpuLbPtBdhqJoo 91HYNIgz3ULcG921WN6+GlUCgYEA066T6LDgxgt52NpwXrEhfWdETmDg+ilCCxLU 0/5DwVZsUhy5Gmeti+Kn/w0GQFnGBP1xr7ZlqI9auDlSjhNV6L/RkNXNbyJEGm1F 5wrt4ERVfcx6vJ5y43zU7D1EXa7s2t0UDXKDeK2GZe//UZ/yKJh5BeIV5nblOMI0 DA+3JOkCgYEA80QGLjGlCvxKceVbuohbIZ1+/EoXPq993ER9S8D2MTGATsEcygtF rM8JcHTv75sjycqu68BAQr1Z5qwwrMyY0vWVEorKzvAXEWolC67asR4cDutOd+qy WlEIyojX45GwHCHpcbVRiGRWuj3kwkc+WzdgusBoAJrPCigES/Cr8uA= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/smime/signer2.pem000066400000000000000000000061601364063235100176460ustar00rootroot00000000000000-----BEGIN CERTIFICATE----- MIIELDCCApSgAwIBAgIIcsOElVeHzfUwDQYJKoZIhvcNAQELBQAwVzELMAkGA1UE BhMCVUsxEjAQBgNVBAcMCVRlc3QgQ2l0eTEWMBQGA1UECgwNT3BlblNTTCBHcm91 cDEcMBoGA1UEAwwTVGVzdCBTL01JTUUgUm9vdCBDQTAgFw0xODA2MTQxMjQ2Mjha GA8yMTE4MDYxNDEyNDYyOFowVjELMAkGA1UEBhMCVUsxJTAjBgNVBAMMHE9wZW5T U0wgdGVzdCBTL01JTUUgc2lnbmVyIDIxIDAeBgkqhkiG9w0BCQEWEXRlc3QyQG9w ZW5zc2wub3JnMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1ledrM9R 3x3bZypZAEi00DJYAmLS5F6Gg3+xpjE745UWKrjDAY5KswavKKa3vZxoUz2omNSg 4nYfLSowq7AI3VnZ8LwNo8lAeo7AX9elrsmzQzhr2DCdCdbRhCWoiS/ba5tKIhlb gFnP+pB8jhC9qZuQJkpVaivywMW8rA9DRbeDcQjDKhUi0ukVDYHDd9+FtNM3H1t3 AUGWBecjWYa4hXC3CsH3+cFBZKjAepL74hqiEfsEyzKesft3NFd1AcVY9W5MRCK4 lUFiDbBtIgPkvPJeoEs/kFp3+OvJFDwi4K4Z6XzALyT0LXNx6w3kSfx0TLdNjXLD O9a2dzwhHhPtCQIDAQABo3sweTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIBDQQfFh1P cGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUYJEUXnMb/ux0 WrzSh+bnhpi6GS0wHwYDVR0jBBgwFoAUpJjGgWED0xBnKntZmlNiAzjC0HswDQYJ KoZIhvcNAQELBQADggGBAFbrwfsSciDFI97c7oqS8jtxOSa3c4B7xhmcgUkYCiaD 7mbZuqTUf4ltJJZXP/TJ44fhL0zVAvRXSXw1LE3YvLGOlBc6dM3D7DyL5pfUTUBY ICt+NLfG5iHtkiZPPSfK2t5f4UGFwU/ERT62sLu4keLI5igi9J2jKSykN3u5SQ3s Zsennow5zUsFkcz9hkB4RczlHRogA0SgVhELQbN1nYIqJJDRFZL+CmarDRTFMilk 7dXCacw6xt9vIc3ZXO+pu2g1ezgSPwOoUykQcL3UhAEIIyt+TRe3fafh5TXwd8tr FAecAuz5Mqsmek5nEW9ZeYmxNz5VFwc4F61y4xFj7lI0frLCCAu3gVoqiQrW+WwR e27z1Nm4uUcduFqj45Pu2eTyV3LZtLUbFvL5ZSPUCSk1wVmC2otX8ksFDDTO1rIy l5Qd1g1P8bLuj8NG98J2zVOabtaxYCAIBPZ3dUh2eNrPKoLAvrgKh1MH+K2Eh5Oy z1T4Eu+e5Kq/uQkZpI5QzA== -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIIEogIBAAKCAQEA1ledrM9R3x3bZypZAEi00DJYAmLS5F6Gg3+xpjE745UWKrjD AY5KswavKKa3vZxoUz2omNSg4nYfLSowq7AI3VnZ8LwNo8lAeo7AX9elrsmzQzhr 2DCdCdbRhCWoiS/ba5tKIhlbgFnP+pB8jhC9qZuQJkpVaivywMW8rA9DRbeDcQjD KhUi0ukVDYHDd9+FtNM3H1t3AUGWBecjWYa4hXC3CsH3+cFBZKjAepL74hqiEfsE yzKesft3NFd1AcVY9W5MRCK4lUFiDbBtIgPkvPJeoEs/kFp3+OvJFDwi4K4Z6XzA LyT0LXNx6w3kSfx0TLdNjXLDO9a2dzwhHhPtCQIDAQABAoIBAGMEGJfTMiwS+979 ph3GeJjRGO0JQAk1TYiDvcpbZiItJg9YSOV4GTP4u4PY+HqEPYFus2relu/mx2Iy 4kb9zCqNLmvSQ67M8pdrSJ093pEPJlvAPbmiQ3lfHmyghOnTDNb55tY3xphVZQmI I7HxM9ydO4skva6NXNgGwLDvYBFc6z6d95ai/WEFWHOt5Mt7OVOWAHQ0lAOofWLA 2BwKmrQnCwMvm1TMoKaAU/ngTToUGBMIN1HwRcY6qDraZte5o3EDRABHB78OHrSu I/Eoi//5C8A7iZ5Y189lMbahIN6xVMwHwwIqLptTV2GNZOKSiIXnM06vIf4CPZKl 3VlwBgECgYEA/BKnn23KtefA906QNkrIOXASLEE1T77NlTYIRDTsUoz6XTVSvOCI ARxdsoLwFko5ICMhti9S/1G/MYH0BoJN8rbzvjmZDfwF612p0AYALyBlRgW+ID9L 41CJQcLWxeiQd/GcrUZmudVNUGXa8nsNHmFleGLchXeqU7M6fljJOkECgYEA2a56 yvYQgMF/SIPkxU1+WcQC6+JGc+ax220/lysBsDb4SkXomfGtFWbenxwamuQu+n67 DJWi9oJIi9Vj4eKOXS6vjCAkYeLgCpK6S26frPtxJuZwl/lF7mFl8Z4ZnJeiFJ4h AXt5r9vqnOZtCnLqRRAlqF5OswWgv/mhJ6jpMMkCgYBMPaAxWlXLexMkOcDoiunQ ZZM5i2eCfSVVEgiiCJfJyBYZhv1FX2wDWf8E9RGEzGJG1BloLxwdWS5I3RNfvJ2y 4Z8LVAR09Fsd+zBXWNlJZ7T53tbIjhx33m4FU9b9+P9pJ8zJo9eCMX+253e3i3xG ShMUvGIShEUiF72DZXtHgQKBgDi867CfNmn5BW4nQqfSrQ5EsuY80lQ/WzhwX1TN luERUuI5GomVnqGncHtUXfLlawFLqwF6t0E9cB9SfXhRDv5mvsbtUc5Zzj+zQu+K ZAA4gaO8CLjz9jBOHr49kTtpootxM/Uo8+zMi3hd7yn8Def2b3pVKnorC10+eazW sAFRAoGAet6fQbQD+4vZ1oukZcZhmVlIWTSZJ1vAGCcT/3E40pqpPY+Ho56Lcwh0 9f4TAykuGwFgqvZvR8yD2gpuISYGYplWqa1N6qxMaiVzmY5q1XW+O74xRH5Kz5fr D+3j2x4EiyG7AYyZMOphDtBd/TSQQMYmGW6PiyM9ceIVnDK1Dd4= -----END RSA PRIVATE KEY----- openssl-1.1.1f/demos/smime/smdec.c000066400000000000000000000031641364063235100170320ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME signing example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *rcert = NULL; EVP_PKEY *rkey = NULL; PKCS7 *p7 = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in recipient certificate and private key */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; rcert = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); rkey = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); if (!rcert || !rkey) goto err; /* Open content being signed */ in = BIO_new_file("smencr.txt", "r"); if (!in) goto err; /* Sign content */ p7 = SMIME_read_PKCS7(in, NULL); if (!p7) goto err; out = BIO_new_file("encrout.txt", "w"); if (!out) goto err; /* Decrypt S/MIME message */ if (!PKCS7_decrypt(p7, rkey, rcert, out, 0)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Signing Data\n"); ERR_print_errors_fp(stderr); } PKCS7_free(p7); X509_free(rcert); EVP_PKEY_free(rkey); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/smime/smenc.c000066400000000000000000000037711364063235100170500ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME encrypt example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *rcert = NULL; STACK_OF(X509) *recips = NULL; PKCS7 *p7 = NULL; int ret = 1; /* * On OpenSSL 0.9.9 only: * for streaming set PKCS7_STREAM */ int flags = PKCS7_STREAM; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in recipient certificate */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; rcert = PEM_read_bio_X509(tbio, NULL, 0, NULL); if (!rcert) goto err; /* Create recipient STACK and add recipient cert to it */ recips = sk_X509_new_null(); if (!recips || !sk_X509_push(recips, rcert)) goto err; /* * sk_X509_pop_free will free up recipient STACK and its contents so set * rcert to NULL so it isn't freed up twice. */ rcert = NULL; /* Open content being encrypted */ in = BIO_new_file("encr.txt", "r"); if (!in) goto err; /* encrypt content */ p7 = PKCS7_encrypt(recips, in, EVP_des_ede3_cbc(), flags); if (!p7) goto err; out = BIO_new_file("smencr.txt", "w"); if (!out) goto err; /* Write out S/MIME message */ if (!SMIME_write_PKCS7(out, p7, in, flags)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Encrypting Data\n"); ERR_print_errors_fp(stderr); } PKCS7_free(p7); X509_free(rcert); sk_X509_pop_free(recips, X509_free); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/smime/smsign.c000066400000000000000000000036611364063235100172410ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME signing example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *scert = NULL; EVP_PKEY *skey = NULL; PKCS7 *p7 = NULL; int ret = 1; /* * For simple S/MIME signing use PKCS7_DETACHED. On OpenSSL 0.9.9 only: * for streaming detached set PKCS7_DETACHED|PKCS7_STREAM for streaming * non-detached set PKCS7_STREAM */ int flags = PKCS7_DETACHED | PKCS7_STREAM; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Read in signer certificate and private key */ tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; scert = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); skey = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); if (!scert || !skey) goto err; /* Open content being signed */ in = BIO_new_file("sign.txt", "r"); if (!in) goto err; /* Sign content */ p7 = PKCS7_sign(scert, skey, NULL, in, flags); if (!p7) goto err; out = BIO_new_file("smout.txt", "w"); if (!out) goto err; if (!(flags & PKCS7_STREAM)) BIO_reset(in); /* Write out S/MIME message */ if (!SMIME_write_PKCS7(out, p7, in, flags)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Signing Data\n"); ERR_print_errors_fp(stderr); } PKCS7_free(p7); X509_free(scert); EVP_PKEY_free(skey); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/smime/smsign2.c000066400000000000000000000041331364063235100173160ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* S/MIME signing example: 2 signers. OpenSSL 0.9.9 only */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL; X509 *scert = NULL, *scert2 = NULL; EVP_PKEY *skey = NULL, *skey2 = NULL; PKCS7 *p7 = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); tbio = BIO_new_file("signer.pem", "r"); if (!tbio) goto err; scert = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); skey = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); BIO_free(tbio); tbio = BIO_new_file("signer2.pem", "r"); if (!tbio) goto err; scert2 = PEM_read_bio_X509(tbio, NULL, 0, NULL); BIO_reset(tbio); skey2 = PEM_read_bio_PrivateKey(tbio, NULL, 0, NULL); if (!scert2 || !skey2) goto err; in = BIO_new_file("sign.txt", "r"); if (!in) goto err; p7 = PKCS7_sign(NULL, NULL, NULL, in, PKCS7_STREAM | PKCS7_PARTIAL); if (!p7) goto err; /* Add each signer in turn */ if (!PKCS7_sign_add_signer(p7, scert, skey, NULL, 0)) goto err; if (!PKCS7_sign_add_signer(p7, scert2, skey2, NULL, 0)) goto err; out = BIO_new_file("smout.txt", "w"); if (!out) goto err; /* NB: content included and finalized by SMIME_write_PKCS7 */ if (!SMIME_write_PKCS7(out, p7, in, PKCS7_STREAM)) goto err; ret = 0; err: if (ret) { fprintf(stderr, "Error Signing Data\n"); ERR_print_errors_fp(stderr); } PKCS7_free(p7); X509_free(scert); EVP_PKEY_free(skey); X509_free(scert2); EVP_PKEY_free(skey2); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/demos/smime/smver.c000066400000000000000000000034311364063235100170700ustar00rootroot00000000000000/* * Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Simple S/MIME verification example */ #include #include #include int main(int argc, char **argv) { BIO *in = NULL, *out = NULL, *tbio = NULL, *cont = NULL; X509_STORE *st = NULL; X509 *cacert = NULL; PKCS7 *p7 = NULL; int ret = 1; OpenSSL_add_all_algorithms(); ERR_load_crypto_strings(); /* Set up trusted CA certificate store */ st = X509_STORE_new(); /* Read in signer certificate and private key */ tbio = BIO_new_file("cacert.pem", "r"); if (!tbio) goto err; cacert = PEM_read_bio_X509(tbio, NULL, 0, NULL); if (!cacert) goto err; if (!X509_STORE_add_cert(st, cacert)) goto err; /* Open content being signed */ in = BIO_new_file("smout.txt", "r"); if (!in) goto err; /* Sign content */ p7 = SMIME_read_PKCS7(in, &cont); if (!p7) goto err; /* File to output verified content to */ out = BIO_new_file("smver.txt", "w"); if (!out) goto err; if (!PKCS7_verify(p7, NULL, st, cont, out, 0)) { fprintf(stderr, "Verification Failure\n"); goto err; } fprintf(stderr, "Verification Successful\n"); ret = 0; err: if (ret) { fprintf(stderr, "Error Verifying Data\n"); ERR_print_errors_fp(stderr); } PKCS7_free(p7); X509_free(cacert); BIO_free(in); BIO_free(out); BIO_free(tbio); return ret; } openssl-1.1.1f/doc/000077500000000000000000000000001364063235100141135ustar00rootroot00000000000000openssl-1.1.1f/doc/HOWTO/000077500000000000000000000000001364063235100150135ustar00rootroot00000000000000openssl-1.1.1f/doc/HOWTO/certificates.txt000066400000000000000000000112071364063235100202220ustar00rootroot00000000000000 HOWTO certificates 1. Introduction How you handle certificates depends a great deal on what your role is. Your role can be one or several of: - User of some client application - User of some server application - Certificate authority This file is for users who wish to get a certificate of their own. Certificate authorities should read https://www.openssl.org/docs/apps/ca.html. In all the cases shown below, the standard configuration file, as compiled into openssl, will be used. You may find it in /etc/, /usr/local/ssl/ or somewhere else. By default the file is named openssl.cnf and is described at https://www.openssl.org/docs/apps/config.html. You can specify a different configuration file using the '-config {file}' argument with the commands shown below. 2. Relationship with keys Certificates are related to public key cryptography by containing a public key. To be useful, there must be a corresponding private key somewhere. With OpenSSL, public keys are easily derived from private keys, so before you create a certificate or a certificate request, you need to create a private key. Private keys are generated with 'openssl genrsa -out privkey.pem' if you want a RSA private key, or if you want a DSA private key: 'openssl dsaparam -out dsaparam.pem 2048; openssl gendsa -out privkey.pem dsaparam.pem'. The private keys created by these commands are not passphrase protected; it might or might not be the desirable thing. Further information on how to create private keys can be found at https://www.openssl.org/docs/HOWTO/keys.txt. The rest of this text assumes you have a private key in the file privkey.pem. 3. Creating a certificate request To create a certificate, you need to start with a certificate request (or, as some certificate authorities like to put it, "certificate signing request", since that's exactly what they do, they sign it and give you the result back, thus making it authentic according to their policies). A certificate request is sent to a certificate authority to get it signed into a certificate. You can also sign the certificate yourself if you have your own certificate authority or create a self-signed certificate (typically for testing purpose). The certificate request is created like this: openssl req -new -key privkey.pem -out cert.csr Now, cert.csr can be sent to the certificate authority, if they can handle files in PEM format. If not, use the extra argument '-outform' followed by the keyword for the format to use (see another HOWTO ). In some cases, -outform does not let you output the certificate request in the right format and you will have to use one of the various other commands that are exposed by openssl (or get creative and use a combination of tools). The certificate authority performs various checks (according to their policies) and usually waits for payment from you. Once that is complete, they send you your new certificate. Section 5 will tell you more on how to handle the certificate you received. 4. Creating a self-signed test certificate You can create a self-signed certificate if you don't want to deal with a certificate authority, or if you just want to create a test certificate for yourself. This is similar to creating a certificate request, but creates a certificate instead of a certificate request. This is NOT the recommended way to create a CA certificate, see https://www.openssl.org/docs/apps/ca.html. openssl req -new -x509 -key privkey.pem -out cacert.pem -days 1095 5. What to do with the certificate If you created everything yourself, or if the certificate authority was kind enough, your certificate is a raw DER thing in PEM format. Your key most definitely is if you have followed the examples above. However, some (most?) certificate authorities will encode them with things like PKCS7 or PKCS12, or something else. Depending on your applications, this may be perfectly OK, it all depends on what they know how to decode. If not, there are a number of OpenSSL tools to convert between some (most?) formats. So, depending on your application, you may have to convert your certificate and your key to various formats, most often also putting them together into one file. The ways to do this is described in another HOWTO , I will just mention the simplest case. In the case of a raw DER thing in PEM format, and assuming that's all right for your applications, simply concatenating the certificate and the key into a new file and using that one should be enough. With some applications, you don't even have to do that. By now, you have your certificate and your private key and can start using applications that depend on it. -- Richard Levitte openssl-1.1.1f/doc/HOWTO/keys.txt000066400000000000000000000071051364063235100165320ustar00rootroot00000000000000 HOWTO keys 1. Introduction Keys are the basis of public key algorithms and PKI. Keys usually come in pairs, with one half being the public key and the other half being the private key. With OpenSSL, the private key contains the public key information as well, so a public key doesn't need to be generated separately. Public keys come in several flavors, using different cryptographic algorithms. The most popular ones associated with certificates are RSA and DSA, and this HOWTO will show how to generate each of them. 2. To generate a RSA key A RSA key can be used both for encryption and for signing. Generating a key for the RSA algorithm is quite easy, all you have to do is the following: openssl genrsa -des3 -out privkey.pem 2048 With this variant, you will be prompted for a protecting password. If you don't want your key to be protected by a password, remove the flag '-des3' from the command line above. The number 2048 is the size of the key, in bits. Today, 2048 or higher is recommended for RSA keys, as fewer amount of bits is consider insecure or to be insecure pretty soon. 3. To generate a DSA key A DSA key can be used for signing only. It is important to know what a certificate request with a DSA key can really be used for. Generating a key for the DSA algorithm is a two-step process. First, you have to generate parameters from which to generate the key: openssl dsaparam -out dsaparam.pem 2048 The number 2048 is the size of the key, in bits. Today, 2048 or higher is recommended for DSA keys, as fewer amount of bits is consider insecure or to be insecure pretty soon. When that is done, you can generate a key using the parameters in question (actually, several keys can be generated from the same parameters): openssl gendsa -des3 -out privkey.pem dsaparam.pem With this variant, you will be prompted for a protecting password. If you don't want your key to be protected by a password, remove the flag '-des3' from the command line above. 4. To generate an EC key An EC key can be used both for key agreement (ECDH) and signing (ECDSA). Generating a key for ECC is similar to generating a DSA key. These are two-step processes. First, you have to get the EC parameters from which the key will be generated: openssl ecparam -name prime256v1 -out prime256v1.pem The prime256v1, or NIST P-256, which stands for 'X9.62/SECG curve over a 256-bit prime field', is the name of an elliptic curve which generates the parameters. You can use the following command to list all supported curves: openssl ecparam -list_curves When that is done, you can generate a key using the created parameters (several keys can be produced from the same parameters): openssl genpkey -des3 -paramfile prime256v1.pem -out private.key With this variant, you will be prompted for a password to protect your key. If you don't want your key to be protected by a password, remove the flag '-des3' from the command line above. You can also directly generate the key in one step: openssl ecparam -genkey -name prime256v1 -out private.key or openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 5. NOTE If you intend to use the key together with a server certificate, it may be reasonable to avoid protecting it with a password, since otherwise someone would have to type in the password every time the server needs to access the key. For X25519 and X448, it's treated as a distinct algorithm but not as one of the curves listed with 'ecparam -list_curves' option. You can use the following command to generate an X25519 key: openssl genpkey -algorithm X25519 -out xkey.pem openssl-1.1.1f/doc/README000066400000000000000000000012011364063235100147650ustar00rootroot00000000000000 README This file fingerprints.txt PGP fingerprints of authorised release signers standards.txt Moved to the web, https://www.openssl.org/docs/standards.html HOWTO/ A few how-to documents; not necessarily up-to-date man1/ The openssl command-line tools; start with openssl.pod man3/ The SSL library and the crypto library man5/ File formats man7/ Overviews; start with crypto.pod and ssl.pod, for example Algorithm specific EVP_PKEY documentation. Formatted versions of the manpages (apps,ssl,crypto) can be found at https://www.openssl.org/docs/manpages.html openssl-1.1.1f/doc/dir-locals.example.el000066400000000000000000000007011364063235100201160ustar00rootroot00000000000000;;; This is an example of what a .dir-locals.el suitable for OpenSSL ;;; development could look like. ;;; ;;; Apart from setting the CC mode style to "OpenSSL-II", it also ;;; makes sure that tabs are never used for indentation in any file, ;;; and that the fill column is 78. ;;; ;;; For more information see (info "(emacs) Directory Variables") ((nil (indent-tabs-mode . nil) (fill-column . 70) ) (c-mode (c-file-style . "OpenSSL-II"))) openssl-1.1.1f/doc/fingerprints.txt000066400000000000000000000020261364063235100173660ustar00rootroot00000000000000Fingerprints for Signing Releases OpenSSL releases are signed with PGP/GnuPG keys. This file contains the fingerprints of team members who are "authorized" to sign the next release. The signature is a detached cleartxt signature, with the same name as the release but with ".asc" appended. For example, release 1.0.1h can be found in openssl-1.0.1h.tar.gz with the signature in the file named openssl-1.0.1h.tar.gz.asc. The following is the list of fingerprints for the keys that are currently in use to sign OpenSSL distributions: pub 4096R/7DF9EE8C 2014-10-04 Key fingerprint = 7953 AC1F BC3D C8B3 B292 393E D5E9 E43F 7DF9 EE8C uid Richard Levitte uid Richard Levitte uid Richard Levitte pub 2048R/0E604491 2013-04-30 Key fingerprint = 8657 ABB2 60F0 56B1 E519 0839 D9C4 D26D 0E60 4491 uid Matt Caswell uid Matt Caswell openssl-1.1.1f/doc/man1/000077500000000000000000000000001364063235100147475ustar00rootroot00000000000000openssl-1.1.1f/doc/man1/CA.pl.pod000066400000000000000000000154401364063235100163540ustar00rootroot00000000000000=pod =head1 NAME CA.pl - friendlier interface for OpenSSL certificate programs =head1 SYNOPSIS B B<-?> | B<-h> | B<-help> B B<-newcert> | B<-newreq> | B<-newreq-nodes> | B<-xsign> | B<-sign> | B<-signCA> | B<-signcert> | B<-crl> | B<-newca> [B<-extra-cmd> extra-params] B B<-pkcs12> [B<-extra-pkcs12> extra-params] [B] B B<-verify> [B<-extra-verify> extra-params] B... B B<-revoke> [B<-extra-ca> extra-params] B [B] =head1 DESCRIPTION The B script is a perl script that supplies the relevant command line arguments to the B command for some common certificate operations. It is intended to simplify the process of certificate creation and management by the use of some simple options. =head1 OPTIONS =over 4 =item B, B<-h>, B<-help> Prints a usage message. =item B<-newcert> Creates a new self signed certificate. The private key is written to the file "newkey.pem" and the request written to the file "newreq.pem". This argument invokes B command. =item B<-newreq> Creates a new certificate request. The private key is written to the file "newkey.pem" and the request written to the file "newreq.pem". Executes B command below the hood. =item B<-newreq-nodes> Is like B<-newreq> except that the private key will not be encrypted. Uses B command. =item B<-newca> Creates a new CA hierarchy for use with the B program (or the B<-signcert> and B<-xsign> options). The user is prompted to enter the filename of the CA certificates (which should also contain the private key) or by hitting ENTER details of the CA will be prompted for. The relevant files and directories are created in a directory called "demoCA" in the current directory. B and B commands are get invoked. =item B<-pkcs12> Create a PKCS#12 file containing the user certificate, private key and CA certificate. It expects the user certificate and private key to be in the file "newcert.pem" and the CA certificate to be in the file demoCA/cacert.pem, it creates a file "newcert.p12". This command can thus be called after the B<-sign> option. The PKCS#12 file can be imported directly into a browser. If there is an additional argument on the command line it will be used as the "friendly name" for the certificate (which is typically displayed in the browser list box), otherwise the name "My Certificate" is used. Delegates work to B command. =item B<-sign>, B<-signcert>, B<-xsign> Calls the B program to sign a certificate request. It expects the request to be in the file "newreq.pem". The new certificate is written to the file "newcert.pem" except in the case of the B<-xsign> option when it is written to standard output. Leverages B command. =item B<-signCA> This option is the same as the B<-signreq> option except it uses the configuration file section B and so makes the signed request a valid CA certificate. This is useful when creating intermediate CA from a root CA. Extra params are passed on to B command. =item B<-signcert> This option is the same as B<-sign> except it expects a self signed certificate to be present in the file "newreq.pem". Extra params are passed on to B and B commands. =item B<-crl> Generate a CRL. Executes B command. =item B<-revoke certfile [reason]> Revoke the certificate contained in the specified B. An optional reason may be specified, and must be one of: B, B, B, B, B, B, B, or B. Leverages B command. =item B<-verify> Verifies certificates against the CA certificate for "demoCA". If no certificates are specified on the command line it tries to verify the file "newcert.pem". Invokes B command. =item B<-extra-req> | B<-extra-ca> | B<-extra-pkcs12> | B<-extra-x509> | B<-extra-verify> The purpose of these parameters is to allow optional parameters to be supplied to B that this command executes. The B<-extra-cmd> are specific to the option being used and the B command getting invoked. For example when this command invokes B extra parameters can be passed on with the B<-extra-req> parameter. The B commands being invoked per option are documented below. Users should consult B command documentation for more information. =back =head1 EXAMPLES Create a CA hierarchy: CA.pl -newca Complete certificate creation example: create a CA, create a request, sign the request and finally create a PKCS#12 file containing it. CA.pl -newca CA.pl -newreq CA.pl -signreq CA.pl -pkcs12 "My Test Certificate" =head1 DSA CERTIFICATES Although the B creates RSA CAs and requests it is still possible to use it with DSA certificates and requests using the L command directly. The following example shows the steps that would typically be taken. Create some DSA parameters: openssl dsaparam -out dsap.pem 1024 Create a DSA CA certificate and private key: openssl req -x509 -newkey dsa:dsap.pem -keyout cacert.pem -out cacert.pem Create the CA directories and files: CA.pl -newca enter cacert.pem when prompted for the CA file name. Create a DSA certificate request and private key (a different set of parameters can optionally be created first): openssl req -out newreq.pem -newkey dsa:dsap.pem Sign the request: CA.pl -signreq =head1 NOTES Most of the filenames mentioned can be modified by editing the B script. If the demoCA directory already exists then the B<-newca> command will not overwrite it and will do nothing. This can happen if a previous call using the B<-newca> option terminated abnormally. To get the correct behaviour delete the demoCA directory if it already exists. Under some environments it may not be possible to run the B script directly (for example Win32) and the default configuration file location may be wrong. In this case the command: perl -S CA.pl can be used and the B environment variable changed to point to the correct path of the configuration file. The script is intended as a simple front end for the B program for use by a beginner. Its behaviour isn't always what is wanted. For more control over the behaviour of the certificate commands call the B command directly. =head1 SEE ALSO L, L, L, L, L =head1 COPYRIGHT Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved. Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at L. =cut openssl-1.1.1f/doc/man1/asn1parse.pod000066400000000000000000000136311364063235100173540ustar00rootroot00000000000000=pod =head1 NAME openssl-asn1parse, asn1parse - ASN.1 parsing tool =head1 SYNOPSIS B B [B<-help>] [B<-inform PEM|DER>] [B<-in filename>] [B<-out filename>] [B<-noout>] [B<-offset number>] [B<-length number>] [B<-i>] [B<-oid filename>] [B<-dump>] [B<-dlimit num>] [B<-strparse offset>] [B<-genstr string>] [B<-genconf file>] [B<-strictpem>] [B<-item name>] =head1 DESCRIPTION The B command is a diagnostic utility that can parse ASN.1 structures. It can also be used to extract data from ASN.1 formatted data. =head1 OPTIONS =over 4 =item B<-help> Print out a usage message. =item B<-inform> B The input format. B is binary format and B (the default) is base64 encoded. =item B<-in filename> The input file, default is standard input. =item B<-out filename> Output file to place the DER encoded data into. If this option is not present then no data will be output. This is most useful when combined with the B<-strparse> option. =item B<-noout> Don't output the parsed version of the input file. =item B<-offset number> Starting offset to begin parsing, default is start of file. =item B<-length number> Number of bytes to parse, default is until end of file. =item B<-i> Indents the output according to the "depth" of the structures. =item B<-oid filename> A file containing additional OBJECT IDENTIFIERs (OIDs). The format of this file is described in the NOTES section below. =item B<-dump> Dump unknown data in hex format. =item B<-dlimit num> Like B<-dump>, but only the first B bytes are output. =item B<-strparse offset> Parse the contents octets of the ASN.1 object starting at B. This option can be used multiple times to "drill down" into a nested structure. =item B<-genstr string>, B<-genconf file> Generate encoded data based on B, B or both using L format. If B only is present then the string is obtained from the default section using the name B. The encoded data is passed through the ASN1 parser and printed out as though it came from a file, the contents can thus be examined and written to a file using the B option. =item B<-strictpem> If this option is used then B<-inform> will be ignored. Without this option any data in a PEM format input file will be treated as being base64 encoded and processed whether it has the normal PEM BEGIN and END markers or not. This option will ignore any data prior to the start of the BEGIN marker, or after an END marker in a PEM file. =item B<-item name> Attempt to decode and print the data as B. This can be used to print out the fields of any supported ASN.1 structure if the type is known. =back =head2 Output The output will typically contain lines like this: 0:d=0 hl=4 l= 681 cons: SEQUENCE ..... 229:d=3 hl=3 l= 141 prim: BIT STRING 373:d=2 hl=3 l= 162 cons: cont [ 3 ] 376:d=3 hl=3 l= 159 cons: SEQUENCE 379:d=4 hl=2 l= 29 cons: SEQUENCE 381:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Identifier 386:d=5 hl=2 l= 22 prim: OCTET STRING 410:d=4 hl=2 l= 112 cons: SEQUENCE 412:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Authority Key Identifier 417:d=5 hl=2 l= 105 prim: OCTET STRING 524:d=4 hl=2 l= 12 cons: SEQUENCE ..... This example is part of a self-signed certificate. Each line starts with the offset in decimal. B specifies the current depth. The depth is increased within the scope of any SET or SEQUENCE. B gives the header length (tag and length octets) of the current type. B gives the length of the contents octets. The B<-i> option can be used to make the output more readable. Some knowledge of the ASN.1 structure is needed to interpret the output. In this example the BIT STRING at offset 229 is the certificate public key. The contents octets of this will contain the public key information. This can be examined using the option B<-strparse 229> to yield: 0:d=0 hl=3 l= 137 cons: SEQUENCE 3:d=1 hl=3 l= 129 prim: INTEGER :E5D21E1F5C8D208EA7A2166C7FAF9F6BDF2059669C60876DDB70840F1A5AAFA59699FE471F379F1DD6A487E7D5409AB6A88D4A9746E24B91D8CF55DB3521015460C8EDE44EE8A4189F7A7BE77D6CD3A9AF2696F486855CF58BF0EDF2B4068058C7A947F52548DDF7E15E96B385F86422BEA9064A3EE9E1158A56E4A6F47E5897 135:d=1 hl=2 l= 3 prim: INTEGER :010001 =head1 NOTES If an OID is not part of OpenSSL's internal table it will be represented in numerical form (for example 1.2.3.4). The file passed to the B<-oid> option allows additional OIDs to be included. Each line consists of three columns, the first column is the OID in numerical format and should be followed by white space. The second column is the "short name" which is a single word followed by white space. The final column is the rest of the line and is the "long name". B displays the long name. Example: C<1.2.3.4 shortName A long name> =head1 EXAMPLES Parse a file: openssl asn1parse -in file.pem Parse a DER file: openssl asn1parse -inform DER -in file.der Generate a simple UTF8String: openssl asn1parse -genstr 'UTF8:Hello World' Generate and write out a UTF8String, don't print parsed output: openssl asn1parse -genstr 'UTF8:Hello World' -noout -out utf8.der Generate using a config file: openssl asn1parse -genconf asn1.cnf -noout -out asn1.der Example config file: asn1=SEQUENCE:seq_sect [seq_sect] field1=BOOL:TRUE field2=EXP:0, UTF8:some random string =head1 BUGS There should be options to change the format of output lines. The output of some ASN.1 types is not well handled (if at all). =head1 SEE ALSO L =head1 COPYRIGHT Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved. Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at L. =cut openssl-1.1.1f/doc/man1/ca.pod000066400000000000000000000614371364063235100160510ustar00rootroot00000000000000=pod =head1 NAME openssl-ca, ca - sample minimal CA application =head1 SYNOPSIS B B [B<-help>] [B<-verbose>] [B<-config filename>] [B<-name section>] [B<-gencrl>] [B<-revoke file>] [B<-valid file>] [B<-status serial>] [B<-updatedb>] [B<-crl_reason reason>] [B<-crl_hold instruction>] [B<-crl_compromise time>] [B<-crl_CA_compromise time>] [B<-crldays days>] [B<-crlhours hours>] [B<-crlexts section>] [B<-startdate date>] [B<-enddate date>] [B<-days arg>] [B<-md arg>] [B<-policy arg>] [B<-keyfile arg>] [B<-keyform PEM|DER>] [B<-key arg>] [B<-passin arg>] [B<-cert file>] [B<-selfsign>] [B<-in file>] [B<-out file>] [B<-notext>] [B<-outdir dir>] [B<-infiles>] [B<-spkac file>] [B<-ss_cert file>] [B<-preserveDN>] [B<-noemailDN>] [B<-batch>] [B<-msie_hack>] [B<-extensions section>] [B<-extfile section>] [B<-engine id>] [B<-subj arg>] [B<-utf8>] [B<-sigopt nm:v>] [B<-create_serial>] [B<-rand_serial>] [B<-multivalue-rdn>] [B<-rand file...>] [B<-writerand file>] =head1 DESCRIPTION The B command is a minimal CA application. It can be used to sign certificate requests in a variety of forms and generate CRLs it also maintains a text database of issued certificates and their status. The options descriptions will be divided into each purpose. =head1 OPTIONS =over 4 =item B<-help> Print out a usage message. =item B<-verbose> This prints extra details about the operations being performed. =item B<-config filename> Specifies the configuration file to use. Optional; for a description of the default value, see L. =item B<-name section> Specifies the configuration file section to use (overrides B in the B section). =item B<-in filename> An input filename containing a single certificate request to be signed by the CA. =item B<-ss_cert filename> A single self-signed certificate to be signed by the CA. =item B<-spkac filename> A file containing a single Netscape signed public key and challenge and additional field values to be signed by the CA. See the B section for information on the required input and output format. =item B<-infiles> If present this should be the last option, all subsequent arguments are taken as the names of files containing certificate requests. =item B<-out filename> The output file to output certificates to. The default is standard output. The certificate details will also be printed out to this file in PEM format (except that B<-spkac> outputs DER format). =item B<-outdir directory> The directory to output certificates to. The certificate will be written to a filename consisting of the serial number in hex with ".pem" appended. =item B<-cert> The CA certificate file. =item B<-keyfile filename> The private key to sign requests with. =item B<-keyform PEM|DER> The format of the data in the private key file. The default is PEM. =item B<-sigopt nm:v> Pass options to the signature algorithm during sign or verify operations. Names and values of these options are algorithm-specific. =item B<-key password> The password used to encrypt the private key. Since on some systems the command line arguments are visible (e.g. Unix with the 'ps' utility) this option should be used with caution. =item B<-selfsign> Indicates the issued certificates are to be signed with the key the certificate requests were signed with (given with B<-keyfile>). Certificate requests signed with a different key are ignored. If B<-spkac>, B<-ss_cert> or B<-gencrl> are given, B<-selfsign> is ignored. A consequence of using B<-selfsign> is that the self-signed certificate appears among the entries in the certificate database (see the configuration option B), and uses the same serial number counter as all other certificates sign with the self-signed certificate. =item B<-passin arg> The key password source. For more information about the format of B see the B section in L. =item B<-notext> Don't output the text form of a certificate to the output file. =item B<-startdate date> This allows the start date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same as an ASN1 UTCTime structure), or YYYYMMDDHHMMSSZ (the same as an ASN1 GeneralizedTime structure). In both formats, seconds SS and timezone Z must be present. =item B<-enddate date> This allows the expiry date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same as an ASN1 UTCTime structure), or YYYYMMDDHHMMSSZ (the same as an ASN1 GeneralizedTime structure). In both formats, seconds SS and timezone Z must be present. =item B<-days arg> The number of days to certify the certificate for. =item B<-md alg> The message digest to use. Any digest supported by the OpenSSL B command can be used. For signing algorithms that do not support a digest (i.e. Ed25519 and Ed448) any message digest that is set is ignored. This option also applies to CRLs. =item B<-policy arg> This option defines the CA "policy" to use. This is a section in the configuration file which decides which fields should be mandatory or match the CA certificate. Check out the B section for more information. =item B<-msie_hack> This is a deprecated option to make B work with very old versions of the IE certificate enrollment control "certenr3". It used UniversalStrings for almost everything. Since the old control has various security bugs its use is strongly discouraged. =item B<-preserveDN> Normally the DN order of a certificate is the same as the order of the fields in the relevant policy section. When this option is set the order is the same as the request. This is largely for compatibility with the older IE enrollment control which would only accept certificates if their DNs match the order of the request. This is not needed for Xenroll. =item B<-noemailDN> The DN of a certificate can contain the EMAIL field if present in the request DN, however it is good policy just having the e-mail set into the altName extension of the certificate. When this option is set the EMAIL field is removed from the certificate' subject and set only in the, eventually present, extensions. The B keyword can be used in the configuration file to enable this behaviour. =item B<-batch> This sets the batch mode. In this mode no questions will be asked and all certificates will be certified automatically. =item B<-extensions section> The section of the configuration file containing certificate extensions to be added when a certificate is issued (defaults to B unless the B<-extfile> option is used). If no extension section is present then, a V1 certificate is created. If the extension section is present (even if it is empty), then a V3 certificate is created. See the L manual page for details of the extension section format. =item B<-extfile file> An additional configuration file to read certificate extensions from (using the default section unless the B<-extensions> option is also used). =item B<-engine id> Specifying an engine (by its unique B string) will cause B to attempt to obtain a functional reference to the specified engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms. =item B<-subj arg> Supersedes subject name given in the request. The arg must be formatted as I. Keyword characters may be escaped by \ (backslash), and whitespace is retained. Empty values are permitted, but the corresponding type will not be included in the resulting certificate. =item B<-utf8> This option causes field values to be interpreted as UTF8 strings, by default they are interpreted as ASCII. This means that the field values, whether prompted from a terminal or obtained from a configuration file, must be valid UTF8 strings. =item B<-create_serial> If reading serial from the text file as specified in the configuration fails, specifying this option creates a new random serial to be used as next serial number. To get random serial numbers, use the B<-rand_serial> flag instead; this should only be used for simple error-recovery. =item B<-rand_serial> Generate a large random number to use as the serial number. This overrides any option or configuration to use a serial number file. =item B<-multivalue-rdn> This option causes the -subj argument to be interpreted with full support for multivalued RDNs. Example: I If -multi-rdn is not used then the UID value is I<123456+CN=John Doe>. =item B<-rand file...> A file or files containing random data used to seed the random number generator. Multiple files can be specified separated by an OS-dependent character. The separator is B<;> for MS-Windows, B<,> for OpenVMS, and B<:> for all others. =item [B<-writerand file>] Writes random data to the specified I upon exit. This can be used with a subsequent B<-rand> flag. =back =head1 CRL OPTIONS =over 4 =item B<-gencrl> This option generates a CRL based on information in the index file. =item B<-crldays num> The number of days before the next CRL is due. That is the days from now to place in the CRL nextUpdate field. =item B<-crlhours num> The number of hours before the next CRL is due. =item B<-revoke filename> A filename containing a certificate to revoke. =item B<-valid filename> A filename containing a certificate to add a Valid certificate entry. =item B<-status serial> Displays the revocation status of the certificate with the specified serial number and exits. =item B<-updatedb> Updates the database index to purge expired certificates. =item B<-crl_reason reason> Revocation reason, where B is one of: B, B, B, B, B, B, B or B. The matching of B is case insensitive. Setting any revocation reason will make the CRL v2. In practice B is not particularly useful because it is only used in delta CRLs which are not currently implemented. =item B<-crl_hold instruction> This sets the CRL revocation reason code to B and the hold instruction to B which must be an OID. Although any OID can be used only B (the use of which is discouraged by RFC2459) B or B will normally be used. =item B<-crl_compromise time> This sets the revocation reason to B and the compromise time to B